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Abstract

In the era of Big Data, data scientists are faced with the challenge of scaling up their
analytics algorithms to an ever-growing amount of data. This is commonly achieved by
distributed computing, and over the last 15 years the ecosystem of distributed platforms
for Big Data analytics has grown at a staggering pace. There is, however, no adequate the-
oretical foundation for reasoning about the efficiency of algorithms at a level of abstraction
matching the needs of these platforms.

We propose the Relational Machine as a new model of parallel computation on Big
Data. It offers a minimal set of operations for manipulating relations, making it conducive
to mathematical reasoning. Based on this core model we also define a higher-level model
called the Database Machine that operates on multirelations and has a slightly larger set of
basic operations. This model represents a common subset of the functionality of relational
databases and several other platforms for Big Data analytics.

Formulating algorithms in terms of the Database Machine allows them to be translated
to any platform that supports a small set of basic relational operations. In this way, the
Database Machine acts as a universal bridge between algorithms for Big Data analytics
and the platforms to run them on. It allows a meaningful theoretical analysis of Big Data
algorithms at a high level of abstraction.

A significant theoretical contribution of this thesis is establishing the connection be-
tween the Database Machine and the Parallel Random Access Machine (PRAM), a model
of parallel computation widely studied in the 1980s. We prove that the two models can sim-
ulate each other and also show how PRAM algorithms from the literature can be translated
for the Database Machine. From there, we demonstrate how to derive Big Data-practical
implementations.
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Chapter 1

Introduction

The emergence of Big Data has had a profound impact on our daily lives and almost every
scientific domain. According to market research by Valuates [78], the global Big Data and
business analytics market size was valued at US-$ 198.08 billion in 2020, and is projected
to reach US-$ 684.12 billion by 2030.

There are many attempts to characterise what Big Data is. Gartner’s Information Tech-
nology Glossary [37] defines it using the “three V’s”: “high-volume, high-velocity and/or
high-variety information assets [. . . ]”. Other authors have added two more V’s: Veracity
and Value [100]. Pospiech and Felden have modelled the concept from a System Sciences
perspective [74].

The focus of this thesis is the aspect of volume. Traditional tools for data analysis
such as R and Matlab can only handle datasets that fit into the main memory of a single
machine. However, today’s massive amounts of data have outgrown what can be processed
by standard up-scaling, i.e. increasing the amount of memory, processing power, and storage
space of a single machine. The solution to this is out-scaling : harnessing the power of
multiple computers to perform computations in parallel. This usually goes hand in hand
with distributed storage.

Processing data in a distributed computing environment generally requires refactoring
or redesigning algorithms to fit the programming paradigm of the target platform. An
early example of such an environment is the MapReduce framework [26]. It was developed
in the early 2000s and is now part of the platform Apache Hadoop [1], together with the
distributed file system HDFS. Hadoop is designed to be run on a cluster of commodity
hardware and provides resilience to hardware failure by replication. A central idea is to
bring the computation to the data instead of vice versa. Code to be executed is distributed
within the cluster such that every machine can run it on its shard of data, followed by a
shuffle and reduce phase to combine and redistribute the results. This was encapsulated in
the MapReduce framework. In order to be run on MapReduce, a computing job has to be
formulated entirely in terms of these map and reduce operations, creating new challenges
in algorithm design for Big Data.

Over time, many new technologies for distributed processing evolved (see Section 1.3).
Each new technology introduced a new programming interface and possibly a different
language and a different data model. As a consequence, solutions cannot be easily ported

1
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between different platforms and sometimes have to be redesigned from scratch to fit a new
programming paradigm or data model. Furthermore, there is an imbalance between the
effort put into Big Data infrastructure and application software development that has been
estimated as high as 80:20 [59].

An additional challenge in developing algorithms for Big Data is the lack of adequate
theoretical models to reason about the efficiency of such algorithms. As explained in more
detail in Section 1.4 below, current Big Data platforms require algorithms to operate at a
higher level of abstraction than that used by recent models of parallel and distributed com-
putation. A detailed model of communication complexity, for example, requires an algo-
rithm to be formulated in terms of communicating processes for which the communication
patterns are exactly known. Such a model can simply not be applied in a scenario when an
algorithm is based on an SQL-accessible cloud service such as Google BigQuery [32], which
is opaque to the user and hides all details of the cluster and its communication patterns.

For addressing the practical challenges mentioned above, we propose a novel model
of computation we call the Database Machine, introduced in Chapter 2. It operates on
multirelations, i.e. tables that allow duplicate rows, and offers a small set of operations
that can be executed efficiently in a distributed setting. These operations are the common
ground already present in existing platforms for Big Data processing.

The Database Machine satisfies the requirements for a model of parallel computation
as formulated by Skillicorn [88]: it offers

• a methodology of software development that is independent of a particular system
architecture;

• an architecture-independent way of measuring software’s cost ;

• an intellectually manageable model of what happens when the software executes,
relieving the developer from the cognitive burden of partitioning into threads or
processes and explicitly describing communication and synchronisation.

Software written in high-level languages such as our multiset comprehension notation
(Section 2.4) can be mechanically translated to the Database Machine’s instruction set.
Implementors of platforms for Big Data analytics can focus on implementing the core
operations and optimising their performance to create infrastructure for the execution of
such programs. In that way, the Database Machine acts as a bridge between algorithms and
Big Data Platforms. An algorithm written for the Database Machine can be run on many
existing Big Data platforms and reused on emerging platforms, provided they support the
Database Machine’s small set of core operations. This helps to protect the investment in
designing new algorithms for Big Data as the landscape of Big Data platforms continues
to change.

To further analyse the theoretical possibilities and limitations of computation on Big
Data, we introduce in Chapter 3 a second new computational model, the Relational Ma-
chine. It has a more primitive instruction set that is clearly divided into instructions
requiring communication and instructions performing computation. We show that the
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Relational Machine can simulate the Database Machine with polylogarithmic slowdown,
which we deem feasible for Big Data.

The most significant theoretical contribution of this thesis is the characterisation of the
relationship between our relational models of computation and the Parallel Random Access
Machine (PRAM). The PRAM is a powerful and universal model of parallel computation
that was extensively studied (see Section 1.2.2). We show in Chapter 4 that a Database
Machine can simulate a word PRAM with essentially the same asymptotic time and space
complexity. A PRAM can in turn simulate a Relational Machine with a slowdown loga-
rithmic in the space usage of the Relational Machine. (For an overview of computational
models in this thesis see Figure 1.1 at the end of this chapter.)

The connection to the PRAM model is important not only for theoretical reasons.
There is a large body of literature on parallel algorithms for the PRAM and this continues
to be the standard way in which parallel algorithms are communicated in the literature,
even if references to the PRAM model are in modern papers mostly implicit. Parallel
algorithms are usually written in pseudocode in a SIMD style that uses only a subset of
the full PRAM functionality. In Chapter 5 we demonstrate how such algorithms can be
translated in a systematic and straightforward manner to the Database Machine. From
there they can be readily implemented on a Big Data processing platform. We give a
fully worked-out example of the Shiloach–Vishkin [85] algorithm for computing the con-
nected components of a graph, turning an algorithm from the PRAM literature to a Big
Data-practical implementation in Python and SQL that can be run in today’s distributed
relational databases.

1.1 Contributions

The contributions of this thesis can be summarised as follows.

• A framework for the development and analysis of algorithms on Big Data that is
independent of specific platforms. Algorithms formulated in the high-level language
developed in this thesis for the Database Machine can be systematically translated
to current and future platforms for Big Data processing, thereby protecting the in-
vestment in their development. Furthermore, the model is simple enough to allow
for rigorous mathematical analysis of algorithms.

• A model for relational computation with a minimal instruction set, the Relational
Machine. This can be viewed as a RISC architecture for computations on Big Data.
We show that it is as expressive as the Database Machine and hence spans the rela-
tional algebra. The Relational Machine may be the foundation for new approaches
to parallel query optimisation in distributed relational databases, although this is
not explored in this thesis.

• We show the connection between our models and the Parallel Random Access Ma-
chine (PRAM), a widely studied model of parallel computation. Our contribution
allows the many years of algorithmic research that have been invested into the study
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of PRAMs to be directly applied on every Big Data platform by a process of trans-
lation that is completely mechanical and requires no refactoring. This is rigorously
proved in Chapter 4 of this thesis and demonstrated on a practical algorithm in
Chapter 5.

The remainder of this Chapter presents related work. In Section 1.2 we first give an
overview about the field of parallel computation, which is the theoretical foundation of our
work. Section 1.3 presents the relevant platforms for Big Data analytics. The mismatch
between the frameworks for formulating Big Data analytics algorithms and existing theo-
retical models of parallel computation motivates the need for a new computational model
(Section 1.4). Core ideas are drawn from the relational model of database management
(Section 1.5).

1.2 Models of parallel computation

Broadly speaking, the study of parallel computation started before parallel computers
became widely available, much as Turing’s work on computability [95] preceded the avail-
ability of computers. It is therefore the theoretical possibilities and limitations of parallel
computation that were the subject of early research in this field.

One way to describe a parallel computation is to consider the problem as a Boolean
function, which is then in turn computed by a combinational circuit constructed out of
logic gates (see Section 1.2.1). A closer approximation of a universal parallel computer is
the Parallel Random Access Machine (PRAM). This model was extensively studied in the
early days of parallel computers (see Section 1.2.2), but then abandoned because it was
realised that such machines would not be realisable in practice. However, it turns out that
our novel relational models of computation are closely related in power to word PRAMs,
building a bridge between the large body of PRAM research and today’s platforms for
Big Data analytics. The remainder of this section gives a brief account of these and other
models of parallel and distributed computation.

1.2.1 Combinational circuits

Early research in parallel computation considered combinational circuits. A combinational
circuit is a circuit made of logic gates without any feedback loops. Its outputs depend
solely on the current state of its inputs and not on the history of previous inputs. Circuit
complexity is measured in terms of size – the number of gates – and depth – the length of
the longest path from an input to an output. If we assume that a gate takes one unit of
time to perform its function, then depth corresponds to parallel time.

Unlike a Turing Machine which can take inputs of varying length and produce outputs
of varying length, a combinational circuit has a fixed number of inputs and a fixed number
of outputs. To compare the two models, one therefore has to consider families of circuits,
one for every input length. Another difference between Turing Machines and circuit families
is that a Turing Machine has a finite description and a circuit family is per se an infinite
object. Borodin [14] has therefore introduced the notion of uniformity. A uniform circuit
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family is described by a function that generates for any given input length the corresponding
circuit.

A motivation for studying circuits is that they are mathematically very simple. This
makes them a good candidate for establishing lower bounds on the inherent computational
complexity of a problem. It was hoped in the 1980s that circuit complexity might help
resolve the P vs. NP question [8, p. 305], but those hopes did not come true. For a survey
on lower bound results on circuit complexity see [13].

The correspondence between circuit depth and parallel time puts the study of combi-
national circuits at the foundation of parallel complexity theory. It has been shown that
sequential time is related to circuit size [84] and that sequential space is related to circuit
depth [14].

The complexity class NC was first identified by Nicholas Pippenger [73] in the study of
combinational circuits and is now commonly called NC for “Nick’s Class” [23]. It can be
defined in terms of a PRAM (see below) as the class of problems solvable in polylogarithmic
time using a polynomial number of processors. Since a PRAM can be simulated by a
Database Machine, this implies that problems in NC can be solved by a Database Machine
in polylogarithmic time using polynomial space.

1.2.2 Parallel Random Access Machines

The Parallel Random Access Machine (PRAM) was introduced in the late 1970s as a
natural generalisation of the Random Access Machine [5]. It is in fact not a single com-
putational model but rather an umbrella term for a whole range of models where multiple
RAMs operate in parallel. Usually they communicate via some form of shared memory,
with a notable exception being the machines considered by Savitch and Stimson [82] which
support parallel recursive calls and pass parameters only when a parallel subprocess is
started or ended. The other PRAM models differ in memory layout, the capabilities of the
individual RAMs, independent versus synchronous control flow, and more.

Fortune and Wyllie’s PRAM model [35] has an unbounded number of processors, each
with its own local memory and communicating via a shared global memory. All processors
execute the same program, but each processor has its own instruction pointer and can
follow an individual execution path.

Goldschlager’s SIMDAG [42] has a single CPU controlling the flow of execution and an
unbounded number of parallel processing units that are directed by the CPU and access a
common shared memory. At each step, they either pause or perform the same operation,
but on different data. SIMDAG stands for “single instruction stream, multiple data stream,
global memory”; it is a SIMD computer according to Flynn’s classification [34].

Instead of a single global shared memory, Parberry’s version of a PRAM [71] has an
unbounded number of processors, each of which has an unbounded number of registers.
Any processor can access any other processor’s registers. In our definition of a PRAM in
Chapter 4, we adopt this two-dimensional memory layout because it aligns well with our
constructions for simulating the Relational Machine.
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PRAM models are classified according to whether they allow multiple processors con-
currently accessing the same memory location. In the weakest type of PRAM, the EREW
(Exclusive Read Exclusive Write) PRAM, such concurrent access is prohibited and the
resulting behaviour undefined. The CREW PRAM allows concurrent reads, but still re-
quires exclusive writes; Fortune and Wyllie’s PRAM model [35] is an example of this. The
strongest PRAM models allow concurrent reads and concurrent writes (CRCW) and are
further differentiated by the resolution strategy in case of write conflicts. Several possibil-
ities have been explored:

Weak: Concurrent writes are only allowed if all processors are writing the value zero.

Common-mode: All processors writing to the same location must write the same value.

Arbitrary-winner: If multiple processors write to a location, an arbitrary one succeeds,
and it may be a different one if the same step is repeated.

Priority: In a write conflict, the processor with the lowest identifier wins.

Strong: Of multiple values concurrently being written to a location, the smallest wins.

The PRAM models above are listed in the order from weakest to strongest, i.e. an
algorithm for one model will have the same complexity in any of the models subsequently
described. Eppstein and Galil [29] give various simulations between PRAM models, the
most important of which is simulating the strongest model by the weakest one. They
prove that a parallel computation that can be performed in time t using p strong CRCW
processors can also be performed in time t log p using p EREW processors. This implies
that an algorithm for any type of PRAM model can also be executed on any other type of
PRAM with at most a slowdown logarithmic in the number of processors.

1.2.3 The Bulk Synchronous Parallel model

The PRAMmodel plays an important role in exploring the theoretical limitations of parallel
computation and was the subject of substantial research in the 1980s. It was, however,
realised, that its assumption of unit-cost memory access cannot be attained by a physical
machine. A consequence of this is that a provably optimal PRAM algorithm may not
be optimal on any physical machine. Snyder [89] has demonstrated this using Valiant’s
algorithm [96] for finding the maximum of n elements with n processors.

The focus of research has therefore shifted to more realistic models of computation that
take the cost of synchronisation and communication into account.

Valiant [97] has proposed the Bulk Synchronous Parallel (BSP) model as a bridging
model between parallel algorithms and parallel computers. It is not a rigidly defined
mathematical model but rather a framework to describe parallel computation that allows
some variation. A formalisation of perhaps the simplest instance of the BSP model is the
XPRAM [98].

A BSP computer consists of a number of processing components working in parallel,
a router that delivers messages point-to-point between those components, and facilities
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for synchronisation. Computation proceeds in supersteps during which each processor
independently performs operations on data available in memory local to it. Before each
superstep, each component sends and receives at most h messages.

A periodicity parameter L describes a regular check for synchronisation. After each
period of L time units, the machine checks if all components have finished the current
superstep. Only if they have, they move on to the next superstep. As opposed to a
PRAM, where the processors execute each instruction in lockstep, a BSP computer uses
this kind of barrier synchronisation where the individual processors execute asynchronously
within each superstep.

1.2.4 Vertex-centric graph processing

An application of the BSP paradigm to large-scale distributed graph processing is Google’s
Pregel system [60]. It introduced a vertex-centric programming model for formulating
graph algorithms based on the BSP pattern of supersteps. It operates on directed graphs.
Within a superstep, each vertex executes some user-defined function receiving as input
messages from incoming edges of the graph. The function can modify the vertex’s state
and then send messages across its outgoing edges, to be received in the next superstep.
Vertex programs can also mutate the topology of the graph. Pregel was used by Google
to implement their famous PageRank algorithm [16].

Since then, several vertex-centric frameworks for large-scale distributed graph process-
ing have appeared; for a survey see [62].

Fan et al. [31] make the case that instead of introducing a specialised graph processing
engine, an enterprise can leverage an existing relational database management system for
performing graph analytics. They present a syntactic layer named Grail for formulating
vertex-centric graph algorithms to be run in a database. Grail can be compiled to trans-
late graph queries to SQL. Our simulation of a PRAM by a Database Machine and the
associated methods for translating high-level PRAM algorithms (Chapters 4 and 5) can
be viewed as an extension and generalisation of this idea.

1.2.5 Message passing systems

Most of today’s systems for high-performance computing are clusters of computers com-
municating via high-speed interconnects. The Message Passing Interface MPI [3] is the
most common programming model in writing parallel scientific applications [92, 28]. It
allows more flexible communications patterns than the aggregate communication of the
BSP model.

A large body of literature exists on modelling these message passing systems. The
survey by Rico-Gallego et al. [79] lists 25 communication performance models appearing
between 1992 and 2014. We summarise here the foundational steps in this development.

The first important improvement on previous models of communication was taking
latency into account, i.e. the time it takes for a message from one processor to another to
be delivered, switching from a “telephone model” where communication is assumed to be
instantaneous to a “postal model” [11].
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Two years later, Hockney [46] benchmarked the communication performance of parallel
computers, adding the bandwidth to the picture. The time for transmitting a message is
thus modelled as being determined by two parameters: the startup time and a transmission
time proportional to the length of the message. This simple linear model has played an
important role in the evaluation and optimisation of message-passing algorithms [79].

A more detailed model of communication in a parallel computer, taking into account
the processing required for message transfer as well as communication delays, is the LogP
model [25]. Its name is just the concatenation of its main four parameters. L is the
latency, an upper bound on the delay incurred in sending a short message. The overhead,
o, is defined as the length of time that a processor is busy sending or receiving a message.
The gap, g, is the reciprocal of a processors’s communication bandwidth. It signifies the
minimum interval between consecutive message transfers. P , finally, is the number of
available processors. To model network congestion, it is further assumed that at most
dL/ge messages can be in transit at any time; a processor attempting to send a message
that would exceed this limit is stalled.

In comparison with the BSP model, the LogP model allows more flexible communication
patterns. With the overhead parameter, the LogP model takes into account the time a
processor is busy with sending and receiving messages, during which time it is not available
for computation. A limitation of LogP is that it only considers short messages. This was
remedied by Alexandrov et al. [6] with their LogGP model, adding another parameter G
to capture the network bandwidth and thereby more accurately modelling the difference
between shorter and longer messages. Over the following years, many refinements were
made adding more and more details like network contention, heterogeneous networks, and
synchronisation overhead; for surveys see [79, 30].

A notable milestone in accurately modelling complex systems for high-performance
computation is the lognP model [17]. It is a software-parameterised model, taking into ac-
count the impact of middleware and the hierarchical nature of distributed communication.
There is a growing gap between CPU performance, memory performance and network per-
formance. A transfer of a message can be as simple as copying a memory buffer in an SMP
system or as complex as going through multiple implicit transfers between source and tar-
get memories across a network. A “strided” message, i.e. a message stored in noncontiguous
memory, will incur a higher cost than a contiguous message because MPI middleware will
perform a series of implicit communications to complete the transfer: it will have to pack
strided data at the source and unpack it at the target. The lognP model is parameterised
by the number n of implicit transfers between the endpoints of communication.

The lognP model can accurately predict communication costs when the exact communi-
cation pattern of an algorithm is known and the parameters of a model have been measured.
The authors of [17] demonstrate this experimentally by considering the special case n = 3,
i.e. three levels of communication: first middleware, then network, then middleware again.
They apply a log3P model to different algorithms for 3D Fast Fourier Transform, showing
superiority over the LogP model which does not take the overhead of the middleware into
account, in this case the open-source implementation of MPI, MPICH [65]. The authors
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conclude, however, that “prediction is more cumbersome for the irregular patterns present
in some codes that use sparse matrices”.

This exemplifies a common theme in the development of models of communication
complexity. As these models are taking more and more details of the underlying archi-
tecture into account, they become more accurate, but also more complex to apply. They
require their parameters either to be experimentally determined or estimated, but, more
importantly, they require detailed knowledge about communications patterns, narrowing
their applicability.

1.3 Big Data processing platforms

The platforms designed to handle Big Data are different from systems for scientific high-
performance computing in that their main focus is data management. Since Codd’s seminal
work on the relational model in the 1970s [20], data management became more or less
synonymous with using relational database management systems. But in the last decade,
another trend called NoSQL has emerged, which is most commonly interpreted as “Not only
SQL”. The change is that relational databases are just one option for data storage, others
being key-value stores, document databases, column-family stores, graph databases, and
the data lake, to name a few. Sadalage and Fowler [80] call this trend “polyglot persistence”.

Our focus is on those technologies that deal with performing computations on large
datasets of well-structured data, as opposed to managing storage and dealing with other
aspects of Big Data like its variety. In this section we will go over the major technologies
presently addressing this problem.

1.3.1 Relational databases

Relational databases have been around since the 1970s and are ubiquitous in today’s
business world. The Structured Query Language SQL is the universal language of these
databases, adopted as an ANSI/ISO standard, but also extended by each database vendor
in some proprietary way. The list of relational databases is too long to be given here.
Broadly speaking, relational databases are used in two scenarios. One is online transaction
processing where many users simultaneously update records. Another is data warehousing
where existing data is rarely or never updated, but large amounts of data are continuously
added and the challenge is to analyse these datasets.

A popular kind of database for this type of data warehousing is a Massively Parallel
Processing (MPP) database with a shared-nothing architecture [91]. Teradata Corporation
shipped the first production version of this kind of database in 1984 [101]. Other examples
include Greenplum, Netezza, Vertica, and Apache HAWQ (see Section 1.3.3 below). Google
BigQuery [32] is an SQL-accessible cloud service with similar capabilities.

One library of analytics algorithms that runs in this kind of environment is called
MADlib and has been under development for a decade [44]. It is actively being developed
as a top-level Apache project and was one inspiration for creating a relational model of
computation that allows us to reason about algorithms formulated in this way.
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1.3.2 Hadoop/MapReduce

One of the earliest frameworks for Big Data analytics on a distributed system was MapRe-
duce, developed at Google [26]. It expresses a computation as a series of rounds where
each round comprises a map phase, followed by a reduce phase. The map phase processes
each row of a dataset in parallel and produces a set of key-value pairs. These are then
shuffled to bring pairs with the same key together on the same machine. A reducer then
reduces all values with the same key. MapReduce was originally implemented on Google’s
proprietary distributed file system GFS [39].

MapReduce later became part of the Apache Hadoop open source framework for dis-
tributed computing [1] which also includes an open source implementation of GFS named
HDFS (Hadoop Distributed File System) [86]. Over time, Hadoop has grown into a large
ecosystem with many related projects and is still actively being developed today.

1.3.3 HAWQ

Apache HAWQ [19] (which stands for Hadoop With Queries) is an open source MPP
relational database that runs on top of Hadoop’s distributed file system (see below) and
utilises a cluster of machines for distributed query processing. From the underlying file
system, it inherits the restriction that tables can only be newly created or appended to, but
existing records cannot be modified. It turns out that despite this restriction, a database
like HAWQ is a good execution environment for Big Data analytics algorithms, as we have
shown in our own research on Big Data graph analytics (see Appendix B).

1.3.4 Pig

Another project built on top of Hadoop is Pig, a high-level data-flow language and exe-
cution framework for parallel computation [2]. The authors “have designed [it] to fit in
a sweet spot between the declarative style of SQL, and the low-level, procedural style of
map-reduce” [70]. Pig has a rich data model allowing nested structures comprised of atoms,
tuples, bags and maps. Bags are collections of tuples with possible duplicates; in that sense
they resemble the multisets we introduce in Chapter 2. They are, however, much more
flexible in allowing tuples of mixed datatypes, nested tuples and even different types of
tuples within the same bag. The language Pig Latin is a procedural language that offers a
range of relational operators (FOREACH, FILTER, GROUP, COGROUP, JOIN, UNION,
SPLIT) to manipulate such bags. Pig Latin compiles into MapReduce jobs that can then
be executed on a Hadoop cluster.

1.3.5 Hive

The Facebook Data Infrastructure Team has built an open-source data warehousing so-
lution on top of Hadoop named Hive [94]. It is another example of a system that is at
its core relational. It uses an SQL-like declarative query language called HiveQL. HiveQL
queries are compiled into MapReduce jobs that are then run on Hadoop. Users are able
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to include custom MapReduce scripts into queries, thereby allowing them to mix the two
programming models.

1.3.6 Spark

An important development is Spark, started at the University of California, Berkeley in
2009 [105]. It addresses the issue that MapReduce is not very well suited to applications
that reuse a working set of data across multiple parallel operations, such as iterative ma-
chine learning algorithms. Instead of writing results to mass storage after each round, Spark
introduces the concept of a Resilient Distributed Dataset [104], an in-memory data struc-
ture distributed across a cluster of machines. Resilience against node failure is achieved
by recording all operations performed on such datasets in a lineage graph. If a node fails,
the missing data partition can be recomputed on a different node. Spark was refined over
time to allow materialising intermediate results to simplify fault recovery. Spark became
a top-level Apache project in February 2014 [51].

A Spark RDD is essentially a multiset of tuples. The basic operations on RDDs are,
again, the typical relational operations map, filter, join, groupByKey, union etc. The next
step in Spark development was the module Spark SQL [7], which quickly became the most
actively developed component of Spark; it was the top active component in the major 3.x
release in 2020 [4]. Spark SQL provides a DataFrame API that unifies access to Spark’s
internal distributed collections and external data sources. Furthermore, queries can be
formulated in SQL, allowing more complex transformations to be expressed in a single
statement. SQL queries can then be optimised using an extensible query optimiser called
Catalyst.

1.4 The need for a new computational model

As outlined in Section 1.2, recent research on models of parallel computation has focussed
on capturing the increasing complexity of systems for high-performance computation, and
in particular on the cost of communication within such systems. Applying these models
requires knowing precisely how a computation is distributed in a system and the exact com-
munications patterns to be used. This makes these models a good fit for high-performance
scientific computations where software is often hand-crafted or at least fine-tuned for a
specific supercomputer.

The programming interfaces of today’s Big Data platforms, however, as outlined in
Section 1.3, operate at a higher level of abstraction and hide from the user the concrete
number of machines involved in the computation and their communications patterns. They
allow the user to focus on specifying what is being computed and leave the details of how
it is computed to the underlying layers of software and hardware.

For this reason existing models of parallel computation are ill-suited for analysing such
Big Data algorithms. What is needed is a computational model that operates at the same
level of abstraction as current Big Data platforms. By selecting a small number of basic
operations commonly found in Big Data platforms, such a model will make it possible to
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analyse and compare different algorithms for Big Data on this higher level of abstraction,
gaining insights that will be valid regardless of the underlying platform.

If algorithms for Big Data analytics are written to a high-level interface such as we
are proposing with the Database Machine or the Relational Machine, this decouples their
optimisation from that of the underlying systems. Developers of systems for Big Data
processing implementing this kind of interface can focus on optimising the performance of
the basic building blocks using computational models such as those presented in Section 1.2.

There is also potential for optimisation at an intermediate level. If an algorithm for
the Database Machine is implemented on a distributed relational database management
system in SQL, it will profit from any query optimisation the database has to offer and
therefore from decades of research into SQL query optimisation.

1.5 Relational data management vs. computation

The relational model for database management is hardly new, with Codd’s seminal pa-
per [20] appearing in 1970 and Version 2 of the relational model appearing as a book in
1990 [21]. The contribution of this thesis is a new perspective on the well-established idea
of manipulating relations, namely as way of modelling computation as opposed to a way
of modelling information.

Although the title of this thesis is “A Relational Model for Parallel Computation”, it
has very little in common with Codd’s relational model for database management, other
than the fact that the basic unit of information is a relation or, in the case of the Database
Machine (Chapter 2), a multirelation.

Codd’s theory of database management focuses on the semantics of the data being
stored. A database is a representation of facts about the world and the relational model
offers a systematic way of encoding such knowledge – and of manipulating it in a consistent
way as the world changes. It is an extensive body of ideas; Version 2 of the relational model,
published in 1990, already has a total of 333 features.

Beyond a large arsenal of operators for manipulating relations, it covers, among other
aspects,

• integrity concepts within the relational model like entity integrity and referential
integrity and how to maintain them;

• domains as a concept for representing the allowed range of values of a column;

• commands for the database administrator to manipulate properties of the database
as a whole;

• a methodology to represent missing information, including a four-valued logic;

• the enforcement of semantic integrity constraints by the database, constraints on the
stored relations following from the information they represent (i.e. rules pertaining
to the business);
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• dealing with multiple users and granting different access rights to different users or
groups.

The sheer number of relational operators alone (37 “basic” and 44 “advanced”) makes
Codd’s model a feature-rich tool for data management and manipulation, but unsuitable for
mathematical reasoning. By contrast, our models are mathematical models of computation
with the intention of providing the smallest possible number of operations to allow a
rigorous study of computational complexity in terms of these operations.

The Relational Machine (Chapter 3) draws only core ideas from Codd’s model. It works
on relations that are split into a key and a value component, requiring the key component
to be unique within the relation. This corresponds to the concept of a primary key in
Codd’s model. There are three relational operations (Section 3.2.1). The JOIN operation
is what Codd calls an equi-join, the most simple version of joining that joins only on
equality. Our RANGE operation is a restricted form of Codd’s project operator. The third
major operation of the Relational Machine, SINGLES, is novel as a primitive operation.
It eliminates altogether all rows whose value components are not unique, as opposed to
making rows unique by eliminating duplicates. The rest of the operations are data-parallel
primitive building blocks for computation such as increment, decrement and bit shift,
operating on all rows of a relation in parallel. They also have no direct counterpart in
Codd’s model. One could describe the Relational Machine as a kind of assembly language
for database operations.

The Database Machine (Chapter 2) is a higher-level computational model closer to the
actual Big Data processing systems and with a richer set of basic operations. It operates
on multirelations instead of relations; these can be thought of as unordered tables allowing
multiple copies of the same row. There are two reasons for allowing duplicate rows. For
one, it is simply because SQL and most existing relational databases allow them. The
other reason is that in a distributed Big Data scenario eliminating duplicates is a costly
operation that should be assigned some cost in a model of computation.

In his Relational Model/Version 2, Codd dedicates a whole chapter to “serious flaws in
SQL” with one of them being that SQL allows duplicate rows. He writes [21, p. 374]:

“A fact is a fact, and in a computer its truth is adequately claimed by one
assertion: the claim of its truth is not enhanced by repeated assertions. In
database management, repetition of a fact merely adds complexity, and, in the
case of duplicate rows within a relation, uncontrolled redundancy.”

This illustrates once again the difference in perspective on relations. Codd’s focus is the
semantics of data as a model of representing aspects of the real world. By contrast, we
look at (multi-)relations as a way to model parallel computation and put the computational
complexity of operations at centre stage. Codd’s model does offer a way to cleanly deal
with duplicates in a relation, namely adding what he calls a DOD column (for degree of
duplication). We use the same technique for simulating multirelations on the Relational
Machine, where we call the extra column multiplicity.

Codd’s model and its numerous manifestations in relational database systems based on
SQL is declarative. An SQL query, possibly with nested subqueries, can specify a complex
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expression on (multi-)relations yielding a (multi-)relation as a result. It does, however, not
prescribe the exact order in which operations are performed in order to obtain the desired
result. A relational database will convert an SQL query to an expression in terms of the
relational algebra [87]. Such an expression can be transformed in various ways without
changing the result. The query optimiser of a relational database management system will
use such transformations in order to minimise time and resource usage.

By contrast, the computational models developed in this thesis are procedural. They
allow the specification of operations on (multi-)relations without ambiguity about the
exact order of operations. The operations of the Database Machine are small subset of
the extended relational algebra, chosen to be equally expressive and with execution on a
distributed platform for Big Data processing in mind.

1.6 Thesis structure

The remainder of this thesis is structured as follows. In Chapter 2 we define the Database
Machine, a computational model closely resembling a Big Data-practical subset of the
operations a distributed relational database provides. We introduce a high-level notation
for writing algorithms for the Database Machine and present basic in-database techniques
like generating sequences, sorting, and prefix computation.

Chapter 3 introduces the Relational Machine, a “database assembly language” with a
more primitive instruction set operating on relations. The main theorem of this chapter,
Theorem 3.5.11, states that a Relational Machine can simulate a Database Machine with
polylogarithmic slowdown.

Chapter 4 establishes the connection between our novel computational models and the
well-known Parallel Random Access Machine (PRAM). It turns out that a word PRAM,
a PRAM with a logarithmic bound on the word size of its registers, can be simulated by a
Database Machine (Theorem 4.1.1). In turn, a PRAM can simulate a Relational Machine
(Theorem 4.4.6), completing the cycle as illustrated in Figure 1.1.

To pull the concepts from the entire thesis together, we demonstrate in Chapter 5 how
PRAM algorithms written in some high-level language can be directly translated to our
high-level Database Machine notation and from there to a practical implementation in
SQL and Python. This leads to a Big Data-practical adaptation of a PRAM algorithm
from the literature that computes the connected components of a graph.

Chapter 6 concludes the main part of this thesis and presents avenues for future work.
One of those avenues is explored in Appendix A: the Light Relational Machine. It is a

variation of the Relational Machine that assigns zero cost to the “light” operations. This
allows the simulation of the map operation of the Database Machine in constant time
(Theorem A.2.1).

Appendix B is our published paper on a new in-database algorithm for computing the
connected components of a graph.
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Figure 1.1: Overview of computational models in this thesis and the relationships between
them

Light Relational Machine

• Definition A.1.1

• Relational Machine
with one extra “light”
operation

• light operations are
zero-cost

Database Machine

• Definition 2.3.1

• Operates on tables that
are multisets

• 6 basic operations

Relational Machine

• Definition 3.3.1

• Operates on rtables
that are relations

• 3 “heavy” operations

• 13 “light” operations

Parallel Microcode
Machine

• Definition 4.2.1

• Microcode Processors
with common shared
memory

• Described by functions

Parallel Random Access
Machine (PRAM)

• Definition 4.1.1

• Processors each with
local registers

• Assembly language
instructions

Theorem 3.5.11

Lemma 4.3.1

Lemma 4.2.1

Theorem 4.4.6
Theorem 4.1.1

Theorem A.2.1

simulates
novel model existing model



16 CHAPTER 1. INTRODUCTION



Chapter 2

A model of in-database computation

To build a relational model of parallel computation rather than for data management, we
have identified among the capabilities of SQL a set of operations that can effectively be
applied to Big Data. The guiding principle was that it must be reasonable to assume unit
cost for these operations when executed in a suitably-scaled distributed system. We have
left out SQL features with large hidden complexity such as window functions. These are
defined in terms of an ordering of a dataset and thus implicitly cause the whole dataset to
be sorted before their execution. When needed, the functionality of these features can be
built using our basic operations, yielding a more realistic computational cost.

We make the fundamental assumption that for an input table of n rows, the width
of the individual rows is limited to O(log n) bits throughout the computation. Without
a limit on the row width, i.e. allowing arbitrary-size integers, our model would become
unreasonably powerful [75, 15]. A fixed limit, on the other hand, would not scale with the
input size. A model whose parameters depend in this way on the input size was named a
trans-dichotomous model by Fredman and Willard [36] and affords realistic computational
complexity bounds for integer computations, less conservative than Turing Machine bounds
but more conservative than integer RAM bounds.

2.1 Tables are multisets

To introduce our new computational model, we need a few preliminary definitions.

Definition 2.1.1. Let D be a set. A functionM : D → N0 is called a multiset with ground
set D. The set of all multisets with ground set D is denoted by

JDK := ND0 .

For d ∈ D the number M(d) is called the multiplicity of d in M . Sets are special cases of
multisets where the multiplicity of each element is at most 1.

Multiset membership is written analogously to set membership: For M ∈ JDK and
d ∈ D let

d ∈M :⇔M(d) > 0.

17
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The cardinality of a multiset M ∈ JDK is defined as

|M | :=
∑
d∈D

M(d).

We use the notation M = ∅ to denote that the multiset M has cardinality 0.

Definition 2.1.2. Let ⊕ : D×D → D be an associative and commutative binary operation
on D and M ∈ JDK. The result of reducing M using ⊕ is⊕

dAM

d :=
⊕
d∈M

(d⊕ d⊕ · · · ⊕ d︸ ︷︷ ︸
M(d) copies of d

).

Similarly, we allow a predicate p : D → {true, false} to be used to denote reducing only
those elements of the multiset for which the predicate is true:⊕

dAM
p(d)=true

d :=
⊕
d∈M

p(d)=true

(d⊕ d⊕ · · · ⊕ d︸ ︷︷ ︸
M(d) copies of d

).

Note that this definition introduces the symbol A. The notation d A M indicates that
d runs through all elements of a multiset M , taking multiplicities into account, i.e. using
each value of d as many times as specified by its multiplicity.

We are now ready to define the fundamental unit of computation of the Database
Machine, the table. Informally, a table is a rectangular grid of nonnegative integers where
no particular ordering of the rows is assumed. By defining it as a multiset, we allow it to
contain multiple copies of the same row.

Definition 2.1.3. For a nonnegative integer k ∈ N0, a multiset of k-tuples, T ∈
q
Nk0

y
, is

called a table with k columns, or a k-table for short. We assume throughout this thesis
that tables have finite cardinality. An element t ∈ T is called a row. For a fixed i with
1 ≤ i ≤ k the multiset of xi for (x1, . . . , xk) A T is called a column. The number

k∑
i=1

max
(x1,...,xk)∈T

dlog(xi + 1)e

is called the row width of table T . It is the number of bits needed per row to store the
whole table in a fixed-width format with the same number of bits for all elements of each
column.

This definition of a table differs from the notion of a table in SQL:

• Columns in our model are unnamed which implies that the order of elements within a
tuple is significant ; implicitly, the columns are numbered. In SQL relations, columns
are named and their order is trivially changeable. Semantically, a system with column
numbers and a system with column names are equally expressive.

• All tuple elements in our model are nonnegative integers, whereas SQL allows differ-
ent domains for different columns.
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• The rows of a table in our model are unordered whereas SQL has the notion of
ordering a table, e.g. by using an ORDER BY clause, and the notion of a row number
within a partition given by the window function ROW_NUMBER().

The rationale behind defining the rows within a table to be unordered is the following.
In a relational database stored on a single machine, the rows of a table naturally have an
order, namely the order in which they are stored on disk. In the scenario of a distributed
relational database where a table is stored across multiple machines, the order of rows is
already less obvious. Since the Database Machine is a theoretical model of parallel com-
putation where each row of a table can conceptionally be handled by a separate processor,
we choose not to impose an order on the rows.

In order to reason about operations on tables with bounded row width the following
definition will be useful.

Definition 2.1.4. Let x = (x1, . . . , xk) ∈ Nk0 be a k-tuple. We define the width of x as

width(x) :=
k∑
i=1

dlog(xi + 1)e.

Let ⊕ : Nk0 × Nk0 → Nk0 be a binary operation. We say that ⊕ is width-bounded if for all
x, y ∈ Nk0

width(x⊕ y) ≤ max{width(x),width(y)}+ c

for a constant c ∈ N0.

An example for a width-bounded operation is addition: the result is at most one bit
wider than the larger operand. Multiplication on the other hand is not width-bounded.

2.2 Basic operations on tables

In this section we define a set of operations for manipulating tables. Together they comprise
the instruction set of the Database Machine, which we will formally define in Section 2.3.
The Database Machine has a collection of registers, each storing a table, and manipulates
these registers with the instructions defined here. Each operation takes one or more table
registers as input, denoted by variables A and B, and stores its output in a table register.

Some of these operations use the notion of a database function. The idea of this term is
to characterise a function that can reasonably be computed inside a database or database-
like execution environment and be assigned unit cost. More precisely, it is a function
that can be computed by a Turing Machine in polynomial time and linear space. We
will postpone the rigorous definition (Definition 3.4.5) to Section 3.4.7, where we define it
together with the exact flavour of Turing Machine to be used.

The following operations are supported by the Database Machine.

union. Form the disjoint union of two tables with the same number of columns. Let
A,B ∈

q
Nk0

y
. We define the union as A ]B := U ∈

q
Nk0

y
where for all t ∈ Nk0

U(t) := A(t) +B(t).
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select. Form a subset of the rows of a table satisfying a given predicate. Let A ∈
q
Nk0

y

and p : Nk0 → {0, 1} be a database function. The operation selectp :
q
Nk0

y
→

q
Nk0

y

is defined as follows: let
selectp(A) := A′

where for all a ∈ Nk0

A′(a) :=

A(a) p(a) = 1

0 otherwise.

Note that under the select operation the cardinality of a table can only decrease,
i.e. we have |A′| ≤ |A|.

map. Apply a function to all rows of a table. Let f : Nk0 → Nl0 be a database function.
The operation mapf :

q
Nk0

y
→

q
Nl0

y
is defined as follows: for A ∈

q
Nk0

y
let

mapf (A) := A′

where for all a′ ∈ Nl0
A′(a′) :=

∑
a∈Nk

0 :
f(a)=a′

A(a).

