A Swarming Approach
to Terrain Mapping

by

Gary Ruben

Dept. of Electrical & Computer Systems Engineering
Monash University

August 1998

Submitted in partial fulfillment of the requirements for the degree of

Master of Engineering Science (Coursework & minor thesis)

Author: Gary Ruben

Supervisor: Raymond Jarvis

Professor, Director of Intelligent Robotics Research Centre,

Monash University

Supplementary Supervisor: R. Andrew Russell
Associate Professor, Deputy Head of Department, Electrical

& Computer Systems Engineering, Monash University

Abstract

Recently there has been an increase in interest amongst researchers into
systems of multiple autonomous mobile agents or robots. Much of the work
has focused on examination of maximising the efficiencies which can be

achieved through the use of multiple agents.

For some tasks, the use of multiple agents may be justified purely in terms
of advantage over single-robot systems. Examples of another category of
tasks have been investigated by workers in the field. One of these is
coordinated box pushing. In this category, the use of multiple agents is
necessary to perform the task. This thesis approaches another member of
this category for which the author believes multiple autonomous agents are

a requirement; that of terrain mapping by a group of robots.

The aim of this thesis was to develop the algorithms and identify the
requirements of each member of the robot surveying team. To achieve this,
computer simulation was used. A governing philosophy was to keep each of

the robots as simple and cheap as possible.

Declaration

I certify that this minor thesis contains no material which has been accepted for the award
of any other degree or diploma in any University, Institution or College and that to the best
of my knowledge and belief this thesis contains no material previously published or written

by another person except where due reference is made in the text of the minor thesis.

Signedby theauthor i iiiiiiiinann...

i

Contents

A T ACt ..ot e e e 1
Declarationttt e e e i
77 11 11 £ 11
o gUreS .o i e vi
Algorithms e vii
Equationsiii i e vii
Acknowledgementsttt i e viil
1Introductionottt ittt e e e e 1
1.1 Multiple robot SYStemMSttt i e e 1
L.1.1 CommuniCalioneeuueueeeneeneeuaeeneeneeneeeaeeneennenn 2

L12 Co0PLrationuuueeeeneeeeneeeeneneeeeneeeeneeeeaenennenenns 2

1.2 SWarm taXONOIMY v v vetete ettt et e e e e e eeeenenenenenenenensnsnenns 3
13 The approach . ..o.vvie i it e e e et e e e e e 4

2 Surveying with a group ofrobots i, 6
2. UL YN .« ittt ittt ettt e ettt e e e 6
2.1.1 History, Technigques and Technologyoueueiinnieinnennnnnn. 6

2.2 Behaviour model approach to multiple robot systemsccoiiiieiin... 7
2.2.1 Basic DERAUIOUTS oo oot e e e 8

2.2.2 Combining basic DeRaviours e eueeie e iieanaannns 10

2.3 Issues with multiple robot SYStems ... iiir it it i i i e e eieenns 10
2.3.1 Cooperation through communicationeeeeeeeneneenenenennns 10

2.3.2 Specialisation amongst GGeNtS e ettt 11

2.4 Applying the behaviour model approach to surveying 11
AT INtrOAUCHION ...« o oot e e e e 11

2.4.2 A Multiple Agent APProacho ettt iieienenannns 12

2.4.3 Description of the Proposed Schemeuuieiiineieinennnnn. 12

2.5 ANt deSCIIPIIONS vt ittt ettt ettt et e e e e e e 18
2.5.1 Roaming agent descriptionc..eeeeieeiet e 19

2.5.2 Beacon agent deSCrIDHON . ..o v vttt ettt 20

2.5.3 Mapping agent describtiont e e, 21

2.6 Taxonomy of the SUIrvVeyIng SWarlleueereernennennennennnennnnn. 22

1ii

2.7 Combining Behavioursuiiiiiiiiie ittt iiaaann. 23

3The SIMUIALOro.it ittt it it it et i e s 24
3.1 The problems of SIMUIAtIONS ...ttt t et ie it it e e i et e e ie e enenenens 24
3.2 SIMUlator ISSUES .ottt e e e e e e 24

3.2.1 Discrete time problemto e 24
322 SeNSOV CTTOVS « o v v e e ettt et et ettt et e e 25
3.3 Development to0]ottt e e e e e 25
3.4 0bject MIErarChy ..o v ettt e e e e 26
3.5 TAgentManager class descriptionoeuieiieenernennennnnnnnnn. 27
SO I FElds ..o e e e e 28
BO.2Methods ...t 28
3.6 TAgent class deSCriPtiOn .. vvvvtn ittt it ettt et et it e e e nenennns 29
SO IFIEldSs ..ot e e e 29
BO6L2Methods ... e e 29
3.7 TRoamingAgent class descriptionouieiieiieeinennennennannn. 30
BTZLFIlds ..o e e 30
BTZ2Methodst e e e 30
3.7.3 Roaming Agent Behaviours ueiieeieieiiiaiaennnnnn. 30
3.7.4 Roaming Agent Behaviour Selection uiiiiiiniina.. 31
3.8 TBeaconAgent class deSCriPtiOn ... vve et tien it ie e iie e inenneneneenns 32
BEIFUElds ..ot e e 32
BE82Methodso e e e 32
3.8.3 Beacon Agent Behaviours and Behaviour Selection 32
3.9 TMappingAgent class deSCriPtion . ..vvveetien it e et inineneneneenns 35
BIOTFUElds ..ot e e e e 35
392 Methods e e 36
3.9.3 Reference agent control communication protocol 36
3.9.4 Mapping Agent Behaviours and Behaviour Selection 37
3.9.5 Mapping Agent Mapping algorithmcueienein e, 37
310 UserInterfaceovvuiniimnii i i e e e e 39
3.11 Modelling SIMpLICatiOnS . ..ottt ittt ettt e e ettt et et e e eieeennnn 40

4 Simulator Results i e 42
4.1 Tllustration of agent dynNamiCSvvvvtrnen e e e eneeneneneenns 42
4.2 Effect of angle sensor disturbance on the terrainmap 43
4.3 Paths taken by agents with differentroles i, 47

4.3.1 Roaming agent PAtns eun e ittt neenenn, 47
4.3.2 Refevence agent PALAS . .. oottt e e 49

4.4 Analysis of simulation result repeatabilityciiiiiiii .. 50

4.5 Survey area coverage times with a given team sizeun.... 51
4.6 Fixed area coverage times with a changing team sizecc.covvinon.. 53
SFurther Worko i e e et 56
5.1 Modelling physical extent of agentsvvririin e e nenennenns 56
5.2 Obscuration of beaconsveiuir ettt e 56
5.3 Addition of error models to sensors and effectors 57
5.4 Accountability for additional data to reduce sensor error. 57
5.5 Addition of Dispersion to Roaming agents’ behaviourset 58
O SUMMIATYttt ittt ettt et ettt ettt ettt e e e 60
APPENAICES ..ottt e e e e 62
Appendix 1. ReSeCtiOnttt ittt eiienaannnn 62
Appendix 2. Simulator Listingsiiitriinn it 64
LISt AGOt DaS « v vttt ittt it e e e e e e e 64
Listing AgentManager.Das . vvvv vttt in ettt ettt i e 81
Listing DebuglUnitpas .. .vvvii vttt it ettt et ettt et et et e e 86
LISt VD DaS v vttt et ettt et ettt et et e 87
LiSting Unit L pas o vv ittt it it et it et ettt et e e e 90
Listing VeCtOr.Das . .vvvitttie ittt ettt ettt et et et e 95
LISting SWarm.dpr . ..ottt et i e e e e 101
Listing of example Init.datvtnirn it it 103
Bibliography i e e 104

Figures

Figure 1. Conceptual tessellation of terrain with Reference agent motion. 14
Figure 2. CCD angle SemS0r .o v vttt ettt et ettt e te et eneeenenannns 16
Figure 3. Agent modelttt i e 18
Figure 4. Agent object class hierarchyciuriinen it innnnns 27
Figure 5. Roaming agent behaviour SeleCtion.viiir i iinnenennennn 31
Figure 6. Beacon agent composite homing behaviour implementation 34
Figure 7. Internal map overlaying region being surveyed.ccvvnvunen.. 37
Figure 8. Simulator user interface Windowc.cvuiiriinn e nenennnnnn 39
Figure 9. Agent mMOtIon SEIIES. vttt ittt it ettt ettt et ettt et eiaenes 42
Figure 10. Terrain data used to illustrate the effect of position errors. 44
Figure 11. Blurring of the internal map with a position error range of 4.0 44
Figure 12. The path followed by a Roaming agent in forming the terrain map. 44
Figure 13. Blurring of the internal map with a position error range of 2.0 45
Figure 14. Blurring of the internal map with a position error range of 10.0 45
Figure 15. Thresholded internal map with a position error range of 10.0 46
Figure 16. Roaming agent path evolution for a survey simulationrun 47
Figure 17. Roaming agent path with a side length of 100 48
Figure 18. Roaming agent path with a sidelengthof 55 cviviion.. 49
Figure 19. Reference agent paths with a side length of 100t 49
Figure 20. Reference agent paths with a side lengthof 55 50
Figure 21. Repeatability of simulation results.coverirnniinnenennnn.. 51
Figure 22. Area coverage vs time with 10 agents for varying areas. 52
Figure 23. Area coverage vs time with variation in team sizecovuneen.. 53
Figure 24. Area coverage vs time with varying team size (log plot). 54
Figure 25. Area coverage vs time with varying team size. Side =30 55
Figure 26. Coverage vs time varying team size (log plot). Side =30 55
Figure 27. Combination options for composite Roaming behaviours 59
Figure 28. Labelling of vertices and angles for the direct method. 62
Figure 29. Angle and vertex labelling for Tienstra’s method. 63

vi

Algorithms

Algorithm 1. Roaming agent behaviour algorithm finite state machine. 31
Algorithm 2. Beacon agent behaviour algorithm finite state machine. 35
Algorithm 3. Mapping agent mapping algorithm finite state machine. 38

Equations

(I oo 8
() o 9
(B) 9
() 9
(B) i e 9
(B) e 62
(7)o 63

vil

Acknowledgements

I would like to thank Ray Jarvis for his time and guidance in this work, especially for

making time for me as my deadline was approaching.

I would also like to thank Julian Byrne for his pointers and code samples relating to

resection.

I thank my mother, Inge Ruben for helping me during the proofing phase of this thesis and
for continually correcting my language and grammar in my younger years. I think there is
some evidence in here that she did a good job. I thank my father, Rudolf Ruben for always

taking an interest in my work. I can now show him some evidence that there was some.

I thank Robin Morrison and David Jenkinson for allowing me some freedom to organise

breaks from my employer in order to pursue this work.

viii

1 Introduction

1.1 Multiple robot systems

There are two groups interested in the study of multiple autonomous agents; the
Distributed Artificial Intelligence (DAI) researchers and the artificial life (Alife) researchers

[Mat95]. The slant of these two groups differs slightly.

The DAI group is generally interested in examining the coordination between agents which
may be internally complex. Practical examples might be the coordination of complex robots
or research into intelligent agents, which are not physically embodied. In contrast, the Alife
group 1s in general more interested in aspects of emergent behaviours of often large
numbers of simple agents. A good introduction to the field is provided in [Ste95]. Alife
models were originally devised to aid in the study of natural evolution in biological systems.
Probably for practical reasons, most of the work in Alife tends to take the form of software
simulations. Areas of interest usually include the study of cooperation between agents and
comparison of their control methods eg. Completely autonomous, hierarchical or

centralised.

Paraphrasing Taylor and Jefferson [Lan95] “one of the most fundamental and successful
insights into the field of AL has been the development of a population modelling paradigm
that represents a population procedurally, rather than in terms of differential equations
whose solution determines the state of the population. The population is modelled as a set
of coexecuting computer programs, one for each cell or one for each organism. We consider
this feature, the representation of organisms by programs, to be the defining feature of
ALife models”. In the context of Swarm Robotics, each cell or organism, representing one

robot, is interchangeably called an agent or unit.

DAI can be further subdivided into the areas of Distributed Problem Solving and
Multi-Agent Systems (MAS). It is the MAS subfield which is concerned with utilising a
system of heterogeneous agents to achieve some goal. Creating physical MAS’s, capable of

performing useful work, is a current area of interest of robotics researchers.

The work presented in this thesis could be categorised somewhere midway between the
MAS and Alife classifications, as it deals with a smaller number of agents than are generally

considered in Alife studied yet the Agents are relatively simple internally.

The issues surrounding interaction between individuals in groups of multiple robots fall
under the title Swarm Robotics (SR). MAS can be said to encompass SR in that it deals with

generic agents, whereas SR deals with physically embodied agents ie. robots.

Page 1 of 106

One of the aims of SR research is to exploit the advantages of using a group of Robots to
achieve a task over using a single complex robot to achieve the same task. In other cases,
tasks exist which cannot be performed by a single robot, necessitating an SR approach. A

robot swarm may carry several benefits:

* Redundancy - Failures of individuals lead to a gradual, not catastrophic, failure of the
system. Loss of an individual member of a swarm is not disastrous, whereas loss of a

subsystem of a complex robot usually results in catastrophic failure.
* Simplification - Individual robots may be simpler and cheaper.

* Time Efficiency - A number of robots may achieve a task in a shorter time than a single
robot. Maximising the increase in efficiency is one of the main areas of investigation in
this field.

* Resource Efficiency - Limited resources may be allocated amongst members of a

heterogeneous robot team in order to maximise the efficiency of the team.

Note that in these fields, anthropomorphisation runs rife. The author apologises in advance

for any terminology which maintains this trend.

1.1.1 Communication

For the swarm to have a useful task achieving behaviour, the members must communicate.

Directed communication is communication aimed at a particular receiver or receivers.
Indirect communication is communication based on the observation of other agents’
external states. Indirect communication can be by signposting, where robots broadcast their
state by advertising it visually or in some localised way. Another method of indirect
communication is by changing the local environment, so that when it is visited by other
robots, the change is sensed. This is termed stigmergy, so-named by the French biologist
P.P. Grassé during his investigations of termites [BeHo94]|, which leave chemical trails to

aid nest building and foraging.

1.1.2 Cooperation

Cooperation is defined as an action by one agent which assists another agent in the

achievement of its task. This involves communication of one of the types identified above.

Explicit cooperation is interaction which involves exchanging information between agents or
performing actions to benefit another agent in achieving some task. That is, a type of
altruistic behaviour. Implicit cooperation also involves an exchange of information or

performance of a task, but in this case it is a necessary part of the agent’s own behaviour

Page 2 of 106

and 1s not explicitly intended to benefit another agent. Cases where such a benefit exists

are examples of symbiosis.

The behaviours of agents in a robotic swarm must use cooperation to deal with interference

which adversely impacts the swarm’s task achieving efficiency.

Multi-agent systems are subject to two types of interference; resource competition and goal
competition. Resource competition arises when agents share and compete for resources
such as space, energy, information or objects. Goal competition arises when agents in a

heterogeneous group compete to achieve mutually incompatible goals or subgoals.

Interference of both types must be reduced to decrease the adverse impact on the group’s
efficiency. In the behavioural approach, this is achieved by building or evolving social
behaviour sets, leading to a reduction in global cost functions related to the achievement of
the overall swarm’s task. This is often at the expense of increases in cost functions at the
scale of individual agents, although social rules can equally lead to reductions in these cost

functions, translating to increases in efficiency of individual agents.

Multi-agent control strategies aim to exert control over individuals in the swarm to allow
the swarm’s task to be achieved. Moreover, they partially or fully define the task itself. The
control strategy may be controlled by imbuing certain agents in a heterogeneous swarm
with planning abilities and designing in communication hierarchies to support information
about the task and agents’ states reaching the planner agents. At the other extreme, the
behaviour of the swarm may arise as a result of individuals’ subtasks together producing an

emergent global behaviour.

1.2 Swarm taxonomy

Dudek et. al. [DuJe93] propose a taxonomy for organising different swarm models. The

distinguishing factors, along with their possible classifications:

* swarm size Alone (1 robot),
Pair (2 robots),
limited group size with respect to task size,

large effectively infinite group size.

A swarm size of alone is a case where the authors, by their own admission, include a

non-swarm system to complete the classification system®.

By so doing, Dudek et. al. create a good example of a Russellian Strange Loop by including

a set which contains all members outside of itself.

Page 3 of 106

e communication range none,
communication between near agents,

infinite (able to communicate with any other agent).

* communication topology broadcast,
address,
tree,
graph,

other.

e communication bandwidth high (communication cost is free),
motion (communication carries a cost related to the
distance between communicating agents),

low (communication cost is high).

* swarm reconfigurability static,
coordinated rearrangement (requires communication),
dynamic rearrangement (agents can redistribute

arbitrarily).

* unit processing ability non-linear summation unit (eg. processing equivalent
to a single artificial neuron),
finite state automaton,
push-down automaton,

Turing machine equivalent (general computation).

* swarm composition homogeneous,

heterogeneous.

A swarm composition is still classified as heterogeneous if its member agents are physically

similar if the programming of the agents differs.

1.3 The approach

For this thesis work the behaviours of members of a swarm of simple robots were studied

through creation of a simulation environment.
The Borland Delphi Object PASCAL language was used to implement the simulator.

The author applied the Swarm Robotic approach to the task of terrain-surveying. This
seems to be a challenging task as situated agents operate at the scale of terrain features
whereas what is desired is to combine these into an overall map. This task is analogous to

that undertaken by explorers and continental circumnavigators; that of mapping the land

Page 4 of 106

features and coastlines of a land mass, where the explorer can only see a small portion of

landscape or coastline at any one time.

A central assumption of this work is that the map cannot be built by remote sensing, ie. that
each point in the map must be visited to obtain the feature data for that point. An example
of where this might be necessary is mine sweeping. Another example might be ocean floor
exploration by mining companies, say to obtain magnetic or gravitational field maps. In this
case, accurate position information cannot be derived from satellite GPS signals and must

be determined through more conventional surveying techniques.

The feature data comprising the terrain can be any measurable physical quantity. Some
other examples are altitude, seismic and radioactivity readings. Any references to the term
feature data will subsequently assume them to be single numerical values. This is for
convenience only as, for example, it is possible to directly measure gravitational gradient
which results in a 3-dimensional tensor. However, since a feature map based on tensor

fields requires more than 2 dimensions for its representation, these were not considered.

In the simulator, agents were realised as Delphi Object PASCAL objects. Internal to the
agents, behaviours were programmed as Finite State Machines (FSMs) whose states
change in response to external localised stimuli. Under the described taxonomy, the unit
processing ability of members of the swarm is Turing machine equivalent (general
computation). Thus, the agents are able to process the sensor data using traditional

computational techniques.

Page 5 of 106

2 Surveying with a group of robots

2.1 Surveying

2.1.1 History, Techniques and Technology

To contextualise this work, it is helpful to describe traditional Surveying techniques
[Brios].

Surveying is believed to have originated in ancient Egypt. There is evidence that its
development must have occurred prior to the building of The Great Pyramid of Khufu
¢.2700 B.C.

Current-day surveying uses many technologies developed this century [BaRa84]. These
include the theodolite and laser rangefinder. A theodolite is a tripod-mounted telescope
through which the surveyor can sight to set targets and accurately measure angles in both
horizontal and vertical planes. Modern theodolites can measure directly to an accuracy of
about 1 arc second or Vg of a degree [PrUr89]. A laser or microwave rangefinder allows

precise measurement of the distance to set targets.

The two main types of surveying are Geodetic and Plane. Plane surveying is concerned
with a level of accuracy whereby the curvature of the Earth (or other substrate) may be
ignored. When a higher degree of accuracy is required, Geodetic surveying techniques are

used which account specifically for this curvature.

In general, a reference framework is established by accurately measuring the angles and
length of sides of a network of triangles. Traditionally, the corners of these triangles have
been placed on hilltops, each visible from at least two others. Smaller scale surveying work
then builds on this accurate framework. Often, a lower level of accuracy is acceptable for
this smaller scale. Establishment of the framework may use Geodetic surveying techniques
and the smaller scale work make use of Plane techniques. The work in this thesis is limited

to Plane surveying.

Electronic Data Measurement (EDM) using a laser operating at optical or infra-red
wavelengths works by firing a beam at a set of precisely positioned corner mirrors and
measuring the return trip time of flight of the beam. The time of flight is determined using
interferometry techniques. This type of laser rangefinding is used at scales of tens to
hundreds of meters. This is the scale at which the robot surveyors which are the subject of

this thesis operate.

Page 6 of 106

More recently, scanning laser rangefinders have become available which do not need to be
aimed at mirrors and which can measure the range to multiple features in a single scan,

which takes of the order of 100ms.

A microwave radio beam can be used over longer distances. This also has the advantage of
being able to penetrate atmospheric disturbances. A disadvantage is that an active
retransmitter is required at the target to transmit the return beam. Thus the time of flight
to the target is half the distance between the total-round-trip time and the

receive-to-retransmit delay in the retransmitter.

Although aerial or remote surveying gives an accurate map or survey, it does not cover all
surveying situations. Ground surveying must still be used, for example, under a forest
canopy where information about the shape of the ground is needed or if the features to be
mapped cannot be identified from aerial images such as property boundaries or changes in
soil and vegetation. Also, ground surveying is used to accurately determine elevation for

use in planning roads, railways and drainage networks.

