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Abstract

We study scattering of the quadratic Klein-Gordon equation with an inverse-
square potential{

∂2
t u−∆u+ a

|x|2u+ u = u2, (t, x) ∈ R×Rd

u(0, x) = u0, ut(0, x) = u1

under various assumptions on the initial data. The idea is to use the non-resonance
structure of the quadratic Klein-Gordon equation. In particular, we study the
harmonic analysis adapted to the operator −∆+a/|x|2. First, we obtain scattering
for the 3D radial small energy problem. Here, the main tools are the refined radial
Strichartz estimates which can be obtained in a similar manner to the potential-
free case as in Guo-Hani-Nakanishi [Comm. Math. Phys. (2018)], as well as a
normal form transform. Next, we obtain a scattering result small energy problem
in dimensions d ≥ 3 (with some restrictions on the coefficient a of the inverse-
square potential). Here, the result is obtained using Up and V p spaces as studied
in [Hadac-Herr-Koch Ann. Inst. H. Poincaré Anal. Non Linéaire (2009)] and
for the potential-free QKG(0) in Schottdorf [arXiv:1209.1518 (2012)]. The non-
resonance of the QKG(a) is studied using a modulation bound. Furthermore, we
obtain a scattering result for the 4D radial large energy problem below the ground
state. Here, the usual L1 → L∞ dispersive estimate does not hold for a < 0.
Nonetheless, a weaker dispersive estimate does hold, as established by Zheng [J.
Math. Phys. (2018)]. The main tools for this problem are then weaker frequency-
localised dispersive estimates (a combination of the estimates in Guo-Peng-Wang [J.
Funct. Anal. (2008)] and those in Zheng [J. Math. Phys. (2018)], Virial-Morawetz
estimates as in Dodson-Murphy [Proc. Amer. Math. Soc. (2017)] as well as
the reduction of the large energy problem to a small energy problem after large
time. We apply these similar methods to also study scattering for the non-linear
Schrödinger equation and non-linear Klein-Gordon equation with an exponential-
type nonlinearity.
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CHAPTER 1

Introduction and main results

We study the scattering behaviour of the following Cauchy problem of the
quadratic Klein-Gordon (QKG(a)) equation with inverse square potential:

(1.0.1)

{
∂2
t u−∆u+ a

|x|2u+ u = u2, (t, x) ∈ R×Rd

u(0, x) = u0, ut(0, x) = u1

where u : R×Rd → R, d ≥ 3 and a > −
(
d−2

2

)2
= µ(0)2. We shall denote −∆+ a

|x|2
by La. In fact, it is not immediately clear that properties of the potential-free
problem (i.e. QKG(0)) are inherited by the QKG(a), even for a near zero. This
is best illustrated by break in translation symmetry for a 6= 0. Therefore, we need
to recover the tools and arguments used by previous works — namely: Strichartz
estimates with improved range of admissible pairs for radial initial data (i.e. radially
refined Strichartz estimates) [17], bilinear Strichartz estimates [53] and the normal
form transform [22]. The contribution of this thesis is the adaptation of these
results to the inverse-square potential setting. The non-resonance structure of the
QKG(a) is essential to this study.

The behaviour of the non-linear Schödinger equation (NLS) with inverse-square
potential and wave equation (NLW) with inverse-square potential are better under-
stood. Indeed, Strichartz estimates for the NLS with inverse-square potential and
NLW with inverse-square potential were obtained by Burq-Planchon-Stalker and
Tahvildar-Zadeh [6] (also see [50, 49]). These results were extended by Miao-
Zhang-Zheng [43] with an improved range of admissible pairs, at a small loss in
angular regularity. Studies related to unique solvability have also been undertaken
— see Okazawa-Suzuki-Yokota [46] and also Suzuki [57], where unique solvability

was obtained at the critical coefficient a = −
(
d−2

2

)2
. In addition, the harmonic

analysis adapted to the operator La for d ≥ 3 was studied by Kilip-Miao-Visan-
Zhang-Zheng [33] via heat kernel bounds of the semigroup etLa . Specifically, the
multiplier theory (and therefore also the Littlewood-Paley theory) adapted to La is
well understood. Thus, for instance, allows the use of frequency decomposition tech-
niques. Studies of the d = 2 case have also been considered, for instance, by Burq
et al. [6]. We also mention some other studies, such as blow-up by Bensouilah-Dinh
[4] and Csobo-Genoud [12]) as well as the stability/instability of standing waves
by Bensouilah-Dinh-Zhu [5].

Scattering results in the setting of the NLS with inverse-square potential (de-
noted by NLS(a)) are also well understood. Indeed, the scattering/blow-up di-
chotomy below the ground state threshold is understood under various assump-
tions (radial/non-radial, critical/inter-critical, etc.) [34, 36, 65, 67]. The global
existence/blow-up dichotomy for a class of focusing NLS equations below the ground
state threshold has also been studied in both intercritical and critical settings by

1



2 1. INTRODUCTION AND MAIN RESULTS

Dinh [13]. The Virial-Morawetz estimates of Dodson-Murphy [14] play a central
role in obtaining scattering, and are also central in this thesis. We also mention
analogous scattering results for the Hartree equation with inverse-square potential
[9] and the more generalised setting of the Choquard equation [41].

The non-resonance structure of the QKG(a) is central to our study. In the
potential-free case, the analogous structure of QKG(0) is studied via the Fourier
transform. To make use of the non-resonance structure for a 6= 0, we have the
following (radial) Hankel transform available to us:

(Hν(a)f)(r) =

∫ ∞
0

Uν(a)(rρ)f(ρ) ρd−1 dρ,

where Uν(a)(rρ) = (rρ)−
d−2
2 Jν(a)(rρ) and ν(a) =

√(
d−2

2

)2
+ a — see Chapter 2

below for more details. Using properties of the Bessel function near zero, one can
see that in fact the behaviour of Uν(a) is discontinuous with respect to a. Indeed,

we have that Jν(a)(z) ∼ zν(a) for z near zero. Hence, we have

Uν(a)(0) =

 ∞, a < 0
const., a = 0
0, a > 0

.

Thus, it is not immediately clear whether properties of the potential-free case
will carry over to solutions of QKG(a) even in the case where a is near 0. As
mentioned previously, if a < 0, the L1 → L∞ dispersive estimate fails, even though
it holds for the classical a = 0 case (and also holds for a > 0). However, time-

decay can be recovered. For the NLS(a), Burq et al. [6] recover Lp
′ → Lp time-

decay estimates for p = 2d/(d− 1) with time-decay t−1/2. Kilip et al. [33] instead
study certain convergence results that substitute these dispersive estimates. Finally,
Zheng [67] recovers a weaker time-decay estimates in a weighted L2 space. This
final approach is most relevant to this thesis. Here, the unboundedness of U(ν(a))
at zero for a < 0 is the only obstruction. On the other hand, rearrangement breaks
down in the range a > 0. Indeed, rearrangement only decreases the adapted Sobolev
norm

‖u‖Ḣ1
a

:=

∫
Rd

|∇u|2 +
a

|x|2
|u|2 dx.

in the range a ≤ 0. The issue lies in the inequality (5.2.2), which implies that for
a > 0 ∫

Rd

a

|x|2
|u|2 dx ≤

∫
Rd

a

|x|2
|u∗|2 dx.

However, if a < 0, then the direction of the inequality is reversed and becomes
favourable. This breakdown of rearrangement is an issue when we study the ground
state threshold in Chapter 5 as the minimiser of an energy. Rearrangement is used
to show that the minimiser must be radial, and thus better compactness embeddings
are available to obtain existence.

The QKG(a) has the following conserved energy Ea(u, ut) defined by

1

2

∫
Rd

|∂tu(t, x)|2 + |∇u(t, x)|2 +
a

|x|2
|u(t, x)|2 + |u(t, x)|2 dx− 1

3

∫
Rd

u(t, x)3 dx.

In this thesis, we are especially focused on the QKG(a) in three and four dimensions.
In d = 3, the model is mass-subcritical and in d = 4, the model is mass-critical.
Furthermore, the resonance structure of the QKG(a) is essential in our study. This



1.1. SUMMARY OF MAIN RESULTS 3

structure is revealed via the Hankel transform, which generalises the analysis of
the QKG(a) for a 6= 0, and is analogous to the (radial) Fourier transform for the
potential-free (a = 0) case. The use of the Hankel transform (see [25, 26]) allows
for the use of the (partial) normal form method by Shatah [55] (also see Germain
[16]) to make use of this resonance structure. We discuss in more detail our main
results in the next section.

We also study the related problem of the two-dimensional non-linear Schrödinger
equation and non-linear Klein-Gordon equation with exponential nonlinearity and
inverse square potential. We shall introduce this study further in Chapter 6.

1.1. Summary of main results

We summarise the results of this thesis. The first result is the following set
of refined radial Strichartz estimates adapted to the operator La. This result is a
generalisation of the estimates in [17]. By orthogonality of the spherical harmonics,
we can generalise them to a non-radial (and spherically-averaged) setting, though
we shall only use the radial version in this thesis.

Theorem 1.1.1 (Radial refined Strichartz estimates). Let d ≥ 3, k ∈ Z, 2 ≤
q, r ≤ ∞ and u0 ∈ L2

rad(Rd). Let a > −
(
d−2

2

)2
and furthermore, if −

(
d−2

2

)2
<

a < 0, impose also that r0 < r < r′0 = d
σ . Then,

(a) (General region) if q
(

1
2 −

1
r

)
> 1

d−1 and ω satisfies (3.1.2). Then,

‖eitω(Da)P ak u0‖LqtLrx . 2k(
d
2−

d
r−

α
q ) ‖u0‖L2

x(Rd) .

(b) (Refined region) if 2
2d−1 < q

(
1
2 −

1
r

)
< 1

d−1 and ω satisfies (3.1.3). Then,

‖eitω(Da)P ak u0‖LqtLrx . 2kθ(r,q) ‖u0‖L2
x(Rd)

where θ(r, q) = d
2 −

d
r −

β
q − (α− β)

(
d−1

2 −
d−1
r

)
.

Furthermore, along the endpoint case q
(

1
2 −

1
r

)
= 1

d−1 , we have

‖eitω(Da)P ak u0‖LqtLrx . 〈k(α− β)〉
2
q 2kθ(r,q) ‖u0‖L2

x(Rd) .

The above estimates are then used to obtain the following small-energy scat-
tering result in 3D in Chapter 3. The space

(
1
2 ,

3
10 − κ,

2
5 − 3κ

∣∣ 7
10 + κ

)
shall be

defined later, and is essential a time-averaged Besov space adapted to La with
regularity 2

5 − 3κ at low frequency and 7
10 + κ at high frequency. We follow the

argument of Guo-Shen [22]. We remark that a similar result can be obtained in 4D,
though we do not pursue this in detail. We remark that there is a loss of 1/100 in
the range of a for which the result holds of. This comes from the analysis adapted
to La, which only holds for a restricted range of Lp when a < 0. One is able to
increase the range of Lp by restricting the range of a. More precisely, the range of
Lp is given by r0 < p < r′0 := d

σ , where

σ = d−2
2 −

√(
d−2

2

)2
+ a.

We remark that a similar method has been used to study other models — such as
the 3D Gross-Pitaevskii equation [17], 3D Zakharov system [18] and Klein-Gordon-
Zakharov systems [20].



4 1. INTRODUCTION AND MAIN RESULTS

Theorem 1.1.2 (3D radial small energy scattering). Let 0 < κ � 1 be suffi-
ciently small, and suppose that (u0, u1) is radial and satisfies ‖(u0, u1)‖H1

a×L2 � 1.

Then, there exists a unique solution u(t, x) to (1.0.1) with a > σ−1( 3
2 ( 3

10 − κ)) ≈
− 1

4 + 1
100 in the space

S = C(R, H1
a) ∩

(
1

2
,

3

10
− κ, 2

5
− 3κ

∣∣∣∣ 7

10
+ κ

)
,

that also scatters in the sense that there exists u±(x) ∈ H1
a such that

‖u− i 〈Da〉−1
∂tu− eit〈Da〉u±‖H1

a
→ 0,

as t→∞.

Next, we study the small energy problem in higher dimensions (d ≥ 3). Since we
no longer have access to the refined radial Strichartz estimates, we instead follow the
argument of Schottdorf [53] to obtain a scattering result. Indeed, the key is to work
in Up and V p spaces (see Hadac-Herr-Koch [24]). For a toy problem, one may refer
to the discussion of the non-resonant 2D derivative NLS i∂tu+∆u = ∂x1

ū2 by Koch
[38]. The main problem is that due to duality, the quadratic nonlinearity of the
QKG(a) will require trilinear estimates in order to close the scattering argument.
Thus, bilinear estimates L2 × L2 → L2 will allow us to split essentially an L1

integral into L2 × L2 → L1 via Hölder’s inequality and then split once more into
L2 × L2 × L2 → L1. These can then be converted into estimates on Up and V p

spaces. We have the following result in the range a > Ad where

(1.1.1) Ad =

{
−
(
d−2

2

)2
, d = 3, 4

1
16 (8d− 3d2), d ≥ 5.

Theorem 1.1.3 (Small energy scattering in higher dimensions). Let d ≥ 3,
a > Ad. Let (u0, u1) ∈ Hs

a × Hs−1
a with s ≥ d−2

2 . Furthermore, assume that
u0 and u1 are radial. Then the equation QKG(a) (1.0.1) has a global solution
in C(R, Hs

a) ∩ C(R, Hs−1
a ) that is unique in the space Xs([0,∞)) and scatters as

t→ ±∞.

Finally, for the quadratic Klein-Gordon equation with inverse-square potential,
we study the 4D large energy problem in the radial setting. That is, the dynam-
ics of the QKG(a) below the ground state. This is mainly following the work of
Payne-Sattinger [48], Ibrahim-Masmoudi-Nakanishi [30] and Guo-Shen [22] in the
potential-free case. The aforementioned breakdown of rearrangement complicates
the picture, and in particular, it complicates the existence of the ground state Qa∗

(see (5.2.3) below). In this problem, dispersive estimates are essential. However,
for negative coefficients a, these are only available in a weaker form — see Zheng
[67]. The idea here is to convert the large energy problem is a small energy problem
after large enough time. The Virial-Morawetz argument of Dodson-Murphy [14] is
central to this study.

Theorem 1.1.4 (4D radial large energy scattering). Let d = 4 and κ > 0 be
a sufficiently small constant. Furthermore, suppose that a > σ−1

(
1
2

)
= −1 + 1

4 .
Suppose that (u0, u1) is radial and satisfies

Ea(u0, u1) < E(Qa∗ , 0).

Then, we have the following dichotomy:

(i) If ‖u0‖2 > ‖Qa∗‖L2 , then the solution to (1.0.1) blows up in finite time.
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(ii) If ‖u0‖2 < ‖Qa∗‖L2 , then the solution to (1.0.1) satisfies

u(t, x) ∈ C(R, H1
a) ∩

(
1

2
,

5

14
− κ, 3

7
− 4κ|11

14
+ κ

)
and scatters in the sense that∥∥∥u− i〈Da〉−1∂tu− eit〈Da〉u±

∥∥∥
H1
a

→ 0

when t→ ±∞ and for some u±(x) ∈ H1
a .

We also have the following results for the 2D non-linear Schrödinger (NLS) and
non-linear Klein-Gordon (NLKG) with inverse-square potential and with exponential-
type non-linearity (defined in (6.0.1) and (6.0.2)). We use similar methods to the
quadratic Klein-Gordon equation case. In particular, the Virial-Morawetz argu-
ments will be important in this study as well. We also use many ideas from Guo-
Shen [23] and Ibrahim-Masmoudi-Nakanishi [30] to obtain the following result. We
shall discuss this result in more detail in Chapter 6.

Theorem 1.1.5. Suppose that u0 ∈ H1
a(R2), (α, β) satisfies conditions (6.3.1),

mα,β is defined by (6.3.7) and κ∗a is a constant defined in Proposition 6.1.8 below.

Recall also κ0 > 0 and f(u) := λ
(
eκ0|u|2 − 1− κ0|u|2

)
u. Then,

(a) If λ = −1, the solution to (6.0.1) exists globally and scatters provided

ES(u0) <
κ∗a
2κ0

.

(b) If λ = 1, the solution to (6.0.1) exists globally and scatters provided that
ES(u0) + M(u)/2 < mα,β and Kα,β(u0) > 0, and a > 1 or sufficiently
close to zero.

(c) If λ = −1, the solution to (6.0.2) exists globally and scatters provided

EK(u0) <
κ∗a
2κ0

.

(d) If λ = 1, the solution to (6.0.2) exists globally and scatters provided that
EK(u0) < mα,β and Kα,β(u0) > 0 for a > 1 or sufficiently close to zero.
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1.2. Summary of notation

• La = −∆ + a
|x|2 and Da :=

√
La

• If A ≤ CB, then write A . B. If A ≤ CB and B ≤ C ′A, then write
A ∼ B. If the constants depend of parameters, for instance C = C(a),
then write A .a B and A ∼a B respectively. Also, we write A� B when
A < cB for some small constant c.

• For x ∈ Rd, 〈x〉 =
√

1 + |x|2.

• Let Lp(Rd) andHs(Rd) denote the standard Lebesgue and Sobolev spaces.
Furthermore, let Lprad(Rd) and Hs

rad(Rd) denote the respective spaces of

radial functions. Also, L p
ρ ((0,∞)) = Lp((0,∞), ρd−1dρ)

• We shall write Fu to denote the Fourier transform of u.
• The Hankel transform of order ν of a radial function (in the space variable)
u(t, ρ) is

Hνu(t, ρ) =

∫ ∞
0

(rρ)−
d−2
2 Jν(rρ)u(t, r) dω(r)

where dω(r) = rd−1dr. We shall also denote the Hankel transform of u
(in the space variables) by û.

• We always assume that a > −
(
d−2

2

)2
. We define useful choices of orders

of the Hankel transform: µ(0) = d−2
2 , µ(k) = d−2

2 +k, ν(a) =
√
µ(0)2 + a

and ν(a, k) =
√
µ(k)2 + a.

• In Chapter 4, M,N and N ′ denote dyadic numbers of the form 2k where
k ∈ N, unless explicitly mentioned to be of the form 2k where k ∈ Z.
Denote

∑
N aN := a0 +

∑
n∈N a2n .



CHAPTER 2

Harmonic analysis associated to the inverse-square
potential

2.1. Spherical harmonics decomposition

We shall study the solutions to equations of the form

(2.1.1)

 iut(x, t) + ω

(√
−∆ + a

|x|2

)
u(x, t) = 0, (x, t) ∈ Rd ×R

u(0, x) = u0(x)

by decomposing functions into spherical harmonics. That is, for any u ∈
L2(Rd), we may write

(2.1.2) u(x) =

∞∑
k=0

d(k)∑
l=1

ak,l(r)Yk,l(θ).

where for k ∈ N ∪ {0}, the set {Yk,1(θ), ..., Yk,d(k)(θ)} is the orthogonal basis of

the space of spherical harmonics of degree k on Sd−1. More specifically, Yk,j(x) ∈
L2(Rd) is a homogeneous polynomial of order k – i.e. Y (x) = |x|kY (x/|x|) which
is also harmonic (i.e. ∆Y = 0). We first note that if we write u in terms of its
spherical harmonic decomposition, then its Fourier transform is given by

Fxu(ξ) =

∞∑
k=0

d(k)∑
l=1

2πik
(∫ ∞

0

(rρ)−
d−2
2 J d−2

2 +k(rρ) · ak,l(r)rd−1 dr

)
Yk,l(ω)

where ξ = ρω with ω ∈ Sd−1. We shall denote

µ(k) =
d− 2

2
+ k.

Spherical harmonics also simplify our study of (2.1.1). In particular, let us consider
u(x) = a(r)Y (θ) where x = rθ and Y (θ) is a spherical harmonic of degree k. Then,

−∆x (a(r)Y (θ)) = −∆x

(
|x|−ka(|x|)Y (x)

)
Evalulating the Laplacian, and using the fact that ∆xY (x) = 0 gives

−∆x (a(r)Y (θ)) = −
(
∂2
r +

d− 1

r
∂r

)
(r−ka(r))Y (x)− 2x

r
∂r
(
r−ka(r)

)
· ∇Y.

Now, using the fact that x · ∇Y = kY and evaluating the derivatives, we find that

−∆ (a(r)Y (θ)) =

(
−∂2

r −
d− 1

r
∂r +

k(k + d− 2)

r2

)
a(r) · Y (θ).

7



8 2. HARMONIC ANALYSIS ASSOCIATED TO THE INVERSE-SQUARE POTENTIAL

Thus, we also find that(
−∆ +

a

|x|2

)
(a(r)Y (θ)) =

(
−∂2

r −
d− 1

r
∂r +

k(k + d− 2) + a

r2

)
a(r) · Y (θ)

=

(
−∂2

r −
d− 1

r
∂r +

ν(k, a)2 − µ(0)2

r2

)
a(r) · Y (θ)

where ν(k, a) :=
√
µ(k)2 + a. We may generalise the above argument to a general

function in the kth harmonic subspace (which we shall denote by L2
=k(Rd)). Thus,

we find that when we restrict to the kth harmonic subspace,

Lau = Aν(k,a)u :=

(
−∂2

r −
d− 1

r
∂r +

ν(k, a)2 − µ(0)2

r2

)
u.

2.2. The Hankel transform

We shall make use of spherical decomposition via the (generalised) Hankel
transform of order ν defined by

(2.2.1) (Hνf)(ξ) =

∫ ∞
0

Uν(rρ)f(rσ) dω(r)

where ρ = |ξ|, σ = ξ/|ξ|, dω(r) = rd−1dr and Uν(z) = z−
d−2
2 Jν(z). Also, Jν is the

Bessel function of order ν defined as

(2.2.2) Jν(z) =
(z/2)ν

Γ(ν + 1/2)π1/2

∞∑
m=0

(iz)m

m!

∫ 1

−1

tm(1− t2)ν−1/2 dt

for ν > −1/2 and z > 0. We also have the following properties of the Bessel
functions, which we shall need in this thesis.

Lemma 2.2.1 (Properties of Bessel functions). Let Jν(z) be the Bessel function
of order ν > −1/2 as defined above. Then, for z > 0

(i) |Jν(z)| ≤ Czν if 0 < z �
√
ν + 1

(ii) |Jν(z)| ≤ Cz− 1
2 if z � |ν2 − 1

4 |.

For radial functions f , we have the following simplification for the Hankel
transform:

(Hνf)(ρ) =

∫ ∞
0

Uν(rρ)f(r) dω(r).

More generally, suppose f ∈ L2
=k(Rd). We may use (2.1.2) to write

f(x) =
∑

1≤l≤d(k)

al(r)Yl(θ).

Thus, we have

(Hνf)(ξ) =
∑

1≤l≤d(k)

(∫ ∞
0

Uν(rρ)al(r) dω(r)

)
Yl(σ).

We have the following properties of the Hankel transform:

Lemma 2.2.2 (see [6]). Let Hν be the Hankel transform of order ν as above.
We have

(i) Hν is its own inverse: Hν = H−1
ν

(ii) Hν is self-adjoint: Hν = H∗ν
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(iii) Hν is an L2-isometry: ‖Hνf‖L2 = ‖f‖L2 for all f ∈ L2.
(iv) Hν(Aνφ)(ξ) = |ξ|2(Hνφ)(ξ) for all φ ∈ L2

Let us also record some further properties of the Hankel transform. First, let
us discuss the following convolution theorem for the Hankel transform.

Lemma 2.2.3 (Generalised convolution for the Hankel transform). Suppose that
f, g ∈ L1(Rd) are radial. Then, define

f#νg :=

∫ ∞
0

τxf(y) · g(y) dy

where τxf is the generalised Hankel translation:

τxf(y) :=

∫ ∞
0

f(z)Dν(x, y, z) dz,

and Dν(x, y, z) is given by∫ ∞
0

Uν(xη)Uν(yη)Uν(zη) dω(η).

Furthermore,
Hν(f#νg) = Hν(f) · Hν(g).

Hence, using the fact that H−1
ν = Hν we also obtain that

Hν(fg) = Hν(f)#νHν(g).

For convenience, we will often omit the subscript ν.

Proof. The fact that the convolution is zero unless there exists a triangle
with side lengths x, y and z follows from [61]. Using the definition of the Hankel
transform, we see that f#g = Hν(Hν(f)·Hν(g)). Thus, apply the Hankel transform
to both sides, we conclude that Hν(f#g) = Hν(f) · Hν(g). �

Remark 2.2.4. In the next section, we discuss an adapted Littlewood-Paley
theory. Perhaps one strategy to obtain results such as Bernstein estimates would be
to first obtain Young’s inequality for the above convolution and then to adapt proofs
from the Fourier setting that use convolution arguments. However, we could not
obtain Young’s inequality. The issue lies in the Hankel translation. Ideally, one
could show that

‖τxf(y)‖L p
y
. ‖f(y)‖L p

y
.

However, if a < 0, then this inequality does not hold even for p = 2. This is because
τxf(y) = Hν (U(xρ)Hνf) but U(z) 6∈ L∞, so we cannot apply Hölder’s inequality
to obtain

‖τxf(y)‖L 2
y

= ‖U(xρ)Hνf‖L 2
ρ
. ‖f(y)‖L 2

y
.

2.3. Hankel multipliers and adapted Littlewood-Paley theory

We shall need to consider operators of the form ω (Da). In particular, we shall
need both the Lp boundedness of these operators, as well as an explicit represen-
tation of these operators as multipliers with respect to the Hankel transform.

Since we shall always study a function u via its spherical decomposition, let us
suppose that u ∈ L2

=k(Rd). As we saw previously, we have that Lau = Aν(k,a)u.
Hence, we may appeal to the spectral theory of operator Aν(k,a) to obtain that

ω (Da)u = ω
(√

Aν(k,a)

)
u = Hν(k,a)

{
ω(|ξ|)Hν(k,a)u

}
.
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More specifically, we obtain from Lemma 2.2.2(1) that

u(x) = Hν(k,a)

(
Hν(k,a)u

)
(x) =

∫ ∞
0

Uν(k,a) (r|x|)
(
Hν(k,a)u

)(
r
x

|x|

)
rd−1 dr.

Thus, we obtain a resolution of the identity based on the Hankel transform:

I =

∫ ∞
0

E
ν(k,a)
0 (r) dr

where

E
ν(k,a)
0 (r)u(x) = Uν(k,a) (r|x|)

(
Hν(k,a)u

)(
r
x

|x|

)
rd−1.

Now, from Lemma 2.2.2(4) for u ∈ L2
=k(Rd), we see thatAν(k,a)u = Hν(k,a)|ξ|2Hν(k,a)u

and

La = Aν(k,a) =

∫ ∞
0

r2 E
ν(k,a)
0 (r)dr.

Hence, we may define operators in terms of
√
Aν(k,a):

ω
(√

Aν(k,a)

)
=

∫ ∞
0

ω(r) E
ν(k,a)
0 (r)dr.

This may be rewritten as

ω
(√

Aν(k,a)

)
u(x) =

∫ ∞
0

Uν(k,a) (r|x|)ω(r)
(
Hν(k,a)u

)(
r
x

|x|

)
rd−1 dr.

Once again applying Lemma 2.2.2(1), we see that

Hν(k,a)

(
ω
(√

Aν(k,a)

)
u
)

= ω(|ξ|)Hν(k,a)(u) = ω(ρ)Hν(k,a)(u).

This gives us an explicit representation for multipliers ω(Da).
Next, we discuss Lp boundedness. We have the following Mikhlin-type result

from Killip et al. [33]:

Proposition 2.3.1 (Mikhlin multipliers of Da). Let ω : [0,∞)→ C such that
|∂jω(λ)| . λ−j for all j ≥ 0 and either

(i) a ≥ 0 and 1 < p <∞ or

(ii) −µ(0)2 ≤ a < 0 and r0 < p < r′0 := d
σ and σ = d−2

2 −
√(

d−2
2

)2
+ a.

Then, ω (Da) extends to a bounded operator on Lp(Rd).

Now, we specialise further and summarise some basic Littlewood-Paley theory
adapted to La. Let φ : [0,∞) → [0, 1] be a smooth function with φ(λ) = 1 on
0 ≤ λ ≤ 1 and φ(λ) = 0 for λ ≥ 2. From this, we define φk(λ) = φ(λ/2k) and also
ψk(λ) = φk(λ) − φk−1(λ). Thus, we may define for a radial function u and with
ν = ν(a) that

P a≤ku = Hνφk(ρ)Hνu,

P ak u = Hνψk(ρ)Hνu

P a>ku = 1− P a≤ku.
We may follow the argument of [59, Theorem 4.2.2] to conclude that the function
space is independent of the choice of φ.

The following Bernstein estimates will be important in this work:
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Proposition 2.3.2 (Bernstein estimates for P ak , [33]). Let 1 < p ≤ q ≤ ∞ for
a ≥ 0 and r0 < p ≤ q < r′0 when −µ(0)2 ≤ a < 0 and u ∈ C∞c (Rd\{0}). Then,

(i) The operators P a≤k, P ak are bounded on Lp,

(ii) For all s ∈ R, ‖Ds
aP

a
k u‖Lp(Rd) ∼ 2ks‖P ak u‖Lp(Rd).

(iii) ‖P ak u‖Lq(Rd) ≤ 2kd(
1
p−

1
q )‖P ak u‖Lp(Rd)

(iv) ‖P a≤ku‖Lq(Rd) ≤ 2kd(
1
p−

1
q )‖P a≤ku‖Lp(Rd)

Proof. See [33]. �

From this result, we see that we have the commutativity between La and the
projector to convert an L2 estimate to an Hs

a estimate. In addition, we also have
the following Littlewood-Paley square function theorem:

Proposition 2.3.3 (Littlewood-Paley square function theorem, [33]). Let s ≥
0 and also 1 < p ≤ q ≤ ∞ for a ≥ 0 and r0 < p ≤ q < r′0 when −µ(0)2 ≤ a < 0.
Then, for any u ∈ C∞c (Rd\{0}). we have that

‖Ds
au‖Lp(Rd) ∼

∥∥∥∥∥∥
(∑
k∈Z

22ks|P ak u|2
) 1

2

∥∥∥∥∥∥
Lp(Rd)

.

The Mikhlin multiplier theorem above can be used to obtain the following
boundedness result for Coifman-Meyer type bilinear multipliers.

Proposition 2.3.4. Let λ = (λ1, λ2) ∈ (0,∞)2. Suppose that m(λ) is such
that for some s ∈ N, we have

(2.3.1) |∂αm(λ)| . |λ|−|α|

for all partial derivatives with multi-indices |α| ≤ s. Define the operator

(2.3.2) Tm(f, g)(x) =

∫ ∞
0

∫ ∞
0

m(u, v)Uν(ux)Uν(vx)Hνf(u)Hνg(v) dω(u)dω(v).

Then, for p, q, r ∈ (1,∞) such that 1
p = 1

q + 1
r (and also r0 < q, r < r′0 if a < 0),

we have

(2.3.3) ‖Tm(f, g)‖ . ‖f‖q‖g‖r.

Proof. We shall follow the proof in [64, Theorem 2.3]. Indeed, we first rewrite
Tm as Tm(f, g)(x) = m(L1, L2)(f⊗g)(x, x). Here, L1 =

√
La⊗I and L2 = I⊗

√
La,

where I is the identity operator. Furthermore, we note that this recharacterisation
for Tm can be understood via the joint spectral measure of (L1, L2) – see [64] for
more details.

Let us write F := f ⊗ g and let ψ be a smooth function with support in [1/2, 1]
such that

∑
k ψk = 1. Here, we use the notation that ψk(λ) := ψ(2−kλ) for all

λ ∈ [0,∞).
To obtain the result, the idea is the decompose Tm as follows:

Tm(f, g)(x) =
∑

k1,k2∈Z

(ψk1(L1)ψk2(L2)m(L1, L2))(F )(x, x)

= T1 + T2 + T3,
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where

T1 :=
∑

|k1−k2|≤b+2

(ψk1(L1)ψk2(L2)m(L1, L2))(F )(x, x),

T2 :=
∑

k1>k2+b+2

(ψk1(L1)ψk2(L2)m(L1, L2))(F )(x, x),

T3 :=
∑

k2>k1+b+2

(ψk1(L1)ψk2(L2)m(L1, L2))(F )(x, x).

We note that in [64], the functions f and g can be taken to belong to a class A
which is dense in Lp for p ∈ (1,∞) and such that these sums are finite.

Let us first consider T1. We further decompose

(2.3.4) T1 =
∑
k

mk(λ),

where

mk(λ) = ψk(λ1)φk(λ2)m(λ)

and φk(λ2) =
∑
|k2−k|≤b+2 ψk(λ2). By noting the supports of φ and ψ, we see that

mk has support in [2k−b−4, 2k+b+4]2. Thus, we may also write

(2.3.5) mk(λ) = (ψ̃(λ1)ψ̃(λ2))ψk(λ1)φk(λ2)m(λ),

where ψ̃ is a smooth function that equals one on [2−b−3, 2b+3] and vanishes outside of
[2−b−4, 2b+4]. Consider Mk(λ) := mk(2kλ). Thus, Mk has support in [−2b+4, 2b+4].
Define a = 2b+4. Then, we may expand Mk via a double Fourier series as

Mk(λ) =
∑

n1,n2∈Z

cn,ke
πin1λ1

a e
πin2λ2

a ,

where the coefficients are given by

cn,k =
1

4a2

∫ a

−a

∫ a

−a
(ψ ⊗ φ)(m(2kξ))e

πin1ξ1
a e

πin2ξ2
a dξ1dξ2.

Now, we may apply integration by parts, the assumption (2.3.1) and use the fact
that ψ ⊗ φ is compactly supported away from zero to obtain

|cn,k| . (1 + |n|)−s

for all n ∈ Z2 and uniform in k. From this, we use (2.3.5) to obtain

mk(λ) =
∑
n∈Z2

cn,k

(
ψ̃k(λ1)e

2π
a in12−kλ1

)(
ψ̃k(λ2)e

2π
a in22−kλ2

)
.

Thus, we have that

mk(L1, L2) =
∑
n∈Z2

cn,k

(
ψ̃k(L1)e

2π
a in12−kL1(f)

)(
ψ̃k(L2)e

2π
a in22−kL2(g)

)
=:

∑
n∈Z2

cn,k (ψn1

k (L1)f) (ψn2

k (L2)g)

with convergence in L2. Thus, recalling (2.3.4), we also have that

T1(f, g)(x) =
∑
n∈Z

∑
k∈Z

cn,kψ
n1

k (L)(f)(x)ψn2

k (L)(g)(x).
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Here, we recall that f and g belong to a class A such that the sum in k is finite.

Finally, for T1, we apply Proposition 2.3.3 and deal with the factors e
2π
a inj2

−kλj

(j = 1, 2) to obtain for s > 2ρ+ 4 that

‖T1(f, g)‖p .
∑
n∈Z2

(1 + |n|)−s
∥∥∥∥∥∥
(∑
k∈Z

ψn1

k (L)(f)(x)

)2
∥∥∥∥∥∥
q

∥∥∥∥∥∥
(∑
k∈Z

ψn2

k (L)(g)(x)

)2
∥∥∥∥∥∥
r

.
∑
n∈Z2

(1 + |n|)−s(1 + |n1|)ρ(1 + |n2|)ρ‖f‖q‖g‖r . ‖f‖q‖g‖r.

