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Abstract

This thesis reports on a numerical study of hydrodynamic channel flows and quasi-

two-dimensional magnetohydrodynamic duct flows with repeated flow-facing wed-

ge protrusions and the heat transfer enhancement achieved in these flows. The

study is motivated by an interest in inciting instabilities and mixing for heat trans-

fer enhancement in cooling blanket modules in nuclear fusion reactors. Previous

research in the hydrodynamic cases has focused only on the high Reynolds num-

ber regimes to study the heat transfer behaviour. For the quasi-two-dimensional

MHD cases, previous research explored either using passive and active bluff bod-

ies in the flow, using variable wall conductivity and using electrically generated

vortices for vortex generation. The current study reports on the stability char-

acteristics and the route to turbulence in both hydrodynamic channel flows and

quasi-two-dimensional magnetohydrodynamic duct flows using a modification on

the duct walls. The heat transfer enhancement with the use of surface modifica-

tion, which has not received much attention in MHD flows is also reported in this

thesis.

Flow in a channel with repeated wedge-shaped surface protrusions is consid-

ered for various blockage ratios (wedge height to duct height), pitch (distance

between wedges) and wedge angles. Different flow regimes based on the flow

structure are identified and the temperature field associated with the steady and

unsteady regimes is presented. Global linear stability analysis is performed to

characterise the stability of the two-dimensional base flow, and its dependence

on various geometric parameters of the wedge is elucidated. A two-dimensional

mode through which the onset of unsteadiness occurs was found, differing from

similar confined flow setups.

The primary instability, however, is found to occur through a three-dimen-

sional mode which manifests as counter-rotating streamwise vortices over the

wedge tip. The physical mechanism driving the instability was studied by analy-

sing the perturbation velocity contribution and kinetic energy budget. A lift-up

mechanism was found responsible for flow instability with the dominant energy
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gain of the global 3D mode due to shear in the base flow.

Analysis of the sensitivity of the instability to momentum forcing or base flow

modifications is used to identify the core of the instability and locations in the

flow which are important from a flow control perspective. An endogeneity ap-

proach shows that the component arising from the local perturbation pressure

gradient term can have a dominant influence on the growth rate of the linear

global eigenmode in most cases considered, which was not identified from the

presented exogeneous appoaches. Through the transient growth studies, low al-

gebraic energy gain by convective instabilities was found in the linearly stable

regimes of the flow, being orders of magnitude lower than in other channel flow

setups reported in the literature.

Non-linear simulations were conducted to verify and validate the findings from

the linear analysis. The linear global modes are found to compare well with the

flow structures from the non-linear simulations in the linear and weakly non-linear

stages. The effect of non-linearity is elucidated through flow visualisations high-

lighting how these structures could be favourable to enhance heat transfer rate.

Weakly non-linear Stuart–Landau analysis shows that the primary bifurcation is

supercritical for the flow at selected geometric parameter combinations.

The flow regimes for a quasi-two-dimensional magnetodydrodynamic flow in

a duct with repeated wedge-shaped protrusions are identified for different block-

age ratios considering a range of Hartmann friction parameters. The quasi-two-

dimensional mode through which instability manifests and the critical Reynolds

number are also elucidated in the same parameter range. Large transient am-

plification of quasi-two-dimensional perturbations are found at higher Hartmann

friction parameters, differing from what was observed for the hydrodynamic cases.

Non-linear effects are found to increase the time for energy dissipation of the quasi-

two-dimensional disturbance, though sub-critical transitions were not observed.

The influence of wedge protrusions on the duct walls on the heat transfer ef-

ficiency as well as its overall effectiveness taking into account the pressure losses

are explored for a range of Hartmann friction parameters. The effect of blockage

ratio, pitch and wedge angle on heat transfer ratio as well as efficiency are con-

sidered. A monotonic increase in the heat transfer ratio with increasing blockage

ratio is observed in the range of parameters investigated. It is possible to further

improve the heat transfer rate by changing the geometric parameter to an optimal

pitch and optimal wedge angle. Corresponding to each Hartmann friction param-

eter there exists an optimal geometric parameter condition where maximum heat

transfer efficiency could be achieved. In contrast to the optimal blockage ratio
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which showed a monotonic increase with increasing Hartmann friction parameter,

the optimal pitch and wedge angle showed a reversal in the trend after a critical

value. Effectiveness of surface modification on the heated wall is also established

through a net power analysis. A comparison of the technique of surface modifica-

tion used in the present study with other vortex generation techniques showed the

range of the operating parameters, where the current vortex generation method

could be most effective for obtaining maximum heat transfer efficiency.

The current study contributes to the understanding of the flow dynamics in

hydrodynamic channel flows and quasi-2D magnetohydrodynamic duct flows with

repeated wedges, as well as in studying the effectiveness of the surface modifica-

tion technique as a means to promote heat transfer efficiency in quasi-2D MHD

duct flows. These understanding are beneficial for effective design and control of

duct flows.
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Nomenclature

A list of nomenclature contained in the thesis is covered here. All symbols used

are presented first which is followed by greek alphabets, english alphabets, abbre-

viations and non-dimensional numbers.

Symbol Description

§ Thesis section
∫

Integration

∇ Gradient operator

∇2 Divergence of the gradient operator (Laplace operator)

∇⊥ Gradient operator for quasi-two-dimensional cases

∇2
⊥ Divergence of the quasi-two-dimensional gradient operator

(̂ ) Eigenvector field

( )′ Perturbation field

( )⊥ Quasi-two-dimensional field

( ) Spanwise averaged value

〈 〉 Domain averaged value

( ) Time averaged value

( )∗ Adjoint field

( )T Transpose

( )opt Optimal value

(̃ ) Non-dimensional form of a flow field

Continued on the next page
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Continued from the previous page

Symbol Description

α Thermal diffusivity of the fluid

αq Weighing coefficients for discretisation

β Blockage ratio

βq Weighing coefficients for discretisation

χ Local to global coordinate mapping

δh Viscous boundary layer thickness

δt Thermal boundary layer thickness

ε2D Ratio of Reynolds number to the critical Reynolds number
for 2D instability

ε3D Ratio of Reynolds number to the critical Reynolds number
for 3D instability

εQ2D Ratio of Reynolds number to the critical Reynolds number
for quasi-2D instability

φ Wedge angle

φp One-dimensional local expansion function of poynomial or-
der np

φpq Two-dimensional local expansion function

φe Electric potential field

γ Pitch

γq Weighing coefficients for discretisation

η Heat transfer efficiency

λ Wavelength of the eigenmode

λcr Wavelength of the destabilising global eigenmode

µd Dynamic viscosity of the fluid

µi Complex eigenvalues of the linear operator A

µ Eigenvalue of the dominant eigenmode of A

µhi Complex eigenvalues of the Hessenberg matrix Hm

µm Magnetic permeability of the fluid

ν Kinematic viscosity of the fluid

ρ Density of the fluid

Continued on the next page
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Symbol Description

σ Growth rate of the eigenmode

σc Electrical conductivity of the fluid

σf Shear stress tensor

τ Time horizon for transient growth

τw Wall shear stress

ω Vorticity vector

ωzx Spanwise vorticity at each streamwise location x

ωzxp Vortex intensity at each streamwise location x

ωp Maximum vortex intensity in the flow domain

ωf Angular frequency of the global mode

ξe Local coordinate system within an element

ξp Nodal points corresponding to roots of Gauss–Legendre–
Lobatto polynomial

ψi Eigenvectors of the Hessenberg matrix Hm

∆ Change in any quantity

Φ Global trial function or expansion function

Φv Viscous heating term in the energy equation

Φj Joule heating term in the energy equation

Φb Buoyancy effect term in the energy equation
∑

Sum of all spanwise integral terms contributing
to the growth rate of the global mode

∑b
i=a Sum of arguments with i starting from a to b

Ω Flow domain

a Spanwise duct width

f Momentum forcing vector

fb Body forces in the momentum equation

f Friction factor

f0 Friction factor for a plane duct without wedge protrusions

fl Lorentz force

h Heat transfer coefficient

Continued on the next page
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Continued from the previous page

Symbol Description

hw Height of the wedge

j Current density

k Spanwise wavenumber

k′ Kinetic energy of the perturbation per unit mass

kf Thermal conductivity of the fluid

lp Length between two subsequent wedges

lw Streamwise length of the inclined surface

ld Total streamwise length of the channel/duct

m Fourier mode number

n Number of Hartmann walls

n Wall normal vector

np Element polynomial order for base flow

p Non-dimensional pressure field

p⊥ Quasi two-dimensional non-dimensional pressure field

r Duct aspect ratio

s′ Strain rate tensor of the perturbation field

t Time

u Velocity vector

u⊥ Quasi-two-dimensional velocity vector

u Streamwise component of velocity vector

uδ Approximate solution of a linear operation L

v Transverse component of velocity vector

w Spanwise component of velocity vector

wt Weighing function or test function

x Streamwise direction

xs1 x-coordinate of separation point of recirculation region-1

xs2 x-coordinate of separation point of recirculation region-2

xs3 x-coordinate of separation point of recirculation region-3

xr2 x-coordinate of reattachment point of recirculation
region-2

Continued on the next page

xxii
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Symbol Description

xr3 x-coordinate of reattachment point of recirculation
region-3

y Transverse direction

yr2 y-coordinate of reattachment point of recirculation
region-2

z Spanwise direction

A Complex amplitude of a perturbation field

Ak Amplitude of a global eigenmode with spanwise
wavenumber k

A Linear evolution operator

A ∗ Linear adjoint operator

B Magnetic field vector

B0 Applied magnetic field strength in the spanwise direction

Cp Specific heat capacity of the fluid

D Dissipation term in energetics analysis

E Electric field

Ek Kinetic energy of the 3D flow

Ekt Total perturbation kinetic energy in the flow domain

Ek,0 Kinetic energy of the fundamental Fourier mode

Ek,1 Kinetic energy of the dominant Fourier mode

E Endogeneity

Econv Contribution from convection term in momentum equation
to endogeneity

Eprod Contribution from production term in momentum equation
to endogeneity

Epres Contribution from pressure term in momentum equation
to endogeneity

Ediss Contribution from dissipation term in momentum equation
to endogeneity

Eσ Local endogeneity contribution to the growth rate of the
global destabilising mode

Eω Local endogeneity contribution to the frequency of the
global destabilising mode

Continued on the next page
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Symbol Description

FQ Electrostatic force experiences by charge Q

F Fourier transformation operator

G Optimal energy growth

H Hartmann friction parameter

Hm Hessenberg matrix

Ii Transverse integrals of the magnitude of perturbation ve-
locity components at different streamwise locations

Itotal Transverse integrals of the magnitude of total perturbation
velocity at different streamwise locations

J Order of the integration scheme

K Transient energy growth of the perturbation

Ke Length of the eigenvector space

K Velocity gradient tensor

KS Strain-rate tensor (symmetric part of K)

KA Vorticity tensor (anti-symmetric part of K)

L Half-duct height

Lp Legendre polynomial

L 2 2-norm of velocity field

Lchar Characteristic length scale

M Number of Fourier modes

M1 Two-dimensional real mode

M2 Destabilising two-dimensional complex mode

M3 Sub-dominant two-dimensional complex mode

N Interaction parameter or Stuart number

N ′ Linearised advection operator

N ∗ Linearised advection operator of adjoint equations

P Production term in energetics analysis

P Base flow pressure field

Pheat Non-dimensional power gain as heat

Pflow Non-dimensional power loss as pressure drop

Continued on the next page
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Symbol Description

P0,heat Non-dimensional power gain as heat for a duct without
wedge protrusions

P0,flow Non-dimensional power loss as pressure drop for a duct
without wedge protrusions

∆Pnet Net power gain or loss by the system

Q Electric charge

QM1 Quasi-two-dimensional real mode

QM2 Destabilising quasi-two-dimensional complex mode

QM3 Sub-dominant quasi-two-dimensional complex mode

R Residual from approximate solution

S Sensitivity

Sh Volumetric and radiative heating term in the energy
equation

T Transport term in energetics analysis

T Non-dimensional temperature field

Tf,x Local bulk fluid temperature

Tf Domain averaged bulk fluid temperature

Th Non-dimensional hot wall temperature

Tc Non-dimensional cold wall temperature

T⊥ Non-dimensional quasi-two-dimensional temperature
field

U Base flow velocity vector

U0 Horizontal mean velocity

V Characteristic velocity

DNS Direct numerical simulation

HR Heat transfer ratio

MHD Magnetohydrodynamic

PR Pressure ratio

Q2D Quasi-two-dimensional

Continued on the next page
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Symbol Description

Ec Eckert number

Ha Hartmann number

Pr Prandtl number

Nu Nusselt number (domain and time averaged)

Nux Local Nusselt number

Nu0 Nusselt number for a plane duct
without wedge protrusions

Pe Peclet number

Re Reynolds number

Recr,2D Critical Reynolds number for the onset of
two-dimensional instability / unsteadiness

Recr,3D Critical Reynolds number for the onset of
three-dimensional instability

ReRi Reynolds number for the onset of regime-i

Recr,β Rescaled Reynolds number based on constriction
gap (2L− hw)

Recr,γ Rescaled Reynolds numbner based on wedge gap
length lp

Recr,Q2D Critical Reynolds number for the onset of
quasi-two-dimensional instability / unsteadiness

Rm Magnetic Reynolds number
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Introduction

A numerical study of hydrodynamic flow in a channel and magnetohydrodynamic

flow in a duct with repeated flow-facing wedge-shaped protrusions and the heat

transfer enhancement achieved using these surface geometries is presented in this

thesis. The motivation of the current study and the gaps in the literature to be

addressed in this thesis are presented first, giving a broad overview of the problem.

Thereafter, the main aims of the study are discussed along with description of the

setup under consideration. Some of the fundamental concepts in hydrodynamic

and magnetodynamic flows underpinning the works of this thesis are explained

in the following sections. Finally, the assumptions made and the structure of the

thesis is provided.

Broad overview and motivations

Confined flows in channels and ducts with and without the presence of a magnetic

field have been subjects of numerous investigations over the years given their

many engineering and industrial applications (Larson, 1959; Chilcott, 1967; Alam

et al., 2014) and for the understanding of several fundamental mechanisms in

fluid dynamics (Carlson et al., 1982; Reddy & Henningson, 1993; Trefethen et al.,

1993; Henderson & Barkley, 1996; Schmid & Henningson, 2001; Drazin & Reid,

2004). Hydrodynamic flows over forward-facing step, FFS (Stüer et al., 1999;

Wilhelm et al., 2003; Lanzerstorfer & Kuhlmann, 2012b) and backward facing

step, BFS (Armaly et al., 1983; Kaiktsis et al., 1996; Erturk, 2008; Barkley et al.,

2002; Blackburn et al., 2008a) have also been studied extensively as these simple

geometries served as benchmarks for myriad problems associated with changing

duct geometry.

Similarly, magnetohydrodynamic (MHD) duct flows have been an ongoing

subject of investigation over years due to their relevance in engineering appli-

cations such as electromagnetic casting, leviating, pumping and stirring liquid

metals, vaccum-arc remelting of titanium and nickel-based alloys, electromag-
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netic removal of non-metallic inclusions from melts and electromagentic launch-

ers, electrolysis process particularly to reduce aluminium oxide to aluminium, in

generators and the cooling blankets of magnetic confinement nuclear fusion reac-

tors, etc. (Barleon et al., 1991; Davidson, 1997; Müller & Bühler, 2013). Cooling

blanket modules surround the reactor chamber of magnetic confinement fusion

reactors with the side wall or the first wall of the modules exposed to the reactor

chamber. In the cooling blankets, electrically conducting fluids flow under the

presence of a strong magnetic field which is used to confine plasma in the reactor

chamber (figure 1). Electrically conducting fluids flowing under the presence of a

magnetic field are subjected to a Lorentz force, produced due to the interaction

of the induced current with the magnetic field. This force has a damping ef-

fect on the turbulent fluctuations, thereby laminarising the flow and diminishing

convective heat transfer in such ducts (Malang et al., 1991; Kirillov et al., 1995;

Smolentsev et al., 2010a). This can cause a high temperature to develop on the

walls and result in structural damage of the cooling module (Abdou et al., 2015).

Figure 1: Structure of a nuclear fusion reactor and a blanket module surrounding
the central reactor chamber. The figure has been reproduced from Müller &
Bühler (2013) with permission of the publisher.

The problem primarily motivating the present study is the detrimental impact

that strong magnetic fields have on the heat transfer efficiency of the cooling

blankets fluids surrounding the reactor chamber (Barleon et al., 1991; Smolentsev

et al., 2008, 2010a, 2013). The lower heat transfer efficiency has a direct effect

on the power generation efficiency of these reactors (Sukoriansky et al., 1989;

Smolentsev et al., 2010a).

A number of studies have been carried out to enhance the convective heat
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transfer from the heated wall to the conducting fluid flowing through a duct.

The presence of a strong magnetic field results in the suppression of isotropic

turbulence by Joule dissipation (Hossain, 1992). However anisotropic turbulent

structures are promoted by stretching of the vortical structures in the direction of

the magnetic field as they are least impacted by Joule dissipation (Sommeria &

Moreau, 1982; Davidson, 1997). Most studies make use of this effect to promote

or generate vortices aligned with the magnetic field to produce flow disturbances,

which interact with the thermal boundary layer, sweeping hot fluid from the near-

wall region into the flow, in turn increasing the Nusselt number. Different vortex

generation and promotion techniques have been investigated, such as the use of

walls of varying electrical conductivity (Huang & Li, 2011), generating electrically

generated vortices using point electrodes (Hamid et al., 2016b,a) and the use of

obstacles in the flow such as a bluff body (Hussam & Sheard, 2013; Chatterjee &

Gupta, 2015; Cassells et al., 2016), and grids (Branover et al., 1995; Kolesnikov

& Tsinober, 1972).

The enhancement obtained in heat transfer by the use of various techniques

are different and sensitive to the technique being used. None of the studies in

the literature have explored the use of surface modification of the sidewall for

heat transfer enhancement in MHD flows. Additionally, previous studies in MHD

duct flows have mostly concentrated on a single vortex generator in the flow

and its influence on the heat transfer behaviour. Subsequent positioning of the

vortex promoters are significant, as the vortices generated are dissipated when

convecting downstream in the flow and the rate of dissipation increases drastically

with stronger magnetic fields (Hamid et al., 2015).

Separately, the literature contains many investigations into the use of surface

modifications in hydrodynamic flow through ducts (Karwa (2003); Bhagoria et al.

(2002); Alam et al. (2014) and references therein), but most have focused on the

heat transfer characteristics of high Reynolds number (Re) turbulent flows. In

the cooling blankets of fusion reactors, the bulk flows are generally in a steady

or transitional state (Smolentsev et al., 2013), as shown in the operating regime

for different types of cooling blanket modules in figure 2, and hydrodynamic flow

characterisation in these regimes using surface geometries has received limited

attention in the litererature. Therefore, interest lies in the mechanisms promot-

ing the destabilisation of steady, laminar flows. Additionally, from a fundamental

perspective, understanding the onset of transition in non-parallel flows is an on-

going area of interest. Thus, the present study adds to the existing understanding

in this aspect as well on separating and reattaching confined flows.
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Figure 2: Flow regimes in different types of cooling blanket designs for magnetic
confinement fusion reactors shown in the Re−Ha parameter space. The figure has
been reproduced from Smolentsev et al. (2015) with permission of the publisher.

Aims of the study and problem setup

Considering the various studies in the literature and the gap in existing knowledge

as discussed in the previous section, the hydrodynamic flow in a channel and

magnetohydrodynamic flow in a duct with repeated flow-facing wedge-shaped-

wall protrusion are considered in this thesis, as this geometry showed a better

heat transfer perfomance in hydrodynamic flow experiments (Bhagoria et al.,

2002). This section firstly presents the aims of this study and thereafter presents

the problem setup considered in the thesis.

The main aims of the work presented in this thesis can be broadly divided

into three parts:

1. To investigate the stability and dynamics of hydrodynamic channel flow

with repeated flow-facing wedge-shaped protrusions by

(a) identifying and classifying the different flow regimes associated with

the 2D flow,

(b) characterising the long-time dynamics of the flow and its dependence

on the geometry of the protrusion and flow conditions by quantifying

the eigenmodes causing breakdown of the two-dimensional flow using

a global linear stability analysis,

(c) understanding the mechanisms causing the onset of primary instabil-

ity via analysis of the energetics of the perturbation and endogeneity
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analysis,

(d) characterising the short-time dynamics of the flow via a transient

growth analysis,

(e) analysing the sensitivity of the flow to structural modifications and

elucidate regions in the flow that are important from a flow control

perspective, and

(f) understanding the effects of non-linear interactions in the flow.

2. To investigate the stability and dynamics of a quasi-2D magnetohydrody-

namic (MHD) flow in a duct with repeated flow-facing wedge-shaped pro-

trusions by

(a) identifying and classifying the different flow regimes associated with

the quasi-2D MHD flow with varying Hartmann friction parameters,

(b) characterising the global linear stability of the quasi-2D MHD flow

to quasi-2D perturbations and its dependence on the geometry of the

protrusion and flow conditions, and compare it with the corresponding

hydrodynamic cases,

(c) characterising the short-time dynamics of the flow via a transient

growth analysis and determining how the optimal growth changes with

change in Hartmann friction parameter, along with comparisons with

the non-MHD cases, and

(d) understanding the effects of non-linear interactions in the flow.

3. To characterise the heat transfer enhancement achieved using wedge-shaped

protrusions in quasi-2D MHD duct flows by

(a) understanding how the onset of instability using wedges influences the

local and global heat transfer behaviour,

(b) quantifying the improvement in the heat transfer rate over a range of

geometric parameters and Hartmann friction parameters,

(c) quantifying the heat transfer efficiency that could be achieved using

wedges and determining the optimal geometric parameter setting at

different Hartmann friction parameter values, and

(d) comparing the heat transfer efficiency achieved using repeated sur-

face protrusions with other vortex generation techniques used for heat

transfer enhancement.
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The problem setup for the hydrodynamic cases is shown in figure 3. It consists

of a streamwise (x) periodic channel of height 2L with flow-facing wedge-shaped

protrusions of height hw and angle of inclination φ, with a distance of lp between

the wedges on the bottom wall and a streamwise wedge length of lw. The fluid

is considered to be Newtonian and incompressible with kinematic viscosity ν and

constant density ρ. The bottom wall (side wall or first wall) is maintained at

constant wall temperature Th whereas the top wall is maintained at constant wall

temperature Tc. No-slip boundary conditions are applied on the bottom and top

walls.

Figure 3: Flow geometry for the hydrodynamic cases with periodic condition
enforced at the vertical boundaries x = 0 and x = lp + lw. Flow is left to right.

For the MHD cases considered in the study, the problem setup is shown in

figure 4. It consists of a streamwise periodic duct with flow-facing wedges on the

bottom wall with the aforementioned dimensions, and velocity and temperature

boundary conditions as for the hydrodynamic cases. Additionally, the duct has

a spanwise (z) width of a, with a uniform magnetic field of strength B applied

in the z-direction. The duct walls are electrically non-conducting. The fluid is

electrically conducting with electrical conductivity σc.

Dimensionless geometric parameters identified for the setup are:

1. blockage ratio

β =
hw
2L
, (1)

2. pitch

γ =
lp
L
, (2)

3. wedge angle

φ = tan−1

(
hw
lw

)

, (3)
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Figure 4: Flow geometry for the MHD cases with periodic condition enforced at
the vertical boundaries x = 0 and x = lp + lw. Flow is left to right.

4. Aspect ratio of the duct cross-section

r =
2L

a
. (4)

Some fundamental concepts

Some of the fundamental concepts that are relevant for understanding the work

presented in this thesis are briefly discussed in this section. More details on

these topics and concepts can be found in any of the standard textbooks on

fluid dynamics (Kundu & Cohen, 2002; White, 2006; Munson et al., 2009), heat

transfer (Bergman et al., 2007; Holman, 2010) and magnetohydrodynamic flows

in ducts and channels (Müller & Bühler, 2013).

Fluids are ubiquitous to human life and in nature in numerous forms, scales

and conditions. Fluids are defined as any substance that deforms continuously

under the action of shear stress of any magnitude. Properties such as density (ρ),

and dynamic viscocity (µd) respectively characterise the ‘heaviness’ and ‘fluidity’

of the fluid, and its flow must obey the laws of conservation of mass, momentum

and energy. The equations governing fluid motion are derived using these basic

laws.

Most of the information about the flow required to characterise and under-

stand the flow features can be obtained from the velocity gradient tensor (K)

of the flow. The shearing contribution to the flow is measured by the symmet-

ric (KS) part of the velocity gradient tensor whereas the rotational contribution

comes from the anti-symmetric part (KA). For a Newtonian fluid, the shear

stress tensor (σf) is linearly proportional to the shear strain rate, and according
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to Newton’s law of viscocity is given by

σf = 2µdKS, (5)

where KS = ∇u + (∇u)T , and u is the velocity vector field. Wall shear stress

can in turn be obtained from

τw = σf · n̂, (6)

where n̂ is the unit wall normal vector. Vorticity (ω) characterises local rotation

in a flow, and is obtained from the components of the rotational tensor KA. It is

succinctly expressed as

ω = ∇× u. (7)

Flow between parallel plates

Flow between two parallel plates driven by a pressure gradient is called a plane

Poiseuille flow. The flow presents in multiple states: an orderly and smooth (lam-

inar) state, a disordered and fluctuating (turbulent) state or in the intermediate

regime between these two states (transitional state). Though the state of the

flow may be dependent on multiple parameters, a key non-dimensional parame-

ter used to identify the state of the flow is the Reynolds number (Re) which could

be defined as the ratio of the inertial to the viscous forces and is given by

Re =
ρV Lchar

µd
, (8)

where V and Lchar are respectively the characteristic velocity and length scales

associated with the problem under consideration. The non-dimensional parameter

associated with the pressure drop resulting due to the wall shear stresses is the

friction factor (f) given by

f =
∆p

ρV 2
. (9)

Flow in a duct under the presence of a uniform magnetic

field

Magnetohydrodynamics (MHD) deals with the flow of an electrically conducting

fluid in the presence of a magnetic field. A fully developed flow driven by a

pressure gradient in an electrically insulated duct with a unidirectional velocity

v = uex and exposed to a uniform magnetic field B is shown in figure 5(a). The
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walls perpendicular and parallel to the field direction are the Hartmann walls and

side walls, respectively. An electric field (v×B) is induced when the electrically

conducting fluid flows under the influence of the magnetic field, producing current

density vector field j which forms a closed loop running through the core and

the Hartmann layers since the walls are insulated. The induced current in the

presence of the applied magnetic field results in a force called the Lorentz force

fL = j × B. In the core, the Lorentz force acts opposite to the flow direction

balancing the driving pressure gradient, whereas in the thin Hartmann layers

formed on the Hartmann walls, Lorentz force drives the flow against viscous

shear as the current direction (and hence the Lorentz force) is opposite to that in

the core in these layers. This results in a steeper velocity gradient and flattening

of the core velocity profile with increasing magnetic field strength for these cases

(figure 5b). At the side walls where layers known as Shercliff layers develop, the

current direction is approximately coincident with the magnetic field, therefore

Lorentz forces in these layers are negligible. This is reflected in the velocity profile

along these layers, which almost matches the cases with no magnetic field applied

(figure 5c).

Thus, for flow under the influence of magnetic field, an extra dissipation mech-

anism other than the viscous dissipation exists due to the induced electric current.

This is called the Joule effect characterised by a magnetic diffusivity of 1/µmσc,

where µm is the magnetic permeability and σc is the electrical conductivity of the

fluid. Some of the significant non-dimensional parameters associated with MHD

flows are introduced here. The magnetic Reynolds number (Rm = σcµmLcharV )

is the ratio between time scale for Joule effect and that for eddy turnover. In the

laboratory scale Rm ≪ 1 for liquid metals, hence the induced magnetic field is

much weaker than the applied magnetic field and its effect can be neglected. The

ratio of the electromagnetic and viscous forces is given by the Hartmann number

Ha = LcharB0

√
σc
ρν
, (10)

where ν = µd/ρ is the kinematic viscocity of the fluid and B0 is the applied

magnetic field strength. The ratio of electromagnetic and inertial forces leads to

the interaction parameter, otherwise known as Stuart number,

N =
σcLcharB

2
0

ρV
, (11)

The interaction parameter, Reynolds number and Hartmann number are inter-
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(a)

(b) (c)

Figure 5: (a) Sketch showing typical MHD duct flow with induced current and
Lorentz force, and the corresponding velocity profile for different Ha near the (b)
Hartmann wall and (c) side wall. The figure has been reproduced from Müller &
Bühler (2013) with permission of the publisher.

related via N = Ha/Re.

Convective heat transfer

Convective heat transfer is the transfer of heat from a bounding surface to the

fluid due to the motion of fluid over the surface on which either a constant heat

flux or constant temperature boundary condition is imposed. It depends on the

different fluid properties in addition to its density and viscocity such as thermal

conductivity kf , specific heat capacity Cp and heat transfer coefficient h which

again depends on the surface geometry and flow conditions. Similar to the vis-

cous boundary layer, a thermal boundary layer develops on the surface on which

temperature boundary condition is imposed. The Prandlt number Pr gives the
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relative importance of the momentum and thermal diffusivity (α) and is given by

Pr =
ν

α
. (12)

It could hence be related to the thickness of the viscous and thermal boundary

layer and is approximately related as

Prn =
δh
δt
. (13)

where n takes positive values typically about 0.33. So for fluids with Pr ≪ 1

which is the case of the liquid metals in cooling blanket modules, the thermal

boundary thickness exceeds the velocity boundary layer thickness, and the heat

transfer from the surface is highly diffusive. Another important non-dimensional

parameter which characterises the relative importance of convective and the con-

ductive heat transfer is the Nusselt number

Nu =
hLchar

kf
, (14)

where h is the convective heat transfer coefficient and kf is the thermal conduc-

tivity of the fluid. The Nusselt number typically exhibits a dependence on control

parameters such as Pr and Re.

Assumptions made for the work

The various assumptions made to carry out the work in this thesis are summarised

in this section. The fluid is considered to be Newtonian and incompressible,

with all fluid properties assumed to be constant. The viscous and Joule heating

terms in the energy equation are neglected since the order of magnitude of these

terms are much lower that the thermal diffusion term. Justification of this for

applications relevant to this project can be found in Hussam et al. (2018). For the

heat transfer analysis, the flow is considered under a forced convection condition

and the effects of buoyancy has been neglected according to findings from Burr

et al. (1999), where they found the effect of natural convection to be suppressed

for flow between a hot and cold horizontal plate arrangement under a strong

magnetic field. Similar studies such as Barleon et al. (2000); Morley et al. (2000)

also support these findings and have neglected the effects of natural convection

in their investigations.
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Structure of the thesis

An introduction to some fundamental concepts underpinning the works in the

thesis was provided here. The main content of the thesis consists of the litera-

ture review in chapter-1. The governing equations, numerical methods, and grid

resolution and validation studies are described in chapter-2. The results are di-

vided into 4 chapters. Chapters-3 and 4 focus on the hydrodynamic channel flow

with wedge-protrusions, its stability characteristics and non-linear interactions

in the flow. Chapter-5 discusses the stability characteristics of quasi-2D MHD

duct flows, through linear stability and transient growth studies. In chapter-6,

the heat transfer enhancement using wedge protrusions in quasi-2D MHD duct

flows are discussed. Conclusions and directions for future work are provided in

chapter-7.
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Chapter 1

Literature Review

This chapter presents a review of the literature underpinning this project and

is divided into three main sections based on the three broad objectives as out-

lined in the introduction. The flow setup investigated in the current study draws

features from similar confined flow setups such as the forward and the backward-

facing steps. Therefore previous studies conducted on flow over forward- and

backward-facing setups are presented first, highlighting the flow features, sta-

bility and transition behaviour in such flows along with various other studies

available in the literature on similar confined geometries. Second, a review of the

literature available in magnetohydrodynamic (MHD) channel and duct flows are

presented. The instabilities and transition in the Hartmann layers and the Sher-

cliff layers are discussed, followed by a discussion of instabilities, optimal growth

and transitions in MHD duct flows, and finally studies conducted on the forma-

tion of anisotropic turbulent structures and their evolution are discussed. The

last section of this chapter focuses on the heat transfer studies in hydrodynamic

channel/duct flows using differently shaped surface protrusions. Thereafter, var-

ious techniques used for quasi-2D turbulence generation in MHD duct flows for

heat transfer improvement are presented.

1.1 Hydrodynamic flows in confined flow setups

In this section, the main flow features associated with the laminar hydrodynamic

flow in various confined flow setups are presented. Furthermore, a detailed review

of the findings from numerous investigations conducted to understand the onset

of instabilities in these flows are also provided. The focus is on the key findings

associated with primary instability in these types of flows, which answers the

question regarding the first step on the route to turbulence in these laminar
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Figure 1.1: Flow geometry and the recirculation regions formed in flow over a
forward-facing step in a channel. Flow is left to right. Reproduced from Lanzer-
storfer & Kuhlmann (2012b) with permission of the publisher.

flows, how and through what mechanism the laminar state bifurcates to another

state, and its associated critical flow parameters. Different numerical studies

using linear stability theory and DNS are included along with observations that

have been made in experiments. First, the two most studied of these types of

flows which share common features with the present flow setup, the forward and

the backward-facing step setups, are discussed. This is followed by a brief review

of studies conducted in other related confined flow setups.

1.1.1 Laminar flow over forward-facing step (FFS) and

onset of instability

A laminar flow over a forward-facing step (FFS) is characterised by the formation

of a recirculation region in front of the step at low values of Reynolds number

which grows in size with increase in Re. The Reynolds number for the FFS case is

based on the mean velocity of the inlet flow and the height of the inlet channel as

the velocity and length scaling, respectively. With further increase in Re, another

recirculation region appears immediately after the step corner at Re ≈ 180 and

grows in size before becoming the dominant recirculation zone in the flow (Mei &

Plotkin, 1986; Dennis & Smith, 1980). A sketch of a forward-facing step geometry

and the two recirculation regions is shown in figure 1.1.

Experimental investigations report the primary recirculation region to be of

open type, having a three-dimensional nature, rather than closed type, thereby

resulting in fluid entrainment and its subsequent release from this region. This

is observed as streaks immediately after the step (Chiba et al., 1995; Pollard

et al., 1996). Hydrogen bubble visualisation experiments (Stüer et al., 1999)

demonstrated that the primary instability of the laminar flow over a FFS occurs
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due to the breakdown of the primary recirculation region formed in front of the

step, resulting in the formation of streaks immediately after the step. The spacing

between streaks was observed to decrease with increasing Re. The experimental

observation made using hydrogen-bubble visualisations in Stüer et al. (1999) is

shown in figure 1.2.

Further investigations on the linear stability of the laminar flow was carried

out to understand the cause of the instability in these flows (Wilhelm et al., 2003).

For the single Reynolds number of Re = 330 considered in their study, they did

not identify an absolute instability of the flow to three-dimensional perturbations.

However, their DNS conducted at the same Reynolds number suggested that the

onset of instability in the flow over a FFS was a sensitive reaction of the flow

to incoming perturbations and was localised in the step region. The resulting

flow features matched well with the streaks observed in the experiments with gap

between streaks being approximately about three times the step height.

The previous study by Wilhelm et al. (2003) focused only on a single Reynolds

number, making it difficult for a confident conclusion about the flow instability.

Later, Marino & Luchini (2009) used an adjoint analysis to study the sensitivity

of the flow to external disturbances as well as to localised structural disturbances

considering two different constriction ratios, Γ (ratio of step to channel height).

Their investigation not only supported the previous findings of Wilhelm et al.

(2003) but also verified the power of the adjoint method more generally. The

technique had previously been applied to cylinder wakes in Giannetti & Luchini

(2007). Marino & Luchini (2009) further extended the analysis to different Re and

observed a shift in the structural sensitivity region from ahead to aft of the step

on approach to the critical Re, thereby indicating the role played by the dominant

recirculation zone on the origin of the instability. This could not be observed in

the study of Wilhelm et al. (2003) since only a single Re was considered.

For Γ = 0.25, the critical Reynolds number for the onset of instability was

observed to be approximately Re ≈ 4800 in the experiments of Stüer et al. (1999),

Re ≈ 1320 in the study Wilhelm et al. (2003) and Re ≈ 3440 in Marino &

Luchini (2009). This spread of critical Reynolds number estimates and theories

on the onset of instabilities motivated a further detailed study conducted by

Lanzerstorfer & Kuhlmann (2012b), where they performed a global linear stability

of flow over a FFS covering a range of constriction ratios (0.23 ≤ Γ ≤ 0.965)

and an energetics analysis to understand the underlying mechanism leading to

the instability. They found the destabilising global mode to be stationary and

localised near the secondary recirculation region formed immediately after the
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(a) Re = 940 (b) Re = 1150

(c) Re = 2300 (d) Re = 3120

(e) Re = 4600 (f) Re = 6200

(g) Re = 8400

Figure 1.2: Hydrogen bubble visualisation of streamwise streak formation at dif-
ferent Reynolds number showing the middle 160 mm of the channel. Flow is from
bottom to top. The dotted line indicates the location of the edge of the step.
The figure has been reproduced from Stüer et al. (1999) with permission of the
publisher.

step for all Γ values investigated and the critical Re for Γ = 0.25 to be Re ≈

5888. The modes appreared as alternating rolls of streamwise velocity in the

secondary recirculation region after the step as shown in figure 1.3. The difference

in the critical value from Marino & Luchini (2009) is attributed to an insufficient

inflow and outflow length and grid resolution in their study, whereas from Stüer

et al. (1999) to the side wall-effects in the experiments. By analysing the energy

budget between the base flow and the perturbations, the study by Lanzerstorfer

& Kuhlmann (2012b) concluded that a combination of lift-up mechanism and

deceleration of the flow caused the instability which was observed as steady streaks

with wavelength scaling about three times the step height agreeing well with

earlier investigations. Further, for a constriction ratio of 0.25, they show the flow

to be highly receptive to incoming perturbations or initial conditions in the region
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ahead of the step, matching the results obtained from previous studies (Marino &

Luchini, 2009), and the secondary recirculation region to be most sensitive with

regard to any localised structural perturbations.

Figure 1.3: Streamwise velocity of the global mode destabilising the 2D laminar
base flow over a forward-facing step with expansion ratio 0.25. Reproduced from
Lanzerstorfer & Kuhlmann (2012b) with permission of the publisher.

1.1.2 Flow over backward-facing step (BFS)

Laminar flow over a backward-facing step and the onset of instability and tran-

sition in these flows have been widely studied. A confined flow over a BFS at a

low Re features a recirculation region immediately downstream of the step. An

additional secondary recirculation region also forms on the top wall with an in-

crease in Re due to the development of an adverse pressure gradient immediately

after the step (Armaly et al., 1983; Kaiktsis et al., 1996; Ghia et al., 1989; Erturk,

2008), as shown in figure 1.4.

Early experimental studies (Armaly et al., 1983) of air flow over a BFS hav-

ing an expansion ratio (height of the outlet channel to the inlet channel) of 2

have covered the laminar, transitional and turbulent flow states over a range of

Reynolds numbers 70 < Re < 8000. The flow transition from the laminar state

was observed at Re ≈ 1200. Their experiments revealed three-dimensionality

near the step for Re & 400, with the appearance of the secondary recirculation

region on the top wall, also being supported by a numerical analysis in the same

study.

At a similar Re, Ghia et al. (1989) observed the formation of counter-rotating

streamwise vortices with the onset of instability, which they suggested to be

Taylor–Göertler vortices manifesting due to the streamline curvature of the bulk

flow, owing to the formation of the primary recirculation region after the step

and the secondary recirculation region on the top wall.
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Figure 1.4: Flow geometry and the recirculation regions formed in flow over
a backward-facing step in a channel. Flow is left to right. Reproduced from
Lanzerstorfer & Kuhlmann (2012a) with permission of the publisher.

Three-dimensional simulations in Williams & Baker (1997) also supported the

previous flow features, though through a particle tracking analysis they concluded

that three-dimensionality observed in the flow is due to the interaction of the side

wall jets with the bulk flow and unlike the previous studies, they postulated that

the three-dimensional effects develop gradually from Re as low as 100.

At a similar expansion ratio, the flow was found to remain steady until

Re = 800 in a later study (Gresho et al., 1993), whereas the stability analy-

sis by Kaiktsis et al. (1996) found the flow to remain steady up to Re = 2500.

The study illustrated that the flow was convectively unstable for Re ≥ 700, which

they attributed to the onset of unsteadiness in the flow in the presence of noise.

Propagation of 3D vortical structures having zig-zag structures was also reported

in the three-dimensional simulations conducted by Yanase et al. (2001) by using

different inflow perturbations over 525 ≤ Re ≤ 700.

Linear stability of the local 2D velocity profiles at various location downstream

of the step at a high Reynolds number of Re = 3700 predicted an absolutely

unstable region in the middle of the primary recirculation region (Wee et al., 2004)

which was argued to be responsible for the onset of self-sustained 2D oscillations.

The centre of the recirculation zone after the step was also shown to be the region

of maximum backflow. This study was completely based on 2D analysis, thereby

precluding any 3D mechanisms which were found in earlier studies.

There existed a lot of disparities on the critical Re predicted for the onset of

instability, about the type and origin of the primary instability in these types of

flow, and the Re up to which the flow remains steady.

In order to characterise the breakdown of the 2D flow solution and study

the global modes responsible for the onset of transition, Barkley et al. (2002)

conducted a global linear stability analysis considering a setup with expansion

ratio similar to that in Armaly et al. (1983). Their investigation showed that the

18



onset of three-dimensionality occured through a stationary mode concentrated in

the recirculation region behind the step at a critical Reynolds number ofRe = 748.

The global eigenmode appeared as flat rolls within the recirculation region as

shown in figure 1.5. Unlike the previous findings in the literature, they show a

centrifugal instability mechanism of the recirculation bubble to be responsible for

the instability. They found the flow to be stable to 2D perturbations over the

range of Re that they investigated (up to Re = 1500).

Figure 1.5: Three-dimensional critical eigenmode in the recirculation region be-
hind a backward-facing step at Re = 750, expansion ratio = 0.9. Shown are the
streamwise velocity contours overlaid with the transverse and spanwise velocity
vectors at three cross-sectional planes behind the step. Flow is into the plane.
Reproduced from (Barkley et al., 2002) with permission of the publisher.

