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Abstract

The research was motivated by the desire to understand some Australian smart meter data, which

was collected half-hourly for two years at the household level. With temporal data available at

ever finer scales, exploring periodicity can become overwhelming with so many possible temporal

deconstructions to explore. Analysts are expected to comprehensively explore the many ways to

view and consider temporal data. However, the plethora of choices and the lack of a systematic

approach to do so quickly can make the task daunting.

This work investigates how time may be dissected, resulting in alternative data segmentation and,

as a result, different visualizations that can aid in the identification of underlying patterns. The

first contribution (Chapter 2) describes classes of time deconstructions using linear and cyclic time

granularities. It provides tools to compute possible cyclic granularities from an ordered (usually

temporal) index and also a framework to systematically explore the distribution of a univariate

variable conditional on two cyclic time granularities by defining “harmony”. A “harmony” denotes

pairs of granularities that could be effectively analyzed together and reduces the search from

all possible options. This approach is still overwhelming for human consumption due to the

vast number of harmonies remaining. The second contribution (Chapter 3) refines the search for

informative granularities by identifying those for which the differences between the displayed

distributions are greatest and also rating them in order of importance of capturing maximum

variation. The third contribution (Chapter 4) builds upon the first two to provide methods for

exploring heterogeneities in repetitive behavior for many time series and over multiple granularities.

It accomplishes this by providing a way to cluster time series based on probability distributions

across informative cyclic granularities. Although we were motivated by the smart meter example,

the problem and the solutions we propose are practically relevant to any temporal data observed

more than once per year.
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Chapter 1

Introduction

The Smart Grid, Smart City (SGSC) project (2010–2014) available through the Department of

the Environment and Energy provides half-hourly data of over 13,000 Australian electricity smart

meter customers distributed unevenly from October 2011 to March 2014. The wide variety of

customers means that there will be large variance in behavior, leading to greater uncertainty in

the data. Behavioral patterns vary significantly due to differences in size, location, and amenities

such as solar panels, central heating, and air conditioning. For example, some families use a dryer,

while others hang their clothes to dry. This could be reflected in their weekly profile. They may

vary on a monthly basis, with some customers using more air conditioners or heaters than others

despite having comparable electrical equipment and weather conditions. Some customers are night

owls, while others are morning larks, which may show up in their daily profile. Customers’ day-off

energy consumption varies depending on whether they stay at home or go outside.

With the availability of data at finer and finer time scales, exploration of time series data may be

required to be carried out across both finer and coarser scales to draw useful inferences about the

underlying process. To reduce the complexity of time, it is typical to divide it into years, months,

weeks, days, and so on in a hierarchical manner (Aigner et al., 2011). These discrete abstractions

of time are known as time granularities. Linear time granularities (Bettini et al., 1998), such

as hours, days, weeks and months, respect the linear progression of time and are non-repeating.

Cyclic temporal granularities representing cyclical repetitions in time (such as hour-of-the-day,

work-day/weekend) are effective for analyzing repetitive patterns in time series data.
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CHAPTER 1. INTRODUCTION

To acquire a comprehensive view of the repeated patterns, it is necessary to navigate through all of

the conceivable cyclic granularities. This approach is consistent with the concept of exploratory

data analysis EDA (Tukey, 1977), which stresses the utilization of multiple perspectives on data

to assist with formulating hypotheses before proceeding to formal inferences or modeling. This,

however, is a challenging process since it throws up a myriad of possible hypotheses. Furthermore,

the transition from linear to cyclic granularities results in restructured data, with each level of the

temporal deconstruction corresponding to multiple values of the observed variable. This motivates

the research presented in this thesis, which aims to provide a platform for systematically exploring

probability distributions induced by these multiple observations to support the discovery of regular

patterns or anomalies, as well as the exploration of clusters of behaviors or the summarization of

the behavior. While we were prompted by the example of the smart meters, the challenges and

solutions presented in this thesis are essentially applicable to any temporal data collected more

than once a year, such as data from traffic sensors, pedestrian movement data in metro stations or

public buildings, cab or bike rides, or even more traditional measurements such as temperature or

precipitation collected over time. In a larger sense, it may be appropriate for data observed over

years, decades, or centuries, as in weather or astronomical data.

1.1 Visualizing probability distributions across bivariate

cyclic temporal granularities

Chapter 2 describes classes of time deconstructions using linear and cyclic time granularities, which

can be used to create data visualizations to explore periodicities, associations, and anomalies. It

provides a formal characterization of cyclic granularities and facilitates manipulation of single- and

multiple-order-up time granularities through cyclic calendar algebra, as well as providing a recom-

mendation algorithm to check the feasibility of creating plots for any two cyclic granularities. Our

proposed method is also applicable to non-temporal hierarchical granularities with an underlying

ordered index. The methods are implemented in the open-source R package gravitas and are

consistent with a tidy workflow (Wickham and Grolemund, 2016), with probability distributions

examined using the range of graphics available in ggplot2 (Wickham, 2016).

2



CHAPTER 1. INTRODUCTION

1.2 Detecting distributional differences between tempo-

ral granularities for exploratory time series analysis

Chapter 3 is a natural extension of Chapter 2. Many displays might be built using cyclic granularities.

However, only a handful of them may reveal major patterns of interest. Identifying the displays

which exhibit “significant” distributional differences and plotting only these would allow for more

efficient exploration. Furthermore, a few of the displays in this collection will be more engaging

than others. Chapter 3 provides a new distance metric for selecting and ranking the multiple

granularities. The statistical significance of potential visual discoveries is aided by selecting a

threshold for the proposed numerical distance measure. The distance measure is computed for a

single or pairs of cyclic granularities, and it can be compared across different cyclic granularities as

well as a collection of time series. This chapter also includes a case study using residential smart

meter data from Melbourne to demonstrate how the suggested methodology may be utilized to

automatically find temporal granularities with significant distributional differences. The methods

are implemented in the open-source R package hakear.

1.3 Clustering time series based on probability distribu-

tions across temporal granularities

In Chapter 4, we look at the problem of using clustering to discover patterns in a large number

of univariate time series across multiple temporal granularities. Time series clustering research is

gaining traction as more data is collected at finer temporal resolution, over longer time periods,

and for a larger number of individuals/entities. Many disciplines have noisy, patchy, uneven, and

asynchronous time series that make it difficult to search for similarities. We propose a method for

overcoming these constraints by calculating distances between time series based on probability

distributions at various temporal granularities. Because they are based on probability distributions,

these distances are resistant to missing or noisy data and aid in dimension reduction. When fed

into a clustering algorithm, the distances can be used to divide large data sets into small pockets of

similar repetitive behaviors. These subgroups can then be analyzed separately or used as distinct

prototype behaviors in classification problems. The proposed method was tested on a group of

residential electricity consumers from the Australian smart meter data set to show that it can

3



CHAPTER 1. INTRODUCTION

generate meaningful clusters. This chapter includes a brief review of the literature on traditional

time series clustering and, more specifically, clustering residential smart meter data.

1.4 Thesis structure

The thesis is structured as follows. Chapter 2 provides details of the cyclic granularities, different

classes, and computation, and also its usage in exploratory time series analysis through applications.

This is implemented in the R package gravitas (GRAnularity VIsualization for Time-series

AnalySis). Chapter 3 provides guidance on how to choose significant cyclic granularities, which are

likely to have interesting patterns across its categories. This is available as the R package hakear

(HArmonies KEeper And Rater). Chapter 4 provides methods to explore heterogeneity in repetitive

behavior for multiple time series over multiple cyclic granularities. This is in the developing R

package gracsr (Granularity CluStering in R). Chapter 5 summarizes the software tools developed

for the work, and discusses future plans. Table 1.1 details the publications, including my and my

fellow co-authors contributions.

4



CHAPTER 1. INTRODUCTION

Table 1.1: Table outlining the main chapters’ co-authorship arrangements.

Thesis
Chap-
ter

Publication
Title

Status
(published,
in press,
accepted
or re-
turned
for revi-
sion)

Nature and % of student
contribution

Co-author name(s)
Nature and % of Co-
author’s contribution

Co-
author(s),
Monash
student
Y/N

2 Visualizing
probability
distributions
across bivariate
cyclic temporal
granularities

Published 70%. Concept, methodol-
ogy development, writing
first draft and software de-
velopment

(1) Rob J Hyndman, Con-
cept, methodology and soft-
ware development, writing
12% (2) Dianne Cook, Con-
cept, methodology and soft-
ware development, writing
12% (3) Antony Unwin,
Concept and software devel-
opment 6%

N

3 Detecting distri-
butional differ-
ences between
temporal granu-
larities for ex-
ploratory time
series analysis

Working Pa-
per

80%. Concept, methodol-
ogy development, writing
first draft and software de-
velopment

(1) Rob J Hyndman, Con-
cept, methodology devel-
opment and writing 10%
(2) Dianne Cook, Concept,
methodology development
and writing 10%

N

4 Clustering time
series based
on probability
distributions
across temporal
granularities

Working Pa-
per

80%. Concept, methodol-
ogy development, writing
first draft and software de-
velopment

(1) Dianne Cook, Con-
cept, methodology develop-
ment and writing 15% (2)
Rob J Hyndman, Concept,
methodology development
and writing 5%

N
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Chapter 2

Visualizing probability distribu-

tions across bivariate cyclic tem-

poral granularities

Deconstructing a time index into time granularities can assist in exploration and automated analysis

of large temporal data sets. This paper describes classes of time deconstructions using linear

and cyclic time granularities. Linear granularities respect the linear progression of time such

as hours, days, weeks and months. Cyclic granularities can be circular such as hour-of-the-day,

quasi-circular such as day-of-the-month, and aperiodic such as public holidays. The hierarchical

structure of granularities creates a nested ordering: hour-of-the-day and second-of-the-minute are

single-order-up. Hour-of-the-week is multiple-order-up, because it passes over day-of-the-week.