Now, we study the term T2. The argument for the term T3 follows by symmetry.
Here, we define φk :=

∑
k2<k−b−2 ψk2 . Then, we can write

T2 =
∑

k1>k2+b+2

(ψk1(L1)ψk2(L2)m(L1, L2))(F )(x, x)

=
∑
k

(ψk(L1)φk(L2)m(L1, L2))(F )

=
∑
k

mk(L1, L2)(F ),

where, in this case, we set mk(λ) := ψk(λ1)φk(λ2)m(λ). Thus, mk is supported in
[2k−1, 2k+1]× [0, 2k−b−1]. Hence, we may write

mk(λ1, λ2) = ψ̃(λ1)φ̃(λ2)ψk(λ1)φk(λ2)m(λ)

where ψ̃ is a smooth function that equals to one on [2−1, 21] and vanishes outside of

[2−2, 22], and φ̃ is a smooth function that equals to one on [0, 2−b−1] and vanishes
outside of [0, 2−b]. Again, similar to for the T1 term, we expand Mk(λ) = mk(2kλ)
via a double Fourier series. We note that Mk(λ) is supported in [−2, 2]2. Thus, we
obtain

Mk(λ) =
∑

n1,n2∈Z

cn,ke
πin1λ1

2 e
πin2λ2

2 ,

where the coefficients are given by

cn,k =
1

16

∫ 2

−2

∫ 2

−2

(ψ ⊗ φ)(m(2kξ))e
πin1ξ1

2 e
πin2ξ2

2 dξ1dξ2.

Now, by using integration by parts and the assumption (2.3.1), we obtain

|cn,k| . (1 + |n|)−s

for all n ∈ Z2 and uniform in k.
Thus, similar to above, we have

T2(f, g)(x) =
∑
n∈Z

∑
k∈Z

cn,kψ
n1

k (L)(f)(x)φn2

k (L)(g)(x)

=
∑
n∈Z

∑
k∈Z

cn,kψ̃k(L) (ψn1

k (L)(f)φn2

k (L)(g)) (x)

where ψn1

k (λ1) = ψ̃k(λ1)e
π
2 in12−kλ1 , and similarly for φn2

k (λ2). Furthermore, ψ̃

is now taken to be a smooth function which is equal to one on [2−3−b, 23+b] and
vanishes outside of [2−5−b, 25+b].



14 2. HARMONIC ANALYSIS ASSOCIATED TO THE INVERSE-SQUARE POTENTIAL

Now, we estimate the Lp norm of T2. Thus, let h ∈ Lp′ . We observe that∫ ∞
0

T2(f, g)(x)h(x) dω(x)

is equal to∫ ∞
0

∑
n∈Z

∑
k∈Z

cn,kψ
n1

k (L)(f)(x)φn2

k (L)(g)(x)ψ̃k(L)(h)(x) dω(x).

Thus, using the estimate for |cn,k|, we see that∣∣∣∣∫ ∞
0

T2(f, g)(x)h(x) dω(x)

∣∣∣∣
is bounded above by

∑
n∈Z2

(1+|n|)−s
∫ ∞

0

(∑
k∈Z

|ψn1

k (L)(f)|2
) 1

2

sup
k∈Z

φn2

k (L)(g)

(∑
k∈Z

|ψ̃k(L)(h)|2
) 1

2

dω(x).

Now, applying Hölder’s inequality, this expression is bounded above by

∑
n∈Z2

(1 + |n|)−s
∥∥∥∥∥∥
(∑
k∈Z

|ψn1

k (L)(f)|2
) 1

2

∥∥∥∥∥∥
q

∥∥∥∥sup
k∈Z

φn2

k (L)(g)

∥∥∥∥
r

.

The Lq norm is dealt with the same way as in the T1 case, while the Lr is bounded
above by (1 + |n2|)ρ+2‖g‖r. Indeed, after dealing with the factor as in the T1 case,
the remaining estimate is a corollary of the multiplier theorem (Proposition 2.3.1)
– see [63]. Thus, we may put together the results for T1, T2 and T3 to obtain the
required estimate. �

2.4. Adapted Sobolev and Besov spaces

We also have the following equivalence of Sobolev spaces:

Proposition 2.4.1 (Equivalence of Sobolev norms, [33]). Let d ≥ 3, a ≥
−µ(0)2 and also 0 < s < 2. If 1 < p <∞ satisfies s+σ

d < 1
p < min{1, d−σd } then

(2.4.1) ‖(−∆)
s
2u‖Lp .d,p,s ‖Ds

au‖Lp for u ∈ C∞c (Rd\{0}).

If max{ sd ,
σ
d } <

1
p < min{1, d−σd } then

‖Ds
au‖Lp .d,p,s ‖(−∆)

s
2u‖Lp for u ∈ C∞c (Rd\{0}).

For our purposes, we shall define the following adapted inhomogeneous Besov
space. We remark that for −µ(0)2 < a < 0, we only define these spaces for
r0 < p < r′0, as this is the range where the Bernstein estimates (Proposition 2.3.2)
hold. Therefore, we are able to obtain Sobolev embeddings in this range.

‖u‖Bsp,q := ‖P a≤0u‖p +

∑
k≥0

2qsk‖P ak u‖qp

 1
q

and the following homogeneous Besov space

‖u‖Ḃsp,q :=

(∑
k∈Z

2qsk‖P ak u‖qp

) 1
q

.
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We write Ḃsp := Ḃsp,2. We also have the following embeddings, which shall be used
when we define Besov-type spaces below.

Lemma 2.4.2 (Embeddings for adapted Besov spaces). For a ≥ 0, let 1 ≤ p0 ≤
∞ and for −µ(0)2 < a < 0, let r0 < p0 < p1 < r′0. Also, let 1 ≤ q ≤ ∞ and
s1 < s0. Then,

(i) Bs0p0,q ↪→ Bs1p1,q.

(ii) If s0 − d
p0

= s1 − d
p1

, then Ḃs0p0,q ↪→ Ḃs1p1,q.

(iii) If s0 − d
p0
≥ s1 − d

p1
, then Bs0p0,q ↪→ Bs1p1,q.

Proof. Property (i) follows from inspection of the definition. Property (iii)
follows a similar argument for (ii). Thus, we are left to prove (ii). This follows
via the Bernstein estimates (Proposition 2.3.2). Indeed, we have ‖P a≤0u‖Lp1 .
‖P a≤0u‖Lp0 . Furthermore, for k ≥ 0, we use that

‖P ak u‖Lp1 . 2
kd

(
1
p0
− 1
p1

)
‖P ak u‖Lp0 .

Using these facts in the definition gives the result. �

For our purposes, we shall also need the following Besov-type space adapted
the operator Da. Here, we shall use the adapted Littlewood-Paley projections P ak
in place of the usual Littlewood-Paley projections, as in [22] (again note that for
−µ(0)2 < a < 0, we shall only define these Besov-type spaces for r0 < p < r′0):
(2.4.2)

‖u‖
Ḃ
sL|sH
p

:=

 ∑
k∈Z,k≤0

22sLk‖P ak u(x)‖2p

 1
2

+

 ∑
k∈Z,k≥0

22sHk‖P ak u(x)‖2p

 1
2

.

Notice that this definition is consistent in light of the Bernstein estimates above.
Notice also that this definition agrees with the definition for a homogeneous Besov
space above for u localised to low or to high frequencies. In this thesis, we shall
use these Besov-type spaces in the context of the space-time norm

‖u‖( 1
q ,

1
r ,s)I

:= ‖u(t, x)‖Lqt (I,Ḃsr) .

and
‖u‖( 1

q ,
1
r ,sL|sH)

I

:= ‖u(t, x)‖
Lqt (I,Ḃ

sL|sH
r )

.

We have the following embeddings which follow from the definition of the spaces

Ḃ
sL|sH
p . In this thesis, we shall always work using dyadic decomposition, and so it

is sufficient to consider the embeddings for low and high frequencies individually.

Lemma 2.4.3. For the same range of p as in Lemma 2.4.2, for any u ∈ ḂsL|sHp ,
and either

(i) (low-frequency embedding) sL1 ≤ sL0 , and k ≤ 0 or
(ii) (high-frequency embedding) sH0 ≤ sH1 , and k ≥ 0 then

(2.4.3) ‖P ak u‖
Ḃ
sL0 |s

H
0

p

. ‖P ak u‖
Ḃ
sL1 |s

H
1

p

We shall later denote the low-frequency embedding by

Ḃ
sL1 |s

H
1

p ↪→L Ḃ
sL0 |s

H
0

p ,

and similarly for the high-frequency embedding.
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We also have the following Sobolev embedding.

Lemma 2.4.4 (Sobolev embedding for Besov-type spaces). For the same range
of p0, p1 as in Lemma 2.4.2 and either

(i) (low-frequency embedding) sL0 − d
p0
≤ sL1 − d

p1
, and k ≤ 0 or

(ii) (high-frequency embedding) sH0 − d
p0
≥ sH1 − d

p1
, and k ≥ 0 then

(2.4.4) ‖P ak u‖
Ḃ
sL1 |s

H
1

p1

. ‖P ak u‖
Ḃ
sL0 |s

H
0

p0

.

Proof. This follows from localisation, the above Sobolev embedding and Lemma
2.4.3. �



CHAPTER 3

3D small energy scattering: radial case

3.1. Generalised Strichartz estimates for a class of equations

3.1.1. Setup. In this section, we shall obtain generalised Strichartz estimates
for the equation

(3.1.1)

 iut(x, t) + ω

(√
−∆ + a

|x|2

)
u(x, t) = 0, (x, t) ∈ Rd ×R

u(0, x) = P ak u0(x).

Here, ω (Da)u = Hν(a)

(
ω(ρ)Hν(a)u

)
, u0(x) : Rd → C is radial and ω : R+ → R is

a C3-smooth function. Recall that we only consider a > −
(
d−2

2

)2
and d ≥ 3. We

need to impose suitable conditions for ω in order to obtain improved estimates. It
shall be seen that the following conditions will work. In fact, they are the same as
those in [17]:

(a(k)) There exists an α ∈ R such that for r ∈ (2k−1, 2k+1)

(3.1.2) |ω′(r)| & 2k(α−1)

(b(k)) In addition to (a(k)), there exists β ∈ R such that α ≥ β if k ≥ 0 and
otherwise α ≤ β if k < 0 such that for r ∈ (2k−1, 2k+1),

(3.1.3) |ω′′(r)| & 2k(β−2)

and |ω′′(r)/ω′(r)| . 2−k for r ∈ (2k−1, 2k+1).

For ω satisfying these conditions, we shall obtain the following estimates:

Theorem 3.1.1 (Radial refined Strichartz estimates). Let d ≥ 3, k ∈ Z, 2 ≤
q, r ≤ ∞ and u0 ∈ L2

rad(Rd) and a > −
(
d−2

2

)2
, and furthermore, if −

(
d−2

2

)2
<

a < 0, impose also that r0 < r < r′0 = d
σ . Then,

(a) (General region) if q
(

1
2 −

1
r

)
> 1

d−1 and ω satisfes (3.1.2). Then,

‖eitω(Da)P ak u0‖LqtLrx . 2k(
d
2−

d
r−

α
q ) ‖u0‖L2

x(Rd) .

(b) (Refined region) If 2
2d−1 < q

(
1
2 −

1
r

)
< 1

d−1 and ω satisfies (3.1.3). Then,

‖eitω(Da)P ak u0‖LqtLrx . 2kθ(r,q) ‖u0‖L2
x(Rd)

where θ(r, q) = d
2 −

d
r −

β
q − (α− β)

(
d−1

2 −
d−1
r

)
.

Furthermore, along the endpoint case q
(

1
2 −

1
r

)
= 1

d−1 , we have

‖eitω(Da)P ak u0‖LqtLrx . 〈k(α− β)〉
2
q 2kθ(r,q) ‖u0‖L2

x(Rd) .

17
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Proof. We shall below prove the following estimates:

‖eitω(Da)P ak u0‖L2
tL

r
x
. 2k(

d
2−

d
r−

α
2 ) ‖u0‖L2

x(Rd)(3.1.4)

‖eitω(Da)P ak u0‖L2
tL

r
x
. 2kθ(r,2) ‖u0‖L2

x(Rd)(3.1.5)

‖eitω(Da)P ak u0‖L2
tL

r
x
. 〈k(α− β)〉2kθ(r,2) ‖u0‖L2

x(Rd) .(3.1.6)

We shall interpolate of the above estimates with the estimate ‖eitω(Da)P ak u0‖L∞t L2
x
.

‖u0‖L2
x(Rd). In particular, we see that to obtain an estimate on the LqtL

r
x norm,

we shall need to interpolate between the L∞t L
2
x estimate and the LqtL

p
x where

1/p = 1/2− (q/2)(1/2− 1/r). Doing so, we obtain the above estimates. �

Before we prove these estimates, let us make a few reductions. We shall first
use the Hankel transform for radial functions u:

(Hν(a)f)(s) =

∫ ∞
0

Uν(a)(sρ)f(ρ) dω(ρ).

First, we apply the Hankel transform to (3.1.1) to obtain a first-order ODE iût +

ω(ρ)û = 0 with initial condition û(0, ρ) = P̂ ak u0(ρ). We may solve this ODE to
obtain that

(3.1.7) u(t, s) := eitω(Da)P ak u0 = Hν(a)

(
eitω(ρ)ψk(ρ)Hν(a)(u0)

)
.

Our goal is to obtain an estimate

‖eitω(Da)P ak u0‖LqtLrx . C(k) ‖u0‖L2
x
.

Using the characterisation of u as in (3.1.7), and the fact that u is radial, this
is equivalent to the estimate (in the following discussion C(k) is always the same
quantity): ∥∥∥Hν(a)

(
eitω(ρ)ψk(ρ)Hν(a)(u0)

)∥∥∥
LqtLrs

. C(k) ‖u0‖L2
x
.

Thus, replacing u0 by Hν(a)(u0) and recalling that H2
ν = 1, we reduce to obtaining

the estimate ∥∥∥Hν(a)

(
eitω(ρ)ψk(ρ)u0

)∥∥∥
LqtLrs

. C(k) ‖u0‖L2
x
.

Using the definition of the Hankel transform, we have∥∥∥∥s− d−2
2

∫ ∞
0

eitω(ρ)Jν(a)(sρ)ψk(ρ)u0(ρ)ρ
d
2 dρ

∥∥∥∥
LqtLrs

. C(k) ‖u0‖L2
x
.

Now, converting Lsρ to Lsx, we instead reduce to proving∥∥∥∥s d−1
r −

d−2
2

∫ ∞
0

eitω(ρ)Jν(a)(sρ)ψk(ρ)u0(ρ)ρ
d
2 dρ

∥∥∥∥
LqtL

r
s

. C(k) ‖u0‖L2
x
.

Now, replacing ψk(ρ) with ψ0(2−kρ), as well as applying a change of variables, we
instead reduce to showing∥∥∥∥2

k
d 2ks

d−1
r −

d−2
2

∫ ∞
0

eitω(2kρ)Jν(a)(2
ksρ)ψ0(ρ)u0(2kρ)dρ

∥∥∥∥
LqtL

r
s

. C(k) ‖u0‖L2
x
.

Finally, replacing u0(2kρ) by u0(ρ), we finally reduce to showing∥∥∥∥s d−1
r −

d−2
2

∫ ∞
0

eitω(2kρ)Jν(a)(2
ksρ)ψ0(ρ)u0(ρ)dρ

∥∥∥∥
LqtL

r
s

. 2−kC(k) ‖u0‖L2
x
.
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We shall now denote this integral by

T
ν(a)
k (u0) (t, s) =

∫ ∞
0

eitω(2kρ)Jν(a)(2
ksρ)ψ0(ρ)u0(ρ)dρ.

3.1.2. Estimates: part 1. We shall closely follow the method of [17] to
prove Theorem 3.1.1. In fact the main point of this section and the next shall be
to identify differences between the method used in [17] and here, and how these
differences do not in fact affect the proof. First, we have in the region |s| < 2−k:

Lemma 3.1.2. With the notation as above,

‖χk(s)s
d−1
r −

d−2
2 T

ν(a)
k (u0) ‖LqtLrs . 2−k2k(

d
2−

d
r )2−

kα
q ‖u0‖L2

x
.

Here, we define χk as follows. Let η : R→ [0, 1] be an even, smooth and radially
decreasing function supported in {s : |s| ≤ 8/5} and such that η ≡ 1 on |s| ≤ 5/4.
For k ∈ Z, we define χk(s) := η(s/2k)− η(s/2k−1) and χ≤k(s) := η(s/2k).

Proof. See [17, p. 11]. Since we have that ν(a) =

√(
d−2

2

)2
+ a > 0, the

proof can be adapted immediately to this context. �

To deal with the region |s| ≥ 2−k, we decompose

T
ν(a)
k (u0) =

∑
j≥−k

T
ν(a)
j,k (u0)

where

T
ν(a)
j,k (u0) = χj(s)

∫ ∞
0

eitω(2kρ)Jν(a)(2
ksρ)ψ0(ρ)u0(ρ)dρ.

We have the following estimates:

Lemma 3.1.3. Suppose that k ∈ Z, ω satisfies condition (a(k)), j ≥ −k and

2 ≤ q ≤ r ≤ ∞. Then, ‖T νj,ku0‖LqtLrs . 2−(j+k)( 1
2−

1
q )2−

k
r 2−

kα
q ‖u0‖L2

x
.

Proof. See [17, p. 12] �

Thus, we obtain that for 1
q < (d− 1)

(
1
2 −

1
r

)
‖χ≥−k(s)s

d−1
r −

d−2
2 T

ν(a)
k (u0) ‖LqtLrs .

∑
j≥−k

2j(
d−1
r −

d−2
2 )‖T ν(a)

j,k u0‖LqtLrs

. 2k(
d−1
r −

d−2
2 )2−(j+k)( 1

2−
1
q )2−

k
r 2−

kα
q ‖u0‖L2

x

. 2−k2k(
d
2−

d
r )2−

kα
q ‖u0‖L2

x
.

Thus, combining this with Lemma 3.1.2, we obtain Theorem 3.1.1(a).

3.1.3. Estimates: part 2. Now, we move onto the refined estimates (part
(b) of Theorem 3.1.1). We make a slight adjustment as compared to [17] in that we
have for general ν (as opposed to (d− 2)/2) that we may write the Bessel function
Jν(r) as
(3.1.8)

Jν(r) =
ei(r−

νπ
2 −

π
4 ) + e−i(r−

νπ
2 −

π
4 )

2r1/2
+ Cdr

d−2
2 e−irE+(r)− C ′dr

d−2
2 eirE−(r),

as in [56]. Interestingly, we notice that changing ν amounts to a phase translation
and so in fact, will not affect our estimates. More precisely, we may apply Van der
Corput’s lemma to obtain the same results. We recall Van der Corput’s lemma:
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Lemma 3.1.4. Suppose φ is a real-valued smooth function on (a, b) and that
|φ(k)(x)| ≥ 1 for all x ∈ (a, b). Then, if k ≥ 2 or k = 1 and φ′ is monotonic:∣∣∣∣∣

∫ b

a

eiλφ(x)ψ(x) dx

∣∣∣∣∣ ≤ ck
λk

(
|ψ(b)|+

∫ b

a

|ψ′(x)| dx

)
.

Thus, we may still decompose T νj,ku0 into the same two components and write
T νj,ku0 = Mν

j,ku0 + Eνj,ku0 where

Mν
j,ku0(s) = χj+k(s)

∫
ei(tω(2kρ)+sρ)ψ0(ρ)u0(ρ)(sρ)−

1
2 dρ+ c.c.,

and

Eνj,ku0(s) = χj+k(s)

∫
ei(tω(2kρ)+sρ)ψ0(ρ)u0(r)(sρ)

d−2
2 E+(sρ) dρ+ c.c..

Here c.c. denotes the complex conjugate of the first term. With the same decom-
position we may proceed as in [17] to obtain Theorem 3.1.1(b).

Remark 3.1.5. Finally, let us remark that we can obtain spherically averaged
estimates for non-radial initial data using the orthogonality of the spherical har-
monics. In particular, given some well-behaved initial data u0, we may decompose
it using spherical harmonics:

u0(x) :=

∞∑
k=0

d(k)∑
l=1

ak,l(r)Yk,l(θ).

Thus, we solve (3.1.1) on each harmonic subspace to obtain a solution

eitω(Da)u0 :=

∞∑
k=0

d(k)∑
l=1

bk,l(r)Yk,l(θ).

Using the representation of La on the kth spherical harmonic L2
=k(Rd), we reduce

to solving the PDE (with b denoting bk,l):

(3.1.9)

{
ibt(r, t) + ω

(
Aν(a,k)

)
b(x, t) = 0, (r, t) ∈ (0,∞)×R

v(0, r) = ak,l(r)

Taking the Hankel transform of order ν(a, k), we find that

bk,l = Hν(a,k)

(
eitω(ρ)Hν(a,k)(ak,l)

)
.

Now, in order to obtain the estimate ‖eitω(Da)u0‖LqtLrsL2(Sd−1) . C(k)‖u0‖L2
x
, it is

equivalent to obtain the estimate∥∥∥∥∥∥
∑
k,l

Hν(a,k)

(
eitω(ρ)Hν(a,k)(ak,l)

)∥∥∥∥∥∥
LqtLrsL2(Sd−1)

. C(k) ‖u0‖L2
x
.

Again, using the fact that H2
ν = id, we reduce to showing∥∥∥∥∥∥

∑
k,l

Hν(a,k)

(
eitω(ρ)ak,l

)∥∥∥∥∥∥
LqtLrsL2(Sd−1)

. C(k) ‖u0‖L2
x
.
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Now, using the L2 orthogonality of the spherical harmonics on both sides, we may
further reduce to showing∥∥∥Hν(a,k)

(
eitω(ρ)ak,l

)∥∥∥
LqtLrs`2k,l

. C(k) ‖ak,l‖`2k,l .

Thus, it suffices to prove the above estimate for each pair (k, l) and then take the `2k,l
sum of these estimates. This then gives spherically-averaged Strichartz estimates.

3.2. 3D radial small-energy scattering

In this section, our goal shall be to use our estimates from Section 3.1 to study
scattering for the following equation in three dimensions:

(3.2.1)

{
∂2
t u−∆u+ a

|x|2u+ u = u2, (t, x) ∈ R×R3

u(0, x) = u0, ut(0, x) = u1.

Recall as before that we shall denote Da =
√
La. We first obtain the following

estimates. The further restriction when −µ(0)2 < a < 0 is needed in order to
perform Sobolev embeddings in the proof of scattering later.

Proposition 3.2.1. Let u0 ∈ L2 be radial. Let d ≥ 3, and 2 ≤ q, r ≤ ∞ (and
also if −µ(0)2 < a < 0, then further restrict r0 < r < r′0) with 1

q + d−1
r < d−1

2

(which we shall refer to as admissible pairs in the general region) Then,

‖eit〈Da〉P ak φ‖( 1
q ,

1
r ,

2
q+ d

r−
d
2 |

1
q+ d

r−
d
2 ) . ‖P

a
k φ‖2.

Similarly, we have the dual estimate with admissible pairs (q, r) and (q̃, r̃) in the
general region:∥∥∥∥∫ t

0

ei(t−s)〈Da〉F (s) ds

∥∥∥∥
( 1
q ,

1
r ,

2
q+ d

r−
d
2 |

1
q+ d

r−
d
2 )

. ‖F‖( 1
q̃′ ,

1
r̃′ ,−( 2

q̃′+
d
r̃′−

d
2 )|−( 1

q̃′+
d
r̃′−

d
2 ))

Furthermore, for 1
q + d−1

r > d−1
2 and 2

q + 2d−1
r < 2d−1

2 (which we refer to as

admissible pairs in the refined region), then

‖eit〈Da〉P ak φ‖( 1
q ,

1
r ,

2
q+ d

r−
d
2 |
d
2−1− 1

q−
d−2
r ) . ‖P

a
k φ‖2.

Also, we have the dual estimate with admissible pairs (q, r) and (q̃, r̃) in the refined
region: ∥∥∥∥∫ t

0

ei(t−s)〈Da〉F (s) ds

∥∥∥∥
( 1
q ,

1
r ,

2
q+ d

r−
d
2 |
d
2−1− 1

q−
d−2
r )

. ‖F‖( 1
q̃′ ,

1
r̃′ ,−( 2

q̃′+
d
r̃′−

d
2 )|−( d2−1− 1

q̃−
d−2
r̃ )).

Proof. Let ω(ξ) = 〈ξ〉 = (1+ξ2)1/2. Following the notation in Theorem 3.1.1,
we may estimate ω′ and ω′′ to obtain that α = 2 and β = 2 if k ≤ 0, α = 1 and
β = −1 if k > 0 satisfy the assumptions. The idea here is to substitute these values
into the exponents as in Theorem 3.1.1, and to combine this with the adapted
Littlewood-Paley square function theorem, we obtain our estimates. For instance,
let us consider the first set of estimates. In this case, for low frequencies j ≤ 0, we
have

‖eit〈Da〉P aj u0‖LqtLrx . 2jsL‖P aj u0‖L2
x
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with sL = d
2 −

2
q −

d
r . Meanwhile for high frequencies j ≥ 0 we have

‖eit〈Da〉P aj u0‖LqtLrx . 2jsH‖P aj u0‖L2
x

where sH = d−2
r + 1

q + 1− d
2 . Therefore, we may use the Littlewood-Paley square

function theorem for P ak (Proposition 2.3.3) to obtain the above estimates. More
specifically, we have

‖eit〈Da〉P aj φ‖( 1
q ,

1
r ,−sL|−sH) =

∥∥∥∥∥∥∥
 ∑
k∈Z,k≤0

22(−sL)k‖P ak eit〈Da〉P aj φ(x)‖2r

 1
2

+

 ∑
k∈Z,k≥0

22(−sH)k‖P ak eit〈Da〉P aj φ(x)‖2r

 1
2

∥∥∥∥∥∥∥
Lqt

.

 ∑
k∈Z,k≤0

22(−sL)k‖eit〈Da〉P ak P aj φ(x)‖2LqtLrx

 1
2

+

 ∑
k∈Z,k≥0

22(−sH)k‖eit〈Da〉P ak P aj φ(x)‖2LqtLrx

 1
2

.

 ∑
k∈Z,k≤0

‖P ak P aj φ(x)‖22

 1
2

+

 ∑
k∈Z,k≥0

‖P ak P aj φ(x)‖22

 1
2

. ‖P aj φ‖2.

�

The main result of this chapter is

Theorem 3.2.2. Let 0 < κ� 1 be sufficiently small, and suppose that (u0, u1)
is radial and satisfies ‖(u0, u1)‖H1

a×L2 � 1, then there exists a unique solution

u(t, x) to (3.2.1) with a > σ−1( 3
2 ( 3

10 − κ)) in the space

S(I) = C(R, H1
a) ∩

(
1

2
,

3

10
− κ, 2

5
− 3κ

∣∣∣∣ 7

10
+ κ

)
R

,

that also scatters: there exists u±(x) ∈ H1
a such that

‖u− i 〈Da〉 ∂tu− eit〈Da〉u±‖H1
a
→ 0,

as t→ ±∞.

We also recall the definition σ := d−2
2 −

√(
d−2

2

)2
+ a = d−2

2 −
√
µ(0)2 + a
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3.2.1. Motivation: low frequency interactions. Now we have the lan-
guage to motivate the following application of the above estimates. First, we shall
perform a change of variables U(t, x) = u(t, x)− i〈Da〉−1ut(t, x). From this, we get
a first-order equation (see the next section for more details):

i∂tU + 〈Da〉U =
1

4
〈Da〉−1

(
U2 + 2UŪ + Ū2

)
, U(0, x) = φ(x).

In the rest of this subsection, we shall discuss the simplified equation

(3.2.2) i∂tU + 〈Da〉U = 〈Da〉−1U2, U(0, x) = φ(x).

We now want to establish well-posedness for this equation. To do this, we shall
proceed with a contraction-mapping argument. Firstly, by Duhamel’s principle, we
have

ΦφU = eit〈Da〉φ− i
∫ t

0

ei(t−s)〈Da〉〈Da〉−1U2 ds.

Let SI =
(
0, 1

2 , 0 |1
)
I
∩
(

1
2 ,

3
10 ,

2
5 |

7
10

)
I
, XM = {U ∈ SI : ‖U‖SI ≤M} for some M

and I = [0, T ] which we shall choose later so that (Φφ|XM , d) with Φφ : XM → XM

is a contraction with respect to with d(U, V ) = ‖U − V ‖SI . Note that (XM , d) is
complete. In this case, we have

‖ΦφU‖(0, 12 ,0|1 )
I

.
∥∥∥eit〈Da〉φ∥∥∥

(0, 12 ,0|1 )
I

+

∥∥∥∥∫ t

0

ei(t−s)〈Da〉〈Da〉−1U2 ds

∥∥∥∥
(0, 12 ,0|1 )

I

.

We handle the first term by frequency localisation and the second term by an
inhomogeneous Strichartz estimate with norm L2

t∈IH
1
x to obtain

‖ΦφU‖(0, 12 ,0|1 )
I

. ‖φ‖H1
a

+
∥∥〈Da〉−1U2

∥∥
L1
tH

1
x
. ‖φ‖H1

x
+
∥∥U2

∥∥
L1
tL

2
x
.

Now, we apply Hölder’s inequality for the finite time interval and also Hölder’s
inequality in x to obtain

‖ΦφU‖(0, 12 ,0|1 )
I

. ‖φ‖H1
a

+ T ‖U‖2L∞t L4
x
.

Now, we use the embedding H1
a ↪→ L4 to obtain that

‖φ‖H1
a

+ T ‖U‖2L∞t L4
x
. ‖φ‖H1

a
+ T ‖U‖2L∞t H1

a
. ‖φ‖H1

a
+ T‖U‖2SI .

We may do the same for the second norm in S(I) to obtain that

‖ΦφU‖SI . ‖φ‖H1
a

+ T‖U‖2SI .

Thus, if we set M = 2‖φ‖H1
a

and T sufficiently small, then we find ‖ΦφU‖SI ≤ M
so that indeed Φφ : XM → XM . Now, we also verify that the contraction condition
is satisfied. In this case, we find that after using an inhomogeneous Strichartz
estimate:

‖ΦφU − ΦφV ‖SI . ‖〈Da〉−1(U2 − V 2)‖
L2
tW

4/3,1
x

. T‖U − V ‖SI‖U + V ‖SI

. MT‖U − V ‖SI .

Now, if T is chosen sufficiently small, then indeed, (Φφ, d) is a contraction, meaning
that we have a unique solution in XM . To extend this uniqueness to all of SI , let us
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consider an interval [0, t∗] ⊆ [0, T ]. Then, applying the above estimate, we obtain

‖U − V ‖SI . ‖〈Da〉−1(U2 − V 2)‖
L2
tW

4/3,1
x

. t∗‖U − V ‖SI‖U + V ‖SI

. Mt∗‖U − V ‖SI .

Thus, if we set t∗ to be so that MCt∗ < 1, then in fact, we see that ‖U − V ‖SI <
(1/2)‖UV ‖X1 , so that indeed U = V . We may use a similar argument to obtain
continuous dependence on data.

We shall now discuss the global well-posedness and scattering of this problem
for small data. Here, we shall identify the main obstructions: non-radial data
and low frequency terms. We shall then devote the remainder of this chapter to
dealing with this obstruction via a normal form transform in the flavour of [22].
The normal form transform in the mentioned paper admits an integration by parts
for low frequencies which essentially converts the quadratic term into a cubic term,
and thus fixes this issue. In the rest of this section, we shall first discuss why
the quadratic term is an issue, and why this issue does not arise for a cubic term.
The idea is that we need the radial assumption in order to make valid choices for
admissible pairs to close the arguments that follow.

In order to obtain global well-posedness of the problem, we want an estimate
for the solution U which is independent of the length of the time interval I. Due
to the quadratic term U2 in (3.2.2), we want an estimate of the form

‖ΦφU‖SI . ‖φ‖H1
a

+ C‖U‖2SI
where C > 0 independent of the length of the interval I. If we are able to obtain
such a bound, then for ‖φ‖H1

a
< ε for some ε sufficiently small (i.e. for small data),

we obtain that

‖ΦφU‖SI <
M

2
+M2 < M,

which would give a global-in-time bound for small data as we may set I = R.
As we will see later, the key point is that the pair (q, r) = (2, 4) is admissible in
Proposition 3.2.1 – that is, for radial initial data, which allows our argument to
proceed. In the non-radial case, we do not have Strichartz estimates for this pair.

With this, let us now see another problem: low frequencies. To see why low-
frequency components are an issue, let us first decompose the solution U into high
and low frequencies: U = P a≥1U+P a≤0U := UH+UL. Then, U2 = U2

H+2UHUL+U2
L.

Firstly, we see that the high-high interactions can be controlled by SI via the
(q′, r′) = (1, 2) estimate:∥∥∥∥∫ t

0

ei(t−s)〈Da〉〈Da〉−1U2
H ds

∥∥∥∥
SI

. ‖U2
H‖(1, 12 ,0|0)

. ‖UH‖2( 1
2 ,

1
4 ,0|0)

.

Now, using Sobolev embeddings and the fact that we have are studying the high-
frequency component, we have

‖UH‖( 1
2 ,

1
4 ,0|0)

. ‖UH‖( 1
2 ,

3
10 ,0|

3
20 ) . ‖UH‖( 1

2 ,
3
10 ,0|

7
10 )

so that∥∥∥∥∫ t

0

ei(t−s)〈Da〉〈Da〉−1U2
H ds

∥∥∥∥
SI

. ‖U2
H‖( 1

2 ,
1
4 ,0|0)

. ‖UH‖2( 1
2 ,

3
10 ,0|

7
10 ) . ‖UH‖

2
SI .
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Let us first look at the low-low interactions. Similar to before, we have, for instance
that ∥∥∥∥∫ t

0

ei(t−s)〈Da〉〈Da〉−1U2
L ds

∥∥∥∥
SI

. ‖U2
L‖(1, 12 ,0|0)

. ‖UL‖2( 1
2 ,

1
4 ,0|0)

We now note that have the embedding

‖UL‖( 1
2 ,

1
4 ,0|0)

. ‖UL‖( 1
2 ,

3
10 ,

3
20 |0)

,

and since we are working the low-frequency component, we cannot close the argu-
ment because we cannot control this norm by

(
1
2 ,

3
10 ,

2
5 |0
)
. Thus, we cannot control

the low-low interactions using Sobolev embeddings. A similar argument works for
other choices of admissible pairs (q, r) and also for the low-high interactions. Thus,
we shall now remove these low-frequency terms via a normal-type transform, and
in doing so, we shall be able to obtain uniform estimates and obtain scattering for
(3.2.1).

3.2.2. Normal-type transform. In this section, we shall follow the argu-
ments in [22] to obtain a normal-type transform in order to eliminate certain inter-
actions (for instance low-low interactions) which will allow us to obtain some uni-
form estimates and scattering results. In particular, we take the Hankel transform
of order ν = ν(a) to obtain the ordinary differential equation ∂2

t û +
(
ρ2 + 1

)
û =

Hν(u2). Factorising and letting

U(t, x) = u(t, x)− i 〈Da〉−1
ut(t, x)

(corresponding to û(t, ρ) = û(t, ρ) − i(1 + ρ2)1/2ût(t, x) in frequency space), we
obtain the first order ODE

(3.2.3) (i∂t + 〈Da〉)U = 〈Da〉−1
u2 =

1

4
〈Da〉−1

(
U2 + 2UU + U

2
)
.

As we shall see later, it shall suffice that we consider the equation

(3.2.4) (i∂t + 〈Da〉)U = 〈Da〉−1
U2.

We shall define a normal-form transform Ω(U,U) for (3.2.4) shortly, and discuss
how it can be modified for the other quadratic terms in (3.2.3). The idea is we want

to consider
(
U + i 〈Da〉−1

Ω(U,U)
)

(t, x). This normal-form transform satisfies the

following equation in analogy to (3.2.4):

(i∂t + 〈Da〉)
(
U + i 〈Da〉−1

Ω(U,U)
)

= 〈Da〉−1
U2 + iΩ(U,U)

+i 〈Da〉−1
Ω(i∂tU,U)

+i 〈Da〉−1
Ω(U, i∂tU).



