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Abstract

This thesis explores and implements a new multilevel Monte Carlo sampler in Bayesian
inverse problems. Inverse problems are important in the mathematical problems that we
cannot directly observe the model parameters. Bayesian approach allows us to solve the
inverse problems using limited number of data and prior information on the parameters.
Monte Carlo method is widely used in calculating approximations of expectation of some
functions in Bayesian inference. However, typical Monte Carlo method in Bayesian in-
ference like Markov chain Monte Carlo (MCMC) is hard to apply in large-scale inverse
problems since MCMC constructs a sequential Markov chain, which is hard to parallelize,
and simulations that evaluating the posterior distribution require solving expensive forward
model.

We combine the multilevel Monte Carlo and the optimization-based samplers, includ-
ing Randomized-and-Then-Optimize (RTO) and Implicit Sampling, to address the chal-
lenges that classical MCMC faces, and implements the samplers in computationally costly
Bayesian inverse problems including an ODE model and a PDE problem. Simulations using
the optimization-based samplers like RTO can be parallelized which allows us to develop
efficient MCMC algorithms or self-normalizing estimators to solve the inverse problems.
Multilevel Monte Carlo is proven to significantly reduce the computational cost of Monte
Carlo simulation, which helps us further improve the RTO method. To adapt the multilevel
method on the optimization-based samplers, we develop the complexity theorem for multi-
level self-normalizing estimators. The corresponding numerical experiments produce good
results on RTO method, showing a high effective sample ratio in the importance sampling
scheme, and the variances of the self-normalizing estimators converge when discretization
size decreases. The computational results also validate the new complexity theorem for
multilevel self-normalizing estimators. In addition, the complexity theorem provides a way
to calculate the optimal sample size for the multilevel self-normalizing estimators. The
thesis also implements a technique for the RTO method, that applies for parameters that
changes dimension at every level.



Declaration

This thesis contains no material which has been accepted for the award of any other degree
or diploma at any university or equivalent institution and that, to the best of my knowledge
and belief, this thesis contains no material previously published or written by another
person, except where due reference is made in the text of the thesis.

Chuntao Chen
08 Apr 2022

i



Acknowledgements

Thanks for the proof-reading service by the editor, Joan Gladwyn from Proper Words. Her
service includes the grammar checking and format suggestions throughout this thesis. I
would like to convey my thanks for the administrative support provided by the School of
Mathematics at Monash University. I wish to thank John and Linda for helping me with all
administrative requirements. I thank for the fellow PhD students and the friends I make in
Monash University for making these years enjoyable. I would like to thank for the research
and writing suggestions from the panelists, Tianhai Tian, Tim Garoni, Greg Markowsky and
Hans De Sterck. Their invaluable feedback on all research milestones pushes and encourages
me vastly. I am immensely grateful for my supervisor, Tiangang Cui, who mentors and
guides me in researching and writing for the 4 year-long PhD program. I am grateful for his
timely feedback all the time, especially in the thesis writing process. I would like to thank
for his patience and encouragement that helps me go through several lock-down periods in
the past two years.

ii



Contents

Symbols 2

1 Introduction 4

2 Background and literature 7
2.1 Bayesian inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Finite-dimension parameters . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Infinite-dimension parameters . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Self-normalizing estimator . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Effective Sample Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Multilevel Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Continuous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 MCMC sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Multilevel RTO method 22
3.1 Multilevel self-normalizing estimator . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Transport-mapping-based importance sampling . . . . . . . . . . . . . . . . 29

3.2.1 Transport mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Prior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Coupling variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 RTO method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Target distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 RTO algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



CONTENTS

3.3.3 Transport mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 RTO in high-dimensional problems . . . . . . . . . . . . . . . . . . . 41
3.3.5 Multilevel RTO estimator . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Analysis of complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Decomposition of MSE . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Delta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Numerical experiments of the Multilevel RTO method 62
4.1 Prey and predator model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Numerical solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.3 Convergence rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.4 Optimal sample size and MSE . . . . . . . . . . . . . . . . . . . . . . 72

4.2 PDE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Problem background . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Optimal sample size and MSE . . . . . . . . . . . . . . . . . . . . . . 83

5 Implicit Sampling 85
5.1 Implicit Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Implicit Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Multilevel Implicit Sampling algorithm . . . . . . . . . . . . . . . . . 87

5.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.1 Convergence plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Optimal sample size and MSE figure . . . . . . . . . . . . . . . . . . 90
5.2.3 Comparison with RTO . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Change of parameter dimension 96
6.1 Theoretical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Tomography problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusion 107

iv



Nomenclature

1



Symbols

α convergence rate of variance in the complexity theorem

β unnormalized weight

D discretization map

Fh forward model

g biasing distribution

H target distribution of RTO method

In identiy matrix with dimension n

IQ integral of quantity of interest

J Jacobian of a function

l level in multilevel method

L likelihood function

n dimension of parameter

N sample size

p prior function

P vector of quantity of prey and predators

Q quantity of interest

Q̂1 the first type of multilevel self-normalizing estimator

Q̂2 the second type of multilevel self-normalizing estimator

R matrix R in QR factorization

T transport mapping

U the upper triangle matrix in QR factorization

w weight in importance sampling

x parameter vector in infinite-dimension space

x parameter vector in finite-dimension space

y data
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Symbols

Ŷ the numerator in multilevel estimator Q2

z normalizing constant

ẑ the denominator in multilevel estimator Q2

ζ convergence rate of variance in the complexity theorem

η convergence rate of computation complexity in the
complexity theorem

Γobs covariance matrix of noise in the forward model

Γprior covariance matrix of prior distribution

θ unknown parameter in delta method

Υ function of unknown parameter in delta method

λξ scalar of random map in Implicit Sampling

ξ reference variable in transport mapping
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Chapter 1

Introduction

Many mathematical modeling problems need to solve the inverse problems which are essen-
tially to retrieve the unknown parameters in models when the noisy data is known. If the
solution of the inverse problem is not unique, or the small perturbations of noise cause great
changes of data, it is called an ill-posed inverse problem. Bayesian approach can remove
the ill-posedness. Bayesian inference on the inverse problem [30, 28, 50] uses some prior
information on parameters and constructs the posterior distribution using Bayes’ theorem.
In this way, the known data can cooperate with prior information to form the posterior
distribution of parameters. Bayesian inverse problem can be formulated in the finite dimen-
sional space and the infinite dimensional space [49, 40, 31]. However, the inverse problem
in the infinite dimensional space is limited to the finite dimensional data, and people only
want to retrieve a finite number of parameters, which turns the inverse problem into a
discrete form [13, 29].

In practical scientific research and application, we usually want to calculate the Quantity
of Interest (QoI), which is the expectation of some functions over the posterior in Bayesian
inference. For example, in a prey and predator model, given some observations in past
years, people might want to know the expected population of the prey at a future time.
There are many ways to compute expectations, Monte Carlo method is one of them. The
typical ways to simulate the samples in Bayesian inverse problem are Markov chain Monte
Carlo (MCMC) methods [46, 17, 9] and sequential Monte Carlo (SMC) methods [8, 6, 32].

In practice, we usually cannot use Monte Carlo to simulate the posterior of Bayesian
problem directly. We will sample a proposal density instead and use the corresponding
weights, which is the ratio of the proposal density and the posterior. The posterior is
obtained after weighting the proposal density. We have a self-normalizing estimator af-
ter the weighting process. In this thesis we use the optimization-based samplers to con-
struct the proposal densities. The optimization-based samplers explored in this thesis are

4



Randomized-and-Then-Optimize (RTO) and Implicit Sampling. RTO was first developed
by J. Bardsley [5] at 2014. RTO sampler is first to add the perturbation to the equation
constructed from negative log of posterior, and then to solve the resulting optimization equa-
tion. Implicit Sampling has been applied in particle filters about a decade ago [10, 38, 39].
Implicit Sampling is quite like the RTO. It also requires solving an optimization equation
constructed from negative log of posterior. In both samplers, the proposal densities are un-
normalized. The resulting estimators of posteriors are biased self-normalizing estimators.

There are plenty of research on improving Monte Carlo. Multilevel Monte Carlo (MLMC)
is a way to further increase the efficiency of Monte Carlo simulation. Multilevel idea was
introduced to Monte Carlo simulation by S. Heinrich [23] in 2001. M. Giles first applied
MLMC in a stochastic differential equation in 2008 [18]. He further summarizes the findings
including generalization and extension in the article [19]. Multilevel estimator decomposes
QoI into a telescope sum including the QoI’s calculated from different levels, where the
coarse levels require less computational cost, and the fine levels asks for more cost. The
advantage of MLMC is that we can put most of the cost at the coarse levels and thus reduce
the overall cost.

A search of the literature revealed few studies which implement the MLMC with the
optimization-based samplers. On the other hand, there are few literatures on the complexity
of the multilevel self-normalizing estimators. The importance and originality of this thesis
are that it integrates MLMC with optimization-based samplers for solving computationally
expensive inverse problems. When using these multilevel optimization-based samplers, we
also analyze the complexity of the resulting multilevel ratio estimator, or multilevel self-
normalizing estimator by means of the delta method. We demonstrate the new multilevel
samplers on an ODE and a PDE problem. The numerical results from these problems
also confirm the theoretical results of the complexity analysis. Besides these results, we
also present the changing dimension technique in RTO method that applies in parameters
which change dimension at each level, with an application in a tomography model.

This thesis is composed of seven themed chapters. Besides this introduction chapter and
the conclusion chapter, Chapter 7, the remaining parts of the thesis proceeds as follows:
Chapter 2 of this thesis will provide the background knowledge of Bayesian inverse problem,
importance sampling, multilevel method and MCMC; Chapter 3 is concerned with the
theoretical results for multilevel RTO method, which includes transport mapping, coupling
techniques, RTO algorithm and the complexity of the resulting multilevel self-normalizing
estimator; Chapter 4 is the numerical results of experiments of multilevel RTO method
in prey and predator model and a PDE model, i.e., the direct applications of the third
chapter; Chapter 5 introduces another optimization-based sampler, Implicit Sampling and
its corresponding numerical results; Chapter 6 establishes a new technique to deal with
the parameters which change dimension at every level, and includes the application with
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multilevel RTO method in a tomography problem.
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Chapter 2

Background and literature

This chapter will introduce the notation for this thesis, provide the literature review and
introduce the problem setting. It starts with the inverse problem in a Bayesian framework.
After that we review importance sampling, Markov Chain Monte Carlo and multilevel
Monte Carlo method.

2.1 Bayesian inverse problem

An inverse problem is the process of retrieving the parameter from some observed data in
a model that represents the parameter-to-observation map. Bayesian inference [50, 30, 49]
offers a way to solve the inverse problem in the Bayesian framework. We first build a prior
distribution of parameter, and build a likelihood function that can change or update the
prior into posterior distribution of the parameters. The prior belief or prior distribution is
the marginal distribution of parameters. The likelihood is the conditional distribution of
data given the parameters, which can be considered as the bridge between the prior belief
and the posterior. The prior distribution and the likelihood can vary with assumptions and
hence the posterior will follow. We discuss this in the current section.

We will consider two scenarios. One has finite-dimension parameters and the second one
has infinite-dimension parameters. In the second scenario, we also consider the hierarchical
model.

7



2.1. BAYESIAN INVERSE PROBLEM

2.1.1 Finite-dimension parameters

We start with an example. Suppose the dynamics of an ecological system take the form

∂P

∂t
= f(P, t; θ). (2.1)

where P ∈ RdP is a vector of the size of some populations; t is the reference time; θ ∈ Rdθ

is the unknown parameters describing the ecosystem; f : RdP × [0, T ]×Rdθ → RdP is some
function of P , t and θ. We collect observation of P at times ti, i = 1, 2, ..., dT :

yi = Θ
(
P (ti)

)
+ ϵi, . (2.2)

where Θ : RdT → Rdy is the observation map, and ϵi is a zero mean noise. We denote
x = {P (t = 0), θ} including the initial value of P , and θ. Equations (2.1) and (2.2) define
a parameter-to-observation map F : Rn → Rm which takes the form:

y = F(x) + e, (2.3)

where n = dP + dθ is the dimension of parameter x, and m = dT × dy is the number of
observation in time interval [0, T ] of this ecosystem model; e is assumed to be the Gaussian
noise with zero mean and covariance Γprior. We often refer to the map F as the forward
model.

The posterior π(x|y) is proportional to the product of prior p(x) and the likelihood
L(y|x) up to a constant z:

π(x|y) =1

z
L(y|x)p(x), where z =

∫
L(y|x)p(x)dx. (2.4)

We can numerically discretize the forward model by time t by Euler’s method or the
Runge–Kutta method. Suppose we use timestep h, then this defines a discretized model
Fh : Rn → Rm

y = Fh(x) + e. (2.5)

Fh converges to F as h → 0.
The numerical discretization of the forward model also defines the discretized likelihood.

Denoting the prior, discretized likelihood and posterior as p(x), Lh(y|x), and πh(x|y) re-
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2.1. BAYESIAN INVERSE PROBLEM

spectively, the discretized posterior takes the form

πh(x|y) =
1

zh
Lh(y|x)p(x), (2.6)

where zh is a constant. We denote e is Gaussian with zero mean and covariance Γobs. We
have the following likelihood function:

Lh(y|x) = (2π)−
n
2 |det(Γobs)|−

1
2 exp

(
− 1

2
(Fh − y)TΓ−1

obs(Fh − y)
)
. (2.7)

Suppose we want to predict P at some future time TP , given the observation data. We
can define the map from the parameter to the prediction of P at TP as the Quantity
of Interest(QoI), Q(x), e.g., Q(x) ≡ P (TP ). The goal is to approximate the posterior
expectation:

Eπ(Q) ≈ Eπh
(Qh), (2.8)

where Qh is the QoI integrated over πh.
Figure (2.1) is the prey and predator model [44], an example of the ecological system.

The blue curve is the population of prey in an area while the red curve is the population
size of predators in the same range. These two lines are directly generated from the model.
Suppose we have the observed data of both populations, which are represented by the
small circles or squares at time ti = 0, 1, 2, ..., 35. The quantity of interest here can be the
population size of prey or predators at a future time larger than 35.

2.1.2 Infinite-dimension parameters

In some problems, the parameters are functions in space. In this case, we assume infinite-
dimension parameter x(s), s ∈ Ω in separable Hilbert space H (Ω), defined on a bounded
domain Ω ∈ R>0. Suppose there is a forward model, F : H → Rm with a noise e,

y = F(x) + e, (2.9)

where y ∈ Rm is the response or data of this forward model and m is the dimension of the
data. Typical problems with this setup include the inverse problem generated by Partial
differential equation (PDE).

Suppose we have a prior measure µprior such that uprior(H ) = 1. By Bayes’ law, the

9



2.1. BAYESIAN INVERSE PROBLEM
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Figure 2.1: Prey and predator model

posterior measure µpost on a volume dx ∈ H follows

µpost(dx) =
1

z
L(y|x)µprior(dx), (2.10)

where L(y|x) is the likelihood function [49].
If we assume the noise is Gaussian, i.e., e ∼ N(0,Γobs), then the likelihood function

L(y|x) of y becomes

L(y|x) ∝ exp

(
− 1

2

(
y − F(x)

)T
Γ−1
obs

(
y − F(x)

))
. (2.11)

For some problems, the likelihood function may not be Gaussian, e.g., Poisson likelihood
[2, 4] is used in the Positron Emission Tomography (PET) imaging problem in Chapter 6.

For computational purpose, we have to discretize the parameter x(s) from the infinite
space H to a finite vector space xh = [x1, x2, . . . , xn]

T and the prior measure. We also
need to discretize the forward model. Here is an example of a Gaussian process [25] prior
and its discretization.

Example 2.1.1. We specify the Gaussian process prior using Laplace-like stochastic partial

10



2.1. BAYESIAN INVERSE PROBLEM

differential equation (SPDE), which is

(γ −∆)η/2x(s) = W (s), for s ∈ Ω ⊂ Rd, (2.12)

where W (s) is a Gaussian white noise, ∆ is the Laplace operator and γ is a scalar variable
to model the correlation of the Gaussian process. The finite element method is employed
to discretize the prior (2.12). We discretize x(s) as x(s) =

∑n
j=1 ϕj(s)xj, where {ϕj(s)}nj=1

is a set of locally compact basis functions and xj is from the discretized vector xh =

[x1, x2, . . . , xn]
T . The support of the basis functions is characterised by h.

In the Galerkin formulation of stochastic partial differential equations, M , K ∈ Rn×n

are some sparse matrices with entries

M ij = ⟨ϕi, ϕj⟩, andK = ⟨∇ϕi, ∇ϕj⟩.

If Ω ⊆ R, the we can select η = 1 for the case d = 1, so that the discretized covariance
P γ := Γ−1

prior takes the form
P γ = (γM +K). (2.13)

For a given γ, the discretized prior is ph(xh) = N(0,P−1
γ ).

We also need to discretize the forward model Fh : Rn → Rm,

y = Fh(xh) + e, (2.14)

where y ∈ Rm and xh ∈ Rn. After the discretization, the prior measure µprior becomes a
probability density in a finite-dimension space, ph(xh). The discretized posterior follows:

πh(xh|y) =
1

zh
Lh(y|xh)ph(xh) (2.15)

=
1

zh
(2π)−

m
2 |det(Γobs)|−

1
2 exp

(
− 1

2

(
y− Fh(xh)

)T
Γ−1
obs

(
y− Fh(xh)

))
ph(xh).

(2.16)

2.1.3 Hierarchical model

The prior function ph(xh) can be a Gaussian random field [34, 47] or Gaussian process
with a covariance operation Γprior, controlled by some hyperparameters. This section will
introduce the hierarchical model involving hyperparameters [51, 2, 24]. In example (2.1.1),
the hyperparameter controls the correlation of the prior. In the inverse problem, we may
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2.1. BAYESIAN INVERSE PROBLEM

also have other hyperparameters that can control other modeling assumptions, e.g., the
variance of prior or the variance of observation noise in the likelihood.

If ph(xh) is a Gaussian prior with precision matrix P γ, then the discretized prior can
take the form

ph(xh|δ, γ) ∝ δ
n
2 det(Pγ)

1
2 exp

(
− δ

2
||xh||2P γ

)
. (2.17)

We can also impose some assumptions about the likelihood function. If noise e of the
forward model takes the form

e ∼ N(0, λ−1Γobs), (2.18)

where λ ∈ R is the variance of the hyperparameter controlling the measurement process,
and Γobs is a variance matrix of the observation, i.e., data.

We can also estimate the hyperparameter in the Bayesian framework,

πh(xh, λ, δ, γ|y) ∝ Lh(y|xh, λ)p0(xh|δ, λ)p0(λ)p0(δ)p0(γ). (2.19)

The following densities are used to draw the hyperparameter samples. In some cases,
marginal posterior density is used to draw hyperparameter samples,

p(λ, δ, γ|y) ∝ Lh(y|λ, δ, γ)p0(λ)p0(δ)p0(δ). (2.20)

The marginal likelihood L(y|λ, δ, γ) is

Lh(y|λ, δ, γ) =
∫

Lh(y|xh, λ)p0(xh|δ, γ)dxh. (2.21)

The marginal likelihood above is also a part of the conditional posterior, which is used to
draw parameter samples, xh:

p(xh|y, λ, δ, γ) =
1

L(y|λ, δ, γ)
Lh(y|xh, λ)p0(xh|δ, γ). (2.22)

Since the marginal likelihood is usually unknown, it can be considered as a normalizing con-
stant of the conditional posterior. Therefore, only the unnormalized conditional posterior
is evaluated in practice:

f(xh|y, λ, δ, γ) = Lh(y|xh, λ)p0(xh|δ, γ). (2.23)

12



2.2. IMPORTANCE SAMPLING

2.2 Importance sampling

The posterior can be concentrated in some sub-domains of the parameter space instead
of the whole support of the parameter space. In addition, the normalizing constant of the
posterior is unknown. Thus, we can use importance sampling (see [35], chapter 9 of [43], and
[45]) to help shape the unnormalized posterior and estimate the normalizing constant. Here
we introduce importance sampling and the corresponding estimators for the expectation of
QoI.

2.2.1 Importance Sampling

In general, we consider integrating some function Q(x) over the target distribution π where
the support of x is X for all x ∈ X. We define the integration by

IQ = Eπ

(
Q(x)

)
=

∫
π

Q(x)π(x)dx. (2.24)

To evaluate the integration, it is natural to discretize the space X and evaluate Q(·) and
π(·) on each point of the discretized X, and sum over the products Q(·)π(·). Importance
sampling calculates this integral by finding another distribution g(·) such that

IQ = Eπ

(
Q(x)

)
=

∫
Q(x)

π(x)

g(x)
g(x)dx = Eg

(
Q(x)

π(x)

g(x)

)
. (2.25)

In other words, instead of integrating over the target density, we want to integrate over
g(·). Importance sampling can be summarized in the following procedures:

1. Draw samples {xi}Ni=1 from g(·);

2. Denoting w(x) = π(x)
g(x)

, calculate the ratio of densities:

w(xi) =
π(xi)

g(xi)
; (2.26)

3. Estimate the integral by

Q̂IS =
1

N

N∑
i=1

Q(xi)w(xi). (2.27)

13



2.2. IMPORTANCE SAMPLING

To make the importance sampling estimator satisfy the strong law of large numbers
(SLLN) and central limit theorem (CLT), we need to impose certain sufficient conditions
on g and π.

