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ABSTRACT

In this thesis we apply the global existence theory for Fuchsian equations that was
developed in [1] to semi-linear wave equations. By compactifying a neighbourhood
of spatial infinity in Minkowski and Schwarzschild space-times, we show through
the introduction of suitable variables, that it is possible to transform a semi-linear
wave equation on these space-times into a symmetric hyperbolic system of Fuch-
sian equations on a bounded domain. Once the wave equation is transformed into
Fuchsian form, we then apply the global existence theory from [1], to obtain the ex-
istence of solutions to the wave equations on neighbourhoods of spatial infinity. We
consider, in particular, three applications of this method. In the first two applica-
tions, we analyse the Cauchy problem for semi-linear wave equations in Minkowski
and Schwarzschild space-times in a neighbourhood of spatial infinity with quadratic
terms satisfying the null condition. In the third application, we investigate semi-
linear wave equations in 3 + 1 dimensions with semi-linear quadratic terms such
that its associated asymptotic equation admits bounded solutions for suitably small
choices of initial data. We call this the bounded weak null condition and we show
that it is a special case of the weak null condition. In each of the three systems
that we analyse here, we use the Fuchsian formalism to establish global existence
of solutions along with decay estimates. The work in this thesis demonstrates the
utility of the theory developed in [1] as a new method for the study of the Cauchy

problem for non-linear wave equations.
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1.1

2.1

3.1

Listing of figures

Suppose we have a wave equation for which we want to prove global
existence on a certain domain. We transform the wave equation in red
throughout a series of steps into the Fuchsian symmetric hyperbolic
system in green for which we can obtain global existence from the

results reported in [1]. By construction, the solutions of the Fuchsian

system in green yield solutions to the original system of wave equations.

This diagram displays the core arguments used in the proof of Theo-
rem 3.8 from [1]. The key steps are shown on the left and they split in
sub-steps showing the flow of ideas in the proof. Many of these sub-
steps require some preliminary estimates which we do not prove here
and we refer the reader to [1] for its proof. Putting all these results

together, leads to global existence of solutions and decay estimates

to the GIVP (2.0.1)-(2.0.2). . . . . . . i

In this diagram we plot a family of space-like geodesics from Minkowski
space time represented in the (¢,7,0,¢) coordinates. The family of
geodesics from Minkowski space that we are considering are of the
form ¢ = ar + b with b = 1 and we take 0 < a < 1 to identify differ-
ent elements from the same family; after applying (3.1.6) we obtain
the curves plotted here . We have drawn some curves in blue only
to emphasize how these geodesics evolve. Note also that all these
curves have their endpoints at r = 0, it is not difficult to see that

the spatial infinity region 7 is given in the (¢,7) coordinates by the

region i* = {(¢,7,0,¢) | t € (0,2), r=0, (6,¢) €S*}. ... ... ..

X

7



3.2 This diagram shows dashed curves in red which are future directed
null geodesics from Minkowski space time represented in the (¢, 7, 6, ¢)
coordinates. Note that in the (z*) coordinate representation, the
future null infinity region £ is given by S+ = {(t,r,0,¢) | t =
0, 7€ (0,00), (0,0) €S*}. . . .
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Unclose your mind. You are not a prisoner. You

are a bird in flight, searching the skies for dreams.

Hard-Boiled Wonderland and the End of the
World, Haruki Murakami
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Introduction

1.1 INTRODUCTION TO FUCHSIAN SYSTEMS

Ordinary differential equations (ODEs) in the neighbourhood of singularities have
been studied since Euler and Gauss. The list of mathematicians involved in the
study of singular ODEs is extensive, and includes names like Riemann, Fuchs, and
Frobenius, just to mention a few of them. In the theory of ordinary differential
equations, points are classified as ordinary points and singular points. At an or-
dinary point, the coefficients of the equation are analytic, at a singular point the
coefficients present singularities that are classified into regular and irregular. Con-
sider an ordinary linear differential equation of order k* defined on the complex

plane C
k
> a(z)ut =0, (1.1.1)
=0

where ¢; are analytic coefficients defined on an open subset D of the complex plane
except for a set of isolated points. These points are the poles of the function.
Suppose z = a, such that a € C is a singular point. We say that the point z = a
is a reqular singular point if the coefficient ¢,_; has a pole at most of order 1.
Otherwise the point is an irreqular singular point. An ordinary differential equation
is said to be Fuchsian if every singular point of the equation, including the point
at infinity, is a regular singularity. These equations are named after Lazarus I.
Fuchs, who studied these type of singularities. Some early interesting results include
that any second order Fuchsian differential equation can be transformed by a linear

fractional transformation into the so called Riemann differential equation. These



equations have three pairs of characteristic exponents associated with the singular
points 0, 1,00, and they are a generalisation of hypergeometric equations. See [2]
for an extended discussion on this topic.

Partial differential equations (PDEs) with a Fuchsian singularity, generalise the
theory of linear ordinary Fuchsian equations. A Fuchsian PDE can be written as a

system of the form

t% + Au = f(t, z;,u, uy), (1.1.2)

where the coefficient A is a square matrix and the source term f vanishes as some
power of ¢ when t — 0.

Fuchsian systems of PDEs (1.1.2) have been studied principally as Singular Initial
Value Problems (SIVPs), where asymptotic data is given at the singular time t =
0, and the equation (1.1.2) is used to evolve the asymptotic data away from the
singular time to construct solutions on time intervals ¢ € (0,77 for some 7" > 0.
Fuchsian systems with analytic coefficients viewed as SIVPs, have been studied in
(3, 4, 5,6, 7,8,9, 10, 11, 12, 13, 14]; see also [15, 16] for applications in the ODE
setting.

Recent developments have extended the existence theory for Fuchsian SIVPs to
Sobolev regularity by adapting local-in-time PDE techniques for hyperbolic equa-
tions. For these existence results, the asymptotic data can be large, but the existence
time is expected to be small [17, 18, 19]. These techniques were applied to singular
solutions of the Einstein’s equations in the articles [20, 21, 22, 23, 24, 25, 26, 27].

1.2 THE GLOBAL INITIAL VALUE PROBLEM (GIVP)

An alternate approach to analysing Fuchsian systems of equations is to study the
initial value problem, which was pioneered in [28]. In this approach, initial data is
specified away from the singular time and evolved towards the singularity. Consider

a system of symmetric hyperbolic equations in Fuchsian form
, 1
B(t,u)0u + B'(t,u)Vu = ;B(t, w)Pu+ F(t,u), in(Ty,To] x 3, (1.2.1)

where ¥ is a closed n-dimensional manifold, V is a N rank vector bundle, and B, B
are symmetric operators on V. The unknown w is a time-dependent section of V/,
V is a time-independent connection, B is a linear operator on V' and P is a time-
independent, covariantly constant, symmetric projection operator. The global initial

value problem (GIVP) consists of studying (1.2.1) with suitable initial data specified



at ug € To x X, and to establish the existence of solutions to (1.2.1) in an interval
that reaches the singular time at ¢ = 0, that is ¢ € (0, Tp]. In this thesis, we will use
a GIVP approach to study Fuchsian systems of the form (1.2.1). In our applications
in Chapter 3 and 4, Fuchsian systems will arise from a conformal transformation of
second order systems of wave equations.

In [28], it is established the existence of solutions to symmetric hyperbolic sys-
tems of the form (1.2.1), where the coefficients B®, B?, B, and F' are all regular in ¢
as t \( 0. In the same article, it is shown that the Friedmann-Lemaitre-Robertson-
Walker (FLRW) solutions to the Einstein-Euler equations with a positive cosmolog-
ical constant, can be cast into the Fuchsian form (1.2.1). This allows to establish
the future non-linear stability of perturbations of FLRW solutions to the Einstein—
Euler equations with a positive cosmological constant. The solutions exist for ¢ on
the whole interval (0, 1], with suitably small initial data specified at ¢ = 1. By
construction, solutions to the Fuchsian GIVP yield solutions to the original system
of Einstein-Euler equations. Other methods have been used to establish similar re-
sults, see for example [29, 30, 31, 32]. The theory developed in [28], has been used
to establish the existence of solutions to the future for different hyperbolic systems
on expanding cosmological space-times [33, 34, 35, 36, 37].

The results in [28] were generalized in [1] to apply to Fuchsian systems of the
form (1.2.1), such that the coefficients B and source term F of the Fuchsian system
(1.2.1) now are allowed to have singular behaviour on time and they can be expanded

as
2

1 1

where the coefficients B! and F!, a = 0,1,2, are all regular in ¢ as ¢ \, 0. The
main result from [1] which is Theorem 3.8, guarantees the existence of solutions to
systems of the form (1.2.1) under a suitable small initial data assumption. This
theorem also determines the rate at which the solutions decay as ¢ ~\, 0. In this
thesis we will use Theorem 3.8 to study Fuchsian systems with coefficients of the
form (1.2.2)- (1.2.3).

The coefficients B:, F' must satisfy a set of conditions that are described in full
detail in Section 2.2. These conditions are fundamental for the proof of Theorem 3.8

given in [1], and are required not only to establish the existence of solutions on time



intervals of the form (0, 7p], but also to obtain uniform decay estimates as ¢t N\, 0. In
[38], it was shown that it is still possible to obtain existence of solutions on the time
interval (0,7p] that do not decay as ¢ N\, 0 by modifying some of the assumptions

on the coeflicients.

1.3 A MODEL FUCHSIAN EQUATION

The aim of this section is to outline the main ideas that are behind the existence
and decay estimate results from [1]. The Fuchsian method developed in [1] is largely
based on the idea that, under suitable assumptions on the coefficients and initial
data, the asymptotics of systems like (1.2.1) should be determined by an associated
linear ODE of the form

1=~
Ou = gBu + F, (1.3.1)

where
F=[t|""PF®), 0<p<l1,

and F € C°([—1,0]). The behaviour of the general system can be largely illustrated
by studying this simple problem. We can examine explicitly the solutions of (1.3.1)
and compare with a direct application of Theorem 3.8 from [1]. It can be shown
that up to an arbitrarily small loss, Theorem 3.8 from [1] reproduce the behaviour
of the solutions to (1.3.1) that we obtain below.

We assume for this particular example that all the fields are constant on the
spatial manifold ¥, in other words, in local coordinates, they are independent of the
spatial coordinates x.

We analyse (1.3.1) by restricting to an unknown with only two components
(u'(t),u?(t)), one component has a possibly non-zero limit at ¢ = 0, and the other

decays to 0 at a fixed rate. We assume a B operator of the form

(0 0
B = <o a), (1.3.2)

for some a > 0. Therefore, we can write the system (1.3.1) simply as

ut (1) = [t|" P F(2),

O (t) = %uQ(t) + |ﬂ_(1_p)ﬁ2(t). (1.3.3)



Given initial data u(—1) = (us, u.w)™, we see that multiplying the second equation

by [t|~* and integrating the system yields the unique solution given by

Uy + ffl |s| 1P F(s)ds

C(ur () B
ult) = <u2(t)> B ((—t)a(u** —l—ffl ]s|—1+p—“ﬁ’2(s)ds)> - tel10). (134

From equation (1.3.4), we can see that lim; »u'(t), denoted u'(0), exists (since

p > 0) and is given by

ul(O):u*—i—/ 5|~ FL(s)ds. (1.3.5)

-1

and the decay estimates
ul(t) —ulO)] S I and  [u2(B)] S 7+ [¢]" (1.3.6)

hold. This shows that if the source term F' is not too singular, that is, in the case
p > a, then the solutions of (1.3.1) behave like powers of |t| where these powers are
the eigenvalues of the matrix (1.3.2). Conversely, in the case that the source term is
very singular, that is p < a, then there are |¢t|P “corrections” to these decay rates. To
finalise this section, we assert that the optimal decay rates (1.3.6) of the solutions
(u!(t),u!(t)) can be deduced from Theorem 3.8 in [1] up to an arbitrarily small loss,

which does not significantly affect the main result.

1.4 WAVE EQUATIONS AS FUCHSIAN SYSTEMS

In this section we provide an informal introduction to what we call the Fuchsian
method. The essence of the Fuchsian method as applied to wave equations, involves
transforming a system of second order wave equations into a first order symmetric
hyperbolic Fuchsian system. Once this is accomplished, we can apply the existence
theory for Fuchsian systems from [1] provided that the Fuchsian system obtained
from the wave equation satisfies the structural conditions given in [1], which we
explain in detail in Section 2.2.
The class of semi-linear wave equations that we will study in Chapters 3 and 4
are of the form
gV, Vv, a =a v, atv, e, (1.4.1)

were %! denote a collection of scalar fields, with 1 < I < N. The term &ﬁ =



Ezﬁo‘ﬁéa ®ds, 1 < 1,J, K < N, is a prescribed smooth (2,0)-tensor field on R*, and
V is the Levi-Civita connection of the Minkowski metric § = §,,dz"* ® dz on R*.

We use the coordinate chart (z*) to denote spherical coordinates
(z) = (2°, 2", 2%, 2%) = (1, 7,0, §),
in this coordinate system the Minkowski metric is given by
§=—dt @ dt + di @ dr + 74, (1.4.2)

where

4 =df @ df +sin*(0)de @ do,

is the canonical metric on the 2-sphere S?. We assume that the tensor field af; is
covariantly constant ?dﬁ = 0, this means that the components of @, in Cartesian
coordinates (z*) are constants.

The goal in Chapters 3 and 4, is to transform the wave equation (1.4.1) into
a Fuchsian system. In Chapter 3, the non-linear terms a;;*'V,a'V,a’ satisfy the
null condition, whereas in Chapter 4 we will consider non-linear terms satisfying
the bounded weak null condition which is a generalization of the weak null condition
and that we outline in the sections below. Although the transformation process is
particular to each system, we can highlight 4 main steps required to transform a

wave equation into a Fuchsian system:

(i) Transforming the physical manifold into a closed N-dimensional manifold whose
boundary represents infinity of the physical manifold. In Chapters 3 and 4 we
carry out this step by applying Friedrich’s cylinder at infinity conformal trans-

formation [39].

(ii) Transforming the second order wave equation into a first order symmetric

hyperbolic equation via a change of variables.

(iii) A rescaling on time might be required in order to meet the coefficient assump-
tions (2.2) below. More specifically, the non-linear terms dﬁaﬁ Vo ! Vg after

being transformed, must be able to be expanded as in (2.2.10).

(iv) Verification of the structural conditions. That means the system is symmetric

hyperbolic of the form (1.2.1), the coefficients B°, B?, can be expanded as



(1.2.2), the non-linear terms can be expanded as (1.2.2) and the coefficients

B° Bt B, F also satisfy the coefficient assumptions from Section 2.2.

B(t,u)0pu’ + Bi(t, u)Vaul* = 1B(t, u)Pu’ + FX(t,u)

)

Figure 1.1: Suppose we have a wave equation for which we want to prove global existence on a cer-
tain domain. We transform the wave equation in red throughout a series of steps into the Fuchsian
symmetric hyperbolic system in green for which we can obtain global existence from the results re-
ported in [1]. By construction, the solutions of the Fuchsian system in green yield solutions to the
original system of wave equations.

After we have carried out successfully steps (i)-(iv) and verified that the system
meets the necessary structural conditions, we can obtain global existence and decay

estimates by applying the existence theory from [1] to the Fuchsian system obtained.

1.5 THE NULL CONDITION

The class of semi-linear wave equations that we will study in Chapter 3 are of the
form (1.4.1), where the non-linear terms satisfy the so called null condition. Here, we
briefly discuss the meaning of the null condition which was developed independently
by Klainerman [40] and Christodoulou [41]. For an extended discussion, see [42, 43,
44, 45).

Definition 1.5.1. The components @, /" of the tensor field @&, satisfy the null

condition if
a6, =0 (1.5.1)

for all null covectors ' € € R*

Given a system of wave equations of the form (1.4.1) on Minkowski space-time,
with Minkowski metric given by (1.4.2) and a covariantly constant tensor field a¥,
we say that the equation (1.4.1) satisfies the null condition if the non linear terms
satisfy the null condition; namely the components of the tensor field ak, satisfy
equation (1.5.1). A typical example of an equation satisfying the null condition is
given by

"'V, V,u = g"V,uV,u, (1.5.2)

YA covector £ = (£,) € R?* is called null if it satisfies —&3 +&§ + &3+ &2 =0

7



where g is the Minkowski metric. The important feature of the null condition is that
it is possible to determine that wave equations with a large class of non-linearities
admit global solutions just by inspecting the non-linear terms.

To illustrate the effect of the null condition, we review an example attributed
to L. Nirenberg in [40]. This example shows that the wave equation (1.5.2) in
Minkowski space-time admits global solutions. In contrast, a very similar wave
equation given by (1.5.5), that differs from (1.5.2) only by some terms in the non-
linearities blows up in finite time. The emphasis is on the fact that the first example
satisfies the null condition while the very similar second example does not. Following

Nirenberg, we consider (1.5.2) with initial conditions at ¢ = 0,
(1.5.3)

Using the change of variable ¢ = e* the wave equation (1.5.2) and initial condition
(1.5.3) can be transformed into

O¢ = 0 (1.5.4)

and
¢:17 ¢t:u1 at tIO,

then it is not difficult to verify that the solution to (1.5.4) is given by

t
=1+ 3 Aylﬂ ui(z + ty)do(y).

where do(y) is the surface element on the unit sphere S? C R3. Inverting the

transformation yields the solution

u= ln(l + % /y|:1 wi(z + ty)dU(y))a

to the original wave equation (1.5.2) and the initial conditions (1.5.3). Now, if the
function w; vanishes at infinity and its size is sufficiently small, then the above
solution exists globally on R*. If u; does not vanish at infinity, then the solution
blows up at finite time. On the other hand, it is worth noting that every non trivial
solution generated from compactly supported initial data, of the very similar wave
equation

7"V, Vu = (9u)?, (1.5.5)



which does not satisfy the null condition, blows up in finite time [46]. The difference
between the two previous examples lies in the fact that solutions to equations of the
form g"'V,V,u = 0 with data in C$° have gradients that decay as powers t% away
from the cone ¢ = |z|. The only bad directional derivative is the one that is transverse
to the light cone. It can be shown that this bad derivative has a decay of the form
1/t, see [42]. The null condition in the semi-linear setting excludes the possibility of
having quadratic terms in the non-linearities that only involve bad derivatives, and
consequently in each quadratic therm there is at least one good derivative, which is
enough to guarantee the global existence of solutions for a sufficiently small choice
of initial data..

While the null condition is a powerful tool for analysing non-linear equations, it
only identifies a specific class of equations that admit global solutions. There are
other non-linear wave equations that do not satisfy the null condition, and yet they
have global solutions. This has sparked the question in the community if there is any
other structure or condition that encompasses a large group of non-linear equations

for which it is possible to obtain global solutions.

1.6 THE WEAK NULL CONDITION

The weak null condition was introduced by H. Lindblad and I. Rodnianski [47].
The motivation for this condition was that Einstein equations do not satisfy the
null condition in wave coordinates. Moreover, it was shown by Choquet-Bruhat in
[48], that there is no natural generalisation of the null condition for the Einstein
equations. In [47], the authors introduced the weak null condition and showed that
Einstein’s equations satisfy such condition. In a second article [49], they used the
weak null condition to prove a global existence result for Einstein’s equations in
wave coordinates with small initial data.

To understand the weak null condition it is necessary to introduce the asymptotic
system corresponding to a given set of non-linear wave equations, see [47]. The
asymptotic system can be thought of as a system were we have neglected all the
terms that involve “good derivatives”. In addition to this, the quadratic terms that
involve at least one good derivative can be neglected along with all cubic and higher
order terms. The remaining equation only involves bad terms which decay slower
than the good terms or good derivatives. The asymptotic expansion found in [47] and
that we reproduce here for the sake of context is based on the asymptotic expansion

proposed by L. Hormander [50, 51].



Consider the Cauchy problem for a system of non-linear wave equations in three

space dimensions for the unknown v = (u;,...u,),i=1...N,
gV, NV u; = ®;(u, v’ u"), (1.6.1)

with initial data

u(0,2) = eup(x), w(0,2) = euy(x), (1.6.2)

where u(0, z),u:(0,z) € C°(RY), and «/,u” are spatial derivatives of u. The map

®; can be expanded as
O, (u, u'u") = Agiﬁaaujﬁﬁuk + U, (u,u’u"), (1.6.3)

where W; vanishes at third order in the limit (u,u',u”) — 0 and the derivatives in
the non-linear terms are up to second order, that is ||, || < 2. For the asymptotic

expansion as |x| — oo, we use the change of variable
g=lz|—t, s=ehn|z|, w=—, (1.6.4)

and
eU(q, s, w)

u(t, z) ~ 7

(1.6.5)

Here the symbol ~ represents an equivalence relation and the functions (¢, x) and

eU(q,s,w)

o are said to be asymptotically equivalent. Substituting (1.6.5) into equation

(1.6.1) and after equating powers of order ﬁ we obtain the following expression

20,0,U; = Alr () (9U;) (00UR),  Ulseo = Po, (1.6.6)

mn

where

mn

la|=m,|B]=n

Definition 1.6.1. If all the solutions of the asymptotic system (1.6.6) associated
to (1.6.1) exist globally and have suitable initial data and global bounds, then the
system (1.6.1) is said to satisfy the weak null condition. In other words, the system
satisfies the weak null condition if the solutions as well as its derivatives have initial
data decaying sufficiently fast in ¢ and grow at most exponentially in s.

ik

% (w), and because of

The null condition corresponds to the vanishing of the A

10



this, it is clear that the null condition leads to bounded solutions of the asymptotic

equation. In this sense, the null condition is a special case of the weak null condition.

1.7 THE BOUNDED WEAK NULL CONDITION

In Chapter 4, we study a restricted version of the weak null condition from a Fuchsian
viewpoint. We use an equivalent definition to 1.6, for this purpose we define the
out-going null one-form L = —dt 4 di and we use it to define the following scalar
functions

b, = ar L, L, = ak® — ak — a0 gk, (1.7.1)
where @, = @~ *°0, ® 93,1 < I,.J, K < N, is a prescribed smooth (2,0)-tensor field
on R, see [52]. The terms (1.7.1) are smooth functions on S? and they will play an
important role in the identification of the terms with the worse decay in the appli-
cations in Chapter 4. We use the functions (1.7.1) to define the asymptotic equation
associated to the semi-linear wave equation on Minkowski space-time (1.4.1), see

Chapter 4, which is given by

(2-1)0¢ = %Q(é% (1.7.2)

where £ = (¢£) and

Q) = (Q"(&)) = (=2x(p)p™br,€'¢”). (1.7.3)

The coordinates, t and p are part of the coordinate system on an non-physical
manifold that arises from the compactification of a neighbourhood of spatial infinity
in Minkowski space-time; see Chapter 4, equation (4.3.2) for details. Here x(p)
is a smooth cut-off function and we have chosen the time coordinate ¢ such that
0 <t <1andt = 0 corresponds to future null-infinity. In this formulation the
null condition is satisfied when the functions b%; vanish and the weak null condition

becomes:

Definition 1.7.1. The weak null condition is a growth condition on solutions of the
asymptotic equation (1.7.2), such that solutions £ of the asymptotic system (1.7.3),
satisfy a bound of the form |£(¢)| < ¢7°¢ for some fixed constant C' > 0 and initial
data at t = 1 satisfying |{(1)] < € < ¢ for ¢y > 0 sufficiently small.

In the applications in Chapter 4, we will show that it is possible to obtain

existence for a system of semi-linear wave equations in 3 + 1 dimensions whose

11



associated asymptotic equation has bounded solutions for suitably small initial data
on neighbourhoods of spatial infinity. We refer to this special case of the weak null

condition as the bounded weak null condition.

Definition 1.7.2. The asymptotic equation (1.7.2) is said to satisfy the bounded
weak null condition if there exist constants Ro > 0 and C' > 0 such that solutions

of the asymptotic initial value problem (IVP)

(2~ 00£ = 7Q(6), (1.7.4)
Elimr =&, (1.7.5)

exist for ¢ € (0, 1] and are bounded by sup |£(t)] < C for all initial data ¢ satisfying
0<t<1

|§| < Ro.

It is still an open conjecture, even in the semi-linear setting, to determine whether
the weak null condition is enough to ensure global existence of solutions under a
suitable small initial data assumption. Although the construction of our asymptotic
system differs from [47, 50, 51], it is consistent with them in the sense that the
asymptotic system (1.7.4) involves the non-linear terms with the worst decay in time
given by Q(€). In addition to this, the vanishing of the coefficients b%, is analogous to
the vanishing of (1.6.7) which gives a system satisfying the null condition. It would
be desirable to have a systematic way to write the asymptotic equation derived
from the Fuchsian system of concern. Unfortunately, this is not an obvious task
since Fuchsian systems can be quite general. We know that the asymptotic equation
involves the terms with the worst decay, identifying those terms is one of the main
challenges and it will depend on the particular system that we want to analyse.
Moreover, we have to consider that the Fuchsian method requires a compactification
of the space-time through a conformal transformation. Therefore, writing down the
asymptotic system would depend intrinsically of the transformation used and the
properties of the original system. We do not discard a future systematic study
to obtain families of conformal transformations that are particularly useful for the
Fuchsian method in the identification of the bad terms and the derivation of the

asymptotic system.
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At that same period there was also hope that the fundamental mysteries
of mankind-the origin of the Library and of time-might be revealed. In all
likelihood those profound mysteries can indeed be explained in words; if the
language of the philosophers is not sufficient, then the multiform Library
must surely have produced the extraordinary language that is required,

together with the words and grammar of that language.

