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Abstract
A key challenge in biology is to understand how spatiotemporal patterns and structures

arise during the development of an organism. An initial aggregate of spatially uniform

cells develops and forms the differentiated structures of a fully developed organism. On

the one hand, contact-dependent cell-cell signaling is responsible for generating a large

number of complex, self-organized, spatial patterns in the distribution of the signaling

molecules. On the other hand, the motility of cells coupled with their polarity can in-

dependently lead to collective motion patterns that depend on mechanical parameters

influencing tissue deformation, such as cellular elasticity, cell-cell adhesion and active

forces generated by actin and myosin dynamics. Moreover, it is getting increasingly clear

that the spatiotemporal patterns of cell shape and size in the tissues, for example, in can-

cerous and sensory epithelium, are also governed by feedback between chemical signaling

and cell mechanics. However, a clear quantitative picture of how these two aspects of

tissue dynamics, i.e., signaling and mechanics, lead to pattern and form is still emerging.

Although modeling efforts have, thus far, treated cell motility and mechanics and

cell-cell signaling separately, experiments in recent years suggest that these processes

could be tightly coupled. Hence, in the present thesis, we first study how the dynamics of

cell polarity and migration influence the spatiotemporal patterning of signaling molecules

such as Delta and Notch. These signaling interactions can occur only between cells that

are in physical contact, either directly at the junctions of adjacent cells or through cellular

protrusional contacts. We present a vertex model which accounts for contact-dependent

signaling between adjacent cells and between non-adjacent neighbors through long pro-

trusional contacts that occur along the orientation of cell polarization. We observe a rich

variety of spatiotemporal patterns of signaling molecules that are influenced by polarity

dynamics of the cells, relative strengths of adjacent and non-adjacent signaling interac-

tions, range of polarized interaction, signaling activation threshold, relative time scales of

signaling and polarity orientation, and cell motility. We then extend this vertex model

framework to include a simple feedback mechanism between cell-cell adhesion and the

expression of signaling molecules in cells. We use this model to explore the origin and

diverse manifestation of chemical and cell morphological patterns in the tissues. We sys-

tematically quantify different aspects of resulting cellular morphologies as a function of
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the coupling parameters between Delta-Notch signaling and cell-cell adhesion. Overall,

by using a basic vertex model connected to simple chemical reactions, we show that even

elementary coupling between chemical signaling and cell mechanics can give rise to a wide

variety of hitherto unexplored mechanochemical patterns in epithelial tissues. Though we

focus on Delta-Notch signaling in the current work, our framework can easily be extended

to explore the mechanochemistry of other contact-based signaling pathways.
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Chapter 1

Introduction

How the cells of a multicellular organism create chemical and mechanical develop-

mental patterns during morphogenesis by modifying and adjusting their shape, size, po-

larity, migration, signaling, differentiation potential, proliferation, and death is an open

question [54, 111]. Morphogenesis involves complex mechanochemical processes that bring

diverse cell populations together to build complex structures such as heart, lungs, and

limbs [52, 94]. Starting from a simple homogeneous monolayer of cells or an aggregate

of homogeneous mesenchymal stem cells, different organs develop their shape and size by

controlling the spatial distribution of cells during embryonic development [111, 117].

Understanding tissue morphogenesis requires the integration of various processes

across different scales. These range from the processes that take place at an intracellular

level involving genes and protein (signaling) networks and mechanical components, such

as molecular motors, to the processes at the extracellular level in which cells respond to

signaling cues [54]. On the one hand, signaling proteins/molecules interact within the

same cell, with different cells, or with the extracellular matrix to form chemical patterns

in the tissues, thus forming the chemical basis of morphogenesis. These signaling proteins

interact to form complex signaling networks or pathways and direct the embryonic cells

to their final fate or cell type in order to establish their future identity. On the other

hand, mechanical forces cause changes in cell size, shape, movement and death of cells

and form the mechanical basis of morphogenesis [20, 42, 188]. The integration of these

two categories of processes result in large-scale deformation, shape changes, and chemical

patterning in the tissues.
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1.1 Chemical basis of morphogenesis

Four basic types of signaling pathways are reported in multicellular organisms that plays

central role in controlling all the development activities during organism development:

juxtracrine (signaling by direct contact) [216], autocrine signaling [127, 223], paracrine

signaling [233] and endocrine signaling [49]. The signaling pathways are composed of a

large number of molecules/proteins that interact with various other signaling pathways

to form complex signaling networks [21]. Many receptors and signal-transducers interact

and integrate to form signaling networks that regulate biochemical signaling within and

between the cells that governs the cell fate determination and information flow in the

tissue [30]. To establish the intra-cellular and inter-cellular communication and to transfer

the information of extra-cellular matrix to the cell nucleus, multiple signaling pathways

have been reported in various multicellular organisms [14, 132]. Fgf [119], Hedgehog [212],

Wnt [144], TGF-β [142] and Delta-Notch [103] are the few examples of signaling pathways

and signaling molecules that are responsible for cell communication.

Delta-Notch signaling pathway is one of the most important among signaling path-

ways (Figure 1.1). This pathway is considered ideal for mediating precise patterning

signals, as the Notch receptor and Delta ligand both are trans-membrane and act as a

switch to toggle cell fates on or off [179]. Notch signaling is a conserved signaling pathway

that is central to the development, morphogenesis, and differentiation process in organisms

and is present in almost all animals [30, 116]. The disruption of Notch signaling result in

several cancers such as leukemia [268], pancreatic cancer [173, 274], lung cancer [83, 84],

skin cancer [163, 184] as well as developmental defects [34, 166],and diabetes [3]. Notch

signaling also acts as both a tumor suppressor and tumor-promoting factor in several

types of cancers such as lung cancer, lymphoid neoplasm, breast cancer, skin cancer and

colorectal cancer [186]. An in-depth understanding of Delta-Notch signaling is thus re-

quired to understand the development process and cancer pathogenesis. It can be further

applied to understand targeted cellular differentiation into desired cell types [132].

Notch and its ligand family DSL (Delta, Serrate, LAG-2) are trans-membrane pro-

teins [63]. For signaling to take place, the cells expressing the ligands must be in contact

with the Notch expressing cell. Notch signaling pathway depends on the contact between

2



(a) (b) (c)

Figure 1.1: (a) Schematic of a juxtacrine signaling system. Receptors of one cell (blue

cell) interact with ligands on the membrane of a neighboring cell (red cell). Ligands are

present on the membrane surface of the ligand cell and interact with receptors that reside

at the contact area between the cells. The figure is taken from Yaron et al. [272]. (b)

Schematic of the intracellular and intercellular Delta-Notch signaling pathway. Notch,

the trans-membrane receptor of one cell, binds to Delta, the trans-membrane ligands

belonging to the neighboring cell. This interaction cleaves the Notch receptor to release

the intracellular Notch domain. The intracellular Notch domain migrates to the nucleus

and regulates the transcription of many genes. This regulation leads to the activation of

Notch and Jagged and inhibition of Delta. The figure is taken from Boareto et al. [28].

(c) Figure showing the steady-state checkerboard pattern of primary and secondary fates

in a monolayer of hexagonal cells, generated through lateral inhibition mechanism. Black

colour shows the cells with primary fate, and white cells show the secondary fate. The

figure is taken from Collier et al. [47]
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two neighboring cells or non-neigbouring cells and does not require any other mediator to

transmit the signal. After a ligand present on the surface of one cell is linked to the re-

ceptor present on the membrane of the other cell, the intracellular domain of the receptor

is cleaved off and it reaches the nucleus where it directly regulates gene expression [129].

However, a complex regulation mechanism is required to secure the wide range of events

driven by Notch signaling.

The Delta-Notch kinetics have previously been modeled in a number of ways. The

cellular contacts during signaling could either be local and between the nearest neigh-

bors [1, 104, 121] or they could be long-ranged and mediated by protrusions such as

filopodia [44, 65, 182, 210, 212]. Protrusion-based signaling through Notch pathway is

quite common during morphogenesis [44, 182]. Similar long-ranged signaling is also seen,

for example, in Sonic hedgehog pathway (Shh) during limb patterning in vertebrates [212].

The short-range signaling via lateral inhibition, in which the immediate neighbouring

cells in a tissue attain a different fate results in a self-organised checker-board pattern [47].

More complex patterns such as bristle patterns in Drosophila notum and stripe patterns

in zebrafish can be produced by protrusion-mediated long-range signaling with protrusion

directionality and signaling efficiency [99, 255]. Moreover, the patterning dynamics can

be sped up by the inclusion of the mutual inactivation of Delta-Notch along with the

dynamics of lateral inhibition [226, 227].

1.2 Mechanical basis of morphogenesis

Cell mechanics and motility forms the mechanical basis of morphogenesis that governs cell

geometry, morphology and overall tissue dynamics. During morphogenesis, the cells in the

tissue actively migrate and rearrange themselves to ensure the formation of proper shape

and size of the organs [151]. This behaviour is regulated by the cell elastic and active forces

and the coupling between neighbouring cells [22, 70]. In tissues, the cells are mechanically

coupled to their neighbouring cells via adhesion molecules along the cell membranes, and

exert forces on each other and their environment [4]. These interactions are complex and

lead to morphogenetic deformations of tissues during development, and are crucial in set-

ting up the shape of the organism. The actin cytoskeleton is responsible for generating
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surface and line tensions that act along the cell membranes, and are balanced by cell–cell

adhesion and cell–extracellular matrix adhesion. The actin cytoskeleton, which is a net-

work of polar, semiflexible protein filaments is essential for driving cell motility [25]. The

main forces that govern cell motility are the internal forces caused by the cytoskeleton

(mainly actin, myosin, and adhesion molecules) and the subcellular structures (lamellipo-

dia and filopodia). As the cells in the tissue are connected to each other via adherens

junctions that are composed of mainly cadherins and contractile actin-myosin, the collec-

tive effect of the motility of each cell leads to collective cell migration [10, 75, 225]. The

cells also have polarity, i.e., a differentiation between top-bottom or front-rear, and show

polarized behaviour. Depending on the type of front-rear polarity dynamics, the cells can

have different types of motility behavior. Cells can either exhibit random walk or can

move in an aligned manner depending upon the polarity dynamics. Cell polarity and thus

motility can be governed by biochemical signals or signaling pathways.

The law of mechanics are essential to understand the physics of morphogenesis [270]

since the forces acting in the tissue that cause deformation must be balanced. Since the

inertial forces in tissues are much smaller as compared to the friction forces, internal

and external forces acting on the tissue are effectively balanced by viscous or friction

forces [23]. A tissue deforms due to the internal forces (that is generated from various

activities within the cell) and external forces act on the tissue either from the surrounding

tissues or from external forces such as fluid flows and gravitation. As a result, cells deform

and topological rearrangements of the bonds that joins the cells takes place.

A large number discrete cell-based models have been used to provide insight into

cellular processes within epithelia, including cell motility, adhesion, and mitosis, among

many developmental processes [26, 73]. Some of the commonly used models are fixed

lattice cellular automata [67], cellular Potts model [91], off-lattice centre dynamics [213,

252] and vertex dynamics models [8, 70]. To model the sub-cellular complex interactions,

there is a requirement of a discrete cell population model that can incorporate motion of

the cells via governing equations of motion and cell-cell interactions due to intercellular

signalling and mechanical adhesion, and is relatively difficult to incorporate in continuum

models due to the essential discrete nature of the problem. To be physically realistic,

such models also have the control mechanisms for cell shape and cell volume. Vertex

model (VM) given by Honda and Eguchi [114] and further modified by Farhadifar et

5



al. [70] have the ability to incorporate all these cellular activities with conceptual and

implementation ease. The vertex models can also be modified to incorporate new cell

properties, cell birth, cell death, cell rearrangement processes, cell-cell signaling processes,

mechanical or chemical feedback and are also suited to the modelling of differential cell-

cell adhesion [73, 74]. In vertex dynamics model, each cell is modelled as a polygon (or

polyhedron in three dimensions), having vertices and edges. The boundaries of polygon

represent the cell’s membrane. The effective mechanical force is experienced by the cell

vertex and is given by the gradient of a work function with respect to its position. In

the basic vertex model, the combined forces on any of the cell vertex are due to cell area

elasticity, actin-myosin bundles (cell perimeter contractility) and adhesion molecules (line

tension) [70]. In addition to these forces cells also exhibit polarized motility.

1.3 Mechanochemical basis of morphogenesis

Biochemical patterning as well as mechanical processes work in coordination to shape

cells and tissues [30]. Besides biochemical signaling, cell and tissue mechanics is crucial

to understand many outstanding questions in morphology, for example how gastrulation

happens and how different organs are shaped and sized [42, 188]. The mechanochemical

approach is a natural extension of the ideas suggested originally by Turing [117].

Coupling between collective cell migration, cell mechanics, and cell-cell signaling is

observed in many biological processes such as wound healing, cancer metastasis, branching

morphogenesis and embryonic development [41, 85, 134]. This coupling is also observed

in the case of Delta-Notch signaling. For example, in endothelial cells exhibiting Delta-

Notch kinetics, the expression of Dll4 (Delta) is significantly enhanced at the tips of the

migrating epithelium during angiogenesis [206]. Evidence suggests that Notch is involved

in controlling cell-cell adhesion in Drosophila eye cells [16]. Notch signaling is linked to the

adhesion force between cells expressing Notch receptors and Delta ligand [2]. Also, Delta

increase is associated with the motility and spreading of individual keratinocytes [41] and

stimulated lamellipodia formation [145]. Furthermore, Delta-induced activation of Notch

is linked with the application of mechanical force [89, 169]. Thus there are good indications

that spatiotemporal chemical patterns of molecules due to contact-based signaling are
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associated with cell-cell signaling kinetics, tissue mechanics, cell polarisation dynamics,

and cell motility.

The chemical patterns due to contact-based signaling are interpreted using models

generally with a simplifying assumption that the tissue morphology is fixed and does not

alter during the patterning process [44, 47, 99, 226, 227]. This assumption may not always

be correct since cell migration and cell division can dynamically modify the connectivity

among cells. Hence, in order to maintain a regular pattern, the signaling pathway requires

some feedback mechanisms to coordinate with cell migration and dynamic tissue topology.

For example, it is known that FGF and Notch signaling pathways play a crucial role in cell

fate decisions and cell migration during gastrulation in Xenopus [119]. During somitogen-

esis in zebrafish (Figure 1.2), it is observed that Delta-Notch signaling is accompanied by

cellular movements in the course of segmentation clock generation [113, 141]. Similarly, it

is reported that somitogenesis in chick embryos involves a complex interplay of individual

cell movements and dynamic cell rearrangements [161]. Such large scale cellular move-

ments and rearrangements of different types of cells are also observed during germ-layer

formation in zebrafish [217, 264]. Computational studies show that cell migration plays

a vital role in Delta-Notch patterning in zebrafish [249, 251]. Canonical Notch signaling

is known to increase cell-cell adhesion by inducing the expression and activation of cell

adhesion molecules such as integrins [109, 176, 214]. Notch also controls cell-cell adhesion

in Drosophila eye cell [16]. A number of studies suggest that Delta-Notch expression levels

in cells is coupled to the adhesion molecules and thus adhesion forces [2, 71, 266]. During

the feather branching of chicks, periodic activation of Notch signaling drives the differ-

ential cell adhesion and coordinated adjustment of cell shape and adhesion orchestrates

feather branching, which is regulated by Notch signaling [40].

It has been observed that healthy tissues typically consist of cells of the same type

resulting in overall homogeneity in their shape and size [87, 199] (Figure 1.3a). In contrast,

diseased cells and tumor cells are pleomorphic, exhibiting large variations in shape and size

within the same tissue [60, 87, 202] (Figure 1.3b). Thus, cell size heterogeneity can indicate

underlying pathology [87]. Various types of sensory epithelia also exhibit heterogeneity

both in their cell morphology and in their spatial pattern [242]. For example, the olfactory

epithelium (OE), which is located inside the nasal cavity of mammals, is responsible for

odor perception. It is characterized by alternating mosaic patterns formed by smaller
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Figure 1.2: Sketches showing the development stages of the zebrafish embryo and forma-

tion of somites. Somites are paired blocks of mesoderm that form along the head-to-tail

axis in vertebrates during the embryonic stage of somitogenesis. The figure is taken from

Kimmel et al. [126].

(a) (b) (c)

Figure 1.3: (a) The figure shows the uniform cell size in healthy mouse mammary ep-

ithelium. The uniformity in cell size is characteristic of epithelial tissues. The figure is

taken from Ginzberg et al. [87]. (b) The figure shows a pleomorphic mammary tumor that

exhibits a large variation in cell size. The cell size heterogeneity visually characterizes a

pleomorphic tumor. It is shown by outlining (red) the borders of cells of varying sizes.

The figure is taken from Ginzberg et al. [87]. (c) Cellular rearrangements in the devel-

oping mouse olfactory epithelium. Schematic showing larger size supporting cells (pink)

surrounding smaller size olfactory cells (yellow). The figure is taken from Katsunuma et

al. [124].
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olfactory cells separated by the adjacent larger sensory supporting cells [51, 232, 242]

(Figure 1.3c). Such mosaic patterns are also observed in the auditory epithelium [243, 244]

that is found in the ear canal. Differential cell adhesions, mediated by integrins and

cadherins/catenins, play a critical role in dictating cell morphology [243, 244]. Expression

and modification of these adhesion molecules are linked with cell growth, intercellular

signaling, cell differentiation, and apoptosis [112]. There are several evidences that Notch

signaling controls cell-cell adhesion by modifying cell adhesion molecules [16, 40, 109, 176,

214, 214].

As discussed above, the movement characteristics can control the signaling patterns

in the tissues. However, the migration pattern of cells in the tissue strongly depends on

mechanical properties and cell polarisation dynamics [23]. In addition to this, it is also ob-

served that intercellular signaling influences cell and tissue morphology by modifying the

cell-cell adhesion of the cells. Hence it is important to understand the connection between

signaling patterns, cell polarisation, migration dynamics and cells/tissue mechanics.

A few theoretical models investigate the potential mechanisms underlying the various

signaling patterns observed as a result of contact-based signaling [45, 99, 250]. However,

very few theoretical works are available that examine the link between tissue mechanics,

cell polarisation dynamics, cell motility, and cell signaling. To test the influence of factors

mentioned above on the signaling patterns, we use the well-established vertex model [70,

73, 74], with several crucial additions and modifications.

In Chapter 3, first, we overlay the contact-based signaling kinetics to the vertex model

with both junctional contacts (short-ranged) as well as protrusional contacts (long-ranged

signaling) [44, 47, 99]. Then, we couple the cell mechanics with cell-cell signaling by cou-

pling the intrinsic cell polarities with the orientation of protrusional contacts. We then

systematically study the effect of two different cases of polarisation dynamics (random

rotational diffusion and polarity alignment with the nearest neighbors) on the resulting

signaling patterns. Furthermore, we examine how activation thresholds affect chemical

patterns in long-range signaling. As a result of these new changes to the model, we obtain

a wide range of complex patterns ranging from spotted motifs to diffuse patterns with

random rotational diffusion-dominated polarity. Moreover, for neighbor-aligned polarity

dynamics, we observe stripe-like signaling patterns. We also quantify the spatio-temporal
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characteristics of the patterns using the number, distribution, and anisotropy of the clus-

ter of the signaling patterns. In summary, we show that cell polarity dynamics greatly

influence the richness of molecular signaling patterns arising from contact-based signaling.

In Chapter 4, we test the influence of cell motility on the formation of signaling

patterns using the new coupled model discussed in Chapter 3. We also include cell motility

in every cell, which is oriented towards intrinsic cell polarity, and investigate the role of

cell migration and tissue mechanics on the resulting signaling patterns due to dynamically

evolving cell-cell contacts. Upon addition of motility, we observe that the cell-cell contacts

evolve dynamically. The cellular structure keeps dynamically shifting in space with time,

but the signaling molecule patterns are maintained. By the dynamic correlation function,

we quantitatively analyze the spatial and temporal characteristics of chemical patterns.

In Chapter 5, we develop a simple mechanochemical vertex model of the tissue based

on Delta-Notch signaling. The expression levels of Notch and Delta in the cells are linked

with the tension along their shared edges which in turn influence both cell morphologies

and topological transitions in tissue. We systematically study the range of chemical and

morphological patterns in the tissue due to this mechanochemical process.
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Chapter 2

Literature Review

In the previous chapter, we had discussed the background of the problem that would

be dealt with in the thesis. In this chapter, we expand more on those ideas and put our

work in the context of the literature that currently exists in the field.

Until a couple of decades ago, cells, which are the building blocks of life, were pre-

dominantly thought of as miniature-scale chemical factories. However, advancements in

the methods of molecular biology and biophysics, and development of new physical and

engineering experimental techniques, since, have made this notion obsolete. We now know

with certainty that it is not only the biochemical reactions, but also the physical processes

and mechanical forces, which play a huge role in deciding cell functionality and fate. In

multicellular organisms, cells are generally organized into collectives called tissues [207].

Broadly speaking there are four types of animal tissues: (i) connective tissue, (ii) muscle

tissue, (iii) nervous tissue and (iv) epithelial tissue.

Epithelial tissues consists of groups of tightly connected cells and form a protective

covering for blood-vessels and various organs. Epithelial tissues can form a monolayer of

cells that are attached to each other by bonds called cadherins and to the underlying sub-

strate with bonds called integrins [5]. Epithelial tissues have clear functions during many

important biological processes such as morphogenesis. The morphogenesis of epithelial

tissues is widely observed during the early stages of development [269].

Morphogenesis means the origin of form and involves the study of how organisms get

their shape in response to their designed function [102, 117, 136, 178]. Morphogenesis is

dominantly used in the context of early embryo development. However, it is also appro-
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priate in contexts as diverse as protein folding, the formation of virions, shaping of plants,

form-finding in engineering structures, and emergence of geological landforms. Although

biochemistry plays a significant role in driving morphogenesis in living structures, it is

mechanics that is ultimately responsible for giving rise to its ultimate form in response to

a function [95]. During the organ development, on the one hand chemical pre-patterning

takes place to provide the positional information and on the other hand, cell mechanics

and movement tries to deform the tissue and organize the cells to form mechanical pat-

terns to regulate the shape and size of the organ [76]. The following sections review cell

signaling, cell mechanics and motility and different models that have been proposed to

study the mechanochemical patterning observed during morphogenesis.

2.1 Chemical basis of morphogenesis

Starting from nearly homogeneous population of cells, different areas of a tissue develop

strikingly different patterns or structures [76, 265]. The formation of a morphological

pattern is generally assumed to result from a primary pattern of morphogen concentra-

tions [265]. Such primary spatial patterns are formed from an aggregate of uniform cells

due to cell differentiation process in which cells acquire different fate depending on their

spatial position [76]. Tissues establish self-organizing chemical patterns due to chemical

and mechanical interactions between cells [250, 251]. A large number of self-organising,

regular, spatio-temporal patterns in tissues have been documented in various organisms.

These include, for example, bristle patterns on the Drosophila notum [44, 120], spotted

skin patterns on pearl danio fish [65] and striped skin patterns on zebrafish [101].

Beginning as early as 1744, study of morphogenesis has a long history. Abraham

Trembley (1744) discovered that the freshwater polyp hydra has the ability to regenerate

head and foot from sections cut from the hydra body [247]. Such findings raised ques-

tions about how such spatial patterning occurs and how the organism development can

resume even after severe perturbations such as the organism being cut into pieces. It was

postulated that the morphogenetic gradients specifies positional information, raising the

question of how such gradients are formed and how they regulate the development. In

the early part of the 20th century D’Arcy Thompson made, then revolutionary, discovery
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based on his observations that mechanical forces that shape the foams or soap films are

also at work in morphogenesis of living organism [241]. Later, Turing (1952) made a

key contribution and discovered that the spatial concentration patterns can be generated,

starting from nearly uniform initial distribution, by interaction of two substances with

different diffusion rates [248]. He derived the now named Turing equation from an analysis

of spatial destabilization created by concentration waves of certain wavelengths. The the-

ory is based on short range activation and long range inhibition. Reaction and diffusion

processes involving activators and inhibitors can result in a large variety of the so called

Turing patterns in the tissues [92, 156, 248]. Later on, studies in insects and worms, and

more recently in vertebrates and animal tissues have revealed an evolutionarily conserved

mechanism that is based on lateral inhibition [12, 43, 48, 107]. Lateral inibition is a cell-

cell interaction in which a cell leading to achieve a particular fate inhibits its neighbours

or other cells in contact from attaining the same fate [90, 106]. For example, it is observed

that during development of nervous system, the neural cells inhibit the neigbouring cells

from developing the neural fate. In this way, the neighbour cells are compelled to attain

different fate [48].

Cell signaling is the process by which information is transmitted from one cell to the

other and ultimately to the nucleus, resulting in changes in gene expression [98]. Four

types of signaling pathways are found in multicellular organisms that play a central role in

controlling all the important activities during organism development: paracrine signaling,

endocrine signaling, autocrine signaling, and juxtracrine signaling [223]. Paracrine signal-

ing occurs when cells communicate with neighbouring cells through signaling molecules.

The signaling molecules diffuse over short distances relatively quickly which alters the

function of neighbouring cells [233]. In the endocrine signaling process, the signaling

molecules are secreted from specialized endocrine cells and are transported through the

bloodstream to act on distant target cells in the body [49]. During autocrine signaling,

a cell secretes an extracellular mediator that binds to receptors within the same cell to

initiate signaling [127]. Juxtracrine signaling takes place via lateral inhibition, which is a

cell interaction mechanism where a cell with a particular fate inhibits the other cells in

contact from achieving the same fate [216]. In embryos and adults, a number of genes and

proteins are involved in lateral inhibition signaling [138, 216, 222]. Recently, a transcrip-

tional regulator TAZ was also identified as a mediator of lateral inhibition in zebrafish and
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is involved in directing cell fate [271]. More commonly, in several multi-cellular organisms

such as flies, worms, fish and other vertebrates, signaling takes place by the lateral inhi-

bition of Notch ligand and Delta receptor, which are trans-membrane proteins that reside

on the cell surface [47, 50]. The Notch ligands and Delta receptor are transmembrane

proteins and are members of the DSL (Delta/Serrate/LAG-2) family of proteins [63]. Var-

ious investigations indicate that a large number of self-organised spatial patterns can be

generated through juxtacrine signaling (contact dependent signaling) that occurs through

contacts either between cells or between cells and the extra-cellular matrix (ECM) [11].

The Notch signaling pathway, which is one of the key juxtacrine process, plays a

crucial role in organism development, physiology and diseases such as cancer [29, 103].

During the adult and embryonic life, proper regulation of the Notch signaling pathway

is essential for development, homeostasis and differentiation of tissues [30, 221]. The

deregulation of Notch signaling can also lead to various diseases and disorders, for example

leukemia [268], solid cancers including breast cancer, glioblastoma (a form of brain tumor),

pancreatic cancer [173, 274], lung cancer [83, 84] and skin cancer [163, 184]. Notch1 was

identified as an oncogene in leukemia and it is also found to have tumor suppressive

function [143, 147, 201]. Thus, Notch signaling is hoped to prove to be a valuable target

for the treating a wide range of cancers [82, 263].

While the Notch signaling pathway is the most prominent juxtacrine developmental

signaling pathway, others such as Epidermal Growth Factor Receptor (EGFR) and Hedge-

hog (HH) pathways are also important for morphogenesis [44, 194, 223]. The cellular con-

tacts during signaling could either be local and between the nearest neighours [1, 104, 121]

or they could be long-ranged and mediated by protrusions such as filopodia [44, 65, 182,

210, 212]. Although protrusion-based signaling through Notch pathway is quite common

during morphogenesis [44, 182], similar long-ranged signaling is also seen, for example, in

Sonic Hedgehog (Shh) during limb patterning in vertebrates [212].

Researchers have tried to model the Delta-Notch signaling kinetics with short range

or nearest neigbour signaling (via junctional contact) as well as long range signaling

(via protrisional or filopodial contacts). One of the earliest mathematical models for

the lateral inibition was developed by Collier et al. [47]. They constructed a simple and

generalized mathematical model for short-range signaling via contact-mediated lateral
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inhibition. The model consists of differential equations for two variables — Notch and

Delta in each cell – that evolve with time.The model proposed that the activation of Notch

decreases the ability to produce Delta which amplified the differences of these molecules

between neighbouring cells. The model generated a self-organised checker-board pattern

with wide range of initial and boundary conditions [47]. Later, another research group

reported a quantitative time-lapse microscopy platform to analyze Notch–Delta signaling

dynamics [227]. They measured the combined cis–trans input– output relationship in

the Notch–Delta system. A striking difference between the responses of Notch to trans-

and cis-Delta was reported. The response to trans-Delta was observed to be graded and

the response to cis-Delta was sharp and independent of trans-Delta. They also devel-

oped a simple mathematical model and showed that the Delta-Notch patterns emerge

from the mutual inactivation of Notch and Delta proteins in the same cell [227]. They

also showed that cis interaction optimizes the system in the formation of fine-grained

pattern [226]. Recently, several papers showed that the developmental patterns also in-

volve Notch signaling via protrusional contacts, for example in bristle patterns on the

Drosophila notum [45, 120], spotted patterns on skin of pearl danio fish [65] and striped

patterns on the skin of zebrafish [101]. Two theory-based papers explored the range of

patterns that can potentially be formed by taking into account the long range protrusinal

contacts [99, 255]. Hadjivasiliou et al. [99] developed a model with junctional as well as

protrusion-mediated contacts of lateral signaling and showed that when signaling kinetics

is allowed to differ at junctional and protrusion-mediated contacts, lateral activation and

lateral inhibition are promoted in cells. Complex variety of Delta-Notch patterns were

generated using the model, as observed in typical reaction-diffusion systems. Different

patterns arose when changes in signaling kinetics, length and distribution of protrusions

were also included [99].