2.2 Behaviour model approach to multiple robot systems

Traditional approaches to the investigation of swarming systems would model the agents’
behaviours as rule-based or finite state machine (FSM) computations. By examining the
efficiency with which the swarming system achieves its task, the behaviour FSMs are
redesigned by the researcher to improve efficiency. As this can be a fraught exercise,
recently there has been a move toward allowing the behaviours or behaviour selection
mechanisms of individuals to evolve [ShFu93][LuSp96][MiMa97]. This may be done by
endowing them with genetic-algorithms whose outputs code for differing selections. The
genetic code is then allowed to evolve according to some fitness measure [KoMe95]. ie.
There has been a shift from a top-down to a bottom-up approach. This has been most
evident within the Alife group; less-so amongst DAI researchers, revealing the differing

interests of the groups.

However, the newer approach is often based on combining a subset of behaviours which
have been identified using the traditional approach. Later work might then seek to evolve
the behaviour selection criteria to maximise some aspect of task achievement
[Mata94][ScMa96]. The work in this thesis is based on the traditional approach as the

application of SR to accurate surveying has not been investigated before.

The behaviour model upon which this thesis is based is due to Maja Matari¢ [Mat94]. This
work grew out of the work of Rodney Brooks [Bro86]. Brooks’ approach to achieving

useful, real-time behaviour by a robot operating in a complex world is to decompose task

Page 7 of 106

solving into simple behaviours which are combined by a hierarchy of competing processing

units.

Matari¢ built on this behavioural approach by applying it to the problem of interacting
multiple robots. She proposed a basic set of robot behaviours, which may be combined to
generate more complex behaviours. These behaviours form a minimal set, the combination
of whose members allow a complete implementation of interaction and navigation in a plane
[Mat95]. The basic behaviours are called avoidance, following, aggregation, dispersion,

homing and wandering.

A behaviour is defined as an operator which guarantees a particular goal. The goals fall into
two categories; maintenance goals or attainment goals. A maintenance goal is one which
ensures that some time persistent task is being achieved or a dynamic equilibrium is being
maintained. An attainment goal places the agent in a terminal state with respect to that

behaviour; once achieved, the behaviour state enters a completed state.

An example of a maintenance goal is ‘maintain energy stores by collecting food’. An

example of an attainment goal is ‘navigate to a goal’.

2.2.1 Basic behaviours

The basic behaviours, avoidance, following, aggregation, dispersion, homing and wandering
may be described in formal notation. They are included here from [Mat94] (with slight
corrections) in terms of vector positions p and scalar distances d, and distance thresholds

O avoid> Odisperse AN O yggregare. The descriptions are based on standard Cartesian geometry of a

2-dimensional plane.

Safe Wandering

d .
%io and VZVJ d,‘,]‘ >6av0jd .. (D

where p; is the jth agent’s position. This states that the agent must move continuously
whilst maintaining a distance from all other agents greater than 0 04, the value of which is
set to avoid collisions between agents.

Following

Following aims to reach and maintain a minimum angle 0 between the position of the

leading agent 7 and the following agent ;.

Page 8 of 106

i = leader, j=follower

dp;
0<— = @i=p)<| |[Ipi=ps]

-0 = cosbf-1 =

dp;
0<—=-i=p)<||—|[Ipi=p]

The product of the velocity and position difference is to be taken in the vector sense. By
keeping this dot product positive, the follower agent attempts to decrease its distance to the
leader. As the angle between velocity and distance vectors approaches 0, the upper bound
on the dot product approaches the scalar shown.

Dispersion

Dispersion aims to reach and maintain a minimum distance between agents.

ViVvj d,',j >6djspe]'sg and ddispel'se S Ouvoid e e et e e 3)

which states that the distances between all agents are to kept greater than a threshold

Odisperse Which 1s in turn greater than the threshold distance defined to avoid collision.

Aggregation

Aggregation is the complementary basic behaviour to dispersion. It aims to reach and

maintain a maximum distance between agents.

ViVj dij <Ouggregate -~ v v e)

Homing

The homing basic behaviour aims to decrease the distance between the agent and a goal

location called “home”.

d .
W (= Phone) <O o 5)

By keeping this product (of the velocity and vector position difference between the agent

and home position) negative, the agent always decreases its distance to home.

Page 9 of 106

2.2.2 (Combining basic behaviours

Basic behaviours must be combined in some way to form useful composite behaviours.

One example of a composite behaviour is flocking. The term defines a collective motion of
agents toward a goal. It may be realised as a combination of safe-wandering, aggregation and
dispersion. By combining the flocking behaviour with following, a slightly more complex

composite behaviour called herding is realised.

The combination of basic behaviours to form more complex composite behaviours may be
performed in two ways; directly or temporally. Direct combination of behaviours allows all
basic behaviours to simultaneously contribute to the behaviour output. Direct combination
may be realised by summing direction and velocity vectors, which are the outputs of the
basic behaviours. The flocking and herding behaviours are formed through direct

combination of their basic constituent behaviours.

Temporal combination of basic behaviours to form more complex behaviours is performed
through sequencing by a finite state machine. Sensor data is used by the agent to define

events which cause changes of state.

The composite behaviours possessed by the robot surveying team members in this
investigation required only temporal combination of the safe-wandering and homing basic

behaviours.

2.3 Issues with multiple robot systems

2.3.1 Cooperation through communication

The members of a robot swarm can use communication to improve the efficiency of some
global task. Communication thus provides a method for trading off improvement in the
global cost function against local cost functions [Mat97]. If an improvement of the global
cost function is measured, a problem of credit assignment arises. Reward must be
distributed amongst the agents whose contributions to the global cost function vary. If the
credit assignment problem can be solved, this reward may then be used by individual

agents to affect behaviour selection.

To solve the assignment of credit involves communication between agents. Aspects of the
global task state can be sensed by individual agents and this information disseminated

amongst the agents to build the global task cost function.

Page 10 of 106

2.3.2 Specialisation amongst agents

A Swarm Robotic (SR) system may be classified as homogeneous or heterogeneous, based
on whether the agents comprising the system are identical or specialised, both physically

and with respect to their behaviour sets.
Homogeneity of agents has the following advantages:

* A given number of identical agents may be able to be manufactured more cheaply than a

heterogeneous group.

e Standardisation in all aspects relating to the group, such as delivery and maintenance is

simplified.

* Redundancy is built into a homogeneous group. If individuals in the group fail, since the

agents all have a common goal, this will be achieved by the remaining agents.
Heterogeneity has the following advantages:

* Resources may be allocated to group members in a cost effective manner. Where
agents’ subsystems are expensive, it is not sensible to provide these same subsystems

to all members of a group.

e Communication hierarchies may be established, often leading to a more natural system

of swarm management.

2.4 Applying the behaviour model approach to surveying

2.4.1 Introduction

To date most research seems to have applied the multiple agent behavioural approach to
tasks such as goal-seeking, puck collection etc. That is, tasks of little practical value. The
reasons for choosing tasks such as these are to simplify the investigation as this is still a
young field of investigation. Also, it is usually not the tasks themselves which are the
desired outcome of studies so far, but the investigation of increasing system efficiency
through careful behaviour selection by the investigator. Much of the work in this area of
investigation deals with artificial behaviour selection, which is more concerned with

techniques for optimising robot behaviour through learning.

It was with the intention of finding an area of investigation of some potential practical value

that the terrain mapping task was selected.

Note that it may not be necessary for a map to be built at all for some tasks such as

navigation [Lit94]. Cohen [Coh96] successfully shows a method for navigating toward goals

Page 11 of 106

by a team of robots where no internal model for the environment need be generated. This
information is instead related to the physical arrangement of the agents. That is, robots
move to positions in the environment where they can act as markers by which a specialised
robot navigator may find a route to the goal. However, the primary aim of the work
presented in this thesis is to generate the map itself. It is the terrain map data which is the
desired information of the system. This requires that an internal representation be

produced somewhere.

2.4.2 A Multiple Agent Approach

Traditionally, to build a map, the cartographer must establish reference coordinates and

then map the features relative to these reference points.

A lone surveyor who visits a remote site could place reference markers at strategic points
around and throughout the site, then sight to these reference markers from various points
throughout the site to obtain the survey data; a tedious task. Recognising the tedious
nature, surveying is often carried out by a small party of people to expedite the work. In
this project the author recognises that one could ‘roboticise’ the surveying equipment to

carry out this task.

2.4.3 Description of the Proposed Scheme

It is possible for the programmer of the robot swarm members to identify several
maintenance goals which must be achieved to ensure the success of the team. The
programming of behaviours exhibited by agents which meet the maintenance goals is then
performed, enabling the team to perform its task. Since the robot team in this thesis is
performing a time persistent task, the maintenance goals become simultaneous subtasks of
the team. These subtasks may then be assigned amongst different members of a

heterogeneous swarm.

The scheme proposed to perform the task of terrain surveying is to tessellate the area to be
surveyed. This physically constrains the problem to a finite region of a potentially infinite
plane. By dividing the area in this way, subtasks can be identified for the swarm. It is
assumed that no initial information is known about the area.

Subtasks

* Define the current area to be surveyed

* Move the group to the area

e Build a map of the defined area

Page 12 of 106

The robot swarm is assumed to be completely autonomous. It does not require
communication with any outside entities to perform its task. It is envisaged that the team
would be placed into the area to be surveyed, left to carry out the task and then the map

would be retrieved upon completion.

The initial strategy chosen by the author primarily addresses the requirement that it be
able to achieve the task in a physically implementable manner. Robustness and efficiency
were regarded as secondary aspects of the scheme. These are considered in later

discussions.
Consider, the subtask of defining the area to be mapped.

In the proposed scheme, some agents are used as reference markers until the terrain
surrounding them has been adequately mapped by other agents. This provides a means to
achieve the first subtask, provided these reference marker agents can be sensed and used

to constrain the survey area.

The technique investigated establishes a reference coordinate system whose position,
orientation and scale are fixed by the triangular arrangement of three of the situated agents,
henceforth called Reference agents. These agents are mobile but can fix their positions to
establish the reference coordinate system whilst other mobile agents move around
collecting feature data from the environment (Roaming agents). It was decided to tessellate

the terrain map into triangles as this represents the simplest system.

Then, when a determination is made that the defined area has been adequately surveyed,

the Reference agents move so as to a define a new area.

In order to compile an overall map based on the terrain map data from each defined area, a
single coordinate system must be established. To establish a two dimensional Cartesian
coordinate system, a minimum of two agents are required; one to provide a zero reference
and the other to fix one of the axes. One reason for using three Reference agents is that
this 1s the minimum number required to allow one of them to be moved without destroying
the coordinate references. The reference system would be lost if two Reference agents

were not stationary at any one time to establish the coordinate system.

When the Roaming agents have mapped the area marked out by the Reference agents
adequately, one of them is signalled to move a new position. The moving Reference agent
uses the coordinate system established by its two stationary counterparts to accurately
position itself at the new reference position. Figure 1 shows the signalling sequence, which

allows the Reference agents to traverse the terrain as a group.

Page 13 of 106

To support this movement, communication based on simple protocols is required between

Reference agents.

Figure 1. Conceptual tessellation of terrain with Reference agent motion.

1. Initial agent position. 2. Region survey completed. 3. Reference Agent #1 signalled to
move. 4. Reference Agent #1 completed move. 5. Region survey completed, Reference
Agent #2 signalled to move. 6. Reference Agent #2 completed move. 7. Region survey
completed. 8. Reference Agent #3 signalled to move. 9. Reference Agent #3 completed

move. 10. Region survey completed and ready to signal Agent #1 again.

Page 14 of 106

To perform the second subtask of moving the group to the area, the Roaming agents must
be programmed with a behaviour which moves them into the area of interest based on them

sensing the Reference agents’ positions.

Finally, to meet the subtask of building a map, the feature data collected must somehow be

compiled into an overall map.

To avoid the problems of trying to marry together many disparate maps, one special agent
is given the task of building the map. This agent, which is one of the Reference agents, is
known as the Mapping agent. The remaining Reference agents are given the name Beacon
agents. Thus there are two Beacon agents, one Mapping agent and a minimum of one

Roaming agents.

Communication of the internal state of some agents to others provides a mechanism for
behaviour selection of agents. The communication can be hierarchically organised, as was
done in the surveying robot team. The Mapping agent, which is at the top of the hierarchy,

manages the task through directed communication to other Beacon agents.

In order to build a map, each feature datum must be associated with a position. The
Roaming agent obtains the feature and must relay its value back to the Mapping agent.

What is not so obvious is how the position associated with the feature is established.

It is desirable to minimise the complexity of sensors on the Roaming agents, since this
would allow the overall cost of Roaming agents to be minimised, allowing more of them to
be used to minimise surveying time (assuming that the task of roaming and measuring
features is the time consuming part of the exercise; not communication or map
construction). It could be that the Roaming agent attempts to accurately establish its own
position based on its measurements of Beacon agents’ positions. One approach to this
method might be to measure the angles to each Beacon agent using a vision system. An
optical system which mapped a 360° view onto a 720 pixel stripe Charge Coupled Device
(CCD) would, by Nyquist’s theorem, give a 1° angular resolution. A typical flatbed scanner
might contain a 4800 pixel stripe CCD (8” at 600dpi), which with a suitable optical system
could give a 0.15° angular resolution. The Roaming agent measures the angle between each

point-source Beacon, which illuminates a region of stripes of the CCD.

Page 15 of 106

beacon beacon

P illuminated
\/\L range

Circular CCD
array

Figure 2. CCD angle sensor

The brightness variation over this region should allow the angular positions of the beacons
to be established reasonably accurately. One advantage of this approach is that only the
Reference agents need to emit energy to permit position data to be determined except
when the Roaming agents transmit their feature data. Each pixel of the CCD array could
have a cylindrical lens (where the axis of the cylinder is in the horizontal plane) so that
vertical position variation of the Beacon and Mapping agents is catered for. Also, vertical
collimators between adjacent pixels would ease in localisation by reducing the angle in the

horizontal plane over which the pixel detects a Beacon.

The alternative approach where the Reference agents attempt to fix the position of
Roaming agents should not be dismissed. To simplify this situation, a scheme is necessary
whereby each Roaming agent in turn indicates its wish to have its position measured,
perhaps by broadcasting its feature data in a serial data format from an omnidirectional
infrared LED. Each reference agent reads this data stream and obtains an angular fix on the
transmitter, along perhaps with an identification label transmitted as part of the data
stream. This could aid assembly of the data by the Mapping agent. In this scheme, the two
Beacon agents must relay their angular position data back to the Mapping agent, increasing

the likelihood of errors and slowing down the collection of data.

The selected approach is to allow the Roaming agents to determine their own positions,
with inherently increased errors due to cheaper sensors with lower angular resolution.
They then transmit their feature and position data directly back to the Mapping agent using
a low-cost radio system, similar to a radio ethernet. ie. any scheme which resolves conflicts

where multiple Roaming agents transmit ‘over the top’ of each other’s transmissions. An

Page 16 of 106

advantage of this technique is that systematic position errors should cancel each other out,
as they will only be associated with a single Roaming agent. This is in contrast to the
potentially graver problem of systematic errors from Reference agents applying to the

positions of all Roaming agents.

In the case of a Roaming agent in the presence of two Beacon agents, b1,b, and one
Mapping agent, m, data, d, from an individual Roaming agent can be represented as the

4-tuple;
<fAm,fAb,fAby,d> where fis the forward direction = 0°
or
<a,pf,y,d>

The behaviour of the Roaming agents must rely purely on this data. Also, if the behaviours
can be described in terms of the raw angle data, processing and behaviour implementation

by the Roaming agent will be simplified.

In order to correctly form this data, all three Reference agents must be visible by the agent
in question and the sensors and associated processing must behave ideally. If this is not the
case, either the tuple will not be able to be formed or incorrect data will be produced. In the
case where the tuple cannot be formed, this can be the trigger for a behaviour selection
which could, say, seek to move the agent such that its vision is not impaired. In the other
case, where incorrect data is produced, this cannot be sensed and the inherent

fault-tolerance of the surveying system is relied upon.

The order of data is also important. It is therefore necessary for the Roaming agent to be
able to identify which is the Mapping agent. To support this identification, it is proposed
that the Mapping agent’s beacon would be modulated somehow and that the Roaming
agents would be sensitive to this modulation. It is not necessary for the Roaming agents to
know the identity of the Beacon agents as they transmit the angle data ordered by
increasing angle. Thus, the Mapping agent, which knows the positions and identity of the

Beacon agents, can match the data to the correct Reference agent.

The tuple 1s relayed back to the Mapping agent to enable it to determine the transmitting
agent’s position and associated feature datum. The method used for this determination is

called resection®.

*See Appendix 1.

Page 17 of 106

2.5 Agent descriptions

One simple way of modelling an autonomous agent is to subdivide it into blocks

representing sensors, behaviours, effectors and physical traits. See Figure 3.

Agent Environment
Sensors
Optional
Communications
Effectors
Physical traits
Behaviour

Figure 3. Agent model

The agents perform different roles in the survey task. To support this, they differ in each of
these identified blocks, leading to the robot surveying team being classed as

heterogeneous.

A communication block could be added as shown in the diagram, or this role can be
subsumed by the sensor and effector blocks, the act of communication essentially being to
induce an energy disturbance into the environment through an effector and for this

disturbance to be sensed by some other agent.

For this simulation, no modelling of physical traits was performed. However, some
assumptions were made to simplify the model. For example, it is assumed that agents have

zero extent; quite an assumption.

Page 18 of 106

2.5.1 Roaming agent description

Sensors

Roaming agents have two sensors. The first is the CCD angle sensor described above. The

second is a sensor to gather the feature data at the current location.

If the model is extended to allow interaction between Roaming agents, as suggested in a
later section, it will be necessary to add a sensor to measure the proximity of nearby

agents, or at least to detect collisions with other agents using a bump sensor or whiskers.

Behaviours

Roaming agents implement two basic behaviours. The first is safe-wandering. The second is

homing.

The Roaming agents behaviour allows them to achieve the maintenance goal of the
collection of terrain feature data and its transmission to the Mapping agent. The basic
behaviours on which the composite behaviour is based are both maintenance goal achieving

behaviours.

By using the angle data collected of the beacon positions, it is possible for Roaming agents
to determine the area they should be surveying. The beacons lie at the vertices of a convex
geometric figure (in our case the figure is a triangle, however, if more beacon agents are
available, another higher order figure would work). If the measured difference between two
subsequent angles exceeds 180°, the Roaming agent has left the area currently being
surveyed. If this determination is made, the homing behaviour is selected which drives the
Roaming agent toward the centroid of the Reference agent (Beacon and Mapping agent)
positions. Thus angle data is used to select between the safe-wandering and homing

behaviours.

Effectors

Roaming agents have two effectors. The first is a drive mechanism which allows them to
travel at constant speed in a forward direction. They can turn left and right with a minimum
specified radius. The second effector is a transmitter to broadcast relay angle and feature

data in a directed or addressed manner to the Mapping agent.

In a physical implementation, the transmitter could be either an omnidirectional or
directional antenna, since the Roaming agent can detect the direction of the Mapping agent.

This is not important to the current simulation.

Page 19 of 106

2.5.2 Beacon agent description

Sensors

Beacon agents have three sensors. These must support navigation of the agent to a new
survey reference position. They must also support accurate ranging to other reference

agents to ensure that this reference position is established accurately.

The first sensor is the CCD angle sensor described above. It is possible to navigate to the
approximate position of a new reference position using only the angle data returned from

this sensor.

The second sensor is a laser rangefinder. This provides support for accurate ranging. To
support laser rangefinders on reference agents of the type traditionally used by surveyors,
corner mirrors must be attached to all reference agents. Normally, laser rangefinders must
be accurately aimed to ensure that the corner mirror is struck and the return beam
captured by the interferometer. If a scanning laser rangefinder is used instead, the corner
mirrors are not required. However, the extra range information from a scanning
rangefinder could cause a problem in that it must be correlated with Reference agent

positions and the remainder thrown away.

As some angle information is available from the CCD sensor, this provides a starting point
for some undefined control mechanism to aim the laser. The laser could scan that region
until a return beam is detected or the beam could be spread to permit inaccurate aiming or

some combination of these could be applied.

Finally, to support protocols for moving to a new position, Beacon agents must carry a
communication transceiver. Commands from the Mapping agent to take up a new reference
beacon position and indicate that the new position has been reached are implemented as

part of these protocols. The receiver part of this can be classified as a sensor.

Behaviours

The behaviour of the Beacon agents does not fit neatly into the behavioural approach
model, as stated. Firstly, a new basic behaviour, which could be called waiting, is required,
since Beacons spend most of their time sitting doing nothing. This could be considered to

be a special type of homing, where the goal is always the agent’s position.

The other behaviour implemented by the Beacon agents is homing, to move the agent to its
new reference position when the Mapping agent signals it. However, this is performed
using a staged approach. The Beacon agent normally rests until receiving a command from

the Mapping agent to establish a new reference position. It then uses the angle data from

Page 20 of 106

the CCD angle sensor to place itself close to the new goal position. Finally, it uses range
data to accurately place home in on the new reference position, before returning to a

resting state.

The Reference agents behaviours (Mapping agent behaviour is the same as for the Beacon
agent) achieve the maintenance goal of acting as position references for other agents. To
form this composite behaviour, both basic maintenance and goal-achieving behaviours are

combined temporally.

Effectors

Beacon agents have three effectors. Like Roaming agents, the first is a drive mechanism
which allows them to travel at constant speed in a forward direction. They can also start

and stop and turn left and right with a minimum specified radius.