Methods are provided for creating all possible granularities for a time index. A recommendation

algorithm provides an indication whether a pair of granularities can be meaningfully examined

together (a “harmony”), or when they cannot (a “clash”).

Time granularities can be used to create data visualizations to explore for periodicities, associations

and anomalies. The granularities form categorical variables (ordered or unordered) which induce

groupings of the observations. Assuming a numeric response variable, the resulting graphics are

then displays of distributions compared across combinations of categorical variables.
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CHAPTER 2. VISUALIZING PROBABILITY DISTRIBUTIONS ACROSS BIVARIATE CYCLIC
TEMPORAL GRANULARITIES

The methods implemented in the open source R package gravitas are consistent with a tidy

workflow, with probability distributions examined using the range of graphics available in ggplot2.

2.1 Introduction

Temporal data are available at various resolutions depending on the context. Social and economic

data are often collected and reported at coarse temporal scales such as monthly, quarterly or annually.

With recent advancements in technology, more and more data are recorded at much finer temporal

scales. Energy consumption may be collected every half an hour, energy supply may be collected

every minute, and web search data might be recorded every second. As the frequency of data

increases, the number of questions about the periodicity of the observed variable also increases.

For example, data collected at an hourly scale can be analyzed using coarser temporal scales such

as days, months or quarters. This approach requires deconstructing time in various possible ways

called time granularities (Aigner et al., 2011).

It is important to be able to navigate through all of these time granularities to have multiple

perspectives on the periodicity of the observed data. This aligns with the notion of exploratory data

analysis (EDA) (Tukey, 1977) which emphasizes the use of multiple perspectives on data to help

formulate hypotheses before proceeding to hypothesis testing. Visualizing probability distributions

conditional on one or more granularities is an indispensable tool for exploration. Analysts are

expected to comprehensively explore the many ways to view and consider temporal data. However,

the plethora of choices and the lack of a systematic approach to do so quickly can make the task

overwhelming.

Calendar-based graphics (Wang, Cook, and Hyndman, 2020b) are useful in visualizing patterns

in the weekly and monthly structure and are helpful when checking for the effects of weekends

or special days. Any temporal data at sub-daily resolution can also be displayed using this type

of faceting (Wickham, 2016) with days of the week, month of the year, or another sub-daily

deconstruction of time. But calendar effects are not restricted to conventional day-of-week or

month-of-year deconstructions. There can be many different time deconstructions, based on the

calendar or on categorizations of time granularities.

8



CHAPTER 2. VISUALIZING PROBABILITY DISTRIBUTIONS ACROSS BIVARIATE CYCLIC
TEMPORAL GRANULARITIES

Linear time granularities (such as hours, days, weeks and months) respect the linear progression of

time and are non-repeating. One of the first attempts to characterize these granularities is due to

Bettini et al. (1998). However, the definitions and rules defined are inadequate for describing non-

linear granularities. Hence, there is a need to define some new time granularities that can be useful

in visualizations. Cyclic time granularities can be circular, quasi-circular or aperiodic. Examples

of circular granularities are hour of the day and day of the week; an example of a quasi-circular

granularity is day of the month; examples of aperiodic granularities are public holidays and school

holidays.

Time deconstructions can also be based on the hierarchical structure of time. For example, hours

are nested within days, days within weeks, weeks within months, and so on. Hence, it is possible

to construct single-order-up granularities such as second of the minute, or multiple-order-up

granularities such as second of the hour. The lubridate package (Grolemund and Wickham, 2011)

provides tools to access and manipulate common date-time objects. However, most of its accessor

functions are limited to single-order-up granularities.

The motivation for this work stems from the desire to provide methods to better understand

large quantities of measurements on energy usage reported by smart meters in households across

Australia, and indeed many parts of the world. Smart meters currently provide half-hourly use in

kWh for each household, from the time they were installed, some as early as 2012. Households are

distributed geographically and have different demographic properties as well as physical properties

such as the existence of solar panels, central heating or air conditioning. The behavioral patterns in

households vary substantially; for example, some families use a dryer for their clothes while others

hang them on a line, and some households might consist of night owls, while others are morning

larks. It is common to see aggregates (see Goodwin and Dykes, 2012) of usage across households,

such as half-hourly total usage by state, because energy companies need to plan for maximum loads

on the network. But studying overall energy use hides the distribution of usage at finer scales, and

makes it more difficult to find solutions to improve energy efficiency. We propose that the analysis

of smart meter data will benefit from systematically exploring energy consumption by visualizing

the probability distributions across different deconstructions of time to find regular patterns and

anomalies. Although we were motivated by the smart meter example, the problem and the solutions

we propose are practically relevant to any temporal data observed more than once per year. In a

9



CHAPTER 2. VISUALIZING PROBABILITY DISTRIBUTIONS ACROSS BIVARIATE CYCLIC
TEMPORAL GRANULARITIES

broader sense, it could be even suitable for data observed by years, decades, and centuries as might

be the case in weather or astronomical data.

This work provides tools for systematically exploring bivariate granularities within the tidy workflow

(Wickham and Grolemund, 2016). In particular, we

• provide a formal characterization of cyclic granularities;

• facilitate manipulation of single- and multiple-order-up time granularities through cyclic

calendar algebra;

• develop an approach to check the feasibility of creating plots or drawing inferences for any

two cyclic granularities.

The remainder of the paper is organized as follows: Section 2.2 provides some background material

on linear granularities and calendar algebra for computing different linear granularities. Section 2.3

formally characterizes different cyclic time granularities by extending the framework of linear time

granularities, and introducing cyclic calendar algebra for computing cyclic time granularities. The

data structure for exploring the conditional distributions of the associated time series across pairs

of cyclic time granularities is discussed in Section 2.4. Section 2.5 discusses the role of different

factors in constructing an informative and trustworthy visualization. Section 2.6 examines how

systematic exploration can be carried out for a temporal and non-temporal application. Finally, we

summarize our results and discuss possible future directions in Section 2.7.

2.2 Linear time granularities

Discrete abstractions of time such as weeks, months or holidays can be thought of as “time

granularities”. Time granularities are linear if they respect the linear progression of time. There

have been several attempts to provide a framework for formally characterizing time granularities,

including Bettini et al. (1998) which forms the basis of the work described here.

2.2.1 Definitions

Definition 1. A time domain is a pair (T ;≤) where T is a non-empty set of time instants (equiva-

lently, moments or points) and ≤ is a total order on T .

10



CHAPTER 2. VISUALIZING PROBABILITY DISTRIBUTIONS ACROSS BIVARIATE CYCLIC
TEMPORAL GRANULARITIES

The time domain is assumed to be discrete, and there is unique predecessor and successor for every

element in the time domain except for the first and last.

Definition 2. The index set, Z = {z : z ∈ Z≥0}, uniquely maps the time instants to the set of

non-negative integers.

Definition 3. A linear granularity is a mapping G from the index set, Z, to subsets of the time

domain such that: (1) if i < j and G(i) and G( j) are non-empty, then each element of G(i) is less

than all elements of G( j); and (2) if i < k < j and G(i) and G( j) are non-empty, then G(k) is

non-empty. Each non-empty subset G(i) is called a granule.

This implies that the granules in a linear granularity are non-overlapping, continuous and ordered.

The indexing for each granule can also be associated with a textual representation, called the label.

A discrete time model often uses a fixed smallest linear granularity named by Bettini et al. (1998)

bottom granularity. Figure 2.1 illustrates some common linear time granularities. Here, “hour”

is the bottom granularity and “day”, “week”, “month” and “year” are linear granularities formed

by mapping the index set to subsets of the hourly time domain. If we have “hour” running from

{0,1, . . . , t}, we will have “day” running from {0,1, . . . ,⌊t/24⌋}. These linear granularities are

uni-directional and non-repeating.

Figure 2.1: Illustration of time domain, linear granularities and index set. Hour, day, week, month
and year are linear granularities and can also be considered to be time domains.
These are ordered with ordering guided by integers and hence are unidirectional and
non-repeating. Hours could also be considered the index set, and a bottom granularity.

2.2.2 Relativities

Properties of pairs of granularities fall into various categories.

Definition 4. A linear granularity G is finer than a linear granularity H, denoted G ⪯ H, if for

each index i, there exists an index j such that G(i) ⊂ H( j).
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Definition 5. A linear granularity G groups into a linear granularity H, denoted G ⊴ H, if for

each index j there exists a (possibly infinite) subset S of the integers such that H( j) =
⋃

i∈S G(i).