Cell communication using the juxtacrine mode has been studied in the case of lateral

inhibition. A few recent studies indicate that juxtacrine signals can also produce the

opposite phenomenon known as lateral induction [209, 224]. Lateral induction is a process

by which neighbouring cells attain the same fate in an aggregate of initially equivalent

cells. Owen et al. [190] used mathematical modeling to show that lateral induction, in

combination with lateral inhibition, provides a mechanism that generates spatial patterns

with wavelengths of many cell lengths.
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Mechanical basis of morphogenesis

Cell mechanics, motility and cell adhesion combine to drive morphogenetic events, cell

geometry and tissue deformation to establish the proper shape and size of the organs [151].

Cells are considered active system or engines, operating away from thermal equilibrium

and convert chemical energy into cell motion [118]. Cells in tissues are connected to their

neighbouring cells along the cell membrane by adhesion molecules such as cadherins and

have contractile acto-myosin cortex which together give rise to adhesion and tension [183,

218, 253]. The internal forces within cells are generated by the actin cytoskeleton (a

network of polar, semiflexible protein filaments), acto-myosin cortex, adhesion molecules,

and also subcellular structures such as lamellipodia and filopodia which are responsible

for inducing motility in cells [10, 75, 225]. Cadherins, in particular, play a key role in

many aspects of cell interactions, regulation, and signaling during embryonic development

and morphogenesis in general [97, 198, 200]. Gradients of cadherin expression levels

often produce macroscopic cell sorting through collective and relative movements [275].

A difference in adhesiveness and contractile properties between genetically heterogeneous

cells determines cell shape, size, and cellular pattern, as reported in sensory epithelia of the

ear, nose, and eye [203, 242, 243]. In the sensory epithelium, one can find different cell sizes

and cellular patterns with different characteristics. Olfactory epithelium (OE) is a sensory

epithelium inside the nasal cavity of mammals that is responsible for the perception of

odors, and consists of olfactory cells, supporting cells, and basal cells [124]. A mosaic

pattern of small olfactory cells and large supporting cells is observed in the olfactory

epithelium [51, 232]. Sensory cells in the ear are known as auditory hair cells. The auditory

epithelium (inner ears in mammals) have mechanosensory and non-sensory supporting

cells. They are formed by an alternate arrangement (mosaic pattern) of hair cells staggered

in rows and separated by supporting cells in a checkerboard pattern [243, 244]. Studies

show that adhesion molecules (nectins, and cadherins) are essential for the mosaic cell

patterns in sensory organs. These adhesion molecules interact with each other leading

to differential adhesivity of cells for the formation of such complex cellular patterns in

sensory epithelia [242].

The differential adhesivity in cells give rise to a number of different behaviours in
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cells and tissues in addition to mosaic cell patterning in sensory organs, for example, cell

sorting, tissue segregation [9, 237, 275] and apoptosis [195, 240]. The differential adhe-

sion hypothesis (DAH) [77, 230, 231, 245] for cell-cell interactions explains the physics

behind liquid-like tissue segregation, mutual envelopment, and cell sorting behaviours of

cells and tissues during embryonic development. The tissues with motile cells and varying

degree of cell adhesion rearrange spontaneously to minimize their adhesive free energy.

Brodland et al. [33] explained how cell surface energies are interpreted in terms of interfa-

cial cell tensions and computed the equivalent cell surface tension in accordance with the

various subcellular components of forces [32]. They proposed a modified theory for spon-

taneous rearrangement of cells in tissues named Differential Interfacial Tension Hypothesis

(DITH) [32]. In this theory, all cytoskeletal components and cell adhesion mechanisms

were systematically accounted for. In the paper, the authors outlined all the conditions for

the cell and tissue rearrangements such as mixing, sorting, and formation of checkerboard

patterns in heterogeneous aggregates of cells, and separation, partial or total engulfment,

and dissociation of tissues. Finite element-based computer simulations involving two or

more cell types confirm these conditions [32]. Graner and Glazier performed simulations

using a large-Q Potts model for cell sorting phenomenon in a mixture of two different types

of cells with differential cell adhesion [91]. They showed that long-distance cell movement

leads to the sorting of cells with rounded clusters in two phases. The first phase observed

was a faster boundary-driven low-cohesive cell layer around the aggregate, followed by a

slower internal rearrangement that was boundary independent [91]. Belmonte et al. [18]

proposed a self-propelled particle model to study cell sorting phenomenon in organisms.

They evaluated the effect of intrinsic motility in cells and differential adhesion with fluc-

tuations to explain various rearrangement processes in cells and tissues and showed that

the ability of cells to follow their neighbours actively significantly reduces the time scales

of segregation.

As the cells in a tissue are coupled to their neighbours, the cells rearrange themselves

and move actively and collectively in response to the elastic (passive) and active forces.

Many cells show polarized behaviour due to the polarity [35, 228]. Cellular polarity arises

from cellular asymmetry, resulting from the asymmetry of the molecular composition

on either side of the cell, which defines a polarity axis along which cellular processes are

regulated. Thus, cell polarity is an inherent property in most cells [158]. The active forces
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can lead to different types of polarity in cells and thus depending on the polarity dynamics,

the cells can show different types of motility behaviour. The cells can walk randomly or

in an aligned manner [24, 235, 259, 260] and are modelled as active Brownian particles.

Active Brownian particles, are idealized micro-movers that are self propelled in a specific

direction and are driven out of thermodynamic equilibrium [208]. Vicsek et al. [259]

presented a simple model to investigate the development of self-ordered motion of particles

that was motivated by biological interactions in collectively moving organisms [154]. In

this model each biological unit or particle had a constant velocity magnitude and its

velocity direction at each step was assumed to have an average direction of motion of

the neighbouring particles with some random perturbation. A kinetic phase transition

was observed from zero collective velocity to finite collective flocking by spontaneously

breaking rotational symmetry [259]. In other model, Martin et al. [159] presented a

computational analysis of collective motion resulting from interactions involving excluded

volume interactions, self-propulsion, and velocity-alignment of active particles. The model

was an extension of the active Brownian particles model, in which the self-propelled

particles align with the direction of their neighbours. The authors observed the flocking

behaviour of particles in a low-density regime, and the behaviour was dominated by

the strength of velocity-alignment interactions. Depending on the system parameters,

either finite-sized polar clusters or amorphous, highly fluctuating, lane-like or band-like

structures were formed [159]. Biochemical signaling plays a governing role in deciding the

polarity dynamics of the cells which otherwise is depicted in terms of empirical rules in

these models [53, 164]

A large number of models have been developed for tissues to provide insight into

morphogenesis due to cellular processes that includes cell motility, cell adhesion, apopto-

sis and other developmental processes. The mechanisms and mechanics of deformation of

epithelial monolayer have been extensively studied by vertex dynamics models [73, 74].

Recognized more than 100 years ago by D’Arcy Thompson, tissues show remarkable sim-

ilarity with foams. Mathematically, this analogy is implemented in the so-called vertex

models in which a planar epithelial monolayer is represented by polygonal tessellation.

In the most basic version of the vertex model, the cells (face) and cell-cell connections

(edges) are, respectively, provided with mechanical stiffness and line tensions, that model

contractility of acto-myosin fibers [70, 180]. The tissue thus represented can respond to
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mechanical stimuli by the movement of vertices (hence vertex model) – the cells can also

change their connectivity by neighbor exchanges [8]. This vanilla vertex model can be

made richer by including cell division and death, and autonomous forcing from cell cy-

toskeleton and junctions, for instance. Moreover, it is also possible to include variables

(such as acto-myosin and morphogen concentrations) on each cell. Their dynamics can

have two-way coupling with the underlying tissue mechanics (mechanochemistry), thus

leading to patterns of cellular flow, deformation, and chemical concentration. The pla-

nar vertex model can also be allowed to have out-of-plane movements to form 3D spatial

structures and patterns. The 2D and 3D vertex models have been successful in providing

keen insights into various vital morphogenetic events such as germband elongation and

pupal wing formation in Drosophila and zebrafish epiboly [115, 254].

To understand how physical cellular properties and proliferation determine cell-

packing geometries, Farhadifar et al. [70] used a vertex model for the epithelial junctional

network in which cell packing geometries correspond to stable and stationary network

configurations. The model takes into account cell elasticity and junctional forces arising

from cortical contractility and adhesion. By numerically simulating proliferation, they

generated different network morphologies that depend on physical parameters. These

networks differ in polygon class distribution, cell area variation, and the rate of T1 and

T2 transitions during growth and estimated parameter values by quantifying network

deformations caused by laser ablating individual cell boundaries [70].

Bi et al. [23] provided a framework to understand collective solid-to-liquid transitions

that have been observed in embryonic development. They used self-propelled Voronoi

model to capture polarized cell motility and cell-cell interactions in a tissue monolayer

and showed that the tissue exhibits a jamming transition from a solid-like state to a

fluid-like state that is controlled by three parameters: the single-cell motile speed, the

persistence time of single-cell tracks, and a target shape index that characterizes the com-

petition between cell-cell adhesion and cortical tension [23]. Glazier et al. [88] used the

extended large-Q Potts model to show that differential adhesion with fluctuations can ex-

plain a wide range of cellular rearrangement, for example, in checkerboard patterning, cell

sorting, dispersal, and position reversal [88]. The vertex models can also be systematically

coarse-grained by quantifying the contributions to tissue deformations from cell elonga-

tion, neighbor exchanges, and cell division [69]. The resulting multi-scale analysis gives
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insights into the emergent mechanics and thermodynamics of the tissue, and the contri-

bution to deformation from various components provides cues about the effective forcing

and energetics that drive morphogenesis. In order to understand tissue morphogenesis

during development, Popovic et al. [196] proposed a continuum hydrodynamic model for

describing the shear flow in developing epithelia. The model includes hydrodynamic fields

related to cell elongation and tissue shear flow due to topological rearrangements of a cell.

The authors investigated the rheological behaviour associated with memory effects on the

tissue. Depending on different boundary conditions on the tissue, active stress generation

and topological rearrangements were identified as the two processes that were responsible

for producing different cellular and tissue shape changes.

Mechanochemical morphogenesis

Coupling between collective cell migration, cell mechanics, and cell-cell signaling is ob-

served in many biological processes such as wound healing, cancer metastasis, branching

morphogenesis and embryonic development [41, 85, 134]. Specifically, this coupling is

observed in the case of Delta-Notch signaling. For example, in endothelial cells exhibiting

Delta-Notch kinetics, the expression of Dll4 (Delta) is significantly enhanced at the tips

of the migrating epithelium during angiogenesis [206]. Riahi et al [206] used time-lapse

microscopy on the tissue and computational modelling to show that the leader cell dy-

namics in the moving tissue monolayer is regulated by Notch1–Dll4 signaling mediated via

lateral inhibition through both Notch1 and cell stresses. Mechanical stress also inhibits

the expression of Dll4 and formation of the leader. It is also known that a Delta increase

is associated with the motility and spreading of individual keratinocytes [41] and stim-

ulates lamellipodia formation [145]. Furthermore, Delta-induced activation of Notch is

linked with the application of mechanical force [89, 169]. Thus there are good indications

that spatiotemporal chemical patterns of molecules due to contact-based signaling are

associated with cell-cell signaling kinetics, tissue mechanics, cell polarisation dynamics,

and cell motility.

The chemical patterns due to contact-based signaling are interpreted using models

generally with a simplifying assumption that the tissue morphology is fixed and does not
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alter during the patterning process [44, 47, 99, 226, 227]. This assumption may not always

be correct since cell migration and cell division can dynamically modify the connectivity

among cells. Hence, in order to maintain a regular pattern, the signaling pathway requires

some feedback mechanisms to coordinate with cell migration and dynamic tissue topology.

For example, it is known that FGF and Notch signaling pathways play a crucial role in

cell fate decisions and cell migration during gastrulation in Xenopus [119]. In zebrafish

and chick embroyos, cells moving randomly in posterior presomitic mesoderm (PSM)

plays an important role in axis elongation [19, 133]. Mobility gradient in cells along the

anterior-posterior (AP) axis of the PSM was observed with more mobility in posterior

PSM than anterior, using high-resolution time-lapse imaging [57, 153]. The mean square

displacement of the cell trajectories showed that diffusive motion of cells and the direction

of cell protrusions which is representative of the direction of cell movement was also

randomly distributed. Simultaneously, it was observed that cell motion in the PSM was

regulated by a gradient in FGF signaling with high FGF signals in posterior area [19,

57, 133]. During somitogenesis in zebrafish, it is observed that Delta-Notch signaling is

accompanied by cellular movements in the course of segmentation clock generation [113,

141]. Similarly, it is reported that somitogenesis in chick embryos involves a complex

interplay of individual cell movements and dynamic cell rearrangements [161]. Such large

scale cellular movements and rearrangements of different types of cells are also observed

during germ-layer formation in zebrafish [217, 264].

Computational studies show that cell migration plays a vital role in Delta-Notch

patterning in zebrafish [249]. Numerical modelling also shows that during somitogenesis,

the synchronization of the segmentation clock is sustained and promoted by randomly

moving cells [251], which in turn promotes the flow of information across the tissue by

cell mixing and destabilizing the regular patterns [250]. In such a case, the ratio of time

scales of cell migration and cell-cell signaling is crucial for patterning and information

transfer between the moving cells [249].

The cellular protrusions responsible for signaling in cells are known to be highly

dynamic and polarized [44]. However, the cell mechanics in the tissue strongly depends

on mechanical properties and cell polarisation dynamics [23]. Cell growth, migration and

remodelling are the important processes controlling morphogenesis. All these processes are

known to be governed by cell forces that are also influenced by cell–cell adhesion molecules.
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Transmission of force through cell membranes is attributed to adherens junctions, which

provide a physical connection between the actomyosin cytoskeleton and transmembrane

proteins of the cadherin superfamily (E-cadherin, N-cadherin and P-cadherin) [31, 78,

149, 273]. Hence it is important to understand the connection between signaling patterns

and cell polarisation and migration dynamics.

In addition to above disscusion, several studies have demonstrated that the signaling

in cells, especially the Delta-Notch signaling is responsible for upregulating or downreg-

ulating the adhesion molecules such as nectins, cadherins and integrins. As a result,

differentiated cells display differential cell adhesion properties [109, 176, 214]. Periodic

activation of Notch signaling regulates the differential cell adhesion between cells, and the

coordinated modification between cell shape and cell adhesion organise branching of the

feather in chicks [40]. Studies show that Notch is also involved in controlling cell-cell ad-

hesion [2, 193] in different tissues such as Drosophila cell eye [16], stem cell clustering [266]

and hematopoietic stem cells [205]. Podgorski et al. [195] adopted a computational ap-

proach to understand how the interaction between lateral inhibition, differential adhesion

and programmed cell death can lead to mosaic patterns, observed in the auditory sen-

sory epithelium of chicks formed by primary and supporting secondary cells. Boareto et

al. [27] developed a mathematical model to study the interaction between Notch signaling

and epithelial-mesenchymal transition (EMT), and examined the effect of Wnt and TGFb

(EMT-inducing signals) on Jagged and Delta ligands. They integrated the Notch-Delta-

Jagged signalling with the EMT circuit to assess the influence of cell-cell communication

on EMT. They used Notch-Delta-Jagged nearest neighbour interaction between cells.

Notch signalling acts as an intercellular switch that leads to different fates adoption of

neighbouring cells—Sender cell (low Notch, high Delta) and Receiver cell (high Notch, low

Delta), resulting in a checkerboard pattern (lateral inhibition). Notch-Jagged signalling

establishes an intercellular feedback loop that directs neighbouring cells to follow same

fates (high Notch, high Jagged), leading to the same fate throughout the tissue (lateral

induction). Thus, it behaves as a three-way switch and adopts three fates— Sender,

Receiver and hybrid Sender/Receiver. Their work showed that increasing Delta/Jagged

ligands activates Notch signalling, resulting in EMT. Furthermore, they also explored the

significance of Notch-Delta and Notch-Jagged in inducing EMT by Notch-EMT coupled

dynamics in the epithelial tissue. It was observed that when Notch-Jagged signalling dom-
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inates, mixed E/M or M cells tend to cluster together; and when Notch-Delta signalling

dominates, cells segregate.

As discussed above, cell polarity, cell movement characteristics, cell mechanics, and

cell-cell signaling control and coordinate with each other during mechanochemical pattern

formation in the tissues. It is also evident from the studies that the signaling dynamics

control the adhesive molecules connecting cells in the tissue and hence modulate the inter-

cellular forces. These signaling actions thus drive the differential cell adhesion between

patterned cells. Hence it is important to understand the connection between signaling

patterns, cell polarisation, migration dynamics and the parameters controlling cell me-

chanics such as cell-cell adhesion in order to get a clearer picture of how pattering and

deformations occur during tissue morphogenesis.

2.2 Thesis outline

The subject matter of the thesis is presented in the following five chapters,

✓ Chapter-3 elucidates the role of cell polarity dynamics in pattern formation due to

contact dependent signaling. We propose a protrusional contact based long distance

signaling model to explore the role of junctional and protrusional contact on the

signaling pattern formation. We also explore the role of model parameters and

polarity dynamics on the formation of signaling patterns.

✓ Chapter 4 elucidates the influence of cell motility in the patterns formed by signaling

molecules. For every cell, we include cell motility that is oriented along cell polarity

and investigate the role of cell migration and tissue mechanics on the resulting

signaling patterns due to dynamically evolving cell-cell contacts.

✓ Chapter-5 elucidates the influence of signaling proteins on cell-cell adhesion. We

propose a simple extension of the proposed model by coupling signaling molecule

dynamics to cell-cell adhesion parameter and explore the collective formation of

chemical and cell morphological patterns in the tissue.

✓ Chapter-6 summarises the work done in the present thesis with final concluding
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remarks and a list of potential future problems that are natural extensions of the

current work.
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Chapter 3

Role of cell polarity dynamics in pattern

formation due to contact dependent sig-

naling

3.1 Introduction

Intercellular signaling, cell mechanics and motility are important for morphogenesis during

the development of organism. Cell mechanics and movement influences cell-cell signaling

by rearranging the neighboring cells and actively migrating [113, 141, 161, 249, 251].

Although some of existing theoretical models investigate the potential mechanisms that

could result in a variety of patterns due to contact-based signaling, to the best of our

knowledge, there are no theoretical studies and coupled model yet that attempt to include

the role of tissue mechanics and cell polarisation dynamics influencing cell-cell signaling.

However, as discussed in detail, in literature review, these factors are expected to be

important in dictating orientation, range and topology of cellular contacts in the tissue

and hence could be critical for the origin and maintenance of the chemical patterns. To test

the influence of above mentioned factors in the patterns formed by signaling molecules,

we study the system using the well-established vertex model [70, 73, 74], with several

crucial additions. First, we overlay the lateral inhibition based signaling kinetics to the

vertex model. We consider both short-ranged as well as long-ranged signaling kinetics,

to account for junctional and protrusional contacts [44, 47, 99]. We also study the effect
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of the activation threshold for long-range signaling on the chemical patterns. Second,

we couple the orientation of protrusional contacts with the underlying cell polarities and

study the effect of polarisation dynamics on the generated patterns. We specifically look at

two cases of polarity dynamics: (i) random rotational diffusion and (ii) polarity alignment

with the nearest neighbors.

Based on these new inclusions to the model, in addition to the standard checker-board

patterns for signaling molecules, we obtain a large number of intricate patterns ranging

from well-defined spotted motifs to diffuse patterns. Moreover, for neighbor aligned polar-

ity dynamics, we see striped patterns of signaling molecules. We systematically quantify

the spatio-temporal characteristics of the chemical patterns by obtaining the number of

clusters, cluster size distribution and cluster anisotropy of the signaling molecules. Over-

all, we show that the dynamics of cell polarity greatly influences the richness of molecular

patterns arising from contact-based signaling.

3.2 Methods and Model

In our paper, the mechanics of the tissue is implemented using a vertex model [22, 23,

70, 73], in which the tissue is represented as a monolayer formed of polygonal cells having

vertices and edges (for implementation details, see Appendix A). The mechanical forces

within the tissue arise from area elasticity and boundary contractility of individual cells

and the forces at cell-cell contacts from acto-myosin contractility and E-cadherin adhe-

sivity. The mechanical contribution from these sources can be expressed using a energy

function of the form,

U =
N∑

α=1

[Kα(Aα − Aα,0)
2 + ΓαL

2
α] +

∑
edges:γβ

Λγβlγβ, (3.1)

where, N is the total number of cells in the monolayer and Kα, Aα, Aα,0, Γα, and Lα

are the area stiffness, current area, preferred area, boundary contractility and perimeter,

respectively, of cell α. Λγβ is the contractility of the junction of length lγβ shared by cells

γ and β. The contributions from these different forcing terms is converted in effective
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force acting on any vertex i as

Felastic
i = −∂U

∂ri
, (3.2)

where ri is the position vector for vertex i [74]. In many epithelial tissues, cells are known

to be front-rear polarised and in many cases also have self-propelled motility. The motility

is assumed to act in the direction of cell polarity. Hence, in addition to the elastic forces,

for a given vertex i, we add a motile force [23, 234] of the form

Factive
i = ηv0

1

ni

∑
β

p̂β, (3.3)

where ni is the number of cells β that contain vertex i, p̂β is the polarity unit vector

for cell β, η is the viscous drag acting on the vertex and v0 is the motility of a single

cell. The total force on vertex i, which is a combination of the elastic and active force, is

balanced by the external viscous force. The resulting dynamical equation of evolution for

the vertex position is

η
dri
dt

= Felastic
i + Factive

i . (3.4)

As is common for vertex models, T1 transitions are also included in our formalism

and facilitate fluidisation of the tissue.

We model the polarity of every cell to have a tendency to orient with respect to the

director (±p) of its nearest neighbors while also undergoing rotational diffusion [17, 23,

36, 100, 170]. This rule can be expressed with the following equation:

dθα
dt

= ξ
∑
β

sin 2(θβ − θα) + ζα, (3.5)

where θα denotes the orientation angle of cell polarity, p̂α = cos θαêx + sin θαêy. Here,

ξ is the strength of the polarity alignment of a given cell α with respect to that of its
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connected neighbors β and ζα is the rotational Gaussian white noise which follows

⟨ζα(t)⟩ = 0 (3.6)

⟨ζα(t)ζα(t′)⟩ = 2Drδ(t− t′), and .

where, Dr is the rotational diffusivity. In order to study pattern formation of molecules

due to contact-based, cell-cell signaling, we now overlay the signaling kinetics on the

mechanical vertex model. As discussed earlier, we use Delta-Notch signaling, which is

based on contact based lateral inhibition, as our model system [44, 47, 99]. In this

formalism, the Delta-Notch kinetics of the cells is modelled by keeping track of Notch

and Delta concentration Nα and Dα, respectively, in each cell α. It is known that while

Notch concentration in a given cell α is enhanced by the Delta concentration of the cells

in contact, the Delta generation of that cell is suppressed by Notch concentration. This

signaling dynamics is mathematically represented as follows

dNα

dt
= RN

D̄2
α

a+ D̄2
α

− µNα, (3.7a)

dDα

dt
= RD

1

b+N2
α

− ρDα, (3.7b)

D̄α =
1

2
[βjD̄

α
j + βpD̄

α
p ], (3.7c)

where RN |µ and RD|ρ are, respectively, the production | decay rates of Notch and Delta.

Here, D̄α denotes the mean Delta generation in the cells that are in direct contact with

cell α through cell-cell junctions and cellular protrusions. It was pointed out by Collier

et al. [47] that the power h of Notch (Nk) and k of Delta (Dh), and the parameters a and

b in Eqs.3.7a and 3.7b are responsible for the existence, precise values, and steady-state

stability of Delta-Notch expression levels. Increasing the values of h and k and/or ρ and µ
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speeds up the emergence of the final pattern [47]. We take the values of these parameters

(h = k = 2) from the work of Collier et al. [47]. With this choice, the steady state is

reached neither too early or too late. βj and βp correspond to the contact weights for

nearest neighbor and protrusional contacts, respectively, such that βj+βp = 1. We define

D̄α
j =

1

nj

∑
γ∈nj

Dγ and (3.8a)

D̄α
p =

1

np

∑
γ∈np

Dγ, (3.8b)

where nj and np are the number of cells in contact with cell α, respectively, via cell-

cell junctions and protrusions. The nearest neighbors of the cell α constitute nj and

the non-adjacent neighbors constitute np. Delta and Notch molecules are known to be

asymmetrically distributed in the cells [258] but in order to keep our model simple we

assume that the system does not have any asymmetry or noise or spatial dependence in

terms of distribution of Delta or Notch molecules associated with cell division.

There are various readouts for the front-rear polarity of cells such as, the gradient

of small GTPase molecules within the cells, gradient in the strength of focal adhesions,

and the orientation of golgi with respect to cell nuclei, to name just a few, and signaling

pathways such as MAPK are involved in cell polarisation [59, 137]. A free cell typically

has motility along the direction of polarity via lamellipodia protrusions at the front. In

many cases, filopodial protrusions are also formed at the front and the rear of the cells

to aid various aspects of cell migration. Because of this connection between cell polarity,

cell motility and filopodial protrusions, in our model we assume that the orientation of

cell protrusions is the same as that of cell polarity p̂ as defined above. Below we outline

the procedure followed to obtain the np cells that contact cell α through protrusions.

The coupling between the mechanical vertex model and the signaling kinetics is made

by identifying that the protrusions of cells are indicative of polarity and motility of the

cells [37, 171]. In that spirit, cell protrusions are modelled by assuming a protrusional
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length l extending along the orientation of cell polarization, p̂α and −p̂α [99]. We as-

sume that the cellular protrusions lie in a interval of [−∆θ,∆θ] around the directions p̂α

and −p̂α. We choose the protrusion length l of cell protrusion [44]. As there is strong

experimental evidence of Delta-Notch signaling arising from contact between filopodia

of cells [44, 182, 210, 212], we focus exclusively on this mode of long range signaling in

our paper. Hence, we assume that signaling takes place when the protrusion of a given

cell makes contact with the protrusion of other cells within an annulus of thickness ∆l

around the protrusion length l of the protrusion. Effectively, protrusions of two cells can

potentially contact with each other for signaling only if the distance between the centers

of the cells is within the interval [2l − ∆l, 2l]. We term this as the separation criterion.

However, the extent of cellular protrusions overlap depends on the relative positions of

cell pairs, polarity of each cell and the angular sweep of protrusions 2∆θ (Figure 3.1). For

example, if ∆θ = π/2, then any pair of cells that satisfy the separation criterion will be

in large protrusional overlap with each other. Similarly, if ∆θ is small, then any pair of

cells satisfying the separation criterion would have relatively small protrusional overlaps,

and that too for only certain relative positions and polarity orientations (Figs. 3.1bc).

The signaling between the contacting cells is believed to have an activation thresh-

old [44] that, for example, could depend on the extent of the overlap [96, 108, 219]. The

exact protrusional overlap between the pair of cells can be calculated using geometry.

However, since in our model we couple the protrusion orientation with the cell polar-

ity which constantly evolves in time (Eq. 3.5), for computational convenience we use a

simpler criteria for overlap that also includes the signaling activation threshold T in a

coarse-grained fashion. In our model, we define

wαβ = max
[1
2
((p̂α · r̂αβ)2 + (p̂β · r̂αβ)2), sin2∆θ

]
. (3.9)

Only if wαβ ≥ T and the cell separation criterion is satisfied there exists protrusional

contact between the cell pair α, β. Here, r̂αβ is the unit vector from the center of cell α

to the center of cell β (Figure 3.1c). The threshold criteria excludes, in a coarse-grained

manner, unfavourable configurations from forming signaling contacts.

The different parameters used in our model are non-dimensionalised as discussed

in Table B.1 (Appendix B). We implemented the model in CHASTE by modifying and
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extending the CHASTE library (written in C++). The modified and extended CHASTE

codes are provided in Appendix B.

3.3 Results

As described in Section 3.2, there are different factors that interact with each other

to control the fate of Delta-Notch pattern formation. Some of these are the relative

contributions from junctional and protrusional contacts (βj/βp), Delta-Notch signaling

rates (ρ ≈ µ ≈ RD ≈ RN), polarity orientation time-scales, (1/Dr, 1/ξ), length and

overlap margin of protrusions (l,∆l), angular range of protrusions (∆θ), and neighbor

exchange time-scales (Lc/v0), where Lc is the characteristic length scale of the system

given by the cell size (Figure 3.1a). For example, in the case, when ∆θ is large, the

contact between any pair of cells only depends on the spacing between the cells. Hence,

the pattern formation is expected to be predominantly dictated by the relative time-scales

Lc/v0 over which the cells move away from each other and 1/ρ. On the other hand, when

∆θ is small, even if the spacing between the cells does not change (e.g., when v0 ≈ 0) the

pattern formation from protrusional contacts should still be influenced by the time-scales

for polarity changes 1/Dr when compared with the signaling time-scales 1/ρ. In this

section, we systematically explore, how these different chemical and mechanical factors

decide the spatio-temporal dynamics of signaling patterns. In Sec. 3.3A-C, we study the

role of mechanochemical parameters on signaling patterns when cell motility is low. The

effect of cell motility on signaling patterns is explicitly investigated in Chapter 4. The

mechanical parameters for the vertex model were chosen such that the tissue remained in

the solid-like regime (Section 3.3.1-3.3.4; Appendix B) or in the fluid-like regime (Chapter

4) [22, 23]. The dynamical parameters were chosen such that the signaling time-scales

allowed for the chemical patterns to form, but the polarity and motility time-scales could

also allow the patterns to remain dynamic.
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(a)

Protrusional contact established

(b)

Protrusional contact not established

(c)

Figure 3.1: Schematic showing protrusion along cell polarization and contact interactions

with neighbors. (a) Single cell with polarisation p̂ = cos θex + sin θey and protrusions

along p̂ and −p̂. Length of protrusions is l and its angular spread is 2∆θ around θ and

θ + π. The red and green color cells are Delta and Notch cells respectively. (b) Cellular

protrusions of two cells overlapping each other. The likelihood of contact for two cells

is high if their cell polarization vectors are coaxial or the angular range of protrusion is

high. (c) The centers of two cells that are within range [(2l −∆l), 2l] of one another but

the protrusions do not touch.
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(a) (b)

Figure 3.2: Delta (red)-Notch (green) signaling patterns formed by contact mediated

signaling via (a) junctional contacts βj ≫ βp and (b) protrusional contacts βp ≫ βj. The

final time point of the simulations after steady pattern has emerged is shown for both the

cases. The results in (a) and (b) confirm the findings in Refs. [47, 99], respectively.