Strong Law of Large Number. If a sequence of i.i.d. variables Xi has a common finite
expected value E(Xi) = µ < ∞ for i = 1, 2 ... , then the sample mean

XN =

N∑
i=1

Xi

N

a.s.−−→ µ (2.28)

converges.

We impose that the support of function Q(x)π(x) is a subset of support of g(x), i.e.,
supp

(
Q(x)π(x)

)
⊆ supp

(
g(x)

)
, which guarantees that the ratio of Q(x)π(x) and g(x) has

finite expectation. Then by SLLN, Q̂IS converges to IQ.

Central Limit Theorem. If a sequence of i.i.d. variables Xi has a common finite expected
value E(Xi) = µ and finite variance V(Xi) = σ2, then the following random variable

√
N(XN − µ)

d−→ N(0, σ2)

converges.

The variance of Q(x)w(x) is finite only when its second moment is finite:

Eg

(
Q2(x)

(
π(x)

)2(
g(x)

)2) =

∫
Q2(x)

(
π(x)

)2(
g(x)

)2 g(x)dx
=

∫
Q2(x)

π(x)

g(x)
π(x)dx

=Eπ

(
Q2(x)

π(x)

g(x)

)
.

If the weighted second moment Eπ

(
Q2(x)π(x)

g(x)

)
is finite, then by CLT, the mean ofQ(x)w(x)

converges to IQ (sec 3.3.2 in [45]).
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2.2. IMPORTANCE SAMPLING

2.2.2 Self-normalizing estimator

In practice, the density ratio w is often known only up to a normalizing constant. Suppose
we only know the ratio β of the unnormalized posterior f(·),

f(·) = z π(·), (2.29)

and the biasing density g(·) up to a normalizing constant z,

β(x) ≡ f(x)

g(x)
= z

π(x)

g(x)
. (2.30)

Here is a way to estimate z. Rearranging (2.30), we have:

w(x) =
π(x)

g(x)
=

β(x)

z
. (2.31)

The weight z is unknown in these two equations (2.30) and (2.31) above, and therefore
we need to estimate z. First we integrate both sides of (2.31):∫

π(x)

g(x)
g(x)dx =

∫
β(x)

z
g(x)dx. (2.32)

The left-hand side equals 1, given supp(π) ⊆ supp(g), as both π and g are probability
densities. Thus, we have

z =

∫
β(x)g(x)dx. (2.33)

This provides an estimator of z:

ẑ =
N∑
i=1

β(xi). (2.34)

We can now apply the self-normalizing importance sampling scheme. First we estimate
the weight using (2.31) and (2.34):

ŵ(xi) =
β(xi)

N∑
i=1

β(xi)

. (2.35)
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2.3. MULTILEVEL MONTE CARLO

Using the same estimator (2.27), we replace w with ŵ. Finally, the self-normalized estimator
for IQ is

Q̂SN =

N∑
i=1

β(xi)Q(xi)

N∑
i=1

β(xi)

. (2.36)

It is the ratio between the unbiased estimators. But for finite samples size, Q̂SN is biased,
although we prove that the bias can decay fast with the increasing sample size.

2.2.3 Effective Sample Ratio

Even though any distribution g(·) with supp
(
π(x)

)
⊆ supp

(
g(x)

)
can be the biasing distri-

bution, there apparently exist some better distributions than others. For instance, if g(x)
is closer to π(x), then it is more efficient to obtain samples in the concentrated domain of
π(x). One way to estimate the efficiency of importance sampling scheme is the Effective
Sample Ratio(ESR):

ESR ≡

N∑
i=1

(
w(xi)2

)
( N∑
i=1

w(xi)
)2 . (2.37)

This value 0 < ESR ≤ 1. If the weight w is same for every xi, i.e., g(xi) ∝ π(xi) for all i,
then ESR equals 1. For biasing distributions g(·), the larger ESR, the closer to the target
distribution π(·).

2.3 Multilevel Monte Carlo

Multilevel method was applied to the Monte Carlo algorithm in a stochastic differential
problem by Michael Giles [18]. Multilevel estimator has been proved to be more com-
putationally efficient than the standard Monte Carlo given certain technical requirements
[11, 18]. This subsection will introduce the multilevel estimator and its corresponding
complexity theorem. This will be used in later chapters to accelerate the computation of
posterior expectation.

Suppose we discretize a forward model with a discretization size hl at the level l ∈
{0, 1, ..., L − 1, L}. When increasing l, hl becomes smaller and the model become more
accurate. Simultaneously, large l requires a higher computation cost. The discretized for-
ward model together with the potential prior discretization define the discretized posterior

16



2.3. MULTILEVEL MONTE CARLO

πl(xl|y) ≡ πhl
(xl|y) where xl is the parameter at level l. Similarly we can also discretize

the QoI using hl, which leads to Ql ≡ Qhl
Obviously, the discretized QoI, Ql, takes more

time to compute than Qhl−1
.

The motivation of multilevel is to compute more samples at the coarser levels, like the
zeroth level, and less at the finer levels. In this case a multilevel estimator has the following
form,

EπL
[QL] = Eπ0 [Q0] +

L∑
l=1

(
Eπl

[Ql]− Eπl−1
[Ql−1]

)
, (2.38)

IQ ≡ Eπ[Q] ≈ EπL
[QL] + Eπ[Q]− EπL

[QL]︸ ︷︷ ︸
error

. (2.39)

where the first equation follows linearity of expectation. The summation in equation (2.38)
is the telescope sum of the QoI. Eπl

[Ql] − Eπl−1
[Ql−1] is evaluated at consecutive levels.

Eπ[Q] − EπL
[QL] is the error between the QoI evaluated at target density π and the dis-

cretized density QL which is estimated in equation (2.38).
We denote each term above as ∆Q0 ≡ Q0 and ∆Ql ≡ Ql − Ql−1 for l ≥ 1. The

estimation of each ∆Ql will be

∆̂Ql ≡
1

Nl

Nl∑
i=1

∆Ql(x
i),

where xi is the parameter and Nl is the sample size at level l. The multilevel estimator
follows as

Q̂ML ≡
L∑
l=0

∆̂Ql. (2.40)

The computational complexity of Q̂ML is given in the following theorem [14, 18, 20]:

Theorem 2.3.1. Suppose the estimators Q̂l, Q̂
ML and ∆̂Ql are defined as above. If there

exist positive constants ζ, α, and η such that:

1. the discretization error is bounded as E
[
∆̂Ql − IQ

]
= O(hζ

l );

2. the variance of each ∆̂Ql defined above is bounded as V
[
∆̂Ql

]
= O(

hα
l

Nl

);

17



2.4. MARKOV CHAIN MONTE CARLO

3. the computational complexity of ∆̂Ql is bounded by Cl = O(Nlh
−η
l ),

then the computational cost of multilevel estimator Q̂ML with a mean square error(MSE)

E[
(
Q̂ML − IQ

)2
] < ϵ2, is

CML =


O
(
ϵ−2
)
, α > η,

O

(
ϵ−2
(
log(ϵ)

)2)
, α = η,

O
(
ϵ−2−(η−α)/ζ

)
, 0 < α < η.

This theorem states that the computation complexity, or the computation cost, when
imposing a certain MSE, depends on the converging rate of bias, variance of ∆̂Ql, and
the computational cost of ∆̂Ql in the telescope sum. The first condition deals with the
discretization error [21]. This error is determined by the numerical method [41] used during
the computation. For example, if we use the Euler’s method, whose error at a given time
is proportional to the step size, then the rate ζ equals 1. The other two conditions also
depict the relationship with sample size Nl. Ideally, we want the variance of ∆̂Ql to decay
at a faster rate than the increasing rate of the computational cost of ∆̂Ql, which falls in the
case α > η. In this case, the cost CML = O(ϵ−2). If the converging rate of variance is less

than the increasing rate of cost, then the computation cost of Q̂ML increases greatly, which
is in the case α < η. In this case, multilevel Monte Carlo might be worse than the standard
Monte Carlo. The complexity of standard Monte Carlo has a complexity CMC = O(ϵ−ι)
where ι > 2 [1]. Different converging rates will be discussed in greater depth in later
chapters.

2.4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) (chapter 12 of [35]) is a set of algorithms to construct
a Markov chain whose stationary or equilibrium distribution is the target distribution.
It is also broadly used as a solution to solve Bayesian inverse problems [16, 26]. The
following subsections will introduce the basic properties of Markov chain and bring out
the Metropolis–Hastings algorithm [22, 37]. Here we only discuss the discrete-time Markov
chain.

A sequence of random variables x0, x1, ... defined on a state space X, is a Markov chain
if it satisfies the Markov property:

Pr(xt+1 = ψ|xt = χ, ... , x0 = τ ) = Pr(xt+1 = ψ|xt = χ). (2.41)
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That is, the distribution of xt+1 only relies on its previous consecutive state xt. If the
transition probability Pr(xt+1 = ψ|xt = χ) = Pr(xt = ψ|xt−1 = χ) for all t, i.e., inde-
pendent of t, then it is expressed as the transition function, A(χ,ψ). If the state space is
continuous, then transition function is also called the transition kernel and often written as
k(χ,ψ).

2.4.1 Discrete case

This subsection considers X as a finite and discrete space. Based on the nature of probability
mass function,

∑
ψ A(χ,ψ) = 1 for all χ. This paragraph will briefly discuss two special

properties of state χ.

1. A state χ is irreducible if it communicates with any other state, that is, χ has a
nonzero probability of moving from itself to another state and then coming back in
finite steps.

2. A state χ is aperiodic if the greatest common divisor of {n : A(n)(χ, χ) > 0} is 1,
where A(n)(χ, χ) is the n-step transition function from state χ to itself.

The first property says that no proper “closed” subset of states exists other than the whole
Markov chain. The second property demonstrates that the lengths of all transient “path”
do not have a nontrivial common divisor. If every state in X is irreducible and aperiodic,
then we say the Markov chain is irreducible and aperiodic. The motivation of stating these
two properties is to bring out the theorem of stationary distribution.

Theorem 2.4.1. If the Markov chain in a finite state is irreducible and aperiodic, then,
A(n)(χ, ψ) = Pr(xn = ψ|x0 = χ) as a probability measure on ψ converges to the stationary
distribution π(ψ) at an exponential rate, that is, there exists 0 < r < 1 and c > 0 such
that ∫

|A(n)(χ, ψ)− π(ψ)|dψ ≤ crn (2.42)

The theorem above implies that no matter what the initial state is, given a sufficiently
long time, the distribution of states will converge to a stationary distribution controlled
by the transition function. That is, if one can design the transition function such that the
stationary distribution is the target distribution, one can obtain samples from the target
distribution after discarding the first few states.
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2.4.2 Continuous case

If the state space X is continuous, then we can still construct a discrete-time Markov chain
on X. The state xt is from a continuous space and the transition kernel is now a continuous
function. We again need to impose some conditions on the Markov chain so that it converges
to the stationary distribution. The condition introduced here is the detailed balance.

Theorem 2.4.2. Suppose π is a distribution on X and k(χ,ψ) is the transition kernel of
an ergodic Markov chain. If the following detailed balance condition:

π(ψ)k(ψ,χ) = π(χ)k(χ,ψ),

holds for all ψ and χ ∈ X, the π is the stationary distribution of the Markov chain with
kernel function k.

Detailed balance condition is sufficient but not necessary for an equilibrium of the
Markov chain. We introduce it here since the MCMC sampler depicted later meets the
condition.

2.4.3 MCMC sampler

Here is an MCMC sampler that applies the Markov chain theory. The procedures of the
Metropolis–Hastings algorithm [37, 22] are: Given a current state xt = χ:

1. Draw a sample ψ from the proposal distribution q(ψ);

2. Accept the sample xt+1 = ψ if a random sample U ∼ Uniform[0, 1]

U ≤ r
(
χ,ψ

)
≡ min{1, π(ψ)q(ψ,χ)

π(χ)q(χ,ψ)
} (2.43)

otherwise xt+1 = xt = χ.

Step 2 decides whether to accept a new sample ψ or stay in the current state χ. The
notation r in step 2 represents the acceptance probability. The fraction of accepted samples
from the proposal distribution over N samples is called the acceptance rate.

The transition kernel k(χ,ψ) for the Metropolis–Hasting sampler takes the form:

k(χ,ψ) = q(χ,ψ)r (χ,ψ) + δ(χ−ψ)
∫

q(χ,ψ) (1− r (χ,ψ)) dψ,
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where δ(χ− ψ) is the Dirac delta function. The integral is the probability of rejecting all
possible ψ when the current state is χ. The product of Dirac delta function and the integral
is the probability of starting from χ to ψ. Detailed balance holds for the Metropolis-Hasting
sampler. When χ = ψ, equation (2.4.2) holds trivially. When χ ̸= ψ, the right-hand side
of equation (2.4.2) is

π(χ)k(χ,ψ) = π(χ)q(χ,ψ)r (χ,ψ)

= π(χ)q(χ,ψ)min{1, π(ψ)q(ψ,χ)
π(χ)q(χ,ψ)

}

= min{π(χ)q(χ,ψ), π(ψ)q(ψ,χ)}

= π(ψ)q(ψ,χ)min{1, π(χ)q(χ,ψ)
π(ψ)q(ψ,χ)

}

= π(ψ)q(ψ,χ)r (ψ,χ)

= π(ψ)k(ψ,χ).

This concludes the detailed balance condition. Therefore Metropolis-Hasting algorithm can
produce the stationary distribution of π.

Proposal density

We can see that the proposal density is the key to the efficiency of MCMC. A proposal
density that is close to the target distribution can increase the acceptance rate of the
Metropolis–Hastings algorithm. Extensive literature exists on the proposal density of
MCMC. The stochastic Newton method uses the Hessian information to form a proposal
distribution [36]. Optimization-based samplers like the Randomized-and-Then-Optimized
(RTO) method can also provide a proposal density that is close to the target distribution.
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Chapter 3

Multilevel RTO method

This chapter builds the necessary components of the multilevel RTO method. We first
introduce the self-normalizing estimator and transport mapping method in the first two
sections. The third section concerns the RTO algorithm. The last section verifies the
complexity theorem of the multilevel self-normalizing estimator.

3.1 Multilevel self-normalizing estimator

We mentioned the self-normalizing importance sampling and multilevel Monte Carlo in
Chapter 2. We want to combine these two methods to further increase the computational
efficiency of problems involving unnormalized posteriors. In many cases, we have the un-
normalized posterior f(x) with the following identity:

f(x) = zπ(x), (3.1)

where π(x) is the true posterior and z is the normalizing constant. This is the same
formula we described in the importance sampling section of Chapter 2. This formula does
not include any discretization process yet.

In this chapter, we will use discretized quantities and discretized models. We denote the
discretization size as h. If we want to apply the multilevel idea of section 2.3 when evaluating
QoI, then we denote the unnormalized posterior, true posterior and the corresponding
normalizing constant with discretization size hl:

fhl
(xhl

) = zhl
πhl

(xhl
), (3.2)

where l = 0, 1, 2, ..., L. The value of hl differs across levels. In numerical experiments of

22



3.1. MULTILEVEL SELF-NORMALIZING ESTIMATOR

later chapters, we set hl =
1
2
hl−1. To simplify the notation, the subscripted quantity hl is

simplified as l hereafter. For example, we write xhl
= xl for l = 0, 1, 2, ..., L.

The following paragraphs establish the importance sampling method in the discretized
parameter xl with discretization size hl. Suppose there is a biasing density gl(·) and we
have the ratio βl between fl(·) and gl(·)

βl(xl) ≡
fl(xl)

gl(xl)
= zl

πl(xl)

gl(xl)
(3.3)

where the normalizing constant zl is estimated by the following integration:

zl =

∫
βl(xl)gl(xl)dxl. (3.4)

Currently, we have not introduced a sample-based estimator, and therefore we assume that
we can get the true value of all quantities here. Our goal is to estimate the following
expectation under posterior density π, a quantity we discussed in the importance sampling
section in chapter 2:

IQ = Eπ

(
Q(X)

)
=

∫
π

Q(x)π(x)dxl, (3.5)

where Q is the quantity of interest (QoI). This IQ is not estimable in the finite parameter
space. We can only estimate the discretized IQl

:

IQl
= Eπl

(
Ql(X l)

)
=

∫
πl

Ql(xl)πl(xl)dxl. (3.6)

X l is from a finite-dimension space, and thus we can manage a sample-based estimator for
it.

We are now ready for the setup of importance sampling. If we cannot estimate in the
true posterior πl, as is usually the case, then we will find a biasing density gl such that

IQl
= Eπl

(
Ql(X l)

)
=

∫
Ql(xl)

πl(xl)

gl(xl)
gl(xl)dxl = Egl

(
Ql(X l)

πl(X l)

gl(X l)

)
. (3.7)

After replacing πl(Xl)
gl(Xl)

with wl(X l), this results in:

IQl
= Egl

(
Ql(X l)wl(X l)

)
; (3.8)
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and if wl is only known up to a constant, it results in:

IQl
= Egl

(
Ql(X l)wl(X l)

)
= Egl

(
Ql(X l)

1

zl
βl(X l)

)
=

1

zl
Egl

(
Ql(X l)βl(X l)

)
=

1

Egl

(
βl(X l)

)Egl

(
Ql(X l)βl(X l)

)
, (3.9)

where equation (3.9) derives from the normalizing constant estimation (3.4). All the equa-
tions above follow the logic of the importance sampling section of Chapter 2, except the
last line (3.9), which is the ratio estimator for IQl

. We need to note that this ratio still
represents an unbiased estimator of integral for infinite samples. However, when it comes to
finite samples, this ratio is biased. More detail is involved when we discuss the estimators of
finite samples later in this section. Another highlight is that even though z is an invariant
constant, the discretized version of z, zl changes when the level changes. It becomes more
accurate with smaller hl.

The next step is to apply the multilevel idea using the quantities we re-defined above.
We follow the same notation of QoI, Ql, in the scenario of the multilevel Monte Carlo in
section 2.3. We need to consider how to adapt the multilevel Monte Carlo when we only
know the unnormalized posterior. This multilevel estimator should include two schemes:
the first is the self-normalizing scheme (2.36):

Q̂SN
l =

N∑
i=1

β(X i
l)Q(X i

l)

N∑
i=1

β(X i
l)

, (3.10)

which is the estimator of (3.9), and the second scheme is the telescope sum as in (2.39):

EπL
[QL] = Eπ0 [Q0] +

L∑
l=1

(
Eπl

[Ql]− Eπl−1
[Ql−1]

)
. (3.11)

One way to construct the multilevel estimator is to replace every Ql in the telescope
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sum (3.11) with its corresponding self-normalizing estimator. We name it estimator 1, Q̂1:

Q̂1 ≡ Q̂SN
0 +

L∑
l=1

(
Q̂SN

l − Q̂SN
l−1

)
, (3.12)

where each Q̂SN
l has the same structure as (3.10), but the sample size N becomes Nl for

each level l:

Q̂SN
l =

Nl∑
i=1

β(X i
l)Q(X i

l)

Nl∑
i=1

β(X i
l)

. (3.13)

In this estimator, we need to calculate 1 + 2L times this Q̂SN
l . There are ways to make xl

and xl−1 similar to each other so that the covariance between each Q̂SN
l is small. One way

is called “coupling”, which will be discussed in the next section.
One can consider this estimator as one way to combine (3.10) and (3.11). A paper

on sequential Monte Carlo [7] shows a similar estimator to this where each term in the
telescope sum is a sequential Monte Carlo estimator. This following inequality from this
sequential Monte Carlo paper states that under the scenario of sequential Monte Carlo, the
mean square error (MSE) of Q̂1 is bounded as follows:

E(Q̂1 − EπL
[QL]) ≤c1

( 1

N0

+
L∑
l=1

1

Nl−1

||zl−1fl
zlfl−1

− 1||2∞

+
∑

1≤l<q≤L

||zl−1fl
zlfl−1

− 1||∞||zq−1fq
zqfq−1

− 1||∞(
cq−1
2

Nl−1

+
1

N
1/2
l−1Nq−1

)
)
,

where c1, c2 ∈ (0, 1) are some constants. The notation ||·||∞ means the maximum norm and
|| · ||2∞ means the square of the maximum norm. The complexity analysis of this estimator
is to assume

Vl ≡ ||zl−1fl
zlfl−1

− 1||2∞ = O(hς
l ), (3.14)

which plays the same role as V
[
∆̂Ql

]
in the standard Multilevel Monte Carlo theorem

(2.3.1). The complexity result is derived from placing the square of maximum norm with
O(hς

l ) in the MSE inequality. The details of complexity result are shown in the papers
[7, 27]. More research about the theory of multilevel sequential Monte Carlo is in [33].
This is the result applied to the sequential Monte Carlo [15] but we are now investigating
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the performance for standard Monte Carlo. The next paragraph is to introduce another
multilevel estimator for standard Monte Carlo.

The other multilevel estimator is to replace both the denominator and numerator in
(3.10) with a multilevel estimator. The following paragraphs introduce the notations of the

estimator 2, Q̂2. The multilevel telescope sum of the numerator in (3.9) is

EgL

(
QL(XL)βL(XL)

)
=Eg0

(
Q0(X0)β0(X0)

)
+

L∑
l=1

Egl

(
Ql(X l)βl(X l)

)
− Egl−1

(
Ql−1(X l−1)βl−1(X l−1)

)
.

