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Abstract

This thesis studies volatility modelling and calibration problems from the point of view
of optimal transport. The manuscript is divided into three parts.

In the first part of the thesis, we examine the application of continuous-time martingale
optimal transport to calibrate local volatility models from European options market prices.
The calibration problem is formulated as a convex optimisation problem, for which we
provide a numerical solution using the alternating direction method of multipliers (ADMM).

In the second part, we continue to extend the method for calibrating local-stochastic
volatility (LSV) models. We study a semimartingale optimal transport problem with a fi-
nite number of discrete constraints motivated by fitting models to observable market option
prices. This problem maximises a convex objective function on a convex set of probability
measures. We prove that, if there exists a solution, we can find an optimal probabil-
ity measure under which the semimartingale is a Markov process that fully matches the
market option prices, whose drift and diffusion are functions of time and state variables.
Focusing only on these Markov processes, we provide a partial differential equation formu-
lation along with its dual counterpart. We propose a gradient descent algorithm for the
numerical solution of the dual formulation, which involves solving a fully non-linear Hamil-
ton–Jacobi–Bellman equation at each iteration. To demonstrate the numerical solution, we
provide examples of calibrating a Heston-like LSV model with simulated data and foreign
exchange market data.

Finally, in the third part, we apply the results developed in part two to solve the joint
calibration problem of S&P 500 (SPX) and VIX options and futures, which has been known
as a challenging problem for many years. To achieve this, we consider a two dimensional
semimartingale whose first coordinate process is the logarithm of the SPX price and whose
second coordinate process is the expected forward quadratic variation of the first coordinate
process. Then the option prices and future prices of SPX and VIX can be formulated as
the discrete constraints considered in part two. Therefore, the results developed in part two
can be directly applied. In addition to the numerical solution for the dual formulation, we
introduce a smoothing technique to smooth the model volatility surfaces and skews. Both
numerical examples with simulated data and market data are presented.

Keywords: stochastic volatility, calibration, optimal transport, duality, SPX, VIX, HJB
equation.
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Grégoire Loeper and Dr. Ivan Guo, for their unwavering support and patience throughout
my PhD studies. Without their guidance in the academic world, the research detailed in
this dissertation would not have been possible.

I would also like to thank A/Prof. Andrea Collevecchio, Dr. Hasan Fallahgoul and Dr.
Kihun Nam, members of my PhD committee, for their valuable time and feedback. My
thanks also goes to my collaborator, Prof. Jan Ob lój, for many enlightening discussions
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Chapter 1

Introduction

The main goal of this thesis is to investigate the problem of volatility modelling and cali-
bration through the lens of optimal transport. The models we consider belong to a class of
continuous semimartingales. To calibrate these models to observable market option prices,
we formulate the calibration problems as convex optimisation problems, which are then
solved by efficient numerical methods. When considering option price constraints instead
of the terminal distribution constraint that appears in the classical optimal transport prob-
lem, our method is similar to the one studied by Avellaneda et al. [4] in which the local
volatility model calibration problem was solved via entropy minimisation. Being nonpara-
metric, if there exists a solution to the calibration problem, the method will lead us to an
optimal probability measure under which the model fully matches the observable market
option and future prices, i.e., an exact calibration. In addition, by using a dimension re-
duction technique, the calibrated model is Markovian in the state variables, which allows
for hedging and pricing with conventional numerical methods.

This thesis is comprised of four chapters. The present chapter introduces the back-
ground of the problem of volatility modelling and calibration and the theory of optimal
transport. Chapter 2 is based on our manuscript [51] entitled Local volatility calibration by
optimal transport. In this work, we analyse a continuous-time martingale optimal transport
problem in the spirit of the seminal work by Benamou and Brenier [8] for the classical opti-
mal transport problem. The connections between optimal transport and the local volatility
calibration are then established. Chapter 3 is based on our manuscript [54] entitled Cali-
bration of local-stochastic volatility models by optimal transport. In this work, we study a
semimartingale optimal transport problem, inspired by Tan and Touzi [103], and its ap-
plication to the calibration of local-stochastic volatility models. In particular, motivated
by fitting models to observable market option prices, we replace the terminal distribution
constraint with a finite number of constraints (namely, options prices). A duality result
for this modified problem and a numerical solution by gradient descent for the dual formu-
lation are presented. Chapter 4 is based on our manuscript [52] entitled Joint modelling
and calibration of SPX and VIX by optimal transport. In this work, we apply the method
developed in Chapter 3 to construct a stochastic volatility model that can be jointly and
exactly calibrated to the option and future prices of SPX and VIX.

1.1 Background

In the world of mathematical finance, the origin of option pricing — one of the most fun-
damental problems — traces back to the classical Black–Scholes framework introduced by
Black and Scholes [14] and Merton [86] in 1973. A core assumption of their framework is

1



1.1. BACKGROUND

that the underlying risky asset has constant volatility. However, this assumption can be
easily dispelled, because the volatility surfaces implied by the observable market option
prices are known to exhibit “smiles” or “skews”. Ever since then, researchers and practi-
tioners have put a lot of effort into developing sophisticated volatility models to explain
this phenomenon.

Introduced as an extension of the Black–Scholes model, the local volatility model was
proposed independently by Dupire [37] and Derman and Kani [35], in which the instanta-
neous volatility is a deterministic function of time and underlying asset price. The local
volatility model is known as the simplest model that can capture the volatility smiles or
skews, making it one of the most widely used models in the financial industry. Despite
its simplicity and popularity, the local volatility model has been criticised for its unrealis-
tic volatility dynamics, which means that the exotic option prices generated by the local
volatility model are often inconsistent with those observed from the market. In contrast
to the local volatility model, stochastic volatility models specify instantaneous volatility
as a continuous stochastic process. Some classic instances of stochastic volatility models
include the Heston model [64], the Hull–White model [67] and the SABR model [59]. These
models tend to be more consistent with the market dynamics, but they struggle to fit short
term market smiles and skews, and being parametric, they do not have enough degrees of
freedom to match all vanilla market prices. The market practice is to use the so-called
local-stochastic volatility (LSV) models which were first presented in Jex et al. [70]. The
LSV models exploit the strengths of both the local volatility model and stochastic volatility
models by incorporating a nonparametric local volatility component into stochastic volatil-
ity models. More details on LSV models will be given in Chapter 3.

In addition to the above models, there are other varieties that aim to accurately capture
the market smiles and skews, including jump-diffusion models [76, 77, 87], pure jump models
[28, 85], Lévy models [26, 99] and stochastic volatility models with jumps in the underlying
or the volatility [25, 39]. In a series of papers [9, 10, 11, 12] and his book [13], Bergomi
proposed and comprehensively reviewed a class of stochastic volatility models called the
forward variance models. Instead of modelling the instantaneous volatility, these models
specify the dynamics of forward variance, which provides a better fit to the future implied
volatility surface and significantly reduces the pricing error of forward start options and
cliquet options1.

In recent years, the theory of optimal transport has been proven successful in appli-
cations to many fields, especially in mathematical finance. First, let us briefly introduce
the mathematical field of optimal transport. The original optimal transport problem was
addressed by Gaspard Monge [88] in the context of civil engineering in 1781. The goal of
Monge’s problem is to find a map to transport mass from one place to another with the
minimum transportation cost. This problem was challenging to solve due to its nonlinear
constraint. A breakthrough was made in 1940s by Leonid Kantorovich [72, 73] who pre-
sented two reformulations of Monge’s problem based on linear programming methods, so
the optimal transport problem is also known as the Monge–Kantorovich problem. Mathe-
matically, given a cost function for measuring the cost of transporting a unit of mass from
one point to another point, Kantorovich aims to minimise the integral of the cost func-
tion with respect to the set of all couplings (or so-called transport plans) that have given
marginals. Kantorovich also provides a dual counterpart to the first formulation. These
two formulations can be solved by a variety of modern mathematical techniques. Since
then, optimal transport theory has attracted considerable attention with applications in

1A forward start option is an exotic option that is purchased at T0, starts at T1 and expires at T2, where
T0 < T1 < T2. A cliquet option is an option that consists of a series of consecutive forward start options.

2



1.1. BACKGROUND

many areas such as cosmology [21, 82, 100], econometrics [43] and data science [92], etc. A
comprehensive introduction to optimal transport can be found in the books of Rachev and
Rüschendorf [93, 94] and the books of Villani [106, 107].

In a landmark paper published in 2000, Benamou and Brenier [8] proposed a continuous-
time formulation of optimal transport. In this formulation, one aims to minimise the total
transportation cost, in a fixed time interval, over all time-dependent densities and velocity
fields, satisfying an initial and terminal density condition and a continuity equation. The
continuity equation ensures that the mass is moving continuously in time and that the
total mass is conserved during the transportation. In their paper, they also proposed a
numerical solution based on an augmented Lagrangian method which is also widely known
as the alternating direction method of multipliers (ADMM) in the recent literature2. In
Brenier [20] (also see Loeper [82] for related works), the duality of the continuous-time
optimal transport was formally established via the Fenchel–Rockafellar theorem (see e.g.,
Villani [106, Theorem 1.9]). This method was also applied in Huesmann and Trevisan
[66] to investigate the duality of a continuous-time martingale optimal transport problem,
that extends the optimal transport problem with an additional martingale constraint on
the marginal distributions. Recently, Tan and Touzi [103] studied the problem of optimal
transport with semimartingales with constraints on the marginals at initial and final times.
More recently, in Guo and Loeper [50], the semimartingale optimal transport problem was
further extended to a more general path-dependent setting. It is worth mentioning that
two deep learning-based numerical methods were developed in Guo et al. [53] for solving
the high-dimensional semimartingale optimal transport. Since both methods are mesh-free,
they are not subject to the curse of dimensionality.

One of the most successful applications of optimal transport in mathematical finance
is to solve the robust or model-free hedging problem. Instead of building sophisticated
models based on market assumptions, the robust hedging problem prefers to have fewer
beliefs in the financial market. This idea was formalised by Hobson in his famous paper
[65], in which he derived lower and upper bounds for lookback options in continuous time
by using call option prices and the no-arbitrage assumption. Following his work, martingale
optimal transport was introduced to solve the robust hedging problem by Galichon et al.
[44] in continuous time and by Beiglböck et al. [7] in discrete time. Their works have led
to a growing literature on robust hedging and martingale optimal transport, see the recent
book by Henry-Labordère [62] for an excellent review on these topics.

Another successful application of optimal transport is on the volatility model calibration
problems. To the best of our knowledge, the first attempt of this application was made
by Guo et al. [51], in which the local volatility calibration problem was formulated as a
continuous-time martingale optimal transport problem and then numerically solved by the
ADMM algorithm. Later in [50], Guo and Loeper studied a path-dependent model and
expanded the available calibration instruments from European options to path-dependent
options, such as Asian options, barrier options and lookback options. This was achieved by
extending the semimartingale optimal transport problem of Tan and Touzi [103] to a path-
dependent setting. Inspired by the so-called Schrödinger bridge problem, a problem closely
related to optimal transport, Henry-Labordère [63] introduced a new class of stochastic
volatility models. The calibration of these new models only requires to modify the drift,
leaving the volatility of volatility unchanged. In a recent paper [56], using discrete-time
martingale optimal transport, Guyon jointly and accurately reproduced the SPX and VIX
smiles in discrete time. This joint calibration problem has been known to be highly chal-

2In the original paper by Benamou and Brenier [8] and some literature on optimal transport, the ADMM
is also called ALG2 which is a name first used by the algorithm’s inventors Fortin and Glowinski [41].
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1.2. CONTRIBUTIONS

lenging. Guyon also proposed an efficient calibration method by extending the Sinkhorn
matrix scaling algorithm [31], in the spirit of De March and Henry-Labordère [33]. More re-
cently, the calibration framework developed in [50] was adapted to calibrate local-stochastic
volatility models [54] and a joint model for SPX and VIX [52]. The highly connected works
[51], [54] and [52] will be presented sequentially in Chapters 2, 3 and 4.

1.2 Contributions

The motivation of this thesis is to study volatility models and their calibration methods,
and it comprises three connected research articles.

1.2.1 Local volatility model

In Chapter 2, we develop a calibration method for the local volatility model based on
the theory of continuous-time martingale optimal transport. It is based on the published
research article [51] entitled Local volatility calibration by optimal transport.

Introduced as an extension of the Black—Scholes model, the local volatility model has
become one of the most popular models in the financial industry nowadays. In a local
volatility model, the volatility function σ is a function of time t as well as the asset price St.
The calibration of the local volatility function involves determining σ(t, s) from available
option prices. One of the most prominent calibration approaches is Dupire’s formula [37]
which is an analytical formula that allows to directly recover the local volatility function
σ(t, s) from available option prices. In particular, Dupire’s formula is given by

σ2(T,K) =
∂C(T,K)

∂T
+ µtK

∂C(T,K)
∂K

K2

2
∂2C(T,K)
∂K2

,

where µt is a deterministic function and C(T,K) are European call option prices with
maturity T and strike K. However, in practice, option prices are only available at discrete
strikes and maturities. Hence interpolation is required in both variables to utilise this
formula, leading to many inaccuracies and instabilities. Inspired by the seminal work of
Benamou and Brenier [8] for the classical optimal transport, we introduce a variational
approach for calibrating the local volatility function.

The first novelty of this work is that we adapt the variational formulation of the deter-
ministic optimal transport and the augmented Lagrangian approach proposed by Benamou
and Brenier [8] to the martingale optimal transport problem. More specifically, instead
of considering a deterministic process whose density function is the solution of a conti-
nuity equation, we consider a martingale diffusion process whose density function solves a
Fokker–Planck equation. We then formulate this optimisation problem in an augmented La-
grangian form which is then solved by an algorithm called the alternating direction method
of multipliers (ADMM), in the spirit of Benamou and Brenier [8]. The second novelty is
that, based on the developed theoretical and numerical outcomes of martingale optimal
transport, we present a novel method to calibrate the local volatility function without the
requirement of interpolating option prices in time. To the best of our knowledge, our work
is the first attempt to formally establish the connection between optimal transport and
volatility models calibration.

In the risk-neutral probability space, we suppose that the dynamic of an asset price Xt

on t ∈ [0, 1] is given by a local volatility model

dXt = σ(t,Xt) dWt, t ∈ [0, 1],

4



1.2. CONTRIBUTIONS

where σ(t, x) is a local volatility function and Wt is a one-dimensional Brownian motion.
For the sake of simplicity, we assume the interest rates and dividends are zero. Denote by
ρ(t, x) the density function of Xt. As a direct consequence of Itô’s formula, ρ(t, x) solves
the following Fokker-Planck equation:

∂tρ(t, x)− 1

2
∂xx(ρ(t, x)σ2(t, x)) = 0. (1.1)

Suppose that the initial and the final densities are given by ρ0(x) and ρ1(x), which are
recovered from European option prices via the Breeden–Litzenberger formula [19]. There
exists a density function ρ(t, x) that satisfies

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x) (1.2)

and (1.1) if and only if ρ0 and ρ1 are in convex order 3. This is known as Strassen’s Theorem
[102]. Let D ⊆ R be the support of {Xt, t ∈ [0, 1]}. Given ρ0 and ρ1 that are in convex
order and a convex cost function F : R→ R∪+∞, we are particularly interested in solving

inf
ρ,σ

∫
D

∫ 1

0

ρ(t, x)F

(
1

2
σ2(t, x)

)
dtdx, (1.3)

subject to the constraints (1.1) and (1.2).
In Proposition 2.3.2, we restate two basic properties of the convex conjugate (also known

as the Legendre–Fenchel transform). In Proposition 2.3.3, we derive the convex conjugate
of ρF (m

ρ
) in ρ and m := 1

2
ρσ2 and an equality result. Introducing a Lagrange multiplier φ

for the constraints (1.1) and (1.2) and using the results of Proposition 2.3.3, we reformulate
(1.3) into a saddle point problem

sup
µ

inf
φ,q
Lr(φ, q, µ), (1.4)

where r > 0 is a penalisation parameter and Lr is called an augmented Lagrangian. The
optimal solution of (1.4) recovers the optimal solution of (1.3).

Next, we propose a numerical solution for solving (1.4) by adapting the ADMM algo-
rithm used in [8]. The algorithm starts from an initial point (φ0, q0, µ0), and it consists of
three steps. In each step, it fixes two variables in (φ, q, µ) and solves (1.4) with respect
to only the third (unfixed) variable. In the first step, by setting the functional derivative
of Lr(φ, q, µ) with respect to φ to zero, we show that the optimal φ can be obtained by
solving a fourth-order linear PDE that has a bi-Laplacian operator. This PDE can be
numerically solved by the standard finite difference method. In the second step, by setting
the functional derivative of Lr(φ, q, µ) with respect to q to zero, we show that the optimal q
can be obtained by solving the point-wise minimisation problem (2.45). This problem can
be solved analytically or numerically by Newton’s method, depending on if a closed-form
solution exists with the specific choice of the cost function F . In the last step, we update
µ point-wise along the gradient of Lr with respect to µ. The algorithm repeats until the
stopping criteria (2.48) is met with a preset tolerance.

In the numerical experiment, we provide a toy example with an initial distribution
N(0.5, 0.0025) at t = 0 and an final distribution N(0.5, 0.01) at t = 1. The cost function
F is chosen to be F (x) = (x − x)2 if x ≥ 0 or F (x) = +∞ otherwise, where x is a
chosen reference value for x. In this case, we set x to 0.00375, then the optimal variance

3The densities ρ0 and ρ1 are said to be in convex order if
∫
R ϕ(x)ρ0(x)dx ≤

∫
R ϕ(x)ρ1(x)dx for all convex

function ϕ(x) : R→ R.
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is given by σ2 = 0.01 − 0.0025 = 0.0075. The penalisation parameter r is set to 64. We
present the results after 3000 iterations. In Figures 2.1 and 2.2, we plot the density function
ρ(t, x) and the variance function σ2(t, x) at six different times, respectively. Finally, the
residuals across all iterations are shown in Figure 2.3. By comparing these figures with
the analytical optimal solutions, we can see that the proposed numerical method effectively
solves the problem.

1.2.2 Local-stochastic volatility models

In Chapter 3, we develop a calibration method for the local-stochastic volatility models
based on the theory of semimartingale optimal transport. It is based on the published
research manuscript [54] entitled Calibration of local-stochastic volatility models by optimal
transport.

Local-Stochastic Volatility (LSV) models, introduced in Jex et al. [70], extend and take
advantage of both the Local Volatility (LV) model and Stochastic Volatility (SV) models.
The idea behind LSV models is to incorporate a nonparametric local factor (also called
leverage) into the SV models. Thus, while keeping desirable properties of the SV model, the
model can match all observed market prices (as long as one restricts to European claims).
The calibration of local-stochastic volatility models involves determining the local factor
from observable market option prices. Many of the existing calibration methods require a
priori knowledge of the local volatility surface. This is usually obtained by using Dupire’s
formula [37]. However, only a finite number of options are available in practice. Thus,
an interpolation of the implied volatility surface or option prices is often needed, which
can lead to inaccuracies and instabilities. In the present work, inspired by the theory of
semimartingale optimal transport [103], we introduce a variational approach for calibrating
LSV models, which does not require any form of interpolation.

The first novelty of this work is that we study a semimartingale optimal transport
problem with a finite number of, what we called, discrete constraints. These constraints are
motivated by the fact that the expected discounted payoffs of a calibrated model should
be equal to the observable market option prices. We introduce a dimension reduction
technique that proves that there exists an optimal probability measure under which the
semimartingale is also a Markov process. This allows us to deduce a PDE formulation
of the problem along with its dual counterpart. In addition, we propose a algorithm by
gradient descent to solve the dual formulation. The second novelty is that, inspired by the
classical LSV model, we propose a generalised model we call the OT-LSV model whose
instantaneous variance of the asset price and correlation are nonparametric functions of the
asset price and a mean-reverting stochastic factor, which is then calibrated to observable
market option prices by applying the developed theoretical results, without any form of
interpolation.

In this work, we begin by considering a d-dimensional continuous semimartingale X
that has the following representation under a probability measure P:

dXt = αP
t dt+ (βP

t )
1
2 dW P

t , t ∈ [0, T ],

where W P is a d-dimensional P-Brownian motion, and (αP, βP) are adapted processes. We
are particularly interested in a set of probability measures under which (αP, βP) are P-
integrable. Motivated by solving the volatility model calibration problem, we further restrict
the probability measures to a subset P such that X has an initial value x0 and satisfies a
finite number of discrete constraints. Given a convex cost function F , we want to minimise
EP ∫ T

0
F (αP

t , β
P
t ) dt over all P ∈ P .
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To find an optimal probability measure for this problem, we first apply a dimension re-
duction technique. As a direct consequence of Itô’s formula and the superposition principle
of Trevisan [105, Theorem 2.5] (or earlier Figalli [40, Theorem 2.6] for the bounded coef-
ficients case), Lemma 3.3.1 restates that ρPt , the density of Xt under P, is a weak solution
to a Fokker–Planck equation, and there exists another probability measure P′ under which
ρP = ρP

′
and X is a Markov process with (αP′ , βP′) that are functions of (t,Xt). This result

can also be easily derived by the Markovian projection method of Brunick and Shreve [23].
In Lemma 3.3.3, we prove that if there exists a probability measure P ∈ P , then there exists
another measure P′ in the subset of P such that ρP = ρP

′
and (αP′ , βP′) are functions of

(t,Xt). Let us denote this subset by Ploc. Using Lemma 3.3.1, Lemma 3.3.3 and Jensen’s
inequality, we prove in Proposition 3.3.4 that an optimal probability measure can be found
in Ploc. Focusing on finding an optimal measure in Ploc, we introduce in Problem 2 a PDE
formulation.

By closely following Brenier [20] and Loeper [82] and applying the Fenchel–Rockafellar
theorem (see e.g., [106, Theorem 1.9] or [22, Chapter 1]), we establish the duality for the
PDE formulation and hence introduce a dual counterpart in Theorem 3.3.6. In the dual
formulation, given a vector c ∈ Rm that can be interpreted as the observable market option
prices in the context of volatility model calibration, we maximise the objective function
V(λ, φλ) := λ · c − φλ(0, x0) over (φλ, λ) where λ ∈ Rm are the Lagrange multipliers of
the discrete constraints and φλ is a supersolution of a Hamilton–Jacobi–Bellman (HJB)
equation. In Proposition 3.3.5, by using the shaken coefficients technique of Krylov [78], we
show that the supremum of V(λ, φλ) over φλ is achieved by the (unique) viscosity solution
of the HJB equation. In addition, in Proposition 3.3.5, we show that the optimal (αP, βP) of
the PDE formulation for P ∈ Ploc can be found as by-products of solving the HJB equation
in the dual formulation.

In Section 3.4, we fit the LSV model calibration problem into the developed semimartin-
gale optimal transport framework. Let the first coordinate process of X be the logarithm
of the underlying asset price, and let its second coordinate process be a mean-reverting
stochastic factor. We want to calibrate X to the observable market option prices while
retaining the desired properties in the model dynamics. To achieve this, in the first step,
we define a convex function F that regularises our model X. In particular, we define our
cost function F in Definition 3.4.3, which penalises deviations of the X from a reference
model so that X has the LSV model dynamics as desired. In this case, the reference model
is chosen to be the classical Heston model with parameters given by calibrating the Heston
model to the observable market option prices. In the second step, we define the discrete
constraints to ensure that the calibrated model X matches all the observable market option
prices. We let G be a vector of discounted payoff functions of a set of European options,
and we let τ and c be the corresponding vectors of their maturities and option prices,
respectively. Then, the associated dual formulation of the reformulated LSV calibration
problem is given in equation (3.24) along with the associated HJB equation in equation
(3.25). Furthermore, in Lemma 3.4.5, we provide the gradient of the objective function
with respect to λ. This allows us to use gradient-based numerical methods to solve the
dual formulation. In addition, the gradients are formulated as the difference between the
observable market option prices and the model prices with a given λ. As the objective
function approaches its minimum, the gradient is approaching zero, so the dual formulation
provides a natural interpretation in terms of fitting the model to observable market option
prices.