3.3.1 Role of contact ratio (βj/βp) from junctional and protrusion-

mediated contacts

The strength of Delta–Notch signaling at junctional and protrusional contacts is captured

by βj and βp, respectively. The contact ratio βj/βp is critical for deciding signaling pattern

in this model. When the contact ratio is large βj/βp ≫ 1 checker board pattern emerges

since the signaling is dominated by the junctional contacts as in the classic model by

Collier et al. [47] (Figure 3.2a; Movie 1 in Appendix B). On the other hand, consider the

case of small contact ratio βj/βp ≪ 1 with ∆θ = π/2 (Figure 3.2b; Movie 2 in Appendix

B). Here, the dominant mode of signaling is through cell protrusions. Moreover, for

∆θ = π/2, the cell-cell signaling is isotropic and occurs for any pair of cells that satisfy

the separation criterion. The signaling pattern in this case is similar to the checkerboard

pattern observed for large contact ratio. However, the pattern shows a new length scale

corresponding to the size of protrusions (2l ≈ 3 cell-lengths) [99]. Thus the nature of

pattern formation in contact based signaling is influenced by the relative strengths of

junctional and protrusional contacts.
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(a) T = 0.1 (b) T = 0.5 (c) T = 0.6

(d) T = 0.8 (e) T = 0.9 (f) T = 0.94

(g) Number of clusters (h) Cluster size (i) Shape ratio

Figure 3.3: Role of angular range of protrusions ∆θ and activation threshold T on

pattern formation. (a-f) Steady-state Delta(red)-Notch(green) patterns obtained with

RN = RD = ρ = µ = 1, Dr = 10−3, βj/βp = 10−2, ∆θ = π/4, v0 = 3.1 × 10−4, and

Λ = −13.77, ξ = 0 and varying T ∈ [0.1, 0.5, 0.6, 0.8, 0.9, 0.94]. (g,h) Phase diagrams

for the median number of clusters and the median cluster size (median number of Delta

cells per cluster) (see Appendix B) in a confluent tissue as a function of ∆θ and T . Large

value of cluster number with small cluster size indicates many isolated small Delta patches,

whereas a small number of clusters with large cluster size indicates connected regions of

Delta expression. (i) Phase diagram for the median shape ratio of Delta clusters in a

confluent tissue as a function of ∆θ and activation threshold T (see Appendix B). Lower

and higher values of this quantity indicate dominant presence of circular and elongated

patches, respectively.
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3.3.2 Role of angular range of protrusions (∆θ) and activation

threshold (T )

As discussed in Sec. 3.2, long-range signaling can be achieved by protrusional contacts.

As described there, the orientation of protrusion for any cell α is decided by the direction

of cell polarization ±p̂α. In this section, we consider the case where the cell polarization

is governed by the random rotational diffusion only (ξ = 0). The signaling dynamics

additionally depend on the length and overlap range of protrusion (l, ∆l), the angular

range of the protrusions ∆θ and activation threshold (T ). We now systematically study

the effect of ∆θ and T on signaling patterns by varying only these two while keeping all

other model parameters fixed (Figure 3.3; Movie 2-7 in Appendix B). The protrusions are

more polarized if ∆θ is small and not polarized at all if ∆θ = π/2, i.e., the protrusions

can grow in all directions.

We keep ∆θ = π/4 and explore how the steady-state signaling patterns evolve with

the activation threshold T . When T is relatively small, we see isolated, ordered patterns

of sharp isotropic spots of Delta expression, similar to the ones already discussed in

Sec. 3.3.1 (Figure 3.2b). Upon increase in T , there is a decrease in Delta-Notch signaling

(Eq. 3.9) that results in reduction of Notch in cells and hence a general increase in Delta

levels (Eq. 3.9). Moreover, the Delta cell patches also gets relatively anisotropic. As a

result, the Delta expression patterns start getting less structured, more elongated, and

increasingly connected. This effect becomes most pervasive at the largest threshold value.

We now quantify different aspects of Delta patterns that are observed for various

combinations of ∆θ and T . To get insights into the connectivity of the Delta patches,

we compute the median number of Delta clusters and median size (number of Delta cells

per cluster) of isolated Delta clusters. We define one cluster of Delta cells as the group

of connected cells, each with Delta concentration D > Dcritical (see Appendix B). To

also get insight into the geometry of these patches, we then quantify their shape ratio

(see Appendix B). In Figures 3.3g, 3.3h and 3.3i, respectively, we represent the median

number of clusters, median size of the clusters and their median shape ratio, calculated

over space, time and simulation runs, as functions of ∆θ and T (see Appendix B). By

observing these phase-diagrams together we can see that, for lower values of T the Delta
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expression patterns are isolated in small isotropic clusters (Figures. 3.3ab). However,

upon increase in T , the clusters keep getting smaller in numbers, i.e, larger in size, and

become increasingly elongated for lower values of ∆θ (Figs. 3.3cd). For largest values of

T , the clusters remain bigger but become more isotropic due to increasing connectivity of

Delta regions (Figure 3.3ef). For large values of ∆θ, however, the clusters always remain

small and isotropic, as discussed in Sec. 3.3.1.

We note that, when ∆θ = π/4 and T ≤ 0.5, from Eq. 3.9, wαβ ≥ T , due to which

the results in Figure 3.3a (T = 0.1) and Figure 3.3b (T = 0.5) should ideally be identical.

However, due to small round-off errors during computing, at these values of T and ∆θ

the condition wαβ ≥ T is always satisfied for T = 0.1 but not for T = 0.5. Consequently,

there are a few differences between Figs 3a and 3b. This small numerical deviation would

be the expected at the critical transition point when sin2∆θ = T .

We also point out that, for large values of T , the Delta patterns depend on protrusion

orientations (p̂), which evolve on time-scales set by D−1
r . When Dr is zero, we get a static

but well-formed Delta pattern (Appendix B Movie-23). When Dr is non-zero but small

compared to signaling rates (Eq. 3.7), we get well-formed but fluctuating Delta patterns

(Appendix B Movie-4). However, when Dr becomes large, the protrusional contacts evolve

too fast for signaling to take effect, because of which the patterns are underdeveloped as

Delta levels remain low and fluctuating (Appendix B Movie 24). Hence, in this section,

we chose Dr that was small compared to signaling rates to get well-formed but dynamic

Delta patterns (also see Appendix B).

We thus find that a rich array of Delta-Notch patterns are observed due to an in-

terplay between the angular range of protrusions and the threshold for signaling due to

protrusional contacts. We also provide an effective way of quantifying the nature of these

patterns.

3.3.3 Role of coupling strength ratio (ξ/Dr) on pattern formation

In our model, the dynamics of cell polarity has two components (Eq. 3.5). The first

component tends to align the polarity of any cell with that of its nearest neighbors with

rate ξ and attempts to bring about global alignment of polarity in the tissue [160]. The
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second component Dr brings about rotational diffusion of cell polarity, thus creating

an overall disorder in tissue polarity. As studied in the previous section, for the case of

polarity alignment rate ξ = 0, the cell polarities dictate the local dynamics of protrusional

contacts (Eq. 3.9) and hence the Delta-Notch patterns. However, since ξ influences the

global alignment of cell polarity, in this section we study the role of the coupling strength

ratio ξ/Dr on Delta-Notch pattern formation.

We fix T = 0.5, Dr = 0.1,∆θ = π/4 and vary the value of ξ from 0− 0.25. The pro-

gressively changing patterns for increasing magnitude of ξ/Dr are shown in (Figs. 3.4a-f)

and (Appendix B Movies 8-13). As expected, when ξ is relatively small, Dr dominates

and the cell polarity is spatially disordered, thus resulting in isotropic circular patterns

of Delta expression (also see Figure 3.3a). However, when ξ becomes comparable to Dr,

the spatial disorder of cell polarity decreases and local regions of polarity alignment with

an effective direction are created. Since protrusions are oriented along the polarity of

cells in our model, the cell-cell contacts predominantly occur along the effective polarity

orientation and very little in the perpendicular direction. As a result, the signaling is

diminished along the perpendicular direction resulting in reduction of Notch levels along

that direction. The lowering of Notch concentration, in turn, results in greater expression

of Delta, thus leading to formation of elongated Delta domains. Consequently, we see

Delta expression emerging in stripe-like patterns that are oriented perpendicular to the

overall direction of cell polarity in the ordered region. In the region with disordered po-

larity, we still observe circular regions of Delta expression (Figs. 4c and 4f). As expected,

the thickness of stripes and the diameter of the circular spots are roughly equal to twice

the protrusion length (2l ≈ 3 cell lengths). As a result of Eq. 3.7-3.9, if two cells touch

each other, one becomes a Delta cell and the other a Notch cell. In any cell α, the orien-

tation of protrusion is determined by the direction of polarization ±p̂α and the length of

the protrusion is l. Therefore, the nearest interaction between two cells via protrusion is

l −∆l in both directions. As a result, the distance between two notch cells will become

2(l − ∆l), and we observe the spotted delta pattern of diameter approximately 2l. A

similar trend is also observed with the stripes pattern. Upon further increase in ξ, the cell

polarities align globally, thus resulting exclusively in stripe-like patterns of Delta expres-

sion. However, the presence of Dr leads to modification of the global polarity alignment

causing the patterns to reorient over longer time-scales (see Appendix B Movies 8-13).
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As we had done in the previous section, we now quantify the median number of

clusters, median cluster size and median shape-ratio of the Delta patterns using phase-

diagrams obtained as a function of ∆θ and ξ/Dr (Figs. 4g-i, also see Appendix B). As

expected, for large values of ∆θ, we mostly observe patterns of isolated, circular clusters,

irrespective of the magnitude of ξ/Dr, since the cell protrusional contacts are mostly

isotropic. However, for lower values of ∆θ, an increase in ξ/Dr, which results in cell

polarity ordering, leads to the formation of uniformly oriented and continuous Delta

stripes.

We also performed simulations for parameters used in (Figure 3.5; Movie 16-22 in

Appendix B) when T = 0.94. Since both T and Dr are large, the amount of switching of

cell contacts due to fluctuations is naturally very high. As a result, the patterns are either

not formed or are more dynamic (see Appendix B Movies 16-18). It could be observed

that only when the alignment term ξ dominates over Dr, the fluctuations in polarity

and hence in protrusion alignment are reduced. The system is then able to generate and

maintain Delta patterns (Appendix B Movies 19-22).

We thus find that polarity dynamics can have a strong influence on the nature of

Delta-Notch signaling patterns.

3.3.4 Role of Dr and T in Delta pattern formation

At lower values of threshold T , the differences in the patterns formed by static and ro-

tationally diffusing filopodia are negligible since, in this case, the protrusional contacts

between the nearby cells are mostly independent of filopodia orientation (p̂) for interme-

diate to high values of ∆θ (Eq. 3.9). However, for higher values of T , the nature of Delta

patterns depend on filopodia orientations and the relative positions of cells (Eq. 3.9).

In this case, when Dr is zero, the final patterns are static and seem to depend only on

the initial orientations of filopodia (Movie 23, for Dr = 0, ∆θ = π/4, T = 0.6, and

initial orientation randomly chosen from [−π, π]). When Dr is non-zero but relatively

small compared to the Delta-Notch signaling rates (Eq. 3.7), the system remains estab-

lished in a particular configuration of orientation network of protrusional connections for

a sufficient duration of time to establish Delta levels and patterns. However, due to the
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(a) ξ/Dr = 0 (b) ξ/Dr = 0.5 (c) ξ/Dr = 1

(d) ξ/Dr = 1.5 (e) ξ/Dr = 2 (f) ξ/Dr = 2.5

(g) Number of clusters (h) Cluster size (i) Shape ratio

Figure 3.4: Screenshots showing the steady state Delta(red)-Notch(green) patterns formed

with polarized cells with varying coupling strength ratio (ξ/Dr) and angular range of

protrusions (∆θ). The fixed parameters are RN = RD = ρ = µ = 1, Λ = −13.77,

Dr = 0.1, v0 = 3.1 × 10−4, βj/βp = 0.01, T = 0.5, and ∆θ = π/4. The patterns (a-f) are

obtained by varying coupling strength ratio ξ/Dr ∈ [0, 0.5, 1.0, 1.5, 2.0, 2.5]. The lines in

each cell indicate the nematic orientation of cell polarity. No arrows are shown due to

the equivalence of ±p̂ in our model for cell motility (Eq. 3.5) and protrusional signaling

(Eq. 3.8). (g,h) Phase diagrams for the median number of clusters and median cluster size

in a confluent tissue (see Appendix B) as a function ∆θ and ξ/Dr. (h) Phase diagram for

median shape ratio in a confluent tissue as a function of ∆θ and ξ/Dr (see Appendix B).

Large number of Delta clusters with small cluster size and low shape ratio indicate the

dominance of isolated circular patterns, wheres low number of clusters with big cluster

size and high shape ratio point towards stripe-like patterns.
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(a) ξ/Dr = 0 (b) ξ/Dr = 0.5 (c) ξ/Dr = 1

(d) ξ/Dr = 1.5 (e) ξ/Dr = 2 (f) ξ/Dr = 2.5

Figure 3.5: Screenshots showing the steady state Delta (red)-Notch (green) patterns

formed with polarized cells with varying coupling strength ratio (ξ/Dr), angular range

of protrusions (∆θ) and T = 0.94. The fixed parameters are RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1× 10−4, βj

βp
= 0.01 and ∆θ = π/4. The patterns (a-f) are

obtained by varying coupling strength ratio ξ/Dr ∈ [0, 0.5, 1.0, 1.5, 2.0, 2.5].
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non-zero value of Dr, the orientations evolve and hence form newer protrusional connec-

tion network, thus leading to dynamical patterns (Movie 4, for Dr = 10−3, T = 0.6 and

∆θ = π/4). Finally, when Dr becomes large when compared to the signaling rates, the

protrusional contact network evolves much faster due to which the system does not get

sufficient time to establish Delta levels and patterns. Consequently, the overall Delta

levels remain low and time-varying, and the patterns not as anisotropic as for the case

Dr = 0 (Movie 24, for Dr = 1, T = 0.6 and ∆θ = π/4). Thus, Delta patterns depend on

threshold T , ∆θ, and the relative time-scales for orientational changes and signaling.

3.4 Discussion

In this study, we report a rich variety of Delta-Notch patterns that depend on the nature of

cell-cell contacts, signaling threshold, polarity dynamics and tissue mechanics. The classic

model by Collier et al. [47] exhibits checkerboard pattern for Delta-Notch expression. We

show that this pattern modifies to a spot-like pattern due to long-range contacts with

essentially a change in the length-scale that arises due to linear protrusion range. How-

ever, the modification in the angular range of protrusional contacts elicits local contact

anisotropy and hence results in more elongated Delta patterns. We further showed that

the signaling threshold is also important in dictating the connectivity of Delta clusters.

Moreover, we systematically quantified the nature of these patterns by measuring the

number of Delta cells cluster, cluster size and calculating the shape of individual clusters.

We see that by changing the polarity dynamics by increasing the signaling ratio ξ/Dr, the

cell directors (±p) become globally aligned thus leading to the formation of stripe-like

patterns.

Our model with protrusional contacts indeed shows patterns of Delta-Notch that

look similar to that formed by the EMT related molecules in Boareto et al. [27] and it is

indeed tempting to draw parallels. However, this similarity seems superficial on account

of the following important aspects. (1) Unlike in that paper in which the signalling is

governed by nearest neighbour interactions, in our work in this context, the signalling

is long range due to protrusional contacts. (2) In Boareto et al, while there are two

interconnected modules: Notch-Delta-Jagged (lateral induction and inhibition) and EMT
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circuit, in our work we only have Delta-Notch (lateral inhibition) chemical kinetics. (3)

As opposed to a static lattice in Boareto et al, we have a dynamic lattice in our model.

That said, it is possible that the effective behavior of our model could be mapped to that

of the model by Boareto et al. However, it is not clear if that’s the case in the current

scenario.

42



Chapter 4

Role of cell motility in pattern formation

due to contact dependent signaling

Collective cell movement is a fundamental and intricate process essential for the

morphogenesis of organ systems in multicellular organisms—the cells in the tissue move

in sheets or clusters of closely associated cells. Collective cell migration is known to

occur in a large number of development processes. Rather than migrate individually,

cells migrate collectively, for example, wound healing [157], gastrulation [267], and cancer

metastasis [80]. During tissue remodeling, collective motion keeps the tissue together and

enables mobile cells to move immobile cells along to maintain an even distribution of cells

within the tissue. Furthermore, it has been found that the movement patterns of such cell

clusters differ significantly from the movement pattern of the individual cells within [257].

In drosophila, collective cell movement occurs during border cell migration and tracheal

development [175]. In vertebrates, collective cell migration takes place during gastrulation,

neural crest cell development, vascular sprout, and pronephros development [56, 238, 256].

In aquatic animals, collective cell movement is observed during the sensory lateral line

development [86]. The myosin molecular motors in the cytoskeleton produces motile forces

or active forces which are transmitted via junctional contacts that drives the cell motion.

Cytoskeletal structures and the actin proteins generate tension at the cell level that gives

rise to active stress [6].

Cell motility, tissue mechanics, and intercellular signaling play a crucial role dur-

ing morphogenesis. For example, during somitogenesis in chick embryos, it is observed

that cell movement and dynamic cell rearrangements take place [161]. Similarly, during
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somitogenesis in zebrafish, Delta-Notch signaling occurs at the same time as cellular move-

ment during the segmentation process [113, 141]. Somites are segmented axial structures

in vertebrate embryos that develop into the ribs, vertebral column, skeletal muscles, and

subcutaneous tissues. During the vertebrate developmental phase, somites develop from

the anterior of the presomitic mesoderm (PSM) [123, 187, 197].

Several studies support the fact that the cell movement in tissues controls the signal-

ing patterns. In some existing theoretical models, mechanisms that could lead to different

patterns due to contact-based signaling are examined [45, 47, 99, 226, 250, 251], but no

research has been conducted to integrate tissue mechanics, cell polarization dynamics,

and cell motility simultaneously. These factors are expected to play a role in determining

the orientation, range, and arrangement of cellular contacts. They may therefore play a

crucial role in the formation and maintenance of signaling molecules pattern. We inves-

tigate the role of cell motility that ultimately leads to the collective movement of cells

on the patterns formed by signaling molecules. For model details, see Chapter 3, which

includes the cell mechanics and polarity dynamics. In addition to cell mechanics, cell

polarity, and cell-cell signaling, we also For every cell, we also incorporate cell motility in

each cell that orients in the direction of cell polarity. We observe that the cell-cell contacts

evolve dynamically, but the patterns formed by signaling molecules are maintained. We

also quantify the spatio-temporal characteristics of the patterns by dynamic correlation

function.

4.1 Effect of motility on pattern formation

In the previous chapter, we have studied the role of protrusion spread, signaling threshold

and polarity dynamics on the formation of Delta-Notch patterns in tissues. In our model,

the polarity dynamics influences the signaling via modification of protrusional contacts.

However, as discussed earlier, cell polarity is also connected with cell migration, which

in conjunction with cell shape index can control tissue fluidization through cell neighbor

exchanges (see Appendix B) and thus influence the signaling pattern. Hence, we provide

cells with larger values of motility v0 and adjust cell line tension Λ such that the cell-

shape index p0 = − Λ
4Γ

√
A0

≈ 3.85 > 3.8, that is required for tissue fluidization for v0 =
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(a) time=0 (b) time=700 (c) time=1400

(d) (e)

Figure 4.1: Screenshots and plots showing the effect of cell motility and tissue mechanics

on Delta-Notch pattern formation. The parameters used for the simulations are RN =

RD = ρ = µ = 10, Λ = −14.32, Dr = 0.001, ξ = 0, ∆θ = π/2, T = 0.1 and v0 = 0.31.

The shape parameter for the cells p0 > 3.82, the so called fluidization threshold. (a)-(c)

The spot-like Delta patterns keep re-arranging in space as a function of time. The circles

correspond to manual tracking of the cluster shown in panels. (d) Plot of the Delta-Delta

correlation function Gs(r, τ) shows the cell movement as a function of time. (e) Plot of

the Delta-Delta correlation function Gd(r, τ) shows clear spatial pattern with a length

scale of approximately 5 cell lengths. Although the shape of the function Gd(r, τ) does

not change with τ , its amplitude decreases, thus indicating that the dynamic nature of

the patterns.
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Figure 4.2: The magnitude of Gd(r, τ) as a function of τ for r ≈ 2.9 is plotted as a function

of time for the simulation parameters: RN = RD = ρ = µ = 10, Λ = −14.32, Dr = 0.001,

ξ = 0, ∆θ = π/2, T = 0.1 and v0 = 0.31. An exponentially saturating function of the

form A+B exp(−t/T ) fits well to these values with T ≈ 100 and provides the time-scale

for pattern re-arrangement.

0 [22, 23, 229]. First, we study the effect of uncorrelated cell movement on pattern

formation by fixing ξ = 0, v0 = 0.31, and Dr = 0.001 at different values of T . If the

signaling rates are small, then the neighbor exchanges between the cells are too fast as

compared to the signaling time-scales. As a result, we do not observe Delta-Notch patterns

as for the static cell network. However, upon increasing the signaling rates by ten-fold,

we recover back the circular, isolated patterns seen earlier.

In chapter 3, v0 was almost zero but here we use v0 = 0.31, much higher value to

model motility. Interestingly, the patterns are now no longer static but keep spatially

rearranging. The movement of the Delta patterns mainly depends on the dynamics of the

cluster of Delta expressing cells, which in turn is dictated by the collective cell migration

patterns that are governed by the underlying tissue mechanics and polarity dynamics of

individual cells (Figures. 4.1a-c; Movies 14 and 15 in Appendix B). In the case where

a particular cluster of Delta cells breaks apart, a new group of Delta expressing cells is

created by the entry of new cells into a pre-exisiting nuclei of Delta expressing cells. On

the other hand, there are cases where the entire group of Delta expressing cells migrates

as a whole in which case the Delta patterns also take the same trajectory as the complete

cluster. A combination of cellular movements and chemical patterns leads to an emergent

time-scale for the spatial rearrangement of Delta clusters.
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To quantify the spatio-temporal dynamics of these patterns, we calculate the Delta-

Delta self and distinct parts Gs(r, τ) and Gd(r, τ), of the radial distribution function:

Gs(r, τ) =
1

κN
∑
α

∑
α

r<|rαα|≤r+∆r

⟨Dα(t)Dα(t+ τ)⟩t, (4.1)

Gd(r, τ) =
1

κN
∑
α

∑
β ̸=α

r<|rαβ |≤r+∆r

⟨Dα(t)Dβ(t+ τ)⟩t, (4.2)

where, the normalization factor,

κ =
1

N (N − 1)

∑
α

∑
α̸=β

⟨Dα(t)Dβ(t+ τ)⟩t

The idea behind the distinct part of the Delta-Delta radial distribution function

(distinct part) function is to capture for every cell α at a given time t how much its Delta

expression correlates with the Delta levels of every other cell β that is present within a

particular distance r < |rβ − rα| ≤ r + ∆r at time t + τ . The plots of Gd(r, τ) as a

function of r for different time-lags τ at ∆θ = π/2 and T = 0.1 are shown in Figure. 4.1d.

The plot for each value of τ was obtained from the average of Gd(r, τ) over three set of

simulations, each with 1600 cells. The initial configuration of polarity p̂ for individual cells

was generated from uniform random orientation in the range [−π, π] and uniform random

concentration of Delta and Notch in the range (0, 1) for a given combination of simulation

parameters. When τ = 0, we see a decaying oscillatory pattern in space that is indicative

of periodic Delta expression with the distance between the centers of neighboring Delta

region of approximate 5 cells. For increasing values of τ , we see that the shape of Gd(r, τ)

remains invariant, but the amplitude of the function decreases, thus indicating that the

patterns are not stationary but diffuse in space. To quantify the rearrangement time-scale

of the Delta patterns, we plot the amplitudes of the radial distribution function Gd(r, τ)

corresponding to its first minima r ≈ 2.5 as a function of time-lag τ (Figure. 4.2). After
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fitting an expression of the form A+B exp(−τ/T ), the pattern re-arrangement time-scale

T ≈ 90 emerges. We note that T is much greater than either the time-scale for signaling,

(τs = 1/µ ≈ 0.1) or that for cellular rearrangements (τr = Lc/v0 ≈ 3) and is very likely an

emergent time-scale. Such emergent features are common in active systems, but require a

more detailed analysis that is beyond the scope of the current work [155, 185, 191]. We also

run the simulation and plot the corresponding Gd(r, τ) function at ∆θ = π/4 T = 0.9 and

T = 0.94. We observe that the correlation decays very fast as we increase the activation

threshold and it becomes completely uncorrelated at higher values of activation threshold

(Figure. 4.3).

The self-part of Delta-Delta radial distribution function captures for every α at a

given time t how much does its Delta expression correlate with itself when it has moved

a distance of r < |rβ − rα| ≤ r+∆r at time t+ τ . The plot of Gs(r, τ) as a function of r

for different time-lags τ at ∆θ = π/2 and T = 0.1 are shown in Figure. 4.1e. The initial

configuration for the simulation is same as described above. For increasing values of τ ,

we see that the amplitude peak of Gs(r, τ) decreases and shifts in space with time delay,

thus indicating that the Delta cells are constantly moving.

We also study the effect of cell movement on pattern formation when the alignment

strength ratio ξ/Dr is relatively high with ξ = 0.25, v0 = 0.31, and Dr = 0.1. In this

case, we see that stripe-like patterns of Delta expression are seen similar to the case when

v0 = 10−4 (Figure. 4.4; Movies 14 and 15 in Appendix B). However, the patterns are more

dynamic and, as opposed to the formation and breaking of clusters in the case of spot-like

patterns when ξ = 0, we see that the stripes break and merge to continuously change

their alignment.

Thus, we observe that the polarity and motility dynamics of cells, along with tissue

mechanics, influence the signaling patterns and hence the spatio-temporal levels of Delta

and Notch expression.
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(a) time=0 (b) time=100 (c) time=200

(d) (e)

Figure 4.3: Screenshots and plots showing the effect of cell motility and tissue mechanics

on Delta-Notch pattern formation. The parameters used for the simulations are RN =

RD = ρ = µ = 10, Λ = −14.32, Dr = 0.001, ξ = 0, ∆θ = π/4, T = 0.9 and v0 = 0.31.

The shape parameter for the cells p0 > 3.82, the so called fluidization threshold. (a)-(c)

At T = 0.9, the Delta patterns keep re-arranging in space as a function of time. (d,e)

Plot of the Delta-Delta correlation function Gd(r, τ) at (d) T = 0.9 and (e) T = 0.94

shows clear spatial pattern with a length scale of approximately 5 cell lengths. Although

the shape of the function Gd(r, τ) does not change with τ , its amplitude decreases, thus

indicating that the dynamic nature of the patterns.
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4.2 Discussion

In this chapter, we studied the effect of cell motility and tissue mechanics on the contact

dependent signaling patterns. We observed that when the cells have motility and shape

index beyond the fluidization threshold, the cells can rapidly change their connectivity due

to which their signaling contacts are also modified. As a result, the expression patterns

for Delta-Notch no longer remain static. Their dynamics is decided by the dynamics of

the formation and breaking of Delta clusters, which in turn are governed by the motility

patterns of the cells. When the polarity diffusion dominates, we see the formation of

moving spot-like patterns, which we systematically quantified using the spatio-temporal

radial correlation function for Delta expression. On the other hand, when the polarity

alignment term dominates, we saw that stripe-like patterns arise. However, unlike for the

static case, the stripes keep modifying their alignment by splitting and then merging with

the other stripes – this dynamics being governed by cellular movements.
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(a) time=0 (b) time=200 (c) time=500

(d)

Figure 4.4: Screenshots and plots showing the effect of cell motility and tissue mechanics

on Delta-Notch pattern formation. The parameters used for the simulations are RN =

RD = ρ = µ = 10, Λ = −14.32, Dr = 0.1, ξ = 0.25, ∆θ = π/4, T = 0.5 and v0 = 0.31.

The shape parameter for the cells p0 > 3.82, the so called fluidization threshold. (a)-(c)

The stripe-like Delta patterns keep re-arranging in space as a function of time. (d) Plot

of the Delta-Delta correlation function Gd(r, τ) shows clear spatial pattern with a length

scale of approximately 5 cell lengths. Although the shape of the function Gd(r, τ) does

not change with τ , its amplitude decreases, thus indicating that the dynamic nature of

the patterns.
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Chapter 5

Role of Delta-Notch signaling molecules

on cell-cell adhesion in determining het-

erogeneous chemical and cell morpholog-

ical patterning

5.1 Introduction

Multicellular organisms are made of different tissues that are comprised of aggregates of

various types of cells [5]. Across species, in these tissues, cells exhibit diverse morphologies

at varying stages of their collective life-cycle [79, 148]. Nevertheless, many healthy tissues

are comprised of cells of the same type and have similar protein expressions within them,

resulting in overall homogeneity in their shape and size [199]. Hence, many epithelial

tissues exhibit a striking regularity in the size and morphology of the constituent cells [87].

However, a number of diseased or tumor cells are pleomorphic and have a significant

variation in shape and size within a tissue [60, 202]. It is known that morphology and

mechanics of cells influence organ development and disease progression [38, 130, 211,

261]. Consequently, heterogeneity in cell size is generally an indication of an underlying

pathology [87]. Indeed, such variations in shape and size of the cells are useful in the

diagnosis of several cancers [64, 246].