In the linearly stable regimes predicted by Barkley et al. (2002), a large tran-

sient growth behaviour due to a local convective instability was reported in Black-

burn et al. (2008a). Reynolds numbers up to Re = 500 were considered, and the

predicted maximum amplification in energy was O(104). The optimal modes

were strained slanted structures concentrated near the step which evolved into

rollers as they advected further downstream of the step. The maximum amplifi-

cation occured when the structures completely passed over the two-recirculation

regions. They found the three-dimensional optimal energy growth to be slightly

higher than the corresponding two-dimensional optimal growth. Morover, on

perturbing the inflow in the non-linear simulations with white noise, they ob-

served narrowband random velocity perturbations in the channel downstream of

the step matching the location of maximum transient growth. The effect of weak
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non-linearity was stabilising in these flows.

To understand the physical mechanism driving the instability, Lanzerstorfer &

Kuhlmann (2012a) used an energy-transfer analysis, covering a range of expansion

ratios (0.25 to 0.975). Although the primary instability in these flows were three-

dimensional, the instability mechansim driving the instability was found to vary

with decrease in the expansion ratio (Γ). For large expansion ratios a centrifugal

instability mechanism was found responsible for destabilising the base flow. A

switch in the instability mechanism to an elliptical type instability was found in

the moderate range of Γ up to Γ ≈ 0.8, followed by a change from oscillatory

to a stationary mode. On further lowering Γ, the primary recirculation region

was strained and extended downstream further than in the higher cases. In

those cases, a combination of flow decelaration and lift-up effect was found to be

the governing mechanism of instability, contradicting the centrifugal instability

mechanism in Barkley et al. (2002).

1.1.3 Other confined flow setups

Studies conducted on confined setups other than the conventional forward or

backward-facing step, such as flow over a rounded backward-facing step (Marquet

et al., 2008), stenosis flows (Griffith et al., 2008; Blackburn et al., 2008b) and flow

in a 180o bend (Sapardi et al., 2017) have also found the primary bifurcation to be

of three-dimensional nature. Another feature of these flows is the large transient

amplification associated with convective instabilities in the linearly stable region

in these flows, raising a question as to the possible route to transition in a realistic

flow.

Both the global linear stability and transient growth of flow in a curved channel

consisting of a rounded BFS was studied in Marquet et al. (2008). The distin-

guishing feature of this flow to that of a BFS flow was the absence of the secondary

recirculation region on the top wall. The global destabilising modes were very

similar to that for a BFS (Barkley et al., 2002) and flow over a bump (Gallaire

et al., 2007). Through an investigation of the short term dynamics of the flow,

they found the optimal modes to be concentrated before the separation point of

the recirculation bubble upstream of the channel, manifesting as elongated wave

packets. The main energy gain of these modes was through an Orr type mech-

anism and an inflectional mechanism while passing over the recirculation zone.

For a subcritical Reynolds number of Re = 772, the study conducted by Marquet

et al. (2008) found a maximum two-dimensional amplification of ∼ O(102). A

comparison of the strength of both the long-time (or resonator) dynamics and
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the short-time (or amplifier dynamics) was made considering a super-critical Re

to get a realistic picture of which might be the dominant dynamics at play in a

practical experimental setup. They find that for Re = 1500, optimal disturbances

could be amplified to a magnitude of ∼ O(105) in a short time period (T = 14),

whereas the global three-dimensional mode would take an approximate time of

T = 510 to achieve the same growth. Hence, they suggest that the possibility

of the short time dynamics to dominate in a real scenario where external distur-

bances could feed energy to the optimal modes and be amplified. These questions

could be answered with more clarity and confidence by studying the non-linear

dynamics in these flows and investigations of how external disturbances feed the

optimal and the global modes.

For the same curved BFS step case, direct and adjoint mode computations

were carried out in a later study (Marquet et al., 2009) with two broad aims.

Firstly, to show the lift-up and convective non-normalities in these flows by study-

ing the spatial location and the dominant velocity component of both the direct

and adjoint modes (Marquet et al., 2009) and, secondly from a flow control per-

spective near the critical Re. The region near the separation point of the recir-

culation region was where the spatial location of both the adjoint mode velocity

and pressure were maximum. Hence, these locations were the most receptive to

initial perturbations and local forcing, which in a physical sense could be critical

from an active control framework for the placement of an actuator. The sensitive

location found as the overlap region of the direct and adjoint modes was within

the recirculation region, and was where placement of a passive control mechanism

would be most effective. The corresponding regions are shown in figure 1.6.

(a) (b)

(c)

Figure 1.6: Spatial contours of (a) velocity and (b) pressure field of the ad-
joint mode, and (c) sensitivity field for flow in a curved channel with a rounded
backward-facing step at a supercritical Reynolds number of Re = 800. Repro-
duced from Marquet et al. (2009) with permission of the publisher.

Another similar confined flow geometry is the axisymmetric stenosis flow

which features the formation of two recircualtion regions immediately after the
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blockage region in the flow. These are also associated with a primary three-

dimensional bifurcation occuring at a critical Reynolds number of Re = 770.

However, experiments carried out in this setup by Griffith et al. (2008) shows an

onset of instability at a much lower Re associated with the instability of the shear

layer which develops after the blockage in the flow, with the instability modes

found from the linear stability analysis not being observed in the experiments,

as shown in figure 1.7(a). Therefore, a convective type instability is associated

with the onset of transition in these flows. Numerical and experimental analysis

of the effect of forcing was also studied in their study, at a Re lower than the

limit for the convective instability to understand the shear layer behaviour better.

These showed the maximum response when the forcing frequency was lower than

the one measured from the unsteady flow, which is explained as the non-linear

interaction between the turbulent flow downstream with the unstable shear layers

upstream.

Transient growth analysis carried out in Blackburn et al. (2008b) support the

previous study (Griffith et al., 2008) by showing an energy amplification of the

optimal modes as high as O(108) at Re = 700. The optimal modes had energy

highly concentrated near the separation point of the shear layer which grew in

energy when convecting downstream along the shear layer in a very short time

period. The disturbance wave packets are observed to be lying along the shear

layers (figure 1.7b) matching well with the experimental observation in Griffith

et al. (2008).

(a) (b)

Figure 1.7: (a) Instantaneous snapshot of an unsteady flow in a stenosis and
the spatio-temporal diagram constructed from the line shown in black at the
bottom for Re = 194. Reproduced from Griffith et al. (2008) with permission of
the publisher. (b) Iso-contours of the axial velocity of the optimal disturbance
at maximum amplification at a downstream location along the shear layer for
Re = 400. Reproduced from Blackburn et al. (2008b) with permission of the
publisher.
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1.2 Magnetohydrodynamic (MHD) flows in

confined flow setups

The onset of instability and the route to transition in various confined flow setups

for the hydrodynamic cases were discussed in the previous section. In this section,

the focus is shifted to duct flows in the presence of a uniform magnetic field. As

discussed in the introduction, for flow in a duct under the presence of uniform

magnetic field, two boundary layers develop on the walls parallel and perpendicu-

lar to the direction of the magnetic field, namely the Hartmann and the Shercliff

boundary layers. In the initial part of this section, various studies which have

investigated the stability and transition character, the associated global modes,

and the optimal growth focusing on the Hartmann layers in channel flows are

discussed. This is followed by studies which focus on the stability characteristics

of Shercliff layers in a channel flow with a spanwise magnetic field as well in ducts

flows. Various investigations which have added to the understanding of formation

of quasi-2D structures under the influence of high magnetic field strength, their

stability and evolution are presented to complete this section.

1.2.1 Instability and transition in Hartmann layers

Hartmann channel flow

Some of the earlier studies focused on understanding the stability and transitional

characteristics of the Hartmann layer. The critical Reynolds number based on

Hartmann layer thickness (Rc = Re/Ha) was found to be approximately 50 000

for the instability of Hartmann layers in a pressure driven flow under a transverse

magnetic field (Lock, 1955). A similar critical value was found for plane Couette

and plane Poiseuille flows with transverse magnetic field in theoretical studies by

Takashima (1996, 1998). This was approximately two orders of magnitude higher

than what was observed in experimental studies (Hartmann & Lazarus, 1937)

where transition was found to occur at Rc ≈ 250.

To understand the discrepency between numerical analysis and experiments,

the stability of an isolated Hartmann layer was investigated by Lingwood & Al-

boussiere (1999). Their study predicted a critical Reynolds number for instability

from linear stability analysis to be Rc ≈ 48 250 which was close to what was ob-

served for Poiseuille and Couette flows under a transverse magnetic field (Lock,

1955; Takashima, 1996, 1998). They also found an approximately three orders of

magnitude difference between the Rc and the lower bound Reynolds number for
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perturbations to experience energy growth, ReE , found from energetic stability

analysis. They suggested that the transition may be governed by the stability

of the Hartmann layer to finite amplitude perturbations supporting the previous

hypothesis by Lock (1955).

Further support came from the study conducted by Gerard-Varet (2002) in

which the significance of non-linear effects on the growth of small amplitude

perturbations were found through a rigorous expansion of the velocity field in

terms of powers of the initial energy. They highlighted the differences in the linear

and non-linear evolution of perturbation energy even at low Reynolds numbers

and initial perturbation energy, further supporting the possibility of a bypass

transition. In such a case, the flow bypasses the route to transition predicted by

the linear stability analysis. This happens due to the interaction between the non-

orthogonal eigenmodes, which can produce brief periods of large amplification of

kinetic energy of linearised perturbations, even when the flow is asymptotically

stable (Reddy & Henningson, 1993; Trefethen et al., 1993; Henningson & Reddy,

1994).

Previous experiments had based their results by considering only the scenario

of relaminarisation of the flow starting from a turbulent state. Therefore, Moresco

& Alboussiére (2004), in their experiment considering both transition to turbu-

lence from a laminar state as well as the relaminarisation of the flow starting from

turbulent state to check for any behaviour not captured through earlier analyses.

However, they observed no hysteresis behaviour and obtained a critical Reynolds

number of Rc = 380 for the onset of instability in Hartmann layers, again differing

substantially from predictions made from linear stability theory.

Transient growth was hence considered to be the possible route through which

transition in the Hartmann layer started. To understand the nonmodal dynam-

ics, the optimal mode shapes, optimal magnetic field and scalings of the different

components of the optimal disturbance, numerical simulations were carried out

in Airiau & Castets (2004) for Hartmann numbers up to Ha = 20. The transient

growth analysis conducted in their study for a plane Poiseuille flow under the

influence of a magnetic field showed that the optimal modes appeared as stream-

wise rolls which developed into streamwise streaks with the streamwise velocity

component becoming dominant at the optimal time.

Further confirmation and support came from the study of Krasnov et al.

(2004), who conducted DNS at lower Ha and Re. They postulated a two-step

process of transition where streamwise invariant 2D optimal modes undergo tran-

sient growth and thereafter break down into streaks due to introduction of ran-
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dom noise in the modulated flow, holding similarity to the non-magnetic case.

Their prediction of the critical Reynolds number Rc was found to be between

350 and 400, matching quite well with the experimental prediction by Moresco &

Alboussiére (2004).

1.2.2 Instability and transition in Shercliff layers

Channel flows with spanwise magnetic field

The studies on the instability of the Hartmann layers considered only the pres-

ence of the Hartmann walls, disregarding any influence of the side walls (walls

parallel to the magnetic field direction) on which the Shercliff layers form. The

understanding of the transition in MHD duct flows would only be complete with

the knowledge of instabilities arising in these boundary layers. Optimal growth

and transition to turbulence in a channel flow in the presence of a spanwise mag-

netic field was studied in Krasnov et al. (2008) covering Hartmann numbers in

the low, intermediate and high-Ha range (5 < Ha < 100) at two sub-critical

Reynolds numbers (Re = 3000, 5000). An increase in the magnetic field strength

was found to strongly suppress the maximum amplification of the optimal mode

following a power law behaviour (∼ Ha−2). The structure of the optimal mode

was also observed to change from a streamwise mode to an oblique mode, and to a

spanwise dominant mode with increasing Ha. A different scenario of transition to

turbulence was also explored in their study by non-linear evolution of the three-

different optimal modes found from the linear analysis and their modulation.

The streamwise optimal modes at low Ha showed a similar transitional behaviour

as a purely hydrodynamic channel flow case characterised by the formation of

streamwise streaks and their breakdown with the addition of 3D noise at optimal

energy levels through lift-up and Orr mechanisms. The oblique disturbances at

moderate-Ha if introduced as symmetric modes could trigger transition without

any noise addition by serving as a secondary perturbation to each other. In the

high-Ha range (≈ 100), only the spanwise modes (Tollmien–Schlichting waves)

experienced transient growth and any addition of 3D noise could not trigger a

transition as they were dissipated strongly by Joule dissipation.

MHD duct flows

Previous numerical studies on the stability of Hartmann and Shercliff layers have

excluded the existence of the other wall. For a more realistic understanding

of transitions, studies started to focus on properly enclosed duct flows. Linear
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stability analysis and transient growth of quasi-2D perturbations in an MHD

duct flow using the SM82 quasi-2D model, (Sommeria & Moreau, 1982) was

investigated in Pothérat (2007) for a range of Hartmann friction parameters 0 ≤

H ≤ 1000, where H accounts for both the Hartmann number and the aspect ratio

of the duct cross-section. The critical modes found from linear stability studies

were quasi-2D Tollmien–Shlichting (TS) waves concentrated in the Shercliff layers

with a critical Reynolds number (based on Shercliff layer thickness) for transition

Res = Re/H1/2 = 48 350. The lower stability limit found from energy stability

studies was ReE/H
1/2 = 65.33. A large transient growth of quasi-2D perturbation

was observed between these two limits and hence they hypothesised that the

Shercliff layers were more likely to become unstable due to the significant transient

growth of quasi-2D perturbations. Another key point they raised is that the

Shercliff layers become unstable long before the instability of the Hartmann layer

since the critical Reynolds number for the Shercliff layer instability is lower than

that for the Hartmann layers in a duct with a similar configuration (Moresco &

Alboussiére, 2004). Computational studies in a toroidal duct with square cross

section under the influence of an axial magnetic field have also demonstrated that

instabilities arise in the side layers much before the instability threshold for the

Hartmann layers (Zhao & Zikanov, 2012).

The investigation of Pothérat (2007) explored the 2D dynamics of Shercliff

layer instability as they considered a quasi-2D model in which the Hartmann

layer is assumed to be stable and its effect is modelled in the governing momen-

tum equation as a linear friction acting on the quasi-2D core of the duct flow.

To understand the 3D dynamics in an MHD duct flow, Krasnov et al. (2010)

conducted a detailed study on the optimal growth in these flows covering a wide

range of duct aspect ratios (r) ranging from 1/9 ≤ r ≤ 3 for 0 ≤ Ha ≤ 50 at a

single Reynolds number Re = 5000. The duct configuration and the base flow

profile for a low r case (r < 1), a square duct case (r = 1) and a higher r case

(r > 1) considered in their study are reproduced in figure 1.8. Their investigation

revealed a strong suppression of purely streamwise perturbations with increasing

magnetic field strength and the localised spatial location of the optimal modes in

the Shercliff layers for all the cases. Just as in the channel flow case with a span-

wise magnetic field (Krasnov et al., 2008), increasing Ha results in a dominance

of a non-zero streamwise wavenumber optimal mode. The optimal perturbations

were overlapping structures inhomogeneous in the streamwise direction (x) and

concentrated in the Shercliff layers gaining energy predominantly though lift-up

mechanism. For the low r cases, a reduction in r was found to cause an increase
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Figure 1.8: Base flow profile of flow in an MHD duct with aspect ratio (a) r = 1/9,
(b) r = 1 and (c) r = 9 at Ha = 50, Re = 5000. The applied magnetic field
direction is represented by the red arrow. Reproduced from Krasnov et al. (2010)
with permission of the publisher.

in the maximum energy amplification of the optimal mode and a reduction in

the optimal wavenumber, and approached the channel flow results in the limit

of r → 0. The optimal wavenumber was almost invariant with change in r for

the high-r cases considered as the velocity profile had negligible changes in the

Shercliff layer. Convergence to a Hartmann channel case was not observed as

r → ∞.

The question then arises as to the existence of a purely quasi-2D transient

growth at higher Hartmann numbers, and how accurately the quasi-2D model

SM82 can capture the dynamics relative to the corresponding three-dimensional

case in MHD duct flows. A recent study (Cassells et al., 2019) sought to answer

these questions. They considered a range of Hartmann numbers 0 ≤ Ha ≤ 800

extending beyond the range considered in Krasnov et al. (2010) at Re = 2000 and

Re = 10 000. In this range of Ha, they found three broad regimes based on the

optimal growth rate (Gmax) scaling. In the lower magnetic field range Ha ≤ 1,

Gmax remains almost independent of Ha, scaling as∼ Re2. An approximate power

law scaling of Gmax ∼ Ha−1.5 was found in the moderate magnetic field range

10 ≤ Ha ≤ 50. The transition to the higher magnetic field range was at a critical

Reynolds number (based on the Hartmann layer thickness), RH = Re/Ha ≈ 33.3

where Gmax was found to hold a scaling of Ha−0.44±0.07 matching closely with

that found from quasi-2D models. The three-dimensional optimal modes in the

low and intermediate range of Ha, concentrated in the Shercliff layers is found to

elongate and match the length scale of the duct in the magnetic field direction in

the higher Ha regime (reproduced in figure 1.9). Another key aspect investigated

in this study is the validity of the SM82 model. It is shown that not only is the

SM82 model accurate with respect to capturing the amplification and scalings,
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(a) Ha = 50 (b) Ha = 150

(c) Ha = 300 (d) Ha = 800

Figure 1.9: Positive and negative iso-contours of the vertical component of vor-
ticity ωy of the optimal mode corresponding to the maximum optimal energy
growth in MHD duct flows at different Hartmann numbers. Magnetic field is in
the vertical (y) direction and flow is from left to right. Only one side wall is
shown for clarity. Reproduced from Cassells et al. (2019) with permission of the
publisher.

the mean topology of the optimal mode is also approximately captured, except

for the inherently three-dimensional barelling effect observed (Pothérat, 2012) at

the ends of the Hartmann wall in the three-dimensional case. This is visualised

in figure 1.10 which is more pronounced in lower interaction parameter values.

1.2.3 Quasi-2D turbulence generation in MHD duct flows

The onset of instabilities and the modes through which transition from a lami-

nar state occurs in MHD duct flows were discussed in the previous sub-sections.

Under the influence of increasing Hartmann number, strong laminarisation and

dominance of quasi-2D structures oriented along the direction magnetic field were

found. Under high magnetic field strengths prevelant in nuclear fusion blanket
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(a) Re = 5000

(b) Re = 15000

Figure 1.10: Comparison of the optimal mode from the 3D analysis (left column)
to the corresponding quasi-2D optimal modes atHa = 800. Shown are the positive
and negative iso-contours of the vertical component of vorticity ωy of the optimal
mode. Magnetic field is in the vertical (y) direction and flow is from left to right.
Only one side wall is shown for clarity. Reproduced from Cassells et al. (2019)
with permission of the publisher.

modules which is one of the key motivators of the present work, these quasi-2D

structures needs to be exploited and be well understood for heat transfer enhance-

ment. In this section, turbulence generated using generators in MHD duct flows

at low magnetic Reynolds number Rm under the influence of a uniform magnetic

field is discussed. The main focus will be on the formation of anisotropic tur-

bulence, its evolution and the key features of the quasi-2D structures in MHD

ducts.

Earlier experimental investigations have observed the formation of two-di-

mensional turbulent structures behind a grid (Kolesnikov & Tsinober, 1972). A

turbulent flow contains eddies of different length scales. On plotting the kinetic

energy spectrum, the cascade of energy from the energy containing eddies to

the dissipation range can be obtained with the inertial subrange in between the

two. In a three-dimensional turbulent flow, the flow typically has most of the
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energy contained in the high frequency regime with the inertial sub-range obey-

ing a scaling of -5/3. However, a -3 law is obeyed by a typical two-dimensional

tubulent flow where most of the energy is contained by the large scale eddies and

energy transfer to the high frequency small scale structures are absent. In a weak

magnetic field, the turbulent structures had characteristics of three-dimensional

turbulence which was evident from the -5/3 law followed by the energy spectrum,

whereas under the presence of a strong magnetic field, the turbulent structures

became two-dimensional, obeying a -3 law in the energy spectrum. This was fur-

ther verified qualitatively in experiments by introducing impurities and studying

their concentration distribution in the three-directions. Similar behaviour was

also observed in other experimental studies (Alemany et al., 1979).

Theoretical studies followed, trying to explain the formation of anisotropic

structures which were observed in previous experiments. The decay of turbulence

under the influence of a strong magnetic field (N ≫ 1) was analysed in Mof-

fatt (1967). They found a decay in the turbulent kinetic energy (K) with time

following a power law behaviour K(t) ∼ t−1/2 in the domian where anisotropy

was dominant. The formation of two-dimensional turbulence was explained as

the channeling of kinetic energy into the component parallel to the magnetic field

direction.

The condition of formation of quasi-two-dimensional turbulent structures, its

corresponding length and velocity scalings and the effect of Hartmann walls were

theoretically found in the subsequent study (Sommeria & Moreau, 1982) in the

assymptotic range of high magnetic field strength. The following conditions were

to be satisfied for quasi-two-dimensional structures to exist in an MHD duct flow:

Re≫ 1, Rm ≪ 1

N ≫ 1, Ha≫ 1
(1.1)

It is shown that, if the conditions in equation (1.1) are satisfied, then velocity

gradients and the velocity component in the direction of the applied magnetic field

become negligible compared to the components in the other directions, revealing

that the eddies become elongated in the magnetic field direction. A comparison of

the evolution of an eddy in a non-MHD and an MHD case is shown in figure 1.11.

This process explains the inverse energy cascade in two-dimensional turbulence

as the eddies align with the field, facilitating their coalescence into larger eddies,

unlike the energy cascade to smaller scales in the absence of magnetic field. The

effect of the Hartmann layers is to create a braking effect since the current passing

through the layer is closed in the bulk, which ultimately acts as an additional
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friction term in the equation governing the fluid momentum.

Figure 1.11: Sketch showing the evolution of an eddy of initial size L without and
with the presence of magnetic field of strength B in a turnover time of the eddy.
The final form of the eddy in the presence of the magnetic field is shown with
solid lines whereas the non-magnetic case is shown with dashed lines. Reproduced
from Sommeria & Moreau (1982) with permission of the publisher.

Unlike Sommeria & Moreau (1982) in which the elongation of the vortices in

the magnetic field direction was explained as a diffusion phenomenon, Davidson

(1997) explains this elongation as the need to conserve angular momentum in the

direction of magnetic field with the continuous decrease in the kinetic energy of

the turbulent structures.

Two-dimensional turbulence formation in shallow containers and inverse en-

ergy cascades were demonstarted in earlier experiments of Sommeria (1986).

Much later, Klein & Pothérat (2010) performed experiments in a cubic container

subjected to a uniform magnetic field covering a range of Hartmann numbers

in the low and high range. They studied the flow structures by comparing the

flow pattern on the top and bottom wall of the container and found both strong

and weak three-dimensionality to persist in the lower Hartmann number range.

However at the high Hartmann number, where the time for Lorentz force to dif-

fuse in the magnetic field direction is much less than the turn-over time of the

eddies, they demonstrated the existence of both steady and unsteady quasi-2D

structures.

Direct numerical simulation of the evolution of MHD turbulence in a 3D cubic

box with periodic boundary conditions was studied in Zikanov & Thess (1998). In

the low interaction parameter range, three-dimensioanl MHD turbulence, which

was statistically similar to ordinary turbulence was observed. In the moderate
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range of N , an intermix of periods of existence of quasi-2D dynamics, and tur-

bulent bursts of the quasi-2D structure leading to complete three-dimensional

dynamics to dominate, was observed due to comparable strength of both Joule

dissipation and non-linear energy transfer. However, in the high range of N ,

two-dimensional dynamics was the only dominant feature. This supported the

previous DNS of Schumann (1976) which also found transition from the three-

dimensional turbulent state to quasi-two-dimensionality.

Three-dimensional simulations of MHD flow in rectangular ducts with a square

cylinder as an obstacle (Mück et al., 2000) clearly captured the transition to quasi-

two-dimensionality with increasing Hartmann number and interaction parameter.

This was found to occur somewhere between 0.2 ≤ N . 1, as depicted in figure

1.12(a-c). The secondary instability of the Kármán vortex streets which occurs

in hydrodynamic flows is strongly suppresed with the presence of a magnetic

field resulting in prevalence of only quasi-2D structures. The effect of Hartmann

walls in damping the quasi-2D vortices through Hartmann braking were also

demonstrated as the reduction in the diameter of the quasi-2D vortices with their

evolution downstream, in the presence of magnetic field aligned along their axis.

This is shown in figure 1.12(c-e). Another interesting and key observation was

that the quasi-2D vortices adopted a cigar-shape with core diameter being greater

than that near the Hartmann walls, with increasing N (figures 1.12d,e). This is

attributed to the magnetic potential variation in the magnetic field direction

due to inertial contribution. Experimental studies of cylinder wakes in the high

Hartmann number and interaction parameter range (Frank et al., 2001) have

also demonstrated the Hartmann damping effect and a linear increase in the

transitional Reynolds number with increasing Ha.

Further support to the quasi-2D vortices taking a cigar-shape came from the

study of Pothérat (2012) in which they show the quasi-2D columnar structure in

MHD ducts to exhibit a ‘barrel’ shape in the core. It was claimed that this effect

would be important in the 2D to 3D transition regimes. The barrel effect was

shown to be due to 2D vorticity that causes field-aligned current to pass across

the boundary layer.

An investigation of 3D flow past cylinders in an MHD duct covering Hartmann

numbers in the low, moderate and high range was conducted in Kanaris et al.

(2013) and a comparison was made with the results from the corresponding quasi-

2D flow simulations (Dousset & Pothérat, 2008). A counter-intuitive feature of

decreasing stability with increasing Ha was observed by Kanaris et al. (2013)

study in the low-Ha range, which they argued was due to the flattening of the
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(a) Ha = 6.33, N = 0.2 (b) Ha = 14.2, N = 1 (c) Ha = 20, N = 2

(d) Ha = 28.3, N = 4 (e) Ha = 52.9, N = 14

Figure 1.12: (a-c) Formation of quasi-2D vortices with increasing Hartmann num-
ber (Ha) and interaction parameter (N), (c-e) Hartmann damping of the quasi-2D
vortices and (d,e) formation of cigar shaped structures with increasing N . Repro-
duced from Mück et al. (2000) with permission of the publisher. Flow is left to
right in each frame and the cylinder and magnetic field are both vertical. Shown
are the iso-surfaces of transverse vorticity field.

velocity profile with increasing Ha. The velocity profile flattening had a similar

effect as changing the blockage ratio of the flow or having a moving wall causing a

deceleration of the flow near the vicinity of the cylinder and thereby destabilising

the flow. However, in the high-Ha range a linear increase in the critical Reynolds

number with Ha was found, closely matching results from corresponding quasi-

2D simulations (Dousset & Pothérat, 2008). Although the quasi-2D model fails

to capture the three-dimensionality of global characteristics such as the lift and

pressure coefficients in the spanwise direction due to varying Lorentz force distri-

bution, the spanwise averaged values of these quantities were in good agreement

with the values predicted from the quasi-2D models. The inertial effects leading

to strong three-dimensionality and formation of small scale turbulent structures

near the cylinder especially in the moderate range of Ha are also not captured in

the quasi-2D models.

An analytical model for the decay of a quasi-2D MHD vortex generated using

a cylindrical obstacle as vortex promoter in an MHD duct was developed in

Hamid et al. (2015) taking into account the effect of blockage ratio, magnetic

field strength and Reynolds number. A spatially evolving quasi-2D vortex is

subjected to both viscous and Hartmann frictional effects both acting to lower

the strength of the vortex quantified using peak vorticity (ξp). Viscocity was the
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major contributor to the vortex decay in the near wake region, while further away

from the vortex generator, Hartmann friction was the significant contributor to

the vortex decay. The model gave a reasonabily good prediction of the peak

vorticity and the decay rate in the high interaction parameter range. This was

validated by comparing the model predictions with the corresponding numerical

simulation of quasi-2D vortices and the 3D simulations of Kanaris et al. (2013).

Later, in § 1.4 the effect of the quasi-2D vortices generated using various

techniques in promoting the heat transfer rate, their influence on a passive tem-

perature field and the overall heat transfer efficiency that could be achieved will

be presented. First, though, § 1.3 will review the use of wall protrusions for

non-MHD heat transfer enhancement.

1.3 Heat transfer enhancement in

hydrodynamic channel flows or duct flows

using surface protrusions

This section reviews studies on hydrodynamic channel or duct flows which use

two-dimensional transverse surface protrusions of different shapes as a means to

generate turbulence and enhance heat transfer. The configuration and condi-

tions responsible for improvement in the local heat transfer rate and an overall

improvement in heat transfer efficiency found from these studies are discussed.

Computational and experimental studies for Re in the range 3000-20 000 using

two-dimensional rectangular ribbed protrusions have shown a maximum local

heat transfer coefficient value to be at the location of flow reattachment and

where turbulent intensity was maximum (Chaube et al., 2006). Various other

geometrical shapes of the protrusion were also explored in this study; however, a

proper validation with experimental studies was provided only for the rectangular-

shaped geometry. Although the heat transfer rate was higher using a chamfered

rectangular protrusion due to the increased Strouhal number of vortex shedding,

the rectangular-shaped geometry was found to have the best performance by

giving a better enhancement ratio.

Chen et al. (2006) carried out 3D simulations of a laminar flow in a rectangular

duct with inclined BFS. They studied the effect of inclination angle of the BFS

on the heat transfer behaviour, and found the maximum Nusselt number to vary

between approximately 2.04 to 2.39 in the range of inclination angles considered

(15o ≤ α ≤ 90o). A higher temperature region observed near the region of
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maximum backflow in their study highlighted the negative effect that recirculation

zones can have on the structural stability of the duct. The local Nusselt number

was found to achieve a peak value at locations of maximum transverse-velocity.

A transverse wedge shaped geometry for heat transfer enhancement in duct

flows was studied experimentally by Bhagoria et al. (2002), where the effect of the

various geometrical parameters of the wedge protrusion on heat transfer efficiency

were quantified for high Reynolds number flow of air in range 3000 ≤ Re ≤ 18 000.

The existence of an optimal wedge spacing, height and wedge angle for maximum

heat transfer enhancement was found in the turbulent regimes investigated. A

sketch of the flow pattern (figure 1.13) for different pitch (distance between sub-

sequent wedges) shows that for the same streamwise length of the channel, the

number of reattachment points increases initially, followed by a decrease, which is

the reason for the existence of an optimal pitch. Various other studies have also

pointed out the importance of having multiple reattachment points as these were

the locations where the local Nusselt number was found to be high (Edwards,

1961; Emerson, 1966). A more streamlined shape of the protrusion was found

to be a better option compared to a square shaped protrusion as these shapes

could avoid the formation of hot spots of high-temperature which are found in

the concave corner of square or rectangular ribs (Liou & Hwang, 1993).

Figure 1.13: Sketch of the flow patterns observed by Bhagoria et al. (2002) for
different inter-wedge spacing. Reproduced with permission of the publisher.

For a turbulent flow with Re = 20 000, a comparison of the performance of

four different transverse 2D protrusion shapes were made as shown in figure 1.14

(Kamali & Binesh, 2008). The significance of the shape of the geometry under
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(a) Case A (b) Case B

(c) Case C (d) Case D

(e)

Figure 1.14: (a-d) Flow streamlines for flow over different shaped protrusions and
(e) the corresponding local Nusselt number variation for Re = 20 000. Repro-
duced from Kamali & Binesh (2008) with permission of the publisher.

consideration in influencing the local Nusselt number distribution and friction

characteristics in the inter-rib region is demonstrated in this study. A trapezoidal

rib configuration with decreasing height in the streamwise direction was found to

be a better choice for enhancing the heat transfer efficiency, further supporting the

better performance of the wedge shaped protrusion over a rectangular geometry.

For inlet Reynolds numbers in the range 20 000 to 160 000, different rib ar-

rangements consisting of combinations of ribs of different heights placed at dif-

ferent gaps were studied, considering six distinct cases (Xie et al., 2013). They

showed how proper design and arrangement of downstream ribs in a channel could

effect the flow structure and the heat transfer characteristics in channel flows and

how these could facilitate passive flow control in these types of flows. The local

Nusselt number contours for each of the six cases investigated along with the av-

erage heat transfer enhancement ratio and thermal efficiency achieved is shown in

figure 1.15. Although the placement of closely spaced inter-rib half-ribs as in case

B and C can be beneficial from the point of enhancing the overall heat transfer,
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(a)

(b) (c)

Figure 1.15: (a) Local inter-rib Nusselt number distribution for multiple rib-
arrangement and the corresponding domain and time-averaged (b) enhancement
ratio (Nu/Nu0) and (c) overall heat transfer efficiency variation with Reynolds
number. Reproduced from Xie et al. (2013) with permission of the publisher.

the associated pressure losses were high, driving the thermal efficiency to lower

values. Case F without the inter-rib placement was found to have the highest

efficiency. The placement of inter-rib half ribs had a significant contribution to

the overall efficiency when placed at larger gaps as in case D.

In the turbulent regimes, numerous other surface protrusion shapes other than

the two-dimensional transverse type have also been studied extensively, such as

the arc shaped wires on the hot wall of a duct (Kumar & Saini, 2009), angled

ribs to promote secondary motion in the spanwise direction (Han & Park, 1988)

and staggered array of rectangular elements with varying streamwise and spanwise

spacing (Garimella & Eibeck, 1990), among many alternatives. The experimental

study by (Garimella & Eibeck, 1990), which used water flow in the Reynolds

number range 150− 5150, showed that streamwise spacing has a more dominant

37



impact on the heat transfer rate than the spanwise spacing, as it leads to a better

interaction between the cavity flow in between the surface protrusions and the

main flow. Angled ribs were found to be slighly more beneficial for promoting

heat transfer in a square duct than in a rectangular duct (Han & Park, 1988).

Detailed reviews elaborating the effect of the shape and size of the protrusion,

their placement and position are available in Alam et al. (2014) and Singh &

Singh (2018), and the references provided therein.

It is also important to consider the Prandtl number (Pr) of the fluid flowing

through the duct/channel. For a turbulent flow case, the design of the protrusion

in a duct/channel for fluids with Pr > 5 would need more closely spaced elements

which could disturb the thin boundary layer, whereas for flow of gases, design

should focus on generating multiple reattachment points in the flow to promote

mixing in the more diffusive boundary layer (Šlančiauskas, 2001).

Most of the studies for hydrodynamic flow through a duct/channel have largely

considered a turbulent flow regime taking into account the application which

motivated their work. The main aim of most of these studies has been purely on

the flow features and the corresponding effect on the local Nusselt number and

friction factor, and quantification of the heat transfer augmentation that could be

achieved using these structures on the walls of the duct in the turbulent regimes.

A better understanding of the flow dynamics in the laminar and transition regimes

is important for the application motivating the present work, which are lacking in

the literature. Hence, the present study explores the onset of instabilities and the

route to turbulence in a laminar hydrodynamic channel flow with wedge-shaped

protrusions. Besides contributing to the understanding of the flow dynamics,

these would also be beneficial for effective design and control of the duct or

channel flows using passive structures on the walls and augmenting the heat

transfer efficiency in those regimes.

1.4 Heat transfer enhancement in quasi-2D

MHD flows

Surface protrusions have been found to be an effective means to promote in-

stabilites and heat transfer in hydrodynamic channel/duct flows. For the MHD

flows, this method of vortex promotion is unexplored in the literature. However,

various other vortex generation techniques as a means to promote heat transfer

have been reported in the literature for the flow of a conducting fluid through an

MHD duct. Most of the studies in the high Hartmann number range use the idea
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of promoting quasi-2D vortical structures in the flow domain to promote heat

transfer. These different techniques, the corresponding heat transfer characteris-

tics and the enhancement achieved are presented in detail in this section.

1.4.1 Using inhomogeneous wall conductance

Inhomogeneous wall conductance was used for promoting mixing and enhancing

the heat transfer rate in a numerical study of free surface MHD flows (Huang &

Li, 2011). Conducting strips placed in the streamwise direction were used on the

electrically insulating Hartmann walls. The setup used in this study is reproduced

in figure 1.16.

Figure 1.16: Use of conducting strips as means to promote heat transfer in free
surface MHD flows. Reproduced from Huang & Li (2011) with permission of the
publisher.

The inhomogeneity in wall conductance leads to a change in the electric cur-

rent distribution near the wall, as current enters the wall at locations were the

conducting strips are placed rather than passing through the viscous boundary

layer as would be the case in a completely insulating channel wall (figure 1.17a).

This leads to a change in the Lorentz force and velocity distribution, resulting in

an increase in the turbulent fluctuations. This is also found to increase with in-

creasing Hartmann number in the range considered in this study (30 ≤ Ha ≤ 100),

thereby increasing the local Nusselt number in the interface between the conduct-

ing and non-conducting region and a drop in friction factor over the conducting

strip as shown in figure 1.17(b). This study also explored the use of multiple

conducting strips and found an optimal number between 3-5 to be most favou-

ble to achieve a maximum efficiency of approximately 2 in the range of Ha they

considered.
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(a) (b)

(c) (d)

Figure 1.17: Comparison of electric current distribution for (a) an insulating
channel wall with (b) a channel wall with non-uniform wall conductivity, and (c)
the Nusselt number and (d) friction factor distribution over the channel wall with
non-uniform wall conductivity as in (b). Reproduced from Huang & Li (2011)
with permission of the publisher.

1.4.2 Using grids

Unlike the previous technique which considered heat transfer from the Hartmann

wall, studies conducted using turbulent modifiers in the form of grids placed in

the flow with orientation along, and perpendicular to, the magnetic field direction

(Branover et al., 1995) have looked at improving the heat transfer rate from

the side walls which is more relevant for the application being considered in

this thesis. These experiments have shown that the favourable orientation for

turbulence intensity to be present away from the grid location is the one parallel

to the magnetic field as shown in figure 1.18, as Joule dissipation leads to the

attenuation of vortices normal to the field direction. Experiments conducted

in an earlier study (Kolesnikov & Tsinober, 1972) have also found formation of

two-dimensional turbulent structures behind grids oriented parallel to the field

direction, in the case of a strong magnetic field strength. These conditions hence

favour an increase in the local heat transfer rate from the wall to the fluid, which

was evident from the higher Nusselt number value in the locations corresponding

to higher turbulent intensity. Their comparison of the Nusselt number and its

dependence on Ha/Re and grid orientation is reproduced in figure 1.19.
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(a)

(b)

Figure 1.18: Turbulent intensity at different streamwise location downstream of
grids placed in the flow with orientation (a) perpendicular and (b) parallel to the
magnetic field direction. Reproduced from Branover et al. (1995) with permission
of the publisher.
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Figure 1.19: Nusselt number variation as a function of Ha/Re for grids oriented
perpendicular and parallel to the magnetic field direction, and without the place-
ment of grids. Reproduced from Branover et al. (1995) with permission of the
publisher.

1.4.3 Using passive and active bluff bodies

Investigations focusing on quasi-two-dimensional turbulence generation using bluff

bodies in a duct flow for heat transfer enhancement are discussed in this section.

A cylindrical bluff body placed in the centre of a duct with axis oriented parallel

to the magnetic field was considered in Hussam et al. (2011). The effect of Hart-

mann number (0 ≤ Ha ≤ 1200) and blockage ratio (ratio of cylinder diameter

to the duct height) were explored. The critical Reynolds number for the onset

of unsteadiness was found to increase with increasing Ha as transverse fluctua-

tions are dampened due to increase in the field strength. An unsteady flow at

a higher blockage ratio showed a superior heat transfer increase as the vortex

shedding from the cylinder interacted with the thermal boundary layer on the

side wall, entraining fluid from the boundary layer and inducing a higher heat

transfer coefficient.

Another study (Hussam & Sheard, 2013), which could be considered an exten-

sion of the aforementioned work, explored the influence of the lateral positioning

of a cylindrical bluff body in a duct flow on the associated heat transfer efficiency.

The lateral position was quantified using a gap ratio which was the ratio of the

cylinder distance from the side wall to its diameter (G/d). A sketch of the flow

configuration and the associated geometric parameters are reproduced in figure
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(a) (b)

Figure 1.20: Schematic of the flow configuration and the associated geometric
parameters for (a) cylindrical and (b) rectangular vortex promoter. The figures
have been reproduced respectively from Hussam & Sheard (2013) and Cassells
et al. (2016) with permission of the publishers.

1.20(a). With an initial decrease in the gap ratio, interaction of the vortex shed-

ding from the cylinder with the side walls was improved, leading to thinning of the

thermal boundary layers on the side walls and thereby an improvement in heat

transfer rate. Further decreases in the gap ratio leads to suppression of vortex

shedding, resulting in a lower heat transfer rate. Thus, for each blockage ratio,

there existed an optimal gap ratio which gave a maximum heat transfer efficiency.

The vorticity fields and the corresponding temperature fields with change in gap

ratio for the two extreme values of blockage ratio considered in their investigation

are reproduced here in figure 1.21.

The use of square cylinder in a square duct as a means to promote instabilities

and heat transfer (Chatterjee & Gupta, 2015) were considered in a subsequent

study. Using a quasi-2D model, they classified the various regimes and reported

on the aerodynamic responses for flow past a square bluff body in a bounded

flow. Even though the flow regimes were qualitatively similar to flow past a

circular cylinder (Dousset & Pothérat, 2008), using a square cylinder was found

to prepone the onset of instability due to the presence of sharp corners. The heat

transfer improvement in each of the regimes was also studied and a comparison

was made with the circular cylinder case and the corresponding non-MHD case.

The circular cylinder was found to be a better option for enhancing heat transfer

in a moderate range of magnetic field strength (Ha = 500) whereas enhancement

was almost comparable for both the cases in the higher magnetic filed strength

(Ha = 1200). Heat transfer was highest in the last regime where separation of

the secondary counter-rotating vortices from the Shercliff walls accompanied the

Kármán vortices shedding from the cylinder, and decreased with increasing Ha.

