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Abstract

We study scattering of the quadratic Klein-Gordon equation with an inverse-
square potential

8t2u—Au+‘x%u+u:u2, (t,z) e R x R?
w(0,2) = ug, u(0,2) = uy

under various assumptions on the initial data. The idea is to use the non-resonance
structure of the quadratic Klein-Gordon equation. In particular, we study the
harmonic analysis adapted to the operator —A+a/|x|?. First, we obtain scattering
for the 3D radial small energy problem. Here, the main tools are the refined radial
Strichartz estimates which can be obtained in a similar manner to the potential-
free case as in Guo-Hani-Nakanishi [Comm. Math. Phys. (2018)], as well as a
normal form transform. Next, we obtain a scattering result small energy problem
in dimensions d > 3 (with some restrictions on the coefficient a of the inverse-
square potential). Here, the result is obtained using UP and VP spaces as studied
in [Hadac-Herr-Koch Ann. Inst. H. Poincaré Anal. Non Linéaire (2009)] and
for the potential-free QKG(0) in Schottdorf [arXiv:1209.1518 (2012)]. The non-
resonance of the QKG(a) is studied using a modulation bound. Furthermore, we
obtain a scattering result for the 4D radial large energy problem below the ground
state. Here, the usual L' — L dispersive estimate does not hold for a < 0.
Nonetheless, a weaker dispersive estimate does hold, as established by Zheng [J.
Math. Phys. (2018)]. The main tools for this problem are then weaker frequency-
localised dispersive estimates (a combination of the estimates in Guo-Peng-Wang [J.
Funct. Anal. (2008)] and those in Zheng [J. Math. Phys. (2018)], Virial-Morawetz
estimates as in Dodson-Murphy [Proc. Amer. Math. Soc. (2017)] as well as
the reduction of the large energy problem to a small energy problem after large
time. We apply these similar methods to also study scattering for the non-linear
Schrédinger equation and non-linear Klein-Gordon equation with an exponential-
type nonlinearity.
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CHAPTER 1

Introduction and main results

We study the scattering behaviour of the following Cauchy problem of the
quadratic Klein-Gordon (QKG(a)) equation with inverse square potential:

(10.1) { O?u — Au + ﬁu—i—uqu7 (t,r) € R x R?

w(0, z) = uo, ut (0, ) = uy

whereu : RxR% - R,d >3and a > — (%)2 = 1(0)2. We shall denote —A+‘$%
by %,. In fact, it is not immediately clear that properties of the potential-free
problem (i.e. QKG(0)) are inherited by the QKG(a), even for a near zero. This
is best illustrated by break in translation symmetry for a # 0. Therefore, we need
to recover the tools and arguments used by previous works — namely: Strichartz
estimates with improved range of admissible pairs for radial initial data (i.e. radially
refined Strichartz estimates) [17], bilinear Strichartz estimates [53] and the normal
form transform [22]. The contribution of this thesis is the adaptation of these
results to the inverse-square potential setting. The non-resonance structure of the
QKG(a) is essential to this study.

The behaviour of the non-linear Schédinger equation (NLS) with inverse-square
potential and wave equation (NLW) with inverse-square potential are better under-
stood. Indeed, Strichartz estimates for the NLS with inverse-square potential and
NLW with inverse-square potential were obtained by Burg-Planchon-Stalker and
Tahvildar-Zadeh [6] (also see [50, 49]). These results were extended by Miao-
Zhang-Zheng [43] with an improved range of admissible pairs, at a small loss in
angular regularity. Studies related to unique solvability have also been undertaken
— see Okazawa-Suzuki-Yokota [46] and also Suzuki [57], where unique solvability
was obtained at the critical coefficient a = — (%)2. In addition, the harmonic
analysis adapted to the operator %, for d > 3 was studied by Kilip-Miao-Visan-
Zhang-Zheng [33] via heat kernel bounds of the semigroup e“=. Specifically, the
multiplier theory (and therefore also the Littlewood-Paley theory) adapted to %, is
well understood. Thus, for instance, allows the use of frequency decomposition tech-
niques. Studies of the d = 2 case have also been considered, for instance, by Burq
et al. [6]. We also mention some other studies, such as blow-up by Bensouilah-Dinh
[4] and Csobo-Genoud [12]) as well as the stability/instability of standing waves
by Bensouilah-Dinh-Zhu [5].

Scattering results in the setting of the NLS with inverse-square potential (de-
noted by NLS(a)) are also well understood. Indeed, the scattering/blow-up di-
chotomy below the ground state threshold is understood under various assump-
tions (radial/non-radial, critical/inter-critical, etc.) [34, 36, 65, 67]. The global
existence/blow-up dichotomy for a class of focusing NLS equations below the ground
state threshold has also been studied in both intercritical and critical settings by

1



2 1. INTRODUCTION AND MAIN RESULTS

Dinh [13]. The Virial-Morawetz estimates of Dodson-Murphy [14] play a central
role in obtaining scattering, and are also central in this thesis. We also mention
analogous scattering results for the Hartree equation with inverse-square potential
[9] and the more generalised setting of the Choquard equation [41].

The non-resonance structure of the QKG(a) is central to our study. In the
potential-free case, the analogous structure of QKG(0) is studied via the Fourier
transform. To make use of the non-resonance structure for a # 0, we have the
following (radial) Hankel transform available to us:

(o f)(r) = / T Uy (r0) () " dp,

where U, (q)(rp) = (rp)’¥ v(a)(rp) and v(a) = (%)2 + a — see Chapter 2
below for more details. Using properties of the Bessel function near zero, one can
see that in fact the behaviour of U, () is discontinuous with respect to a. Indeed,
we have that J,(,)(2) ~ 27(®) for z near zero. Hence, we have

00, a<0
Uy(a)(0) = § const., a=0
0, a>0

Thus, it is not immediately clear whether properties of the potential-free case
will carry over to solutions of QKG(a) even in the case where @ is near 0. As
mentioned previously, if @ < 0, the L' — L dispersive estimate fails, even though
it holds for the classical @ = 0 case (and also holds for a > 0). However, time-
decay can be recovered. For the NLS(a), Burq et al. [6] recover L?" — L time-
decay estimates for p = 2d/(d — 1) with time-decay t~/2. Kilip et al. [33] instead
study certain convergence results that substitute these dispersive estimates. Finally,
Zheng [67] recovers a weaker time-decay estimates in a weighted L? space. This
final approach is most relevant to this thesis. Here, the unboundedness of U(v(a))
at zero for a < 0 is the only obstruction. On the other hand, rearrangement breaks
down in the range a > 0. Indeed, rearrangement only decreases the adapted Sobolev

norm
a

— 2 2
Jullgy 2= |1V glul® da

in the range a < 0. The issue lies in the inequality (5.2.2), which implies that for

a>0
a a
—=|u* dz < / —|u*|? da.
/Rd |z Rre |2[?

However, if a < 0, then the direction of the inequality is reversed and becomes
favourable. This breakdown of rearrangement is an issue when we study the ground
state threshold in Chapter 5 as the minimiser of an energy. Rearrangement is used
to show that the minimiser must be radial, and thus better compactness embeddings
are available to obtain existence.

The QKG(a) has the following conserved energy F,(u,u;) defined by

1 1
5 [t o) + [Vu(t. o) + lutt o)+ lu(t) do - 3 [ u(t) de,
2 R |:U|2 3 R

In this thesis, we are especially focused on the QKG(a) in three and four dimensions.
In d = 3, the model is mass-subcritical and in d = 4, the model is mass-critical.

Furthermore, the resonance structure of the QKG(a) is essential in our study. This
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structure is revealed via the Hankel transform, which generalises the analysis of
the QKG(a) for a # 0, and is analogous to the (radial) Fourier transform for the
potential-free (a = 0) case. The use of the Hankel transform (see [25, 26]) allows
for the use of the (partial) normal form method by Shatah [55] (also see Germain
[16]) to make use of this resonance structure. We discuss in more detail our main
results in the next section.

We also study the related problem of the two-dimensional non-linear Schrédinger
equation and non-linear Klein-Gordon equation with exponential nonlinearity and
inverse square potential. We shall introduce this study further in Chapter 6.

1.1. Summary of main results

We summarise the results of this thesis. The first result is the following set
of refined radial Strichartz estimates adapted to the operator .%,. This result is a
generalisation of the estimates in [17]. By orthogonality of the spherical harmonics,
we can generalise them to a non-radial (and spherically-averaged) setting, though
we shall only use the radial version in this thesis.

THEOREM 1.1.1 (Radial refined Strichartz estimates). Let d > 3, k € Z, 2 <

q,r < 00 and ug € L2 (R?). Let a >d - (%)2 and furthermore, if — (%)2 <

a < 0, impose also that ro < r <r{ = 2. Then,
(a) (General region) if q (5 — 1) > 715 and w satisfies (3.1.2). Then,

itw(Dg)

k(d_4d_«
lle Piuolpapr <2 (8-%-%) HUOHLg(Rdy

(b) (Refined region) if 52 < q (3 — 1) < 745 and w satisfies (3.1.3). Then,

T

||€im(D“)P1?UO||L§L; < 2Mra) HUOHLg(Rd)

whereQ(r,q):g_é_ﬁ_(a_ ) (451 — d=1),

Furthermore, along the endpoint case q (% — %) = d% we have

17
. 2 T
€70 Peuoll gz, S (ke — 8)) 32 uoll g

The above estimates are then used to obtain the following small-energy scat-
tering result in 3D in Chapter 3. The space (%, % — H,% — 3K ‘% + m) shall be
defined later, and is essential a time-averaged Besov space adapted to %, with
regularity % — 3k at low frequency and 1—70 + k at high frequency. We follow the
argument of Guo-Shen [22]. We remark that a similar result can be obtained in 4D,
though we do not pursue this in detail. We remark that there is a loss of 1/100 in
the range of a for which the result holds of. This comes from the analysis adapted
to Z,, which only holds for a restricted range of L? when a < 0. One is able to
increase the range of LP by restricting the range of a. More precisely, the range of
L? is given by 1o < p < r{, := g, where

— _9\2
o= i3 - (5 +a

We remark that a similar method has been used to study other models — such as
the 3D Gross-Pitaevskii equation [17], 3D Zakharov system [18] and Klein-Gordon-
Zakharov systems [20].



4 1. INTRODUCTION AND MAIN RESULTS

THEOREM 1.1.2 (3D radial small energy scattering). Let 0 < k < 1 be suffi-
ciently small, and suppose that (uo,uy) is radial and satisfies ||(uo, u1)||g1xr2 < 1.
Then, there exists a unique solution u(t,z) to (1.0.1) with a > o~ (3(3% — k) &
—i + ﬁ in the space

1 3 2
K, = — 3K

7
210 "5 0T “) ’
that also scatters in the sense that there exists uy(x) € H} such that

u—i(Da) ™" Spu — e Paduy || 1 — 0,

S=CER,HHN (

ast — o0.

Next, we study the small energy problem in higher dimensions (d > 3). Since we
no longer have access to the refined radial Strichartz estimates, we instead follow the
argument of Schottdorf [53] to obtain a scattering result. Indeed, the key is to work
in UP and V? spaces (see Hadac-Herr-Koch [24]). For a toy problem, one may refer
to the discussion of the non-resonant 2D derivative NLS i0;u+Au = 9,, 4> by Koch
[38]. The main problem is that due to duality, the quadratic nonlinearity of the
QKG(a) will require trilinear estimates in order to close the scattering argument.
Thus, bilinear estimates L? x L? — L? will allow us to split essentially an L'
integral into L? x L2 — L' via Hélder’s inequality and then split once more into
L? x L? x L? — L'. These can then be converted into estimates on U? and V?
spaces. We have the following result in the range a > Ay where

2

d—2
1.1.1 =1 —(57) d=3,4
(1.11) ¢ { (84 —3d%), d>5.

THEOREM 1.1.3 (Small energy scattering in higher dimensions). Let d > 3,
a > Aq. Let (uo,u1) € HS x H:™' with s > 92, Purthermore, assume that
ug and uy are radial. Then the equation QKG(a) (1.0.1) has a global solution
in C(R,H) N C(R, H:™Y) that is unique in the space X*([0,00)) and scatters as
t — +oo.

Finally, for the quadratic Klein-Gordon equation with inverse-square potential,
we study the 4D large energy problem in the radial setting. That is, the dynam-
ics of the QKG(a) below the ground state. This is mainly following the work of
Payne-Sattinger [48], Ibrahim-Masmoudi-Nakanishi [30] and Guo-Shen [22] in the
potential-free case. The aforementioned breakdown of rearrangement complicates
the picture, and in particular, it complicates the existence of the ground state Q,~
(see (5.2.3) below). In this problem, dispersive estimates are essential. However,
for negative coefficients a, these are only available in a weaker form — see Zheng
[67]. The idea here is to convert the large energy problem is a small energy problem
after large enough time. The Virial-Morawetz argument of Dodson-Murphy [14] is
central to this study.

THEOREM 1.1.4 (4D radial large energy scattering). Let d = 4 and k > 0 be
a sufficiently small constant. Furthermore, suppose that a > o~ ! (%) = -1+ %.
Suppose that (ug,u1) is radial and satisfies

Eq(uo,u1) < E(Qq+,0).

Then, we have the following dichotomy:
(i) If [luollz > [|Qa-

12, then the solution to (1.0.1) blows up in finite time.
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(ii) If [luoll2 < [|Qa~
u(t,r) € C(R, H) N <

12, then the solution to (1.0.1) satisfies

1 5 3 4 |11 n
2°14 Mg T TR
and scatters in the sense that

Hu—i(Da>_18tu—eit(D“)uiH —0
H;

when t — 400 and for some uy(x) € HL.

We also have the following results for the 2D non-linear Schrédinger (NLS) and
non-linear Klein-Gordon (NLKG) with inverse-square potential and with exponential-
type non-linearity (defined in (6.0.1) and (6.0.2)). We use similar methods to the
quadratic Klein-Gordon equation case. In particular, the Virial-Morawetz argu-
ments will be important in this study as well. We also use many ideas from Guo-
Shen [23] and Ibrahim-Masmoudi-Nakanishi [30] to obtain the following result. We
shall discuss this result in more detail in Chapter 6.

THEOREM 1.1.5. Suppose that uy € HX(R?), («a, 8) satisfies conditions (6.3.1),
Mq.g is defined by (6.3.7) and K% is a constant defined in Proposition 6.1.8 below.

Recall also kg > 0 and f(u) :== A (e“'“‘z -1- no|u|2) u. Then,
(a) If A = —1, the solution to (6.0.1) exists globally and scatters provided

Eg (UO) < fa

2K0 °
(b) If A =1, the solution to (6.0.1) exists globally and scatters provided that
Es(ug) + M(u)/2 < mqp and Ko g(ug) > 0, and a > 1 or sufficiently
close to zero.

(¢) If X = —1, the solution to (6.0.2) exists globally and scatters provided
EK(U()) < ;Kao.

(d) If A =1, the solution to (6.0.2) exists globally and scatters provided that
Ex(ug) < mg,pg and Ko g(ug) > 0 for a > 1 or sufficiently close to zero.



1. INTRODUCTION AND MAIN RESULTS

1.2. Summary of notation

Lo =-A+ iz and D, =L

If A < CB, then write A < B. If A < CB and B < C'A, then write
A ~ B. If the constants depend of parameters, for instance C' = C(a),
then write A <, B and A ~, B respectively. Also, we write A < B when
A < ¢B for some small constant c.

For z € RY, (z) = /1 + |z|2.

e Let LP(RY) and H*(R?) denote the standard Lebesgue and Sobolev spaces.
Furthermore, let L? (R?) and Hp,;(R?) denote the respective spaces of
radial functions. Also, £7((0,00)) = LP((0, ), p?~1tdp)

o We shall write . Zu to denote the Fourier transform of w.

e The Hankel transform of order v of a radial function (in the space variable)
u(t, p) is

Houtt.p) = [ 00 Srput.r) detr)

where dw(r) = 74~ 1dr. We shall also denote the Hankel transform of u
(in the space variables) by .

We always assume that a > — ( ) We define useful choices of orders
of the Hankel transform: p(0) = 452, (k) = 452 +k, v(a) = /p(0)2 + a
and v(a, k) = /u(k)? + a.

In Chapter 4, M, N and N’ denote dyadic numbers of the form 2* where
k € N, unless explicitly mentioned to be of the form 2¥ where k € Z.
Denote )y an :=ag + >, o Gon-



CHAPTER 2

Harmonic analysis associated to the inverse-square
potential

2.1. Spherical harmonics decomposition

We shall study the solutions to equations of the form

(2.1.1) (@, t) +w (M) u(z,t) =0, (z,t) e R*xR

u(0,2) = up(x)
by decomposing functions into spherical harmonics. That is, for any u €
L?*(R%), we may write

oo d(k)

(2.1.2) u(@) =3 ar(r)Yeu(0).

k=0 l=1

where for k& € N U {0}, the set {Y} 1(0),..., Yiax)(0)} is the orthogonal basis of
the space of spherical harmonics of degree k on S?~1. More specifically, Yy ;(z) €
L?(R%) is a homogeneous polynomial of order k —i.e. Y(z) = |z|*Y (2/|z|) which
is also harmonic (i.e. AY = 0). We first note that if we write w in terms of its
spherical harmonic decomposition, then its Fourier transform is given by

oo d(k)

Fou(§) = Z Z 2 (/ODO(TP)_%Qsz%k(TP) cap ()t dT) Y1 (w)

k=0 =1
where ¢ = pw with w € S~1. We shall denote

d—2

Spherical harmonics also simplify our study of (2.1.1). In particular, let us consider
u(z) = a(r)Y (0) where 2 = rf and Y (6) is a spherical harmonic of degree k. Then,

—A; (a(nY (8)) = —Ay (J2] Fa(|2])Y (2))
Evalulating the Laplacian, and using the fact that A,Y (z) = 0 gives
5 d—1 & 2z K
—A, (a(r)Y(0)) = — |07+ T&, (r "a(r))Y(z) — 787, (r~*a(r)) - VY.
Now, using the fact that = - VY = kY and evaluating the derivatives, we find that

—A(a(r)Y(9)) = (63 _d= 1& + k(k +f* 2)) a(r) - Y (6).

r r
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Thus, we also find that
( A+ iz |2) (a(r)Y (9)) = (—a,% —~ d; Ly, METd—2) +“) a(r) - Y (0)

_ (—62—d_18 +1/(k‘,a)2—
T r T

where v(k,a) := \/u(k)? + a. We may generalise the above argument to a general
function in the kth harmonic subspace (which we shall denote by L2, (R%)). Thus,
we find that when we restrict to the kth harmonic subspace,

- u(0)2> "

r2

d-1 k,a)?
Lt = Ayt = (—a,% ~ 0+ vik,0)

2.2. The Hankel transform

We shall make use of spherical decomposition via the (generalised) Hankel
transform of order v defined by

(2.2.1) (o 1)(6) = / UL (rp) f(ro) dus(r)

d—2

where p = |¢|,0 = €/|¢], dw(r) = 747 1dr and U, (2) = 2= "7 J,(2). Also, J, is the
Bessel function of order v defined as

(222) Jy(z) = V j{§2 73 Z / (1 _ t2)1/71/2 dt

for v > —1/2 and z > 0. We also have the following properties of the Bessel
functions, which we shall need in this thesis.

LEMMA 2.2.1 (Properties of Bessel functions). Let J,(z) be the Bessel function
of order v > —1/2 as defined above. Then, for z > 0

(i) [J,(2)| <Cz¥ if0< z < Vv +1
(ii) |J,(2)] < Cz 3 if 2> V2 — %|

For radial functions f, we have the following simplification for the Hankel

transform: -
— [ Ut f) i)
0
More generally, suppose f € L2, (R%). We may use (2.1.2) to write
fl@)y="> alr)vi(o).
1<i<d(k)
Thus, we have
oo
n©= Y ([ vt an) vie)
1<i<d(k) YO
We have the following properties of the Hankel transform:

LEMMA 2.2.2 (see [6]). Let H, be the Hankel transform of order v as above.
We have
(i) H, is its own inverse: H, = H*

(il) H, is self-adjoint: H, = H},
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(iii) H, is an L*-isometry: |Hy fllzz = || fllz2 for all f € L%
(iv) Ho(Av9)(€) = [§I*(Ho0)(€) for all ¢ € L?

Let us also record some further properties of the Hankel transform. First, let
us discuss the following convolution theorem for the Hankel transform.

LEMMA 2.2.3 (Generalised convolution for the Hankel transform). Suppose that
f,g € LY(R%) are radial. Then, define

g = /0 ) - a(y) dy

where 7, f is the generalised Hankel translation:

rf(y) = / T 1D,y 2) d,

and D, (z,y,z) is given by

/0 " U (@)U (ym)Us (zm) ().

Furthermore,

Ho(f#09) = Hu(f) - Hu(g)
Hence, using the fact that H,;' = H, we also obtain that

Hu(fg) = Hv(f)#v,Hu(g)'

For convenience, we will often omit the subscript v.

PROOF. The fact that the convolution is zero unless there exists a triangle
with side lengths z, y and z follows from [61]. Using the definition of the Hankel
transform, we see that f#g = H,(H,(f)-H.(g)). Thus, apply the Hankel transform
to both sides, we conclude that H, (f#g) = H.(f) - Ho(9). O

REMARK 2.2.4. In the next section, we discuss an adapted Littlewood-Paley
theory. Perhaps one strategy to obtain results such as Bernstein estimates would be
to first obtain Young’s inequality for the above convolution and then to adapt proofs
from the Fourier setting that use convolution arguments. However, we could not
obtain Young’s inequality. The issue lies in the Hankel translation. Ideally, one
could show that

72 fWllzr S IFW)l2p-
Howewver, if a < 0, then this inequality does not hold even for p = 2. This is because
T f(y) = Ho (U(zp)H, f) but U(z) & L™, so we cannot apply Holder’s inequality
to obtain
172 f W)z = U(@p)Ho fll 2z S 1f ()]l .22

2.3. Hankel multipliers and adapted Littlewood-Paley theory

We shall need to consider operators of the form w (D). In particular, we shall
need both the LP boundedness of these operators, as well as an explicit represen-
tation of these operators as multipliers with respect to the Hankel transform.

Since we shall always study a function u via its spherical decomposition, let us
suppose that u € L2, (R?). As we saw previously, we have that Z,u = Ay (ka) -
Hence, we may appeal to the spectral theory of operator A, ) to obtain that

o (D) u = (Aut) u = Hogrn () ot}
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More specifically, we obtain from Lemma 2.2.2(1) that

00 z B
w(@) = Hy(a) (’Hl,(k’a)u) (x) = /o Uy (k,a) (7)) (Hy(k,a)u) (r|x> r¢1 dr.

Thus, we obtain a resolution of the identity based on the Hankel transform:

I:/ E¢™ (r) dr

0

where
EV(k,a) =U H i d—1
0 (r)u(z) viksa) (1)) (Hur,ayw) r|x| e

Now, from Lemma 2.2.2(4) for u € L2 (R?), we see that A, (1, oyt = Hy(k,a)|E|*Ho (,0)u
and

Ly = AV(k,a) = / r? Eoy(kﬂ)(r)dr'
0
Hence, we may define operators in terms of /A, (x,q):

w ( Au(k,a)) :/0 W(T) E(I)j(kﬁa)('f')dr.

This may be rewritten as

w (M) u(r) = /000 U (k,a) (r]z]) w(r) (HV(k,a)u) (r;') FA=1 g

Once again applying Lemma 2.2.2(1), we see that

Hoea) (0 (/A ) 1) = W& Ho k.0 (10) = 0 (0) ) (1)-

This gives us an explicit representation for multipliers w(D,).
Next, we discuss LP boundedness. We have the following Mikhlin-type result
from Killip et al. [33]:

PropoOSITION 2.3.1 (Mikhlin multipliers of D). Let w : [0,00) — C such that
|07w(N)| S A7 for all j > 0 and either
(i) a>0andl<p<ooor

(i) —p(0)? <a<0andrg<p<rh:=2 ando =42 — (T)2+a'

Then, w (Dy) extends to a bounded operator on LP(RY).

Now, we specialise further and summarise some basic Littlewood-Paley theory
adapted to .Z,. Let ¢ : [0,00) — [0,1] be a smooth function with ¢(A) = 1 on
0 <A <1and ¢()\) =0 for A > 2. From this, we define ¢5(\) = ¢(\/2¥) and also
YVie(A) = ok(A) — dr—1(A). Thus, we may define for a radial function v and with
v = v(a) that

P2iu =M, dr(p)Hou,

P,?u = ,Hl/q;[}k(p)%l/u

PSu=1- P2 u.
We may follow the argument of [59, Theorem 4.2.2] to conclude that the function

space is independent of the choice of ¢.
The following Bernstein estimates will be important in this work:



2.3. HANKEL MULTIPLIERS AND ADAPTED LITTLEWOOD-PALEY THEORY 11

PROPOSITION 2.3.2 (Bernstein estimates for PZ, [33]). Let 1 <p < g < oo for
a>0andrg<p<gq<ry when —u(0)? < a <0 and u € C(RN{0}). Then,
(i) The operators P¢,, P¢ are bounded on L?,
(i) For all s € R, || DiPiullpemay ~ 25| Pfull 1o (may -
(if) [|Pful Lo < 2563 | Pgull gy
)

(iv) [[P2pullpama) < 2kd(;_5)||P§kUHLp(Rd)
PROOF. See [33]. O

From this result, we see that we have the commutativity between £, and the
projector to convert an L? estimate to an H? estimate. In addition, we also have
the following Littlewood-Paley square function theorem:

PRrOPOSITION 2.3.3 (Littlewood-Paley square function theorem, [33]). Let s >
0 and also1 <p<qg<oofora>0andry<p<q<r)when —u(0)? <a<0.
Then, for any u € C°(RM\{0}). we have that

1
3
||D2u||LP(Rd) ~ <§ :22ks|Pkau|2>

hez Ly (RY)

The Mikhlin multiplier theorem above can be used to obtain the following
boundedness result for Coifman-Meyer type bilinear multipliers.

PROPOSITION 2.3.4. Let A = (A1,\2) € (0,00)2. Suppose that m(\) is such
that for some s € N, we have

(23.1) e m] S A7

for all partial derivatives with multi-indices || < s. Define the operator
(232) T(fog)(2) = / / i, 0) U, (uz)U, (v2) o (u)Hy g (v) deo(u)d (o).
o Jo

Then, for p,q,r € (1,00) such that % = %—i—% (and also ro < q,r < 1y if a <0),
we have

(2.3.3) 1T (F, ) S [ fllallgll-

PRrROOF. We shall follow the proof in [64, Theorem 2.3]. Indeed, we first rewrite
T as T (f,9)(x) = m(L1, L) (f®g)(x,2). Here, Ly = \/L,®I and Ly = [®+/L,,
where I is the identity operator. Furthermore, we note that this recharacterisation
for T, can be understood via the joint spectral measure of (L1, L) — see [64] for
more details.

Let us write F' := f ® g and let 1) be a smooth function with support in [1/2, 1]
such that Y, ¢ = 1. Here, we use the notation that ¢y(\) := ¥(27%)) for all
A €0, 00).

