
From Autoregressive to Non-Autoregressive: Studies on Text
Generation in Neural Sequence Models

by

Syed Najam Abbas Zaidi

Supervisors:

Assoc. Prof. Gholamreza Haffari

Prof. Trevor Cohn (University of Melbourne)

Prof. Hans De Sterck (University of Waterloo)

A Thesis Submitted for the Degree of Doctor of Philosophy at

Monash University in 2022

Department of Data Science and Artificial Intelligence

Faculty of Information Technology

Monash University

To my late mother: Ami you gave me wings, Father: Abu you taught me to fly and my beloved

wife who retaught me the meaning of life

ii

© Copyright

by

Syed Najam Abbas Zaidi

2022

From Autoregressive to Non-Autoregressive: Studies on Text
Generation in Neural Sequence Models

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another
degree or diploma at any university or other institute of tertiary education. Information derived
from the published and unpublished work of others has been acknowledged in the text and a list
of references is given.

Syed Najam Abbas Zaidi
April 26, 2022

iv

From Autoregressive to Non-Autoregressive: Studies on Text
Generation in Neural Sequence Models

Syed Najam Abbas Zaidi
syed.zaidi1@monash.edu

Monash University, 2022

Supervisors:
Assoc. Prof. Gholamreza Haffari

Prof. Trevor Cohn (University of Melbourne)
Prof. Hans De Sterck (University of Waterloo)

Abstract

Many tasks in natural language processing (NLP) require predicting complex structures such as a

sequence, tree or graph as output and therefore can be framed as a structured prediction problem.

In this thesis, we narrow our focus on text generation among various other structured prediction

problems. Sequence generation in NLP requires predicting text as output and cover application

areas such as machine translation, summarization and story generation. The current state of the art

methods for text generation relies on deep neural networks to model the relationship between the

input and the output structure. Despite all the progress, the current autoregressive text generation

methods, where the output is generated monotonically from left to right conditioned on the source

and previously generated tokens, ignore the structural nuances of human languages and rely on

simplistic assumptions and error prone search procedures. Furthermore, the current approaches

suffer from label-bias where previously generated errors are propagated throughout the generation

and exposure-bias where there is a discrepancy between training and inference procedures.

Non-autoregressive models have been proposed recently to generate output sequence in a fixed

number of time-steps independent of the length of the output sequence. As the whole sequence

is generated in parallel, non-autoregressive models have neither label nor exposure bias. But due

to complete conditional independence in the output variables, their output quality suffers. In both

of these model families, the length of the target sequence is either fixed or increase monotonically

as the generation proceeds. This does not allow dynamic length changes and reediting incorrectly

generated parts of the sequence. Further, both these model families struggle to keep coherence in

the text when generating long sequences.

We begin, in Chapter 3, by proposing an effective method for improving decoding in discrete

autoregressive models using dynamic programming, thus reducing the search error. The core idea

is to introduce auxiliary variables to decouple the non-Markovian aspects of the model, permitting

an exact solution to an approximate model. This solution is then used to create the next model

approximation, and the process iterates. Our results show that our decoding framework is effective,

leading to substantial improvements over greedy and beam search baselines.

v

In Chapter 4, we move our attention to long sequence generation. We propose a novel semi-

autoregressive document generation model capable of revising and editing the generated text.

Semi-autoregressive models provide the best of both worlds by decoding substantially faster than

autoregressive but with some performance cost. We formulate document generation as a hierar-

chical Markov decision process with a two-level hierarchy. The combination of editing actions at

high (sentence) and low (word) level allow the model to revisit and edit part of the text. This not

only allows dynamic length changes but also allow rectifying the generated mistakes. We apply

our semi-autoregressive document generation model to the challenging task of story generation

and summarization. Our approach produces promising results but underperforms strong baselines.

We suggest various future directions that may improve the results.

The final contribution of this thesis, in Chapter 5, is to propose an innovative architectural de-

sign for generating quality outputs for non-autoregressive models based on similar examples from

the training set. Non-autoregressive models lag behind autoregressive models due to loss of crucial

information about dependencies among the variables. We propose to inject this information by us-

ing an informative and effective prior based on similar examples. We build an augmented version

of the dataset by fetching k nearest neighbours from the training set. We also propose changes

in the attention mechanism, whereby attention heads are distributed between nearest neighbours

and the sentence being translated. This allows the model to incorporate similar examples effec-

tively and not get distracted by extra information. Our proposed approach outperforms the vanilla

non-autoregressive baseline model but underperforms other similar non-autoregressive baseline

approaches. We suggest various ways to improve results as future directions.

vi

Acknowledgments

It was an incredible journey of learning and self discovery. A journey mostly filled with disap-
pointments and frustrations but with little moments of joy in the way. A journey that took me
out of my comfort zone into the unknown territories of knowledge. Now that I look back at it, I
feel proud to have come out of it successfully. The knowledge I have gained and the skills I have
learned will be beneficial for me in a number of ways.

It is said that research is a lonely quest but I was lucky to have friendly and supporting super-
visors to guide me throughout my candidature. I cannot thank Associate Professor Gholamreza
(Reza) Haffari, Professor Trevor Cohn (University of Melbourne) and Professor Hans De Sterck
(University of Waterloo) much for their support and encouragement. They patiently supervised
and answered even the most dumbest questions, showed me the end of the tunnel when I was com-
pletely lost and provided me with encouraging words to boost my morale throughout the project.
I would like to express my sincere gratitude to my supervisors as this thesis would not have been
possible without their guidance and support.

I would like to thank Monash University for generously supporting me with Monash Graduate
Scholarship. I have also been greatly benefited from Multi-modal Australian ScienceS Imaging
and Visualisation Environment (MASSIVE) and Monash Advanced Research Computing Hybrid
(MonARCH) by providing me with the opportunity to run many resource-intensive experiments.

I would also like to thanks my panel members Prof. Wray Buntine and Dr. Daniel Schmidt for
providing me with constructive feedback throughout the candidature. A special thanks goes to the
examiners of the thesis Professor Christof Monz (Informatics Institute, University of Amsterdam)
and Dr Carolina Scarton (University of Sheffield). Their valuable feedback has further improved
the quality of this thesis.

This whole journey would have not been possible without the support of my family. Everything
I am and everything I have achieved is because of them. Their countless encouragement and
support gave me the reason to keep on making an effort in times of continuous failures. I thank
you guys a lot.

Special gratitude goes to my beloved wife Sumbleen for her unconditional love, motivation,
encouragement and moral support over many years. She patiently stood with me in times of
extreme pressure and frustration and provided me emotional support when I was down.

vii

Last but not the least, I am grateful to my colleagues and officemates in Monash, Fahimeh,
Ming, Poorya, Narjes, Philip, Sameen, Snow, Trang, Xuanli for their support, kindness, and the
fun we have had over in the lab before COVID hit.

Syed Najam Abbas Zaidi

Monash University

April 2022

viii

Contents

Abstract . v

Acknowledgments . vii

List of Figures . xiii

List of Tables . xvi

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Objectives . 6

1.3 Thesis Outline and Contributions . 7

2 Background . 9

2.1 Deep Learning and NLP . 10

2.1.1 Deep Learning . 10

2.1.1.1 Multi-Layer Perceptron (MLP) 10

2.1.1.2 Recurrent Neural Network (RNN) 11

2.1.1.3 Long Short-Term Memory (LSTM) 12

2.1.2 Deep Learning for NLP . 14

2.1.2.1 Word Embedding . 14

2.1.2.2 Language Models . 15

2.2 Autoregressive Models . 17

2.2.1 Sequence-to-Sequence Model . 17

2.2.2 Attentional Sequence-to-Sequence Model 19

ix

2.2.3 Convolutional Sequence-to-Sequence Model 21

2.2.4 Self-attention Sequence-to-Sequence Model 21

2.2.5 Generation . 24

2.2.5.1 Common Decoding Methods 25

2.2.5.2 Guided Decoding . 26

2.2.5.3 Trainable Decoding . 27

2.2.5.4 Other Generation Orders . 29

2.2.6 Final Words on Autoregressive models 30

2.3 Non-autoregressive Models . 30

2.3.1 Basic Non-autoregressive Model . 31

2.3.2 External Enhancements . 32

2.3.3 Internal Enhancements . 34

2.3.4 Generation . 34

2.3.5 Final Words on Non-autoregressive Model 35

2.4 Semi-autoregressive Models . 36

2.4.1 Iterative refinement . 36

2.4.2 Final Words on Semi-autoregressive Model 37

2.5 Locally vs Globally Normalised Models . 38

2.6 Summary . 39

I Generation in Autoregressive Models 41

3 Decoding For Autoregressive Models . 43

3.1 Introduction . 43

3.2 Decoding Framework . 45

3.2.1 Problem Formulation . 45

3.2.2 Method of Auxiliary Coordinate (MAC) 46

3.3 Optimisation Algorithm . 47

3.3.1 Updating the Output Variables . 48

3.3.2 Updating the State Variables . 48

x

3.4 Decoding In An Ensemble . 48

3.5 Experiments . 50

3.5.1 Experimental Setup . 50

3.5.2 Results . 52

3.5.3 Analysis . 52

3.6 Summary . 54

II Generation in Semi-Autoregressive Models 57

4 A Hierarchical Model For Document Generation 59

4.1 Introduction . 59

4.2 Problem Formulation . 61

4.2.1 Hierarchical Markov decision process 61

4.2.2 HMDP policies . 61

4.2.3 Generative process . 62

4.3 Hierarchical Transformer . 64

4.3.1 Architectures . 64

4.3.2 Policy classifiers . 64

4.3.3 Noise . 65

4.3.4 Oracle . 67

4.3.5 Training . 69

4.4 Experiments . 69

4.4.1 Experimental Setup . 69

4.4.2 Results . 71

4.4.2.1 Synthetic dataset . 72

4.4.2.2 ROC stories . 74

4.4.2.3 Summarization . 76

4.4.3 Discussion on negative results . 76

4.5 Summary . 78

xi

III Generation in Non-Autoregressive Models 81

5 Exemplar Transformer . 83

5.1 Introduction . 84

5.2 Background . 86

5.2.1 Autoregressive Neural Machine Translation 86

5.2.2 Non-Autoregressive Neural Machine Translation 86

5.3 Approach . 87

5.3.1 K-Nearest Neighbours as Prior . 88

5.3.2 Exemplar Transformer . 88

5.4 Experiments . 92

5.4.1 Setup . 92

5.4.2 Results . 93

5.4.3 Analysis . 95

5.5 Summary . 97

6 Conclusion and Future Directions . 101

6.1 Summary . 101

6.2 Future Directions . 103

References . 105

xii

List of Figures

1.1 The figure shows an encoder-decoder architecture used for machine translation.

An encoder convert the input sentence X to an internal representation z. The

decoder use this internal vector z to generate the output Y in the target language.

Typically, the decoder is autoregressive that is output words are generated one

by one from left to right which each word using previously generated words as

conditioning context. 3

1.2 Conditional dependencies among model families. Autoregressive models gener-

ate token conditioned on all the previously generated tokens. Semi-autoregressive

generate blocks autoregressively whereas within each block generation is done in

parallel. Tokens in a block are conditioned upon the tokens generated in the pre-

vious blocks Non-autoregressive models, on the other hand show no conditional

dependence among tokens. 5

2.1 Recurrent neural network. Left side shows a folded RNN. The right side shows

an unfolded version where each hidden state is shown to be a function of previous

hidden state and the input at that time step. 12

2.2 Long Short-Term Memory (LSTM). The figure shows the inner working of an

LSTM cell. 13

2.3 Architecture of an n-gram neural probabilistic language model. Picture courtesy:

(Bengio, Ducharme, Vincent, & Jauvin, 2003) 16

2.4 Architecture of an recurrent neural network language model. Picture courtesy:

(Mikolov, Karafiát, Burget, Černockỳ, & Khudanpur, 2010) 17

2.5 Example of Seq2Seq model for English to German translation. 18

2.6 Encoder decoder with attention (Source (Bahdanau, Cho, & Bengio, 2014)) . . . 20

2.7 The general architecture of convulutional seq2seq model (Source (Gehring,

Auli, Grangier, Yarats, & Dauphin, 2017)) . 22

2.8 The general architecture of trasformer seq2seq model (Source (Vaswani et al.,

2017)) . 23

xiii

2.9 The example of a binary tree where the model first generate the word “are” and

then recursively generates words left and right. (Source (Welleck, Brantley, Daumé III,

& Cho, 2019)) . 29

2.10 Basic Non-autoregressive model architecture. Picture courtesy: (Gu, Bradbury,

Xiong, Li, & Socher, 2017) . 32

2.11 Flowseq model for learning prior. Picture courtesy: (X. Ma, Zhou, Li, Neubig, &

Hovy, 2019) . 33

2.12 Illustration of transformer based CRF model. Picture courtesy: (Sun et al., 2019) 35

2.13 Illustration of Levenstein Transformer. Picture courtesy: (Gu, Wang, & Zhao, 2019) 37

3.1 A typical RNN with unbounded Markov order is shown in (a). The factor graphs

of our zero-order and first-order Markov approximations are illustrated in (b) and

(c), respectively. The blue and red factors correspond to likelihood terms and the

constraint violations, respectively, from equations (3.3), for order k = 0, and (3.4),

for k = 1. 44

3.2 Output of greedy and beam search . 45

3.3 Some test examples from (a) Daily Dialogue and (b) SWAG datasets. 50

3.4 The figure shows the penalised decoding objective for zero, first and second order

Markov models . 53

3.5 Improvement of the sentence in different iterations 54

4.1 The illustration of the proposed model for the update iteration. The same archi-

tecture can be applied for different tasks with specific classifiers. We have omitted

attention from transformer blocks for simplicity. p stands for position embedding

wheras s is for segment embedding. 64

4.2 The figure shows the noising process to corrupt the original document. Noise is

applied to the original document Dorg with delete, shuffle, update and insert. The

noise update applies noise on the selected sentences. We have a pre-built resource

of random words and sentences built from the training set that is used in word and

sentence level insertion. Each noise action is applied if the probability of selection

is greater than 0.5. As some actions are skipped, the noising process generates

different trajectories of noise. 66

4.3 The figure shows the process by which the oracle actions are generated. Reposition

uses shuffle and insert noise action to build its output. Sentences deleted by the

noise are inserted back and are use for building the output for insert classifier.

Finally a bipartite graph is build and the alignments are generated to get the output

for update classifier. The same process is applied at the low level to get the oracle

output at word level. 67

xiv

4.4 The figure shows an example output of oracle generated actions. The noise is

applied to the original document to get the corrupted document. Noise is applied

at the sentence level as well as at the word level. Oracle actions are then generated

to reverse the inserted noise. 68

4.5 The figure shows a bipartite graph created in order to generate the oracle update

action. The graph is created between the sentences in corrupted and original doc-

ument. 68

4.6 The figure shows sample output from ROC stories dataset. Observe that the editing

operators can modify the length of the document. The yellow highlights shows the

part being edited by the model. 75

4.7 The figure shows sample output from summarization dataset. 77

5.1 The figure shows the structure of the Exemplar Transformer. It consist of a pre-

processing step where the nearest neighbours for the dataset are determined. These

nearest neighbours are then used by the model to perform translation. The model

divides the attention heads among the neighbours and the sentence being trans-

lated. This can be efficiently done by using a mask in the attention mechanism. . 85

5.2 The four components of non-autoregressive machine translation model is shown.

The encoder is similar to the autoregressive Transformer. The difference lies in the

decoder which consist of an additional positional attention module. The nearest

neighbours are concatenated withe the source and copied source and passed as

input to the encoder and decoder. The attention modules are also modified by

using a mask to split the attention heads. 89

5.3 The figure shows the the two nearest neighbours concatenated with the source and

target sentence. Note that the positions are relative to the sentence. The positions

reset when a new sentence starts. The nearest neighbours can provide syntactic

and semantic information to translate the sentence properly. 91

5.4 The figure shows the effect of increasing the number of heads for similar examples.

We observe a decrease in BLEU score as more heads are dedicated to the neighbours. 97

5.5 Example output 1: Figure shows the output of Exemplar Transformer compared

to NAT model . 98

5.6 Example output 2: Figure shows the output of Exemplar Transformer compared

to NAT model . 98

5.7 Example output 3: Figure shows the output of Exemplar Transformer compared

to NAT model . 99

xv

List of Tables

3.1 BLEU score and perplexity of various models on the two datasets with 50% mask-

ing rate. The results of our decoding approach is based on the 1st order approxi-

mation. 52

3.2 Performance with varying masking rates for the different decoding methods. . . 53

3.3 The results of varying Markov order and state variable update method. Time is

reported for processing 100 sentences. 54

4.1 Results of running experiments on Synthetic with only shuffling noise. We report

accuracy of the model in repositioning the sentence correctly. 72

4.2 Results of running experiments on Synthetic and ROC-stories test dataset. We

report the BLEU score in the table which is higher the better. 73

4.3 The table shows the accuracy of each high level classifier on synthetic dataset.

Reposition and Delete accuracy are from the same reposition classifier with dif-

ferent type of noise. 73

4.4 The table shows the BLEU score of models with different input length sizes. Each

bucket size refers to the number of characters. 74

4.5 Table shows the time for running 100 test examples. No batching is used to mimic

the real world scenario. 74

4.6 Experiment Results on Multi-News and DUC2004 dataset 76

4.7 Sensitivity of metrics towards capturing sentence reordering. For synthetic and

ROC stories, we report the BLEU score. For Multi-news and DOC-2004, we

report the R1 score. Mean and standard deviation is measured over 10 runs. . . . 77

5.1 The table shows the result on wmt-14 and wmt-16 dataset. Only one neighbour is

concatenated with the source and target sentence. 94

5.2 The table shows the result on running experiments on original dataset. The actual

outputs are used to train the model instead of using outputs from autoregressive

teacher as targets. 94

xvi

5.3 The table shows the result of our approach compared to other similar models. . . 95

5.4 The table shows the BLEU score and speedup achieved by increasing the number

of neighbours. The neighbours are added at both the source and target. DH denote

the attention mechanism whereby heads are distributed between neighbours and

sentence being translated. 96

5.5 The table shows the BLEU score of models trained on data built using different

similarity measures. It also shows results of using different sentence represen-

tations. CLS refers to using cls token as sentence representations. SUM refers

to summing up the output vectors of the words in the sentence and MAX-POOL

refers to max-pooling the output vectors of the sentence words. 96

xvii

xviii

Chapter 1

Introduction

1.1 Motivation

Many tasks in natural language processing require modelling complex inter-dependencies between

the output variables. Examples of such tasks include but are not limited to machine translation

(Sutskever, Vinyals, & Le, 2014), summarization (Wan, Luo, Sun, Huang, & Yao, 2019), parsing

(Socher, Lin, Manning, & Ng, 2011) and semantic role labeling (J. Zhou & Xu, 2015). The

dependencies between the output variables lead to complex structures such as a sequence, tree or

a graph as output. For example, automatic machine translation involves predicting a sequence of

words in a target language for a given source language. The generated output sentence should obey

the structural and statistical constraints of the target language so that the resulting sentence is well

formed and convey the idea of the source sentence as faithfully as possible. This is only possible if

the underlying model is capable of predicting structurally rich and interdependent output variables.

In the case of machine translation, the output structure is a sequence of words which needs to be

syntactically and semantically correct. In the parlance of machine learning, such problems are

categorised as structured prediction problems (Murphy, 2012).

Structured prediction problems differ from other classification problems such as multiclass

and multilabel. In multiclass classification, an instance is classified into one of three or more

classes. A simpler case of multiclass classification is binary classification where the instance is

classified into one of the two classes. In multilabel classification, multiple labels may be assigned

to a given instance. Structured prediction problem, on the other hand, requires modelling deeper

properties of instances and their relationship to each other. Formally, consider an input vector

x = 〈x1, x2, x3,, xn〉 such that each xi ∈ X and output vector y = 〈y1, y2, y3,yn〉 such that

each yi ∈ Y . For machine translation X is the source vocabulary and Y is a target vocabulary.

We are interested in finding a mapping such that X n 7−→ Ym where n and m are the length of

the source and target sequence respectively. Martins (2012) presented three conditions that must

be satisfied by the problem to be categorised as a structured prediction problem. First, in case of

fewer classes, we predict y by searching the whole output space Y but this is not feasible in case

of structured prediction as some structures are not legitimate. For example in machine translation,

1

2 CHAPTER 1. INTRODUCTION

the output structure should obey the grammar of the target language. Therefore, Y(x) is defined

as the set of admissible outputs. Secondly, the output set Y(x) is large such that it is impossible

to enumerate all the elements in the set. This set grows exponentially with length of the input x.

Finally, there are strong dependencies among the atomic components due to structural or statistical

constraints and therefore components cannot be predicted individually.

At its core, structured prediction requires solving an optimisation problem at the training and

inference time. Given some training dataset {(xi, yi)}N1 , the optimisation problem at the training

time, to learn the model, can be solved by maximum likelihood estimate (R. A. Johnson, Miller,

& Freund, 2000) and is given by:

w∗ = argmax
w∈W

N∑
i=1

log p(yi|xi;w) (1.1)

This problem requires searching for a model parameter w that maximises the likelihood of data

under the model. The optimisation problem at inference time, to predict the output of given input,

is given by:

y∗ = argmax
y∈Y(x)

p(y|x;w∗) (1.2)

This problem requires searching for a high scoring structure under the given model. A Challenge

lies in finding y∗ as this problem in general is not tractable. The possible search space Y(x) is in

general exponentially large and grows with the input size. Exact inference is desirable but requires

huge computational cost (Kulesza & Pereira, 2008). Therefore, current approaches use simplistic

and approximate procedures where a sacrifice is made towards accuracy in favour of time.

In this thesis, we consider sequence generation among other structured prediction problems

in NLP. Sequence generation problems require generating text as output and therefore encompass

problems such as machine translation (Wu et al., 2016), summarization (El-Kassas, Salama, Rafea,

& Mohamed, 2021), story generation (Fang et al., 2021) and various document level tasks such

as document level machine translation, discourse analysis and document level post processing

(Z. Ma, Edunov, & Auli, 2021). Current state-of-the-art text generation technologies rely on

deep neural networks to parametrise the probability distribution of output sequence y given an

input sequence x (Sutskever et al., 2014; Bahdanau et al., 2014). An encoder builds an internal

representation which is used by the decoder to generate the output autoregressively from left to

right (Figure 1.1).

p(y|x,w) =

N∏
i=1

p(yi|x,y<i,w)

The autoregressive factorization that is the output token is generated conditioned on all the pre-

viously generated tokens as shown by y<i comes with several advantages. As this word by word

left to right, generation corresponds to the order in which humans produce languages therefore the

1.1. MOTIVATION 3

Figure 1.1: The figure shows an encoder-decoder architecture used for machine translation. An
encoder convert the input sentence X to an internal representation z. The decoder use this internal
vector z to generate the output Y in the target language. Typically, the decoder is autoregressive
that is output words are generated one by one from left to right which each word using previously
generated words as conditioning context.

underlying model effectively captures the real data distribution. Generation, which is referred to

as decoding or inference, is done via greedy or beam search procedures. Autoregressive models

have achieved state-of-the-art performance on many tasks with large-scale corpora (Vaswani et al.,

2017; G. Bao, Zhang, Teng, Chen, & Luo, 2021). They are easy to train and beam search provides

an effective local search method for finding approximately-optimal output translations.

But there are several disadvantages. First, the decoder must output tokens sequentially, rather

than in parallel, resulting in a slower generation process (Ramachandran et al., 2017). The ability

to do fast generation is useful for production environments with tight latency constraints such as

fast off-line speech generation or machine translation systems (Inaguma, Higuchi, Duh, Kawa-

hara, & Watanabe, 2021) . The issue of latency is further exacerbated when autoregressive models

are used for generating long sequences such as stories and summaries. Not only does the gen-

eration become slow, hindering its use in industrial applications but the models also struggle to

maintain a coherent event sequence throughout the generated text. B. Tan, Yang, AI-Shedivat,

Xing, and Hu (2020) noted in their work on long text generation that state-of-the-art language

models show excessive repetitiveness and incoherence between sentences. The issue of repetitive-

ness was also reported by Cohen and Beck (2019) and Holtzman, Buys, Du, Forbes, and Choi

(2019), citing simple generation procedures as the culprit for this behaviour. Further, Cohen and

Beck (2019) showed that increasing the beam size leads to performance degradation.

Current autoregressive models also have exposure bias, meaning that there is a discrepancy

between training and inference procedure (Ranzato, Chopra, Auli, & Zaremba, 2015). At training

time the ground truth words are used as context whereas at the test time the model relies on its

own generations. As a result the predicted word at training and inference time are drawn from

4 CHAPTER 1. INTRODUCTION

different distributions (Zhang, Feng, Meng, You, & Liu, 2019). Further, monotonic generation of

words also results in the label-bias problem where the previously generated errors are propagated

throughout the generation, resulting in a poor quality solution (Goyal, Dyer, & Berg-Kirkpatrick,

2019).

Recent work by Gu, Bradbury, et al. (2017) introduced non-autoregressive generation models

capable of generating the whole output sequence in a fixed number of time-steps independent of

the length of the output sequence. This provide significant speedups compared to autoregressive

models (Figure 1.2). Further as the whole sequence is generated in parallel, non-autoregressive

models neither have exposure nor label bias. But all these advantages comes at a cost. Complete

conditional independence makes it difficult for non-autoregressive models to capture the underly-

ing data distribution which exhibit strong correlation across time. Since the generation of target

tokens is now independent, non-autoregressive models have to utilize alternative information to

compensate for the lack of target side history. This makes training of non-autoregressive models

harder, as they have to handle the task conditioned on less and weaker target side information, re-

sulting in inferior quality outputs. Further, non-autoregressive models have been shown to perform

poorly when generating long sequences due to lack of target side information (Guo et al., 2019).

Non-autoregressive generation models also require predicting target sequence length before gen-

eration. The lengths are implicitly model by autoregressive models using a special <sep> end of

sentence symbol. As the whole sequence is now predicted in parallel, non-autoregressive models

need to explicitly model sequence lengths. In both of these model families, the length of generated

sequences is either fixed or monotonically increase as the decoding proceeds. This does not allow

dynamic length changes that is the capability of the model to revisit and edit any generated text.

Semi-autoregressive models (C. Wang, Zhang, & Chen, 2018; Ghazvininejad, Levy, & Zettle-

moyer, 2020) can decode substantially faster but with some cost to performance. These models

usually perform an iterative refinement of the sequence or generate chunks of successive words

non-autoregressively while generating each chunk autoregressively (See figure 1.2). As the model

lose some dependency information, semi-autoregressive model lags behind autoregressive models

but perform better than non-autoregressive models in terms of output quality.

Thus, there is a balancing act between quality and time. Both model families come with

their advantages and disadvantages. Autoregressive models are slow but their output is better

compared to non-autoregressive models which are faster. Semi-autoregressive models provide the

best of both worlds by providing a compromise in both time and quality. Therefore all three model

families remain prevalent in the generation literature and we address their limitations in this thesis.

Concretely, one of the limitation for autoregressive models, as mentioned above, is that the

standard decoding procedures such as greedy and beam search are suboptimal. This is due to error

propagation and myopic decisions which do not account for future steps in the generation process.