The second effector is the beacon itself which provides an omnidirectional, localised,
detectable energy source. In a physical implementation, this could be a cylindrical light
source, modulated in some way to allow identification of the source as a Beacon agent by

Roaming agents.

The transmitter part of the communication transceiver is the third effector.

2.5.3 Mapping agent description

A Mapping agent can be thought of as a Beacon agent with the extra responsibilities of
receiving the survey data, building it into a map and commanding the Beacon agents to

move to new reference positions.

Sensors

Mapping agents are similar to Beacon agents and therefore also have three sensors and use
them in the same way described for Beacon agents.

Behaviours

The homing behaviour implemented by the Mapping agent is identical to that of the Beacon
agents.

Effectors

The description for these is similar to that for the Beacon agent. However, the beacon itself

1s modulated differently to Beacon agents in some way to allow identification of the source

Page 21 of 106

as a Mapping agent by Roaming agents. This allows the Roaming agents to correctly order

their angle data.

Map Building and Surveying Task Management

The Mapping agent receives survey data and uses this to build the map using resection and
statistical averaging of feature data received from coincident survey positions. The agent
monitors the coverage of the area currently being surveyed. When this coverage, whose
measure 1s based on a sample region of the area currently being surveyed, exceeds a
threshold, the Mapping agent commands the Beacon agents in turn to move to new
positions. The mapping task is halted until the Beacon agents respond that they have

acquired their new position.

The robot team builds a map of a strip of the terrain. If it is desired to have a more
generalised area surveyed, a higher level behaviour would have to be programmed on the
Mapping agent. The generalised area would be conceptually overlaid with the tessellation
grid and an algorithm to cover each tile area in turn established. Although this was not
investigated, it could be implemented in the current simulator. The only difference would
be that the Mapping agent would signal Reference agents in a different sequence to move

the team to regions outside the strip.

2.6 Taxonomy of the surveying swarm

As described in section 1.2, robot swarm systems may be classified according to a
taxonomy. It is useful to do this to categorise the research and relate it to other research in

related areas.
The swarm size classification is limited group size with respect to task size.

The communication range is infinite (able to communicate with any other agent) although it
could equally be communication between near agents since all agents constrain their

proximity and are always within communication range of each other.

The communication topology is address. All Roaming and Beacon agents transmit their
position data only to the Mapping agent. The Mapping agent signals the Beacon agents to

move.
The communication bandwidth is kigh (communication cost is free).

Swarm reconfigurability is a combination of coordinated rearrangement (requives
commumnication) which refers to the Beacon and Mapping agents and dynamic rearrangement

(agents can redistribute arbitrarily) which applies to the Roaming agents.

Page 22 of 106

Unit processing ability is Turing machine equivalent (general computation,).

Finally, the swarm composition is heterogeneous.

2.7 Combining Behaviours

Where individual basic behaviours must be combined, they may be combined directly, by
computing each behaviour and summing the resultant velocity vectors, which are the
behaviour outputs. This method of combining behaviours is applicable to the achievement

of an individual goal.

In order to perform higher level tasks, the behaviours, which may be basic or combined

behaviours, must be combined temporally, for example by a finite state machine.

Many implementations by existing researchers have used layered behaviours, where
behaviours are combined using the Subsumption Architecture [Bro86] method. This has not
been done in this project; the simpler approach of non-layered or traditional finite state
machines being used instead, since it was always intended to keep individual agents’
behaviours simple. In fact, it was not necessary to combine basic behaviours in any way

other than temporally for this project.

Page 23 of 106

3 The Simulator

3.1 The problems of simulations

The use of simulations in robotics research is often criticised for the reason that simulation
can never hope to account for all real world phenomena. Because of this, the legitimacy of

simulation results may validly be questioned.

However, provided the scope of the simulation and its limitations are understood it may
often be a valuable mode of investigation. The cost of implementing custom hardware when
a robot research question arises can be high. Thus, simulation is often a valid first step

toward the implementation of a working system.

The basic tenet of simulation is that a simulator provides a model which the programmer
believes captures the essential aspects of the real system it is attempting to simulate. It
must always be expected that early models will have failings and any results from work
with a simulation should be tested on physical systems to validate the model and any
conclusions which are based on it. Note that it has been shown in some cases that
imperfections in real-world systems can lead to simpler handling of tasks by physically
embodied robots than in a simulation environment which may introduce simulation
artefacts. The problems and the way with which they have been dealt in this work are now

described.

3.2 Simulator Issues

3.2.1 Discrete time problem

Simulations by researchers at Xerox Parc have shown that the discretisation of time, or
time-stepped approach taken by simulation environments can affect the dynamics of the
agents within the environment [HuGl196]. The example investigated is the Iterated
Prisoner’s Dilemma (IPD) problem. It was shown that using a stochastic method of dealing

with time led to conclusions which directly challenged (invalidated) previous results.

With this in mind, it was decided for this project to randomise the time sequencing of
simulated agents, but not to take a completely stochastic approach to time. In other words,
the discretised unit of time remains a constant value. However, the scheduler which

executes each agent does so in a random order.

For an analogous reason, the simulation environment uses a continuous space model based
on floating point representations. The alternative is to use a quantised or tessellated model

of space. Note that there is a distinction between the space itself being quantised and the

Page 24 of 106

survey regions being tessellated. If the space being modelled were itself quantised,
positional errors of the same order of scale as the agents operating in the environment

would accumulate and may have unforeseen effects on simulation results.

Two aspects of the simulation acting as inputs and outputs of the surveying task do
tessellate the simulation space at a scale comparable to the agents. These are the terrain
map itself and the internal representation of the feature data map formed by the mapping
agent. However, these represent models from the point of view of the agents and as such
are not a part of the space in which they operate. Thus, they are not constrained by the

requirement that they be continuous.

3.2.2 Sensor errors

In all simulations, regardless of the area of investigation, any modelling of real world
phenomena must be modelled, implying simplification. In the specific area of autonomous
agent research where an agent has an interface between the real world and an idealised
computational block, in our case a generalised Turing machine, simulations often assume
that some or all of the sensor information is perfect. Similarly, the interaction of effectors
with the environment is simplified in models. It is these blocks which interface with the
real world where particular attention must be paid to modelling to maximise the validity of

any results.

3.3 Development tool
The simulator was developed using the Borland Delphi Object PASCAL language. This

language was chosen for the following reasons:

* PASCAL has a well recognised syntax which eases the interpretation by readers of any

coded algorithms.

* Generation of a graphical model environment and graphical user interface is made easy
by the Delphi toolset.

* Itis an implementation of a modern object-oriented language. The task of simulating
many autonomous interacting agents lends itself naturally to an object-oriented

approach.
Some Object PASCAL issues are briefly described here to aid the following discussion.

¢ Code modules or files are referred to as units. This is not to be confused with the term

units used by the Alife community to refer to an agent.

Page 25 of 106

Object-oriented programming concepts are outside the scope of this work. Briefly,
Object PASCAL implements a modern object-oriented model supporting polymorphism
and inheritance with abstract classes.

Objects, which are instances of classes, contain data not directly accessible by other
objects. These data are referred to as fields.

Access to the objects conceptually occurs by sending a message to the object which
invokes one of the object’s defined methods. A method is a defined message interface to
the object. In Object PASCAL, methods may be PASCAL procedures or functions or

another interface type called a property.

Some naming conventions used by Borland, which have been adhered to, are that class
type names are prefixed with the letter T. Private field names are prefixed with the

letter F.

3.4 Object hierarchy

The following object classes were defined for the simulator:

TForm
This class is actually defined by the Delphi environment. It contains the properties and
methods and other classes associated with the graphical window in which the simulator

1s displayed within the operating system environment.

TAgentManager
This is the notional ‘world’ within which the agents reside. It contains those properties
and methods which are associated with maintaining the lists of agents, sequencing their

execution etc.

TAgent

This is the agent class itself. According to the object-oriented technique of
polymorphism, the behaviour methods may be overridden to create different types of
derived agent classes. These derived agent classes represent agents with different
behaviours. Polymorphism has been used to implement the different agent types whilst

maintaining a standard message interface to other objects.

TRoamingAgent
The Roaming agent.

This class is inherited from the TAgent class.

Page 26 of 106

* TBeaconAgent
The Beacon agent.

This class is inherited from the TAgent class.

* TMappingAgent
The Mapping agent.

This class is inherited from the TAgent class.

* Tvector
This is a math module implementing a vector Abstract Data Type for generalised use

by the behaviour methods.

TAgent

Abstract base class

TRoamingAgent TBeaconAgent

TMappingAgent

Reference Agents

Figure 4. Agent object class hierarchy

Page 27 of 106

3.5 TAgentManager class description

The TAgentManager class defines a manager object which is responsible for maintaining
and controlling all agent objects in the simulation. There is only one instance of

TAgentManager instanciated in the Unitl unit, called agents.

3.5.1 Fields

Fgeneration This field holds the iteration value of the simulation. It’s value is displayed
on the main window on the status bar. It is accessed by the generation

accessor property.

agentList This field is a list of pointers to the agent objects. Agent objects are
accessed by dereferencing a list item pointer. It uses the Delphi-provided

Tlist class, which provides methods to control the list.

bmList This field is another list of pointers to the agent objects. However, this list
only contains pointers to Reference agent objects. ie. Beacon or Mapping

agent objects.

rList This field is another list of pointers to the agent objects. However, this list

only contains pointers to Roaming agent objects.

3.5.2 Methods

draw This method invokes the draw methods of all agent objects being managed.

That is all agent objects contained by the agentList.

sequenceAgents This method invokes the execute methods of all agent objects being
managed in a random order. It is repeatedly called by the main application

process.

txSignal This method is invoked by agent objects wishing to communicate using a

simple defined protocol described in the TMappingAgent class description.

getRData This method extracts the position and local terrain feature datum measured
by a Roaming agent and returns them to the caller, which is always the
Mapping agent. Note that the position vector is returned directly so the
simulated Mapping agent does not carry out a resection analysis to compute
the position. To modify the simulator so that a resection analysis is done, a
similar method would have to be added which returned the angle data from

the Roaming agent.

Page 28 of 106

getRQuantity, getBMPos, getBMId and getBMQuantity
These methods are all services invoked by agent objects to determine
respectively the number of Roaming agents, the position of an indexed
Reference agent, the Id field of Reference agents and the number of
Reference agents.
An attempt to make the code independent of the number of Reference
agents has been made in this unit, although the individual agents’ behaviour
code 1s very dependent on there being two Beacon agents and one Mapping

agent.

3.6 TAgent class description

The TAgent class is an abstract base class - object instances can only be created from its

derived classes. It provide fields and methods inherited by all derived classes.

Its most important method is execute. This method is invoked on each agent instance by
the agents object, which is defined in the AgentManager unit, in order to execute the agent.
TRoaming and TBeacon agent classes are directly descended from the TAgent class. The
TMapping agent class is descended from the TBeacon agent class. The agent objects are
instances of a polymorphically defined hierarchy. Because of this polymorphism, the agents

may be executed, signalled and drawn by calling the one method name.

3.6.1 Fields

Fid This field holds a unique identifier which is allocated when the agent object

1s first created.

FlastPos, Pos, Direction
These fields contain vectors of the agent’s position and direction
information. This data is never directly accessed by the agent itself, except
to generate other data which the agent would have direct access to, since in
reality agents do not know this information. However, it makes sense to

store these fields with the objects to which they apply.

Fstate This is a state variable used by the behaviour finite state machine.

3.6.2 Methods

behave This method implements the behaviour code as a general finite state

machine. This is a virtual method. This means that there is no code

Page 29 of 106

associated with its implementation in the TAgent abstract base class. Only

derived classes provide code for this method.

move This method updates the position information, conceptually moving the

agent in its forward direction by one distance unit.

execute This is the main method interface to the agent. It is invoked by the agents

TAgentManager object on each agent object. This is a virtual method.

draw This method is invoked to get the agent object to draw itself into the

defined window pane. This is a virtual method.

3.7 TRoamingAgent class description

The TRoaming agent class is descended from the TAgent class. Thus, it encapsulates all

fields and methods of the TAgent class.

The execute, behave and draw methods are overridden and versions specific to this class
type are provided. When the agents management object calls the execute method, the

Roaming agent object just invokes its behave method and returns when complete.

3.7.1 Fields

Fangles This 1s a TList object, which is a Delphi-provided class. It is used to contain
a list of angles from the point of view of the agent to the Reference agent
positions. That is, it represents the sensor data which would be provided by

an angle sensor.

3.7.2 Methods

senseBeacons This method is called by the agent’s own behave method to generate the

Fangles data.

behave This method provides the behaviour code as a general finite state machine.
execute This method simply calls the behave method for a TRoamingAgent agent.
draw This method is called to instruct the agent to draw itself.

3.7.3 Roaming Agent Behaviours

The behave method implements the Roaming agent behaviours.

The only behaviours implemented by the Roaming Agents are safe-wandering and homing,

to confine the agents to the area inside the convex hull formed by the Beacon and Mapping

Page 30 of 106

agent positions. The behaviour of the agent has been designed so that the safe-wandering
and homing behaviours are never executed simultaneously. The safe-wandering behaviour

simply moves the agent forward and turns it by a small, random amount.

The homing behaviour directs the agent toward the average measured angle of the three
Reference agent positions. This is determined by generating and summing three unit

direction vectors, which have the same angles as the measured sensor angle data.

state 1:

Safe Wandering:

move forward by d forward

turn randomly

if (angle between 2 subsequent ordered angles > 180deg) then
state 2

state 2:
Homing:
move forward by d forward
if (angle between all sets of 2 subsequent ordered angles < 180deg) then
state 1
turn to face the direction of the sum of unit direction vectors to all reference agents

Algorithm 1. Roaming agent behaviour algorithm finite state machine.

3.7.4 Roaming Agent Behaviour Selection

Behaviour selection is based on the angles which would be measured directly by a
physically embodied agent. It is possible for the Roaming agent to determine whether it is
inside or outside the convex hull formed by the Reference agent positions, based purely on
angle measurements. If the angles to the Reference agents are ordered, a difference
between subsequent angles of greater than 180° indicates to the agent that it inside the
defined survey region. The result of this inside/outside measurement is used for behaviour

selection.

Page 31 of 106

a,f & y < 180° so state 1

0 > 180°, so state 2

Figure 5. Roaming agent behaviour selection.

Safe-wandering is executed inside the region and homing is executed outside the region.

3.8 TBeaconAgent class description

The TBeacon agent class is descended from the TAgent class. Thus, it encapsulates all

fields and methods of the TAgent class.

3.8.1 Fields

Fangles This 1s a TList object, which is a Delphi-provided class. It is used to contain
a list of angles from the point of view of the agent to the Reference agent
positions. That is, it represents the sensor data which would be provided by

an angle sensor.

Fdistances This is another TList object. It is used to contain a list of distances from the
point of view of the agent to the Reference agent positions. That is, it
represents the sensor data which would be provided by a laser rangefinder

sensor.
FsignalMove This is a flag which is set when the agent receives a SIG_MOVE signal.

FgoallReached, Fgoal2Reached
These fields hold state information. They are used by the homing behaviour

code to determine when the agent has reached its goal

Page 32 of 106

3.8.2 Methods

senseBeacons This method is called by the agent’s own behave method to generate the

Fangles and Fdistances data.

behave, execute, draw
Although the code is unique to the TBeacon agent, the descriptions for

these methods are the same as for the TRoaming agent.

signal This method implements the signal receiver of the TBeacon agent’s

communication transceiver.

3.8.3 Beacon Agent Behaviours and Behaviour Selection

The Beacon agents implement two basic behaviours. The new basic behaviour, here called
waiting, describes the act by the Beacon when it is sitting doing nothing. The other Beacon
agent behaviour is homing, to move the agent to its new reference position when the

Mapping agent signals it.

The homing behaviour has itself been implemented as a composite behaviour, as its
realisation requires the temporal combination of several simpler behaviours, each using

different sensors, by use of a finite state machine.

The Beacon agent sits in the waiting state until it receives a SIG_MOVE signal from the

Mapping agent.

It then switches to the composite homing behaviour shown in Figure 6 and attempts to
establish its new reference position by orienting itself so that it is pointing between the
other two Reference agents. It is then positioned to move to the new goal. By moving
forward whilst keeping the angles measured to each of the other Reference agents equal on
both sides, the Beacon agent intersects the line between the other Reference agents and
moves to the other side of this line. Given that the agent is keeping the angles on both
sides approximately equal, when the angle exceeds 150°, the agent should be near to its
goal. Theoretically, if the agent traced a perfectly straight path from a point starting at
exactly equal distances from the other reference agents, this would land it right on the goal.
As this will never occur in reality, the homing behaviour now uses distance information
from the more accurate ranging data to place itself at exactly equal distances from the other
reference agents. This is done by alternately ranging to each of the other two Reference
agents in turn and moving to establish a defined distance from each. In this way, the agent

homes in on its ultimate goal position.

Finally, when the goal is reached, a signal is sent to the Mapping agent to notify it.

Page 33 of 106

|
|
d ” !
P |
PR © | ANl |
- \NC T~
- &]
_
|
-7 b A
N | P
~ be
N I
~ -
5>
R o

The Beacon agent (B1)
is facing in direction d.
Vectors a & b point at
Reference agents R2 &
R3 respectively.

B1 receives a signal to
move to a new position
and so turns toward the
vectorc =a + b.

B1 orients itself to
point between a & b.

B1 moves, attempting
to keep the angles
aAd&bAdequal

B1 reaches a point
where bA.d>150° and
switches to homing by
use of distance
measurement.

B1 measures its
distance to R2, |e]| to
be #r, the goal
distance.

B1 moves along
direction e until it
reaches the goal
distance, r. It then
switches to measuring
its distance to R3.

|f| is found to be #r,
the goal distance.

After alternating
measurements to R2
and R3 and moving, it
reaches the goal
position and returns to
waiting.

Figure 6. Beacon agent composite homing behaviour implementation

Page 34 of 106

State 1:
Waiting:
sit and wait for signal from TMappingAgent to move
if SIG MOVE signal received then
FsignalMove := FALSE
state 2

State 2:

Homing 1:

move forward by d forward

form 2 unit vectors pointing at other reference agents

sum the 2 vectors and turn to point that direction

if our direction vector is pointing between the 2 vectors then
state 3

State 3:
Homing 2:
move forward by d_forward
turn to keep the angles to the other reference agents equal in magnitude
if the magnitude of one of the angles exceeds 150 degrees then
FgoaliReached := FALSE
Fgoal2Reached := FALSE
state 4

State 4:
Homing 3:
move forward by d_forward
if distance to reference agent A is within goal distance range then
if Fgoal2Reached then
state 6
else
FgoaliReached := TRUE
state 5
else
Fgoal2Reached := FALSE
turn toward goal distance

State 5:
Homing 4:
move forward by d forward
if distance to reference agent B is within goal distance range then
if FgoaliReached then
Fstate 6
else
Fgoal2Reached := TRUE
Fstate 4
else
FgoaliReached := FALSE
turn toward goal distance

State 6:

Send message:
send SIG_AT_GOAL
Fstate 1

Algorithm 2. Beacon agent behaviour algorithm finite state machine.

3.9 TMappingAgent class description

The TMapping agent class is descended from the TAgent class. Thus, it encapsulates all

fields and methods of the TAgent class.

3.9.1 Fields

Fmap This is an object of type TMap. The TMap object contains an array of
feature data values in the range 0 to 255, corresponding to a grey-scale

level. It provides methods to add and retrieve data points and clear the map.

Page 35 of 106

FcentroidX, FcentroidY
These fields hold the coordinates of the centroid of the current survey area.
This is necessary to establish the sample region which is used to determine

the survey ratio or region coverage.

FOmapX, FOmapY
These fields hold the coordinates in the World coordinate system

corresponding to the zero coordinates of the internal map object.

FreferenceStopped
This is a flag which is used to indicate whether map data should be
collected. It is TRUE when all reference agents are stationary and FALSE

otherwise.

FmapState This field contains the state variable for the mapping controller finite state

machine.

FnextRefAgent
This field contains a reference index to the next Reference agent to be

signalled to move

3.9.2 Methods

execute, draw, signal

Although the code is unique to the TMapping agent, the descriptions for

these methods are the same as for the TBeacon agent.

getMapRatio This method is provided to gain access to the current survey ratio or region

coverage value of the sample region defined by the Fcentroid fields.

3.9.3 Reference agent control communication protocol

To control the movement of the Reference agents by the Mapping Agent, a simple protocol
was devised. It contains two messages, SIG_MOVE and SIG_AT_GOAL. The
AgentManager unit defines these messages and the TAgentManager class provides a

method to control communication between agents.

When the Mapping agent wishes to signal a Roaming agent that is time to take up a new
position, it sends a SIG_MOVE message with a parameter containing a Reference agent
index value. It then stops collecting terrain feature data. The TAgentManager object sends
the message on to the corresponding agent. Note that the indexed agent may be itself. This

signals the Reference agent to move.

Page 36 of 106

When the Reference agent reaches its destination, it sends a SIG_AT_GOAL message. The
TAgentManager object sends the message on to the Mapping agent. When the Mapping

agent receives the message, it resumes the collection of terrain feature data.

3.9.4 Mapping Agent Behaviours and Behaviour Selection

The TMapping agent class, being derived from the TBeacon agent class, encapsulates its
behave method. In other words, since Beacon and Mapping agents are both types of

Reference agents they behave identically.