The Library of Babel, Jorge Luis Borges 2

The Fuchsian method and global existence

The work in this thesis consists of applications in different settings of the existence
for Fuchsian equations theory developed in [1]. In this section, we will present the
main ideas behind this existence theory. In [1], Fuchsian initial value problems
(IVPs) of the form

BY(t,u)0u + B'(t,u)Vu = %B(t, w)Pu+ F(t,u)  in [Ty, T1) X X, (2.0.1)

u = U in {Tp} x &, (2.0.2)

are analysed, where Ty < T7 < 0. By standard local-in-time existence and unique-
ness results for symmetric hyperbolic equations, there exist a T} € (TO,O] and a
unique solution u € C’O<[T0,T1)HK> N C’l([TO,Tl),lLIK_l)7 where T} is expected
to be close to T} for generic initial data. The main existence result of [1] contained
in Theorem 3.8, is to establish the existence of the solution up to the singular time
T1 = 0 under a small initial data assumption. In this way, (2.0.1)-(2.0.2) becomes a
global initial value problem (GIVP). The proof of Theorem 3.8 from [1] is based on
energy estimates, which we will explain in detail in Section 2.2.

We illustrate the main ideas of the proof in the Figure 2.1. The main column
in purple, on the left, represents the core steps of the proof. From this column
to the right, we have several bifurcations showing the intermediate steps. In the
center, in green, we have the coefficient assumptions which lead to the bounds on
the main operators and their projections (using the projection operator P) as well as
projections of the elements forming the source term F'. Then in blue, in the central

area of the diagram, we represent the preliminary estimates that are used later to
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obtain the L?, and HX energy estimates. Then, putting all these results together
we can obtain the existence of solutions as well as decay estimates for systems of
the form (2.0.1)- (2.0.2).

2.1 NOTATION

2.1.1 SPATIAL MANIFOLDS, COORDINATES, INDEXING AND PARTIAL DERIVA-
TIVES

Let ¥ denote a n-dimensional manifold. Throughout this document, lower case
Latin indices (for example i, j, k) range from 1 to n and they will be used to index
coordinates associated to a local chart z = (2°) on X (our full indexing convention
is given in Appendix A.1). Partial derivatives with respect to the coordinate system

(x') are represented as

0 0
815:& and &:%

2.1.2 VECTOR BUNDLES

We use 7 : V — 3 to denote a N rank vector bundle with fibres V,, = 77! ({z}),
x € ¥. The smooth sections of V' are denoted by I'(V'), and V is equipped with a
time-independent connection V, that is [0;, V] = 0. We assume that V' is equipped
with a time-independent, compatible, positive definite metric h € T'(79(V)), that
is,

Oh =0 and Vx(h(u,v)) =h(Vxu,v)+ h(u, Vxo) (2.1.1)
for all X € X(¥) and u,v € I'(V). The vector bundle of linear operators acting
on the fibres of V' is given by L(V) = Upex L(V,) = V ® V*. We define A as the
transpose of A, € L(V;), and AY is the unique element of L(V}) that satisfies

h(z)(A% Uy, v,) = h(z)(Ug, Agvy), YV Uz, vy € V.

The vector bundle of linear maps from the fibres of V' to the fibres of W, is given
by L(V,W) = Upes L(V,,W,) 2 W ® V*, where V, W are vector bundles over X.
Additionally, we use m to denote the canonical projection onto ¥ for any vector
bundle over ¥, e.g. V, L(V), V& V.

Upper case Latin indices (for example I, J, K) range from 1 to N and they will

be used to index a local basis {e;} associated to the vector bundle V. We can
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Figure 2.1: This diagram displays the core arguments used in the proof of Theorem 3.8 from [1].
The key steps are shown on the left and they split in sub-steps showing the flow of ideas in the proof.
Many of these sub-steps require some preliminary estimates which we do not prove here and we refer
the reader to [1] for its proof. Putting all these results together, leads to global existence of solutions
and decay estimates to the GIVP (2.0.1)-(2.0.2).
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represent locally u € I'(V) and the inner-product h as

u=uley,

h=hr0' @67,

where {6} is a local basis of V* determined from {e;} by duality. Letting the local
coordinates (z°) and the local basis {e;} be defined on the same open region of 3,

the covariant derivative Vu € I'(V ® T*M) is given locally by
Vu = Viule; @ dat,

where

I I 1.7
Viu' = 0w + w;u

and the w!; are the connection coefficients determined by
Vaes = wier. (2.1.2)

We further assume that the spatial manifold ¥ is equipped with a time-independent
(0:g = 0) Riemannian metric g € I'(T9(X)). This metric is given in the local coor-
dinates (z') by

g = gijdxi ® da’.

The metric g determines the Levi-Civita connection on the tensor bundle 77 (M)
uniquely. Therefore, we can use V to also denote this connection. The connection
on V' and the Levi-Civita connection on 77 (M) determine a unique connection on
the tensor product V @ T7(X), which we denote again by V. This connection is
compatible with the positive definite inner-product induced on V' ® T7(X) by the
inner-product h on V' and the Riemannian metric g on . The covariant derivative
of order s of a section u € I'(V') defines an element of I'(V ® T?(X)), denoted Vu,

that in local coordinates, is given by
Viu=V,;, - V,Viule; ®dz" @ da” @ - - @ da'™.

The components V;, -+ - V,;,V; u’ of V¥u can be further expanded in the usual way.

For example, when s = 2, the components of V2u are given by

V]Viu[ = @Viuf — Ffzvkul + LUJI-JVZ'UJ,
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where T'}; are the Christoffel symbols of g and wj; are the connection coefficients
defined above by (2.1.2). We can obtain similar expressions for covariant derivatives

of higher order.

2.1.3 INNER-PRODUCTS AND OPERATOR INEQUALITIES

The norm of a vector v € V,,, x € X, is defined by
[v]* = h(x)(v,v).
For use below, we define the bundle of open balls of radius R > 0 in V' by
Br(V)={veV||v| <R}
Elements of the form v, w € V, ® T?(3,), can be expanded in local coordinates as

e;Rdr' @dr?®- - -®@dr’, and w = w! e Rdr" @dr?®- - -Q@dx,

R |
V=" 1192+ 1s

inig-is
respectively. With the help of this expansion, we define the inner-product of v and
w by

I J

w

— i1 0202 |, 4ls]
(vlw) = g"''g G hr gV g, Jij2-ds?

and use

[of* = (vv)

to denote the associated norm.

For an operator on a smooth section A € L(V,), we define the operator norm
|Alop of A by
|Alop = SUP{ |(w|Av)] ‘wav € Bi(Vz) }

We can extend this definition for linear operators in different tensor products. For

example if A € L(V,) @ Tr%, we define a related operator norm |A|,, by
|Alop = sup{ |(v|Aw)| [ (v,w) € By(Vo @ T;'%) x Bi(Vz) }.
In order to compare operators A, B € L(V}), we define

A<LB
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if and only if
(v|Av) < (v|Bv), YveV,.

2.1.4 (CONSTANTS, INEQUALITIES AND ORDER NOTATION

In the following calculations, we will require constants whose explicit dependence
on other quantities is not needed. These constants might change value from line to
line. We will use the letter C' to denote these constants and we will use the standard

notation
a<b

for inequalities of the form
a < Ch.

In the case that the dependence of the constant on other inequalities needs to be
specified, for example if the constant depends on the norm ||u|z~, we use the nota-
tion

C = C(flullz=).

Constants of this type will always be non-negative, non-decreasing, continuous func-
tions of their arguments.

Given four vector bundles V', W, Y and Z defined over ¥, and maps
fe CO([TO,O),COO(BR(W) X BR(V),Z)) and g € CO([TO,O),COO(BR(V),Y)),

we say that
ft,w,v) = O(g(t, v))

if there exist a R € (0, R) and a map
f € C°([T5,0), C=(Bx(W) x Bp(V), L(Y. Z)))

such that

ftw,v) = f(t,w,v)g(t,v),

[f(t,w,0)| <1 and  [V5 f(Ew,0)] S 1

for all (¢, w,v) € [To,0) x Bg(W) x Bx(V) and s > 1, where we use V,,, to denote a

covariant derivative operator on the product manifold W x V. Since ¥ is compact,
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we know that such a covariant derivative always exists. In the case that we want

to bound f(¢,w,v) by g(¢,v) up to an undetermined constant of proportionality, we

define
f(t,w,v) = O(g(t,v))

if there exist a R € (0, R) and a map
f € C%([Ty,0), C®(Br(W) x Br(V), L(Y, Z)))

such that

~

flt,w,v) = f(t,w,v)g(t,v)

and
Ve, [t w0) S 1
for all (t,w,v) € [Ty,0) x B(W) x Bs(V) and s > 0.

2.1.5 SOBOLEV SPACES

Let k € Z>, the Sobolev norm ||u||yy+» of a section u € I'(V) is defined by

k 1
(Z/ \V£u|pyg> ifl1<p<oo
EZO E b)

¢ .
fp—
Org%ﬁilég |Vou(z)] if p=o0

[[llyrr =

where v, € Q"(X) denotes the volume form of g. The Sobolev space W*?(V) can
then be defined as the completion of the space of smooth sections I'(V') in the norm
| - llwrr- When V' =% X R or the vector bundle is clear from context, we will write
WHkP(L) instead. We use the standard notation H*(V) = WH"2(V), for the case
p = 2 where H*(V) is a Hilbert space with the inner-product given by

k

(ulois = 3 (V7| V'),

=0
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where the L? inner-product (|-} is defined by

2.2

(w]z) = /E(w|z) v,

COEFFICIENT ASSUMPTIONS

(i) We define a time-independent, covariantly constant, symmetric projection op-

erator P with P € I'(L(V')), such that it satisfies the following properties
P°P=P, P"=P, 9P=0 and VP =0. (2.2.1)
the complementary projection operator is given by
Pt=1 —P,

which is also a time-independent, covariantly constant, symmetric projection

operator.

We define the maps B°, B, such that

B® € C([Ty, 0), C=(Br(V), L(V))),
B € C°([Ty,0], C*(Br(V), L(V))),

satisfy
T(B%(t,v)) = m(B(t,v)) = 7(v),

and

1 1
—idy,,, < B°(t,v) < —=B(t,v) < ypidy, ), (2.2.2)
! K

for all (¢,v) € [To,0) x Br(V') and &, 71,72 > 0 are positive constants. In local
coordinates (x,v) = (z%,v!) on the vector bundle 7 : V — X, BY is given
by a Sy-valued map B°(t,z,v) = ((B°)}(t,z,v)), while B is given locally by
a My« n-valued map B(t,z,v) = (l’)’g(t7 x, v)) Here Sy denotes the subset of
My n, that is, the N x N-matrices, that are symmetric with respect to the
local representation of the vector bundle metric h, in other words, if h;; is the
local representation of i and (h!”7) := (hy;)~" is its inverse, then A} will define

an element of Sy if and only if /7 ALK = RE7 AT
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(iii)

The projection operator P and the maps B, B° also satisfy

[P(ﬂ-(v))v B(ta U)] =0, (2.2.3)
(B(t,v))" = B°(t,v), (2.2.4)
P(r(v)) B (t,v)P* (x(v)) = O(|t|2 + P(n(v))v), (2.2.5)
and
P (x(v)) BO(t, 0)P(x(v)) = O(|t|2 + P(x(v))v), (2.2.6)

for all (t,v) € [Ty, 0)x Bg(V), and there exist maps B°, B € C°([Ty, 0], I'(L(V)))
such that

[P, B] =0, (2.2.7)
B(t,v) — B°(t,7(v)) = O(v) (2.2.8)

and
B(t,v) — B(t,7(v)) = O(v) (2.2.9)

for all (t,v) € [Ty,0) x Br(V).

The map F € C°([Ty,0),C>*(Bg(V),V)) can be expanded as
F(t,v) = F(t,m(v)) + Fo(t, v) + [t| 2 Fi(t,v) + || Fa(t, v) (2.2.10)

where F' € C°([T;,0],1(V)), and Fy, Fy, Fy € C°([Tp, 0], C=(Bg(V),V)). In
local coordinates (z,v) = (2, v!) on the vector bundle 7 : V — %, F, F and
F, are given by RN-valued maps F(t,z) = (F(t,z)), F(t,x,v) = (F(t,z,v))
and F,(t,z,v) = (FI(t,z,v)), respectively.

Moreover, the maps Fy, I, F5 satisfy
m(F,(t,v)) =7(v), a=0,1,2,

and
P(7(v))Fo(t,v) =0 (2.2.11)

for all (¢,v) € [Ty,0] x Br(V), and there exist constants A, > 0, a = 1,2,3,
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such that

Fo(t,v) = O(v), (2.2.12)
P(7(v))Fi(t,v) = O(Av), (2.2.13)
P (7(v))Fi(t,v) = O\P(m(v))v) (2.2.14)
and
P (7 (v)) Fa(t,v) = O <)\—R3]P)(7T(U))’U ® ]P(T((U))U) (2.2.15)

for all (t,v) € [Ty,0) x Br(V).
The map B € C°([Tp,0), C®(Bg(V),L(V) ® TY)) satisfies
m(B(t,v)) = 7(v)

and
[o(x())(B(t,v))]" = o(m(v))(B(t,v))

for all (¢,v) € [Tp,0) x Br(V) and o € X*(X), where we are using the notation
o(A) to denote the natural action of a differential 1-form o € X*(X) on an
element of A € I'(L(V) ® T'Y), which if we express A and o locally as

A= Af]IQ‘] ®e;®0; and o= o;ds’,

is defined by
o(A) = 0;A707 @ ey.

The map, B can be expanded as
B(t,v) = Bo(t,v) + |t| 2By (t,v) + |t| " Ba(t,v) (2.2.16)

where By, By, By € C°([Ty, 0], C*(Bg(V), L(V) @ TY)).

Additionally, the maps By, By, Bs satisfy
(B, (t,v)) =7(v), a=0,1,2,

for all (t,v) € [To,0] x Br(V'), and there exist a constant o > 0 and a map
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By € C°([Ty,0],I(L(V) ® TS)) such that

P(7(v)) By (t,v)P(mw(v)) = O(1), (2.2.17)
P(7(v)) B (t,v)PH(7(v)) = O(a), (2.2.18)
PH(7(v))Bi(t,v)P(n(v)) = O(a), (2.2.19)
P (7(v)) By (t, v)P (7 (v)) = O(P(7(v))v), (2.2.20)
P(7(v))By(t,v)PH(m(v)) = O(P(n(v))v), (2.2.21)
P+ (7 (v)) By (t, v)P(7(v)) = O(P((v))v), (2.2.22)
P (7 () Ba(t, v)PH(n(v)) = O(P(n(v))v @ P(mr(v))v) (2.2.23)

and
P(7(v))(By(t,v) — By(t,7(v)))P(x(v)) = O(v) (2.2.24)

for all (t,v) € [Ty,0) x Br(V).

In local coordinates (z,v) = (z%,v’) on the vector bundle 7 : V — ¥, the

maps B, Bs and B, can be expressed as
B = Bi(t,z,v)0;,, By = Bi(t,x)0; and B, = B(t,z,v)d;,
respectively, where Bi(t,x,v) = ((B)4(t,z,v)), Bi(t,z) = ((By)4(t,z)) and

Bi(t,x,v) = ((B})4(t,r,v)) are Sy-valued maps. Then expressing o € X*(%)

locally as

we see that

o(B) = B'(t,x,v)0:(z), o(By) = By(z,t)o;(z) and o(B,) = B.(t,z,v)o:(x).

Since u(t,x) is a time-dependent section of the vector bundle V| it can be

represented in local coordinates as
u(t,x) = (z,u(t, z)),

where 4(t,z) = (47 (t,r)) is R¥-valued. Using this and the expressions for BY,
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B, B, in local coordinates we can write the local version of (2.0.1) as

BO(t, x, a(t, ©))0yt(t, x)+B'(t, z, a(t, z)) (9;a(t, x) + wi(z)i(t, z))
= B{t,2,4(t, ) P()ilt, 7) + F(t, 2, it 7))
(2.2.25)

where the w; = (wj}) are the connection coefficients (2.1.2). The assumptions

on the coefficients described before guarantee that (2.2.25) defines a symmetric

hyperbolic system.

We define the map
divB : [1p,0) x Bp(Ve@V T*Y) — L(V)
which in local coordinates is given by

divB(t,x,v,w) = 0,B°(t,z,v) + D,B°(t,x,v) - (B*(t,z,v)) ' |- B'(t,z,v) - w;
1 . .
+ gB(t, z,0)P(x)v+ F(t,z,v)| + 0;B'(t,z,v) + D,B'(t, z,v) - (w; —w;(z)v)

+ I (2) B (t, ,v) + w;(x) B'(t, z,v) — B'(t, ,v)w;(x), (2.2.26)

where v = (v7), w = (w;), w; = (W), w; = (W), and B" = (B%¥). There exist

constants 0 and 5, > 0, a=0,1,...,7, such that the map div B satisfies
P(r(v)) divB(t, v, w)P(r(v)) = O(0 + |t| 72 5o + [t| ' B1), (2.2.27)

(9(9 + |1t|—%52 + ‘t’;ﬁ?’l@(w(v))v>,

(2.2.28)

P(n(v)) divB(t, v, w)P* (7 (v))

P (7 (v)) divB(t, v, w)P(x(v)) = 0(9 + |t|_%/84 + ‘t’_Rﬁ5P(7T(U))U> (2.2.29)

P (7 (v)) divB(t, v, w)P* (7 (v))

|t|_%ﬁG
R

|t~ 5
7 P(r(v))v ® P(W(U))U).

P(m(v))v +

~o(o+
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One can also verify that
divB(t, u(t,z), Vu(t,z)) = 0;(B°(t,u(t,z)) + Vi(B'(t,u(t,z)))  (2.2.30)

for solutions u(t, x) of (2.0.1).

It is not difficult to verify that (B?)~! satisfies the following relations
P(r(v))(B°) " (t, v)P* (w(v)) = O([t]> + P(r(v))v) (2.2.31)
and
PL(7(0))(B°) "} (¢, v)P(r(v)) = O([t|> + P(r(v))v) (2.2.32)

for all (t,v) € [Ty, 0)x Br(V), these relations can be deduced from (2.2.5) and (2.2.6).
From (2.2.2) we deduce that there exist constants 0 < 4; < ; and & > k > 0 such
that the maps B, B satisfy

1

ZP(n(v)) < B(r(v)) B(t, v)B(n(v)) <

% B(t,v)P(r(v)) < %»P(r(v))  (2.2.33)

x| =

for all (¢,v) € [Tp,0) x Br(V).

2.3 GLOBAL EXISTENCE AND ASYMPTOTICS

The following theorem is the main result of [1] and cornerstone of this thesis. The
theorem guarantees the existence of solutions to the GIVP (2.0.1)-(2.0.2) on time
intervals of the form [T}, 0) under a suitable small initial data hypothesis, as well
as establishing decay estimates for those solutions. In this section, we review the
essential parts and core ideas of the proof given in [1]. We do not include the
preliminary estimates of section 3.2 of [1] in our review; we refer the interested
reader to [1] for their proof. Chapters 3 and 4 are dedicated to applications of this

theorem in different settings.

Theorem 2.3.1. Suppose k € Z-pjor3, 0 > 0, ug € H¥X), assumptions (i)-(v)
from Section 2.2 are fulfilled, and the constants k, v1, A3, Bo, 51, B3, Bs, Br from
Section 2.2 satisfy

3
1
K> om maX{ E Boat1 + 2A3, B1 + 2k(k + 1)b} (2.3.1)
a=0
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where

b= ngtzo(u [PB()V(B() B (1) B(t) "PBa(t)P, || . + [[PBOVBE) " Ba(0))P], [ - )-

Then there exists 6 > 0 such that if

mas{ [luo e, sup |[F(7)] } <6

To<t<0

then there exists a unique solution
u € C°([Ty,0), H*(X)) N L=([Ty,0), H*(X)) N C*([1p, 0), H* (%))

of the IVP (2.0.1)-(2.0.2) with Ty = 0 such that the limit lim; - Pru(t), denoted
PLu(0), exists in HE1().

Moreover, for Ty <t < 0, the solution u satisfies the energy estimate

t
. 1 ~ N
[u(t)l|7 +  sup HF(T)II?qr/ ;IIPU(T)II?{k dr < C(9,6 1)(Ilu(allipe+ sup IIF(T)II?{k)

To<7<0 To To<7T<0

and the decay estimates

it + (A + a)|t]2 if ¢ > 1

IPu(t)||ge S S [+ (M +a)lt]r ift<¢<1
[t~ fo<(<y
and
1 o
BLut) - Pu@)mn < 410 T TC>
¢l ifC<3
where .
(=FkK— 5% (81 + (k- 1)kb) (2.3.2)
and

b= sup (H|P8(t)V(B(t)—1PB°(t)P)PBO(t)—lé2(t

To<t<0

Pl |l + [PBOV(B®) ™ Ba(0)P],, . )-

Remark 2.3.2. By (2.2.33), we note that the constants &, k,vy;, 71 satisfy & > k > 0
and v; > 7; > 0, and we further observe from the definitions of b and b that
b > b > 0. As a consequence, we have that, ( = & — —fyl (51 (k — 1)k5) > () since
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we have assumed that

3
1
=5m maX{Z Boa+1 + 23, B1 + 2k(k + 1)b} > 0. (2.3.3)

a=0

Proof. By assumption, we have that k € Z-, /5,3 and we know by standard local-in-
time existence and uniqueness results for symmetric hyperbolic equations [53, Ch.16
§1], that there exists a solution u € C°([Ty, T*), H*) N C ([Ty, T*), H*1) to (2.0.1)-
(2.0.2) for some time T* € (Tp,0] that we can take to be maximal. We choose the
constants R > 0 and ¢ such that

6€(0,4R), R =min{ 25 38}

3
4Cgop 7 4

and the initial data satisfies
|u(To) || ge < 0. (2.3.4)

From here, we see that two situations can happen: either ||u(t)||g» < R for all
t € [Ty, T*) or there exists a time T}, € (T, T*) such that

(L) = R < 3R

If the first case holds, we set T, = T™ and so, in either case, we have by Sobolev’s

inequality that
max{||Vu(t)||re, [u(®)|re, Jult)|m} <2R, To<t<T. (2.3.5)

Now, we apply on the left the operator BV‘B~!, 0 < ¢ < k, to equation (2.0.1) and

we get

1R—1
BV‘B~'(B°(t,u)0w) + BV'B~' (B (t,u)Viu) = %B(t, w)Pu + BV BLE(t, u).
(2.3.6)
We can write this as
B°9,V*u + B[V*, B! B0,u+B[V’, B B|V,u + B[V, V]Ju+
(2.3.7)

1
B;V,V'u = gBVEIP’u +BVYB7'F),
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which leads to

. 1 .
B9,V + BV V'u = BV'Pu— BIV', B B%0pu — BV', B~ B|V,u~ 235)
B[V, Vilu+ BVYB'F).

Next, we note from (2.0.1) that
1 1_ - _
O =—B"'B'Vu+ B 'BPu+ B"'F, (2.3.9)
substituting this into (2.3.8) gives

B°0,V'u + B'V,;Vu :% [B}Pv% — B[V, B'B(B") ' BPu| +
B[V', B'B°)(B°)"'B'V,u — B[V', B~'B|V,u — B'[V*, V,]u

— B[V',B'B°|(B°)"'F + BVY(B'F).
(2.3.10)

In the next sections of the proof, we will use energy estimates derived from the
expansion (2.3.10) that are well behaved in the limit ¢ 0. Then we will use
these energy estimates to deduce the global existence of solutions as well as decay

estimates assuming suitable small initial data.

2.4 L[? ENERGY ESTIMATE

We derive a L*-energy identity by taking the inner product of (2.0.1) with u, which

after simplifying gives

1 0 1 1 .