In Section 3.5.1, we propose a numerical solution by gradient descent for solving the dual
formulation. We start by setting an initial value (e.g., a null vector) to λ. Then, we calculate
φλ(0, x0) by numerically solving the HJB equation using an alternating direction implicit
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(ADI) finite difference method. Next, we update λ through a gradient-based optimisation
algorithm. In particular, we employed the L-BFGS algorithm [81] and obtained good
convergence. The gradients can be computed by using Lemma 3.4.5, which requires one
to compute the option prices by numerically solving one backward linear PDE per option.
Since all these PDEs share the same linear operator, instead of solving them one by one, all
these PDEs can be solved by inverting the linear operator only once at each time step, which
highly reduces the computational cost. The algorithm will repeat until the maximum of
absolute values of gradients (or the maximum absolute errors between market option prices
and model option prices) is smaller than a certain threshold. The numerical solution is
summarised in Algorithm 1. We also provide in Algorithm 2 another version enhanced by
a technique called policy iteration for handling the nonlinearity of the HJB equation.

To illustrate the numerical method, we present two examples with simulated data in
Section 3.5.2 and one example with the foreign exchange (FX) market data in Section 3.5.3.
In the examples with simulated data, we calibrate the model X to a set of European call
option prices generated by a Heston model with given parameters. To distinguish the Heston
models between the one for generating option prices and the one taken as the reference, let
us call the former the Heston generating model and call the later the Heston reference model.
In the first example, we use the same set of parameters for both the Heston generating model
and the Heston reference model. In this case, there exists a solution and the calibrated
X recovers the Heston generating model. The instantaneous variance function is shown
in Figure 3.2, which confirms that the algorithm works as expected. To further test the
robustness of the method, in the second example, we choose different sets of parameters, as
shown in Table 3.1, for the Heston generating model and the Heston reference model. As
noted in the Remark 3.4.4, when the instantaneous variance function is independent of the
stochastic factor, the model X reduces to a local volatility model that can be calibrated to
any arbitrage-free option prices; thus, a solution exists in this example. Figure 3.3 shows
the plot of the fraction between the instantaneous variance function and the second state
variable, which serves as a reference in comparison with the so-called leverage function in
the traditional LSV model. The correlation function is shown in Figure 3.4. The calibration
results in terms of implied volatility are presented in Table 3.2 and Figure 3.5.

Finally, we provide an example with the FX market data used in Tian et al. [104]
(also available in Section A.4). Table 3.3 presents the parameters for the Heston reference
model used in this example. Figure 3.6 shows the implied volatility of market options, the
calibrated and the uncalibrated model X for 1 month and 3 months maturities; Figure 3.7
shows the implied volatility of these models for 2 years and 5 years maturities.

1.2.3 Joint model for SPX and VIX

In Chapter 4, we further apply the semimartingale optimal transport framework developed
in Chapter 3 to solve the problem of jointly calibrating models to SPX and VIX skews. It
is based on the research manuscript [52] entitled Joint modelling and calibration of SPX
and VIX by optimal transport.

The CBOE Volatility Index (VIX), also known as the stock market’s “fear gauge”,
reflects the expectations of investors on the volatility of the S&P500 index (SPX) over
the next 30 days. Although the index in itself is not a tradable asset, its derivatives such
as futures and options are highly liquid. Since the VIX options started trading in 2006,
researchers and practitioners have been putting a lot of effort in jointly calibrating models
to the SPX and VIX options prices. This has been known as a long-standing puzzle. As
commented by Guyon [56], inconsistencies might appear between the volatility-of-volatility
inferred from SPX and VIX, making it an extremely difficult task to build a continuous
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model4 that jointly captures the market SPX and VIX volatility skews. In Chapter 4,
by fitting the problem into the semimartingale optimal transport framework developed in
Chapter 3, we propose a novel method to calibrate a nonparametric continuous model
jointly and exactly to the prices of SPX options, VIX options and VIX futures.

The main novelty of this work is that, instead of modelling the VIX index or the in-
stantaneous variance of the SPX, we consider a semimartingale X whose first coordinate
process X1 is the logarithm of the SPX price, and whose second coordinate process X2 is
defined as the forward expected quadratic variation of X1. By doing so, the calibration
exercise only depends on the marginals of X at fixed times. Hence, the joint calibration
problem immediately falls into the class of the semimartingale optimal transport problems
studied in Chapter 3. Next, we propose a PDE formulation and a dual counterpart for
the joint calibration problem. In addition, we provide a numerical method by gradient de-
scent for solving the dual formulation along with some numerical treatments for eliminating
instabilities.

The model we consider is a two-dimensional continuous semimartingale X = (X1, X2)
that has the following representation under a probability measure P:

dXt = αP
t dt+ (βP

t )
1
2 dW P

t , t ∈ [0, T ],

where W P is a two-dimensional P-Brownian motion, and (αP, βP) are adapted processes.
We want X1 to be the logarithm of the SPX price, which solves

X1
t = X1

0 −
1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dWs, 0 ≤ t ≤ T,

where σ is an adapted process and W is a one-dimensional Brownian motion. For X2, we
model it as the half of the forward expected quadratic variation of X1 on [t, T ] observed at
t, that is

X2
t = EP

(
1

2

∫ T

t

σ2
s ds

∣∣∣∣Ft) , 0 ≤ t ≤ T.

The desired model dynamics can be captured by probability measures P under which

αP
t =

[
−1

2
σ2
t

−1
2
σ2
t

]
and βP

t =

[
σ2
t (βP

t )12

(βP
t )12 (βP

t )22

]
, 0 ≤ t ≤ T, (1.5)

where (βP
t )12 = d〈X1, X2〉t / dt and (βP

t )22 = d〈X2〉t / dt, and with the additional property
that X2

T = 0 P-a.s.
In the semimartingale optimal transport framework, the above settings can be obtained

by choosing a suitable cost function and proper discrete constraints. In particular, we choose
the cost function F that takes the form of equation (4.4). Although both the calibration
method and the model are nonparametric, the cost function requires some reference values
for the covariance of the model X. Later in Section 4.2.3, we will derive the expression of
the Heston model in terms of X1 and X2, and then we take the covariance from the derived
expression as the required reference values.

To ensure that the calibrated model X matches the observable market prices of SPX
and VIX options and futures, we impose on X a finite number of discrete constraints that
take the form of EPG(Xτ ) = c, where G is the discounted payoff function of a product in
terms of X1 and X2, τ is the maturity and c is the observable market price of the product.

4By continuous model, we mean a continuous-time model with continuous paths.
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The additional property X2
T = 0 P-a.s. is also implemented as a discrete constraint. Let

Pjoint be the set of probability measures such that, under any P ∈ Pjoint, (αP, βP) are
P-integrable, X has an initial value x0 and all discrete constraints are satisfied. We are
particularly interested in solving the following reformulated joint calibration problem:

V = inf
P∈Pjoint

EP
∫ T

0

F (αP
s , β

P
s ) ds. (1.6)

In Chapter 4.3, we introduce some important results by utilising the theoretical devel-
opments of Chapter 3. Let P locjoint be a subset of Pjoint such that, under any P ∈ P locjoint,
the semimartingale X is a Markov process, whose drift αP

t and diffusion βP
t are functions

of t and Xt. Proposition 4.3.2 is immediately followed by the dimension reduction method
developed in Chapter 3, which shows that an optimal probability measure that achieves the
infimum in (1.6) can be found in P locjoint. Based on this result, we introduce in Proposition
4.3.3 a PDE formulation in which we seek a triple of functions subject to a Fokker–Planck
equation and the discrete constraints. Further in Theorem 4.3.4, we introduce a dual for-
mulation in which we solve

V = sup
λ:=(λSPX ,λV IX,f ,λV IX ,λξ)∈Rm+n+2

λSPX · uSPX + λV IX,fuV IX,f + λV IX · uV IX − φλ(0, X0),

(1.7)

where φλ is the viscosity solution to an HJB equation; uSPX ∈ Rm, uV IX,f ∈ R, uV IX ∈
Rn are the prices of m SPX options, VIX futures, n VIX options, respectively; λSPX ∈
Rm, λV IX,f ∈ R, λV IX ∈ Rn are the Lagrange multipliers of the discrete constraints for
matching the model prices to the market prices of SPX options, VIX futures, VIX options,
respectively; and λξ ∈ R is the Lagrange multiplier of the constraint X2

T = 0 P-a.s.5

Additionally, Theorem 4.3.4 states that the optimal (αP, βP) can be obtained as by-products
of solving the HJB equation in the dual formulation. Next, in Lemma 4.3.6, we derive the
gradients of the objective function with respect to each element of λ. Note that φλ depends
on λ implicitly, since both φλ and the vector λ appear in the HJB equation. Interestingly,
the gradients can be formulated as the difference between the observable market option and
future prices and the model prices at the current optimisation iteration. This provides a
natural interpretation for the dual formulation in terms of matching the model to observable
market option prices.

In Section 4.4.1, by adapting the algorithm developed in Chapter 3, we present a gra-
dient descent numerical method for solving the dual formulation. At each iteration of the
optimisation process, we solve the HJB equations (4.24) and (4.25) by an alternating direc-
tion implicit (ADI) finite difference method. Due to the presence of Dirac delta functions
in the HJB equations, the solution might have discontinuities in time. To handle this issue,
some numerical treatments are provided in Section 4.4.1. When the chosen reference model
is far away from the one that describes the market dynamics, the calibrated volatility sur-
faces might be spiky, and the volatility skews might be hump-shaped. To overcome this
issue, in Section 4.4.3, we introduce a reference measure iteration method to smooth the
volatility surfaces and skews. This smoothing method will be later applied in all numerical
examples.

We illustrate the method with two numerical examples. In the first example, we use
simulated data to test the significance of the reference values after applying the reference
measure iteration method. We generate SPX and VIX option and future prices by a Heston

5Please note that although λξ does not appear in (1.7), it has an implicit dependence with φλ via the
HJB equation.
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model with a given set of parameters. Then, we calibrate the model X to these prices by
solving the dual formulation with reference values from two different models: a Heston
model with a different set of parameters and a model with constant covariance. All pa-
rameters used in this example are shown in Table 4.1. In Figures 4.1 and 4.2, we show the
volatility skews of the both cases. Figures 4.3 and 4.3 visualise the simulated dynamics of
X1 and X2. These figures show that the dynamics of the model can be affected by the
chosen reference values. In Table 4.2, we provide a complete set of numerical results in
option prices and implied volatility. We further display the volatility behaviour of the three
models in Appendix B.3. These results confirm that the model accurately captures the
simulated option and future prices while keeping the desired model dynamics.

Finally, we test the robustness of the method by using the market data from September
1st, 2020, including monthly SPX options maturing at 17 days and 45 days and monthly
VIX futures and options maturing at 15 days. The reference values are chosen from a pure
Heston model that has been calibrated to the market data. The calibrated parameters and
the initial values of X are given in Table 4.3. Even with these parameters, the VIX skew
generated by this Heston model is highly unrealistic. Therefore, we apply the reference
measure iteration method to improve the reference values iteratively. The calibrated model
volatility skews are plotted in Figure 4.5, and the simulation of X is given in Figure 4.6.
The volatility functions are displayed in Appendix B.4. The results verify that the proposed
method is effective for the market data as well.

11



Chapter 2

Local Volatility Calibration by
Optimal Transport

The objective of this chapter is to study the connection between optimal transport and
the local volatility model calibration problem. The most common approach of calibrating
local volatility among industry practitioners is based on the celebrated Dupire’s formula
[37], which requires the knowledge of vanilla option prices for a continuum of strikes and
maturities that can only be obtained via some form of price interpolation. In this chapter,
we formulate the calibration problem as a time continuous martingale optimal transport
problem, which seeks a martingale diffusion process that matches the known densities of
an asset price at two different dates, while minimising a chosen cost function. Inspired
by the seminal work of Benamou and Brenier [8], we formulate the problem as a convex
optimisation problem, derive its dual formulation, and solve it numerically via an augmented
Lagrangian method and the alternative direction method of multipliers (ADMM) algorithm.
Numerical experiment with simulated data shows that the proposed solution effectively
reconstructs the dynamic of the asset price between the two dates by recovering the optimal
local volatility function, without requiring any time interpolation of the option prices.

2.1 Introduction

A fundamental assumption of the classical Black-Scholes option pricing framework is that
the underlying risky asset has a constant volatility. However, this assumption can be easily
dispelled by the option prices observed in the market, where the implied volatility surfaces
are known to exhibit “skews” or “smiles”. Over the years, many sophisticated volatility
models have been introduced to explain this phenomenon. One popular class of model is
the local volatility models. In a local volatility model, the volatility function σ(t, St) is
a function of time t as well as the asset price St. The calibration of the local volatility
function involves determining σ from available option prices.

One of the most prominent approaches for calibrating local volatility is introduced by the
path-breaking work of Dupire [37], which provides a method to recover the local volatility
function σ(t, s) if the prices of European call options C(T,K) are known for a continuum
of maturities T and strikes K. In particular, the famous Dupire’s formula is given by

σ2(T,K) =
∂C(T,K)

∂T
+ µtK

∂C(T,K)
∂K

K2

2
∂2C(T,K)
∂K2

, (2.1)

where µt is a deterministic function. However, in practice, option prices are only available
at discrete strikes and maturities, hence interpolation is required in both variables to utilise
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this formula, leading to many inaccuracies. Furthermore, the numerical evaluation of the
second derivative in the denominator can potentially cause instabilities in the volatility
surface as well as singularities. Despite these drawbacks, Dupire’s formula and its variants
are still used prevalently in the financial industry today.

In this chapter, we introduce a new technique for the calibration of local volatility
functions that adopts a variational approach inspired by optimal transport. We begin
by recovering the probability density of the underlying asset at times t0 and t1 from the
prices of European options expiring at t0 and t1. Then, instead of interpolating between
different maturities, we seek a martingale diffusion process which transports the density
from t0 to t1, while minimising a particular cost function. This is similar to the classical
optimal transport problem, with the additional constraint that the diffusion process must
be a martingale driven by a local volatility function. In the case where the cost function
is convex, we find that the problem can be reformulated as a convex optimisation problem
under linear constraints. Theoretically, the stochastic control problem can be reformulated
as an optimisation problem which involves solving a non-linear PDE at each step, and the
PDE is closely connected with the ones studied in Bouchard et al. [16, 17] and Loeper [83] in
the context of option pricing with market impact. In this chapter, we approach the problem
via the augmented Lagrangian method and the alternative direction method of multipliers
(ADMM) algorithm, which was also used in Benamou and Brenier [8] for classical optimal
transport problems.

This chapter is organised as follows. In Section 2.2, we introduce the classical optimal
transport problem as formulated by Benamou and Brenier [8]. In Section 2.3, we introduce
the martingale optimal transport problem and its augmented Lagrangian. The numerical
method is detailed in Section 2.4 and numerical results are given in Section 2.5.

2.2 Optimal Transport

In this section, we briefly outline the optimal transport problem as formulated by Ben-
amou and Brenier [8]. Given density functions ρ0, ρ1 : Rd → [0,∞) with equal total mass∫
Rd ρ0(x)dx =

∫
Rd ρ1(x)dx. We say that a map s : Rd → Rd is an admissible transport plan

if it satisfies ∫
x∈A

ρ1(x)dx =

∫
s(x)∈A

ρ0(x)dx, (2.2)

for all bounded subset A ⊂ Rd. Let T denote the collection of all admissible maps. Given
a cost function c(x, y), which represents the transportation cost of moving one unit of mass
from x to y, the optimal transport problem is to find an optimal map s∗ ∈ T that minimises
the total cost

inf
s∈T

∫
Rd
c(x, s(x))ρ0(x)dx. (2.3)

In particular, when c(x, y) = |y − x|2 where | · | denotes the Euclidean norm, this problem
is known as the L2 Monge-Kantorovich problem (MKP).

The L2 MKP is reformulated in [8] in a fluid mechanic framework. In the time interval
t ∈ [0, 1], consider all possible smooth, time-dependent, densities ρ(t, x) ≥ 0 and velocity
fields v(t, x) ∈ Rd, that satisfy the continuity equation

∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = 0, ∀t ∈ [0, 1], ∀x ∈ Rd, (2.4)

and the initial and final conditions

ρ(0, x) = ρ0, ρ(1, x) = ρ1. (2.5)
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In [8], it is proven that the L2 MKP is equivalent to finding an optimal pair (ρ∗, v∗) that
minimises

inf
ρ,v

∫
Rd

∫ 1

0

ρ(t, x)|v(t, x)|2dtdx, (2.6)

subject to the constraints (2.4) and (2.5). This problem is then solved numerically in [8] via
an augmented Lagrangian approach. The specific numerical algorithm used is known as the
alternative direction method of multipliers (ADMM), which has applications in statistical
learning and distributed optimisation.

2.3 Definition of the martingale problem

Let (Ω,F,Q) be a probability space, where Q is the risk-neutral measure. Suppose the
dynamic of an asset price Xt on t ∈ [0, 1] is given by the local volatility model

dXt = σ(t,Xt)dWt, t ∈ [0, 1], (2.7)

where σ(t, x) is a local volatility function and Wt is a one-dimensional Brownian motion.
For the sake of simplicity, suppose the interest and dividend rates are zero. Denote by
ρ(t, x) the density function of Xt and γ(t, x) = σ(t, x)2/2 the diffusion coefficient. It is well
known that ρ(t, x) follows the Fokker-Planck equation

∂tρ(t, x)− ∂xx(ρ(t, x)γ(t, x)) = 0. (2.8)

Suppose that the initial and the final densities are given by ρ0(x) and ρ1(x), which are
recovered from European option prices via the Breeden-Litzenberger [19] formula,

ρT (K) =
∂2C(T,K)

∂K2
.

Let F : R→ R∪ {+∞} be a convex cost function. We are interested in minimising the
quantity

E
(∫ 1

0

F (γ(t,Xt)) dt

)
=

∫
D

∫ 1

0

ρ(t, x)F (γ(t,Xt)) dtdx,

where F (x) = +∞ if x < 0, and D ⊆ R is the support of {Xt, t ∈ [0, 1]}. Unlike the
classical optimal transport problem, the existence of a solution here requires an additional
condition: there exists a martingale transport plan if and only if ρ0 and ρ1 satisfy:∫

R
ϕ(x)ρ0(x)dx ≤

∫
R
ϕ(x)ρ1(x)dx,

for all convex function ϕ(x) : R→ R. This is known as Strassen’s Theorem [102]. This con-
dition is naturally satisfied by financial models in which the asset price follows a martingale
diffusion process.

Remark 2.3.1. The formulation here is actually quite general and it can be easily adapted
to a large family of models. For example, the case of a geometric Brownian motion with local
volatility can be recovered by substituting σ̃(t,Xt)Xt = σ(t,Xt) everywhere, including in
the Fokker-Planck equation. The cost function F would then also be dependent on x. The
later arguments involving convex conjugates still hold since F remains a convex function
of σ̃.

14



2.3. DEFINITION OF THE MARTINGALE PROBLEM

Since ρF (γ) is not convex in (ρ, γ) (which is crucial for our method), the substitution
m(t, x) := ρ(t, x)γ(t, x) is applied. So we obtain the following martingale optimal transport
problem:

inf
ρ,m

∫
D

∫ 1

0

ρ(t, x)F

(
m(t, x)

ρ(t, x)

)
dtdx, (2.9)

subject to the constraints:

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), (2.10)

∂tρ(t, x)− ∂xxm(t, x) = 0. (2.11)

Using the convexity of F , the term ρF (m/ρ) can be easily verified to be convex in (ρ,m).
Also note that we have the natural restrictions of ρ > 0 and m ≥ 0. Note that m ≥ 0
is enforced by penalising the cost function F , and ρ > 0 will be encoded in the convex
conjugate formulation. (see Proposition 2.3.2)

Next, introduce a time-space dependent Lagrange multiplier φ(t, x) for the constraints
(2.10) and (2.11) . Hence the associated Lagrangian is

L(φ, ρ,m) =

∫
R

∫ 1

0

ρ(t, x)F

(
m(t, x)

ρ(t, x)

)
+ φ(t, x)

(
∂tρ(x)− ∂xx(m(t, x))

)
dtdx. (2.12)

Integrating (2.12) by parts and letting m = ργ vanish on the boundaries of D, the martin-
gale optimal transport problem can be reformulated as the following saddle point problem:

inf
ρ,m

sup
φ
L(φ, ρ,m) = inf

ρ,m
sup
φ

∫
D

∫ 1

0

(
ρF

(
m

ρ

)
− ρ∂tφ−m∂xxφ

)
dtdx

−
∫
D

(φ(0, x)ρ0 − φ(1, x)ρ1) dx. (2.13)

As shown by Theorem 3.6 in [103], (2.13) has an equivalent dual formulation which leads
to the following representation:

sup
φ

inf
ρ,m

L(φ, ρ,m) = sup
φ

inf
ρ

∫
D

∫ 1

0

−ρ (∂tφ+ F ∗(∂xxφ)) dtdx

−
∫
D

(φ(0, x)ρ0 − φ(1, x)ρ1) dx. (2.14)

In particular, the optimal φ must satisfy the condition

∂tφ+ F ∗(∂xxφ) = 0, (2.15)

where F ∗ is the convex conjugate of F (see (2.16) and Proposition 2.3.2). We will later use
(2.15) to check the optimality of our algorithm.

Augmented Lagrangian Approach

Similar to [8], we solve the martingale optimal transport problem using the augmented
Lagrangian approach. Let us begin by briefly recalling the well-known definition and prop-
erties of the convex conjugate. For more details, the readers are referred to Section 12 of
Rockafellar [96].

Fix D ⊆ Rd, let f : Rd → R ∪ {+∞} be a proper convex and lower semi-continuous
function. Then the convex conjugate of f is the function f ∗ : Rd → R ∪ {+∞} defined by

f ∗(y) := sup
x∈Rd

(x · y − f(x)). (2.16)

The convex conjugate is also often known as the Legendre-Fenchel transform.
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2.3. DEFINITION OF THE MARTINGALE PROBLEM

Proposition 2.3.2. We have the following properties:
(i) f ∗ is a proper convex and lower semi-continuous function with f ∗∗ ≡ f ;
(ii) if f is differentiable, then f(x) + f ∗(f ′(x)) = xf ′(x).

Returning to the problem at hand, recall that G(x, y) := xF (y/x), x > 0 is convex in
(x, y). By adopting the convention of G(x, y) =∞ whenever x ≤ 0, it can be expressed in
terms of the convex conjugate, as shown in the following proposition.

Proposition 2.3.3. Denote by F ∗ the convex conjugate of F .
(i) Let G(x, y) = xF (y/x), the convex conjugate of G is given by:

G∗(a, b) =

{
0, if a+ F ∗(b) ≤ 0,

∞, otherwise.
(2.17)

(ii) For x > 0, We have the following equality,

xF
(y
x

)
= sup

(a,b)∈R2

{ax+ by : a+ F ∗(b) ≤ 0}. (2.18)

Proof. (i) By definition, the convex conjugate of G is given by

G∗(a, b) = sup
(x,y)∈R2

{
ax+ by − xF

(y
x

)
: x > 0

}
(2.19)

= sup
(x,y)∈R2

{
ax+ x

(
b
y

x
− F

(y
x

))
: x > 0

}
(2.20)

= sup
x>0
{x(a+ F ∗(b))} , (2.21)

If a + F ∗(b) ≤ 0, the supremum is achieved by limit x → 0, otherwise, G∗ becomes
unbounded as x increases. This establishes part (i).