26 3. 3D SMALL ENERGY SCATTERING: RADIAL CASE

Next, making use of the fact that i∂tU = −〈Da〉U + 〈Da〉−1
U2, we obtain

that

(i∂t + 〈Da〉)
(
U + i 〈Da〉−1

Ω(U,U)
)

= 〈Da〉−1
U2 + iΩ(U,U)

+i 〈Da〉−1
Ω(−〈Da〉U,U)

+i 〈Da〉−1
Ω(U,−〈Da〉U)

+i 〈Da〉−1
Ω(〈Da〉−1

U2, U)

+i 〈Da〉−1
Ω(U, 〈Da〉−1

U2).

Now, we shall derive a suitable Ω(U,U) for our purposes. Consider the quadratic

term 〈Da〉−1
U2+iΩ(U,U)+i 〈Da〉−1

Ω(−〈Da〉U,U)+i 〈Da〉−1
Ω(U,−〈Da〉U) (i.e.

the first three lines of the right-hand side of (3.2.5)). First, using the convolution
formula for the Hankel transform (Lemma 2.2.3), we note that

〈Da〉−1
U2 = Hν〈ρ〉−1HνU2

= Hν〈ρ〉−1(HνU#HνU)

= Hν〈ρ〉−1

∫ ∞
0

∫ ∞
0

Dν(x, y, ρ) · Hν(U)(x)Hν(U)(y) dω(x)dω(y).

Thus, if we define

HνΩ(U,U) =

∫ ∞
0

∫ ∞
0

Dν(x, y, ρ)

i(〈x〉+ 〈y〉 − 〈ρ〉)
m(x, y)Hν(U)(x)Hν(U)(y) dω(x)dω(y),

we see that iΩ(U,U) + i 〈Da〉−1
Ω(−〈Da〉U,U) + i 〈Da〉−1

Ω(U,−〈Da〉U) is equal
to∫ ∞

0

∫ ∞
0

Dν(x, y, ρ)

i(〈x〉+ 〈y〉 − 〈ρ〉)

(
1− 〈x〉
〈ρ〉
− 〈y〉
〈ρ〉

)
m(x, y)Hν(U)(x)Hν(U)(y) dω(x)dω(y).

Thus, the resonance term HνTRes(U,U) is equal to

(3.2.5)

∫ ∞
0

∫ ∞
0

(1−m(x, y))Dν(x, y, ρ)Hν(U)(x)Hν(U)(y) dω(x)dω(y).

We claim that since the convolution is zero unless one can form a triangle with
sides of length x, y and ρ. In particular, we have particular, ρ ≤ x + y and from
the modulation bound (e.g. see [53]), we find that

(3.2.6) 〈x〉+ 〈y〉 − 〈ρ〉 ≥ 〈x〉+ 〈y〉 − 〈x+ y〉 ≥ 1

〈min{|x|, |y|, |x+ y|}〉
&β 1

if we assume that min{|x|, |y|} . 2β for some large constant β > 0. Similarly,
we may obtain that |〈x〉 ± 〈y〉 ± 〈ρ〉| &β 1. Now, to verify the claim, we use
Fubini’s theorem (see [60] for details) to obtain the following weighted version of
the convolution:

Hν(ρσHν(f)Hν(g))(r)

=

∫ ∞
0

∫ ∞
0

(rxy)−
d−2
2 f(x)g(y)

∫ ∞
0

Jν(xρ)Jν(yρ)Jν(rρ)ρ1−ν dρ dω(x)dω(y)
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Now, we may use the identity (see [61, p. 411(3)])∫ ∞
0

Jν(xρ)Jν(yρ)Jν(rρ)ρ1−ν dρ

= Cν(rxy)−ν∆x,y,r,

where ∆x,y,r is the area of the triangle with sides of length x, y and r and zero
otherwise. Thus, we define the weighted convolution #w via

f#wg :=

∫ ∞
0

∫ ∞
0

(ruv)−
d−2
2 −ν∆2ν−1

x,y,r f(x)g(y) dω(x)dω(y)

such that

(3.2.7) Hν(ρσHν(f)Hν(g)) = f#wg.

For the purposes of this thesis, 1−m(x, y) is a sum of terms of the form φj(x)φk(y)
where φj , φk are Paley-Littlewood multipliers. Thus, (3.2.5) is a sum of terms of
the form Hν(Hν(PjU)Hν(PkU)). Thus, we may localise the factor of ρσ in (3.2.7)
via Hν(PjU) and Hν(PkU). Now, applying the above identity, we obtain the claim.

Returning to (3.2.5) we see that

(i∂t + 〈Da〉)
(
U + i 〈Da〉−1

Ω(U,U)
)

= 〈Da〉−1HνTRes(U,U)

+i 〈Da〉−1
Ω(〈Da〉−1

U2, U)

+i 〈Da〉−1
Ω(U, 〈Da〉−1

U2).

Therefore,

U(t, x) = eit〈Da〉
(
U0 + i 〈Da〉−1

Ω(U,U)(0)
)
− i 〈Da〉−1

Ω(U,U)(3.2.8)

−i
∫ t

0

ei(t−s)〈Da〉〈Da〉−1HνTRes(U,U) ds(3.2.9)

+

∫ t

0

ei(t−s)〈Da〉 〈Da〉−1
Ω(〈Da〉−1

U2, U) ds(3.2.10)

+

∫ t

0

ei(t−s)〈Da〉 〈Da〉−1
Ω(U, 〈Da〉−1

U2) ds.(3.2.11)

Finally, let us remark on frequency decomposition. Let β > 0 be a large parameter
and

LL := {(j, k) ∈ Z2 : j, k ≤ −β + 10}
HL := {(j.k) ∈ Z2 : j ≥ −β + 10, k ≤ −β + 10}
LH := {(j, k) ∈ Z2 : (k, j) ∈ HL}
HH := {(j, k) ∈ Z2 : j, k ≥ −β + 10}

so that we may write

U(x)U ′(x) =

 ∑
(j,k)∈HH

+
∑

(j,k)∈HL

+
∑

(j,k)∈LH

+
∑

(j,k)∈LL

 (P aj UP
a
kU
′).

Define for S ⊆ Z2

mS(x, y) =
∑

(j,k)∈S

φj(x)φk(y)
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and also

(UU ′)S := Hν
∫ ∞

0

∫ ∞
0

Dν(x, y, ρ)mS(x, y)Hν(U)(x)Hν(U)(y) dω(x)dω(y).

Using the convolution formula for the Hankel transform, this is equal to

(UU ′)S =
∑

(j,k)∈S

P aj UP
a
kU
′.

3.2.3. Small energy scattering in R3. In this section, we shall establish
some uniform estimates for small initial data to establish some scattering of the 3D
quadratic Klein-Gordon equation with inverse-square potential. Here, we shall use
the normal form transform with m = mLL so that TRes(U,U) = (UU ′)HH+HL+LH .
From the above discussion, we also have heuristically that Ω(U,U ′) ∼ (UU ′)LL.
Let ε, κ > 0 be sufficiently small (this extra space in the exponents is used for large
energy problems). We shall define two spaces

Sa(I) =

(
0,

1

2
, 0 |1

)
I

∩
(

1

2
,

3

10
− κ, 2

5
− 3κ

∣∣∣∣ 7

10
+ κ

)
I

,

and also the space

S̃a(I) =

(
1

2
− ε, 1

4
+ ε, 5ε

)
∩
(

1

3
,

1

6
,−ε|ε

)
.

We shall see below that S̃(I) can be controlled by S(I). We also note that S(I) is
chosen to obtain H1

a estimates in Proposition 3.2.1.
In this section, we shall obtain a uniform estimate for ‖U(t, x)‖S(I) in terms of

the norms of (3.2.8 – 3.2.11). Thus, we will need to estimate the resonance term,
the boundary term and the trilinear term.

Lemma 3.2.3 (Resonance term). Let U and U ′ be radial. Then,

(3.2.12)

∥∥∥∥∫ t

0

ei(t−s)〈Da〉〈Da〉−1(UU ′)HH+HL+LH ds

∥∥∥∥
S(I)

.β ‖U‖S̃(I)‖U
′‖S̃(I).

Proof. For both norms in S(I), we apply the inhomogeneous Strichartz es-
timate with dual pair ( 1

q̃′ ,
1
r̃′ ) chosen to be (after calculating the corresponding

regularities) (1− 2ε, 1
2 + 2ε, 2ε|4ε). We start with the HH case. First, note that by

frequency decomposition and Hölder inequality, we have for (j, k) ∈ HH that

‖P aj UP akU ′‖(1−2ε, 12 +2ε,2ε|4ε) .β 2−ε(j+k)‖P aj U‖( 1
2−ε,

1
4 +ε,6ε)|P akU ′‖( 1

2−ε,
1
4 +ε,6ε).

Thus, we have∥∥∥∥∫ t

0

ei(t−s)〈Da〉〈Da〉−1(UU ′)HH ds

∥∥∥∥
S(I)

.β
∑

(j,k)∈HH

‖P aj UP akU ′‖(1−2ε, 12 +2ε,2ε|4ε)

.β
∑

(j,k)∈HH

2−εj‖P aj U‖( 1
2−ε,

1
4 +ε,6ε)

· 2−εk‖P akU ′‖( 1
2−ε,

1
4 +ε,6ε).

.β ‖P a≥0U‖( 1
2−ε,

1
4 +ε,6ε)

·‖P a≥0U
′‖( 1

2−ε,
1
4 +ε,6ε).
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This is what we needed. Let us now verify that
(

1
2 − ε,

1
4 + ε, 6ε

)
is controlled by

S(I). By the above Sobolev embedding, we see that for j ≥ −β + 10(
1

2
− ε, (1− 2ε)

(
3

10
− κ
)

+ 2ε · 1

2
, s

)
↪→H

(
1

2
− ε, 1

4
+ ε, 6ε

)
with s = 6ε+3

(
(1− 2ε)

(
3
10 − κ

)
− 2ε · 1

2 −
1
4 − ε

)
. Since s < (1− 2ε)

(
7
10 + κ

)
+ 2ε

we also obtain that(
1

2
− ε, (1− 2ε)

(
3

10
− κ
)
, (1− 2ε)

(
7

10
+ κ

)
+ 2ε

)
↪→H

(
1

2
− ε, (1− 2ε)

(
3

10
− κ
)
, s

)
.

From this, we may conclude that

(1− 2ε)

(
1

2
,

3

10
− κ, 7

10
+ κ

)
+ 2ε

(
0,

1

2
, 1

)
↪→H

(
1

2
− ε, 1

4
+ ε, 6ε

)
,

and indeed
(

1
2 − ε,

1
4 + ε, 6ε

)
is controlled by S(I). The HL and LH cases can be

handled similarly. We shall deal with the HL case, as the LH case is identical.
Here, we choose the dual pair ( 1

q̃′ ,
1
r̃′ ) to be ( 1

2 ,
3
4 − ε,

1
4 + ε). Again, using frequency

decomposition and Hölder inequality, we first obtain for (j, k) ∈ HL that

‖P aj UP akU ′‖( 1
2 ,

3
4−ε,

1
4 +ε) . 2ε(−j+k)‖P aj U‖( 1

2−ε,
1
4 +ε, 14 +2ε)‖P akU ′‖(ε, 12−2ε,−ε).

Thus, we have∥∥∥∥∫ t

0

ei(t−s)〈Da〉〈Da〉−1(UU ′)HL ds

∥∥∥∥
S(I)

.β
∑

(j,k)∈HL

‖P aj UP akU ′‖( 1
2 ,

3
4−ε,

1
4 +ε)

.β
∑

(j,k)∈HL

2−εj‖P aj U‖( 1
2−ε,

1
4 +ε, 14 +2ε)

· 2εk‖P akU ′‖(ε, 12−2ε,−ε)

.β ‖P a≥0U‖( 1
2−ε,

1
4 +ε, 14 +2ε)

·‖P a≤0U
′‖(ε, 12−2ε,−ε).

Similar to in the HH case above, we have S(I) ↪→H ( 1
2 − ε,

1
4 + ε, 1

4 + 2ε). For the
low-frequency part, we first use Sobolev embedding to obtain(

ε, (1− 2ε) · 1

2
+ 2ε ·

(
3

10
− κ
)
, s

)
↪→L

(
ε,

1

2
− 2ε,−ε

)
where s = 3

(
(1− 2ε) · 1

2 + 2ε ·
(

3
10 − κ

)
− 1

2 + 2ε)− ε
)
> (1 − 2ε)( 2

5 − 3κ). Thus,

we have S(I) ↪→L (ε, 1
2 − 2ε,−ε). �

We move on to the boundary term. We shall need the following result regarding
the boundedness of Ω(f, g).

Lemma 3.2.4 (Boundary term). Let U and U ′ be radial. Then, for a >
σ−1( 3

2 ( 3
10 − κ)),

(3.2.13)
∥∥∥〈Da〉−1

Ω(U,U ′)
∥∥∥
S(I)
.β ‖U‖S(I)|U ′‖S(I).
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Proof. Again, we convert our H1
a estimates to L2 estimates to compensate

for the 〈Da〉−1
term. Thus, we need to consider

‖Ω(U,U ′)‖(0, 12 ,0)

and

‖Ω(U,U ′)‖( 1
2 ,

3
10−κ,

2
5−3κ| 7

10 +κ ).

First, we deal with the
(
0, 1

2 , 0
)

norm. We apply Sobolev-Besov embedding as well
as Proposition 2.3.4 to obtain that

‖Ω(U,U ′)‖(0, 12 ,0)
.

∑
(j,k)∈LL

‖P aj U‖(0, 14 ,0)‖P akU ′‖(0, 14 ,0)

.β
∑

(j,k)∈LL

‖P aj U‖(0, 12 , 34 )‖P akU ′‖(0, 12 , 34 )

.β
∑

(j,k)∈LL

2
3
4 j‖P aj U‖(0, 12 ,0)2

3
4k‖P akU ′‖(0, 12 ,0)

. ‖P≤0U‖S(I)|P≤0U
′‖S(I).

It remains now for us to control the other norm in S(I). We have

‖Ω(U,U ′)‖( 1
2 ,

3
10−κ,

2
5−3κ)

.
∑

(j,k)∈LL

‖P aj U‖( 1
4 ,

1
2 ( 3

10−κ),0)
‖P akU ′‖( 1

4 ,
1
2 ( 3

10−κ),0)

.
∑

(j,k)∈LL

2
1
2 j‖P aj U‖( 1

4 ,
1
2 ( 3

10−κ),−
1
2 )2

1
2k‖P akU ′‖( 1

4 ,
1
2 ( 3

10−κ),−
1
2 )

. ‖P a≤0U‖( 1
4 ,

1
2 ( 3

10−κ),−
1
2 )‖P

a
≤0U

′‖( 1
4 ,

1
2 ( 3

10−κ),−
1
2 ).

Finally, we verify that S(I) controls
(

1
4 ,

1
2

(
3
10 − κ

)
,− 1

2

)
for low frequencies. We

have (
1

4
,

1

2
· 1

2
+

1

2

(
3

10
− κ
)
, s

)
↪→
(

1

4
,

1

2

(
3

10
− κ
)
,−1

2

)
where s = 3

4 −
1
2 >

1
2 · (

2
5 − 3κ) for a sufficiently small choice of κ. Thus, we indeed

have the low frequency embedding.
Notice also that 1

2 ( 3
10 − κ) 6∈ (r0, r

′
0) unless we add a restriction that a >

σ−1( 3
2 ( 3

10 − κ)) – i.e. the range for r for the case d = 3 is

1

3
σ <

1

r
< 1− 1

3
σ.

Thus, we need to set σ < 3
2 ( 3

10 − κ) to obtain the required restriction. �

Lemma 3.2.5 (Trilinear term). Let U and U ′ be radial. Then,
(3.2.14)∥∥∥∥∫ t

0

ei(t−s)〈Da〉 〈Da〉−1
Ω(〈Da〉−1

UU ′′, U ′) ds)

∥∥∥∥
S(I)

.β ‖U‖S̃(I)‖U
′‖S̃(I)‖U

′′‖S̃(I).

Proof. Again, we shall begin by applying the inhomogeneous Strichartz es-
timate. In this case, we shall choose the dual pair (q̃′, r̃′) = (1, 2). Thus, we find
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that using (3.2.6) along with Hölder’s inequality:

‖Ω(〈Da〉−1
UU ′′, U ′)‖(1, 12 ,0|0)

. ‖UU ′′‖( 2
3 ,

1
3 ,0)

∥∥∥‖P aj3U ′‖( 1
3 ,

1
6 ,0)

∥∥∥
`1j3

= ‖UU ′′‖( 2
3 ,

1
3 ,0)

∥∥∥‖P aj3U ′‖( 1
3 ,

1
6 ,−ε|ε)

∥∥∥
`2j3

.

Also, for (j1, j2) ∈ Z2,

‖P aj1UP
a
j2U
′′‖( 2

3 ,
1
3 ,0)

. 2εj1−2εj+1 ‖P aj1U‖( 1
3 ,

1
6 ,−ε|ε)

· 2εj2−2εj+2 ‖P aj2U
′′‖( 1

3 ,
1
6 ,−ε|ε)

.

Now, note that

‖P aj1UP
a
j2U
′′P akU

′‖L1
tL

2
x
.

∥∥∥‖P aj1U‖( 1
3 ,

1
6 ,0|0)

∥∥∥
`1j1

· · ·
∥∥∥‖P akU ′‖( 1

3 ,
1
6 ,0|0)

∥∥∥
`1k

.
∥∥∥‖P aj1U‖( 1

3 ,
1
6 ,−ε|ε)

∥∥∥
`2j1

· · ·
∥∥∥‖P akU ′‖( 1

3 ,
1
6 ,−ε|ε)

∥∥∥
`2j3

.

Now, we note that S̃(I) ↪→
(

1
3 ,

1
6 ,−ε|ε

)
to obtain the required result. �

We should also check that this component of S̃(I) can also be controlled by
S(I). In this case, we need to interpolate between 2

3 of
(

1
2 ,

3
10 − κ,

2
5 − 3κ

∣∣ 7
10 + κ

)
and 1

3 of (0, 1
2 , 0|1). Let us first check the following embedding for high and low

frequencies: (
1

3
,

2

3

(
3

10
− κ
)

+
1

3
· 1

2
, sL |sH

)
↪→
(

1

3
,

1

6
,−ε|ε

)
.

For low-frequency we see that we need

sL ≤ −ε−
3

6
+ 2

(
3

10
− κ
)

+
1

3
· 3

2
,

and for high-frequency we see that we need

ε− 3

6
+ 2

(
3

10
− κ
)

+
1

3
≤ sH .

We see that we may choose such values of sL and sH so that

2

3

(
2

5
− 3κ

)
≤ sL

and we can choose sH so that

sH ≤
2

3

(
7

10
+ κ

)
+

1

3
,

so we indeed obtain the required embedding to control S̃I . Thus, we obtain the
following perturbed Strichartz estimate:

Proposition 3.2.6 (Perturbed Strichartz estimates). Suppose d = 3. Let 0 <
ε < κ � 1 and U is a solution to (3.2.8 - 3.2.11) where U0 is radial and a >
σ−1( 3

2 ( 3
10 − κ)). Then, we have

‖U‖S(I) . ‖U0‖H1
a

+ ‖U‖2S(I) + ‖U‖2S(I) + ‖U‖3S(I).

Thus, we also have small data scattering for (3.2.1).





CHAPTER 4

Small energy scattering in higher dimensions

4.1. Function spaces

In this section, we shall review the definition and basic properties of Up and V p

spaces (see [24]). The Up spaces were used earlier by Koch and Tataru [39, 40],
while the V p spaces were introduced much earlier by Wiener [62]. Firstly, we shall
denote the set of finite partitions of the form −∞ = t0 < t1 < · · · < tK = ∞ by
Z. The set of finite partitions of the form −∞ < t0 < t1 < · · · < tK < ∞ shall
be denoted by Z0. Then, for 1 ≤ p < ∞ and {tk}0≤k≤K ∈ Z and {φk}0≤k≤K ⊂
L2(Rd,C) such that

∑K
k=0 ‖φk‖

p
L2 = 1 and φ0 = 0, a function of the form

a =

K∑
k=1

1[tk−1,tk)φk−1

a Up-atom. We then define the atomic space Up as

Up :=

u =

∞∑
j=1

λjaj ∈ L∞(R, L2) : aj are Up atoms and {λj}1≤j≤∞ ∈ `1


endowed with the norm

‖u‖Up := inf

‖λj‖`1 : u =

∞∑
j=1

λjaj , λj ∈ C, aj are Up atoms

 .

Also, we define for 1 ≤ p <∞ the space V p of bounded p-variation as the space
of all functions v : R→ L2 such that limt→∞ v(t) = 0 and such that limt→−∞ v(t)
exists and also satisfies

‖v‖V p := sup
{tk}0≤k≤K∈Z

(
K∑
k=1

‖v(tk)− v(tk−1)‖pL2

) 1
p

<∞.

We define V p∗ ⊂ V p as the subspace of all functions v ∈ V p such that limt→−∞ v(t) =
0, limt→∞ v(t) exists and ||v||V p < ∞. Also, denote by Vrc the space of all right-
continuous v ∈ V p and V∗,rc the space of all right-continuous v ∈ V p∗ .

Lemma 4.1.1 (Basic properties of Up and V p spaces). Let 1 ≤ p < q <∞.

(i) Up, V p, V p∗ and V p∗,rc are Banach spaces.
(ii) Let u ∈ Up. Then u : R→ L2 is a right-continuous.
(iii) Let u ∈ Up. Then, limt→−∞ u(t) = 0 and limt→∞ u(t) exists in L2.
(iv) Let v ∈ V p. Then, limt→±∞ v(t) exist in L2.
(v) The embeddings V p ↪→ V q and V p∗ ↪→ V q∗ are continuous.

(vi) The embeddings Up ↪→ V p∗,rc ↪→ Uq ↪→ L∞t (R, L2
x(Rd)) are continuous.

33
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Lemma 4.1.2 (Duality). Let 1 < p <∞. Then, (Up)∗ = V p
′

in the sense that

there exists an isometric isomorphism T : V p
′ → (Up)∗ such that T (v) = B(·, v).

In particular, suppose that u ∈ V 1
∗ is absolutely continuous on compact intervals

and v ∈ V p′ . Then,

B(u, v) = −
∫ ∞
−∞

(u′(t), v(t))L2 dt.

Furthermore, we have the following dual characterisation of ‖ · ‖Up as

‖u‖Up = sup
v∈V p′ , ‖v‖

V p
′=1

∣∣∣∣∫ ∞
−∞

(u′(t), v(t))L2 dt

∣∣∣∣ .
The above spaces Up and V p provide a framework in which we may define

function spaces adapted to the operators e±it〈Da〉. We now build adapted function
spaces with have desirable properties to close the contraction mapping argument:

Up± =
{
u : R→ L2 : e∓it〈Da〉u ∈ Up

}
with norm

‖u‖Up± :=
∥∥∥e∓it〈Da〉u∥∥∥

Up
.

We also define the space

V p± =
{
v : R→ L2 : e∓it〈Da〉u ∈ V p

}
with norm

‖v‖V p± :=
∥∥∥e∓it〈Da〉u∥∥∥

V p
.

We remark that Up± is again an atomic space with atoms of the form e±it〈Da〉a where

a is an Up-atom. We define some relevant projections. Let M ∈ 2Z be a dyadic
number. Note that in this chapter, dyadic numbers shall be denoted usually by
M,N and N ′. Here, their relative size to each other is more important, and so this
notation is more convenient. Also, let φ be a smooth, even, non-negative function
such that φ(t) = 1 on |t| < 1 and φ(t) = 0 on |t| > 2. Set also ψ(t) = φ(t)− φ(2t)
and ψN (t) = ψ(t/N). Next we define the time frequency projection

Ft(QNu) = ψNFtu.

Recall the space frequency projection is defined as P aNu := ψN (Da)u so that for
u ∈ L2

=k(Rd), we have

P aNu = Hν(k)ψN (ρ)Hν(k)u.

Define the modulation projection

(4.1.1) Q±Mu := e±t〈Da〉QMe
∓t〈Da〉u

such that for u ∈ L2
=k(Rd) and recalling the notation ũ := FtHνu, where in this

case ν =
√
µ(k)2 + a, we have

Q̃±Mu := ψM (τ ∓ 〈ρ〉)ũ.

We define Q±≤Mu in a similar manner so that on each harmonic subspace, we have

Q̃±≤Mu = φM (τ ∓ 〈ρ〉)ũ.
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We have the following estimates related to the above projections. The proofs are
the same as in [24] as the estimates may be reduced to estimates on Up and V p

via the definition (4.1.1).

Lemma 4.1.3. Let M be a dyadic number. Let 1 ≤ p <∞ (and if −
(
d−2

2

)2
<

a < 0, then also r0 < p < r′0). Then,

(i) ‖Q±Mu‖L2(Rd) .M
− 1

2 ‖u‖V 2
±

(ii) ‖Q±≥Mu‖L2(Rd) .M
− 1

2 ‖u‖V 2
±

(iii) ‖Q±<Mu‖Up± . ‖u‖Up± , ‖Q±≥Mu‖Up± . ‖u‖Up±
(iv) ‖Q±<Mu‖V p± . ‖u‖V p± , ‖Q±≥Mu‖V p± . ‖u‖V p±
The Up spaces are able to inherit L2-based multilinear estimates related to free

solutions via the following transfer principle. This shall be especially relevant later
when we obtain bilinear Strichartz estimates which are of the form L2 × L2 → L2.
This transfer principle allows us to convert this to an estimate, say, U2

±1
×U2
±2
→ L2,

which we shall need for the trilinear estimates, as mentioned in the discussion at
the start of the chapter.

Lemma 4.1.4 (Transfer principle). Let T0 : L2 × · · · × L2 → L1
loc(Rd,C) be a

m-linear operator. Suppose for some 1 ≤ p, q ≤ ∞ that∥∥∥T0(e±1·〈Da〉φ1, ..., e
±m·〈Da〉φm)

∥∥∥
Lpt (R,Lqx(Rd)

. ‖φ1‖L2 · · · ‖φm‖L2 .

There exists an operator T : Up±1
× · · · × Up±m → Lpt (R, L

q
x(Rd)) satisfying

‖T (u1, ..., um)‖Lpt (R,Lqx(Rd)) . ‖u1‖Up±1
· · · ‖um‖Up±m

such that T (u1, ..., um)(t)(x, y) = T0(u1(t), ..., um(t))(x, y) a.e.

The above transfer principle allows us to bring L2-based multilinear estimates
within the framework of the Up and V p spaces, but at the moment, only for Up

spaces. We have the following result which allows us to form V p estimates as well.

Lemma 4.1.5 (Interpolation). Let q > 1, E a Banach space, T : Uq± → E a
bounded linear operator such that ‖Tu‖E ≤ Cq‖U‖Uq± for u ∈ Uq±. Suppose also

that for some 1 ≤ p < q, it holds that ‖Tu‖E ≤ Cp‖u‖Up± where 0 < Cp ≤ Cq for

all u ∈ Up±. Then for all u ∈ V p−,rc,±, we have

(4.1.2) ‖Tu‖E ≤
4Cp
2αp,q

(
ln

(
Cq
Cp

+ 2αp,q + 1

))
‖u‖V p± ,

where αp,q = (1− p/q) ln(2).

Finally, we define the function spaces in which we shall perform the contraction
mapping argument

‖u‖Xs± =

(∑
N

N2s‖P aNu±‖2U2
±

) 1
2

‖u‖Y s± =

(∑
N

N2s‖P aNu±‖2V 2
±

) 1
2

.

We put these spaces together and define Xs := Xs
+ ×Xs

− and Ys := Y s+ × Y s−.
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4.2. Bilinear Strichartz estimates

4.2.1. Bilinear estimates for radial initial data. Let us begin our study
of the Klein-Gordon equation with inverse-square potential. As discussed above,
we shall do via the equivalent first-order system:

(4.2.1)

{
±iut(x, t) + 〈Da〉u(x, t) = 0, (t, x) ∈ R×Rd

u(0, x) = u0(x).

In particular, we shall obtain the following bilinear Strichartz estimate initially for
radial initial data. In this chapter, we shall consider the range a > Ad where

(4.2.2) Ad =

{
−
(
d−2

2

)2
, d = 3, 4

1
16 (8d− 3d2), d ≥ 5.

This is the range for which the L4 norm is enough to control the Hankel transform
at the origin when a < 0. We note that σ−1

(
d
4

)
= 1

16 (8d− 3d2).

Theorem 4.2.1 (Bilinear Strichartz estimates for M � N (radial case)). Sup-
pose that d ≥ 3, a > Ad. Suppose that M,N ∈ 2N and uM , uN ∈ L2 are radial with
spatial frequency supported at frequencies M and N respectively (i.e. P ak uM = uM
and P ak uN = uN ). Also, denote ±i ∈ {+,−} for i = 1, 2. We have the following
bilinear Strichartz estimates:

(4.2.3)
∥∥∥(e±1it〈Da〉uM

)(
e±2it〈Da〉uN

)∥∥∥
L2
tL

2
x

.a M
d
4N

d
4−

1
2 ‖uM‖L2‖uN‖L2 .

Remark 4.2.2. The coefficient can still be improved, as in [53]. However, it is
sufficient for our purposes. The issue lies in the estimate (4.2.5) below. Further-
more, we use the notation dω(x, y) to denote dω(x)dω(y) = xd−1dx · yd−1dy. This
use will be justified via Fubini’s theorem.

Proof. Let us discuss the proof in the case where ±1 = ±2 = +. The other
cases are similar, as will be noted below in the proof. We shall use the fact that
uM and uN are radial to reduce the L2 norm to the radial L 2 norm. Note that by
a slight abuse of notation, we shall write uM (z) = uM (|z|). Next, by duality,

LHS of (4.2.3) = sup
‖G‖

L2
tL2

x
=1

∣∣∣∣〈G,(eit〈Da〉uM)(eit〈Da〉uN)〉
L2
tL

2
x

∣∣∣∣ .
Thus, the fact that f̂#ĝ = f̂g, the inner product becomes〈

Ĝ,
(
eit〈ρ〉ûM (ρ)

)
#
(
eit〈ρ〉ûN (ρ)

)〉
L2
tL

2
ρ

=

∫
R

〈
Ĝ,
(
eit〈ρ〉ûM (ρ)

)
#
(
eit〈ρ〉ûN (ρ)

)〉
L 2
ρ

dt.

Now, we expand the Hankel convolution1:(
eit〈ρ〉ûM (ρ)

)
#
(
eit〈ρ〉ûN (ρ)

)
=

∫ ∞
0

eit(〈x〉+〈y〉)ûM (x)ûN (y)D(x, y, ρ) dω(x, y).

1For ease of notation, we shall omit the extra integral signs. Also, recall the norm ‖u‖Lp :=∫∞
0 u(x) dω(x) =

∫∞
0 u(x) xd−1dx.
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Thus, by Fubini’s theorem, we see that it is suitable to apply the Fourier transform
in the time variable, and obtain the following simplification for the inner product:∫ ∞

0

〈
G̃(〈x〉+ 〈y〉, ρ), ûM (x)ûN (y)D(x, y, ρ)

〉
L 2
ρ

dω(x, y),

which is equal to∫ ∞
0

G∗(〈x〉+ 〈y〉, ρ), ûM (x)ûN (y)D(x, y, ρ) dω(x, y, ρ).

Thus, in order to prove (4.2.3), it is equivalent to prove∣∣∣∣∫ ∞
0

G(〈x〉+ 〈y〉, ρ), ûM (x)ûN (y)D(x, y, ρ) dω(x, y, ρ)

∣∣∣∣(4.2.4)

.a KGd‖G(u, ρ)‖L2
uL 2

ρ
‖uM‖L 2

ρ
‖uN‖L 2

ρ
.

First, we shall perform a change of variables: u = 〈x〉+ 〈y〉 ∼ 〈y〉 and v = x with
dudv ∼ dxdy. (Here, the other cases for ±1,±2 can be handled similarly as we have
assumed that 1 ≤ M � N , so we always have 〈x〉 � 〈y〉.) Thus, we obtain also
with the Cauchy-Schwarz inequality that the left-hand side of (4.2.4) is bounded
by

‖G‖L2
uL 2

ρ

∫ ∞
0

(∫ ∞
0

(ûM (x)ûN (y)D(x, y, ρ))
2
yd−1 dω(y)dω(ρ)

) 1
2

dω(x)

. ‖G‖L2
uL 2

ρ
M

d
2

(∫ ∞
0

(ûM (x)ûN (y)D(x, y, ρ))
2
yd−1 dω(x, y, ρ))

) 1
2

. ‖G‖L2
uL 2

ρ
M

d
2N

d−1
2

(∫ ∞
0

(ûM (x)ûN (y)D(x, y, ρ))
2

dω(x, y, ρ))

) 1
2

.

Thus, it remains to deal with the integral. For this, we use Lemma 4.2.3 which we
shall prove shortly. Combined with the fact that x ∼M and y ∼ N , we obtain the
required result. �

We now prove the integral estimate required above, as well as a more general
estimate. We again note the slight abuse of notation where we have identified a
radial function f(x) as a function in |x|.

Lemma 4.2.3. Let u and v be radial. For a > Ad, ν := ν(a, k) and d ≥ 3, we
have

(4.2.5)

∫ ∞
0

(u(x)v(y)Dν(x, y, ρ))
2

dω(x, y, ρ) . ‖Uν‖2L 4

∥∥∥∥u(x)

x
d
4

∥∥∥∥2

L 2
x

∥∥∥∥v(y)

y
d
4

∥∥∥∥2

L 2
y

.

Proof. Using the definition of Dν(x, y, ρ) (we shall from now on omit the
subscript ν) and Fubini’s theorem, we find that the left-hand side of (4.2.5) is∫ ∞

0

u(x)2v(y)2U(xη)U(yη)U(ρη)U(xη̃)U(yη̃)U(ρη̃) dω(x, y, ρ, η, η̃).

The idea is to use the orthogonality of Bessel functions in the ρ variable. Thus, we
write the above integral as∫ ∞

0

u(x)2v(y)2U(xη)U(yη)U(xη̃)U(yη̃)

[∫ ∞
0

U(ρη)U(ρη̃) dω(ρ)

]
dω(x, y, η, η̃).
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We may deal with the inner integral using the following Bessel function identity∫ ∞
0

Jν(ρη)Jν(ρη̃)ρ dρ =
1

η
δ(η − η̃).

Then, the whole integral becomes∫ ∞
0

(u(x)U(xη))
2

(v(y)U(yη))2 dω(x, y, η)

=
∥∥∥‖u(x)U(xη)‖L 2

x
‖u(y)U(yη)‖L 2

y

∥∥∥2

L2
η

.(4.2.6)

Now, we use Hölder’s inequality and interchange of norms to obtain

(4.2.6) ≤ ‖u(x)U(xη)‖2L4
ηL 2

x
‖u(y)U(yη)‖2L 4

ηL 2
η

≤ ‖u(x)U(xη)‖2L 2
xL 4

η
‖u(y)U(yη)‖2L 2

yL 4
η
.

By scaling, we also have

‖u(x)U(xη)‖2L 2
xL 4

η
=

∥∥∥u(x)‖U(xη)‖L 4
η

∥∥∥2

L 2
x

=

∥∥∥∥u(x)

x
d
4

‖U(η)‖L 4
η

∥∥∥∥2

L 2
x

.