For example, both day ⊴ week and day ⪯ week hold, since every granule of week is the union of

some set of granules of day and each day is a subset of a week. These definitions are not equivalent.

Consider another example, where G1 denotes “weekend” and H1 denotes “week”. Then, G1 ⪯ H1,

but G1 ⋬ H1. Further, with G2 denoting “days” and H2 denoting “business-week”, G2 ⪯̸ H2, but

G2 ⊴ H2, since each business-week can be expressed as an union of some days, but Saturdays and

Sundays are not subsets of any business-week. Moreover, with H3 denoting “public holidays”,

G1 ⪯̸ H3 and G1 ⋬ H3.

Definition 6. A granularity G is periodic with respect to a finite granularity H if: (1) G ⊴ H;

and (2) there exist R, P ∈ Z+, where R is less than the number of granules of H, such that for all

i ∈ Z≥0 , if H(i) =
⋃

j∈S G( j) and H(i+R) ̸= φ then H(i+R) =
⋃

j∈S G( j+P).

If G groups into H, it would imply that any granule H(i) is the union of some granules of G;

for example, G(a1),G(a2), . . . ,G(ak). Condition (2) in Definition 6 implies that if H(i+R) ̸= /0,

then H(i+R) =
⋃
(G(a1 +P),G(a2 +P), . . . ,G(ak +P)), resulting in a “periodic” pattern of the

composition of H using granules of G. In this pattern, each granule of H is shifted by P granules of

G. P is called the period (Bettini, Jajodia, and Wang, 2000).

For example, day is periodic with respect to week with R = 1 and P = 7, while (if we ignore leap

years) day is periodic with respect to month with R = 12 and P = 365 as any month would consist

of the same number of days across years. Since the idea of period involves a pair of granularities, we

say that the pair (day,week) has period 7, while the pair (day,month) has a period 365 (ignoring

leap years).

Granularities can also be periodic with respect to other granularities, “except for a finite number

of spans of time where they behave in an anomalous way”; these are called quasi-periodic

relationships (Bettini and De Sibi, 2000). In a Gregorian calendar with leap years, day groups quasi-

periodically into month with the exceptions of the time domain corresponding to 29th February of

any year.

12
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Definition 7. The order of a linear granularity is the level of coarseness associated with a linear

granularity. A linear granularity G will have lower order than H if each granule of G is composed

of lower number of granules of bottom granularity than each granule of H.

With two linear granularities G and H, if G groups into or is finer than H then G is of lower order

than H. For example, if the bottom granularity is hour, then granularity day will have lower order

than week since each day consists of fewer hours than each week.

Granules in any granularity may be aggregated to form a coarser granularity. A system of multiple

granularities in lattice structures is referred to as a calendar by Dyreson et al. (2000). Linear time

granularities are computed through “calendar algebra” operations (Ning, Wang, and Jajodia, 2002)

designed to generate new granularities recursively from the bottom granularity. For example, due

to the constant length of day and week, we can derive them from hour using

D( j) = ⌊H(i)/24⌋, W (k) = ⌊H(i)/(24∗7)⌋,

where H, D and W denote hours, days and weeks respectively.

2.3 Cyclic time granularities

Cyclic granularities represent cyclical repetitions in time. They can be thought of as additional

categorizations of time that are not linear. Cyclic granularities can be constructed from two linear

granularities, that relate periodically; the resulting cycles can be either regular (circular), or

irregular (quasi-circular).

2.3.1 Circular granularities

Definition 8. A circular granularity CB,G relates linear granularity G to bottom granularity B if

CB,G(z) = z mod P(B,G) ∀z ∈ Z≥0 (2.1)

where z denotes the index set, B groups periodically into G with regular mapping and period

P(B,G).
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Figure 2.2: Index sets for some linear and circular granularities (a). Circular granularities can be
constructed by slicing the linear granularity into pieces and stacking them (b).

Figure 2.2 illustrates some linear and cyclical granularities. Cyclical granularities are constructed

by cutting the linear granularity into pieces, and stacking them to match the cycles (as shown in b).

B,G,H (day, week, fortnight, respectively) are linear granularities. The circular granularity CB,G

(day-of-week) is constructed from B and G, while circular granularity CB,H (day-of-fortnight) is

constructed from B and H. These overlapping cyclical granularities share elements from the linear

granularity. Each of CB,G and CB,H consist of repeated patterns {0,1, . . . ,6} and {0,1, . . . ,13} with

P = 7 and P = 14 respectively.

Suppose L is a label mapping that defines a unique label for each index ℓ ∈ {0,1, . . . , (P−1)}. For

example, the label mapping L for CB,G can be defined as

L : {0,1, . . . ,6} 7−→ {Sunday,Monday, . . . ,Saturday}.

In general, any circular granularity relating two linear granularities can be expressed as

CG,H(z) = ⌊z/P(B,G)⌋ mod P(G,H),

where H is periodic with respect to G with regular mapping and period P(G,H). Table 2.1 shows

several circular granularities constructed using minutes as the bottom granularity.
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Table 2.1: Examples of circular granularities with bottom granularity minutes. Circular granular-
ity Ci relates two linear granularities, one of which groups periodically into the other
with regular mapping and period Pi. Circular granularities can be expressed using
modular arithmetic due to their regular mapping.

Circular granularity Expression Period

minute-of-hour C1 = z mod 60 P1 = 60
minute-of-day C2 = z mod 60∗24 P2 = 1440
hour-of-day C3 = ⌊z/60⌋ mod 24 P3 = 24
hour-of-week C4 = ⌊z/60⌋ mod 24∗7 P4 = 168
day-of-week C5 = ⌊z/24∗60⌋ mod 7 P5 = 7

2.3.2 Quasi-circular granularities

A quasi-circular granularity cannot be defined using modular arithmetic because of the irregular

mapping. However, they are still formed with linear granularities, one of which groups periodically

into the other. Table 2.2 shows some examples of quasi-circular granularities.

Table 2.2: Examples of quasi-circular granularities relating two linear granularities with irregular
mapping leading to several possible period lengths.

Quasi-circular granularity Possible period lengths

Q1 = day-of-month P1 = 31,30,29,28
Q2 = hour-of-month P2 = 24×31,24×30,24×29,24×28
Q3 = day-of-year P3 = 366,365

Definition 9. A quasi-circular granularity QB,G′ is formed when bottom granularity B groups

periodically into linear granularity G′ with irregular mapping such that the granularities are given

by

QB,G′(z) = z−
k−1

∑
w=0

|Tw mod R′ |, for z ∈ Tk, (2.2)

where z denotes the index set, w denotes the index of G′, R′ is the number of granules of G′ in

each period of (B,G′), Tw are the sets of indices of B such that G′(w) =
⋃

z∈Tw
B(z), and |Tw| is the

cardinality of set Tw.

For example, day-of-year is quasi-periodic with either 365 or 366 granules of B (days) within each

granule of G′ (years). The pattern repeats every 4 years (ignoring leap seconds). Hence R′ = 4.
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QB,G′ is a repetitive categorization of time, similar to circular granularities, except that the number

of granules of B is not the same across different granules of G′.

2.3.3 Aperiodic granularities

Aperiodic linear granularities are those that cannot be specified as a periodic repetition of a pattern

of granules as described in Definition 6. Aperiodic cyclic granularities capture repetitions of these

aperiodic linear granularities. Examples include public holidays which repeat every year, but there

is no reasonably small span of time within which their behavior remains constant. A classic example

is Easter (in the Western tradition) whose dates repeat only after 5.7 million years (Reingold and

Dershowitz, 2018). In Australia, if a standard public holiday falls on a weekend, a substitute

public holiday will sometimes be observed on the first non-weekend day (usually Monday) after

the weekend. Examples of aperiodic granularity may also include school holidays or a scheduled

event. All of these are recurring events, but with non-periodic patterns. Consequently, Pi (as given

in Table 2.2) are essentially infinite for aperiodic granularities.

Definition 10. An aperiodic cyclic granularity is formed when bottom granularity B groups into

an aperiodic linear granularity M such that the granularities are given by

AB,M(z) =


i, for z ∈ Ti j

0 otherwise,
(2.3)

where z denotes the index set, Ti j are the sets of indices of B describing aperiodic linear granularities

Mi such that Mi( j) =
⋃

z∈Ti j
B(z), and M =

⋃n
i=1 Mi, n being the number of aperiodic linear

granularities in consideration.

For example, consider the school semester shown in Figure 2.3. Let the linear granularities M1

and M2 denote the teaching and non-teaching stages of the semester respectively. Both M1, M2

and M = M1
⋃

M2 denoting the “stages” of the semester are aperiodic with respect to days (B)

or weeks (G). Hence AB,M denoting day-of-the-stage would be an aperiodic cyclic granularity

because the placement of the semester within a year would vary across years. Here, QB′,M denoting

semester-day-of-the-stage would be a quasi-circular granularity since the distribution of semester
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Figure 2.3: Quasi-circular and aperiodic cyclic granularities illustrated by linear (a) and stacked-
displays (b) progression of time. The linear display shows the granularities days (B),
weeks (G), semester days (B′), and stages of a semester (M) indexed over a linear
representation of time. The granules of B′ are only defined for days when the semester
is running. Here a semester spans 18 weeks and 2 days, and consists of 6 stages. It
starts with a week of orientation, followed by an in-session period (6 weeks), a break (1
week), the second half of semester (7 weeks), a 1-week study break before final exams,
which spans the next 16 days. This distribution of semester days remains relatively
similar for every semester. QB′,M with P = 128 is a quasi-circular granularity with
repeating patterns, while AB,M is an aperiodic cyclic granularity as the placement of
the semester within a year varies from year to year with no fixed start and end dates.

days within a semester is assumed to remain constant over years. Here semester-day is denoted by

“sem day” (B′) and its granules are only defined for the span of the semesters.