Note that f is not required to be injective. If multiple tuples map to the same result
tuple, their multiplicities are added. This implies that A′ has the same cardinality
as A. It further implies that the select operation cannot be defined in terms of map,
because select can decrease the cardinality of a table.

join. Join two tables on a subset of their columns. For nonnegative integers k, l,m with
m ≤ k, l let A ∈

q
Nk0

y
and B ∈

q
Nl0

y
be two tables. The operation joinm :

r
Nk0

z
×

r
Nl0

z
→

r
Nk+l−m0

z
is defined as follows: let

joinm(A,B) := J

where for all (a1, . . . , ak, bm+1, . . . , bl) ∈ Nk+l−m0

J(a1, . . . , ak, bm+1, . . . , bl) := A(a1, . . . , ak) ·B(a1, . . . , am, bm+1, . . . , bl).

The result of joining A and B on the first m columns consists of all combinations
of tuples from A and B that have identical values in the first m columns. The
multiplicities of the result tuples are the product (“·”) of the respective multiplicities
in A and B.

ljoin. Left outer join of two tables on a subset of their columns. For nonnegative integers
k, l,m with m ≤ k, l let A ∈

q
Nk0

y
and B ∈

q
Nl0

y
be two tables. The operation

ljoinm :
r
Nk0

z
×

r
Nl0

z
→

r
Nk+l−m+1
0

z
is defined as follows: let p : Nl0 → Nm0 be

the function defined by p(b1, . . . , bl) := (b1, . . . , bm) for all (b1, . . . , bl) ∈ Nl0, i.e. the
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projection to the first m columns. Let D = mapp(B). We now define

ljoinm(A,B) := J

where for all (a1, . . . , ak, bm+1, . . . , bl, σ) ∈ Nk+l−m+1
0

J(a1, . . . , ak, bm+1, . . . , bl, σ) :=



A(a1, . . . , ak) ·B(a1, . . . , am, bm+1, . . . , bl)

if σ = 1 and (a1, . . . , am) ∈ D

A(a1, . . . , ak) if σ = 0 and (a1, . . . , am) /∈ D

and bm+1, . . . , bl = 0

0 otherwise.

The result of ljoin contains all tuples in the result of join, augmented with an extra
tuple element σ = 1. In addition, it contains all tuples from A not matched in B,
padded with zeros and augmented with an extra tuple element σ = 0.

group. Group the rows of a table by a subset of columns and reduce to one row per group
using a binary operation. Let A ∈

q
Nk0

y
be a table and m ≤ k. Let ⊕ : Nk−m0 ×

Nk−m0 → Nk−m0 be a commutative and associative binary operation that is a width-
bounded database function. The operation groupm,⊕ :

q
Nk0

y
→

q
Nk0

y
is defined as

follows: let
groupm,⊕(A) := G

where for all (a1, . . . , ak) ∈ Nk0

G(a1, . . . , ak) :=


1 if (am+1, . . . , ak) =

⊕
(x1,...,xk)AA:

(x1,...,xm)=(a1,...,am)

(xm+1, . . . , xk)

0 otherwise.

Note that the result of the group operation is a set.

Control flow of the Database Machine can be changed in the following ways:

jump. Transfer control to a different location in the program.

conditional jump. Transfer control to a different location if a table register contains the
empty table or if a table register contains a nonempty table.

halt. End the computation.

2.3 The Database Machine

We are now ready to define the Database Machine.

Definition 2.3.1. A Database Machine consists of a program to be executed and four
integer bounds r, l, c1 and c2. The machine has registers R1, . . . , Rr, each storing a
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table, and a read-only register 1 containing the single-row 0-table. The program is a
finite sequence of instructions, indexed by positive integers. Each instruction is one of the
operations defined in Section 2.2, taking as input one or more table registers and storing
the output in a register. A computation on the machine is defined as follows. The input
is placed into register R1 and all other registers contain the empty table. The input size,
n, is defined as the cardinality of the input table. Execution starts at instruction 1 and
continues to the following instruction unless control is transferred to a different location
by one of the jump instructions or the machine halts. When the machine halts, register
R1 is considered to be the output. Execution is constrained by the following rules:

1. The maximum tuple length in any register is l.

2. The row width of the input is not larger than c1 · log(n+ 2).

3. The row width of any register is not larger than c2 · log(n+ 2).

If any operation – including placing the input in register R1 – would violate them, the
machine crashes and the output is undefined. An input that does not immediately crash
the machine when it is placed in register R1 is called valid.

When describing algorithms for the Database Machine, we will use capital letters to
stand for table registers. We assume that different letters stand for different registers and
that the total number of registers used is within the register bound r of the machine.

Definition 2.3.2. Let T, S : N0 → N0. A Database Machine is said to compute in time
T (n) if it halts after executing at most T (n) instructions for any input of size n. It is said
to compute in space S(n) if for any input of size n the total number of rows in all registers
at any point in the computation is at most S(n).

Definition 2.3.3. We call a Database Machine Big Data-practical if it runs, for any input
of size n, in polylogarithmic time and O(n) space. We call it Small Data-practical if it
runs in polylogarithmic time and polynomial space.

Unless stated otherwise, whenever we speak of time in this thesis we are referring to
the theoretical notion of time according to Definition 2.3.2 – or similar definitions for the
other computational models defined in later chapters – as opposed to execution time on a
real system. This definition assigns unit cost to the basic operations on tables defined in
Section 2.2.

The rationale behind assigning unit cost to these operations is the following. We
are envisioning a distributed system for Big Data processing where local computation is
significantly faster than communication between nodes. We further assume that the system
scales with the data, i.e. tables of size n will be handled by Θ(n) nodes, each of which
holds a portion of the data of substantial size.

In this scenario, select and map are data-parallel operations that can be run inde-
pendently on all nodes, involving no inter-node communication. The same holds for the
union operation where each node conceptually makes copies of its respective portions of
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the two input tables that stay within the same node. Since tables are immutable in our
model, this can in practice be a pure pointer operation.

The join operation is defined to be able to join on equality only to allow for an efficient
implementation using hashing. Though in practice more costly than select and map, it
still is a one-step operation to bring together each pair of rows to be joined on a single
machine. When we consider Big Data-practical algorithms according to Definition 2.3.3,
we also know that the result size of a join operation is O(n) instead of the worst-case
O(n2) for inputs of size n.

Since group is defined in terms of a binary operation, it inherently takes log n steps of
computation to reduce n elements. However, we are assuming local computation to be fast
so that all rows on the same machine can be reduced very quickly. Little communication
and computation is then required to gather and reduce intermediate results from different
machines.

In the world of Big Data, it is common to analyse algorithms in terms of powerful high-
level operations. For example, in the MapReduce framework, time is usually measured in
terms of rounds comprising a map phase and a reduce phase [76]. In the same vein, time on
the Database Machine is measured in terms of the number of the basic operations defined
above.

The basic operations of the Database Machine are chosen to be a Big Data-practical
subset of the operations of the relational algebra. In modern treatments [87], selectp is
usually written as σp and mapf is an extended version of the project operator Π, allowing
not only the projection to a subset of existing columns but the mapping of an arbitrary
function f . Our joinm is a restricted version of the theta-join in the relational algebra,
which is usually written as r onθ s for two relations r and s. Here, θ signifies a predicate
on r × s which is the most general form of join. The Database Machine allows joining on
equality of the first m tuple elements only and also avoids duplicating these in the result.
In the same way, we restrict our left outer join ljoinm to joining on equality of the first m
columns instead of allowing an arbitrary predicate θ.

The relational algebra uses the standard set operator ∪ to denote the union of relations.
Since the Database Machine operates on multirelations, we use the symbol ] to emphasise
the fact that duplicates are not removed and multiplicities are added. Finally, our operation
group corresponds to the aggregate operation, written as γ in the extended relational
algebra. We have specialised it to always group by the first m elements of a tuple and
generalised it to reduce the remaining tuple elements using a commutative and associative
binary operation.

Since the basic operations chosen for the Database Machine are available in the major
frameworks for Big Data processing, practical implementations of algorithms written for
the Database Machine can be readily derived. This could make the high-level language
introduced in the next section the lingua franca for Big Data processing. Because of the
close relationship with the relational algebra, new implementations of this set of operations
can leverage decades of research into database optimisation. The restrictions in comparison
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with the full relational algebra, such as allowing joins only on equality, facilitate efficient
execution in parallel architectures.

2.4 A high-level database language

In this section we introduce a high-level notation to express algorithms for the Database
Machine. In a real-world implementation of an algorithm running in a database, there
is a procedural language involved that sends queries to the database and can perform
local computation using scalar variables. Instead of adding scalar variables as a feature
to the Database Machine, we show how to emulate them as single-row, single-column
tables, making them a mere notational convention. We also introduce a powerful high-
level notation for specifying a sequence of operations to manipulate tables that can be
directly translated to an SQL implementation.

2.4.1 Copying and literal tables

The Database Machine does not have a built-in operation to copy the contents of a table
register to another table register, but this can readily be achieved by applying a mapid

operation where id is the identity function. If A and B are table registers, we denote
copying the contents of B to A as

A← B.

A literal table containing a single row with any desired tuple (x1, . . . , xl) can be created
by applying mapf to the built-in constant single-row 0-table 1 where f is the empty
function that maps the 0-tuple to the desired l-tuple. We write creation of such a literal
table in a table register A as an assignment

A← [(x1, . . . , xl)].

Using ] we can create any constant table in a constant number of operations. We write
[t1, t2, . . . , tn] for a multiset containing the tuples t1, . . . , tn, each with multiplicity 1.

2.4.2 Scalar variables

A scalar variable is a single-row 1-table, i.e. a table containing a single integer. We will use
lower case names to stand for scalar variables. A computation f involving scalar variables
s1, . . . , sk and yielding a result r will be denoted as r ← f(s1, . . . , sk) and carried out
by executing the following sequence of database operations: After copying s1 to r, use
a join0 operation for each of the remaining scalars s2, . . . , sk to add them as additional
tuple elements to r. The result is a single-row table since joining two single-row tables on
the empty tuple always yields a single-row table. We then apply mapf to compute the
expression; the result is a scalar in r.

For example, the expression
c← a+ b
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stands for the sequence c← a; c← join0(c, b); c←map+(c).

2.4.3 Control flow

The only condition a Database Machine can test for to change control flow is the emptiness
of a table. This is sufficient to test for any predicate that can be computed by a database
function. Let p(s1, . . . , sk) be an expression in scalar variables yielding a result in {0, 1}.
Then computing this expression as described above and applying join1 with the single-row
table containing the integer 1 yields the empty table if the predicate returned zero and
a single-row table otherwise. A conditional jump instruction can then be used to change
control flow accordingly.

We will use the usual pseudo-code constructs if, while, repeat, and for to specify
conditional execution and loops based on Boolean expressions involving scalar variables to
indicate executing the above sequence of operations.

2.4.4 Manipulating tables

We now introduce a high-level notation to specify operations on tables. It is inspired by
the list comprehension construct in the Haskell programming language [61] and translates
directly to a sequence of the basic operations defined for tables in Section 2.2. It can also
be translated to SQL in a straightforward manner (see Chapter 5).

In order to create a convenient notation for applying the group operation, we first
introduce the notion of an aggregate function. An aggregate function reduces a nonempty
table to a single tuple by using an associative and commutative binary operation. It is
defined in terms of three other functions:

1. an encoding function e : Nk0 → Nl0

2. a binary operation ⊕ : Nl0 × Nl0 → Nl0

3. a final function f : Nl0 → Nm0

The aggregate function agge,⊕,f :
q
Nk0

y
\ ∅ → Nm0 is defined as

agge,⊕,f (T ) = f
(⊕
tAT

e(t)
)
.

Note that aggregate functions are not defined for the empty table since they cannot be
applied to the empty table using our notation. Hence, the binary operation ⊕ does not
need to have an identity element for the above expression to be well-defined.

In simple cases, the encoding and final functions are the identity. For example, using
integer addition as the binary operation, we have sum := aggid,+,id and write sum(x) to
denote the sum of a multiset x of integers. A slightly more involved example is computing
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the average. Let

e(x) := (x, 1)

(x1, c1)⊕ (x2, c2) := (x1 + x2, c1 + c2)

f(x, c) := bx/cc

Then with avg := agge,⊕,f we can write avg(x) to compute the (rounded-down) average
of a multiset of integers x.

A multiset comprehension expression describes how to compute a table from a number
of existing tables and scalar variables. It has the form [E | M ] where E is an expression
and M is a comma-separated list of terms. It builds a table by starting with a single-row
table and successively applying the terms in M from left to right, building intermediate
tables along the way. Finally, the expression E specifies a map from the last intermediate
table to the final result.

Names are used throughout to refer to columns of the current table. A name is bound if
it has been assigned a scalar variable in the context surrounding the multiset comprehension
expression or if has been bound by a previous term. Otherwise it is called free. Note
that the expression E, although written at the beginning of the multiset comprehension
expression (resembling established mathematical notation for sets), conceptually comes
last and can use all names bound by the terms in M . A column is named if a name is
bound to it and anonymous otherwise.

The initial intermediate table contains a single row with the 0-tuple (). Each term
in M takes the current table and transforms it into a new table, carrying along column
names for future reference. If any term uses a name that is bound to a scalar variable in
a surrounding context, that variable is first added as a named column to the current table
by executing a join0 operation (recall that a scalar variable is a single-row 1-table). This
effectively duplicates the value in each row of the table. The terms can be of the following
types:

• (x1, . . . , xk) A T . Join the current table with the k-table T on the columns specified
by the names that are already bound, binding all other names. This comprises the
following steps:

1. Apply a map to T to rearrange its columns such that the columns referenced
by bound names among x1, . . . , xk are at the beginning of the tuple, followed
by the free variables, in the order they occur in the list.

2. Apply amap to the current table to rearrange its columns such that the columns
referenced by bound names are at the beginning of the tuple in the same order
they appear in T .

3. Replace the current table C by joinm(C, T ) where m is the number of bound
names, binding the previously free names to the newly added columns.

Any of the xi can be the symbol ∗. Every occurrence of ∗ is considered a new free
name, and instead of binding it to a column in the process described above, it will
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cause the corresponding column to become anonymous. Anonymous columns cannot
be referenced in subsequent terms.

• (x1, . . . , xk) Aσ T . Perform a left outer join of the current table with the k-table T on
the columns specified by the names that are already bound, binding all other names
and σ. This behaves like the term described above, but uses ljoin instead of join,
binding the name σ to the additional column returned by ljoin.

• a Boolean expression p using only bound names. This executes selectp on the current
table, eliminating all rows for which p is false.

• (v1, . . . , vl) ← e where v1, . . . , vl are free variables and e is an expression involving
only bound names that evaluates to an l-tuple. For expressions evaluating to a 1-
tuple the parentheses are omitted and the term is written as v ← e. This executes
mapf , where f is a function mapping a k-tuple of the current table to a (k+ l)-tuple.
The new tuple elements are computed according to the expression e and the names
v1, . . . , vl are bound to it.

• groupby(vars, exprs). Group the current table by the named columns given in vars,
producing one row for each distinct tuple and computing additional columns from
aggregate expressions, binding names to them. The argument vars is a comma-
separated list of bound names and exprs is a comma-separated list of terms of the
form (v1, . . . , vt) ← a(r) where v1, . . . , vt are free names, a is an aggregate function
returning a t-tuple and r is an expression involving only bound names. For aggregate
functions returning a 1-tuple the parentheses are omitted and the term is written as
v ← a(r).

groupby is executed as follows.

1. Apply amap to the current table. It outputs the columns in vars for a total ofm
columns, followed by additional columns corresponding to aggregate functions
used in the expressions in exprs. For each invocation a(r) of an aggregate
function a = agge,⊕,f where r is an expression involving the current row, a
sub-tuple is appended containing the tuple e(r) obtained by evaluating the
expression r and applying the encoding function e.

2. Execute groupm,⊕ where ⊕ is a binary operation that applies the binary opera-
tions of all involved aggregate functions, each operating on their corresponding
sub-tuple.

3. Apply maph. The function h is the identity on the first m columns. For each of
the terms (v1, . . . , vt) ← a(r) in exprs where a = agge,⊕,f , it produces a tuple
(v1, . . . , vt) by applying the final function f to the corresponding sub-tuple.

The result of groupby is a table with only the following columns:

– the columns specified in vars;

– all columns vi in the expressions (v1, . . . , vt)← a(r) in exprs.
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All other column names are unbound so that they are free in the following terms.

Note that this notation not only specifies the resulting table but the exact sequence
of operations to be performed. For the analysis of relational algorithms it is important to
take into account the size of all intermediate tables produced while evaluating a multiset
comprehension expression. For example, let A be a table of pairs (i, i+ 1) for i = 1, . . . , n.
It has n rows. Consider the following two expressions:

B ← [(i, k) | (i, j) A A, (j, k) A A]

and
C ← [(i, l) | (i, j) A A, (k, l) A A, j = k]

The results B and C are identical: both tables have n − 1 rows containing the pairs
(i, i + 2) for i = 1, . . . , n − 1. The expression for B computes an intermediate table with
n−1 rows containing triples (i, i+1, i+2) and in the final step eliminates the unnecessary
middle column. The expression for C first computes the Cartesian product of A with
itself, a table with n2 quadruples, and then filters the result down to n− 1 rows using the
predicate j = k. This is an important difference between our notation and SQL, which
does not specify exactly how computations occur, but leaves this to the query optimiser of
a database management system.

The example in Figure 2.1 shows step by step how a more involved multiset comprehen-
sion expression is evaluated. It uses the aggregate functions avg() and min() where avg()
is the average function defined on page 26 and min = aggid,min,id, i.e. min(x) computes
the minimum of a multiset x of integers.

2.4.5 Simulating arrays of tables

The Database Machine has a fixed number of table registers. However, some algorithms
can be most elegantly expressed using unbounded arrays of tables. These can readily
be simulated by storing the whole array in a single table, using an extra column as a
table index. Let Y be a table with tuples (i, x̃) and X be a table with tuples x̃ where x̃
stands for any fixed number of integers x1, . . . , xk. Then the use of Y0, Y1, . . . in multiset
comprehension expressions like an unbounded array of k-tables is defined according to
Figure 2.2.

2.5 Basic techniques for the Database Machine

In this section we present basic techniques for computations on the Database Machine that
are either of independent interest or will be useful in later chapters.
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Figure 2.1: This example demonstrates how a multiset comprehension expression is inter-
preted in terms of the basic relational operations.

Given s = 2, A =


4 1 5
1 2 4
6 2 3
3 3 2

, B =


2 1 6
3 2 3
3 3 4
3 4 9
2 5 1

, evaluating

[(g, s · x+m) | (i, j, k) A A, (j, ∗, l) A B, g ← i+ l

, groupby(g,m← min(k), x← avg(l · i))
, m < 3]

[()]
(i,j,k)AA
=====⇒

join

i j k

4 1 5
1 2 4
6 2 3
3 3 2

(j,∗,l)AB
=====⇒

join

i j k ∗ l

1 2 4 1 6
1 2 4 5 1
6 2 3 1 6
6 2 3 5 1
3 3 2 2 3
3 3 2 3 4
3 3 2 4 9

g←i+l
====⇒
map

i j k ∗ l g

1 2 4 1 6 7
1 2 4 5 1 2
6 2 3 1 6 12
6 2 3 5 1 7
3 3 2 2 3 6
3 3 2 3 4 7
3 3 2 4 9 12

groupby(··· )
========⇒

1. map

g emin(k) eavg(l · i)

7 4 6 1
2 4 1 1
12 3 36 1
7 3 6 1
6 2 9 1
7 2 12 1
12 2 27 1

groupby(··· )
========⇒

2. group

g
⊕

min

⊕
avg

2 4 1 1
6 2 9 1
7 2 24 3
12 2 63 2

groupby(··· )
========⇒

3. map

g m x

2 4 1
6 2 9
7 2 8
12 2 31

m<3
===⇒
select

g m x

6 2 9
7 2 8
12 2 31

using s
====⇒
join0

g m x s

6 2 9 2
7 2 8 2
12 2 31 2

(g,x)
==⇒
map

g s · x+m

6 20
7 18
12 64

Figure 2.2: Notation for simulating arrays of tables on a Database Machine

Notation Defined as

X ← Yi X ← [x̃ | (i, x̃) A Y ]
x̃ A Yi (i, x̃) A Y
Yi ← X Y ← [(i′, x̃) | (i′, x̃) A Y, i′ 6= i] ] [(i, x̃) | x̃ A X]
delete Yi Y ← [(i′, x̃) | (i′, x̃) A Y, i′ 6= i]
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2.5.1 Multiset difference

Definition 2.5.1. Let A,B ∈
q
Nk0

y
be two tables. The multiset difference D = A \ B is

defined as D ∈
q
Nk0

y
where for all d ∈ Nk0

D(d) :=

A(d) B(d) = 0

0 otherwise

Theorem 2.5.1. Algorithm 1 computes the multiset difference of two tables A,B using a
constant number of operations using linear space.

Proof. The algorithm first computes the multiplicity for each unique element in A and A]B
using the aggregate function count := agg1,+,id where 1 is the function mapping the zero-
tuple () to the number 1. It then computes a table U of unique elements of A not present
in B: they are characterised by having the same multiplicity in A and A ] B. By joining
this with A, the elements of A are returned with their original multiplicities.

Algorithm 1 Computing the multiset difference of two tables
1: function MultisetDifference(A,B)
2: C1 ← [(a1, . . . , ak, c) | (a1, . . . , ak) A A,groupby(a1, . . . , ak, c← count())]
3: C2 ← [(a1, . . . , ak, c) | (a1, . . . , ak) A A ]B,groupby(a1, . . . , ak, c← count())]
4: U ← [(a1, . . . , ak) | (a1, . . . , ak, c) A C1, (a1, . . . , ak, c) A C2]
5: return [(a1, . . . , ak) | (a1, . . . , ak) A U, (a1, . . . , ak) A A]
6: end function

The sizes of C1 and C2 are not larger than the input. Since the elements of both C1

and C2 are unique, the join to compute U cannot increase the number of rows. The final
join in the return statement returns a subset of A, so overall space usage stays linear in
the input size, as claimed.

2.5.2 Simulating left outer join

Theorem 2.5.2. The operation ljoin (left outer join) can be expressed using a constant
number of the other operations, utilising temporary space linear in the input.

Proof. For nonnegative integers k, l,m with m ≤ k, l let A ∈
q
Nk0

y
and B ∈

q
Nl0

y
be two

tables. The operation ljoinm(A,B) is implemented as shown in Algorithm 2.
The result of a left outer join is computed as the union of two tables, J and O. The

result of the normal join is formed in J , tagged with a one in the additional column. Table
O contains all rows of A not matched in B, tagged with a zero in the additional column. To
compute it, Algorithm 2 first computes the multiset difference between the projections of
A and B on the first m-tuple. This works the same way as in Algorithm 1. Line 7 uses this
to compute O. Note that each row in C1 and C2 is unique, so that the join between them
creates one row for each matching tuple (a1, . . . , am). The final join with A returns the full
unmatched rows in A with their original multiplicities. The sizes of the other temporary
tables are bounded as claimed: [C1| ≤ |P1| = |A| and |C2| ≤ |P2| = |A|+ |B|.
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Algorithm 2 Implementing outer join using other operations
1: function LeftOuterJoinm(A,B)
2: J ← [(a1, . . . , ak, bm+1, . . . , bl, 1) | (a1, . . . , ak) A A, (a1, . . . , am, bm+1, . . . , bl) A B]
3: P1 ← [(a1, . . . , am) | (a1, . . . , ak) A A]
4: P2 ← P1 ] [(b1, . . . , bm) | (b1, . . . , bl) A B]
5: C1 ← [(a1, . . . , am, c) | (a1, . . . , am) A P1,groupby(a1, . . . , am, c← count())]
6: C2 ← [(a1, . . . , am, c) | (a1, . . . , am) A P2,groupby(a1, . . . , am, c← count())]
7: O ← [(a1, . . . , ak, 0, . . . , 0︸ ︷︷ ︸

l −m times

, 0) | (a1, . . . , am, c) A C1, (a1, . . . , am, c) A C2

, (a1, . . . , ak) A A]
8: return J ]O
9: end function

Like the join operation, ljoin can produce an output whose size is quadratic in the
input size. The claim on temporary space usage only refers to the auxiliary tables used
in the simulation. It will be important when this theorem is used as part of a larger
construction in the proof of Theorem 3.5.11.

2.5.3 Generating sequences

Generating a sequence of consecutive integers is a basic building block for constructions
that appear later in this thesis. The technique presented here is also generalised and used
in the next section.

Theorem 2.5.3. For a positive integer n, a table containing the integers 0, . . . , n− 1 can
be generated using O(log log n) operations and space O(n).

To prove this, we present an algorithm that repeatedly joins a table of all i-bit integers
with itself to generate a table of all 2i-bit integers (Algorithm 3). We first prove three
lemmas about this algorithm.

Lemma 2.5.4. At the beginning of each iteration of the loop of Algorithm 3, table S

contains all i-bit integers and i ≤ b. Before the return statement, S contains all b-bit
integers where b = dlog ne.

Proof. The claimed loop invariant holds after initialisation: S = [0, 1] and i = 1. Joining
S with itself creates all combinations of an i-bit integer s with another i-bit integer s′,
which are combined to create all 2i-bit integers. Observe that i ≤ b at the beginning of
the loop and that this invariant is preserved: i is only replaced by 2i if 2i < b. The loop
finishes with i ≤ b ≤ 2i.

For the last step, each integer is split into a pair (l, h) where l contains the lower b−i bits
and h the rest of the bits. For each value of h there are 2b−i rows with l = 0, . . . , 2b−i − 1.
Joining this table with itself on hmultiplies the number of rows by 2b−i so that it reaches 2b.
Combining the bits from the individual components creates the desired table of all b-bit
integers.

Lemma 2.5.5. Algorithm 3 executes O(log log n) operations.
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Algorithm 3 Generating a sequence of consecutive integers
1: function GenerateSequence(n)
2: if n = 0 then
3: return []
4: end if
5: S ← [0]
6: if n = 1 then
7: return S
8: end if
9: S ← S ] [1]
10: i← 1
11: b← dlog ne
12: while 2i < b do
13: S ← [s+ 2is′ | s A S, s′ A S]
14: i← 2i
15: end while
16: S ← [(s mod 2b−i, bs/2b−ic) | s A S]
17: S ← [l + 2b−ih+ 2il′ | (l, h) A S, (l′, h) A S]
18: return [s | s A S, s < n]
19: end function

Proof. The loop starts with i = 1 and doubles i at each step until it reaches b/2, which
takes O(log b) iterations. Since b = dlog ne, this amounts to O(log log n) operations.

Lemma 2.5.6. Algorithm 3 uses space O(n).

Proof. The algorithm uses a single table S. By Lemma 2.5.4, its size is 2i ≤ 2b through-
out the loop. The next assignment leaves the number of rows unchanged and the last
assignment brings its size to 2b rows where b = dlog ne. Since dlog ne < log n+ 1, we have
|S| < 2n, or |S| = O(n), as claimed. The expression in the return instruction creates a
table with n rows.

Proof of Theorem 2.5.3. Lemma 2.5.4 establishes that Algorithm 3 creates the sequence
0, . . . , 2b − 1. The expression in the return statement filters the list to the exact required
size. Lemmas 2.5.5 and 2.5.6 establish the claimed bounds on time and space.

2.5.4 Converting a multiset to a set

We now show how to make all elements of a multiset unique, turning it into a set with
the same cardinality. To do this, Algorithm 4 generates a sequence of numbers for each
distinct element in parallel.

Theorem 2.5.7. Algorithm 4 takes a table T of integers and returns a table with the same
cardinality and an additional column such that each row is unique. The result contains for
each element t ∈ T with multiplicity m the distinct pairs (t, 0), (t, 1), . . . , (t,m−1). For an
input table of n rows, the algorithm executes O(log log n) operations and uses space O(n).

We split the proof into three lemmas, establishing a loop invariant and bounds on time
and space.
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Algorithm 4 Converting a multiset to a set
1: function ConvertToSet(T )
2: C ← [(t, c) | t A T,groupby(t, c← count())]
3: B ← [(t,max{1, dlog ce}) | (t, c) A C]
4: S ← [(t, 1, (b = 1 ? 0 : 1), 0, 0) | (t, b) A B] . C-style (condition ? iftrue : iffalse)
5: S ← S ] [(t, i, j, j, 1− j) | (t, i, j, ∗, ∗) A S]
6: repeat
7: p← |S|
8: S ←

[
(t, i′, j′, l′, h′) | (t, i, j, l1, h) A S, (t, i, j, l2, h) A S, (t, b) A B

, i′ ← i+ j, j′ ← min{i′, b− i′}
, s← l1 + 2jh+ 2il2

, l′ ← s mod 2j
′
, h′ ← bs/2j′c

]
9: until |S| = p

10: return [(t, h) | (t, ∗, ∗, ∗, h) A S, (t, c) A C, h < c]
11: end function

Lemma 2.5.8. Table S obeys the following loop invariant: For each pair (t, b) ∈ B it
contains 2i quintuples (t, i, j, l, h) where i and j are constant with j ≤ i ≤ b and

j =

i if 2i ≤ b

b− i otherwise.

The pairs (l, h) run through all combinations of integers 0 ≤ l < 2j and 0 ≤ h < 2i−j.
Another way to describe this is that the tuples run through all i-bit integers, splitting them
into their j lower bits and i− j higher bits.

Proof. S is initialised with a table containing two rows for each distinct t. They have
i = 1, and for the value of j the two cases b = 1 and b > 1 are distinguished to obey the
invariant. Inside the loop, table S is joined with itself on t, i, j, and h. By the invariant,
for each distinct t each of the 2i rows in the first copy of S is matched by 2j rows in the
second copy of S, producing 2i+j rows. This intermediate table is then joined with B on t,
keeping the same number of rows because B has exactly one row for each distinct t.

For each distinct t, i′ = i+ j reflects the new number of rows as claimed. The invariant
condition on j guarantees that i′ ≤ b. We have j′ = min{i′, b− i′} ≤ i′ as claimed and

j′ =

i′ if 2i′ ≤ b

b− i′ otherwise

because 2i′ ≤ b ⇔ i′ ≤ b − i′. The value s is computed to run through 0, . . . , 2i+j − 1 for
each t and then split into the lower j′ bits in l′ and the rest of the bits in h′ as claimed.
This shows that the invariant is maintained in each iteration.

Lemma 2.5.9. For an input table of n rows, Algorithm 4 executes O(log log n) operations.
After exiting the loop, the tuples (t, i, j, l, h) ∈ S have i = b and j = 0 for all (t, b) ∈ B.

Proof. In each iteration of the loop, for every t the value of i is doubled until it reaches b.
The loop terminates when the size of S does not change. This happens when i = b
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and j = 0 for all t. The number of iterations is therefore determined by the highest
multiplicity occurring in the input multiset T . The worst case is T containing one element
with multiplicity n, in which case b ≤ log n+1 and the loop takes O(log log n) iterations.

Lemma 2.5.10. For an input table of n rows, Algorithm 4 uses space O(n).

Proof. By Lemma 2.5.8, table S contains for each (t, b) ∈ B at most 2b rows and we have
b ≤ log T (t) + 1. Therefore, |S| ≤

∑
(t,b)∈B 2b ≤

∑
t∈T 2 · T (t) = 2|T |. For an input table

of n rows the space usage of the algorithm stays within O(n), as claimed.

Proof of Theorem 2.5.7. Algorithm 4 first reduces the input multiset T to a set C of pairs
(t, c) containing the multiplicities of all distinct elements of T . Table B receives for each
distinct element t ∈ T the pair (t, b) where b is the number of bits required to store the
sequence of integers generated for t. The algorithm then essentially executes Algorithm 3
in parallel for each distinct t ∈ T .

At the end of the loop, by Lemma 2.5.9 and Lemma 2.5.8, the value h in each subset
of tuples (t, i, j, l, h) for fixed t runs through 0, . . . , 2b−1 and the expression in the return
instruction transforms and filters them to create the correct number of pairs for each
distinct t. Lemma 2.5.9 and Lemma 2.5.10 establish the claimed bounds on the number of
operations and on space usage.

2.5.5 Computing the rank

Another basic relational technique is determining the rank of a number within a multiset,
i.e. the number of other elements that are smaller than it. This is implemented as Algo-
rithm 5 and is a prerequisite for the sorting algorithm presented in the next section, which
is an application of the well-known counting sort [54, pp. 75 ff.]. Instead of simply count-
ing, Algorithm 5 borrows the idea of comparing elements bit by bit from radix sort [54,
section 5.2.5].

Both computing the rank and its application to sorting are not used in the remainder
of this thesis. They are presented here because they are of independent interest. The
algorithm for computing the rank shows how to trade the quadratic space usage of a naive
implementation for a logarithmic number of steps, using the fact that the Database Machine
has a logarithmic bound on its row size. This makes the algorithm Big Data-practical in
the sense of Definition 2.3.3.

Theorem 2.5.11. For each element x A T , Algorithm 5 counts the number of elements
y A T with y < x and returns a pair (x, c) where c is this count. For an input table of
n rows, it executes O(log n) operations and uses space O(n).

This transformation could almost be trivially expressed as

[(x, c) | x A T, y A T, y < x,groupby(x, c← count())],

but this forms the Cartesian product of T with itself, which produces n2 rows and hence
is not Big Data-practical. Also, it eliminates the minimum element from T .
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Algorithm 5 Computing the rank of a number in a multiset
1: function ComputeRank(T )
2: if |T | = 0 then
3: return T
4: end if
5: R← [(x, x, 0) | x A T ]
6: repeat
7: C ← [(h′, c) | (∗, h, ∗) A R, h′ ← bh/2c,groupby(h′, c← sum(1− (h mod 2)))]
8: R← [(x, h′, s+ (h mod 2 = 1 ? c : 0)) | (x, h, s) A R, h′ ← bh/2c, (h′, c) A C]
9: until |C| = 1
10: return [(x, s) | (x, ∗, s) A R]
11: end function

In order to save space, we count the smaller elements in multiple steps, comparing them
bit by bit. For fixed x ∈ T , let

Si(x) :=
[
y A T | by/2ic mod 2 < bx/2ic mod 2 ∧ by/2i+1c = bx/2i+1c

]
Algorithm 5 uses the following:

Lemma 2.5.12. For fixed x ∈ T ,

∣∣[y A T | y < x]
∣∣ =

∑
i

|Si(x)|.

Proof. If x and y are nonnegative integers with y < x, there is a unique most significant
bit position i at which the binary representations of x and y differ. Si(x) contains those
y A T with y < x for which this most significant bit position equals i. This implies that
the multisets Si(x) are disjoint for fixed x and the claim follows.

Lemma 2.5.13. After the i-th iteration of the loop in Algorithm 5, R contains for each
x A T a triple (x, h, s) where h = bx/2ic and s =

∑
j<i |Sj(x)|. In particular, R has the

same number of rows as the input T throughout the algorithm.

Proof. The claim is true for the initial table R before entering the loop, i.e. after i = 0

iterations. Assume it is true after i iterations. In iteration i+ 1, C is computed to contain
exactly one pair (h′, c) for each unique value h′ = bx/2i+1c over all x A T . c is the count
of those x A T with bx/2ic mod 2 = 0. When computing R, first note that in the join
between R and C on h′ each row of R is matched by exactly one row of C so that the
number of rows in R is preserved. For each tuple (x, h, s) A R, the new tuple (x, h′, s′)

satisfies the claim after iteration i+ 1: we have h′ = bh/2c = bx/2i+1c by assumption. For
the new value of s′ there are two cases: if bx/2ic mod 2 = 1 then |Si(x)| = c, otherwise
|Si(x)| = 0. In both cases, s′ = s + |Si(x)| =

∑
j<i+1 |Sj(x)| by assumption. The claim

follows by induction on i.

Lemma 2.5.14. For an input table of n rows, Algorithm 5 executes O(log n) operations.

Proof. The basic assumption of our computational model is that for an input table of
n rows the individual entries are O(log n) bits wide. Thus, by Lemma 2.5.13, after at most
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O(log n) iterations the tuples (x, h, s) A R will all have h = 0, at which time C will contain
the single pair (0, |T |) and the loop will terminate.

Lemma 2.5.15. For an input table of n rows, Algorithm 5 uses space O(n).

Proof. Table R starts with n rows and stays the same size throughout the algorithm by
Lemma 2.5.13. Table C is the result of reducing R, so |C| ≤ |R| at all times.

Proof of Theorem 2.5.11. Algorithm 5 computes the sum in Lemma 2.5.12 for all x in
parallel, essentially making it a parallel version of radix sort. Lemma 2.5.13 establishes
that it outputs the correct result while Lemma 2.5.14 and Lemma 2.5.15 establish the
claimed bounds on time and space.

2.5.6 Sorting

Since we have defined a table to be an unordered multiset, it is inherently not possible to
sort a table. We therefore define sorting a table as adding a column of indices that are
consecutive integers starting at zero such that the rows are numbered in ascending order.
More formally:

Definition 2.5.2. Let T ∈ JN0K be a table of integers. We define sorting as the process
of creating from T a table S ∈

q
N2
0

y
with the following properties:

1. [x | (x, ∗) A S] = T , i.e. the first column of S contains the values from the input
table T with the same multiplicities.

2. [i | (∗, i) A S] = [0, 1, . . . , |T | − 1], i.e. the second column of S contains consecutive
integers starting at zero.

3. For all (x1, i1), (x2, i2) ∈ S : i1 < i2 ⇒ x1 ≤ x2.

We call the elements of the second column the indices.

With this definition of sorting, the natural choice of an algorithm is to compute the
rank of each element; the only refinement required is the treatment of multiple identical
elements. If we apply Algorithm 5 to a multiset that is a set, the result is a sorted table
according to this definition. If, however, any element x occurs with multiplicity T (x) > 1,
then there will be T (x) identical rows in the result, violating property 2. Algorithm 6
combines Algorithm 5 and Algorithm 4 to produce the desired consecutive sequence of
integer indices.

When talking about sorting in the context of Big Data, usually external sorting algo-
rithms such as polyphase merge sort come to mind [54, Section 5.4.2]. These are expressed
in terms of the sequential processing of files larger than memory. These algorithms are un-
suitable for our computational model because the Database Machine operates at a higher
level of abstraction: it considers operations on multirelations as a whole without requiring
– or even allowing – us to know how they are distributed among files or machines. Also,
these algorithms are inherently mostly sequential, whereas the Database Machine models
parallel computation.
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Algorithm 6 Counting Sort for multisets of integers
1: function CountingSort(T )
2: U ← ConvertToSet(T )
3: S ← ComputeRank(T )
4: S ← [(x, s) A S,groupby(x, s)] . make distinct
5: return [(x, s+ i) | (x, i) A U, (x, s) A S]
6: end function

Theorem 2.5.16. For an input table of n rows, Algorithm 6 sorts this table, executing
O(log n) operations and using a total of O(n) rows.

Proof. Algorithm 6 first uses Algorithm 4 to create a table U in which each row is unique
and for each x ∈ T , multiple occurrences are indexed with consecutive integers starting
at 0. Note that U satisfies property 1 of a sorted table. Next, the output of Algorithm 5
is reduced to its distinct pairs (x, s) where for each x, the index s is the beginning of the
desired sequence of integer indices for all copies of x. When joining U with S, each row of U
matches exactly one row of S, keeping the same number of rows and preserving property 1.
The indices are computed to satisfy property 2. Adding the number of operations and rows
used by the two algorithms, the claimed time and space bounds follow from Theorem 2.5.11
and Theorem 2.5.7.

2.5.7 Prefix computation

Definition 2.5.3. Let ⊕ : N0 → N0 be an associative binary operation. A prefix compu-
tation takes as input a sequence of integers x1, . . . , xn and produces a sequence of integers
s1, . . . , sn where sk =

⊕k
i=1 xi.

Theorem 2.5.17. A prefix computation with n inputs can be performed in O(log n) oper-
ations using space O(n).

Proof. Algorithm 7 takes as input a table of pairs (i, xi) where i = 0, . . . , n − 1. We will
show that it performs a prefix computation on the sequence x0, . . . , xn−1 and outputs the
result as a table of pairs (k, sk) with sk =

⊕k
i=0 xi. We call the first element of each pair

the index.

Algorithm 7 Performing prefix computation on a sequence of integers
1: function ComputePrefixes⊕(T )
2: S ← [(0, x) | (0, x) A T ]
3: C ← T
4: j ← 1
5: repeat
6: S′ ← [(k + j, s⊕ c) | (k, s) A S, (k + 1, c) A C]
7: S ← S ] S′
8: C ← [(k, c⊕ c′) | (k, c) A C, (k + j, c′) A C]
9: j ← 2 · j
10: until |C| = 0
11: return S
12: end function
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The following invariants hold at the beginning of each iteration of the loop in Algo-
rithm 7:

1. S contains exactly one pair (k, sk) for 0 ≤ k < j and k < n, satisfying sk =
⊕k

i=0 xi

2. C contains exactly one pair (k, ck) for 0 ≤ k ≤ n− j, satisfying ck =
⊕k+j−1

i=k xi

Both invariants hold after initialisation. Assume they hold at the beginning of the loop
for some j. The rows to be added to S are computed in S′. If j < n, by assumption S
contains rows (k, s) for k = 0, . . . , j − 1, so k + j = j, . . . , 2j − 1 and the indices of S ] S′

run through a contiguous sequence of integers. A row with index k + j is produced in
S′ only if (k + 1, c) ∈ C which, by assumption, is the case for k + 1 ≤ n − j, implying
k + j ≤ n − 1. Thus, the indices of the added rows will be less than n, as claimed. If
j ≥ n, no rows are produced because of the join with table C: We have k + 1 > n− j ≤ 0

for any k. For (k, s) ∈ S and (k + 1, c) ∈ C, the newly created row with index k + j has
s ⊕ c =

⊕k
i=0 xi ⊕

⊕k+j
i=k+1 xi =

⊕k+j
i=0 xi, showing that invariant 1 holds. For (k, c) ∈ C

and (k+j, c′) ∈ C, each newly computed row (k, c⊕c′) for table C satisfies, by assumption,
c⊕ c′ =

⊕k+j−1
i=k xi⊕

⊕k+2j−1
i=k+j xi =

⊕k+2j−1
i=k xi and k+ j ≤ n− j, from which we conclude

k ≤ n− 2j as claimed in invariant 2.
Algorithm 7 starts with j = 1 and doubles j on each iteration of the loop. After

O(log n) iterations we have j > n at which time C is empty (invariant 2) and the loop
terminates. By invariant 1, S contains the result of the prefix computation at this time. We
have also established that both tables have at most n rows throughout the computation,
implying that total space usage is O(n) rows.