Cassells et al. (2016) used rectangular vortex promoter shapes in an MHD duct

flow and studied the effect of varying the gap height and incidence angle of the
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(a) γ = 1, G/d = 4.5 (d) γ = 1, G/d = 0.75

(b) γ = 0.5, G/d = 2.25 (e) γ = 0.5, G/d = 0.38

(c) γ = 0.25, G/d = 1.13 (f) γ = 0.25, G/d = 0.19

Figure 1.21: Contours of the logarithm of spanwise vorticity (upper) and tem-
perature (lower) for Ha = 100, Re = 2000 for blockage ratio (a-c) β = 0.1 and
(d-f) β = 0.4. Shown are the absolute value of vorticity with levels plotted over
−1 ≤ log |x| ≤ −3, with darker contours corresponding to regions of stronger
vorticity, and the temperature field, with dark and light contours corresponding
respectively to colder and hotter regions, plotted over To ≤ T ≤ Tw, where To and
Tw are the cold and hot wall temperature, respectively. The figures have been
reproduced from Hussam & Sheard (2013) with permission of the publisher.

bluff body on heat transfer efficiency. A sketch of the flow configuration used in

their study is reproduced alongside the corresponding cylindrical bluff body case

for comparison in figure 1.20(b). Even though changing the incidence angle for the

cylinder placed in the duct centreline and at the optimal gap height could increase

the heat transfer efficiency, an upright cylinder at an optimal gap height of 1.5

gave the maximum possible efficiency of η = 1.6. The size of the wake formed
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(a) (b)

Figure 1.22: Plot showing (a) time-averaged Nusselt number plotted against cylin-
der oscillating frequency (Ste) at different oscillating amplitudes (A), StTG and
StLSA are frequencies obtained from evolving the linearised optimal perturbation
obtained from transient growth analysis and the leading mode from linear stabil-
ity analysis, both for a fixed cylinder, and (b) peak time-averaged Nusselt number
Numax against cylinder oscillating amplitude for Re = 1075 and Hartmann fric-
tion Ha∗ = 151.5. The figures have been reproduced from Hussam et al. (2012a)
with permission of the publisher.

behind the cylinder and its coherence and interaction with the thermal boundary

layer largely influenced the heat transfer rate and the associated pressure losses

in the flow. For selected cases, an exponential decrease in the heat transfer rate

and an approximate linear pressure loss was found with increasing Ha in their

study.

An active cylindrical bluff body (rotationally oscillating circular cylinder) was

studied instead of a passive bluff body in an MHD duct in Hussam et al. (2012a).

The oscillations were used as a way to encourage vortex shedding, as it was found

that the optimal perturbations maximising kinetic energy growth of disturbances

were found to be concentrated near cylinder (Hussam et al., 2012b). An increased

amplitude of oscillation was found favourable to increase the heat transfer rate

from the hot side wall of the duct, and also widened the range of frequencies

over which the Nusselt number was elevated. This was because the intensity

of the generated vortices correlated with the oscillation amplitude. A shift to

lower frequency was also observed with increasing angular velocity of oscillation.

Figure 1.22(a) reproduces their plot, demonstrating the influence of increasing

amplitude and oscillation frequency on the time-averaged Nusselt number. Even

though heat transfer is found to increase monotonically with increasing amplitude,

the study illustrates that there might exist a certain amplitude beyond which any

increase could no longer be effective. This is clear from the peak time-averaged
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Figure 1.23: Plots showing contours of spanwise vorticity (left column) and the
corresponding temperature field (right column) with increasing oscillating ampli-
tude for Re = 1075 and Hartmann friction parameter Ha∗ = 151.5. The figure
has been reproduced from Hussam et al. (2012a) with permission of the publisher.

Ha = 320 Ha = 2400
Re 1000 2000 1000 2000

© 46 % 52 % -1.2 % 16%
� 78% 73% 10% 33%
△ 62% 75% 16% 40%

Table 1.1: Comparison of the overall heat transfer increment with different vortex
promoter shapes in an MHD duct with blockage ratio = 0.25. Data reproduced
from Hussam et al. (2018).

Nusselt number plot (figure 1.22b) where a strong gradient in Numax is found in

the lower amplitude range, whereas the benefits of increasing amplitude lowers

in the higher range of oscillating amplitudes. The spanwise vorticity contours

and the corresponding temperature plots shown in figure 1.23 demonstrate the

benefit gained through the torsionally oscillating cylinder, where vortex shedding

is promoted in an otherwise steady state flow (A = 0), where the temperature

field can be seen to be diffusion dominated.

A comparative study of triangular, square and circular cylindrical vortex pro-

moter shapes demonstrated that a higher heat transfer increment was achievable

using a triangular-shaped bluff body, especially at higher magnetic field strengths.

This was attributed to a stronger wake-boundary layer interaction that persisted

downstream further than in the other cases. The heat transfer increment achieved

using different vortex promoter shapes are compared in table 1.1 for two different

Reynolds and Hartmann numbers.
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(a) τ/T = 0.25 (b) I = 30

Figure 1.24: Plot showing the variation of heat transfer enhancement ratio (HR)
as a function of (a) forcing frequency ωf and non-dimensional current amplitudes
I, and (b) current injection pulse width τ/T and ωf for flow in an MHD duct with
cylinderical bluff body and an electrode placed near the cylinder for H = 500 and
gap ratio G/d = 2. Reproduced from Hamid et al. (2016a) with permission of
the publisher.

1.4.4 Using point electrodes

Another technique used to promote heat transfer in quasi-2D MHD duct flows

was using electrically driven vortices generated by point electrodes. A rotational

force is produced around the electrode due to the Lorentz force as current travels

radially from the electrode embedded in the Hartmann layer, thereby generating

quasi-2D vortices with axis aligned along the magnetic field direction (Sommeria,

1988; Baker et al., 2015).

These electrically driven vortices were used with the motive of intensifying

the vortices formed behind a cylindrical bluff body in Hamid et al. (2016a). The

role that current intensity, forcing frequency, pulse width of current injection and

electrode position play in modifying the vortex street formed behind a cylinder

and how these could influence the heat transfer dynamics were investigated in

detail in this study. Almost a monotonic increase in heat transfer enhancement

was found with increasing current injection amplitude, though it showed a non-

monotonic trend with forcing frequency (figure 1.24a) which was attributed to

the competing effect of vortex size and the number of vortices shed. The vortex

street behind the cylinder and the corresponding temperature field at different

forcing frequencies is shown in figure 1.25, demonstrating this competing effect.

The complex interaction between the cylinder wake vortices with varying cur-

rent injection amplitude at different gap ratios was also considered. A lower range

of current amplitude was favourable when the cylinder was placed closer to the

wall, and vice-versa. Increasing the current injection pulse width always had a
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Figure 1.25: Contours of vorticity (left column) and corresponding temperature
field for I = 30, H = 500 and (a,b) ωf = 0.5, (c,d) ωf = 1.5, (e,f) ωf = 2, (g,h)
ωf = 4 and (i,j) ωf = 6, showing the competing effect of vortex size and number
of vortices on the temperature field. Reproduced from Hamid et al. (2016a) with
permission of the publisher.

Figure 1.26: Contours of vorticity (left column) and corresponding temperature
field for I = 30, H = 500 and (a,b) ωf = 1.75 and (c,d) ωf = 3.5 and (a,c)
τ/T = 0.05 and (b,d) τ/T = 0.5 showing the widening of the vortex street with
increasing pulse width of current injection τ/T . Reproduced from Hamid et al.
(2016a) with permission of the publisher. Flow is left to right.

positive effect on heat transfer enhancement irrespective of the the forcing fre-

quency (figure 1.24b) as they helped increase the vortex size (figure 1.26) and

enhanced the wake-boundary layer interaction. A non-monotonic trend in heat

transfer enhancement ratio with Hartmann friction parameter was also shown in

this study. The use of electrodes for vortex generation was also shown to have

significantly lower effect on the pressure drop compared to solid obstacles, thereby

increasing the overall efficiency.
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Following this, Hamid et al. (2016b) studied how electrically generated vor-

tices alone perform, without the presence of the bluff body, by varying the cur-

rent amplitudes, frequency and the pulse width. The results were compared with

those from the earlier study which also contained the physical cylinder (Hamid

et al., 2016a). The presence of the cylinder helped produce wider vortices and

was more beneficial in the shorter current pulse cases due to stronger wake and

boundary layer interactions. However, for long current pulse duration, the pres-

ence of a cylinder in addition to the electrically driven vortices are detrimental

to heat transfer as the interaction between the two vortices reduces the vortex

intensity. At low forcing frequencies the coherence of the vortices was lost, re-

sulting in a lower heat transfer enhancement, whereas at high forcing frequencies

the vortices were lined up along the duct axis reducing the interaction with the

boundary layer, thereby lowering the heat transfer enhancement. The investi-

gation of Reynolds number and Hartmann number dependence showed that the

presence of a cylinder along with electrodes were more useful in the lower Hart-

mann damping and higher inertia regimes, whereas solely electrodes were more

beneficial in the higher Hartmann number cases. An optimal gap for electrode

placement in the duct was also found in this study.

Chapter summary

This chapter has presented a review of the literature of hydrodynamic flows in

confined setups in the initial part, from which the setup used in the present study

draws its features. The perpendicular front face of the wedge-shaped protrusions

under investigation in this study presents a sudden partial obstruction similar to

the well-known forward-facing step (FFS) geometry (Stüer et al., 1999; Wilhelm

et al., 2003; Lanzerstorfer & Kuhlmann, 2012b), while the inclined rear surface

may invoke recirculating flows similar to backward facing step (BFS) flows (Ar-

maly et al., 1983; Ghia et al., 1989; Kaiktsis et al., 1996; Barkley et al., 2002;

Blackburn et al., 2008a). However, one key differentiating feature of the present

work is the streamwise-periodic repetition of the geometric feature. Flow past

BFS and FFS has been found to be extremely sensitive to incoming flow condi-

tions (Gartling, 1990; Marino & Luchini, 2009; Lanzerstorfer & Kuhlmann, 2012b;

Barkley et al., 2002), making a direct comparison with these geometries difficult.

Following this, studies on the onset of instabilities in MHD duct flows were pre-

sented. Under the influence of a magnetic field, 3D turbulence was found to be

strongly damped due to Joule dissipation, and in the high magnetic field strength
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regime, quasi-2D turbulence was prevelant in the duct.

Heat transfer enhancement studies using various vortex generator techniques

for promoting quasi-2D turbulence have been elucidated, showing the effectiveness

of quasi-2D turbulence in achieving a higher heat transfer efficiency. Neverthe-

less, none of the studies have explored the use of surface modifications for vortex

generation in MHD duct flows. However, numerous hydrodynamic cases utilis-

ing this technique in the literature were found to be effective to enhance heat

transfer efficiency. Most of these studies had a focus only in the turbulent flow

regimes considering high Reynolds numbers. Past studies investigating hydro-

dynamic flow past two-dimensional surface-mounted obstacles at low Re include

Tropea & Gackstatter (1985) and Carvalho et al. (1987) who focused only on the

two-dimensional flow conditions. Those studies found that at low blockage ratios,

the reattachment length for the low Re cases compared well with high Re results.

The effective design and control of flow in cooling blanket ducts of magnetic con-

finement fusion reactors requires a thorough understanding of the flow dynamics

focused on the steady and transitional regimes which are not coverered much in

the literature, hence contributing to this understanding is a primary motivation

of the present work .

From the literature review, it is found that a better understanding of the flow

over repeated modified walls in confined channels and ducts in the low Reynolds

number range is required. Furthermore, attention has not been paid in the lit-

erature to utilising a surface modification method as a means to enhance heat

transfer in MHD flows. This study sought to contribute to this aspect by char-

acterising the flow dynamics, studying the onset of instabilites and the first step

towards the route to turbulence in both hydrodynamic channel flows and MHD

duct flows with repeated wedge protrusions. The effectiveness of using repeated

wedge-shaped protrusions on the duct walls for enhancing heat transfer in MHD

flows are also explored in this thesis.

In the next chapter, the equations governing these flows and the numerical

methodology and techniques used to understand the flow dynamics and heat

transfer effectiveness are discussed.
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Chapter 2

Methodology

This chapter describes the methods employed in this study. The equations gov-

erning the flow evolution for both the hydrodynamic and magnetohydrodynamic

cases are introduced, as are techniques used for characterising the dynamics of the

flow including global linear stability analysis, perturbations kinetic energy analy-

sis, receptivity and sensitivity analyses, endogeneity and linear transient growth

analysis. The Stuart–Landau model used for studying the weakly non-linear ef-

fects and the nature of bifurcation are discussed thereafter. The parameters for

quantifying the heat transfer rate and efficiency are also presented. This is fol-

lowed by a description of the numerical techniques used to solve the governing

equations. Grid resolution tests and validation studies conducted for the base

flow simulations and the various techniques culminates this chapter.

2.1 Governing equations

In this section, the equations governing the hydrodynamic flow in a channel and

the MHD flow in a duct are presented first, followed by elaboration of a quasi-

2D model adopted for the MHD cases. Thereafter, different techniques used to

understand the dynamics of these flows with respect to their routes to turbulence,

the modes through which instability manifests, and the underlying mechanism

contributing to their growth are presented.

2.1.1 Hydrodynamic and MHD flow equations

Navier–Stokes and energy equations

Throughout the thesis, the fluid is considered to be Newtonian and incompress-

ible, with all fluid properties assumed to be a constant. Under these assumptions,
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the dimensional form of the continuity, momentum and energy equations are given

by,

∇̃ · ũ = 0, (2.1)

∂ũ

∂t̃
+ (ũ · ∇̃)ũ = −

1

ρ
∇̃p̃ +

µd

ρ
∇̃2ũ+ fb, (2.2)

∂̃T

∂t̃
+ (ũ · ∇̃)T̃ =

kf
ρCp

∇̃2T̃ + Φv + Φj + Φb + Sh, (2.3)

where ũ, p̃ and T̃ are the dimensional velocity, pressure and temperature fields,

respectively, and Cp is the specific heat capacity of the fluid. The term fb ac-

counts for the body forces (gravity, centrifugal, Coriolis or electromagnetic forces)

acting on the fluid, whereas Φv, Φj and Φb are the viscous, Joule heating and the

bouyancy effect on the temperature field, respectively, and Sh accounts for any

volumetric and radiative heating. For the hydrodynamic cases, the body forces

are neglected in the momentum equation. Volumetric, radiative heating and

buoyancy effects are not considered in the study. From an order of magnitude

analysis, the effect of viscous and Joule heating was found to be negligible rela-

tive to the thermal diffusion, hence these terms are not considered in the energy

equation. The following scaling is used to non-dimensionalise equations (2.1 -

2.3),

ũ = U0u, p̃ = pρU2
0 , T̃ = T (Th − Tc) + Tc,

∇̃ = ∇
L
, t̃ = L

U0
t,

(2.4)

where U0 is the horizontal mean velocity through the channel used to maintain a

constant flow rate and (̃) denotes the dimensional form of the variable.

Considering the aforementioned assumptions and scalings, the dimensionless

form of the continuity, momentum and energy equations for the hydrodynamic

channel flow case are given by,

∇ · u = 0, (2.5)

∂u

∂t
+ (u ·∇)u = −∇p +

1

Re
∇2u, (2.6)

∂T

∂t
+ (u ·∇)T =

1

Pe
∇2T, (2.7)

where u, p and T are the non-dimensional velocity, pressure and temperature

fields, respectively. The flow parameters are the Reynolds number Re = ρLU0/µd,

Prandtl number Pr = µdCp/kf and the Peclet number Pe = RePr.
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Quasi-static MHD equations

The dimensional form of the continuity and energy equation for the MHD flow is

the same as for the hydrodynamic cases (2.1) and (2.3) respectively. However, the

MHD momentum equation includes the electromagnetic forces in the body force

term. An inductionless approximation is used under which the magnetic Reynolds

number Rm ≪ 1, which is typical in laboratory scales (Müller & Bühler, 2013;

Davidson, 2002). This approximation makes the induced magnetic field strength

negligible compared to the applied uniform and time invariant magnetic field

strength. Hence, the dimensional form of the momentum equation for the MHD

flow cases is given by

∂ũ

∂t̃
+ (ũ · ∇̃)ũ = −

1

ρ
∇̃p̃+

µd

ρ
∇̃2ũ+

1

ρ
(j̃ × B̃), (2.8)

where the last term on the R.H.S accounts for the Lorentz force induced by

the electrically conducting fluid flowing in the presence of magnetic field. The

action of Coulomb forces (electrostatic force between electric charges) is negligible

compared to the Lorentz forces. The current density j̃ is given by Ohm’s law as

j̃ = σc(Ẽ + ũ× B̃), (2.9)

where Ẽ is the electric field. The electrostatic force experienced by a charge Q

is related to the electric field Ẽ as F̃Q = QẼ. Electric field can be shown to be

irrotational (i.e. ∇̃ × Ẽ = 0) using the Stoke’s integral relation, since the work

done by force F̃Q to move a charge Q along a closed path C in space is zero,

1

Q

∫

C

F̃Q · n̂t dc =

∫

C

Ẽ · n̂t dc =

∫

Ac

(∇̃× Ẽ) · n̂n dAc = 0. (2.10)

Here, n̂t and n̂n are the unit vectors tangential to the closed path C and normal

to surface area Ac bounded by C, respectively. The electric field being irrotational

can be expressed as a gradient of an electric potential φ̃e. Therefore the current

density in equation (2.9) can be written as,

j̃ = σc(∇̃φ̃e + ũ× B̃). (2.11)

Since velocities for the application being considered are smaller than the speed of

light, and considering a slowly varying electromagnetic process, the displacement

currents can be neglected. Under these assumptions, the relation between current
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density and the magnetic field is given by Ampere’s law, according to which,

∫

C

B̃ · n̂t dc =

∫

Ac

j̃ · n̂n dAc. (2.12)

Using Stoke’s integral formula, it can be written as,

∇̃× B̃ = j̃. (2.13)

Taking the divergence of equation (2.13) gives

∇̃ · j̃ = 0. (2.14)

Using the scaling as in equation (2.4) together with

B̃ = BB0, φ̃e = φeLU0B0, (2.15)

the dimensionless equations governing the MHD flow are obtained, where B0 is the

applied magnetic field strength in the spanwise direction. The set of quasi-static

MHD equations in the non-dimensional form are given by,

∇ · u = 0, (2.16)

∂u

∂t
+ (u ·∇)u = −∇p +

1

Re
∇2u+

(r

2

)2 Ha2

Re
[(∇φe + u×B)×B], (2.17)

∂T

∂t
+ (u ·∇)T =

1

Pe
∇2T, (2.18)

∇ · j = 0, (2.19)

where r = 2L/a is the aspect ratio of the duct cross-section, Ha = aB0

√

σc/µd is

the Hartmann number, and

∇2φe = ∇ · (u×B). (2.20)

Quasi-two-dimensional MHD equations

A quasi-2D model described in Sommeria & Moreau (1982), hereafter referred to

as SM82 model can be used to describe the MHD flow under conditions of strong

magnetic field strength, when

Ha ≫ 1, N ≫ 1, (2.21)
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where N = Ha2/Re is the Stuart number or interaction parameter. Under equa-

tions (2.21), the velocity variations in the bulk are negligible, with strong gradi-

ents concentrated only in the thin Hartmann layers on the duct walls perpendic-

ular to the magnetic field direction. Isotropic turbulence is dissipated strongly

by Joule dissipation and the most energy-containing eddies are stretched in the

magnetic field direction, hence

∂

∂z
≪

∂

∂x
,
∂

∂y
,

vz ≪ vx, vy.

(2.22)

The dimensionless form of the SM82 model is given by,

∇⊥ · u⊥ = 0, (2.23)

∂u⊥

∂t
+ (u⊥ ·∇⊥)u⊥ = −∇⊥p⊥ +

1

Re
∇2u⊥ −

H

Re
u⊥, (2.24)

∂T⊥
∂t

+ (u⊥ ·∇⊥)T⊥ =
1

Pe
∇2

⊥T⊥, (2.25)

where u⊥, p⊥ and T⊥ are the quasi-2D velocity, pressure and temperature fields,

respectively. The term H = n(r/2)2Ha is the Hartmann friction parameter which

takes into account both the Hartmann number and the aspect ratio of the duct

cross-section, and is the sole parameter characterising the MHD effects in these so-

lutions, where n is the number of Hartmann walls, which for the present study is 2.

The quasi-2D equations are obtained by averaging the corresponding quasi-static

equations in the magnetic field direction (Sommeria & Moreau, 1982; Pothérat

et al., 2000). SM82 model resembles the two-dimensional hydrodynamic equations

except for the additional linear friction term in the momentum equation which

captures the influence of the Hartmann layers formed on the walls perpendicular

to the applied magnetic field direction on the core flow.

2.2 Linear stability analysis

Linear stability analysis (LSA) is used to study the stability of some base flow

state to infinitesimally small perturbations to that base state. The infinitesimality

renders the equations governing the perturbations linear. In this thesis, the linear

stability of time steady two-dimensional base flows to unsteady three-dimensional

perturbations is considered. The linearised equation for this analysis is obtained

by decomposing the flow variables into a steady base state and a disturbance
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field. The disturbance field is then decomposed into Fourier modes of distinct

wavenumbers in a homogeneous flow direction, say for example

f(x, y) =

∫ ∞

−∞

f(x)eky dk, (2.26)

where y is the homogenous direction. Using the Fourier decomposition, the lin-

earised equation obtained for the perturbation is framed as an eigenvalue problem,

with the eigenvalue magnitude used to evaluate the growth rate of the eigenmodes.

The eigenvector with the largest growth rate, called the dominant mode describes

the underlying eigenmode causing the instability of the flow. The linearised equa-

tions governing the perturbation evolution, framing of the eigenvalue problem and

obtaining the growth rate of the dominant mode are discussed in this section.

Linearised perturbation equation for hydrodynamic base flow

For the hydrodynamic cases, the 2D flow variables {u, p} are decomposed into a

2D component {U , P} and a small 3D disturbance, {u′, p′}, i.e.

[u, p] = [U , P ] + ǫ[u′, p′], (2.27)

where constant |ǫ| ≪ 1. The linearised Navier–Stokes equations (LNSE) are

obtained from (2.5, 2.6) and (2.27), and retaining terms of order O(ǫ) yields

∇ · u′ = 0, (2.28)

∂u′

∂t
= −N′(u′)−∇p′ +

1

Re
∇2u′, (2.29)

where N′ is the linearised advection operator, convective form of which is

N′(u′) = (U ·∇)u′ + (u′ ·∇)U .

Linearised quasi-2D perturbation equation for quasi-2D MHD base flow

The linearised equations governing the evolution of quasi-2D perturbations {u′
⊥,p⊥},

are obtained from equations (2.23) and (2.24) along with the decomposition

[u⊥, p⊥] = [U⊥, P⊥] + ǫ[u′
⊥, p

′
⊥], (2.30)

and are given by

∇⊥ · u′
⊥ = 0, (2.31)

∂u′
⊥

∂t
= −N′(u′

⊥)−∇⊥p
′
⊥ +

1

Re
∇2

⊥u
′
⊥ −

H

Re
u′

⊥, (2.32)
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where N′(u′
⊥) = (U⊥ ·∇⊥)u

′
⊥ + (u′

⊥ ·∇⊥)U⊥.

Considering the homogeneity of the flow domain in the spanwise direction,

the perturbations are further decomposed into Fourier modes having spanwise

wavenumbers k as

(u′, p′) =

∫ ∞

−∞

(û, p̂)(x, y, t)eikzdk. (2.33)

Linearisation decouples each Fourier mode, reducing the stability analysis from a

3D problem in one or more of the parameters in Re,H, r to a set of 2D problems

whose parameters are augmented by wavenumber k. Introducing a linear evo-

lution operator A (τ) representing time integration of a linearised perturbation

field over time interval τ , and assuming exponential growth over long times, linear

stability is dictated by the eigenvalue problem

A (τ)ûi = µiûi, (2.34)

where µi are the (complex) eigenvalues and ûi the corresponding eigenvectors of

A . The leading eigenvalue satisfying max |µi| determines the instability growth

rate σ and phase speed ωf through

µ = e(σ+iωf )τ , (2.35)

where τ can be chosen arbitary for a steady base flow. In a flow where per-

turbations of any wavenumber may evolve, a stable flow is one having |µ| < 1

for all k, while an unstable flow is one where |µ| > 1 at any k. The numerical

implementation of this technique is covered later, in § 2.9.3.

2.3 Energetics analysis: spanwise-averaged per-

turbation kinetic energy evolution

In this section, energetics analysis is presented, which is used to understand the

energy transfer from the base flow to the eigenmodes by evaluating contributions

to the span-averaged kinetic energy evolution of the eigenmodes (Sheard et al.,

2016; Lanzerstorfer & Kuhlmann, 2012b,a). This helps gain insight about the

instability mechanisms causing the base flow to become unstable. The perturba-

tion kinetic energy equation is obtained by taking the dot product of u′ with the
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linearised momentum equation (2.29),

u′ ·
∂u′

∂t
=

∂

∂t

(
u′ · u′

2

)

=
∂

∂t

(
1

2
|u′|2

)

=
∂k′

∂t
, (2.36)

where k′ is the kinetic energy of the perturbation per unit mass. Equation (2.36)

can be further simplified by averaging in the spanwise direction owing to the span-

wise periodicity of the perturbations. The resulting equation (in tensor notation

with the summation convention used for brevity) reads as

∂k′

∂t
= −Uj

∂k′

∂xj
− u′iu

′
j

∂Ui

∂xj
−

2

Re
s′ijs

′
ij, (2.37)

which in the Cartesian form can be expanded as

∂k′

∂t
= −

[

U
∂k′

∂x
+ V

∂k′

∂y

]

−
[

u′2
∂U

∂x
+ u′v′

∂U

∂y

+ u′v′
∂V

∂x
+ v′2

∂V

∂y

]

−
2

Re
s′ijs

′
ij .

(2.38)

Here s′ijs
′
ij is the spanwise averaged double dot product of the strain-rate tensor

s′ij which in Cartesian coordinates is given by

s′ =
1

2






2∂u′

∂x
∂u′

∂y
+ ∂v′

∂y
∂u′

∂z
+ ∂w′

∂x
∂v′

∂x
+ ∂u′

∂y
2∂v′

∂y
∂v′

∂z
+ ∂w′

∂y
∂w′

∂x
+ ∂u′

∂z
∂w′

∂y
+ ∂v′

∂z
2∂w′

∂z




 . (2.39)

Note that in equations (2.37) and (2.38), divergence terms including the pressure

term have been omitted as they identically provide a zero contribution to the

overall perturbation kinetic energy evolution. It is possible to relate the growth

rate of the eigenmode to perturbation kinetic energy (PKE) evolution through

σ =
1

2Ekt

∫

Ω

∂k′

∂t
dΩ

= −
1

2Ekt

∫

Ω

[

Uj
∂k′

∂xj
+ u′iu

′
j

∂Ui

∂xj
+

2

Re
s′ijs

′
ij

]

dΩ,

(2.40)
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where Ekt =
∫

Ω
k′ dΩ is the total perturbation kinetic energy in the domain

Ω (Sheard et al., 2016). Each term on the right hand side of equation (2.40)

contributes to the instability growth rate and for convenience in this thesis will

be separated as

σ = 〈T 〉+ 〈P〉+ 〈D〉, (2.41)

where 〈T 〉 comprise the transport terms, 〈P〉 the production terms and 〈D〉 the

dissipation term, each of which are given by

〈T 〉 = 〈T1〉+ 〈T2〉

= −
1

2Ekt

∫

Ω

[

U
∂k′

∂x
+ V

∂k′

∂y

]

dΩ,
(2.42)

〈P〉 = 〈P1〉+ 〈P2〉+ 〈P3〉+ 〈P4〉

= −
1

2Ekt

∫

Ω

[

u′2
∂U

∂x
+ u′v′

∂U

∂y

+ u′v′
∂V

∂x
+ v′2

∂V

∂y

]

dΩ,

(2.43)

〈D〉 = −
1

Ekt

∫

Ω

1

Re
s′ijs

′
ij dΩ. (2.44)

The transport terms 〈T1〉 and 〈T2〉 describe the transport of perturbation kinetic

energy by the base flow within the domain. Owing to the streamwise periodicity

of the flow domain considered, their sum is zero (any deviation from which is

attributable to numerical error), thus having no contribution to the growth rate

of the eigenmode.

2.4 Receptivity and structural sensitivity

analyses

This section discusses the method used to study the receptivity of the global

mode to initial conditions and momentum forcing, and its structural sensitivity

to base flow modifications. The receptivity is studied by obtaining adjoint modes

corresponding to the adjoint to the linearised Navier–Stokes equations. The ad-

joint equations for both the hydrodynamic and MHD cases are obtained following

the method described in Barkley et al. (2008). For the hydrodynamic cases the

adjoint equations are given by
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∇ · u∗ = 0, (2.45)

−
∂u∗

∂t
= −N∗(u∗)−∇p∗ +

1

Re
∇2u∗, (2.46)

where N∗ is the linearised advection operator of the adjoint equations,

N∗(u∗) = (∇U)T · u∗ − (U · ∇)u∗, and u∗ and p∗ are the respective adjoint

velocity and pressure fields. Notice that the adjoint to the advection operator

takes a different form to its counterpart in equation (2.29), and the time derivative

is negative. The adjoint to the linearised quasi-2D MHD momentum equation is

given by

−
∂u∗

⊥

∂t
= −N∗(u∗

⊥)−∇⊥p
∗
⊥ +

1

Re
∇2

⊥u
∗
⊥ −

H

Re
u∗

⊥, (2.47)

where N∗(u∗
⊥) = (∇⊥U)T · u∗

⊥ − (U⊥ ·∇⊥)u
∗
⊥.

The adjoint eigenvectors (û∗
i ) of the linear adjoint operator A ∗ are obtained

from an eigenvalue decomposition as discussed in §2.2 (equation 2.34). The

velocity field of an initial perturbation can be expressed using the eigenvector

basis as

û0 =
∑

i

Aiûi. (2.48)

The adjoint eigenmode û∗
k is orthogonal to all except the corresponding direct

eigenmode ûk for a linearised perturbation field with spanwise wavenumber k

corresponding to a growth rate σ. Hence, the coefficient Ak of ûk, which corre-

sponds to the amplitude of the eigenmode can be expressed as

Ak =

∫
û∗

k · û0 dΩ
∫
û∗

k · ûk dΩ
. (2.49)

A similar method can also be used to describe the global mode amplitude in terms

of mometum forcing f̂ . Therefore, in general the global mode amplitude in terms

of û0 and f̂ can be expressed as

Ak =

∫
û∗

k · [û0 + f̂ ] dΩ
∫
û∗

k · ûk dΩ
. (2.50)

The location of the adjoint mode (û∗
k) in the flow domain corresponds to the most

receptive regions in the flow, where localised initial condition (û0) or momentum

forcing (f̂) can amplify the global mode amplitude (Giannetti & Luchini, 2007).

Physically, the location of the adjoint modes corresponds to regions in the flow

most effective for the placement of an active flow control mechanism.
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Structural sensitivity analysis is used to study how the eigenvalue spectrum

changes with the perturbation of the linear operator. The perturbation of the

linear operator from a physical perspective may be thought of as a modification

in the base flow or the presence of a passive structure in the flow. The eigenvalue

problem can be written as

(A − µiB) · ûi = 0. (2.51)

With a small amplitude perturbation of the linear operator, equation (2.51) can

be written as

(A + ǫδA ) · (ûi + ǫδûi) = (µi + ǫδµi)B · (ûi + ǫδûi), (2.52)

where |ǫ| ≪ 1. Retaining the terms of order O(ǫ) yields

(A − µiB) · δûi + δA · ûi = δµiB · ûi. (2.53)

Taking the dot product of û∗
i with equation (2.53) gives

û∗
i · (A − µiB) · δûi + û∗

i · δA · ûi = û∗
i · δµiB · ûi. (2.54)

From the adjoint eigenvalue problem formulation,

û∗
i · (A − µiB) = 0. (2.55)

Therefore, from equations (2.54) and (2.55), the change in eigenvalue due to

perturbations in the linear operator can be found to be

δµi =
û∗

i · δA · ûi

û∗
i · B · ûi

. (2.56)

A localised structural perturbation δA , at say (x0,y0), can be written as

δA (x, y) = δ(x− x0, y − y0) δA0, (2.57)

where δ(x − x0, y − y0) is the Kronecker delta function and δA0 is a constant

coefficient matrix. Then, the bound of the eigenvalue drift is limited by

|δµi| ≤ ||δA0||
|ûi||û

∗
i |∫

û∗
i · ûi dΩ

, (2.58)
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from which the structural sensitivity of the eigenvalues to any localised perturba-

tions in the absence of any mass and momentum forcing,

Si(x, y) =
|ûi||û

∗
i |∫

û∗
i · ûi dΩ

. (2.59)

Thus, for a dominant eigenmode with a spanwise wavenumber of k corresponding

to growth rate σ,

Sk(x, y) =
|ûk||û

∗
k|∫

û∗
k · ûk dΩ

. (2.60)

Any passive control mechanism will be most effective when placed in regions

corresponding to large values of Sk as these locations have the largest impact on

the growth rate of the global modes. Further details can be found in Giannetti

& Luchini (2007).

2.5 Endogeneity

The previous approach discussed in § 2.4 is used to obtain the wavemaker region in

the flow, which corresponds to local region in the flow where any external forcing

leads to maximum change in the linearised operator’s eigenvalue and hence could

be where a flow control mechanism would be most effective leading to the largest

growth of the global eigenmode. However, it uses an exogeneous approach in

which the internal eigendynamics is not considered. The endogeneous approach

(Marquet & Lesshafft, 2015) uses a slightly different concept, in which the direct

contribution of localized regions in the flow to the global eigendynamics can be

obtained.

Unlike the sensitivity analysis in which a localised perturbation in the lin-

earised operator is considered proportional to an arbitary constant coefficient as

in equation (2.57), in the endogeneity approach sensitivity to localised changes

to the operator is confined to changes that preserve the local structure of the

operator, leading to

δA (x, y) = δ(x− x0, y − y0) A (x, y). (2.61)

The endogeneity of the eigenmode (µi,ûi) is then given by

E(x, y) = û∗
i (x, y) · (A ûi)(x, y), (2.62)

the integral of which in the domain is equal to the complex growth rate. The
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endogeneity is defined such that E(x, y) = Eσ(x, y) − iEω(x, y), hence this ap-

proach can also be useful as it separates the growth rate (from Eσ(x, y)) from the

frequency contribution (from Eω(x, y)). Equation (2.62) can thus be expanded

to find the individual contributions of each term of the momentum equation to

E(x, y) as

E(x, y) = −u∗ · [(U · ∇)u′]
︸ ︷︷ ︸

Econv

−u∗ · [(u′ · ∇)U ]
︸ ︷︷ ︸

Eprod

−u∗ · ∇p
︸ ︷︷ ︸

Epres

+
1

Re
u∗ · ∇2u′

︸ ︷︷ ︸

Ediss

. (2.63)

Here, Econv, Eprod, Epres and Ediss respectively aggregate contributions arising

from the convection of the eigenmode via the base flow, the production of pertur-

bation energy via base flow shear, pressure and viscous dissipation. This equation

bears similarity to equation (2.40) from the perturbation kinetic energy analysis,

except that here the adjoint mode is invoked; similarities and differences between

these methods will be explored later in this thesis.

2.6 Linear transient growth analysis

Linear transient growth analysis to study the short time dynamics of the flow is

discussed in this section. The interaction between the non-orthogonal eigenmodes

of A can produce brief periods of large amplification of kinetic energy of linearised

perturbations even when the flow is asymptotically stable (Reddy & Henningson,

1993; Trefethen et al., 1993; Henningson & Reddy, 1994). In some cases, this

large amplification can result in a subcritical transition (bypass transition) of

the flow at Reynolds number below the critical Reynolds number predicted by

the LSA. The mechanism responsible for such a transition is the excursion to

the perturbation amplitudes so large that its dynamics become nonlinear; thus

bypassing the linear predictions.

The maximum growth in kinetic energy of the perturbation achievable over a

finite time τ is determined using the eigenvalue method described in Barkley et al.

(2008). The kinetic energy of the perturbation relates to the L2 inner product

(the 1/2 is omitted for simplicity)

K = (u′,u′) ≡

∫

u′ · u′ dΩ. (2.64)

Transient growth of an initial disturbance u′(0) over an interval of time, can thus
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be written as

K(τ)

K(0)
=

(u′(τ),u′(τ))

(u′(0),u′(0))
=

(A (τ)u′(0),A (τ)u′(0))

(u′(0),u′(0))
=

(u′(0),A ∗(τ)A (τ)u′(0))

(u′(0),u′(0))
.

(2.65)

The maximum possible amplification of energy at time τ over all possible initial

conditions u′(0) is called the optimal energy growth G(τ) expressed as

G(τ) = max
u′(0)

K(τ)

K(0)
= max

u′(0)

(u′(0),A ∗(τ)A (τ)u′(0))

(u′(0),u′(0))
, (2.66)

which is given by the largest eigenvalue of the operator A ∗(τ)A (τ) (equivalent to

the largest singular value of the operator A ). For a given Re and k, the optimal

mode is the eigenvector corresponding to maximum optimal energy growth, Gmax

at time τ = τopt (Barkley et al., 2008).

2.7 Weakly non-linear Stuart–Landau analysis

This section presents the Stuart–Landau equation which is used to study the

weakly non-linear effects and to understand the nature of bifurcations of the flow

arising from linear instability mode growth. This model has been widely used

to classify weakly non-linear features of bifurcations in various flows such as the

Hopf bifurcation leading to 2D vortex shedding in flows past cylindrical (Provansal

et al., 1987; Dušek et al., 1994) and spherical (Thompson et al., 2001) bluff bodies,

regular and Hopf bifucations in triangular (Ng et al., 2018) and toroidal bluff

bodies (Sheard et al., 2004b,a) and Pitchfork bifurcations for confined flows such

as a 180-degree bend (Sapardi et al., 2017). In this model (Landau & Lifshitz,

1976), the evolution of the complex amplitude (A) of perturbations is modelled

as
dA

dt
= (σ + iω)A− l(1 + ic)|A|2A+ · · ·, (2.67)

where the complex amplitude A = |A|eiφt. Substituting this in equation (2.67)

and ignoring higher order terms, it is possible to decompose the evolution equation

into real and complex parts

d|A|

dt
= σ|A| − l|A|3, (2.68)

dφ

dt
= ω|A| − lc|A|3. (2.69)
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The real part in equation (2.68) is sufficient to describe the transition for regular

(non-oscillatory) transitions in which the growth rate only has a real component.

Equation (2.68) can further be simplified as

d log |A|

dt
= σ − l|A|2, (2.70)

which expresses a linear relation between d(log |A|)/dt and |A|2. The sign of

l is an indicator of the type of bifurcation of the flow. For cases with l > 0

(i.e. a negative slope as |A| → 0), the bifurcation is supercritical with the non-

linear term resulting in the saturation of the perturbation amplitude, whereas

when l < 0 (i.e. a positive slope as |A| → 0), the bifurcation is subcritical

and a hysteretic behaviour is observed near the critical Reynolds number for the

transition. Due to the global nature of the linear instability modes, any measure

that captures the time history of a growing mode may be used as is convenient. In

this work, the kinetic energy of the leading 3D Fourier mode is used as a measure

of perturbation amplitude for growth of 3D instabilities.

2.8 Quantifying the effectiveness of the wedges

for heat transfer enhancement

This section presents the parameters used for quantifying the effectiveness of heat

transfer achieved by the use of repeated wedge-shaped protrusions on one of the

walls of a channel and a duct for the hydrodynamic and MHD cases respectively.

Two quantitative measures are considered, which are

1. heat transfer efficiency η, and

2. net power ∆Pnet.

These are elucidated in the subsections to follow.

2.8.1 Heat transfer efficiency η

Heat transfer efficiency η is a measure of the improvement in heat transfer achieved

at the expense of pressure drop penalties in the flow, each relative to a plane chan-

nel or duct without the wedges, and is defined as

η =
HR

PR
, (2.71)
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where HR is the heat transfer ratio and PR is the pressure ratio. These are

respectively given by

HR =
Nu

Nu0
, (2.72)

and

PR =
f

f0
. (2.73)

Nu and f are the domain and time averaged Nusselt number and friction factor,

respectively. Subscript 0 is used to denote the plane channel or duct flow cases

without the wedges present.

Nusselt number is defined as the ratio of the convective to the conductive heat

transfer and expressed as

Nu = h(Lchar)/kf , (2.74)

where h is the convective heat transfer coefficient, kf is the thermal conductivity

of the fluid, and Lchar is the characteristic length scale (Bergman et al., 2007)

which for the current setup is 2L.

For the current setup, the local Nusselt number along the constant tempera-

ture bottom wall, obtained as a ratio of the wall normal convective to the con-

ductive heat transfer, is calculated as

Nux(x, t) =
2L

(Tf,x − Th)

dT

dn

∣
∣
∣
yb,x
, (2.75)

where Tf,x is the local bulk fluid temperature given by

Tf,x(x, t) =

∫ 2L

yb,x
uT dy

∫ 2L

yb,x
u dy

, (2.76)

where yb,x is the y coordinate of the bottom wall at any streamwise position x and

dT/dn|yb,x is the wall normal temperature gradient at yb,x. It should be noted that

Nux does not take into account the influence of the vertical front wall of length

lw (figure 3, 4) to the overall heat transfer, hence to calculate the domain average

Nusselt number 〈Nu〉 in the present study, the following method is adopted:

〈Nu(t)〉 =
2L

(Tf − Th)

dT

dn

∣
∣
∣
yb
, (2.77)

where Tf = 〈Tf,x〉 is the domain averaged bulk fluid temperature calculated as

Tf(t) =

∫∫

Ω
uT dΩ

∫∫

Ω
u dΩ

, (2.78)
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and dT/dn|yb is the average wall normal temperature gradient from the bottom

wall comprising the horizontal, vertical and the tapered surface’s contributions.

The domain and time averaged Nusselt number Nu is obtained by taking the time

average of 〈Nu(t)〉.

The friction factor accounts for the pressure loss in the flow from inlet to

outlet due to friction and is given by

f =
∆p̃/ld
ρU2

0 /2
L, (2.79)

where ld = lp + lw is the total length of the channel/duct.

