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Abstract 
 
In this thesis, the length of Fracture Process Zone (FPZ) of four rock types including a red 
sandstone, a white coarse-grained marble, a fine-grained granite and a coarse-grained 
granite are quantified. This selection covers sedimentary, metamorphic and igneous rock 
types with different grain sizes. The length of FPZ of a moving crack or the cohesive length 
𝓁𝑐 is quantified by post mortem roughness analysis of the fracture surfaces of the studied 

rocks using statistical physics and multifractal framework. Then, this critical length, 𝓁𝑐, is 
imported into non-linear fracture mechanics models to connect rock physics and fracture 
mechanics, which leads to determination of the cohesive stress 𝜎c or intrinsic tensile strength 
of rock materials. 

By means of 3D image processing techniques using Mathematica software (Wolfram 
programming language and MASSIVE HPC facility) very high quality fractured surfaces are 
extracted from 3D X-ray CT data acquired at the Australian Synchrotron. A novel model 
based on multifractal analysis is developed that can quantify both 𝓁𝑐 and the roughness of 
rock materials at a wide range of length scales. Moreover, some methods for quantifying 
anisotropy and heterogeneity of materials using 3D X-ray CT data are developed. Electron 
microscopy techniques are also used to further decipher the intermittent behaviour of rock 
fracture and its corresponding rough surface. 

To verify the quantified 𝓁𝑐 from mechanical side ring and semi-circular bend experiments 
are conducted on four rock types under a wide range of quasi-statics and dynamic loading 
rates. Brittle nature of rock materials is a major issue for fabricating sharp notch in SCB 
specimens to successfully determine fracture toughness. In this study, notch mechanics and 
practical developments in similar materials were introduced to circumvent this difficulty. 
Based on the presented analyses, it is concluded that if the notch root radius is smaller than 
the 𝓁𝑐, the ISRM suggested method [Kuruppu et al. 2014] is a reliable method for determining 
fracture toughness of rock materials. The notch tip radius of the studied SCB specimens is 
350 microns and is smaller than the 𝓁𝑐 of all studied rock types. Then, the Theory of Critical 
Distances (TCD), Coupled Finite Fracture Mechanics (CFFM) and Cohesive Zone Model 
(CZM) are modified and combined for failure analysis of the performed experiments. 

Following such analyses, the 𝓁𝑐 is verified from two different mechanical models required 
completely different experimental inputs. This verification not only make a relationship 
between fracture toughness and roughness, and solve a forty-year-old dilemma, but also 
clarify some ambiguities in solid mechanics including the effects of geometry and 
experimental rate on tensile strength of rock materials.  

Finally, the physics of fractured surfaces are also investigated at length scales smaller 
than 𝓁𝑐, and the order of intermittency of rough rock fractured surfaces is discovered at 
intermediate length scales. However, this kind of disorder is more complicated than simple 
fractal or even multiscaling behaviours. Accordingly, some parameters are introduced that 
can perfectly take into account such systematic behaviour and fully quantify intermittency of 
the studied rock fractured surfaces.  
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Chapter 1: Introduction 

 

1.1. Research background 

So far, many researchers have tried to quantify microstructures at different scales to 

provide some models to predict behaviours of materials. Two recent review papers have 

presented the applications and shortcomings of these models (Bargmann et al. 2018; 

Bostanabad et al. 2018). Although existing computational science and engineering capabilities 

for modelling nonlinear material behaviour are impressive, it is unclear how much impact they 

have had on materials engineering and design in general. Moreover, an integrated vision and/or 

framework that would be widely usable in multiscale computational materials engineering is 

lacking. Therefore, establishing microstructure-statistics-property relations underpinned by 

integrated computational materials engineering, based on an image-based (data-driven) 

multiscale modelling framework with co-designed simulations and experiments, has the 

potential to transform the materials science and engineering field (Matous et al. 2017). In the 

field of geo-mechanics, one of the ultimate aims is to provide some predictive models to bridge 

between different scales and predict response of rock materials and their nonlinear fracture 

mechanics.  

Quasi-brittle materials, including rocks are not following Linear Elastic Fracture 

Mechanics (LEFM) at some small enough length scales (Irwin 1958; Barenblatt 1962) and 

Griffith fracture theory fails. This is because of the heterogeneous nature of such materials and 

existence of a fracture process zone (FPZ) at the tip of cracks or notches before crack 

propagation inside them. According to Cohesive Zone Model (CZM), if the length of FPZ (𝑙pz) 

ahead of a crack tip is ignored, the actual stress at which material fails cannot be determined 

by means of analytical solutions and all of the analysis and measurements including fracture 

toughness would have significant errors. Therefore, measuring the size of this zone is of prime 

importance to analyze the fracture behaviour of quasi-brittle materials, and is the key to 

understanding the relationship between multiscale physical properties and fracture mechanics 

of rock materials. However, quantifying the FPZ is a challenging task. Although different 

methodologies have been used for measuring FPZ (Dutler et al. 2018), it is inconclusive yet to 
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develop an internationally accepted norm for quantifying it. The outline of this thesis designed 

to tackle this issue is presented in Fig. 1.1. 

In this thesis, fracture of rock materials is being investigated from physical, mechanical 

and dynamical points of view. Experimental measurements along with theoretical analysis and 

analytical solutions as well as statistical physics methods and roughness analysis are employed 

to quantify 𝑙pz . Different theories, including Coupled Finite Fracture Mechanics (CFFM), 

Theory of Critical Distances (TCD), CZM, and notch mechanics are employed and coupled 

together to measure 𝑙pz  from experimental side. Statistical physics methods including 

correlation of local slopes and multifractal analysis of fractured surfaces as well as 

homogenization of 3D X-ray tomography data are employed to determine some length scales 

at which rock can be considered homogeneous. It is supposed that there is a correlation between 

heterogeneity and FPZ. Therefore, if the length scale at which rock can be considered as a 

homogeneous material is determined, then we can estimate the order of magnitude of 𝑙pz. After 

analyzing various data it has turned out there is a very good agreement between all of the 

applied method and 𝑙pz have been successfully quantified under quasi-static loading.  

 

 

Fig. 1.1. Outline of the workflow. 

 

High-tech facilities have been used to investigate the effect of loading rate on 𝑙pz under a 

wide range of dynamic loads as well. This analysis can provide us with some important clues 

considering the effect of external and environmental conditions on fracture behavior and 
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mechanical response of rock materials. It will be shown that there is a transition zone from 

heterogeneous to homogeneous length scales according to 3D homogenization of X-ray 

tomography data of rock materials. It is supposed that under different loading and 

environmental conditions different length scales in transition zone will be activated and control 

𝑙pz that is the subject of our current research. 

By proving the link between rock physics and fracture mechanics, it is possible to identify 

weakest points or directions in a body, which have the smallest fracture toughness. This would 

be a valuable tool for any project dealing with fracture controlling, such as geothermal energy, 

hydrocarbon reservoirs, induced seismicity, waste disposal, mining, and tunnelling in geo-

mechanics, and plethora of other fields in material science and mechanical engineering.  

Moreover, such micro-mechanistic model could be combined with other techniques to 

understand multiscale materials behaviour under different loading and environmental 

conditions. This can integrate, for instance, with large scales seismic tomography and 

numerical modelling to predict rock mass behaviour at plenty of large scales rock engineering 

projects. This approach can also solve many fracture related problems in other grounds as well.  

 

1.2. Research schedule 

Following the outline of the thesis workflow (Fig. 1.1), the work has been conducted in 

three major phases. First of all, microstructure properties of different rock materials have been 

investigated by different techniques including Scanning Electron Microscopy (SEM) and 3D 

X-Ray Computed Tomography (CT). At the same time, some data analysis methods have been 

developed to analyse rock microstructure by processing the 3D X-Ray CT images. 

In the second phase, experiments are performed following the research plan. Then, in the 

third stage, roughness of some of the broken samples are reconstructed and analysed by means 

of statistical physics methods. Finally, all results and analyses are used to understanding the 

rock physics and fracture mechanics by quantifying the 𝑙pz  of a moving crack based on 

percolation theory and developed mechanical models. 

 

1.3. Materials 
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Four rock types including a red sandstone, a white coarse-grained marble, a Fine-Grained 

granite (FG granite) and a Coarse-Grained granite (CG granite) are selected for this study. This 

selection covers sedimentary, metamorphic and igneous rock types with different grain sizes. 

Fig. 1.2 is presenting the prepared rock samples from the selected rock types. The basic 

physical and mechanical properties of the studied rock materials including Uniaxial 

Compressive Strength (UCS), Brazilian  Tensile Strength (BTS), Static elastic moduli 

including Young modulus (Es) and Poisson’ ratio (s), compressional wave velocity (Vp), shear 

wave velocity (Vs), and dynamic elastic moduli including Young modulus (Ed), Bulk modulus 

(Kd), shear modulus (d) and Poisson’ ratio (d) are determined following ISRM suggested 

metods (ISRM 2007) and reported in Tables 1.1 and 1.2. 

 

 

Fig. 1.2. The prepared rock specimens for this research. 

 

1.4. Thesis outline 

This thesis consists of six chapter. In the first chapter a general background, research 

significant, aims and planned research, the characteristics of the studied rock materials, and 

outline of the thesis chapters has been presented. Second chapter is presenting a literature 

review. 

Quantification of the 𝑙pz  of the studied rock materials by means of some mechanical 

models is the core of the third chapter. Moreover, Point Method (PM) form of the Theory of 
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Critical Distances (TCD) is used to determine the tensile strength and the fracture toughness 

of the studied rock materials. In chapter four, robust determination of the 𝑙pz by combining 

physics and mechanics is presented. A novel multifractal roughness analysis is developed to 

determine the length of FPZ of the studied rock materials that is further verified by two different 

mechanical models required completely different experimental inputs. It is discussed how 

Coupled Finite Fracture Mechanics CFFM and PM form of TCD are modified and combined 

with Cohesive Zone Model (CZM) for such verification. 

 

Table1.1 The basic mechanical properties of the studied rock materials. 

Rock type UCS [MPa] Es [GPa] s  BTS [MPa] 

Sandstone 92.28 17.77 0.35 5.00 

Marble 117.58 54.43 0.45 4.09 

FG granite 138.08 55.34 0.23 12.32 

CG granite 135.32 45.09 0.32 8.67 

*FG: fine-grained; CG: coarse-grained 

 

Order of intermittent rock fractured surfaces at length scales smaller than the length of 

fracture process is discussed and quantified in chapter five. Physics of these length scales is 

discussed. According to chaos theory, some underlying patterns can disclose order of 

disordered systems. It is shown that intermittency of rough rock fractured surfaces are such 

orderable disorders at intermediate length scales. Accordingly, intermittency of the studied 

surfaces is successfully quantified at length scales smaller than length of FPZ.  

 

Table 1.2 The basic physical properties and dynamic elastic moduli of the studied rock materials. 

Rock type Vp [m/s] Vs [m/s] 𝜌 [kg/m3] Ed [GPa] d d [GPa] Kd [GPa] 

Sandstone 3307 2195 2407 25.66 0.11 11.60 10.87 

Marble 3785 2600 2830 40.31 0.05 19.13 15.05 

FG granite 4559 2822 2611 49.45 0.19 20.79 26.54 

CG granite 4500 2766 2612 47.81 0.20 19.98 26.26 
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Finally, in chapter six, the most important conclusions and future work are presented. 

Results of experimental tests performed under dynamic loading rates for both NSCB and ring 

tests of different rock types are presented. The reason behind dynamic increase factor is 

discussed from physics of some homogenised rock materials. Finally, the need for future work 

on roughness analysis of our reconstructed rock fractured surfaces broken under different 

loading rates for further understanding of this phenomenon is emphasised. 
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Chapter 2: Literature review 

 

2.1. Introduction 

This chapter reviews the literatures that have studied physics and mechanics of fracture 

process zone. All mentioned analytical fracture mechanics models in Chapter 1, for instance 

Dugdale–Barenblatt model Eq. (2-1) as the most popular method to determine the length of 

cohesive zone ahead of crack tip or the cohesive length ℓc, have shown there is a relationship 

between this length, the intrinsic tensile strength or cohesive strength (𝜎c) and mode I fracture 

toughness (𝐾Ic) Eq. (2-2).  

(2-1) 
ℓc =

𝜋

8
(
𝐾Ic

𝜎c
)
2

 

Therefore, quantifying the length of fracture process zone or the cohesive length of a 

moving crack, is very important for quantyfing intrinsic properties of materials including 

cohesive or intrinsic tensile strength as well as material fracture toughness. 

(2-2) 𝐾Ic ∝ 𝜎c√ℓc 

Different techniques including Acoustic Emission (AE), Digital Image Correlation (DIC) 

and automatic fractography have been used for measuring FPZ and investigating into the 

relationship between these three important parameters. DIC is being introduced as a very 

popular method to measure FPZ. For instance, Dutler et al. (2018) have used notched semi-

circular bending and Brazilian disk specimens to measure fracture toughness and tensile 

strength of an anisotropic granite. They have also used DIC technique to follow fracture process 

zone on the surface of the notched specimens. They have argued none of the proposed 

analytical solutions can have a good estimation of the length of fracture process zone, but (Eq. 

2-2) has a good agreement between analytical solutions and the experiments at directions 

perpendicular and parallel to the bedding of the tested rock samples.  

However, before applying the full-field measurement methods (e.g., digital image 

correlation), a proper understanding of the rupture propagation and separation of fractured 
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interfaces is necessary. Based on experimental observations in this study, firstly a rupture 

propagates, and failure of the studied rock materials takes place. After that, the separation of 

the two fractured surfaces and physical crack propagation is visible. A more promising 

approach would be the use of statistical fractography to determine ℓc of quasi-brittle materials 

(Bonamy et al. 2006; Vernede et al. 2015). 

The rest of this chapter is organised as follows. The effect of FPZ on mechanical properties 

of different materials have been addressed in old literatures as the size effect on material 

strength. This is still an ongoing research topic in scientific communities. Therefore, first of 

all, size effect on material strength and its relation with FPZ is reviewed. Then, the work of 

some researchers who have tried to experimentally measure the FPZ to have a better 

understanding of its physics and its effect on mechanical response of different materials is 

summarised. Next, studies to understand and evaluate the cause of FPZ from different points 

of view is reviewed. It is notable that there is an agreement between different scientific societies 

that the cause of FPZ is heterogeneous nature of materials at small enough length scales. 

Finally, some fundamental researches that have been conducted in order to understand the 

relationship between FPZ, material heterogeneity and roughness of fractured surfaces are 

presented. 

 

2.2. Size effect on material strength 

One of the most important and challenging issues in the study of mechanical behaviour of 

materials and structures including rock materials and rock masses is the scale in which we want 

to study material’s behaviour. It is well known that materials show different properties at 

different sizes (Carpinteri and Pugno 2005; Weinan 2011). There are some explanations for 

this phenomenon. First, from a (micro-) structural point of view, natural materials show scale 

dependent heterogeneity and anisotropy. Therefore, their structural features at every size, 

location and direction are different. Furthermore, constitutive behaviour of a material depends 

on the scale we want to study its behaviour. All brittle materials (i.e., materials in which the 

crack growth is governed by LEFM) become quasi-brittle on a small enough scale and all quasi-

brittle materials become perfectly brittle on a large enough scale (Bazant et al. 2004). 

Damage, spaning all length scales and governing the ultimate behaviour of any material, 

is one of the most difficult subjects in multiscale mechanics. Phenomenological models exist, 
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but real understanding is gained from analyses at heterogeneous microstructural scales (Matous 

et al. 2017). A description of a heterogonous structure in terms of micromechanics not 

necessarily leads to desirable estimation of fracture characteristics: transitions over a set of 

scale levels is a complicated problem. Furthermore, transition to averaged (effective) macro 

properties, correctly estimating general behaviour of material, can result in an inadequate 

prediction of the crack morphology and of peculiarities in crack evolution (Silberschmidt 

1996). From an internal point of view, multiscale behaviour of materials is related to their 

multiscale physical properties in terms of configuration and phases. These intrinsic physical 

properties are nominally constant at certain scales and locations, but their mechanical response 

could change under different external parameters. Environmental conditions including in situ 

stresses, water content, temperature as well as loading condition are among the most important 

external parameters that can affect the response of materials with same nominal intrinsic 

features under mechanical loading. 

Prediction of fracture behaviour in rock (or rock-like) materials is essential for a wide 

range of engineering problems, such as tunnel excavation, mineral and energy extraction and 

protective structure design in civil engineering (Wang et al. 2019). The absence of spatially 

accurate predictive models seriously degrades hydrocarbon recovery, protection and 

remediation of groundwater aquifers, and risk assessment of hazardous waste repositories 

(Leary 2003). Direct determination of mechanical behaviour of rock masses using mechanical 

tests is almost impossible. Moreover, for modelling their behaviour, we cannot use the 

parameters we have obtained from laboratory tests using small specimens unless we know how 

they would change at larger scales. This is usually called size effect or scale effect. The former 

mostly used by engineers in the concept of phenomenological failure criteria of solid quasi-

brittle materials by means of some theoretical or experimental failure criteria while the latter is 

being used by scientists in the ground of fracture physics and mathematical mechanics. 

However, it is not convincing to use upscaling methods to determine rock mass properties by 

means of laboratory experiments since structural properties of rock masses are not the same as 

laboratory specimens and varies at different locations and directions. 