To obtain the result, the idea is the decompose T,, as follows:

Tulf9)@) = Y (Wn(La)tn,(La)m(Ly, L2))(F) (2, )

ky,ko€Z
= Th+1T+1T3
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where
T, = > (W (La)k, (La)m(Ly, Lo)) (F)(z, o),
‘k17k2|§b+2
T, = > Wk (L), (L2)m(La, L)) (F)(x, 2),
k1>ko+b+2
Ty o= Y (U (L) (Lo)m(La, L2))(F)(x, ).
ka>k1+b+2

We note that in [64], the functions f and g can be taken to belong to a class A
which is dense in L? for p € (1,00) and such that these sums are finite.
Let us first consider T;. We further decompose

(2.3.4) Ty = mi(N),
k

where

mi(A) = V(A1) dr(A2)m(A)
and ¢r(N2) = Zlkz—k|§b+2 ¥r(A2). By noting the supports of ¢ and ¢, we see that
my, has support in [2870=4 2k+b+412 Thys, we may also write

(2.3.5) mi(A) = (A1) (A2))hr (A1) dr(A2)m (),

where 1; is a smooth function that equals one on [27°~3 23] and vanishes outside of
[2704 25%4]. Consider My ()\) := m(2*)). Thus, My, has support in [—20+4 20+4].
Define a = 2°7*. Then, we may expand M}, via a double Fourier series as

mingA]  wingAg
Mi(\) = E Cnk€ * e &

ni,n2€Z

where the coefficients are given by
1 a a ming ring€
ot = @/ / (@ @) (m(2 e e dgrdey.

Now, we may apply integration by parts, the assumption (2.3.1) and use the fact
that ¥ ® ¢ is compactly supported away from zero to obtain

[enkl S (L+[n[)™°
for all n € Z? and uniform in k. From this, we use (2.3.5) to obtain
7 g —k 7 27 i, 2k
mk(/\) _ Z Cok (wk()\l)e%lnﬂ )\1) ('(/)k()\g)62a 22 )\2) )
nez?
Thus, we have that
my (L1, L2) = Z Cnk (&k(h)@%ﬂmlrkh(f)) (ik(Lﬂe%ﬂmzrkh(g))

neZz?

=Y ean W (L)) (2 (L2)g)

neZz?
with convergence in L2. Thus, recalling (2.3.4), we also have that

Ti(f,9)() = Y D canthi (L)) ()05 (L)(9) ().

ne€Z keZ



2.3. HANKEL MULTIPLIERS AND ADAPTED LITTLEWOOD-PALEY THEORY 13

Here, we recall that f and g belong to a class A such that the sum in & is finite.

Finally, for T7, we apply Proposition 2.3.3 and deal with the factors e T ing 27 N

(j = 1,2) to obtain for s > 2p + 4 that

= (S o) | [(S o)

IT2(f, 9)lp

AN

neZ? keZ kEZ -

S D @D+ )P+ )l lllgle S 1F Nallglle-

neZz?2

Now, we study the term T5. The argument for the term T3 follows by symmetry.
Here, we define ¢y := Zk2<k7b72 Yk, Then, we can write

T = Y W) (La)m(Ly, L) (F)(x, )

k1>ko+b+2

> (Wk(L1)ér(La)m(Ly, La))(F)
k

= ka(LhLQ)(F)v
k

where, in this case, we set my () := ¥ (A1) ok (A2)m(N). Thus, my is supported in
[2F=1 2k+1] % [0,2F~*~1]. Hence, we may write

mi(A1, Az) = Y(A1)d(A2) (A1) b (A2)m(N)

where 1) is a smooth function that equals to one on [271 21] and vanishes outside of
[272,2%], and ¢ is a smooth function that equals to one on [0,27~!] and vanishes
outside of [0,27°]. Again, similar to for the T} term, we expand Mj,(\) = my(2%))
via a double Fourier series. We note that My (\) is supported in [—2,2]2. Thus, we

obtain
mingA;  mingAg

Mi(\) = Z Cnke 2 e 2,

ni,n2€Z

where the coefficients are given by

1 2 2 7rm1€1 7”n252
Cn,k = 175/_2 /_2(¢®¢)( 2"¢))e d&rdés.

Now, by using integration by parts and the assumption (2.3.1), we obtain
ekl S (L |n])™°

for all n € Z? and uniform in .
Thus, similar to above, we have

To(f,9)(x) = D> cartp (L) (f)(@)62 (L) (g)(x)

neZ kecZ

SN ennthi (L) (0 (L) () (L)(9)) ()

neZ keZ

where ¢ (A1) = ¢p(A1)e2i™2 "M and similarly for ¢72()y). Furthermore, ¢
is now taken to be a smooth function which is equal to one on [2737% 23+%] and
vanishes outside of [2757°,251?].
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. !
Now, we estimate the LP norm of T5. Thus, let h € LP . We observe that

/0 " Ty(f,9)(@)h(x) du(a)

is equal to
/ D> cawti (L)) @) (L) (9) (2) (L) () (z) dw(x).
Thus, using the estimate for |c, x|, we see that

/0 " Ty(f. 9) (@)h(z) dula)

is bounded above by

> (Atn)~ /Ooo (Z ¢21(L)(f)l2> sup 9*(L)(9) <Z |7/~}k(L)(h)2> dw(z).

nez? keZ keZ
Now, applying Holder’s inequality, this expression is bounded above by

1

Y A+ (Z I%“(L)(f)|2>

neZz? kEZ

sup ¢* (L)(9)
keZ

r
q

The LY norm is dealt with the same way as in the T case, while the L" is bounded
above by (1 + |nz|)?*2||g-. Indeed, after dealing with the factor as in the T} case,
the remaining estimate is a corollary of the multiplier theorem (Proposition 2.3.1)
— see [63]. Thus, we may put together the results for T7,T» and T5 to obtain the
required estimate. O

2.4. Adapted Sobolev and Besov spaces
We also have the following equivalence of Sobolev spaces:
PrOPOSITION 2.4.1 (Equivalence of Sobolev norms, [33]). Let d > 3, a >
—p(0)? and also 0 < s <2. If 1 < p < oo satisfies *£= < % < min{l, =2} then
(2.4.1) I(=2)2ullr Sap,s | Diull e for u € C(RN\{0}).

Ifmax{$, 5} < 1 <min{l, 4%} then

d
IDsullze Sap,s (=) ullLe for u € CF(RT\{0}).

For our purposes, we shall define the following adapted inhomogeneous Besov
space. We remark that for —u(0)2 < a < 0, we only define these spaces for
ro < p < 13, as this is the range where the Bernstein estimates (Proposition 2.3.2)
hold. Therefore, we are able to obtain Sobolev embeddings in this range.

q

lullsy , = 1PLoully + | > 29| Piullg
k>0

and the following homogeneous Besov space

1
q
el , = (qus’wzaswz) -

keZ
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We write Bf) = B;Q. We also have the following embeddings, which shall be used
when we define Besov-type spaces below.

LEMMA 2.4.2 (Embeddings for adapted Besov spaces). Fora > 0, let 1 < py <
o and for —u(0)2 < a < 0, let 1o < po < p1 < rf. Also, let 1 < g < oo and
s1 < sg. Then,

(i) B, < B

Po,9q d P1,9° J . .
i _d _ g _d 50 51
(ii) If so — 55 = 51— -, then B0, — B .
_d _d 50 S1
(iti) If so — 5o = s1 — -, then Bio  — Bpt .

PROOF. Property (i) follows from inspection of the definition. Property (iii)
follows a similar argument for (ii). Thus, we are left to prove (ii). This follows
via the Bernstein estimates (Proposition 2.3.2). Indeed, we have ||PZjullrr S
| P2yl Lro. Furthermore, for k > 0, we use that -

11
I1Pguln < 265735 | Pl .
Using these facts in the definition gives the result. O

For our purposes, we shall also need the following Besov-type space adapted
the operator D,. Here, we shall use the adapted Littlewood-Paley projections P
in place of the usual Littlewood-Paley projections, as in [22] (again note that for
—1(0)? < a < 0, we shall only define these Besov-type spaces for ro < p < 7)):
(2.4.2)

v
v

ull gorten = o2 Ripru@) 2|+ DD 2K Pru)l}
kEZ,k<0 kEZ,k>0

Notice that this definition is consistent in light of the Bernstein estimates above.
Notice also that this definition agrees with the definition for a homogeneous Besov
space above for u localised to low or to high frequencies. In this thesis, we shall
use these Besov-type spaces in the context of the space-time norm

= t, q S5 .
HUH(#%’S)I [[u( ‘T)HLt(I,BT)
and
Hu”(%a%,SLBH)I = ||u(t?x)||Lg(17BiL‘5H) .
We have the following embeddings which follow from the definition of the spaces

B,S;LISH . In this thesis, we shall always work using dyadic decomposition, and so it
is sufficient to consider the embeddings for low and high frequencies individually.

LEMMA 2.4.3. For the same range of p as in Lemma 2.4.2, for any u € B;LlsH,
and either

(i) (low-frequency embedding) s¥ < st and k <0 or
(i) (high-frequency embedding) st < st and k > 0 then

(2.4.3) HPI?HHB;g\sg S [1Pgul

oL H
Bpl 1
We shall later denote the low-frequency embedding by
B;fISf N B;é\s(’f
)

and similarly for the high-frequency embedding.
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We also have the following Sobolev embedding.

LEMMA 2.4.4 (Sobolev embedding for Besov-type spaces). For the same range
of po,p1 as in Lemma 2.4.2 and either
(i) (low-frequency embedding) s& — 1% <st - p%, and k <0 or
(ii) (high-frequency embedding) st — pdo > s — % , and k > 0 then

(2.4.4) 1Pl

1 < IIPEUHB;éwsgf :
PRrROOF. This follows from localisation, the above Sobolev embedding and Lemma
2.4.3. ([



CHAPTER 3

3D small energy scattering: radial case

3.1. Generalised Strichartz estimates for a class of equations

3.1.1. Setup. In this section, we shall obtain generalised Strichartz estimates
for the equation

(3.1.1) (1) +w (W) u(z,t) =0, (z,t)e R"xR

u(0, z) = Plug(x).

Here, w (Dg) u = Hya) (w(p)Hu(ayt), uo(z) : R — Cis radial and w : Rt — R is

a C3-smooth function. Recall that we only consider a > — (%)2 and d > 3. We

need to impose suitable conditions for w in order to obtain improved estimates. It
shall be seen that the following conditions will work. In fact, they are the same as
those in [17]:

(a(k)) There exists an a € R such that for r € (2F~1 2k+1)
(3.1.2) |w'(r)] 2 2k

(b(k)) In addition to (a(k)), there exists 5 € R such that « > g if k > 0 and
otherwise a < B if k < 0 such that for r € (2F~1, 2k+1),

(3.1.3) " (r)] > 2k

and |w”(r) /W (r)] < 27F for r € (281, 2k+1),

For w satisfying these conditions, we shall obtain the following estimates:

THEOREM 3.1.1 (Radial refined Strichartz estimates). Let d > 3, k € Z, 2 <
q,r < o0 and ug € L2 (R and a > — (%)2, and furthermore, if — (%)2 <
a < 0, impose also that ro <1 < 1) = g Then,

(a) (General region) if q (5 — +) > 75 and w satisfes (3.1.2). Then,

T

—~
[V]|=H
Sl

e

~—

. . &
||eztw(D )PIgUO”LzLQ <2 HUOHLE,(R”) .

(b) (Refined region) If 72 < q (3 — 1) < 725 and w satisfies (3.1.3). Then,

||€itw(D“)PgU0||L§L; < 2M0a) l[uoll 2 (ray

where 0(r,q):g_4_ﬁ_(a_ ) (452 — 4=2).

T

Furthermore, along the endpoint case q (% — %) = ﬁ, we have

. 2 T
e Po) PPugll g S (ko= ) 320D ol gy

17
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PRrROOF. We shall below prove the following estimates:

. d_d__ o

(314) ||eltw(Da)P’;luO”L%L; 5 Qk(2 = 2) ||U0||L§(Rd)

(3.1.5) ||e”“(D“)P;?U0||LgL; < 2k [uoll 2 (ma)

(3.1.6) P2 Plug |l rery S (k(ar = 825 Jluol| 2 (gay -

We shall interpolate of the above estimates with the estimate [|e"(P«) Poug|| oo 12 <
[uoll 12 (may- In particular, we see that to obtain an estimate on the LIL" norm,
we shall need to interpolate between the L{°L2 estimate and the L{LP where

1/p=1/2—(¢q/2)(1/2 —1/r). Doing so, we obtain the above estimates. O

Before we prove these estimates, let us make a few reductions. We shall first
use the Hankel transform for radial functions u:

(Moo f)(s) = / Uy (50) () deo(p).

First, we apply the Hankel transform to (3.1.1) to obtain a first-order ODE iu; +
w(p)u = 0 with initial condition u(0,p) = Pfug(p). We may solve this ODE to
obtain that

(31.7) u(t,) = ¢ Blug = Hy 0y (60 (p) ooy (u0)) -

Our goal is to obtain an estimate

Heitw(Da)P,?uO”LgL; S C(k) lluoll 2 -

Using the characterisation of u as in (3.1.7), and the fact that u is radial, this
is equivalent to the estimate (in the following discussion C'(k) is always the same
quantity):

H'Hv(a) (6““’(”% (p)HV(a)(uo)) ’

Thus, replacing ug by H,(q)(uo) and recalling that H2 = 1, we reduce to obtaining
the estimate

S C(k .
o, S CO8) ol 2

Moo (“nlopmo) |, . S CE) ol

Using the definition of the Hankel transform, we have

o0
_d-2 itw 4
s~ / ) 1, ) (sp)r(p)uo(p)p? dp S C(k) Jluoll .z -
0 Licr '
Now, converting £3 to Lj, we instead reduce to proving
o
d—1__d—2 ;i ]
s / €0 T, ) (sp) (p)uo (p)p* dp S Ck) Jluoll 2 -

0 LiLg )

Now, replacing ¥ (p) with 1(27%p), as well as applying a change of variables, we
instead reduce to showing

‘222'@5%1%2 / 1@ 0) 1 (9 sp)olp)uo(2F p)dp
0
Finally, replacing uo(2¥p) by ug(p), we finally reduce to showing

oo
a1 a— ) k
5 —1_d_2 /g eitw(2 p)JLug(2k3P)¢h(p)u0<p)dp

< C(k) [luoll .2 -
LiLy

S27*C(k) ||UOHL3 :
LiLy )
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We shall now denote this integral by
(o)
v(a itw (2"
T (o) (t.5) = [ 05,0, sp)in(punlp)dp.
0

3.1.2. Estimates: part 1. We shall closely follow the method of [17] to
prove Theorem 3.1.1. In fact the main point of this section and the next shall be
to identify differences between the method used in [17] and here, and how these
differences do not in fact affect the proof. First, we have in the region |s| < 27%:

LEMMA 3.1.2. With the notation as above,
d=1_d—2 __(a _
()5 =TT (o) llgay S 27R2M

Here, we define xy as follows. Let n : R — [0, 1] be an even, smooth and radially
decreasing function supported in {s : |s| < 8/5} and such that n =1 on |s| < 5/4.
For k € Z, we define yx(s) :=n(s/2%) — n(s/2871) and x<k(s) := n(s/2%).

PROOF. See [17, p. 11]. Since we have that v(a) = 4/ (‘15—2)2 +a > 0, the

proof can be adapted immediately to this context. ([

57927 Juol 2.

To deal with the region |s| > 27%, we decompose

V(a) Z Tu(a)

ji>—k
where

175" (wo) = x5 (5) / e 1, ) (2* )0 (p)uo (p) dp.
We have the following estimates:0
LEMMA 3.1.3. Suppose that k € Z, w satisfies condition (a(k)), 7 > —k and
2<q <7< oo, Then, |Thuollgey S 270002527 fugl| s
PROOF. See [17, p. 12] O
Thus, we obtain that for % <(@d-1)(3-1

d—1 d—2

Ix>—k(s)s ™ = TP (ug) | oo

~ NI Dol pa s

A
™
2

Jj=—k
s 220000 R 0 ug 1
S 275 2R )27 fug | s

Thus, combining this with Lemma 3.1.2, we obtain Theorem 3.1.1(a).

3.1.3. Estimates: part 2. Now, we move onto the refined estimates (part
(b) of Theorem 3.1.1). We make a slight adjustment as compared to [17] in that we
have for general v (as opposed to (d — 2)/2) that we may write the Bessel function
Ju(r) as
(3.1.8)
ei(r=F-%) y ¢ilr—-%)

2r1/2

as in [56]. Interestingly, we notice that changing v amounts to a phase translation
and so in fact, will not affect our estimates. More precisely, we may apply Van der
Corput’s lemma to obtain the same results. We recall Van der Corput’s lemma:

Ju(r) = +Cr T e TE, (r) — Clr 7 €T E_(r),
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LEMMA 3.1.4. Suppose ¢ is a real-valued smooth function on (a,b) and that
|p") ()| > 1 for all z € (a,b). Then, if k >2 or k=1 and ¢ is monotonic:

b Ch ’
/ 61A¢($)¢(Z) dx| < Wk <|¢(b)| +/ ¥/ ()] dx) ‘

Thus, we may still decompose T7 ) up into the same two components and write

T uo = M7 puo + E7 up where

MY puo(s) = xj+x(s) / /@000 (p)ug(p) (sp) % dp + c.c.,
and
. k d—
Y uo(s) = X;+1(5) / e (p)ug(r)(sp) T Ex(sp) dp + c.c..

Here c.c. denotes the complex conjugate of the first term. With the same decom-
position we may proceed as in [17] to obtain Theorem 3.1.1(b).

REMARK 3.1.5. Finally, let us remark that we can obtain spherically averaged
estimates for non-radial initial data using the orthogonality of the spherical har-
monics. In particular, given some well-behaved initial data ug, we may decompose
it using spherical harmonics:

o d(k)

up(z) =Y ) ari(r)Yia(9).

k=0 =1
Thus, we solve (3.1.1) on each harmonic subspace to obtain a solution

oo d(k)

eltwDa)y . — Z Z b1 (1) Y, 1(0).

k=0 Il=1

Using the representation of L, on the kth spherical harmonic L2, (R?), we reduce
to solving the PDE (with b denoting by ):

iby(r,t) + w (Apap)) bz, t) =0, (r,t) € (0,00) x R
(3:19) { vt G

Taking the Hankel transform of order v(a, k), we find that
b = Mua,r) (eitw(p)HU(a,k)(ak,Z)> :

Now, in order to obtain the estimate ||€itw(Da)U0||L¢tl‘/::L2(sd—1) S O(k)|luollpz , it is
equivalent to obtain the estimate

S e (0 My 0y (011)) < Ck) uoll 2
kol LILrL2(Sd-1)

Again, using the fact that H2 = id, we reduce to showing

> Huaw (eitw(p)ak,l) S C(k) lluoll s -

k,l LILrL2(Sd-1)
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Now, using the L? orthogonality of the spherical harmonics on both sides, we may
further reduce to showing

HHy(a,k) (eitw(p)ak,z> ‘

<
ez, S 0 lakdlly,

Thus, it suffices to prove the above estimate for each pair (k,1) and then take the Eﬁ}l
sum of these estimates. This then gives spherically-averaged Strichartz estimates.

3.2. 3D radial small-energy scattering

In this section, our goal shall be to use our estimates from Section 3.1 to study
scattering for the following equation in three dimensions:
{ 8fu—Au+#u+u:u2, (t,z) € R x R3

(3.2.1) u(0,2) = ug, u (0, ) = uy.

Recall as before that we shall denote D, = /£,. We first obtain the following
estimates. The further restriction when —pu(0)? < a < 0 is needed in order to
perform Sobolev embeddings in the proof of scattering later.

PROPOSITION 3.2.1. Let ug € L? be radial. Let d >3, and 2 < q,r < 0o (and
also if —u(0)? < a < 0, then further restrict ro < r < r{) with % + 4= < a5l
(which we shall refer to as admissible pairs in the general region) Then,

[P Pg|

sapaapia s S P0G

1
L,
Similarly, we have the dual estimate with admissible pairs (q,r) and (g,7) in the
general region:

t
/ (H(=)(D2) p(s) ds
0

Q|

Furthermore, for % + = 5
admissible pairs in the refined region), th

||eit<D"'>P’?¢”(%y%,%+d d‘g717%7¥) 5 HPngﬁHQ

)

n

Also, we have the dual estimate with admissible pairs (q,r) and (§,7) in the refined
Tegion:

SIFly 52+ g-h-g-1-1-22))

PROOF. Let w(€) = (€) = (14+£2)'/2. Following the notation in Theorem 3.1.1,
we may estimate w’ and w” to obtain that « =2 and 8 =2if k <0, a =1 and
B = —1if k > 0 satisfy the assumptions. The idea here is to substitute these values
into the exponents as in Theorem 3.1.1, and to combine this with the adapted
Littlewood-Paley square function theorem, we obtain our estimates. For instance,
let us consider the first set of estimates. In this case, for low frequencies j < 0, we
have

Heit(D”Pj{onHLng S 2 | P uol| 12
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with s, = § — 2 — 4. Meanwhile for high frequencies j > 0 we have

||€it<D“)PJqu0HL;?L; < 24| Piuol 2
where s = # + % +1-— %. Therefore, we may use the Littlewood-Paley square

function theorem for P? (Proposition 2.3.3) to obtain the above estimates. More
specifically, we have

N

e P POl 3 sslsm) = Yo 22kt P Plg )|}
k€Z,k<0

N

D e Pt P 2

kEZ, k>0
Li

[N

A

S 22D peprg(a) 2,
k€Z,k<0

N

D g ePn pepeg ()2,
keZ,k>0

N

A

Y PP

k€Z,k<0

=

+ D IEEPo()lI3

kEZ,k>0
1P} 8|2

A

The main result of this chapter is

THEOREM 3.2.2. Let 0 < k < 1 be sufficiently small, and suppose that (ug,u1)
is radial and satisfies ||(uo,u1)||g1xz2 < 1, then there exists a unique solution

u(t,x) to (3.2.1) with a > o= (3(35 — k)) in the space

1 3 2
K, = — 3K

S(I)=CR,H)n (2, 0 E

7 N )
ik,
10" ")
that also scatters: there exists ut(x) € H. such that

[u— i (Dq) Opu — Pl up ||z — 0,

as t — +oo.

We also recall the definition o := 452 — / (%)2 +a=92—/u(02+a
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3.2.1. Motivation: low frequency interactions. Now we have the lan-
guage to motivate the following application of the above estimates. First, we shall
perform a change of variables U(t,z) = u(t, ) —i(Dy) " tu, (¢, z). From this, we get
a first-order equation (see the next section for more details):

1 _

i0,U 4 (D,)U = Z<Da>*1 (U +20U0+0?%), U(0,z) = ¢(x).
In the rest of this subsection, we shall discuss the simplified equation
(322) ZatU + <D(L>U - <Da>71U27 U(O,Z‘) = ¢($)

We now want to establish well-posedness for this equation. To do this, we shall
proceed with a contraction-mapping argument. Firstly, by Duhamel’s principle, we
have

t
DyU = et Pagy — z/ et=3)Da) (D V12 ds.
0

Let S; = (0,3,001), N (3,15, 2l5),» Xu = {U € S; : ||U||s, < M} for some M
and I = [0, 7] which we shall choose later so that (®4|x,,,d) with ®4 : Xpy — X
is a contraction with respect to with d(U,V) = ||[U — V||s,. Note that (X, d) is

complete. In this case, we have

t
/ ei(t75)<Du><Da>flU2 ds
0

195010 p.0), S [P 4+

0.3.011), (0.3.001),
We handle the first term by frequency localisation and the second term by an
inhomogeneous Strichartz estimate with norm L?.;H} to obtain

196000, 3,01, S 180y + [P0} U]y S Nblizs + 1|02z

Now, we apply Holder’s inequality for the finite time interval and also Holder’s
inequality in x to obtain

196003 o1, S 190y + T 1013
Now, we use the embedding H! < L* to obtain that
16l a2 + TN e o S Nllerz + TNV o iy S llerz + TIU Y, -
We may do the same for the second norm in S(I) to obtain that
126Ulls, < ol + TIUIS,

Thus, if we set M = 2||¢| g2 and T' sufficiently small, then we find [|[®4Ul[s, < M
so that indeed ®4 : X3 — Xas. Now, we also verify that the contraction condition
is satisfied. In this case, we find that after using an inhomogeneous Strichartz
estimate:

12U = @5Vlls, < 1{Da) ™ (U = V)|l f2yparsn
S TIU = Vs U+ Vs,
S MTIU = Vs,
Now, if T is chosen sufficiently small, then indeed, (@4, d) is a contraction, meaning
that we have a unique solution in Xj;. To extend this uniqueness to all of Sy, let us
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consider an interval [0,¢*] C [0,T]. Then, applying the above estimate, we obtain

IU=Vls, < {Da) " (U? = V)l pyparsn
S U = Vis IU+ Vs,
S MU = Vs,.

Thus, if we set t* to be so that M Ct* < 1, then in fact, we see that |U — V|5, <
(1/2)|IUv || x,, so that indeed U = V. We may use a similar argument to obtain
continuous dependence on data.

We shall now discuss the global well-posedness and scattering of this problem
for small data. Here, we shall identify the main obstructions: non-radial data
and low frequency terms. We shall then devote the remainder of this chapter to
dealing with this obstruction via a normal form transform in the flavour of [22].
The normal form transform in the mentioned paper admits an integration by parts
for low frequencies which essentially converts the quadratic term into a cubic term,
and thus fixes this issue. In the rest of this section, we shall first discuss why
the quadratic term is an issue, and why this issue does not arise for a cubic term.
The idea is that we need the radial assumption in order to make valid choices for
admissible pairs to close the arguments that follow.

In order to obtain global well-posedness of the problem, we want an estimate
for the solution U which is independent of the length of the time interval I. Due
to the quadratic term U? in (3.2.2), we want an estimate of the form

126Ulls, < ol + CIUI,

where C' > 0 independent of the length of the interval I. If we are able to obtain
such a bound, then for |[¢[| 1 < € for some e sufficiently small (i.e. for small data),
we obtain that

M
[85Ulls, < 5+ M2 < M,

which would give a global-in-time bound for small data as we may set I = R.
As we will see later, the key point is that the pair (¢,7) = (2,4) is admissible in
Proposition 3.2.1 — that is, for radial initial data, which allows our argument to
proceed. In the non-radial case, we do not have Strichartz estimates for this pair.

With this, let us now see another problem: low frequencies. To see why low-
frequency components are an issue, let us first decompose the solution U into high
and low frequencies: U = P¢,U+P2,U := Uy +Uy. Then, U? = Ug+2UxUL+U}.
Firstly, we see that the high-high interactions can be controlled by S; via the
(¢',r") = (1,2) estimate:

t
/ e t=s)Da) (D NVTIUZ ds
0

Now, using Sobolev embeddings and the fact that we have are studying the high-
frequency component, we have

o, SVl 3,00) S 10 3 00y
I

HUHH(%,%,(”O) S ||UH||( 01%) N S ||UHH(

30
10°

1 1.3 9 l)
2> 2107110

so that

t
‘/ =) Pa(D) T U ds
0

11y
2°4>

SN0l (3.3.00) S HUHII(; ERTERARS U3, -
St 271077110
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Let us first look at the low-low interactions. Similar to before, we have, for instance
that

We now note that have the embedding

¢
/ et (t=5){Da) (D,)"U? ds
0

< WUE
s, (1,%,0/0)

A

2
||UL||(%7%70|0)

IULli(3,3.00) SNULl(L 2 210y

and since we are working the low-frequency component, we cannot close the argu-
ment because we cannot control this norm by (%, 13—0, %|0) Thus, we cannot control
the low-low interactions using Sobolev embeddings. A similar argument works for
other choices of admissible pairs (¢, r) and also for the low-high interactions. Thus,
we shall now remove these low-frequency terms via a normal-type transform, and
in doing so, we shall be able to obtain uniform estimates and obtain scattering for
(3.2.1).