Secondly, autoregressive models are slow when generating long sequences. Non-autoregressive

models can speed up generation but perform badly due to the loss of conditioning context. In both

of these model families, the sequences are bounded by fixed length whereas humans can edit any

part of their generated text resulting in output of different length. Furthermore, the generation

1.1. MOTIVATION 5

Figure 1.2: Conditional dependencies among model families. Autoregressive models generate
token conditioned on all the previously generated tokens. Semi-autoregressive generate blocks
autoregressively whereas within each block generation is done in parallel. Tokens in a block are
conditioned upon the tokens generated in the previous blocks Non-autoregressive models, on the
other hand show no conditional dependence among tokens.

6 CHAPTER 1. INTRODUCTION

procedure in both model families are simple and ignore the underlying structure in languages. Fi-

nally, there is still a large gap in translation quality between autoregressive and non autoregressive

models due to lack of target side information.

1.2 Research Objectives

The overarching aim of this research is to improve generation across both autoregressive and non-

autoregressive generation models by addressing the shortcomings mentioned above. Therefore

motivated by the literature gaps, this thesis will address the following objectives:

• Effective decoding method for faster and higher quality output in autoregressive mod-
els (Part I). Current prevalent decoding methods for autoregressive models such as greedy

and beam search are ineffective in finding a high scoring sequence under a given model.

They are too simplistic, error prone and unidirectional, meaning that once a wrong token

has been generated, it will be propagated throughout the process in the conditioning context

affecting the subsequent tokens (Sutskever et al., 2014; Bahdanau et al., 2014). This results

in serious mistakes in the output. In order to overcome this deficiency, this thesis suggests

an iterative approach capable of revisiting and revising the generated text. Building on the

method of auxiliary coordinates (Carreira-Perpinan & Wang, 2014), the proposed method in

Chapter 3 alternate between generating a sequence and updating the state variables allowing

the model to revise and fix any mistake in the generated sequence. This is in contrast to

greedy and beam search, where once a token has been generated it cannot be updated.

• Novel model design leveraging document structure for faster and higher quality long
text generation with length flexibility (Part II). Current autoregressive models are slow

when generating long sequences such as documents. On the other hand, non-autoregressive

models show degraded performance when generating long sequences. Furthermore, in both

of these model families, the length of generated sequences is either fixed or monotonically

increased as the decoding proceeds. This makes them incompatible with human-level in-

telligence where humans can revise and edit any part of their generated text. Furthermore,

simple generation procedures ignore the structural nuances of human languages leading to

mistakes in the output. This thesis suggests a semi-autoregressive model which is capable of

revising and editing the generated text. A central premise of natural languages is that words

in a sentence are interrelated according to a latent hierarchical structure such as syntactic

tree (Lees, 1957). This idea can be extended to documents where sentences in a docu-

ment are interrelated according to the topic and theme. Therefore the suggested approach

in Chapter 4 frames the document generation problem as a hierarchical Markov decision

process, where the high level program is responsible for keeping coherency throughout the

document and the low level program is responsible for generating individual sentences.

• Innovative architectural design for generating quality outputs by incorporating infor-
mative prior in non-autoregressive models (Part III). Despite all the progress that has

1.3. THESIS OUTLINE AND CONTRIBUTIONS 7

been made in non-autoregressive models, they still lag behind their autoregressive counter-

parts. Previous work on non-autoregressive models by (Gu, Bradbury, et al., 2017; Guo

et al., 2019; Y. Wang et al., 2019) noted that the input to the decoder plays a crucial rule

in modeling the target side dependencies among the tokens. The decoder in autoregressive

models leverages the previous tokens as input whereas the decoder in non-autoregressive

models takes target independent signal such as copy of the source sentence as input. Obvi-

ously, they are not rich enough to compensate for the loss of information. This thesis sug-

gests an informative and effective decoder input, that is capable of capturing the complex

dependencies in the target side data distribution. Therefore, instead of copying the source

sentence which is the prevalent method in non-autoregressive models, Chapter 5 propose

using k nearest neighbours to the given sentence as input to the decoder.

1.3 Thesis Outline and Contributions

Chapter 2: Background

In Chapter 2, we review the foundations and related work for the research in this thesis. We start

by discussing the foundations of deep learning and its use in natural language processing. Then,

we review sequence generation techniques for neural models. We specifically focus on autore-

gressive, semi-autoregressive and non-autoregressive models and their generation techniques. We

also ground the motivations of this thesis by analysing shortcomings of the current approaches in

this chapter.

Part I: This part is dedicated to proposing new generation methods for autoregressive models.

Chapter 3: Decoding as Dynamic programming For Recurrent Autoregressive Models

This chapter is based on:

Zaidi, Najam, Trevor Cohn, and Gholamreza Haffari. “Decoding as dynamic programming for

recurrent autoregressive models.” International Conference on Learning Representations. 2019.

To handle errors in autoregressive generation models, we propose an approach based upon the

method of auxiliary coordinates (Carreira-Perpinan & Wang, 2014). Our method introduces dis-

crete variables for output tokens, and auxiliary continuous variables representing the states of the

underlying autoregressive model. The auxiliary variables lead to a factor graph approximation

of the model, whose maximum a posteriori (MAP) solution is found exactly using dynamic pro-

gramming. The MAP solution is then used to recreate an improved factor graph approximation

of the autoregressive model via updated auxiliary variables. Alternating between generation and

updating state variables allows fixing mistakes that could possibly leads to inferior quality out-

puts. The proposed approach is applied on the challenging text infilling task, which consists of

filling missing part of the sentence. The task is challenging as it requires both the left and the right

context. Experiments applying the proposed approach shows that our decoding method is superior

to strong competing decoding methods. Following previous work on text infilling, we use BLEU

score (Papineni, Roukos, Ward, & Zhu, 2002) to evaluate the models.

8 CHAPTER 1. INTRODUCTION

Part II: This part is dedicated to proposing new model for long sequence generation. Our contri-

bution is a semi-autoregressive model that allows dynamic length changes.

Chapter 4: A Hierarchical Model For Document Generation

This chapter is based on:

Zaidi, Najam, Trevor Cohn, and Gholamreza Haffari. “Document Level Hierarchical Trans-

former.” Workshop of the Australasian Language Technology Association. 2021.

Autoregressive models are slow and struggle in maintaining coherency when generating long se-

quences. We propose a semi-autoregressive model by framing document generation as a hierar-

chical Markov decision process with a two level hierarchy, where the high and low level editing

programs generate and refine the document. Our proposed approach allows revisiting and updat-

ing the generated text with the help of editing operators, allowing words to be deleted or inserted

thus allowing dynamic length changes. We applied the proposed approach on synthetic dataset,

where input-output pair is an unsorted and sorted sequence of numbers, story generation as well as

summarization dataset. We used BLEU and ROGUE score to evaluate the tasks. Our result shows

that applying the proposed approach underperform state-of-the-art models but shows promise

and conveys various insights on the problem of long text generation using our model.

Part III: This part is dedicated to improving quality of output in non-autoregressive models. Our

contribution is a data-driven prior as well as architecture design to incorporate it.

Chapter 5: Exemplar Transformer Non-autoregressive models suffers from inferior quality out-

puts because of the complete conditional independence in the output variables. We propose an in-

formative prior based upon the k-nearest neighbours of given source test sentence to the sentences

in the training dataset. We used a similarity measure such as `2 distance to find the nearest neigh-

bours from the training dataset. We also propose changes in the attention mechanism, whereby

attention heads are distributed between nearest neighbours and the sentence being translated. This

allows model to incorporate similar examples effectively.We applied the proposed approach on

two widely used machine translation datasets and used BLEU score to evaluate the results. Our

proposed approach shows comparable performance with vanilla non-autoregressive model and

inferior performance to other state-of-the-art non-autoregressive models.

Chapter 6: Conclusions and Future Directions

Chapter 6 concludes this thesis by outlining the contributions as well as potential directions for

future research.

Chapter 2

Background

The aim of this thesis is to improve sequence generation across autoregressive and non-autoregressive

model families by addressing the following shortcomings in the current approaches (Section 1.1):

• Ineffective decoding methods for autoregressive models that allow error to be propagated in

the generation process.

• Inability of autoregressive and non-autoregressive models to revisit and reedit the generated

text for long text generation.

• Uninformative prior in non-autoregressive models for injecting dependency information.

Therefore, in this chapter, we overview the foundations and prior works related to autoregressive,

semi-autoregressive and non-autoregressive models along with their generation techniques. The

chapter starts by giving a brief overview of deep learning and NLP in Section 2.1. This section

covers perceptrons, recurrent neural network (RNN) and its variants along with word embed-

dings and language models. The content in this section is helpful for understanding the advance

models presented later in the chapter. After establishing the basics, Section 2.2 presents autore-

gressive sequence modelling techniques. It covers encoder-decoder models and its variants along

with the current state of the art Transformer model. Section 2.3 outlines the recently proposed

non-autoregressive models. We present extensive overview of non-autoregressive models along

with their training and inference schemes. Section 2.4 summarizes literature in current semi-

autoregressive models. Section 2.5 presents an alternative view for autoregresive models as locally

normalised models. Finally, the chapter ends with a summary in Section 2.6.

Beginning words: Formally, we define an input sequence x = {x1, ..., xn} and an output se-

quence y = {y1, ..., ym}. The conditional probability distribution Pθ(y|x) is parameterized by θ.

This complete chapter is concerned with presenting different models for learning θ. Furthermore,

as the factorization of this probability distribution give rise to autoregressive, non-autoregressive

and semi-autoregressive models, this chapter also presents various generation techniques for these

models.

9

10 CHAPTER 2. BACKGROUND

2.1 Deep Learning and NLP

2.1.1 Deep Learning

Deep learning has become the buzz word of modern times yet its history can be traced back to

1943, when Walter Pitts and Warren McCulloch created a computer model based on the neural

networks of the human brain (McCulloch & Pitts, 1943). Later work by Rosenblatt (1958) and

Minsky and Papert (1969) further established the field. These methods, along with large amount of

data, required huge computational resources and were way ahead of their time. Thanks to recent

advances in computational power, deep learning methods have revolutionised so many areas such

as computer vision, natural language processing (NLP) and speech processing.

Deep learning or Deep neural networks, as a branch of Machine Learning, employs algo-

rithms to process data and develop abstractions. Starting with the raw data, information is passed

through each layer, with the output of the previous layer providing input for the next layer. Each

layer transforms the input to a slightly higher abstract representation by using simple non-linear

modules. Deep neural networks are in fact function approximators. They can learn any com-

plex function if enough layers are stacked (LeCun, Bengio, & Hinton, 2015). For example, in a

classification task, higher level layers show representations that reflect important information for

discriminating between classes without containing irrelevant information.

In the rest of this section, we will cover neural network methods that will form the building

block of more complicated models.

2.1.1.1 Multi-Layer Perceptron (MLP)

Perceptron is the building block of MLP model. It takes weighted sum of its inputs (
∑

iwixi+ b)

and pass it through a non-linear function φ(
∑

iwixi + b) called the activation function. These

activation functions should always be non-linear, otherwise a multi-layer network reduces to linear

single layer network. Popular choices of activation functions includes a sigmoid function with

range in [0,1]:

φ(v) =
1

1 + e−v
(2.1)

Another popular choice is the hyperbolic tangent function with range in [-1, 1]:

tanh(v) =
ev − e−v

ev + e−v
(2.2)

A single layer of perceptron can learn simple mappings but is not powerful enough to learn non-

linearly separable data. Rumelhart, Hinton, and Williams (1985) proposed to stack multiple layers

of perceptron and called the resulting model Multi-Layer Perceptron (MLP) or a feed-forward

neural network. The first layer in MLP is called the input layer, the last layer as the output layer and

2.1. DEEP LEARNING AND NLP 11

the middle layers as hidden layers. MLP is a composition of functions and can be mathematically

expressed as:

y = φo(Uφn(Wnφn−1(...φ1(W1x)))) (2.3)

where Wi is the weight matrix of i-th hidden layer, U is the weight matrix connecting the last hid-

den layer to the output layer and φi is the activation function. Generally sigmoid and tanh

activation functions are used as hidden layer activations and normalisation functions such as

softmax is used for output layer (φo). Each layer in MLP transforms the input to a slightly

more abstract representation that is useful for learning. MLP is simple yet powerful and can be a

universal function approximator under certain conditions (Hornik, 1991).

2.1.1.2 Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) are a family of neural networks for processing sequential data.

As compared to the fixed-length feed-forward deep neural networks, RNN can readily scale to

sequences of variable lengths. This is possible due to parameter sharing across different parts of

the model. The same set of parameters is used at each step. This allows the model to generalise

sequences of variable lengths. Since RNNs are applied to sequences, there is a concept of time

or position attached to them. At each time step, an RNN calculates its output as a function of

previous outputs as well its input. Previous outputs are represented by hidden state of an RNN.

This hidden state act as a “lossy” summary of the task-relevant aspect of the sequence up to a

certain time period.

Elman network is one of the most successful and popular architecture (Elman, 1990a). It

consist of a cyclic directed graph with a single layer perception, having a feedback connection to

itself as shown in Figure 2.1. Unfolding it through time results in a network similar to a multi-layer

perceptron. Mathematically, hidden state is calculated as:

hi = φh(Whhhi−1 +Whixi) (2.4)

where Whh and Whi are weight matrices corresponding to feedback loop and input to the hidden

layer, respectively and φh is the activation function such as tanh . xi is the input at position i and

hi−1 is the previous hidden state. The output at position i can be calculated as:

yi ∼ φo(Wohhi) (2.5)

where Woh is the output weight matrix between the hidden layer and the output layer and φo
is the normalisation functions such as softmax . Usually the output activation function gives

a probability distribution over the output variables. The output is then sampled and is used as

an input for generating the next hidden state. RNNs have shown remarkable performance on

12 CHAPTER 2. BACKGROUND

Figure 2.1: Recurrent neural network. Left side shows a folded RNN. The right side shows an
unfolded version where each hidden state is shown to be a function of previous hidden state and
the input at that time step.

various tasks but they suffer from vanishing and exploding gradient problem when trained using

backpropogation (Hochreiter, 1991). Backpropogation requires calculating the derivative of the

output with respect to inputs. The derivative is calculated using a chain rule because of the hidden

layers. As the same weights are used repeatedly, they can either saturate or decay to zero resulting

in a vanishing or exploding of the gradient. RNN cannot learn long-term dependencies efficiently

because of this issue. Long Short-Term memory has been proposed to rectify this problem.

2.1.1.3 Long Short-Term Memory (LSTM)

LSTM addresses the vanishing and exploding gradient problems. The problem was analysed in

detail by Hochreiter and Schmidhuber (1997). The authors observed that the gradient of the error

function is scaled by a certain factor whenever it is propagated back through a layer of neural

network. This factor is either greater or smaller than one. As a result, the gradient either grows or

decays exponentially over time causing the weights to either saturate to 1 or decay to 0.

To avoid this scaling effect, the RNN was re-designed in such a way that its corresponding

scaling factor was fixed to one. The new unit type called the LSTM was enriched with several

gating units to enhance its learning capabilities (See Figure 2.2). Mathematically, an LSTM is

defined by the following equations:

fi = σ(Wf [hi−1,xi] + bf) (2.6)

where Wf is the weight matrix, bf is a bias vector , hi−1 is the previous hidden state and σ

is a sigmoid function to convert the values between 0 and 1 . The first equation is known as

the forget gate operation, where the current input and learned representation from previous inputs

are concatenated and an element-wise non-linearity is applied. This generates numbers in the

range [0, 1]. These numbers show, how much the corresponding component can participate in the

information flow. In order to update the cell state, we also need to determine which information

should be added to it. Therefore, a new candidate vector c̃i is created, that will be added to the

cell state:

2.1. DEEP LEARNING AND NLP 13

Figure 2.2: Long Short-Term Memory (LSTM). The figure shows the inner working of an LSTM
cell.

c̃i = tanh(Wc[hi−1,xi] + bc) (2.7)

where Wc is the weight matrix, bc is a bias vector, hi−1 is the previous hidden state and tanh is

a non-linearity function applied to each value in the vector. For regulating the added information,

another input similar to the forget gate but with a different set of weights is calculated as:

si = σ(Ws[hi−1,xi] + bi) (2.8)

where Ws is the weight matrix, bi is a bias vector , hi−1 is the previous hidden state and σ is a

sigmoid function to convert the values between 0 and 1 . The Equations 2.7 and 2.8 are called

the update operations. This operation selects required information from the candidates in order to

add this information to the cell state. The cell state is updated as:

ci = fi � ci−1 + si � c̃i (2.9)

where � is a point-wise multiplication. The output gate operation determines the information to

use from forget and update gate. This is needed for calculating the new hidden state. The output

therefore is a filtered version of cell state and is calculated as:

oi = σ(Wo[hi−1,xi] + bo) (2.10)

where Wo is the weight matrix, bo is a bias vector , hi−1 is the previous hidden state and σ is a

sigmoid function to convert the values between 0 and 1. A non-linear function tanh is applied

to push the values between [-1, 1]. Finally the hidden state is calculated as:

hi = oi � tanh(ci) (2.11)

14 CHAPTER 2. BACKGROUND

Inspired by LSTM, Cho, Van Merriënboer, Gulcehre, et al. (2014) proposed a simpler version of

LSTM called the Gated Recurrent Unit (GRU). GRU is faster than LSTM as it uses two gates to

regulate the flow of information without having a separate memory cell.

2.1.2 Deep Learning for NLP

Contemporary approaches to NLP rely heavily on deep learning which makes it possible to build

complex computer programs such as machine translation and summarization. In this section, we

will review some basic concepts of NLP systems.

2.1.2.1 Word Embedding

A basic unit of language is a word. Therefore, NLP starts with ways of representing words such

that they can be employed as an input for the model. These numerical representation of the words

are called word embeddings. There are three ways to represent them:

Dictionary Lookup: The simplest way is to put all the words in a data structure similar to a list

or array and use the index as its embedding. The issue with this approach is that, it imposes an

explicit ordering on the words and may give more importance to words with higher index than the

other.

One-Hot Encoding: This approach represent word as a vector of the size of vocabulary where

all elements are zero except one corresponding to a particular word. This addresses the ordinal

representation of the previous approach but it is computationally and memory intensive. Further-

more, it is not suitable for neural networks because of its sparse representation.

Distributed Representation: In this approach, the words are mapped to a low dimensional con-

tinuous space. Each dimension is responsible for a latent feature of the word. These embeddings

are the backbone of current neural networks, as the continuous representation of the words al-

low gradient to pass through them. In the learned mapped space, semantically similar words are

located close to each other. There embeddings can be learned as part of the training or can be

pre-trained and used for transfer learning. Some of the pre-trained methods include Word2Vec

(Mikolov, Chen, Corrado, & Dean, 2013) and GloVe (Pennington, Socher, & Manning, 2014).

Before the neural revolution, term frequency-inverse document frequency (TF-IDF) scores

were used for word representations (Zhang, Yoshida, & Tang, 2011). TF-IDF is a statistical mea-

sure that evaluates the relevance of a word to a document in a collection of documents. TF-IDF

paves a way to associate each word in a document with a number that represents how relevant

each word is in that document. Therefore, documents with similar and relevant words will have

similar vectors. As these vectors can get huge, Latent Semantic Analysis (LSA) is used for

dimensionality-reduction (Dumais, 2004). LSA ultimately reformulates text data in terms of r

2.1. DEEP LEARNING AND NLP 15

latent features, where r is less than m, the number of terms in the data. For a detailed explanation

see (Dumais, 2004).

2.1.2.2 Language Models

This section presents language models (LM), which allow modelling probability of a sequence

x. They are unconditional models and therefore cannot be used to model p(y|x). Yet they are

important, as we will see in the coming sections that LMs can be modified to model the distribution

for conditional sequences.

Early Statistical Language Models: LM forms the basic building block of various natural lan-

guage processing (NLP) applications such as speech recognition and machine translation. It is de-

fined as the task of predicting linguistic tokens, such as words, given preceding context (Eisenstein,

2019).

Early LMs used statistical techniques to calculate the probability of next word given its context

(Charniak, 1996) . The probabilities were based upon the word occurrence or count in the corpus.

These early LMs made the Markovian assumption that the probability of calculating the next

token is dependent upon previous n tokens and therefore are known as n-gram LM. In n-gram

LMs, the probability of sequence p(x1, x2, ...xl) is a product of word probabilities based upon

n− 1 preceding words. This can be mathematically formulated as:

p(x1, x2, ...xl) =
L∏
i=1

p(xi|xi−n+1,, xn−1) (2.12)

where n is the order of n-gram model and determines the number of proceeding words in the

context. The estimation of word prediction probabilities is often based on maximum likelihood

estimation (MLE) on large corpora. This is mathematically defined as

p(xi|xi−n+1,, xi−1) =
count(xi−n+1,, xn−1, xi)∑
x′ count(xi−n+1,, xi−1, x′)

(2.13)

where count(.) is the count of word sequence occurrence in a large corpus. These models although

useful, have various drawbacks. First, some counts can result in a zero when encountering unseen

sequences or out-of-vocabulary words. This leads to data sparsity problem. Various solution have

been proposed such as smoothing techniques and back off methods but no optimal solutions exist

(Kneser & Ney, 1995). Second, due to the Markov assumption, they are unable to deal with long

distance dependencies. Finally, languages contain millions of words and even with a small n, the

matrix of co-occurrence would be enormously large. This is called the curse of dimensionality

problem.

16 CHAPTER 2. BACKGROUND

Figure 2.3: Architecture of an n-gram neural probabilistic language model. Picture courtesy:
(Bengio et al., 2003)

Neural Probabilistic Language Model: Bengio et al. (2003) proposed the first Neural Proba-

bilistic Language Model (NPLM) to address the problem of sparsity and curse of dimensionality

in n-gram LMs. The core idea of NPLM is to learn the conditional probability of generating next

word, given a history of n − 1 previous words, by learning a distributed representation for words

or word embeddings. Figure 2.3 shows a feed-forward neural network that is used to learn word

embeddings as part of the training.

Word embeddings, as discussed above, allows word to be mapped to a real-valued vector in

low-dimensional continuous space, where each dimension is responsible for a latent feature of the

word. Ideally, in the mapped space, semantically similar words would be located close to each

other. This allows better modeling of the relationships between words as well as the prediction of

similar words. But, as the feed-forward neural network requires a fixed-size input, each word can

be conditioned on fixed-size window of its context p(xi|xi−n+1,, xi−1). Therefore this model

cannot deal with long distance dependencies.

Recurrent Neural Network Language Model: Although NPLM addresses the sparsity and

curse of dimensionality issues of the n-gram LM, it still suffers from the fixed-length context.

Mikolov et al. (2010); Mikolov, Kombrink, Burget, Černockỳ, and Khudanpur (2011) address this

weakness by using a recurrent neural network (RNN) instead of a feed-forward neural network

(see Figure 2.4). This allows the model to process arbitrary-length context. At each step i, the

hidden state of RNN is calculated as follows:

hi = RNN(hi−1,E[wi]) (2.14)

where E is the embedding table. The hidden state capture the context of previous words and the

i-th word is samples as:

2.2. AUTOREGRESSIVE MODELS 17

Figure 2.4: Architecture of an recurrent neural network language model. Picture courtesy:
(Mikolov et al., 2010)

wi ∼ softmax(Wohht) (2.15)

2.2 Autoregressive Models

In this section we present sequence generation (SEQ2SEQ) models. SEQ2SEQ refers to a family

of models that are capable of generating an output sequence given an input sequence. They are

conditional language models, that is, they generate output conditioned on some given input. In

this section, we will focus on autoregressive models and their generation techniques.

2.2.1 Sequence-to-Sequence Model

Languages consist of sequences of various lengths, for-example, in machine translation the target

language sequence may have a different length then the source language sequence. This poses

a challenge for RNNLM as they cannot produce an output of different length than the input.

Sutskever et al. (2014) proposed SEQ2SEQ models. SEQ2SEQ model consist of an encoder-decoder

architecture, where an encoder consumes the entire input sequence into a vector representation of

a fixed dimensionality, called the context. This context acts as a summary of the source sequence.

A decoder uses this context to produce the output sequence. This process is illustrated in Figure

2.5. Each box represents an LSTM or RNN at different steps of processing. While encoding, the

output of RNN is ignored, as the only interesting part is the internal memory of the encoder. Once

the whole sequence has been processed by the encoder, the internal memory of the last encoder

18 CHAPTER 2. BACKGROUND

Figure 2.5: Example of Seq2Seq model for English to German translation.

RNN cell is extracted and is used to initialise the internal memory of the decoder. The first input

to the decoder is a special symbol indicating the start of a sentence. This is used to generate a

probability distribution over all known tokens. From this distribution, a token is sampled and fed

back to the decoder to generate the probability distribution for the next token. These sampled

tokens together form the translated sentence.

Encoder The encoder is a uni-directional RNN whose hidden states represent tokens of the input

sequence. These representations capture information not only of the corresponding token but also

other tokens in the sequence to leverage the context. The RNN runs in the left-to-right direction

over the input sequence:

hi = RNN(hi−1,E[xi]) (2.16)

where E is the embedding of token xi and hi is the hidden state of the RNN. Special symbols are

used which allow the model to process arbitrary length sequences. The input and output sequences

are wrapped in special symbols <s> and </s> to indicate the start and end of the sentence. The

hidden state, after reading the last symbol is the fixed-length vector representation of the source

sentence. Note that the input sequence is best processed in reversed order. This reversal facilitates

easier correspondences between the input and output sequences due to the introduction of some

short-term dependencies.

Decoder The decoder is again a uni-directional RNN which generates the token of the output

sequence one-by-one from left to right, thus making these models autoregressive. In fact, decoder

plays an important role in determining whether the model is autoregressive or non-autoregressive.

The generation of each token yi is conditioned on all of the previously generated tokens y<i as

well as the context. Each token yi is drawn from a probability distribution p(yi|y<i, z), where z

is the context vector. Using RNN this can be formulated as:

hi = RNN(hi−1,E[xi], z)

p(yi|y<i, z) ∼ softmax(Whi + b)

2.2. AUTOREGRESSIVE MODELS 19

where W is the weight matrix and b is a bias.

Training The SEQ2SEQ model is learned end-to-end based on the loss function computed via

individual cross-entropy losses at each step. The typical training objective is to maximize log-

likelihood on a set of training examples D = |xk,yk|Kk=1

L(θ) = argmax
θ

K∑
k=1

logP (yk|xk; θ) (2.17)

As the model is autoregressive, the above objective function can be written as:

L(θ) = argmax
θ

K∑
k=1

M∑
i=1

logP (yki |yk<i,xk; θ) (2.18)

Minimising this lossL is equivalent to maximising the probability of predicting a correct symbol in

the output sequence at each step. The bottleneck of this model is that, the model should compress

all the necessary information of source sentence into a fixed-length vector. Cho, Van Merriënboer,

Bahdanau, and Bengio (2014) showed that this method performs relatively well on short sentences,

but its performance deteriorates rapidly with the increase in the length of the source sentence.