2.8.2 Net power ∆Pnet

Another parameter used to quantify the effectiveness of the wedge is the net

power, which has been found to be an effective quantitative measure in other

studies which used various other vortex generation techniques to enhance heat

transfer to the fluid (Cassells et al., 2016; Hamid et al., 2016b). The net power

to the system is calculated as

∆Pnet = ∆Pheat −∆Pflow, (2.80)

where ∆Pheat = Pheat − P0,heat and ∆Pflow = Pflow − P0,flow are respective incre-

ments in heat power and pumping power achieved by the presence of the wedge.

Pheat is the non-dimensional power gained as heat from the constant tempera-

ture bottom wall with the use of the wedge, whereas Pflow is the non-dimensional

power spent on pumping the fluid through the flow domain comprising the wedges.

Subscript 0 is used to denote the corresponding powers for a plane duct without

wedges.

Pheat is expressed as:

Pheat =
aαCp

L2U3
0

∫ ld

0

dT

dn
dx, (2.81)

where Cp is the specific heat capacity and α is the thermal diffusivity of the fluid.

Equation (2.81) can be re-written in terms of Nu as

Pheat =
aαCpldδT

L3U3
0

Nu, (2.82)
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where δT = Th − Tf .

Pflow is expressed as

Pflow =
2a

L
∆p, (2.83)

where ∆p is the non-dimensional pressure drop in the duct. Equation (2.83) can

be re-written in terms of f as

Pflow =
ald
L2
f. (2.84)

From equations (2.80), (2.82) and (2.84), ∆Pnet is given by

∆Pnet =
aαCpldδT

L3U3
0

(Nu− Nu0)−
ald
L2

(f − f0). (2.85)

Multiplying by L2/ald, ∆Pnet can be simplified as

∆Pnet =
1

PeEc
(Nu−Nu0)− (f − f0), (2.86)

where Ec is the the Eckert number, defined as U2
0 /CpδT , which is a measure

of the kinetic energy at the wall to the specific enthalpy difference between the

hot wall and the fluid. A typical value of Ec in the cooling blanket modules

of magnetic confinement nuclear fusion reactors is approximately 10−9, based on

the velocity and temperature difference in these applications (Smolentsev et al.,

2010b) and the properties of Pb-Li alloys (Schulz, 1991; de les Valls et al., 2008).

For a heated rotating cylinder in crossflow the value of Ec could range from 0 to

1 in experiments (Gschwendtner, 2004).

2.9 Numerical method

An in-house solver implementing a nodal spectral-element method for spatial

discretisation in the x−y plane (Karniadakis & Sherwin, 2013) and a third-order

operator splitting scheme based on backward differentiation for time integration

(Karniadakis et al., 1991) is used to numerically solve the governing equations

and to obtain the base flow solutions. The spectral element method is described

in detail in Karniadakis & Sherwin (2013). In this section, a brief description

of the key points of the numerical method is provided. The method employs

high order polynomial functions within each element unlike the finite element

method which typically employs low order interpolating polynomials within each

element. Therefore, a two-way refinement in terms of the number of elements

68



within a computational domain (h-refinement) and an increase in the order of the

interpolating polynomial employed within an element (p-refinement) is possible

in Spectral methods.

2.9.1 Spatial discretisation

Spectral element methods are typically constructed using one of the two ap-

proaches (i) pseuo-spectral or collocation methods or (ii) the Galerkin method.

The present code employs the Galerkin method, which will be briefly presented

here. In general, both these categories fall under the method of weighted residuals

in which a linear differential equation subjected to proper initial and boundary

conditions in a domain Ω is denoted by

L(u) = 0. (2.87)

The solution of equation (2.87) u(x, t), which is assumed to take the form

uδ(x, t) = u0(x, t) +

N∑

i=1

ûi(t)Φi(x), (2.88)

where u0(x, t) satisfies the initial and boundary conditions, ûi(t) are the N un-

known coefficients and Φi(x) are analytical functions called trial or expansion

functions. Substitituting the approximate solution in equation (2.88) into equa-

tion (2.87) gives the residual R, and

L(uδ) = R(uδ). (2.89)

The constraint placed on R to determine the unknown coefficients is that the

Legendre inner product of R with respect to a weighing or test function wtj(x)

is equated to zero, i.e.

(wtj(x), R) = 0, j = 1, 2, ......N, (2.90)

where the Legendre inner product of any two functions, say f and g, is defined

as

(f, g) =

∫

Ω

f(x)g(x) dx. (2.91)

The type of scheme is determined by the trial function Φi(x) and the test function

wtj(x) used. The present code uses a Galerkin method in which the trial function

and the test function are chosen as the same, i.e. wtj(x) = Φi(x). In the Galerkin
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formulation, the differential equation is initially converted from its strong form by

setting the residual R = 0 and integrating to obtain the weak form of the equation.

The solution domain is sub-divided into non-overlapping regions or elements and

a polynomial expansion function is used within each element. For a 2D domain,

the present code uses quadrilateral elements with angles between adjacent edges

being less than 180o. This constraint arises from parametric mapping between

physical space and the bi-unit square on which integration is performed. The

expansion functions or the trial functions are built and defined within a standard

element region and then assembled from the local definitions to the global bases.

The expansion functions for one-dimensional system are discussed first fol-

lowed by an introduction of the expansion bases for multi-dimensional solution

domains. The solution domain Ω is the assembly of multiple elements denoted as

Ωe. Expressing the global coordinate in terms of the local expansion function is

known as parametric mapping and is achieved by mapping the standard element

Ωst to each element domain Ωe. For a one-dimensional system, the global coordi-

nates x can be expressed in terms of the local coordinates ξ and the corresponding

transformation or mapping can be written as

x = χe(ξ), (2.92)

where x ǫ Ωe and ξ ǫ Ωst. Using this transformation the global expansion functions

Φi(x) can be expressed in terms of the local expansion functions φp(ξ), and the

approximate solution uδ in terms of the local expansion bases can be written as

uδ(x) =

N−1∑

i=1

ûiΦi(x) =

Ne∑

e=1

np∑

p=0

ûepφ
e
p(ξ), (2.93)

where np is the order of the polynomial of the expansion function.

The present code employs polynomial nodal expansions which are based on

Lagrange polynomials. These polynomials are associated with a set of nodes

which includes the ends of the domain in the boundary elements. The interior

nodes are located at the zeros of Gauss-Legendre-Lobatto polynomials as these

are found to exhibit lesser oscillations compared to equispaced nodal points and

are more accurate for numerical integration. The expansion bases having a poly-

nomial order np within a standard element Ωst are

φp(ξ) =







1, ξ = ξp
(ξ2−1)L′

p(ξ)

np(np+1)Lp(ξp)(ξp−ξ)
, otherwise, where 0 ≤ p ≤ np.

(2.94)
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Here ξp are the nodal points which corresponds to the roots of the polynomial

g(ξ) = (1− ξ2)L′
p(ξ), where − 1 ≤ ξ ≤ 1, (2.95)

and L′
p(ξ) is the derivative of the Legendre polynomial Lp(ξ). These polynomials

are a special form of Jacobi polynomials which using the Rodriguez formula can

be written as

Lp(ξ) =
(−1)1

2nn!

dn

dxn
(1− ξ2)n, where n = 0, 1, 2.... (2.96)

The Legendre polynomials can also be generated from the recursive relationship

Lp(ξ) =







1, for p = 0,

ξ for p = 1,

1
p
[(2p− 1)ξLp−1 − (p− 1)Lp−2] for p = 2, 3, ...

(2.97)

The nodal expansion basis functions for np = 6 are shown in figure 2.1 as an

example. To obtain the solution within each element, the Galerkin formulation

requires evaluation of integrals to place the constaint on the residuals (equation

2.90) and conversion to the weak form. The integrals are approximated as

∫ 1

−1

u(ξ)dξ =

np−1
∑

i=0

wtiu(ξi) +R(u). (2.98)

Gauss-Lobatto-Legendre quadrature rule is used for numerical integration in

which the integrands are obtained at the zeros of the Legendre polynomial and

the end points of the interval (i.e. ξ = ±1). The weighing function for evaluating

equation (2.98) is given by

wti =
2

np(np − 1)[LP − 1(ξi)]2
, i = 0, 1, 2, ....np − 1. (2.99)

The quadrilateral non-overlapping elements (Ωe) in the present code for the

2D solution domain are first mapped to a standard bi-unit square region (Ωst)

as shown in figure 2.2. The expansion function used within this standard region

for a two-dimensional solution domain is obtained by a simple product of the

one-dimensional expansion functions (equation 2.94) in each coordinate direction

considered, i.e.

φpq(ξ1, ξ2) = φp(ξ1)φq(ξ2), 0 ≤ p, q, p ≤ np1, q ≤ np2. (2.100)
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(a) φ0(ξ) (b) φ1(ξ) (c) φ2(ξ)

(d) φ3(ξ) (e) φ4(ξ) (f) φ5(ξ)

(g) φ6(ξ)

Figure 2.1: One-dimensional nodal expansion function for polynomial order
np = 6.

Figure 2.2: Mapping a 2D element from an element region Ωe to a standard
region Ωst, where xi corresponds to the global coordinate system and ξi to the
local coordinate system. The figure has been reproduced from Karniadakis &
Sherwin (2013) with permission of the publisher.

The order of the polynomial np1 and np2 in each coordinate direction ξ1 and ξ2

can in general be different, though they are constrained to be equal in the present

code, i.e. np1 = np2. The tensor product expansion in a standard quadrilateral

solution domain using the tensor product of 1D Lagrange polynomial expansion

function as in equation (2.94) is shown in figure 2.3 for polynomial order np = 3

and np = 6.
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(a) np = 3

(b) np = 6

Figure 2.3: Two-dimensional nodal expansion function constructed from one-
dimensional Lagrange expansion function for polynomial order (a) np = 3 and
(b) np = 6.

At the interface between adjacent elements, each node on one element edge

shares a single global node with its counterpart on the edge of the adjacent ele-

ment. This preserves (C0) continuity of velocity and pressure values across ele-

ment interfaces in the global solution. Element edge nodes along the left periodic

boundary are connected to the edge nodes along the right periodic boundary in

the same fashion. The periodic boundary is therefore numerically indistinguish-

able from any other element interface within the flow domain.
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2.9.2 Temporal discretisation

The temporal discretisation scheme implemented in the present solver is briefly

explained in this section. In the present study, the pressure field in equation

(2.6) and (2.24) is decomposed into a streamwise-periodic fluctuating part and

a background horizontal linear pressure gradient, i.e. p = ˜̃p − F (t)x. Thus the

momentum equation (2.6) becomes

∂u

∂t
+ (u ·∇)u = F (t)ex −∇ ˜̃p +

1

Re
∇

2u, (2.101)

and the quasi-2D momentum equation (2.24) becomes

∂u⊥

∂t
+ (u⊥ ·∇⊥)u⊥ = F (t)ex −∇⊥

˜̃p⊥ +
1

Re
∇2u⊥ −

H

Re
u⊥, (2.102)

where F (t) is a time-varying horizontal forcing function and its value is deter-

mined within each time integration step to maintain the desired flow rate. The

solver employs a third order backward multi-step method for time integration of

the Navier–Stokes equations (2.5-2.7) and the quasi-2D MHD equations (2.23-

2.25). The convection (material derivative) form of the non-linear advection term

is used for the discretisation (Zang, 1991; Blackburn & Sherwin, 2004). Following

a similar approach to that described in Karniadakis et al. (1991), to integrate from

time n to time n+1, the equations are cast at the future time, the time derivative

term is approximated using backwards differencing, and an appropriate-order ex-

trapolation of the non-linear term to the future time is used. The non-MHD and

quasi-2D momentum equations then becomes

γ0u
n+1 −

∑Ji−1
q=0 αqu

n−q

∆t
=

Je−1∑

q=0

βqN(un−q) + F n+1ex −∇ ˜̃pn+1

+
1

Re
∇2un+1,

γ0u
n+1
⊥

−
∑J−1

q=0 αqu
n−q
⊥

∆t
=

Je−1∑

q=0

βqN⊥(u
n−q
⊥ ) + F n+1ex −∇ ˜̃pn+1

⊥

+
1

Re
∇2un+1

⊥ + βq
H

Re
u

n−q
⊥ .

(2.103)

The solution of the momentum equation is split into four sub-steps, which are

identical to the standard scheme described in Karniadakis et al. (1991), except

for the addition of a second sub-step. Initially, the velocity field is extrapolated to

time n+ 1, to evaluate the advection operator. The first sub-step considers only
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the advection term and the additional friction term in the case of the quasi-2D

equation, and is used to evaluate the intermediate velocity field u† and u
†
⊥
, for

each of the case respectively. The corresponding equation from which these are

obtained is respectively written as

u† −
∑J−1

q=0 αqu
n−q

∆t
= −

J−1∑

q=0

βq[(u · ∇)u]n−q,

u
†
⊥
−
∑J−1

q=0 αqu
n−q
⊥

∆t
= −

J−1∑

q=0

βq{[(u⊥ · ∇⊥)u⊥]
n−q +

H

Re
u

n−q
⊥ },

(2.104)

where J is the order of the integration scheme. The second sub-step determines

the forcing by prescribing the target velocity utarget (desired mean horizontal

velocity) on u‡ via
u‡ − u†

∆t
= F n+1ex, (2.105)

to obtain

F n+1 = (γ0utarget − u†)/∆t. (2.106)

The third sub-step treats the pressure gradient term and introduces a second

intermediate velocity field u‡†, as

u‡† − u‡

∆t
= −∇ ˜̃pn+1. (2.107)

The pressure ˜̃pn+1 is obtained from a Poisson equation constructed by taking the

divergence of equation (2.107) and imposing the divergence free constraint on u‡†.

i.e.

∇2 ˜̃pn+1 = ∇ ·

(
u‡

∆t

)

. (2.108)

After obtaining the intermediate velocity u‡†, the last sub-step involves the dif-

fusion term which is recast into a Helmholtz equation. The unknown velocity at

time n + 1 is solved by applying appropriate velocity boundary conditions. This

last sub-step is written as

(

∇2 −
γ0

Re∆t

)

un+1 = −

(
u‡†

Re∆t

)

. (2.109)

The energy equation in (2.7) and (2.25) is solved in a similar manner using a

two-step scheme, with the first step advancing based on the advection term and
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Weighing coefficient q = 0 q = 1 q = 2

αq 3 -3/2 1/3
βq 3 -3 1
γq 11/6

Table 2.1: Weighing factors for integration of advection and diffusion equations
using a third-order mixed explicit-implicit integration scheme.

the second using the diffusion term. These sub-steps are respectively written

T † −
∑J−1

q=0 αqT
n−q

∆t
= −

J−1∑

q=0

βq(u
n−q · ∇)T n−q,

γ0T
n+1 − T †

∆t
=

1

Pe
∇2T n+1.

(2.110)

The weighing factors used in these schemes are given in table 2.1.

2.9.3 Linear stability analysis - numerical implementation

A BiGlobal stability analysis is implemented in the present code in which a steady

or time-periodic base flow that has spatial dependence in two directions is con-

sidered with three-dimensional disturbances in the third homogeneous spatial di-

rection. The spatial discretisation of the linear equation governing the evolution

of the small amplitude perturbation is similar to what was discussed for the base

flow in § 2.9.1. An implicitly restarted Arnoldi iteration method is used to solve

the eigenvalue problem (equation 2.34) in which a standard orthogonal projec-

tion of the operator A to a low dimensional Krylov subspace is carried out. The

sequence of the Krylov subspace is given by [u0,A u0,A
2u0, .............,A

k−1u0],

where u0 is the initial guess of the perturbation field and k is the number of eigen-

values to be computed. The operator A is not explicitly constructed, instead the

standard time-stepping scheme is used to integrate equation (2.28), (2.31) and

(2.29), (2.32) to obtain the action of operator A on the perturbation field. Vec-

tors spanning the Krylov subspace are orthonormalised using the Gram-Schmidt

procedure to form the basis vector

V = [v0, v2, v3, .....vk]. (2.111)
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Thereafter, a Hessenberg matrix (Hm) is constructed and diagonalised to obtain

the eigenvalues and eigenvectors of Hm, where

Hm ≡ V T
A V . (2.112)

After each block of time stepping the eigenvalues (µhi) and eigenvectors (ψi) of

Hm are computed. The iteration is repeated until the residual error which is given

by

εi ≡ ||A ψi − µhiψi|| (2.113)

of the eigenpair of Hm is within the prescribed tolerance range which was set as

10−8. The implicitly restarted Arnoldi iterations are implemented through the

ARPACK package (Lehoucq et al., 1998). Once converged, the eigenvalues and

eigenvectors of Hm are the corresponding approximate (Ritz) eigenmodes of the

linear operator A . The maximum dimension of the Krylov subspace (Ke) used for

constructing the orthogonal basis vector is a specifiable parameter in the present

solver.

A similar technique is used to compute the leading eigenmodes of operator

A ∗A for the transient growth analysis discussed in § 2.6, and of A ∗ to compute

the adjoint eigenmodes for the sensitivity analysis discussed in § 2.4.

2.10 Three-dimensional direct numerical simu-

lation (DNS)

In this section the discretisation technique used to perform 3D DNS is discussed.

The solver uses a Fourier spectral method to discretize the z-direction, while to

disretize the x − y plane 2D nodal spectral element scheme discussed in § 2.9.1

is used. This scheme has found widespread applications since the work of Kar-

niadakis & Triantafyllou (1992). The flow variables are represented using the

Fourier expansion as

u(x, y, z, t) =

M−1∑

m=0

um(x, y)e
ikmz,

p(x, y, z, t) =

M−1∑

m=0

pm(x, y)e
ikmz,

(2.114)

where k = 2π/lz is the wavenumber of the Fourier mode m in the spanwise

homogeneous direction z ensuring a spanwise periodicity, M is the number of
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Fourier modes considered for the simulation and lz is the spanwise periodic length

of the flow domain. Substituting equation (2.114) into equation (2.5) and (2.6),

the equations to be solved for each Fourier mode in the 2D dimensional plane

(x− y plane) is obtained

∇m · um = 0, (2.115)

∂um

∂t
+ Fm{(u ·∇)u} = −∇mpm +

1

Re
∇2

mum, m = 0, ....M − 1, (2.116)

where Fm is the mth Fourier mode of the Fourier transform operator F which

is evaluated in physical, and not Fourier space. The operators ∇m and ∇2
m are

given by

∇m =
( ∂

∂x
,
∂

∂y
, imk

)

,

∇2
m =

( ∂2

∂x2
,
∂2

∂y2
,−m2k2

)

.

(2.117)

It is apparent from equation (2.116) that Fourier modes couple only through the

advection term. Thus an efficient computation is possible whereby Fourier modes

are distributed across parallel processes with inter-process communication only

being required for evaluation of the advection term. In the present study this is

implemented through the open message passing interface (MPI) library.

2.11 Grid resolution and validation

The numerical solver used in this study has been validated for both MHD and

non-MHD flow simulations with focus on linear stability analysis (Sheard, 2011;

Sapardi et al., 2017; Ng et al., 2018), transient growth analysis (Hussam et al.,

2012b; Cassells et al., 2019), energetics analysis (Sheard et al., 2016) and heat

transfer analysis (Hussam & Sheard, 2013; Cassells et al., 2016; Hamid et al.,

2016a). In this section, grid resolution is examined for each of the techniques

which has been used to study the flow dynamics for the current system as de-

scribed in § 2.1. Additionally, validation of the optimal energy growth obtained

from transient growth analysis, the growth rate calculated from the different

terms in the perturbation kinetic energy analysis, and from the different terms

contributing to the endogeneity are also presented.

Initially, meshes with different number of elements were generated and for

each of the cases, p-refinement was carried out considering polynomial orders

ranging between 3 ≤ np ≤ 18 for a case with β = 0.25, γ = 2 and tan(φ) = 0.125.
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Considering a balance between computational error and computational time, the

594-element mesh with polynomial order np = 15 is adopted as the prototype

for all the base flow computations carried out in this study. The 594-element

mesh is shown in figure 2.4 along with the p-element refined meshes for β = 0.25,

γ = 2 and tan(φ) = 0.125. For other β and γ cases, meshes were constructed such

that the size of the smallest elements along the boundaries and largest elements

remained the same as the mesh tested for grid resolution. The polynomial order

for the base flow computations for all the cases was also preserved at np = 15.

Examples of the grid used for a higher blockage ratio case β = 0.8, γ = 2,

tan(φ) = 0.125 and for a longer pitch case β = 0.25, γ = 8, tan(φ) = 0.125 are

shown in figures 2.5 and 2.6, respectively. The solution convergence with element

polynomial order for the mesh adopted is shown in table 2.2 for a test case having

β = 0.25, γ = 2, and tan(φ) = 0.125 at Re = 400 for the non-MHD cases, and

at H = 5, H = 200 and H = 500 at Re = 500, Re = 700 and Re = 1300,

respectively, for the quasi-2D MHD base flow simulations. The parameters tested

for base flow convergence are the norm, L 2 =
∫

Ω
|u|2 dΩ (an integral 2-norm or

Euclidean norm of the velocity field), the friction factor f (equation 2.79) and the

domain averaged Nusselt number 〈Nu〉 (equation 2.77). At the polynomial order

selected for the base flow simulations all the tested parameters have a relative

error of less than 0.007% with respective to the highest polynomial order.

The converged base flow solutions were used for conducting linear stability

and transient growth analysis. Further grid convergence testing was conducted

with respect to the polynomial order (np) used for the linear stability and tran-

sient growth studies to compute the eigenvalue and eigenvectors of the linearised

operator A in equation (2.34) and the operator A ∗A in equation (2.66). The re-

spective convergences are shown in tables 2.3 and 2.4. Convergence with respect

to length of the eigenvector space used Ke (discussed in § 2.9.3) were also tested

for both the non-MHD and quasi-2D MHD cases and Ke = 20 is chosen for all the

cases. A spanwise wavenumber of k = 1 is used to check for the growth rate con-

vergence at Re = 400 for the non-MHD cases, whereas a quasi-2D perturbation

growth rate was tested at H = 5, 200 and 500 at different Reynolds number for

the linear stability studies. For the transient growth analysis, the optimal energy

growth of 2D perturbations at Re = 400 and quasi-2D perturbations considering

different cases from the low to high-H range as used for the linear stability cases,

all at a time horizon of τ = 1, were used for the testing. The relative error of

growth rate using np = 15 with respect to the highest polynomial order tested is

within 0.07% and the relative error using Ke = 20 with respect the highest value
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Figure 2.4: (a) Details of the spectral element mesh and (c) the overlay of a
virtual grid through interior element quadrature points with np = 15. Close-up
views of the mesh resolution near the wedge tip are shown in (b,c). The particular
geometric parameters here are β = 0.25, γ = 2 and tan(φ) = 0.125.

Figure 2.5: (a) Details of the spectral element mesh and (c) the overlay of a
virtual grid through interior element quadrature points with np = 15. Close-up
views of the mesh resolution near the wedge tip are shown in (b,c). The particular
geometric parameters here are β = 0.8, γ = 2 and tan(φ) = 0.125.

tested is within 10−5% for all the cases tested. At the chosen polynomial order

for the transient growth analysis, the relative error with respect to the highest

polynomial order was found to be within 0.08% for all the cases tested.

Resolution testing was also conducted to decide the number of Fourier modes
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Figure 2.6: (a) Details of the spectral element mesh and (c) the overlay of a
virtual grid through interior element quadrature points with np = 15. Close-up
views of the mesh resolution near the wedge tip are shown in (b,c). The particular
geometric parameters here are β = 0.25, γ = 8 and tan(φ) = 0.125.

(m) which are required to resolve the spectral element Fourier three-dimensional

simulations with spanwise domain length matching the wavelength of the global

instability mode predicted from a linear stability analysis (λcr). A blockage ratio

of β = 0.5 was tested using Fourier modes between 4 and 32. It was found that

for a λcr spanwise domain length, 16 Fourier modes could sufficiently resolve the

flow. The parameters tested for convergence are shown in table 2.5.

For validating the optimal energy growth predicted by the linear transient

growth solver, the optimal mode corresponding to some time horizon τ is used

as an initial condition and linearly evolved to the same time using equations

(2.28–2.29) for the non-MHD and equations (2.31–2.32) for the quasi-2D MHD

cases. The energy of the evolved disturbance (K(τ)) was then normalised by its

initial energy (K(0)) and subsequently compared against the gain found from

the transient growth analysis G(τ). Selected cases used to make this validation

and a comparison of the corresponding normalised energy ratio and gain found

from transient growth are shown in table 2.6 for validating the accuracy of the

transient growth analysis implementation. The relative error of the normalised

energy gain with respect the gain found from the transient growth analysis for

each of these cases evaluated is less than 0.01%, thus verifying the accuracy of

the transient growth analysis implementation.

For validating the energetics analysis used for the hydrodynamic cases, the

computed individual components of equation (2.41) are summed, yielding an

estimate of the growth rate that is compared with the growth rate computed from
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H = 0, Re = 400 H = 5, Re = 500
np L 2 f 〈Nu〉 np L 2 f 〈Nu〉

3 4.20119 0.02806 2.02691 3 4.14644 0.051614
6 4.19953 0.02802 2.02691 6 4.14644 0.051614 1.92343
9 4.19951 0.02802 2.02771 9 4.14641 0.051613 1.92437
12 4.19951 0.02802 2.02979 12 4.14641 0.051613 1.92475
15 4.19952 0.02802 2.03135 15 4.14642 0.051614 1.92494
18 4.19952 0.02802 2.03144 18 4.14643 0.051614 1.92506

H = 200, Re = 700 H = 500, Re = 1300
np L 2 f 〈Nu〉 np L 2 f 〈Nu〉

3 3.83711 0.737659 1.99195 3 3.81274 0.960569 2.01651
6 3.84009 0.738072 1.99544 6 3.81621 0.961437 2.01755
9 3.84003 0.738052 1.99605 9 3.81615 0.961410 2.01808
12 3.84003 0.738052 1.99629 12 3.81614 0.961404 2.01828
15 3.84003 0.738058 1.99642 15 3.81614 0.961407 2.01839
18 3.84007 0.738067 1.99648 18 3.81616 0.961414 2.01845

Table 2.2: Convergence of 2D solutions with increasing order of element polyno-
mial (np) for mesh having 594 elements with β = 0.25, γ = 2, tan(φ) = 0.125 at
Re = 400 for the non-MHD case (H = 0), and H = 5, 200 and 500 for the quasi-
2D MHD cases. Quantities shown are the converged L 2 norm, friction factor f
and domain averaged Nusselt number 〈Nu〉.

the linear stability analysis. This was verified for all the enegretics computations

conducted in this project. An example of such a validation is shown in table 2.7

for β = 0.25 at Re = 400. The relative error of growth rate from the energetics

analysis is within 0.03% of that computed from linear stability analysis, thereby

verifying the accuracy of the energetics analysis.

To validate the endogeneity analysis used for the hydrodynamic cases, the

computed domain integrals of the individual components of equation (2.63) are

summed, yielding an estimate of the growth rate. This growth rate is then com-

pared with the growth rate computed from the linear stability analysis. Such

comparisons were made for all the cases considered for endogeneity analysis. A

sample case is shown in table 2.8 for β = 0.25 at Re = 400. The relative error of

growth rate from the endogeneity analysis is within 0.03% of that computed from

linear stability analysis, thus verifying the accuracy of the endogeneity analysis.
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H = 0, Re = 400 H = 5, Re = 500 H = 0, Re = 400 H = 5, Re = 500
np σ σ Ke σ σ

3 0.06808 -0.03368 10 0.06792 -0.03468
6 0.06791 -0.03083 20 0.06792 -0.03082
9 0.06791 -0.03472 30 0.06792 -0.03082
12 0.06792 -0.03084 50 0.06792 -0.03082
15 0.06792 -0.03082 80 0.06792 -0.03082
18 0.06792 -0.03080

H = 200, Re = 700 H = 500, Re = 1300 H = 200, Re = 700 H = 500, Re = 1300
np σ σ Ke σ σ

3 -0.150846 10 -0.11546 -0.15678
6 -0.13612 -0.15645 20 -0.11546 -0.15678
9 -0.11547 -0.15678 30 -0.11546 -0.15678
12 -0.11546 -0.15679 50 -0.11546 -0.15678
15 -0.11546 -0.15678 80 -0.11546 -0.15678
18 -0.11545 -0.15678

Table 2.3: Convergence of growth rate of the leading eigenmode with increasing
order of element polynomial (np) for β = 0.25, γ = 2, tan(φ) = 0.125 for the
non-MHD case (H = 0), and H = 5, 200 and 500 for the quasi-2D MHD cases.

H = 0, Re = 400 H = 5, Re = 500 H = 200, Re = 700 H = 500, Re = 1450
np G(τ = 1) G(τ = 1) G(τ = 1) G(τ = 1)

3 4.75246 4.88346 16.74369 1740.28781
6 4.81973 4.99235 16.68156 1411.78958
9 4.82982 4.99275 16.68497 1417.27099
12 4.82981 4.99275 16.68512 1417.82221
15 4.83095 4.99275 16.68475 1417.86138
18 4.83095 4.99275 16.68430 1417.77350

Table 2.4: Convergence of optimal energy growth at τ = 1 with increasing order
of element polynomial (np) for β = 0.25, γ = 2, tan(φ) = 0.125 at Re = 400,
k = 0 for the non-MHD and H = 5, H = 200 and H = 500 for the quasi-2D
MHD cases.

m 〈Ek〉 〈Ek,0〉 〈Ek,1〉 〈f〉 〈Nu〉

4 103.47576 97.73675 2.23070 0.32056 4.59831
8 103.33750 97.91335 2.14245 0.31866 4.70076
16 103.29384 97.87211 2.14143 0.31838 4.70237
32 103.24632 97.82569 2.14118 0.31824 4.70218

Table 2.5: Convergence of flow properties with increasing number of Fourier
modes (m) using a test case of β = 0.5, γ = 2, tan(φ) = 0.125, Re = 100.
Quantities shown are the time-averaged values of the volume integral of the kinetic

energy of the flow 〈Ek〉, fundamental mode 〈Ek,0〉, dominant mode 〈Ek,1〉, the
time-averaged friction factor and the time averaged Nusselt number, where the
double-overline represents the time average.
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H = 0, Re = 400 H = 5, Re = 500
τ K(τ)/K(0) G(τ) τ K(τ)/K(0) G(τ)

5.5 34.32694 34.33101 1.5 4.99275 4.99275

H = 100, Re = 500 H = 500, Re = 1450
τ K(τ)/K(0) G(τ) τ K(τ)/K(0) G(τ)

1 16.68434 16.68475 1 1417.80522 1417.86138

Table 2.6: Comparison of the normalised energy of the optimal disturbance
(K(τ)/K(0)) with the corresponding optimal energy growth found from transient
growth analysis (G(τ)) corresponding to time τ for the non-MHD and quasi-2D
MHD cases.

PKE LSA % relative difference in σ

〈T1〉 -0.0019117
〈T2〉 0.0019111
〈P1〉 -0.0016381
〈P2〉 0.1448406
〈P3〉 0.0021344
〈P4〉 -0.0021662
〈D〉 -0.0523740
〈σ〉 0.0907959 0.0907761 0.022

Table 2.7: Contribution of each term in equation (2.41) to the growth rate of the
leading eigenmode and its comparison with the growth rate obtained from linear
stability analysis for β = 0.25 and Re = 400.

Endogeneity LSA % relative difference in σ

〈Eσ,conv〉 0.012532
〈Eσ,prod〉 0.122446
〈Eσ,pres〉 0.000033
〈Eσ,diss〉 -0.044210
〈Eσ〉 0.090801 0.090776 0.027

Table 2.8: Contribution of the domain integral of each term in equation (2.63)
to the growth rate of the leading eigenmode and its comparison with the growth
rate obtained from linear stability analysis for β = 0.25 and Re = 400.
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Chapter summary

In this chapter, the equations governing the fluid flow for both the non-MHD and

MHD cases are discussed. Various techniques used to understand the dynamics

of the flow such as the linear stability analysis, energetics analysis, sensitivity

and receptivity analysis, endogeneity analysis, linear transient growth analysis

and the Stuart–Landau analysis are presented. This is followed by a discussion

of the parameters used to quantify the heat transfer effectiveness. Thereafter,

the numerical method used to solve the governing equations and carry out three-

dimensional simulations are elucidated. The grid resolution and validation testing

conducted for different flow parameters are presented in the last section of this

chapter.

The following chapters will discuss the results of the current work, starting

from the linear stability characteristics of hydrodynamic channel flows with re-

peated wedge protrusions presented in the following chapter.
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Chapter 3

Linear stability of

two-dimensional hydrodynamic

channel flow with repeated wedge

protrusions

The two-dimensional hydrodynamic flow in the system under consideration is

characterised in this chapter, starting with the identification of the general flow

regimes and studying the influence of the associated temperature fields in the

steady and unsteady states on the heat transfer ratio. Subsequently, regimes

maps over a range of blockage ratios, pitch values and wedge angles are presented.

This is followed by a discussion on the variation of separation and reattachment

points of the different steady recirculation regions identified in the flow. The

stability of the two-dimensional flow is studied via a global linear stability anal-

ysis. Both 2D and 3D stability boundaries are established and the dependence

of various geometric parameters of the wedge on the stability boundaries are elu-

cidated. Furthermore, the underlying eigenmodes destabilisng the base flow are

elaborated and the mechanism through which the onset of instability occurs are

explored through an energetics analysis of the dominant global mode. This chap-

ter also explores the adjoint modes, the sensitivity of the eigenmodes as well the

endogeneity to further understand the flow dynamics and elucidate the regions in

the flow where placement of a flow control mechanism will be most effective. The

last section explores the short-time dynamics of the system through the analysis

of the linear transient growth behaviour. The optimal disturbance field structure

associated with this flow and the corresponding energy gain are discussed. A

comparison of the current streamwise periodic system to other confined channel

87



flow setups studied in the literature is also made. 1

3.1 Two-dimensional flow

The focus of this section is to characterise the two-dimensional flow in the setup,

which is carried out by classifying the flow regimes based on topological changes

to the flow structure as Reynolds number is increased. Following this, the heat

transfer behaviour in the identified steady and unsteady state of the flow is dis-

cussed. The flow regimes are further illustrated using regime maps, which are

generated for different ranges of geometric parameters investigated. The steady

separation and reattachment characteristics of the different recirculation zones

are explained thereafter.

3.1.1 Flow regimes

This study begins with the acquisition of 2D flow solutions across a range of

geometric parameters characterising the system. From these, the flows may be

classified into five regimes based on the observed streamline patterns, in all cases,

the results are shown at either a steady state or a statistically steady-state in

cases reaching time-varying solutions. The identified flow regimes are shown in

figure 3.1.

Regime-1 is characterised by a single recirculation region that develops in front

of the wedge and is attached to the bottom boundary (figure 3.1a), occuring at low

Re. The flow otherwise remains attached to the channel walls. The appearance

of a recirculation region at a sharp concave corner is a ubiquitous feature of low-

Reynolds number flows (Taneda, 1979). This is similar to the low Re flow over a

FFS in which a primary recirculation region appears in front of the step (Mei &

Plotkin, 1986; Stüer et al., 1999).

With an increase in Re, an adverse pressure gradient compels the flow to

separate from somewhere along the tapered surface of the wedge, subsequently

reattaching to the bottom wall in the gap before the subsequent wedge. This

results in a second recirculation region extending from the tapered wedge surface

to the bottom surface between the current and the next wedge (regime-2, figure

3.1b). This is unlike the the flow over a FFS (Mei & Plotkin, 1986; Stüer et al.,

1999) where a secondary recirculation region forms immediately after the step.

1Some of the results contained in this chapter have been published in Murali, S, Ng, Z. Y.
& Sheard, G. J. 2022 Stability of flow in a channel with repeated flow-facing wedge-shaped
protrusions. Journal of Fluid Mechanics. 941, A59.
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In regime-3 (figure 3.1d), the recirculation region identified in regime-2 merges

with the recirculation region in front of the next wedge forming a single recircula-

tion region extending from the slanted wedge surface of the current wedge to the

front of the next wedge. This effectively reduces the depth of the cavity between

successive wedges, from the perspective of the through-flow. For higher blockage

ratios of β & 0.5, an additional steady secondary recirculation region is also ob-

served immediately downstream of the wedge tip in regime-2 and regime-3 (figure

3.1c).

Further increasing Re produces a time dependent flow. In the unsteady

regime-4, an instantaneous snapshot of which is shown in figure 3.1e, the steady

recirculation region identified in regime-3 begins to shed, introducing vortices

which sweep over the bottom wall, whereas the flow remains attached on the top

wall of the channel. No vortex shedding from the wedge tip is observed in this

regime. The last regime encountered, regime-5 (instantaneous snapshot in figure

3.1f), is characterised by vortex shedding occurring at the wedge tip along with

entrainment of boundary layer vorticity into the core.

3.1.2 Heat transfer characteristics of the 2D flow

The heat transfer characteristics in the steady and unsteady regime of the two-

dimensional flow identified in § 3.1.1 is briefly discussed in this section. The

associated temperature fields in these flow regimes are shown in figure 3.2 for an

example case with β = 0.5, γ = 2. A diffusive heat transfer behaviour can be

observed in the steady state of the flow (figure 3.2a). In the unsteady regime,

vortex shedding from the wedge tip engulfs the boundary layer vortices, thereby

helping to achieve a better mixing between the hot fluid and cold fluid near

the bottom wall and top walls, respectively, thereby resulting in a convection

dominated heat transfer behaviour which can be noted from the temperature

fields (figure 3.2b) in this state.

The heat transfer ratio HR as defined in equation (2.72) will be presented now

to quantify the heat transfer enhancement that can be achieved by the presence

of wedges in the channel. The value of HR above 1, indicates the improvement

in heat transfer that could be achieved by the use of wedges. In figure 3.3, HR

is plotted against Re − Recr,2D spanning the steady and unsteady flow regimes

for different blockage ratios. In the steady flow regimes (Re − Recr,2D < 0), HR

remains very close to 1, irrespective of the blockage ratio considered. A rise in the

value of HR can be seen as soon as the flow becomes unsteady (Re−Recr,2D > 0)

showing that the presence of the wedges can be effective in the unsteady regimes
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(a) Regime-1, β = 0.25, Re = 100 (b) Regime-2, β = 0.25, Re = 175

(c) Regime-2, β = 0.65, Re = 75 (d) Regime-3, β = 0.25, Re = 200

(e) Regime-4, β = 0.25, Re = 450 (f) Regime-5, β = 0.25, Re = 500

ωz:

Figure 3.1: (a–f) Two-dimensional steady flow regimes 1–3 and (e–f) unsteady
regimes 4–5. The flow streamlines and the spanwise vorticity field are shown for
all cases. For the unsteady cases in (e–f) an instantaneous snapshot of the flow
field is shown. For all the cases shown here, γ = 2 and tan(φ) = 0.125.

(a) Re = 100 (Steady state)

(b) Re = 400 (Unsteady state)

Figure 3.2: Temperature contours overlaid with the spanwise vorticity contours
for a two-dimensional flow in the (a) steady state and (b) unsteady state. The
parameter combination considered is β = 0.5, γ = 2 and tan(φ) = 0.125 at
Reynolds number as indicated. The spanwise vorticity line contours are as per
figure 3.1 with the solid and dashed lines indicating positive and negative values,
respectively.
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Figure 3.3: Heat transfer ratio HR plotted against Re−Recr,2D for different β as
indicated. The steady and unsteady flow regimes are on the left and right of the
dashed vertical line, respectively.

of the flow, and a heat transfer increase as high as approximately 35 times that

without the presence of wedges can be achieved.

3.1.3 Regime map

In this section, regime maps for a range of β, γ and φ are discussed. The Reynolds

number for the onset of each regime identified in § 3.1.1 are termed ReRi, where

i = 2 − 5 denotes the regime of the flow observed at Re > ReRi. ReR5 = Recr,2D

is the approximate critical Reynolds number for the onset of two-dimensional

vortex shedding in the flow. These threshold Reynolds numbers for changes in the

steady flow topology were determined visually, accurate to within ∆Re = ±10.

The critical Re for onset of the unsteady regime (ReR4 for some cases if it exists,

ReR5 otherwise) is found through the linear stability analysis presented later in

§ 3.2.1.

Recr,2D is found to decrease with increasing β, γ and φ. With increasing β,

the range of Re for each regime decreases and at higher blockage ratios, vortex

shedding starts after the flow passes through two steady regimes - regime 1 and

2. Regime-4 is not observed for β & 0.25. Within 0.3 . β . 0.35 regime-2 was

not identified, whereas within 0.5 . β . 0.65 regime-3 was not observed (figure

3.4a). A similar observation was made for γ & 5 (figure 3.4b). ReRi appears to

vary the most in the range 1 . γ . 5, beyond γ & 5 , the different threshold

values appears to plateau. In the range of wedge angles investigated, the flow

passes through each of the flow regimes identified before becoming unsteady as

shown in figure 3.4(c).
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(a) γ = 2, tan(φ) = 0.125

(b) β = 0.25, tan(φ) = 0.125

(c) β = 0.25, γ = 2

Figure 3.4: Regime maps as functions of Re and (a) β (b) γ and (c) φ. The
threshold Reynolds numbers for onset of each two-dimensional flow regime shown
in figure 3.1 are given by ReR2, ReR3, ReR4 and ReR5. The critical Reynolds
number for the onset of three-dimensional instability, Recr,3D is also shown.
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3.1.4 Steady separation and reattachment

The behaviour of different recirculation regions in the steady state flow are eluci-

dated in this section by characterising the migration of their separation and reat-

tachment points along the bottom wall for various blockage ratios, pitch values

and wedge angles, which are shown in figure 3.5(b-g). The recirculation regions

are places of accumulation of the fluid which does not interact with the bulk flow.

From a heat transfer perspective, these are regions where high temperatures may

develop, and, lacking convective transport and mixing, might lead to structural

failure. A diagram illustrating the location of the recirculation zones and nomen-

clature of the separation and reattachment points is illustrated in figure 3.5(a).

The recirculation region that forms in front of the wedge (denoted as 1) have

separation and reattachment points xs1 and yr1 respectively. An increase in xs1

denotes its migration to the right whereas an increase in yr1 shows its movement

upward on the vertical wall. For the recirculation region denoted as 3, closed and

open circles respectively are used to denote the separation (xs3) on the tapered

wall and the corresponding reattachment (xr3) on the bottom wall between the

current and the subsequent wedge. An increase in either of these values denotes a

shift to the right. For β & 0.5, an additional recirculation region 2 starts forming

with separation starting at the wedge tip and reattaching on the tapered wall

(xr2), represented by open triangle symbols. An increase in xr2 shows its move-

ment to the right away from the wedge tip. Formation of recirculation region on

the top wall was not observed in the steady regimes for the current setup differing

from the observations made in flow over a backward-facing step (Armaly et al.,

1983; Ghia et al., 1989; Lanzerstorfer & Kuhlmann, 2012a).