Different types of normal sensory epithelia demonstrate heterogeneity in cell mor-
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phology along with a characteristic spatial pattern [87]. For example, the olfactory ep-

ithelium (OE) that is involved in odor perception and resides inside the nasal cavity of

mammals, contains larger supporting cells that surround the smaller olfactory cells and

generate a mosaic pattern [51, 232]. In fact, the olfactory cells and supporting cells dy-

namically arrange themselves during development to create this arrangement [124]. Such

mosaic patterns in cell morphologies are also observed in the auditory epithelium [243, 244]

that is found in the ear canal. Studying the dynamic mechanisms that govern the dis-

tributions of cell shapes and sizes in any given tissue may therefore be important in

understanding form and function of healthy tissues as well as the development of diseases

such as cancer.

Cell shape, size, and position within a tissue are governed by physical forces, which

could be generated either within individual cells or exerted from the surrounding tissue

and transmitted via cell-cell junctions [61, 110, 192]. Specifically, the force transmission

between the cells in a tissue and the associated deformation kinematics are largely gov-

erned by cadherin and acto-myosin complexes at the cell-cell junctions [183, 218, 253].

The dynamics of these molecules is in turn modulated by the underlying chemical sig-

nalling [165, 189]. Moreover, the signalling also simultaneously controls chemical pattern-

ing within the tissue by governing protein expressions within the cells and hence their

biological fate [13, 132, 179]. Hence, an understanding of how the physical forces and the

associated chemical signalling collectively modulate cell morphologies in tissues is crucial

to get insights into the heterogeneous chemical and morphological patterns of cells in

diseased and sensory epithelial tissues.

Size and shape of cells are strongly influenced by mechanical forces at its cell-cell

boundary [24, 70, 135]. As observed in sensory epithelia, differential and cooperative

adhesions and contractility among genetically heterogeneous cells impact cell shape, size,

and cellular patterns [203, 242, 243]. For example, mosaic cellular patterning characterized

by smaller supporting cells and larger olfactory cells in the tissue is reported to be due

to heterophilic adhesion between multiple cell types such as hair cells and supporting

cells [124, 203, 242, 243]. In a recent work, Cohen et al. [46] demonstrated that the mosaic

pattern of the hair cells and supporting cells, and their combined spatial positioning in

the auditory epithelium with respect to the pillar cells is also influenced by external

mechanical forces.
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There are many studies that investigate various aspects of heterogeneous cell mor-

phology patterns in tissues. For example, though the exact origins of the mosaic patterns

in olfactory epithelium are not well understood, it is known that the olfactory cells and

supporting cells express different cadherins and nectins [124, 232]. It is also known that

Delta-Notch signalling control the expression of these molecules either by repressing or

upregulating [39, 72, 104, 139, 140, 262]. Similarly, in the auditory epithelium, members

of the Notch pathway are involved in determining cell fates via lateral inhibition [125].

Differential cell adhesions, such as those mediated by integrins and cadherins/catenins,

play an important role in morphogenesis [135, 236]. Their expression and modification are

known to be linked to cell growth, intercellular signalling, cell differentiation, and apopto-

sis [112]. There is evidence that Notch signalling enhances cell-cell adhesion by inducing

the expression and activation of cell adhesion molecules such as integrins [109, 176, 214].

Many studies further suggest that Notch is involved in controlling cell-cell adhesion in

Drosophila eye cell [16]. Moreover, Notch signalling is linked to the adhesion force be-

tween cells expressing Notch receptors and Delta ligands [2]. Through modulation of cell

adhesion, Notch also contributes to stem cell clustering [266]. For example, by enhancing

integrin-mediated cell adhesion, Rap1b promotes Notch-signal-mediated development of

hematopoietic stem cells [205]. Similarly, hepatic endothelial Notch activation regulates

endothelial-tumor cell adhesion to protect against liver metastasis [214]. Additionally,

periodic activation of Notch signalling is also shown to drive differential cell adhesion and

coordinated adjustment of cell shape during feather branching in chicks [40]. Although,

like Notch, Delta also plays a role in cell adhesion and motility [71], the extent of its direct

contribution to these processes is not well known. However, there is some evidence, for

example, that keratinocyte cohesiveness is promoted in cells that overexpress Delta1 [146].

It is known that Delta-Notch signalling typically relies on contact-based lateral in-

hibition to regulate the expression of Delta and Notch in tissues [30]. The dynamics of

various spatio-temporal patterns that are formed during this signalling is addressed by a

number of theoretical and computational models [15, 45, 47, 99, 226, 227]. It is known

from these models that when the interactions between the cells are limited to the nearest

neighbours, checkerboard pattern of Delta and Notch expressed cells are known to ap-

pear [15, 47]. On the other hand, some models demonstrate that when the contacts are

created between non-adjacent neighbours due to cellular protrusions, then the dynamics
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of components associated with these contacts can give rise to a wider range of Delta-Notch

patterns in the tissue [15, 99]. Though these models delve into the intricacies of chemical

pattern formation during Delta-Notch signalling, there are, to the best of our knowledge,

very few models that also study the concomitant cell morphology patterns. However, as

seen earlier, since the Delta-Notch molecules are also known to be involved in cell-cell

adhesions, such chemical patterns also have the potential to be involved in controlling cell

morphologies via the modulation of physical forces through adhesion molecules.

Thus far, there has no systematic theoretical or computational investigation of how

these combined patterns concomitantly appear in the tissues, specifically in the context

of contact based lateral inhibition signalling. Since, as discussed above, Delta-Notch

signalling with lateral inhibition forms a wide variety of chemical patterns, we expect that

a feedback between cell mechanics and signalling via modulation of cell-cell adhesivities

could also give rise to a wide range of mechnochemical patterns in tissues. Hence, in this

paper, we develop a simple mechanochemical vertex model of the tissue based on Delta-

Notch signalling in which the expression levels of Notch and Delta in the cells is linked

with the bond tension of the edges shared by them. The variations in bond tensions in

turn can influence both cell morphologies and topological transitions in the tissue thus

also influencing the signalling. In our model of lateral inhibition, we consider both the

nearest neighbor interactions and long-range protrusional contacts. We systematically

explore the broad range of chemical and morphological patterns in the tissue due to

this mechanochemical process. We propose that, in general, a simple feedback between

chemical signalling in cells and their mechanical properties can give rise to wide range of

chemical and morphological patterning of cells in the tissues.

5.2 Methods and Model

Delta-Notch signalling, which relies on contact-based lateral inhibition, is used as the

model chemical system in the present paper [15, 45, 47, 99]. A model for Delta-Notch

kinetics is constructed by tracking the concentration of Notch and Delta in each cell Nα

and Dα, respectively, in cell α. The growth rate of Notch in cell α is activated by the

presence of Delta in its contact neighbours, whereas the rate of Delta a cell is inhibited
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(a) Λ0 = −14.14, C = −0.6 (b) Λ0 = −14.14, C = −0.2 (c) Λ0 = −14.14, C = 0.04

(d) Λ0 = −14.14, C = 0.16 (e) Λ0 = −11.17, C = 0.2 (f) Λ0 = −11.17, C = 0.6

Figure 5.1: Delta-Notch patterns formed for Delta-dependent adhesivity Λαβ (Eq. 5.4)

with coupling coefficient C = (a) −0.6, (b) −0.2, (c) 0.04, (d)0.16 (e) 0.2 and (f) C = 0.6.

In (a)-(d), the basic edge adhesivity Λ0 = 14.14, corresponding to the solid-like limit, and

in (e)-(f), Λ0 = −11.17, corresponding to the solid-like limit of tissue behaviour. In all

these simulations βj/βp ≈ 100, B = 1, v0 ≈ 0, K = 1, and Γ = 1.
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by the presence of Notch within itself. These kinetics are represented as follows [15]:

dNα

dt
= RN

D̄2
α

a+ D̄2
α

− µNα, (5.1a)

dDα

dt
= RD

1

b+N2
α

− ρDα, (5.1b)

D̄α =
1

2
[βjD̄

α
j + βpD̄

α
p ], (5.1c)

where RN |µ and RD|ρ are, respectively, the rate of production | decay of Notch and Delta

and D̄α is the mean Delta concentration in the cells that are in contact. βj is the contact

weight provided for the junctional contacts and βp is the contact weight for protrusional

contacts, such that βj + βp = 1. The junctional and protrusional averages are:

D̄α
j =

1

nj

∑
γ∈nj

Dγ and (5.2a)

D̄α
p =

1

np

∑
γ∈np

Dγ, (5.2b)

where nj denotes the number of cells that are in contact with cell α via junctional contact

while the np is the number of cells that are in contact via protrusions. The details of the

procedure to obtain D̄α
p due to protrusional contacts based on a threshold T are given in

Section 2 of Ref. [15].

The tissue mechanics is implemented using a well established vertex model [22, 24,

70, 74], where the cells in the tissue monolayer are represented by the polygons having

vertices and edges. For a tissue having N cells, the total work function U of the tissue
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monolayer is given by

U =
N∑

α=1

[Kα(Aα − Aα,0)
2 + ΓαL

2
α] +

∑
edges:γβ

Λγβlγβ, (5.3)

where, N is the total number of cells in the monolayer and Kα, Aα, Aα,0, Γα, and Lα

are the area stiffness, current area, preferred area, boundary contractility and perimeter,

respectively, of cell α. Λγβ is the differential line tension at junctions between two cells.

lγβ is the length of the edges shared between cells γ and β and is summed over all the

bonds in the tissue. The first and second terms result, respectively, from area elasticity

and boundary contractility of the cells while the third term results from the forces at cell-

cell junctions due to the acto-myosin contractility and nectin-cadherin adhesivity. Λγβ is

the differential adhesion parameter of cell-cell junction edge of length lγβ shared by cells

γ and β.

In the model we couple the Λγβ with Delta-Notch signalling using the following equa-

tions. We assume that the line tension parameter may depend on the Delta concentration

of the two cells sharing the edge:

Λγβ = Λ0[1 + C(|Dγ +BDβ|)] (5.4)

where, Dγ and Dβ are the Delta concentrations in the cells sharing the edge γβ. C and

B are the coupling coefficient and sign constant respectively. Secondly, we asume that

the line tension parameter depends on the Notch concentration of the two cells sharing

the edge:

Λγβ = Λ0[1 + C(|Nγ +BNβ|)] (5.5)

where, Nγ and Nβ is the Notch concentrations in the cells sharing the edge γβ. The values

of B = 1 B = −1, model the cases where the Delta (Notch) levels in the neighboring

cells α and β contribute cooperatively and antagonistically to the junctional adhesivity,

respectively. Our goal in this paper is to explore the qualitative consequences of the

dependence of adhesion on Delta or Notch. Since not much is known about this kind of
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coupling, the linear expression we have chosen represents a necessary first step. Similar

approach has been done in many active systems, for instance, in which the active stress due

to actomyosin is equated with the experimentally measured myosin intensity [162, 204].

The elastic forces act on each cell vertex i arising from the work function U can be

calculated as Felastic
i = − ∂U

∂ri
, where ri is the position of vertex i. Along with the me-

chanical forces, the cells in the tissues have front-rear polarity and self-propelled motility.

Therefore, the vertices of cells in the tissue move as a result of mechanical and active

forces as [24, 234]

Factive
i = ηv0

1

ni

∑
β

p̂β, (5.6)

where ni is the number of cells β shared by vertex i, p̂β is the polarity of the cell β

which acts in the direction of cell polarization, v0 and η are the magnitude of velocity and

viscous drag respectively acting on each cell vertex. The external viscous force balances

the total force on vertex i, which is a combination of elastic and active forces. In our

system, the cells also exchange neighbours (known as T1 transitions [73]) that promote

tissue fluidity. As a result, the vertex position is described by the following dynamical

equation of evolution

η
dri
dt

= Felastic
i + Factive

i . (5.7)

The polarity of each cell is modeled by keeping in mind the observation that the cells

tend to align themselves with the polarity director of the neigbouring cells (±p). The

cells also perform random rotational diffusion [17, 23, 36, 100, 170] along with the above

alignment. Hence, the polarity of each cell is modeled as,

dθα
dt

= ζα, (5.8)

where θα is the polarity angle of cell. The cell polarity is represented by: p̂α = cos θαêx+

sin θαêy. The polarity for any cells rotates with a random rotational diffusive noise that
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(c) Average shape index of Delta cells

(a) Average area of Delta cells (b) Average area of Notch cells

(d) Average shape index of Notch cells

(e) Average cell pressure of Delta cells (f) Average cell pressure of Notch cells

(h) Average shear stress of Notch cells(g) Average shear stress of Delta cells

Figure 5.2: Effect of basic adhesivity (Λ0) and coupling constant (C) on average features of

patterns observed with Delta-dependent adhesion Eq. 5.4. (a,b) Average area of Delta and

Notch cells respectively in a confluent tissue as a function Λ0 and C (c,d) Average current

shape index
〈

Lα√
Aα

〉
α

of Delta and Notch cells, respectively, in a confluent tissue as a

function of Λ0 and C. (e, f) Average cell pressure of the Delta and Notch cells, respectively

(see Appendix C for definition of stress for a vertex model). Positive and negative pressure

values correspond, respectively, compression and tension. (g, h) Magnitude of shear

stress of Delta and Notch cells, respectively (see Appendix C). The other parameters

are: βj/βp ≈ 100, B = 1, v0 ≈ 0, K = 1, Γ = 1

.
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is represented as,

⟨ζα(t)ζα(t′)⟩ = 2Drδ(t− t′), and

⟨ζα(t)⟩ = 0.

where ζα(t) is a white-noise process with zero mean and standard deviation
√
2Dr.

Initially the cells were organised in a perfect hexagonal lattice with periodic boundary

conditions and containing 400 cells. The model is implemented in CHASTE [73] and

different parameters used in our model are non-dimensionalised as discussed in Appendix

C and shown in Table C.1. The minimal diameter d of each hexagon was taken as the

length scale in our simulations. The base value of line tension Λ0 is chosen such that the

shape index for any cell p0 = − Λ0

4Γ
√
A0

≈ 3.81, corresponding to the so called fluidisation

limit for the vertex model. In our simulations, since we keep A0 =
√
3/2 and Γ = 1,

tissue fluidisation occurs for Λ0 ≈ −14.13, and any variations in Λ0 in our simulations are

made with respect to this value. T1 transitions or neighbour exchanges in the tissue are

attempted at every time step such that when the length of any edge l < ϵc = 0.06, the

bond is closed and opened up in an orientation perpendicular to the original with a new

length l = ϵo = 0.1, i.e., ϵc < ϵo [73]. In this framework, by default, more than three-way

vertices are not permitted.

5.3 Results

Depending on the concentration of Delta and Notch, any cell α can exclusively be a Delta

cell (Dα ≈ 1 and Nα ≈ 0) or a Notch cell (Dα ≈ 0 and Nα ≈ 1), or something in between

with Dα ≈ Nα. In a tissue with two cell types, namely Delta (D) and Notch (N), any pair

of cells can potentially share three types of edges, DD, NN and DN . The Delta-Notch

kinetics with only junctional contacts gives rise to checkerboard patterns of Delta and

Notch cells [15, 47]. In such a scenario, the cell edges are shared only between Delta-

Notch cells and Notch-Notch cells, giving rise to only two types of bonds DN and NN .

However, the Delta-Notch kinetics with protrusional contacts gives rise to more complex

patterns involving groups of both Delta and Notch cells. In such cases, the cell edges are
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(a) C = −0.6 (b) C = −0.2 (c) C = 0.04 (d) C = 0.08

Figure 5.3: Steady-state patterns formed with Notch-dependent adhesion (Eq. 5.5) for (a-

d) C = −0.6,−0.2, 0.04, 0.08 and B = 1 with only junctional contacts. Other parameters

have fixed values, βj/βp ≈ 100, B = 1, v0 ≈ 0, K = 1, Γ = 1. Λ0 = −14.14 for all the

cases, corresponding the fluid-like limit of the tissue. Modified checkerboard patterns of

Delta-Notch with (a,b) bloated and (c, d) distorted Delta cells are seen.

shared between all three types of bonds.

In our model, if all the cells in the tissue are of the same type (N or D), cell-cell

adhesion will be equal (ΛNN or ΛDD) for all pairs of contacting cells. In this case, the

effective shape index of the cells can get homogeneously modified and, along with cell

motility v0, can influence the morphology of the cells [24]. On the other hand, when the

cells in our model tissue exhibit a Delta-Notch pattern, then, depending on the N and

D expression in the cells, adhesivity between any pair of cells can potentially achieve

three different values ΛDD,ΛDN , or ΛNN . Hence, in such a scenario, the chemical pattern

dictates cell shape and size by modulating cell-cell adhesivity. In our previous work [15]

(coupling parameter C = 0), we had seen that the existence or stability of the Delta-Notch

checkerboard pattern that appears in junctional contact signalling depends on the relative

time scales associated with signalling (1/RD, 1/RN , 1/ρ, 1/µ in Eq. 5.1) and cell neighbour

exchanges that depend on cell motility (v0). For v0 = 0, we get a steady checkerboard

pattern (Movie A). For intermediate values of v0 (v0 = 0.1, Movie B in Appendix C),

the checkerboard pattern is initiated but is unable to be steadily maintained due to

persistent exchange of cell neighbour. When the motility is much higher (v0 = 0.3, Movie

C in Appendix C), the checkerboard pattern fails to establish because the cells lose their

nearest neighbour contacts before the checkerboard pattern could be established. Since
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(e) Average cell pressure of Delta cells

(c) Average shape index of Delta cells

(a) Average area of Delta cells (b) Average area of Notch cells

(d) Average shape index of Notch cells

(f) Average cell pressure of Notch cells

(h) Average shear stress of Notch cells(g) Average shear stress of Delta cells

Figure 5.4: Effect of coupling constant (C) and basic adhesivity (Λ0) on average features

of patterns formed with Notch-dependent adhesion (Eq. 5.5): (a, b) Phase diagram for

the average cell area of Delta and Notch cells in a confluent tissue as a function Λ0 and

C (c, d) Phase diagram for average current shape index
〈

Lα√
A0

〉
α

of Delta and Notch cells

in a confluent tissue as a function of Λ and C. (e-h) Phase diagram showing average cell

pressure and shear stress in Delta and Notch cells (see Appendix C). The other parameters

are: βj/βp ≈ 100, B = 1, v0 ≈ 0, K = 1, Γ = 1.

63



the addition of v0 did not add any interesting features in junctional contact signalling,

we keep v0 = 0 for this case (Secs. 5.3.1 and 5.3.2) while using RD = RN = ρ = µ = 1

for the Delta-Notch kinetics [15]. On the other hand, in the case of protrusion dependent

signalling (Section 5.3.3), although neighbour exchanges still take place due to non-zero v0,

protrusion-based contacts can still be formed with non-nearest neighbours. Consequently,

we found that the Delta-Notch patterns are more complex and remain comparatively

stable in time. Hence, in this case (Sec. 5.3.3), we use non-zero cell motility (v0 =

1) while conservatively increasing the Delta-Notch kinetic parameters by a factor of 10

(RD = RN = µ = ρ = 10) so that the signalling rate keeps up with cell neighbour

exchanges [15].

5.3.1 Cell morphologies with Delta-dependent adhesion and junc-

tional contact signalling

The model with Delta-dependent adhesion (Eq. 5.4) and junctional contact signalling

(βj ≫ βp in Eq. 5.1c) shows two types of behaviour depending on the coupling coefficient

C and parity of B. Since in signalling based on junctional contacts we get a checkboard

pattern for Delta-Notch, we broadly get only two types of bonds NN and DN .

Effect of C and Λ0 when B = 1

For Eq. 5.4, we first keep B = 1, i.e., cooperative adhesion between the neighboring

cells, and vary C between negative and positive range for different values of Λ0. This

coupling results in the modification in the bond-tension parameter for DD and DN cells.

The morphological configuration of the cells depends on the minimization of the work

function in Eq. 5.1 and is subject to two constraints: (1) the total area of N and D

cells is conserved and (2) due to lateral inhibition from Delta-Notch signalling between

the nearest neighours, any steady state configuration with neighbouring D cells are not

possible. As a result, the terms that ultimately decide the morphology of the cells in the

tissue are, the (i) absolute and the relative values of bond energies ΛDN and ΛNN , (ii) the

contractile part of the tissue work function, and (iii) the area deformation energy (Eq. 5.3).

The overall configuration of D and N cells can thus appear from the competition between
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area deformation and elongation of the cells subject to the constraints from signalling and

total tissue area.

A few illustrations of the Delta-Notch and cell morphology patterns in the tissue

from these parameters are shown in Fig. 5.1. When C < 0 and Λ0 = −14.14, at steady

state, ΛDN > ΛNN ≈ Λ0, resulting in smaller DD bonds and longer NN bonds. Such

a combination gives rise to smaller sized Delta cells interspersed within bigger Notch

cells (Fig. 5.1a,b; Movies 1 and 2 in Appendix C). For a much lower value of C =

−0.6 (Fig. 5.1a; Movie 1 in Appendix C), we also observe Delta cell apoptosis, i.e., the

cell number decreases with time and reaches a fixed number at steady state (Appendix

C Fig. C.1). For a given Λ0, increase in the value of C leads to a decrease in ΛDN as a

result of which the DN bonds become longer causing an increase in the size of Delta cells.

When C > 0, ΛDN decreases further and to lower the overall bond energy, the cells have a

choice of either increasing their overall size by growing in area or increase their perimeter

by elongating. Since the total area of the tissue is conserved, any increase in the area

of D cells has to be accompanied with a corresponding decrease in the area of N cells.

However, since ΛNN ≈ Λ0 is mostly independent of C in the current case, the size of NN

bonds are not expected to modify significantly with change in C. Consequently, we find

that for C > 0, the D cells are mostly elongated to accommodate the overall increase in

the bond size of D cells (Figs. 5.1b-d; Movies 2-4 in Appendix C).

The bond lengths DN and NN also directly depend on the value of Λ0. Increase in

Λ0 would lead to the shortening of DN bonds and hence reduction in the overall size of

N cells. In this case, when C > 0, ΛDD < ΛNN ≈ Λ0 due to which the length of DD

bonds is expected to be larger than the NN bonds. Hence, D cells have the option to

either elongate or increase in area, depending on the magnitude of C. For lower values of

C, in order to make up for the tissue area left behind by the diminished N cells, the D

cells increase in size (Fig. 5.1e; Movie 5; Appendix C). However, increase in C leads to a

further decrease in ΛDN due to which longer DN bonds are favorable. But since the total

area of the tissue does not change, in this case, the D cells become elongated (Fig. 5.1e;

Movie 6 in Appendix C). Thus we see that even such a simple coupling between cell-cell

adhesivity and the concentration of signalling molecules, can give rise to a variety of cell

morphological patterns in the tissue.
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We now quantify the size/shape of Delta and Notch cells in the tissue for various

combinations of Λ0 and Cα. We define a Delta cell as a cell with Dα > 0.5 and Notch

cell as the cell D ≤ 0.5. However, we find that the Delta and Notch cells typically have

D ≈ 1 and D ≈ 0, respectively. The effective size of Delta and Notch cells is estimated by

calculating their mean area (Fig. 5.2a,b; Appendix C). We can see from Fig. 5.2a that for

a given value of Λ0, the size of Delta (Notch) cells increase (decrease), respectively, with

increasing strength of coupling constant C. This trend could be interpreted by realising

that the corresponding line tensions ΛDN and ΛNN decrease and approximately remains

the same (Λ0), respectively, with increasing C thus making D cells bigger at the expense

of N cells since the overall tissue area remains constant. To get insight into the shape

of the cells, we calculated mean of the shape index sα = Pα/
√
Aα of every Delta or

Notch cell α, where Pα and Aα are the actual perimeter and area, respectively, of the cell.

(Fig.5.2c,d). The average current shape index of the Delta cells (Pα/
√
Aα) increases as we

increase the coupling constant from negative to positive. At negative value of C = −0.6

the the cells are regular hexagons and the shape index is lower (s ≈ 3.72), whereas at the

other extreme, when C = 1, their shape index is higher since the cells become elongated

(Fig. 5.2c). On the other hand, Notch cells are comparatively less susceptible to elongation

(Fig. 5.2) since ΛNN is almost insensitive to C.

For completeness, we also study how Delta-Λ coupling influences the average stress

in the cells. We quantify the average shear stress and average pressure, respectively,

as the corresponding stress equivalents of cell shape and size of the Delta and Notch

cells (see Appendix C and Figs. 5.2e-h). The average shear stress depends only on the

effective tension that depends Λ0, C, and the overall elongation of the cells (Eq. C.2;

Appendix C). Similar to cell shape index, we find that the average shear stress in the

Delta cells increases with C. Moreover, for larger values of C > 0, the shear stress

shows a non-monotonous behaviour as also observed for average shape index (Fig. 5.2c).

However, unlike shear stress, average cell pressure does not show the same qualitative

correspondence with average cell area. For example, unlike average cell area, the average

cell pressure is non-monotonic with respect to C for most values of Λ0. This behavior could

be understood by noting that in our case, cell pressure (Eq. C.2; Appendix C) is dominated

by the value of bond tensions as compared to area deformation. Consequently, cell area

mainly influences cell pressure in so much as it changes the bond lengths. Consistently,
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we find that when Λ0 is lower, the pressure is higher (> 0) and becomes more negative

(tensile) with increasing Λ0. In Notch cells, the average cell pressure goes from tensile to

compressive with increasing C and shows the same trend as that for cell area. However,

in this case, shear stress exhibits non-monotonicity with C, although the variation in the

stress values are much lesser when compared with that of the Delta cells.

In this section, we used B = 1, i.e., positive coupling between the neighbours

(Eq. 5.4). However, since as described above, we do not have DD cells in the system

due to lateral inhibition, the use of B = −1, i.e., anti-coupling between the neighbouring

cells does not change the overall nature of patterns of Delta-Notch and cell morphologies.

5.3.2 Cell morphologies with Notch-dependent adhesion and junc-

tional contact signalling

We assume here that the adhesion Λγβ for the cell bond shared between cells γ and β

is differential and depends on Notch signals of cells γ and β (Eq. 5.5). The simulations

show two different types of behaviour depending on the coupling coefficient C and Λ0.

As discussed earlier, in junction based signalling we get only two types of bonds NN and

DN . We perform the simulations by fixing B = 1 and varying Λ0 and C. The definitions

of N and D cells remain the same as in the previous sub-section on Delta-dependent bond

tensions.

Effect of C and Λ0 when B = 1

First we vary C from C = −0.6 to C ≈ 0.1, while keeping Λ0 = −14.14, near the

fluidisation threshold. When C < 0, on average, Λ0 < ΛDN < ΛNN at the steady state,

as a result of which the length of the bonds lNN < lDN . Consequently, we get larger

Delta cells and smaller Notch cells (Figs. 5.3a,b; Movies 7 and 8 in Appendix C). When

C > 0, on average ΛNN < ΛDN < Λ0 at the steady state, due to which the bond lengths

lNN > lDN on average. Moreover, with increasing C, as expected (Eq. 5.5), ΛNN and

ΛDN falls more rapidly than for the Delta-dependent adhesion (Eq. 5.4). Consequently,

in such cases, we see smaller Delta cells and deformed and irregularly shaped Notch cells
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(Fig. 5.3c,d; Movies 9, 10a and 10b in Appendix C).

Similar to Fig. 5.3, we now quantify cell deformations and the associated internal

stresses as a function of C and Λ0 for Notch-dependent adhesions. In general, the average

area (Fig. 5.4a) and isotropic pressure (Fig. 5.4e) of Delta cells decrease as, for a given

Λ0, we increase the value of coupling constant C from negative to positive, whereas the

average area (Fig. 5.4b) and internal pressure (Fig. 5.4f) of Notch cells correspondingly

increase. This trend is almost the reverse of that seen earlier in Fig. 5.2ab for Delta-

dependent adhesivity. The average shape index, s = ⟨Pα/
√
Aα⟩α, of the Delta cells is

relatively insensitive to changes in C (Fig. 5.4c). On the other hand, though s for the

Notch cells is insensitive to C for lower values of C, when C > 0, the Notch cells become

highly irregular leading to increase in s (Fig. 5.4d). As expected, the average shear stress

in the Delta (Fig. 5.4g) and Notch (Fig. 5.4h) cells follow similar trends with C as the

shape index.

Between the current and the previous subsection, we explored the role of Delta

(Eq. 5.4) and Notch (Eq. 5.5) dependent adhesivity on cellular morphology patterning

during Delta-Notch signalling via junctional contacts. As discussed before, the cell mor-

phological patterns depend on the values of ΛDN and ΛNN , which in turn depend on the

levels of N or D levels. DD junctions are not allowed due to lateral inhibition. As before,

if we make an idealised assumption that in a Notch cell N = 1, D = 0, and for a Delta cell

N = 0, D = 1, for Delta-dependent signalling (Eq. 5.4) and B = 1 (cooperative adhesion),

we get

ΛNN = Λ0,

ΛDN = Λ0(1 + C).

If, we solve the equations for C and Λ0, we get Λ0 = ΛNN and C = ΛDN/ΛNN − 1.

Similarly, for Notch-dependent adhesivity, we have

ΛNN = Λ0(1 + 2C),

ΛDN = Λ0(1 + C).
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By solving the two equations above, we get, Λ0 = 2ΛDN − ΛNN and C = 1−r
2r−1

, where

r = ΛDN/ΛNN . Thus, in principle, for any combination of ΛNN and ΛDN , we could obtain

the equivalent parameters Λ0 and C for both Delta and Lambda dependent adhesivity

that should on average produce the same cell morphological patterns. In this work, we

have considered the individual effect of D or N concentration on cell-cell adhesivity, Λ

(Eqs. 5.4 and 5.5). However, even if their combined effect on Λ is included in the model,

similar to individual D or N coupling, the overall concentration levels would still give rise

to effective values of ΛDN and ΛNN . Hence, as per the discussion above, we do not expect

any qualitative changes in our observations (Figs. 5.1-5.4) in such a scenario. Similarly,

in our model, the relation between N or D and Λ is taken to be linear (Eqs. 5.4 and 5.5).

Even if these couplings were nonlinear, by using the same logic as above, we would still

expect qualitatively similar cell shape patterns as in this work. However, the effective

coupling coefficient C is expected to be re-scaled depending upon the exact functional

form of the combined/nonlinear coupling.