2.2.2 Attentional Sequence-to-Sequence Model

One of the weaknesses of the encoder-decoder model is the use of a fixed-size context vector repre-

sentation (z in Figure 2.5). It is too much for one context vector to carry all important information

from the input sequence. Particularly for long sequences, the model is prone to forgetting the

information of distant words in the sequence. This is due to the recurrent structure of the encoder,

even with the use of LSTM or GRU. To address the bottleneck of fixed-vector representation in the

SEQ2SEQ, Bahdanau et al. (2014) proposed an attention mechanism which dynamically attends to

relevant parts of the input sequence necessary for generating the next token in the output sequence;

see Figure 2.6. Moreover, attentional SEQ2SEQ model is usually equipped with a bi-directional

encoder to capture context of both past and future.

Bi-directional encoder: The encoder is a bi-directional RNN, consisting of two RNNs running

in the left-to-right and right-to-left directions over the input sequence:

−→
hi = RNN(

−→
h i−1,E[xi])

←−
hi = RNN(

←−
h i+1,E[xi])

where
−→
hi and

←−
hi are the hidden states of the forward and backward RNNs which can be based on

the LSTM or GRU units. Each source token is then represented by the concatenation of the corre-

sponding bidirectional hidden states, hi = [
−→
hi;
←−
hi]. The forward and backward RNNs take their

20 CHAPTER 2. BACKGROUND

Figure 2.6: Encoder decoder with attention (Source (Bahdanau et al., 2014))

inputs by reading the input sequence in the forward and backward directions, respectively. This

results in two hidden states for each input symbol. This bidirectional encoding scheme captures

not only the position specific information, but also the richer information coming from both left

and right contexts.

Attentional decoder: Bahdanau et al. (2014) also proposed the use of attention over the input

sequence. The main idea is to use a dynamic mechanism for the context vector zi that enables

the decoder to attend to different parts of the input sequence at each step of generating the output

sequence. In that sense, the model uses a dynamic context vector denoted as zi for each position i

in the output sequence y. Formally, the conditional probability of yi is given by:

p(yi|y<i,x) = RNN(yi−1,hi, zi)

where hi is the hidden state of RNN at time-step i and is calculated as:

hi = f(hi−1, yi−1, zi)

The context vector zi is computed as weighted sum of hidden states of encoder as:

eij = f(si−1,hj)

αij =
exp(eij)∑L
k=1 exp(eik)

zi =
L∑
j=1

αijhj

2.2. AUTOREGRESSIVE MODELS 21

This is called an alignment model which scores how well the inputs around position j and

the output at position i matches. This model is parametrised as a feed-forward neural network

which is jointly trained with all the other components of the proposed system. The RNN-based

attentional SEQ2SEQ models have two limitations. First, as RNN needs to maintain a hidden state

that imposes sequential dependency, therefore it cannot be parallelised. Second, RNNs including

LSTM are infamous for capturing long term dependencies.

2.2.3 Convolutional Sequence-to-Sequence Model

Gehring et al. (2017) proposed ConvS2S to address the parallelisation issue in RNNs. ConvS2S

uses multi-layer convolution neural networks (CNN) for encoding and decoding as shown in Fig-

ure 2.7. Each convolution layer is parameterized as a large matrix W ∈ R2d×kd and bw ∈ R2d

where k is the kernal width and d is the embedding size. The input to the convolution layer is the

concatenation of either the input to encoder or the output of previous convolution layer. Besides

convolutional encoder and decoder, Gehring et al. (2017) also used a special attention mechanism

called multi-step attention. It is essentially taking global attention for every decoder layer. To

further equip the model with a sense of time, positional embedding are added to the original input

word embeddings. In addition, residual connections is added to enable deep networks.

The convolutional layers operate over a fixed-size window of input tokens and therefore can be

operated in parallel. A multi-layer convolutional neural network creates a hierarchical representa-

tion over the input sentence where the lower layers capture nearby dependencies and higher layers

capture long-term dependencies. Assume we are given a sentence with n tokens, a convolutional

network with kernal size k can capture dependencies by applying O(nk) operations. The number

of operations for RNN for similar size input is O(n).

ConvS2S are not widely used for sequence modelling and are presented here for historical

context. Therefore, this model will not be presented in the rest of the thesis.

2.2.4 Self-attention Sequence-to-Sequence Model

Although convolutional neural network-based models are able to parallelise the training of SEQ2SEQ

model, they still suffer from the inability to capture long-term dependencies. Vaswani et al. (2017)

proposed Transformer, an architecture solely based on self-attention. The Transformer can be seen

as an adaptive weighted convolutional kernel with the window-length of the sequence size. In the

convolution kernel, the weights are dependent on the position and not the content. Therefore,

when we slide the window through the sequence, weights are fixed. However, in the Transformer,

weights are determined with respect to the representation of the current position and the represen-

tation of other positions. In other words, the idea is that the position should not be a limitation, and

if two tokens are related, they should have higher weights for each other, even if they are distant.

As depicted in Figure 2.8, each layer consists of a Multi-head attention sublayer followed by

a feed-forward neural network. The difference between the encoder and the decoder is two-fold:

22 CHAPTER 2. BACKGROUND

Figure 2.7: The general architecture of convulutional seq2seq model (Source (Gehring et al.,
2017))

(1) the decoder also attends to the encoder representations; (2) the decoder does not have attention

to the future.

Attention Mechanism in Transformer: Transformer is solely based on self- attention, and ben-

efits from two extensions to the current attention mechanism: (1) scaled dot-product attention; (2)

multi-head attention.

Vaswani et al. (2017) proposed a scaled version of the dot-product attention where the input

to the attention mechanism consist of queries and keys with dk dimensions and values with dv
dimensions. The scaled dot-product attention is similar to vanilla dot-product attention that is

scaled by the factor of
√
dk:

ScaledAttention(Q,K,V) = softmax(
QkT√
dk

)

The scaling extension is proposed to address the poor performance of the vanilla dot-product

attention in comparison to additive attention (Bahdanau et al., 2014) for large values of dk. It is

suspected that for large values of dk, the vanilla dot-product grows large in magnitude and pushes

the softmax function into regions with extremely small gradients, and scaling can fix this issue.

The Transformer also uses a novel multi-head attention mechanism with the idea of projecting

the key, query and value into several representation subspaces, and jointly attend to information in

these subspaces. Intuitively, each subspace may capture a different kind of information, and the

result could be considered as an ensemble of attentions.

2.2. AUTOREGRESSIVE MODELS 23

Figure 2.8: The general architecture of trasformer seq2seq model (Source (Vaswani et al.,
2017))

24 CHAPTER 2. BACKGROUND

multihead(Q,K,V) = concat(head1, head2,headn)W
o

where Q, K, V are query, key and value vectors and W0 is a learnable matrix for linearly projecting

attention heads outputs.

headi = attention(QWq
i ,KWk

i ,VWv
i)

where Wi are learnable parameters. The Transformer applies the mentioned attention mechanism

in three different ways:

1. Self-attention in Encoder In order to obtain the representation of the source sentence, the

Transformer employs self-attention where the Q, K and V come from the encoder, that is

the embedding of words for the first layer or embedding of the previous layer for the rest.

2. Cross-attention from Decoder to Encoder As the generation of the target sequence should

be conditioned on the input sentence, the decoder needs to attend to the relevant part of the

source sentence. Therefore, the attention mechanism is employed with queries Q that comes

from the previous layer of decoder along with key K and values V from the encoder output.

3. Self-attention in Decoder In order to obtain the representation of the generated sequence

so far, self-attention is applied on Q, K and V come from the decoder, that is embedding of

generated words for the first layer or embedding of the previous layer for the rest.

Positional embedding: Unlike RNN, the Transformer does not process input tokens with re-

spect to their temporal position. Therefore, it needs to be informed about the relative or absolute

position of the tokens in the sequence in order to make use of sequence order. To encode the

position, Vaswani et al. (2017) used sinusoidal functions with different frequencies to extrapo-

late to sequence lengths even larger than those observed during the training. Finally, the position

embedding is added to the word embeddings to enrich them with positional information.

2.2.5 Generation

We will now cover autoregressive generation techniques. By adopting different generation meth-

ods, we can place restrictions or preferences on the sampling process to alter the generated samples

without modifying any model weights. Even though decoding strategies do not change the values

of any trainable parameter, it is a quite important component.

This section will start with common decoding methods such as greedy and beam search and

afterwards move towards more advance methods. We assume that we have access to a trained

model pθ. The model has learned the distribution over token sequences by optimizing for the next

token prediction.

2.2. AUTOREGRESSIVE MODELS 25

2.2.5.1 Common Decoding Methods

The final layer of the model predicts logits o over the vocabulary space. The next token can be

sampled from a distribution obtained by applying softmax function with temperature T on the

logits. The probability of sampling a token at the i-th position is given by:

pi[w] ∝
exp(oi[w]/T)∑
w′ exp(oi[w

′]/T)

where pi[w] is the probability of word w at position i and oi[w] is its respective logit value. T is

the temperature. A low temperature would make the distribution sharper and a high value makes

it softer.

Greedy Search: This is the simplest and most common decoding method where we always pick

the next token with the highest probability. This is equivalent to setting temperature T = 0.

However, it tends to create repetitions of phrases, even for well-trained models.

Beam Search: This is the most widely used method of decoding in autoregressive models. Beam

search is essentially restricted breadth-first search. At each level of the search tree, beam search

keeps track of k (called “beam width”) best candidates and expands all the successors of these

candidates in the next level. Beam search could stop expanding a node if it hits a special end-of-

sentence token. However, maximization-based decoding does not guarantee high-quality genera-

tion.

Top-k sampling: Fan, Lewis, and Dauphin (2018) proposed to use top-k sampling. At each

sampling step, only the top k most likely tokens are selected and the probability mass is redis-

tributed among them. The authors also suggested to use top-k random sampling where the next

token is randomly selected among the top k most likely candidates. They argued that this approach

can generate more novel and less repetitive content than beam search.

Nucleus sampling: Holtzman et al. (2019) proposed to use “Top-p sampling”. One drawback

of top-k sampling is that the predefined number k does not take into consideration how skewed the

probability distribution might be. The nucleus sampling selects the smallest set of top candidates

with the cumulative probability exceeding a threshold and then the distribution is rescaled among

selected candidates. Both top-k and nucleus sampling have less repetitions with a proper set of

hyperparameters.

Penalized sampling: To avoid the common failure case of generating duplicate sub-strings,

Keskar, McCann, Varshney, Xiong, and Socher (2019) proposed a new sampling method to penal-

ize repetitions by discounting the scores of previously generated tokens. The probability distribu-

tion for the next token with repetition penalty is defined as:

26 CHAPTER 2. BACKGROUND

pi[w] =
exp(oi[w]/T (1 ∈ g))∑
w′ exp(oi[w

′]/T (1 ∈ g))

where g contains a set of previously generated tokens, 1(.) is an identity function which is equal to

θ when true otherwise it is 0. The value θ = 0.2 has been found to yield a good balance between

less repetition and truthful generation.

2.2.5.2 Guided Decoding

The above methods sample tokens according to the predicted probability. The predicted probabil-

ity can be modified to inject our preferences. This can be done by guiding the candidate ranking

score. A candidate ranking function determines the score of a token at a particular time-step. The

simplest function is the output distribution generated by the softmax function. To inject our

preferences, the ranking score for token selection at each decoding step becomes a combination of

log-likelihood and a set of desired features. The features are designed to quantify our preferences

using heuristics.

Ghazvininejad, Shi, Priyadarshi, and Knight (2017) built a system called “Hafez” for generat-

ing poetry in a desired style. This is done by adjusting sampling weights in beam search at each

decoding steps. The likelihood of sampling for the next token yi+1 at step i is augmented by a

scoring function:

score(yi+1, bi) = score(bi) + log p(yi+1) +
∑
j

ajfj(yi+1,y<i)

where log p(yi+1) is the log-likelihood predicted by the model, score(bi) is the accumulated score

of the already-generated words in the current beam state bi and
∑

j ajfj(yi+1,y<i) can incorpo-

rate many different features for steering the style of the output. A set of feature functions fj(.)

define the preferences and the associated weights aj . These features work like “control knobs” that

can be easily customized at decoding time. Features can measure a variety of attributes and can be

easily combined; for example, features can determine if the output token exists in a bag of desired

or banned words. It may also indicate certain sentiments or repeated token (and thus fj needs

to take the history as input too). Features can also include length of a word if longer or shorter

words are in particular preferred. Baheti, Ritter, Li, and Dolan (2018) manually designed features

for ranking and altered the sampling distribution by appending the similarity scores between topic

distribution or embeddings of the context and the completion.

Holtzman et al. (2018) adopted a set of learned discriminators, each specializing in a differ-

ent principle of communication guided by Griceś maxims: quality, quantity, relation and man-

ner (Frederking, 1996). The discriminators learn to encode these desired principles by mea-

suring repetition, entailment, relevance, and lexical diversity, respectively. Given some ground

truth completion, all the discriminator models are trained to minimize the ranking log-likelihood,

log σ(fi(yg) − fi(y)) because the gold continuation yg is expected to obtain a higher score than

2.2. AUTOREGRESSIVE MODELS 27

the generated one y. The discriminator predicts a label for each token instead of for the entire

sequence. The discriminator log probablity is added to the score to guide sampling towards the

human-written style.

Meister, Vieira, and Cotterell (2020) studied beam search in a regularized decoding frame-

work:

y∗ = argmax
y∈Y

(log pθ(y|x)− λR(y)) (2.19)

Since we expect maximum probability to have minimum surprise, the “surprisal” of a model at

step i can be defined as follows:

µt(y) =

0 if i=0; where index 0 is a special BOS token

− log pθ(y|y<i,x) otherwise

The first term in Equation 2.19 is the maximum a posteriori (MAP) part. It demands sequences

with maximum probability given the context, while the regularizer (second term) introduces other

constraints. It is possible that a global optimal strategy may need to have a high-surprisal step oc-

casionally so that it can shorten the output length or produce more low-surprisal steps afterwards.

Beam search has gone through the test of time in the field of NLP. The question is: If we want

to model beam search as exact search in a regularized decoding framework, how should R(y) be

modeled? The authors proposed a connection between beam search and the uniform information

density (UID) hypothesis which states that, subject to the constraints of the grammar, humans

prefer sentences that distribute information (in the sense of information theory) equally across

the linguistic signal, e.g., a sentence (Levy & Jaeger, 2007). In other words, it hypothesizes that

humans prefer text with evenly distributed surprisal. Popular decoding methods like top-k sam-

pling or nucleus sampling actually filter out high-surprisal options, thus implicitly encouraging

the UID property in output sequences. The paper experimented with several forms of regularizers

and found that a regularized beam search greatly helps when beam size increases. Guided decod-

ing essentially runs a more expensive beam search where the sampling probability distribution is

altered by side information about human preferences.

2.2.5.3 Trainable Decoding

Given a trained model, Gu, Cho, and Li (2017) proposed a trainable greedy decoding algorithm to

maximize an arbitrary objective for sampling sequences. The idea is based on the noisy, parallel

approximate decoding (NPAD). NPAD injects unstructured noise into the model hidden states and

runs noisy decoding multiple times in parallel to avoid potential degradation. To take a step fur-

ther, trainable greedy decoding replaces the unstructured noise with a learnable random variable,

predicted by a reinforcement learning (RL) agent that takes the previous hidden state, the previous

28 CHAPTER 2. BACKGROUND

decoded token and the context as input. In other words, the decoding algorithm learns a RL actor

to manipulate the model hidden states for better outcomes.

Grover et al. (2019) trained a binary classifier to distinguish samples from data distribution

and samples from the generative model. This classifier is used to estimate importance weights

for constructing a new un-normalized distribution. The proposed strategy is called likelihood-free

importance weighting (LFIW).

Let p be the real data distribution and pθ be a learned generative model. A classical approach

for evaluating the expectation of a given function f under p using samples from pθ is to use

importance sampling as:

Ey∼p[f(y)] = Ey∼pθ [
p(y)

pθ(y)
(f(y))] ≈ 1

N

N∑
1

w(yi)f(yi)

However, p(y) can only be estimated via finite datasets. Let cφ : Z −→ [0, 1] be a probabilistic

binary classifier for predicting whether a sample y is from the true data distribution. The joint

distribution over Y × Z is denoted as q(y, z)

q(y|z) =

pθ(y) if y=0; predicted to be generated data

p(y) otherwise; from the true data distribution

if cφ is the bayes optimal classifier (Opper & Haussler, 1991), the importance weight can be

estimated by:

wφ(y) = γ
cφ(y)

1− cφ(y)

where γ is a fixed ratio. Since we cannot learn a perfect optimal classifier, the importance weight

would be an estimation. A couple of practical tricks such as self-normalization, flattening and clip-

ping, can be applied to offset cases when the classifier exploits artifacts in the generated samples

to make very confident predictions. To sample from an importance re-sampled generative model,

the authors suggested to use Sampling-Importance-Resampling (McAllister & Ianelli, 1997).

Deng, Bakhtin, Ott, Szlam, and Ranzato (2020) proposed to use energy based models (EBM)

(LeCun & Huang, 2005). EBM steer the model in the residual space, pθ(y) ∝ pM (y)exp(Eθ(x))
where pM is the joint model and Eθ is the residual energy function to be learned. If we know

the partition function Z, we can model the generative process easily. The goal is to learn the

parameters of the energy function Eθ such that the joint model pθ gets closer to the desired data

distribution. The residual energy function is trained by noise contrastive estimation (Gutmann &

Hyvärinen, 2010). However, the partition function is intractable in practice. The paper proposed a

simple way to first sample from the original model and then to resample from it according to the

energy function. This is unfortunately quite expensive.

2.2. AUTOREGRESSIVE MODELS 29

Figure 2.9: The example of a binary tree where the model first generate the word “are” and then
recursively generates words left and right. (Source (Welleck et al., 2019))

2.2.5.4 Other Generation Orders

Welleck et al. (2019) proposed a framework for training models of text generation that operates

in a non-monotonic orders. Unlike conventional approaches with a fixed generation order, often

from left-to-right (or right-to-left), the authors build a sequence generator that generates tokens

in an order automatically determined by the sequence generator. The model directly learns good

orders, without any extra annotation nor supervision of what might be a good order.

Their framework operates by generating a word at an arbitrary position, then recursively gen-

erating words to its left and words to its right, yielding a binary tree (shown in Figure 2.9). The

generation process is viewed as deterministically navigating a state space S = Ṽ∗ where a state

s ∈ S corresponds to a sequence of tokens from Ṽ∗. A top-down traversal of a binary tree pro-

duces the sequence s. The generation starts with an empty sentence s0. An action a is an element

of Ṽ which is deterministically appended to the state. Terminal states are those for which all

sub-trees have been end.

A policy π is a stochastic mapping from states to actions, and is denoted as π(a|s), the prob-

ability of action a given the state s. A policy’s behavior determines which words should appear

before and after the token of the parent node. Typically there are many unique binary trees with

an in-order traversal. Each of these trees has a different level-order traversal, thus the policy is

capable of choosing from many different generation orders, rather than a single predefined order.

Learning is framed as an imitation learning problem, where the model learns to imitate the

actions produced by the oracle policy. The oracle policy is designed such that it randomly picks

a word w and then recursively generates words to the left and right resulting in a tree. The model

policy starts imitating the oracle and then move towards reinforcing its own preferences.

30 CHAPTER 2. BACKGROUND

2.2.6 Final Words on Autoregressive models

This section presented various models and autoregressive generation techniques. Although they

have shown significant improvements, other than beam search, none of them have been able to

become the standard decoding method. The reason is two fold; first they require complex changes

in the generation, secondly the gains are marginal. Yet these methods have improved our under-

standing of the generation process.

Autoregressive models are the standard models that are used in the sequence generation tasks.

They have been applied towards machine translation, summarization, story generation and various

other sequence generation tasks. They have shown state-of-the-art results according to the criteria

used for evaluating different tasks (for example BLEU for machine translation and ROGUE for

summarization). The work presented in this section has been applied towards text generation in

general without regards to the applications. The methods presented in this section have resulted

in various improvements such as diverse text generation, better model perplexity and better task

specific metric.

All the mentioned methods, including greedy and beam search, show degraded performance

on long sequences. These methods find it difficult to maintain the coherency when generating long

sequences such as stories and summaries. Further, all of them suffer from the label bias as they

do not allow modifying an already generated sequence. In Chapter 3, we will present a method

to address the second issue. Our method will be able to revisit and revise its generated text. In

Chapter 4, we will present a model for long text generation along with its generation techniques.

2.3 Non-autoregressive Models

Autoregressive models factorize the joint probability of the output sequence y given the input

sequence x, as the product of probabilities over the next token in the sequence given the input

sequence and previously generated tokens:

P (y|x; θ) =
M∏
t=1

P (yi|y<i,x; θ) (2.20)

where y<i indicates the partial sequences and θ is a set of trainable parameters. Non-autoregressive

models attempt to model the joint distribution Pθ(y|x) directly by breaking the probabilistic fac-

torization. Each prediction is modeled as a product of probabilities, independent of the decoding

history during generation:

P (y|x; θ) = P (M |x)
M∏
i=1

P (yi|x,M ; θ) (2.21)

2.3. NON-AUTOREGRESSIVE MODELS 31

where P (M |x) indicates an auxiliary length predictor, which is used to determine the translation

length before translating the sentence. In this section, we will review models for parameterising

the probability distribution given in Equation 2.21. The section will start by presenting the basic

non-autoregressive model built on a Transformer model. All non-autoregressive models have been

built by enhancing some component of the basic non-autoregressive model. We have divided these

enhancements as internal, i.e. improving an internal component of the model such as attention

mechanism and external, i.e improving inputs of the model. The section ends with a discussion on

generation techniques.

2.3.1 Basic Non-autoregressive Model

Gu, Bradbury, et al. (2017) proposed a non-autoregressive model by removing the autoregressive

connection in the seq2seq Transformer model therefore bringing complete conditional indepen-

dence in the output variable. This conditional independence results in a huge drop in the output

quality. The authors of the paper suggested to use source sentence as the decoder input, with the

hope that the source sentence would be able to provide some light-weight dependency information

lost due to conditional independence. The architecture of the basic non-autoregressive is shown in

Figure 2.10. It shows various modifications:

Encoder: The encoder is similar to the autoregressive Transformer encoder with multi head-self

attention and feed forward layers. The encoder reads in an input sequence and then adds position

encoding to the word embeddings. The resulted sequence pass through attention layers and feed-

forward layers. As the complete input sequence is available, the whole process runs in parallel.

Decoder: Multiple changes are made in the decoder to allow it to generate sequence non-

autoregressively.

1. Decoder Input: The decoder needs to know the length of the output sequence before start-

ing the decoding. This is in contrast to autoregressive models where the length is modelled

implicitly. Autoregressive models predict a special end of sentence symbol to indicate ter-

mination of the decoding process. This is not the case with non-autoregressive models as

they require to model the length explicitly. There are various options: (1) First another clas-

sifier can be added which models the length of the output sequence conditioned on the input

sequence. Using the predicted length, tokens from the source sequence are copied such that

at each position i in the decoder input, source sequence at index round((N ∗i)/M) is copied

where N is the source sequence length and M is the target sequence length. The authors of

the paper also suggested to use fertility of the word. (2) Instead of the classifier predicting

the length, the authors suggested to use the outputs of the encoder to predict fertility. The

source word is copied to build the decoder input based upon its fertility. The fertility unit is

trained end-to-end with the rest of the model.

32 CHAPTER 2. BACKGROUND

Figure 2.10: Basic Non-autoregressive model architecture. Picture courtesy: (Gu, Bradbury, et al.,
2017)

2. Non-causal self-attention: In an autoregressive decoder, the predictions at position i can

depend only on the known outputs before positions i. This is done by introducing a causal

mask. This mask prevents the model from attending to subsequent positions by setting the

mask value to −∞ for the values corresponding to the forbidden states in the softmax

layer of the dot-product attention modules. But In non-autoregressive decoding, there is no

need to prevent the earlier decoding steps from accessing information from later steps in

non-autoregressive decoder. This is done by removing the causal mask in the self-attention

module.

3. Positional attention: In order to incorporate positions, an additional attention module is

incorporated in the decoder. This module helps in explicitly modeling dependencies which

are lost because of the non-autoregressive nature of the decoder. Formally, we define po-

sitional attention as Attention(Q,K,V) = softmax(QkT√
dk

) with both query and key as

position embeddings. The authors hypothesize that this additional information improves the

decoder’s ability to perform local reordering.

The model is trained end-to-end by maximising the log-likelihood of data under the model.

This basic model was the first step towards non-autoregressive models. It showed promise but

lower performance than the autoregressive models but was able to decode much faster. Later

works built on this model by providing enhancements and bringing it closer to autoregressive

models.

2.3.2 External Enhancements

Work on external enhancements consist of improving the decoder input so that it can provide

information about the dependencies in the output variable. As the decoder input can inject missing

information, it is important and therefore many studies have been done on this topic. (Guo et al.,

2019) suggested two methods to improve decoder input. The first one directly leverages a phrase

2.3. NON-AUTOREGRESSIVE MODELS 33

Figure 2.11: Flowseq model for learning prior. Picture courtesy: (X. Ma et al., 2019)

table generated by conventional statistical machine translation approaches to translate input tokens

to output tokens. This translation is then fed into the decoder as inputs. The second method

transforms input-side word embeddings to output-side word embeddings by learning a projection

matrix W. In order to learn projection matrix W with the rest of the model, the authors regularize

the learning with sentence-level alignment and word-level adversary learning.

Ran, Lin, Li, and Zhou (2019) proposed reordering input side information according to the

output side. The authors introduced a light-weight autoregressive model that was trained to reorder

the input sequence. The authors found that reordering reduces the decoding space by restricting

the model to outputs satisfying the constraints of reordered input. It allowed the decoder to capture

the dependencies among target words and choose words belonging to the correct translation.

Y. Bao et al. (2019) suggested to model positions explicitly. They argue that modelling posi-

tions can inject reordering information back into the model and can lead to better output quality.

The authors introduced a position prediction module, a light-weight autoregressive model that pre-

dicts permutations for reordering the decoder input. However their approach was not successful

and did not provide improvements in the output.

X. Ma et al. (2019) proposed generative flow for learning a distribution of latent variables. The

output from this distribution is then used as decoder input. Generative flow is a statistical technique

that allows learning a complex distribution from a simple distribution (Rezende & Mohamed,

2015). At training time, the authors used the output sequence to generate latent variable z. This is

done by having another output sequence encoder. The output from this encoder are used to train

a generative flow layer. A generative flow consist of operations such as split and squeeze (see

Figure 2.11) which is applied on simple normal distribution. The model is trained by reducing

the evidence lower bound. Among all the work on enhancing inputs to the decoder, flowseq has

performed exceptionally well and is considered state of the art.