As an example, the trendlines showing the growth of the different recircula-

tion regions are explained using β = 0.25. The growth of recirculation region

1 is shown by a decrease in xs1 and an increase in yr1 with increasing Re. De-

viation from this trend is observed when recirculation region 3 emerges further

downstream (represented by the first dash-dotted line from the bottom in figure

3.5b,c). Further, the growth of recirculation region 3 with Re is shown as an

increase in xr3 and an approximately linear decrease in xs3. A deviation in the

trend of xs3 and yr1 is observed when recirculation regions 1 and 3 merge, shown

by the second dash-dotted line from the bottom in figure 3.5(b,c). A similar

trend is followed for all blockage ratios (figure 3.5b,c), pitch (figure 3.5d,e) and

wedge angle variations (figure 3.5f,g). Comparable observations were also found

for flows past a BFS (Erturk, 2008), FFS (Marino & Luchini, 2009) and in a

180-degree bend (Sapardi et al., 2017), where a deviation from the growth trend
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of a recirculation region was observed with the formation of a new recirculation

region further downstream.

3.1.5 Unsteady flow

As discussed in § 3.1.1, there are two unsteady or time dependent flow regimes

observed in the current setup. Regime-4 is characterisied by recirculation regions

sweeping over the bottom wall with no vortex shedding observed. With increase

in Re, vortex shedding starts from the tip of the wedge along with formation of

recirculation regions on the top wall of the channel. The vortex shed from the

wedge tip interacts with the secondary wall vortices formed on the walls. The

Fourier spectra of the L 2 signal in regime-4 (Re = 480) and 5 (Re = 500) for β =

0.25, γ = 2, and tan(φ) = 0.125 are shown in figure 3.6. The spectra of the signal

reveals one dominant and two sub-dominant frequency peaks associated with the

flow. The dominant frequency is found to be f1 ≈ 0.27, and the sub-dominant

frequencies of relatively lower amplitude are its harmonics, f2 = 2f1 ≈ 0.53 and

f3 = 3f1 ≈ 0.79. Further details on the onset of the two-dimensional unsteadiness

in the flow are elucidated in the sections to follow.

3.2 Linear stability

This section investigates the linear stability of the steady two-dimensional flows

reported earlier for a range of β and γ combinations. The stability of the

flow to two-dimensional perturbations is investigated first and the global two-

dimensional eigenmodes responsible for the onset of two-dimensional unsteadiness

in the steady flow are discussed. Thereafter, the critical parameters, underlying

eigenmodes and the mechanism responsible for the 3D bifurcation are elucidated.

3.2.1 2D instability

The two-dimensional stability of the flow is investigated in this section for a range

of blockage ratios and pitch values by performing a linear stability analysis on

the steady-state solutions. The resulting growth rates over a range of Re for

selected β and γ combinations are shown in figure 3.7. Over the entire range

of Reynolds numbers that produce steady flow solutions, the leading eigenmode

has a real eigenvalue that remains stable. This mode is labelled as M1 here. As

the unsteady Reynolds number regime is approached, evidence of a subdominant

complex eigenmode is detected (labelled as M2 here). Using the BoostConv al-
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(a)

γ = 2, tan(φ) = 0.125

(b) (c)

β = 0.25, tan(φ) = 0.125

(d) (e)

β = 0.25, γ = 2

(f) (g)

Figure 3.5: (a) Sketch showing the location of three identified recirculation zones
and nomenclature of the separation (closed symbols) and reattachment points
(open symbols) along with plots showing their dependence on Re and (b,c) β,
(d,e) γ, (f,g) φ. Variation of the separation and reattachment points along bottom
(b,d,f) horizontal & slanted wall and (c,e,g) vertical wall. Horizontal dash-dotted
lines in (b-g) are used to represent the deviation from an existing trend due to the
formation of a new recirculation region or merging of two existing recirculation
regions for β = 0.25 in (b,c), γ = 4 in (d,e) and φ = 4.764 in (f,g). xs3 and xr3
are normalised by γ in (d,e) for better visualisation.
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Figure 3.6: Fourier spectra of L 2 signal for β = 0.25, γ = 2 and tan(φ) = 0.125
in regime-4 (Re = 480) and regime-5 (Re = 500).

γ = 2 β = 0.25 β = 0.5

β Recr,2D γ Recr,2D γ Recr,2D

0.125 712.10 1 582.23 2 126.92
0.25 445.93 2 445.93 16 110.87
0.50 126.92 4 340.83
0.65 89.56 8 285.73
0.80 80.25 16 285.07

Table 3.1: Critical Reynolds number (Recr,2D) for different blockage ratio and
pitch values.

gorithm (Citro et al., 2017) steady-state solutions at higher Reynolds numbers

are acquired, and analysis of these base flows reveals that this complex M2 mode

grows rapidly over a small range of Reynolds numbers, quickly overtaking the

M1 mode, before becoming unstable at Reynolds numbers consistent with the

appearance of unsteady flow as described in § 3.1.3. The swift emergence of this

mode shows that care must be taken when performing a linear stability analysis

to include Reynolds number close to and where possible exceeding the critical

Reynolds numbers. Techniques capable of recovering the steady 2D solutions at

neutrally stable and unstable Reynolds numbers are key to this analysis, such

as the BoostConv scheme (Citro et al., 2017) used here, the recursive projection

method (Shroff & Keller, 1993), the selective frequency damping (SFD) method

(Akervik et al., 2007) and the adaptive selective frequency damping method (Jordi

et al., 2015).

The perturbation fields of the complex eigenmode (M2) responsible for the

onset of 2D unsteadiness is shown in figure 3.8. The eigenmode appears as a
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(a) β = 0.125, γ = 2 (b) β = 0.25, γ = 2 (c) β = 0.5, γ = 2

(d) β = 0.65, γ = 2 (e) β = 0.8, γ = 2

(f) β = 0.25, γ = 1 (g) β = 0.25, γ = 4 (h) β = 0.25, γ = 8

(i) β = 0.25, γ = 16 (j) β = 0.5, γ = 16

Figure 3.7: Plots of growth rate (σ) against Re. Real and complex eigenvalues
are denoted by closed and open symbols respectively. Triangle, square and cir-
cle symbols represent mode M1, M2 and M3, respectively. All cases here have
tan(φ) = 0.125.
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wave extending over the flow domain destabilising the shear layers on the bottom

and top wall of the channel. By contrast, these oscillatory structures are absent

from the M1 eigenmodes, which instead exhibit elongated streamwise structures

extending the length of the domain. The second subdominant mode (labelled M3

in figure 3.7) is similar to M2 but with a shorter streamwise wavenumber. Since

the streamwise-periodic boundary conditions imposed on this system permit only

an integer number of oscillatory waves within the domain, it is possible that

disturbances featuring a non-integer number of waves over any one wedge unit

could lead to a slightly lower critical Reynolds number. This may explain the

decrease in Recr,2D observed in the flow with increasing γ for every fixed value

of β. Beyond a certain γ where sufficiently wide bands of streamwise oscillation

wavelengths are available, Recr,2D does not vary significantly with increase in γ

(figure 3.4b). The critical Reynolds number (Recr,2D which corresponds to ReR4

or ReR5 shown in figure 3.4) corresponding to the onset of unsteadiness in the

flow for different blockage ratio and pitch combinations are shown in table 3.1.
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(a) β = 0.25, γ = 2, Re = 450 (M1) (b) β = 0.8, γ = 2, Re = 85 (M1)

(c) β = 0.25, γ = 2, Re = 450 (M2) (d) β = 0.8, γ = 2, Re = 85 (M2)

(e) β = 0.25, γ = 2, Re = 450 (M3) (f) β = 0.8, γ = 2, Re = 85 (M3)

(g) β = 0.25, γ = 16, Re = 250 (M1) (h) β = 0.5, γ = 16, Re = 110 (M1)

(i) β = 0.25, γ = 16, Re = 290 (M2) (j) β = 0.5, γ = 16, Re = 125 (M2)

(k) β = 0.25, γ = 16, Re = 290 (M3) (l) β = 0.5, γ = 16, Re = 125 (M3)

Figure 3.8: Contours of the real part of ω̂z for mode (a,b,g,h) M1, and ω̂z overlaid
with the line contours of the real part of v̂ for modes (c,d,i,j) M2 and (e,f,k,l) M3.
Base flow streamlines are also shown for reference. All cases here have a wedge
angle of tan(φ) = 0.125. Contours of ω̂z are shown in the linear scale at 20
equidistant levels, while line contours of v̂ are shown at 10 equidistant levels
with solid and dashed lines representing positive and negative values respectively
between -0.004 to 0.004 for (c-e,j,l), between -0.005 to 0.005 for (f) and between
-0.01 to 0.01 for (i,k).
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3.2.2 3D instability - growth rate and marginal stability

The stability of the steady flow to 3D perturbations is investigated in this section.

The growth rates of the leading eigenmode are shown in figure 3.9 as functions

of Re and spanwise wavenumber, k for different β and γ = 2 combinations. The

primary instability of the steady flow occurs through a real 3D eigenmode (having

a real eigenvalue) for all β and γ investigated in this study. The Re and k at

which the maximum growth rate of the perturbation is zero gives the critical

Reynolds number (Recr,3D) and wavenumber (kcr).

Inspection of the eigenvalue spectra for subcritical Reynolds numbers satisfy-

ing |(Re−Recr,3D)/Recr,3D| . 0.035 for different cases indicate a single dominant

mode to be responsible for the bifurcation. The full eigenvalue spectra near

Recr,3D are shown in figure 3.10 for selected cases. With increasing γ at a fixed

blockage ratio, the number of subdominant complex eigenvalues (all stable) ap-

pear to increase and are spread across the complex plane. An increase in β at a

fixed γ shows complex subdominant eigenvalues (all stable) with only a single real

eigenvalue which corresponds to the dominant eigenmode. The first subdominant

mode also appears to move closer to the neutral curve with an increase in β (figure

3.10a,d-f) and γ (figure 3.10a-c), although in the range of parameters investigated

none of the subdominant eigenmodes become unstable. The dominant modes for

different geometric parameter combinations are shown in figures 3.13 and 3.14

and the subdominant complex mode for β = 0.8, γ = 2 and β = 0.25, γ = 16

are shown in figure 3.10(g,h) as an example. They appear as a counter-rotating

streamwise vorticity structure concentrated near the wedge tip along with other

pairs near the top and bottom wall seen downstream, which appear as chevron

structures in the 2D plane (figure 3.10i,j).

Marginal stability curves are constructed by polynomial interpolation to find

the wavenumbers corresponding to zero growth rate for each respective Re and

are shown for selected blockage ratios and pitch values in figure 3.11. The flow is

unstable to infinitesimal perturbations of given wavenumbers to the right of these

curves and stable to the left. With increasing blockage ratio, the curves shift

to lower Re irrespective of the pitch and the unstable wavenumber range grows

wider, indicating that higher blockages are more destabilising for the flow. At

any fixed blockage ratio, decreasing γ causes the flow to become more unstable,

which is observed as a shift in the neutral curves to the left. This is because the

effect of the wedge on the flow becomes greater with increasing constriction and

decreasing distance between the wedges.

In figure 3.4(a,b), Recr,3D is overlaid on the regime maps of the two-dimensional
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(a) β = 0.125, γ = 2 (b) β = 0.25, γ = 2 (c) β = 0.5, γ = 2

(d) β = 0.65, γ = 2 (e) β = 0.8, γ = 2

(f) β = 0.25, γ = 1 (g) β = 0.25, γ = 4 (h) β = 0.25, γ = 8

(i) β = 0.25, γ = 16 (j) β = 0.5, γ = 16 (k) β = 0.8, γ = 16

Figure 3.9: Plots of the growth rate (σ) against spanwise wavenumber k for
different Re. The stability analysis was conducted for wavenumbers up to k = 50,
but only a small range of interest is shown for clarity, the remaining modes always
decayed monotonically with increasing wavenumber beyond the range shown.
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(a) β = 0.25, γ = 2, Re = 90 (b) β = 0.25, γ = 4, Re = 150

(c) β = 0.25, γ = 8, Re = 150 (d) β = 0.5, γ = 2, Re = 60

(e) β = 0.65, γ = 2, Re = 60 (f) β = 0.8, γ = 2, Re = 60

(g) (h)

(i) (j)

ω̂x:

Figure 3.10: Eigenvalue spectra near the critical Reynolds number (Recr,3D). Only
the positive imaginary plane is shown, as complex eigenmodes present as conju-
gate pairs. The leading and first subdominant eigenvalues are indicated as (i) and
(ii). (g,h) Positive (blue) and negative (yellow) iso-surfaces of streamwise vortic-
ity (ω̂x) of the first subdominant eigenmode of (c,f), while the leading modes
labelled (i) are shown in figures 3.13 and 3.14. (i,j) Streamwise vorticity contours
on xy-plane showing formation of chevron structures for the same cases as in
(g,h). The wedge angle tan(φ) = 0.125 for all cases.
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(a) γ = 2 (b) β = 0.25

(c) γ = 8, 16 (d) β = 0.8

Figure 3.11: Neutral stability curves of the flow for different β and γ combinations.
In (c) solid curves correspond to γ = 8 and dashed curves to γ = 16. Wedge angle
tan(φ) = 0.125 for all the cases.
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base flows as functions of β and γ. For all γ investigated here and for β . 0.5,

Recr,3D is within regime-1, where only a single recirculation region exists in front of

the wedge. Beyond β ≈ 0.5, onset of three-dimensionality occurs within regime-2

when another recirculation region is formed immediately after the wedge tip.

A summary of Recr,3D and kcr found for different β and γ combinations is

shown in table 3.2. The resemblence of the wedge geometry to a FFS motivates a

rescaling of Recr,3D and kcr by constriction gap height (2L− hw), consistent with

the length scale based on the FFS downstream channel height used in Lanzer-

storfer & Kuhlmann (2012b). The rescaled values are denoted as

Recr,β = 2Recr,3D(1− β), kcr,β = 2kcr(1− β). (3.1)

Similarly, to assess their variation with γ, they are rescaled based on the gap

length lp as

Recr,γ = γRecr,3D, kcr,γ = γkcr. (3.2)

The variation of these modified critical Reynolds number and wavenumber (3.1-

3.2) with β at a fixed pitch of γ = 2 and γ = 16, as well as their variation with

γ at a fixed blockage ratio of β = 0.25 and β = 0.8, are shown in figure 3.12.

Both Recr,β, kcr,β and Recr,γ, kcr,γ show a monotonic decrease with increasing β

and decreasing γ irrespective of the fixed parameter. From figure 3.11 and 3.12

it can be observed that the influence of β on the stability limit is greater at a

larger pitch, whereas the influence of γ is more pronounced at smaller values of

β. On the other hand, the variation of critical wavenumber is almost negligible

when the fixed parameter is changed.

Dependence of Recr,β and kcr,β on blockage ratio is qualitatively similar to

those in a forward-facing step setup (Lanzerstorfer & Kuhlmann, 2012b), in which

blockage ratio was termed as constriction ratio. For β = 0.25 and β = 0.5 at

γ = 2 (γ = 16) the critical wavelength of the leading eigenmode λcr for the

present flow domain is 6.9hw (7.85hw) and 3.2hw (3.31hw) respectively which falls

between the corresponding λcr for FFS setup, 3hs and 1.8hs (Stüer et al., 1999;

Lanzerstorfer & Kuhlmann, 2012b) and BFS setup, 10hs and 7.16hs (Blackburn

et al., 2008a; Lanzerstorfer & Kuhlmann, 2012a). Recr,3D in the present system

is much lower than in those geometries. The disturbances from a leading wedge

carry on to subsequent wedges in the present setup due to the streamwise periodic

domain, therefore the flow is pre-disturbed at the inlet of a subsequent wedge,

altering the stability characteristics. Figure 3.4(b) demonstrates that Recr,3D

increases with increasing pitch. This is likely because a larger pitch effectively
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γ = 2 γ = 16

β Recr,3D kcr β Recr,3D kcr

0.125 162.22 1.82295 0.125 379.96 1.88670
0.25 86.85 1.72921 0.25 168.42 1.72233
0.50 58.59 1.95534 0.50 89.07 1.89777
0.65 55.15 2.21249 0.65 77.12 2.02639
0.80 57.98 2.65795 0.80 74.26 2.20345
0.95 70.82 3.76773

β = 0.25 β = 0.8

γ Recr,3D kcr γ Recr,3D kcr

1 79.40 1.74095 1 57.43 2.75099
2 86.85 1.72921 2 57.96 2.65795
4 100.50 1.74665 4 59.88 2.49823
8 127.41 1.76608 8 64.73 2.49099
16 168.42 1.72233 16 74.26 2.20345

Table 3.2: Critical Reynolds number (Recr,3D) and wavenumber (kcr) for different
blockage ratio and pitch combinations.

(a) γ = 2 (b) β = 0.25

(c) γ = 16 (d) β = 0.8

Figure 3.12: Dependence of Recr,β and kcr,β on β at (a) γ = 2 and (c) γ = 16, and
Recr,γ and kcr,γ on γ at (b) β = 0.25 and (d) β = 0.8. The cross symbol in red
and blue in (b) and (d) are the corresponding Recr,γ and kcr,γ values for a double
wedge case. All the cases have a wedge angle of tan(φ) = 0.125.
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allows the disturbances to decay more before re-entering the domain to interact

with a subsequent wedge, thereby increasing the stability. The increasing value

of Recr,3D with increasing γ and decreasing β can also be attributed to the fact

that those changes direct the present setup towards a plane channel flow. These

trends demonstrate that the periodic arrangement is favourable for promoting

instability; as the distance between adjacent wedges increases, the flow becomes

more stable.

3.2.3 3D eigenmodes and instability mechanism

In this section the three-dimensional eigenmodes through which instability mani-

fests (eigenvector corresponding to the dominant eigenvalue in 3.2.2) are discussed

first, following which the mechanism through which the linear instability mode

destabilises the steady base flow are discussed.

The primary instability associated with this flow is a three-dimensional in-

stability which manifests as a pair of counter-rotating streamwise vortices that

extend over the wedge and induces streamwise velocity streaks extending through

the length the flow domain. The structure of linear stability eigenmode is found

to be qualitatively unaffected over the range of blockage ratio and pitch combi-

nations investigated. Visualisation of these dominant eigenmodes through their

fields of streamwise vorticity ω̂x and velocity û for different β and γ values are

shown in figures 3.13 and 3.14. For β & 0.5, as the influence of the top wall

becomes greater, an additional pair of streamwise vortices emerge near the top

wall above the wedge. For β = 0.8, additional pair of streamwise perturbation

velocity streaks also form after the constriction near the top wall. The region

of non-zero spanwise velocity ŵ of the eigenmode extends from the primary re-

circulation region over to the tip of the wedge and appears as counter-rotating

spanwise rolls concentrated inside and outside the primary recirculation region

(figure 3.15). For β & 0.5, when a recirculation region is formed downstream of

the wedge tip, the region of non-zero ŵ extends over the separating streamline

of that recirculation region, appearing as counter-rotating spanwise rolls located

outside the secondary recirculation region (figure 3.15b,c).

The eigenmodes of the FFS (Lanzerstorfer & Kuhlmann, 2012b) and BFS

setups for lower expansion ratios (Barkley et al., 2002; Lanzerstorfer & Kuhlmann,

2012a) also appear as spanwise rolls, but are concentrated entirely inside the

recirculation region formed after the step. The eigenmodes for the current setup

shows resemblance to those modes, as elucidated in figure 3.15 in which ŵ contours

in the middle of the primary and secondary recirculation region and a subsequent
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position further downstream in the flow domain are shown.

The imposition of streamwise periodicity over a single wedge in the present

study raises the question as to whether this constraint excludes modes or flow

features that would span multiple wedges. To test this, simulations have been

performed in domains containing two successive wedges. Two distinct blockage

ratios β = 0.25 and β = 0.8 were considered, both having γ = 2 and tan(φ) =

0.125. The critical Reynolds number and wavenumber for the double-wedge cases

are found to match well with the corresponding values found using a single wedge.

These are shown in figure 3.12(b,d). The global modes for the double-wedge cases

also closely resemble the modes predicted using a single wedge, and are shown in

figure 3.16. These results provide evidence in support of the periodic single-wedge

results reported herein as being representative of multi-wedge duct flows.

The instability mechanism leading to the primary bifurcation of the flow is

now discussed. Different instability mechanisms are examined with respect to the

present system based on the eigenmode structure and their location.

Barkley et al. (2002) found the region of maximum net outward angular mo-

mentum decrease, based on a modified inviscid centrifugal instability criteria given

by Rayleigh (Bayly, 1988), along the closed streamline of the recirculation region

matching regions of peak three-dimensionality (spanwise velocity component) in a

BFS setup. Hence, they argued that centrifugal instability of the primary recircu-

lation region was responsible for destabilising the flow. The associated eigenmode

appeared as two counter-rotating spanwise velocity component concentrated en-

tirely inside the recirculation region. This, however, is not the case for the periodic

wedge setup here, as the spanwise velocity component does not peak along the

closed streamlines of the recirculation region. Another common vortex instability

mechanism, elliptical instability arises in strained vortices where perturbations

grow strongly in the core of the strained vortex in the direction of the principal

strain (Thompson et al., 2001; Bayly et al., 1988; Lanzerstorfer & Kuhlmann,

2012a). No evidence of elliptic instability was detected in the eigenmodes in the

present study.

For flow over a BFS, Ghia et al. (1989) argued that instability manifests as

Taylor–Görtler vortices in the bulk flow, forming along curved streamlines induced

by the strong recirculation regions on the top and bottom walls. They argue that

until the appearance of the secondary recirculation region on the top wall, the

dividing streamline at the point of separation of the primary recirculation region

remains almost parallel to the flow direction, and has a convex curvature further

downstream, and hence the flow remains stable. Destabilisation of the flow begins
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β = 0.25, γ = 2, Re = 400

(a) (b)

β = 0.5, γ = 2, Re = 100

(c) (d)

β = 0.65, γ = 2, Re = 75

(e) (f)

β = 0.8, γ = 2, Re = 75

(g) (h)

β = 0.95, γ = 2, Re = 75

(i) (j)

Figure 3.13: (a,c,e,g,i) Positive (blue) and negative (yellow) iso-surfaces of stream-
wise vorticity ω̂x of the leading eigenmodes, and (b,d,f,h,j) positive and negative
iso-contours of streamwise velocity û (represented as translucent surfaces) and
transverse velocity v̂ (represented as opaque surfaces) of the leading mode at dif-
ferent blockage ratios. Levels equidistant from zero are chosen arbitarily to visu-
alise the structures. All the cases have γ = 2 and a wedge angle of tan(φ) = 0.125.
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β = 0.8, γ = 8, Re = 70

(a) (b)

β = 0.25, γ = 16, Re = 200

(c) (d)

Figure 3.14: (a,c) Positive (blue) and negative (yellow) iso-surfaces of streamwise
vorticity ω̂x of the leading eigenmodes and (b,d) positive and negative iso-contours
of streamwise velocity û (represented as translucent surfaces) and transverse ve-
locity v̂ (represented as opaque surfaces) of the leading mode at larger pitch
values. Levels equidistant from zero are chosen arbitarily to visualise the struc-
tures. All the cases have a wedge angle of tan(φ) = 0.125.

(a) β = 0.25, γ = 2, Re = 400 (b) β = 0.8, γ = 2, Re = 75

(c) β = 0.5, γ = 2, Re = 100

Figure 3.15: (a,b) Spanwise velocity (ŵ) contours overlaid with base flow stream-
lines (c) appearing as counter-rotating rolls, shown at x = 1.0 (middle of the
primary recirculation region), x = 2.3 (middle of the secondary recirculation re-
gion) and x = 6.0. All cases here have γ = 2, tan(φ) = 0.125. Contours of ŵ are
shown in the linear scale at 20 equispaced levels between -0.001 (blue) and 0.001
(red).

with the formation of a secondary recirculation region on the top wall. Taylor–

Görtler vortices appear as streamwise counter-rotating vortices. The formation

of these vortices occurs in flow over concave curvature and also when the dividing

streamline of the recirculation region separates at an angle to the main flow

direction (Smith, 1955; Drazin & Reid, 2004). Unlike the flow topology in Ghia
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β = 0.25, γ = 2, Re = 200

(a) (b)

β = 0.8, γ = 2, Re = 70

(c) (d)

Figure 3.16: (a,c) Positive (blue) and negative (yellow) iso-surfaces of streamwise
vorticity ω̂x of the leading eigenmodes and (b,d) positive and negative iso-contours
of streamwise velocity û (represented as translucent surfaces) and transverse ve-
locity v̂ (represented as opaque surfaces) of the leading mode for double wedge
cases. Levels equidistant from zero are chosen arbitarily to visualise the struc-
tures. All the cases have a wedge angle of tan(φ) = 0.125.
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et al. (1989), in the present setup a secondary recirculation region on the top

wall is absent in the steady base flow where instabilty occurs. The separating

streamline of the recirculation region formed at the face of the wedge for higher

blockage ratio has a concave curvature and the modes appear as counter-rotating

streamwise vortices over this recirculation region. Since these modes persists even

for lower blockage ratios, where the separating streamline is almost parallel to the

flow direction, this mechanism might not be responsible for the onset of three-

dimensionality in the flow. An assessment of the perturbation kinetic energy

budget in § 3.3 will reinforce this point.

Formation of the streamwise velocity (û) streaks extending through the flow

domain as shown in figures 3.13(b,d,f,h,j,l) and 3.14(b,d) are characteristic of the

lift-up mechanism (Landahl, 1975), where a small transverse velocity component

moves the fluid to a high-velocity region leading to the formation of streaks.

These streaks match with the experimental observation in a FFS setup (Stüer

et al., 1999). For FFS (Lanzerstorfer & Kuhlmann, 2012b) and BFS setups at

lower expansion ratio (Lanzerstorfer & Kuhlmann, 2012a), this mechanism was

found to be responsible for the instability. As a first step to check whether the lift-

up mechanism underpins the instability here, the relative proportion of individual

perturbation velocity components to its norm is quantified. In figure 3.17(a-d),

ratios of integral of the different velocity components of the leading eigenmode

are plotted along the streamwise direction (x) for blockage ratios ranging from

β = 0.25 to β = 0.8 at γ = 2, along with the contours of absolute velocity of the

leading eigenmode for each case. The plotted quantities are ratios of the integrals

Ii =

∫ 2L

yx,b

|ûi| dy, Itotal =

∫ 2L

yx,b

|û| dy, (3.3)

where yx,b is the y coordinate of the bottom wall at the corresponding x-position,

and indices i = 1− 3 correspond to the velocity components û, v̂ and ŵ, respec-

tively.

For β = 0.25 and γ = 2, I2 and I3 are an order of magnitude smaller than I1

and are limited to the free shear layers formed in front of the wedge near reat-

tachment point yr1 (figure 3.17a). With increasing β, I3 increases at the expense

of I1 near the vertical wedge wall, and for β & 0.65 (figure 3.17c,d), I3 exceeds

I1 locally before relaxing back to its pre-disturbed levels, indicative of the lift-

up mechanism. Similar observations were made for other β and γ combinations.

Flows in a setup with β = 0.5 when varying γ (figure 3.17e–f) is shown as an

example to demonstrate that the contributions Ii remains similar when varying
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(a) β = 0.25, γ = 2, Re = 400 (b) β = 0.5, γ = 2, Re = 100

(c) β = 0.65, γ = 2, Re = 75 (d) β = 0.8, γ = 2, Re = 75

(e) β = 0.5, γ = 8, Re = 70 (f) β = 0.5, γ = 16, Re = 100

Figure 3.17: Variation of I1/Itotal (dashed line), I2/Itotal (dash-dotted line) and
I3/Itotal (thin solid line) with streamwise coordinate x. Contours of absolute
velocity (|û|) of the leading mode in the flow domain are also shown. The wedge
angle for all cases here is tan(φ) = 0.125.
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γ as it did with β variation, indicating that the instability mechanism is not

influenced by changes in γ.

3.3 Energetics of the 3D instability modes

This section utilizes the energy analysis described in § 2.3 to investigate the fac-

tors that contribute to perturbation growth. Local changes in the base flow and

their contribution to the growth rate of leading eigenmodes are discussed. Contri-

bution of the production terms and the disipation term in equation (2.40) to the

growth rate of the leading eigenmode for all the investigated cases are shown in

table 3.3. The largest contribution (corresponding to the largest positive value)

to the growth rate, and thus the instability, comes from the production term

〈P2〉 = (1/2Ek)
∫

Ω
u′v′∂U/∂y dΩ for all cases investigated, whereas the most

stabilising contribution (corresponding to the negative value having largest mag-

nitude) comes from the dissipation term 〈D〉. At γ = 2, the production term

〈P1〉 has a net stabilising contribution for lower blockage ratios β = 0.125, 0.25

and the highest blockage ratio investigated here β = 0.8, whereas for intermediate

blockage ratios 0.5 . β . 0.65, its net contribution is positive, though an order

of magnitude lower than the dominant production term 〈P2〉. Terms 〈P3〉 and

〈P4〉 have net positive and negative contributions respectively, for all cases inves-

tigated, though they are typically more than an order of magnitude smaller than

the dominant production term 〈P2〉. The dominance of production term 〈P2〉

for all the cases investigated shows that the mode gains energy predominantly

through horizontal shear in the baseflow. The streamwise velocity dominance of

the perturbations in the flow domain as shown in § 3.2.3, along with the fact that

〈P2〉 is the largest contributor to σ, is compatable with the lift-up mechanism

being responsible for the instability in the range of geometric parameters investi-

gated. The transport terms 〈T1〉 and 〈T2〉 describe the transport of perturbation

kinetic energy by the base flow within the domain. Owing to the wall confinement

and streamwise periodicity of the flow domain, their sum is approximately zero,

thus having no contribution to the growth rate of the eigenmode.

Spatial contours of the terms of equation (2.40) which are the integrands

of equation (2.37) are shown in figures 3.18 and 3.19 for selected cases. These

plots for various other β and γ combinations are visually similar to those already

shown in figures 3.18(a) and 3.19(a). The regions in the flow domain where the

respective streamwise and transverse velocities of the eigenmode grow due to

strong streamwise and transverse velocity gradients in the base flow are shown
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in the contours of P1 and P4. The streamwise velocity of the eigenmode grows

predominantly in the region aft of the wedge tip (above the second recirculation

region for β & 0.5) and before the wedge. With increasing blockage ratio, the

gain in the latter region is higher due to increasing streamwise velocity gradient

in the baseflow, as seen from the contours of P1. The transverse velocity growth

magnitude is highest inside the recirculation region formed before the wedge,

where P4 is stabilising (negative contour levels in figures 3.18(a) and 3.19(a) for

P4). For higher β, due to the steeper transverse gradient in the constriction

region above and after the wedge tip, a larger magnitude in v̂ is observed in a

similar region to where P4 has a positive contribution to the growth rate (positive

contour levels in figures 3.18(a) and 3.19(a) for P4). The location in the flow

domain having the largest contribution to the perturbation growth rate due to

strong horizontal and vertical shear in the base flow are shown in the contour

plots for P2 and P3, respectively. The dissipation D is observed to be strongest

about the wedge. This is expected due to the relatively large shear stresses in

this vicinity. The bottom row for each case shows the combined contributions

of the terms shown (
∑

) to the growth of the leading eigenmode, superimposed

with line contours of ŵ. The region of maximum growth in ŵ is where the the

net contribution
∑

has a highly stabilising contribution to the growth rate of the

eigenmode, whereas the region dominated by the streamwise velocity contribution

is where
∑

has the highest positive contribution to the growth rate. This confirms

the statement made in § 3.2.3, whereby Taylor–Görtler type instability is not

responsible for the formation of streamwise counter-rotating vortices in these

flows.

3.4 Adjoint modes, sensitivity and endogeneity

analysis

In the previous sections, the global mode responsible for the bifurcation from

the two-dimensional flow was discussed. It was also found that the primary

bifurcation of the flow is three-dimensional and the associated global mode and

instability mechanisms were elucidated. In this section, the adjoint eigenmodes

and their structural senstivity for different geometric parameters both for the two-

dimensional and three-dimensional perturbations are presented, shedding further

light on the dynamics of the flow. This analysis is also useful from a flow control

perspective. An endogeneity analysis is also considered to shed light on the

local contributions to the growth of the destabilising three-dimensional eigenmode
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(a) β = 0.25, γ = 2, Re = 400

P1

P2

P3

P4

D

∑

(b) β = 0.25, γ = 8, Re = 250

∑

Figure 3.18: (a) Contours of terms from the spanwise averaged perturbation
kinetic energy evolution equation (2.38) and their corresponding sum for the
leading eigenmode overlaid with line contours of ŵ. (b) The contours of sum of
terms in equation (2.38) shown at a larger γ. Wedge angle for these cases tan(φ) =
0.125. Positive (negative) contour levels indicate destabilising (stabilising) effect
on the base flow.
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(a) β = 0.8, γ = 2, Re = 75

P1

P2

P3

P4

D

∑

(b) β = 0.8, γ = 8, Re = 70

∑

Figure 3.19: (a) Contours of terms from the spanwise averaged perturbation
kinetic energy evolution equation (2.38) and their corresponding sum for the
leading eigenmode overlaid with line contours of ŵ. (b) The contours of sum of
terms in equation (2.38) shown at a larger γ. Wedge angle for these cases tan(φ) =
0.125. Positive (negative) contour levels indicate destabilising (stabilising) effect
on the base flow.
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(β, γ, Re) 〈P1〉 〈P2〉 〈P3〉 〈P4〉 〈D〉

(0.125, 2, 500) -0.001295 0.100159 0.000712 -0.000218 -0.043747
(-2.33%) (180.10%) (1.28%) (-0.39%) (-78.66%)

(0.25, 2, 400) -0.001638 0.144841 0.002134 -0.002166 -0.052374
(-1.80%) (159.52%) (2.35%) (-2.38%) (-57.68%)

(0.5, 2, 100) 0.021612 0.299900 0.011426 -0.012951 -0.226354
(23.08%) (320.31%) (12.20%) (-13.83%) (-241.76%)

(0.65, 2, 75) 0.011952 0.472378 0.013503 -0.016230 -0.387833
(12.75%) (503.79%) (14.4%) (-17.31%) (-413.63%)

(0.8, 2, 75) -0.129045 0.870714 0.006960 -0.006641 -0.617654
(-103.79%) (700.31%) (5.6%) (-5.34%) (-496.78%)

(γ, β, Re)

(1, 0.25, 400) -0.001087 0.148284 0.002294 -0.002217 -0.055197
(-1.18%) (161.04%) (2.49%) (-2.41%) ( -59.95%)

(4, 0.25, 250) -0.003434 0.139211 0.001973 -0.001423 -0.066520
(-4.92%) (199.43%) (2.83%) (-2.04%) (-95.29%)

(8, 0.25, 250) -0.005087 0.113144 0.001351 -0.001006 -0.061782
(-10.91%) (242.69%) (2.89%) (-2.16%) (-132.52%)

(16, 0.25, 200) -0.004909 0.079200 0.000755 -0.000439 -0.064428
(-48.24%) (778.18%) (7.41%) (-4.32%) (-633.03%)

(1, 0.8, 70) -0.086481 0.862769 0.009527 -0.011245 -0.671733
(-84.11%) (839.07%) (9.27%) (-10.93%) (-653.29%)

(4, 0.8, 70) -0.138681 0.811758 0.007523 -0.002556 -0.608351
(-199.02%) (1164.95%) (10.79%) (-3.67%) (-873.04%)

(8, 0.8, 70) -0.118398 0.604534 0.004802 -0.002238 -0.459115
(-400.29%) (2043.85%) (16.26%) (-7.57%) (-1552.21%)

Table 3.3: Contribution of volume integrated values of production terms and dis-
sipation term in equation (2.41) and their percentage relative contribution to the
growth rate σ (enclosed in brackets) of the leading eigenmode for different β and
γ at Re as indicated. The wedge angle is tan(φ) = 0.125 in all cases. The largest
destabilising (positive terms) and stabilising (negative terms) contributions are
shown in bold.
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and comparisons are made with the growth rate contributions obtained from the

pertubration kinetic energy analysis.

The power of adjoint analysis for flow control and sensitivity study was estab-

lished for cylinder wakes by Giannetti & Luchini (2007). Similar analysis for FFS

(Marino & Luchini, 2009) and smoothed BFS setups (Marquet et al., 2009) have

revealed regions for placement of active and passive flow control mechanisms.

The region of largest magnitude of the adjoint modes is where the flow is most

receptive to initial conditions or momentum forcing which an active flow control

device could exploit to produce an optimal response in terms of amplification of

the instability (Hill, 1995; Giannetti & Luchini, 2007; Akervik et al., 2007). Hill

(1995) and later Giannetti & Luchini (2007) have also shown that the overlap

region of the largest global mode and adjoint mode velocity magnitude is most

sensitive to any localised feedback as it has the most impact on the eigenvalue

of the linearised operator. Physically, this could be by introduction of a pas-

sive structure in the flow (Strykowski & Sreenivasan, 1990). The sensitivity field

hence shows the wavemaker region or the location of the origin of the instability

(Chomaz, 2005).

3.4.1 Analysis of two-dimensional perturbations

The adjoint modes and the structural sensitivity of two-dimensional disturbances

are presented in this section at Re > Recr,2D. The 2D adjoint mode has a slanted

structure against the base flow velocity gradient and is concentrated along the

tapered wedge surface extending from the wedge tip to the separation point (xs3)

of the base flow, further downstream. With increasing blockage ratio the in-

fluence of the top wall increases, resulting in formation of additional receptive

regions near the top wall along with the ones on the bottom wall. Increasing the

pitch does not seem to significanly alter the adjoint mode (receptive locations in

the flow). These are shown for different cases in the left column of figure 3.20.

The most sensitive regions in the flow domain to 2D disturbances are seen as

multiple patches spread along the tapered wedge surface in addition to the ones

concentrated near the wedge tip. The top wall influence is also observed on the

sensitivity field with increasing β. Similar to the receptive regions, increasing

the pitch does not significanly alter the sensitive locations of the two-dimensional

perturbations. The sensitive regions are concentrated near the wedge tip at all

values of pitch at β = 0.25. The sensitivity field of two-dimensional perturbations

are shown in the right column of figure 3.20.
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(a) β = 0.25, γ = 2, Re = 450

(b) β = 0.5, γ = 2, Re = 130

(c) β = 0.65, γ = 2, Re = 100

(d) β = 0.8, γ = 2, Re = 80

(e) β = 0.25, γ = 4, Re = 360

(f) β = 0.25, γ = 8, Re = 300

(g) β = 0.25, γ = 16, Re = 290

Figure 3.20: Receptivity to initial condition/momentum forcing (left column) and
structural sensitivity (right column) of the unstable 2D eigenmodes overlaid with
base flow streamlines.

119



3.4.2 Analysis of three-dimensional perturbations

An analysis of the receptivity and sensitivity of the flow to three-dimensional

perturbations is carried out for a Re > Recr,3D covering a range of blockage ratios

and pitch values. The regions in the flow most receptive to momentum forcing is

shown in the left column of figure 3.21. For γ = 2, the receptive region spans the

incline of the wedge until the separation point and stretches further downstream

with increasing β. For larger γ, additional receptive regions form in the gap

between wedges (figure 3.21e,f left column), similar to what is observed in a FFS

setup (Marino & Luchini, 2009; Lanzerstorfer & Kuhlmann, 2012b). The sensitive

location given by the overlap region of the adjoint and direct mode’s magnitude is

shown for different β and γ in the right column of figure 3.21. The wavemaker is

located in the region of strong base flow shear extending downstream of the wedge

tip. At γ = 2 and with increasing blockage ratio (β ≥ 0.5), a recirculation region

forms immediately after the wedge tip causing a shift in the most sensitive region

away from the wedge tip, to between the two recirculation regions on the tapered

wedge surface. With increasing pitch, the sensitive locations appear to extend

further downstream from the wedge tip to the gap between the wedges (figure

3.21e-i, right column). These sensitive regions strongly resemble the contours of

P2 in figures 3.18 and 3.19. These are regions in the flow that are expected

to be important for the placement of a passive flow control mechanism in the

flow (Giannetti & Luchini, 2007; Strykowski & Sreenivasan, 1990; Marquet et al.,

2009; Akervik et al., 2007).

3.4.3 Endogeneity analysis of the three-dimensional global

mode

In this section, the endogeneity distribution fields and the real parts of the in-

dividual contributions in equation (2.63) are examined to understand the local

contributions to the growth rate of the destabilising eigenmode and to compare

the integral values contributing to the growth rate found from the perturbation

kinetic energy analysis in § 3.3.

The endogeneity analysis reveals that largest positive contribution to the

growth rate of the global mode comes from the production due to base flow

shear, whereas the largest negative contribution is from viscous dissipation of

perturbation velocity; these findings are both consistent with the energetics anal-

ysis reported in § 3.3. However, a distinction from the PKE analysis is that there

is also a destabilising contribution from convection of the perturbation by base
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(a) β = 0.25, γ = 2, Re = 400

(b) β = 0.5, γ = 2, Re = 100

(c) β = 0.65, γ = 2, Re = 75

(d) β = 0.8, γ = 2, Re = 75

(e) β = 0.25, γ = 4, Re = 250

(f) β = 0.25, γ = 8, Re = 250

(g) β = 0.25, γ = 16, Re = 250

(h) β = 0.5, γ = 8, Re = 75

(i) β = 0.5, γ = 16, Re = 100

Figure 3.21: Receptivity to initial condition/momentum forcing (left column) and
structural sensitivity (right column) of the unstable 3D eigenmodes overlaid with
base flow streamlines.
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flow velocity and the pressure forces. The convection contribution is modest, be-

ing almost an order of magnitude smaller than the production contribution. The

pressure contribution should intrinsically integrate to zero (Marquet & Lesshafft,

2015), so its small finite values (being four to five orders of magnitude smaller

than the production contributions) can be interpreted as an indication of the

error level in the endogeneity calculations. These values are compared in table

3.4. When comparing the endogeneity analysis results to those of the energetics

analysis, a point to note is that the energetics contributions are obtained from

the eigenvector field of the linear instability eigenmode, whereas the endogene-

ity contributions emerge from the combination of the leading eigenmode and its

adjoint.