Experimental studies on quasi-brittle materials have frequently shown there is an inverse 

relationship between, for instance, specimen size and its strength (Bieniawski 1975; Bazant 

1997; Hoek and Brown 1997; Van Vliet and Van Mier 2000; Darlington et al. 2011). The 

general explanation for this behaviour is that by increasing the size of the specimen its defects 

density will increase, and consequently its strength against any type of mechanical load will 
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decrease. However, this decrease is not linear and by increasing the size of the specimen it 

would be reduced and after a quite representative size, it would remain almost constant for 

statistically homogeneous materials (Weibull 1939). A good survey regarding the size effect 

on strength of laboratory quasi-brittle specimens can be found in (Masoumi et al. 2016). 

Regarding the scale dependent behaviour of materials, there is a similar idea among fracture 

mechanics and fracture physics researchers with different definitions (Carpinteri et al. 2006; 

Taylor 2007; Ponson et al. 2007; Vernede et al. 2015). They all believe that there is a 

Characteristic Length (CL) for any material, which is not perfectly brittle. This characteristic 

length is related to microstructural features of quasi-brittle materials and controls scale 

dependent behaviour of such materials. In general, nominal homogeneous and isotropic 

materials, which have finer micro-structural features, have smaller characteristic length scales. 

 

2.3. Fracture process zone quantification 

As described by Ponson (2016), two model have been proposed for fracture propagation 

in heterogeneous materials. First approach is a continuous model based on Linear Elastic 

Fracture Mechanics (LEFM), in which the Fracture Process Zone (FPZ) is much smaller than 

the microstructural features of the material. However, the second discontinuous approach 

considers a damage zone at the crack tip, which is much larger than the microstructural features 

of the material. Many experimental studies have shown scale dependent fracture properties of 

materials are related to the size of fracture process zone and the ratio of the sample size to FPZ 

should be large enough to obtain valid fracture properties from laboratory tests (Ponson 2016; 

Bazant and Kazemi 1990; Karihaloo et al. 2006; Muralidhara et al. 2013; Kuruppu et al. 2014).  

Zietlow and Labuz (1998) have claimed the FPZ is quite same for large enough sample sizes 

and under same loading condition. Measuring the FPZ and its mechanical and physical 

properties is one of the most challenging tasks to understanding fracture properties of quasi-

brittle materials. Different methods including AE, DIC and automatic fractography have been 

used for measuring FPZ e.g. (Vernede et al. 2015; Otsuka and Date 2000; Fakhimi et al. 2018; 

Kietov et al. 2019). Some researchers have used numerical modelling to estimate the size of 

FPZ considering the microstructural properties of quasi-brittle materials (e.g. Fakhimi and 

Tarokh 2013; Parisio et al. 2019). A good survey regarding the current progresses and 

challenges to quantifying FPZ using different methodologies can be found in Dutler et al. 

(2018). 
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It has been proved that there is a relationship between CL, FPZ and material heterogeneity. 

For instance, Bonamy et al. (2006) have shown their defined CL based on multiscale 

quantification of fractured surfaces has a direct relationship with the length of FPZ ahead of 

crack tip and varies depending on material heterogeneity. Taylor (2007), using experimental-

analytical studies has shown FPZ and CL are almost the same. However, he has claimed there 

are many fundamental questions that are needed to be answered to understand the relationship 

between CL and fracture properties of materials. This is an easy to answer but hard to 

understand and quantification problem. The failure of quasi-brittle materials is being formed 

with coalescence of micro-fractures ahead of pre-existing defects such as cracks and pores. The 

micro-structural features of materials around these defects are different. Therefore, when we 

want to move from micro to macro scales the effects of these disorders should be considered 

as well. These multiscale mechanical behaviour of materials are extremely important in both 

solid and fluid mechanics engineering including mechanical behaviour of rock masses and fluid 

flow in fractured rock masses. 

One way to study the behaviour of natural anisotropic heterogeneous materials is to define 

some representative features for them with few assumptions like using the effective medium 

theories. Effective Medium Theory (EMT) can be used to homogenise a heterogeneous 

material to determine its elastic constants and mechanical behaviour. However, heterogeneity 

and anisotropy of materials change at different length scales. Researchers have attempted to 

use multiscale modelling to solve this problem. Gao et al. (2015) and Hu and Oskay (2019), 

for instance, have proposed homogenization algorithms based on multiscale methods for 

simulating elastic wave propagation in anisotropic heterogeneous elastic media; a good survey 

can be found in the review paper by Matous et al. (2017).  Multiscale mechanics aims to 

identify and quantify relationships bridging various length scales in heterogeneous materials. 

The ultimate goal is to extract effective properties at the scales of application (Matous et al. 

2017). Therefore, we need to define a multiscale effective medium, which its constants are some 

functions of scale. These are some nonlinear heterogeneous functions depending anisotropy 

and heterogeneity of materials. 

 

2.4. FPZ and Scale dependent heterogeneity 

The first step towards this end is to have a deep and insightful understanding of the (micro-) 

structure of a material. It is also important to understand how the physical properties of the 
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material are changing with respect to size of the sample from micro to macro scales. Many 

researchers have attempted to address this issue. For instance, Carpinteri and Chiaia (1995) and 

Carpinteri et al. (1995), proposed two equation for fracture energy and tensile strength by 

means of multifractal scaling law. This means that for smaller scales a self-similar distribution 

of Griffith cracks is prevalent, whereas for larger scales the disorder is not visible, the size of 

the defects and heterogeneities being limited. In practice there may be a dimensional transition 

from disorder to order (Carpinteri et al. 1995). Therefore, materials can be considered linear 

elastic at large enough scales and their effective properties can be introduced into predictive 

models. However, if materials show large amounts of heterogeneity and anisotropy these 

formulas are not valid anymore. For instance, sedimentary rock masses are formed of different 

layers with different properties at different locations. Therefore, it is almost impossible to 

determine some multifractal scaling laws for them that can determine their behaviour at every 

scale, location and direction. 

There is also a similar concept in mathematical theory of asymptotic homogenisation, 

which has been developed to characterise effective properties of heterogeneous materials 

(Bakhvalov and Panasenko 1989; Cioranescu and Donato 1999; Tartar 2010). The basic idea 

is that if the unique structure of a material could be find, by considering boundary conditions, 

it is possible to estimate effective elastic properties of the material. This theory has been used 

to estimate the effective properties of periodic materials like biological tissues, synthetic 

composites and metamaterials. Same concept has been used by material scientists and 

mechanical engineers (e.g. Kanit et al. 2003; Kanoute et al. 2009) to estimate mechanical 

properties of materials with the aid of identification of their Representative Volume Element 

(RVE). However, there is no single solution for different materials or same materials at 

different conditions, or even it is not completely true if we say there is a self-affine fractal 

characteristic or same RVE that could describe material microstructure at different directions. 

Too many variables in terms of both configuration and phases could change multiscale physical 

properties of materials and their response to mechanical loading, so there are different answers 

for such a multiscale problem.  

This is a big gap and different scientific societies are trying to introduce new theories that 

could bridge between different scales. Regarding this issue with quantifying the length of FPZ, 

which takes scale dependent physical properties of materials into account, seems to be a 

practical solution. The amount of heterogeneity and anisotropy of materials and structures 

depend on length scales. In other word, there is no effective model that can describe effective 
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properties of a body at all length scales, and when we want to investigate into smaller details, 

we need to consider scale dependent local changes of the body. 

A rapidly moving crack in a brittle material is often idealized as a one-dimensional object 

with a singular tip, moving through a two-dimensional material. However, in real three-

dimensional materials, tensile cracks form a planar surface whose edge is a rapidly moving 

one-dimensional singular front. The dynamics of these fronts under repetitive interaction with 

material heterogeneities and the morphology of the fracture surface that they create are not yet 

understood (Sharon et al. 2001). Indeed, even what determines in which direction a section of 

crack front will advance is not understood, although it is clear that this involves physics on 

smaller scales than the regime of continuum elasticity theory. Until 1990s, except for the 

uniform motion of a straight crack front in an ideal elastic solid, there has not been, much 

theoretical analysis of these problems (Ramanathan and Fisher 1997). There seems to be no 

material so brittle that the process zone always remains featureless. It remains to be seen 

whether a simple continuum limit exists, or whether a crucial ingredient in understanding 

fracture is the discreteness of the underlying atoms (Fineberg and Marder 1999). Therefore, it 

is necessary to quantify multiscale physical properties of materials, which are controlling scale 

dependent materials behaviour.  

Appendix A is showing the post-mortem fracture surface of different rock types at different 

scales. From these micrographs, it is obvious that rock materials are showing a considerable 

scale-dependent heterogeneity. Therefore, when we want to investigate materials behaviour it 

is necessary to determine the scale of application as well as the mechanisms that are related to 

the scale of application at other scales. For instance, if we need to understand underlying 

mechanisms that have created the form of rock fractured surfaces at grain scale, which is related 

to intergranular cracks, we should understand which scales are contributing to make this form. 

However, if we need to investigate the roughness at sub-grain scales we need to consider 

different underlying mechanisms at different length scales. Local changes are the second 

important aspect of multiscale mechanics that can be explained by means of these images. 

However, for engineering applications, usually effective properties of materials should be 

determined and used as the input into predictive models.  

Other important considerations are the kind of problem we want to solve and the precision 

we need. For instance, intergranular cracks in polycrystalline materials like rocks or ceramics 

have been considered problematic in applying the EMTs coming from the theory of linear 
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elasticity. Some researchers have tried to address this issue by applying some modifications 

into EMTs by restricting pre-existing cracks to the grain boundaries (Bruno et al. 2019; 

Sevostianov and Kachanov 2019). In applications, however, both intergranular and 

intragranular cracks may appear in dependence on the strength of the interfaces between the 

grains (Zhang and Zhao 2013; Paggi et al. 2018). Therefore, if we need to predict both 

intergranular and intragranular cracks we should use multiscale approaches and consider the 

crystallographic cleavages as well. As another example, Aligholi et al. (Aligholi 2017a; 

Aligholi et al. 2019) have used statistical approaches to understand the relationship between 

rock physics properties at grain scale and mechanical behaviour. They have used multiple 

regression methods, which integrate modal composition, grain size and grain shape of igneous 

intact rocks to obtain statistical correlation between these features and a wide range of 

mechanical properties. The results were different for different mechanical properties. For 

instance, their results have revealed it is possible to classify strength of the tested rock materials 

under quasi-static loading, but it is not possible to determine their surface hardness against 

penetration of rotary drill bits. Interestingly, when they used rebound surface hardness data to 

classify strength of igneous rocks by means of basic physical and dynamic properties, their 

models have significantly improved (Aligholi 2017b). They have concluded that more details 

at finer length scales are required to predict surface hardness of igneous rocks.  

 

2.5 FPZ and roughness analysis 

Scale dependent problem that we are addressing here is the roughness of fractured surfaces 

of rock as a quasi-brittle anisotropic heterogeneous material. This is because of local changes 

of toughness of rock materials that lead different sections of a crack front to the different 

directions. Scale dependent fracture properties of rock materials are mainly related to the size 

of inelastic FPZ ahead of crack tip and its proportion to the size of the sample or the scale of 

application. Therefore, quantifying three-dimensional FPZ and understanding the cause of this 

phenomenon can lead to understanding the relationship between rock physics and fracture 

mechanics.  

Toughness of materials including rocks can be determined by means of laboratory tests. 

Jiang and Vecchio (2009), and Zhu and Joyce (2012) reviewed dynamical and statistical test 

methods for toughness measurements of materials. International Society for Rock Mechanics 

(ISRM) have suggested two test methods for measuring Mode I statistic and dynamic fracture 
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toughness (Kuruppu et al. 2014; Zhou et al. 2012) using notched semi-circular bending 

samples. Considering the heterogeneity of tested rocks, there is always variation between the 

toughness test results for different samples from same rock. There is not quantitative approach 

that can decipher the origin of these variations and engineers usually use the minimum 

conservative values as input into their models. From microscopic images presented in 

Appendix A, it can be deduced that fracture behaviour of a material is a function of its 

multiscale physical properties in terms of configuration and phases. Therefore, when we use 

different samples to determine the toughness of a material the results are different since even 

under exactly same testing conditions different samples have different physical properties. 

However, this is a challenging task to understand the local changes of materials’ microstructure 

and its relationship to global (effective) and local toughnesses. 

In general, there are three ways to understand interaction of microstructure and crack front: 

direct methods, indirect methods and numerical modelling. Direct methods are not applicable 

to all materials, and they are limited to small specimen sizes and cannot provide us with three-

dimensional data. Kumar and Curtin (2007) reviewed progresses and challenges of both direct 

and numerical methods. The main indirect approach to study fracture properties of materials is 

fractography. It can be used to study the post-mortem fracture surfaces to understand the effect 

of microstructural features on fracture propagation. In recent years, quantitative fractography 

has been used to study fracture propagation in heterogeneous materials (e.g. Bouchaud et al. 

1993; Ponson et al. 2006a; Bonamy et al. 2008; Guerra et al. 2012; Vogler et al. 2017). There 

are comprehensive review papers on this (Bouchaud 1997; Alava et al. 2006; Bonamy and 

Bouchaud 2011). Determining the relationship between toughness of materials and roughness 

of their fractured surfaces has been one of the most important aims of these studies (e.g. 

Mandelbrot et al. 1984; Srivastava et al. 2014).  

It has been proved that quasi-brittle materials are not following Linear Elastic Fracture 

Mechanics (LEFM) (Irwin 1958; Barenblatt 1959 and 1962; Dugdale 1960). This is because 

of existence of a FPZ at the crack tip before crack propagation in these materials. Therefore, 

measuring the size of this zone is of prime importance to analyse fracture behaviour of quasi-

brittle materials. Fractography has been recently used to determine length of FPZ of quasi-

brittle materials (Vernede et al. 2015). This procedure can be used to understand the 

relationship between toughness, roughness and microstructure. In this thesis, this procedure is 

further developed to quantify length of FPZ of rock materials. 
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Chapter 3: Quantifying the length of FPZ using TCD 

 

In the first two chapters, the importance of quantifying length of FPZ in failure analysis of 

quasi-brittle materials is explained. It is also explained that it is a main research gap in the field 

of fracture mechanics and there is no internationally accepted norm for quantifying it. Chapter 

3 of this thesis employs Point Method (PM) form of the Theory of Critical Distances (TCD), 

which is a practical solution for analyzing failure of materials, and combines it with the well-

developed theoretical concepts of the CZM to quantify length of FPZ of the studied rock 

materials. Moreover, notch mechanics is employed to have a close estimation of fracture 

toughness of the studied notched semi-circular bending specimens for further verifications of 

the novel presented PM. Finally, it is emphasized this method provides just an acceptable 

estimation of the length of FPZ, which is good enough for practical purposes, and more 

sophisticated schemes are required for a better quantification of this critical length. One of 

these schemes is based on quantitative fractography and roughness analysis of the fractured 

surfaces that is successfully employed in this study as explained in Chapters 4 and 5. 

This chapter is presented in the form of following publication (Aligholi et al. 2022) with 

permission from Elsevier, International Journal of Rock Mechanics and Mining Sciences. 
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A B S T R A C T   

Measuring the intrinsic fracture properties of quasi-brittle materials like rocks is of great importance and at the 
same time a major issue for engineers. In this study, we explore the ability of the Theory of Critical Distances 
(TCD) to determine accurately both the tensile strength and fracture toughness. To this end, we conduct ring tests 
and semi-circular bend tests on four rock types including a red sandstone, a white coarse-grained marble, a fine- 
grained granite and a coarse-grained granite. This selection covers sedimentary, metamorphic and igneous rock 
types with different grain sizes. The experimental data are analysed using a new methodology developed from 
the so-called Point Method (PM), a particular form of the TCD, from which we infer the intrinsic tensile strength 
and the fracture toughness of the studied rock materials. Our results are compared with those obtained from 
ISRM suggested methodology that is modified to take into account the finite notch root radius used in our ex
periments. The comparison is successful, supporting that the newly developed methodology is suitable to 
determine the intrinsic tensile strength and fracture toughness of rock materials.   

1. Introduction 

Rocks are archetypes of quasi-brittle materials. Under compression, 
they generally show a rather extended non-linear regime owing to the 
spreading of micro-fractures before final failure takes place. Under 
traction, they fail through the propagation of a crack that grows through 
the coalescence of micro-cracks localized at the crack tip vicinity in the 
so-called process zone. If the spatial extent of the process zone is small 
with respect to the specimen size, this phenomenon is then appropri
ately described by the theory of Linear Elastic Fracture Mechanics 
(LEFM).1 Within the LEFM framework, we introduce the fracture 
toughness KIc that quantifies the ability of the material to resist crack 
growth. Alternatively, one can seek to determine the stress level at 
which the material fails in traction, thus defining the material tensile 
strength. This is of particular relevance in absence of an initial crack in 
the structure.2,3 However, defining an intrinsic (specimen independent) 
tensile strength for quasi-brittle solids is a rather difficult challenge, as 
the load-bearing capacity of quasi-brittle specimens is known to strongly 
depend on its size,4,5 and often overlooked in engineering practice.6 

Owing to their quasi-brittle nature, rock made structures can give 
rise to catastrophic failures. Therefore, the accurate determination of 
their failure properties is key to assessing the structural resistance of 
rock masses, an important issue in many rock engineering practices such 
as tunnelling, rock cutting processes, hydraulic fracturing and rock slope 
stability.7 In the following, the term structural properties is used when 
the geometrical features of the specimens or bodies do play a significant 
role on top of the intrinsic properties that depend only on the micro
structural features of the rock materials as well as the surrounding 
environment.8 

A suitable solution for defining the tensile strength of rocks consists 
in considering the characteristic stress level at which the material fails 
within the process zone of a stress concentrator or a running crack. 
According to the Cohesive Zone Model (CZM) for brittle cracks,9,10 the 
so-called cohesive strength σc of the material is then related to the 
material fracture toughness via the cohesive length ℓc (or process zone 
size along the crack propagation direction) through the relation KIc∝ 
σc

̅̅̅̅̅
ℓc

√
.9 Although appealing, this definition raises serious experimental 

issues: how to determine the stress level at the tip of stress concentrators, 
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as the process zone is hardly larger than 1 mm in most quasi-brittle 
materials. 

