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Abstract 

How physical interactions generate and support conscious experience is a key question in 

neuroscience. The integrated information theory of consciousness (IIT) attempts to address this 

question by taking a first-principles approach, introspecting our own conscious experience in order to 

identify its core aspects. Then, physical interactions must implement these aspects in order to be 

considered a physical substrate of consciousness. Following this approach, IIT identifies 5 core 

aspects of conscious experience. From these core aspects, the theory postulates the necessary physical 

interactions required to support them. Finally, the theory uses its postulates to derive measures which 

capture the extent to which a candidate system implements the core aspects of experience. Integrated 

information (Φ) captures the extent to which a system can be considered greater than the sum of its 

parts, while a corresponding cause-effect structure captures the information which is available 

intrinsically from the perspective of the system. Φ and the cause-effect structure are posited to 

correspond to level and contents of conscious experience, respectively, with Φ emerging at some 

spatiotemporal scale corresponding to the scale of conscious experience. 

 

In this thesis, I work towards evaluating the validity of these measures as proposed by the IIT. As 

their computational complexity makes it infeasible to apply to complex systems such as the human 

brain, I apply them instead to recordings from relatively simple fly brains during wakefulness and 

anaesthesia. I test two predictions of IIT: that 1) its measures should be high during consciousness and 

low or zero during loss of consciousness, and 2) Φ should emerge to be maximal at some macro 

timescale, instead of at a micro timescale as would be expected from reductionism. Consistent with 

IIT’s expectations, I find Φ and its associated cause-effect structure to be reduced during anaesthesia. 

I also find that the ratio of Φ during wakefulness to Φ during anaesthesia is maximal at a timescale of 

roughly 10 ms, which corresponds roughly to the timescale of neuronal interactions. Lastly, I work 

towards evaluating the advantage of IIT’s approach in deriving measures of consciousness from first 

principles over discovering measures using a data-driven approach. To this end, I systematically apply 

a vast library of univariate time-series features to the fly recordings and evaluate their performances in 

discriminating wakefulness from anaesthesia. I find that relatively simple measures relating to signal 

variance and stationarity best discriminate levels of consciousness, with IIT’s measures performing 

comparably or even slightly better. Together, these results demonstrate the utility of testing the 

expensive measures of IIT in simple biological systems, and provide early empirical support for IIT’s 

first-principles, theoretical approach towards identifying the physical substrate of consciousness. 
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Chapter 1 - Introduction 

Consciousness is at the core of the universe. At the very least, it is the core of your universe, 

or your perspective of the universe - without conscious experience, the universe could not, 

and would not, exist to you. You wouldn’t exist to you. It is only through your conscious 

experience that you can experience yourself, and a world around you. To lose your conscious 

experience would be to lose everything - nothing, including yourself, would exist. Despite the 

clear significance of conscious experience in keeping the universe extant, at least for 

ourselves, we struggle to understand just how it can be that systems like ourselves can even 

have conscious experiences. 

 

Even though consciousness is a private, subjective experience, we generally extend the notion 

of consciousness to other beings - other people, and even other animals. In general day-to-day 

interaction, seemingly purposeful behaviours seem sufficient for most people to ascribe 

consciousness to some entity. When unsure, we might stimulate the being and use its reaction 

to judge how conscious it is. 

 

Determining if a being is conscious is, however, often not straightforward. For example, 

conscious experience is possible without overt behavioural responsiveness, such as when 

dreaming and even under anaesthesia (Liu et al., 1991; Sebel et al., 2004). Meanwhile, 

physiologic responses to stress during consciousness under anaesthesia, such as increased 

heart rate, are often masked by accompanying drugs (Rani & Harsoor, 2012). From these 

cases, it becomes clear that neither the generally used behavioural (Guedel, 1937) or 

physiological (Rani & Harsoor, 2012) “signs” of consciousness are truly indicative of 

consciousness. Thus, a key goal in neuroscientific research is to identify the necessary 

conditions for consciousness - to find how consciousness arises from neural activity in the 

brain. 

 

The scientific study of phenomenal consciousness may initially seem impossible. After all, 

consciousness deals in subjective experiences - the very thing which science tries to avoid. 

Indeed, early neuroscience, while acknowledging the question of consciousness (LeDoux et 

al., 2020) largely focussed on functional relationships between behaviour and neural 

activities. Thankfully, we have a starting point from which to begin some objective 

investigation into consciousness. That is, we all agree that individually, we are conscious 
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beings, i.e. that we all have some kind of conscious experience. Specifically, you know that 

you are conscious, because you are having some conscious experience. This basic idea of 

consciousness as phenomenal experience is distinct from other phenomena which might also 

be referred to as “consciousness”, such as self-awareness (Morin, 2006), high-order thoughts 

(Edelman, 2003), or reportable access to one’s own experiences (Block, 1995). Though we 

may not always think about it, we all have some idea of what this basic idea of consciousness 

is - we all have experiences (usually of the world around us) which vanish when we go to 

sleep or are put under general anesthesia (and presumably when we die), and re-emerge when 

we wake up or dream. Indeed, this was recognised by (Crick & Koch, 1990), who put 

forward a framework to begin studying the neural basis of consciousness which invigorated 

modern consciousness research. 

1.1 - Previous approach to understanding consciousness 

The modern neuroscientific study of consciousness currently largely follows the overall 

framework proposed by (Crick & Koch, 1990), the search for “neural correlates of 

consciousness” (NCC). Their framework was to put aside the philosophical questions as to 

what consciousness is precisely, what function it serves, and so on. Instead, the framework 

first recognised that we all have conscious experience, regardless of what it is exactly. Then, 

having recognised the existence of consciousness, the framework proposed that we could 

work towards understanding what neural activities might generate consciousness by 

identifying the minimum neuronal mechanisms jointly sufficient for any one specific 

conscious percept (i.e. the NCC for that conscious percept; (Koch, 2004)). After identifying 

the NCC, we would then be in a better position to address the more difficult, traditionally 

philosophical questions surrounding consciousness. 

 

Following this framework, researchers have worked towards identifying two main 

interpretations of the NCC, content-specific NCC and the full NCC (Koch et al., 2016). 

Content-specific NCC refers to the neuronal mechanisms underlying a particular phenomenal 

distinction within one’s conscious experience (for example, the experience of seeing a face 

on a computer screen). If identified, activating the content-specific NCC in a person’s brain 

should trigger the perception of that phenomenal distinction. Conversely, preventing the 

content-specific NCC from activating should prevent the person from experiencing the 

distinction when they otherwise would. The full NCC, on the other hand, refers to the neural 
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activities which support consciousness in its entirety, regardless of what is being consciously 

experienced and so can be understood as the union of all content-specific NCC for all 

possible experiences. 

 

The general strategy used for identifying neural activities which may be part of either type of 

NCC is to contrast neural activity when a certain percept is present or absent (i.e. perceived 

or not), for content-specific NCC (Breitmeyer & Ogmen, 2000; Blake & Logothetis, 2002; 

Tsuchiya & Koch, 2005; Imamoglu et al., 2012), or when consciousness is present or absent 

(wakefulness versus e.g. general anaesthesia, dreamless sleep, or coma), for the full NCC 

(Alkire et al., 2008; Maquet et al., 1997; Gosseries et al., 2014). This strategy has led to better 

understanding of the kinds of neural interactions which occur during specific conscious 

percepts, such as activation of the fusiform face area during face perception (Kanwisher & 

Yovel, 2006) and at different levels of consciousness. Accordingly, researchers have collated 

and assessed empirically reported neural interactions, and put forward theories which propose 

what interactions could constitute content-specific or the full NCC. Well-known theories 

include synchrony theory (Crick & Koch, 1990; Engel & Singer, 2001), recurrent processing 

theory (Lamme, 2006, 2010), predictive coding theory (Hohwy, 2013), and global neuronal 

workspace theory (Dehaene et al., 2011; Mashour et al., 2020). Undoubtedly, there has been 

great progress in discovering neural activities which are potentially related to consciousness. 

However, this approach towards understanding consciousness has significant drawbacks. 

 

The first drawback is that many neural activities which at first seem promising as potential 

NCC are later found to not serve as reliable indicators of conscious experience. For example, 

synchronous activity and feedback interactions, similar to that put forward as potential NCCs 

by synchrony theory and recurrent processing theory, can be found in the cerebellum (Person 

& Raman, 2012; Witter et al., 2016), which is unlikely to contribute to consciousness (Yu et 

al., 2015), while the fusiform face area can be activated during perception of non-face stimuli 

(Gauthier et al., 1999, 2000). 

 

Related is the potential lack of generalisability of proposed NCCs to systems other than those 

in which the associated neural activities were first observed. For example, the exact brain 

region activated during perception of human faces varies among humans, non-human 

primates, sheep, and dogs (Cuaya et al., 2016). The issue is more obvious when considering 

animals with very different brain architectures to humans, such as the octopus and fruit fly, 
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both of which exhibit behaviours which might indicate the capacity for conscious experience 

(Medeiros et al., 2021; Tainton-Heap et al., 2021). Going even further, it is clear that 

biological NCCs cannot be used to assess whether an artificial system, such as a personal 

computer, is conscious. 

 

A second drawback is the difficulty of disentangling whether some neural activity is varying 

with consciousness, or varying with other processes. For example, regarding content-specific 

NCC, process such as selective attention, expectation, self-monitoring, unconscious stimulus 

processing, planning, and reporting all occur with, or closely preceding or following 

conscious experience of some percept (Aru et al., 2012; de Graaf et al., 2012; Koivisto & 

Revonsuo, 2010; Miller, 2014), especially so in the context of being a participant in a study. 

Meanwhile, regarding the full NCC, neural activities might reflect changes in vigilance or 

attention rather than changes in conscious level itself (Hohwy, 2009). Consequently, it can be 

difficult to associate any neural activity with consciousness only, and not some other process. 

 

Overall, though the framework of searching for NCCs can be useful to help identify the kinds 

of neural activities associated with consciousness, it is ultimately limited in that it does not 

result in any explanation as to why any particular proposed NCC should generate 

consciousness. This explanatory gap between physical, neural interactions and consciousness 

itself, known as the hard problem of consciousness (Chalmers, 1995), highlights the need for 

a principled theory of consciousness. 

1.2 - Approaching consciousness from the intrinsic perspective 

1.2.1 - Integrated information theory 

The integrated information theory of consciousness (IIT; (Tononi, 2004, 2008; Oizumi et al., 

2014)) differentiates itself from other theories of consciousness by taking a radically different 

approach towards finding the physical substrate of consciousness. Rather than constructing a 

theory based on observed neural activities, IIT introspects conscious experience in order to 

identify its fundamental properties. It then deduces the necessary physical mechanisms 

required to support these properties. 

The fundamental properties of consciousness IIT identifies are as follows: 
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a) Intrinsic existence: an experience exists intrinsically to a conscious system, but not to 

external observers. Consequently, observing a conscious system having some 

experience does not give you the same experience. 

b) Composition: an experience is composed of multiple aspects. For example, the 

experience of watching a movie is composed of visual and auditory aspects, and the 

experience of a face is composed of eyes, a nose, a mouth, etc.). 

c) Information: an experience is specific. That is, it differs from every other possible 

experience that a conscious system could instead be having. For example, in reading 

this thesis you are consequently not experiencing all the other experiences you could 

possibly be having instead, such as watching a movie, cooking dinner, or reading 

another piece of writing). 

d) Integration: an experience exists as a single whole which cannot be broken up into 

independent parts. For example, the experience of a red ball is integrated as one 

experience, rather than being two separate, independent experiences of redness, and a 

ball). 

e) Exclusion: an experience is definite. That is, we do not have multiple separate 

experiences superposed among each other. Separate experiences, then, must be of 

separate conscious systems. This precludes any single system from having multiple 

conscious experiences, such as at different timescales. 

From these fundamental properties of consciousness, IIT postulates a set of physical 

properties which are required to support consciousness (the full derivation is described in 

(Oizumi et al., 2014). Then, from these physical properties, IIT derives two key measures: 

integrated information Φ, whose magnitude is purported to reflect the level of consciousness 

in a system, and an associated conceptual structure, which is purported to reflect the system’s 

experiential contents. This approach taken by IIT overcomes the previous limitations around 

the search for the NCC. Specifically, as its measures are derived from fundamental principles, 

instead of being discovered from observed neural activity, their applicability extends beyond 

humans, vertebrates, and even biological systems. In the next section, I aim to provide a 

concise overview of how IIT 3.0 (Oizumi et al., 2014) uses its axioms to arrive at its 

measures for consciousness in any given system. 
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1.2.2 - Formalisation of integrated information theory 3.0 

From the fundamental properties of conscious experience posited by the theory, IIT 3.0 puts 

forth postulates - translations of the properties into the physical interactions required for a 

substrate to support them. Next, IIT 3.0 uses these postulates to derive measures which are 

purported to reflect the level and contents of consciousness in a given set of elements, (i.e. a 

system). As the full formalisation is given in (Oizumi et al., 2014), in this section I aim to 

provide a concise overview of the postulates and the key theoretical concepts behind how 

they come together to define a measure of consciousness. I give full details of the associated 

computations in Chapter 2 (specifically, I refer the reader to Figure 1, which illustrates all the 

concepts which I outline here). 

Intrinsic existence 

The intrinsic existence axiom states that an experience exists intrinsically to a conscious 

system. From this, IIT postulates that a system, and its constituent mechanisms, must have 

causal power on itself in order to be conscious. Physically, how can one observe the existence 

of anything? For example, why can this thesis exist to some reader? For this text to exist to a 

reader, the reader must be able to observe it. Physically, a reader can observe this thesis as 

photons (and lack thereof) travel from the text into their eyes. These photons cause visual 

receptors to fire, which then cause further activity through the visual stream and presumably 

across the brain. Conversely, if this text elicited no such change to the brain, how could a 

reader possibly observe it, and how could it exist to them? Hence, IIT reasons that as a 

conscious experience exists intrinsically to a conscious observer, the observer must be 

causing some change to itself. Hence, the constituent parts of the system, or mechanisms, 

must specify causes and effects (i.e. have “cause-effect power”) within the system. 

Composition 

The composition axiom states that an experience is composed of multiple aspects. 

Accordingly, IIT postulates that mechanisms should combine to compose higher order 

mechanisms. Hence, a system of 3 elements {A, B, C} would have 7 candidate mechanisms 

{A, B, C, AB, AC, BC, ABC}, with AB being a “second order” mechanism composed of A 

and B, and ABC being a “third order” mechanism composed of A, B, and C, etc. Each 

candidate mechanism might or might not exist intrinsically to the system. 
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Postulates for the remaining axioms are then proposed at two levels: at the level of 

mechanisms, and at the level of a whole candidate system. At the level of mechanisms, the 

postulates aim to characterise how any part of a given system, i.e. mechanism, exists 

intrinsically to it. Meanwhile, the postulates applied at the level of a candidate system aim to 

determine whether it constitutes a conscious system, and to characterise its experience. For 

clarity, I introduce the terminology, “purview”, here. A purview is any subset of the system. 

For example, a system of 3 elements {A, B, C} would have 7 possible purviews, {A, B, C, 

AB, AC, BC, ABC}. 

Postulates at the level of mechanisms 

Information 

The information axiom states that an experience differs from every other possible experience 

that the conscious system could instead be having. In conjunction with the intrinsic existence 

postulate, which deals with the issue of to what or whom something exists, the information 

postulate deals with the nature of what it is that is existing. While the existence postulate 

deals in whether something exists intrinsically to a system, the information postulate deals in 

the nature of what that something is. Specifically, a candidate mechanism within a system 

exists in some way to the system if it specifies its causes and effects in the system. 

Meanwhile, how it specifies its causes and effects determines the information that it provides 

to the system. 

 

This postulate is formalised in conjunction with the intrinsic existence postulate using 

mathematics similar to, yet also distinct from, that used in standard information theory 

(Shannon, 1948). Given a mechanism, its state specifies a cause and thus generates 

information about the past regarding the state of some subset of the system (i.e. “purview”, 

which can be any subset of the system, including the mechanism itself) if it constrains the 

possible past states of that purview. How informative the state is depends on the extent of the 

constraints. If there are no constraints, and thus no information about the possible past states 

of the purview, then all possible states are equally probable. Conversely, the largest constraint 

is to specify that only one state could have possibly occurred in the past, leading to the 

mechanism’s current state. Following this, the information that a mechanism gives about a 

purview’s past, cause information (cause_info), is given by the distance between probability 

distributions: 
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(1) cause_info = D( P(purviewpast), P(purviewpast | mechanism) ) 

 

Where P(purviewpast) is the probability distribution of the purview’s possible past states when 

no constraint is specified by the mechanism (i.e. when the purview’s previous state is not 

constrained by the mechanism’s current state; this is the distribution of all states being 

equally likely, i.e. the maximum entropy distribution), and P(purviewpast | mechanism) is the 

distribution of past purview states given the mechanism’s current state. The earth mover’s 

distance (EMD; (Rubner et al., 2000)) is used to quantify the distance between distributions. 

If the distance between the distributions is 0, (i.e. the mechanism’s state does not constrain 

the possible pasts of the purview), it provides no information about the purview’s past and 

does not specify a cause. 

 

This same reasoning is applied also to the mechanism’s effect. Whereas information about a 

purview’s past is quantified by how its possible past states are constrained by the 

mechanism’s current state, information about the purview’s future, is quantified by how its 

future possible states are constrained by the mechanism’s current state. So, the effect 

information (effect_info) specified by the mechanism is quantified as the distance between 

two other probability distributions: 

 

(2) effect_info = D( P(purviewfuture), P(purviewfuture | mechanism) ) 

 

Where P(purviewfuture) is the unconstrained distribution of possible future states of the 

purview, and P(purviewfuture | mechanism) is the distribution of future purview states given 

the mechanism’s current state. P(purviewfuture) is found by first perturbing the system into all 

possible states with equal likelihood, and for each of these starting states, obtaining the 

probability distributions of possible future states. Then, these distributions are marginalised 

across the starting states to obtain the distribution of possible future states given that nothing 

is known about the purview’s present state. Similarly as for the mechanism’s cause, if the 

distance between the distributions is 0, the mechanism specifies no information about the 

purview’s future and does not specify an effect. 

 

P(purviewpast | mechanism), P(purviewfuture | mechanism), and P(purviewfuture) are all obtained 

by perturbing either the mechanism or the system into all possible states, and observing the 
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resulting state for a given purview. In practice, however, they can be obtained by perturbing 

the system into all its possible states, and observing the probabilities of each system state 

transitioning into any other system state (“transition probabilities”). These system state 

transition probabilities can then be marginalised down to a specific mechanism and purview. 

 

As stated earlier, a mechanism exists to the system if it specifies both its cause and effect. 

Consequently, if, across all purviews, it specifies either no cause information or no effect 

information (or both), it does not exist from the perspective of the system. If it does specify 

both, then P(purviewpast | mechanism) and P(purviewfuture | mechanism) specify the nature of 

the information given by the mechanism - the “cause repertoire” and the “effect repertoire” 

respectively. In conjunction with each other, they specify the “cause-effect repertoire”. 

Integration 

The integration axiom states that an experience exists as a single whole which cannot be 

broken up into independent parts. While the composition postulate deals with how 

mechanisms can compose to form larger mechanisms, the integration postulate deals with 

whether these larger (i.e. higher order) mechanisms contribute anything above and beyond 

what their constituent mechanisms contribute to the system. Specifically, it postulates that 

mechanisms only exist if they specify information that is not given by (i.e. irreducible to) its 

independent components. In conjunction with the information postulate, a mechanism exists 

above and beyond its constituent parts if it specifies causes and effects which are irreducible 

to the causes and effects specified by its constituent parts. 

Similar to how the information postulate is formalised comparing two distributions, the 

integration postulate is formalised again by comparing two distributions. This time, however, 

the distributions being compared are the mechanism’s cause or effect repertoire with the 

product of the cause or effect repertoires of the mechanism’s constituent parts. Integrated 

information φ then is the information which the mechanism has regarding some purview, 

above and beyond its constituent parts. This is quantified by partitioning the mechanism and 

purview such that each part of the mechanism can only influence one part of the purview: 

 

(3) φcause = D( P(purviewpast | mechanism),      

 P(purviewA
past | mechanismA) × P(purviewB

past | mechanismB) ) 
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(4) φeffect = D( P(purviewfuture | mechanism),      

 P(purviewA
future | mechanismA) × P(purviewB

future | mechanismB) ) 

 

Where φcause and φeffect is the information which the mechanism has regarding some purview’s 

possible past and future states respectively, above and beyond its independent parts. 

P(purviewA
past | mechanismA) and P(purviewB

past | mechanismB) are the probability 

distributions of the possible past states of each part of the purview, conditioned on the current 

states of each part of the mechanism (and likewise for P(purviewA
future | mechanismA) and 

P(purviewB
future | mechanismB), but for possible future states of each part of the purview).  To 

assess if the mechanism has information above and beyond its constituents, all possible 

partitions need to be assessed. If any partition specifies the same causes or effects as the full 

mechanism, the full mechanism does not contribute anything further than its parts. 

Consequently, the partitions which result in repertoires which most closely approximate those 

of the full mechanism are used to quantify φcause and φeffect. These partitions are referred to as 

minimum information partitions (MIPs). As specified in the information postulate, a 

mechanism must specify both causes and effects in order to exist to the system. Hence, if 

either φcause or φeffect are 0 for all candidate cause purviews and all candidate effect purviews, 

it does not exist to the system. φ of the mechanism overall then is the minimum of φcause and 

φeffect. 

Exclusion 

The exclusion axiom states that an experience cannot be superposed with other experiences. 

While the previous postulates have dealt with the information that a mechanism provides to 

the system, the exclusion postulate deals with the recipient of that information - what part of 

the system the mechanism specifies its cause and effect for. Specifically, it postulates that 

each mechanism only contributes at most one cause repertoire and one effect repertoire. 

 

The exclusion postulate is formalised by, for a given mechanism, selecting the cause purview 

and its corresponding repertoire for which φcause is maximal (the “core cause”), and selecting 

the effect purview and its corresponding repertoire again for which φeffect is maximal (the 

“core effect”). Taken together, they are the mechanism’s maximally irreducible cause-effect 

repertoire (MICE). In conjunction with the previous postulates, a mechanism exists to the 

system if both its core cause and core effect have greater than 0 φ. If so, it constitutes a 

“concept”. 
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Together, these postulates are applied to all mechanisms (i.e. subsets of elements) in the 

system. The postulates are then applied at the level of systems to quantify how the 

mechanisms come together to form a single consciousness. 

 

Postulates at the level of systems 

Information 

At the mechanism level, the information postulate formalises what information, or causal 

constraints, a mechanism provides to the system. At the system level, the theory postulates 

that the set of mechanisms which exist (i.e., concepts) specify a “conceptual structure” (also 

referred to as a “cause-effect structure”; (Mayner et al., 2018)), which captures all the 

information that the system intrinsically has and distinguishes it from all other possible 

conceptual structures. 

 

The postulate formally describes the conceptual structure as a “constellation” in concept 

space, a space with one axis for each possible future state and each past state of the system.  

In this space, the conceptual structure exists as a set of points, with each point corresponding 

to each concept in the system. For a particular concept, its location along each axis describes 

its core cause and effect (i.e. its coordinates describe its core cause and core effect 

repertoires; consequently each axis ranges from 0 to 1). A point in this space corresponds to a 

“null concept”, that is, a mechanism which specifies no causes and effects and thus no 

information. This null concept has coordinates specifying the unconstrained distributions for 

possible past states and possible future states. The sum of distances of each concept from the 

null concept, each weighted by their φ, summarises the amount of information in the 

conceptual structure (“conceptual information”; CI). 

 

(5) CI = ∑ ( φ × D(MICE, null) ) 

 

Where D(MICE, null) is the distance between the MICE specified by a concept and the 

unconstrained distributions specified by the null concept. 
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Integration 

At the mechanism level, the integration postulate deals with whether higher order 

mechanisms exist above and beyond their constituent parts. At the system level, it deals with 

whether a system exists above and beyond its constituent parts. Specifically, the theory 

postulates that a set of elements can only be conscious if its mechanisms specify a conceptual 

structure which cannot be reduced to independent components. 

 

This postulate is formalised by partitioning the system into smaller systems through noising 

connections such that the parts are connected at most in a unidirectional manner. Then, the 

conceptual structure of the whole system is compared to that of the partitioned system. The 

unidirectional partitioning ensures that, in the partitioned system, the mechanisms from one 

part can only specify either causes or effects to purviews in another part, but not both. The 

comparison is quantified as integrated information, Φ, in a similar way as for mechanisms - 

slightly simplified, as a sum of distances between the MICE of concepts in each conceptual 

structure: 

 

(6) Φ = ∑ ( φ × D(MICEunpart, MICEpart) ) 

 

Where D(MICEunpart, MICEpart) is the distance between the MICE specified by a given 

concept before and after partitioning the system. 

 

Again, similar to the integration postulate for mechanisms, all possible partitions need to be 

assessed, including partitions which differ only by the direction by which parts are 

unidirectionally connected. The partition which gives the conceptual structure most similar to 

the unpartitioned system, i.e. gives the smallest Φ, is used to determine how integrated the 

system and its conceptual structure is. This partition is also referred to as the minimum 

information partition (MIP) as introduced at the mechanism level. 

Exclusion 

At the system level, the exclusion postulate deals with identifying the substrate of the 

conscious system. Specifically, it postulates that a conscious system is the set of elements 

which specifies a conceptual structure that is maximally irreducible - a maximally irreducible 

conceptual structure (MICS). 
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To find the MICS for a given candidate set of elements, all subsets, across all spatial (e.g. 

molecules vs neurons vs cortical regions) and temporal scales (e.g. microseconds versus 

milliseconds versus seconds), should be treated as candidate systems, and their conceptual 

structures assessed for irreducibility. The candidate system with the most irreducible 

conceptual structure, i.e. gives the greatest Φ (i.e. Φmax) across elements, spatial scales, and 

temporal scales, is the system which forms the substrate of consciousness, and is referred to 

as a “complex”. 

1.2.3 - Integrated information as a measure of consciousness 

In using all the postulates, IIT 3.0 arrives at two key measures of consciousness. Integrated 

information Φ is put forward as a measure of level of consciousness in a given system (which 

has some Φmax), which can be used to search for the complex (i.e. the substrate of 

consciousness). Meanwhile, the complex’s maximally irreducible conceptual structure, 

MICS, is purported to be identical to the conscious experience that a system has, or the 

contents of consciousness. However, the theory notes that its formulation is still incomplete 

with regards to how the MICS gives specific aspects of phenomenology, such as how 

different sensory modalities feel their own specific way. 

 

In this section I have laid out the general ideas and framework of IIT, and how it is 

formalised in IIT 3.0. From its formalisation, it provides measures of consciousness, Φ and 

the associated MICS, to reflect the level and contents of consciousness in any given system. 

In the following sections, I will review core issues regarding the applicability of IIT to real 

data, and how it has actually been applied in the existing literature to test its ideas. 

1.3 - Practical issues of integrated information theory 

As laid out in the previous section, integrated information theory starts from first principles, 

identifying core aspects of consciousness and deriving postulates about the kinds of 

interactions needed to support it. These postulates arrive at clearly defined measures for 

consciousness which in principle can be applied to any system. Consequently, it serves as a 

potentially easy theory to falsify. Specifically, its key prediction that systems should have 

greater Φ when conscious than when not makes for an easy target to test. However, applying 

the theory to neural data can be difficult due to several issues. 

 



Page | 22  
 

Firstly, the theory’s assessment of information requires the transition probabilities between 

every pair of system states. Obtaining this requires perturbing the system into all its possible 

states and observing the resulting state transitions. However, the number of system states 

grows exponentially with the number of elements. For example, while systems of 2 and 3 

binary elements have 4 and 8 possible states respectively, a network of 5 binary elements has 

32 possible states. Meanwhile, a system such as the human brain, with roughly 86 billion 

neurons (Azevedo et al., 2009) would have a staggering number of possible states 

(specifically, 2 to the power of 86 billion, when treating each neuron as a binary element). 

Consequently, empirically obtaining transition probabilities quickly becomes infeasible when 

considering larger and larger systems. Furthermore, the calculation of information uses 

assumptions which are only met for discrete elements (specifically, the use of the maximum 

entropy distribution when calculating the cause information of a mechanism; (Oizumi et al., 

2016)), but not continuous elements. However, neural recordings often collate across 

populations of neurons, such as electroencephalographic recordings (EEG) and local field 

potentials (LFP), giving data of continuous-valued observables. 