3.2.2. Normal-type transform. In this section, we shall follow the argu-
ments in [22] to obtain a normal-type transform in order to eliminate certain inter-
actions (for instance low-low interactions) which will allow us to obtain some uni-
form estimates and scattering results. In particular, we take the Hankel transform
of order v = v(a) to obtain the ordinary differential equation 874 + (p? + 1) u =
H, (u?). Factorising and letting

Ut,x) = u(t,z) — i (D) ™" ug(t, z)

(corresponding to (t, p) = a(t,p) — i(1 + p>)"/?4,(t,x) in frequency space), we
obtain the first order ODE

(3.2.3) (0 + (D)) U = (Do) 2 = ~ (D)~ (02 + 2UU+U2) :

AN

As we shall see later, it shall suffice that we consider the equation
(3.2.4) (i, + (D)) U = (D,) " U2

We shall define a normal-form transform Q(U, U) for (3.2.4) shortly, and discuss
how it can be modified for the other quadratic terms in (3.2.3). The idea is we want

to consider (U +i (D) QU, U)) (t, ). This normal-form transform satisfies the
following equation in analogy to (3.2.4):

(i9, + (Do) (U +i(D) O, U)) — (D) U? iU, U)

+i (Do) Q(i0:U, U)
+i(Dy) " QU i0,U).
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Next, making use of the fact that id,U = — (D,) U + (D)~ " U?, we obtain

that

(04 + (Da) (U +(Da) ' QUU)) = (D)™
a)” QU= (Da) U, U)

(U7 - <Da> U)
o) QD) U T)

(U.(Da) " U?).
Now, we shall derive a suitable Q(U,U) for our purposes. Consider the quadratic
term (Dg) " U2+iQU, U)+i (Dy) " Q(— (Do) U, U)+i (Do)~ QU, — (Do) U) (ie.
the first three lines of the right-hand side of (3.2.5)). First, using the convolution
formula for the Hankel transform (Lemma 2.2.3), we note that

D7 = )L

H, (p) H(HU#H,U)

= Hlp) / / Do, , ) - o (U)(@)Ho(U) () do() ().

Thus, if we define

DV(‘r5y7p)
mU.0) = [ [ P a0 @) 0) ) die) )

we see that iQ(U,U) + i (Dg) ™' Q(— (Do) U, U) 4+ (Dy) ™' Q(U, — (D,) U) is equal
x) _{y)

xy?p) TN Ty )M x w(z)dw
/ L w2 (5 - ) me e )6 dsts)

Thus, the resonance term H,Tres(U, U) is equal to

325 [ [0 m Dyl R0 @M 0)0) di) o)

We claim that since the convolution is zero unless one can form a triangle with
sides of length x, y and p. In particular, we have particular, p < x + y and from
the modulation bound (e.g. see [53]), we find that

1
: 28
(min{|z, [y|, |z + y|})

if we assume that min{|z|, |y|} < 27 for some large constant B > 0. Similarly,
we may obtain that |(z) £ (y) £ (p)| 25 1. Now, to verify the claim, we use
Fubini’s theorem (see [60] for details) to obtain the following weighted version of
the convolution:

Ho (p7Ho (f) Mo (9))(r)

(3.2.6) (@) +(y) —(p) > (2) +(y) —(z+y) >

/0°° /Ooc(my LG / T (@p) T (yp)Ju (rp)p' ™" dp dw(w)dw(y)



3.2. 3D RADIAL SMALL-ENERGY SCATTERING 27
Now, we may use the identity (see [61, p. 411(3)])

| an ) o ap
= Cy(rey) "Dz yr,

where A, ., is the area of the triangle with sides of length x,y and r and zero
otherwise. Thus, we define the weighted convolution #,, via

g = / / (ruv) ™ T Y A2 f(2)g () duo(z)de(y)
such that

(3.2.7) Hy (0" Ho (f) Mo (9)) = fH#wg-

For the purposes of this thesis, 1 —m(z,y) is a sum of terms of the form ¢, (x)dx(y)

where ¢;, ¢, are Paley-Littlewood multipliers. Thus, (3.2.5) is a sum of terms of

the form M, (H,(P;U)H,(P,U)). Thus, we may localise the factor of p7 in (3.2.7)

via H, (P;U) and H, (P,U). Now, applying the above identity, we obtain the claim.
Returning to (3.2.5) we see that

(i, + (Do) (U i (D), U)) = (Do) YH, Tres (U, U)

+i (Do) QD) U, U)
+i(Da) " QU, (Do)t U?).

Therefore,

(3.2.8) Ult,z) = eitDa) (Uo+¢<Da>—1Q(U, U)(o)) — (D) QUL U)
(3.2.9) —i /0 t e =) Da) (D NV Treo (U, U) ds

(3.2.10) + /Ot ¢ t=)Da) (DN Q((D,) U2, U) ds

(3.2.11) + /Ot e t=)Da) (DN QU (D,) ™ U?) ds.

Finally, let us remark on frequency decomposition. Let 8 > 0 be a large parameter
and

LL = {(j,k)€Z*:j k< —3+10}

HL = {(j.k)€Z?:5>—-B+10,k < —3+10}
LH = {(j,k)e€Z®:(k,j) € HL}

HH := {(j,k)€Z*:jk>—-B+10}

so that we may write

U(z)U'(z) = + + + > | erupty).
(j,k)eHH  (j,k)eHL (j,k)eLH (j,k)ELL
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and also
(UU")s = H, / / Dy (0,9, p)ms (2, y) Mo (U) (2)Ho (U) (y) () des(y).
0 0

Using the convolution formula for the Hankel transform, this is equal to

UU")s= > PUPU.
(Gk)es

3.2.3. Small energy scattering in R3. In this section, we shall establish
some uniform estimates for small initial data to establish some scattering of the 3D
quadratic Klein-Gordon equation with inverse-square potential. Here, we shall use
the normal form transform with m = mpp so that Tres(U,U) = (UU' )gg+HL+LH-
From the above discussion, we also have heuristically that Q(U,U’) ~ (UU') L.
Let €, k > 0 be sufficiently small (this extra space in the exponents is used for large
energy problems). We shall define two spaces

1 1 3 2
So(I)=(0,2,01) Nz, =-k=-3
a( ) < a27 | >I (2710 H’a5 K

and also the space

7+H>
10 .

~ 1 1 11
So(I) = <2 €3 —|—6,56> N (3, & e|e> .
We shall see below that S(I) can be controlled by S(I). We also note that S(I) is
chosen to obtain H]} estimates in Proposition 3.2.1.
In this section, we shall obtain a uniform estimate for ||U(t, z)||s(s) in terms of
the norms of (3.2.8 — 3.2.11). Thus, we will need to estimate the resonance term,
the boundary term and the trilinear term.

LEMMA 3.2.3 (Resonance term). Let U and U’ be radial. Then,

t
/0 PN (D ) UU  gmy s on ds S 10N U 5y

(3.2.12) ‘
S(I)

PRrROOF. For both norms in S(I), we apply the inhomogeneous Strichartz es-

timate with dual pair (%, 4) chosen to be (after calculating the corresponding

regularities) (1 — 2¢, & + 2¢, 2¢|4¢). We start with the HH case. First, note that by
frequency decomposition and Holder inequality, we have for (j,k) € HH that

—e(itk
||P]qUP’gU/||(1—26,%-‘1—26726'46) 55 2 <G+ )|‘P]€IUH(%—E,%+E,6€)|P£U/||(%—E,%+E,6E)'

Thus, we have

t
] [y W as| g Y IPURU s s
0 S(I) (j,k)EHH
5,3 Z 2_€j||ijU||(%—e,%+e,6e)
(jk)EHH

' 27€k||P]€aU/||(%—E,%+€,6€)'
Sﬁ ||P§OU||(%—6,%+6,66)

'HP(EIOU,”(%—G,%-FS,GQ'
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This is what we needed. Let us now verify that (3 —e€, 1 + ¢, 6¢) is controlled by
S(I). By the above Sobolev embedding, we see that for j > —f + 10

1 3 1 1 1
(26,(126) (10/1)+26~2,5> >y <26,4+e,66>

with s = 6e+3 (1 —2¢) (5 — k) —2¢- 3 —  —¢). Since s < (1 —2¢) (5 + k) + 2¢
we also obtain that

(;_67(1—26) (ﬁ)—n),(l—%) (170—1—,%)4-26)
. (;e,u?e) (f;)n)s)

From this, we may conclude that

(1—2e) L O AN FUR% 1 [P (S S
DN\10 "o\t ) T g T Te )
and indeed (% — € i +e, 66) is controlled by S(I). The HL and LH cases can be

handled similarly. We shall deal with the HL case, as the LH case is identical.

Here, we choose the dual pair (%, 4)tobe (3,3 —¢, 1 +¢). Again, using frequency

decomposition and Holder inequality, we first obtain for (j,%k) € HL that
HP]{IUPISU/H(%,:;—G,%-&-G) S 26(7j+k)HPJ('IU”(%—G,%-&-e,i—iQe)|‘P£U/||(s,%—26,—e)'

= ~

Thus, we have

e D IPPURU 33 c1ve
S(I) (j,k)EHL

Sﬁ Z 2_6j||ijUH(%fe,%+e,%+26)
(4,k)EHL

t
e ) WU s
0

' 2Ek||PIg‘U’H(e,%72e775)
Sp P20Vl (3-e 1462420
'||P%0U/H(e,%f2e,fe)'

Similar to in the HH case above, we have S(I) <y (3 — €, 1 + €, + 2¢). For the
low-frequency part, we first use Sobolev embedding to obtain

(=20 b wses (B ) ) (e -20)
(

where s =3 ((1—2¢) -3 +2€¢- (3 — k) — 5 +2€) —¢€) > (1 —2¢)(2 — 3k). Thus,
we have S(I) <, (€, 1 — 2¢, —e). O

We move on to the boundary term. We shall need the following result regarding
the boundedness of Q(f,g).

LEMMA 3.2.4 (Boundary term). Let U and U’ be radial. Then, for a >
oM (555 — K),

(3:2.13) [ 2,0 S 05U s

5(I)
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PROOF. Again, we convert our H} estimates to L? estimates to compensate
for the (D,)”" term. Thus, we need to consider

!
(U, U )H(o,%,o)
and
!
|‘Q(U,U)H(%7%_K2 n|10+m)'

First, we deal with the (0, %,0) norm. We apply Sobolev-Besov embedding as well
as Proposition 2.3.4 to obtain that

||Q(U, U/)H(o,%,o) 5 Z ||PaU||(0 1.0) ”Pk U/||(0,4,

(j,k)ELL
S 20 IR Uy pl B o g
(G.k)ELL
34 a 3 a
Se >0 2P Ul0s02 I 0.0
(4,k)ELL

N

| P<oU || s(ry| P<oU’ || s(1)-
It remains now for us to control the other norm in S(I). We have

UV U 52—
S 2 BN s (o) U 2 (20)0)

(k)ELL
S Y 2"‘J||PGUH(£,%( k), %)22kHPGU/H(%,%(T)_K),_%)
(,k)ELL
SIP20UN (2 1 (2 —w).— 1) [IPZU"ll¢

0
Finally, we verify that S(I) controls (i, % (1% — Ii) , %) for low frequencies. We

have
111 173 o (L1(3 1
122 72\10 ")° 12\10 ") 72

where s = % — % > % : (% —3k) for a sufficiently small choice of k. Thus, we indeed

have the low frequency embedding.
Notice also that (35 — k) & (ro,r)) unless we add a restriction that a >

o 1(3(3 — k)) - i.e. the range for r for the case d = 3 is

10
1 1 1
ga < - <1l- ga.

Thus, we need to set o < %(13—0 — K) to obtain the required restriction. (]

LEMMA 3.2.5 (Trilinear term). Let U and U’ be radial. Then,
(3.2.14)

¢
‘ / ei(t—s)(Da> <Da>71 Q(<Da>71 UU”,U’) ds)

0

PRrROOF. Again, we shall begin by applying the inhomogeneous Strichartz es-
timate. In this case, we shall choose the dual pair (¢',7) = (1,2). Thus, we find

Se 10N lT s 10751y
S(1)
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that using (3.2.6) along with Holder’s inequality:
—1 a
12D UU" Dl p00) S 100" 2,300 1PV 13 5.0)

3’3’

1 a /
100N 3.4.0) [IPE0 3,510

219 5
33 2
€J3

Also, for (j1,72) € Z2,
a a i1 —2eit
IPLUPLU 230y S 29 21 || P RU(

3137

—ele)
. 9eJ2= 233 | pa UMl(1,3,—ce):

11
316

Now, note that

IBLUPLU P s S [IRU o[, - (1200 0
< @
~ H”PJlUH(%v%v—E\e) H”P’“U H(§v€ =)l
73
Now, we note that 5(1) — (%, %, —e|e) to obtain the requlred result. O
We should also check that this component of 5 (I) can also be controlled by
S(I). In this case, we need to interpolate between 2 of (3,35 — k,2 — 3k | + k)

and 1 of (0, %,0|1) Let us first check the followmg embedding for high and low

frequenmes
1273 c L s ) o (L
373\10 ) T3 gtLlH 376 )

For low-frequency we see that we need

s <767§+2 ifn +1 3
L= 6 10 32

and for high-frequency we see that we need

3 3 1
—< .
6+2<10 >+38H

We see that we may choose such values of sy, and sy so that

2 (2 3 <
- — 3k s
3\5 =k
and we can choose sy so that

< 2/(7 . L 1
=3 \10"") " ®
so we indeed obtain the required embedding to control S;. Thus, we obtain the

following perturbed Strichartz estimate:

PROPOSITION 3.2.6 (Perturbed Strichartz estimates). Suppose d = 3. Let 0 <
€ < k <1 and U is a solution to (3.2.8 - 3.2.11) where Uy is radial and a >
o Y (3(3 — k). Then, we have

10
1UNlsry S W0ollmz + Uy + Uy + 1013 r)-
Thus, we also have small data scattering for (8.2.1).






CHAPTER 4

Small energy scattering in higher dimensions

4.1. Function spaces

In this section, we shall review the definition and basic properties of UP and VP
spaces (see [24]). The UP spaces were used earlier by Koch and Tataru [39, 40],
while the V? spaces were introduced much earlier by Wiener [62]. Firstly, we shall
denote the set of finite partitions of the form —oo =ty < t; < --+ < tg = o0 by
Z. The set of finite partitions of the form —oco < tg < t; < -+ < tg < oo shall
be denoted by Zy. Then, for 1 < p < oo and {tx}to<ik<x € Z and {¢gto<i<ix C
L?*(R?, C) such that 21[::0 lfxll5> =1 and ¢o = 0, a function of the form

K
a= Z l[tk—17tk)¢k71

k=1

a UP-atom. We then define the atomic space UP as

U= u= Z)\jaj € L®(R, L?) : a; are U? atoms and {\;}1<j<c0 € £
j=1

endowed with the norm

o0
[lul|ge == 1nf < | Aj]ler : u= Z/\jaj,)\j € C,a; are U atoms
j=1

Also, we define for 1 < p < oo the space VP of bounded p-variation as the space
of all functions v : R — L? such that lim; ,,, v(t) = 0 and such that lim;_, ., v(t)
exists and also satisfies

K 5

[vllve = sup ( v(te) — U(tk—l)ll’ﬁz> < 0o0.
{teto<k<x €2 \},

We define VI C VP as the subspace of all functions v € VP such that limy_, . v(t) =

0, lim;—, o v(t) exists and ||v||y» < co. Also, denote by Vi, the space of all right-

continuous v € VP and Vi ;. the space of all right-continuous v € V.

LEMMA 4.1.1 (Basic properties of UP and VP spaces). Let 1 <p < g < 0.
(i) UP, VP, VI and V. are Banach spaces.
(ii) Let w € UP. Then u: R — L? is a right-continuous.
iii) Let u € UP. Then, limy_, o u(t) =0 and lim;_, o u(t) exists in L?.
iv) Let v € VP. Then, limy_, 1o v(t) exist in L?.
(v) The embeddings VP — V9 and VI — V.1 are continuous.
) The embeddings UP < VE,. — U4 — L (R, L2(R?)) are continuous.

33
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LEMMA 4.1.2 (Duality). Let 1 < p < co. Then, (UP)* = V? in the sense that
there exists an isometric isomorphism T : V' — (UP)* such that T(v) = B(-,v).
In particular, suppose that u € V! is absolutely continuous on compact intervals
and v € VP, Then,

B(u,v) = —/Oo (' (t),v(t)) 2 dt.

— 00
Furthermore, we have the following dual characterisation of || - ||ur as
o0
s = s | [ @000 a.
veV#', ol =1 1/ oo

The above spaces UP and VP provide a framework in which we may define
function spaces adapted to the operators e**(Pa) . We now build adapted function
spaces with have desirable properties to close the contraction mapping argument:

U? = {u:R—)LQ:ejF"“D“)uEUp}

with norm
e

lullo .

We also define the space
VP = {v ‘R — L?: eTHDaly ¢ Vp}

with norm
eTit(Da) u)

lellve = | o

+it(Dg)

We remark that U? is again an atomic space with atoms of the form e a where

a is an UP-atom. We define some relevant projections. Let M € 2% be a dyadic
number. Note that in this chapter, dyadic numbers shall be denoted usually by
M, N and N’. Here, their relative size to each other is more important, and so this
notation is more convenient. Also, let ¢ be a smooth, even, non-negative function
such that ¢(t) =1 on |t| < 1 and ¢(t) = 0 on [t| > 2. Set also ¥(t) = ¢(t) — #(2t)
and Y (t) = ¥(t/N). Next we define the time frequency projection

Fi(Qnu) = Yy Fru.

Recall the space frequency projection is defined as Pgu := ¥n(Dg)u so that for
u € L2, (R%), we have

Pru = Hy iy ¥n () Ho oy u-
Define the modulation projection
(411) Qi[u = eit<Da>QMe:Ft<Da>u

such that for u € L%, (R%) and recalling the notation @ := .%;H,u, where in this
case v = \/u(k)? + a, we have

QX u = Y (r F ()i

We define Qﬁ p ¥ in a similar manner so that on each harmonic subspace, we have

QL u=ou(r F (o).
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We have the following estimates related to the above projections. The proofs are
the same as in [24] as the estimates may be reduced to estimates on UP and V?
via the definition (4.1.1).

LEMMA 4.1.3. Let M be a dyadic number. Let 1 <p < oo (and if — (%)2 <
a <0, then also ro < p < (). Then,

. + _1
(1) 1QaullL2ray S M ™2 |ullvz

. 4 1

(i) Q= pullrz@ay S M2 lullvz

T +
(i) [|QZppullur S llullur, 1@ yullor S llulloz

. + +
() 1Q%0ullve S lullve, 1QE ullvy S llullve

The U? spaces are able to inherit L?-based multilinear estimates related to free

solutions via the following transfer principle. This shall be especially relevant later
when we obtain bilinear Strichartz estimates which are of the form L? x L? — L2.
This transfer principle allows us to convert this to an estimate, say, Uil xU2 , L?,

which we shall need for the trilinear estimates, as mentioned in the discussion at
the start of the chapter.

v

LEMMA 4.1.4 (Transfer principle). Let Ty : L? x -+ x L? — L]
m-linear operator. Suppose for some 1 < p,q < oo that

o 1 I 1 ] PR M
t M

(R4, C) be a

There exists an operator T : UL x --- x UL ~— LY(R, L1(R%)) satisfying
||T(u17~-~7um)HLf(R,L§(Rd)) N ||U1||U_5’E1 "'||Um||U;m
such that T(u1, ..., um)(t)(x,y) = To(ur(t), ..., um (t))(x,y) a.e.

The above transfer principle allows us to bring L2-based multilinear estimates
within the framework of the UP and VP spaces, but at the moment, only for U?
spaces. We have the following result which allows us to form V? estimates as well.

LEMMA 4.1.5 (Interpolation). Let ¢ > 1, E a Banach space, T : UL — E a
bounded linear operator such that |[Tullp < Cq|Ullye for u € Ul. Suppose also

that for some 1 < p < g, it holds that [|[Tu|p < Cpllullyr where 0 < Cp < Cy for
alluw € UY. Then for all u € Vf,rci, we have

e c
(4.1.2) Tl < 2%2 (ln <CZ + 204+ 1)) lully,

where o = (1 —p/q) In(2).
Finally, we define the function spaces in which we shall perform the contraction
mapping argument

2

[Jullxs

<2N28||P;¢ui|?@>
N
1
2
. (zN%nPWP@) |

N
We put these spaces together and define X := X3 x X? and Y := Y} x Y.

[[ul
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4.2. Bilinear Strichartz estimates

4.2.1. Bilinear estimates for radial initial data. Let us begin our study
of the Klein-Gordon equation with inverse-square potential. As discussed above,
we shall do via the equivalent first-order system:

tiug(w,t) + (Do) u(z,t) =0, (t,z) € R x R
(4.2.1) { (0, z) = up(x).

In particular, we shall obtain the following bilinear Strichartz estimate initially for
radial initial data. In this chapter, we shall consider the range a > A4 where

d—2\2
422 A1 —(5), d=34
(422) ¢ { (84 —3d%), d>5.

This is the range for which the L* norm is enough to control the Hankel transform
at the origin when a < 0. We note that o' (%) = (84 — 3d?).

THEOREM 4.2.1 (Bilinear Strichartz estimates for M < N (radial case)). Sup-
pose that d > 3, a > Aq. Suppose that M, N € 2N and ups,un € L? are radial with
spatial frequency supported at frequencies M and N respectively (i.e. Pfun = up
and Piuy = un). Also, denote +; € {+,—} for i =1,2. We have the following
bilinear Strichartz estimates:

(E:I:Iit(Da>uM> (6:|:2it(Da>uN>’

a
1

a 1
Sa MAN 272 |Jupr|| 22 lun]|L2-

~

(4.2.3) ’

LiL;

REMARK 4.2.2. The coefficient can still be improved, as in [53]. However, it is
sufficient for our purposes. The issue lies in the estimate (4.2.5) below. Further-
more, we use the notation dw(x,y) to denote dw(x)dw(y) = x4~ 1dx - y¢~1dy. This
use will be justified via Fubini’s theorem.

PROOF. Let us discuss the proof in the case where +1 = 45 = +. The other
cases are similar, as will be noted below in the proof. We shall use the fact that
upr and uy are radial to reduce the L2 norm to the radial .#2 norm. Note that by
a slight abuse of notation, we shall write ups(2) = ups(|z|). Next, by duality,

(G (P ) (P ux) ) |-

Thus, the fact that f#ﬁ = E, the inner product becomes

<§7 (eit@)m(p)) ” (eit<p>@(p)>>L$$2

_ /R<@7 (eit<P>@(p)) 4 (eit<ﬁ>@(p))>$g dt.

Now, we expand the Hankel convolution®:

LHS of (4.2.3) =  sup

HGHL?;{:%:l

(eit(mm(p)) # (eit(m@(p)) _ /Ooeit(<w>+(y))m(x)g]\v(y)p(x’y, p) dw(z,y).
0

IFor ease of notation, we shall omit the extra integral signs. Also, recall the norm |u|| &» :=
157 w(z) dw(z) = [5° u(z) 294~ da.
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Thus, by Fubini’s theorem, we see that it is suitable to apply the Fourier transform
in the time variable, and obtain the following simplification for the inner product:

| (@t + hon) T @@ D)) ,, )

P

which is equal to

| G ). W)@ (1) DG . p) ol ).
0
Thus, in order to prove (4.2.3), it is equivalent to prove

(4.2.4)

/ TG + (9 ), T ()T (4) Dy, p) deo(e, ym)‘

Sa KGal|G(u, p)||r2 z2llunm || 22 [un]] 2.

First, we shall perform a change of variables: u = (x) + (y) ~ (y) and v = x with
dudv ~ dzdy. (Here, the other cases for +1, +5 can be handled similarly as we have
assumed that 1 < M < N, so we always have () < (y).) Thus, we obtain also
with the Cauchy-Schwarz inequality that the left-hand side of (4.2.4) is bounded
by

Nl

Gl [ ([ @m0 ) o dti)ants) dote)

1
2

A

(G222 ([ @) T ()DL, " ot 0)))

1
2

S Gl N ([ @ T D) ol

Thus, it remains to deal with the integral. For this, we use Lemma 4.2.3 which we
shall prove shortly. Combined with the fact that x ~ M and y ~ N, we obtain the
required result. ([

We now prove the integral estimate required above, as well as a more general
estimate. We again note the slight abuse of notation where we have identified a
radial function f(z) as a function in |z|.

LEMMA 4.2.3. Let u and v be radial. For a > Aq, v :=v(a,k) and d > 3, we
have

(4.2.5) / " (w@)o) Dy (2,9, 0)? dwle,y.p) < |V s

u(y) ||

da

yz

i llzz llyt Nl

PROOF. Using the definition of D, (z,y,p) (we shall from now on omit the
subscript v) and Fubini’s theorem, we find that the left-hand side of (4.2.5) is

/0 h w(z)*v(y)*U(zn)U(yn)U (pn)U (zi)U (yi)U (pii) dw(z,y, p,n, 7).

The idea is to use the orthogonality of Bessel functions in the p variable. Thus, we
write the above integral as

/0 " u(e)2o)?Uan)U ym)U @)U (yi) [ / " U(om)U (o) du(p)| duta, g, 7.7).
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We may deal with the inner integral using the following Bessel function identity
/Ooo Ju(pn)Ju(pif)p dp = %5(77 =)

Then, the whole integral becomes
| @) evm)? defe.s.n

(1.26) = Itz Uz,

Now, we use Hélder’s inequality and interchange of norms to obtain

(42.6) < [u(@)U@n)|s g2 lu(y)U Iz 2

2
< (@)U @n)lizzz 2 @)U ()l zz g -
By scaling, we also have
2
lu@UEnl ey = [u@IvEnz,|,

u(z) ’
2 U2
T4 2

Now, we note that this .4 norm is finite only for a > Ay4. Therefore, we obtain
the required result. (I

REMARK 4.2.4. We can try to improve the estimate (4.2.5). We can try the
following estimate:

/ " (@)U an)? w)Um)? dw(z,y.n)

< - 2 2 1 [ xn ? 2

< w(@)v(y)”— | U —] U dw(n) dw(z,y)
0 ¥~ Jo )

Now, we split the inner integral into regions xn/y > C and xn/y < C to estimate

the Bessel function. Suppose that U(z) = U,(z) is bounded near 0 — i.e. v > 952,

In this case, the xn/y < C integral is bounded and for the xn/y > C integral we

have
1

o 2(-42-3)
/ <~T77) - -3 dn.
n>Cy/z \ Y

If we have y < x, then y/x < 1, and so we obtain a bound on the inner integral
that is independent of x and y. Putting everything together, we have the estimate

u(y) ||

d

/0 T @@ )@, dlw,y,0) S [Tulles @)%z

<

Howewver, because we imposed that y < x, this estimate gives weaker coefficients for
the bilinear Strichartz estimates (Theorem 4.2.3) compared to (4.2.5).
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4.2.2. Weighted Hankel convolution estimates. In this section, we shall
first prove the following lemma, which we shall use to prove the bilinear Strichartz
estimate for comparable frequencies. We shall focus on the radial case. We will also
need the spacetime Hankel transform which we define as H{ u := #H, zu. As we
have seen previously, it is useful to take the Fourier transform of the time variable.
‘We denote the corresponding convolution by #;,. From the multiplicative structure
of the usual convolution on ¢t and the Hankel convolution of x, we can readily deduce
the multiplicative structure of #;,. Indeed, we find that for well-behaved f and g,
we have

ZHf)0) = P / () ) d(e)

%/ F(t,9)3(t, 2)D(x,y, p) dw(,y)

/ Zu(F(t,9)3(t,2)) D(x,y, p) deo(z, y)
- / / Fir = 5,9)(5, 2)D(, g, p) duo(z, y)ds,
RJO

where @ := Hyy(u). As usual, we shall suppress the order of the Hankel transform
unless it is unclear.