Chapter 3

A database assembly language

The Database Machine as defined in Chapter 2 has a small set of basic operations, but
allows the use of powerful “database” functions in them. In this chapter we define an
even simpler machine that can be regarded as a kind of assembly language for relational
databases, the Relational Machine. It uses only three “heavy” operations that require
communication between different table rows and otherwise offers data-parallel mapping
primitives with very basic functionality like increment, decrement and bit shift. The main
result of this chapter is that the Database Machine can be simulated by the Relational
Machine (Theorem 3.5.11).

3.1 Relational tables

The basic unit of computation in the Relational Machine is the relational table.

Definition 3.1.1. A relational table, for short rtable, is a set of rows. Each row is a pair
(k, v) where k is an s-tuple of nonnegative integers called the key tuple and v is a t-tuple
of nonnegative integers called the value tuple for some s, t ∈ N0. We refer to a 0-tuple as
an empty tuple and denote it by (). The tuple lengths s and t are the same for all rows of
an rtable; to specify them, we speak of an (s, t)-rtable. Tuple lengths can be different for
different rtables. Within an rtable, the key tuples k are unique whereas there is no such
restriction on the value tuples v. We call the collection of all elements at a fixed position
within either the key tuple or the value tuple of an rtable a column. An rtable is empty if
it has no rows, i.e. it is the empty set. The cardinality of an rtable is the number of rows,
i.e. its cardinality as a set.

Note that this definition implies that a relational table can be regarded as a function
mapping key tuples to value tuples.

Definition 3.1.2. Let T be an (s, t)-rtable. The row width of T is defined as

s∑
i=1

max
((k1,...,ks),v)∈T

dlog(ki + 1)e+
t∑

j=1

max
(k,(v1,...,vt))∈T

dlog(vj + 1)e.

The row width is defined in terms of the maximum value in each column so that it
equals the number of bits needed per row to store the whole rtable in a fixed-width format.

39
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3.2 Instruction set

In this section we define a set of operations for manipulating rtables. Together they
comprise the instruction set of the Relational Machine, which we will formally define in
Section 3.3. The Relational Machine has a set of registers, each storing an rtable, and
manipulates these registers with the instructions defined here. The variables A, B, and C
in the following definitions refer to (not necessarily distinct) registers.

3.2.1 Relational operations

The operations in this section take one or two rtables as an input and produce an rtable
with empty value tuples as an output. They have in common that they have to consider
multiple rows, whether in the same rtable or in different rtables, to compute their result.

• JOIN A,B,C: join rtables A and B on their value, storing the result in C. For
tuples a = (a1, a2, . . . , as) and b = (b1, b2, . . . , bt) let a++b denote the concatenation
(a1, a2, . . . , as, b1, b2, . . . , bt). Then this instruction performs

C ← {(a++ b, ()) | (a, va) ∈ A, (b, vb) ∈ B, va = vb}

• RANGE A: turn the set of values into keys and clear the values:

A← {(v, ()) | (k, v) ∈ A}

Note that this effectively eliminates duplicates since the result is a set, forcing the
key tuples to be unique.

• SINGLES A: erase all rows (k, v) of A for which v is not unique and set the value of
the remaining rows to the 0-tuple ():

A← {(k, ()) | (k, v) ∈ A such that v is unique among the values of A}

JOIN and RANGE are well-known relational operations. SINGLES could be expressed as an
SQL query; introducing it as a primitive out of which other operations can be constructed
is, to the best of our knowledge, a new idea. We will see in the remainder of this chapter
that these three relational primitives, together with the mapping primitives introduced
below, are enough to simulate all operations of the Database Machine. Note that SINGLES
cannot be expressed in terms of the other operations.

3.2.2 Mapping primitives

The operations in this section form the building blocks for computing arbitrary functions
on each row of an rtable in parallel. They modify an rtable A in place by applying the
same operation to each row.

We describe each instruction as a function applied to every row of A. All instructions
halt the machine if the number of key tuple elements or value tuple elements is not sufficient
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to carry out the operation. Note that all operations preserve the uniqueness of the key
tuples (only the first one modifies it at all).

Manipulating the key

• ROTK A: rotate key tuple to the left.

((k1, k2, . . . , ks), v) 7→ ((k2, . . . , ks, k1), v)

Key to value

• COPY A: copy first key element to value tuple.

((k1, k2, . . . , ks), (v1, v2, . . . , vt)) 7→ ((k1, k2, . . . , ks), (k1, v1, v2, . . . , vt))

Manipulating the value

• ROTV A: rotate value tuple left.

(k, (v1, v2, . . . , vt)) 7→ (k, (v2, . . . , vt, v1))

• SWAP A: swap first two elements of value tuple.

(k, (v1, v2, v3, . . . , vt)) 7→ (k, (v2, v1, v3, . . . , vt))

• INC A: increment first element of value tuple.

(k, (v1, v2, . . . , vt)) 7→ (k, (v1 + 1, v2, . . . , vt))

• DEC A: decrement first element of value tuple.

(k, (v1, v2, . . . , vt)) 7→

(k, (v1 − 1, v2, . . . , vt)) v1 > 0

(k, (v1, v2, . . . , vt)) v1 = 0

• SHIFT A: shift the least significant bit from the first value element into the second
value element.

(k, (v1, v2, v3, . . . , vt)) 7→ (k, (bv1/2c, 2v2 + (v1 mod 2), v3, . . . , vt))

• PUSH A: extend the value tuple by inserting a zero as the first element.

(k, (v1, v2, . . . , vt)) 7→ (k, (0, v1, v2, . . . , vt))

• POP A: remove the first element of the value tuple.

(k, (v1, v2, . . . , vt)) 7→ (k, (v2, . . . , vt))
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• CSWAP A: conditional swap. If the first value element is nonzero, swap the second
and third elements.

(k, (v1, v2, v3, v4, . . . , vt)) 7→

(k, (v1, v3, v2, v4, . . . , vt)) v1 6= 0

(k, (v1, v2, v3, v4, . . . , vt)) v1 = 0

• CINC A: conditional increment. If the first value element is nonzero, increment the
second element.

(k, (v1, v2, v3, . . . , vt)) 7→

(k, (v1, v2 + 1, v3, . . . , vt)) v1 6= 0

(k, (v1, v2, v3, . . . , vt)) v1 = 0

• CDEC A: conditional decrement. If the first value element is nonzero, decrement the
second element.

(k, (v1, v2, v3, . . . , vt)) 7→

(k, (v1, v2 − 1, v3, . . . , vt)) v1 6= 0 ∧ v2 6= 0

(k, (v1, v2, v3, . . . , vt)) otherwise

• CSHIFT A: conditional shift. If the first value element is nonzero, shift the least
significant bit from the second into the third element.

(k, (v1, v2, v3, v4, . . . , vt)) 7→

(k, (v1, bv2/2c, 2v3 + (v2 mod 2), v4, . . . , vt)) v1 6= 0

(k, (v1, v2, v3, v4, . . . , vt)) v1 = 0

The set of mapping primitives is small, but we are not aiming for minimality at all
cost. For example, the non-conditional operations are redundant, but it would clutter the
presentation to replace them with their conditional counterpart and force the condition to
be true.

3.2.3 Copying and constants

• MOV A,B: copy rtable A to rtable B.

B ← A

• TWO is a read-only (1, 0)-rtable containing the two rows (0, ()) and (1, ()).

• ONE is a read-only (0, 0)-rtable containing the row ((), ()). It can be computed by
simply applying RANGE to a copy of TWO, but is predefined for convenience.

3.2.4 Control flow

The following instructions change the control flow of the Relational Machine, to be defined
in Section 3.3.
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• JMP location: unconditional jump. Continue execution at location.

• JE A, location: conditional jump. Continue execution at location if A contains an
empty rtable. Otherwise, continue sequentially.

• JNE A, location: conditional jump. Continue execution at location if A contains a
nonempty rtable. Otherwise, continue sequentially.

• HALT: halt the machine.

3.3 The Relational Machine

We are now ready to define the Relational Machine.

Definition 3.3.1. A Relational Machine consists of a program to be executed and four
integer bounds r, l, c1, and c2. The program is a finite sequence of instructions from
the instruction set defined in Section 3.2, indexed by positive integers. The machine has
registers R1, . . . , Rr, each storing an rtable, and two built-in read-only rtables as described
in Section 3.2.3. A computation on the machine takes as input a single rtable and produces
as output a single rtable where information is encoded in the key tuples only, i.e. both input
and output rtables have the empty tuple () as value tuples. The input size is defined as
the cardinality of the input rtable. All registers start empty and the input is placed into
register R1. Execution starts at instruction 1 and continues at the following instruction
unless control is transferred to a different location by one of the jump instructions or the
machine halts. When the machine halts, register R1 must have empty value tuples and is
considered the output. Execution is constrained by the following rules, depending on the
input size n:

1. In any register, the maximum length of the key tuple and the maximum length of
the value tuple is l.

2. The row width of the input is not larger than c1 · log(n+ 2).

3. The row width of any register is not larger than c2 · log(n+ 2).

If any operation – including placing the input in register R1 – violates these rules, the
machine crashes and the output is undefined. An input that does not immediately crash
the machine is called valid.

When describing algorithms for the Relational Machine, we will use capital letters to
signify rtable registers. We assume that different letters stand for different registers and
that the total number of registers used is within the register bound r of the machine.

When we claim that a certain computation can be performed by a Relational Machine,
we claim that there exist bounds r, l, c1, and c2 such that the computation can be performed
within these bounds for any input size.

It is important to note that when speaking of solving problems on the Relational
Machine, the encoding has to be part of the problem specification. Take, for example, any
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problem where the input is a graph, given as an edge list. An edge is specified as a pair
of integers where each integer is a vertex identifier, so the problem can be encoded as a
two-column rtable. However, the constraint on the row width implies that the vertex IDs
cannot be chosen arbitrarily but have to be somewhat densely packed. If the vertex IDs of
an n-vertex graph were chosen as 2i for i = 1, . . . , n, the row width would be Θ(n) which is
not O(log n). In this case there is no Relational Machine that could even accept the input
for all problem sizes.

Definition 3.3.2. Let T, S : N0 → N0. A Relational Machine is said to compute in time
T (n) if it halts after executing at most T (n) instructions for any input of size n. It is said
to compute in space S(n) if for any input of size n the total number of rows in all registers
at any point in the computation is at most S(n).

Definition 3.3.3. We call a Relational Machine Big Data-practical if it runs, for any input
of size n, in polylogarithmic time and O(n) space. We call it Small Data-practical if it
runs in polylogarithmic time and polynomial space.

To facilitate the presentation of algorithms for the Relational Machine, we introduce a
notation using named columns. It will always be clear from the context whether a name
refers to a column of the key tuple or a column of the value tuple.

Definition 3.3.4. A labelled rtable is an rtable in which each column has a name. Column
names are unique within the key tuple and within the value tuple, but a value column can
have the same name as a key column. The constant TWO can be used as a labelled rtable
with the single key column named c. Table 3.1 defines macros for applying the mapping
primitives from Section 3.2.2 to labelled rtables. For labelled rtables A and B with the same
set of value column names, Join(A,B,C[replacements]) denotes executing JOIN A, B, C
on equality of values in columns with corresponding names. The key columns in C inherit
the names from A and B unless mentioned in replacements. replacements is a comma-
separated list of rules “newname ← A.oldname” or “newname ← B.oldname” specifying
how names from A or names from B are to be changed in the process, respectively, to make
all resulting key column names in C unique. Range(A) denotes executing RANGE A on a
named rtable, turning value column names into key column names. Singles(A) denotes
executing SINGLES A, keeping key column names.

Lemma 3.3.1. Labelled rtables can be implemented on a Relational Machine such that
each of the operations listed in Table 3.1 executes a bounded number of Relational Machine
instructions on an rtable A, independent of its size.

Proof. The Copy() operations are implemented as follows: For each key tuple element to
be copied, we use the ROTK operation to move that column to the first place, rotating the
list of names accordingly, and use COPY to copy it to the value tuple, assigning the same or
a new name to it as specified. Repeating this allows us to copy an arbitrary combination
of elements from the key tuple to the value tuple.

Likewise, we can rearrange the elements of the value tuple by using the ROTV and SWAP

instructions, again keeping track of the names along the way. It is well known that these
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Table 3.1: Notation for specifying Relational Machine operations on a labelled rtable A.
Each macro stands for applying a suitable combination of ROTK, ROTV, and SWAP to move
the specified columns to the beginning of the tuple and then applying the elementary
operation from Section 3.2.2 with the same name as the macro.

Macro Meaning

A.Copy(list) copy key columns to value tuple. list is a comma-separated list
where each item is either a key column name name or an
expression newname ← name, giving the copied column a new
name.

A.Copy(∗) copy all key columns to value tuple, keeping names
A.Swap(a, b) swap the values in value columns a and b
A.Inc(a) increment value column a
A.Dec(a) decrement value column a
A.Shift(a, b) shift LSB from value column a to column b
A.Push(a1, . . . , ak) create new value columns named a1, . . . , ak, initialised with 0
A.Pop(a1, . . . , ak) remove value columns a1, . . . , ak
A.CSwap(c, a, b) swap values in value columns a and b if c > 0
A.CInc(c, a) increment value column a if c > 0
A.CDec(c, a) decrement value column a if c > 0
A.CShift(c, a, b) shift LSB from value column a to column b if c > 0
A.Rename(b← a) rename column a to b; no operations executed

two operations are sufficient to create any desired permutation. All operations in Table 3.1
except Copy() and Rename() are implemented by permuting the value tuple such that the
specified columns appear at the beginning of the value tuple in the order specified. Then
the elementary operation of the same name is executed. Rename() executes no operations;
it merely renames a column for notational convenience.

Recall that in any Relational Machine, the lengths of the key and value tuple are
bounded by a constant. Hence, the number of ROTK instructions required for Copy() and
the number of ROTV and SWAP instructions required for the other macros is also bounded
by a constant.

Lemma 3.3.2. All operations listed in Table 3.1 increase a non-zero row width by at most
a constant factor.

Proof. The only operations that can increase the row width are COPY, INC, SHIFT, CINC,
and CSHIFT. COPY increases the row width by at most a factor of 2; this happens when it is
applied to a (1, 0)-rtable. The increment and shift instructions each increase the row width
by at most one bit which amounts, for a non-zero row width, to at most a factor of 2. The
macros in Table 3.1 execute a bounded number of these instructions by Lemma 3.3.1.

Labelled rtables offer a way to express operations on rtables without regard to the
order of tuple elements. For each of the macros specified in Table 3.1, the exact sequence
of elementary Relational Machine operations depends on the length of the tuple and the
order the columns are currently in. We usually do not care about the specifics, only that the
number of instructions executed is bounded by a constant as guaranteed by Lemma 3.3.1.
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Figure 3.1: Example of a sequence of operations denoted by A.CShift(l, left , right) under
the assumption that the value tuple starts with columns in the order (k, q, left , right , l).

instruction new value tuple

(k, q, left , right , l)
ROTV A (q, left , right , l, k)
ROTV A (left , right , l, k, q)
ROTV A (right , l, k, q, left)
SWAP A (l, right , k, q, left)
ROTV A (right , k, q, left , l)
ROTV A (k, q, left , l, right)
ROTV A (q, left , l, right , k)
ROTV A (left , l, right , k, q)
SWAP A (l, left , right , k, q)
CSHIFT A (l, left , right , k, q)

See Figure 3.1 for an example of executing CShift(l, left , right) on a labelled rtable A. If
we were to execute the same macro again immediately, it would not require any ROTV or
SWAP instructions since the columns are already in the correct order. In this case, it would
just expand to CSHIFT A.

The notation introduced in Table 3.1 is chosen to resemble method calls in an object-
oriented programming language. We use it only for macros that modify an rtable in place
by executing a constant number of operations that manipulate the value tuple only (except
for Copy(), which also rearranges key tuple columns, but does not change their content).

Three more macros of this kind will be useful. The sequence of operations given as
Algorithm 8 and denoted as A.Not(b) negates a Boolean value in value column b with the
usual convention that a nonzero integer represents true and zero represents false. The
sequence given as Algorithm 9 and denoted as A.CZ(c, v) conditionally sets a column v to
zero if column c is nonzero.

Algorithm 8 A.Not(b): Negate a Boolean value in value column b
1: A.Push(temp)
2: A.Inc(temp)
3: A.CDec(b, temp)
4: A.Pop(b)
5: A.Rename(b← temp)

Algorithm 9 A.CZ(c, v): Set v = 0 if c > 0

1: A.Push(temp)
2: A.CSwap(c, v, temp)
3: A.Pop(temp)

By using the shift and increment instructions, an arbitrary constant can be created in
a new value column using a constant number of instructions as shown in Algorithm 10. We
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write this as A.Constant(name ← value). In order to present such a sequence of instruc-
tions depending on one or more constant parameters, we introduce the following meta-
programming constructs to describe how to generate it: a block surrounded by expand
if is to be generated only under the given condition and otherwise ignored. An unroll
for block indicates a sequence of copies of this block where a pseudo-variable takes the
values specified. For added clarity, we will highlight meta-instructions, i.e. instructions
that describe how to generate a fixed sequence of operations as opposed to instructions to
be carried out at runtime, in blue.

Algorithm 10 A.Constant(name ← value)

1: A.Push(name)
2: A.Push(temp)
3: expand if value > 0
4: unroll for i = blog valuec downto 0
5: A.Shift(temp,name)
6: expand if bit i of value is set
7: A.Inc(name)
8: end expand if
9: end unroll for
10: end expand if
11: A.Pop(temp)

When presenting algorithms for the Relational Machine, we will use the notation

procedure ProcedureName(A[structureA], B[structureB], . . .)
. . . operations on labelled rtables . . .
return R[structureR]

end procedure

to describe the table structure of the input and output of the algorithm. structureA is of
the form ((kname1, . . . , knames), (vname1, . . . , vnamet)) and assigns the specified names to
the columns of A; likewise for other rtables mentioned. This turns an rtable into a labelled
rtable so that the notation in Table 3.1 can be used to describe the algorithm without
explicitly keeping track of the order of the columns. The return statement describes
the order in which to arrange the tuple elements before dropping the names, turning the
result back into an (unlabelled) rtable. All rtable names not mentioned as input or output
rtables are assumed to be in unique rtable registers not conflicting with anything else. For
aesthetic reasons, we write B ← A instead of MOV A, B.

3.4 Basic relational techniques

In this section we show how to perform some basic manipulations of rtables on a Relational
Machine and present them as a series of short algorithms. These algorithms will serve as
building blocks in the next section to demonstrate how to simulate a Database Machine
on a Relational machine. Each algorithm is considered to be part of a larger Relational
Machine program.
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3.4.1 Time

For the remainder of this section, we assume that n is the input size of the whole ma-
chine. The term time refers to the number of Relational Machine instructions as defined
in Definition 3.3.2. We say an algorithm uses constant time if the number of instructions
it executes is bounded by a constant independent of n. The number of instructions may
depend on other factors such as the tuple length of an rtable, but this is always bounded
by a constant by definition of the Relational Machine. Likewise, when we say an algorithm
takes polylogarithmic time or time O(log n), we are always referring to the overall input
size n of the whole machine and not just the input size of the algorithm in question.

3.4.2 Frugality

The following definition will be useful to keep track of temporary resource usage.

Definition 3.4.1. An algorithm for the Relational Machine, taking one or more rtables
as input and producing one or more rtables as output, is said to be frugal if it meets the
following criteria:

• The number of registers used for temporary data in addition to input and output is
bounded by a constant.

• The tuple length of all rtables involved in the computation is linear in the maximum
tuple length among the input and output rtables.

• The row width of all rtables involved in the computation is linear in the maximum
row width among the input and output rtables.

• The sum of the cardinalities of all rtables involved in the computation is linear in
the sum of the cardinalities of all input and output rtables.

Note that the composition of two frugal algorithms is not necessarily frugal. For ex-
ample, consider a (1,0)-rtable A and the one-line “algorithm” JOIN A, A, A. It creates a
(2,0)-rtable containing the Cartesian product of A with itself. The result has |A|2 rows,
but the algorithm is still frugal since the space used is equal to the size of the output.

As a second algorithm, consider the following instruction sequence that takes a (2, 0)-
rtable as input and produces a (1, 0)-rtable as output: COPY A; RANGE A. This is the
projection on the first column. The result is at most as large as the input and no temporary
rtables are used, so the algorithm is frugal. The composition of these two algorithms is
the identity on the input rtable A. It is not frugal since both the input and output size
are |A| but the temporary space usage is |A|2.

Since frugality is not compositional, it does not directly replace space complexity, but
it will be an important tool to structure our proofs of space bounds on Relational Machine
programs composed of smaller algorithms. Recall that when we claim that something
can be computed by a Relational Machine using space S(n), we also implicitly claim the
existence of the constants r, l, c1, and c2 from Definition 3.3.1 that globally bound the
number of registers, tuple lengths, and row width.
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In the remainder of this chapter we will present constructions that combine several
frugal algorithms. To show that the overall program uses space O(S(n)) we will establish
that it adheres to this space bound after each step. Frugality then guarantees that this
is also true for the temporary space used by each step. By the same argument, we will
observe that intermediate results will stay within the bounds r, l, and c2 at each step.
Frugality then guarantees that there exist constants r′, l′, and c′2 such that the overall
program runs within these bounds: r′ needs to be larger than r by at most a constant and
the bounds l′ and c′2 need to be larger than their counterparts by at most a constant factor
to accommodate the temporary requirements of the constituent algorithms.

3.4.3 Disjoint union

The union of two rtables can be formed if both have the same tuple lengths. It will be
useful as a building block for future operations to combine the rows of two rtables into
one without removing duplicates, using additional key columns to allow this. We call this
the disjoint union. Algorithm 11 forms the disjoint union of two nonempty (s, 0)-rtables
A and B and leaves the result in the value tuple of A. We denote this operation as

DisjointUnion(A,B).

Following this by Range(A) yields the (set) union in the key tuples of A.

Algorithm 11 DisjointUnion(A,B)

1: procedure DisjointUnion(A[((a1, . . . , as), ())], B[((b1, . . . , bs), ())])
2: Join(TWO, A,A) . add a column c (TWO has structure ((c), ()))
3: A.Copy(∗)
4: unroll for i = 1, . . . , s
5: A.CZ(c, ai)
6: end unroll for
7: Range(A)
8: Join(TWO, B,B)
9: B.Copy(∗)

10: unroll for i = 1, . . . , s
11: B.CZ(c, bi)
12: end unroll for
13: B.Not(c)
14: Range(B)
15: A.Copy(c)
16: B.Copy(c)
17: Join(A,B,A[c← A.c, c′ ← B.c])
18: A.Copy(c, a1, . . . , as, b1, . . . , bs) . omitting c′

19: unroll for i = 1, . . . , s
20: A.CSwap(c, ai, bi)
21: A.Pop(bi)
22: end unroll for
23: A.Pop(c)
24: return A[((c, a1, . . . , as, c

′, b1, . . . , bs), (a1, . . . , as))]
25: end procedure
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Lemma 3.4.1. Let s be an integer and A and B two distinct registers, each containing
a nonempty (s, 0)-rtable. Then Algorithm 11 returns in the value tuples of A the disjoint
union of the key tuples of the inputs A and B with duplicates differentiated by distinct key
tuples. The key tuples have the form (c, a1, . . . , an, c

′, b1, . . . , bs) where c = c′ ∈ {0, 1}. For
c = 0 the ai correspond to an original tuple from A and for c = 1 the bi correspond to an
original tuple from B. The algorithm is frugal and takes constant time.

Proof. The idea for forming the disjoint union of two rtables is to use a join to bring the
two together into a single rtable. In order to do that, we add an extra row to both rtables
and join them in such a way that the extra row of A matches the original rows of B and
vice versa.

For nonempty A, joining with TWO doubles all rows of A, adding an extra key tuple
element c ∈ {0, 1}. We then copy the key tuple to the value tuple, yielding a value tuple
(c, a1, . . . , as). After conditionally setting all ai to zero and applying Range(A), register
A contains rows (0, a1, . . . , as) for all original key tuples (a1, . . . , as) and one extra row
(1, 0, . . . , 0). The procedure is repeated for B with a negated c column, yielding a row
(1, b1, . . . , bs) for each original key tuple (b1, . . . , bs) and one extra row (0, 0, . . . , 0).

After joining A and B on c, register A contains key tuples (c, a1, . . . , an, c
′, b1, . . . , bs)

where the ai correspond to an original tuple from A for c = c′ = 0 and the bi correspond to
an original tuple from B for c = c′ = 1, as claimed. By using conditional swap instructions,
the algorithm moves all original tuples to the ai and then deletes all remaining columns.
The value tuples of A now contain the disjoint union of the original key tuples of A and B
as claimed.

All macros used in the algorithm take constant time. Some are repeated s times, but
s is bounded by the maximum tuple length of the machine and independent of the overall
input size n. Therefore the algorithm takes constant time, as claimed.

All steps of the algorithm are frugal. No temporary registers are used and tuple lengths
are at most 2s+2. The largest row width occurs on line 18. If w is the maximum row width
among the input rtables A and B, the row width after line 18 is at most 4w+ 3 (2w+ 2 in
the key tuple and 2w+1 in the value tuple). The number of rows in A and B is temporarily
doubled before it is reduced again and the result is produced. The cardinalities of all rtables
involved are therefore linear in the cardinality of the input. Overall, this establishes that
the algorithm is frugal, as claimed.

3.4.4 Creating literals

We now show how to create literal rtables.

Lemma 3.4.2. An rtable with arbitrary content in the key tuples can be created on a
Relational Machine by a frugal sequence of operations taking constant time.

Proof. By starting with the single-row rtable ONE and repeatedly adding constant columns,
a single-row rtable with an arbitrary value tuple can be created. The RANGE operation
moves the value tuple to the key tuple. To construct an rtable with multiple rows, we start
by creating a single-row rtable in A. For each additional row, we create that row in B
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and execute DisjointUnion(A,B); Range(A) to add it to A. Since this whole procedure
involves a constant number of constant-time operations, the overall time is constant. All
steps are frugal and all intermediate results are at most as large as the end result (in all
four required dimensions: register count, tuple length, row width, and space), establishing
that the overall sequence is frugal.

3.4.5 Scalar variables and loops

In order to execute a loop for a non-constant number of iterations, we need a way to count
iterations and stop at the desired count.

Definition 3.4.2. A scalar variable is a (1, 0)-rtable with a single row, storing a single
integer. We denote scalar variables in algorithms with lower case letters. When used in
the context of a labelled rtable, we assume that the single key column has the same name
as the scalar variable. For a scalar variable s and a constant c we denote by s← s+ c and
s← s− c the sequence of Relational Machine instructions to increment or decrement s for
c times.

Lemma 3.4.3. A scalar variable can be tested for equality with another scalar variable
or a constant on a Relational Machine by a frugal sequence of operations taking constant
time.

Proof. The idea is that joining two single-row rtables yields a non-empty result if and only
if the values are equal. Let s and t two scalar variables to be tested for equality. The
sequence U ← s; U.Copy(s); V ← t; Copy(V, s← t); Join(U, V, U) yields the empty rtable
in U if the integer in s is not equal to t and a single-row rtable in case of equality. To
test for equality with a constant c instead of another scalar, we construct the temporary
rtable V by executing V ← ONE; Constant(V, s ← c). In both cases, a conditional jump
instruction can be used to change control flow based on the result of the test.

The algorithm uses two temporary registers, does not increase tuple length, at most
doubles the row width and uses two additional rows of space, making it frugal. By con-
struction, it takes constant time.

We will use common notation like repeat . . .until scalar = value in pseudocode to
indicate the use of this technique for changing control flow based on the value of a scalar
variable.

3.4.6 Testing for all-zero columns

For the next tasks we need to be able to test if a subset of columns c1, . . . , ck of an rtable
A contains zeros in all rows. We will denote this test as

AllZero(A, c1, . . . , ck)

and allow ourselves to use it in pseudocode in control structures like repeat/until with
the understanding that it can be implemented using the conditional jump instructions of
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the Relational Machine. The statements return true and return false in Algorithm 12
indicate the appropriate use of conditional jump instructions, not the return of Boolean
values.

Lemma 3.4.4. Let A be a labelled rtable with zero-length value tuples and let c1, . . . , ck be
a subset of the key columns. Then Algorithm 12 determines if A contains zeros in all rows
of all specified columns. It is frugal and takes constant time.

Proof. The condition is trivially true for an empty input rtable, which is tested first. For
nonempty input, the algorithm first creates in U a copy of the input rtable A and eliminates
all columns except the ones to be tested. After a RANGE operation, U contains a single row
with all zeros if our condition is true; otherwise, it contains one or more rows of not all
zeros. Note that U is a key-only rtable and thus does not contain duplicate rows. Using
DisjointUnion(), the algorithm adds a single row of zeros to U and executes Singles(U).
If U was the single-row zero rtable, the result will be the empty rtable, otherwise at least
one nonzero row remains. The condition can then be tested by testing if U is empty.

Each line takes constant time and is frugal by Lemma 3.3.1 and Lemma 3.4.1, so the
algorithm takes constant time. It uses two temporary registers, does not increase tuple
length, at most doubles row width and uses |A| + 1 additional rows, making it frugal
overall.

Algorithm 12 AllZero(A, c1, . . . , ck): Test if A has only zeros in all columns specified
1: procedure AllZero(A, c1, . . . , ck)
2: if A is empty then
3: return true
4: else
5: U ← A
6: U.Copy(c1, . . . , ck)
7: Range(U)
8: V ← ONE
9: V.Push(c1, . . . , ck)
10: Range(V )
11: DisjointUnion(U, V )
12: Singles(U)
13: if U is empty then
14: return true
15: else
16: return false
17: end if
18: end if
19: end procedure

3.4.7 Turing Machines

In the next section we will show how the Relational Machine can simulate the map oper-
ation of a Database Machine. Recall that this operation requires the notion of a database
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function, which we only introduced informally in Section 2.2. In order to define it formally,
we need to settle on a specific flavour of Turing Machine. Turing Machines hardly need an
introduction. In his seminal work [95], Turing has shown that Turing Machines are univer-
sal, i.e. they can simulate the execution of any Turing Machine on any input string. The
Church-Turing thesis informally states that any function that can be effectively computed,
i.e. described as an algorithm, can be computed by a Turing Machine.

There are many possible definitions of a Turing Machine differing in details like the
number of tapes, kinds of tapes, tape alphabet, and input alphabet. Most of them can
simulate each other with polynomial overhead [8]. For the purposes of this thesis, we define
a Turing Machine as follows.

Definition 3.4.3. A Turing Machine is a finite automaton equipped with a tape as mem-
ory. The tape consists of an infinite sequence of cells extending to the right of the starting
cell. Each cell stores a symbol from a tape alphabet. At each step the machine examines
the symbol under the head. Depending on the symbol read and the current state, it writes
a new symbol to the current head position and moves the head left or right or leaves it in
place. The tape is one-sided infinite. If the machine tries to move the head left from the
leftmost cell, it will stay in place.

This is formally described by a tuple (Γ, Q, δ) consisting of

• A tape alphabet Γ that includes a designated blank symbol “␣”. We assume that
Γ = {0, 1, ␣}.

• A finite setQ of states the machine can be in. We assume thatQ is a set of consecutive
integers starting at 0.

• A transition function δ : Q \ {0} × Γ → Q × Γ × {L, S,R} describing the rules to
perform each step. Its input is the current state, along with the symbol under the
head. The output comprises the new state, the symbol to be written to tape, and the
movement of the head where the symbols L, S, and R stand for left, stay in place,
and right, respectively.

Input and output are strings over the alphabet Σ = {0, 1}. At the beginning of the
computation the tape contains the input string followed by an infinite sequence of “␣”.
The machine starts in state 1 with the head positioned on the first input symbol. The
machine halts when it reaches state 0. The string at the beginning of the tape up to and
excluding the first blank symbol is considered the output.

In order to define functions f : N0 → N0, we will use the following encoding.

Definition 3.4.4. Let x ∈ N0 be a nonnegative integer. The string encoding of x is the
binary representation of (x + 1) with the most significant 1 removed. When used as an
input for a Turing Machine, it is written to the tape in big-endian order, i.e. with the most
significant bit in the leftmost tape cell.

For example, the integer zero is encoded as the empty string “ ” and one is encoded
as the string “0”. The integer 18 is encoded as “0011” (the binary representation of 19
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is 100112). This slightly unusual encoding was chosen to establish a bijection between the
nonnegative integers and the set of all strings over Σ. We could have worked with just
writing the standard binary representation to the tape, but then leading zeros would allow
for multiple string representations of the same integer.

Lemma 3.4.5. The string encoding of nonnegative integers is a bijective map from N0

to Σ∗.

Proof. The mapping is clearly injective since different integers have different binary rep-
resentations. It is also surjective, since by taking any string s ∈ Σ∗ (including the empty
string), prepending a one and interpreting it as the binary representation of an integer, we
get a positive integer y. Then y − 1 is a nonnegative integer with string encoding s.

Definition 3.4.5. A function f : N0 → N0 is called a database function if there exists a a
Turing MachineM such that

1. M uses time polynomial and space linear in the length of its input string;

2. when M halts, the head is on the leftmost tape cell and there are no nonblank
symbols on the tape after the first blank;

3. f can be computed by running M on the string encoding of the input value and
applying the inverse of string encoding to the resulting string.

To extend this definition to higher-arity functions, we pack multiple integers into a
single integer by interleaving their bits.

Definition 3.4.6. Let x1, . . . , xs ∈ N0 be integers and let xi =
∑

j xi,j2
j be their binary

representation with xi,j ∈ {0, 1}. Then the result of zipping them is the integer y =∑
k yk2

k where yk = xi(k),j(k) with i(k) = (k mod s) + 1 and j(k) = bk/sc. We also call
the integers x1, . . . , xs the result of unzipping y into s integers.

Definition 3.4.7. Let k, l ∈ N. A function f̃ : Nk0 → Nl0 is called a database function if
there exists a database function f : N0 → N0 and f̃ can be computed by performing the
following steps:

1. Zip the input k-tuple into a single integer x.

2. Compute y = f(x).

3. Unzip y into an l-tuple.

We call f the underlying database function.

Note that this definition agrees with Definition 3.4.5 for k = l = 1.
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3.4.8 Universal mapping

In this section we show how to compute an arbitrary database function on a Relational
Machine.

Theorem 3.4.6. Let f : N0 → N0 be a database function. Let A be a labelled (s, 0)-rtable
with key tuples (k1, . . . , ks−1, x) such that the sub-tuples (k1, . . . , ks−1) are unique within
the rtable. Then the result of mapping f over column x, i.e. replacing x by f(x) in each
row of rtable A, can be computed by a frugal algorithm on a Relational Machine using time
polylogarithmic in the input size of the machine.

Proof. We demonstrate how to simulate running a copy of the Turing Machine computing
the function in each row of the input rtable. The following is an outline of the construction:

• Encode the input column x as a tape (Algorithm 13).

• Create a literal rtable describing the transition function.

• Repeat executing a Turing Machine step until all machines have halted (Algorithm 14).

• Decode the output on the tape as an integer (Algorithm 15).

Let M = (Γ, Q, δ) be the Turing Machine that computes the function f . In order to
simulate a one-sided infinite tape, we augment the tape alphabet by a start symbol “.”
and simulate a Turing MachineM′ = (Γ′, Q, δ′) with Γ′ = {␣, 0, 1, .} and

δ′(q, γ) =

(q, .,R) γ = .

δ(q, γ) otherwise.

We run the simulation on a two-sided infinite tape that has a start symbol in the cell to
the left of the starting position of the head. The augmented transition function δ′ simply
moves the head one cell to the right whenever it encounters the start symbol, thereby
preserving it and simulating a machine that cannot move its head off the left end of the
tape.

The tape is encoded as a pair of integers (left, right) where right contains the symbols
under and to the right of the head and left contains the symbols to the left of the head.
Each symbol is encoded as a 2-bit integer according to Table 3.2 with the least significant
bits containing the symbols closest to the head. The encoding has the order of the two bits
reversed between left and right so that the head can simply be moved one cell by executing
two shift instructions of the relational machine. Note that the blank symbol “␣” is encoded
as zero so that right can be interpreted as an infinite tape with all blank symbols to the
right of any nonblank symbols.

Algorithm 13 turns x into a Turing Machine configuration with the string encoding
of x (see Definition 3.4.4) on the tape and the machine in its initial state 1. Inside the
loop, it extracts the least significant bit from x and computes its complement (recall from
Table 3.2 that the 2-bit encoding of the symbols “0” and “1” consists of the corresponding
binary digit and its complement). The conditional shift instructions on line 10 then shift
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Table 3.2: Encoding of Turing Machine symbols as 2-bit integers.

symbol encoding encoding
left right

␣ 0 (002) 0 (002)
0 1 (012) 2 (102)
1 2 (102) 1 (012)
. 3 (112) 3 (112)

these two bits into right , but only if x 6= 0. This stops the shifting once all but the most
significant 1 of the input value has been shifted onto the tape and allows a single loop
manipulating all rows in parallel to shift an individual number of bits onto the tape in
each row. The loop ends when all values have been fully encoded. The algorithm finishes
by putting the encoded start symbol into left and the initial Turing Machine state 1 into q.

Algorithm 13 TMEncode(A): Prepare simulation of Turing Machine
1: procedure TMEncode(A[((k1, . . . , ks−1, x), ())])
2: A.Copy(∗)
3: A.Push(right)
4: A.Inc(x)
5: Range(A)
6: repeat
7: A.Copy(∗)
8: A.Push(bit); A.Shift(x, bit) . extract next bit
9: A.Constant(bit ← 1); A.CDec(bit , bit) . compute inverse
10: A.CShift(x, bit , right); A.CShift(x, bit , right) . write encoded bit if x 6= 0
11: A.Pop(bit , bit)
12: Range(A)
13: until AllZero(A, x)
14: A.Copy(k1, . . . , ks−1, right)
15: A.Constant(q ← 1) . initial state for TM is 1
16: A.Constant(left ← 3) . write encoded start symbol “ .” left of head
17: Range(A)
18: return A[((k1, . . . , ks−1, q, left , right), ())]
19: end procedure

Recall that if a Relational Machine is run with an input of size n, the machine’s row
width can be at most O(log n). This bounds the length of the string encoding of x.
Therefore the number of iterations of the loop in Algorithm 13 and hence the overall time
is O(log n). The algorithm executes a sequence of frugal operations, uses no additional
registers, does not increase tuple length beyond the output tuple length and the size of A
stays constant throughout. Since each bit of x is encoded as two bits, the row width stays
linear in the input row width. Overall, this establishes that Algorithm 13 is frugal.

The transition function is encoded as an rtable T as follows: For each q ∈ Q \ {0}
and γ ∈ Γ′ we generate a row with key tuple (in, cmd) where in encodes the input of
the transition function and cmd encodes the output. Let c be the integer encoding of γ
according to the left column of Table 3.2, let (q′, γ′, d) = δ′(q, γ) and let c′ be the integer
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encoding of γ′, again according to the left column of Table 3.2. Then

in = 4q + c

cmd = 16q′ + c′ +


0 d = S

4 d = L

8 d = R

For state 0 and each input symbol, we add a no-op row that writes the same symbol back
and leaves the head in the same position. This ensures that executing additional steps from
the halt state will not change the configuration of the machine. It is important because we
are going to simulate an rtable of Turing Machines running in parallel, and they may each
run for a different number of steps. By Lemma 3.4.2, the literal rtable T can be generated
in constant time using a frugal algorithm. We then execute T.Copy(in) to prepare T for
use in Algorithm 14.

Algorithm 14 now simulates running the Turing Machines. This involves a loop that
terminates once all machines have reached their halting state q = 0. Each iteration simu-
lates executing one step. First, the encoded input to the transition function is computed
by setting in to the state q and then shifting two bits from right into in. A is then joined
with rtable T to look up the value of the transition function. Since T encodes a function,
the number of rows in A stays the same. The encoded result of the transition function,
cmd , contains the new state augmented by four bits and is renamed to q. After removing
the symbol under the head from right , the two low order bits are shifted into right to write
the new symbol. The next bit encodes whether to move the head left, and conditional shift
instructions (line 13) perform that movement. Line 16 conditionally moves the head right
depending on the next command bit. The new state remains in q.

Algorithm 14 consists of frugal operations, each taking constant time. Thus, each
iteration of the loop takes constant time. The number of iterations is the maximum
number of steps any of the simulated Turing Machines executes. Since f is assumed to be
a database function, the Turing Machines take polynomial time in their input size, which
in turn is O(log n) in relation to n, the input size of the Relational Machine. Hence, the
time is polylogarithmic in n, as claimed.

The number of rows in A stays constant throughout the algorithm. No temporary
registers are used, and the tuple length is only increased by a constant. Since f is assumed
to be a database function, we know that the Turing Machine use spaces linear in its input.
The representation of the Turing Machine tape in the integers left and right uses twice
that number of bits plus two bits for the start symbol. Hence, the row width stays linear
in the input row width, establishing that Algorithm 14 is frugal overall.