3.9.5 Mapping Agent Mapping algorithm

The Mapping agent builds and maintains the terrain map and based on its internal state,
controls movement of the Reference agents through the signalling protocol. The algorithm
which controls all these functions is implemented as a simple finite state machine as part of

the execute method, before the Mapping agent’s behave method is called.

In addition, the mapping controller controls alignment of the finite internal map with the
conceptually infinite terrain. It does this by calculating the centroid of the Reference
agents’ positions and aligning this with the centre of the internal map. Thus the internal
map must always be large enough to completely cover the area of a circle passing through

all three Reference agent positions.

-
-
] 2 |
~ 7
o ! |
—_ I
N
-7 NN\ < I
g I SN -
// / \\ //
|
P ! P
~ | N
~ \ - II N
~
) // /I
_ -
7hd S
| ~ J
~
- | ~ |
~

Figure 7. Internal map overlaying region being surveyed.

The Mapping agent signals the Reference agents when it determines that the current
mapping ratio or region coverage value exceeds a threshold. To compute this value, a 10 X
10 region in the centre of the internal map is sampled. The value returns a ratio of the

number of array elements in this region which have been written to since the map was last

Page 37 of 106

cleared. For example, if 50 of the array elements in the 10 X 10 region have been written

to, the value is 0.5. The TMap class provides a method to do this calculation.

When the Mapping agent overlays the internal map with the area being surveyed, this 10 X
10 region overlays the centroid of the Reference agent positions. Provided that the
Roaming agent behaviour provides symmetric (not necessarily uniform) coverage of the

region being mapped, this central region will be representative of the total region coverage.

FmapState 1:

no mapping is done in this state

if SIG_AT_GOAL signal is received then
set up new map centroid coordinates
set new O map coordinates to correspond with the current region being surveyed
FmapState 2

FmapState 2:
add feature data from each roaming agent to the map
if current area has been adequately surveyed (mapRatio > threshold) then
copy internal map to main map image
clear the internal map ready for the next survey area
send a SIG_MOVE message to the next reference agent
update next reference agent index
FmapState 1

Algorithm 3. Mapping agent mapping algorithm finite state machine.

Page 38 of 106

3.10 User Interface
s Form1 - (O] x]

File Edit Bun Help

|]<]||]D|D|O|

Agent positions I Animate [Controls

« All Paths

 Path of Id I[] 3:

—Parameters
Map Threshold

0.8 {0.0-1.0)

® Side Length

|55 3: (10-100)

Internal Map ¥ Show

oo

Paths - Map ' Show

Map Ratio 0.21

Ilteration 3088

Figure 8. Simulator user interface window

The simulator has a standard window, icon, mouse, pop-up/pull-down menu (WIMP) based

user interface.

The simulation environment is divided into 5 panes, a Controls group and a Parameters

group. There is a control bar along the top and a status bar along the bottom.

The top left pane contains the terrain data. The raw terrain map data is provided by a
square greyscale bitmap file, which can be created by any graphical paint package. This
terrain map may be loaded from an external file using the mouse. The map shown is

preloaded.

The top right pane shows the agent positions.

Page 39 of 106

The bottom left pane shows the agent paths. The All Paths and Path of Id RadioButtons in
the Controls group control what is displayed in the Paths pane. The default selection All
Paths will cause the paths of all Roaming agents to be displayed modulated by the terrain
map pixel value. If Path of Id is selected, the agent with the Id determined by the edit box
will be displayed.

The bottom right Map pane shows the map data which has been accumulated by the
mapping agent. Data from the internal map which is displayed in the Internal Map pane is

copied to the Map pane when the survey of the current region has been completed.

The Parameters group contains the Map Threshold and Side Length settings. The Map
Threshold setting controls when the Mapping agent signals reference agents to take up new
positions in the terrain. A coverage value of 0.4 requires that 40% of the pixels covering the
region of the internal map represented by the lime green square in the Internal Map pane
have been traversed by a Roaming agent. The Map Ratio value below the Internal Map pane
shows the current coverage value and the progress bar below it reaches full when the

coverage matches the threshold.

The Side Length setting determines the length of the side of the equilateral triangles which
are used to tessellate the survey area. That is, the distance a Reference agent uses to
establish its position in the terrain relative to other Reference agents. Note that setting this
to less than half the value of the current distance between two reference agents when the

third moves will mean that the third agent can never establish a reference position.

The buttons on the control bar along the top control the simulation execution. With these,

the simulation may be reset, single-stepped, run or stopped.

The status bar along the bottom displays the current simulation iteration value.

3.11 Modelling Simplifications

Amongst the many simplifications made by the simulator, the following are of particular

note:
* Agents are point-like and are hence not subject to collisions.

* Agents are point-like and are hence not subject to obscuration. ie. the beacons and

Mapping agents are always visible.

* There are no other obscuring features in the landscape being studied. Any differences
in altitude between agents are accounted for by the optical sensing system. Assuming
that the agents can always travel along the path desired, or if not, that the behaviour

could be modified to ensure agents do not become stuck.

Page 40 of 106

Angle data sensed by Roaming agents is only used locally to implement selection
between the safe-wandering and homing behaviours. It is not transmitted to the
Mapping agent for it to use to determine the position of the Roaming agent using
resection. Thus, no association of the Mapping Agent/Beacon is made with its sensed
angle data. In reality, for the Mapping Agent to be able to calculate the Roaming agent’s
position, this association must be made, so that angles are associated with the correct

beacons.

Page 41 of 106

4 Simulator Results

4.1 Illustration of agent dynamics

To illustrate some aspects of the simulator, the following extracts showing agent dynamics
are included. The sequence proceeds from left to right across the page and shows a robot

survey team with a survey area side length of 100.

® ® ®
Ferree) -0
GI%IIJ % g
® -@ e %o
@
G_om e @
-@@ ﬁ%ﬁ
@ 3@
= 2!
®
®
©
@ ®
@ ®
® e
@ e
®

Figure 9. Agent motion series.

If the frames are numbered in sequence from 1 to 7, frame 1 shows the initial positions of
all members of the robot survey team. The three agents in triangular configuration are the

Reference agents. The two leftmost of these are the Beacon agents. The agent on the

Page 42 of 106

bottom right is the Mapping agent. The ten remaining agents in military configuration are

the Roaming agents.

Frame 2 shows the team just after the simulation has been started (Iteration 35). Note that

the Roaming agents, which initially started in a tight formation have quickly diverged.

Frame 3 is just after mapping of the first survey region has been completed. The first

Reference agent has been signalled but has not yet moved (Iteration 131).

Frame 4 shows the signalled Reference agent executing its homing behaviour (Iteration
160). The Mapping agent has stopped collecting feature data from the Roaming agents.
Note that most of the Roaming agents, upon finding themselves outside the moving region
defined by the Reference agents, are executing their homing behaviours and are already

moving to the new region.

Frame 5 is the point at which the moving Reference agent has stopped using range data to
establish its distance from the leftmost Beacon agent and has switched to ranging to the

Mapping agent (Iteration 285).

Frame 6 shows the Reference agent in its waiting state, having reached its goal by
alternately ranging to the other Reference agents (Iteration 392). The Reference agent
positions visibly lie at the corners of an isosceles triangle. When it reached the goal, the
agent sent a SIG_AT GOAL signal to the Mapping agent. The Mapping agent then resumed

accumulating data from the Roaming agents.

Frame 7 shows the second Reference agent moving to establish its new position, having

received a signal from the Mapping agent.

4.2 Effect of angle sensor disturbance on the terrain map

Although the code is not included in the simulator, an investigation was done to examine
the effect of errors in position determination by the Roaming agents. To model the errors
expected to be present in the angle data tuples returned by a real robot, a small amount of
random noise was simulated. The following figures illustrate the effects of adding different
amounts of noise. This was done by modifying the TAgentManager getRData method,
which normally returns the actual position vector of a Roaming agent, to randomly perturb
the vector. This was intended to include the effects due to limited resolution of the angle
measuring sensor. The map building technique averages multiple feature data values which
coincide spatially in the internal map. To obtain the following terrain maps, a map ratio of

0.98 was entered. The area side length value was 55.

Page 43 of 106

Figure 10. Terrain data used to illustrate the effect of position errors.

Figure 11. Blurring of the internal map with a position error range of 4.0

Figure 12. The path followed by a Roaming agent in forming the terrain map.

Page 44 of 106

Figure 12 illustrates the path followed by a single Roaming agent in the normal execution of

1ts behaviour set.

Figure 13. Blurring of the internal map with a position error range of 2.0

Figure 14. Blurring of the internal map with a position error range of 10.0

Although the images may not reproduce well here, it can be seen that the brightness values
of the terrain data map are averaged with the nearby values. The effect is similar to
convolving the terrain data with a two-dimensional low-pass Gaussian filter mask. The
terrain map building technique successfully incorporates the disturbed position data to give
a slightly degraded terrain picture, which maintains the integrity of features at scales above
that of the error component. If the feature map is intended to show the presence or absence
of specific elements of the terrain, instead of provide a continuous value mabp, it is possible
to apply a threshold function to the map data. This has been done in Figure 15 for

illustration purposes. The simulator does not perform this function.

Page 45 of 106

Figure 15. Thresholded internal map with a position error range of 10.0

Page 46 of 106

4.3 Paths taken by agents with different roles

4.3.1 Roaming agent paths

The next series of frames illustrates the motion of a Roaming agent as it collects feature
data.

3 S

Figure 16. Roaming agent path evolution for a survey simulation run

The simulation parameters for this run were; Roaming agents = 10, side length = 70, map
ratio threshold = 0.6.

Page 47 of 106

If the frames are numbered in sequence from 1 to 7, frame 1 shows the path travelled by

the Roaming agent soon after starting.

In frame 2, the survey of the first region has just been completed. In frame 3 the agent has
moved into the new region in response to the Reference agent move. Frame 4 shows the
situation when the survey of the second region has just been completed. The remaining

frames show how the path continued to evolve throughout the simulation run.
To illustrate the effect of varying the side length, the following two simulations were run.

The following figures illustrate the path that a single Roaming agent follows for the two
runs. The initial conditions for each run were identical except for the side length. The
simulation parameters for this run were; Roaming agents = 10, side length = 100 then 55,

map ratio threshold = 0.8.

Figure 17. Roaming agent path with a side length of 100

Some features of the path in Figure 17 are identifiable. A concentration of tight curves
along an axis indicates that this axis marked a region boundary. The density of the path
overlap is reasonably uniform indicating that the composite behaviour which has been
designed for the Roaming agent should lead to uniform coverage of the terrain, given that

there is no agent interaction.

Page 48 of 106

Figure 18. Roaming agent path with a side length of 55

It is notable from Figure 18 that a greater percentage of tight loops exist in the total path.
This is due to the finite turning radius of the Roaming agent. The greater the side length,

the less time is spent executing the homing behaviour as a ratio of total time.

4.3.2 Reference agent paths

Figure 19 shows the paths of the three Reference agents executing a simulation with a

survey area side length of 100.

NN

Figure 19. Reference agent paths with a side length of 100

Page 49 of 106

The first Reference agent to move is the topmost in the environment. It can be seen that it
travels along a relatively straight path until the measured angle to one of the other initial
Reference agent positions is 150°. At this point, it takes a sharp left turn, switching to the
range-based homing behaviour states. It travels in a straight line away from the other one of
the other initial Reference agent positions until it reaches the goal distance. Finally, it
zig-zags along, alternating ranging to the two Reference agents until the goal region is

reached. At this point it stops.

The second Reference agent to move is the leftmost. It can be seen that, since it starts
much closer to one Reference agent than the other, by keeping the angles to each equal, a
curved path if followed, which should be a rough circular arc. This arc is followed by a short,

straight section and then the zig-zagging behaviour of the first agent is repeated.

Now, all three agents are in equilateral-triangular arrangement, so the third Reference
agents homing behaviour proceeds efficiently to place it at its goal with a minimum of

range-hased states needing to be executed.

Figure 20. Reference agent paths with a side length of 55

The initial configuration of the Reference agents in Figure 20 was the same as that in
Figure 19. In this case, since the agent spacing was of the same order as the defined side

length, the Reference agents homing behaviours are efficient from the outset.

4.4 Analysis of simulation result repeatability

The first aspect of the simulation results to be analysed was the repeatability of results of

simulation runs from a given set of starting conditions. The following graph plots three runs

Page 50 of 106

with the same initial configuration, which is the same as that shown in Figure 21. The
simulation parameters for these runs were; Roaming agents = 10, side length = 55, map
ratio threshold = 1.0.

Simulation repeatability

1 [——F& [.

o
o
4

[
o ,
= 06 = expt 1
(14 <% expt 2
o -
® 04 expt3| |
=

0O 100 200 300 400 500 600 700 800 900
Iteration

Figure 21. Repeatability of simulation results.

This chart demonstrates that the various experimental runs were highly repeatable. It is
therefore reasonable to assume that variations in subsequent results are due to the
controlled changes in the parameters in different simulation runs and not due to variation

introduced by the simulator.

4.5 Survey area coverage times with a given team size

A comparison was made of the time taken for the robot survey team to cover survey areas

of different sizes.

The following experiment was performed by allowing at least two Reference agents to
move to new positions, ensuring an equilateral triangular arrangement. All experiments
from now on were also allowed to establish these initial conditions before the experimental
data were collected. The iteration axes were corrected for zero offset by subtracting the

starting iteration value. Note that because of this subtraction, all results shown may suffer

Page 51 of 106

from a slight x-axis offset error. In order to avoid this, an absolute 0 iteration point would
have to be chosen, such as the point at which the first Roaming agent encroaches upon the

mapping ratio sample region.

Coverage of differing survey
areas with fixed survey team size

1 T =3 e p— == o
0.8 . g /-'/@/
| w4 ¥
L) YAy
= 0.6 - -
ﬂé_ -/ ® Side=10
T 0.4 . Side=55 |
= . -+ Side=55
y = Side=75
029 “ Side=100 [
f + Side=100
01 l
0 500 1000 1500 2000 2500 3000

Iteration

Figure 22. Area coverage vs time with 10 agents for varying areas.

A triangular area defined by sides of 100x100x 100 is 10°=100 times bigger than a
10x10x10 area. An area of 100x100x 100 is 2°=4 times bigger than a 50x50%50 one. An
area of 100x100x100 is (100/55)*=3.3 times a 55X 55x 55 area.

Given these factors, it might be expected that the time to survey an area could be found by
multiplication of a standard time by this factor. The results show that this relationship
seems to hold except when the area becomes small. The time taken to survey the
10x10x10 area is greater than would be expected. The reason for this is that the Roaming
agent model implements a minimum turning radius as shown in Figure 18, which means
that, the smaller the area, the greater the percentage of time is spent executing the homing

behaviour, extending the time.

Page 52 of 106

4.6 Fixed area coverage times with a changing team size

The next experiment looked at the coverage versus time, but this time the region size was
fixed and the number of Roaming robots was varied. It was expected that, since the agents
do not interact, the time to achieve a given coverage would be inversely proportional to the

time take by a single agent.

Coverage of survey area side length = 55
with survey team size variation

1

9
wid
ol
e 1
% 0.4 ® 1agent |
= <= 2 agents
4 5 agents
0.2 f < 10 agents | |
0
0 2 4 6 8 10

Iteration (1000's)

Figure 23. Area coverage vs time with variation in team size

The results show that there is a diminishing return in terms of the cost of extra agents
added to the environment versus the improvement in survey time. That is, the addition of
one agent to take the number from one to two gives a substantial improvement, more than
doubling the survey rate. The subsequent addition of another three agents has a lesser

effect on survey time and so on.

The results show that some inverse relationship with survey time seems to exist, although
it does not seem to be in direct proportion. The same data has been plotted on a logarithmic

x-axis, to clarify the relationship. This is done in Figure 24.

Page 53 of 106

Coverage of survey area side length = 55
with survey team size variation

o.;- %AO" .
//)y .

2 /
= 0.6
(1 i
% 0.4 B 1 agent [
= i o N © 2 agents
o s A 5 agents
0.2 © 10 agents ||
i A / /
0 @)
10 100 1000 10000
Iteration

Figure 24. Area coverage vs time with varying team size (log plot).

The graph actually shows that the coverage is not exactly logarithmic over time, each curve
exhibiting a slightly sigmoidal appearance with respect to the fitted curve. If the coverage
was logarithmic and the time to achieve a given coverage was inversely proportional to the
time take by a single agent, the fitted curves should have equal gradients and equally
spaced intercepts. This seems to be approximately true, although more experimental

results are probably required to demonstrate it.

It is expected that this relationship would change significantly if cooperation between

Roaming agents was implemented by addition of the dispersion behaviour.

Results of this experiment repeated with a smaller survey area side length are included in

Figure 25 and Figure 26.

Page 54 of 106

Coverage of survey area side length = 30
with survey team size variation

1
///

s

i~

2

= 0.

©

(14 i

Q.

‘EU 0.4 & 1 agent
© 2 agents
A 5 agents

0.2 1 < 10 agents
0 1 2 3 4

Iteration (1000's)

Figure 25. Area coverage vs time with varying team size. Side = 30

Coverage of survey area side length = 30
with survey team size variation

1
| AL
[|
0.8 < A/ O
- <> /
(]
.ﬁ 0.6
(04 | A
o © Y'm
‘Eu 0.4 E 1agent [
O = O 2 agents
i O A 5 agents
0.2 B <& 10 agents ||
R A%
0 <& @)
1 10 100 1000 10000
Iteration

Figure 26. Coverage vs time varying team size (log plot). Side = 30

Page 55 of 106

5 Further Work

This terrain mapping simulation may be extended to account for real-world conditions in

the following areas:

* Modelling physical extent of agents.

* Obscuration of beacons.

* Addition of error models to sensors and effectors

e Accountability for additional data to reduce sensor error.

It may also be extended to examine improvements in task performance through:

* Addition of dispersion to Roaming agents’ behaviour set.

5.1 Modelling physical extent of agents

Agents were modelled as points. Physical extent was ignored to speed and simplify the
simulation. Including the modelling of extent in the agent model would identify problems

which have thus far been ignored, such as obscuration of agents by each other.

A practical system would, by definition, require support for problems due to extent. This
would involve additional sensors; the simplest being a bump sensor to detect direct contact
with other agents. As discussed below, if an additional dispersion behaviour was included,

requiring extra sensors, it may not be necessary to detect direct contact.

5.2 Obscuration of beacons

In the real world, beacons may be obscured for several reasons. These include
* Blind spots endemic to the sensor.

* Obscuration by obstacles in the environment, including other agents with physical

extent.
e Obscuration by the environment itself.
e Distance limits of the sensor.

To account for obscuration by the environment itself, the Beacon agents could supplement
their behaviour, say by searching for local terrain altitude maxima to mimic the action of
surveyors who establish a reference grid by placing reference markers on hills. This would

modify the perfect equilateral triangular regions and cause the terrain strip being surveyed

Page 56 of 106

to diverge from a straight path. However, the Mapping agent could keep track of this

divergence and correct for it by modifying its goal position during its own movement phase.

Increasing the number of Beacon agents to minimise obscuration would have the added
benefit of providing redundancy. It is likely that any practical system would require support

for additional Beacons.

Clearly, moving Beacons must always ensure that the Mapping beacon remains visible from
their final reference-establishing position. In some cases, say in the case where a Beacon
robot must travel through a valley to reach its new position, it may be possible that the
Mapping robot cannot be kept in sight during the traverse to the new position. Special

algorithms to support this could be developed.

Obscuration of beacons from Roaming agent positions results in incomplete angle tuples.
Where redundant beacons exist in the system, an obscured Beacon will cause an angle
tuple to Beacon matching problem. That is, some algorithm must be devised by the
Mapping agent to try to match reduced sets of angle data with the anonymous beacons. One
solution here is to remove the anonymity by increasing the Roaming agents’ sensor
complexity so that angle data is associated with an identified Beacon. This would account

for the converse problem of detection of phantom Beacons.

5.3 Addition of error models to sensors and effectors

Real-world embodied agents or robots suffer from noise and resolution limitations in sensor
data. This can manifest as small perturbations in the data or as gross errors resulting in
spurious values. Although the behaviours were designed to account for small random
errors, they may need extension to account for spurious data. Errors in the received signal
messages can effectively be ignored if the communications system is built on an
error-detecting or correcting protocol. However, errors from detection of extra Beacons or

obscuration cannot be ignored.

The effectors, in our case drive mechanisms, will interact with the environment through
slippage. This may become important if localised cooperative behaviours are added. For
example, to develop robust collision avoidance algorithms may rely on inertia and slippage

being modelled.

5.4 Accountability for additional data to reduce sensor error.

Increasing the number of Beacon agents to minimise obscuration also permits the extra
data sent by the Roaming agents to be used to reduce errors. Although the distance

measuring Sensors are very accurate, the coordinate system can drift as tiny errors

Page 57 of 106

accumulate in the sensor readings. In a practical system, which surveys a more generalised
area than a single strip of terrain, it would be possible leave a Beacon agent at one position
while the rest of the members of the robot team venture out to survey the area. As small
tiles of the larger tessellated area are surveyed, the Mapping agent would bring the team
back within distance measuring range of the still stationary Beacon. At this point,

accumulated errors could be measured.

5.5 Addition of Dispersion to Roaming agents’ behaviour set

Improvements to the efficiency of carrying out the mapping task may be gained by adding

the basic dispersion behaviour.