Now, we note that this L 4 norm is finite only for a > Ad. Therefore, we obtain
the required result. �

Remark 4.2.4. We can try to improve the estimate (4.2.5). We can try the
following estimate:∫ ∞

0

(u(x)U(xη))
2

(v(y)U(yη))2 dω(x, y, η)

.
∫ ∞

0

u(x)2v(y)2 1

yd

∫ ∞
0

U

(
xη

y

)2

U(η)2 dω(η) dω(x, y)

Now, we split the inner integral into regions xη/y > C and xη/y < C to estimate
the Bessel function. Suppose that U(z) = Uν(z) is bounded near 0 – i.e. ν > d−2

2 .
In this case, the xη/y < C integral is bounded and for the xη/y > C integral we
have ∫ ∞

η>Cy/x

(
xη

y

)2(− d−2
2 −

1
2 )

η2(− d−2
2 −

1
2 ) dη.

If we have y ≤ x, then y/x ≤ 1, and so we obtain a bound on the inner integral
that is independent of x and y. Putting everything together, we have the estimate∫ ∞

0

(u(x)v(y)Dν(x, y, ρ))
2

dω(x, y, ρ) . ‖Uν‖L 4 ‖u(x)‖2L 2
x

∥∥∥∥v(y)

y
d
2

∥∥∥∥2

L 2
y

.

However, because we imposed that y ≤ x, this estimate gives weaker coefficients for
the bilinear Strichartz estimates (Theorem 4.2.3) compared to (4.2.5).
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4.2.2. Weighted Hankel convolution estimates. In this section, we shall
first prove the following lemma, which we shall use to prove the bilinear Strichartz
estimate for comparable frequencies. We shall focus on the radial case. We will also
need the spacetime Hankel transform which we define as Hνtxu := FtHν,xu. As we
have seen previously, it is useful to take the Fourier transform of the time variable.
We denote the corresponding convolution by #tx. From the multiplicative structure
of the usual convolution on t and the Hankel convolution of x, we can readily deduce
the multiplicative structure of #tx. Indeed, we find that for well-behaved f and g,
we have

FtHx(fg)(ρ) = Ft

∫ ∞
0

τρf̂(t, x)ĝ(t, x) dω(x)

= Ft

∫ ∞
0

f̂(t, y)ĝ(t, x)D(x, y, ρ) dω(x, y)

=

∫ ∞
0

Ft(f̂(t, y)ĝ(t, x))D(x, y, ρ) dω(x, y)

=

∫
R

∫ ∞
0

f̃(τ − s, y)g̃(s, x)D(x, y, ρ) dω(x, y)ds,

where ũ := Htx(u). As usual, we shall suppress the order of the Hankel transform
unless it is unclear.

Lemma 4.2.5. For ν(k, a) with a > Ad, suppose that u and v are radial and
their spacetime Hankel transforms of order ν(k, a) are supported on sets A and B
– i.e. supp (Htxu) ⊆ A and supp (Htxv) ⊆ B. Then,

‖uv‖L2
tL

2
x
≤a
(

sup
τ∈R
|I(τ)|

) 1
2
∥∥∥∥ ũ
x
d
4

∥∥∥∥
L2
tL

2
x

∥∥∥∥ ṽ

x
d
4

∥∥∥∥
L2
tL

2
x

,

and for A∗ = {(−τ, x) : (τ, x) ∈ A},

I(τ) =

∫
R

∫ ∞
0

1(τ,0)+A∗(s, x)1B(s, y) dω(x, y)ds.

Proof. We first note that

‖uv‖2L2
tL

2
x

= ‖ũ#txṽ‖2L2
τL 2

ρ

= ‖1Aũ#tx1B ṽ‖2L2
τL 2

ρ .

We may write this final norm as

(4.2.7)

∫
R

∫ ∞
0

(∫
R

∫ ∞
0

1Aũ(τ − s, x)1B ṽ(s, y)D(x, y, ρ) dω(x, y)ds

)2

dω(ρ)dτ.

We shall apply the Cauchy-Schwarz to the inner integrals to obtain:∫
R

∫ ∞
0

1Aũ(τ − s, x)1B ṽ(s, y)D(x, y, ρ) dω(x, y)ds

≤
(∫

R

∫ ∞
0

1A(τ − s, x)1B(s, y) dω(x, y)ds

) 1
2

·
(∫

R

∫ ∞
0

(ũ(τ − s, x)ṽ(s, y)D(x, y, ρ))
2

dω(x, y)ds

) 1
2

:= I
1
2 J

1
2 .
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Thus, (4.2.7) becomes
∫ ∫

IJ dω(ρ)ds. Let us first study the integral I = I(τ):

I(τ) =

∫
R

∫ ∞
0

1A(τ − s, x)1B(s, y) dω(x, y)ds

=

∫
R

∫ ∞
0

1(τ,0)+A∗(s, x)1B(s, y) dω(x, y)ds.

Here, A∗ = {(−τ, x) : (τ, x) ∈ A}. Now, we notice that for a fixed s ∈ R, the
product 1(τ,0)+A∗(s, x)1B(s, y) is nonzero if x ∈ E(τ,0)+A∗(s) and y ∈ EB(s) where
for a set C ⊆ R× (0,∞), EC(s) = {x : (s, x) ∈ C}.

Thus, going back to (4.2.7), where we see that we will again encounter the
integral from above:

(4.2.7) ≤
∫
R

∫ ∞
0

I(τ)J dω(ρ)dτ

≤ sup
τ
|I(τ)|

∫
R

∫
R

∫ ∞
0

(ũ(τ − s, x)ṽ(s, y)D(x, y, ρ))
2

dω(x, y, ρ)dsdτ

= sup
τ
|I(τ)|

∫
R

∫
R

∫ ∞
0

(ũ(τ, x)ṽ(s, y)D(x, y, ρ))
2

dω(x, y, ρ)dsdτ.

Now, we use the same convolution estimate as above (Lemma 4.2.3) to obtain the
required result. �

4.2.3. Bilinear Strichartz estimates for comparable frequencies. Let
us now use the above to obtain the bilinear Strichartz estimates for comparable
frequencies. This means we want an estimate with M ∼ N for the term∥∥(e±1it〈Da〉uM

) (
e±2it〈Da〉uN

)∥∥
L2
tL

2
x
.

We consider the case where ±1 = ±2 = +. The other cases are handled in a similar
manner, as shall be seen below.

We shall follow the method of thickened spheres used by Selberg [54] (see also
Schottdorf [53]). Thus, we shall approximate the spacetime supports δ(τ ± 〈ρ〉)
by ε−11|τ±〈ρ〉|<ε. In particular, we thicken the support of e±it〈Da〉uM to A =

{(t, ρ) : ρ ∼M, |τ ∓ 〈ρ〉| < ε} and likewise we thicken the support of e±it〈Da〉uN to
B = {(t, ρ) : ρ ∼ N, |τ ∓ 〈ρ〉| < ε}. The goal now is to obtain a bound on I1(τ)
above using these choices for A and B and then finally take the limit as ε → 0 to
get the bilinear estimates.

First, we notice that the supremum is attained when (τ, 0) + A∗ and B are
situated in the below diagram – i.e. (τ, 0) + A∗ completely overlaps with B. We
also notice that the other cases for ±1,±2 can be handled in a similar way to the
±1 = ±2 = + case as the only difference amounts to a reflection, which does not
affect the geometry of the problem.

Recall the integral for I(τ):

I(τ) =

∫
R

∫ ∞
0

1(τ,0)+A∗(s, x)1B(s, y) dω(x, y)ds.

We first have that for M > 1 and ε� 1∫ ∞
0

1(τ,0)+A∗(s, x) dω(x) ≤
∫ ρ+2ε

ρ

xd−1dx . ρd−1ε ∼Md−1ε,
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s

M N x, y

B
ε

(τ, 0) +A∗

Figure 1. The supremum supτ |I1(τ)| is attained when τ is chosen
so that (τ, 0) + A∗ and B are located as in the above diagram.
Here, A and B are precisely the thickened supports mentioned
previously. In particular, A = {(t, ρ) : ρ ∼ M, |τ − 〈ρ〉| < ε} and
B = {(t, ρ) : ρ ∼ N, |τ − 〈ρ〉| < ε}.

and similarly, ∫ ∞
0

1B(s, y) dω(y) . Nd−1ε.

Finally, we observe that s is non-zero only on an interval of length comparable to
M . Therefore

I(τ) .MMd−1Nd−1ε2

so that after taking ε→ 0 in the approximation above we then obtain the bilinear
estimates for M ∼ N :∥∥∥(eit〈Da〉uM)(eit〈Da〉uN)∥∥∥

L2
tL

2
x

. M
1
2 (MN)

d−1
2 N−

d
2 ‖uM‖L2‖uN‖L2

∼ M
d−2
2 N

1
2 ‖uM‖L2‖uN‖L2 .(4.2.8)

We may apply a slightly modified argument to obtain the estimate in the M � N
case.

4.3. Small data scattering in higher dimensions

4.3.1. Up and V p-based estimates. We shall now use the transfer principle
(Lemma 4.1.4) to convert the above bilinear Strichartz estimates into the form
which we will need for the proof of scattering. Our first application of the transfer
principle shall be to the following L4 estimate. As above, we assume that all
functions here are radial.
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Proposition 4.3.1. Let d ≥ 3, a > Ad and suppose that uM has support at
frequency M . Then,

(4.3.1)
∥∥∥e±it〈Da〉uM∥∥∥

L4
.M

d−1
4 ‖uM‖L2

and therefore

(4.3.2) ‖uM‖L4 .M
d−1
4 ‖uM‖U4

±
.

Proof. The estimate (4.3.2) follows from an application of the transfer princi-
ple (c) to (4.3.1). Thus, it remains to verify (4.3.1). We shall rewrite it as a bilinear
estimate: ∥∥∥eit〈Da〉uM∥∥∥2

L4
=
∥∥∥eit〈Da〉uMeit〈Da〉uM∥∥∥

L2
.

Now, this is a bilinear Strichartz estimate, and so the result follows immediately
from (4.2.8). �

We now discuss the main application of the transfer principle to the bilinear
Strichartz estimates. We shall use the above L4 estimates. Indeed, we have

Proposition 4.3.2. Let d ≥ 3, a > Ad, M,N ∈ 2N. Furthermore, suppose
that uM , uN , vM and vN are radial. We have

(a) For uM ∈ U2
±1

, uN ∈ U2
±2

‖uMuN‖L2 .

{
M

d
4N

d−2
4 ‖uM‖U2

±1
‖uN‖U2

±2
, M � N

M
d−2
2 N

1
2 ‖uM‖U4

±1
‖uN‖U4

±2
, M ∼ N.

(b) For vM ∈ V 2
±1

, vN ∈ V 2
±2

‖vMvN‖L2 .

{
M

d
4N

d−2
4

(
log
(
N
M

))2 ‖vM‖V 2
±1
‖vN‖V 2

±2
, M � N

M
d−2
2 N

1
2 ‖vM‖V 2

±1
‖vN‖V 2

±2
, M ∼ N.

Proof. Firstly, we obtain the U2
±1
× U2

±2
→ L2 estimate via the transfer

principle in the M � N case. Thus, we move on to verify the U4
±1
× U4

±2
→ L2

estimates in the M ∼ N case. We first have ‖uMuN‖L2 ≤ ‖uM‖L4‖uN‖L4 . Thus,
we may apply the U4

± → L4 estimate (4.3.2) to obtain

(4.3.3) ‖uMuN‖L2 ≤ (MN)
d−1
4 ‖uM‖U4

±1
‖uN‖U4

±2
.

Note that for M ∼ N , we have (MN)(d−1)/4 ∼M (d−2)/2N1/2. This completes the
proof of (a).

We obtain the V 2
±1
× V 2
±1
→ L2 estimates in the M ∼ N case from (4.3.3) and

the embedding V 2
± ↪→ U4

±. Thus, it remains to verify the V 2
±1
×V 2
±1
→ L2 estimates

in the M � N case. We first define an operator Tv := uMP
a
Nv. In this case, we

use (4.3.3) and the embedding U2
± ↪→ U4

± to obtain

‖T‖U4
±2
→L2 . (MN)

d−1
4 ‖uM‖U2

±1
.

Furthermore, from the bilinear estimates, we also have

‖T‖U2
±2
→L2 .M

d
4N

d−2
4 ‖uM‖U2

±1
.
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Thus, we use Proposition 4.1.5 to obtain

‖T‖V 2
±2
→L2 .M

d
4N

d−2
4 log

(
N

M

)
‖uM‖U2

±1
.

From this we have a U2
±1
×V 2
±2
→ L2 estimate, so it remains to repeat the argument

to finally obtain a V 2
±1
× V 2

±2
→ L2. Now, define an operator Su := vNP

a
Mu. We

have the estimates

‖S‖U4
±1
→L2 . (MN)

d−1
4 ‖vN‖V 2

±2

and also

‖S‖U2
±1
→L2 .M

d
4N

d−2
4 log

(
N

M

)
‖vN‖V 2

±2
.

Thus, again applying Proposition 4.1.5 we obtain

‖S‖V 2
±1
→L2 .M

d
4N

d−2
4

(
log

(
N

M

))2

‖uM‖V 2
±2
.

This completes the proof of (b). �

4.3.2. Trilinear estimates. For the remainder of this section, we shall work
towards proving Theorem 1.1.3, which is analogous to the work of Schottdorf [53]
for the potential-free case. In this section, we shall first use the bilinear Strichartz
estimates obtained above in order to prove the following trilinear estimates. These
estimates shall then be used to prove the scattering result.

Proposition 4.3.3 (Trilinear estimates). Let d ≥ 3, s ≥ d−2
2 , N ∼ N ′. Fur-

thermore, suppose that uM , vN and wN ′ are radial. Then,

1

N

∣∣∣∣∣ ∑
M�N

∫
R

∫
Rd

uMvNwN ′ dxdt

∣∣∣∣∣(4.3.4)

.

( ∑
M�N

L2s‖uM‖2V 2
±1

) 1
2

‖vN‖V 2
±2
‖wN ′‖V 2

±3

and also  ∑
M.N

M−2M2s sup
‖wM‖V 2

±3

=1

∣∣∣∣∫
R

∫
Rd

uNvN ′wM dxdt

∣∣∣∣2
 1

2

(4.3.5)

. Ns‖uN‖V 2
±1

(N ′)s‖vN ′‖V 2
±2
.

Proof. The first step is to show that the following low modulation integral
is zero. The consequence of this is that we assume at least one of uM = uhM ,
vN = vhH′ or wN ′ = whN ′ in the above integral. That is, we may place one of these
terms in high modulation. Here, we decompose uM , vN and wN ′ into high and low
modulation components. For instance, uM = ulM + uhM where uhM = Q±>L(uM ),
where L shall be chosen later.

Lemma 4.3.4 (Low modulation integral is zero). The integral

(4.3.6)

∫
R

∫
Rd

ulMv
l
Nw

l
N ′ dxdt

vanishes.
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Proof of Lemma 4.3.4. We consider the following convolution of order ν =
ν(0) = d−2

2 : (
Hν(a)
tx (uM )#νHν(a)

tx (vN )#νHν(a)
tx (wN ′)

)
(0, ε)

for some small ε > 0 to be chosen later. In particular, by using the definition for
Q±<L, this expression is equal to∫

R

∫
1{|τ1±〈ρ1〉|<L}ũM (τ1, ρ1)1{|τ2±〈ρ2〉|<L}ṽN (τ2, ρ2)

· 1{|τ3±〈ρ3〉|<L}w̃N ′(τ3, ρ3) ·Dν(x, z, ρ2)Dν(ρ1, ρ3, ε) dω(ρ1, ρ2, ρ3, z)dt.

In particular, for the time variable, we obtain the relation

τ1 + τ2 + τ3 = 0.

Furthermore, by noting that the integral is zero unless there is a triangle with sides
of length x, z and ρ2, as well as a triangle with sides of length ρ1, ρ3 and ε, we also
obtain the relation

ρ1 < ρ2 + ρ3 + ε.

From the modulations, we obtain that

6L ≥ 2 (τ1 ± 〈ρ1〉+ τ2 ± 〈ρ2〉+ τ3 ± 〈ρ3〉) = |±〈ρ1〉 ± 〈ρ2〉 ± 〈ρ3〉|.

Now, choose ε so that 2〈ρ2〉 ≥ 〈ρ2+ε〉. Then, for instance, in the case (±1,±2,±3) =
(−,+,+), we have that

2(〈ρ2〉+ 〈ρ3〉 − 〈ρ1〉) ≥ 〈ρ2 + ε〉+ 〈ρ3〉 − 〈ρ1〉+ (〈ρ3〉 − 〈ρ1〉)
≥ 〈ρ2 + ε〉+ 〈ρ3〉 − 〈ρ1〉
≥ M−1.

In the second line, we used that ρ1 is localised to M and ρ3 is localised to N ′ > M .
In the third line, we combined the condition ρ1 < ρ2 + ρ3 + ε with the following
modulation bound (see Schottdorf [53]) above with ρ2 + ε instead of ρ2.

Lemma 4.3.5. Let ρ1 + ρ2 = ρ3. Then, 〈ρ1〉+ 〈ρ2〉 − 〈ρ3〉 & 〈ρmin〉−1 where we
write ρmin = min{ρ1, ρ2, ρ3}.

In particular, we obtain that 6L ≥M−1. So, choosing L = (cM)−1 with c > 0
sufficiently large, we may conclude that the above integral is zero, and therefore at
least one of ulM , v

l
N or wlN ′ is zero. From this, we may conclude that the integral

vanishes. �

Now, we prove the trilinear estimates. Let us begin with (4.3.4). First, assume
that uM = uhM . Then, by using the modulation estimate Lemma 4.1.3(i) and the
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N ∼ N ′ bilinear Strichartz estimate, we bound the left-hand side of (4.3.4) by

1

N

∑
M�N

‖uM‖L2‖vNwN ′‖L2

.
1

N

∑
M�N

M
1
2 ‖uM‖V 2

±1
‖vNwN ′‖L2

.
1

N

( ∑
M�N

M2s‖uM‖2V 2
±1

) 1
2
( ∑
M�N

M1−2s‖vNwN ′‖L2

) 1
2

.
1

N

( ∑
M�N

M2s‖uM‖2V 2
±1

) 1
2
( ∑
M�N

M1−2sNd−1‖vN‖2L2‖wN ′‖2L2

) 1
2

.

Let us study the second summation. We notice that for s ≥ d−2
2

1

N

( ∑
M�N

M1−2sNd−1

) 1
2

. N−1N
d−2s

2 . 1.

Thus, we obtain the required result for this case. Next, we study the case where
wN ′ = whN ′ . The case where vN = vhN is handled in the same way. We have

LHS of (4.3.4) .
1

N

∑
M�N

‖wN ′‖L2‖uMvN‖L2

.
1

N

∑
M�N

M
1
2 ‖wN ′‖V 2

±1
‖uMvN‖L2

.
1

N

∑
M�N

M
1
2M

d
4N

d−2
4

(
log

(
N

M

))2

‖uM‖V 2
±1
‖vN‖V 2

±2
‖wN ′‖V 2

±3
.

We apply Cauchy-Schwarz to obtain the
∑
M2s‖uM‖V 2

±1
term, and thus we are

left with

(N)−2
∑
M�N

MM
d
2M

d−2
2 M−2s

(
log

(
N

M

))4

. N−1
∑
M�N

Md−1−2s . 1.

Here we have used that
(
log
(
N
M

))4
. N

M . This verifies (4.3.4) and now we verify
(4.3.5). Again, there are two cases to study since the cases of similar frequencies
are handled in the same manner. Firstly, consider the case where wM = whM . In
this case, we have

(LHS of (4.3.5))
2 .

∑
M.N

M−1M2s‖uNvN ′‖2L2

. Nd−2N ′
∑
M.N

M2s−1‖uN‖2V 2
±1

‖vN ′‖2V 2
±2

. Nd+2s−1N‖uN‖2V 2
±1

‖vN ′‖2V 2
±2

. N2s‖uN‖2V 2
±1

(N ′)2s‖vN ′‖2V 2
±2

.
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In the last line, we have used the fact that s ≥ d−2
2 . In the other case where

vN ′ = vhN ′ , we have

(LHS of (4.3.5))
2 . sup

‖wM‖V 2
±3

=1

∑
M.N

M2s−1‖vN ′‖2V 2
±2

‖uNwM‖2L2

.
∑
M.N

M2s−1M
d
2N

d−2
2

(
log

(
N

M

))4

‖uN‖2V 2
±1

‖vN ′‖2V 2
±2

.

. N2s‖uN‖2V 2
±1

(N ′)2s‖vN ′‖2V 2
±2

.

In the last line, we again used the fact that s ≥ d−2
2 . �

4.3.3. Proof of small-energy scattering (Theorem 1.1.3). We may now
rigorously prove the small-energy scattering. Indeed, we first have the following
result which will allow for a contraction mapping

Theorem 4.3.6. Let s ≥ max
(

1
2 ,

d−2
2

)
and a > Ad. Define

I±(f, g) :=

∫ t

0

e±i(t−s)〈Da〉
fg

2〈Da〉
ds.

We have I±1,±2 : Y s × Y s → Xs where

I±1,±2

(
(u+, u−), (v+, v−)

)
:=
(
I+(u±1 , v±2), I−(u±1 , v±2)

)
.

That is, there exists a constant C = C(a, d) such that

‖I(u, v)‖Xs ≤ C‖u‖Y s‖v‖Y s .

Furthermore, from the fact that Xs ↪→ Y s, we have

I : Xs ×Xs → Xs

and

I : Y s × Y s → Y s.

Proof. We shall consider the I+ component as I− may be handled in a similar
manner. First, we use frequency decomposition, so that after invoking symmetry,
we need to study the following two terms

S1 :=

∥∥∥∥∥∑
N

∑
M�N

I(uM , vN )

∥∥∥∥∥
Xs

, S2 :=

∥∥∥∥∥∑
N

∑
N∼N ′

I(uN , vN ′)

∥∥∥∥∥
Xs

.

We shall start with S1. The idea is to unpack the definition of Xs so that we are
left to study the U2

+ pieces∥∥∥∥∥P aN ′∑
M

∑
M�N

I(uM , vN )

∥∥∥∥∥
U2

+

.
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Now, we may use duality to obtain∥∥∥∥∥P aN ′ ∑
M�N

I+(uM , vN )

∥∥∥∥∥
U2

+

=

∥∥∥∥∥P aN ′ ∑
M�N

∫ t

0

ei(t−s)〈Da〉
uMvN
2〈Da〉

ds

∥∥∥∥∥
U2

+

.
1

N ′

∥∥∥∥∥ ∑
M�N

∫ t

0

e−is〈Da〉uMvN

∥∥∥∥∥
U2

=
1

N ′
sup

‖w‖V 2=1

∣∣∣∣∣ ∑
M�N

B
(
e−it〈Da〉uMvN , w

)∣∣∣∣∣
=

1

N ′
sup

‖wN′‖V 2
+

=1

∣∣∣∣∣ ∑
M�N

∫ ∫
uMvNwN ′ dx dt

∣∣∣∣∣ .
We note here that we may now take N ∼ N ′ due to the convolution structure, as
discussed above. We may use the trilinear estimate (4.3.4) to obtain∥∥∥∥∥P aN ′ ∑

M�N
I+(uM , vN )

∥∥∥∥∥
U2

+

.

( ∑
M�N

N2s‖uM‖2V±1

) 1
2

‖vN‖V 2
±2
.

Therefore, putting all the U2
+ pieces back together,

∑
N∼N ′

(N ′)2s

∥∥∥∥∥P aM ∑
M�N

I(uM , vN )

∥∥∥∥∥
2

U2
+

. ‖u‖2Y s‖v‖2Y s .

Thus, it remains to study S2. We have

S2 ≤
∑
N

∑
N∼N ′

‖I+(uN , vN ′)‖Xs .
∑
N

∑
N∼N ′

 ∑
M.N

M2s
∥∥P aMI+(uN , vN ′)

∥∥
U2

+

 1
2

.

Here, we have again used the previously discussed convolution structure to restrict
M . N . By using duality, we may apply our trilinear estimate (4.3.5) to obtain

S2 .
∑
N

∑
N∼N ′

N2s‖uN‖V 2
±1

(N ′)2s‖vN ′‖V 2
±2
. ‖u‖Y s‖v‖Y s .

Thus, we have shown the required result. �

Theorem 4.3.7. Let d ≥ 3, a > Ad, (u0, u1) ∈ Hs
a,rad ×H

s−1
a,rad with s ≥ d−2

2 .

Then the equation QKG(a) (1.0.1) has a global solution in C(R, Hs
a)∩C(R, Hs−1

a )
that is unique in the space Xs([0,∞)) and scatters as t→ ±∞.

Proof. We shall work in the following restricted space:

Xs([0,∞)) := {u ∈ C([0,∞), Hs) : ∃v ∈ Xs s.t. v(t) = u(t), t ∈ [0,∞)}

We have T±u± := e±it〈Da〉u±0 ∓ iI±(u), where

I±(u) =

∫ t

0

e±i(t−s)〈Da〉
u2

2〈Da〉
ds.
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Recall that u = u+ + u−. Define the set CM = {u ∈ Xs([0,∞)) : ‖u‖Xs([0,∞)) ≤
M}. We see that for M sufficiently small and initial data u0 also sufficiently small
‖eit〈Da〉u±(0)‖Hsa < ε, we have

‖e±it〈Da〉u±0 ∓ iI±(u)‖Xs±([0,∞)) . ε+M2 ≤M.

Next, we check the contraction condition:

‖I±(f)− I±(g)‖Xs±([0,∞)) .
(
‖f‖Xs([0,∞)) + ‖g‖Xs([0,∞))

)
‖f − g‖Xs([0,∞)).

Thus, for δ � 1 sufficiently small, we obtain the existence of a unique solution in
CM . Now, we prove scattering. From Theorem 4.3.6, we see that

e∓it〈Da〉P aNI
±(u) ∈ V 2

∗,rc

From the properties of V 2
∗,rc, this means that limt→∞ e∓it〈Da〉P aNI

±(u) exists. Thus,∑
N

N2s‖P aNI±(u)‖2V 2
±
. 1.

Therefore, limt→∞ e∓it〈Da〉I±(u) ∈ Hs
a. Thus, we have

e∓it〈Da〉u± → u±(0)∓ i lim
t→∞

e∓it〈Da〉I±(u) ∈ Hs
a.

�



CHAPTER 5

4D dichotomy of dynamics below the ground state

5.1. Time-decay estimates

5.1.1. Time-decay Lp estimates. In this section, we shall establish time-
decay frequency-localised estimates for radial initial data in. In particular, we find
that for a > 0, the situation is much the same as in the a = 0 potential-free case.
Whereas for the a < 0 case, we shall need to combine the methods of Guo-Wang-
Peng [21] and Zheng [67] in order to obtain time-decay estimates with a weight.

In particular, Zheng obtains the following Lp time-decay estimates for the prop-
agator eitLa :

Proposition 5.1.1 (Lp time-decay estimates for the propagator eitLa). Let u
be radial, 2 ≤ p ≤ ∞, δ = 1− 2

p and σ = d−2
2 − ν(a). Then,

(5.1.1)


‖eitLau‖Lp(Rd) . |t|−

d
2 δ‖u‖Lp′ (Rd), a ≥ 0∥∥∥ 1

(1+|x|−σ)δ
eitLau

∥∥∥
Lp(Rd)

. |t|(− d2 +σ)δ
∥∥(1 + |x|−σ)δu

∥∥
Lp′ (Rd)

, −
(
d−2

2

)2
< a < 0.

We shall obtain frequency-localised estimates for a class of dispersive semi-
groups eitω(Da) where we localise with Littlewood-Paley projectors P ak adapted to
La (see Section 2.3).

First, we impose some assumptions on ω. In particular, because we are mainly
interested in the semigroup with ω(r) = (1+r2)1/2, we shall apply the assumptions
in [21] and assume that ω : R+ → R is smooth and satisfies both (H) and (L)
below:

(H) There exists m1 > 0 such that for k = 2, 3, ... we have |ω′(r)| ∼ rm1−1

and |ω(k)(r)| . rm1−k for r ≥ 1. Furthermore, there exists α1 such that
|ω′′(r)| ∼ rα1−2 for r ≥ 1.

(L) There exists m2 > 0 such that for k = 2, 3, ... we have |ω′(r)| ∼ rm2−1

and |ω(k)(r)| . rm2−k for 0 < r < 1. Furthermore, there exists α2 such
that |ω′′(r)| ∼ rα2−2 for 0 < r < 1.

Proposition 5.1.2 (Frequency-localised Lp time-decay estimates). Let u be
radial, d ≥ 3 and recall that σ = d−2

2 − ν(a). Furthermore, assume ω : R+ → R is
smooth away from the origin and satisfies (H) and (L) above. Let 2 ≤ p ≤ ∞ and
δ := 1− 2

p .

(i) If k ≥ 0 and a ≥ 0 then

(5.1.2)
∥∥∥eitω(Da)P ak u

∥∥∥
Lp
. |t|−

d−1+θ
2 δ2k(d−m1(d−1+θ)

2 − θ(α1−m1)
2 )δ‖u0‖Lp′ .

49
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(ii) If k ≥ 0 and −
(
d−2

2

)2
< a < 0, then∥∥∥∥ 1

(1 + |x|−σ)δ
eitω(Da)P ak u

∥∥∥∥
Lp

(5.1.3)

. |t|−
d−1+θ

2 δ2k(d−σ−m1(d−1+θ)
2 − θ(α1−m1)

2 )δ‖(1 + |x|−σ)δu‖Lp′ .

(iii) If k < 0 and a ≥ 0 then

(5.1.4)
∥∥∥eitω(Da)P ak u

∥∥∥
Lp
. |t|−

d−1+θ
2 δ2k(d−m2(d−1+θ)

2 − θ(α2−m2)
2 )δ‖u0‖Lp′ .

(iv) If k < 0 and −
(
d−2

2

)2
< a < 0, then∥∥∥∥ 1

(1 + |x|−σ)δ
eitω(Da)P ak u

∥∥∥∥
Lp

(5.1.5)

. |t|−
d−1+θ

2 δ2k(d−σ−m2(d−1+θ)
2 − θ(α2−m2)

2 )δ‖(1 + |x|−σ)δu‖Lp′ .

Proof. We shall first prove the L∞−L1 decay estimate, and then interpolate
with the L2 estimate to obtain the above result. Furthermore, we shall focus on
the high-frequency case, with the proof for the low-frequency case being similar.
We may use the definition of the Hankel transform of order ν = ν(a) to write

(eitω(Da)P ak u)(t, r) =

∫ ∞
0

(rρ)−
d−2
2 Jν(rρ)eitω(ρ)ψ(2−kρ)û(ρ)ρd−1 dρ

= 2kd
∫ ∞

0

(r2kρ)−
d−2
2 Jν(r2kρ)eitω(2kρ)ψ(ρ)û(2kρ)ρd−1 dρ

= 2kd
∫ ∞

0

(r2kρ)−
d−2
2 Jν(r2kρ)eitω(2kρ)ψ(ρ)

·
∫ ∞

0

(s2kρ)−
d−2
2 Jν(s2kρ)u(s)sd−1 dsρd−1 dρ

=

∫ ∞
0

(r2kρ)−
d−2
2 Jν(r2kρ)eitω(2kρ)ψ(ρ)

·
∫ ∞

0

(sρ)−
d−2
2 Jν(sρ)u(2−ks)sd−1 ds ρd−1 dρ.

Since our goal currently is to estimate this term in L∞, we may replace 2kr by r,
so that we shall focus on the integral

I(t, r) =

∫ ∞
0

(rρ)−
d−2
2 Jν(rρ)eitω(2kρ)ψ(ρ)

·
∫ ∞

0

(sρ)−
d−2
2 Jν(sρ)u(2−ks)sd−1 ds ρd−1 dρ

=

∫ ∞
0

u(2−ks)sd−1K(t, s, r) ds

=

(∫ 1

0

+

∫ ∞
1

)
u(2−ks)sd−1K(t, s, r) ds =: I1(t, r) + I2(t, r)

where

(5.1.6) K(t, r, s) = (rs)−
d−2
2

∫ ∞
0

Jν(rρ)Jν(sρ)eitω(2kρ)ψ(ρ)ρ dρ.
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We shall first study the case when r < 1, where we can use the behaviour of the
Bessel function near 0. Recall that σ := d−2

2 − ν. Then, we have

I1(t, r) =

∫ 1

0

u(2−ks)sd−1K(t, s, r) ds

∼
∫ 1

0

u(2−ks)sd−1(rs)−σ ds

∫ ∞
0

eitω(2kρ)ψ(ρ)ρ2ν+1 dρ.

By bounding the inside integral and after using a change of variables 2−ks 7→ s,
we obtain the estimates

(5.1.7)


‖I1(t, x)‖L∞x . 2kd‖u‖L1

x
, a ≥ 0∥∥∥ 1

1+|x|−σ I1(t, x)
∥∥∥
L∞x

. 2k(d−σ)‖(1 + |x|−σ)u‖L1
x
, −

(
d−2

2

)2
< a < 0

Next, we observe that

1

itω′(2kρ)2k
d

dρ

(
eitω(2kρ)

)
= eitω(2kρ).

Thus, for the inside integral, we find that by repeated use of integration by parts,
for any q ∈ N is equal to

1

(it2k)q

q∑
m=0

∑
l1+···+lq∈Λqm

Cq,m

∫ ∞
0

eitω(2kρ)

q∏
j=1

∂jρ

(
1

ω′(2kρ)

)
∂q−mρ (ψ(ρ)ρ2ν+1) dρ

where

Λqm = {l1, ..., lq ∈ Z+ : 0 ≤ l1 < ... < lq ≤ q, l1 + ...+ lq = m}.

Now, using the facts that ∣∣∣∣ dn

dρn
ψ(ρ)ρ2ν+1 dρ

∣∣∣∣ ≤ Cn,ν
for some Cn,ν > 0 and

(5.1.8)
dn

dρn

(
1

ω′(2kρ)

)
≤ cn2−k(m1−1)

we obtain that
‖I1(t, x)‖L∞x . |t|

−q2k(d−m1q)‖u‖L1
x
, a ≥ 0∥∥∥ 1

1+|x|−σ I1(t, x)
∥∥∥
L∞x

. |t|−q2k(d−σ−m1q)‖(1 + |x|−σ)u‖L1
x
, −

(
d−2

2

)2
< a < 0

.

Finally, by interpolation with (5.1.7) we may conclude that for θ ≥ 0
‖I1(t, x)‖L∞x . |t|

−θ2k(d−m1θ)‖u‖L1
x
, a ≥ 0∥∥∥ 1

1+|x|−σ I1(t, x)
∥∥∥
L∞x

. |t|−θ2k(d−σ−m1θ)‖(1 + |x|−σ)u‖L1
x
, −

(
d−2

2

)2
< a < 0

.

Now, let us estimate I2(t, r) for r ≤ 1. In this case, we use the s→∞ asymp-
totic behaviour of Jν(sρ). In particular, because (at least up to phase translations)
the asymptotic behaviour is identical to the ν = d−2

2 case studied in [21], we should
expect to obtain the same results. For completeness, let us include these details.
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Since in this case, r is small, we use the same approximation for Jν(rρ). We use
that

(sρ)−
d−2
2 Jν(sρ) ∼ Re(eisρh(sρ))

where |∂kr h(r)| .k r−
d−1
2 −k (see (3.1.8)). From this, we obtain the estimate for

s ≥ 1 and k ≥ 0 by induction:

(5.1.9)

∣∣∣∣ ∂n∂ρn (h(sρ)ψ(ρ)ρd−1−σ)∣∣∣∣ .n s− d−1
2 .