2.3.4 Relativities

The hierarchical structure of time creates a natural nested ordering which can be used in the

computation of relative pairs of granularities.

Definition 11. The nested ordering of linear granularities can be organized into a hierarchy table,

denoted as Hn : (G,C,K), which arranges them from lowest to highest in order. It shows how the n

granularities relate through K, and how the cyclic granularities, C, can be defined relative to the

linear granularities. Let Gℓ and Gm represent the linear granularity of order ℓ and m respectively

with ℓ < m. Then K ≡ P(ℓ,m) represents the period length of the grouping (Gℓ,Gm), if CGℓ,Gm is a

circular granularity and K ≡ k(ℓ,m) represents the operation to obtain Gm from Gℓ, if CGℓ,Gm is

quasi-circular.
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Table 2.3: Hierarchy table for Mayan calendar with circular single-order-up granularities.

linear (G) single-order-up cyclic (C) period length/conversion operator (K)

kin kin-of-uinal 20
uinal uinal-of-tun 18
tun tun-of-katun 20
katun katun-of-baktun 20
baktun 1 1

For example, Table 2.3 shows the hierarchy table for the Mayan calendar. In the Mayan calendar,

one day was referred to as a kin and the calendar was structured such that 1 kin = 1 day; 1 uinal =

20 kin; 1 tun = 18 uinal (about a year); 1 katun = 20 tun (20 years) and 1 baktun = 20 katun.

Like most calendars, the Mayan calendar used the day as the basic unit of time (Reingold and

Dershowitz, 2018). The structuring of larger units, weeks, months, years and cycle of years, though,

varies substantially between calendars. For example, the French revolutionary calendar divided

each day into 10 “hours”, each “hour” into 100 “minutes” and each “minute” into 100 “seconds”,

the duration of which is 0.864 common seconds. Nevertheless, for any calendar, a hierarchy table

can be defined. Note that it is not always possible to organize an aperiodic linear granularity in a

hierarchy table. Hence, we assume that the hierarchy table consists of periodic linear granularities

only, and that the cyclic granularity CG(ℓ),G(m) is either circular or quasi-circular.

Definition 12. The hierarchy table contains multiple-order-up granularities which are cyclic

granularities that are nested within multiple levels. A single-order-up is a cyclic granularity which

is nested within a single level. It is a special case of multiple-order-up granularity.

In the Mayan calendar (Table 2.3), kin-of-tun or kin-of-baktun are examples of multiple-order-up

granularities and single-order-up granularities are kin-of-uinal, uinal-of-tun etc.

2.3.5 Computation

Following the calendar algebra of Ning, Wang, and Jajodia (2002) for linear granularities, we

can define cyclic calendar algebra to compute cyclic granularities. Cyclic calendar algebra com-

prises two kinds of operations: (1) single-to-multiple (the calculation of multiple-order-up cyclic

granularities from single-order-up cyclic granularities) and (2) multiple-to-single (the reverse).
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Single-to-multiple order-up

Methods to obtain multiple-order-up granularity will depend on whether the hierarchy consists

of all circular single-order-up granularities or a mix of circular and quasi-circular single-order-up

granularities. Circular single-order-up granularities can be used recursively to obtain a multiple-

order-up circular granularity using

CGℓ,Gm(z) =
m−ℓ−1

∑
i=0

P(ℓ,ℓ+ i)CGℓ+i,Gℓ+i+1(z), (2.4)

where ℓ < m− 1 and P(i, i) = 1 for i = 0,1, . . . ,m− ℓ− 1, and CB,G(z) = z mod P(B,G) as per

Equation (2.1).

For example, the multiple-order-up granularity Cuinal,katun for the Mayan calendar could be obtained

using

Cuinal,baktun(z) =Cuinal,tun(z)+P(uinal, tun)Ctun,katun(z)+P(uinal,katun)Ckatun,baktun(z)

=Cuinal,tun(z)+ 18×Ctun,katun(z)+ 18×20×Ckatun,baktun(z)

where z is the index of the bottom granularity kin.

Now consider the case where there is one quasi-circular single order-up granularity in the hierarchy

table while computing a multiple-order-up quasi-circular granularity. Any multiple-order-up

quasi-circular granularity Cℓ,m(z) could then be obtained as a discrete combination of circular and

quasi-circular granularities.

Depending on the order of the combination, two different approaches need to be employed leading

to the following cases:

• CGℓ,Gm′ is circular and CGm′ ,Gm is quasi-circular

CGℓ,Gm(z) =CGℓ,Gm′ (z)+P(ℓ,m′)CGm′ ,Gm(z) (2.5)
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Table 2.4: Hierarchy table for the Gregorian calendar with both circular and quasi-circular single-
order-up granularities.

linear (G) single-order-up cyclic (C) period length/conversion operator (K)

minute minute-of-hour 60
hour hour-of-day 24
day day-of-month k(day, month)
month month-of-year 12
year 1 1

• CGℓ,Gm′ is quasi-circular and CGm′ ,Gm is circular

CGℓ,Gm(z) =CGℓ,Gm′ (z)+
CGm′ ,Gm (z)−1

∑
w=0

(|Tw|) (2.6)

where Tw is such that Gm′(w) =
⋃

z∈Tw
Gℓ and |Tw| is the cardinality of set Tw.

For example, the Gregorian calendar (Table 2.4) has day-of-month as a single-order-up quasi-

circular granularity, with the other granularities being circular. Using Equations (2.5) and (2.6), we

then have:

Chour,month(z) =Chour,day(z)+P(hour,day) ∗Cday,month(z)

Cday,year(z) =Cday,month(z)+
Cmonth,year(z)−1

∑
w=0

(|Tw|),

where Tw is such that month(w) =
⋃

z∈Tw
day(z).

Multiple-to-single order-up

Similar to single-to-multiple operations, multiple-to-single operations involve different approaches

for all circular single-order-up granularities and a mix of circular and quasi-circular single-order-up

granularities in the hierarchy. For a hierarchy table Hn : (G,C,K) with only circular single-order-up

granularities and ℓ1,ℓ2,m1,m2 ∈ 1,2, . . . ,n and ℓ2 < ℓ1 and m2 > m1, multiple-order-up granularities

can be obtained using Equation (2.7).

CGℓ1 ,Gm1
(z) = ⌊CGℓ2 ,Gm2

(z)/P(ℓ2,ℓ1)⌋ mod P(ℓ1,m1) (2.7)

For example, in the Mayan Calendar, it is possible to compute the single-order-up granularity

tun-of-katun from uinal-of-baktun, since Ctun,katun(z) = ⌊Cuinal,baktun(z)/18⌋ mod 20.
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Table 2.5: The data structure for exploring periodicities in data by including cyclic granularities
in the tsibble structure with index, key and measured variables.

index key measurements C1 C2 · · · CNC

Multiple order-up quasi-circular granularities

Single-order-up quasi-circular granularity can be obtained from multiple-order-up quasi-circular

granularity and single/multiple-order-up circular granularity using Equations (2.5) and (2.6).

2.4 Data structure

Effective exploration and visualization benefit from well-organized data structures. Wang, Cook,

and Hyndman (2020a) introduced the tidy “tsibble” data structure to support exploration and

modeling of temporal data. This forms the basis of the structure for cyclic granularities. A tsibble

comprises an index, optional key(s), and measured variables. An index is a variable with inherent

ordering from past to present and a key is a set of variables that define observational units over time.

A linear granularity is a mapping of the index set to subsets of the time domain. For example, if

the index of a tsibble is days, then a linear granularity might be weeks, months or years. A bottom

granularity is represented by the index of the tsibble.

All cyclic granularities can be expressed in terms of the index set. Table 2.5 shows the tsibble

structure (index, key, measurements) augmented by columns of cyclic granularities. The total

number of cyclic granularities depends on the number of linear granularities considered in the

hierarchy table and the presence of any aperiodic cyclic granularities. For example, if we have n

periodic linear granularities in the hierarchy table, then n(n−1)/2 circular or quasi-circular cyclic

granularities can be constructed. Let NC be the total number of contextual circular, quasi-circular

and aperiodic cyclic granularities that can originate from the underlying periodic and aperiodic

linear granularities. Simultaneously encoding more than a few of these cyclic granularities when

visualizing the data overwhelms human comprehension. Instead, we focus on visualizing the data

split by pairs of cyclic granularities (Ci, C j). Data sets of the form <Ci, C j, v> then allow exploration

and analysis of the measured variable v.
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2.4.1 Harmonies and clashes

The way granularities are related is important when we consider data visualizations. Consider two

cyclic granularities Ci and C j, such that Ci maps index set to a set {Ak | k = 1, . . . ,K} and C j maps

index set to a set {Bℓ | ℓ= 1, . . . ,L}. Here, Ak and Bℓ are the levels/categories corresponding to Ci

and C j respectively. Let Skℓ be a subset of the index set such that for all s ∈ Skℓ, Ci(s) = Ak and

C j(s) = Bℓ. There are KL such data subsets, one for each combination of levels (Ak, Bℓ). Some of

these sets may be empty due to the structure of the calendar, or because of the duration and location

of events in a calendar.