After all Turing Machines have halted, the output is in right and it remains to decode
the output as shown in Algorithm 15. This is a straightforward reversal of the encoding
process. Initialise x = 1, the leading one dropped during encoding. Successively shift bits
from right to x if right 6= 0 until all right = 0. Finally, decrement x and return the output
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Algorithm 14 TMRun(A, T ): Run a Turing Machine simulation
1: procedure TMRun(A[((k1, . . . , ks−1, q, left , right), ())], T [((in, cmd), (in))])
2: repeat
3: A.Copy(in ← q, right)
4: A.Shift(right , in); A.Shift(right , in) . read symbol under head
5: A.Pop(right)
6: Join(A, T,A) . look up transition function
7: A.Copy(k1, . . . , ks−1, q ← cmd , left , right) . omitting in
8: A.Push(temp)
9: A.Shift(right , temp); A.Shift(right , temp) . erase symbol under head

10: A.Pop(temp)
11: A.Shift(q, right); A.Shift(q, right) . write new symbol
12: A.Push(l); A.Shift(q, l);
13: A.CShift(l, left , right); A.CShift(l, left , right) . conditionally move head left
14: A.Pop(l)
15: A.Push(r); A.Shift(q, r)
16: A.CShift(r, right , left); A.CShift(r, right , left) . conditionally move head right
17: A.Pop(r)
18: Range(A)
19: until AllZero(A, q) . until all machines have halted
20: return A[((k1, . . . , ks−1, q, left , right), ())]
21: end procedure

Algorithm 15 TMDecode(A): Decode Turing Machine Tape as an integer
1: procedure TMDecode(A[((k1, . . . , ks−1, q, left , right), ())])
2: A.Copy(k1, . . . , ks−1, right)
3: A.Constant(x← 1) . leading 1 was dropped from x in encoding
4: Range(A)
5: repeat
6: A.Copy(∗)
7: A.CShift(right , right , x) . extract bit to x
8: A.Push(temp)
9: A.CShift(right , right , temp) . dispose of bit
10: A.Pop(temp)
11: Range(A)
12: until AllZero(A, right)
13: A.Copy(k1, . . . , ks, x)
14: A.Dec(x) . undo increment from encoding
15: return A[((k1, . . . , ks−1, x), ())]
16: end procedure
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in the desired format. By the same reasoning as for the encoding process, this is frugal
and takes time O(log n).

Overall, this proves the theorem’s claims on time and space.

This shows how to compute a unary function f : N0 → N0 by simulating a Turing
Machine. To extend this to higher-arity functions, we pack multiple integers into a single
integer by interleaving their bits.

Lemma 3.4.7. Let A be a labelled rtable with empty value tuple and let x1, . . . , xs be a
subset of the key columns. Then Algorithm 16 replaces columns x1, . . . , xs by a column
x containing in each row the result of zipping the integers in these columns (see Defini-
tion 3.4.6). Algorithm 17 performs the inverse unzipping operation. Both operations are
bijections, leaving the number of rows in A unchanged. Both algorithms are frugal and take
time O(log n).

Algorithm 16 ZipColumns(A, x1, . . . , xs, x): Replace key columns x1, . . . , xs by a new
key column x that contains the result of zipping the integers in x1, . . . , xs
1: procedure ZipColumns(A, x1, . . . , xs, x)
2: A.Copy(∗)
3: A.Constant(temp ← 1) . marker for reversing bit order
4: A.Push(x, b)
5: Range(A)
6: while not AllZero(A, x1, . . . , xs) do
7: A.Copy(∗)
8: unroll for i = 1, . . . , s
9: A.Shift(xi, temp)

10: end unroll for
11: Range(A)
12: end while
13: while not AllZero(A, temp) do
14: A.Copy(∗)
15: A.Shift(temp, b) . now temp = 0 iff b is the marker bit
16: A.CShift(temp, b, x)
17: unroll for i = 2, . . . , s
18: A.CShift(temp, temp, x)
19: end unroll for
20: Range(A)
21: end while
22: A.Copy(∗)
23: A.Pop(x1, . . . , xs, temp, b)
24: Range(A)
25: end procedure

Proof. Each iteration of the loop at line 6 of Algorithm 16 shifts one bit from each xi into
temp, interleaving them as desired. Note that the while loop terminates only after all
nonzero bits from all rows have been shifted, ensuring that the same number of shifts are
executed for all rows and columns. After the loop, temp contains the interleaved bits in
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Algorithm 17 UnzipColumns(A, x, x1, . . . , xs): Replace the key column x by key columns
x1, . . . , xs containing the result of unzipping the integer in x. This operation is the inverse
of ZipColumns(A, x1, . . . , xs, x).
1: procedure UnzipColumns(A, x, x1, . . . , xs)
2: A.Copy(∗)
3: A.Constant(temp ← 1) . marker for reversing bit order
4: A.Push(x1, . . . , xs, b)
5: Range(A)
6: while not AllZero(A, x) do
7: A.Copy(∗)
8: unroll for i = 1, . . . , s
9: A.Shift(x, temp)

10: end unroll for
11: Range(A)
12: end while
13: while not AllZero(A, temp) do
14: A.Copy(∗)
15: A.Shift(temp, b) . now temp = 0 iff b is the marker bit
16: A.CShift(temp, b, xs)
17: unroll for i = s− 1, s− 2, . . . , 1
18: A.CShift(temp, temp, xi)
19: end unroll for
20: Range(A)
21: end while
22: A.Copy(∗)
23: A.Pop(x, temp, b)
24: Range(A)
25: end procedure
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reverse order with the most significant bit of xs in its least significant bit. The next while
loop reverses the bit order by shifting all bits from temp into the result column x.

In order to know the correct number of iterations for this loop, temp was initialised
with 1 as a marker. Line 15 first extracts one bit from temp into b. At this point we have
temp = 0 if and only if b was the marker bit. The following conditional shift instructions
shift exactly s bits into x, but only if this was not the marker, thereby removing the marker
from the result. The result has all the bits from the xi in the correct order and the input
and temporary columns are removed to obtain the result.

The algorithm executes only frugal constant-time operations. Since the row width
is O(log n), the number of iterations and hence the number of operations in each loop is
O(log n). The number of rows in A stays constant throughout the algorithm. No temporary
registers are used and tuple lengths are temporarily only increased by a constant. The row
width increases by at most a constant factor with the worst case being a factor of s when
zipping a nonzero column xs with the remaining columns of width zero. Since the row
width of the result is linear in the input row width and bits are shifted to the result one by
one, the row width stays linear in the input row width throughout, making the algorithm
frugal overall.

Algorithm 17 undoes the operation of Algorithm 16 by first pushing a marker bit and
reversing the bits in the input column. In the second loop, note that after executing line 15,
we have temp = 0 if and only if the marker bit has been shifted into b. If this is not the
case, all of the following s conditional shift instructions will be executed since the marker
is s or more bits away – each iteration of the second loop either shifts one bit into each of
the xi or none of them. On the last iteration of the loop, the conditional shift instructions
do not shift. By the same arguments as for Algorithm 16, Algorithm 17 is frugal and takes
time O(log n) as claimed.

Since the two operations are inverses of each other, they are both bijective and preserve
the number of rows in A, regardless of the presence of any other columns.

Theorem 3.4.8. Let f : Nl0 → Nm0 be a database function. Let A be a labelled (s, 0)-rtable
with key tuples (k1, . . . , ks−l, x1, . . . , xl) such that the sub-tuples (k1, . . . , ks−l) are unique
within the rtable. Then the result of mapping f over the columns xi, i.e. replacing the
sub-tuple (x1, . . . , xl) by the m-tuple f(x1, . . . , xl), can be computed by a frugal algorithm
on a Relational Machine using time polylogarithmic in the input size of the machine.

Proof. Let n be the input size of the Relational Machine. We first combine the input
columns into one column using ZipColumns(A, x1, . . . , xl, x). By Lemma 3.4.7, this is
frugal and takes O(log n) operations. The function is then computed as a function of
a single integer. By Theorem 3.4.6, this is frugal and takes time polylogarithmic in n.
Next, we split the result into the desired columns using UnzipColumns(A, x, x1, . . . , xl).
By Lemma 3.4.7, this is frugal and takes O(log n) operations.

The three steps do not use additional registers and keep the number of rows in A

constant. Tuple length does not increase. Row width increases by at most a factor of l by
the zipping operation. Since f is a database function, it stays linear during the function
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application. The final unzipping operation cannot further increase the row width. This
establishes that the algorithm is frugal.

3.4.9 Filter for zeros

For the following, we require another helper operation: selecting all those rows of an rtable
that have a zero in a specified column.

Lemma 3.4.9. Given a labelled (s, 0)-rtable A with a column c, Algorithm 18 removes
from A all rows that have a nonzero value in column c. It is frugal and takes constant
time.

Proof. In a helper register U , the algorithm creates a single-row (0, 1) rtable with a zero
in the value tuple. Joining this with the input A on column c keeps only the desired rows
in A, not adding any columns to the key tuple since the key tuple of U is empty. The
number of rows in A cannot increase since each row in A matches at most the single row
in U . So the algorithm is frugal and takes constant time as claimed.

Algorithm 18 FilterZero(A, c): Keep only rows with a zero in column c
1: procedure FilterZero(A, c)
2: U ← ONE
3: U.Push(c)
4: A.Copy(c)
5: Join(A,U,A)
6: end procedure

3.4.10 Computing an aggregate

One feature of the Database Machine is the computation of an aggregate. This involves
grouping the rows of a table by some criterion and reducing all rows in the same group
using a binary operation. The operation needs to be commutative and associative in order
for the result to be well defined. We now show how to compute an aggregate on the
Relational Machine. Since an aggregate combines values from multiple rows – potentially
all rows of an rtable – care must be taken to ensure that the row width of the result stays
bounded as required for a Relational Machine. The following theorem offers two ways to
ensure this.

Theorem 3.4.10. Let A be a labelled (3, 0)-rtable with key tuples (k, g, v) such that the
values of the pair (k, g) are unique within the rtable. Let ⊕ : N0×N0 → N0 be a commutative
and associative binary operation that is a database function. Algorithm 19 computes a
(2, 0)-rtable of pairs (g, ṽ) containing a row for each distinct value of g in A such that

ṽ =
⊕

(k,g′,v)∈A:
g′=g

v
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on a Relational Machine. It is frugal and uses time polylogarithmic in the machine’s input
size, provided that at least one of the following conditions holds:

1. For each value in column g, the number of rows with that value is bounded by a
constant d, independent of n.

2. The binary operation is width-bounded (see Definition 2.1.4 on page 19).

Proof. The idea of Algorithm 19 is to bring pairs of rows with the same value in column g
together into a single row using a join and applying the binary operation to reduce. This
is repeated until there is only one row left for each distinct value in g.

Algorithm 19 RunAggregate⊕(A): Group rows and reduce values using a binary opera-
tion
1: procedure RunAggregate⊕(A[((k, g, v), ())])
2: repeat
3: A.Copy(∗)
4: A.Push(b)
5: A.Shift(k, b)
6: Range(A)
7: C ← A
8: C.Copy(k, g)
9: Singles(C)

10: C.Copy(k, g, v)
11: Range(C)
12: B ← A
13: FilterZero(A, b)
14: B.Copy(b)
15: B.Not(b)
16: Range(B)
17: FilterZero(B, b)
18: A.Copy(k, g)
19: B.Copy(k, g)
20: Join(A,B,A[k′ ← B.k, g′ ← B.g, v′ ← B.v, b′ ← B.b])
21: A.Copy(k, g, v, v′)
22: Range(A)
23: replace v by v ⊕ v′ by simulating a Turing Machine
24: DisjointUnion(A,C)
25: Range(A)
26: until AllZero(A, k)
27: A.Copy(g, v) . remove k
28: Range(A)
29: return A[((g, v), ())]
30: end procedure

To see the correctness of the algorithm, observe that it maintains the invariant that
the pair (k, g) is unique within the rtable. On each iteration, k is divided by 2. When all
k = 0, the loop terminates with unique g as claimed.

If we let k′ = bk/2c, then each pair (k′, g) is either unique or occurs exactly twice,
namely for k = 2k′ and k = 2k′+ 1. After dividing k by 2 and shifting the least significant
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bit into the newly created column b, the algorithm makes a copy of A in C and isolates
those rows for which (k, g) is unique. Starting with another copy of A in B, it filters A to
contain only rows with b = 0 and B to contain only rows with b = 1. The join on line 20
now brings together pairs of rows with the same (k, g). Unmatched rows in either A or B
are dropped by this operation, but appear in C so that all values of the original rtable A are
used exactly once. The binary operation on the two values v and v′ is then computed by
simulating a Turing Machine as discussed in Section 3.4.8. The result is reunited with the
set-aside single values in C using DisjointUnion(A,C). This concludes a single iteration in
which some pairs of values are combined using the binary operation and some values are
preserved.

If the input size of the Relational Machine is n, the row width and hence the number
of bits in the k column is O(log n) so that the number of iterations until all k values are
reduced to zero is also O(log n). This implies that for each value in column g, ṽ is the result
of applying the operation ⊕ in a (usually not complete) binary tree of depth O(log n). We
need to show that the row width of the rtable remains O(log n) throughout the computa-
tion.

If condition 1 of the theorem holds, there is a bound d on the number of rows in
each group. This bounds the depth of the calculation. Since the binary operation ⊕ is
a database function, the row width can increase by at most a constant factor f on each
application so that the overall increase is at most by a constant factor of fd−1, ensuring
that the row width remains O(log n) throughout the computation.

If condition 2 of the theorem holds, a tree of applications of the operation ⊕ of depth
O(log n) adds at most c ·O(log n) to the row width of the rtable so that the resulting row
width is still O(log n).

In any case, by Theorem 3.4.8 the Turing Machine simulation inside the loop is frugal
and takes time polylogarithmic in n. Since the number of iterations is O(log n), the total
time is polylogarithmic in n.

All operations in the algorithm are frugal and it uses only two temporary registers, B
and C. Tuple lengths and row widths are at most doubled. During each iteration, the total
number of rows it at most tripled by copying A to C and B. At the end of the iteration, A
cannot have more rows than before. Overall, this establishes that the algorithm is frugal
as claimed.

3.5 Simulating the Database Machine

We are now ready to show how to simulate a Database Machine on a Relational Machine.
Recall that the Database Machine works with tables which are multisets whereas the
Relational Machine uses rtables which are sets. Since the input of a Database Machine is
a multiset, it cannot be directly used as the input to a Relational Machine. We therefore
need to define a suitable input format.

Definition 3.5.1. A keyed multiset is an (s + 1, 0)-rtable with key tuples (k, a1, . . . , as).
A keyed multiset A is said to represent a multiset Ã if Ã is the result of removing the
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column k. Slightly abusing the notation from Section 2.4.4:

Ã = [(a1, . . . , as) | ((k, a1, . . . , as), ()) A A]

Let w be the row width of A, w̃ the row width of Ã and n = |A| = |Ã|. The keyed
multiset A is called slim if n = 0 or w ≤ w̃ + dlog ne.

Note that although the column k is named to suggest it functions as a key, the definition
does not require it to be unique. Its role is merely to make the overall tuple unique and
thus allow multiple instances of the sub-tuple (a1, . . . , as) in the key tuples of an rtable.

Lemma 3.5.1. Let Ã ∈ JNs0K be a multiset with cardinality n > 0 and row width w. Then
there is a slim keyed multiset A with cardinality n representing Ã.

Proof. Adding a column containing the numbers 0, . . . , n − 1 in any order turns Ã into
a keyed multiset A representing it. The additional column needs dlog ne bits, keeping A
slim, as claimed.

In order to simulate a Database Machine on a Relational Machine, we will also use a
more convenient representation of multisets.

Definition 3.5.2. A set with multiplicities is an (s + 1, 0)-rtable that has key tuples
(m, a1, . . . , as) such that the sub-tuples (a1, . . . , as) are unique and allm are positive. A set
with multiplicities A is said to represent a multiset Ã ∈ JNs0K if for all ((m, a1, . . . , as), ()) ∈
A we have Ã(a1, . . . , as) = m and Ã(a1, . . . , as) = 0 for all other tuples (a1, . . . , as), recall-
ing from Section 2.1 that Ã(a1, . . . , as) denotes the multiplicity of the element (a1, . . . , as)

in the multiset Ã.

Lemma 3.5.2. Let Ã ∈ JNs0K be a multiset with cardinality n > 0 and row width w and let
A be the set with multiplicities representing it. Then |A| ≤ n and the row width of A is at
most w + dlog(n+ 1)e.

Proof. A has an extra column m containing the multiplicity of each element of Ã. Its
width is determined by the largest multiplicity, which is at most n in the case that the
multiset Ã contains a single element with multiplicity n. Storing the number n requires
dlog(n+ 1)e bits. |A| is the number of distinct elements of Ã, so it can be at most n.

Lemma 3.5.3. Algorithm 20 turns a keyed multiset A into a set with multiplicities rep-
resenting the same multiset on a Relational Machine. It is frugal and uses time polyloga-
rithmic in the machine’s input size.

Proof. The algorithm first duplicates the payload columns a1, . . . , as and adds a column m
for the multiplicity, initialising it to 1. Next, it zips columns k, a1, . . . , as into a unique key
column k′ which takes logarithmic time by Lemma 3.4.7. It zips the copies of the payload
columns a′1, . . . , a′s into a single column a, again taking logarithmic time.

In the next step, equal payload values are combined and their multiplicities added
by RunAggregate+(). By Theorem 3.4.10, this is frugal and takes polylogarithmic time



66 CHAPTER 3. A DATABASE ASSEMBLY LANGUAGE

Algorithm 20 CountMultiplicities(A): Turn keyed multiset into set with multiplicities
1: procedure CountMultiplicities(A[((k, a1, . . . , as), ())])
2: A.Copy(∗)
3: A.Copy(a′1 ← a1, . . . , a

′
s ← as)

4: A.Constant(m← 1)
5: Range(A)
6: ZipColumns(A, k, a1, . . . , as, k′)
7: ZipColumns(A, a′1, . . . , a′s, a)
8: RunAggregate+(A[k′, a,m])
9: UnzipColumns(A, a, a1, . . . , as)
10: return A[((m, a1, . . . , as), ())]
11: end procedure

(noting that addition is a width-bounded database function). The payload is then unzipped
into the original tuples which, by Lemma 3.4.7, is frugal and takes logarithmic time. The
tuple length is at most doubled during the process. The row width stays linear at each
step and the number of rows in A stays constant, so the algorithm is frugal as claimed.

We will now show how each of the basic operations of a Database Machine defined in
Section 2.2 can be simulated on a Relational Machine, representing multisets as sets with
multiplicities. We will omit the simulation of the ljoin operation since it has already been
shown to be redundant in Theorem 2.5.2.

Lemma 3.5.4 (union). Let A and B be sets with multiplicities representing multisets
Ã, B̃ ∈ JNs0K. Algorithm 21 computes a set with multiplicities representing the multiset
union Ã ] B̃ on a Relational Machine. It is frugal and takes time polylogarithmic in the
machine’s input size.

Proof. After copying A to A′, the algorithm handles the edge cases of one of the sets
being empty. It then forms the disjoint union with B which is a frugal operation taking
constant time by Lemma 3.4.1. Next, equal tuples (a1, . . . , as) from the two sets need to be
combined and their multiplicities added. To do this, the algorithm zips copies of columns
from the key tuple into a unique key column k and zips the payload tuple (a1, . . . , as) into
a grouping column a.

RunAggregate+() is then used to add the multiplicities. Since integer addition is a
width-bounded database function, this is frugal and takes polylogarithmic time by The-
orem 3.4.10. The payload tuple is then unzipped to obtain the result. By Lemma 3.4.7,
each zipping and unzipping operation is frugal and takes logarithmic time, so the overall
time is polylogarithmic as claimed.

The algorithm consists only of frugal operations and uses one additional register. The
initial tuple length of s + 1 is increased to at most 3s + 2 (line 11, value tuple) and the
row width also stays linear in the input row width after each step. The number of rows
in A′ is at most the sum of the input sizes. Overall, this establishes that the algorithm is
frugal.
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Algorithm 21 MultisetUnion(A,B): Form union of two sets with multiplicities
1: procedure MultisetUnion(A[((ma, a1, . . . , as), ())], B[((mb, b1, . . . , bs), ())])
2: A′ ← A
3: if emtpy(A) then
4: A′ ← B
5: return A′

6: else if empty(B) then
7: return A′

8: else
9: DisjointUnion(A′, B)
10: . A′ has structure ((c,ma, a1, . . . , as, c

′,mb, b1, . . . , bk), (ma, a1, . . . , as))
11: A′.Copy(c, a′1 ← a1, . . . , a

′
s ← as, b

′
1 ← b1, . . . , b

′
s ← bs)

12: Range(A′)
13: ZipColumns(A′, c, a′1, . . . , a′s, b′1, . . . , b′s, k)
14: ZipColumns(A′, a1, . . . , as, a)
15: RunAggregate+(A′[k, a,ma])
16: UnzipColumns(A′, a, a1, . . . , as)
17: return A′[((ma, a1, . . . , as), ())]
18: end if
19: end procedure

Lemma 3.5.5 (select). Let A be a set with multiplicities representing a multiset Ã ∈
q
Nk0

y

and p : Nk0 → {0, 1} a database function. Algorithm 22 computes a set with multiplicities
A′ representing the multiset selectp(Ã) on a Relational Machine. It is frugal and takes
time polylogarithmic in the machine’s input size.

Proof. After duplicating the payload tuple (a1, . . . , as), the algorithm computes the pred-
icate by simulating a Turing Machine, which is frugal and takes polylogarithmic time by
Theorem 3.4.8.

Algorithm 22 MultisetSelectp(A): Compute selectp on a set with multiplicities
1: procedure MultisetSelectp(A[((m, a1, . . . , as), ())])
2: A′ ← A
3: A′.Copy(∗)
4: A′.Copy(a′1 ← a1, . . . , a

′
s ← as)

5: Range(A′)
6: simulate Turing Machine on A′ to replace a′1, . . . , a′s by c = p(a′1, . . . , a

′
s)

7: A′.Copy(c)
8: T ← ONE
9: T.Constant(c← 1)
10: Join(A′, T, A′)
11: A′.Copy(m, a1, . . . , as)
12: Range(A′)
13: return A′[((m, a1, . . . , as), ())]
14: end procedure

A join with a single-row rtable containing the value 1 is then used to keep only those
rows for which the predicate has the value 1. Removing column c yields the desired result.
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All steps of the algorithm are frugal. It uses two additional registers and at most
doubles tuple length and row width. The number of rows in A′ starts out as the input
size and can only get smaller by the filtering operation. Overall, the algorithm is frugal,
as claimed.

Lemma 3.5.6 (map). Let A be a set with multiplicities representing a multiset Ã ∈ JNs0K
and f : Ns0 → Nl0 a database function. Algorithm 23 computes a set with multiplicities A′

representing the multiset mapf (Ã) on a Relational Machine. It is frugal and takes time
polylogarithmic in the machine’s input size.

Proof. The function f̃ does not have to be injective. According to the definition of map
on page 20, the multiplicity of a value y = f(x) is the sum of the multiplicities of all pre-
images of y. Algorithm 23 computes this by first zipping the payload tuple and creating
a copy of it to keep as a unique key column k. It then simulates a Turing Machine to
compute the underlying database function of f according to Definition 3.4.7.

By Theorem 3.4.6, this is frugal and takes polylogarithmic time; note that the unique
keys in column k guarantee that all rows are preserved.

Algorithm 23 MultisetMapf (A): Compute mapf on a set with multiplicities
1: procedure MultisetMapf (A[((m, a1, . . . , as), ())])
2: A′ ← A
3: ZipColumns(A′, a1, . . . , as, a)
4: A′.Copy(∗)
5: A′.Copy(k ← a)
6: Range(A′)
7: simulate Turing Machine in A′ compute the underlying database function of f
8: RunAggregate+(A′[k, a,m])
9: UnzipColumns(A′, a, a1, . . . , al)

10: return A′[((m, a1, . . . , al), ())]
11: end procedure

RunAggregate+ is then used to group the results of the function application and add
the multiplicities. Since integer addition is a width-bounded database function, this is
frugal and takes polylogarithmic time by Theorem 3.4.10. It remains to unzip the result
into an l-tuple. By Lemma 3.4.7, all zipping and unzipping operations are frugal and take
logarithmic time, so the overall time is polylogarithmic as claimed.

To see that the algorithm is frugal, note that one additional register is used and tuple
lengths are bounded as required. The row width increases by zipping and duplicating
the zipped value, but stays linear in the input row width as required. After running the
aggregate, it is linear in the output row width. The number of rows can only decrease by
computing the aggregate.

Lemma 3.5.7 (join). For nonnegative integers k, l,m with m ≤ k, l, let A and B be sets
with multiplicities representing multisets Ã ∈

q
Nk0

y
and B̃ ∈

q
Nl0

y
, respectively. Algo-

rithm 24 computes a set with multiplicities J representing the multiset joinm(Ã, B̃) on a
Relational Machine. It is frugal and takes time polylogarithmic in the machines’s input
size.
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Proof. The algorithm joins the two input rtables on the first m columns of their payload
tuples. It then simulates a Turing Machine to multiply the multiplicities. Since multiplica-
tion is a database function, this is frugal and takes polylogarithmic time by Theorem 3.4.8.
It remains to reformat the rtable to remove unnecessary columns.

Algorithm 24 MultisetJoinm(A,B): Join two sets with multiplicities
1: procedure MultisetJoinm(A[((ma, a1, . . . , ak), ())], B[((mb, b1, . . . , bl), ())])
2: A′ ← A
3: B′ ← B
4: A.Copy(a1, . . . , am)
5: B.Copy(b1, . . . , bm)
6: Join(A,B, J)
7: simulate Turing Machine on J to replace ma and mb by mj = ma ·mb

8: J.Copy(mj , a1, . . . , ak, bm+1, . . . , bl)
9: Range(J)
10: return J [((mj , a1, . . . , ak, bm+1, . . . , bl), ())]
11: end procedure

To see that the algorithm is frugal, note that it uses three additional registers. Tuple
length is doubled by the join operation. Row width is linear in the input row width until
line 7 and linear in the output row width after the multiplication is performed.

In order to simulate the operation group of a Database Machine on a set with multi-
plicities, we need a helper algorithm that reduces each element according to its multiplicity
using a binary operation.

Definition 3.5.3. Let ⊕ : D → D be an associative binary operation, m ∈ N and v ∈ D.
The result of reducing m copies of v using ⊕ is written as

m� v := v ⊕ v ⊕ · · · ⊕ v︸ ︷︷ ︸
m copies of v

Lemma 3.5.8. Let ⊕ : D → D be an associative binary operation, m ∈ N and v ∈ D. Let
m =

∑
kmk2

k with mk ∈ {0, 1} for all k ∈ N0 be the binary representation of m and let
{k1, . . . , kw} = {k | mk = 1} be the set of indices with binary ones. Then

m� v =
w⊕
i=1

(
2ki � v

)
.

Proof. By associativity, we have (a+ b)� v = (a� v)⊕ (b� v) for any a, b ∈ N. Applying
this to the sum m =

∑w
i=1 2ki , we get the claimed identity. Note that we do not require

⊕ to have an identity element since the sum is never empty (m > 0). The order of the ki
does not matter since (a� v)⊕ (b� v) = (b� v)⊕ (a� v) for all a, b ∈ N .

Lemma 3.5.9. Let A be a set with multiplicities wherem is the multiplicity column and v is
another column. Let ⊕ : N0 → N0 be an associative binary operation that is a width-bounded
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database function. Algorithm 25 reduces the values v according to their multiplicity, pro-
ducing an rtable where in each row columns m and v are replaced by a single column v

containing the value m� v. All other columns are preserved. The algorithm is frugal and
takes time polylogarithmic in the Relational Machine’s input size.

Proof. The algorithm uses the decomposition of m into powers of 2 from Lemma 3.5.9 to
successively build up the result in the accumulator acc. Denote by v0 the initial value in
column v. At the beginning of the i-th iteration of the loop, we have v = 2i−1 � v0. This
can be seen by noting that v is unchanged within the loop, except on the last line where
it is replaced by v ⊕ v. In iteration i of the loop, bit (i − 1) is extracted from m and acc
is replaced by acc ⊕ v if the bit was 1 and unchanged otherwise.

Algorithm 25 ReduceMultiples⊕(A,m, v): Reduce according to multiplicity using binary
operation ⊕
1: procedure ReduceMultiples⊕(A,m, v)
2: A.Copy(∗)
3: A.Copy(acc ← v)
4: A.Constant(empty ← 1)
5: Range(A)
6: while not AllZero(A,m) do
7: A.Copy(∗)
8: A.Push(b)
9: A.Shift(m, b)

10: A.Copy(v′ ← v)
11: Range(A)
12: simulate a Turing Machine in A to compute additional column acc′ ← acc ⊕ v
13: A.Copy(∗)
14: A.CSwap(b, acc, acc′)
15: A.CSwap(empty , acc, v′)
16: A.CDec(b, empty)
17: A.Pop(b, acc′, v′)
18: Range(A)
19: simulate a Turing Machine in A to compute v ← v ⊕ v
20: end while
21: A.Copy(∗)
22: A.Pop(m)
23: A.Rename(v ← acc)
24: Range(A)
25: return A
26: end procedure

Since the operation ⊕ does not necessarily have an identity element, we cannot simply
initialise acc with that identity element. Instead, we use a flag empty , initialised with 1,
to indicate that the accumulator is empty.

After provisionally computing acc′ ← acc⊕v, a conditional swap instruction swaps acc
with acc′ if b = 1. However, if the accumulator is still supposed to be empty, as indicated
by empty = 1, line 15 exchanges it with a copy of v that was set aside in the variable v′

earlier. This is the correct value to assign to acc the first time it becomes nonempty.
The accumulator becomes nonempty once something is combined with it, which happens
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if b = 1. Line 16 reflects this fact; note that decrementing zero yields zero on the Relational
Machine so that subsequent iterations do not change empty .

The overall effect is that the first time we have b = 1 on iteration i of the loop, acc gets
initialised with v = 2i−1 � v0 and on subsequent iterations with b = 1 it gets replaced by
acc⊕ (2i−1� v0) which, by Lemma 3.5.8, computes the desired result. Note that since the
input is a set with multiplicities, we always have m > 0 so that the binary representation
has at least one nonzero bit and the accumulator is always initialised.

Since the row width of an rtable is logarithmic in the Relational Machine’s input size n,
the number of iterations is O(log n). The binary operation ⊕ is a database function, so by
Theorem 3.4.8 the two Turing Machine simulations in the loop take polylogarithmic time,
making the overall time polylogarithmic in n.

All steps of the algorithm are frugal. Tuple lengths are increased by at most 4. Since
⊕ is a width-bounded database function, the width of column v increases by at most a
constant on each iteration and we have width(acc) ≤ width(v) at the end of each iteration
so that the overall row width stays at O(log n). The number of rows in A stays the same
if columns with unique values are present and can otherwise only decrease. Overall, the
algorithm is frugal as claimed.

Lemma 3.5.10 (group). Let A be a set with multiplicities representing a multiset Ã ∈
JNs0K and l ≤ s. Let ⊕ : Ns−l0 × Ns−l0 → Ns−l0 be a commutative and associative binary
operation that is a width-bounded database function. Algorithm 26 computes a set with
multiplicities G representing the multiset groupl,⊕(Ã) on a Relational Machine. It is
frugal and takes time polylogarithmic in the machine’s input size.

Proof. The algorithm first duplicates the payload tuple and zips it into a unique key
column. It then zips the first l (“grouping”) columns into a column g and the remaining
(“value”) columns into a column v. The set with multiplicities is then reduced to a set
according to the multiplicities, preserving the unique key column k. This is frugal and
takes polylogarithmic time by Lemma 3.5.9. RunAggregate⊕(G) is then used to compute
the aggregate, a frugal algorithm taking polylogarithmic time by Theorem 3.4.10.

The result of this computation is a set which is then unzipped into the original column
structure and augmented with a multiplicity column of 1 to turn it back into a set with
multiplicities. All zipping and unzipping operations are frugal and take logarithmic time
by Lemma 3.4.7 so that the overall time is polylogarithmic, as claimed.

The algorithm uses one additional register and the tuple length is at most doubled.
Zipping columns only increases row width linearly. The number of rows can only decrease
when running the aggregate. Overall, this establishes that the algorithm is frugal.

We are now ready to prove the main theorem of this section, namely that a Relational
Machine can simulate a Database Machine with a slowdown polylogarithmic in the input
size.

Recall that we have introduced two ways to represent a Database Machine table as
an rtable in a Relational Machine: the keyed multiset (Definition 3.5.1) and the set with
multiplicities (Definition 3.5.2). All constructions in this section use sets with multiplicities
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Algorithm 26 MultisetGroupl,⊕(A): Compute groupl,⊕ on a set with multiplicities
1: procedure MultisetGroupl,⊕(A[((m, a1, . . . , as), ())])
2: G← A
3: G.Copy(∗, a′1 ← a1, . . . , a

′
s ← as)

4: Range(G)
5: ZipColumns(G, a′1, . . . , a′s, k)
6: ZipColumns(G, a1, . . . , al, g)
7: ZipColumns(G, al+1, . . . , as, v)

8: ReduceMultiples⊕(G,m, v)

9: RunAggregate⊕(G[k, g, v])

10: UnzipColumns(G, g, a1, . . . , al)
11: UnzipColumns(G, v, al+1, . . . , as)
12: G.Copy(∗)
13: G.Constant(m← 1)
14: Range(G)
15: return G[((m, a1, . . . , as), ())]
16: end procedure

to simulate the basic operations of a Database Machine on a Relational Machine. For the
input and output format, however, we choose keyed multisets.

The reason for this is that both kinds of machines by definition have a bound on their
row widths that is logarithmic in their input size. The input size of the Database Machine is
the cardinality of the input multiset, defined as the sum of all multiplicities. If we used sets
with multiplicities as the input representation for the simulation on a Relational Machine,
the input size of the Relational Machine could be much smaller than the input size of the
simulated Database Machine, making the simulation impossible because of the logarithmic
row width bound. The extreme case is an input multiset with a single input element x of
multiplicitym, which would be represented as a set with multiplicities containing the single
row ((m,x), ()). This is an input size of 1 in the Relational Machine model, independent
of the multiplicity m.

The representation of a multiset as a keyed multiset does not have this problem. It
assumes that the rows of the input table are made unique by adding an additional column,
ensuring that the input size on the simulating Relational Machine is the same as the input
size of the simulated Database Machine. Lemma 3.5.3 shows how to convert a keyed
multiset into a set with multiplicities on a Relational Machine and Theorem 2.5.7 provides
the opposite direction on a Database Machine, which, as we will prove, can be simulated
on a Relational Machine to convert the output back to a keyed multiset.

Theorem 3.5.11. Let D be a Database Machine that does not crash on any valid input
and, for an input of size n, runs in time T (n) and uses space S(n) where S(n) is polynomial
in n. Then there exists a Relational Machine R that when given an input Ĩ ∈ JNs0K of D,
represented as a slim keyed multiset I, produces the same output Õ as D, represented as
a slim keyed multiset O. R takes time O(T (n) · logt n) for some t ∈ N and uses space
O(S(n)).
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Proof. Let r̃, l̃, c̃1, c̃2 be the bounds on the number of registers, tuple length, input row
width, and overall row width of the Database MachineD, respectively (see Definition 2.3.1).
We will show that there exists a Relational MachineR with corresponding bounds r, l, c1, c2
that simulates D within the claimed time and space.

The Relational Machine R will convert the input keyed multiset to a set with multi-
plicities, simulate each operation of the Database Machine D on this representation and
finally convert the result back to a slim keyed multiset. During the simulation, R will use
a bounded number of extra rtables and also temporarily increase tuple length, space usage
and row width. These increases will be suitably bounded to ensure the existence of the
bounds r, l, c1, c2 governing the whole execution of the Relational Machine.

Let Ĩ ∈ JNs0K be a valid input of D of size n and I a slim keyed multiset representing Ĩ.
R receives I as an input of size n and executes Algorithm 20, converting it to a set of
multiplicities representing Ĩ. By Lemma 3.5.3, this is frugal and takes time polylogarithmic
in n.

Now the simulation of D commences on the representation of the input as a set with
multiplicities. Each operation of the Database Machine is translated to a sequence of
operations on the Relational Machine and takes time polylogarithmic in n by Lemma 3.5.4
(union), Lemma 3.5.5 (select), Lemma 3.5.6 (map), Lemma 3.5.7 (join), and finally
Lemma 3.5.10 (group). The operation ljoin can be expressed in terms of a constant
number of other operations of the Database Machine by Theorem 2.5.2, hence taking
a total time polylogarithmic in n. The jump and conditional jump instructions of the
Database Machine directly correspond to operations of the Relational Machine.

When the simulated Database Machine halts, the output of the simulating Relational
Machine needs to be converted back to a slim keyed multiset. Let Õ be the output of the
simulated Database Machine. By the assumption of the Theorem, we have |Õ| = O(nk)

for some k ∈ N. We now simulate running Algorithm 4 to convert Õ to a set on the
Database Machine. By Theorem 2.5.7, this takes O(log log |O|) = O(log log n) Database
Machine operations, each of which takes time polylogarithmic in n on the simulating Re-
lational Machine. So overall, this step takes polylogarithmic time. Let O be the set with
multiplicities representing the converted output. Since the converted output is a set, every
element has multiplicity 1. Removing the multiplicity column from O turns O into a keyed
multiset representing the output of the Database Machine. It is slim because Algorithm 4
adds, for an element with multiplicity m, the numbers 0, . . . ,m − 1 in the key column,
which increases the row width by at most dlogme ≤ dlog ne.

Algorithm 4 uses four temporary tables and the tuple length is increased by at most 4.
By Lemma 2.5.8 the row width is bounded to be linear in the output row width, making
the algorithm frugal overall.

The above establishes the claim that R takes time T (n) ·O(logt n) for some t ∈ N. It
remains to show the claim on space usage and the existence of the bounds r, l, c1, and c2.

If an input of D conforms to its input row width bound c̃1, there is a corresponding
bound c1 for R because the input is represented as a slim keyed multiset. Since we assumed
D not to crash on any valid input, it is known that the state of the simulation conforms
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to the bounds r̃, l̃, c̃2 at each step. At each step, the representation in the simulating
machine R will use the same number of registers and the tuples of the simulating rtables
will be one longer than the simulated tuples, namely by the multiplicity column.

All constructions involved in the simulation are frugal by the Lemmas cited above.
Thus, the bound r is obtained from r̃ by increasing it by the maximum amount of temporary
registers used. Likewise, the bound l is obtained from l̃ by taking into account the extra
column for the multiplicity plus the maximum number of temporary columns used.

For the existence of the bound c2, it suffices to show that the row width of the simulating
rtables is O(log n) throughout. Every simulated table Ã has size at most S(n) = O(nk) and
row width w = O(log n). By Lemma 3.5.2, the size of the simulating rtable A is at most
S(n) and the row width is at most w + dlog(S(n) + 1)e which is O(log n). Both size and
row width are temporarily increased by at most a constant factor during the simulation
since all constructions are frugal, establishing the existence of the bound c2 and the claim
on the space usage of the simulation.

Corollary 3.5.12. A Big Data-practical Database Machine can be simulated by a Big Data-
practical Relational Machine. A Small Data-practical Database Machine can be simulated
by a Small Data-practical Relational Machine.

Proof. Both notions of practicality assume a polylogarithmic runtime. Since the simulation
has a polylogarithmic slowdown by Theorem 3.5.11, the runtime stays polylogarithmic.
Space usage increases linearly by the simulation, preserving the O(n) space usage of a
Big Data-practical machine and the polynomial space usage of a Small Data-practical
machine.



Chapter 4

Parallel Random Access Machines

A model of parallel computation that has been widely studied since the late 1970s, starting
with, e.g., [35, 42], is the Parallel Random Access Machine. It describes parallel compu-
tation in terms of Random Access Machines running synchronously and having access to
each other’s or a central shared memory. There are many flavours of PRAM models, dif-
fering in the capabilities of the individual RAMs, the structure of shared vs. local memory,
possible limitations on connectivity, how processors are started, and more. Many of these
are polynomially related [71].

4.1 The Parallel Random Access Machine

Our definition of a PRAM closely resembles the definition of a “network” in [71] in that
each processor has its own local registers and the ability to access another processor’s
registers. It differs in how the input and output are formatted.

Definition 4.1.1. Let P : N0 → N0 be a database function (see Definition 3.4.5). A
Parallel Random Access Machine (PRAM) with processor bound P has P (n) processors,
depending on the input size n. Each processor has an unbounded number of registers
r0, r1, . . ., each capable of holding a nonnegative integer, and a read-only register “PID”
containing a processor identifier. The machine has a program that is a finite sequence of
instructions from Table 4.1, indexed by nonnegative integers. The binary operation ⊕ in
Table 4.1 can be any database function according to Definition 3.4.7.

A computation on a PRAM maps an input tuple of n nonnegative integers x0, . . . , xn−1
to an output tuple of m nonnegative integers y0, . . . , ym−1. It proceeds as follows. The
input size n is placed in r0 of processor 0. xk is placed in ri of processor j where i =

2 · bk/P (n)c + 1 and j = k mod P (n). All other registers are initialised with zero. P (n)

processors with IDs 0, . . . , P (n)−1 are activated and start executing at instruction 0 of the
program. All processors share the same program, but have individual instruction pointers
so that they can take different execution paths. Instructions are executed synchronously
in parallel by all active processors, proceeding to the next instruction unless a conditional
jump changes control flow or the halt instruction is executed. At each step, all read
operations occur in parallel, followed, if applicable, by local computation, followed by the

75
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Table 4.1: PRAM instruction set

Instruction Description

ri ← c load register with constant c
ri ← rj ⊕ rk locally compute a binary operation ⊕
ri ← rrj indirect load from local register
rri ← rj indirect store into local register
ri ← PID load register with ID of this processor
ri ← (rrj of rk) indirect load from processor rk’s register rrj
(rri of rj)← rk indirect store into processor rj ’s register rri
goto l if ri > 0 conditional jump to location l
halt halt execution of this processor

write operation. If multiple processors write to the same register, the processor with the
lowest ID succeeds and the other writes are ignored. Reading a register of a nonexisting
processor returns zero; writes to nonexisting processors are ignored. Execution ends when
all processors have halted. At this time, r0 of processor 0 contains the size of the output, m,
and output yk is found in ri of processor j where i = 2 · bk/P (n)c+ 1 and j = k mod P (n)

for k = 0, . . . ,m− 1.