 

Secondly, the theory’s assessment of integration across system elements in forming a single 

whole above and beyond its parts depends on identifying minimum information partitions 

(MIPs). However, when there is no prior knowledge of a system’s causal connections (such 

as synaptic connections between neurons), identifying MIPs requires an exhaustive search 

across every possible partition of a given mechanism or system. Similar to the issue regarding 

the number of system states, the number of possible partitions for a group of elements grows, 

super-exponentially, with the number of elements. For example, at the system level, a system 

consisting of 4 elements can be partitioned in 15 ways, while a system consisting of 5 

elements can be partitioned 52 ways (Aitken, 1933; Bell, 1934). Consequently, calculating Φ 

for a system of even 1000 elements is already estimated to take several magnitudes longer 

than the age of the universe (Toker & Sommer, 2019). Though toolboxes implementing IIT 

3.0 reduce this problem somewhat by searching through bipartitions rather than all 

partitioning schemes, the search for the MIP (or, in this case, the minimum information 

bipartition, MIB; (Mayner et al., 2018)), still grows super-exponentially with system size. 

 

Thirdly, in addressing the axiom of exclusion, the theory requires that, for Φ and a conceptual 

structure to be related to consciousness, it must be computed for a complex. The search for 

the complex, however, requires repeatedly computing conceptual structures and their 
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associated Φ for all candidate systems (i.e. the power set) from a set of elements, at all 

possible spatial grainings and temporal resolutions. Each of these issues individually serve as 

significant hurdles for the application of IIT 3.0 proper, let alone all of them combined. 

Consequently, the application of IIT 3.0 has been limited to simulation studies involving 

small systems where analytical methods can be used to cheaply determine Φ. Meanwhile, for 

the application of IIT to real neural data, approximations and alternative derivations of Φ 

have been derived based on previous versions of the theory. 

1.4 – Existing applications of integrated information theory 

1.4.1 - Simulations 

Applications of IIT 3.0 thus far have been mostly limited to simulation studies. Indeed, apart 

from applications of IIT 3.0 to characterise group interactions between humans (Shehata et 

al., 2021) and among cell-cycle states (Marshall et al., 2017), and leadership in fish (Niizato 

et al., 2020a, 2020b), all studies applying IIT 3.0 so far have been simulation studies. As 

simulation studies, they seek to characterise the behaviour of Φ and the MICS given certain 

system constraints and architectures, rather than directly dealing with the question of their 

empirical validity as measures of consciousness. For example, IIT 3.0 has been used in the 

context of answering why animals might evolve to have consciousness - given constraints on 

system resources, more complex behaviours can arise when connectivity among system 

elements allow for high Φ (Albantakis et al., 2014; Albantakis & Tononi, 2015). Other 

studies have utilised the exclusion postulate of IIT 3.0 to illustrate system architectures where 

causal power can emerge at macro spatial and temporal scales, rather than being causally 

complete at the most micro scale (Hoel et al., 2016; Marshall et al., 2018; Grasso et al., 

2021). Though studies such as these can illustrate the utility of IIT 3.0 in the contexts of 

characterising efficiency or identifying ideal scales at which to describe physical interactions, 

applications which empirically test the measures of IIT 3.0 in real neural systems are 

ultimately lacking. 

1.4.2 - Theoretical derivations 

Given the difficulties in directly applying IIT to real data, alternative derivations of Φ have 

been proposed. For example, ΦE (Barrett & Seth, 2011) was introduced to deal with the 

issues of using maximum entropy distributions in continuous elements, and its approach was 
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extended in Φ* to better satisfy theoretical bounds of Φ (Oizumi et al., 2016). Reviews and 

comparisons of more well-known alternatives and comparisons of alternative versions of Φ 

which are “improved” to account for different assumptions underlying system elements can 

be found in (Tegmark, 2016; Mediano et al., 2019; Sevenius Nilsen et al., 2019). 

 

Such measures have been applied to neural data, ignoring the issue of identifying the 

complex, and have given results largely consistent with IIT’s main prediction of reduced 

system level integrated information with reduced level of consciousness. Findings include 

reduced integrated information in human EEG recordings with reduced behavioural 

responsiveness due to increased sevoflurane dosage (Kim & Lee, 2019), during general 

anaesthesia due to ketamine and propofol (Lee et al., 2008; Kim et al., 2018). Integrated 

information has also been reported to be reduced with deep sleep both in intracranial 

recordings from epilepsy patients (Chang et al., 2012) and EEG from infants (Isler et al., 

2018). 

 

These alternative integrated information measures have also been applied in the context of 

evaluating contents of consciousness. System level integrated information values from 

functional magnetic resonance imaging (fMRI) have been reported to increase with more 

meaningful stimuli (Boly et al., 2015), though IIT makes no prediction regarding how system 

level integrated information is related to the contents of consciousness. More closely 

applying the idea of the MICS, patterns of integrated information, obtained from calculating 

integrated information for all subsets of groups of electrocorticographic (ECoG) recordings 

have been reported to be able to distinguish whether a stimulus was perceived or not (A. M. 

Haun et al., 2017). The use of an alternative integrated information measure in fMRI has also 

resulted in a finding that the brain may functionally split into separate systems when 

concurrently performing unrelated tasks such as driving while listening to a radio show (Sasai 

et al., 2016). 

 

Though alternative derivations of integrated information have allowed for applications and 

tests of IIT, they ultimately suffer from a key issue. Currently existing derivations are all 

variations of integrated information as proposed in previous versions of IIT (Tononi, 2004, 

2008), which considered a system’s ability to specify only its effects (instead of both causes 

and effects as postulated in IIT 3.0). Consequently, it is unclear whether findings reported 

using these measures would hold when using Φ as directly proposed in IIT 3.0. Further, they 
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largely focus on providing an index of conscious level while ignoring and failing to provide a 

framework to account for experiential contents (relating to composition in IIT 3.0), and so it 

is unclear whether and how they can be extended to do so. 

1.4.3 - IIT inspired practical measures 

Another approach towards IIT has been to apply or construct completely new measures based 

on the core ideas of IIT. Along this approach, the perturbational complexity index (PCI; 

(Casali et al., 2013)) tries to capture IIT’s key ideas of assessing information and integration 

through perturbing the system. PCI employs transcranial magnetic stimulation to perturb a 

part of the brain and analyses the resulting EEG spatiotemporal activation pattern. It 

characterises integration across brain regions by analysing the spatial extent of the resulting 

patterns (Massimini et al., 2005; Ferrarelli et al., 2010), and information as the extent to 

which the responses are differentiated among regions. It simultaneously characterises 

integration and information using Lempel-Ziv complexity (LZc), a relatively computationally 

cheap measure of how easily an image can be compressed. Activations patterns which are 

spatially restricted, reflecting lack of integration among regions are easily compressed by the 

Lempel-Ziv algorithm, as are patterns which spatially uniform which reflect lack of 

differentiation. Hence, activation patterns lacking either integration or differentiation give 

low LZc values. 

 

The approach taken by PCI has seen success in applications of differentiating wakeful 

subjects and subjects in rapid eye movement (REM) sleep, a stage of sleep commonly 

associated with dreams, from subjects undergoing deep sleep as well as from subjects under 

general anaesthesia and patients with loss of consciousness due to brain injury (Massimini et 

al., 2010; Casali et al., 2013; Sarasso et al., 2014). It has also demonstrated utility in 

distinguishing between disorders of consciousness, such as distinguishing minimally 

conscious states and locked-in syndrome, where patients can be capable of purposeful 

behaviours and thoughts (Perrin et al., 2006; Schnakers et al., 2009), from vegetative states, 

where presumably patients are unconscious (Casarotto et al., 2016). 

 

Outside the framework of PCI, LZc is used in neuroscience primarily as a measure of 

temporal complexity, rather than of spatiotemporal complexity, among other complexity 

measures as potential indices for depth of general anaesthesia (Zhang et al., 2001; Ferenets et 
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al., 2006), or tools for revealing brain dynamics underlying altered states of consciousness 

(Mateos et al., 2018). In this vein, LZc somewhat captures IIT’s notion of information, 

though the measure is not inspired by the theory. However, the apparent success of PCI has 

inspired the application of LZc to assess spatial aspects of activation, rather than just to the 

temporal aspects at individual regions. Applied in this manner, LZc seems to discriminate 

wakefulness from anesthesia when applied to functional magnetic resonance imaging (Hudetz 

et al., 2016), and gradually decrease from wakefulness to REM sleep, to deep sleep, when 

applied at the level of spike trains, local field potentials, and EEG (Abásolo et al., 2015; 

Andrillon et al., 2016), even without applying perturbation to the brain. 

 

Though results from PCI and spatiotemporal LZc so far seem to support IIT and may hold 

clinical utility, they have similar drawbacks as alternative derivations of Φ. Specifically, their 

formulations avoid IIT’s idea of intrinsic information, preferring to focus more on practical, 

clinical differentiation of levels of consciousness. Consequently, they do not directly show a 

link between intrinsic information and consciousness. Further, as measures which focus on 

distinguishing only levels of consciousness, it is unclear how they can be easily extended to 

take account also for contents of consciousness. 

1.5 - Empirically evaluating IIT 3.0 in flies 

Despite much progress towards translating IIT into practical methods which can be feasibly 

applied, as reviewed above, the question as to whether the constructs directly proposed by the 

theory itself can measure consciousness remains. As IIT is currently being updated so that its 

postulates more closely align with its identified axioms (Albantakis et al., 2019; A. Haun & 

Tononi, 2019; Barbosa et al., 2020, p. 20), having some benchmark performance of IIT 3.0 

can help empirical assessment of the improvements posed in newer versions of the theory. 

1.5.1 - Testing in flies 

The most significant factor preventing faithful application of IIT 3.0 to real, neural data lies 

in how the cost of its measures grows with increasingly large systems. This cost makes it 

difficult to apply to large networks such as the human brain. Consequently, the question of 

where IIT can actually be applied, and its measures evaluated, arises. With this in mind, the 

fruit fly brain presents as a promising model in which to apply and evaluate the validity of 

IIT’s measures. 
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The primary advantage which the fly brain provides, over a human or other mammalian 

brain, is its relatively simplicity. The smaller number of neurons in the fly brain, compared to 

more complex mammalian brains (105 compared to 108 for mice and 1011 for humans; 

(Alivisatos et al., 2012; Herculano-Houzel et al., 2006; Herculano-Houzel, 2009)) provides a 

system where computing IIT’s measures across a large portion of neurons across the brain is 

more feasible to achieve. Specifically, the smaller number of neurons gives a smaller set of 

possible system states. In turn, this allows fewer observations are required to capture 

transition probabilities among all system states. The smaller brain size of the fly has already 

allowed for detailed imaging of neural circuits across large portions of the fly brain (Zheng et 

al., 2018; Scheffer et al., 2020). Detailed knowledge of connections among neurons can in the 

future be used to capture system transition probabilities, and inform computation of IIT 

constructs. For example, knowledge of connections can be used to reduce the set of 

disconnections to consider when computing φ or Φ. 

 

Though the fly brain consists of a relatively small number of neurons, flies still exhibit 

complex behaviours. While simpler systems, such as the nematode or roundworm, have even 

fewer neurons than the fly, they exhibit simple behaviours which depend only on their 

immediate sensory environment (Barron & Klein, 2016). In contrast, the wakeful fly exhibits 

processes such as selective attention and spatial memory (Sareen et al., 2011; Swinderen, 

2005). While these behaviours alone do not determine whether a system is conscious or not, 

they are useful for inferring consciousness in non-human animals (Mather, 2008). Flies 

additionally exhibit reductions in behavioural responsiveness, such as torpidness comparable 

to sleep states in mammals (Hendricks et al., 2000; Shaw et al., 2000). These periods of 

apparent sleep also have distinct sleeps similar to those observed in mammals (van Alphen et 

al., 2013; Tainton-Heap et al., 2021). 

 

Given its relative simplicity in conjunction with complex behaviours, the fly brain is already 

extensively used as a model of anaesthetic loss of consciousness. Anaesthesia reduces 

behavioural responsiveness in flies at similar concentrations required for mammals (Allada & 

Nash, 1993; van Swinderen, 2006), with various observed molecular mechanisms of 

anaesthesia, such as decreased action potential amplitudes (Sandstrom, 2004; Wu et al., 

2004), and effects on network dynamics such as reduced feedback connectivity from 

executive to sensory areas (Lee et al., 2009, 2013; Cohen et al., 2018), being conserved 



Page | 28  
 

across animal species. Fly brains further appear to share graph-theoretical characteristics with 

mammalian brains (Shih et al., 2015) as well as cellular mechanisms (Littleton & Ganetzky, 

2000), and fly LFPs share similarities with human electroencephalographic recordings (Nitz 

et al., 2002). 

 

Finally, given the small size of the fly brain, multi-electrode methods can provide high 

quality population neural signals in both time and space which cannot be obtained using non-

invasive measures available for humans. These high quality recordings can be obtained 

across the entirety of the brain, which is infeasible in mammalian brains using currently 

available recording techniques. While ultimately it is still impossible to evaluate Φ across the 

brain at the individual neuron level, such population recordings are more likely to be 

representing neural activity throughout the brain (when compared to e.g. electrodes on a 

linear probe inserted into the human brain), as electrical signals need to propagate through 

less physical media to reach and be recorded at the electrodes. Finally, the ratio of available 

local recordings used to compute Φ to the number of neurons which constitute the complex is 

likely larger for the fly brain, due to the human brain having magnitudes of order more 

neurons. Taken altogether, the fly serves as a useful model for applying and evaluating the 

measures of IIT. 

1.5.2 - Thesis aims 

In this thesis, I apply the measures of IIT 3.0 to real, neural data from flies in order to 

evaluate their validity. Specifically, each of the following chapters evaluates the following. In 

Chapter 2, I assess the construct validity of Φ and φ structures as measures of conscious level 

by estimating their values during wakefulness and anaesthesia. Next, in Chapter 3, I search 

for a temporal scale at which Φ is maximised, which should correspond to the timescale of 

conscious experience of the fly. Finally, in Chapter 4, I assess the divergent validity of Φ and 

the φ structures from univariate measures by applying a vast library of univariate time-series 

features to the same flies. 
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Chapter 2 - Empirical validity of IIT’s proposed measures 

In this chapter, I aim to assess the construct validity of IIT’s proposed measures of 

consciousness. To address this aim, I apply the theory’s measures to recordings obtained 

from the fly brain during wakefulness and anaesthesia. For this chapter, I supply a manuscript 

published in PLOS Computational Biology. 

2.1 - PLOS Computational Biology publication 

This article was published in PLOS Computational Biology. It begins on the following page 

with its original page numbering. 

 

Leung, A., Cohen, D., Swinderen, B. van, & Tsuchiya, N. (2021). Integrated information 

structure collapses with anesthetic loss of conscious arousal in Drosophila 

melanogaster. PLOS Computational Biology, 17(2), e1008722. 
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Abstract

The physical basis of consciousness remains one of the most elusive concepts in current

science. One influential conjecture is that consciousness is to do with some form of causal-

ity, measurable through information. The integrated information theory of consciousness

(IIT) proposes that conscious experience, filled with rich and specific content, corresponds

directly to a hierarchically organised, irreducible pattern of causal interactions; i.e. an inte-

grated informational structure among elements of a system. Here, we tested this conjecture

in a simple biological system (fruit flies), estimating the information structure of the system

during wakefulness and general anesthesia. Consistent with this conjecture, we found that

integrated interactions among populations of neurons during wakefulness collapsed to iso-

lated clusters of interactions during anesthesia. We used classification analysis to quantify

the accuracy of discrimination between wakeful and anesthetised states, and found that

informational structures inferred conscious states with greater accuracy than a scalar sum-

mary of the structure, a measure which is generally championed as the main measure of IIT.

In stark contrast to a view which assumes feedforward architecture for insect brains, espe-

cially fly visual systems, we found rich information structures, which cannot arise from purely

feedforward systems, occurred across the fly brain. Further, these information structures

collapsed uniformly across the brain during anesthesia. Our results speak to the potential

utility of the novel concept of an “informational structure” as a measure for level of con-

sciousness, above and beyond simple scalar values.

Author summary

The physical basis of consciousness remains elusive. Efforts to measure consciousness

have generally been restricted to simple, scalar quantities which summarise the complexity

of a system, inspired by integrated information theory, which links a multi-dimensional,

informational structure to the contents of experience in a system. Due to the complexity
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of the definition of the structure, assessment of its utility as a measure of conscious arousal

in a system has largely been ignored. In this manuscript we evaluate the utility of such an

information structure in measuring the level of arousal in the fruit fly. Our results indicate

that this structure can be more informative about the level of arousal in a system than

even the single-value summary proposed by the theory itself. These results may push con-

sciousness research towards the notion of multi-dimensional informational structures,

instead of traditional scalar summaries.

Introduction

The question of how subjective, conscious experience arises from physical interactions has

been pondered by philosophers for centuries [1,2], and now has moved into the domain of

cognitive neuroscience [3–5]. Because we are only able to experience our own individual con-

sciousness, exact inference of others’ conscious contents (i.e., what it is like to be a bat [1])

seems intractable. However, broader inference on levels of consciousness, ranging from low

during coma and deep anesthesia to high in wakeful states seems possible across animals.

Behaviors of animals, ranging from humans to insects, all seem to change in a similar manner

from highly active wakefulness with marked high-level cognitive capability to loss of con-

sciousness with negligible cognitive functions. Indeed, such inferences have been widely

accepted across various losses of consciousness in brain damaged patients [6] and non-human

mammals [7,8], and are now becoming applied to insects [9–12].

As stated, complex behavioural repertoires of animals, ranging from humans to insects, all

seem to reduce in a similar manner from highly active wakefulness to loss of consciousness.

During wakefulness, flies, for instance, have been shown to exhibit processes such as working

memory [13–15], attention [16–18], and feature binding [19]. Flies also seem to experience

varying states of arousal which are physiologically regulated in a similar manner to mammals,

such as sleep [9,20,21] and anesthesia [11,12]. Despite these similarities, processing in the fly

brain is largely thought to be feedforward, with potential exception of central structures such

as the central complex and mushroom bodies [22–24]. This is in contrast to a more integrative

view of the seemingly more complex brains of mammals, featuring both feedforward and feed-

back interactions during wakefulness from primary sensory areas to midbrain and executive

areas [25–27].

The importance of feedback for conscious processing is emphasised in an influential view

that consciousness arises with “integrated information” [28–30]. Integrated information, dis-

tinct from the standard notion of Shannon information [31], is defined as “differences that

make a difference within a system” [32,29,30]. In other words, integrated information is con-

cerned with how elements of a system causally influence each other such that information is

accessible to the system itself (extrinsic information, conversely, concerns how states of a sys-

tem causally influence states of another, separate system; see supporting information in [33]).

Integrated information theory (IIT; [28,30,34]) provides a mathematical quantification of inte-

grated information, and proposes that it is critical for consciousness to arise. Specifically, IIT

describes how hierarchically organized elements uniquely and causally interact with other ele-

ments within a system in an integrated manner to produce information accessible to the sys-

tem itself. According to IIT, the “maximally irreducible conceptual structure” [30] is

hypothesised to directly correspond to the quantity and quality of consciousness. That is, the

richer and more specific the informational structure of the system, the higher the level of con-

sciousness in a system, and the richer the contents that the system consciously experiences.
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Critically, the hierarchically organised elements must both exert effects on other elements and

receive effects from others, all within the system, and thus these structures can only arise with

the presence of both feedforward and feedback interactions.

While IIT offers a compelling theoretical account linking integrated information and con-

sciousness, empirical applications of the theory remain rare [35]. Thus, whether empirically
estimated integrated information structures relate to conscious arousal remains largely

unknown. While we as yet cannot be certain of consciousness in flies, they pose an interesting

system to apply the theory. In particular, regardless of consciousness per se, a purely feedfor-

ward brain should give zero integrated information and correspondingly a minimal informa-

tional structure. Thus, we address the following questions. First, how can we estimate

informational structures from neural activity recorded from a biological system? Second, does

the fly brain generate integrated information and non-minimal information structures? If it

does, would the structures be collapsed during reduced arousal as manipulated using general

anesthesia? And third, does integrated information and its associated information structures

arise (and subsequently collapse during anesthesia) primarily in the central regions of the fly

brain?

We address the above questions by analyzing neural recordings from the fruit fly, collected

during wakefulness and isoflurane anesthesia [12,36]. We apply a novel construct, “integrated

information structures” (IIS), to capture the level of arousal of the fly. We found that the struc-

tures which were present during wakefulness collapsed during anesthesia. Critically, they were

better at classifying arousal states than a scalar summary (i.e. just a single number), a measure

which is usually championed as “integrated information” in IIT, with their collapse occurring

all throughout the fly brain. Our results indicate the presence of feedback interactions across

the fly brain during wakefulness, and demonstrate the utility of information structure as a

measure for level of arousal, above and beyond simple scalar values, opening the door for

improved clinical measures of consciousness.

Results

Constructing integrated information structures from fly local field

potentials

To construct the IIS, we used local field potentials (LFPs; hereafter referred to as “channels”)

recorded from the fruit fly brain (Fig 1A; see Methods; [12]). LFPs were recorded using a linear

multi-electrode array, such that 15 channels covered both peripheral and central regions of the

brain. We operationally defined the discrete state of each channel at each time by binarizing it

with respect to the median voltage of that channel (Fig 1B; see also S1 Text for effect of binariz-

ing using different thresholds).

Fig 1C–1I illustrates the steps to estimate the IIS of two channels, A and B. From the empir-

ically observed time course of the two discretized channels, we first construct a transition

probability matrix (TPM; Fig 1C). Each entry of the TPM gives the probability of a given chan-

nel taking some state in the future, given the current state of all channels in the system (see

Methods). Thus, the TPM characterizes how the whole system (A and B) evolves over time,

containing all necessary information for unfolding how subsets of the system (A, B, and AB)

“causally” (in a statistical sense) interact to irreducibly specify the state of the whole system

(AB). We refer to causality as statistically inferred from conditional probability distributions

[37], which is not necessarily the same as perturbational causality [38]. We return to the issue

of estimating the TPM from observed versus perturbed transitions in the Discussion. Impor-

tantly, we use the TPM to measure the information that each subset of the system specifies

regarding some other subset of the system, as we describe below.
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Fig 1D considers how subset A’s current state (A = ‘0’ at time t) specifies the future state of

any subset of the system AB (at time t+τ; we use τ = 4 ms; we repeated analyses also at τ = 2 ms

and 6 ms, see S2 Text). For brevity we will refer to the subset whose current status is analyzed

(red circles in Fig 1D–1G) as a “mechanism”, and the affected subset (white circles in Fig 1D–

1G) as a “purview”, following IIT terminology; [30]. Based on the TPM, we can compute a

probability distribution over past and future purview states (the bar graphs in Fig 1D–1H),

given the current state of the mechanism in consideration; for example, the bar graph in Fig

1D shows that if mechanism A is in state ‘0’ at time t, AB is more likely to be ‘00’ or ‘01’ than

‘10’ or ‘11’ at time t+τ. Such a probability distribution specifies the information generated by a

mechanism over a given purview.

Fig 1E illustrates the procedure to find “irreducibility” of the causal interaction from mech-

anism A to purview AB. To estimate how much the purview is irreducible, or uniquely deter-

mined by integrative interactions between A and the purview (according to IIT’s integration

axiom), we estimate probability distributions assuming that some causal interactions are “dis-

connected” (i.e. statistically noised; see S3 Text). We quantify the degree of causal interactions

by computing the distance between the two probability distributions (distance is measured

using the earth mover’s distance, with probabilities being moved as “earth”; EMD; [39]). The

distance between the full (Fig 1D) and disconnected distribution which best approximates (i.e.

is closest to) the original full distribution (Fig 1E) quantifies integrated information φ. Here, φ
of A on AB can be understood as the degree to which mechanism A generates information

about purview AB, above and beyond independent parts. In Fig 1E, the disconnection from A

to B minimally affects the distribution out of all the possible cuts, giving φ of 0.0191.

Next, Fig 1F illustrates the identification of the purview over which A generates the most

integrated information, as dictated by IIT’s exclusion axiom (the exclusion axiom in this con-

text means that only the maximal information specified by A should be considered in order to

avoid information being multiplied beyond necessity). The purview for which A generates the

most integrated information is referred to as A’s “core effect”. Here, mechanism A has a set of

candidate purviews: A, B and AB. Based on the current state of A (‘0’), we repeat the process of

measuring distances between full distributions and disconnected distributions among all

Fig 1. Summary of IIT and processing pipeline for computing the IIS from LFPs. (A) Multi-electrode probe recording of LFPs from the fly. (B) Continuous LFPs

(red, top) are discretized (black/white, bottom) by comparing to the median voltage for each trial. Displayed is an example of 20 samples for a set of two channels A and

B. (C) A state-by-channel transition probability matrix (TPM; see Methods) describes how the state of a system at time t specifies the possible future states of each

channel at time t+τ (τ = 4 ms). For example, the top left entry of the full TPM is 0.43, which represents the probability of channel A being ‘1’ at time t+τ given that

channel A and B were both ‘0’ at time t. (D) At a given state (e.g. A = ‘0’ and B = ‘0’ at time t, outlined in red in C, the effect information specified by a subset

(“mechanism”; here A, in light red) over the future states of another subset (“purview”; here A and B, in white), is given by the probability distribution of the purview

conditioned on the current state of the mechanism. (E) To compute integrated information (φeffect) of mechanism A over purview AB, we find the disconnections (i.e.

replacing connections with random-noise connections) between the mechanism and the purview (indicated by broken arrows) which best approximate the original

probability distribution. We compare the disconnected probability distributions to the original distribution using the earth mover’s distance (EMD; treating

probabilities as “earth” to be moved). We interpret the minimum EMD (bolded) as irreducible information generated over the purview by the mechanism (i.e. φeffect).

(F) We compute φeffect for every possible purview (A, B, and AB as in D, with values 0.0632, 0.0191, and 0.0191 respectively), and select the purview and its associated

probability distribution which gives the maximally integrated effect (bold). As probability distributions (bar graphs), we display the distribution over both channels A

and B, assuming the maximum entropy distribution and independence on the channels outside of the purview. (G) φcause is determined in the same manner as φeffect,

except looking at possible past states of the purview (at t-τ). Both φcause and φeffect, and their associated probability distributions, are determined for every mechanism

(A, B, and AB; left and right distributions are cause and effect probability distributions of the selected purviews; channels outside of the purview are greyed out). The

overall φ generated by a mechanism is the minimum of φcause and φeffect (bolded and in the dotted box). Yellow, blue, and green backgrounds (innermost, middle, and

outermost rectangles) indicate correspondence with the IIT terminology of “cause-effect repertoire”, “concept”, and “cause-effect structure” (CES), respectively. (H) All

φ values and associated probability distributions are re-computed for each possible uni-directional cut (again, replacing with random-noise connections) separating the

channels into a feedforward interaction from one subset of channels to the remainder of the system. Broken lines here depict the cut removing channel B’s input to A.

System-level integrated information (F) is the sum of distances between cause and effect probability distributions specified by the full and (minimally) disconnected

system, weighted by the φ value for each mechanism (henceF is the minimum across all possible system level cuts; solid box between G and H; see Methods for details

on EMDc and EMDe which are marked by red asterisks). Note that distances between 1-channel mechanisms were 0, not contributing toF, which we found to be the

case in general (see also S6 Text about the role of 1-channel mechanism in our results). (I) We take the φ values of each mechanism (within the dotted box in G) to form

the integrated information structure (IIS).

https://doi.org/10.1371/journal.pcbi.1008722.g001
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purviews (i.e. all subsets which are potentially affected by A). In this particular case, purview A

is the core effect (φ of A on A is 0.0632, compared to φ of A on B and φ of A on AB both being

0.0191). Next, we perform similar operations on the TPM, but now looking at information the

mechanism generates about a purview’s past, instead of future. This is done to estimate the

core cause of A. According to the intrinsic existence axiom of IIT, we consider A’s overall

influence (i.e. the information it generates for the system), to be the minimum of A’s cause

and effect. Consequently, a mechanism which only provides outputs to its purview (i.e. only

specifies its effects), or only takes inputs from its purview (i.e. only specifies causes), generates

zero integrated information.

Repeating the procedure (Fig 1D–1F) for all candidate mechanisms (A, B, and AB), Fig 1G

characterizes how all possible elements of the system specify the set of structured and inte-

grated causal interactions, listing a full set of core causes and effects of all the mechanisms. The

full set of distributions for all core causes and effects for all mechanisms, and their associated

integrated information values is referred to in IIT as a cause-effect structure (CES).

Finally, Fig 1H explains how IIT arrives at a purported measure of level of consciousness,

system-level integrated information F, through a system-level disconnection. The process of

identifying core causes and effects for each mechanism is repeated after making unidirectional

disconnections to the full system, in the same manner as disconnecting mechanisms from pur-

views. System-level integrated information is the sum of EMDs between the full CES and the

CES of the statistically disconnected system, weighted by the integrated information φ of each

mechanism in the full CES (as depicted in the calculation between Fig 1H and 1G; see Meth-

ods). Once again, as there are many possible ways of disconnecting the system, we select the

disconnection which best approximates the CES of the full, whole system (i.e. which generates

the smallest weighted EMD between the full CES and the disconnected CES). Consequently, a

completely feedforward system generates zero system-level integrated information, as the uni-

directional disconnection of feedback connections (which are actually non-existent) will yield

identical probability distributions for all mechanisms and thus an identical CES as the fully

connected system. In the case of the 2-channel system AB, the minimal disconnection is the

disconnection from B to A. This disconnected CES is used to assess system-level integrated

information (for details, see Methods).