Dispersion acts as a repulsive force between agents and should improve the time to map out
a given area. As the surveying task currently benefits from multiple agents revisiting the
same point by providing extra data to minimise raw data errors statistically, application of
the dispersion behaviour to this task should be careful not to negate this aspect by careful

selection of the d gispersedistance threshold value.

The reason for not including dispersion as part of the initial investigation was mainly that
time constraints limited the scope of the study. Also, additional sensors are required to
support its implementation and these would have to be built into the model. A physical
robot which implements dispersion requires sensory information about the positions of

agents in its immediate vicinity.

The dispersion algorithm could make use stigmergy to improve the efficiency of covering
the region being mapped by marking traversed areas in some way. However, given that the
likely application areas where this approach is aimed include diverse environments,

modification of the local environment may be difficult or inappropriate.

If dispersion is added to the basic behaviour set of Roaming agents, it will have to be
combined directly with the temporally-combined safe-wandering and homing behaviours
currently implemented. This can be done in two ways. Either the direct combination of
safe-wandering and dispersion behaviours can be temporally combined with the homing
behaviour or the temporal combination of safe-wandering and homing behaviours can be

directly combined with the dispersion behaviour.

That is, in graph notation

Page 58 of 106

safe-wandering

current composite behaviour
homing

safe-wandering

dispersion))
new composite behaviour

i | d

homing

safe-wandering .

X

dispersion
alternate composite behaviour

homing

Figure 27. Combination options for composite Roaming behaviours

It is probable that both methods of combination would result in a similar quantitative

behaviour.

An alternative to this might be for the Mapping agent to calculate the dispersion vectors for

all agents and communicate them back to each agent. This places an additional

computational burden on the Mapping agent and requires that a reverse communication

channel be established.

Page 59 of 106

6 Summary

A swarm robotic approach was successfully applied to the task of terrain mapping in a

simulation environment.

To achieve this, the necessary subtasks were identified. These were
* Define the current area to be surveyed

¢ Move the group to the area

e Build a map of the defined area

The behavioural approach to swarm control was applied. In order to simultaneously achieve
the subtasks, a heterogeneous robot team was assembled. Three types of member agents
carried out different aspects of the task. The agent types were Roaming, Beacon and
Mapping robots. These performed the following tasks. The Roaming agents performed
retrieval of feature data from the terrain. The Beacon agents, along with the Mapping
agent, established a coordinate reference system for the task. They also allowed relative
position information to be sensed by Roaming agents for association with sensed terrain
feature data. The Mapping agent assembled the data passed back to it by the Roaming

agents into a coherent terrain map.

Coordination of the team members was achieved through the assignment of appropriate
behaviours to different agent types. High level management and coordination of the robot
team was assigned to the Mapping agent, as it collated the information on which

management decisions could be based.

The object models which simulated the agents were described in detail. Behaviour

algorithms for each agent type were described.
Finally, the ability of the team to achieve its designed task was assessed.

The cost of adding extra Roaming agents to the environment was found to have a
diminishing return with respect to the improvement in time taken to survey the area.
However, the extra data redundancy afforded by these agents and its incorporation into the

final terrain map may justify their addition.

There are many areas in which further work could enhance the surveying approach. The
inclusion of short-range sensing by Roaming agents would allow the basic dispersion
behaviour to be added to its behaviour set. This is expected to lead to an improvement in

survey time.

Page 60 of 106

The incorporation of physical extent to the agent model would allow a number of
Interesting aspects to be investigated. Sources of real-world errors such as obscuration of
beacons by agents could then be included in the simulation. Additionally, obscuration of
Reference agents by features in the terrain could be included in this. The associated
problem of navigation around obstacles inhabiting the survey region could also be

investigated.

Page 61 of 106

Appendices

Appendix 1. Resection

The angles measured from a survey site to a set of at least three targets of known position
may be used to determine one’s own position. This technique is known as resection

[BaRa84]. There are two methods, the direct method and Tienstra’s method.

Direct method

Figure 28. Labelling of vertices and angles for the direct method.

Given a labelling of the vertices and angles of a surveyor at point P, with known measured
values for the coordinates A, B and C and angles a and f,resection analysis by the direct

method proceeds as follows:

By the sine rule,

_BP _ 4B = BP:ABM

sinf; sina sina
and
BP _ BC _ pSint,
sinf, _ sinf BP=BC sin 8
Hence
sin 0, sin 6,
AB Sing SR T (6)

Page 62 of 106

Also,

01402 =360% = =GB+ @)

Since a and f are known from measurement and AB, BC and ¢ may be calculated from the
coordinates of 4, B and C, we are left with two equations in the two unknowns ¢;and 6.

After solving for f1and 6,, all remaining angles and lengths may be deduced.

Tienstra’s method

Figure 29. Angle and vertex labelling for Tienstra’s method.
A much simpler resection method is attributed to Tienstra. The labelling above and the fact
that all angles are measured in a clockwise direction are important to this method.

P(EpNp) may be found given the coordinates of A(E4N4), B(EgNp) and C(EgN¢) and the

measured angles g, ff and .
First the three factors K;, K» and K; are calculated from:
Ki(cota — cotp) =1

K>(coth — coty) =1
Ks(cotc — cota) =1

Calculation of @, b and ¢ involves some trigonometric calculation.

Then the coordinates of P are calculated using:

_ KiE4 + KhER + K3E¢

Er="K +K +K
N, = KiN4s + KhNp + K3Ne
L K, + K, + K;

Page 63 of 106

Appendix 2. Simulator Listings

Listing

{

Terrain Map
Agent File

File:
Author:
Date:
Description

}
unit Agent;

{**********

interface

uses
Vector, M

const
AGENT_RAD
AGENT_DIA
{ Limits
Referen
homing
Keeping
will la
TURN_LIMI
REFERENCE

type
TAgent =
private
Fid: In
FlastPo
Fstate:
Fsender

procedu
public

// Move

Pos: TV

Directi

constru
destruc
procedu

procedu

procedu

procedu

functio

propert
end;

Agent.pas

ping Simulator

agent.pas
Gary Ruben
Aug 1998

: This unit implements all Agent classes (object definitions).
The base abstract class is called the Agent class.
Its most important method is "execute". This method is invoked
on each agent instance by the agents object, which is defined
in the AgentManager unit, in order to execute the agent.

Roaming and Beacon agent classes are directly descended from the
Agent class. The Mapping agent class is descended from the
Beacon agent class.

The agent objects are instances of a polymorphically defined
heirarchy. Because of this polymorphism, the agents may be
executed, signalled and drawn by calling the one method name.

A fuller description of the heirarchy and methods may be found
in the thesis.

**}

ap, Graphics, SysUtils, DebugUnit, Classes, Dialogs, AgentManager;

= 4;

M = AGENT RAD + AGENT RAD;

in degrees Roaming agents may turn in each time step.

ce agents are not limited in their turning radius to aid their
behaviours and allow them to accurately land at their goal.

the side just > 1.0 means a reference agent seeking a new goal

nd in the goal since its velocity is 1.0 }

T = 10;

_GOAL_SIZE = 0.6; // half side length of reference agent goal region
class

teger; // A place for the Agents' Identification

s: TVector; // Last Position vector used by drawing routine
Integer; /] State variable

1 TAgentManager; // Used to store reference to the Sending object
// which will always be the agents object
re behave; virtual; abstract; // How the Agent type behaves.

the following fields to the private section later
ector; // Current Position vector
on: TVector; // Unit direction vector

ctor Create; virtual;

tor Destroy; override;

re move; // Moves the agent from its current position
// according to the direction vector

re execute(Sender: TAgentManager); virtual; abstract;
// Called to execute the Agent.

re draw(canvas: TCanvas); virtual; abstract;

re reportDebug; virtual;

n distanceTo(Sender: TAgent): Single;

y id: Integer read Fid write Fid; // Fid accessor property

Page 64 of 106

TBeaconAgent = class(TAgent)
private
Fangles: TList;

{ n-tuple of beacon/mapping agent angles anti-clockwise w.r.t. forward
direction, where n is the number of other beacon and mapping agents. ie.
all except for ourselves. A TList is a linked list object defined in
Delphi's Classes unit. It can contain any type of object since it uses
generic pointers to refer to objects in the list. In our case, we place
simple variables of type Single in the list in order to make use of the
list's Sort method and dynamic Add and Remove methods.

The elements of our TList are referred to by the expression
Single(Fangles.Items[m]"~), where m is 0..n-1 }
Fdistances: TList;

{ n-tuple of beacon/mapping agent distances, where n is the number of

other beacon and mapping agents. ie. all except for ourselves.
A TList is a linked list object defined in
Delphi's Classes unit. It can contain any type of object since it uses
generic pointers to refer to objects in the list. In our case, we place
simple variables of type Single in the list in order to make use of the
list's Sort method and dynamic Add and Remove methods.
The elements of our TList are referred to by the expression
Single(Fdistances.Items[m]"), where m is O0..n-1 }

FsignalMove: Boolean;

{ this flag is set when the signal method is called with the correct
signal type by the TMappingAgent to inform
the Beacon Agent that it is time to take up a new position }

FgoaliReached, Fgoal2Reached: Boolean;

{ these fields are used by the homing behaviour code to determine
when the agent has reached its goal }

procedure senseBeacons;

{ Procedure to sense angles w.r.t. forward direction. ie. this procedure
updates the Fangles tuple with the current sensor data }

public
constructor Create; override;
destructor Destroy; override;
procedure execute(Sender: TAgentManager); override;
// Called to execute the Agent.
procedure behave; override; // How the Agent behaves.
procedure signal(msg: sigType); dynamic; // called to signal to this agent
procedure draw(canvas: TCanvas); override;
end;

TMappingAgent = class(TBeaconAgent)

private
Fmap: TMap; // Map of current survey area
FcentroidX, FcentroidY: Single; // Centroid of current survey area
FOmapX, FOmapY: Single; // 0 coords of current survey area
FreferenceStopped: Boolean;
FmapState: Integer; // State variable

FnextRefAgent: Integer;
// Refers to next reference agent to signal via a signalMove message
procedure updateCentroid;
public
constructor Create; override;
destructor Destroy; override;
procedure execute(Sender: TAgentManager); override;
procedure draw(canvas: TCanvas); override;
procedure signal(msg: sigType); override; // called to signal to this agent
function getMapRatio: Single;
end;

Page 65 of 106

TRoamingAgent = class(TAgent)
private
Fangles: TList;

{ n-tuple of beacon/mapping agent angles anti-clockwise w.r.t. forward
direction, where n is the number of beacon and mapping agents. A TList
is a linked list object defined in Delphi's Classes unit. It can
contain any type of object since it uses generic pointers to refer to
objects in the list. In our case, we place simple variables of type
Single in the list in order to make use of the list's Sort method and
dynamic Add and Remove methods.

The elements of our TList are referred to by the expression
Single(Fangles.Items[m]"~), where m is 0..n-1 }
procedure senseBeacons;
{ Procedure to sense angles w.r.t. forward direction. ie. this procedure
updates the Fangles tuple with the current sensor data }
public
constructor Create; override;
destructor Destroy; override;
procedure execute(Sender: TAgentManager); override;

// Called to execute the Agent.
procedure behave; override; // How the Agent behaves.
procedure draw(canvas: TCanvas); override;
procedure reportDebug; override;

end;

TanglePtr = ~Single;
TdistPtr = "~Single;

**}

implementation

uses
Unit1;

const
D_AVOID = AGENT DIAM + 5;
D _FOLLOW = AGENT DIAM + 15;
PI = 3.14159265359;
DELTA_THETA = PI/4;
DELTA PHI = PI/8;
VELOCITY = 1;
D_FORWARD = VELOCITY;

var
idval: Integer = 0; // This class variable assigns id's to Agents
numAgents: Integer = 0; // The no. of agent objects that currently exist

EE]

* TAgent methods

***}

{***************************************

* Constructor for TAgent
***************************************}
constructor TAgent.Create;
begin

inherited Create;

{ Allocate the vector object fields }

Pos := TVector.Create;
FlastPos := TVector.Create;
Fstate := 1; // initial internal state for all agent types
Direction := TVector.Create;
id := idval;
idval := idval + 1;
numAgents := numAgents + 1;
end;

Page 66 of 106

{***************************************

* Destructor for TAgent
***************************************}

destructor TAgent.Destroy;

begin

{ Free the vector objects }

Pos.Free;

FlastPos.Free;
Direction.Free;

numAgents

if numAgent

idval

s
1= 0;

numAgents - 1;
= 0 then

// reset id's for newly allocated agents

inherited Destroy;

end;

{***************************************

* Debug routine for TAgent

***************************************}

procedure TAgent.reportDebug;

Format('%3d', [Fid]) + ':

Format('%6.2f', [Pos.x]) + '

Format('%6.2f"'
Format ('%6.2f"'

Format('%5.2f"'
Format ('%5.2f"'

var
s: String;
begin
s =
s 1= s +
s s +
s s +
s 1= s +
s s +
s 1= s +

with DebugForm.Imagei.Canvas do

begin

if (Self.Fid and 1) = 1 then
Font.Color := clGray

else

Font.Color := clBlack;
TextOut(1,Self.Fid*14,s);

end;
end;

3

, [Pos.y]) + '

, [FlastPos.x]) +
Format('%6.2f', [FlastPos.y]) +

3

3

//odd

//even

{***************************************
* TAgent.move
* This method moves the agent from its current
* position according to the direction vector

***************************************}

procedure TAgent.move;

var

tempVec: TVector;

begin
try

tempVec

TVector.Create;

tempVec.copy (Pos);
tempVec.add(Direction);
Pos.copy(tempVec);

finally

tempVec.Free;

end;
end;

[Direction.x]) + ' ';
[Direction.y]) + ' ';

Page 67 of 106

{***************************************

* TAgent.distanceTo
* Returns the distance from the sender agent to the current agent
LR R R RS EEEEEEEEEEEEEEEEEEEEEEEEEREEEESE]

function TAgent.distanceTo(sender: TAgent): Single;

var
tempVec: TVector;
begin
try
tempVec := TVector.Create;

tempVec.copy(Self.Pos);
tempVec.sub(sender.Pos);
Result := tempVec.abs;
finally
tempVec.Free;
end;
end;

{***************************************
* sortFunction
* A pointer to this function is passed to the TList Sort method of

* TRoamingAgents to sort the Singles their lists contain.
EEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]

function sortFunction(Itemi, Item2: Pointer): Integer;

begin
if Single(Item1~) > Single(Item2”) then
Result := 1
else if Single(Item1”) = Single(Item2”) then
Result := 0
else
Result := -1;
end;

B R R]

* TBeaconAgent methods
***}

{***************************************

* Constructor for TBeaconAgent
***************************************}
constructor TBeaconAgent.Create;
begin

inherited Create;

Fangles := TList.Create;

Fdistances := TList.Create;
FsignalMove := FALSE;
end;

B R R R R]

* Destructor for TBeaconAgent
***************************************}
destructor TBeaconAgent.Destroy;
var
i: Integer;
tempAngle: TanglePtr;
tempDist: TdistPtr;
begin
while Fangles.Count > 0 do
begin
tempAngle := Fangles.Items[O];
Fangles.Delete(0);
Dispose(tempAngle);
end;

while Fdistances.Count > 0 do
begin
tempDist := Fdistances.Items[O0];
Fdistances.Delete(0);
Dispose(tempDist);
end;

Fangles.Free;

Fdistances.Free;

inherited Destroy;
end;

Page 68 of 106

P R R]

{
* TBeaconAgent.senseBeacons
* Procedure to sense angles w.r.t. forward direction. ie. this procedure
* updates the Fangles tuple with the current sensor data
* This procedure will have to change to incorporate missed data if beacons
* are able to become obscured or sensor errors cause problems. Also sensor
* errors will be introduced here. Also, if >3 beacons are used to reduce
* errors, this will force this procedure to change. Also, in a real system, the
* angle to the mapping agent must be identified in the data transmitted from the
* roaming agent to the mapping agent, so that the roaming agent's poition may
* be calculated. This is not done here as it is not a requirement for the
* simulator to operate, since the position calculation is not done.
* To sense angles, the procedure uses absolute position information. A
* physically embodied TBeaconAgent would not have access to this position data.
* It is used here to generate the angle data which would be directly accessible.
***************************************}
procedure TBeaconAgent.senseBeacons;
var
i: Integer;
tempAngle: TanglePtr;
tempDist: TdistPtr;
tempVector: TVector;
begin
{ First clean up (remove) the old angle list contents }
while Fangles.Count > 0 do
begin
tempAngle := Fangles.Items[O];
Fangles.Delete(0);
Dispose(tempAngle);
end;

{ Next clean up (remove) the old distances list contents }
while Fdistances.Count > 0 do

begin
tempDist := Fdistances.Items[O];
Fdistances.Delete(0);
Dispose(tempDist);
end;
try
begin
tempVector := TVector.Create;

for 1 := 0 to Fsender.getBMQuantity - 1 do
begin
if Fsender.getBMId(i) <> Self.id then
try
{ Create new Singles to hold an angle and a distance respectively }
tempAngle := New(TanglePtr);
tempDist := New(TdistPtr);
{ Fsender contains the AgentManager object; Get the position of the
i'th Beacon or Mapping agent }
tempVector := Fsender.getBMPos(i, tempVector)
{ The vector from our position which points at the i'th agent is
VECTOR := BM_POS_VECTOR - OUR_POS_VECTOR }
tempVector.sub(Self.Pos);
{ Get the angle between our direction and the i'th B or M agent }
tempAngle~ := Direction.signedAngleDeg(tempVector)
{ Add the angle to the list of angles }
Fangles.Add(tempAngle);
{ Get the distance from our position to the i'th B or M agent }
tempDist”~ := tempVector.abs;
{ Add the distance to the list of distances }
Fdistances.Add(tempDist);
except
Dispose(tempAngle);
Dispose(tempDist);
end;
end;
end;
finally
tempVector.Free;
end;
end;

Page 69 of 106

{***************************************

* TBeaconAgent.signal

* This procedure implements the signal interface to the beacon agent
* from the agent manager

***************************************}

procedure TBeaconAgent.signal(msg: sigType);

begin
case msg of
SIG_MOVE: // This is the only meaningful message type for a Beacon
begin
FsignalMove := TRUE;
end;
end;
end;

KAKKKKAKKAKRKAKRKAKRKAKRKARKAR AR AR KAKR AR AR AR AR AR AR KK

{
* TBeaconAgent.behave
* Behaviour method. This procedure selects a behaviour and executes
* it for a TBeaconAgent.
* Behaviour is the assessment of sensor information and selection of the action
to be taken based on it.
***************************************}
procedure TBeaconAgent.behave;
var

angle1, angle2: Single;

dist1, dist2: Single;

tempVector, sumVector: TVector;
begin

case Fstate of

1:

*

{ stationary and waiting for signal from TMappingAgent to move }

begin

if FsignalMove then
begin
FsignalMove := FALSE;
Fstate := 2;
end;

end; {case Fstate = 1}

2:
{ move to bisect the line between the other agents }
begin
{ move forward by d forward }
Self.move;

Self.senseBeacons; // Accumulate data on Beacon/Mapping agent positions

angle1 := Single(Fangles.Items[0]");
angle2 := Single(Fangles.Items[1]");
{ create direction vectors, sum them and move toward that direction }
try
tempVector := TVector.Create;
sumVector := TVector.Create;

sumVector.Copy(Self.Direction);

{ create 1st direction vector }
tempVector.Copy(Self.Direction);
tempVector.rotateDeg(anglel);
sumVector.add(tempVector)

{ create 2nd direction vector }
tempVector.Copy(Self.Direction);
tempVector.rotateDeg(angle2);
sumVector.add(tempVector)

angle1l := Self.Direction.signedAngleDeg(sumVector)
if anglel > 180 then
angle1 := anglel - 360;
finally
tempVector.Free;
sumVector.Free;
end;

{ no need to truncate angles because turning radius of reference agents
is unlimited }
Self.Direction.rotateDeg(anglel); // turn

if abs(angletl) < 10 then
{our direction vector must now be pointing between those pointing at
the 2 beacon agents}
Fstate := 3;

Page 70 of 106

end; {case Fstate = 2}

{ move to new point by keeping the angles to the other agents equal
until the magnitude of one of the angles exceeds 140 degrees}

begin

{ move forward by d forward }

Self.move;

Self.senseBeacons; // Accumulate data on Beacon/Mapping agent positions

{ The angles are unsorted, so make no assumptions about their order.
If anglei is to the left of the forward direction, angle 2 will be to
the right and vice versa }

angle1 := Single(Fangles.Items[0]");

angle2 := Single(Fangles.Items[1]");

{ Turn toward the direction whose angle is larger.