Definition 13. A clash is a pair of cyclic granularities that contains empty combinations of

categories.

Definition 14. A harmony is a pair of cyclic granularities that does not contain any empty

combinations of its categories.

Structurally empty combinations can arise due to the structure of the calendar or hierarchy. For

example, let Ci be day-of-month with 31 levels and C j be day-of-year with 365 levels. There will

be 31×365 = 11315 sets Skℓ corresponding to possible combinations of Ci and C j. Many of these

are empty. For example, S1,5 is empty because the first day of the month can never correspond to

the fifth day of the year. Hence the pair (day-of-month, day-of-year) is a clash.

Event-driven empty combinations arise due to differences in event location or duration in a calendar.

For example, let Ci be day-of-week with 7 levels and C j be working-day/non-working-day with 2

levels. While potentially all of these 14 sets Skℓ can be non-empty (it is possible to have a public

holiday on any day-of-week), in practice many of these will probably have very few observations.

For example, there are few (if any) public holidays on Wednesdays or Thursdays in any given year

in Melbourne, Australia.

An example of harmony is where Ci and C j denote day-of-week and month-of-year respectively.

So Ci will have 7 levels while C j will have 12 levels, giving 12×7 = 84 sets Skℓ. All of these are

non-empty because every day-of-week can occur in every month. Hence, the pair (day-of-week,

month-of-year) is a harmony.
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2.4.2 Near-clashes

Suppose Ci denotes day-of-year and C j denotes day-of-week. While any day of the week can occur

on any day of the year, some combinations will be very rare. For example, the 366th day of the

year will only coincide with a Wednesday approximately every 28 years on average. We refer to

these as “near-clashes”.

2.5 Visualization

The purpose is to visualize the distribution of the continuous variable (v) conditional on the values

of two granularities, Ci and C j. Since Ci and C j are factors or categorical variables, data subsets

corresponding to each combination of their levels form a subgroup and the visualization amounts

to having displays of distributions for different subgroups. The response variable (v) is plotted

on the y-axis and the levels of Ci(C j) on the x-axis, conditional on the levels of C j(Ci). This

means, carrying out the same plot corresponding to each level of the conditioning variable. This is

consistent with the widely used grammar of graphics which is a framework to construct statistical

graphics by relating the data space to the graphic space (Wilkinson, 1999; Wickham, 2016).

2.5.1 Data summarization

There are several ways to summarize the distribution of a data set such as estimating the empirical

distribution or density of the data, or computing a few quantiles or other statistics. This estimation

or summarization could be potentially misleading if it is performed on rarely occurring categories

(Section 2.4.2). Even when there are no rarely occurring events, the number of observations may

vary greatly within or across each facet, due to missing observations or uneven locations of events

in the time domain. In such cases, data summarization should be used with caution as sample sizes

will directly affect the accuracy of the estimated quantities being displayed.

2.5.2 Display choices for univariate distributions

The basic plot choice for our data structure is one that can display distributions. For displaying

the distribution of a continuous univariate variable, many options are available. Displays based

on descriptive statistics include boxplots (Tukey, 1977) and its variants such as notched boxplots
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(McGill, Tukey, and Larsen, 1978) or other variations as mentioned in Wickham and Stryjewski

(2012). They also include line or area quantile plots which can display any quantiles and not only

quartiles like in a boxplot. Plots based on kernel density estimates include violin plots (Hintze

and Nelson, 1998), summary plots (Potter et al., 2010), ridge line plots (Wilke, 2020), and highest

density region (HDR) plots (Hyndman, 1996). The less commonly used letter-value plots (Hofmann,

Wickham, and Kafadar, 2017) is midway between boxplots and density plots. Letter values are

order statistics with specific depths; for example, the median (M) is a letter value that divides the

data set into halves. Each of the next letter values splits the remaining parts into two separate

regions so that the fourths (F), eighths (E), sixteenths (D), etc. are obtained. They are useful for

displaying the distributions beyond the quartiles especially for large data, where boxplots mislabel

data points as outliers. One of the best approaches in exploratory data analysis is to draw a variety

of plots to reveal information while keeping in mind the drawbacks and benefits of each of the plot

choices. For example, boxplots obscure multimodality, and interpretation of density estimates and

histograms may change depending on the bandwidth and binwidths respectively. In R package

gravitas (Gupta et al., 2020), boxplots, violin, ridge, letter-value, line and area quantile plots are

implemented, but it is potentially possible to use any plots which can display the distribution of the

data.

2.5.3 Comparison across sub-groups induced by conditioning

Levels

The levels of cyclic granularities affect plotting choices since space and resolution may be prob-

lematic with too many levels. A potential approach could be to categorize the number of levels as

low/medium/high/very high for each cyclic granularity and define some criteria based on human

cognitive power, available display size and the aesthetic mappings. Default values for these catego-

rizations could be chosen based on levels of common temporal granularities like days of the month,

days of the fortnight, or days of the week.
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Synergy of cyclic granularities

The synergy of the two cyclic granularities will affect plotting choices for exploratory analysis.

Cyclic granularities that form clashes (Section 2.4.1) or near-clashes lead to potentially ineffec-

tive graphs. Harmonies tend to be more useful for exploring patterns. Figure 2.4a shows the

distribution of half-hourly electricity consumption through letter value plots across months of the

year conditional on quarters of the year. This plot does not work because quarter-of-year clashes

with month-of-year, leading to empty subsets. For example, the first quarter never corresponds to

December.

Conditioning variable

When Ci is mapped to the x position and C j to facets, then the Ak levels are juxtaposed and each Bℓ

represents a group/facet. Gestalt theory (Wertheimer (1938)) suggests that when items are placed in

close proximity, people assume that they are in the same group because they are close to one another

and apart from other groups. Hence, in this case, the Ak’s are compared against each other within

each group. With the mapping of Ci and C j reversed, the emphasis will shift to comparing Bℓ levels

rather than Ak levels. For example, Figure 2.4b shows the letter value plot across weekday/weekend

partitioned by quarters of the year and Figure 2.4c shows the same two cyclic granularities with

their mapping reversed. Figure 2.4b helps us to compare weekday and weekend within each quarter

and Figure 2.4c helps to compare quarters within weekend and weekday.

2.6 Applications

2.6.1 Smart meter data of Australia

Smart meters provide large quantities of measurements on energy usage for households across

Australia. One of the customer trials (Department of the Environment and Energy, 2018) conducted

as part of the Smart Grid Smart City project in Newcastle and parts of Sydney provides customer

level data on energy consumption for every half hour from February 2012 to March 2014. We

can use this data set to visualize the distribution of energy consumption across different cyclic

granularities in a systematic way to identify different behavioral patterns.
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Figure 2.4: Distribution of energy consumption displayed on a logarithmic scale as letter value
plots, illustrating harmonies and clashes, and how mappings change emphasis: a
weekday/weekend faceted by quarter-of-year produces a harmony, b quarter-of-year
faceted by weekday/weekend produces a harmony, c month-of-year faceted by quarter-
of-year produces a clash, as indicated by the empty sets and white space. Placement
within a facet should be done for primary comparisons. For example, arrangement
in a makes it easier to compare across weekday type (x-axis) within a quarter (facet).
It can be seen that in quarter 2, more mass occupied the lower tail on the weekends
(letter value E corresponding to tail area 1/8) relative to that of the weekdays (letter
value D 1/16), which corresponds to more days with lower energy use in this period.
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Cyclic granularities search and computation

The tsibble object smart_meter10 from R package gravitas (Gupta et al., 2020) includes the

variables reading_datetime, customer_id and general_supply_kwh denoting the index,

key and measured variable respectively. The interval of this tsibble is 30 minutes.

To identify the available cyclic time granularities, consider the conventional time deconstructions

for a Gregorian calendar that can be formed from the 30-minute time index: half-hour, hour, day,

week, month, quarter, half-year, year. In this example, we will consider the granularities hour,

day, week and month giving six cyclic granularities “hour_day”, “hour_week”, “hour_month”,

“day_week”, “day_month” and “week_month”, read as “hour of the day”, etc. To these, we add

day-type (“wknd_wday”) to capture weekend and weekday behavior. Now that we have a list of

cyclic granularities to look at, we can compute them using the results in Section 2.3.4.

Screening and visualizing harmonies

Using these seven cyclic granularities, we want to explore patterns of energy behavior. Each of

these seven cyclic granularities can either be mapped to the x-axis or to facets. Choosing 2 of the

possible 7 granularities, gives 7P2 = 42 candidates for visualization. Harmonies can be identified

among those 42 possibilities to narrow the search. Table 2.6 shows 16 harmony pairs after removing

clashes and any cyclic granularities with more than 31 levels, as effective exploration becomes

difficult with many levels (Section 2.5.3).