34 CHAPTER 2. BACKGROUND

2.3.3 Internal Enhancements

Now we look at all other enhancements that either improve the training procedures or add new

layer inside the transformer. Libovickỳ and Helcl (2018) proposed to formulate the sequence

generation as a sequence labeling problem. As the output can be of different length than the

input, the authors suggested to project the encoder output into k times longer sequences. These

projected vectors pass through the decoder and are labelled with the output or as null. For learning,

the authors used CTC loss (Graves, Fernández, Gomez, & Schmidhuber, 2006), which employs

dynamic programming to compute the negative log-likelihood of the output sequence, summed

over all the combinations. Shao, Zhang, Feng, Meng, and Zhou (2020) proposed to minimise

the n-grams difference between the output and the reference. They argued that the word level

cross entropy loss cannot model the output side sequential dependency. As the output of non-

autoregressive model may not be aligned with the reference, optimising the n-gram is a better

method of training. Optimising for n-gram is similar to improving BLEU score therefore their

model performed well.

Another line of work used autoregressive model to enhance various components of non-

autoregressive model. Guo et al. (2020) used curriculum learning by starting with an autore-

gressive model and then gradually removing the dependencies in the decoder. They achieved this

by introducing an attention mask that allowed the model to progressively look into later outputs.

Wei, Wang, Zhou, Lin, and Sun (2019) proposed an imitation learning framework to imitate au-

toregressive decoder attention. Z. Li et al. (2019) suggested similar idea where they employed an

autoregressive teacher and used regularization techniques to reduce the discrepancy in outputs of

self-attention and cross-attention modules of autoregressive and non-autoregressive models.

Y. Wang et al. (2019) suggested to use two regularizations. First, to make the hidden states

more distinguishable, they regularize the similarity between consecutive hidden states based on

the corresponding target tokens. Second, to force the hidden states to contain all the information

in the input sentence, they leverage the dual nature of translation tasks (e.g., English to German

and German to English) and minimize a backward reconstruction error to ensure that the hidden

states of the non-autoregressive decoder are able to recover the input side sequence.

Sun et al. (2019) incorporated a conditional random field (CRF) as an output of the decoder

(see Figure 2.12). CRF is a framework for building probabilistic models to segment and label

sequence data. The CRF module was trained jointly with the rest of the model. To overcome

the challenge of huge transition tables because of the vocabulary, the authors suggested to learn

low dimensional matrix as a transition functions. With CRF, exact decoding is possible by using

techniques such as dynamic programming.

2.3.4 Generation

Almost all non-autoregressive models use the following generation strategies:

2.3. NON-AUTOREGRESSIVE MODELS 35

Figure 2.12: Illustration of transformer based CRF model. Picture courtesy: (Sun et al., 2019)

Argmax decoding: This is the simplest decoding method where token corresponding to the

highest probability is selected at each position. This is similar to greedy decoding in autoregressive

models.

Average decoding: Instead of selecting a token with the highest probability, a token correspond-

ing to the average of the probability distribution is selected at a certain position.

Noisy parallel decoding (NPD) In this method, multiple translations are generated correspond-

ing to different lengths. These translations are then ranked by the autoregressive model. The

translation with the highest score is selected as the output of the model. NPD is a stochastic search

method, and it also increases the computational resources required linearly by the sample size.

However, because all the search samples can be computed and scored entirely independently, the

process only doubles the latency compared to computing a single translation if sufficient paral-

lelism is available.

Other generation methods have also been proposed. X. Li, Meng, Yuan, Wu, and Li (2020)

proposed “look around decoding”. In this approach the model predicts the neighbour tokens in

order to predict the current token. This approach cannot be generalized to other non-autoregressive

models therefore it has not been used in other works.

2.3.5 Final Words on Non-autoregressive Model

We looked in to the literature of non-autoregressive models, starting with the basic model along

with its various improvements. Non-autoregressive models have been applied towards machine

translation as well as towards semantic parsing. This is because these models still lag behind their

autoregressive counterparts when evaluated with BLEU score. Therefore their application towards

long text generation is limited in the literature. The majority of work on non-autoregressive models

have used benchmark datasets WMT14 English-German (En-De) and WMT16 English-Romanian

(En-Ro) from experimentation.

36 CHAPTER 2. BACKGROUND

Our work in Chapter 5, can be categorised in external enhancements. We introduce an infor-

mative prior to inject information about the dependencies in the out variables. As opposed to other

similar works, our method is simple and does not require complex training procedures.

2.4 Semi-autoregressive Models

The complexity of decoding for autoregressive models isO(n) where n is the length of the output

sequence, whereas the complexity of decoding for non-autoregressive models is O(1). All other

approaches whose complexity lies betweenO(n) andO(1) are categorised as semi-autoregressive

approaches. Semi-autoregressive models provide the best of both worlds by decoding faster com-

pared to autoregressive models with some cost to the output quality. There are two ways in which

an output sequence is generated semi-autoregressively. First is the iterative refinement, where the

model produce the whole sequence in parallel and then refine it. Second, the model produces

chunks such as phrases autoregressively while the content inside the chunk is produced in parallel.

We cover the former approach below as the second approach has not attracted much attention of

the research community. There is, however, work by C. Wang et al. (2018) which kept the au-

toregressive property globally by generating chunk of words autoregressively but locally multiple

successive words are produced in parallel.

2.4.1 Iterative refinement

Ghazvininejad et al. (2020) proposed to use mask-predict. Mask-predict repeatedly predicts the

entire target sequence in parallel while conditioned on the most confident word predictions from

the previous iteration (Ghazvininejad, Levy, Liu, & Zettlemoyer, 2019b). The underlying model,

a conditional masked language model, is trained by masking part of the output sequence and

predicting the missing tokens. During training, all observed (un-masked) tokens come from the

ground truth data. However, at inference time, the observed tokens are high-confidence model

predictions, creating a discrepancy between training and inference. To solve this problem, the

authors introduced a new training procedure. They build training examples by starting with the

gold output sequence and masking a subset of its tokens, just like the original training process.

They used the resulting dataset for training. This reduced the discrepency in the training and

inference procedure leading to better output sequences.

Kasai, Cross, Ghazvininejad, and Gu (2020b) proposed an attention masking based model.

The model learned to predict all outputs in parallel by using a different context for each token. This

is done by learning an attention mask. The mask allows to use different target context for different

tokens. Each word is predicted by attending to the words that the model is more confident about.

Their decoding algorithm allows for predicting all tokens with different contexts in each iteration

and terminates when the output prediction converges. Lee, Mansimov, and Cho (2018) proposed a

model that can be viewed as both a latent variable model and a conditional denoising autoencoder.

The authors suggested a learning algorithm that is a hybrid of lowerbound maximization and

reconstruction error minimization. The inference strategy is iterative. It starts with the model

2.4. SEMI-AUTOREGRESSIVE MODELS 37

Figure 2.13: Illustration of Levenstein Transformer. Picture courtesy: (Gu et al., 2019)

predicting an output sequence conditioned on its length. The subsequent iterations improve this

output.

Gu et al. (2019) proposed Levenstein Transformer for addressing the lack of dynamic length

changes in the current models. They framed sequence generation as a Markov decision process.

Their model consists of two policies, insertion and deletion. The policies are implemented as clas-

sifiers by using the hidden states of the Transformer model (see Figure 2.13). The model iteratively

refines the sequence by applying insertion and deletion operators until convergence. Although, the

operators are applied autoregressively, the whole operation is applied in parallel. Once the model

has decided which sentences to delete, all the sentences will be deleted in parallel. The insert

classifier is made up of placeholder prediction, which predicts the number of tokens to be inserted

in two consecutive words, and token prediction, which fills the placeholders. The model is trained

using imitation learning by following an expert policy. The authors used Levenstein distance to

get the expert actions. Xu and Carpuat (2020) improved Levenstein Transformer by introducing

a reposition classifier instead of a deletion classifier. The reposition classifier is able to apply a

permutation that is reorder words to different places. This operator can also delete words. The

authors modified the training procedure but still used the same expert policy with minor changes.

2.4.2 Final Words on Semi-autoregressive Model

Semi-autoregressive models have not been explored much compared to non-autoregressive mod-

els. They are unique in the sense, that they allow user the flexibility to pick either time or quality

as a preference. If the application requires quick outputs, the user can reduce the iterations but

if quality is of concern the user can increase the number of iterations to the desired level. Semi-

autoregressive models have mostly been applied towards machine translation. Their application

towards other areas such as text generation has also been explored but is limited to few works.

The majority of work on these models have used benchmark datasets WMT14 English-German

(En-De) and WMT16 English-Romanian (En-Ro) from experimentation.

We employ semi-autoregressive model based on Levenstein Transformer, in Chapter 4, to-

wards long sequence generation. Insertion and deletion operators allow dynamic length changes.

38 CHAPTER 2. BACKGROUND

We extend this concept towards document generation and show the utility of semi-autoregressive

models towards long sequences generation.

2.5 Locally vs Globally Normalised Models

We present another view of looking at autoregressive models as locally normalised models. The

content in this section has been added for completeness. This view of autoregressive models

clearly shows the reason for their major deficiencies, i.e. exposure and label bias. This section can

be skipped without loss to understanding of the upcoming chapters.

Under a locally normalised model, the probability of the output sequence y given the input

sequence x is formulated as:

pML
(y|x) =

N∏
i=1

p(yt|y<i,x) =
N∏
i=1

φi(yi,y<i,x)

ZL,i(y<i,x)

whereML is a locally normalised model, φ(yi,y<i,x) is a scaler quantity for predicting the token

y at index i. The probability is conditioned on the input sentence x and the history of generated

words y<i. The termZL,i(y<i,x) is a local normaliser. An autoregressive decoder utilise the input

sequence, which is encoded by the encoder and the contextual representation which summarises

the predicted output history, represented by the hidden state h to calculate the logit vectors. The

vectors are normalised by the softmax function. As the normaliser is easy to compute, likelihood

maximisation based training schemes such as cross-entropy loss has become the de-facto training

standard. At training time teacher forcing is employed where ground-truth sequences are used to

train the model but at the decoding time the model has to rely on its own outputs. As the training

is not search-aware, it suffers from exposure bias. Exposure bias can be mitigated by training the

model under the same conditions it will encounter at decoding time.

Locally normalised models also have label bias. Incorrectly generated label at position i will

be propagated throughout the generation, influencing future tokens with incorrect information.

Globally normalised models can help mitigate label bias problem. Formally, under a globally

normalised modelMG, the probability of output sequence y given and input sequence x is given

by:

pMG
(y|x) =

N∏
i=1

φi(yi,y/i,x)

ZG(x)

where φi(yi,y/i,x) is a scalar term and y/i denotes all tokens of y except at position i. The term

ZG(x) is formulated as:

ZG(x) =
∑
y∈Y

N∏
i=1

s(yi,y/i,x)

2.6. SUMMARY 39

As the normaliser requires summation over all input sequences, ZG(x) is intractable to compute.

The search space of most problems of interest is larger therefore exact likelihood maximisation

based approaches are not suitable for these methods.

2.6 Summary

In this chapter, we covered the foundations and prior works related to this thesis. We over-

viewed deep learning fundamentals and its usage in NLP. Then, we reviewed autoregressive, semi-

autoregressive and non-autoregressive models along with their generation techniques. This thesis

aims to explore further and extend the three model families. In Part I, we propose a decoding

method for autoregressive models that is capable of revisiting and revising the generated text thus

correcting generation errors. In Part II, we suggest a semi-autoregressive model for long text gen-

eration that is capable of modifying its length. The model can also modify the text it has generated.

Finally, in Part III, we propose a non-autoregressive model with informative and effective prior.

The prior helps to better model the dependencies in the output variables.

40 CHAPTER 2. BACKGROUND

Part I

Generation in Autoregressive Models

41

Chapter 3

Decoding as Dynamic programming For
Recurrent Autoregressive Models

Decoding in autoregressive models (ARMs) consists of searching for a high scoring output se-

quence under the trained model. Standard decoding methods, based on unidirectional greedy

algorithm or beam search, are suboptimal due to error propagation and myopic decisions which

do not account for future steps in the generation process.

In this chapter we present a novel decoding approach based on the method of auxiliary coor-

dinates (Carreira-Perpinan & Wang, 2014) which has previously been proposed for gradient-free

training of deep neural networks. Our method introduces discrete variables for output tokens,

and auxiliary continuous variables representing the states of the underlying ARM. The auxiliary

variables lead to a factor graph approximation of the ARM, whose maximum a posteriori (MAP)

solution is found exactly using dynamic programming. The MAP solution is then used to recreate

an improved factor graph approximation of the ARM via updated auxiliary variables. We then ex-

tend our approach to decode in an ensemble of ARMs, possibly with different generation orders,

which is out of reach for the standard unidirectional decoding algorithms. Experiments on the text

infilling task over SWAG and Daily Dialogue datasets show that our decoding method is superior

to strong competing decoding methods.

3.1 Introduction

Neural autoregressive models (ARMs) have shown remarkable performance on various natural

language processing tasks such as question answering, machine translation, summarization and

reading comprehension (Anderson et al., 2018; Bahdanau et al., 2014; Wan et al., 2019). These

models are usually trained in an end-to-end manner by optimizing the training objective to learn

model parameters.Once the model has been trained, the output is generated by searching for a

high scoring sequence given the context and the trained model. This is referred to as the decoding

problem.

43

44 CHAPTER 3. DECODING FOR AUTOREGRESSIVE MODELS

(a) (b) (c)

Figure 3.1: A typical RNN with unbounded Markov order is shown in (a). The factor graphs of
our zero-order and first-order Markov approximations are illustrated in (b) and (c), respectively.
The blue and red factors correspond to likelihood terms and the constraint violations, respectively,
from equations (3.3), for order k = 0, and (3.4), for k = 1.

ARMs create a sequence by repeatedly generating the next symbol conditioned on all pre-

vious symbols generated. Symbols play dual duty: first they are generated, and next they are

incorporated into the conditioning of subsequent decisions. As subsequent decisions can be ar-

bitrarily distant in the sequence, these generation models are non-Markovian, i.e. they do not

have a bounded Markov order. As prominent examples, ARMs include Elman’s recurrent neural

networks (RNNs) (Elman, 1990b), conditional text generation models with RNN-based decoder

(Sutskever et al., 2014), and transformers (Vaswani et al., 2017).

Exact decoding in ARMs is computationally hard, as the output search space is exponentially

large and does not lend itself to efficient algorithms. This is due to non-decomposable long-

range inter-dependencies among the output variables, i.e. an output token directly depends on all

of the previously generated tokens. Standard uni-directional decoding algorithms, e.g. greedy

and beam search, are ineffective in producing high-scoring output sequences, as errors in the

decoding history can adversely affect the future.These algorithms make local decisions to extend

an incomplete sequence (hypothesis) by selecting the token with the maximum likelihood at each

time step, hoping to get a globally optimal complete sequence (Bahdanau et al., 2014; Sutskever

et al., 2014; Mikolov et al., 2010).

In this chapter, we present a novel decoding method, based on the method of auxiliary coor-

dinate (MAC), which has been mainly investigated for training deep neural networks (Carreira-

Perpinan & Wang, 2014).Our approach introduces discrete variables for output tokens, and auxil-

iary continuous variables representing the states of the underlying ARM. The auxiliary variables

lead to a factor graph approximation of the ARM with a bounded Markov order (see Figure 3.1).

We then alternate between optimizing over the output variables and the state variables. The state

variables are updated to respect the state dynamics of the underlying ARM and the currently fixed

output tokens. The output variables are updated by dynamic programming to exactly optimise

a global scoring function, decomposed over local factors determined by the currently fixed state

variables. We then extend our MAC-based decoding approach to decode under product of ARM

experts (Hinton, 1999), i.e. an ensemble of ARMs combined additively in log-space, with each

using a different generation order.

To validate our approach, we evaluate on the text infilling task, which consists of filling miss-

ing parts of a sentence or a paragraph (Horvat & Byrne, 2014; Tromble & Eisner, 2009; Schmaltz,

3.2. DECODING FRAMEWORK 45

Figure 3.2: Output of greedy and beam search

Rush, & Shieber, 2016). Text infilling is challenging as it requires the global structure of the sen-

tence to fill a blank properly. As shown in the Figure 3.2, both greedy and beam search fail to fill

the blanks correctly. We conduct experiments on two datasets: SWAG (Zellers, Bisk, Schwartz,

& Choi, 2018) and Daily dialogue (Y. Li et al., 2017) with various mask rates. These datasets

are chosen for two reasons. First, they help us to compare our approach with the previous ap-

proaches which have employed these two datasets. Secondly, they help us to properly demonstrate

the usefulness of our approach. Using open text generation problems such as machine transla-

tion would increase the computational complexity thus requiring huge computational and memory

resources. Using these datasets, we show that our decoding approach achieve remarkable im-

provements against the greedy and beam search algorithms as well as TIGS (D. Liu, Fu, Liu,

& Lv, 2019), a recently introduced strong inference method for this task. TIGS decodes by it-

eratively optimizing the output variables in a continuous relaxation of the discrete output space,

and then projecting back the fractional solution to the discrete space. In contrast, the outputs in

our approach stay in the discrete space, and we iteratively optimize over both the outputs and the

continuous state variables. Our approach does have limitations, most notably the computational

complexity which is polynomial in the vocabulary size, thus limiting its application to open text

generation problems such as machine translation, summarization and story generation.

3.2 Decoding Framework

Notations. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold

upper-case letters, e.g. y, y and Y. Individual elements of y are denoted as yi.

3.2.1 Problem Formulation

Consider a recurrent neural network model for text generation. The probability of generating a

sequence y1, .., yn under the RNN is decomposed as

P (y1, .., yn) =
n∏
i=1

P (yi|y<i) , (3.1)

46 CHAPTER 3. DECODING FOR AUTOREGRESSIVE MODELS

where P (.|y<i) := softmax(Whi + b), and the state dynamics is hi = fff(hi−1, yi−1). Decoding

then refers to the following optimization problem,

arg max
y1,..,yn

logP (y1, .., yn) =
n∑
i=1

logP (yi|y<i) (3.2)

The above optimization problem is computationally hard as it decomposes to conditional proba-

bilities with unbounded length for the conditioning contexts, i.e. a non-Markovian model.

3.2.2 Method of Auxiliary Coordinate (MAC)

Our goal is to decompose the optimisation problem in eqn (3.2) into smaller optimisation prob-

lems, which can be solved jointly and coupled via the state variables. This would make decoding

more resilient compared to uni-directional decoding, where early errors can adversely affect the

future.

Let us start by considering the following decomposition of the decoding problem,

arg min
yn1 ,g

n
1

−
∑
i

logP (yi|gi)

s.t.

gi = fff(gi−1, yi−1) ∀i ∈ [2, .., n] .

(3.3)

Notice the appearance of the new explicit variables g in this optimisation formulation of the decod-

ing problem, which mirror the role of h in the underlying RNN. Eliminating the g variables would

make this optimisation problem exactly equivalent to the original decoding problem in eqn (3.2).

The g serve as continuous auxiliary coordinates, following the MAC technique (Carreira-Perpinan

& Wang, 2014).

The objective function in eqn (3.3) links the state variable gi to token variable yi generated at

the time step i. This is a zero-order decomposition of the log-likelihood function in eqn (3.2), as

the terms in the objective do not condition on the previous tokens. Interestingly, we can generalise

to a kth order decomposition by linking the state variable gi−k from k steps in the past to the

generation of the current token yi. This is due to the fact that the current hidden state, responsible

for generating the current token in RNNs, is a deterministic function of the past hidden state gi−k

and all of the k generated tokens between that time step and the current time step yi−1i−k. Hence,

our kth order decoding optimisation problem is written as follows:

arg min
yn1 ,g

n
1

−
∑
i

logP (yi|fff (k)(gi−k,yi−1i−k))

s.t.

gi = fff(gi−1, yi−1) ∀i ∈ [2, .., n] ,

(3.4)

3.3. OPTIMISATION ALGORITHM 47

where fff (k)(gi−k,yi−1i−k) denotes k repeated applications of the RNN’s state transition function fff(.)

to compute the current hidden state from the past state gi−k and the tokens observed since then

yi−1i−k. For example with k = 2, fff (2)(gi−2,yi−1i−2) = fff(Wfff(Wgi−2,yi−2),yi−1). The variables gi
and yi for indices i ≤ 0 are assigned null values, i.e., 0, or a sentence start sentinel. Assuming

the constraints are satisfied, this constrained optimisation problem is equivalent to the decoding

problem in eqn (3.2). Otherwise, when the constraints are not met, the kth order objective results

in a more accurate approximation to the original decoding problem compared to the first-order

formulation in eqn (3.3).

As k is made larger, the reliance on g is reduced, as f (k) uses the RNN’s state transition

function directly. This will be important in early stages of optimisation, where g does not accu-

rately reflect the RNN state dynamic. The cost of using a higher order, is a higher complexity of

inference, which we discuss in Section 4.

In summary, our decoding approach results in a constrained optimisation problem, incorpo-

rating two types of factors corresponding to the likelihood terms in the objective function and the

constraint violations, respectively, which are denoted by blue and red, in the factor graph of Figure

3.1.

3.3 Optimisation Algorithm

We now turn to solving the constrained optimisation problem in eqn (3.4). Using the quadratic-

penalty (QP) method (Nocedal & Wright, 2006), we turn it to an unconstrained optimisation prob-

lem,

min
gn1 ,y

n
1

L(gn1 ,yn1 , µ) :=
∑
i

− logP (yi|fff (k)(gi−k,yi−1i−k)) + µ||gi − fff(gi−1, yi−1)||22. (3.5)

This suggests a two-step block coordinate descent algorithm to alternate between (i) optimizing y’s

while g’s are fixed, and (ii) optimizing g’s while y’s are fixed. Other methods for constrained op-

timization can be used, e.g. the augmented Lagrangian, rather than the quadratic-penalty method

(Nocedal & Wright, 2006; Taylor et al., 2016; J. Wang, Yu, Chen, & Zhao, 2019). However, the

focus of our work is to investigate the effectiveness of decomposing the non-Markovian decoding

objective to the bounded-Markov constrained optimisation problem in eqn (3.4), so we leave it

to the future work to investigate the effect of different optimisation strategies. It is worth noting

that the above optimisation problem can be also interpreted as inference objective in an stochas-

tic RNN, where the next hidden state gi is conditionally generated based on the previous hidden

state according to a multivariate Gaussian distribution with the mean vector gi−1 and the diagonal

covariance matrix whose diagonal elements are µ−1.

48 CHAPTER 3. DECODING FOR AUTOREGRESSIVE MODELS

3.3.1 Updating the Output Variables

Assuming g’s are fixed, the discrete output variables y’s can be updated to exactly solve eqn

(3.5) using a variant of the Viterbi algorithm (Viterbi, 1967). Let Pgi−k(.|y
i−1
i−k) := softmax(W ·

fff (k)(gi−k,y
i−1
i−k) + b) be the conditional probability of the next token given the previous k tokens

and gi−k. Consider a dynamic programming table T ∈ R|Yk|×n. The table is filled from left to

right, and at each time i, the element corresponding to the DP state yii−k+1 ∈ Yk is computed as,

T [yii−k+1, i]← min
y′∈Y

T [y′ ◦ yi−1i−k+1, i− 1]− logPgi−k(yi|y
′ ◦ yi−1i−k+1) + µ||gi−fff(gi−1, yi−1)||22

where y′ ◦ yi−1i−k+1 denotes the concatenation of the token y′ to the beginning of the sequence of

tokens yi−1i−k+1, which results in a sequence of tokens of length k. Once the DP table is built, the

optimal sequence can be read off by traversing the table from the end towards the beginning. The

time complexity of the DP is O(n|Y|k+1) where n is the length of the sequence, k is the Markov

order, and |Y| is the size of the vocabulary.

3.3.2 Updating the State Variables

Next, we turn to optimizing the penalized decoding objective (eqn 3.5) with respect to the con-

tinuous auxiliary variables, g, assuming fixed outputs, y. For particular combinations of state

transition and the likelihood functions, the optimal state values may have gradient-free closed

form solution. However, we assume the general case, where the state transition and likelihood

functions are given typical nonlinear functions. In the absence of closed-form solution, the sim-

plest method is to use gradient-based optimization algorithms. Interestingly, the computational

graph corresponding to the penalized decoding objective considers the state variables of all po-

sitions as the input when computing the output L(gn1 ,yn1 , µ). This means, there is no need for

backpropagation through the time (BPTT), as opposed to the underlying RNN, to compute the

gradient as the contribution of all positions is taken into account in parallel.

We also propose an approximation method to simplify the g update, by ignoring the log-

likelihood term in the objective, which we denote by forced decoding. In this case, the penalty

term can be optimized exactly, and reduced to zero by computing g’s according to the RNN state

transition function fff(.) from-left-to-right while the output variables are fixed. This update does

not involve computing the gradients, and only involves a forward pass through the RNN.

3.4 Decoding In An Ensemble

In this section, we extend our MAC-based decoding approach to decode under an ensemble of

ARMs, each using a different generation order. For example, consider two RNN-based language

models, left-to-right (L2R) and right-to-left (R2L), where each of which gives a score to an as-

signment of words to the blank positions in the text infilling task. We are then interested to find

an assignment of words which has the maximum sum of the scores under these two models. As

3.4. DECODING IN AN ENSEMBLE 49

both models are in the exponential family, this corresponds to a product of experts (Hinton, 1999).

Unidirectional decoding algorithms cannot decode under such ensembles.

Let us consider the decoding problem in an ensemble of left-to-right and right-to-left RNNs,

arg max
y1,..,yn

∑
i

log
−→
P (yi|y<i) + log

←−
P (yi|y>i)

where each RNN has its own parameters. We then reformulate this optimisation problem, using

auxiliary variables gi and g′i for the L2R and R2L RNNs, as follows,

arg min
yn1 ,g

n
1 ,y
′n
1 ,g
′n
1

−
∑
i

log
−→
P (yi|

−−→
fff (k)(gi−k,y

i−1
i−k)) + log

←−
P (y′i|

←−−
fff (k)(g′i+k,y

′i+1
i+k))

s.t.

gi =
−→
fff (gi−1, yi−1) ∀i ∈ [2, .., n]

g′i =
←−
fff (g′i+1, yi+1) ∀i ∈ [1, .., n− 1]

eee[yi] = eee[y′i] ∀i ∈ [1, .., n]

(3.6)

where the constraints in eqn (3.6) couple the two optimisation problems corresponding to the L2R

and R2L RNNs. Note that we have enforced the equality between the embeddings of the words yi
and y′i produced by the L2R and R2L models, respectively (denoted eee[y]). This provides a denser

signal, e.g. from synonyms or words with related syntactic categories, in order to couple the two

optimisation problems, compared to a sparse signal from constraints using identity of the tokens.

To solve the above optimisation problem, we use of the quadratic penalty method, similar to

the previous section, i.e.,

min
gn1 ,y

n
1 ,g
′n
1 ,y
′n
1

∑
i

− log
−→
P (yi|

−−→
fff (k)(gi−k,y

i−1
i−k))− log

←−
P (y′i|

←−−
fff (k)(g′i+k,y

′i+1
i+k))

+µ||gi −
−→
fff (gi−1, yi−1)||22 + µ′||g′i −

←−
fff (g′i+1, y

′
i+1)||22 + µ′′||eee[yi]− eee[y′i]||2 .