Remember rotateDeg method parameter is in clockwise direction, so

we need to negate the argument. Sum of angles will always be close

to 360degrees. Turn this into a small +ve or -ve angle to rotate by }
Self.Direction.rotateDeg(-(anglei + angle2 - 360) / 2);

if (angle1 > 150) and (angle2 > 150) then
{ agent must be near its goal now. Go to final position seeking states }

begin

FgoaliReached := FALSE;
Fgoal2Reached := FALSE;
Fstate := 4;

end;

end; {case Fstate = 3}

{ agent must be near its goal now. Seek the goal based on distances }
begin

{ move forward by d_forward }

Self.move;

{ Accumulate angle & distance data on Beacon/Mapping agent positions }
Self.senseBeacons;

dist1 := Single(Fdistances.Items[0]");
angle1 := Single(Fangles.Items[0]");

if (dist1 < Formi.side + REFERENCE GOAL SIZE) and
(dist1 > Formi.side - REFERENCE_GOAL_SIZE) then
{ At goal distance, swap to ranging to other beacon }
begin
if Fgoal2Reached then
{ at goal position }
Fstate := 6
else
begin
FgoaliReached := TRUE;
Fstate := 5;
end;
end
else
begin
Fgoal2Reached := FALSE;
if dist1 > Formi.side then
{ we are too far away, so turn toward beacon }
begin
{ convert 'unsigned' to 'signed' angle }
if angle1 > 180 then
angle1 := anglel - 360;
end
else
{ we are too close, so turn away from beacon }
begin
angle1 := anglel - 180;
end;

Self.Direction.rotateDeg(-anglel); // turn
end;
end; {case Fstate = 4}

{ agent must be near its goal now. Seek the goal based on distances }
begin

{ move forward by d forward }

Self.move;

{ Accumulate angle & distance data on Beacon/Mapping agent positions }
Self.senseBeacons;

dist2 := Single(Fdistances.Items[1]");
angle1l := Single(Fangles.Items[1]");

Page 71 of 106

if (dist2 < Formi.side + REFERENCE_GOAL_SIZE) and

(dist2 > Formi.side - REFERENCE_GOAL_SIZE) then
{ At goal distance, swap to ranging to other beacon }
begin
if FgoaliReached then

{ at goal position }

Fstate := 6
else

begin

Fgoal2Reached := TRUE;

Fstate := 4;

end;
end

else

begin
FgoaliReached := FALSE;
if dist2 > Formi.side then

{ we are too far away, so turn toward beacon }

begin

{ convert 'unsigned' to 'signed' angle }

if angleil > 180 then

angle1 := anglel - 360;

end
else

{ we are too close, so turn away from beacon }

begin

angle1 := anglel - 180;

end;

Self.Direction.rotateDeg(-anglel); // turn
end;
end; {case Fstate = 5}

6:
{ this is a transient state which sends the message that the agent
has reached its goal }

begin
Fsender.txSignal(SIG_AT_GOAL, 0);
Fstate := 1;

end; {case Fstate = 6}
end; {case Fstate}
end;

{***************************************

* TBeaconAgent.execute
* This method performs all actions required to execute the agent in question
LR EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
procedure TBeaconAgent.execute(Sender: TAgentManager);
begin
Fsender := Sender;

{ Calculate update-position vector. This is where the action happens.
ie. the Behaviour is executed. }
Self.behave;
end;

Page 72 of 106

{***************************************

* TBeaconAgent.draw
* draw method for TBeaconAgent
LR R R RS EEEEEEEEEEEEEEEEEEEEEEEEEREEEESE]

procedure TBeaconAgent.draw(canvas: TCanvas);

begin
if Formi.Animate.Checked then
begin
{ Erase old }
canvas.Brush.Color := clWhite;
canvas.Pen.Color := clWhite;

canvas.Ellipse(Trunc(Self.FlastPos.x-AGENT_RAD),
Trunc(Self.FlastPos.y-AGENT RAD),
Trunc(Self.FlastPos.x+AGENT_RAD),
Trunc(Self.FlastPos.y+AGENT_RAD));

Self.FlastPos.copy(Self.Pos); // Update Last Position to current position

{ Draw new }

canvas.Brush.Color := clRed;
canvas.Pen.Color := clBlack;
canvas.Ellipse(Trunc(Self.Pos.x-AGENT_RAD),

Trunc(Self.Pos.y-AGENT RAD),

Trunc (Self.Pos.x+AGENT_RAD),

Trunc (Self.Pos.y+AGENT_RAD));
canvas.MoveTo(Trunc(Self.Pos.x), Trunc(Self.Pos.y));
canvas.LineTo(Trunc(Self.Pos.x+(Self.Direction.x* (AGENT_RAD-0.5))),

Trunc(Self.Pos.y+(Self.Direction.y*(AGENT_RAD-0.5))));
end;

{ show our path if specifed }
if Formi.rbiPath.Checked and (Id = Formi1.SpinEdit1.Value) then
Form1.OutputImage.Canvas.Pixels[Trunc(Self.Pos.x),
Trunc(Self.Pos.y)] := clBlack;
end;

{***

* TMappingAgent methods

***}

{***************************************

* Constructor for TMappingAgent
***************************************}
constructor TMappingAgent.Create;
begin

inherited Create;

Fmap := TMap.Create;
{ Setting FreferenceStopped true will force the map coords to be set up by
the mapping agent }
FreferenceStopped := TRUE;
FmapState := 1; // Init State variable
FnextRefAgent := 0;
end;

{***************************************

* Destructor for TMappingAgent
***************************************}
destructor TMappingAgent.Destroy;
begin

{ Free the map objects }

Fmap.Free;

inherited Destroy;
end;

Page 73 of 106

{***************************************

* TMappingAgent.execute
* This method performs all actions required to execute the agent in question
LR R R RS EEEEEEEEEEEEEEEEEEEEEEEEEREEEESE]
procedure TMappingAgent.execute(Sender: TAgentManager)
var
i, j, col: Integer;
tempVector: TVector;
data, ratio, ratioThresh: Single;
begin
Fsender := Sender;

case FmapState of
1:

begin

{ Check for a signal being received by the mapping agent from a
reference agent to indicate that all reference agents have stopped }

if FreferenceStopped then
begin
FreferenceStopped := FALSE;
{ Set new map centroid coordinates }
updateCentroid;
{ Set new O map coordinates to correspond with the current region

being surveyed }

FOmapX := FCentroidX - MAP_SIDE / 2;
FOmapY := FCentroidY - MAP_SIDE / 2;
FmapState := 2;
end;

end;

begin
{ Add feature data from each agent to the map. This is easier than
implementing message queues and having Roaming agents transmit their
data to the mapping agent }
{ all reference agents are stationary, so it is OK to retrieve Roaming
agent data }
try
tempVector := TVector.Create;
for i := 0 to Fsender.getRQuantity - 1 do
begin
{ Fsender contains the AgentManager object; Get the position of the
i'th Beacon or Mapping agent }
Fsender.getRData(i, tempVector, data);
Fmap[trunc(tempVector.x - FOmapX),
trunc(tempVector.y - FOmapY)] := data;
end;
finally
tempVector.Free;
end;

{ Test whether current area has been adequately surveyed. If so, perform
actions to move to a new region }
ratio := Fmap.mapRatio(Trunc(FcentroidX - FOmapX),
Trunc (FcentroidY - FOmapY));
ratioThresh := StrToFloat(Formi.ebMapThresh.Text);
Form1.pnMapRatio.Caption := Format('%3.2f', [ratio]);
Form1.pbMapProgress.Position := trunc(100 * ratio / ratioThresh);

if ratio > ratioThresh then
begin
{ copy internal map to main map here }
if Form1.cbShowMainMap.Checked then
begin
for 1 := 0 to MAP_SIDE - 1 do
=0

for j to MAP_SIDE - 1 do
begin
col := trunc(Fmap[i, j1);

if col >= 0 then
{ build grey colour }
Form1.tiMainMapImage.Canvas.Pixels[Trunc (FOmapX) + i,
Trunc (FOmapY) + j] :=
col or (col shl 8) or (col shl 16);
end;
end;

{ clear the internal map ready for the next survey area }
Fmap.clear;

{ Send a message to the next reference agent for it to establish a new
reference position }

Fsender.txSignal(SIG MOVE, FnextRefAgent);

FnextRefAgent := (FnextRefAgent + 1) mod Fsender.getBMQuantity;

FmapState := 1; // Change state to wait for new position signal

end;

Page 74 of 106

end;
end; { case }

{ mapping agent's own behaviour is executed here }
Self.behave;

end;

{***************************************
* TMappingAgent.getMapRatio
* Returns the current map ratio so it can be displayed by the environment
***************************************}
function TMappingAgent.getMapRatio: Single;
begin

Result := Fmap.mapRatio(Trunc(FcentroidX - FOmapX),

Trunc(FcentroidY - FOmapY));

end;

{***************************************
* TMappingAgent.updateCentroid
* This method updates the coordinates of the centroid of the 3 reference
* agents
R EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
procedure TMappingAgent.updateCentroid;
var
i: Integer;
xSum, ySum: Single;
tempVector: TVector;

begin
xSum := 0.0;
ySum := 0.0;
try
tempVector := TVector.Create;

for 1 := 0 to Fsender.getBMQuantity - 1 do
begin
{ Fsender contains the AgentManager object; Get the position of the
i'th Beacon or Mapping agent }
tempVector := Fsender.getBMPos(i, tempVector)

xSum := xSum + tempVector.x;
ySum := ySum + tempVector.y;
end;

{ Calculate average X coord }
FcentroidX := xSum / 3.0;
{ Calculate average Y coord }
FcentroidY := ySum / 3.0;

finally
tempVector.Free;

end;

end;

{***************************************
* TMappingAgent.signal
* This procedure implements the signal interface to the mapping agent
* from the agent manager
R EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
procedure TMappingAgent.signal(msg: sigType);
begin
case msg of
SIG_MOVE:
begin
FsignalMove := TRUE;
end;
SIG_AT_GOAL:
begin
FreferenceStopped := TRUE;
end;
end;
end;

Page 75 of 106

{***************************************

* TMappingAgent.draw

R]

procedure TMappingAgent.draw(canvas: TCanvas);

begin
if Form1.Animate.Checked then
begin
{ Erase old }
canvas.Brush.Color := clWhite;
canvas.Pen.Color := clWhite;

canvas.Ellipse(Trunc(Self.FlastPos.x-AGENT_RAD)
Trunc(Self.FlastPos.y-AGENT_RAD)
Trunc(Self.FlastPos.x+AGENT_RAD)

)

);

Trunc (Self.FlastPos.y+AGENT_RAD
Self.FlastPos.copy(Self.Pos); // Update Last Position to current position
{ Draw new }
canvas.Brush.Color := clLime;
canvas.Pen.Color := clBlack;

canvas.Ellipse(Trunc(Self.Pos.x-AGENT_RAD),

Trunc(Self.Pos.y-AGENT_RAD),

Trunc (Self.Pos.x+AGENT RAD),

Trunc (Self.Pos.y+AGENT_RAD));
canvas.MoveTo(Trunc(Self.Pos.x), Trunc(Self.Pos.y));
canvas.LineTo(Trunc(Self.Pos.x+(Self.Direction.x* (AGENT RAD-0.5))),

Trunc(Self.Pos.y+(Self.Direction.y*(AGENT_RAD-0.5))));
end;

{ show our path if specifed }
if Formi.rbiPath.Checked and (Id = Form1.SpinEdit1.Value) then
Form1.OutputlImage.Canvas.Pixels[Trunc(Self.Pos.x),
Trunc(Self.Pos.y)] := clBlack;

end;

{***

* TRoamingAgent methods

***}

{***************************************

* Constructor for TRoamingAgent
***************************************}
constructor TRoamingAgent.Create;
begin

inherited Create;

Fangles := TList.Create;
end;

{***************************************

* Destructor for TRoamingAgent
***************************************}
destructor TRoamingAgent.Destroy;
var
i: Integer;
tempAngle: TanglePtr;
begin
while Fangles.Count > O do
begin
tempAngle := Fangles.Items[O];
Fangles.Delete(0);
Dispose(tempAngle);
end;
Fangles.Free;
inherited Destroy;
end;

Page 76 of 106

{***************************************

* TRoamingAgent.reportDebug
* Debug routine for TRoamingAgent
***************************************}
procedure TRoamingAgent.reportDebug;
var

s: String;
begin

inherited reportDebug;

if Fangles.Count = 3 then

begin

s = Format('%d', [Fstate]) + ' ';

s := s + Format('%3.0f', [Single(Fangles.Items[0]")]) + ' ';
s := s + Format('%3.0f', [Single(Fangles.Items[1]")]) + ' ';
s := s + Format('%3.0f', [Single(Fangles.Items[2]")]) + ' ';
end;

with DebugForm.Imagei.Canvas do

begin
if Self.Fid and 1 = 1 then
Font.Color := clOlive // odd
else
Font.Color := clGreen; /] even
TextOut(375,Self.Fid*14,s);
end;
end;

{***************************************

* TRoamingAgent.senseBeacons
Procedure to sense angles w.r.t. forward direction. ie. this procedure
updates the Fangles tuple with the current sensor data
This procedure will have to change to incorporate missed data if beacons
are able to become obscured or sensor errors cause problems. Also sensor
errors will be introduced here. Also, if >3 beacons are used to reduce
errors, this will force this procedure to change.
To sense angles, the procedure uses absolute position information. A
physically embodied TRoamingAgent would not have access to this data. It is
used here to simulate the angle data which would be directly accessible.
* sortFunction is used by senseBeacons to sort the beacon angles.
***************************************}
procedure TRoamingAgent.senseBeacons;
var
i: Integer;
tempAngle: TanglePtr;
tempVector: TVector;
begin
{ First clean up (remove) the old angle list contents }
while Fangles.Count > 0 do
begin
tempAngle := Fangles.Items[O];
Fangles.Delete(0);

L R N

Dispose(tempAngle);
end;
try
begin
tempVector := TVector.Create;

for 1 := 0 to Fsender.getBMQuantity - 1 do
begin
try
{ Create a new Single to hold an angle }
tempAngle := New(TanglePtr);
{ Fsender contains the AgentManager object; Get the position of the
i'th Beacon or Mapping agent }
tempVector := Fsender.getBMPos(i, tempVector)
{ Now the vector from our position which points at the i'th agent is
VECTOR := BM_POS_VECTOR - OUR_POS_VECTOR }
tempVector.sub(Self.Pos);
{ Now Get the angle between our direction and the i'th B or M agent }
tempAngle~ := Direction.signedAngleDeg(tempVector)
{ Add the angle to the list of angles }
Fangles.Add(tempAngle);
except
Dispose(tempAngle);
end;
end;
end;
finally
tempVector.Free;
end;

Page 77 of 106

{ Sort list of angles }
Fangles.Sort(sortFunction);
end;

{***************************************

TRoamingAgent.behave

Behaviour method. This procedure selects a behaviour and executes

it for a TRoamingAgent.

That is, this method implements the temporally combined behaviour through the
use of a finite state machine.

Behaviour is the assessment of sensor information and selection of the action
to be taken based on it.

A TRoamingAgent moves randomly in a region bounded by the triangle whose
vertices are the positions of TMappingAgent and the TBeaconAgent's.

A TRoamingAgent's sensors allow it to identify the mapping agent and measure
the angles to the beacon agents.

To determine that it is inside the triangle formed by the convex hull of the
mapping and beacon agents, no angle between two subsequent ordered angular
position readings, measured by the sensors can exceed 180deg. The first pass
implementation of the behaviour fsm thus has two states;

state 1:

Safe Wandering:

move forward by d forward

turn randomly

if (angle between 2 subsequent ordered angles > 180deg) then
turn to face direction bisecting the two angles
state 2

state 2:
Move inside fence:
move forward by d_forward
if (angle between all sets of 2 subsequent ordered angles < 180deg) then
state 1
***************************************}
procedure TRoamingAgent.behave;
var
angle1, angle2, angle3: Single;
tempVector, sumVector: TVector;
begin
case Fstate of
1: // inside fence
begin
{ move forward by d_forward }
Self.move;

{ turn randomly (up to +/-TURN_LIMIT degrees) }
Self.Direction.rotateDeg(-TURN LIMIT);
Self.Direction.rotateDeg(Random(2*TURN_LIMIT));

{ if (angle between 2 subsequent ordered angles > 180deg) then
state 2 }
Self.senseBeacons; // Accumulate data on Beacon/Mapping agent positions

angle1 := Single(Fangles.Items[0]");
angle2 := Single(Fangles.Items[1]");
angle3 := Single(Fangles.Items[2]");

if (angle2 - anglei > 180) or
(angle3 - angle2 > 180) or
(angle1 - angle3 + 360 > 180) then

Fstate := 2;
end;
2: // outside fence
begin
{ move forward by d_forward }
Self.move;

Self.senseBeacons; // Accumulate data on Beacon/Mapping agent positions

{ if (angle between all sets of 2 subsequent ordered angles < 180deg) then
state 1 }

angle1 := Single(Fangles.Items[0]");

angle2 Single(Fangles.Items[1]");

angle3 Single(Fangles.Items[2]");

if (angle2 - angletl <= 180) and
(angle3 - angle2 <= 180) and
(angle1 - angle3 + 360 <= 180) then
Fstate := 1;

Page 78 of 106

{$DEFINE ROAMING_BEHAVIOUR_ 2}
{$IFDEF ROAMING_BEHAVIOUR_1}
{ convert sensed angles to +/-180 range }

if anglei > 180 then
angle1 := anglel - 360;
if angle2 > 180 then
angle2 := angle2 - 360;
if angle3 > 180 then

angle3 angle3 - 360;
{ take the average as the desired direction }
angle1l := -(angleil + angle2 + angle3) / 3;
{$ELSE IFDEF ROAMING BEHAVIOUR_2}
{ create direction vectors, sum them and move toward that direction }

try
tempVector := TVector.Create;
sumVector := TVector.Create;

sumVector.Copy(Self.Direction);

{ create 1st direction vector }
tempVector.Copy(Self.Direction);
tempVector.rotateDeg(anglel);
sumVector.add(tempVector)

{ create 2nd direction vector }
tempVector.Copy(Self.Direction);
tempVector.rotateDeg(angle2);
sumVector.add(tempVector)

{ create 3rd direction vector }
tempVector.Copy(Self.Direction);
tempVector.rotateDeg(angle3);
sumVector.add(tempVector)

angle1 := Self.Direction.signedAngleDeg(sumVector)
if anglei > 180 then
angle1 := anglel - 360;
finally
tempVector.Free;
sumVector.Free;
end;

{$ENDIF}
{ truncate angles because turning radius of agent is limited }
if angle1l > TURN LIMIT then
anglei := TURN_LIMIT
else if anglel < -TURN_LIMIT then

angle1l := -TURN LIMIT;
Self.Direction.rotateDeg(anglel);
end;

end; {case Fstate}

end; {TRoamingAgent.behave}

{***************************************

* TRoamingAgent.execute
* This method performs all actions required to execute the agent in question
EEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]

procedure TRoamingAgent.execute(Sender: TAgentManager)

var
DeltaX, DeltaY: Single;
begin
Fsender := Sender;

{ Calculate update-position vector. This is where the action happens.
ie. the Behaviour is executed. }
Self.behave;
end;

Page 79 of 106

{***************************************

* TRoamingAgent.draw
EEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
procedure TRoamingAgent.draw(canvas: TCanvas);
begin
if Formi.rbAllPaths.Checked then
Form1.OutputlImage.Canvas.Pixels[Trunc(Self.Pos.x
Trunc(Self.Pos.y
Form1.TerrainMap.Canvas.Pixels[Trunc
Trunc

|
Self.Pos.x),
Self.Pos.y)]

else
{ show only the path of the specifed agent }
if Id = Form1.SpinEdit1.Vvalue then
Form1.OutputImage.Canvas.Pixels[Trunc(Self.Pos.x),
Trunc(Self.Pos.y)] := clBlack;

if Form1.Animate.Checked then

begin

{ Erase old }
canvas.Brush.Color := clWhite;
canvas.Pen.Color := clWhite;

canvas.Ellipse(Trunc(Self.FlastPos.x-AGENT RAD
Trunc (Self.FlastPos.y-AGENT_RAD
Trunc (Self.FlastPos.x+AGENT_RAD

);

Trunc(Self.FlastPos.y+AGENT RAD
Self.FlastPos.copy(Self.Pos); // Update Last Position to current position
{ Draw new }
canvas.Brush.Color := clYellow;
canvas.Pen.Color := clBlack;

canvas.Ellipse(Trunc(Self.Pos.x-AGENT RAD),
Trunc(Self.Pos.y-AGENT_RAD),
Trunc (Self.Pos.x+AGENT_RAD),
Trunc(Self.Pos.y+AGENT RAD));
canvas.MoveTo(Trunc(Self.Pos.x), Trunc(Self.Pos.y));
canvas.LineTo(Trunc(Self.Pos.x+(Self.Direction.x* (AGENT_RAD-0.5))),
Trunc(Self.Pos.y+(Self.Direction.y*(AGENT RAD-0.5))));
end;
end;

end.

Page 80 of 106

Listing AgentManager.pas

Terrain Mapping Simulator
AgentManager File

File: agentmanager.pas
Author: Gary Ruben
Date: Aug 1998

Description: This unit implements the AgentManager class (object definition).