5.3.3 Cell morphologies with Delta-dependent adhesion and pro-

trusional contact signalling

We now explore the role of long-range or protrusional contacts on the combined chemical

and cell morphology patterns. The model for protrusional contacts is already mentioned

in Section 5.2 (Eq. 5.1) and is discussed in detail in Ref. [15]. As seen there, the Delta-

Notch patterns during protrusional contacts show a wide variety of patterns in which all

three possible contacts DD, DN and NN are possible. In this model, cell polarity, which

undergoes random rotational diffusion in time, acts as a surrogate for the protrusion ori-

entation. In our earlier work, we had performed a systematic analysis of the protrusional

and cell motility parameters on the resulting Delta-Notch patterns [15]. Based on this

knowledge, we fix the simulation parameters for polarity dynamics and protrusional con-

tacts as βj/βp = 0.01, Λ0 = −14.32, v0 ≈ 0.1, Dr = 0.001, ρ = 10, T = 0.9, ∆θ = π/4,

K = 1, Γ = 1, ρ = µ = RN = RD = 10. These parameters ensure that the tissue is above

the fluidisation limit, the cellular junctions are dynamic, and the Delta Notch patterns

would mainly result from protrusional contacts and have stable spatiotemporal pattern.
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As we get all three types bonds in protrusion based signalling, i.e., NN , DN , and DD,

depending on the coupling coefficient C and the sign of constant B, the model with Delta

or Notch-dependent adhesion is expected to show different behavior for the combinations

(i) C > 0, B = 1, (ii) C > 0, B = −1, (iii) C < 0, B = 1, and (iv) C > 0, B = −1 .

5.3.4 Protrusional signalling with Delta dependendent adhesivity

When C = 0, there is no coupling between the Delta or Notch levels in the cells and cell

adhesivity. As a result all the bond tensions have the same value, i.e., ΛDD = ΛDN =

ΛNN = Λ0. The corresponding chemical pattern (Fig. 5.5a; Movie 11 in Appendix C) is

the same as that seen earlier in Ref. [15], Fig. 5.3e, where a percolating pattern of Delta

cells is interspersed in a matrix of Notch cells.

When B = 1 and C < 0, at steady state, ΛDD > ΛDN > ΛNN giving the smallest

length for DD bonds, intermediate for DN bonds and the largest for NN bonds, i.e.,

lNN > lDN > lDD. Such bond tension structure gives rise to very small D cells that

are nestled within D cells and with generally larger N cells that surround the D cell

patches (Fig. 5.5b; Movie 12 in Appendix C). Despite the heterogeneities in cell size, the

tissue retains the overall structure of the chemical pattern generated when C = 0.

When B = 1 and C > 0, ΛNN > ΛDN > ΛDD. Hence, bonds between DD cells

are preferred the most, followed by DN bonds, with NN bonds being the least preferred.

Consequently, cells have relatively smaller NN bonds and elongated DD bonds, i.e, lNN <

lDN < lDD. However, as discussed earlier, the patterns have to respect the total area

constraint and underlying signalling kinetics. Consequently, we get patches of elongated

D cells that lie interspersed in a group of N cells (Fig. 5.5c; Movie 13 in Appendix C).

When B = −1 and C < 0, at steady state the ΛNN = ΛDD < ΛDN . This situation

is very similar to a collection of D and N cells with similar bond tensions but separated

from each other by energetically unfavorable boundaries with higher junctional tension.

Here, as expected, the separating boundary between the D and N cells is smooth to

minimize the boundary energy (Fig. 5.5d; Movie 14 in Appendix C). Thus we obtain an

active phase segregation between the Delta and Notch cells. The D and N patterns in

Fig. 5.5d are obtained for intermediate v0 = 0.1. However, the patterns are observed even
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(a) C = 0 (b) B = 1, C = −0.6 (c) B = 1, C = 0.1

(d) B = −1, C = −0.1 (e) B = −1, C = 0.04

Figure 5.5: Patterns formed with protrusional contacts and Delta-dependent adhesion

(Eq. 5.4). The coupling coefficient C and the sign constant B are (a) C = 0 (b) B = 1,

C = −0.6 (c) B = 1, C = 0.1 (d) B = −1, C = −0.1 (e) B = −1, C = 0.04. Based on the

adhesivity coupling details, there are variations in Delta expression and cell morphology

arrangement around the basic pattern in (a) when there is no coupling, i.e., C = 0. The

patterns seen are dynamic but upon visual inspection show overall steady-state behavior

(Movies 11-15 corresponding to (a)-(e), respectively; Appendix C). The basic adhesivity

Λ0 is above the fluidisation limit for the tissue and the motility v0 is sufficiently large

for the cells to undergo neighbor exchanges. The other parameters are βj/βp = 0.01,

Λ0 = −14.32, v0 ≈ 0.1, Dr = 0.001, ρ = 10, T = 0.9, ∆θ = π/4, K = 1, Γ = 1, and

ρ = µ = RN = RD = 10.
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for higher cell motility (v0 = 0.3, Movie 20 in Appendix C).

When B = −1 and C > 0, at steady state ΛDN < ΛNN = ΛDD. As a result, although

both DD and NN bonds are equally likely, DN bonds are energetically the most favored,

and hence we find that the D and N cells are well mixed with each other (Fig. 5.5e; Movie

15 in Appendix C).

5.3.5 Cell morphologies with Notch-dependent adhesion and pro-

trusional contact signalling

Finally, we explore the mechanochemical patterns in the tissue due to Notch-dependent

adhesion (Eq. 5.5) and long range signalling due to protrusional contact between cells. As

for Delta-dependent adhesivity, here too, there are four possible combinations of B and

C that could lead to varying strengths of ΛDD, ΛDN , and ΛNN , that can influence the

pattern formations in the tissue.

When B = 1 and C < 0, ΛNN > ΛDN > ΛDD due to which the DD interfaces are the

most preferred whereas NN interfaces are preferred the least. Consequently, the Notch

cells get extruded from the epithelial tissue and their space are encroached upon by the

Delta cells. However, since the underlying signalling process does not allow the exclusive

presence of D cells, D cells get converted to N cells, but the subsequent mechanics due

to the differential adhesivity between the D and N cells will lead to the extrusion of the

newly created N cells. Hence, in this case, the tissue is dominated with large D cells at

any instant, but does not reach a steady state due to the persistent extrusion of N cells.

The case corresponding to B = 1, C > 0 (Fig. 5.6b) is similar to its counterpart in

Fig. 5.5c. The only difference in this case is that ΛDD > ΛNN due to which the N cells

are more elongated as opposed to the D cells in Fig. 5.5c. Finally, when B = −1, the

adhesivity of only DN bonds will be modified in this case, exactly as for Delta-dependent

case discussed above. Hence, the corresponding patterns shown in Fig. 5.6c (B = −1 and

C > 0) and Fig. 5.6d (B = −1 and C > 0) are, for all practical purposes, similar to their

counterparts in Fig. 5.5d and Fig. 5.5e, respectively.

The structure of the basic Delta-Notch pattern in each of the cases above is governed
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(a) B = 1, C = −0.6 (b) B = 1, C = 0.1 (c) B = −1, C = −0.1 (d) B = −1, C = 0.04

Figure 5.6: Snapshots showing the patterns formed with protrusional contacts and Notch-

dependent line tension parameter (Eq. 5.5). The other fixed parameters are βj/βp = 0.01,

Λ0 = −14.32, v0 ≈ 0.1, Dr = 0.001, ρ = 10, T = 0.9, ∆θ = π/4, K = 1, Γ = 1, and

ρ = µ = RN = RD = 10. The basic adhesivity Λ0 is above the fluidisation limit for the

tissue and the motility v0 is sufficiently large for the cells to undergo neighbor exchanges.

The coupling coefficient C and the sign constant B are (a) B = 1, C = −0.6 (b) B = 1,

C = 0.1 (c) B = −1, C = −0.1 (d) B = −1, C = 0.04. Based on the adhesivity coupling

details, there are variations in Delta expression and cell morphology arrangement around

the basic pattern in Fig. 5.5a when there is no coupling, i.e., C = 0. The patterns seen

are dynamic but upon visual inspection show overall steady-state behavior (Movies 16-19

corresponding to (a)-(d), respectively).

by the activation threshold T , polarity rotation diffusion strength Dr, and cell motility

v0 [15]. However, due to cell motility and polarity diffusion, the patterns are dynamic and

reach steady-state only in an average sense. Moreover, since the expressions of D and N

in the cells are coupled to cell-cell adhesivity, the basic patterns get altered into a rich

variety of chemical and cell morphological patterns in the tissue.

5.4 Discussion and Conclusions

A combination of junctional and protrusional Delta-Notch signalling due to contact based

lateral inhibition can lead to a variety of chemical patterns in the tissue. When the
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expression level of D and N in the cells is further coupled to cell-cell adhesivity, a wide

range of chemical and cell morphological patterns could be generated in the epithelial

monolayer. Notch/Delta-dependent adhesivity between cells results in the formation of

differential bonds tensions in DD, DN and NN interfaces in the tissue. In junction

dependent signalling, D and N forms a checkerboard chemical pattern with only NN and

DN interfaces. However, the coupling to the D/N levels to bond tensions resulted in

the modification of checkerboard pattern symmetry due to differential deformation of D

and N cells. Based on the coupling strength, we find a wide range of cell morphologies

even for the simplest underlying checkerboard pattern. For example, we see either tiny

Delta cells surrounded by large Notch cells, or large Delta cells expanding out into the

surrounding notch cells. When the DN interface energy much lower when compared to

that of the NN interface, instead of expanding in size, the D cells elongated to maximize

their contact with the N cells. When the signalling is long range due to protrusional

contacts, all three types of bonds DD, DN and NN are feasible. In this case, we find

that a broad variety of chemical and cell morphology patterns are formed that depended

both on the details of the signalling kinetics and on the coupling between expression of

Notch/Delta and cell-cell adhesivities. Overall, we find that the actual morphology of the

cell patterns is governed by the competition between individual cell elastic energies and

the interfacial adhesivity, and is constrained by the total area of the tissue and the lateral

inhibition of the underlying signalling kinetics.

Differential adhesion is known to be important in the segregation of differentiated

cell types during cell sorting. The heterogeneity in the mechanochemical properties of the

tissue is also relevant in cell competition. Moreover, differential adhesion that is governed

by underlying signalling kinetics can simultaneously give rise to chemical and mechanical

patterns in the tissue such as in different types of cancers and in sensory epithelium.

Our model based on a simple coupling between signalling molecules and cell adhesivity

provides a simple common mechanism to generate a wide variety of biologically ubiquitious

mechanochemical patterns in tissues. In our model, the signalling between neighboring

cells is independent of the contact area (edge length) between the cells (Eqs. 5.4 and 5.5).

However, it is observed for certain systems, such as the chick inner ear epithelium, that

the cell fate is biased by cell size, an observation that could be explained by including

size-dependent Notch signalling on a static heterogeneous cell network [220]. On the other
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hand, depending on the sign of the coupling constant C (Eqs. 5.4 and 5.5), we too observe

cell fates (chemical patterns) accompanied with size heterogeneities that are governed by

bond adhesivities. It is plausible that both these affects, i.e., size dependent signalling

and signalling dependent adhesivities (governing size) work in tandem in a real system.

In such a case, the relative time-scales associated with bond length changes and cell-cell

signalling would be crucial in deciding the overall dynamics. A combination of these

two effects is highly nonlinear and a detailed study in the future can provide a clearer

understanding of their integrated effect on cell shape and fate patterns.

Our model suggests a unifying mechanistic basis for understanding several exper-

imental observations of mosaic patterns in sensory epithelial tissues, and in some can-

cerous tissues. In reality, there could be a cascade of reactions leading up to the final

mechanochemical coupling to cell-cell adhesivity that we have not included in our sim-

ple model. Moreover, unlike the simple linear relation that we use (Eqs. 5.4 and 5.5),

the mechanochemical coupling could also be highly nonlinear. Consequently, we do not

expect our model to make one-to-one connection between Notch-Delta expressions, cell

adhesivity, and cell shapes observed experimentally. Our intention here is to take the first

step in modeling many of these experimental systems. This framework, however, could

be appropriately adapted to represent the mechanochemistry of a particular biological

system of interest.
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Chapter 6

Summary and Conclusions

As seen in the earlier chapters, cell-cell signaling, cell mechanics, and cell motility

play a vital role during morphogenesis, development, and diseases such as cancer. Lateral

inhibition is one of the most ubiquitous mode of signaling, and Delta-Notch signaling is the

most prominent example of this mechanism. Experimentally, the Delta-Notch signaling

mechanism has been studied in detail, and its involvement in cell migration, cell polarity

dynamics, and mechanical aspects of morphogenesis is known and is discussed in detail

in Chapter 2. Although, there are a few theoretical models that study the Delta-Notch

pattern formation in tissues, there are no theoretical studies on how these patterns are

themselves influenced by polarity and collective cell dynamics. On the other hand, there

are a large number of theoretical studies on collective cell migration, especially on the

role of cell motility, polarity and cell shape index on tissue unjamming. However, these

studies generally do not consider the effect of tissue kinematics on the underlying signaling

patterns. In Chapter 3 and 4, we combined both these aspects and showed how cell level

interactions can lead to tissue level formation of a large variety of Delta-Notch patterns.

In this first model, although the Delta-Notch pattern is influenced by cellular dynamics,

the signaling itself does not influence the cell dynamics. Cellular polarity is expected to

be crucial for determining the orientation, range and topology of cellular contacts in the

tissue during the formation of signaling patterns. In Chapter 3, we investigate the role

of cell polarity dynamics (random rotational diffusion and polarity alignment with the

nearest neighbours) on the formation of signaling patterns by using the well-established

vertex model with several significant additions. The lateral inhibition signaling kinetics

are added on top of the modified vertex model. We also add a mechanism for long-
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range signaling kinetics to the short-range signaling kinetics, that took into account the

protrusional contacts. With the help of the new modified model we study the effect of the

activation threshold on long-range signaling patterns. Then, we couple the orientation

of the cell protrusions with the individual cell polarity and study the effect of polarity

dynamics on the signaling patterns formed. We obtain a wide range of complex patterns

that include spotted, striped as well as diffuse patterns. We demonstrate that the cell

polarity dynamics significantly contribute to the diversity of signaling patterns resulting

from contact-based signaling.

In Chapter 4, we investigate the role of cell motility and tissue mechanics on the for-

mation of signaling patterns. In each cell, we include cell motility that is oriented along

cell polarity. As a result, the cells rearrange themselves due to dynamic mechanical inter-

actions between the cells. We show that the signaling patterns are maintained throughout,

even though the cells keep dynamically rearranging in space and time. Using dynamic

correlation function, we quantitatively characterize the spatiotemporal properties of the

signaling patterns.

In Chapter 5 we investigate the governing mechanism by which cell signaling controls

cell-cell adhesion. We propose a simple feedback mechanism between Delta-Notch signal-

ing and cell-cell adhesion and observe that the shape and size of the cells varies within

the tissue as observed in cancer tissues and the mosaic patterns in the in the olfactory

epithelium. We systematically quantify the cellular morphologies as a function of the cou-

pling parameters between Delta-Notch signaling and cell-cell adhesion. We also explore

the role of long range connectivity on the adhesion between the cells and the resulting

chemical patterns and cell morphologies.

We finally note that, although our modeling is developed in the context of Delta-

Notch signaling, it is sufficiently general, and provides a broad framework to study the

role of cell polarity, collective cell dynamics and tissue mechanics on pattern formation

for any contact based signaling.

77



6.1 Future Directions

In the following section, we propose a few additional objectives, which, if achieved, would

provide us a better understanding of how the cell-signaling, cell mechanics and motility

affect each other and pattern formation during morphogenesis. These are some of the ideas

I had contemplated during my PhD work in addition to those worked out and presented

earlier.

6.1.1 Cell motility coupled to Delta-Notch signaling

It has been observed that Notch signaling regulates cell movement. Consideration of the

interaction between Notch signaling and cell motility is crucial to understanding embry-

onic morphogenesis. As discussed earlier, numerous biological processes, including wound

healing, metastasis, branching morphogenesis, and embryo development, show a coupling

between cell migration and the Delta-Notch pathway [41, 85, 134]. Also, an increase in

Delta is associated with an increase in motility, spreading of keratinocytes [41] and in-

creased lamellipodia formation [145]. Theoretical modeling will prove to be a powerful

tool, allowing us to understand how this interaction occurs during morphogenesis. Putting

feedback between Notch signaling and cell motility can be achieved in a simplest manner

by coupling the magnitude of cell motility v0 and Delta/Notch concentration in cells.

6.1.2 Filopodia based signaling coupled with diffusing molecules

It is observed that skin patterns have often been represented in reaction-diffusion Turing

type models [248]. Turing patterning is based on feedback interactions between mor-

phogens (long-range diffusible ligands). It has been shown that such models can generate

a variety of patterns [128, 167, 168]. It can also be argued that lateral inhibition with long-

range filopodia is analogous to reaction-diffusion models [55]. The role of morphogens in

Turing patterning can be replaced by long-range signaling through filopodia [101] that can

be used in combination with diffusible ligands to transmit long-range signals. Filopodia-
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based lateral inhibition models and reaction-diffusion models differ primarily in two ways.

Mathematically, diffusion is a linear process and signaling is a non-linear process. The

typical diffusion rates are typically too fast to match the time scale of pattern formation

in a physical sense [93, 105, 239]. Striped patterns in zebrafish, for instance, develop over

days and weeks. For morphogens to explain such patterns, diffusion rates would have to

be orders of magnitude much smaller than diffusion rates observed in biological molecules.

Thus, diffusion of molecules in combination with lateral inhibition based on the filopodia

might better describe the process for skin patterning.

6.1.3 Notch signaling in cancer treatment

Activation of Notch contributes to the development and progression of different types of

cancer in humans. Overexpression of Notch is reported in numerous cancer types such as

leukemia [143, 147, 201, 268], solid cancers including breast cancer, glioblastoma (a form of

brain tumor), pancreatic cancer [173, 274], lung cancer [83, 84], skin cancer [163, 184] and

is associated with poor clinical outcomes. In leukemia, Notch1 has been identified as an

oncogene, and have tumor suppressive function [143, 147, 201]. Notch signaling controls

oncogenic processes within different cell types. In addition, Notch signaling activates

various oncogenic factors that affect cellular functions such as metastasis, proliferation,

drug-resistance, and angiogenesis [62, 150]. Notch is attracting increasing attention as a

source of therapeutic targets for cancers [82, 263]. Recent proposed strategies for treating

cancer with targeted drugs involves developing smart drugs based on known mechanisms.

The link between Notch signaling and tumorigenesis indicates that Notch is a potential

target candidate. Notch signaling has been proposed as a possible cancer therapeutic

strategy. Cancer cells are characterized by unregulated cell proliferation that occurs as

a result of a disrupted cell cycle. To understand the effect of Delta/Notch levels in the

regulation of cell cycle network, Delta/Notch-dependent cell division can be included

in the model and analyze the effect of increase/decrease levels of Delta/Notch on cell

proliferation, and hence the role of the treatment on cancer progression.
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6.1.4 Continuum approach by large-scale coarse-graining

Efforts are being made to obtain continuum theories of tissue mechanics, which are ef-

fective, coarse-grained descriptions of vertex models [8]. Vertex models can be used to

estimate cellular shapes in tissues [22]. On the other hand, when describing tissue flow

and deformation at larger scales, it is appropriate to use larger-scale fields, such as the

velocity or the deformation of cells, which are averaged over lengths greater than the typ-

ical cell length [196]. The advantage of such an approach is that it is generic: the existing

vertex model can produce identical continuum representations [152]. The development of

continuum theories from existing vertex models has been attempted by researchers [196].

In recent years, coarse-grained vertex modelling approaches have been developed to study

the morphogenesis and morphology of epithelia at a larger scale [177]. Despite the vertex

models ability to describe the epithelial shape in detail, they are challenging to make an

analytical prediction, especially if many parameters have to be specified. In contrast, con-

tinuum approaches can sometimes yield analytical solutions, allowing characterization of

the generic behaviour of the tissue without relying on the specific details of stress genera-

tion at the cellular level. It is thus possible to represent the epithelia with moving cells in

vertex models and understand the signaling dynamics and tissue mechanics more analyt-

ically using the continuum representation. It is possible to achieve this by representing a

vertex model epithelia using a finite element mesh. The vertex model produces an inher-

ent mesh for the finite element method, with moving vertices determined by forces. It can

be combined with a Delta-Notch kinetic solver, and the Arbitrary-Lagrangian–Eulerian

(ALE) approach, which is a part of CHASTE modeling framework, can be used for moving

domains.

6.1.5 Effect of Noise and asymmetry in Delta-Notch signaling

We describe the Delta-Notch concentrations and their evolution by mass action type of

deterministic differential equations. Here, we implicitly neglect any fluctuations that could

result, for example, either from a small number of molecules or due to intrinsic/ extrinsic

noise in the system [66, 81]. However, both these noise components could have important
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role to play in the dynamics of small systems and it is important to explore their role on

Delta-Notch signalling in tissues. As a part of future work, we can generalize our system

and model the reactions using chemical master equation formalism that is practically

implemented using the Gillespie algorithm [66]. Stochasticity can also be modeled by

adding shot noise or white noise terms to the Delta-Notch evolution equation [122]. It

was recently shown by Galbraith et al. [81] that intermediate noise levels can showed

that intermediate noise levels in the Delta-Notch kinetics helps the system at a multi-

cellular level to escape from frustrate disordered states to more ordered checkerboard

patterns. On the other hand, higher noise levels takes the system away from the ordered

patterns. In addition to these two sources, stochasticity can also arise from cell division

and mechanical fluctuations, and is important the systematically explore the role of these

noise contributions by appropriately modifying reaction kinetics.

Sensory organ precursor cells (SOPs) in Drosophila exhibit asymmetry, which is fur-

ther enhanced to produce two different types of cells [258]. In the Drosophila pupal thorax,

SOPs divide asymmetrically to produce two daughter cells, pIIa and pIIb, resulting in

four types of cells that comprise a single mechanosensory hair [215]. During the division,

Notch signalling between pIIa and pIIb cells determine their binary fate, and asymmetri-

cal Notch segregation occurs in pIIb cells. Segregation bias is mediated by the polarized

orientation of the microtubule at the central spindle, as more plus ends are oriented toward

the pIIa side [58]. Such asymmetric segregation is also observed in other cell types, such

as zebrafish neural precursor cells [131] and Drosophila intestinal stem cells [174]. In a fu-

ture work, asymmetry in Notch concentration can be incorporated into the present model.

6.2 Contributions

During this course of research work, the following major contributions were made in-

terms of new proposed mathematical model, extension of the existing model and detailed

analysis of the system.

• A review of existing literature and the gaps in the current understanding in the
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context of cell-cell signaling, cell mechanics and cell motility and their coupled

behaviour is provided.

• A new mathematical model is developed for contact dependent signaling pathways.

Role of polarity dynamics on the formation of signaling patterns is explored.

• The cell polarity model is coupled with cell motility and the effect of resulting cell

movements on Delta-Notch signaling patterns is investigated.

• A feedback mechanism is provided that influences cell-cell adhesivity and incorpo-

rates differential cell-cell adhesion depending on Delta-Notch levels in the cells. The

role of coupling parameters on chemical patterns and cell morphologies is investi-

gated.
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Appendix A

A.1 Implementation Details of Vertex Model in CHASTE

The epithelial monolayer, in the vertex dynamics model can be implemented in Cancer,

Heart And Soft Tissue Environment (CHASTE) (https://www.cs.ox.ac.uk/chaste/)

with Linux. Chaste is written in C++, which allows object-oriented classes. The codes

are suitable for the extension and inheritance of existing functionalities. The epithelial

monolayer is modeled as a polygon (in 2D) or polyhedron (in 3D), whose vertices move

in response to forces. All cells in a monolayer are assumed to be of the same height,

which makes it a two-dimensional model. A collection of polygonal cells are referred to

as a ‘mesh’, which comprises a set of ‘elements’ and ‘vertices’. Each vertex is a point in

space, defined by its location and an index, and each element is defined by a polygon, with

vertex indices, an ordered list, and an index. A pair of neighboring vertices in an element

is referred to as an ‘edge’. [Figure A.1] illustrates the structure of the vertex mesh. Each

vertex that is not on the edge of the mesh is contained in exactly three elements, and

vertices on the boundary of the mesh are in either one or two elements.

1. equations of motion which govern the motion of vertices are defined by [Equa-

tion A.4].

2. elements may move past each other as a result of the mesh undergoing local rear-

rangement.

3. elements may be removed from the mesh as a result of cell death.
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Each element in this mesh is associated with a cell, which can influence the evolution

of the monolayer through the above processes by changing parameters by inducing cell

division or death.

A.1.1 Mesh restructuring operations in CHASTE

Vertex movement is implemented such that the elements are always non-intersecting and

to allow cells to form and break bonds. In order to achieve this three types of elementary

operations are considered [180, 181]. These operations are: edge rearrangement (a T1

swap); element removal (a T2swap); and element intersection (aT3swap). These opera-

tions are needed because the vertex dynamics models considered results in finite forces

acting on a cell’s vertices arbitrarily far from equilibrium; ‘hard body’ interactions are

not considered.

T1 swap or edge rearrangement

When the distance between two vertices is less than a minimum threshold distance dmin,

T1 swap or rearrangement of elements takes place (Nagai and Honda, 2001), as shown in

Figure. ie, the vertices are moved and placed a distance dsep apart where dsep = ksepdmin,

where ksep is the separation ratio.

T2 swap or element removal

If the area of a triangular element becomes smaller than Amin ie, a given threshold area,

the element and the associated cell is removed from the mesh and simulation, as shown

in Figure. For this to take place the target area for the element must be small.

A.1.2 Element division and removal

The cells divide into two equal areas when cell division takes place (Brodland and Veld-

huis, 2002). The implementation of cell division is done by choosing an angle of cell

division (drawn from a uniform distribution for isotropic cell division) or in the direc-
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Figure A.1: schematic of tissue monolayer with polygonal cells and topological transitions.

(a) 2-D representation of tissue monolayer or epithelial tissue with polygonal cells. Each

cell has edges and vertices. Aα and Lα are the area and perimeter of a cell. lαβ is the

edge shared between cells α and β. (b) T1 topological transition or neighbor exchange

process takes place When two originally connected cells move away from each other and

new neighbors are formed. (c) T2 transition or apoptosis takes place by removing the

cells with area less than a critical area from the tissue monolayer.

tion of the shortest axis through the cell’s centroid or biased in a certain direction if

directed proliferation and cell polarity are considered. Two new vertices are placed at the

intersection between the dividing line that passes through the cell’s centroid and its cell

perimeter, thereby creating two daughter cells from a single parent cell. The element is

divided into two new elements using this division axis, as shown in Figure.

Cell death can also be modelled as apoptotic cell ie, the cell shrinks until it is

destroyed. To achieve this the target area of the associated element is decreased until

the element becomes small and triangular (see Figure. 6) and is removed by a T2 swap,

leaving a continuous monolayer.

A.1.3 Force implementation

The forces act on the cell vertices and the movement of vertex i is due to the elastic and

active forces. The gradient of free energy in terms of the cells surrounding the vertex i is
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written as,

U =
N∑

α=1

[Kα(Aα − Aα,0)
2 + ΓαL

2
α] +

∑
edges:γβ

Λγβlγβ, (A.1)

Felastic
i = −2

ℵ∑
α=1

[Kα(Aα − A0)∇iAα + ΓαLα∇iLα]−
∑

edges:γβ

Λγβ∇ilγβ (A.2)

Felastic
i = −2

ℵ∑
α=1

[Kα(Aα−A0)∇iAα+ΓαLα(∇ilα,Iα−1+∇ilα,Iα)]−
∑

edges:γβ

Λγβ∇ilγβ (A.3)

where α is the cell containing the vertex i, ordered counterclockwise, and Iα is the local

index of vertex i of cell α. The gradient of area is computed as,

∇iAα =
1

2

yαI+1 − yαI−1

xα
I−1 − xα

I+1


where (xα

I−1, y
α
I−1) are the coordinates of the vertex one position further clockwise than

the Iαth vertex of cell α and (xα
I+1, y

α
I+1) are the coordinates of the vertex one position

further counter-clockwise than the Iαth vertex of cell α.

A.1.4 Numerical implementation and details of timestepping al-

gorithm

The mesh and the corresponding cells are updated at each time step as follows:

1. update all the cell properties of the model.

2. implement the mesh restructuring operations, if required.

3. update the positions of all vertices and calculate and apply the forces Fi, applied at
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each vertex.

The equations of motion is solved numerically using a simple forward Euler dis-

cretization for all vertices. The displacement of each vertex i in a small time interval ∆t

is given by

ri(t+∆t) = ri(t) +
∆t

η
Fi(t) (A.4)

The above numerical method is explicit, therefore, the chosen time step must be suffi-

ciently small for the system to remain stable.

For accurate solution of the equations of motion the time step must be chosen such

that the vertices move not more than a distance of dmin/2 in ∆t time interval to avoid

elements intersection.
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Appendix B

B.1 Model parameters and non-dimensionalization

The mechanical energy function and the signalling kinetics equations are non-dimensionalized

with characteristic time scale η
Γ
= 1 and characteristic length scale Lc = 1 (Figure.1a) (Ta-

ble C.1).

We simulate a monolayer of tissue with periodic boundary and N number of cells

(no cell divisions or apoptosis). The model is implemented in CHASTE [172] using the

C++ libraries. The equation of motion is solved numerically using a simple forward Euler

discretization. The signalling equations are solved using Runge-Kutta-Merson method.

We choose the time step size ∆t = 0.01 (sufficiently small) to maintain the numerical

stability. The initial levels of Notch and Delta concentration are chosen randomly from

uniform random number in (0,1) for each cell α.