(ii) The required equality follows immediately from part (i) and the fact that

xF
(y
x

)
= sup

(a,b)∈R2

{ax+ by −G∗(a, b) : a+ F ∗(b) ≤ 0}.

Now we are in a position to present the augmented Lagrangian. First, let us introduce
the following notations:

K =
{

(a, b) : R× R→ R× R
∣∣∣ a+ F ∗(b) ≤ 0

}
, (2.22)

µ = (ρ,m) = (ρ, ργ), q = (a, b), 〈µ, q〉 =

∫
D

∫ 1

0

µ · q, (2.23)

H(q) = G∗(a, b) =

{
0, if q ∈ K,
∞, otherwise,

(2.24)

J(φ) =

∫
D

[φ(0, x)ρ0 − φ(1, x)ρ1], (2.25)

∇t,xx = (∂t, ∂xx). (2.26)

By using the above notations, we can express the equality from Proposition 2.3.3 (ii) in the
following way,

ρF

(
m

ρ

)
= sup
{a,b}∈K

{aρ+ bm} = sup
q∈K
{µ · q}. (2.27)
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2.4. NUMERICAL METHOD

Since the restriction q ∈ K is checked point-wise for every (t, x), we can exchange the
supremum with the integrals in the following equality∫

D

∫ 1

0

sup
q∈K
{µ · q} = sup

q

{
−H(q) +

∫
D

∫ 1

0

µ · q
}

= sup
q

{
−H(q) + 〈µ, q〉

}
. (2.28)

Therefore, the saddle point problem specified by (2.13) can be rewritten as

sup
µ

inf
φ,q

{
H(q) + J(φ) + 〈µ,∇t,xxφ− q〉

}
. (2.29)

Note that in the new saddle point problem (2.29), µ is the Lagrange multiplier of the new
constraint ∇t,xxφ = q. In order to turn this into a convex problem, we define the augmented
Lagrangian as follows:

Lr(φ, q, µ) = H(q) + J(φ) + 〈µ,∇t,xxφ− q〉+
r

2
〈∇t,xxφ− q,∇t,xxφ− q〉, (2.30)

where r > 0 is a penalisation parameter. The saddle point problem then becomes

sup
µ

inf
φ,q
Lr(φ, q, µ), (2.31)

which has the same solution as (2.13).

2.4 Numerical Method

In this section, we describe in detail the alternative direction method of multipliers (ADMM)
algorithm for solving the saddle point problem given by (2.30) and (2.31). In each iteration,
using (φn−1, qn−1, µn−1) as a starting point, the ADMM algorithm performs the following
three steps:

Step A: φn = arg min
φ

Lr(φ, q
n−1, µn−1), (2.32)

Step B: qn = arg min
q

Lr(φ
n, q, µn−1), (2.33)

Step C: µn = arg max
µ

Lr(φ
n, qn, µ). (2.34)

Step A: φn = arg minφ Lr(φ, q
n−1, µn−1)

To find the function φn that minimises Lr(φ, q
n−1, µn−1), we set the functional derivative

of Lr with respect to φ to zero:

J(φ) + 〈µn−1,∇t,xxφ〉+ r〈∇t,xxφ
n − qn−1,∇t,xxφ〉 = 0. (2.35)

By integrating by parts, we arrive at the following variational equation

− r(∂ttφn − ∂xxxxφn) = ∂t(ρ
n−1 − ran−1)− ∂xx(mn−1 − rbn−1), (2.36)

with Neumann boundary conditions in time ∀x ∈ D:

r∂tφ
n(0, x) = ρ0 − ρn−1(0, x) + ran−1(0, x), (2.37)

r∂tφ
n(1, x) = ρ1 − ρn−1(1, x) + ran−1(1, x). (2.38)
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2.4. NUMERICAL METHOD

For the boundary conditions in space, let D = [D,D]. We give the following boundary
condition to the diffusion coefficient:

γ(t,D) = γ(t,D) = γ := arg min
γ∈R

F (γ).

From (2.13) and (2.15), we know ∂xxφ is the dual variable of γ. Since γ minimises F , the
corresponding ∂xxφ must be zero. Therefore, we have the following boundary conditions:

∂xxφ(t,D) = ∂xxφ(t,D) = 0, ∀t ∈ [0, 1]. (2.39)

In [8], periodic boundary conditions were used in the spatial dimension and a perturbed
equation was used to yield a unique solution. Since periodic boundary conditions are inap-
propriate for martingale diffusion and we are dealing with a bi-Laplacian term in space, we
impose the following additional boundary conditions in order to enforce a unique solution:

φ(t,D) = φ(t,D) = 0, ∀t ∈ [0, 1]. (2.40)

Now, the 4th order linear PDE (2.36) can be numerically solved by the finite difference
method or the finite element method.

Step B: qn = arg minq Lr(φ
n, q, µn−1)

Since H(q) is not differentiable, we cannot differentiate Lr with respect to q. Nevertheless,
we can simply obtain qn by solving the minimisation problem

inf
q
Lr(φ

n, q, µn−1). (2.41)

This is equivalent to solving

inf
q∈K

〈
∇t,xxφ

n +
µn−1

r
− q,∇t,xxφ

n +
µn−1

r
− q
〉
. (2.42)

Now, let us define

pn(t, x) = {αn(t, x), βn(t, x)} = ∇t,xxφ
n(t, x) +

µn−1(t, x)

r
, (2.43)

then we can find qn(t, x) = {an(t, x), bn(t, x)} by solving

inf
{a,b}∈R×R

{
(a(t, x)− αn(t, x))2 + (b(t, x)− βn(t, x))2 : a+ F ∗(b) ≤ 0

}
(2.44)

point-wise in space and time. This is a simple one-dimensional projection problem. If
{αn, βn} satisfies the constraint αn + F ∗(βn) ≤ 0, then it is also the minimum. Otherwise,
the minimum must occur on the boundary a + F ∗(b) = 0. In this case we substitute the
condition into (2.44) to obtain

inf
b∈R

{
(F ∗(b(t, x)) + α(t, x))2 + (b(t, x)− β(t, x))2

}
, (2.45)

which must be solved point-wise. The minimum of (2.45) can be found using standard
root finding methods such as Newton’s method. In some simple cases it is even possible to
compute the solution analytically.
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2.5. NUMERICAL RESULTS

Step C: µn = arg maxµ Lr(φ
n, qn, µ)

Begin by computing the gradient by differentiating the augmented Lagrangian Lr respect
to µ. Then, simply update µ by moving it point-wise along the gradient as follows,

µn(t, x) = µn−1(t, x) + r(∇t,xxφ
n(t, x)− qn(t, x)). (2.46)

Stopping criteria:

Recall the HJB equation (2.15):

∂tφ+ F ∗(∂xxφ) = 0. (2.47)

We use (2.47) to check for optimality. Define the residual:

resn = max
t∈[0,1],x∈D

ρ |∂tφ+ F ∗(∂xxφ)| . (2.48)

This quantity converges to 0 when it approaches the optimal solution of the problem. The
residual is weighted by the density ρ to alleviate any potential issues caused by small values
of ρ.

2.5 Numerical Results

The algorithm was implemented and tested on the following simple example. Consider the
computational domain x ∈ [0, 1] and the time interval t ∈ [0, 1]. We set the initial and final
distributions to be X0 ∼ N(0.5, 0.052) and X1 ∼ N(0.5, 0.12) respectively, where N(µ, σ2)
denotes the normal distribution. The following cost function was chosen:

F (γ) =

{
(γ − γ)2, γ ≥ 0,

+∞, otherwise,
(2.49)

where γ was set to 0.00375 so that the optimal value of variance is constant σ2 = 0.12 −
0.052 = 0.0075. Then we discretised the space-time domain as a 128 × 128 lattice. The
penalisation parameter is set to r = 64. The results after 3000 iterations are shown in
Figures 2.1 and 2.2, and the convergence of the residuals is shown in Figure 2.3. The
convergence speed decays quickly, but we reach a good approximation after about 500
iterations. The noisy tails in Figure 2.2 correspond to regions where the density ρ is close
to zero. The diffusion process has a very low probability of reaching these regions, so the
value of σ2 has little impact. In areas where ρ is not close to zero, σ2 remains constant
which matches the analytical solution.

2.6 Summary

this chapter focuses on a new approach for the calibration of local volatility models. Given
the distributions of the asset price at two fixed dates, the technique of optimal transport
is applied to interpolate the distributions and recover the local volatility function, while
maintaining the martingale property of the underlying process. Inspired by [8], the problem
is first converted into a saddle point problem, and then solved numerically by an augmented
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Figure 2.1: The density function ρ(t, x).

Lagrangian approach and the alternative direction method of multipliers (ADMM) algo-
rithm. The algorithm performs well on a simple case in which the numerical solution
matches its analytical counterpart. The main drawback of this method is due to the slow
convergence rate of the ADMM algorithm. We observed that a higher penalisation parame-
ter may lead to faster convergence. Further research is required to conduct more numerical
experiment, improve the efficiency of the algorithm and apply it to more complex cases.
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Figure 2.2: The variance σ2(t, x).
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Chapter 3

Calibration of local-stochastic
volatility models by optimal
transport

The objective of this chapter is to extend the approach developed in Chapter 2 to the
calibration of the so-called local-stochastic volatility (LSV) models. Although the local
volatility model can be exactly calibrated to any arbitrage-free implied volatility surface,
it has been criticised for its unrealistic volatility dynamics. In this chapter, we consider
a class of LSV models whose volatility is in the form of a function of time, underlying
asset price and a mean-reverting stochastic factor. We formulate the calibration problem
as a semimartingale optimal transport problem. Rather than considering the classical
constraints on marginal distributions at initial and final time as in Chapter 2, we optimise
our cost function given the spot price and the prices of a finite number of European options.
We further formulate the problem as a convex optimisation problem, for which we provide
a PDE formulation along with its dual counterpart. Then we develop a gradient descent
method to numerically solve the dual formulation, which involves solving a fully non-linear
Hamilton–Jacobi–Bellman equation at each optimisation iteration. The method is tested by
calibrating a LSV model with simulated data and foreign exchange market data. Numerical
results show that the method effectively calibrates the model fully to the European option
prices with both simulated data and market data.

3.1 Introduction

Since the introduction of the Black–Scholes model, a lot of effort has been put on developing
sophisticated volatility models that properly capture the market dynamics. In the space of
equities and currencies, the most widely used models are the Local Volatility (LV) model
by Dupire [37] and the Stochastic Volatility (SV) models [see e.g., 46, 64]. Introduced as
an extension of the Black–Scholes model, the LV model can be exactly calibrated to any
arbitrage-free implied volatility surface. Despite this feature, the LV model has often been
criticised for its unrealistic volatility dynamics. The SV models tend to be more consistent
with the market dynamics, but they struggle to fit short term market smiles and skews, and
being parametric, they do not have enough degrees of freedom to match all vanilla market
prices. A better fit can be obtained by increasing the number of stochastic factors in the
SV models; however, this also increases the complexity of calibration and pricing.

Local-Stochastic Volatility (LSV) models, introduced in Jex et al. [70], naturally extend
and take advantage of both approaches. The idea behind LSV models is to incorporate a
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local, non-parametric, factor into the SV models. Thus, while keeping consistent dynamics,
the model can match all observed market prices (as long as one restricts to European claims).
The determination of this local factor (also called leverage) is based on the mimicking
theorem by Gyöngy [58]. Research into the numerical calibration of LSV models has been
developed in two different directions. One is based on a Monte Carlo approach, with Henry-
Labordère [61], followed by Guyon and Henry-Labordère [57] using a so-called McKean’s
particle method. Another approach relies on solving the Fokker–Planck equation as in Ren
et al. [95]. Engelmann et al. [38] used the finite volume method (FVM) to solve the partial
differential equation (PDE), while Tian et al. [104] considered time-dependent parameters.
In a more recent study, Wyns and Du Toit [108] considered a method that combines the
FVM with alternating direction implicit (ADI) schemes.

All of the calibration methods mentioned above require a priori knowledge of the Local
Volatility surface. This is usually obtained by using Dupire’s formula [37] assuming the
knowledge of vanilla options for all strikes and maturities. However, only a finite number of
options are available in practice. Thus, an interpolation of the implied volatility surface or
option prices is often needed, which can lead to inaccuracies and instabilities. Inaccuracies
can come from the usage of a parametric model for the volatility surface that will not match
perfectly market prices by definition. Instabilities can come form the interpolating model
being not arbitrage-free. It also raises the question of what arbitrary shape of extrapolation
one is going to take for very out of the money strikes. Moreover, there is no a priori control
on the regularity of the leverage function, and even its very existence remains an open
problem, although some results for small times have been obtained in Abergel and Tachet
[1] [cf. 98, for an application of Tikhonov regularisation technique to the LSV calibration
problem]. Other related works include Jourdain and Zhou [71], Lacker et al. [80]. In a
recent work of Cuchiero et al. [30], the LSV calibration problem was addressed from a
deep learning point of view. In particular, the leverage function is parameterised by a class
of feed-forward neural networks, and the model is calibrated by a generative adversarial
network approach. In the present work, inspired by the theory of optimal transport, we
introduce a variational approach for calibrating LSV models that does not require any form
of interpolation.

In this chapter, we further extend the approach of Guo et al. [51] and Guo and Loeper
[50] to the calibration of LSV models. The calibration problem is formulated as a semi-
martingale optimal transport problem. Unlike Tan and Touzi [103], we consider a finite
number of discrete constraints given by the prices of European claims. As a consequence
of Jensen’s inequality, we show that an optimal diffusion process can be chosen to be
Markovian in the state variables given by the initial SV model. This result leads to a PDE
formulation. By following the duality theory of optimal transport introduced in Brenier [20]
and a smoothing argument used in Bouchard et al. [18], we establish a dual formulation.
We also provide a numerical method to solve a fully non-linear Hamilton–Jacobi–Bellman
(HJB) equation arising in the dual formulation. Finally, numerical examples show that the
model can be fully calibrated to the European options with both simulated data and FX
market data.

Despite its accuracy, our method is quite demanding in terms of computational power.
The gradient descent demands at each step to solve one non-linear 2d PDE, and the com-
putation of the gradient requires one (linear) 2d PDE per instrument. The most costly
operation of numerically solving a linear PDE is inverting a large sparse matrix. However,
this operation only needs to be carried once per time step because the computations of all
components of the gradient are computed by solving the same linear PDE but with different
terminal conditions. Alternatively, all gradients can be efficiently computed in one Monte
Carlo simulation, which is a choice we did not make here for the sake of accuracy. Go-
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ing into higher dimensions (a multi-factor stochastic volatility model for example) would
require to increase the dimension of the PDEs, which is problematic as soon as d ≥ 3.
When the goal is only to solve the usual LSV calibration problem, i.e., to find the leverage
function, other methods achieve the result faster. For example, for a one-factor model, the
PDE method of Ren et al. [95] only requires solving a two-dimensional non-linear PDE
once, and the particle method of Guyon and Henry-Labordère [57] is even faster and can be
applied to high dimensional cases (e.g., calibrating an LSV model with multiple stochastic
factors). On the other hand, with the technique developed in this chapter, one can fit
path-dependent products [50], SPX and VIX options [52] and here LSV models. There-
fore the interest of our method is clearly its broad range of applications, at the cost of a
relatively heavy computational cost. We also believe that with the recent developments
of numerical methods for solving non-linear PDEs in high dimensions [see e.g., 60], our
method can be greatly improved in terms of computational speed, and become applicable
in high dimensions. Also notice that, being based on gradient descent, for a slight update
of the market data, only a few gradient iterations should be needed to update the model.
Finally, our method provides a rigorous existence result of an LSV type model. Previous
works by Abergel and Tachet [1] only provide an existence result for small times (see also
Jourdain and Zhou [71], Lacker et al. [80]).

This chapter is organised as follows: In Section 2, we introduce some preliminary defini-
tions. In Section 3, we show the connection between the semi-martingale optimal transport
problem and a PDE formulation. Duality results are then established for the PDE formula-
tion. In Section 4, we demonstrate the calibration method using a Heston-like LSV model.
Numerical method and results with both simulated data and FX market data are provided
in Section 5.

3.2 Preliminaries

Given a Polish space E equipped with its Borel σ-algebra, let C(E) be the space of con-
tinuous functions on E and Cb(E) be the space of bounded continuous functions. Denote
byM(E) the space of finite signed Borel measures endowed with the weak-∗ topology. Let
M+(E) ⊂M(E) denote the subset of nonnegative measures. If E is compact, the topologi-
cal dual of Cb(E) is given by Cb(E)∗ =M(E). More generally, if E is non-compact, Cb(E)∗

is larger thanM(E). Let P(E) be the space of Borel probability measures, BV (E) be the
space of functions of bounded variation and L1(dµ) be the space of µ-integrable functions.
We also write Cb(E,Rd), M(E,Rd), BV (E,Rd) and L1(dµ,Rd) as the vector-valued ver-
sions of their corresponding spaces. If µt(x) = µ(t, x) is a measure defined on [0, T ] × Rd,
we will write dµ or dµtdt in short for µ(t, dx)dt. Denote by Sd the set of d × d symmetric
matrices and Sd+ ⊂ Sd the set of positive semidefinite matrices. For any matrices A,B ∈ Sd,
we write A : B := tr(AᵀB) for their scalar product. For convenience, let Λ = [0, T ] × Rd

and X = R × Rd × Sd. We use the notation 〈·, ·〉 to denote the duality bracket between
Cb(Λ,X ) and Cb(Λ,X )∗.

Let Ω := C([0, T ],Rd), T > 0 be the canonical space with the canonical process X and
the canonical filtration F = (Ft)0≤t≤T generated by X. We denote by P the collection of all
probability measures P on (Ω,FT ) under which X ∈ Ω is an (F,P)-semi-martingale given
by

Xt = X0 + At +Mt, t ∈ [0, T ], P-a.s.,

where M is an (F,P)-martingale with quadratic variation 〈Xt〉 = 〈Mt〉 = Bt, and the pro-
cesses A and B are P-a.s. absolutely continuous with respect to t. We say P is characterised
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by (αP, βP) if

αP
t =

dAP
t

dt
, βP

t =
dBP

t

dt
,

where (αP, βP) take values in the space Rd × Sd+. Note that (αP, βP) is F-adapted and
determined up to dP × dt, almost everywhere. Let P1 ⊂ P be the subset of probability
measures P under which the characteristics (αP, βP) are P-integrable on the interval [0, T ].
In other words,

EP
(∫ T

0

|αP
t |+ |βP

t | dt
)
< +∞,

where | · | is the L1-norm.
Given a vector τ := (τ1, . . . , τm) ∈ (0, T ]m, denote by G a vector of m functions such

that each function Gi ∈ Cb(Rd) for i = 1, . . . ,m. Given a Dirac measure µ0 = δx0 and a
vector c ∈ Rm, we define P(µ0, τ, c, G) ⊂ P1 as follows:

P(µ0, τ, c, G) := {P : P ∈ P1, P ◦X−1
0 = µ0 and EP[Gi(Xτi)] = ci, i = 1, . . . ,m}.

Assumption 3.2.1. The final time T coincides with the longest maturity, i.e., T = maxk τk.

For technical reasons, we restrict ourselves to functions Gi in Cb(Rd). In the context of
volatility models calibration, Gi are discounted European payoffs. Although the call option
payoff functions are not technically in Cb(Rd), we only work with them in a truncated
(compact) space in practice. Alternatively, one may consider only put options using put-
call parity. It is possible to relax the assumption Gi ∈ Cb(Rd), but it would require a
different set up in topological spaces.

3.3 Main results

3.3.1 Formulations

In this section, we first formulate the semi-martingale optimal transport problem under
discrete constraints. Then a PDE formulation is introduced along with its dual counterpart.

Define the cost function F : Λ × Rd × Sd → R ∪ {+∞} where F (t, x, α, β) = +∞ if
β /∈ Sd+, and F (t, x, α, β) is nonnegative, proper, lower semi-continuous, strongly convex and
coercive in (α, β) and uniformly in (t, x). By F being strongly convex in (α, β) we mean
that there exists a constant C > 0 such that for all t, x, α, β, α′, β′ and any subderivative
∇F , where ∇ is performed over (α, β), if F (t, x, α, β) is finite then

F (t, x, α′, β′) ≥ F (t, x, α, β) + 〈∇F (t, x, α, β), (α′ − α, β′ − β)〉+ C(‖α′ − α‖2 + ‖β′ − β‖2),

where ‖·‖ denotes the Euclidean norm on Rd and Sd. By F being coercive in (α, β) we
mean that there exist constants p > 1 and C > 0 for all t, x, α, β such that

|α|p + |β|p ≤ C(1 + F (t, x, α, β)).

The convex conjugate of F with respect to (α, β) is denoted by F ∗ : Λ×Rd×Sd → R∪{+∞}
and is given by

F ∗(t, x, a, b) := sup
α∈Rd,β∈Sd

{α · a+ β : b− F (t, x, α, β)} . (3.1)
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We remark that Sd in (3.1) can be replaced by Sd+ due to the assumption that F (t, x, α, β)
is finite only if β ∈ Sd+. For simplicity, we write F (α, β) := F (t, x, α, β) and F ∗(a, b) :=
F ∗(t, x, a, b) if there is no ambiguity. Note that our definition of strongly convex does not
require F to be differentiable, since only subderivatives are used. Nevertheless, it implies
that F is strictly convex and thus F ∗ is differentiable. In addition, the coercivity of F
implies that F ∗ is finite.

Adopting the convention inf ∅ = +∞, we are interested in the following minimisation
problem:

Problem 1. Given µ0, τ, c and G, we want to find

V = inf
P∈P(µ0,τ,c,G)

EP
∫ T

0

F (αP
t , β

P
t ) dt.

The problem is said to be admissible if P(µ0, τ, c, G) is nonempty and the infimum above
is finite.

It is well known that the marginal distributions of diffusion processes at fixed times solve
the Fokker–Planck equation in the weak sense. The converse result was given by Figalli
[40] and Trevisan [105]. For brevity, we write EP

t,x := EP[ · | Xt = x]. As an immediate
consequence of Itô’s formula and Theorem 2.5 in Trevisan [105], we introduce the following
lemma.

Lemma 3.3.1. Let P ∈ P1 and ρPt = ρP(t, ·) = P ◦X−1
t be the marginal distribution of Xt

under P, t ≤ T . Then ρP is a weak solution to the Fokker–Planck equation: ∂tρ
P
t +∇x · (ρPtEP

t,xα
P
t )−

1

2

∑
i,j

∂ij(ρ
P
t (EP

t,xβ
P
t )ij) = 0 in [0, T ]× Rd,

ρP0 = δX0 in Rd.

(3.2)

Moreover, there exists another probability measure P′ ∈ P1, characterised by (αP′ , βP′),
under which X has the same marginals, ρP

′
= ρP, and is a Markov process solving{

dXt = αP′(t,Xt)dt+ (βP′(t,Xt))
1
2 dW P′

t , 0 ≤ t ≤ T,
X0 = x0,

(3.3)

where W P′ is a P′-Brownian motion, αP′(t,Xt) = EP
t,Xt

αP
t and βP′(t,Xt) = EP

t,Xt
βP
t .

The above lemma provides a solution to study semi-martingales via Markov processes in
the form of (3.3). It is worth noting that the idea of using diffusion processes to mimic an
Itô process by matching their marginals at fixed times traces back to the classical mimicking
theorem of Gyöngy [58]. The uniform ellipticity condition of Gyöngy’s mimicking theorem
was later relaxed by Brunick and Shreve [23]. In fact, if X is an Itô process under P, Lemma
3.3.1 can be seen as a reformulation of Brunick and Shreve [23, Corollary 3.7] which was
constructed by a completely different approach. The Markov processes X in (3.3) are also
called Markovian projections in the literature. Note that, in Brunick and Shreve [23], even
though the main results are given for Itô processes, the authors first provide more general
results for semi-martingales (see Brunick and Shreve [23, Theorem 7.1]) and then prove the
main results for Itô processes by the Itô representation theorem. Therefore, Lemma 3.3.1
can also be proved by the results of Brunick and Shreve [23].