Theoretically speaking, specimens with a sharp notch and without a 
stress concentrator can be used to determine the toughness of a material 
and its tensile strength, respectively. However, in practice, such a pro
cedure is neither reliably achievable nor practical. On the one hand, 
preparing sharp cracks in rock specimens is a challenging task and there 
is a systematic effect of the notch radius on the measured apparent 
fracture toughness. On the other hand, specimens without stress con
centrators at all do not provide reliable measurements of the intrinsic 
tensile strength of rock materials. The reasons behind this observation 
relate to the stochastic (defect driven) nature of tensile failure in brittle 
solids that have been thoroughly documented, see e.g. Refs. 4,11,12. 

To circumvent these difficulties, a natural yet challenging approach 
consists in using specimens with round notches. Contrary to the failure 
load of specimens with sharp notches that reflect the toughness of the 
material only, the mechanical strength of round notch specimens also 
reflects the material cohesive strength σc. Yet, measuring σc from such a 
methodology requires a reliable, accurate (and if possible simple) failure 
criterion that relates the intrinsic mechanical strength of the material to 
the structural strength of the specimen. To address this issue, several 
theories belonging to the realm of Finite Fracture Mechanics have been 
proposed (see e.g. Ref. 13 for a recent review). They all share the same 
concept that consists in determining the failure load of the specimen 
through the comparison of the local stress applied at a finite distance L to 
the notch with an intrinsic (material dependent) critical stress at failure. 
However, they differ in the way this critical distance is computed. 

Among these different models, the so-called Theory of Critical Dis
tances (TCD)14 is one of the most successful ones, as it is both simple and 
has been shown to predict rather accurately the mechanical strength of 
notched specimens for a large range of materials including compos
ites,15,16 metals,17–19 polymers,20,21 and rocks.22–25 In its simplest form, 
the so-called point method (PM), the critical distance L is determined 
from the intersection of the stress profile ahead of two notched speci
mens with different radii at their respective failure load. Here, we 
examine the validity of this approach by testing Semi-Circular Bend 
(SCB) and ring specimens with four different inner radii in four different 
rocks. We show that the specimens with the highest stress concentrator 
(the specimen with almost a sharp notch) and the lowest one (the ring 
specimen with the largest possible inner radius) are the most suitable for 
measuring accurately both KIc and σc. It is notable that notch mechan
ics26–29 is applied to modify the effect of a round-tip notch on measured 
fracture toughness of the studied materials. We also modify the original 
PM so the obtained value of the critical stress corresponds to the cohe
sive strength σc of the material, as defined in cohesive zone models. 
Ultimately, our work provides a new and simplified methodology for the 
determination of the intrinsic fracture properties of rocks, opening a 
new perspective for the extensive mechanical characterization of these 
materials under different conditions (temperature, loading rate, envi
ronment, etc.). 

This paper is organized as follows. First, we present the studied rock 
materials as well as the experimental and analytical methods adopted 
for this study. A brief theoretical background on the methodology 
employed to analyse the ring tests and bending tests carried out in this 
study is provided in Section 2. Section 3 presents our main results 
including a discussion. Finally, the conclusions are drawn in Section 4. 

2. Materials and methods 

Four different rock types including a red sandstone, a white coarse- 
grained marble, a fine-grained granite and a coarse-grained granite 
are selected for this study. This selection covers sedimentary, meta
morphic and igneous rock types with different grain sizes. The PM form 
of the TCD is applied to measure accurately the failure properties of 
these rock materials including tensile strength and fracture toughness. 
To check the validity of the proposed PM, the fracture toughness of the 

tested rocks is also measured according to the ISRM Suggested Method30 

modified to take into account the finite radius of the notch used in our 
experiments. 

2.1. A modified version of the PM based on CZM 

The PM is the simplest form of the TCD.31 Its failure criterion has 
been defined by Taylor32 as follows: ‘Failure will occur when the stress 
at a distance L/2 from the notch root is equal to σ0’. This translates as: 

σ(L / 2)= σ0 (1)  

where L is a characteristic distance, and σ0 is the inherent tensile 
strength of the material. If the stress distribution ahead of a stress 
concentrator and the characteristic distance are known, then the 
inherent tensile strength can be determined. As justified in Appendix A, 
the material fracture toughness KIc can finally be estimated from the 
relation: 

L=
1
π

(
KIc

σ0

)2

(2) 

Although this approach has been successfully applied to a large range 
of fracture problems, it remains a phenomenological method. Interest
ingly, it is intimately connected to the CZM of failure, which rigorously 
extends LEFM to elasto-damageable solids. In its simplest version, CZM 
introduces a cohesive stress σc, below which the material behaves 
elastically and beyond which it does not sustain any mechanical load. 
This approach predicts the spatial extent of the fracture process zone, 
also called the cohesive zone, through the Dugdale–Barenblatt (D–B) 
formula (see Appendix A):9,33 

ℓc =
π
8

(
KIc

σc

)2

(3) 

This formula is almost identical to Eq. (2) up to a constant π2/8 ≈

1.23. On top of it, considering the tensile stress distribution σ(r) = KI/
̅̅̅̅̅̅̅̅
2πr

√
ahead of a running crack as predicted by LEFM, one infers the 

relation σ(4ℓc /π2) = σc that is similar to Eq. (1). In the following, we use 
Eq. (3) instead of Eq. (2), as it derives from a well-identified assumption, 
namely the existence of a unique stress level that provides both the 
elastic limit and the failure threshold of the material, but we use the 
following PM based methodology to determine both σc and. ℓc.

Specimens with different notch geometries are loaded up to failure. 
Following Eq. (1), the point of intersection of the stress distribution 
ahead of the stress concentrators at the onset of failure is expected to 
provide the material tensile strength. Following the previous interpre
tation of the PM based on CZM, two extreme stress concentrators, i.e. a 
sharp notch (very high-stress concentration) and a flat free surface (no 
stress concentration), are best suited. However, in practice, machining 
very sharp notches and initiating a crack from a flat free surface are 
quite difficult to achieve in rock materials. 

Instead, SCB specimens with a notch root radius of about 350 μm and 
ring specimens with an inner radius of around 14 mm are used to pro
duce the highest and lowest possible stress concentrations, respectively. 
Despite the discrepancy between these specimens and the perfect con
centrators expected theoretically, our method provides accurate values 
of tensile strength, as we will show in Section 3. 

2.2. Ring test 

Rock rings are used in the following as the low-stress concentrator 
specimens. This test geometry has been used in the past to measure the 
apparent tensile strength of rocks and other brittle materials.34,35 

However, the apparent tensile strength is a structure-dependent prop
erty rather than an inherent material property.11,36 The difference be
tween the value of the apparent tensile strength and σc results from the 
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combination of three factors: (1) the probabilistic nature of the resis
tance of materials to tensile loading; (2) the complexity of the failure 
process involving the initiation of a crack by damage accumulation 
before it can propagate; and (3) the calculated stress following a linear 
elastic assumption may not be the ‘real’ stress experienced by the 
material.11 

The minimum diameter of the internal hole that could be drilled into 
the sandstone and the marble is about 3 mm, while it is about 6 mm for 
granites (Fig. 1-c). Rings with four different inner diameters are pre
pared for the sandstone and the marble, whereas three different ring 
specimens are prepared for granites. Moreover, normal disk specimens 
with no hole are also prepared and tested for all rock types. At least three 
different specimens for any geometry are tested and the average of 
calculated tensile strengths for each rock type/geometry is used for 
further analyses. The outer diameter and thickness of the rings/disks are 
around 75 and 30 mm, respectively. Note that, following the analysis of 
Fillon,37 the ratio of the inner to the outer diameter of our ring speci
mens is less than or equal to 0.4 so that the tensile mode of failure 
dominates over the compressive one.34 The driving rate of the 
cross-head for all our tests is set to 0.05 mm/min. 

The apparent tensile strength σmax is defined as the maximum stress 
level applied locally to the material at the onset of failure, assuming that 
it behaves elastically everywhere. It then follows:34 

σmax =
Pmax

πBR0

[
6+ 38(R/R0)

2
]

(4) 

that provides the tensile stress applied to the inner surface of the 
specimen at the applied failure load Pmax. For disk specimens for which 
R = 0, the maximum applied stress is located at the centre of the 
specimen and follows: 

σmax =
Pmax

πBR0
(5)  

Here, B is the ring thickness, while R and R0 are the inner and outer radii 
of the ring, respectively. 

Following Torabi et al.,38 Kirsch’s solution together with Hobbs’ 
correction34 are used to determine the tensile stress distribution σy(x)
along the loading axis x (see the schematic of the ring specimen shown in 
Fig. 1-a for the definition of the axes x and y): 

σy(x)=
σmax

2

(

2 − 2
R2

x2 + 12
R4

x4

)

Fcorr (6)  

Here, Fcorr is a correction factor that should be taken into account for 
sufficiently large R/R0 ratios, which follows: 

Fcorr = 1 +
19
3

(
R
R0

)2

. (7) 

In the course of the ring experiments, we observe an interesting 
phenomenon that we would like to discuss. As shown in Fig. 2-b and 2-d, 
the mechanical response of the ring specimen with the largest inner 
radius shows two peaks, the first one being larger than the second one. It 
turns out that full failure of the ring specimen took place in two steps. 
First, as the load is increased, the tensile strength of the material is 
reached and failure takes place at point A (see Fig. 2-c). After stress drop, 
the sample is still able to sustain load. As a result, the applied load in
creases again, starting from a lower level until it reaches a second time 
the tensile strength of the material at point C (see Fig. 2-c). It is inter
esting to notice that each half of the sample can still bear some 
compressive load until the tensile strength of the material is reached a 
second time at point C, and providing good evidence that the sample has 
been split under pure tension at point A. 

The first and second peaks in Fig. 2-d corresponds to the fractures 
labelled in Fig. 2-c and are located at points A and C, respectively. From 
this observation, it can be concluded that the ring test is suitable to 
measure the tensile strength. From recorded videos by high-speed 
cameras, we do observe that rings with smaller internal holes are al
ways separating from point A in a tensile mode as well (Fig. 3), as ex
pected from direct numerical simulations of failure in such specimens.35 

2.3. Semi-circular bending test 

The notched semi-circular geometry is used for preparing rock 
specimens with high-stress concentrators. Various methods have been 
used to determine the fracture toughness of rock materials.e.g.30,39–41 

The method suggested by ISRM30 relies on SCB specimen that is rather 
simple to machine and provides good repeatability (see e.g. Refs. 
42–45). 

Herein, SCB specimens are prepared and tested according to ISRM. 
Multiple SCB specimens for each rock type are tested and the average 
generalized (or apparent) fracture toughness KU

Ic is calculated as follows: 

KU
Ic =Y ′Pmax

̅̅̅̅̅
πa

√

DB
(8)  

Here a, B, D, and Pmax are the notch length, the specimen thickness, the 
diameter of the SCB specimen and the maximum applied load, respec
tively (see Fig. 4). The notch length of the tested SCB specimens is 
comprised between 14 and 16 mm while the notch tip radius is 350 μm. 
The diameter and the thickness of the SCB specimens range from 74 to 
76 mm and 29–31 mm, respectively. Finally, Y′ gives the non- 
dimensional Stress Intensity Factor (SIF) derived using the finite 
element method while assuming plane-strain conditions.30 Its expres
sion follows: 

Fig. 1. Ring experiment: (a) Schematic of the ring specimen; (b) A marble ring with an inner radius of 15 mm under compression; and (c) Specimens with the 
minimum inner radii before testing. 

S. Aligholi et al.                                                                                                                                                                                                                                 

FreeText
19



International Journal of Rock Mechanics and Mining Sciences 152 (2022) 105073

4

Y
′

=− 1.297+9.516(s/D)− (0.47+16.457(s/D))β+(1.071+34.401(s/D))β2

(9)  

where s is the span length which is between 37 and 38 mm for all our 
tests while β is equal to 2a/D. 

Failure of SCB specimens is recorded by means of a high-speed 
camera (Fig. 5-a). It can be clearly seen that the fracture initiates from 
the notch tip and propagates parallel to the axis of application of the 
forces, as expected. Typical load-extension curves obtained for different 
rock types are shown in Fig. 5-b. 

Creager–Paris solution26 provides the stress distribution in SCB 
specimens with a blunted notch of radius ρ: 

σ(x, 0)= 2KU
̅̅̅
π

√
x + ρ

(2x + ρ)3/2 (10)  

using the coordinate system depicted in Fig. 4-b. KU, the apparent stress 
intensity factor, is provided by Eq. (8) after replacing the failure load 
Pmax by the current applied load P. 

2.4. Direct fracture toughness measurement using SCB tests 

To test the ability of the proposed methodology to accurately mea
sure the fracture toughness of rock materials, we proceed to an inde
pendent measurement of KIc using the failure load of the semi-circular 
bending tests. The basic idea is to consider that at the onset of failure, the 
imposed stress intensity factor (determined from Eqs. (8) and (9) at the 
tip of the notch) reaches the fracture toughness value KIc. However, in 
our experiments, the notch tip radius is too large to be neglected. 
Compiling a large set of experimental data, Gomez et al.27 determined 
the ratio of the apparent fracture toughness (resulting from the finite 

notch root radius) over the actual material fracture toughness: 

KU
Ic

KIc
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
π
4

ρ
(KIc/σc)

2

√

(11)  

Here, the intrinsic tensile strength σc is determined using the PM based 
methodology while ρ measured from 2D slices of SCB specimens scanned 
by means of X-ray tomography, is found to be close to 350 μm (Fig. 4-d). 
KU

Ic corresponds to the apparent fracture toughness measured experi
mentally. As the material fracture toughness KIc appears on both sides of 
this equation, Eq. (11) must be solved iteratively as follows. First of all, 
Eq. (11) can be divided into the following two formulas: 

KU
Ic

KIc
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
π
4

ρ
lch

√

(12)  

where lch is a characteristic length given in Eq. (13): 

lch =(KIc/σc)
2
. (13) 

Then, an iterative process for estimating KIc can be presented in four 
steps as follows:  

a) estimating the lch using Eq. (13) by assuming KIc is equal to the 
measured generalized fracture toughness from the experiment;  

b) estimating the material fracture toughness by replacing the 
measured generalized fracture toughness from experiment, notch tip 
radius ρ, and the calculated lch from the first step into Eq. (12);  

c) updating the lch by replacing the estimated material fracture 
toughness from the second step into Eq. (13); and  

d) repeating this loop several times until old and new lch values and 
accordingly material fracture toughness values converge. 

Fig. 2. a) Sandstone ring specimen under compression; b) Mechanical response of the sandstone ring specimens with different inner radii; c) Schematic illustration of 
the two steps failure behaviour of ring specimens; and d) Mechanical response of the ring specimens made of different rocks for the largest inner radii (13–15 mm). 
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Fig. 3. Sequence of high-speed images taken from a sandstone ring with an inner radius of 3 mm showing symmetric fracture propagation from point A, as depicted 
in Fig. 2-c. 

Fig. 4. SCB fracture tests: (a) Schematic of SCB specimen under three point bending; (b) Schematic of the stress distribution on the bisector line of a blunted notch 
under opening mode loading conditions; (c) SCB specimens before testing; and (d) 2D image slice of a sandstone SCB specimen scanned by means of X-ray to
mography after failure. Note the radius ρ ≈ 350 μm of the initial notch. 
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The larger the notch tip radius ρ, the greater the number of required 
iterations for convergence (Fig. 6-a and 6-b). It turns out that the ratio 
KIc/KU

Ic is close to 0.95 for the four materials investigated. Beyond the 
particular cases of the fracture tests carried out in this study, Fig. 6-c and 
6-d depict the effect of the cohesive length in comparison to the notch 
root radius on the ratio KIc/KU

Ic. In particular, it can be seen that small 

notch radii compared to cohesive length give rise to KIc ≈ KU
Ic. 

3. Results and discussion 

3.1. Size effect on tensile strength measurements using ring specimens 

A natural first step in assessing the structure-independent tensile 
strength of the rock materials investigated is to determine the apparent 
(structure dependent) tensile strength σmax as a function of the ring 
geometry. Ring specimens with various inner radii as well as disk 
specimens from different rock types are tested for such a purpose. Fig. 7- 
a shows the value of Pmax as a function of the inner hole radius as ob
tained after averaging over different samples. It appears that the 
apparent tensile strength strongly depends on the hole radius (Fig. 7-b). 
This calls for a more advanced method of analysis to determine the 
inherent tensile strength. 

3.2. Intrinsic tensile strength and material fracture toughness 

The methodology described in Section 2.1 is applied in Fig. 8 for the 
four rocks investigated using the highest stress concentrator (the SCB 
specimens with a notch root radius of 350 μm) and the lowest concen
trator (the ring specimens with inner radii of 13–15 mm) as justified 
below. Equations (6) and (10) are used to predict the stress profile ahead 
of each concentrator at failure for the ring and the SCB specimen, 
respectively. According to Eq. (1), the intersection point of the tensile 
stress distributions at the onset of failure for both ring and SCB speci
mens provides both the cohesive strength and the cohesive zone length. 
The fracture toughness value is then obtained from Eq. (3) using the D–B 
relationship. The results obtained for the four rocks investigated are 
summarized in Table 1. 