§8t<u|B u) = g(u|BIP’u) + §(u| divBu) + (u|F), (2.4.1)
where

divB = divB(t, z,u(t, z), Vu(t, x))

and divB(t, z,u,w) is as defined above by (2.2.26), see also (2.2.30). We then define
the energy norm by

Jull2 = (Vu| BV u), (2.4.2)
(=0
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and notice, with the help of (2.2.2) and the fact that ¢ < 0, that the inequalities

2 2K
~(vIBv) < —lollg, and vz < vAullolo (2:4.3)
hold for any v € L?(V'). We also recall the estimates

~ 1 _
(| F)] < Nlull el Fllzz + Cllull gz llull g + 672 (A + Xo) [l 2| Pull 22 + [t~ s Pul|Z2,

[(PulPE)| < ||F |2 lIPull 2 + CllullzzPull 2 + [¢]72 A [l 22 [Pl 2,
(2.4.4)

and

. 1 B
|(v] divBu)| <40][v||7> + [t| > <(50 + Ba + Ba)l[v|| 2 [[Pv]| 2 + EGHIUIZIIP’UIHL1
Bs + s
R

_ Br
+ [t (ﬁlHPUH%Z + [ [v][Po][Pul|| .+ + §|HU|2|PU\2HL1>»

(2.4.5)

from Proposition 3.4 of [1]. Estimates (2.4.4)-(2.4.5) can be calculated using the
expansion (2.2.10), Cauchy-Schwartz inequalities, and the properties of the projec-
tion operators P, PL. Using (2.4.3), (2.4.4), (2.4.5), (2.3.5), (2.4.1) and Sobolev’s

inequalities, we obtain, after some calculation, the estimate

2% — 71 [Bo + 2\ Vi (Be + 200 £ A
(26 — 7 [f 3)) T+ 200+ 22)) pp

+ O(full )l 2 el ez + 2llull 2| Fll 2, To <t < T,

Oellulls < IPulls +

where we have set , ;
60 — Z ﬁQa—&-l and /89 - Z 6211-
a=0 a=0

The constant C'(||ul|x) depends implicitly on 6, which will be fixed throughout the
proof. We do not indicate the dependence of any of the constants on 6, for example

Aoy Bay V2, K, and so on. The estimate (2.4.6) together with Young’s inequality

1
ab < S-a’ + %bQ, (2.4.7)
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for a,b > 0 and € > 0, gives

Po _ ~
@Wwﬁﬂngﬂ%+(b+€UCWUMWUMWMk+2J%WMNFMm Ty <t < T,
(2.4.8)

where
po =26 — 1 [Bo + 2X3 + €(Be + 2X1 + 2X)],

which holds for any € > 0. Since we have assumed that 2x — v, [ﬁo + 2)\3] > 0, we

can choose € small enough to ensure that

po > 0. (2.4.9)

2.5 H* ENERGY ESTIMATE

Before continuing the proof, we first note the equivalence between the norm ||ul|
and the standard Sobolev norm ||u||z+. This equivalence is a consequence of the

assumption
1

2!
Indeed, that multiplying (2.5.1) by V'u, and taking the inner product of the result

idv, ., (2.5.1)

1
< B°(t,v) < ~B(t,v) < yidy,,-
K

with Vu, it follows, after summing from ¢ = 0 up to s that

1
—— Ml < - lls < Vel - e, (2.5.2)
Vv
which establishes the equivalence. In the following calculations we use either || - [|s

and || - ||+ interchangeably and without comment. Applying the L? energy identity
(2.4.1) to (2.3.10) gives

%at<v’fu\30vfu> = %(V%]B]P’Vew + %<V€u| divBViu) + (Viu|G,),  0< <k,

where

G, =|t|*B[V*, B B°(B%)~'BPu + B[V¢, B! B°|(B®) ' B'V,u
— B[V!, B7'B|Vu — B'[V*, VJu — B[V, B"'B|(B")"'F 4+ BVY(B~'F).

30



Using the properties of the projection operator (2.2.1), the estimates (2.4.4), (2.4.5),
the bound (2.3.5), the energy identity (2.5.3) and Sobolev’s inequality, we get

2k — 7 (B3 + Bs + Br)
v uly <P gty - BB S B ey

W0 pulful + 4650V ullEs + 2V G, Ty <t <T.

812

_|_

(2.5.4)

Equation (2.5.4) gives us a bound for d;||V*u|2, and so, it only remains to obtain
an estimate for (V*u|G,). We obtain this estimate with the help of Proposition 3.6
from [1] which we recall here: Assuming k € Zp /912, 1 <0< k,v e L* (VT (X)),
u € BCs_ole(Hk(v))’ B = B(t,u(z)), B = B(t,u(x)) and B = B(t,u(x)), we have
that

(IBY (B F))| + | (o|BIV', B~ BYY(B") ' F)| < C(|loll 2| Fll s + ),
(|BIV', B B%)(B%) "t~ BBu)| < C(t] [Pl e |[Bull e+ + ),
0| BIVY, ViJu)| < C(jt] ™ [Pollze [Pull s + ),

2.9.5
and ( )

(| BIV, B B'|Viu)| + [(v|B[V', B B%|(B°) ™' B'Vu)| < Itl‘l(ﬁbIIPv||L2II1P’UI|Hk+

ClIPo|z2|[Pufl s ) + CZ,

(2.5.6)
where C' = C(]|u|| ) and the constants b, =, are given by
—_ _1
= = ol e + 11172 (JlollzelPull e + [Polla ull ) +
7 (o2 Pull + 1o 2l [Pl e ),
(2.5.7)

o= sup (|||[PBOVBE)"B(1)B" (1) PBa(tP], |+

To<t<0
|[PBOV(B®) " Ba(t)P, |, ).
Then, using (2.5.5)-(2.5.6), it can be shown that (V‘u|G,) is bounded by

1
(V'ulGy) < — < [ olPul3 + C(ull ) (Pl s [Pl g+l e P3|
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+

1 ~
Ol Pl CCll [l e |

(2.5.8)
and therefore, from the estimates (2.5.4) and (2.5.8), we obtain

25 — 1151 1
o ul <20 P g - Loy olPul + Gl (IPallPullcs + ulPal?)]

+

1 ~
e CllullullelPulle + Clull) (alli + 1F17),  To<t<T.
Summing this inequality from ¢ = 0 to k, applying Young’s inequality and Ehrling’s

lemma (Lemma A.2.5) we obtain the estimate

K = (B + 2bg) — C(lJulle) (e + [lullx)
t

1 _ _ ~
— —cllulli e ) IPullg + CClulle, ) (el + 1F 1), (25.9)

2
Oullull; < Pl

for any € > 0, where we have set

k
1
bi=b)Y (= Sk +1)b.
/=1

2.6  GLOBAL EXISTENCE ON [1p,0) x X

In this section, we focus our attention to prove the global existence of solutions to
(2.0.1) on [Tp,0) x X. From our initial assumptions, we have initial data satisfying
|u(To) ||+ < 0, combining this with (2.5.2) leads to

lw(To)lls < vAallu(To) |l < /72

Then, we define the time 75 € (1p,T.] as the first time when [|u(T3)||x = 26,/72,

where ¢ satisfies =
} . (2.6.1)

. R
0<o< mln{—, —
2\/me 4
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In the case that such time does not exist, we can define the maximal time of existence

as Ty = T™. In both cases, we have that
lu(llx <202, To <t <T5. (2.6.2)

Combining (2.6.2) with (2.5.2) leads to

lu@llge < vnllu@lle <20y/m72 <R, Th<t<T; <T. <T,

and notice that choosing € such that € = d,/72, then we can write (2.5.9) as

Pk 1 _ _ ~
Aillully < 7|HIF’UH\i — (6,9 OPull§ + C(6, 6~ (Nullz + 1 F|l7),  To <t <Ts,
(2.6.3)

where
Pk = 2Kk — ’71(&1 + Qbk) - 0(5)5 (264)

By assumption, we have that 2k — 1 (51 4+ 2bg) > 0. Noting that lims o C(5)d = 0,
we therefore can ensure
pr >0 (2.6.5)

by choosing § > 0 sufficiently small. Adding py'c(d,d!) times (2.4.8) to (2.6.3)
yields the differential energy inequality

— — Pk _ ~
B (Nullf + pote(6,6 Hllullg) < TIIIPU|||2 + OO (Nl + 1FIZ),  To <t <Ts

Setting

t
_ _ 1% ~
Ey(t) = llu(®)lli+py (0,0 1)HIU(t)H!S—/T fIHPU(THHidﬂr sup || (7)|7 (2.6.6)
0

To<t<0

we then have
8tEk < 0(57 6_1)Eka TO <t < T(5a

and so, applying Gronwall’s inequality, we conclude that

E(t) < CCTNETI B (T, Ty <t < Ty (2.6.7)
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We now consider &y € (0,9) with ¢ fixed such that the equations (2.4.9), (2.6.1), and

(2.6.5) are satisfied, and we assume that

|u(To)|lgx < and  sup ||F(7)]|% < do. (2.6.8)

To<7t<0

Then, using (2.6.6) and (2.6.7), we determine the bound
Ju()|ls < €@ (24 pite(8,67Y)) 8y, Ty <t < Ty, (2.6.9)
and notice that, choosing dy small enough, we can write inequality (2.6.9) as

lu@lle < 6vr2, To <t <T5,

where

R R }
2y 40
We conclude that Ts = T, = T* = 0 from the definition of Ty and the maximality of

T*, and consequently, this establishes the global existence of solutions on [T, 0) x X

0< <6< min{ (2.6.10)

that are uniformly bounded by

u() e < VAllu®)llx < 8 == 267175, Tp <t < 0. (2.6.11)

Moreover, by (2.6.6), (2.6.7) and the equivalence of norms || - || g+ and || - ||, it follows
that the energy estimate

t
- 1 N ~
)+ _sup IFOIE— [ TIPu(r) e dr < €O (T e+ sup [FE),
0

To<T< To<T<
(2.6.12)
holds for all ¢ € [T}, 0).

2.7 LimMIT OF Ptu As t 70

Noting that we can write (2.0.1) as

. 1
O = (B! (—Blviu + zBPu - F) ,
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we see, after multiplying on the left by P+, that
- 1
Pty =P+(B%)! (—B’Vz-u + ;BIP’U + F) : (2.7.1)

Integrating this in time and taking the H*~! norm yields

dr,
Hk-1

(2.7.2)

ta
[P ults)~PHu(ty) | oes < /
t1

PH(BO(7)) " (Bi(T)viu(T) + %B(T)Pu(f) + F(T)) |

for any tq,ty satisfying Ty < t; < t5. We then estimate the integrand of the right
hand side of (2.7.2) using Proposition 3.2 from [1] to get

ik

1B+ u(tz) — PLuty) | rees < / NG (F(T)Hm + 14— [Pu(r)
h (2.7.3)

1
- IR P s

From this estimate, (2.6.8) and the bounds (2.6.8), (2.6.10) and (2.6.12), we have

l2
[Pt = Pt Les < CO)J—ta = [ HIPUDIE a7 ) = ofls - a),
! (2.7.4)
By choosing &y small enough to make the right hand side of (2.6.9) comparable to
9, we can make the right hand side of (2.6.12) comparable to §. This then allows us
to conclude that lim; o Pu(t) exists in H**(V) and that

Ptu € CO([Ty, 0], H* (V).

2.8 L? DECAY ESTIMATE FOR Pu

We now proceed to obtain decay estimates for Pu with the help of an L? energy
identity. We can construct this identity by multiplying equation (2.0.1) on the left
by P, using the properties of the projection operator (2.2.1), and setting

F = —PB°P+9,P+u — PB'P+V,u + PF (2.8.1)

we get that
, 1
PBPO,Pu + PB'PV,Pu = ZBIP’U + F. (2.8.2)
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Then we take the L? inner-product of (2.8.2) with Pu, and we obtain the energy
identity

%&(IP)MBOIPU) _ L Pu|BPuY + L ([P divBPu) + (Pu|PF). (2.8.3)

1
ot 2
Taking the L? inner product of (2.2.33) with Pu in conjunction with the definition
(2.4.2), we see that

1
;(Pu\BPu) < |”IP’uH]§ (2.8.4)

| ™

Note that the estimate

(PulPB'PLViu)| < C(0)||ull e [Pull 2-+] 2 o[ VL ul| 2 [Pul| 2+~ C.(8) | VP | 2|2
(2.8.5)

can be computed using the calculus inequalities A.2, the expansion (2.2.16) for

B = (B"), and the properties (2.2.18) and (2.2.21) of the expansions coefficients

PB,P+, where a = 1,2. Then, taking the H*~! norm of (2.7.1), integrating in time,

and following similar arguments used to arrive to (2.7.4), we obtain the estimate

t
|0, PHu(7) || g1 d7 < C(6), Ty <t <0. (2.8.6)
To

Then using Proposition 3.2 from [1], (2.6.11) and (2.7.1) it can be shown that
1 1
212 0P u(t)]| 2 < C(6) (1 + WHPUHL2>, To <t <O. (2.8.7)
2

From the energy identity (2.8.3), the estimates (2.8.4), (2.8.5) and (2.8.7), the coeffi-
cient bounds (2.2.5), (2.2.12), (2.2.13), (2.2.27) and (2.2.33); the expansion (2.2.10)
for F' along with (2.2.11), and (2.4.4), (2.4.5), (2.6.11) and the calculus inequalities
from Appendix A.2, we obtain the differential energy inequality

sl < | (=31 (5 + 19P-ulac®) ) + co) 1+

1
N ||atPLu|Hm)} 1Pl

t]2
([[ull L2 X1 + [VPLu L20r) /A1
It]2

+ew + [1Pato

Dividing through ||Pul|o gives

1 AL+
m HloP e )| 1P+ 06 [1+%] (288)

el < [2-+00)(1+
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where

p=F— (521 + 0(5)5)

F181
2

By assumption & — > 0, and therefore, we can arrange, by shrinking ¢ if

necessary, that

~

p>0.

Now, suppose that x(t) satisfies 2/(t) < a(t)z(t) + h(t), t > Ty. Then by Gronwall’s

inequality, we have

t
2(t) < x(Tp)e?™ + / A=A p(7)dr, (2.8.9)
To
where .
A(t):/ a(T)dr. (2.8.10)
To

In the particular case that x(7p) > 0 and a(t) = 2 + b(t), where A € R and
|fT 7)dr| < r, this becomes

A t
t A (7)]
t) < e"x(T, -+£T—tk/‘———dﬂ 2.8.11
o) < ea(ly) () oo [ (2811
for Ty <t < 0. With the help of the integral formula

toq Lftftor o L i A+ £ 1
(—t)A/ = dr — /\+u—1| | ) ] B ’ (2.8.12)

7, (=T —[tP (L) ifA+p=1

we then deduce from (2.8.6), (2.8.8), the L? decay estimate

(1t + (A + o)t} itp>1
—tn(£) + M+ )tz ifp=1
[Pu(t)llrz S S JHP + (A + o)tz iftlap<t, To<t<O0. (2813)
[tz — M+l n(L) if p=13
| [t]” if 0<p<jy
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2.9 H*! DECAY ESTIMATE FOR Pu

The H*~! decay estimate for Pu can be obtained using similar steps as in the
derivation of the L? decay estimate for Pu. As a first step, assume 0 < ¢ < k — 1.
Then by applying BPV‘B~!P to (2.8.2), we see that

PBPO,V Pu+PBPV,VPu = %BV"Pu — BPVY, B~'PBP|Po,u
— BP[VY, B 'PB'P|V,Pu — PB'P[V’, V,|Pu + BPV(B~'PF).

Using (2.0.1), we can write this as

PBPO, V' Pu+PBPV,VPu = % [Bﬂmvfﬁbu — BP[VY, B~'PB°P|P(B°) ' BPu
+ BP[V, B"'PBP|P(B°) ' B'V,u — BP|V*, B-'PB'P|V,Pu
— PB'P[V*, V,|Pu — BP[V', B'PB°P|P(B°)'F + BPV‘(B~'F).
(2.9.1)

The aim is to obtain via Propositions 3.2, and 3.7 from [1], appropriate bounds for
the energy identity obtained from taking the L? inner-product of (2.9.1) with V‘Pu
which gives
1 1 1
§at<vfpu\30v@u> = Z<vfl@u\8vﬁ@u> + 5<vf1P>u|1P> divB PV‘Pu) + (VPu|G,)
+ (V'Pu|BPV*(B~1F)),
(2.9.2)

where

G, =|t|"'BP[V*, B~'PBP|P(B°) ' BPu + BP|V*, B'PB°P|P(B°) ' B'V,u
— BP|V!, B7'PB'P|V,Pu — PB'P|V*, V,|Pu — BP[V*, BT'PB°P|P(B°) ' F.

Then, after some calculations, it can be verified that Oyf|Pu|x_1, satisfies the differ-

ential inequality

HPulcs <7 +.€0) (14 e+ 1Pl ) 1Pl

A+ a) 06,57
t]2 t

(2.9.3)

+c<5)<1 + IPu|| 2,
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where

and

By assumption,k — %(% + ’Bk) > 0 therefore we can choose § > 0 small enough,
that
p > 0.

Putting it all together, we obtain from (2.8.6), (2.8.13), (2.8.12), (2.9.3) and Gron-

wall’s inequality the decay estimate

(16 + (O + )t it 5> 1
—tn(£) + M+ )tz ifp=1

[Put) e S S JHP 4+ (A + o)t ifl<p<1, Ty<t<O,
[tz — (M + o)tz (L) if p=13
1217 if0<p<3

From this inequality, it follows that we can choose ¢ > 0 small enough such that for

any o > 0 the decay estimate

It + (M + @)tz if¢>1
[Pu(t) || ge-r S S [+ +a)lt]z ifl<¢<, (2.9.4)
|t|—° if0<¢<3

holds for Ty <t < 0, where
C:R—’?l(%-i-gk)-

2.10 H*! DECAY ESTIMATE FOR Ptu — Ptul—g

Using the Cauchy Schwartz inequality, we see that the expression

t2 2 ) 3 2 ) 2
[ =20 lPur ) dr < ([ =21 Brar) ([ =S iPur)edr)
T T T
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holds for all Tp < t; < ta < 0. As a consequence of this inequality and (2.6.12),
(2.7.3), (2.9.4), we obtain the estimate

1
2

IPLu(ts) — PLu(ty) || geer < (7 1) + (=02 )" e .
(—(—2)26) 4 (—tr)2¢2))* ifo<¢<l
Taking the limit t, 7 0 yields
tz 4 [t if ¢ >
BLut) —Bra)m 541 T TR i
1 if ¢ <3
which completes the proof. O
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Don’t ask for guarantees. And don’t look to be saved in any one
thing, person, machine, or library. Do your own bit of saving,
and if you drown, at least die knowing you were heading for

shore.

Fahrenheit 451, Ray Bradbury

3

Wave equation on Minkowski and
Schwarzschild space-times near spatial

infinity

In this chapter we focus our attention on semi-linear wave equations on Minkowski
and Schwarzschild space-times with a source term satisfying the null condition
(1.5.1). In Section 1.4 of Chapter 1, we summarized in four main steps the trans-
formation process to obtain a Fuchsian system from a second order wave equation.
Here, we elaborate on those steps. As a first step, we transform the physical manifold
into a closed N-dimensional manifold. In this application our physical manifolds are
Minkowski and Schwarzschild space-times and we employ the Friedrich’s cylinder
at infinity construction to compactify them into non-physical bounded manifolds.
Then, in Sections 3.2, 3.4, we transform a system of wave equations in Minkowski
and Schwarzschild space-times respectively into a first order symmetric hyperbolic
system via a change of variables. The change of variables for each system includes a
rescaling by powers of ¢ that are chosen to ensure that the resulting systems are sym-
metric hyperbolic and satisfies the expansion (2.2.10). Then we define the extended
systems respectively, which are defined on a bounded manifold which is needed to
apply the existence theory developed in [1]. As a final step we apply Theorem 2.3.1
to these systems which yield GIVP to (3.1.1) and (3.3.1) as stated in the Theorems
3.2.1 and 3.5.1.
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3.1 THE CYLINDER AT INFINITY IN MINKOWSKI SPACE-TIME

In this section our main goal is to transform a semi-linear wave equation of the form

GV Vs = ¢ (ah) g’V 'V ga? (3.1.1)

into a first order Fuchsian system of the form

BO(t, u)dhu + B (t u)Viu = %B(t, WPu+ F(tu) i [To,T) x5 (3.1.2)

u = in{To} x 3, (3.1.3)

where the u!/, 1 < I < N, are a collection of scalar fields, ¢&, € C*°(RY), and
[Ty, Ty) x X arises from compactifying a neighbourhood of spatial infinity and V
is the Levi-Civita connection of the Minkowski metric § = gasdZ® ® dz° on R*.
After obtaining system (3.1.2)-(3.1.3) we can apply Theorem 2.3.1 to obtain global
existence and decay estimates.

In general relativity, conformal transformations are useful since they preserve
the causal structure of space-times. Roughly speaking, the purpose of the transfor-
mation is to obtain an unphysical, bounded manifold, whose boundary represents
an “infinity” of the physical manifold, and the interior preserves the causal structure
of the original space-time. We refer the reader to Appendix A.3 where we have col-
lected a number of results on how geometric quantities transform under a conformal
transformation. The particular conformal transformation of the Minkowski space-
time that we use is based on Friedrich’s cylinder at infinity. The cylinder at infinity
was initially considered for the study of Friedrich’s conformal version of the Einstein
field equations near spatial infinity see [54, 55, 56]. Other applications of the cylin-
der at infinity construction include spin-2 equations on Minkowski space-time, see
for example [57, 58, 59, 60, 61].

Friedrich’s cylinder at infinity construction in our setting starts with the Minkowski

metric on R* given by
§g=—dt®dt+dr @ dr + 14, (3.1.4)

where 4 is the canonic metric on the 2-sphere S? and (¢, 7, , ) are spherical coordi-

nates. The region of Minkowski space-time we will consider is given by the manifold

M ={(t,7,(0,9)) € (—00,00) x (0,00) x S*| —#* +7 >0}, (3.1.5)
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and by using the dipheomorphism

f
—f2 + 72’

Vv M— M : (") = (t,7,0,0) — (z") = (1—;_, é,é), (3.1.6)

where (z*) are the coordinates on the new non-physical manifold, we obtain the

conformal metric

g =0%g, (3.1.7)
such that
1—-1¢ 2—1t)t
g:—dt®dt+—(dt®dr+dr®dt)+( 2)dr®dr+g, (3.1.8)
r r
where the conformal factor is given by
S (3.1.9)
Cr(2-t)t o
and our new manifold M, is the region given by
M = (0,2) x (0,00) x S?. (3.1.10)

We are following a similar approach to the cylinder at infinity transformation
given in [59], but it is important to note that we have inverted the direction of time
and shifted the time interval by a unit. In [59], the time interval is of the form
—1 < 7 < 1, while our time coordinate satisfies 0 < t < 2, in our case we are
interested in the singular time ¢ \ 0.

In geometric terms, M is the interior of the space-like cone with vertex at the
origin in R*. The diffeomorphism (3.1.6) transforms this region into the manifold

M with a boundary composed by
OM =7 ui®u.g-
where
It ={0} x (0,00) x §?, .~ ={2} x (0,00) x S* and " =[0,2] x {0} x S?,

the compatification defined by (3.1.6) leads to the interpretation of .#* as portions
of (+) future and (—) past null-infinity, respectively, and i° as spatial infinity. We
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further note that the space-like hypersurface
¥ = {1} x (0,00) x $* C M,
corresponds to the constant time hypersurface
S={(z")eR"|g,a"z" >0, 72°=0} C M CR*,

in Minkowski space-time.

20

Figure 3.1: In this diagram we plot a family of space-like geodesics from Minkowski space time rep-
resented in the (¢, 7,0, ¢) coordinates. The family of geodesics from Minkowski space that we are
considering are of the form ¢t = ar + b with b = 1 and we take 0 < a < 1 to identify different
elements from the same family; after applying (3.1.6) we obtain the curves plotted here . We have
drawn some curves in blue only to emphasize how these geodesics evolve. Note also that all these
curves have their endpoints at 7 = 0, it is not difficult to see that the spatial infinity region i° is
given in the (t,r) coordinates by the region ¥ = {(¢,7,0,¢) | t € (0,2), 7 =0, (0,¢) € S?*}.

To visualize the compactification of space-time we have drawn two diagrams in
Figures 3.1, 3.2. The first one shows the trajectories of space-like geodesics taken
from Minkowski space-time and plotted in the new coordinates after applying our
conformal transformation. Note from Figure 3.1 that all space-like geodesics end on
the line r = 0, then by using the conformal transformation (3.1.6) we have blown

up spatial infinity i°. Therefore, to analyse wave equations on the space-like infinity
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0.5

Figure 3.2: This diagram shows dashed curves in red which are future directed null geodesics from
Minkowski space time represented in the (¢,7,0, ¢) coordinates. Note that in the (z*) coordinate
representation, the future null infinity region .4 is given by # T = {(t,r,0,¢) |t = 0, r €
(0,00), (6,0) € S?}.

region of Minkowski space-time, we can focus our attention at the cylindrical region
in the neighbourhood of » = 0 of the unphysical manifold.

In Figure 3.2 we have plotted future directed null geodesics from Minkowski
space-time, all of them ending on the line ¢t = 0. The transformation (3.1.6) has
compactified the spatial infinity into a cylinder-type region with the right structure
required to apply Theorem 2.3.1. We use this construction in our analysis of wave
equations in Minkowsky and Schwarzschild space-time. It will be interesting to
study a similar construction on a time-like infinity region, unfortunately it is out of
the scope of this thesis and we leave it for a future work.

For use below, we observe that the Ricci scalar curvature of g satisfies

R=0, (3.1.11)

by virture of g being flat. The same is also true for the Ricci scalar curvature of the

metric g, that is,
R=0, (3.1.12)

as can be verified via a straightforward calculation using (3.1.8).
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3.2 SEMI-LINEAR WAVE EQUATIONS ON MINKOWSKI SPACE-TIME NEAR SPATIAL
INFINITY

With the metric defined by (3.1.8), we are ready to write the wave equation explicitly.
We recall that we use lower case Greek letters, e.g. u, v, 7, to label space-time
coordinate indices that run from 0 to 3, upper case Latin indices, e.g. I, J, K, run
from 1 to N, while upper case Greek letter, e.g. A, X, I', will be reserved to label
spherical coordinate indices that run from 2 to 3, see Appendix A.1 for the full index
convention.

The class of semi-linear wave equations on Minkowski space-time that we con-
sider are systems of N-coupled scalar wave equations of the form (3.1.1), and we
will be interested in solving this type of system of wave equations on domains of the

form
My, = {(t,7) € (0,00) x (0,00) | —t+7>7¢} xS? 7o > 0. (3.2.1)

It is important to remark here that the non-linear terms ¢, (a!)g**V,a!Vu’
satisfy the null condition of Klainerman. Global existence results, under a small
initial data condition, for systems of wave equation of the form (3.1.1) have been
known since the pioneering work of Klainerman [40] and Christodoulou [41]. There-
fore, the results that we present are not new. Despite of this, we believe that the
method used here to establish global existence on regions of the form (3.2.1) brings
a valuable new perspective to global existence problems for systems of non-linear
wave equations. The analysis carried out here is also of interest because it demon-
strates the utility of Friedrich’s cylinder at spatial infinity construction for solving
non-linear wave equations near spatial infinity.