This definition places the input and output in odd-numbered registers only and ensures
that the even-numbered registers, except for r0 of processor 0, are free to be used without
regards to the input size n, which may be larger than the processor bound P (n).

Definition 4.1.2. Let T, S,W : N0 → N0. A PRAM is said to execute within time T (n) if
for all inputs of size n all processors halt within T (n) steps. It is said to use space S(n) if
the number of distinct registers accessed during any computation on an input of size n is at
most S(n). All input values and all output values are always counted as being accessed, as
well as the PID register of each processor. The machine has word size W (n) if all register
contents are less than 2W (n) throughout any computation with an input of n integers that
are each less than 2c log(n+2) for some constant c, where T , S, and W may depend on c.
The processor ID registers are included in the word size bound.

This definition implies that the word size bound also bounds the number of processors.
We will consider PRAMs with W (n) = O(log n). Since the PID register of any processor
must be less than 2W (n), the number of processors on such a machine is polynomial in n.
Since the PID registers are included in the space bound, we always have S(n) ≥ P (n).
The input and output values are included in the space bound in order to avoid degenerate
cases like a machine mapping zero-tuples to zero-tuples without using any space.

Our definition differs from Parberry’s in that it counts any register ever accessed during
a computation wheres Parberry considers the maximum number of registers with nonzero
contents at any given time during the computation. Parberry’s definition would allow the
use of large sparse hash tables in which only the entries actually used would count towards
the space usage. This assumption is unrealistic on an actual machine where memory would
have to be allocated for such a hash table, no matter which portion of it is actually accessed.



4.2. THE PARALLEL MICROCODE MACHINE 77

The main result of this chapter is that under certain conditions a Database Machine
can simulate a PRAM and vice versa. To be able to formally state these as a theorems, we
need to specify what it means for the Database Machine to perform the same computation
as a PRAM. A PRAM takes as an input a tuple of nonnegative integers and produces a
tuple of nonnegative integers as an output. A Database Machine takes as input a table
and produces a table as an output.

Definition 4.1.3. Let V be a machine that takes as an input a tuple of positive integers
and produces a tuple of positive integers as an output, such as a PRAM. Let x0, . . . , xn−1 be
an input of V of size n and y0, . . . , ym−1 the corresponding output. A Database Machine D
is said to compute the same result as V if it takes as input a table containing a pair (i, xi) for
i = 0, . . . , n−1 and produces as output a table containing pairs (j, yj) for j = 0, . . . ,m−1.

Theorem 4.1.1. Let P be a Parallel Random Access Machine with processor bound P (n),
space bound S(n) and word size W (n) = O(log n) that takes time T (n). Then there is a
Database Machine D that computes the same result. D takes time O(T (n) + log log n) and
space O(S(n)).

To prove this theorem, we first define an auxiliary model.

4.2 The Parallel Microcode Machine

In this section we define a model that is similar to the PRAM and more suitable to be
simulated by a Database Machine. It is called a Parallel Microcode Machine and consists
of Microcode Processors accessing a shared memory.

Definition 4.2.1. Let fetch : N4
0 → N0, compute : N5

0 → N4
0 and P : N0 → N0 be database

functions. A Parallel Microcode Machine with microcode (fetch, compute) and processor
bound P has P (n) Microcode Processors, depending on the input size n. Each Microcode
Processor has four registers pc, acc, i,m, each holding a nonnegative integer, and a read-
only register pid holding a nonnegative integer. All Microcode Processors have access to
an unbounded number of shared memory cells M0,M1, . . ., each holding a nonnegative
integer. A processor is said to be halted if pc = 0 and active otherwise.

Executing a step on an active Microcode Processor involves optionally reading a mem-
ory cell, performing a computation and optionally writing a memory cell. The location
to be read is computed as i = fetch(pid , P (n), pc, acc) where i 6= 0 indicates reading
from memory cell Mi−1 and i = 0 indicates using the value 0 instead; the value read is
placed in the register m. The function call compute(pid , P (n), pc, acc,m) returns a 4-tuple
(pc, acc, i,m) with new register values. Finally, if i 6= 0 the value m is written to memory
cell Mi−1. This sequence is shown as Algorithm 27.

A computation on the Parallel Microcode Machine maps an input tuple of n nonnegative
integers x0, . . . , xn−1 to an output tuple ofm nonnegative integers y0, . . . , ym−1. It proceeds
as follows. The input size n is placed in memory cellM0. Input value xi is placed in memory
cell M2i+1. All other memory cells initially contain zero. A number of P (n) Microcode
Processors are activated with processor identifiers pid = 0, . . . , P (n)− 1, pc = 1 and zero
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Algorithm 27 Executing one step on a Microcode Processor
1: if pc > 0 then
2: i← fetch(pid , P (n), pc, acc)
3: if i > 0 then
4: m←Mi−1
5: else
6: m← 0
7: end if
8: (pc, acc, i,m)← compute(pid , P (n), pc, acc,m)
9: if i > 0 then
10: Mi−1 ← m
11: end if
12: end if

in the other registers. All processors execute steps synchronously. If multiple processors
simultaneously write to the same memory cell, the processor with the lowest pid succeeds
and the other writes are ignored. The machine stops when all processors have halted.
At this time, M0 contains the output size m and output value yi is found in M2i+1 for
i = 0, . . . ,m− 1.

The idea of this definition is to encapsulate the whole program of a PRAM in two
functions instead of viewing it as a list of instructions. At each step, a Microcode Processor
reads a memory cell into a register m, performs some computation and optionally writes
a memory cell. The function fetch() decides which memory cell to read and the function
compute() encapsulates computation, possible change of control flow and the decision what
to write to memory. Both functions take as input the read-only processor identifier pid ,
the processor bound P (n) and the registers pc and acc; compute() in addition takes m,
the value read from memory, as a fifth argument. The register pc represents the state of
the computation and acts as a program counter telling the functions which computation to
perform at the current step. The register acc acts as an accumulator to carry intermediate
results from one step of the computation to the next. Register i holds the index of a
memory location to read or write, offset by 1 and using the value zero to indicate that no
read or write is to occur.

This definition places the input and output in odd-numbered memory cells and uses
M0 to explicitly pass the input and output size. This simplifies programming the machine
since the even-numbered memory cells except M0 are free for use regardless of the input
size.

Definition 4.2.2. Let T, S,W : N0 → N0. A Parallel Microcode Machine with processor
bound P (n) is said to execute within time T (n) if for all inputs of size n all processors halt
within T (n) steps. It is said to use space S(n) if the number of distinct shared memory
cells accessed during any computation on an input of size n is at most S(n) − P (n). All
input values and all output values are always counted as being accessed. The machine has
word size W (n) if the contents of all registers and shared memory cells are less than 2W (n)

throughout any computation with an input of n integers that are each less than 2c log(n+2)
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Figure 4.1: Memory map for simulating a PRAM on a Parallel Microcode Machine. The
top table illustrates how the input values xi are placed in PRAM registers; n is the input
size, p = P (n) the processor bound and the si are scratch registers that are not part of
the input. The bottom table shows how these values are arranged in the shared memory
of a Parallel Microcode Machine.

PID r0 r1 r2 r3 r4 r5 · · ·

0 n x0 sp xp s2p x2p · · ·
1 s1 x1 sp+1 xp+1 s2p+1 x2p+1 · · ·
2 s2 x2 sp+2 xp+2 s2p+2 x2p+2 · · ·
...

...
...

...
...

...
...

p− 1 sp−1 xp−1 s2p−1 x2p−1 s3p−1 x3p−1 · · ·

k 0 1 2 3 4 5 6 7 · · ·

Mk n x0 s1 x1 s2 x2 s3 x3 · · ·

for some constant c, where T , S, and W may depend on c.. The processor ID registers are
included in the word size bound.

Note that the processor bound P (n) is included in the space bound S(n) to make this
definition compatible with Definition 4.1.2 by taking into account the local registers of the
Microcode Processors. Since we are interested in asymptotic bounds only, we omit the
factor of 5 for the number of processor registers. We can now simulate a PRAM using a
Parallel Microcode Machine.

Lemma 4.2.1. Let P be a Parallel Random Access Machine with processor bound P (n)

using space S(n), time T (n) and word size W (n). Then there is a Parallel Microcode
MachineM with processor bound P (n) that simulates P within space S(n), time O(T (n))

and word size O(W (n)).

Proof. The two machines have the same processor bounds. We will construct machineM
such that it simulates each instruction of P by executing three steps. A processor of P
executing an instruction at location l is simulated byM executing three steps with register
pc = 3l + s where s = 1, 2, 3.

Throughout the simulation, a one-to-one correspondence between the registers of the
simulated PRAM and the memory cells of the simulating Parallel Microcode Machine is
maintained as follows: ri of processor j of P is stored in memory cell Mk ofM where

k = 2 · (bi/2cP (n) + j) + (i mod 2)

This correspondence is illustrated in Figure 4.1. Note that it holds for the input and output
of the computation by definition and is maintained throughout the simulation.

Recall from Definition 4.1.1 that reading a register from a nonexisting processor on
a PRAM returns zero and writes to registers of nonexisting processors are ignored. To
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simulate this behaviour, we define the function

mmapp(j, i) =

2 · (bi/2cp+ j) + (i mod 2) + 1 if j < p

0 otherwise.

It represents the memory map of the simulation, offset by one and using the value zero to
handle reads and writes to nonexisting processors; the processor bound P (n) is passed as
a parameter p for this purpose.

We now show how to construct the functions fetch() and compute() of M from the
program of P and that they are database functions. Let lmax be the location of the last
instruction of P. Both functions have the structure shown as Algorithm 28. They test for
all possible values of pc and return the values specified in Tables 4.2 and 4.3. To see that
both functions are database functions, i.e. they can be computed by a Turing Machine in
linear space and polynomial time relative to their input size, observe that this is true for
all individual entries in Tables 4.2 and 4.3. The only operations used are

• constants,

• copy an argument,

• increment,

• the function mmap(),

• test if an argument equals zero,

• multiplication by 3,

• the binary operation ⊕.

All of these are database functions (recall that ⊕ is assumed to be a database function in
the definition of a PRAM). It follows that fetch() and compute() are database functions.

Algorithm 28 Structure of functions fetch() and compute()
unroll for l = 0, . . . , lmax
unroll for s = 1, 2, 3
if pc = 3l + s then
compute according to Tables 4.2 and 4.3

end if
end unroll for

end unroll for

To see thatM computes the same result as P, we will show how a Microcode Processor
ofM simulates each instruction of the corresponding processor of P, producing the same
result under the above mentioned correspondence between PRAM registers and Microcode
Machine memory.

Consider a processor of P with processor identifier pid executing, at location l, the
instruction ri ← (rrj of rk). The corresponding Microcode Processor ofM with the same
pid will have pc = 3l+ 1. Table 4.4 shows a trace of the register contents as the processor
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Table 4.2: Microcode for PRAM simulation, part 1. For the PRAM instruction at loca-
tion l, the table entries under Step s give the function values for pc = 3l + s as follows:
fetch(pid , p, pc, acc) := iread and compute(pid , p, pc, acc, r) := (pc′, acc′, iwrite , w).

Instruction Step 1 Step 2 Step 3

ri ← c no-op no-op write
iread 0 0 0
pc′ pc + 1 pc + 1 pc + 1
acc′ acc acc 0
iwrite 0 0 mmapp(pid , i)
w 0 0 c

ri ← rj ⊕ rk read rj no-op write
iread mmapp(pid , j) 0 mmapp(pid , k)

pc′ pc + 1 pc + 1 pc + 1
acc′ r acc 0
iwrite 0 0 mmapp(pid , i)
w 0 0 acc ⊕ r

ri ← rrj get addr no-op write
iread mmapp(pid , j) 0 mmapp(pid , acc)

pc′ pc + 1 pc + 1 pc + 1
acc′ r acc 0
iwrite 0 0 mmapp(pid , i)
w 0 0 r

rri ← rj get addr no-op write
iread mmapp(pid , i) 0 mmapp(pid , j)
pc′ pc + 1 pc + 1 pc + 1
acc′ r acc 0
iwrite 0 0 mmapp(pid , acc)

w 0 0 r

ri ← PID no-op no-op write
iread 0 0 0
pc′ pc + 1 pc + 1 pc + 1
acc′ acc acc 0
iwrite 0 0 mmapp(pid , i)
w 0 0 pid
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Table 4.3: Microcode for PRAM simulation, part 2. For the PRAM instruction at loca-
tion l, the table entries under Step s give the function values for pc = 3l + s as follows:
fetch(pid , p, pc, acc) := iread and compute(pid , p, pc, acc, r) := (pc′, acc′, iwrite , w).

Instruction Step 1 Step 2 Step 3

ri ← (rrj of rk) get addr get pid write
iread mmapp(pid , j) mmapp(pid , k) acc
pc′ pc + 1 pc + 1 pc + 1
acc′ r mmapp(r, acc) 0
iwrite 0 0 mmapp(pid , i)
w 0 0 r

(rri of rj)← rk get addr get pid write
iread mmapp(pid , i) mmapp(pid , j) mmapp(pid , k)

pc′ pc + 1 pc + 1 pc + 1
acc′ r mmapp(r, acc) 0
iwrite 0 0 acc
w 0 0 r

goto l if ri > 0 no-op no-op jump
iread 0 0 mmapp(pid , i)
pc′ pc + 1 pc + 1 (r > 0 ? 3l + 1 : pc+ 1)
acc′ acc acc 0
iwrite 0 0 0
w 0 0 0

halt no-op no-op halt
iread 0 0 0
pc′ pc + 1 pc + 1 0
acc′ acc acc 0
iwrite 0 0 0
w 0 0 0
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Table 4.4: Trace of a Microcode Processor simulating a PRAM processor with processor
identifier pid executing the instruction ri ← (rrj of rk) at location l. The line numbers
refer to Algorithm 27. Modified registers at each step are Ihighlighted.

Step Line pc acc i m Memory

1 2 3l + 1 ∗ Immapp(pid , j) ∗
1 4 3l + 1 ∗ mmapp(pid , j) Irj
1 8 I3l + 2 Irj I0 I0

2 2 3l + 2 rj Immapp(pid , k) 0
2 4 3l + 2 rj mmapp(pid , k) Irk
2 8 I3l + 3 Immapp(rk, rj) I0 I0

3 2 3l + 3 mmapp(rk, rj) Immapp(rk, rj) 0
3 4 3l + 3 mmapp(rk, rj) mmapp(rk, rj) I(rrj of rk)
3 8 I3l + 4 I0 Immapp(pid , i) I(rrj of rk)
3 10 3l + 4 0 mmapp(pid , i) (rrj of rk) Iri ← (rrj of rk)

executes three steps to simulate the PRAM instruction. In step 1, rj is read and placed
in the accumulator. In step 2, rk is read and combined with the accumulator to form
mmapp(rk, rj), the address of register rj of processor rk in shared memory. In the third
step, this address is used to read from shared memory and write the result to register i of
the current processor. After this we have pc = 3l+ 4 = 3(l+ 1) + 1, ready to simulate the
next PRAM instruction at location l + 1. The other PRAM instructions are simulated in
a similar way with no-op steps inserted to ensure synchronisation. Note that all writes are
executed in the third step of the simulation.

Since each instruction of P is simulated by executing three steps ofM, the time onM
is 3 · T (n) = O(T (n)) as claimed.

To see thatM runs within space S(n), note that by construction of the functions fetch()

and compute() the simulation maintains the above-mentioned one-to-one correspondence
between the processor registers of P and the shared memory cells ofM. This implies that
the number of distinct shared memory cells accessed byM equals the number of distinct
registers accessed by P. The number of processors, P (n) is included in the space bounds
of both machines by definition and is the same for P andM.

To establish the word size bound for M, we need to consider the possible values in
the local registers in addition to the shared memory contents. Apart from values that
also appear in shared memory, the local registers contain the program counter and the
results of address calculations. The maximum value pc = 3l + s is a constant determined
by the length of the program and independent of the input size n. Since p − 1 < 2W (n),
the value mmapp(j, i) has word size O(W (n)), making the overall word size O(W (n)), as
claimed.
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4.3 Simulation on a Database Machine

The Parallel Microcode Machine lends itself to be simulated by a Database Machine. Since
the Database Machine has a bound on the row size that is logarithmic in the input size n,
this requires the Parallel Microcode Machine to have a word size bound ofW (n) = O(log n).

Lemma 4.3.1. LetM be a Parallel Microcode Machine with processor bound P (n), space
bound S(n) and word size W (n) = O(log n) that executes within time T (n). Then there is
a Database Machine D that computes the same result within time O(T (n) + log log n) and
space O(S(n)).

Proof. Algorithm 29 simulates a Parallel Microcode MachineM on a Database Machine D.
The algorithm begins by determining the input size n and computing p, the number of
processors to be activated. Recall that the processor bound P (n) is a database function.
Next, the algorithm converts the input to a tableM representing the shared memory ofM.
A pair (i+ 1, x) ∈M indicates that the shared memory cell Mi ofM contains the value x.
The index 0 is reserved for simulating reading a zero from an undefined memory location.
Throughout the computation, only nonzero values will be stored in M .

Algorithm 29 Simulating a Parallel Microcode Machine on a Database Machine
1: procedure SimulatePMM(I)
2: n← |I|
3: p← P (n)
4: M ← [(1, n)] ] [(2i+ 2, x)| | (i, x) A I, x 6= 0]
5: C ← GenerateSequence(p) . see Algorithm 3
6: C ← [(pid , 1, 0, 0, 0) | pid A C] . C has tuples (pid , pc, acc, i,m)
7: while |C| > 0 do
8: C ← [(pid , pc, acc, iread , r)

| (pid , pc, acc, ∗, ∗) A C
, iread ← fetch(pid , p, pc, acc), (iread , r) Aσ M ]

9: C ← [(pid , pc′, acc′, iwrite , w)
| (pid , pc, acc, ∗,m) A C
, (pc′, acc′, iwrite , w)← compute(pid , p, pc, acc,m)]

10: U ← [(iwrite , 0, pid , w) | (pid , ∗, ∗, iwrite , w) A C, iwrite > 0]
11: U ← U ] [(i, 1, 0, x) | (i, x) A M ]
12: M ← [(i, x′) | (i, c, pid , x) A U,groupby(i, (c′, pid ′, x′)← min((c, pid , x)))

, x′ 6= 0]
13: C ← [(pid , pc, acc, i,m) | (pid , pc, acc, i,m) A C, pc 6= 0]
14: end while
15: m← [m | (1,m) Aσ M ]
16: O ← GenerateSequence(m)
17: O ← [(i, y) | i A O, (2i+ 2, y) Aσ M ]
18: return O
19: end procedure

Lines 5 and 6 initialise a processor table C. Each row is a tuple (pid , pc, acc, i,m)

representing an active processor ofM, initialised with pid ∈ {0, . . . , P (n)−1}, pc = 1 and
zero in the remaining registers as per definition.
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When a processor halts during the simulation, it will be removed from the processor
table. While not all processors have halted, the simulation proceeds as follows.

Line 8 implements the memory read (lines 2 and 4 of Algorithm 27). Each processor
computes iread = fetch(pid , p, pc, acc), the index to read from. A left outer join (denoted
by Aσ; see page 27) is then used to retrieve the value r corresponding to this index from
table M . If iread is not matched in M , the outer join returns r = 0. This is the case
if iread = 0, which is used for simulating reads from nonexisting processors, and also for
memory cells containing zero which are not stored in M .

Line 9 implements the main computation (line 8 of Algorithm 27). Each processor
computes (pc′, acc′, iwrite , w) = compute(pid , p, pc, acc,m) where pc′ is the new value of
the program counter and acc′ is the new value of the accumulator. iwrite is the index to
write to and w is the value to be written.

To compute a new table M representing the state of the shared memory after writing,
the algorithm needs to resolve any conflicting concurrent writes by multiple processors and
to preserve the contents of all memory cells not written to. This is achieved by prioritising
the writes by processor ID and treating the existing contents of memory the same as a
write, but with a priority below that of any processor. Line 10 creates a table U where
each update is represented as an index to write to (recall that the special index 0 indicates
no write) and a triple (c, pid , x) with c = 0. The existing memory contents are then
added to this table with c = 1 and pid = 0. Picking for each address i the minimum
triple (c, pid , x) in lexicographic order has the desired effect of prioritising writes (c = 0)
over existing memory contents (c = 1) and prioritising among different writes the one
with the lowest processor ID. Line 12 computes the new memory contents by grouping by
address and picking said minimum, eliminating all rows with a value of zero. Note that
this preserves the invariant that M contains at most one row (i, x) for every index i. To
prepare for the next iteration, all processors that have halted (pc = 0) are eliminated from
the processor table C. After all processors have halted, the output O is extracted from the
memory table M , using outer joins to fill in zeros not stored in M .

To analyse time and space complexity of the simulation, we first recall from Defini-
tion 4.2.2 that the processor IDs are bounded by the word size bound, which is assumed to
beW (n) = O(log n). This implies P (n) = nO(1). The while loop is executed once for each
step of the simulated machine M, thus taking time O(T (n)). Generating the processor
table (line 5) takes O(log logP (n)) operations by Theorem 2.5.3, which is O(log log n) since
P (n) is polynomial in n. Generating the index sequence for the output table (line 16) takes
O(log logm) for an output size of m, which is also O(log log n) because m is bounded by
the word size bound. Thus, the total time of the Database Machine is O(T (n) + log log n)

as claimed.

Recall from Definition 4.2.2 that the space bound of a Parallel Microcode Machine
bounds the number of accessed memory cells plus the number of processors. During the
simulation on D, this bounds the sizes of tablesM and C, respectively. The initial creation
of C takes O(P (n)) space by Theorem 2.5.3. The size of C stays the same after the join
on line 8 since each memory address is unique in M . It can only decrease when the rows
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representing halted processors are removed on line 13. The size of table U is at most
|U | = |M |+ |C|. Overall, this proves that D uses space O(S(n)) as claimed.

Since the word size of M is assumed to be O(log n) and all tables used in D have
fixed-length tuples containing values of this word size, there is a suitable row width bound
for D as required by the definition of a Database Machine (Definition 2.3.1).

Combining this result with the simulation from the previous section now allows us to
prove the main theorem of this chapter.

Proof of Theorem 4.1.1. By Lemma 4.2.1, the PRAM P can be simulated by a Parallel
Microcode Machine M with the same processor bound P (n), space S(n), time O(T (n))

and word size O(W (n)) = O(log n). M satisfies the requirements of Lemma 4.3.1, so it
can be simulated by a Database Machine D as claimed in the theorem.

4.4 Simulating a Relational Machine

In the previous sections we have shown that a Database Machine can simulate a PRAM
with logarithmic word size bound. In this section we will show that a PRAM can simulate
a Relational Machine with a logarithmic slowdown.

4.4.1 Notational conventions

To formulate PRAM algorithms, we will use a high-level language that can readily be
translated to a sequence of “assembly language” instructions for a PRAM. Instead of register
numbers, we will use variable names and assume that different variable names refer to
different registers. The exact allocation of variables to PRAM registers does not matter,
but it is assumed that the lowest-numbered registers are used so that the word size required
for address calculations is minimal. A bounded number of scratch registers starting at index
zero is reserved for translating arithmetic expressions and indirect addressing.

Nested data structures and arrays are written similar to the ANSI C programming
language, with the exception that we use subscripts for array indexing. For example, let
l and r be integer constants and consider the data structure that is given in C syntax
in Figure 4.2. This is an array of r + 1 structures, each of which contain three variables
and two arrays of size l. An expression like R3.k5 refers to a single integer variable. The
notation R1 refers to the 2l+ 3 variables R1.e, R1.s, R1.t, R1.k0, . . . , R1.kl−1, R1.v0, . . . ,
R1.vl−1 and R1.k refers to the l variables R1.k0, . . . , R1.kl−1. An assignment Ri ← Rj

copies all 2l + 3 variables from one structure to another; the assignment Ri ← 0 denotes
setting all 2l + 3 variables to zero.

All variable names refer to local registers of the current processor. A processor ID in
square brackets is used to denote accessing a variable in a different processor. For example,
if PRAM register r5 is allocated to variable x, r6 is allocated to variable y and the processor
with PID = 7 executes the assignment x ← y[PID + 1], this translates to the following
sequence of operations: r0 ← 6; compute r1 = 8 by loading PID and incrementing it;
r5 ← (rr0 of r1).
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Figure 4.2: Data structure for simulating a Relational Machine in C notation

struct _rtable
{

int e;
int s;
int t;
int k[l];
int v[l];

} R[r+1];

Each line of code is executed by all processors synchronously. To maintain this syn-
chronisation, conditional instructions, denoted by if condition then statements1 else
statements2 end if, are assumed to be translated such that the block of code representing
statements1 is executed first by those processors for which condition is true while the other
processors execute the same number of instructions r2 ← 0, reserving PRAM register r2
as a dummy for this purpose. Next, the processors for which condition was false execute
statements2 while the other processors execute the same number of padding instructions.

We use C-style notation for the logical operators and assume short-circuit evaluation:
the term p && q denotes p and q and q is only evaluated if p is true. The term p || q
denotes p or q and q is only evaluated if p is false.

We speak of a column x to refer to the contents of the variable x across all processors.

4.4.2 Prerequisite algorithms and techniques

For simulating a Relational Machine on a PRAM, we need some way to represent rtables
and other two-dimensional arrays as helper tables.

Definition 4.4.1. A packed array is a data structure in the register set of a PRAM
representing an n×m array of nonnegative integers as follows. The array is stored in data
columns x1, . . . , xm. There is an indicator column e such that e[i] = 1 for 0 ≤ i < n and
e[i] = 0 otherwise. The i-th row of the array is stored in registers x1, . . . , xm of processor
i− 1.

When writing code that works on all rows of a packed array in parallel, we can simply
wrap it in if e 6= 0 then . . . end if to execute it only on those processors in which rows
are actually present. Each processor has access to one row in its local registers x1, . . . , xm
and can access any element ai,j by referencing xj [i− 1].

Lemma 4.4.1 (row count). A PRAM can determine the number of rows in a packed array
in O(1) time and O(1) space.

Proof. Algorithm 30 determines the number of rows in a packed array with indicator e. A
variable n in processor 0 is initialised to zero. Every processor then checks if it has the
last row of the table and in this case writes the number of rows to the variable n[0].
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Algorithm 30 Determining the size of a packed array with indicator e
1: function GetRowCount(e)
2: n[0]← 0
3: if e 6= 0 && e[PID + 1] = 0 then
4: n[0]← PID + 1
5: end if
6: return n[0]
7: end function

Since the table is assumed to be stored contiguously, starting at processor 0, only the
processor holding the last row will execute this write, unless the packed array is empty in
which case the result is also correct. The single register n[0] is the only space used.

Lemma 4.4.2 (binary search). Let a packed array with n rows and indicator ev be stored
in a PRAM in ascending order by a column v and let x be a column of a packed array with
indicator ex. Algorithm 31 computes on each processor with ex = 1 the largest index l such
that v[l] ≤ x or 0 if such an index does not exist. It takes time O(log n) and space O(1).

Proof. Algorithm 31 is a simple binary search running on all rows of x in parallel. As a
first step, the size of the lookup array v is computed as n[0], taking O(1) operations by
Lemma 4.4.1.

Algorithm 31 Parallel binary search
1: function ParallelBinarySearch(ev, v, ex, x)
2: n[0]← GetRowCount(ev)
3: if ex 6= 0 then
4: l← 0
5: r ← n[0]
6: while n[0] > 1 do
7: m← b(l + r)/2c
8: if v[m] > x then
9: r ← m
10: else
11: l← m
12: end if
13: if PID = 0 then
14: n← dn/2e
15: end if
16: end while
17: end if
18: return l
19: end function

The condition of the while loop depends on the same variable n[0] for all processors,
ensuring that all processors execute the same number of iterations. The following invariants
are maintained throughout the loop on each processor and are easily verified:

1. r ≥ l;

2. r − l ≤ n[0];
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3. v[l] ≤ x, unless v[0] > x in which case we have l = 0 throughout.

In the loop, n[0] is maintained as an upper bound on the length of the search interval on
any processor. The number of iterations is O(log n) since the search interval is cut in half
at each step.

Lemma 4.4.3 (prefix computation). Let v1, . . . , vn be a sequence of nonnegative integers
and ⊕ : N0 → N0 an associative binary operation that is a database function. Then the
sequence pk =

⊕k
i=1 vi, k = 1, . . . , n, can be computed on a PRAM by n processors in

O(log n) time using O(n) space.

Proof. The algorithm was expressed in terms of circuits by Ladner and Fischer [55] and
is given as a recursive algorithm for the PRAM in [29]. It works as follows: for even i,
compute v′i/2 = vi−1 ⊕ vi. For the resulting sequence v′1, . . . , v′bn/2c, recursively compute
prefixes p′k =

⊕k
i=1 v

′
i, k = 1, . . . , bn/2c. The resulting prefix sequence is then obtained as

follows: p1 = v1. For even i, set pi = v′i/2. For odd i > 1, compute pi = v′(i−1)/2 ⊕ vi.
Algorithm 32 implements this idea using loops instead of recursion. The input sequence

is stored in register x across processors 0, . . . , n[0]− 1; the length of the sequence is passed
in n[0].

Algorithm 32 Prefix computation
1: function ComputePrefixes⊕(x, n[0])
2: y0 ← x
3: c0[0]← n[0]
4: i[0]← 0

5: while ci[0][0] > 1 do
6: i[0]← i[0] + 1
7: ci[0][0]← bci[0]−1[0]/2c
8: if PID < ci[0][0] then
9: yi[0] ← yi[0]−1[2 · PID ]⊕ yi[0]−1[2 · PID + 1]
10: end if
11: end while

12: while i[0] > 0 do
13: i[0]← i[0]− 1
14: if PID > 0 && PID < ci[0][0] then
15: if PID mod 2 = 0 then
16: yi[0] ← yi[0]+1[PID/2− 1]⊕ yi[0]
17: else
18: yi[0] ← yi[0]+1[(PID − 1)/2]
19: end if
20: end if
21: end while

22: return y0
23: end function

The algorithm first copies the input sequence x to y0, which will contain the result at
the end, and sets the row count c0[0]. Register i[0], a single register in PRAM processor 0,
is used to keep track of the recursion level. At level i[0], yi[0] plays the role of v′ in the above
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description and ci[0][0] is the count of elements in that sequence. The first loop computes
the binary operation on adjacent pairs for all levels. The second loop then combines
them in the reverse order according to the recursive algorithm described above. Note that
the terminating conditions for both while loops depend on variables in processor 0 only,
ensuring that all processors execute the same number of iterations and synchronisation is
maintained.

Since the length of the new sequence yi[0] is halved at each iteration, the number of
iterations of each loop is log n, making the time O(log n), as claimed. Temporary space
usage for the sequences yi is the geometric sum bn/2c + · · · + bn/2ic + · · · + 1 < n and
there are log n variables for the length counts. This makes the total temporary space usage
O(n), as claimed.

Lemma 4.4.4 (compacting an array). Let r be a column, e ∈ {0, 1} on all processors and
n[0] such that e[i] = 0 for all i ≥ n[0]. Algorithm 33 converts column r to a packed array
with indicator e, i.e. it rearranges all rows with e = 1 such that they are stored contiguously
in processors 0, 1, . . ., preserving their order. It takes time O(log n[0]) and space O(n[0]).

Proof. Algorithm 33 performs a prefix computation on column e using integer addition,
taking time O(log n[0]) and space O(n[0]) by Lemma 4.4.3. Since e ∈ {0, 1}, the result is
a contiguous sequence of integers starting at 1 in all rows with e = 1. Subtracting 1 yields
the ID of the processor in which to store each row.

Algorithm 33 Compacting an array into a packed array
1: procedure CompactArray(e, r, n[0])
2: i← ComputePrefixes+(e, n[0])
3: if e 6= 0 then
4: r[i− 1]← r . simultaneous write after read
5: end if
6: if PID ≤ i[n[0]− 1] then
7: e← 1
8: else
9: e← 0
10: end if
11: end procedure

It remains to copy each row to its new location and to turn e into an indicator column,
using O(1) operations. Note that the PRAM executes instructions synchronously in such
a way that reading occurs before writing. This ensures that no rows get overwritten before
being copied to their new location.

Lemma 4.4.5 (sorting). A packed array with n rows (stored in n different processors by
definition) can be sorted by a column v using O(log n) time and O(n) space.

Proof. This can be done using the parallel merge sort algorithm presented in [22].

We denote sorting a packed array A with indicator column A.e by value V as

Sort(A,A.e,A.v).
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Figure 4.3: Memory map for simulating a Relational Machine on a PRAM

PID R0 R1
. . . Rr

0 scratch row 0 row 0 . . . row 0

1 scratch row 1 row 1 . . . row 1

...
...

...
...

...

S(n)− 1 scratch row S(n)− 1 row S(n)− 1 . . . row S(n)− 1

e s t k1 k2 . . . kl v1 v2 . . . vl

4.4.3 The simulation

In order to show that a PRAM can simulate a Relational Machine, we will use the following
memory map throughout this section. Let R be a Relational Machine with r registers and
a maximum key and value tuple length of l. The simulating PRAM will use only even-
numbered registers to store the contents of R’s rtable registers according to the memory
map in Figure 4.3, reserving the odd-numbered registers for the input and output. Each
processor stores one row of each rtable register in its local registers. The processor bound
of the simulating PRAM therefore needs to accomodate the maximum number of rows in
any rtable register of R which is bounded by R’s space bound.

For each row, l registers each are allocated for the key and value tuples. The length
of the key tuple is stored in s and the length of the value tuple is stored in t. Each
rtable Ri is stored as a packed array with its own indicator column Ri.e. This memory
layout corresponds to the structure presented as an example in Figure 4.2 above. A fixed
number of registers starting at r0 and an extra rtable register R0 are allocated as scratch
space.

Theorem 4.4.6. Let R be a Relational Machine that runs in time T (n) and space S(n)

where S(n) is a database function. Then there exists a PRAM P with processor bound S(n)

that simulates R in time O(T (n) · logS(n)), space O(S(n)) and with a word size bound of
O(log n).

The proof is structured as a series of lemmas showing how to simulate each of the basic
operations of a Relational Machine on a PRAM. The most involved of these constructions
is the simulation of JOIN A,B,C, which we will discuss first. Recall that this operation
joins two tables on equality of their value tuples. For brevity, we write v for the entire
value tuple v1, . . . , vl and assume lexicographic ordering. We will accompany the following
explanation with a running example of two tables being joined. Figure 4.4 shows the first
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Figure 4.4: Example for JOIN A,B,C

PID A.v B.v A.v B.v

0 5 7 1 3
1 7 3 1 3
2 5 5 3 5
3 1 8

sort
==⇒ 5 5

4 7 3 5 7
5 1 8 5 8
6 3 5 6 8
7 5 7
8 6 7

step, sorting both tables by value tuple. In the figures, we use a single integer to represent
the value tuple.

Definition 4.4.2. Let A be an rtable stored in a PRAM such that it is sorted by its value
tuple. A range table for A is a packed array with columns (v, start , end) and indicator e
that contains for each value v occurring in the value tuple of A a row with the range of
row indices (start to end inclusive) of this value in A.

Lemma 4.4.7. Algorithm 34 takes an rtable A, assumed to be sorted by its value tuple
A.v, and computes a range table with the specified indicator e and columns (v, start , end)

that is also sorted by v. It takes O(log |A|) time on a PRAM.

Algorithm 34 Computing a range table
1: procedure ComputeRangeTable(A, e, v, start , end) . A is sorted by A.v
2: if A.e 6= 0 then
3: first ← (PID = 0 || A.v 6= A.v[PID − 1] ? 1 : 0)
4: last ← (A.e[PID + 1] = 0 || A.v 6= A.v[PID + 1] ? 1 : 0)
5: end if
6: n[0]← GetRowCount(A.e)
7: ifirst ← ComputePrefixes+(first , n[0])
8: ilast ← ComputePrefixes+(last , n[0])
9: if first 6= 0 then
10: e[ifirst − 1]← 1
11: v[ifirst − 1]← A.v
12: start [ifirst − 1]← PID
13: end if
14: if last 6= 0 then
15: end [ilast − 1]← PID
16: end if
17: end procedure

Proof. The algorithm first computes two helper columns first and last , containing 1 if a
row is the first or the last in a range of rows with equal values of v, respectively, and 0

otherwise. A prefix sum computation is then performed on each of these columns, yielding
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Figure 4.5: Example for JOIN A,B,C, continued

PID A.v first last ifirst ilast

0 1 1 0 1 0
1 1 0 1 1 1
2 3 1 1 2 2
3 5 1 0 3 2
4 5 0 0 3 2
5 5 0 1 3 3
6 6 1 1 4 4
7 7 1 0 5 4
8 7 0 1 5 5

(entries not used in the next step are shown in grey)

Figure 4.6: Example for JOIN A,B,C, continued (2)

PID eA vA startA endA eB vB startB endB

0 1 1 0 1 1 3 0 1
1 1 3 2 2 1 5 2 3
2 1 5 3 5 1 7 4 4
3 1 6 6 6 1 8 5 6
4 1 7 7 8

columns ifirst and ilast , respectively (see Figure 4.5). Finally, lines 9–16 compute the
resulting packed array: each processor that has a first row of a range writes its PID to
start at the correct index and each processor that has a last row of a range does the same
for end . Note that the number of ones in first and last is identical since each range has
exactly one first row and one last row. The result is illustrated in Figure 4.6 for both input
tables.

By Lemma 4.4.3, the prefix computations take time O(log |A|). The remaining instruc-
tion take time O(1), making the overall time for ComputeRangeTable(A, . . .) O(log |A|) as
claimed.

Lemma 4.4.8. Algorithm 35 simulates the Relational Machine operation JOIN A,B,C on
a PRAM, taking time O(log |A|+ log |B|).

Proof. Here is a brief overview of the construction. The algorithm first sorts each of the
input tables by their value tuple and computes a range table. From these two tables, it
derives a table combining for each value of v occurring in both A and B the corresponding
row ranges in A and B. For each value of v, the product of the size of the range in A

and the size of the range in B is the size of the range in the result table C. A prefix sum
calculation yields the total number of rows in C and the starting row of each range. As a
last step, |C| processors assemble their rows in parallel, computing the required indices in
A and B using these helper tables.

Figure 4.6 shows the range tables computed for our example join in the first step. Next,
each processor holding a row of the range table of A with value v performs a binary search
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Algorithm 35 Simulating JOIN A,B,C on a PRAM
1: n[0]← GetRowCount(eA)
2: Sort(A,A.e,A.v)
3: ComputeRangeTable(A, eA, vA, startA, endA)
4: Sort(B,B.e,B.v)
5: ComputeRangeTable(B, eB, vB, startB, endB)

6: b← ParallelBinarySearch(eB, vB, eA, vA) . find vA in vB
7: if eA 6= 0 then
8: if vB[p] = vA then
9: start ′B ← startB[b]
10: end ′B ← endB[b]
11: else
12: eA ← 0
13: end if
14: end if

15: CompactArray(ea, (startA, endA, start ′B, end
′
B), n[0])

16: if eA 6= 0 then
17: r ← (endA + 1− startA) · (end ′B + 1− start ′B) . length of range in result table
18: end if
19: n[0]← GetRowCount(eA)
20: r′ ← ComputePrefixes+(r, n[0])
21: if eA 6= 0 && eA[PID + 1] = 0 then
22: r′max [0]← r′

23: end if

24: if PID < r′max [0] then
25: R0.e← 1
26: p← PID
27: i← ParallelBinarySearch(eA, r

′, R0.e, p) . find largest i with r′[i] ≤ p
28: if p ≥ r′[i] then
29: p← p− r′[i]
30: rA ← startA + bp/(end ′B[i+ 1] + 1− start ′B[i+ 1])c
31: rB ← start ′B[i+ 1] + p mod (end ′B[i+ 1] + 1− start ′B[i+ 1])
32: else
33: rA ← startA + bp/(end ′B[i] + 1− start ′B[i])c
34: rB ← start ′B[i] + p mod (end ′B[i] + 1− start ′B[i])
35: end if
36: R0.s← A.s[rA] +B.s[rB]
37: R0.t← 0
38: R0.k ← A.k[rA]
39: for j = 1, . . . , B.s[rB] do
40: R0.kj+A.s[rA] ← B.kj [rB]
41: end for
42: end if

43: C ← R0

44: R0 ← 0
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Figure 4.7: Example for JOIN A,B,C, continued (3)

PID eA vA startA endA b eB vB startB endB

0 1 1 0 1 0 1 3 0 1
1 1 3 2 2 0 1 5 2 3
2 1 5 3 5 1 1 7 4 4
3 1 6 6 6 1 1 8 5 6
4 1 7 7 8 2

Figure 4.8: Example for JOIN A,B,C, continued (4)

PID eA vA startA endA start ′B end ′B
0 1/ 0 1 0 1 0 0
1 1 3 2 2 0 1
2 1 5 3 5 2 3
3 1/ 0 6 6 6 0 0
4 1 7 7 8 4 4

⇓ compact

PID eA vA startA endA start ′B end ′B
0 1 3 2 2 0 1
1 1 5 3 5 2 3
2 1 7 7 8 4 4

for v in the range table of B, taking time O(log |B|) by Lemma 4.4.2. The result is shown
as column b in Figure 4.7. If v is found in B, the algorithm copies the corresponding
starting and ending indices to start ′B and end ′B. Otherwise it marks the row to be deleted
by setting eA ← 0.