The validity of the proposed methodology is now evaluated. First, we 
compare the fracture toughness value predicted by Eq. (3) with the 
fracture toughness value measured directly from the notched SCB 
specimen, after taking into account the effect of its finite notch root 
radius. For this purpose, the value of σc determined previously is used in 
Eq. (11), providing the ratio KIc/KU

Ic between the inherent fracture 
toughness and the apparent one, as explained in Sec. 2.4. The compar
ison shown in Table 2 is excellent. We then compare in Table 3 the 
cohesive zone length as measured from our method using the intersec
tion point between both stress distributions at the onset of failure (see 
Fig. 8) with the one predicted from D–B Formula using the fracture 
toughness determined directly from the notched SCB tests and modified 
for the rounded notch tip effect. Here also, the agreement is very good. 
Last but not least, we did proceed to an independent measurement of the 
process zone length from statistical fractography, a technique that 
consists in analysing the statistics of fracture surface roughness to 
extract the characteristic size of the damage processes taking place at the 
crack tip vicinity during propagation, and found values comparable to 
the one determined in this study. 

These results call for a few comments. First, the intrinsic tensile 
strength varies in the range of 8–25 MPa for the different rock materials 
investigated. This is somehow larger, however comparable to the values 
reported in the literature for such materials.6,46 Note that using a ring 
specimen with a smaller hole radius instead gives larger values of σc, as 
inferred from Fig. 9 where the tensile stress distribution at the onset of 
failure is represented for the different specimen geometries. First, 
considering a stronger stress concentrator is not compatible with the 
justification of Eq. (1) that requires the combination of a high and a 
low-stress concentrator (see Section 2.1). Second, it leads to smaller 
values of cohesive length, of the order of a few hundred microns, that do 
not match with the results inferred from the statistical analysis of the 
fracture surfaces. 

We then would like to discuss the fracture toughness values 
measured for the four rocks investigated. Our methodology provides 

Fig. 5. (a) Sequence of high-speed images taken from a fine-grained granite 
SCB specimen showing crack initiation and growth from the initial notch tip; 
(b) Mechanical response of the notched SCB specimens for the four rocks 
investigated. 
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accurate fracture toughness values, in agreement with values of KIc 
determined directly from the notched SCB specimens using the ISRM 
suggested method. Afterwards, it turns out that the value of the apparent 
fracture toughness obtained with a notch root radius less than 500 μm as 
suggested by ISRM already provides a rather good estimate of KIc for the 
rocks investigated. 

3.3. Discussion 

We would like now to discuss the following points: Why PM might 
preferentially be applied to specimens with a low and a high stress 
concentrator? Why the CZM compatible version of the PM proposed in 
this study may give better results than the standard PM? Finally, what 
are the limitations of the proposed method? 

To answer these questions, we first provide a brief background of the 

Fig. 6. Graphical guides for modifying the notch root radius effect on material fracture toughness: a) A 3D guide showing the iterative process; and b) A guide for 
estimating KIc as a function of notch tip radius, intrinsic tensile strength and generalized fracture toughness. c) KIc as a function of notch tip radius, the cohesive 
length and generalized fracture toughness; and d) a single master curve for evaluating KIc as a function of ℓc/ρ ratio and generalized fracture toughness. 

Fig. 7. Failure load Pmax (a) and apparent tensile strength σmax (b) of the different rocks investigated as obtained from the different fracture tests.  
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PM. As discussed in Section 2, Eq. (1) is the cornerstone of the PM. This 
formula assumes that the stress level applied at failure at a (material 
dependant) distance L/2 from the concentrator is equal to the inherent 
tensile strength of the material. In this approach, L is assumed to be a 
characteristic length that depends on the material microstructure, but 
that is independent of the specimen geometry. Therefore, the 

intersection point of the stress profile ahead of the concentrator of two 
different specimens (irrespective of their geometry) is expected to pro
vide both L and the intrinsic tensile strength σc. In practice, this is not the 
case. As illustrated in Fig. 9, the stress profiles corresponding to different 
stress concentrators do not intersect at the same point. Understanding 
this behaviour would require the cohesive zone modelling of the crack 
initiation process in these different geometries, a study that is beyond 
the scope of the present work. Here, instead, we seek to provide a simple 
procedure that allows for an estimation of the intrinsic fracture prop
erties of the material. As a result, we proposed to use the lowest and the 
highest stress concentrators for applying the PM. From an experimental 
perspective, these two cases are not achievable, but can be fairly well 
approximated by the thin notch SCB and the large inner radius ring 
specimens used in our experiments. 

What are the limitations of this approach? First, our method in 
particular (and the PM in general) relies on the calculation of the elastic 
stress field without considering that damage may start to grow in the 
neighbouring of the stress concentrators prior to crack initiation. This 
means that the real stress field emerging from the damage growth and its 

Fig. 8. Application of the PM for the determination of the tensile strength: Stress distribution against distance for the two geometries displaying the highest and the 
lowest stress concentrations for (a) sandstone, (b) marble, (c) fine-grained granite and (d) coarse-grained granite. The point of intersection of both curves provide the 
intrinsic tensile strength as well as the cohesive length, as illustrated for marble in the panel (b). 

Table 1 
The intrinsic tensile strength, the cohesive half-length and the material fracture 
toughness, determined by the developed PM.  

Rock type σc [MPa] ℓc/2 [mm] KIc [MPa.m0.5] 

Sandstone 8.4 0.53 0.44 
Marble 15.4 0.51 0.78 
Fine grained granite 24.0 0.39 1.07 
Coarse grained granite 19.8 0.48 0.98  

Table 2 
Comparison of measured generalized fracture toughness KU

Ic [MPa.m0.5] and 
modified fracture toughness KIc [MPa.m0.5] values with those obtained using the 
common and developed PMs.  

Rock type KU
Ic 

(ISRM28) 
KIc (Gomez 
et al.25) 

KIc (common 
PM) 

KIc (modified 
PM) 

Sandstone 0.45 0.43 0.49 0.44 
Marble 0.80 0.76 0.86 0.78 
Fine grained 

granite 
1.08 1.00 1.19 1.07 

Coarse grained 
granite 

1.02 0.97 1.11 0.98  

Table 3 
The cohesive length ℓc [mm] as per D–B formula determined both from SCB tests 
modified for the rounded notch tip effect and the developed PM.  

Rock type Experimental Developed PM 

Sandstone 1.03 1.07 
Marble 0.96 1.01 
Fine grained granite 0.68 0.78 
Coarse grained granite 0.94 0.96  
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coupling with the elastic field is never computed. This could be done 
numerically using the CZM of crack initiation. Such an approach may 
improve the accuracy of the measurement of both σc and ℓc in com
parison to the modified point method, but at the expense of a much more 
complex methodology. Then, we have assumed here that the rocks 
investigated all follows a D–B cohesive zone law. A more realistic law 
could be used instead (e.g., Refs. 47,48 the experimentally determined 
cohesive zone laws), which may (slightly) modify the constant 8/ π 
involved in Eq. (3), and thus the fracture properties determined by our 
methods. However, before applying the full-field measurement methods 
(e.g., digital image correlation), a proper understanding of the rupture 
propagation and separation of fractured interfaces is necessary. Based on 
our experimental observations, firstly a rupture propagates and failure 
of the studied rock materials takes place. After that, the separation of the 
two fractured surfaces and physical crack propagation is visible. A more 
promising approach would be the use of statistical fractography to 
determine ℓc of quasi-brittle materials.49,50 Then, the equivalent stress 
corresponding to this length can be calculated using LEFM and provide 
σc. 

4. Conclusions 

In this study, a TCD based methodology is examined to determine 
two key mechanical properties of rock materials namely intrinsic tensile 
strength and material fracture toughness. The first and foremost 
conclusion is that the PM form of TCD is a suitable means to reliably 
determine intrinsic tensile strength and material fracture toughness of 
different rock types. According to our results, PM is very reliable if the 
cohesive length ℓc is considered as the characteristic length L in this 
method. 

The size and geometry of the flaws in natural rocks might obviously 
be different from the holes and the notches used in the specimens pre
pared for laboratory tests. Therefore, the proposed method will be more 
reliable for obtaining the intrinsic fracture properties of rock materials 
as compared to the existing methods. Notably, the developed method
ology can be further used for more complicated external loads as long as 
it includes one test with strong stress concentration and another one 
with weak stress concentration. Then the same methodology applies 
using the corresponding stress field at the tip of the stress concentrators 
for the fracture load of each experiment. 

Following the results of this study, it turns out that plane disk 
specimens without stress concentrators cannot be used to measure 

Fig. 9. Tensile Stress distribution against distance at the onset of failure for different fracture test geometries and different materials: a) sandstone; b) marble; c) fine- 
grained granite; and d) coarse-grained granite. 
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tensile strength of rock materials, and tensile strength is underestimated 
if plane specimens are used. However, it could provide engineers with a 
safe and conservative estimation despite the fact that it would often 
increase the costs of a project. From the observations in the course of 
ring experiments, it can be concluded that the ring test is a suitable 
means to measure the apparent tensile strength of rock materials. The 
tensile strength of rocks is revealed to depend on their structural prop
erties due to the facts discussed by Hudson.11 However, if a specific 
value should be reported for a particular rock type and is needed by 
analytical or numerical solutions, then the intrinsic tensile strength of 
the rock can be determined following the procedure in this study with 
the aid of newly developed PM. 

Brittle nature of rock materials is a major issue for fabricating sharp 
notch in SCB specimens to successfully determine material fracture 
toughness. In this study, notch mechanics and practical developments in 
similar materials were introduced to circumvent this difficulty. From the 
experimental observations and comparison with different methods, it is 
being suggested that Gomez et al.27 formula can be used to successfully 
rectify the notch root radius effect on determining fracture toughness of 
rock materials. However, if the notch root radius is smaller than the 
cohesive length, the ISRM suggested method30 is a reliable method for 
determining fracture toughness of rock materials. Based on the results of 
this study, the cohesive length is around 1 mm for rock materials. 
Therefore, if the notch width is less than 1 mm or notch root radius is less 
than 500 μm, as specified in the ISRM suggested method,30 then the 
material fracture toughness measured by this method is reasonably close 
to the real value. 

Although the results are satisfying, there is a mismatch between the 
actual location and the considered intersection point for estimating the 
intrinsic tensile strength because of material heterogeneities and theo
retical assumptions. This is why fracture toughness values estimated 
from SCB tests modified for notch root effect and developed PM are a bit 

different. The question remains open in this study is that how this issue 
can be rectified and if there is any way to measure L or ℓc for different 
materials to get the best possible results. In other words, the length of the 
fracture process zone in the direction of crack propagation or the 
cohesive length ℓc should be quantified to determine the actual stress at 
the tip of the cohesive zone right before failure of a material to precisely 
measure the material fracture toughness. Further investigations are 
required to exactly quantify the length of the fracture process zone and 
answer this question. 
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Appendix A 

Following Taylor,32 derivation of Eq. (2) starts by Westergaard’s equation51 that provides an estimation of tensile stress σ(r) in the direction of 
crack propagation as a function of distance r from the crack tip, for a through-thickness crack of a half-length a in an infinite body. The equation can be 
read as: 

σ(r)= σ
̅̅̅̅̅
a
2r

√

(A1)  

if r≪a i.e. for the comparatively close points to the crack tip for an applied tensile stress σ. 
According to LEFM for the same conditions Mode-I SIF KI can be calculated: 

KI = σ
̅̅̅̅̅
πa

√
(A2) 

At the moment of failure KI and σ can be replaced by critical Mode-I SIF or fracture toughness KIc and tensile failure stress σf , respectively: 

KIc = σf
̅̅̅̅̅
πa

√
(A3) 

Finally, combining the PM criterion Eq. (1) with Eqs. (A1 and A3), σ2
f is equal to both side of Eq. (A4): 

Lσ0
2

a
=

KIc
2

πa
(A4)  

which is another form of Eq. (2). 
Derivation of Eq. (3) can be summarized as follows. If a crack or notch with length a as shown in Fig. A1 is considered, then the distribution of 

σc(x,0) along with ℓc ranged from the physical crack tip or notch tip to fictitious crack tip would be non-linear. The general formula for calculating 
Mode-I SIF associated with such cohesive stresses Kc

I for a straight crack in an infinite body can be formulated as follows:1 

Kc
I = − 2

̅̅̅̅̅̅̅̅̅̅̅
(c/π)

√
∫c

0

σc(x, 0)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − x2

√ dx (A5)  

where c = a + ℓc and 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − x2

√
is Green’s function. There is no close form solution for this equation since the distribution of σc over ℓc is unknown. The 
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D–B formula is derived by simplifying this condition. If we consider σc over ℓc has a constant value (strip model), then Eq. (A5) will transform to: 

Kc
I = −

̅̅̅̅̅̅̅̅̅̅̅̅
(2/π)

√
∫c

a

σc(x, 0)
̅̅̅
x

√ dx (A6) 

Fig. A2 shows this simplified situation for a crack of length 2(a+ℓc) = 2c in an infinite body under uniaxial tensile stress σ. Then, using super
position of the problem, and right before crack propagation, the following equilibrium could be reached: 

KI = − Kc
I (A7)  

where KI is given in Eq. (A2) and Kc
I can be solved using Eq. (A6). Now, the equilibrium can be rewritten as follows: 

σ
̅̅̅̅̅
πc

√
= 2σc

̅̅̅
c
π

√

cos− 1a
c
;→

̅̅̅̅̅
πc

√
(

σ −
2σc

π cos− 1a
c

)

= 0;

∴
a

a + ℓc
= cos

(
πσ
2σc

) (A8) 

Finally, by two reasonable assumptions including ℓc≪a and σ≪σc this equilibrium can be solved for ℓc: 

1 −
ℓc

a
= 1 −

π2σ2

8σ2
c
;

→ℓc =
πσ2πa

8σ2
c

(A9)  

that is another form of Eq. (3).

Fig. A1. Schematic of Barenblatt cohesive zone model  

Fig. A2. Equilibrium for derivation of D–B formula as superposition of applied and cohesive stresses  
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Chapter 4: Quantifying the length of FPZ by roughness analysis  

 

Four decades ago, Mandelbrot et al. (1984) endeavoured to connect physics and mechanics 

of fracture by proposing a relationship between fractal dimension of metal fractured surfaces 

and fracture toughness. After a decade, however, new explorations reported universality of 

fractal dimension and roughness exponent of fractured surfaces (Bouchaud et al. 1990; Maloy 

et al. 1992). Regarding this paradox, new statistical physics models in the last two decades 

have considered fracture as a mixed-order phase transition from continuous damage percolation 

at small enough length scales to first order at a critical length scale  (Alava et al. 2006; Bonamy 

et al. 2006; Morel et al. 2008; Gjerden et al. 2013; Vernede et al. 2015). Following this line of 

thinking,  is also the length of fracture process zone of a crack or the cohesive length 𝓁c (Irwin 

1958; Barenblatt 1962; Dugdale 1960). The new challenge, however, from both physical and 

mechanical points of view is experimental determination of  ≡ 𝓁c. In this chapter, we employ 

a novel multifractal roughness analysis to determine  that is further verified by two different 

mechanical models required completely different experimental inputs. These results not only 

make a relationship between fracture toughness and roughness, and solve a forty-year-old 

dilemma, but also clarify some ambiguities in solid mechanics including determination of 

intrinsic tensile strength or the cohesive stress 𝜎c as well as the effects of geometry (Bazant 

and Planas 1997; Carpinteri and Pugno 2005; Torabi et al. 2017) and experimental rate 

(Needleman 1988; Zhang and Zhao 2014) on tensile strength. 

Quasi-brittle materials including rocks are not following Linear Elastic Fracture 

Mechanics (LEFM) at some small enough length scales owing to the heterogeneous nature of 

such materials, and existence of a Fracture Process Zone (FPZ) at the tip of cracks or other 

stress concentrators within these materials before crack propagation inside them (Irwin 1958; 

Barenblatt 1962). According to Cohesive Zone Model (CZM) (Dugdale 1960; Barenblatt 

1962), if the length of FPZ 𝓁pz ahead of a stress concentrator including cracks is ignored, the 

actual stress at which material fails cannot be determined by means of analytical solutions and 

all analyses and measurements including fracture toughness would have significant errors. 

Therefore, measuring 𝓁pz is of prime importance to analyze or predict failure of quasi-brittle 
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materials, and is the key to understanding the relationship between multiscale physical 

properties and fracture mechanics of such materials (Tanne et al. 2018). Although different 

methodologies have been employed for 𝓁pz measurement as surveyed by Dutler et al. (2018) it 

is inconclusive yet to develop an internationally accepted norm for quantifying it. 

Here we quantify geometry dependent 𝓁pz of four different rock types including a red 

sandstone, a white coarse-grained marble, a fine-grained (FG) granite and a coarse-grained 

(CG) granite. This selection covers sedimentary, metamorphic and igneous rock types with 

different grain sizes (Figs. 4.1 and 4.2). For such a purpose, Notched Semi-Circular Bending 

(NSCB) specimens as well as ring specimens with different central hole radii are made from 

these rocks and broken under quasi-static loading rates. NSCB specimens are prepared and 

tested as per ISRM (Kuruppu et al. 2014) for fracture toughness measurement. Moreover, high-

resolution 3D X-ray computed tomography data from fractured area of some NSCB specimens 

acquired at the Australian synchrotron are used for reconstructing roughness of their fractured 

surfaces (Fig. 4.1). The rough surfaces are further analyzed for determining the critical length 

scale  by applying a novel multifractal analysis. Finally, failure analysis of NSCB and ring 

specimens is used for validating  ≡ 𝓁c. Further details of these procedures are specified in 

Methods. 