Rather than attempt to solve (3.1.1) directly, we use the diffeomorphism (3.1.6)
to push (3.1.1) forward to obtain the system (see Appendix A.3)

GOV Vs = ¢ (a1 5V Gl V gi” (3.2.2)
on the domain

M,, = (My,) = { (t,r) € (0,1) x (0,79)

1
t>2—@}x82, ro = —, (3.2.3)
T To
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where V is the Levi-Civita connection of § and @ is related to @ via
" = pa’. (3.2.4)

The relation (3.2.4) establishes an equivalence between the wave equations (3.1.1)
on My, and (3.2.2) on M,,, since the diffeomorphism (3.1.6) is invertible. Therefore
we are free to restrict our attention to wave equations of the form (3.2.2) on M,,.

We further note that the constant time hypersurface
Y, = {0} x (7o, 00) x S? (3.2.5)

forms the bottom of M, and it gets mapped via the diffeomorphism (3.1.6) to the

constant time hypersurface
Yo = (Z5,) = {1} x (0,79) x S?
that forms the top of M,,. Using
P = aiy (@) Vo Vi’

to denote the nonlinear terms that appear in (3.2.2), it follows from (3.3.4), (3.3.8)
and the formulas (A.3.39)-(A.3.40) and (A.3.42)-(A.3.43), with n = 4, from Ap-
pendix A.3 that the wave equations (3.2.2) transform, under the conformal trans-
formation (3.1.7), into

9PV Vgu = 5 (3.2.6)

where V is the Levi-Civita connection of g
a® = rt(2 — t)u®,
and

5= qf (rt(2 = tyu®) <rt(2 — t)g"'V,u' V! + 2"V, (rt(2 — t))Vl,u(IuJ)

" rt(21— ¢ Vu(rt2 =)V (rt(2 — u'u’ ) (3.2.7)

With the help of equation (3.1.8), a routine computation shows that the conformal
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wave equations (3.2.6) can be expressed as
(—24+-)tPu™ +r202u +-2r(1-1)0,0u™ + VAV su +2(t—1)0u™ = X (3.2.8)

where YV, is the Levi-Civita connection of the metric g on S?. Using (3.1.8), we

compute the non- linear terms (3.2.7) which in the local coordinates are given by
T =¢f5 (rt(2 = t)ut) (27“(2 — 2t + t)uTrou?) — (2 — 0)220,u! 0’ + (2 — t)troulrou’
+2r(2 = 3t + t)t(Bulro,u”) — duTu”)) + (2 — )tV au! Vsu’ + (2 — t)tufuJ) .
To proceed, we define new variables Uy, U{, U, Uj and U} by setting
Ui = 2o’ Ul =t*row’, Ul =t'Yau’ and Uj = 2y’ (3.2.9)

where A € R is a constant to be fixed later. Substituting this change of variables
into the wave equation (3.1.1), we can write the conformal system of wave equations

(3.2.8) into first order form as follows:

1
B°0,U + B'r0,U + B'YrU = ZBU + F (3.2.10)
where
Ui
UJ
v=|""1, (3.2.11)
Ust
Ui
2-t)0% 0o 0 0
B = X o 0 0 (3.2.12)
0 0 ook 0]’
0 0 0 &
2(t — 1 1
( )5ff —6% 00
t 12
1 L s 0 00
B — 107 : (3.2.13)
0 0
0 0
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1
———

0 - 0
0 0 0 0
B = T : (3.2.14)
—t—%(SAaJ 0 0 0
0 0 0 0
1 K
2(A=5)or 0 0 0
0 MK 0 0
B= ’ : (3.2.15)
0 0 ASYOK 0
1
5K 0 0 </\ - 5) 55
and
Byt
0
F= : (3.2.16)
0
0
with

3

1
FE = (- - A)U5<+ g[—t%UlefS(r(z B

2

r(t — 222 ULUS + r(t — 2)t

3_

\UE) (—2r(2 ot + ) uluD +

3_

IO + 2r(2 = 3t + 82) (2 Ul U

— AU (e = 2)2 A UTUY (- 2)t3AngEU,{U‘E]>} .

It will be convenient to expand (3.2.16) as follows

(1)

F= 0 +

0

0

where

0 —ok
0 0

€ =
0 0
0 0
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o O O O
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and
%SK %’},K %’?K %’f‘,K
0 0 0 0
0 0 0 0
0 0 0 0

B = ¢y (r(2 — )12 UR) 86D [r(t — 2022 UL — 27(2 — 3t + )t UT,
B = ¢, (r(2 — )12 UF) 6D [~2r(2 — 2t + ) AUL +r(t — 2)t2UT,
B = By (r(2 — t)t2UR) 8 69 r(t — 2)t2 A UL

and
B = B (r(2 — )2 UL 8 [r(t — 203 UL + 2r(2 — 3t + )2 UL
From these formulas, it is clear that
#=0U) for A<1. (3.2.18)

Now we define a new variable

VE)J
VJ
v=1 11 (3.2.19)
Vs
V4J
and we introduce a positive definite inner-product h by
WU V) = 61, (UVE + UV + UV + UV, (3.2.20)

It is then not difficult to see that BY, B' and B* are all symmetric with respect to

this inner-product and that
h(V,B°V) > h(V,V)

as long as t € [0, 1]. This implies that the system of equations (3.2.10) is symmetric
hyperbolic.

20



To proceed, we introduce a new radial coordinate via

r=p", me L. (3.2.21)

Using the transformation law
dp p

r@r = r%@, = Ef)p,

we can express (3.2.10) as
0 P p1 r _ 1
B°o,U + —B"0,U + B VrU = ;BU—}— F, (3.2.22)
m

where now any r appearing in F' is replaced using (3.2.21). We further observe that

the space-time region (3.2.3) can be expressed in terms of the radial coordinate p as

M, = { (t.p) € (0.1) x (0, po)

t>2— p_(] } X S2, Po = (7“0)%. (3223)
pm

3.2.1 THE EXTENDED SYSTEM

Next, we let x(p) denote a smooth cut-off function that satisfies

X =0, Xl[fl,l} =1 and Supp(f() - (_Qa 2)7

and we define

x(p) = X(£>, (3.2.24)

Po

which is easily seen to satisfy

X 20, Xl—popo) =1 and  supp(x) C (=2po,2p0).

We then consider an extended version of (3.2.22) given by
0 XP 1 r 1
B°0,U + =B 0,U + B YU = ;BU%—XF (3.2.25)
m
that is well-defined on the extended space-time region

(0,1) x Ty, x S* (3.2.26)
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where T. 31,00 =~ S! is the 1-dimensional torus obtained from identifying the end points
of the interval [—3pg,3po]. By construction, (3.2.25) agrees with (3.2.22) when
restricted to (3.2.23). Noting that the boundary of the region (3.2.23) can be de-
composed as

OM,, =%, Ut UT-UI™"

where
Sre = {1} x (0,p0) x §*,  TF = {0} x (0, 2[)—?) x §?,

t:2—p—0m}><82,

" =[0,1] x {0} xS* and I'" = { (t,r) €10,1] x (0, po] )

we see immediately that

Po
pm+1

n~=—dp and n"=—dt+m

dp

define outward pointing co-normals to I'" and I't, respectively. Furthermore, from
(3.2.12)-(3.2.14), we get that

(naBO —i—nl’%Bl +n;BF)’ =0

Pt 20t = 1)\ ok P0' <K
<7(27t)+p%f>6‘, fpmotésj 0 0
(ng B"+n{ XL B 40 BY)| = S 5k o0
0 1 m T T+ pmt§ Y
0 0 —5xsk 0
0 0 0 =5/ |+
where we note that
m 2 t — 1 m m t— 2 2m
(comn e B2D) (g D)
p t r+ p p t r+ Py

since 2 —t = % on I'". From these expressions and the definition of the inner-

product (3.2.20), we deduce that

h(v, (nOiBO Ry L n;BF> v)‘ —0
m

r—
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and

T+

h(v, (nO+BO Ny L n;BF> v)
m

— 815 (P(JHV?I + Vf) <P81V(f] + VlJ) _5UgA2V/{vEJ — 5, VIVY <o.
pmt2 pmt2
This implies that the surfaces I'* are weakly space-like for the symmetric hyperbolic
system (3.2.25). See the definition in [62, §4.3],. The importance of this is that it
will guarantee that any solution of the extended system (3.2.25) on the extended
spacetime (3.2.26) will also yield by restriction a solution of the original system
(3.2.22) on the region (3.2.23) that is uniquely determined by the restriction of the
initial data to {1} x (0, po) x S?. From this property and the above arguments, we
conclude that the existence of solutions to the system of semi-linear wave equations
(3.1.1) on the regions of the form (3.2.1) in Minkowski space-time can be obtained
from solving the initial value problem

1
B°,U + 2B, U + B'Y U = JBU+xF i (0,1) x T}
m

3po

x §%, (3.2.28)

x §*, (3.2.27)

U="0U in {1} x T

3po

where the solutions generated this way are independent of the particular form of the
initial data U on ({1} x T4, x §?)\ ({1} x (0, pg) x S?).
The next step is to verify two structural conditions. First we show that the
inequality
h(V,BV) > kh(V, B°V) (3.2.29)

holds where ) is chosen so that

K=A\— }1(2 +v2) >0, (3.2.30)

which we note is compatible with the condition A < 1 that is needed to ensure that
(3.2.18) holds. To see the validity of (3.2.29), we note, with the help of the inequality
00, VIV | < S0, VIVE + 5501, VIVY | € > 0, that by using (3.2.15) (3.2.20)

h(V,BV) = 61, <2 ()\ - %)VOIVOJ + VIV + ()\ - %)vjvj FAVIVY 4 AgAEVAfVEJ)
2
> (5”((2()\ — %) — %)VOIVOJ +(A- L 2%2>V4IV4J + AV + AgAEVAIVEJ).

2
(3.2.31)
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We then fix e by demanding that (2(A— 1) = 5) = (A= 4 = 2% ). Solving this
yields

2 =2, (3.2.32)
which in turns gives

2

1(2()\_1)_6_>:<)\—1—L):)\—;1(2—1—\/5):/1. (3.2.33)

2 2 2 2 2¢?
Assuming that (3.2.30) holds, we see, after substituting (3.2.32) and (3.2.33) into
(3.2.31) and recalling (3.2.12) and (3.2.20), that the inequality

WV, BV) > k61, (2Vy V5 + ViIVY + VIV + VIVY) > kh(V, B°V)

holds for ¢ € [0, 1].
The second structural condition, which is related to the constants b and b, in-

volves bounding the size of the matrix' 8,(¢t2B'). From the bound

PX 1> < 1 i
0,(1B')| < mmax 1B Dlop 050X (11 )7
it is clear, given any o > 0, that there exists a positive integer m = m(o) such that
PX n»1 . 1 2
O0,|t—DB <o in(0,1) x Ty, x S° (3.2.34)
m op

3.2.2 GLOBAL EXISTENCE

Having established that (3.2.27) is symmetric hyperbolic, we can appeal to the
Cauchy stability property satisfied by symmetric hyperbolic systems to conclude,
for any given 5 € (0, 1), the existence of a unique solution

U e C°((to, 1], (T, xS?)) L™ ((to, 1], H* (T3, xS?))NC* ((to, 1], H* (T3, xS?))

3p0

to (3.2.27) provided that k € Z-3/» and the initial data Ul—; = U € H*(T4,, x S?)

is chosen small enough. Furthermore, by standard results, this solution will satisfy

an energy estimate of the form

1
1 .
OO+ [ VI dr < OO [0 to<t<1,
t

'Note that the spatial derivatives (e.g. YaB, 0,8, VA%, 0,%, YA (2XB'), YAB" and 9,B" for
£ =0,2,3) of all the other U-independent matrices appearing in (3.2.27) (see also (3.2.17)) vanish.
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and the norm ||U(to)|| g+ can be made as small as we like by choosing the initial
data U at t = 1 suitably small.

To continue this solution from ¢ =ty to ¢ = 0, we now assume that k € Z-g/,
and choose the initial data U at ¢ = 1 small enough so that ||U(t)]||z+ and t, can

be taken to be sufficiently small. If we further assume that
1
Ae <Z(2 +V2), 1], (3.2.35)

then from (3.2.12)-(3.2.15), (3.2.17), (3.2.18), (3.2.29), (3.2.34) and the simple time
transformation t — —t, it is not difficult to verify that (3.2.27) will satisfy all
the assumptions from Section 2.2 with P = I on the region (—t,0) x Ty, x S*.
Moreover, by (3.2.34), we can always choose the integer m large enough so that the
constants B; and b = b from Theorem 2.3.1 can be made as small as we like while
the constants A\; and « vanish. Thus, for any v > 0, we can apply Theorem 2.3.1 to
(3.2.27) with initial data given by U(ty) at t = t( to obtain the existence of a unique

solution

U € C°((0, to], H* (T3, xS*))NL>((0, to), H*(T3, xS*))NC* (0, to), H* (T3, xS?))

3po 3po 3po

that satisfies the energy

1
1
1T ()17 +/ —NU @ dr < CIU (w01, 19) 1U (E0) [
t

and decay
[U @) s S 7

estimates for 0 < t < 3. This establishes the existence of a unique solution of the
IVP (3.2.27)-(3.2.28), and completes the proof of the following theorem.

Theorem 3.2.1. Suppose k € Zsgp, po > 0, v > 0, A € (32 + \/5),1} and

K = A—1(24V/2). Then there existm € Zs, andd > 0 such that if U € H*(T3,, xS?)

is chosen so that ||U||Hk < 0, then there exists a unique solution
U e C°((0,1], H*(Ty,, x S*)) NL>((0, 1], H*(T3,, x S*))NC*((0, 1], H* (T3, x S?))

of the IVP (3.2.27)-(3.2.28) that satisfies the energy

1
1 :
U ()17 +/ —NU@r dr < Uz (a.0010) 1Tl
t
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and decay
U@ s S

estimates for 0 <t < 1.

3.3 WAVE EQUATIONS NEAR SPATIAL INFINITY ON SCHWARZSCHILD SPACE-
TIMES

In this section, we generalize the global existence results for semi-linear wave equa-
tions on Miknowksi space-time to semilinear wave equations on Schwarzschild space-
time. In the previous section we employed the cylinder at spatial infinity to com-
pactify Minkowski space-time, here we will use the same argument applied to a
Schwarzschild space-time of mass g > 0. In the following, we consider the same
class of semi-linear wave equations as we did in the previous section, namely sys-

tems of wave equations of the type
GOV ViR = ¢E (1) gV iV gu? (3.3.1)

where ¢&, € C®(RY), but g is now the Schwarzschild metric defined by (3.3.3)
and V is the Levi-Civita connection of §. The existence results we establish in this
section are not totally new since solutions to scalar semi-linear wave equations of the
form (3.3.1) have been previously established in [63]. In particular, see Theorem 1.5
from [63], solutions under a small initial data assumption to scalar semi-linear wave
equations on Kerr space-time, which includes the rotation of the body generating
the Schwarzschild space-time. Despite of this, we believe that the new method
used here is a valuable new perspective to global existence problems. In particular
we show the usefulness of the method for systems of non-linear wave equations on
Schwarzschild space-times. The analysis carried out in this section is in essence
the same analysis carried out above for wave equations on Minkowski space-time.

Consider the coordinate transformation given by

<aaa¢>kﬁtwyz(uﬂ—t—ﬁdl—ﬂ)_gﬁn<ﬁu_wq> " 9¢>

2rt 1—rt ) 20t
(3.3.2)
where (¢,7) € (0,1) x (0,1). Applying (3.3.2) to the Schwarzschild space-time given
by

1— £\?2 4
j=—(—2 d£®d£+<1+ﬂ> (dF @ dF + ¢)
=iz o
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it is not difficult to see that
g = 0%, (3.3.3)

where the conformal factor is given by

p(l +rt)?
Q=" 3.4
5 (3.3.4)
and . .
g= ;A(dr@dt+dt®dr) + 7“_2A (2—tA)dr@dr+¢ (3.3.5)

is the conformal Lorentzian metric, and we have defined

(1+7)3(1 —rt)
A= DT (3.3.6)

Our new bounded manifold M is given by
M =(0,1) x (0,1) x §?

and similar to the previous section we can decompose the boundary of M corre-

sponding to spatial infinity and future null-infinity, respectively,
i =10,1] x {0} x §* and " ={0} x (0,1) x §*
and the boundary component
¥ ={1} x(0,1) x §*

defines a space-like hypersurface in M. For more applications of the cylinder at
spatial infinity construction in Schwarzschild space-times to linear wave equations,
see the articles [64, 65, 66, 67].

Note that, the Ricci scalar of ¢ vanishes since ¢ coincides with a Schwarzschild

metric which has vanishing Ricci curvature and therefore
R=0. (3.3.7)

It is also not difficult to verify via a straightforward calculation that the Ricci scalar
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curvature of the metric g, defined by (3.3.5), is given by

24rt

3.4 FIRST ORDER FUCHSIAN SYSTEM

In the following, we consider semi-linear wave equations of the form (3.3.1) with
g the Schwarzschild metric defined by (3.3.3). We will solve these type of wave

equations on domains of the form
MTO - (07 1) X (07T0> X SQ? 0< o < 17 (341)

that define a “neighbourhood” of spatial infinity in the Schwarzschild space-time of

mass p > 0. Using (3.3.7), we can write the system of wave equations (3.3.1) as
GPV Vi = K (3.4.2)
where
5= qf5(@h) gV o Vgt

From (3.3.4), (3.3.8) and the formulas (A.3.33)-(A.3.34) and (A.3.42)-(A.3.43) from
Appendix A.3, we then see that under the conformal transformation (3.3.3) the wave

equations (3.4.2) transforms into

9PV V gu” — %uK = K (3.4.3)

where V is the Levi-Civita connection of the metric g, defined by (3.3.5), the un-

known %% is given by

K 2rt WK
PRESE
and
2rt 2rt 2rt
K_ K L af I J 4 9,08 (1,.J)
/ q”<u(1+rt)2u ><u(1+1"t)2g Vet Veu' +29 V”<u<1+v~t>2>vﬂu v

p(l+rt)* s 2rt 2rt I
T Y Va p(l+rt)? \ (1 +rt)? v

(3.4.4)
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A straightforward calculation using the metric (3.3.5), shows that the system of

wave equations (3.4.3), after multiplication by A, can be expressed as

4rtA
—t(2—tA)8qu+2r8T0tuK—2%0tuK+AgAEVAVguK—ui—ﬁ)QuK = AfK (3.4.5)
where Lot
o =1-—"""44 (3.4.6)
1 —(rt)

2 2t2r(2 — tA 4
AfK = q{fl (Mrt)QuL> (—M(‘)tulatu‘] + Lr&nuu&fu‘])

1+t p(l 4+ rt)? p(l +7rt)?
2t Agh> I 5  ArAt(t—-1) [1 —r—t(r 4+ 6r2 +1r3) + 2 (rt — 7‘3)] (I J)
T YA YT 11+ )3(1 +r1)3 u O
Ar(L—rt) 5, 2tr(l— rt)2A
(o T T e )

The next step is to write the system (3.4.5) into first order form, taking care that
the source term can be expanded as in (2.2.10) and the system is symmetric hyper-
bolic. In Section 3.1, it was not difficult to show that the change of variable (3.2.9)
transforms the system (3.1.1) into first order symmetric hyperbolic form such that
the non linear terms (3.2.7) can be expanded as in (2.2.10). Here, we first do a
change of variable for the system (3.4.3) followed by a rescaling on time.

Let us start by seeking a change of variables of the form

aXi + BX] = o, (3.4.7)
and
Xll = roul,
XL =vsu!, (3.4.8)
Xi = uI,

with «, f constants. Computing the time derivative of the system (3.4.7)-(3.4.8)
yields
(9tX1[ = ararXé + ﬁ?“(?erl,
X}y = aVaX] + BYAX], (3.4.9)
O X| = aX] + X,
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and note that we can write the second derivative of ! with respect to time as
o*u' = a0, XL + Bard, XL + 3*ro, X{. (3.4.10)

Substituting (3.4.7)-(3.4.10) into equation (3.4.5) we get the system

2p

2

K K | 72 K\ _ K _ K
t(a@tXO + Bard, Xy + 57ro. X; ) 2 1A) ror X, 2—i4) ro- Xy +
24 (a X + BXT) A AS K ArtA K A K
- X XK—_ 2
(2 —tA) (2—tA)g VaXs +(2—tA)(1+rt)2 4 (2—tA)f ’

O X — aro, Xl — pro, X =0,
X3 — a¥\Uy — Bro, X5 =0, (3.4.11)
A X[ = aXg + BXT,

which can be written as follows

208t — 2a — afft?A 28%t — 26 — B*t2A 24 (aX{ + BXT) B

K K K
ato Xy + 5 1A ror Xy + 5 1A ro. X1 + 2—tA)
A AY 47”tA K _ A K
(2 - tA)g VaXs+ (2 —tA)(1+ rt)2X4 (2- tA)f ’
(3.4.12)
and
28%t — 28 — B22A |  2B%t—28— B*2A . 2B%—2p% - p3t2A K _
- a2 —iA) X + 5 1A ro, Xy + 22— 1A) ro. X" =0,
A x4 Kk__ BA K _
(2 —tA) %Xz (2 —tA) VaXo (2 —tA) ro Xy =0.
(3.4.13)
Now, let us perform a time rescaling
X =720,
XK — t*)\UK
P (3.4.14)
XA - t UA y

Xf =t Uk
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Taking the time derivative of (3.4.14) we obtain

. A+ 13
OXE =172 (&U({( — 2Ug<) ,

t
K - K /\ K
OX{ =t (U - SUL ),
\ (3.4.15)
XK =1 (ath — ;Uf) :

A+
O XK = ¢ (TQUf + ath) :
Substituting (3.4.14)- (3.4.15) into (3.4.12)-(3.4.13) and multiplying by t*~2 yields

206t — 20 — afft?A 28%t — 28 — B2t2A K A

UK + o,.UK + : PG O ——— v Y JE AR
ato 2 —tA) 0 Bt 1 t§(2ftA)g Vals
A o a(A+3)(2-tA) —2da 247 K 4rtA K
C(2- tA)f + t(2 —tA) bo ~ t2(2 —tA) Ut (2 —tA)(1 +rT)2U4 ’
(3.4.16)
28%t — 28 — B*2A . 2B%t—28 - B*2A K
- U + i 0-Uy* +
a(2 —tA) e th2_ta) 0
233t — 282 — 3312 A 5.UK — _/\2,8% — 28— %A
a2 —tA) vt T at(2—tA) 10 (3.4.17)
A kA gux__BA apx_ A px
a(2 —tA) U t5(2 - tA) Vo a(2 —tA) ro.Ux = )\at(2 —tA) Ui
and )
A— = «
oUE = TQUf - ?U({( + ﬁlU{(. (3.4.18)
t2

We now express the system (3.4.16)-(3.4.18) in matrix form as

1
B0pU + B'ro,U + B XU = ?BU + F, (3.4.19)
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where

o
U= Ui ,
Ux
v{
«Q 0 0 0
282t—28—pB2t2 A
o |0 e o 0
0 0 o tA 5K 0
0 0 0 5?
208t—20—aft?A ¢ K 25215 28—B%t2A (K
t(2—tA) 6 t2(2 tA) 5J 0 0
2682t—26—B%t2A (K 2B83t—2B8%2—B3t2A K
B! = t2(2-tA) oF a(2-t4) & 0 0 7
BASY
0 0 o= tAA 5K 0
0 0 0 0
0 0 IAL(gﬁf 0 (3.4.20)
t2 (2—tA)
0 0 0 0
B* = ,
_lAL5§< 0 0 0
2 (2—tA)
0 0 0 0
a(M3)(@2-tA)—2da
: 2—tA %2 025 e 0 0
t t
0 O )\a(%m) 0
Q@ 0 0 A — %
K 24/ W1 4rtA K
(2 tA f + Vi(2—tA) - (2ftA)(1+rt)2W4
0
F= 0
0
LWk
R

Since we require positive eigenvalues for the matrix B it is necessary to impose the
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following conditions on the constants «, 3

14+ o

0<a<1, and 5

<A<1, g>0. (3.4.21)

For simplicity, we choose o = %, f = 1, which satisfies with (3.4.21), the constant
A € R will be fixed below. Now we can put together into a single change of variables
the transformations (3.4.7)(3.4.8), and (3.4.14) using the variables Ug, U/, U, U{,

U; and the the relations

1

it_/\_%Uf)]—i—t_)‘Ul‘] = ow’, t U] =rou!, t72U{ =Vu! and t_)‘+%U4] =u’.
(3.4.22)

This change of variables summarizes the calculations (3.4.7)-(3.4.15) above and the

system to (3.4.19) becomes

1
B°0,U + B'ro,U + B*'YrU = ZBU + F (3.4.23)
where
Ui
UJ
U= U1J : (3.4.24)
by
ui
15K 0 0 0
2t —2 —tA
0o - T 1A) 55 0 0
0 _ 2\«
12—-tA)
0 0 0 5K
2 2
2t—2—tA§< 2t—2—tA6§< 0 0
2t(2 — tA) t2(2 — tA)
2t—2—t2A5K 2t —2 —1?A 0 0
1 1 J 1 _ A J
B'=| t2(2—-tA) 5(2—tA) : (3.4.26)
ASY
0 0 ——A 50
12—-t4)”
0 0 0 0
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AgFE

0 .
t2(2 —tA)
B = Agp 0 0 0 : (3.4.27)
———A K 0 0
t2(2 —tA)
0 0 0 0
1 1
T(A+3)2—tA) -
2-14 K 2t g tA ’ ’
0 - 7;(_2 ; s K 0 0
B= 2\ A5% . (3.4.28)
0 0 5K 0
le—ta)’
laff 0 0 (/\ - §>5§<
and .
P2 A e 2908 4rt AUE
(2 —tA) t5(2—tA)  (2—tA)(1+rt)?
0
F= 0 (3.4.29)
0
U
15
We further observe that F' can be expressed as
4rtA K
(2—tA) (1 +rt)2 *
1,
F= 0 + (126 + B)U (3.4.30)
0
0
where 0o
0 —————6% 0 0
(2 —tA) 7
¢ =10 0 00 (3.4.31)
0 0 0 0
0 5K 00
and
0 0 0 0
B =
0 0 0 0
0 0 0 0
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with

g _gpe (2EUEN psoy (Gt 2 o - 24
e A (R ) T E I PR VR

2rt3—AUEL 23 Ap(2 — 2t + 24
B =afSy ( AR e 2 A Dy

(1 + )2 (2 = tA) (1 +tr)?
_Art (= ) (1) A= (= — b+ 6% %) 4 26 )]
(2 —tA)(1+7)3(1 +tr)3 A
2t AUL\ (p 2r A5 >
%ZK _ K 5 5 Q) SArrl
e ( ERmE ) NIRRT

and

B 2rta 263 (1 — tr)2A
%Kq%< A i ) f ( W@ A+ )
CArAE - D[ — t(r + 6 +r)+t2(r4fr3)]Uz
w(2 —tA) (1 +r)3(1 +rt)3 o]

(3.4.32)

From (3.3.6) and the above formulas, it is clear that
#B=0(U) for A\<1. (3.4.33)

Moreover, we see, using the change of radial coordinate (3.2.21), that we can express
(3.4.23) as
1
B°U + L B'a,U + B'YrU = SBU+F (3.4.34)
m

where now any r appearing in the coefficients is replaced using (3.2.21).