(3.15)

We approximate every Q(·)β(·) term by its corresponding estimator:

Eg0

(
Q0(X0)βl(X0)

)
≈ 1

N0

N0∑
i=1

β̂0(X
i
0)Q̂0(X

i
l), (3.16)

and

Egl

(
Ql(X l)βl(X l)

)
− Egl−1

(
Ql−1(X l−1)βl−1(X l−1)

)
≈ 1

Nl

Nl∑
i=1

β̂l(X
i
l)Q̂l(X

i
l)− β̂l−1(X

i
l−1)Q̂l−1(X

i
l−1).

(3.17)

We have listed the necessary components of the multilevel estimator of the numerator.
The next step is to summarize and name it. We denote ŶL as a multilevel estimator of
EgL

(
QL(XL)βL(XL)

)
in (3.9) where ŶL is

ŶL ≡
L∑
l=0

∆̂Yl, (3.18)

with

∆̂Yl =


1
N0

N0∑
i=1

β̂0(X
i
0)Q̂0(X

i
l), l = 0;

1
Nl

Nl∑
i=1

β̂l(X
i
l)Q̂l(X

i
l)− β̂l−1(X

i
l−1)Q̂l−1(X

i
l−1), l = 1, 2, ..., L.

(3.19)
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X i
l is from density gl at the level l. Nl is the sample size at level l. Note that in the second

line of (3.19), X i
l and X

i
l−1 should be coupled. This coupling can correlate β̂l(X

i
l)Q̂l(X

i
l)

and β̂l−1(X
i
l−1)Q̂l−1(X

i
l−1), to reduce the variance of ∆̂Y l. If the reducing of the variance

of ∆̂Y l does not compensate the cost of it, and thus the multilevel estimator is less effi-
cient than standard Monte Carlo, i.e., single level Monte Carlo. This was discussed when
introducing the complexity theorem in section 2.3. In this thesis, the coupling method is
achieved by transport mapping, which will be discussed in the section 3.2.

After we finish the above procedures with the numerator, we can investigate the denom-
inator in (3.9). Expanding it in a telescope sum gives the following:

EgL

(
βL(XL)

)
= Eg0

(
β0(X0)

)
+

L∑
l=1

Egl

(
βl(X l)

)
− Egl−1

(
βl−1(X l−1)

)
. (3.20)

The next step that comes naturally is to approximate the denominator
∑N

i=1 β(x
i
l) in (3.9)

with a multilevel estimator where

Eg0

(
β0(X0)

)
≈ 1

N0

β̂0(X
i
0),

and

Egl

(
βl(X l)

)
− Egl−1

(
βl−1(X l−1)

)
≈ 1

Nl

Nl∑
i=1

β̂l(X
i
l)− β̂l−1(X

i
l−1).

Likewise, we denote ẑL as the multilevel estimator of Egl

(
βl(X l)

)
in (3.9), which is esti-

mating the normalizing constant zl, where

ẑL ≡
L∑
l=0

∆̂βl, (3.21)

and

∆̂βl =


1
N0

N0∑
i=1

β̂0(X
i
0), l = 0;

1
Nl

Nl∑
i=1

β̂l(X
i
l)− β̂l−1(X

i
l−1), l = 1, 2, ..., L.

(3.22)

As when discussing numerator ŶL, X
i
l is from density gl at the level l and Nl is the
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3.1. MULTILEVEL SELF-NORMALIZING ESTIMATOR

sample size at level l. X i
l and X

i
l−1 should also be coupled variables to reduce the variance

of β̂l(X
i
l) and β̂l−1(X

i
l−1).

The final step is to take the ratio of these two estimators ŶL and ẑL:

Q̂2 ≡ ŶL

ẑL
=

∑L
l=0 ∆̂Yl∑L
l=0 ∆̂βl

. (3.23)

The algorithm for constructing Q̂2 is listed in algorithm (1). Q̂2 is a multilevel estimator of

Egl

(
Ql(xl)βl(xl)

)
/Egl

(
βl(xl)

)
in (3.9). Even though both ŶL and ẑL are unbiased estima-

tors for the numerator and the denominator, the ratio of these two estimators, which are
computed from finite samples, are biased. The expectation of the ratio does not equal the
ratio of the expectation of two estimators, assuming finite samples.

Algorithm 1 Multilevel self-normalizing estimator

1: for l = 0, 1, ..., L do
2: for i = 1, ..., Nl do
3: Obtain samples X i

l and X
i
l−1 evaluated at level l;

4: Calculate the unnormalized weight β(X i
l) and QoI Q(X i

l);

5: Construct the ∆̂Yl in (3.19);

6: Construct the ∆̂βl in (3.22);
7: end for
8: end for
9: Sum up all ∆̂Yl to get Ŷ ≡

∑L
l=0 ∆̂Yl;

10: Sum up all ∆̂βl to get ẑ ≡
∑L

l=0 ∆̂βl;

11: The ratio of Ŷ and ẑ forms Q̂2 ≡ ŶL/ẑL.

This multilevel estimator is used in previous papers, such as this paper on Quasi Monte
Carlo [48]. In this Quasi Monte Carlo paper, the complexity analysis result does not
apply in the Gaussian prior case and prior distribution is used as a biasing distribution.
The computational performance or the complexity of this ratio estimator in general is
not clear yet, i.e., this estimator may have unbounded variance. In this thesis, we will
generalize the complexity analysis to the cases including the Gaussian case. Section 3.4
introduces a new way to analyze its complexity. We will prove that this estimator has
similar complexity results to the standard multilevel Monte Carlo. In this thesis, transport
mapping introduced in the following section, is also used as a technique to minimize the
variance of the multilevel estimator. Even though we will use the densities generated from
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3.2. TRANSPORT-MAPPING-BASED IMPORTANCE SAMPLING

RTO [5] or Implicit Sampling [38, 39] as the proposal distribution, the results listed in the
current section and section 3.2 does not limit the biasing distribution.

3.2 Transport-mapping-based importance sampling

We want to consider the estimator of IQ in the narrative of transport mappings. This section
combines the importance sampling from Chapter 2 and introduces transport mappings. We
will also explore the density of parameters after the transport mappings. The RTO method
can be viewed as a transport mapping from prior to posterior and therefore, this section
lays the foundation for the RTO densities described in the next section.

3.2.1 Transport mapping

We first start from some definitions in chapter 2. Suppose we have an infinite-dimension
parameter x with the posterior measure as in equation (2.10):

µpost(dx) =
1

z
L(y|x)µprior(dx), (3.24)

where L(y|x) is the likelihood function and z is a constant. In practice, we cannot generate
the infinite-dimension parameter and its corresponding posterior; we can only compute
the finite-dimension parameter. Therefore, the first mapping needed is from the infinite-
dimensional space to the finite-dimensional space D : H → Rn,

Dh(x) = xh, (3.25)

where h is the discretization size. This mapping serves as a discretization step. Based
on the different levels in the multilevel method, h varies across levels. Therefore we need
to map x into spaces of xhl

with various dimension nl. For a l = 0, 1, 2, ..., L, we denote
Dhl

(x) = xhl
, and simplify it as

Dl(x) = xl. (3.26)

Note that x is originally from the prior measure µprior and after the Bayes’ Law, we have the
posterior of x, µpost. In the meantime, xl is also assumed to have prior density pl. Hence,
Dl maps x from the prior measure, µprior, to xl whose prior density is pl.

After applying Bayes’ law, and providing the information from data y, the posterior of
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this finite-dimension parameter becomes

πl(xl) =
1

zl
Ll(y|xl)pl(xl), (3.27)

where Ll and pl are likelihood function and prior density of xl respectively. The quantity zl
is the normalizing constant in the discretized model. This formula is the same as equation
(2.15), but it is in the setting of the multilevel algorithm. The subscript l denotes the level.
Quantities including subscript l are used in the multilevel estimators of section 3.1.

As stated in section 3.1, we want to estimate the following integral under posterior
density πl at a single level l:

IQl
= Eπl

(
Ql(X l)

)
=

∫
πl

Ql(xl)πl(xl)dxl, (3.28)

where Ql is the QoI mapping from the finite parameter space to the real line, i.e., Ql :
Rn → R. If we cannot estimate in the true posterior πl, then we will find a biasing density
gl such that

IQl
= Eπl

(
Ql(X l)

)
=

∫
Ql(xl)

πl(xl)

gl(xl)
gl(xl)dxl

=
Egl

(
Ql(X l)βl(X l)

)
Egl

(
βl(X l)

) .

This importance sampling estimation is the same as (3.9), so we abbreviate the intermediate
steps and only keep the estimator at the last line. All these estimators of IQl

were introduced
in Chapter 2. Now we are ready to introduce the transport mapping of xl.

Suppose we can generate posterior samples xl from some other random variable ξl. We
have Tl : Rn → Rn

Tl(ξl) = xl, (3.29)

for different mappings at different levels l. This mapping Tl illustrates the mapping from
a variable Ξl, which is easy to obtain, like Gaussian random variable, to the demanding
posterior parameter X l. The quantity ξl is a realization of the random variable Ξl. The

30



3.2. TRANSPORT-MAPPING-BASED IMPORTANCE SAMPLING

corresponding density of xl with respect to ξl is∫
gl(xl)dxl =

∫
gl
(
Tl(ξl)

)∂Tl(ξl)

∂ξl
dξl

=

∫
gl
(
Tl(ξl)

)
∇Tl(ξ)dξl. (3.30)

Here ∇Tl represents the derivative of Tl with respect to ξl. The mapping Tl from ξl to
xl is very general at this point. The density above is only a straight derivation by the
rule of calculus. The mapping can be constructed from an algorithm or a theorem. If we
consider the process of Bayes’ law, which maps the parameter from prior distribution to the
posterior distribution, we can also consider this process Tl since it maps the known prior
to the target, posterior distribution. We are applying this idea in the whole thesis where
we consider ξl to be the prior distribution.

3.2.2 Prior distribution

If we set Ξl to have the same prior density of xl, i.e., Ξl ∼ pl(ξl), then the density function
of xl is ∫

gl(xl)dxl =

∫
gl(Tl(ξl))∇Tl(ξ)dξl

=

∫
pl(ξl)dξl.

(3.31)

This transformation between densities is useful when the prior density pl is known and easy
to sample from, which is usually true in Bayesian problems. In this case, the transport
mapping Tl is the mapping from prior distribution to the posterior.

If we are able to integrate IQl
with respect to ξl, then the ratio estimator (3.9) can be

expressed in terms of ξl. We first expand the ratio estimator into an integration:

IQl
=

Egl

(
Ql(X l)βl(X l)

)
Egl

(
βl(X l)

) (3.32)

=

∫
Ql(xl)βl(xl)gl(xl)dxl∫

βl(xl)gl(xl)dxl

. (3.33)

If we want to introduce ξl to these equations (3.31, 3.32 and 3.33), we need the transport
mapping Tl between ξl and xl. After the function compositions, the numerator of this ratio
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estimator is ∫ (
Ql ◦ T

)
(ξl)
(
βl ◦ T

)
(ξl)gl(Tl(ξl))∇Tl(ξl)dξl, (3.34)

=

∫ (
Ql ◦ T

)
(ξl)
(
βl ◦ T

)
(ξl)pl(ξl)dξl. (3.35)

while the denominator becomes∫ (
βl ◦ T

)
(ξl)gl(Tl(ξl))∇Tl(ξl)dξl, (3.36)

=

∫ (
βl ◦ T

)
(ξl)pl(ξl)dξl. (3.37)

Note here that both equations use the transformation between densities in equation (3.31).
After we transform this integral to the expectation, we have the following ratio estimator
with respect to Ξl:

IQl
=

EΞl

((
Ql ◦ Tl

)
(Ξl)

(
βl ◦ Tl

)
(Ξl)

)
EΞl

((
βl ◦ Tl

)
(Ξl)

) . (3.38)

If we consider the discretization map Dl, then the ratio estimator becomes

IQl
=

∫ (
Ql ◦ Tl ◦Dl

)
(x)
(
βl ◦ Tl ◦Dl

)
(x)dx∫ (

βl ◦ Tl ◦Dl

)
(x)dx

, (3.39)

for some volume dx in the prior measure. Dl is mapping from the prior measure µprior to
the prior density pl of xl. In other words, Dl(x) is the prior density pl. We have assumed
that Ξl ∼ pl(ξl), thus Ξl has the same density of Dl(x). Thus, the first composition
Tl ◦Dl represents a map from the infinite-dimension parameter x to the discretized finite-
dimension parameter xl. The second composition Ql ◦ Tl is again using the transport
mapping Tl(ξ) = xl. Note that xl here is from the posterior instead of prior pl. At this
point, we have introduced and connected all the transport mappings needed in this thesis.

Setting ξl to have the same distribution as the prior distribution pl actually links two
different processes: one is the bridging from prior x to posterior xl, the other is the RTO
transformation that will be discussed in section 3.3. Notice that both processes usually start
from a Gaussian random variable. We unite both processes by setting the same starting
point, i.e., the same known random variable, ξl, usually Gaussian. One of the consequences
of the linkage between the two processes will be see in Chapter 6.
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3.2.3 Coupling variables

When introducing the multilevel estimator Q̂2 in equation (3.23), we suggest that X i
l

and X i
l−1 should be coupled to reduce the variance of ∆̂Y and ∆̂β. The coupling can be

realized using the transport mapping Tl introduced in this section. There are other coupling
techniques, but we only discuss the coupling using Tl in this thesis.

The main idea is to use Tl as an intermediate step to bond X i
l and X

i
l−1. As stated

before, if we set Ξl to have the Gaussian prior, i.e., Ξl ∼ pl(ξl), we are mapping the
Gaussian variables Ξl to the sample X l. If we can make Ξl and Ξl−1 linked, then we also
link or couple X i

l and X
i
l−1.

If the dimension of xl remains the same for every level l, then we can actually map the
same ξ to both xl and xl−1. If the dimension of xl is different across level l, we can also
makeX i

l andX
i
l−1 coupled. In this case, dim(xl−1) < dim(xl), the corresponding ξl−1 also

has a smaller dimension than ξl. Thus some parts of ξl−1 and ξl can have the same values.
The other parts are also linked. More about this coupling method of changing dimension
across levels will be addressed in Chapter 6.

This subsection mainly discusses the case when dim(xl) remains the same for different
levels. The variable ξ with the subscript is denoted as ξl but it is actually mapped to two
different parameter vectors X l and X l−1. We notice that in this scenario xl and xl−1 are
close to each other since they are mapping from the same reference variable ξl. We take
the estimation of Q(·)β(·) as an example. After replacing sample X l with Tl(Ξl), we have

Egl

(
Ql(X l)βl(X l)

)
= Epl

(
Ql ◦ Tl(Ξl)βl ◦ Tl(Ξl)

)
Egl−1

(
Ql−1(X l−1)βl−1(X l−1)

)
= Epl

(
Ql−1 ◦ Tl−1(Ξl)βl−1 ◦ Tl−1(Ξl)

)
.

We can see that the equations on the right-hand side are taking expectation over the same
distribution pl since Ξl ∼ pl(ξl). We only take one random sample ΞL in this scenario.
Therefore in the telescope sum, any difference between two consecutive levels can be united
as

Egl

(
Ql(X l)βl(X l)

)
− Egl−1

(
Ql−1(X l−1)βl−1(X l−1)

)
=Epl

(
Ql ◦ Tl(Ξl)βl ◦ Tl(Ξl)−Ql−1 ◦ Tl−1(Ξl)βl−1 ◦ Tl−1(Ξl)

)
.

(3.40)
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The telescope sum is re-interpreted as

EgL

(
Ql(XL)βl(XL)

)
=Ep0

(
Q0 ◦ T0(Ξ0)β0 ◦ T0(Ξ0)

)
+ (3.41)

L∑
l=1

Epl

(
Ql ◦ Tl(Ξl)βl ◦ Tl(Ξl)−Ql−1 ◦ Tl−1(Ξl)βl−1 ◦ Tl−1(Ξl)

)
.

In the multilevel theorem in (2.3.1), there are two convergence rates that decide the
efficiency of the multilevel method. One is the variance of each difference in the telescope
sum. In this case, it is V

(
Ql(·)βl(·) − Ql−1(·)βl−1(·)

)
= O(

hα
l

Nl
). The other rate is the

computational cost of this difference, i.e., Cl = O(Nlh
−η
l ). We can see that the complexity

of the multilevel estimator is categorized in three categories: α > η, α = η and α < η,
where α is the rate of variance and η is the rate of computational cost. We want the case
that the variance is decreasing faster than the computational cost when the level increases.
If the cost of the difference in the telescope sum increases faster than its variance, then
adding this difference does not add any efficiency to the estimation of Q(·)β(·). Therefore,
the multilevel method is not a good candidate here. We break down the variance as follows:

V
(
Ql(·)βl(·)−Ql−1(·)βl−1(·)

)
=V
(
Ql(·)βl(·)

)
+ V

(
Ql−1(·)βl−1(·)

)
− 2Cov

(
Ql(·)βl(·), Ql−1(·)βl−1(·)

)
. (3.42)

Consequently, we need to maximize the covariance Cov
(
Ql(·)βl(·)), Ql−1(·)βl−1(·))

)
, so that

V
(
Ql(·)βl(·) − Ql−1(·)βl−1(·)

)
is small. If we use uncorrelated X l and X l−1 in this es-

timation, Cov
(
Ql(X l)βl(X l), Ql−1(X l−1)βl−1(X l−1))

)
will diminish. However, if we cou-

pled them under one reference variable Ξ as in (3.40), the covariance, Cov
(
Ql ◦ Tl(Ξl)βl ◦

Tl(Ξl), Ql−1 ◦Tl−1(Ξl)βl−1 ◦Tl−1(Ξl)
)
, is large since these two terms are strongly correlated.

We also list the corresponding sample-based estimators here. We use the same multilevel
estimator Q̂2 = ŶL/ẑL introduced in section 3.1. We define ŶL as a multilevel estimator of
EgL

(
QL(XL)βL(XL)

)
where

ŶL ≡
L∑
l=0

∆̂Yl.
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∆̂Y l =


1
N0

N0∑
i=1

β̂l

(
Tl(Ξ

i
l)
)
Q̂l

(
Tl(Ξ

i
l)
)
, l = 0;

1
Nl

Nl∑
i=1

β̂l

(
Tl(Ξ

i
l)
)
Q̂l

(
Tl(Ξ

i
l)
)
− β̂l−1

(
Tl−1(Ξ

i
l)
)
Q̂l−1

(
Tl−1(Ξ

i
l)
)
. l = 1, 2, ..., L.

(3.43)

Similarly, ẑL is the multilevel estimator of Egl

(
βl(X l)

)
where

ẑL ≡
L∑
l=0

∆̂βl.

Each ∆̂βl is also represented in terms of Ξl here:

∆̂βl =


1
N0

N0∑
i=1

β̂0

(
T0(Ξ

i
0)
)
, l = 0;

1
Nl

Nl∑
i=1

β̂l

(
Tl(Ξ

i
l)
)
− β̂l−1

(
Tl−1(Ξ

i
l−1)
)
, l = 1, 2, ..., L.

(3.44)

The algorithm is the same as that in algorithm (1), except adding one more step before
obtaining samples X i

l and X i
l−1, that is, to sample Ξi

l from prior pl and then use the
transport mapping Tl and Tl−1 to obtain sample X i

l and X
i
l−1.

3.3 RTO method

This section introduces an optimization-based sampling method we use in different models
and problems. We first introduce the target distribution that is optimized in the method.
The following subsection is the detailed algorithm and corresponding densities. The corre-
lation of the RTO method and the transport mapping is also depicted. This section finishes
up with the further research results in the RTO application in high dimensions.

3.3.1 Target distribution

We construct the target distribution from retrospecting the posterior density. Starting from
a Bayesian inverse problem, we have the discretized forward model:

y = Fl(xl) + e, (3.45)
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where y ∈ Rm, xl ∈ Rnl , and e is assumed herein to have a Gaussian distribution with zero
mean and covariance Γobs; y is the data, and Fl : Rn → Rm is the discretized forward model
with discretization size hl. We also assume that the prior distribution of xl is a zero mean
Gaussian with covariance Γprior. With all these assumptions, the posterior takes the form

πl(xl|y) =
1

zl
Ll(xl|y)p(xl)

=
1

zl
(2π)−

m
2 |det(Γobs)|−

1
2 exp

(
− 1

2

(
y− Fl(xl)

)T
Γ−1
obs

(
y− Fl(xl)

))
pl(xl)

=
1

zl
(2π)−

m
2 |det(Γobs)|−

1
2 exp

(
− 1

2

(
y− Fl(xl)

)T
Γ−1
obs

(
y− Fl(xl)

))
(2π)−

n
2 |det(Γprior)|−

1
2 exp

(
− 1

2
xT
l Γ

−1
priorxl

)
,

where zl is again the normalizing constant. We can see from the posterior above that only
the exponential part has the variable that we can optimize. Therefore we make some change
to the exponential part so that it is easy to optimize. We suppress the posterior as:

πl(xl|y) =
1

z
(2π)−

m+n
2 |det(Γobs)|−

1
2 |det(Γprior)|−

1
2 exp

(
−1

2
Hl(xl)

THl(xl)

)
, (3.46)

where H : Rnl → Rm+nl is parameterized as

Hl(xl) =

(
Γ
− 1

2
prior(xl)

Γ
− 1

2
obs[Fl(xl)− y]

)
. (3.47)

The aim is to make the posterior proportional to a simply formed exponential function:

πl(xl|y) ∝ exp(−1

2
∥Hl(xl)∥2).