In this case, we find that I2(t, r) is comparable to∫ ∞
1

u(2−ks)sd−1

∫ ∞
0

(rρ)−σ
[
eisρh(sρ) + e−isρh̄(sρ)

]
ψ(ρ)eitω(ρ)ρd−1 dρ ds

= r−σ
∫ ∞

1

u(2−ks)sd−1

∫ ∞
0

[
eisρh(sρ) + e−isρh̄(sρ)

]
ψ(ρ)eitω(ρ)ρd−1−σ dρ ds

= r−σ
∫ ∞

1

u(2−ks)sd−1

∫ ∞
0

ei(tω(ρ)+sρ)h(sρ)ψ(ρ)ρd−1−σ dρ ds

+ r−σ
∫ ∞

1

u(2−ks)sd−1

∫ ∞
0

ei(tω(ρ)−sρ)h̄(sρ)ψ(ρ)ρd−1−σ dρ ds

:= B1 +B2

We are now reduced to studying Bi for i = 1, 2. For B1, we notice that ω1(r) :=
tψ′(2kρ) + sρ satisfies ω′1(ρ) ≥ ct2km1 so that (5.1.8) holds if ω replaced by ω1.
Hence, we may apply the same method as above and find that for any θ ≥ 0,

|B1| . |t|−θ2k(d−m1θ)‖u‖L∞x .

Likewise, for the integral B2, we notice that (5.1.8) holds also for ω replaced by
ω2(r) := tψ′(2kρ)− sρ as long as

s > 2 sup
ρ∈[1/2,2]

t2kψ′(2kρ)

or

s <
1

2
inf

ρ∈[1/2,2]
t2kψ′(2kρ).

Hence, using (5.1.9), we also have for all θ ≥ 0 that

|B2| . |t|−θ2k(d−m1θ)‖u‖L∞x .

Now, in the remaining case where

1

2
inf

ρ∈[1/2,2]
t2kψ′(2kρ) ≤ s ≤ 2 sup

ρ∈[1/2,2]

t2kψ′(2kρ),

we use (5.1.9) to obtain

(5.1.10) |B2| . 2kds−
d−1
2 ‖u‖L∞x . t

− d−1
2 2k(d− (d−1)m1

2 )‖u‖L∞x .

Furthermore, by assumption |ω′′(r)| ≥ t2kα1 . Therefore, |ψ′′2 (r)| ≥ t2kα1 . Thus,
applying van der Corput’s lemma, we obtain

|B2| . (t2kα1)−
1
2

∫ ∞
0

∣∣∣∣ d

dρ

(
h(sρ)ψ(ρ)ρd−1−σ)∣∣∣∣ dρ . 2k(d− d2 (m1+

α−m1
d ))‖u‖L∞x
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By interpolating this with (5.1.10), we obtain

|B2| . |t|−
d−1+θ

2 2k(d−m1(d−1+θ
2 − θ(α1−m1)

2 )‖u‖L∞x
We notice the absence of the 2−kσ term in the s > 1 case. Since we are dealing
with the high-frequency (k ≥ 0) case, we may remove this factor from the estimate
on B1 in order to combine with the estimate for B2.

Thus, it remains for us to estimate I(t, r) when r ≥ 1. This case is similar to
the r ≤ 1 case except for the fact we no longer to deal with the weight r−σ. Thus,
adding everything together, we obtain (i). The k ≥ 0 case may be done in a similar
manner, except now we must insert the factor of 2−kσ to the estimate for B2.

Finally, to obtain the other estimates for p ≥ 2, we interpolate with the L2

estimate
(5.1.11)

‖eitω(Da)P ak u‖L2(Rd) = ‖u0‖L2(Rd), a ≥ 0∥∥∥ 1
1+|x|−σ e

itω(Da)P ak u
∥∥∥
L2(Rd)

≤ ‖(1 + |x|−σ)P ak u‖L2(Rd) −
(
d−2

2

)2
< a < 0

This gives us the above time-decay estimates. �

Using ω(z) = (1 + |z|2)1/2, we also obtain time-decay estimates for the Klein-
Gordon propagator with inverse square potential:

Proposition 5.1.3 (Frequency-localised Lp time-decay estimates for Klein–
Gordon). Let u be radial, d ≥ 3 and recall that σ = d−2

2 − ν(a). For k ∈ Z and
2 ≤ p ≤ ∞ we have

(i) For k ≥ 0

∥∥eitω(Da)P ak u
∥∥
Lp(Rd)

. |t|− d−1+θ
2 δ2k(

d+1+θ
2 )δ‖u0‖Lp′ , a ≥ 0∥∥∥ 1

(1+|x|−σ)δ
eitω(Da)P ak u

∥∥∥
Lp(Rd)

. |t|− d−1+θ
2 δ2k(

d+1+θ
2 )δ‖(1 + |x|−σ)δu0‖Lp′ , −

(
d−2

2

)2
< a < 0

(ii) For k < 0

∥∥eitω(Da)P ak u
∥∥
Lp(Rd)

. |t|− d−1+θ
2 δ2k(

d+1+θ
2 )δ‖u0‖Lp′ , a ≥ 0∥∥∥ 1

(1+|x|−σ )δeitω(Da)P ak u
∥∥∥
Lp(Rd)

. |t|− d−1+θ
2 δ2k(1−θ−σ)δ‖(1 + r−σ)δu0‖Lp′ , −

(
d−2

2

)2
< a < 0

5.2. Blow-up/global well-posedness dichotomy

In this section, we shall obtain a blow-up/global well-posedness dichotomy for
QKG(a) (1.0.1). First, let us list some notation and terminology (see [22, 30, 48])
that we will need for this section as well as the next. While we are only interested
in the case where d = 4, we shall first discuss the general framework as studied in
the above papers. Consider the equation

∂2
t u+ Lau+ u = f(u)
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where f(u) = up+1 for p ∈ {1, 2, ...}. Write F (u) =
∫
f(u) du = 1

p+2u
p+2 and

G(u) = uf(u)− 2F (u) = p
p+2u

p+2. Also, define the energy Ea(u, ut) by

1

2

∫
Rd

|∂tu(t, x)|2 + |∇u(t, x)|2 +
a

|x|2
|u(t, x)|2 + |u(t, x)|2 dx− 1

p+ 2

∫
Rd

u(t, x)3 dx.

For φ ∈ H1
a , the stationary energy is given by

Ja(φ) =
1

2

∫
Rd

|∇φ(t, x)|2 +
a

|x|2
|φ(t, x)|2 + |φ(t, x)|2 dx− 1

p+ 2

∫
Rd

u(t, x)3 dx

=
1

2

(
‖φ‖Ḣ1

a
+ ‖φ‖22

)
− 1

3

∫
Rd

u(t, x)3 dx.

The potential well is ja(λ) = La,bJa(φ) := Ja(eαλφ(e−βλx)). This may be written
as

ja(λ) =
1

2
e(2α+(d−2)β)λ‖φ‖2

Ḣ1
a

+
1

2
e(2α+dβ)λ‖φ‖22 −

1

p+ 2
e(p+2)α+dβ)λ

∫
Rd

φp+2 dx.

Define also the sign functional Kα,β;a(φ) = Kα,β;a(φ) := ∂λ|λ=0ja(λ), which is
equal to

1

2
(2α+ (d− 2)β)‖φ‖2

Ḣ1
a

+
1

2
(2α+ dβ)‖φ‖22 −

1

p+ 2
((p+ 2)α+ dβ)

∫
Rd

φp+2 dx.

Finally, define the minimal energy with respect to Kα,β;a by
(5.2.1)

mα,β(a) :=

{
inf
{
Ja(φ) : φ ∈ H1

a\{0},Kα,β;a(φ) = 0
}
, µ(0)2 < a < 0

inf
{
Ja(φ) : φ ∈ H1

a\{0} radial,Kα,β;a(φ) = 0
}
, a > 0.

We shall need the extra assumption that the test functions are radial in the case
where a > 0. This is because in this case we do not have access to rearrangement
inequalities and therefore automatically reduce to the radial case. Instead, it is an
assumption we need to add. Indeed, let u∗ be, say, the Schwarz rearrangement of u.
Then, we have ‖u∗‖2 = ‖u‖2 and ‖∇u∗‖2 ≤ ‖∇u‖2. We rewrite this last inequality
as ‖u∗‖Ḣ1 ≤ ‖u‖Ḣ1 However, we also have the inequality

(5.2.2)

∫
fg dx ≤

∫
f∗g∗ dx,

for any suitable f, g such that the right-hand side is finite. This inequality means
that we only have ‖u∗‖Ḣ1

a
≤ ‖u‖Ḣ1

a
if a ≤ 0.

We now study a dichotomy with respect to the sets

K+
α,β;a := {(u0, u1) ∈ H1

a × L2 : Ea(u0, u1) < mα,β;a,Kα,β;a(u0) ≥ 0}
K−α,β;a := {(u0, u1) ∈ H1

a × L2 : Ea(u0, u1) < mα,β;a,Kα,β;a(u0) < 0}

Indeed, we have the following blow-up/global well-posedness dichotomy with
respect to K±1,0;a.

Theorem 5.2.1. Suppose u ∈ C(I,H1
a) is the solution to (1.0.1) with initial

data u(0, ·) = u0 and ut(0, ·) = u1 where I is the maximal lifespan interval. Fur-
thermore, if a > 0, assume that the initial data is radial.

• If (u0, u1) ∈ K+
1,0;a, then u is global, and

• if (u0, u1) ∈ K−1,0;a, then u blows up in finite time.
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Proof. The proof is the same as in Payne-Sattinger [48] (see also [22, 30]).
First, by obtaining a contradiction, we shall prove that the optimiser φ of m1,0;a

does not change sign, so that

m1,0;a = inf
{
Ja(φ) : φ ∈ H1

a\{0},K1,0;a(φ) = 0, φ > 0
}

.

Indeed, suppose that the optimiser φ does change sign. Then, from the definition
of K1,0;a, we would have K1,0;a(|φ|) < K1,0;a(φ) = 0. Define ja(λ) := Ja(eλ|φ|) so
that

j′a(λ) = K1,0;a(eλ|φ|) = e2λ‖u‖2H1
a
− e3λ‖u‖33

and also

j′′a (λ) = 2e2λ‖u‖2H1
a
− 3e3λ‖u‖33.

We first observe that

• limλ→∞ j′a(λ) = −∞,
• limλ→−∞ j′a(λ) = 0 and
• j′′a (λ) > 0 for λ sufficiently small (i.e. eλ near 0).

From these observations, we find that λ 7→ ja(λ) is convex for sufficiently small λ.
From this and the fact j′a(0) < 0, we conclude that there exists λ̄ < 0 such that

j′a(λ̄) = K1,0;a(eλ̄) = 0. Thus, K1,0;a(eλ̄φ) > 0 and eλ̄φ is an admissible in (5.2.1).
From the definition of K1,0;a, we also have that K1,0;a(eλφ) > 0 for λ < 0. Indeed,
in this case, e3λ < e2λ, so that by assumption

K1,0;a(eλφ) > e3λK1,0;a(φ) = 0.

Thus, noticing that d
dλJa(eλu) = K1,0;a(eλu) we may integrate over λ ∈ [λ̄, 0] to

obtain

Ja(eλ̄|φ|) < Ja(eλ̄φ) < Ja(φ) = m1,0;a.

Thus we see that eλ̄|φ| is admissible but attains a smaller value Ja(eλ̄|φ|) than the

infimum m1,0;a. Since for any admissible φ, we may find λ̄ ≤ 0 so that Ja(eλ̄|φ|) <
Ja(u), we may simply assume u is positive.

We can also show that

m1,0;a = inf

{
1

6
‖φ‖2H1

a
: φ ∈ H1

a\{0},K1,0;a(φ) ≤ 0, φ > 0

}
.

Note that G0(φ) := Ja(u)− 1
3K1,0;a(u) = 1

6‖u‖H1
a
. For K1,0;a(φ) = 0, the two

functionals J and G0 already coincide. Thus, it remains for us to verify that for
all K1,0;a(φ) < 0 we have G0(φ) > m1,0;a. We first observe that this means g(λ) =
Ja(eλφ) satisfies g′(λ) = K1,0;a(eλφ) and g′(0) < 0. Therefore, using a similar

argument to above, there exists a λ∗ < 0 such that g′(λ∗) = K1,0;a(eλ
∗
φ) = 0.

Again, similar to above, we obtain

m1,0;a ≤ Ja(eλ
∗
φ) = G0(eλ

∗
φ) < G0(φ),

as required.
Using this recharacterisation, we now establish existence of the optimiser. Let

φn > 0 be a minimising sequence so that G1,0;a(φn) := 1
6‖φn‖H1

a
→ m1,0;a as

n → ∞. Note that K1,0;a(φn) ≤ 0. For −
(
d−2

2

)2
< a ≤ 0, we may apply Schwarz

rearrangement to allow the φn to be radial. Otherwise, we need an extra assump-
tion in the admissible class for (5.2.1) that the test functions must be radial. In
either case, we may now use the compact embedding H1

rad,a ⊆ L3 to obtain strong
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convergence to a limit φa∞ (which we shall write as φ∞) in L3 up to a subsequence.
This limit satisfies K1,0;a(φ∞) ≤ 0, Ja(φ∞) ≤ m1,0;a and G0(φ∞) ≤ m1,0;a.

Furthermore, we can show that φ∞ 6= 0. Indeed, suppose that φn → 0 in L3.
From K1,0;a(φn) ≤ 0 and

∫
φ3
n =

∫
|φn|3 we have ‖φn − 0‖H1

a
≤ ‖φn − 0‖L3 . Thus,

φn will also converge strongly to zero in Ha
1 and using the fact that ‖u‖3L3 . ‖u‖3H1

a
,

we must have K1,0;a(φn) > 0 for large n, which is a contradiction.
Suppose that K1,0;a(φ∞) < 0. Then, there exists a λ∗ < 0 such that

K1,0;a

(
eλ
∗
φ∞

)
= 0.

Therefore

m1,0;a ≤ G0

(
eλ
∗
φ∞

)
= e2λ∗G0 (φ∞) < m1,0;a.

Thus, we must have K1,0;a(φ∞) = 0, whence φn converges strongly to φ∞ in H1

and Ja(φ∞) = m1,0;a. We shall leave the explicit characterisation of this optimiser
until after this proof.

Next, we show that K±1,0;a is invariant under the flow of (1.0.1). Let u(t, x)

be the solution to (1.0.1), and let I denote its maximal lifespan. We notice
first that E(u, ut) = E(u0, u1) < m1,0;a. Furthermore, let (u0, u1) ∈ K+

1,0;a. If

K1,0;a(u(t∗)) = 0 then it follows that u(t∗) = 0. Thus, using that ‖u‖3L3 . ‖u‖3H1
a
,

we obtain ‖u(t)‖33 = o(‖u‖2H1
a
), so that K1,0;a(u(t)) ≥ 0. This shows that u(t, x) ∈

K+
1,0;a for all t ∈ I. This implies the invariance of K−1,0;a as well.

Finally, we shall show the dichotomy, starting with global well-posedness in
K+

1,0;a. Thus, assume that the initial data (u0, u1) belongs in K+
1,0;a. Let u be the

solution to (1.0.1) with this inital data. Furthermore, let I be the maximal lifespan.
By invariance of K+

1,0;a under the flow of (1.0.1), we have K1,0;a(u(t)) ≥ 0 for all
t ∈ I and

E(u, ut) ≥
1

6

∫
Rd

|∇u|2 + u2 +
a

|x|2
u2 dx+

1

2

∫
Rd

u2
t dx.

Thus, E(u0, u1) ∼ ‖(u, ut)‖2H1×L2 . Thus, the solution may be extended to R by
using the local theory.

Thus, it remains to establish blow-up in K−1,0;a. We note that K1,0;a(φ) has an

upper bound in K−1,0;a. Indeed, first note that for φ ∈ K−1,0;a, we have
∫
Rd φ

3 dx >

0. Consider g(λ) = Ja(eλφ) as above. By assumption, g′(0) = K1,0;a(φ) < 0.
Therefore, there exists λ∗ < 0 such that g′(λ∗) = 0. We also have g′′(λ) ≤ 2g′(λ).
If we integrate this identity over λ ∈ [λ∗, 0], we obtain g′(0) ≤ 2(g(0) − g(λ∗)).
Thus, K1,0;a(φ) ≤ −2(m1,0;a − Ja(φ)). Thus, −K1,0;a(φ) > δ for some δ > 0.

Let us show blow-up for t > 0 (the t < 0 case is similar). First, assume that
the solution exists for all t > 0 and consider y(t) = ‖u(t)‖2L2 . Since u solves the
QKG(a),

∂2
t y(t) = 2

(
‖ut‖22 −K1,0;a(u(t))

)
= 5‖ut‖22 − 6E(u0, ut) + ‖u‖2H1

a
.

Using the upper bound as above, we conclude that ∂2
t y(t) > 2δ > 0, and therefore

y(t) → ∞ as t → ∞. Also, since for large t, we have ‖u(t)‖2H1
a
> 6E(u0, u1). We

may use Cauchy-Schwarz to obtain

∂2
t y(t) > 5‖ut‖22 ≥

5

4

(∂ty(t))2

y(t)
.
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Thus,

∂2
t y(t)−

1
4 = −1

4
y−

9
4

(
yy′′ − 5

4
(y′)2

)
< 0,

which is a contradiction to the fact that y →∞. Therefore, we must have blow-up
in finite time. �

Lemma 5.2.2. The optimiser φa∞ in the above Theorem 5.2.1 satisfies the equa-
tion

−∆Qa +Qa +
a

|x|2
Qa = Q2

a.

Furthermore, ma
1,0;a = E(Qa, 0).

Proof. We shall derive the Euler-Lagrange corresponding Ja(φ) subject to
the constraint K1,0;a(φ) = 0. Thus, consider a perturbation φ + w(τ) such that
Ja(φ+ε(τ)) attains a minimum at w = 0. We need to ensure that this perturbation
satisfies the constraint. This is the same procedure as Evans [15]. Indeed, first
consider a test function φ+ τv+σw. We know that K1,0;a(φ+ τv+σw) is equal to∫

Rd

(∇(φ+ τv + σw))
2

dx+

∫
Rd

(φ+ τv + σw)2 dx

+

∫
Rd

a

|x|2
(φ+ τv + σw)2 dx−

∫
Rd

(φ+ τv + σw)3 dx.

Then,

∂τK1,0;a(τ, σ) = 2

∫
Rd

∇(φ+ τv + σw) · ∇v dx+ 2

∫
Rd

(φ+ τv + σw)v dx

+

∫
Rd

2a

|x|2
(φ+ τv + σw)v dx−

∫
Rd

3(φ+ τv + σw)2v dx,

and

∂σK1,0;a(τ, σ) = 2

∫
Rd

∇(φ+ τv + σw) · ∇w dx+ 2

∫
Rd

(φ+ τv + σw)w dx

+

∫
Rd

2a

|x|2
(φ+ τv + σw)w dx−

∫
Rd

3(φ+ τv + σw)2w dx.

We choose w so that ∂σK1,0;a(0, 0) 6= 0. Now, since K1,0;a(0, 0) is zero and C1, we
may apply the implicit function theorem to obtain g : R → R such that g(0) = 0
and K1,0;a(τ, g(τ)) = 0 for τ sufficiently small. If we differentiate this last identity,
we obtain ∂τK1,0;a(τ, g(τ)) + g′(τ)∂σK1,0;a(τ, g(τ)) = 0. Now, let τ = 0 to obtain

g′(0) = −∂τK1,0;a(0, 0)

∂σK1,0;a(0, 0)
.

Thus, if we let k(τ) = τv+ g(τ)w, we obtain that φ+ k(τ) is admissible in (5.2.1),
and we may use it to derive the Euler-Lagrange. Consider h(τ) := Ja(φ + k(τ)).
Then from h′(0) = 0, we obtain

h′(0) =

∫
Rd

∇φ · (∇v + g′(0)∇w) dx+

∫
Rd

a

|x|2
φ(v + g′(0)w) dx

+

∫
Rd

φ(v + g′(0)w) dx−
∫
Rd

φ2(v + g′(0)w) dx = 0.
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Now, substituting the value of g′(0) from (5.2.3), we obtain with

µ :=

∫
Rd ∇u · ∇w + a

|x|2uw + uw − u2w dx∫
Rd 2∇u · ∇w + 2 a

|x|2uw + 2uw − 3u2w dx

that∫
Rd

(
−∆u+

a

|x|2
u+ u− u2

)
v dx = µ

∫
Rd

(
−2∆u+ 2

a

|x|2
u+ 2u− 3u2

)
v dx.

If we let v = u, we notice that the numerator of µ is precisely K1,0;a(u), which is
zero by assumption. Therefore, the right-hand side of the above identity vanishes,
and we have ∫

Rd

(
−∆u+

a

|x|2
u+ u− u2

)
v dx = 0.

Since this holds for all v ∈ H1, we arrive at the Euler-Lagrange as in the statement
of the lemma. �

We shall write

(5.2.3) Qa∗ =

{
Qa, −

(
d−2

2

)2
< a < 0

Qrad
a a > 0.

We also have the following global well-posedness/blow-up dichotomy with respect
to K±(a) defined as

K+(a) := {(u0, u1) ∈ H1
a × L2 : E(u0, u1) < E(Q, 0), ‖u0‖2 < ‖Qa∗‖2}

K−(a) := {(u0, u1) ∈ H1
a × L2 : E(u0, u1) < E(Q, 0), ‖u0‖2 > ‖Qa∗‖2}

Theorem 5.2.3. Let d = 4. Suppose u ∈ C(I,H1
a) is the solution to (1.0.1)

with initial data u(0, ·) = u0 and ut(0, ·) = u1 where I is the maximal lifespan
interval. If (u0, u1) ∈ K+(a), then u is global, and if (u0, u1) ∈ K−(a), then u
blows up in finite time. Furthermore, m1,0;a = E(Q, 0).

5.3. 4D radial large-energy scattering

5.3.1. Gagliardo-Nirenberg inequality. We now shift our attention to the
behaviour of the QKG(a) with initial data ‖u0‖2 < ‖Qa∗‖2, where we shall study
scattering. The first ingredient in this endeavour is the following sharp Gagliardo-
Nirenberg inequality with mass critical exponent.

Proposition 5.3.1 (Gagliardo-Nirenberg inequality [13]). Let a > −
(
d−2

2

)2
and denote a ∧ 0 := min{a, 0}. For any g ∈ H1

a we have

(5.3.1) ‖g‖
2(d+2)
d

2(d+2)
d

≤ d+ 2

d

(
‖g‖2
‖Qa∧0‖2

) 4
d

‖g‖2
Ḣ1
a
.

If we further assume that g is radial then for a > 0 we have

(5.3.2) ‖g‖
2(d+2)
d

2(d+2)
d

≤ d+ 2

d

(
‖g‖2
‖Qrad

a ‖2

) 4
d

‖g‖2
Ḣ1
a
.

Recall the notation

Qa∗ =

{
Qa, −

(
d−2

2

)2
< a < 0

Qrad
a a > 0.
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Suppose that there exists A < 1 such that ‖g‖2 < A‖Qa∗‖2. In other words, suppose
there is a gap between ‖g‖2 and ‖Qa∗‖2. In this case, we have the following result
which follows from the above Proposition 5.3.1:

(5.3.3) ‖g‖2
Ḣ1
a
− d

d+ 2
‖g‖

2(d+2)
d

2(d+2)
d

≥
(

1

A
− 1

)
‖g‖22.

We shall need the above result with dependence on t. Indeed,

Proposition 5.3.2. Let d = 4 and p = 1. Suppose ‖u0‖2 < ‖Qa∗‖2 and
E(u0, u1) < E(Qa∗ , 0). Let u(t, x) ∈ C(I,H1

a) be a solution to (1.0.1) with initial
data (u0, u1). Then, for some A = A(E(u0, u1)) < 1 we have

‖u(t)‖2 < A‖Qa∗‖2.

Proof. The proof is the same as in potential-free case [22]. Using the energy
identity

(5.3.4) ‖Qa∗‖2H1
a

= ‖Qa∗‖33
and Pohozaev identity (see e.g. [13, p. 287]))

(5.3.5)
d− 2

2
‖Qa∗‖Ḣ1

a
+
d

2
‖Qa∗‖22 =

d

p+ 2
‖Qa∗‖33,

we shall show that

(5.3.6) E(Qa∗ , 0) =
1

2
‖Qa∗‖22.

Indeed, suppose for some t ∈ I, we have ‖u(t)‖2 = ‖Qa∗‖2. By (5.3.1), we have
K(u(t)) ≥ 0. Thus,

E(u(t), ut(t)) ≥
1

2
‖u(t)‖22 =

1

2
‖Qa∗‖22.

This contradicts the fact that E(u0, u1) < E(Qa∗ , 0). Thus, we have ‖u(t, ·)‖2 <
‖Q‖2.

Next, from the fact that E(u0, u1) < E(Qa∗ , 0), there exists a constant A < 1
such that

E(u(t), ut(t)) <
A2

2
‖Qa∗‖22.

From this, we obtain that ‖u(t)‖2 < A‖Qa∗‖2 for all t ∈ I. �

5.3.2. Virial-Morawetz estimates. We shall now obtain Virial/Morawetz
estimates. These estimates will be used to obtain L3 decay after large time.

Proposition 5.3.3. Let d = 4, p = 1 and u(t, x) ∈ C(R, H1) be a solution
to (1.0.1) the QKG(a) with initial data (u0, u1) ∈ H1

a,rad × L2
rad. Suppose that

Ea := Ea(u0, u1) > 0 and ‖u‖2H1
a

+ ‖ut‖22 ∼ Ea. If there exists A < 1 such that

‖u(t)‖2 ≤ A‖Qa∗‖2 for all t ∈ R, then∫ 2T

T

∫
|x|≤R

|u|3 dxdt ≤ C(E,A)
(
R+ TR−

3
2

)
.

Proof. Suppose h : Rd → Rd and q(x) : Rd → R. Denote by hj the jth
coordinate of the function h(x). We first consider the following Morawetz identity
with

M(t) := −
∫
ut(h · ∇u+ qu) dx.
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Differentiating in time and using integration by parts, we obtain that ∂tM(t) is
equal to

−
∫
utt(h · ∇u+ qu) dx−

∫
ut(h · ∇ut + qut) dx

= −
∫ (

∆u− a

|x|2
u− u+ u2

)
(h · ∇u+ qu) dx−

∫
ut(h · ∇ut + qut) dx.

To deal with the second integral, we have

−
∫
ut(h · ut + q∇ut) dx = −

∫
1

2
∇u2

t + qut dx =

∫ (
−1

2
divh+ q

)
ut dx

We may do the same thing for the u term in the first integral. Now, to deal with
the u2 term, we recall F (u) :=

∫
f(u) du and G(u) := uf(u) − 2F (u). Then, we

may write

−
∫
u2h · ∇u+ qu · u2 dx = −

∫
h · ∇F (u) + quf(u) dx

=

∫ (
−1

2
divh+ q

)
(−2F (u)) +

∫
q (uf(u)− 2F (u)) dx

=

∫ (
−1

2
divh+ q

)
(−2F (u)) +

∫
qG(u) dx.

To deal with the ∆u term, we may use the product rule. All together, we find that
∂tM(t) is now equal to

d∑
j,k=1

∫
∂ku∂khj∂ju dx+

1

2

∫
|u|2(−∆q) dx

−
∫
q(x)G(u) dx−

∫
a

2
h · ∇

(
1

|x|2

)
u2 dx

+

∫ (
−1

2
divh(x) + q(x)

)(
−|ut|2 + |∇u|2 + |u|2 − 2F (u) +

a

|x|2
u2

)
dx.

Now, let w : Rd → R be a weight, and define h(x) = ∇w(x) and q(x) = 1
2divh(x) =

1
2∆w(x). In this case, we obtain

∂tM(t) =

d∑
j,k=1

∫
∂ku∂ju∂

2
jkw dx− 1

4

∫
|u|2∆2w dx

−1

2

∫
∆wG(u) dx+ a

∫
∇w · x

|x|4
u2 dx.

We shall use the same weight as [67], where

w(x) =

{
|x|2, |x| ≤ R

2
R|x|, |x| ≥ R ,

and for R
2 < |x| < R we impose that

(5.3.7) ∂rwR ≥ 0, ∂2
rwR ≥ 0, |∂αwR(x)| .α R|x|−|α|+1 for |α| ≥ 1.
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In particular, we find that ∂tM(t) may be written with some C1, C2 > 0 and
d = 4, p = 1 as

2

∫
|x|<R/2

|∇u|2 + a
|u|2

|x|2
− d

2 · 3
u3 dx(5.3.8)

+

∫
R/2<|x|<R

d∑
j,k=1

∂ju∂ku∂
2
jkw − C1|u|2∆2w − C2u

p+2∆w dx(5.3.9)

+

∫
|x|>R

a
R

|x|3
|u|2 +

R

|x|
(
|∇u|2 − |∂ru|2

)
− (d− 1) · 1

2 · 3
· R
|x|
u3 dx.(5.3.10)

For (6.3.43), since u is radial, we have |∇u|2−|∂ru|2 = 0. Thus, we have with some
C3 > 0 that

(6.3.43) ≥ aM(u)

R2
− C3

∫
|x|>R

|u|3 dx.

For (6.3.42), the conditions for w(x) in (6.3.40) ensure the summation is non-
negative and also that

(6.3.42) ≥ −C1
M(u)

R2
− C2

∫
R
2 <|x|<R

|u|3 dx.

For (6.3.41) we define a smooth cutoff function χ with support {x ∈ R4 : |x| ≤ 1/2}
and set χR(x) := χ(x/R). With the observation that

(5.3.11)

∫
χR

2|∇u|2 dx =

∫
|∇(χR)u|2 + χR∆(χR)|u|2 dx,

we find that

(6.3.41) ≥ 2

(
‖χRu‖2Ḣ1

a
− d · 1

2 · 3
‖χRu‖33

)
+

∫
O
(

1

R2
|u|2
)

dx+

∫
O
(
χ3
R − χ2

R

)
|u|3 dx.

Next, we use (5.3.3) combined with Proposition 5.3.2, integrating over [T, 2T ] and
discarding positive terms, we obtain∫ 2T

T

∫
c|χRu|3 dxdt . sup

t∈[T,2T ]

|M(t)|+
∫ 2T

T

∫
|x|>R

|u|3 dxdt+
T

R2
M(u).

By radial Sobolev embedding,∫
|x|>R

|u|3 dx .
1

R3/2
‖u‖L∞t H1

x
M(u).

From this, and the fact that supt∈[T,2T ] |M(t)| ≤ R, we obtain the required result.
�

Corollary 5.3.4. Let d = 4 and suppose that u is a radial solution of (1.0.1)
with initial data (u0, u1) ∈ K−(a). Then, for any ε0 > 0, T > 1, τ > 0 there exists
T0 = T0(ε0, T, Ea) ≥ T such that∫ T0+τ

T0

∫
|u(t, x)|3 dxdt ≤ ε0.

Proof. See [22, Cor. 3.7] �
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5.3.3. L3 decay after large time. We shall now apply the above Corollary
5.3.4 to obtain the following smallness result needed in the proof of scattering which
follows. The idea is to split the Duhamel integral over [0, t] into two intervals, the
first being over, say, s ∈ [0, t− τ1] in which there is a gap |t− s| > L > 0. Thus the
smallness result we obtain here shall cover the remaining interval over [t− τ1, t].

We shall focus on the case where −
(
d−2

2

)2
< a < 0. In the a > 0 case, we have

access to the L∞ → L1 dispersive estimates which holds for the potential-free case,
and therefore the argument in this case is identical to that in [22] by Guo-Shen.
Let us consider solution to the first-order equation:

U(t, x) = Ka(t)U0(x)− i
∫ t

0

Ka(t− s)〈Da〉−1u(s, x)2 ds.

Proposition 5.3.5. Suppose that u is a radial solution of the 4D QKG(a)
(1.0.1) with a > σ−1

(
1
2

)
and with initial data (u0, u1) such that ‖u0‖2 < ‖Q‖2 and

E(u0, u1) < E(Q, 0). For any ε1 > 0 and T > 0, there exists τ1 = τ1(E, ε1) ≥
CEε

−8
1 and T1 = T1(E, ε1, T ) such that T < T1 − τ1 and

sup
t∈[T1−τ1,T1]

‖U(t, x)‖L3
x
≤ ε1.

Remark 5.3.6. We restrict to a > σ−1
(
d
3

)
in order for the L3

x norm to make

sense. The further restriction that a > σ−1
(

1
2

)
appears in the proof below.

Proof. As mentioned above, let us only discuss the −
(
d−2

2

)2
< a < 0 case,

with the a > 0 being identical to the potential-free case. We first break ‖U(t, x)‖L3
x

into parts. In particular, let R > 0 be chosen later. Then,

‖U(t, x)‖L3
x
≤ ‖Ka(t)U0(x)‖L3

x
(5.3.12)

+

∥∥∥∥∫ t−τ1

0

Ka(t− s)〈Da〉−1u(s, x)2 ds

∥∥∥∥
L3
x

(5.3.13)

+

∥∥∥∥∫ t

t−τ1
Ka(t− s)〈Da〉−1u(s, x)2 ds

∥∥∥∥
L3
x

.(5.3.14)

First, to deal with (5.3.12), we note that by the refined radial Strichartz es-
timates (Theorem 3.1.1), for any 2 < q < 3, we have ‖Ka(t)U0(x)‖LqtL3

x
≤ CE .

Since
‖∂tKa(t)U0(x)‖L2 . ‖Ka(t)U0(x)‖H1

a
,

we conclude that Ka(t)U0(x) is Lipschitz continuous, and in particular,

‖Ka(t)U0(x)‖L3
x
→ 0 as t→∞.

Next, we study (5.3.13). We shall apply a frequency decomposition in order to use
our time-decay estimates. Denote

Ik :=

∫ t−τ1

0

Ka(t− s)P ak 〈Da〉−1u(s, x)2 ds.

We have

(5.3.13) ≤ ‖‖Ik‖L3‖`2
k≥0

+ ‖‖Ik‖L3‖`2k<0
.

We first consider the high-frequency case. First, we note by interpolation that

‖Ik‖L3
x
≤
(

2−
k
2 ‖Ik‖L4

x

) 2
3
(

2k ‖Ik‖L2
x

) 1
3

.
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For the L2 norm, we may use the observation that

(5.3.15)

∫ t−τ1

0

Ka(t− s)〈Da〉−1u(s, x)2 ds = Ka(t− t+ τ1)U(t− τ1)−Ka(t)U0,

combined with H1
a boundedness to control this piece. Thus, we have

‖‖Ik‖L3‖`2
k≥0

.E

∥∥∥∥(2−
k
2 ‖Ik‖L4

x

) 2
3

∥∥∥∥
`2
k≥0

.

It remains to study the L4 norm. We split this norm into regions |x| < R and
|x| > R, with R to be chosen later. First, we study the |x| < R region using
time-decay estimates (Proposition 5.1.3) with θ = 1−2λ, where λ� 1. Indeed, we
bound ‖Ka(t− s)P ak u(s, x)2‖L4

|x|<R
by

‖
(
1 + |x|−σ

) 3
4 ‖L8

|x|<R
·
∥∥∥(1 + |x|−σ

)− 3
4 Ka(t− s)P ak 〈Da〉−1u(s, x)2

∥∥∥
L8(R4)

. R
1
2

(
|t− s|−2+λ2(3−λ)k

) 3
4 ‖(1 + |x|−σ)

3
4P ak 〈Da〉−1u2‖L8/7(R4).