 

Fracture and phase transition 

Fractography on the post-mortem fracture surfaces is a failure analysis routine and 

provides useful information about interaction of a moving crack front with material’s 

microstructure. Based on solid physical arguments, quantitative fractography has been 

employed to estimate 𝓁c for quasi-brittle materials (Vernede et al. 2015). This method considers 

two regimes with different scaling properties on fractured surfaces that conjectures a mixed-

order phase transition. Fractured surfaces at length scales ϵ smaller than a critical length scale 

ϵ ≪  are multiaffine fractals (Barabasi et al. 1991) with significant intermittency, whereas at 

length scales ϵ ≫  are monoaffine fractals with universal roughness exponents (Santucci et al. 

2007). Accordingly, there are two different mechanisms that control fracture roughness in these 

regimes.  
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Reconstructed fractured rock volume Extracted fractured surface  

 

 

 

 

 

 

 

 

Fig. 4.1. 3D X-ray computed tomography images of fractured area and topographic images of 

fractured surfaces of different rock specimens. The x-axis and z-axis correspond to the crack 

propagation direction and the crack front direction, respectively. Real length of reconstructed 

CT images is around 18 mm in propagation direction. 
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Fig. 4.2. Percolation analysis of different rock specimens. The universal fractal dimension (D  

log(S/2) / log(L/)  1.7)  of percolation clusters on ϵ field calculated at a length scale ϵ = 33 m, 

which is much smaller than  of the analysed rock specimens with considerably different 

microstructures, confirms damage percolation is the underlying mechanism of fracture initiation 

and depinning at small enough length scales ϵ ≪ .  

 

It was suggested by Mandelbrot et al. (1984) and later modelled by Hansen and 

Schmittbuhl (2003), and Shekhawat et al. (2013) that if damage percolation takes place before 

crack propagation, then fractal dimension of percolation clusters on fractured surfaces at length 

scales ϵ ≪  will be universal. Fig. 4.2 is showing the universality of fractal dimension of 

percolation clusters (D  1.7) on ϵ field calculated as per Vernede et al. (2015) (Eq. 4-1) at a 

length scale ϵ = 2.d, which is much smaller than  of the analysed rock specimens (Table 4.2), 
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where d is the spatial resolution of the tomograph and is about 16.5 μm, h is ensemble average 

of height differences over all directions Θ, calculated for all X. Further details of this procedure 

is specified in Methods. 

(4-1) 
𝜖(X) =

1

2
log(〈∆ℎ(𝜖)2〉Θ) 

From Fig. 4.2, it can be clearly seen that there is a meaningful correlation between grain 

size and percolation clusters of different rock types. This fact can be further clarified by 

normalizing calliper length L and size S of the clusters formed from different fractions of steep 

cliffs Pth on ϵ(X) by  and 2, respectively. This correlation along with the universality of 

fractal dimension of the percolation clusters can be deciphered as follows. At a length scale ϵ 

≪  depinning is a continues phase transition successfully described by damage percolation 

and has nothing to do with material microstructure. Moreover, grain size is a very important 

microstructural feature that controls 𝓁c and fracture mechanics of quasi-brittle materials. 

Therefore, continues damage percolation will transform to discontinue phase transition at  

that is being controlled by material microstructure, and LEFM is valid for larger length scales 

ϵ ≫  where the crack front interact with material microstructure in an effective random 

medium (Bouchaud et al. 1993; Bouchaud et al. 2002). 

 

 quantification 

According to Bouchbinder et al. (2006) and our analyses roughness of fractures does not 

belong to any of the known kinetic roughening models. Consequently, it is very challenging to 

determine the critical cut-off length . Multifractal spectra, H(q) = 𝜁q/q versus q, of ensemble 

average of height differences ∆h(𝛿r) on the fractured surfaces computed at different separations 

𝛿r is calculated by means of qth-order structure functions Sq(𝛿r) (Santucci et al. 2007): 

(4-2) 𝑆𝑞(𝛿𝑟) = 〈|∆ℎ(𝛿𝑟)|
𝑞〉1/𝑞 = 〈|ℎ(X + 𝛿𝑟) − ℎ(X)|𝑞〉X

1 𝑞⁄ ∝ 𝛿𝑟𝜁𝑞∗1 𝑞⁄  
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𝛿rmin = 16.5 m 𝛿rmin = 49.5 m 

  
Sandstone 

  
Marble 

  
FG granite 

  
CG granite 

Fig. 4.3. Intermittency of the multifractal spectra of different rock types. R-squared of the fitted 

power laws are above 0.99 on average.  
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q Sandstone Marble FG granite CG granite 
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Fig. 4.4. qth-order structure functions for 6 different moments q and different rock types both 

below and above the critical length scale . 

 

Intermittency or deviation of H(q) from a constant value can be formulated by perfect 

power laws for the rock fractured surfaces (Fig. 4.3). Thus, slope of the multifractal spectra  

is a measure of intermittency. However, such intermittency depends on the analyzed domain 

[𝛿rmin, 𝛿rmax], and there is an inverse relationship between 𝛿rmax and  if 𝛿rmin is fixed. The 

discussed mixed-order phase transition is the root cause of this domain dependency since 

moment order q of the Sq(𝛿r) are not always showing perfect power laws for all moments or 

all separations 𝛿r (Fig. 4.4). 

Monofractals are neither correlated nor intermittent. Therefore,  is the minimum of the 

domain that possesses a multifractal spectrum with a constant H(q) and a power exponent  
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almost equal to zero. Table 4.2 reports these parameters for the identified monofractal domains 

on the studied rock fractured surfaces. An elaborate domain analysis for different pairs of 𝛿rmin 

and 𝛿rmax is conducted to identify such monofractal domain. Fig. 4.5 is presenting the outcome 

of this analysis for different rock types. Indeed, the coordinates of the   0 in the 𝛿rmin – 𝛿rmax 

space are the extremums of the monofractal domain. In addition, multifractal and monofractal 

spectra of the fractured surfaces below and above  ≡ 𝓁c is shown in Fig. 4.5. 

Following the latest statistical physics fracture models (Shekhawat et al. 2013; Vernede et 

al. 2015), the quantified  is considered as 𝓁c and imported into two mechanical models, which 

are developed based on Point Method (PM) form of the Theory of Critical Distances (TCD) 

(Taylor 2007) and Coupled Finite Fracture Mechanics (CFFM) (Leguillon 2002; Cornetti et al. 

2006), for verifying that the quantified length scale by means of quantitative fractography is 

the cohesive length or the length of FPZ of a crack in the direction of fracture propagation.  

 

Sandstone Marble FG granite CG granite 

    

 

    

Fig. 4.5. Determining  ≡ 𝓁c as the minimum 𝛿rmin of the monofractal domain. The intermittency 

 ∈ (0, 0.7) of different 𝛿rmin and 𝛿rmax pairs is presented in 𝛿rmin – 𝛿rmax space for different rock 

specimens. The coordinates of the minima on these plots   0 are the extremums of the 

monofractal domain. Corresponding multiscaling graphs for both multifractal ϵ ≪  and 

monofractal ϵ ≫  domains are presented. 
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Validating  ≡ 𝓁c by PM 

According to PM failure criterion the inherent tensile strength 𝜎0 of materials can be 

calculated at half of a characteristic distance CL/2 from the notch tip if the stress distribution 

and failure load are known. Creager – Paris (C – P) solution (Creager and Paris 1967) can 

perfectly modify the blunted notch effect and calculate stress distribution ahead of rounded 

notch tips as a function of notch tip radius ρ and stress intensity factor that can be measured 

experimentally (Methods and Fig. 4.6). Then, this LEFM based method can be used to calculate 

apparent fracture toughness KIc: 

(4-3) 
𝐶𝐿 =

1

𝜋
(
𝐾Ic
𝜎0
)
2

 

 

  

  

Fig. 4.6. Tensile stress 𝜎(x) against distance from stress concentrator x according to C – P and 

LEFM solutions. Four different rock specimens are shown: sandstone (SIS3), marble (MaS6), FG 

granite (GFS6) and CG granite (GCS4). Modification of the notch root radius according to C – P 

solution is very successful and at 𝓁c/2 shown by yellow points the LEFM and C – P curves are 

overlapped. Therefore, C – P solution can be safely used to determine both cohesive stress 𝜎c and 

apparent fracture toughness KIc. 
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Basic Point Method Developed Point Method 

  

Fig. 4.7. Schematics of basic and developed PMs. 

 

Indeed, the CL is estimating 𝓁pz, and CL/2 is the idealized radius of the zone of plastic 

deformation at the crack tip (Irwin 1958). PM estimates KIc by adding a characteristic length 

CL ahead of a notch with a length a, and applying LEFM to determine stress distribution ahead 

of the imaginary equivalent sharp crack with a length a + CL (Fig. 4.7). Derivation of Eq. (4-

3) can be found in (Taylor 2007). 

 

(a) PM (b) CFFM 

  

Fig 4.8. Cohesive stress 𝜎c approximation as a function of cohesive length 𝓁c quantified by 

roughness analysis. PM: the stress distribution is calculated using C – P solution 30 and 

experimentally measured failure load, then 𝜎c is approximated as the (𝓁c) on this curve. CFFM: 

The 𝓁pz of different ring geometries have been calculated using energy criterion, then the perfect 

power law emerging from LEFM is used to approximate 𝜎c as the 𝜎tc(𝓁c). There is a very good 

agreement between 𝜎c values approximated by PM and CFFM (Table 4.2). 
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There are two unknowns in this criterion: CL and 𝜎0. A new PM is developed that instead 

of replacing the blunted notch with an imaginary equivalent sharp crack to take into account 

nonlinear deformations close to crack tip, follows CZM and replaces CL/2 and 𝜎0 with 𝓁c/2 and 

𝜎c. In this way, according to CZM notch tip is the physical crack tip and the mathematical crack 

tip is located ahead of the cohesive length 𝓁c. The developed PM predicts the cohesive stress 

𝜎c as a function of quantified 𝓁c using roughness analysis. The 𝜎c is equal to the tensile stress 

at a distance 𝓁c/2 from the notch tip computed by means of C – P solution (Creager and Paris 

1967) (Fig. 4.7). Fig. 4.8.a is showing the 𝜎c approximation using the developed PM for 

different rock specimens. Finally, the 𝓁c and 𝜎c pair is inserted into the Dugdale – Barenblatt 

(D – B) formula Eq. (4-4) (Dugdale 1960; Barenblatt 1962) to predict the critical stress intensity 

factor or apparent fracture toughness KIc that is showing a perfect agreements with the one 

measured experimentally for the same specimen following ISRM (Kuruppu et al. 2014). The 

experimental tests performed under 5 mm/min rate since under slower rates specimens were 

not completely separated and roughness reconstruction for such samples is challenging. Table 

4.2 is reporting this surprising agreement for all rock types, which is verifying the quantified 

𝓁c and 𝜎c values by the developed PM. 

(4-4) 
𝓁c =

𝜋

8
(
𝐾Ic
𝜎c
)
2

 

 

 

 

(a) (b) 

Fig. 4.9. Schematics of ring experiment (a); and energy criterion (b). 
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Validating  ≡ 𝓁c by CFFM 

The CFFM is a comprehensive failure criterion requiring fulfillment of both stress and 

energy criteria before fracture propagation (Cornetti et al. 2006): 

(4-5) 

{
 
 

 
 ∫ 𝜎𝑥(𝑦)𝑑𝑦

∆

0

≥ 𝜎u∆

∫ 𝐺(𝑐)𝑑𝑐
∆

0

≥ 𝐺c∆

 

where (x, y) is the Cartesian coordinate system (centered at the ring center in our experiments 

as shown in Fig. 4.9). These two equations integrating the stress 𝜎x(y) and crack driving force 

G over a critical crack advance ∆. The stress criterion needs an average critical tensile stress 

𝜎u over ∆, while energy criterion ensures that the available energy Gc can create the new 

fracture surface. The energy criterion can be rewritten in terms of the stress intensity factor KI 

and intrinsic toughness KIi as well (Eq. (4-6)) (Irwin 1958). 

The developed CFFM replaces the finite crack advance  with the length of process zone 

𝓁pz, and determines this quantity for different ring specimens according to the energy criterion 

and the intrinsic fracture toughness KIi determined experimentally. KIi is determined as per 

ISRM (Kuruppu et al. 2014) with a slow experimental rate of 0.05 min/mm to avoid dynamics 

effects. All ring tests are also carried out under the same rate for minimizing the dynamic 

effects. Then, the 𝓁pz is imported into the stress criterion, and determines geometry dependent 

tensile strength 𝜎tc of rings using Kirsch’s solution together with Hobbs’ correction (Hobbs 

1965). 

(4-6) 

{
 
 

 
 ∫ 𝜎𝑥(𝑦)𝑑𝑦

𝓁pz

0

≥ 𝜎tc𝓁pz

∫ 𝐾I
2(𝑐)𝑑𝑐

𝓁pz

0

≥ 𝐾Ii
2𝓁pz

 

 Finally, by plotting 𝓁pz against 𝜎tc for different rings of the same rock type, a perfect power 

law 𝜎tc  𝓁pz
-0.5 emerging from linear elasticity will determine the intrinsic tensile strength or 
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the cohesive stress of crack 𝜎c corresponding to 𝓁pz of crack or the cohesive length quantified 

by roughness analysis  ≡ 𝓁c (Fig. 4.8.b). Table 4.2 is summarizing this results as well. The 

determined 𝜎c following the developed CFFM is identical with the one determined using the 

developed PM, within experimental error. This excellent agreement can further verify the 

accuracy of the cohesive length 𝓁c or the length of process zone of a moving crack determined 

by quantitative fractography on the post mortem fracture surfaces of the studied rock materials. 

Further details of the CFFM is specified in Methods. 

 

Table 4.1. Results of ring tests and the developed CFFM for different geometries. 

Rock type R [mm] R0 [mm] B [mm] Pmax [MPa] 𝜎max [MPa] KIc [MPa.m0.5] 

ISRM 

𝓁pz [mm] 𝜎tc [MPa] 

Sandstone 1.46 37.43 30.08 11.57 3.30 0.45 7.14 4.09 

3.03 37.50 30.23 11.55 3.38 0.45 0.37 16.49 

6.07 37.42 30.10 8.08 2.66 0.45 0.54 13.72 

14.96 37.44 29.98 2.61 1.49 0.45 1.98 7.17 

Marble 1.49 37.50 30.00 21.26 6.08 0.80 5.98 7.87 

3.09 37.41 29.88 12.39 3.68 0.80 21.22 4.28 

6.05 37.41 29.85 11.73 3.90 0.80 1.01 17.89 

14.76 37.48 29.98 4.82 2.71 0.80 1.85 13.19 

CG granite 3.05 37.69 29.85 23.57 6.95 1.02 0.52 31.66 

6.04 37.74 30.03 16.88 5.51 1.02 0.71 27.18 

13.00 37.72 30.07 7.27 3.58 1.02 1.78 17.12 

FG granite 3.04 37.70 30.01 27.96 8.19 1.08 0.37 40.13 

6.00 37.78 30.10 19.33 6.28 1.08 0.58 31.93 

12.92 37.80 30.10 8.66 4.22 1.08 1.31 21.32 
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Table 4.2. Summary of computed statistical physics parameters as well as mechanical properties. 

Rock type 𝓁c 

[mm] 

  

(𝛿r < 𝓁c) 

H 

(𝛿r > 𝓁c) 

D  

(ϵ = 33 m) 

𝜎c 

[MPa] 

PM 

KIc 

[MPa.m0.5] 

PM 

KIc 

[MPa.m0.5] 

ISRM  

𝜎c 

[MPa] 

CFFM 

Sandstone 0.4 0.34 0.53 1.68 ± 0.06 15.57 0.497 0.498 15.95 

Marble 1.1 0.23 0.60 1.69 ± 0.06 18.44 0.976 1.002 17.11 

FG granite 0.5 0.29 0.52 1.68 ± 0.05 35.90 1.281 1.314 34.48 

CG granite 0.9 0.21 0.53 1.72 ± 0.06 24.88 1.191 1.218 24.11 

 

Geometry and rate effects on 𝜎c 

The results presented in Fig. 4.8.b suggests a novel powerful method for analysing the 

effect of geometry including shape and size on material tensile strength by taking into account 

the 𝓁pz following CZM. Experimental measurements and results of the developed CFFM are 

summarised in Table 4.1. According to these results, if the radius of the ring central hole R is 

larger than the 𝓁pz quantified by energy criterion 𝓁pz ≪ R, then 𝜎tc  𝓁pz
-0.5. Otherwise, if 𝓁pz ≫ 

R, then the stress will not concentrated on expected parts of the ring and will distribute in a 

larger area, and analytical solutions will fail. The power exponent 0.5 is in agreement with 

other proposed size effect laws (Bazant and Planas 1997; Carpinteri and Pugno 2005)  and 

emerges from linear elasticity since 𝜎tc is calculated as a function of failure load and linear 

elastic stress distribution 𝜎x (y) that is totally acceptable for y ≥ 𝓁pz.  