Definition 3.3.2. Define Ploc(µ0, τ, c, G) to be the subset of P(µ0, τ, c, G) such that, under
any P ∈ Ploc(µ0, τ, c, G), X is a Markov process that takes the form of (3.3).
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Lemma 3.3.3. If P(µ0, τ, c, G) is not empty, then Ploc(µ0, τ, c, G) is not empty. Moreover,
for any P ∈ P(µ0, τ, c, G), there exists a P′ ∈ Ploc(µ0, τ, c, G) such that X has the same
marginals under P and P′.

Proof. Assume that P(µ0, τ, c, G) is not empty, for any P ∈ P(µ0, τ, c, G), by Lemma 3.3.1,
there exists P′ ∈ P1 such that X is a Markov process that has the same marginals ρP

′
= ρP

and takes the form of (3.3) with coefficients (αP′(t,Xt), β
P′(t,Xt)) = (EP

t,Xt
αP
t ,EP

t,Xt
βP
t ).

Since ρP
′

= ρP, X has the initial marginal µ0 and satisfies EP′ [Gi(Xτi)] = ci for all i =
1, . . . ,m under both P and P′. Thus, P′ ∈ Ploc(µ0, τ, c, G).

Applying Lemma 3.3.3 and taking advantage of the convexity of the cost function, we
establish the following result:

Proposition 3.3.4. Given µ0, τ, c and G, then

V = inf
P∈P(µ0,τ,c,G)

EP
∫ T

0

F (αP
t , β

P
t ) dt = inf

P∈Ploc(µ0,τ,c,G)
EP
∫ T

0

F (αP(t,Xt), β
P(t,Xt)) dt. (3.4)

Proof. If P(µ0, τ, c, G) is empty, then Ploc(µ0, τ, c, G) is empty since Ploc(µ0, τ, c, G) ⊂
P(µ0, τ, c, G). Thus, (3.4) holds and V = +∞.

If P(µ0, τ, c, G) is not empty, by Lemma 3.3.3, Ploc(µ0, τ, c, G) is not empty. For any
P ∈ P(µ0, τ, c, G), let P′ ∈ Ploc(µ0, τ, c, G) be a probability measure such that X has the
same marginals under P and P′. Applying Jensen’s inequality together with the tower
property of conditional expectation, we have

EP
∫ T

0

F (αP
t , β

P
t ) dt = EP

∫ T

0

EP
t,XtF (αP

t , β
P
t ) dt

≥ EP
∫ T

0

F (EP
t,Xtα

P
t ,EP

t,Xtβ
P
t ) dt

= EP′
∫ T

0

F (αP′(t,Xt), β
P′(t,Xt)) dt.

(3.5)

The last EP is replaced by EP′ because the marginal of X is the same under P and P′. Since
Ploc(µ0, τ, c, G) ⊂ P(µ0, τ, c, G), taking infimum over all P ∈ P(µ0, τ, c, G) on the left-hand
side and over all P′ ∈ Ploc(µ0, τ, c, G) on the right-hand side of (3.5), we obtain the required
result.

Proposition 3.3.4 shows that it suffices to consider only the probability measures in
Ploc(µ0, τ, c, G). Thus, by the connections established in Lemma 3.3.1, Problem 1 can be
studied via PDE methods. Following the Benamou–Brenier formulation of the classical
optimal transport from Benamou and Brenier [8], we introduce the following problem:

Problem 2 (PDE formulation). Given µ0, τ, c and G, we want to solve

V = inf
ρ,α,β

∫ T

0

∫
Rd
F (α(t, x), β(t, x)) ρ(t, dx)dt, (3.6)

among all (ρ, α, β) ∈ C([0, T ],P(Rd)−w∗)×L1(dρtdt,Rd)×L1(dρtdt,Sd) satisfying (in the
distributional sense)

∂tρ(t, x) +∇x · (ρ(t, x)α(t, x))− 1

2

∑
i,j

∂ij(ρ(t, x)βij(t, x)) = 0, (3.7)∫
Rd
Gi(x) ρ(τi, dx) = ci, ∀i = 1, . . . ,m, and ρ(0, ·) = µ0. (3.8)
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The interchange of integrals in (3.6) is justified by Fubini’s theorem as F is nonnegative.
For the weak continuity of measure ρ in time, the reader can refer to Loeper [82, Theorem
3].

Based on the results of Sections 3.3.2 and 3.3.3 below, we shall introduce a dual formu-
lation of Problem 2. In the proposition below, C2

b (Rd) is the space of twice continuously
differentiable functions with bounded partial derivatives up to order 2, and it is equipped
with the norm given by the supremum of all partial derivatives up to order 2. The subscript
of φλ indicates the implicit dependence of φ on λ via the HJB equation. The definition of
the viscosity solution to (3.10) and the proof will be given in Section 3.3.3.

Proposition 3.3.5 (Dual formulation). If Problem 1 is admissible, then

V = sup
λ∈Rm

{
m∑
i=1

λici −
∫
Rd
φλ(0, x) dµ0

}
, (3.9)

where φ is the viscosity solution to the HJB equation

∂tφλ +
m∑
i=1

λiGiδτi + F ∗(∇xφλ,
1

2
∇2
xφλ) = 0, in [0, T )× Rd, (3.10)

with the terminal condition φλ(T, ·) = 0. Moreover, if there exists (ρ, α, β) ∈ C([0, T ],P(Rd)−
w∗)× L1(dρtdt,Rd)× L1(dρtdt,Sd) satisfying (3.7) and (3.8) (in the distributional sense),
then the infimum of Problem 2 is attained. If the supremum is attained by some λ∗ ∈ Rm

and (ρ, α, β) is an optimal solution of Problem 2, then (α, β) is given by

(α, β) = ∇F ∗(∇xφλ∗ ,
1

2
∇2
xφλ∗), dρtdt− almost everywhere. (3.11)

Before ending this section, it is worth commenting on the admissibility of Problem 1.
We have chosen to impose the admissibility assumption in order to simplify our presentation
and arguments. With some modifications, it is possible to remove this assumption from the
primal problem and still obtain duality. In particular, both sides of the duality would be
infinite if the problem is not admissible. Then, characterising the admissibility of Problem
1 corresponds to checking the finiteness of the dual problem, and can be seen as a more
elaborate analogue of Strassen’s theorem for the classical optimal transport problem.

3.3.2 Duality

This section is devoted to establishing the duality by closely following Loeper [82, Section
3.2] [see also 20, 66].

Theorem 3.3.6. If Problem 1 is admissible, then

V = sup
φ,λ

{
m∑
i=1

λici −
∫
Rd
φ(0, x) dµ0

}
, (3.12)

where the supremum is taken over all (φ, λ) ∈ BV ([0, T ], C2
b (Rd))× Rm satisfying

∂tφ+
m∑
i=1

λiGiδτi + F ∗(∇xφ,
1

2
∇2
xφ) ≤ 0 in [0, T )× Rd, (3.13)

and φ(T, ·) = 0. Moreover, if there exists (ρ, α, β) ∈ C([0, T ],P(Rd)−w∗)×L1(dρtdt,Rd)×
L1(dρtdt,Sd) satisfying (3.7) and (3.8) (in the distributional sense), then the infimum of
Problem 2 is attained.
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Proof. The proof relies on the Fenchel–Rockafellar theorem which plays a key role in the
applications of convex analysis. One may note that the objective function (3.6) is not
convex in (ρ, α, β) since F (α, β)ρ is not convex in (ρ, α, β). As we will see below, (3.6)
can be written as the convex conjugate (which is always convex) of another function with
respect to (ρ,A := αρ,B := βρ) and (A,B) are absolutely continuous with respect to ρ. In
addition, the constraints (3.7) and (3.8) are linear in (ρ,A,B). Therefore, throughout the
proof, we will work on (ρ,A,B) instead. For simplicity, we will write dA and dB in short
for α(t, x)ρ(t, dx)dt and β(t, x)ρ(t, dx)dt, respectively.

Formulate the constraints (3.7) and (3.8) in the following weak form:

∀φ ∈ C∞c (Λ),

∫
Λ

∂tφ dρ+∇xφ · dA+
1

2
∇2
xφ : dB +

∫
Rd
φ(0, ·) dµ0 = 0,

φ(T, ·) = 0

(3.14)

∀λ ∈ Rm,

∫
Λ

m∑
i=1

λiGiδτidρ−
m∑
i=1

λici = 0. (3.15)

where C∞c (Λ) is the space of smooth functions with compact support on Λ. Thus Problem
2 can be reformulated as the following saddle point problem:

V = inf
ρ,A,B

sup
φ,λ

{∫
Λ

F

(
dA
dρ
,
dB
dρ

)
dρ− ∂tφ dρ−∇xφ · dA−

1

2
∇2
xφ : dB −

∫
Rd
φ(0, ·) dµ0

−
∫

Λ

m∑
i=1

λiGiδτi dρ+
m∑
i=1

λici

}
.

(3.16)

The strategy of the proof is to first construct a function Φ whose convex conjugate Φ∗ is
equal to the objective function of Problem 2, and construct another function Ψ whose convex
conjugate Ψ∗ is equal to the rest part inside the infimum of (3.16) so that V = infρ,A,B(Φ∗+
Ψ∗)(ρ,A,B). Then, the duality is established by applying the Fenchel–Rockafellar theorem.

Adopting the terminology of Huesmann and Trevisan [66], we say the triple (r, a, b) is
represented by (φ, λ) if it satisfies

r + ∂tφ+
m∑
i=1

λiGiδτi = 0,

a+∇xφ = 0,

b+
1

2
∇2
xφ = 0.

If we choose (r, a, b) from Cb(Λ,X ), by the first equation above, ∂tφ is a measure because
of the presence of the Dirac delta functions. Thus, φ has bounded variation with respect
to t on [0, T ] and has possible jump discontinuities at t = τi. Now, define functionals
Φ : Cb(Λ,X )→ R ∪ {+∞} and Ψ : Cb(Λ,X )→ R ∪ {+∞} as follows:

Φ(r, a, b) =

{
0 if r + F ∗(a, b) ≤ 0,
+∞ otherwise,

Ψ(r, a, b) =


∫
Rd
φ(0, x) dµ0 −

m∑
i=1

λici
if (r, a, b) is represented by (φ, λ)
in BV ([0, T ], C2

b (Rd))× Rm with φ(T, ·) = 0,

+∞ otherwise.
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Note that Ψ is well-defined. If Ψ(r, a, b) < +∞ for some (r, a, b) that is represented by some
(φ, λ), then (φ, λ) satisfies the constraints (3.14) and (3.15), otherwise we can arbitrarily
scale (φ, λ) in (3.16) then V becomes unbounded. Assume that (r, a, b) can be represented
by both (φ̂, λ̂) and (φ̃, λ̃), then we have

∂t(φ̂− φ̃) +
m∑
i=1

(λ̂i − λ̃i)Giδτi = 0. (3.17)

Integrating (3.17) with any ρ that satisfies (3.15) and ρ(0, ·) = µ0, we have
∫
Rd φ̂(0, x) dµ0−∑m

i=1 λ̂ici =
∫
Rd φ̃(0, x) dµ0 −

∑m
i=1 λ̃ici, so the value of Ψ does not depend on the choice of

(φ, λ) and hence Ψ is well-defined.
Denote by Φ∗ and Ψ∗ the convex conjugates of Φ and Ψ, respectively. For Φ, its convex

conjugate Φ∗ : Cb(Λ,X )∗ → R ∪ {+∞} is given by

Φ∗(ρ,A,B) = sup
(r,a,b)∈Cb(Λ,X )

{〈(r, a, b), (ρ,A,B)〉 ; r + F ∗(a, b) ≤ 0}.

As shown in Lemma A.1.1, if we restrict Φ∗ to M(Λ,X ), then

Φ∗(ρ,A,B) =


∫

Λ

F

(
dA
dρ
,
dB
dρ

)
dρ if ρ ∈M+(Λ,X ) and (A,B)� ρ,

+∞ otherwise.

Next, Ψ∗ : Cb(Λ,X )∗ → R ∪ {+∞} is given by

Ψ∗(ρ,A,B) = sup
(r,a,b)

{
〈(r, a, b), (ρ,A,B)〉 −

∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici

}
,

where the supremum is taken over all triples (r, a, b) ∈ Cb(Λ,X ) represented by (φ, λ) in
BV ([0, T ], C2

b (Rd))× Rm. In terms of (φ, λ),

Ψ∗(ρ,A,B) = sup
φ,λ

{
〈(−∂tφ−

m∑
i=1

λiGiδτi ,−∇xφ,−
1

2
∇2
xφ), (ρ,A,B)〉 −

∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici

}
.

As proved in Lemma A.2.1, the objective V can be expressed as

V = inf
(ρ,A,B)∈M(Λ,X )

(Φ∗ + Ψ∗)(ρ,A,B) = inf
(ρ,A,B)∈Cb(Λ,X )∗

(Φ∗ + Ψ∗)(ρ,A,B).

LetOm×n denote a null matrix of sizem×n. Consider the point (r, a, b) = (−1, Od×1, Od×d)
which can be represented by (φ, λ) = (T−t, Om×1). As F is nonnegative, at (−1, Od×1, Od×d)
we have

−1 + F ∗(Od×1, Od×d) = −1− inf
α∈Rd,β∈Sd

F (α, β) < 0.

This shows that

Φ(−1, Od×1, Od×d) = 0, Ψ(−1, Od×1, Od×d) = 0.

Thus, at (−1, Od×1, Od×d), Φ is continuous with respect to the uniform norm (since F ∗ is
continuous in dom(F ∗)), and Ψ is finite. Furthermore, as the convex functionals Φ and Ψ
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take values in (−∞,+∞], all of the required conditions are fulfilled to apply the Fenchel–
Rockafellar duality theorem [see e.g., 22, Chapter 1]. We then obtain

V = inf
(ρ,A,B)∈Cb(Λ,X )∗

{Φ∗(ρ,A,B) + Ψ∗(ρ,A,B)} = sup
(r,a,b)∈Cb(Λ,X )

{−Φ(−r,−a,−b)−Ψ(r, a, b)},

and the infimum is in fact attained. Consequently,

V = sup
(r,a,b)

{
−
∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici ; −r + F ∗(−a,−b) ≤ 0

}
,

where the supremum is restricted to all (r, a, b) represented by (φ, λ) ∈ BV ([0, T ], C2
b (Rd))×

Rm. Writing (r, a, b) in terms of (φ, λ) with φ(T, ·) = 0, we obtain the required result.

3.3.3 Viscosity solutions

Adopting the concept of viscosity solutions, it can be shown that the supremum of the
objective with respect to φ is achieved by the viscosity solution of the HJB equation (3.10).
Due to presence of the Dirac delta functions in (3.10), we shall introduce a suitable definition
of the viscosity solution that allows to have jump discontinuities in time.

Definition 3.3.7. Denote by set(τ) the set of entries of vector τ and by K the cardinality
of set(τ). Let t0 = 0, we define disjoint intervals Ik := [tk−1, tk) such that

K⋃
k=1

Ik = [0, T ),

where tk−1 < tk and tk ∈ set(τ) for all k = 1, . . . , K.

Definition 3.3.8 (Viscosity solution). For any λ ∈ Rm, we say φ is a viscosity subsolution
(resp., supersolution) of (3.10) if φ is a classical (continuous) viscosity subsolution (resp.,
supersolution) of (3.10) in Ik × Rd for all k = 1, . . . , K, and has jump discontinuities:

φ(t, x) = φ(t−, x)−
m∑
i=1

λiGi(x)1(t = τi) ∀(t, x) ∈ τ × Rd.

Then, φ is called a viscosity solution of (3.10) if φ is both a viscosity subsolution and a
viscosity supersolution of (3.10).

Remark 3.3.9 (Comparison principle). The comparison principle still holds for viscosity
solutions of (3.10). Let u and v be a viscosity subsolution and a viscosity supersolution of
the equation (3.10), respectively. At the terminal time T , u(T, ·) ≤ v(T, ·). Since tK = T is
in set(τ) and u, v have the same jump size at {T} × Rd, we get u(T−, ·) ≤ v(T−, ·). Next,
in the interval IK = [tK−1, tK), by the classical comparison principle, we get u ≤ v on IK .
Applying this argument for all intervals Ik for k = 1, . . . , K, we conclude that

u(t, x) ≤ v(t, x), ∀(t, x) ∈ [0, T ]× Rd.

Also, u(0, ·) ≤ v(0, ·).

Remark 3.3.10 (Existence and uniqueness). As a consequence of the comparison principle,
there exists a unique viscosity solution of (3.10). The uniqueness is a direct consequence
of the comparison principle. The existence can be obtained by Perron’s method [see 29]
under which the comparison principle is a key argument.
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Now we shall prove Proposition 3.3.5. The proof relies on a smoothing argument used
in Bouchard et al. [18], which is based on the shaken coefficients technique of Krylov [78].
The proof is similar to Theorem 2.4 in Bouchard et al. [18], which we sketch here for
completeness.

Proof of Proposition 3.3.5. Denote by ϕ a viscosity solution of the equation (3.10) with any
λ ∈ Rm. From Remark 3.3.10, we know that such ϕ exists and is unique. The first part of
the proposition is proved in two steps:
Step 1. Assuming that there exists a sequence of supersolutions of (3.10) inBV ([0, T ], C2

b (Rd))
converging to ϕ pointwise, we can show that ϕ achieves the supremum with respect to φ
in the objective of the dual (3.12). Let φ ∈ BV ([0, T ], C2

b (Rd)) be any solution that sat-
isfies (3.13), and φ is also a (viscosity) supersolution of (3.10). By Remark 3.3.9, we have
ϕ(0, x) ≤ φ(0, x) for all x ∈ Rd, hence

m∑
i=1

λici −
∫
Rd
φ(0, x) dµ0 ≤

m∑
i=1

λici −
∫
Rd
ϕ(0, x) dµ0. (3.18)

The equality can be achieved in (3.18) by taking the supremum with respect to φ on the
left-hand side of (3.18).
Step 2. Now, we shall construct the sequence of supersolutions required in Step 1. Let us
introduce the regularising kernel rε : Rd → R such that rε(x) = 1

εd
r′
(
x
ε

)
where r′ is some

compactly supported function that satisfies
∫
Rd r

′(x) dx = 1. Then we define ϕε = ϕ ∗ rε
where the convolution acts only on the variable x. By applying the result of Bouchard et al.
[18] which relies critically on the fact that F ∗(a, b) is convex in (a, b), it can be shown that
ϕε are supersolutions of equation (3.10). If we send ε to 0, the supersolutions ϕε converge
to the viscosity solution ϕ pointwise. The desired sequence is then constructed.

Now we prove the second part of the proposition. Let (ρ∗, α∗, β∗) be the optimal so-
lution of Problem 2, then (ρ∗, ρ∗α∗, ρ∗β∗) also achieves the infimum (3.16). Assume that
there exists an optimal solution λ∗ ∈ Rm that solves (3.9), then (φλ∗ , λ

∗) also achieve the
supremum in (3.16). With the optimal solutions defined above, we can reformulate (3.16)
as

0 =

∫ T

0

∫
Rd

(
F (α∗, β∗)− ∂tφλ∗ −∇xφλ∗ · α∗ −

1

2
∇2
xφλ∗ : β∗ −

m∑
i=1

λ∗iGiδτi

)
dρ∗tdt

=

∫ T

0

∫
Rd

(
F (α∗, β∗) + F ∗

(
∇xφλ∗ ,

1

2
∇2
xφλ∗

)
−∇xφλ∗ · α∗ −

1

2
∇2
xφλ∗ : β∗

)
dρ∗tdt.

Let (α̃, β̃) be defined by

(α̃, β̃) = ∇F ∗
(
∇xφλ∗ ,

1

2
∇2
xφλ∗

)
,

(
∇xφλ∗ ,

1

2
∇2
xφλ∗

)
= ∇F (α̃, β̃).

Hence, by the definition of convex conjugate and the strong convexity of F ,

0 =

∫ T

0

∫
Rd

(
F (α∗, β∗)− F (α̃, β̃)−∇xφλ∗ · (α∗ − α̃)− 1

2
∇2
xφλ∗ : (β∗ − β̃)

)
dρ∗tdt

≥
∫ T

0

∫
Rd
C
(
‖α∗ − α̃‖2 + ‖β∗ − β̃‖2

)
dρ∗tdt ≥ 0,

where C > 0 is a constant. Therefore, (α∗, β∗) = (α̃, β̃), dρ∗tdt-almost everywhere. The
proof is completed.
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3.4 LSV Calibration

In this section, we illustrate our method by calibrating a Heston-like LSV model. This
method could also be easily extended to other LSV models. We consider the LSV model
with following dynamics under the risk-neutral measure:

dZt = (r(t)− q(t)− 1
2
σ2(t, Zt, Vt)) dt+ σ(t, Zt, Vt) dW

Z
t ,

dVt = κ(θ − Vt) dt+ ξ
√
Vt dW

V
t ,

dWZ
t dW

V
t = η(t, Zt, Vt) dt,

(3.19)

where Zt is the logarithm of the stock price at time t. The interpretations of r and q
differ between financial markets. In the equity market, r is the risk-free rate and q is the
dividend yield. In the FX market, r is the domestic interest rate and q is the foreign
interest rate. The parameters κ, θ, ξ have the same interpretation as in the Heston model.
In our method, we assume these parameters are given and obtained by calibrating a pure
Heston model. Note that in the literature, the widely considered LSV model has a volatility
function σ(t, Zt, Vt) = L(t, Zt)

√
Vt and a constant correlation η, where L(t, Zt) is known as

the leverage function. By contrast, we consider a local-stochastic volatility σ > 0 and a
local-stochastic correlation η ∈ [−1, 1] whose values depend on (t, Zt, Vt). Our objective is
to calibrate σ(t, Z, V ) and η(t, Z, V ) so that model prices exactly match market prices.

Remark 3.4.1. If the volatility σ(t, Z, V ) ≡
√
V and the correlation η(t, Z, V ) is a constant,

the LSV model reduces to a pure Heston model. Furthermore, if σ(t, Z, V ) is independent
of the variable V , the model is equivalent to a local volatility model.

Consider a probability measure P ∈ P1 and a two-dimensional P-semi-martingale Xt.
The process Xt has dynamics (3.19), i.e., Xt = (Zt, Vt), if P is characterised by (αP, βP)
such that

(αP
t , β

P
t ) =

([
rt − qt − 1

2
σ2
t

κ(θ − Vt)

]
,

[
σ2
t ηtξ

√
Vtσt

ηtξ
√
Vtσt ξ2Vt

])
, t ∈ [0, T ], (3.20)

with functions σt = σ(t, Zt, Vt) and ηt = η(t, Zt, Vt). Recall that the parameters (κ, θ, ξ)
are assumed to be given. Also, rt and qt are known and Vt is a state variable. Hence, the
only unknown variables in (3.20) are σt and ηt. As we will see below, σt will be the only
free variable in the calibration. Given m European options with prices c ∈ Rm

+ , maturities
τ = (τ1, . . . , τm) ∈ (0, T ]m and discounted payoffs G = (G1, . . . , Gm) where Gi : R2 → R+

(e.g., Gi(x) = e−
∫ τi
0 r(s)ds(ex1 −K)+ if the i-th option is a European call with strike K and

maturity τi, where x1 stands for the first element of x). If Xt has an initial distribution
µ0 = δ(Z0,V0) and is exactly calibrated to these European options, then P ∈ P(µ0, τ, c, G).
One way to build a calibrated LSV model is to solve

V = inf
P∈P(µ0,τ,c,G)

EP
∫ T

0

F (t,Xt, α
P
t , β

P
t ) dt, (3.21)

where F is a suitable convex cost function that forces (αP, βP) to take the form of (3.20).
One possible way to choose the cost function F is based on the idea of minimising the

difference between each element of βP and a reference value while keeping βP in S2
+. How-

ever, it is often impossible to find an explicit formula to approximate F ∗. Thus numerical
optimisation is needed, which makes the method computationally expensive. To overcome
this issue, we choose the correlation

ηt =

√
Vt
σt

η, t ∈ [0, T ], (3.22)
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3.4. LSV CALIBRATION

Figure 3.1: The function H(x, x, s) for a given x and a given s < x.

where η is a constant correlation obtained (along with κ, θ, ξ) by calibrating a pure Heston
model. In this case, βP

t is positive semidefinite if and only if σ2
t ≥ η2Vt for t ≤ T .