The notation || · || means 2-norm. Hl(xl) is the target distribution used in the RTO
algorithm. In Chapter 5, the implicit sampling chapter, we also have the target distribution
of implicit sampling method, which is very similar to this form. This kind of reinterpretation
does not change the posterior but only adds convenience to the following optimization
process.
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3.3.2 RTO algorithm

Linear forward model

To understand the motivation of this relatively new algorithm, we first introduce the RTO
method in the linear case before its general application in the nonlinear case. Following
the same assumptions for parameter x of the inverse problem in Chapter 2, we assume the
noise e is standard Gaussian here to simplify the formula. For this linear case only, the
notations of all corresponding quantities do not have the level l subscript since we do not
apply the multilevel method in this case. Hence,

π(x|y) ∝ exp

(
− 1

2
∥F (x)− y∥2

)
, (3.48)

where F is linear with respect to x, i.e., F (x) = Jx, J ∈ Rm×n. We need to point out
that this linear forward model is only for intuition. In practice, we are interested in the
nonlinear inverse problem. The posterior of x is

πpost(x|y) ∝ (JTJ)
1
2 exp

(
− 1

2
∥Jx− y∥2

)
. (3.49)

Since J is a known matrix, we are interested in minimizing the equation inside the
2-norm. We obtain the MAP point at the point where ||Jx − y||2 is minimized. In this
setting, Jx− y is the target function. Adding a random perturbation to this equation can
produce new samples. Optimizing this stochastic equation,

arg min
x

∥Jx− y − ξ∥2, (3.50)

where ξ is a standard Gaussian vector, we obtain the samples from πpost(x|y). This opti-
mization is solving the following equation with respect to x:

Jx = y + ξ. (3.51)

We can compute the thin QR factorization of J , that is, decompose J into UR = J
so that where U ∈ Rm×n is a matrix with orthogonal columns and R ∈ Rn×n is an upper
triangular matrix. We multiply UT on both sides of (3.51):

UTJx = UT (y + ξ). (3.52)
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UTJ is upper triangular since UTJ = R. Therefore the linear system (3.52) can be solved
using backward substitution, a computational technique of solving the linear equation
U ′x = y′ where U ′ is an upper triangular matrix. This technique increases the compu-
tation efficiency. Hence, the optimization equation becomes

arg min
x

∥UTJx− UT (y + ξ)∥2. (3.53)

This optimization is merely solving the linear system in equation (3.52). It is listed in the
form of optimization, and we can compare it with its counterpart in the nonlinear case
later. The main idea of this method is to replace solving the linear system in (3.51) with
solving the other equation in (3.52) that is easier to compute. The price for this method
is to do one QR factorization before solving the linear system, which is worthwhile in high
dimension problems.

Nonlinear forward model

We carry this transformation in (3.52) to the nonlinear case. The target distribution is
Hl(xl) in subsection 3.3.1. First we need to find the suitable Ul ∈ R(m+nl)×nl in the
nonlinear case. One choice is to find the gradient or Jacobian Jl(xl) ∈ R(m+nl)×nl of the
discrete forward mapping Hl(xl) at the maximum a posterior (MAP) point, i.e.,

Jl(x
MAP
l ) =

∂Hl(xl)

∂xl

∣∣∣∣
xMAP
l

. (3.54)

Following the procedures in the linear case, the next step is to do the thin QR factorization
of J(xMAP

l ):
UlRl = Jl(x

MAP
l ). (3.55)

We add the disturbance to UT
l Hl(xl), similar to the step in equation (3.51). The optimiza-

tion equation now becomes
arg min

xl

∥UT
l Hl(xl)− ξl∥2. (3.56)

This ξl is a standard Gaussian random vector as the linear case. Adding ξl is called the
randomization step. A new sample xl comes from solving this equation, which is called the
optimization step. Every new sample vector xl is obtained from adding different ξl each
time. These two steps give the Randomize-and-then-Optimize (RTO) method. The cost for
this method is again the QR factorization before optimization, plus the cost of optimization
iterations whose number is not deterministic. If Hl(·) is a linear model, we can figure out
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the actual cost of each optimization iteration. However Hl(·) is a nonlinear function, thus
we cannot determine the optimization iterations as we can do in the linear model.

The optimization equation (3.56) is basically finding xl that satisfies

UT
l Hl(xl) = ξl. (3.57)

It looks a bit different than its analogue in the linear case (3.51) since we embed the data
y in H(xl), and part of the right-hand side UT

l ξl is also a standard Gaussian like ξl. The
probability density function of sample xl from optimizing (3.56) becomes

gRTO(xl) = |det(U TJl(xl))|pl(ξl), (3.58)

where pl(ξl) is the pdf of a standard Gaussian random vector. It turns out that

gRTO(xl) = |det(U T
l Jl(xl))|(2π)−

nl
2 exp(−1

2
ξTl ξl)

= |det(U T
l J (xl))|(2π)−

nl
2 exp(−1

2
∥U T

l Hl(xl)∥2). (3.59)

The derivation above follows the rule of calculus and transform rule of densities. The
Euclidean norm in (3.59) is derived from (3.57). The pdf of the RTO sample xl is not
Gaussian. It is strongly correlated to Gaussian as shown in the pdf. It is a known pdf,
which is a good candidate for a biasing distribution in the importance sampling technique.
If we adapt importance sampling in the RTO method, the unnormalized weight is

βl(xl) = |det(U T
l Jl(xl))|−1exp(−1

2
∥Hl(xl)∥2 +

1

2
∥U T

l Hl(xl)∥2). (3.60)

The normalized weight is

ŵl(x
i
l) =

βl(x
i
l)

N∑
i=1

βl(xi
l)

. (3.61)

The QoI evaluated using the normalized weight is

∫
Ql(xl)gRTO(xl)dxl ≈

Nl∑
i=1

Ql(X
i
l)ŵl(X

i
l) =

Nl∑
i=1

Ql(X
i
l)βl(X

i
l)

Nl∑
i=1

βl(X
i
l)

. (3.62)
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To generate one sample xl from this RTO algorithm, one first needs to run and solve
the optimization equation several times. Each iteration of optimization needs to multiply
UT
l ∈ Rnl×(m+nl), which costs O

(
(m + nl) × nl

)
floating point operations. After the opti-

mization, we need to calculate the weight βl(xl). UT
l Jl(xl) requires m + nl matrix-vector

multiplications and its determinant needs O(n3
l ) floating point operations. Overall, the

computational cost of RTO is not cheap.
The following assumptions ensure equation (3.57) has a unique solution for each different

ξl and the pdf of RTO density (3.59) exists for any sample.

Assumption 3.3.1. (Assumptions for RTO method)

• The target function Hl is continuously differentiable with Jacobian ∂Hl(xl)
∂xl

.

• The Jacobian Jl(xl) is full column for every xl.

• The mapping xl → UT
l Hl(xl) is invertible.

The first and second assumption guarantee that we can do QR decomposition at any xl

of Jacobian Jl(xl). The third assumption ensures that we can project the reference variable
ξ to the target sample xl.

3.3.3 Transport mapping

We frame the RTO method in terms of transport mapping as in section 3.2. Based on
the RTO equilibrium (3.57), we acquire sample xl from a Gaussian random vector ξl. We
construct a mapping Tl : Rnl → Rnl , i.e.,

Tl(ξl) = xl. (3.63)

This mapping is the transport mapping we mention in equation (3.29). We have assumed
Gaussian prior in this method. We can also interpret Tl as the transformation from nl-
dimension Gaussian random samples, or the prior, to nl-dimension RTO samples. Applying
the same pdf of the transporting mapping in equation (3.30) of section 3.2 and the RTO
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pdf in equation (3.59), we have:∫
gRTO(xl)dxl =

∫
gRTO

(
Tl(ξl)

)
∇Tldξl

=

∫
|det

(
U T

l Jl(xl)
)
|(2π)−

nl
2 exp(−1

2
ξTl ξl)∇Tldξl

=

∫
|det(U T

l Jl(xl))|(2π)−
nl
2 exp(−1

2
ξTl ξl)det(

∂(Hl
−1(Ulξl))

∂ξl
)dξl

=

∫
(2π)−

nl
2 exp(−1

2
ξTl ξl)dξl = 1.

This verifies that the density function of RTO is a well-defined probability density function.
There are other algorithms using the optimization to determine a new sample like RTO,

for example, Randomize Maximum likelihood [42] and the random-map Implicit Sampling
[38, 39], which is discussed in Chapter 5. The common properties of these three algorithms
is that they push a reference distribution towards the demanded target densities. In other
words, they share the same transport mapping (3.63). The coupling strategy in section
3.2.3 can be applied in this RTO method. The discussion of coupling RTO method will be
described in the multilevel RTO section (3.3.5).

3.3.4 RTO in high-dimensional problems

We notice that in the optimization equation (3.56), the product of UT
l and Hl(·) requires

O(n2
l ) floating point operations. When calculating the weight (3.60), we need to compute

the determinant that needs O(n3
l ) floating point operations. When nl is very large, the

computation increases cubically, which is not manageable. We need an alternative calcula-
tion to reduce the cost. The following proposition and results are from [3]. We first reform
the parameter and forward model as:

vl = Γ
− 1

2
prior(xl), Gl(vl) = Γ

− 1
2

obs[Fl(Γ
1
2
prior(vl))− y]. (3.64)

We define

H̃l(vl) =

(
vl

Gl(vl)

)
. (3.65)

This is the notation used in the paper [3], and is called the scalable implementation of
RTO. It is easier to follow the idea with same notation. This expression is essentially the
same as in previous sections after the transformation. The matrix size of H̃l(vl) is identical
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to Hl(xl). In fact, H̃l(vl) is just a re-parameterization of Hl(xl). We still use the same
optimization equation (3.56). Now we need to do the QR factorization of Jl(v

MAP
l ) where

Jl(vl) ≡ ∂H̃(vl)
∂vl

at MAP point vMAP
l . We keep in mind that vMAP

l = Γ
− 1

2
prior(x

MAP
l ).

In order to reduce the computational cost of the optimization, we need to change the op-
timization equation from the QR factorization. Instead of computing the QR factorization
of Jl(v

MAP
l ), we do the polar decomposition:

Jl(v
MAP
l ) = Ũl

(
Jl(v

MAP
l )TJl(v

MAP
l )

) 1
2 , (3.66)

where Ũl ∈ R(m+nl)×nl has orthogonal columns and Jl(v
MAP
l )TJl(v

MAP
l ) is positive definite,

and therefore, it is a proper polar decomposition. We construct Ũl as

Ũl = Jl(v
MAP
l )

(
Jl(v

MAP
l )TJl(v

MAP
l )

)− 1
2 . (3.67)

This reinterpretation of Ul is essential to the following results. We introduce a proposition
from the paper [3] without proof. The main purpose is to explain how the alternative
optimization equation, determinant equation and weight equation reduce the computation,
so we aim to avoid technical details. All the I symbol with subscripts denotes the identity
matrices.

Proposition 3.3.1. Let ∇Gl(v
MAP
l )) denote the derivative of Gl(v) at point v

MAP
l . We

consider its reduced singular value decomposition (SVD),

∇Gl(v
MAP
l ) = ΨlΛlΦ

T
l . (3.68)

The nonlinear system ŨlH̃l(vl) = ξl defining the RTO mappling can be rewritten as{
(Inl

− ΦlΦ
T
l )ξl = (Inl

− ΦlΦ
T
l )vl

ΦlΦ
T
l ξl = Φl[(Λ

2
l + Irl)

− 1
2

(
ΦT

l vl + ΛlΨ
T
l Gl(vl)

)
]

. (3.69)

The weighting function in (3.60) can be expressed as

βl(vl) = |det(Ũl
T
Jl(vl))|−1exp(−1

2
||Gl(vl)||2 −

1

2
||ΦT

l vl||2 +
1

2
||ΦT

l vl + ΛlΨ
T
l Gl(vl)||2),

(3.70)

42



3.3. RTO METHOD

where the determinant takes the simplified form

|det(Ũl
T
Jl(vl))| = |det(Λ2

l + Irl )
− 1

2 ||det(Irl + ΛlΨ
T
l ∇Gl(vl))Φ|. (3.71)

This result provides the alternative optimization equation (3.69), a new weight (3.70)
and a new determinant (3.71) on low-dimension matrices. However, after this formation,
instead of optimizing the equation (3.56) with O((m + nl)× nl) floating point operations,
we solve the r-dimension equation of vr from equation (3.69):

arg min
vrl

∥(Λ2 + Irl)
− 1

2 (vr + ΛlΨ
T
l Gl(vl⊥ + Φlvrl)− ΦT

l ξl)∥2, (3.72)

where vrl ≡ ΦT
l vl, and vl⊥ ≡ vl − Φvrl is an element in the orthogonal complement of

range(Φl). We can first solve vl⊥ by this linear multiplication:

vl⊥ = (Inl
− ΦlΦ

T
l )ξl. (3.73)

When optimizing the rl-dimension equation above, each iteration is expected to evaluate
the derivative of the vector-value function inside the norm. Hence, we need to evaluate the
following linearization as a derivative of the optimization equation:

(Λ2 + Irl)
− 1

2 (Ir + ΛlΨ
T
l ∇Gl(vl⊥ + Φvrl)Φl). (3.74)

After computing the linear multiplication (3.73) and the derivative (3.74) of the optimiza-
tion equation (3.72), the demanding RTO sample vl equals

vl = Φvrl + vl⊥ . (3.75)

The algorithm of getting vl is shown in algorithm (2).
We need to notice that rl is much smaller than min(m,nl) because rl is the dimension

of the diagonal matrix from the reduced SVD. Therefore, we decompose a big nonlinear
problem with complexity O((m + nl)× nl) into two components: one is an rl-dimensional
nonlinear system problem (3.72) and the other is a linear problem (3.73). The matrix-
vector multiplication UT

l Jl(xl) is reduced. The determinant of UT
l J(xl) has been reduced

to computing an rl × rl matrix as shown in the proposition.
Counting the floating point operations needed to evaluate the optimization function

(3.72) and the linear multiplication of the derivative (3.74), the number of floating point
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Algorithm 2 Scalable implementation of RTO samples

1: Compute the MAP point vMAP
l ;

2: Form the Jacobian matrix of ∇Gl(v
MAP
l ));

3: Construct the SVD of ∇Gl(v
MAP
l )) in (3.68);

4: for i=1,...,Nl do
5: Sample ξl from a standard Gaussian;
6: Solve vl⊥ from (3.73);
7: Solve vrl from (3.72) and then obtain vl = Φvrl + vl⊥ ;
8: Obtain the weight (3.70) using the new determinant (3.71);
9: end for

operations needed for each optimization iteration is

O
(
(kobj + kadj)(mr + nlr)

)
+ kobjC1(nl) + kadjC2(nl), (3.76)

where kobj is the average number of optimization iterations; kadj is the adjoint matrix-vector
multiplication in optimization for each iteration; C1(nl) is the cost of evaluating G(v), and
C2(nl) is the matrix-vector multiplication of ∇G(v) and its ajoint vectors. The number of
floating point operations needed to evaluate the determinant (3.71) is O(mr2+r3)+rC2(nl).
Thus, a total of

O
(
kopt(kobj + kadj)(mr + nlr) +mr2 + r3

)
+ koptkobjC1(nl) + (koptkadj + r)C2(nl) (3.77)

floating point operations are needed to compute one RTO sample, where the big-O term
above refers to the total linear algebra cost, and the other terms refer to the total cost of
evaluating G(vl) and the matrix-vector multiplications of ∇G(vl).

We can see that the complexity of this scalable implementation is much smaller than the
quadratic O(n2

l ) and even cubic O(n3
l ) complexity of the original version of RTO method.

More details on the complexity of this reduced dimension optimization problem are dis-
cussed in the paper [3]. There is another technique to further reduce complexity, rank
truncation of Jl(v

MAP
l ) in the paper [3].

3.3.5 Multilevel RTO estimator

This subsection combines all techniques depicted in this chapter so far to form the multilevel
RTO estimator. We will have a multilevel estimator as Q2 with samples from the RTO
density. We will describe the algorithm with the coupling and the transport mapping will
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play an important role. We have the ultimate multilevel-RTO estimator as

Q̂2 ≡ ŶL

ẑL
=

∑L
l=0 ∆̂Yl∑L
l=0 ∆̂βl

(3.78)

where

∆̂Y l =


1
N0

N0∑
i=1

β̂l

(
Tl(Ξ

i
l)
)
Q̂l

(
Tl(Ξ

i
l)
)
, l = 0;

1
Nl

Nl∑
i=1

β̂l

(
Tl(Ξ

i
l)
)
Q̂l

(
Tl(Ξ

i
l)
)
− β̂l−1

(
Tl−1(Ξ

i
l)
)
Q̂l−1

(
Tl−1(Ξ

i
l)
)
. l = 1, 2, ..., L.

and

∆̂βl =


1
N0

N0∑
i=1

β̂0

(
T0(Ξ

i
0)
)
, l = 0;

1
Nl

Nl∑
i=1

β̂l

(
Tl(Ξ

i
l)
)
− β̂l−1

(
Tl−1(Ξ

i
l−1)
)
, l = 1, 2, ..., L.

All the Tl’s here demonstrate the transport mapping in RTO as in equation (3.63). X i
l

is the ith RTO samples at level l. We use Ξ to couple the samples from consecutive levels.
The multilevel RTO algorithm with transport mapping is the shown in algorithm (3):

3.4 Analysis of complexity

This section will discuss the computational complexity of Q̂2. We will first discuss the
decomposition of the mean square error of Q̂2. The delta method will work as a critical
tool in the approximation of the MSE. We will combine all the derivations and provide a
complexity theorem in the last section.

3.4.1 Decomposition of MSE

There are two possible biases or errors here: the discretization error and the bias between
the expected value and the true value, which comes from the self-normalizing process. In the
estimator Q2 we discussed here, both error terms exist. Later in this section we will prove
that the bias is negligible compared to the sample variance of Q̂2 itself. The decomposition
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Algorithm 3 Multilevel RTO with transport mapping

1: for l = 0, 1, ..., L do
2: Compute the MAP point xMAP

l ;
3: Form the Jacobian matrix J(xMAP

l );
4: Construct the thin QR factorization of J(xMAP

l );
5: for i = 1, ..., Nl do
6: Obtain one Gaussian random sample Ξi

l;
7: Obtain RTO samples X i

l and X
i
l−1 from solving (3.56) with the same Ξi

l;
8: Calculate the unnormalized weight: β(X i

l) and β(X i
l−1); and QoI Q(X i

l) and
Q(X i

l−1) ;

9: Construct the ∆̂Yl in (3.19);

10: Construct the ∆̂βl in (3.22);
11: end for
12: end for
13: Sum up all ∆̂Yl to get ŶL ≡

∑L
l=0 ∆̂Yl;

14: Sum up all ∆̂βl to get ẑ ≡
∑L

l=0 ∆̂βl;

15: The ratio of ŶL and ẑ forms Q̂2 ≡ ŶL/ẑL.

of MSE starts from:

E
(
Q̂2 − IQ

)2
= E

(
Q̂2 − IQL

+ IQL
− IQ

)2
= E

(
Q̂2 − IQL

)2
+ (E (IQL

− IQ))2 + 2E
(
Q̂2 − IQL

)
(IQL

− IQ)

≤ 2E
(
Q̂2 − IQL

)2
+ 2 (IQL

− IQ)2 , (3.79)

where the last line uses Cauchy–Schwarz inequality. The cross term 2E
(
Q̂2 − IQL

)
(IQL

− IQ)

cannot be removed since Q̂2 is biased, i.e., E
(
Q̂2 − IQL

)
̸= 0. The second term in

the last inequality is the discretization error. We first rule out the discretization error
2 (E (IQL

− IQ))2 which is unavoidable and listed as a condition in the complexity theorem.
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The other term can be further decomposed as

E(Q̂2 − IQL
)2 = E

(
Q̂2 − E

(
Q̂2

)
+ E

(
Q̂2

)
− IQL

)2
= E

(
Q̂2 − E

(
Q̂2

))2
+ E

(
E
(
Q̂2

)
− IQL

)2
+ 2E

(
Q̂2 − E

(
Q̂2

))(
E
(
Q̂2

)
− IQL

)
= V(Q̂2) +

(
E(Q̂2)− IQL

)2
. (3.80)

The cross term is eliminated since E
(
Q̂2 − E

(
Q̂2

))
is zero. V(Q̂2) is the variance of the

estimator Q̂2. The square
(
E(Q̂2) − IQL

)2
is the square of bias from this ratio estimator.

We are interested in which term dominates this sum. We expect the bias is far smaller than
the variance so that we can omit it. The following section uses the delta method to verify
the cost of both terms.

3.4.2 Delta method

The delta method is the approximation of a probability distribution derived from the first
order Taylor polynomial. In this section, we will be specifically circumspect about the
sample size of the estimators. We start with a univariate delta method to introduce the
basic idea.

Univariate delta method. Suppose there is a sequence of random variable Xi, i=1, 2,
..., N , satisfying √

N(XN − µ)
d−→ N(0, σ2), (3.81)

where µ and σ are mean and variance of Xi respectively, while µ and σ are both finite.
Then for any first order differentiable function Υ , if Υ ′ is nonzero, we have

√
N(Υ (XN)− Υ (µ))

d−→ N(0, σ2
(
Υ ′(µ)

)2
). (3.82)

A condition of the delta method is that the derivative Υ ′ exists and it is nonzero. The
delta method gives an approximation of variance of a new random variable, a function Υ of
a known random variable XN . This is a good strategy to deal with new random variables
that are functions of known random variable. We are not using this univariate version in
this thesis. We need the multivariate version of the delta method since we are dealing with
a parameter vector.