B.2 Tissue phase change: solid-like to fluid-like

In equation 3.1, the value of Λγβ and Γα is equal for all bonds and cell is equal to Λ and

Γ respectively. It is possible to incorporate strong feedback between contractility of the

junction Λ and boundary contractility Γ in the equation 3.1, which can be written as:∑
α Γ(Lα−p0)

2, where p0 is the shape index. Here, Λ = −4Γp0
√
A0 and the term 4Γp0

√
A0

is a constant that is responsible for shift in the overall energy. It does not contribute to
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Table B.1: The model parameters relative to characteristic length scale Lc = 1 (Figure.1a)

and characteristic time scale Tc = 1

Dimensionless parameters Parameter values

Lc 1.0

η 1.0

Γ 1.0

K ≡ KTcL2
c

η
1.15

Λ ≡ ΛTc

4Lcη
[−13.77,−14.32]

v0 ≡ v0Tc/Lcη 3.1× 10−4, 0.31

A0 ≡ A0/L
2
c 0.866

ξ ≡ ξTc 0− 2

Dr ≡ DrTc [0.001, 0.1]

Dα ≡ Dα/D0 0− 1

Nα ≡ Nα/N0 0− 1

RD ≡ RDTc 1, 10

RN ≡ RNTc 1, 10

ρ ≡ ρTc 1, 10

µ ≡ µTc 1, 10

l ≡ l/Lc 1.7

∆l ≡ ∆l/Lc 1.2

∆θ ≡ ∆θ π/24− π/2

∆t ≡ ∆t/Tc 0.01

a [0.01]

b [100]

Dcritical ≡ Dcritical/D0 0.5

N [400, 1600]

∆r 0.1
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the cell force. As the relevant effective forces are only obtained from the derivatives of

the energy with respect to the degrees of freedom, equation 3.1 can be rewritten as [22]

U =
N∑

α=1

[K(Aα − A0)
2 + Γ(Lα − p0)

2] (B.1)

where p0 =
−Λ

4Γ
√
A0

is the target shape index. The shape index value p0 of different shapes

of cell is given below;

Cell shape Hexagon Pentagon Square Triangle

p0 Values 3.722 3.812 4.0 4.559

Fluid-like behaviour of the tissues (where cells exchange neighbours), have been observed

at p0 >= 3.812 (for pentagon, square, and triangular cell shapes) and solid-like behaviour

(where cells do not exchange neighbours) have been observed for p0 < 3.812, corresponding

to a regular hexagon [23].

B.3 Number of clusters and cluster size

The median number of clusters and the median cluster size is calculated for 400 cells using

the density-based spatial clustering (DBSCAN) algorithm [68]. The cell α is considered

a Delta cell if the concentration of Delta molecule in the cell is greater than Dcritical. A

group of Delta cells is considered to be in dense region if minimum number of Delta cells

in the cluster is 3. Two cells are considered to be touching each other if the Euclidean

distance between both the cells are less than or equal to 1.5.

Each data point shown in Figs.3g-i is obtained using five sets of simulations. In

each set, for a given combination of parameters, initial polarity p̂ for individual cells

was generated from uniform random orientation in the range [−π, π]. Similarly, the ini-

tial concentration of Delta and Notch for individual cells was generated from uniform

random distribution in the range (0, 1). Then, after removing the transient part of the

corresponding simulation, the quantity Xβ
t (cluster number, cluster size, shape ratio) for

each simulation β and at every sampling time t was pooled together and its median X̄

over t and β was used as one data point. The sampling interval for every simulation
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was ∆T = 1. A similar procedure was followed to obtain Figs.4g-i, except that the total

number of simulation runs in this case was six instead of five.

The quantification and visualization is done using python2.7, python3.5, using numpy

(scientific computing library), pandas (data analysis library), scikit-learn (machine learn-

ing library) and matplotlib (data visualization library), ParaView (an open-source, data

analysis and visualization application).

B.3.1 DBSCAN algorithm

DBSCAN (Density-based spatial clustering of applications with noise) is a data cluster-

ing algorithm (density based algorithm). The algorithm is capable of finding non-linearly

separable clusters. With a given set of points in space, ϵ specifies the radius of a neighbor-

hood for a particular point, and k is the minimum point. All the points can be classified

as core points, reachable points, and outliers:

1. A point p is considered a core point if at least k number of points lies within a

distance of ϵ including the point p itself.

2. Directly reachable points t are those points that are within a distance of ϵ of the

core point p.

3. A reachable point t from p is that point if a path reaches from p to t via p1, p2....pn,

where the successive point on the path is directly reachable from the previous point.

4. Outliers or noise points are all points that can’t be reached by any other point.

The core point p forms a cluster along with all points that can be reached (cores and

non-cores). A cluster consists of at least one core point and non-core points.

B.4 Shape ratio

The shape ratio is calculated for 400 cells. The cell α is considered a Delta cell if the

concentration of Delta molecule in the cell is greater than Dcritical. The inertia matrix of
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a single cluster is computed as follows:

A =

Ixx Ixy

Ixy Iyy



Ixx =
Nc∑
i=1

(Ai(xi − xmean)
2), (B.2)

Iyy =
Nc∑
i=1

(Ai(yi − ymean)
2), (B.3)

Ixy =
Nc∑
i=1

(Ai(xi − xmean)(yi − ymean)) (B.4)

where, Nc is the number of cells in a cluster. Eigen values of A is calculated and shape

ratio is estimated as the ratio of the maximum and minimum eigen values. The median

shape ratio is calculated using the same procedure as described in Section B.3 above.

The median of the shape ratios of all the clusters of a time frame is calculated, and

the median of all the shape ratios obtained from all time frames is the final shape ratio.

B.5 Movie Captions

Movie link is as follows:

https://drive.google.com/drive/folders/1Km-EfchGNWROoF7wDVreOAmfjRbiDDZ0?usp=

sharing

Movie-1 corresponding to Figure.2a. signalling pattern formed by contact mediated
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signalling via junctional contacts βj

βp
= 99.

Movie-2 corresponding to Figure.3a. Pattern obtained using the model for RN =

RD = ρ = µ = 1, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and

T = 0.1.

Movie-3 corresponding to Figure.3b. Pattern obtained using the model for RN =

RD = ρ = µ = 1, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and

T = 0.5.

Movie-4 corresponding to Figure.3c. Pattern obtained using the model for RN =

RD = ρ = µ = 1, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and

T = 0.6.

Movie-5 corresponding to Figure.3d. Pattern obtained using the model for RN =

RD = ρ = µ = 1, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and

T = 0.8.

Movie-6 corresponding to Figure.3e. Pattern obtained using the model for RN =

RD = ρ = µ = 1, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and

T = 0.9.

Movie-7 corresponding to Figure.3f. Pattern obtained using the model for RN =

RD = ρ = µ = 1, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and

T = 0.94.

Movie-8 corresponding to Figure.4a. Pattern obtained using the model with pa-

rameter RN = RD = ρ = µ = 1, Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01,

T = 0.5 and ∆θ = π/4 and ξ/Dr = 0.

Movie-9 corresponding to Figure.4b. Pattern obtained using the model with pa-

rameter RN = RD = ρ = µ = 1, Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01,

T = 0.5 and ∆θ = π/4 and ξ/Dr = 0.5.

Movie-10 corresponding to Figure.4c. Pattern obtained using the model with pa-

rameter RN = RD = ρ = µ = 1, Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01,

T = 0.5 and ∆θ = π/4 and ξ/Dr = 1.0.

Movie-11 corresponding to Figure.4d. Pattern obtained using the model with pa-

rameter RN = RD = ρ = µ = 1, Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01,
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T = 0.5 and ∆θ = π/4 and ξ/Dr = 1.5.

Movie-12 corresponding to Figure.4e. Pattern obtained using the model with pa-

rameter RN = RD = ρ = µ = 1, Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01,

T = 0.5 and ∆θ = π/4 and ξ/Dr = 2.0.

Movie-13 corresponding to Figure.4f. Pattern obtained using the model with pa-

rameter RN = RD = ρ = µ = 1, Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01,

T = 0.5 and ∆θ = π/4 and ξ/Dr = 2.5.

Movie-14 corresponding to Figure.5a-c. The parameter values used for the simula-

tions are RN = RD = ρ = µ = 10, βj

βp
= 0.01, Λ = −14.32, Dr = 0.001, ξ = 0, ∆θ = π/2,

T = 0.1 and v0 = 0.31. The shape parameter for the cells p0 > 3.82.

Movie-15 for the tissue in fluid region with stripe-like pattern. The parameter

values used for the simulations are RN = RD = ρ = µ = 10, βj

βp
= 0.01, Λ = −14.32,

Dr = 0.1, ξ = 0.25, ∆θ = π/4, T = 0.5 and v0 = 0.31. The shape parameter for the cells

p0 > 3.82.

Movie-16 Pattern obtained using the model with parameter RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1×10−4, βj

βp
= 0.01, T = 0.94 and ∆θ = π/4 and ξ/Dr = 0.

Movie-17 Pattern obtained using the model with parameter RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01, T = 0.94 and ∆θ = π/4 and

ξ/Dr = 0.5.

Movie-18 Pattern obtained using the model with parameter RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01, T = 0.94 and ∆θ = π/4 and

ξ/Dr = 1.0.

Movie-19 Pattern obtained using the model with parameter RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01, T = 0.94 and ∆θ = π/4 and

ξ/Dr = 1.5.

Movie-20 Pattern obtained using the model with parameter RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01, T = 0.94 and ∆θ = π/4 and

ξ/Dr = 2.0.

Movie-21 Pattern obtained using the model with parameter RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01, T = 0.94 and ∆θ = π/4 and
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ξ/Dr = 2.5.

Movie-22 Pattern obtained using the model with parameter RN = RD = ρ = µ = 1,

Λ = −13.77, Dr = 0.1, v0 = 3.1 × 10−4, βj

βp
= 0.01, T = 0.94 and ∆θ = π/4 and

ξ/Dr = 10.0.

Movie-23 Pattern obtained using the model for RN = RD = ρ = µ = 1, Dr = 0,
βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and T = 0.6.

Movie-24 Pattern obtained using the model for RN = RD = ρ = µ = 1, Dr = 1,
βj

βp
= 10−2, ∆θ = π/4, v0 = 3.1× 10−4, and Λ = −13.77 and T = 0.6.

B.6 CHASTE and Python Codes

In addition to the codes provided in the CHASTE library, the following additional codes

are written for implementing the proposed model in Chapter 3 and Chapter 4, in CHASTE

(C++) and Python. Ubuntu 16.04 LTS (operating system) and High Performance Com-

puting (HPC) Systems (Noether cluster, Physics Department, IIT Bombay, India and

MonARCH cluster, Monash University, Australia) are used to run the simulations.
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/* Polarity - random rotational diffusion
   */

 
#include "ThetaAlignmentRule.hpp"
#include "SmartPointers.hpp"
#include "RandomNumberGenerator.hpp"
#include <stdio.h>      /* printf, NULL */
#include <stdlib.h>     /* srand, rand */
#include <time.h>       /* time */
#include <cmath>
#include <math.h>
#include <iostream>
#include <fstream>
#include <vector>
#define PI 3.14159265
using namespace std;

 
template<unsigned DIM>
ThetaAlignmentRule<DIM>::ThetaAlignmentRule()
    : AbstractForce<DIM>()
   
{
}

 
template<unsigned DIM>
ThetaAlignmentRule<DIM>::~ThetaAlignmentRule()
{
}

 
 
 

template<unsigned DIM>
void ThetaAlignmentRule<DIM>::SetMotility(double motility)
{
    mMotility=motility;
}

 
 

template<unsigned DIM>
double ThetaAlignmentRule<DIM>::GetMotility()
{
    double motility = mMotility;
    return motility;
}

 
template<unsigned DIM>
void ThetaAlignmentRule<DIM>::SetDiffusionCoefficient(double 

diffusioncoefficient)
{
    mDiffusioncoefficient=diffusioncoefficient;
}

 
template<unsigned DIM>
double ThetaAlignmentRule<DIM>::GetDiffusionCoefficient()
{
    double diffusioncoefficient=mDiffusioncoefficient;
    return diffusioncoefficient;
}

 
template<unsigned DIM>
void ThetaAlignmentRule<DIM>::SetThetaValue(std::vector<double> theta)
{
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    mTheta=theta;
    
}

 
template<unsigned DIM>
std::vector<double> ThetaAlignmentRule<DIM>::GetThetaValue()
{

//define element index here
std::vector<double> theta=mTheta;
return theta;

}
 

template<unsigned DIM>
double ThetaAlignmentRule<DIM>::GetThetaValueForSingleCell(unsigned cell_id)
{

//define element index here
double theta=mTheta[cell_id];
return theta;

}
 
 

template<unsigned DIM>
void ThetaAlignmentRule<DIM>::UpdateThetaValueForSingleCell (unsigned 

cell_id, double theta)
{

 
    RandomNumberGenerator* p_gen = RandomNumberGenerator::Instance();
    double mean = 0;
    double standard_deviation = 1.0;

 
    double delta_t= SimulationTime::Instance()->GetTimeStep();
    double D_r=GetDiffusionCoefficient();

double noise=p_gen->NormalRandomDeviate(mean, standard_deviation);
double theta_noise=noise*sqrt(2*D_r*delta_t);
theta=theta+theta_noise;

    
    mTheta[cell_id]=theta;

}
 

template<unsigned DIM>
void ThetaAlignmentRule<DIM>::UpdateThetaValue(std::vector<double>theta)
{

time_t t;
srand(time(&t));
unsigned num_of_cells=theta.size();
std::vector<double> theta_noise(num_of_cells);
std::vector<double> noise(num_of_cells);

    RandomNumberGenerator* p_gen = RandomNumberGenerator::Instance();
    double mean = 0;
    double standard_deviation = 1.0;
    double delta_t= SimulationTime::Instance()->GetTimeStep();
    double D_r=GetDiffusionCoefficient();
    

for (int i=0;i<num_of_cells;i++)
{
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noise[i]=p_gen->NormalRandomDeviate(mean, standard_deviation);
theta_noise[i]=noise[i]*sqrt(2*D_r*delta_t);
theta[i]=theta[i]+theta_noise[i];

}
    
    mTheta=theta;
    
  

}
 

template<unsigned DIM>
void ThetaAlignmentRule<DIM>::AddForceContribution(AbstractCellPopulation<DIM>

(& rCellPopulation))
 

{
    // Throw an exception message if not using a VertexBasedCellPopulation
    if (dynamic_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation) == 

NULL)
    {

EXCEPTION("polarisation_random_value is to be used with a 
VertexBasedCellPopulation only");

    }

    // Helper variable that is a static cast of the cell population
    VertexBasedCellPopulation<DIM>* p_cell_population = 

static_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation);

 
for (typename AbstractCellPopulation<DIM,DIM>::Iterator cell_iter = 

p_cell_population->Begin(); 
  cell_iter != p_cell_population->End();
  ++cell_iter)

{
VertexElement<DIM, DIM>* p_element = p_cell_population-

>GetElementCorrespondingToCell(*cell_iter);
    unsigned cell_id = cell_iter->GetCellId();

 
double theta=GetThetaValueForSingleCell(cell_id);

 
c_vector<double,DIM> polarisation_direction;

 
polarisation_direction(0) = cos(theta);
polarisation_direction(1) = sin(theta);

double magnitude_of_force = GetMotility();  
 
 

c_vector<double,DIM> force = 
magnitude_of_force*polarisation_direction;  

//for all nodes of a single element
      
       for (unsigned node_local_index=0;node_local_index<p_element-

>GetNumNodes();node_local_index++)
 

{
unsigned node_global_index = p_element->GetNode

(node_local_index)->GetIndex();
     unsigned num_containing_elements = p_element->GetNode

(node_local_index)->GetNumContainingElements();
     //double 

n_sq=num_containing_elements*num_containing_elements;
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     c_vector<double,DIM> force_new = 
magnitude_of_force*polarisation_direction/num_containing_elements;    
 

    rCellPopulation.GetNode(node_global_index)-
>AddAppliedForceContribution(force_new);

}
 

UpdateThetaValueForSingleCell(cell_id, theta);

    }

}
 

template<unsigned DIM>
void ThetaAlignmentRule<DIM>::OutputForceParameters(out_stream& rParamsFile)
{
    // Call method on direct parent class
    AbstractForce<DIM>::OutputForceParameters(rParamsFile);
}

 
/////////////////////////////////////////////////////////////////////////////
// Explicit instantiation
/////////////////////////////////////////////////////////////////////////////

 
template class ThetaAlignmentRule<1>;
template class ThetaAlignmentRule<2>;
template class ThetaAlignmentRule<3>;

 
// Serialization for Boost >= 1.36
#include "SerializationExportWrapperForCpp.hpp"
EXPORT_TEMPLATE_CLASS_SAME_DIMS(ThetaAlignmentRule)
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/* Polarity - polarity alignment with the 
nearest neighbors

   */
 

#include "SamePolarityAlignmentRule.hpp"
#include "SmartPointers.hpp"
#include "RandomNumberGenerator.hpp"
#include <stdio.h>      /* printf, NULL */
#include <stdlib.h>     /* srand, rand */
#include <time.h>       /* time */
#include <cmath>
#include <math.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <tgmath.h>
#define PI 3.14159265
using namespace std;

 
template<unsigned DIM>
SamePolarityAlignmentRule<DIM>::SamePolarityAlignmentRule()
    : AbstractForce<DIM>()
   
{
}

 
template<unsigned DIM>
SamePolarityAlignmentRule<DIM>::~SamePolarityAlignmentRule()
{
}

 
 
 

template<unsigned DIM>
void SamePolarityAlignmentRule<DIM>::SetMotility(double motility)
{
    mMotility=motility;
}

 
 

template<unsigned DIM>
double SamePolarityAlignmentRule<DIM>::GetMotility()
{
    double motility = mMotility;
    return motility;
}

 
template<unsigned DIM>
void SamePolarityAlignmentRule<DIM>::SetDiffusionCoefficient(double 

diffusioncoefficient)
{
    mDiffusioncoefficient=diffusioncoefficient;
}

 
template<unsigned DIM>
double SamePolarityAlignmentRule<DIM>::GetDiffusionCoefficient()
{
    double diffusioncoefficient=mDiffusioncoefficient;
    return diffusioncoefficient;
}

 
template<unsigned DIM>
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void SamePolarityAlignmentRule<DIM>::SetThetaValue(std::vector<double> theta)
{
    mTheta=theta;
    
}

 
template<unsigned DIM>
std::vector<double> SamePolarityAlignmentRule<DIM>::GetThetaValue()
{

//define element index here
std::vector<double> theta=mTheta;
return theta;

}
 

template<unsigned DIM>
double SamePolarityAlignmentRule<DIM>::GetThetaValueForSingleCell(unsigned 

cell_id)
{

//define element index here
double theta=mTheta[cell_id];
return theta;

}
 
 

template<unsigned DIM>
void SamePolarityAlignmentRule<DIM>::UpdateThetaValueForSingleCell (unsigned 

cell_id, double theta)
{   
    mTheta[cell_id]=theta;

}
 

template<unsigned DIM>
void SamePolarityAlignmentRule<DIM>::SetStrength(double strength)
{
    mStrength=strength;
}

 
 

template<unsigned DIM>
double SamePolarityAlignmentRule<DIM>::GetStrength()
{
    double strength = mStrength;
    return strength;
}

 
template<unsigned DIM>
void SamePolarityAlignmentRule<DIM>::UpdateThetaValue

(std::vector<double>theta)
{

time_t t;
srand(time(&t));
unsigned num_of_cells=theta.size();
std::vector<double> theta_noise(num_of_cells);
std::vector<double> noise(num_of_cells);

    RandomNumberGenerator* p_gen = RandomNumberGenerator::Instance();
    double mean = 0;
    double standard_deviation = 1.0;
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    double delta_t= SimulationTime::Instance()->GetTimeStep();
    double D_r=GetDiffusionCoefficient();
    

for (int i=0;i<num_of_cells;i++)
{

noise[i]=p_gen->NormalRandomDeviate(mean, standard_deviation);
theta_noise[i]=noise[i]*sqrt(2*D_r*delta_t);
theta[i]=theta[i]+theta_noise[i];

}
    
    mTheta=theta;
    
  

}
 

template<unsigned DIM>
void SamePolarityAlignmentRule<DIM>::AddForceContribution

(AbstractCellPopulation<DIM>(& rCellPopulation))
 

{
    // Throw an exception message if not using a VertexBasedCellPopulation
    if (dynamic_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation) == 

NULL)
    {

EXCEPTION("polarisation_random_value is to be used with a 
VertexBasedCellPopulation only");

    }

    // Helper variable that is a static cast of the cell population
    VertexBasedCellPopulation<DIM>* p_cell_population = 

static_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation);
double strength=GetStrength();

for (typename AbstractCellPopulation<DIM,DIM>::Iterator cell_iter = 
p_cell_population->Begin(); 

  cell_iter != p_cell_population->End();
  ++cell_iter)

{
VertexElement<DIM, DIM>* p_element = p_cell_population-

>GetElementCorrespondingToCell(*cell_iter);
    unsigned cell_id = cell_iter->GetCellId();

 
double theta=GetThetaValueForSingleCell(cell_id);

 
c_vector<double,DIM> polarisation_direction;

 
polarisation_direction(0) = cos(theta);
polarisation_direction(1) = sin(theta);

double magnitude_of_force = GetMotility();  
 
 
 

c_vector<double,DIM> force = 
magnitude_of_force*polarisation_direction;  

//for all nodes of a single element
      
       for (unsigned node_local_index=0;node_local_index<p_element-

>GetNumNodes();node_local_index++)
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{
unsigned node_global_index = p_element->GetNode

(node_local_index)->GetIndex();
     unsigned num_containing_elements = p_element->GetNode

(node_local_index)->GetNumContainingElements();
     double 

n_sq=num_containing_elements*num_containing_elements;
     c_vector<double,DIM> force_new = 

magnitude_of_force*polarisation_direction/n_sq;    
 

    rCellPopulation.GetNode(node_global_index)-
>AddAppliedForceContribution(force_new);

    
}

std::set<unsigned> neighbour_indices = 
rCellPopulation.GetNeighbouringLocationIndices(*cell_iter);

double theta_desired=0.0;
double sin_sum=0.0;
double num_cells=0.0;
c_vector<double,DIM> unit_vector= zero_vector<double>(DIM);;
for (std::set<unsigned>::iterator iter = neighbour_indices.begin();
     iter != neighbour_indices.end();
     ++iter)
 {

 CellPtr p_cell2 = 
rCellPopulation.GetCellUsingLocationIndex(*iter);

 unsigned cell_id_neighbour = 
rCellPopulation.GetLocationIndexUsingCell(p_cell2);

 double theta_neighbour=GetThetaValueForSingleCell
(cell_id_neighbour);

 
 sin_sum+=sin(2.0*(theta_neighbour-theta));
 num_cells+=1.0;
 

     }   
 

double delta_t=SimulationTime::Instance()->GetTimeStep();

double first_term=strength*sin_sum*delta_t;
RandomNumberGenerator* p_gen = RandomNumberGenerator::Instance

();
double mean = 0;
double standard_deviation =1.0;

double D_r=GetDiffusionCoefficient();
double noise=p_gen->NormalRandomDeviate(mean, 

standard_deviation);
double second_term=noise*sqrt(2*D_r*delta_t);
theta=theta+first_term+second_term;
UpdateThetaValueForSingleCell(cell_id, theta);

    }
 

}
 

template<unsigned DIM>
void SamePolarityAlignmentRule<DIM>::OutputForceParameters(out_stream& 

rParamsFile)
{
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    // Call method on direct parent class
    AbstractForce<DIM>::OutputForceParameters(rParamsFile);
}

 
/////////////////////////////////////////////////////////////////////////////
// Explicit instantiation
/////////////////////////////////////////////////////////////////////////////

 
template class SamePolarityAlignmentRule<1>;
template class SamePolarityAlignmentRule<2>;
template class SamePolarityAlignmentRule<3>;

 
// Serialization for Boost >= 1.36
#include "SerializationExportWrapperForCpp.hpp"
EXPORT_TEMPLATE_CLASS_SAME_DIMS(SamePolarityAlignmentRule)
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/* Delta-Notch patterns with random rotational 
diffusion

      Used in Chapter 3 (Sections - 3.3.3)
*/

 
 

#include "DeltaNotchTrackingModifierWithThetaAlignRuleNew.hpp"
#include "DeltaNotchSrnModel.hpp"

 
using namespace std;
#define PI 3.141592654

 
template<unsigned DIM>
DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::
     DeltaNotchTrackingModifierWithThetaAlignRuleNew

(boost::shared_ptr<ThetaAlignmentRule<DIM>> ptar)
    : AbstractCellBasedSimulationModifier<DIM>()
{

mptar=ptar;
}

 
template<unsigned DIM>
DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::

DeltaNotchTrackingModifierWithThetaAlignRuleNew()
    : AbstractCellBasedSimulationModifier<DIM>()
{
}

 
template<unsigned DIM>
DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::

~DeltaNotchTrackingModifierWithThetaAlignRuleNew()
{
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::

SetActivationThreshold(double activation_threshold)
{
    mActivationThreshold=activation_threshold;
}

 
 

template<unsigned DIM>
double 

DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::GetActivationThreshold()
{
    double activation_threshold = mActivationThreshold;
    return activation_threshold;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::SetdTheta(double 

dtheta)
{
    mdTheta=dtheta;
}

 
 

template<unsigned DIM>
double DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::GetdTheta()
{
    double dtheta = mdTheta;
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    return dtheta;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::SetBoxLength(double 

box_length)
{
    mBoxLength=box_length;
}

 
 

template<unsigned DIM>
double DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::GetBoxLength()
{
    double box_length = mBoxLength;
    return box_length;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::

SetFilopodiaLength(double filopodia_length)
{
    mFilopodiaLength=filopodia_length;
}

 
 

template<unsigned DIM>
double 

DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::GetFilopodiaLength()
{
    double filopodia_length = mFilopodiaLength;
    return filopodia_length;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::

UpdateAtEndOfTimeStep(AbstractCellPopulation<DIM,DIM>& 
rCellPopulation)

{
    UpdateCellData(rCellPopulation);
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::

SetupSolve(AbstractCellPopulation<DIM,DIM>& rCellPopulation, 
std::string outputDirectory)

{
    
    UpdateCellData(rCellPopulation);
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithThetaAlignRuleNew<DIM>::

UpdateCellData(AbstractCellPopulation<DIM,DIM>& rCellPopulation)
{

    rCellPopulation.Update();
std::vector<unsigned> location_index_all;
double L=0.0;

    // First recover each cell's Notch and Delta concentrations from the ODEs 
and store in CellData
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    for (typename AbstractCellPopulation<DIM>::Iterator cell_iter = 
rCellPopulation.Begin();

 cell_iter != rCellPopulation.End();
 ++cell_iter)

    {
DeltaNotchSrnModel* p_model = static_cast<DeltaNotchSrnModel*>

(cell_iter->GetSrnModel());
double this_delta = p_model->GetDelta();
double this_notch = p_model->GetNotch();

 
// Note that the state variables must be in the same order as listed 

in DeltaNotchOdeSystem
cell_iter->GetCellData()->SetItem("notch", this_notch);
cell_iter->GetCellData()->SetItem("delta", this_delta);

       // CellPtr p_cell1 = rCellPopulation.GetCellUsingLocationIndex
(*cell_iter);

unsigned location_index_cell = 
rCellPopulation.GetLocationIndexUsingCell(*cell_iter);

location_index_all.push_back(location_index_cell);
//cell_centre_location_all = rCellPopulation.GetLocationOfCellCentre

(*cell_iter);
unsigned index = rCellPopulation.GetLocationIndexUsingCell

(*cell_iter);
CellPtr p_cell3 = rCellPopulation.GetCellUsingLocationIndex

(index);

c_vector<double, DIM>locat=rCellPopulation.GetLocationOfCellCentre
(p_cell3);

 
if(locat(0)>L)
{L=locat(0);}
if(locat(1)>H)
{H=locat(1);}

    }
 

    // Next iterate over the population to compute and store each cell's 
neighbouring Delta concentration in CellData

    for (typename AbstractCellPopulation<DIM>::Iterator cell_iter = 
rCellPopulation.Begin();

 cell_iter != rCellPopulation.End();
 ++cell_iter)

    {
unsigned location_index_cell = 

rCellPopulation.GetLocationIndexUsingCell(*cell_iter);
CellPtr p_cell1 = rCellPopulation.GetCellUsingLocationIndex

(location_index_cell);
// Get the set of neighbouring location indices
std::set<unsigned> neighbour_indices = 

rCellPopulation.GetNeighbouringLocationIndices(*cell_iter);
std::set<unsigned> all_other_cells;

 
// Compute this cell's average neighbouring Delta concentration and 

store in CellData
 

double mean_delta1 = 0.0;
    

for (std::set<unsigned>::iterator iter = neighbour_indices.begin();
     iter != neighbour_indices.end();
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     ++iter)
 {
     CellPtr p_cell = rCellPopulation.GetCellUsingLocationIndex

(*iter);
     double this_delta = p_cell->GetCellData()->GetItem("delta");
     mean_delta1 += this_delta/neighbour_indices.size();

 
  }

unsigned location_index_current_cell = 
rCellPopulation.GetLocationIndexUsingCell(*cell_iter);

c_vector<double,DIM> 
current_cell_location_n=rCellPopulation.GetLocationOfCellCentre(p_cell1);

std::vector<unsigned> neighbour_indices_vector;
std::copy(neighbour_indices.begin(), neighbour_indices.end(), 

std::back_inserter(neighbour_indices_vector));
neighbour_indices_vector.push_back(location_index_current_cell) ;
std::set_difference(location_index_all.begin(), location_index_all.end

(), neighbour_indices_vector.begin(),
 neighbour_indices_vector.end(), std::inserter