Definition 3.4.2. Define function H : R× R+ × R→ R ∪ {+∞} such that

H(x, x, s) :=

{
a(
x− s
x− s

)1+p + b(
x− s
x− s

)1−p + c if x > s and x > s,

+∞ otherwise.

The parameter p is a constant greater than 1, and a, b, c are constants determined to
minimise the function at x = x with minH = 0.

Given x and s satisfying x > s, the function H is convex in x and minimised at x. It
is finite only when x > s. In the numerical examples (see Section 3.5.2 and 3.5.3 below),
the parameter p is set to 4. A plot of H is given in Figure 3.1. Then, we define the cost
function as follows.

Definition 3.4.3. The cost function F : R× R× R× R2 × S2 → R ∪ {+∞} is defined as

F (t, Z, V, α, β) :=

{
H(β11, V, η

2V ) if (α, β) ∈ Γ(t, V ),
+∞ otherwise,

(3.23)

where the convex set Γ is defined as

Γ(t, V ) := {(α, β) ∈ R2 × S2 | α1 = r(t)− q(t)− β11/2, α2 = κ(θ − V ),

β12 = β21 = ηξV, β22 = ξ2V }.

Remark 3.4.4. The function H penalises deviations of the LSV model from a pure Heston
model by choosing x = V (see Remark 3.4.1). This approach seeks to retain the attractive
features of the Heston model while still matching all the market prices. We also set s = η2V
to ensure that σ2 > η2V , hence β remains positive definite and the correlation η is in [−1, 1].
The set Γ forcesXt to have dynamics of the form (3.19) with η defined in (3.22) by restricting
the characteristics in Γ. In particular, it remains risk neutral.
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3.4. LSV CALIBRATION

By applying Proposition 3.3.5, the dual formulation of (3.21) with the cost function
(3.23) is as follows:

V = sup
λ∈Rm

{
m∑
i=1

λici − φλ(0, Z0, V0)

}
, (3.24)

where φλ is the viscosity solution to the HJB equation

∂tφλ +
m∑
i=1

λiGiδτi + sup
β11

{
(r − q − 1

2
β11)∂Zφλ + κ(θ − V )∂V φλ + ηξV ∂ZV φλ

+
1

2
β11∂ZZφλ +

1

2
ξ2V ∂V V φλ −H(β11, V, η

2V )

}
= 0,

(3.25)

with a terminal condition φλ(T, ·) = 0.
Given any λ ∈ Rm, we can calculate φλ(0, Z0, V0) by numerically solving the HJB

equation (3.25). The optimal λ can be found through a standard optimisation algorithm
(see Section 3.5.1 below). The convergence of the algorithm can be improved by providing
the gradient of the objective. Let βλ denote the optimal β11 that solves the supremum
in (3.25), which also implicitly depends on λ. In fact, solving the supremum in (3.25) is
equivalent to solving the following equation for σ2:

(∂ZZφλ − ∂Zφλ)/2 = ∂σ2H(σ2, V, η2V ), (3.26)

for which a closed-form solution is available. We also denote by Pλ ∈ P1 a probability mea-

sure characterised by (αPλ , βPλ) defined in (3.20) with (σt, ηt) = (

√
(βλ)t, η

√
Vt/(βλ)t), t ≤

T .

Lemma 3.4.5. Define J(λ) =
∑m

i=1 λici − φλ(0, Z0, V0). The gradient of J(λ) with respect
to λi can be formulated as:

∂λiJ(λ) = ci − EPλGi(Xτi), ∀i = 1, . . . ,m. (3.27)

In addition, EPλGi(Xτi) = φ′(0, Z0, V0) where φ′ solves

∂tφ
′ + (r − q − 1

2
βλ)∂Zφ

′ + κ(θ − V )∂V φ
′ + ηξV ∂ZV φ

′ +
1

2
βλ∂ZZφ

′ +
1

2
ξ2V ∂V V φ

′ = 0,

(3.28)

with the terminal condition φ′(τi, ·) = Gi.

Proof. Given a λ and the associated βλ, the HJB equation (3.25) reduces to

∂tφλ +
m∑
i=1

λiGiδτi + (r − q − 1

2
βλ)∂Zφλ + κ(θ − V )∂V φλ + ηξV ∂ZV φλ

+
1

2
βλ∂ZZφλ +

1

2
ξ2V ∂V V φλ −H(βλ, V, η

2V ) = 0.

(3.29)

Since λ, φλ and βλ are related implicitly, by taking implicit partial differentiation of (3.29)
to compute φ′ := ∂λiφλ for any i = 1, . . . ,m, we obtain the following PDE

∂tφ
′ + (r − q − 1

2
βλ)∂Zφ

′ + κ(θ − V )∂V φ
′ + ηξV ∂ZV φ

′

+
1

2
βλ∂ZZφ

′ +
1

2
ξ2V ∂V V φ

′ = −Giδτi .
(3.30)
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With the terminal condition φ′(T, ·) = 0, (3.30) can be solved by the Feynman–Kac formula
[see e.g., 74, Theorem 7.6]. Thus,

φ′(0, Z0, V0) = EPλGi(Xτi).

Moreover, solving (3.30) with φ′(T, ·) = 0 is equivalent to solving (3.28) with φ′(τi, ·) = Gi.
The proof is completed.

Remark 3.4.6. Note that EPλGi(Xτi) is the price of the i-th European option calculated
by Xt under Pλ, which we refer to as the model price, and ci is the market price. Instead of
solving (3.30) once for each option, we can perform a Monte Carlo simulation to efficiently
calculate the model prices for all options. However, for the sake of accuracy, we still choose
to solve (3.30) in the numerical examples below. Moreover, as the gradient is decreasing
to zero while the solution is moving towards the optimal solution, the optimisation process
can be interpreted as matching the model Xt to market prices.

3.5 Numerical aspects

3.5.1 Numerical method

In this section, we present a numerical method for solving the dual formulation. To shorten
notations, we will simply write φ for φλ from now on. Starting with an initial λ = λ0

(e.g., setting it to a null vector), we solve the HJB equation (3.25) to calculate φ(0, Z0, V0)
and hence calculate J(λ0). Then, J is maximised over λ ∈ Rm through an optimisation
algorithm. In particular, we employed the L-BFGS algorithm [81] and obtained good
convergence. The optimisation process can be accelerated by providing the gradient ∇J(λ)
which can be numerically computed by (3.27). We measure the optimality by the maximum
absolute value on the gradient. In other words, by setting a threshold ε1, the algorithm
terminates when the following stopping criterion is reached:

‖∇J(λ)‖∞ ≤ ε1.

For solving the HJB equation (3.25), we use an alternating direction implicit (ADI)
method together with the central finite difference scheme. In the numerical examples below,
we employ the Douglas scheme from In ’t Hout and Foulon [68]. Given a λ, we solve the
HJB equation backward. Consider a discretisation {tk} of the time interval [0, T ] such
that 0 = t0 < t1 < · · · < tNT = T,NT ∈ N. Without loss of generality, we assume that
set(τ) ⊂ {tk}. At each time step tk, we approximate σ2

tk
by solving (3.26) with φ = φtk+1

for which an analytical solution can be found. At t = tk, with the approximated σ2
tk

,
the HJB equation (3.25) is solved by the ADI finite difference method. Note that this
approximation scheme of σ is similar to the one used in Ren et al. [95] for approximating
the leverage function.

Let τ̂i be an element in set(τ) such that ∪Ki=1{τ̂i} = set(τ) and 0 =: τ̂0 < τ̂1 < . . . <
τ̂K = T (see Definition 3.3.7 for the definitions of set(τ) and K). Denote by D the spatial
computational domain and by ∂D the boundary of D. When numerically solving the HJB
equation (3.25), we impose the following boundary conditions for the spatial dimensions:

∀i = 1, . . . , K ∇2
xφ(t, x) = ∇2

xφ(τ̂−i , x), (t, x) ∈ [τ̂i−1, τ̂i)× ∂D,

In addition, we set a sufficiently large D to reduce the impact of the boundary conditions.
To handle the jump discontinuities caused by the presence of the Dirac delta terms,

we can solve the HJB equation interval-wise in the intervals separated by the maturities,
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Algorithm 1: LSV calibration

Data: Market prices of European option
Result: A calibrated OT-LSV model that matches all market prices

1 Set an initial λ
2 do

/* Solving the HJB equation */

3 for k = NT − 1, . . . , 0 do
4 if tk+1 is equal to the maturity of any calibrating options. then
5 φtk+1

← φtk+1
+
∑m

i=1 λiGi1(tk+1 = τi)
6 end
7 Approximate σ2

tk
by solving (3.26) with φ = φtk+1

8 Solve the HJB equation (3.25) by the ADI method at t = tk
9 end

/* Calculating model prices and gradient */

10 Solve (3.28) to calculate the model prices by the ADI method
11 Calculate the gradient ∇J(λ) by (3.27)
12 Update λ by the L-BFGS algorithm

13 while ‖∇J(λ)‖∞ > ε1

and the jump discontinuity can be incorporated into the terminal condition of the HJB
equation in each interval. More precisely, if tk+1 is equal to the maturity of any calibrating
options, we incorporate the jump discontinuity by adding

∑m
i=1 λiGi1(tk+1 = τi) to φtk+1

.
The numerical method is summarised in Algorithm 1.

Due to the non-linearity of the HJB equation, when the time step sizes are too large,
it might not be accurate to simply approximate σ2

tk
by solving (3.26) with φ = φtk+1

once
per time step. Therefore, we slightly modify the algorithm by including an iterative step
to improve the accuracy of the approximation of σ2

tk
. In the literature, this iterative step is

known as policy iteration, see e.g., Ma and Forsyth [84]. Specifically, at each time step tk,
we first approximate σ2

tk
by solving (3.26) with φ = φtk+1

. Next, we obtain φtk by solving
the HJB equation (3.25) with σ2

tk
, and then approximate σ2

tk
again by solving (3.26) with

φ = φtk . This process is repeated until φtk converges. For completeness, the modified
numerical method with policy iteration is summarised in Algorithm 2. For the sake of
accuracy, we use Algorithm 2 in both Section 3.5.2 and Section 3.5.3.

In our experiments, we notice that the algorithm can provide satisfactory calibration
results even with coarse grids. However, it is crucial to ensure that the grids are fine
enough, because we do not want to calibrate the wrong model prices to the calibrating
option prices. In fact, we observe that the algorithm converges faster with finder grids,
because the numerical approximations of the gradients are more accurate with finer grids.

3.5.2 Numerical example: simulated data

In this section, we provide two numerical examples with simulated data to demonstrate the
calibration method. In both examples, the risk-free rate is set to a constant r = 0.05 and the
dividend yield is set to q = 0. Let Z0 = ln 100 and V0 = 0.04 for both models. We consider a
uniform mesh over the spatial computational domain D = [Z0− 4

√
V0, Z0 + 4

√
V0]× [0, 0.5]

and use 101 points for each dimension. We also consider a uniform mesh over the time
interval [0, 1] with NT = 100. The LSV model is calibrated to a set of European call
options generated by a Heston model with given parameters. For clarity, we will refer
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Figure 3.2: The volatility function σ2(t, Z, V ) in Example 1

to the LSV model as the OT-LSV model and refer to the Heston model as the Heston
generating model. The option prices are calculated at maturities in {0.2, 0.4, 0.6, 0.8, 1.0}
and at 18 different strikes in [Z0 − 1.4

√
V0, Z0 + 1.4

√
V0].

Example 1

In the first example, we use parameters (κ, θ, ξ, η) = (0.5, 0.04, 0.16,−0.4) for both the
OT-LSV model and the Heston generating model. This example represents a trivial case,
since if we use the same set of parameters for both models, the optimal solution of the dual
formulation is a null vector λ = 0 ∈ Rm, and hence V = 0. In this case, under the optimal
measure of Problem 1, σ2(t, Z, V ) = V and η(t, Z, V ) = η. Setting a threshold ε1 = 10−6,
we obtain the expected results. The plot of σ2(t, Z, V ) is provided in Figure 3.2.

Example 2

In the second example, we give different parameters to the OT-LSV model and the Heston
generating model (see Table 3.1). As noted in Remark 3.4.1, the OT-LSV model reduces
to a LV model if σ2(t, Z, V ) is independent of V . Also, it is well known that an LV
model can be calibrated to any arbitrage-free option prices. In this example, the Heston
generating model has characteristics that are outside of Γ in the cost function F , so the
Heston generating model would lead to an infinite cost. However, since the generated
option prices are arbitrage free, a finite cost is still achievable by the OT-LSV model and
the problem is admissible, i.e., P(µ0, τ, c, G) 6= ∅ and V < +∞.

By setting the threshold ε1 = 0.0005, we obtained accurate calibration results. The
calibration results for a subset of options are given in Table 3.2. If σ2 is in the form of
σ2(t, Z, V ) = L2(t, Z)V for some function L, then L(t, Z) is called the leverage function and
the OT-LSV model recovers the traditional LSV model considered in most of the literature.
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Figure 3.3: The function σ2(t, Z, V )/V in Example 2

κ θ ξ η
Heston generating model 2.0 0.09 0.10 -0.6

OT-LSV model 0.5 0.04 0.16 -0.4

Table 3.1: The parameters of the Heston generating model and the OT-LSV model in
Example 2

Thus, we plot the function σ2(t, Z, V )/V in Figure 3.3 for comparison with L2(t, Z). The
plot of the correlation function η(t, Z, V ) is also provided in Figure 3.4. Finally, we show
the implied volatility of the Heston generated option prices and the OT-LSV generated
option prices in Figure 3.5. We can see that the OT-LSV model is well-calibrated to the
Heston generated option prices.
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Figure 3.4: The correlation function η(t, Z, V ) in Example 2
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Figure 3.5: The implied volatility of the Heston generated options and the calibrated OT-
LSV model in Example 2
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Maturity Log-strike Implied vol (Heston) Implied vol (OT-LSV) Error

4.3492 0.2396 0.2396 1.55E-05
4.4452 0.2291 0.2291 1.09E-06

T = 0.2 4.5732 0.2199 0.2199 8.89E-06
4.7012 0.2138 0.2138 8.56E-06
4.8292 0.2123 0.2124 2.99E-06

4.3492 0.2488 0.2488 1.82E-07
4.4452 0.2422 0.2422 3.93E-06

T = 0.4 4.5732 0.2359 0.2359 2.03E-06
4.7012 0.2303 0.2303 2.69E-06
4.8292 0.2257 0.2257 5.20E-07

4.3492 0.2576 0.2576 8.15E-06
4.4452 0.2523 0.2523 2.14E-07

T = 0.6 4.5732 0.2471 0.2471 2.42E-06
4.7012 0.2423 0.2423 6.52E-07
4.8292 0.2378 0.2378 3.55E-06

4.3492 0.2646 0.2646 1.97E-05
4.4452 0.2600 0.2600 1.82E-06

T = 0.8 4.5732 0.2555 0.2555 2.72E-06
4.7012 0.2512 0.2512 1.81E-06
4.8292 0.2472 0.2472 2.13E-06

4.3492 0.2699 0.2699 4.08E-06
4.4452 0.2659 0.2659 6.81E-07

T = 1.0 4.5732 0.2620 0.2620 1.44E-06
4.7012 0.2581 0.2581 1.54E-06
4.8292 0.2544 0.2544 7.30E-07

Table 3.2: A subset of the implied volatility of the options generated by the Heston gener-
ating model and the calibrated OT-LSV model in Example 2
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3.5.3 Numerical example: FX market data

In this example, we calibrate the OT-LSV model to the FX options data provided in Tian
et al. [104]. The options data and the domestic and foreign yields are listed in Table A.1
and Table A.2. The parameters (κ, θ, ξ, η) are shown in Table 3.3, which are obtained by
(roughly) calibrating a standard Heston model to the market option prices. In this case,
2κθ/ξ2 = 0.169� 1 and the Feller condition is strongly violated.

Parameter κ θ ξ η Z0 V0

Value 0.8721 0.0276 0.5338 -0.3566 0.2287 0.012

Table 3.3: The parameters of the OT-LSV model in the FX market data example.

For the numerical settings, the spatial computational domain is set to D = [−0.6, 1.0]×
[0, 2] with 101 points in each dimension. In order to improve the accuracy while still
keeping a reasonable computation time, we employ a non-uniform mesh over D and place
more points around (Z0, V0) [see e.g., 68, Section 2.2.]. For the time interval [0, 5], we use
30 time steps with an equal step size between any two consecutive maturities, e.g., 30 time
steps in (0, 1/12] and 30 time steps in (1/12, 1/6], and so on. Since there are 10 maturities
(see Table A.1), we have 300 time steps for 5 years in total.

Setting a threshold of ε1 = 6 × 10−6, we obtain an exact calibration. The maximum
difference between the model implied volatility and the market implied volatility is less
than 1 basis point. Figure 3.6 shows the implied volatility of the short-maturity options
(1 month and 3 months) for the market data, the uncalibrated LSV model and the OT-
calibrated LSV model. Figure 3.7 shows the implied volatility of the long-maturity options
(2 years and 5 years).
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Figure 3.6: The implied volatility (IV) skews generated by both the uncalibrated and the
calibrated OT-LSV model for 1 month and 3 months maturities in the FX market data
example.
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Figure 3.7: The implied volatility (IV) skews generated by both the uncalibrated and the
calibrated OT-LSV model for 2 years and 5 years maturities in the FX market data example.
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Chapter 4

Joint modelling and calibration of
SPX and VIX by optimal transport

The objective of this chapter is to further extend the approach developed in Chapter 3 to
address the joint calibration problem of options and futures of the S&P 500 index (SPX) and
its volatility index (VIX). This problem has attracted the attention of many researchers and
practitioners and has proven challenging. In this chapter, we introduce a time continuous
formulation of the joint calibration problem. We consider a semimartingale X whose first
coordinate process X1 is the logarithm of the SPX price and whose second coordinate
process X2 is defined as the expectation of the forward quadratic variation of X1. The
reformulated joint calibration problem falls into the class of the semimartingale optimal
transport problem studied in Chapter 3. Then, by following results developed in Chapter 3,
we introduce a PDE formulation along with its dual counterpart. The solution, a calibrated
diffusion process, can be represented via the solutions of the Hamilton–Jacobi–Bellman
equations arising from the dual formulation. The method requires one to choose a reference
measure for regularising the nonparametric model. When the chosen reference is very
different from the one that describes the observable market option and future prices, the
calibrated model might have hump-shaped volatility surfaces and volatility skews, which is
not realistic. To address this issue, we introduce a reference measure iteration method that
iteratively updates the reference measure while solving the dual formulation. Finally, the
proposed calibration method is tested on both simulated data and market data. Numerical
examples show that the model can be accurately calibrated to SPX options, VIX options
and VIX futures simultaneously.

4.1 Introduction

The CBOE Volatility Index (VIX), also known as the stock market’s “fear gauge”, reflects
the expectations of investors on the volatility of the S&P500 index (SPX) over the next 30
days. Although the index in itself is not a tradable asset, its derivatives such as futures and
options are highly liquid. Since the VIX options started trading in 2006, researchers and
practitioners have been putting a lot of effort in jointly calibrating models to the SPX and
VIX options prices. It has proven to be a challenging problem. As noted by many authors
(e.g., [69, 101]), inconsistencies might appear between the volatility-of-volatility inferred
from SPX and VIX.

In the literature, the first attempt at jointly calibrating with continuous models1 was
made by Gatheral [45], who considered a two-factor stochastic volatility model. Other

1Continuous models refer to continuous-time models with continuous SPX paths.
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attempts include a Heston model with stochastic volatility-of-volatility by Fouque and
Saporito [42] and a regime-switching stochastic volatility model by Goutte et al. [48]. In
addition, many authors have tried incorporating jumps into the SPX dynamics, see, e.g.,
[5, 27, 75, 90, 91]. However, even with jumps, these models have yet to achieve satisfactory
accuracy, particularly for short maturities. This leads to a natural question of whether there
exists a continuous model which can capture the SPX and VIX smiles simultaneously. In
[2, 55], Acciaio and Guyon provide a necessary condition for the existence of such continuous
models. Their work was followed by the contribution of Gatheral et al. [47] who introduced
the so-called quadratic rough Heston model that aims to provide a good approximation for
both SPX and VIX smiles with only six parameters. Notably, apart from continuous models,
a remarkable result was obtained by Guyon [56] recently, who accurately reproduced the
SPX and VIX smiles by modelling the distributions of SPX in discrete time.

In this chapter, we introduce a time continuous formulation of the joint calibration
problem. Instead of directly modelling the instantaneous volatility of the SPX or the VIX
index, we consider a semimartingale X whose first element X1 is the logarithm of the SPX
price and whose second element X2 is defined as the expectation of the forward quadratic
variation of X1. By doing so, the calibration exercise only depends on the marginals of X
at fixed times, and the joint calibration problem falls into the class of the semimartingale
optimal transport problem studied in [54]. As a corollary of the superposition principle of
Trevisan [105] (or earlier Figalli [40] for the bounded coefficients case), for any probability
measure such that the drift and diffusion of X are adapted processes, there exists another
measure under which the semimartingale X reduces to a time-inhomogeneous diffusion
and has the same marginals at fixed times under both measures. It is worth noting that
the idea of using diffusion processes to mimic an Itô process by matching their marginals
at fixed times traces back to the classical mimicking theorem of Gyöngy [58], which was
later extended by Brunick and Shreve [23] to remove the conditions of nondegeneracy and
boundedness on the covariance of the Itô process. Based on this result, as shown in [54], it
is sufficient to look for solutions among such diffusion processes. This allows us to deduce
a PDE formulation of the problem along with its dual counterpart. The latter naturally
gives rise to Hamilton–Jacobi–Bellman (HJB) equations which can be used to represent
the solutions to the original problem. Importantly, being Markovian in the state variables,
our calibrated model allows us to easily derive hedging strategies for any other options.
Indeed, as long as the covariance matrix is invertible, the model is complete (see [32]) and
all derivatives based on X can be fully delta hedged through dynamical trading in the SPX
index and variance swaps on it.