This suggests an optimisation algorithm which alternates between (i) updating {yn1 ,gn1} in the

first phase while the other variables are fixed, and (ii) updating {y′n1 ,g′
n
1} in the second phase

while the other variables are fixed. The updates for each of these phases is done using an iterative

algorithm, similar to those presented in section 3.3, for updating the output and state variables.

The only modification in the objective function of each phase (compared to the previous section)

is the inclusion of the token embedding constraints ||eee[yi]−eee[y′i]||2, which can be easily accounted

for in the dynamic programming algorithm when updating the output variables.

50 CHAPTER 3. DECODING FOR AUTOREGRESSIVE MODELS

(a) (b)

Figure 3.3: Some test examples from (a) Daily Dialogue and (b) SWAG datasets.

3.5 Experiments

3.5.1 Experimental Setup

The Text Infilling Task Text infilling consists of predicting missing parts of a sentence or a

paragraph. The task is encountered in everyday applications of restoring historical or damaged

documents (Zhu, Hu, & Xing, 2019), writing articles or contracts with templates (Ippolito, Grang-

ier, Callison-Burch, & Eck, 2019) and text editing (Feng, Li, & Hoey, 2019). Although important,

text infilling is less explored and has been studied under simplified and restricted settings (Fedus,

Goodfellow, & Dai, 2018; Zweig & Burges, 2011; Holtzman et al., 2018; Fan et al., 2018). For

example, Horvat and Byrne (2014) restricted the vocabulary to the set of gold standard words

blanked in the sentence. Here we follow a setup similar to (D. Liu et al., 2019), which also limits

the vocabulary, but places no restriction on the number and position of the blanks, and thus is more

similar to situations encountered in real life applications.

More formally let B be a mask, comprising set of indices where blanks appear in the sentence.

Let yB be a target sentence where tokens at the positions of the sentence in B have been masked.

For example if B = {i, i + 1} then yB is {y1, ...yi−1, , , yi+2, ..yn}. Given the context x and

masked sentence yB , the aim is to fill in the blanks as they appear in sentence. This requires

considering global structure of the sentence along with the conditioning context.

Datasets. We evaluate our proposed approach on two text infilling tasks over two widely used

publicly available corpora. The first task is conversation reply with a template (denoted as Daily)

which is conducted on the DailyDialog dataset (Y. Li et al., 2017). Similar to D. Liu et al. (2019)

we convert the multi-turn dialogues into single-turn dialogues, resulting in 82,372 conversation

pairs. The query sentence is used as input to the encoder x where as the reply is the output y from

the decoder.

The second task is captions from movies along with an ending (denoted as SWAG) which is

conducted on the SWAG dataset (Zellers et al., 2018). We only consider the correct endings to

build the target side. This gives us 73,000 pairs of sentences. The input to the encoder is the

caption x whereas the decoder has to produce the ending y conditioned on x. Some examples of

these datasets are shown in Figure 3.3.

3.5. EXPERIMENTS 51

Training. We trained both left-to-right (L2R) and right-to-left (R2L) models, where R2L mod-

els are trained by reversing the target side sentence. All models are trained with a word embedding

size and hidden dimension size of 512. We use ADAM optimiser to train the models with an initial

learning rate of 0.001. Since the source and target sides are in the same language, we shared the

word embeddings between the encoder and decoder. The models were trained for 10 epochs.

Baselines. Our baselines include: greedy decoding, beam search, and a strong recently proposed

inference algorithm for the text infilling task TIGS (D. Liu et al., 2019). TIGS decodes by iterating

through the following steps: (i) relaxing the space of output variables from discrete to continuous

and optimise over the continuous output variables using gradient based optimization, and (ii) pro-

jecting back the solution from the continuous space to discrete. In contrast, the outputs in our

approach stay in the discrete space, and we optimize over both discrete and the continuous state

variables, as part of an iterative coordinate descent procedure. Our methods and the baselines are

implemented on top of OpenNMT (Klein, Kim, Deng, Senellart, & Rush, 2017).

Evaluation Metrics. For a fair comparison with previous works, we have used BLEU score

(Papineni et al., 2002) to evaluate the models. As all models are evaluated under the same condi-

tions, unmasked tokens will not affect the conclusions drawn from the results. Along with BLEU

score, we have also reported the perplexity of the model. For BLEU score, higher values are better

whereas for perplexity lower values are better.

Decoding Parameters We use the Nesterov optimiser with a learning rate of 0.1. We experi-

ment with Adam and simple SGD and find empirically that Nesterov works better than the other

optimisers. Nesterov is a momentum based optimiser that stabilize the update directions and seems

to better escape from poor local optima during the decoding iterations. Rather than taking a step

in the direction of updated accumulated gradient, Nesterov optimiser first moves in the direction

of previously accumulated gradient. It calculates the new gradient and then makes a correction.

This prevents the optimiser from going too fast and results in increased responsiveness, which

significantly improves the performance.

All µ’s for the penalty terms corresponding to different constraints, are initialised with 0.5 and

are multiplied by 1.2 after 5 iterations, and decoding was run for 10 iterations, chosen as the first

order method had reliably converged in terms of objective value and the output string.

We use the RNN states h corresponding to the beam search solution to initialize the g variables

in our decoding method. We experiment with initialising the hidden states with random values,

or using the values corresponding to the greedy solution. We find that using beam search for

initialisation gives better results. Compared to beam search, random initialisation requires an

average of 12x more iterations, and would occasionally suffer from non-convergence, where the

solution oscillates. We find negligible difference between the number of iterations needed for

convergence between the beam and greedy search initialised hidden states.

52 CHAPTER 3. DECODING FOR AUTOREGRESSIVE MODELS

Dialogue SWAG
Decoding Method BLEU PPLX BLEU PPLX

L
2R

Greedy 71.2 5.88 71.6 5.64
Beam 71.3 5.84 71.8 5.58
TIGS 73.0 4.31 74.0 3.49
Ours 79.3 3.49 83.9 2.31

R
2L

Greedy 70.2 6.96 63.9 7.07
Beam 70.4 6.90 64.1 6.97
TIGS 71.8 4.87 66.5 4.68
Ours 77.9 3.80 78.7 3.04

B
ot

h Ours 80.2 - 79.3 -
L2R component - 3.30 - 3.39
R2L component - 3.73 - 4.15

Table 3.1: BLEU score and perplexity of various models on the two datasets with 50% masking
rate. The results of our decoding approach is based on the 1st order approximation.

3.5.2 Results

The results are reported in Table 3.1. Following D. Liu et al. (2019), we build a test set of 5000

sentences for each dataset. We use a 50% masking rate and randomly place the blanks for each

sentence. We perform experiments on left-to-right (L2R), right-to-left (R2L), and an ensemble of

the two.

Generally, L2R models outperform R2L models. This may be due to sentences being generated

inherently in a left to right manner. Hence modelling the writing process with a right to left model

may make it difficult to learn useful patterns.The trend across all the models and both datasets is

that a decrease in perplexity leads to a better BLEU score. The benchmark TIGS method (D. Liu et

al., 2019) outperforms both the greedy algorithm and beam search. However, our decoding method

outperforms TIGS and other baselines significantly. Compared to the greedy algorithm and beam

search, our method and TIGS leverage information from both future and the past. Compared to

TIGS, our method operates by keeping the output variables in the discrete space, whereas in TIGS

the output variables are relaxed to the continuous space and projected back to the discrete space.

Given that context from both directions helps in better decoding when working with unidirec-

tional models, we perform experiments on an ensemble of L2R and R2L models. Notably, the

unidirectional greedy algorithm and beam search cannot operate on the ensemble. Our method,

instead, can decode with the ensemble, which further improves the BLEU score for the Dialogue

task.

3.5.3 Analysis

Varying the Masking Rate. Increasing the masking rate makes it difficult for all the models

to correctly fill in the blanks. We experiment on the dialogue dataset by randomly masking the

test set with the rates 25%, 50%, and 75%. Results are reported in Table 3.2. As the masking rate

3.5. EXPERIMENTS 53

increases, BLEU score decreases, whereas perplexity increases. Compared to the other techniques,

our method is able to achieve better results even with high masking rates.

Mask Rate 25% 50% 75%
BLEU PPLX BLEU PPLX BLEU PPLX

Greedy 85.4 4.43 71.2 5.88 60.4 4.25
Beam 85.4 4.43 71.3 5.84 62.0 4.03
TIGS 88.0 3.47 73.0 4.31 62.5 3.53
Ours (1st order) 90.9 2.80 79.3 3.49 64.3 2.47

Table 3.2: Performance with varying masking rates for the different decoding methods.

Varying the Markov order and State Variables Update. Changing the state variable update

method from forced decoding to gradient based results in a lower perplexity. This is because the

state variables are updated based upon the gradient of the objective function. Table 3.3 shows the

results on Daily dataset with random 50% masking rate of varying the state variable update method

for different orders of Markov model. The perplexity goes down as the k increases whereas the

perplexity of gradient based approach is lower than the forced decoding approach for state variable

update.

Figure 3.4: The figure shows the pe-
nalised decoding objective for zero,
first and second order Markov models

Varying the Markov Order. Our penalized decod-

ing objective is composed of the negative log-likelihood

term and the penalty (see eqn 3.5). As the algorithm

proceeds, both of these terms decrease, showing consis-

tency in the auxiliary variables. We hypothesise that,

although higher order Markov models produce more ac-

curate approximations to the original decoding problem,

they result in harder optimization problems. The follow-

ing figure (right) plots the penalized decoding objective

in k-th order Markov approximations for k ∈ {0, 1, 2}.
The results are based on 100 examples in the test set for

the Daily Dialogue dataset, with random masking using

50% masking rate. Observe that the penalized decoding objective tends to decrease less for the

2nd order method compared to the others. Table 3.3 reports the perplexity, BLEU score, and de-

coding time for these different Markov approximations. The results confirm the increase in the

BLEU score and decrease in the perplexity, as the Markov order increases. Furthermore, it shows

the trade-off in the solution quality vs. decoding time for these different approximations. In Ta-

ble 3.3, we report results based on two different methods for updating the state variables in our

method, i.e. gradient-based and forced decoding. As expected, gradient-based updates produced

more accurate results compared to forced decoding, but at the cost of a longer run-time.

Figure 3.5 shows the iterative improvement of an example test sentence in each iteration of

our decoding methods with varying Markov order. Each method is given the same initial solution

54 CHAPTER 3. DECODING FOR AUTOREGRESSIVE MODELS

Gradient Based Forced Decoding
BLEU PPLX Time BLEU PPLX Time

0-order 77.4 6.55 297s 75.4 6.86 65s
1-order 84.2 3.42 348s 82.6 3.75 93s
2-order 85.5 2.33 893s 83.4 3.34 711s

Table 3.3: The results of varying Markov order and state variable update method. Time is reported
for processing 100 sentences.

Figure 3.5: Improvement of the sentence in different iterations

produced by the beam search. The zero-order method converges to a bad solution in the first iter-

ation and gets stuck there in future iterations. The first-order method arrives to a further improved

solution while the second order method can find the best solution among all.

Discussion on masked language models. Recent development in transformer model (Vaswani

et al., 2017) has paved the way for pre-trained language models such as BERT and GPT2 (Devlin,

Chang, Lee, & Toutanova, 2018; Brown et al., 2020). These massive pre-trained models are

trained using a large corpora of generic text, and then fine-tuned with small domain-specific data.

The models are trained using a masked language modelling objective where similar to text infilling

part of the sentence is masked. The model predicts all masked tokens in parallel by utilising

the attention mechanism in the transformer model. Unlike BERT our approach does not require

huge amounts of data for training and can be used on top of any trained language model. We

have left this as a future investigation to quantify the gains of using our approach on top of self-

attention models such as transformers. Further, our method is for better decoding/inference on

autoregressive models, compared to the typical decoding algorithms such as greedy and beam

search algorithms. Therefore, the comparison with non-autoregressive models, such as BERT,

may not be that helpful and are out of the scope.

3.6 Summary

This work presented a method for improving decoding in discrete autoregressive models using

dynamic programming. The core idea is to introduce auxiliary variables to decouple the non-

Markovian aspects of the model, permitting an approximate solution. This solution is used to

3.6. SUMMARY 55

create the next model approximation, and the process iterates. The problem is hard as it requires

implementing the constraints in the generated solution. Thanks to our framework we have been

able to satisfy most of the constraints. Our results show that our decoding framework is effective,

leading to substantial improvements over greedy and beam search baselines.

56 CHAPTER 3. DECODING FOR AUTOREGRESSIVE MODELS

Part II

Generation in Semi-Autoregressive
Models

57

Chapter 4

A Hierarchical Model For Document
Generation

Generating long and coherent text is an important and challenging task encompassing many ap-

plication areas such as summarization, document level machine translation and story generation.

Despite the success in modeling intra-sentence coherence, existing long text generation models

(e.g., BART and GPT-3) still struggle to maintain a coherent narrative throughout the generated

text. We conjecture that this is because of the difficulty for the model to revise, replace or revoke

any part that has been generated by the model. Revisiting and editing part of the text helps model

in rectifying the generated mistakes and results in a better output sequences.

In this chapter, we present a novel semi-autoregressive document generation model capable

of revising and editing the generated text. Building on recent models by (Gu et al., 2019; Xu

& Carpuat, 2020), we formulate document generation as a hierarchical Markov decision process

with a two level hierarchy, where the high and low level editing programs generate and refine

the document. The top level editing actions edit and improve intra-sentence coherence whereas

the low level editing actions are responsible for inter-sentence coherence. We train our model

using imitation learning (Hussein, Gaber, Elyan, & Jayne, 2017) and introduce roll-in policy such

that each policy learns on the output of applying the previous action. Experiments applying the

proposed approach underperform state-of-the-art but show promise and convey various insights on

the problem of long text generation using our model. We suggest various remedies such as using

distilled dataset, designing better attention mechanisms and using autoregressive models as a low

level program as future directions.

4.1 Introduction

Generating long and coherent text encompass various tasks such as summarization, story gener-

ation, document level machine translation and document level post editing. Each task is charac-

terised by modelling long range dependencies to make the document coherent as well as modelling

59

60 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

a high level plot to make the document thematically consistent (Fan et al., 2018). This is challeng-

ing as the models need to plan content, while producing local words consistent with the global

context in a timely manner.

Recent work on autoregressive generation models, such as GPT-3 and BART (Lewis et al.,

2019; Brown et al., 2020), have shown impressive performance in generating short fluent text

with a maximum length ranging from 150 to 350 tokens (Bosselut et al., 2018; Shen et al., 2019;

L. Zhao et al., 2020). But applying the same model to generate longer passages of text (e.g., 1000

tokens) has resulted in syntactic and semantic errors throughout the document requiring extensive

human curations (B. Tan et al., 2020). These massive language models are usually pre-trained

using large corpora of generic text, and then fine-tuned with small domain-specific data. Most of

the time, the models are not publicly available to adapt to arbitrary desired domains.

On the other hand, recent non-autoregressive approaches allow generation to be done within

a much smaller number of decoding iterations (Gu, Bradbury, et al., 2017; Y. Wang et al., 2019;

Kasai, Cross, Ghazvininejad, & Gu, 2020a). But due to its problems with modelling dependencies

among the tokens, the approach still lags behind its autoregressive counterparts and has not yet

been applied to long text generation (C. Zhou, Neubig, & Gu, 2019; Gu & Kong, 2020). In both of

these model families, the length of generated sequences is either fixed or monotonically increased

as the decoding proceeds. This makes them incompatible with human-level intelligence where

humans can revise and edit any part of their generated text.

In this chapter, we present a novel semi-autoregressive document generation model capable

of revising and editing the generated text. Revisiting and editing generated text allows model

to rectify mistakes and improve coherence which cannot be done by autoregressive and non-

autoregressive models. We build on recent models by (Gu et al., 2019; Xu & Carpuat, 2020),

who framed generation as a Markov decision process (Garcia & Rachelson, 2013) and showed

that iteratively refining output sequences via insertions and repositions yields a fast and flexible

generation process for machine translation and automatic post editing task. We extend their model

by proposing document generation as a hierarchical Markov decision process (M. Liu, Buntine,

& Haffari, 2018) with a two level hierarchy. The high level program produces actions aH ∈
{reposition, insert, update} which capture global context and plan content while the low level

program produces actions aL ∈ {reposition, insert} to generate local words in a consistent and

timely manner. Due to unavailability of large-scale data to train our model, we propose a nois-

ing process to simulate the error patterns observed in document level tasks such as redundancy of

words, key information omission and disordered sentences. The noising process can be reversed

by applying a set of high and low level actions to get back the original document. This serves as

an efficient oracle to train our model using imitation learning (Hussein et al., 2017). The roll-in

policy is defined such that each policy learns on the output of applying the previous action.

To validate our model in section 4.4.1, we conduct experiments on synthetic dataset, where

input-output pair is an unsorted and sorted sequence of numbers and on ROC stories dataset

(Mostafazadeh et al., 2016). We also experiment with summarization datasets such as multinews

(Fabbri, Li, She, Li, & Radev, 2019) and DUC2004 (Over & Yen, 2004) and compare the results

with recent summarization model by (J. Zhao et al., 2020). Although our model lags behind the

4.2. PROBLEM FORMULATION 61

baseline model, it does shed light on the problems of long sequence generation. We present various

approaches to mitigate these problems by using distilled dataset which has been found useful in

non-autoregressive generation, designing better attention mechanism and using an autoregressive

model as low level program to benefit from unbounded conditioning context.

4.2 Problem Formulation

4.2.1 Hierarchical Markov decision process

We cast document generation and refinement as a hierarchical Markov decision process (HMDP)

with a two level hierarchy. The high level program is defined by the tuple (D,AH, E ,R,d0)

where a state d ∈ D corresponds to a set of sequences d = (s1, s2, ..., sL) up to length L, and

d0 ∈ D is the initial document. The low level program corresponds to the tuple (S,AL, E ,R, s0)
where a state s ∈ S corresponds to a sequence of tokens s = (w1, w2, ..., wn) from the vocabulary

V up to length n, and s0 ∈ S is the initial sequence.

At any time step t, the model takes as input dt−1, the output from the previous iteration,

chooses an action aH ∈ AH to refine the sequence into dt = E(dt−1, aH), and receives a reward

rt = R(dt). The policy πH maps the input sequence dt−1 to a probability distribution P (AH)

over the action spaceAH. A high level program may call a low level program with the initial input

s0. The low level program is similar to high level program with its set of actions aL ∈ AL, reward

function rt = R(st) and the policy πL. Instead of sequences, the low level actions are applied to

individual tokens. This results in a trajectory σ := {d1, a
1
H , τ1, r1,d2,,dN, a

N
H , τN , rN ,dN+1}

which is the concatenation of high-level trajectory τH := (d1, a
1
H , r1,d2, a

2
H , r2,,dH+1) and

the low level trajectory τL := (s1, a
1
L, s2, a

2
L,, sT+1). We define a reward function R =

dist(d,d∗) which measures the distance between the generation and the ground-truth sequence.

We use Levenstein distance (Levenshtein et al., 1966) as our distance metric.

4.2.2 HMDP policies

Following the formulation of HMDP, we define a high level policy πH : d −→ AH , as well as

the low level policy πL : s −→ AL as a mapping from states to actions. The high level ac-

tions consist of aH ∈ {reposition, insert, update} and the low level actions consist of aL ∈
{reposition, insert}.

INSERTH: The insertion policy reads the input document d consisting of a set of sequences

{s1, s2, ...si, si+1, ...sL}, and for every possible slot i, i + 1, the insertion policy πinsH (x|i,d)
makes a binary decision which is 1 (insert here) or 0 (do not insert). For each insertion position,

the low level MDP is called to generate the new sequence from scratch. This allows the model to

generate a sentence conditioned on the surrounding context resulting in outputs that are consistent

with the theme and plot of the document.

62 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

UPDATEH: The update policy reads the input document d, consisting of a set of sequences

{s1, s2, ...si, si+1, ...sL}, and for every sequence position i, the update policy πupdH (x|i,d) makes

a binary decision which is 1 (update this sentence) or 0 (do not update). In order to make the

update, the low level MDP is called to refine the given sequence. This allows the model to correct

mistakes and improve the sentences generated by the insert policy.

REPOSITIONH: The reposition policy reads in the document d consisting of a set of se-

quences {s1, s2, ...si, si+1, ...sL}. For every sentence position i, the reposition policy πrepH (x|i,d)
makes a categorical decision between 0 and L+1 where L is the number of sequences in the doc-

ument. The given sequence is repositioned to the output value. If x is 0 then the sequence is

deleted. This policy allows the model to observe the complete document and make it more coher-

ent by repositioning and deleteing sentences.

INSERTL,REPOSITIONL: The Low level MDP is made up of actions reposition and in-

sert. They work in a similar manner as defined in (Gu et al., 2019; Xu & Carpuat, 2020) with the

difference that the conditioning context contains document d along with the sentence s. Therefore

the reposition policy at the word level is defined by πrepL (x|i,y,d). The insertion policy is made

up of a placeholder and token prediction policy as defined by πplhL (x|i,y,d) and πtokL (x|i,y,d)
respectively. The placeholder policy first determines the number of words that need to be inserted

at a given position. Special <mask> tokens are then inserted. These <mask> tokens are filled by

the token prediction policy.

4.2.3 Generative process

The generative process is outlined in Algorithm 1. The combination of high and low level policies

can either generate a document from scratch or edit a given initial document. The insertion and

update policy call the low level program in Lines 6 and 11. Line 2 in Algorithm 2 builds the initial

scaffolding which is later used by the algorithm for its set of actions. If the low level program

is called by the high level update action, the initial scaffolding is created by concatenating the

sentences identified by the high level update policy. Otherwise in case of high level insert action,

it is the concatenation of empty sentences. Although one iteration is made up of multiple stages,

within each stage an action is performed in parallel. The program can be terminated if there

is no improvement in the sentence for certain number of iterations or if the maximum number of

iterations has been done. The documntUpdate function in line 14 in algorithm 2 insert the sentence

back into the document.

4.2. PROBLEM FORMULATION 63

Algorithm 1 Generation in HMDP
Require: Initial document d0, policy: πθH

1: d← d0

2: while Maximum iteration are not done do
3: rep index← argmaxr

∑
si∈d log π

rep
θH

(ri|si,d) . Do reposition
4: d← E(d, rep index)
5: ins index← argmaxp

∑
si,si+1∈d log π

ins
θH

(pi|si, si+1,d) . Do insertion
6: d← E(d, ins index) . Call to Low level MDP
7: upd index← argmaxu

∑
si∈d log π

upd
θH

(ui|si,d) . Do update
8: d← E(d,upd index) . Call to Low level MDP
9: end while

Algorithm 2 Low Level MDP
Require: Document d, policy: πθL , Hi Level MDP action: H

1: while Maximum iteration are not done do
2: s0 ← buildFrame(d,H)
3: if s0 is empty then
4: s← s0 . Skip reposition
5: else
6: rep index← argmaxr

∑
wi∈s log π

rep
θL

(ri|wi, s,d) . Do reposition
7: d← E(s, rep index)
8: end if
9: plh index← argmaxp

∑
wi,wi+1∈s log π

ins
θL

(pi|wi, wi+1, s,d) . Insert placeholders
10: s← E(s,plh index)
11: tok index← argmaxt

∑
wi∈s,wi==<mask> log πtokθL (ti|wi, s,d) . Fill placeholders

12: s← E(s, tok index)
13: end while
14: d← documentUpdate(d, s)

64 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

(a) Transformer blocks extract the sentence
representations which are used by high
level policy classifiers. Suppose that the
update policy predicts to refine sentences
1 and 3.

(b) The input to the low level transformer
is the concatenated sentences identified by
the high level update policy.

Figure 4.1: The illustration of the proposed model for the update iteration. The same architecture
can be applied for different tasks with specific classifiers. We have omitted attention from trans-
former blocks for simplicity. p stands for position embedding wheras s is for segment embedding.

4.3 Hierarchical Transformer

4.3.1 Architectures

Our model is based on the Transformer encoder-decoder architecture (Vaswani et al., 2017). We

extract the hidden representations (h1, ...,hn) to make the policy predictions. We extract sentence

representations by concatenating all sentences with a special <sep> token. The hidden states

corresponding to these special tokens are then used as sentence representation by the policies.

Along with position embeddings for individual tokens, we also introduce segment embeddings for

sentences, which identify the position of a sentence in a document. We show the illustration of the

proposed model in Figure 4.1.

4.3.2 Policy classifiers

We implement policies as classifiers whose prediction depend upon the hidden state representa-

tions generated by the transformer layers.

Reposition classifier: The reposition classifier gives a categorical distribution over the index of

the input, where the input can be the representation of a sentence or a word. The input sequence is

4.3. HIERARCHICAL TRANSFORMER 65

then repositioned accordingly. Along with reordering, this classifier can also perform deletion by

predicting special delete token. This classifier is implemented as:

πrepθ (r|si,d) = softmax(hi · [b, e1, ..., en])

for i ∈ {1..n} where e can be the embedding of a sentence or token and b ∈ Rdmodel is a special

token to predict deletion. Note that in case of low level program, we also condition on the complete

document. This is done by having cross-attention on the hidden representation of the sentences.

Insertion classifier: The high level insert classifier scans over the consecutive sentences and

make a binary decision to insert or not.

πinsθ (p|si,d) = softmax([hi;hi+1] ·A)

for i ∈ {1..n} and A ∈ R2×dmodel is a parameter. The low level insert classifier is made up of

placeholder insertion followed by token insertion. The placeholder classifier predicts the number

of tokens to be inserted at every consecutive position pairs, by casting the representation to a

categorical distribution

πinsθ (p|wi, s,d) = softmax([hi,hi+1] ·B)

for i ∈ {1..n} and B ∈ R(kmax+1)×(2dmodel) is a parameter. Following (Gu et al., 2019), kmax is

255. The token classifier then fills the placeholders

πtokθ (t|wi, s,d) = softmax(hi ·C)

for i ∈ {1..n} where wi is a placeholder and C ∈ R|V|×dmodel is a parameter.

Update classifier: The update classifier is only present in the high level program. It scans over

the sentences and make a binary decision to update a given sentence

πupdθ (u|si,d) = softmax(hi ·D)

for i ∈ {1..n} and D ∈ R2×dmodel is a parameter.

4.3.3 Noise

There are no large-scale labeled training datasets for document-level rewriting. Accordingly we

train on a synthetic dataset involving corrupting text documents and learning to restore them to

their original state. To generate artificial broken text, we apply transformation techniques both at

the sentence and word level and then learn to reverse the transformation to recover the original

document. The techniques we use at the sentence level include: i) sentences reordering where

66 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Figure 4.2: The figure shows the noising process to corrupt the original document. Noise is applied
to the original document Dorg with delete, shuffle, update and insert. The noise update applies
noise on the selected sentences. We have a pre-built resource of random words and sentences built
from the training set that is used in word and sentence level insertion. Each noise action is applied
if the probability of selection is greater than 0.5. As some actions are skipped, the noising process
generates different trajectories of noise.

sentences are randomly shuffled and/or deleted; ii) sentence insertion where a totally independent

sentence is inserted into the source. iii) sentence update where a sentence is slightly modified.