Here, for ‖ (1 + |x|−σ)
3/4 ‖L8

|x|<R
to be finite, we impose that σ < 1

2 . This cor-

responds to further restricting the a < 0 coefficient range from a ∈ (−1, 0) to
a ∈ (− 3

4 , 0). Furthermore, we need to deal with the L8/7 norm.
Using the Hardy inequality for La, Bernstein estimates, boundedness of the

Paley-Littlewood operator in L8/7, Sobolev norm equivalence (indeed, we have for
σ < 1

2 that max{ 1
4 ,

σ
4 } <

7
8 < min{1, 1 − σ

4 }) and fractional chain rule, we obtain
for that k ≥ 0∥∥∥(1 + |x|−σ)

3
4P ak 〈Da〉−1u2

∥∥∥
L8/7(R4)

. ‖P ak 〈Da〉−1u2‖L8/7(R4)

+
∥∥∥|x|− 3σ

4 P ak 〈Da〉−1u2
∥∥∥
L8/7

. ‖P ak 〈Da〉−1u2‖L8/7

+
∥∥∥D 3σ

4
a P ak 〈Da〉−1u2

∥∥∥
L8/7

. 2−(1+ 3σ
4 )k‖P ak u2‖L8/7

. 2−(1+ 3σ
4 )k2−k‖DaP

a
k u

2‖L8/7

. 2−(1+ 3σ
4 )k2−k‖Dau

2‖L8/7

. 2−(1+ 3σ
4 )k2−k‖∇u2‖L8/7

. 2−(1+ 3σ
4 )k2−k‖u‖L8/3‖∇u‖L2

. 2−(1+ 3σ
4 )k2−k‖∇u‖2L2

.E 2−(1+ 3σ
4 )k2−k.

Thus, we so far have that

‖‖Ik‖L3‖`2
k≥0

.E

∥∥∥∥(2−
k
2R

1
2

∫ t−τ1

0

(
|t− s|−2+λ ds · 2(3−λ)k

) 3
4

2−(1+ 3σ
4 )k2−k

+2−
k
2 ‖Ik‖L4

|x|>R

) 2
3

∥∥∥∥
`2
k≥0

.
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The tail can be handled via the radial Sobolev embedding. That is,

‖Ik‖L4
|x|>R

≤
∥∥∥∥∫ t−τ1

0

Ka(t− s)〈Da〉−1u(s, x)2 ds

∥∥∥∥
1
2

L∞|x|>R

·
∥∥∥∥∫ t−τ1

0

Ka(t− s)〈Da〉−1u(s, x)2 ds

∥∥∥∥
1
2

L2
|x|>R

.
1

R3/4
‖K(t− t+ τ1)U(t− τ1)−K(t)U0‖

1
2

H1

· ‖K(t− t+ τ1)U(t− τ1)−K(t)U0‖
1
2

L2

.E
1

R3/4
.

Thus, all together, we have

‖‖Ik‖L3‖`2
k≥0

.E

∥∥∥∥2−(1+ 3σ
4 )k2−k

(
2−

k
2R

1
2

∫ t−τ1

0

(
|t− s|−2+λ · 2(3−λ)k

) 3
4

ds

+ 2−
k
2R−

3
4

) 2
3

∥∥∥∥
`2
k≥0

.E
(
R

1
2 τ
− 1

2 + 3
4λ

1 +R−
3
4

) 2
3

.

We also need to deal with the low-frequency case. In this case, we also use
Bernstein estimates to attain summability in `2k<0. First, define 1

q := 1
3 + λ

4 . Then,

‖‖Ik‖L3‖`2k<0
.

∥∥2λk ‖Ik‖Lq
∥∥
`2k<0

.

Similar to the high-frequency case, we split the Lq norm into the two regions |x| < R
and |x| > R. For the bounded |x| < R region as before, we use the time-decay
estimates with θ = 1. Notice that we shall need to use the L6 norm, which is
allowed because we have already restricted the coefficients of the inverse-square
potential to allow the use of the L8 norm. We remark that there is no gain from
the Hardy inequality in the low frequency and we have

‖P akKa(t− s)u(s, x)2‖Lq|x|<R . R
2
3

(
|t− s|−22−σk

) 2
3−

λ
2 ‖P ak u2‖L(2q)′ .

Now, using Bernstein inequality and boundedness of the Paley-Littlewood operator
in L(2q)′ , we have with 1

p = 1
(2q)′ + 1

12 = 5
6 + λ

8 + 1
12 and s = 1

6 −
λ
4 < 1 that

‖P ak u2‖L(2q)′ . 2
k
3

∥∥∥D− 1
3

a P ak u
2
∥∥∥
L(2q)′

. 2
k
3

∥∥u2
∥∥
Lp

. 2
k
3 ‖u‖2L2p . 2

k
3 ‖u‖H1

a
. 2

k
3 ‖u‖H1

a
.
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Recall we have already restricted to σ < 1/2. This is enough for summability in
`2k<0. So far, we have

‖‖Ik‖L3‖`2k<0
.E

∥∥∥∥2λk2
k
3R

2
3

∫ t−τ1

0

(
|t− s|−22−σk

) 2
3−

λ
2 ds

∥∥∥∥
`2k<0

+

∥∥∥∥∥2λk
∥∥∥∥∫ t−τ1

0

Ka(t− s)P ak u(s, x)2 ds

∥∥∥∥
Lq|x|>R

∥∥∥∥∥
`2k<0

.

The tail can be dealt with using the radial Sobolev embedding. Indeed,

‖Ik‖Lq|x|>R ≤
∥∥∥∥∫ t−τ1

0

Ka(t− s)〈Da〉−1u(s, x)2 ds

∥∥∥∥
1
3−

λ
2

L∞|x|>R

·
∥∥∥∥∫ t−τ1

0

Ka(t− s)〈Da〉−1u(s, x)2 ds

∥∥∥∥
2
3 +λ

2

L2
|x|>R

.
1

R
1
2−

3λ
4

‖K(t− t+ τ1)U(t− τ1)−K(t)U0‖
1
3−

ε
2

H1

· ‖K(t− t+ τ1)U(t− τ1)−K(t)U0‖
2
3 + ε

2

L2

.E
1

R
1
2−

3λ
4

.

For the tail, we have the 2λk for summability in `2k<0.
Now, putting the everything back together, we have for (5.3.13) that

(5.3.13) .E
(
R

1
2 τ
− 1

2 + 3
4λ

1 +R−
3
4

) 2
3

+R
2
3 τ
− 4

3 +λ
1 +R−( 1

2−
3λ
4 ).

To deal with (5.3.14), we will not exploit time-decay because for s ∈ [t− τ1, t],
there is not a strictly positive lower bound on |t − s|. Instead, smallness can be
obtained via the Virial-Morawetz estimates (Corollary 5.3.4). First, we apply a
frequency decomposition:

(5.3.14) .
∫ t

t−τ1
‖Ka(t− s)〈Da〉−1u(s, x)2‖L3(R4) ds

.
∫ t

t−τ1

∥∥‖P akKa(t− s)〈Da〉−1u(s, x)2‖L3(R4)

∥∥
`2
k≥0

ds

+

∫ t

t−τ1

∥∥‖P akKa(t− s)u(s, x)2‖L3(R4)

∥∥
`2k<0

ds.

In the high frequency case, we have

‖P akKa(t− s)〈Da〉−1u2‖L3(R4) . 2k(
4
2−

4
3 )‖P akKa(t− s)〈Da〉−1u2‖L2(R4)

= 2k(
4
2−

4
3 )‖P ak 〈Da〉−1u2‖L2(R4)

. ‖P ak 〈Da〉−1/3u2‖L2(R4).
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By Sobolev norm equivalence (Proposition 2.4.1) and fractional chain rule∥∥‖P akKa(t− s)〈Da〉−1u(s, x)2‖L3(R4)

∥∥
`2
k≥0

.
∥∥∥‖P ak 〈Da〉−1/3u2‖L2(R4)

∥∥∥
`2
k≥0

. ‖u2‖
H
− 1

3
a

. ‖u2‖
W

3
2
, 1
3

a

. ‖u‖L3‖u‖
W

3
2
, 1
3

. ‖u‖L3‖u‖H1
a
.

The low-frequency case can be handled similarly. Hence, by Hölder inequality,

(5.3.14) .E

∫ t

t−τ1
‖u‖L3 ds

.

(∫ t

t−τ1
‖u‖3L3 ds

) 1
3
(∫ t

t−τ1
ds

) 2
3

. τ
2
3

1

(∫ t

t−τ1

∫
R4

|u(s, x)|3 dxds

) 1
3

.

Thus, when we put these back together we obtain

‖U(t, x)‖L3 .E (5.3.12) +
(
R

1
2 τ
− 1

2 + 3
4λ

1 +R−
3
4

) 2
3

+R
2
3 τ
− 4

3 +λ
1 +R−( 1

2−
3λ
4 )

+ τ
2
3

1

(∫ t

t−τ1

∫
R4

|u(s, x)|3 dxds

) 1
3

.

Now, we choose R = τ
1
4

1 . For any ε1 < 0 and T > 0, there exists T̃ = T̃ (ε1, T ) > T

and τ1 = τ1(E, ε1) ≥ CEε−9
1 such that if t > T̃ , then

(5.3.12) +
(
R

1
2 τ
− 1

2 + 3
4λ

1 +R−
3
4

) 2
3

+R
2
3 τ
− 4

3 +λ
1 +R−( 1

2−
3λ
4 ) ≤ 1

2
ε1.

Then, by Corollary 5.3.4, we can conclude that for the above T̃ , and choosing τ =

2τ1 and ε0 ≤ CEτ−2
1 ε31 there exists T̃0 = T̃0(ε, E, T ) ≥ T̃ and t ∈ [T̃0 + τ1, T̃0 + 2τ1],

so that

(5.3.14) . τ
2
3

1

(∫ t

t−τ1

∫
R4

|u(s, x)|3 dxds

) 1
3

≤ 1

2
ε1.

Finally, with T1 = T̃0 + 2τ1, the result follows. �

5.3.4. Normal-form transform. Next, we shall obtain some estimates we
need in the proof of scattering. First, define the space

Sa(I) =

(
0,

1

2
, 0|1

)
∩
(

1

2
,

5

14
− κ, 3

7
− 4κ|11

14
+ κ

)
,

and also the space

Za(I) =

(
0,

1

4
, 0|sH

)
.
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where min{− 1
3 + δ,− 1

4 −
3
4σ}. Finally, define the weak space S̃a(I) with norm

‖U‖S̃a(I) =
∥∥P a≥0U

∥∥
( 1
2−ε,

1
4 +ε,7ε)∩( 1

2−ε,
1
4 +3ε, 27 )

+
∥∥P a≤0U

∥∥
( 1
2−ε,

1
4−ε,ε)∩L

3
tL

6
x∩(ε,2ε( 5

14−κ)+(1−4ε) 1
2 ,1)

.

In contrast to the 3D radial small energy problem (Chapter 3), here we need the
space Za(I) to provide some ‘extra room’. The choice of exponents for Sa(I) and

S̃a(I) are the same as in [22] (though the spaces are different because we are using
Littlewood-Paley projectors adapted to La), while for Za(I), we have chosen the L4

x

based space rather than the L∞x space, which is the best exponent possible to define
the Littlewood-Paley projectors without reducing the range of a (the coefficient of
the inverse-square potential).

The control of S̃a(I) by interpolation of Sa(I) and Za(I) is the same as in [22].
For clarity, let us check the case when σ = 1/2. Here, sH = min{− 1

3 +δ,− 5
8} = − 5

8 .

Lemma 5.3.7. Let u ∈ Sa(I) ∩ Za(I). Then,

(5.3.16) ‖u‖S̃a(I) . ‖U‖
1−2ε
Sa(I)‖U‖

2ε
S̃a(I)

.

Proof. We need to check the five norms in the definition of S̃a(I). Note that
ε and κ are sufficiently small. We start with the high frequency case. First, we
have∥∥P a≥0U

∥∥
( 1
2−ε,

1
4 +ε,7ε)

.
∥∥P a≥0U

∥∥
( 1
2−ε,(1−2ε)( 5

14−κ)+2ε· 14 ,s)

.
∥∥P a≥0U

∥∥
( 1
2−ε,(1−2ε)( 5

14−κ)+2ε· 14 ,(1−2ε)( 11
14 +κ)+2ε(− 5

8 ))

. ‖U‖1−2ε
Sa(I)‖U‖

2ε
S̃a(I)

,

where s = 4((1− 2ε)( 5
14 − κ) + 2ε · 1

4 −
1
4 − ε) + 7ε. Next, we have∥∥P a≥0U

∥∥
( 1
2−ε,

1
4 +3ε, 27 )

.
∥∥P a≥0U

∥∥
( 1
2−ε,(1−2ε)( 5

14−κ)+2ε· 14 ,s)

.
∥∥P a≥0U

∥∥
( 1
2−ε,(1−2ε)( 5

14−κ)+2ε· 14 ,(1−2ε)( 11
14 +κ)+2ε(− 5

8 ))

. ‖U‖1−2ε
Sa(I)‖U‖

2ε
S̃a(I)

,

where s = 4((1− 2ε)( 5
14 − κ) + 2ε · 1

4 −
1
4 − 3ε)− 2

7 .
Now, we check the low frequency case. First,∥∥P a≤0U

∥∥
( 1
2−ε,

1
4−ε,ε)

.
∥∥P a≤0U

∥∥
( 1
2−ε,(1−2ε)( 5

14−κ)+2ε· 14 ,s)

.
∥∥P a≤0U

∥∥
( 1
2−ε,(1−2ε)( 5

14−κ)+2ε· 14 ,(1−2ε)( 4
7−4κ))

. ‖U‖1−2ε
Sa(I)‖U‖

2ε
S̃a(I)

,

where s = 4((1− 2ε)( 5
14 − κ) + 2ε · 1

4 −
1
4 + ε) + ε. Next,∥∥P a≤0U

∥∥
L3
tL

6
x

.
∥∥P a≤0U

∥∥
( 1
3 ,

2
3 ( 5

14−κ)+( 1
3−ε)

1
2 +ε· 14 ,s)

.
∥∥P a≤0U

∥∥
( 1
3 ,

2
3 ( 5

14−κ)+( 1
3−ε)

1
2 +ε· 14 ,

2
3 ( 3

7−4κ))

. ‖U‖1−2ε
Sa(I)‖U‖

2ε
S̃a(I)

,
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where s = 4( 2
3 ( 5

14 − κ) + ( 1
3 − ε)

1
2 + ε · 1

4 −
1
6 ). Finally∥∥P a≤0U

∥∥
(ε,2ε( 5

14−κ)+(1−4ε) 1
2 ,1)

.
∥∥P a≤0U

∥∥
(ε,2ε( 5

14−κ)+(1−4ε) 1
2 +2ε· 14 ,s)

.
∥∥P a≤0U

∥∥
(ε,2ε( 5

14−κ)+(1−4ε) 1
2 +2ε· 14 ,2ε(

3
7−4κ))

. ‖U‖1−2ε
Sa(I)‖U‖

2ε
S̃a(I)

,

where s = 2ε+ 1. �

We have the following control for Za(I):

Lemma 5.3.8. Let u ∈ L3 ∩H1
a . Then,

(5.3.17) ‖u‖
Ḃ

(0|sH)
4

. ‖u‖1−3δ
L3 ‖u‖3δH1

a
.

Proof. In the high-frequency case, using Bernstein’s estimate yields

‖P ak u‖L4 . 2( 4
3−1)k‖P ak u‖L3

and
‖P ak u‖L4 . ‖P ak u‖H1

a
.

Therefore, we also obtain the bound

‖P ak u‖L4 .
(

2( 4
3−1)k‖P ak u‖L3

)1−α
‖P ak u‖αH1

a
.

If we choose sH + 1
3 (1− α) ≤ 0, we have∑

k≥0

22sHk‖P ak u‖2L4 .
∑
k≥0

22sHk
(

22( 4
3−1)k‖P ak u‖2L3

)1−α
‖P ak u‖2αH1

a

.
∑
k≥0

22(sH+ 1
3 (1−α))k

(
‖P ak u‖1−αL3 ‖P ak u‖αH1

a

)2

.
∑
k≥0

(
‖P ak u‖1−αL3 ‖P ak u‖αH1

a

)2

.
(
‖u‖1−αL3 ‖u‖αH1

a

)2

.

Now, let us write α = 3δ for convenience, and choose sH = min{− 1
3 +δ,− 1

4−
3
4σ}. In

the low-frequency case, we use the same argument. Indeed, by Bernstein estimate,
we have

‖P ak u‖L4 . 2( 4
3−1)k‖P ak u‖L3 . ‖P ak u‖L3 .

Now, using the Sobolev embedding H1
a ↪→ L3, we may conclude for any α ∈ [0, 1]

that
‖P a≤0u‖Ḃ0

4
. ‖u‖1−αL3 ‖u‖αH1

a
.

�

Furthermore, we have the following estimates for the various terms of the nor-
mal form transform for d = 4:

Lemma 5.3.9. Let U,U ′ and U ′′ be radial. Then we have:

(i) (Resonance term)∥∥∥∥∫ t

0

Ka(t− s)〈Da〉−1(UU ′)HH+HL+LH ds

∥∥∥∥
Sa(I)

.β ‖U‖S̃a(I)‖U
′‖S̃a(I)
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(ii) (Boundary term) There exists θ > 0 such that

‖〈Da〉−1Ω(U,U ′)‖Sa(I) . 2−θβ‖U‖1−2ε
Sa(I)‖U‖

2ε
Z(I)‖U

′‖1−2ε
Sa(I)‖U

′‖2εZ(I)

(ii*) (Refined estimate for boundary term) For 0 < κ� ε� 1,

‖〈Da〉−1Ω(U,U ′)‖S̃a(I) . 2−β‖U‖(0, 12 ,0|1)‖U ′‖S̃a(I) + ‖U ′‖(0, 12 ,0|1)‖U‖S̃a(I)

(iii) (Trilinear term)∥∥∥∥∫ t

0

K(t− s)〈Da〉−1Ω(〈Da〉−1(UU ′′, U ′) ds

∥∥∥∥
Sa(I)

.β ‖U‖S̃a(I)‖U
′‖S̃a(I)‖U

′′′‖S̃a(I)

Proof. Same as in [22]. �

These estimates can also be used to obtain 4D small data scattering for a
suitable range of a. The argument is similar to the 3D case discussed previously –
see [22].

5.3.5. Proof of large-energy scattering (Theorem 1.1.4). We shall now
prove the 4D large-energy scattering result. Similar to before, we shall only study

the −
(
d−2

2

)2
< a < 0 case in detail because the a > 0 case is identical to the

potential-free case. Consider the simplified equation with non-linear term U2 so
that U(t, x) is equal to

Ka(t)(U0 + i〈Da〉Ω(U,U)(0))− i〈Da〉Ω(U,U)

−i
∫ T2−τ2

0

Ka(t− s)〈Da〉−1
(
(UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)

)
ds

−i
∫ t

T2−τ2
Ka(t− s)〈Da〉−1

(
(UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)

)
ds.

We shall write the two integrals above as I1 + I2. The goal here is to show that for
any ε1 > 0, there exists T2 such that

‖U‖S̃a(T2,∞) . CEε
9
32 ε

2

1 .

Firstly, using the Strichartz estimates, we obtain that

‖Ka(t)(U0 + i〈Da〉−1Ω(U,U)(0))‖S̃a(R) . ‖U0‖H1
a

+ ‖U0‖2H1
a
.

Therefore, for any ε1 > 0, there exists T̃ = T̃ (ε1) > 0 such that for all T > T̃ , we
have ‖Ka(t)(U0 + i〈Da〉−1Ω(U,U)(0))‖S̃a(T2,∞) ≤ ε1. Also, using the refined bound

(Lemma 5.3.9 (ii*)), we have

‖Ω(U,U)‖S̃a(T2,∞) ≤ 2−βCE‖U‖S̃a(T2,∞).

Next, we consider the (0, T2 − τ2) integral I1. First, we have that

‖I1‖S̃a(T2,∞) ≤ ‖I1‖
1−2ε
S(T2,∞)‖I1‖

2ε
(0, 14 ,0|−

1
3 +δ)

.

From the observation (5.3.15) and boundedness of the Sa norm, it remains to
study the Za norm. In particular, we first estimate∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)〈Da〉−1((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
Ḃ

(0|− 1
3
+δ)

4

by frequency decomposition∥∥∥‖IL‖Ḃ4
0

∥∥∥
`2k<0

+
∥∥∥‖IH‖ḂsH4 ∥∥∥

`2
k≥0

,
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where

IL :=

∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds,

IH :=

∫ T2−τ2

0

Ka(t− s)P ak 〈Da〉−1((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds.

Let us first study the low-frequency part
∥∥∥‖IL‖Ḃ4

0

∥∥∥
`2k<0

. To deal with the summa-

bility in `2k<0, we use Bernstein estimates. Thus, define 1
q = 1

4 + ε
4 . We have∥∥∥∥∥

∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
Ḃ0

4

. 2λk

∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
Ḃ0
q

. 2λk

∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
Lq

The factor of 2λk is used to deal with the `2k<0 summation later, and so we focus
on the Lq norm. Indeed, we split the norm into regions |x| < R and |x| > R:∥∥∥∥∥

∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))ds

∥∥∥∥∥
Lq|x|<R

+

∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
Lq|x|>R

.
∫ T2−τ2

0

∥∥Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))
∥∥
Lq|x|<R

ds

+

∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))ds

∥∥∥∥∥
Lq|x|>R

.

For the |x| < R region, we may apply the dispersive estimate with θ = 1/2. Thus,
we bound∥∥Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))

∥∥
Lq|x|<R

. I · II,

where I is given by ∥∥∥(1 + |x|−σ)1− 2
2q

∥∥∥
L2q
|x|<R

,

and II is given by∥∥∥∥∥
(

1

1 + |x|−σ

)1− 2
2q

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))

∥∥∥∥∥
L2q

.
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Now, I · II can be bounded by

(
|t− s|−

4−1+1/2
2 2(1−1/2−σ)k

)1− 2
2q

R
4
2q

·‖
(
1 + |x|−σ

)1− 2
2q P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))‖L(2q)′ .

Furthermore, similar to before, for low-frequency case, we have

‖
(
1 + |x|−σ

)1− 2
2q P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))‖L(2q)′

. ‖P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))‖L(2q)′ .

Thus, it suffices to study the term

(5.3.18) ‖P ak
(
(UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))

)
‖L(2q)′ .

In the low-frequency case, since the exponent 2(1−1/2−σ)k is a negative power (recall
that σ < 1/2 from previous restrictions), we already have summability in `2k<0,
whence it is enough to use the estimate

(5.3.18) . ‖U‖2
L2(2q)′ + ‖U‖3

L3(2q)′ .

Next, we need to deal with the tail. In this case, by using the observation (5.3.15),
we have∥∥∥∥∥

∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
Lq|x|>R

.

∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
1
2−

ε
2

L2
|x|>R

·

∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
1
2 + ε

2

L∞|x|>R

.E R−
3
2 ·(

1
2−

ε
2 ).

The high-frequency part ‖IH‖ḂsH4 may be handled in a similar manner. We first

split the problem into the |x| < R and |x| > R regions again. We first use Bernstein

inequality to take out a factor of 2−
1
3 +δ. This reduces the study of the norm∥∥∥∥∥

∫ T2−τ2

0

Ka(t− s)〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))ds

∥∥∥∥∥
Ḃ
sH
4

to the study of the L4 norm∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))ds

∥∥∥∥∥
L4(R4)

.

Next, we split this L4 norm into the bounded and tail regions I + II, where I is
given by∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
L4
|x|<R
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and II is given by∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U)) ds

∥∥∥∥∥
L4
|x|>R

.

Finally, for piece I, we move the integral outside for the bounded region. Hence,
we shall estimate A+ II where now A is given by∫ T2−τ2

0

∥∥Ka(t− s)〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))
∥∥
L4
|x|<R

ds.

Once again, we apply the dispersive estimate for the |x| < R region (i.e. piece A)
with θ = 1/2∥∥Ka(t− s)〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))

∥∥
L4
|x|<R

. R
4
8

(
|t− s|−

4−1+1/2
2 2

4+1+1/2
2 k

)1− 2
8

·
∥∥∥(1 + |x|−σ

) 3
4 〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))

∥∥∥
L8/7

. 2
3
4σR

4
8

(
|t− s|−

4−1+1/2
2 2

4+1+1/2
2 k

)1− 2
8

·
∥∥〈Da〉−1P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))

∥∥
L8/7

For the tail (piece II), again we use the radial Sobolev embedding and the obser-
vation (5.3.15). Indeed, we bound∥∥∥∥∥
∫ T2−τ2

0

〈Da〉−1Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))ds

∥∥∥∥∥
L4
|x|>R

by X · Y where X is given by∥∥∥∥∥
∫ T2−τ2

0

〈Da〉−1Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))ds

∥∥∥∥∥
1
2

L2
|x|>R

and Y is given by∥∥∥∥∥
∫ T2−τ2

0

Ka(t− s)P ak ((UU)LH+HL+HH + 2Ω(−i〈Da〉−1U2, U))ds

∥∥∥∥∥
1
2

L∞|x|>R

.

Now, X ·Y is bounded (up to a constant that depends on the energy E) by 2sHkR−
3
4

(recall that sH = −min{− 1
3 + δ,− 1

4 −
3
4σ}).

In the high-frequency case, since the exponent 2
33k
16 2

3
4σ2sHk2−k is not a negative

power, we need to use a more refined estimate for this L8/7 norm. First, we note
that

P akΩ(−i〈Da〉−1U2, U)) = 0

for β > 0 sufficiently large. By Bernstein inequality, we also obtain the bilinear
estimate

max
k≥0

2
7
8k‖P ak ((UU)HH+HL+LH)‖L8/7 . ‖P≥0U‖H1

a
‖U‖L2 + ‖P≥0U‖2H1/2 ≤ CE .
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Indeed, sH was chosen so that 33
16 + 3

4σ+ sH − 1− 7
8 < 0. Thus, putting everything

together, and choosing R = τ
1/8
1 , we find that

‖I1‖(0, 14 ,0|sH .E R
1
2 + ε

2

∫ T2−τ2

0

|t− s|− 7
4 ( 3

4−
ε
4 ) ds+R−

3
4 + 3

4 ε

+ R
1
2

∫ T2−τ2

0

|t− s|− 7
4 ·

3
4 ds+R−

3
4

.E τ
− 3

32 + 3
32 ε

2 .

Therefore,

‖I1‖S̃a(T2,∞) .E τ
− 3

16 ε+
3
16 ε

2

2 .

Now, we study I2. Using radial Strichartz estimate, the Sobolev embedding H1
a ↪→

L4 and the variational result ‖U‖2L∞t H1
a
∼ E, we have that for any interval I ⊂ R,

‖U‖Sa(I) ≤ CE + C‖u2‖L1
tL

2
x(I×R4) ≤ CE〈|I|〉.

Note that by Proposition 5.3.5, for ε > 0 and T̃ above, there exists τ̃1 = CEε
−9
1 and

T2 such that

‖U‖L∞t (T2−τ̃1,T2;L3
x) ≤ ε1.

Thus, let τ2 = ε
−3ε/2
1 . In this case, we have [T2 − τ2] ⊂ [T2 − τ̃1, T2] and

‖I2‖S̃a(T2,∞) ≤ CE

(
‖U‖2−4ε

S(T2−τ2,t)‖U‖
4ε
Z(T2−τ2,t) + ‖U‖3−6ε

S(T2−τ2,t)‖U‖
6ε
Z(T2−τ2,t)

)
≤ CE

(
〈τ2〉2−4ε‖U‖4ε(1−3δ)

L4
t (T2−τ2,T2;L3

x)
+ 〈τ2〉3−6ε‖U‖6ε(1−3δ)

L4
t (T2−τ2,t;L3

x)

)
≤ CE

(
〈τ2〉2−4εε

4ε(1−3δ)
1 + 〈τ2〉3−6εε

6ε(1−3δ)
1

)
≤ CEε

2ε.

Thus, we have

‖U‖S̃a(T2,∞) ≤ CE
(
ε1 + 2−β‖U‖S̃a(T2,∞) + ε

9
32 ε

2

1

)
.

Now, we apply a bootstrap argument to show that for T2 = T2(ε1),

‖U‖S̃a(T2,∞) ≤ CEε
9
32 ε

2

1

Thus, we have ‖U‖S̃a(0,∞) ≤ CE for some constant CE .

Finally, we can prove large-energy scattering. The argument is the same as
in [22]. Indeed, the goal is now to show that Ka(−t)U(t) has a limit in H1

a as
t → ∞, which shall be done by verifying that the sequence is Cauchy. First, we
write Ka(−t)U(t) explicitly as

Ka(−t)U(t) = U0 + i〈Da〉−1Ω(U,U)(0)− iKa(−t)〈Da〉−1Ω(U,U)

−i
∫ t

0

K(−s)〈Da〉−1TRes(U,U) ds

−2i

∫ t

0

K(−s)〈Da〉−1
(
Ω
(
−i〈Da〉−1U2, U

))
ds.

First, using Strichartz estimates, we obtain∥∥∥∥∫ t2

t1

K(−s)〈Da〉−1TRes(U,U) ds

∥∥∥∥
H1
a

. ‖U‖2
S̃a(t1,t2)
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and ∥∥∥∥∫ t2

t1

K(−s)〈Da〉−1
(
Ω
(
−i〈Da〉−1U2, U

))
ds

∥∥∥∥
H1
a

. ‖U‖3
S̃a(t1,t2)

.

Thus, we conclude that

−i
∫ t

0

K(−s)〈Da〉−1TRes(U,U) ds− 2i

∫ t

0

K(−s)〈Da〉−1
(
Ω
(
−i〈Da〉−1U2, U

))
ds.

has a limit in H1
a . Finally, we claim that Ka(−t)〈Da〉−1Ω(U,U) → 0 in H1

a as
t → ±∞, from which we can obtain scattering. First, by Bernstein estimates, we
have that

‖Ω(U,U)‖H1
a
. ‖P a≤0U‖L2‖P a≤0U‖L6 .

Thus, it remains to show that limt→±∞ ‖P a≤0U(t)‖L6
x

= 0. This follows from the

fact that ‖P a≤0U(t)‖L6
x

is Lipschitz continuous in t (see [22] for details). Finally,
this verifies the scattering result Theorem 1.1.4.



CHAPTER 6

NLS and NLKG with exponential nonlinearity and
inverse-square potential

In this chapter, we study scattering for the 2D non-linear Schrödinger (NLS)
and non-linear Klein-Gordon (NLKG) with inverse-square potential and with exponential-
type non-linearity:

(6.0.1)


i∂tu−∆u+ a

|x|2u = f(u)

u(0, x) = u0(x)

and

(6.0.2)


∂2
t u−∆u+ a

|x|2u+ u = f(u)

u(0, x) = u0(x), ut(0, x) = u1(x)

where u : R×R2 → C, f(u) := λ
(
eκ0|u|2 − 1− κ0|u|2

)
u, κ0 > 0, λ ∈ {1,−1} and

a ≥ −
(
d−2

2

)2
. Throughout this chapter, we take d = 2 unless otherwise specified.

We shall study various settings in which global solutions to (6.0.1) and (6.0.2)
respectively approach solutions to the free NLS equation

(6.0.3) i∂tu−∆u+
a

|x|2
u = 0,

and free NLKG equation

(6.0.4) ∂2
t u−∆u+

a

|x|2
u+ u = 0.

as t → ∞. Define F (u) : C → R so that F (0) = 0 and ∂uF (u) = f(u). More
explicitly, we have

(6.0.5) F (u) =
λ

κ0

(
eκ0|u|2 − 1− κ0|u|2 −

κ2
0

2
|u|4
)
.

Then, the NLS (6.0.1) has conserved energy

ES(u(t)) =
1

2

∫
R2

|∇u(t, x)|2 +
a

|x|2
|u|2 − F (u(t, x)) dx

and mass

M(u(t)) =

∫
R2

|u(t, x)|2 dx,

while the NLKG (6.0.2) has conserved energy

EKG,a(u(t)) =
1

2

∫
R2

|∇u(t, x)|2 +
a

|x|2
|u|2 + |u(t, x)|2 + |ut(t, x)|2 − F (u(t, x)) dx.

We shall omit the dependence on the coefficient a for ease of notation.

75
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In the higher dimensional setting (i.e. d ≥ 3), the analysis adapted to the
operator La is well understood and has been used to obtain scattering results for
dispersive PDEs with inverse-square potential, as we have seen previously.

For d ≥ 3 the equivalence of fractional Sobolev norms ‖(−∆)su‖p ∼ ‖(La)su‖p
for a suitable range of values s, p and a is a central tool. This equivalence allows
us to use the fractional chain rule result which holds for (−∆)s by switching norms
when required. Heat kernel bounds for La available for d ≥ 3 were used to obtain
this result. We remark that there were earlier results in some special cases. Indeed,
the sharp Hardy inequality

(6.0.6)

∫
Rd

1

|x|2
|u|2 dx ≤

(
2

d− 2

)2 ∫
|∇u|2 dx

can be used to obtain this equivalence for p = 2 and s = 1 (see Burq–Planchon–
Stalker–Tahvildar-Zadeh [6]). In the case s = 1, this equivalence corresponds to
the Lp boundness of the Riesz transform (−∆)L −1

a . Notice that in the free case
(i.e. when a = 0), the boundedness of the Riesz transform holds for p ∈ (1,∞),
and yet if we were to take the limit |a| → 0, one would find that the limiting range
is (1, d). Indeed, this was remarked by Hassel (see Zhang-Zheng [66]).

The two-dimensional setting is somewhat different. In this setting, it is nat-
ural to restrict to a ≥ 0. We notice that in this setting, the Hardy inequality
(6.0.6) breaks down. From this, we immediately can see that H1

a(R2) is strictly
smaller than H1(R2) for a 6= 0. A Hardy-type inequality can be recovered in
d = 2 if we restrict to functions orthogonal to radial functions, as noted in [6].
The equivalence can be recovered for a restricted range of p ∈ (1,∞) via the W s,p

boundedness of conjugation operators, for which results are known in dimension
two (see below). Time-decay and Strichartz estimates for the Schrödinger propa-
gator are well-established. For the Klein-Gordon propagator, similar estimates are
available, albeit in frequency-localised pieces (localised with respect to La) which
need to be carefully put back together.

We also review work on the exponential-type non-linearity. Indeed, the (defo-
cusing) NLS with power nonlinearity (i.e. i∂t −∆u = |u|pu) is energy subcritical
for all p > 1. Colliander-Ibrahim-Majdoub-Masmoudi [11] identified the NLS with
exponential-type non-linearity as being the energy critical problem in 2D. Here,
the notion of energy criticality is given in terms of a well-posedness/ill-posedness
trichotomy with respect to the Hamiltonian. Prior to this result, Nakamura-Ozawa
[45] had obtained small energy global-well posedness and scattering for the NLS
problem. We also mention the work of Cazenave [8] for decreasing exponential-
type non-linearities. For increasing exponential-type non-linearities, the failure of
the embedding H1(R2) ↪→ L∞(R2) means that we still need a growth condition.
Hence, the non-embedding can be replaced by the Moser-Trudinger inequality to
give such a condition.

Scattering with respect to an energy trichotomy was subsequently studied for
the NLS and NLKG by Ibrahim-Majdoub-Masmoudi-Nakanishi [29]. Guo-Shen
[23] revisited scattering for 2D NLS and NLKG by extending the methods of
Dodson-Murphy to the two-dimensional setting. Furthermore, by using the ra-
dially refined Strichartz estimates for the NLKG combined with L6

t,x smallness of
the solution, Guo-Shen were able to give a simpler proof. Their proof is similar
to the NLS case of Ibrahim et al., who used the L4

tL
8
x smallness of the solution
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established independently by Planchon-Vega [51] and Colliander-Grillakis-Tzikaris
[10].

In this chapter, we obtain the following result:

Theorem 6.0.1. Suppose that u0 ∈ H1
a(R2), (α, β) satisfies conditions (6.3.1),

mα,β is defined by (6.3.7) and κ∗a is a constant defined in Proposition 6.1.8 below.

Recall also κ0 > 0 and f(u) := λ
(
eκ0|u|2 − 1− κ0|u|2

)
u. Then,

(a) If λ = −1, the solution to (6.0.1) exists globally and scatters provided

ES(u0) <
κ∗a
2κ0

.