In terms of numerical aspects, pricing of VIX derivatives involves evaluating the square
root of a conditional expectation. This requires nested Monte Carlo or least square Monte
Carlo methods. Nested Monte Carlo has good accuracy, but is computationally expensive.
Least square Monte Carlo is efficient, but it is difficult to determine the sign of the error,
which can be a useful piece of information in risk management. In the previous work of
two authors of this chapter [49], the least square Monte Carlo approach was adapted for
computing the duality bounds of VIX derivatives. In this chapter, by taking X2 as the
forward quadratic variation of X1, we can use conventional Monte Carlo methods or PDE
methods to calculate the prices of VIX options and futures. Then, X is calibrated by a
gradient descent method proposed in [54], in which an HJB equation is numerically solved
by a fully implicit finite difference method at each iteration. It should be mentioned that
a similar numerical algorithm was studied much earlier in [4] in the context of entropy
minimisation. Let us also point out that, by defining suitable state variables, our results
are applicable to any calibration problem in which the calibration instruments have payoffs
in the form of a function of a conditional expectation.
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In fact, the calibration method presented in this chapter shares many common features
with Guyon’s approach [56]. For example, both methods are nonparametric and based on
the theory of optimal transport, and both methods suffer from the curse of dimensionality
when considering multiple maturities of VIX futures and options. Despite these similari-
ties, there are many important differences as well. On one hand, Guyon’s model is fitted
to the distributions implied from market SPX and VIX options and futures, and our model
is directly calibrated to the market prices of these products. On the other hand, Guyon’s
method seeks a three-dimensional joint probability measures on SPX and VIX at the start
date of VIX and on SPX only on the end date of VIX. Our method recovers the whole tra-
jectory distributions of SPX in a given time interval. We must acknowledge that, compared
to Guyon’s method, our method is more computationally expensive. We leave the study of
reducing the computational complexity for future research.

This chapter is organised as follows. Section 4.2 introduces some basic notations and
the formulation of the problem. Section 4.3 presents the main results including a dimension
reduction result, the PDE formulation and the dual formulation. Section 4.4 describes the
numerical method in detail. Finally, in Section 4.5, we provide numerical examples with
both simulated data and market data.

4.2 Problem formulation

4.2.1 Preliminaries

Let E be a Polish space equipped with its Borel σ-algebra. We denote C(E) the set
of continuous functions on E and Cb(E) the set of bounded continuous functions on E.
Denote by P(E) the set of Borel probability measures endowed with the weak-∗ topology.
Let BV (E) be the set of functions of bounded variation and L1(dµ) be the set of µ-
integrable functions. We also write C(E,Rd), Cb(E,Rd), BV (E,Rd) and L1(dµ,Rd) for the
vector-valued versions of their corresponding sets.

Let Ω := C([0, T ],R2) be the two-dimensional canonical space with the canonical process
X = (X1, X2), and let F = (Ft)0≤t≤T be the canonical filtration generated by X. Denote
by P the set of Borel probability measures on (Ω,FT ), T > 0. Let P0 ⊂ P denote the
subset of measures such that, for each P ∈ P0, X ∈ Ω is an (F,P)-semimartingale given by

Xt = X0 + At +Mt, 〈X〉t = 〈M〉t = Bt, P-a.s., (4.1)

where M is an (F,P)-martingale and (A,B) is P-a.s. absolutely continuous with respect to
t. In particular, P is said to be characterised by (αP, βP), which is defined in the following
way,

αP
t =

dAt
dt

, βP
t =

dBt

dt
.

Note that (αP, βP) is F-adapted and determined up to dP × dt, almost everywhere. In
general, (αP, βP) takes values in the space R2×S2

+, where S2 is the set of symmetric matrices
and S2

+ is the set of positive semidefinite matrices of order two. For any A,B ∈ S2, we write
A : B = tr(AᵀB). Denote by P1 ⊂ P0 a set of probability measures P whose characteristics
(αP, βP) are P-integrable. In other words,

EP
(∫ T

0

|αP
t |+ |βP

t | dt
)
< +∞,
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where | · | is the L1-norm.
Denote by F : [0, T ] × R2 × R2 × S2 → R ∪ {+∞} a cost function, and denote by

F ∗ : [0, T ]× R2 × R2 × S2 → R ∪ {+∞} the convex conjugate of F with respect to (α, β):

F ∗(t, x, a, b) := sup
α∈R2,β∈S2

{α · a+ β : b− F (t, x, α, β)}.

When there is no ambiguity, we will simply write F (α, β) := F (t, x, α, β) and F ∗(a, b) :=
F ∗(t, x, a, b).

4.2.2 The joint calibration problem

We are interested in risk-neutral measures under which the SPX price is a continuous
martingale, as we assume for simplicity that both dividends and interests rates are null.
Let St be the SPX price of the form

St = S0 +

∫ t

0

σsSs dWs,

where σ is some adapted process and W is a one-dimensional Brownian motion. It then
follows that X1

t , the logarithm of St, is a semimartingale with dynamics

X1
t = X1

0 −
1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dWs, 0 ≤ t ≤ T.

For such X1, we then use X2 to represent a half of the expectation of the forward quadratic
variation of X1 on [t, T ] observed at time t, that is

X2
t = X2

t,T := EP
(

1

2

∫ T

t

σ2
s ds

∣∣∣∣Ft) = X1
t − EP(X1

T | Ft), 0 ≤ t ≤ T. (4.2)

From now on, we will interchangeably use X2
t for X2

t,T and vice versa, X2
t,T being used

to emphasise the dependence of X2 on T . Note that the second term on the right-hand
side of (4.2) is the T -futures price on X1 at time t and hence is a martingale. It follows
that the modelling setting we just described is captured by probability measures P ∈ P1

characterised by (α, β) such that

αt =

[
−1

2
σ2
t

−1
2
σ2
t

]
and βt =

[
σ2
t (βt)12

(βt)12 (βt)22

]
, 0 ≤ t ≤ T, (4.3)

where (βt)12 = d〈X1, X2〉t / dt and (βt)22 = d〈X2〉t / dt and with the additional property
that X2

T,T = 0 P-a.s.

Remark 4.2.1. We note that this is a fully nonparametric description of all the models in
P1 compatible with the market setting described above. In particular, we do not specify
the dynamics of the volatility (σt)t≤T . In Section 4.2.3, we show that X may reproduce
Heston’s stochastic volatility market dynamics. More generally, we believe X may capture
the SPX and VIX smiles of a wide range of one-factor stochastic volatility models. However,
to capture full model dynamics for other models including multi-factor stochastic volatility
models, one would need to add some additional state variables so they can explicitly express
EP(X1

T | Ft) in terms of all state variables, which also increases the dimension of the
problem.
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In order to restrict the probability measures to those characterised by (α, β) of the
form (4.3), we can define a cost function that penalises characteristics that are not in the
following convex set:

Γ :=

{
(α, β) ∈ R2 × S2

+ : α1 = α2 = −1

2
β11

}
.

Define the convex cost function F as follows:

F (α, β) =


2∑

i,j=1

(βij − βij)2 if (α, β) ∈ Γ,

+∞ otherwise,

(4.4)

where β is a matrix of some reference values for β. Note that β may depend on (t,Xt). Then,
F is finite if and only if (α, β) is in the form of (4.3). Furthermore, F allows for stability
across calibration exercises through specification of a reference model β. Employing F as
the cost function, our aim will be to find a model which is the closest to β among the ones
which calibrate fully to the given market data. We comment further on the significance of
β below in Section 4.5.

The calibration instruments we consider are SPX European options, VIX options and
VIX futures. The market prices of these derivatives can be imposed as constraints on X.
Let G be a vector of m number of SPX option payoff functions2. For example, if the i-th
option is a put option with a strike Ki, then the payoff function Gi : R2 → R+ is given by
Gi(x) = max(Ki − exp(x1), 0). Let uSPX ∈ Rm be the SPX option prices and τ ∈ [0, T ]m

be the vector of their maturities. The prices uSPX can be imposed on X by restricting P
to probability measures that satisfy

EPGi(Xτi) = uSPXi , ∀i = 1, . . . ,m.

Let 0 ≤ t0 ≤ T . The annualised realised variance of St = exp(X1
t ) over a time grid

t0 < t1 < · · · < tn = T is defined to be

AF

n∑
i=1

(
log

Sti
Sti−1

)2

,

where AF is an annualisation factor. For example, if ti corresponds to the daily observation
dates, then AF = 1002 × 252/n, and the realised variance is expressed in basis points per
annum. As supi=1,...,n |ti − ti−1| → 0, the realised variance can be approximated by the
quadratic variation of X1

t , given by

AF
n∑
i=1

(
log

Sti
Sti−1

)2
P→ 1002

T − t0

∫ T

t0

σ2
t dt.

The CBOE VIX index at t0 is defined as the square root of a weighted average of out-
of-money SPX call and put option prices with maturity T = t0 + 30 days, which is an
approximation of the implied volatility of a 30-day log-contract on the SPX. For models
with continuous paths, the VIX index at t0 can be expressed as the square root of the
expected realised variance over the next 30 days (see [36] and [89]), that is

V IXt0 = 100

√
2

T − t0
EP

(
1

2

∫ T

t0

σ2
t dt

∣∣∣∣Ft0) = 100

√
2

T − t0
X2
t0,T

.

2In the case of non-zero interest rate, the payoff functions in G should be discounted.
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Consider VIX options and futures both with maturity t0. Let H be a vector of n number
of VIX option payoff functions. Similarly to G, if the i-th VIX option is a put option with
a strike Ki, then the payoff function Hi : R→ R+ is given by Hi(x) = max(Ki − x, 0). Let
J : R2 → R+ be given by J(x) := 100

√
2x2/(T − t0). Let uV IX,f ∈ R be the VIX futures

price and let uV IX ∈ Rn be the VIX option prices. Then, we want to further restrict P to
those under which X also satisfies the following constraints:

EPJ(Xt0) = uV IX,f ,

EP(Hi ◦ J)(Xt0) = uV IXi , ∀i = 1, . . . , n.

Finally, to ensure that X2
T,T = 0, one additional constraint is imposed on the model.

Let ξ : R2 → R+ be a function such that ξ(x) = 0 if and only if x2 = 0. Here, we
choose ξ(x) := 1 − exp(−(x2)2) and add constraint EPξ(XT ) = 0. This constraint can be
interpreted as a contract that has payoff ξ(XT ) at time T , and its price is always null. From
now on, we call it the singular contract.

We assume that X0 = (X1
0 , X

2
0,T ) ∈ R2 is known, and the initial marginal of X is a Dirac

measure on X0. The value of X1
0 is the logarithm of the current SPX price. In practice,

X2
0,T can be inferred if the market prices of SPX call and put options maturing at T are

available over a continuous spectrum of strikes:

X2
0,T = EP

(
1

2

∫ T

0

σ2
s ds

)
=

∫ f̂T

0

EP(k − ST )+

k2
dk +

∫ ∞
f̂T

EP(ST − k)+

k2
dk,

where f̂T = EP(ST ) is the T -forward price of the SPX index (e.g., see [24]). If X2
0,T is not

observable from the market, we can treat it as a parameter. Now, putting all the constraints
together, we define a set of probability measures P(X0, G,H, τ, t0, T, u

SPX , uV IX,f , uV IX) ⊂
P1 as follows:

P(X0, G,H, τ, t0, T, u
SPX , uV IX,f , uV IX) := {P ∈ P1 : P ◦X−1

0 = δX0 ,

EPGi(Xτi) = uSPXi , i = 1, . . . ,m,

EPJ(Xt0) = uV IX,f ,

EP(Hi ◦ J)(Xt0) = uV IXi , i = 1, . . . , n,

EPξ(XT ) = 0}.

For simplicity, we write Pjoint as a shorthand for P(X0, G,H, τ, t0, T, u
SPX , uV IX,f , uV IX).

Any P ∈ Pjoint is a feasible risk-neutral measure under which the semimartingale X repro-
duces the market prices. If Pjoint is empty, it means that the market data is not compatible
with a continuous-time semimartingale model with continuous paths. Adopting the conven-
tion inf ∅ = +∞, we formulate the joint calibration problem as a semimartingale optimal
transport problem under a finite number of discrete constraints, as studied in [54]:

Problem 3. Given X0, G,H, τ, t0, , T, u
SPX , uV IX,f and uV IX , solve

V := inf
P∈Pjoint

EP
∫ T

0

F (αP
s , β

P
s ) ds. (4.5)

The problem is said to be admissible if the infimum is finite and, in particular, Pjoint is
nonempty.

Remark 4.2.2. Let Y be an FT -measurable random variable. By identifying X2
t as a

function of X1
t and EP(Y | Ft), our results apply to any model calibration problem where

the payoffs of the calibration instruments can be expressed as functions of X1
t and X2

t .
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Remark 4.2.3. When considering multiple maturities for VIX futures and options, we need
to have one X2 for each maturity, e.g., X2

t,T1
, X2

t,T2
, etc. Although there is no theoretical

limitation for considering multiple maturities, from numerical and practical standpoints
this is challenging as each additional maturity increases the PDE’s dimension.

4.2.3 An example: the Heston model

The Heston model [64] is a one-factor stochastic volatility model which directly models the
spot price St and the instantaneous variance νt under the risk-neutral measure. The model
dynamics are given by

dSt =
√
νtSt dW

1
t ,

dνt = −κ(νt − θ) dt+ ω
√
νt dW

2
t ,

〈dW 1, dW 2〉t = η dt,

where W 1
t and W 2

t are standard Brownian motions with correlation η and κ, θ > 0 with
2κθ > ω2 so that νt > 0 a.s. In this section, we rewrite the Heston dynamics in terms of
X1
t and X2

t,T and hence specify the probability measure P ∈ P1 which captures the Heston
dynamics.

For X1, it is obvious that dX1
t = d log(St) = −1

2
νt dt +

√
νt dW

1
t . For X2, by applying

Itô’s formula, we have

X2
t,T = EP

(
1

2

∫ T

t

νs ds

∣∣∣∣Ft) =
1− e−κ(T−t)

2κ
(νt − θ) +

1

2
θ(T − t). (4.6)

Define A(t, κ) := (1− e−κ(T−t))/κ, then a simple rearrangement of (4.6) gives that

νt = A(t, κ)−1(2X2
t,T − θ(T − t)) + θ =: ν(t,X2

t,T , κ, θ).

The above equation establishes a one-to-one relation between νt and X2
t,T at time t. Ap-

plying Itô’s formula to X2
t,T , we have

dX2
t,T = d

(
1

2
A(t, κ)(νt − θ) +

1

2
θ(T − t)

)
=

1

2
(νt − θ) dA(t, κ) +

1

2
A(t, κ) dνt −

1

2
θ dt

=

(
1

2
(νt − θ)(κA(t, κ)− 1)− 1

2
κA(t, κ)(νt − θ)−

1

2
θ

)
dt+

1

2
A(t, κ)ω

√
νt dW

2
t

= −1

2
νt dt+

1

2
A(t, κ)ω

√
νt dW

2
t .

Therefore, the Heston model can be reformulated as

dX1
t = −1

2
ν(t,X2

t,T , κ, θ) dt+
√
ν(t,X2

t,T , κ, θ) dW
1
t ,

dX2
t,T = −1

2
ν(t,X2

t,T , κ, θ) dt+
1

2
A(t, κ)ω

√
ν(t,X2

t,T , κ, θ) dW
2
t ,

〈dW 1
t , dW

2
t 〉 = η dt.

This dynamics can be captured by the probability measure P ∈ P0 characterised by (α, β)
such that, for t ∈ [0, T ],

(αt, βt) =

([
−1

2
ν(t,X2

t,T , κ, θ)
−1

2
ν(t,X2

t,T , κ, θ)

]
,

[
ν(t,X2

t,T , κ, θ)
1
2
ηωA(t, κ)ν(t,X2

t,T , κ, θ)
1
2
ηωA(t, κ)ν(t,X2

t,T , κ, θ)
1
4
ω2A(t, κ)2ν(t,X2

t,T , κ, θ)

])
.

(4.7)
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Further, it is easy to check that EP ∫ T
0
ν(t,X2

t,T , κ, θ) dt < ∞ and hence P ∈ P1. The
characteristics (4.7) will be used in the numerical example provided in Section 4.5 for
generating simulated option prices and will also be used as a reference model.

4.3 Main results

This section is devoted to presenting our main results. By following [54], we first present
a dimension reduction result which shows that the optimal transportation cost can be
achieved by a set of Markov processes. Focusing only on these Markov processes, we
introduce a PDE formulation. Furthermore, we deduce a dual formulation and find the
optimal characteristics as by-product of solving the dual formulation.

4.3.1 Dimension reduction

In this section, we show that if Problem 3 is admissible then the optimal transportation
cost V can be found by minimising (4.5) over a subset of probability measures under which
X is a (time inhomogeneous) Markov processes. Before proceeding, we introduce some
notations for brevity. Denote by EP

t,x the conditional expectation EP( · | Xt = x). For any

square matrix β ∈ S2
+, we write β

1
2 such that β = β

1
2 (β

1
2 )ᵀ. Now, let us restate Lemma 3.1

of [54].

Lemma 4.3.1. Let P ∈ P1 and ρPt = ρP(t, ·) = P ◦X−1
t be the marginal distribution of Xt

under P, t ≤ T . Then ρP is a weak solution to the Fokker–Planck equation: ∂tρ
P
t +∇x · (ρPtEP

t,xα
P
t )−

1

2

∑
i,j

∂ij(ρ
P
t (EP

t,xβ
P
t )ij) = 0 in [0, T ]× R2,

ρP0 = δX0 in R2.

(4.8)

Moreover, there exists another probability measure P′ ∈ P1 under which X has the same
marginals, ρP

′
= ρP, and is a Markov process solving

dXt = αP′(t,Xt)dt+ (βP′(t,Xt))
1
2 dW P′

t , 0 ≤ t ≤ T, (4.9)

where W P′ is a P′-Brownian motion, αP′(t,Xt) = EP
t,Xt

αP
t and βP′(t,Xt) = EP

t,Xt
βP
t .

Lemma 4.3.1 is a corollary of the superposition principle of Trevisan [105] and Figalli
[40]. It is worth noting that the idea of using diffusion processes to mimic an Itô process by
matching their marginals at fixed times (also called Markovian projection in the literature)
traces back to the classical mimicking theorem of Gyöngy [58], which was later extended
by Brunick and Shreve [23] to remove the conditions of nondegeneracy and boundedness
on the covariance of the Itô process.

Let P locjoint ⊂ Pjoint be the subset of probability measures under which X is Markov pro-

cesses in the form of (4.9). In other words, any P′ ∈ P locjoint is characterised by (αP′(t,Xt), β
P′(t,Xt)) :=

(EP
t,Xt

αP
t ,EP

t,Xt
βP
t ) for some P ∈ P1. Moreover, under P′, X has an initial marginal δX0 and

is fully calibrated to the market prices given in Pjoint. Applying Proposition 3.4 of [54], we
have the following proposition for the joint calibration problem:

Proposition 4.3.2 (Dimension reduction). Given Pjoint and P locjoint, if Problem 3 is admis-
sible, then

V = inf
P∈Pjoint

EP
∫ T

0

F (αP
t , β

P
t ) dt = inf

P∈Plocjoint
EP
∫ T

0

F (αP(t,Xt), β
P(t,Xt)) dt.
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4.3.2 PDE formulation

For any P ∈ P locjoint, the characteristics are function of the state variable Xt and time t. As
is classical in the theory of diffusions, this allows us to leverage PDE methods to describe
Problem 3 and to use conventional numerical methods to find its solutions.

Proposition 4.3.3. If Problem 3 is admissible, then

V = inf
ρ,α,β

∫ T

0

∫
R2

F (α(t, x), β(t, x)) ρ(t, dx) dt, (4.10)

among all (ρ, α, β) ∈ C([0, T ],P(R2))×L1(dρtdt,R2)×L1(dρtdt,S2
+) satisfying the following

constraints in the sense of distributions:

∂tρ(t, x) +∇x · (ρ(t, x)α(t, x))− 1

2

∑
i,j

∂ij(ρ(t, x)βij(t, x)) = 0 in [0, T ]× R2, (4.11)∫
R2

Gi(x) ρ(τi, dx) = uSPXi ∀i = 1, . . . ,m, (4.12)∫
R2

J(x) ρ(t0, dx) = uV IX,f , (4.13)∫
R2

(Hi ◦ J)(x) ρ(t0, dx) = uV IXi ∀i = 1, . . . , n, (4.14)∫
R2

ξ(x) ρ(T, dx) = 0, (4.15)

and the initial condition ρ(0, ·) = δX0.

Proof. This proposition follows immediately from Lemma 4.3.1. The interchange of inte-
grals in the objective is justified by Fubini’s theorem. For the weak continuity of measure
ρ in time we refer the reader to [82].

The PDE formulation can be solved by the alternating direction method of multipliers
(ADMM) which was originally used in [8] to solve the classical optimal transport. This
method was extended to a one-dimensional martingale optimal transport problem in [51]
and to instationary mean field games with diffusion in [3]. However, for problems with
diffusions, the ADMM method requires to solve a fourth-order PDE with a bi-Laplacian
operator. In this chapter, we work on an alternative dual formulation derived by following
the arguments in [54]. This will be presented in the next subsection.

4.3.3 Dual formulation

Although the PDE formulation is not a convex problem, it can be made convex by con-
sidering the triple of measures (ρ,A,B) := (ρ, ρα, ρβ). By doing so, the objective function
(4.10) is convex in (ρ,A,B). Moreover, the initial condition and the constraints (4.11)
to (4.15) are linear in (ρ,A,B) and hence produce a convex feasible set. In consequence,
the classical tools of convex analysis can be applied. Following Proposition 3.5 of [54], we
introduce a dual formulation.

Let λSPX ∈ Rm, λV IX,f ∈ R, λV IX ∈ Rn and λξ ∈ R be the Lagrange multipliers
of constraints (4.12) to (4.15), respectively. To avoid confusion with the Dirac measure
δ : R2 → R ∪ {+∞} used previously, we denote by D : [0, T ]→ R ∪ {+∞} the Dirac delta
function in the sense of distributions. The dual formulation is given as follows:
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Theorem 4.3.4 (Duality). If Problem 3 is admissible, we have

V = sup
(λSPX ,λV IX,f ,λV IX ,λξ)∈Rm+n+2

λSPX · uSPX + λV IX,fuV IX,f + λV IX · uV IX − φ(0, X0),

(4.16)

where φ is the viscosity solution to the HJB equation:

∂tφ(t, x) + F ∗(∇xφ(t, x),
1

2
∇2
xφ(t, x)) = −

m∑
i=1

λSPXi Gi(x)D(t− τi)

− λV IX,fJ(x)D(t− t0)−
n∑
i=1

λV IXi (Hi ◦ J)(x)D(t− t0)− λξξ(x)D(t− T ) in [0, T ]× R2,

(4.17)

with the terminal condition φ(T, ·) = 0. Moreover, if Problem 3 is admissible, then the
infimum in (4.10) is attained. If the supremum in (4.16) is attained by some λSPX , λV IX,f ,
λV IX and λξ for which the associated solution to (4.17) is φ∗ ∈ BV ([0, T ], C2

b (R2)), and if
(ρ, α, β) is an optimal solution of Problem 3, then (α, β) is given by

(αt, βt) = ∇F ∗(∇xφ
∗(t, ·), 1

2
∇2
xφ
∗(t, ·)), dρtdt− almost everywhere. (4.18)

Theorem 4.3.4 is an application of the Fenchel–Rockafellar duality theorem [106, The-
orem 1.9]. Due to the presence of D in the source terms, the viscosity solution φ satisfies
(4.17) in the sense of distributions3. Moreover, φ has possible discontinuities at t0, T and
τi, i = 1, . . . ,m. The numerical solution to (4.17) is described in detail in Section 4.4. For
the cost function F defined in (4.4), the convex conjugate F ∗ is given in Lemma B.1.1.

Remark 4.3.5. As mentioned in the previous work [54], the admissibility condition in
Theorem 4.3.4 was imposed for fulfilling the conditions of Fenchel–Rockafellar theorem and
hence simplifying the presentation and arguments. However, it is possible to remove this
assumption from Proposition 4.3.3 with some modifications in the proof and still obtain the
duality result in Theorem 4.3.4. Furthermore, characterising the admissibility of Problem
3 can be seen as a more elaborate analogue of Strassen’s theorem for the classical optimal
transport problem, which is however out of the scope of this paper.

In the dual formulation, the supremum can be solved by a standard optimisation algo-
rithm. As pointed out in [54, Lemma 4.5], the convergence can be improved by providing
the gradients of the objective.