LEMMA 4.2.5. For v(k,a) with a > Ag, suppose that u and v are radial and

their spacetime Hankel transforms of order v(k,a) are supported on sets A and B
—4.e. supp (Hizu) € A and supp (Hizv) C B. Then,

u
d

v

)

1222

ol <o (sup 1))
TER
and for A* = {(—7,x) : (1,z) € A},
T) = / / 1(7‘,0)+A* (va)lB(say) dw(x,y)ds.
R Jo

ProOF. We first note that

Ly

luvlZsge = itz 2

1L aT# 10150172 22

We may write this final norm as

(4.2.7) /R/OOO (/R /000 1au(r — s,2)1p0(s,y)D(z,y, p) dw(x,y)ds)2 dw(p)dr.

We shall apply the Cauchy-Schwarz to the inner integrals to obtain:

/ /OO 1au(r — s,2)10(s,y)D(x,y, p) dw(z,y)ds
R Jo

< (/ /Oo 1a(7 — 5,2)15(s,y) ciw(%y)dg)é
(/ / (7 = 5,2)0(5,9) D, 9, p))* daJ(a:,y)ds>

=TIz ]z,

Nl
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Thus, (4.2.7) becomes [ [ IJ dw(p)ds. Let us first study the integral I = I(7):

I(7) /R /000 1a(T —s,2)1p(s,y) dw(zx,y)ds

/ / 1(7',0)+A* (5,37)13(8,]/) dW(l‘,y)dS.
R JO

Here, A* = {(—7,z) : (1,2) € A}. Now, we notice that for a fixed s € R, the
product 1(;0)44-(s,2)1p(s,y) is nonzero if v € K, ¢y 4+ (s) and y € Ep(s) where
for aset C C R x (0,00), Ec(s) ={x: (s,x) € C}.

Thus, going back to (4.2.7), where we see that we will again encounter the
integral from above:

(4.2.7) < // 7)J dw(p)dr
swlr(o) [ [ / W(r — 5,2)(5,9) D@y, )" dw(,y, p)dsdr
swlt) [ [ / (5,0)D(@ . p))° deo(, y, p)dsdr.

Now, we use the same convolution estimate as above (Lemma 4.2.3) to obtain the
required result. ([

IN

4.2.3. Bilinear Strichartz estimates for comparable frequencies. Let
us now use the above to obtain the bilinear Strichartz estimates for comparable
frequencies. This means we want an estimate with M ~ N for the term

(10w (P u)

We consider the case where 1 = 9 = +. The other cases are handled in a similar
manner, as shall be seen below.

We shall follow the method of thickened spheres used by Selberg [54] (see also
Schottdorf [53]). Thus, we shall approximate the spacetime supports d(7 £ (p))
by € '1/,4(y)|<c. In particular, we thicken the support of eX*{Paluy, to A =
{(t,p) : p~ M, |7 F (p)| < €} and likewise we thicken the support of e*™*{Pe)yy to
B = {(t,p) : p ~ N,|7 F (p)| < €}. The goal now is to obtain a bound on I ()
above using these choices for A and B and then finally take the limit as e — 0 to
get the bilinear estimates.

First, we notice that the supremum is attained when (7,0) + A* and B are
situated in the below diagram — i.e. (7,0) + A* completely overlaps with B. We
also notice that the other cases for +1,£5 can be handled in a similar way to the
+1 = 45 = + case as the only difference amounts to a reflection, which does not
affect the geometry of the problem.

Recall the integral for I(7):

T) = /R/O 17 0)+a (s,2)1p(s,y) dw(z,y)ds

We first have that for M > 1 and e < 1

oo p+2e
/ 17,044+ (8, 2) dw(z) < / 27 e < p?te ~ MO e,
0 P
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LLT

() + A7

N T

T,y

FIGURE 1. The supremum sup,. |I;(7)| is attained when 7 is chosen
so that (7,0) + A* and B are located as in the above diagram.
Here, A and B are precisely the thickened supports mentioned
previously. In particular, A = {(¢t,p) : p ~ M,|7 — (p)| < €} and
B={(t,p): p~N,|T = (p)| <e}.

and similarly,

/ 15(s,9) dwly) < N e.
0

Finally, we observe that s is non-zero only on an interval of length comparable to
M. Therefore

I(1) S MMt Nd—1e2
so that after taking e — 0 in the approximation above we then obtain the bilinear
estimates for M ~ N:
< M2(MN)

| (e ) ()|
LPLg

d—2
(4.2.8) ~ M N2 u g flun | 2.

d=1 4
T N7 |lup |2 flun 22

We may apply a slightly modified argument to obtain the estimate in the M <« N
case.

4.3. Small data scattering in higher dimensions

4.3.1. UP? and VP-based estimates. We shall now use the transfer principle
(Lemma 4.1.4) to convert the above bilinear Strichartz estimates into the form
which we will need for the proof of scattering. Our first application of the transfer
principle shall be to the following L* estimate. As above, we assume that all
functions here are radial.
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ProroSITION 4.3.1. Let d > 3, a > Ay and suppose that up; has support at
frequency M. Then,

. d—1
(4.3.1) Hej”t<D">Uzv1HL4 SM T Jlunllpe
and therefore
d—1
(4.3.2) luntlle S M7 |lunlps -

PROOF. The estimate (4.3.2) follows from an application of the transfer princi-
ple (¢) to (4.3.1). Thus, it remains to verify (4.3.1). We shall rewrite it as a bilinear
estimate:

2
‘ I ‘ L2’

Now, this is a bilinear Strichartz estimate, and so the result follows immediately
from (4.2.8). O

eit(Da) eit{Da)

uM‘ uMei“Da)uM‘

We now discuss the main application of the transfer principle to the bilinear
Strichartz estimates. We shall use the above L* estimates. Indeed, we have

PROPOSITION 4.3.2. Let d > 3, a > Aq, M,N € 2N. Furthermore, suppose
that upr, un, vy and vy are radial. We have

(a) Forupy € U2, uy € U3,

d—2
MENE urloz Junloz,, M <N
d—2
M*PN¥ funrllog unllos,. M~ N.

i
2

lurrunlzz < {

(b) For vy € Vil, uN € VfQ

d Nrd—2 2
MANT (log (5))° loallvz lonllvz,, M < N

”vMUN”L?,S d—2 1
M7= N> loarllvz llowllvz, s M ~ N.

PROOF. Firstly, we obtain the U x U}, — L? estimate via the transfer
principle in the M < N case. Thus, we move on to verify the UL x U — L?
estimates in the M ~ N case. We first have ||uprun||r2 < ||uarllpa||un]|pe. Thus,
we may apply the Uf — L* estimate (4.3.2) to obtain

d—1
(4.3.3) lusrunllze < (MN) T |unrllus lunllos -

Note that for M ~ N, we have (MN)(@=1D/4 ~ M(@=2)/2N1/2 This completes the
proof of (a).

We obtain the V2 x V2 — L? estimates in the M ~ N case from (4.3.3) and
the embedding V2 < U}. Thus, it remains to verify the V2 x V2 — L? estimates
in the M < N case. We first define an operator Tv := upPyv. In this case, we
use (4.3.3) and the embedding U} < U} to obtain

d—1
ITllos, e S INY T [lunels
Furthermore, from the bilinear estimates, we also have

d o d=2
HTHUi?‘%LZS;M‘LN * ||UMHU11~
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Thus, we use Proposition 4.1.5 to obtain

4 d—2 N
Tl oo S 88 dog (37 ) oo,

From this we have a U, x V2, — L? estimate, so it remains to repeat the argument
to finally obtain a Vizl X Vi22 — L2. Now, define an operator Su := vy P& u. We
have the estimates .
da—1
1Sllus, sz S (MN) " |lunllvz,
and also
a  _d-2 N
1Sllvz, »r2 S MAN "+ log i lonllvz, -

Thus, again applying Proposition 4.1.5 we obtain

2
4 d-2 N
I8l -z 5 2185 (10 (57 )) Tl

This completes the proof of (b). O

4.3.2. Trilinear estimates. For the remainder of this section, we shall work
towards proving Theorem 1.1.3, which is analogous to the work of Schottdorf [53]
for the potential-free case. In this section, we shall first use the bilinear Strichartz
estimates obtained above in order to prove the following trilinear estimates. These
estimates shall then be used to prove the scattering result.

PROPOSITION 4.3.3 (Trilinear estimates). Let d > 3, s > %, N ~ N'. Fur-
thermore, suppose that ups, vy and wy: are radial. Then,

1
M<N R /R4
%
< ( > LZSIIUM|%/£1> lonllvz, llonllvz,
M<N
and also
N
(4.3.5) Z M—2M% sup // unvn wy dedt
R /R4

MSN wa‘/f‘lvi:; =1
< Nllunllvz, (N llow vz,

PROOF. The first step is to show that the following low modulation integral
is zero. The consequence of this is that we assume at least one of uy = ul,,
vy = vfy, or wys = wh, in the above integral. That is, we may place one of these
terms in high modulation. Here, we decompose uys, vy and wy+ into high and low
modulation components. For instance, upr = ul, + uf; where uf, = QI (un),
where L shall be chosen later.

LEMMA 4.3.4 (Low modulation integral is zero). The integral

(4.3.6) // ubolwly, dedt
R JR¢

vanishes.
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PrOOF OF LEMMA 4.3.4. We consider the following convolution of order v =

v(0) = 42

(P (a1 L (o), L) (o)) (0.
for some small € > 0 to be chosen later. In particular, by using the definition for

Qf 1., this expression is equal to

/R/1{|ﬁ¢<m>\<L}W(ﬁ,Pl)l{\72i<p2>|<L}17v(Tz,P2)

: 1{|7‘3:|:<p3>\<L}1;]\V/'(7—37p3) . Du(xa ZaPQ)DV(PMPSa 6) dw(plap?ap?n Z)dt

In particular, for the time variable, we obtain the relation
T+ 70+ 73 =0.

Furthermore, by noting that the integral is zero unless there is a triangle with sides
of length z, z and ps, as well as a triangle with sides of length p1, ps and €, we also
obtain the relation

p1 < p2+p3+e

From the modulations, we obtain that
6L > 2 (71 £ (p1) + 72 £ (p2) + 73 & (p3)) = |£(p1)  (p2)  (p3)|-

Now, choose € so that 2(pa) > (pa+¢€). Then, for instance, in the case (£1, +2, £3) =
(=, +,+), we have that

(p2 +€) + {p3) — (p1) + ({p3) — (p1))
(p2 +€) + (p3) — (p1)
M.

2((p2) + (ps) — (p1))

AVARAVARLYS

In the second line, we used that p; is localised to M and ps is localised to N’ > M.
In the third line, we combined the condition p; < p2 + p3 + € with the following
modulation bound (see Schottdorf [53]) above with ps + € instead of po.

LEMMA 4.3.5. Let py + pa = p3. Then, {p1) + {p2) — (p3) = {pmin) ' where we
write pmin = Min{py, p2, p3}.

In particular, we obtain that 6L > M~!. So, choosing L = (cM)~! with ¢ > 0
sufficiently large, we may conclude that the above integral is zero, and therefore at
least one of u!, v, or wl;, is zero. From this, we may conclude that the integral

vanishes. 0

Now, we prove the trilinear estimates. Let us begin with (4.3.4). First, assume
that ups = uf,. Then, by using the modulation estimate Lemma 4.1.3(i) and the
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N ~ N’ bilinear Strichartz estimate, we bound the left-hand side of (4.3.4) by
1
i > luwllze lowwne | o2
M<N

1
Sw 2 Miluullvg, loww|lze
M<KN

Nl
N

1 _
S N ( Z M23||U/M||%/i21> < Z Ml 28||’UN’LUNI||L2>

M<N M<N
3 3
1 _ _
S5 (ot ) (35 0w oo
M<N ! M<N

Let us study the second summation. We notice that for s > %
1

2
% ( Z M125Nd1> S ]\771]\/'{1_22S S 1.

M<N

Thus, we obtain the required result for this case. Next, we study the case where
wyr = wh,. The case where vy = v is handled in the same way. We have

1
LHS of (4.3.4) S <+ > llwarllze lluaron | o2
M<KN

1 1
S w > Mz{lwn vz, [[usron]| 2
M<KN

1 14 a4 N\
5 3 bt (tog (37 )) Tuarl loxlvz, o s,

A
|

We apply Cauchy-Schwarz to obtain the ZMQSHuMHViz term, and thus we are
1
left with

4
(N2 S MMEMTF M <log Gj)) SN ML

M<KN M<KN

Here we have used that (log (%))4 < . This verifies (4.3.4) and now we verify
(4.3.5). Again, there are two cases to study since the cases of similar frequencies

are handled in the same manner. Firstly, consider the case where wy; = wﬁ/[ In

this case, we have

(LHS of (4.35))* < > M 'M*|uyvon|3.

M<N
S NEENT S M2 ol
MEN 1 2
S NTFETIN|un|fe flow 7
i i
S NZunllfe (N)*lon 72 -
+q +2
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In the last line, we have used the fact that s > %. In the other case where

vns = vl we have

(LHS of (4.3.5))* < sup Y M Mo |3 [lunwar|ze
HwMHvi3 =1 M<N 2

4
2s—1 34 7252 N 2 2
s 3 et (tog (37 )) vl lowl,-
M<N
S NZ|lun e (N> [lonlff -
i o
In the last line, we again used the fact that s > d%?. [

4.3.3. Proof of small-energy scattering (Theorem 1.1.3). We may now
rigorously prove the small-energy scattering. Indeed, we first have the following
result which will allow for a contraction mapping

THEOREM 4.3.6. Let s > max (%, %) and a > Ag. Define

t
(/. ::/ o Eilt—5)(Da) /g ds.
(f,9) ; 2(D.)

We have Iy, +, : Y° xY?® — X?° where
I+, ((u*,uf), (v+,vf)) = (I+(ui1,viQ),If(uil,vh)) .
That is, there exists a constant C = C(a,d) such that

1 (, v)[[xs < Cllully-

vllys.
Furthermore, from the fact that X°® — Y?®, we have
I:X°xX®— X*
and
I:Y°xY®—=Y?®

PROOF. We shall consider the I component as I~ may be handled in a similar
manner. First, we use frequency decomposition, so that after invoking symmetry,
we need to study the following two terms

E § U]\/Ia UN

N M<ZN

) 52 -
XS

uN7UN’

N~N/ X

We shall start with S;. The idea is to unpack the definition of X*° so that we are
left to study the U pieces

PN’Z Z ’U,M,’UN

M M<KN

2
Uy
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Now, we may use duality to obtain

P](\L/, Z I+(uM,UN)

i(t—s y UMUN
v Z/ B

M<KN U42r M<KN Ui
—is(Dg

S N, > / Padupron

M<<N U2
1 »

= 7, Sup Ble ”<D“>quN,w>
”va2 1 M&KN

= N E //UMUN’LUN/ dx dt| .
||wN'||V2*1 M<&N

We note here that we may now take N ~ N’ due to the convolution structure, as
discussed above. We may use the trilinear estimate (4.3.4) to obtain

1
2
< ( > N%num%il) lonllve,.

M<KN

PK;; Z I+(UM,'UN)
M<KN

2
vy

Therefore, putting all the Uf_ pieces back together,

> (N

N~N’

2

< llull3- lloll3

PM E ’LLM,’UN Ys-

M<KN

2
U+

Thus, it remains to study S.. We have

So <y > M (unon)lx- S > | Do MP|PiIT (un,ow)

N N~N' N N~N" \MSN

vz

Here, we have again used the previously discussed convolution structure to restrict
M < N. By using duality, we may apply our trilinear estimate (4.3.5) to obtain

S2 5 > N¥lluwllve, (N)*llowrllve, < llully

N N~N'

vfly.

Thus, we have shown the required result. ([

THEOREM 4.3.7. Let d > 3, a > A4, (uo,u1) € H 4 X Hj L with s > 452
Then the equation QKG(a) (1.0.1) has a global solution in C(R, H)NC(R, H:~ 1)
that is unique in the space X*([0,00)) and scatters as t — +oc.

PRrROOF. We shall work in the following restricted space:
X?%(]0,00)) :=={u € C([0,00), H®) : Jv € X* s.t. v(t) = u(t),t € [0,00)}

We have THu® := eFHDadyE 5 i1+ (u), where

+ " it W
I (u :/ e\t T er (s,
( ) 0 2<Da>
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M?}. We see that for M sufficiently small and initial data ug also sufficiently small
[|etPa)u®(0)||gs < €, we have

le* P ug F iI* ()| x4 (0,00 S €+ M> < M.

Recall that « = u® + u~. Define the set Cpy = {u € X*([0,00)) : [|ullx=([0,00)) <

Next, we check the contraction condition:

I75() = 5@ xg. 10,000 S (112 10,000) + 19l x5 (10,00)) I1F = 9l x5 (10,00))-

Thus, for 6 < 1 sufficiently small, we obtain the existence of a unique solution in
Ch- Now, we prove scattering. From Theorem 4.3.6, we see that

e:Fit<Da>PJ%Ii (’LL) € V*z,rc

this means that lim;_, o eﬂt(D‘”Pﬁ,Ii (u) exists. Thus,

SN PRI £ 1
N

From the properties of V2

*,IC?

Therefore, lim;_, o, eT*(Pa) [*(y) € HS. Thus, we have

eTit(Dg)u™ — u*(0) F itlim eTUDa) 1% () € H?.
— 00



CHAPTER 5

4D dichotomy of dynamics below the ground state

5.1. Time-decay estimates

5.1.1. Time-decay LP estimates. In this section, we shall establish time-
decay frequency-localised estimates for radial initial data in. In particular, we find
that for @ > 0, the situation is much the same as in the a = 0 potential-free case.
Whereas for the a < 0 case, we shall need to combine the methods of Guo-Wang-
Peng [21] and Zheng [67] in order to obtain time-decay estimates with a weight.

In particular, Zheng obtains the following LP time-decay estimates for the prop-
agator e'tZa:

PROPOSITION 5.1.1 (LP time-decay estimates for the propagator e“g‘l). Let u

be radial, 2 <p<o00,d=1—2 and o = %—V(a). Then,
P

‘ _d
% ull goqrany S 114l o =0

(5.1.1) itffau‘

1
H (A+zl=7)7 © LP(R4)
S [+ |2 =2) 0] ey — (52) <a <0,

We shall obtain frequency-localised estimates for a class of dispersive semi-
groups e*“(Pa) where we localise with Littlewood-Paley projectors P adapted to
Z, (see Section 2.3).

First, we impose some assumptions on w. In particular, because we are mainly
interested in the semigroup with w(r) = (1 +72)1/2, we shall apply the assumptions
in [21] and assume that w : RT — R is smooth and satisfies both (H) and (L)
below:

(H) There exists m; > 0 such that for k£ = 2,3,... we have |w'(r)| ~ r™~1
and [w®) ()| < ™~k for > 1. Furthermore, there exists a; such that
|w” (r)] ~ 7r%1=2 for r > 1.
(L) There exists mg > 0 such that for k = 2,3, ... we have |w’'(r)| ~ rm2~1
and [w® (r)] < r™2=F for 0 < r < 1. Furthermore, there exists ay such
that |w”(r)] ~ 7272 for 0 < r < 1.

PROPOSITION 5.1.2 (Frequency-localised L? time-decay estimates). Let u be
radial, d > 3 and recall that o = % —v(a). Furthermore, assume w : RT — R is
smooth away from the origin and satisfies (H) and (L) above. Let 2 < p < oo and

5::1—%.
(i) If k> 0 and a > 0 then

(5.1.2) ‘ ¢itw(Da) pay

- (d=146) _8(aj—m;)
’Lp 5 |t|_d §+952k(d_ L d21+9 -8 B )5||UO”LP’~

49
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. _2\2
(i) Ifk >0 and — (%52)” <a <0, then

(5.1.3) ”me

d—1+6
2

itw(Da)P’?u

Lr

mq(d—1+460)  0(ag—mq)
62k(d7a7 e _ 1-m )5”(1+‘x|—a)6uHLp/.

(iii) If k <0 and a > 0 then

S

(5.1.4) ‘ ettw(Da) pay,

_ (d—1460)  6(ag—ma)
’LP 5 |t|_d é+9§2k(d_m2 21+ —fag_my )6||U0||Lp’~

iv) If k < 0 and — (42 2<a<0, then
2

1 .
5.1.5 76”0‘)(D‘Z)Pau
(5.1.5) H TENERGL cul
B A L R

PRrROOF. We shall first prove the L> — L! decay estimate, and then interpolate
with the L? estimate to obtain the above result. Furthermore, we shall focus on
the high-frequency case, with the proof for the low-frequency case being similar.
We may use the definition of the Hankel transform of order v = v(a) to write

@I = [ L) e e dp
= 2 [Tt T 2 ) )2 )
= oW /0 00(7’2’%)’%Ju(r2’“p)e“‘“(2kp)1/)(p)
s e s st ap
= [T a2 e o)

/ (sp)_%J,,(Sp)u(Q_ks)sd_1 ds p?=1 dp.
0

Since our goal currently is to estimate this term in L>°, we may replace 2*r by r,
so that we shall focus on the integral

I(t,r) = /OOO(TP)JZQJu(TP)eit“(Qka(P)
[ stz s s g
= / u(27%s)s4 K (t,5,7) ds
0
= ( )u sTIK(t,s,7) ds =: Ty (t, 1) + To(t,7)
where

(5.1.6) K(t,r,s) = (rs)” / T (1p) Ju (sp) €™ Py (p)p dp.



5.1. TIME-DECAY ESTIMATES 51

We shall first study the case when r < 1, where we can use the behaviour of the

Bessel function near 0. Recall that o := d;2

1
Ti(t,r) = /u(27ks)sd71K(t,s,r) ds
0

1 o]
~ / u(27%s)s4 Y (rs) "0 ds/ eim(Zk”)1/)(/));)2’”rl dp.
0 0

By bounding the inside integral and after using a change of variables 27 s — s,
we obtain the estimates

IZ2(t, @)l oo S 2wl s s az0
(5.1.7)

2
Tita)| S 2N+ lal =l —(42)’ <a<0

|
1+]z|—°
Next, we observe that
1 d
itw' (28 p)2F dp
Thus, for the inside integral, we find that by repeated use of integration by parts,
for any ¢ € N is equal to

zt2k Z 2 C‘””/ W(”)H (

m=01y+--+lgeA,

(eitw(2kp)) _ eitw(Qkp) )

) o™ (o)™ ) dp

where
Agn:{ll,...,lq € Z+10§l1 < ... <lq <gq, ll++lq :m}
Now, using the facts that

a» 2041
<
‘dpnw(p)p dp| < Ch

for some C,,, > 0 and

(5.1.8) ALY RSN cp 2 Flma—1)
dp \w'(2¥p) ) —
we obtain that
IZ2(t, @)l oo < 8 772K D ]| 1 a>0
_oN2
| bTit )| S oo @t o=l (452)" <a <0
Finally, by interpolation with (5.1.7) we may conclude that for 6 > 0
IZ2(t, 2) | e S 1170241 ]| 1 a>0
— —o—m —o —2)2
| tTit )| S o2 L e ulzy, — (452)° < a <0

Now, let us estimate Zy(t, r) for » < 1. In this case, we use the s — 0o asymp-

totic behaviour of J, (sp). In particular, because (at least up to phase translations)
the asymptotic behaviour is identical to the v = 952 case studied in [21], we should

expect to obtain the same results. For completeness, let us include these details.
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Since in this case, r is small, we use the same approximation for J,(rp). We use
that

(3p)~ %" Ju(sp) ~ Re(e’*"h(sp))

where [0Fh(r)| <y p ok (see (3.1.8)). From this, we obtain the estimate for
s > 1 and k > 0 by induction:

o (h(sp)¥(p)p?~'77)

In this case, we find that Zy(¢,r) is comparable to

< o9

o s .

[ st [ ) [ hisp) + e P h(sp)] ()1 dp ds
1 0

~n

(5.1.9)

= 7“_”/ u(Z_ks)sd_l/ [€”*Ph(sp) + e **’h(sp)] P(p)ett P pd=1=7 4 ds
1 0

o o)
= 7 / u(2”"s)s ! / e WP (sp)p(p)p? 7177 dp ds
1 0

(oo} oo
+ 7"_"/ u(2_ks)sd_1/ ei(t“’(”)_s”)B(sp)w(p)pd_l_” dp ds
1 0
= B]_ + B2

We are now reduced to studying B; for ¢« = 1,2. For B;, we notice that wq(r) :=
' (28 p) + sp satisfies w)(p) > ct2¥™ so that (5.1.8) holds if w replaced by w;.
Hence, we may apply the same method as above and find that for any 6 > 0,

|Bu| S [¢] 702K fu| oo
Likewise, for the integral Bs, we notice that (5.1.8) holds also for w replaced by
wa(r) ==ty (2¥p) — sp as long as

s>2 sup t28y/(2%p)
pel1/2,2]
or .
<5 inf 2%/ (2%p).
°S 2 pe[lln/z,z] V@)
Hence, using (5.1.9), we also have for all § > 0 that

|Ba| S [t[02M 1 fu| e
Now, in the remaining case where

1

= inf 2Ry/(2Fp) <s <2 sup 2Ry(2%p),

2 pel1/2,2] pe(1/2,2]
we use (5.1.9) to obtain

— — (d—1)m

(5.1.10) |Bo| S 2647 |luf| poe S ¢ 7 2Ky e
Furthermore, by assumption |w”(r)| > t2F*1. Therefore, |14 (r)| > t2k*1. Thus,
applying van der Corput’s lemma, we obtain

| q a—my
IBQIS(tQ’“‘l)’%/ ‘ (h(sp)u(p)p™1=7) | dp < 2= 3 0mt=D) y o
0

dp
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By interpolating this with (5.1.10), we obtain

d—1+6 my(d—1+46
2 Qk(d7 25

_ _ 0(ag—my)
|Bz| < [t ) e

We notice the absence of the 27% term in the s > 1 case. Since we are dealing
with the high-frequency (k > 0) case, we may remove this factor from the estimate
on Bj in order to combine with the estimate for Bs.

Thus, it remains for us to estimate I(¢,r) when r > 1. This case is similar to
the r < 1 case except for the fact we no longer to deal with the weight r~?. Thus,
adding everything together, we obtain (i). The k£ > 0 case may be done in a similar
manner, except now we must insert the factor of 2~ ko to the estimate for Bs.