(b) If λ = 1, the solution to (6.0.1) exists globally and scatters provided that
ES(u0) + M(u)/2 < mα,β and Kα,β(u0) > 0, and a > 1 or sufficiently
close to zero.

(c) If λ = −1, the solution to (6.0.2) exists globally and scatters provided

EK(u0) <
κ∗a
2κ0

.

(d) If λ = 1, the solution to (6.0.2) exists globally and scatters provided that
EK(u0) < mα,β and Kα,β(u0) > 0 for a > 1 or sufficiently close to zero.

The restriction in the coefficients a of the inverse-square potential comes from
the proof of scattering and the Lp theory as seen above. Indeed, for a > 1, we are
able to use the method of Guo-Shen [23] in combination with the Lp continuity of
conjugation operators. In particular, we are able to avoid using the double loga-
rithmic inequality to obtain scattering, as is needed in papers such as [29] and [30].
For smaller values of a, we need to use the double logarithmic inequality. We did
not pursue the optimising the double logarithmic inequality for the inverse-square
potential. The issues are similar to characterising the threshold for the Moser-
Trudinger equation. For instance, rearrangement techniques cannot be applied in
this setting (recall that a ≥ 0 in the 2D context). As a consequence, we need to stay
close to the potential-free case due to the requirements in the double logarithmic
inequality. If the double logarithmic inequality was optimised, then we could deal
with the remaining values for the coefficient using the same argument.

6.1. Preliminaries

6.1.1. Inverse square potential in 2D. We first review some important
estimates related to the operator La in two dimensions. In particular we have
the following estimates for the heat kernel, Riesz kernel and Littlewood-Paley the-
ory. These results are analogous to the higher dimensional setting (i.e. d ≥ 3) as
discussed above, as well as in the literature.

Lemma 6.1.1 (Heat kernel bounds in 2D, [31]). Let a ≥ 0. Then, there exists
constants c, C > 0 such that for x, y ∈ R2\{0},

0 ≤ e−tLa(x, y) ≤ C
(

1 ∨
√
t

|x|

)σ (
1 ∨
√
t

|y|

)σ
t−1e−

|x−y|2
ct .(6.1.1)

The following Riesz kernel estimates and Littlewood-Paley theory can then be
obtained using the above heat kernel bound as in [33]:

Lemma 6.1.2 (Riesz kernel). Let x, y ∈ R2\{0}, s ∈ (0, 2) and 2− s− 2σ > 0.
Then, the Riesz kernel satisfies

L −s/2a (x, y) :=
1

Γ(s/2)

∫ ∞
0

e−tLa(x, y)ts/2
dt

t
≤ |x− y|s−2

(
|x|
|x− y|

∧ |y|
|x− y|

∧ 1

)−σ
.



78 6. NLS AND NLKG WITH EXPONENTIAL NONLINEARITY

Lemma 6.1.3 (Littlewood-Paley theory in 2D). Let a ≥ 0, 1 < p ≤ q ≤ ∞,
s ∈ R and k ∈ Z. Define the Littlewood-Paley operators P a≤k, P ak and P a>k as in
Chapter 2. Then,

(a) P a≤k and P ak are bounded on Lp,

(b) P a≤k and P ak are bounded from Lp to Lq with norm O
(

2k(
2
p−

2
q )
)

, and

(c) 2ks ‖P ak f‖Lp ∼
∥∥∥L s/2

a P ak f
∥∥∥
Lp

.

6.1.2. Boundedness of conjugation operators. We define the conjugation
operator Kν,µ := HνHµ and also its inverse Kµ,ν as in [49]. We have that AνKν,µ =

Kν,µAµ. The continuity of these operators on Ẇ s,p (that is, ‖Kν,µu‖Ẇ s,p . ‖u‖Ẇ s,p)
will be important for our purposes. We shall also need similar results for the ex-

change operator Bsµ,ν := A
s/2
µ A

−s/2
ν on Lprad. Indeed, from [49], we have the fol-

lowing result:

Proposition 6.1.4. Let the operators Kµ,ν and Bsµ,ν be as defined above. We
have that

(a) The conjugation operator Kµ,ν is continuous on Lprad if

(6.1.2) max

{
λ− µ
d

, 0

}
<

1

p
< min

{
λ+ 2 + µ

d
, 1

}
.

(b) The conjugation operator Kλ,ν is continuous on Ẇ s,p
rad if

(6.1.3) max

{
0,
λ− ν
d

,
s

d

}
<

1

p
< min

{
λ+ ν + 2

d
,
λ+ ν + 2 + s

d
, 1

}
,

while its inverse Kν,λ is continuous on Ẇ s,p
rad if

(6.1.4) max

{
0,
λ− ν
d

,
λ− ν + s

d

}
<

1

p
< min

{
λ+ ν + 2

d
, 1, 1 +

s

d

}
.

(c) The exchange operator Bsµ,ν is continuous on Lp if

(6.1.5) max {λ− ν + s, λ− µ} < d

p
< min {λ+ µ+ 2 + s, λ+ ν + 2} .

6.1.3. Strichartz estimates. We have the following Strichartz estimates in
the potential-free case. In previous chapters, we used Besov-type spaces in order to
study the quadratic non-linearity. In contrast, we shall use Sobolev spaces instead.
This means that we may use the conjugation operators above to obtain the corre-
sponding results in the inverse-square potential case. This shall be the approach
that we use for this chapter.

Proposition 6.1.5 (Strichartz estimates, [37]). We have

(a) If (q, r) satisfies 2 ≤ q, r ≤ ∞, (q, r) 6= (2,∞) and 1
q + 1

r = 1
2 . Then, we

have ∥∥eit∆u0

∥∥
LqtL

r
x
. ‖u0‖L2 .

(b) We also have for (q, r) satisfying 2 ≤ q, r ≤ ∞, (q, r) 6= (2,∞) that∥∥∥eit〈∇〉u0

∥∥∥
LqtB

β(q,r)
r,2

. ‖u0‖L2 .
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where

β(q, r) =

{
− 1
q + 1

r −
1
2 ,

d−1
2 ( 1

2 −
1
r ) ≤ 1

q ≤
d
2 ( 1

2 −
1
r )

1
q + d

r −
d
2 ,

1
q ≤

d−1
2 ( 1

2 −
1
r )

.

and Bsr,2 is the standard Besov space.

6.1.4. Logarithmic estimates. We shall also need the following logarithmic
inequality from [28] in our study of (6.0.1) and (6.0.2). First, we define the following
spaces for 0 < α < 1 and 0 < µ ≤ 1:

(6.1.6) ‖u‖Cα := sup
x 6=y

|u(x)− u(y)|
|x− y|α

,

and

(6.1.7) ‖u‖H1
µ,a

:= ‖u‖2H1
a

+ µ‖u‖22.

Proposition 6.1.6 (Logarithmic estimates for H1
a(R2), [28]). Let 0 < α < 1,

λ > 1
2πα and 0 < µ ≤ 1. There exists a constant Cλ > 0 depending on λ such that

for any function u ∈ H1
a(R2) ∩ Cα(R2) we have

‖u‖2L∞ ≤ λ‖u‖2H1
µ,a

log

(
Cλ +

8αµ−α‖u‖Cα
‖u‖H1

µ,a

)
.

Proof. This follows from the estimate in the a = 0 case from [28], the fact
that H1

a(R2) ↪→ H1(R2), and the fact that x 7→ x2 ln (Cλ + c/x) is increasing. �

6.1.5. Moser-Trudinger inequality. We now discuss the Moser-Trudinger
inequality. In the radial setting for the inverse-square potential, we shall see that
there is an improvement to the threshold (see below). This improvement is a corol-
lary of the equivalence between the Moser-Trudinger inequality and the Galgliardo-
Nirenberg inequality as observed by Ozawa [47]. Thus, we shall first state some
results related to the Gagliaro-Nirenberg inequality. Here, the Gagliardo-Nirenberg
inequality is written with explict reference to the growth rate.

Proposition 6.1.7 (Gagliardo-Nirenberg estimate for H1
a(R2). Let q ∈ (2,∞)

and a ≥ 0.

(a) There exists a constant C > 0 independent of q such that

(6.1.8) ‖u‖Lqx ≤ Cq
1
2 ‖u‖1−

2
q

Ḣ1
a

‖u‖
2
q

L2
x
.

(b) Furthermore, the best constant in (6.1.8) given by

(6.1.9) CGN,a := sup

 ‖u‖q
q

1
2 ‖u‖1−

2
q

Ḣ1
a

‖u‖
2
q

2

: u ∈ H1
a(R2)\{0}


is equal to CGN,0 and is only attained for a = 0. In this case, the best
constant is attained by a radial solution of

(6.1.10) −∆Q0 +Q0 = −Qq−1
0 .
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(c) In the radial setting, the best constant CGN,a,rad defined as in (6.1.9) re-
stricted to H1

a,rad is attained by radial solution of

(6.1.11)

(
−∆ +

a

|x|2

)
Qa,rad +Qa,rad = −Qq−1

a,rad.

Furthermore, CGN,a,rad < CGN,a.

Proof. The proof is exactly as in [13, Thereom 4.1]. �

Proposition 6.1.8 (Moser-Trudinger estimate for H1
a(R2)). Let a ≥ 0.

(a) For all κ ≤ 4π, we have

(6.1.12) sup
‖u‖H1

a(R2)≤1

∫
R2

exp
(
κ|u|2

)
− 1 dx < c.

Furthermore, this threshold is sharp in the sense that for all κ > 4π, there
exists a sequence of functions (un) ⊂ H1

a(R2) such that ‖un‖H1
a
≤ 1 and∫

R2

exp(κ|un|2)− 1 dx→∞

as n→∞.
(b) For all κ ≤ κ∗a, we have

(6.1.13) sup
‖u‖

H1
a,rad

(R2)
≤1

∫
R2

exp
(
κ|u|2

)
− 1 dx < c(a).

Furthermore, this threshold is sharp in the above sense, except with a
radial sequence.

Proof. The estimate (6.1.12) follows from the embedding H1
a ↪→ H1 and

the corresponding Moser-Trudinger inequality in the H1(R2) case (see Ruf [52]).
All that remains to show is the sharpness of the thresholds in the two respective
settings (non-radial and radial). This follows from the equivalence of the Gagliardo-
Nirenberg and Moser-Trudinger inequalities (see below). �

Let us consider the radial setting, as this will be the setting for which we shall
study the problems (6.0.1) and (6.0.2). There are many equivalent forms of the
Moser-Trudinger inequality. First, we consider the form discussed in [47]. The
assumption that ‖u‖Ḣ1

a
≤ 1 can be removed by replacing u with u/‖u‖Ḣ1

a
. In this

case, the Moser-Trudinger inequality in the form

(6.1.14)

∫
R2

exp
(
κ∗a|u|2

)
− 1 dx ≤ c‖u‖22

is equivalent to

(6.1.15)

∫
R2

exp

(
κ∗a|u|2

‖u‖2Ḣ1
a

)
− 1 dx ≤ c‖u‖22

‖u‖2Ḣ1
a

.

Furthermore, the reverse implication (i.e. showing that (6.1.15) implies (6.1.14))
is non-trivial as noted by Ozawa [47], and can also be proved via the equivalence
with the Gagliardo-Nirenberg inequality, which we discuss below.
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We also mention the following form of the Moser-Trudinger inequality for u ∈
H1
a such that ‖u‖Ḣ1

a
< 1 given by

(6.1.16)

∫
R2

exp
(
|u|2
)
− 1 dx .

‖u‖22
κ∗a − ‖u‖

2
Ḣ1
a

.

The fact that (6.1.16) implies (6.1.12) follows immediately when we apply the condi-
tion that ‖u‖H1

a
≤ 1. Now, to prove the opposite direction, we shall prove something

more general. We follow the proof from [23]. Indeed, let c ≥ 1. Then, we have that

(6.1.17) sup
‖φ‖2

H1
a
≤1

∫
R2

(
eκ
∗
ac
−1|φ|2 − 1

)c
dx ≤ C.

Let u ∈ H1
a such that ‖u‖Ḣ1

a
<
√
κ∗a/c. We note that for uλ(x) := u(λx), we have

‖uλ‖2H1
a

= ‖uλ‖2Ḣ1
a

+ λ−2‖uλ‖22.

Hence, we may choose λ > 0 such that ‖uλ‖2H1
a

= κ∗a/c. Then, applying (6.1.17) to

φ = uλ/
√
κ∗ac
−1, we obtain∫

R2

(
e|uλ(x)|2 − 1

)c
dx ≤ C.

Finally, after a change of variables, we use the choice of λ to obtain∫
R2

(
exp

(
|u(x)|2

)
− 1
)c

dx . λ2 =
‖φλ‖2

κ∗ac
−1 − ‖φ‖2

Ḣ1
a

.

Proposition 6.1.9 (Equivalence of Gagliardo-Nirenberg and Moser-Trudinger
inequalities, [47]). Define the following optimal constants

κa := sup

{
κ : sup
‖u‖Ḣ1

a(R2)≤1

∫
R2

exp
(
κ|u|2

)
− 1 dx < C‖u‖22 <∞

}
,

M0 := inf
{
M : ∃ r = r(M) s.t. (6.1.8) holds for all u ∈ H1

a(R2) and r ≤ q <∞
}

β0 := lim sup
q→∞

‖u‖q
q

1
2 ‖u‖1−

2
q

Ḣ1
a

‖u‖
2
q

2

,

Then, the estimates (6.1.8) and (6.1.12) are equivalent and 1/κa = 2eM2
0 = 2eβ2

0 .

Proof. Since β0 ≤ M0, it suffices to prove that (6.1.8) implies (6.1.12) with
1/κa ≤ 2eβ2

0 and also to prove that (6.1.12) implies (6.1.8) with 1/κa ≥ 2eM2
0 . We

first show that (6.1.8) implies (6.1.12). Using the Taylor series expansion, the fact
that ‖u‖Ḣ1

a
≤ 1 and the monotone convergence theorem, we obtain for any ε > 0

that ∫
R2

exp
(
κ|u|2

)
− 1 dx =

∑
j≥1

κj

j!
‖u‖2j2j

≤
∑
j≥1

κj

j!
(β0 + ε)2j(2j)j‖u‖22

≤
∑
j≥1

jj

j!
(2(β0 + ε)2κ)j‖u‖22
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as long as the final series is finite, which is satisfied if 0 ≤ κ < 1/2e(β0 + ε)2. Thus,
we have that (6.1.8) implies (6.1.12) for any κ such that 0 ≤ κ ≤ 1/2e(β0 + ε)2.
Therefore, we also have that κa ≥ 1/2eβ2

0 .
Next, we show that (6.1.12) implies (6.1.8). Indeed, for 0 < ε < κa, we have,

as remarked before, that∫
R2

exp

 (κa − ε)|u|2

‖u‖2j
Ḣ1
a

− 1 dx ≤ C(ε)
‖u‖22
‖u‖2j

Ḣ1
a

,

for some constant C(ε) > 0. Thus, expanding the left-hand side using Taylor series
expansion, we see that for each j ≥ 1, we have

1

j!

(κa − ε)2j‖u‖2j2j
‖u‖2j

Ḣ1
a

≤ C(ε)
‖u‖22
‖u‖2j

Ḣ1
a

Therefore,

(6.1.18) ‖u‖2j ≤
(C(ε) · j!)1/2j

(κa − ε)1/2j
‖u‖1−1/j

Ḣ1
a

‖u‖1/j2

Let q > 2 and such that 2j ≤ q < 2(j + 1). Interpolating the above (6.1.18) with
p = 2j and p = 2(j + 1) we have that

(6.1.19) ‖u‖q ≤
(
C(ε)Γ

(q
2

+ 2
))1/2j

(κa − ε)−1/2‖u‖1−2/q

Ḣ1
a

‖u‖2/q2

where Γ is the Gamma function, and we note that (j+1)! ≤ Γ(q/2+2). Now, using
Stirling’s formula, the fact that 2j ≥ q − 2, we obtain (6.1.8) for any δ > 0 and for
some r = r(δ) > 0 sufficiently large, we have (6.1.8) with C = (2e(κa − ε))−1/2 + δ
for all q ≥ r. Thus, we also have M0 ≤ (2eκa)−1/2. �

6.2. Local and global well-posedness

6.2.1. Local existence. We begin our study of the (6.0.1) and (6.0.2) with
the local existence theory. The proofs here are similar to those in [11] for the NLS
case and [27] for the NLKG case, so we shall place emphasis on adjustments we
make compared to the potential-free case studied in these papers.

Proposition 6.2.1. Let σ ∈ {−1, 1}, u0 ∈ H1
a(R2) and ‖u0‖H1

a
<

κ∗a
κ0

.

(a) There exists a time T > 0 and a unique solution to (6.0.1) in the space

CT (H1
a(R2)) ∩ L2(−η)

t∈[0,T ]W
1,∞(η)
a . Furthermore, the solution satisfies the

conservation laws M(u(t, ·)) = M(u0) and ES(u(t, ·)) = ES(u0).
(b) There exists a time T > 0 and a unique solution to (6.0.2) in the space

CT (H1
a(R2) ∩ C1

T (L2(R2)) ∩ L2(η)
t∈[0,T ]W

1/2,∞(η/2)
a (R2). Furthermore, the

solution satisfies the conservation law EKG(u(t, ·)) = EKG(u0).

Proof. We shall study the NLS case, as the idea for the NLKG case follows
from [27] and the extra steps we discuss below for the inverse-square potential. The
spaces chosen match the scattering proof later. We shall study the local existence
theory in the following space:

(6.2.1) Stra([0, T ]) := L∞t∈[0,T ]H
1
a ∩ L

2(−η)
t∈[0,T ]W

1,∞(η)
a (I ×R2),
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Note that for a > 1, we have Stra([0, T ]) ↪→ Str0([0, T ]), since H1
a(R2) ↪→ H1(R2)

and since A
1
2
µA
− 1

2
ν is continuous on L∞(η)(R2). Here, q(ε) is defined for small ε > 0

via
1

q(ε)
=

1

q
+ ε.

First, we define the map with Sa(t) := eitLa by

(6.2.2) Φ(v1) =

∫ t

0

Sa(t− s)f((v0 + v1)(s)) ds.

where v0 solves the following free Schrödinger equation

(6.2.3)


i∂tv0 −∆v0 + a

|x|2 v0 = 0

v0(0, x) = u0(x)

.

The idea is to show that Φ is a contraction on XT := Stra([0, T ]) with metric
d(u, v) := ‖u− v‖Stra([0,T ]). Then, by construction u = w + v solves (6.0.1). First,
we check that Φ maps XT to itself. By Strichartz estimates and continuity of the
conjugation operators K+ := HνHλ and K− := HλHν , we have

‖Φ(v1)‖Stra([0,T ]) =

∥∥∥∥∫ t

0

Sa(t− s)f(v0 + v1) ds

∥∥∥∥
L∞
t∈[0,T ]

H1
a∩L

2(η)
Lt∈[0,T ]

W
1,∞(−η)
x

=

∥∥∥∥∫ t

0

Sa(t− s)〈Da〉f(v0 + v1) ds

∥∥∥∥
L∞
t∈[0,T ]

L2
x∩L

2(η)

t∈[0,T ]
L
∞(−η)
x

=

∥∥∥∥K+

∫ t

0

S(t− s)〈∇〉K−f(v0 + v1) ds

∥∥∥∥
L∞
t∈[0,T ]

L2
x∩L

2(η)

t∈[0,T ]
L
∞(−η)
x

.

∥∥∥∥∫ t

0

S(t− s)〈∇〉K−f(v0 + v1) ds

∥∥∥∥
L∞
t∈[0,T ]

L2
x∩L

2(η)

t∈[0,T ]
L
∞(−η)
x

.
∥∥〈∇〉K−f(v0 + v1)

∥∥
L

2(−η)
t∈[0,T ]

L
1(η)
x
. ‖〈∇〉f(v0 + v1)‖

L
2(−η)
t∈[0,T ]

L
1(η)
x

.

Now, we use the assumption that ‖u0‖Ḣ1
a
<

κ∗a
κ0

. Indeed, since v solves (6.2.3), we

also have ‖v‖Ḣ1
a
<

κ∗a
κ0

. Hence, ‖v0 + v1‖Ḣ1
a
<

κ∗a
κ0

for a sufficiently small choice δ.

Thus, we may apply the Moser-Trudinger inequality, continuity of the conjugation
operators and Hölder’s inequality to obtain

‖〈∇〉f(v0 + v1)‖
L

2(−η)
t L

1(η)
x

.
∥∥∥(eκ0|v0+v1|2 − 1

)
κ0|v0 + v1|2〈∇〉(v0 + v1)

∥∥∥
L

2(η)
t L

1(η)
x

.
∥∥∥eκ0|v0+v1|2 − 1

∥∥∥
L∞t L

1(49η)
x

∥∥|v0 + v1|2〈∇〉(v0 + v1)
∥∥
L

2(η)
t L

∞(48η)
x

. ‖〈∇〉(v0 + v1)‖
L

2(−η)
t L

∞(η)
x
· ‖v0 + v1‖2L∞(η/2)

t L
∞(47η/2)
x

.
∑

i,j∈{0,1}

‖〈∇〉vi‖L2(−η)
t L

∞(η)
x
· ‖vj‖2L∞(η/2)

t L
∞(47η/2)
x

.
∑

i,j∈{0,1}

‖〈Da〉vi‖L2(−η)
t L

∞(η)
x
· ‖vj‖2L∞(η/2)

t L
∞(47η/2)
x

. T η/2(δ + ‖u0‖H1)2.
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Thus, Φ : XT → XT for a sufficiently small choice of T > 0. Now, using a similar
argument above, we also obtain that Φ is indeed a contraction if we choose M and
T sufficiently small. By the contraction mapping theorem, we obtain the required
result. �

6.2.2. Global well-posedness for defocusing case. As a corollary of the
above study, we have the following results in the subcritical regime:

Proposition 6.2.2. The above local existence results can also be extended to
global existence results. That is,

(a) Assume that ES(u0) <
κ∗a
2κ0

. Then, the defocusing problem to (6.0.1) has

a unique global solution in space C(R, H1
a(R2)) ∩ L2(−η)

t∈R W
1,∞(η)
a .

(b) Assume that EKG(u0) <
κ∗a
2κ0

. Then, the defocusing problem to (6.0.2)

has a unique global solution in the space C(R, H1
a(R2))∩C1(R, L2(R2))∩

L
2(η)
t∈RW

1/2,∞(η/2)
a (R2).

Proof. We shall consider the NLS case, as the proof for the NLKG case is
similar. Indeed, let u(t) be the solution to (6.0.1) with maximal time of existence
T . Assume for contradiction that T < ∞. By the conservation law in the local
theory, combined with our assumptions, we have that

sup
t∈[0,T ]

‖u‖H1
a
≤ ES(u0) < 1.

Now, let s ∈ [0, T ] and consider the Cauchy problem{
i∂tv −∆v + a

|x|2 v = f(v)

v(s, x) = u(s, x) ∈ H1
a(R2)

Then, applying the argument from the local existence result, we obtain a time
τ > 0 and a unique solution v to the above Cauchy problem on the time interval
[s, s+τ ]. Now, choosing s sufficiently close to T (in particular, choosing s such that
T − s < τ), we are able to extend the solution u(t) beyond T , whence we obtain a
contradiction. �

6.3. Variational analysis

6.3.1. Variational results for the focusing case. In this section we discuss
the variational setting for the study of the focusing cases of (6.0.1) and (6.0.2).
Indeed, we review the following notation from [30]. Let (α, β) ∈ R2 such that

(6.3.1) α ≥ 0, 2α+ dβ ≥ 0, 2α+ (d− 2)β ≥ 0 and (α, β) 6= (0, 0).

For c ≥ 0 and φ ∈ H1
a(Rd), define the static energy

(6.3.2) J (c)(φ) :=
1

2

∫
Rd

|∇φ|2 +
a

|x|2
|φ|2 dx+

c

2

∫
Rd

|φ|2 dx− 1

2

∫
Rd

F (φ) dx.

Let

(6.3.3) φλα,β(x) := eαλφ
(
e−βλx

)
,
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and

K
(c)
α,β(φ) := Lα,βJ(φ

(c)
α,β)(6.3.4)

:=
d

dλ

∣∣∣∣
λ=0

j
(c)
α,β(λ)

=
2α+ (d− 2)β

2

∫
Rd

|∇φ|2 +
a

|x|2
|φ|2 dx(6.3.5)

+
2α+ dβ

2
c

∫
Rd

|φ|2 dx

−1

2

∫
Rd

2α< (∂φF (φ)φ) + dβF (φ) dx.

If c = 1, we omit the superscript c. Furthermore, define the quadratic part of
Kα,β(φ) (i.e. the linear energy of the sign functional with c = 1) by

(6.3.6) KQ
α,β(φ) :=

2α+ (d− 2)β

2

∫
Rd

|∇φ|2 +
a

|x|2
|φ|2 dx+

2α+ dβ

2
c

∫
Rd

|φ|2 dx.

We shall consider the minimisation problem

(6.3.7) mα,β = inf
{
J(φ) : φ ∈ H1

a,rad(Rd), φ 6= 0,Kα,β(φ) = 0
}
.

We need to include the radial assumption in the above minimisation problem
because symmetrisation methods do not decrease the H1

a norm for a > 0. From
the variational problem, we define the following subsets of the energy space:

K+
α,β = {(u0, u1) ∈ H1

a(R2)× L2(R2) : E(u0, u1) < mα,β ,Kα,β(u0) ≥ 0},
K−α,β = {(u0, u1) ∈ H1

a(R2)× L2(R2) : E(u0, u1) < mα,β ,Kα,β(u0) < 0}.

Furthermore, we restate the Moser-Trudinger inequality. First, we define

(6.3.8) CAMT (G) := sup

{
2G(φ)

‖φ‖22
: φ ∈ H1

a(R2), φ 6= 0, ‖u‖Ḣ1
a
≤ A

}
.

Next, define

(6.3.9) M(G) := sup{A > 0 : CAMT (G) <∞}.

Finally, denote

(6.3.10) C∗MT (G) := C
M(G)
MT (G).

Thus, the Moser-Trudinger inequality gives

(6.3.11) M(Lα,βF) = M(F) =

√
κ∗a
κ0
.

Here, we have used the fact that for a functional H(φ) of the form H(φ) =∫
Rd h(φ) dx, we have

(6.3.12) Lα,βH(φ) =

∫
Rd

αφh′(φ) + βdh(φ) dx.

We collect some variational results analogous to those by Ibrahim-Masmoudi-Nakanishi
[30].
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Lemma 6.3.1 (Minimisation problem). Recall that

(6.3.13) F (u) =
λ

κ0

(
eκ0|u|2 − 1− κ0|u|2 −

κ2
0

2
|u|4
)

and that the pair (α, β) satisfies (6.3.1). Furthermore, suppose that φ ∈ H1
a(R2).

Then, the minimisation problem (6.3.7) is equivalent to

(6.3.14) mα,β = inf
{
Hα,β(φ) : φ 6= 0, φ ∈ H1

a , φ is radial, and Kα,β(φ) ≤ 0
}
.

where

(6.3.15) Hα,β =

(
1− Lα,β

µ

)
J.

Remark 6.3.2. If (α, β) = (1, 0), then we see that

H1,0(φ) =
1

2
‖φ‖2

Ḣ1
a
.

Proof. The proof is similar to [30, Lemma 2.3] with minor alterations. �

Lemma 6.3.3 (Compactness via dominated convergence). Let g, h : R→ R be
continuous functions satisfying

(6.3.16) lim
u→±∞

|g(u)|
h(u)

= 0, lim
u→0

|g(u)|
|u|2

= 0.

Let (φn)n be a sequence of radial functions such that φn ⇀ φ weakly in H1
a(R2)

and (h(φn))n is bounded in L1(R2). Then, g(φn)→ g(φ) strongly in L1(R2).

Proof. We shall follow the proof of [30, Lemma 2.7] (see also [42]). We want
to show that ∫

R2

|g(φn)− g(φ)| dx→ 0

as n → ∞. First, by assumption (6.3.16), we have that for any ε > 0, there exists
an L = L(ε) > 0 such that if |u| > L then |g(u)| < εh(u). Therefore,∫

|φn|>L
|g(φn)| dx . ε

∫
h(φn) dx . ε.

Furthermore, from the radial Sobolev inequality, we also have that |φn| → 0 uni-
formly as |x| → ∞. Let BR denote the ball centred at the origin of radius R. Then,
together with (6.3.16), there exists an R = R(ε) > 0 such that∫

R2\BR
g(φn) dx .

∫
R2\BR

|u|2 dx . ε.

From the assumptions, the weak convergence also implies that φn(x) → φ(x) for
x 6= 0. Therefore, by Fatou’s lemma, we have∫

|φ|>L
|g(φ)| dx . ε.

Now, we split ∫
R2

|g(φn)− g(φ)| dx ≤
∫
R2\BR

|g(φn)− g(φ)| dx
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into ∫
R2\BR

|g(φn)− g(φ)| dx(6.3.17)

+

∫
R2∩{|φn|>L}

|g(φn)− g(φ)| dx(6.3.18)

+

∫
R2∩{|φn|≤L}

|g(φn)− g(φ)| dx.(6.3.19)

We already have that (6.3.17) + (6.3.18) . ε. Finally, we define

gL(t) :=

{
g(t), |t| ≤ L
g(L), |t| ≥ L .

Then, by the Lebesgue dominated convergence theorem, we conclude that

lim
n→∞

∫
R2

|g(φn)− g(φ)| . ε+ lim
n→∞

∫
BR

|gL(φn)− gL(φ)| dx . ε.

Finally, noting that ε is arbitrary, we obtain the required result. �

Lemma 6.3.4 (Ground state). Let f and (α, β) be as above in Lemma 6.3.1.
Furthermore, define c := min {1, C∗MT (F)}. Then,

(a) The minimal mass mα,β is independent of (α, β).

(b) If C∗MT (F) < 1, we have 0 < mα,β < 1
2 ·

κ∗a
κ0

. If C∗MT (F) > 1, then

mα,β = 1
2 ·

κ∗a
κ0

(c) The minimal mass is attained by some Q ∈ H1
a which solves

(6.3.20) LaQ+ cQ = f(Q).

That is, mα,β = J (c)(Q).

Proof. We shall follow the proof of [30, Lemma 2.6] which uses the compact-
ness via dominated convergence and Moser-Trudinger inequality.

We proceed in three steps – first, we show (b) and (c) for the exceptional case
α = 0 and the two cases for c = min {1, C∗MT (F)}. Then, showing independence of
parameters (a) completes the proof.

Thus, we begin by considering the exceptional case with α = 0 and C∗MT (F) >
1. By assumption, there exists a non-zero function φ ∈ H1

a(R2) such that ‖φ‖Ḣ1
a
≤

M(F) and F(φ) > ‖φ‖22/2. Thus, we have K0,1(φ) = ‖φ‖22 − 2F(φ) < 0. Fix a
small ε > 0. Then, K0,1((1− ε)φ) < 0 and by Lemma 6.3.1, we have that

(6.3.21) m0,1 ≤ H0,1((1− ε)φ) =
1

2
‖(1− ε)φ‖2

Ḣ1
a
<

1

2
M(F)2 =

1

2
· κ
∗
a

κ0
.

This proves (b) in this case.
Now, we study the variational problem (c). We take a minimising sequence

(φ)n ⊆ H1
a,rad such that H0,1(φn) = ‖φ‖2

Ḣ1
a
/2↘ m0,1 and K0,1(φn) ≤ 0.

First, we note that

(6.3.22) H0,1(φ(e−λx)) = H0,1(φ) and K0,1(φ(e−λx)) = e2λK0,1(φ).

Thus, by rescaling, we may take ‖φn‖2 = 1. Furthermore, notice that for ν ∈ (0, 1),
KQ(νφ) = ν2KQ(φ) while |KN (νφ)| = o(ν4). Therefore K(νφ) = KQ(νφ) −
KN (νφ) > 0 for small ν. Thus, if K(φ) < 0, then there exists an ν ∈ (0, 1) such
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that K(νφ) = 0. Furthermore, we have H(νφ) ≤ H(φ). Thus, we may consider a
minimising sequence

(φ)n ⊆ H1
a,rad such that H0,1(φn) = ‖φ‖2

Ḣ1
a
/2↘ m0,1 and 1−2F(φn) = K0,1(φn) = 0.

All together, we have φn → φ in H1
a . We may now apply the compactness

result (Lemma 6.3.3) with φn, g := F and h(u) := exp
(
κ|u|2

)
− 1 where κ ∈

(κ0, 2π/m0,1) to obtain F(φn) → F(φ). Thus, φ attains m0,1. Furthermore, for
some Lagrange multiplier η ∈ R, we have J ′(φ) = ηK ′(φ) where J ′ and K ′ are the
Fréchet derivatives of J and K respectively. Thus, we have

(6.3.23) 0 = K0,1(φ) = L0,1J(φ) = 〈J ′(φ)|L0,1φ〉 = η〈K ′(φ)|L0,1φ〉 = ηL2J(φ).

Furthermore, we show that L2J(φ) < 0, from which we can obtain that η = 0 and
thus the minimiser φ satisfies Laφ+ φ = f(φ). Indeed, the same computations as
in [30, Lemma 2.2] show that for (α, β) satisfying (6.3.1), µ := max{2α+ dβ, 2α+
(d− 2)β} and µ := min{2α+ dβ, 2α+ (d− 2)β}, we have

−(Lα,β − µ)(Lα,β − µ)J(φ) ≥ 2αεµ

d+ 1
G(φ).

Rearranging this inequality and using (α, β) = (1, 0), we obtain the required result.
Now, we move on to the next case. Suppose that (α, β) = (1, 0) and C∗MT (F) <

1. First, we verify (b). We notice that if φ ∈ H1
a and ‖φ‖2

Ḣ1
a

<M(F) then K0,1(φ) =

‖φ‖22 − 2F(φ) > 0. Thus, m0,1 = inf{‖u‖2Ḣ1
a
/2 : K0,1(φ) < 0} ≥ M(F)2/2 and

consequently m0,1 = M(F)2/2 as required. However, this means there is no room
to use the Moser-Trudinger inequality to close the compactness argument as in
the previous case. The idea is to instead consider the variational problem for

cn := C
M(F)−1/n
MT (F). Indeed, take a maximising sequence for cn:

‖φkn‖Ḣ1
a
≤M(F)− 1

n , F(φkn)↗ cn
2 and ‖φkn‖2 = 1.

Again, we may take ‖φkn‖2 = 1 as in (6.3.22). Thus, we may extract a subsequence
such that φkn ⇀ φn weakly in H1

a . Now, we apply Lemma 6.3.3 with φn, g := F
and h(u) := exp

(
κ|u|2

)
− 1 where κ ∈ (κ0, κ

∗
a/(M(F) − 1/n)2). Hence F(φkn) →

F(φn) = cn/2. Thus, φn is a maximiser for cn with ‖φn‖2 = 1. We now obtain the
Euler-Lagrange

(6.3.24) ηLaφn = −cnφn + f(φn).

Furthermore, multiplying the above equation with φn and using the fact that cn =
2F(φn) and ‖φn‖L2 = 1, we have

η‖φn‖Ḣ1
a

=

∫
DF (φn) dx− cn‖φn‖2L2

=

∫
(D − 2)F (φn) dx > 0.

Thus, η > 0 and we may define Qn(x) := φn(η1/2x) such that ‖Qn‖Ḣ1
a
≤M(F)−

1/n and

(6.3.25) LaQn + cnQn = f(Qn).
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Now, we want to consider the limit n→∞. Multiplying the equation (6.3.25) with
Qn and x · ∇Qn we obtain

cn‖Qn‖22 = 2F(Qn), ‖Qn‖2Ḣ1
a

= 2

∫
R2

(D − 2)F (Qn) dx ≥ 4F(Qn).