Lemma 4.3.6. Suppose Problem 3 is admissible and let

L(λSPX , λV IX,f , λV IX , λξ) := λSPX · uSPX + λV IX,fuV IX,f + λV IX · uV IX − φ(0, X0).

Then, the gradients of the objective can be formulated as the difference between the market
prices and the model prices:

∂λSPXi
L = uSPXi − EPGi(Xτi), i = 1, . . . ,m, (4.19)

∂λV IX,fL = uV IX,f − EPJ(Xt0), (4.20)

∂λV IXi
L = uV IXi − EP(Hi ◦ J)(Xt0), i = 1, . . . , n, (4.21)

∂λξL = −EPξ(XT ). (4.22)
3For the precise definition of viscosity solutions to (4.17) and the corresponding comparison principle,

we refer the reader to [54, Section 3.3].

53



4.4. NUMERICAL METHODS

In the optimisation process, the gradients are decreasing to zero while the solution is
approaching the optimal solution, which illustrates the improving matching of model prices
with the market prices. We note that the model prices, corresponding to a particular
model (α, β), are obtained, via the Feynman-Kac formula, by solving linear pricing PDEs.
More precisely, the model price of an instrument with payoff G and maturity T is equal to
EPG(XT ) = φ′(0, X0), where φ′ satisfies{

∂tφ
′ + α · ∇xφ

′ +
1

2
β : ∇2

xφ
′ = 0, in [0, T )× R2,

φ′(T , ·) = G.
(4.23)

When applying Lemma 4.3.6, we shall be using (4.23) m times for (G, T ) = (Gi, τi), i =
1, . . . ,m, once for (G, T ) = (J, t0), n times for (G, T ) = (Hi ◦ J, t0), i = 1, . . . , n, and once
for (G, T ) = (ξ, T ). We shall simply refer to this as solving the linear pricing PDEs (4.23).
Naturally, once the optimal model (α∗, β∗) is found, the above can be used not only to
verify that it is indeed calibrated but also to compute other option prices under the model.

Remark 4.3.7. The most computationally expensive operation of numerically solving
(4.23) is inverting a large sparse matrix. However, since the computations of all com-
ponents of the gradient involve solving the same linear PDE but with different terminal
conditions, the matrix inversion only need to be carried out once per time step. Alter-
natively, all gradients can be efficiently computed in one Monte Carlo simulation. In the
numerical examples below (see Section 4.5), we choose to numerically solve (4.23) for the
sake of accuracy.

4.4 Numerical methods

4.4.1 Solving the dual formulation

The numerical method proposed in [54] can be directly applied to solve the dual formulation,
albeit with a number of caveats. Let us first recall the numerical method. Given an initial
guess (λSPX , λV IX,f , λV IX , λξ), we solve the HJB equation (4.17) to get φ(0, X0) and hence
to calculate the objective value. Due to the presence of the Dirac delta functions D, φ might
be discontinuous in time. The HJB equation can be solved in several time intervals in which,
in each interval, the solution φ is continuous in both time and space, and the source terms
with D can be incorporated into the terminal conditions. For example, if we consider SPX
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options with maturities t0 and T , the HJB equation (4.17) can be reformulated as follows:

∂tφ+ sup
β∈S2+

(
− 1

2
β11∂x1φ−

1

2
β11∂x2φ+

1

2
β11∂x1x1φ

+β12∂x1x2φ+
1

2
β22∂x2x2φ−

2∑
i,j=1

(βij − βij)2

)
= 0

in [t0, T ),

φ(T−, ·) =
m∑
i=1

λSPXi Gi1(τi = T ) + λξξ,

(4.24)

∂tφ+ sup
β∈S2+

(
− 1

2
β11∂x1φ−

1

2
β11∂x2φ+

1

2
β11∂x1x1φ

+β12∂x1x2φ+
1

2
β22∂x2x2φ−

2∑
i,j=1

(βij − βij)2

)
= 0

in [0, t0),

φ(t−0 , ·) = φ(t0, ·) +
m∑
i=1

λSPXi Gi1(τi = t0) + λV IX,fJ +
n∑
i=1

λV IXi (Hi ◦ J).

(4.25)

We then calculate the gradients of the objective by Lemma 4.3.6, in which the linear pricing
PDEs (4.23) are solved by an alternating direction implicit (ADI) method (see e.g., [68]).
Once we have the gradient values, we update (λSPX , λV IX,f , λV IX , λξ) by moving them
against their gradients or by supplying gradients to an optimisation algorithm. Notably,
the L-BFGS algorithm [81] was employed and showed good convergence. The above steps
are repeated until some optimality condition is met. When Problem 3 is not admissible,
i.e., there does not exist a probability measure that calibrates the model to the given
prices, we observe that the numerical solution will not converge, which is consistent with
the arguments in Remark 4.3.5. The numerical method is summarised in Appendix B.2.

4.4.2 Solving HJB equations

In terms of numerical schemes for HJB equations, in their seminal work, Barles and Sougani-
dis [6] have established a convergence that requires schemes to be monotone. Since then,
a wide literature on monotone schemes has developed. For multidimensional HJB equa-
tions, it is usually difficult to construct a monotone scheme because of the cross partial
derivative terms. To ensure monotonicity, the explicit wide stencil schemes were studied
by Bonnans and Zidani [15] and by Debrabant and Jakobsen [34]; however, the stability of
explicit schemes are restricted by some CFL condition. In [84], Ma and Forsyth proposed
an implicit wide stencil finite difference scheme with a local coordinate rotation which is un-
conditionally stable. They also maximised the use of the fixed point stencil and the central
finite difference scheme to improve the order of accuracy while preserving the monotonicity
of the scheme.

In this chapter, we solve the HJB equations by a fully implicit finite difference method
with central-difference schemes for approximating both first- and second-order derivatives.
We discretise the time interval, and then, at each time step, we approximate β by Lemma
B.1.1. Once the optimal β has been found, the fully nonlinear HJB equation reduces to a
linear PDE which can be solved by the standard implicit finite difference method. When
approximating β, we start with an arbitrary φ to approximate the derivatives of φ. Next
we solve the linearised PDE and plug the solution back into the supremum to approximate
β at the same time. The above procedure is repeated until φ converges, then we proceed
to the next time step. This successive approximation is known as policy iteration in the
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literature. A good approximation to the initial φ is the one from the previous time step,
which makes φ converge within a few iterations.

It is difficult to choose the boundary conditions of the HJB equations for this problem.
Consider a computational domain (x1, x2) ∈ [X1

min, X
1
max] × [0, X2

max]. We impose the
following boundary conditions to equations (4.24) and (4.25):{
∇2
xφ(t, x) = ∇2

xφ(T−, x), for (t, x) ∈ [t0, T )× ({X1
min, X

1
max} × [0, X2

max] ∪ [X1
min, X

1
max]× {X2

max})
φ(t, x) = φ(T−, x), for (t, x) ∈ [t0, T )× [X1

min, X
1
max]× {0}{

∇2
xφ(t, x) = ∇2

xφ(t−0 , x), for (t, x) ∈ [0, t0)× ({X1
min, X

1
max} × [0, X2

max] ∪ [X1
min, X

1
max]× {X2

max})
φ(t, x) = φ(t−0 , x), for (t, x) ∈ [0, t0)× [X1

min, X
1
max]× {0}

In addition, we set a sufficiently large computational domain to further reduce the impact
of the boundary conditions. Since the linear pricing PDEs are related to the HJB equation,
we use the following boundary conditions for equations (4.23):{
∇2
xφ
′(t, x) = ∇2

xG(x), for (t, x) ∈ [0, T )× ({X1
min, X

1
max} × [0, X2

max] ∪ [X1
min, X

1
max]× {X2

max})
φ′(t, x) = G(x), for (t, x) ∈ [0, T )× [X1

min, X
1
max]× {0}.

As noted in [79], the standard finite difference schemes are non-monotone unless the
diffusion matrix is diagonally dominated. In spite of being non-monotone in general, this
scheme has the advantage of second-order accuracy for smooth solutions and ease of im-
plementation compared to sophisticated monotone schemes. In fact, the variance of X2

t,T is
much smaller than the variance of X1

t , especially when t is close to T . Thus, we scale up
X2
t,T by performing a simple change of variables: (X1, X2) 7→ (X1, KX2) with K > 1. In

the numerical example of the next section we take K = 40. Although the diffusion matrix
is not diagonally dominated and the scheme is still non-monotone in general, it shows good
stability and convergence for this problem after the scaling.

4.4.3 Smoothing the volatility skews

It is clear from the formulation of Problem 3 that the reference β influences, potentially in a
very significant way, the solution. This is also confirmed by our numerics, see Section 4.5.1
below. However, in practice, a good selection of the reference β might not be available.
Assume that there exists a Pmkt ∈ P locjoint, characterised by (αmkt, βmkt), which describes the

real market dynamics. When β is far away from βmkt, even though the optimised model
matches all the calibrating option prices, the optimal β may still be very different from
βmkt. In the numerical experiment, we observed spiky volatility surfaces and hump-shaped
model volatility skews. This is not surprising because the optimiser is trying to match the
model prices to the calibrating option prices while keeping β close to β.

Denote by F β the cost function defined in (4.4) with reference β. Let V (β) be the

optimal objective value of Problem 3 with cost function F β. If V (β) < ∞, by Theorem

4.3.4, V (β) is equal to the optimal objective value of the dual formulation with (F β)∗ in the
HJB equation (4.17). Let R(β) be some regularisation term that measures the smoothness
of β. In order to smooth out the volatility surfaces and the model volatility skews, it is
natural to consider the following problem:

arg inf
β∈L1(dρtdt,S2+)

V (β) +R(β). (4.26)

While we might not actually solve this problem, it motivates our reference measure iteration

method. We start with an initial reference β
0

and numerically solve the dual formulation
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with cost function F β
0

. Then an optimal (β∗)0 is obtained as a by-product of solving (4.17).
Next, we smooth (β∗)0 by a simple moving average over (t,X1, X2) with bandwidths of
(lt, lx1 , lx2). In the numerical examples, we set (lt, lx1 , lx2) = (3, 5, 5). Next, we set the

smoothed (β∗)0 to β
1

and solve the dual formulation with β
1
. The above steps are repeated

until the model volatility skews are smooth enough.

Remark 4.4.1. When the calibrating instruments include VIX futures, the elements of
β(t, x1, x2) might contain spikes around x2 = 0, which might lead to numerical instability
if we take a spiky β as the reference. In the numerical experiments below, we remove
these spikes by replacing the values of β(·, ·, x2), x2 < ε with an approximation calculated
by linearly extrapolating the values of β(·, ·, x2), x2 ≥ ε along x2, where ε is a small pos-
itive number. We find that this simple workaround effectively eliminates the numerical
instability.

Let us call the optimisation of solving (4.16) as the inner iteration and call the optimi-
sation of solving (4.26) as the outer iteration. For the outer iteration, if the optimal β that
achieves the infimum in (4.26) is not very smooth, bandwidths (lt, lx1 , lx2) with large values
might cause the optimiser to search around the optimal β forever. Thus, (lt, lx1 , lx2) can
be intuitively interpreted as the “step size” for the outer iteration. Moreover, in practice,
we can apply an early stop technique by only running for a few iterations for the inner
iteration. By doing so, the optimiser is alternating between the inner iteration and the
outer iteration. We include this procedure in our numerical routines presented in the next
section.

4.5 Numerical experiments

4.5.1 Simulated data

In this section, we present a numerical example to demonstrate our method. We gener-
ate some calibrating options and futures prices from a Heston model with given parameters
(κ, θ, ω, η), and we call this model the generating model. Next, we calibrate the semimartin-
gale X to these simulated prices by solving the dual formulation. In this case, we know
that there exists such a probability measure P ∈ P1 that X can be fully calibrated to the
simulated prices under P, i.e., P locjoint 6= ∅ . Recall that the interest rates and dividends
are set to null. The characteristics of P are given by (4.7) and the calibrating options and
futures prices are computed by solving the linear pricing PDEs (4.23).

Recall that Problem 3, combined with Proposition 4.3.2, looks for a Markovian diffusion
model which minimises a certain distance to a reference model β subject to being calibrated.
In this section we not only show that our approach is feasible but also investigate the
potential influence of the choice of the reference β. Specifically, we consider two reference
models:

(a) a Heston model with a different set of parameters (κ, θ, ω, η):

β(t,X1
t , X

2
t,T ) =

[
ν(t,X2

t,T , κ, θ)
1
2
ηωA(t, κ)ν(t,X2

t,T , κ, θ)
1
2
ηωA(t, κ)ν(t,X2

t,T , κ, θ)
1
4
ω2A(t, κ)2ν(t,X2

t,T , κ, θ)

]
; (4.27)

(b) a model with constant reference values:

β(t,X1
t , X

2
t,T ) =

[
β11 β12

β12 β22

]
. (4.28)
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Parameter Value Interpretation

S0 100 SPX spot price
X1

0 4.6052 Initial position of X1

X2
0,T 0.0098 Initial position of X2

κ 0.6 Mean reversion speed of the generating model
θ 0.09 Long-term variance of the generating model
ω 0.4 Volatility-of-volatility of the generating model
η -0.5 Correlation between SPX and variance of the generating

model
κ 0.9 Mean reversion speed of the Heston reference model

θ 0.04 Long-term variance of the Heston reference model
ω 0.6 Volatility-of-volatility of the Heston reference model
η -0.3 Correlation between SPX and variance of the Heston ref-

erence model

β11 0.09 Reference value of β11 of the constant reference model

β12 -0.01 Reference value of β12 of the constant reference model

β22 0.04 Reference value of β22 of the constant reference model

Table 4.1: Parameter values and interpretations for the simulated data example.

The optimal models (α∗, β∗) obtained using these two reference values will be referred
to, respectively, as the OT-calibrated model with a Heston reference and the OT-calibrated
model with a constant reference. These should not be confused with the generating (Heston)
model. The idea behind the selection of candidates is to analyse the significance of β by
comparing the results between two cases: (a) the dynamics of the reference model are close
to the true dynamics, (b) the dynamics of the reference model are very different from the
true dynamics. Note that in (a), if (κ, θ, ω, η) = (κ, θ, ω, η), the supremum in (4.16) is
achieved by a null vector 0 ∈ Rm+n+2 and hence V = 0. In this case, the OT-calibrated
model quickly recovers the generating model.

Let t0 = 49 days and T = 79 days. The calibration instruments we consider are:

1. SPX call options maturing at 44 days (= t0 − 5 days) and T = 79 days,

2. VIX futures maturing at t0 = 49 days,

3. VIX call options maturing at t0 = 49 days.

Note that we also need to consider the singular contract (i.e., EPξ(XT ) = 0) to ensure that
the dynamics of X are correct. All the parameter values and their interpretations are given
in Table 4.1.

In this example, we consider a uniformly discretised time interval with step size ∆t = 0.5
day. The numerical solutions were mainly computed on a 100 × 100 uniform grid points,
except for that we use 100×400 (i.e., 400 grid points in X2) grid points for the last 10 time
steps for capturing the small variation of X2 around zero when t is close to T .

Ideally, we want the calibrated model to have at most 1 basis point error in implied
volatility for both SPX options and VIX options. However, in our method, we can only
calibrate the model to option prices instead of implied volatility. Therefore, we scale the
payoff functions and option prices by dividing them by their Black–Scholes Vegas, which
roughly converts errors in option prices to errors in implied volatility. The optimisation
algorithm will iterate until the maximum error between calibrating prices and model prices
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are below 0.0001, or until it cannot be further optimised. In addition, the volatility skews
are smoothed by the reference measure iteration method introduced in Section 4.4.3.

All numerical experiments are performed in Matlab (2020a) on a standard desktop with
an i7-7700K CPU (4.5 GHz) and 32GB of RAM. The example of Heston reference takes 4
hours and the example of constant reference takes 10.7 hours. The reason that the latter
example takes longer to complete is that as the constant reference value is very different from
the generating model, it takes more iterations to smooth the volatility surfaces and skews
by using the reference measure iteration method. We must acknowledge that our method
is very computationally expensive. We plan to study on reducing the computational time
in future research.

The calibration results are shown in Table 4.2, and the volatility skews are given in
Figure 4.1–4.2. We can see that the OT-calibrated models, both with the Heston reference
and the constant reference, accurately capture the calibrating SPX options, VIX futures
and VIX options prices. The errors, in implied volatility, of the SPX options are at most 1
basis point and of the VIX options are at most 10 basis points.

To verify if the model dynamics are correct, we perform a Monte Carlo simulation of
X with the Euler scheme, and the results are shown in Figure 4.3–4.4. As demonstrated,
X2
T,T ≈ 0 in all three models, so we consider the constraints X2

T,T = 0 P-a.s. are satisfied,
and the model dynamics are correct.

Regarding the robustness of the method, there is no doubt that the reference value has
a significant influence on the model dynamics. In Figures 4.1 and 4.2, the SPX model
volatility skews show some differences between the ones with different reference values. In
the intervals between any two adjacent option strikes, these difference are relative small,
which is the result of the smoothing method. In the intervals that are less than the smallest
strike and greater than the largest strike, these differences are relative large, because the
model is penalised away from the reference values. Surprisingly, the VIX model volatility
skews show only small differences. In Figures 4.3 and 4.4, we note that the dynamics of the
three models are different. In fact, the OT-calibrated model with the constant reference is
very different from the other two models. We further display the volatility behaviour of the
three models in Appendix B.3.
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Figure 4.1: The volatility skews of SPX options at t0 − 5 days = 44 days, SPX options at
T = 79 days and VIX options at t0 = 49 days for the simulated data example, including
the implied volatility of the generating model, the uncalibrated Heston reference model and
the OT-calibrated model with a Heston reference. The diamonds are the implied volatility
of the calibrating options. The vertical lines are VIX futures prices.
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Figure 4.2: The volatility skews of SPX options at t0 − 5 days = 44 days, SPX options at
T = 79 days and VIX options at t0 = 49 days for the simulated data example, including
the implied volatility of the generating model, the uncalibrated constant reference model
and the OT-calibrated model with a constant reference. The diamonds are the implied
volatility of the calibrating options. The vertical lines are VIX futures prices.

Figure 4.3: The simulations of X1
t for the simulated data example, including the generating

model, the OT-calibrated model with a Heston reference and the OT-calibrated model with
a constant reference.
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Figure 4.4: The simulations of X2
t,T for the simulated data example, including the generating

model, the OT-calibrated model with a Heston reference and the OT-calibrated model with
a constant reference.
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4.5.2 Market data

To further test the effectiveness of our method, we calibrate the model to the market data
as of September 1st, 2020.

Remark 4.5.1. For simplicity, we have assumed that the interest rates and dividends are
null, and the spot price is a martingale under the risk-neutral measure. However, this
assumption does not apply to the market data. To overcome this issue, we let X1 be the
logarithm of the T-forward price of the SPX index instead of the spot price. Then, we are
interested in T-forward measures P ∈ P1 under which exp(X1) is a martingale.

The market data consists of monthly SPX options maturing at 17 days and 45 days
and monthly VIX futures and options maturing at 15 days. The model is optimised with a
Heston reference (4.27) with parameters given in Table 4.3. The parameters are obtained by
(roughly) calibrating a standard Heston model to the SPX option prices. It should be noted
that, even with these parameters, the VIX skew generated by the Heston reference model
is very unrealistic. Numerically, we have also observed that the convergence is sensitive
to β. Therefore, we apply the reference measure iteration method, developed in Section
4.4.3, to iteratively improve the reference value. The total computation time (including the
reference measure iterations) is 11 hours. From a practical perspective, one way to reduce
the computation time is to set the reference value to a pre-calibrated β. Nevertheless, we
leave the task of finding better reference values and reducing the computation time for
future research.

Parameter X1
0 X2

0,T κ θ ω η

Value 8.17 0.0048 4.99 0.038 0.52 -0.99

Table 4.3: Parameter values for the market data example.

The OT-calibrated model volatility skews are plotted in Figure 4.5, and the simulation
of X is given in Figure 4.6. From the plots, we can see that the OT-calibrated model
accurately captures the market data while keeping X2

T,T = 0 P-a.s. satisfied. The volatility
behaviour is displayed in Appendix B.4.

Remark 4.5.2. Theoretically, the choice of β should affect the calibration result, but not
the feasibility thereof. If there is only one model that calibrates to the constraints, e.g.,
when calibrating to option prices with all strikes available, the result will not depend on
β. The degree of freedom in the choice of β and the cost function allow us to calibrate a
model even when option constraints are sparse.

Remark 4.5.3. In Figure 4.6, we observe a rapid distribution change of X2 after the VIX
options expiry. Recall that our X2 is the forward expected quadratic variation of X1,
which is indeed the scaled variance swap. Since the market prices are from the true VIX
options, this rapid distribution change could be caused by the discrepancy between the
VIX value and the variance swap which does not have a listed market. This discrepancy
is well known to practitioners. In our approach, the VIX is inferred from the true log-
contract, coherently with the variance swap. This approximation could lead to a slight
incoherence with observed market prices. We have indeed observed that the convergence of
the calibration was highly sensitive to X2

0 . Note that the same approach still works if we
replace X2 by the combination of vanilla options that is used in the CBOE VIX calculation,
which then allows us to potentially get better values of X2

0 from market prices. However,
we did not model X2 that way here for the simplicity of presentation.
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Figure 4.5: Approximated OT-calibrated model volatility skews of SPX options at t0 + 2
days = 17 days, SPX options at T = 45 days and VIX options at t0 = 15 days in the market
data example. The vertical lines are VIX futures prices. Markers correspond to computed
prices which are then interpolated with a piece-wise linear function.

Figure 4.6: The simulations of the OT-calibrated model X in the market data example.
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differential equation. The Annals of Applied Probability, 23(4):1584–1628, 2013.

[24] P. Carr and D. Madan. Towards a theory of volatility trading. In R. Jarrow, editor,
Volatility, pages 417–27. Risk Publications, 1998.

[25] M. Chernov. On the role of risk premia in volatility forecasting. Journal of Business
& Economic Statistics, 25(4):411–426, 2007.

[26] P. K. Clark. A subordinated stochastic process model with finite variance for spec-
ulative prices. Econometrica: Journal of the Econometric Society, pages 135–155,
1973.

[27] R. Cont and T. Kokholm. A consistent pricing model for index options and volatil-
ity derivatives. Mathematical Finance: An International Journal of Mathematics,
Statistics and Financial Economics, 23(2):248–274, 2013.

[28] J. C. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified approach.
Journal of Financial Economics, 7(3):229–263, 1979.

[29] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second
order partial differential equations. American Mathematical Society. Bulletin. New
Series, 27(1):1–67, 1992.

[30] C. Cuchiero, W. Khosrawi, and J. Teichmann. A generative adversarial network
approach to calibration of local stochastic volatility models. Risks, 8(4):101, 2020.

70



BIBLIOGRAPHY

[31] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Ad-
vances in neural information processing systems, 26:2292–2300, 2013.
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Appendix A

Appendix for Chapter 3

A.1 Lemma A.1.1

Lemma A.1.1. Define Φ : Cb(Λ,X )→ R ∪ {+∞} by

Φ(r, a, b) =

{
0 if r + F ∗(a, b) ≤ 0,
+∞ otherwise.

If we restrict the domain of its convex conjugate Φ∗ : Cb(Λ,X )∗ → R∪{+∞} to M(Λ,X ),
then

Φ∗(ρ,A,B) =


∫

Λ

F

(
dA
dρ
,
dB
dρ

)
dρ if ρ ∈M+(Λ) and (A,B)� ρ,

+∞ otherwise.

Proof. Let us identify the cases where Φ∗ < +∞. For any (ρ,A,B) ∈ Cb(Λ,X )∗, using the
definition of convex conjugate, we have

Φ∗(ρ,A,B) = sup
(r,a,b)∈Cb(Λ,X )

{〈(r, a, b), (ρ,A,B)〉 ; r + F ∗(a, b) ≤ 0}.