A few harmony pairs are displayed in Figure 2.5 to illustrate the impact of different distribution

plots and reverse mapping. For each of Figure 2.5b and c, Ci denotes day-type (weekday/weekend)

and C j is hour-of-day. The geometry used for displaying the distribution is chosen as area-quantiles

and violins in Figure 2.5b and c respectively. Figure 2.5a shows the reverse mapping of Ci and C j

with Ci denoting hour-of-day and C j denoting day-type with distribution geometrically displayed as

boxplots.

In Figure 2.5b, the black line is the median, the purple (narrow) band covers the 25th to 75th

percentile, the orange (middle) band covers the 10th to 90th percentile, and the green (broad)

band covers the 1st to 99th percentile. The first facet represents the weekday behavior while the

second facet displays the weekend behavior; energy consumption across each hour of the day is
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Table 2.6: Harmonies with pairs of cyclic granularities, one mapped to facets and the other to the
x-axis. Only 16 of 42 possible combinations of cyclic granularities are harmony pairs.

facet variable x-axis variable facet levels x-axis levels

day_week hour_day 7 24
day_month hour_day 31 24
week_month hour_day 5 24
wknd_wday hour_day 2 24
hour_day day_week 24 7

day_month day_week 31 7
week_month day_week 5 7
hour_day day_month 24 31
day_week day_month 7 31
wknd_wday day_month 2 31

hour_day week_month 24 5
day_week week_month 7 5
wknd_wday week_month 2 5
hour_day wknd_wday 24 2
day_month wknd_wday 31 2

week_month wknd_wday 5 2

shown inside each facet. The energy consumption is extremely skewed with the 1st, 10th and 25th

percentile lying relatively close whereas 75th, 90th and 99th lying further away from each other.

This is common across both weekdays and weekends. For the first few hours on weekdays, median

energy consumption starts and continues to be higher for longer compared to weekends.

The same data is shown using violin plots instead of quantile plots in Figure 2.5c. There is

bimodality in the early hours of the day for weekdays and weekends. If we visualize the same data

with reverse mapping of the cyclic granularities (Figure 2.5a), then the natural tendency would be

to compare weekend and weekday behavior within each hour and not across hours. Then it can

be seen that median energy consumption for the early morning hours is higher for weekdays than

weekends. Also, outliers are more prominent in the later hours of the day. All of these indicate

that looking at different distribution geometry or changing the mapping can shed light on different

aspects of energy behavior for the same sample.

2.6.2 T20 cricket data of Indian Premier League

Our proposed approach can be generalized to other hierarchical granularities where there is an

underlying ordered index. We illustrate this with data from the sport cricket. Cricket is played
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Table 2.7: Hierarchy table for cricket where overs are nested within an innings, innings nested
within a match and matches within a season.

linear (G) single-order-up cyclic (C) period length/conversion operator (K)

over over-of-inning 20
inning inning-of-match 2
match match-of-season k(match, season)
season 1 1

with two teams of 11 players each, with each team taking turns batting and fielding. This is similar

to baseball, wherein the batsman and bowler in cricket are analogous to a batter and pitcher in

baseball. A wicket is a structure with three sticks, stuck into the ground at the end of the cricket

pitch behind the batsman. One player from the fielding team acts as the bowler, while another takes

up the role of the wicket-keeper (similar to a catcher in baseball). The bowler tries to hit the wicket

with a ball, and the batsman defends the wicket using a bat. At any one time, two of the batting

team and all of the fielding team are on the field. The batting team aims to score as many runs as

possible, while the fielding team aims to successively dismiss 10 players from the batting team.

The team with the highest number of runs wins the match.

Cricket is played in various formats and Twenty20 cricket (T20) is a shortened format, where the

two teams have a single innings each, which is restricted to a maximum of 20 overs. An over will

consist of 6 balls (with some exceptions). A single match will consist of 2 innings and a season

consists of several matches. Although there is no conventional time component in cricket, each

ball can be thought to represent an ordering over the course of the game. Then, we can conceive a

hierarchy where the ball is nested within overs, overs nested within innings, innings within matches,

and matches within seasons. Cyclic granularities can be constructed using this hierarchy. Example

granularities include ball of the over, over of the innings, and ball of the innings. The hierarchy

table is given in Table 2.7. Although most of these cyclic granularities are circular by the design of

the hierarchy, in practice some granularities are aperiodic. For example, most overs will consist of

6 balls, but there are exceptions due to wide balls, no-balls, or when an innings finishes before the

over finishes. Thus, the cyclic granularity ball-of-over may be aperiodic.

The Indian Premier League (IPL) is a professional T20 cricket league in India contested by eight

teams representing eight different cities in India. The IPL ball-by-ball data is provided in the
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cricket data set in the gravitas package for a sample of 214 matches spanning 9 seasons (2008

to 2016).

Many interesting questions could be addressed with the cricket data set. For example, does the

distribution of total runs depend on whether a team bats in the first or second innings? The Mumbai

Indians (MI) and Chennai Super Kings (CSK) appeared in the final playoffs from 2010 to 2015.

Using data from these two teams, it can be observed (Figure 2.6a) that for the team batting in the

first innings there is an upward trend of runs per over, while there is no clear upward trend in the

median and quartile deviation of runs for the team batting in the second innings after the first few

overs. This suggests that players feel mounting pressure to score more runs as they approach the

end of the first innings, while teams batting second have a set target in mind and are not subjected

to such mounting pressure and therefore may adopt a more conservative run-scoring strategy.

Another question that can be addressed is if good fielding or bowling (defending) in the previous

over affects the scoring rate in the subsequent over. To measure the defending quality, we use an

indicator function on dismissals (1 if there was at least one wicket in the previous over, 0 otherwise).

The scoring rate is measured by runs per over. Figure 2.6b shows that no dismissals in the previous

over leads to a higher median and quartile spread of runs per over compared to the case when there

has been at least one dismissal in the previous over. This seems to be unaffected by the over of the

innings (the faceting variable). This might be because the new batsman needs to “play himself in”

or the dismissals lead the (not-dismissed) batsman to adopt a more defensive play style. Run rates

will also vary depending on which player is facing the next over and when the wicket falls in the

previous over.

Here, wickets per over is an aperiodic cyclic granularity, so it does not appear in the hierarchy table.

These are similar to holidays or special events in temporal data.

2.7 Discussion

Exploratory data analysis involves many iterations of finding and summarizing patterns. With

temporal data available at ever finer scales, exploring periodicity can become overwhelming with so

many possible granularities to explore. This work provides tools to classify and compute possible

cyclic granularities from an ordered (usually temporal) index. We also provide a framework to
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systematically explore the distribution of a univariate variable conditional on two cyclic time

granularities using visualizations based on the synergy and levels of the cyclic granularities.

The gravitas package provides very general tools to compute and manipulate cyclic granularities,

and to generate plots displaying distributions conditional on those granularities.

A missing piece in the package gravitas is the computation of cyclic aperiodic granularities

which would require computing aperiodic linear granularities first. A few R packages including

almanac (Vaughan, 2020) and gs (Laird-Smith, 2020) provide the tools to create recurring

aperiodic events. These functions can be used with the gravitas package to accommodate

aperiodic cyclic granularities.

We propose producing plots based on pairs of cyclic granularities that form harmonies rather

than clashes or near-clashes. A future direction of work could be to further refine the selection

of appropriate pairs of granularities by identifying those for which the differences between the

displayed distributions is greatest and rating these selected harmony pairs in order of importance

for exploration.
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R-package: The ideas presented in this article have been implemented in the open-source R (R

Core Team, 2020) package gravitas (Gupta et al., 2020), available from CRAN. The R-package

facilitates manipulation of single and multiple-order-up time granularities through cyclic calendar

algebra, checks feasibility of creating plots or drawing inferences for any two cyclic granularities by

providing list of harmonies, and recommends possible visual summaries through factors described

in the article. Version 0.1.3 of the package was used for the results presented in the article and is

available on Github (https://github.com/Sayani07/gravitas).
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Figure 2.5: Energy consumption of a single customer shown with different distribution displays,
and granularity arrangements: hour of the day; and weekday/weekend. a The side-by-
side boxplots make the comparison between day types easier, and suggest that there
is generally lower energy use on the weekend. Interestingly, this is the opposite to
what might be expected. Plots b, c examine the temporal trend of consumption over
the course of a day, separately for the type of day. The area quantile emphasizes time,
and indicates that median consumption shows prolonged high usage in the morning on
weekdays. The violin plot emphasizes subtler distributional differences across hours:
morning use is bimodal.
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Figure 2.6: Examining distribution of runs per innings, overs of the innings and number of wickets
in previous innings. Plot a displays distribution using letter value plots. A gradual
upward trend in runs per over can be seen in innings 1, which is not present in innings
2. Plot b shows quantile plots of runs per over across an indicator of wickets in the
previous over, faceted by current over. When a wicket occurred in the previous over,
the runs per over tends to be lower throughout the innings.
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Chapter 3

Detecting distributional differ-

ences between temporal granular-

ities for exploratory time series

analysis

Cyclic temporal granularities, which are temporal deconstructions of a time period into units such

as hour-of-the-day, work-day/weekend, can be useful for measuring repetitive patterns in large

univariate time series data. The granularities feed new approaches to exploring time series data.