Multivariate Delta method. Suppose a vector Θ is a consistent estimator whose true
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value is θ. Asymptotically, the following holds:

√
N(Θ− θ) d−→ N(0,Σ) (3.83)

where Σ is a positive semi-definite covariance matrix. Then, a scalar value function Υ (Θ)
converges in distribution as the following:

√
N
(
Υ (Θ)− Υ (θ)

) d−→ N

(
0,
(
∇Υ (θ)

)T
Σ
(
∇Υ (θ)

))
. (3.84)

A consistent estimator or asymptotically consistent estimator means that if the sample
size of this estimator increases indefinitely, it converges in probability to its true value. The
theorem can be proved by either the first-order Taylor theorem or the mean value theorem.

Ratio estimator by delta method

In our case, we want to estimate the performance of the ratio estimator Q̂2 = ŶL/ẑL where

ŶL and ẑL are two multilevel estimators. In the framework of delta method, we have the
vector (ŶL, ẑL)

T as the consistent estimator Θ (see chapter 6 of [12]). Θ converges to

θ =
(
E(ŶL),E(ẑL)

)T
=

(
EgL

(
QL(XL)βL(XL)

)
,EgL

(
βL(XL)

))T

. (3.85)

We denote θ ≡ (µYL
, µzL)

T . Σ is the covariance matrix of (YL, zL)
T . The subscripts here

are the random variable YL and zL instead of the sample-based multilevel estimators ŶL

and ẑL. Therefore function Υ is

Υ (Θ) = Υ
(
(ŶL, ẑL)

T
)

(3.86)

=
ŶL

ẑL
≡ Q̂2. (3.87)

The sample size N is primitively defined for an ordinary estimator or a single level estimator
who takes N samples at a fixed level. In our setting, since it is a multilevel estimator, the
definition of sample size is different. We will discuss the choice of sample size in detail
later, while at the current stage we assume that the ratios between different sample sizes
N0, N1, ..., NL at the corresponding levels are fixed. Consequently, we only need to know
one of the sample sizes. We can say that N1, ..., NL are determined by N0. Assuming we
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know N0, then by delta method we have

√
N0

(
ŶL

ẑL
− EgL (QL (XL) βL (XL))

EgL (βL(XL))

)
d−→ N

(
0, (∇Υ (θ))T Σ (∇Υ (θ))

)
. (3.88)

The specific value of the asymptotic variance
(
∇Υ (θ)

)T
Σ
(
∇Υ (θ)

)
is not listed here, where

the key information is that it is a scalar irrelevant to the sample size N0. Hence, ŶL/ẑL has
the variance proportional to 1

N0
:

V

(
ŶL

ẑL

)
≈ 1

N0

(∇Υ (θ))T Σ (∇Υ (θ)) (3.89)

We have approximated the variance of Q̂2 in (3.79). The next step is to explore the bias

term
(
E(Q̂2) − IQL

)2
by means of the delta method. The following paragraphs show that

this bias term is O( 1
N2

0
).

We again approximate the ratio ŶL/ẑL in a second order Taylor series as in the following
equation:

Υ (Θ) ≈ Υ (θ) + (∇Υ (θ))T (Θ− θ) + 1

2
(Θ− θ)T∇2Υ (θ)(Θ− θ), (3.90)

where ∇2Υ (θ) is the Hessian matrix at the fixed point θ, and thus it is a fixed 2×2 matrix

in the case where Υ (Θ) = ŶL/ẑL. In the scenario of the ratio estimator, E
(
Υ (Θ)

)
−Υ (θ) =

E(Q̂2)− IQL
. Therefore, we can take the expectation of Υ (Θ)−Υ (θ) from the second order

Taylor series:

E(Q̂2)− IQL
≡ E (Υ (Θ)− Υ (θ)) ≈ 1

2
E
(
(Θ− θ)T ∇2Υ (θ) (Θ− θ)

)
.

The first order term
(
∇Υ (θ)

)T
(Θ− θ) vanishes since E(Θ) = θ.
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The following equations deal with the expectation of the second order remainder:

E
(
(Θ− θ)T∇2Υ (θ)(Θ− θ)

)
≈ E

(
tr
(
(Θ− θ)T∇2Υ (θ)(Θ− θ)

))
= E

(
tr
(
∇2Υ (θ)(Θ− θ)(Θ− θ)T

))
= tr

(
E
(
∇2Υ (θ)(Θ− θ)(Θ− θ)T

))
= tr

(
∇2Υ (θ)E

(
(Θ− θ)(Θ− θ)T

))
= tr

(
∇2Υ (θ)V (Θ)

)
≈ 1

N0

tr
(
∇2Υ (θ)Σ

)
. (3.91)

The first equation holds because the quadratic term is simply a scalar. The second equation
uses the property of trace. The third applies linearity of expectation. From an assumption
of the delta method, the asymptotic variance of Θ is 1/N0Σ, which gives the last approxi-
mation. We can see that the bias is proportional to 1/N0. In the MSE decomposition, the

bias term
(
E(Q̂2)− IQL

)2
equals (E (Υ (Θ)− Υ (θ)))2. Hence, the bias term is proportional

to 1/N2
0 , which is negligible compared to the variance term, that is O( 1

N0
), for large N0.

3.4.3 Complexity analysis

From the previous subsection we have proved that the variance of this ratio estimator
dominates the quantity in (3.80). We can now further break down the variance. We first

review the variance of the first order approximation of the ŶL/ẑL as shown in the delta
method:

V

(
ŶL

ẑL

)
≈ 1

N0

(∇Υ (θ))T Σ
(
∇Υ (θ)

)
.

We need an explicit form of this variance. The first part is the derivative ∇Υ (θ) which can
be expressed as follows:

∇Υ (θ) = (
1

E(zL)
,− E(YL)

E2(zL)
)T . (3.92)

This vector contains the partial derivative with respect to E(YL) and E(zL). The YL and zL
here are random variables, not sample-based estimators. YL and zL are Q(·)β(·) and β(·)
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at level L. We can also denote Σ explicitly as

Σ =

(
σ2
YL

σYL,zL

σYL,zL σ2
zL

)
, (3.93)

since Σ is the covariance matrix of (YL, zL)
T . The three equations above imply the following

expression of variance:

V(
ŶL

ẑL
) ≈ 1

N0

(
∇Υ (θ)

)T
Σ
(
∇Υ (θ)

)
=

1

N0

(
σ2
YL

(
1

E(zL)

)2

+ σ2
zL

(
E(YL)

E2(zL)

)2

− 2σYL,zL

E(YL)

E3(zL)

)

=
1

N0

1

E2(zL)

(
σ2
YL

+ σ2
zL

(
E(YL)

E(zL)

)2

− 2σYL,zL

E(YL)

E(zL)

)

=
1

N0

1

E2(zL)
V
(
YL − zL

E(YL)

E(zL)

)
=

1

N0

1

E2(zL)
E
(
YL − zL

E(YL)

E(zL)
− E(YL − zL

E(YL)

E(zL)
)

)2

=
1

N0

1

E2(zL)
E
(
YL − zL

E(YL)

E(zL)
− 0

)2

=
1

N0

1

E2(zL)
E (YL − zLΥ (θ))2 . (3.94)

All the intermediate steps are simply playing with definitions and properties of expectation
and variance. The second line is simply substituting ∇Υ (θ) and Σ into the formula. The
third line pulls out the common factor 1/E2(zL). The fourth line is to form a variance or
covariance based on the definition. The fifth line is expanding the variance in another form.
Note that on the last line of the equations above, the ratio E(YL)/E(zL) is equivalent to
the demanding true value, Υ (θ). Equation (3.94) provides us with something estimable. It
is a ratio, and the denominator E2(zL) is a constant. If we replace zL with its estimator ẑL,
E2(ẑL) is bounded. It is reassuring to know that the denominator is bounded so that the
ratio is less likely to tend to infinity.

The formation of variance in (3.94) is not related to any estimator we can yet compute.
However if we can split out YL and zL out, we can replace these two with corresponding
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estimators. We can further decompose the variance (3.94) above:

V(
ŶL

ẑL
) ≈ 1

N0

1

E2(zL)
E
(
YL − zLΥ (θ)

)2
=

1

N0

1

E2(zL)
E
(
YL − E(YL) + E(YL)− zLΥ (θ)

)2
=

1

N0

1

E2(zL)
E
((

YL − E(YL)
)2

+
(
E(YL)− zLΥ (θ)

)2
+ 2
(
YL − E(YL)

)(
E(YL)− zLΥ (θ)

))
≤ 2

1

N0

1

E2(zL)

(
E
(
YL − E(YL)

)2
+ E

(
E(YL)− zLΥ (θ)

)2)
= 2

1

N0

1

E2(zL)

(
V(YL) + E

(
Υ (θ)E(zL)− zLΥ (θ)

)2)
= 2

1

N0

1

E2(zL)

(
V(YL) + Υ 2(θ)V(zL)

)
. (3.95)

We now have a good approximation of the variance, which is a linear combination of two
variances. Note that V(YL) and V(zL) are not sample-based estimators. A sample-based
estimate is

V(Q̂2) ≡ V(
ŶL

ẑL
) ≈ 2

1

N0

1

E2(zL)

(
N0V(ŶL) + Υ 2(θ)N0V(ẑL)

)
= 2

1

E2(ẑ)

(
V(ŶL) + Υ 2(θ)V(ẑL)

)
. (3.96)

We then have the variance of this self-normalizing multilevel estimator in terms of variances
of two standard multilevel estimators. This builds a solid bridge with the complexity
theorem we have in 2.3. This variance is very important when deciding the proportional
sample sizes across levels. It is also critical when proving the complexity theorem.

Therefore, this ratio estimator has the MSE in equation (3.79) approximated as

E(Q̂2 − IQ)2 ≤ 2E(Q̂2 − IQL
)2 + 2 (IQL

− IQ)2

= 2
(
V(Q̂2) +

(
E(Q̂2)− IQL

)2)
+ 2 (IQL

− IQ)2

≈ 2

(
2

1

E2(ẑ)

(
V(ŶL) + Υ 2(θ)V(ẑL)

))
+ 2 (IQL

− IQ)2 . (3.97)

The second equation uses the results in equation (3.80), and the last equation uses the

52



3.4. ANALYSIS OF COMPLEXITY

results in equations (3.91) and (3.96), that is, the square of bias is O( 1
N2

0
). We can see from

the approximation in equation (3.97) that the MSE is decomposed into a sum of variance
and the discretization error, which is very similar to the MSE decomposition of a standard
multilevel estimator. Hence, we can start with the same conditions of standard multilevel
complexity theorem.

We are ready to connect the MSE result and the complexity theorem. We first restate
the conditions of the standard multilevel complexity theorem (2.3.1) here:

Assumption 3.4.1. For a multilevel estimator Q̂ ≡
∑L

l=0 ∆̂Ql, there exists positive con-
stants ζ, α, and η such that:

1. the discretization error is bounded as E
[
∆̂Ql − IQ

]
= O(hζ

l );

2. the variance of each ∆̂Ql defined above is bounded as V
[
∆̂Ql

]
= O(

hα
l

Nl

);

3. the computational complexity of ∆̂Ql is bounded by Cl = O(Nlh
−η
l ).

The first condition is about the discretization error, while the second one is about the

variance. In the case that Q̂2 ≡ ŶL

ẑL
, ∆̂Ql is either ∆̂Y l in ŶL ≡

∑L
l=0 ∆̂Yl, or ∆̂βl in

ẑL ≡
∑L

l=0 ∆̂βl. If we could assume these three conditions hold for ∆̂Y l, then

V(ŶL) ≡ V(
L∑
l=0

∆̂Yl) (3.98)

≤
L∑
l=0

V(∆̂Yl) + 2
∑
l ̸=k

Cov(∆̂Yl , ∆̂Yk). (3.99)

Since we use the coupling variate in the multilevel RTO algorithm, two different ∆̂Yl’s
are not correlated since they are mapped from different reference variables Ξ, therefore
their covariance is close to zero. We can also use other coupling techniques to make the
covariance small, but we do not discuss other coupling techniques here. We do not dismiss
the possibility of zero covariance here, but the possibility is very small. We can have

V(ŶL) ≈
L∑
l=0

V(∆̂Yl) =
L∑
l=0

O(
hα
l

Nl

). (3.100)
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The same derivation also applies to V(ẑL):

V(ẑL) ≈
L∑
l=0

V(∆̂βl) =
L∑
l=0

O(
hα
l

Nl

). (3.101)

In numerical experiments we have conducted, ∆̂Y l and ∆̂βl have the same convergent

rate α. The other two convergent rates are also the same for ∆̂Y l and ∆̂βl respectively
in numerical results. We will have more discussion on these convergent rates in Chapter
4. We return the discussion to the MSE. The following is a summary of the MSE result
derived from equation (3.97):

E(Q̂2 − IQ)2 ≤ 2

(
2

1

E2(ẑ)

(
V(ŶL) + Υ 2(θ)V(ẑL)

))
+ 2 (E (IQL

− IQ))2 (3.102)

=
L∑
l=0

O(
hα
l

Nl

) +O(hζ
l ). (3.103)

These big −O terms are using conditions 1 and 2 in assumption (3.4.1).
Before diving into the proof of complexity theorem, we explain how to determine the

sample size across levels. We want the sample size to minimize the cost
∑L

l=0NlCl, con-

strained to make the variance
∑L

l=0 V
(
∆̂Y l

)
/Nl fixed. Using a Lagrange multiplier gives:

Nl ∝

√√√√V
(
∆̂Y l

)
Cl

. (3.104)

The same minimisation applies to ∆̂βl as well.
The chapter finishes with the following complexity theorem and its according proof:

Theorem 3.4.1. Suppose the decretization size hl = M−lT . If

∆̂Y l ≡

{
β̂0Q̂0 l = 0;

β̂lQ̂l − β̂l−1Q̂l−1, l = 1, 2, ..., L;

satisfies

(i) the discretization error is bounded as E|β̂lQ̂l −Qβ| ≤ c1h
ζ
l ,
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(ii) the variance of each ∆̂Y l defined above is bounded as V
(
∆̂Y l

)
≤ c2

hα
l

Nl

,

(iii) the computational complexity of ∆̂Y l is bounded by Cl ≤ c3Nlh
−η
l ,

for positive constants ζ ≥ 1
2
, α, η, c1, c2 and c3; and

∆̂βl ≡

{
β̂0 l = 0;

β̂l − β̂l−1, l = 1, 2, ..., L;

satisfies

(a) the discretization error is bounded as E|β̂l − β| ≤ d1h
ζ
l ,

(b) the variance of each ∆̂βl defined above is bounded as V
(
∆̂βl

)
≤ d2

hα
l

Nl

,

(c) the computational complexity of ∆̂βl is bounded by Cl ≤ d3Nlh
−η
l ,

for positive constants ζ ≥ 1
2
, d1, d2 and d3, then the computational cost of the multilevel

ratio estimator Q̂2 with a mean square error(MSE) E
(
Q̂2 − IQ

)2
< ϵ2, where ϵ < e−1, is

CML =


O
(
ϵ−2
)
, α > η,

O

(
ϵ−2
(
log(ϵ)

)2)
, α = η,

O
(
ϵ−2−(η−α)/ζ

)
, 0 < α < η.

Proof. This proof follows the paper [18] with some adjustments. The MSE decomposition
is different from the original MSE in [18]:

E(Q̂2 − IQ)2 ≈ 2

(
1

E2(ẑ)

(
V(ŶL) + Υ 2(θ)V(ẑL)

))
+ 2 (IQL

− IQ)2 . (3.105)

Following the idea of the proof in [18], we first want to make the discretization error
bounded. However, we can’t directly address this error since we don’t have an unbiased
estimator for IQL

. We need to link the conditions (i) and (a) to the discretization error.
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We call IQL
as follows:

IQL
≡ YL

zL
=

E
(
ŶL

)
E (ẑL)

=
E
(∑L

l=0 ∆̂Y l

)
E
(∑L

l=0 ∆̂βl

) =

∑L
l=0

(
E(∆̂Y l)

)
∑L

l=0

(
E(∆̂βl)

) . (3.106)

Thus, the discretization error can be written as

|IQL
− IQ| =

∣∣∣∣YL

zL
− Y∞

z∞

∣∣∣∣
since when the level L approaches infinity, the ratio estimator is IQ. We can bound this
error as follows:∣∣∣∣YL

zl
− Y∞

z∞

∣∣∣∣ = ∣∣∣∣YL

zL
− Y∞

zL
+

Y∞

zL
− Y∞

z∞

∣∣∣∣
=

∣∣∣∣YL − Y∞

zL
+ YL

(
1

zL
− 1

z∞

)∣∣∣∣
≤
∣∣∣∣YL − Y∞

zL

∣∣∣∣+ ∣∣∣∣YL

(
1

zL
− 1

z∞

)∣∣∣∣
=

∣∣∣∣∣∣
∑L

l=0

(
E(∆̂Y l)

)
− Y∞

zL

∣∣∣∣∣∣+
∣∣∣∣∣YL

1

zLz∞

(
z∞ −

L∑
l=0

(
E(∆̂βl)

))∣∣∣∣∣
≤

∣∣∣∣∣c1hζ
L

zL

∣∣∣∣∣+
∣∣∣∣YL

1

zLz∞

(
d1h

ζ
L

)∣∣∣∣
≤ d4h

ζ
L,

where d4 =
∣∣∣ c1zL ∣∣∣+ ∣∣∣ YLd1

zLz∞

∣∣∣ and the last line uses condition (i) and (a). In summary,

E|IQL
− IQ| ≤ d4h

ζ
L.

We use the notation ⌈·⌉ to denote the ceiling of a real number. We choose L to be

L = ⌈
log
(√

2d4T
ζϵ−1

)
ζlogM

⌉ (3.107)
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so that
1√
2
M−ζϵ ≤ d4h

ζ
L ≤ 1√

2
ϵ, (3.108)

and hence

(IQL
− IQ)2 ≤

1

2
ϵ2. (3.109)

We have distributed ϵ2/2 to the discretization error, and the other ϵ2/2 is the variance of

Q̂2.
There is another useful inequality. We obtain the following formula from a geometric

series, which will be essential in a later proof:

L∑
l=0

h−η
l = h−η

L

L∑
l=0

M−ηl <
Mη

Mη − 1
h−η
L . (3.110)

On the other hand, h−η
L is also bounded as

h−η
L < Mη

(
ϵ√
2d4

)− 1
ζ

. (3.111)

Combining the first inequality of (3.108) and the inequality above, we have the following
useful inequality:

L∑
l=0

hη
l ≤

M2η

Mη − 1

(√
2d4

)1/ζ
ϵ−2. (3.112)

(I) If α = η, we set Nl = ⌈2ϵ−2(L+ 1)c4h
η
l ⌉ so that

V(Q̂2) ≈ 2

(
2

1

E2(ẑ)

(
V(ŶL) + Υ 2(θ)V(ẑL)

))
≡ Ṽ(Q̂2) (3.113)

≤ 4

(
1

E2(ẑ)

(
c2

L∑
l=0

hα
l

Nl

+ Υ 2(θ)d2

L∑
l=0

hα
l

Nl

))
(3.114)

= c4

L∑
l=0

hα
l

Nl

= c4

L∑
l=0

hη
l

Nl

≤ 1

2
ϵ2, (3.115)
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where c4 is given by

c4 = 4
1

E2(ẑ)

(
c2 + Υ 2(θ)d2

)
. (3.116)

This sets the upper bound of the variance to ϵ2/2. We also need to bound the complexity:

CML ≤
L∑
l=0

(c3 + d3)Nlh
−η
l ≤

L∑
l=0

(c3 + d3)
(
2ϵ−2 (L+ 1)2 c4h

η
l + h−η

l

)
. (3.117)

The only quantity we can control here is L. We can set:

L ≤ logϵ−1

ζlogM
+

log
(√

2d4T
ζ
)

ζlogM
+ 1. (3.118)

Since ϵ < e−1, we have 1 < logϵ−1. It follows that

L+ 1 ≤ c5logϵ
−1, (3.119)

where c5

c5 =
1

ζlogM
+max

(
0,

log
(√

2d4T
ζ
)

ζlogM

)
+ 2.

If we use the upper bound for L + 1, inequality (3.112), and the fact that 1 < logϵ−1,
we have

CML ≤ c6ϵ
−2 (logϵ)2 , (3.120)

where

c6 = 2(c3 + d3)c
2
5c4 + (c3 + d3)

M1η

Mη − 1
(
√
2c4)

1/ζ (3.121)

We have finished proving the second case when α = η.

(II) For α > η, if we set

Nl = ⌈2ϵ2c4T (α−η)/2(1−M−(α−η)/2)−1h
(α+η)/2
l ⌉, (3.122)
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then the variance

Ṽ(Q̂2) ≤ c4

L∑
l=0

hη
l

Nl

≤ 1

2
ϵ2c4T

−(α−η)/2(1−M−(α−η)/2)
L∑
l=0

h
(α−η)/2
l .

Using the geometric series result again gives:

L∑
l=0

h
(α−η)/2
l = T (α−η)/2

L∑
l=0

(M−(α−η)/2)l

< T (α−η)/2(1−M−(α−η)/2)−1. (3.123)

We state the upper bound of Nl again:

Nl < 2ϵ2T (α−η)/2(1−M−(α−η)/2)−1h
(α+η)/2
l + 1.