If we restrict the domain of Φ∗ to M(Λ,X ) ⊂ Cb(Λ,X )∗, then

Φ∗(ρ,A,B) = sup
(r,a,b)∈Cb(Λ,X )

{∫
Λ

r dρ+ a · dA+ b : dB ; r + F ∗(a, b) ≤ 0

}
.

To show that one can restrict to ρ ∈ M+(Λ,X ) if Φ∗ < +∞, we assume that there exists
a measurable set E ⊂ Λ such that ρ(E) < 0. By the fact that Cb is dense in L1, there
exists a sequence of nonnegative functions ζn ∈ Cb(Λ) that converges to 1E ∈ L1(dρtdt).
Let us construct a sequence (rn, an, bn) = (−kζn, Od×1, Od×d) ∈ Cb(Λ,X ) where k is an
arbitrary positive constant and Om×n denotes a null matrix of size m× n. It is clear that
the constraint r + F ∗(a, b) ≤ 0 is satisfied at (r, a, b) = (rn, an, bn) as F ∗(Od×1, Od×d) ≤ 0.
Then, by the dominated convergence theorem, we have

Φ∗(ρ,A,B) ≥ lim
n→+∞

∫
Λ

rn dρ+ an · dA+ bn : dB

=

∫
Λ

lim
n→+∞

(
rn dρ+ an · dA+ bn : dB

)
= −k

∫
Λ

lim
n→+∞

ζn dρ

= −kρ(E).
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If we send k to infinity, the function Φ∗ becomes unbounded.
To show that it is necessary to have (A,B) � ρ if Φ∗ < +∞, we assume that there

exists a measurable set E such that (A,B)(E) 6= 0 but ρ(E) = 0. Again, by the fact that
Cb is dense in L1, there exists a sequence of functions ζn ∈ Cb(Λ) such that ζn take values
between 0 and 1 and the sequence converges to 1E ∈ L1(dρtdt). Such sequence can be
found by taking convolution of 1E with a standard regularising kernel. Let us construct a
sequence (rn, an, bn) = (−F ∗(k1I

d×1, k2I
d×d)ζn, k1ζnI

d×1, k2ζnI
d×d) ∈ Cb(Λ,X ) where k1, k2

are arbitrary constants and Im×n denotes an all-ones matrix of size m×n. By the convexity
of F ∗ and the fact that F ∗(Od×1, Od×d) ≤ 0, it is clear that the constraint r + F ∗(a, b) ≤ 0
is satisfied at (r, a, b) = (rn, an, bn). Then, by the dominated convergence theorem, we have

Φ∗(ρ,A,B) ≥ lim
n→+∞

∫
Λ

rn dρ+ an · dA+ bn : dB

=

∫
Λ

lim
n→+∞

(
rn dρ+ an · dA+ bn : dB

)
=

∫
Λ

lim
n→+∞

(
− F ∗(k1I

d×1, k2I
d×d)ζn dρ+ k1ζnI

d×1 · dA+ k2ζnI
d×d : dB

)
= k1

∑
i

(A(E))i + k2

∑
i,j

(B(E))ij

The function Φ∗ goes to infinity if we send k1, k2 to +∞ or −∞, depending on the sign of∑
i(A(E))i and

∑
i,j(B(E))ij.

Now, since the integrand of the integral in Φ∗ is linear in (r, a, b), if Φ∗ is finite, the
supremum must occur at the boundary. Thus, assuming that ρ ∈M+(Λ,X ) and (A,B)�
ρ, we have

Φ∗(ρ,A,B) = sup
r+F ∗(a,b)=0

∫
Λ

(
r + a · dA

dρ
+ b :

dB
dρ

)
dρ

= sup
(a,b)

∫
Λ

(
a · dA

dρ
+ b :

dB
dρ
− F ∗(a, b)

)
dρ

≤
∫

Λ

sup
(a,b)

(
a · dA

dρ
+ b :

dB
dρ
− F ∗(a, b)

)
dρ

=

∫
Λ

F

(
dA
dρ
,
dB
dρ

)
dρ.

The last equality holds since the convex and lower semi-continuous function F coincides
with its bi-conjugate F ∗∗ according to the Fenchel–Moreau theorem (see e.g., Brezis [22,
Theorem 1.11]).

Conversely, by the density of Cb in L1, let us choose a sequence of functions (an, bn) ∈
Cb(Λ,Rd × Sd) converging to

∇F (
dA
dρ
,
dB
dρ

) = arg sup
(a,b)

(
a · dA

dρ
+ b :

dB
dρ
− F ∗(a, b)

)
in L1(dρtdt,Rd × Sd).
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Applying the dominated convergence theorem, we have

Φ∗(ρ,A,B) = sup
(a,b)

∫
Λ

(
a · dA

dρ
+ b :

dB
dρ
− F ∗(a, b)

)
dρ

≥ lim
n→+∞

∫
Λ

(
an ·

dA
dρ

+ bn :
dB
dρ
− F ∗(an, bn)

)
dρ

=

∫
Λ

lim
n→+∞

(
an ·

dA
dρ

+ bn :
dB
dρ
− F ∗(an, bn)

)
dρ

=

∫
Λ

sup
(a,b)

(
a · dA

dρ
+ b :

dB
dρ
− F ∗(a, b)

)
dρ

=

∫
Λ

F

(
dA
dρ
,
dB
dρ

)
dρ.

The proof is completed.

A.2 Lemma A.2.1

In this section, we prove that the duality between spaces Cb and M can be extended to
the non-compact space [0, T ] × Rd in this particular case. A similar argument for the
Kantorovich duality of the classical optimal transport was made in Villani [106, Appendix
1.3].

Lemma A.2.1. Denote by Ko the set of (r, a, b) in Cb(Λ,X ) that can be represented by
some (φ, λ) in BV ([0, T ], C2

b (Rd))× Rm with φ(T, ·) = 0 (see the proof of Theorem 3.5 for
the definition of ‘represented’). Let Φ∗ : Cb(Λ,X )∗ → R ∪ {+∞} and Ψ∗ : Cb(Λ,X )∗ →
R ∪ {+∞} be defined by

Φ∗(ρ,A,B) = sup
(r,a,b)∈Cb(Λ,X )

{〈(r, a, b), (ρ,A,B)〉 ; r + F ∗(a, b) ≤ 0},

Ψ∗(ρ,A,B) = sup
(r,a,b)∈Ko

{
〈(r, a, b), (ρ,A,B)〉 −

∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici

}
.

Then,

inf
(ρ,A,B)∈Cb(Λ,X )∗

(Φ∗ + Ψ∗)(ρ,A,B) = inf
(ρ,A,B)∈M(Λ,X )

(Φ∗ + Ψ∗)(ρ,A,B). (A.1)

Proof. Let C0(Λ,X ) be the space of continuous functions on Λ valued in X that vanish at
infinity. We decompose (ρ,A,B) = (ρ̃, Ã, B̃) + (δρ, δA, δB) such that (ρ̃, Ã, B̃) ∈ M(Λ,X )
and 〈(φρ, φA, φB), (δρ, δA, δB)〉 = 0 for any (φρ, φA, φB) ∈ C0(Λ,X ) (The reader can refer
to Villani [106, Appendix 1.3] for the existence of such a decomposition.). Since,M(Λ,X )
is a subset of Cb(Λ,X )∗, it follows that

inf
(ρ,A,B)∈Cb(Λ,X )∗

(Φ∗ + Ψ∗)(ρ,A,B) ≤ inf
(ρ,A,B)∈M(Λ,X )

(Φ∗ + Ψ∗)(ρ,A,B).

Next, we show that the converse of the above inequality is also valid. If Φ∗ ≡ +∞ or
Ψ∗ ≡ +∞, then the proof is trivial. Thus, we assume that Φ∗ and Ψ∗ take finite values at
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some (ρ,A,B) ∈ Cb(Λ,X )∗. For Φ∗, since C0(Λ,X ) ⊆ Cb(Λ,X ), we have

Φ∗(ρ,A,B) = sup
(r,a,b)∈Cb(Λ,X )

{〈(r, a, b), (ρ,A,B)〉 ; r + F ∗(a, b) ≤ 0}

≥ sup
(r,a,b)∈C0(Λ,X )

{〈(r, a, b), (ρ,A,B)〉 ; r + F ∗(a, b) ≤ 0} (A.2)

= sup
(r,a,b)∈C0(Λ,X )

{∫
Λ

r dρ̃+ a · dÃ+ b : dB̃ ; r + F ∗(a, b) ≤ 0

}
.

Let χn ∈ C0(Λ) be a sequence of cutoff functions with 0 ≤ χn ≤ 1 on Λ and χn → 1 as
n→∞. The existence of the sequence (χn) follows from the Urysohn’s lemma [97, Lemma
2.12]. Let us construct a sequence (rn, an, bn) = (−F ∗(a, b)χn, aχn, bχn) ∈ C0(Λ,X ) for
some (a, b) ∈ Cb(Λ,Rd × Sd), then (rn, an, bn) → (−F ∗(a, b), a, b) ∈ Cb(Λ,X ) as n → ∞.
The finiteness of F ∗(a, b) is guaranteed by the coercivity of F . By the convexity of F ∗ and
the fact that F ∗(Od×1, Od×d) ≤ 0 where Om×n denotes a null matrix of size m × n, it is
clear that (rn, an, bn) satisfies rn + F ∗(an, bn) ≤ 0. Since the supremum in the last line of
(A.2) is taken over all (r, a, b) ∈ C0(Λ,X ), we have

Φ∗(ρ,A,B) ≥ sup
(a,b)∈Cb(Λ,Rd×Sd)

lim
n→∞

{∫
Λ

rn dρ̃+ an · dÃ+ bn : dB̃
}

= sup
(a,b)∈Cb(Λ,Rd×Sd)

{∫
Λ

−F ∗(a, b) dρ̃+ a · dÃ+ b : dB̃
}

= sup
(r,a,b)∈Cb(Λ,X )

{∫
Λ

r dρ̃+ a · dÃ+ b : dB̃ ; r + F ∗(a, b) ≤ 0

}
= Φ∗(ρ̃, Ã, B̃).

The first equality above is justified by the dominated convergence theorem. The second
equality above holds because if Φ∗ is finite, then the supremum must occur at the boundary.

For Ψ∗, if we restrict its domain to (ρ̃, Ã, B̃) ∈M(Λ,X ), then Ψ∗ = 0 if (ρ̃, Ã, B̃) satisfies
(3.14) and (3.15) or Ψ∗ = +∞ otherwise. Recall that in Ko, r = −∂tφ −

∑m
i=1 λiGiδi,

a = −∇xφ and b = −1
2
∇2
xφ. Whenever Ψ∗ is finite, by (3.14) and (3.15), we have∫

Λ

r dρ̃+ a · dÃ+ b : dB̃ −
∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici = 0 ∀(r, a, b) ∈ Ko. (A.3)

The equation (A.3) holds in particular for (r, a, b) in the subset Ko ∩C0(Λ,X ). Also, since
Ko ∩ C0(Λ,X ) ⊆ Ko, we have

Ψ∗(ρ,A,B) = sup
(r,a,b)∈Ko

{
〈(r, a, b), (ρ,A,B)〉 −

∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici

}

≥ sup
(r,a,b)∈Ko∩C0(Λ,X )

{
〈(r, a, b), (ρ,A,B)〉 −

∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici

}

= sup
(r,a,b)∈Ko∩C0(Λ,X )

{∫
Λ

r dρ̃+ a · dÃ+ b : dB̃ −
∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici

}

= sup
(r,a,b)∈Ko

{∫
Λ

r dρ̃+ a · dÃ+ b : dB̃ −
∫
Rd
φ(0, x) dµ0 +

m∑
i=1

λici

}
= Ψ∗(ρ̃, Ã, B̃).
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Therefore,

inf
(ρ,A,B)∈Cb(Λ,X )∗

(Φ∗ + Ψ∗)(ρ,A,B) ≥ inf
(ρ,A,B)∈M(Λ,X )

(Φ∗ + Ψ∗)(ρ,A,B).

This completes the proof.

A.3 The LSV calibration algorithm with policy itera-

tion

Algorithm 2: LSV calibration with policy iteration

Data: Market prices of European option
Result: A calibrated OT-LSV model that matches all market prices

1 Set an initial λ
2 do
3 for k = NT − 1, . . . , 0 do

/* Solving the HJB equation */

4 if tk+1 is equal to the maturity of any calibrating options then
5 φtk+1

← φtk+1
+
∑m

i=1 λiGi1(tk+1 = τi)
6 end

/* Policy iteration */

7 Let φnewtk
= φtk+1

8 do
9 φoldtk ← φnewtk

10 Approximate σ2
tk

by solving (3.26) with φ = φoldtk
11 Solve the HJB equation (3.25) by the ADI method at t = tk, and set the

solution to φnewtk

12 while ‖φnewtk
− φoldtk ‖2 > ε2

13 φtk ← φnewtk

14 end
/* Calculating model prices and gradient */

15 Solve (3.28) to calculate the model prices by the ADI method
16 Calculate the gradient ∇J(λ) by (3.27)
17 Update λ by the L-BFGS algorithm

18 while ‖∇J(λ)‖∞ > ε1
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A.4. FX OPTIONS DATA

A.4 FX options data

Maturity Option type Strike Implied Vol Maturity Option type Strike Implied Vol

Call 1.3006 0.0905 Call 1.4563 0.1069
Call 1.2800 0.0898 Call 1.3627 0.1052

1m Call 1.2578 0.0915 1Y Call 1.2715 0.1118
Put 1.2344 0.0966 Put 1.1701 0.1278
Put 1.2110 0.1027 Put 1.0565 0.1491

Call 1.3191 0.0897 Call 1.5691 0.1100
Call 1.2901 0.0896 Call 1.4265 0.1096

2m Call 1.2588 0.0933 2Y Call 1.2889 0.1168
Put 1.2243 0.1014 Put 1.1421 0.1328
Put 1.1882 0.1109 Put 0.9863 0.1540

Call 1.3355 0.0912 Call 1.6683 0.1109
Call 1.2987 0.0908 Call 1.4860 0.1122

3m Call 1.2598 0.0955 3Y Call 1.3113 0.1200
Put 1.2160 0.1058 Put 1.1308 0.1352
Put 1.1684 0.1185 Put 0.9468 0.1547

Call 1.3775 0.0960 Call 1.7507 0.1104
Call 1.3213 0.0953 Call 1.5351 0.1127

6m Call 1.2633 0.1013 4Y Call 1.3306 0.1210
Put 1.1973 0.1145 Put 1.1226 0.1365
Put 1.1236 0.1316 Put 0.9152 0.1554

Call 1.4068 0.1013 Call 1.8355 0.1111
Call 1.3329 0.1005 Call 1.5835 0.1137

9m Call 1.2583 0.1068 5Y Call 1.3505 0.1220
Put 1.1745 0.1215 Put 1.1180 0.1379
Put 1.0805 0.1407 Put 0.8887 0.1571

Table A.1: The EUR/USD option data as of 23 August 2012. The spot price S0 = 1.257
USD per EUR. At each maturity, the options correspond to 10-delta calls, 25-delta calls,
50-delta calls, 25-delta puts and 10-delta puts

Maturity 1m 2m 3m 6m 9m 1Y 2Y 3Y 4Y 5Y

Domestic yield 0.41 0.51 0.66 0.95 1.19 1.16 0.60 0.72 0.72 0.72

Foreign yield 0.04 0.11 0.23 0.47 1.62 0.64 0.03 0.03 0.03 0.03

Table A.2: The domestic and foreign yields (in %) as of 23 August 2012.
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Appendix B

Appendix for Chapter 4

B.1 The convex conjugate F ∗

Given a ∈ R2, b ∈ S2 and β ∈ S2, define

A := β11 +
1

2
b11 −

1

4
a1 −

1

4
a2,

B := β12 +
1

2
b12,

C := β22 +
1

2
b22,

M :=

[
A B
B C

]
.

We also define

x′+ :=
A− C

4
+

A2 − C2

4
√

4B2 + (A− C)2
, x′− :=

A− C
4
− A2 − C2

4
√

4B2 + (A− C)2
,

y′+ :=
B

2
+

B(A+ C)

2
√

4B2 + (A− C)2
, y′− :=

B

2
− B(A+ C)

2
√

4B2 + (A− C)2
,

and define

λ+ :=

[
x′+ +

√
(x′+)2 + (y′+)2 y′+
y′+ −x′+ +

√
(x′+)2 + (y′+)2

]
,

λ− :=

[
x′− +

√
(x′−)2 + (y′−)2 y′−
y′− −x′− +

√
(x′−)2 + (y′−)2

]
.

Lemma B.1.1. The convex conjugate of F is

F ∗(a, b) = (b11 −
1

2
a1 −

1

2
a2)β∗11 + 2b12β

∗
12 + b22β

∗
22 −

2∑
i,j=1

(β∗ij − βij)2,

where the values of β∗ are determined as follows:

1. If M ∈ S2
+, then β∗ = M .

2. If AC ≥ B2 and A+ C < 0, then β∗ is the null matrix.
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B.1. THE CONVEX CONJUGATE F ∗

3. Otherwise,

β∗ = arg min
β∈{λ+,λ−}

(β11 − A)2 + 2(β12 −B)2 + (β22 − C)2.

Proof. By definition, the convex conjugate of F is given by

F ∗(a, b) = sup
β∈S2+
{−1

2
a1β11 −

1

2
a2β11 + b11β11 + 2b12β12 + b22β22 −

2∑
i,j=1

(βij − βij)2}

= − inf
β∈S2+
{(β11 − A)2 + 2(β12 −B)2 + (β22 − C)2}+ (A2 − β2

11) + 2(B2 − β2

12) + (C2 − β2

22).

Finding the β that achieves the above infimum is equivalent to solving

(β11, β12, β22) = arg inf
(x,y,z)∈R≥0×R×R≥0

{(x− A)2 + 2(y −B)2 + (z − C)2 | xz ≥ y2}. (B.1)

In order to solve this problem, let us rotate the xyz-axes around y-axis clockwise through
an angle of 45◦ into x′y′z′-axes, which can be described by the linear transformation:x′y′

z′

 =

1
2

0 −1
2

0 1 0
1
2

0 1
2

xy
z

 .

The inverse transformation is xy
z

 =

 1 0 1
0 1 0
−1 0 1

x′y′
z′

 .

In terms of (x′, y′, z′), the infimum in (B.1) can be reformulated as

inf
(x′,y′,z′)∈W

2(x′ − x′)2 + 2(y′ − y′)2 + 2(z′ − z′)2, (B.2)

where (x′, y′, z′) := (1
2
A− 1

2
C,B, 1

2
A+ 1

2
C), and W is a convex cone defined as

W = {(x′, y′, z′) ∈ R3 | z′ ≥ 0, x′2 + y′2 ≤ z′2}.

In the x′y′z′-axes, the above problem can be simply described as finding the minimum
Euclidean distance from the point (x′, y′, z′) to W . There are three cases:

(a) If (x′, y′, z′) ∈ W , the solution is (x′, y′, z′) = (x′, y′, z′).

(b) If x′2 + y′2 ≤ z′2, but z′ < 0. Then the solution should be on the boundary z′ = 0,
which also implies that x′ = y′ = 0.

(c) Otherwise, the solution must be on the boundary of W:

∂W = {(x′, y′, z′) ∈ R3 | z′ ≥ 0, x′2 + y′2 = z′2}.

By substituting z′ =
√
x′2 + y′2 into (B.2) and solving the infimum, we find two

stationary points:

(x′+, y
′
+, z

′
+) =

(
x′

2
+

x′z′

2
√
x′2 + y′2

,
y′

2
+

y′z′

2
√
x′2 + y′2

,
√

(x′+)2 + (y′+)2

)
,

(x′−, y
′
−, z

′
−) =

(
x′

2
− x′z′

2
√
x′2 + y′2

,
y′

2
− y′z′

2
√
x′2 + y′2

,
√

(x′−)2 + (y′−)2

)
.

One of the stationary points achieves the infimum. Thus, we choose the one with the
smaller objective value.
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B.2. THE JOINT CALIBRATION ALGORITHM

Transforming the above solutions back to the xyz-axes through the inverse transformation
and replacing (x, y, z) by (β11, β12, β22), we obtain the desired result.

B.2 The joint calibration algorithm

Let πN := {tk : 0 ≤ k ≤ N} be a discretisation of [0, T ] such that 0 = t0 < t1 < . . . <
tN = T . We assume that each of t0 and τi, i = 1, . . . ,m coincides with some value in πN .
Denote by ε1 the tolerance of the maximum of the gradients (4.19)–(4.22), and denote by
ε2 the tolerance for the policy iteration. Recall that ε1 has an alternative interpretation as
the tolerance of the maximum error between the calibrating prices and the model prices. In
the numerical example presented in Section 4.5, ε1 = 10−4 and ε2 = 10−8. The numerical
method described in Section 4.4 is summarised as the following algorithm.

Algorithm 3: The joint calibration algorithm

1 Set an initial (λSPX , λV IX,f , λV IX , λξ)
2 do

/* Solving the HJB equation */

3 for k = N − 1, . . . , 0 do
/* Terminal conditions */

4 if ∃i = 1, . . . ,m, tk+1 = τi then
5 φtk+1

← φtk+1
+
∑m

i=1 λ
SPX
i Gi1(tk+1 = τi) // SPX options

6 end
7 if tk+1 = t0 then
8 φtk+1 ← φtk+1 + λV IX,fJ // VIX futures

9 φtk+1 ← φtk+1 +
∑n

i=1 λ
V IX
i (Hi ◦ J) // VIX options

10 end
11 if tk+1 = T then
12 φtk+1 ← φtk+1 + λξξ // Singular contract

13 end
/* Policy iteration */

14 φnewtk
← φtk+1

15 do
16 φoldtk ← φnewtk

17 Approximate β∗ by Lemma B.1.1 with φoldtk
18 Solve the HJB equation (4.24) or (4.25) with β∗ as a linearised PDE by

the standard implicit finite difference method, and set the solution as
φnewtk

19 while ‖φnewtk
− φoldtk ‖∞ > ε2

20 φtk ← φnewtk

21 end
/* Model prices and gradients */

22 Calculate the model prices by solving equations (4.23) by the ADI method
23 Calculate the gradients (4.19) to (4.22)
24 Update (λSPX , λV IX,f , λV IX , λξ) by the L-BFGS algorithm

25 while The maximum of the gradients (4.19) to (4.22) is greater than ε1
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B.3. THE DIFFUSION PROCESS β FOR THE SIMULATED DATA EXAMPLE

B.3 The diffusion process β for the simulated data ex-

ample

Figure B.1: The functions β11(t,X1, X2) of the generating model, the OT-calibrated model
with a Heston reference and the OT-calibrated model with a constant reference for the
simulated data example.

85



B.3. THE DIFFUSION PROCESS β FOR THE SIMULATED DATA EXAMPLE

Figure B.2: The functions β22(t,X1, X2) of the generating model, the OT-calibrated model
with a Heston reference and the OT-calibrated model with a constant reference for the
simulated data example.
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B.3. THE DIFFUSION PROCESS β FOR THE SIMULATED DATA EXAMPLE

Figure B.3: The functions β12(t,X1, X2) of the generating model, the OT-calibrated model
with a Heston reference and the OT-calibrated model with a constant reference for the
simulated data example.
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B.4. THE DIFFUSION PROCESS β FOR THE MARKET DATA EXAMPLE

B.4 The diffusion process β for the market data ex-

ample

Figure B.4: The functions β11(t,X1, X2), β12(t,X1, X2) and β22(t,X1, X2) of the OT-
calibrated model for the market data example.
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