One use is to take pairs of granularities, and make plots of response values across the categories

induced by the temporal deconstruction. However, when there are many granularities that can be

constructed for a time period, there will also be too many possible displays to decide which might

be the more interesting to display. This work proposes a new distance metric to screen and rank the

possible granularities, and hence choose the most interesting ones to plot. The distance measure

is computed for a single or pairs of cyclic granularities that can be compared across different

cyclic granularities and also on a collection of time series. The methods are implemented in the

open-source R package hakear.
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3.1 Introduction

Cyclic temporal granularities (Bettini et al., 1998; Gupta et al., 2021) are temporal deconstructions

that define cyclic repetitions in time, e.g. hour-of-day, day-of-month, or regularly scheduled public

holidays. These granularities form ordered or unordered categorical variables. An example of

an ordered granularity is day-of-week, where Tuesday is always followed by Wednesday, and so

on. An unordered granularity example is week type in an academic semester: orientation, break,

exam or regular classes. We can use granularities to explore patterns in univariate time series

by examining the distribution of the measured variable across different categories of the cyclic

granularities.

As a motivating example, consider Figure 3.1 which shows electricity smart meter data plotted

against two granularities (hour-of-day, month-of-year). The data was collected on a single household

in Melbourne, Australia, over a six month period, and was previously used in Wang, Cook,
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Figure 3.1: A cyclic granularity can be considered to be a categorical variable, and used to break
the data into subsets. Here, side-by-side boxplots overlaid on jittered dotplots explore
the distribution of energy use (on a logarithmic scale) by a household for two different
cyclic granularities: (a) hour-of-day and (b) month-of-year. Daily peaks occur in
morning and evening hours, indicating a working household, where members leave for
and return from work. More volatility of usage in summer months in Australia (Jan,
Feb) is probably due to air conditioner use on just some days.
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and Hyndman (2020b). The categorical variable (granularity) is mapped to the x-axis, and the

distribution of the response variable is displayed using both side-by-side jittered dotplots and

boxplots. From panel (a) it can be seen that energy consumption is higher during the morning

hours (5–8), when members in the household wake up, and again in the evening hours (17–20),

possibly when members get back from work. In addition, the largest variation in energy use is in

the afternoon hours (12–16), as seen in the length of the boxes. From panel (b), it is seen that the

variability in energy usage is higher in Jan and Feb, probably due to the usage of air conditioners

on some days. The median usage is highest in January, dips in February–April and rises again in

May–June, although not to the height of January usage. This suggests that the household does not

use as much electricity for heating as it does for air conditioning. A lot of households in Melbourne

use gas heating and hence the heater use might not be reflected in the electricity data.

Many different displays could be constructed using different granularities including day-of-week,

day-of-month, weekday/weekend, etc. However, only a few might be interesting and reveal

important patterns in energy usage. Determining which displays have “significant” distributional

differences between categories of the cyclic granularity, and plotting only these, would make for

efficient exploration.

Exploring the distribution of the measured variable across two cyclic granularities provides more

detailed information on its structure. For example, Figure 3.2(a) shows the usage distribution across

hour-of-day conditional on month-of-year across two households. It shows the hourly usage over a

day does not remain the same across months. Unlike other months, the 75th and 90th percentile

for all hours of the day in January are high, similar, and are not characterized by a morning and

evening peak. The household in Figure 3.2(b) has 90th percentile consumption higher in summer

months relative to autumn or winter, but the 75th and 90th percentile are far apart in all months,

implying that the second household resorts to air conditioning much less regularly than the first one.

The differences seem to be more prominent across month-of-year (facets) than hour-of-day (x-axis)

for this household, whereas they are prominent for both cyclic granularities for the first household.

Are all four displays in Figures 3.1 and 3.2 useful in understanding the distributional difference

in energy usage? Which ones are more useful than others? If NC is the total number of cyclic

granularities of interest, the number of displays that could be potentially informative is NC when

considering displays of the form in Figure 3.1. The dimension of the problem, however, increases
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Figure 3.2: Distribution of energy consumption displayed through area quantile plots across
two cyclic granularities month-of-year and hour-of-day and two households. The
black line is the median, whereas the orange band covers the 25th (lower) to 75th

(upper) percentile and the green band covers the 10th (lower) to 90th (upper) percentile.
Difference between the 90th and 75th percentile is less for (Jan, Feb) for the first
household (a), suggesting that it is a more frequent user of air conditioners than
the second household (b). Distribution of energy usage for (a) changes across both
granularities, whereas for (b) daily pattern stays same irrespective of the months.

when considering more than one cyclic granularity. When considering displays of the form in

Figure 3.2, there are NC(NC −1) possible pairwise plots exhaustively, with one of the two cyclic

granularities acting as the conditioning variable. This can be overwhelming for human consumption

even for moderately large NC. It is therefore useful to identify those displays that are informative

across at least one cyclic granularity.

This problem is similar to Scagnostics (Scatterplot Diagnostics) by Tukey and Tukey (1988),

which are used to identify meaningful patterns in large collections of scatterplots. Given a set of v

variables, there are p(p−1)/2 pairs of variables, and thus the same number of possible pairwise

scatterplots. Therefore, even for small v, the number of scatterplots can be large, and scatterplot

matrices (SPLOMs) can easily run out of pixels when presenting high-dimensional data. Dang and

Wilkinson (2014); Wilkinson, Anand, and Grossman (2005) provided potential solutions to this,

where a few characterizations can be used to locate anomalies in density, shape, trend, and other

features in the 2D point scatters.

38



CHAPTER 3. DETECTING DISTRIBUTIONAL DIFFERENCES BETWEEN TEMPORAL
GRANULARITIES FOR EXPLORATORY TIME SERIES ANALYSIS

In this paper, we provide a solution to narrowing down the search from NC(NC −1) conditional

distribution plots by introducing a new distance measure that can be used to detect significant

distributional differences across cyclic granularities. This work is a natural extension of our previous

work (Gupta et al., 2021) which narrows down the search from NC(NC −1) plots by identifying

pairs of granularities that can be meaningfully examined together (a “harmony”), or when they

cannot (a “clash”). However, even after excluding clashes, the list of harmonies left may be too large

for exhaustive exploration. Hence, there is a need to reduce the search even further by including

only those harmonies that contain useful information.

Buja et al. (2009); Majumder, Hofmann, and Cook (2013) presented methods for statistical

significance testing of visual findings using human cognition as the statistical tests. In this paper,

the visual discovery of distributional differences is facilitated by choosing a threshold for the

proposed numerical distance measure, eventually selecting only those cyclic granularities for which

the distributional differences are sufficient to make it an interesting display. Two things need

to be accomplished here: 1) to see if there are any statistically significant differences between

independent groups, and 2) to quantify any differences that do exist. One way to address this

problem is by using a one-way or two-way ANOVA (Fisher, 1992). Assume we want to examine

whether there is a significant difference in electricity demand on various days of the week. In this

case, each day of the week may be regarded as an independent group, and a one-way ANOVA

can be used to assess how the means of the electricity demand varies across different days of the

week. The approach proposed in this paper looks at the distributional differences in the quantitative

variable instead of merely the mean or one measure of central tendency. Besides, it also takes into

account that the levels in each group have an inherent order in a time series context.

The article is organized as follows. Section 3.2 introduces a distance measure for detecting

distributional difference in temporal granularities for a continuous univariate dependent variable.

This enables identification of patterns in the time series data; Section 3.3 devises a selection criterion

by choosing a threshold, which results in detection of only significantly interesting patterns. Section

3.3.3 provides a simulation study on the proposed methodology. Section 3.4 presents an application

to residential smart meter data in Melbourne to show how the proposed methodology can be used

to automatically detect temporal granularities along which distributional differences are significant.
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3.2 Proposed distance measure

We propose a measure called Weighted Pairwise Distances (wpd) to detect distributional differences

in the measured variable across cyclic granularities.

3.2.1 Principle

The principle behind the construction of wpd is explained through a simple example in Figure 3.3.

Each of these figures describes a panel with two x-axis categories and three facet levels, but with

different designs. Figure 3.3a has all categories drawn from a standard normal distribution for each

facet. It is not a particularly interesting display, as the distributions do not vary across x-axis or

facet categories. Figure 3.3b has x categories drawn from the same distribution, but across facets the

distribution means are three standard deviations apart. Figure 3.3c exhibits the opposite situation
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Figure 3.3: An example illustrating the principle of the proposed distance measure, displaying
the distribution of a normally distributed variable in four panels each with two x-axis
categories and three facet levels, but with different designs. Panel (a) is not interesting
as the distribution of the variable does not depend on x or facet categories. The data
set in (a) is consistent with the null distribution. Panels (b) and (c) are more interesting
than (a) since there is a change in distribution either across facets (b) or x-axis (c).
Panel (d) is most interesting in terms of capturing structure in the variable as the
distribution of the variable changes across both facet and x-axis variable. The value
of our proposed distance measure is presented for each panel, the relative differences
between which will be explained later in Section 3.3.2.
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where distribution between the x-axis categories are three standard deviations apart, but they do not

change across facets. In Figure 3.3d, the distribution varies across both facet and x-axis categories

by three standard deviations.

