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The M3-Competition: results, conclusions and implications

Spyros Makridakis, Michéle Hibon™
INSEAD, Boulevard de Constance, 77305 Fontainebleau, France

Abstract

This paper describes the M3-Competition, the latest of the M-Competitions. It explains the reasons for conducting the
competition and summarizes its results and conclusions. In addition, the paper compares such results/conclusions with those
of the previous two M-Competitions as well as with those of other major empirical studies. Finally, the implications of these
results and conclusions are considered, their consequences for both the theory and practice of forecasting are explored and
directions for future research are contemplated. © 2000 Elsevier Science BV. All rights reserved.
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accuracy



M3 forecasting competition

H ——

S / i ’

& e
ELSEVIER International Journal of Forecasting 16 (2000) 451-476 L —
www.elsevier.com/ locate/ ijforecast

. results, conclusion

Makridakis, Michele Hib.
sard de Constance, 77305 Fontaineble

PO

Abstract

he latest of the M-Competitions. [
clusions. In addition, the paper co ith those
of the prd - by with those of other major empirical
results and conclusions are on51dered their consequences for both the theory and practice of forecasting are explored and
directions for future research are contemplated. © 2000 Elsevier Science BV. All rights reserved.

Keywords: Comparative methods — time series: univariate; Forecasting competitions; M-Competition; Forecasting methods, Forecasting
accuracy



M3 forecasting competition

“The M3-Competition is a final attempt by the authors to
settle the accuracy issue of various time series methods. ..
The extension involves the inclusion of more methods/
researchers (in particular in the areas of neural networks
and expert systems) and more series.”

Makridakis & Hibon, IJF 20001

3003 series

m All data from business, demography, finance and
economics.

Series length between 14 and 126.
Either non-seasonal, monthly or quarterly.

m All time series positive.
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Cognostics
Computer-produced diagnostics

(Tukey and Tukey, 1985).

John W Tukey
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Cognostics
Computer-produced diagnostics
(Tukey and Tukey, 1985).

Examples for time series

m lag correlation

m size and direction of trend
m strength of seasonality
|
|

John W Tukey

timing of peak seasonality
spectral entropy

Exploring the feature space of large time series collections M3 competition data



Cognostics

Computer-produced diagnostics
(Tukey and Tukey, 1985).

Examples for time series
m lag correlation
m size and direction of trend
|
|

John W Tukey

strength of seasonality
timing of peak seasonality
m spectral entropy

Called “features” or “characteristics” in the
machine learning literature.
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An STL decomposition

Quarterly visitor nights: Mornington Peninsula

Ye =S¢+ Tt + Rt S; is periodic with mean 0
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Candidate features
STL decomposition
Ye =St +T:+ Rt
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STL decomposition
Ye =St +T:+ Rt

m Seasonal period
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Candidate features
STL decomposition
Ye =St +T:+ Rt

m Seasonal period
m Strength of seasonality: 1 —

Var(R¢)
Var(thTf)
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Candidate features
STL decomposition
Ye =St +T:+ Rt

m Seasonal period

m Strength of seasonality: 1 — Vavr"’(‘;,(f%t)
m Strength of trend: 1 — Va\/r?;,i’ifgt)

Exploring the feature space of large time series collections M3 competition data



Candidate features
STL decomposition
Ye =St +T:+ Rt

m Seasonal period

m Strength of seasonality: 1 — Vavr"’("y(t’if%t)

m Strength of trend: 1 — Vavr"’(‘;(tR_f;t)

m Spectral entropy: H = — ["_f,()\) log f,(A\)dA,

where f,(\) is spectral density of Y;.
Low values of H suggest a time series that is
easier to forecast (more signal).
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STL decomposition
Ye =St +T:+ Rt

m Seasonal period

m Strength of seasonality: 1 — Vavr?;,(f;t)

m Strength of trend: 1 — Vavr"’(‘;(tR_f;t)

m Spectral entropy: H = — [ _f,(\)log f,(A)d),

where f,()\) is spectral density of Y;.
Low values of H suggest a time series that is
easier to forecast (more signal).

m Autocorrelations: ri,rp,r3, ...
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Candidate features
STL decomposition
Ye =St +T:+ Rt

m Seasonal period

m Strength of seasonality: 1 — Vavr?ry—%

m Strength of trend: 1 — Vavr"z‘;—%

m Spectral entropy: H = — [ _f,(\)log f,(A)d),

where f,()\) is spectral density of Y;.
Low values of H suggest a time series that is
easier to forecast (more signal).