Therefore the computational complexity is bounded by

CML ≤ (c3 + d3)
(
Nlh

−η
l

)
≤ (c3 + d3)

(
2ϵ−2c4T

(α−η)/2(1−M−(α−η)/2)−1

L∑
l=0

h
(α−η)/2
l +

L∑
l=0

h−η
l

)
.

From inequalities (3.112) and (3.123), the cost is bounded as

CML ≤ c7ϵ
−2,

where

c7 = 2(c3 + d3)c4T
α−η

(
1−M−(α−η)/2

)−2
+ (c3 + d3)

M2η

Mη − 1
(
√
2d4)

1/ζ .

(III) This case is similar to case (b). For α < η, we set the sample size Nl as

Nl = ⌈2ϵ2c4h−(η−α)/2
L (1−M−(η−α)/2)−1h

(α+η)/2
l ⌉. (3.124)
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The variance is bounded as

Ṽ(Q̂2) ≤ c4

L∑
l=0

hη
l

Nl

≤ 1

2
ϵ2c4h

(η−α)/2
L (1−M−(η−α)/2)

L∑
l=0

h
−(η−α)/2
l . (3.125)

We again bound the geometric series as

L∑
l=0

h
−(η−α)/2
l = h

(α−η)/2
L

L∑
l=0

(M−(α−η)/2)l

< h
(α−η)/2
L (1−M−(α−η)/2)−1. (3.126)

Combining this result of the geometric series and (3.125), the variance is bounded by ϵ2/2.
We use the Nl upper bound again to bound the computational complexity as

CML ≤ (c3 + d3)
(
Nlh

−η
l

)
≤ (c3 + d3)

(
2ϵ−2c4h

−(η−α)/2
L (1−M−(η−α)/2)−1

L∑
l=0

h
−(η−α)/2
l +

L∑
l=0

h−η
l

)
.

The inequality in (3.126) implies

h
−(η−α)/2
L (1−M−(η−α)/2)−1

L∑
l=0

h
−(η−α)/2
l ≤ h

−(η−α)
L (1−M−(η−α)/2)−2. (3.127)

The first inequality in (3.108) also provides an upper bound for h
−(η−α)
L :

h
−(η−α)
L < (

√
2c4)

(η−α)/ζM1−αϵ−(η−α)/ζ . (3.128)

Combining these two inequalities, and the inequality in (3.112), as well as the fact that
ϵ−2 < ϵ−2−(η−α)/ζ for ϵ < e−1, gives

CML ≤ c8ϵ
−2,
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where

c8 = 2(c3 + d3)c4(
√
2d4)

(η−α)/ζM ζ−α
(
1−M−(α−η)/2

)−2
+ (c3 + d3)

M2η

Mη − 1
(
√
2d4)

1/ζ .

This concludes the case α > η as well as the whole proof.
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Chapter 4

Numerical experiments of the
Multilevel RTO method

This chapter mainly discusses two direct applications of the multilevel RTO method in
Chapter 3. The first is an ODE, prey and predator model, whose parameter has a fixed
dimension. The other is a PDE model where the parameter dimension increases when level
increases.

4.1 Prey and predator model

The prey and predator equations, or Lotka—Volterra equations are a pair of first-order
nonlinear differential equations, which build a classical model in dynamics of biological
systems. This section will first briefly explain the problem set-up of the prey and predator
model, the numerical solver that has been used, and then show the convergence results
of the multilevel RTO method. Finally, we verify the multilevel complexity theorem by
showing the MSE plot.

4.1.1 Model equations

These equations follow the form of section (2.1.1). We consider the following prey (P1) and
predator (P2) model:

Prey:
dP1

dt
= rP1(1−

P1

K
)− s

P1P2

a+ P1

,

Predator:
dP2

dt
= u

P1P2

a+ P1

− vP2,
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where P1 is the number of prey (like rabbits) and P2 is the number of predators (like foxes);
t stands for time, and therefore dP1

dt
and dP2

dt
represent the growth rate of populations of

prey and predator; θ = (r,K, s, a, u, v, P10 , P20)
T are parameters describing the process.

The parameter vector of this model has a fixed dimension. This model belongs to the same
categories of model we discussed in section (2.1.1):

∂P

∂t
= f(P, t; θ),

where P = (P1, P2) and

f(P, t; θ) =

(
rP1(1− P1

K
)− s P1P2

a+P1

u P1P2

a+P1
− vP2

)
.

Suppose we are taking observations at some discrete times ti. The observation y =
(y1, y2, ..., ym)

T comes from synthetic data

yi = P (ti) + ϵi

where ϵi are from standard Gaussian. We need to notice that yi here is a 2 by 1 vector
since P (ti) is a vector capturing the numbers of prey and predators.

We are going to derive the derivative of the ODE. We rewrite the prey and predator as

∂P

∂t
= f(y; θ), with y(t = 0) ≡ y0 = (P10 ,P20)

T .

The Jacobians of the right hand side, i.e., function f are

Jy(y, θ) =

(
r − 2rP1/K − saP2/(a+ P1)

2 −sP1/(a+ P1)

auP2/(a+ P1)
2 uP1/(a+ P1)− v

)
,

and Jθ(y, θ) =(
0 0 P1(1− P1/K) r(P1/K)2 −P1P2/(a+ P1) sP1P2/(a+ P1)

2 0 0

0 0 0 0 0 −uP1P2/(a+ P1)
2 P1P2/(a+ P1) −P2

)
.

The ODE problem we want to solve here is to find y and A(ti, θ) at every ti, i ̸= 0, such
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that
∂

∂t
[y | A] = [f(y; θ) | Jy (y, θ)A+ Jθ (y, θ)]

with the initial condition

[y(t = 0) | A(t = 0)] = [y0 | 0 | I] . (4.1)

Assuming we know the true parameters

θtrue = (49.8, 5, 0.56, 100, 1.16, 25, 0.51, 0.3)T ,

we can generate the measurement of P1 and P2 at time 10, 15, 20, 25, 30 and 35. All
the parameters here should be positive, and it is even better if they are bounded in some
ranges. We use the error function to achieve that. We assume that the parameter θ has a
prior such that

θ ≡ θ(λ) =
1

2
(bupper − blower)

(
1 + erf

(
λ/

√
2
))

+ blower. (4.2)

where erf stands for the error function, λ is just any real value, and bupper, blower stand for
upper bound and lower bound of θ. We can control the values of these bounds. In this
formation, θ is positive no matter what the value of λ is, and also always falls between the
bounds. When solving this ODE, we are actually searching for the answer for λ instead of
θ since it is easier to control the value of θ. In this case, we need to use the chain rule to
update the ODE problem with respect to λ. We only need to change A here:

A(ti, θ(λ)) = A(ti, θ)diag

(
∂θ

∂λ

)
= A(ti, θ)diag

(
e−λ2/2 (bupper − blower)

) 1√
2π

,

The synthetic data comes from adding zero-mean i.i.d. standard Gaussian noise. There-
fore the discretized likelihood function is:

Lh(y|θ) = (2π)−
m
2 |det(Γobs)|−

1
2 exp

(
− 1

2
(Fh(θ)− y)TΓ−1

obs( Fh(θ)− y)
)
, (4.3)

where in the current scenario, n = 8, Γobs = I8. Since we have observations at 6 times (5,
10, 15, 20, 25, 30, 35), the data y has the total length of 2× 6 = 12. Fh(θ) is the number
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V(∆̂Y l) 23.59 1.73 0.19 0.015 0.001

Cl(cost) 21.48 26.28 35.41 53.19 86.44

Table 4.1: Variance and cost in equation (3.104) for 3000 samples of the prey model under
the RTO method.

Level N0 N1 N2 N3 N4

Sample size 10,000 2451 708 161 33

Table 4.2: Proportional sample sizes for different levels of the prey and predator model
given 10, 000 samples at zeroth level.)

of P1 and P2 at these observation times, which come from the solution of ODE.
The posterior under standard Gaussian prior is

πh = Lh(y|θ)p(θ)

= Lh(y|θ)(2π)−
n
2 exp

(
−1

2
θT θ

)
.

The following contour Figure (4.1) is the density of 3000 RTO samples of all eight parame-
ters. The other contour Figure (4.2) is the weighted RTO samples, which is the posterior.
The effective sample ratio (ESR) is about 70%.

Multilevel RTO

The quantity of interest here is the number of prey at a future time, 50. We will follow
the steps in (3) to estimate the number of prey at time 50. We are not sure about the
largest level L here, nor the sample size at each level, and therefore we first run some tests
on a small sample size at each level. Based on (3.104), we should obtain the variance of

each ∆̂Y l and the corresponding cost (computational time here), Cl. At this test stage,
we assign 3000 samples to L = 4 levels. In summary, we run the algorithm in (3) with

Nl = 3000 for all l, and L = 4. We record the variance of each ∆̂Y l and corresponding Cl

as Table (4.1). Table (4.1) shows the computational cost and variance in equation (3.104),
where the fixed ratio of Nl can be calculated as shown in Table (4.2). We can see that the
majority of samples are on the first level, and only very few samples are required in the
finest level.

We need to notice that these in Table (4.2) are the ratios of sample size given the 10,
000 samples at zeroth level, not the exact sample sizes we use. The question rises as to

65



4.1. PREY AND PREDATOR MODEL

the exact sample size we should use. There is a trade-off in this selection: in order to
minimize the MSE, we need to use more samples; in order to save computational cost,
we need to use fewer samples. The trade-off reaches a balance at the point, when using
more samples does not minimize the MSE as much as before. This point appears when the
variance in the MSE equals the square of the discretization error. This is because that the
discretization error is not affected by sample size, but only by the discretization size hl.
When increasing the sample size, only the variance part of the MSE is decreasing. When
the variance is decreased to a number that is smaller than the square of the discretization
error, the discretization error term dominates the MSE. After passing this point, we cannot
improve the MSE much as before by increasing the sample size. Therefore, we want the
sample size to reach a point so that in the approximation of MSE:

E(Q̂2 − IQ)2 ≈ 2

(
1

E2(ẑ)

(
V(ŶL) + Υ 2(θ)V(ẑL)

))
+ 2 (IQL

− IQ)2 , (4.4)

we have
1

E2(ẑ)

(
V(ŶL) + Υ 2(θ)V(ẑL)

)
= (IQL

− IQ)2 . (4.5)

Note that this right-hand side is determined by the largest level L, which we also call the
stopping level. Hence, in every stopping level, there is one optimal sample size for it.

We have been able to obtain the convergence plots based on this small sample size test.
Recall that there are three conditions for the complexity theorem: the discretization error,
the variance of differences and the cost of differences. All three conditions should apply to
both ∆̂Y l and ∆̂βl. We expect these three terms to be bounded to the power of hl, e.g., h

ζ
l

for the discretization error. In other words, if we plot the logarithm of the discretization
error, it is expected to decrease in a straight line when the level goes up. If that were
this case, it guarantees that the discretization error is diminishing, which should be the
case if we discretize the model properly. In practice, we are very concerned about the
second condition and the third condition: that if the variance is decreasing at a higher rate
than the increasing rate of the cost. In total we will show two sets of convergence plots:
discretization error and variance convergence plots on ∆̂Y l and ∆̂βl.

4.1.2 Numerical solver

Depending on the different numerical solvers, the rate of convergence changes. In this prey
and predator problem, we need to control the discretization size of the solver, and therefore
we need to program a new solver. We first started with Euler’s method, which uses the
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4.1. PREY AND PREDATOR MODEL

following equation to update the solution to this ODE:

yj+1(tj + hl) = yj(tj) + hl
∂

∂t
[y | A] |y=yj(tj). (4.6)

The step size hl is the discretization size. Data used in this problem is the numbers of prey
and predators at times 5, 10, 15, 20, 25, 30 and 35. But the step size, or the discretization
size, is not the same as 5, the gap between data. The step size is smaller than the gap, and
decreases when level increases. Euler’s method is a first order method, which means that
the difference between yj+1(tj + hl) and the exact solution at time tj+1 = tj + hl, the local
truncation error, is approximately proportional to h2

l .
Euler’s method is the simplest Runge–Kutta method. We use the RK2 method which

updates
yj+1(tj + hl) = yj(tj) + hlk2, (4.7)

where

k1 =
∂

∂t
[y | A] |y=yj(tj)

k2 =
∂

∂t
[y | A] |y=yj(tj)+0.5hlk1 .

The method has a local truncation error approximated proportional to h3
l . The convergence

rates, ζ and α, are different for Euler’s method and the RK2 method. The ζ of RK2 is
twice that of Euler’s method, and the α of RK2 is also twice that of Euler’s method.
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Figure 4.1: Unnormalized posterior for 8 parameters of prey and predator model. The
figure is simply the RTO density of an 8-dimension parameter vector.
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Figure 4.2: Posterior of 8 parameters of prey and predator model. The samples here have
been weighted by their corresponding weights.
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4.1.3 Convergence rates

We are going to discuss the convergence plots we obtained from the small dataset, with
3000 samples at every level. These are not the samples that we actually use to calculate the
quantity of interest. We conduct this to examine the convergence rates in the complexity
theorem and evaluate the performance of the multilevel estimator.

Figure (4.3) is the convergence plot reflecting the discretization error. The blue flat line

is the mean of E|β̂lQ̂l| in the numerator of the ratio estimator Ŷ =
∑L

l=0 ∆̂Y l. The red

oblique line is the mean of the difference, E|β̂lQ̂l − β̂l−1Q̂l−1| for the numerator. Condition
1 of complexity theorem (3.4.1) is:

E|β̂lQ̂l − β̂l−1Q̂l−1| ≤ c1hl.

The y-axis here is in log2 scale and hl ∝ 2−l. Therefore, the slope of the red line is the
negative of the rate ζ in complexity theorem (3.4.1). The slope of the red line is about
−2 here, i.e., ζ = 2. If the gap between the flat line and oblique line is small, it is a sign
that the current multilevel setting is not a good option. If the red line crosses the blue
line, in other words, the difference E|β̂lQ̂l− β̂l−1Q̂l−1| is even larger than E|β̂lQ̂l| itself, then
discretization size at the coarse level is too large that the quantity of interest is inaccurate.
It indicates that the current multilevel setting is not good. This happens in the numerical
results in Chapter 5.

The Figure (4.4) on variance is what we are mostly concerned about. One can see that

this figure is quite similar to the Figure (4.3): one flat line indicating the variance of β̂lQ̂l

and the oblique line showing the variance of differences. The slope here is the negative of
rate α in the complexity theorem (3.4.1). The slope is about −4 here, i.e., α = 4. We can
see the decreasing rate of this variance figure the red line is about twice that of the red line
in Figure (4.3), which means that α is approximately twice of ζ.

We observe that these two lines do not cross. If they crossed, which happened in other
samplers we use later (Chapter 5), it means that the variance of difference of consecutive
terms is even larger than the variance of the terms themselves, which indicates that the
variance of the telescope sum is larger than the sum of the variance of individual terms. If
we calculated the sample size using (3.104), N1 is even larger than N0. In this case, the
multilevel setting is not ideal. We can increase the discretization size of the zero level to
try again.

Figures (4.6) and (4.5) are convergence figures for the mean and variance for β̂l, which
constitutes the multilevel estimator of β, i.e., the ratio between the unnormalized posterior
and the density of RTO from levels 0 to 4. These plots are quite similar to the convergence
plots on β̂lQ̂l. The slopes of the oblique lines of mean and variance are the same respectively.
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Figure 4.3: Convergence plot of mean for prey model with RTO method. The blue line is
∆̂Y , the mean of the numerator in the multilevel self-normalizing estimator (3.23). The red
line is the mean of the difference, corresponding to condition 1 of the complexity theorem
(3.4.1). The slope of the red line, −2, is the negative of the rate ζ.
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Figure 4.4: Convergence plot of variance for prey model with RTO method. The plot is
checking condition 2 of the complexity theorem (3.4.1), and the negative of slope of the red
line is denoted as α in the theorem. We can see that the slope of the red line here, -4, is
twice that of the slope of the red line in the mean plot. This vaguely shows that 2ζ ≈ α.
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Figure 4.5: The mean plot of unnormalized weight. The slope of red line is approximately
the same as Figure (4.3).

For the other samplers we have used, the slopes of the oblique lines of mean and variance
are also the same respectively. Therefore, we assume that the convergence rates of β̂l and
β̂lQ̂l are identical in the complexity theorem. The analysis of convergence plots on β̂lQ̂l

applies on β̂l.
The blue curve in Figure (4.7) is the CPU time across levels with MAP points as initial

values to start the optimization. This figure demonstrates condition 3 of the complexity
theorem (3.4.1). The computational cost Cl increases as discretization size hl increases.
The slope of this blue line is −η. We can tell that η is about 1 here. In this scenario, α > η,
which is the first case of the conclusion of the complexity theorem (3.4.1). We expect that
the cost of the multilevel estimator is proportional to reciprocal MSE, i.e., CML = O(ϵ−2).
We will verify the relationship between cost and MSE in the following subsection.

In the ratio estimator, we have two multilevel estimators: the numerator ∆̂Y and the
denominator ẑ. At the moment, we have verified that ∆̂Y , ẑ and Cl converge as the
conditions stated in the complexity theorem (3.4.1). We are going to verify if the cost
of multilevel estimator was as shown in complexity theorem (3.4.1) given all these three
conditions. It is verified by the MSE plots in subsection 4.1.4.

4.1.4 Optimal sample size and MSE

Before diving into details of the CPU time versus MSE figure, there is a trick to reduce the
CPU time. For each level, we need to do the optimization with an initial value. For level
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Figure 4.6: Convergence plots for variance of unnormalized weight. The weight here is
actually the denominator of multilevel estimator (3.23). Even though the exact values of

∆̂Y and β̂ are different, the rates of convergence of the mean and variance are the same
respectively. The slope of the red line is identical to those in Figure (4.4).
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Figure 4.7: CPU time comparison. The plot is to compare the different CPU time of
opimizations starting with MAP point and starting with the previous samples obtained at
the last level. The increasing rate of the blue curve here corresponds to the rate η in the
complexity theorem (3.4.1).
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Figure 4.8: CPU time versus MSE for stopping level 1, i.e., including level 0, 1. The blue
line is just a straight line with slope of −1. The red line is the actual computational cost
versus the mean square error. We can see the red line goes up vertically after one point.
This indicates that after this point, greater cost fails to reduce the MSE as quickly as before.
Therefore, this point corresponds to the optimal sample size. The black dot is the optimal
sample size calculated from equation (4.5) derived from complexity theorem.

zero, we start with the MAP point to optimize. For the level one, we can choose the samples
from level zero as the initial guess to optimize, or just use the MAP point again. Figure
(4.7) shows the cost of both methods. Figure (4.7) shows a comparison of the cost when
optimization starts with a result from the previous level, and when optimization starts with
the MAP point. We can see that the cost of the first method is cheaper than the second.
If the dimension of the parameters changes at every levels, we might not be able to use the
result from previous level as an initial guess.

The following CPU time versus MSE figures (4.8 and 4.9) verify the complexity theorem
in Chapter 3. The first figure (4.8) is for stopping level L = 1, which means that there are
only two levels of samples: level zero and level one. The second figure (4.9) is for stopping
level L = 2, including three levels of samples: level zero, level one and level two.

The red lines in figures (4.8) and (4.9) are from numerical experiments. The blue lines
serve as a reference to check if some segments of the red lines has the same slope as the
reference line. We can see that when the MSE is large (the bottom right corner of the
plots), the cost versus MSE has a slope close to −1. This is because the MSE is dominated
by the variance instead of discretization error at this time. The variance decreases linearly
as sample size goes up, which is the property of Monte Carlo simulation. Figure (4.10)
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Figure 4.9: CPU time versus MSE for stopping level 2. This plot is similar to Figure 4.8,
but for stopping level 2. Stopping level 2 includes level 0, 1, 2. In this figure, the actual
cost (red line) does go up as it did in Figure 4.9. The black dot is the predicted “changing
point” corresponding to the optimal sample size. We can also observe that the line of the
five points starting from the right-hand side, has slope of −1. This indicates that it is in
the best scenario O(ϵ−2) of complexity theorem (3.4.1).
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Figure 4.10: Optimal sample sizes of difference stopping level for prey model. This figure
shows all the predicted “changing points” corresponding to optimal sample size, for stopping
level 1, 2, 3, and 4. We can see that the line of these four dots has slope −1 again. The
points for stopping level 1 and 2 are actually shown as black dots in Figure (4.8) and Figure
(4.9) respectively.

shows the optimal sample size of four stopping levels versus MSE. These optimal sample
sizes also line up and is parallel to the line with slope −1.

The sample size of the multilevel level is not determined yet even though we have the
scales of sample sizes at each level given a fixed N0. We need to decide what is the best
sample size, or equivalently best N0 since the scales of sample sizes are fixed. The optimal
sample size occurs when the variance part of MSE equals the discretization error. However,
we cannot exactly calculate the discretization error. The way to find this optimal sample
size is to construct the CPU time versus MSE figure and observe its curve. When it reaches
a certain point, the CPU time increases, while the MSE decreases more slowly than before.
This point corresponds to the optimal sample size we are looking for, and it is the “changing
point”. However, there is a high cost to find this point. A cheaper solution we provide
here is to calculate the sample size to reach the variance bound in equation (4.5), while
the optimal sample size should occur around this calculated sample size. In the case of
stopping level 1 in Figure (4.8), the changing point is about the middle point; for stopping
level 2 in Figure (4.9), the changing point is the forth highest point.