One difficulty with F is the high computational cost due to the combinatorial explosion of

all possible system cuts. To enable us to search through all possible cuts, we restricted analysis

to 4 channels at a time, using every combination of 4 channels as a “system”. This provided a

good balance between spatial coverage for each set of channels and computation time.

We also considered a computationally cheaper alternative to F. Specifically, we assessed a

set of φ values, which we term Integrated Information Structure (IIS; Fig 1I), as an alternative

measure for discriminating level of consciousness. A set of mechanism-level φ values are faster

to compute, as they are already obtained as part of the computation ofF. The IIS is an approxi-

mation of the full cause-effect structure proposed by IIT [39]. While the cause-effect structure

requires causal intervention for building the TPM, here we only observe interactions as they

naturally occur over time. Further, the full cause-effect structure holds details beyond just inte-

grated information values, specifically the purviews of each mechanism and their associated

probability distributions, whereas for simplicity the IIS only considers the integrated informa-

tion values themselves. As system-level integrated information and the IIS are obtained for

each possible state of the system, we averaged across these states, weighting by the occurrences

of each state [40].

Fig 2 shows an example IIS obtained from 1 fly, 1 channel set during both wakefulness and

anesthesia, when extending this process to the 4-channel case. IIT provides two main hypothe-

ses for this paper: 1) system-level integrated information (F) should be reduced by general
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anesthesia, and 2) a set of mechanism-level integrated information (φ) values, the IIS, should

also collapse during general anesthesia, reflected by reduced φ values for each mechanism (as

opposed to increased φ for some mechanisms). While IIT does not explicitly predict the latter,

we reasoned that level of consciousness should generally correlate with the richness of contents

of consciousness. Note that these hypotheses here cannot directly confirm or invalidate IIT as

a theory of consciousness, as the nature of insect consciousness is still unclear, and we do not

apply every aspect of IIT (due to feasibility issues), which we expand on in the Discussion.

System-level integrated information reduces globally due to general

anesthesia

We first checked the prediction that system-level integrated information (F), IIT’s proposed

measure of level of consciousness, was reduced during anesthesia. Using linear mixed effects

analysis (to account for intra-fly channel set correlations; see Methods), we indeed found sys-

tem-level integrated information to be significantly affected by anesthesia (χ2(1) = 6.656 × 103,

p< .001; likelihood ratio test, see Methods). Specifically, it was reduced during anesthesia

(Figs 3 and 4A and 4B; β = -0.012, t(12) = -2.525, p = .013, one-tailed). This analysis also indi-

cated that the fly LFPs did indeed generate non-minimal system-level integrated information

during wakefulness. Across channel sets, system-level integrated information was significantly

reduced during anesthesia for 12 of the 13 flies (S4 Text).

We next looked at whether anesthesia’s effect depended on the spatial location of the chan-

nel sets. From the linear arrangement of channels from our recording setup, we characterised

two features of each channel set, 1) the average location of channels in the set (relative to

Fig 2. A 3D representation of an integrated information structure (IIS) for one channel set for one fly. (A) Top-

down view of the IIS. Mechanism size refers to the number of channels that constitute each mechanism (yellow, green,

light blue, and dark blue dots indicate mechanisms consisting of 1, 2, 3, and 4 channels respectively). The y-axis is

arbitrarily set to give equal spacing between mechanisms. Lines indicate inclusion relations (e.g., mechanism AB

consists of A and B). (B) An exemplar IIS from a single fly and channel set, during wakefulness. (C) An IIS from the

same fly and channel set as in B during anesthesia. A 3D rotation video of the IIS is available at http://dx.doi.org/

10.26180/5eb952457b48f.

https://doi.org/10.1371/journal.pcbi.1008722.g002
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channel 1, the most central channel) and 2) the distance among channels in the set (the sum of

pairwise distances between channel labels; total path distance).

Given the general view of the insect brain being largely feedforward [22,23], with potential

exception of central brain structures which are responsible for integrating inputs from the

periphery [10,24], we expected to find greater system-level integrated information for more

centrally located channel sets. Opposite to our expectation, however, we found a trend indicat-

ing that peripheral channel sets tended to have slightly but significantly greater system-level

integrated information (β = 1.750 × 10−2, χ2(1) = 39.31, p< .001). This trend was stronger dur-

ing anesthesia, as indicated by a significant interaction between channel set location and wake/

anesthesia condition (β = 2.613 × 10−2, χ2(1) = 43.80, p< .001). Thus, centrally located channel

sets seemed to be more affected by anesthesia, despite having less system-level integrated infor-

mation than peripheral channels. The latter finding is consistent with a view that central brains

are more critical and sensitive to the level of arousal.

We also considered the effect of the spacing of channels within each channel set. If local

recurrent connections drive the generation of integrated information, more “local” channel

sets consisting of closely located channels would have greater system-level integrated informa-

tion. Conversely, if long range recurrent connections are more important, more “global” chan-

nel sets consisting of widely spaced channels would have greater system-level integrated

information, reflecting integration across the whole brain. We found system-level integrated

information to increase slightly with greater distance among channels (β = 1.364 × 10−3, χ2(1)

= 5.351, p< .021), with the direction of the trend being reversed during anesthesia (significant

interaction between anesthesia and channel distance; β = -2.714 × 10−3, χ2(1) = 10.59, p<
.001). Thus, during wakefulness, the more global sampling of channels tended to yield larger

system-level integrated information, while anesthesia disrupted this effect to some extent.

Overall, system-level integrated information was reduced regardless of spatial location or

distance among channels, suggesting the presence of both feedforward and feedback interac-

tions all across the fly brain. So, for analysis on the multi-dimensional IIS, we analysed all

channel sets together without dividing into groups based on location or distance among

channels.

Fig 3. Spatial map of system-level integrated information F. (A) System-level integrated information F values

during wakefulness, averaged across flies, as a function of average channel location relative to the position of the most

central channel (x-axis; larger values indicate channel sets which on average are more peripherally located), and sum of

pairwise distances between each pair of channels (total path distance; y-axis) within each channel set. Channel arrays,

as in Fig 1A, indicate example locations of channels (in red) and their spacing along the two axes. Channel sets with

identical centers and path distances were averaged. A subset of otherwise unfilled values in the map were linearly

interpolated to reduce gaps in the map. (B) System-level integrated informationF values during anesthesia.

https://doi.org/10.1371/journal.pcbi.1008722.g003
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Integrated information structure collapses due to general anesthesia

We next investigated integrated information (φ) for each mechanism during wakefulness, and

compared them to those during anesthesia. First, we looked at the relationship between mech-

anism size and integrated information. Since larger mechanisms sample more sources of infor-

mation, they have a greater capacity for integration, as compared to smaller mechanisms that

sample fewer sources of information. Based on this, we reasoned that larger mechanisms will

have greater integrated information.

We found integrated information values to significantly vary depending on the size of the

mechanism (χ2(3) = 1.512 × 105, p< .001; Fig 4C). Generally, we found that larger mecha-

nisms generated greater integrated information (LME with two levels of mechanism size at a

time, see Methods for details: 2-channel << 3-channel: β = -2.941 × 10−3, t(12) = -18.73, p<

.001; 3-channel<< 4-channel: β = -3.544 × 10−3, t(12) = -28.27, p< .001). However, 1-channel

Fig 4. Effect of anesthesia on system-level integrated information (F) and the integrated information structure

(IIS: a set of φ values). (A)F values during wakefulness (red) and anesthesia (blue) for each of 1365 channel sets,

averaged across flies. (B) Ratio ofF (wakeful / anesthetized), for all channel sets, averaged across flies. (C) φ values

from the IIS for each mechanism size, for wake (red) and anesthesia (blue). We show the average value for each of 1365

channel sets averaged across flies for each mechanism size. (D) Ratio of wakeful φ to anesthetized φ (averaged across

flies) for each mechanism size.

https://doi.org/10.1371/journal.pcbi.1008722.g004

PLOS COMPUTATIONAL BIOLOGY Integrated information structure collapses during anesthesia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008722 February 26, 2021 9 / 27



mechanisms by far had the greatest integrated information overall (compared to 4-channel

mechanisms: β = 0.025, t(12) = 6.49, p< .001). A potential explanation for the large difference

in integrated information between 1-channel mechanisms and the other mechanisms is that

1-channel mechanisms are inherently irreducible to smaller parts. We return to this in the Dis-

cussion, offering other possible explanations.

Next, looking at the effect of anesthesia, we found integrated information to reduce signifi-

cantly across all mechanisms with loss of arousal (χ2(1) = 3.092 × 104, p< .001; Fig 4C). We

further found a significant interaction between anesthesia and mechanism size (χ2(3) =

1.203 × 104, p< .001), indicating that the extent to which integrated information was reduced

due to anesthesia depended on mechanism sizes. We break down this interaction further in

the next section.

General anesthesia affects smaller mechanisms more than larger

mechanisms

To understand the nature of the significant interaction between anesthesia and mechanism

size, we next investigated how the different mechanism sizes were differentially affected by

anesthesia. We expected that integrated information for larger mechanisms (consisting of

more channels) would be affected more by anesthesia than smaller mechanisms. This is

because anesthesia is known to preferentially disrupt global communication [12,36], and so its

effect should be reflected more strongly in larger mechanisms involving many channels. To

further illustrate, consider two pairs of strongly connected neurons, [AB] and [CD], where

there is a very weak connection between the two pairs (i.e., [AB]- -[CD]). In such a case, inte-

grated information for both the 2-channel pairs ([AB] and [CD]) and the 4-channel mecha-

nism ([ABCD]) could be high. If during anesthesia the connections between the pairs are

disrupted, then 2-channel integrated information of the individual pairs could remain high

while the overall 4-channel integrated information would reduce to zero.

To test if larger mechanisms were more greatly affected by anesthesia, we first analyzed the

degree of reduction in integrated information as a function of mechanism size. To account for

the variation in integrated information among mechanism sizes, we compared the ratio of

wakeful to anesthetized integrated information. A larger ratio corresponds to a larger decrease

in integrated information due to anesthesia. We verified that the ratio of wakeful to anesthe-

tized integrated information was also significantly different among mechanism sizes (χ2(3) =

2.229 × 104, p< .001; Fig 4D). However, instead of finding larger mechanisms to have larger

relative reductions in integrated information due to anesthesia, we found the opposite—larger

mechanisms had smaller relative reductions (β = 0.229, t(12) = 3.816, p = .003, β = 0.028, t(12)

= 2.248, p = .044, and β = 0.017, t(12) = 2.444, p = .031, for comparing 1-, to 2-, 2- to 3-, and 3-

to 4-channel mechanisms respectively). Given that the IIS indeed collapsed during anesthesia,

we next sought to determine whether larger mechanisms better discriminated conscious level

than smaller mechanisms, possibly because of lower variability or noise.

Integrated information structure better distinguishes arousal level than

system-level integrated information

Given that integrated information is reduced during anesthesia, we asked if this decrease is

more reliable for larger mechanisms. We also sought to determine whether considering the

entire IIS allows for better discrimination conscious level than just consideration of single

mechanisms, i.e. is the pattern of integrated information useful above and beyond considering

independent integrated information values in isolation? As IIT proposes the scalar system-

level integrated information value as the measure of conscious level (whereas the multi-
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dimensional IIS should represent experiential contents), we further compared this to the reli-

ability of the decrease in system-level integrated information. While IIT touts system-level

integrated information as a measure of conscious level, we reasoned that, as level of conscious-

ness should generally correlate with the richness of its contents, the IIS would either match or

even exceed the classification accuracy of system-level integrated information.

To compare the reliability of decreased integrated information, the collapse of the IIS, and

decreased system-level integrated information, we used classification analysis. This allowed us

to compare the reliability of one-dimensional changes of integrated information and system-

level integrated information with multidimensional changes of the IIS. We used support vector

machines (SVMs) to classify the conscious arousal level of individual epochs within each fly

(within-fly classification, repeated for each fly; leave-one-paired-epoch-out cross-validation

for each channel set; see Methods). To compare integrated information of different sized

mechanisms, we averaged accuracies obtained across mechanisms of the same size.

We were able to discriminate wakefulness from anesthesia in the majority of channel sets,

using either integrated information values or system-level integrated information (Fig 5A).

Further, classification accuracy varied significantly depending on what measure was used

(LME testing for main effect of mechanism size (1- to 4-channels), IIS, and system-level inte-

grated information; χ2(5) = 1.300 × 104, p< .001). Overall, 1-channel mechanisms achieved

the greatest classification performance, significantly greater than 2-channel mechanisms (β =

0.060, t(12) = 5.473, p< .001) and 3-channel mechanisms (β = 0.035, t(12) = 3.945, p = .002),

but not 4-channel mechanisms (β = 0.018, t(12) = 2.033, p = .065). Unexpectedly, integrated

information of 1-channel mechanisms also matched that achieved by system-level integrated

information, exceeding it slightly but not significantly so (β = 0.008, t(12) = 0.5843, p = .570).

1-channel mechanisms outperforming other mechanisms is largely consistent with 1-channel

mechanisms having the largest relative decrease in integrated information due to anesthesia

(Fig 4D). However, 2- and 3-channel mechanisms performed worse than 4-channel mecha-

nisms (β = -0.042, t(12) = -3.237, p = .007, and β = -0.017, t(12) = -3.156, p = .008) despite hav-

ing larger relative decreases in integrated information due to anesthesia, indicating that the

reduction in 4-channel mechanisms, while smaller than that for 2- and 3-channel mechanisms,

is more reliable. Meanwhile, the full multi-dimensional IIS outperformed integrated informa-

tion of individual mechanisms and system-level integrated information (β = 0.078, t(12) =

11.36 compared to individual 1-channel mechanisms, and β = 0.086, t(12) = 6.644 compared

to system-level integrated information, p< .001), implying that the structure of integrated

information may reflect quantity of consciousness better than the simple summary provided

by system-level integrated information. To rule out the possibility that the IIS performed better

simply because it uses more coefficients to fit the data, we also performed model selection anal-

yses by using logistic regression and comparing Akaike Information Criterion values. Even

after penalizing complexity of the model, we still found the IIS to outperform system-level

integrated information (S5 Text).

We also tested whether the reductions in integrated information were reliable across flies.

This is important because in certain clinical contexts, such as traumatic brain injury, there

may be no baseline measurements available, ruling out within-subject assessment. We con-

ducted the decoding analysis, this time repeating leave-one-fly-out cross-validation at each of

8 wake-anesthesia epoch pairs (see Methods). We found that the trend of results for discrimi-

nating wakefulness from anesthesia, among mechanism sizes, was similar to within-fly classifi-

cation, though accuracies and performance differences were overall reduced (Fig 5B). As

before, classification accuracy varied depending on what measure was used (χ2(5) = 4451, p<
.001). In contrast to the within-fly analysis, we found that (1) the IIS performed similarly to

system-level integrated information (β = 0.007, t(7) = 1.396, p = .206), (2) 1-channel integrated
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information only outperformed 2-channel integrated information (β = 0.018, t(7) = 3.161, p =

.016), with (3) 4-channel integrated information achieving greater accuracies than 1-, 2-, and

3-channel integrated information (β = 0.023, t(12) = 2.515, p = 0.040, β = 0.042, t(7) = 7.976, p
< .001, and β = 0.014, t(7) = 6.250, p< .001, respectively). As for within-fly classification, sys-

tem-level integrated information attained similar performance to the highest performing

Fig 5. Classification of wakeful vs. anesthetized conditions using mechanism-level φ, system-levelF, or the

integrated information structure (IIS: a set of φ’s). (A) Within-fly and (B) across-fly classification at each individual

channel set using individual φ values for each mechanism size (orange, green, pale and dark blue are 1-, 2-, 3-, and

4-channel mechanisms, respectively; single-feature classification), when using the IIS (i.e. all mechanisms together,

15-feature classification, red), and when usingF (single-feature classification, black). Individual points are classification

accuracy of each channel set, after averaging accuracies across all mechanisms within the same mechanism size. Boxplots

show median, 25th-75th percentiles, and whiskers are 1.5 interquartile below and above respectively. (C-F) Spatial map

of classification accuracy (same format as in Fig 3). Within-fly (C) and across-fly (D) classification accuracies when using

the IIS. Within-fly (E) and across-fly (F) classification accuracies when usingF.

https://doi.org/10.1371/journal.pcbi.1008722.g005
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mechanism size, (β = 0.011, t(7) = 1.711, p = .131, compared to 4-channel integrated informa-

tion). The pattern of reduced classification accuracy for smaller mechanisms suggests that the

precise location of electrodes, or precise anatomical configuration, may not necessarily have

been preserved across flies. Meanwhile, larger mechanisms may be less sensitive to the exact

anatomical placement of channels.

Integrated information structure reliably collapses globally across the

brain

Finally, we tested if the reliability of using the IIS to distinguish wakefulness from anesthesia

depended on spatial features (Fig 5C and 5D). Similar to the trends for the raw system-level

integrated information values previously, we found significant trends between classification

accuracy and channel set location. Classification accuracy increased as channel sets moved

closer to the central brain (with channel 1 being the most central in the brain), for both within-

and across-fly classification (Table 1), and slightly decreased as channels became more spaced

out, also for both within- and across-fly classification. Thus, while the IIS collapsed throughout

the brain, it was most reliable for central regions. These same trends were present for classifica-

tion when using the system-level integrated information values (Fig 5E and 5F), though the

trend of decreasing accuracy with more spaced out channels was not significant. Overall, using

the IIS to discriminate level of consciousness in the fly brain yielded better classification accu-

racies, while maintaining the same spatial pattern of results as system-level integrated informa-

tion. These results suggest that multidimensional measures may hold greater promise in

distinguishing arousal states than more traditional single scalar value summaries of conscious

level.

Discussion

In this paper, we applied the measures derived from the Integrated Information Theory (IIT)

of consciousness [30], one of the major quantitative theories of consciousness, to the neural

recordings obtained from biological brains under two levels of arousal. We demonstrated the

construction of integrated information structures (IIS), operationalised based on IIT 3.0, from

real neural data to measure level of conscious arousal. We investigated how both system-level

integrated information, the primary measure of conscious level put forward by IIT, and these

information structures, consisting of a subset of the cause-effect structure (CES) proposed by

Table 1. Dependence of regressands on channel set location and distance among channels.

Location Distance

Regressand βb χ2(1)c p βb χ2(1)c p
F Within -9.16 44.30 < .001 -2.10 52.11 < .001

F Across -5.76 16.77 < .001 -0.47 2.56 .110

IIS Within -7.89 32.71 < .001 -2.09 51.05 < .001

IIS Across -9.06 42.03 < .001 -0.90 9.31 .002

Regressands were the classification accuracies reported in Fig 5C–5F. F Within: within-fly classification accuracy using F, system-level integrated information. F

Across: across-fly classification accuracy using F. IIS Within: within-fly classification accuracy using IIS, integrated information structure. IIS Across: across-fly

classification accuracy using IIS. Location: average location of channels in a channel channel set. Distance: sum of pairwise distances between channels within a channel

set.

b β from regressing z-scored classification accuracies; values are ×10−2

c The degree of freedom for all likelihood ratio tests was 1 (see Methods).

https://doi.org/10.1371/journal.pcbi.1008722.t001
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IIT as corresponding to the structure of consciousness, varied with change in level of arousal

in the fly.

To distinguish conscious arousal states of human subjects, previous studies have employed

other measures, inspired by IIT [41,8,42,43], on neural data. However, rigorous assessment of

IIT ultimately requires assessing its proposed measures, not proxies thereof. So far, empirical

testing of IIT has been lacking in this regard. Instead, research has focussed on comparing

varying operationalizations of system-level integrated information with regards to theoretical

requirements [44,33,37,45,46] or specific network architectures [40,47,48]. Meanwhile, there

are relatively few papers on testing system-level integrated information as a measure of con-

sciousness in neural data [49]. Further, to our knowledge only one paper has empirically inves-

tigated the notion of information structures, but in the context of the correspondence between

the structures and conscious content rather than level of arousal [35].

Consistent with IIT’s predictions, we found system-level integrated information to be

reduced during anesthesia, and this was accompanied with the collapse of the information

structures as reflected by loss of integrated information across all mechanism sizes. Further,

we found that the collapse in the information structure during anesthesia was more reliable

than the reduction in system-level integrated information, allowing us to classify wake from

anesthesia with greater accuracy than using the scalar summary measure. Finally, we found

that both the reduction in system-level integrated information and the collapse of the informa-

tion structures were fairly uniform across all the channel sets which we considered, as was the

reliabilities of their respective reduction and collapse. Overall, these results suggest significant

recurrent interactions across the whole fly brain, contrary to a general view that the fly brain is

largely feedforward, and demonstrate the utility of using information structures to assess level

of arousal, over a scalar measure such as system-level integrated information.

Global effect of anesthesia on system-level integrated information and the IIS

An influential view on the fly brain is that they are structured with largely feedforward and

unidirectional synaptic connections, with possible exception in the central brain areas which

have been identified as centers for integration [24,50,51,10]. From this view, we would expect

minimal integrated information for peripheral regions and potentially greater integrated infor-

mation for more centrally located channel sets, as system-level integrated information by

design should be greater for those areas which have stronger recurrent connectivity as a whole

(see S7 Text). There is however an emerging view that suggests that fly brains are densely con-

nected in a hierarchical way much like mammalian brains [52]. This latter view implies that fly

brains may be equipped with functionally recurrent and feedback computations like those of

mammalian brains.

We found system-level integrated information to be slightly greater for more peripherally

located channel sets (Fig 3A). Further, we found the decrease in system-level integrated infor-

mation due to anesthesia, along with the collapse of the IIS to occur throughout the brain,

regardless of location of the channel set or distance among channels in the set. Together, these

results suggest that feedback interactions occur not only in the central areas of the fly brain,

but also in more peripheral, sensory areas as well as across the whole brain. While this is in

contrast to the general view of processing in the fly brain periphery being predominantly feed-

forward [53], feedback connections have indeed been reported in the fly brain (e.g.from the

medulla to the lamina, and from the lamina to photoreceptors [54]). The finding of greater sys-

tem-level integrated information in the peripheral, sensory processing, areas is also consistent

with an indirect prediction of IIT that sensory areas are more important for consciousness

[47], rather than higher order executive areas.
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We acknowledge, however, potential limitations underlying our recordings and analyses.

Firstly, it is conceivable that, due to the complexity of numerous brain structures in the cen-

tre the brain compared to the relative simplicity of fewer structures in the periphery [52], sig-

nals from a mix of many different structures may have cancelled each other out at the raw

LFP level. Nonetheless, these central structures may have been more sensitive to the effects

of anesthesia. Indeed, we found the effects of anesthesia on system-level integrated informa-

tion and the IIS to be slightly more reliable for central channel sets (Fig 5C and 5E). Sec-

ondly, our method of discretising LFP voltages into binary states may not accurately

represent the true space of real states of each of the channels, and also assumes equal proba-

bilities of each state. Further, while IIT 3.0 focuses on moment-by-moment states, other

methods, such as considering spectral power in time windows [55] may be more useful in

describing the states of the channels, and so expanding IIT’s framework to consider fre-

quency domain data potentially is a promising avenue for future research [56]. Thirdly, we

note that spurious high-order correlations can be found in partially observed multivariate

systems and Markovian approximations of non-Markovian systems. These three limitations

can be addressed through further investigation, especially with recordings at higher spatial

resolutions than LFP, such as optical imaging or neuropixel probes [57], and expanding of

IIT’s theoretical framework.

Why are 1-channel mechanisms more affected by anesthesia?

We encountered unexpected results with regards to 1-channel mechanisms. They had larger

decreases in integrated information due to anesthesia (Fig 4C and 4D) and higher classification

accuracy (Fig 5A) than larger mechanisms composed of 2, 3, or 4 channels. We had suspected

that, as integrated information is supposed to measure information which is generated above

and beyond separate parts, it would reflect the strength of long-range connectivity, which has

been shown to be disrupted by isoflurane anesthesia, in humans, rats, and flies [25,26,36,58].

Given this background, we had expected that larger mechanisms, which are more likely to

reflect long range connectivity, would be much more reduced and more reliable in classifying

conscious states than 1-channel mechanisms.

We see two ways of interpreting this. First, if we consider 1-channel mechanisms as provid-

ing information to the rest of the channel set, then disrupting communication among individ-

ual channels inevitably leads to disruption of larger mechanisms. A second interpretation is

that the large decrease in integrated information for 1-channel mechanisms may primarily

reflect disruption of strong self-connections present during wakefulness, rather than commu-

nication with other channels. Having said that, we note that 1-channel integrated information

is not a well-developed theoretical construct. In fact 1-channel integrated information isn’t

clearly defined for earlier versions of IIT and its approximations [28,33,44,45,59]. Specifically,

integrated information for a mechanism is assessed by comparing the information it generates

before and after imposing some disconnection among its parts. 1-channel mechanisms how-

ever cannot be split and compared in this manner. While IIT 3.0 specifically considers discon-

nections between a mechanism and its purview, and so some disconnection can always be

imposed for any mechanism-purview combination, disconnections must still separate the

mechanism into independent parts (each affecting their own independent purviews) [60], and

thus the problem remains. In Fig 1G, we illustrate that the purviews of mechanisms A and B

were simply themselves. In this example, imposing a disconnection on these self-connections

seemed to result in a relatively large loss of information (compared to mechanism AB). While

further investigation is necessary to understand our finding regarding 1-channel integrated

information (e.g. such as 1-channel integrated information being potentially related to
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autocorrelation; see S8 Text), our main results regarding the IIS are unaffected, as we verified

that 1-channel mechanisms were not driving its classification performance (S6 Text).

Role of system-level integrated information

In light of better classification accuracy of wake and anesthesia achieved by the computation-

ally cheaper IIS, one might question the relevance of system-level integrated information in

measuring conscious level. However, system-level integrated information plays key roles in

IIT other than measuring level of consciousness.

Specifically, system-level integrated information is critical for two key roles. Firstly,

it is used for identifying the “complex”, the set of parts which maximise system-level inte-

grated information [61–63]. Identification of the complex is critical for determining the

boundaries of a system. Once identified, the CES generated by the complex is the “maximally

irreducible conceptual structure”, which is proposed to directly correspond to contents of

consciousness.

Secondly, system-level integrated information is critical in identifying the ideal description

of the system across spatial and temporal scales (e.g. individual neurons versus populations of

neurons versus LFPs, or ideal sampling rate or time delay τ), with the ideal description corre-

sponding to the physical substrate of consciousness [48,64]. In the same vein, it can be used to

identify e.g. the ideal function and/or threshold for binarizing states of the system (though we

binarized voltages using the median to ensure equal entropy across channels and all epochs).

The ideal description of the system is realised when system-level integrated information is

maximal, and the IIS at that description is proposed to correspond to the experience of the sys-

tem. These uses however require knowledge of all possible system elements, searching across

many combinations of system elements, and searching across parameters for operationalising

system states. Consequently, a proper, complete search remains infeasible for real neural data.

We did however repeat our analyses at two different timescales, finding the same trend of

results (see S2 Text).

Differences between perturbation and observation in building the TPM

In order to compute the IIS, we built transition probability matrices (TPMs) and measured the

information generated by the system when it is in a particular state. While ideally the TPM

should be built by perturbing the system into all states and observing the immediate transition

at the next timestep, this is something which is not currently achievable in intact brains. Thus,

we built the TPMs by observing the natural, spontaneous evolution of time courses. Natural

observation and perturbation can provide the same TPM if a few assumptions are met. First,

the correct descriptions of the system must be identified (e.g. at the ideal spatiotemporal scale,

and operationalization of states). Second, all states need to be reached during natural observa-

tions. When these assumptions are not met, perturbation becomes necessary to obtain a com-

plete TPM.

Perturbation should also be used for setting “background conditions” [30], which is

required to distinguish common inputs into system parts from truly integrated parts. Consider

an example of two flies, where both flies are stimulated identically. Without taking into

account the common stimulation, neural activity in one fly may correspond to and predict

neural activity in the other fly, and so system-level integrated information computed from a

TPM built from natural observation may not be able to indicate the presence of two separate

systems. To avoid this, explicit perturbation (e.g. forcing stimulation to only one fly at a time)

can be conducted to separate out the common stimulation.
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Applying IIT to loss of arousal in flies

We cannot be sure of the presence of consciousness in flies. Despite this uncertainty, we argue

that the research program we are putting forward here is important and meaningful for several

reasons. In particular, the fundamental approach of inferring consciousness in animals is to

search for behavioural and physiological similarities between ourselves and the animal in ques-

tion. With sufficiently strong behavioural and physiological similarities, we may at some point

consider that the weight of evidence favours attributing consciousness to that particular animal

[65,66]. In this context, there is accumulating evidence to suggest that flies indeed have varying

levels of consciousness [20,21,10]. There is even some evidence to suggest similar psychological

processes in flies as in humans, such as attention [16,21,67], memory [13–15] and feature bind-

ing [19]. Further similarities have been found for other insects, such as perception of illusory

contours, metacognition, false memory, and long-term planning in bees [68–71].