m Autocorrelations: ri,r,r3, ...

m Optimal Box-Cox transformation parameter A
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Candidate features

Seasonality
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Candidate features

Trend
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Candidate features
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Candidate features

Spectral entropy
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Candidate features

Box Cox
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Candidate features

SpecEntr

0.0 0.6

Season

Freq
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Dimension reduction for time series
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Dimension reduction for time series
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Dimension reduction for time series
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Feature space of M3 data
F

irst two PCs explain 68% of variation.
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Feature space of M3 data
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Feature space of M3 data
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Feature space of M3 data

Trend
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Feature space of M3 data
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Feature space of M3 data
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Feature space of M3 data

Lambda
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Yahoo web-traffic

m Tens of thousands of time series collected at
one-hour intervals over one month.

m Consisting of several server metrics (e.g. CPU usage
and paging views) from many server farms globally.
m Aim: find unusual (anomalous) time series.
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Feature space

ACF1: first order autocorrelation = Corr(Ys, Ye—1)

Strength of trend and seasonality based on STL

Trend linearity and curvature

Size of seasonal peak and trough

Spectral entropy

Lumpiness: variance of block variances (block size 24).

Spikiness: variances of leave-one-out variances of STL remainders.

Level shift: Maximum difference in trimmed means of consecutive

moving windows of size 24.

= Variance change: Max difference in variances of consecutive
moving windows of size 24.

m Flat spots: Discretize sample space into 10 equal-sized intervals.
Find max run length in any interval.

m Number of crossing points of mean line.

m Kullback-Leibler score: Maximum of
Di(P||Q) = [ P(x) InP(x)/Q(x)dx where P and Q are estimated by
kernel density estlmators applied to consecutive windows of size 48.

m Change index: Time of maximum KL score
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Principal component analysis

N
1

o
1

|
N
1

standardized PC2 (17.3% explained var.)
|
B
1

-2.5 0.0 25
standardized PC1 (28.7% explained var.)
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“anomalous”

-2.5 0.0 2.5
standardized PC1 (28.7% explained var.)

We need a measure of the “anomalousness” of a time
series.

Exploring the feature space of large time series collections hoo web traffic



“anomalous”

-2.5 0.0 2.5
standardized PC1 (28.7% explained var.)

We need a measure of the “anomalousness” of a time
series.

Bl Rank points based on their local density.
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What is “anomalous”

N
1

-4 4

standardized PC2 (17.3% explained var.)

standardized PC1 (28.7% explained var) 2o
We need a measure of the “anomalousness” of a time
series.
¥ Rank points based on their local density.

B} Rank points based on whether they are within
a-convex hulls of different radius.
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Bivariate kernel density

F(x: H) = %iKH(x—X,-) J
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Bivariate kernel density

A 1<
f(X,H):EZKH(X—X,) J

i=1
m X; € a bivariate random sample {X1, X5, ..., Xy}

m Ky(x) is the standard normal kernel function
m H estimated by minimizing the sum of AMISE
m Rank points based on f values in 2d PCA space.
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Bivariate density ranking

pcl
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a=-convex hulls

The space generated by point pairs that can be
touched by an empty disc of radius «.
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a=-convex hulls

The space generated by point pairs that can be
touched by an empty disc of radius «.

B o — oo gives a convex hull.
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a=-convex hulls

The space generated by point pairs that can be
touched by an empty disc of radius «.

B o — oo gives a convex hull.
m Points can become isolated when « is small.
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a=-convex hulls

The space generated by point pairs that can be
touched by an empty disc of radius «.

B o — oo gives a convex hull.

m Points can become isolated when « is small.

m We rank points based on the value of a when
they become isolated.
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a~-convex hull ranking

e series collections Yahoo web 23
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pe2

HDR versus a-convex hull

HDR boxplot a~-convex hull
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B What next?
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m Develop a more comprehensive set of features
that are reliable measures and fast to compute.
e.qg., for finance data.
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m Develop a more comprehensive set of features
that are reliable measures and fast to compute.
e.g., for finance data.

m Consider application to functional data from
other contexts (not time series).

m Is PCA the right approach? Perhaps we should

use multidimensional scaling? Or something

else?

Should we use more than 2 PC dimensions?

m Develop dynamic and interactive visualization
tools.

m Make methods available in an R package.

Some of the methods are already available in the
anomalous package for R on github.
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Further information

w Papers: robjhyndman.com
w Code: github.com/robjhyndman
w Email: Rob.Hyndman@monash.edu
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