Compacting the array with indicator eA and columns (vA, startA, endA, start ′B, end
′
B)

using Algorithm 33 yields a packed array containing only values vA occurring in both input
tables together with their corresponding row ranges within the sorted tables (Figure 4.8).
This takes time O(log |A|) by Lemma 4.4.4.

The next step (line 17) is to compute for each value in vA the number of rows with
this value in the result table, r. A prefix sum computation yields r′ where the starting
row for the range of values vA[i] is r′[i− 1], or zero for i = 0. Since the number of distinct
values in the result is at most |A|, this prefix sum computation takes time O(log |A|) by
Lemma 4.4.3. The maximum value in column r′ is the number of rows in the result table
and stored in r′max [0] (line 22). See Figure 4.9 for a continued example.

Now each processor with PID < r′max [0] assembles a row of the result in the scratch
space R0. To compute which input rows to join, it looks up its PID in column r′ using
binary search. By Lemma 4.4.2, this returns the largest index i such that r′[i] ≤ p or zero
if r′[0] > p. Subtracting r′[i] from p if possible yields the relative position p of the current
output row within the range. From this, the row numbers rA and rB within the input
tables are computed (see Figure 4.10).
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Figure 4.9: Example for JOIN A,B,C, continued (5)

PID eA vA startA endA start ′B end ′B r r′ r′max

0 1 3 2 2 0 1 2 2 10
1 1 5 3 5 2 3 6 8
2 1 7 7 8 4 4 2 10

Figure 4.10: Example for JOIN A,B,C, continued (6)

PID startA endA start ′B end ′B r′ r′max i p rA rB

0 2 2 0 1 2 10 0 0 2 0
1 3 5 2 3 8 0 1 2 1
2 7 8 4 4 10 0 0 3 2
3 0 1 3 3
4 0 2 4 2
5 0 3 4 3
6 0 4 5 2
7 0 5 5 3
8 1 0 7 4
9 1 1 8 4

It remains to assemble the output key tuple by concatenating the input key tuples.
Finally, the output is copied to the destination C and the scratch space R0 is cleared.
Summarising the time taken by this algorithm, we get

• O(log |A|+ log |B|) for sorting the input rtables A and B (Lemma 4.4.5),

• O(log |B|) for binary search in the range table for B (line 6, Lemma 4.4.2)

• O(log |A|) for compacting the range table (line 15, Lemma 4.4.4)

• O(log |A|) for prefix computation (line 20, Lemma 4.4.3)

• O(log |A|) for binary search (line 27, Lemma 4.4.2)

• O(1) for everything else.

Note that the range tables computed from A and B can have at most as many rows as A
and B, respectively. This makes the overall runtime of the algorithm O(log |A|+ log |B|),
as claimed.

Lemma 4.4.9. Algorithm 36 simulates the Relational Machine operation RANGE A on a
PRAM taking time O(log |A|).

Proof. The algorithm first sorts the table lexicographically by the value tuple, taking
O(log |A|) time by Lemma 4.4.5.

Each row whose value tuple is equal to that of the previous row is marked to be deleted
by setting A.e to 0. This preserves for every distinct value of A.v only the first row with
that value. The value tuples are moved to the key tuples and the table is compacted, again
taking O(log |A|) time by Lemma 4.4.4.
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Algorithm 36 Simulating RANGE A on a PRAM
1: n[0]← GetRowCount(A.e)
2: Sort(A,A.e,A.v)
3: if A.e 6= 0 then
4: if PID 6= 0 && A.v = A.v[PID − 1] then
5: A.e← 0
6: end if
7: end if
8: A.k ← A.v
9: A.s← A.t
10: A.v ← 0
11: A.t← 0
12: CompactArray(A.e,A, n[0])

Lemma 4.4.10. Algorithm 37 simulates the Relational Machine operation SINGLES A on
a PRAM taking time O(log |A|).

Proof. The algorithm first sorts the table lexicographically by the value tuple, taking
O(log |A|) time by Lemma 4.4.5.

Algorithm 37 Simulating SINGLES A on a PRAM
1: n[0]← GetRowCount(A.e)
2: Sort(A,A.e,A.v)
3: if A.e 6= 0 then
4: if (PID 6= 0 && A.v = A.v[PID − 1]) || (A.e[PID + 1] 6= 0 && A.v = A.v[PID + 1])

then
5: A.e← 0
6: end if
7: end if
8: A.v ← 0
9: A.t← 0
10: CompactArray(A.e,A, n[0])

Each processor tests its row for uniqueness of the value tuple. It is not unique if it is
equal to the previous row or to the next row. In this case, the row is marked to be deleted
by setting A.e to 0. It remains to clear the value tuple and to compact the table, taking
time O(log |A|) by Lemma 4.4.4.

Lemma 4.4.11. Each of the Relational Machine mapping primitives defined in Section 3.2.2
can be simulated by a PRAM taking time O(1) and O(1) temporary space.

Proof. This is straightforward. All of the mapping primitives perform the same operations
on all rows of an rtable in parallel. To implement this on a PRAM that has a processor
assigned to each row, we just need to make sure that only those processors that have a
valid row execute the operation.

Algorithm 38 shows how the ROTK operation is implemented. Note that the variables
A.s and A.t that store the key and value tuple lengths of the rtable contain the same values
for each row. This is preserved as an invariant by all operations. It ensures that the for
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Algorithm 38 Simulating ROTK A on a PRAM
1: if A.e 6= 0 && A.s > 1 then
2: temp ← A.k1
3: for i = 1, . . . , A.s− 1 do . A.s is the same across all processors
4: A.ki ← A.ki+1

5: end for
6: A.kA.s ← temp
7: end if

loop executes the same number of iterations on all processors as required by our use of
pseudo-code for formulating PRAM algorithms.

Algorithm 39 Simulating CDEC A on a PRAM
1: if A.e 6= 0 && A.t ≥ 2 && A.v1 6= 0 && A.v2 6= 0 then
2: A.v2 ← A.v2 − 1
3: end if

Algorithm 40 Simulating CSHIFT A on a PRAM
1: if A.e 6= 0 && A.t ≥ 3 && A.v1 6= 0 then
2: A.v3 ← 2 ·A.v3 + (A.v2 mod 2)
3: A.v2 ← bA.v2/2c
4: end if

Note that incrementing, decrementing, and bit shifting are all expressible as binary
operations that are database functions and thus implementable with our PRAM instruction
set. Algorithms 39 and 40 show example simulations of two more mapping primitives,
CDEC and CSHIFT. The rest of the mapping primitives are implemented in the same way
and omitted here for brevity.

Lemma 4.4.12. The Relational Machine instructions for copying data, loading constants
and changing control flow described in sections 3.2.3 and 3.2.4 can be simulated on a PRAM
using time O(1) and no temporary space.

Proof. Copying an rtable register to another is simply done by all processors in parallel,
one PRAM register at a time. Since the simulation uses a fixed number of registers per
rtable row, this takes O(1) operations. Loading one of the two constant tables into any
rtable register is also straightforward: first, all processors clear the register and then one
or two processors write the one or two rows of the constant tables ONE or TWO.

The Relational Machine can change control flow only based on the emptiness of an
rtable register. To test whether a simulated rtable register A contains the empty table, all
processors simply check if A.e[0] = 0 and simultaneously change control flow based on the
result.

The previous Lemmas have shown how to simulate each of the instructions of a Rela-
tional Machine on a PRAM assuming its rtable registers are stored in the even-numbered
registers of the PRAM as described at the beginning of this section. We can now put these
together to prove the main theorem.
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Proof of Theorem 4.4.6. Let R be a Relational Machine that runs in time T (n) and space
S(n). Recall that a computation on a Relational Machine maps a key-only input rtable
to a key-only output rtable. A PRAM maps an input n-tuple to an output m-tuple of
nonnegative integers. To simulate R on a PRAM, we serialise the input and output rtables
into a tuple of integers as follows: let s be the key tuple size of an rtable with empty value
tuples and n the number of rows. The rtable is represented as a tuple of n · s+ 1 integers
x0, . . . , xn·s where x0 = s and the j-th tuple element of row i is stored in xi·s+j ; tuple
elements are numbered j = 1, . . . , s and rows are numbered i = 0, . . . , n− 1.

The simulating PRAM P uses S(n) processors so that each rtable row can always be
stored in a different processor. The first step of the simulation is to deserialise the input
rtable into even-numbered PRAM registers according to the memory map described at the
beginning of this section. Algorithm 41 performs this transformation. The notation ri[j]
stands for PRAM register ri on processor j; otherwise we use variable names referring to
the memory map shown in Figure 4.3 as described in Section 4.4.1.

The algorithm first determines the number of processors for index calculations on P’s
input sequence and computes the number of rows of the input rtable from the total size
of the input. Next, one processor per input row copies its row from the input sequence to
the memory allocated for rtable register R1. This takes time O(1) since the input tuple
size s is bounded by R’s maximum tuple size which is a constant.

Algorithm 41 Deserialising an rtable from an input sequence
1: p← PID
2: if p[PID + 1] = 0 then . reading from a nonexisting processor returns zero
3: p[0]← PID + 1 . p[0] is now the number of activated processors
4: end if
5: if PID = 0 then
6: rows ← (r0 − 1)/r1
7: end if
8: if PID < rows[0] then
9: R1.e← 1
10: R1.s← r1[0]
11: for i[0] = 1, . . . , r1[0] do
12: j ← PID · r1[0] + i[0]
13: R1.ki[0] ← r2bj/p[0]c+1[j mod p[0]]
14: end for
15: end if

The simulation now commences using the algorithms presented on the previous pages
to simulate each Relational Machine instruction. The three “heavy” relational Machine
instructions take time O(logS(n)) by Lemma 4.4.8 (JOIN), Lemma 4.4.9 (RANGE), and
Lemma 4.4.10 (SINGLES). The remaining instructions take time O(1) by Lemma 4.4.11
(mapping primitives) and Lemma 4.4.12 (miscellaneous operations). This establishes the
overall claim that P takes time O(T (n) · logS(n)).

The Relational Machine’s HALT instruction is simulated by executing Algorithm 42 to
serialise the output rtable in R1. This is a straightforward reversal of the deserialisation
at the beginning, taking time O(1).
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Algorithm 42 Serialising an rtable to an output sequence
1: p← PID
2: if p[PID + 1] = 0 then . reading from a nonexisting processor returns zero
3: p[0]← PID + 1 . p[0] is now the number of activated processors
4: end if
5: rows[0]← GetRowCount(R1.e)
6: if PID = 0 then
7: r1 ← R1.s . key tuple width
8: r0 ← rows ·R1.s+ 1 . compute length of output sequence
9: end if
10: if R1.e 6= 0 then
11: for i[0] = 1, . . . , r1[0] do
12: j ← PID · r1[0] + i[0]
13: r2bj/p[0]c+1[j mod p[0]]← R1.ki[0]
14: end for
15: end if

Finally, all processors of P halt simultaneously.

Theorem 4.4.6 makes a claim about the asymptotic complexity of simulating a Re-
lational Machine on a PRAM, and the constructions used for its proof were chosen for
that purpose. It seems likely that an actual implementation of the Relational Machine
primitives on a parallel computer can be made more efficient. This is left as future work.



Chapter 5

Running PRAM algorithms
in-database

In Chapter 4 we have shown how an algorithm formally specified in terms of our PRAM
instruction set can be translated to an algorithm for the Database Machine. This is a
general-purpose method that could be used to implement a compiler for this kind of trans-
lation.

However, PRAM algorithms in the literature are rarely presented in assembly language
but given in some kind of high-level pseudocode with an assumed understanding of how
they can be translated to the instruction set of the underlying machine. Unlike the previous
chapters, this chapter is informal. We will demonstrate by example how PRAM algorithms
written in pseudocode for human consumption can conveniently be directly formalised in
our high-level language for the Database Machine (Section 2.4), using the ideas devel-
oped for the formal proofs. From there, a practical implementation for an SQL-accessible
database or a platform like Spark can be obtained.

On a PRAM as defined in Definition 4.1.1 all processors share the same program, but
each processor can take a different execution path depending on the input data. But
that freedom is not really necessary. In fact, a SIMD model (Single Instruction stream
– Multiple Data stream) according to Flynn’s classification [34] is equivalent in power to
our PRAM model [71]. The high-level pseudocode notation we chose in Section 4.4.1 to
present PRAM algorithms is very close to SIMD in that we assume that all processors
execute the same line of code at all times with the exception that in conditional blocks
of code some processors may be executing no-ops. PRAM algorithms in the literature are
usually presented in this manner.

Our definition of a PRAM has a two-dimensional memory layout: each of the un-
bounded number of processors has an unbounded number of registers and can access each
other processor’s registers. This definition was chosen because it nicely aligns with our goal
of simulating a Relational Machine. By contrast, most publications on PRAM algorithms
use a one-dimensional memory model where processors with a bounded number of local
registers have access to a common shared unbounded memory. The Parallel Microcode
Machine uses this memory model. The two ways of defining a PRAM, one-dimensional
memory and two-dimensional memory, are equivalent in power [71].

101
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In the following sections we will demonstrate by example how to translate algorithms
for both kinds of memory models to a Database Machine. Section 5.1 introduces basic
translation techniques for the two-dimensional memory model using PRAM algorithms
from this thesis as examples. In Section 5.2 we take an algorithm from the PRAM literature
that uses a one-dimensional memory model and give a fully worked translation to the
Database Machine. Section 5.3 shows how to translate this to a practical implementation
in SQL and Python.

5.1 Basic translation techniques

For the two-dimensional memory model of our PRAM, the fundamental idea is to use a
table with one row per active processor that contains a unique processor ID and the local
variables of that processor. Here is a brief overview of the translation techniques we will
present in the following subsections.

Scalar variables. Some of our algorithms have all processors access a single variable
in processor 0 only, most notably in control structures, ensuring that processors
always execute the same line in lockstep. This gets translated to a scalar variable
in the Database Machine (which is technically a single-row, single-column table, see
Section 2.4.2).

Computation on local registers. A parallel computation that only uses local registers
of each processor and assigns the result to another local register gets translated to a
map operation.

Reading remote registers. Reading a register from a remote processor corresponds to
accessing a row in the processor table different from the current one. This is trans-
lated to a join operation, joining on the index of the row to be accessed. Care must
be taken not to join with nonexisting rows, otherwise simulated processors would
vanish.

Writing to remote registers. This is the most complicated translation since it involves
resolving multiple concurrent write operations and preserving values that are not
overwritten. It is achieved by first creating a table of old values plus all desired
updates and then executing groupby to reduce to one value per processor, similar
to the technique used in Algorithm 29.

5.1.1 Scalar variables and local computation

As a first example, we will translate PRAM Algorithm 31 (parallel binary search), going
through it line by line. The translated algorithm is presented in full as Algorithm 43 below.

The PRAM algorithm takes as input a packed array v with indicator ev that is assumed
to be sorted and a packed array x with indicator ex and performs a parallel binary search,
locating for each active x a row in the packed array v. In the corresponding Database
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Machine algorithm, the input is represented as two tables. V contains pairs (i, v) and X
contains pairs (i, x) such that the indices i are consecutive integers starting at 0.

Algorithm 31 first determines the row count of the input packed array v:

PRAM

n[0]← GetRowCount(ev)

This becomes a scalar variable in the Database Machine translation:

Database Machine

n← |V |

A common pattern in PRAM algorithms is limiting execution to a subset of the available
processors. Here, we execute the algorithm only on those processors that have a row of
the packed array x.

PRAM

if ex 6= 0 then
. . .

end if

In this case our Database Machine algorithm already has a tableX with exactly one row
for each processor to execute the conditional block. By simply working with table X, no
additional code is needed for the conditional. We will see in Section 5.2 below an example
of an algorithm that alternates between running code on two subsets of processors. This
is implemented equally naturally by using two tables, one for each subset of processors. In
more complicated cases, conditional expressions inside the multiset comprehension can be
used to manipulate only part of the table and leave the rest unchanged.

Assignments to local variables are a simple case of local computation.

PRAM

l← 0

r ← n[0]

They translate to amap operation, creating from the table X with tuples (i, x) a result
table R with tuples (i, x, l, r) where l and r are the new local variables.

Database Machine

R← [(i, x, 0, n) | (i, x) A X]

A loop using a variable in processor 0 . . .
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PRAM

while n[0] > 1 do
. . .
if PID = 0 then
n← dn/2e

end if
end while

. . . becomes a loop using a scalar variable.

Database Machine

while n > 1 do
. . .
n← dn/2e

end while

The core of the binary search is a parallel local computation, followed by a conditional
assignment based on a variable from another processor:

PRAM

m← b(l + r)/2c
if v[m] > x then
r ← m

else
l← m

end if

Recall that this piece of PRAM code lives inside a conditional (if ex 6= 0) so that it
is executed by those processors that have a row of the packed array x. These correspond
to the rows of table R in the translation. Table R is updated as follows to simulate this
block of code: For each (i, x, l, r) A R we first compute m ← b(l + r)/2c. Next, the
PRAM algorithm accesses the remote variable v[m]. The PRAM array v is simulated as
the database table V ; reading the remote variable becomes a join (m, v) A V . Now the new
values of l and r can be computed by an expression using the C-style ternary conditional
operator “(? :)”: We have l← (v > x ? l : m) and r ← (v > x ?m : r). All this is compactly
expressed in our high-level database language as a single line.

Database Machine

R← [(i, x, (v > x ? l : m), (v > x ?m : r)) | (i, x, l, r) A R

, m← b(l + r)/2c, (m, v) A V ]

The full translation of Algorithm 31 is presented as Algorithm 43.
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Algorithm 43 Translation of PRAM Algorithm 31 (parallel binary search) to a Database
Machine
1: function PRAMBinarySearch(V,X) . search X in sorted table V
2: n← |V |
3: R← [(i, x, 0, n) | (i, x) A X]
4: while n > 1 do
5: R← [(i, x, (v > x ? l : m), (v > x ?m : r)) | (i, x, l, r) A R

, m← b(l + r)/2c, (m, v) A V ]
6: n← dn/2e
7: end while
8: return [(i, l) | (i, ∗, l, ∗) A R]
9: end function

5.1.2 Remote registers and conditionals

The next example, PRAM Algorithm 32 for prefix computation, illustrates a more complex
interplay of conditional instructions and remote variable access. It also uses arrays of local
variables.

The PRAM algorithm takes as input a sequence x of length n where the elements of x
are stored across processors 0, . . . , n−1 and the variable n is stored in processor 0 (denoted
as n[0]). The Database Machine receives the input as a single table X of pairs (j, xj) for
j = 0, . . . , n−1. It does not require n as a separate input because the size of the input can
simply be determined as |X|. The PRAM algorithm uses an array of sequences yi where
each sequence is stored in processors 0, . . . , ci − 1. These are represented in the Database
Machine as tables Yi containing pairs (j, yi,j) for j = 0, . . . , ci − 1, i.e. the first element of
each pair, j, corresponds to the processor ID in the PRAM algorithm.

The control structure of the PRAM algorithm involves a variable i and an array of
variables ci in processor 0.

PRAM
y0 ← x

c0[0]← n[0]

i[0]← 0

while ci[0][0] > 1 do
i[0]← i[0] + 1

ci[0][0]← bci[0]−1[0]/2c
. . .

end while

while i[0] > 0 do
i[0]← i[0]− 1

. . .
end while

The loops get translated as in the previous example, using a a scalar variable i and
an array of scalar variables ci in the Database Machine. (Recall from Section 2.4.2 that a
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scalar variable in the Database Machine is a single-row 1-table and that arrays of tables
are a notational convention for manipulating a larger table as defined in Section 2.4.5.)

Database Machine

Y0 ← X

c0 ← |X|
i← 0

while ci > 1 do
i← i+ 1

ci ← bci−1/2c
. . .

end while
while i > 0 do
i← i− 1

. . .
end while

Inside the first while loop of the PRAM algorithm, there is a block that uses a subset
of the processors to create a new column yi[0]:

PRAM

if PID < ci[0][0] then
yi[0] ← yi[0]−1[2 · PID ]⊕ yi[0]−1[2 · PID + 1]

end if

On the Database Machine, we translate this as creating a new table Yi with ci rows.
To do this, we need the indices j = 0, . . . , ci − 1 to start with. In general, these could be
generated on a Database Machine from scratch using Algorithm 3. In this case, however,
we happen to have a table Yi−1 available containing a sufficient number of consecutive
integers in the first column. By starting with (j, ∗) A Yi−1, j < ci, we obtain the required
indices j. Accessing the nonlocal PRAM variable yi[0]−1[2 · PID ] translates to the join
(2j, y0) A Yi−1, placing the result in y0. Similarly, accessing yi[0]−1[2 · PID + 1] translates
to the join (2j + 1, y1) A Yi−1, placing the result in y1. Overall, the creation of table Yi
amounts to one line on the Database Machine, combining the two values y0 and y1 using
the binary operation ⊕.

Database Machine

Yi ← [(j, y0 ⊕ y1) | (j, ∗) A Yi−1, j < ci, (2j, y0) A Yi−1, (2j + 1, y1) A Yi−1]

The code block inside the second while loop is a little more involved:
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PRAM

if PID > 0 && PID < ci[0][0] then
if PID mod 2 = 0 then
yi[0] ← yi[0]+1[PID/2− 1]⊕ yi[0]

else
yi[0] ← yi[0]+1[(PID − 1)/2]

end if
end if

This code assigns a new value to each row of the packed array yi except for row 0. On
the Database Machine, this translates to changing all but one row of the table Yi. Since
tables are immutable, we cannot just update some rows. Instead, we have to create a new
version of the full table. We do this by forming the union of a table with the unchanged
rows – in this case, only row 0 – with a table of updated rows. This technique can be
applied in general when a conditional in a PRAM algorithm translates to changes in a
subset of a table’s rows. The unchanged part of Y1 is [(0, y) | (0, y) A Yi], a single-row
table with the tuple for row 0. The other expression starts with (j, y) A Yi, j > 0 to access
all the other rows.

The inner if of the PRAM algorithm selects between two different remote processors
to be accessed, corresponding to two different rows in table Yi+1. We therefore calculate,
using the ternary conditional operator, as an auxiliary value j′ the row number to join on
and bring in the corresponding value y′ of Yi+1 using the join (j′, y′) A Yi+1. The result
can then be expressed using a ternary conditional expression.

Database Machine

Yi ← [(0, y) | (0, y) A Yi] ] [(j,(j mod 2 = 0 ? y′ ⊕ y : y′))

| (j, y) A Yi, j > 0

, j′ ← (j mod 2 = 0 ? j/2− 1 : (j − 1)/2)

, (j′, y′) A Yi+1]

The complete translation of PRAM Algorithm 32 to a Database Machine is given
as Algorithm 44. Note that this algorithm is different from and more complicated than
the arguably more natural implementation of prefix computation on a Database Machine
presented as Algorithm 7 in Section 2.5.7, but that it nevertheless has the same asymptotic
complexity.

5.1.3 Exclusive writes to remote registers

The next example is the translation of the PRAM algorithm for computing a range table,
Algorithm 34. It illustrates a special case of writing to remote registers where the algorithm
guarantees exclusive writes to any register.

The PRAM algorithm takes as input a packed array A with indicator A.e that is
assumed to be sorted by a column A.v. It produces a packed array with indicator e and
columns v, start , and end . Each processor that has a row of A first computes whether
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Algorithm 44 Translation of PRAM Algorithm 32 (prefix computation) to a Database
Machine
1: function PRAMPrefixes(⊕, X) . tuples (i, x)
2: Y0 ← X
3: c0 ← |X|
4: i← 0
5: while ci > 1 do
6: i← i+ 1
7: ci ← bci−1/2c
8: Yi ← [(j, y0 ⊕ y1) | (j, ∗) A Yi−1, j < ci, (2j, y0) A Yi−1, (2j + 1, y1) A Yi−1]
9: end while
10: while i > 0 do
11: i← i− 1
12: Yi ← [(0, y) | (0, y) A Yi] ] [(j,(j mod 2 = 0 ? y′ ⊕ y : y′))

| (j, y) A Yi, j > 0
, j′ ← (j mod 2 = 0 ? j/2− 1 : (j − 1)/2)
, (j′, y′) A Yi+1]

13: end while
14: return Y0 . tuples (j, y) where y =

⊕j
i=0 xi

15: end function

it is first and/or last in a range of identical values and stores the result in first and last ,
respectively.

PRAM

if A.e 6= 0 then
first ← (PID = 0 || A.v 6= A.v[PID − 1] ? 1 : 0)

last ← (A.e[PID + 1] = 0 || A.v 6= A.v[PID + 1] ? 1 : 0)

end if

The Database Machine algorithm takes as input a table A with tuples (i, v) where
i is an index and column v is assumed to be sorted. Its output will be a table with
tuples (i, v, start , end) containing the range table. The computation of first and last is a
straightforward translation using a join to access a remote row. For clarity, we present it
in two steps, building in table B a copy of A augmented by the two columns first and last .
In the first line, the edge case of the first row is handled by a conditional expression for
the index to join on, joining on the dummy index 0 for the first row. In the second line,
the edge case of the last row of the table is handled by using an outer join (recall from
page 27 that the notation Aσ indicates a left outer join (ljoin), setting σ = 1 if a row was
matched and σ = 0 for unmatched rows).

Database Machine

B ← [(i, v, (i = 0 || v 6= v′ ? 1 : 0)) | (i, v) A A, ((i > 0 ? i− 1 : 0), v′) A A]

B ← [(i, v,first , (σ = 0 || v 6= v′ ? 1 : 0)) | (i, v,first) A B, (i+ 1, v′) Aσ A]

Next, prefix sums on first and last are computed.
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PRAM

n[0]← GetRowCount(A.e)
ifirst ← ComputePrefixes(first , n[0],+)

ilast ← ComputePrefixes(last , n[0],+)

On the Database Machine this can be done using Algorithm 44 from the previous ex-
ample or, alternatively, using the “native” Database Machine algorithm from Section 2.5.7.

Database Machine

F ← PRAMPrefixes(+, [(i,first) | (i, ∗,first , ∗) A B])

L← PRAMPrefixes(+, [(i, last) | (i, ∗, ∗, last) A B])

The last step is the creation of the final range table. On the PRAM, this is written to
columns v, start and end with indicator e. Note that only the processors with first 6= 0

write to index ifirst − 1 and only the processors with last 6= 0 write to index ilast − 1,
ensuring that each row of the final table is written by exactly one processor.

PRAM

if first 6= 0 then
e[ifirst − 1]← 1

v[ifirst − 1]← A.v

start [ifirst − 1]← PID
end if
if last 6= 0 then
end [ilast − 1]← PID

end if

On the Database Machine, the result table R has tuples (j, v, start , end), corresponding
to the variables v, start , and end stored in PRAM processor i. It is generated in two steps,
corresponding to the two if blocks. The first step generates a table with tuples (j, v, start)
where j is the new index in the output table. The second step adds column end . In the
first step, each row of B with first 6= 0 generates a row of R. The indices are looked up in
the prefix sum table F . Since the PRAM algorithm guarantees exclusive writes, we know
that all indices j = f − 1 are unique within the result and no resolution of write conflicts
is necessary.

In the next step, column end is added to table R. Each row of B with last 6= 0

contributes a value end and the matching previously computed row of R is brought in via
a join to form the final result.

Database Machine

R← [(f − 1, v, i) | (i, v,first , ∗) A B,first 6= 0, (i, f) A F ]

R← [(l − 1, v, start , i) | (i, ∗, ∗, last) A B, last 6= 0, (i, l) A L, (l − 1, v, start) A R]

The complete translation of PRAM Algorithm 34 is shown as Algorithm 45.
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Algorithm 45 Translation of PRAM Algorithm 34 (ComputeRangeTable) to a Database
Machine
1: function PRAMRangeTable(A) . tuples (i, v), sorted by v
2: B ← [(i, v, (i = 0 || v 6= v′ ? 1 : 0)) | (i, v) A A, ((i > 0 ? i− 1 : 0), v′) A A]
3: B ← [(i, v,first , (σ = 0 || v 6= v′ ? 1 : 0)) | (i, v,first) A B, (i+ 1, v′) Aσ A]
4: F ← PRAMPrefixes(+, [(i,first) | (i, ∗,first , ∗) A B])
5: L← PRAMPrefixes(+, [(i, last) | (i, ∗, ∗, last) A B])
6: R← [(f − 1, v, i) | (i, v,first , ∗) A B,first 6= 0, (i, f) A F ]
7: R← [(l − 1, v, start , i) | (i, ∗, ∗, last) A B, last 6= 0, (i, l) A L, (l − 1, v, start) A R]
8: return R . tuples (j, v, start , end)
9: end function

5.1.4 Concurrent writes

To demonstrate the translation of concurrent writes to remote registers, we will use a
contrived example of a tiny part of a PRAM algorithm. A real-world example will follow
in Section 5.2. Assume the memory of a PRAM contains a packed array with indicator
column e and columns v and w and also another column named r.

Consider the following PRAM code:
PRAM

if e 6= 0 then
r[v]← w

end if

If multiple rows of the packed array contain the same value of v, this is a concurrent
write operation. According to Definition 4.1.1, in this case the processor with the lowest
ID succeeds and the other writes are ignored.

In the Database Machine translation, assume that we chose to store the packed array
in a table E with tuples (pid , v, w) and the column r in a separate table V with tuples
(pid , r) where in both cases pid corresponds to the processor ID of the PRAM. As seen in
the previous examples, it is often convenient to represent packed arrays as tables containing
only those rows for which the value of the indicator is 1.

The PRAM write operation translates to the following steps to update table R on the
Database Machine.

1. Compute a table U of updates to be made to R. U contains triples (i, c, pid , w)

where i is the processor ID to be written, c = 0, pid is the process ID of the writing
processor and w is the value to be written.

2. Augment table U by the current contents of R, setting the second tuple element to
c = 1 and the third element to pid = 0.

3. Compute the new table R by reducing U using groupby to a single row per pro-
cessor i. The aggregate function min((c, pid , w)) runs over triples (c, pid , w) and
computes the minimum according to lexicographic order. This has the effect that
updates (c = 0) take precedence over the original values (c = 1) and that multiple
updates to the same location are resolved to the minimum processor ID.
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Database Machine

U ← [(v, 0, pid , w) | (pid , v, w) A E]

U ← U ] [(pid , 1, 0, r) | (pid , r) A R]

R← [(i, w′) | (i, c, pid , w) A U,groupby(i, (c′, pid ′, w′)← min((c, pid , w))]

Note that step 2 is only necessary if we care about the previous content of column r in
the PRAM (correspondingly, the previous contents of R). If it were omitted, the result R
would contain only rows (pid , r) for which pid occurs among the values of v in the packed
array.

5.2 A fully worked example from the literature

The previous examples have illustrated various translation techniques using PRAM algo-
rithms from this thesis and a two-dimensional memory model. We will now turn to the
one-dimensional memory model more commonly found in the PRAM literature and con-
clude this chapter with translating a more elaborate algorithm to a Big Data-practical
in-database implementation.

Let G = (V,E) be an undirected graph with n = |V | vertices and m = |E| edges
where each edge is an unordered pair of vertices. The problem of computing the connected
components of G is to assign to each vertex v ∈ V a representative r(v) ∈ V such that for
any two vertices v, w ∈ V we have r(v) = r(w) if and only if there is a path from v to w.
The best known parallel algorithm for this problem was given by Shiloach and Vishkin [85].
It uses n+ 2m processors and takes time O(log n).

We are going to present this algorithm in the exact original notation used in [85] and
translate it line by line to an algorithm for a Database Machine. To simplify the description,
the authors assume that V = {1, . . . , n}. During the whole algorithm each vertex i has a
pointer D(i) through which it points to another vertex or to itself. When the algorithm
terminates, this array of pointers contains the result of the computation. The notation
Ds(i) indicates the value of D(i) after iteration s of the algorithm. In addition there is an
auxiliary vector Q of length n; the elements are written as Q(i).

The algorithm uses one processor per vertex and two processors per edge. The variable i
denotes the processor identifier and processors i = 1, . . . , n are designated the vertex
processors. The remaining processors are allocated to the edges such that each edge {i1, i2}
for i1, i2 ∈ V is assigned two processors identified by the ordered pairs (i1, i2) and (i2, i1).
The order of the edges is immaterial. The algorithm is described in multiple steps. Each
step starts with either the condition if i ≤ n, indicating that it is executed on the vertex
processors, or the condition if i > n, indicating that it is to be executed on the edge
processors.

Note that the algorithm assumes a one-dimensional memory model. The only processor-
local variables are the processor IDs i, i1, and i2. All other variables are global and shared.

In our database implementation, we assume that the input is presented as a table V
of vertex IDs and a table E of edges where each edge appears in both directions, i.e. for
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an edge {v, w}, table E contains the pairs (v, w) and (w, v). Executing a block of code
only on the vertex processors corresponds to manipulating a database table with one row
per vertex and executing something on the edge processors corresponds to using the edge
table as a starting point.

The PRAM algorithm comprises an initialisation and a loop that repeatedly executes
five steps. We translate each step in turn.

Initialisation is carried out by the vertex processors as indicated by the condition i ≤ n:
PRAM

if i ≤ n then
D0(i)← i

Q(i)← 0

s← 1

s′ ← 1

end if

In the database implementation, we store the arrays D0 and Q in tables of the same
name where each row is a pair of a vertex ID and the corresponding value.

Database Machine

D0 ← [(i, i) | i A V ]

Q← [(i, 0) | i A V ]

s← 1

s′ ← 1

The rest of the steps are executed in a loop.

PRAM

while s = s′ do

Database Machine

while s = s′ do

Step 1 is executed on the vertex processors as indicated by the condition i ≤ n:
PRAM

if i ≤ n then
Ds(i)← Ds−1(Ds−1(i))

if Ds(i) 6= Ds−1(i) then
Q(Ds(i))← s

end if
end if

To simulate this, we use a table with one row per vertex. In the first assignment,
table Ds−1 is used a starting point to get the PRAM variable Ds−1(i) and then joined
with another copy to access the PRAM variable Ds−1(Ds−1(i)):
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Database Machine

Ds ← [(i, d′) | (i, d) A Ds−1, (d, d
′) A Ds−1]

The conditional assignment is the first example where concurrent writes to the same
memory cell can occur. This is simulated in three steps as shown in Section 5.1.4.

1. Compute a table U of updates to be made to Q. This table contains triples (i, c, q)

where i is the index to be written, i.e. the vertex ID, c = 0 and q is the value to be
written. Since this is computed by vertex processors on the PRAM, a table with one
row per vertex is used as a starting point, in this case Ds.

2. Augment table U by the current contents of Q, setting the middle tuple element to
c = 1.

3. Compute the new table Q by reducing U using groupby to a single row per vertex i.
The aggregate function min((c, q)) runs over pairs (c, q) and computes the minimum
according to lexicographic order. This has the effect that updates (c = 0) take
precedence over the original values (c = 1) and that multiple updates to the same
location are resolved to the minimum value. Note that in this algorithm all processors
write the same value so that it does not matter which processor succeeds in writing
it. We have therefore omitted the processor ID from the update table.

Database Machine

U ← [(d, 0, s) | (i, d) A Ds, (i, d
′) A Ds−1, d 6= d′]

U ← U ] [(i, 1, q) | (i, q) A Q]

Q← [(i, q′)) | (i, c, q) A U,groupby(i, (c′, q′)← min((c, q)))]

Step 2 is executed on the edge processors. In the original algorithm, the following is
executed in parallel for each edge (i1, i2):

PRAM

if i > n then
if Ds(i1) = Ds−1(i1) then
if Ds(i2) < Ds(i1) then
Ds(Ds(i1))← Ds(i2)

Q(Ds(i2))← s

end if
end if

end if

We split this into an update of table Ds and an update of table Q, using the same 3-step
technique for preserving original values of these tables as shown above. Running something
in parallel on the edge processors corresponds to computing the updates U starting with
the edge table E. The following computes the updates for Ds. Note that the check for
equality Ds(i1) = Ds−1(i1) is realised by joining Ds and Ds−1 on d1.
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Database Machine

U ← [(d1, 0, d2) | (i1, i2) A E, (i1, d1) A Ds, (i1, d1) A Ds−1

, (i2, d2) A Ds, d2 < d1]

U ← U ] [(i, 1, d) | (i, d) A Ds]

Then we compute the updates for Q in the same manner. Note that the updates for Q
have to be computed before updating Ds since the conditional expressions depend on Ds.

Database Machine

U ′ ← [(d2, 0, s) | (i1, i2) A E, (i1, d1) A Ds, (i1, d1) A Ds−1

, (i2, d2) A Ds, d2 < d1]

U ′ ← U ′ ] [(i, 1, q) | (i, q) A Q]

Finally, we apply the updates to Ds and Q.

Database Machine

Ds ← [(i, d′) | (i, c, d) A U,groupby(i, (c′, d′)← min((c, d)))]

Q← [(i, q′) | (i, c, q) A U ′,groupby(i, (c′, q′)← min((c, q)))]

Step 3 is executed on the edge processors. In the original algorithm, the following is
executed in parallel for each edge (i1, i2):

PRAM

if i > n then
if Ds(i1) = Ds(Ds(i1)) and Q(Ds(i1)) < s then
if Ds(i1) 6= Ds(i2) then
Ds(Ds(i1))← Ds(i2)

end if
end if

end if

This translates as
Database Machine

U ← [(d1, 0, d2) | (i1, i2) A E, (i1, d1) A Ds, (d1, d1) A Ds

, (d1, q) A Q, q < s

, (i2, d2) A Ds, d1 6= d2]

U ← U A [(i, 1, d) A (i, d) A Ds]

Ds ← [(i, d′) | (i, c, d) A U,groupby(i, (c′, d′)← min((c, d)))]

Step 4 is another step of pointer jumping, executed by the vertex processors:

PRAM

if i ≤ n then
Ds(i)← Ds(Ds(i))

end if
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Database Machine

Ds ← [(i, d′) | (i, d) A Ds, (d, d
′) A Ds]

Step 5 is the bookkeeping for the while loop. Each vertex processor i checks its value
Q(i) and increments s′ based on the result. Note that if multiple processors increment s′

during this step, they do so simultaneously and they read s′ before writing the new value
to s′. That implies that s′ is incremented exactly once if any number of vertex processors
decide to increment it and remains unchanged otherwise.

PRAM

if i ≤ n and Q(i) = s then
s′ ← s′ + 1

end if
s← s+ 1

Since s′ is a scalar value that is either incremented or not, we do not need the full write
conflict resolution using groupby. Instead, we compute a table U that has a row for each
vertex processor that decides to increment s′ and then increment s′ if U is nonempty.

Database Machine

U ← [() | (i, s) A Q]

if |U | 6= 0 then
s′ ← s′ + 1

end if
s← s+ 1

This concludes our translation of the Shiloach–Vishkin algorithm for graph connectivity
to a Database Machine. The complete translated algorithm is given as Algorithm 46.

With this translation to a Database Machine we have stayed as close as possible to the
original notation in order to illustrate the general principle. In particular, we have used
separate tables Ds for each step s as introduced in Section 2.4.5. This is, however, not
necessary. At each step, the new table Ds is computed using only the previous table Ds−1

and all tables from earlier iterations can be discarded. Accordingly, the algorithm can
easily be modified to just use two tables for Ds and Ds−1.
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Algorithm 46 Translation of the Shiloach–Vishkin PRAM algorithm for graph connec-
tivity to a Database Machine
1: function ConnectedComponents(V,E)
2: D0 ← [(i, i) | i A V ]
3: Q← [(i, 0) | i A V ]
4: s← 1
5: s′ ← 1

6: while s = s′ do
7: Ds ← [(i, d′) | (i, d) A Ds−1, (d, d

′) A Ds−1] . Step 1
8: U ← [(d, 0, s) | (i, d) A Ds, (i, d

′) A Ds−1, d 6= d′]
9: U ← U ] [(i, 1, q) | (i, q) A Q]
10: Q← [(i, q′)) | (i, c, q) A U,groupby(i, (c′, q′)← min((c, q)))]

11: U ← [(d1, 0, d2) | (i1, i2) A E, (i1, d1) A Ds, (i1, d1) A Ds−1
, (i2, d2) A Ds, d2 < d1]

. Step 2

12: U ← U ] [(i, 1, d) | (i, d) A Ds]
13: U ′ ← [(d2, 0, s) | (i1, i2) A E, (i1, d1) A Ds, (i1, d1) A Ds−1

, (i2, d2) A Ds, d2 < d1]
14: U ′ ← U ′ ] [(i, 1, q) | (i, q) A Q]
15: Ds ← [(i, d′) | (i, c, d) A U,groupby(i, (c′, d′)← min((c, d)))]
16: Q← [(i, q′) | (i, c, q) A U ′,groupby(i, (c′, q′)← min((c, q)))]

17: U ← [(d1, 0, d2) | (i1, i2) A E, (i1, d1) A Ds, (d1, d1) A Ds

, (d1, q) A Q, q < s
, (i2, d2) A Ds, d1 6= d2]

. Step 3

18: U ← U A [(i, 1, d) A (i, d) A Ds]
19: Ds ← [(i, d′) | (i, c, d) A U,groupby(i, (c′, d′)← min((c, d)))]

20: Ds ← [(i, d′) | (i, d) A Ds, (d, d
′) A Ds] . Step 4

21: U ← [() | (i, s) A Q] . Step 5
22: if |U | 6= 0 then
23: s′ ← s′ + 1
24: end if
25: s← s+ 1
26: end while
27: return Ds′

28: end function
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5.3 Converting to SQL/Python

In this section we continue with the example from the previous section and demonstrate the
last step of the conversion process, namely translating Algorithm 46 to SQL and Python.
The code is given at the end of this section. It has been stripped of the surrounding infra-
structure for setting up a connection to the database. db.query() executes an SQL query
and returns the number of rows generated.