The total endogeneity field shown in figure 3.22(e) shows a local stabilising

contribution (negative values) around the wedge tip and a destabilising contribu-

tion (positive values) to the growth rate of the global mode in regions covering

approximately half the constriction height. Similar observation was also made for

blockage ratios up to β = 0.8 all with γ = 2 and β = 0.5, γ = 8, although the

destabilising region occupied more of the constriction gap with increasing block-

age ratio. The individual component contributions in figure 3.22(a-d) shown for

β = 0.25, γ = 2 with tan(φ) = 0.125, reveal that the local contribution from the

perturbation pressure gradient term swamps the total endogeneity, as Eσ closely

resembles Eσ,pres for this case, and does not exhibit similarity to the wavemaker

region obtained from the sensitivity analysis (figure 3.21b). This contrasts the

case of 2D instability of the circular cylinder wake, in which the local endogeneity

distribution exhibited qualitative similarity to the wavemaker region found from

the sensitivity studies (Marquet & Lesshafft, 2015; Paladini et al., 2019). How-

ever, the region contributing most strongly to the growth rate predicted from the

spanwise averaged distribution of all contributions from the PKE analysis (figures

3.18 and 3.19) resembles more closely to the sum of contributions from Eσ,conv,

Eσ,prod and Eσ,diss as shown in figure 3.22(f). In contrast, the endogeneity for a

longer pitch case of γ = 16 at β = 0.5 (figure 3.23e) showed a different distribution

than the previous case, with a weaker distribution of the pressure contribution,

which also shows a different distribution than in the aforementioned case. In this

case, the endogeneity distribution matches with the wavemaker region predicted

from an exogeneous approach (figure 3.21f) with a stronger distribution around

the wedge tip for the endogeneity field. The fields showing the individual contri-

butions for this case is shown in figure 3.23(a-d) and sum of contributions from

Eσ,conv, Eσ,prod and Eσ,diss in figure 3.23(e). The sudden constriction due to the
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β = 0.25, γ = 2, Re = 400

Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.01253 0.12245 0.00003 -0.04421 0.09080

PKE 〈P〉 〈D〉 〈
∑

〉
0.14317 -0.05237 0.09080

β = 0.5, γ = 2, Re = 100

Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.02824 0.22494 0.00012 -0.15967 0.09363

PKE 〈P〉 〈D〉 〈
∑

〉
0.32008 -0.22635 0.09373

β = 0.8, γ = 2, Re = 75

Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.06163 0.46487 0.00063 -0.40230 0.12482

PKE 〈P〉 〈D〉 〈
∑

〉
0.74199 -0.61765 0.12433

β = 0.5, γ = 16, Re = 100

Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.01424 0.12210 0.00000 -0.12036 0.01599

PKE 〈P〉 〈D〉 〈
∑

〉
0.16041 -0.14440 0.01601

Table 3.4: Comparison of the contribution of volume integrated quantities of each
term in equation (2.41) and the domain integral of the real part of individual terms
in equation (2.63) to the growth rate σ of the leading eigenmode for different β
and γ at Re as indicated. The wedge angle is tan(φ) = 0.125 in all cases. Positive
(negative) terms have a destabilising (stabilising) contribution.

presence of the wedge might be one possible reason for the local pressure gradient

to contribute significanly to the growth rate for all blockage ratios with a low

pitch of γ = 2 investigated in this study. The impact of the subsequent wedge

relaxes further with increasing γ, which may explain why the pressure term has

a lesser influence on the endogeneity in the case of γ = 16, β = 0.5.

3.5 Linear transient growth

Thus far, the treatment of the stability of the flow has been confined to the

asymptotic behaviour towards long times. Consideration is now given to the

short time dynamics of the system. This is important because large transient
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(a) Eσ,conv (b) Eσ,prod

(c) Eσ,pres (d) Eσ,diss

(e) Eσ (f) Eσ,conv + Eσ,prod + Eσ,diss

Figure 3.22: (a-d) Contribution of the real part of the individual endogeneity
terms in equation (2.63) to the (e) endogeneity distribution and (f) sum of the
convection, production and the dissipation contribution for β = 0.25, γ = 2 and
tan(φ) = 0.125 at Re = 400. Note that E = Eσ as the global mode has a real
eigenvalue. Contours are shown in the linear scale at 20 equispaced levels.

(a) Eσ,conv (b) Eσ,prod

(c) Eσ,pres (d) Eσ,diss

(e) Eσ (f) Eσ,conv + Eσ,prod + Eσ,diss

Figure 3.23: (a-d) Contribution of the real part of the individual endogeneity
terms in equation (2.63) to the (e) endogeneity distribution and (f) sum of the
convection, production and the dissipation contribution for β = 0.5, γ = 16 and
tan(φ) = 0.125 at Re = 100. Note that E = Eσ as the global mode has a real
eigenvalue. Contours are shown in the linear scale at 20 equispaced levels.
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amplification of disturbances over short time scales can occur in flows due to

non-modal interactions between asymptotically decaying linear eigenmodes, pos-

sibility triggering a bypass transition. In similar channel flow setups such as

BFS (Blackburn et al., 2008b), rounded BFS (Marquet et al., 2008) and stenotic

flows (Blackburn et al., 2008b; Griffith et al., 2008), a large transient growth

associated with convective instabilities have been found in the linearly stable re-

gion with amplifications exceeding 105 and 108 in some cases (Blackburn et al.,

2008b,a). Therefore, in this section the transient behaviour of the flow to both

two-dimensional and three-dimensional perturbations are studied and the optimal

mode associated with maximum energy amplification are discussed. Furthermore,

the influence of varying the geometric parameters of the wedge on the transient

energy amplification of the optimal disturbance are explained.

3.5.1 Optimal growth of two-dimensional disturbances

The two-dimensional optimal disturbances in the linearly stable two-dimensional

regimes from § 3.2.1 are presented here for various combinations of β and γ over

a range Reynolds numbers. In figures 3.24 and 3.25, optimal energy gain for a

range of Re are shown as a function of time τ for different β = 0.25 and γ cases.

From the line plots and contours of G(τ), it can been seen that after a thresh-

old Re, the optimal mode achieves a gain exceeding unity, reaching a maximum

value Gmax corresponding to an optimal time τopt, both of which increase with

increasing Re. Eventually, the energy in the disturbance structure monotonically

decrease with increasing time horizon for all Re in the range investigated which is

in agreement with the observation from the linear stability analysis of 2D pertur-

bations, where the two-dimensional perturbations are asymptotically stable. At

a lower blockage ratio and pitch of β = 0.25, γ = 2, for Re & 400, a second peak

with lower gain than the first peak is observed, which is due to the interaction

of the disturbance structure with the subsequent wedge and the free shear layers

near the vertical wall of wedge. In the contour plot in figures 3.24(b,d,f) and

3.25(b,d), log10G(τ) is plotted on the Re − τ plane. The point on the Re axis

where log10G(τ) = 0 gives a Reynolds number ReE below which all perturbations

decay without any transient growth. At this Reynolds number, G(τ) ≤ 1 for

all τ . Typically, this corresponds to the Reynolds number where dG/dτ = 0 at

τ = 0, which becomes another way of determining ReE . For the cases shown in

figures 3.24 and 3.25, ReE , Recr,2D and Recr,3D values are shown in table 3.5. The

difference between ReE and the critical Reynolds numbers indicates the subcrit-

ical range where transient amplification may excite disturbances to an absolute
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β = 0.25, γ = 2

(a) (b)

β = 0.5, γ = 2

(c) (d)

β = 0.65, γ = 2

(e) (f)

Figure 3.24: (a,c,e) Two dimensional optimal growth G(τ) curves for different Re
at parameter combintions as shown. The dashed horizontal line represents the
neutral line, and (b,d,f) contours of log10G(τ) (positive to negative shown as blue
to green) plotted on Re − τ plane for different blockage ratios. Arrow indicates
the direction of increasing Re with the first and the last Re as indicated. Wedge
angle for all the cases here is tan(φ) = 0.125.

state depending on the disturbance shape and amplitude.

The 2D optimal modes (shown in panels corresponding to t = 0 in figures

3.26–3.28) are composed of narrow inclined structures of alternate sign, opposing

the mean flow direction that are concentrated before the first separation point
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β = 0.25, γ = 4

(a) (b)

β = 0.25, γ = 8

(c) (d)

Figure 3.25: (a,c) Two dimensional optimal growth G(τ) curves for different Re
at parameter combinations as shown. The dashed horizontal line represent the
neutral line, and (b,d) contours of log10G(τ) (positive to negative shown as blue
to green) plotted on Re− τ plane for two different pitch values. Arrow indicates
the direction of increasing Re with the first and the last Re as indicated. Wedge
angle for all the cases here is tan(φ) = 0.125.

β, γ ReE Recr,2D Recr,3D

0.25, 2 42.09 445.93 86.85
0.50, 2 31.88 126.92 58.59
0.65, 2 28.80 89.56 55.15
0.25, 4 33.13 340.83 100.50
0.25, 8 24.85 285.07 127.41

Table 3.5: Critical values of Reynolds number found from linear transient growth
analysis and linear stability analysis. Wedge angle for the cases here is tan(φ) =
0.125.

of the base flow after the wedge tip (xs3 in figure 3.5a). The linear evolution

of the optimal mode is elucidated for selected β and γ combinations in figures

3.26–3.28. It is observed that over time, the disturbance structures are advected

downstream by the base flow, and the slanted structures are slowly rotated to
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an upright orientation by the background shear, suggesting the energy gain in

the disturbance structure is via the two-dimensional Orr mechanism (Orr, 1907).

On interaction with the subsequent wedge, the disturbance structure also gains

energy from the free shear layers about the wedge tip. This can be observed from

the increased density of line contours of perturbation kinetic energy carried by

the disturbances as it impinges on the subsequent wedge (panels corresponding to

τopt). A similar observation can be made from the energy contours corresponding

to the subsequent peaks observed in β = 0.25, γ = 2 labelled as T2 and T3

and T4 in figure 3.29(a), suggesting a contribution to the energy growth of the

disturbance on impingement on the wedge wall. The lower energy gain in the

subsequent peaks indicate that the optimal mode gains energy predominantly

through its tilting in the base flow direction (the Orr mechanism), as this feature

is only present through the primary K(t)/K(0) maximum. A significant decay

in the energy of the disturbance structure after the optimal time τopt at a higher

blockage ratio of β = 0.5 (γ = 2) and larger pitch of γ = 8 (β = 0.25), relative

to the lower blockage ratio and shorter pitch case of β = 0.25, γ = 2 can also be

noted from the corresponding contours for these cases.

In figure 3.29, the influence of γ and β on the energy of the disturbance on

linear evolution starting from the optimal mode is shown at selected Reynolds

numbers. A decrease in the peak energy growth of the optimal disturbance with

increase in pitch at β = 0.25 is observed from figure 3.29(a). At β = 0.25 and

larger pitch γ & 5, the base flow reattaches to the channel bottom wall well

before the subsequent wedge (base flow streamlines shown in figure 3.28) unlike

at γ . 2 where the recirculation region extends the entire gap between wedges

(base flow streamlines shown in figure 3.26). The energy gain from the larger

extent of free shear layer near the wedge wall at lower γ could possibly be the

reason for a higher optimal energy gain in those cases. The energy in successive

peaks is also observed to be lower at higher γ (figure 3.29a) since the disturbances

decay much more in the gap before reaching the subsequent wedge as illustrated

in figure 3.28. At a low pitch of γ = 2, increasing the blockage ratio also results

in a lower optimal growth (shown for β = 0.5 in figure 3.29b). This could be due

to the channel wall interactions at large blockage ratios which limit the tilting

of the optimal disturbances, and hence its energy gain (panels until τopt in figure

3.27).

From the variation of Gmax and τopt with Re obtained for various combinations

of β and γ, the corresponding values for Reynolds numbers at ε2D = Re/Recr,2D =

0.85 and 0.95 were interpolated. These values are shown in figure 3.30. In the
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t = 0 t = 2 t = 3

t = τopt = 5.5 t = 8 t = 10

t = 11.2 (T2) t = 12.7 t = 15.2 (T3)

t = 16.8 (T4) t = 20 t = 37.8

ω̂z:

Figure 3.26: Snapshots of the evolution of the spanwise perturbation vorticity
(ω̂z) flooded contours overlaid by perturbation kinetic energy contour lines for
β = 0.25, γ = 2 at Re = 400. The initial condition at t = 0 corresponds to
the optimal mode, and the subsequent time instants of each frame correspond to
the square marker position for this case shown in figure 3.29(a). The dividing
streamline of the base flow is also shown. Energy iso-contours are shown at 5
equispaced levels between 0 and 0.0006.

t = 0 t = 0.6 t = 1.2

t = 2 t = τopt = 3.2 t = 4

t = 6 t = 9 t = 10

ω̂z:

Figure 3.27: Snapshots of the evolution of the spanwise perturbation vorticity
(ω̂z) flooded contours overlaid by perturbation kinetic energy contour lines for
β = 0.5, γ = 2 at Re = 100. The initial condition at t = 0 corresponds to
the optimal mode, and the subsequent time instants of each frame correspond to
the triangle marker positions for this case shown in figure 3.29(b). The dividing
streamline of the base flow is also shown. Energy iso-contours are shown at 5
equispaced levels between 0 and 0.0003.
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t = 0 t = 2 t = 6

t = τopt = 8 t = 10 t = 12

t = 16 t = 20.5 t = 30

ω̂z:

Figure 3.28: Snapshots of the evolution of the spanwise perturbation vorticity
(ω̂z) flooded contours overlaid by perturbation kinetic energy contour lines for
β = 0.25, γ = 8 at Re = 400. The initial condition at t = 0 corresponds to
the optimal mode, and the subsequent time instants of each frame correspond to
the inverted triangle marker positions for this case shown in figure 3.29(a). The
dividing streamline of the base flow is also shown. Energy iso-contours are shown
at 5 equispaced levels between 0 and 0.00008.

(a) (b)

Figure 3.29: Comparison of perturbation kinetic energy time histories obtained
by linear evolution of 2D optimal mode for different (a) γ at β = 0.25 and (b) β
at γ = 2. Wedge angle tan(φ) = 0.125 for all the cases.

range of parameters investigated, Gmax is highest between 1 . γ . 4 for β = 0.25,

whereas for β = 0.5, Gmax decreases monotonically until γ ≈ 8 and a slightly

higher value is found at γ = 16. The optimal time horizon (τopt) appears to

increase with γ in the low range for both β = 0.25 and 0.5, and decreases slowly

at higher γ & 8 for β = 0.25, whereas it appears to plateau for β = 0.5. The

largest energy gain possible (Gmax) is consistently lower at a higher blockage

ratio of β = 0.5 than those obtained at β = 0.25 for all γ in this study due to the

limited tilting of the disturbances explained in the previous paragraphs.

Although the energy gains observed in the current setup are lower than in the

BFS flow (Blackburn et al., 2008a), rounded BFS flow (Marquet et al., 2008) and

constricted flow (Blackburn et al., 2008b), the energy gain mechanism remains
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(a) (b)

Figure 3.30: Variation of (a) Gmax and (b) τopt with γ for β = 0.25 (filled
symbols, solid line) and β = 0.5 (open symbols, dashed line). Square sym-
bols are interpolated at ε2D = Re/Recr,2D = 0.85 and triangle symbols at
ε2D = Re/Recr,2D = 0.95.

similar. The subsequent energy gains due to the streamwise periodic setup in this

study is, however, novel. The low algebraic energy growth found here implies that

a two-dimensional bypass transition via a linear transient growth mechanism is

unlikely to occur. For comparison, Gmax for the BFS (Blackburn et al., 2008a)

and constricted flow setups (Blackburn et al., 2008b) at Re = 500 and Re = 400

were Gmax ∼ O(104), that for a slanted BFS at Re = 800 was Gmax ∼ O(102),

while for the present setup maximum value of Gmax ∼ O(101).

3.5.2 Optimal growth of three-dimensional disturbances

In this section, attention is turned to the optimal growth of three-dimensional

disturbances in the linearly stable regimes found from § 3.2.3, i.e. at subcritical

Reynolds numbers, Re < Recr,3D. Transient growth amplification factors are

determined for various spanwise wavenumber k and time horizon τ at different

ε3D values. For each τ , optimal energy growth increases to maximum, before

decreasing with increasing k as shown in figure 3.31(a-f), where ε3D = Re/Recr,3D.

For every k, a maximum energy amplification Gmax,k exists, corresponding to a

finite time τopt,k, and the optimal energy of the disturbance eventually decreases

at large time horizons as they are in the subcritical regime. The variation of

Gmax,k with k is shown in figure 3.32 for a case with β = 0.25, γ = 2 at different

ε3D values, showing how Gmax,k increases on approaching the critical Reynolds

number. Note that Gmax,k → 1 as k → ∞. At larger k, viscous dissipation

increasingly damps.

At a given ε3D, the maximum of Gmax,k over all k, then gives the maxi-

mum optimal energy growth Gmax and corresponding wavenumber is the optimal
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(a) β = 0.25, γ = 2, ε3D = 0.46 (b) β = 0.25, γ = 2, ε3D = 0.58

(c) β = 0.25, γ = 2, ε3D = 0.86 (d) β = 0.25, γ = 2, ε3D = 0.92

(e) β = 0.25, γ = 8, ε3D = 0.92 (f) β = 0.5, γ = 2, ε3D = 0.92

Figure 3.31: Three-dimensional optimal growth curves at various spanwise
wavenumber k as shown. Wedge angle tan(φ) = 0.125 for all the cases here.

wavenumber kopt. The variation of Gmax with ε3D is shown in figure 3.33. These

also demonstrate how the optimal energy growth varies on changing the blockage

ratio and pitch. An exponential increase in the maximum optimal growth was

found for the three different cases investgated, with Gmax ∼ e2.76ε3D for β = 0.25

at γ = 2, Gmax ∼ e3.09ε3D for a larger pitch case of γ = 8 at the same blockage

ratio of β = 0.25, and Gmax ∼ e4.5ε3D at a higher blockage ratio of β = 0.8 at

γ = 2. However, the maximum growth remained a very modest Gmax ∼ 10 even

on approaching the critical Reynolds number for 3D transition. The implication

of the modest amplifications found here is that subcritical routes to instability ig-
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Figure 3.32: Maximum optimal growth (Gmax,k) plotted against spanwise
wavenumber k for different Re represented by ε3D = Re/Recr,3D. Geometric
parameter used here are β = 0.25, γ = 2, tan(φ) = 0.125.

nited by strong transient growth are unlikely in this system. The optimal growth

and the wavenumber for the different cases investigated are also summarised in

table 3.6.

The maximum three-dimensional optimal growth for each of these cases in-

vestigated has a relatively higher value that the corresponding two-dimensional

optimal growth, although it is still only of very modest amplitude of ∼ 10. With

an increase in blockage ratio, the range of Re over which a transient amplifica-

tion is possible reduces for both the 2D and 3D perturbations (table 3.5) and the

maximum optimal growth (2D and 3D) is also found to decrease with increas-

ing β. Whereas, when increasing pitch, the range of Re over which a transient

amplification is possible reduces for 2D disturbances and increases for 3D distur-

bances. This could be the reason for a contradicting effect of increasing γ on the

2D optimal growth and 3D optimal growth.

The 3D optimal initial disturbance field for all the investigated parameters

take the form of inclined streamwise opposite-signed structures lying along the

inclined wedge surface and are shown in figure 3.34 for selected cases. On linear

evolution of these optimal modes, the disturbance quickly morphs into the form of

the linear global mode before decaying due to the subcritical Reynolds numbers.

A direct comparison with the energy growth in other reported confined shear-

ing flows at similar Reynolds numbers cannot be made as the subcritical Reynolds

number range here is relatively lower than in those cases, due to the lower Recr,3D

value for the current setup. Hence, a comparison of the 3D optimal energy growth

with respect to the ε3D = Re/Recr,3D values is made here. For flow over a BFS

(Blackburn et al., 2008a), the three-dimensional optimal growth at ε3D ≈ 0.7
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Figure 3.33: Maximum optimal energy growth Gmax plotted against ε3D =
Re/Recr,3D at different β and γ as indicated. For all the cases wedge angle
tan(φ) = 0.125. Lines are exponential fits to the respecive data set.

β = 0.25, γ = 2 β = 0.25, γ = 8

ε3D Gmax kopt ε3D Gmax kopt
0.46 1.71185 2.29539 0.63 5.18957 2.27124
0.58 2.51773 2.29008 0.78 8.41842 2.28713
0.69 3.56045 2.34744 0.92 12.76438 2.21425
0.86 5.61308 2.40049
0.92 6.77576 2.32896
0.99 7.10266 2.40164

β = 0.5, γ = 2 β = 0.8, γ = 2

ε3D Gmax kopt ε3D Gmax kopt
0.92 5.74020 2.38166 0.69 3.30084 2.23941
0.99 7.10266 2.40164 0.86 6.78134 2.54493

0.95 10.35171 2.83490
0.98 12.74046 3.10047

Table 3.6: Maximum three-dimensional optimal energy and the corresponding
optimal spanwise wavenumber kopt at different ε3D = Re/Recr,3D and geometric
parameter setting. Wedge angle for the cases here is tan(φ) = 0.125.
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(a) β = 0.25, ε3D = 0.99 (b) β = 0.8, ε3D = 0.98

Figure 3.34: Positive (blue) and negative (yellow) iso-contours of streamwise
vorticity of the three-dimensional optimal mode at different β. Wedge angle
tan(φ) = 0.125 and γ = 2 for the cases shown here.

was Gmax ∼ O(104), whereas for flow over a rounded BFS at ε3D ≈ 0.95 was

lower than the former case with Gmax ∼ O(102). Similar to the observation made

for the two-dimensional optimal growth, for the current setup, maximum three-

dimensional optimal growth is found to be Gmax ∼ O(10) at ε3D ≈ 0.92 lower

than in similar flow setups. The reason for the lower energy growth in the present

setup remains an open question.

Chapter summary

The kinematic and stability characteristics of the hydrodynamic flow in a chan-

nel with repeated flow-facing wedge shaped protrusions is presented in this chap-

ter. Linear stability analysis was conducted to establish the various bifurca-

tion branches of the two-dimensional flow solution. The transition to a two-

dimensional unsteady state is found to occur through a global complex mode

appearing as a wave spanning the streamwise domain length. It is observed that

increasing the blockage ratio, pitch and wedge angle prepones this transition to a

lower Re. The primary bifurcation of the two-dimensional flow solution is three-

dimensional and occurs through a real mode, well before the threshold for 2D

instability. This holds for the range of blockage ratios and pitch values covered

in this study. Increasing the blockage ratio and decreasing the pitch results in

a decrease in the critical Reynolds number Recr,3D, i.e. causes the flow to be-

come more unstable three-dimensionally. The onset of three-dimensional effects

in the flow is observed mostly near the wedge. The instability is characterised

by the formation of streamwise velocity streak induced by the counter-rotating

streamwise vortices near the wedge tip. The lift-up mechanism is found to be

responsible for this instability. A perturbation kinetic energy budget of the in-

stability modes shows that the production due to horizontal shear in the base

flow is responsible for most of the energy gain in all cases. The corresponding

locations of maximum shear are in the region ahead and after the wedge tip.
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The wavemaker region in the flow found though sensitivity analysis is similarly

located, further supporting the previous finding from the energetics analysis. The

significant regions in the flow for the placement of an active or passive control

mechanism were also identified through receptivity and sensitivity analysis for

both two- and three-dimensional disturbances. For most of the cases considered,

the local pressure gradient component of the endogeneity distribution was found

to feature prominently in the total endogeneity field, the sum of which retrieves

the growth rate of the global eigenmode, despite its net contribution being in-

trinsically zero. This emphasizes its role in the local endogeneous eigendynamics

in this system. Studies were also carried out to understand the optimal growth

of two- and three-dimensional disturbance. The optimal disturbance structure is

presented, and the influence of the subsequent wedge and geometric parameter

change on the energy growth of the optimal mode is elaborated. It is found that

the flow does not aid a significant transient energy growth, unlike similar confined

flow setups (Blackburn et al., 2008a,b; Marquet et al., 2008) over the different

range of geometric parameters considered, thereby being unlikely to support a

bypass transition via transient energy amplifications.

In the next chapter, the non-linear interactions in hydrodynamic channel flows

with repeated wedges are discussed to verify the findings from the linear analyses,

and to illustrate how non-linear interactions modify the flow structures and the

associated temperature fields.
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Chapter 4

Non-linear interactions in

hydrodynamic channel flow with

wedge-shaped protrusions

In the previous chapter, both two- and three-dimensional global linear instability

modes associated with the two-dimensional solution branch, and the primary 3D

bifurcation, respectively, were elucidated. The associated temperature fields in

the 2D steady and unsteady state of the flow and its influence on the heat transfer

behaviour were considered. Optimal modes associated with the linear transient

amplication of disturbance energy were also discussed, and it was found that

the maximum optimal energy growth was likely insufficient to incite a bypass

transition in the current flow system. The objectives of this chapter are hence

threefold. First, the influence of non-linear effects on the transient growth of

the optimal mode structures is discussed and used as support to show that these

interactions cannot lead to amplification of the energy in optimal disturbance

structures and trigger an early transition in these flows. Second, the findings from

the linear stability analysis are verified by carrying out non-linear simulations and

comparing the underlying disturbance structure leading to the unstable state for

the 2D cases. This is followed by a comparison of the flow structure in the linear

and weakly non-linear stages to that predicted from the linear analysis for the 3D

cases, which further strengthens the findings from the linear analysis about the

route to transition. The non-linear simulations also highlight how non-linearity

influences the flow structures and the associated temperature fields. Lastly, the

nature of the primary bifurcation of the 2D steady flow is identified via a weakly

non-linear analysis using the Stuart–Landau equation.
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4.1 Influence of non-linear interactions on tran-

sient growth of the optimal modes

In this section the influence of non-linearity on the transient energy growth of

the two-dimensional optimal modes found from the linear analysis in § 3.5.1

is discussed. To study the effect of non-linearity on the evolution of the two-

dimensional optimal modes, a 2D initial condition is applied as a superposition of

the base flow and the 2D optimal mode, scaled to different energy levels. The ex-

pectation is that as the initial energy level of the disturbance approaches zero, the

evolution of the disturbance will approach the evolution of the optimal mode using

the linearised equations, and non-linear effects will increasingly modify the evolu-

tion as the initial energy is increased. The unknown is whether finite-amplitude

seeding can invoke an enhancement of growth via non-linear means. The nor-

malised energy of the disturbance (equation 2.65) is monitored and compared

with that of the linear evolution case.

Three same cases considered in the linear transient growth analysis in § 3.5.1

are used here. The time histories of the disturbance energy are shown in figure

4.1 for different cases. For the cases considered, at relatively smaller seeding

(K(0)= 10−9) of the 2D optima to the baseflow, energy growth in the non-

linear evolves matches with the linear evolution curve through the first peak.

For β = 0.25, γ = 2 (figure 4.1a), these curves lie approximately on top of one

another and has the same decay rate as the linear case at low seeding, whereas for

the other two cases considered (figure 4.1b,c), the curves at lower seeding have

a relatively lower energy growth at the subsequent peaks and a slightly lower

decay rate compared to the linear evolution curves. With further increases in

the amplitude of the perturbation seeding, the normalised energy growth curves

falls below the linear growth curve, with the peak growth remaining lower, and

occuring earlier than the linear evolution case. Thus, the effect of non-linearity

has a stabilising effect on the transient growth of the predicted optimals.

4.2 Non-linear interactions in two- and three-

dimensional transition

The linearised analysis is predicated on the assumption that perturbations are

infinitesimally small, thus rendering nonlinear effects negligible. In this section,

consideration is given to the the non-linear effects. Initially, the underlying dis-

turbance structure leading to the 2D unsteady states found from the non-linear
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(a) β = 0.25, γ = 2, Re = 400 (b) β = 0.5, γ = 2, Re = 100

(c) β = 0.25, γ = 8, Re = 400

Figure 4.1: Normalised energy of 2D disturbance plotted against time for different
geometric parameter combinations as indicated. Thick solid black line represents
the linear energy evolution of the optimal modes, whereas the other lines shows
the non-linear evolution by seeding the base flow with the initial disturbance
scaled to specific kinetic energy levels as indicated.

simulations is discussed, and used to verify the predictions made from the two-

dimensional linear stability study in § 3.2.1. Thereafter, the change in the flow

structure on the onset of non-linear effects are elucidated for the three-dimensional

cases. The flow structure in the linear and weakly non-linear stages are also com-

pared with the corresponding three-dimensional linear stability mode found in

§ 3.2.3, thereby verifying the predictions made from the linear analysis. A longer

spanwise extent of the flow domain is also studied and briefly discussed.

4.2.1 Non-linear interactions in two-dimensional unsteadi-

ness

The disturbance structure leading to 2D unsteadiness in the flow is discussed

in this section to verify the findings from the 2D linear stability analysis. The

flow is evolved naturally (without the addition of white noise) from the steady

solution obtained from the BoostConv algorithm. At each time step, the under-

lying disturbance structures are acquired by subtracting the flow solution from
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(a) (b)

Figure 4.2: Time history of L 2 amplitude on naturally evolving the flow from the
steady state solution for (a) β = 0.25 at Re = 480 (ε2D = 1.08) and (b) β = 0.5
at Re = 130 (ε2D = 1.02). The cases here have γ = 2, tan(φ) = 0.125. The
marker positions in (a) and (b) corresponds to the time at which the snapshots
of the underlying disturbance field are shown in figures 4.3 and 4.4, respectively.

the steady-state solution. Reynolds number shortly beyond Recr,2D is considered

for this analysis for β = 0.25 and β = 0.5. The 2-norm of the velocity field,

L 2 of the flow is monitored during its evolution, which shows the growth and

saturation of the L 2 amplitude of the flow. These are shown in figure 4.2 for

the cases considered. Snapshots of the underlying disturbance structure at a few

time instances, corresponding to the marker positions in figure 4.2(a) and (b)

are visualised in figures 4.3 and 4.4, respectively. It is observed that the under-

lying disturbance structure matches with the dominant mode (M2) found from

linear stability analysis in § 3.2.1 at longer times when the amplitude of L 2 has

reached a saturated state. The close match between mode M2 and the underlying

disturbance structure verifies the findings from the linear analysis.

Additionally, the frequency of oscillation (flinear) obtained from linear evolu-

tion of the unstable mode M2 is compared with the corresponding frequency of

oscillation (f) of the unsteady 2D flow upon saturation for selected cases. The

corresponding frequencies are shown in table 4.1. It is found that flinear matches

closely to f , thereby further supporting the previous finding that the onset of 2D

unsteadiness is due to the linear instability mode M2.

4.2.2 Non-linear interactions in three-dimensional transi-

tion

In this section, results from three-dimensional simulations are discussed and the

onset of non-linear effects in the flow is explained for selected cases by capturing

the flow structures that emerge from the linear through the weakly non-linear

140



t = 100 t = 150

t = 200 t = 250

t = 251 t = 251.6

t = 252 t = 253.6

t = 254.2

Figure 4.3: Snapshots of spanwise vorticity (ω̂z) contours of the underlying dis-
turbance field upon naturally evolving the flow from the steady-state solution for
β = 0.25, γ = 2, tan(φ) = 0.125 at Re = 480 (ε2D = 1.08). The line contours
of spanwise vorticity of the corresponding linear instability mode (M2) is shown
at t = 254.2. Contours of ω̂z of the disturbance field are shown at 20 equispaced
levels between -0.05 (blue) to 0.05 (red), whereas the line contours of ω̂z for M2
are spaced at 10 equispaced levels in the same range with solid and dashed lines
representing positive and negative values, respectively. The time instance of each
frame correspond to the marker positions in figure 4.2(a).

stage. Verification of the findings from the linear stability analysis is made by

comparing the flow structures in the linear and weakly non-linear stage to the

corresponding 3D linear mode. For the three-dimensional simulations, the out-of-

plane domain length is selected to match the wavelength of the dominant eigen-

mode predicted in § 3.2.2 (λcr). The flow is initialised with the 2D base flow

solution superimposed with a small random 3D perturbation. A longer spanwise
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t = 0.8 t = 2

t = 4 t = 8

t = 10 t = 15

t = 20 t = 30

t = 50 t = 68.8

Figure 4.4: Snapshots of spanwise vorticity (ω̂z) contours of the underlying dis-
turbance field upon naturally evolving the flow from the steady-state solution for
β = 0.5, γ = 2, tan(φ) = 0.125 at Re = 130 (ε2D = 1.02). The line contours
of spanwise vorticity of the corresponding linear instability mode (M2) is shown
at t = 68.8. Contours of ω̂z of the disturbance field are shown at 20 equispaced
levels between -0.1 (blue) to 0.1 (red) for t = 0.8 to 15, and between -0.02 (blue)
to 0.02 (red) for t = 20 to 68.8. The line contours of ω̂z for M2 are spaced at
10 equispaced levels between -0.05 (dashed line) to 0.05 (solid line). The time
instance of each frame correspond to the marker positions in figure 4.2(b).

extent of the domain, approximately four (4λcr) and eight times (8λcr) the domi-

nant wavelength from linear analysis are also considered for selected cases in order

to capture any longer wavelength structures that might manifest and to determine

how these structures influence the flow and the temperature distribution.

The onset of weakly non-linear effects in the flow are discussed at Re beyond

the critical Reynolds number Recr,3D predicted in § 3.2.2. The closeness of Re to

Recr,3D is quantified through the term ε3D = Re/Recr,3D. Plots showing the time

evolution of kinetic energy of each Fourier mode along with iso-contours capturing

the effect of non-linearity in the flow are shown for two different blockage ratios in

figures 4.5 and 4.6. The evolution of the Fourier mode’s energy, in general, may

be divided into three regions. These are explained using an example of the kinetic

energy plot shown in figure 4.5 for β = 0.25. The initial stage (1 ) represents the

short-term dynamics of the flow where a transient rise in the energy of first three
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Parameters ε2D flinear f

β = 0.25, γ = 2 1.08 0.260 0.261
β = 0.50, γ = 2 1.02 0.253 0.252
β = 0.65, γ = 2 1.01 0.454 0.451
β = 0.25, γ = 1 1.08 0.111 0.113
β = 0.25, γ = 4 1.06 0.140 0.138
β = 0.25, γ = 16 1.02 0.156 0.156

Table 4.1: Comparison of the frequency of oscillation of the unsteady 2D flow
upon saturation (f) with the frequency on linear evolution from the 2D linear
mode (flinear) at ε2D = Re/Recr,2D as indicated.

Fourier modes can be observed. This is followed by a linear growth stage (2 ). The

growth rate of the leading Fourier mode here (d〈Ek,1/2〉/dt = 0.09080) matches

well with the growth rate predicted from linear stability analysis (σ = 0.09077).

Stage 3 is where non-linear effects dominate the flow dynamics.

For β = 0.25, γ = 2 with ε3D ≈ 4.6, figure 4.5 captures the flow structures as

the flow evolves from linear stage 2 to the non-linear saturation in 3. The flow

structures in the linear stage at t = 243 match with the eigenmodes found from

linear stability analysis (figure 3.13a), and even through the weakly non-linear

stage. The lift-up mechanism becomes evident by t = 260 and t = 265, where

the deformation of the streamwise vortices can be observed as an extension of

the counter-rotating vortices downstream, decrease in its spanwise extent, along

with the structure’s non-linear distortion. Eventually, these primary streamwise

vortices interact with the top wall, distorting and then breaking down (t = 267

and t = 275). The deformation of the spanwise vorticity contours with the flow

evolution can also be observed from the translucent isocontours shown in figure

4.5. This process repeats itself with newly formed streamwise vortices at the

wedge induced by the lift-up. The flow structures in a saturated stage at t = 477

is also shown.

At a higher blockage ratio of β = 0.5, the flow structures in the non-linear 3D

simulations shows resemblance to the linear mode, and it persists even when non-

linear effects become dominant (figure 4.6). The streamwise vortices are observed

to elongate and shrink with time as the flow evolves, and no breakdown of these

structures is observed. This is likely due the Reynolds number being closer to the

critical Recr,3D (ε3D ≈ 1.7) considered for this case.

Longer spanwise extents of the flow domain, approximately four and eight

times the wavelength of the global eigenmode found from linear stability analysis

is now considered for two blockage ratio cases. This permits the growth of longer
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(a)

(b)

t = 243 t = 260

t = 265 t = 267

t = 275 t = 278.4

t = 285.4 t = 289

t = 477

Figure 4.5: (a) Line plot showing the time evolution of domain integral of kinetic
energy (〈Ek,m〉) in 16 Fourier modes along with (b) iso-surface plots of positive
(blue) and negative (yellow) streamwise vorticity, and positive (translucent blue)
and negative (translucent green) spanwise vorticity of the flow capturing the
onset of non-linear effects for β = 0.25, γ = 2, tan(φ) = 0.125 at Re = 400
(ε3D ≈ 4.6). In (a) the dashed bold line represents the energy in the fundamental
mode (〈Ek,0〉), while energy in the dominant mode (〈Ek,1〉) is given by the solid
bold line. The other thin lines represent the energy evolution in the subdominant
modes. The transient, linear and non-linear saturation regions are identified as 1
(the section shown in orange), 2 and 3 respectively. A section showing the time
interval between the linear regime and the fully saturated non-linear regime is
also shown (in blue) along with time stamps of the iso-contours, for reference.
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(a)

(b)

t = 240.65 t = 245.65

t = 250.65 t = 257.65

t = 264.65 t = 272.65

t = 308 t = 469

Figure 4.6: (a) Line plot showing the time evolution of domain integral of kinetic
energy (〈Ek,m〉) in 16 Fourier modes along with (b) iso-surface plots of positive
(blue) and negative (yellow) streamwise vorticity, and positive (translucent blue)
and negative (translucent green) spanwise vorticity of the flow capturing the onset
of non-linear effects for β = 0.5, γ = 2, tan(φ) = 0.125 at Re = 100 (ε3D ≈ 1.7).
In (a) the line labels are same as in figure 4.5(a). A section showing the time
interval between the linear regime and the fully saturated non-linear regimes is
also shown (in blue) along with time stamps of the iso-contours, for reference.
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wavelength Fourier modes. For β = 0.125, the flow structures on non-linear

saturation is shown at different Reynolds numbers in figure 4.7 for a domain with

four times the spanwise length of the global mode. Deformation of the spanwise

vorticity sheets by the streamwise vorticity structures which is more prevelant

near the bottom wall can be observed from the three-dimensional iso-contours

shown in figure 4.7. The passive temperature field forms alternate streaks of hot

and cold temperature fluids extending the streamwise length of the flow domain

and seems to follow the streamwise vorticity field’s pattern. These streaks are

strong support of the lift-up mechanism; the cold streaks being where the fluid

is pushed down by the streamwise rollers, the hot streaks are where they are

lifting the hot fluid from near the surface into the interior of the duct. The

spanwise velocity fields which appeared as purely spanwise rolls in the linear and

weakly non-linear stage can be seen to be deformed further, resulting in a much

extensive mixing of the hot and the cold fluids near the top and bottom walls of the

channel, respectively. This is evident from the plume structures formed between

the deformed alternate spanwise velocity rolls. A more vigorous deformation is

found with increasing Reynolds number with the formation of much small scale

structures in the flow. For the largest spanwise length investigated (eight times

the spanwise length of the global mode) the flow structures are observed to have a

similar structure as the 4λcr case with more small scale structures being captured

as shown in figure 4.8.

Comparison of the flow fields for a smaller spanwise domain length (λcr) with

the 4λcr domain is made in figures 4.9 and 4.10 for β = 0.25. The visualisation

clearly shows how small scale structures are captured in the 4λcr domain allowing

for its effect to be captured in the temperature fields as well. At similar Reynolds

number the streamwise vorticity fields seems to have a more coherent repeating

pattern at a lower blockage ratio of β = 0.125 which is lost for the β = 0.25 case.

Instead, swirling of the alternate streamwise vorticity streaks downstream of the

wedge tip is observed for this case. The effect of this swirling can be visualised

through the temperature fields which no longer has the alternate streak pattern

extending the streamwise extent of the flow domain as observed for β = 0.125,

thereby increasing the mixing of the hot fluid to the bulk at a higher blockage

ratio.