Finally, to obtain the other estimates for p > 2, we interpolate with the L2
estimate

(5.1.11)
[e?< D) P 2 (may = ||uol| p2(ra), a=0
i —0 a —2)2
| e P, < MO+ ) Pl ey~ (52) <a <0
This gives us the above time-decay estimates. O

Using w(z) = (1 4 |2]?)!/2, we also obtain time-decay estimates for the Klein-
Gordon propagator with inverse square potential:

ProrosITION 5.1.3 (Frequency-localised LP time-decay estimates for Klein—
Gordon). Let u be radial, d > 3 and recall that o = %52 — v(a). For k € Z and
2 < p < oo we have

(i) Fork>0
itw a d— 1+9 d+1+9
e Peu]| ) S 1172025 g, >0
1 itw(Dg) pa
H(1+\m|—ﬂ)5e B ey
S50 T (L [ uo s — (452)° <a <0
(ii) For k<0
itw(Dy d— 1+9 k d+1+9
e Bgul gy < 112025 g, a0
1 ) ztw( a)
H(H'f‘*”) Fiiu L (R4) 2
d—146
S [E= T2 =00 (1 4 =), — (452) <a <0

5.2. Blow-up/global well-posedness dichotomy

In this section, we shall obtain a blow-up/global well-posedness dichotomy for
QKG(a) (1.0.1). First, let us list some notation and terminology (see [22, 30, 48])
that we will need for this section as well as the next. While we are only interested
in the case where d = 4, we shall first discuss the general framework as studied in
the above papers. Consider the equation

OPu+ Ly +u= fu)
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where f(u) = uP*! for p € {1,2,..}. Write F(u) = [ f(u) du = 5uP*? and
G(u) = uf(u) — 2F(u) = ;Z5uP*?. Also, define the energy E,(u,u;) by

1 1

5L \atu<t,x>|2+|w<t,z>|2+#u(t,mﬁﬂu(t,x)\? e

For ¢ € H,, the stationary energy is given by

1

@) = g [ VetaP+

5 ‘2 lp(t,z)|* + |p(t, z)|* doz — —— u(t, ) dx
Rd

E
1
= 5 (10l +1008) = | ult.o) o

The potential well is j,(\) = Ly pJa(p) = Ju(e® (e~ z)). This may be written
as

1 1 1
: _ 2 2o+ (d=2)B)N || 4112 1 o (2a+dB)Ay 4112 _ (p+2)a+dB)A p+2
JalN) = 56 61, + 3¢ 47013 - —e | o a
Define also the sign functional K, g.o(¢) = Ka ga(®) = Ox|r=0ja(A), which is
equal to
1
520+ (d=2)B)l¢ll%, (2a+d5)ll¢llz +2((p+2)04+d5)/ ¢P*? da.
R4
Finally, define the minimal energy with respect to K, g.q by
(5.2.1)
o 5(a) = inf {Jo(¢) : ¢ € HI\{0}, Ko g0 (¢) = 0}, 1(0)* <a <0
B8 inf {J.(¢) : ¢ € H}\{0} radial, Kaga ¢) =0}, a>0.

We shall need the extra assumption that the test functions are radial in the case
where a > 0. This is because in this case we do not have access to rearrangement
inequalities and therefore automatically reduce to the radial case. Instead, it is an
assumption we need to add. Indeed, let u* be, say, the Schwarz rearrangement of u.
Then, we have ||u*||2 = ||ul|2 and ||[Vu*||2 < ||[Vull2. We rewrite this last inequality
as [[u*|| g2 < ||ul| g1 However, we also have the inequality

(5.2.2) /fg dxg/f*g* dx

for any suitable f,g such that the right-hand side is finite. This inequality means
that we only have |[u*|| ;1 < |lullg if @ <0.
We now study a dichotomy with respect to the sets

Kl_,ﬁ;a = {(ug,u1) € HY x L* : Ey(uo,u1) < Mo gias Ka pia(to) > 0}
Koga = {(uo,u1)€ H! x L?: Eq(uo,u1) < Mo ga, Ka pia(uo) < 0}
Indeed, we have the following blow-up/global well-posedness dichotomy with

respect to K.,

THEOREM 5.2.1. Suppose uw € C(I,H}) is the solution to (1.0.1) with initial
data u(0,-) = ug and us(0,-) = uy where I is the mazimal lifespan interval. Fur-
thermore, if a > 0, assume that the initial data is radial.

o If (up,uy) € IC?:OW’ then u is global, and
e if (uo,u1) € K q.,, then u blows up in finite time.
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PROOF. The proof is the same as in Payne-Sattinger [48] (see also [22, 30]).
First, by obtaining a contradiction, we shall prove that the optimiser ¢ of my .o
does not change sign, so that

mi,0a = inf {Ja(¢) 1o € H;\{O}aKl,O;a((z)) =0, ¢ > 0}

Indeed, suppose that the optimiser ¢ does change sign. Then, from the definition
of K1 0.0, we would have Kj 0.4(|¢|) < Ki1,0.a(¢) = 0. Define j,(A) := Ju(e*|¢]) so
that
JaN) = Kioa(€g]) = e MullFy — e |ull3
and also
Ja(A) = 262Xy — 3¢ Jull3.

We first observe that

o limy o0 ji(A) = —00,

L] 1lm>\_>_ooj(;()\) =0 and

e j”(\) > 0 for A sufficiently small (i.e. e* near 0).
From these observations, we find that A — j,(A) is convex for sufficiently small \.
From this and the fact j,(0) < 0, we conclude that there exists A < 0 such that
§i(A) = K1,0.0(e*) = 0. Thus, K1 .4(e*¢) > 0 and e*¢ is an admissible in (5.2.1).
From the definition of K g.,, we also have that Klyo;a(e/\é) > 0 for A < 0. Indeed,
in this case, €3} < €2}, so that by assumption

K10.a(e*¢) > e K1 0.0(¢) = 0.

Thus, noticing that & J,(e*u) = Kj o,a(eu) we may integrate over A € [X,0] to
obtain ) B
Ja(e/\|¢|) < Ja(e)\(b) < Ja(¢) = M1,0;a-
Thus we see that e*|¢| is admissible but attains a smaller value J,(e*|¢|) than the
infimum m; .q. Since for any admissible ¢, we may find X < 0 so that J,(e*|¢]) <
Jo(u), we may simply assume u is positive.
We can also show that

mron =t { L1y -6 € HI\0), Kioa(9) < 0.6 0}

Note that Go(¢) := Ja(u) — $ K1 0,0(u) = gllullm:. For Kig.q(¢) =0, the two
functionals J and Gy already coincide. Thus, it remains for us to verify that for
all K1 0.4(¢) < 0 we have Go(¢) > m1,0.q. We first observe that this means g(\) =
Ja(e*¢) satisfies ¢'(\) = Ki0.(e¢) and ¢’(0) < 0. Therefore, using a similar
argument to above, there exists a \* < 0 such that ¢'(\*) = K g..(e* ¢) = 0.
Again, similar to above, we obtain

m1,0;a < Ja(e)\*(b) = Go(e)‘*(b) < Go(QS),

as required.
Using this recharacterisation, we now establish existence of the optimiser. Let
¢n > 0 be a minimising sequence so that Gy 0.4(¢n) = %||¢n||H; — M1,0.q 8S

n — oo. Note that K 0.q(¢n) < 0. For — (‘15—2)2 < a <0, we may apply Schwarz

rearrangement to allow the ¢, to be radial. Otherwise, we need an extra assump-
tion in the admissible class for (5.2.1) that the test functions must be radial. In

either case, we may now use the compact embedding H' ; , C L? to obtain strong
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convergence to a limit ¢% (which we shall write as ¢o.) in L3 up to a subsequence.
This limit satisfies K1 0,4 (¢o0) <0, Jo(doo) < Mm1,0;0 and Go(Poo) < M1 0:0.
Furthermore, we can show that ¢, # 0. Indeed, suppose that ¢, — 0 in L>.
From K1,0,4(¢n) <0 and [ ¢3 = [ |¢,|* we have ||¢n — O] 12 < ||y — O] 2. Thus,
¢y, will also converge strongly to zero in H{ and using the fact that |ul|3,; < ||u\|§{i,

we must have K1 o.q(¢n) > 0 for large n, which is a contradiction.
Suppose that K1 0.q(¢o0) < 0. Then, there exists a A* < 0 such that

Kl,O;a (6/\*(;500> =0.
Therefore
mi,0;a < GO (ek*gboo) = 62)\*(;O (¢m) < mi.0;a-

Thus, we must have K 0.4(¢) = 0, whence ¢,, converges strongly to ¢ in H'
and J,(¢oo) = M1 0,e. We shall leave the explicit characterisation of this optimiser
until after this proof.

Next, we show that ICli,O;a is invariant under the flow of (1.0.1). Let wu(t,z)
be the solution to (1.0.1), and let I denote its maximal lifespan. We notice
first that E(u,u;) = E(ug,u1) < mi . Furthermore, let (ug,u1) € Ki,. If
K1 0;0(u(t*)) = 0 then it follows that w(¢*) = 0. Thus, using that [ul|3, < ||u\|§{;,

we obtain ||u(t)||3 = 0(Hu||%,é)7 so that Ki g.q(u(t)) > 0. This shows that u(t,z) €
Kffo;a for all ¢ € I. This implies the invariance of K7 g, as well.

Finally, we shall show the dichotomy, starting with global well-posedness in
K g.o- Thus, assume that the initial data (ug,u1) belongs in Ki.,. Let u be the
solution to (1.0.1) with this inital data. Furthermore, let I be the maximal lifespan.
By invariance of K., under the flow of (1.0.1), we have K o.q(u(t)) > 0 for all
t €I and

E(u,ut) > 1/ |Vu|2+u2+iu2dx+l/ u? da
’t76 Rd |J)|2 2Rdt '
Thus, E(uo,u1) ~ |[(u,u)||%1, 2. Thus, the solution may be extended to R by
using the local theory.

Thus, it remains to establish blow-up in K, ,. We note that K1 o.,(¢) has an
upper bound in Ky . ,. Indeed, first note that for ¢ € Ky, we have fRd ¢% dx >
0. Consider g(\) = J,(e*¢) as above. By assumption, ¢’(0) = Ki0.4(¢) < 0.
Therefore, there exists A* < 0 such that g’(A\*) = 0. We also have g”(\) < 2¢’()\).
If we integrate this identity over A € [A*,0], we obtain ¢'(0) < 2(g(0) — g(A*)).
Thus, K1 0.4(¢) < —2(m1 0,0 — Ja(@)). Thus, —K7 0.4(¢) > ¢ for some § > 0.

Let us show blow-up for ¢ > 0 (the ¢ < 0 case is similar). First, assume that
the solution exists for all ¢ > 0 and consider y(t) = ||u(t)||3,. Since u solves the

QKG(a),
07y(t) =2 (lluell — Ki0:(u(t)) = 5lluel3 — 65 (uo, ue) + ull?, -

Using the upper bound as above, we conclude that 92y(t) > 2§ > 0, and therefore
y(t) = oo as t — co. Also, since for large ¢, we have |lu(t)||%,, > 6E(ug,u1). We
may use Cauchy-Schwarz to obtain '

(3ty(t))2

)
OFy(t) > 5llugl|3 > =
ty( ) > ||ut||2 =4 y(t)
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Thus,
1 5
Oyt 7 = -2y 7 (wy' - Z()?) <0,
4 4
which is a contradiction to the fact that y — co. Therefore, we must have blow-up
in finite time. O

LEMMA 5.2.2. The optimiser ¢%, in the above Theorem 5.2.1 satisfies the equa-

tion
a

_AQa + Qa + WQ(J = Qi

Furthermore, m{ o., = E(Q4,0).

PROOF. We shall derive the Euler-Lagrange corresponding J,(¢) subject to
the constraint Kj g.,(¢) = 0. Thus, consider a perturbation ¢ + w(7) such that
Ja(¢p+€(7)) attains a minimum at w = 0. We need to ensure that this perturbation
satisfies the constraint. This is the same procedure as Evans [15]. Indeed, first
consider a test function ¢+ 7v+ ow. We know that K ¢.,(¢+ 70+ ow) is equal to

/ (V(¢+ 10 + ow))’ dx—|—/ (¢ + 70+ ow)? dz
Rd

Rd

+ / i(qﬁ—krv—l—aw)Q dx—/ (¢ + v+ ow)?® dz.
Ra |2

Rd

Then,
0-K104(1,0) = 2/ V(¢ +71v+ow) - Vodr+ 2/ (¢ +71v+ ocw)v dz

R4 Rd

2
+ / i(ﬁb"‘ﬂ)—ﬁ-aw)vdx—/ 3((;5—1-71)—1-0111)21)dglc7
re |2]? Rd

and
0o K1,0.0(1y0) = 2/ V(p+ 1m0+ ow) - Vw dz + 2/ (¢p+ 710+ ow)w dx

R4 Rd

+ / Q—G((b—i—rv—i—aw)w dx—/ 3(¢ + v + ow)*w du.
Ra |2[? R4

We choose w so that 9, K1 0.4(0,0) # 0. Now, since K1,0.4(0,0) is zero and C', we

may apply the implicit function theorem to obtain g : R — R such that g(0) =0

and K1 0.q(7,g(7)) = 0 for 7 sufficiently small. If we differentiate this last identity,

we obtain 0, K1,0.4(7, (7)) + ¢'(7) 05 K1,0.a(7, (7)) = 0. Now, let 7 = 0 to obtain

_ aTKl,O;(L(Ov 0)
80K1,O;a(07 O) )
Thus, if we let k(1) = 7v + g(7)w, we obtain that ¢ + k(7) is admissible in (5.2.1),

and we may use it to derive the Euler-Lagrange. Consider h(7) := Jo(¢ + k(7)).
Then from h'(0) = 0, we obtain

9'(0) =

R'(0) = - V- (Vo + g (0)Vw) dz + /Rd #d)(v + ¢ (0)w) dx

+/Rd é(v+ ¢ (0)w) dz — /Rd (v + ¢’ (0)w) dz = 0.
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Now, substituting the value of ¢'(0) from (5.2.3), we obtain with
fRd Vu-Vw + ﬁuw + vw — v?w dx

i fRd 2Vu - Vw + Z%MU + 2uw — 3uiw dx

z|?

that

/ —Au—&—iu—&—u—uQ vdx:,u/ —2Au+2iu+2u—3u2 v dz.
R |z[? R |z[?

If we let v = u, we notice that the numerator of y is precisely Ki 0.q(w), which is
zero by assumption. Therefore, the right-hand side of the above identity vanishes,

and we have
/ —Au—i—iu—i—u—uQ vdx = 0.
R¢ |z[?

Since this holds for all v € H!, we arrive at the Euler-Lagrange as in the statement
of the lemma. ([

We shall write
d—2)2

5.2.3 =4 Q= (57) <a<0
( ) @ { Q™ a>0.
We also have the following global well-posedness/blow-up dichotomy with respect
to K*(a) defined as

K*(a) = {(uo,m) € Hy x L*: E(ug,u1) < E(Q,0), [[uoll2 < [|Qa- |2}

K= (a) = {(uo,ur) € Hy x L*: E(ug,u1) < E(Q,0), [|uoll2 > [[Qa-]|2}

THEOREM 5.2.3. Let d = 4. Suppose u € C(I, H}) is the solution to (1.0.1)
with initial data w(0,-) = uo and us(0,-) = uy where I is the mazimal lifespan

interval. If (ug,u1) € K (a), then u is global, and if (up,u1) € K~ (a), then u
blows up in finite time. Furthermore, m1 0., = E(Q,0).

5.3. 4D radial large-energy scattering

5.3.1. Gagliardo-Nirenberg inequality. We now shift our attention to the
behaviour of the QKG(a) with initial data ||ug|lz < ||Qax||2, where we shall study
scattering. The first ingredient in this endeavour is the following sharp Gagliardo-

Nirenberg inequality with mass critical exponent.
PROPOSITION 5.3.1 (Gagliardo-Nirenberg inequality [13]). Let a > — (%)2
and denote a A 0 := min{a,0}. For any g € H. we have

4
ez (Lol )Y
5.3.1 2y < — | = e
( ) ||g||2(dd+2) — d ||Qa/\OH2 Hg”Hé
If we further assume that g is radial then for a > 0 we have
4
20 d+2 ([ lglla N o
5.3.2 i< — == .
( ) HgHQ(d;-m — d (szad||2 ||g||H;

Recall the notation
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Suppose that there exists A < 1 such that ||g|l2 < A||Qq=||2- In other words, suppose
there is a gap between ||g||2 and ||Qq+||2. In this case, we have the following result
which follows from the above Proposition 5.3.1:

d 2(d+2) 1
(5:83) oty - 7ogloladin = (5 - 1) o3

We shall need the above result with dependence on t. Indeed,

PROPOSITION 5.3.2. Let d = 4 and p = 1. Suppose |Jupllz < [|Qq|l2 and
E(ug,u1) < E(Qq,0). Let u(t,z) € C(I,H}) be a solution to (1.0.1) with initial
data (ug,uy). Then, for some A = A(E(ug,u1)) < 1 we have

[u®)ll2 < AllQa-

PROOF. The proof is the same as in potential-free case [22]. Using the energy
identity

2.

(5.34) [Qa %{(} = [|Qar g
and Pohozaev identity (see e.g. [13, p. 287]))

d—2 d o d 3
(5.3.5) 5 Qa2 + 511Qa-ll2 = P 1Qa I3,
we shall show that

1

(5.3.6) E(Qa-,0) = 5[1Qa- 3
Indeed, suppose for some t € I, we have |[u(t)||2 = ||Qa=]l2. By (5.3.1), we have

K (u(t)) > 0. Thus,

Bu(t), ui(t)) > g w3 = 511Qu- 3

This contradicts the fact that E(ug,u1) < E(Qq~*,0). Thus, we have |u(t,-)|l2 <

Q2
Next, from the fact that E(ug,u1) < E(Qqx,0), there exists a constant A < 1

such that
A2 9
E(u(t), u(t)) < 5 Qa- ll2-
From this, we obtain that ||u(t)||2 < A||Qax]||2 for all t € I. O

5.3.2. Virial-Morawetz estimates. We shall now obtain Virial/Morawetz
estimates. These estimates will be used to obtain L3 decay after large time.

PROPOSITION 5.3.3. Let d = 4,p = 1 and u(t,v) € C(R, H') be a solution
to (1.0.1) the QKG(a) with initial data (ug,ur) € H, .4 X L7,q. Suppose that

Eq := Eq(uo,u1) > 0 and ||UH%{1 + ||ug||3 ~ Eo. If there exists A < 1 such that
lu(@®)|lz < Al|Qux||2 for all t € R, then

2T ,
/ / juf? dedt < O(2,4) (R+ TR
T |lz|<R
PROOF. Suppose h : R? — R? and ¢(z) : RY — R. Denote by h; the jth

coordinate of the function h(x). We first consider the following Morawetz identity
with

M(t) == —/ut(h-Vu—i—qu) dz.
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Differentiating in time and using integration by parts, we obtain that 9;M(t) is
equal to

—/utt(h-Vu—l—qu) dx—/ut(h~Vut—|—qut) dx

—/<Au |a|2uu+u>(h~Vu+qu)dm/ut(h'VutJrqut)dx.

To deal with the second integral, we have

1 1
,/ut(hout+unt) d:z::f/§Vuf+qut dx/(zdivthq) uy dx

We may do the same thing for the uw term in the first integral. Now, to deal with

the u? term, we recall F(u) := [ f(u) du and G(u) := uf(u) — 2F (u). Then, we
may write
—/u2h~Vu+qu~u2d:17 = f/h~VF(u)+quf(u)dx

[ (-5aivn+a) (-2r ) + [ atusw - 2r) as

- /(—;divh—kq) (—2F(u))+/qG(U) da

To deal with the Awu term, we may use the product rule. All together, we find that
0, M (t) is now equal to

/3ku3kh i0ju de + - /|u| —Aq) dx
7,k=1

—/q(x)G(u) dz — / h-V ( 1|2) u? dx
[ (~gain@) + ) (ol 4 19?2600 + )

Now, let w : R? — R be a weight, and define h(z) = Vw(z) and ¢(z) = divh(z) =
1Aw(z). In this case, we obtain

OM((t) = /8ku3 ud? ew do — /|u\ A?w dx
J,k=1

—%/AwG( dz+a/Vw ?u dz.

We shall use the same weight as [67], where

and for £ < |z| < R we impose that

(5.3.7) drwr > 0,0%wr > 0,0%Wwg(x)| So Rlz|~1*! for |of > 1.
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In particular, we find that 9;M(¢) may be written with some Cy,Cy > 0 and
d=4,p=1as

ul? d
5.3.8 2 Vul> +a—s — —u® d
(5.38) /|.1<R/2| u Jra|$|2 23"
d
(5.3.9) —I—/ Z E?juakuajzkw — O |ulPA%w — CouP ™2 Aw dz
R/2<|z|<R

@=D-1 B s

R R
3.1 U+ 2 (Vuf? = |0,uf?) —
(5.3.10) +/|w>Ra|x|3|u| + ] (IVul* = [0rul?) 53 ’

For (6.3.43), since u is radial, we have |Vu|? —|9,u|? = 0. Thus, we have with some

C3 > 0 that
- 03/ lu|® da.
|z|>R

For (6.3.42), the conditions for w(x) in (6.3.40) ensure the summation is non-
negative and also that

(6.3.43) > “M g“)

M
(6.3.42) > —C, (f) - 02/ uf® da.
R <|e|<R

For (6.3.41) we define a smooth cutoff function y with support {z € R* : |z| < 1/2}
and set xr(z) := x(x/R). With the observation that

(5.3.11) /XRQ\WP dz = / IV (xr)ul? + xrA(cr)|ul? de,

we find that

d-
N (I )

+/ < |u|2> dx+/(’) — Xp) |uf® dz.

Next, we use (5.3.3) combined with Proposition 5.3.2, integrating over [T, 27 and
discarding positive terms, we obtain

2T 2T
/ /c|xRu|3 dzdt < sup |M(t)] —|—/ / lu|® dedt + — M (u).
T te[T,2T] |lz|>R

By radial Sobolev embedding,

[l 4 gl M)
x>

From this, and the fact that sup,c(p o7y [M (t)| < R, we obtain the required result.
(]

COROLLARY 5.3.4. Let d = 4 and suppose that u is a radial solution of (1.0.1)
with initial data (ug,u1) € K~ (a). Then, for any e > 0,T > 1,7 > 0 there exists
To = To(eo, T, E,) > T such that

To+T
/ /\utz|3dxdt<eg

PRrROOF. See [22, Cor. 3.7 O
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5.3.3. L3 decay after large time. We shall now apply the above Corollary
5.3.4 to obtain the following smallness result needed in the proof of scattering which
follows. The idea is to split the Duhamel integral over [0,¢] into two intervals, the
first being over, say, s € [0,t — 71] in which there is a gap |t —s| > L > 0. Thus the
smallness result we obtain here shall cover the remaining interval over [t — 7, t].

We shall focus on the case where — (%)2 < a < 0. In the a > 0 case, we have
access to the L>® — L1 dispersive estimates which holds for the potential-free case,
and therefore the argument in this case is identical to that in [22] by Guo-Shen.

Let us consider solution to the first-order equation:
t
U(t,z) = Ko(t)Uo(x) — z/ K (t — s)(Dy) " tu(s, z)? ds.
0

PROPOSITION 5.3.5. Suppose that u is a radial solution of the 4D QKG(a)
(1.0.1) with a > o=' (3) and with initial data (uo,u1) such that |lugllz < [|Q|2 and
E(ug,u1) < E(Q,0). For any e; > 0 and T > 0, there exists 11 = 11(E,€e1) >
C’Eel_S and Ty =T (E,€e1,T) such that T <Ty — 1 and

sup Ut z)|lLs < e
te[Ty—71,T1]

REMARK 5.3.6. We restrict to a > o~ * (%) in order for the L2 norm to make
sense. The further restriction that a > o~ (%) appears in the proof below.

. . 2
PrOOF. As mentioned above, let us only discuss the — (d%) < a < 0 case,

with the a > 0 being identical to the potential-free case. We first break ||U(t, x)|| s
into parts. In particular, let R > 0 be chosen later. Then,

(5.312) [[U®, )l < [[Ka(t)Uo(@)llL2
/0 1 Ko (t—s)(Dy)  u(s,z)* ds

Ko (t —5)(Dg)  u(s, z)? ds

t—71

(5.3.13) +

L3

(5.3.14) +

L}

First, to deal with (5.3.12), we note that by the refined radial Strichartz es-
timates (Theorem 3.1.1), for any 2 < ¢ < 3, we have ||K,(t)Uo()|[psrs < Cp.
Since ‘

10K u (V@)1 S 1K) () 15
we conclude that K, (t)Up(x) is Lipschitz continuous, and in particular,
[ Ka(t)Uo(z)||Ls — 0 ast — oo.

Next, we study (5.3.13). We shall apply a frequency decomposition in order to use
our time-decay estimates. Denote

t—T1
Ty = / Ko(t = s)Pg(Da) u(s, x)” ds.
0
We have
(5:313) < [Zkllpsll_, + M Zkllzsllyz _, -

We first consider the high-frequency case. First, we note by interpolation that

2 1

_k 3
1Zellzs < (27 1Zullis) " (2 1Tels)
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For the L? norm, we may use the observation that

(5.3.15) /tn Ko (t — s)(Dg) tu(s,z)? ds = K, (t —t +1)U(t — 11) — Ko(t)Up,
0

combined with H} boundedness to control this piece. Thus, we have

2
_k 3
WEdoslls, Se | (25 120,)

k>0

It remains to study the L* norm. We split this norm into regions |z| < R and
|| > R, with R to be chosen later. First, we study the |z| < R region using
time-decay estimates (Proposition 5.1.3) with § = 1 — 2\, where A <« 1. Indeed, we
bound || K, (t — s)Pfu(s,z)?|| pa by

lz|<R

3
L+ 2 77) s

|z

o a1 T K- )P Da) s, 0

L8 (R4)

3
S B (|t = sl 7292098 (1t fal ) PED) P oy

%. This cor-
responds to further restricting the a < 0 coefficient range from a € (—1,0) to
a € (—2,0). Furthermore, we need to deal with the L8/7 norm.