(all_other_cells, all_other_cells.begin()));

double theta1=mptar->GetThetaValueForSingleCell
(location_index_current_cell);

c_vector<double,DIM> p1;
p1(0)=cos(theta1);
p1(1)=sin(theta1);

 double sum_delta2=0.0;
double count=0.0;
double mean_delta2=0.0;
double mean_delta=0.0;
double W_sum=0.0;

for (std::set<unsigned>::iterator iter2 = 
all_other_cells.begin();

         iter2 != all_other_cells.end();
         ++iter2)
    {

CellPtr p_cell2 = 
rCellPopulation.GetCellUsingLocationIndex(*iter2);

unsigned location_index_of_contact_cell = 
rCellPopulation.GetLocationIndexUsingCell(p_cell2);

c_vector<double,DIM> 
cell_location_p=rCellPopulation.GetLocationOfCellCentre(p_cell2);

c_vector<double,DIM> 
R_np=current_cell_location_n-cell_location_p;

if(R_np(0)<-L/2.0)
{

R_np(0)+=L;
}
if(R_np(0)>L/2.0)
{

R_np(0)-=L;
}
if(R_np(1)<-H/2.0)
{

R_np(1)+=H;
}
if(R_np(1)>H/2.0)
{
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R_np(1)-=H;
}

double D=norm_2(R_np);
R_np=R_np/D;
double theta2=mptar-

>GetThetaValueForSingleCell(location_index_of_contact_cell);
double l1=(GetFilopodiaLength()-0.3)*2.0;
double l2=(GetFilopodiaLength()+0.3)*2.0;
if(l2>=D && D>=l1)

{
c_vector<double,DIM> p2;
p2(0)=cos(theta2);
p2(1)=sin(theta2);

double del_theta=GetdTheta();
double thresh1=GetActivationThreshold

();

double C11=((p1(0)*R_np(0))+(p1
(1)*R_np(1)))*((p1(0)*R_np(0))+(p1(1)*R_np(1)));

double C12=((p2(0)*R_np(0))+(p2
(1)*R_np(1)))*((p2(0)*R_np(0))+(p2(1)*R_np(1)));

double C1=pow(((1.0/2.0)*(C11
+C12)),1.0);

double C2=pow((sin(del_theta)),2.0);

double W=std::max(C1,C2);

double this_delta = p_cell2-
>GetCellData()->GetItem("delta");

if(W>=thresh1){sum_delta2 += 
this_delta;

count+=1.0;}
else{count+=0;}

}

    }
double beta1=0.01; //0.01
double beta2=0.99; //0.99

if(count==0.0) 
      

{

mean_delta=beta1*mean_delta1;
}
else
{  

mean_delta2=sum_delta2/count;
mean_delta=(beta1*mean_delta1+beta2*mean_delta2)/2.0;
 

}
       
       cell_iter->GetCellData()->SetItem("mean delta", mean_delta);
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/* Delta-Notch patterns with polarity alignment with the 
nearest neighbors

      Used in Chapter 3 (Sections - 3.3.1 and 
3.3.2)

*/

 
#include "DeltaNotchTrackingModifierWithSamePolarityAlign.hpp"
#include "DeltaNotchSrnModel.hpp"

 
using namespace std;
#define PI 3.141592654

 
template<unsigned DIM>
DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::
DeltaNotchTrackingModifierWithSamePolarityAlign(boost::

shared_ptr<SamePolarityAlignmentRule<DIM>> ptar2)
    : AbstractCellBasedSimulationModifier<DIM>()
{

mptar2=ptar2;
}

 
template<unsigned DIM>
DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::

DeltaNotchTrackingModifierWithSamePolarityAlign()
    : AbstractCellBasedSimulationModifier<DIM>()
{
}

 
template<unsigned DIM>
DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::

~DeltaNotchTrackingModifierWithSamePolarityAlign()
{
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::
SetActivationThreshold(double activation_threshold)
{
    mActivationThreshold=activation_threshold;
}

 
 

template<unsigned DIM>
double DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::

GetActivationThreshold()
{
    double activation_threshold = mActivationThreshold;
    return activation_threshold;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::SetdTheta(double 

dtheta)
{
    mdTheta=dtheta;
}

 
 

template<unsigned DIM>
double DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::GetdTheta()
{



File: /home/supriya/Codes-Interface…ifierWithPolarityAlignment.cpp Page 2 of 6

    double dtheta = mdTheta;
    return dtheta;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::SetBoxLength(double 

box_length)
{
    mBoxLength=box_length;
}

 
 

template<unsigned DIM>
double DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::GetBoxLength()
{
    double box_length = mBoxLength;
    return box_length;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::

SetFilopodiaLength(double filopodia_length)
{
    mFilopodiaLength=filopodia_length;
}

 
 

template<unsigned DIM>
double 

DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::GetFilopodiaLength()
{
    double filopodia_length = mFilopodiaLength;
    return filopodia_length;
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::

UpdateAtEndOfTimeStep(AbstractCellPopulation<DIM,DIM>& 
rCellPopulation)

{
    UpdateCellData(rCellPopulation);
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::

SetupSolve(AbstractCellPopulation<DIM,DIM>& rCellPopulation, 
std::string outputDirectory)

{
    
    UpdateCellData(rCellPopulation);
}

 
template<unsigned DIM>
void DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::

UpdateCellData(AbstractCellPopulation<DIM,DIM>& rCellPopulation)
{

std::ofstream OFileObject;
OFileObject.open("PolarityDrpt1Spt15.csv", ios::app);

    
    rCellPopulation.Update();

std::vector<unsigned> location_index_all;
double L=0.0;
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double H=0.0;

    for (typename AbstractCellPopulation<DIM>::Iterator cell_iter = 
rCellPopulation.Begin();

 cell_iter != rCellPopulation.End();
 ++cell_iter)

    {
DeltaNotchSrnModel* p_model = static_cast<DeltaNotchSrnModel*>

(cell_iter->GetSrnModel());
double this_delta = p_model->GetDelta();
double this_notch = p_model->GetNotch();

 
// Note that the state variables must be in the same order as listed 

in DeltaNotchOdeSystem
cell_iter->GetCellData()->SetItem("notch", this_notch);
cell_iter->GetCellData()->SetItem("delta", this_delta);

       
unsigned location_index_cell = 

rCellPopulation.GetLocationIndexUsingCell(*cell_iter);
location_index_all.push_back(location_index_cell);

unsigned index = rCellPopulation.GetLocationIndexUsingCell
(*cell_iter);

CellPtr p_cell3 = rCellPopulation.GetCellUsingLocationIndex
(index);

c_vector<double, DIM>locat=rCellPopulation.GetLocationOfCellCentre
(p_cell3);

if(locat(0)>L)
{L=locat(0);}
if(locat(1)>H)
{H=locat(1);}

    }
 

    // Next iterate over the population to compute and store each cell's 
neighbouring Delta concentration in CellData

    for (typename AbstractCellPopulation<DIM>::Iterator cell_iter = 
rCellPopulation.Begin();

 cell_iter != rCellPopulation.End();
 ++cell_iter)

    {

unsigned location_index_cell = 
rCellPopulation.GetLocationIndexUsingCell(*cell_iter);

CellPtr p_cell1 = rCellPopulation.GetCellUsingLocationIndex
(location_index_cell);

// Get the set of neighbouring location indices
std::set<unsigned> neighbour_indices = 

rCellPopulation.GetNeighbouringLocationIndices(*cell_iter);
std::set<unsigned> all_other_cells;

 

double mean_delta1 = 0.0;
       

for (std::set<unsigned>::iterator iter = neighbour_indices.begin();
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     iter != neighbour_indices.end();
     ++iter)
 {
     CellPtr p_cell = rCellPopulation.GetCellUsingLocationIndex

(*iter);
     double this_delta = p_cell->GetCellData()->GetItem("delta");
    
     mean_delta1 += this_delta/neighbour_indices.size();
   
  }

       
 

unsigned location_index_current_cell = 
rCellPopulation.GetLocationIndexUsingCell(*cell_iter);

c_vector<double,DIM> 
current_cell_location_n=rCellPopulation.GetLocationOfCellCentre(p_cell1);

std::vector<unsigned> neighbour_indices_vector;
std::copy(neighbour_indices.begin(), neighbour_indices.end(), 

std::back_inserter(neighbour_indices_vector));
neighbour_indices_vector.push_back(location_index_current_cell) ;
std::set_difference(location_index_all.begin(), location_index_all.end

(),neighbour_indices_vector.begin(),
 neighbour_indices_vector.end(), std::inserter

(all_other_cells, all_other_cells.begin()));

double theta1=mptar2->GetThetaValueForSingleCell
(location_index_current_cell);

c_vector<double,DIM> p1;
p1(0)=cos(theta1);
p1(1)=sin(theta1);
unsigned simulation_time= SimulationTime::Instance()-

>GetTimeStepsElapsed();
if(simulation_time%100==0)
{

OFileObject <<simulation_time<< " ";
OFileObject <<theta1<< " "<<"\n";

}
double sum_delta2=0.0;
double count=0.0;
double mean_delta2=0.0;
double mean_delta=0.0;

for (std::set<unsigned>::iterator iter2 = 
all_other_cells.begin();

         iter2 != all_other_cells.end();
         ++iter2)
    {

CellPtr p_cell2 = 
rCellPopulation.GetCellUsingLocationIndex(*iter2);

unsigned location_index_of_contact_cell = 
rCellPopulation.GetLocationIndexUsingCell(p_cell2);

c_vector<double,DIM> 
cell_location_p=rCellPopulation.GetLocationOfCellCentre(p_cell2);

c_vector<double,DIM> 
R_np=current_cell_location_n-cell_location_p;

if(R_np(0)<-L/2.0)
{

R_np(0)+=L;
}
if(R_np(0)>L/2.0)
{

R_np(0)-=L;
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}
if(R_np(1)<-H/2.0)
{

R_np(1)+=H;
}
if(R_np(1)>H/2.0)
{

R_np(1)-=H;
}

double D=norm_2(R_np);
R_np=R_np/D;
double theta2=mptar2-

>GetThetaValueForSingleCell(location_index_of_contact_cell);
double l1=(GetFilopodiaLength()-0.3)*2.0;
double l2=(GetFilopodiaLength()+0.3)*2.0;
if(l2>=D && D>=l1)

{
c_vector<double,DIM> p2;
p2(0)=cos(theta2);
p2(1)=sin(theta2);

double del_theta=GetdTheta();
double thresh=GetActivationThreshold

();
double C11=((p1(0)*R_np(0))+(p1

(1)*R_np(1)))*((p1(0)*R_np(0))+(p1(1)*R_np(1)));
double C12=((p2(0)*R_np(0))+(p2

(1)*R_np(1)))*((p2(0)*R_np(0))+(p2(1)*R_np(1)));
double C1=pow(((1.0/2.0)*(C11

+C12)),1.0);
double C2=pow((sin(del_theta)),2.0);

double W=std::max(C1,C2);

double this_delta = p_cell2-
>GetCellData()->GetItem("delta");

if(W>=thresh){sum_delta2 += 
this_delta;

count+=1.0;}
else{count+=0;}

}

    }
double beta1=0.01;
double beta2=0.99;

if(count==0.0) 

{

mean_delta=beta1*mean_delta1;
}
else
{  

mean_delta2=sum_delta2/count;
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mean_delta=(beta1*mean_delta1+beta2*mean_delta2)/2.0;
 

}
 

       cell_iter->GetCellData()->SetItem("mean delta", mean_delta);
 
    }
    OFileObject.close();

}
 
 

template<unsigned DIM>
void 

DeltaNotchTrackingModifierWithSamePolarityAlign<DIM>::OutputSimulationModifierParameters
(out_stream& rParamsFile)

{
    // No parameters to output, so just call method on direct parent class
    

AbstractCellBasedSimulationModifier<DIM>::OutputSimulationModifierParameters
(rParamsFile);

}
 

// Explicit instantiation
template class DeltaNotchTrackingModifierWithSamePolarityAlign<1>;
template class DeltaNotchTrackingModifierWithSamePolarityAlign<2>;
template class DeltaNotchTrackingModifierWithSamePolarityAlign<3>;

 
// Serialization for Boost >= 1.36
#include "SerializationExportWrapperForCpp.hpp"
EXPORT_TEMPLATE_CLASS_SAME_DIMS

(DeltaNotchTrackingModifierWithSamePolarityAlign)
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import numpy as np
import csv
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
import pandas as pd
from numpy import math 
from scipy.spatial.distance import pdist,squareform
import matplotlib.pyplot as plt
 
median_cluster=[]
 
 
# In[4]:
 
 
import numpy as np
 
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
import pandas as pd
from numpy import math 
from scipy.spatial.distance import pdist,squareform
import matplotlib.pyplot as plt
N=400
tmax=301
min_sample=3
dis=1.5
df=pd.read_csv('celldeltanotchdthetaPIby3Tpt1.csv', sep=' ', names=["id", "X", "Y", 
"Delta", "Notch", "Mean_Notch","Area", "Nothing"])
df = df.iloc[80000:]
 
X11=df['X'].values.reshape(tmax,N)
 
Y11=df['Y'].values.reshape(tmax,N)
#print(np.max(X11))        
delta_matrix=df['Delta'].values.reshape(tmax,N)
indicesList_list=[]
uniqueValues_list=[]
total_num_of_clusters=[] 
 
 
#print(X1.shape)
median_cluster_size_list=[]
for t in range(0,tmax):
    indices,=np.where(delta_matrix[t,:]>0.5)
    N=len(indices)
    X1=X11[t,indices]
      
    Y1=Y11[t,indices]
    L=np.max(X11[t,:])
    H=np.max(Y11[t,:])
    rnew=np.zeros([N,N])
    for i in range(0,N):
        for j in range(0,N): 
 
            xx=X1[i]-X1[j]
            #print('xx shape',xx.shape)
            yy=Y1[i]-Y1[j]
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            if(xx>0.5*L): xx=xx-L
            if(xx<-0.5*L): xx=xx+L
            if(yy>0.5*L): yy=yy-L
            if(yy<-0.5*L): yy=yy+L    
    
            r=np.sqrt(xx**2+yy**2)
 
            rnew[i,j]=r
    db = DBSCAN(eps=dis, min_samples=min_sample, metric="precomputed").fit(rnew)
    labels = db.labels_
    core_samples_mask = np.zeros_like(labels, dtype = bool)
    core_samples_mask[db.core_sample_indices_] = True
    n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
    n_noise_ = list(labels).count(-1)
    #print('Estimated number of clusters: %d' % n_clusters_)
    total_num_of_clusters.append(n_clusters_)
    
    #print('Estimated number of noise points: %d' % n_noise_)
    ch1_counts = np.bincount((labels[labels>=0]).astype(int))
    Num_of_particles_per_cluster=ch1_counts
    median_cluster_siz=np.median(Num_of_particles_per_cluster)
    median_cluster_size_list.append(median_cluster_siz)   
    
    #print('Number of particles per cluster:', ch1_counts)
    #uniqueValues, indicesList = np.unique(ch1_counts, return_counts=True)
    #uniqueValues_list.append(uniqueValues)
    #indicesList_list.append(indicesList)
median_cluster_size=np.median(median_cluster_size_list)
median_cluster.append(median_cluster_size)
 
#print('total_num_of_clusters',total_num_of_clusters)



File: /home/supriya/Inertia.py Page 1 of 3

import numpy as np
import csv
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
import pandas as pd
from numpy import math 
from scipy.spatial.distance import pdist,squareform
import matplotlib.pyplot as plt
from numpy import linalg as LA
 
inertia_median_list=[]
 
 
# In[3]:
 
 
N=400
tmax=301
min_sample=3
dis=1.5
df=pd.read_csv('celldeltanotchS0dthetaPIby2.csv', sep=' ', names=["id", "X", "Y", 
"Delta", "Notch", "Mean_Notch","Area", "Nothing"])
df = df.iloc[80000:]
 
X11=df['X'].values.reshape(tmax,N)
 
Y11=df['Y'].values.reshape(tmax,N)
#print(np.max(X11))        
delta_matrix=df['Delta'].values.reshape(tmax,N)
indicesList_list=[]
uniqueValues_list=[]
total_num_of_clusters=[] 
A0=0.866
 
#print(X1.shape)
inertia_mean=[]
for t in range(0,tmax):
    indices,=np.where(delta_matrix[t,:]>0.5)
    N=len(indices)
    X1=X11[t,indices]
    #print(X1.shape)
      
    Y1=Y11[t,indices]
    L=np.max(X11[t,:])
    H=np.max(Y11[t,:])
    rnew=np.zeros([N,N])
    for i in range(0,N):
        for j in range(0,N): 
 
            xx=X1[i]-X1[j]
            #print('xx shape',xx.shape)
            yy=Y1[i]-Y1[j]
            if(xx>0.5*L): xx=xx-L
            if(xx<-0.5*L): xx=xx+L
            if(yy>0.5*L): yy=yy-L
            if(yy<-0.5*L): yy=yy+L    
    
            r=np.sqrt(xx**2+yy**2)
 
            rnew[i,j]=r
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    db = DBSCAN(eps=dis, min_samples=min_sample, metric="precomputed").fit(rnew)
    labels = db.labels_   #-1,2...13 ie no. of clusters and noise
    #print("labels",labels)
    core_samples_mask = np.zeros_like(labels, dtype = bool)
    core_samples_mask[db.core_sample_indices_] = True
    n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
    n_noise_ = list(labels).count(-1)
    #print('Estimated number of clusters: %d' % n_clusters_)
    total_num_of_clusters.append(n_clusters_)
    
    #print('Estimated number of noise points: %d' % n_noise_)
    ch1_counts = np.bincount(labels[labels>=0])
    L=20.0
    H=18.0
    xyold=np.zeros([1,2])
    X1=X1.reshape(len(X1),1)
    Y1=Y1.reshape(len(Y1),1)
    #print(X1.shape, Y1.shape)
    Xnew=np.concatenate((X1,Y1),axis=1)
    unique_labels = set(labels)
    colors = [plt.cm.Spectral(each)
               for each in np.linspace(0, 1, len(unique_labels))]
    inertia_list=[]
    for k, col in zip(unique_labels, colors):
        if k == -1:
            # Black used for noise.
            col = [0, 0, 0, 1]
 
        class_member_mask = (labels == k)
        
        xy = Xnew[class_member_mask & core_samples_mask]
        #plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
         #        markeredgecolor='k', markersize=14)
        #print(xy.shape)
        #print(xy)
        
        #with open('cluster_xy', 'w') as f:
        #    writer = csv.writer(f, delimiter=' ')
        #    writer.writerows(xyold)
        #f.close()
        
        x_mean=np.mean(xy[:,0])
        y_mean=np.mean(xy[:,1])
        xx=xy[:, 0]-x_mean
        yy=xy[:, 1]-y_mean
        #print(xx)
        xy[:, 0]=np.where(xx>-L/2.0, xy[:, 0], xy[:, 0]+L)
        xy[:, 0]=np.where(xx<L/2.0, xy[:, 0], xy[:, 0]-L)
        xy[:, 1]=np.where(yy>-H/2.0, xy[:, 1], xy[:, 1]+H)
        xy[:, 1]=np.where(yy<H/2.0, xy[:, 1], xy[:, 1]-H)
        x_mean=np.mean(xy[:,0])
        y_mean=np.mean(xy[:,1])
        xx=xy[:, 0]-x_mean
        yy=xy[:, 1]-y_mean
        #print(xx)
        Ixx=np.sum(A0*(xx**2.0))
        Iyy=np.sum(A0*(yy**2.0))
        Ixy=np.sum(A0*(xx*yy))
        A=[[Ixx,Ixy],[Ixy,Iyy]] 
        igen_val, igen_vec = LA.eig(A)
        #print(igen_val)
        Imax=np.max(igen_val)
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        Imin=np.min(igen_val)
        inertial_ratio=Imax/float(Imin)
        
        if xy.shape[0]>2:
            #print(xy)
            #print(inertial_ratio)
            inertia_list.append(inertial_ratio)
        #print(xy)
        #print(x_mean)
        #print(y_mean)
        
        #print(x_mean)
        #print(Ixx,Iyy)
        
        #print(Ixx/float(Iyy))
        xy = Xnew[class_member_mask & ~core_samples_mask]
        
        #plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
        #         markeredgecolor='k', markersize=6)
    inertia_mean.append(np.median(inertia_list))    
    #plt.title('Estimated number of clusters: %d' % n_clusters_)
    #plt.show()
inertia_median=np.median(inertia_mean) 
inertia_median_list.append(inertia_median)
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import numpy as np
import csv
import pandas as pd
#from sklearn import preprocessing
import matplotlib.pyplot as plt
from numpy import math 
df=pd.read_csv('celldeltanotchDeltaDeltaCorr-1.csv', sep=' ', names=["id", "X", "Y", 
"Delta", "Notch", "Mean_Notch","Area", "Nothing"])
PI=3.141592654
N=1600
total_time=2701
L=40.0
H=34.64
ti=0
tf=2701
A0=0.866
lc=np.sqrt(A0)
delta_t=tf-ti
 
R=np.arange(0.0,16.0,0.1)/lc
dt_i=0
dt_f=300
dtt=20
tp=(dt_f-dt_i-1)/dtt
dd_avg_value=np.zeros([tf-ti,len(R)-1])
dd_corr=np.zeros([tf-ti,len(R)-1])
df = df.iloc[480000:]
#df = df.iloc[4320000:]
X_matrix=df['X'].values.reshape(total_time,N)
Y_matrix=df['Y'].values.reshape(total_time,N)
delta_matrix=df['Delta'].values.reshape(total_time,N)
 
#r=np.zeros([(tf-ti),N])
#delta_delta=np.zeros([(tf-ti),N])
for dt in range(dt_i,dt_f,dtt):# 0-tf
    dd_sum=0.0
 
    for t in range(0,tf-dt):  # 0-1
        for i in range(0,N): # 0-N
            j=list(xrange(N))  # 0-N
            j.remove(i)
            xx=X_matrix[t,i]-X_matrix[t+dt,j]
            yy=Y_matrix[t,i]-Y_matrix[t+dt,j]
            dd=delta_matrix[t,i]*delta_matrix[t+dt,j]
            dd_sum+=np.sum(dd)
            #print(dd.shape)
            xx=np.where(xx>-L/2.0, xx, xx+L)
 
            xx=np.where(xx<L/2.0, xx, xx-L)
            yy=np.where(yy>-H/2.0, yy, yy+H)
            yy=np.where(yy<H/2.0, yy, yy-H)
 
            r=np.sqrt(np.square(xx)+np.square(yy))
 
            #print(r)
            for k in range(0,len(R)-1):
                bools1 = r > R[k]
                bools2 = r <= R[k+1]
                index,=np.where(bools1*bools2)
                dd_value=dd[index]
                annular_area=PI*(np.square(R[k+1])-np.square(R[k]))
                dd_avg_value[dt,k]+=np.sum(dd_value)/annular_area
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        #dd_avg_value=dd_avg_value#/(tf-dt)#(tf+ti-dt)
    dd_corr[dt,:]=dd_avg_value[dt,:]/(N*(tf-dt))  #(N*(tf-ti)
    dd_avg=dd_sum/(N*(N-1)*(tf-dt))
    dd_corr[dt,:]=dd_corr[dt,:]/dd_avg  
#R=np.arange(0.1,16.0,0.1)/lc
#print(dd_corr.shape)
#print(R.shape)
 
df = pd.DataFrame(data=dd_corr)
df.to_csv('VanHoveDeltaDeltaCorr-1.csv', sep=' ', header=False, index=False)



Appendix C

C.1 Mean Area and mean current shape index

The mean area of Delta and Notch cells is calculated for N = 400 cells for M = 500

time-frames after removing the transient part of the corresponding simulation. Any cell

α is considered a Delta or a Notch cell if the concentration of Delta and Notch molecules

in the cell Dα ≥ Dcritical = 0.5 and Nα ≥ Ncritical = 0.5, respectively. Each data point for

average cell area is calculated by taking the average of areas of ND Delta cells (Figs 5.2a

and 5.4a) and NN Notch cells (Fig 5.2b and 5.4b) separately as: 1
NXT

∑T
t=0

∑NX

α=1 A
t
α,

where X ≡ D,N . In a similar manner, each data point of the average shape index is

calculated by taking the average of current shape index Lα/
√
Aα of individual Delta cells

(Fig 5.2c and 5.4c) and Notch cells (Fig 5.2d and 5.4d) separately.

C.2 Stress tensor in the vertex model

In a vertex model, for a given cell α, the average stress tensor is given by [7]

σ(α)
xx = −Pα +

1

Aα

∑
β

Tαβlαβ sin
2 ϕαβ (C.1a)
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Table C.1: Dimensionless parameters of the model with respect to the characteristic

length scale Lc = d (minimal cell diameter of initial hexagonal cell), characteristic time

scale Tc =
η

Kd2
and characteristic force scale Fc = Kd3 in terms of dimensional parameters

that appear in equations 5.3 and 5.7.

Dimensionless parameters Parameter values
d ≡ d

Lc
1.0

η ≡ ηLc

FcTc
1.0

K ≡ KL3
c

Fc
1.0

Γ ≡ ΓLc

Fc
1.0

Λ ≡ Λ
Fc

[−11.17,−14.88]

C −0.6− 0.6

B [−1.0, 1.0]

v0 ≡ v0Tc/Lc [0, 0.1, 0.3]

A0 ≡ A0/L
2
c 0.866

ξ ≡ ξTc 0− 2

Dr ≡ DrTc 1.0

Dα ≡ Dα/D0 0− 1

Nα ≡ Nα/N0 0− 1

RD ≡ RDTc [1, 10]

RN ≡ RNTc [1, 10]

ρ ≡ ρTc [1, 10]

µ ≡ µTc [1, 10]

l ≡ l/Lc 1.7

∆l ≡ ∆l/Lc 1.2

∆θ ≡ ∆θ π/4

∆t ≡ ∆t/Tc 0.01

a [0.01]

b [100]

Dcritical ≡ Dcritical/D0 0.5

Ncritical ≡ Ncritical/N0 0.5

N 400

T 0.9

∆r 0.1
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σ(α)
yy = −Pα +

1

Aα

∑
β

Tαβlαβ cos
2 ϕαβ (C.1b)

σ(α)
xy = σyx(α) =

1

Aα

∑
β

Tαβlαβ sinϕαβ cosϕαβ, (C.1c)

where Pα is the area pressure of cell α is given by Pα = −2K(Aα − Aα,0) (see Eq. 5.3).

Tαβ is the effective tension of the bond αβ and is equal to Tαβ = 1
2
Λαβ + 2ΓLα, where

Lα is the perimeter of cell α. The isotropic stress is the trace of the stress tensor and

represents effective cell pressure

P total
α = Pα − 1

2Aα

∑
β

Tαβlαβ (C.2)

The anisotropic part of the overall stress tensor, i.e, the pure shear stress tensor, is

symmetric and traceless, and is given by

σ̃α =
1

2Aα

−∑
β Tαβlαβ cos 2ϕαβ

∑
β Tαβlαβ sin 2ϕαβ∑

β Tαβlαβ sin 2ϕαβ

∑
β Tαβlαβ cos 2ϕαβ


where, ϕ is the orientation of the shear axis. Dropping the index α, the shear stress for

the cell can be written in a compact notation,

σ̃ = γ

cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ


where, γ =

√
σ̃2
xx + σ̃2

xy represents the magnitude of shear stress.

Each data point of the average isotropic stress or total cell pressure in Fig 5.2 and 5.4,

is calculated by taking simple average of total cell pressure of all Delta cells and Notch cells

separately, and is calculated calculated with the initial number of cells equal to N = 400

cells and for M = 500 time frames after removing the transient part of the corresponding
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Figure C.1: Plot showing the number of cells as a function of time with Delta-dependent

line tension parameter and negative coupling constant C, corresponding Fig. 5.1a. The

parameters are βj/βp ≈ 100, Λ0 = −14.14, v0 ≈ 0, K = 1, Γ = 1, ρ = µ = RN = RD = 1

and C = −0.6. The number of cells decreases with time indicating cell extrusion, and

reaches steady state after some time by maintaining a fixed number of cells.

simulation as discussed above.

C.3 Cell extrusions in the tissue

For much lower values of C, the tissue exhibit steady apoptosis or cell extrusion. The cell

number decreases with time and ultimately reaches a steady state value (Fig. C.1).

C.4 Movie Captions

Movie link is as follows:

https://drive.google.com/drive/folders/1dOcZo8etkHlcOwtDvwFNg1ufjOrOPOOQ?usp=

sharing

Movie-1 corresponding to Fig. 1a. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = −0.6.

127

https://drive.google.com/drive/folders/1dOcZo8etkHlcOwtDvwFNg1ufjOrOPOOQ?usp=sharing
https://drive.google.com/drive/folders/1dOcZo8etkHlcOwtDvwFNg1ufjOrOPOOQ?usp=sharing


Movie-2 corresponding to Fig. 1b. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = −0.2.

Movie-3 corresponding to Fig. 1c. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = 0.04.

Movie-4 corresponding to Fig. 1d. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = 0.16.

Movie-5 corresponding to Fig. 1e. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −11.17, B = 1 and C = 0.2.

Movie-6 corresponding to Fig. 1f. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −11.17, B = 1 and C = 0.6.

Movie-7 corresponding to Fig. 3a. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = −0.6.

Movie-8 corresponding to Fig. 3b. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = −0.2.

Movie-9 corresponding to Fig. 3c. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = 0.04.

Movie-10a corresponding to Fig. 3d. Pattern obtained using the model for RN =

RD = ρ = µ = 1, βj

βp
= 0.99, v0 = 0 and Λ = −14.14, B = 1 and C = 0.08.

Movie-10b Pattern obtained using the model for RN = RD = ρ = µ = 1, βj

βp
= 0.99,

v0 = 0 and Λ = −14.14, B = 1 and C = 0.2.

Movie-11 corresponding to Fig. 5a. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1 × 10−4, Λ = −14.32,

T = 0.9 and C = 0.

Movie-12 corresponding to Fig. 5b. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = 1 and C = −0.6.

Movie-13 corresponding to Fig. 5c. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = 1 and C = 0.1.
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Movie-14 corresponding to Fig. 5d. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = −1 and C = −0.1.

Movie-15 corresponding to Fig. 5e. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = −1 and C = 0.04.

Movie-16 corresponding to Fig. 6a. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = 1 and C = −0.6.

Movie-17 corresponding to Fig. 6b. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = 1 and C = 0.1.