𝜎c, however, has nothing to do with the applied stress, and its geometry dependent 

distribution. The cohesive stress is purely material dependent, and material will fail as soon as 

it reaches. In fact, the cohesive stress of material together with geometry of the sample or 

structure, environmental condition, and loading condition sets the 𝓁pz and the apparent tensile 

strength 𝜎tc. 𝓁pz values calculated by the energy criterion call for generalizing D – B formula 
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in order to approximate the length of FPZ by adding a new factor f that is a function of geometry 

as well as environmental and loading conditions (refer to Methods for more details): 

(4-7) 
𝓁pz =

𝓁c
𝑓2
=
𝜋

8
(
𝐾Ic
𝜎c
)
2

 

According to our experimental observations after a threshold the apparent fracture 

toughness increase with loading rate. For the studied NSCB specimens the KIc values measured 

at 5 and 0.05 mm/min experimental rates are reported in Table 4.2 and Table 4.1, respectively. 

As it goes from its name KIc or critical stress intensity factor is a measure of stress concentration 

that can change as a function of geometry or loading rate, and change the behaviour of material 

in K dominance region that 𝓁pz is whitin it. 

We have shown in quasi-statics loading rate cohesive stress is material dependent and 

independent of loading rate. However, it is suggested that at dynamic loading rates the 

properties of material will change. Zhao (2000) has suggested that the cohesion parameter in 

the Mohr–Coulomb strength criterion or the so-called cohesive strength is the cause of 

Dynamic Increase Factor (DIF) of material strength. Therefore, in a future research we will 

investigate into it by determining cohesive stress 𝜎c of fractured surfaces of the same rock types 

broken under dynamic loading rates using roughness analysis. 

 

Methods 

Roughness reconstruction 

The topography of fractured surfaces, illustrated in Fig. 4.1, have been reconstructed from 

3D X-ray computed tomography data with a spatial resolution d of about 16.5 μm acquired at 

the Australian synchrotron. This method is superior to contact methods affected by the tip 

geometry of probes (Mazeran et al. 2005; Lechenault et al. 2010). After reconstructing the 

fractured part of the NSCB samples broken under 5 mm/min experimental rate, a threshold is 

employed to separate the fractured area. Then, roughness of fractured surfaces have been 

reconstructed by applying 3D image processing techniques on these big binary images with 

around half a billion voxels. 
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Percolation analysis 

ϵ(X) presented in Eq. (4-1) measures the natural logarithm of the average height 

variations around each point, on a height field h(X) with its neighbours over a circle with a 

radius of ϵ. The pair length scale and direction (ϵ, n) = (2.d, 12) is used to compute h: 

(4-8) 
〈∆ℎ(𝜖)2〉Θ =

1

𝑛
∑[ℎ(𝑥𝑖, 𝑧𝑗)

𝑛−1

𝑘=0

− ℎ(𝑥𝑖 + 𝜖 ∗ cos(2𝜋𝑘 𝑛 ⁄ ), 𝑧𝑗 + 𝜖 ∗ sin(2𝜋𝑘 𝑛 ⁄ ))]
2
 

where Θ ∈ [0, 2𝜋] rad. xi and zj are the coordinates of a point on h(X) in crack propagation and 

crack front directions, respectively. 

To verify that damage percolation is the mechanism of fracture initiation at length scales 

smaller than the critical length scale  ≡ 𝓁c, fractal dimension of percolation clusters on ϵ field 

is calculated for all rock types. Three different thresholds are applied to keep only a fraction 

Pth of steep cliffs on ϵ(X), and then fractal dimension of such cliffs is computed that is showing 

an universality, which is independent from Pth, and verify damage percolation is the underlying 

mechanism of fracture initiation at small enough length scales.  

 

Multifractal analysis 

In order to compute multiscaling spectrum of the rough surfaces, Sq(𝛿r, 𝜃) has been 

calculated for different directions 𝜃 and separations 𝛿r as per Eq. (4-2) over admissible 

coordinates (xoi, zoj). xoi and zoj are the coordinates of a point on a height field with zero 

average, h(X)𝜃 = 0, in crack propagation and crack front directions, respectively. It is a very 

time consuming process to compute many moments order q of structure function over all 

admissible coordinates, and directions with small intervals for large data sets in order of million 

data points. Therefore, m = 12 moments i.e. q = {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 4, 5, 6} and 

n = 4 directions i.e. 𝜃 = 𝜋k/n rad (k = 0, 1, … , n − 1) have been selected. Moreover, an interval 

l equal 2 pixels for calculating Sq(𝛿r, 𝜃) is used. Thus, ∆h(𝛿r) has been calculated between 
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following admissible coordinates h(xoil, zojl + 𝛿r) − h(xoil, zojl) for selected q and 𝜃 sets. It is 

notable that for a few smaller subsets Sq(𝛿r, 𝜃) have been calculated among both selected and 

all admissible coordinates h(xoi, zoj + 𝛿r) − h(xoi, zoj), and for different number of 𝜃 angles n 

= {4, 12, 36}, and the differences between the calculated average scaling properties Sq(𝛿r)𝜃 

were negligible. Admissible coordinates would be different considering separation and 

direction. Maximum separation has always been about half of the minimum dimension of the 

studied surfaces to compute moments at different separations over enough and similar data 

points. Different domains of discrete separations 𝛿r ∈ [16.5, 9900] m have been analysed to 

determine the monofractal domain that its minimum is the critical length scale  ≡ 𝓁c. 

 

KIc determination  

Semi-circular bending experiment is suggested by ISRM 19 for measuring fracture 

toughness of rock materials using NSCB specimens that are rather simple to machine and 

provide good repeatability. Multiple NSCB specimens for each rock type are tested showing 

good repeatability and the average apparent fracture toughness KIc is calculated as follows: 

(4-9) 
𝐾Ic = 𝑌′

𝑃max√𝜋𝑎

𝐷𝐵
 

Where a, B, D, and Pmax are the notch length, the specimen thickness, the diameter of the NSCB 

specimen and the maximum applied load, respectively. The notch length of the tested NSCB 

specimens ranges from 14 to 16 mm, while the notch tip radius 𝜌 is 350 microns. The diameter 

and the thickness of the specimens range from 74 to 76 mm and 29 to 31 mm, respectively. 

Finally, Yʹ gives the non-dimensional stress intensity factor derived using the finite element 

method while assuming plane-strain conditions (Kuruppu et al. 2014). Its expression follows: 

(4-10) 𝑌′ = −1.297 + 9.516(𝑠 𝐷⁄ ) − (0.47 + 16.457(𝑠 𝐷⁄ ))𝛽

+ (1.071 + 34.401(𝑠 𝐷⁄ ))𝛽2 

in which s is the span length that is between 37 to 38 mm for all conducted experiments while 

𝛽 is equal to 2a/D. 
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It is notable that following practical developments (Gomez et al. 2006), if the notch tip 

radius is smaller than the cohesive length 𝜌 < 𝓁c, the ISRM suggested method (Kuruppu et al. 

2014) is a reliable method for determining apparent fracture toughness of rock materials and 

the effect of 𝜌 is negligible (Aligholi et al. 2022). From Table 4.2, it can be seen that this 

criterion is met and the cohesive length of all studied rock types is larger than 𝜌 that is 350 

microns. 

 

Creager – Paris solution 

C – P solution provides the stress distribution in specimens with a blunted notch of radius 

𝜌: 

(4-11) 
𝜎(𝑥, 0) =

2𝐾U

√𝜋

𝑥 + 𝜌

(2𝑥 + 𝜌)3 2⁄
 

using the coordinate system depicted in Fig. 4.7 provided that x starts from notch tip. The 

apparent stress intensity factor KU is measured experimentally following ISRM (Eq. (4-9)). 

 

𝜎tc determination 

Ring specimens with different central hole radii are used to measure the apparent tensile 

strength of the studied rock materials under different stress concentrations. The minimum 

diameter of the internal hole that could be drilled into the sandstone and the marble is about 

3mm, while it is about 6mm for granites. Rings with four different inner diameters are prepared 

for the sandstone and the marble, whereas three different ring specimens are prepared for 

granites. The outer diameter and thickness of the rings are around 75 and 30 mm, respectively. 

Note that, following the analysis of Fillon (1924), the ratio of the inner to the outer diameter of 

the tested ring specimens is less than or equal to 0.4 so that the tensile mode of failure 

dominates over the compressive one (Hobbs 1965). The driving rate of the cross-head for all 

ring tests is set to 0.05 mm/min to avoid dynamics effects. 
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Following Torabi et al. (2017), Kirsch’s solution together with Hobbs’ correction (Hobbs 

1965) are used to determine the tensile stress distribution 𝜎x(y) along the loading axis y (see 

the schematic of the ring specimen shown in Fig. 4.9.a for the definition of the axes x and y): 

(4-12) 
𝜎𝑥(𝑦) =

𝜎max
2

(2 − 2
𝑅2

𝑦2
+ 12

𝑅4

𝑦4
)𝐹corr 

Here, 𝐹corr is a correction factor that should be taken into account for sufficiently large 𝑅 𝑅0⁄  

ratios, which follows: 

(4-13) 
𝐹corr = 1 +

19

3
(
𝑅

𝑅0
)
2

. 

The maximum applied stress 𝜎max provides the tensile stress applied to the inner surface of the 

specimen right below the point at which load being applied at the moment of failure, and can 

be calculated by measuring the applied failure load Pmax: 

(4-14) 
𝜎max =

𝑃𝑚𝑎𝑥
𝜋𝐵𝑅0

 

 where B is the ring thickness, while R and R0 are the inner and outer radii of the ring, 

respectively Fig. 4.9.a). At least three different specimens for any geometry are tested and the 

average of calculated 𝜎max values that always showing good repeatability for each rock 

type/geometry is used for further analyses (Table 4.2). 

For determining apparent tensile strength of rings following CFFM, the apparent stress 

intensity factor of the ring along y axis is integrated over an unknown 𝓁pz to satisfy the energy 

criterion according to Eq. (6). Fig. 4.9.b is schematically showing this procedure. According to 

CZM, at the moment of failure, the material or intrinsic fracture toughness KIi calculated as a 

function of the cohesive stress 𝜎c over the cohesive length 𝓁c, is equal to the average of the 

stress intensity factor KI(c) corresponding to 𝜎max over 𝓁pz or apparent fracture toughness 𝐾Ic̅̅ ̅̅ , 

i.e. KIi = 𝐾Ic̅̅ ̅̅ . D – B formula Eq. (4-4) is a simplified form of CZM considering material 

toughness as the resistant of a material against propagation of a crack by assuming a constant 

cohesive stress 𝜎c over the cohesive length 𝓁c ahead of a through-thickness crack in an infinite 



48 
 

body. For more details and proof of the D – B formula refer to Aligholi et al. (2022). Thus, D 

– B formula is considering a crack geometry in an infinite body, and ignores other factors like 

shape of the specimen, loading condition or environmental condition that can change the stress 

intensity factor. This is why 𝓁c is considered as the 𝓁pz of a crack with a function f = 1 

controlling the stress intensity factor, and Eq. (4-7) is suggested to generalize D – B formula 

by taking into account the function f. 

The apparent stress intensity factor KI(c) corresponding to 𝜎max of the ring specimens can 

be calculated as a function of c ranging from 0 to 𝓁pz as follows: 

(4-15) 𝐾I(𝑐) = 𝜎max𝐹corr√𝜋𝑐𝐹(𝑠) 

where F(s) is a shape function of s: 

(4-16) 𝑠 =
𝑎

𝑎 + 𝑅
 

that for symmetric crack propagation as verified by high speed photography for our ring tests,36 

can be written as follows (Tada et al. 1985): 

(4-17) 𝐹(𝑠) = (1 − 𝜅)𝐹0(𝑠) + 𝜅𝐹1(𝑠) 

in which 𝜅 = −3, 

(4-18) 𝐹0(𝑠) = 0.5(3 − 𝑠)[1 + 1.243(1 − 𝑠)3], 

and 

(4-19) 𝐹1(𝑠) = 1 + (1 − 𝑠)[0.5 + 0.743(1 − 𝑠)2]. 

Putting these formulations in energy criterion lead to the following: 

(4-20) 1

𝓁pz
∫ 𝑘I

2(𝑐)𝑑𝑐
𝓁pz

0

=
𝜋(𝜎max𝐹corr)

2

𝓁pz
∫ 𝐹2(𝑠)𝑐𝑑𝑐 
𝓁pz

0

= 𝑘Ii
2  
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Then, by integration: 

(4-21) 𝜋(𝜎max𝐹corr)
2

𝓁pz
(0.5𝑐2 + 𝑐𝑅 +

0.883𝑅9

(𝑐 + 𝑅)7
+
1.243𝑅8

(𝑐 + 𝑅)6
−
1.223𝑅7

(𝑐 + 𝑅)5
−
1.26𝑅6

(𝑐 + 𝑅)4

+
1.743𝑅5

(𝑐 + 𝑅)3
−
1.114𝑅4

(𝑐 + 𝑅)2
−
5.236𝑅3

𝑐 + 𝑅
− 0.75𝑅2𝑙𝑛[𝑐 + 𝑅])│0

𝓁pz

= 𝑘Ii
2  

Finally, by defining the integral interval from 0 to 𝓁pz: 

(4-22) 𝜋(𝜎max𝐹corr)
2

𝓁pz
(4.964𝑅2 + 0.75𝑅2𝑙𝑛 [𝑅]

+
1

(𝑅 + 𝓁𝑐)7
(−4.964𝑅9 − 33.998𝑅8𝓁pz − 76.728𝑅

7𝓁pz
2

− 85.653𝑅6𝓁pz
3 − 36.869𝑅5𝓁pz

4 + 19.97𝑅4𝓁pz
5

+ 33.264𝑅3𝓁pz
6 + 17.5𝑅2𝓁pz

7 + 4.5𝑅𝓁pz
8 + 0.5𝓁pz

9

+ 𝑅2(−0.75𝑅7 − 5.25𝑅6𝓁pz − 15.75𝑅
5𝓁pz

2 − 26.25𝑅4𝓁pz
3

− 26.25𝑅3𝓁pz
4 − 15.75𝑅2𝓁pz

5 − 5.25𝑅𝓁pz
6

− 0.75𝓁pz
7)𝑙𝑛[𝑅 + 𝓁pz])) = 𝑘Ii

2 

𝓁pz can be determined. 

Next, the determined 𝓁pz is inserted into the stress criterion, and 𝜎x(y) is replaced by the 

stress distribution given in Eq. (4-12): 

(4-23) 
𝜎tc =

1

𝓁pz
∫ 𝜎𝑥(𝑦)𝑑𝑦
𝑅+𝓁pz

𝑅

=
𝜎max𝐹corr
2𝓁pz

∫ (2 −
2𝑅2

𝑦2
+
12𝑅4

𝑦4
)𝑑𝑦

𝑅+𝓁pz

𝑅

 

Then, by integration: 

(4-24) 
𝜎tc =

𝜎max𝐹corr
2𝓁pz

(−
4𝑅4

𝑦3
+
2𝑅2

𝑦
+ 2𝑦)│𝑅

𝑅+𝓁pz
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Finally, by defining the integral interval from R to R + 𝓁pz: 

(4-25) 

𝜎tc = 𝜎max𝐹corr
(−2𝑅4 + 𝑅2(𝑅 + 𝓁pz)

2
+ (𝑅 + 𝓁pz)

4
)

𝓁pz(𝑅 + 𝓁pz)
3  

the apparent tensile strength 𝜎tc of rings can be determined. 
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Chapter 5: Order of intermittent rock fractured surfaces 

 

According to chaos theory, some underlying patterns can disclose order of disordered 

systems. In this chapter, we present intermittency of rough rock fractured surfaces is such 

orderable disorder at intermediate length scales. However, this kind of disorder is more 

complicated than simple fractal or even multiscaling behaviours. We are dealing with some 

multifractal spectra that systematically change as a function of the analysed domain. 

Accordingly, some parameters are introduced that can perfectly take into account such 

systematic behaviour and fully quantify intermittency of the studied surfaces. 

After failure of a single scaling exponent like Hurst exponent H (Hurst 1951) or fractal 

dimension D (Mandelbrot 1983) to statistically model multiscale properties of natural 

phenomena, multifractal formalisms have been developed (Benzi et al. 1984; Halsey et al. 1986; 

Meneveau and Sreenivasan 1987; Muzy et al. 1993; Frisch 1995) to tackle this issue. What is 

the origin of multifractal phenomena, and how we can predict their scale-dependent exponents 

as a non-linear spectrum? These fundamental questions have been addressed in a variety of 

different fields and led to emergence of new formalisms (Vandewalle and Ausloos 1998; 

Ivanov et al. 1999; Kantelhardt et al. 2002; Jaffard 2004; Esser et al. 2017). Indeed, the cause 

of multifractality is scale-dependency of disorder. Rock materials, for instance, are composed 

of different constituents including minerals, cements and voids. Their minerals are formed from 

crystals with different crystalline systems. Therefore, there are different degrees of effective 

anisotropy and heterogeneity in rock materials at different length scales.  

If we consider constant boundary conditions, this kind of disorder is the first and foremost 

cause of roughening of fractured surfaces and the root of multi-affine properties of their 

Fracture Process Zone (FPZ), as it is reported from experimental studies (Bouchbinder et al. 