Using the Hardy inequality for .Z,, Bernstein estimates, boundedness of the
Paley-Littlewood operator in L/7, Sobolev norm equivalence (indeed, we have for
o < 3 that max{},$} < £ <min{1,1 - }) and fractional chain rule, we obtain
for that £k >0

Here, for || (1+ \x|_‘7)3/4 HL? o tO be finite, we impose that o <

|+ Je=)F P (D0 2|

S HPI?<Da>_1U2HL8/7(R4)

L8/7(R4)

+ H|x —%P£<Da>_1u2‘ Lo
< PHDL) T P s

+ ‘ D?P£<Da>_1UQ‘ L8/7
< 270 Pe? | e e
< 27Uk D Pou? s/
< 2 Uk D e
< 27Uk kT2 L e
< 2R | s | V| 2
< 27Uk vy 2,
<p 2 (HF)kg—k,

Thus, we so far have that

(VB

) t—71 3 30
Wdoalls,, S [[(275R% [ (10—l s o0 omtieitoeg
k>0 0

2
_k 3
25 Tl )

lz|>R

k>0
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The tail can be handled via the radial Sobolev embedding. That is,

1
t—71 5
CAPRE VA AR,
|z|>R 0 Lo
lzl> R
1
t—71 3
: ’ / Kot —5)(Dy) tu(s,2)* ds
0 Liisr
1 1
N R3/4 ||K(t—t+Tl)U(t_71)_K(t)UOqul
1
Kt —t+7)Ut — 1) — K(t)Uol| -
1
Se

Thus, all together, we have

SRS

t—71 3
||||IkHL3||z2 <g HQ—(1+3Z’)1€2—IC (2— R%/ (|t _ 8|—2+A .2(3—A)k> 1 ds
k>0 0

2
143X 3\ 3
SE (R%Tl a +R‘Z) :

We also need to deal with the low-frequency case. In this case, we also use
Bernstein estimates to attain summability in Ki <o- First, define % = % + %. Then,

WZellzslg, S 12 1Zellgally, -

Similar to the high-frequency case, we split the L4 norm into the two regions |z| < R
and |z| > R. For the bounded |z| < R region as before, we use the time-decay
estimates with § = 1. Notice that we shall need to use the L® norm, which is
allowed because we have already restricted the coefficients of the inverse-square
potential to allow the use of the L® norm. We remark that there is no gain from
the Hardy inequality in the low frequency and we have

2_2A
372

| P K (t — s)u(s,x)2||Lq < RF (|t — s\_22_‘7k)

le|<r ™ ||PISU2HL(2<1>’-

Now, using Bernstein inequality and boundedness of the Paley-Littlewood operator

inL(QQ),wehavewith%z(?l),—i-ﬁ:%—i—%—i-ﬁands=%—%<1that
IPfllpen S 28| D2 P
U / 5 Plu
k L(29) ~ a k 1(20)
1,2
25 [lu*][,

<
S 25 fulZar S 25 [lull gy S 25 ully, -

~
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Recall we have already restricted to o < 1/2. This is enough for summability in
fﬁ@. So far, we have

A
< 2

AP s

t—T
2”%3%/ 1 (\t—s|_22_‘7k)%_
0

2
2k<0

t—11
+ [[2*F / Ko (t — 8)Pfu(s,z)* ds
0

q
L\z\>R 02
k<0

The tail can be dealt with using the radial Sobolev embedding. Indeed,

1 A
t—71 372
IZells = ’/ Kq(t — s)(Da) tu(s, z)? ds
0 Lk
t—71 %4%%
’/ Kot — s)(Da) (s, z)? ds
0 L%wT>R
1 1_ e
< Py |K(t—t+7m)U(t —71) — KU 3, 2
2 4
2 €
K (¢ =t + 1)Ut — 1) — K(6)Up| 25 2
1
SE Rl

For the tail, we have the 2** for summability in £ _.
Now, putting the everything back together, we have for (5.3.13) that

P g 4
(5313) <o (Rbn P 4R 1) 4 RETIV L ROD),

To deal with (5.3.14), we will not exploit time-decay because for s € [t — 71,1,
there is not a strictly positive lower bound on |t — s|. Instead, smallness can be
obtained via the Virial-Morawetz estimates (Corollary 5.3.4). First, we apply a
frequency decomposition:

t
(5.314) < / 1Ku(t — (Do)~ u(s,2)?|| s rey ds
t—71
t
S [P = D s s ds
t—71 =

t
+/ ||||P]?Ka(t—s)u(s7x)2\|L3(R4)||éi ds.
t <0

—
In the high frequency case, we have
I1PEKL(t = ) (Do) omey S 2" 79| PEKL(t = 5)(Da) ™ 0|2 (re)
= 2 D) me
< 1PE(Da) 34| Lo (ra).
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By Sobolev norm equivalence (Proposition 2.4.1) and fractional chain rule

HHP]?KG(t_S)<Da>_1u(8’x)2||L3(R4)HZi>O 5 HHP/?<DU«>_1/SU2HL2(R4) B
a k>0
< Il g
H, 3
S [
w23
< fullolial, g4
< ool

The low-frequency case can be handled similarly. Hence, by Holder inequality,

t
(5.3.14) <p / ull o ds
t—T71

¢ 3 ¢ 3
(/ Hu||ig ds) (/ ds)
t—Tl t—Tl
N t 3
T (/ / lu(s, z)[? dxds)
t—Tl R4

Thus, when we put these back together we obtain

A

N

10Dl Sp (5.312)+ (REr 2+3’\+R’%> YR LR G-

AL o)

Now, we choose R = 711. For any €; < 0 and T > 0, there exists T = f(el,T) >T
and 7, = 71 (FE, €1) > Cge;? such that if ¢ > T, then

1

2
_’+”+R*%) YR L RG-R) < 56

(5.3.12) + (RZTl 2

Then, by Corollary 5.3.4, we can conclude that for the above T and choosing 7 =
27 and €y < C’ET1 €7 there exists Ty = To(e E,T) > Tandte [To +1, To + 27 ],

so that
2 t % 1
(5.3.14) S 77 (/ / lu(s, z)[? dxds) < -
t—Tl R4 2

Finally, with T} = TO + 271, the result follows. (Il

5.3.4. Normal-form transform. Next, we shall obtain some estimates we
need in the proof of scattering. First, define the space

1 1 5 3
Sa(I) = <0, 2,0|1> N (2714 R, 7 4,<';|7 +KJ>

and also the space

Z,(I) = <O,i,0|sH> .
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where min{—% + 6, —+ — 20}. Finally, define the weak space S,(I) with norm

1Wlls,n = P20Vl 3 1 tergni—ctysez)
+||P%0U||(l y

—6, 2 —e,e)NLILEN(e,2e(F —K)+(1—4e) 3 ,1) "
In contrast to the 3D radial small energy problem (Chapter 3), here we need the
space Z,(I) to provide some ‘extra room’. The choice of exponents for S,(I) and
S.(I) are the same as in [22] (though the spaces are different because we are using
Littlewood-Paley projectors adapted to .%, ), while for Z,(I), we have chosen the L2
based space rather than the LS° space, which is the best exponent possible to define
the Littlewood-Paley projectors without reducing the range of a (the coefficient of
the inverse-square potential).
The control of S, (I) by interpolation of S,(I) and Z,(I) is the same as in [22]

For clarity, let us check the case when o = 1/2. Here, sy = mm{—f +9, —g = g.

LEMMA 5.3.7. Let u € So(I) N Zy(I). Then,

(5.3.16) lullz, ry S WUIls, HIUNE 1y

PROOF. We need to check the five norms in the definition of S,(I). Note that
€ and k are sufficiently small. We start with the high frequency case. First, we
have

1P2oU ]|

12Ul s ooy S
S (P2l
S

—6,(1—2¢)(F —K)+2e 1 ,5)

—6,(1-2¢) (& —K)+2e- 3,(1-2¢) (35 +r)+2¢(—2))

1—2¢ 2e
AL

where s = 4((1 — 2€)(Z — k) +2¢- 1 — 1 —¢) + 7e. Next, we have

P20,

A

P20V 4
HPﬁoUH(;

—€,5+3¢,2) —6,(1-26) (5 —r)+2e- 1 ,5)

—e,(1=2e) (£ —r)+2e- 3,(1-2¢) (15 +r)+2¢e(—3))

115, U

<
N Sa(D)

5.(1)°

Wheres:4((1—2€)(%_m)+2€. i _,_36)

Now, we check the low frequency case. First,

||]D§O(]||(1 —€,5—€,€) ’S HP<OU'||(1 J(1=2€) (& —K)+2€ §,5)
< HP<0UH(7—6 (1—2€) (& —K)+2e % ,(1-2€) (2 —4k))
< Wls ol

(1)
where s = 4((1 — 2¢)(Z — k) + 26+ + — 1 +¢) + €. Next,
N TN PN
<

1P20Ullg 35wt 3-8, 33 -0
U115 E5 101, o)

mm

AN
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where s =4(2(% — k) + (3 —€)3 +e- 1 — £). Finally

||P%0U’|(5,26(%75)“1746)%,1) 5 HP<0UH €,2e( —r)+(1—4e) 3 +2¢ % 5)
HP<0UH(6 2e( 5 —r)+(1—4e) 5 +2¢ §,2¢(2 —4r))
10112 U1 1y

where s = 2¢ + 1. O

S
S

We have the following control for Z,(I):
LEMMA 5.3.8. Let u € L3N HL. Then,
(5.3.17) el yoren) = | 5% 321

ProOOF. In the high-frequency case, using Bernstein’s estimate yields
1Pgulze < 267D Peulls
and
[1PullLs < 1PEullm; -
Therefore, we also obtain the bound

4 11—«
IPEules s (208 Pulles ) IPEulg,

If we choose sy + (1 — a) < 0, we have

11—
Sooekpelf, 5 D02k (2O Rl ) PrulE

k>0 k>0
S 32l (prute Pl
~ k L3 k H;
k>0
1 2
S 3 (el Ipeulis, )
k>0

—a 2
S (Il luls)

Now, let us write a = 36 for convenience, and choose sg = min{—%—&—&, —i—%a}. In
the low-frequency case, we use the same argument. Indeed, by Bernstein estimate,
we have
| Peullze S 26708 Prull s S 1Pl
Now, using the Sobolev embedding H} < L3, we may conclude for any « € [0, 1]
that
1P2oull go < llull g [lullfrs -
O

Furthermore, we have the following estimates for the various terms of the nor-
mal form transform for d = 4:

LEMMA 5.3.9. Let U,U’" and U" be radial. Then we have:

) (Resonance term)

Ss ||UHSQ(I)||UI||§Q(1)

/K t — ) (Do) " (UU ) grymrsrm ds

(l(
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(ii) (Boundary term) There exists 6 > 0 such that
IKDa)~QU, U)s.r) £ 2P NU s, i IO Z o 10 s, U 1 5y
(ii*) (Refined estimate for boundary term) For 0 < k < € < 1,
H<D > 1Q(U U,)”S [@)) § 2- B||UH(0,2,0\1)‘|UI||§a(1) + ||U/||(0,%,0\1)||U||§u(1)

(iii) (Trilinear term)

/Kt—s QD) N UU", U ds

Se 1Ulls, 10 Mg, IV Nl 5,cr)
Sa(l)

PROOF. Same as in [22]. O

These estimates can also be used to obtain 4D small data scattering for a
suitable range of a. The argument is similar to the 3D case discussed previously —
see [22].

5.3.5. Proof of large-energy scattering (Theorem 1.1.4). We shall now
prove the 4D large-energy scattering result. Similar to before, we shall only study

2 . . .. .
the — (%) < a < 0 case in detail because the a > 0 case is identical to the

potential-free case. Consider the simplified equation with non-linear term U? so
that U(t, z) is equal to

Ka()(Uo +i(Da)AU, U)(0)) — i(Da) AU, U)

To—72
fi/o Ka(t75)<Da>71 ((UU)LH+HL+HH+QQ(7i<Da>71U2,U)) ds

—i/' Kot — $) (D)™ (UV) parsmnsms + 20(—ilDa) " U, U)) ds.

To—T2
We shall write the two integrals above as I; + I>. The goal here is to show that for
any €; > 0, there exists 75 such that
9 2
HUHSE(TMO) S Cpei®
Firstly, using the Strichartz estimates, we obtain that
1Ko (t)(Uo + i(Da) QU U)0))ll5, ) < 10z + 1 UollF -

Therefore, for any e¢; > 0, there exists T = T(el) > 0 such that for all T > f, we
have || K, (¢)(Uo+i(Dg)~ 1Q(U U)(0)5, (15,00) < €1- Also, using the refined bound
(Lemma 5.3.9 (it*)), we have

||Q(U7 U)”S'Q(Tg,oo) < 27BCE||U”§a(T2,

Next, we consider the (0,75 — 72) integral I. First, we have that

1-2 2¢
||II||5'0,(T2,00) < ||II||5(T;OO)||IIH 0,1,01—1+4)"
From the observation (5.3.15) and boundedness of the S, norm, it remains to
study the Z, norm. In particular, we first estimate

To—72
/0 Ko(t = 8)(Da) " (UU) L mpymm + 29(—i(Da) U, U)) ds

B.égo\—%ﬁ»é)

by frequency decomposition

|12l ey,

‘SH s

izl

2
Liso
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where
To—T2
7, = / Ko(t — )PE(UU) Loy s s+ 20(—i(Dy) " U2, U)) ds,
0
To—T2
Iy = / K, (t —s)PAD) " (UU) L snnsmn + 22(—i(Dy)"'U?,U)) ds.
0

. To deal with the summa-

Let us first study the low-frequency part H IZz || 4,
k<0
bility in £i<0, we use Bernstein estimates. Thus, define é = i + 7. We have

T2_T2
/ K (t —8)PA((UU) Ly mrsmm + 2Q(—i(Dy) " 1U%,U)) ds
0

By
To—T2
< 2V / Ko(t = $)PE((UU) L ynm + 29(—i(Da)'U?, U)) ds
0 ]'32
To—72
< 2 / Ko(t = $)PA((UU) L+ m+mn + 22(—i(Da)"'U?,U)) ds
0 La

The factor of 2** is used to deal with the €Z<0 summation later, and so we focus
on the L7 norm. Indeed, we split the norm into regions |z| < R and |z| > R:

Ty—T2
/ Ka(t - S)Pg((UU)LH+HL+HH + QQ(—i<Da>71U2, U))ds
0

q
Lizi<r

To—To
+ / K (t —8)PA((UU) pasmrrmn + 2Q(—i(Dy) U2, U)) ds
0 Lﬁr\>R
To—T2
< / | Kot — ) PA((UU) L4 rp+mm + 2(—i(Da) " U?, U))Hqu . ds
0
TQ—TQ
+ / K (t —8)PA((UU) pasmrrmn + 29(—i(Dy) "' U?, U))ds
0
L?m\>R

For the |z| < R region, we may apply the dispersive estimate with § = 1/2. Thus,
we bound

|Ka(t — $)P((UU) Lagrr+mm +29(—i(Da) U, U))|| e ST-11,
where I is given by

9

|+ fot=) =

2q
L\m|<R

and [T is given by

2
1 1_5 . —
H <1+|x|‘7> Kot —s)PE((UU) gLy mn + 29(—i(Da) " U, U))

L2a
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Now, I - II can be bounded by

(1t - s 2442 00-1/20) 7 g

CoyI=2 pa o
A1+ |2 77) PY(UU) a+mp+mE + 22—i(Da) " U, U))| 2o -

Furthermore, similar to before, for low-frequency case, we have

| (Ut 12l =)' BT Lt gsrn s+ 2=i(D) 0%, D)) o
SIPHUU) Latanram + 22(=i(Da) " U, U)) || L2y -

Thus, it suffices to study the term

(5.3.18) 1P¢ (UU)Lutmnram +29(=i(Da) " U2, 0))) || -

In the low-frequency case, since the exponent 2(1=1/2=9)% jg a negative power (recall
that o < 1/2 from previous restrictions), we already have summability in E% <0
whence it is enough to use the estimate

(5.3.18) S U3 2200 + U3 5020y -

Next, we need to deal with the tail. In this case, by using the observation (5.3.15),
we have

To—To
/ K,(t—s)PA((UU)Lg+HL+HHE + 29(—i<Da>_1U2, U)) ds
’ Lizi> g
To—7o 375
< / Kot —s)PH(UU) Lsnr+un + 2Q(—i(Dg) " U, U)) ds
’ Lisi> g
Ty—7a 3ts
: /0 Kot — s)PA((UU) Lt mp+nn + 2Q(—i(D,)~'U?,U)) ds
LRisr

The high-frequency part | Zg|

pon may be handled in a similar manner. We first
split the problem into the |z| < R and |z| > R regions again. We first use Bernstein
inequality to take out a factor of 2-379_ This reduces the study of the norm

To—T12
/ Kot — $)(Da) ™ PEUU ) Lassrpsms + 20(—i(Da) " U2, U))ds
0

Bom
to the study of the L* norm

To—12
/ Ka(t — 8)(Da) ' BE((UU) Ly mrymm + 2—i(Da) U, U))ds
0

L*(R*)

Next, we split this L* norm into the bounded and tail regions I + I, where I is
given by

To—72
/ Ko(t = s)(Da) " Pe((UU) s nrmm + 29(—i(De) ~U,U)) ds
0

4
Lizi<r
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and IT is given by

To—To
/ Kt — s) (D) PE((UT ) s srn s + 20(—i(Da)~1U2, U)) ds

4
Liisr

Finally, for piece I, we move the integral outside for the bounded region. Hence,
we shall estimate A + 11 where now A is given by

To—To
/o | Ka(t = $)(Da) ' PA(UU) L+ ma + 22(—=i{Da) " U, U))|| 1 ds.

Once again, we apply the dispersive estimate for the |z| < R region (i.e. piece A)
with § =1/2

HKa(t - 3) <Da>_1Pl?((UU)LH+HL+HH + QQ(_i<Da>_1U27 U))HL4

|lz|<R

S RS (It*S\*%ﬂ/ZWk)l‘%
3
. H (14 |2|7°) " (Do) "' PE((UU) Loy mins i + 29(*i<Da>*1U2,U))’ y
< 2VRE (It—sl‘%“%wk)l—%

N(Da) T PE(UU) L mn i + 22(=i(Da) " U2, U)) || s/

For the tail (piece I7), again we use the radial Sobolev embedding and the obser-
vation (5.3.15). Indeed, we bound

To—T12
/ (D) Kt — ) PE(U) arsparsr + 29(—i(Da) " U, U))ds
0
LTT|>R

by X - Y where X is given by

N|=

To—T2
/0 (D) Ku(t — $)PEUT) sy mrss + 20(—i D)~ U2, U))ds

2
Liisr

and Y is given by

Now, XY is bounded (up to a constant that depends on the energy E) by 25k R—1
(recall that sy = —min{—3 +46,—1 — 30}).

In the high-frequency case, since the exponent 2%5 239251k —F {snot a negative
power, we need to use a more refined estimate for this L8/7 norm. First, we note
that

1
2

To—T2
/ K (t —8)PA((UU) pasmrrmm + 29(—i(Dy) U, U))ds
0

oo
L\a:\>R

PrQ(—i(D,)'U%,U)) =0
for B > 0 sufficiently large. By Bernstein inequality, we also obtain the bilinear
estimate

7
f,glgg)(?skHPI?((UU)HH+HL+LH)HL8/7 SIP=oUllaz Ul L2 + |1P>oUl[3/2 < Ch.
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Indeed, sy was chosen so that + 0' +sg—1—4% < 0. Thus, putting everything
together, and choosing R = Tll / , we find that

To—72
1o gom, e REE [ s HE0 ds g privie

Therefore,

||11H§a(T2,oo) Se Tt

Now, we study I. Using radial Strichartz estimate, the Sobolev embedding H} <
L* and the variational result ||U||2Lg°H1 ~ E, we have that for any interval I C R,

1Ulls, ) < Ce + Cllu?ll 2 (1xmey < Cr(I).

Note that by Proposition 5.3.5, for € > 0 and T above, there exists 71 = CEefg and
T5 such that

NUlLoe (1—7,,10;18) < €1

Thus, let 75 =€, —3¢/2 In this case, we have [Ty — 73] C [Ty — 71, T»] and
1205, mo0 < Co (1012 ey o ION sty + WU IRy IO )
< O (WIS, ryny + 2V WO, crsy)
< Cg (<72>2_4€e‘1“(1*3‘5) + <T2>3—666?e(1735))
< CEEZC,

Thus, we have

9 2
HU”SQ(TQ,OO) S CE (61 + 2_B||U||§Q(T2,oo) + €f2€ )
Now, we apply a bootstrap argument to show that for To = Th(€1),

2

9
1Ul5, (13,00) < Crel”

Thus, we have [|U||g, (0,00) < Cr for some constant Cp.

Finally, we can prove large-energy scattering. The argument is the same as
in [22]. Indeed, the goal is now to show that K,(—t)U(t) has a limit in H} as
t — oo, which shall be done by verifying that the sequence is Cauchy. First, we
write K, (—t)U(t) explicitly as

Ko(=0)U(t) = Up+i(Da)" QU U)(0) = iKa(—t){Da) QU U)
—z/ K(— Y A TRes (U, U) ds

—2¢/ K(—=s)(Da) ™" (Q(=i(D,)"'U,U)) ds.
0

First, using Strichartz estimates, we obtain

TRes(U U) ds

2
S

1
t1 H}
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Thus, we conclude that
t t

—z’/ K (—8) (D) Mo (U, ) ds—Qi/ K(—s)(Da)™" (Q (—i(Da)""U2,U)) ds.
0 0

has a limit in H!. Finally, we claim that K,(—t)(D,) " *Q(U,U) — 0 in H} as
t — +o00, from which we can obtain scattering. First, by Bernstein estimates, we
have that

and
CK(=5)(D) M (@ (=iD) 0 )) | S U

t1,t2)’
H;

t1

12U, U)llay S 1P<oU | L2 [ P2oUl s
Thus, it remains to show that lim; 1o [[P£oU(t)|[zs = 0. This follows from the

fact that |[P2,U(t)[|Le is Lipschitz continuous in ¢ (see [22] for details). Finally,
this verifies the scattering result Theorem 1.1.4.



CHAPTER 6

NLS and NLKG with exponential nonlinearity and
inverse-square potential

In this chapter, we study scattering for the 2D non-linear Schrédinger (NLS)
and non-linear Klein-Gordon (NLKG) with inverse-square potential and with exponential-
type non-linearity:

10w — Au + U= fw)

(6.0.1)
(0, ) = ug(x)
and
8t2u—Au+ﬁu+u:f(u)
(6.0.2)

U(O,l’) = uo(z),ut((),x) - ul(x)
where u: Rx R? — C, f(u) := \ (e““'“‘2 -1- n0|u|2> u, ko >0, A € {1,—1} and

a>— (%)2. Throughout this chapter, we take d = 2 unless otherwise specified.
We shall study various settings in which global solutions to (6.0.1) and (6.0.2)
respectively approach solutions to the free NLS equation

. a
(6.0.3) i0u — Au + WU =0,

and free NLKG equation

(6.0.4) 92u — Au+ ﬁu fu=0.
as t — oo. Define F(u) : C — R so that F(0) = 0 and 0zF(u) = f(u). More
explicitly, we have

A Kolul? 2 ’%(2) 4
(6.0.5) F(u)=— (e — 1 — golul® — —|ul* | .
Ko 2
Then, the NLS (6.0.1) has conserved energy
1
Bsult) = 3 [ [Vut.a) + 5l ~ Fult2)) da
2 Jr2 ||
and mass
Mu(®) = [ fult,z)? da.
R?2
while the NLKG (6.0.2) has conserved energy

Brgo(u(®) = 3 [/ 1Vu(t.a) + ol + ut,2) + fu(t.0) = Plu.2)) do

We shall omit the dependence on the coefficient a for ease of notation.

75



76 6. NLS AND NLKG WITH EXPONENTIAL NONLINEARITY

In the higher dimensional setting (i.e. d > 3), the analysis adapted to the
operator %, is well understood and has been used to obtain scattering results for
dispersive PDEs with inverse-square potential, as we have seen previously.

For d > 3 the equivalence of fractional Sobolev norms [[(—=A)ul|,, ~ [[(:-Za)*ull,,
for a suitable range of values s,p and a is a central tool. This equivalence allows
us to use the fractional chain rule result which holds for (—A)® by switching norms
when required. Heat kernel bounds for ., available for d > 3 were used to obtain
this result. We remark that there were earlier results in some special cases. Indeed,
the sharp Hardy inequality

(6.0.6) / i|u|2 dr < (2— 2/Vu2d:v
o R |72 ~“\d-2

can be used to obtain this equivalence for p = 2 and s = 1 (see Burq—Planchon—
Stalker—Tahvildar-Zadeh [6]). In the case s = 1, this equivalence corresponds to
the LP boundness of the Riesz transform (—A).Z; 1. Notice that in the free case
(i.e. when a = 0), the boundedness of the Riesz transform holds for p € (1, 00),
and yet if we were to take the limit |a| — 0, one would find that the limiting range
is (1,d). Indeed, this was remarked by Hassel (see Zhang-Zheng [66]).

The two-dimensional setting is somewhat different. In this setting, it is nat-
ural to restrict to a > 0. We notice that in this setting, the Hardy inequality
(6.0.6) breaks down. From this, we immediately can see that H}!(R?) is strictly
smaller than H'(R?) for a # 0. A Hardy-type inequality can be recovered in
d = 2 if we restrict to functions orthogonal to radial functions, as noted in [6].
The equivalence can be recovered for a restricted range of p € (1, 00) via the W*?
boundedness of conjugation operators, for which results are known in dimension
two (see below). Time-decay and Strichartz estimates for the Schrodinger propa-
gator are well-established. For the Klein-Gordon propagator, similar estimates are
available, albeit in frequency-localised pieces (localised with respect to .%,) which
need to be carefully put back together.

We also review work on the exponential-type non-linearity. Indeed, the (defo-
cusing) NLS with power nonlinearity (i.e. i0; — Au = |u[Pu) is energy subcritical
for all p > 1. Colliander-Ibrahim-Majdoub-Masmoudi [11] identified the NLS with
exponential-type non-linearity as being the energy critical problem in 2D. Here,
the notion of energy criticality is given in terms of a well-posedness/ill-posedness
trichotomy with respect to the Hamiltonian. Prior to this result, Nakamura-Ozawa
[45] had obtained small energy global-well posedness and scattering for the NLS
problem. We also mention the work of Cazenave [8] for decreasing exponential-
type non-linearities. For increasing exponential-type non-linearities, the failure of
the embedding H'(R?) — L>°(R?) means that we still need a growth condition.
Hence, the non-embedding can be replaced by the Moser-Trudinger inequality to
give such a condition.

Scattering with respect to an energy trichotomy was subsequently studied for
the NLS and NLKG by Ibrahim-Majdoub-Masmoudi-Nakanishi [29]. Guo-Shen
[23] revisited scattering for 2D NLS and NLKG by extending the methods of
Dodson-Murphy to the two-dimensional setting. Furthermore, by using the ra-
dially refined Strichartz estimates for the NLKG combined with L, smallness of
the solution, Guo-Shen were able to give a simpler proof. Their proof is similar
to the NLS case of Ibrahim et al., who used the L}L8 smallness of the solution
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established independently by Planchon-Vega [51] and Colliander-Grillakis-Tzikaris
[10].

In this chapter, we obtain the following result:

THEOREM 6.0.1. Suppose that ug € H}(R?), (o, B) satisfies conditions (6.5.1),
Mq. g is defined by (6.3.7) and K, is a constant defined in Proposition 6.1.8 below.

Recall also ko > 0 and f(u) := A (e“‘”“‘2 —-1- I<L0|u|2) u. Then,

(a) If A = —1, the solution to (6.0.1) exists globally and scatters provided
ES(UO) < ;Kao .

(b) If A =1, the solution to (6.0.1) exists globally and scatters provided that
Es(ug) + M(u)/2 < mqp and Ko g(ug) > 0, and a > 1 or sufficiently
close to zero.

(¢) If X = —1, the solution to (6.0.2) exists globally and scatters provided
EK(U()) < ;H'lo.

(d) If A =1, the solution to (6.0.2) exists globally and scatters provided that
Ek(ug) < ma,p and Ko g(ug) > 0 for a > 1 or sufficiently close to zero.

The restriction in the coefficients a of the inverse-square potential comes from
the proof of scattering and the LP theory as seen above. Indeed, for a > 1, we are
able to use the method of Guo-Shen [23] in combination with the L? continuity of
conjugation operators. In particular, we are able to avoid using the double loga-
rithmic inequality to obtain scattering, as is needed in papers such as [29] and [30].
For smaller values of a, we need to use the double logarithmic inequality. We did
not pursue the optimising the double logarithmic inequality for the inverse-square
potential. The issues are similar to characterising the threshold for the Moser-
Trudinger equation. For instance, rearrangement techniques cannot be applied in
this setting (recall that @ > 0 in the 2D context). As a consequence, we need to stay
close to the potential-free case due to the requirements in the double logarithmic
inequality. If the double logarithmic inequality was optimised, then we could deal
with the remaining values for the coefficient using the same argument.

6.1. Preliminaries

6.1.1. Inverse square potential in 2D. We first review some important
estimates related to the operator £, in two dimensions. In particular we have
the following estimates for the heat kernel, Riesz kernel and Littlewood-Paley the-
ory. These results are analogous to the higher dimensional setting (i.e. d > 3) as
discussed above, as well as in the literature.