For the lower-level transformation, we apply: i) word insertion that we insert a random word from

another pre-defined vocabulary into the source. ii) shuffle and delete where we shuffle and delete

some words. Each transformation is applied if the probability of selection is greater than 0.5. We

use uniform probability distribution and applied noise in the order Delete, Shuffle, Update, Insert.

The noising process is shown in Figure 4.2. The corruption process start by deleting random

sentences from the original document. The resulting document is shuffled and then sentences

are randomly selected to be updated. For each sentence to be updated, the words are deleted,

shuffled and randomly inserted from a pre-defined vocabulary. After the update, locations are

randomly selected in the document for sentence insertion. For each randomly selected position in

the document, another sentence from a pre-defined sentence bank is inserted. The final corrupted

document is then used with the original document as a source and target pair where source is the

corrupted document and target is the original document.

4.3. HIERARCHICAL TRANSFORMER 67

Figure 4.3: The figure shows the process by which the oracle actions are generated. Reposition
uses shuffle and insert noise action to build its output. Sentences deleted by the noise are inserted
back and are use for building the output for insert classifier. Finally a bipartite graph is build and
the alignments are generated to get the output for update classifier. The same process is applied at
the low level to get the oracle output at word level.

4.3.4 Oracle

Expert policy actions a∗ are created by reversing the noise in the data. This is done by keeping

track of the noise actions that have been used to create a corrupted output. In order to get alignment

among sentences, we create a bipartite graph where the nodes are the sentences and the edge

weight is the Levenstein distance between those sentences. We use max-flow min-cut algorithm

to get the alignment (Dantzig & Fulkerson, 2003). The oracle action generation process along

with sample output are shown in Figures 4.3 and 4.4 respectively. The oracle process starts using

the outputs of noise actions shuffle and insert. These two actions inform the oracle of what needs

to be deleted and repositioned. The reposition action is applied on the corrupted document. The

resulting document is then used to get the oracle outputs for insertion. The noise action delete

inform the oracle of the deletions performed by the corruption process. The oracle action is applied

and the resulting document is used for creating update oracle action. The update oracle action

creates a bipartite graph between the corrupted document and the original document as shown in

Figure 4.5. It then runs a max-flow min-cut algorithm to get the alignments. Alignment score

which are not zero indicate a sentence that need to be update. The low level oracle actions are

generated similarly to the high level actions. The noise sequence used for corrupting the sentence

is used to get the oracle low level actions. Figure 4.4 shows original and corrupted document

along with the corruptions sequence that resulted in the given output sequence. The corresponding

oracle actions are also mentioned. Applying the oracle actions on the corrupted document will

revert it back to the original document.

68 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Figure 4.4: The figure shows an example output of oracle generated actions. The noise is applied
to the original document to get the corrupted document. Noise is applied at the sentence level as
well as at the word level. Oracle actions are then generated to reverse the inserted noise.

(a) Bipartite graph is built between the sen-
tences in corrupted document and the orig-
inal document. The weights are Levenstein
distance between the sentences.

(b) The alignments after running the max-
flow min cut algorithm. If the distance be-
tween sentences is not zero. That particular
sentence need to be updated.

Figure 4.5: The figure shows a bipartite graph created in order to generate the oracle update action.
The graph is created between the sentences in corrupted and original document.

4.4. EXPERIMENTS 69

4.3.5 Training

Training involves learning a model to imitate the expert policy. We design roll-in policy such

that each classifier is trained on the output of the other classifier. This reduces exposure bias,

as the model is trained on conditions it will encounter at decoding. The algorithm for training

is shown in Algorithm 3. It start by sampling a training pair consisting of a corrupted sentence

along with the actual target without the noise. Low and high level oracle actions are generated

for the given training example. These actions correspond to the true output of the low and high

level classifiers. The corrupted document goes through the transformer layers. The hidden states

corresponding to the sentence representations are then used by the reposition classifier to predict

its output. The output of the classifier along with the actual output from the oracle are used

for log-loss calculations. The true reposition output is applied to the corrupted sentence and the

resulting document is used by the high level insertion classifier. The insertion classifier calls the

low level program which learns to generate the sentence conditioned on the whole document. The

true insertion classifier output is applied to the document and the resulting document is used for

training the update classifier. The update classifier trains a low level program. Instead of starting

with a blank sentence as in the insertion case, the low level program starts with the initial corrupted

sentences. The function buildFrame is responsible for passing the correct initial input to the low

level program. The objective function is the product of decisions made during the generation

process. It is the loses incurred by both the high level and low level program and is shown on line

14.

4.4 Experiments

4.4.1 Experimental Setup

Data sets. We conduct experiments on synthetically generated dataset consisting of sorted se-

quences of numbers. These are shuffled and the challenge is to restore them into numerical sorted

order. This task mimic language problems in coherence where sentences are shuffled and the task

is to put the sentence in the right order such that coherence of the document is maximised. Each

document contains 5 - 10 sentences and each sentence has between 20 to 100 tokens. The docu-

ment is sorted in numerical order with tens coming before hundreds (see Figure 4.4). The numbers

lie between 1 and 1000. We generated 300K such pairs for training consisting of unsorted sequence

as input and sorted sequence as output.

We further use real world datasets including ROC stories (Mostafazadeh et al., 2016), con-

sisting of multiple 5 lines stories to check the capabilities of our model. We also conducted ex-

periments on Multi-news and DUC-2004 datasets. Multi-news (Lebanoff, Song, & Liu, 2018)

is a large-scale dataset for summarization whereas DUC-2004 (Over & Yen, 2004) is a bench-

mark dataset in multi-document summarization. The documents are truncated to 1500 tokens. We

merge the two datasets to create a training corpus consisting of approximately 1.8M pairs and

exclude 15K as test and validation sets each. To generate our input and output pairs, we inserted

70 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Algorithm 3 Training for Hierarchical Levenshtein Transformer

Require: Training data T , Model policy: πθ, Expert policy: π∗
1: while Maximum training steps reached do
2: (d,d∗) ∼ T . Sample a training pair

3: repH∗, insH∗,updH∗ ← πH∗ (d,d∗) . Get oracle actions
4: repL1∗, insL1∗, tokL1∗, repL2∗, insL2∗, tokL2∗ ← πL∗ (d,d∗)

5: LrepθH ← −
∑

si∈d log π
rep
θH

(repH∗i |si,d)
6: d← applyAction(d, repH∗)

7: LinsθH ← −
∑

si,si+1∈d log π
ins
θH

(insH∗i |si, si+1,d)
8: s← buildFrame(insH∗,d)

9: Lrep1θL
← −

∑
wi∈s log π

rep
θL

(repL1∗i |wi, s,d) . Low Level
10: s← applyAction(s, repL1∗)
11: Lins1θL

← −
∑

wi,wi+1∈s log π
ins
θL

(insL1∗i |wi, wi+1, s,d)
12: s← applyAction(s, insL1∗)
13: Ltok1θL

← −
∑

wi∈s,wi=<mask> log πtokθL (tokL1∗i |wi, s,d)
14: d← applyAction(d, insH∗)

15: LupdθH
← −

∑
si∈d log π

upd
θH

(updH∗i |si,d)
16: s← buildFrame(updH∗,d)

17: Lrep2θL
← −

∑
wi∈s log π

rep
θL

(repL2∗i |wi, s,d) . Low Level
18: s← applyAction(s, repL2∗)
19: Lins2θL

← −
∑

wi,wi+1∈s log π
ins
θL

(insL2∗i |wi, wi+1, s,d)
20: s← applyAction(s, insL2∗)
21: Ltok2θL

← −
∑

wi∈s,wi=<mask> log πtokθL (tokL2∗i |wi, s,d)

22: θ ← θ − λ∇[LrepθH + LinsθH + LupdθH
+ Lrep1θL

+ Lins1θL
+ Ltok1θL

+ Lrep2θL
+ Lins2θL

+ Ltok2θL
]

23: end while

4.4. EXPERIMENTS 71

noise in the output sequences as outlined in Section 4.3.3. The output consists of the gold sum-

mary with the inserted noise. The gold summaries are not generated via abstractive or extractive

summarization techniques.

Previous work by citeAgu2019levenshtein, xu2020editor tested their approaches on machine

translation and automatic post-editing. This work is different as we are interested in long text

generation. Therefore,, we cannot apply our model on these single sentence tasks. The work done

by citeAgu2019levenshtein, xu2020editor is used as a component in our approach.

Evaluation Metrics. Rouge (Hovy, Lin, Zhou, & Fukumoto, 2006), an automatic evaluation

metric, is commonly used in Summarization to evaluate the quality of summaries. We use Rouge-

l, Rouge-2 and Rouge-L which measure unigram-overlap, bigram-overlap, and the longtest com-

mon sequence respectively between system and actual summaries. Synthetic and ROC stories are

evaluated with BLEU score (Papineni et al., 2002). For both Rouge and BLEU score the higher

the value the better is the result.

Baselines. We compare three models: i) Copy: the original text is copied without any change.

This establishes the lower bound for the task. ii) Transformer: a vanilla Transformer (Vaswani et

al., 2017) is used to generate a sequence of text by reconstructing the source text. Without explicit

editing guidance, we have little control over its generation process. iii) Levenshtein Transformer

(LevT): LevT is a semi-autoregressive model for parallel sentence-level sequence generation (Gu

et al., 2019). It refines a given sequence in an iterative manner with three operations, including

deletion, placeholder prediction and token prediction. The iteration terminates when a certain

stopping criterion is met. iv) Editor transformer: It is similar to the LevT, with the exception that

it introduce a reposition operator instead of the deletion operator (Xu & Carpuat, 2020). Along

with deletion, a reposition operator can also rearrange words in a sentence.

Implementation Details. To train the our models, we follow most of the hyper-parameter set-

tings in (Gu et al., 2019). Specifically for all models we use dropout of 0.3, num heads of 8, layers

as 6 model dimension as 512 and hidden dimension as 2048. We use weight decay of 0.01 as well

as label smoothing of 0.1. Our models are implemented in open-source toolkit fairseq (Ott et al.,

2019). The models are trained on 3 Nvidia V100 GPU for 200K updates with a batch size of 64K

tokens. We used adam optimiser in our training and adopt fastbpe (Sennrich, Haddow, & Birch,

2015). We reproduce results from baseline models by training our own models on their publicly

available code.

4.4.2 Results

We present results from above mentioned datasets to show different capabilities of our model. The

experiments on synthetic dataset are designed to test whether different components of the model

improve different document level phenomena such as whether the high level reposition module

72 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Synthetic

Transformer 40.76
LevT 43.11
Editor 43.65
Ours 73.86

Table 4.1: Results of running experiments on Synthetic with only shuffling noise. We report
accuracy of the model in repositioning the sentence correctly.

improves coherence 1. The experiments on ROC stories tests length flexibility and the behaviour

of our model on a real world dataset. Finally, experiments on summarization dataset are designed

to show one potential application area for our model as a document level post editing system.

4.4.2.1 Synthetic dataset

Noise: A document can be viewed as a sequence of segments, each of which is cohesive in its

content and functions. A document, for example, related to biographies should contain segments

arranged such that the whole document is coherent and cohesive. Cohesion is a property shared

by well structured discourse and can be used to evaluate document level tasks. One difficulty

with evaluating metrics of discourse coherence is that human generated text usually meet some

minimal threshold of coherence. For this reason much of the research in measuring coherence has

focused on synthetic data. A typical setting is to permute the sentences of a text and then determine

whether the original sentence ordering scores higher according to the proposed coherence measure.

Therefore we use our synthetic data related to sorting to measure the coherence capabilities of our

proposed model. We inject only shuffling noise in the training data, that is the sentences in the

document are only shuffled. No other noise operation is performed. We measure coherence as the

accuracy of the model to reposition the sentence correctly.

Results The main results of conducting experiments on synthetic dataset are shown in Table

4.1. We report the accuracy of the model in repositioning the sentences correctly in the table.

The accuracy of our model is higher and better than the baselines. The high accuracy is due

to introducing a high level program which is better able to capture discourse level phenomena

by using sentence representations. The baseline models use individual tokens/words and find it

difficult to capture long range document-level phenomena correctly. The results also show that

there is no need to apply editing operations at the word level if they can be rectified by the high

level program.

Discussion: We train the model on a dataset generated by inserting noise as shown in Section

4.3.3. We compare our model with other baselines and report the BLEU score in Table 4.2. Trans-

former performed well across all the models, indicated by the highest BLEU score in the table. We

1Coherence has been mentioned for motivation of the task which is long text generation. Instead of using some
metric for coherency, we can indirectly measure coherence by analysing the BLEU score of those shuffled sentences. If
the reposition classifier can correctly reposition the sentences then we can conclude that the coherence of the document
has increased. This is further mentioned in Section 4.4.2.1Synthetic dataset/noise.

4.4. EXPERIMENTS 73

Synthetic ROC-Stories

Copy 23.59 28.82
Transformer 30.17 35.72
LevT 22.42 25.29
Editor 22.78 25.89
Ours 20.63 23.10

Table 4.2: Results of running experiments on Synthetic and ROC-stories test dataset. We report
the BLEU score in the table which is higher the better.

Noise
Classifier 20 50 80

Reposition 46.3 41.1 37.9
Delete 45.6 41.7 39.6
Insert 30.3 27.8 21.6
Update 43.6 40.2 36.8

Table 4.3: The table shows the accuracy of each high level classifier on synthetic dataset. Reposi-
tion and Delete accuracy are from the same reposition classifier with different type of noise.

conjecture that the transformer model was better able to capture the underlying distribution due to

its non-Markovian nature. LevT and Editor performed comparably but not as good as the trans-

former which is expected due to its semi-autoregressive nature. Semi-autoregressive model lags

behind autoregressive models due to loss of conditional context. Finally our model lags behind all

the mentioned models.

As our model is made up of various components consisting of four high level classifiers and

three low level classifiers along with various transformer layers, we individually look at the perfor-

mance of each classifier by measuring its accuracy. We use the trained model on complete noise.

Then we build test sets by inserting one type of noise targeted at a particular classifier. For ex-

ample the document is shuffled to measure the performance of reposition classifier. Sentences are

inserted to measure the performance of deletion classifier. The Deletion classifier is part of repo-

sition classifier therefore in the results, reposition accuracy shows the performance on a shuffled

document whereas deletion accuracy shows the performance of reposition classifier on a document

with random sentences inserted. We measure the accuracy of classifier as we increase the noise

ratio, which determine how many sentences are either shuffled, deleted, inserted or updated. The

results are shown in Table 4.3. As the noise increases, the accuracy across all the classifiers goes

down indicating further training is required to make the classifiers more robust to the noise. Al-

though, we see a decrease in accuracy, the high level classifiers were able to improve the coherence

in most of the documents with reposition, deletion and update accuracy remaining high even as the

noise ratio increases. The insert classifier accuracy remain low. The classifier makes a decision

by considering the hidden state of two adjacent sentences. We conjecture that this may confuse

the classifier as there is insufficient context and adding more context may improve improve its

performance.

Next we test, the performance of our model as we increase the document length. We com-

pare the performance with other baselines by dividing the dataset into buckets of different lengths.

Table 4.4 shows the BLEU score of models across different length buckets. We observe trans-

former model performs well across all the buckets, although its performance does drop on longer

74 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Bucket
5-100 101-200 201-300 301-400 401-500

Copy 34.6 32.3 28.6 25.4 23.5
Transformer 39.3 35.5 31.6 27.5 25.3
LevT 35.6 32.5 28.2 24.6 21.3
Editor 35.1 32.7 27.6 24.1 21.0
Ours 36.3 32.9 26.3 22.6 19.2

Table 4.4: The table shows the BLEU score of models with different input length sizes. Each
bucket size refers to the number of characters.

Time Standard Deviation

Transformer 245s ±0.12
LevT 157s ±0.06
Editor 149s ±0.05
Ours 187s ±0.05

Table 4.5: Table shows the time for running 100 test examples. No batching is used to mimic the
real world scenario.

sequences. Our model improves BLEU score on shorter sequences as shorter sequences compared

to other semi-autoregressive models. We conjecture that as the shorter sequences do not have long

range dependencies therefore iterative improvement by our model was better able to improve the

sentence. As the length of sequence increase our model find it difficult to refine and improve the

noisey input. This points to improving the model by specifically targeting long sequences in train-

ing. Techniques such as curriculum learning where the model is progressively trained on harder

examples may improve model performance.

We also measure the decoding time for different models. All model are evaluated on the same

harware architecture. Table 4.5 shows that the decoding time for transformer is higher compared

to other semi-autoregressive models. The decoding time of our model is higher than the other

semi-autoregressive models due to the complexity introduced by the high level program.

4.4.2.2 ROC stories

The main results of experiments on ROC stories are shown in Table 4.2. We see a similar pattern

as compared to synthetic dataset where transformer model outperformed the other models.

Discussion: Our model has the capability to change the sequence length. We show this by show-

ing an example output from ROC stories dataset in Figure 4.6. The deletion and update operator

modified the length of the sequence dynamically. The insert operator also has the capability to

make changes to the document length. This is in contrast to the transformer model where the

length of the sequence increases monotonically and cannot be modified once the output has been

generated.

4.4. EXPERIMENTS 75

Figure 4.6: The figure shows sample output from ROC stories dataset. Observe that the editing
operators can modify the length of the document. The yellow highlights shows the part being
edited by the model.

76 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Multi-News DUC-2004
R-1 R-2 R-L R-1 R-2 R-L

Copy 42.32 13.28 37.86 36.30 8.47 32.52
Transformer 40.62 12.42 36.37 35.4 7.78 31.71
LevT 25.93 8.59 28.95 23.45 4.89 25.12
Editor 25.56 8.13 28.33 23.17 4.21 25.01
Ours 21.67 5.89 24.03 18.22 2.17 20.87

Table 4.6: Experiment Results on Multi-News and DUC2004 dataset

4.4.2.3 Summarization

The main results for summarization are shown in Table 4.6. The best result is obtained by copy

across both dataset indicating that post editing of long sequences may hurt its quality. Copy consist

of output from SummPip system (J. Zhao et al., 2020). SummPip uses graph clustering to find

relevant sentences which are then used to generate the summary. Among other models, the Vanilla

transformer performed better showing a strong bias present in the languages for autoregressive

monotone generation. Levenshtein and the Editor transformer performed comparably, whereas as

our model showed no improvement over the baselines.

Discussion: Our model can be employed as a post-editing document level system. The high level

program has the capability to capture the underlying document structure and can provide context

and structure aware information which can then improve the coherence of the document. Figure

4.7 shows that most of the mistakes are made by the low level program. This is acceptable as

the low level program has to generate sequence semi-autoregressively that means less conditional

dependencies in the output variables. The low level program also has to take a larger document

level context into account. This further confuses the model as it becomes harder for the model to

determine which part it should put its attention. We conjecture that a carefully designed attention

module may mitigate this problem and improve results.

4.4.3 Discussion on negative results

Our model lags behind the baselines but has shown promise and can be improved further. In this

section, we outline various ways to improve the results of our model:

Evaluation metrics sensitivity towards document level ordering: We measure the sensitivity

of our evaluation metrics towards capturing sentence reordering. We permuted sentences in a doc-

ument and measure the metric's mean and standard deviation. The results in Table 4.7 shows the

inadequacy of using these metrics (BLEU, ROUGE) towards document level phenomenons. The

almost perfect BLEU and ROGUE score shows that the metrics were unable to capture sentence

permutations and therefore document level phenomenons. It further suggests that the two levels

should be trained separately. A low level program should be initially trained and tested on BLEU

scores since it is responsible for word generation. The high level program is then trained while

keeping the low level program frozen.

4.4. EXPERIMENTS 77

Figure 4.7: The figure shows sample output from summarization dataset.

Mean Standard Deviation

Synthetic 97.84 ±0.05
ROC stories 98.94 ±0.03
Multi-News 97.95 ±0.05
DUC-2004 97.73 ±0.05

Table 4.7: Sensitivity of metrics towards capturing sentence reordering. For synthetic and ROC
stories, we report the BLEU score. For Multi-news and DOC-2004, we report the R1 score. Mean
and standard deviation is measured over 10 runs.

78 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Distilled Dataset: Semi/non-autoregressive models struggle to achieve quality similar to autore-

gressive models. As the dependencies are broken, it become difficult for the model to generalise

across multimodal dataset. Multimodal dataset arises because of competing outputs. There can

be multiple outputs for a given input. Each output corresponds to one of the modes of condi-

tional probability distribution of the target given the source; hence, this conditional distribution

is multi-modal, i.e. it has multiple modes. For example, consider an English source sentence

like “Thank you”. This can be accurately translated into German as any one of “Danke”, “Danke

schon”, or “Vielen Dank”. A conditionally independent distribution such as the one arising in

non-autoregressive models will allow “Danke Dank” and “Danke Vielen” as possible translations.

Therefore output from semi/non-autoregressive models contain syntatic and semantic errors (Gu,

Bradbury, et al., 2017). The situation is further aggravated when the sequences are long. Dis-

tilled dataset has been found useful in dealing with multomodality problem in non-autoregressive

modals (C. Zhou et al., 2019). Instead of using the actual output, the outputs generated from an

autoregressive teacher model are used with the input sequence. It is not obvious as to how we

can use distilled data in our model. One way is to insert the noise in distilled dataset to get input

sequences. Another way is to use curriculum learning (Bengio, Louradour, Collobert, & Weston,

2009), starting with distilled dataset and then moving to harder actual examples.

Better Training: Pre-training and fine-tuning approach has been found useful in various tasks.

Our model consist of various components including classifiers at two levels. These classifiers can

be individually pre-trained. Once the pre-training step is done, the whole model can be fine tuned

for better model generalisation.

Use of Autoregressive model: The low level program is responsible for word generation. Due

to the inherent left to right generation bias, autoregressive models have shown better results in

our experiments. We can take advantage of this bias by using autoregressive model as a low level

program but this can lead to longer decoding times.

Attention Mechanism: Wider context have been shown to improve results for document level

tasks (Kim, Tran, & Ney, 2019). Designing an attention mechanism such that more attention is

given to the sentences around the given sentence than those far away in the document can improve

results. This can be done by having more attention heads for the near context then the far away

context.

4.5 Summary

We present a hierarchical document generation model, that is capable of revising and editing its

generated text thus bringing it closer to human-level intelligence. Although results showed that

our approach lags behind the baselines, it did shed light into various problems present in semi-

autoregressive models and long document generation. In the future, we will be incorporating

4.5. SUMMARY 79

these insights into our model to make it more robust. Along with incorporating the insights, we

will also be conducting further experiments on other simple tasks such as text simplification.

80 CHAPTER 4. A HIERARCHICAL MODEL FOR DOCUMENT GENERATION

Part III

Generation in Non-Autoregressive
Models

81

Chapter 5

Exemplar Transformer

Current state-of-the-art translation models are autoregressive that is the generation is done word

by word from left to right (Cho, Van Merriënboer, Gulcehre, et al., 2014). This autoregressive

property becomes a bottleneck in taking full advantage of the the underlying parallel architecture

therefore recently non-autoregressive translation (NAT) models have been proposed to make se-

rial computation parallel (Gu, Bradbury, et al., 2017). NAT models generate all tokens in parallel

as opposed to generating tokens autoregressively from left to right. This speeds up decoding but

comes at a cost of inferior output quality. The complete conditional independence makes it harder

for the model to approximate the true multimodal target distribution which exhibits strong corre-

lation across time. Multimodal target distribution arises because of competing translations. As

the tokens are generated in parallel, each word is conditioned only on the source sentence and is

oblivious of what has been generated. This results in repeating or semantically incorrect trans-

lations. To overcome the loss of conditional information, non-autoregressive models are usually

conditioned on latent variables along with the source sentence to inject prior knowledge about

the underlying distribution. This prior knowledge takes the form of input sentence fertilities (Gu,

Bradbury, et al., 2017), generative flows (X. Ma et al., 2019) or blank sentences (Ghazvininejad,

Levy, Liu, & Zettlemoyer, 2019a).

We postulate that current priors based on fertilities and flow are simplistic and are not rich

enough to capture complex interactions in the multimodal distribution of the target translation.

Therefore the goal of this chapter is to show that an informative and effective prior based on

data can improve non-autoregressive translation quality. We propose a data-based prior based on

the most similar examples. More concretely, we build the prior based on the translations of the

most similar source sentences to the test sentence. To effectively use the examples, we modify

the attention mechanism such that attention heads are distributed between the similar examples

and the sentence being translated. We conduct experiments on two benchmark datasets to show

the effectiveness of our approach. Our results show comparable performance with state-of-the-art

NAT models and considerable speed ups compared to autoregressive model.

83

84 CHAPTER 5. EXEMPLAR TRANSFORMER

5.1 Introduction

Neural sequence to sequence models have achieved state-of-the-art results on various tasks such as

machine translation, summarization and automatic speech synthesis (Fan et al., 2021; El-Kassas

et al., 2021; X. Tan, Qin, Soong, & Liu, 2021). These models are characterised by an encoder-

decoder architecture where the input sequence is first transformed by the encoder to a set of hidden

states. These hidden states are subsequently used by the decoder to generate the output sequence

autoregressively from left to right (Sutskever et al., 2014). Previously, the autoregressive property

allowed the use of recurrent neural networks (RNN) to parametrise these neural networks. RNNs

are inherently good at processing sequential data but they are hard to parallelize and therefore

slow to execute on modern hardware, which is optimised for parallel execution (Graves, 2013).

Recently Transformers have been proposed as an alternative to RNNs (Vaswani et al., 2017).

Transformers have not only shown better results on various sequence generation tasks, but with

the use of self-attention, they allow training to be done in parallel thus taking advantage of the un-

derlying hardware. Unfortunately, the decoding in Transformer is still sequential as the probability

of emitting a token is conditioned on the previously generated token.

In order to accelerate decoding, non-autoregressive translation models (NAT) have been in-

troduced. Instead of sequential generation in autoregressive translation, NAT models output the

entire target sentence at once. Although this greatly improves the decoding latency, it comes with

a huge cost in terms of translation quality (Du, Tu, & Jiang, 2021; Tokarchuk et al., 2021). Remov-

ing the sequential dependencies in the target sequence makes it challenging for the NAT model to

capture a highly multimodal target distribution (C. Zhou et al., 2019). Multimodal target distri-

bution arises because of alternative translations for a given sentence. As each token is generated

conditioned on the source sentence, the generated token is unaware of what has been generated

thus may contain tokens from competing translation. In particular, consider an English source

sentence like “Thank you”. This can be accurately translated into German as any one of “Danke”,

“Danke schon”, or “Vielen Dank”. A conditionally independent distribution will allow “Danke

Dank” and “Danke Vielen” as possible translations. Therefore output from NAT models contain

errors such as repetitive words and incomplete translation where the semantics of several tokens

are not properly translated (Gu, Bradbury, et al., 2017).

To mitigate such performance degradation, NAT models usually employ a latent variable.

These latent variables help to incorporate some light-weight sequential information into the non-

autoregressive decoder and take the form of source sentence fertility (Gu, Bradbury, et al., 2017).

That is the source sentence tokens are repeated multiple times based on their fertility, reordered

source sentence based on target language (Ran et al., 2019), discrete variables (Shu, Lee, Nakayama,

& Cho, 2020), generative flows (X. Ma et al., 2019) or blank sentences where a sequence made up

of special blank tokens is iteratively refined (Ghazvininejad et al., 2019a). However using such la-

tent variables not only complicates the training resulting in a badly trained model, they are also not

rich and expressive enough to capture the complex interactions of tokens in the highly multimodal

target distribution.