Assessing the validity of IIT’s constructs using recordings from the fly brain provides key

advantages, compared to testing in humans. Firstly, using multi-electrode methods provides

high quality population neural signals in both time and space, unaccessible with any non-inva-

sive measures available in humans. Further, the small brain of the fly allows us to obtain

recordings covering successive layers of visual processing simultaneously, from the retina to

the central brain. Secondly, given how the computational cost of computing system-level inte-

grated information and the associated information structures grows exponentially with the

number of channels being considered simultaneously [39], the smaller number of neurons in

the fly brain, compared to mammalian brains (105 compared to 108 for mice and 1011 for

humans [72–74]), provides a system where computing these measures across a large majority

of neurons is more feasible. The smaller brain size of the fly has already allowed for detailed

imaging of neural circuits across large portions of the fly brain [75,76]. Detailed knowledge of

connections among neurons can in the future help inform computation of IIT constructs, e.g.

in reducing the set of disconnections to search through when computing integrated informa-

tion of mechanisms or system-level integrated information. Thirdly, the fly brain is already

extensively used as a model of anesthetic loss of consciousness, and various observed molecu-

lar mechanisms of anesthesia, such as decreased action potential amplitudes [77,78], and

effects on network dynamics such as reduced feedback connectivity [12,26,79], seem to be con-

served across species. Further, fly brains appear to share graph-theoretical characteristics with

mammalian brains [52] as well as cellular mechanisms [80], and fly LFPs share similarities

with human electroencephalographic recordings [81,82]. Taken together, the fly serves as a

useful model for investigating the constructs of IIT.

Conclusion and future outlook

Our work opens up several future directions for empirically assessing mathematical

approaches to consciousness, especially for IIT. It will be also important to test the generality

of our finding across different modulations of consciousness, such as considering graded levels

of anesthesia or sleep, as well as across datasets from different systems, such as in the more

complex mammalian brain. Even without presuming consciousness for a given system, apply-

ing such approaches can inform biology, such as bringing focus to feedback interactions in a

system which is largely considered feedforward. While we investigated the use of information

structures in determining level of arousal, IIT links these structures more directly to contents

of consciousness. As flies can demonstrate complex behaviors such as attentional selection

[83] it would be interesting future research to see if the structures of consciousness in flies that

can be reasonably inferred from behaviors would correlate with the structures of integrated

information as in humans [35].
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Methods

Experimental procedure

As the data have been published in [36], here we detail methods directly relevant to the current

manuscript. Thirteen female laboratory-reared Drosophila melanogaster flies (Canton S wild

type, 3–7 days post eclosion) were collected under cold anaesthesia and glued dorsally to a

tungsten rod.

Linear silicon probes with 16 electrodes (Neuronexus Technologies) were inserted laterally

into the fly’s eye. Probes had an electrode site separation of 25 μm. Recordings were made

using a Tucker-Davis Technologies multichannel data acquisition system with a 25 kHz sam-

pling rate. Isoflurane was delivered from an evaporator onto the fly through a connected rub-

ber hose. Actual concentration near the fly body was either 0 vol% (awake condition) or 0.6

vol% (isoflurane condition). Flies in the awake condition responded to air puffs by moving

their legs and abdomen, but were rendered inert under the isoflurane condition. Importantly,

they regained responsiveness when isoflurane was subsequently removed, ensuring that flies

were alive during the anesthesia recording.

The experiment consisted of two blocks: one for the 0% isoflurane (air condition, followed

by one for the isoflurane condition. Each block started with a series of air puffs, followed by 18

s of rest, 248 s of visual stimuli, another 18 s of rest, and finally a second series of air puffs. Iso-

flurane was administered immediately after completion of the first block (i.e. after the last air

puff), and flies were left for 180 s to adjust to the new concentration before beginning the sec-

ond block. We used data obtained in the 18 s period between the end of the first series of air

puffs and the beginning of the visual stimuli.

Local field potential preprocessing

LFPs were downsampled to 1000 Hz from their original sampling rate of 25 kHz. Down-

sampled LFPs were bipolar re-referenced by subtracting neighbouring electrodes, resulting in

15 signals which we refer to as “channels”. The 18 s of data for each condition was split into

2.25 s segments, giving 8 epochs of 2250 time-samples each. We removed line noise at 50 Hz

using the function rmlinesmovingwinc.m function of the Chronux toolbox (http://chronux.

org/; [84]) with three tapers, a window size of 0.75 s, and a step size of 0.375 s. Finally, we

binarized voltages by taking the median voltage for each channel across all time-samples

within a 2.25 s epoch, and then converting each time-sample in the epoch to ‘on’ if the voltage

for that time-sample was greater than the median, and ‘off’ otherwise (for the effect of binariza-

tion threshold, see S1 Text).

IIS computation

Data processing for computing the IIS and system-level integrated information was conducted

using Python 3.6.0 in MASSIVE (Multi-modal Australian ScienceS Imaging and Visualisation

Environment), a high-performance computing facility. We calculated the measures using

PyPhi (version 0.8.1; [39]), publicly available from https://github.com/wmayner/pyphi. Com-

plete details of all the calculations can be found in [30,39].

To compute the IIS, transition probability matrices (TPMs) describing how the set of chan-

nels transition from one state to another across time are required. To estimate these, we first

select a set of n channels of interest, for which there are 2n possible states. For each channel in

the set, we computed the empirical probability of being “on” at time t+τ given the state of the

system at time t. This gives a 2n × n matrix (i.e. a “state-by-channel” matrix), which can then

be directly fed to the PyPhi toolbox [39]. We use τ = 4 ms as τ which is too small will not
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capture causal interactions which maximise integrated information, based on known physiol-

ogy of synaptic interactions [85]. A comprehensive search across τ is infeasible due to compu-

tational cost (but see S2 Text for repeated analyses also at τ = 2 ms and 6 ms).

The state-by-channel TPM is used in IIT 3.0, which assumes that there are no instantaneous

interactions among the channels (i.e. the “conditional independence” assumption). In other

words, the state of some channel being ‘1’ or ‘0’ at some time point is not affected by the state

of other channels at the same time point. This assumption is reasonable for classical physical

systems, but may not hold when not all units’ interactions are considered (e.g. when there is

common input to the system). As it is infeasible to obtain a full description of all parts and

interactions of intact brains, this is a limitation of the current IIT 3.0 operationalisation of inte-

grated information (note however that the issue is dealt with and resolved for a previous ver-

sion of IIT by explicitly incorporating conditional dependence among system parts [33,37]).

We computed the state-by-channel TPMs for every possible, 4-channel subset out of the 15

channels (15choose4 = 1365 channel sets), repeating this procedure for each fly and epoch

(obtaining one TPM per fly and 2.25s epoch). We selected 4 channels as this gave a reasonable

balance between system-level integrated information and the IIS’s strength of being a multi-

variate measure and their weakness of exponentially growing computation cost with system

size [39].

To compute the IIS and system-level integrated information for a given set of 4 channels at

a given epoch, we submitted its associated transition probabilities to PyPhi. Conceptually,

PyPhi finds distances between the probability distribution of transitions specified by the full

system with that of the disconnected system (Fig 1G and 1H). As there are 2n possible states

for a set of n-channels (16 states for 4-channels), we computed a set of 15 integrated informa-

tion values (the IIS) and one system-level integrated information value for every state. Within

each epoch, we first computed the within-epoch state-weighted average [40]. For the compari-

son of integrated information values between wakefulness and anesthesia, we further averaged

these values across the 8 epochs.

In Fig 1G and 1H, we explained system-level integrated information (F) as the sum of dis-

tances between cause and effect probability distributions specified by the full and (minimally)

disconnected system (i.e. the full CES and the disconnected CES). Distances for each mecha-

nism are weighted by the mechanism’s φ value, as φ is the “earth” which is being moved from

the full to the disconnected system (consequently, the distance is weighted by the smaller φ out

of the full CES and disconnected CES). Any differences in φ values between the full and dis-

connected system, such as for mechanism AB in Fig 1G and 1H, are “moved” to the maximally

uninformative distributions (EMDc and EMDe; red asterisks between Fig 1G and 1H). This

weighted summation is depicted in between Fig 1G and 1H, in the solid box.

Classification analysis

To assess the reliability of the effects of anesthesia on the IIS, we conducted classification anal-

ysis, which allows us to compare the multivariate IIS (15-features) with single mechanism inte-

grated information (1-feature) and system-level integrated information (1-feature) values. We

trained and tested SVMs for each channel set using LIBLINEAR (using default options, i.e.

L2-regularized L2-loss support vector classification (dual) [86]) at two levels: a) classifying

epochs within each fly (within-fly classification, repeated for each fly), and b) classifying flies at

each trial (across-fly classification, repeated at each epoch).

For each measure (integrated information of individual mechanisms, IIS, or system-level

integrated information), we conducted nested leave-one-pair-out cross-validation [87,88]. At

each outer validation, we conducted an inner-cross-validation procedure on 7 epoch-pairs
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(within-fly classification; an epoch-pair consists of one wakeful and one anesthetized epoch) / 12

fly-pairs (across-fly classification; a fly-pair consists of one epoch of each wakefulness and anesthe-

sia from the same fly), where we trained SVMs on 6 epoch-pairs / 11 fly-pairs at a time, and vali-

dated performance on the remaining epoch-pair / fly-pair. Training features (integrated

information values or system-level integrated information values) were each z-scored before train-

ing, and testing features were z-scored using the mean and standard deviation of the training set.

This was repeated at different cost hyperparameters (2−50 to 250, in steps of powers of 10).

We then trained a SVM on all 7 epoch-pairs / 12 fly-pairs used in the inner-cross-valida-

tion, repeating the z-scoring procedure, at the cost hyperparameter value which gave the great-

est validation performance (in cases of tie conditions, we took the lower cost value), and tested

the overall classifier on the remaining epoch-pair / fly-pair. For the majority of validations

(~74% for within-fly classification), the lowest cost of 2−50 was selected as the cost value. This

process was repeated for each fly / epoch (within-fly classification / across-fly classification),

and we averaged across repeats to obtain a final classification accuracy for the channel set and

measure. For accuracy of mechanisms with a given size, we report averaged accuracies across

all mechanisms with the given size (e.g., we report 1-channel mechanism accuracy as the aver-

age accuracy across all 1-channel mechanisms).

Statistical analyses

We used linear mixed effects analysis (LME; [89,90]) to test for significant differences. LME

allows us to account for within-fly correlations among channel sets and avoid averaging across

either channel sets or flies. Thus we always included random intercepts for fly and the interac-

tion between fly and channel set as random effects, unless otherwise specified. To test for statis-

tical significance of an effect, we employed likelihood ratio tests, where we compared the log-

likelihood of the full model with a model with the effect of interest removed. As the likelihood

ratio statistic is χ2 distributed when one model is nested in another, we report the likelihood

ratio statistic with the associated degrees of freedom (χ2(d.o.f.)) corresponding to the difference

in number of coefficients between the full model with the model with the effect of interest

removed, as well as the corresponding p-value. To conduct pairwise comparisons (e.g. to com-

pare 1-channel to 2-channel integrated information), we limited the effect of interest to two lev-

els at a time and report the associated regression coefficient. As p-values associated with these

regression coefficients were very small and potentially do not reflect the true degrees of freedom,

we report the coefficients along with “classical” group-level t-tests (conducted after averaging

across channel sets to obtain a single value per fly or, for across-fly classification, per epoch).

We first employed LME to compare system-level integrated information, F, between wake-

fulness and anesthesia, using the following model (in Wilkinson notation [90]):

F � conditionþ ð1jflyÞ þ ð1jfly : setÞ ð1Þ

Where condition is level of conscious arousal (wake or anesthesia; dummy coded to be

treated as a categorical variable), fly is individual flies (treated as a nominal variable), and set is

channel set (treated as a nominal variable). In Table 2, we summarize the amount of variance

explained in each model as well as the intercepts for random effect.

To test for a relationship between system-level integrated information (F) values and chan-

nel set location or total path distance among channels, we regressed system-level integrated

information values onto channel set location and distance among channels:

F � conditionþ locationþ distanceþ location : conditionþ distance : conditionþ ð1jflyÞ þ ð1jfly : setÞ ð2Þ
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Where “location:condition” and “distance:condition” denote interaction terms between

channel set location and condition, and distance among channels and condition, respectively.

We describe the relationship between F and channel set location or distance among channels

by reporting regression coefficients from z-scored F values in addition to the significance of

the effect of location from the likelihood ratio test.

To compare integrated information (φ) values of the IIS between wakefulness and anesthe-

sia and among mechanism orders, we used the model:

φ � conditionþ sizeþ condition : sizeþ ð1jflyÞ þ ð1jfly; setÞ ð3Þ

Where size is mechanism size (1, 2, 3, or 4, dummy coded to be treated as a categorical vari-

able). The number of observations among mechanism sizes differed due to each order having

a different number of possible mechanisms (4, 6, 4, and 1, respectively for 1-, 2-, 3-, and

4-channel mechanisms). The term “condition:size” denotes an interaction between level of

conscious arousal and mechanism size.

To compare the differential effects of anesthesia among mechanism sizes (breaking down

the significant interaction between condition and size in the previous LME), we used the

model:

Dφ � sizeþ ð1jflyÞ þ ð1jfly : setÞ ð4Þ

Where Δφ is the ratio of wakeful to anesthetized integrated information.

When comparing classification accuracy across flies across the different feature types (i.e. 1-

, 2-, 3-, and 4-channel φ, the IIS, and F), classification accuracy was not nested within fly, thus

Table 2. Linear mixed effects model fit (adjusted R2) and standard deviation (SD) of random effects.

R2 SD
Random effect + (1|f)# + (1|f:n)^ + (1|n)&

F ~ c .489 0.011 3.185 × 10−11

F ~ c + l + d + l:c + d:c .493 0.011 1.524 × 10−11

φ ~ c + s + c:s .412 5.95 × 10−3 4.07 × 10−3

Δφ ~ s .372 0.235 0.121

aW ~ F .476 0.019

aA ~ F .309 0.020

aFW ~ l + d .562 0.683

aFA ~ l + d .513 0.702

aφW ~ l + d .555 0.686

aφA ~ l + d .535 0.694

Model specifications are described in detail in Methods. F: system-level integrated information. c: level of arousal (wake/anesthesia). l: channel set location. d: sum of

pairwise distances between channels within a channel set. φ: (mechanism-level) integrated information. s: mechanism size. Δφ: ratio of wakeful to anesthetized

integrated information for mechanism-level integrated information. aW: within-fly classification accuracy. F: feature used for classification (categorical variable;

individual 1-, 2-, 3-, 4-channel mechanisms, 1 feature; IIS, 15 features; or system-level integrated information, 1 feature). aA: across-fly classification accuracy. aFW:

within-fly classification accuracy using system-level integrated information. aFA: across-fly classification using system-level integrated information. aφW: within-fly

classification accuracy using the IIS. aφA: across-fly classification accuracy using the IIS.

# Random intercept for effect of fly.

^ Random intercept for interaction between fly and channel set.

& Random intercept for channel set.

https://doi.org/10.1371/journal.pcbi.1008722.t002
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we only included random intercepts for each channel set:

accuracy � featureþ ð1jsetÞ ð5Þ

Where feature was dummy coded to be one of 1-, 2-, 3-, or 4-channel φ, the full IIS, or F.

To test for a relationship between classification performance and channel set location or

distance among channels, we regressed accuracies onto the two spatial features:

accuracy � locationþ distanceþ ð1jsetÞ ð6Þ

Where accuracy is classification accuracies, averaged across flies or epochs (for within-fly

and across-fly classification, respectively). As for the relationship between F and the spatial

features, we describe the relationship between accuracies and the spatial features by reporting

regression coefficients on z-scored accuracies in addition to the significance of the effect of

location from the likelihood ratio test.
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2.2 - Supporting Information 

I now provide the supporting information related to the article in Section 2.1, beginning on 

the next page. 

  



S1 Text. Effect of anesthesia is consistent at different binarization thresholds 

 

In the main text, we computed system-level integrated information and the integrated 

information structure (IIS) after first binarizing LFPs at each epoch based on the median 

voltage. While we can potentially operationalise the states of the brain signals in many 

different ways, binarization at the median is the simplest discretisation process, and also 

normalizes entropy across all epochs. This is important as it controls for potential changes in 

entropy levels between wakefulness and anesthesia [1]. 

 

To exclude the possibility that our results vary wildly depending on the specific threshold 

used for binarization, we used different binarization thresholds and computed system-level 

integrated information for sets of 2 channels at a time. We found the effect of anesthesia to 

be consistent across thresholds for all flies (Fig S1). 

 

 

 

Fig S1. Effect of anesthesia on system-level integrated information is consistent across 

different binarization thresholds. We computed system-level integrated information (for sets 

of 2 channels at a time) after binarizing voltages of each channel at a given threshold (30th 



up to 70th percentiles in steps of 5; voltages become ‘1’ if above the threshold, and ‘0’ 

otherwise). Plotted is mean and standard deviation (across 105 channel sets per fly) for 

wakeful (red) and anesthesia (blue) conditions. 
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S2 Text. Effect of anesthesia is consistent using different timesteps 

 

In the main text, we computed system-level integrated information and integrated information 

structures (IIS) from TPMs built at the timescale 𝜏 = 4 ms. We chose this timescale based on 

the known physiology of synaptic interactions between neurons. Specifically, if 𝜏 is too small, 

it will not capture causal interactions that maximise integrated information [1–3]. Thus we 

chose 4 ms as our timescale. A comprehensive search across 𝜏 values is infeasible due to 

the computational cost of system-level integrated information. 

 

To exclude the possibility that our results vary wildly depending on the specific 𝜏 value 

selected, we selected a random sample of 200 channel sets (out of the total 1365 channel 

sets), and recomputed system-level integrated information and the IIS at two other 𝜏 values, 

2 ms and 6 ms. As can be seen in Figs S2 and S3, the effect of anesthesia remains 

consistent with what we report in the main text (Figs 4 and 5). 

 

 



Fig S2. Effect of anesthesia on system-level integrated information (Φ) and the IIS is 

consistent for similar 𝜏 values. Format is the same as Fig 4 in the main article. (A-D) Results 

with 𝜏 = 2 ms. (E-H) Results with 𝜏 = 6 ms. 

 

 

 

 

Fig S3. Classification accuracy of wake and anesthesia is consistent for similar 𝜏 values. 

Same format as Fig 5A and 5B in the main text. (A-B) Results with 𝜏 = 2 ms, (C-D) Results 

with 𝜏 = 6 ms. 

  



References 

 

1.  Hoel EP, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can 

beat micro. Proc Natl Acad Sci. 2013;110: 19790–19795. doi:10.1073/pnas.1314922110 

2.  Hoel EP, Albantakis L, Marshall W, Tononi G. Can the macro beat the micro? Integrated 

information across spatiotemporal scales. Neurosci Conscious. 2016;2016: niw012. 

doi:10.1093/nc/niw012 

3.  Marshall W, Albantakis L, Tononi G. Black-boxing and cause-effect power. PLoS 

Comput Biol. 2018;14: e1006114. doi:10.1371/journal.pcbi.1006114 

 



S3 Text. “Disconnection” through statistical noising 

 

In the main text, we assessed the irreducibility of mechanisms (and of the system), by 

“disconnecting” connections between the mechanism and its purview such that some part of 

the mechanism affects only some part of the purview (and same for their complements). We 

carry out this “disconnection” by statistically noising the connections between the 

mechanism and the purview. Here we provide an example of this procedure in detail. 

 

Consider a mechanism consisting of two channels, A and B, and a purview, consisting of 

channel C. For simplicity, we consider a case where both A and B have to be ‘1’ 

simultaneously to make C take the state ‘1’ at the next time step. This system’s state-by-

channel (i.e., AB-by-C) TPM is shown in Fig S4A. 

 

 

 

Fig S4. We estimate the effects of “disconnections” through statistical noising of the 

connection (not through physical disconnection). (A) An example state-by-channel transition 

probability matrix (TPM) for a mechanism AB and purview C. C becomes ‘1’ at time t+𝜏 if 

both A and B are ‘1’ at time t. (B) To “disconnect” A from C, we replace the connection from 

A with noise by marginalising across the states of A. Colors indicate marginalising within 

each state of B. (C) Expanding the TPM marginalised over states of A returns the TPM to 

the original space of states of both A and B. (D) For the state of AB = 11 in red boxes in 

panel A and C, we obtain the probability distributions of C, before and after the imposed 



disconnection. We compare these distributions (using earth mover’s distance) to obtain 

integrated information. 

 

To assess the irreducible effect of AB on C, we carry out a “disconnection” (i.e. noising). 

Following the process as illustrated in Fig 1D and 1E, we want to compare the probability 

distribution of the purview, P(C=1) at t+𝜏, when both A(t) and B(t) are known, to when only 

A(t) is known or only B(t) is known. To consider the case when only B(t) is known, we 

replace A(t) with noise, by marginalising over the possible states of A(t). This gives us a 

disconnected TPM, as in Fig S4B. If we expand the disconnected TPM to again consider the 

possible states of B(t) (which now give no information at all about C(t+𝜏), due to the prior 

marginalisation), we obtain Fig S4C. 

 

Then, for a given state (e.g. AB=’11’), IIT 3.0 uses earth mover’s distance (EMD) to quantify 

the distance between the original probability distribution of C(t+𝜏), from the original TPM, and 

the probability distribution of C(t+𝜏) from the “disconnected” TPM where knowledge of some 

part of the mechanism has been factored out (in this example, knowledge of B(t); Fig S4D). 



S4 Text. Effect of anesthesia on system-level integrated information for each fly 

 

In the main text, we compared the IIS to system-level integrated information, across all flies. 

Here, we show the effect of anesthesia on system-level integrated information per fly (Fig 

S5). 

 

 

Fig S5. System-level integrated information, Φ (in log scale), during wakefulness (red) and 

anesthesia (blue) per fly. Boxes indicate 25th, 50th, and 75th percentiles across 1365 

channel sets per fly. Circles indicate the mean across channel sets. Asterisks indicate 

significant one-tailed t-tests (system-level integrated information greater during wakefulness) 

across channel sets, p < .001. 



S5 Text. IIS best predicts wakeful vs. anesthesia states 

 

In the main text, to assess the utility of the integrated information structure (IIS) in classifying 

wakeful vs. anesthetized states, we trained and tested support vector machines (SVMs) on 

either system-level integrated information (1 feature), the IIS (15 features), or integrated 

information of individual mechanisms (1 feature). While we found that SVMs trained on the 

IIS generally outperformed others, this might have been simply due to the IIS having more 

features to train on.  

 

To exclude such a trivial interpretation, we conducted a complementary analysis with logistic 

regression, where we systematically compared the goodness of fits among models using an 

information theoretic model selection procedure (Akaike Information Criterion; AIC; [1]). AIC 

is defined as: 

 

(S1) AIC = -2ln(L) + 2k 

 

where L is the maximum value of the likelihood function for the model and k is the number of 

fitted parameters in the model. As the likelihood increases, the first term on the right-hand 

side becomes smaller, thus a smaller AIC is favoured. However, as a model includes more 

parameters, it gets penalised by the second term on the right-hand side, as the 2k term 

becomes larger. Thus, given two models with equal likelihoods, AIC selects the model with 

fewer parameters. Using AIC, we took into account the number of regressors (specifically, 

models with more regressors are penalised) and compared different model architectures (SII 

vs. other models with different numbers of mechanisms associated with integrated 

information). 

 

We used the MATLAB implementation of logistic regression (fitglm.m) to regress a binary 

level of arousal (either wakeful or anesthetized) onto integrated information values. 

Specifically, we regressed the arousal level onto either 1) system-level integrated 

information (giving a single regressor, excluding the intercept), 2) the full IIS, where we used 

all 15 integrated information values associated with all mechanisms (giving 15 regressors) or 

3) integrated information values of one of 1-, 2-, 3-, or 4-channel mechanisms (respectively 

giving 4, 6, 4, or 1 regressors). As a null model, we also regressed the arousal level onto 

only an intercept. 

 

To interpret the results in the context of our SVM classification (Fig 5A in main text), we built 

a model per fly using all 1365 channel sets as observations (2 × 1365 observations per 



model; Fig S6). The results were consistent with our conclusion with the SVM classification: 

the IIS performed better than the system-level integrated information even after accounting 

for the number of available variables fitted.  

 

 

Fig S6. AIC values for logistic regression of the binary level of arousal onto different 

mechanism sizes, and system-level integrated information. Null models regressed the level 

of arousal onto only an intercept. (A) One AIC value was obtained from fitting models from 

1365 channel sets per fly (observations per model = 1365 channel sets × 2 conditions). 

Shown are mean (blue) and median (red) of the 13 AIC values obtained from each of 13 

flies. Solid and dashed lines indicate that the full IIS model performed the best (i.e. gave the 

smallest AIC) in terms of the mean of the median. Y-labels give the features used for fitting 

the model and the associated number of coefficients fitted (in parentheses), excluding the 

intercept. (B) The full IIS model was chosen as the best model, which gave the minimal AIC 

in all 13 flies, while the SII model was never chosen as the best model.  
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S6 Text. 1-channel mechanisms do not drive classification performance of the IIS 

 

As shown in Fig 4C, 1-channel mechanisms were associated with a higher magnitude of 

integrated information compared to other higher-order mechanisms. To quantify the degree 

of contribution of these 1-channel integrated information for the IIS classification, we 

repeated the classification analysis without integrated information associated with 1-channel 

mechanisms (Fig S7), which demonstrated no substantial contribution of 1-channel 

integrated information. 

 

 

Fig S7. Classification accuracy between wakeful vs. anesthetized conditions using the IIS 

without 1-channel integrated information (green). (A) Within-fly and (B) across-fly 

classification. We replot the same results for the IIS and system-level integrated information 

for comparison (the same data as in Fig 5A and 5B). 

 

For within-fly classification, the restricted IIS consisting of only 2-, 3-, and 4-channel 

mechanisms did not achieve significantly different performance to the full IIS (𝜒2(1) = 0.5691, 

p = 0.451 using LME model (5), see Methods, where feature had two levels, restricted IIS, 

i.e. lacking 1-channel mechanisms, or full IIS including all mechanisms; pairwise comparison 

of restricted IIS to full IIS, β = 9.862 × 10-5, t(7) = -0.658, p = .523; Fig S7A). For across-fly 

classification, the restricted IIS achieved worse performance than the full IIS (𝜒2(1) = 306.5, 

p < .001; β = -0.0155, t(7) = -4.401, p = .003). Taken together with the AIC results (S5 Text), 

we conclude that while 1-channel mechanisms contributed to the IIS, they were not driving 

its classification performance. 



S7 Text. Recurrent connectivity is required for greater system-level integrated 

information 

 

In the main text, we infer that recurrent connections throughout the fly brain is reduced by 

general anesthesia based on our observation that integrated information is reduced during 

anesthesia. A potential concern is that integrated information may be high in a nonlinear 

system even in the absence of recurrent connections. Here we provide a simulation to 

demonstrate that recurrent connectivity is required for greater system-level integrated 

information. 

 

Here, we compare 2-channel integrated information among 10 simulation runs of 3 auto-

regressive models with a nonlinear component: 1) a model with 2 channels that are not 

physically connected, 2) a model with 2 channels where one channel sends output to the 

other unidirectionally through a physical connection, and 3) a bidirectionally connected 

model (the model specifications are given below). Given these models, we would expect 

system-level integrated information to be greater than zero for model 3 and zero for models 

1 and 2, as system-level integrated information requires bidirectional connectivity as 

explained extensively in [1]. 

 

The general form of these models is specified as: 

● Xt+1 = -0.1Xt + AYt + eX 

● Yt+1 = -0.1Yt + BXt + eY 

● Innovations covariance: diagonal 0.5, off-diagonals 0 

(1) In the completely disconnected model: 

● A = 0 

● B = 0 

(2) In the unidirectionally connected model: 

● A = 0 

● B = 0.9 if Xt > threshold; 0 otherwise 

○ (i.e., X only influences Y if X is above a certain threshold) 

● threshold = 0.9 

(3) In the bidirectionally connected model: 

● A = 0.9 if Yt > threshold; 0 otherwise 

● B = 0.9 if Xt > threshold; 0 otherwise 

● threshold = 0.9 

 



We compute system-level integrated information on the simulated time series in the same 

way as in the main text: we 1) binarise the simulated time series based on the median, 2) 

obtain a TPM, then 3) use PyPhi to compute integrated information, which involves several 

steps as described in the main text (Fig 1 and [2]). 