76



4.2. PDE MODEL

Estimation of MSE

There are two black points in these two figures (4.8 and 4.9). These are the two approximate
“changing points”.

We first approximate the discretization error by using the finest level, 4, we have ob-
tained. We approximate the left-hand side in equation (4.5) by these small size samples
Nl = 3000 for all levels. For stopping level L = 1, the discretization error is 0.1737. Square
0.17372 = 0.03017. The left-hand side of equation (4.5) is 8226. In order to make equation
(4.5) balanced, N0 = 8226/0.03017 = 2.7e5. We can see that this black point (predicted
“changing point”) in Figure (4.8 is smaller than the MSE at the actual “changing point”(the
third red dot in the plot), which requires more samples than the actual “changing point”.
For stopping level L = 2, the square of the discretization error is 0.07112 = 0.00500. The
left-hand side of equation (4.5) is 8288. Therefore the N0 required is 8288/0.005 = 1.6e6.
The black dot (predicted “changing point”) in Figure 4.9) is again on the left-hand side of
the actual “changing point”, which demands more samples than the changing point. Hence,
these two black dots, 2.7e5 and 1.6e6, serve as the upper bounds of the actual optimal sam-
ple sizes. We can select 2.7e5 samples for N0 for stopping level 1, and 1.6e6 samples for
stopping level 2. If we need to find the optimal sample size, or simply want to find the
sample size that is close to the optimal sample size, equation (4.5) can provide a route as
shown in this paragraph.

The second line of the following equation which including the covariance is a more
accurate approximation of the variance of Q̂2 than that in equation (4.5):

V(
ŶL

ẑL
) ≈ 1

N0

1

E2(zL)
V
(
YL − zL

E(YL)

E(zL)

)
=

1

N0

1

E2(zL)

(
V (YL) + Υ (θ)2V (zL)− 2Υ (θ) Cov (YL, zL)

)
;

(IQL
− IQ)2 =

1

N0

1

E2(zL)

(
V (YL) + Υ (θ)2V (zL)− 2Υ (θ) Cov (YL, zL)

)
.

The last line above is the same logic as in equation (4.5), making the variance equal the
discretization error.

4.2 PDE model

The following subsections will discuss a more complicated model. The application of mul-
tilevel RTO will be a bit different from the prey and predator model.
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4.2.1 Problem background

We have an elliptic PDE modelling the pressure distribution r(s) of a stationary fluid, in
a domain Ω = [0, 1]2 with boundary ∂Ω. The fluid flows in a permeability field k(s), where
s ∈ Ω represents the spatial coordinates. We also denote n(s) as the outward normal vector
along the boundary. The PDE has the form

−∇ · (k(s)∇r(s)) = 0,

where s ∈ Ω ≡ [0, 1]2.
In the setting, we want to fetch the permeability field k(s) when we obtain some obser-

vations of pressure r(s). We make some assumptions about the prior before generating the
posterior. We assume that k(s) has a log-normal prior, i.e., k(s) = exp (x(s)) where x(s)
is a Gaussian process defined by the exponential kernel k(s, s′) = exp(−5|s− s′|). x is the
parameter we are trying to retrieve, while it is in infinite-dimension space. Therefore, for a
realization x(s), the pressure has the PDE

−∇ ·
(
ex(s)∇r(s)

)
= 0, (4.8)

with boundary conditions:
r(s) = 0, s ∈ ∂Ωleft;

r(s) = 1, s ∈ ∂Ωright;

ex(s)∇r(s) · n(s) = 0, s ∈ {∂Ωtop, ∂Ωbottom}.
(4.9)

The equations above (4.9) suggests that in the square domain Ω = [0, 1]2, the left and right
boundaries have Dirichlet boundary conditions, while the top and bottom have Neumann
boundary conditions.

The quantity of interest Q here is the outflow through the left boundary:

Q(x) = −
∫ 1

0

ex(s)
∂r(s)

∂s1
|s1=0ds2 = −

∫
ex(s)∇r(s) · ∇ϕ′(s)ds (4.10)

where s = (s1, s2)
T , and ϕ′(s) is a linear function on the left and right boundaries, ∂Ωleft

and ∂Ωright.
This is a more complicated model than the ODE model. The setting above is in the

infinite-dimension space, and we need to discretize the model. The observations, y, of the
pressure field are collected from 71 sensors in the permeability field. Therefore y ∈ R71. For
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a discrete model, we denote x as the discretized version of x. Thence, the forward model is

y = Fh(xh) + ϵ, (4.11)

where y represents the pressure measurements collected from 71 sensors and Fh is the
discretized forward model where h is the discretization size. xh is the discretized version
of x in (4.8). We have the same posterior as in (2.16). We need to arrange the prior
distribution of the infinite-dimension parameter x before discretizing it.

Convolution process and finite element method

The prior of the parameter x is a Gaussian process convolving a continuous white noise
process X(s), s ∈ Ω, with a Gaussian kernel k(s) so that for s ∈ Ω,

x(s) =

∫
Ω

k(u− s)X(s)du. (4.12)

One reason for this convolution is to make the covariance function of the Gaussian process
depend only on the distance, or displacement, of two points regardless of their location.
We suppose the covariance of the displacement for d = s− s′ is

V(d) = Cov (x(s), x(s′)) =

∫
Ω

k(u− s)k(u− s′)du (4.13)

=

∫
Ω

k(u− d)k(u)du. (4.14)

In this specific discretized model, we pick five sites, ω = (0.1, 0.3, 0.5, 0.7, 0.9) at each
dimension of Ω = [0, 1]2, and then we have 5 × 5 = 25 grids in total. We form the latent
process X(s) as X = (X1, X2, X3, X4, X5)

T at these 25 grids. The resulting continuous
Gaussian process is then

x(s) =
m∑
j=1

Xjk(s− ωj). (4.15)

Apart from the fixed grids above, we need to discuss how to discretize infinite-dimension
parameter x. This is the mesh we can change at every level. The permeability field
k(s) ≡ exp(x(s)) spreads around the 2D domain Ω = [0, 1]2, and therefore x also takes
value in the square domain Ω. Naturally we attempt to discretize the Ω into identical small
square grids. For each of the square grids, we assign one parameter. The mesh size is
hl =

1
20
2−l for l = 0, 1, 2, 3. Therefore, the number of grids for l = 0, 1, 2, 3, are 400, 800,
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4.2. PDE MODEL

1600 and 25, 600 respectively. Hence, there are
(

1
hl
+ 1
)2

nodes for each level, i.e., 441,

1681, 6561 and 25, 921 nodes for l = 0, 1, 2, 3 respectively. These are the dimensions of
parameter space at each level. We can see that the parameter dimension is very large at
the finest level.

We use the finite element method to solve equations (4.8), (4.9) and (4.10). The “ele-
ment” here is these small square grids of Ω in the discretization. For the basis function in
the finite element method, we use a piece-wise bilinear function. Accordingly, the number
of “element” increases exponentially with the mesh size. In this situation, it is extremely
costly to compute the parameters at fine levels. It takes several hours to generate 100 sam-
ples at the fourth level with 25, 600 grids, and therefore we expect the multilevel method
to reduce the cost.

4.2.2 Numerical results

This dimension of parameter in this PDE model increases exponentially as the level in-
creases, whereas in the prey and predator model the parameter dimension is fixed. We can
now verify the multi-RTO method in a practical and high-dimension setting. Since it is
expensive to compute samples at fine levels, we only compute a small sample test with 100
samples at each level, which are on mesh size 1

20
, 1

40
, 1

80
and 1

160
. The following two figures

(4.11 and 4.12) are convergence plots of mean and variance respectively for the quantity

β̂lQ̂l in this PDE model, where Ql is the outflow through the left boundary and βl is the
ratio of unnormalized posterior and RTO density.

We can see that the mean plot in Figure(4.11) looks similar to that of prey model (4.3).
The difference of mean has a clear tendency to decrease with the increasing level. Figure
(4.12) is the variance plot. When observing that the flat line departs from the red line, it
is clear that we can apply multilevel method in this problem. If these two lines crossed,
we might need to adapt another scenario to construct the telescope sum of the quantity of
interest.

Comparing the mean plot in Figure (4.11) and the variance plot in Figure (4.12), the
slope of the variance plot is twice that of the mean plot. This indicates that α is approxi-
mately twice of ζ , where ζ is the decreasing rate of discretization error when level increases
and α is the decreasing rate of variance of difference |β̂lQ̂l− β̂l−1Q̂l−1|. This result is similar
to that of the prey model.

The last two convergence figures (4.13) and (4.14) are the mean and variance plots of

the unnormalized weight. They show a similar pattern to the convergence plot of β̂lQ̂l. The
slopes of these two mean plots are the same, and slope of two variance plots are identical.
Therefore we can use the complexity theorem, since it is assumed that the convergence
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Figure 4.11: Convergence plot for mean in PDE. The slope of the red line responds to the
rate ζ in complexity theorem (3.4.1). This plot has a slightly “bent” red line, and a higher
variance at the zeroth level, which means the difference between level 0 and 1 is smaller.
This is different from the straight red line in the prey and predator model.
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Figure 4.12: Convergence plot for variance in PDE. The slope of red line (variance of
difference) declines at a rate about twice that of mean plot. The slope here is proportional
to the rate α in the complexity theorem (3.4.1).
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Figure 4.13: The mean plot of weight for PDE model.
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Figure 4.14: Convergence plots for variance of weight. The weight plots have a similar
pattern to the ∆̂Y .
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Figure 4.15: This figure plots the cost for the PDE model across levels. The increasing rate
here corresponds to the rate η in the complexity theorem (3.4.1).

rates of mean plots, (4.11) and (4.13), are both ζ, and convergence rates of variance plots,
(4.12) and (4.14), are both α.

Figure (4.15) shows the CPU time for 1000 samples at each level. The slope here
corresponds to the rate η in the complexity theorem. Comparing Figure (4.12) and Figure
(4.15), α > η. Therefore we predict that the cost is proportional to reciprocal MSE, i.e.,
CML = O(ϵ−2).

4.2.3 Optimal sample size and MSE

We want to find the optimal sample size as was done in the prey model. We first calculate
the ratio of sample sizes as in Table (4.3). We can see from Table (4.3) that the difference
between the zeroth level and first level is not as large as it was in the prey model. In
this section, we will use the following equation again to find the optimal sample size of
each stopping level, i.e., L = 1 and 2. We again make the discretization error equal the

Level N0 N1 N2 N3

Sample size 10,000 3487 1500 280
.

Table 4.3: This table includes the proportional sample size across all level for PDE model
given 10, 000 samples at zeroth level. It is calculated using (3.104).
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Figure 4.16: PDE model: optimal sample size for different stopping levels. These are the
predicted points that corresponds to the predicted optimal sample size and are similar to
figure (4.10).

approximation of MSE as follows:

(IQL
− IQ)2 =

1

N0

1

E2(zL)

(
V (YL) + Υ (θ)2V (zL)− 2Υ (θ) Cov (YL, zL)

)
.

The left-hand side equals (0.0117)2=0.000137, (0.0011)2 = 1.21e − 6, and (0.0008)2 =
6.4e − 7. The right-hand side excluding the factor 1

N0
equals 42. Therefore the resulting

optimal sample size is 3e5, 3e7, and 6e7. We can see that in Figure (4.16), the line of
predicted optimal sample size of different stopping levels is parallel to a straight line with
slope −1 again. This shows that CML = O(ϵ−2). This again verifies the case α > η in the
complexity theorem.
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Chapter 5

Implicit Sampling

This chapter introduces another optimization-based sampler similar to RTO, Implicit Sam-
pling. We will depict the target distribution specifically for Implicit Sampling, and describe
its algorithm. We apply this new method in the same prey and predator model in Chapter
4.

5.1 Implicit Sampling

5.1.1 Implicit Sampling

We restate the discretized forward model in a Bayesian inverse problem:

y = Fh(xh) + e,

where y ∈ Rm, xh ∈ Rn, and e is a Gaussian distribution with zero mean and covariance
Γobs, y is the data, and Fh : Rn → Rm is the discretized forward model with discretization
size h. We also assume that the prior distribution p(xh) is a zero mean Gaussian with
covariance Γprior. The posterior of xh is

πh(xh|y) ∝
1

zh
(2π)−

m
2 |det(Γobs)|−

1
2 exp

(
− 1

2

(
y− Fh(xh)

)T
Γ−1
obs

(
y − Fh(xh)

))
(5.1)

(2π)−
n
2 |det(Γprior)|−

1
2 exp

(
− 1

2
xT
hΓ

−1
priorxh

)
. (5.2)

85



5.1. IMPLICIT SAMPLING

We need to reform the posterior so that it is easier to analyze. The target distribution of
Implicit Sampling takes the form

πh(xh|y) ∝ exp(−ϕ(xh)), (5.3)

where ϕ(xh) is the negative log of the posterior:

ϕ(xh) =
1

2

(
y − Fh(xh)

)T
Γ−1
obs

(
y − Fh(xh)

)
+

1

2
xT
hΓ

−1
priorxh. (5.4)

This is different from the target distribution exp(−1
2
||H(xh)||2) used in RTO.

The following paragraphs introduce the basic idea of Implicit Sampling. Before finding
sample xh, we want to find a reference variable ξ with known pdf p(ξ). We also define
G(ξ) ≡ −log(p(ξ)), the negative log of p(ξ). We want to obtain sample xh satisfying

ϕ(xh)− ϕmin = G(ξ)−Gmin, (5.5)

where ϕmin and Gmin are minimum of function ϕ(xh) and G(ξ) respectively. By drawing a
random sample ξi each time, we obtain a new sample xi

h from solving (5.5). This the the
idea of Implicit Sampling method. This again defines a transport mapping from ξ to xh,
and therefore we can also use the coupling method for Implicit Sampling.

In this case, we choose the Gaussian variable as ξ. We can specify ξ with zero mean
and covariance matrix H−1

ϕ , where Hϕ is the Hessian of function ϕ at the minimum, i.e.,

the MAP point xMAP
h . Therefore the equation above becomes

ϕ(xh)− ϕmin =
1

2
ξTHϕξ. (5.6)

We will use the random map to solve equation (5.6). The basic idea of the random map
is to find a scalar λξ such that the following equation holds

xh = xMAP
h + λξξ. (5.7)

We want to solve equation (5.6) constraint to equation (5.7). The equation above is looking
for a solution xh at the random direction of ξ. Therefore, there is a special assumption of
the implicit sampling method: the domain of xh should be star-convex so that λξ is unique.

The weight of this sampler is the ratio of the posterior and the sample density πI.S.(xh)
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5.1. IMPLICIT SAMPLING

in equation (5.5):

w(xh) =
πh(xh|y)
πI.S.(xh)

. (5.8)

The weight is proportional to the Jacobian of this transport mapping T : ξ → xh:

w(xh) ∝ J(xh) ≡ β(xh).

We use β as the notation of unnormalized weight.
The corresponding weight for this random map method is

w ∝ J(xh) = J(xMAP
h + λξξ) ≡ β(xh)

= |λmλ−1
ξ

ξTHϕξ

∇ϕ ξ
|, (5.9)

where mλ is the number of nonzero eigenvalues in Hessian matrix Hϕ.
Implicit sampling is quite similar to RTO. They both obtain samples from optimising

the exponential parts of the posterior. We bring back the optimisation equation of RTO:

arg min
xh

∥UTH(xh)− ξ∥2, (5.10)

where H(xh) is the square root of negative log posterior. In contrast, Implicit Sampling
focuses on the negative log posterior ϕ. We use the Newton method to solve (5.6). We
use both RTO and Implicit Sampling to generate fixed-dimension samples of the prey and
predator model. It transpires that the Implicit Sampling method uses about twice the time
that RTO uses, to compute the same number amount of samples.

5.1.2 Multilevel Implicit Sampling algorithm

Similar to the multilevel RTO algorithm (3), the multilevel Implicit Sampling method is
used here. In this algorithm (4), we need to do a Cholesky decomposition of the Hessian
matrix at the MAP point. In fact, for high dimension problems, it is also difficult to
construct the Hessian matrix. We can approximate the Hessian matrix as

Hϕ(x
MAP
l ) ≈ Jl(x

MAP
l )TJl(x

MAP
l ) + I, (5.11)

where Jl(x
MAP
l ) is the same Jacobian (3.54) we use in the RTO method. We use the Newton

method to look for the value of λξ in (5.7). The performance of this numeric method is
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slightly worse than the trust region method we use in the RTO method.

Algorithm 4 Multilevel Implicit Sampling with transport mapping

1: for l = 0, 1, ..., L do
2: Compute the MAP point xMAP

l , and construct the Hessian matrix Hϕ(x
MAP
l ) in

equation (5.11);
3: for i = 1, ..., Nl do
4: Compute a Cholesky decomposition: LLT = H−1

ϕ ;

5: Obtain one standard Gaussian random sample ϵ, Ξi
l = Lϵ;

6: Obtain samples X i
l and X

i
l−1 from solving (5.6) with the same Ξi

l using Newton
method;

7: Calculate the unnormalized weight β(X i
l) in (5.9) and QoI Q(X i

l);

8: Construct the ∆̂Yl in (3.19);

9: Construct the ∆̂βl in (3.22);
10: end for
11: end for
12: Sum up all ∆̂Yl to get ŶL ≡

∑L
l=0 ∆̂Yl;

13: Sum up all ∆̂βl to get ẑ ≡
∑L

l=0 ∆̂βl;

14: The ratio of ŶL and ẑ forms Q̂2 ≡ ŶL/ẑL.

5.2 Numerical experiments

We are using the Implicit Sampling method to investigate the same prey and predator
model in (4.1.1). The QoI remains the same, that is, the number of prey at time 50. Figure
(5.1) shows the density of 3000 Implicit Sampling samples. We can see that this density
from Implicit Sampling is quite different from the RTO density in figure (4.1).
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Figure 5.1: Samples of 8 parameters of the prey and predator model from Implicit Sampling.
This is showing the density of samples generated from the Implicit Sampling method.

5.2.1 Convergence plots

The following plots evaluate the performance of multilevel estimators. We can see that
mean and variance decay at certain rates when level increases. This again confirms the
conditions in the complexity theorem (3.4.1). Comparing the mean and variance plots in
figures (5.2, 5.3) shows that, the slope of the red line from the variance plot is twice that
from the mean plot. However, we can see from the mean and variance plots in figures (5.2

and 5.3) of ∆̂Y , that the blue and red line are very close to each other. This indicates
that the variance reduction is small when applying multilevel estimators. If we calculate
the proportional sample sizes across level based on this setting, the difference of sample
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Figure 5.2: Convergence plot of mean for prey and predator model using Implicit Sampling
method. We can see the blue line (mean) and red line (difference of mean) are so close at
one point. If we check on the mean plots of RTO method (4.3) again, it should be some
distance between blue line and red lines.

sizes between zeroth level and first level is not large. Therefore, we want to use another
scenario: eliminating the zeroth level and setting the first level as the new zeroth level.
We can see the mean and variance plots of this new setting in figures (5.4 and 5.5). The
distance between blue lines and red lines is a lot greater now.

We decide to use the second scenario. Comparing the slopes these convergence plots, we
observe that the variance plot in Figure (5.5) has a slope roughly twice that of the slope in
the mean plot of Figure (5.4). The same slope pattern occurs in the weight plots in Figure
(5.7).

Figure (5.8) demonstrates the rate η in condition 3 of complexity theorem (3.4.1). Here η
is approximately 1. Comparing Figure (5.8) and Figure (5.5) shows that α > η. Complexity
theorem (3.4.1) predicts that CML = O(ϵ−2).

5.2.2 Optimal sample size and MSE figure

We can have the proportional sample sizes for 5 different levels in Table (5.1). The mesh
size, or discretization size of zero’s level is 2.5. The sample size of level 1 is about half
that of level 0. Compared to previous sample sizes in Table (4.2) with the same mesh sizes
across levels, where the sample sizes of level 1 are about 20% of the sample sizes of level 0.
We expect the sample sizes in all level l ≥ 1 are much less than level 0, since we want to

90



5.2. NUMERICAL EXPERIMENTS

0 0.5 1 1.5 2 2.5 3 3.5 4
2−23

2−17

2−11

2−5

21

level

∆̂Y

V|β̂lQ̂l|

V|β̂lQ̂l − β̂l−1Q̂l−1|

Figure 5.3: Convergence plot of variance for prey model using the Implicit sampling. The
blue and red line intersect at one point indicates that there is not much variance improve-
ment from level 0 to level 1 when we calculate the scale of sample size in equation (3.104).
Therefore, N0 and N1 will be very close, as shown in Table (5.1).
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Figure 5.4: Convergence plot of the mean for Implicit sampling (4 levels). We can see that
this plot has distant blue line (mean) and red line (difference of mean). They no longer
cross at any point.