}

This defines a manager object which is responsible for
maintaining and controlling all agent objects in the simulation.
There is only one instance of this class instanciated in the
Unit1 unit.

unit AgentManager;

{**}

interface
uses Classes, SysUtils, Unit1, Dialogs, Vector;

const

CULL_AGENT_DISTANCES_RADIUS = 20.0;
MAXAGENTS = 80;

type

{ signals which may be sent between agents }
sigType = (SIG_MOVE, SIG AT GOAL);

TAgentManager = class

private
Fgeneration: Integer;
agentList: TList; //1list containing all agents
bmList: TList; //1list containing just beacon and mapping agents
rList: TList; //1list containing just roaming agents
public

constructor Create;

destructor Destroy; override;

procedure debugAgents;

procedure draw;

procedure sequenceAgents;

procedure txSignal(msg: sigType; parm: Integer)

procedure getRData(index: Integer; var vector: TVector; var data: Single);
function getRQuantity: Integer;

function getBMPos(index: Integer; vector: TVector): TVector;

function getBMId(index: Integer): Integer;

function getBMQuantity: Integer;

property generation: Integer read Fgeneration write Fgeneration;

{ Fgeneration accessor property }

end;

{**}

implementation

uses Agent;

{***************************************

* Constructor for TAgentManager
***************************************}
constructor TAgentManager.Create;

var

agent: TAgent;

txtFile: TextFile; // Handle for initialisation file
ch: Char;

temp:Single;

begin

{Allocate the agent list}
inherited Create;

{ Allocate the TList which will hold the agents }
agentList := TList.Create;

bmList := TList.Create;

rList := TList.Create;

AssignFile(txtFile, 'init.dat');
Reset(txtFile);
{ m=mapping b=beacon r=roaming }
while not Eof(txtFile) do

begin

Read(txtFile, ch);

case ch of

B // comment line - skip to next line

Page 81 of 106

begin
Readln(txtFile);
Continue;
end;
Chr(10), Chr(13): // blank line - skip to next line (ignore)
Continue;
‘m': // mapping agent
begin
agent := TMappingAgent.Create;
bmList.Add(agent);

end;
'b': // beacon agent
begin
agent := TBeaconAgent.Create;
bmList.Add(agent);
end;
r': // roaming agent
begin
agent := TRoamingAgent.Create;
rList.Add(agent);
end
else
ShowMessage (Concat('Invalid character ', ch));
end;

{ Initialise agent }
with agent do
begin
{ Position }
Read(txtFile, temp);
Pos.x := temp;
Read(txtFile, temp);
Pos.y := temp;
{ Direction }
Read(txtFile, temp);

Direction.x := temp;

Read (txtFile, temp);

Direction.y := temp;

Direction.unify; // Ensure direction vector is a unit vector
end;

{ Add the agent to the list }
agentList.Add(agent);
if agentList.Count > MAXAGENTS then
MessageD1g('MAXAGENTS in AgentManager exceeded',
mtError, [mbOk], 0);

end; {while}

CloseFile(txtFile);
Form1.SpinEdit1.MaxValue := agentList.Count - 1;
Fgeneration := 0;

end;

KAKKKKKRKAKRKAKRKAKRKAKRKAKRKAKRKARKAR AR AR AR AR AR AR KK KK

* Destructor for TAgentManager
***************************************}
destructor TAgentManager.Destroy;
var

i: Integer;
begin

{ Free the agent objects }

for i := 0 to agentList.Count - 1 do

TAgent(agentList.Items[1i]).Free;

{ Deallocate the TLists which held the agents }

agentList.Free;

{ No need to Free the abjects of the bmList or rList lists since they were
freed above as members of the agentList }

bmList.Free;

rList.Free;

inherited Destroy;
end;

Page 82 of 106

{***************************************

* TAgentManager.debugAgents
* Call debug routines of all agents under our control
***************************************}
procedure TAgentManager.debugAgents;
var

i: Integer;
begin

for i := 0 to agentList.Count - 1 do

TAgent (AgentList.Items[i]).reportDebug;

end;

{***************************************

* TAgentManager.txSignal
* This method controls signalling of messages between agents
* msg contains the message to be sent
* parm is an optional parameter
EEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
procedure TAgentManager.txSignal(msg: sigType; parm: Integer)
var
i: Integer;
begin
case msg of
SIG_MOVE:
{ this message is always txed from the mapping to a reference agent }
begin
{ reference agent index is the optional message parameter }
i := parm;
end;

SIG_AT_GOAL:
{ this message is always txed from a reference to the mapping agent }
begin
{ get mapping agent id }
for i := 0 to bmList.Count - 1 do
if TAgent(bmList.Items[i]) is TMappingAgent then
break;
end;
end; { case }

{ send the message to the target agent }
TBeaconAgent (bmList.Items[1i]).signal(msg);
end;

{***************************************

* TAgentManager.draw
* Call draw routines of all agents under our control
***************************************}
procedure TAgentManager.draw;
var

i: Integer;
begin

for i := 0 to agentList.Count - 1 do

TAgent (AgentList.Items[i]).draw(Formi.AgentImage.Canvas); // Draw Agent

end;

{***************************************
*

TAgentManager.getBMPos
Get Beacon or Mapping Agent Position vector
index - The index of an Agent pointed to by the bmList.
Note: List index is O based.
Updates vector with the position of the Agent referred to by index.
* If the bmList index is exceeded, the TVector returned contains a -ve x value.
***************************************}
function TAgentManager.getBMPos(index: Integer; vector: TVector): TVector;
begin

if index < bmList.Count then

vector.copy(TAgent (bmList.Items[index]).Pos)

E R

else
begin
vector.x = -1.0;
vector.y := -1.0;
MessageDlg('bmList out of range error in TAgentManager getBMPos method.',

mtError, [mbOk], 0);
end;
Result := vector;
end;

Page 83 of 106

P R R]

{
* TAgentManager.getRData
* Get Roaming Agent Position vector and associated feature data
* index - The index of an Agent pointed to by the agentList.
* Note: List index is O based.
* Updates vector with the position of the Agent referred to by index.
* If the rList index is exceeded, the TVector returned contains a -ve x value.
***************************************}
procedure TAgentManager.getRData(index: Integer; var vector: TVector;
var data: Single);

var
agentPtr: TAgent;
begin
if index < rList.Count then
begin

agentPtr := TAgent(rList.Items[index]);

vector.copy(agentPtr.Pos);

{ data is grey value of the terrain map, which is represented by the
lower 8 bits of the retrieved colour value }

data := Formi.TerrainImage.Canvas.Pixels[Trunc(agentPtr.Pos.x),

Trunc(agentPtr.Pos.y)] and $OFF;
end
else

begin

vector.x := -1.0;

vector.y := -1.0;

data := -1.0;

MessageDlg('rList out of range error in TAgentManager getRData method.',
mtError, [mbOk], 0);

end;

end;

{***************************************

* TAgentManager.getBMId
* Return the id property of the indexed Beacon or Mapping agent
R EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
function TAgentManager.getBMId(index: Integer): Integer;
begin
Result := TAgent(bmList.Items[index]).id;
end;

P R R]

* TAgentManager.getBMQuantity
* Get total number of Beacon and Mapping agents in bmList
***************************************}
function TAgentManager.getBMQuantity: Integer;
begin
Result := bmList.Count;
end;

{***************************************

* TAgentManager.getRQuantity
* Get total number of Roaming agents in rlList
***************************************}
function TAgentManager.getRQuantity: Integer;
begin

Result := rList.Count;
end;

Page 84 of 106

P R R]

{
* TAgentManager.sequenceAgents
* This procedure sequences the execution of all agents in a random order by
* the following method:
* create a list of agents
* choose a random agent called A
* execute agent A
* remove A from the list
* repeat until all agents have been executed
***************************************}
procedure TAgentManager.sequenceAgents;
var
tempAgentList: array[O0..MAXAGENTS-1] of Boolean;
i, j: Integer;
dx, dy, Length: Single;
safe: Boolean;
tempVec: TVector;

begin
for i := 0 to agentList.Count - 1 do
tempAgentList[i] := True;

Self.debugAgents;

for i := 0 to agentList.Count - 1 do
begin
{ choose a random agent called j }
j := Random(agentList.Count);
while not tempAgentList[j] do
j = (j + 1) mod agentList.Count;

{ execute agent j }

TAgent (AgentList.Items[j]).execute(Self);
{ remove j from the list }
tempAgentList[j] := False;

end;

{ Draw Agents' current positions }
for i := 0 to agentList.Count - 1 do
TAgent (AgentList.Items[1i]).draw(Formi.AgentImage.Canvas);
Inc(Fgeneration);
Form1.CountPanel.Caption := IntToStr(Fgeneration);
end;

end.

Page 85 of 106

Listing DebugUnit.pas

Terrain Mapping Simulator
DebugUnit File

File: debugunit.pas
Author: Gary Ruben
Date: Aug 1998

Description: This is the "debug form" or unit file associated with the debug

}

form of the Terrain Mapping Simulator.
The TDebugForm object is defined here along with the event
handlers for the form controls.

unit DebugUnit;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type

TDebugForm = class(TForm)
Label1: TLabel;
DebugPanel: TPanel;
Imagel: TImage;
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }
public
{ Public declarations }
end;
var

DebugForm: TDebugForm;

implementation

{$R *.DFM}

uses

unit1;

procedure TDebugForm.FormCreate(Sender: TObject);
begin

Imagel.Canvas.Font.Name := 'Courier New';

end;

procedure TDebugForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

Form1.cbDebug.checked := FALSE;

end;

end.

Page 86 of 106

Listing Map.pas

Terrain Mapping Simulator

Map File

File: map.pas
Author: Gary Ruben
Date: Aug 1998

Description: This unit implements a map class.
The associated map object is contained by the Mapping agent,
which is defined in the Agent unit.

}
unit Map;

{**}

interface

uses
Unit1, Dialogs, SysUtils, Windows;

const
MAP_SIDE = 200;

type
TMap = class
private
{ The map is kept in this structure }
FmapArray: array [O0..MAP_SIDE-1, 0..MAP_SIDE-1] of Single;
FnArray: array [O..MAP_SIDE-1, O..MAP_SIDE-1] of Integer;
function getFeature(x, y: Integer): Single;
procedure addPoint(x, y: Integer; newVal: Single);
public
constructor Create; virtual;
procedure clear;
function mapRatio(x, y: Integer): Single;
property feature[x, y: Integer]: Single read getFeature
write addPoint; default;
end;

{**}

implementation

const
SAMPLE_SIDE = 10;

EE]

* TMap methods

***}

{***************************************

* Constructor for TMap
***************************************}
constructor TMap.Create;
var

i, j: Integer;
begin

inherited Create;

{ Initialise all map contents }
for 1 := 0 to MAP_SIDE-1 do
for j := 0 to MAP_SIDE-1 do
begin
FmapArray[i, j] :=
FnArray[i, j] := 0O;
end;
with Form1.tiMapImage.Canvas do
begin
Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle(0, O, MAP_SIDE-1, MAP_SIDE-1);

0.0;

Brush.Color := clLime;
Pen.Color := clLime;
Rectangle((MAP_SIDE - SAMPLE_SIDE) div

MAP_SIDE + SAMPLE_SIDE) div

2!
MAP_SIDE - SAMPLE SIDE) div 2,
2-
MAP_SIDE + SAMPLE_SIDE) div 2

end;
end;

Page 87 of 106

P R R]

{
* mapRatio function for TMap

* This function returns a value in the range 0.0 .. 1.0 which
* represents the ratio of array elements within a 10x10 range
* which have been written to since the creation of the array.
* The 10x10 range is centred about the parameter values x, y.
* If the array bounds are exceeded, an exception is raised.
***************************************}

function TMap.mapRatio(x, y: Integer): Single;

var
i, j, count: Integer;
begin
count := 0;
try

for i := x-(SAMPLE_SIDE div 2) to x+(SAMPLE_SIDE div 2-1) do
for j := y-(SAMPLE SIDE div 2) to y+(SAMPLE SIDE div 2-1) do
if FnArray[i, j] > O then
Inc(count);
Result := count / 100.0;
except
on ERangeError do
begin
Result := 0.0;
ShowMessage ('Array bounds exceeded in TMap mapRatio method');
end;
end;
end;

{***************************************

* clear method for TMap
* This method clears all feature data from the map
***************************************}
procedure TMap.clear;
var
i, j: Integer;
begin
{ Initialise all map contents }
for 1 := 0 to MAP_SIDE-1 do
for j := 0 to MAP_SIDE-1 do
begin
FmapArray[i, j] :=
FnArray[i, j] := 0;
end;
if Form1.cbShowMap.checked then
with Form1.tiMapImage.Canvas do
begin
Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle(0, O, MAP_SIDE-1, MAP_SIDE-1);

0.0;

Brush.Color := clLime;
Pen.Color := clLime;
Rectangle((MAP_SIDE - SAMPLE_SIDE) div 2,

MAP_SIDE - SAMPLE_SIDE) div 2,
MAP_SIDE + SAMPLE_SIDE) div 2-1,
MAP_SIDE + SAMPLE SIDE) div 2-1);

end;
end;

EE R]

* getFeature accessor method for TMap
* This method allows a feature to be read from the map feature data set
LR EEE RS EEEE SRS EEEEEEEEEEEEEEEEEREEESE]
function TMap.getFeature(x, y: Integer): Single;
begin
if FnArray[x, y] > O then
Result := FmapArray[x, y]
else
Result := -1.0;
end;

Page 88 of 106

{***************************************

* addPoint method for TMap
* This method allows a feature to be added to the map feature data set
LR R R RS EEEEEEEEEEEEEEEEEEEEEEEEEREEEESE]
procedure TMap.addPoint(x, y: Integer; newVal: Single);
var

n: Integer;

col: Integer;
begin

Inc(FnArray[x, Yy]);

n := FnArray[x, y];

FmapArray[x, y] := FmapArray[x, y] * (n-1)/n + newvVal/n;

if Form1.cbShowMap.checked then

begin

{ build grey colour }

col := trunc(FmapArray[x, yl);

Form1.tiMapImage.Canvas.Pixels[x, y] := col or
(col shl 8) or
(col shl 16);

end;

end;

end.

Page 89 of 106

Listing Unitl.pas

Terrain Mapping Simulator

uUnit
File
Auth

Date
Desc

}

unit

1 File

H uniti.pas
or: Gary Ruben
H Aug 1998

ription: This is the "main form" or unit file associated with the main
form of the Terrain Mapping Simulator.
The TFormi1 object is defined here along with the event handlers

for the form controls.

uniti;

{$R+} {Range checking}
{$s+} {Stack checking}

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Buttons, Vector, Menus, Spin,
Clipbrd, ComCtrls;

const
MAX_X = 250;
MAX_Y = 250;

type
TForm1 = class(TForm)

Paneli: TPanel;
TerrainImage: TImage;
controls: TGroupBox;
StatusPanel: TPanel;
CountPanel: TPanel;
MainMenui: TMainMenu;
File1: TMenultem;

Exit1: TMenultem;

N1: TMenultem;
PrintSetupi: TMenultem;
Print1: TMenulItem;

Help1: TMenultem;

About1: TMenuItem;
HowtoUseHelp1: TMenultem;
SearchforHelpOni: TMenuItem;
Contents1: TMenulItem;
Runi: TMenuItem;
mnRestart: TMenulItem;
mnSingleStep: TMenuItem;
mnRun: TMenultem;

mnStop: TMenuItem;

Edit1: TMenultem;

Copy1: TMenultem;
PrintDialog1: TPrintDialog;
PrinterSetupDialogi: TPrinterSetupDialog;
Bevel1: TBevel;
ToolPanel: TPanel;
Bevel2: TBevel;
btRestart: TSpeedButton;
btStop: TSpeedButton;
btRun: TSpeedButton;
btSingleStep: TSpeedButton;
OpenDialogi: TOpenDialog;
OutputPanel: TPanel;
OutputImage: TImage;
AgentPosPanel: TPanel;
AgentImage: TImage;
1bIteration: TLabel;
gbParm: TGroupBox;
1bMapThresh: TLabel;
Labell1: TLabel;

Label2: TLabel;

1bSLLim: TLabel;
ebMapThresh: TEdit;
PopupMenu1: TPopupMenu;
Copy2: TMenultem;
cbDebug: TCheckBox;
Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;
pnInternMap: TPanel;

Page 90 of 106

tiMapImage: TImage;

seSide: TSpinEdit;

Panel2: TPanel;

1bMapRatio: TLabel;

pnMapRatio: TPanel;

pbMapProgress: TProgressBar;

rbAllPaths: TRadioButton;

rb1Path: TRadioButton;

SpinEdit1: TSpinEdit;

cbShowMap: TCheckBox;

Animate: TCheckBox;

Label7: TLabel;

pnMap: TPanel;

tiMainMapImage: TImage;

cbShowMainMap: TCheckBox;

procedure FormCreate(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure StepClick(Sender: TObject);

procedure RunClick(Sender: TObject);

procedure StopClick(Sender: TObject);

procedure RestartClick(Sender: TObject);

procedure PrintSetupi1Click(Sender: TObject);

procedure PrintiClick(Sender: TObject);

procedure ExitiClick(Sender: TObject);

procedure TerrainImageDblClick(Sender: TObject);

procedure seSideChange(Sender: TObject);

procedure Copy2Click(Sender: TObject);

procedure cbDebugClick(Sender: TObject);
private

Play: Boolean;

backgroundFileName: String;

{ Private declarations }
public

{ Public declarations }

terrainMap: TBitMap;

side: Single; // length of side of triangle
end;

var
Form1: TFormi;

implementation
{$R *.DFM}

uses
Agent, AgentManager, DebugUnit;

var
agents: TAgentManager;

{**}

TForm methods
}
procedure TFormi.FormCreate(Sender: TObject);
var
i: Integer;
begin
Randomize;
terrainMap := TBitMap.Create;
backgroundFileName := 'landscapel.bmp';
terrainMap.LoadFromFile (backgroundFileName) ;

agents := TAgentManager.Create; // Create an instance of the agent manager
side := 55;
with AgentImage.Canvas do

begin

Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle(0, 0, Width, Height);
end;

with OutputImage.Canvas do
begin
Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle(0, 0, Width, Height);
end;

with tiMainMapImage.Canvas do
begin
Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle(0, 0, Width, Height);
end;

end;

Page 91 of 106

procedure TFormi.FormClose(Sender: TObject; var Action: TCloseAction);
var
i: Integer;
begin
terrainMap.Free;
agents.Free;
end;

procedure TFormi1.StepClick(Sender: TObject);
begin

agents.sequenceAgents;
end;

procedure TFormi1.RunClick(Sender: TObject);

var
i: Integer;

begin
btRestart.Enabled = False;
btSingleStep.Enabled = False;
btStop.Enabled = True;
btRun.Enabled = False;

mnRestart.Enabled
mnSingleStep.Enabled
mnStop.Enabled
mnRun.Enabled

btRestart.Enabled;
btSingleStep.Enabled;
btStop.Enabled;
btRun.Enabled;

Play := True;
while Play do
begin
agents.sequenceAgents;
Application.ProcessMessages;
end;
end;

procedure TFormi.StopClick(Sender: TObject);
begin

btRestart.Enabled = True;
btSingleStep.Enabled = True;
btRun.Enabled = True;
btStop.Enabled = False;

mnRestart.Enabled
mnSingleStep.Enabled
mnStop.Enabled
mnRun.Enabled

btRestart.Enabled;
btSingleStep.Enabled;
btStop.Enabled;
btRun.Enabled;

Play := False;
end;

Page 92 of 106

procedure TFormi.RestartClick(Sender: TObject);
var
i: Integer;
begin
with AgentImage.Canvas do
begin
Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle(0, 0, Width, Height);
end;
with OutputImage.Canvas do
begin
Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle(0, 0, Width, Height);
end;
with tiMainMapImage.Canvas do
begin
Brush.Color := clWhite;
Pen.Color := clWhite;
Rectangle (0, 0, Width, Height);
end;
agents.Free;
agents := TAgentManager.Create;
agents.draw;
end;

procedure TFormi.PrintSetupi1Click(Sender: TObject);
begin

PrinterSetupDialogi.Execute;
end;

procedure TFormi.PrintiClick(Sender: TObject);
var

Index: Integer;

PrinterString: String;

f: TextFile;
begin

if PrintDialog1.Execute then

begin

// AssignPrn(f);
// Rewrite(f);

/1
// {print any text here eg.}
/1
/1 PrinterString := 'Track ';
// Writeln(f, PrinterString);
/1
/1 CloseFile(f);

end;
end;

procedure TForm1.Exiti1Click(Sender: TObject);
begin

Application.Terminate;
end;

procedure TFormi.TerrainImageDblClick(Sender: TObject);
begin
if OpenDialog1.Execute then
begin
with terrainMap do
begin
backgroundFileName := OpenDialog1.FileName;
LoadFromFile (backgroundFileName);
Parent := nil;
end;

TerrainImage.Picture.Bitmap.Canvas.Draw(0, 0, terrainMap);

end;
end;

Page 93 of 106

procedure TFormi.seSideChange(Sender: TObject);
begin

side := TSpinEdit(Sender).Value;
end;

procedure TForm1.Copy2Click(Sender: TObject);
begin

Clipboard.Assign(TImage (PopupMenui.PopupComponent).Picture.Bitmap);
end;

procedure TFormi.cbDebugClick(Sender: TObject);
begin

DebugForm.Visible := cbDebug.Checked;
end;

end.

Page 94 of 106

Listing Vector.pas

Terrain Mapping Simulator
Vector File

File: vector.pas
Author: Gary Ruben
Date: Aug 1998

Description: This unit implements a 2D-Vector Abstract Data Type.

Accessor methods (properties) allow access to the x and y
coordinate Fields.
There are methods allowing conjugation, addition, rotation, dot
product etc.
Note that if two vectors are added (or any other operation on 2
vectors which produces a resultant) the fields of the Vector
object performing the operation will be updated with the result.
Therefore, to perform A := B + C if one wishes to keep both B
and C,

- First create A through an explicit TVector.Create

- Next copy B to A using the copy method

- Add C to A using the add method

- Finally, remember to destroy A through an explicit

TVector.Destroy when finished with A

Note that the accessor properties x and y are not in a
published section since this component will not be used
in the Object Inspector.