 

We find that system-level integrated information is, as expected, much greater for the 

bidirectionally connected model than the other two models (which are much closer to 0; Fig 

S8). As integrated information is always above or equal to 0, it is positively biased. While 

here we included a simple nonlinearity in our model (thresholds), further work should be 

conducted to assess the behaviour of integrated information also in partially observed 

systems and non-markovian systems approximated through a Markovian assumption, where 

spurious high-order correlations might affect the measure. 

 

 

Fig S8. System-level integrated information for three simple nonlinear autoregressive 

models. System-level integrated information is close to 0 when the system is disconnected 

or unidirectionally connected. Meanwhile, system-level integrated information is much 

greater than 0 for the bidirectionally connected system. Shown are mean and standard 

deviation across 10 simulation runs of each model. For each run, a TPM was built such that 

each row of the TPM was obtained from observing 200 state transitions. We used these 

TPMs to compute system-level integrated information in the same way as we describe in the 

main text. 
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S8 Text. Relation between 1-channel mechanisms and autocorrelation 

 

In the main text, we consider 1-channel mechanisms to be unclear theoretical constructs of 

IIT. One possible interpretation is that 1-channel integrated information reflects self-

connectivity. Here we quantified the contribution of autocorrelation to 1-channel integrated 

information. 

 

We directly compared differences (wake minus anesthesia) in 1-channel φ and difference in 

single-channel autocorrelation (Fig S9). To compute autocorrelation for a given channel, we 

correlated each LFP time series (of 2.25 s) with itself, shifted by 𝜏 = 4 ms (corresponding to 𝜏 

= 4 ms for our integrated information results). Fig S9A plots autocorrelation values against 1-

channel φ values for one fly during wakefulness. Note that each channel only has one 

autocorrelation value but multiple 1-channel φ values (each from a different set of 4 

channels; 14 choose 3 = 364 channel sets containing the channel; error bars in Fig S9A are 

standard deviations across 364 1-channel φ values). Thus, some fixed autocorrelation value 

(x-axis of Fig S9A) of a given channel corresponds to multiple, highly varied 1-channel φ 

values (y-axis). This is expected theoretically, because 1-channel φ has to reflect on how the 

channel is embedded in and interacts with the other three channels. 

 

 

Fig S9. Relationship between 1-channel integrated information and autocorrelation, at 𝜏 = 4 

ms. (A) Single channel autocorrelation plotted against 1-channel integrated information, for a 



representative fly during wakefulness. Each point corresponds to 1-channel. Error bars are 

standard deviations of 1-channel φ for a given channel (each channel is contained in 364 out 

of all 1365 sets of 4 channels). Title gives the correlation coefficient between autocorrelation 

and 1-channel φ for the fly. (B) Difference (wake - anesthesia) in Fisher z transformed 

single-channel autocorrelation (Δ autocorrelation) plotted against difference in 1-channel 

integrated information (Δφ), for the same fly. Title gives the correlation coefficient between Δ 

autocorrelation and Δφ for the fly. (C) Correlation coefficients between Δ autocorrelation and 

Δφ for each individual fly. Solid line indicates the average correlation coefficient across flies 

(coefficients were averaged after Fisher z transform, plotted is inverse transform of the 

mean). 

 

We next subtracted Fisher z transformed autocorrelation values during anesthesia from 

those during wakefulness (Δ autocorrelation). Fig S9B shows Δ autocorrelation plotted 

against Δφ (wake φ minus anesthetized φ), for the same fly as Fig S9A. Correlations at each 

fly, between Δ autocorrelation and average Δφ values of each channel, indicated that there 

is some positive correlation between the two measures at the group level (Fig S9C). We 

confirmed this using a one-sample t-test comparing Fisher z transformed correlation 

coefficients to 0 (M = 0.424, SD = 0.443, t(12) = 4.308, p = .001). 

 

In sum, while there seems to be some relationship between the two measures, we conclude 

that 1-channel integrated information reflects something above and beyond its 

autocorrelation, namely, the informational and (statistical) causal interactions between that 

channel with the rest of the channels in the considered system. Whether this is an ideal 

property for integrated information may need further theoretical exploration in the future. 
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Chapter 3 - Searching for intrinsic timescale 

In this chapter, I aim to search for a temporal scale at which Φ is maximised. To address this 

aim, I apply Φ first to simulated model data, and then to recordings from the fly brain 

previously described in Chapter 2. For this chapter, I supply a manuscript currently accepted 

for publication in Entropy. The manuscript begins on the following page. 

3.1 - Entropy submission 

This manuscript was accepted for publication in Entropy. It begins on the following page. 
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Abstract 
How a system generates conscious experience remains an elusive question. One approach 

towards answering this is to consider the information available in the system from the 

perspective of the system itself. Integrated information theory (IIT) proposes a measure to 

capture this, integrated information (Φ). While Φ can be computed at any spatiotemporal 

scale, IIT posits that it be applied at the scale at which the measure is maximised. 

Importantly, Φ in conscious systems should emerge to be maximal not at the smallest 

spatiotemporal scale, but at some macro scale where system elements or timesteps are 

grouped into larger elements or timesteps. Emergence in this sense has been demonstrated in 

simple example systems composed of logic gates, but it remains unclear whether it occurs in 

real neural recordings which are generally continuous and noisy. Here we first utilise a 

computational model to confirm that Φ becomes maximal at the temporal scales underlying 

its generative mechanisms. Second, we search for emergence in local field potentials from the 

fly brain recorded during wakefulness and anaesthesia, finding that normalised Φ 

(wake/anaesthesia), but not raw Φ values, peaks at 5 ms. Lastly, we extend our model to 

investigate why raw Φ values themselves did not peak. This work extends the application of 

Φ to simple artificial systems consisting of logic gates towards searching for emergence of a 

macro spatiotemporal scale in real neural systems. 
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Introduction 
Integrated information theory tackles the question of how physical interactions can support 

consciousness by introspecting conscious experience [1,2]. It then deduces postulates, the 

necessary physical interactions to support conscious experience, and from these derives a 

numerical measure of consciousness which should be high in a conscious system, and low 

otherwise. We previously applied the measures proposed by integrated information theory 

(IIT) 3.0 to local field potentials (LFPs) from the fly brain, testing the hypotheses that 

system-level integrated information Φ and its associated conceptual structure should be 

reduced during reduced level of consciousness as induced by anaesthesia [3]. As expected 

from the theory, both Φ and associated conceptual structures computed from the LFPs were 

indeed reduced during anaesthesia. However, we were unable to apply all of IIT’s postulates 

exactly as they are put forward by the theory. Specifically, we did not fully apply IIT’s 

exclusion postulate, which states that only one set of overlapping sets of elements, the 

complex, can be conscious. 

 

To identify the complex, IIT’s exclusion postulate requires searching across all subsets of 

system elements, recomputing Φ for each subset. However, this search quickly becomes 

computationally infeasible for larger numbers of elements, due to the rapidly increasing cost 

of repeatedly identifying the minimum information partition (MIP; [2]) for all subsets. IIT’s 

exclusion postulate also requires searching for the complex across spatial and temporal 

scales. As LFPs are an aggregate measure which summate electrical activity arising from 

neurons’ cell bodies, axons, and dendrites at a scale much coarser than that of individual 

neurons [4], searching for the potential spatial scale of the complex did not seem to be a 

promising avenue for investigation. However, searching for the temporal scale is a feasible 

and likely more fruitful endeavour, given the high temporal resolution of LFPs. 

 

IIT provides a clear expectation as to the temporal scale of the conscious complex. 

Specifically, IIT’s exclusion postulate ties the complex to the scale at which our experiences 

occur. Through introspection, it is apparent that, for humans, an instance of experience occurs 

most likely at the scale of milliseconds - we are unable to perceive events which occur at too 

short a timescale, such as events which occur at the scale of microseconds. This intuitive 

scale is backed empirically by psychophysics studies, with humans being able to discern 

events at the scale of tens of milliseconds, but not shorter [5].  It is also unlikely to be at 
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longer timescales such as seconds or longer, where we can differentiate multiple instances of 

experience. Consequently, through its exclusion postulate, IIT predicts that Φ should be 

maximal at some particular scale, in the order of milliseconds. Conversely, it should be 

lower, both at micro timescales which are too short and at macro timescales which are too 

long to correspond to the timescale of conscious experience. While the emergence of 

maximal Φ at some intermediate scale has been previously illustrated in example binary 

systems consisting of logic gate elements [6–8], it is unclear whether it occurs in real neural 

data which is typically continuous in nature. 

In this paper, we will test the above prediction using both real neural recordings and related 

computational generative models. First, by using a toy auto-regressive model, for which 

temporal interactions among system elements are known a priori [9], we verify that Φ 

identifies the timescale of system interactions from continuous data generated by the model. 

Next, we apply Φ to the fly recordings previously analysed in [3], to search for a potential 

temporal scale of interactions in the complex. However, we find Φ to either increase or 

decrease in a monotonic fashion with changes in temporal scale both when flies were wakeful 

and anaesthetised, depending on how the recordings were pre-processed to characterise 

timescale. Meanwhile, the ratio of wakeful to anaesthetised Φ identifies a potential temporal 

scale of interactions, again depending on how timescale is characterised. Given these 

findings, in the last section of this paper, we expand the auto-regressive simulation to explore 

limitations of our application of Φ to the fly recordings, namely non-Markovianity and partial 

observation. 

Results 

Integrated information identifies the timescale of interactions in a nonlinear 

autoregressive process 
Example interactions between system elements leading to maximal Φ occurring not at the 

most fine-grained scale, but rather at a macro scale, have previously been illustrated in toy 

systems with binary elements. However, this illustration has not been extended to systems 

with continuous elements. So, to check the in-principle feasibility of searching for emergence 

of Φ at a macro scale in continuous data, we first utilised a toy autoregressive model, where 

the value of each time-sample is determined by values at previous times [10]. We modelled a 

bivariate, bidirectionally connected system as follows: 
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𝑋𝑋(𝑡𝑡) = 𝑎𝑎𝑎𝑎(𝑡𝑡 − 𝑙𝑙) + 𝑏𝑏𝑏𝑏(𝑡𝑡 − 𝑙𝑙) + 𝜀𝜀𝑋𝑋(𝑡𝑡) 

𝑌𝑌(𝑡𝑡) = 𝑐𝑐𝑐𝑐(𝑡𝑡 − 𝑙𝑙) + 𝑑𝑑𝑑𝑑(𝑡𝑡 − 𝑙𝑙) + 𝜀𝜀𝑌𝑌(𝑡𝑡) 

 

Where X(t) and Y(t) are voltages for two system elements (which we refer to as channels) at a 

given time t. a and c are autoregressive coefficients representing self-connections, while b 

and d are autoregressive coefficients representing cross-connections between the two 

elements X and Y. We set both a and c as -0.1, simulating self-inhibition. l is the time delay 

between self- and cross-connections among system elements, which we set to be 10. εX(t) and 

εY(t) represent uncorrelated Gaussian noise, with mean 0 and variance both set to 0.5. 

 

As the neural mechanisms underlying LFPs are known to have nonlinear dynamics, we 

included a nonlinearity in the model. We set the cross-connectivity to be dependent on the 

voltages of X and Y: 

 

𝑏𝑏 = �0.9, 𝑌𝑌(𝑡𝑡 − 𝑙𝑙) > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑑𝑑 = �0.9, 𝑋𝑋(𝑡𝑡 − 𝑙𝑙) > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

Where threshold was set as 0.9. This adds a nonlinear dynamic which simulates reliable 

neural communication through bursting [11,12]. Note that, overall, the system elements are 

bidirectionally connected, and only interact with a delay of 10 timesteps. Consequently, we 

expected Φ to be non-zero for this system (which we previously reported for l = 1 in [3], S7 

Text), and critically, maximal at the timescale corresponding to 10 timesteps. 

 

To check that Φ does indeed identify this timescale of 10 timesteps, we simulated the model 

for 10 runs (see Methods). For each run we operationalised the state of each channel at a 

given time point by binarising it with respect to the median voltage of that channel. Then we 

constructed a transition probability matrix (TPM) by finding, for each state of the system at 

time t, the empirical probabilities of each channel being in an “on” state at t + τ. This is the 

same method we previously used to compute TPMs for real neural recordings in [3] (see also 

Discussion in [3] for issues regarding observation versus perturbation in constructing TPMs). 

From this method, which we hereafter refer to as the “skipping” method, timescale is 
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characterised as the delay τ. We repeatedly computed TPMs for exponentially increasing 

values of τ (Figure 1B and 1C) and, from these TPMs, computed Φ values at each τ value. 
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Figure 1. Relationship between integrated information Φ and timescale τ in a system with 

nonlinearity. (A) We generate continuous time-series by modelling a nonlinear, 

bidirectionally connected system. (B) For the skipping method, continuous time-series values 

(red, top) are discretised into binary states (black/white, bottom) by comparing to the median 

value for each run. Displayed is an example of 20 samples from 1 run. (C) State-by-node 

transition probability matrices (TPM) are constructed using the skipping method for 

increasing τ. For each possible system state at time t (each row in the TPM), each entry 

describes the probability a node will take state ‘1’ at time t + τ. (D) For the downsampling 

method, τ contiguous time-series values are averaged together to form coarse-grained time-

series. Multiple downsampled time-series are obtained by offsetting the time sample from 

which to begin coarse-graining, from 0 up to τ - 1 samples. Green rectangles indicate the first 

bin of contiguous time samples, for τ = 2, from the original time-series in A which are 

averaged together, for the first offset (of 0 samples). Blue rectangles indicate the second bin 

for the second offset. Coarse-grained time samples are then discretised into binary states by 

comparing the median value for each offset, at each run. (E) TPMs are constructed for the 

downsampling method using all transitions across all offsets. Each entry describes the 

probability a node will have a coarse-grained state ‘1’ at a coarse-grained time t + 1, given 

the system state at t. (F) Φ values in relation to τ when using the skipping method. Dotted and 

solid lines indicate individual simulation runs and the average across runs, respectively. Error 

bars indicate standard deviation across runs. (G) Same as F, but for Φ values computed using 

the downsampling method. 

Figure 1F shows the trend of Φ with respect to τ when using the skipping method. While 

there existed multiple local maxima of Φ (peaks at roughly τ = 10, 60, and 360 timesteps), Φ 

was, as expected, maximal at τ = 10 timesteps, corresponding to the time delay l = 10 in the 

model.  

While the skipping method is consistent with how empirical estimates of Φ from previous 

versions of IIT have been applied [13–15], simulation papers illustrating maximal Φ at macro 

temporal scales have utilised different methods [6–8]. Specifically, they utilise coarse-

graining or black-boxing, whereby micro timesteps are collated together to form macro 

timesteps. Following this approach, we characterised timescale in a second way, by averaging 

voltages in bins of size τ (green and blue rectangles in Figure 1B and 1D). Then, in the same 
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manner as to the skipping method, we operationalised states of each channel by binarising the 

resulting downsampled voltages based on their medians to construct TPMs for increasing τ 

(Figure 1E). We refer to this method as the “downsampling” method. 

 

The downsampling method has a notable drawback compared to the skipping method. 

Specifically, for a given time-series, when τ is increased by some factor, the number of time-

samples available for building a TPM is decreased by that factor. For example, doubling τ 

would result in half the original number of samples in the time-series. Due to the fewer 

number of samples and thus fewer overall state transitions, empirical transition probabilities 

in the TPM can rapidly become unreliable as τ increases. To address this, we constructed 

TPMs from multiple rounds of downsampling, by offsetting the starting time sample of each 

bin (Figure 1D) before downsampling and then binarising voltages. In this manner a TPM for 

a given τ was constructed using all transitions from all offsets. Using this method, the number 

of transitions used to construct a TPM was equal to the number of transitions used in the 

skipping method. 

 

Figure 1G shows the trend of Φ with respect to τ when using the downsampling method. 

While Φ seemed to be non-minimal for a larger range of τ when compared to the skipping 

method, it was, again as expected, maximal at τ = 10, corresponding to the time delay l = 10 

in the model. These results indicate that, Φ identifies the timescale of interactions among 

continuous processes both when using the skipping and downsampling methods. 

 

Normalised empirical integrated information identifies a timescale of interactions 
We next sought to find some timescale in neural recordings at which Φ is maximised. We 

utilised 15 local field potentials (LFPs, hereafter referred to also as “channels”) recorded 

from across the brains of 13 fruit flies using a linear multi-electrode array as previously 

described in [16,3] (see Methods). 

 

As we did previously for the simulation, we operationalised the state of each channel by 

binarising voltages based on the median voltage for the channel before then constructing a 

TPM at increasing values of τ (skipping method), as well as by repeatedly binarising voltages 

based on median voltages after downsampling at increasing values of τ (downsampling 

method). Given the computational cost of computing Φ, and needing to repeatedly compute 
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Φ at each τ value, we restricted analysis to 2 channels at a time, treating every pair of 

channels as a system. 

 

Figure 2 shows the trend of Φ (log transformed) with increasing τ across the flies, for both 

methods of characterising timescale. On average across all the channel pairs, there was no 

visual indication of Φ being maximal at a timescale other than the smallest or largest 

timescales. Rather, Φ trended such that it tended to be larger for smaller timescales when 

using the skipping method (Figure 2A), and larger for larger timescales when using the 

downsampling method (Figure 2B). 
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Figure 2. Relationship between integrated information Φ and timescale τ in fly recordings. 

(A) Log transformed Φ values, averaged across channel pairs and flies, as a function of 

timescale when using the skipping method. Red and blue are values during wakefulness and 

anaesthesia, respectively. Error bars indicate within-subject standard error [17,18]. (B) Log 

transformed Φ values, as in A, but for when using the downsampling method. (C-D) 

Difference between wakeful and anaesthetised log transformed Φ, Δlog(Φ), as a function of 

timescale when using the skipping and downsampling methods respectively. (E-F) Δlog(Φ) 

as a function of timescale for each channel pairing when using the skipping and 

downsampling methods respectively. Channel pairs are sorted by the average position of the 

channels in the pair (y-axis, larger values indicate pairs which on average are located more in 

the periphery). Pairs with the same average position are sorted by the distance between the 

channels, with larger distances being lower in the y-axis. τ (x-axis) increases in an 

exponential manner. 

 

 

 

As a control, we also computed Φ for the channel pairs when the flies were anaesthetised. We 

reasoned that, during loss of consciousness, Φ should not have a clear maximum at some 

timescale. Rather, assuming that there is no consciousness under anaesthesia, it should be 

minimal at all timescales. Any variations in Φ across timescale should correspond not to a 

potential complex of consciousness, but instead to other things such as background neural 

activity which does not support consciousness (or supports some minimal consciousness) or 

issues regarding empirical observations of state transitions which are used to build the TPM 

(which we expand on in the Discussion). Blue lines in Figure 2A and 2B show the trend of Φ 

with increasing τ during anaesthesia respectively when using the skipping and downsampling 

methods. While the magnitude of Φ tended to be overall reduced across all τ when compared 

to wakefulness, consistent with our previous results [3], the trends of Φ with respect to τ, for 

both the skipping and downsampling methods, appeared to be the same as for wakefulness. 

 

Given that the trends of Φ with respect to τ during anaesthesia was similar to during 

wakefulness, we considered that the trends during wakefulness could also be reflecting issues 

of empirical observation of TPMs. Meanwhile, any trend of Φ related to the timescale of 

interactions underlying the complex could be masked by these trends. To address this, we 

considered using Φ values during anaesthesia as a baseline. Specifically, we investigated how 
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the difference (wake minus anaesthesia) in log transformed Φ values (Δlog(Φ); corresponding 

to taking the ratio of wakeful to anaesthetised values in the natural scale) varied with τ. 

 

Figure 2C and 2E show the trend of Δlog(Φ) across τ when using the skipping method. 

Unlike raw Φ values, visual inspection indicated a peak of Δlog(Φ) in the range of τ = 8 to τ 

= 16 ms. While this peak was most prominent for the most centrally located channel pairs, it 

appeared to extend across the fly brain. To confirm that there was indeed a peak within this 

range of τ, we utilised mixed effects analysis (to account for intra-fly channel pair 

correlations, see Methods), regressing Δlog(Φ) onto a quadratic term τ2. The turning point of 

the fitted quadratic would indicate a peak of Δlog(Φ) at some timescale other than the 

smallest or largest ones if: 1) it is a local maximum (corresponding to the fitted coefficient for 

τ2, β2, being negative) and 2) it occurs at some intermediate timescale. We first statistically 

confirmed previous visual inspection that no such peak occurred in the raw Φ values during 

wakefulness or anaesthesia (Table S1). Meanwhile, the observed peak in Δlog(Φ) when using 

the skipping method was indeed statistically significant, with fitted coefficients indicating a 

local maximum at roughly 5 ms (χ2(1) = 663.99, β2 = -9.18 × 10-3, β1 = 4.441 × 10-2, β0 = 

0.433). 

 

We next checked if this result could also be found using the downsampling method (Figure 

2D and 2F).  Given the previous simulation results, we expected to find a similar peak to 

when using the skipping method. However, visual inspection indicated that the greatest 

Δlog(Φ) occurred at the smallest τ. The lack of a peak at some intermediate timescale was 

statistically confirmed by a positive regression coefficient for regressing Δlog(Φ) onto τ2 

(Table S1).  

 

Integrated information identifies the timescale of interactions under non-

Markovianity 
Though we found some indication of a temporal peak, for Δlog(Φ) when using the skipping 

method, we were unable to identify such a peak in the raw Φ values themselves, or for 

Δlog(Φ) when using the downsampling method. So, we next considered whether particular 

limitations regarding the application of IIT to neural data could have directly prevented any 

such finding. Specifically, we considered the limitations which we previously identified in [3] 

regarding the validity of Φ when there are potential of spurious correlations among system 
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elements, which can occur in non-Markovian systems and when multivariate systems are 

only partially observed. 

 

We first investigated the issue of non-Markovianity. Specifically, non-Markovianity may be 

problematic for Φ as IIT 3.0 is entirely constructed for Markovian systems where the state of 

a system depends only on its immediately previous state. To test if non-Markovianity 

immediately invalidates the application of Φ with regards to identifying the timescale of 

system interactions, we extended the previous nonlinear autoregressive model by modifying 

the lag term l. Specifically, we set the lag term l to be jittered among 9, 10, and 11 in a 

probabilistic manner. This way, the system cannot be described as a purely Markovian 

system where its state at time t is completely determined by its state at time t-l for some fixed 

l. For simulation, we initialised processes X and Y to uncorrelated Gaussian noise with mean 

0 and variance both set to 0.5: 

 

𝑋𝑋(𝑡𝑡) =  ε𝑋𝑋(𝑡𝑡) 

𝑌𝑌(𝑡𝑡) =  ε𝑌𝑌(𝑡𝑡) 

 

Then, for each timepoint t: 

 

𝑎𝑎𝑎𝑎(𝑡𝑡) → 𝑋𝑋(𝑡𝑡 + 𝑙𝑙𝑎𝑎), 𝑏𝑏𝑏𝑏(𝑡𝑡) → 𝑋𝑋(𝑡𝑡 + 𝑙𝑙𝑏𝑏) 

𝑐𝑐𝑐𝑐(𝑡𝑡) → 𝑌𝑌(𝑡𝑡 + 𝑙𝑙𝑐𝑐), 𝑑𝑑𝑑𝑑(𝑡𝑡) → 𝑌𝑌(𝑡𝑡 + 𝑙𝑙𝑑𝑑) 

 

Where “->” denotes updating the right-hand value by adding the value on the left. We added 

non-Markovianity here by probabilistically choosing la, lb, lc, and ld to be 9, 10, or 11 

timesteps, all independently of one another, with probability 0.25, 0.5, and 0.25 respectively. 

Consequently, each time sample could have been determined by either 1, 2, or 3 individual 

timepoints from the past. This simulates variability in neural spike or burst timings [19,20]. 

Note that, while the model is now non-Markovian, the system elements still clearly interact at 

a timescale of roughly 10 timesteps. The cross-connection strengths were, as for the first 

simulation, dependent on a threshold voltage: 

 

𝑏𝑏 = �0.9, 𝑌𝑌(𝑡𝑡) > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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𝑑𝑑 = �0.9, 𝑋𝑋(𝑡𝑡) > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

With threshold again being 0.9. 

 

Figure 3 shows the trend of Φ when computed from the time-series generated by this model, 

for both the skipping and downsampling methods. For both methods, Φ was maximal at the 

scale of 10 timesteps, corresponding to the timescale of system interactions. Hence, non-

Markovianity per se does not prevent Φ from identifying the timescale of system interactions. 

However, non-Markovianity did appear to affect the magnitude of Φ values when using the 

skipping method. Specifically, Φ was an order of magnitude lower than in the first simulation 

(maximum Φ being ~0.025 in Figure 3A, compared to ~0.13 in Figure 1F). This drastic 

reduction in Φ did not occur when using the downsampling method (Figure 3B). 

 

 

 
Figure 3. Relationship between integrated information Φ and timescale τ in a nonlinear 

system (Figure 1) extended with non-Markovianity. (A) Log transformed Φ values in relation 

to τ when using the skipping method. Dotted and solid lines indicate individual simulation 

runs and the average across runs, respectively. Error bars indicate standard deviation across 

runs. (B) Same as A, but for Φ values computed using the downsampling method. 
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Integrated information identifies the timescale of interactions under partial 

observation 
Given that we were able to identify the timescale of interactions even with a violation of 

Markovianity, we next turned towards the issue of partial observations. As Φ computed from 

partial observations (i.e. not across the full system, or complex) is not postulated to 

correspond to consciousness per se, it could be the case that the timescale is smoothed out 

through delayed effects from interactions from non-observed system elements. To test this, 

we extended our non-Markovian system by introducing a third element, giving a total of three 

system elements. Specifically: 

 

𝑋𝑋(𝑡𝑡) =  𝜀𝜀𝑋𝑋(𝑡𝑡) 

𝑌𝑌(𝑡𝑡) =  𝜀𝜀𝑌𝑌(𝑡𝑡) 

𝑍𝑍(𝑡𝑡) =  𝜀𝜀𝑍𝑍(𝑡𝑡) 

 

Z(t) is the third system element, and εZ(t) represents Gaussian noise, with mean 0 and 

variance both set to 0.5. Then, at each timepoint t, time samples affected future time points 

through self- and cross-connections with some lag l: 

 

𝑎𝑎𝑎𝑎(𝑡𝑡) → 𝑋𝑋(𝑡𝑡 + 𝑙𝑙𝑎𝑎), 𝑏𝑏𝑏𝑏(𝑡𝑡) → 𝑋𝑋(𝑡𝑡 + 𝑙𝑙𝑏𝑏), 𝑔𝑔𝑔𝑔(𝑡𝑡) → 𝑋𝑋(𝑡𝑡 + 𝑙𝑙𝑔𝑔) 

𝑐𝑐𝑌𝑌(𝑡𝑡) → 𝑌𝑌(𝑡𝑡 + 𝑙𝑙𝑐𝑐), 𝑑𝑑𝑑𝑑(𝑡𝑡) → 𝑌𝑌(𝑡𝑡 + 𝑙𝑙𝑑𝑑), ℎ𝑍𝑍(𝑡𝑡) → 𝑌𝑌(𝑡𝑡 + 𝑙𝑙ℎ) 

𝑒𝑒𝑒𝑒(𝑡𝑡) → 𝑍𝑍(𝑡𝑡 + 𝑙𝑙𝑒𝑒), 𝑓𝑓𝑓𝑓(𝑡𝑡) → 𝑍𝑍�𝑡𝑡 + 𝑙𝑙𝑓𝑓�, 𝑖𝑖𝑖𝑖(𝑡𝑡) → 𝑍𝑍(𝑡𝑡 + 𝑙𝑙𝑖𝑖) 

 

Where e is the self-connection of Z, and f, g, h, and i are the new cross-connections 

connecting all three system elements X, Y and Z bidirectionally. In this model, we set all self-

connections a, c, and e to -0.1, and all cross-connections to 0.4. All the lag terms la-i were 

independent and probabilistic, taking values again of 9, 10, or 11 with probabilities 0.25, 0.5, 

and 0.25. Again, cross-connection strengths were dependent on a threshold voltage 

 

𝜋𝜋 = �0.4, Π(𝑡𝑡) > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Where π is a cross-connection coefficient (b, d, f, g, h, or i), and Π(t) is the voltage for the 

associated channel (X(t), Y(t), or Z(t); e.g. for cross-connection π = b, the associated channel 

is Π(t) = Y(t)). threshold was again 0.9, for all connections. 