2006; Bouchaud et al. 2008; Vernede et al. 2015). At small enough length scales or separations 

𝛿r <  , there is a correlation between height variations ∆h(𝛿r) of fractured surfaces because 

of local similarities inside different constituents, which is scale-dependence itself. In crystalline 

igneous rocks like granite, for example, at meso-scale (few hundred microns to a few 

millimetres) there are different rock-forming minerals with same local properties, but at micro-

scale (few hundred nanometres to few hundred microns) there are different crystals with 
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different properties making a single mineral. These apparently uniform crystals at micro-scale 

are no longer uniform at nano-scale due to crystal defects. The shorter the separation, the higher 

the correlation in a particular resolution (Ogilvy and Foster 1989). Because of this spatial 

correlation, central limit theorem fails, and we observe non-Gaussian distribution of height 

variations with fat tails (Ponson 2016; Granero-Belinchon et al. 2018). However, for 

separations larger than a cut-off length 𝛿r > , there is no correlation and multiscaling spectrum 

of the height variations shows mono-affinity. 

Such kind of cut-off lengths are very important in studying the phase transition of natural 

phenomena (Sornette 2004). From statistical physics point of view, fracture is a mixed-order 

phase transition (Alava et al. 2006; Shekhawat et al. 2013), and  is a cross over length scale 

indicating a transformation from continuous damage percolation at 𝛿r ≪  to a first order phase 

transition at 𝛿r ≫  where material can be considered as linear elastic (Bonamy et al. 2006; 

Morel et al. 2008; Gjerden et al. 2013). Therefore, from mechanical point of view,  is 

reminiscent of effective length of fracture process zone of a moving crack or the cohesive 

length 𝓁c (Barenblatt 1962; Vernede et al. 2015). More details regarding mechanics of fracture, 

the mixed-order phase transition and proof of  ≡ 𝓁c can be found in Chapter 4. 

This phase transition argument can be used to exactly determine the cut-off length . 

Indeed,  is the critical length scale at which a transition from multi- to mono-affinity takes 

place. Variogram analysis by applying height-height correlation function (Barabasi et al. 1992; 

Ponson et al. 2006b) or structure function (Davis et al. 1994) together with an elaborate domain 

analysis for different pairs of 𝛿rmin and 𝛿rmax are employed to successfully quantify  as the 

minimum of a mono-fractal domain with no intermittency as explained in Chapter 4. In the 

course of this task, a systematic domain dependent multiscaling behaviour is observed that we 

would like to discuss about it in this paper, which can throw spotlight on behaviour of 

disordered systems at intermediate length scales.  

For this work, four different rock types including a sandstone, a marble, a fine-grained 

(FG) granite and a coarse-grained (CG) granite have been studied. The topography of fractured 

surfaces, illustrated in Fig. 5.1, have been reconstructed from 3D X-ray computed tomography 

data with a spatial resolution d of about 16.5 μm acquired at the Imaging and Medical beamline 

at the Australian Synchrotron. This method is superior to contact methods affected by the tip 

geometry of probes (Mazeran et al. 2005; Lechenault et al. 2010). 
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Sandstone Marble 

  

FG granite CG granite 

  

Fig. 5.1. Topographic images of fracture surfaces of sandstone, marble, fine-grained and coarse-

grained granites. Square fractured surfaces are represented here for the sake of clarity. The x-

axis and z-axis correspond to the crack propagation direction and the crack front direction, 

respectively. 

 

Following Santucci et al. (2007) qth root of the qth moment of statistical distribution of 

the height fluctuations known as qth-order structure functions Sq(𝛿r) is utilized to demonstrate 

scale-dependency of roughness of quasi-brittle fractured surfaces, and their transition from 

mono-affine to multi-affine surfaces at small enough separations:  

(5-1) 𝑆𝑞(𝛿𝑟) = 〈|∆ℎ(𝛿𝑟)|
𝑞〉1/𝑞 = 〈|ℎ(𝐗 + 𝛿𝑟) − ℎ(𝐗)|𝑞〉𝐗

1 𝑞⁄ ∝ 𝛿𝑟𝜁𝑞∗1 𝑞⁄   

where angular brackets denote the ensemble average. The superiority of using Sq(𝛿r) to 

calculate generalized Hurst exponent 𝐻(𝑞) = 𝜁𝑞 𝑞⁄  of turbulent phenomena is discussed by 

Gilmore et al. (2002), and the advantages of using this method for estimating multiscaling 
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spectrum is emphasised by Di Matteo (2007). Following (Voss 1988), a relationship between 

generalized Hurst exponent and fractal dimension 𝐷𝑞 can be written as 𝐷𝑞 + 𝐻(𝑞) = 𝑞 + 1 (at 

least for positive integer moments). Studied rough surfaces exhibit two distinct scaling regimes: 

they are almost mono-affine fractals at 𝛿r > , while they are multi-affine fractals at 𝛿r < . 

Mono-affine fractal regimes can be characterized by 𝐷𝑞 = 𝐷0 + 1, 𝐻(𝑞) = 𝐻, and 𝐷0 + 𝐻 =

𝑞  that are both scale and moment invariance (stationary increment property). Intermittent 

multi-affine fractal regimes, however, cannot be characterised by a single scale invariance 

exponent 𝐻 (the original Hurst exponent) along all separations 𝛿r and show different local 𝜁q 

exponents (Schmittbuhl et al. 1995). The average of directional multiscaling spectra of these 

multi-affine fractal regimes is statistically considered as multifractals for further analyses. 

The high precision roughness quantification of the studied fractured surfaces reveals 

perfect power laws for intermittency of multiscaling spectra of such surfaces. These power 

laws further verified analytically as they predict a range of 0 to 1 for correlation function of 

rock roughness. 

According to this finding, the intermittency of the studied multifractal spectra of rock FPZ 

can be quantified by a single parameter, i.e. the exponent of the power law . However, as it is 

discussed such intermittency is depending on the analysed domain. Similar size dependent 

power laws of intermittency of roughness of burning fronts on papers is reported, and it is 

argued that statistical distribution of the height differences can be modelled using stable Levy 

distribution (Balankin and Matamoros 2005). To analyse the effect of range of analysed length 

scale on the intermittency, the intermittent exponent  is computed for length scales between a 

fixed minimum of 50 microns and up to the length of FPZ of the studied, which is 400, 1100, 

500 and 900 microns for  sandstone, marble, FG granite and CG granite, respectively (Fig. 5.2). 

From Fig. 5.2, it can be seen that all spectra are converging in a critical moment order 𝑞𝑐. 

The reason behind this convergence is that at the 𝑞𝑐, the corresponding structure function is 

showing perfect power laws for all separations 𝛿r (Fig. 5.3). Following this observation, we 

have tried to find the 𝑞𝑐 by fitting power laws for different moment order q. Then, the one with 

the minimum error is corresponding to the convergence point and will give the 𝑞𝑐. Therefore, 

the fitted curve with the maximum R-square is corresponding to 𝑞𝑐. Fig. 5.3 is showing the R-

square values for different moments and rock types.  
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Sandstone Marble 

  

FG granite CG granite 

  

Fig. 5.2. Intermittency of the studied fracture surfaces at different domains. 

 

   

(a) (b) (c) 

Fig. 5.3. Analysis of the power law fitting errors associate with moment order q (a); the power 

law fitting of the critical moment order 𝐪𝐜 with the minimum error (b); and (c) intermittent 

exponent   as a function of the maximum of the fitting domain 𝛿rmax. 

 

By this analysis, one point on multifractal spectra is found. Now, it is required to predict 

how the intermittency is changing in other moment order q. Thus, the intermittent exponent  

as a function of the maximum of the analysed domain 𝛿rmax (up to the FPZ) is plotted to see if 

any relationship can be found. Surprisingly, the changes of   as a function of 𝛿rmax with a fixed 

𝛿rmin of 50 microns can be formulated by perfect power laws as well (Fig. 5.3). It seems the 

exponent of these power laws 𝜓 are universal for a fixed minimum. It is notable that other fixed 

0.1

1

10

0.1 1 10

H
(q

)

q

0.1

1

10

0.1 1 10

H
(q

)

q

0.1

1

10

0.1 1 10
q

H
(q

)

0.1

1

10

0.1 1 10
q

H
(q

)

0.000001

0.0001

0.01

1

0 2 4 6

Sandstone
Marble
FG granite
CG granite

1

100

10000

10 100 1000

Sandstone
Marble
FG granite
CG granite

0.1

1

10 100 1000

Sandstone
Marble
FG granite
CG granite



56 
 

minima are also showing similar trends but with different 𝜓 values. Therefore, the 

intermittency of FPZ roughness of the rock materials can be fully formulated by two parameters: 

the critical moment order 𝑞𝑐 and the exponent 𝜓. 

 

 

Fig. 5.4. The phase diagram is showing fractured surface of a crystalline rock at different 

magnifications. It can be clearly seen at high length sclaes smaller than the first cut-off length 1, 

there is a high correlation (same crystal) and high intermittency (huge height differences between 

different crystals). Therefore, lognormal distribution of this sparse considerable height 

differences might be useful for statistical presentation of roughness at this length scales 

(Nanometre). Stable levy distribution found to be a good means to characterise roughness at 

intermediate length scales, from 1 to 2, where there is orderable power law intermittency. At 

length scales larger than the second cut-off length of length of FPZ there is neither correlation 

nor intermittency. 

 

According to the discussed results, a 1D-phase diagram as a function of length scale is 

presented in Fig. 5.4 that divides the statistics of roughness in 3 different regimes: complete 

disorder, orderable disorder and order. It is notable that complete disorder regime cannot be 

analysed for the studied rock materials because of resolution of the data and can be topic of a 

future research. The introduced disorder analysis method can model intermittency of data sets 

at intermediate length scales that would increase the prediction power of current statistical 

models. For instance, more accurate predictive models can be developed for time series. 

Ultimately, this can lead to, for example, predict seismic or flood events in short time with 

higher accuracy. 
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Analytical verification of the observed power law intermittency  

It is observed that heart rate time series display different multiscaling exponents because 

of long-range correlations (Peng et al. 1995). BDM model is proposed to provide a link between 

multifractality and long-range correlation of financial time series (Muzy et al. 2000; Bacry et 

al. 2001):  

(5-2) 𝐻(𝑞) = 𝐻 − (𝑞 − 1)
𝜆𝑐

2
  

in which 𝐻 ≡ 𝜁1, and 𝜆𝑐 is slope of correlation function of a multifractal process. It means, 

𝐻(𝑞) = 𝐻 if there is no correlation, i.e., 𝜆𝑐 = 0, which is the case for monofractals. Otherwise, 

𝐻(𝑞) decrease linearly with 𝑞 for 𝜆𝑐 > 0. BDM is a linear model and could not provide a good 

estimation of non-linear multifractal spectra of the studied rock fractured surfaces. Based on 

experimental observations a power law is introduced that can exactly predict statistically 

isotropic multiscaling spectrum of rock FPZ:  

(5-3) 𝐻(𝑞) = 𝐻(𝑞−𝜆)  

where  is intermittency (slope of multiscaling spectrum) of a multifractal process.  

By applying a log-log transformation Eq. (5-3) can be read as log𝐻(𝑞) = −𝜆 log 𝑞 +

log𝐻. From Fig. 5.5, it is indisputable that this log-log transformation is showing a perfect 

linear relationship that is unique to power functions. A comparison among experimental data, 

BDM model and the proposed model is made in Fig. 5.6, which is showing the success of the 

proposed model in predicting multiscaling spectra of the rock fractured surfaces at small 

enough length scales 𝛿r < .  

𝜖(𝐗) operator has been used for calculating correlation function of height variations of 

fractured surfaces ∆ℎ(𝜖) at some length scales 𝜖 (Vernede et al. 2015): 

(5-4) 
𝜖(𝐗) =

1

2
log(〈∆ℎ(𝜖)2〉Θ) − Ω𝜖 
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where log(∆ℎ) denotes the natural logarithm, whose base value is 𝑒. It measures the average 

height variations around each point, on a height field ℎ(𝐗), with its neighbours over a circle of 

radius 𝜖 = 𝑑 ∗ 𝑝 (𝑝 = 1, 2, 3, 4, 5 𝑝𝑥). 𝜖 is product of spatial resolution and number of pixels 

used for calculating ∆ℎ(𝜖); Ω𝜖 is chosen such that the average of 𝜖(𝐗) over all 𝐗 is zero. The 

pair length scale and direction (𝜖, 𝑛) = {(16.5,8), (33,12), (49.5,16), (66,20), (82.5,28)} is 

used to compute 〈∆ℎ(𝜖)2〉Θ =
1

𝑛
∑ [ℎ(𝑥𝑖 , 𝑧𝑗) − ℎ(𝑥𝑖 + 𝜖 ∗ cos(2𝜋𝑘 𝑛 ⁄ ), 𝑧𝑗 + 𝜖 ∗
𝑛−1
𝑘=0

sin(2𝜋𝑘 𝑛 ⁄ ))]
2
 where Θ ∈ [0,2𝜋) 𝑟𝑎𝑑. 𝑥𝑖  and 𝑧𝑗  are the coordinates of a point on ℎ(𝐗) in 

crack propagation and crack front directions, respectively. Fig. 5.7 is showing the correlation 

functions 𝐶𝜖(𝛿𝑟) = 〈𝜖(𝐗)𝜖(𝐗 + 𝛿𝑟)〉𝜃  of 𝜖  fields averaged over 4  directions 𝜃 ∈

[0, 𝜋) = 𝜋𝑘 4 𝑟𝑎𝑑 (𝑘 = 0, 1, 2, 3)⁄ . Indeed, 𝐶𝜖(𝛿𝑟) indicates scale-dependency of material’s 

disorder since 𝜖  quantifies local height variations and removes global slopes caused by 

macroscopic and dynamic effects (Alava et al. 2006; Bonamy and Bouchaud 2011). 

 

Sandstone Marble 

  

FG granite CG granite 

  

Fig. 5.5. Multiscaling spectra of the rock fractured surfaces. The spectra are computed both below 

(blue curve) and above (red curve) 𝝃. Both regimes are predicted with power laws. Intermittency 

of multifractal regimes (𝛿r < ) are showing perfect power laws with 𝑹𝟐 ≈ 𝟏 and some exponents 

between 0.2 and 0.35. Monofractal regimes (𝛿r > ), however, show insignificant intermittency 

whose exponents are less than 0.02. Hurst exponent values are ranging from 0.5 to 0.6 for 

monofractal regimes. 
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Sandstone Marble 

  

FG granite CG granite 

  

Fig. 5.6. Experimental and predicted multiscaling spectra of the rock fractured surfaces. 

Predicted spectra by the proposed model are very close to the experimental ones. 

 

It is notable that in BDM model a logarithmic decay of correlation of height differences is 

considered, and 𝜆𝑐  is the slope of this decay 𝐶𝜖(𝛿𝑟) = −𝜆𝑐 log(𝛿𝑟 𝜉⁄ ) + 𝜀  (under the 

assumption that 𝜀 = 0). It is notable that 𝜆𝑐 is dimensionless since slopes of auto-correlation 

(dimensionless) and auto-covariance (dimensional) functions are the same. 

The observed intermittent power law can be proved analytically as well. From one hand, 

Eq. 2 can be rewritten as follows: 

(5-5) 𝜁𝑞 𝐻⁄ = 𝑞1−𝜆  

Now, by applying a log-log transformation Eq. (5-5) can be read as 𝜆 = 1 −
log (𝜁𝑞 𝐻⁄ )

log (𝑞)
. On 

the other hand, as it can be seen from Fig. 5.7, decay of the correlation of -field can be fitted 

by some power laws and slope of this decay or exponent of the power laws can be written as 

𝜆𝑐 = −
log (𝐶𝜖(𝛿𝑟))−𝜀

log(𝛿𝑟 𝜉⁄ )
. Monofractals are neither correlated nor intermittent, and both  and 𝜆𝑐 

are almost zero for monofractals. Therefore, there should be a relationship between these two 

exponents for multifractals. 
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Sandstone Marble 

  

FG granite CG granite 

  

FIG. 5.7. Spatial correlations of 𝝐 for different rock types. The correlations are represented for 

𝝐 computed at different scales 𝝐. 

 

If 𝜆 = 𝑐 ∗ 𝜆𝑐 , then 1 −
log(𝜁𝑞 𝐻⁄ )

log(𝑞)
= −𝑐 ∗

𝐶𝜖
∗(𝛿𝑟)−𝜀

log(𝛿𝑟 𝜉⁄ )
, this equation can be rearranged as 

follows: 

(5-6) log(𝜁𝑞 𝐻⁄ )

log(𝑞)
−

𝑐∗𝐶𝜖
∗(𝛿𝑟)

log(𝛿𝑟 𝜉⁄ )
= 1 −

𝑐∗𝜀

log(𝛿𝑟 𝜉⁄ )
  

where 𝐶𝜖
∗(𝛿𝑟) is auto-correlation function that is normalized by variance of 𝜖 field. In the 

monoaffine regime, 𝜁𝑞 𝐻⁄ = 𝑞, there is no correlation 𝐶𝜖
∗(𝛿𝑟) ≈ 0, and Eq. (5-6) read as 1 −

0 = 1. In the transition zone the correlation from 𝜀 at 𝛿𝑟 = 𝜉 would tend to zero as 𝛿𝑟 tends to 

infinity. In the multiaffine regime, 𝜁𝑞 𝐻⁄ = 𝑞1−𝜆, there is a correlation 0 < 𝐶𝜖
∗(𝛿𝑟) − 𝜀 < 1, 

and Eq. (5-6) read as 1 − 𝜆 + 𝑐 ∗ 𝜆𝑐 = 1. The question remains open here is that what is the 

relationship between the slope of correlation function and the intermittency? To answer this 

question finding a meaningful link between correlation function and structure function is the 
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first step. Two kind of these links that can trigger some interesting future researches are 

provided as follows. 