Algorithm 46 takes as input a vertex table V and an edge table E. Our database
implementation assumes that the input is just an edge list in a table whose name is passed
in the variable dataset. The input table is assumed to have two columns i1 and i2, each
containing a vertex ID. A preprocessing step creates an edge table “edges” where each
edge is stored in both orientations. The distributed by clause is a hint for our research
database Apache HAWQ and can be ignored.

Python/SQL

db . query ( """\
crea t e t a b l e edges as

s e l e c t i1 , i2 from {0}
union a l l
s e l e c t i2 , i1 from {0}
d i s t r i b u t e d by ( i1 ) ;

""" . format ( datase t ) )

The vertex table V is used only in the initialisation.

Database Machine

D0 ← [(i, i) | i A V ]

Q← [(i, 0) | i A V ]

Our SQL implementation deduces it from the edge list by computing the distinct values
of i1. The second query uses the result of the first one as a shortcut.

Python/SQL

db . query ( """\
crea t e t a b l e tb l_d as

s e l e c t d i s t i n c t i1 as i , i 1 as d from edges
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( """\
crea t e t a b l e tb l_q as

s e l e c t i , 0 as q from tb l_d
d i s t r i b u t e d by ( i ) ;

""" )
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Recall that each iteration of the loop in Algorithm 46 only uses Ds−1 and Ds; no
previous Di are needed. Our SQL implementation therefore uses only two tables: tbl_d

corresponds to Ds−1 and tbl_d2 corresponds to Ds. Both have columns i and d. Table
tbl_q plays the role of Q with columns i and q. We implement the while loop by checking
the exit condition at the end and use a Python variable s for the scalar variable s.

Step 1 starts with a “shortcutting” operation.
Database Machine

Ds ← [(i, d′) | (i, d) A Ds−1, (d, d
′) A Ds−1] . Step 1

SQL table tbl_d2 is computed to represent table Ds of the Database Machine.

Python/SQL

db . query ( """\
crea t e t a b l e tb l_d2 as

s e l e c t a . i as i , b . d as d
from tb l_d as a , tb l_d as b
where a . d = b . i
d i s t r i b u t e d by ( i ) ;

""" )

Next, the update table U is computed.
Database Machine

U ← [(d, 0, s) | (i, d) A Ds, (i, d
′) A Ds−1, d 6= d′]

U ← U ] [(i, 1, q) | (i, q) A Q]

We compute the SQL table tbl_u representing U by a single query, using an SQL
array to group c and q into a single column p. Note how the Python variable s is inserted
into the query using Python string formatting. After computing the updates, tbl_q is no
longer needed and therefore dropped.

Python/SQL

db . query ( """\
crea t e t a b l e tb l_u as

s e l e c t a . d as i , array [0 , {}] as p
from tbl_d2 as a

j o i n tb l_d as b on (a . i=b . i )
where a . d != b . d

union a l l
s e l e c t i , array [1 , q ] as p from tb l_q

d i s t r i b u t e d by ( i ) ;
""" . format ( s ) )

db . query ( "drop tab l e tbl_q ; " )



5.3. CONVERTING TO SQL/PYTHON 119

Recall that in the Database Machine algorithm, the aggregate function min(), when
applied to a pair (c, q), is assumed to return the minimum according to lexicographic order.
This is used to resolve the updates to table Q.

Database Machine

Q← [(i, q′)) | (i, c, q) A U,groupby(i, (c′, q′)← min((c, q)))]

In SQL, the new table tbl_q is computed from tbl_u, using the fact that the SQL
aggregate function min(), when applied to an array, assumes lexicographic ordering. Hence,
the expression (min(p))[2] corresponds to q′ in the Database Machine code.

Python/SQL

db . query ( """\
crea t e t a b l e tb l_q as

s e l e c t i , (min(p ) ) [ 2 ] as q from tbl_u group by i
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( "drop tab l e tbl_u ; " )

The other steps are translated in the same way.
At the end of the loop of Algorithm 46, s′ gets incremented if another iteration is

required.

Database Machine

U ← [() | (i, s) A Q] . Step 5
if |U | 6= 0 then
s′ ← s′ + 1

end if

Since this is the only function of the variable s′, we have eliminated it and just exit the
loop if s′ would not have been incremented, i.e. a table of updates to s′ is empty. Recall
that db.query() returns the number of rows returned by an SQL query.

Python/SQL

rowcount = db . query ( """\
s e l e c t i from tb l_q where q={};
""" . format ( s ) )

i f rowcount==0:
break

This concludes the translation. The resulting algorithm can be run on a distributed
relational database. For an input of n rows, corresponding to a graph with n edges, it uses
space O(n) and executes O(log n) SQL queries.
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This is currently the best known in-database algorithm in terms of formal complexity.
However, its practical efficiency can be improved upon. We have developed a novel algo-
rithm for computing connected components in a relational database, Randomised Contrac-
tion. It is a Las Vegas algorithm, always returning a correct result, but with a stochastic
runtime. In expectation, Randomised Contraction achieves the same formal complexity as
the Shiloach–Vishkin algorithm, but improves the practical performance. Our publication
is included in this thesis as Appendix B.

The remainder of this section is the complete translation of Algorithm 46 to Python
and SQL.

db . query ( """\
crea t e t a b l e edges as

s e l e c t i1 , i2 from {0}
union a l l
s e l e c t i2 , i1 from {0}
d i s t r i b u t e d by ( i1 ) ;

""" . format ( datase t ) )

db . query ( """\
crea t e t a b l e tb l_d as

s e l e c t d i s t i n c t i1 as i , i 1 as d from edges
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( """\
crea t e t a b l e tb l_q as

s e l e c t i , 0 as q from tb l_d
d i s t r i b u t e d by ( i ) ;

""" )

s = 1
while True :

db . query ( """\
crea t e t a b l e tb l_d2 as

s e l e c t a . i as i , b . d as d
from tb l_d as a , tb l_d as b
where a . d = b . i
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( """\
crea t e t a b l e tb l_u as

s e l e c t a . d as i , array [0 , {}] as p
from tbl_d2 as a

j o i n tb l_d as b on (a . i=b . i )
where a . d != b . d
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union a l l
s e l e c t i , array [1 , q ] as p from tb l_q

d i s t r i b u t e d by ( i ) ;
""" . format ( s ) )

db . query ( "drop tab l e tbl_q ; " )

db . query ( """\
crea t e t a b l e tb l_q as

s e l e c t i , (min(p ) ) [ 2 ] as q from tbl_u group by i
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( "drop tab l e tbl_u ; " )

db . query ( """\
crea t e t a b l e tb l_u as

s e l e c t a . d as i , array [0 , c . d ] as p
from edges as e

j o i n tb l_d2 as a on ( e . i1=a . i )
j o i n tb l_d as b on ( e . i1=b . i )
j o i n tb l_d2 as c on ( e . i2=c . i )

where a . d=b . d and c . d<a . d
union a l l

s e l e c t i , array [1 , d ] as p from tbl_d2
d i s t r i b u t e d by ( i ) ;
""" )

db . query ( """\
crea t e t a b l e tb l_u2 as

s e l e c t c . d as i , array [0 , {} ] as p
from edges as e

j o i n tb l_d2 as a on ( e . i1=a . i )
j o i n tb l_d as b on ( e . i1=b . i )
j o i n tb l_d2 as c on ( e . i2=c . i )

where a . d=b . d and c . d<a . d
union a l l

s e l e c t i , array [1 , q ] as p from tb l_q
d i s t r i b u t e d by ( i ) ;
""" . format ( s ) )

db . query ( "drop tab l e tbl_d ; " )
db . query ( "drop tab l e tbl_d2 ; " )

db . query ( """\
crea t e t a b l e tb l_d2 as

s e l e c t i , (min(p ) ) [ 2 ] as d from tbl_u group by i
d i s t r i b u t e d by ( i ) ;
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""" )

db . query ( "drop tab l e tbl_u ; " )
db . query ( "drop tab l e tbl_q ; " )

db . query ( """\
crea t e t a b l e tb l_q as

s e l e c t i , (min(p ) ) [ 2 ] as q from tbl_u2 group by i
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( "drop tab l e tbl_u2 ; " )

db . query ( """\
crea t e t a b l e tb l_u as

s e l e c t a . d as i , array [0 , c . d ] as p
from edges as e

j o i n tb l_d2 as a on ( e . i1=a . i )
j o i n tb l_d2 as b on (a . d=b . i )
j o i n tb l_d2 as c on ( e . i2=c . i )
j o i n tb l_q as q on (a . d=q . i )

where a . d=b . d and q . q<{} and a . d != c . d
union a l l

s e l e c t i , array [1 , d ] as p from tbl_d2
d i s t r i b u t e d by ( i ) ;
""" . format ( s ) )

db . query ( "drop tab l e tbl_d2 ; " )

db . query ( """\
crea t e t a b l e tb l_d2 as

s e l e c t i , (min(p ) ) [ 2 ] as d from tbl_u group by i
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( "drop tab l e tbl_u ; " )

db . query ( """\
crea t e t a b l e tb l_d as

s e l e c t a . i as i , b . d as d
from tbl_d2 as a , tb l_d2 as b
where a . d = b . i
d i s t r i b u t e d by ( i ) ;

""" )

db . query ( "drop tab l e tbl_d2 ; " )

s +=1
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rowcount = db . query ( """\
s e l e c t i from tb l_q where q={};
""" . format ( s ) )

i f rowcount==0:
break
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Chapter 6

Conclusions and future work

6.1 Conclusions

The world of Big Data moves fast, with new technology appearing almost every year. With
the advent of each new platform, algorithms have to be refactored or reinvented to run
on that particular platform. What has been missing is a high-level, platform-independent
way to formulate and analyse algorithms for computations on Big Data.

The computational models developed in this thesis, the Database Machine and the Re-
lational Machine, fill this gap, the former offering a more practical, richer set of operations
and the latter trying to minimise functionality so as to be more conducive to mathematical
reasoning. We have proved that the two models are equal in their computational power
and have shown how to mechanically translate between them.

Algorithms written for the Database Machine can be run on many of the existing
platforms for Big Data processing. In this way, the Database Machine acts as a bridge
between algorithms for Big Data analytics and their concrete realisation in a distributed
system. This work shows that different platforms for Big Data have more in common than
is obvious at first sight, and it seems that, over time, platforms tend to gravitate towards
a relational model of computation. This is exemplified by HAWQ, which added an SQL
engine on top of Hadoop, or SparkSQL, which added SQL as a relational query language
on top of Spark.

In a certain sense, the Database Machine is a model of communication. It does not
make assumptions about the platform it is running on and is ignorant of the number of
machines involved in the computation. Instead, by modelling only the data flow involved
in a computation, it models the communication that is required to bring the required data
elements together to perform operations on them.

In the Relational Machine, the line between communication and computation is drawn
most clearly. The three “heavy” operations JOIN, RANGE, and SINGLES are the communica-
tions instructions in the sense that they require multiple rows, from one or two rtables to
interact with one another. The “light” data-parallel mapping primitives are the instructions
from which computation is built.
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This focus on communication inherent in the algorithms makes both models relevant
for the scenario of distributed or cloud computing on Big Data where local computation is
much faster than inter-machine communication.

The most significant theoretical contribution of this thesis is establishing the connection
between the Database Machine and the PRAM.When we published our paper on connected
components [12] (Appendix B), this connection was unknown and it was thought that
the assumptions of the PRAM, “which are idealisations of the parallelised computation
set-up, do not accurately reflect the realities of parallel computing architectures, making
its algorithms unrealistic to implement or not truly attaining the reported performance
complexity bounds” (quoting ourselves).

It is now clear that the high abstraction level of the Database Machine, which makes
it very powerful as a computational model, aligns nicely with the equally over-powered
PRAM. The consequence is that, as demonstrated in Chapter 5, the research on the PRAM
model from the 1980s can be viewed in a new light as a source for practical algorithms for
today’s platforms for Big Data analytics.

6.2 Future work

The Database Machine and the Relational Machine offer a new perspective on parallel com-
putation. They form a bridge between algorithms for computations on Big Data and the
systems on which these algorithms are executed, opening up further avenues for research,
both practical and theoretical in nature.

6.2.1 Languages and programming models

It seems promising to look into compiling algorithms developed using different program-
ming paradigms to the Database Machine. One such paradigm, often used implicitly in
the description of parallel algorithm, is the PRAM. Chapter 5 gives an informal account of
how to translate PRAM algorithms written in a high-level language and in a SIMD style to
the Database Machine. This could be formalised and possibly implemented as a compiler.

We have also shown in Chapter 5 how a Database Machine can be systematically and
mechanically translated to a combination of SQL and Python. It is equally straightforward
to translate Database Machine algorithms to the other Big Data processing platforms
mentioned in Section 1.3 and these translations could also be implemented as a compiler.
In this way the Database Machine lends itself to be the lingua franca for formulating
distributed algorithms on Big Data.

A different area for further research would be to investigate other popular theoretical
parallel computation models and their power relative to the Database Machine. A good
first candidate for such an exploration may be, as an example, message passing systems [77]:
if entities in a message-passing system are modelled in the Database Machine as table rows,
message-passing communication between them may be as straightforward to model as via
a simple join operation.
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6.2.2 More fine-grained modelling of operation costs

The Database Machine, as it is currently defined, makes a unit-cost assumption for all its
operations. It may be worthwhile to consider other or more detailed cost models.

One possible direction is the Light Relational Machine presented in Appendix A. The
Light Relational Machine focuses on modelling communication complexity by only charging
for those instructions that are communication-intensive and assigning zero cost to the data-
parallel mapping primitives. Using these assumptions, Theorem A.2.1 justifies assigning
unit cost to the map operation of the Database Machine and Corollary A.2.2 suggests
assigning cost O(log n) to the group operation.

6.2.3 Parallel database query optimisation

In current relational database management systems SQL queries are processed by first
translating them to an internal representation based on the extended relational algebra. A
query optimiser then tries to determine the most efficient way to compute the result [87,
Chapters 15 and 16].

An expression can be transformed using equivalence rules within the extended relational
algebra, leaving the result unchanged. For each basic operation of the relational algebra
there are various choices of implementation. Which of these it best depends on the data
at hand. Statistics on the data can be used to estimate join sizes, select sizes, and data
distribution in order to inform the choice of algorithms.

Overall, there is a vast space of possible execution plans that can be explored for
optimising a complex SQL query. An interesting research direction would be to look into
SQL query optimisation in terms of the Relational Machine. The extended relational
algebra could be compiled to the Database Machine, and we have shown in Chapter 3 that
this in turn can be simulated by the Relational Machine.

Switching from the extended relational algebra to the Relational Machine could be like
the shift from a CISC architecture in processor design to a RISC architecture where it has
proven useful to have a simpler instruction set to allow for better code optimisation by
compilers as well as a simpler hardware design.

6.2.4 Randomisation

A very promising area for future theoretical research is the introduction of randomness into
the Database Machine and the Relational Machine. Randomness can increase the power
of a computational model [15]. Probabilistic Turing Machines gave rise to the complexity
class RP [41]: languages that can be recognised by such a probabilistic Turing Machine in
polynomial time. A probabilistic Turing Machine has two transition functions and makes
a random choice between them at each step. In other words, it generates one random bit
per step.

The straightforward idea to add randomisation to the Relational Machine is an in-
struction that augments each row of an rtable by a random bit. We call this capability
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strong randomisation. When simulating Turing Machines in parallel as described in Sec-
tion 3.4.8, this affords the simulation of probabilistic Turing Machines, allowing mapping
and aggregating using functions that are in RP instead of P. It is an open question whether
P = RP.

There is, however, another natural way to introduce randomness, which is also analo-
gous to the probabilistic Turing Machine, but on a different level. The Relational Machine
can be viewed as a finite automaton with a transition function that for each state has a
single next state, except for the conditional jump instructions, which have two possible
follow-up states. Instead of introducing a second transition function and making a random
choice between two transition functions, we can introduce a random jump instruction that
takes the jump with 50% probability. This instruction effectively generates one random
bit. We call this thrifty randomisation.

Strong randomisation provides much more entropy than thrifty randomisation. For an
input rtable of n rows, a Big Data-practical algorithm using thrifty randomisation can only
execute a polylogarithmic number of instructions and hence generate only a polylogarithmic
number of random bits in total, whereas a single instruction using strong randomisation
generates n random bits.

Our published Randomised Contraction algorithm (Appendix B) illustrates the two
different forms of randomisation. The random reals method requires the generation of a
random number per vertex of the input graph, i.e. strong randomisation. By coming up
with the finite fields method, we were able to reduce this requirement to thrifty randomi-
sation. This led to a measurable performance improvement and is the method we used for
the published performance measurements.

It remains an open question whether randomisation adds to the power of the Relational
Machine, and if so, whether the two levels of randomisation differ in power.



Appendix A

A communication-focussed model

The motivation for creating the computational models in this thesis was to model com-
putation on Big Data in a distributed computing scenario. Our high-level model, the
Database Machine, assigns unit cost to powerful basic operations like map and group.
When simulated by our low-level Relational Machine, these two operations take polyloga-
rithmic time. In the following section we introduce a variation of the Relational Machine
that can simulate map in constant time and group in logarithmic time.

A.1 The Light Relational Machine

The instruction set of the Relational Machine allows us to clearly identify the operations
that potentially require communication between different nodes.

JOIN, RANGE, and SINGLES are the only operations that require rows from different
rtables or different rows from the same rtable to be brought together on the same node.
All the mapping primitives can be executed in parallel and independently of each other on
all nodes, assuming, of course, that a single row is not split among multiple nodes.

A distributed computing setting in which communication is much more expensive than
computation motivates the following definition which effectively assigns zero cost to the
data-parallel mapping primitives.

Definition A.1.1. A Light Relational Machine is a Relational Machine with the addition
of a conditional jump instruction JVZ A that jumps to a different location if rtable register A
contains the single-row (0, 1)-rtable [((), (0))]; execution continues sequentially otherwise.
The operations JOIN, RANGE, and SINGLES are called heavy operations. All other operations,
including the new conditional jump, are light. Let T : N0 → N0. A Light Relational
Machine is said to compute in time T (n) if it halts after executing at most T (n) heavy
instructions for any input of size n.

When presenting algorithms for the Light Relational Machine, we use the notation
A.ValueZero() in control structures like repeat . . .until to indicate the use of the JVZ

instruction to test the condition that rtable A is the single-row rtable containing 0 as
a value. This follows the convention introduced on page 46 of using method notation
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“A.Method(. . .)” for macros that execute a constant number of light operations, aiding the
reasoning about algorithms for the Light Relational Machine.

A consequence of having zero-cost mapping primitives is that database functions (see
Definition 3.4.5) can be computed in constant time, provided an upper bound on the initial
input size of the Relational Machine is available. This can either be supplied as part of
the input or computed as a one-time setup step in logarithmic time.

Lemma A.1.1. Let the input of a Light Relational Machine be an (s, 0)-rtable I with n
rows. Algorithm 47 computes a (0, 1)-rtable N̂ containing a single integer i such that i ≥ n.
The algorithm is frugal and takes time O(log n).

Algorithm 47 BoundInputSize(I): Compute rtable N̂ with upper bound on input size
1: procedure BoundInputSize(I[((x1, . . . , xs), ())])
2: X ← I
3: N̂ ← ONE
4: N̂ .Constant(i← 1, zero ← 0)
5: unroll for j = 1, . . . , s
6: while not AllZero(X,xj) do
7: N̂ .Shift(zero, i) . i← 2i
8: X.Copy(∗)
9: X.Push(temp)
10: X.Shift(xj , temp)
11: X.Pop(temp)
12: Range(X)
13: end while
14: end unroll for
15: N̂ .Pop(zero)
16: return N̂ [((), (i))]
17: end procedure

Proof. Algorithm 47 starts by copying the input to X and initialising the result rtable N̂
with i = 1, which corresponds to a row width of zero. At each iteration of the while loop,
it shifts a non-zero column xj right by one bit and doubles i, reducing the row width of X
by one. When the last loop terminates, we have i = 2r where r is the row width of the
rtable. Since all key tuples of an rtable have to be different, the input I can contain at
most 2r = i rows, as claimed. The row width of N̂ is r + 1.

All operations in the algorithm are frugal and take constant time (for AllZero(), see
Lemma 3.4.4). Since the row width of the input is logarithmic in the input size by the
definition of the Light Relational Machine, the number of iterations and hence the total
time is O(log n).

A.2 Constant-time mapping

Theorem A.2.1. Let f : N0 → N0 be a database function. Let A be a labelled (s, 0)-rtable
with key tuples (k1, . . . , ks−1, x) such that the sub-tuples (k1, . . . , ks−1) are unique within
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the rtable. Then the result of mapping f over column x, i.e. replacing x by f(x) in each
row of rtable A, can be computed by a Light Relational Machine using linear space and
constant time, provided that an upper bound on the initial input size of the machine is
available.

Proof. The proof closely follows the proof of Theorem 3.4.6, modifying the construction to
reduce the number of heavy operations so that it is bounded by a constant.

LetM = (Γ, Q, δ) be the Turing Machine to compute the function. In order to simulate
a one-sided infinite tape, we augment the tape alphabet by a start symbol “.” and simulate
a Turing MachineM′ = (Γ′, Q, δ′) with Γ′ = {␣, 0, 1, .} and

δ′(q, γ) =

(q, .,R) γ = .

δ(q, γ) otherwise.

We start the simulation with a start symbol in a cell to the left of the head. The augmented
transition function δ′ simply moves the head one cell to the right whenever it encounters
the start symbol, thereby preserving it and simulating a machine that cannot move its
head off the left end of the tape. We further augment δ′ and define that it is a no-op in
state 0, i.e. δ′(0, γ) = (0, γ, S) for all γ ∈ Γ′.

The tape is encoded as a pair of integers (left, right) where right contains the symbols
under and to the right of the head and left contains the symbols to the left of the head.
Each symbol is encoded as a 2-bit integer according to Table 3.2 with the least significant
bits containing the symbols closest to the head. The encoding has the order of the two bits
reversed between left and right so that the head can simply be moved one cell by executing
two shift instructions of the relational machine. Note that the blank symbol “␣” is encoded
as zero so that right can be interpreted as an infinite tape with all blank symbols to the
right of any nonblank symbols.

So far, this is exactly the same construction we used in the proof of Theorem 3.4.6.
We continue to follow the structure of that construction, but replace some of its steps by
new algorithms that execute only light instructions. Algorithm 48 computes the database
function mapping, but contrary to the previous construction it requires an extra table N̂
which it assumes to store an upper bound of the initial input size of the Relational Machine.
Such a table N̂ can, for example, be computed by running Algorithm 47 beforehand.

Algorithm 48 computes the function in three stages:

• Encode the input column x as a tape (using Algorithm 49).

• Simulate Turing Machines (using Algorithm 50 to execute each step).

• Decode the output on the tape as an integer (using Algorithm 51).

Each stage comprises two nested loops. The outer loop uses heavy operations to check for
termination. The inner loop uses only light operations and performs a fixed number of
iterations determined by the pre-computed upper bound on the input size. Time on the
Light Relational Machine is therefore determined by the number of iterations of the outer
loops only.



132 APPENDIX A. A COMMUNICATION-FOCUSSED MODEL

Algorithm 48 ConstantTimeMap(A): Simulate a Turing Machine using O(1) heavy op-
erations
1: procedure ConstantTimeMap(A[((k1, . . . , ks−1, x), ())], N̂ [((), i)])
2: A.Copy(∗)
3: A.Push(right)
4: A.Inc(x)
5: Range(A)

6: repeat . encode x as a Turing Machine tape
7: A.Copy(∗)
8: I ← N̂
9: repeat

10: A.TMLightEncode(x, right) . see Algorithm 49
11: I.Dec(i)
12: until I.ValueZero()
13: Range(A)
14: until AllZero(A, x)

15: A.Copy(k1, . . . , ks−1, right) . omitting x
16: A.Constant(q ← 1) . initial state for TM is 1
17: A.Constant(left ← 3) . write encoded start symbol “ .” left of head
18: Range(A)

19: repeat . run Turing Machine
20: A.Copy(∗)
21: I ← N̂
22: repeat
23: A.TMLightStep(q, left , right) . see Algorithm 50
24: I.Dec(i)
25: until I.ValueZero()
26: Range(A)
27: until AllZero(A, q)

28: A.Copy(k1, . . . , ks−1, right) . omitting q, left
29: A.Constant(x← 1) . leading 1 was dropped from x in encoding
30: Range(A)

31: repeat . decode Turing Machine tape as value x
32: A.Copy(∗)
33: I ← N̂
34: repeat
35: A.TMLightDecode(x, right) . see Algorithm 51
36: I.Dec(i)
37: until I.ValueZero()
38: Range(A)
39: until AllZero(A, right)

40: A.Copy(k1, . . . , ks−1, x) . omitting right
41: A.Dec(x) . undo increment from encoding
42: Range(A)
43: return A[((k1, . . . , ks−1, x), ())]
44: end procedure
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The light step for the string encoding of the input is the same as in the proof of
Theorem 3.4.6: A.TMLightEncode(x, right) (Algorithm 49) extracts one bit from x and
writes the corresponding encoded symbol to the tape by shifting two bits into right , using
conditional instructions to stop the shifting once all bits but the most significant one have
been written.

Algorithm 49 A.TMLightEncode(x, right): Encode a bit on a simulated Turing Machine
tape
1: A.Push(bit); A.Shift(x, bit) . extract next bit
2: A.Constant(bit ← 1); A.CDec(bit , bit) . compute inverse
3: A.CShift(x, bit , right); A.CShift(x, bit , right) . write encoded bit
4: A.Pop(bit , bit)

The key difference to the construction used for Theorem 3.4.6 is the method to simulate
executing one step of a Turing Machine without using a join to look up the value of
the transition function in a table. This is implemented as Algorithm 50 and denoted as
A.TMLightStep(q, left , right).

The algorithm first encodes the input to the transition function as a single integer by
shifting two bits (i.e. one encoded symbol) from right into q and renaming it to in. What
follows is an unrolled loop over all possible values of in, starting with 1.

Each unrolled block tests if in = 1, executes a sequence of instructions that manipulate
the Turing Machine configuration only if in = 1 and decrements in. This ensures that
out of all the possible manipulations of the Turing Machine configuration, exactly one is
carried out, depending on the initial value of in.

Lines 5 through 9 create a variable c = 0, increment it if in > 0 and decrement it if
bin/2c > 0. This results in c = 1 if in = 1 and c = 0 otherwise; the value of in is preserved.

All instructions between line 11 and line 32 are conditioned on c, i.e. they change the
configuration only if in = 1. Lines 11 through 18 write a new symbol to the tape by
shifting two bits into right . Lines 19 through 24 move the head right or left. Lines 25
through 32 build the new state in q.

Overall, Algorithm 50 is a potentially very long but constant sequence of light instruc-
tions hard-coding the transition function of the Turing Machine to be simulated.

After Algorithm 48 has simulated enough steps for all Turing Machines to have reached
the halting state 0, it remains to decode the result as an integer. This is a straightfor-
ward reversal of the encoding process. A.TMLightDecode(x, right) (Algorithm 51) extracts
one symbol from the tape and shifts the corresponding bit into the result x, again using
conditional instructions to stop the shifting once the tape is empty.

All three inner loop algorithms – A.TMLightEncode() as well as A.TMLightStep() and
A.TMLightDecode() – have the property that superfluous invocations do not do any harm.
The encoding and decoding steps use conditional instructions to stop when done and the
Turing Machine’s transition function is a no-op when the machine is in the halting state 0.
The outer loops around these constructs check that encoding, Turing Machine execution,
and decoding have finished in all rows, thereby guaranteeing the correct result.
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Algorithm 50 A.TMLightStep(q, left , right): Simulate one step of a Turing Machine
1: A.Shift(right , q); A.Shift(right , q) . read symbol under head
2: A.Rename(in ← q) . this is now the input to the transition function
3: A.Push(q) . prepare new state q = 0
4: unroll for i = 1, . . . , 4 ·maxQ+ 3
5: A.Push(c, temp)
6: A.CInc(in, c)
7: A.Shift(in, temp) . in ← bin/2c
8: A.CDec(in, c)
9: A.Shift(temp, in) . restore in; temp = 0
10: let (q′, γ,m) = δ′(bi/4c, decode(i mod 4)) . decode via Table 3.2 (left)

11: A.CShift(c, temp, right)
12: expand if γ = 0
13: A.CInc(c, right)
14: end expand if
15: A.CShift(c, temp, right)
16: expand if γ = 1
17: A.CInc(c, right)
18: end expand if

19: expand if m = R
20: A.CShift(c, right , left); A.CShift(c, right , left) . move head right
21: end expand if
22: expand if m = L
23: A.CShift(c, left , right); A.CShift(c, left , right) . move head left
24: end expand if

25: expand if q′ > 0
26: unroll for j = blog q′c downto 0
27: A.CShift(c, temp, q)
28: expand if bit j of q′ is set
29: A.CInc(c, q)
30: end expand if
31: end unroll for
32: end expand if

33: A.Pop(c, temp)
34: A.Dec(in)
35: end unroll for
36: A.Pop(in)

Algorithm 51 A.TMLightDecode(x, right): Decode a bit from a simulated Turing Ma-
chine tape
1: A.CShift(right , right , x) . extract bit to x
2: A.Push(temp)
3: A.CShift(right , right , temp) . dispose of bit
4: A.Pop(temp)
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It remains to prove that Algorithm 48 runs in constant time, i.e. the number of heavy
operations is bounded by a constant. Recall that there is a constant number of heavy
operations per iteration of the outer loops, so it suffices to show that the number of
iterations of the outer loops is bounded by a constant.

The Turing Machine computing a database function is assumed to take time polynomial
in its input size. This input size is bounded by the row width, which in turn is logarithmic
in the initial input size n of the Light Relational Machine. Hence, there are constants c
and k such that the number of steps required for the Turing Machine is at most c · logk n

for large enough n. There exists an n0 such that n ≥ c · logk n for all n ≥ n0. Let b ≥ n be
the bound pre-computed and stored in N̂ . The inner loop executes b steps. It follows that
for all n ≥ n0 the execution of all Turing Machines finishes in one iteration of the outer
loop. For n < n0, more iterations may be required, but there are only finitely many cases
and their maximum is a constant independent of n. Hence, the number of iterations of the
outer loop is bounded by a constant, as claimed.

Since the encoding and decoding stages each require O(log n) steps, the same argument
proves that both of their outer loops execute O(1) iterations, proving the overall claim on
time.

Corollary A.2.2. The Light Relational Machine can simulate the group operation of the
Database Machine taking time logarithmic in the machine’s input size.

Proof. The proof is the same as for Lemma 3.5.10. It relies on Algorithm 19 and Algo-
rithm 25, which are proved to take polylogarithmic time in Theorem 3.4.10 and Lemma 3.5.9,
respectively. If we replace the Turing Machine simulations in these algorithms by the
constant-time map of Theorem A.2.1, these algorithms take logarithmic time overall.
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Appendix B

The Randomised Contraction
algorithm

In Section 5.2 we showed how to translate a PRAM algorithm for labelling the connected
components of a graph to the Database Machine and from there to an implementation in
SQL and Python that can be run in a distributed relational database.

This Appendix presents a novel algorithm for computing connected components in a
relational database, Randomised Contraction. It is a Las Vegas algorithm, always returning
a correct result, but with a stochastic runtime. It was published as a paper at the 2020
IEEE 36th International Conference on Data Engineering (ICDE) [12].

The original Randomised Contraction algorithm with the random reals method was
developed by Michael Brand while he was employed at Pivotal Software, Inc., and is
covered by U. S. Patents. Radu-Alexandru-Todor contributed the idea for the proof in
Appendix B.B. My contributions are the encryption method and the finite fields method
for randomisation, all experimental work, and 95% of the writing.

The finite fields method improved the practical performance of the algorithm, as ex-
plained in the paper. It also led to the discovery of a promising avenue for future research
on relational computation as outlined in Section 6.2.4: thrifty randomisation. The two vari-
ants of the Randomised Contraction algorithm are examples for the two methods of adding
randomisation to our computational model. The random reals method uses O(n log n) ran-
dom bits per iteration by generating a random number for each vertex. The finite fields
method requires only O(log n) random bits per iteration since it only uses two word-size
random numbers.

Chronologically, this paper comes before Chapter 4 of this thesis. At the time of writing,
we were aware of Shiloach and Vishkin’s PRAM algorithm for connected components [85]
but had not yet discovered how closely the word PRAM and the Database Machine are
related. It turns out that translating the PRAM algorithm as described in Chapter 5 leads
to an in-database implementation that deterministically achieves the same asymptotic
complexity that the Randomised Contraction algorithm achieves stochastically.

In practice, however, the implementation presented in Section 5.3 appears to be slower
than Randomised Contraction. This is to be expected because the total number of SQL
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queries of the deterministic algorithm is much larger than that of the Randomised Con-
traction algorithm. We have therefore not pursued the deterministic algorithm any further
after preliminary testing on some of the smaller data sets.

The remainder of this Appendix is the unmodified content of the published paper,
reformatted to fit the page layout of this thesis. The two appendices of the paper appear
as sub-appendices B.A and B.B.

B.1 Introduction

Connected component analysis [48], the assignment of a label to each vertex in a graph
such that two vertices receive the same label if and only if they belong to the same con-
nected component, is one of the tent-pole algorithms of graph analysis. Its wide use is in
applications ranging from image processing (e.g., [52, 90, 69, 102], to name a few recent
examples) to cyber-security (e.g., [40, 72, 47, 103]). The most well-known theoretical result
regarding connectivity analysis is perhaps the Union/Find algorithm [49, 93, 24], ensuring
that labels can be maintained per vertex in an amortised complexity on the order of the
inverse Ackermann function per edge, which is the theoretical optimum.

In real-world settings, however, large graphs such as those analysed in Big Data data
science are stored on distributed file systems and processed in distributed computing en-
vironments. These are ill-suited for the Union/Find algorithm. For example, Union/Find
involves following long linked lists, which is inefficient if the items in these lists reside on
different machines.

A widely used platform for Big Data processing is Hadoop with its distributed and
redundant file system HDFS and the MapReduce framework for implementing distributed
computation [64]. Another, more recent distributed computing framework is Apache
Spark [50], building on Hadoop HDFS for data storage. These two have in common that
algorithms have to be specifically designed for the respective framework.

However, most of the world’s transactional business data is stored natively in large,
relational, SQL-accessible databases, and is only treated as graph data in certain contexts.
It is therefore beneficial to have an efficient solution for graph algorithms, and particularly
for the connected components algorithm, within the framework of relational databases.
Such a solution obviates the need for data duplication in a separate storage system and for
supporting multiple data storage architectures. It also avoids the potential for data conflicts
and other problems arising from performing data analysis in two disparate systems.

The present paper presents a new algorithm for connected components analysis, Ran-
domised Contraction. It is practical for Big Data data analytics in the following respects:

In-database execution. Our algorithm uses SQL queries as its basic building blocks. It
can therefore be natively executed in a relational database, and specifically within
the framework of Massively Parallel Processing (MPP) databases [27] where the
architecture is designed for efficient parallel processing.

Scalability. Randomised Contraction uses (for any input graph) an expected logarithmic
number of queries, running over exponentially decreasing amounts of data. Our
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empirical results obtained with an MPP database show it to smoothly scale out to
Big Data, running, in total, in an amount of time quasi-linear in the input size.

Space efficiency. Typical database maintenance uses some bounded fraction of available
space. Therefore, practical in-database algorithms for use on mass data should not
create intermediate data that is more than linear in the size of the input. Our
algorithm satisfies this criterion.

Our empirical results show that Randomised Contraction outperforms other leading
connected components algorithms when implemented in an MPP database. Furthermore,
our in-database implementation of one of the algorithms runs faster than the original Spark
implementation and uses fewer resources, allowing it to scale up to larger datasets.

The paper is structured as follows: Section B.2 presents related work. In Section B.3,
we describe the problem formally. In Section B.4, we discuss naive approaches to a so-
lution and show where they fail. In Section B.5, we describe our new algorithm, Ran-
domised Contraction, with several refinements, and in Section B.6 we analyse its theoreti-
cal performance. Section B.7 gives empirical results. A short conclusions section follows.
Appendix B.A presents excerpts of the code used for experiments. Appendix B.B gives
improved theoretical bounds on graph contraction that may be of independent interest.

B.2 Related work

Many researchers have long tried to optimise connected component finding for parallel
computing environments (e.g., [45]). Most suited for this pursuit from a theoretical per-
spective is the theoretical framework of the Parallel Random Access Machine (PRAM)
[33, 81]. PRAM algorithms for connected components finding were presented, e.g., in
[85, 99, 9]. In [38], it was noted that randomised algorithms may have an advantage in
this problem. The best result obtained by the randomised approach is [43], where a ran-
domised EREW PRAM algorithm is presented that finds connected components of a graph
G = 〈V,E〉 in O(log |V |) time using an optimal number of O((|V |+ |E|)/ log |V |) proces-
sors. Its result is always correct and the probability that it does not complete in O(log |V |)
time is at most n−c for any c > 0.

However, as observed by Eppstein and Galil [29], the PRAM model is “commonly
used by theoretical computer scientists but less often by builders of actual parallel ma-
chines”. Its assumptions, which are idealisations of the parallelised computation set-up,
do not accurately reflect the realities of parallel computing architectures, making its algo-
rithms unrealistic to implement or not truly attaining the reported performance complexity
bounds.

Indeed, the papers that explore connected components algorithms for large-scale prac-
tical architectures do so using decidedly different algorithms. The first MapReduce algo-
rithms that run in a logarithmic number of rounds were proposed by Rastogi et al. [76].
Among several variations of new algorithms presented, they report the overall best practi-
cal performance for the Hash-to-Min algorithm. This algorithm, however, has a worst case
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space usage of O(|V |2). The best known space usage of a MapReduce algorithm is linear
in the input size and achieved by the Tho-Phase algorithm by Kiveris et al. [53]. This
algorithm, however, takes Θ(log2 |V |) rounds. The Cracker algorithm proposed by Lulli et
al. [58] is implemented in Spark and once again improves the number of rounds to O(|V |),
but it does so at the expense of increasing the communication cost to O( |V |·|E|log |V | ).

As outlined in the introduction, if the data to be analysed is already stored in a dis-
tributed relational database, it is beneficial to be able to run algorithms in-database instead
of exporting data to a different platform for analysis. This led to the development of the
open source machine learning library Apache MADlib [44]. This library implements, among
a small set of other graph algorithms, a connected components algorithm using Breadth
First Search. We show in section B.4 that its worst case behaviour makes it unsuitable for
Big Data data science.

Our novel Randomised Contraction algorithm has an efficient implementation in an
MPP database and achieves both the best time complexity and space complexity among
the above mentioned algorithms. Like the PRAM algorithms of [38, 43], it is randomised.
It is guaranteed to terminate and to do so with a correct answer, and for any given ε > 0

guarantees to terminate after O(log |V |) SQL queries with probability at least 1− ε, where
|V | is the number of vertices in the input graph. The algorithm’s space requirements can
be made linear deterministically, not merely in expectation, and it can be implemented to
use temporary storage not exceeding four times the size of the input plus O(|V |). This
is at worst a five-fold blow-up, which is within the typical range for standard database
operations.

B.3 Problem description

A graph G = 〈V,E〉 is typically stored in a relational database in the form of two tables.
One stores the set of vertices V , represented by a column of unique vertex IDs and op-
tionally more columns with additional vertex information. Another table stores the edge
set E in two columns containing vertex IDs and optionally more columns with additional
edge information. In the context of connected component analysis, graphs are taken to
be undirected, so an (x, y) edge is considered identical to a (y, x) edge. For simplicity we
present our algorithm such that its only input is an edge table containing two columns with
vertex IDs from which the set of vertices is deduced. Isolated vertices can be represented
in this table as “loop edges”, (v, v), if necessary.

The output of the algorithm is a single table with two columns, v and r, containing
one row per vertex. In each row v is a vertex ID and r is a label uniquely identifying
the connected component the vertex belongs to. A correct output of the algorithm is
one where any two vertices share the same r value if and only if they belong to the
same connected component. Connected component analysis does not make any specific
requirement regarding the values used to represent components other than that they are
comparable.
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B.4 Simple solution attempts

Perhaps the simplest approach to performing in-database connected components analysis
is to begin by choosing for each vertex a representative by picking the vertex with the
minimum ID among the vertex itself and all its neighbours, then to improve on that
representative by taking the minimum ID among the representatives of the vertex itself
and all its neighbours, and to continue in this fashion until no vertex changes its choice
of representative. We refer to this naive approach as the “Breadth First Search” strategy:
after n steps each vertex’s representative is the vertex with the minimum ID among all
vertices in the connected component that are at most at distance n from the original vertex.

Though the algorithm ultimately terminates and delivers the correct result, its worst-
case runtime makes it unsuitable for Big Data. Consider, for example, the sequentially
numbered path graph with IDs 1, 2, . . . , n. For this graph, Breadth First Search will take
n− 1 steps.

To remedy this, consider an algorithm that calculates G2, i.e. the graph over the same
vertex set as G whose set of edges includes, in addition to the original edges, also (x, z) for
every x and z for which there exists a y such that both (x, y) and (y, z) are edges in G.

CalculatingG2 can be done easily in SQL by means of a self-join. A tempting possibility
is therefore to repeat the self-join and calculate G4, G8, etc. Such a procedure would allow
us to reach neighbourhoods of radius 2n in only n steps.

Unfortunately, this second approach does not yield a workable algorithm, either. The
reason for this is that in Gk each vertex is directly connected to its entire neighbourhood
of radius k in G. For a single-component G, the result is ultimately the complete graph
with |V |2 edges. This is a quadratic blow-up in data size, which for Big Data analytics is
unfeasible.