 

We first confirmed that our previous findings regarding Φ identifying the timescale of system 

interactions in the two channel case extends to the three channel case (Figure 4A-B), by 

computing Φ for two channels at a time. Ideally, background conditions (i.e. the states of 

channels outside those being used to compute Φ) should be fixed. However, in real neural 

data, doing so drastically limits the number of observations available to build a TPM. Further, 

the number of possible background conditions to consider grows exponentially with the 

number of channels. Consequently, fixing background conditions to compute Φ is infeasible 

for real neural data, and so we also did not fix background conditions in this simulation. As 

expected, Φ was maximal at the timescale corresponding to 10 timesteps. Though the 

magnitude of Φ at this peak was lower than in the previous 2-channel simulations, this was 

expected from a fully connected system. Specifically, system states in a fully connected 

system have low specificity about their causes and effects, and this should result in low Φ 

[21,22]. Though our 2-channel simulations were also fully connected, the only other way of 

connecting 2 channels is using a unidirectional connection, which would result in minimal Φ 

(see [3] S7 Text). 
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Figure 4. Relationship between integrated information Φ and timescale τ in a system with 

nonlinearity and non-Markovianity, under partial observation. (A) Log transformed Φ values 

computed from all 3 channels (full observation; blue), and for values computed from 2 

channels at a time (partial observation; black), in relation to τ when using the skipping 

method. Dotted lines indicate individual pairs (partial observation) and runs, while solid lines 

indicate the mean across pairs and runs, respectively. Error bars indicate standard deviation 

across pairs (partial observations) and runs. (B) Same as A, but for Φ values computed using 

the downsampling method. (C) Summary of maximal Φ values computed using the skipping 

method (log transformed) for each simulation (NL nonlinear; nM non-Markovian; FO full 

observation; PO partial observation). Triangles, circles, and squares indicate log(Φ) at τ = 10, 

11, and 13 ms respectively. Error bars represent standard deviation across pairs (partial 

observation) and runs. 

 

 



Page | 105  
 

To test whether partial observation prevents Φ from identifying the timescale of system 

interactions, we then computed Φ on 2 channels, out of the 3, at a time. This simulates the 

case of not being able to observe the states of all neurons in the brain. Or, as previously in the 

fly LFPs, the case of not being able to compute Φ using all available observations. Figure 4A 

and 4B also show the trend of Φ when computed from 2 channels at a time, in relation to 

timescale. Similarly to non-Markovianity, the magnitude of Φ was again reduced by an order 

of magnitude, this time for both the skipping and downsampling methods. However, Φ was 

still maximal at the timescale of 10 timesteps, suggesting that partial observation per se also 

does not in principle prevent Φ from identifying the timescale of system interactions. 

 

Discussion 
Here we applied the measure Φ to simple autoregressive models and real neural data, both 

with continuous system elements. Φ has been proposed by integrated information theory 3.0 

(IIT) to be maximal at a temporal scale corresponding to that of conscious experience. Here, 

we demonstrated that for a nonlinear system, Φ can be maximal to the timescale 

corresponding to that at which system elements interact. We also applied Φ to neural data, 

finding that the measure, when normalised, peaks at a timescale of roughly 5 ms. Finally, in 

follow-up simulations we demonstrated that Φ still peaks at the timescale at which system 

elements interact, even when certain assumptions of IIT, namely Markovianity and full 

observation of the system, are not met. 

 

The emergence of a temporal peak of Φ has previously been illustrated in simulation studies  

utilising systems consisting of binary elements [6,23]. These studies focused on utilising the 

framework provided by IIT to question the common view posed by reductionism – that the 

causal structure of a system is fully captured at the most fine-grained level, with there being 

no room for causal contribution from macro spatiotemporal scales. Rather, they posit that Φ 

can capture and describe causal emergence, whereby interactions at a macro scale contribute 

to the causal structure of a system beyond those at the most fine-grained level. The simulation 

results presented here extend their illustration of causal emergence across temporal scales, as 

captured by Φ, to systems with continuous elements. 
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Why is there a peak in normalised II but not directly in II? 
Though we found Φ to clearly peak at the timescale of interactions among system elements in 

the autoregressive models, we observed no such peak in fly LFPs during wakefulness or 

anaesthesia. Instead, we found a temporal peak to manifest for normalised Φ, the ratio of Φ 

during wakefulness to anaesthesia. Why this was the case is not immediately clear, but there 

are some considerations which may have prevented Φ from clearly peaking at some 

intermediate timescale, as was the case for Δlog(Φ) when using the skipping method to 

characterise timescale. 

 

One potential explanation regards the effects of non-Markovianity and partial observation. 

While the peaks in Φ for the simulated systems reliably matched the timescale at which their 

elements interacted with one another, the systems were designed to have clear temporal 

dynamics. Specifically, elements interacted with a consistent delay of around 10 timesteps. 

However, the temporal dynamics of the brain are much less clear, where the effects of non-

Markovianity and partial observation are likely to be much greater than in the models used 

here. For example, autoregressive models fit to LFPs from monkeys have been fit to the 10th 

or 20th order with timesteps of 5 ms [24,25], with many historical timesteps potentially 

influencing any one given time sample. Consequently, any one ideal temporal scale may be 

greatly blurred. Indeed, in the simulations here, peak Φ values reduced as non-Markovianity 

and partial observation were incrementally added to the models. As these factors are present 

both during wakefulness and anaesthesia, it is conceivable that normalising wakeful Φ by 

anaesthetised Φ cancels them out to some extent. 

 

A second potential explanation regards the TPMs used for computing Φ, which were 

constructed at each timescale. For a given TPM, the number of transitions used to construct it 

depended on its associated timescale. Specifically, for n time samples, the number of 

transitions that can be used to construct the TPM is n-τ when using the skipping method, and 

n-τ-1 when using the downsampling method. Consequently, each entry of the TPM is 

determined using fewer samples as τ increases, with probabilities becoming less reliable and 

more likely to take more deterministic values (i.e. probabilities closer to 0 or 1). This in turn 

may cause Φ values to increase systematically with τ, as more deterministic probabilities 

allow for greater information in each system state. While we observed this trend for the 

downsampling method, the skipping method however revealed an opposite trend. At this 
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point, it is unclear how less reliable but more deterministic seeming TPMs would result in 

both increasing and decreasing Φ values, depending on the method used to characterise 

timescale. However, the systematic effect may further hide the temporal scale of a system, 

while meanwhile being cancelled out by normalising wakeful Φ values by anaesthetised Φ 

values. 

Why do skipping and downsampling methods give different peaks? 
The autoregressive simulation results presented here indicated that Φ would be maximal at 

the timescale corresponding to that at which system elements interact, regardless of whether 

the skipping or downsampling methods were used. Specifically, Φ computed from both 

methods should identify the same timescale. However, this was not the case in fly data for 

Δlog(Φ), where Δlog(Φ) peaked at roughly 5 ms when using the skipping method but not the 

downsampling method. While it is not immediately clear as to why only one method would 

identify a peak, here we provide a potential interpretation of this result. 

While the simulations we used here had very clear dynamics at a particular, specific 

timescale, it is conceivable that interactions in the brain take place at multiple timescales. 

Multiple timescales may exist by virtue of the skipping and downsampling methods capturing 

different types of timescales. Specifically, the skipping method captures the delay between 

system elements being in some particular state affecting others. An example of different 

timescales of this type might be short and long range connections having shorter and longer 

delays respectively. Meanwhile, the downsampling method instead tries to capture the 

temporal size of the states the system elements can take. Different timescales of this type 

could manifest as, for example, both neuronal bursting and individual neuronal spikes being 

states which influence other neurons. Further simulations incorporating the above 

considerations may be required to understand how Φ or Δlog(Φ) behaves when system 

elements interact across multiple such timescales. 

Taking into account the above considerations, the peak in Δlog(Φ) computed using the 

skipping method at 5 ms may reflect just one timescale at which neuronal interactions occur. 

This timescale sits between two neurophysiologically reported timescales. The first is that of 

axon conduction delays, the delay in firing between connected neurons, which is known to be 

on the order of single-digit milliseconds [26]. The second is that of critical flicker fusion 
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frequency, the frequency at which a flickering visual stimulus is indistinguishable from a 

constant stimulus. For flies, the critical flicker fusion frequency has been reported, using 

electroretinograms, to be at 57 Hz [27], with each individual flicker lasting ~18 ms. We note 

however that critical flicker fusion frequencies are known to vary, at least in humans, 

depending on a variety of factors such as stimulus size and intensity and perceptual load 

[28,29], and that flicker fusion frequencies have not to our knowledge been validated in flies 

using a behavioural paradigm. 

Meanwhile, Δlog(Φ) computed using the downsampling method peaking in the shorter 

timescales (1-2 ms; Figure 3D) may correspond more directly to the shorter timescale of axon 

conduction delays. While regressing Δlog(Φ) computed using this method onto timescale did 

not reveal a negative parabolic trend with a global maximum, this may have been due to not 

having higher sampling rate data. Thus, it is unclear whether this peak is a potential global 

maximum or just a general trend of Δlog(Φ) increasing with shorter timescales. 

Conclusion and future directions 
This work is to our knowledge the first direct application of IIT to search for a potential 

timescale of consciousness using neural data. While a previous study characterised a proxy 

measure of Φ, ΦAR, across timescales in electroencephalographic recordings from infants 

[30], the Φ values were negative for most of the timescales investigated, making their 

interpretation unclear within the framework of the theory [14]. Meanwhile, here we identified 

a timescale which aligns with neural physiology and potentially flies’ behaviourally and 

phenomenologically (if any) relevant flicker fusions. However, this comes with the caveat 

that raw Φ  values from the fly recordings either increased or decreased monotonically across 

timescales, depending on the pre-processing method used. Consequently, more work, 

utilising both simulation and neural recordings with higher temporal and spatial resolution, is 

required to confirm whether Φ peaks uniquely at this identified timescale or at varying 

timescales depending on the method used for characterising timescale. Within this line of 

work, other methods of characterising timescale should be explored in neural data, such as 

grouping micro states with logical operations or through black-boxing [6,7]. There is also the 

further question of whether the peak identified here persists across differing spatial scales, 

such as at the single neuron level. Finally, behavioural paradigms which capture the temporal 
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scale of conscious experience in a system would be required to more strongly link this 

potential peak in Φ to consciousness. 

Methods 
As the fly LFPs analysed here are the same data as described and analysed in [3], we refer the 

reader there instead of repeating the details here. Details regarding the algorithm for 

computing Φ from TPMs are also identical to those provided in [3] (albeit for 2 channels at a 

time, instead of 4 channels, due to the extra computational cost of repeatedly computing Φ at 

different timescales). So, here we provide only the details regarding generating data from the 

autoregressive models described in the Results section, and statistical analyses of the LFPs. 

Autoregressive simulation 
Model simulation and data analyses were conducted using MATLAB 2019b. For each of the 

three autoregressive models (each additionally including nonlinearity, non-Markovianity, and 

partial observations), we simulated 20,000 timepoints, for each of 10 runs. The initial 

conditions for each run were determined by the uncorrelated noise terms εX, εY and εY, as 

described in the Results. 

Φ computation 
Data processing for computing Φ was conducted using Python 3.6.0 in MASSIVE (Multi-

modal Australian ScienceS Imaging and Visualisation Environment), a high-performance 

computing facility. We calculated the measures using PyPhi (version 0.8.1; [31]), publicly 

available at https://github.com/wmayner/pyphi. Detailed description regarding the 

computation of Φ from the TPM, are provided in [3,2,31]. 

Statistical analyses 
We used linear mixed effects analysis (LME; [32,33]) to statistically test for a peak in Φ at 

some intermediate timescale (i.e. not corresponding to the shortest or longest timescales). 

This allowed us to account for within-fly correlations among channel pairs without averaging 

across channel pairs or flies, by including random intercepts for fly and the interaction 

between fly and pairs as random effects. As Φ was positively skewed, we analysed log 

transformed values. To test for a potential peak in Φ at some intermediate timescale, we first 

https://github.com/wmayner/pyphi
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assessed the significance of a quadratic fit by comparing the quadratic models (Table 2) to 

models with only a linear term (in Wilkinson notation [33]): 

Φ ~ τ + (1|fly) + (1|fly:pair) 

Where Φ is one of ΦSW, ΦSA, ΦSΔ, ΦDW, ΦDA, ΦDΔ, and τ is timescale (see Supplementary 

Table 2). Subscripts S and D indicate Φ computed using the skipping and downsampling 

methods, respectively, while A and W indicate Φ computed during wakefulness or 

anaesthesia. Subscript Δ indicates Δlog(Φ). As we searched through exponentially increasing 

τ, we fitted to log2(τ) values. To assess significance, we used likelihood ratio tests, comparing 

the log-likelihood of the quadratic model to the log-likelihood of the linear model. As the 

likelihood ratio is χ2 distributed when one model is nested within another with degrees of 

freedom equal to the difference in number of coefficients between the models, we report 

χ2(d.o.f) and its corresponding p-value. We summarise the amount of variance explained by 

each fitted quadratic model, and by each random effect, in Table S2. 

Given that the quadratic term significantly increased the variance explained by the model, we 

then calculated the turning points of each fitted model. We considered there to be an 

intermediate peak in Φ if the turning point was a local maximum and occurred at some τ 

other than the most extreme timescales. 



Page | 111 

References 
1. Tononi, G. Consciousness as Integrated Information: A Provisional Manifesto. The

Biological Bulletin 2008, 215, 216–242, doi:10.2307/25470707.

2. Oizumi, M.; Albantakis, L.; Tononi, G. From the Phenomenology to the Mechanisms

of Consciousness: Integrated Information Theory 3.0. PLoS Comput Biol 2014, 10,

e1003588, doi:10.1371/journal.pcbi.1003588.

3. Leung, A.; Cohen, D.; Swinderen, B. van; Tsuchiya, N. Integrated Information

Structure Collapses with Anesthetic Loss of Conscious Arousal in Drosophila Melanogaster.

PLOS Computational Biology 2021, 17, e1008722, doi:10.1371/journal.pcbi.1008722.

4. Buzsáki, G.; Anastassiou, C.A.; Koch, C. The Origin of Extracellular Fields and

Currents — EEG, ECoG, LFP and Spikes. Nat Rev Neurosci 2012, 13, 407–420,

doi:10.1038/nrn3241.

5. Holcombe, A.O. Seeing Slow and Seeing Fast: Two Limits on Perception. Trends in

Cognitive Sciences 2009, 13, 216–221, doi:10.1016/j.tics.2009.02.005.

6. Hoel, E.P.; Albantakis, L.; Marshall, W.; Tononi, G. Can the Macro Beat the Micro?

Integrated Information across Spatiotemporal Scales. Neurosci Conscious 2016, 2016,

niw012, doi:10.1093/nc/niw012.

7. Marshall, W.; Albantakis, L.; Tononi, G. Black-Boxing and Cause-Effect Power.

PLoS Computational Biology 2018, 14, e1006114, doi:10.1371/journal.pcbi.1006114.

8. Gomez, J.D.; Mayner, W.G.P.; Beheler-Amass, M.; Tononi, G.; Albantakis, L.

Computing Integrated Information (Φ) in Discrete Dynamical Systems with Multi-Valued

Elements. Entropy 2021, 23, 6, doi:10.3390/e23010006.

9. Cohen, D.; Sasai, S.; Tsuchiya, N.; Oizumi, M. A General Spectral Decomposition of

Causal Influences Applied to Integrated Information. J Neurosci Methods 2020, 330, 108443,

doi:10.1016/j.jneumeth.2019.108443.

10. Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer Science &

Business Media, 2005; ISBN 978-3-540-27752-1.

11. Zeldenrust, F.; Wadman, W.J.; Englitz, B. Neural Coding With Bursts—Current State

and Future Perspectives. Front. Comput. Neurosci. 2018, 12, 48,

doi:10.3389/fncom.2018.00048.

12. Constantinou, M.; Elijah, D.H.; Squirrell, D.; Gigg, J.; Montemurro, M.A. Phase-

Locking of Bursting Neuronal Firing to Dominant LFP Frequency Components. Biosystems

2015, 136, 73–79, doi:10.1016/j.biosystems.2015.08.004.



Page | 112 

13. Barrett, A.B.; Seth, A.K. Practical Measures of Integrated Information for Time-

Series Data. PLoS Computational Biology 2011, 7, e1001052,

doi:10.1371/journal.pcbi.1001052.

14. Oizumi, M.; Amari, S.; Yanagawa, T.; Fujii, N.; Tsuchiya, N. Measuring Integrated

Information from the Decoding Perspective. PLoS Computational Biology 2016, 12,

e1004654, doi:10.1371/journal.pcbi.1004654.

15. Kim, H.; Hudetz, A.G.; Lee, J.; Mashour, G.A.; Lee, U.; the ReCCognition Study

Group; Avidan, M.S.; Bel-Bahar, T.; Blain-Moraes, S.; Golmirzaie, G.; et al. Estimating the

Integrated Information Measure Phi from High-Density Electroencephalography during

States of Consciousness in Humans. Frontiers in Human Neuroscience 2018, 12, 42,

doi:10.3389/fnhum.2018.00042.

16. Cohen, D.; van Swinderen, B.; Tsuchiya, N. Isoflurane Impairs Low Frequency

Feedback but Leaves High Frequency Feedforward Connectivity Intact in the Fly Brain.

eNeuro 2018, ENEURO.0329-17.2018.

17. Cousineau, D. Confidence Intervals in Within-Subject Designs: A Simpler Solution to

Loftus and Masson’s Method. Tutorials in Quantitative Methods for Psychology 2005, 1, 42–

45.

18. O’Brien, F.; Cousineau, D. Representing Error Bars in Within-Subject Designs in

Typical Software Packages. Tutorials in Quantitative Methods for Psychology 2014, 10, 56–

67.

19. Kepecs, A.; Lisman, J. Information Encoding and Computation with Spikes and

Bursts. Network 2003, 14, 103–118, doi:10.1088/0954-898X/14/1/306.

20. Rauske, P.L.; Chi, Z.; Dave, A.S.; Margoliash, D. Neuronal Stability and Drift across

Periods of Sleep: Premotor Activity Patterns in a Vocal Control Nucleus of Adult Zebra

Finches. J. Neurosci. 2010, 30, 2783–2794, doi:10.1523/JNEUROSCI.3112-09.2010.

21. Mediano, P.A.M.; Seth, A.K.; Barrett, A.B. Measuring Integrated Information:

Comparison of Candidate Measures in Theory and Simulation. Entropy 2019, 21, 17,

doi:10.3390/e21010017.

22. Sarasso, S.; Rosanova, M.; Casali, A.G.; Casarotto, S.; Fecchio, M.; Boly, M.;

Gosseries, O.; Tononi, G.; Laureys, S.; Massimini, M. Quantifying Cortical EEG Responses

to TMS in (Un)Consciousness. Clinical EEG and Neuroscience 2014, 45, 40–49,

doi:10.1177/1550059413513723.

23. Grasso, M.; Albantakis, L.; Lang, J.P.; Tononi, G. Causal Reductionism and Causal

Structures. Nat Neurosci 2021, 24, 1348–1355, doi:10.1038/s41593-021-00911-8.



Page | 113 

24. Brovelli, A.; Ding, M.; Ledberg, A.; Chen, Y.; Nakamura, R.; Bressler, S.L. Beta

Oscillations in a Large-Scale Sensorimotor Cortical Network: Directional Influences

Revealed by Granger Causality. PNAS 2004, 101, 9849–9854, doi:10.1073/pnas.0308538101.

25. Hoerzer, G.; Liebe, S.; Schloegl, A.; Logothetis, N.; Rainer, G. Directed Coupling in

Local Field Potentials of Macaque V4 during Visual Short-Term Memory Revealed by

Multivariate Autoregressive Models. Frontiers in Computational Neuroscience 2010, 4, 14,

doi:10.3389/fncom.2010.00014.

26. Gaudry, Q.; Hong, E.J.; Kain, J.; de Bivort, B.L.; Wilson, R.I. Asymmetric

Neurotransmitter Release Enables Rapid Odour Lateralization in Drosophila. Nature 2013,

493, 424–428, doi:10.1038/nature11747.

27. Buschbeck, E.K.; Ehmer, B.; Hoy, R.R. The Unusual Visual System of the

Strepsiptera: External Eye and Neuropils. J Comp Physiol A 2003, 189, 617–630,

doi:10.1007/s00359-003-0443-x.

28. Hecht, S.; Shlaer, S. Intermittent Stimulation by Light: V. The Relation between

Intensity and Critical Frequency for Different Parts of the Spectrum. Journal of General

Physiology 1936, 19, 965–977, doi:10.1085/jgp.19.6.965.

29. Carmel, D.; Saker, P.; Rees, G.; Lavie, N. Perceptual Load Modulates Conscious

Flicker Perception. Journal of Vision 2007, 7, 14, doi:10.1167/7.14.14.

30. Isler, J.R.; Stark, R.I.; Grieve, P.G.; Welch, M.G.; Myers, M.M. Integrated

Information in the EEG of Preterm Infants Increases with Family Nurture Intervention, Age,

and Conscious State. PLOS ONE 2018, 13, e0206237, doi:10.1371/journal.pone.0206237.

31. Mayner, W.G.P.; Marshall, W.; Albantakis, L.; Findlay, G.; Marchman, R.; Tononi,

G. PyPhi: A Toolbox for Integrated Information Theory. PLOS Computational Biology 2018,

14, e1006343, doi:10.1371/journal.pcbi.1006343.

32. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models

Using Lme4. Journal of Statistical Software 2015, 67, 1–48, doi:10.18637/jss.v067.i01.

33. Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin,

C.E.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A Brief Introduction to Mixed Effects

Modelling and Multi-Model Inference in Ecology. PeerJ 2018, 6, e4794.



Page | 114 

3.2 - Supporting Information 

I now provide the supporting information related to the manuscript in Section 3.1, beginning 

on the next page. 
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Table S1 
Table S1. Dependence of regressands on timescale τ. 

 β2b β1c β0d χ2(1)e τTPf 

ΦSW 8.56 × 10-3 -0.260 -5.717 394.51 37983 

ΦSA 1.77 × 10-2 -0.305 -6.151 1795.09 384 

ΦSΔ -9.18 × 10-3 4.441 × 10-2 0.433 308.79 5 

ΦDW 1.16 × 10-2 0.237 -5.63 853.28 0 

ΦDA 1.05 × 10-2 0.279 -6.026 663.99 0 

ΦDΔ 1.10 × 10-3 -4.26 × 10-2 0.399 5.20 
(p=.022) 

655125 

 

ΦSW: integrated information calculated using the skipping method during wakefulness. ΦSA: 

integrated information calculated using the skipping method during anaesthesia. ΦSΔ: 

integrated information ratio (wakeful to anaesthetised) calculated using the skipping method. 

ΦDW, ΦDA, and ΦDΔ: same as ΦSW, ΦSA, and ΦSΔ, but for integrated information computed 

using the downsampling method. 
b β from regressing onto log2(τ)2 (see Methods). 
c β from regressing onto log2(τ). 
d Intercept term from regression. 
e The degree of freedom for all likelihood ratio tests was 1 (likelihood ratio tests comparing 

linear models to quadratic models; see Methods). p << .001 for all comparisons, except for 

ΦDΔ where p = .022 
f τ value (ms) at which turning points for fitted models occur, as determined by each of the 

regressands β0, β1, and β2. 
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Table S2 
Table S2. Linear mixed effect model fit (adjusted R2) and standard deviation (SD) of random 

effects. 

 R2 SD 

Random effect  + (1|f)# + (1|f:n)^ 

ΦSW ~ τ + τ2 .827 0.502 0.445 

ΦSA ~ τ + τ2 .756 0.278 0.415 

ΦDW ~ τ + τ2 .880 0.233 0.295 

ΦDA ~ τ + τ2 .891 0.209 0.329 

ΦSΔ ~ τ + τ2 .601 0.415 0.367 

ΦDΔ ~ τ + τ2 .327 0.164 0.247 

 

Model specifications are described in detail in Methods. ΦSW: integrated information 

calculated using the skipping method during wakefulness. ΦSA: integrated information 

calculated using the skipping method during anaesthesia. ΦSΔ: integrated information ratio 

(wakeful to anaesthetised) calculated using the skipping method during wakefulness. ΦDW, 

ΦDA, and ΦDΔ: same as ΦSW, ΦSA, and ΦSΔ, but for integrated information computed using the 

downsampling method. τ: delay between timesteps (log(ms)). 
# Random intercept for effect of fly. 
^ Random intercept for interaction between fly and channel pair. 
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Chapter 4 - Discovering measures of consciousness using a 

data-driven approach 

In Chapter 2 and 3, I evaluated integrated information theory (IIT) 3.0 by applying its 

measures to local field potentials (LFPs) from the fly brain and testing its predictions with 

regards to how its measures should change with respect to level of consciousness and 

timescale. In this chapter, I seek to begin comparing the performance of integrated 

information (Φ) and the associated integrated information structure (IIS), measures which are 

linked to consciousness through its derivation from first principles, to other, potentially 

simpler measures of conscious level. Specifically, I use a data-driven strategy, systematically 

evaluating the performance of many candidate measures in discriminating wakefulness from 

anaesthesia. I employ a toolbox, highly comparative time-series analysis (hctsa; Fulcher & 

Jones, 2017), to provide these candidate measures. hctsa provides a library of 7702 univariate 

time-series features originating from various fields of research which are not linked to 

consciousness through first principles. 

 

Given the highly exploratory nature of the data-driven approach to finding potential measures 

for discriminating conscious level, I take a registered report approach for this Chapter. With 

this approach, I first conduct initial analyses on the dataset presented previously in Chapters 2 

and 3 (which I refer to in the main text of this chapter as the discovery flies), by training and 

cross-validating a classifier for each time-series feature in hctsa. Next I test these trained 

classifiers on a small pilot subset of flies in a new dataset (which I refer to as pilot evaluation 

flies). After in-principle acceptance by a journal, I then complete the analyses (testing the 

trained classifiers for each time-series feature) on the remaining set of flies in the new dataset 

(final evaluation flies). 

4.1 - Registered report 

For this chapter I supply a Stage 1 manuscript currently submitted to and under revision at 

PLOS Biology. The manuscript begins on the following page.
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Title: Towards blinded classification of levels of consciousness: distinguishing wakefulness 
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Abstract  
The neural mechanisms of consciousness remain elusive. Previous studies on both human and 
non-human animals, through manipulation of level of conscious arousal, have reported that 
specific time-series features correlate with level of consciousness, such as spectral power in 
certain frequency bands. However, such features often lack principled, theoretical 
justifications as to why they should be related with level of consciousness. This raises two 
significant issues: firstly, many other types of times-series features which could also reflect 
conscious level have been ignored due to researcher biases towards specific analyses; and 
secondly, it is unclear how to interpret identified features to understand the neural activity 
underlying consciousness, especially when they are identified from recordings which 
summate activity across large areas such as electroencephalographic recordings. To address 
the first concern, here we propose a new approach: in the absence of any theoretical priors, 
we should be maximally agnostic and treat as many known features as feasible as equally 
promising candidates. To apply this approach we use highly comparative time-series analysis 
(hctsa), a toolbox which provides over 7,700 different univariate time-series features 
originating from different research fields. To address the second issue, we employ hctsa to 
high-quality neural recordings from a relatively simple brain, the fly brain (Drosophila 
melanogaster), extracting features from local field potentials during wakefulness and general 
anesthesia. For each feature, we constructed a classifier for discriminating the two conditions 
in a discovery group of flies (N=13). In this registered report, we will assess their 
performance on a blinded evaluation group of flies (N=12). While the full details of the 
experimental methods are unknown to the data analysis team at the time of submission of this 
Stage 1 manuscript, they will be reported upon in-principle acceptance. Pilot results indicate 
that the performance of only a small subset of features (up to 590, depending on recording 
location) successfully generalises to an independent dataset. Features which successfully 
generalise can be fruitful avenues to explore towards robust discoveries of the neural 
correlates of consciousness. 
  



 

 

Introduction 
 
The question of how physical mechanisms generate conscious arousal is a longstanding 
question in neuroscience. Understanding the mechanisms that support consciousness will 
have significant impacts in clinical assessment of loss of consciousness [1]. Historically, 
researchers have approached this question through identifying electrophysiological 
differences in brain recordings between differing levels of consciousness, such as 
wakefulness and anesthesia. This approach has resulted in the discovery of multiple time-
series features as markers of level of consciousness, including spectral power in different 
frequency bands [2–8] and measures of signal complexity in spontaneous recordings [9–12]. 
Despite these developments, performance in distinguishing levels of consciousness using 
such markers remains limited [13,14]. 
 
The limited performance of previously identified markers in distinguishing levels of 
consciousness, and failure to extend to new conditions, may be due to a lack of theoretical 
expectations as to what they should be. Historically, candidate markers were often found 
through visually contrasting electrophysiological recordings, such as electroencephalograms, 
obtained at varying levels of consciousness [15,16]. Though this approach has led to well-
known markers of depth of anesthesia, it is limited by biases towards groups of time-series 
features for which differences in level of consciousness are visually clear (for a related issue 
in sleep research, see [17]). While newer markers have moved away from features which are 
visually clear, a similar problem applies, wherein researchers investigate features selected 
based on their own expertise of particular facets of time-series structure. Consequently, a vast 
range of other time-series features will have been ignored as potential markers for conscious 
level. 
 