Furthermore, using the facts that ‖Qn‖Ḣ1
a

is bounded, and cn is a positive non-

decreasing sequence, we conclude that ‖Qn‖L2 and DF(Qn) are bounded. Thus,
we extract a subsequence such that Qn ⇀ Qa weakly in H1

a . Now, we apply
Lemma 6.3.3 with φn := Qn, g := f and h := DF to get f(Qn) → f(Q) in
L1. Now, taking the Euler-Lagrange as before we get LaQa + cQ = f(Q) where

c = C∗MT (F). Furthermore, we have that K
(c)
0,1(Qa) = 〈J (c)′(Qa)|L0,1(Qa)〉 = 0.

Thus, c‖Qa‖2L2 = 2F(Qa). Furthermore, Qa is a maximiser of C
M(F)
MT (F) with

non-zero Lagrange multiplier and ‖Qa‖H1
a

= M(F). Finally, we also have that

J (c)(Qa) = M(F)2/2.
It remains to verify that mα,β is independent of the parameters (α, β). If

m0,1 < M(F)2/2, then the ground state Qa satisfies Kα,β(Qa) = 0 for all (α, β)
since

(6.3.26) Kα,β(Qa) = 〈J ′(Qa)|Lα,βQa〉 = 0.

Thus, mα,β ≤ J(Qa) = m0,1. Next, if m0,1 = M(F)2/2 = M(Lα,βF)2/2 then
for all A > M(F)2/2 there exists a sequence φn ∈ H1

a,rad such that ‖φn‖Ḣ1
a
≤

A, ‖φn‖2 → 0 and Lα,βF(φn) → ∞. Replacing φn(x) by φn(x/νn) where νn → 0
as n→∞, we may study the sequence ‖φn‖Ḣ1

a
≤ A, ‖φn‖2 → 0 and K0,1(φn) = 0.

Thus, mα,β ≤ lim infn→∞ J(φn) ≤ A2/2. Therefore, mα,β ≤ m0,1 in both cases.
Finally, suppose for contradiction that mα,β < m0,1 ≤M(F)2/2. Here, we take

a minimising sequence (φn) in H1
a,rad such that Kα,β(φn) = 0 and Hα,β(φn) ↘

mα,β . Thus, we extract a subsequence φn ⇀ φ weakly in H1
a . Next, we recall

(6.3.12) and apply Lemma 6.3.3 with φn, g(u) := αuf(u) + 2βF (u) and h(u) :=
exp(κ|u|2)− 1 with κ ∈ (κ0, 2π/mα,β) to obtain that LF(φn)→ LF(φ) as n→∞.
Thus, φ is a minimiser of mα,β . Thus, we obtain a ground state Q such that J(Q) =
mα,β < m0,1, which is a contradiction. Hence, we finally obtain m0,1 = mα,β . �

Lemma 6.3.5 (Splitting independent of (α, β)). Let F and (α, β) be as above
in Lemma 6.3.1. Then, K±α,β (as defined in (6.3.8) and (6.3.8)) are independent of

(α, β).

Proof. The proof is the same as for [30, Lemma 2.9]. �

Lemma 6.3.6. Let F and (α, β) be as above in Lemma 6.3.1. Furtheremore,
suppose that (u0, u1) ∈ H1

a(R2) × L2(R2) satisfies (u0, u1) ∈ K+. Then, we have
the following estimates:

(a) (Free energy equivalence)

(6.3.27) J(u0) ≤ 1

2
‖u0‖2H1

a
≤
(

1 +
d

2

)
J(u0).

(b) (Subcritical bound in K+)

(6.3.28) ‖u0‖2Ḣ1
a

+ ‖u1‖22 < 2mα,β ≤M(F)2 =
κ∗a
κ0
.
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(c) (Variational estimate) If we also assume that (α, β) 6= (0, 1) and J(φ) <
mα,β, then

(6.3.29) Kα,β(φ) ≥ min
{
C(mα,β − J(φ)), CKQ

α,β(φ)
}
.

Proof. The proof is the same as for [30, Lemma 2.10, Lemma 2.11, Lemma
2.12]. �

6.3.2. Global well-posedness for focusing case. We shall first apply the
above results to obtain global well-posedness results for (6.0.1) and (6.0.2) in the
focusing case. This complements the global well-posedness results obtained the
defocusing case previously.

Proposition 6.3.7. Let (α, β) satisfy (6.3.1). Then,

(a) Let u(t) be the solution of (6.0.1) with λ = 1, ES(u0) +M(u0)/2 < mα,β

and Kα,β(u0) > 0. Then u(t) ∈ C(R, H1
a(R2)).

(b) Let u(t) be the solution of (6.0.2) with λ = 1, EKG(u0) < mα,β and
Kα,β(u0) > 0. Then u(t) ∈ C(R, H1

a(R2)) ∩ C1(R, L2(R2)).

Proof. We shall consider the NLS case. The argument for the NLKG case is
similar. From the local-in-time theory, we take u(t) to be the solution of (6.0.1) with
maximal existence interval I. From the conservation law, we have that Ja(u(t)) =
ES(u(t)) + M(u(t))/2 < mα,β . We first show that u(t) ∈ K+ = {(u0, u1) ∈
H1
a(R2)×L2(R2) : E(u0, u1) < mα,β ,Kα,β(u0) ≥ 0} for all t ∈ I. Indeed, supposed

for contradiction that there exists a t∗ ∈ I such that K(u(t∗)) = 0. Then, by
definition of K, we have that u(t∗) = 0, whence u(t∗) ∈ K+. Furthermore, since
K+ is an open set (see [30]) and also u(t) ∈ C(I,H1

a(R2)), we have u(t) ∈ K+ for
all t ∈ I.

Finally, since u(t) ∈ K+ for all t ∈ I, applying the identities (6.3.27) and
(6.3.28) in Lemma 6.3.6 to u(t), we obtain that I = R. �

6.3.3. Morawetz estimates: part 1. Consider the Morawetz quantity

(6.3.30) M(t) :=


1
2=
∫
R2 uh · ∇u dx, NLS case

=
∫
R2 ut(h · ∇u+ qu) dx, NLKG case

.

First, we obtain

Lemma 6.3.8 (Morawetz estimate in the NLS case). Let ∂uF (u) = f(u) and
G(u) := < (ūf(u)− 2F (u)).

(a) If u ∈ C(R, H1
a) is a global solution to the NLS (6.0.1). Then,

∂tM(t) =

d∑
j,k=1

<
∫
∂ku∂khj∂ju dx−

∫
qG(u) dx

+
1

2

∫ (
−∆q +

2a

|x|2
q

)
|u|2 dx+

1

2
<
∫
h · ∇

(
a

|x|2

)
|u|2 dx

+ <
∫ (

q − 1

2
divh

)(
iutu+ |∇u|2 +

a

|x|2
|u|2 − F (u)

)
.
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(b) If u ∈ C(R, H1
a) is a global solution to the NLKG (6.0.2). Then,

∂tM(t) =

d∑
j,k=1

<
∫
∂ku∂khj∂ju dx−

∫
qG(u) dx

−1

2

∫
∆q|u|2 +

1

2
<
∫
h · ∇

(
a

|x|2

)
|u|2 dx

+ <
∫ (

q − 1

2
divh

)(
−|ut|2 + |u|2 + |∇u|2 +

a

|x|2
|u|2 − F (u)

)
.

Proof. We shall prove the NLS case. The NLKG case is similar. First, we
have that

(6.3.31) ∂tM(t) =
1

2
=
∫
uth · ∇u+ uh · ∇ut dx.

We claim that

(6.3.32)
1

2
=
∫
uh · ∇ut dx =

1

2
=
∫
uth · ∇u dx− 1

2
<
∫

divh · iutu dx.

Indeed,

−1

2
<
∫

divh · iutu dx =
1

2
=
∫

divh · utu dx

= −1

2
=
∫
h · ∇(utu) dx

= −1

2
=
∫
uth · ∇u+ uh · ∇ut dx

=
1

2
=
∫
−uth · ∇u+ uh · ∇ut dx.

Thus, combining (6.3.31) and (6.3.32) we have

(6.3.33) ∂tM(t) = =
∫
uth · ∇u dx− 1

2
<
∫

divh · iutu dx.

Consider the first integral. Using the fact that ut = −i
(

∆u− a
|x|2 + f(u)

)
, we

have that

=
∫
uth · ∇u dx = =

∫
−i
(

∆u− a

|x|2
+ f(u)

)
h · ∇u dx

= − <
∫

∆uh · ∇u dx(6.3.34)

− <
∫
f(u)h · ∇u dx(6.3.35)

+ <
∫

a

|x|2
uh · ∇u dx(6.3.36)
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First, for (6.3.34) we have

−
∫

∆uh · ∇u dx =

∫
∇u · ∇(h · ∇u) dx

=

d∑
j,k=1

∫
∂ku∂k(hj∂ju) dx

=

d∑
j,k=1

∫
∂ku∂khj∂ju dx+

d∑
j,k=1

∫
∂kuhj∂kju dx

Next we have that

d∑
j,k=1

∫
∂kuhj∂kju dx = −

d∑
j,k=1

∫
∂j(∂kuhj)∂ku dx.

= −
d∑

j,k=1

∫
∂jkuhj∂ku dx−

d∑
j,k=1

∫
∂ku∂jhj∂ku dx.

Therefore,

d∑
j,k=1

<
∫
∂kuhj∂kju dx = −1

2
<
∫

divh|∇u|2 dx.

Next, for (6.3.35),we have

<
∫
f(u)h · ∇u dx = <

∫
h · ∇F (u) dx = −<

∫
divhF (u) dx.

Finally, for the last term (6.3.36) use the fact that

<h · ∇
(

a

|x|2
uu

)
= <h · ∇

(
a

|x|2

)
|u|2 + 2< a

|x|2
uh · ∇u

to obtain

<
∫

a

|x|2
uh · ∇u dx = −1

2
<
∫
h · a

|x|2
|u|2 dx− 1

2
<
∫

divh · ∇
(

a

|x|2

)
|u|2 dx.

�

6.3.4. Virial-Morawetz estimate. In this subsection, we use the above cal-
culations to obtain the following virial-Morawetz estimate

Proposition 6.3.9. Assume d = 2 and u ∈ C(R, H1
a) is a global solution to

(6.0.1) or (6.0.2). Then, for any R > 0 and T2 > T1 > 0, we have

(6.3.37)

∫ T2

T1

∫
|G(u)| dxdt . R+ (T2 − T1)R−2.

Furthermore for any δ > 0 and T > 0 we have

(6.3.38)

∫ ∞
T

t−
1
3−δ

∫
|G(u)| dx dt . T−δ.
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Proof. Again, we shall prove the result for the NLS case as the NLKG case
is similar. Let w : Rd → R be a weight, and define h(x) = ∇w(x) and q(x) =
1
2divh(x) = 1

2∆w(x). With these choices, we obtain

∂tM(t) =

d∑
j,k=1

<
∫
∂ku∂

2
jkw∂ju dx− 1

2

∫
∆wG(u) dx

+
1

2

∫
−1

2
|u|2∆2w +

a

|x|2
∆w|u|2 dx+ a

∫
∇w · x

|x|4
|u|2 dx

Now, fix some R > 0 and define

(6.3.39) w(x) =

{
|x|2, |x| ≤ R/2
R|x|, |x| ≥ R

and for R
2 < |x| < R we impose that

(6.3.40) ∂rwR ≥ 0, ∂2
rwR ≥ 0, |∂αwR(x)| .α R|x|−|α|+1 for |α| ≥ 1.

Since ∆w ≥ 0 for all x ∈ R2 for this choice of w(x), we have
∫

a
|x|2 ∆w|u|2 dx ≥ 0.

Thus, we may remove this term to obtain for some constants C1, C2 > 0 that ∂tM(t)
is bounded below by

2

∫
|x|<R/2

|∇u|2 +
a

|x|2
|u|2 − d

2
G(u) dx(6.3.41)

+

∫
R/2<|x|<R

∂ku∂
2
jkw∂ju− C1|u|2∆2w(6.3.42)

−C2G(u)∆w + a∇w · x

|x|4
|u|2 dx(6.3.43)

+

∫
|x|>R

a
R

|x|3
|u|2 +

R

|x|
(
|∇u|2 − |∂ru|2

)
− (d− 1)

R

|x|
G(u) dx.(6.3.44)

For (6.3.44), since u is radial, we have |∇u|2−|∂ru|2 = 0. Thus, we have with some
C3 > 0 that

(6.3.44) ≥ a‖u‖22
R2

− C3

∫
|x|>R

G(u) dx.

For (6.3.42), the conditions for w(x) in (6.3.40) ensure the summation is non-
negative and also that ∇w · x

|x|4 |u|
2 = 1

r2 ∂rw|u|
2 ≥ 0. Thus,

(6.3.42) + (6.3.43) ≥ −C1
‖u‖22
R2
− C2

∫
R
2 <|x|<R

G(u) dx.

For (6.3.41) we define a smooth cutoff function χ with support {x ∈ R2 : |x| ≤ 1/2}
and set χR(x) := χ(x/R). With the observation that

(6.3.45)

∫
χR

2|∇u|2 dx =

∫
|∇(χR)u|2 + χR∆(χR)|u|2 dx,

we find that

(6.3.41) ≥ 2

(
‖χRu‖Ḣ1

a
− d

2

∫
G(χRu) dx

)
− d

2

∫
G(u)−G(χRu) dx

+

∫
O
(

1

R2
|u|2
)

dx+

∫
(1− χ2

R)G(u) dx.

To obtain the estimate (6.3.37), we need two more ingredients.
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First, we use the radial Sobolev embedding to obtain the following estimate
(see [23, Proposition 3.7])∣∣∣∣∫ G(u)−G(χRu) dx

∣∣∣∣ . 1

R2
,(6.3.46) ∣∣∣∣∫ (1− χ2

R)G(u) dx

∣∣∣∣ . 1

R2
.(6.3.47)

Furthermore, to deal with (6.3.41), in the defocusing case (λ = −1), we have
the estimate

‖χRu‖2Ḣ1
a
− d

2

∫
G(χRu) dx &

∫
|G(χRu)| dx.

For the focusing case (λ = 1), we follow the argument in [23, Proposition 2.6] to
obtain that a more general result that

(6.3.48) Kα,β(χRu(t)) &
∫
G(χR(u(t)) dx.

In this case, we first claim that there exists an R0 > 0 depending on mass and energy
of the initial data such that for any R > R0, we have supt J (χRu(t)) < mα,β . By
assumption, we have supt J (u(t)) < mα,β . Using the fact that χR ≤ 1, together
with identity (6.3.45), we find that

J (χRu(t)) =
1

2
‖χRu(t)‖2H1

a
− 1

2

∫
F (χRu) dx

≤ J(u(t)) + CR−2.

We now choose R0 such that

(6.3.49) CR−2
0 <

1

2
(mα,β − J(u0)) .

Next, consider the continuous orbit {χRu(t) : R > R0} in {J(φ) < mα,β}. We note
that u(t) ∈ K+ is a limit point for this set. Furthermore, since K+ is open and
connected, we conclude that for all R > R0 and t ∈ R, we have K(χRu(t)) > 0.
Furthermore, from the choice of R0 in (6.3.49), we have

mα,β − sup
t∈R

J(χRu(t)) ≥ 1

2
(mα,β − J(u0)) = C.

Next, using the variational estimate (6.3.29), we have

K(χRu(t)) ≥ C min

{
mα,β − sup

t∈R
J(χRu(t)),KQ(χRu(t))

}
≥ C min

{
C,KQ(χRu(t))

}
.

Now, to obtain (6.3.48), we consider the two cases. First, suppose thatKQ(χRu(t)) ≥
C. Then, by combining the global-in-time theory and the Moser-Trudinger inequal-
ity, we obtain that ∫

G(χRu(t)) dx ≤
∫
G(u(t)) dx . 1,

and therefore

K(χRu(t)) ≥ C ≥ C
∫
G(χR(u(t)) dx.
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Thus, we obtain (6.3.48) for this case. Otherwise, suppose that KQ(χRu(t)) < C.
By definition, K(χRu(t)) > 0 gives that

KQ(χRu(t)) >

∫
G(χRu(t)) dx.

Therefore,

K(χru(t)) ≥ CKQ(χRu(t)) ≥ C
∫
G(χRu(t)) dx.

Thus, we have obtained (6.3.48) in both cases.
Finally, putting everything together, integrating over [T1, T2] and discarding

positive terms, we obtain

c

∫ T2

T1

∫
G(u) dxdt . sup

t∈[T1,T2]

|M(t)|+
∫ T2

T1

∫
|x|>R

G(u) dxdt+
T2 − T1

R2
‖u‖22.

Now, combining this with (6.3.46) and the fact that supt∈[T1,T2] |M(t)| ≤ R, we
obtain the required result for R > R0. In the case R ≤ R0, we can simply use that∫

|χRG(u(t))| dx . C
∫
eκ0|u|2 − 1 dx . C

(
‖u‖L∞t H1

a

)
.

Thus, we obtain for all 0 < T1 < T2 that∫ T2

T1

∫
|G(u)| dx . R+

T2 − T1

R2
.

This proves (6.3.37). Finally, to obtain (6.3.38), we follow the argument in [23,
Lemma 2.6] (i.e. let T1 = 2kT , T2 = 2k+1T and R = (2kT )1/3 and then sum up
these integrals). �

Corollary 6.3.10. Let d = 2 and let δ > 0 be sufficiently small. Define
α := 1/3 + δ and β := 1/2 + δ. We have

(a) for t > 0,

(6.3.50)

∫ ∞
T

t−β
∫
|f(u)| dxdt . T−δ,

and also
(b) For any ε > 0, T > 0, there exists a T0 = T0(ε, T ) > T such that

(6.3.51)

∫ T0

T0−T 1−α
0 /10

∫
|G(u)| dxdt . ε.

Proof. See [23, Lemma 2.9]. �

6.4. Proof of scattering

We shall now prove scattering. We split the proof into two cases: where the co-
efficient a is sufficiently large (here, we take a > 1) and where the coefficient is small
(0 < a ≤ 1). The issue is that required continuity results for the conjugation oper-
ator (Proposition 6.1.4) in dimension two only hold in the range p ∈ (1, 2/(s+ σ)).
Since we study scattering at regularity s = 1, we see that this range becomes
p ∈ (1, 2/(1 + σ)). Recall that σ = −ν < 0, thus using larger coefficients improves
the range. Indeed, for a > 1, this range covers exponents arbitrarily close to p =∞,
while for small a, there is only a small amount of room above p = 2. Guo-Shen
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[23] uses the Strichartz admissible space L2(−η)W 1,∞(η), which is only controlled

by L2(−η)W
1,∞(η)
a if a > 1. Recall the notation q(ε) is defined for small ε > 0 via

1

q(ε)
=

1

q
+ ε.

6.4.1. Proof of scattering – NLS case. We recall the strong Strichartz
space for the NLS (6.0.1)

(6.4.1) Stra(I) := L∞t H
1
a ∩ L

2(η)
t W 1,∞(−η)

a (I ×R2).

We also define the weak Strichartz space

(6.4.2) W (I) = L6
t,x(I ×R2).

Recall that for a > 1, we have

(6.4.3) Stra(I) ↪→ Str0(I).

In order to prove the scattering result, we shall show that for all ε > 0, there exists
a T > 0 such that

(6.4.4) ‖Sa(t− T )u(T )‖WT
< ε.

Recall the notation Sa(t) := eitLa . Firstly, we have that

Sa(t− T )u(T )

= Sa(t)u0 +

∫ T

0

Sa(t− s)f(u) ds

= Sa(t)u0 +

∫ T−τ

0

Sa(t− s)f(u) ds+

∫ T

T−τ
Sa(t− s)f(u) ds

= I + II + III,

For the term I, there exists a T > 0 such that ‖I‖WT
< ε. Next, for the term II,

we use the fact that∫ T2

T1

Sa(t− s)f(u) ds = Sa(t− T2)u(T2)− Sa(t− T1)u(T1)

as well as Strichartz estimates and the triangle inequality to obtain‖II‖ST . 1.
Thus to show (6.4.4) for II, it suffices to show that ‖II‖L∞t,x < ε and then interpo-
late. Indeed, using dispersive estimates, we obtain

‖II‖L∞T,x .

∥∥∥∥∫ 1

0

|t− s|−1‖f(u)‖L1
x

ds

∥∥∥∥
L∞T

+

∥∥∥∥∥
∫ T−τ

1

|t− s|−1‖f(u)‖L1
x

ds

∥∥∥∥∥
L∞T

.

For the first term, we use the L1 control ‖f(u)‖L1 . 1 to find that for sufficiently
large T > 0,∥∥∥∥∫ 1

0

|t− s|−1‖f(u)‖L1
x

ds

∥∥∥∥
L∞T

.

∥∥∥∥∫ 1

0

|t− s|−1 ds

∥∥∥∥
L∞T

.

∥∥∥∥loge

(
1− 1

t

)∥∥∥∥
L∞T

.
1

τ
.
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For the second term, we use Corollary 6.3.10 to obtain∥∥∥∥∥
∫ T−τ

1

|t− s|−1‖f(u)‖L1
x

ds

∥∥∥∥∥
L∞T

=

∥∥∥∥∥
∫ T−τ

1

|t− s|−1sβs−β‖f(u)‖L1
x

ds

∥∥∥∥∥
L∞T

. T βτ−1

∫ T−τ

1

sβ‖f(u)‖L1
x

ds

. T βτ−1.

Thus, we obtain ‖II‖L∞T,x < ε. Finally, we need to estimate the term III. Recall

the integral equation

(6.4.5) u(t) = Sa(t− T + τ)u(T − τ)− i
∫ t

T−τ
Sa(t− s)f(u) ds.

In order to obtain ‖III‖WT
< ε, we shall first show that ‖u‖Sa([T−τ,T ]) . 1. For this

task, it remains to estimate the integral in (6.4.5). By conjugation and Strichartz
estimates, we obtain∥∥∥∥∫ t

T−τ
Sa(t− s)f(u) ds

∥∥∥∥
L∞t H

1
a∩L

2(−η)
t W

1,∞(η)
x

=

∥∥∥∥∫ t

T−τ
Sa(t− s)〈Da〉f(u) ds

∥∥∥∥
L∞t L

2
x∩L

2(−η)
t L

∞(η)
x

=

∥∥∥∥K+

∫ t

T−τ
S(t− s)〈∇〉K−f(u) ds

∥∥∥∥
L∞t L

2
x∩L

2(−η)
t L

∞(η)
x

.

∥∥∥∥∫ t

T−τ
S(t− s)〈∇〉K−f(u) ds

∥∥∥∥
L∞t L

2
x∩L

2(−η)
t L

∞(η)
x

.
∥∥〈∇〉K−f(u)

∥∥
L

2(−η)
t L

1(η)
x
. ‖〈∇〉f(u)‖

L
2(−η)
t L

1(η)
x

,

Furthermore, we have for a > 1 that

‖〈∇〉f(u)‖
L

2(−η)
t L

1(η)
x

.
∥∥∥(eκ0|u|2 − 1

)
κ0|u|2〈∇〉u

∥∥∥
L

2(−η)
t L

1(η)
x

.
∥∥∥eκ0|u|2 − 1

∥∥∥
L∞t L

1(49η)
x

∥∥|u|2〈∇〉u∥∥
L

2(−η)
t L

∞(48η)
x

. ‖〈∇〉u‖
L

2(−η)
t L

∞(η)
x
‖u‖2

L
∞(η/2)
t L

∞(47η/2)
x

. ‖u‖θL6
t,x
‖u‖1−θS(I) . ‖u‖

θ
L6
t,x
‖u‖1−θSa(I),

These estimates combined with (6.4.5) give

(6.4.6) ‖u‖Sa([T−τ,T ]) . 1 + ‖u‖θL6
t,x([T−τ,T ]×R2‖u‖1−θSa([T−τ,T ]),

Thus, using a continuity argument and (6.3.51), which implies that ‖u‖L6
t,x([T−τ,T ]×R2) <

ε, we obtain ‖u‖Sa([T−τ,T ]) . 1. Next, we note that L6
T,x is controlled by L4

T,x and

Sa,T by interpolation. Thus, we now show that ‖III‖L4
T,x
≤ ε. Indeed, since (4, 4)

is admissible, by Strichartz estimates and the calculations above, we have that

‖III‖L4
T,x
. ‖u‖θL6

t∈[T−τ,T ],x
‖u‖1−θS([T−τ,T ]) < ε.
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Thus, we have (6.4.4) and using the integral equation (6.4.5), we obtain the esti-
mates

‖u‖WT
. ε+ ‖u‖aWT

‖u‖bST
‖u‖ST . 1 + ‖u‖a

′

WT
‖u‖b

′

ST .

Hence, we obtain ‖u‖Sa(R) <∞. Finally, standard arguments show that scattering
follows for a > 1.

Now, we deal with the case when a is close to zero. Choose η small enough so
that 2(−η) is in the range (1, 2/(1 + σ)). Then, we have

‖〈∇〉f(u)‖
L

2(−η)
t L

1(η)
x

.
∥∥∥(eκ0|u|2 − 1

)
κ0|u|2〈∇〉u

∥∥∥
L

2(η)
t L

1(−η)
x

.
∥∥∥eκ0|u|2 − 1

∥∥∥
L2
tL

2(−3η/2)
x

∥∥|u|2∥∥
L
∞(η/2)
t L

∞(η)
x
‖〈∇〉u‖

L
∞(η/2)
t L

2(−η/2)
x

.

Thus, we can control the |u|2 term by L6
t,x and Sa(I) as above, and control the

〈∇〉u by Sa(I). It remains to control the exponential term. For this term, we have∥∥∥eκ0|u|2 − 1
∥∥∥
L

2(−3η/2)
x

.
∥∥∥eκ0|u|2 − 1

∥∥∥1/2−3η/2

L1
x

∥∥∥eκ0|u|2 − 1
∥∥∥1/2+3η/2

L∞x

Since ‖u‖Ḣ1
a
<

κ∗a
κ0

(see Proposition 6.3.7), the first term is bounded by the Moser-

Trudinger inequality. Furthermore, there exists a Θ ∈ (0, 1) such that ‖u‖Ḣ1
a
<

Θ
κ∗a
κ0

. Thus, there exists a µ > 0 such that we have

‖u‖H1
µ,a

< Θ′
κ∗a
κ0
,

where Θ′ = (1 + Θ)/2 and ‖u‖2H1
µ,a

:= ‖u‖2H1
a

+ µ‖u‖22. Thus, it remains to control

the L∞ term. We shall use the logarithmic inequality (Proposition 6.1.6). Indeed,
choose α = θ(1− 2η). Thus, we need to choose

λ > 1/2πθ(1− 2η)

in the statement of Proposition 6.1.6. Furthermore, we choose λ such that we also
have

κ∗a

(
1

2
+

3η

2

)
λΘ′ =

2

θ(1/2− η)
.

Next, for the choice α = θ(1− 2η), define sθ = 1− θη and rθ = 2(−θ(1− η)/2) so
that we have the following embeddings:

W sθ,rθ
a ↪→W sθ,rθ ↪→ Bsθrθ,2 ↪→ Bα∞,∞ = Cα.

We now consider two cases. First, suppose that ‖u‖Cα & ‖u‖L∞ & 1. Then, also
using the fact that x 7→ x2 ln (Cλ + c/x) is increasing, we apply the logarithmic
inequality to obtain

eκ0(1/2+3η/2)‖u‖2L∞ .

(
1 +

‖u‖Cα
‖u‖Hµ;a

)κ0(1/2+3η/2)λ‖u‖2
H1
a

.

(
1 +

‖u‖Cα
Θ′ · κ∗a/κ0

)κ∗a( 1
2 + 3η

2 )λΘ′

. ‖u‖
2

θ(1/2−η)
Cα .
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Finally, by interpolation and Sobolev embedding, this gives us with qθ =∞(θ(1/2−
η))

∥∥∥eκ0|u|2 − 1
∥∥∥
L2
tL

2(−3η/2)
x

.

∥∥∥∥‖u‖ 2
θ(1/2−η)
Cα

∥∥∥∥
L2

. ‖〈∇〉sθu‖
2

θ(1/2−η)

L
qθ
t L

rθ
x

. ‖u‖
2

θ(1/2−η)
Sa(I) .

In the other case where ‖u‖L∞ . 1, we have that |〈∇〉f(u)| . |u|4 |〈∇〉u|, thus we
can handle this case with only Sobolev embeddings.

6.4.2. Proof of scattering – NLKG case. We now consider scattering for
the NLKG case. The proof is similar to the NLS case. Indeed, first define the
strong Strichartz space for the NLKG (6.0.2)

(6.4.7) Stra(I) := L∞t H
1
a ∩ L

2(η)
t W 1/2,∞(η/2)

a (I ×R2),

and the weak Strichartz space

(6.4.8) W (I) = L6
t,x(I ×R2).

Define

Ka(t) :=

sin

(
t
√
−∆ + a

|x|2

)
√
−∆ + a

|x|2
.

Similar to the NLS case, the goal is now to show that for all ε > 0, there exists a
T > 0 such that ∥∥∥K̇a(t− T )u(T ) +Ka(t− T )ut(T )

∥∥∥
WT

< ε.

Firstly, we have that

K̇a(t− T )u(T ) +K(t− T )ut(T )

= K̇a(t)u0 +Ka(t)u1 +

∫ T

0

Ka(t− s)f(u) ds

=
(
K̇a(t)u0 +Ka(t)u1

)
+

∫ T−τ

0

Ka(t− s)f(u) ds+

∫ T

T−τ
Ka(t− s)f(u) ds

= I + II + III.

We can deal with terms I and II in a similar way to the NLS case, where we instead
use the radial Strichartz estimate. For term III, we shall obtain ‖III‖WT

< ε by
a similar argument as we did for the NLS case and also using the fractional chain
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rule. Thus, we have∥∥∥∥∫ t

T−τ
Ka(t− s)f(u) ds

∥∥∥∥
L∞t H

1
a∩L

2(η)
t W

1/2,∞(−η)
x

=

∥∥∥∥∫ t

T−τ
Ka(t− s)〈Da〉1/2f(u) ds

∥∥∥∥
L∞t H

1
a∩L

2(−η)
t L

∞(η)
x

=

∥∥∥∥K+

∫ t

T−τ
Ka(t− s)〈∇〉1/2K−f(u) ds

∥∥∥∥
L∞t H

1
a∩L

2(−η)
t L

∞(η)
x

.

∥∥∥∥∫ t

T−τ
Ka(t− s)〈∇〉K−f(u) ds

∥∥∥∥
L∞t H

1
a∩L

2(−η)
t W

−1/2,∞(η)
x

.
∥∥〈∇〉K−f(u)

∥∥
L

2(−η)
t W

−1/2,1(η)
x

. ‖f(u)‖
L

2(−η)
t W

1/2,1(η)
x

.

Next, we use the fractional chain rule to obtain

‖f(u)‖
L

2(−η)
t W

1/2,1(η)
x

.
∥∥∥(eκ0|u|2 − 1

)
κ0|u|2〈∇〉1/2u

∥∥∥
L

2(−η)
t L

1(η)
x

.
∥∥∥eκ0|u|2 − 1

∥∥∥
L∞t L

1(49η)
x

∥∥|u|2∥∥
L
∞(η)
t L

∞(95η/2)
x

∥∥∥〈∇〉1/2u∥∥∥
L

2(−η)
t L

∞(η/2)
x

. ‖u‖Stra(I)‖u‖2L(∞(η/2)
t L

(95η/4)
x

. ‖u‖θL6
t,x(I×R2) ‖u‖

3−θ
Stra(I).

By the same argument as in the NLS case, we obtain scattering. Finally, we deal
with the case when a is close to zero. In this case, we have

‖f(u)‖
L

2(−η)
t W

1/2,1(η)
x

.
∥∥∥(eκ0|u|2 − 1

)
κ0|u|2〈∇〉1/2u

∥∥∥
L

2(−η)
t L

1(η)
x

.
∥∥∥eκ0|u|2 − 1

∥∥∥
L∞t L

∞(η/2)
x

∥∥|u|2∥∥
L
∞(η/2)
t L

∞(η)
x

∥∥∥〈∇〉1/2u∥∥∥
L
∞(η/2)
t L

2(−η/2)
x

.

The last two terms are controlled as in the NLS case. Thus, we finally need to
control the L∞ term. We shall again use the logarithmic inequality (Proposition

6.1.6). We take Θ such that ‖u‖Ḣ1
a
< Θ

κ∗a
κ0

as well as a constant µ > 0 such that

we have

|u‖2H1
µ,a

< Θ′
κ∗a
κ0
,

where Θ′ = (1 + Θ)/2 and ‖u‖H1
µ,a

:= ‖u‖2H1
a

+ µ‖u‖22 as before. Next, we choose

α = θ(1/2− η). Thus, we need to choose

λ >
1

2πθ(1/2− η)

in the statement of Proposition 6.1.6. We also set

κ∗a

(
1

2
+

3η

2

)
λΘ′ =

2

θ(1/2− η)
.

Next, with this choice of α and sθ = 1− θ/2, rθ = 2(θ(1− η)/2),

W sθ,rθ
a ↪→W sθ,rθ ↪→ Bsθrθ,2 ↪→ Bα∞,∞ = Cα.
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Again, we consider two cases. Suppose that ‖u‖L∞ & 1. Then we have

eκ0(1/2+3η/2)‖u‖2L∞ .

(
1 +

‖u‖Cα
‖u‖Hµ;a

)κ0(1/2+3η/2)‖u‖2
H1
a

.

(
1 +

‖u‖Cα
Θ′ · κ∗a/κ

)κ∗a(1/2+3η/2)λΘ′

. ‖u‖
2

θ(1/2−η)
Cα .

Finally, this gives us∥∥∥eκ0|u|2 − 1
∥∥∥
L2
tL

2(−3η/2)
x

.

∥∥∥∥‖u‖ 2
θ(1/2−η)
Cα

∥∥∥∥
L2

. ‖〈∇〉sθu‖
2

θ(1/2−η)

L
∞(θ(1/2−η))
t L

2(−θ(1−η)/2)
x

. ‖u‖2/νSa(I) .

The case where ‖u‖L∞ . 1 can be dealt with using the observation made in the
NLS case. We may then obtain scattering as in the NLS case.





Conclusion

In this thesis, we obtained scattering results for some nonlinear dispersive PDEs
with inverse-square potential. These results were generalisations of the analogous
result in the potential-free case. By applying the ideas of [6], we found that the
Hankel transform could be used effectively to study radial problems. Indeed, we
used the Hankel transform to gain an understanding of the linear theory of the
Klein-Gordon flow in Chapter 3, as well as the Schroödinger flow in Chapter 6 –
for instance, to obtain the relevant Strichartz estimates.

In our application of this linear theory to the non-linear scattering problems, we
saw that a major issue that one has to deal with is the fact that many Lp estimates
fail outside a range too far away from p = 2, if the coefficient of the inverse-square
potential is negative. We also saw the importance of the equivalence of Sobolev
norms in order to use the fractional chain rule associated with ∇. Furthermore, we
saw that other tools such as Virial-Morawetz estimates could be applied in much
the same way as in the potential-free case. Overall, many standard techniques
employed to study the potential-free case can also be applied with the inverse-
square potential.

Finally, let us also remark on some aspects of this thesis that could be explored
in future research. We need other tools to study non-radial data. For instance,
in Chapter 4, while we were able to obtain bilinear Strichartz estimates for radial
initial data, there was an obstacle in the non-radial setting. In particular, we had
to decompose non-radial data using a spherical decomposition in order to apply
the Hankel transform, but we were unable to add these pieces back together to
obtain a satisfactory bilinear estimate. For this problem, perhaps other methods
such as physical space methods may be more effective in obtaining such estimates.
Furthermore, a better understanding of the thresholds of the double logarithmic
inequality and Moser-Trudinger inequality in Chapter 6 could be gained in future
research. This would improve on the scattering result that was obtained.
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