91



5.2. NUMERICAL EXPERIMENTS

0 0.5 1 1.5 2 2.5 3
2−23

2−17

2−11

2−5

21

level

∆̂Y

V|β̂lQ̂l|

V|β̂lQ̂l − β̂l−1Q̂l−1|

Figure 5.5: Convergence plot of the variance for Implicit Sampling (4 levels). The red line
is far away from blue line now, which results in a better sample sizes scale in Table (5.2)
than the last scenario shown in Table (5.1). We again observe that the slope α of this red
line is approximately twice that slope ζ of Figure (5.4).
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Figure 5.6: The mean plot of weight for Implicit Sampling. The slope of red line here is
approximately the same as Figure (5.2).
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Figure 5.7: Convergence plots for variance of unnormalized weight for Implicit Sampling.
The rates of converging (slope of red lines) is the same as the rates in figures (5.4) and
(5.5).
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Figure 5.8: This figure plots the cost across level. The increasing rate here corresponds to
the rate η in complexity theorem (3.4.1).
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Level N0 N1 N2 N3 N4

Sample 10,000 5428 738 169 43

Table 5.1: Proportional sample sizes across five levels for Implicit Sampling method applied
in prey model given 10, 000 samples at zeroth level, calculated from equation (3.104). This
is the scale of sample size assuming the zeroth level has 10,000 samples. The mesh size of
the zeroth level is 2.5.

Level N0 N1 N2 N3

Sample 10,000 150 18 3

Table 5.2: This is the table of proportional four levels sample sizes for Implicit Sampling
given 10, 000 samples at zeroth level. This is the scale of sample size assuming the zeroth
level has 10,000 samples. The mesh size of zeroth level is 1.25. Compared to table (5.1),
level 1 requires fewer samples.

put lots of computation on the zeroth level instead of finer levels. But this scale in Table
(5.1) requires a lot computation on fine levels l ≥ 1 as well, which is why we need another
scenario.

When we eliminate the zeroth level in Table (5.1) and set the first level as the zeroth
level, we can obtain a new sample scale in Table (5.2). Compared to Table (5.1), the fine
levels l ≥ 1 requires fewer samples, given the same N0. We can see that the second scenario
in in Table (5.2) has a greater sample size reduction in all levels l ≥ 1. We will adopt this
setting to construct the multilevel estimator. However, sample sizes in Table (5.2) starts
with mesh size 1.25, which is actually costlier computation than that in Table (4.2) with
mesh size 2.5 at zeroth level. Comparing to the scenario of RTO method in Chapter 4,
the zeroth level of the RTO method starts with mesh size 2.5. This might implies that the
Implicit Sampling is less efficient than RTO method.

The Figure (5.9) shows the calculated optimal sample sizes for stopping level 1, 2, and 3.
The red line is the predicted optimal sample size for three stopping levels. L = 1 indicates
that it has level 0 and 1. The red line has slope of −1 verifies that we are in the best case
CML = O(ϵ−2) in the complexity theorem (3.4.1).

5.2.3 Comparison with RTO

Comparing the results with the RTO method, the ESR (effective sample ratio) in equation
(2.37) is 0.03, 3% in Implicit Sampling, which is significantly smaller than the RTO, 70%
given the same data y. We can weight the proposal density, 8 dimension parameter space
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Figure 5.9: Optimal sample size for different stopping levels for Implicit Sampling. The
red line is the predicted optimal sample size for three stopping levels. L = 1 indicates that
it has level 0 and 1. Since red line has slope of −1, it verifies that we are in the best case
CML = O(ϵ−2) of the complexity theorem (3.4.1).

in Figure (5.1) with related weight. When the ESR is high, we can accept more proposal
samples into the posterior. But when the ESR is low, the weighted posterior does not
represent the actual posterior like the weighted posterior (4.2) in the RTO method. Ideally,
we might obtain accurate weighted posteriors when endorsing large samples.

Furthermore, the computational time of Implicit Sampling is about double the time for
that of the RTO method. Implicit Sampling uses the Newton method to search a scalar
in equation (5.7). This line searching might not be very efficient in the prey model, which
results in a higher cost than the RTO method. Overall, the RTO method performs better
in the prey and predator model than the Implicit Sampling method.
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Chapter 6

Change of dimension

When we are dealing with infinite-dimension inverse problems, we discretize the parameter
space to a finite-dimension space. In this discretization process, the dimension of parameters
varies when we use different increments. In the multilevel method, one can have different
dimensions of parameters across levels. It is very expensive to compute the parameters in
the fine levels, like level 4, so we want to use the parameters in the coarse levels to construct
ones in the fine levels. This chapter introduces a way to use the parameters at the previous
level to generate the new parameters. The first section introduces the derivation of this
method and the second section includes the implementation in a tomography model.

6.1 Theoretical result

This section describes how we use parameters from a previous level to form the new pa-
rameters. Suppose we have parameter vectors xl−1 at level l and xl at level l − 1. xl and
xl−1 have different dimensions, and dimension of xl is larger than xl−1. We have discussed
the transport mapping in section 3.2. There is a transport mapping T , from ξ to x. We
are using the reverse map T−1 ≡ SRTO here. We define SRTO as the the mapping from x
to ξ. After the RTO transformations at two levels, l and l − 1, we have

SRTO(xl) = ξl ∼ N(0, Il);

SRTO(xl−1) = ξl−1 ∼ N(0, Il−1).

The dimensions of xl and xl−1 are not identical. We denote the Laplace precision matrices
Pl, Pl−1 with the same dimensions as the identity matrices Il, Il−1 respectively. We can
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generate the two new random vector as:

P
− 1

2
l SRTO(xl) = P

− 1
2

l ξl ≡ rl ∼ N(0, P−1
l );

P
− 1

2
l−1SRTO(xl−1) = P

− 1
2

l−1ξl−1 ≡ rl−1 ∼ N(0, P−1
l−1). (6.1)

This step above is simply reforming the transport mapping processes. The next step is to
partition rl as (r̃l, r̃l−1)

T where the dimension of r̃l−1 is the same as for rl−1. For example,
if rl = (r1, r2, r3, r4, r5)

T where rj’s are drawn from N(0, P−1
l ), and rl−1 = (r1, r3, r5)

T ,
then rl = (r̃l, r̃l−1)

T = ( r2, r4, r1, r3, r5 )
T . We denote the partitioned mean and precision

matrix of r̃l and r̃l−1 as (µA,µB)
T = (0⃗, 0⃗l−1)

T and

Pl =

(
PAA PAB

PBA PBB

)
. (6.2)

The inverse of this precision matrix is denoted as

P−1
l =

(
CAA CAB

CBA CBB

)
. (6.3)

Therefore the marginal distribution of r̃l−1 is N(0, CBB). The marginal distribution of r̃l−1

is not identical to rl−1, but has the connection:

r̃l−1 = C
1
2
BBP

− 1
2

l−1

(
rl−1 − 0⃗l−1

)
+ µB,

= C
1
2
BBP

− 1
2

l−1rl−1, (6.4)

where CBB is the inverse of Schur complement of block A of the matrix Pl:

CBB =
(
PBB − PBAP

−1
AAPAB

)−1
. (6.5)

At the current stage, we have rearranged the order of vector rl so that we can separate
the known r̃l−1 and the unknown vector r̃l. We have partitioned the mean and precision
matrix accordingly so that it is ready to generate the unknown r̃l.

We suppose at the l−1 level, rl−1 is transformed by known samples xl−1 as in equation
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(6.1). The unknown r̃l is thus a conditional distribution in the following form:

r̃l|r̃l−1 ∼ N
(
µA − P−1

AAPAB (r̃l−1 − µB) , P
−1
AA

)
,

With the assumptions (µA,µB)
T = (0⃗, 0⃗l−1)

T , the conditional distribution has the following
form:

r̃l|r̃l−1 ∼ N
(
−P−1

AAPABr̃l−1, P
−1
AA

)
. (6.6)

The result above uses the Schur complement of block PBB of the matrix Pl in (6.2). This
requires the matrix PBB to be invertible. The new parameters r̃l in the next level follow a
conditional distribution of the known mean and variance.

Combining equations (6.4) and (6.6), the realisation of r̃l comes from a linear transfor-
mation:

r̃l = −P−1
AAPABr̃l−1

= −P−1
AAPABC

1
2
BBP

− 1
2

l−1rl−1.

= −P−1
AAPABC

1
2
BBP

−1
l−1ξl−1 (6.7)

where the second line is derived from (6.4) and the last line uses equation (6.1). After
obtaining r̃l, we can use this combined rl = (r̃l−1, r̃l)

T to generate xl:

P
− 1

2
l SRTO(xl) = rl

SRTO(xl) = P
1
2
l rl

T (P
1
2
l rl) = xl. (6.8)

P
1
2
l rl is served as the reference variable ξl in the transport mapping. Instead of using a

new random vector from Gaussian as the reference variable, we use a fixed vector P
1
2
l rl, so

that it is possible to reduce the iterations of optimisation needed, given the information of

the previous level embedded in P
1
2
l rl. This is similar to the technique that uses the samples

from the previous level as the initial values to optimize the current level in the case which
the dimension of parameters does not change. This technique in changing dimension setting
can be summarized by the algorithm (5) below. Algorithm (5) only depicts the procedures
of solving one sample xi

l at level l, which should be embedded in multilevel algorithm (3).
The full algorithm is shown in (6).
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Algorithm 5 Compute parameter in the finer level given samples in a coarse level

1: Obtain ril−1 at l − 1 level after the matrix multiplication in (6.1);
2: Compute r̃il using the linear transformation in (6.7);
3: Combine ril = (r̃il, r̃

i
l−1)

T from (6.4) and (6.7);

4: Solve T (P
1
2
l r

i
l) = x

i
l.

6.2 Numerical experiments

6.2.1 Tomography problem

This is a model in two dimensional positron emission tomography (PET) imaging. PET
imaging scans an object of interest through the emission of gamma rays to reveal the
densities of the object. When gamma rays pass out of the object, photon detectors count the
occurrence of gamma rays from sources and we use the count from detector to reconstruct
the density of the object. Suppose we are interested in the image in a 2D domain Ω. The
density function is represented as exp(x(s)), where x(s) follows a Gaussian prior. The
intensity of gamma rays after scanning the object is modeled as

Id,i = Is,iexp

(
−exp

(∫
li(s)

exp(x(s))

))
, (6.9)

where Id,i and Is,i are the intensities along the path li (s) at the photon detectors and
sources. Is,i is parameterised as λ for all i, which is an unknown hyperparameter in this
inverse problem. This is a hierarchical model, with a posterior in equation (2.19). If we split
the 2D domain Ω into grids with n even cells, then the parameter x(s) can be discretized
as x with ∫

li(s)

exp(x(s)) ≈ Σn
j=1Bijexp(xj), (6.10)

where Bij is the intersection of path li (s) and cell j, and exp(xj) is the density in cell j.
Here xj is the jth entry in vector x. It is a line integration along different paths li (s). As
we split Ω into different numbers of grids, the dimension, n, of parameter space changes.
In the multilevel method, the discretization size is the cell size in Ω.

The forward model F : Rn → Rm is defined as

F (x) = exp (−Bexp (x)) , (6.11)

where B ∈ Rm×n has non-negative entries, since its entry is the length of intersection.
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Algorithm 6 Multilevel RTO with transport mapping for changing dimension of parame-
ters

1: Follow algorithm (3) when l = 0;
2: for l = 1, ..., L do
3: Compute MAP point xMAP

l ;
4: Form the Jacobian matrix J(xMAP

l );
5: Construct the thin QR factorization of J(xMAP

l );
6: for i = 1, ..., Nl do
7: Draw a sample ξil−1 from N(0, Il−1);
8: Obtain RTO samples X i

l−1 from solving (3.56) with the ξil−1 as the reference
variable;

9: Use algorithm (5) to get X i
l ;

10: Calculate the unnormalized weight: β(X i
l) and β(X i

l−1); and QoI Q(X i
l) and

Q(X i
l−1) ;

11: Construct the ∆̂Yl in (3.19);

12: Construct the ∆̂βl in (3.22);
13: end for
14: end for
15: Sum up all ∆̂Yl to get ŶL ≡

∑L
l=0 ∆̂Yl;

16: Sum up all ∆̂βl to get ẑ ≡
∑L

l=0 ∆̂βl;

17: The ratio of ŶL and ẑ forms Q̂2 ≡ ŶL/ẑL.
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The data are integer numbers collected by the detectors. We model the data in Poisson
distributions. Unlike the previous models, including the prey model and PDE, the likelihood
function is not Gaussian. We have the integer data y ∈ Rm, thus the Poisson likelihood is

L(y|x, λ) = λ
∑m

i=1 yi
Πm

i=1yi!
exp

(
m∑
i=1

(yilogFi (x)− λFi (x))

)
, (6.12)

where yi is the ith element in vector y and Fi is the ith element in vector F , the output
of forward model. We need to approximate this Poisson likelihood so that we can put it
in the posterior function of the RTO distribution. The equations (6.13) and (6.14) below
provides a Gaussian approximation of this Poisson likelihood [2]. We first take the log of
the likelihood:

logL (y|x, λ) = −
m∑
i=1

logyi!− λ
m∑
i=1

exp (logF(x)) +
m∑
i=1

yi (logλ+ logF(x)) . (6.13)

If we fixed the parameter x, data y is also fixed. We denote the fixed vectors as x∗ and
y∗. The resulting logL(y|x, λ) can be expanded in a second-order Taylor series at the fixed
point:

logL(y∗|x, λ) =logL(y∗|x∗, λ) +
(
F (x)− F (x∗)

)T∇F(x)logL(y
∗|x∗, λ)

+
1

2

(
F (x)− F (x∗)

)T∇2
F(x)logL(y

∗|x∗, λ)
(
F (x)− F (x∗)

)
+O

(∥∥F (x)− F (x∗)
∥∥3)

=logL(y∗|x∗, λ)− λ

2

(
F (x)− log (y/λ)

)T
diag

(
F (x∗)

)−1(
F (x)− log (y/λ)

)
+O

(∥∥F (x)− F (x∗)
∥∥3)

≈constant− λ

2

(
F (x)− log (y/λ)

)T
diag (F (x∗))−1 (F (x)− log (y/λ)

)
.

(6.14)

The last equation (6.14) is the Gaussian approximation of the Poisson likelihood. The prior
function for this model is the same as in example (2.1.1). The posterior of the hierarchical
model is shown in section 2.1.3. In this chapter, we fix the hyper-parameter and only
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evaluate parameter x. The posterior takes the following form:

p(x|y, λ) ∝(
2π

λ
)−

m
2 |det

(
diag (F (x∗))

)
|−

1
2

exp

(
−λ

2

(
F (x)− log (y/λ)

)T
diag (F (x∗))−1 (F (x)− log (y/λ)

))
p0 (x) .

The dimension of the parameter starts from a large number. The zero level has (32 +
1)2 = 1089 parameters, which means that the 2D domain Ω is split into 16×16 grids. The
other three levels have (64 + 1)2 = 4225, (128 + 1)2 = 16641 and (256 + 1)2 = 66049
parameters.

6.2.2 Numerical results

The following table (6.1) shows the effective sample ratio at all four levels. The zero level
has the slightly larger effective sample ratio since we use the MAP point as the initial
value to perform the optimisations at the beginning. The remaining effective sample ratios
increase along with discretization levels.

Level l = 0 l = 1 l = 2 l = 3

Effective Sample Ratio (ESR) 0.23275 0.20430 0.21044 0.21324

Table 6.1: This table is about the effective sample ratios in tomography problem across
four different level with degree of freedom 32, 64, 128, 256.

The following two figures (6.1) and (6.2) are the convergence plots of ∆̂Y in this to-
mography problem. We can see that the variance (blue lines) become flat after level 1. The
plots of weights in figures (6.3) and (6.4), are also showing a similar pattern to the figures
(6.1) and (6.2). The slopes of reds lines in figures (6.1) and (6.2) are actually the same as
those in figures (6.3) and (6.4) respectively. The mean and variance of weights (blue lines)
are converging to a value, and their difference (red lines) are also reducing. The means
and variances of difference (red lines) are decreasing at two certain rates, denoted as ζ and
α respectively, which match the assumptions of the complexity theorem(2.3.1). Therefore,
we can apply the complexity theorem to approximate the MSE and corresponding optimal
sample size.

We first calculate the sample size again with the formula (3.104), which requires the
variance of difference at each level as well as the CPU time across levels. The CPU time
across levels are shown in Figure (6.5). The rate in this figure corresponds to the rate η
in the complexity theorem (3.4.1). Comparing this Figure (6.5) and variance Figure (6.2),
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∆̂Y

E|β̂lQ̂l|

E|β̂lQ̂l − β̂l−1Q̂l−1|

Figure 6.1: Convergence plot for mean in tomography problem. The slope of the red line
correlates to the converging rate ζ in the complexity theorem (3.4.1).
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V|β̂lQ̂l|

V|β̂lQ̂l − β̂l−1Q̂l−1|

Figure 6.2: Convergence plot for variance in tomography problem. The slope of the red line
here corresponds to α in the complexity theorem (3.4.1). The rate here is approximately
twice that in Figure (6.1).
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β̂l

E(β̂l)

E(β̂l − β̂l−1)

Figure 6.3: The mean plot of weight in tomography model. The slope of red line approxi-
mately equals in that in Figure (6.1).
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Figure 6.4: Convergence plots for the variance of unnormalized weight in tomography
problem. The slope of red line is approximately equal to that in Figure (6.2).

104



6.2. NUMERICAL EXPERIMENTS
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Figure 6.5: CPU time per sample across levels in tomography problem. The computational
cost increases exponentially with respect to level. This slope here corresponds to η in the
complexity theorem (3.4.1).

Level N0 N1 N2 N3

Sample 10,000 3022 419 117

Table 6.2: Proportional sample sizes across levels for Tomography model given 10, 000
samples at the zeroth level. This is calculated from equation (3.104).

where the y-axis is in the log scale, the slope of Figure (6.5) is about 0.5 units per level
whilst the slope of red line in Figure (6.2) is about 1 unit per level. Therefore, the rate α is
greater then rate η. Based on the complexity theorem (3.4.1), we have the best case, i.e.,
the computation cost CML is proportional to reciprocal MSE, i.e., CML = O(ϵ−2). We will
test this in the CPU time versus MSE figure.

We can have the following scale of sample size across levels in Table (6.2). After ob-
taining the proportional samples sizes, we can have the MSE versus optimal sample sizes
as Figure (6.6). This figure verifies that CML = O(ϵ−2). When comparing Figure (6.5) and
variance Figure (6.2), we can find that α > η. The complexity theorem succeeds to predict
that the cost of the multilevel self-normalizing estimator is proportional to reciprocal MSE.
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slope = -1
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Figure 6.6: Optimal sample size for different stopping levels. This plot shows the optimal
sample size for different stopping levels L = 1, 2 and 3. L = 1 means that the multilevel
structure includes two levels, level 0 and 1. The parallel lines indicate that increasing
CPU time is proportional to decreasing MSE. This is the best case, CML = O(ϵ−2) in the
complexity theorem (3.4.1).

Performance of changing dimension technique

This numerical experiment uses the changing dimension method adapted in the RTO algo-
rithm. We also compute the single level results with the MAP point as the initial guess in
the optimisation, i.e., without the changing dimension method. We were expecting that the
changing dimension method would accelerate the computation of the fine levels. In fact, the
single level computation with the MAP point is even faster than the changing dimension
results. The changing dimension method does not play an important role in reducing cost
here.
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Chapter 7

Conclusion

The thesis sets out to investigate the Monte Carlo samplers, especially for optimisation-
based samplers, in Bayesian inverse problem. This study has also identified and develop
the complexity theorem for the multilevel self-normalizing estimator.

The numerical experiments are RTO sampler and Implicit Sampling, in prey model,
the PDE model and a tomography model. The experiment in prey models first uses the
multilevel RTO method. There are 8 fixed parameters in prey model and the RTO method
performs quite well. The Effective Sample Ratio (ESR) for RTO in prey model is about 70%.
The multilevel estimator in prey model falls at the best scenario in complexity theorem,
i.e., the computational cost is proportional to the reciprocal MSE. The elliptic PDE model
is on a square domain with a Gaussian process prior. The RTO method also performs quite
good with an Effective Sample Ratio of about 30% in the PDE model. Considering the
PDE model is quite complicate and expensive to evaluate, the ESR of RTO is high. The
multilevel estimator in PDE model also falls at the best scenario in complexity theorem.
The multilevel estimator for both experiments in Chapter 5 and 6 are in the best scenario
in complexity theorem as well. However, the Implicit Sampling implemented on the same
prey model has a very low ESR, which is smaller than 1%. Implicit Sampling is much
less efficient than RTO in the prey model. Chapter 6 is working on a tomography model
with changing dimension of parameters when level increases. We implements the technique
shown in Chapter 6, and unfortunately the technique doesn’t accelerate the computational
speed a lot in this model.

In general, it seems that even though the self-normalizing estimator is biased, the bias
occurred in self-normalizing process is negligible compared to the MSE. Taken together,
these numerical results suggest that if the conditions are all met as suggested in the com-
plexity theorem, the MSE will converge at the rate as suggested in the theorem. The
findings of this investigation complement those of earlier studies on complexity theorem
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of multilevel estimators. The findings reported here shed new light on self-weighting es-
timators in multilevel setting. It turns out that the complexity theorem of self-weighting
estimators and its corresponding proof are quite similar to standard complexity theorem.
This work contributes to existing knowledge of multilevel idea by using delta method to
prove the complexity theorem of the self-normalizing estimator. This new understanding
should help to improve predictions of optimal sample size for a multilevel self-normalizing
estimator.

Several questions still remain to be answered. Possible research are implementing RTO
in the hierarchical model, and using Quasi Monte Carlo (QMC) to further accelerate the
multilevel sampler. The hierarchical model involves hyper-parameters as shown in section
2.1.3 where RTO will be used to sample the unnormalized conditional posterior in equation
(2.23). QMC will be a useful technique to deal with high dimension problems.
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