A qualitative illustration of the three-dimensional flow structures and the

effect of spanwise domain length was provided in figures 4.5-4.10. A quantitative

consideration will now be given. In table 4.2 a comparison of the time averaged

bulk flow properties of the flow per unit spanwise length of the domain is made
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(a) Re = 400 (4λcr)

ωx: T :

(b) Re = 500 (4λcr) (c) Re = 600 (4λcr)

ωx: ωx:

w:

Figure 4.7: Visualisations of a snapshot of the saturated three-dimensional flow
in domains with spanwise length four times (4λcr) the dominant wavelength pre-
dicted from the linear stability analysis. In (a-c), the top frame plots the isosur-
faces of streamwise vorticity with opaque blue and yellow showing positive and
negative values, respectively, and isosurfaces of spanwise vorticity with translu-
cent blue and green showing positive and negative values, respectively. In (a)
the temperature distribution is shown (bottom right), while in (a-c) the bottom
frames also plot the contours of streamwise vorticity ωx and spanwise velocity w.
Parameters for the case shown are β = 0.125, γ = 2 and tan(φ) = 0.125 at (a)
Re = 400, (b) Re = 500 and (c) Re = 600.
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(a) Re = 500 (8λcr) (b) Re = 600 (8λcr)

w:

ωx:

Figure 4.8: Visualisations of a snapshot of the saturated three-dimensional flow
in domains with spanwise length eight times (8λcr) the dominant wavelength
predicted from the linear stability analysis. In (a,b), the top frame plots the
isosurfaces of streamwise vorticity with opaque blue and yellow showing posi-
tive and negative values, respectively, and isosurfaces of spanwise vorticity with
translucent blue and green showing positive and negative values, respectively. The
bottom frame plots the contours of streamwise vorticity (ωx) and spanwise veloc-
ity (w). Parameters for the case shown are β = 0.125, γ = 2 and tan(φ) = 0.125
at (a) Re = 500 and (b) Re = 600.

for selected cases. Although, the larger spanwise length flow domain can capture

the small scale flow structures than the λcr domain, the bulk properties of the

flow calculated from the λcr domain matches closely with those calculated from

the larger spanwise domain length cases. The effect of swirls observed in the

streamwise vorticity contours for β = 0.25 case which resulted in a better mixing

between the hot and cold fluid downstream of the wedge tip could be observed as

an enhancement in Nusselt number for this case than at lower blockage ratio of

β = 0.125. However, these are also associated with a much higher pressure drop
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(a) Re = 400 (λcr)

ωx: T :

Figure 4.9: Visualisations of a snapshot of the saturated three-dimensional flow in
domains with spanwise length equal to (λcr) the dominant wavelength predicted
from the linear stability analysis. The top frame plots the isosurfaces of stream-
wise vorticity with opaque blue and yellow showing positive and negative values,
respectively, and isosurfaces of spanwise vorticity with translucent blue and green
showing positive and negative values, respectively. The bottom right frame plots
the temperature distribution, while the contours of streamwise vorticity ωx and
spanwise velocity w are shown in the bottom left frame. Parameters for the case
shown are β = 0.25, γ = 2 and tan(φ) = 0.25.
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(a) Re = 400 (4λcr)

ωx: T :

(c) Re = 500 (4λcr) (d) Re = 600 (4λcr)

ωx: ωx:

w:

Figure 4.10: Visualisations of a snapshot of the saturated three-dimensional flow
in domains with spanwise length equal to four times (4λcr) the dominant wave-
length predicted from the linear stability analysis. In (a-c), the top frame plots
the isosurfaces of streamwise vorticity with opaque blue and yellow showing pos-
itive and negative values, respectively, and isosurfaces of spanwise vorticity with
translucent blue and green showing positive and negative values, respectively. In
(a) the temperature distribution (bottom right) is shown, while in (a-c) the bot-
tom frame also plots the contours of streamwise vorticity ωx and spanwise velocity
w. Parameters for the case shown are β = 0.25, γ = 2 and tan(φ) = 0.25.
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β = 0.125, γ = 2

Time averaged flow pa-
rameter per unit span-
wise length

Re λcr 4λcr 8λcr

Flow kinetic energy 400 22.28102 23.68234
500 23.40327 23.44405
600 23.45281 23.43449

Friction factor 400 0.03277 0.03391
500 0.03299 0.03348

Nusselt number 400 8.20288

β = 0.25, γ = 2

Time averaged flow pa-
rameter per unit span-
wise length

Re λcr 4λcr

Flow kinetic energy 400 43.62923 43.29894
500 38.60451
600 38.32449

Friction factor 400 0.07538 0.07407
500 0.07337
600 0.07252

Nusselt number 400 55.60261 55.61804
500 59.03361
600 75.80818

Table 4.2: Comparison of various bulk flow parameters per unit spanwise width
for cases with spanwise width equal to (λcr), four times (4λcr) and eight times
(8λcr) the wavelength of the global mode found from linear stability analysis.
Quantities shown are the time averaged kinetic energy of the flow, friction factor
f and domain averaged Nusselt number 〈Nu〉.
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as can be noted from the friction factor values for these cases.

4.3 Weakly non-linear Stuart–Landau analysis

The last aim of this chapter is addressed in this section, which is to understand

the nature of the primary bifurcation from 2D steady state to 3D state using the

Stuart–Landau equation as described in § 2.7.

The nature of the primary bifurcation from the two-dimensional steady state

to a three-dimensional state is discussed in this section. The mode amplitude

measure (A in equation 2.67) used for this analysis is the time history of kinetic

energy contained in the leading Fourier mode. The mode amplitude variation

with time for various cases considered here are shown in figure 4.11. The mode

amplitude time history is then used to obtain plots of d(log |A|)/dt against |A|2

which are shown in figure 4.12 for the same cases as in figure 4.11. For all these

cases, it can be observed that the slope is negative at |A|2 ≈ 0 (corresponding

to l > 0 in equation 2.68). Hence, the primary bifurcation of the flow is found

to be supercritical for all the parameter combinations tested. This is notable as

a wide range of blockage ratios (0.125 ≤ β ≤ 0.8) and pitch (2 ≤ γ ≤ 4) are

captured. The underlying eigenmodes for each of these cases all have positive

real eigenvalues (§ 3.2.2). These two findings combine to suggest that the flow

undergoes a change to the 3D state via a supercritical pitchfork bifurcation. The

supercritical nature of the bifurcation (or absence of subcriticality) is consistent

with the weak transient growth at subcritical Reynolds numbers, and indicates

the difficulty in promoting unstable states or turbulence at subcritical Re in this

system (Reddy & Henningson, 1993; Trefethen et al., 1993; Krasnov et al., 2004;

Camobreco et al., 2020).
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(a) β = 0.125, γ = 2, Re = 400 (b) β = 0.25, γ = 2, Re = 400

(c) β = 0.5, γ = 2, Re = 100 (d) β = 0.8, γ = 2, Re = 60

(e) β = 0.25, γ = 4, Re = 150

Figure 4.11: Time history of |A| showing the exponential growth and non-linear
saturation. The cases here have fixed parameter γ = 2 and tan(φ) = 0.125.
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(a) β = 0.125, γ = 2, Re = 400 (b) β = 0.25, γ = 2, Re = 400

(c) β = 0.5, γ = 2, Re = 100 (d) β = 0.8, γ = 2, Re = 60

(e) β = 0.25, γ = 4, Re = 150

Figure 4.12: Plots of d log |A|/dt against |A|2 with a negative slope (l > 0)
showing a supercritical bifurcation of the 2D flow to a 3D state. The growth rate
of the corresponding critical eigenmode is represented as a diamond symbol. The
cases here have fixed parameter γ = 2 and tan(φ) = 0.125.
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Chapter Summary

Non-linear interactions in the flow evolution in hydrodynamic channel flows with

repeated wedge protrusions are explored in this chapter. Investigation of the in-

fluence of non-linearity on the transient growth of linear optimal modes shows

that non-linearity has a stabilising effect on the growth of the optimal modes.

Through monitoring the underlying disturbance structure on naturally evolving

the steady state solution of two-dimensional flows, it is verified that the onset

of two-dimensional unsteadiness manifests through the global 2D eigenmodes ob-

tained from the linear analysis. Three-dimensional simulations are carried out

to verify that the primary three-dimensional bifurcation occurs through the lin-

ear global 3D mode obtained from the linear stability analysis. The change in

the flow structures as non-linear effects dominates is explained, followed by a di-

cussion of the effect of selecting the spanwise extent of the domain on the flow

structures, temperature field and the bulk flow properties. The nature of the

primary bifurcation is found to be a supercritical, supporting the low transient

growth observed in the system under consideration.

In the following chapter, the stability characteristics of quasi-two-dimensional

MHD flows in ducts with repeated wedge-protrusions are presented.
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Chapter 5

Stability of quasi-2D

magnetohydrodynamic duct flow

with repeated wedge protrusions

The second main objective of this project is addressed in this chapter by consid-

ering a quasi-two-dimensional magnetohydrodynamic (MHD) flow though a duct

with repeated flow-facing wedge protrusions on the bottom wall. The flow regimes

associated with this flow are identified by considering a range of Hartmann friction

parameters and Reynolds numbers. A comparison of the flow structure (stream-

line patterns) is made to the hydrodynamic channel flow case discussed in § 3.1.1.

The dominant steady recirculation region identified from the flow regimes are fur-

ther characterised by describing how the length of this recirculation region varies

over a range of Hartmann friction parameters covering low to high values and its

dependence on the geometric parameters of the wedge is discussed. Thereafter,

the primary bifurcation of the steady quasi-2D flow is elucidated though a lin-

ear stability analysis of the flow to quasi-2D perturbations. The quasi-2D modes

leading to the primary bifurcation are visualised. Following this, the transient

growth of quasi-2D perturbations is described and the possibility of a sub-critical

route to transition is examined. A study on the influence of non-linear interac-

tions on the optimal energy growth of quasi-2D disturbances is presented. Lastly,

three-dimensional simulations under the low-Rm assumption describing the flow

transition are presented as a further validation of the findings from the linear

stability analysis.

157



5.1 Quasi-2D magnetohydrodynamic flow

The flow regimes associated with the quasi-two-dimensional MHD flow through

the flow setup described in the introduction (figure 4) are discussed in this section

by considering a range of Hartmann friction parameters (0.5 ≤ H ≤ 1000) and

blockage ratios (0.125 ≤ β ≤ 0.65). Comparison is made with the corresponding

hydrodynamic channel flow case from § 3.1. Regime maps are presented and the

critical Reynolds number (Recr,Q2D) for the onset of quasi-2D vortex shedding

are identified as a function of H and β. This is followed by a discussion of the

characteristics of the dominant recirculation region.

5.1.1 Flow regimes

For flow through the current setup, four different regimes are identified in the

range of Harmann friction parameters investigated, based on the flow structure

(visualisation of streamline pattern) and the variation of Recr,Q2D with H .

The first three regimes produce steady flows, whereas the last identified regime

adopts an unsteady state. The features of the flow in each identified regime are

shown in figure 5.1, and are described here:

1. Regime-1: This regime manifests at low-H , with the flow features being

similar to those of regime-3 in the hydrodynamic channel flow case. Figure

5.1(a-d) shows the streamlines at H = 0 and H = 0.3, corresponding to

regime-1 for β = 0.25 and β = 0.5. In this regime, the critical Reynolds

number Recr,Q2D for the onset of quasi-2D vortex shedding remains almost

independent of H at very low H values, and is followed by an increase with

further increase in H . This characteristics is the same for all blockage ratios

investigated and is shown in figure 5.2.

2. Regime-2: This regime exists only for lower blockage ratios (β . 0.5) and in-

termediate Hartmann friction parameters. Figure 5.1(e,f) shows the stream-

lines at H = 40 and H = 10 corresponding to regime-2 for β = 0.125 and

β = 0.25, respectively. Here, the flow exhibits a change with the formation

of a recirculation region immediately after the wedge tip, and splitting of

the recirculation region identified in regime-1 into a small recirculation zone

in front of the wedge and one extending from the tapered wedge surface of

the current wedge to the the gap between the current and the next wedge.

The latter recirculation regions still remain dominant in the flow in this

regime. An interesting feature of this regime is that Recr,Q2D decreases with
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increasing H (right of HR2 in figure 5.2). Increasing β prepones the onset of

this regime and also decreases the range of H over which this regime exists.

This can be observed in figure 5.2 with the first and the second dashed lines

from the left, corresponding to HR2 and HR3, respectively shifting towards

lower H. Regime-2 is not observed for β = 0.5 and β = 0.65.

3. Regime-3: This regime features only a dominant recirculation region imme-

diately after the wedge tip with all other recirculation regions suppressed

in the flow. This holds for all blockage ratios under investigation. The

flow streamlines for this regime are shown in figure 5.1(g,h) at H = 200 for

β = 0.25 and β = 0.5. Unlike regime-2, in this regime, Recr,Q2D increases

monotonically with H (right of HR3 in figure 5.2) and appears to converge

to a similar Recr,Q2D value at very high H for the different β cases consid-

ered here. This may be due to the very thin boundary and shear layers

formed at very high-H , possibly making the influence of blockage ratio less

effective. The discussion of the quasi-2D mode through which instability

manifests in these flows in § 5.2.2 will further explain this behaviour.

4. Regime-4: In this regime an unsteady quasi-2D state persists for Re >

Recr,Q2D, with quasi-2D vortex shedding in the flow. This happens when

the steady recirculation region identified in the previous (steady) regime

breaks up. For the low and intermediate values of H , this is associated with

vortices sweeping over the bottom and top walls of the duct for all blockage

ratios with β & 0.25 considered in this study. For β = 0.125, however,

two unsteady states are observed similar to that for the non-MHD cases

discussed in § 3.1.3. At higher values of H , the unsteady state is associated

with vortex shedding starting from the wedge tip and vortices sweeping

over the botom wall of the duct at lower blockage ratios (β . 0.5), while

additional recirculation regions are observed to sweep over the top wall at

higher blockage ratios (β & 0.5). These flow features are visualised through

an instantaneous spanshot of the spanwise vorticity contours and are shown

in figure 5.1(i,j) for a lower and higher bloackge ratio case, respectively.

The Hartmann friction parameter H models the influence of the Hartmann

layer on the walls perpendicular to the magnetic field direction. For the current

system, H = r2(Ha/2), where r = 2L/a is the aspect ratio of the duct cross-

section and takes into account both the Hartmann number and the aspect ratio of

the duct. Increasing H has a stabilising effect on the flow as the perturbations are

dissipated by increased Harmann damping. In regime-2, an opposite behaviour

159



(a) H = 0, Re = 400, β = 0.25 (b) H = 0, Re = 100, β = 0.5

Regime-1
(c) H = 0.3, Re = 300, β = 0.25 (d) H = 0.3, Re = 100, β = 0.5

Regime-2
(e) H = 40, Re = 600, β = 0.125 (f) H = 10, Re = 350, β = 0.25

Regime-3
(g) H = 200, Re = 750, β = 0.25 (h) H = 200, Re = 350, β = 0.5

Regime-4
(i) H = 200, Re = 900, β = 0.25 (j) H = 200, Re = 900, β = 0.5

ωz:

Figure 5.1: Flow regimes associated with change inH shown for different blockage
ratios. Shown are the base flow streamlines and spanwise vorticity contours for
(a,b) hydrodynamic channel flow cases (c-h) steady quasi-2D MHD regimes 1 to 3
and (i,j) the unsteady quasi-2D MHD regime-4. Instantaneous spanwise vorticity
contours are shown for the unsteady regimes in (i,j).

of decreasing critical Reynolds number Recr,Q2D with H is observed for cases with

β . 0.5. This can be explained by considering the change in the flow feature

observed in this regime. As discussed earlier, this regime is characterised with the

formation of a new recirculation region after the wedge tip, which has the effect of
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Figure 5.2: Variation of critical Reynolds number (Recr,Q2D) for the onset of
vortex shedding as a function of Hartmann friction parameter H for different
blockage ratios β with γ = 2 and tan(φ) = 0.125. The approximate critical H
for the onset of regime-2 and regime-3 are shown respectively as HR2 and HR3.
Regime-4 starts beyond Recr,Q2D.

Figure 5.3: Increase in the effective height of the wedge from hw to h∗w with the
formation of recirculation region of length lr in the streamwise direction after the
wedge tip.

increasing the effective height of the wedge from hw to h∗w as shown in figure 5.3,

which in turn increases the blockage from β = hw/2L to β∗ = h∗w/2L (effective

blockage ratio). Increasing blockage ratio is observed to have a destabilising effect

on the flow, which can be noted from the lower Recr,Q2D value with increasing β

in figure 5.2, in the low and intermediate values of H . The decreasing influence

of blockage ratio on Recr,Q2D can also be observed with the converging values of

Recr,Q2D at higher H . Owing to the dominant influence of increased blockage

ratio relative to the stabilising effect of H , Recr,Q2D decreases with H in regime-2.

In regime-3, the effect of Hartmann damping dominates the decreasing influence

of blockage ratio on the flow and hence Recr,Q2D increases with H as expected.
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5.1.2 Recirculation length characteristics

As elucidated in § 5.1.1, the recirculation region after the wedge tip starts form-

ing for β . 0.5 in the intermediate range of H , whereas it is already present at

higher blockage ratio β & 0.5, and becomes the dominant feature of the flow in

regime-3 (corresponding to high-H range) for all cases. The characteristics of this

dominant steady recirculation region formed immediately after the wedge tip are

discussed in this section and compared to similar regions found in other confined

quasi-2D flow setups. Figure 5.4(a-d) shows the variation of the length Lr of

this recirculation zone with Re for a range of H in the high H-range at different

blockage ratios. The dimensionless length of the recirculation region is given by

Lr = lr/L, where lr is the distance in the streamwise direction from the separation

point to the reattachment point of the recirculation bubble on the tapered wedge

surface and L is half-duct height (figure 5.3). Lr varies approximately linearly

with Re for all the H investigated with the rate of increase of Lr with Re decreas-

ing with H . Similar behaviour was also observed for all the β investigated. The

characteristics of this recirculation region exhibits similarity to that of a steady

recirculation region formed behind cylindrical bluff body in a confined quasi-2D

MHD flow (Hussam et al., 2012b). For a similar setup as in Hussam et al. (2012b),

Dousset & Pothérat (2008) showed a collapse in Lr curves at higher Hartmann

numbers Ha (H = 40 for a duct with aspect ratio 1 in their case) and found

that Lr followed the relationship Lr ∼ Re/Ha0.8. A similar collapse is found

in the present setup only for H & 300. In the range of Hartmann paramaters

100 ≤ H ≤ 2000, it is found that the change of Lr with Re follows a correlation

of dLr/dRe ≈ 0.8(H/β)−0.8 for blockage ratios 0.125 ≤ β ≤ 0.65. A collapse of

the curve dLr/dRe is shown in figure 5.4(e,f). A linear fit to the logarithm of

these values follows log10(dLr/dRe) ≈ −0.8 log10(H/β)−0.1 accurate to R2=0.98.

5.2 Linear stability of quasi-two-dimensional flow

The quasi-2D flow regimes were mapped in § 5.1.1 and the recirculation length

variation of the dominant recirculation region was quantified in § 5.1.2. In this

section, the linear stability of the steady quasi-2D MHD flow ranging over the

different regimes identified, and spanning over a range of H , blockage ratio and

pitch is elucidated. The focus is on the possible scenario of bifurcation from the

steady to the unsteady state through quasi-2D modes found through a global

instability mode. For these cases, the growth rate of the quasi-2D modes and
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(a) β = 0.125 (b) β = 0.25

(c) β = 0.5 (d) β = 0.65

(e) (f)

Figure 5.4: (a-d) Variation of recirculation length Lr as a function of Re and
H (arrow indicates the direction of increasing H with first and the last H as
indicated) and (e,f) collapse of dLr/dRe when plotted against H/β in the range
100 ≤ H ≤ 2000 and 0.125 ≤ β ≤ 0.65.

the critical Reynolds number Recr,Q2D are obtained for different blockage ratios

and pitch values. Comparison of the MHD cases to the corresponding non-MHD

case (H = 0) is also made. Following the discussion of the critical parameters

and their dependence on H , β and γ, the global quasi-2D eigenmodes associated
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with these flows and the mode responsible for the onset of the instability are

elaborated.

5.2.1 Growth rate and critical parameters of quasi-2D

perturbations

Linear stability analysis (§ 2.2) is performed on the steady state solutions of the

quasi-2D flow (Citro et al., 2017). The growth rate of quasi-2D perturbations is

presented here for different H covering the low, intermediate and high-H range,

and considering various β and γ values. In figure 5.5, the growth rate curves as

a function of Re are shown for H = 5, and compared with the corresponding

hydrodynamic channel flow case at H = 0. Similar curves for the intermediate

and high-H ranges are also shown in figures 5.6 and 5.7, respectively. For all these

cases, it is observed that the steady quasi-2D flow is associated with a dominant

eigenmode associated with a real eigenvalue (labelled QM1), which remains stable

to quasi-2D perturbations over a range of Re. On approaching the Reynolds

number where the flow is unsteady, a subdominant eigenmode associated with

complex eigenvalue (labelled QM2) is observed. The growth rate of QM2 shows a

rapid rise and ultimately becomes responsible for the quasi-2D vortex shedding.

A second subdominant mode associated with complex eigenvalue (labelled QM3)

is also observed whose growth rate remains closely behind that of QM2. The

growth rate trends are similar to what is observed for the 2D disturbance in the

hydrodynamic channel flow case (figure 5.5), although for the quasi-2D MHD

cases, this is associated with the primary bifurcation of the flow to a quasi-

2D unsteady state, because three-dimensional modes are excluded by the two-

dimensionality of the model.

The critical Reynolds number Recr,Q2D for the onset of quasi-2D vortex shed-

ding found though linear stability analysis for the different cases studied are given

in table 5.1. Irrespective of the value of H , increasing the blockage ratio always

results in a destabilisation of the flow, which can be noticed as a decrease in

the critical Reynolds number (both Recr,Q2D and Recr,2D) with increasing β. In

the low and intermediate ranges of H investigated, the quasi-2D flow becomes

more unstable with increasing pitch. This trend matches the observation made

for the hydrodynamic cases. However, in the higher range of H considered in

this study, the quasi-2D flow becomes increasing stable to quasi-2D disturbances

when increasing the pitch. The streamwise wavenumber of the quasi-2D unstable

mode is seen to increase with increasing H , and it is possible that the lower pitch

cases at higher H , already captures the unstable wavenumbers, contrasting the
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(a) β = 0.125, γ = 2 (b) β = 0.25, γ = 2

(c) β = 0.5, γ = 2 (d) β = 0.65, γ = 2

(e) β = 0.25, γ = 1 (f) β = 0.25, γ = 4

(g) β = 0.25, γ = 8

Figure 5.5: Plots of growth rate against Re in the low-H range (H = 5) for
different geometric parameter combinations. Real and complex eigenvalues are
denoted by closed and open symbols, respectively. Triangle, square and circle
symbols represent mode QM1, QM2 and QM3, respectively. The growth rate of
the corresponding hydrodynamic channel flow case (H = 0) is shown in blue for
comparison. The symbols for H = 0 cases are as in figure 3.7. All cases here have
tan(φ) = 0.125.
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(a) β = 0.25, γ = 2,H = 20 (b) β = 0.125, γ = 2,H = 40

Figure 5.6: Plots of growth rate against Re at (a) H = 20 and (b) H = 40 range
for different geometric parameter combinations as indicated. Line labels are as
per figure 5.5. All cases here have tan(φ) = 0.125.

β, γ H = 0 H = 5 H = 200

0.125, 2 712.16 1185.93 1021.85
0.25, 2 445.93 545.14 788.91
0.5, 2 126.92 141.39 612.27
0.65, 2 89.56 99.27 460.39
0.25, 1 582.23 684.03 724.51
0.25, 4 340.83 322.62 927.81
0.25, 8 285.73 313.35 1150.20

Table 5.1: Critical Reynolds number Recr,2D for the onset of 2D vortex shedding
and, Recr,Q2D for the onset of quasi-2D vortex shedding over a range of Hartmann
parameters H for different blockage ratios and pitch. Wedge angle for the cases
here is tan(φ) = 0.125.

findings for the lower-H regimes. Hence, any further increase in pitch results in

an increased stability of the quasi-2D flow in this regime.

5.2.2 Quasi-2D eigenmodes

From § 5.2.1 it was found that the flow eigenspectrum contains three significant

quasi-2D eigenmodes QM1, QM2 and QM3, and the onset of quasi-2D vortex

shedding is consistently associated with a complex quasi-2D mode (QM2) over a

range of H . In this section, these eigenmode structures are discussed. The un-

stable complex mode QM2, the stable subdominant real mode QM1 and complex

mode QM3 are shown for different cases in the low, intermediate and high-H

regimes in figures 5.8-5.10. Over the range of H , the destabilising mode QM2

appears as a wave extending over the flow domain observable in the v̂ contours.

In the low-H range, the opposite signed vorticity structures appear over the bot-
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(a) β = 0.125, γ = 2 (b) β = 0.25, γ = 2

(c) β = 0.5, γ = 2 (d) β = 0.65, γ = 2

(e) β = 0.25, γ = 1 (f) β = 0.25, γ = 4

(g) β = 0.25, γ = 8

Figure 5.7: Plots of growth rate against Re in the high-H range (H = 200 for (a-
c) and (e-g) and H = 300 for d) for different geometric parameter combinations.
Line labels are as per figure 5.5. All cases here have tan(φ) = 0.125.
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tom and top walls, extending over the streamwise length of the flow domain,

suggesting an instability of the bottom and top wall boundary layers. QM3 is a

similar mode to QM2, with a smaller streamwise wavenumber. These modes have

a similar structure as the 2D modes found in the corresponding hydrodynamic

channel flow cases (figure 3.8) and are the quasi-2D equivalent of the 2D modes

M1, M2 and M3.

In the intermediate range of H , as the base flow structure changes (figure

5.1e,f), the vortical structures of QM2 appear to become concentrated near the

newly formed recirculation region immediately after the wedge tip. At a higher

H , although the eigenmode structure seems similar, they are now more intense

around the dominant recirculation region (figure 5.1g,h) formed after the wedge

tip and concentrated in the much thinner Shercliff boundary layer on the walls.

This reinforces the point that there is a lesser influence of blockage ratio on the

flow instability at higher values of H as raised in § 5.1.1. The vortices in the

subdominant complex mode QM3 in these cases are more closely spaced than

those of mode QM2. The eigenmodes in MHD duct flows were found to be the

quasi-2D MHD equivalent of the Tollmien–Schlichting waves (Pothérat, 2007)

lying entirely within the Shercliff layers. In the present setup, although the mode

structures lie within the Shercliff layers, the presence of the wedge causes the

modes to be concentrated along the free shear layer formed over the recirculation

region and along the subsequent slanted wedge surface. The instability in these

high-H regimes appears to manifests due to the combined effects of the instability

of the free shear layer and the boundary layer on the tapered wedge surface.

5.3 Linear transient growth

It was found from the the linear stability analysis in § 5.2 that, over a range

of Hartmann friction parameters, the quasi-2D MHD flow bifurcates to a quasi-

2D unsteady state via a global quasi-2D modal instability. The corresponding

mode shapes and locations were identified and discussed. In this section, the

corresponding linear transient growth behaviour of quasi-2D perturbations are

studied. For MHD channel flows and duct flows in the presence of a spanwise

magnetic field, there has been strong disagreement between the critical Reynolds

number predicted by linear stability analysis (Ting et al., 1991) to those observed

in experimental studies (Reed & Picologlou, 1989). Later studies (Pothérat, 2007;

Krasnov et al., 2008, 2010) have found that the reason for the strong disagreement

is because these flows undergo a bypass transition by large transient amplication
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(a) β = 0.125, γ = 2, Re = 1080 (QM1) (b) β = 0.25, γ = 2, Re = 500 (QM1)

(c) β = 0.125, γ = 2, Re = 1200 (QM2) (d) β = 0.25, γ = 2, Re = 550 (QM2)

(e) β = 0.125, γ = 2, Re = 1200 (QM3) (f) β = 0.25, γ = 2, Re = 550 (QM3)

(g) β = 0.5, γ = 2, Re = 130 (QM1) (h) β = 0.65, γ = 2, Re = 90 (QM1)

(i) β = 0.5, γ = 2, Re = 150 (QM2) (j) β = 0.65, γ = 2, Re = 105 (QM2)

(k) β = 0.5, γ = 2, Re = 150 (QM3) (l) β = 0.65, γ = 2, Re = 105 (QM3)

Figure 5.8: Flooded contours of z-vorticity (ω̂z) superimposed by line contours of
transverse velocity v̂ of the dominant (QM2) and sub-dominant quasi-2D eigen-
modes (QM1, QM3) at Re > Recr,Q2D in the low-H range (H = 5). The quasi-2D
base flow streamlines are overlaid in blue. Line contour levels equidistant from
zero are chosen arbitarity to visualise the structures.
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(a) β = 0.25, γ = 2, H = 20, Re = 350 (QM1) (b) β = 0.125, γ = 2, H = 40, Re = 800 (QM1)

(c) β = 0.25, γ = 2, H = 20, Re = 380 (QM2) (d) β = 0.125, γ = 2, H = 40, Re = 900 (QM2)

(e) β = 0.25, γ = 2, H = 20, Re = 380 (QM3) (f) β = 0.125, γ = 2, H = 40, Re = 900 (QM3)

Figure 5.9: Flooded contours of z-vorticity (ω̂z) superimposed by line contours of
transverse velocity v̂ of the dominant (QM2) and sub-dominant quasi-2D eigen-
modes (QM1, QM3) at Re > Recr,Q2D in the intermediate-H range. The quasi-2D
base flow streamlines are overlaid in blue. Line contour levels equidistant from
zero are chosen arbitarity to visualise the structures.

of non-modal perturbations. Therefore, understanding the transient growth is

important to completely understand the nature of transitions in the system under

consideration. In duct flows, the SM82 model has been found to predict transient

energy amplification with excellent agreement against three-dimensional analysis

in the limit of high Hartmann number, Ha & 100 (Cassells et al., 2019). Thus,

analysis of the transient behaviour of quasi-2D perturbations has been considered

extensively. Here the optimal growth and the corresponding quasi-2D initial

disturbances are discussed. The possibility of a sub-critical route to transition

is also explored by studying the non-linear interactions in the transient energy

growth of the quasi-2D optimal modes.
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(a) β = 0.125, γ = 2, H = 200, Re = 1050 (QM2) (b) β = 0.25, γ = 2, H = 200, Re = 800 (QM2)

(c) β = 0.125, γ = 2, H = 200, Re = 1050 (QM3) (d) β = 0.25, γ = 2, H = 200, Re = 800 (QM3)

(e) β = 0.5, γ = 2, H = 200, Re = 630 (QM2) (f) β = 0.65, γ = 2, H = 300, Re = 650 (QM2)

(g) β = 0.5, γ = 2, H = 200, Re = 630 (QM3) (h) β = 0.65, γ = 2, H = 300, Re = 650 (QM3)

Figure 5.10: Flooded contours of z-vorticity (ω̂z) superimposed by line contours of
transverse velocity v̂ of the dominant (QM2) and sub-dominant quasi-2D eigen-
mode (QM3) at Re > Recr,Q2D in the high-H range. The quasi-2D base flow
streamlines are overlaid in blue. Line contour levels equidistant from zero are
chosen arbitarity to visualise the structures.

5.3.1 Optimal growth of quasi-2D perturbations

The linear transient growth of quasi-2D perturbations is discussed in this section

for a range of Hartmann friction parameters 5 ≤ H ≤ 1000, and Reynolds number

in the linearly stable range (Re < Recr,Q2D). The optimal energy growth curves

of quasi-2D perturbations are shown in figure 5.11 for different H and Re for a

case with β = 0.25, γ = 2 and tan(φ) = 0.125. In the range of Reynolds num-

ber considered (maximum Re ≈ 0.95Recr,Q2D), the optimal energy of quasi-2D

disturbances rises monotonically to a peak and subsequently exhibits an undulat-

ing decay with increasing time horizon. Unlike the hydrodynamic cases (figures
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Plots showing the optimal energy growth of quasi-2D perturbations
plotted against time horizon τ for 5 ≤ H ≤ 1000 at different Reynolds numbers
in the linearly stable range Re < Recr,Q2D. Arrow indicates the direction of
increasing Re with the first and the last Re as indicated.

3.24 and 3.25), multiple subsequent smaller peaks can be observed in the opti-

mal growth curves during the decay of the perturbation optimal energy. It will be

shown in the results to follow that in the low-H regimes, the subsequent peaks are

associated with the disturbance structure impinging on the subsequent wedges,

however, for the intermediate and high-H cases the subsequent peaks during de-

cay are associated with the energy gain from the free shear layer at the time when

the disturbance structure passes over the recirculation region formed immediately

after the wedge tip.
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(a) (b)

Figure 5.12: Plot showing Gmax against εQ2D = Re/Recr,Q2D in the (a) low (H =
5) and intermediate-H ranges (H = 10, H = 20) along with a comparison of the
non-MHD case (H = 0), and (b) the high-H range (100 ≤ H ≤ 1000).

Maximum optimal growth Gmax is obtained for the various cases and its vari-

ation with Re is further interrogated here. Observation made from figure 5.12(a)

shows that for the low-H case (H = 5), Gmax variation with εQ2D = Re/Recr,Q2D is

comparable to the H = 0 case, with a maximum growth between O(10)−O(102),

whereas in the intermediate range of Hartmann friction parameters (H = 10, 20),

Gmax remains lower than the former cases (maximum Gmax ∼ O(10)). This de-

flation of maximum transient amplification may be attributed to the increasing

Hartmann friction damping as H increases. In the low-H cases, the range of Re

over which the flow remains linearly stable is almost comparable to H = 0 case,

whereas in the intermediate-H range, this range of Re slightly decreases. This

can be noted from the flow regime map in figure 5.2 for β = 0.25. On the other

hand, in the high-H range of parameters, the flow remains linearly stable over

a wider range of Re, increasing the horizon of Re over which transient growth

is possible. An exponential increase in the maximum optimal energy gain can

be seen with Re approaching Recr,Q2D (εQ2D approaching 1) in the high-H cases

(figure 5.12b), with the maximum growth achieving a much higher value with

increasing H . In the case of a plane duct without wedges, Gmax near εQ2D ∼ 1

was found to be O(102) at H = 1000 (Pothérat, 2007). For the present setup

Gmax ∼ O(105) is achieved at similar parameters. Thus, the presence of wedges

can be more effective to achieve higher transient amplification of perturbation

energy at higher H , contrasting the corresponding non-MHD case and the low

and intermediate-H range. This is particularly appealing in the context of fu-

sion blanket applications, where the Hartmann numbers are inevitably very high

due to the intense confining magnetic fields (Sommeria & Moreau, 1982; Barleon

et al., 1991; Kirillov et al., 1995; Abdou et al., 2015).

At Reynolds numbers close to the critical value for the onset of quasi-2D vortex
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Figure 5.13: Variation of Gmax with H at Re close to neutral stability, in the
range 0.97 . εQ2D . 0.99.

shedding (0.97 . εQ2D . 0.99), the dependence of Gmax and its scaling with

Hartmann friction parameter is shown in figure 5.13. A clear switch in the scaling

with H is observed when the flow structure of the quasi-2D base flow changes.

Across these almost neutrally stable Reynolds numbers, the maximum optimal

energy gain increases approximately exponentially with H in the low-H range,

withGmax increasing from approximately 20−50 up toH = 5. With an observable

change in the flow structure of the quasi-2D base flow in the intermediate-H

range, Gmax decreases approximately asH−1.6. With the recirculation region after

the wedge tip becoming dominant in the high-H range, the maximum optimal

energy growth of the quasi-2D modes increases almost as H2.7 and is found to

be Gmax ∼ 105 at the highest H value investigated. Investigation of the optimal

modes associated with each of the three regimes and their evolution in the domain

will help further understand the energy gain mechanism of the optimal modes and

are discussed in the following section.

5.3.2 Quasi-2D optimal mode

In this section, the quasi-2D optimal mode corresponding to the maximum op-

timal growth in the low, intermediate and high-H ranges as identified in figure

5.13 is elucidated and compared with the corresponding non-MHD case (H = 0).

In the low-H range, the quasi-2D base flow structure is found to remain similar

to the hydrodynamic channel flow case shown in § 5.1.1. The quasi-2D optimal

mode for the low-H cases also has a similar structure as the 2D optimal mode (fig-

ures 3.26-3.28 at t = 0) and appears as slanted counter-rotating vorticity bands

stacked against one another just in front of the separation point on the slanted

surface of the wedge. This is shown in figure 5.14(a) for a low Hartmann friction
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(a) (b)

(c) (d)

Figure 5.14: Spanwise vorticity (ω̂z) contours of the initial quasi-2D optimal
mode shape for the (a) low (H = 1.5 at Re = 360), (b) intermediate (H = 30 at
Re = 330) and (c,d) high-H (H = 200 at Re = 770 and H = 1000 at Re = 2300)
regimes overlaid by the perturbation kinetic energy contours (black line contours).
The dividing steamline of the base flow is also shown. Energy iso-contours are
shown at 10 equispaced levels between 0 and 0.0002 for (a-c), and between 0 and
0.0005 for (d). The parameter combination considered for these cases is β = 0.25,
γ = 2 and tan(φ) = 0.125.

parameter of H = 1.5. The quasi-2D optimal mode maintains a similar structure

in the intermediate range of H , where a change in the the base flow structure as

formation of a recirculation region just after the wedge tip is observed. However,

the spanwise extent of mode structure is slightly lower, and the stacked optimal

disturbance structures are concentrated on top of the newly formed recircual-

tion region after the wedge tip shown in figure 5.14(b). The spatial location

of quasi-2D optimal modes in the high-H regime shifts further upstream, with

the disturbance structure appearing as counter-rotating structures concentrated

about the wedge tip, extending from the vertical wall of the wedge slightly over

to the separating streamline of the recirculation region after the wedge tip which

is the dominant feature in the high-H range (figures 5.14c,d).

For a range of H covering the three regimes, the linear evolution of the quasi-

2D optimal mode structures in the quasi-2D base flow and the mechanism through

which the disturbance energy are amplified is compared and presented next. In

figure 5.15 the normalised energy of the disturbance structure during the linear

evolution is compared for different H over the three regimes. The peak energy

growth and the corresponding time with the presence of Hartmann damping is
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(a) (b)

Figure 5.15: Time evolution of normalised kinetic energy of quasi-2D disturbances
starting from the optimal quasi-2D mode for (a) 0 ≤ H ≤ 30 and (b) 100 ≤ H ≤
1000 in the range 0.92 . εQ2D . 0.97. The parameter combination considered for
these cases is β = 0.25, γ = 2 and tan(φ) = 0.125.

lower than the hydrodynamic case (H = 0) and decreases with increasing effect

of Hartmann friction over the low and intermediate-H range as shown in figure

5.15(a). A much faster rate of energy dissipation can also be noted from the

energy curves for these cases. Contour plots illustrating the linear evolution

of the optimal mode structures are shown in figures 5.16 and 5.17 for a low

(H = 1.5) and intermediate-H (H = 30) case respectively. In both of these

cases, the energy gain of the quasi-2D optimal mode is through tilting upright

by the background shear suggesting an Orr mechanism (Orr, 1907), similar to

the energy amplification mechanism in 2D optimal modes in H = 0 discussed

in § 3.5.1. The time for the structures to tilt upright decreases with H , due

to the shorter streamwise extent of the structures with increasing H , until the

intermediate-H range. The enhanced dissipation of the energy contained in the

disturbance structure at a higher H can also be visualised and compared in the

low and intermediate-H cases, from the frames corresponding to times after τopt in

figures 5.16 and 5.17. The subsequent smaller peak observed for the low-H cases

correspond to the time when the disturbance structure impinge on the subsequent

wedge (observed as a small energy gain about the wedge tip at t = 15 and = 16 in

figure 5.16). This behaviour is also similar to the corresponding non-MHD cases

discussed in § 3.5.1.

Unlike the low and intermediate-H cases, the peak energy growth of the dis-

turbance shows a rise with increasing H in the high-H cases as shown in the

normalised energy curves in figure 5.15(b). Another distinguishing feature that

can be noticed from these curves is the multiple peaks of progressively smaller
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t = 0 (Optimal mode) t = 2

t = 3.5 t = τopt = 4.9

t = 7 t = 13

t = 15 t = 16

t = 18

ω̂z:

Figure 5.16: Spanwise quasi-2D perturbation vorticity (ω̂z) contours overlaid by
perturbation kinetic energy contours (black line contours) for β = 0.25, γ = 2 at
H = 1.5, Re = 360, and its linear evolution over time. The initial condition at
t = 0 is the optimal mode, and the subsequent times correspond to the square
marker positions for this case shown in figure 5.15(a). The dividing streamline
of the base flow is also shown. Energy iso-contours are shown at 10 equispaced
levels between 0 and 0.0002.

amplification for these cases. The decay rate of the disturbance energy, though,

increases as H is increased as in the previous regimes. These are discussed fur-

ther with the aid of contour plots capturing the linear evolution of the quasi-2D

optimal modes shown in figures 5.18 and 5.19 for H = 200 and H = 1000, re-

spectively. The higher energy growth in the high-H cases may be associated with

a difference in the energy gain mechanism in this regime. The quasi-2D optimal
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t = 0 (optimal mode) t = 1

t = τopt = 2 t = 3

t = 4 t = 5

ω̂z:

Figure 5.17: Spanwise quasi-2D perturbation vorticity (ω̂z) contours overlaid by
perturbation kinetic energy contours (black line contours) for β = 0.25, γ = 2 at
H = 30, Re = 330, and its linear evolution over time. The initial condition at
t = 0 is the optimal mode, and the subsequent times correspond to the triangle
marker positions for this case shown in figure 5.15(a). The dividing streamline
of the base flow is also shown. Energy iso-contours are shown at 10 equispaced
levels between 0 and 0.0002.

modes gain energy when passing over the free shear layer formed after the wedge

tip and attains maximum growth when it reaches the reattachment point of the

recirculation region. This can be observed from the panels corresponding to t = 0

until t = τopt in figures 5.18 and 5.19. Thereafter, the disturbance structure’s en-

ergy decays drastically until it reaches the subsequent wedge and rises again as

it passes over the recirculation region, forming the second peak observed in the

energy curves.

In figure 5.20, the quasi-2D disturbance structure and their kinetic energy

contours are shown, zoomed over the recirculation region, at times when the

disturbance structure experiences an energy gain (panels at t = 1 and 8 in figure

5.18) for a high-H case (H = 200, Re = 770). The opposite-signed disturbance

structures are concentrated on either side of the inflection line (shown as a dashed

line) with the maximum energy gain of the disturbance lying about the inflection

line. This is an indication of an inflectional mechanism being associated with

the energy gain in these cases. Similar observation was also made for H = 1000,
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Re = 2300. The energy gain mechanism of the quasi-2D disturbance in the

high-H range holds similarity to the energy gain in flow over a backward-facing

(Blackburn et al., 2008a) and a rounded backward-facing step (Marquet et al.,

2008), where two-dimensional disturbances gain energy when convecting over the

recirculation region formed behind the step. In the current setup, however, the

inflectional mechanism seems to play the predominant role in the energy growth

of the quasi-2D disturbance in the high-H range, distinct from the other confined

flow setups.

5.3.3 Influence of non-linear interaction on optimal en-

ergy growth

The non-linear evolution of the quasi-2D optimal modes in the quasi-2D base

flow is investigated in this section. The aim is to study the influence of non-

linear interactions of the quasi-2D optimal modes in the energy amplification,

compare it with the corresponding linear evolution case discussed in § 5.3.2, and

study the possibility of a sub-critical route to transition in these flows. For

this analysis, the quasi-2D base flow is superimposed with the quasi-2D optimal

mode at different initial energy levels relative to the base flow and the normalised

disturbance energy (disturbance energy relative to its initial energy level in the

domain) for each of these cases on non-linear evolution is monitored. In figure

5.21 the normalised energy of the disturbance on non-linear evolution is shown

at different initial energy seeding in the low, intermediate and high-H ranges. As

discussed in § 4.1, it is expected that as the inital energy level of the disturbance

approaches zero, the evolution of the disturbance will approach the linearised

evolution of the optimal mode. At very low initial energy seeding (E(0) = 10−9),

the normalised energy curve match with the linear evolution curve for all the H

values considered and is almost indistinguishable from one another.