3.4.1 THE EXTENDED SYSTEM

Proceeding in a similar fashion as above for wave equations on Minkowski space-

time, we consider an extended version of (3.4.34) given by
0 XP 51 538 _ 1z
B°0,U + =—B"0,U + B YU = ;BU%—XF (3.4.35)
m
where x is the cut-off function defined above by (3.2.24),

B* = B* + x(B* — B"), p=0,1,234, (3.4.36)
B=B,.+x(B-B,), (3.4.37)
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and we are employing the notation

()« = (-)|p=0- (3.4.38)

Assuming that

1
0</)0<§7

|p| < 3pp implies, via (3.2.21), that |r| < 1 and we see from the definitions (3.4.36),
(3.4.37), and the formulas (3.2.24), (3.3.6), (3.4.6), and (3.4.25)-(3.4.29) that the
extended system (3.4.35) is well-defined on the extended space-time (0, 1) x Ty, x S?
(see (3.2.26)) and agrees with the original system (3.4.34) when restricted to the
region M,, = (0,1) x (0, po) x S*.
Assuming that
méENsy and 0<n<l1,

it then follows from (3.2.21), (3.3.6), (3.4.6), (3.4.25), (3.4.28) and Taylor’s Theorem

that there exists a constant

C =C(m,n) >0, (3.4.39)
such that
|B° - BY| < Clol?, (3.4.40)
9,8°] < Clpl, (3.4.41)
|B—B,| < C|pf (3.4.42)
and
10,8 < Clpl (3.4.43)

for all (¢, p, %) € (0,1) x (=n,n) x S?. Fixing
o >0,
we can, by (3.4.36), (3.4.37), (3.4.40) and (3.4.42), ensure that

|B° — B < Ix||B° = BY| < |B° — B]| < olp| < 0 (3.4.44)
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and

IB—B. <|x||B-B. <|B-B. <olp| <o (3.4.45)
for all (¢, p,2*) € (0,1) x (=3po, 3ps) x S? by choosing py so that

g

)1
0<po< mln{ 3° 3C(m.n) } (3.4.46)

Moreover, evaluating (3.4.25) and (3.4.28) at p = 0 yields, we find, with the help of
(3.2.21), (3.3.6) and (3.4.6), that

1
55?; 0 0 0
0 20K 0 0
B’ = T, - (3.4.47)
0 0 0 oK

and

10+ -0-(0-1

o 5% 0 0
0 200K 0 0
B* - 2
10 0 Aﬁafaff 0
ééff 0 0 ()\ - %) 5K

From (3.2.20) and (3.4.47), we then have

BV, B'V) > =h(V,V)

DN | —

for all V' of the form (3.2.19). By choosing o > 0 sufficiently small, we deduce from
the above inequality and the estimate (3.4.45) that

h(V,B°V) > —h(V,V) (3.4.49)

A,

on (0,1) x T3,

p = 0,1,2,3,4, with respect to the inner-product (3.2.20), we conclude that the

extended system (3.4.35) is symmetric hyperbolic. Furthermore, decomposing the

x S2. From this inequality and the obvious symmetry of the B*,
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boundary of M, = (0,1) x (0, pg) x S* as
M, =X uUstul- urt,
where

Y= {1} x (0,p0) xS*, Tt ={0} x (0, p0) x S?,
I =[0,1] x {0} xS* and I'"=[0,1] x {po} x S?,

it is clear that
n*t = +dp
define outward pointing co-normals to I'F,

(ngéo TRy L n;BF> =0
m

-
and

(3:4.36) P0 1

(ngéo +n1+%31 +n;f;F) \H -

I+

From these expression and (3.4.26), we deduce that

h(V, <ngé°+n;ﬁéi+ngér>v>‘ =0
m r-
and

n(V, (ng B+ nf%él +nfBT)V) ‘H: %Oh(v, BV,

2—tA V2 t3 V2 t3 2—tA

m

2% —2—t2A 1 Vi 1 v/ 2A
:p0|:6]J<O+\/§‘/11> ( 9 +\/§V1J)— ﬁAE(;[JV/{Vi]}

By definition, see [62, §4.3], this shows that the surfaces I'* are weakly spacelike
for the extended system (3.4.35), and hence that any solution of (3.4.35) on the

extended spacetime (0, 1) x T3, x S* will determine a solution of the original system

(3.4.34) on the region (0, 1) x (0, pg) x S? via restriction that is uniquely determined
by initial data on {1} x (0, py) x S*. We therefore conclude that solutions to the

system of semilinear wave equations (3.3.1) on the regions of the form (3.4.1) in a

Schwarzschild spacetime can be obtained from solving the initial value problem

N N - 1.
BY9,U + %BlﬁpU +B'VU = SBU +xF in (0,1) x T,
U=U in {1} x T3, x S,
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where the solution to (3.3.1) generated this way are independent of the particular

form of the initial data U on the region ({1} x Ty,, < S*)\ ({1} x (0, pg) x S?).
We now want to conclude existence of solutions to the IVP (3.4.50)-(3.4.51) via

an application of Theorem 2.3.1. However, in order to do this, we must first verify

a number of structural conditions. We proceed by noting from (3.4.48) that

1 1 1-—1t 1 2\
h(V,B,V) = 6r; ( (2 <>\ + ) - ) Vi vy + §VOIV4J + 2AV11v1J+2—_tgAEVAIVEJ

2 2—1t
1 ‘rI‘rJ
A 2 4 V4 .

I J
From this and the inequality |%51JVOIV4‘]| < §5IJV7°VTO + ﬁ&ﬂ/f\/j, e > 0, we

obtain
1 1 1—t € 2\
> 1 ) N\ Iy IvsJ ASy 7/
h(V,B*V)_éu<<2<>\+2) S 8)1/0v0+2Av1v1 + 5 VIV
1 1 Iord

and hence, by setting € = 2%, that

2(1 — t)
2 ¢

1 2
h(V,B.V) > 614 (§ (n+ 1— >VOIVOJ FoAVIVY 4 o tgAEVAIVEJ n H‘QI‘Q(J)’

where k is as defined previously by (3.2.30). But % <lfor0<t<1land\ > &,

and so we conclude from the above inequality, (3.2.20) and (3.4.47) that
h(V,B.V) > kh(V, B’V)

on (0,1)x(—1,1)xS3. Fixing & > 0, it follows from this inequality and the estimates
(3.4.44) and (3.4.45) that we can guarantee that

h(V,BV) > (k — &)h(V, B°V) (3.4.52)

on (0,1) x Ty, x S* by choosing ¢ > 0 small enough.
Next, setting p = 0 in (3.4.36) and differentiating with respect to p shows, with
the help of (3.2.24), that

~ BO _ BO
0,B° = ;z’(ﬁ> Z 4 19,B
£o Po

Using (3.4.41) and (3.4.44), we obtain from the above expression the estimate

|BO_BO

> ~ *| ~
931 = 1¥0min 2 2 10,1 < (e + )0 (3459)
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that holds for all (¢, p,z) € (0,1) x (=3p0, 3ps) x S?. Additionally, we find, using
similar arguments this time starting from the estimates (3.4.43) and (3.4.45), that

10,8 < (3IIXll L@ + 1) (3.4.54)

for all (¢, p,z*) € (0,1) x (=3po,3po) X S?. Appealing again to Taylor’s Theorem,
it is not difficult to verify from (3.2.21), (3.3.6), (3.4.6), (3.4.26) and (3.4.27) that

tB' —tB| < Clpf*,  i=1,2,3,
and
10,(tB")] < Clpl

for all (¢, p, 2™) € (0,1) x (=1, n) x S* where we can take C' to be the same constant
as above, see (3.4.39). Using these estimates, the same arguments that lead to the
estimates (3.4.44), (3.4.45), (3.4.53) and (3.4.54) can be used to show that

tB' —tB!| < |tB' — tB!| < o|p| < o (3.4.55)
and
10,(tBY)| < (3||X 1oy + 1) (3.4.56)

for all (¢, p, 2*) € (0,1) x (—3pg, 3po) x S? provided that py satisfies (3.4.46). Finally,

differentiating %tél with respect to p gives

d, (t%}}?l) _1 KX’ <£) LA X) (tBf + (tB* —tB))) + Xptapéll

m Po/ Po

from which we see, with the help of (3.4.55) and (3.4.56) for i = 1, that

XP p1 1 y 1
o,|t=—B" )| < —(3 co(ry + 1 (Su tB,(t +20>
(P25 < LBl =g+ 1) (s, 20
for all (¢, p, z*) € (0,1) x (=3pg, 3po) x S2. Choosing m > 2 large enough so that

1
= sup [tBL(t) <o,
m o<t<1
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the above estimate implies that the inequality

9, (tﬁél)
m

also hold for all (¢, p,z*) € (0,1) x (—3pg, 3po) x S

<3(3|IX || Lee(ry + 1) (3.4.57)

3.5 GLOBAL EXISTENCE

In the following, we choose o > 0 small enough and m € Zs, large enough so that
the inequalities (3.4.49), (3.4.52), (3.4.53), (3.4.54), (3.4.56) and (3.4.57) all hold on
(0,1) x T, x S? for py satisfying (3.4.46) and A satisfying (3.2.35) (so that k > 0),
and the constant v is chosen to lie in the interval (0,x). Then, from the Cauchy
stability property satisfied by symmetric hyperbolic systems, we deduce, for any
given o € (0,1), the existence of a unique solution

Ue C’O((tg, 1], Hk(Tg}poxSQ))ﬂL"o((to,l] Hk(Tg,lpoxSQ))ﬂCl((to, 1], H* 1(T:))lpo><S2))
to (3.4.50) provided that k € Z~3/, and the initial data Ul,—; = = U ¢ HYT} 3po X S?)
is chosen small enough. Moreover, by standard results, this solution will satisfy an

energy estimate of the form

1
1 .
OO+ [ VI dr < OO o) [0 ta<t<1,
t

and the norm ||U(to)||z+ can be made as small as we like by choosing the initial
data U at t = 1 suitably small.

To continue this solution from ¢ = #; to ¢ = 0, we now assume that k € Z-g/s
and choose the initial data U at ¢ = 1 small enough so that ||U (fo)|| g= and to can be
taken to be sufficiently small. Then after performing the simple time transformation
t — —t, it is not difficult to verify from (3.4.25)-(3.4.28), (3.4.30)-(3.4.33), (3.4.36)-
(3.4.38), (3.4.49), (3.4.52) -(3.4.54), (3.4.56) and (3.4.57) that the extended system?
(3.4.50), which we know is symmetric hyperbolic, satisfies all the assumptions from
Section 2.2 with P = T, where, by choosing o > 0 sufficiently small and m > 2
sufficiently large, the constants 8; and b = b from Theorem 2.3.1 can be made

as small as we like while the constants A\; and « vanish. This allows us to apply

2Note that the angular derivatives Y B, YA€, VA(%Bl), and YaABY, ¢ = 0,2,3, of all the
U-independent matrices appearing in (3.4.50) (see also (3.4.29) and (3.4.31)) vanish.
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Theorem 2.3.1 to (3.4.50) with initial data given by U(ty) at ¢ = ty to obtain the

existence of a unique solution
U € C°((0, to], H*(Ty,, xS*)) L= ((0, to), H* (T3, xS*))NC* ((0, o], H* ' (T3, xS?))

that satisfies the energy inequality

1
1
1T )7 +/ —NU @)z dr < OVl (uno ) IV Eo) e, 0 <t <o,
t
and decay
U@ || gre— S 77, 0 <t <t,

for any given v > 0. This establishes the existence of a unique solution of the IVP
(3.4.50)-(3.4.51), which completes the proof of the following theorem.

Theorem 3.5.1. Suppose k € Z~g/2, v >0, X € (%(2 +12), 1} and k=X — (2 +

V2). Then there exist py € (0,1), m € Zsy and 8 > 0 such that if U € H*(T3, xS?)

is chosen so that ||U|gx < 8, then there exists a unique solution

U € C°((0,1), H*(T3,, xS*)) NL®((0, 1), H*(T3,, x S*)) nC*((0, 1], H* (T, xS?))

3po

of the IVP (3.4.50)-(3.4.51) that satisfies the energy

1
1 .
U@+ [ TN dr < COU w10 01

and decay
U@ ||z S 777

estimates for 0 <t < 1.
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The universe gives birth to consciousness, and

consciousness gives meaning to the universe.

John Archibald Wheeler

4

A Fuchsian viewpoint on the weak null

condition

In this chapter we apply Theorem 2.3.1 to semi-linear wave equations on Minkowski
space-time with non-linear quadratic terms that satisfy the bounded weak null con-
dition 1.7.2, see Chapter 1. The class of semi-linear wave equations that we consider
are of the form

GOV = @l PV ! Vs (4.0.1)

where the u/, 1 < I < N, are a collection of scalar fields, the @k, = a}'*d, ® 95,
1 < I,J,K < N, are prescribed smooth (2,0)-tensors fields on R* and V is the
Levi-Civita connection of the Minkowski metric § = §asdZ® ® dz° on R*. For
simplicity we assume that the tensor fields a%; are covariantly constant, i.e. Vak, =
0, which is equivalent to the condition that the components of a¥,; are constants
in a Cartesian coordinate system (&), that is, a¥, = a~’d, ® 94 for some set of
constant coefficients dﬁaﬂ .

The way we obtain existence results and decay estimates for equation (4.0.1),
follows in essence the same structure that we described in Section 1.4 and that we
used in Chapter 3. The main idea is to obtain an extended system (4.3.54) on the
bounded manifold S = T x S?, which is needed to apply the existence theory from
[1] . The difference with respect to the previous chapter is that here, we use the flow
of the asymptotic equation (1.7.2) to change variables from Vj to a new variable

Y defined by (4.4.5)-(4.4.4) to eliminate the most singular term from the “time”

component of the extended system (4.3.54), which results in the evolution equation
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(4.4.6). Then we form the Fuchsian system with a new variable that we obtain
from the differentiated system (4.3.75), a projection of the extended system given
by (4.4.23), and the equations (4.4.5)-(4.4.4). Once we have formed the Fuchsian
system (4.4.26), we can apply Theorem 2.3.1, under the flow assumptions 4.4.1,
which yields the GIVP result for the Fuchsian system (4.4.26) that is stated in
Theorem 4.5.1.

4.0.1 RELATED WORKS

In [68], J. Keir analysed systems of quasilinear wave equations with quadratic semi-
linear terms. His assumptions are more restrictive than the assumptions used in this
work since in addition to the boundedness assumption 4.4.1, it is required a stability
condition on solutions to the asymptotic equation. Using the boundedness and
stability conditions, Keir establishes the global existence of solutions to the future
of a truncated outgoing characteristic hypersurface under a suitable small initial data
assumption. Keir obtained his results in [68], by using a generalization of the p-
weighted energy method of Dafermos and Rodnianski [69] that was developed in [70].
In particular, his results imply that semi-linear systems of wave equations of the form
(4.0.1) whose asymptotic equations satisfy his boundedness and stability condition
admit solutions on space-time regions of the form { (¢,7) | t > max{0,7 — 7o},7 >
0 } x S?, for suitably small initial data that is prescribed on the truncated null-cone
{ (t,7) | t = max{0,7 — 7o},7 > 0 } x S?, where (z*) = (£, 7,0, ) denote spherical
coordinates.

In light of Keir’s results, we will restrict our attention to establishing the exis-

tence of solutions to (4.0.1) on neighborhoods of spatial infinity of the form

M,, ={(t,7)|0<t<F—1/rg, 1/rg <T <00} x§ (4.0.2)
where 7y > 0 is a positive constant and initial data is prescribed on the hypersurface
S ={E7)[T=0, 1/r<F<oo} xS (4.0.3)

This will complement Keir’s results, at least in the semi-linear setting, by establish-

ing the existence of solutions on regions not covered by his existence results.
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4.0.2 A PARTICULAR EXAMPLE WHERE OUR RESULTS APPLY

The following section is a particular example where we can apply the results stated
in Theorem 4.5.1, that is, the following discussion is an example of semi-linear wave
equations satisfying the bounded weak null condition. In [68], Keir showed that

systems of wave equations in the form (4.0.1) with
are? = KLC 6500, (4.0.4)

where X% is a constant, positive definite, symmetric matrix and the C'z;; are any
constants satisfying
Cris=—Ciwy, (4.0.5)

have associated asymptotic equations that satisfy the bounded weak null condition
1.7.2. We can verify this since the choice (4.0.4) leads, by (1.7.1)-(1.7.3), to the

associated asymptotic equation
2 o
(2 —1)0E" = —¥X(P)Pm1KLCL1J§IfJ- (4.0.6)

Introducing the inner-product (¢|n) = I;,60n7, where (I;;) = (I'7)7!, and con-
tracting (4.0.6) with I x&F, we get

(2 —1)(&l0i§) = —%X(P)meLKI_KMC'MUSLfIfJ = —%X(P)PmOLIJfolfJ =)

(4.0.7)
This equation implies 9;((£|€)) = 0, therefore we conclude that any solution of the
asymptotic IVP (1.7.4) -(1.7.4) exists for all t € (0, 1] and satisfies (£(£)|€(2)) = (£]€).
Letting | - | denote the Euclidean norm, we then have that %] 1< V) £V
for some constant C' > 0, and consequently, by the above inequality, we arrive at the
bound supg;<; [£(t)] < C|£|, which verifies that the bounded weak null condition is
fulfilled.

The calculation (4.0.7) also shows that this class of semi-linear equations satisfies
the structural condition from [71] called Condition H. Because of this, the global
existence results established in [71] apply and yield the existence of global solutions
to (4.0.1) on the region ¢ > 0 for suitably small initial data with compact support.
We further note that due to the compact support of the initial data, the results of
[71] can, in fact, be deduced as a special case of the global existence theory developed

in [68], but do not apply to the situation we are considering in this chapter because
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we allow for non-compact initial data in addition to a less restrictive weak null

condition.

4.1 'THE CYLINDER AT SPATIAL INFINITY

Our first task in the transformation of (4.0.1) into a Fuchsian system is to compactify
the space-like region given by (4.0.2) into the cylinder at infinity. Since we have
already analysed this transformation in the previous chapter, we write here the
main results and direct the reader to section Section 3.1 of Chapter 3. We recall the

Minkowski space-time
§g=—dt®@dt+dr @ dr + 74, (4.1.1)

where ¢ is the canonic metric on the 2-sphere S? and (£, 7,0, ) are spherical coor-

dinates in R*. We use below the map

- t P _
w M — M (Eu):<t,f,9,¢)l—>(l”u): (1—7—7,_152;_1_772,9,¢), (412)

to push-forward the wave equation (4.0.1). A straightforward calculation shows that
the inverse map is given by
_ 1—t 1

oM — M (2") = (t,7,0,¢) — (T") = (rt(Q—t)’ Tt(Z—t)’g’gb)' (4.1.3)

We consider a section of the Minkowski space-time defined by

M ={(t,7) € (—00,00) x (0,00) | —*+7° >0} x §% (4.1.4)
and with the help of (4.1.2), we map M onto the cylinder at spatial infinity
M = (0,2) x (0,00) x S?.

As discussed in Section 3.1, M is the interior of the space-like cone with vertex at the
origin in R*. The diffeomorphism (4.1.2) transforms this region into the manifold

M with a boundary composed by

OM =9 ui®us-
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where
It ={0} x (0,00) xS*, = ={2} x (0,00) x§* and i’ =[0,2] x {0} x §*.

The compatification defined by (4.1.2) leads to the interpretation of #* as por-
tions of (+) future and (—) past null-infinity, respectively, and i° as spatial infinity.
Furthermore, the space-like hypersurface {1} x (0,00) x S? in M corresponds to
the constant time hypersurface ¢ = 0 in Minkowski space-time see figures 3.1,
3.2. By straightforward calculation using (4.1.2) and (4.0.2)-(4.0.3) and noting that
Vv(M,,) = M,, and ¢(3,,) = %,, it is not difficult to verify that the region (4.0.2)
and the hypersurface (4.0.3) are mapped to

M,, = {(t,r) € (1,0) x (0,70) | t > 2 —1o/r} x S* C M, 7o >0,  (4.1.5)
where initial data is prescribed on the space-like hypersurface
Y = {1} x (0,79) x S? (4.1.6)

that forms the “top” of the domain M,,. By (4.0.2) and (4.0.3), we conclude that
any solution of the conformal wave equations on M, with initial data prescribed on
¥, corresponds uniquely to a solution of the semi-linear wave equations (4.0.1) on

M,, with initial data prescribed on ¥,,.

4.2 THE CONFORMAL WAVE EQUATION

The next step after the compactification ot he Minkowski space-time is to push-

forward the wave equation (4.0.1) using the map (4.1.2). First we let
=19

denote the push-forward of the Minkowski metric (4.1.1) from M to M. After a

routine calculation it is not difficult to see that
g =% (4.2.1)

with
Q= — (4.2.2)



and

(2 —t)t
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1 —
g=—dt®dt+ —t(dt ® dr +dr @ dt) + dr @ dr + ¢, (4.2.3)
r

where

4 = do @ d9sin(0)de @ do. (4.2.4)

Using the map (4.1.2) to push-forward the wave equations (4.0.1) yields the system
of wave equations
GOV Vi = al etV il Vga’ (4.2.5)

where @a is the Levi-Civita connection of the metric gag,
a =t (4.2.6)
and
iy = . (agy)™. (4.2.7)

Since M = (M), it is clear the original system of semilinear wave equations (4.0.1)
on M are completely equivalent to (4.2.5) on M. Next, we observe that the Ricci
scalar curvature of g,s vanishes by virtue of g,s being the push-forward of the
Minkowski metric. Furthermore, a straightforward calculation using (4.2.3) shows
that the Ricci scalar of the metric g,s also vanishes. Consequently, it follows from
the formulas (A.3.39)-(A.3.40) and (A.3.44)-(A.3.45), with n = 4, from Appendix
A.3 that the system of wave equations (4.2.5) transform under the conformal trans-
formation (4.2.1) into

9PV Veut = f& (4.2.8)

where V is the Levi-Civita connection of g,

" =rt(2 — t)u™ 129
and
e (Tt(;t)vwlvyw " m(v“(”@ — ) Vu! + V,ul V(112 - t))u?)
' ﬁv (rt(2 = 0) Vi (rt(2 - t))ufw').

We will refer to the system (4.2.8), (4.2.10) as the conformal wave equations. A

routine computation involving the metric (4.2.3) then shows that the conformal
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wave equations (4.2.8) can be expressed as
(=241 t02u" +1202u" +2r (1-)0,0u" +4** VAV su® +2(t—1)0,u® = X (4.2.10)
where YV is the Levi-Civita connection of the metric (4.2.4) on S?.

4.2.1 EXPANSION FORMULAS FOR THE TENSOR COMPONENTS @} "

Before continuing with the transformation of the system (4.2.2) into Fuchsian form,
we first derive an expansion formula for the tensor components a;; Kaf This formula
plays an important role in the calculations below. We use the coordinate charts
(@"), (z") to denote Cartesian and Spherical coordinates respectively. From the

coordinate transformation
(@) = (t, 7 cos(¢) sin(f), 7 sin(¢) sin(), 7 cos(h)), (4.2.11)

we calculate the Jacobian matrix which is given by

1 0 0 0
gy |0 s g 0|
0 _ee@sin6)  esc@)eos(s)
Using this and the tensorial transformation law
ay’ = Jears Jg, (4.2.13)
we can expand the components (4.2.13) in powers of 7 as
giker = Loan 1 dKaﬁ P (4.2.14)

ary ,,,,2 Cry

where the expansions coefficients can be used to define the following geometric ob-

jects (see Appendix A.1 for our indexing conventions) on S?:

_K
(a) smooth functions e”q, du and ¢, 17,

SKaN KA gKgA gKAg KgA _KAg
(b) smooth vector fields e, €, ", d;; ,d;, ', ¢, ,and ¢,

(c) and smooth (2,0)-tensor fields eX =) XA and eKA>.
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The only terms of the expansion (4.2.14) that we will need to consider in any

detail are the éﬁaﬁ . Now, it can be easily verified that the non-vanishing éﬁaﬁ are

given by

o (4.2.15)
i Pt = sin(0) (af" cos(¢) + ar P sin(p)) + ar cos(), (4.2.16)
e = sin(0) (a0 cos(¢) + a0 sin(ep)) + ar cos(0) (4.2.17)
and

cit = sin®(0) (a7 cos®(¢) + (g + ary") sin(¢) cos(¢) + ar” sin*(¢))
+ sin(6) cos(&)((df,13 + dff)l) cos(@) + (dff?’ + dﬁa) sin(¢)) + dﬁ?’?’ cos?(6).