Our aim, in presenting a new algorithm, is therefore to enjoy the best of both worlds:
we would like to be able to work in a number of operations logarithmic in the size of the
graph, but to require only linear-size storage.

B.5 The new algorithm

We present our new algorithm for calculating connected components, Randomised Con-
traction, by starting with its basic idea and refining it in several steps.

B.5.1 The basic idea

Let G = 〈V,E〉 be a graph. The algorithm contracts the graph to a set of representa-
tive vertices, preserving connectivity, and repeats that process until only isolated vertices
remain. These then represent the connected components of the original graph.

Denote by NG[v] the closed neighbourhood of a vertex v, i.e. the set of all vertices
connected to v by an edge in E plus v itself. Let G0 = 〈V0, E0〉 be the original graph.

At step i, map every vertex v to a representative ri(v) ∈ NGi−1 [v]. The contracted
graph Gi = 〈Vi, Ei〉 is then constructed as Vi = {ri(v) | v ∈ Vi−1} and Ei = {(ri(v), ri(w)) |
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Figure B.1: (a) An undirected graph G0 with vertex IDs shown inside the nodes. (b)
The representation of G0 as a list of edges. (c) The choice of representative r1(x) for
each vertex x. (d) The graph with representative choices shown at the side of each node.
Bubbles around the nodes indicate sets of vertices with the same choice of representative.
These will be contracted to single vertices. (e) The edge list of the graph G1 is computed
by mapping the function r1 over the edge list of G0. Duplicates and loop edges, shown
struck out, are eliminated. (f) The resulting graph G1 after one contraction step. The
isolated vertex 2, shown struck out, is excluded from further computation.
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Figure B.2: (a) In a sequentially numbered path graph, every vertex but the first one will
choose its left neighbour as a representative. This is the worst case: the contracted graph
is only one vertex smaller. (b) If the same path graph is numbered optimally, it contracts
to 1/3 the number of vertices.
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(v, w) ∈ Ei−1 and ri(v) 6= ri(w)}. Note that two vertices are connected in Gi−1 if and only
if their representatives are connected in Gi. In other words, for each connected component
of Gi−1 there is a corresponding connected component in Gi.

Repeat this contraction process until reaching a graph Gk that contains only isolated
vertices. At that stage each of these represents one of the connected components of the
original graph. Applying all the maps ri in sequence maps each vertex to an identifier
unique to its connected component: the composition of the representative functions rk ◦
rk−1 ◦ · · · ◦ r1 is the output of the algorithm.

Assuming the vertices are ordered, the basic idea for the choice of representatives is
to set ri(v) = minNGi−1 [v]. After each contraction step, isolated vertices can be excluded
from further computation since each of them is known to form a connected component by
itself. If the graph is only represented by its edge set, the removal of loop edges effectively
eliminates isolated vertices. This leads to a natural termination condition: the algorithm
terminates when the edge set becomes empty. Figure B.1 illustrates one contraction step
using this idea. The graph (a) is represented as a list of edges (b). The edge list of the
contracted graph (e) is obtained by mapping the representative function over all vertex
IDs in this list, eliminating duplicates and eliminating loop edges.

B.5.2 Randomisation

The algorithm in the previous section still suffers from the same worst case as the Breadth
First Search strategy described in Section B.4. Consider a sequentially numbered path
graph on n vertices as shown in Fig. B.2(a). Each vertex except the first one will choose
as its representative the neighbour preceding it. The result of contraction is a sequentially
numbered path graph on n− 1 vertices. This implies that the algorithm takes n− 1 steps
until the path is contracted to a single vertex. If, on the other hand, the path is labelled
differently, it can contract to 1/3 of its vertices in the optimal case as shown in Fig. B.2(b).

A solution for avoiding worst case contraction is to randomise the order of the vertices.
We show in Section B.6 that the graph will then, in expectation, shrink to at most a
constant fraction γ of its vertices, with γ < 1. We further show that if the randomisation
is performed independently at each step, this leads to an expected logarithmic number of
steps. As a result, the algorithm behaves well for any input. By contrast, other algorithms
that rely on a worst case being “unlikely” are vulnerable in an adversarial scenario where
such a worst case can be exploited to an attacker’s advantage.

We remark that vertex label randomisation, critical to our algorithm, would not have
aided the simple solution attempts described in Section B.4. The complexity of Breadth
First Search, for example, is bounded by the diameter of the analysed graph, regardless of
how vertices are labelled.

B.5.3 Randomisation methods

In a practical implementation, choosing a random permutation of the vertices is itself a
nontrivial task, especially in a distributed computing scenario such as an MPP database.
One way to achieve this is the random reals method. At step i, generate for each vertex
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v a random real hi(v) uniformly distributed in [0, 1]. The choice of the representative then
becomes ri(v) = arg minw∈NGi−1

[v] hi(w).

This method in theory achieves full randomisation, a uniform choice among all |V |!
possible orderings of the vertices, for which the best performance bounds can be proved
(see Appendix B.B). The advantage of the random reals method over brute-force random
permutation generation is that the table of random numbers can be created in parallel
in a distributed database. A disadvantage is that this table has to be distributed to all
machines in the cluster for picking representatives.

A more efficient idea is to pick a pseudo-random permutation by means of an encryption
function on the domain of the vertex IDs. If the vertex IDs are 64-bit integers, a suitable
choice is the Blowfish algorithm [83] which can be implemented in a database as a user-
defined function. Let ek denote an encryption function on the domain of the vertex IDs
with key k. The encryption method then works as follows: at step i, choose a random
key ki. Let ri(v) = arg minw∈NGi−1

[v] eki(w). Note that an encryption function is by
definition a bijection which guarantees a unique choice of representatives.

The encryption method is more efficient than the random reals method in a distributed
setting since it obviates the need to communicate one random number per vertex across
the network to every node that needs it. Instead, only the encryption key needs to be
distributed and each processor can compute the pseudo-random vertex IDs independently
as necessary. This exploits the fact that in a realistic setting, communication across com-
putation nodes is much slower than local computing.

While encryption functions are designed to be “as random as possible” and work well
in practice, it is hard to rigorously prove for them the required graph contraction prop-
erties. Also, they are computationally expensive. We therefore present as the final re-
finement of the Randomised Contraction algorithm the finite fields method. Assume
the domain of the vertex IDs is a finite field F with any ordering. To determine the
representatives at step i, choose 0 6= Ai ∈ F and Bi ∈ F uniformly at random and let
ri(v) = arg minw∈NGi−1

[v] hi(w) where hi(w) = Ai · w + Bi with multiplication and addi-
tion carried out using finite field arithmetic. Note that hi is a bijection: in a field, every
A 6= 0 has a unique multiplicative inverse A−1. If y = A ·x+B, we have x = A−1 · (y−B).

If the vertex IDs are fixed-size integers with b bits, this data type can be treated as
a finite field with 2b elements by performing polynomial arithmetic modulo an irreducible
polynomial [57, Thm. 3.2.6]. Note that while the calculation of hi(w) is performed in the
finite field F, the result is stored as an integer and the calculation of arg min is done with
reference to integer ordering. Since finite field arithmetic over this field is awkward to
implement in SQL, we wrote a fast implementation in C and loaded it as a user-defined
function into the database. An SQL-only implementation could alternatively choose a
prime number p known to be larger than any vertex ID and use normal integer arithmetic
modulo p, giving the data type of the vertex IDs the structure of F = GF(p).
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procedure RandomisedContraction(G)
create table E as
select v, w from G union all select w, v from G;

firstround← true
repeat
choose 0 6= A ∈ F and B ∈ F uniformly at random
create table R as . compute representatives
select v, least(axb(A, v, B), min(axb(A, w, B))) as r
from E group by v;

create table T as . contract by transforming edge table
select distinct V.r as v, W.r as w
from E, R as V, R as W
where E.v = V.v and E.w = W.v and V.r != W.r;

rowcount ← number of rows generated by the previous query
drop table E; alter table T rename to E;
if firstround then
firstround← false
alter table R rename to L;

else
create table T as . compose representative functions
select L.v as v, coalesce(R.r, axb(A, L.r, B)) as r
from L left outer join R on (L.r = R.v);

drop table L, R; alter table T rename to L;
end if

until rowcount = 0
alter table L rename to Result;

end procedure

Figure B.3: SQL-like pseudocode for the Randomised Contraction algorithm with deter-
ministic space usage using the finite fields method. axb is assumed to be a user-defined
function that computes the term A · x+B using arithmetic over the finite field F.
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B.5.4 SQL implementation

Our implementation of the Randomised Contraction algorithm in SQL takes as input a
table G with two columns, v and w, containing vertex IDs, where each row represents an
undirected edge of the input graph. Isolated vertices may be represented in this table as
loop edges. The output is a table named Result with columns v and r, containing for each
vertex v a row assigning a label r to the connected component of v.

Figure B.3 shows an SQL-like pseudocode implementation of Randomised Contrac-
tion using the finite fields method. It assumes the existence of a user-defined function
axb(A, x,B) that treats a vertex ID x as an element of a finite field and computes the
expression A ·x+B using finite field arithmetic. Its implementation along with the actual
Python/SQL code used for our experiments is given in Appendix B.A.

At each step, the choice of representatives is computed as a table R. For performance
optimisation, we compute the representative as ri(v) = minw∈NGi−1

[v] hi(w) instead of
using arg min. This runs faster because min is a built-in aggregate function in SQL. Since
the values of ri are no longer vertex IDs of the original graph, the vertices effectively
get relabelled at each contraction step. Relabelling does not affect the correctness of the
algorithm since the ultimate connected component labels are not required to be vertex IDs,
but merely to satisfy uniqueness. Uniqueness is guaranteed by the fact that the functions
hi are bijections on the finite field used as the domain of the vertex IDs.

The contraction step replaces the vertex IDs in each row of the edge table E by their
respective representatives, writing the result to a temporary table T . This is implemented
by joining the edge table E with one copy of R for each of the two vertices involved. Loop
edges are removed from the result to exclude isolated vertices from further computation.

Recall from section B.5.1 that the output of the algorithm is the composition of the
representative functions rk ◦ rk−1 ◦ · · · ◦ r1. At step i, the algorithm uses the partial
composition ri−1 ◦ · · · ◦ r1 stored in a table L to compute the next partial composition
ri ◦ · · · ◦ r1 by joining table L with table R. Since isolated vertices get deleted during the
course of the algorithm, R represents only a partial function and a left outer join of L
and R has to be used to preserve a row for each of the original vertices. Note that the
relabelling introduced by the performance optimisation mentioned above has to be applied
to all rows of L that do not have a counterpart in R. This is accomplished using the SQL
function coalesce() which returns its first non-NULL argument.

The algorithm in Figure B.3 has deterministic space usage. Table E gets smaller at
each step since duplicate edges and loop edges are removed. Table R, containing one row
per vertex in E, shrinks accordingly. Table L, however, maintains its size throughout,
storing one row per vertex of the input graph.

Figure B.4 shows a faster version of Randomised Contraction using slightly more in-
termediate storage. Instead of joining with the full table L at each step, we first compute
and store all representative tables Ri. Each one is smaller than the previous one since it
contains only one row for each vertex remaining in the computation. In a second loop,
these tables are then joined “back to front” in a left outer join, again taking the necessary
relabelling into account.
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procedure RandomisedContractionFast(G)
create table E as
select v, w from G union all select w, v from G;

initialise S with an empty stack
i← 0
repeat
i← i+ 1
choose 0 6= A ∈ F and B ∈ F uniformly at random
push (A,B) onto stack S
create table Ri as . compute representatives
select v, least(axb(A, v, B), min(axb(A, w, B))) as r
from E group by v;

create table T as . contract by transforming edge table
select distinct V.r as v, W.r as w
from E, Ri as V, Ri as W
where E.v = V.v and E.w = W.v and V.r != W.r;

rowcount ← number of rows generated by the previous query
drop table E; alter table T rename to E;

until rowcount = 0
(A,B)← (1, 0)
while i > 1 do
i← i− 1
pop (α, β) from stack S
(A,B)← (axb(A,α, 0), axb(A, β,B))
create table T as . compose representative functions
select L.v as v, coalesce(R.r, axb(A, L.r, B)) as r
from Ri as L left outer join Ri+1 as R on (Ri.r = Ri+1.v);

drop table Ri, Ri+1; alter table T rename to Ri;
end while
alter table R1 rename to Result;

end procedure

Figure B.4: A faster version of Randomised Contraction with stochastic space usage. axb
is assumed to be a user-defined function that computes the term A ·x+B using arithmetic
over the finite field F.
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The result of both algorithms is r = rk ◦ rk−1 ◦ · · · ◦ r1. The algorithm in Figure B.3
computes (rk ◦ (rk−1 ◦ · · · ◦ (r2 ◦ r1))) whereas the algorithm in Figure B.4 computes the
expression (((rk◦rk−1)◦· · ·◦r2)◦r1). Note, however, that while the algorithm in Figure B.3
guarantees linear space requirements deterministically, the algorithm in Figure B.4 only
guarantees this in expectation, as shown in Section B.6.2. The latter algorithm runs faster
because it joins the representative tables in small-to-large order whereas the former one
joins with the full-size representative table L at each step.

B.6 Performance analysis

B.6.1 Time complexity

The critical observation regarding the Randomised Contraction algorithm is that at each
iteration the graph shrinks to at most a constant fraction γ of its vertices, in expectation,
with γ < 1. Here we will prove γ ≤ 3/4 for the random reals method and the finite
fields method. A better bound of 2/3 is proved in Appendix B.B for the case of full
randomisation, such as with the random reals method. Note that we only need to consider
graphs without isolated vertices since all isolated vertices get removed at the end of each
step of the algorithm.

Theorem B.6.1. Let G = 〈V,E〉 be a graph without isolated vertices. For each vertex v, let
h(v) denote either the random real allotted to v by the random reals method or the integer
assigned by the finite fields method. Choose representatives r(v) = arg minw∈N [v] h(w).
Then the expected total number of vertices chosen as representatives is at most 3/4|V |.

Proof. Divide the vertices into high and low vertices according to the median m of the
distribution of a random h(v): the high vertices v are those with h(v) ≥ m.

For a vertex v to choose a high vertex as its representative, it must (1) itself be a high
vertex, and (2) have only high vertices as neighbours. Given that v is not isolated, let us
pick an arbitrary neighbour of it, w, and consider a weaker condition than (2): w must
be a high vertex. For the random reals method, both conditions occur independently with
probability 1/2. For the finite fields method, let q = |F|. The first condition occurs with
probability dq/2e/q and the second condition, given the first, with probability (dq/2e−1)/q.

Thus, in expectation, no more than 1/4 of the vertices choose a high vertex as a
representative, proving that in total no more than 1/4|V | high vertices will be chosen
as representatives. Even if all low vertices are representatives, this still amounts to an
expected number of no more than 3/4|V | representatives in total.

Let γi be the actual shrinkage factor at step i of the Randomised Contraction algorithm.
This is a random variable with E(γi) ≤ γ. By re-randomising the vertex order at each
step, all γi become independent and therefore uncorrelated. This guarantees that the total
shrinkage over the first k steps is in expectation

E(

k∏
i=1

γi) =
k∏
i=1

E(γi) ≤ γk.
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Table B.1: Connected component algorithms

Algorithm Number of steps Space

Randomised Contraction1 exp. O(log |V |) exp. O(|E|)
Hash-to-Min [76] O(log |V |) O(|V |2)
Two-Phase [53] O(log2 |V |) O(|E|)
Cracker [58] O(log |V |) O( |V |·|E|log |V | )

We now show that for any given ε > 0 the algorithm terminates with probability 1− ε
after O(log |V |) steps. Let Rk be the random variable describing the number of remaining
vertices after k steps. The probability of the algorithm not terminating after k steps
is Pr(Rk ≥ 1). By Markov’s inequality we have Pr(Rk ≥ 1) ≤ E(Rk) ≤ γk|V |. Now
γk|V | ≤ ε⇔ k ≥ logγ ε− logγ |V | = O(log |V |), which is the desired conclusion.

B.6.2 Space requirements

The Randomised Contraction algorithm can be implemented in two variants shown in
Figures B.3 and B.4, both using the finite fields method. Both require Θ(|E|) space for
storing the edge table E. Note that the size of this edge table decreases at each step of
the algorithm.

The first algorithm uses one table L of size Θ(|V |) and another table R starting at the
same size and strictly shrinking throughout the algorithm, so that space usage for these
tables is bounded deterministically by Θ(|V |). The algorithm shown in Figure B.4 stores
intermediate tables of expected sizes |V |, γ|V |, γ2|V |, . . . , γk|V |, which sums up to a space
usage of Θ(|V |) in expectation.

If the random reals method is used instead, both algorithms require an additional

Θ(|V |) for storing a random number for each vertex, which does not change the overall
space complexity.

In summary, since |V | ≤ |E|, the space complexity of the first algorithm is Θ(|E|)
deterministically while it is Θ(|E|) + expectedΘ(|V |) for the second algorithm.

In practice, if the algorithms are implemented as shown, the edge table is blown up two-
fold in the setup stage. Also, at every iteration, a new edge table has to be generated before
the old one is deleted, so, in total, the space requirements for storing edge information
during the execution of the algorithm are up to four times the size of its original input.

B.7 Empirical evaluation

To evaluate the practical performance of our Randomised Contraction algorithm we used
the open source MPP database Apache HAWQ which runs on an Apache Hadoop cluster.
Since SQL does not natively support any control structures, we implemented the algorithm
shown in Figure B.4 as a Python script that connects to the database and does all the “heavy

1Space usage can be made deterministic using the implementation in Fig. B.3.
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lifting” using SQL queries. Finite field arithmetic over 64-bit integers was implemented
in C as a user-defined SQL function.

We compare Randomised Contraction to three other leading algorithms for calculating
connected components in a distributed computation setting. Their proven time and space
complexities are summarised in Table B.1. Hash-to-Min and Two-Phase were implemented
by their authors in MapReduce [64] whereas Cracker uses Spark [50].

The use of different execution environments and programming paradigms makes a direct
comparison of the algorithms difficult. The authors of Hash-to-Min [76] and Two-Phase
[53] did not publish original code, and comparison difficulties are further exacerbated by
the fact that they did not document their cluster configuration and that [53] provides only
relative timing results. We therefore had to port these algorithms to a unified execution
environment.

We converted the two MapReduce algorithms and the Spark algorithm to SQL using
direct, one-to-one translations. For example, in MapReduce, a “map” using key-value
messages was converted to the creation of a temporary database table distributed by the
key, and the subsequent “reduce” was implemented as an aggregate function applied on that
table. Spark was converted using an equally direct, straightforward command-to-command
mapping. This allows a comparison of different algorithms executing in the same relational
database.

For Cracker, we were in addition able to run the original Spark code published in [58]
on our cluster. We also implemented our Randomised Contraction algorithm in Spark
SQL. This allows a limited comparison between the two execution environments Spark vs.
MPP database.

B.7.1 Datasets

The datasets used are summarised in Table B.2. An application to a real-world dataset with
nontrivial size is the analysis of the transaction graph of the crypto-currency Bitcoin [66].
At its core, Bitcoin is a data structure called blockchain that records all transactions within
the system and is continuously growing.

On April 9, 2019 it consisted of 570,870 blocks with a total size of 250 GB, which we
imported into our relational database. Transactions can be viewed as a bipartite graph
consisting of transactions and outputs which in turn are used as inputs to other transac-
tions. Each output is associated with an address, and it is a basic step for analysing the
cash flows in Bitcoin to de-anonymise these addresses if possible. We used a well-known ad-
dress clustering heuristic for this [63]: if a transaction uses inputs with multiple addresses
then these addresses are assumed to be controlled by the same entity, namely the one that
issued the transaction. To perform this analysis, we created the graph “Bitcoin addresses”,
linking addresses to the transactions using them as inputs. The connected components of
this graph contain addresses assumed to be controlled by the same entities.

We also calculated the connected components of the full Bitcoin transaction graph.
This reveals different markets that have not interacted with each other at all within the
crypto-currency.



B.7. EMPIRICAL EVALUATION 151

Table B.2: Datasets

Dataset |V | |E| components

Andromeda 1,459 M 2,287 M 62,166 k
Bitcoin addresses 878 M 830 M 216,917 k
Bitcoin full 1,476 M 2,079 M 37 k
Candels10 83 M 238 M 39 k
Candels20 166 M 483 M 48 k
Candels40 332 M 975 M 91 k
Candels80 663 M 1,958 M 224 k
Candels160 1,326 M 3,923 M 617 k
Friendster 66 M 1,806 M 1
RMAT 39 M 2,079 M 5 k
Path100M 100 M 100 M 1
PathUnion10 154 M 154 M 10

Another important application of our algorithm is the analysis of social networks. We
used the “com-Friendster” dataset from the Stanford Large Network Dataset Collection [56],
the largest graph from that archive.

Connected component analysis can be used as an image segmentation technique. We
converted a Gigapixel image (69,536×22,230 px) of the Andromeda galaxy [67] to a graph
by generating an edge for every pair of horizontally or vertically adjacent pixels with an
8-bit RGB colour vector distance up to 50. The vertex IDs were chosen at random so that
they would not reflect the geometry of the original image.

The same technique can be applied to three-dimensional images such as medical images
from MRI scans, or to video. We used a 4K-UHD video of a flight through the CANDELS
Ultra Deep Survey field [68] and converted some frames of it to a graph using pixel 6-
connectivity (x, y, and time) and a colour difference threshold of 20, again randomising
the vertex IDs. By using an increasing number of frames we generated a series of datasets
(Candels10 . . . Candels160) with similar properties and of increasing size for evaluating
scalability of the algorithms.

For comparison with [53], we generated a large random graph using the R-MAT method
[18] with parameters (0.57, 0.19, 0.19, 0.05), which are the parameters used in [53]. Vertex
IDs were randomised to decouple the graph structure from artefacts of the generation
technique.

Two worst-case graphs complete our test bench. As shown in the theoretical analysis,
Randomised Contraction maintains its logarithmic and quasi-linear performance bounds on
any input graph. By contrast, all other algorithms examined have known worst-case inputs
that exploit their weaknesses. Path100M is a path graph with 100 million sequentially
numbered vertices causing prohibitively large space usage in Hash-to-Min and Cracker.
PathUnion10 is the worst case for the Two-Phase algorithm, a union of path graphs of
different lengths with vertices numbered in a specific way.

Our 2D and 3D image connectivity datasets are low-degree graphs: each vertex connects
only to a handful of other vertices (at most 4 in 2D, at most 6 in 3D). This is a property
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Figure B.5: Connected component sizes exhibit a roughly scale-free distribution for both
the Andromeda and the Bitcoin address datasets.
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that holds in a larger class of graphs of real-world interest, such as, for example, street
networks.

With the exception of this degree restriction (for the Andromeda and Candels graphs),
however, all graphs in our benchmark exhibit traits that are emblematic of the general class
of real-world large graphs, for which reason we are confident that our results are general.

As an example, consider the distribution of our graphs’ component sizes. Large real-
world graphs typically exhibit a property known as scale-freedom. Scale-freedom in compo-
nent sizes indicates that on a log-log scale a graph exhibits a (roughly) linear relationship
between the size of a component and the number of components of this same size. In
Figure B.5, we demonstrate that the Bitcoin address graph, predictably, shows this log-log
linear behaviour.

As can also be seen in Figure B.5, however, the corresponding plot for the Andromeda
benchmark graph shows the same behaviour, so is, in the relevant metrics, also represen-
tative of large real-world graphs, despite its construction from an image. (Notably, the
single outlier for Andromeda is the image’s black background.)

B.7.2 In-database benchmark results

For performance measurements we used a database cluster consisting of five virtual ma-
chines, each with 48 GiB of RAM and 12 CPU cores (Intel Skylake @2.2 GHz), running
HAWQ version 2.3.0.0 on the Hortonworks Data Platform 2.6.1. The tests were run on an
otherwise idle database.

We have run each of the algorithms three times on each of the target data sets and
measured the mean and the standard deviation of the computation time. Like any other
parallel processing, in-database execution entails its own inherent variabilities, for which
reason we did not expect even the deterministic algorithms to complete in precisely con-
sistent run-times. We did, however, expect the randomised algorithm to have somewhat
higher variability in its completion time. Observing the relative standard deviation (i.e.
the ratio between the standard deviation and the mean), the average value for Randomised
Contraction was 4.0% as compared to 2.2%, 2.1%, and 1.6% for Hash-to-Min, Two-Phase,
and Cracker, respectively. We conclude that the variability added by randomisation is not,
comparatively, very high.

Table B.3 and Figure B.6 show the average runtimes in seconds. Hash-to-Min did not
finish on the larger datasets with the available resources. Both Hash-to-Min and Cracker
cannot handle the Path100M dataset due to their quadratic space usage (on a shorter
path of 100,000 vertices they already use more than 100 GB). On all datasets Randomised
Contraction performed best, generally leading by a factor of 2 to 12 compared to the other
algorithms. On the graph RMAT the advantage was least pronounced.

The sequence of Candels datasets, roughly doubling in size from one to the next,
demonstrates the scalability of the Randomised Contraction algorithm. Its runtime is
essentially linear in the size of the graph.

Real world space usage of the algorithms has two aspects. One is the maximum amount
of storage used by the algorithms at any given time, taking into account the amount of
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Table B.3: Runtimes in seconds

Dataset RC HM TP CR

Andromeda 5431 – 37987 14506
Bitcoin addresses 1530 11696 9811 3457
Bitcoin full 6398 – 77359 26015
Candels10 424 3178 1425 867
Candels20 749 5868 2836 1766
Candels40 1482 13892 6363 3726
Candels80 3463 – 15560 8619
Candels160 9260 – 32615 23409
Friendster 2462 9554 4409 5092
RMAT 2151 4384 2816 3187
Path100M 366 – 1406 –
PathUnion10 386 – 4022 1202

RC = Randomised Contraction, HM = Hash-to-Min
TP = Two-Phase, CR = Cracker

Table B.4: Maximum space used in GB

Dataset input RC HM TP CR

Andromeda 59 276 – 115 263
Bitcoin addresses 21 109 88 43 110
Bitcoin full 72 255 – 108 272
Candels10 6 27 21 12 24
Candels20 12 55 42 24 50
Candels40 25 110 86 48 100
Candels80 50 221 – 96 201
Candels160 102 443 – 193 403
Friendster 47 190 183 91 181
RMAT 54 217 120 86 169
Path100M 3 13 – 5 –
PathUnion10 4 20 – 8 20

Table B.5: Total gigabytes written

Dataset input RC HM TP CR

Andromeda 59 552 – 1768 905
Bitcoin addresses 21 215 804 557 306
Bitcoin full 72 690 – 1858 1151
Candels10 6 48 148 93 61
Candels20 12 97 295 179 125
Candels40 25 196 618 369 251
Candels80 50 394 – 774 504
Candels160 102 790 – 1481 1009
Friendster 47 309 481 258 294
RMAT 54 259 248 169 177
Path100M 3 31 – 75 –
PathUnion10 4 48 – 264 116
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space freed by deleting temporary tables. The other, arguably more important metric
for database implementations is the total amount of data written to the database while
executing the algorithms.

The latter is significant if the whole algorithm is implemented as a transaction in a
database. A transaction combines a number of operations into one atomic operation that
either succeeds as a whole or gets undone completely (rollback). In order to achieve this
behaviour, most databases delete temporary tables only at the successful completion of the
whole algorithm, and therefore storage is needed for all data written during its execution.

Table B.4 shows the algorithms’ maximum space usage in comparison with the input
size. Here the Two-Phase algorithm uses the least space on all datasets, taking no more
than 2 times the storage of the input dataset. Our time-optimised implementation of
the Randomised Contraction algorithm stays within the expected bounds and is never
more than 2.6 times the space requirements of the Two-Phase algorithm. Table B.5 shows
the total amount of data written which would need to be stored in a transaction. Here
Randomised Contraction is best in most cases and performs worse only on Friendster and
RMAT.

B.7.3 Database performance vs. Spark

In [58], Lulli et al. implement Cracker, an optimised version called Salty-Cracker, Hash-
to-Min, and several other algorithms in the distributed computing framework Spark [50].
Their published source code is memory intensive and works within our resources only on
smaller graphs. Its execution failed on graphs in our test-bench.

For their most highly optimised version of the Cracker algorithm the dataset with the
highest runtime was “Streets of Italy” (19 M vertices, 20 M edges). The reported time was
1338 seconds, which was the best among all algorithms compared. We ran our Randomised
Contraction algorithm on this same dataset in-database and it finished in 143 seconds. Our
database implementation of the Cracker algorithm took 261 seconds.

Note the considerable difference between resources used: the results reported in [58]
were obtained on five nodes with 128 GB of RAM and 32 CPU cores each. Our database
cluster had less than half the RAM and half the CPU cores. Also the database was
configured as it might be in a real-world production environment, never allocating more
than 20% of the resources to a single query.

Formulating one’s algorithm in the form of SQL queries also has advantages beyond
in-database execution, as it allows utilising it in other SQL and SQL-like execution environ-
ments. As an example, we implemented the Randomised Contraction algorithm in Spark
SQL using Spark 2.1.1 and ran it on the Candels10 dataset, exported from the database as
a distributed set of text files. This allowed the algorithm to scale up properly, but we note
that it was still slower in Spark SQL than when executing in the database. The runtime
on our cluster was roughly 2.3 times as long for the Spark SQL implementation as for
the in-database one, despite both executing the same SQL code on the same hardware.
We conjecture that the main reason for this is the higher level of maturity of the query
optimisation that databases such as HAWQ provide.
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Figure B.6: In-database execution times for real world and synthetic datasets.
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/∗ axp lu sb (a , x , b ) c a l c u l a t e s a∗x+b over GF(2^64) .
I r r e d u c i b l e po lynomia l : x^64 + x^4 + x^3 + x + 1

∗/
#define IRRPOLY 0x1b

PG_FUNCTION_INFO_V1( axplusb ) ;
Datum
axplusb (PG_FUNCTION_ARGS)
{

int64 a = PG_GETARG_INT64( 0 ) ;
in t64 x = PG_GETARG_INT64( 1 ) ;
in t64 b = PG_GETARG_INT64( 2 ) ;

in t64 r = 0 ;
while ( x )

{
i f ( x & 1)

r ^= a ;
x = (x>>1) & 0 x 7 f f f f f f f f f f f f f f f ;
i f ( a & (1LL << 63))

a = (a<<1) ^ IRRPOLY;
else

a <<= 1 ;
}

PG_RETURN_INT64( r ^ b ) ;
}

Figure B.7: The user-defined function axplusb.

We note that even this factor of 2.3 does not take into account the amount of time
required to export the data from the database for analysis or to re-import the results back
into the database, operations that would likely be required in a real world implementation.

B.8 Conclusions

We describe a novel algorithm for calculating the connected components of a graph that can
be implemented in SQL and efficiently executed in a massively parallel relational database.
Its robustness against worst case inputs and its scalability make it practical for Big Data
analytics. The performance measured is not only due to our algorithm’s ability to use a
minimum number of SQL queries and to minimise the amount of data handled by each
query, but also due to the work of the database’s native, generic query execution optimiser.

With relational databases poised to remain the standard for storing transactional busi-
ness data and with query execution engines improving year to year, the Randomised Con-
traction algorithm demonstrates that in-database processing can be a viable and compet-
itive addition to the more widely used Big Data processing technologies.



158 APPENDIX B. THE RANDOMISED CONTRACTION ALGORITHM

B.A Implementation in Python/SQL

In this Appendix we show the implementation of the Randomised Contraction algorithm we
used to run the experiments. The user-defined function implementing finite field arithmetic
on 64-bit integers in C is shown in Figure B.7. It is called from SQL as axplusb(A,x,B) and
computes the expression A · x+B.

Our Python code is given below. It has been stripped of the surrounding infrastructure
code. In the excerpt shown, dataset contains the name of the input table which is assumed
to contain the edge list of the graph in two columns v1 and v2, each containing a 64-bit
vertex ID.

r .log_exec() executes the SQL query passed as the third parameter and returns the
number of rows generated. r .log_drop() drops the indicated table. r .execute() executes mis-
cellaneous SQL queries. r .axplusb(A,x,B) calls the corresponding function in the database
for finite field arithmetic.

r . log_exec ( " setup " , 0 , """\
crea t e t a b l e ccgraph as

s e l e c t v1 , v2 from {0}
union a l l
s e l e c t v2 , v1 from {0}
d i s t r i b u t e d by ( v1 ) ;

""" . format ( datase t ) )

roundno = 0
stackA = [ ]
stackB = [ ]
while True :

roundno += 1
cc reps = " cc r eps {}" . format ( roundno )
r_A = 0
while r_A == 0 :

r_A = random . rand int (−2∗∗63 ,2∗∗63−1)
r_B = random . rand int (−2∗∗63 ,2∗∗63−1)
stackA . append (r_A)
stackB . append (r_B)

r . log_exec ( " cc r eps " , roundno , """\
crea t e t a b l e { ccreps } as

s e l e c t v1 v ,
l e a s t ( axp lu sb ({A} , v1 ,{B}) ,

min( axp lu sb ({A} , v2 ,{B}) ) ) rep
from ccgraph
group by v1
d i s t r i b u t e d by ( v ) ;

""" . format ( c c r eps=ccreps , A=r_A, B=r_B) )

r . log_exec ( " ccgraph2" , roundno , """\
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c r ea t e t a b l e ccgraph2 as
s e l e c t r1 . rep as v1 , v2
from ccgraph , {} as r1
where ccgraph . v1 = r1 . v
d i s t r i b u t e d by ( v2 ) ;

""" . format ( c c r eps ) )
r . log_drop ( " ccgraph" )

g raphs i z e = r . log_exec ( " ccgraph3" , roundno , """\
crea t e t a b l e ccgraph3 as

s e l e c t d i s t i n c t v1 , r2 . rep as v2
from ccgraph2 , {} as r2
where ccgraph2 . v2 = r2 . v

and v1 != r2 . rep
d i s t r i b u t e d by ( v1 ) ;

""" . format ( c c r eps ) )
r . log_drop ( " ccgraph2" )
r . execute ( " a l t e r t ab l e ccgraph3 rename to ccgraph" )

i f g raphs i z e == 0 :
break

accA = 1
accB = 0

while True :
roundno −= 1
(accA , accB ) = ( r . axplusb ( accA , stackA . pop ( ) , 0 ) ,

r . axplusb ( accA , stackB . pop ( ) , accB ) )
i f roundno == 0 :

break
c c r ep s r = " cc r eps {}" . format ( roundno )
c c r ep s r1 = " cc r eps {}" . format ( roundno+1)
r . log_exec ( " r e s u l t " , roundno , """\
crea t e t a b l e tmp as

s e l e c t r1 . v as v ,
c oa l e s c e ( r2 . rep , axp lu sb ({A} , r1 . rep ,{B})) as rep

from {r1} as r1 l e f t ou ter j o i n
{r2} as r2
on ( r1 . rep=r2 . v )

d i s t r i b u t e d by ( v ) ;
""" . format (A=accA , B=accB , r1=ccreps r , r2=cc r ep s r1 ) )
r . log_drop ( c c r ep s r )
r . log_drop ( c c r ep s r1 )
r . execute ( " a l t e r t ab l e tmp rename to {}" . format ( c c r ep s r ) )

r . execute ( " a l t e r t ab l e cc r eps1 rename to c c r e s u l t " )
r . log_drop ( " ccgraph" )
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B.B Bounds on graph contraction

The Randomised Contraction algorithm requires that at each iteration the number of
remaining vertices in the graph drops, in expectation, to at most a constant factor γ of
the initial number, with γ < 1. In the body of the paper we prove γ ≤ 3/4, requiring
only the weaker form of randomisation that is achieved by the finite fields method. In this
appendix we take a closer look at graph contraction under full randomisation and prove a
better bound of γ ≤ 2/3 for this case.

To do this, we generalise the problem to directed graphs. We use the following nota-
tion [10]: let G = 〈V,A〉 be a directed graph with n vertices. For a vertex v ∈ V , the set
N+(v) = {u | vu ∈ A} is called the out-neighbourhood of v and the set N−(v) = {w | wv ∈
A} is called its in-neighbourhood. The sets N+[v] = N+(v)∪{v} and N−[v] = N−(v)∪{v}
are called the closed out- and in-neighbourhoods, respectively.

We represent an ordering of the vertices by assigning to each vertex v a unique la-
bel L(v) ∈ {1, . . . , n}. The representative of a vertex v under the order induced by the
labelling L is defined as rL(v) = arg minw∈N+[v] L(v).

An undirected graph can be considered as a special case of a directed graph where
each undirected edge corresponds to a pair of arcs in both directions. In this case we have
N(v) = N+(v) = N−(v) for all vertices v and our Randomised Contraction algorithm
at each iteration chooses representatives as defined above. The total number of distinct
representatives then determines the size of the next iteration’s graph and therefore the
amount of contraction at each iteration. We note that we do not know of any natural
interpretation for the result of running the Randomised Contraction algorithm on a directed
graph. Certainly, the output is not a division into connected components.

Given an ordering of the vertices, a vertex can have one of three types: it can be not the
representative of any vertex (type 0), the representative of exactly one vertex (type 1),
or the representative of two or more vertices (type 2+).

Lemma B.B.1. Let G = 〈V,A〉 be a directed graph with n vertices. Fix a vertex v ∈ V
with N+(v) 6= ∅. Then the number of orderings under which v is of type 1 is less than or
equal to the number of orderings under which it is of type 0.

Proof. We prove this by constructing an injective mapping from the labellings that make
our fixed vertex v a type 1 vertex to those that make it a type 0 vertex. Consider a labelling
L that makes v a type 1 vertex. Then there are two cases: (a) v represents itself and (b)
v is the representative of exactly one other vertex.

In case (a) we have L(v) = minw∈N+[v] L(w). Let u1 = arg maxw∈N+(v) L(w) and let
L′ be a new labelling obtained from L by exchanging the labels of v and u1. Under this
new labelling, v is of type 0: it no longer represents itself and it also does not represent
any other vertex because its label is larger than before. Note that we can uniquely identify
u1 in this new labelling as u1 = arg minw∈N+(v) L

′(w).
In case (b) we have v = rL(u2) for some vertex u2 ∈ N−(v) and rL(v) 6= v. Let

u1 = rL(v). Then L(u2) > L(v) > L(u1). Let L′ be a new labelling obtained from L by
exchanging the labels of v and u2. Under this new labelling, u2 represents itself and v is
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of type 0: it is no longer a representative of u2 and it also has not become a representative
for any other vertex because its label is larger than before. Furthermore, L′(u2) = L(v) >

L(u1) = L′(u1). Note that we can uniquely identify u2 in this new labelling as the largest-
labelled vertex in the in-neighbourhood of v that represents itself. To see this, assume
by contradiction that there is a w ∈ N−(v) with L′(w) > L′(u2) and rL′(w) = w. Then
u2 /∈ N+(w), v ∈ N+(w), and L(w) = L′(w) > L′(u2) = L(v). From this and the fact
that L(w) = L′(w) = minx∈N+[w] L

′(x) ≤ minx∈N+[w]\{v} L
′(x) = minx∈N+[w]\{v} L(x) we

conclude that rL(w) = v. So under the labelling L, v is the representative of two distinct
vertices u2 and w, contradicting the assumption that it is of type 1.

To see that the mapping from L to L′ is injective, it remains to be shown that
from L′ we can uniquely determine whether it was obtained from case (a) or case (b).
Let u1 = arg minw∈N+(v) L

′(w) and u2 = arg maxw∈N−(v) : w=rL′ (w) L
′(w). If the latter

does not exist, L′ must have resulted from case (a). We show that otherwise L′ sat-
isfies L′(u2) > L′(u1) if and only if it is the result of case (b). We have seen in case
(b) that L′(u2) > L′(u1). In case (a) we have L(u2) = L′(u2) = minx∈N+[u2] L

′(x) ≤
minx∈N+[u2]\{v,u1} L

′(x) = minx∈N+[u2]\{v,u1} L(x) and L(v) < L(u1). If L(v) < L(u2),
this would imply that rL(u2) = v, contradicting the assumption that v is of type 1. So
L′(u1) = L(v) > L(u2) = L′(u2). We conclude that the two cases cannot produce the
same labelling and thus our mapping is injective.

We can now prove the central theorem of this Appendix.

Theorem B.B.2. Let G = 〈V,A〉 be a directed graph with n vertices and for all v ∈ V ,
N+(v) 6= ∅. Let L be a labelling of G chosen uniformly at random. Then the expected
number of vertices chosen as representatives by any vertex satisfies E(|{rL(v) | v ∈ V }|) ≤
(2/3)n. This is a tight bound.

Proof. Let R0, R1, and R2+ be the expected number of vertices of type 0, 1, and 2+,
respectively. From Lemma B.B.1 we know that for any fixed vertex v its probability of
being of type 1 is less than or equal to its probability of being of type 0, since these
probabilities are proportional to the corresponding numbers of orderings. This shows
R1 ≤ R0. Using R0 +R1 +R2+ = n, we get

2R1 +R2+ ≤ n.

By counting the number of vertices being represented by each vertex we have

R1 + 2R2+ ≤ n.

Summing the last two equations and dividing by 3 we get

R1 +R2+ ≤
2

3
n,

which is the desired conclusion because R1+R2+ is the expected number of representatives.
To prove that the bound is tight, consider that γ = 2/3 is attained when G is the

directed 3-cycle.
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Figure B.8: Graph with highest known contraction factor γ

Note that the proven bound is only tight for directed graphs. The worst-case (highest)
value of γ for undirected graphs is an open question. The graph with the highest γ value
known is the one depicted in Figure B.8. It has γ = 81215/144144 ≈ 56.343%.
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