Movie-18 corresponding to Fig. 6c. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = −1 and C = −0.1.

Movie-19 corresponding to Fig. 6d. Pattern obtained using the model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.1, Λ = −14.32, T = 0.9,

B = −1 and C = 0.04.

Movie-20 Pattern obtained using Delta-dependent line tension model for RN =

RD = ρ = µ = 10, Dr = 10−3, βj

βp
= 10−2, ∆θ = π/4, v0 = 0.3, Λ = −14.32, T = 0.9,

B = −1 and C = −0.1.

Movie-A Pattern obtained using the model for RN = RD = ρ = µ = 1, βj

βp
= 0.99,

v0 = 0 and Λ = −14.14, B = 1 and C = 0.

Movie-B Pattern obtained using the model for RN = RD = ρ = µ = 1, βj

βp
= 0.99,

v0 = 0.1 and Λ = −14.14, B = 1 and C = 0.

Movie-C Pattern obtained using the model for RN = RD = ρ = µ = 1, βj

βp
= 0.99,

v0 = 0.3 and Λ = −14.14, B = 1 and C = 0.
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C.5 Codes

In addition to the codes provided in the CHASTE library, the following additional codes

are written for implementing the proposed model in Chapter 5, in CHASTE (C++).

Ubuntu 16.04 LTS (operating system) and High Performance Computing (HPC) Sys-

tems (Noether cluster, Physics Department, IIT Bombay, India and MonARCH cluster,

Monash University, Australia) are used to run the simulations. The quantification and

visualization is done in python2.7, python3.5, using numpy (scientific computing library),

pandas (data analysis library), and matplotlib (data visualization library), ParaView (an

open-source, data analysis and visualization application).
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#include "FarhadifarDifferentialAdhesionForceDiffDelta.hpp"
#include <vector>
#include <iostream>
#include <fstream>
 
#include <math.h> 
#define PI 3.14159265
 
template<unsigned DIM>
FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::FarhadifarDifferentialAdhesionForceDiffDelta
()
    : FarhadifarForceWithStress<DIM>(),
      //mFarhadifarLabeledCellLabeledCellAdhesionEnergyParameter(1.0),
      mFarhadifarDifferentialCellCellAdhesionEnergyParameter(1.0),
      mCouplingConstant(0.0),
      mLambda0(1.0),
      mBCoeff(1.0)
      //mFarhadifarLabeldCellBoundaryAdhesionEnergyParameter(1.0)
{
}
 
template<unsigned DIM>
FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::~FarhadifarDifferentialAdhesionForceDiffDelta
()
{
}
 
template<unsigned DIM>
double FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::GetLineTensionParameter
(Node<DIM>* pNodeA,
                                                                      Node<DIM>* 
pNodeB,
                                                                      
VertexBasedCellPopulation<DIM>& rVertexCellPopulation)
{

//std::ofstream OFileObject;
//OFileObject.open("Deff.dat", ios::app);

 
    // Find the indices of the elements owned by each node
    std::set<unsigned> elements_containing_nodeA = pNodeA-
>rGetContainingElementIndices();
    std::set<unsigned> elements_containing_nodeB = pNodeB-
>rGetContainingElementIndices();
 
    // Find common elements
    std::set<unsigned> shared_elements;
    std::set_intersection(elements_containing_nodeA.begin(),
                          elements_containing_nodeA.end(),
                          elements_containing_nodeB.begin(),
                          elements_containing_nodeB.end(),
                          std::inserter(shared_elements, shared_elements.begin()));
 
    // Check that the nodes have a common edge
    assert(!shared_elements.empty());
 
    // If the edge corresponds to a single element, then the cell is on the boundary
    if (shared_elements.size() == 1)
    {
        unsigned element_index = *(shared_elements.begin());
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        // Get cell associated with this element
        CellPtr p_cell = rVertexCellPopulation.GetCellUsingLocationIndex
(element_index);
 
         double boundary_tension=this->GetBoundaryLineTensionParameter();
         //OFileObject <<boundary_tension<<"\n";
         return boundary_tension;
        
    }
    
    else
    {

 std::vector<double>delta_vector(0);
 //std::vector<double>notch_vector(0);

        // Work out the number of labelled cells: 0,1 or 2
        //unsigned num_labelled_cells = 0;
        for (std::set<unsigned>::iterator iter = shared_elements.begin();
             iter != shared_elements.end();
             ++iter)
        {
            unsigned element_index = *(iter);
 
            // Get cell associated with this element
            CellPtr p_cell = rVertexCellPopulation.GetCellUsingLocationIndex
(element_index);
 

double delta= p_cell->GetCellData()->GetItem("delta");
//double notch= p_cell->GetCellData()->GetItem("notch");
delta_vector.push_back(delta);
//notch_vector.push_back(notch);
//OFileObject <<delta_vector[1]<<" ";

}
//double delta_diff_abs;
//for(unsigned i=0; i<delta_vector.size(); i++)
//{
double B=this->GetB();
double delta_diff=delta_vector[0]+(B*delta_vector[1]);
double delta_diff_abs=fabs(delta_diff);
//double notch_diff=notch_vector[0]-notch_vector[1];
//double notch_diff_abs=abs(notch_diff);
//}
//unsigned simulation_time= SimulationTime::Instance()-

>GetTimeStepsElapsed();
//if(simulation_time%100==0)
//{
// OFileObject <<delta_vector[0]<<" "<<delta_vector[1]<<" ";
// OFileObject <<delta_diff_abs<<"\n";
//}
//OFileObject <<notch_diff_abs<<" ";
double A=this->GetCouplingConstant();
double lambda_ij = this->GetLambda0()*(1+A*delta_diff_abs);
//OFileObject <<lambda_ij<< "\n";
return lambda_ij;

        
        
    }
    //OFileObject <<"\n";
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    //OFileObject.close();
}
 
template<unsigned DIM>
double 
FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::GetFarhadifarDifferentialCellCellAdhesionEnergyParameter
()
{
    return mFarhadifarDifferentialCellCellAdhesionEnergyParameter;
}
 
 
 
template<unsigned DIM>
void 
FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::SetFarhadifarDifferentialCellCellAdhesionEnergyParameter
(double differentialCellCellAdhesionEnergyParameter)
{
    mFarhadifarDifferentialCellCellAdhesionEnergyParameter = 
differentialCellCellAdhesionEnergyParameter;
}
 
template<unsigned DIM>
void FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::SetCouplingConstant(double 
couplingConstant)
{
    mCouplingConstant = couplingConstant;
}
 
template<unsigned DIM>
double FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::GetCouplingConstant()
{
    return mCouplingConstant;
}
 
template<unsigned DIM>
void FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::SetLambda0(double lambda0)
{
    mLambda0 = lambda0;
}
 
template<unsigned DIM>
double FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::GetLambda0()
{
    return mLambda0;
}
 
template<unsigned DIM>
void FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::SetB(double b_coeff)
{
    mBCoeff = b_coeff;
}
 
template<unsigned DIM>
double FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::GetB()
{
    return mBCoeff;
}
 
 
 
template<unsigned DIM>
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void FarhadifarDifferentialAdhesionForceDiffDelta<DIM>::OutputForceParameters
(out_stream& rParamsFile)
{
    // Output member variables

//*rParamsFile << "\t\t
\t<FarhadifarLabeledCellLabeledCellAdhesionEnergyParameter>" << 
mFarhadifarLabeledCellLabeledCellAdhesionEnergyParameter << "</
FarhadifarLabeledCellLabeledCellAdhesionEnergyParameter> \n";

*rParamsFile << "\t\t
\t<FarhadifarDifferentialCellCellAdhesionEnergyParameter>" << 
mFarhadifarDifferentialCellCellAdhesionEnergyParameter << "</
FarhadifarLabeledCellCellAdhesionEnergyParameter> \n";

*rParamsFile << "\t\t\t<CouplingConstant>" << mCouplingConstant << "</
CouplingConstant> \n";

//*rParamsFile << "\t\t
\t<FarhadifarLabeledCellBoundaryAdhesionEnergyParameter>" << 
mFarhadifarLabeledCellBoundaryAdhesionEnergyParameter << "</
FarhadifarLabeledCellBoundaryAdhesionEnergyParameter> \n";
 

// Call method on direct parent class
FarhadifarForceWithStress<DIM>::OutputForceParameters(rParamsFile);

}
 
// Explicit instantiation
template class FarhadifarDifferentialAdhesionForceDiffDelta<1>;
template class FarhadifarDifferentialAdhesionForceDiffDelta<2>;
template class FarhadifarDifferentialAdhesionForceDiffDelta<3>;
 
// Serialization for Boost >= 1.36
#include "SerializationExportWrapperForCpp.hpp"
EXPORT_TEMPLATE_CLASS_SAME_DIMS(FarhadifarDifferentialAdhesionForceDiffDelta)
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#include "FarhadifarForceWithStress.hpp"
#include <iostream>  //added
#include <fstream>   //added
 
#include <math.h>    //added
#define PI 3.14159265 //added
#include <string>  //added
using namespace std; //added
 
template<unsigned DIM>
FarhadifarForceWithStress<DIM>::FarhadifarForceWithStress()
   : AbstractForce<DIM>(),
     mAreaElasticityParameter(1.0), // These parameters are Case I in Farhadifar's 
paper
     mPerimeterContractilityParameter(0.04),
     mLineTensionParameter(0.12),
     mBoundaryLineTensionParameter(0.12), // this parameter as such does not exist in 
Farhadifar's model.
     mFileName()
{
}
 
template<unsigned DIM>
FarhadifarForceWithStress<DIM>::~FarhadifarForceWithStress()
{
}
 
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::AddForceContribution
(AbstractCellPopulation<DIM>& rCellPopulation)
{
    // Throw an exception message if not using a VertexBasedCellPopulation
    ///\todo: check whether this line influences profiling tests - if so, we should 
remove it.
    if (dynamic_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation) == NULL)
    {
        EXCEPTION("FarhadifarForce is to be used with a VertexBasedCellPopulation 
only");
    }
        
        string file_name=this->GetFileName();//"Stress_check.dat"

std::ofstream OFileObject;
OFileObject.open(file_name, ios::app);

    // Define some helper variables
    VertexBasedCellPopulation<DIM>* p_cell_population = 
static_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation);
    unsigned num_nodes = p_cell_population->GetNumNodes();
    unsigned num_elements = p_cell_population->GetNumElements();
   // TetrahedralMesh<DIM,DIM>* p_tetrahedral_mesh=p_cell_population-
>GetTetrahedralMeshUsingVertexMesh();

//c_vector<double,DIM> centre_location = pCellPopulation-
>GetLocationOfCellCentre(pCell);
    
    // Begin by computing the area and perimeter of each element in the mesh, to 
avoid having to do this multiple times
    std::vector<double> element_areas(num_elements);
    std::vector<double> element_perimeters(num_elements);
    std::vector<double> target_areas(num_elements);
    std::vector<double> shape_index(num_elements);
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    // Iterate over vertices in the cell population
    for (unsigned node_index=0; node_index<num_nodes; node_index++)
    {
        Node<DIM>* p_this_node = p_cell_population->GetNode(node_index);
 
        
        c_vector<double, DIM> area_elasticity_contribution = zero_vector<double>(DIM);
        c_vector<double, DIM> perimeter_contractility_contribution = 
zero_vector<double>(DIM);
        c_vector<double, DIM> line_tension_contribution = zero_vector<double>(DIM);
 
        // Find the indices of the elements owned by this node
        std::set<unsigned> containing_elem_indices = p_cell_population->GetNode
(node_index)->rGetContainingElementIndices();
 
        // Iterate over these elements
        for (std::set<unsigned>::iterator iter = containing_elem_indices.begin();
             iter != containing_elem_indices.end();
             ++iter)
        {
            // Get this element, its index and its number of nodes
            VertexElement<DIM, DIM>* p_element = p_cell_population->GetElement(*iter);
            unsigned elem_index = p_element->GetIndex();
            unsigned num_nodes_elem = p_element->GetNumNodes();
 
            // Find the local index of this node in this element
            unsigned local_index = p_element->GetNodeLocalIndex(node_index);
 
            // Add the force contribution from this cell's area elasticity (note the 
minus sign)
            c_vector<double, DIM> element_area_gradient =
                    p_cell_population->rGetMesh().GetAreaGradientOfElementAtNode
(p_element, local_index);
            area_elasticity_contribution -= 2.0*GetAreaElasticityParameter()*
(element_areas[elem_index] -
                    target_areas[elem_index])*element_area_gradient;
 
            // Get the previous and next nodes in this element
            unsigned previous_node_local_index = (num_nodes_elem+local_index-1)%
num_nodes_elem;
            Node<DIM>* p_previous_node = p_element->GetNode
(previous_node_local_index);
 
            unsigned next_node_local_index = (local_index+1)%num_nodes_elem;
            Node<DIM>* p_next_node = p_element->GetNode(next_node_local_index);
 
            // Compute the line tension parameter for each of these edges - be aware 
that this is half of the actual
            // value for internal edges since we are looping over each of the 
internal edges twice
            double previous_edge_line_tension_parameter = GetLineTensionParameter
(p_previous_node, p_this_node, *p_cell_population);
            double next_edge_line_tension_parameter = GetLineTensionParameter
(p_this_node, p_next_node, *p_cell_population);
 
            // Compute the gradient of each these edges, computed at the present node
            c_vector<double, DIM> previous_edge_gradient =
                    -p_cell_population->rGetMesh().GetNextEdgeGradientOfElementAtNode
(p_element, previous_node_local_index);
            c_vector<double, DIM> next_edge_gradient = p_cell_population->rGetMesh
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().GetNextEdgeGradientOfElementAtNode(p_element, local_index);
 
            // Add the force contribution from cell-cell and cell-boundary line 
tension (note the minus sign)
            line_tension_contribution -= 
previous_edge_line_tension_parameter*previous_edge_gradient +
                    next_edge_line_tension_parameter*next_edge_gradient;
 
            // Add the force contribution from this cell's perimeter contractility 
(note the minus sign)
            c_vector<double, DIM> element_perimeter_gradient = previous_edge_gradient 
+ next_edge_gradient;
            perimeter_contractility_contribution -
=2.0*GetPerimeterContractilityParameter()* element_perimeters[elem_index]*
                                                                                                     
element_perimeter_gradient;
        }
 
        c_vector<double, DIM> force_on_node = area_elasticity_contribution + 
perimeter_contractility_contribution + line_tension_contribution;
        p_cell_population->GetNode(node_index)->AddAppliedForceContribution
(force_on_node);
    }
   //double stress = GetStress(*p_cell_population);   //added 
 
 
 
 
    
    for (typename VertexMesh<DIM,DIM>::VertexElementIterator elem_iter = 
p_cell_population->rGetMesh().GetElementIteratorBegin();
         elem_iter != p_cell_population->rGetMesh().GetElementIteratorEnd();
         ++elem_iter)
    {
        unsigned elem_index = elem_iter->GetIndex();
        
        element_areas[elem_index] = p_cell_population->rGetMesh().GetVolumeOfElement
(elem_index);
        element_perimeters[elem_index] = p_cell_population->rGetMesh
().GetSurfaceAreaOfElement(elem_index);
        shape_index[elem_index]=element_perimeters[elem_index]/sqrt(element_areas
[elem_index]);
        try
        {
            // If we haven't specified a growth modifier, there won't be any target 
areas in the CellData array and CellData
            // will throw an exception that it doesn't have "target area" entries.  
We add this piece of code to give a more
            // understandable message. There is a slight chance that the exception is 
thrown although the error is not about the
            // target areas.
            target_areas[elem_index] = p_cell_population->GetCellUsingLocationIndex
(elem_index)->GetCellData()->GetItem("target area");
            
        }
        catch (Exception&)
        {
            EXCEPTION("You need to add an AbstractTargetAreaModifier to the 
simulation in order to use a FarhadifarForce");
        }
        //unsigned elem_index=elem_iter->GetIndex();
        c_vector<double,DIM>location=p_cell_population->rGetMesh
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().GetCentroidOfElement(elem_index); 
VertexElement<DIM,DIM>*p_element=p_cell_population->GetElement

(elem_index);

unsigned num_nodes_in_elem=p_element->GetNumNodes();
double element_perimeter = p_cell_population->rGetMesh

().GetSurfaceAreaOfElement(elem_index);
//OFileObject <<num_nodes_in_elem<< " ";
double element_area = p_cell_population->rGetMesh().GetVolumeOfElement

(elem_index);
double shape_index_elem=element_perimeter/sqrt(element_area);
//OFileObject <<element_area<< " ";
double target_area = p_cell_population->GetCellUsingLocationIndex

(elem_index)->GetCellData()->GetItem("target area");
//OFileObject <<target_area<< " ";
double bond_gamma = GetPerimeterContractilityParameter();
//OFileObject <<bond_gamma<< " ";
double gamma_perimeter = bond_gamma*element_perimeter;
//OFileObject <<gamma_perimeter<< " ";
double sum_xx=0.0;
//double sum_yy=0.0;
double sum_xy=0.0;
//OFileObject <<"\n";
double sum_total=0.0;
double sum_bond_adhesion=0.0;

for(unsigned node_index=0; node_index<num_nodes_in_elem; node_index++)
{

//unsigned curr_node_local_index=p_element->GetNodeGlobalIndex
(node_index);

unsigned curr_node_local_index=node_index;
//OFileObject <<curr_node_local_index<< " ";
Node<DIM>*p_curr_node=p_element->GetNode

(curr_node_local_index);
//unsigned next_node_local_index=p_element->GetNodeLocalIndex

((curr_node_local_index+1)%num_nodes);
unsigned next_node_local_index=(curr_node_local_index+1)%

num_nodes_in_elem;
//OFileObject <<next_node_local_index<< " ";
Node<DIM>*p_next_node=p_element->GetNode

(next_node_local_index);
double bond_adhesion=GetLineTensionParameter(p_curr_node, 

p_next_node, *p_cell_population);
//OFileObject <<bond_adhesion<<" ";   //correct

double T_b_alpha = (bond_adhesion/2.0) + 2.0*gamma_perimeter;
//OFileObject <<T_b_alpha<< " ";    //correct
c_vector<double, DIM> location_curr_node=p_curr_node-

>rGetLocation();
c_vector<double, DIM> location_next_node=p_next_node-

>rGetLocation();

c_vector<double, DIM> dist_betw_nodes=location_next_node-
location_curr_node;

double L=GetBoxLength();
double H=GetBoxHeight();

if(dist_betw_nodes(0)>L/2.0)
{

location_next_node(0)=location_next_node(0)-L;
}
if(dist_betw_nodes(1)>H/2.0)
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{
location_next_node(1)=location_next_node(1)-H;

}
if(dist_betw_nodes(0)<-L/2.0)
{

location_next_node(0)=location_next_node(0)+L;
}
if(dist_betw_nodes(1)<-H/2.0)
{

location_next_node(1)=location_next_node(1)+H;
}
 
//for(unsigned j=0; j<2; j++)
//{
// OFileObject <<location_curr_node(j)<< " ";
// OFileObject <<location_next_node(j)<< " ";
//}
double phi_b = atan2((location_next_node(1)-location_curr_node

(1)),(location_next_node(0)-location_curr_node(0)));
//double phi_b = atan(dist_betw_nodes(0)/dist_betw_nodes(1))*

(180/PI);
//OFileObject <<theta<< "\n";
double cos_2phi_b = cos(2.0*phi_b);
double sin_2phi_b = sin(2.0*phi_b);
c_vector<double, DIM> 

dist_betw_nodes_modified=location_next_node-location_curr_node;
double bond_length=norm_2(dist_betw_nodes_modified);
//OFileObject <<bond_length<< " ";   //wrong
double T_length_xx=bond_length*T_b_alpha*cos_2phi_b;
sum_xx=T_length_xx+sum_xx;
double T_length_xy=bond_length*T_b_alpha*sin_2phi_b;
sum_xy=T_length_xy+sum_xy;
//double 

T_length_xy=bond_length*T_b_alpha*cos_theta*sin_theta;
//double sum_xy=T_length_xy+sum_xy;
double T_length=bond_length*T_b_alpha;
//OFileObject <<T_length<<" ";
sum_total=sum_total+T_length;
//OFileObject <<sum_total;
sum_bond_adhesion=sum_bond_adhesion+(bond_adhesion/

num_nodes_in_elem);

}
double shape_index_correct=sum_bond_adhesion/(2.0*bond_gamma*sqrt

(target_area));
//OFileObject <<sum_total<<"\n";

//double second_part_xx = (1.0/element_area)*sum_xx;
//double second_part_yy = (1.0/element_area)*sum_yy;
//double second_part_xy = (1.0/element_area)*sum_xy;
double second_part_total=(0.5/element_area)*sum_total;
double P_alpha = -2.0*GetAreaElasticityParameter()*(element_area-

target_area);
//OFileObject <<GetAreaElasticityParameter()<<" "<<element_area<<" 

"<<target_area<<" "<<P_alpha<<" "<< sum_total<<" "<<second_part_total<<" ";

//double sigma_xx = -P_alpha + second_part_xx;
//double sigma_yy = -P_alpha + second_part_yy;
//double sigma_xy = -P_alpha + second_part_xy;

double P_alpha_total= P_alpha-second_part_total; 
double sigma_xx=0.5*sum_xx;
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double sigma_xy=0.5*sum_xy;
 

double gamma=sqrt(sigma_xx*sigma_xx+sigma_xy*sigma_xy);
//OFileObject <<P_alpha_total<<" "<<gamma<<"\n";
double si_p_by_a=element_perimeter/sqrt(element_area);
unsigned simulation_time= SimulationTime::Instance()-

>GetTimeStepsElapsed();
if(simulation_time%100==0)
{

OFileObject <<simulation_time<< " ";
OFileObject <<elem_index<< " ";
for (unsigned i=0; i<DIM; i++)
{

OFileObject << location[i] << " ";
}
OFileObject <<shape_index_correct<< " ";
OFileObject <<element_area<< " ";

// OFileObject <<target_area<< " ";
OFileObject <<element_perimeter<< " ";

// //OFileObject <<sigma_xx<< " ";
// //OFileObject <<sigma_yy<< " ";
// //OFileObject <<sigma_xy<< " ";

OFileObject <<P_alpha_total<< " ";
OFileObject <<gamma<< " ";
OFileObject <<si_p_by_a<< " ";
OFileObject <<sigma_xx<< " ";
OFileObject <<sigma_xy<< "\n";

}
  

    }
    
    OFileObject.close();
    
}
 
template<unsigned DIM>
double FarhadifarForceWithStress<DIM>::GetLineTensionParameter(Node<DIM>* pNodeA, 
Node<DIM>* pNodeB, VertexBasedCellPopulation<DIM>& rVertexCellPopulation)
{

//ofstream OFileObject;
//OFileObject.open("Stress2.dat", ios::app);

    // Find the indices of the elements owned by each node
    std::set<unsigned> elements_containing_nodeA = pNodeA-
>rGetContainingElementIndices();
    std::set<unsigned> elements_containing_nodeB = pNodeB-
>rGetContainingElementIndices();
 
    // Find common elements
    std::set<unsigned> shared_elements;
    std::set_intersection(elements_containing_nodeA.begin(),
                          elements_containing_nodeA.end(),
                          elements_containing_nodeB.begin(),
                          elements_containing_nodeB.end(),
                          std::inserter(shared_elements, shared_elements.begin()));
 
    // Check that the nodes have a common edge
    assert(!shared_elements.empty());
 
    // Since each internal edge is visited twice in the loop above, we have to use 
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half the line tension parameter
    // for each visit.
   // double line_tension_parameter_in_calculation = GetLineTensionParameter()/2.0;
    double line_tension_parameter_in_calculation = GetLineTensionParameter();

//unsigned c=0;
    // If the edge corresponds to a single element, then the cell is on the boundary
    if (shared_elements.size() == 1)
    {

//line_tension_parameter_in_calculation = 
GetBoundaryLineTensionParameter();  //original
        line_tension_parameter_in_calculation = GetLineTensionParameter()/2.0;   //
edited
    }

//OFileObject.close();
    return line_tension_parameter_in_calculation;
}
 
template<unsigned DIM>
double FarhadifarForceWithStress<DIM>::GetAreaElasticityParameter()
{
    return mAreaElasticityParameter;
}
 
template<unsigned DIM>
double FarhadifarForceWithStress<DIM>::GetPerimeterContractilityParameter()
{
    return mPerimeterContractilityParameter;
}
 
template<unsigned DIM>
double FarhadifarForceWithStress<DIM>::GetLineTensionParameter()
{
    return mLineTensionParameter;
}
 
template<unsigned DIM>
double FarhadifarForceWithStress<DIM>::GetBoundaryLineTensionParameter()
{
    return mBoundaryLineTensionParameter;
}
 
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::SetAreaElasticityParameter(double 
areaElasticityParameter)
{
    mAreaElasticityParameter = areaElasticityParameter;
}
 
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::SetPerimeterContractilityParameter(double 
perimeterContractilityParameter)
{
    mPerimeterContractilityParameter = perimeterContractilityParameter;
}
 
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::SetLineTensionParameter(double 
lineTensionParameter)
{
    mLineTensionParameter = lineTensionParameter;
}
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template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::SetBoundaryLineTensionParameter(double 
boundaryLineTensionParameter)
{
    mBoundaryLineTensionParameter = boundaryLineTensionParameter;
}
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::SetBoxLength(double box_length)
{
    mBoxLength = box_length;
}
 
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::SetBoxHeight(double box_height)
{
    mBoxHeight = box_height;
}
 
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::SetFileName(string file_name)
{
    mFileName = file_name;
}
 
 
template<unsigned DIM>
double FarhadifarForceWithStress<DIM>::GetBoxLength()
{
    return mBoxLength;
}
 
template<unsigned DIM>
double FarhadifarForceWithStress<DIM>::GetBoxHeight()
{
    return mBoxHeight;
}
 
template<unsigned DIM>
string FarhadifarForceWithStress<DIM>::GetFileName()
{
    return mFileName;
}
 
 
 
template<unsigned DIM>
void FarhadifarForceWithStress<DIM>::OutputForceParameters(out_stream& rParamsFile)
{
    *rParamsFile << "\t\t\t<AreaElasticityParameter>" << mAreaElasticityParameter << 
"</AreaElasticityParameter>\n";
    *rParamsFile << "\t\t\t<PerimeterContractilityParameter>" << 
mPerimeterContractilityParameter << "</PerimeterContractilityParameter>\n";
    *rParamsFile << "\t\t\t<LineTensionParameter>" << mLineTensionParameter << "</
LineTensionParameter>\n";
    *rParamsFile << "\t\t\t<BoundaryLineTensionParameter>" << 
mBoundaryLineTensionParameter << "</BoundaryLineTensionParameter>\n";
 
    // Call method on direct parent class
    AbstractForce<DIM>::OutputForceParameters(rParamsFile);
}
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// Explicit instantiation
template class FarhadifarForceWithStress<1>;
template class FarhadifarForceWithStress<2>;
template class FarhadifarForceWithStress<3>;
 
// Serialization for Boost >= 1.36
#include "SerializationExportWrapperForCpp.hpp"
EXPORT_TEMPLATE_CLASS_SAME_DIMS(FarhadifarForceWithStress)
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import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
 
import  matplotlib.font_manager
flist = matplotlib.font_manager.get_fontconfig_fonts()
names = [matplotlib.font_manager.FontProperties(fname=fname).get_name() for fname in 
flist]
#print(names)
if "Times New Roman" in names:
    print("Yes")
else:
    print("font not available")
plt.rcParams["font.family"] = "Times New Roman"
 
 
    
x_C = ["$-0.6$","$-0.2$","$-0.16$","$-0.12$","$-0.08$","$-0.04$", "$0$", "$0.04$", 
"$0.08$", "$0.12$",
             "$0.16$", "$0.2$","$0.6$","$1.0$"]#, "$-0.2$", "$-0.6$", "$-1.0$", "$-1.4
$",'N'] 
x=[-0.6,-0.2,-0.16,-0.12,-0.08,-0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.6,1.0]
    
y_p0 = ["-14.88", "-14.14", "-13.4",
           "-12.65", "-11.91", "-11.17"] 
y = [-14.88, -14.14, -13.4,
           -12.65, -11.91, -11.17]
 
df1=pd.read_csv('BDColier-Delta_area1.csv', sep=' ', names=
["1","2","3","4","5","6","7","8"])#,'Nothing'])
df2=pd.read_csv('SDColier-Delta_area1.csv', sep=' ', names=
["11","12","13","14","15","16","17","18"])#,"6","7","8","9",'Nothing'])
 
df1=df1.drop(["1","8"],axis=1)#,inplace=True) #df1=df1.drop
(["1","8"],axis=1,inplace=True)
 
df1=df1[df1.columns[::-1]]
 
df0=pd.concat([df1,df2],axis=1)
print(df0)
df0=df0.values
df0 = np.flip(df0, axis=0)
 
df_area=np.round(df0,3)  
 
fig, ax = plt.subplots()
X, Y = np.meshgrid(x, y)
 
marker_size=30
plot1=ax.scatter(X,Y, marker='s',s=10, c=df_area, cmap='brg')
 
 
cbar= plt.colorbar(plot1,shrink=0.5)
#cbar.ax.tick_params(labelsize=14)
ax.set_aspect(0.2)
 
#ax.set_xlim([-0.65,1.05])
#ax2.set_xlim(0.4,1) # outliers only
 
xl=[-0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6]
# Make the spacing between the two axes a bit smaller
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#plt.subplots_adjust(wspace=0.15)
 
#ax.set_xlim([-0.8,1.2])
ax.set_ylim([-15,-11])
#ax2.set_ylim([-15,-11])
 
ax.tick_params(axis="x", labelsize=10)
ax.tick_params(axis="y", labelsize=10)
 
ax.set_xlabel('Coupling constant (C)', fontsize=14)
ax.set_ylabel(r'Line tension $(\Lambda_{0})$ ', fontsize=14)
 
#plt.show()
fig.tight_layout()
#plt.savefig('DeltaDepenJunct_Delta_Area2.png', dpi=500)
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