For the low and intermediate range of H considered it is observed that with

increasing initial energy seeding of the optimal mode the peak energy amplifica-

tion and the associated time of growth decreases, and beyond a certain threshold

non-linear interactions results in a monotonic decay in the normalised disturbance

energy as shown in figure 5.21(a,b). Hence, in this range of H , non-linear effects

have a stabilising effect on the transient growth of the predicted optimal. The

low energy growth, and the negligible effect of non-linearity at a range of different

energy seeding, can be used as an indicator that a sub-critical route to transition

in this range of H is unlikely (Camobreco et al., 2020). This is similar to the

findings in the corresponding hydrodynamic channel flow cases discussed in § 4.1.
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t = 0 (optimal mode) t = 1

t = τopt = 2 t = 4

t = 6.6 t = 8

t = 9.2 t = 11

t = 13.4 t = 15

t = 16.4 t = 19

ω̂z:

Figure 5.18: Spanwise quasi-2D perturbation vorticity (ω̂z) contours overlaid by
perturbation kinetic energy contours (black line contours) for β = 0.25, γ = 2 at
H = 200, Re = 770, and its linear evolution over time. The initial condition at
t = 0 is the optimal mode, and the subsequent times correspond to the triangle
marker positions for this case shown in figure 5.15(b). The dividing streamline
of the base flow is also shown. Energy iso-contours are shown at 10 equispaced
levels between 0 and 0.0002.
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t = 0 (optimal mode) t = 1

t = τopt = 1.8 t = 4

t = 6 t = 7

t = 8.6 t = 12.8

t = 14.4

ω̂z:

Figure 5.19: Spanwise quasi-2D perturbation vorticity (ω̂z) contours overlaid by
perturbation kinetic energy contours (black line contours) for β = 0.25, γ = 2 at
H = 1000, Re = 2300, and its linear evolution over time. The initial condition
at t = 0 is the optimal mode, and the subsequent times correspond to the square
marker positions for this case shown in figure 5.15(b). The dividing streamline
of the base flow is also shown. Energy iso-contours are shown at 10 equispaced
levels between 0 and 0.0005.

Interestingly, in the high-H range, non-linear interactions have a different ef-

fect on the energy amplification, contrary to the previous regimes of H . The

variation of the normalised disturbance energy with time at different initial en-

ergy seeding of the optimal mode is shown in figure 5.21(e,f). Up to a certain

threshold of initial energy level, non-linear interactions play the role of delaying

the time for energy dissipation of the disturbance. However, beyond the threshold
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(a) t = 1 = τopt/2 (b) t = 8

Figure 5.20: The spanwise vorticity contours (top and middle row) and the energy
contours (bottom row) of the quasi-2D perturbation for the case shown in figure
5.18. Figures are zoomed over the recirculation region as indicated in the top row,
and shows the separating streamline (solid line) and the locus of the inflection
points of the base flow velocity (dashed lines) at (a) τopt/2 and (b) at half the
time to reach the second peak as shown in figure 5.15(b) for this case.

initial energy, non-linear interactions results in higher energy dissipation decreas-

ing the peak energy growth and increasing the energy decay rate than the linear

cases. The peak energy growth at the lowest initial energy seeding matches with

the linear evolution case for both the cases tested, however with increasing seed-

ing energy, the peak growth is found to be slightly higher that the linear peak

energy growth and beyond a certain threshold falls below that value for H = 200

(zoomed section in figure 5.21c), and decreases monotonically with increasing

seeding energy for H = 1000 (zoomed section in figure 5.21d). No subcritical

excursions to an unstable or turbulent state were observed in the range of H

investigated, even though the optimal mode could attain an energy amplication

exceeding 104 at the highest H investigated (H = 1000).
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(a) H = 1.5, Re = 360 (b) H = 30, Re = 330

(c) H = 200, Re = 770

(d) H = 1000, Re = 2300

Figure 5.21: Comparison of linear and non-linear evolution of the quasi-2D opti-
mal mode in the (a) low, (b) intermediate and (c,d) high-H ranges for β = 0.25,
γ = 2.
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Chapter Summary

The stability and characteristics of quasi-2D magnetohydrodynamic duct flows

having wedge protrusions were discussed in this chapter. Four quasi-2D flow

regimes were identified, considering a range of Hartmann friction parameters and

a change in the flow structure in the high-H range was elucidated. The primary

bifurcation of the flow was found to occur through quasi-2D eigenmodes. In the

low-H range, the quasi-2D mode had a similar structure and spatial location as

2D perturbations associated with vortex shedding in the corresponding hydro-

dynamic channel flow setup. The eigenmodes were increasingly localised in the

thin Shercliff layers on the bottom wall with increasing H . A shift in the spa-

tial location of the quasi-2D eigenmode was also observed with a change in the

base flow structure at higher H . The optimal energy growth of quasi-2D distur-

bances were comparable with the corresponding hydrodynamic optimal modes

in the low-H range of parameters. However, maximum optimal energy growth

of approximately 105 was found at the highest H investigated in this study, as

opposed to approximately 101 to 102 in the low and intermediate ranges of H .

Even though non-linear interactions of the optimal modes at an optimal initial en-

ergy seeding could delay the decay rate of the disturbance energy, a sub-critical

transition via transient energy amplification was not observed in the range of

parameters studied.

In the next chapter, heat transfer enhancement by the use of repeated wedges

in a quasi-2D MHD duct flow and the optimal geometric parameters to achieve

maximum heat transfer efficiency are presented.
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Chapter 6

Heat transfer enhancement in

quasi-2D magnetohydrodynamic

duct flow using repeated wedge

protrusions

In this chapter, the heat transfer enhancement in a quasi-2D magnetohydrody-

namic duct flow achieved by using repeated wedges is discussed. The flow field,

vortex evolution in the unsteady state or the quasi-2D turbulent state, and its

influence on the local Nusselt number are elucidated, following which the influ-

ence of each geometric parameter of the wedge on the heat transfer ratio and

overall efficiency are explained for a range of Hartmann friction parameters and

Reynolds numbers. The optimal geometric parameters for achieving maximum

heat transfer ratio and overall efficiency are also presented. The effectiveness of

the wedges is further supported by a net power analysis. A comparison of the

heat transfer ratio and efficiency achieved by using wedges with other heat trans-

fer enhancement strategies used in quasi-2D magnetohydrodynamic duct flows is

also made . 1

1Some of the results contained in this chapter have been published in Murali, S., Hussam,
W. K. & Sheard, G. J. 2021 Heat transfer enhancement in quasi-two-dimensional magnetohy-
drodynamic duct flows using repeated flow-facing wedge-shaped protrusions. Int. J. Heat Mass

Trans. 171, 121066.
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6.1 Flow field and influence on local Nusselt

number

In § 5.1.1 it was found that the unsteady regime of a quasi-2D magnetohydrody-

namic flow in a duct is associated with vortex shedding starting from the wedge

tip. The associated flow field and the vortex dynamics in these unsteady state

plays an essential role in influencing the local heat transfer behaviour and thereby

the overall heat transfer to the fluid. To understand this influence, in this sec-

tion, the variation of local intensity of a vortex (ωzxp) from its formation at the

wedge tip until it reaches the subsequent wedge tip are elucidated along with its

influence on the local instantaneous Nusselt number Nux(x, t) for a quasi-2D un-

steady flow using a case with Re = 1300, H = 50, β = 0.25, γ = 4 and φ = 7.125.

At a given time instance, the net circulation is used to represent the intensity of

a vortex at any streamwise location x and is calculated by the local vortex flux

crossing a given cross section, given by

ωzxp =
1

(2L− yb,x)

∫ 2L

yb,x

ωzx dy, (6.1)

where, yb,x is the y-coordinate of the bottom wall, and ωzx is the spanwise vorticity

at streamwise location x.

The presence of the wedge results in vortex formation (represented as 1) start-

ing at the wedge tip as shown in figure 6.1(a). This vortex extends downstream

remaining attached to the wedge tip, while a second smaller vortex (represented

as 2) starts forming behind it (figure 6.1b). The strength of the vortex increases

with x and achieves a maximum value when attached to the tip. A corresponding

increase in Nux is also observed, which is associated with the forming vortex in-

teracting with the wall vortices. With the growth of vortex 2, the larger vortex 1

deattaches itself from the wedge tip, which is associated with a drop in its strength

(figure 6.1c). Similar behaviour of a second vortex formation and dettachment

of the primary vortex was also observed in Hamid et al. (2015), where a point

electrode was used as vortex generator. After dettachment from the wedge tip,

vortex 1 convects downstream along the wedge taper with its strength decaying,

during its evolution as can be seen from figure 6.1(c-e). An associated peak in

Nux is due to the interaction of the convecting vortex with the wall vortices which

disrupts the thermal boundary layer thickness. Further downstream, vortex 1 in-

teracts and merges with a vortex convecting from upstream represented as vortex

3 (figure 6.1f,g), resulting in increase in the strength of vortex 1. The rise in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6.1: Plot showing the evolution of vortex strength (ωzxp, dashed line)
and local instantaneous Nusselt number (Nux(x, t), solid line) plotted against its
streamwise position x for a case with β = 0.25, γ = 4, φ = 7.125, Re = 1300
and H = 50. Values of ωzxp and Nux are obtained from the trajectory of vortex
labelled “1” in the accompanying sequence of vorticity contour plots (a)–(i) also
shown in the curve as N and �, respectively. Twenty equispaced vorticity contour
levels are plotted between −10 (blue) and 10 (red).
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intensity on vortex merging depends on the intensity of the two merging vortices.

The third peak in Nux corresponds to the vortex merging thereby illustrating the

favourable effect of vortex interactions and merging on Nux. The strength of the

vortex drops further when convecting in the gap between the wedges (figure 6.1h)

with an associated decrease in Nux. On approaching the wedge, vortex 1 acceler-

ates over the wedge, sweeping with it the secondary wall vortices, which explains

the increasing Nux and the jump in vortex strength in that region (figure 6.1i).

Thereafter, vortex 1 interacts with the new vortex forming at the next wedge tip.

The interplay of vortex formation at the wedge tip, its intensity at formation,

interaction of the convecting vortices with the wall vortices, and interaction and

merging with the incoming vortices plays a key role in the heat transfer behaviour

of the system which are in turn dictated by

1. flow parameters: such as the Reynolds number and the Hartmann number

with respect to their roles in the dissipation of the vortex strength;

2. geometric parameter setting of the wedge: such as blockage ratio, pitch and

wedge angle, with respect to controlling the number of merging, interaction

with the thermal and Shercliff boundary layers.

In the subsequent sections, the influence of each of these parameters on the heat

transfer rate and overall efficiency are discussed in detail.

6.2 Heat transfer ratio, HR

In this section, the heat transfer ratio (HR), which quantifies the heat transfer en-

hancement achieved using wedges, relative to using a plane duct without wedges,

and its dependence on different geometric parameters of the wedge β, γ and φ,

and flow parameters, H and Re for each case is elaborated in detail.

6.2.1 Effect of blockage ratio (β)

The influence of β is discussed here for a reference case with H = 50 and Re =

1300. In figure 6.2, variation of HR and the maximum strength of the vortex at

its formation at the wedge tip (ωzp) with β are shown.

Both HR and ωzp increase monotonically with β. Up to β ≈ 0.3, HR in-

creases at a lower rate with β, whereas a relatively higher rate of increase in HR

is observed for β & 0.3. An instantaneous snapshot of the flow field and the tem-

perature field for β = 0.125, 0.25, 0.35 and 0.5 are shown in figure 6.3. It can be
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Figure 6.2: Plot of variation of HR (�; solid spline) and the maximum intensity
of the vortex formed at the wedge tip before deattachment (N; dashed spline)
against β for Re = 1300, H = 50 and β = 0.25. The dashed horizontal line
represents HR for a duct with no wedges.

observed that the size of the vortex formed at the wedge tip scales approximately

with the height of the wedge. Thus, with increasing β, the vortices formed at the

wedge tip are more intense and of larger size, both of which are favourable for

achieving a higher Nux as discussed in § 6.1. The vortices formed at the wedge tip

roll up and are cast further away from the tapered wall with increasing β, before

deattaching themselves from the tip and convecting downstream, which results in

an increase in intensity of the vortex at formation. At higher blockage β & 0.35,

in addition to its interaction with the secondary wall vortices on the bottom wall,

convecting vortices interacts with the secondary wall vortices on the top wall of

the duct resulting in better mixing of the hot fluid near the bottom wall and the

cold fluid near the top wall of the duct. This is evident from the temperature

field, where more dominant plume structures are observed with increasing β. For

example, for β = 0.5, the convecting vortices engulf the vortices on the top wall

resulting in counter-rotating vortex pairs forming on the wedge taper surface ev-

ident from the spanwise vorticity field shown in figure 6.3(d). These interactions

disrupt the thermal boundary layer more severely, sweeping hot fluid into the

interior and, helping to achieve higher HR.

6.2.2 Effect of pitch (γ)

The effect of pitch on HR is discussed in this section for β = 0.25 at the same Re

and H as in § 6.2.1. For a fixed blockage ratio, HR achieves a peak value followed

by a decrease with γ in the range of γ investigated. The dependence of HR and

ωzp on γ are shown in figure 6.4.
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(a) β = 0.125

(b) β = 0.25

(c) β = 0.35

(d) β = 0.5

Figure 6.3: Contours of (left) spanwise vorticity (ωz) and (right) temperature
field for blockage ratios (a) β = 0.125, (b) β = 0.25 (c) β = 0.35 and (d) β = 0.5
at Re = 1300 and H = 50. Twenty equispaced contour levels are plotted between
−10 ≤ ωz ≤ 10, while temperature contours are shown in the range Th ≤ T ≤ Tc
with the dark and light shading representing cold and hot fluid, respectively.

The pitch corresponding to the maximum HR is the optimal pitch, γopt,HR. It

can be observed that ωzp also attains a peak value close to γopt,HR. For γ < γopt,HR,

ωzp is lower than the optimal case and the domain length is short, and hence does

not allow for more vortex merging and interactions with the wall vortices in the

gap between the wedges, thereby lowering HR. Although γ > γopt,HR allows for

multiple vortex merging events and interactions with the wall vortices, the vortex

formed at the wedge tip now has to travel a larger distance before reaching the

subsequent wedge. Since the Hartmann damping effect dissipates energy from

these vortices (Kanaris et al., 2013; Hamid et al., 2015), their interaction with

the wall vortices has a weaker impact on the thermal boundary layers leading to
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Figure 6.4: Plot of variation of HR (�; solid spline) and the maximum intensity
of the vortex formed at the wedge tip before deattachment (N; dashed spline)
against γ for Re = 1300, H = 50 and β = 0.25. The dashed horizontal line
represents HR for a duct with no wedges.

a lower Nux. A visualisation of an instantaneous flow and temperature field for

γ = 1, 2, 3, 4 and 8, covering values less than and greater than γopt,HR, are shown

in figure 6.5.
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(a) γ = 1

(b) γ = 2

(c) γ = 3

(d) γ = 4

(e) γ = 8

Figure 6.5: Contours of (left) spanwise vorticity (ωz) and (right) temperature
field for pitch values (a) γ = 1, (b) γ = 2, (c) γ = 3, (d) γ = 4 and (e) γ = 8 at
Re = 1300 and H = 50. The contour levels are as per figure 6.3.

6.2.3 Effect of wedge angle (φ)

Variation of HR with wedge angle is discussed in this section for the same H

and Re as in § 6.2.1. Similarly to the existence of an optimal pitch, there also

exists an optimal wedge angle φopt,HR at which a maximum HR can be attained.

The dependence of HR and ωzp on φ are shown in figure 6.6. For a fixed β

and γ, increasing φ not only increases the inclination of the tapered surface of

the wedge, but also decreases the streamwise length of the wedge or shortening

the distance to the next wedge. With a steepest inclination of the wedges in-

vestigated, φ = 14.036o, the vortices are cast away from the taper wall during

its formation, resulting in lesser interaction with the wall vortices. The shorter
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Figure 6.6: Plot of variation of HR (�; solid spline) and the maximum intensity
of the vortex formed at the wedge tip before deattachment (N; dashed spline)
against φ for Re = 1300 and H = 50. The dashed horizontal line represents HR
for a duct with no wedges.

wedge length is also not favorable for interactions with convecting vortices. This

can be visualised in the spanwise vorticity and temperature contours shown in

figure 6.7(a). With decreasing φ, until φopt,HR, the vortices formed at the tip are

cast relatively closer to the wedge walls, allowing for better interactions with the

wall vortices and a wedge length allowing for interaction of convecting vortices.

With further decrease beyond φopt,HR, the vortices formed are less intense and the

interacting convecting vortices are weaker, resulting in weaker interaction with

wall vortices and a lower HR. The temperature contours for wedge angles above,

near and below the optimal angle limit shown in figure 6.7 (a), (c) and (e) shows

a diffusively dominated flow at smaller and larger wedge angles and the plume

structures at intermediate wedge angle close to φopt,HR, which is an indication of

a convectively dominant heat transfer mechanism with enhanced mixing between

the hot and cold fluids near the bottom wall and top walls respectively. Similar

behaviour was also observed in Hussam & Sheard (2013), in which the influence

of varying gap height (measure of distance of a cylinder from the hot wall of

the duct) on the HR was studied. They found that, the vortices generated by

the cylinder could be cast on the hot wall at different angles by varying the gap

height. Decreasing gap height helped better interaction with wall vortices and

after an optimal distance, further movement closer to the wall suppressed the

vortices due to interaction with Shercliff layers, similar to the effect of decreasing

the wedge angle in the present setup.
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(a) φ = 14.036o

(b) φ = 9.4626o

(c) φ = 7.125o

(d) φ = 4.7639o

(e) φ = 3.5763o

Figure 6.7: Contours of (left) spanwise vorticity (ωz) and (right) temperature field
for wedge angles (a) φ = 14.036o, (b) φ = 9.4626o, (c) φ = 7.125o, (d) φ = 4.7639o

and (e) φ = 3.5763o at Re = 1300 and H = 50. The contour levels are as per
figure 6.3.

6.2.4 Effect of Hartmann friction (H)

In the previous sub-sections, the influence of each of the identified geometric

parameter of the wedge on HR was explained by considering a single H and Re.

In this section, the effect of varying H for a range of these geometric parameters

will be discussed for a case with Re = 1300. Hartmann friction plays the role of

dissipating the kinetic energy of the quasi-2D vortices formed at the wedge and
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Figure 6.8: A plot of variation of HR against H for different β as indicated at
Re = 1300, γ = 2, tan(φ) = 0.125. Dashed horizontal line represents HR for a
duct with no wedges.

convecting in the flow domain. Therefore at a higher H , the vortices lose energy

more swiftly and are lower in strength when convecting the same distance in the

flow domain, thereby decreasing their impact on the rise in Nux and in turn on

HR. In figure 6.8, the influence of H on HR is depicted for a range of β. As

expected, a monotonic decrease in HR with H is observed for all β, with HR

asymptoting to a constant value a bit above unity at higher H . By increasing the

blockage ratio, a broader range of H , producing HR > 1 can be achieved. This is

because increasing β lowers the critical Re for the onset of unsteadiness in the flow

(§ 5.2). For a fixed β, a further improvement in HR can be achieved by setting the

wedge at an optimal pitch γopt,HR and wedge angle φopt,HR corresponding to each

H . Heat transfer ratio HR as a function of γ and φ are shown in figure 6.9(a) and

(b), respectively for a range of H for a wedge with β = 0.25. With increasing H ,

both γopt,HR and φopt,HR has a non-monotonic trend showing an increase followed

by a decrease in its value, in the parameter range investigated. At higher H , a

wedge with lower γ is more destabilising, lowering the Re for the onset of vortex

shedding. A wedge with shorter distance also seems to be more favorable due to

the increased dissipation of the vortex strength with H , which explains the shift

in γopt,HR to lower values with H .

6.2.5 Dependence on Reynolds number (Re)

The focus of this section is on the dependence of HR on Re. A case with H = 500

is considered for ranges of the geometric parameters. In the quasi-2D steady state

regime, HR remains almost constant with increasing Re and higher β cases are

found to be more effective for enhancing HR. Similar to its positive effect in the
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(a) (b)

Figure 6.9: Plots of HR against (a) γ, and (b) φ at β = 0.25 and Re = 1300 at
Hartmann friction values as indicated.

Figure 6.10: A plot of HR against Re for different β as indicated at H = 500,
γ = 2 and tan(φ) = 0.125. Dashed horizontal line represents HR for a duct with
no wedges. The dashed vertical lines from right to left indicate Recr,Q2D for lower
to higher β. Open and closed symbols represent the HR values corresponding to
the steady and unsteady states of the flow, respectively.

steady state regime, increasing β is also favorable to promote HR in the unsteady

regime with HR increasing almost linearly with Re for all the cases investigated.

The variation of HR with Re for a few β cases investigated is shown in figure 6.10

for H = 500. In addition to preponing the onset of quasi-2D vortex shedding to

lower Re, the rate of HR rise with Re is also higher at higher β.

Similar to its dependence on H , for a fixed blockage an optimal γ and φ exists

for different Re (figure 6.11). At Re = 1500, the flow remains in the steady

state for γ & 2. Decreasing γ further triggers unsteadiness, causing HR to rise

for γ < 2. In this case, consecutive wedges with no gap between them are most

favourable for heat transfer increase. With increasing Re, a shift to higher optimal

γ is observed. The higher wedge angle gives maximum HR at Re = 1500. With

increasing Re, wedge angle giving maximum HR shifts to lower values.
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(a) (b)

Figure 6.11: Plots of HR against (a) γ, and (b) φ at β = 0.25 and H = 500 at
Reynolds numbers as indicated.

6.3 Heat transfer efficiency, η

The heat transfer rate from the heated wall to the fluid flowing through the duct

with repeated wedge-shaped protrusions and the optimal geometric parameters

to achieve maximum HR for a range of H and Re were discussed in § 6.2. It is

important to consider the frictional losses and the associated pressure penalties

with the use of these wedges to evaluate the overall efficiency of heat transfer as

discussed in § 2.8.1. This section will concentrate on the overall efficiency of heat

transfer with presence of wedges in the duct and the optimal design of the wedge

geometric parameters for 50 ≤ H ≤ 500 at Re = 1300 and Re = 2000 to achieve

maximum efficiency, ηmax. Recalling that the overall efficiency accounts for the

heat transfer enhancement achieved over the pressure drop losses in the duct, and

is given by η = HR/PR.

Unlike HR, which showed an unvarying increase with β, an optimal blockage

(βopt,η) setting of the wedge achieves ηmax as shown in figure 6.12. With increas-

ing H , a higher blockage is required to achieve ηmax. All cases with η > 1 are

favourable for heat transfer enhancement whereas η < 1 corresponds to cases

which are not effective as the pressure drop dominates the heat transfer improve-

ment achieved. Figure 6.12 shows that heat transfer efficiency increases of beyond

40% are achievable, though there is a significant dependence on the blockage ratio

at which maximum efficiency is achieved, increasing as H increases. The variation

of the heat transfer efficiency along with HR and PR as a function of blockage

ratio is illustrated in figure 6.13 for a case with γ = 2 at H = 200, Re = 2000.

Maximum efficiency ηmax is achieved when the separation between HR and PR is

maximum.

An optimal setting of pitch γopt,η and wedge angle φopt,η exists for a fixed

blockage, where ηmax could be attained. In figure 6.14, variation of η with γ
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Figure 6.12: A plot of η against β at Re = 2000 for friction parameters as
indicated. The fixed parameters used for these cases are γ = 2 and tan(φ) =
0.125.

Figure 6.13: A plot of HR, PR and η as a function of β at H = 200, Re = 2000.
To the left of the dashed vertical line PR dominates HR whereas on its right, HR
takes over PR thereby making η > 1. Maximum area between the HR and PR
curve corresponds to the maximum in η. The fixed parameters used for these
cases are γ = 2 and tan(φ) = 0.125.

and φ are shown for 50 ≤ H ≤ 500 at Re = 2000. The maximum possible

efficiency at a given H and Re could be achieved by designing the wedge with a

combination of the three optimal geometric parameters (βopt,η, γopt,η and γopt,η).

Both γopt,η and φopt,η show a non-monotonic trend with H as shown in figure

6.15(a). Beyond H ≈ 200 a reversal in trend in the optimal values is observed.

For every geometric setting of the wedge, there exists a critical Hartmann friction

parameter Hcr associated with ηmax. Beyond Hcr, η decreases monotonically with

H . In figure 6.15(b), η is shown as a function of H . For 0.25 . β . 0.65, the

critical Hartmann friction parameter moves towards higher values. It can also be

observed that higher β has a wider range of H over which efficiency increases of

& 25% are achievable. The lowest blockage, β = 0.125 does not show an optimal
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(a) (b)

Figure 6.14: Plots of η as functions (a) γ, and (b) φ at Re = 2000 for friction
parameters as indicated.

(a) (b)

Figure 6.15: Plots showing (a) γopt,η and φopt,η against H for β = 0.25 and (b) η
against H for different blockage ratios at Re = 2000, γ = 2.

value in the range of H investigated. The best design in terms of maximising the

heat transfer efficiency could also be considered as the geometric setting which

has Hcr close to the operating conditions under which it is going to be used.

To further illustrate how selecting a combination of parameters at a given

H and Re can help maximise the achievable efficiency, H = 50, Re = 1300 is

considered as an example, and η attained at a combination of β and γ are shown

in figure 6.16. In this case, a wedge with β ≈ 0.35 and γ ≈ 6 achieves an efficiency

exceeding that of other combinations, ηmax ≈ 20%.

6.4 Net power analysis

In the previous section § 6.3, the effectiveness of wedges for heat transfer enhance-

ment were evaluated using heat transfer efficiency η. Another useful measure of

the effectiveness of protrusions which has found utility in the literature (Cassells

et al., 2016; Hamid et al., 2016b) is the net power gained or lost by the system

∆Pnet. The net power ∆Pnet offsets the rate of heat energy transferred by the

199



Figure 6.16: A plot of η against γ at Re = 1300, H = 50 and blockage ratios as
indicated.

rate of work required to overcome duct friction when maintaining the flow. The

system here refers to the setup under investigation (figure 4), for which ∆Pnet is

calculated using equation (2.86). In this section, the effectiveness of the wedges

are evaluated using ∆Pnet.

For a fixed Re and H , ∆Pnet is calculated by considering a range of Eckert

numbers Ec. As discussed in § 2.8.2, a positive value of ∆Pnet represents a net

power gain by the system and vice-versa, and Eccr gives the critical Eckert number

where ∆Pnet changes from positive to negative. The wedges are hence effective

in terms of a net power gain to the system for all Ec < Eccr. Figure 6.17 shows

Eccr as a function of H for Re = 1300 for two representative blockage ratios,

β = 0.25 and 0.65. For fusion relevant conditions, Ec ≈ 4.838×10−9, considering

a mean velocity through the duct as U0 = 0.015 m/s (Smolentsev et al., 2010b),

the specific heat capacity of the liquid-Lithium at fusion relevant temperature as

Cp ≈ 186 J/kgK (Schulz, 1991; de les Valls et al., 2008) and the temperature

difference of the the fluid from inlet to outlet to be ∆T ≈ 250 K (Smolentsev

et al., 2010b). The lowest Eccr for the current setup is around 2.928 × 10−2

indicating that there is always a net positive power gain for the current setup not

just for fusion relevant conditions but also for a large range of Ec below Eccr.

6.5 Comparison with other enhancement tech-

niques

In this section, a comparison of the performance of using repeated wedge protru-

sions for heat transfer enhancement in a quasi-two-dimensional MHD duct is made

with other techniques which are available in the literature. While the efficiency of
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Figure 6.17: A plot of Eccr against H for Re = 1300 comparing β = 0.25 and
0.65 with γ = 2.

other wall protrusion strategies is not reported in the literature, the performance

of the current approach can be compared against methods incorporating either

immersed physical obstacles or electrically driven vortices. In a previous study

considering the use of a cylindrical bluff body for vortex generation (Hussam &

Sheard, 2013), with a parameter setting of H = 100 and Re = 2000, η ≈ 2.2

was obtained for the best case. At similar H and Re, the current setup achieves

η ≈ 1.5 for the highest β investigated. A further increase can be achieved by

setting the wedge pitch and angle at γopt,η and φopt,η respectively. The present

setup is effective at higher H cases up to H ≈ 500 (§ 6.3), whereas the previous

study did not consider cases with higher H , where there is a possibility of drastic

reduction in η. The current configuration at an optimal blockage ratio gives an

approximate three-fold increase in the heat transfer ratio than the use of square

cylinder bluff bodies (Chatterjee & Gupta, 2015; Farahi & Hossein, 2017) at sim-

ilar Hartmann numbers (corresponding to H = 300 and 500) at Re = 2000. Use

of protrusions on the wall for vortex generation also seems to be more favourable

for cases with lower H/Re compared to vortex generation using point electrodes

in the duct (Hamid et al., 2016b), which achieves relatively more η at higher

H/Re. For similar flow parameters as in Hussam et al. (2012a), where a tor-

sionally ocsillating cylinder was used as turbulent generator, the current setup

can reach much higher Nu ≈ 6.39 than the best case reported in their study

which was about Nu ≈ 2.6. Additionally, designing the current setup needs only

a modification on the wall and no additional power requirement and mounting

arrangements which may be required for other vortex generation strategies.
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Chapter summary

In this chapter, the use of repeated wedge protrusions on the side walls of an

MHD duct as a means to generate quasi-two-dimensional vortices and its in-

fluence on heat transfer characteristics from the side wall to the fluid flowing

through the duct were discussed. The influence of both Hartmann friction pa-

rameter and Reynolds number on the heat transfer ratio and efficiency achieved

was considered. The rise in H increases the dissipation rate of the quasi-2D

vortices generated by the presence of wedges and convecting in the flow domain,

whereas a rise in Re decreases the viscous dissipation rate, thereby having a nega-

tive and positive impact on heat transfer improvement, respectively. It was found

that along with the flow parameters, geometric parameter settings of the wedge

influences the strength of formation of the quasi-2D vortices generated, the way

they interact with the Shercliff layers and the thermal boundary layers, thereby

playing an important role in the achievable heat transfer efficiency. The optimal

setting to achieve maximum efficiency was also identified for a range of H and

Re. For the highest H investigated, an approximately five-fold improvement in

the heat transfer ratio and approximately 50% increase in efficiency was obtained

over a plane duct without wedges. A discussion in the final section compared the

current setup to other techniques in the literature used for heat transfer enhance-

ment. The use of wedges was found to be the most effective at lower H/Re and

also achieved high performance at higher values of H relative to other cases.
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Chapter 7

Conclusions and directions for

future work

This study has explored the flow dynamics in hydrodynamic channel flows and

magnetohydrodynamic duct flows with repeated wedge-shaped protrusions on one

of the walls, and how these wall modifications could help improve the heat transfer

rate and the overall heat transfer efficiency in magnetohydrodynamic duct flows.

The studies in the literature which have used surface modifications for heat trans-

fer enhancement are scarce for magnetohydrodynamic flows. The current study

provides insight into the flow transitions in quasi-2D magnetohydrodynamic flows,

and reports on enhancement in heat transition efficiency that could be achieved

using wedge protrusions on the duct walls. Most studies on hydrodynamic cases

have focused on high-Re turbulent flows. Few studies have explored the transi-

tional regimes which are relevant for the application motivating the current study.

This work therefore contributes to the understanding of the onset of instabilities

and the route to turbulence in hydrodynamic wall-bounded flows with repeated

protrusions.

This work consists of three broad parts. Firstly, hydrodynamic channel flows

with repeated wedge protrusions were investigated, thereafter the quasi-2D mag-

netohydrodynamic counterpart was considered. Lastly, heat transfer studies were

conducted for the quasi-2D magnetohydrodynamic flows. In this chapter, the

conclusions drawn from these phases of the work are presented. The chapter is

closed by discussing possible directions for future work.
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7.1 Linear stability and non-linear interactions

in hydrodynamic channel flows with repeated

wedge-shaped protrusions

For the hydrodynamic channel flows with repeated wedge-shaped protrusions,

three steady-state regimes are identified. These begin with the formation of a

single recirculation region in front of the wedge, followed by the formation of

a recirculation region further downstream of the wedge, extending between the

current and subsequent wedge. Lastly, a merging of the two recirculation regions

identified from the previous two-regimes is observed. In the first of the two

unsteady flow regimes, a breakdown of the recirculation region formed in the last

steady-state regime is observed. The final (unsteady) regime is associated with

two-dimensional vortex shedding incepted at the wedge tip. The temperature

fields associated with the steady and unsteady states of the flow are obtained

and the enhancement in heat transfer with the onset of unsteadiness is discussed.

A regime map is obtained for a range of blockage ratios, pitch and wedge angle

values.

The onset of two-dimensional unsteadiness in the flow is found to occur

through a global complex mode appearing as a wave spanning the streamwise do-

main length. The critical Reynolds number marking the onset of two-dimensional

vortex shedding is preponed with increasing blockage ratio, pitch and wedge an-

gle. However, the primary bifurcation of the two-dimensional flow is found to be

three-dimensional, and occurs through a stationary mode well before the onset of

the 2D instability. A similar mode is associated with the three-dimensional insta-

bility for a range of blockage ratios and pitch values that are considered in this

study. Increasing blockage ratio and decreasing pitch both results in a decrease

in the critical Reynolds number Recr,3D. The global mode through which three-

dimensional effects manifests in the flow appear as streamwise velocity streaks

and are induced by the counter-rotating streamwise vortices concentrated near

the wedge tip.

The analysis of the perturbation velocity components and their variation in

the flow shows that the lift-up mechanism is responsible for the three-dimensional

instability. The investigation of the perturbation kinetic energy budget of the in-

stability modes shows that most of the the energy gain is through production

due to horizontal shear in the base flow. The corresponding locations of max-

imum shear are in the region ahead and after the wedge tip. This finding is

consistent through the range of blockage ratios and pitch values covered in this
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study. The location of the wavemaker region in the flow found though sensitivity

analysis matches with the locations of maximum shear, further supporting the

previous finding from energetics analysis. The receptivity and structural sensitiv-

ity of the instability is also investigated to identify regions in the flow which are

significant from a flow control perspective for placement of an active or passive

control mechanism. Further, an endogeneity analysis is performed to understand

the local contributions of the different terms in the momentum equation to the

growth rate of the global eigenmode. The endogeneous approach shows that the

local endogeneity contribution associated with the pressure gradient term features

prominently in the total endogeneity fields for most of the cases considered, em-

phasizing its role in the local endogeneous eigendynamics in this system, despite

its net contribution being identically zero.

To understand the short-time dynamics of the flow, the optimal linear growth

of two- and three-dimensional disturbances was studied. The optimal modes are

counter-signed inclined structures stacked adjacent to one another and concen-

trated near the first separation point of the recirculation region of the base flow

formed after the wedge tip. The two-dimensional energy gain of the optimal mode

structures as they convect downstream is predominantly through the Orr mecha-

nism. There is also a brief period of energy gain when the disturbance structure

impinges on the subsequent wedge. However, in contrast to similar confined flow

setups (Blackburn et al., 2008a,b; Marquet et al., 2008), the current flow setup

does not aid a significant transient energy growth over the range of geometric pa-

rameters considered in this study, thereby being an unlikely candidate for bypass

transition.

In order to verify the two-dimensional and three-dimensional transition routes

predicted by the linear analysis, firstly, non-linear two-dimensional simulations are

conducted starting from the steady state two-dimensional flow solution allowing

it to evolve naturally. It was found that the underlying disturbance fields evolve

into the two-dimensional global mode found from the linear analysis, verifying the

two-dimensional linear stability predictions. Thereafter, spectral element-Fourier

three-dimensional simulations verify the predictions from the three-dimensional

linear stability analysis, showing that the flow is unstable through a global linear

mode. The influence of non-linear effects on the three-dimensional flow structures

and on the corresponding temperature fields was discussed, highlighting how these

could promote the heat transfer rate to the fluid. The Stuart–Landau model was

used to study the nature of the primary three-dimensional instability which was

consistently found to occur via a supercritical pitchfork bifurcation.
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7.2 Stability of quasi-2D magnetohydrodynamic

duct flows with repeated wedge protrusions

Three different steady flow regimes were identified for the quasi-2D magnetohy-

drodynamic duct flows under the SM82 model with repeated wedge protrusions

over a range of Hartmann friction parameters. The flow streamline patterns in

the low-H regime were similar to the corresponding non-MHD cases. A new

recirculation region was observed immediately after the wedge tip in the interme-

diate range of H for blockage ratios β . 0.5, with the other recirculations being

reduced in size. This second regime is absent for blockage ratios β & 0.5. The

last regime corresponds to the high-H cases, where the only dominant feature is

a recirculation region immediately after the wedge tip for all the cases. Unlike

the non-MHD cases, the primary bifurcation for the MHD cases occurs through a

quasi-2D eigenmode leading to quasi-2D vortex shedding in the flow. The global

modes are quasi-2D equivalent of the 2D global modes and are increasingly lo-

calised in the thin Shercliff layers on the bottom wall with increasing values of

H . At a higher blockage ratio, the modes are concentrated near the reattachment

point of the dominant recirculation region of the base flow.

The transient energy growth of quasi-2D perturbations is modest in the low

and intermediate ranges of H , similar to the non-MHD cases. However, in the

high-H regime a maximum optimal energy growth factor of approximately 105

was found at the highest H investigated in this study. In this range ofH , both the

optimal mode shape and their spatial location differ from the low, intermediate

-H and non-MHD cases, with the optimal quasi-2D mode concentrated about the

wedge tip for these cases. This is associated with the change in the base flow

structure at higher H . The optimal mode gains energy while convecting over the

free shear layer behind the wedge tip in this range of H , differing from the energy

gain mechanism for the other cases. Despite the high energy amplification of the

optimal modes, non-linear interactions of the quasi-2D optimal modes did not

lead to a sub-critical transition. However, an optimal initial energy seeding of the

optimal mode can delay the decay rate of the disturbance energy.
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7.3 Heat transfer enhancement in quasi-2D

magnetohydrodynamic duct flows using re-

peated wedge protrusions

The use of repeated wedge protrusions on one of the walls of an MHD duct was

explored as a means to generate quasi-two-dimensional vortices and thus aid heat

transfer from a hot wall to the fluid flowing through the duct. The study of the

influence of vortex dynamics on the local Nusselt number was initially carried out.

It showed that an interplay of the intensity of vortex formation at the wedge tip,

the number of vortex merging with the convecting vortices, their intensities during

merging, and interaction of the generated vortices with the Shercliff layer and the

thermal boundary layer each influence the local Nusselt number distribution in

the flow.

All of these features depend on the flow parameters and could be controlled

to a certain extent with the variation of the geometric parameters of the wedge.

Hence, the influence of each of the identified geometric parameters of the wedge

on the heat transfer rate is explored at Hartmann numbers in the high-H range,

considering a range of Re. The heat transfer ratio increases monotonically with

increasing blockage ratio. At a higher blockage ratio, a wider range of H exists

where the heat transfer ratio remains high.

Unlike the blockage ratio, an optimal value of pitch and wedge angle exists

where maximum heat transfer rate could be achieved. An optimal pitch has a high

intensity of vortex formation and is a favourable condition for a balance between

increasing the number of vortex merging and the Hartmann dissipation of the

convecting vortices. An optimal wedge angle allows for the vortices generated at

the wedge tip to be cast at a favourable angle so as to neither sweep over the hot

walls nor be cast away from them. A rise in H increases the dissipation rate of

the quasi-2D vortices generated by the presence of wedges and convecting in the

flow domain, whereas a rise in Re decreases the viscous dissipation rate, thereby

having a negative and positive impact on heat transfer improvement, respectively.

The optimal geometric setting of the wedge to achieve maximum heat transfer

efficiency is also identified for a range of H and Re. For the highest H investi-

gated, an approximate five-fold improvement in the heat transfer ratio and an

approximate 50% increase in heat transfer efficiency were obtained over a plane

duct without wedges.

Besides the heat transfer efficiency, a net power analysis was also used as a

quantifying parameter to calculate the effectiveness of using repeated wedge for
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heat transfer enhancement. The current configuration was found to be effective

over a range of Eckert numbers, and the critical Eckert number up to which the

wedges could be effective is identified. The fusion blanket relevant Eckert number

is well below the critical value identified, and hence these wedges are shown to be

effective in those conditions. A comparison was made with other quasi-2D vortex

generation techniques for heat transfer enhancement in MHD ducts, which shows

that the technique of surface modification of the duct wall using wedge protrusions

could be most effective at lower H/Re values and also achieves a high performance

at higher H values relative to the alternative approaches.

7.4 Directions for future work

The current study investigated the flow dynamics in hydrodynamic channel flow

with repeated wedge protrusions covering a wide range of geometric parameter

variation. The focus has been mainly on understanding the linear dynamics of

the flow. The non-linear simulations were conducted to verify the findings from

the linear analysis. It also showed how the flow structures change when non-

linear effects become dominant. Further investigations could be conducted on

understanding the non-linear dynamics in these flows.

The study also investigated the quasi-2D dynamics of magnetohydrodynamic

duct flows with repeated wedge protrusions covering a range of Hartmann friction

parameters. Studies on the short-time dynamics showed a high energy amplifica-

tion of quasi-2D optimal modes in the high-H range. Non-linear evolution of the

quasi-2D optimal modes was found to delay the decay time of the disturbance en-

ergy. These non-linear evolutions considered only the quasi-2D disturbances. Fur-

ther understanding on how the presence of three-dimensional disturbances could

affect the flow dynamics can be a possible avenue for future studies. The study

focused only on the quasi-2D dynamics, full three-dimensional simulations includ-

ing the Hartmann layers can be carried out to understand the three-dimensional

dynamics of these flows.

The heat transfer enhancement achieved in MHD duct flows using repeated

wedge-shaped protrusions were investigated and optimal geometric settings to

achieve maximum efficiency was obtained. The study showed that surface mod-

ification of the wall could be an effective way to increase heat transfer efficiency

in MHD ducts. The current study did not take into account the radiative heat

transfer and the volumetric heating which are important in the cooling blanket

modules in magnetic confinement fusion reactors. Future studies can consider
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these factors to get a more realistic picture on the heat transfer efficiency changes

with surface modifications in MHD duct walls.
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Dousset, V. & Pothérat, A. 2008 Numerical simulations of a cylinder wake

under a strong axial magnetic field. Phys. Fluids 20 (1), 017104.

Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability , 2nd edn. UK:

Cambridge University Press.
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