LEMMA 6.1.1 (Heat kernel bounds in 2D, [31]). Let a > 0. Then, there ezists
constants ¢,C > 0 such that for x,y € R*\{0},

(6.1.1)  0<e*e(z,y)<C <1 Y \/{5) <1 Y, ﬁ) e

|| [yl
The following Riesz kernel estimates and Littlewood-Paley theory can then be
obtained using the above heat kernel bound as in [33]:

LEMMA 6.1.2 (Riesz kernel). Let z,y € R*\{0}, s € (0,2) and 2 — s — 20 > 0.
Then, the Riesz kernel satisfies

B 1 o dt , || |yl -
P52 = 7/ tLa /27 < g — y|572 A Al .
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LEmMA 6.1.3 (Littlewood-Paley theory in 2D). Leta > 0, 1 < p < ¢ < o0,
s € R and k € Z. Define the Littlewood-Paley operators P2, P¢ and P, as in
Chapter 2. Then, a

(a) P2, and P? are bounded on LP,

(b) P%, and P} are bounded from LP to L7 with norm O (2]’“(%7%)), and

(0) 2 | Pefl, ~ || 2 Pes| .

6.1.2. Boundedness of conjugation operators. We define the conjugation
operator K, ,, := H,H,, and also its inverse K,, ,, as in [49]. We have that A, K, , =
K, . A,. The continuity of these operators on W*? (that is, K pttllyiyen S ellyis.n)
will be important for our purposes. We shall also need similar results for the ex-
change operator B}, , = AZ/QA;S/Z on L? ,. Indeed, from [49], we have the fol-
lowing result:

PROPOSITION 6.1.4. Let the operators K, , and B}, ,, be as defined above. We
have that

(a) The conjugation operator K, is continuous on L . if

rad
A— 1 A+2
(6.1.2) max{d“,o}<p<min{+d+“,1}.
(b) The conjugation operator Ky, is continuous on W;g if
A— 1 A 2 A 2
(6.1.3) maX{O,dV,Z}<p<min{ +Z+ , +”;r +5,1},
while its inverse IC, x is continuous on Wrsa’g if
A—v A— 1 A 2
(6.1.4) maX{O,dV,ZJFS}<p<min{+dy+,1,1—|—Z}.
(c) The exchange operator B, , is continuous on LP if
d
(6.1.5) max{A —v+s,A—put < > <min{A+p+2+s,A+v+2}.

6.1.3. Strichartz estimates. We have the following Strichartz estimates in
the potential-free case. In previous chapters, we used Besov-type spaces in order to
study the quadratic non-linearity. In contrast, we shall use Sobolev spaces instead.
This means that we may use the conjugation operators above to obtain the corre-
sponding results in the inverse-square potential case. This shall be the approach
that we use for this chapter.

PROPOSITION 6.1.5 (Strichartz estimates, [37]). We have
(a) If (q,7) satisfies 2 < q,7 < 00,(q,r) # (2,00) and % + 1 =1. Then, we
have
TN

le"uoll g, < lluollze-

(b) We also have for (q,r) satisfying 2 < q,r < 00, (¢q,7) # (2,00) that

eit(V)

R
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where

Blg,r) = {

and By 5 is the standard Besov space.

1
! q

6.1.4. Logarithmic estimates. We shall also need the following logarithmic
inequality from [28] in our study of (6.0.1) and (6.0.2). First, we define the following
spaces for0 < a<land 0 < pu < 1:

(6.1.6) |lu]|ce := sup M,
and
(6.1.7) lullzrs, o= lleliFy + pllull3.

PROPOSITION 6.1.6 (Logarithmic estimates for H}(R?), [28]). Let 0 < a < 1,
A> 2 and 0 < p < 1. There exists a constant Cy > 0 depending on \ such that

2T

for any function u € H}(R?) N C*(R?) we have

8~ Jul -
e < Ml Tow | €3+ = ).
,a U’HH}L,Q

ProoF. This follows from the estimate in the a = 0 case from [28], the fact
that H}(R?) — H'(R?), and the fact that = — 2?1In (Cy + ¢/x) is increasing. [

6.1.5. Moser-Trudinger inequality. We now discuss the Moser-Trudinger
inequality. In the radial setting for the inverse-square potential, we shall see that
there is an improvement to the threshold (see below). This improvement is a corol-
lary of the equivalence between the Moser-Trudinger inequality and the Galgliardo-
Nirenberg inequality as observed by Ozawa [47]. Thus, we shall first state some
results related to the Gagliaro-Nirenberg inequality. Here, the Gagliardo-Nirenberg
inequality is written with explict reference to the growth rate.

PROPOSITION 6.1.7 (Gagliardo-Nirenberg estimate for H}(R?). Let g € (2, 00)
and a > 0.

(a) There exists a constant C' > 0 independent of q such that
1 1—2 2
(6.1.8) lull g < Ca® [lull 4, " llullzz -

(b) Furthermore, the best constant in (6.1.8) given by

[[ull,

(6.1.9) CGN,q = sup 1z z'U € Hé(RQ)\{O}
aHluly,? ol

is equal to Cgn,o and is only attained for a = 0. In this case, the best
constant is attained by a radial solution of

(6.1.10) ~AQo+ Qo = —Q4 .
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(c) In the radial setting, the best constant CoN,arad defined as in (6.1.9) re-
stricted to H;)rad is attained by radial solution of

a -1
(6111) <—A + .73|2> Qa,rad + Qa,rad = _Qg,rad‘
Furthermore, CgN,a,rad < CaN,a-

PROOF. The proof is exactly as in [13, Thereom 4.1]. a

PROPOSITION 6.1.8 (Moser-Trudinger estimate for H:(R?)). Let a > 0.

(a) For all k < 4w, we have

(6.1.12) sup / exp (k|u|?) — 1dz <.
|‘u‘|Hé(R2)S1 R?

Furthermore, this threshold is sharp in the sense that for all k > 4w, there

exists a sequence of functions (u,) C Hy(R?) such that |[u,|/ g <1 and

/ exp(klun|?) — 1 dz — oo
R?2

as n — oo.
(b) For all k < k%, we have
(6.1.13) sup / exp (k|ul®) — 1 dz < c(a).
R?2

u <1
H HH;,rad(RZ) >

Furthermore, this threshold is sharp in the above sense, except with a
radial sequence.

PROOF. The estimate (6.1.12) follows from the embedding H! < H! and
the corresponding Moser-Trudinger inequality in the H!(R?) case (see Ruf [52]).
All that remains to show is the sharpness of the thresholds in the two respective
settings (non-radial and radial). This follows from the equivalence of the Gagliardo-
Nirenberg and Moser-Trudinger inequalities (see below). O

Let us consider the radial setting, as this will be the setting for which we shall
study the problems (6.0.1) and (6.0.2). There are many equivalent forms of the
Moser-Trudinger inequality. First, we consider the form discussed in [47]. The
assumption that [jul| 41 < 1 can be removed by replacing u with w/||u|| ;.. In this
case, the Moser—Trudir(iger inequality in the form ‘

(6.1.14) / exp (kglul®) — 1 dz < cllull3
R?2

is equivalent to

* 2 2
(6.1.15) / exp (““Z' ) C1de <
w0\l ull%s

Furthermore, the reverse implication (i.e. showing that (6.1.15) implies (6.1.14))
is non-trivial as noted by Ozawa [47], and can also be proved via the equivalence
with the Gagliardo-Nirenberg inequality, which we discuss below.
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We also mention the following form of the Moser-Trudinger inequality for u €
H} such that ||uz: <1 given by

2
(6.1.16) / exp (Jul’) —1dz < L"ZQ
e s — Tl
The fact that (6.1.16) implies (6.1.12) follows immediately when we apply the condi-

tion that ||uf g1 < 1. Now, to prove the opposite direction, we shall prove something
more general. We follow the proof from [23]. Indeed, let ¢ > 1. Then, we have that

(6.1.17) sup / (e”ac Hlol® l)c dz < C.
R2

lol12, <1
Let u € H! such that ||ul| ;1 < v/k%/c. We note that for uy(z) := u(Az), we have
lunllzry = llunllzy + A~ [luall3.

Hence, we may choose A > 0 such that ||u,\||H1 = k% /c. Then, applying (6.1.17) to

= uy/+/KLc™L, we obtain
/ (e\ux(acﬂz _ 1)C dz < C.
R2

Finally, after a change of variables, we use the choice of A to obtain

2\ 1\¢ < \2 ||¢)\||2
/R2 (exp (|u(x)| ) 1) dzr <A —n;c*l = ||¢H3{é

PROPOSITION 6.1.9 (Equivalence of Gagliardo-Nirenberg and Moser-Trudinger
inequalities, [47]). Define the following optimal constants

Kq = SUpKK: sup / exp (n|u|2) —ldz < C|lulj3 < ooy,
lull gy (m2y<1Y/R2
My = inf{M:3r=r(M)st. (6.1.8) holds for all u € H,(R?) and r < g < oo}
u
Bo := limsup el ,
q—00

=l
aHlul ol
Then, the estimates (6.1.8) and (6.1.12) are equivalent and 1/k, = 2e M3 = 2ef33.

PROOF. Since By < My, it suffices to prove that (6.1.8) implies (6.1.12) with
1/kq < 232 and also to prove that (6.1.12) implies (6.1.8) with 1/k, > 2eMg. We
first show that (6.1.8) implies (6.1.12). Using the Taylor series expansion, the fact

that ||ul|;; < 1 and the monotone convergence theorem, we obtain for any € > 0
that

W,
/R2 exp (/1|u|2) —1ldz = ZFHUHﬁ

i1
K 25 76 ,\j 2
< Zﬁ(ﬁwe) (27) [[ull3
>1
] .
< Z 2(Bo + €)°k)7 |lull3

j>1
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as long as the final series is finite, which is satisfied if 0 < x < 1/2e(Bo + €)?. Thus,
we have that (6.1.8) implies (6.1.12) for any & such that 0 < x < 1/2e(Bo + €)2.
Therefore, we also have that k, > 1/ 2663.

Next, we show that (6.1.12) implies (6.1.8). Indeed, for 0 < € < k,, we have,
as remarked before, that

_ 2 2
/ exp 7(’% Z)‘u| —1dx < C(e) ||u|22 ,
R J J

for some constant C'(¢) > 0. Thus, expanding the left-hand side using Taylor series
expansion, we see that for each j > 1, we have

s
1 (Fa =P ullyy oy el
: = < o
Al %,
Therefore,
(Cle) - O™ 1 aysy 1/
(6.1.18) lull2; < mHU”Hé /j||u||2/j

Let ¢ > 2 and such that 2j < ¢ < 2(j + 1). Interpolating the above (6.1.18) with
p=2j and p = 2(j + 1) we have that

q 1/2j5 _ _
(6.1.19) lully < (CET (5+2)) " (0 — )2l >y

where I is the Gamma function, and we note that (j+1)! <T'(¢/2+2). Now, using
Stirling’s formula, the fact that 2j > ¢ — 2, we obtain (6.1.8) for any ¢ > 0 and for
some r = r(8) > 0 sufficiently large, we have (6.1.8) with C' = (2e(kq —€))"/2 +6
for all ¢ > . Thus, we also have My < (2ex,) /2. O

6.2. Local and global well-posedness

6.2.1. Local existence. We begin our study of the (6.0.1) and (6.0.2) with
the local existence theory. The proofs here are similar to those in [11] for the NLS
case and [27] for the NLKG case, so we shall place emphasis on adjustments we
make compared to the potential-free case studied in these papers.

PROPOSITION 6.2.1. Let o € {—1,1}, up € Hy(R?) and |[uo|| g < :—g

(a) There exists a time T > 0 and a unique solution to (6.0.1) in the space

Cr(HLR?) N L?é[_on,}] +°00 " Purthermore, the solution satisfies the
conservation laws M (u(t,-)) = M(up) and Eg(u(t,-)) = Es(uo).
(b) There exists a time T > 0 and a unique solution to (6.0.2) in the space

Cr(H}(R?*) N CL(L*(R?) N Lfg[]()) 7) ;/2’00(77/2)(R2). Furthermore, the

solution satisfies the conservation law Exg(u(t,-)) = Exa(uo)-
ProoF. We shall study the NLS case, as the idea for the NLKG case follows
from [27] and the extra steps we discuss below for the inverse-square potential. The

spaces chosen match the scattering proof later. We shall study the local existence
theory in the following space:

(6.2.1) Stra ([0, T1) := L2 qyHa N Lyt ol W (1 x R?),
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Note that for a > 1, we have Str,([0,T]) < Stro([0, T]), since H}(R?) < H'(R?)
1

FRE]
and since A7 A, ? is continuous on LM (R?). Here, q(¢) is defined for small € > 0
via

1 1 n
—— =—+e
() g
First, we define the map with S, (t) := e*Z« by
(6.2.2) O(vy) = / Sa(t —8)f((vo +v1)(s)) ds.
0

where vy solves the following free Schrodinger equation

i&‘tvo — AUO + #UO =0

(6.2.3)
v0(0, ) = up(x)
The idea is to show that ® is a contraction on Xp := Str,([0,7]) with metric
d(u,v) := ||u — vgtr, (0,r])- Then, by construction u = w + v solves (6.0.1). First,
we check that ® maps Xr to itself. By Strichartz estimates and continuity of the
conjugation operators KT := H,H, and K~ := H,H,, we have
t
20 s, oy = | [, Salt = o0+ 02) ds o
0 L3 r HINLEY o W
¢
= / Sa(t — $){(Dq) f(vo +v1) ds
0 L:Z[O,T]Lszf\(ET[,()) T]Loc( "
¢
~ |kt / S(t— ) (VYK f(vo + v1) ds
0 L2 . L2NLEEN L
¢
< / S(t — $) (V)K= f(vo + v1) ds
0 L oy PO 15
S WK™ fvo + 0 ||L2( D LA S S IV f(vo +v1)ll 2cm prom -
T] tefo, 7]
Now, we use the assumptlon that [uol| 7, < fe Indeed since v solves (6.2.3), w
also have |[v]|p < Z=. Hence, [lvo + v1llpn < 22 + for a sufficiently small choice 4.

Thus, we may apply the Moser-Trudinger mequahty, continuity of the conjugation
operators and Holder’s inequality to obtain

||<V>f(1}0 + Ul)”Lf(f”)Lﬂ”) g H (eﬁo\vo-l-m\? _ 1) l‘$0|UO + U1|2<V> (7)0 + 'Ul)’

L?(”)L;(n)
2

< erolvotoi® _ 1HLOOL1(4%) H |'UO + U1| < >(1}0 + vl)HL?(n)L;o(z;&n)
S V) (wo + vl p2cm oo - [lvo + U1||2L:C(n/2)L20(47n/2)
Y V) vill p2c=m poeon - \|Uj||2Lfo<n/2>L;o<47n/z>

i,7€{0,1}
S Z ||<Da>vi||Lf<—n>L;o<n> : ij||i:°(n/2)L;O(47n/2)

i,5€{0,1}
S T8+ Jluoll )
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Thus, ® : X7 — Xp for a sufficiently small choice of T' > 0. Now, using a similar
argument above, we also obtain that ® is indeed a contraction if we choose M and
T sufficiently small. By the contraction mapping theorem, we obtain the required
result. (]

6.2.2. Global well-posedness for defocusing case. As a corollary of the
above study, we have the following results in the subcritical regime:

PROPOSITION 6.2.2. The above local existence results can also be extended to
global existence results. That is,

(a) Assume that Eg(ug) < Sa  Then, the defocusing problem to (6.0.1) has

2&0
a unique global solution in space C(R, H}(R?))N Lfé;”)wj’m(”).
(b) Assume that Exg(ug) < 2'?0' Then, the defocusing problem to (6.0.2)

has a unique global solution in the space C(R, HL(R?))NC*(R, L*(R?))N

2 1/2,00(n/2
Ltéq:){wa/ (n/ )(RQ)

PrROOF. We shall consider the NLS case, as the proof for the NLKG case is
similar. Indeed, let u(t) be the solution to (6.0.1) with maximal time of existence
T. Assume for contradiction that 7" < co. By the conservation law in the local
theory, combined with our assumptions, we have that

sup |lullg: < Es(ug) < 1.
t€[0,T]

Now, let s € [0,7] and consider the Cauchy problem
0w — Av + v = f)
v(s,x) = u(s,x) € H:(R?)

Then, applying the argument from the local existence result, we obtain a time
7 > 0 and a unique solution v to the above Cauchy problem on the time interval
[s, s+ 7]. Now, choosing s sufficiently close to T' (in particular, choosing s such that
T — s < 1), we are able to extend the solution u(t) beyond T', whence we obtain a
contradiction. |

6.3. Variational analysis

6.3.1. Variational results for the focusing case. In this section we discuss
the variational setting for the study of the focusing cases of (6.0.1) and (6.0.2).
Indeed, we review the following notation from [30]. Let (, 3) € R? such that

(6.3.1) a>0,2a+dB >0, 2a+ (d—2) > 0and (a, 3) # (0,0).
For ¢ > 0 and ¢ € H(RY), define the static energy

1 1
(6.3.2) JO(¢) = i/Rd |V<z>|2+#|¢>|2 dz + g/R ¢|? dz — i/Rd F(¢) d.

Let

(6.3.3) rp(@) =g (e7Pa)
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and
(6.3.4) KSp(0) = LapT(00))
Y )\ZOJQ,gO\)
20{+(d—2)5/ 2 a 2

. . = 5 1zl2 d

(6:3.5) 2 Jpa VPl
2
TN
2 R

_% /R 2R (,F(6)0) +dFF(9) da.

If ¢ = 1, we omit the superscript c. Furthermore, define the quadratic part of
K, 5(¢) (i.e. the linear energy of the sign functional with ¢ = 1) by

Q (g) .= 20 d=2)8 24 02 dpy 2095 2
(6.3.6) K 4(¢) := 5 /Rd Vol +|x‘2|¢>| dz+— C/Rd|¢| dz.

We shall consider the minimisation problem
(6.3.7) Ma,s = inf {J(@) : ¢ € Hy ,q(R?), 0 # 0, Kq 5(¢) =0} .

We need to include the radial assumption in the above minimisation problem
because symmetrisation methods do not decrease the H! norm for a > 0. From
the variational problem, we define the following subsets of the energy space:

/C;;B = {(uo,u1) € HX(R?) x L*(R?) : E(ug,u1) < ma g, Kag(ug) > 0},
Kas = {(uo,u1) € H}(R?) x L*(R?) : E(uo,u1) < Ma g, Ko pgug) < 0}.

Furthermore, we restate the Moser-Trudinger inequality. First, we define

2
639 Clr@) = { TN 6 e mIm.0#0.ulyy < 4}
2

Next, define
(6.3.9) M(G) := sup{A > 0 : O (G) < oo}
Finally, denote
(6.3.10) Cip(G) = CT(@).
Thus, the Moser-Trudinger inequality gives
(6.3.11) M(La s F) = M(F) = %

0

Here, we have used the fact that for a functional H(¢) of the form H(¢) =
Jra M) dz, we have

(6.3.12) LosH (o) = /R _agh'(9) + Bdh(9) d.

We collect some variational results analogous to those by Ibrahim-Masmoudi-Nakanishi
[30].
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LEMMA 6.3.1 (Minimisation problem). Recall that
by 2
(6.3.13) Flu) = = <e”°|“|2 — 1 — kolul® - ”°|u|4>
Ko 2

and that the pair (o, B) satisfies (6.3.1). Furthermore, suppose that ¢ € H}(R?).
Then, the minimisation problem (6.3.7) is equivalent to

(6.3.14)  mqap=inf{H,p5(¢): ¢ #0, ¢ € H., ¢ isradial,and Ko 5(¢) <0} .

where

(6.3.15) Hop = (1 - L;’f) J.

REMARK 6.3.2. If (o, B) = (1,0), then we see that

1
Hyo(6) = 2101,
PRrROOF. The proof is similar to [30, Lemma 2.3] with minor alterations. O

LEMMA 6.3.3 (Compactness via dominated convergence). Let g,h: R — R be
continuous functions satisfying
(6.3.16) im 9L g WL
u— oo h(u) u—0 |u|2
Let (¢n)n be a sequence of radial functions such that ¢, — ¢ weakly in H}(R?)
and (h(pn))n is bounded in L*(R?). Then, g(¢n) — g(¢) strongly in L*(R?).

PRrOOF. We shall follow the proof of [30, Lemma 2.7] (see also [42]). We want
to show that

/ 19(6n) — 9(6)] dz — 0
R2

as n — oo. First, by assumption (6.3.16), we have that for any € > 0, there exists
an L = L(e) > 0 such that if |u| > L then |g(u)| < eh(u). Therefore,

/ l9(¢dn)| dz < e/h(qbn) dx <.
[pn |>L

Furthermore, from the radial Sobolev inequality, we also have that |¢,| — 0 uni-
formly as |z| — oo. Let Bg denote the ball centred at the origin of radius R. Then,
together with (6.3.16), there exists an R = R(e) > 0 such that

/ g@@dxs/’ ul? de < e.
R2\Br R2\Bgr

From the assumptions, the weak convergence also implies that ¢,(z) — ¢(x) for
x # 0. Therefore, by Fatou’s lemma, we have

/ l9(&)] dz < e.
|¢|>L

Now, we split

jf |g<¢n>-g<¢>\dx:sh/' 19(6n) — 9(6)] da
R2 R2\Bj
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into
(6.3.17) / l9(¢n) — 9(¢)| dx
R2\Bp
(6.3.18) + / 19(¢n) — 9(¢)| dx
R20{|¢n|>L}
(6.3.19) + / l9(¢n) — 9(¢)| da.
R2N{|¢n|<L}

We already have that (6.3.17) 4+ (6.3.18) < €. Finally, we define

b [ gt), <L
®) "{5@» 1> L

Then, by the Lebesgue dominated convergence theorem, we conclude that

tim [ lo(6) = 9@ S e+ lim [ 19"(00) —g" (@)l do S

n—oo [R2

g

Finally, noting that € is arbitrary, we obtain the required result. O
LEMMA 6.3.4 (Ground state). Let f and (a, ) be as above in Lemma 6.3.1.
Furthermore, define ¢ := min {1, C%;(F)}. Then,
(a) The minimal mass mq,g is independent of (o, B).
(b) If Cyp(F) < 1, we have 0 < map < 3 - == If Chyp(F) > 1, then

Ko

mas =5
(c) The minimal mass is attained by some Q € H} which solves
(6.3.20) Z,Q +cQ = f(Q).

That is, ma.5 = J(Q).

Proor. We shall follow the proof of [30, Lemma 2.6] which uses the compact-
ness via dominated convergence and Moser-Trudinger inequality.

We proceed in three steps — first, we show (b) and (c) for the exceptional case
a = 0 and the two cases for ¢ = min {1, C};1(F)}. Then, showing independence of
parameters (a) completes the proof.

Thus, we begin by considering the exceptional case with o = 0 and Cy;(F) >
1. By assumption, there exists a non-zero function ¢ € H}!(R?) such that || ;. <
IMN(F) and F(¢) > [|¢[|3/2. Thus, we have Ko1(¢) = [|¢]|3 — 2F(¢) < 0. Fix a
small € > 0. Then, Ky 1((1 — €)¢) < 0 and by Lemma 6.3.1, we have that

1 , 1 , 1 K

(6.3.21) mo,1 < Ho1((1—¢€)¢) = 5”(1 - €)¢HH; < 593?(]-') =5 o
This proves (b) in this case.

Now, we study the variational problem (c). We take a minimising sequence

(é)n © Hy yaq such that Ho1(én) = [|6]1%,/2 N mo.1 and Ko (¢n) < 0.
First, we note that
(6.3.22) Ho1(é(e ™ x)) = Ho1(¢) and Ko 1(d(e z)) = e** Ko 1(9).

Thus, by rescaling, we may take ||¢,||2 = 1. Furthermore, notice that for v € (0, 1),
K®9v¢) = v2K%(¢) while |[KN(v¢)| = o(v*). Therefore K(v¢) = K9(v¢) —
KN (v¢) > 0 for small v. Thus, if K(¢) < 0, then there exists an v € (0,1) such
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that K(v¢) = 0. Furthermore, we have H(v¢) < H(¢). Thus, we may consider a
minimising sequence

(6)n © Hy yaq such that Ho.1(¢n) = |6]131/2 e mo,1 and 1=2F (¢n) = Ko1(¢n) = 0.

All together, we have ¢, — ¢ in Hl. We may now apply the compactness
result (Lemma 6.3.3) with ¢,, g := F and h(u) := exp (s|u[?) — 1 where x €
(Ko, 2m/mg.1) to obtain F(¢,) — F(¢). Thus, ¢ attains mg,. Furthermore, for
some Lagrange multiplier n € R, we have J'(¢) = nK’(¢) where J' and K’ are the
Fréchet derivatives of J and K respectively. Thus, we have

(6.3.23) 0= Ko,1(¢) = LoaJ(¢) = (J'(9)|Lo,10) = n(K'()|Lo10) = 1L T ().

Furthermore, we show that £2.J(¢) < 0, from which we can obtain that n = 0 and
thus the minimiser ¢ satisfies .Z,¢ + ¢ = f(¢). Indeed, the same computations as
in [30, Lemma 2.2] show that for («, 8) satisfying (6.3.1), 7 := max{2« + dj, 2a +
(d—2)8} and p := min{2a + df, 2a + (d — 2)}, we have

~(Lap — TN Lo — ) () > E

- —d+1 (4).

Rearranging this inequality and using (a, 8) = (1, 0), we obtain the required result.
Now, we move on to the next case. Suppose that (a, 8) = (1,0) and Cy;(F) <
1. First, we verify (b). We notice that if € H} and ||gz§||?{1 < IM(F) then Ko 1(¢) =

I$lI3 — 2F(¢) > 0. Thus, mo1 = inf{[lulF /2 : Koi(¢) < 0} > M(F)?/2 and
consequently mg,1 = M(F)?/2 as required. However, this means there is no room
to use the Moser-Trudinger inequality to close the compactness argument as in
the previous case. The idea is to instead consider the variational problem for

Cp 1= CJ\S?(T]:)A/ "(F). Indeed, take a maximising sequence for ¢,

okl SM(F) =5, Floh) /% and o)l = 1.

Again, we may take ||¢F || = 1 as in (6.3.22). Thus, we may extract a subsequence
such that ¢¥ — ¢,, weakly in H!. Now, we apply Lemma 6.3.3 with ¢,,, g := F
and h(u) := exp (k|u?) — 1 where k € (kq,&}/(MM(F) — 1/n)?). Hence F(¢k) —
F(¢n) = ¢p/2. Thus, ¢y, is a maximiser for ¢, with ||¢,||2 = 1. We now obtain the
Euler-Lagrange

(6.3.24) NZaPn = —Cndn + f(Pn).

Furthermore, multiplying the above equation with ¢,, and using the fact that ¢, =
2F (¢pp) and ||pn||L2 = 1, we have

Wonly = [ DF(G) do = el

/(D — 2)F(¢n) dz > 0.

Thus, 1 > 0 and we may define Q,, () := ¢, (n*/%z) such that ||Q,| ;. < M(F) —
1/n and

(6325) faQn + CnQn = f(Qn)
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Now, we want to consider the limit n — co. Multiplying the equation (6.3.25) with
@, and z - V(@Q,, we obtain

llQulls =27(Qu). 1Quliy =2 | (D=2)F(@.) de = 4F (@),

Furthermore, using the facts that ||Q,|| f1 is bounded, and ¢, is a positive non-
decreasing sequence, we conclude that Q]2 and DF(Q,) are bounded. Thus,
we extract a subsequence such that @, — @, weakly in H!. Now, we apply
Lemma 6.3.3 with ¢, := Qn,¢9 := f and h := DF to get f(Q,) — f(Q) in
L'. Now, taking the Euler-Lagrange as before we get .2,Q, + cQ = f(Q) where

¢ = Cy;p(F). Furthermore, we have that Ké?l)(Qa) = (JO(Qa)|L01(Qa)) = 0.