(4.2.18)

Furthermore, with the help of (4.2.12) and (4.2.13), we find via a straightforward

calculation that the

TK _ -K00 -KOl -KI10 , —KI1
bry=ap; —ap;, —ap, +ap (4.2.19)

which were defined in (1.7.1), can be expressed in terms of Cartesian coordinates
as
b, = aFP0 —sin(0)(aF ! cos(p) + arP? sin(¢)) — aX 3 cos(0) — sin(0) (a5 cos(p) + aF 70 sin(e))
+ sin?(#) (dﬁu cos?(¢) + (a¥}? + aX) sin(e) cos(¢) + aF?? sin? (d)))
+ sin(0) cos(0)((aX3 + aX31) cos(¢) + (a5 + ak?) sin(¢p)) — a¥0 cos(0) + aF33 cos?(6).
(4.2.20)

4.2.2 EXPANSION FORMULAS FOR THE TENSOR COMPONENTS df,o‘ﬁ

We now turn to deriving expansion formulas for the tensor components &ﬁaﬁ , defined
by (4.2.7), that will determine their behaviour in the limit ¢ \, 0. These results are
essential for writing an explicit expression of the conformal wave equations (4.2.10)
as well as the transformation into Fuchsian form, which we carry out in the following
section. Furthermore the b, smooth functions on S? play a crucial role in the
identification of the quadratic terms with the most singular behaviour.

Now, from (4.1.2) and (4.2.7), we find, after a routine calculation, that

ap = 4Pr?bp, + 02, (4.2.21)

af0t = —atrShlS 4+ 23kt (4.2.22)
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Akl = —4tr3pl 123K, (4.2.23)

aft = 4t (1 — 26)bK, + 2t (4.2.24)
&ﬁOA — —QtT(dﬁOA _ dﬁlA) o ¢—1 + t2T(C—LﬁOA _ 3aﬁ1A) o 1/]—1 + t?’rdﬁm o ¢—17
(4.2.25)
&ﬁEO — —QtT(dﬁEO _ df]Al) o ¢—1 + tZT(ELﬁZO _ 3aﬁ21) o ¢—1 + t3raﬁ21 o ¢—1,
(4.2.26)
&ﬁlA — 2T2(dﬁOA _ aﬁlA) o ¢—1 _ 2tr2(dﬁ0A _ dﬁlA) o ¢—1 _ tQTQaﬁlA o ¢—17
(4.2.27)
dﬁEl — 2T2(dﬁ20 _ aﬁXH) o 1/1_1 _ QtTQ(dﬁEO _ &ﬁEl) o ¢_1 _ tZTQdﬁXH o ¢—1
(4.2.28)
and
apyt =ap; t oy (4.2.29)
where
b = (@00 — gl — gII0 4 gl o gt (4.2.30)
éf]OO —_ 49 ((dﬁoo _ 2@?}01 _ Qaﬁlo + Saﬁll)) ° ,(/1—1 _i_t(dﬁoo _ 5@?}01 _ 5@5;10 + 13(—15(:]11) ow—l

+t2(dﬁ01 +a§]10 o 6(—]5{‘]11) O,(/}—l +t3c‘zﬁ11 0'1/1_1

eFPt =2(3af° — 3afPt — 5al 0 + 5al M) oyt — 2t ((@f° — 265t — 4al 0 + baf ) oy !

2/_KOl | 6-K10 r=K11 1 B3-K11 -1
—t*(ay;" +2ar;  —5ay; )oy T —t'ar; o,

~K10 _K00  r-KO0l o-KI10 , p-KI11 —1 _K00  4=KO0l  o0-K10 , =K1l -1
ery’ =2(3ary” —baryt —3ar;’ +5ar; ) o™t =2t ((ary” —daryt — 2ar +bary ') oy
2/6-K0l | K10 _ p=K11 1 ,3-K11 -1
—t°(2a7;" +ar; —5ar; )oyp —tap; o
and
LK11 _KO00 _ o-KO0l _ o-K10 , j=K11 1
éry =2(2ay;" —3ay; —3ap; +4ap; )oy
4 24(@k0 k10— 9gK1l) o 1 4 2gK 1 6 g,

We further observe from (4.1.2), (4.1.3), (4.2.14)-(4.2.20) and (4.2.30) that

arF o™ = (2 — Ay P+ 222 — t)2e 7 (4.2.31)
al el o™l = tr(2 — )dEeN 4 12r2(2 — 1) 2R, (4.2.32)
ap P oy =tr(2 - t)d)T + (2 — t)%e) ) (4.2.33)
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and
b, = bk, (4.2.34)

4.3 FIRST ORDER TRANSFORMATION INTO FUCHSIAN SYSTEM

Now that we have an explicit expression for the push-forward of the wave equations
(4.0.1) as well as the quadratic terms by the formulas (4.2.14)-(4.2.20) and (4.2.21)-
(4.2.34) we can continue the transformation process. In the next two sections we
proceed in a similar way as we did in the previous chapter, transforming the system

into first order form and writing an extended system defined on the space-time
(0,1) x T x S*.

4.3.1 FIRST ORDER VARIABLES

We now begin the process of transforming the conformal wave equations (4.2.10)
into Fuchsian form. The transformation starts by expressing the wave equation in

first order form through the introduction of the variables
Ul =tou®, UK = t2rouX, UK = t2¥uX  and UK = t2uk. (4.3.1)
A short calculation then shows that (4.2.10), when expressed in terms of these

variables, becomes

2(1 — ¢ 1 1 1
(2 — )UK — %@UOK — t—%r&nUlK - Ay UK = —t—%UlK + UK — fK,

2

(4.3.2)

while the evolution equations for the variables U, UK and U[* are easily computed
to be

1 1 1 1 1 1
QUK = Zro UK + —UE, UK = =V \UE+=-UF and 0UF = UK+ UK, (4.3.3)
tz 2t t2 2t 2t t2

respectively. It is worthwhile noting that system (4.3.2)-(4.3.3) is in symmetric
hyperbolic form.

To proceed, we use the first order variables (4.3.1) to write V, u’ as
Vol =72 (720885 + v ULSL + ULaD).

Using this, we then observe that the three main groups of terms from (4.2.10) can
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be expressed in terms of the first order variables as

1 ~ K pv I J 1 —1 —21 ~KO0O0rrlyrJ t% ~ K01 ~K10 IrrJ
—mauﬂ Vi Vyu' = —o—rt "o || agnUo U +7(a” +agr ) U Ui

t . 1, _ t, . N .
+ GESAUIUY ) 4 @90 4 SRS + L@ + UV + i,

G (T T 4 T, 2 - )

1, L1 N )
= o %t 22 {t% <(2r(1 —t)ar P + 12 - tap O\ uiud

t3(2 — t)al M

+2t3r(1 — )k ulug + (
.

+2t3(1— t)aﬁf}“) UlU{ +t2(2 - t)&ﬁlEUiU§>

1
+ 0 <(2r(1 —t)al 0 + 12 - tar P uiui + 2t3r(1 — tyakMouluyf

2

3

tz(2 —t)aktt 1 )

+ ( *2-tar +2t2(1 — t)af,l()) Uluj +t3(2 - t)aﬁAlU,{Ujﬂ
T
and
1 1

1
—3,-3 2 2~ K00
(2_t)3r t 5[47" (1-1) )

+2tr(1—1)(2 — ) (a5 + ali ) + 22— v)?ai S uivy.

m&ﬁwfvu(rt@ — 1))V, (rt(2 — t))quJ __

With the help of these results, it is then not difficult to verify, using (4.2.20), (4.2.21)-
(4.2.29) and (4.2.31)-(4.2.34), that the nonlinear term (4.2.10)becomes

1. - 1
—f = =2 VIVE e IR U U + [ U UY

+rfSUTUY + fM 2 ULU] + £ UTU + AP ULUY
g UIUY 4 rgBIUTUY 4 fSABUTUY e K UTUY (4.3.4)

when written in terms of the first order variables, where {f ﬁq(t, ), gﬁp (t,r), A5, (t, )},
flpA(t, ), g5A (¢, r)} and {fEFA(t, 1)} are collections of smooth scalar, vector, and
(2,0)-tensor fields, respectively, on S? that depend smoothly on (¢,7) € R x R, and

we have set .

%K:U({{_ 1
t2

Uk, (4.3.5)

The expansion (4.3.4) motivates us to replace the first order variable U with
V{£. Doing so, we see via a routine computation involving (4.3.2) and (4.3.3) that

V{* evolves according to

1
(2 — )0,V 4 ro, VI — " Ay UK = vE - K (4.3.6)

2
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One difficulty with this change of variables is the system of evolution equations
(4.3.3) and (4.3.6) for the first order variables V& | UK, UK and U[ is no longer
symmetric hyperbolic. To restore the symmetry, we use the identity YV U; = r9,Up
to write (4.3.3) as

1 1 1
Ul = —roUf + —ro, Vi + UL, (4.3.7)
t t2 2t
1 1 1
aUy = —%r&nUi‘ + FVAUOK + %%Uﬁ + gUf, (4.3.8)
2
1 1 1
UK = —U, + UK + SVF, (4.3.9)
2t t t2

where q is a function of ¢ that we will fix below. Now we propose a change of variable

of the form
UK = oV + GV, (4.3.10)

where « is a constant and G(t) is a function of ¢ that we fix below from the symmetric
hyperbolic condition and that we simply write as G(t) = G. Taking the first time
derivative of (4.3.10) and using (4.3.7) we get

1 G 1
ad VE = - 0,GVE — Go,VE + FTGTVOK + ?TarVOK + %rarle + = (ale i GVE)K) 7

2
(2 —t)ad VK =(2 —t) [G&‘tVOK + (tl + f) r0 V& + %rarvff - (26; - 8tG> Vi + ;;le] :
(4.3.11)
multiplying equation (4.3.6) times G we can write
1
—(2-1)GOVLE =@ [T&VOK - FgAEVAUg — V& + fK} : (4.3.12)
2

substituting (4.3.12) into (4.3.11) yields the equation

- - —t
O[(2 7t)at‘/1K — <G+ (2 N t) 4 (2 tt)G) T’arVOK 4 %T@r‘/{( o tggAzyAU§+

(4.3.13)

2—1)G
C %) —@—ﬂ@G—G)%F+;VF+Gﬁ(

since we want the system to be symmetric we have to impose the condition

(G+ (215_1 2 _15t>G) —0, which implies G(t) = —@, (4.3.14)
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substituting (4.3.14) into (4.3.13) yields

2—1) (2 —1) (2 —1) (2 — t)tz
2—t(9VK:(— o VE 4+ = A%y, UK vE 2 K
( )OV; t7’1+2agvAz+ o 1 2af
(4.3.15)
Then, we propose a change of variable of the form
VK
Uk =4~ (4.3.16)
p

the evolution equation for UK can be written as

) 1 1 12—t
(2 -8, VE =(2—1) K;p + %) 17— %r@,-VAK +p (tl - (qu;t(l)) VAVE+
+1
ap(qt )VA‘GK} .
(4.3.17)

Similarly to (4.3.14) we want the system to be symmetric, therefore we have to set

the conditions

(2—t)p (ti? ECECh)) 121(22 - t)> = t;p and (22;;) _oplat ?(2 — (4318)
this implies
(2 —t) (1 - W) = 1% and é = w, (4.3.19)

for simplicity we choose a = %, equating both expressions in (4.3.19) and solving

for q we get
—1+ 22 —¢3
= — 4.3.20
L R T (4.3.20)
substituting (4.3.20) into either expression in (4.3.19) we solve for p
144t — 42 4+ 3
= 4.3.21
AR (1.321)
using this value of p we write the term
2—1)0 —2t% + 10t — 16t + 9
(2=0dp 20+ i (4.3.22)

P 2B A2 At 1)
Now, with the help of the functions p, q and (4.3.22) we see that the equation (4.3.17)
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can be written as

2= 0o = vavi+ E Dy - B vy

P
4.3.23
(—2t3+10t2—16t+9 (2—t)>VK ( )
A .

2B _drtr dtr1) | 2

Setting UF = V[ and using the change of variables (4.3.5), (4.3.10) we write the

evolution equation (4.3.9) for UF in the form

1

1
oVE =2V + VK + v, (4.3.24)
Summarising, we can write the system (4.3.2), (4.3.3) as

AY

(2 =)o,V +ro, V-

- f5, (4.3.25)

1 1 1 )
(2 — 1)V =2 —1) {;r@v’f{ + ]ggAEVAVX{‘ + gvf _ tsz}

1 2—1 2—1
2=V =—av + E g v - B ey
tap p t
(4.3.26)
=23+ 10> — 16t +9 (2 — 1) VK
2(t3 — 42 + 4t + 1) 2t A
tz 1 1
DA% _E%K + 2_th + 2—tV4
Recall that the change of variables that we used are given by
VE =2UK + 2—0)e2VF, VE=pUE and VK =UF, (4.3.27)

and observe that the evolution equations (4.3.6)-(4.3.9) can be expressed in terms

of the variables V{*, VX, V& and V[ in the following symmetric hyperbolic form:
1 1 1
BOVE + -Blro,VE + BV sV = —BPVE +CVE 4+ FF (4.3.28)
t2
where

tr
VK:(VI):<VK VE VK V4K> , (4.3.29)
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2-t 0 0 0
B = 2t 0 0 (4.3.30)
1o 0o @-t o’ o
0 0 1
t 0 0 0
g |0 -2 0 0 (43.31)
0 (2—1t)qdd 0]’ o
0 0 0
0 0 —%gm 0
2=t sz
B* = 0 01 AN (4.3.32)
lyy (-0t gy 0 of
—pla T Y
0 0 0 0
2.0 0 0
2—t
e R 2_?2 "l (4.3.33)
0 0 Ztgs 0
0 3 0 3
1 0 0 0
0 0 0 0
C= B y s : (4.3.34)
e R
13 0 0 0
00 0 0
01 0 0
P=|. o o (4.3.35)
P
00 0 1
and
tr
FE— (=% —@-nisf% 0 0) . (4.3.36)

Now, from the definitions (4.3.30), (4.3.31), (4.3.33) and (4.3.35), it is not diffi-
cult to verify that P is a covariantly constant, time-independent, symmetric projec-

tion operator that commutes with B°, B! and B, that is,

P2=P, P*=P, 9P=0, 6,P=0, and Y,P=0 (4.3.37)
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and
[B°,P| = [B',P] = [B,P] =0, (4.3.38)

where the symmetry is with respect to the inner-product
WY, Z) = 671, Z, + § Yo Zs + YiZ,. (4.3.39)

Furthermore, it is also not difficult to verify that B® and B* and B*ny, are symmetric
with respect to (4.3.39) and that B satisfies

h(Y,Y) < h(Y, B%Y) (4.3.40)

forall Y = (Y7) and 0 < ¢ < 1, which in particular, implies that the system (4.3.28)
is symmetric hyperbolic.

Using (4.3.33) and (4.3.39), we observe, with the help of Young’s inequality (i.e.
lab| < £a? + -b%), that

2—t 2—t 1
h(Y,BY) = 2Y¢ + TY12 +YiY, + TﬁAEYAYZ + §Y42

2—t—e¢

2—t 1 1
> 2Y§ + VP + TgAEYAYE +3 (1 — —) Vi

€
Choosing € = %(1 —t— m>, we then have
WY, BY) > 2Y2 + 3(3 —t+/5 -2+ 2)Y2 + %gAEYAYE + 3(3 —t+ /5 =2t +12)Y]
> 2Y02 + %(Yf +ﬁAEYAY2 er42)
> (@ 0¥+ @0+ 2 - 0" aYs +77),

which together with (4.3.30) and (4.3.39) allows us to conclude that
h(Y, B°Y) < 2h(Y,BY) (4.3.41)

forall Y = (Yz) and 0 < ¢ < 1.
Next, from (4.3.5) and (4.3.27), we get

1 1 1
Ul = S (V). Uit = 5(1/1K—(2—t)t%vof<), Uk = BVAK and UK =V/[<. (4.3.42)

Using these along with (4.3.4) and (4.3.35) allows us to expand (4.3.36) as
2_
FX = —gbf]rVOIVOJeO + G¥ (4.3.43)
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where

1 1
GX =GE(tz,t,r,V,V) + t—lG{((t%, t.,r, V,PV) + ;G?(t%,t, r,PV,PV), (4.3.44)
2

eo= (") = (1 0 0 0>tr, (4.3.45)

V= (V) =V}, (4.3.46)

and the GE(7,t,7,Y,Z), a =0,1,2, are smooth bilinear maps with GX satisfying
PGX = 0. (4.3.47)

Remark 4.3.1. Here, we are using the term smooth bilinear map to mean a map of

the form

K KpA A
HY(,t,7,Y,Z) = H (1,6, r)Y, 2] + Hp P (r, 8, r)Y) Z + HiG A (r,t,r)Ye 2
where Hf]pq(T, t,r), Hf]pq(T, t,r), and HEFA(7,t,r) are collections of smooth scalar,
vector, and (2,0)-tensor fields on S? that depend smoothly on the parameters (7,¢,7) €

R xR x R.

For the subsequent analysis, it will be advantageous to introduce a change of

radial coordinate via

r = ,Om, m e Z21- (4348)
Using the transformation law rd, = r%@,, = 20,, we can express the system (4.3.28)
as
1 1 1
BVE + ;ﬁBlﬁpVK + T BYYsVE = SBRPVE 4 CVE 4 PR (4.3.49)
m t2
where now 5
FC = =20 Vg Vieo + GF (4.3.50)
and

1 1
GK =GE(tz,t,p", V,V) + FGf(t%,t, P V,PV) + EGf(t%,t, o™, PV, PV).
2
(4.3.51)
It is also clear that the neighborhood of infinity M, and the initial data hypersurface
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Y.y, see (4.1.5) and (4.1.6), can be expressed in terms of p as

M,y = {(t,p) € (1,0) x (0,p0) [t >2— pf'/p"} x S?, po = (ro)m, (4.3.52)
and
S, = {1} x (0, po) x S?, (4.3.53)

respectively.

4.3.2 'THE EXTENDED SYSTEM

Rather than solving (4.3.49) on M,,, we will instead solve an extended version of

this system on the extended spacetime (0,1) x & where
S=Tx§?

and T is the 1-dimensional torus obtained from identifying the end points of the

interval [—3py, 3po]. Initial data will be prescribed on the hypersurface {1} x S.
To define the extended system, we let x(p) denote a smooth cut-off function

satisfying X > 0, x|(~1,1) = 1 and supp(Y) C (—2,2), and use it to define the smooth

cut-off function

x(p) =x(p/po)

on T, which is easily seen to satisfy x > 0, X|[—py,0) = 1 and supp(x) C (—2p0, 2p0).
With the help of this cut-off function, we then define the extended system by

1 1 1
BY9,VE + ;%Blava F BV = iRV VI B (435)
2

where
1
FE = zQKeO + G*, (4.3.55)
Q" = =2b75x(p) " Vi VY (4.3.56)
1 1
G" =Go+ Fgl + 292, (4.3.57)
G = GE(t2,t, x(p)p™, V. V), (4.3.58)
K =Gl (2,6, x(p)p™, V,PV), (4.3.59)
GX = GE(t7,t, x(p)p™, PV, PV) (4.3.60)
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and
PG = 0. (4.3.61)

By definition, see (4.3.29), the fields VX are time-dependent sections of the

vector bundle
V=[]V,
yes

over S with fibers V, = R x R x T}, (,)S* X R where pr: § = T x §* — § is the
canonical projection. We further note that (4.3.39) defines an inner-product on V,
and recall that B, B! and B¢y, are symmetric with respect to this inner-product.
The symmetry of these operators together with the lower bound (4.3.40) for B°
imply that the extended system (4.3.54) is symmetric hyperbolic, a fact that will be
essential to our arguments below.

Noting from the definition (4.3.52) that the boundary of the region M,, can be
decomposed as

OM,, =%, Ux UT- Ul

where

I~ =[0,1] x {0} x§?, T} = { (t,r) € [0,1] x (0, po]

t:2—p—°}><82
pm

and

$f = {0} x (0, 2’)—?> x S?, (4.3.62)

m

we find that n= = —dpand n™ = —dt+mpi—6Ldp define outward pointing co-normals
to I'" and I'} | respectively. Furthermore, we have from (4.3.30)-(4.3.32) that

(ngBO v Xty n;BZ) ‘ =0 (4.3.63)
m r
and
—(1-t)(2—1) 0 0 0
("‘TBOJ”LT%BI +”g32) i = 8 _(2_2(3_t) —(2-t)(1 —Oq(2—t))53 8 » (4.364)
0 0 0 0

m
0

where in deriving this we have used the fact that 2 — ¢ = Z_’” on I By (4.3.73),
we have that 1 — q(2 — t) satisfies 1 <1 —q(2 —1¢) < 3 for 0 <t < 1. From this
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inequality, (4.3.39), (4.3.63) and (4.3.64), we deduce that

h(Y, (ng B’ + n;%Bl +nyBY)| V) <0

r—

and
n(Y, (ng B+ nf%Bl + 5 BY)

i Y)<0

for all Y = (Yz). Consequently, by definition, see [62, §4.3], the surfaces I'" and I}
are weakly spacelike, and it follows that any solution of the extended system (4.3.54)
on the extended spacetime (0, 1) x § will yield by restriction a solution of the system
(4.3.49) on the region (4.3.52) that is uniquely determined by the restriction of the
initial data to (4.3.53). From this property and the above arguments, we conclude
that the existence of solutions to the conformal wave equations (4.2.10) on M,, can

be obtained from solving the initial value problem

1 1 1
B9, VE 4+ Z%Blﬁp‘/}( + FBEVEVK = ZBPVE +CVE 4+ FX in (0,1) x S,
2
(4.3.65)
vE=yK in {1} x 8,
(4.3.66)
for initial data VE = (XO/IK ) satisfying the constraints
o 1 - p o 1, o .

YAV = Evf and S0,V = (VI - VE) in %, (4.3.67)

Moreover, solutions to (4.2.10) generated this way are independent of the particular
form of the initial data V on ({1} x 8)\ ,, and are determined from solutions of
the IVP (4.3.65)-(4.3.66) via

1 1
u(t,r,0,¢) = F‘QK(@W;@,@- (4.3.68)

Finally, solutions to the semilinear wave equations (4.0.1) on M,, can then be ob-
tained from (4.3.68) using (4.2.6) and (4.2.9), which yield the explicit formula

1 _ _ 1
IO T t) 2 A t T m
.0 = g (1) (1 (1= L () o). @30
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INITIAL DATA TRANSFORMATIONS

The relation between the initial data

(a”, 0a™) = (0%, w") in %, (4.3.70)
for the semilinear wave equations (4.0.1) and the corresponding initial data

(u®, 0u™) = (V% w") in %,
for the conformal wave equations (4.2.8) is given by

oK (r,0,6) = Lo¥ (1,0,¢>) and WX (r,0,0) = —— ok (l,w)
T T T

r
as can be readily verified with the help of (4.1.2), (4.2.6) and (4.2.9). The initial data
for the conformal wave equations, in turn, determines via (4.3.1), (4.3.5), (4.3.27)
and (4.3.48) the following initial data for the system (4.3.49):

1 1 = 1 = 1 1 .+ 1

A [ 2007 (£,0,0) + 05 (.0,0) — Lok (,0,0)]
_p%m [pp}namff (pp}n,o,¢) + oK (ppin,e,qs) +ppimwf< (ppin,e,qs)]
V(p,0,¢) = V29555 (1,0, . (43.71)

which, of course, satisfies the constraint (4.3.67). By the above discussion, we can
extend this data in any matter we like to S to obtain initial data for the extended

system (4.3.65), and thus, we can choose any initial V for (4.3.65) on S satisfying
Vs, =V (4.3.72)

in order to obtain solutions to (4.0.1) on M,, that are uniquely determined by the
initial data (4.3.70).

4.3.3 'THE DIFFERENTIATED SYSTEM

While the extended system (4.3.54) is in Fuchsian form, it is not yet in a form that
is required in order to apply the Fuchsian GIVP existence theory developed in [1].
To obtain a system that is in the required form, we need to modify (4.3.54) and

complement it with a differentiated version. The differentiated version is obtained
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by applying the Levi-Civita connection D; of the Riemannian metric'

q=q;dy' @dy’ :==dp@dp+4¢, y=(y"):=(p,0,9), (4.3.73)

on 8. Noting that
D; = 6,0, + 0} Va, (4.3.74)

where we recall that ¥, is the Levi-Civita connection of the metric ;5 on S?, we
see after a short calculation that applying D; to (4.3.54) and multiplying the result
by t*, where k > 0 is a constant to be fixed below, yields

1 1 1 1
B oW + Z%Blapwf + FBEVEWJK = ;(BIP’ +KBOW + ;Qf +HE
2
(4.3.75)
where
W = (Wh) = (t"D; V), (4.3.76)
Qff = —1"2x(p)p" b1y D;(Vy Vi )eq (4.3.77)
and
HE — CWE 4 -3 By, DIVE — Lo (X gt ) stwK
i = j+ [VZ; j] _gpﬁ FAAE!
+1"D,;G — 12D, (b5, xp™) Vi Vi eo. (4.3.78)

It is worthwhile pointing out that the term [V, D;]V" does not involve any differen-
tiation since the commutator can be expressed completely in terms of the curvature

of the metric g,y,.