One way of removing the bias inherent to selecting individual features to investigate as 
markers of conscious level is to be maximally agnostic about the types of time-series 
properties which can map to consciousness. Then, we can systematically test and compare as 
many time-series features as feasible. This approach consists of two main components. 
 
Firstly, “all” potential features of some given neurophysiological time series should be 
investigated. While comparison of multiple features has been done previously on well-
established features [13,14], “all” features should be compared, not only those determined by 
or related to visual inspection or individual expertise in particular time-series features. While 
at first this may seem like a daunting task, this is feasible using highly comparative time 
series analysis (hctsa; [18]). hctsa is a computational framework which extracts from a given 
time series a massive number (>7000) of univariate time-series features. These features are 
taken from a multitude of research fields, and include measures such  as basic statistics of the 
distribution of time samples, linear correlations among timepoints, stationarity, entropy 
measures, among others. This library has been applied previously to find meaningful time-
series features for such applications as detecting falls [19] to identifying physiological 
dynamics underlying neurological disorders [20]. 



 

 

 
Secondly, to avoid overfitting to a particular dataset, features should be validated on datasets 
independent from the original dataset from which the features were originally identified [21]. 
While “cross-validation”, a method which splits data into training and testing sets is common, 
it is rarer to use completely independent and unseen data to test models [14,22]. The use of 
independent, unseen data is particularly rare in consciousness research (but see [23]), likely 
due to the cost and clinical problems of obtaining independent datasets. This is especially true 
for data from human participants which involve manipulations of level of consciousness 
through general anesthesia [24]. Ethics further limits recruitment of healthy participants for 
which there is no medical reason for inducing anesthesia or obtaining recordings. 
 
The issue of data availability in human anesthesia recordings can be circumvented by first 
applying our approach to simpler brains, such as fly brains. Recordings from flies can be 
obtained relatively cheaply with no clinical concerns, and, due to the relatively small brain, 
(~105 neurons compared to 1011 for human brains; [25,26]), neural activity can be obtained 
simultaneously throughout the whole brain. Consequently, we can obtain high-quality 
recordings from many healthy flies. Using high-quality recordings from a relatively simple 
system also offers an advantage. That is, the identified time-series features can be more 
directly interpreted to understand underlying neural phenomena (compared to features 
identified from e.g. recordings from the human scalp). Despite seemingly different neural 
architecture compared to mammals, flies seem to experience varying states of arousal, 
regulated in a similar way to mammals, such as sleep [27–30] and anesthesia [31,32]. Given 
these similarities and advantages described above, the fly serves as a useful model to begin to 
apply new data-driven approaches to discriminating consciousness levels from univariate 
neural time series (see also [33,12,34]). 
 
In this registered report, we aim to evaluate a massive, comprehensive set of individual time-
series features, coming from multiple research fields, as potential markers of level of 
consciousness. Which univariate time-series features accurately and reliably distinguish 
between conscious levels? And do they correspond to previously proposed univariate 
measures of conscious levels? Or are there some conceptually unexplored time-series features 
which perform better? If no features reliably distinguish conscious levels, this would 
highlight the need for bivariate or multivariate features. These would include features such as 
coherence, Granger causality, [32,35], transfer entropy [36], Lempel-Ziv complexity [37], 
perturbational complexity index [38], etc.. Alternatively, new measures derived from 
theories, such as integrated information, may be necessary [34,39]. Indeed, many theories of 
consciousness rely on interactions among parts, and would predict univariate features to be 
uninformative of conscious level. 
 
Here, we compare the most comprehensive available set of scientific features, made available 
in the hctsa toolkit [18], searching for features that may warrant further exploration in the 
future as potential markers of consciousness. First, we search for features which reliably 
distinguish wakefulness from anesthesia, and generalise to a blinded, independent dataset. 
Second, we search for features for which the direction of the effect of anesthesia (i.e., yield 



 

 

consistently higher or lower values in anesthesia versus wakefulness) is consistent across 
datasets. These directionally consistent measures could be useful in assessing level of 
consciousness when a subject’s baseline is known. For these purposes, we apply and compare 
the hctsa features systematically. Critically, we validate them on recordings obtained from an 
independent set of flies which are completely blinded to the analysis team. At the time of 
submitting this registered analysis, our early results indicate that the performances of many 
features which have statistically significant performance in classifying wakefulness and 
anesthesia in one dataset (N = 13 flies) do not generalise to the second independent dataset, 
highlighting the importance of evaluating measures on independent datasets. Despite this, 
across the datasets, many features maintain their direction of the effect of anesthesia across 
the flies.  



 

 

Summary Table 

Research 
question 

What univariate time-series 
features (from hctsa) can serve as 
markers of level of consciousness 
ACROSS individuals? 

What univariate time-series 
features (from hctsa) can serve as 
markers of level of consciousness 
WITHIN individuals? 

Hypotheses 1 hypothesis for each hctsa feature 
at each channel: 
● Feature X classifies 

wake/anesthesia above chance 

1 hypothesis for each hctsa feature 
at each channel: 
● Direction of effect of 

anesthesia for feature X is 
more consistent than chance 

Sampling plan Use existing data: 
● 13 discovery flies x 8 2.25s epochs each of wake/anesthesia 

(published previously); 
● 2 pilot evaluation flies x 112 2.25s epochs each of wake/anesthesia 

(unpublished); 
● 10 final validation flies (unpublished, details undisclosed to data 

analysis team, but expecting same/similar to pilot evaluation flies) 

Statistical 
analyses 

Classification analysis, using a 
nearest-median classifier trained 
on the discovery flies. 
● Obtain classifier accuracy on 

discovery flies (leave-one-fly-
out validation) and evaluation 
flies 

● Obtain significance by 
comparing classifier 
performance to random 
classification distribution (α = 
0.05) 

● FDR correction at each 
channel (q = 0.05) 

Consistency of wakeful epochs 
being greater/less than anesthesia 
epochs at each fly, based on 
direction of anesthesia effect in the 
discovery flies (see Methods 
Section “Within-fly effect direction 
consistency”) 
● Obtain significance by 

comparing consistency to 
random consistency 
distribution (α = 0.05) 

● FDR correction at each 
channel (q = 0.05) 

Pre-specified 
outcomes 

The performance of feature X in 
discriminating 
wakefulness/anesthesia shows 
significant generalisation across 
individuals and the feature is worth 
future investigation as a marker of 
conscious level if: 
● It performs significantly in the 

discovery flies AND 
● It performs significantly in the 

evaluation flies 

The within-individual effect of 
anesthesia for feature X shows 
significant generalisation across 
individuals, and the feature is 
worth future investigation as a 
marker of conscious level if: 
● Consistency of the direction of 

the effect of anesthesia is 
significantly above chance in 
the discovery flies AND 

● Consistency is significantly 
above chance in the evaluation 
flies, for the same direction as 
the discovery flies 



 

 

Methods 
 
Data and preprocessing  
 
We use already-collected local field potentials (LFPs) from fruit fly brains during 
wakefulness and during isoflurane anesthesia. We use two independent datasets: (i) a 
discovery dataset for initially identifying features which perform well at discriminating 
wakefulness from anesthesia; and (ii) a blinded evaluation dataset for assessing the 
generalisability of these features to a separate dataset. Figure 1 illustrates our data analysis 
pipeline for the two sets of flies. As our discovery dataset, we use previously published data 
from 13 flies [32,12,34]. As our blinded evaluation dataset, we use data from an additional 12 
flies collected by RJ and BvS which is delabelled before being provided to AM, AL, and NT 
for analysis (initials refer to authors of this registered report). At time of submission, 2 of the 
evaluation flies were provided and used for pilot analysis, with the remaining 10 flies being 
withheld for final evaluation. 
 
Discovery flies 
 
For this dataset, we provide details relevant to this registered report (for full details see [32]). 
13 laboratory-reared female Drosophila melanogaster (Canton S wild type 3-7 days post 
eclosion) were collected under cold anesthesia and glued dorsally to a tungsten rod. Linear 
silicon probes (Neuronexus Technologies) were inserted laterally into the fly’s eye. Each 
linear probe consisted of 16 electrodes separated with a site separation of 25 µm, and covered 
approximately half of the fly brain. Recordings were made with a sampling rate of 25 kHz 
using a Tucker-Davis Technologies multichannel data acquisition system and downsampled 
to 1000 Hz. 
 
Recordings for each fly were obtained from two blocks: one block with 0 vol% isoflurane at 
the fly body (wake condition), followed by a block with 0.6 vol% isoflurane (anesthesia 
condition). Isoflurane was delivered from an evaporator to the fly through a rubber hose. 
Each block followed a series of air puffs, and consisted of 18 s of rest, 248 s of visual stimuli, 
another 18 s of rest, and a second series of air puffs. Isoflurane was administered following 
the last air puff of the first block, and flies were left to adjust to the new concentration for 180 
s before beginning the second block. Flies in the wake condition responded to air puffs by 
moving their legs and abdomen, but were inert during the anesthesia condition. Flies regained 
responsiveness after isoflurane was removed, ensuring that flies were alive during the 
anesthesia recordings [33]. We use the data obtained in the 18 s period of each block 
corresponding to the rest period preceding the visual stimuli. 
 
We bipolar re-referenced the LFPs by subtracting adjacent electrodes to acquire 15 signals 
which we refer to as “channels”. Channel 1 refers to the channel positioned furthest into the 
fly brain. Finally, we segmented the 18 s period into 2.25 s segments, giving 8 epochs per fly 
and condition. 
 



 

 

Pilot evaluation flies 
 
On 14/06/2019, the data-analysis team (AM, AL, and NT) was provided with 56 segments of 
20 second spontaneous activity recordings from the data collection team (RJ and BvS). The 
56 segments were known to the data analysis team as coming from 2 flies and from varied 
levels of anesthesia. The analysis team was initially blinded to the labelling of the segments, 
such that the source condition and fly of each segment was unknown. Further, the analysis 
team was blinded as to the distribution of segments coming from each fly or anesthesia 
condition (e.g., whether the 56 segments had an equal number of wake and anesthetized 
segments, or an equal number of segments from each fly), and to the specific variant of fly 
and the context in which the data had originally been collected. 
 
However, these labels and information were made available (in June 2019) after early 
analyses using 18 s segments (corresponding to the original length of the segments from the 
discovery flies, instead of 2.25 s segments). We later deemed the 18 s approach inappropriate 
as we would be generalising across-fly classification performance to within-fly classification 
performance (applying classifiers trained on a single epoch each of wakefulness and 
anesthesia from each discovery fly to multiple epochs from an individual pilot evaluation fly; 
see Section “Classification of conscious level”), before finalising the full methods and 
parameters. With the labels, it was revealed that the 56 segments were equally divided into 14 
segments of wakefulness or anesthesia for each of the two flies. It was also revealed that the 
flies were of a w2202 background (also called isoCJ1), which has a similar isoflurane 
sensitivity profile to the Canton-S wild-type fly (CS; [40]). 
 
The following technical details of the recordings were available to the data analysis team, to 
enable equal pre-processing of signals. Electrophysiological data were recorded at 25 kHZ, 
down sampled to 1000 Hz. Next, LFPs were bipolar re-referencing by subtracting adjacent 
unipolar channels (n=16) to acquire 15 channels. 
The exact details originally provided to the analysis team are available at 
https://osf.io/bq5ry/?view_only=3789097395c1419db2a9eb615bc1effe. 
 
Final evaluation flies 
 
Delabelled final evaluation data will be provided to the data analysis team after in-principle 
acceptance of the manuscript. The following information was disclosed by the data collection 
team (RJ and BvS) to the data analysis team at the time of writing of this registered analysis. 
At the point of submission, the analysis strategy was fixed, and final evaluation data had not 
been provided to the analysis team. The teams agreed that disclosing the following 
information would not affect the outcome of the results. 
 
The final evaluation dataset will consist of 10 additional flies (same type as the pilot 
evaluation flies). The data analysis team will again be provided with 14 x 20 s segments of 
wakefulness or anesthesia for each fly, shuffled and delabelled, with the same pre-processing 
applied as for the pilot evaluation flies. At the time of submission of this registered report, the 
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data analysis team was not made aware of any other potential details regarding this final 
evaluation dataset. We intend to update this section when further recording details are 
revealed to the data analysis team upon in-principle acceptance. We will repeat the methods 
pertaining to the pilot evaluation flies, described in the following sections, on the final 
evaluation flies upon in-principle acceptance. 
 
Local field potential pre-processing 
 
The data analysis team subtracted the mean voltage from each epoch of the discovery and 
pilot evaluation flies, and then removed line noise from each epoch using the rmlinesc.m 
function of the Chronux toolbox (http://chronux.org/; [41]) with 9 tapers, a time-bandwidth 
product of 5, and zero-padding factor 2. As a sanity check, we performed visual inspection of 
power spectrum plots after pre-processing to confirm the removal of line noise. These same 
pre-processing steps will be applied to the final evaluation flies. 
 
Feature-based time-series analysis using hctsa 
 
We extracted 7702 time-series features from each epoch and bipolar re-referenced channel of 
the discovery and pilot evaluation flies using hctsa (v1.03; [18]) on MATLAB 2017b. For a 
given time series, hctsa extracts a vast set of 7702 univariate time-series features from 
analysis methods developed in a wide range of scientific disciplines, including nonlinear 
physics, biomedicine, economics, and neuroscience. 
 
Not all of the available time-series features could be extracted successfully from our datasets. 
For example, the class of features derived from the hctsa function DN_CompareKSFit 
includes fits of the data to a beta distribution, which assumes values between 0 and 1, an 
assumption that is not fulfilled by our data and consequently returns missing (NaN) values. 
To filter out these cases, we excluded any feature which returned NaN across all time series 
for a given channel in the discovery flies. This reduced the set of features down to an average 
of 6860 features across the 15 channels (ranging from 6657 to 7004). We further excluded 
features which returned a constant value across all time series for a given channel in the 
discovery flies because they are uninformative for classification, reducing the set of features 
again to on average 6764 features across the 15 channels (ranging from 6560 to 6908). 
 
While we analyse raw hctsa features, the range of values varies greatly across features, and 
some features include infinity values (which we keep as they can be used in our classification 
analysis, see Section: “Classification of conscious level”). Where specified, we visualise 
scaled feature values using an outlier-robust sigmoidal transformation, which maps values of 
all epochs for a given feature to the unit interval [42]. 
 
Classification of conscious level 
 
We use single-feature classification analysis at each channel to compare the performance of 
each individual time-series feature in distinguishing wakefulness from anesthesia. If a feature 
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distinguishes conscious level, it should have high classification performance in the discovery 
flies generalises to the evaluation flies. To account for features which can return infinity 
values, we employ nearest-centroid classifiers, with class medians as centres. 
 
We first trained and cross-validated features on the discovery flies. For a given channel and 
feature, we employed a leave-one-fly-out cross-validation procedure on the evaluation flies.  
Specifically, at each cross-validation iteration, we trained a classifier on all 8 epochs of wake 
and anesthesia from 12 flies, and tested on 8 epochs of wake and anesthesia on the remaining 
fly. Each classifier consists of: 1) a threshold, the middle point between the median feature 
value for wakefulness and anesthesia as obtained from the training set, and 2) a direction 
indicating whether points above the threshold should be classified as wakeful or anesthetized 
(and vice versa). 
 
After obtaining cross-validation accuracies on the discovery flies, we finally obtained 
classifiers for each feature and channel by training on all epochs from all flies in the 
discovery dataset. We validate and report the performance of these classifiers on the pilot 
evaluation (N=2, in the submitted manuscript) and final evaluation (N=10, after in-principle 
acceptance) evaluation datasets. For the final evaluation dataset, the data analysis team will 
be provided with shuffled, delabelled epochs upon which the trained classifiers are applied. 
Only after all epochs in the dataset are classified are the true labels revealed to the data 
analysis team. 
 
We determined if a feature classifies wake and anesthesia significantly better than chance by 
comparing each feature to a random-classification distribution at the α = 0.05 level. We 
corrected for multiple comparisons at each channel using the false discovery rate (FDR) 
correction [43]. We obtained random-classification distributions for the discovery and pilot 
evaluation flies by repeatedly classifying discovery or evaluation epochs randomly, with 
equal probability (as there are 7702 potentially available features in hctsa, we repeated this 
random classification N = 7702 times to build the distribution). We expect that features which 
reflect some process underlying change in conscious level will have significant classification 
performance which persists through cross-validation on the discovery flies to the final 
validation flies, ideally across channels. 
 
Within-fly effect direction consistency 
 
In assessing generalisability, it is possible that the effect of anesthesia (relative to wake) is 
highly consistent within individuals, even when features do not classify well across subjects. 
For example, feature values in the evaluation flies might be entirely outside the range of 
values in the discovery flies (e.g., all wake and anesthesia values in the evaluation flies being 
above both the wake and anesthesia values in the discovery flies). In such a case, all feature 
values would be classified to a single class, even if wake and anesthesia values are separated 
in the evaluation flies. This is relevant in scenarios where, such as in this registered report, 
there may be variability in the exact placement of electrodes among individuals. Values may 
further vary among individuals due to factors such as exact experimental setups and baseline 



 

 

arousal states. To address this, we assessed a weaker form of generalisation – whether a 
feature is predictive of the relative difference between conscious levels within an individual 
fly – and report the consistency of the direction of the effect of anesthesia (after receiving the 
correct wake/anesthesia labels in the case of the final evaluation flies). 
 
Specifically, at a given feature, fly, and channel, we obtained for each wakeful datapoint the 
proportion of anesthetized datapoints which lie below it. Because the direction of the effect of 
anesthesia is not necessarily the same across features and channels, we first assigned 
directionality labels based on the median wakeful and anesthesia values in the 13 discovery 
flies. For a given feature and channel, we gave a label of 1 if the median wakeful value was 
greater than for anesthesia, and -1 otherwise. We then multiplied feature values by these 
labels, flipping the direction of the effect of anesthesia when the median wakeful value is 
lesser than the median anesthesia value and making the analysis uniform across features and 
channels. Finally, we report the average proportion across all wakeful epochs and flies. 
 
In a similar way as for testing for significance of classification performance, we used 
permutation testing to determine if the within-fly effect direction consistency of a feature was 
significantly better than chance. We obtained reference chance distributions for the discovery 
flies and pilot evaluation flies by repeatedly (N = 7702) randomly assigning the portion of 
anesthesia epochs which are below each wakeful epoch, with equal probability, and 
averaging across wakeful epochs and flies. We compare each feature to the distribution at the 
α = 0.05 level, correcting for multiple comparisons at each channel using FDR correction. 
 

Pilot Results 
 
We investigate if any of the time-series features in hctsa individually serve as a potential 
measure of level of conscious arousal in independently obtained recordings from fly brains. 
We first assessed the performance of hctsa features which we applied to a discovery dataset 
of previously published fly brain recordings (N = 13) [33,32,12,34]. Then, to assess 
generalisability, we apply classifiers trained on the discovery flies to recordings obtained 
from an independent set of pilot evaluation flies (N = 2). Upon in-principle acceptance of this 
registered analysis, we will repeat the analyses conducted on the pilot evaluation flies on a 
final set of evaluation flies (N = 10), reporting the features which consistently perform well in 
distinguishing wakefulness from anesthesia at all recording locations across all the flies. 
 
(Note that upon in-principle acceptance, we will repeat the analysis as described in Methods 
and Pilot Results, extending and updating the analyses done on the pilot evaluation flies to 
the remaining 10 evaluation flies. Figures 2b-e, 3b-e, 4, and the corresponding text in results 
concerning the pilot evaluation flies, will be updated to convey the full analyses on all 12 
evaluation flies. We will also provide supplementary materials giving classification 
performance and consistencies for significant features in the pilot evaluation flies to reflect 
the full set of 12 evaluation flies.) 
 



 

 

Classification of conscious level 
 
We first extracted 7702 time-series features from the initial discovery flies using hctsa, 
yielding 6560 to 6908 valid features across the 15 channels (M = 6764). Figure 2a shows a 
matrix of feature values extracted from Channel 6 in the discovery dataset. We first visually 
inspected this feature matrix to inspect trends across features and flies. To facilitate 
interpretation, we first sorted the order of the features according to hierarchical clustering 
using correlation distances between features, across time-series. This revealed two clear 
clusters of features, one with values which are generally greater during wakefulness (columns 
roughly 500 to 1500), and one with values which are generally greater during anesthesia 
(columns roughly 4500 to 5500). Features in each of these clusters would likely achieve 
similar classification accuracies. 
 
Having reordered the features, groupings across rows corresponding to epochs from 
individual flies became apparent. This indicated strong within-fly correlations of feature 
values but weak correlations across flies, suggesting that few features, if any, would 
generalise across all the flies. Overall, our visual inspection of the similarities across features 
and similarities across flies suggested that many features could individually achieve better-
than-chance classification accuracy. However, there appeared to be no clear cluster of 
features which would perfectly discriminate wakefulness from anesthesia in all of the flies. 
 
While Figure 2a set up our global expectations visually, there may have been features outside 
the visually clear clusters which also distinguish wakefulness from anesthesia extremely well. 
To reveal such features, we next quantified the across-fly classification performance (within 
the discovery flies). For each feature, we classified wakeful from anesthetized epochs using a 
nearest-median classification rule. We assessed the statistical significance of the cross-
validation accuracy of each feature by comparing it to a distribution of accuracies resulting 
from random classification (see Methods). For Channel 6, this yielded 3089 features which 
performed significantly better than chance (p < .018). The best-performing feature, an index 
of mean stationarity (hctsa feature: StatAvl250; [44]), achieved a mean classification 
accuracy of 76% (SD = 12% across 13 cross-validations; Figure 2b). Upon performing the 
classification analysis for each of the remaining 14 channels, we found features to perform 
heterogeneously across the channels. Overall, the average classification accuracy achieved 
across channels tended to be much lower than that achieved by individual channels. For 
example, the across-channel average of the mean cross-validated accuracy of StatAvl250 
was 63% (SD = 6% across 15 channels). 
 
Indeed, the number of significant features varied greatly across the channels, ranging from 14 
to 3089, with channels closer to the peripheral tending to have fewer significantly performing 
features (Figure 2b). We found the greatest number of significant features, along with the 
most accurately classifying features, to occur at Channels 5 and 6, corresponding roughly to 
the protocerebrum. This is consistent with our previous analyses on this dataset, which 



 

 

reported better discrimination between wakefulness and anesthesia in some but not all 
channels [12,32]. 
 
We next sought to determine how well the performance of features would generalise to an 
independent evaluation set of flies. While the overall recording procedure was known by the 
data analysis team to be similar to that of the discovery flies, the exact experimental methods 
were not revealed at the time of submitting this registered analysis (see Methods). We 
finalised the training of classifiers by obtaining thresholds based on all 13 discovery flies. As 
a pilot for this registered analysis, we applied these classifiers to recordings from 2 flies (out 
of a total of 12 evaluation flies). Across the 15 channels, we found an additional 48 to 416 (M 
= 180) features to either output a NaN or have a constant value across epochs in the pilot 
evaluation flies. 
 
Figure 2c shows how classification performance at Channel 6 in the discovery flies 
generalizes into the pilot evaluation flies. The best performing feature at Channel 6 in the 
discovery flies, StatAvl250, attained a much reduced accuracy of 63% (green circle and 
arrow). Meanwhile, several features attained higher performance than in the discovery flies. 
The feature with the best performance at Channel 6 in the pilot evaluation flies quantifies the 
relative low-frequency power via a Fourier power spectrum (hctsa feature: 
SP_Summaries_welch_rect_logarea_2_1) attained 76% accuracy, despite 
attaining 62% (SD = 14% across cross-validations) in the discovery flies (red circle and 
arrow). The best performing features across all the channels in the pilot evaluation flies were 
related to signal variance at Channel 5 (including root-mean-square, hctsa feature rms, and 
standard deviation, standard_deviation), and also had greater performance than in the 
discovery flies, attaining 91% accuracy, compared to 71% (SD = 21% across 13 cross-
validations, for both features). While we leave the interpretation of high-performing features 
until after the final analysis, it is notable that all these features are related to the variance of 
the voltage fluctuations, which is consistent with previous literature on the effects of 
anesthesia on the fly LFPs [32]. 
 
Generally, however, we found a drastic drop in the number of features with statistically 
significant classification accuracy across the channels (Figure 2b). This suggested that 
features overall performed worse in the evaluation flies, and that their performance was again 
heterogeneous across channels. Across the channels, the number of significantly performing 
features was substantially less in pilot evaluation flies, ranging now from 9 to 1885. Further, 
after restricting to the set of features which yielded significant cross-validation accuracies in 
the discovery flies, the number of significant features dropped even further, ranging across 
the channels from 0 to 590. This result alerts us to the danger of interpreting cross-validation 
accuracies of the discovery flies as an estimate of the true generalisation accuracies, which 
can only be evaluated using an independent dataset. We will discuss the implication of this 
finding in Discussion in the Stage 2 manuscript. Upon final data analysis, we will provide the 
classification performance of each significant feature, at each channel in Supplementary 
material S1. 



 

 

 
Within-fly effect direction consistency 
 
Given that the across-flies classification performance of many features in the discovery flies 
did not generalise to the pilot evaluation flies, we next assessed a weaker form of 
generalisation. Even though features may not classify well across subjects, features for which 
the effect of anesthesia is highly consistent within individuals may still be useful for clinical 
assessment of conscious level. This is especially true for individual subjects whose baseline 
neural activity is available (e.g., before anesthetic induction). So, for each feature, we 
assessed the within-fly effect direction consistency of anesthesia. For an individual fly, 
consistency would be 1 if the effect of anesthesia is totally consistent for every pairing of 
wake and anesthesia epochs. (see Methods). In other words, for a given feature in a given 
channel, if the value for wake minus anesthesia is always above 0 for any pair of one wake 
and one anesthesia epoch (or vice versa), then we consider such a feature as a perfect measure 
of consciousness for that particular fly. 
 
Figure 3a illustrates the within-fly effect direction consistency for each feature for the 
discovery flies, again at Channel 6. Overall, consistencies appeared to be reliable within flies, 
as we expected. However, strikingly, consistency seemed to be reliable even across flies, 
indicating that, for many features, the direction of the effect of anesthesia would be consistent 
across individual flies despite mediocre classification performance (e.g. due to differing 
baseline values at each fly). Visually, there appeared to be two clusters of features (from 
column 500 to 1500 and from 4500 to 5000) with  high consistency.  
 
We assessed the statistical significance of each feature, this time by comparing its 
consistency to a distribution of consistencies for randomly labelled epochs (see Methods). 
For Channel 6, this gave 3923 features which were more consistent than chance (p < .027). 
The feature with the highest consistency at Channel 6, as well as on average across all the 
channels (a measure of variation in the differences between consecutive time samples, hctsa 
feature: MD_rawHRVmeas_SD2; [45]) had a consistency of 0.94 (i.e., on average, each 
wakeful epoch from an individual fly had a greater value than 94% of anesthesia epochs from 
the same fly), which previously attained a across-flies cross-validation accuracy of 68% (SD 
= 20%). Across the 15 channels, in general we found many more features to have significant 
within-fly consistency (2486 to 3923; Figure 3b), compared to across-flies classification. 
 
We next assessed how the within-fly effect direction consistencies generalised to the pilot 
evaluation flies. We computed consistencies in the pilot evaluation flies, taking into account 
the direction of the effect of anesthesia observed in the discovery flies. Hence, if wakeful and 
anesthesia epochs were perfectly separable in the same direction as the discovery flies, 
consistency would be 1. However, if they were perfectly separable in the opposite direction to 
the discovery flies, consistency in pilot evaluation flies would be 0. 
 



 

 

Figure 3c shows how within-fly effect direction consistency at Channel 6 in the discovery 
flies generalises to the pilot evaluation flies. Unlike for across-flies classification, within-fly 
consistencies between the discovery and pilot evaluation flies seemed to be strongly 
positively correlated. This indicates that the within-fly consistency of many more features 
generalised to the pilot evaluation flies. The feature with the highest consistency in the 
evaluation flies, root-mean-square (hctsa feature: rms), achieved high consistency in the 
pilot evaluation flies (0.91, red circle and arrow). Across the 15 channels, the number of 
significantly consistent features seemed to vary more in the pilot evaluation flies, ranging 
from 478 to 4030 (Figure 3b). This range reduced to 177 to 3125 after restricting to the set of 
features which also had significant consistency in the discovery flies.  
 
Notably, the decrease in the number of significant features for within-fly consistency in the 
pilot evaluation flies was less pronounced than for across-fly classification performance. Like 
across-fly classification, there were more significant features for within-fly consistency at the 
central than peripheral channels. Overall, these results indicate that many features could be 
informative and consistent in terms of changes within a single fly due to anesthesia without 
being strong, absolute measures of conscious level across flies. We will revisit the 
implication of this finding in Discussion after the final data analysis. Upon final data analysis, 
we will provide the consistencies of each significant feature, at each channel in 
Supplementary material S2. 
 