The power spectrum, on the one hand, is the Fourier transform of the auto-covariance 

function of a wide-sense stationary random process (Wiener–Khinchin theorem). Height 

variations in monofractal regime can be considered as a fractional Brownian motion with 

stationary increments and their spectral density 𝑆(𝑓) scales with the frequency 𝑓 as a power 

law: 𝑆(𝑓) ∝ 𝑓−𝛽  where 𝛽 = 2𝐻(2) + 1  (Flandrin 1989). On the other hand, the spectral 

density is proportional to second-moment of distribution of height variations 〈|∆ℎ(𝛿𝑟)|2〉 ∝

𝛿𝑟𝛼 where 𝛼 = 2𝐻(2) = 𝛽 − 1 (Di Matteo 2007). For monofractals a relationship between 

𝐻(𝑞) = 𝐻 and 𝛽 can be defined as 𝐷𝑞 = 𝑞 + 1 − 𝐻 = 𝑞 +
3−𝛽

2
 (Voss 1988). However, when 

it comes to multifractals with nonstationary increments this link between correlation function 

and structure function needs some modifications. In other words, like generalized fractal 

dimension and Hurst exponent, a generalization for spectral analysis is required. Wigner-Ville 

spectral analysis is introduced as the unique generalized spectrum for spectral analysis of non-

stationary processes (Martin and Flandrin 1985). There is also a statistical relationship between 

structure function and correlation function: 〈|∆ℎ(𝛿𝑟)|2〉 = 2(𝜎2 − 𝐶𝜖(𝛿𝑟))  where 𝜎2 =

〈ℎ(𝐗)2〉 ≈ 〈ℎ(𝐗 + 𝛿𝑟)2〉 is variance of a height map. This equation is working very well for 

second moment, but the question is how we can expand it for other moments. Moreover, this 

relationship ignores the effect of local averaging on the height map (to compute 𝜖  field). 

Along with this theoretical issue, it seems the coefficient 𝑐 plays a very important role in 

understanding multifractal phenomena and can be used to estimate crossover length of 

multiphase phenomena. Further measurements in different fields is required to have a better 

comprehension about the proposed model in this study. 
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Chapter 6: Conclusions and future work 

 

In this chapter the most important contributions of this research is summarised. Moreover, 

the ongoing research of this PhD is introduced and some directions for future research is 

presented. 

 

6.1. Conclusions 

The most important contributions of this research is to effectively determine length of 

fracture process zone of rock materials and investigating the effect of intrinsic (microstructure) 

and extrinsic features (loading rate) on 𝓁pz. The presented framework could be combined with 

other techniques to understand multiscale materials behaviour under different loading and 

environmental conditions. Moreover, it can be used for analysing the effect of geometry on 

critical tensile strength 𝜎tc that a sample or structure can bear. Indeed, the cohesive stress of 

material together with geometry of the sample or structure, and experimental or environmental 

condition set the 𝓁pz and 𝜎tc. 

Determining multifractal behaviour of roughness of rock fractured surfaces and providing 

a link between statistical physics of fractured surfaces of such materials and their fracture 

mechanics by quantifying the cohesive length  ≡ 𝓁c is another important contribution of this 

research. 𝓁c is the basic parameter that was required to be quantified for further developments. 

It is used to verify the quantified 𝓁pz by means of mechanical models. The proposed multifractal 

model can be used for quantifying 𝓁pz of a moving crack or cohesive length 𝓁c, intrinsic tensile 

strength or cohesive stress 𝜎c and fracture toughness of materials by roughness analysis. 

The link between rock physics and fracture mechanics can be used as a valuable tool to 

model and predict fracture propagation in any project dealing with fracture controlling, such as 

geothermal energy, hydrocarbon reservoirs, induced seismicity, waste disposal, mining, and 

tunnelling in geo-mechanics, as well as plethora of other fields in material science and 

mechanical engineering.  
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Following the results of this study, it turns out that plane disk specimens without stress 

concentrators cannot be used to measure tensile strength of rock materials, and tensile strength 

is underestimated if plane specimens are used. It is shown ring specimens can be used to 

successfully measure apparent tensile strength of rock materials. Moreover, brittle nature of 

rock materials is a major issue for fabricating a sharp notch in SCB specimens to successfully 

determine material fracture toughness. It is verified that notch mechanics and practical 

developments in similar materials can be used to rectify the notch root radius effect on 

determining fracture toughness of rock materials. However, if the notch root radius is smaller 

than the cohesive length, the ISRM suggested method (Kuruppu et al. 2014) is a reliable 

method for determining fracture toughness of rock materials. 

Finally, the physics of fractured surfaces are investigated at length scales smaller than  ≡ 

𝓁c, and the order of intermittency of rough rock fractured surfaces is discovered at intermediate 

length scales. The introduced disorder analysis method can model intermittency of data sets at 

these length scales that would increase the prediction power of current statistical models. For 

instance, more accurate predictive models can be developed for time series analysis. 

Ultimately, this can lead to, for example, predict seismic or flood events in short time with 

higher accuracy. 

 

6.2. Future work 

It is discussed in Chapter 4 that after a threshold the fracture toughness KIc of rock 

materials increase with loading rate. As it goes from its name KIc or critical stress intensity 

factor is a measure of stress concentration that can be changed as a function of material 

geometry or loading rate and change the behaviour of material in K dominance region that 𝓁c 

is within it. As opposed to KIc, at quasi-statics loading rate the cohesive stress 𝜎c is material 

dependent and independent of loading rate. However, it is suggested that at dynamic loading 

rates the properties of material and accordingly 𝜎c will change (Zhao 2000). Therefore, in a 

future research it will be investigated by determining 𝜎c of fractured surfaces of the same rock 

types broken under dynamic loading rates using roughness analysis. Sixteen fractured surfaces 

including 4 surface for each of the four studied rock types broken under a wide range of quasi-

static and dynamic loading rates will be analysed using the developed multifractal model for 

determining their 𝓁c and 𝜎c values for such purpose. 
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(a) (b) 

Fig. 6.1. Loading rate against apparent tensile strength (a); and mode I fracture toughness (b).  

 

Moreover, the mechanical behaviour of the studied rock materials are determined under 

different loading rates (Fig. 6.1). The Dynamic Increase Factor (DIF) can be clearly seen from 

this figure for both apparent fracture toughness and tensile strength. However, this observation 

cannot give us any information about 𝓁c and 𝜎c.  

It seems multiscale behaviour of materials is related to both intrinsic and extrinsic features. 

The nominal intrinsic features are always constant at different scales, but their response to 

mechanical loading under different extrinsic conditions is different. In other words, extrinsic 

features can activate different scales. Strain rate is one of the main external parameters that can 

change the mechanical response of rock materials with same nominal intrinsic features under 

same environmental conditions. There are good review papers regarding strain rate dependent 

behaviour of rock materials (Zhang and Zhao 2014; Xia and Yao 2015). Therefore, the 

relationship between multiscale physical properties of rock materials and strain rate will be 

investigated in the future research as well. Theoretically, under different strain rates the amount 

of energy flux to the crack front is different. Therefore, at higher strain rates crack front can 

depines the material at smaller scales (Zhang and Zhao 2013; Barras et al. 2017; Chopin et al. 

2018).  

According to outcomes of the first phase of this research, based on intrinsic features of 

different rock types, a transition from non-linear inelastic fracture mechanics to LEFM is 

expected to take place in a range of length scales between 10 micrometres to 20 millimetres 

(Fig. 6.2). Appendix B. is presenting some numerical examples regarding the multiscale 
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analysis of intrinsic features of materials and quantifying their heterogeneity and anisotropy. It 

is supposed that the critical length scale at which transition takes place is a function of extrinsic 

and environmental conditions. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6.2. Homogenization of selected parts from NSCB specimens of a sandstone (a, c); and a CG 

granite (b, d). 

  



66 
 

 

Appendices 

 

Appendix A: Photomicrographs of fractured surfaces of different rock types 

 

  

  

  

Fig. A.1. SEM photos of Coal. The left column is showing the microstructure of a coal fractured 

surface which is perpendicular to the direction of tabulated carbon structure at different 
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magnifications (all photos have the same centre); while the right column is showing the fractured 

surface of the same material which is parallel to the direction of tabulated carbon structure at 

different magnifications (all photos have the same centre). 

 

  

  

  

Fig. A.2. Multiscale properties of fractured surface of a crystalline limestone with quite large 

crystals at different magnifications (all photos have the same centre); the importance of 

crystalline structure of calcite crystals and their cleavage directions on roughness of this surface 

is obvious. 
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Fig. A.3. Multiscale properties of fractured surface of a crystalline marble. The left column is 

showing the parallel cleavage surfaces of a quite large calcite crystal at different magnifications 

(all photos have the same centre); and the right column is showing the common fracture patterns 

in marble which is being formed with such cleavages in three directions at right angles (90⁰) at 

different magnifications (all photos have the same centre). 
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Appendix B: Quantifying heterogeneity and anisotropy of some simulated materials 

 

To understanding the multiscale behaviour of materials, first we need to know how their 

structure begin to change from one length scale to another. For better understanding of the 

problem, some 3D media have been simulated with different sizes, degrees of heterogeneity 

and anisotropy. The voxels of simulated materials have values between zero and one. In order 

to see how the structure of the simulated materials would change at different scales, we have 

used asymptotic homogenization method. In this procedure, different number of voxels have 

grouped together to show the structure of materials at different length scales. For instance, if 

the initial size of a sample were 100 3 voxels, it would be reduced to 50 3 voxels when we group 

every 2 3 voxels together. It is notable that values of new voxels (grouped voxels) are the mean 

values of the voxels before grouping. Fig. B.1 is showing the asymptotic homogenization of a 

simulated isotropic heterogeneous material with uniform distribution. It resembles scanning 

materials or media using X-ray CT or other tomographic techniques with different resolutions. 

Therefore, considering the structural complexity of a material when we start to use lower 

resolutions (higher length scales) to scan the same sample it begins to become more 

homogeneous (Figs. B.1 and Fig. B.2). From Fig. B.2, which shows probability density 

function (PDF) and cumulative distribution function (CDF) of the same sample in Fig. B.1 and 

at different length scales, it can be clearly seen that when the resolution is lower, the sample is 

nominally more homogeneous. In the following some examples will presented to simulate the 

heterogeneity and anisotropy of some artificial materials at different length scales. 

Example 1: simulating an isotropic heterogeneous medium using uniform distribution at 

different sizes. This example shows the effect of sample size on characteristic length scale 

determination. Four different sample sizes have been selected from 4 3 to 100 3 voxels. Fig. B.3 

can schematically show the importance of a representative sample. From this figure, it is 

obvious that considering the amount of heterogeneity of the materials and size of its 

constituents the representative size should be different to characterise it. Fig. B.4 shows the 

multiscale behaviour of this simulated material, but with different sample sizes. Based on this 

example, representative size should be fulfilled to obtain CL. This representative size might be 

different considering different engineering or scientific applications. However, obtaining a real 

representative size is difficult and might need large samples. This is why, most of the laboratory 
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tests should repeat multiple times on different samples from same material and the average 

value is being used to characterise the material.  

As it can be seen from Fig. B.4, for the isotropic medium with uniform distribution after 

grouping more than about 20 3 voxels together the coefficient of variation became less than one 

percent. This scale is almost the CL of the system and it is homogenized if we assume the 

system will grow with same structure in every direction. From this example, it can be deduced 

for predicting multiscale behaviour of the simulated material the samples should at least be 

larger than the CL, otherwise there should be statistical errors. Fig. B.4 shows the CL of the 

simulated samples with the size of 40 3 voxels, which have smaller size than the nominal CL 

(almost 20 3 voxels) of the material, can be obtained by averaging characteristic length scales 

of different samples. Please note that Coefficient of Variations is a measure of material 

heterogeneity and is standard deviation of all voxels over their average. 

 

   

100 3 voxels 50 3 voxels (grouping 2 3 voxels) 33 3 voxels (grouping 3 3 voxels) 

   

25 3 voxels (grouping 4 3 voxels) 20 3 voxels (grouping 5 3 voxels) 14 3 voxels (grouping 7 3 voxels) 

   

10 3 voxels (grouping 10 3 voxels) 5 3 voxels (grouping 20 3 voxels) 2 3 voxels (grouping 50 3 voxels) 

Fig. B.1. Asymptotic homogenization of a simulated medium with uniform distribution [values of 

voxels are between zero (black) and one (white)]. 
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100 3 voxels 50 3 voxels (grouping 2 3 voxels) 33 3 voxels (grouping 3 3 voxels) 

   

   

25 3 voxels (grouping 4 3 voxels) 20 3 voxels (grouping 5 3 voxels) 14 3 voxels (grouping 7 3 voxels) 

   

   

10 3 voxels (grouping 10 3 voxels) 5 3 voxels (grouping 20 3 voxels) 2 3 voxels (grouping 50 3 voxels) 

Fig. B.2. Probability density function (PDF) and cumulative distribution function (CDF) of the 

voxel values of a simulated material with uniform distribution at different length scales. 

 

Example 2: simulating some isotropic heterogeneous medium using different random 

distributions. Normal and Weibull distributions have been used to simulate materials with 

different degrees of heterogeneity. Fig. B.5 is showing the homogenization of some simulated 

materials with different normal distributions. These examples can show the effect of 

heterogeneity on CL, the higher the standard deviation, the larger the CL. Same as normal 
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distribution the effect of different levels of heterogeneity introduced by Weibull distribution 

can be clearly seen on the CL (Fig. B.6). Based on this statistical work, the characteristic size 

in isotropic media depends on distribution and fabric of different constituents and phases as 

well as the size of them. Therefore, it seems the presented formulas for predicting multiscale 

behaviour of materials by knowing their CL, can be statistically proved for isotropic 

heterogeneous materials with same distribution throughout the body. For such kind of ideal 

materials, CL can be considered as RVE. However, natural materials cannot be considered 

neither isotropic nor continuously distributed with a same function across all length scales. 

 

 

Fig. B.3. Different sample sizes from 4 3 to 100 3 voxels from a simulated heterogeneous medium 

with uniform distribution. 

 

 

Fig. B.4. The importance of representative sample size on determining multiscale behaviour of a 

simulated heterogeneous medium with uniform distribution and its CL. 
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Mean=0.5; SD=0.25 Mean=0.5; SD=0.5 Mean=0.5; SD=1 Mean=0.5; SD=5 

    

100 3 voxels 

    

10 3 voxels 

Fig. B.5. Homogenization of some media with different degrees of heterogeneity simulated using 

normal distributions with different standard deviations (in each case the minimum value is white 

and the maximum is black). 

 

 

Fig. B.6. Homogenization of some simulated isotropic heterogeneous media with different 

distributions (normal distributions with different standard deviations and Weibull distributions 

with different shape and scale parameters). 

 

Example 3: simulating asymptotic homogenization of an anisotropic medium. Figs. B.7 

and B.8 are showing the asymptotic homogenization of a simulated anisotropic medium made 

of two periodic layers. As it is evident from statistical simulations, as opposed to isotropic 

materials (Figs. B.4 and B.6), anisotropic ones are showing nonlinear asymptotic 
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homogenization. This is showing the importance of directional dependency of materials 

multiscale physical properties. The method introduced by Yun et al. (2013) has been adopted 

to identify relative anisotropies. It is notable that after lots of examination on simulated three-

dimensional materials the errors of this method have detected and eliminated in this study. 

 

   

40 3 voxels 20 3 voxels (grouping 2 3 voxels) 13 3 voxels (grouping 3 3 voxels) 

   

10 3 voxels (grouping 4 3 voxels) 8 3 voxels (grouping 5 3 voxels) 5 3 voxels (grouping 8 3 voxels) 

   

4 3 voxels (grouping 10 3 voxels) 3 3 voxels (grouping 13 3 voxels) 2 3 voxels (grouping 20 3 voxels) 

Fig. B.7. Asymptotic homogenization of an anisotropic medium made of two periodic layers. 

 

 

Fig. B.8.  Nonlinear asymptotic homogenization of the simulated anisotropic medium. 
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40 3 voxels 20 3 voxels (grouping 2 3 voxels) 13 3 voxels (grouping 3 3 voxels) 

 

 

 

10 3 voxels (grouping 4 3 voxels) 8 3 voxels (grouping 5 3 voxels) 5 3 voxels (grouping 8 3 voxels) 

   

4 3 voxels (grouping 10 3 voxels) 3 3 voxels (grouping 13 3 voxels) 2 3 voxels (grouping 20 3 voxels) 

 

All length scales 

Fig. B.9. Asymptotic homogenization of the simulated anisotropic medium made of two periodic 

layers at each direction (trends from 0 to 359 and plunges from 0 to 90 at 5-degree intervals). 

 

Fig. B.9 is showing the amount of heterogeneity (CoV) of this simulated anisotropic 

material at different length scales and directions, and Fig. B.10 is demonstrating the amount of 

anisotropy of the simulated material from its centre of mass. From these simple examples, it 

can be seen that the multiscale analysis is very promising to find CL of a media, which is related 

to its sample size and the resolution of the method used for tomography. Furthermore, there is 

no general formulation for multiscale behaviour of different materials and depending on 



76 
 

microstructural features the behaviour of different materials at different scales, locations and 

directions are different with respect to corresponding CLs.  

 

 

Fig. B.10. The amount of anisotropy of the simulated medium at each direction from its centre of 

mass. 
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