Thus, ¢||Q.]|2: = 2F(Q,). Furthermore, @, is a maximiser of CJ\Q?(TI) (F) with

non-zero Lagrange multiplier and [|Qul[z: = 9(F). Finally, we also have that
J(Qq) = M(F)?/2.

It remains to verify that m, g is independent of the parameters («, ). If
mo1 < M(F)?/2, then the ground state Q, satisfies K, 5(Qq) = 0 for all («, B)

since

(6.3.26) Ko 5(Qa) = (J'(Qa)|La,5Qa) = 0.

Thus, map < J(Qa) = mo1. Next, if mg1 = M(F)?/2 = M(La,F)?/2 then
for all A > 9(F)?/2 there exists a sequence ¢, € Hj 4 such that ||¢n||Hé <
A, ||énll2 = 0 and Lq gF(¢n) — 0o. Replacing ¢, (x) by ¢, (z/v,) where v, — 0
as n — 0o, we may study the sequence ||(;5nHHé < A, ||¢pnll2 = 0 and Ko 1(¢pp) = 0.
Thus, ma g < liminf, e J(¢,) < A%/2. Therefore, my g < mo 1 in both cases.
Finally, suppose for contradiction that ma g < mg1 < 9M(F)?/2. Here, we take
a minimising sequence (¢,,) in Hy 4 such that Ko g(¢,) = 0 and Hy g(pn) N\
mq 5. Thus, we extract a subsequence ¢, — ¢ weakly in H!. Next, we recall
(6.3.12) and apply Lemma 6.3.3 with ¢,,g(u) := auf(u) + 26F(u) and h(u) :=
exp(k|ul?) — 1 with k € (ko, 27/ma,g) to obtain that LF(¢y,) — LF(p) as n — oo.
Thus, ¢ is a minimiser of mq g. Thus, we obtain a ground state @) such that J(Q) =
Ma,3 < Mp,1, which is a contradiction. Hence, we finally obtain mg 1 = mqa,g. O

LEMMA 6.3.5 (Splitting independent of («, 8)). Let F and (a, 8) be as above
in Lemma 6.3.1. Then, Kiﬁ (as defined in (6.5.8) and (6.3.8)) are independent of

(a, B).
PRrROOF. The proof is the same as for [30, Lemma 2.9]. O
LEMMA 6.3.6. Let F' and (o, 8) be as above in Lemma 6.3.1. Furtheremore,

suppose that (ug,u;) € H}(R?) x L?(R?) satisfies (ug,u1) € Kt. Then, we have
the following estimates:

(a) (Free energy equivalence)

1 d
(6.3.27) J(ug) < §Hu0||?{; < (1 + 2) J(ug).
(b) (Subcritical bound in KT )
K,/*
(6.3.28) ol s + a3 < 2ma s < IM(F)? = =2,

Ko
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(¢) (Variational estimate) If we also assume that (o, 8) # (0,1) and J(¢) <
Ma,3, then

(6.3.29) Kag(6) = min {C(mas — 1(6)),CKS5(6)}

PROOF. The proof is the same as for [30, Lemma 2.10, Lemma 2.11, Lemma
2.12]. O

6.3.2. Global well-posedness for focusing case. We shall first apply the
above results to obtain global well-posedness results for (6.0.1) and (6.0.2) in the
focusing case. This complements the global well-posedness results obtained the
defocusing case previously.

PROPOSITION 6.3.7. Let («, B) satisfy (6.3.1). Then,

(a) Let u(t) be the solution of (6.0.1) with A =1, Eg(ug) + M(up)/2 < mapg
and K, 5(ug) > 0. Then u(t) € C(R, HL(R?)).

(b) Let u(t) be the solution of (6.0.2) with A = 1, Exg(ug) < mep and
Ko p(ug) > 0. Then u(t) € C(R, H(R?)) N C*(R, L*(R?)).

PrOOF. We shall consider the NLS case. The argument for the NLKG case is
similar. From the local-in-time theory, we take u(t) to be the solution of (6.0.1) with
maximal existence interval I. From the conservation law, we have that J,(u(t)) =
Es(u(t)) + M(u(t))/2 < maq,p. We first show that u(t) € Kt = {(ug,u1) €
HYR?*)x L*(R?) : E(ug,u1) < Mo, Ka,g(ug) > 0} for all t € I. Indeed, supposed
for contradiction that there exists a t* € I such that K(u(t*)) = 0. Then, by
definition of K, we have that u(t*) = 0, whence u(t*) € K. Furthermore, since
KT is an open set (see [30]) and also u(t) € C(I, H}(R?)), we have u(t) € K+ for
allt € 1.

Finally, since u(t) € KT for all ¢ € I, applying the identities (6.3.27) and
(6.3.28) in Lemma 6.3.6 to u(t), we obtain that I = R. O

6.3.3. Morawetz estimates: part 1. Consider the Morawetz quantity

1S Jge uh - Vu dz, NLS case
(6.3.30) M(t) =
S [ge we(h - Vi + qu) dz, NLKG case

First, we obtain

LEMMA 6.3.8 (Morawetz estimate in the NLS case). Let 0zF(u) = f(u) and
G(u) :=R(af(u) — 2F(u)).
(a) Ifu e C(R, H}) is a global solution to the NLS (6.0.1). Then,

d
M) = Z §R/6ku@khj8jﬂ dx—/qG(u) dx

J,k=1

1 2a 9 1 a 9
+2/( Aq+|x|2q) [ul dx+2§R/h~V(|xz>|u dz

+ 5)%/ <q - ;divh> (wtw IVul? + #w - F(u)> .
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(b) Ifu e C(R,H}) is a global solution to the NLKG (6.0.2). Then,

d
OM((t) = Z %/3ku8khj6jﬂ dx—/qG(u) dz

k=1

1 5 1 a 9

+ §R/ (q - ;divh) <|ut|2 + |ul?* + |Vu* + i|u|2 - F(u)) .

j?

PrOOF. We shall prove the NLS case. The NLKG case is similar. First, we
have that

1
(6.3.31) OM(t) = §S/uth -Vu + uh - Vg dz.

We claim that

1 1 1
(6.3.32) ig/uh -V de = is/uth -Vudx — iﬁ/divh iugw da.
Indeed,
1 . N 1 . _
fiﬁ/dlvh wpudr = E%/dlvh -uu dx
1 _
= _ig/h -V(uw) dz

1
= —5%/uth-Vﬂ+ﬂh-VUt dx

1
= 5“/—uth-Vﬂ+uh-Vu7dx.
Thus, combining (6.3.31) and (6.3.32) we have

(6.3.33) OM(t) = %/uth -Vude — %?R/divh jug da.

Consider the first integral. Using the fact that u; = —i (Au - ﬁ + f(u)), we
have that

S/uﬂrVﬂdx = %/—i(Au—mcjz+f(u)>h~Vudx
(6.3.34) S §R/Auh VT da
(6.3.35) - é}f/f(u)h - Va dz

(6.3.36) + 9%/ 2wV da

|z[?
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First, for (6.3.34) we have

—/Auh-Vde = /Vu~V(h-Vﬂ)dx

d
.S / Oudy (h;0;7) da
jk=1
d d
= Z /6kuakhj5jﬂ dz + Z /8kuhj8kjﬂ dx
jk=1 k=1

Next we have that

d d
Z /8kuhj8kjﬂ dx = - Z /aj(akuhj)akﬂ dx.

j,k=1 j,k=1
d d
= -> / Ojkuh; Ot dz — ) / Opud;h;0T dz.
7,k=1 7,k=1

Therefore,

d
1
Z %/Bkuhj(“)kjﬂ dx = —53%/divh|Vu|2 dx.

Jik=1

Next, for (6.3.35),we have
&%/f(u)h -Vuder = %/h -VF(u) dz = —%/dith(u) dz.
Finally, for the last term (6.3.36) use the fact that

Rh -V <|5|2uu> =Rh-V <a> luf? + 2R~ uh - V&

]2 |z[?

to obtain
a _ 1 a | 9 1 . a 9
[l

6.3.4. Virial-Morawetz estimate. In this subsection, we use the above cal-
culations to obtain the following virial-Morawetz estimate

PROPOSITION 6.3.9. Assume d = 2 and u € C(R, H}) is a global solution to
(6.0.1) or (6.0.2). Then, for any R >0 and To > T; > 0, we have

T>
(6.3.37) / / |G(u)| dedt S R+ (Ty — T1)R™2.
T
Furthermore for any § >0 and T > 0 we have

(6.3.38) / t—%—é/\a(un dz dt <T70.
T
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PrOOF. Again, we shall prove the result for the NLS case as the NLKG case
is similar. Let w : RY — R be a weight, and define h(z) = Vw(z) and ¢(x) =
1divh(z) = %Aw(m) With these choices, we obtain

d
_ 1
OM(t) = ; §R/8ku8]2»kw8ju dz — §/AwG(u) dx
1 L2 a2 2 2
+§ f§|u\ A w+| IQAw|u\ dz+a | Vw- |4|u| dz

Now, fix some R > 0 and define

_ [ 1=l |zl <R/2
(6.3.39) w(z) = { Rlzl, |2|>R
and for £ < |z| < R we impose that
(6.3.40) dwr > 0,8%wg > 0,]0%wg(x)| Sa Rlz|™1*! for |of > 1.

Since Aw > 0 for all € R? for this choice of w(z), we have [ #AMU\Q dz > 0.

Thus, we may remove this term to obtain for some constants C7, Cy > 0 that 9, M (t)
is bounded below by

a d
(6.3.41) 2/ Vul? + — Ju* = =G (u) dz
\z|<R/2| | |~T|2‘ TRl

(6.3.42) +/ 8ku8j2kw8jﬂ— Ch |u* APw

R/2<|z|<R
(6.3.43) —CyG(u)Aw + aVw - o |u\2 dz
(6.3.44) +/ 3| ul® + — (\Vu\“' |0yul?) — (d — 1)£G(u) da.

ok 12 || ||

For (6.3.44), since u is radial, we have |Vu|? —|9,u|? = 0. Thus, we have with some
C3 > 0 that
allull3

(6.3.44) > ——= — C’g/ G(u) dz.
R |z|>R

For (6.3.42), the conditions for w(x) in (6.3.40) ensure the summation is non-
negative and also that Vw - ﬁ|u|2 = L 0,w|u* > 0. Thus,

2
(6.3.42) + (6.3.43) > —Cl% - 02/ G(u) da.
|z|<R

For (6.3.41) we define a smooth cutoff function y with support {z € R? : |z| < 1/2}
and set xr(z) := x(x/R). With the observation that

(6.3.45) [xntivu as = [ 90l + xnalelul? da,
we find that
(6.3.41) > 2 <||XRU’||H1 - /G XRU) dx) - f/G G(xru) dz

+/o (1;2|u|2> dx+/(1 ~\3)G(w) da.

To obtain the estimate (6.3.37), we need two more ingredients.
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First, we use the radial Sobolev embedding to obtain the following estimate
(see [23, Proposition 3.7])

(6.3.46) ‘/G(u) — G(xpru) dz| < %,
(6.3.47) ’/(1 —x%)G(u) dz| < %

Furthermore, to deal with (6.3.41), in the defocusing case (A = —1), we have
the estimate

d
Il = 5 [ Govmn) do 2 [ G0 de.

For the focusing case (A = 1), we follow the argument in [23, Proposition 2.6] to
obtain that a more general result that

(6.3.48) Ko s(xru(t) 2 / Gxr(u(t) dz.

In this case, we first claim that there exists an Ry > 0 depending on mass and energy
of the initial data such that for any R > Ry, we have sup, J (xgru(t)) < ma,3. By
assumption, we have sup, J (u(t)) < mq g. Using the fact that xg < 1, together
with identity (6.3.45), we find that

TOaru®) = 5 lrutt)y = 5 [ F o) do

< J(u(t)) + CR™2.
‘We now choose Ry such that
1
(6.3.49) CRy? < 5 (Mas = J(up)).

Next, consider the continuous orbit {xgu(t) : R > Ro} in {J(¢) < mq,5}. We note
that u(t) € KT is a limit point for this set. Furthermore, since Kt is open and
connected, we conclude that for all R > Ry and ¢ € R, we have K(xgru(t)) > 0.
Furthermore, from the choice of Ry in (6.3.49), we have

1
Ma,p —sup J (xru(t)) > i(ma’ﬁ — J(up)) =C.
teR

Next, using the variational estimate (6.3.29), we have

teR
> Cmin {C, K9 (xzu(t))}.

K(xgru(t)) > Cmin{ma}g—supJ(XRu(t)),KQ(XRu(t))}

Now, to obtain (6.3.48), we consider the two cases. First, suppose that K@ (yru(t)) >
C. Then, by combining the global-in-time theory and the Moser-Trudinger inequal-
ity, we obtain that

/ Glxru(t)) dz < / Glu()) dz < 1,
and therefore

K(xau(®) = € = € [ Glxn(u(®) da.
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Thus, we obtain (6.3.48) for this case. Otherwise, suppose that K (yru(t)) < C.
By definition, K (xgru(t)) > 0 gives that
“(xru(t /G xru(t
Therefore,
K(wult) = CKO(anu(t) = € [ Glxnu(t) da.

Thus, we have obtained (6.3.48) in both cases.
Finally, putting everything together, integrating over [T7,7T3] and discarding
positive terms, we obtain

/ /G dzdt < sup |+/ / ) dz dt+ || IS
te[Tl,Tg |z|>R

Now, combining this with (6.3.46) and the fact that sup,cp, 1,1 [M(t)] < R, we
obtain the required result for R > Ry. In the case R < Ry, we can simply use that

/|XRG N| da < c/ rolul* _ 1 dz < € (lullpse ) -

Thus, we obtain for all 0 < T} < T, that

-1
G(u)| dz < R .
//| )| dz < +R

This proves (6.3.37). Finally, to obtain (6.3.38), we follow the argument in [23,
Lemma 2.6] (i.e. let T} = 28T, Ty = 2T and R = (2*T)'/? and then sum up
these integrals). O

COROLLARY 6.3.10. Let d = 2 and let § > 0 be sufficiently small. Define
a:=1/3+68 and B:=1/2+ 5. We have

(a) fort >0,

(6.3.50) /:t—ﬁ/u(un dedt <T°,

and also
(b) For any e > 0,T > 0, there exists a To = To(¢,T) > T such that

(6.3.51) /TO / G (u)| dadt < e.

To—Ty~*/10

PROOF. See [23, Lemma 2.9]. ]

6.4. Proof of scattering

We shall now prove scattering. We split the proof into two cases: where the co-
efficient a is sufficiently large (here, we take a > 1) and where the coefficient is small
(0 < a <1). The issue is that required continuity results for the conjugation oper-
ator (Proposition 6.1.4) in dimension two only hold in the range p € (1,2/(s + 0)).
Since we study scattering at regularity s = 1, we see that this range becomes
p € (1,2/(1+0)). Recall that 0 = —v < 0, thus using larger coefficients improves
the range. Indeed, for a > 1, this range covers exponents arbitrarily close to p = oo,
while for small a, there is only a small amount of room above p = 2. Guo-Shen
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[23] uses the Strichartz admissible space L2(=MTW () swhich is only controlled
by L2EMWaM if g > 1. Recall the notation q(e) is defined for small € > 0 via

6.4.1. Proof of scattering — NLS case. We recall the strong Strichartz
space for the NLS (6.0.1)

(6.4.1) Stre(I) := L H} 0 LYWW Lot (1 x R?).
We also define the weak Strichartz space

(6.4.2) W(I) =L} (I xR?).

Recall that for a > 1, we have

(6.4.3) Stry (I) < Stro(I).

In order to prove the scattering result, we shall show that for all € > 0, there exists
a T > 0 such that

(6.4.4) [Sa(t = T)u(T) |y, <e
Recall the notation S, (t) := e"*=. Firstly, we have that

So(t = T)u(T
0

)
= Sultjuo+ [ Su(t— ) ds
T—1 T
- sa(t)u0+/0 Sult=s)f ds+ [ Su(e= ) ds

= I+1I+1II,

For the term I, there exists a T' > 0 such that [|I]|;, < e. Next, for the term /17,
we use the fact that

T>

. So(t —8)f(u) ds = Sa(t — To)u(Tz) — Sa(t — T1)u(Ty)

1
as well as Strichartz estimates and the triangle inequality to obtain||I7|s, < 1.
Thus to show (6.4.4) for I, it suffices to show that ||I]]|ze < € and then interpo-
late. Indeed, using dispersive estimates, we obtain 7

+
Lz

1 T—1
e, 5 | [ le-sirl as| 4| [ sl as

Ly
For the first term, we use the L' control || f(u)||z1 < 1 to find that for sufficiently

large T' > 0,
! 1
/ It — 5| ds < ||log, <1 - >
O t

LF

A

1
—

1
H/o t= S|71Hf(u)”Li ds

S
L L
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For the second term, we use Corollary 6.3.10 to obtain

T—71 T—71
H / 1t — s F ()]s ds / £ — 5|71 5P| f () 1 ds
1 1

L |

T—1
s 1t [ Sl ds
1 x
< TP

~

Ly

Thus, we obtain HIIHL%, < e. Finally, we need to estimate the term I7/. Recall
the integral equation 1

t
(6.4.5) u(t) =St —T+7)u(T—7)—1i Sa(t —8)f(u) ds.

T—1
In order to obtain ||[111]|y, < €, we shall first show that ||ulls, (77 7)) $ 1. For this
task, it remains to estimate the integral in (6.4.5). By conjugation and Strichartz
estimates, we obtain

Sa(t—s)f(u)ds
T—7
— Sa(t — S)<Da>f(u) dS

T—71

Lf"H;ﬂLf(fn)Wi’w(”)

o 2(— o
L LiﬂLt( T’)Lw (n)

= |IK* t St —s)(V)K™ f(u) ds

T—1

Lo L2 mLf(fn)Lgo(n)
t

N

S(t — s)(V)K™ f(u) ds

T—1 LocL%mLf(*n)L;C(n)

A

H<V> HL2< ML S S KV f (U)HLf(w)L;(nm

Furthermore, we have for a > 1 that

D@ zemgan S | = 1) moful?(V)u

L2(7n)L;(n>
2
S ‘eno\ul _1HL°°L1<49”) |Hu| uHLf(’")L;’C(‘*S")
S IV)ull 2 peeen ||u||2Loo(n/2>Loo<47n/2)
6
< ullZe lullse) < lulgs lulls,

These estimates combined with (6.4.5) give

(6.4.6) Hu”s ([T—7,1]) ~ S+ ||U||L6 L([T— TT]><R2||U||S ([T—+,17)

Thus, using a continuity argument and (6.3.51), which implies that ||u|| L§, (T-7T]xR2) <

€, we obtain [lulls, j7—r1]) S 1. Next, we note that L5, , is controlled by L%, and
Sa,r by interpolation. Thus, we now show that HIII||L4 . <. Indeed, since (4,4)
is admissible, by Strichartz estimates and the Calculatlons above, we have that

My, S el Nl <
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Thus, we have (6.4.4) and using the integral equation (6.4.5), we obtain the esti-
mates

lullwe S e+ llullfy, lul%,
lullsy S 1+ l[ullfy, llulls,

Hence, we obtain [lu||s, ) < co. Finally, standard arguments show that scattering
follows for a > 1.

Now, we deal with the case when a is close to zero. Choose 7 small enough so
that 2(—n) is in the range (1,2/(1 4 0)). Then, we have

KV @ o pron - S H (e’“"“‘2 — 1) no|u\2(V>u‘

< |

Lf(")Li(_")

2
erolul® _ 1‘

L2230/ H|“|2HL;°<"/2>L;°<"> ||<V>U||Ltoo(n/2>L§(—n/2> .
Thus, we can control the |u[* term by Lf, and S,(I) as above, and control the
(V)u by S,(I). Tt remains to control the exponential term. For this term, we have

1/2—3n/2 1/243n/2
‘ /2—3n/ He"‘"'“l2—1H/ n/

L
Since ||ul| 72 < % (see Proposition 6.3.7), the first term is bounded by the Moser-

<

rolul® _
¢ 1 L2/ ~

2
erolul® _ 1‘

Lg

Trudinger inequality. Furthermore, there exists a © € (0,1) such that ||ul|; <
@%. Thus, there exists a p > 0 such that we have

K
!/
||UHH/£Q <0 ;(Ola

where ©' = (1+0)/2 and |jul|%: = |lul|%: + p|jul3. Thus, it remains to control
Ha a
the L>° term. We shall use the logarithmic inequality (Proposition 6.1.6). Indeed,
choose o = 0(1 — 27). Thus, we need to choose
A > 1/2760(1 — 2n)

in the statement of Proposition 6.1.6. Furthermore, we choose A such that we also

have L3 )
* 77 i
-+ — |0 =
(54 3) = qan
Next, for the choice o = §(1 — 27), define sy =1 — 60n and r9 = 2(—0(1 — n)/2) so
that we have the following embeddings:

S9,T 86,7 S o _
Wgaore — WP — B o < BS, o =C%.

We now consider two cases. First, suppose that ||ulce 2 ||u|L~ 2 1. Then, also
using the fact that x + 2%In(Cy + ¢/x) is increasing, we apply the logarithmic
inequality to obtain

ro(1/2+3n/2) A ull?
ero(1/243/ Dl < (H”“”C“) ’ "
l[ull ...
ra(3+3)re’
< (1+ [[ullce 2
O K% /Ko

2

S &
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Finally, by interpolation and Sobolev embedding, this gives us with g9 = co(8(1/2—

)
|

9(1/2 n)
Co

2
erolul” _ 1‘

S ||l
L?Li(*%/?) ~
S IKV)Y*u IIE%@?

S TG

In the other case where ||ufz~ < 1, we have that [(V)f(u)| < |u*|(V)ul, thus we
can handle this case with only Sobolev embeddings.

6.4.2. Proof of scattering — NLKG case. We now consider scattering for
the NLKG case. The proof is similar to the NLS case. Indeed, first define the
strong Strichartz space for the NLKG (6.0.2)

(6.4.7) Stro(I) := L H) N LA W1/2000/2) (1 x R?),
and the weak Strichartz space
(6.4.8) W(I) =L (I xR?).

Define

Similar to the NLS case, the goal is now to show that for all € > 0, there exists a
T > 0 such that

Hka(t — TYu(T) + Kot — T)ut(T)H <e

Wr
Firstly, we have that
K, (t —T)u(T) 4+ K(t — T)u,(T)
T
— K)o+ Ka(tur + / Kot — 5)f(u) ds
. ’ T—71 T
_ (Ka(t)uo n Ka(t)ul) n / Kot —s)f(w) ds+ | Ka(t —s)f(u) ds
0 T—1

I+ 1T+ 111

We can deal with terms I and I7 in a similar way to the NLS case, where we instead
use the radial Strichartz estimate. For term III, we shall obtain || II1||w,. < € by
a similar argument as we did for the NLS case and also using the fractional chain
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rule. Thus, we have

K.(t—s)f(u)ds

T—1
- t Kot — 8)(Da)"? f(u) ds
T—1

Lo HINL2M w2/ 2:o0(=m)

LQX’H}LHL?(_")LZO(")

t

= ||kt Kot — s)(V)Y2K™ f(u) ds
T—1

t

< Kot = s)(V)K™ f(u) ds

T—1

L;IX’H(},OL?(*")L?(")

L,f"le‘an<_")W_1/2*"°(")
1 ,
N ||<V>/C_f(u)||Lf(—n)Wx—1/2,1<n) S p2m o -

Next, we use the fractional chain rule to obtain

2
”f(u)”Lf(_")Wzl/Q’l(") < H (6"50|“\ _ 1) Ho|u‘2<v>1/2u’

L?(*T/)Li(n)

2 2 1/2
S ‘eﬁolu‘ - 1HL$°L549”) H|’UJ‘ ||Ltoc(n)L;O(95n/2) ‘<V> / u‘ L?(fvy)LgO(n/@
S Hu”Stra(I)||u||i§W(7r/2>L§c95"l/4>
9 3—0
S s, (rxre) [ellse, 1y

By the same argument as in the NLS case, we obtain scattering. Finally, we deal
with the case when a is close to zero. In this case, we have

”f(u)”Lf(_”)Wi/z’l(") < H (eﬁoluP _ 1) l€0|u‘2<v>1/2u’

The last two terms are controlled as in the NLS case. Thus, we finally need to
control the L>° term. We shall again use the logarithmic inequality (Proposition
6.1.6). We take © such that [[ul| 5, < @% as well as a constant > 0 such that
we have

L?(*W)Li(n)

A

-

2 1/2
Lo/ [Ju ||L§°<"/2>L;°<") ‘(V} / “HLth/z)Lg(—n/z)'

*
2 1
ullyy, <O/,

where ©' = (1+0)/2 and |ulm , == ul|%: + pljul|3 as before. Next, we choose

a=0(1/2 —n). Thus, we need to choose

1

A> 2=

in the statement of Proposition 6.1.6. We also set

(1  3n ;L 2
(0 3)
Next, with this choice of o and sg =1 —6/2, rg = 2(6(1 — n)/2),

W;B,"’e [N WSSyTB (SN BSO

« _ pa
a2 B% o =C“.



6.4. PROOF OF SCATTERING 101

Again, we consider two cases. Suppose that ||u||p~ = 1. Then we have

Rol(1/2+43n/2)ull%,,
mo(1/2+3n/2)ull}e < (H“”CC“) ’ i

el

KE(1/243n/2)A0"
L ullee O
O - Kk: /K

2
S ullga”™.

A

Finally, this gives us

2
erolul” _ 1’

H| asteay

<
L%Li(*i’m/@ 12

S H<V>SBUHzioi/(z?ln/)%m)Li(—eu—n)/m

2
S 1

The case where ||u]lp~ < 1 can be dealt with using the observation made in the
NLS case. We may then obtain scattering as in the NLS case.






Conclusion

In this thesis, we obtained scattering results for some nonlinear dispersive PDEs
with inverse-square potential. These results were generalisations of the analogous
result in the potential-free case. By applying the ideas of [6], we found that the
Hankel transform could be used effectively to study radial problems. Indeed, we
used the Hankel transform to gain an understanding of the linear theory of the
Klein-Gordon flow in Chapter 3, as well as the Schroédinger flow in Chapter 6 —
for instance, to obtain the relevant Strichartz estimates.

In our application of this linear theory to the non-linear scattering problems, we
saw that a major issue that one has to deal with is the fact that many LP estimates
fail outside a range too far away from p = 2, if the coefficient of the inverse-square
potential is negative. We also saw the importance of the equivalence of Sobolev
norms in order to use the fractional chain rule associated with V. Furthermore, we
saw that other tools such as Virial-Morawetz estimates could be applied in much
the same way as in the potential-free case. Overall, many standard techniques
employed to study the potential-free case can also be applied with the inverse-
square potential.

Finally, let us also remark on some aspects of this thesis that could be explored
in future research. We need other tools to study non-radial data. For instance,
in Chapter 4, while we were able to obtain bilinear Strichartz estimates for radial
initial data, there was an obstacle in the non-radial setting. In particular, we had
to decompose non-radial data using a spherical decomposition in order to apply
the Hankel transform, but we were unable to add these pieces back together to
obtain a satisfactory bilinear estimate. For this problem, perhaps other methods
such as physical space methods may be more effective in obtaining such estimates.
Furthermore, a better understanding of the thresholds of the double logarithmic
inequality and Moser-Trudinger inequality in Chapter 6 could be gained in future
research. This would improve on the scattering result that was obtained.
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