Timeline 
 
We can immediately begin the analyses on the full set of evaluation flies upon in-principle 
acceptance. All classification models for candidate time-series features have already been 
trained on the discovery flies. We anticipate the computation of hctsa features and final 
analyses on the evaluation flies as outlined in our manuscript, and writing up of results and 
discussion to take 2-3 months from in-principle acceptance. 
 

Data Availability Plan 
 
Pre-processed data from the discovery flies are available on Figshare: 
https://doi.org/10.26180/5ebe420ae8d89 
Pre-processed data from the pilot evaluation flies and blinding procedure are available on 
OSF: https://osf.io/bq5ry/?view_only=3789097395c1419db2a9eb615bc1effe 
Pre-processed data for the full set of evaluation flies will be made available in the OSF 
project linked above. 
 
  

https://doi.org/10.26180/5ebe420ae8d89
https://osf.io/bq5ry/?view_only=3789097395c1419db2a9eb615bc1effe


 

 

Figures 

 
Figure 1. Analysis pipeline for individual features in hctsa. 
a) Flies were dorsally fixed to a rod and placed on an air-supported ball. Isoflurane was 
administered through a rubber hose. We use a discovery dataset of 13 flies to identify time-
series features which discriminate wakefulness from anesthesia. We assess how the 
performances of these features generalise to an independent evaluation dataset consisting of 



 

 

12 flies. We use 2 of these flies to obtain pilot generalisation performance for registering this 
analysis. b) Local field potentials (LFPs) are obtained during wakefulness and anesthesia 
using linear multi-electrode arrays inserted laterally into the fly brain. c) At a given channel 
and time-series feature (here we show the feature StatAvl250), we compute feature values for 
every epoch from each fly (each entry in the image plot corresponds to a scaled feature value 
from one epoch). We train a nearest-median classifier using the discovery (D) flies, where the 
threshold for classifying wakefulness (red) versus anesthesia (blue) is the middle point (black 
vertical line) between the median values of the two conditions (red and blue vertical lines). 
We assess the feature’s across-fly classification performance on the discovery flies using a 
leave-one-fly-out cross-validation procedure. We assess the generalisation of the feature’s 
performance by classifying epochs from the evaluation (E) flies using its threshold as 
obtained from all the discovery flies. d) As a weaker form of generalisation, we also assess 
within-fly effect direction consistency by finding, for each wake epoch, the proportion of 
anesthesia epochs which have greater or lesser (depending on the direction of the effect of 
anesthesia for the feature as illustrated in c) feature values. We visualise this here for a 
second feature by showing the within-fly differences between scaled feature values. Each 
entry in the rightmost image plot gives the difference between every combination of one 
wake epoch and one anesthesia epoch from the same fly. 
 
 



 

 

 
Figure 2. Classification performance of hctsa features.  
a) Values of hctsa features in the discovery flies, at Channel 6. Each row corresponds to an 
individual 2.25s epoch, from 13 flies (F) during wakefulness (W) and anesthesia (A). Each 
row displays scaled values for all valid features for the channel. Features (columns) are 
ordered based on hierarchical clustering using correlation (across time series) distance 
between normalised features. This ordering places features with highly correlated values 
across the dataset close to each other. Arrows indicate the features which attained the highest 
classification performance in the discovery (green) and pilot evaluation (red) flies. b) 
Number of features which achieved statistically significant classification performance at each 
channel, in the discovery flies blue line, pilot evaluation flies (orange line), and in both the 
discovery flies and pilot evaluation flies (broken black line). c) Correlation of classification 
performances between the discovery (x-axis) and pilot evaluation flies (y-axis). Each dot 
represents the classification performance of one of the 6800 features shown in a). Solid 
horizontal and vertical lines indicate chance classification performance (= 0.5). Dashed 
horizontal and vertical lines indicate the thresholds for statistically significant across-fly 
classification performance in each set of flies (see Methods). Dots located in the top right 



 

 

quadrant are the features which successfully classified wake from anesthesia across both the 
discovery and pilot evaluation flies. Circled are the features which attained the highest 
performance in the discovery (green) and pilot evaluation (red) flies. 
 
 

 
Figure 3. Within-fly effect direction (wake - anesthesia) consistency of hctsa features.  
a) Differences in scaled hctsa values between wakefulness and anesthesia in the 13 discovery 
flies (F), at Channel 6. Each row displays the difference between a wakeful and anesthesia 
epoch from the same fly, for all valid features for the channel. Features (columns) have the 
same ordering as in Figure 2a. Arrows indicate the features which attained the highest 
classification performance in the discovery (green) and pilot evaluation (red) flies. b) 
Number of features which achieved statistically significant consistency at each channel, in 
the discovery flies, pilot evaluation flies, and in both the discovery flies and pilot evaluation 
flies. c) Correlation of within-fly effect direction consistencies between the discovery (x-axis) 
and pilot evaluation flies (y-axis). Each dot represents the consistency of one of the 6800 
features shown in a). Solid horizontal and vertical lines indicate chance consistency (= 0.5). 



 

 

Dashed horizontal and vertical lines indicate the thresholds for statistically significant 
consistency in each set of flies (see Methods). Dots located in the top right quadrant are the 
features which were significantly consistent across both the discovery and pilot evaluation 
flies. Circled are the features which attained the highest consistency in the discovery (green) 
and pilot evaluation (red) flies. 
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4.2 - Discussion 

In this stage 1 registered report, I applied a vast library of univariate time-series features as 

candidate measures of conscious level. In the pilot results, I find that many features are able 

to distinguish wakefulness from anaesthesia in the discovery set of flies (the same set of flies 

as previously analysed in the previous chapters). However, many of these features fail to 

generalise to a new set of flies, where details regarding recording and experimental methods 

are not known a priori. Meanwhile, the direction of the effect of anaesthesia, within each 

individual fly, is consistent across both sets of flies for many more features. While a full 

discussion on promising time-series features as measures of consciousness will depend on 

completing the analyses in the final evaluation flies after in-principle acceptance of the 

registered report, here I provide some early interpretations regarding how the current results 

compare to IIT’s measures. I focus on the results from discovery flies, as these were the only 

flies analysed in the previous chapters. 

 

The results presented here provide a benchmark performance for assessing the utility of IIT’s 

measures in distinguishing wakefulness from anaesthesia. The cross-validated classification 

accuracy of the top performing features in the discovery flies (76% at channel 6) was higher 

than the greatest accuracy achieved by integrated information (Φ; < 75% in Figure 5A of 

Chapter 2), but lower than the greatest accuracies achieved by the associated integrated 

information structure (IIS; > 80% in Figure 5A of Chapter 2). This comparison between the 

classification performances of the top performing features and IIT’s measures demonstrate 

the advantage of the first-principles approach taken by IIT. Specifically, the first-principles 

approach provides a meaningful measure which already performs comparable to or 

outperforms an arbitrary but vast selection of alternative candidate measures. I note however 

that the classification accuracies from the two chapters are not conceptually comparable due 

to two key differences in analysis methods. 

 

The first difference is in the exact analysis framework used. In Chapter 2, I trained classifiers 

either using only multiple epochs from an individual fly at a time (within-fly classification; 8 

epochs), or using single epochs from multiple flies at a time (across-fly classification; 13 

epochs). However, in the present chapter, for the purpose of registering a more streamlined 

(and standalone) analysis, I trained a single classifier for each time-series feature using 
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multiple epochs from multiple flies (8 × 13 epochs). Consequently, each individual classifier 

in Chapter 2 was trained on many fewer epochs. This may have reduced their overall 

performance (Kotsiantis et al., 2006; Zhu et al., 2016). This issue can be addressed by 

conducting within-fly and across-fly classification on the time-series features as additional 

exploratory analyses, after in-principle acceptance of the registered report. 

 

The second difference is the comparison of the univariate time-series features to IIT’s 

multivariate measures. IIT’s measures are computed from multiple channels, with each Φ 

value or IIS being computed from the time-series of the channels being considered. 

Consequently, their performance in distinguishing between wakefulness and anaesthesia is 

linked to a particular set of channels. Meanwhile, the accuracies that I report for each time-

series feature is linked to a particular channel. Thus, comparing IIT’s measures to each 

univariate time-series feature entails comparing the distributions of accuracies achieved by Φ 

and the associated IIS across channel sets to the accuracies achieved by the time-series 

feature at each individual channel. A more direct comparison might be possible if the time-

series features are collated across multiple channels. However, there are many conceivable 

ways to collate across channels, such as by averaging (such as in Sitt et al., 2014, and 

Engemann et al., 2018), or by directly training multivariate classifiers. Another direction to 

address this would be to evaluate multivariate time-series features, such as cross-correlation 

or mutual information (Sitt et al., 2014; Cliff et al., 2021), though to my knowledge there is 

currently no multivariate analogue to hctsa which provides a library of multivariate measures. 

 

To conclude, IIT’s measures, specifically its cause-effect structures, discriminates 

wakefulness from anaesthesia with performance comparable to or even exceeding the best 

performing univariate time-series features. While differences in analysis methods muddy the 

comparison of classification accuracies presented here and in Chapter 2, there are clear paths 

to take in the immediate future to address them. The registered report format used here also 

provides a future avenue to further evaluate IIT’s measures. Specifically, the registered report 

format mitigates issues relating to publication bias or p-hacking (Botvinik-Nezer et al., 2020; 

Soderberg et al., 2021). Thus, testing generalisability by applying predetermined analyses to 

independent, blinded datasets can be applied as a more rigorous framework for evaluating the 

validity and utility of Φ and associated cause-effect structures. 
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Chapter 5 - General Discussion 

5.1 - Summary of findings 

In the preceding chapters, I applied the measures put forward by the integrated information 

theory of consciousness (IIT) 3.0, to neural recordings obtained from the fly brain during 

wakefulness and anaesthesia. In Chapter 2, I tested IIT’s principle prediction that integrated 

information (Φ) should be high during wakefulness and low during loss of consciousness. 

Consistent with this expectation, I did indeed find Φ to be greater in the fly brain during 

wakefulness, when compared to during anaesthesia. I further found associated integrated 

information structures (IIS), a proxy measure of the associated cause-effect structures 

proposed by IIT as being linked to contents of conscious experience, to also be reduced in the 

fly brain during anaesthesia. In Chapter 3, I tested IIT’s prediction that Φ should be maximal 

at the temporal scale corresponding to conscious experience, rather than at some minimal, 

micro timescale as might be expected from reductionist views. Again, meeting with IIT’s 

expectation, I found Φ to be maximal at a scale consistent with the timescale of 

neurophysiological interactions. Finally, in Chapter 4, I applied a vast library of univariate 

time-series features as alternate candidate measures, to evaluate any advantage of IIT’s 

measures which result from IIT’s introspective and theoretical approach. While the best 

performing univariate time-series features distinguished wakefulness from anaesthesia with 

similar performance as IIT’s measures, their simplicity makes them difficult to link back to 

how consciousness is generated from physical interactions. While these results provide 

empirical support for IIT, there is still much more to investigate. 

5.2 - Integrated information measures in the fly brain behave as 

expected without perturbation or identifying the complex 

While I have attempted to apply IIT 3.0’s measures as they are directly operationalised by the 

theory, clearly it is currently infeasible to apply them exactly as they are defined. Two issues 

prevent a completely faithful application of the measures. The first is the requirement of 

perturbation of a system into all its states. The second is the search for the set of elements 

which constitute the complex across spatial and temporal scales. Both of them are impractical 

to apply to neural data from biological brains. However, from the results I have presented in 
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this thesis, the measures proposed by IIT 3.0 seem to perform largely as expected by the 

theory even without directly perturbing the system or searching for the complex. 

 

An optimistic interpretation of this might be that Φ and the IIS can have utility in determining 

conscious level even when applied only to subsets of a candidate system, and at 

spatiotemporal scales which do not necessarily maximise Φ. However, it is unclear whether 

the measures would still behave as expected when applying the same analyses to larger 

systems. Rather, despite not being applied completely faithfully to the theory, Φ and the IIS 

behaving as expected could be attributed to the use of the fly brain. Specifically, the spatial 

scale and temporal dynamics of the small number of local field potentials (LFPs) analysed in 

this thesis may already be relatively close to the spatial and temporal scales of the complex in 

the fly brain. Also, the extent of the recordings, which spanned throughout the fly brain, 

could be close to capturing all the interactions of the complex. However, for a larger system, 

such as even the mouse brain, small numbers of LFPs might not be as representative of 

dynamics throughout the whole brain. Consequently, observable LFPs may only capture a 

much smaller subset of dynamics within the complex. Meanwhile, it could be the case that 

recordings at a larger spatial scale, such as electrocorticographic or electroencephalographic 

recordings, may be too coarse grained. Consequently, whether the results here will generalise 

to larger brains, when applying similar methods to a similar number of recordings, remains 

unclear. 

 

Even with the hypothetical capability to capture more recordings spanning a larger brain, the 

application of IIT’s measures remain limited. This is due to the computational cost of 

searching for minimum information partitions (MIPs). Specifically, when computing Φ, the 

search for the MIP at the system level requires repeatedly computing the cause-effect 

structures for every partition of the system. However, in Chapter 2, I found that the IIS was 

able to discriminate between wakefulness and anaesthesia more reliably than Φ. This 

suggests that the repeated computation of cause-effect structures may be unnecessary for the 

practical purpose of measuring the level of consciousness in a subject, when ignoring the 

precise location of the complex. While this already substantially reduces computational costs 

of applying IIT, a similar, expensive, search for MIPs, at the level of mechanisms, is still 

required for every mechanism (in combination with every purview) in order to obtain the IIS. 

To identify these MIPs, one must search through all partitions of a mechanism and its 

purview (Oizumi et al., 2014). However, this is only necessary when the connectivity among 
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elements is unknown a priori. Knowledge of how elements are connected can allow for the 

deduction or more restricted search of the MIP (Kitazono et al., 2018; Hidaka & Oizumi, 

2018), allowing one to avoid a costly search. The fly brain provides an opportunity to take 

advantage of this, specifically through consistent progress towards a comprehensive mapping 

of the fly connectome (Zheng et al., 2018; Scheffer et al., 2020). Knowledge of connections 

also allows for an easier search for the spatiotemporal scale at which Φ is maximised. 

Particular connectivity patterns have been used to illustrate emergence of Φ at macro scales 

(Hoel et al., 2013, 2016; Marshall et al., 2018), and these may serve as candidate network 

motifs to search for through the fly brain connectome. 

 

Thus, given current experimental and computational capabilities for computing Φ and the IIS, 

the fly brain serves as a key system where the measures of IIT can be most faithfully applied. 

Its relative simplicity with regards to the number of neurons it consists of, and comprehensive 

knowledge of how they are connected gives a promising system in which to continue 

evaluating the ideas of IIT in the future. 

5.3 - Assessing varied levels of consciousness 

In this thesis, I have focussed on applying and evaluating IIT in the fly brain during two 

levels of consciousness - wakefulness and anaesthesia. Specifically, anaesthesia was induced 

at a specific concentration of isoflurane anaesthesia, and for this particular administration of 

anaesthesia, I found Φ and the associated IIS to be reduced. However, as measures of 

consciousness, this reduction should generalise to reduced levels of consciousness induced by 

other means. 

 

Firstly, the reduction should generalise to loss of consciousness as induced by other 

anaesthetic drugs. Whether it does, though, is not necessarily immediately clear. Different 

anaesthetic drugs induce anaesthesia through differing molecular mechanisms (Hines & van 

Swinderen, 2021). Consequently, neural signals recorded during anaesthesia can have 

different temporal properties depending on the type of drug used (Purdon et al., 2015). IIT’s 

measures may be sensitive to these differences, as the transition probability matrices (TPMs) 

used for computing the measures are constructed directly from such recordings. On the other 

hand, a common endpoint for general anaesthesia is the disruption of communication across 

the brain. If IIT’s measures ultimately reflect global communication, small differences in 
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time-series properties may be abstracted out by IIT’s measures. Meanwhile, univariate time-

series features which are not linked to consciousness through first principles would be 

sensitive to such differences in temporal properties. So, while different features might 

successfully distinguish wakefulness from anaesthesia for one particular type of anaesthesia, 

they may fail to generalise across anaesthetic drugs. 

 

Secondly, the reduction in IIT’s measures should also be observed not only with complete 

loss of consciousness but also in graded reductions in consciousness. General anaesthesia is 

not binary, with a subject being only either clearly awake or clearly unconscious. Depending 

both on the type of anaesthetic drug and its dosage, subjects can enter a variety of states, such 

as being sedated but still behaviourally responsive (Guedel, 1937), being paradoxically 

excited (Jeong et al., 2011; Zuleta-Alarcon et al., 2014), being intraoperatively aware 

(Mashour et al., 2011), or dreaming (Brandner et al., 1997; Leslie et al., 2009; Sarasso et al., 

2015). These states involve conscious experience, albeit perhaps a reduced, less rich 

experience compared to that during full wakefulness. Correspondingly, IIT expects its 

measures to vary with regard to the exact depth and state of anaesthesia. For example, as a 

subject gradually is sedated with increasing dosage until they lose consciousness, Φ should 

gradually decrease. Similar as for anaesthesia induced through different drugs, these states 

are associated with electrophysiological recordings with different spectral properties. Again, 

these differences might be abstracted out in IIT’s measures, but not in non-theory driven 

measures. For example, in Chapter 4 I found univariate measures dealing in variance of a 

time-series to perform well in distinguishing wakefulness from consciousness. However, the 

amplitudes of recordings during anaesthesia can be greater or lower than that during 

wakefulness depending on the depth of anaesthesia (Purdon et al., 2015). Consequently, 

variance related measures might fail in correctly identifying both states of isoelectricity 

(where amplitude fluctuations are much lower than during wakefulness) and surgical levels of 

anaesthesia (where amplitude fluctuations are greater than during wakefulness) as states of 

anaesthesia rather than wakefulness. 

 

Extending beyond anaesthesia, IIT’s measures should also be reduced in the case of sleep. 

Stages of sleep are associated with graded levels of consciousness, similar to how different 

anaesthetic drugs and dosages can induce both reduced and complete loss of consciousness. 

In humans, rapid eye movement (REM) sleep for example is associated with dreaming, while 

deep, slow wave sleep (SWS) is associated with complete loss of consciousness (Windt et al., 
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2016). Flies are known to exhibit sleep-like behaviours similar to mammals (Hendricks et al., 

2000; Shaw et al., 2000), with distinct stages of sleep (van Alphen et al., 2013; Tainton-Heap 

et al., 2021). These stages include a stage of active sleep, where the fly brain exhibits activity 

similar to during wakefulness while being disconnected from the external environment, and 

deep sleep, where the brain exhibits activity similar to SWS in mammals. If active and deep 

sleep in the fly induce reduced and loss of consciousness similar to REM and SWS sleep in 

mammals, then Φ ought to gradually reduce from wakefulness to active sleep and finally 

deep sleep. Such a graded decrease has been observed in humans and rats using measures 

inspired from IIT (Massimini et al., 2010; Abásolo et al., 2015; Andrillon et al., 2016), but 

not for the measures as defined directly by IIT itself. 

5.4 - Assessing contents of consciousness 

While in this thesis I have focussed only on distinguishing levels of consciousness, IIT deals 

also with the contents of consciousness - any conscious system must after all be experiencing 

and conscious of something. IIT posits that the maximally irreducible cause-effect structure 

(MICS) characterises what a given system is experiencing. As seen in Chapter 2, the proxy of 

the MICS which I use, the IIS, does indeed reduce during anaesthesia. However, does it also 

correspond to the experiences of the fly? 

 

This is currently a difficult question to address. While the fly brain provides many advantages 

over human brains for applying the ideas of IIT, it has the severe drawback in that we may be 

unable to characterise the phenomenology of the fly. Indeed, this problem extends already to 

essentially any non-human system (Nagel, 1974), where we lack the ability to communicate 

in order to understand a subject’s experience. One might try to make progress towards 

characterising experience through behaviours in response to different stimuli. Such basic 

psychophysics has been employed in flies, characterising perception such as brightness, 

colour, size, and figure-ground discrimination (Menne & Spatz, 1977; Reichert & Bicker, 

1979; Fresquet & Médioni, 1993; Grabowska et al., 2018; Aptekar et al., 2015). 

 

However, current methods of understanding a subject’s experience require more than first-

order behavioural responses to stimuli. For example, in humans, blindsight patients can 

discriminate facial emotions without consciously perceiving them (Morris et al., 2001), and 

even successfully navigate around obstacles despite lacking visual experience of them (de 
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Gelder et al., 2008; Striemer et al., 2009). For such cases, second-order report, metacognition, 

where subjects report how confident they are in their task choices, is used in addition to first-

order responses to help inform whether stimuli are consciously perceived or not (Fleming & 

Lau, 2014). While metacognition has not been investigated in flies, insects such as honey 

bees have been reported to demonstrate it (Perry & Barron, 2013). As the neural substrate 

proposed for supporting metacognition in honey bees, specifically neural interactions in the 

mushroom bodies (Perry & Barron, 2013), also exists in flies, investigating metacognition in 

flies might yield progress towards understanding their experiential contents. 

 

Meanwhile, an additional problem is that of directly relating the cause-effect structures put 

forward by IIT with phenomenology. Specifically, for cause-effect structures to be a 

compelling measure, they ought to go beyond simply correlating with specific conscious 

experiences. In a similar manner as for Φ in the context of varied levels of consciousness, 

cause-effect structures need to generalise beyond simple correlations such as those which 

might also be obtained by non-theory driven measures. One proposed approach to address 

this is to use category theory (Tsuchiya & Saigo, 2021), whereby a strong notion of 

equivalence, categorical equivalence, can be assessed between experiences and cause-effect 

structures. Critical to this approach is the characterisation of relationships between different 

experiences, together with relationships between cause-effect structures, above simply 

matching cause-effect structures to experiences. Similarity ratings, subjective reports 

reflecting how similar an experience is to another (Hiramatsu et al., 2011; Kriegeskorte & 

Kievit, 2013), have been proposed as a potential way of characterising these relationships 

(Fink et al., 2021; Tsuchiya & Saigo, 2021). While, to my knowledge, similarity ratings have 

not been obtained from flies, it might be possible to infer similarities of perceived stimuli by 

finding just noticeable differences (Stevens, 1957) between pairs of stimuli, in combination 

with metacognition. 

 

Overall, assessing whether the MICS as proposed by IIT corresponds to conscious 

experiences is potentially more difficult than assessing whether Φ corresponds to levels of 

consciousness. Current and prospective methods for understanding the experiences of a 

system rely on introspective, behavioural reports which are most understandable for more 

complex systems similar to ourselves. However, whether IIT’s ideas can be applied faithfully 

for these systems is unclear. Meanwhile for the fly brain, one currently needs to rely solely on 

behaviours which are unrelatable to ourselves to infer the fly’s experiences. Developing 
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paradigms to capture metacognition and similarity ratings in flies may allow us to better 

understand the conscious experience of a fly and then evaluate the construct validity of the 

MICS. Failing this, a middle ground for evaluating the construct validity of the MICS might 

be slightly larger, but still relatively small and simple systems, such as the honey bee brain. 

5.5 - Updates to integrated information theory 

It should be noted that IIT 3.0 is not the end-all of integrated information theory. Theoretical 

concepts which are identified as problematic have been and are being addressed in order to 

build a more sound and comprehensive theory. Consequently, IIT is actively being revised 

and updated, and updated versions of IIT also require empirical evaluation. 

 

One such issue which has since been revised is that regarding the partitioning of 1-channel 

mechanisms. As brought up in Chapter 2, IIT 3.0 does not require partitioning a mechanism 

in order to assess integrated information φ for that mechanism. Rather, partitions are only 

required to separate a mechanism-purview combination such that some part of the purview 

has its connection from the mechanism noised. This seems to be logically inconsistent with 

the aim of IIT 3.0’s integration postulate, which is to assess whether a mechanism contributes 

more than its constituent parts. Accordingly, the requirements for partitions used to assess φ 

have since been updated (Albantakis et al., 2019). Specifically, as a single channel has no 

constituent parts, the only partition which should be used to assess φ of 1-channel 

mechanisms is that where all connections from the mechanism to the purview are noised. 

 

Another issue deals with the uniqueness of IIT’s postulates. Though the core aspects of 

experience, as identified by IIT have gone fairly unchallenged (beyond relatively small issues 

of semantics regarding how the axioms should be interpreted; Bayne, 2018), the postulates 

and derivation of measures put forward by IIT have faced more criticism. Specifically, the 

postulates of IIT 3.0 do not all uniquely follow from axioms. One example is the use of the 

earth mover’s distance (EMD) to characterise “information” (distance between a probability 

distributions). While EMD is explicitly chosen over standard information theoretical 

measures, such as Kullback-Leibler divergence as used in earlier versions of IIT (Tononi, 

2004, 2008), due to its metric properties (Oizumi et al., 2014), there is no principled reason 

from IIT’s axioms as to why it should be used over some other measure (Cerullo, 2015; 

Tegmark, 2016; Barrett & Mediano, 2019). To address this, a new measure of information 
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has been proposed, intrinsic difference, which is derived taking into account IIT’s intrinsic 

axiom (Barbosa et al., 2020), and which will likely be used in future versions of IIT in place 

of EMD. 

 

A third type of revision is the addition of ideas which are lacking in IIT 3.0. While IIT 3.0 

derives a measure of conscious contents, a cause-effect structure consisting of separate 

mechanisms which exist intrinsically to the system, it is not explicit as to how they exist to 

the system. Specifically, how do mechanisms, being in some particular states, come together 

to form a particular, unitary experience? To try and address this question, the notion of 

“relations”, which were originally already described to a small extent in previous versions of 

IIT (Tononi, 2008) but left out in IIT 3.0, have been formalised in a more updated framework 

(Haun & Tononi, 2019). Relations aim to describe how mechanisms overlap with each other 

to give a unified experience with complex components such as, for example, some arbitrarily 

shaped boundary in the visual field. Updates such as this are likely to be very important in the 

context of assessing the link between cause-effect structures and experiences, as they provide 

tools to better describe how IIT’s ideas come together to support some specific kind of 

experience. 

 

All the above updates seemingly only add to the complexities, and consequently 

computational costs, of IIT. So, a last “improvement” for the theory would be the provision 

of alternate, cheaper measures which still capture the core ideas of those directly put forward 

by it. While previous versions of IIT have had multiple “improved” derivations of Φ 

proposed, allowing for greater feasibility in applying IIT to real data, to my knowledge no 

such alternate derivation of Φ based on IIT 3.0 has been put forward. Existing alternate 

measures (Barrett & Seth, 2011; Oizumi, Tsuchiya, et al., 2016; Oizumi, Amari, et al., 2016; 

Tegmark, 2016; Mediano et al., 2019) lack the improvements of IIT 3.0, such as the 

consideration of both causes and effects of a system instead of only its causes (Tononi, 2004, 

2008), and completely ignore the contents of consciousness, focussing only on approximating 

Φ. As the infeasible-to-apply-fully IIT becomes even more infeasible due to revisions and 

additions such as those described above, “improved” derivations of Φ and the MICS for IIT 

3.0 and subsequent versions of the theory would be of great benefit towards applying the 

more up-to-date notions of IIT to real data. 
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5.6 - Concluding remarks 

The integrated information theory of consciousness approaches the question of how physical 

interactions can result in consciousness by taking an introspective approach. By identifying 

core aspects of consciousness and from these postulating the necessary physical interactions 

to support them, it gives clear predictions regarding the behaviour of its proposed measures 

as consciousness varies in a system. 

 

In this thesis, I have worked towards assessing the construct validity of the theory’s 

measures, by applying the measures proposed in its current iteration, IIT 3.0, to recordings 

from the fly brain. Consistent with expectations from the theory, its measures, both Φ and its 

associated cause-effect structure, distinguish consciousness from anaesthesia, and Φ seems to 

be maximal at some non-minimal temporal scale. However, in the context of practicality, 

much simpler measures seem to also distinguish wakefulness from anaesthesia with similar 

performance, despite theoretical links between them and consciousness being unclear. 

 

Overall, there remains much work to be done. As a theory of consciousness, IIT deals not 

only with levels of consciousness, but also contents of consciousness. Whether its proposed 

measure for contents of consciousness, the cause-effect structure of a system, accurately 

captures highly varied conscious experience needs to be assessed. Next, the theory itself is 

currently undergoing updates and revisions so that its postulates more accurately deal with 

and reflect the core aspects of conscious experience. Measures incorporating these updates 

would need empirical assessment. Finally, IIT faces issues with practicality. Even for the fly 

brain, it is currently infeasible to apply the theory’s measures to the whole brain at the level 

of individual neurons. Whether this issue can be overcome through breakthroughs in theory 

or technology and computing remains to be seen. 
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