5.1. INTRODUCTION 85

Figure 5.1: The figure shows the structure of the Exemplar Transformer. It consist of a pre-
processing step where the nearest neighbours for the dataset are determined. These nearest neigh-
bours are then used by the model to perform translation. The model divides the attention heads
among the neighbours and the sentence being translated. This can be efficiently done by using a
mask in the attention mechanism.

In this chapter, we therefore introduce an informative and effective prior based on data. We

use a similarity metric to find similar examples from the training dataset to the instance being

translated. The instances are first transformed into a n-dimensional vector representation. For

each instance we determine its k-nearest neighbours. These nearest neighbours are then used as

priors in our model as they can provide information such as translation of a phrase or semantically

correct arrangement of words. In order to effectively capture the required information from the

prior, we split the attention heads among the sentence being translated and the nearest neighbours.

Heads are distributed such as more attention heads are given to the sentence being translated than

the neighbours (Figure 5.1). This makes the model more robust as it allows to concentrate on the

given sentence and not get confused by the neighbouring sentences.

We conduct experiments on two benchmark dataset WMT-14 en-de and WMT-16 en-ro. Re-

sults show that our approach is effective and can improve the translation quality against the NAT

model by Gu, Bradbury, et al. (2017). Our approach shows lower but comparable performance

against other NAT baselines. Further analysis of the model shows the effectiveness of using dif-

ferent similarity measures as well as the effectiveness of using different sentence representations.

We also present a qualitative analysis of the model output.

86 CHAPTER 5. EXEMPLAR TRANSFORMER

5.2 Background

Neural sequence-to-sequence models generate an output sequence y = {y1, ..., ym} given an input

sequence x = {x1, ..., xn}. The conditional probability distribution Pθ(y|x) is parameterized

by θ which represents a Transformer network in this chapter. Factorization of this probability

distribution give rise to autoregressive and non-autoregressive models. This section provides an

introduction to these model families.

5.2.1 Autoregressive Neural Machine Translation

Autoregressive models factorize the joint probability of the output sequence y given the input

sequence x into the product of probabilities over the next token in the sequence given the input

sequence and previously generated tokens:

P (y|x; θ) =
M∏
t=1

P (yi|y<i,x; θ)

where y<i indicates the partial translation and θ is a set of trainable parameters. The factor,

Pθ(yi|y<i,x), is implemented by function approximators such as RNNs and Transformers. This

factorization takes the complicated problem of joint estimation over an exponentially large output

space of outputs y, and turns it into a sequence of tractable multi-class classification problems

predicting yi given the translation history. This allows the use of simple maximum log-likelihood

training. The typical training objective is to maximize log-likelihood on a set of training examples

D = |xk,yk|Kk=1

L(θ) = argmax
θ

K∑
k=1

logP (yk|xk; θ)

Inference in autoregressive models is usually performed with greedy or beam search (Freitag

& Al-Onaizan, 2017). These models produce one token at a time and terminate when a special end

of sentence token <sep> is encountered. The generated tokens are used as a conditioning context

for the next token. This sequential generation from left to right make these models autoregressive

therefore resulting in a higher latency and inadequate use of underlying parallel computational

architecture.

5.2.2 Non-Autoregressive Neural Machine Translation

Non-autoregressive models attempt to model the joint distribution Pθ(y|x) directly by breaking

the probabilistic factorization. Each prediction is modeled as a product of the probability, which

is independent of the decoding history during generation:

5.3. APPROACH 87

P (y|x; θ) = P (M |x)
M∏
i=1

P (yi|x,M ; θ)

where P (M |x) indicates an auxiliary length predictor, which is used to determine the translation

length before translating the sentence. As opposed to NAT, AT models translation length implic-

itly and is determined by the special end of sentence token. Unfortunately, the performance of this

simple model falls far behind autoregressive models, as sequences usually do have strong condi-

tional dependencies between output variables. This problem can be mitigated by introducing a

latent variable z to model these conditional dependencies. For the sake of simplicity we will be

removing the length classifier:

P (y|x; θ) =
∫
z
P (y|z,x; θ)P (z|x; θ)dz

where P (z|x; θ) is the prior distribution over the latent variable z and P (y|z,x; θ) is the decoder.

Generation from this model is then done as:

P (y|z,x; θ) =
M∏
i=1

P (yi|z,x; θ)

The purpose of the latent variable z is to inject missing information about the dependencies

in the output variable. A naive approach is to use the predicted sentence length as the latent

variable as this can reduce the search space for model to sentences only with that particular length.

But this results in a highly degraded output quality. Gu, Bradbury, et al. (2017) proposed to use

word fertilities, where the input source word is copied multiple times based upon its fertility, to

be used as the latent variable. This improved the translation quality. Later works introduced the

use of generative flows which models complex distribution from simple distribution (X. Ma et

al., 2019), reordered source sentence (Ran et al., 2019) or partially translated source sentence

based upon phrase tables (Guo et al., 2019). Other approaches iteratively refine the sentence by

starting with a blank sentence (Ghazvininejad et al., 2019a) and thus fall under the umbrella of

semi-autoregressive models.

NAT models usually employ an identical encoder as the conventional Transformer architec-

ture, but the decoder is different from the original one as it avoids the utilization of causal masks in

the self-attention mechanism and the whole sequence is generated in parallel. The loss of depen-

dency in the target sequence causes multimodality problem (competing translation) which severely

degrades the performance resulting in repeated and incomplete translations.

5.3 Approach

As we move from autoregressive to non-autoregressive models, vital information about the depen-

dencies between the output variables is lost. This information can be injected back in the model

88 CHAPTER 5. EXEMPLAR TRANSFORMER

by using a latent variable z. The latent variable z should account for as much as possible for the

correlations between different outputs across time and it should be simple to infer its value for a

given source sentence. The distribution of z given an input x forms a prior distribution P (z|x).
Our model uses similar examples, to the test sentence, to form the prior. It is informative, effective

and easier to infer. This section presents the prior that we have build using the data and how it

has been incorporated in the Transformer model. We call the resulting Transformer as Exemplar

Transformer as it utilise similar examples to build the prior. This section address the following

questions:

1. How to define the similarity measure?

2. How to efficiently fetch the most similar examples from a large corpus?

3. How to condition the output on the fetched K-nearest neighbours?

5.3.1 K-Nearest Neighbours as Prior

We consider a pre-processing phase where addressing point (1) and (2) can provide an augmented

version of the dataset. To build the augmented dataset, each sentence is first encoded into a vector.

To get the sentence embedding, we apply a pre-trained BERT on the sentence and then build the

sentence embeddings. We consider multiple ways to get the embeddings such as (i) getting the

output embedding corresponding to the <CLS> token, (ii) summing up the output vectors of the

words in the sentence , (iii) max-pooling the output vectors of the sentence words. We present our

analysis about the effect of sentence representation in section 5.4.3. As the similarity measure,

we experiment with `1, `2, and cosine distance between vectors. Its analysis is also mentioned in

section 5.4.3.

For efficient retrieval of k-nearest neighbours, we use FAISS (J. Johnson, Douze, & Jégou,

2017). It is a fast retrieval library which uses Locality Sensitive Hashing (LSH) and can scale

nicely to big corpora. LSH is an algorithmic technique that hashes similar input items into the

same “buckets” with high probability (Slaney & Casey, 2008). Since similar items end up in the

same buckets, this technique can be used for data clustering and nearest neighbor search. FAISS

contains several methods for similarity search. It assumes that the instances are represented as

vectors and are identified by an integer, and that the vectors can be compared with `2 (Euclidean)

distances or dot-products. Vectors that are similar to a query vector are those that have the lowest

`2 distance or the highest dot product with the query vector. It also supports cosine similarity,

since this is a dot-product on normalized vectors.

5.3.2 Exemplar Transformer

We incorporate the prior in the NAT model introduced by Gu, Bradbury, et al. (2017). The model

is made up of four components: an encoder stack, a decoder stack, length predictor and translation

predictor (Figure 5.2). We provide detail about each component below:

5.3. APPROACH 89

Figure 5.2: The four components of non-autoregressive machine translation model is shown. The
encoder is similar to the autoregressive Transformer. The difference lies in the decoder which
consist of an additional positional attention module. The nearest neighbours are concatenated
withe the source and copied source and passed as input to the encoder and decoder. The attention
modules are also modified by using a mask to split the attention heads.

Encoder Stack: A NAT encoder is similar to the autoregressive encoder with feed-forward net-

works and multihead attention modules. The input to the Transformer is the source sentence. The

sentence is first converted into its corresponding word embeddings. As there is no recurrence in

Transformers, we must add some information about the positions into the input embeddings. This

is done using positional encoding.

Decoder Stack: A NAT decoder consists of various modifications to translate the sentence non-

autoregreesively. First, as we cannot use time-shifted target outputs (during training) or previously

predicted outputs (during inference) as the inputs to the first decoder layer, we initialize the decod-

ing process using copied source inputs from the encoder side. As the source and target sentence

are of different lengths, each encoder input is copied at position i. In order to determine which

input token to copy at position i, the index of the word is determined as round((N ∗ i)/M) times

where N is the source length and M is the target sentence length.

As the model is now non-autoregressive there is no need to prevent the model from accessing

information from later decoding steps. This is done by removing the causal mask used in the

self-attention module of the conventional Transformer’s decoder. Gu, Bradbury, et al. (2017)

found that introducing a positional attention module with position embeddings as key and query

can incorporate positional information directly into the attention process and provides a stronger

positional signal than the embedding layer alone. This attention mechanism is incorporated in

each decoder layer along with cross and self attention modules.

90 CHAPTER 5. EXEMPLAR TRANSFORMER

Length predictor: NAT models need to predict the target length before generating the target

sentence. This is done by training a classifier to predict target length given the source sentence.

Some studies have experimented with predicting the source and target length difference and have

found to be equally effective (Shu et al., 2020). We will use length prediction rather than length

difference classifier in our model.

Translation predictor: Translation predictor consist of softmax layer over the target vocabulary.

It takes input from the decoder layer and output the whole sentence in parallel.

Incorporating Prior: We incorporate the prior by concatenating the K-nearest neighbour with

the source and target sentence. Multiple nearest neighbours can be attached to the given sentence.

In order to differentiate between the neighbours, a special symbol <Sl> and <Tl> where l is the

number of neighbour and S and T are source and target neighbour respectively is added at the

end of each sentence. Position embeddings are added relative to each sentence that is position

embeddings resets to 1 when a special symbol is encountered. <CLS> token is added at the end

of each source sentence Figure 5.3. Each nearest neighbour helps in reducing the search space by

providing translation of similar words or phrases. It also provide information about semantically

correct arrangement of words. In Figure 5.3, the model exploits information regarding “direction

of travel” to properly translate it.

Let x be an input source sentence, y as its target and x
′

as copied source. As the source x and

target y can be of different length, the initial copied source x
′

is built by selecting tokens from the

source side such that at each position i in copied source sentence:

x
′
[i] = x[round(

N ∗ i
M

)]

where N is the source length and M is the target sentence length. We then fetch the nearest

neighbours of the input pair (x̃, ỹ). The input to the decoder is the concatenation of input and

source neighbour (x̃+x) where as the input for decoder is the concatenation of copied source and

the target sequence of source neighbour (ỹ + x
′
). The given sequence pass through the decoder

layers and the softmax output layer is used to predict the output. While training, we ignore the

softmax outputs for token corresponding to the neighbours. We only use the loss from tokens

corresponding to the target sentence and the length classifier for training. At decoding time, the

source sentence is copied according to the output of the length classifier. It is then concatenated

with the nearest neighbour. Outputs from the nearest neighbours are ignored. Following previous

work on NAT models, we predict multiple sentence lengths and multiple target sentence. We pick

the one best ranked by the autoregressive model.

Attention Heads: Incorporating the nearest neighbours may confuse the model as to which part

of the sentence the model should focus. We modify the attention mechanism such that the heads

are distributed between neighbours and the sentence being translated. We dedicate more heads to

5.3. APPROACH 91

Figure 5.3: The figure shows the the two nearest neighbours concatenated with the source and
target sentence. Note that the positions are relative to the sentence. The positions reset when a
new sentence starts. The nearest neighbours can provide syntactic and semantic information to
translate the sentence properly.

92 CHAPTER 5. EXEMPLAR TRANSFORMER

the sentence being translated than to the neighbours. In our experiments, we dedicate quarter of

the heads to the neighbours. This allows certain heads to get specialised in getting the required

information about syntax and semantics. It also allows to focus the model on the sentence being

translated and not get distracted by the concatenated neighbours.

The multi-head attention function can be represented as follows:

multihead(Q,K,V) = concat(head1, head2,headn)W
o

where Q, K, V are query, key and value vectors and W0 is a learnable matrix for linearly projecting

attention heads outputs. Each attention head is multiplied with a masking matrix R, that allows it

to only focus on a certain part of the sentence.

headi = attention(QWq
i ,KWk

i ,VWv
i)Ri

where Wi are learnable parameters and mask R is created such that if the head is concentrating

on neighbours than only the neighbours output in allowed to move forward all else is discarded by

multiplying by zero.

5.4 Experiments

5.4.1 Setup

Datasets We conduct experiments on two widely used machine translation datasets in non-

autoregressive models: WMT14 English-German (En-De) and WMT16 English-Romanian (En-

Ro). These dataset is made up of 4.0M and 610K sentence pairs respectively. We preprocessed the

data following Gu, Bradbury, et al. (2017). The sentences are tokenised using fairseq library (Ott

et al., 2019). The data is preprocessed using byte-pair encoding with 32K merge operations for

both language pairs. We learn the shared vocabulary with the joint training corpus in both source

and target sides. We use newstest2013 and newstest2014 as the validation and test set respectively

for the WMT14 En-De and newsdev2016 and newstest2016 are used as the validation and test set

for WMT16 En-Ro task.

Knowledge Distillation Following previous works on NAT models, we used sequence level

knowledge distillation (KD). KD is applied during NAT model training by replacing the target side

of training samples with the outputs from a pre-trained autoregressive model trained on the same

corpus with a roughly equal number of parameters. The resulting dataset is used for training the

NAT model. KD benefits the NAT models by reducing the complexity of data, thereby overcoming

the multimodality problem (alternative translations for an input) (C. Zhou et al., 2019).

5.4. EXPERIMENTS 93

Evaluation Metrics We used BLEU scores (Papineni et al., 2002) to measure the translation

quality. Inference latency was measured using a single Nvidia V100 GPU. We measured the time

of decoding one sentence at a time to mimic the real world industry scenario.

Model Configuration We follow the configurations from previous works. Specifically for both

models we use dropout of 0.3, num heads of 8, layers as 6, model dimension as 512 and hid-

den dimension as 2048. We use weight decay of 0.01 as well as label smoothing of 0.1. For

attention heads division, we dedicated 2 heads to the similar examples and rest of the heads to sen-

tence being translated. We use `2 distance as the similarity matrix and use the output embedding

corresponding to the <CLS> token as the sentence representation. Our models are implemented

in open-source toolkit fairseq (Ott et al., 2019). The models are trained on Nvidia V100 GPU for

200K updates with a batch size of 64K tokens. We used ADAM optimiser in our training.

Baselines As our approach is generic and can be added to any NAT model built on top of model

introduced by Gu, Bradbury, et al. (2017), we only compare with seminal NAT model in the main

results. We also compare our approach with NAT models that specifically modify the prior. This

includes the flowseq model by X. Ma et al. (2019), which built prior using normalization flows,

Ran et al. (2019) introduced reorderNAT which reorder the input before feeding it into the decoder,

Guo et al. (2019) introduced encNAT which convert the input sentence in the target sentence using

phrase tables and use it as the initial input for the decoder.

5.4.2 Results

We consider three variants of our model. In the first variant we concatenated nearest neighbour

only at the source (NAT + source neighbour). The second variant is created by concatenating the

target of nearest neighbour only at the target (NAT + target neighbour). The third variant has both

the source neighbour and its target (source and target neighbour). We also consider results from

dividing the attention heads as compared to attention over the complete input.

Distilled Data We conduct experiments on the distilled data that is the data generated using

sequence level distillation. The results are shown in Table 5.1. DH denotes head division in the

table. The results without the division of attention heads show low but comparable performance

with NAT model. We see a huge drop in BLEU score by using just the source neighbour. This

occurs probably because the model was not able to draw associations between the neighbouring

source sentence with the target. Furthermore, the long source sequence may confuse the model.

Using just the target neighbour improves upon the previous variant. We believe that the target

side attention mechanism may have helped in translating the sentence. Target side neighbours

may provide an initial scaffold for building the target sequence by providing initial keywords.

Our approach works well when both source and target neighbours are used as indicated by higher

BLEU score. Together with source and target, the model may learn associations such as translation

94 CHAPTER 5. EXEMPLAR TRANSFORMER

WMT-14 WMT-16

en-de de-en en-ro ro-en speedups
Transformer 27.48 31.21 33.70 34.05 1.0x
NAT 17.69 21.47 27.29 29.06 15.6x
NAT + source neighbour 14.05 15.31 22.55 25.67 13.6x
NAT + target neighbour 15.57 17.23 24.59 26.01 12.7x
NAT + source and target neighbour 17.24 20.42 25.10 28.46 12.1x
NAT + source neighbour + DH 14.15 15.65 23.01 25.95 13.6x
NAT + target neighbour + DH 15.97 17.76 24.84 26.31 12.7x
Van NAT + source and target neighbour + DH 17.75 21.53 26.30 29.15 12.1x

Table 5.1: The table shows the result on wmt-14 and wmt-16 dataset. Only one neighbour is
concatenated with the source and target sentence.

WMT-14 WMT-16

en-de de-en en-ro ro-en speedups
NAT + source neighbour 7.79 7.81 8.35 8.11 13.6x
NAT + target neighbour 7.91 8.15 8.89 9.01 12.7x
NAT + source and target neighbour 9.45 8.21 10.01 9.33 12.1x
NAT + source and target neighbour + DH 9.68 8.73 10.34 9.55 12.1x

Table 5.2: The table shows the result on running experiments on original dataset. The actual
outputs are used to train the model instead of using outputs from autoregressive teacher as targets.

of phrases or words that may appear in the nearest neighbours. We observe a drop in speed up as

the model has to process sequences of longer length.

We see an increase in BLEU score across the three variants after introducing head division.

The specialised heads were able to convey better information regarding regarding sentence struc-

ture and meaning. Our approach performed better than the baseline across all datasets except

WMT-16 ro-en where it performed comparably by coming close in terms of BLEU value.

Original Data The results of conducting experiments on original dataset are shown in Table

5.2. We use the actual targets instead of the outputs from an autoregressive teacher model. The

approach completely fail on the original dataset, showing the difficulty NAT models have on mod-

eling multimodal distribution. Even with original dataset we see better results by using source and

target neighbours indicating that model is learning a better distribution by leveraging the neigh-

bours. The best results among our model variants are obtained by dividing the heads. This indicate

that specialised heads help by reducing model search space and make it more robust.

Comparison with other models The results are shown in Table 5.3. Comparing our approach

with others shows that our model lags behind similar approaches. The best results are either pro-

duces by flowseq or encNAT. Unlike our approach both of these works involve difficult training

procedures or extra modules. Our approach although lagging, is simple and can be easily in-

corporated in other models without changing any training or decoding procedure. The speedups

5.4. EXPERIMENTS 95

WMT-14 WMT-16

en-de de-en en-ro ro-en speedups
Transformer 27.48 31.21 33.70 34.05 1x
NAT 17.69 21.47 27.29 29.06 15.6x
Flowseq 23.72 28.39 29.73 30.72 10.0x
Enc NAT 24.28 26.10 29.85 27.30 12.4x
Reorder NAT 22.79 27.28 29.30 29.50 16.1x
NAT + source and target neighbour + DH 17.75 21.53 26.30 29.15 12.1x

Table 5.3: The table shows the result of our approach compared to other similar models.

mentioned in the table should be taken with a grain of salt. The numbers have been taken from

the corresponding papers. Each paper implements model using different libraries and framework.

Nonetheless, following the approach by other papers where the comparison is done by using these

numbers, we present our speedup accordingly.

5.4.3 Analysis

We provide analysis of the model by increasing the number of neighbours and changing the sim-

ilarity matrix. We also look into ways of better representing the sentences. Finally, we provide

some examples outputs from our model.

Effects of increasing the number of examples We analyse the effect on output quality by in-

creasing the number of neighbours. We use WMT-14 de-en dataset and trained model for 2 to 4

neighbours. The results are shown in Table 5.4 for both divided attention and original attention

mechanism. We see drop in quality and speedup as we increase the number of similar examples.

We hypothesize that the decrease in quality occurs because it becomes difficult for the model to

concentrate on the right information. The drop in speedup is because of processing a long se-

quence. As we divide the attention heads, we see improvement in quality as indicated by higher

BLEU scores. Increasing the neighbours again showed degraded quality. More examples tend to

distract the model as they may not be as similar to the sentence being translated. This is evidence

by lower BLEU scores.

Effects of changing the similarity measure We changed the similarity measure to build the

augmented data with nearest neighbours. Along with `2 distance we also used `1 and cosine

similarity. We run experiments on WMT-14 de-en dataset. The results are shown in Table 5.5.

We used a model with attention head division. We observe that `2 and cosine similarity gives

almost similar results while the `1 distance showed lower BLEU score compared to other metrics.

We hypothesise that `2 can better differentiate between instances as it allows small changes to

be amplified with the squared term present in their formulae. The cosine similarity can also take

advantage of the squared term present in the denominator to amplify the small changes which

helps in capturing better neighbours.

96 CHAPTER 5. EXEMPLAR TRANSFORMER

BLEU speedup
NAT + 1 neighbour 20.42 12.1x
NAT + 2 neighbour 19.33 11.6x
NAT + 3 neighbour 17.76 11.1x
NAT + 4 neighbour 15.49 10.4x
NAT + 1 neighbour + DH 21.53 12.1x
NAT + 2 neighbour + DH 19.67 11.6x
NAT + 3 neighbour + DH 18.12 11.1x
NAT + 4 neighbour + DH 15.89 10.4x

Table 5.4: The table shows the BLEU score and speedup achieved by increasing the number of
neighbours. The neighbours are added at both the source and target. DH denote the attention
mechanism whereby heads are distributed between neighbours and sentence being translated.

CLS SUM MAX-POOL
`1 17.55 17.23 16.67
`2 21.53 21.12 20.87
Cosine 21.57 21.17 20.95

Table 5.5: The table shows the BLEU score of models trained on data built using different similar-
ity measures. It also shows results of using different sentence representations. CLS refers to using
cls token as sentence representations. SUM refers to summing up the output vectors of the words
in the sentence and MAX-POOL refers to max-pooling the output vectors of the sentence words.

Effects of changing the sentence representation We changed the sentence representation to

build the augmented data with nearest neighbours. We consider using <CLS> token which is

concatenated to the end of the sentence, summing up the output vectors of the words in the sentence

and max-pooling the output vectors of the sentence words. We used outputs from pre-trained

BERT to get build the sentence embeddings. We run experiments on WMT-14 de-en dataset and

trained a model with attention head division. The results are shown in Table 5.5. We observe

dataset built using CLS token to perform better than others. We hypothesise that summing and

max-pooling may remove some essential information from the representations thus leading to

similar examples which are not helpful in translation.

Effects of changing the number of heads We increase the number of attention heads for similar

examples. We train model using WMT-14 de-en dataset. The results are shown in Figure 5.4. We

see a decrease in BLEU score as more heads are dedicated to the neighbours. We hypothesis that

increasing the number of heads over similar examples distracts the model and make it concentrate

on part of the sentence which are not useful for translation. This is evidenced by lower BLEU

score as the number of heads for similar examples are increased. The BLEU score dropped from

21 points to less then 11 points as the number of heads are increased from 2 to 7.

Case Study We present several translation examples sampled from the WMT14 De-En dataset

in Figures 5.5, 5.6 and 5.7, including the source sentence, the target reference (i.e., the ground-

truth translation), the translation given by the autoregressive teacher model, by the NAT model, the

nearest neighbours and output of the Exemplar Transformer. As can be seen, NAT suffers severely

5.5. SUMMARY 97

Figure 5.4: The figure shows the effect of increasing the number of heads for similar examples.
We observe a decrease in BLEU score as more heads are dedicated to the neighbours.

from the issue of repeated translation (e.g., the ‘there’ and ‘it’ in the first example). The similar

example helps in translating the source sentence by providing information such as the translation

of the phrase. For example ‘The technology is there’ in Figure 5.5, ‘the firm was’ in Figure 5.6

and ‘A decision is expected’ appeared in the nearest neighbour and was translated correctly in the

output sequence.

5.5 Summary

NAT models struggle to capture the underlying highly multimodal target distribution due to the

loss of autoregressive connections in decoder. As the sentence is generated in parallel, the decod-

ing time is improved but the output quality degrades. In order to overcome the loss of information,

we suggest an informative and effective prior based upon the nearest neighbours. We also present

ways of incorporating the prior by dividing the attention heads. Our results suggest that the ap-

proach is promising as utilising the nearest source and target sentence provide improvements over

the vanilla NAT model. The improvements are minor but indicate that pursuing this approach

further may provide some benefits. Nearest source and target sentence may provide associations

that may be helpful in translating the given source sentence. Utilising just the source does not

improve the results. We conjecture that using just the nearest source sentence confuse the model.

Increasing the number of neighbours decreases the BLEU score as it becomes difficult for the

model to concentrate on the right information. Dividing the attention heads to focus on a specific

neighbour is helpful in this scenario. The dedicated attention heads help in extracting the required

information while not distracting the model.

Future work can look into finding novel ways for incorporating the prior such as allowing the

model to determine how many heads should be dedicated for a given example. Some empirical

studies are also required for studying the effect of dividing the heads among similar examples

such that more heads are given to examples nearby than the one which are far in the search space.

Another future direction is to learn the similarity metric such that instead of fixing the metric, the

model should change the metric to retrieve the neighbours according to the situation.

98 CHAPTER 5. EXEMPLAR TRANSFORMER

Figure 5.5: Example output 1: Figure shows the output of Exemplar Transformer compared to
NAT model

Figure 5.6: Example output 2: Figure shows the output of Exemplar Transformer compared to
NAT model

5.5. SUMMARY 99

Figure 5.7: Example output 3: Figure shows the output of Exemplar Transformer compared to
NAT model

100 CHAPTER 5. EXEMPLAR TRANSFORMER

Chapter 6

Conclusion and Future Directions

6.1 Summary

There is a balancing act between quality and time as we move from autoregressive to non autore-

gressive models. Autoregressive models are slower but produce better quality output compared to

non-autoregressive models which are faster. Semi-autoregressive models provide the best of both

worlds by decoding faster but at the expense of output quality. This thesis therefore, explored the

problem of text generation with the aim of improving generation across the three model families.

It identifies and addresses various literature gaps such as ineffective decoding methods for autore-

gressive models, lack of length flexibility in autoregressive and non-autoregressive models, and

inferior output quality by non-autoregressive models compared to autoregressive models.