4.4 'THE ASYMPTOTIC EQUATION

The next step in the derivation of a suitable Fuchsian equation involves modifying

the V{* component of the extended system (4.3.54) given by

1
— WIS+ Gy, (44.1)

2 - 1
(2= 00 = =X BVEV + Vi = W o

t" m

!See Appendix A.1 for our indexing conventions.
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where GE = (GX), in order to remove the singular term %QK . We remove this
singular term using the flow? 7 (t,t0,4,&) = (FE(t,to,y,£)) of the asymptotic
equation (1.7.2), i.e.

(2 - t)8t§<t7t07y7€) = %Q(g(tvtmyvg))v (442)

Before proceeding, we note that, for fixed (¢,to,y), the flow .Z (¢, to,y, &) maps RY
to itself, and consequently, the derivative D¢F(t,10,y, ) defines a linear map from
RY to itself, or equivalently, a N x N-matrix.

Using the asymptotic flow, we define a new set of variables Y (¢,y) = (YX(t,y))
via

Volt,y) = Z(t,1,y,Y(t,y)) (4.4.4)

where

Vo = (V). (4.4.5)

A short calculation involving (4.4.1) and (4.4.2) then shows that Y satisfies
(2—-1)0Y =29 (4.4.6)

where

1 1
L =(DeF(t,1,y,Y))" and ¥ = (VOK — —MWfS + WgZAsz + 95().

t" m §+p

(4.4.7)

4.4.1 ASYMPTOTIC FLOW ASSUMPTIONS

We now assume that the flow .Z (t,to,y, &) = (FE (L, to,y,§)) satisfies the following:
for any N € Zsq, there exist constants Ry > 0, € € [0,1/10] and Cy, > 0, where
k.l € Zsoand 0 < k+ ¢ <N, and a function w(R) satisfying limg\ o w(R) = 0 such
that

|7 (t,1,y,€)| < w(R) (4.4.8)

2Note that the flow depends on y = (y*) = (p,0,$) € S through the coefficients xp™b%;, which
are smooth functions on S.
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and

for all (¢,9,£) € (0,1] x 8 X Br(RY) and R € (0, Ry]. A direct consequence of this
assumption is that the maps F and F defined by

F(t,y,&) = t°F(t,1,5,6) and =F(t,y,€) = t(DeF(t,1,4,6)) ", (4.4.10)

respectively, satisfy F € C°([0,1],C"(S x Bg(RY),R)) and F € C°([0,1],C"(S x
Br(RY), My N)) Furthermore, since & = 0 obviously solves the asymptotic equa-

tion (1.7.2), the flow obviously satisfies .% (¢, to,y,0) = 0, which in turn, implies that

F(t,y,0) = 0 (4.4.11)
for all (t,y) € [0,1] x S.

Proposition 4.4.1. Suppose the bounded weak null condition holds (see Definition
1.7.2). Then there exists a Ry € (0,Rg) such that the flow F(t,to,y,&) of the
asymptotic equation (1.7.2) satisfies the flow assumptions (4.4.8)-(4.4.9) for this
choice of Ry and any choice of € € (0,1/10].

Proof. We begin the proof by first establishing the following lemma that gives an
effective bound on solutions of the asymptotic equation.

Lemma 4.4.2. For any R € (0,Ry], the solutions £ of the asymptotic IVP (1.7.4)-
(1.7.5) exist for t € (0,1] and satisfies

sup |£(t)| < RQR (4.4.12)

0<t<1 0

for any choice of initial data that is bounded by \§| < R.

Proof. Since Q(§), see (1.7.3), is independent of ¢, we can make the asymptotic equa-
tion autonomous through the introduction of the new time variable 7 = —1In(2 —
t) + 3 In(t), which maps the time interval 0 < ¢ <1 to —oo < 7 < 0. In terms this
new time variable 7, the asymptotic IVP (1.7.4)-(1.7.5) becomes

9:¢ = Q(8), (4.4.13)
Elro =& (4.4.14)
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By the bounded weak null condition, this IVP admits solutions that are defined for
T € (—00,0] and satisfy
sup |¢(1)| < C (4.4.15)
—00<7<0
provided that |¢| < Ro. Next, we assume that the initial value ¢ satisfies |€] < R
for some R € (0, Ro], and we set (1) = 1¢(%) where v = % € (0,1]. Then a quick

calculation shows that 5 satisfies asymptotic equation (4.4.13) where that initial

value is bounded by |§ lr=o| = |%f} < %R = Ry, and consequently, we deduce from
(4.4.15) that sup_, <o |£(7)| < C. But this implies that SUP_ 7o [§(7)] < R%R,
and the proof of the lemma is complete. ]

Implicitly, the solution £ = (£%) depends on y € S and the initial data £. Fixing
¢ > 0 and differentiating the asymptotic equation (1.7.2) with respect to y = (y¢)
shows that

nl = tDier (4.4.16)

satisfies the differential equation
1 _ - 1 _
(2=0)am;* = S ((2=t)ed) —2xp™ (b3 +b15)€" )0 = = Di2xp™bp5)¢ ¢ (44.17)
Contracting this equation with 0, g% nf gives

, 1 , _ _
(2 — t)0p 0" omf = 55LK5’”7715((2 — t)eb —2xp™ (b + bry) ) n!

1 . _
- tfﬁmé’”nﬁ@i(2Xpmbfr§)§’£".

Letting |n| = \/dx0¥n/nk, denote the Euclidean norm of n = (1), we can write

the above equation as

2-1)
2

1

oL 0T Di(2xp " b )E €

(4.4.18)

1 e - .
Oulnl® = — (2= t)eln* —2xp H(bf 00 S SR inEn]) —

But xp™ and bk, are smooth on S, and consequently, these functions and their
derivatives are bounded on §. From this fact and the bound on ¢ from Lemma
4.4.2, we deduce from (4.4.18) and the Cauchy Schwartz inequality that for any
o € (0,¢) there exists constants Ry € (0,Ro] and C' > 0 such that the energy
inequality

@—zt)atw? > th' .

holds for any given R € (0, Ro| and for all ¢ € (0,1]. But from this inequality, we

(e — o)|nl* = —=In

(2-1)
t
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see that

C
tl—e :

An application of Gronwall’s inequality® then yields

1
O|n| > ;(e—a)ml -

€E—0 €E—0 ! C €E—0 1 €E—0 g
n(8)] < In(L)[t + ¢ / G dr =t ()] + (L), (44.19)
t

From the definition (4.4.16) and the fact that £(t) = .Z(t, 1,5, ), we conclude from
the above inequality and (4.4.12) that there exist constants Cy, Co; > 0 such that
the flow .# satisfies the bounds

: o
\Z(t1,.6)] < CoR and  [DF(t,1,9,8)] < - Con

for all (t,4,€) € (0,1] x S x Br(RY), R € (0, Ry).
Next, differentiating the asymptotic equation (1.7.2) with respect to the initial
data f shows that the derivative
K
De& = (8&)
ogt

(2 - )9, De€ = %LDég (4.4.20)

satisfies the equation

where
L= (L}) = —2xp" (b + b)€").

Furthermore, multiplying (4.4.20) on the right by (Déf)*l yields the equation

(2~ D0(D€) )" = — (D))" (1.421)

3Here, we are using the following form of Gronwall’s inequality: if z(¢) satisfies 2/(¢) > a(t)z(t)—
h(t), 0 < t < Ty, then x(t) < 2(Tp)e 4® + ftTO e~ AW+TAM b(7) dr where A(t) = ftTO a(t)dr.
In particular, we observe from this that if, z(Tp) > 0 and a(t) = 3 — b(t), where A € R and
‘ftTO b(t)dr| < r, then

2(t) < e"z(Th) (t))‘—’_eQrt/\ /tTo |h(7)] dr

TO 7'>‘

for 0 <t < Tp.
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for the transpose of (Déf)_l. Multiplying (4.4.20) and (4.4.21) by t¢, we find that
1
(2= 1) (t° D) = g((z —t)e+ L)t°Dgt
and
1
(2 =0t (Dg) )" = 2 ((2 = t)e = L") (1°(D&) )™

Both of the these equations are of the same general form as (4.4.17), and the same
arguments used to derive from (4.4.17) the bounds (4.4.19) for n = t“DE can be used
to obtain similar estimates for ¢“D¢{ and (¢°(Dgg )~ H®. Consequently, shrinking Ry
if necessary and arguing as above, we deduce the existence of a constant Cg > 0
such that the estimate

’D§§| + ‘(Dgf)_l‘ < tlgcll)

holds for 0 < ¢ < 1. From this estimate, we see immediately that

. o\ _ 1
[De (81,9, 8)] + [ (DeF (1,1,4,€) | < -Cuo.

for all (#,y,¢) € (0,1] x 8 x Bp(RY) and R € (0, Ry).
Finally, by shrinking R, again if necessary, similar arguments as above can be

used to derive, for any fixed N € Z>;, the bounds
1
Ty ky —1
| DEDE| + | DED (D) ™| < - Ca

on the higher derivatives for 1 < k+ /¢ < N. It is then clear from this inequality that
the flow bounds )
’D?D{g\(t’ 17 Y, 5)‘ < t_gcflm

hold for all (¢,y,£) € (0,1] x S x Br(RY), 2 < k+ ¢ <N, and R € (0, Ry]. This
completes the proof of the proposition. [

4.4.2 'THE COMPLETE FUCHSIAN SYSTEM

We complete the derivation of the Fuchsian equation by complimenting (4.3.75) and

(4.4.6) with a third system obtained from applying the projection operator P to
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(4.3.54), which leads to an equation for the variables
K _ Lok
XK = ZPVE, (4.4.22)

where v > 0 is a constant to be fixed below. Now, a straightforward calculation using
(4.3.35), (4.3.37)-(4.3.38), (4.3.55), (4.3.57) and (4.3.76) shows that after multiplying
(4.3.54) by ¢t~ that XX satisfies

1 1
B9, X% + ;ﬁBlapXK = <(B—vB°) X" + k¥ (4.4.23)
m

where

KK — -1 ppEwK ype 1pivK 4 xK) 4 l]P>gK + LPgK (4.4.24)
t%erJrV z v tv 0 t%JrV 1 -
and

Pr=1 —-P (4.4.25)

is the complementary projection oprator. We now complete our derivation of the
Fuchsian equation, which will be crucial for our existence proof, by collecting (4.3.75),
(4.4.6) and (4.4.23) into the following single system:

1 1 1 1
A°0,7Z + ;ﬁAlﬁpZ + A2 = S ANZ 4 Q4 T (4.4.26)
m 2
where
tr
Z=(wK x* v) (4.4.27)
B 0 0

A=10 B° 0 : (4.4.28)

Al = 0 BSL , (4.4.29)
0 0
B> 0
A¥=1| 0 B> : (4.4.30)
0
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A= 0 B-vB® 0 |, (4.4.31)
0 0 21
I 0
=0 1 : (4.4.32)
0
tr
Qz(Qf 0 0) (4.4.33)
and
tr
J:<H§< KcE ,zﬂg) . (4.4.34)

4.4.3 COEFFICIENT PROPERTIES

We now turn to verifying that the system (4.4.26) satisfies all the assumptions needed
to apply the Fuchsian GIVP existence theory from [1].

THE PROJECTION OPERATOR Il AND ITS COMMUTATION PROPERTIES:

By construction, the field Z, defined by (4.4.27), is a time-dependent section of the

vector bundle
w=[Jw,
yeS
N
over S with fibers W, = (T;S x Ty S x (TS @ T3, 8%) x T;S) " x Vi xRY where,
as above, pr: § — $? is the canonical projection and V, = R x R x T;r(y)Sz x R.
Letting Z = (Wf,XK,Y) and Z be as defined above by (4.4.27), we introduce an

inner-product on W via
A(Z,Z) = dxrg " R(WE, WE) 4+ 65 h(XE, X5) + 65 YEVE, (4.4.35)

where h(-, ) is the inner-product defined previously by (4.3.39). It is then not diffi-
cult to verify that this inner-product is compatible, i.e. D; (ﬁ(Z, Z)) = h(D;Z, Z) +
#(Z,D;Z), with the connection D; defined above by (4.3.74). We further observe
from (4.4.32) that II defines a projection operator, i.e.

I1? =11, (4.4.36)
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that is symmetric with respect to the inner-product (4.4.35). It also follows directly
from the definitions (4.4.28), (4.4.29) and (4.4.31) that

[A° 1T = [A, 0] = 0, (4.4.37)
[TA' = AT = A, TIA®ns = A%nsll = A%y, (4.4.38)
and
[HAY = AN = T A%y = A¥nsllt =0, (4.4.39)
where
=1 —1II

is the complementary projection operator.

THE OPERATORS A, A!, A¥ny, AND A:

Next, we see from (4.3.40), (4.4.28) and (4.4.35) that A" satisfies

W(Z,A°Z) = Skq" R(W], BPWF) + 6t h(X 5, BOXT) + (2 — )0 YK YF
> Skrq?h(WS, W) + 6 h(X5, X5) + (2= £)6, Y RYE,

and hence, that
WZ,7) < h(Z,AZ). (4.4.40)

Similar calculations using (4.3.37)-(4.3.38), (4.3.41), (4.4.28), (4.4.31) and (4.4.35)
show that
kh(Z, A7) < K(Z, AZ) (4.4.41)

provided that v,k > 0 and k + v < 1/2. It is also clear from (4.4.28)-(4.4.30) that
A% Al and A¥ny are symmetric with respect to the inner-product (4.4.35). Finally,

we observe that the inequality

XP !
8, (EBI)‘ < max \Bl(t)map(Xp)HL‘”(T)E

0<t<1

follows easily from (4.3.31) and (4.3.73). With the help of this inequality, we deduce

from (4.4.29) that, for any given o > 0, there exists an integer m = m(c) > 1 such
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that
<o in (0,1) x S. (4.4.42)

) (%Al)

Using (4.3.29), (4.3.35), (4.4.4)-(4.4.5), (4.4.10) and (4.4.22), we can decompose V'

as

9, (%Bl) ‘ 4

THE SOURCE TERM J:

VE(t y) =PVE(ty) + PVE(t, y), (4.4.43)
where
PVE(t,y) = " X5 (t,y) (4.4.44)
and
PLVE (L y) = t%(tﬁvoK(t, y))eo = tlEFK (t, . Y (. )))eo, (4.4.45)

while we recall from (4.3.76) that the derivative D;V* is determined by
DVE(ty) = Wr(ty). (4.4.46)

We further observe from (4.4.7) and (4.4.10) that the map .Z can be expressed as
&= tlel:“(t, y, Y (t,y)). (4.4.47)

Now, setting
X = (X%),

we can use (4.4.43)-(4.4.45) along with (4.3.58)-(4.3.59) to write the source term
(4.4.24) as

1
PB(t, )W (ty) + o F* (89, Y (1, 9))PC(t)ey + PC(#) X (. y)

1 . o
5 POE (#,4X()™ P (9. Y (8. ))e0. F(£9. Y (1. 1)) o)

KK = —

t%—l—n—l—u

_|_

(1 )
+ Z{ e {ngf (ﬁ,t, X(p)p™ E(t,y,Y (t,y))eo, X (t, y))

a=0

PG (5, £ x(p)p™, X (1), F(ty, Y (1, 3/))90)}

103



+

1 1
PO (156X X 00, X0 |

Using (4.4.43)-(4.4.47) to similarly express the source terms ¥ and 29, see
(4.3.78) and (4.4.7), in terms of W/*, X* and Y*, it is then not difficult, with
the help of (4.4.11), (4.4.42) and the assumptions €, x,v > 0, that we can expand
the source term (4.4.34) as
1 1 1 1 1
J = <tge + fv+2e + 7]L1—)<,—'4-2e>‘70(t’y7 Z(t’y)) + <té+n+e + té+261/)jl (t,y, Z(t’ y))

+ %(a FEETRTY 43T TR ) Ty (4 y, Z (L y)

where J, € C°([0,1],CY(S x Br(W),W)), a = 0,1,2, for any fixed N € Zs, and

these maps satisfy*

Jo=0(Z), J1=0(12), IJ,=0(1Z) and II'J,=0(1Z®IZ).
(4.4.48)

To proceed, we choose the constants x, v € Ry to satisfy the inequalities

: (4.4.49)

Wl =

1
2e < Kk <1 —k, /<:+1/<§—e, e<2v and k<

which is possible since € € [0,1/10] by assumption, see Section 4.4.1. For example,
if ¢ = 1/10, we could choose x = 3/10 and v = 1/15. Now, it is not difficult to
verify that (4.4.49) implies the inequalities

1 1
Je<1—kr+2 v+2<1—-—kK+2 0<2U—c§, 0<§*I€*6, 0<§—/<;fy,

1 1
§+26—I/§1—g+6, §+f€+6§1—g+6 and 0<k—2e<1,

and that, with the help of these inequalities, we can, after suitably redefining the
maps J,, rewrite (4.4.48) as

1 1 1 i
J = mjo(t>ya Z<t7y)) + le(t’y’z(t’y)) + ;(J_{_tf)jz(t,y,Z(t,y))

(4.4.50)

for some suitably small constant € > 0. Here, the constant ¢ > 0 can be chosen as
small as we like, and the redefined maps J, have the same smoothness properties
as above and satisfy (4.4.48).

“Here, we are using the order notation O(:) from [1, §2.4] where the maps are finitely rather
than infinitely differentiable.
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Remark 4.4.3. The point of the expansion (4.4.50) is that source term J satisfies

all the assumptions from Section 3.1.(iii) of [1] except for the following:
1. the differentiablity of each of the maps 7, is finite,
2. and J, does not satisfy I1.75, = 0.

Neither of these exceptions pose any difficulties and are easily dealt with. To see
why the first exception is not problematic, we observe from arguments of [1] that all
of the results of that paper are valid provided that the order of the differentiability
of the source term is greater than n/2 + 3, where n is the dimension of the spatial
manifold. Since the spatial manifold we are considering, i.e. S, is 3-dimensional
and we have established above that the maps J, are N-times differentiable for any
N € Zsy, it follows by taking N > 3/2 + 3 that the finite differentiability is no
obstruction to applying the results from [1] to the Fuchsian equation (4.4.26). In
regards to the second exception, we note, since 117, = O(IlZ), that the term
(o + t9)ILT 5 can be absorbed into the term 1AILZ on the right hand side of the
Fuchsian equation (4.4.26) via a redefinition of the operator A. Due to the factor
o +1¢, we can ensure, for any choice of & € (0, k), that the redefined matrix A would
satisfy for all ¢ € (0,¢] an inequality of the form (4.4.41) with s replaced by &
provided that ¢ and tq are chosen sufficiently small. After doing this, the redefined
Jo would satisfy I1.75, = 0 as required and the source term 7 would satisfy all the

assumptions needed to apply the existence theory from [1].

THE SOURCE TERM Q:

We now analyze the nonlinear term (4.4.33) (see also (4.3.77)) in more detail. Re-
calling that the yp™b¥, are smooth functions on S, we can, with the help of the
product estimate [53, Ch. 13, Prop. 3.7.] and Hoélder’s inequality, estimate Q for
any s € Zxq by

SE(DVeVo)llis) + [DVoVo) l1+s)
S t“(”%HLw(S)”D‘/OHLOO(S) + Vol 2o ) 1PV || 155y + ||DV0HL<>°(S)||%||Ls(3))
S H%HLOO(S)HWHLoo(S) + H‘/OHLOO(S)”W‘ H5(S) + HWHLOO(S)HVO‘

| Q| s ()

(4.4.51)
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Next, for k € Z-3/2, we let Cgql, denote the constant that appears in the Sobolev
inequality [53, Ch. 13, Prop. 2.4.], that is,

11|25 (s) < Cson | £l mvs)- (4.4.52)

Then by (4.4.4), the flow bounds (4.4.8)-(4.4.9), and the Sobolev and Holder in-

equalities, we see that the inequalities
[Vollzeos) + Vol z2s) S w(R) (4.4.53)
and
Vollzses) S Vollzesy + IPVollzss) S w(R) + [WllLses), s € Zs1,  (4.4.54)

hold for all t € (0,1] and ||Y|gr < R/Csop. Using these estimates, Sobolev’s
inequality and the estimate ||W|pews) S |[W/|L2(s), which follows from Holder’s

~Y

inequality, we find from setting s = 0 and s = k in (4.4.51) that
1Qll22(s) S w(B)[[W]lr2(s) S w(R)|[Z] 125 (4.4.55)
and
19l x(s) S (W(R) + [Wllar(s) W llarisy S (W(R) + R)INZ| grs)  (4.4.56)
for all || Z|| gr(sy < R/Csop. We further observe from (4.4.32) and (4.3.77) that
o = Q. (4.4.57)

Remark 4.4.4. The importance of the estimates (4.4.55)-(4.4.56) and the identity
(4.4.57) is that, by an obvious modification of the proof of Theorem 3.8. in [1], these
results show that terms in the energy estimates for the Fuchsian equation (4.4.26)
that arise due to the “bad” singular term %Q can be controlled using the “good”
singular %% I1Z by choosing w(R)+ R sufficiently small, which we can do by choosing

R suitably small since limg o w(R) = 0 by assumption.
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4.5 EXISTENCE FOR THE WAVE EQUATION

Theorem 4.5.1. Suppose k € Z>5, po > 0, the asymptotic flow assumptions (4.4.8)-
(4.4.9) are satisfied for constants N € Zsy, Ry > 0 and € € [0,1/10], the constants
kv € Ryg satisfy the inequalities (4.4.49), and z € (0,k). Then there exist con-
stants m € Zsy and 6 > 0 such that for any V = (VE) € H*(S,VN) satisfying

H‘O/||Hk+1(5) < 0§, there ezists a unique solution
V= (V¥)e (0,1, H(S, VM) nC' ((0, 1], H*(S, VY))

to the GIVP (4.3.65)-(4.3.66) for the extended system. Moreover, the following hold:

(a) The solution V' satisfies the bounds

1 v
Vo)llzes) S 1, [[Vo)llars) S s 1PV ()] ge(sy St

1 V1+K—2 1
DV ()| 1r(sy S et PV ()] 15y St and ||DV ()| gr-1s) S —

K ~ ¢z
fort € (0,1]. Additionally, there exists an element Z+ € H*1(S, W) satisfying
PLZs+ = Zy such that

ITLZ ()] -5y + T Z(8) = Z7F [y S 77

fort € (0,1] where Z is determined from V by (4.4.27).

(b) If. additionally, the initial data V is chosen so that the constraint (4.3.67)
is satisfied, then the solution V determines a unique classical solution u* €

C%*(M,,), with ro = p2, of the IVP

GOV Va =@ PV al Vgt in M,

(a®, ofu™) = (o, wl) in X,

where u’*, v and W are determined from V by (4.3.69), (4.3.71) and (4.3.72).

Furthermore, the i satisfy the pointwise bounds

« 7 AN )
ut ] < —(1—-- i M
| |Nf2—t2 T "

0

Proof.
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Existence and uniqueness for the extended system: Having established that the ex-

tended system (4.3.65) is symmetric hyperbolic, we can, since k& > 3/2 + 1 by
assumption, appeal to standard local-in-time existence and uniqueness results for
symmetric hyperbolic systems, e.g. [53, Ch. 16, Prop. 1.4.], to conclude the existence

of a t* € [0,1), which we take to be mazimal, and a unique solution
V= (VE)e o ((tr, 1], H* (S, VM) nCH ((t*, 1], H*(S, V™)) (4.5.1)

to the IVP (4.3.65)-(4.3.66) for given initial data V = (VX) € H*1(S, VY), where
the maximal time ¢t* depends on V. Next, by (4.4.4), we have that

Y]im = Vo = (1Y)

From this, (4.3.76), (4.4.22) and (4.4.27), we see, by choosing the initial data to
satisfy H‘O/HHkJrl(S) < 0, that [|[Z(1)||grs) < ¢4 for some positive constant C' > 0
that is independent of 6. We then fix R € (0, Ryg] and choose § small enough to

satisfy
R

0 < — (4.5.2)
8CCSOb
so that "
Z(1 <06 < . 45.3
12(1) vy < €5 < g (45.3)
For Z to be well-defined, it is enough for Z to satisfy
R
Z < — 4.5.4
1Zllve) < 55 (4.5.4)

This is because this bound will ensure by Sobolev’s inequality (4.4.52) that

R
1Y || zoe < Csob||Y [ (s) < Csonl| Z | n(s) < 5 < R < Ry,

which, by the flow assumptions (4.4.8)-(4.4.9), will guarantee that the change of
variables (4.4.4) is well-defined and invertible, and hence that Z is well-defined by
(4.3.76), (4.4.22) and (4.4.27).

To proceed, we let ¢, € (t*,0) denote the first time such that

R
1 Z ()| sy =

= 4.5.5
2C’Sob’ ( )

and if there is no such time, then we set t, = t*. We note that ¢, is well-defined by
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(4.5.2) and (4.5.3), and we further note from (4.5.1) and the definition of Z that
Z € C°((te, 1, H* (S, W)) N C*((t., 1], H* (S, W)).