}
unit Vector;

(**)

interface

type

TVector = class

private
Fx: Single; // x component of vector
Fy: Single; // y component of vector

public
procedure neg; /] A -> -A
procedure conj; /] A -> A*
procedure unify; /1 A -> A/|A]
procedure mult(scalar: Single); /] A -> scalar*A
procedure divide(scalar: Single); // A -> A/scalar
procedure add(vec: TVector); /] A -> A+vec
procedure sub(vec: TVector); /] A -> A-vec
procedure copy(vec: TVector); /1 A -> vec
procedure rotateDeg(theta: Single); // A -> A rotated through theta degree
procedure rotateRad(phi: Single); // A -> A rotated through phi radian
function dot(vec: TVector): Single; // A . vec

function angleDeg(vec: TVector): Single; // angle between A & vec degree
function angleRad(vec: TVector): Single; // angle between A & vec radian
function signedAngleDeg(vec: TVector): Single;
// signed angle between A & vec degree - clockwise is +ve
function signedAngleRad(vec: TVector): Single;
// signed angle between A & vec radian - clockwise is +ve
function abs: Single; /1 |A]
property x: Single read Fx write Fx; // Fx accessor property
property y: Single read Fy write Fy; // Fy accessor property
end;

(**)

implementation

uses Dialogs, SysUtils, Math;
{$DEFINE MATHUNITAVALIABLE}

const
PI = 3.14159265359;

{***************************************
* A -> A

* Negates the vector object

* Tested OK

***************************************}

procedure TVector.neg;

begin
Fx := -Fx;
Fy := -Fy;
end;

Page 95 of 106

{***************************************
* A -> A*
* Conjugates the vector object
* Tested OK
***************************************}
procedure TVector.conj;
begin

Fy := -Fy;
end;

khkkkkhkkhkhkhkhkkhkkhhkhkhkhkhkhhhhhhkhkhkhkhkhhhhhkhhkhkhx
* A -> A/|A|
* Turns the vector into a unit vector
* Tested OK
***************************************}
procedure TVector.unify;
var
abs: Single;
begin
try
abs := Sqrt(Sqr(Fx) + Sqr(Fy));
Fx := Fx / abs;
Fy := Fy / abs;
except
on EDivByZero do
MessageDlg('Divide by O error in TVector class divide unify.', mtError,
[mbOk], 0);
end;
end;

{***************************************
* A -> scalar*A

* Multiplies the vector by scalar

* Tested OK

P]

procedure TVector.mult(scalar: Single);

begin
Fx := Fx * scalar;
Fy := Fy * scalar;
end;

{***************************************
* A -> scalar/A

* Divides the vector by scalar

* Tested OK

***************************************}

procedure TVector.divide(scalar: Single);

begin
try
Fx := Fx / scalar;
Fy := Fy / scalar;
except
on EDivByZero do
MessageDlg('Divide by O error in TVector class divide method.', mtError,
[mbOk], 0);
end;
end;

{***************************************
* A -> Atvec

* Adds vec to the vector object

* Tested OK

R]

procedure TVector.add(vec: TVector);

begin
Fx := Fx + vec.Fx;
Fy 1= Fy + vec.Fy;
end;

Page 96 of 106

{***************************************
* A -> A-vec

* Subtracts vec from the vector object

* Tested OK

***************************************}

procedure TVector.sub(vec: TVector);

begin
Fx := Fx - vec.Fx;
Fy := Fy - vec.Fy;
end;

{***************************************

* A -> vec

* Copies the fields of vec to the vector object
* Tested OK

***************************************}

procedure TVector.copy(vec: TVector);

begin
Fx := vec.Fx;
Fy := vec.Fy;
end;

{***************************************

* A -> A rotated anti-clockwise through theta degree
* Rotates the vector object by theta degree
* Tested OK
EEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
procedure TVector.rotateDeg(theta: Single);
var
tempFx: Single;
tempCos, tempSin: Extended;
begin
tempFx := FXx;
{$IFDEF MATHUNITAVAILABLE}
SinCos(theta * PI / 180.0, tempSin, tempCos);
// Faster than calling Sin & Cos separately

{SELSE}
tempCos := Cos(theta * PI / 180.0);
tempSin := Sin(theta * PI / 180.0);
{$ENDIF}

Fx := Fx * tempCos - Fy * tempSin;
Fy := Fy * tempCos + tempFx * tempSin;
end;

{***************************************

* A -> A rotated anti-clockwise through phi radian
* Rotates the vector object by phi radian
* Tested OK
LR R R RS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEESE]
procedure TVector.rotateRad(phi: Single);
var

tempFx: Single;

tempCos, tempSin: Extended;
begin

tempFx := Fx;
{$IFDEF MATHUNITAVAILABLE}

SinCos(phi, tempSin, tempCos); //Faster than calling Sin & Cos separately
{$ELSE}

tempCos := Cos(phi);

tempSin := Sin(phi);
{$ENDIF}

Fx := Fx * tempCos - Fy * tempSin;
Fy := Fy * tempCos + tempFx * tempSin;
end;

Page 97 of 106

{***************************************
* A . vec
* Returns dot or inner product of the vector object and vec
* Tested OK
EEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
function TVector.dot(vec: TVector): Single;
begin
Result := Fx * vec.Fx + Fy * vec.Fy;
end;

{***************************************

* unsigned angle between A & vec degree

Returns the angle between the vector object and vec

by calculating theta = arccos((A . vec) / (|A].]|vec]))
Tested OK by hammering this with vectors whose components
were randomly generated using (random-0.5)*3*10e15 and

* (random-0.5) as two separate tests.

LR EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]

function TVector.angleDeg(vec: TVector): Single;

EIE)

var
param: Extended;
begin
try
param := self.dot(vec) / (self.abs * vec.abs);
if param > 1.0 then
{Floating Point errors will cause ArcCos range exception.
Correct this before it happens}
param := 1.0
else if param < -1.0 then
param := -1.0;
Result := ArcCos(param) / PI * 180.0;
except
{handle case of magnitude of either vector = 0}
on EDivByZero do
Result := 0;
end;
end;

{***************************************

* unsigned angle between A & vec radian
* Returns the angle between the vector object and vec
* Tested OK by hammering this with vectors whose components
* were randomly generated using (random-0.5)*3*10e15 and
* (random-0.5) as two separate tests.
EEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEREEESE]
function TVector.angleRad(vec: TVector): Single;
var
param: Extended;
begin
try
param := self.dot(vec) / (self.abs * vec.abs);
if param > 1.0 then
{Floating Point errors will cause ArcCos range exception.
Correct this before it happens}
param := 1.0
else if param < -1.0 then
param := -1.0;
Result := ArcCos(param);
except
{handle case of magnitude of either vector = 0}
on EDivByZero do
Result := 0;
end;

end;

Page 98 of 106

{
*
*
*
*
*

*

P R R]

signed clockwise angle between A & vec degree

Returns the angle between the vector object and vec

ie. returns the angle from self which must be rotated through in a clockwise
direction to obtain a vector coincident with vec.

The range of the return value is thus 0 -> 360 degree

Tested OK

***************************************}

function TVector.signedAngleDeg(vec: TVector): Single;
var

temp1, temp2: Extended;

begin

try
temp1 := ArcTan(self.y/self.x);
{correct ArcTan for quadrant}
if self.x < 0.0 then
temp1 := tempi + PI
else if self.y < 0.0 then
temp1 := temp1l + 2 * PI;
except
if self.y >= 0.0 then
temp1 := PI/2

else
tempi := -PI/2;
end;
try
temp2 := ArcTan(vec.y/vec.x);

{correct ArcTan for quadrant}
if vec.x < 0.0 then
temp2 := temp2 + PI
else if vec.y < 0.0 then
temp2 := temp2 + 2 * PI;
except
if vec.y >= 0.0 then
temp2 := PI/2
else
temp2 := -PI/2;
end;

Result := (tempi - temp2) / PI * 180.0;
if Result < 0.0 then
Result := Result + 360;

end;

{***************************************

* signed clockwise angle between A & vec radian

LR

*

Returns the angle between the vector object and vec

ie. returns the angle from self which must be rotated through in a clockwise
direction to obtain a vector coincident with vec.

The range of the return value is thus 0 -> 2*PI radian

Tested OK

P]

function TVector.signedAngleRad(vec: TVector): Single;
var

temp1, temp2: Extended;

begin

try
temp1 := ArcTan(self.y/self.x);
{correct ArcTan for quadrant}
if self.x < 0.0 then
temp1 := tempi + PI
else if self.y < 0.0 then
temp1 := tempil + 2 * PI;
except
if self.y >= 0.0 then
temp1 := PI/2

else
tempt1 := -PI/2;
end;
try
temp2 := ArcTan(vec.y/vec.x);

{correct ArcTan for quadrant}
if vec.x < 0.0 then
temp2 := temp2 + PI
else if vec.y < 0.0 then
temp2 := temp2 + 2 * PI;
except
if vec.y >= 0.0 then

Page 99 of 106

temp2 := PI/2
else
temp2 := -PI/2;
end;

Result := tempi - temp2;
if Result < 0.0 then
Result := Result + 2 * PI;
end;

{***************************************

* |A]
* Returns magnitude of the vector object
* Tested OK

***************************************}

function TVector.abs: Single;
begin

Result := Sqrt(Sqr(Fx) + Sqr(Fy));
end;

(**)

{

This test code attached to a button was used to test the above functions.
The input values come from 4 edit boxes vecx,vecy,vecbx,vecby.
The result values are sent to 2 edit boxes resx,resy.

procedure TFormi.CalcClick(Sender: TObject);
var
vec, vecb, res: TVector;
begin
// Construct required vectors
vec := TVector.Create;
vecb := TVector.Create;
res := TVector.Create;
try
// read source vector components
vec.x := StrToFloat(vecx.Text);
vec.y := StrToFloat(vecy.Text);
vecb.x := StrToFloat(vecbx.Text);
vecb.y := StrToFloat(vecby.Text);

// now perform some vector math
res.copy(vec);
res.sub(vecb); //Change this line to test methods

// display results of vector operation
resx.Text := FloatToStr(res.x);
resy.Text := FloatToStr(res.y);

finally
// Destroy all allocated vectors
vec.Free;
vech.Free;
res.Free;

end;

end;

}

end.

Page 100 of 106

Listing Swarm.dpr

Terrain Mapping Simulator
Delphi Project File

File:
Author:
Date:
Description:

swarm.dpr

Gary Ruben

Aug 1998

This is the "main" or project file of the Terrain Mapping
Simulator.

The project has been developed using Borland (Inprise) Delphi 2
on a PC-80486-DX2-66 with 20M RAM.

It has not been tested on any other systems.

It is best run at 1024x768 pixels with a full colour graphics
card.

It compiles to a single executable file which at last check
was 348k in size.

Support files required for execution are an agent initialisation
file and a terrain map bitmap (.BMP) file which may be generated
with any PC graphics package. The agent initialisation file
contains a list of agent's with initial position and direction
vector data. It must be named init.dat

The terrain map bitmap file is typically a square greyscale file.
The swarm.exe program initally contains a sample .BMP file.

No on-line help has been written yet, so this will have to
suffice:

The simulation environment is divided into 5 panes, a Controls
group and a Parameters group. There is a control bar along the
top and a status bar along the bottom.

The top left pane contains the terrain data. This may be changed
by double-clicking on the pane with the left mouse button.

The top right pane shows the agent positions. This may be
disabled by unchecking the associated "Animate" checkbox to speed
up the simulation.

The bottom left right pane shows the agent paths. The "All Paths"
and "Path of Id" RadioButtons in the Controls group control what
is displayed in the Paths pane.

The default selection "All Paths" will cause the paths of all
Roaming agents to be displayed modulated by the terrain map pixel
value.

If "Path of Id" is selected, the agent with the Id determined by
the edit box will be displayed.

The bottom right "Map" pane shows the map data which has been
accumulated by the mapping agent. Data from the internal map
which is displayed in the "Internal Map" pane is copied to the
"Map" pane when the survey of the current region has been
completed.

The "Map" and "Internal Map" pane drawing may be disabled by
unchecking the associated "Animate" checkbox to speed

up the simulation.

The bitmaps contained in any pane may be copied to the Windows
clipboard by right clicking on the pane and selecting Copy from
the popup menu.

In addition to allowing selection of the agent paths displayed,
the Controls group contains a Debug window checkbox, which if
checked, will show agent position, direction and state
information. This is unlikely to be of use to anyone running the
program.

The Parameters group contains the "Map Threshold" and

"Side Length" settings.

The "Map Threshold" setting controls when the Mapping agent
signals reference agents to take up new positions in the
terrain. A coverage value of 0.4 requires that 40% of the pixels
covering the region of the internal map represented by the lime
green square in the "Internal Map" pane have been traversed by a
Roaming agent. The "Map Ratio" value below the "Internal Map"
pane shows the current coverage value and the progress bar below
it reaches full when the coverage matches the threshold.

The "Side Length" setting determines the length of the side of
the equilateral triangles which are used to tesselate the survey
area. That is, the distance a reference agent uses to establish
its position in the terrain relative to othe reference agents.
Note that setting this to less than half the value of the current

Page 101 of 106

distance between 2 reference agents when the 3rd moves will mean
that the 3rd agent can never establish a reference position.
Instead, a Pavlov's dog behaviour results where the agent
continually runs back and forth between the other reference
agents.

The buttons on the control bar along the top control the
simulation execution and mirror the "Run" menu controls.

With these, the simulation may be reset, single-stepped, run or
stopped.

The status bar along the bottom displays the current simulation
iteration value.

For any copyright issues associated with the use of this code,
contact the Electrical and Computer Systems Engineering
department at Monash University.

}

program Swarm;

uses
Forms,
Unit1 in 'UNIT1.PAS' {Formi},
Agent in 'Agent.pas',
Vector in 'Vector.pas',
AgentManager in 'AgentManager.pas’',
Map in 'Map.pas’,
DebugUnit in 'DebugUnit.pas' {DebugForm};

{$R *.RES}

begin
Application.CreateForm(TForm1, Formi);
Application.CreateForm(TDebugForm, DebugForm);
Application.Run;

end.

Page 102 of 106

Listing of example Init.dat

;m=mapping b=beacon r=roaming

;format [type] [x posn] [y posn] [x dirn] [y dirn]

; [m|b|r] (0..MAX_X) (0..MAX_Y) (-1.0..1.0) (-1.0..1.0)
; eg. m 10 15 1 1

e e B B B |

[2)]

o

[¢)]

o
oOoooo
_ g

T T
[eNeoNe]

Page 103 of 106

[BaRa&4]

[Bri95]

[Bro86]

[Bro89]

[BeHo94]

[Cal95]

[Coh96]

[CoSt95]

[DeGo&9]

[DuJe93]

[GoMa97]

[HuGl96]

Bibliography

Bannister, A. & Raymond, S., “Surveying Fifth edition”, Longman Scientific &
Technical, 1984.

Britannica CD 2.0, Encyclopaedia Britannica, 1995

Brooks, R., “A Robust Layered Control System for a Mobile Robot”, IEEE
Journal of Robotics and Automation, Vol.RA-2 No.1, 1986

“A Robot that Walks; Emergent Behaviours from a Carefully Evolved
Network”, Neural Computation, pp.253-262, 1989.

Beckers, R., Holland, O.E. & Deneubourg, J.L., “From Local Actions to Global
Tasks: Stigmergy and Collective Robotics”, Artificial Life IV: Proceedings of the
Fourth International Workshop on the Synthesis and Simulation of Living
Systems, MIT Press, ppl81-189, 1994,

Calvert, C., “Delphi Unleashed”, Sams Publishing, 1995.

Cohen, W., “Adaptive Mapping and Navigation by Teams of Simple
Robots” ,Robotics and Autonomous Systems Vol.18, No.4, pp.411-434, 1996.

Cornell, G. & Strain, T., “Delphi Nuts & Bolts for Experienced Programmers”,
Osbhorne McGraw-Hill, 1995.

Deneubourg, J.L. & Goss, S., “Collective Patterns and Decision Making”,
Ethology, Ecology and Evolution I, pp.295-311, 1989.

Dudek, G., Jenkin, M., Milios, E. & Wilkes., D., “A Taxonomy for Swarm
Robots”, Proceedings of the 1993 IEEE/RS] International Conference on
Intelligent Robots and Systems, Yokohama, Japan, pp.441-447, July 26-30, 1993.

Goldberg, D., Matarié, M., “Interference as a Tool for Designing and Evaluating
Multi-Robot Controllers”, Proceedings, AAAI-97, Providence, Rhode Island, July
27-31, pp.637-642, 1997

Huberman, B.A., Glance, N.S., “Evolutionary Games and Computer
Simulations”, downloaded from Xerox internet site, to appear in Proceedings
National Academy of Sciences (USA), 1996.

Page 104 of 106

[HuMe94] Husbands, C., Meyer, Wilson eds., “From Animals to Animats 3. Proceedings
of the Third International Conference on Simulation of Adaptive Behaviour.”,
MIT Press, 1994

[KoMe95] Kodjabachian, J., Meyer, J., “Evolution and development of control
architectures in animats”, Robotics and Autonomus Systems 16, pp.161-182,
1995.

[Lan95] Langton, C. ed, “Artificial Life: an overview”, MIT Press, 1995.

[Levo2] Levy, S., “Artificial Life: The Quest for a New Creation”, Pantheon Books,
1992.

[Lit94] Littman, M.,“Memoryless policies: theoretical limitations and practical
results”, From Animals to Animats 3. Proceedings of the Third International
Conference on Simulation of Adaptive Behaviour, Husbands, C., Meyer, Wilson
eds., MIT Press, pp.238-245, 1994

[LuSp96] Luke, S., Spector, L., “Evolving Teamwork and Coordination with Genetic
Programming”, downloaded from internet site, to appear in Proceedings Genetic
Programming 96 (GP96), Stanford, July 1996.

[MaNi95] Matari¢, M., Nilsson, M., Simsarian, K.T., “Cooperative Multi-Robot
Box-Pushing”, Proceedings IROS-95, Pittsburgh, PA, 1995.

[Mat94] Matarié, M., “Interaction and Intelligent Behaviour”, MIT PhD thesis, 1994,

downloaded from MIT internet site.

[Mata94] Matari¢, M.,“Learning to Behave Socially”, From Animals to Animats 3.
Proceedings of the Third International Conference on Simulation of Adaptive
Behaviour, Husbands, C., Meyer, Wilson eds., MIT Press, pp.453-462, 1994.

[Mat95] Matarié, M., “Issues and Approaches in the Design of Collective Autonomous
Agents”, Robotics and Autonomous Systems 16, pp.321-331, 1995.

[Mat97] Matarié, M., “Using Communication to Reduce Locality in Multi-Robot
Learning”, Proceedings AAAI-97, Providence, Rhose Island, July 27-31,
pp.643-648, 1997.

[McF94] McFarland, D., “Towards Robot Cooperation”, From Animals to Animats 3.
Proceedings of the Thirvd International Conference on Simulation of Adaptive
Behaviour, Husbands, C., Meyer, Wilson eds., MIT Press, pp.440-444, 1994

Page 105 of 106

[MiMa97] Michaud, F., Matari¢, M., “Behaviour Evaluation and Learning From an

[Mue96]
[PaTe96]

[Pfe95]

[PrUr89]

[ScMa96]

[ShFu93]

[Ste95]

[SuSu90]

[Uns93]

[Wan94]

[XiVe94]

Internal Point of View”, Proceedings FLAIRS-97, Daytona, Florida, May 1997.
Mueller, J.P., “Peter Norton’s Guide to Delphi 2”7, Sams Publishing, 1996.
Pacheco, X. & Teixeira, S., “Delphi 2 Developer’s Guide”, 1996, Borland Press.

Pfeifer, R., “Cognition - Perspectives from autonomous agents”, Robotics and
Autonomous Systems 15, pp.47-70, 1995.

Price, W.F. & Uren, J., “Laser Surveying”, VonNostrand Reinhold, 1989.

Schneider-Fonté4n, M., Matari¢, M., “A Study of Territoriality: The Role of
Critical Mass in Multi-Robot Adaptive Task Division”, From Animals to
Animats 4, Fourth Conference on Simulation of Adaptive Behaviour (SAB-96),
pp.553-561, 1996

Shibata, T., Fukuda, T., “Coordinative Behaviour in Evolutionary
Multi-Agent-Robot System”, Proceedings of the 1993 IEEE/RS] International
Conference on Intelligent Robots and Systems, Yokohama, Japan, pp.448-453, July
26-30, 1993.

Steels, L., “The Artificial Life Roots of Artificial Intelligence”, Artificial Life -
An Overview, ed. Langton, C., MIT Press, pp.75-110, 1995

Sugihara, K. & Suzuki, L., “Distributed Motion Coordination of Multiple Mobile
Robot”, IEEE International Symposium on Intelligent Control, Philadelphia, PA,
pp. 138-143, September 1990.

Unsal, C., “Self-organization in Large Populations of Mobile Robots”, M.S.
Thesis -Virginia Polytechnic Institute and State University, 1993, downloaded

from internet site.

“On Sign-board Based Inter-Robot Communication in Distributed Robotic
Systems”, IEEE International Conference on Robotics and Automation, Vol.2,
pp.1045-1050, 1994.

Xia, F., Velastin, S.A., Davies, A.C., A Parallel Simulation of Multiple Mobile
Robots Using the DORIS Design Method, IEEE International Conference on
Robotics and Automation Vol. 3, pp.2482-2487, 1994.

Page 106 of 106