In Chapter 3, we address the first limitation that is ineffective decoding methods for autore-

gressive models by proposing an iterative approach capable of revisiting and revising the gener-

ated text. This is in contrast to the current prevalent decoding methods such as greedy and beam

search. These methods are simple, error prone and unidirectional resulting in error being prop-

agated throughout the decoding process. We propose to use the method of auxiliary coordinate,

which introduce discrete variables for output tokens, and auxiliary continuous variables represent-

ing the states of the underlying autoregressive model. Our approach alternate between creating

a factor graph approximation, whose maximum a posteriori (MAP) solution is found using dy-

namic programming and updating the auxiliary variable based upon the new factor graph. The

iterative approach allows revisiting the sentence and rectifying mistakes. We applied our approach

on text infilling task and showed superior output compared to competing decoding methods. We

conduct various ablation studies such as varying the masking rate and Markov order. Increasing

the masking rate results in a drop in BLEU score. Higher masking rates are challenging for our

approach due to reduced context for generating the correct tokens. Increasing the Markov order

produces more accurate approximations to the original decoding problem, but they result in harder

optimization problems. Finally, we also presented two methods for updating the state variables.

Gradient based method results in lower perplexity compared to forced decoding. This is because

the state variables are updated based upon the gradient of the objective function.

101

102 CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

In Chapter 4, we address the limitation of lack of length flexibility and the difficulty of main-

taining coherence when generating long sequences by autoregressive and non-autoregressive mod-

els. By framing document generation as a hierarchical Markov decision process, we propose a

semi-autoregressive model that is capable of revising and updating the generated text with the

help of editing operators. The high level program is responsible for intra-sentence phenomena

such as maintaining coherency among sentences. The low level program is responsible for inter-

sentence phenomena such as producing syntactically and semantically correct sentences. With

the help of editing operation such as insert , delete, update and reposition, our model allowed

length flexibility. We applied the proposed approach on document generation tasks such as story

generation and summarization. Our models underperform state-of-the-art but show promise. The

results on synthetic dataset shows model ability to capture discourse level phenomena by using

sentence representations. The baseline models use individual tokens/words and find it difficult to

capture long range document level phenomena correctly. The experiments on ROC stories show

the model’s ability to dynamically change the length using the insert and update operator. We

also conduct experiments on real world summarization dataset. Using our model as a document

level post-editing system, we show that the high level program has the capability to capture the

underlying document structure and can provide context and structure aware information which can

then improve the coherence of the document. We identified various areas for improving the model

such as using distilled dataset to reduce the modality of data (alternative correct outputs), bet-

ter training approach including pre-training and fine-tuning, using autoregressive model as a low

level program and modifying attention such that more attention is given to the sentences around

the given sentence than those far away in the document.

In Chapter 5, we address the problem of inferior output quality by non-autoregressive mod-

els compared to autoregressive models. We propose an informative prior based upon the nearest

neighbours to inject information about dependencies in the output variables. We also propose

changes to the attention mechanism to incorporate the prior effectively. In particular we pro-

pose attention heads division where lesser heads are dedicated to the similar examples than to the

sentence being translated. This allows the model to be not distracted by extra information. We ap-

plied our proposed approach on benchmark datasets. Our approach was effective compared to the

vanilla NAT model but underperfom other comparable state-of-the-art models. To further study

the behaviour of the model, we conduct various ablation studies. Increasing the number of nearest

neighbours results in a drop in quality and speedup. We hypothesise that the decrease in quality

occurs because it becomes difficult for the model to concentrate on the right information. The drop

in speedup is because of processing a longer sequence. By changing the similarity measure, we

observe that `2 and cosine similarity gives almost similar results while the `1 distance shows lower

BLEU score compared to other metrics. We hypothesise that `2 and cosine similarity can better

differentiate between instances as it allows small changes to be amplified with the squared term

present in their formulae. Finally, we increase the number of attention heads for similar examples.

We see a decrease in BLEU score as more heads are dedicated to the neighbours. We hypothe-

sise that increasing the number of heads over similar examples distracts the model and makes it

concentrate on parts of the sentence which are not useful for translation.

6.2. FUTURE DIRECTIONS 103

6.2 Future Directions

There are various potential extensions to the findings of this thesis. We briefly discuss some of

them as follows:

1. Chapter 3 presented a method for improving decoding in discrete autoregressive models

using dynamic programming. The core idea is to introduce auxiliary variables to decouple

the non-Markovian aspects of the model, permitting an approximate solution. Our approach

does have limitations, most notably the computational complexity which is polynomial in

the vocabulary size, thus limiting its application to open text generation problems. Improv-

ing the complexity of decoding is an important direction for future research, as is applying

the method to other autoregressive models, such as the Transformer, which includes self

attention, as well as other structured prediction problems.

2. Chapter 4 presented a semi-autoregressive model for long text generation with dynamic

length flexibility. Our approach underperformed the baselines. There are many ways we

can improve our model. One way is to train the two levels separately. A low level program

should be initially trained and tested separately. The high level program is then trained while

keeping the low level program frozen. Distilled dataset has been shown to improve NAT

models by dealing with multimodality problem. We can also explore leveraging distilled

data using curriculum learning that is starting with distilled dataset and then moving to

harder actual examples. Pre-training and fine-tuning approaches have been found useful in

various tasks. The classifiers in our model can be individually pre-trained and then fine-

tuned for better model generalisation. We can also take advantage of inherent left to right

generation bias by using an autoregressive model as a low-level program but this can lead

to longer decoding times. Finally, wider context has been shown to improve results for this

document-level task therefore exploring and designing better attention mechanism can be a

potential extension of this work.

3. Chapter 5 presented an informative prior to inject information about dependencies in NAT

models. This work can be extended by finding better ways for incorporating the prior. One

way is to allow the model to determine the optimal division of heads for neighbours and

actual sentence. Another extension is to divide the heads such that more heads are given to

examples nearby than the one which are far in the search space. Future work can also look

into learning the similarity metric such that instead of fixing the metric, the model should

dynamically determine the metric to retrieve the neighbours.

104 CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

References

Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang, L. (2018).

Bottom-up and top-down attention for image captioning and visual question answering. In

Proceedings of the ieee conference on computer vision and pattern recognition (pp. 6077–

6086).

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Baheti, A., Ritter, A., Li, J., & Dolan, B. (2018). Generating more interesting responses in neural

conversation models with distributional constraints. arXiv preprint arXiv:1809.01215.

Bao, G., Zhang, Y., Teng, Z., Chen, B., & Luo, W. (2021). G-transformer for document-level

machine translation. arXiv preprint arXiv:2105.14761.

Bao, Y., Zhou, H., Feng, J., Wang, M., Huang, S., Chen, J., & Li, L. (2019). Non-autoregressive

transformer by position learning. arXiv preprint arXiv:1911.10677.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language

model. Journal of machine learning research, 3(Feb), 1137–1155.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings

of the 26th annual international conference on machine learning (pp. 41–48).

Bosselut, A., Celikyilmaz, A., He, X., Gao, J., Huang, P.-S., & Choi, Y. (2018). Discourse-aware

neural rewards for coherent text generation. arXiv preprint arXiv:1805.03766.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., . . . others (2020).

Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Carreira-Perpinan, M., & Wang, W. (2014). Distributed optimization of deeply nested systems.

In Artificial intelligence and statistics (aistats) (pp. 10–19).

Charniak, E. (1996). Statistical language learning. MIT press.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Ben-

gio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078.

Cohen, E., & Beck, C. (2019). Empirical analysis of beam search performance degradation in

neural sequence models. In International conference on machine learning (pp. 1290–1299).

Dantzig, G., & Fulkerson, D. R. (2003). On the max flow min cut theorem of networks. Linear

inequalities and related systems, 38, 225–231.

Deng, Y., Bakhtin, A., Ott, M., Szlam, A., & Ranzato, M. (2020). Residual energy-based models

105

106 References

for text generation. arXiv preprint arXiv:2004.11714.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Du, C., Tu, Z., & Jiang, J. (2021). Order-agnostic cross entropy for non-autoregressive machine

translation. arXiv preprint arXiv:2106.05093.

Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and

Technology (ARIST), 38, 189–230.

Eisenstein, J. (2019). Introduction to natural language processing. MIT press.

El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text

summarization: A comprehensive survey. Expert Systems with Applications, 165, 113679.

Elman, J. L. (1990a). Finding structure in time. Cognitive science, 14(2), 179–211.

Elman, J. L. (1990b). Finding structure in time. COGNITIVE SCIENCE, 14(2), 179–211.

Fabbri, A. R., Li, I., She, T., Li, S., & Radev, D. R. (2019). Multi-news: A large-scale

multi-document summarization dataset and abstractive hierarchical model. arXiv preprint

arXiv:1906.01749.

Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., . . . others (2021). Beyond

english-centric multilingual machine translation. Journal of Machine Learning Research,

22(107), 1–48.

Fan, A., Lewis, M., & Dauphin, Y. (2018). Hierarchical neural story generation. arXiv preprint

arXiv:1805.04833.

Fang, L., Zeng, T., Liu, C., Bo, L., Dong, W., & Chen, C. (2021). Transformer-based conditional

variational autoencoder for controllable story generation. arXiv preprint arXiv:2101.00828.

Fedus, W., Goodfellow, I., & Dai, A. M. (2018). Maskgan: better text generation via filling in

the . arXiv preprint arXiv:1801.07736.

Feng, S. Y., Li, A. W., & Hoey, J. (2019). Keep calm and switch on! preserving sentiment and

fluency in semantic text exchange. arXiv preprint arXiv:1909.00088.

Frederking, R. (1996). Grice’s maxims: do the right thing. Frederking, RE.

Freitag, M., & Al-Onaizan, Y. (2017). Beam search strategies for neural machine translation.

arXiv preprint arXiv:1702.01806.

Garcia, F., & Rachelson, E. (2013). Markov decision processes. Markov Decision Processes in

Artificial Intelligence, 1–38.

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional se-

quence to sequence learning. In Proceedings of the 34th international conference on ma-

chine learning-volume 70 (pp. 1243–1252).

Ghazvininejad, M., Levy, O., Liu, Y., & Zettlemoyer, L. (2019a). Constant-time machine transla-

tion with conditional masked language models. arXiv preprint arXiv:1904.09324.

Ghazvininejad, M., Levy, O., Liu, Y., & Zettlemoyer, L. (2019b). Mask-predict: Parallel decoding

of conditional masked language models. arXiv preprint arXiv:1904.09324.

Ghazvininejad, M., Levy, O., & Zettlemoyer, L. (2020). Semi-autoregressive training improves

mask-predict decoding. arXiv preprint arXiv:2001.08785.

Ghazvininejad, M., Shi, X., Priyadarshi, J., & Knight, K. (2017, July). Hafez: an interac-

tive poetry generation system. In Proceedings of ACL 2017, system demonstrations (pp.

References 107

43–48). Vancouver, Canada: Association for Computational Linguistics. Retrieved from

https://aclanthology.org/P17-4008

Goyal, K., Dyer, C., & Berg-Kirkpatrick, T. (2019). An empirical investigation of global and local

normalization for recurrent neural sequence models using a continuous relaxation to beam

search. arXiv preprint arXiv:1904.06834.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal classifi-

cation: labelling unsegmented sequence data with recurrent neural networks. In Proceedings

of the 23rd international conference on machine learning (pp. 369–376).

Grover, A., Song, J., Agarwal, A., Tran, K., Kapoor, A., Horvitz, E., & Ermon, S. (2019). Bias

correction of learned generative models using likelihood-free importance weighting. arXiv

preprint arXiv:1906.09531.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., & Socher, R. (2017). Non-autoregressive neural machine

translation. arXiv preprint arXiv:1711.02281.

Gu, J., Cho, K., & Li, V. O. (2017). Trainable greedy decoding for neural machine translation.

arXiv preprint arXiv:1702.02429.

Gu, J., & Kong, X. (2020). Fully non-autoregressive neural machine translation: Tricks of the

trade. arXiv preprint arXiv:2012.15833.

Gu, J., Wang, C., & Zhao, J. (2019). Levenshtein transformer. arXiv preprint arXiv:1905.11006.

Guo, J., Tan, X., He, D., Qin, T., Xu, L., & Liu, T.-Y. (2019). Non-autoregressive neural machine

translation with enhanced decoder input. In Proceedings of the aaai conference on artificial

intelligence (Vol. 33, pp. 3723–3730).

Guo, J., Tan, X., Xu, L., Qin, T., Chen, E., & Liu, T.-Y. (2020). Fine-tuning by curriculum learning

for non-autoregressive neural machine translation. In Proceedings of the aaai conference

on artificial intelligence (Vol. 34, pp. 7839–7846).

Gutmann, M., & Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation prin-

ciple for unnormalized statistical models. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics (pp. 297–304).

Hinton, G. E. (1999). Products of experts. In Ninth international conference on artificial neural

networks (Vol. 1, pp. 1–6).

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische

Universität München, 91(1).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735–1780.

Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2019). The curious case of neural text

degeneration. arXiv preprint arXiv:1904.09751.

Holtzman, A., Buys, J., Forbes, M., Bosselut, A., Golub, D., & Choi, Y. (2018). Learning to write

with cooperative discriminators. arXiv preprint arXiv:1805.06087.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2), 251–257.

Horvat, M., & Byrne, W. (2014). A graph-based approach to string regeneration. In Proceedings

108 References

of the student research workshop at the 14th conference of the european chapter of the

association for computational linguistics (pp. 85–95).

Hovy, E. H., Lin, C.-Y., Zhou, L., & Fukumoto, J. (2006). Automated summarization evaluation

with basic elements. In Lrec (Vol. 6, pp. 604–611).

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning

methods. ACM Computing Surveys (CSUR), 50(2), 1–35.

Inaguma, H., Higuchi, Y., Duh, K., Kawahara, T., & Watanabe, S. (2021). Orthros: Non-

autoregressive end-to-end speech translation with dual-decoder. In Icassp 2021-2021 ieee

international conference on acoustics, speech and signal processing (icassp) (pp. 7503–

7507).

Ippolito, D., Grangier, D., Callison-Burch, C., & Eck, D. (2019). Unsupervised hierarchical story

infilling. In Proceedings of the first workshop on narrative understanding (pp. 37–43).

Johnson, J., Douze, M., & Jégou, H. (2017). Billion-scale similarity search with gpus. arXiv

preprint arXiv:1702.08734.

Johnson, R. A., Miller, I., & Freund, J. E. (2000). Probability and statistics for engineers (Vol.

2000). Pearson Education London.

Kasai, J., Cross, J., Ghazvininejad, M., & Gu, J. (2020a). Non-autoregressive machine translation

with disentangled context transformer. In International conference on machine learning

(pp. 5144–5155).

Kasai, J., Cross, J., Ghazvininejad, M., & Gu, J. (2020b). Parallel machine translation with

disentangled context transformer. arXiv preprint arXiv:2001.05136.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C., & Socher, R. (2019). Ctrl: A conditional

transformer language model for controllable generation. arXiv preprint arXiv:1909.05858.

Kim, Y., Tran, D. T., & Ney, H. (2019). When and why is document-level context useful in neural

machine translation? arXiv preprint arXiv:1910.00294.

Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. (2017, July). OpenNMT: Open-source

toolkit for neural machine translation. In Proceedings of ACL 2017, system demonstrations

(pp. 67–72). Vancouver, Canada: Association for Computational Linguistics. Retrieved

from https://www.aclweb.org/anthology/P17-4012

Kneser, R., & Ney, H. (1995). Improved backing-off for m-gram language modeling. In 1995

international conference on acoustics, speech, and signal processing (Vol. 1, pp. 181–184).

Kulesza, A., & Pereira, F. (2008). Structured learning with approximate inference. In Advances

in neural information processing systems (pp. 785–792).

Lebanoff, L., Song, K., & Liu, F. (2018). Adapting the neural encoder-decoder framework from

single to multi-document summarization. arXiv preprint arXiv:1808.06218.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.

LeCun, Y., & Huang, F. J. (2005). Loss functions for discriminative training of energy-based

models. In International workshop on artificial intelligence and statistics (pp. 206–213).

Lee, J., Mansimov, E., & Cho, K. (2018). Deterministic non-autoregressive neural sequence

modeling by iterative refinement. arXiv preprint arXiv:1802.06901.

Lees, R. B. (1957). Syntactic structures. JSTOR.

Levenshtein, V. I., et al. (1966). Binary codes capable of correcting deletions, insertions, and

References 109

reversals. In Soviet physics doklady (Vol. 10, pp. 707–710).

Levy, R., & Jaeger, T. F. (2007). Speakers optimize information density through syntactic reduc-

tion. Advances in neural information processing systems, 19, 849.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., . . . Zettlemoyer, L.

(2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation,

translation, and comprehension. arXiv preprint arXiv:1910.13461.

Li, X., Meng, Y., Yuan, A., Wu, F., & Li, J. (2020). Lava nat: A non-autoregressive

translation model with look-around decoding and vocabulary attention. arXiv preprint

arXiv:2002.03084.

Li, Y., Su, H., Shen, X., Li, W., Cao, Z., & Niu, S. (2017). Dailydialog: A manually labelled

multi-turn dialogue dataset. arXiv preprint arXiv:1710.03957.

Li, Z., Lin, Z., He, D., Tian, F., Qin, T., Wang, L., & Liu, T.-Y. (2019). Hint-based training for

non-autoregressive machine translation. arXiv preprint arXiv:1909.06708.

Libovickỳ, J., & Helcl, J. (2018). End-to-end non-autoregressive neural machine translation with

connectionist temporal classification. arXiv preprint arXiv:1811.04719.

Liu, D., Fu, J., Liu, P., & Lv, J. (2019). Tigs: An inference algorithm for text infilling with gradient

search. arXiv preprint arXiv:1905.10752.

Liu, M., Buntine, W., & Haffari, G. (2018). Learning to actively learn neural machine translation.

In Proceedings of the 22nd conference on computational natural language learning (pp.

334–344).

Ma, X., Zhou, C., Li, X., Neubig, G., & Hovy, E. (2019). Flowseq: Non-autoregressive conditional

sequence generation with generative flow. arXiv preprint arXiv:1909.02480.

Ma, Z., Edunov, S., & Auli, M. (2021). A comparison of approaches to document-level machine

translation. arXiv preprint arXiv:2101.11040.

Martins, A. F. T. (2012). The geometry of constrained structured prediction: applications to infer-

ence and learning of natural language syntax (Unpublished doctoral dissertation). Carnegie

Mellon University.

McAllister, M. K., & Ianelli, J. N. (1997). Bayesian stock assessment using catch-age data and

the sampling-importance resampling algorithm. Canadian Journal of Fisheries and Aquatic

Sciences, 54(2), 284–300.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4), 115–133.

Meister, C., Vieira, T., & Cotterell, R. (2020). If beam search is the answer, what was the question?

arXiv preprint arXiv:2010.02650.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representa-

tions in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010). Recurrent neural

network based language model. In Eleventh annual conference of the international speech

communication association.

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., & Khudanpur, S. (2011). Extensions of re-

current neural network language model. In 2011 ieee international conference on acoustics,

speech and signal processing (icassp) (pp. 5528–5531).

110 References

Minsky, M., & Papert, S. (1969). An introduction to computational geometry. Cambridge tiass.,

HIT .

Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L., . . . Allen, J.

(2016). A corpus and evaluation framework for deeper understanding of commonsense

stories. arXiv preprint arXiv:1604.01696.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (second ed.). New York, NY, USA:

Springer.

Opper, M., & Haussler, D. (1991). Generalization performance of bayes optimal classification

algorithm for learning a perceptron. Physical Review Letters, 66(20), 2677.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., . . . Auli, M. (2019). fairseq: A fast,

extensible toolkit for sequence modeling. In Proceedings of naacl-hlt 2019: Demonstra-

tions.

Over, P., & Yen, J. (2004). An introduction to duc-2004. National Institute of Standards and

Technology.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic evaluation

of machine translation. In Proceedings of the 40th annual meeting of the association for

computational linguistics (pp. 311–318).

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word represen-

tation. In Proceedings of the 2014 conference on empirical methods in natural language

processing (emnlp) (pp. 1532–1543).

Ramachandran, P., Paine, T. L., Khorrami, P., Babaeizadeh, M., Chang, S., Zhang, Y., . . . Huang,

T. S. (2017). Fast generation for convolutional autoregressive models. arXiv preprint

arXiv:1704.06001.

Ran, Q., Lin, Y., Li, P., & Zhou, J. (2019). Guiding non-autoregressive neural machine translation

decoding with reordering information. arXiv preprint arXiv:1911.02215.

Ranzato, M., Chopra, S., Auli, M., & Zaremba, W. (2015). Sequence level training with recurrent

neural networks. arXiv preprint arXiv:1511.06732.

Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. In Interna-

tional conference on machine learning (pp. 1530–1538).

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organi-

zation in the brain. Psychological review, 65(6), 386.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations

by error propagation (Tech. Rep.). California Univ San Diego La Jolla Inst for Cognitive

Science.

Schmaltz, A., Rush, A. M., & Shieber, S. M. (2016). Word ordering without syntax. arXiv preprint

arXiv:1604.08633.

Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare words with

subword units. arXiv preprint arXiv:1508.07909.

Shao, C., Zhang, J., Feng, Y., Meng, F., & Zhou, J. (2020). Minimizing the bag-of-ngrams

difference for non-autoregressive neural machine translation. In Proceedings of the aaai

conference on artificial intelligence (Vol. 34, pp. 198–205).

References 111

Shen, D., Celikyilmaz, A., Zhang, Y., Chen, L., Wang, X., Gao, J., & Carin, L. (2019). Towards

generating long and coherent text with multi-level latent variable models. arXiv preprint

arXiv:1902.00154.

Shu, R., Lee, J., Nakayama, H., & Cho, K. (2020). Latent-variable non-autoregressive neural

machine translation with deterministic inference using a delta posterior. In Proceedings of

the aaai conference on artificial intelligence (Vol. 34, pp. 8846–8853).

Slaney, M., & Casey, M. (2008). Locality-sensitive hashing for finding nearest neighbors [lecture

notes]. IEEE Signal processing magazine, 25(2), 128–131.

Socher, R., Lin, C. C., Manning, C., & Ng, A. Y. (2011). Parsing natural scenes and natural lan-

guage with recursive neural networks. In Proceedings of the 28th international conference

on machine learning (icml-11) (pp. 129–136).

Sun, Z., Li, Z., Wang, H., Lin, Z., He, D., & Deng, Z.-H. (2019). Fast structured decoding for

sequence models. arXiv preprint arXiv:1910.11555.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks.

In Advances in neural information processing systems (pp. 3104–3112).

Tan, B., Yang, Z., AI-Shedivat, M., Xing, E. P., & Hu, Z. (2020). Progressive generation of long

text with pretrained language models. arXiv preprint arXiv:2006.15720.

Tan, X., Qin, T., Soong, F., & Liu, T.-Y. (2021). A survey on neural speech synthesis. arXiv

preprint arXiv:2106.15561.

Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., & Goldstein, T. (2016). Training neural

networks without gradients: A scalable admm approach. In International conference on

machine learning (pp. 2722–2731).

Tokarchuk, E., Rosendahl, J., Wang, W., Petrushkov, P., Lancewicki, T., Khadivi, S., & Ney, H.

(2021). Towards reinforcement learning for pivot-based neural machine translation with

non-autoregressive transformer. arXiv preprint arXiv:2109.13097.

Tromble, R., & Eisner, J. (2009). Learning linear ordering problems for better translation. In

Proceedings of the 2009 conference on empirical methods in natural language processing:

Volume 2-volume 2 (pp. 1007–1016).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.

(2017). Attention is all you need. In Advances in neural information processing systems

(pp. 5998–6008).

Viterbi, A. (1967, April). Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260-269. doi: 10

.1109/TIT.1967.1054010

Wan, X., Luo, F., Sun, X., Huang, S., & Yao, J.-g. (2019). Cross-language document summariza-

tion via extraction and ranking of multiple summaries. Knowledge and Information Systems,

58(2), 481–499.

Wang, C., Zhang, J., & Chen, H. (2018). Semi-autoregressive neural machine translation. arXiv

preprint arXiv:1808.08583.

Wang, J., Yu, F., Chen, X., & Zhao, L. (2019). Admm for efficient deep learning with global

convergence. arXiv preprint arXiv:1905.13611.

Wang, Y., Tian, F., He, D., Qin, T., Zhai, C., & Liu, T.-Y. (2019). Non-autoregressive machine

112 References

translation with auxiliary regularization. In Proceedings of the aaai conference on artificial

intelligence (Vol. 33, pp. 5377–5384).

Wei, B., Wang, M., Zhou, H., Lin, J., & Sun, X. (2019). Imitation learning for non-autoregressive

neural machine translation. arXiv preprint arXiv:1906.02041.

Welleck, S., Brantley, K., Daumé III, H., & Cho, K. (2019). Non-monotonic sequential text

generation. arXiv preprint arXiv:1902.02192.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., . . . others (2016). Google’s

neural machine translation system: Bridging the gap between human and machine transla-

tion. arXiv preprint arXiv:1609.08144.

Xu, W., & Carpuat, M. (2020). Editor: an edit-based transformer with repositioning for neural

machine translation with soft lexical constraints. arXiv preprint arXiv:2011.06868.

Zellers, R., Bisk, Y., Schwartz, R., & Choi, Y. (2018). Swag: A large-scale adversarial dataset for

grounded commonsense inference. arXiv preprint arXiv:1808.05326.

Zhang, W., Feng, Y., Meng, F., You, D., & Liu, Q. (2019). Bridging the gap between training and

inference for neural machine translation. arXiv preprint arXiv:1906.02448.

Zhang, W., Yoshida, T., & Tang, X. (2011). A comparative study of tf* idf, lsi and multi-words

for text classification. Expert Systems with Applications, 38(3), 2758–2765.

Zhao, J., Liu, M., Gao, L., Jin, Y., Du, L., Zhao, H., . . . Haffari, G. (2020). Summpip: Unsu-

pervised multi-document summarization with sentence graph compression. In Proceedings

of the 43rd international acm sigir conference on research and development in information

retrieval (pp. 1949–1952).

Zhao, L., Xu, J., Lin, J., Zhang, Y., Yang, H., & Sun, X. (2020). Graph-based multi-hop reasoning

for long text generation. arXiv preprint arXiv:2009.13282.

Zhou, C., Neubig, G., & Gu, J. (2019). Understanding knowledge distillation in non-

autoregressive machine translation. arXiv preprint arXiv:1911.02727.

Zhou, J., & Xu, W. (2015). End-to-end learning of semantic role labeling using recurrent neural

networks. In Proceedings of the 53rd annual meeting of the association for computational

linguistics and the 7th international joint conference on natural language processing (vol-

ume 1: Long papers) (pp. 1127–1137).

Zhu, W., Hu, Z., & Xing, E. (2019). Text infilling. arXiv preprint arXiv:1901.00158.

Zweig, G., & Burges, C. J. (2011). The microsoft research sentence completion challenge. Mi-

crosoft Research, Redmond, WA, USA, Tech. Rep. MSR-TR-2011-129.