Now, since F(t,1,y,0) = 0 by virtue of £ = 0 being a solution of the asymptotic
equation (1.7.2), it is not difficult to verify that the symmetric hyperbolic equations
(4.3.65) and (4.4.26) both admit the trivial solution. Because of (4.5.3), we can
therefore appeal to the Cauchy stability property enjoyed by symmetry hyperbolic
equations to conclude, by choosing ¢ small enough, that t,, where of course t, > t*,

can be made to be as small as we like and that the inequality

o R
nax, 1Z ()| x5y < 206 < 1Con

(4.5.6)

is valid for
to = min{2t,, 1/2}.

Recalling that we are free to choose the constant o > 0, see (4.4.42), as small as
we like by choosing the constant m € Zs; sufficiently large, we can, for any given
0. > 0, arrange, since € > 0 (see (4.4.50)), that

o+t <o, te (0,1, (4.5.7)

by choosing ¢ small enough to guarantee that ¢, is sufficiently small to ensure that
this inequality holds.

In light of Remarks 4.4.3 and 4.4.4, the bounds (4.4.40), (4.4.41), (4.4.42), and
(4.5.7), the relations (4.4.36)-(4.4.39), the expansion (4.4.50), and the estimates
(4.4.55)-(4.4.56), all taken together, show that if the constants m € Z>; and § > 0
are chosen sufficiently large and small, respectively, and the constants «, v are chosen
to satisfy (4.4.49), then the Fuchsian system (4.4.26), which Z satisfies, will, after
the simple time transformation t — —t, satisfy all the required assumptions needed
to apply the time rescaled version, see [1, §3.4.] and the remark below, of Theorem

3.8. from [1].
Remark 4.5.2. From the discussion from Section 3.4. of [1] and Section 4.4.3 of this

article, it not difficult to see that the appropriate rescaling power p, see equation

(3.106) in [1], in the current context is

p=kK— 2, (4.5.8)
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which, we note, by (4.4.49), satisfies the required bounds 0 < k—2¢ < 1. We further
note from Theorem 3.8. from [1], see also [1, §3.4.], that parameter ¢ defined by
equation (3.59) of [1], which is involved in determining the decay of solutions, is, in

the current context, determined by
(=kKk—1z (4.5.9)

where z > 0 can be made as small as we like by choosing the constant m large
enough and the constants R,t, small enough to ensure that o, and || Z]|yxs) are

sufficiently small.

We therefore conclude from the proof of Theorem 3.8. from [1] that Z, which

solves (4.4.26), satisfies an energy estimate of the form
2 ©1 2 2 2
I1Z00ns)+ [ TIMZO dr < CEIZ@)IP (@5.10)
for all t € (t.,to]. By Gronwall’s inequality and (4.5.3), we then have

sup 1200y < N2t < TICE (@s
te(t«,to

Choosing ¢ now, by shrinking it if necessary, to satisfy ¢ <
to (4.5.2), the bounds (4.5.6) and (4.5.11) implies that

R . ..
W in addition

R
sup || Z(t)||grs) < )
S 1Z ()] e (s) 30

(4.5.12)

From this inequality and the definition (4.5.5) for ¢,, we conclude that ¢, = t*.
Now, from (4.4.10), (4.4.11), Sobolev’s inequality, and the Moser estimates (e.g.
[53, Ch. 13, Prop. 3.9.]), we see from (4.4.4) and (4.4.27) that V{ can be bounded
by
1
Vot lecs) < = CUZDN )1 20 v (45.13)

for Z satistying (4.5.4), while we see from (4.4.22), (4.4.27) and (4.4.32) that PV (¢)
is bounded by
PV (#)]

He(s) < || 11Z ()]

Hs(S), S € ZZO' (4514)

Since t, = t*, the estimates (4.5.12), (4.5.13) and (4.5.14) imply that ||V ()| gxs)
is finite for any ¢ € (¢*,0). By the maximality of t* and the continuation principle

for symmetric hyperbolic equations, we conclude that t* = 0, which establishes the
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existence of solutions to the extended IVP (4.3.65)-(4.3.66) on the spacetime region
(0,1] x S.

Uniform bounds for V: From (4.3.76), (4.4.27), (4.4.53), (4.5.12), (4.5.13) and (4.5.14),

we see that the estimates

1

||%(t>||L°°(3) S w(d), ||Vb(t)||Hk(s) < t—E(S,
and 1
PV (@) laxs) S0, 1DV () les) S 720

hold for ¢ € (0,1]. Furthermore, in view of the Remark 4.5.2, see in particular,
(4.5.9), the coefficient properties from Section 4.4.3, and the fact that x € (0,1/3],
we conclude from Theorem 3.8. and Section 3.4. of [1] that, for any fixed z > 0, there
exists, provided that m and ¢ are chosen sufficiently large and small respectively, an
element Z+ € H*1(S, W) satisfying P+Z; = Z; such that

ILZ ()] () + T Z(8) = ZF 1) S 7
for ¢ € (0,1]. With the help of the above inequality, (4.3.76), (4.4.27), (4.4.32) and

(4.5.14), we conclude that V also satisfies

. 1
[PV @)llmecrs) S 7% and [DV(O)lmvs) S 1= (4.5.15)

for ¢t € (0, 1].

Existence for the wave equations (4.0.1): Letting o = pj*, we know from the dis-

cussion contained in Section 4.3.2, that if the initial data V is chosen to sat-
isfy the constraints (4.3.67) on the spacelike hypersurface ¥, then the solution
V = (V& VE VE VE) to the extended system (4.3.65) determines a classical so-
lution @ of the semilinear wave equations (4.0.1) on M,, via the formula (4.3.69).
Moreover, this solution is uniquely determined by the initial data on X, that is
obtained from the restriction of the initial data V to the initial hypersurface ¥,
and the transformation formulas (4.3.70) and (4.3.71). To complete the proof, we
note from (4.3.68), Sobolev’s inequality, the decay estimate (4.5.15), and (4.1.2)

that each @’ satisfies the pointwise bound

7 E %—&-V—H{—z
_K . .
|u |§F2—P (1——) in M,,.

r
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Corollary 4.5.3. Suppose k € Z>5, po > 0, z > 0 and the bounded weak null

condition (see Definition 1.7.2) holds. Then there exist constants m € Zx>, and
§ > 0 such that for any V = (V) € HF(S,VN) satisfying ||\O/||Hk(3) < 4§, there

exists a unique solution
V= (V¥)e (0,1, H(S,VV)) nC'((0, 1], H*(S, VY))

to the IVP (4.3.65)-(4.3.66). Moreover, the following hold:

(a) The solution V' satisfies the uniform bounds

1
Vo@lles) S 1, [VoOllmrs) + 1PV O llmrs) S

S
and
1PV ()| sy S 27
fort € (0,1].
(b) If. additionally, the initial data V is chosen so that the constraint (4.3.67)

is satisfied, then the solution V determines a unique classical solution u* €
C%*(M,,), with ro = p2, of the IVP

GOV NV = al PVl Veu’  in M,

(a®, 0™ = (0%, w™) in 3,

where u*, 75 and W% are determined from V by (4.3.69), (4.3.71) and (4.3.72).

Furthermore, the i satisfy the pointwise bounds

_ 7\ 1—z
f _
[T [p— (1 - :> in M,,.

72—t 7

Proof. By Proposition 4.4.1, we know that the asymptotic flow satisfies the flow
assumptions (4.4.8)-(4.4.9) for some Ry > 0 and any € € (0,1/10]. Fixing € €
(0,1/11), we set z =€, v = 1 — 5z and k = 3z. It is then not difficult to verify that
these choices for z, v and k satisfy the inequalities (4.4.49) and 0 < z < k. The

proof now follows directly from Theorem 4.5.1. O
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5

Epilogue

In this thesis we showed three applications of the Fuchsian method to a class of
semi-linear wave equations which are relevant in the context of General Relativ-
ity. The discussion of the asymptotic properties of space-times is an active field
of research and in this thesis we provide decay estimates along global existence for
wave equations. This is the first step in the analysis of the asymptotic properties of

space-times in General Relativity. The main results are listed below:

o Global existence for semi-linear wave equations in Minkowski space-time with

non-linear terms satisfying the null condition.

o Global existence for semi-linear wave equations in Schwarzschild space-time

with non-linear terms satisfying the null condition.

o Global existence for semi-linear wave equations in Minkowski space-time whose

asymptotic equation satisfies the bounded weak-null condition.

The first two results are explained in Chapter 3 of this thesis. These two results
are not new since other authors have proved, with different methods, global exis-
tence for semi-linear wave equations in Minkowski and Kerr space-time, which is a
generalization of Schwarzschild space-time. Global existence results, under a small
initial data condition, for systems of wave equation of the form (3.1.1) were given
in the pioneering work of Klainerman [40] and Christodoulou [41]. Global existence
results, under a small initial data assumption, for solutions to scalar semi-linear

wave equations of the form (3.3.1) on Kerr space-time were established in [63].
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The last result in this thesis explained in Chapter 4, is new and it complements
the work reported in [68]. In this sense, not all the results in this thesis are new.
We consider that the relevance of this thesis relies on showing that the Fuchsian
method is a viable alternative to study the global existence of solutions to non-linear
hyperbolic equations. The Fuchsian method, to the perception of the author, is much
easier to follow than other methods and it seems to be capable of handling a wide
range of different problems. In future works we expect to show more applications of
the Fuchsian method for hyperbolic equations with a more complicated structure.

One possible disadvantage of the method is that it is not obvious how to find a
suitable transformation of the space-time. In order to apply the Theorem (2.3.1), we
need to transform our original space-time into a bounded, non-physical, space-time.
This step is the first hindrance that one faces when trying to apply the Fuchsian
method to a system of hyperbolic wave equations. The objective of the Fuchsian
method is to write the system of wave equations of interest into the Fuchsian form
(2.0.1)-(2.0.2), provided that it satisfies the structural conditions and assumptions
of the Theorem (2.3.1). Choosing the right compactification of space-time can make
this task easy or impossible. One of the questions we still have to answer is how
to choose the right transformation and how much freedom do we have to choose
between different spaces.

At the moment we do not have a systematic approach for choosing the right
transformation. Choosing such a transformation is in a sense, analogous to choosing
a gauge. The right gauge will allow to transform the original system into a Fuchsian
system. Finding the right mapping of the space-time is a puzzling task but we
are starting to observe some patterns which might help to identify a good class
of mappings useful for the method. For example, the map given in (4.1.2) makes
evident the structure of the null condition. One can see that the null condition
is satisfied when the terms b%; defined in (4.2.1) vanish. We have observed that
when transforming a general second order tensor some maps make the terms b,
obvious in some of the components of the tensor. This might be a useful hint to
start a classification of transformations for the Fuchsian method. In addition, the
map (4.1.2) shows the utility of Friedrich’s cylinder at spatial infinity for solving
non-linear wave equations near spatial infinity on Minkowski and Schwarzschild
space-times. The successful approach using this construction leads to the following
question, can we use a similar manipulation of space-time near time-like infinity?

Some other problems that we believe can be handled with the Fuchsian method

are the same treated in this thesis but in a time-like region of Minkowski space time,
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that is, a region of the form
M = {(t,7,0,¢) € (c0,00) x (0,00) x S?|t* — #* > 0}. (5.0.1)

This could be achieved by finding the analogous cylinder at time-like infinite, or
a different transformation. Moreover we expect that the Fuchsian method will be
capable of handling systems of wave equations on Minkoswki space-time with quasi-
linear terms. In essence the Fuchsian method and the analysis carried out in Chapter

3 should apply with some modifications to the case of quasi-linear wave equations.
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A.1 INDEX CONVENTIONS

A

Throughout this thesis we use the following convention for different index quantities:

Alphabet Examples | Index range | Index quantities
Lowercase Greek Ly Vs Y 0,1,2,3 space-time coordinate
components, e.g. (z#) = (t,7,0, )
Uppercase Greek ALY Q 2,3, spherical coordinate
components, e.g. (%) = (6, ¢)
Lowercase Latin 1,7,k 1,2,3 spatial coordinates
components, e.g. (y°) = (p,0, )
Uppercase Latin I, J, K lto N wave equation indexing, e.g. u!
Lowercase Calligraphic q,p,7 0,1 time and radial coordinate
components, e.g. (z?) = (t,r)
Uppercase Calligraphic | Z,7,K 0,1,2,3,4 first order wave

formulation indexing, e.g. V/<

A.2 CALcuULUS INEQUALITIES

In this appendix, we collect, for the convenience of the reader, a number of calculus

inequalities that we employ throughout this article. The proof of the following

inequalities are well known and may be found, for example, in the books [72], [73]

and [53]. As in the introduction, ¥ will denote a closed n-dimensional manifold.
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Theorem A.2.1. [Holder’s inequality] If 0 < p,q,r < oo satisfy 1/p+1/q=1/r,
then

Juv][pr < lullze[lv] o
for allw € LP(X) and v € LI(X).
Theorem A.2.2. [Sobolev’s inequality| Suppose 1 <p < 0o and s € Zy/p. Then
[ulloe S Nullwer
for all w € W*P(¥).

Theorem A.2.3. [Product and commutator estimates]

(1) Suppose 1 < p1,pa2, q1,q2 < 00, 5 € L1, and

1 1 1 1 1

b1 P2 q1 q2 T

Then
IV (wo)l| o S lullwses [[oll Lo + [[ull o2 0] ws.ez
and
IIV?, uvllr S IVullzedvllws-ra + [[Vullws-ip o] o

for all u,v € C®(X).

(i1) Suppose $1, 82,83 € Zsp, S1,52 > s3, 1 < p < 00, and s; + so — s3 > n/p.
Then

[ T e e e

for alluw € W*rP(X) and v € WP(X).

Theorem A.2.4. [Moser’s estimates] Suppose 1 <p < o0, s € Z>1, 0 < k <s, and
f e C*(U), where U is open and bounded in R and contains 0, and f(0) = 0. Then

IVEF ) lze < CUI llos@y) (1 + lullzz) lullwer

for allw € C°(X) N L>®(X) N WHP(X) with u(z) € U for all x € X.
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Lemma A.2.5. [Ehrling’s lemma] Suppose 1 < p < 00, $¢,$,51 € Z>p, and sg <
s < s1. Then for any € > 0 there exists a constant C' = C(e™') such that

lullwes < ellullwore + Ce™)llullwson

for all u € WsvP(%).

A.3 CONFORMAL TRANSFORMATIONS

Conformal maps are of great importance in Riemannian and pseudo Riemannian
geometry. In our case we are interested in conformal maps over Lorentzian manifolds.
We say that, given two Lorentzian Manifolds M, M equipped with metrics § and
g respectively, the map ¢ : M — M is a conformal map if the images under the
map v of two curves 41 (a), ¥2() € M that intersect at the point p € M forming
an angle 0, are curves (), v2(«) € M that intersect forming the same angle 6,
see [74], [75]. In other words, a conformal map is said to preserve angles locally. In
general relativity they are important since they preserve the causal structure and
null cones of space-times. We say that two metrics are conformally equivalent if

they are related by a conformal map such that

v (M,g) — (M,g), (A.3.1)
and
P =072, (A.3.2)
where
Q:M—R. (A.3.3)

In the following calculations, we will simply write
G = G, (A.3.4)

to indicate that this two metrics are conformally equivalent and we follow the same

conventions as in [76]. A similar relation applies for the inverse metric
g = Q2gm. (A.3.5)

We start our analysis of geometric quantities from the fact that given two connections

V and V, which are associated with the metrics § and ¢ respectively, we can define
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the tensor field
CPLwy, =Vw, — @Hwy, (A.3.6)

where C”,, is symmetric in its lower indices by definition, and w, is a co-vector

field. This shows that the difference in the action of V and V is given by

V,w, =V,w, — C[j,,wp. (A.3.7)

Introducing the vector field t* and noting that the actions of V and V must agree
on scalars, that is,
(V — V) (w,t) = 0, (A.3.8)

we can deduce from the Leibniz rule and the previous equation that
Vut" = V" +C ot (A.3.9)

By similar calculations, it is not difficult to see that the action of V on a general

tensor field can be written in terms of the connection V and the tensor field Cf, as

7 THL _ 11 Vn B2 . B 1A _
V,OT‘ V1 Um _VPT V1 Um + OpAT V1 Um + + Cp)\T V1 Um
A HLcEn e P\ M1 pn
CpV1T AV U, CpunT Vi At

(A.3.10)

Note that we can apply this to the metric g,,, and from the assumption that there

is a unique derivative operator such that @ugy,, =0, we get
@ugl/p = Vugup - Cam,ﬁap - C'UM,QW — 0, (A.3.11)

where we note that
Cp;u/ + CI/[J,p = vugypy (A312)

and from (A.3.12) that
Covn + Cuvp = Vigup, and Cypp+ Cpupy = VG (A.3.13)
Then from equations (A.3.12) and (A.3.13), we deduce that

1. o ~ ~ ~
Cpuu :égp (Vuguo + Vyglm - VO‘gMV) . (A314)
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In the case that the derivative operator V, is the ordinary derivative 0, (A.3.14)

becomes the usual Christoffel symbols

1%

1
Oy =T = 55" Oufvo + 0 = Dol (A.3.15)

and using the relations g,, = Q%g,, and g" = Q2¢", the tensor field (A.3.14) can
be written in terms of the conformal factor {2 and the connection V as

e, = ot (6£VMQ + 00V, Q — g”"gw,VUQ) ) (A.3.16)
Having the relation (A.3.16), it is relatively easy to find the correspondence between

different geometric quantities related by a conformal map. Applying twice (A.3.10)

to a co-vector field w, gives

V.V, w,

Vi (Vow, = Cw))
Vi (Vow, = CA, wy) — C, (Vaw, — C% we) — CA ) (Vowy — CF  wye) -
(A.3.17)

Then, applying (A.3.17) and (A.3.10) to R,

Riemann tensor between the physical and the unphysical manifolds is given by

“w,, we see that the relation of the

R, w, =V,.V,w, - V,V,w,
=V, (Vl,wp — C)‘pr,\) — C)‘W (VAwp — C’%\pwﬁ) — C’\W (Vowy — C" \w,) —
V., (V,w, — C’\Mpw,\) — C’)‘W (Vaw, — C"‘/\pwH) — C”\Vp (Vwy — C”{Mw,{)} .
(A.3.18)

Simplifying (A.3.18) yields

o o o A o
R vp :RMVP - QV[MC I/]p +20 p[uc l/])\' (A319)

i

With the help of (A.3.16), we can write the second term of (A.3.19) as

—2V,C%,, ==V, (67V, InQ+ 6V, InQ — g7,V In Q) +
Vo (65V,InQ+67V,InQ — g7"g,,V, InQ) (A.3.20)
= 20°,V,V,InQ—2¢""g,,V,V,InQ.
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Similarly, the third term of (A.3.19) can be expanded using (A.3.16) to obtain the

following expression

A o A o A o
2¢ p[uC VA T (C nCin — €7, C ;M) -

(0)V,InQ+ 0V, InQ — ¢*g,,V,InQ) (05V, InQ + 67ViInQ — g7"g5, V. In Q) —
(0)V,InQ+ )V, InQ — ¢*g,, V. InQ) (5V, InQ+ 67V InQ — g7%g,,V,. In Q) ,

= (07V,nQV, InQ+ 67V, nQV, InQ — ¢°"9,,V,n QV,. In O+
oV, ImQV, InQ+ 467V, InQV,InQ —¢7%g,,V, In OV, In Q-
—97"9V, InQV, InQ — 5gg*“g,,yv,< mQV\InQ+6;¢""9,, V. InQV,In Q) -
(5;’Vp InQV,InQ + 5ZVp OV, InQ —9¢7"g,,V,nQV, In Q4+
5ZV1, InQV,InQ + 5ZVV OV, InQ—-¢"%9,,V, InQV, InQ—

—97"9,,V, InQV, In Q) — CSZgMgWV,ﬂ InQVxInQ +6;9°79,, V., In 2V, 1In Q) ,
(A.3.21)

which can be reduced to

207

plu

CUVP\ :2(50[1, VM] In va In €2 + 2go-’{gp[u VV]V,Q In ) + 25U[u gy}pg)\ﬂvﬁ In QV)\ In €.
(A.3.22)

Now, using (A.3.20) and (A.3.22), we observe that the Riemann tensor pr" is

related to the Riemann tensor R, 7 by

o o o Ao
RMVP :R/Jl/p +25 [HVU]VPIHQ_QQ gp[uVV]VA an+
20%,V IOV, InQ +29g,., V,, V, In Q-+ (A.3.23)
20%,9,1,9"" Ve InQV, In Q.

From equation (A.3.23), we see, by contracting the indices v and o of prg’ that

the Ricci tensor R, and R#p are related by

R, =R, +(2-n)V,V,InQ— g, ViV, InQ+ (n —2)V,InQV,InQ
+ (2= n)gug*° Vi ln QV, In Q.
(A.3.24)
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Contracting Rup with g = Q72¢"*, we obtain the following relation for the curva-

ture scalar

R=Q7?R-2(n-1)¢"V,V,InQ+ (2—-n)(n—1)¢"V,InQV,InQ]. (A.3.25)

Now that we have the relationship of the Riemann and Rcci tensors and the scalar
of curvature between the manifolds M, M, we can proceed transforming a given
wave equation on the space time M into the conformal manifold M. We start by

considering the wave equation

e n—2) ~_ =
pv _NvT Al _
gV, V,u i = 1>Ru f (A.3.26)
where
g,u,u = ng,uzw <A327)

Here V is the connection associated to the metric §, and we define
= Qu, (A.3.28)
with s a constant. Using (A.3.10), we expand (A.3.26) starting with
7V N =" [V, Y, (Qu) — CF V()]
=g [V, V., (Qu) — Q7'V,QV,(Qu) — Q7'V,QV,(Qu)+  (A.3.29)
09" 9,, VaQV (Q%u)] .

Noting that
V., (%) = s uV, 0+ Q°V,u, (A.3.30)

we get from applying V, to (A.3.30) that

V.V, (Q%u) =s(s — 1)Q*2uV,QV,Q + sQ* 'V, uV,Q + sQ*'uV,V, 0+
sQ'V OV, u + Q°V,V,u.
(A.3.31)

122



Substituting equation (A.3.30) and (A.3.31) into (A.3.29), we obtain

VLV, 0 =" [s(s — 1) 2uV,QV,Q + sQ°7'V,uV,Q + sQ v, V, Q0+
sV, OV, u+ Q°V,V,u — 2sQ°*uV(,QV ) Q—

QQS’lv(u OV yu + sﬂsfzug”)‘ngkQV,{Q + stlg”’\gm,v)ﬂvﬁu} ,

=gh [QSVHVVU + (s — 2)95—1V(M QV yu + Qs_lg’”\g,wVAQV,ﬂu—l—
sV, V,Q + s(s — 1)Q°*uV,QV,Q — 25052 uV (,QV ) Q+

SQS’2ug”’\gWVAQV,€Q] )
(A.3.32)

Then using s = 1 — %, and equations (A.3.25), (A.3.32), we write the wave equation
(A.3.26) as

e e (=2 o n-2
_ mpv _ =0 My — A 3.
f=3d"Vv,V,u 1= 1)Ru 2 ( g"'V,V,u T = 1)Ru . (A.3.33)
or equivalently as
w "2 - A.3.34
g vﬂvl’u 4(71,—1) u f> ( T )
where we have set
f=QF5f. (A.3.35)

The transformation of the source terms f follows a similar set of computations to
equations (A.3.29)-(A.3.30). For example, suppose that the source term f is given
by

f=a"V,V,i+ bV, i+ h, (A.3.36)

where @, b* are tensor fields and  is a constant, then using (A.3.30), (A.3.32) we

can write f in terms of the connection V and the conformal factor as
f=a" [V, V,u+ (s —2)Q 'V, QV yu + Q7 g7, VOV cut
sV, V, Q0+ s(s — 1)Q°*uV,QV,Q — 2sQ°2uV (,QV ) Q+ (A.3.37)

SQS_2ug”)‘gWV>\QV,J2] + b (SQS_IUVHQ + stuu) + h.
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Assuming now that the scalar functions @ satisfy a system of wave equations

(n —2)
4(n—1)

we deduce from (A.3.28), with s = 1 — 7, and equations (A.3.33)-(A.3.35) that the

scalar functions

VAV R = f&, (A.3.38)

uf = Q3 gk, (A.3.39)

satisfy a system of wave equations given by

v Kk n—2 K _ 4K A 34
"'V, Vyu n = 1)Ru f, (A.3.40)
where
K =qlts fK (A.3.41)

In Chapter 3, we look at the particular case where the non-linear terms are of the
form
5 = a5 (@) g v ' vy, (A.3.42)

Using (A.3.30), s = 1— 2, (A.3.37) with @ = 0, b* = §""V,, h =0, and (A.3.42),

we deduce that the source term (A.3.41), can be expanded as
I = af (@ Bub) (@ 3V, Vo + 2 (g ~1) @ gV, 07l u )t
(1- 9)293—’5 Y07 Q_lulu‘])
9 g 1 v .
(A.3.43)
In Chapter 4, we use a slightly different source term given by
f=a v, a'v, i, (A.3.44)
using again (A.3.30)-(A.3.37), (A.3.44), and s = 1 — %, we write (A.3.41) in the form
o =arm (93—’5vuu1vqu + (g — 1) 072 (V,Q 'V, + Vv, )+
ny 2 n
(1- 5) Q‘r’zqulV,,QluluJ).

(A.3.45)
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