If the panels are to be ranked in order of capturing maximum variation in the measured variable

from minimum to maximum, then an obvious choice would be (a) followed by (b), (c) and then (d).

It might be argued that it is not clear if (b) should precede or succeed (c) in the ranking. Gestalt

theory suggests items placed at close proximity can be compared more easily, because people

assume that they are in the same group and apart from other groups. With this principle in mind,

Panel (b) is considered less informative compared to Panel (c) in emphasizing the distributional

differences.

For displays showing a single cyclic granularity rather than pairs of granularities, we have only two

design choices corresponding to no difference and significant differences between categories of

that cyclic granularity.

The proposed measure wpd is constructed in such a way that it can be used to rank panels of

different designs as well as test if a design is interesting. This measure is aimed to be an estimate

of the maximum variation in the measured variable explained by the panel. A higher value of

wpd would indicate that the panel is interesting to look at, whereas a lower value would indicate

otherwise.

3.2.2 Notation

Let the number of cyclic granularities considered in the display be m. The notations and methodol-

ogy are described in detail for m = 2. But it can be easily extended to m > 2. Consider two cyclic

granularities A and B, such that A = {a j : j = 1,2, . . . ,nx} and B = {bk : k = 1,2, . . . ,nf } with A

placed across the x-axis and B across facets. Let v = {vt : t = 0,1,2, . . . ,T −1} be a continuous

variable observed across T time points. This data structure with nx x-axis levels and nf facet levels

is referred to as a (nx,nf ) panel. For example, a (2,3) panel will have cyclic granularities with two

x-axis levels and three facet levels. Let the four elementary designs as described in Figure 3.3 be

D /0 (referred to as “null distribution”) where there is no difference in distribution of v for A or B.

For example, the data set in Figure 3.3(a) is consistent with the null distribution. Df denotes the set

of designs where there is difference in distribution of v for B and not for A. Similarly, Dx denotes
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Table 3.1: Nomenclature table

variable description

NC number of cyclic granularities
HNC set of harmonies
m number of cyclic granularities to display together
nx number of x-axis categories
nf number of facet categories

λ tuning parameter
ω increment (mean or sd)
wpd raw weighted pairwise distance
wpdnorm normalized weighted pairwise distance
nperm number of permutations for threshold/normalization

nsim number of simulations
wpdthreshold threshold for significance
D /0 null design with no distributional difference across categories
Df design with distributional difference only across facets categories
Dx design with distributional difference only across x-axis categories

Df x design with distributional difference across both facet and x-axis
v continuous univariate measured variable

the set of designs where difference is observed only across A. Finally, Df x denotes those designs

for which difference is observed across both A and B. We can consider a single granularity (m = 1)

as a special case of two granularities with nf = 1.

3.2.3 Computation

The computation of the distance measure wpd for a panel involves characterizing distributions,

computing distances between distributions, choosing a tuning parameter to specify the weight for

different groups of distances and summarizing those weighted distances appropriately to estimate

maximum variation. Furthermore, the data needs to be appropriately transformed to ensure that the

value of wpd emphasizes detection of distributional differences across categories and not across

different data generating processes.

Data transformation

The intended aim of wpd is to capture differences in categories irrespective of the distribution

from which the data is generated. Hence, as a pre-processing step, the raw data is normal-quantile
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transformed (NQT) (Krzysztofowicz, 1997), so that the transformed data follows a standard normal

distribution. The empirical NQT involves the following steps:

1. The observations of measured variable v are sorted from the smallest to the largest observation

v(1), . . . ,v(n).

2. The cumulative probabilities p(1), . . . , p(n) are estimated using p(i) = i/(n+ 1) (Hyndman

and Fan, 1996) so that p(i) = Pr(v ≤ v(i)).

3. Each observation v(i) of v is transformed into v∗(i) = Φ−1(p(i)), with Φ denoting the

standard normal distribution function.

Characterizing distributions

Multiple observations of v correspond to the subset v jk = {s : A(s) = j,B(s) = k}. The number

of observations might vary widely across subsets due to the structure of the calendar, missing

observations or uneven locations of events in the time domain. In this paper, quantiles of {v jk}

are chosen as a way to characterize distributions for the category (a j,bk), ∀ j ∈ {1,2, . . . ,nx},k ∈

{1,2, . . . ,nf }. We use percentiles with p = 0.01,0.02, . . . ,0.99 to reduce the computational burden

in summarizing distributions. The assumption is that there is sufficient data for each level or

combination of levels, and hence no adjustment is made for the varying number of observations

across levels. However, if one or more levels has a small number of data points, consecutive

categories should be collapsed prior to data transformation and quantile estimation.

Distance between distributions

A common way to measure divergence between distributions is the Kullback-Leibler (KL) diver-

gence (Kullback and Leibler, 1951). The KL divergence denoted by D(q1||q2) is a non-symmetric

measure of the difference between two probability distributions q1 and q2 and is interpreted as the

amount of information lost when q2 is used to approximate q1. The KL divergence is not symmetric

and hence can not be considered as a “distance” measure. The Jensen-Shannon divergence (Menén-

dez et al., 1997) based on the Kullback-Leibler divergence is symmetric and has a finite value.

Hence, in this paper, the pairwise distances between the distributions of the measured variable

are obtained through the square root of the Jensen-Shannon divergence, called Jensen-Shannon
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distance (JSD), and defined by

JSD(q1||q2) =
1
2

D(q1||M)+
1
2

D(q2||M),

where M = q1+q2
2 and D(q1||q2) :=

∫
∞

−∞
q1(x)log( q1(x)

q2(x)
)dx is the KL divergence between distri-

butions q1 and q2. There are other ways to obtain distance between distributions like Hellinger

distance, total variation distance and Fisher information metric (all of which are special cases of

f-divergence), but Jensen-Shannon distance was chosen for ease of computation.

Within-facet and between-facet distances

Pairwise distances could be within-facets or between-facets for m = 2. Figure 3.4 illustrates how

they are defined. Pairwise distances are within-facets when bk = bk′ , that is, between pairs of the

form (a jbk,a j′bk) as shown in panel (3) of Figure 3.4. If categories are ordered (like all temporal

cyclic granularities), then only distances between pairs where a j′ = (a j+1) are considered (panel

(4)). Pairwise distances are between-facets when they are considered between pairs of the form

(a jbk,a jbk′). There are a total of (nf
2 )nx between-facet distances, and (nx

2 )nf within-facet distances

if they are unordered and nf (nx −1) within-facet distances if they are ordered.

Figure 3.4: Within and between-facet distances shown for two cyclic granularities A and B, where A
is mapped to x-axis and B is mapped to facets. The dotted lines represent the distances
between different categories. Panels 1) and 2) show the between-facet distances.
Within-facet distances are illustrated in Panels 3) (when categories are un-ordered,
shown only with respect to a1) and Panel 4) (when categories are ordered). When
categories are ordered, distances should only be considered for consecutive x-axis
categories. Between-facet distances are distances between different facet levels for the
same x-axis category; for example, distances between (a1,b1) and (a1, b2) or (a1,b1)
and (a1, b3).
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Tuning parameter

For displays with m > 1 granularities, we can use a tuning parameter to specify the relative weight

given to each granularity. In general, the tuning parameters should be chosen such that ∑
m
i=1 λi = 1.

Following the general principles of Gestalt theory, we wish to weight more heavily granularities that

are plotted closer together. For m = 2 we choose λx =
2
3 for the granularity on the x-axis and λ f =

1
3

for the granularity mapped to facets, giving a relative weight of 2 : 1 for within-facet to between-

facet distances. No human experiment has been conducted to justify this ratio. Specifying λx > 0.5

will weight within-facet distances more heavily, while λx < 0.5 would weight the between-facet

distances more heavily. (See Section 2.1 supplements for more details.)

Raw distance measure

The raw distance measure, denoted by wpdraw, is computed after combining all the weighted

distance measures appropriately. First, NQT is performed on the measured variable vt to obtain

v∗t (data transformation). Then, for a fixed harmony pair (A,B), percentiles of v∗jk are computed

and stored in q jk (distribution characterization). This is repeated for all pairs of categories of

the form (a jbk,a j′bk′) : {a j : j = 1,2, . . . ,nx},B = {bk : k = 1,2, . . . ,nf }. The pairwise distances

between pairs (a jbk,a j′bk′) denoted by d( jk, j′k′) = JSD(q jk,q j′k′) are computed (distance between

distributions). The pairwise distances (within-facet and between-facet) are transformed using

a suitable tuning parameter (0 < λ < 1) depending on if they are within-facet(dw) or between-

facets(db) as follows:

d∗( j,k),( j′k′) =


λd( jk),( j′k′), if d = dw;

(1−λ )d( jk),( j′k′), if d = db.
(3.1)

The wpdraw is then computed as

wpdraw = max
j, j′,k,k′

(d∗( jk),( j′k′)) ∀ j, j′ ∈ {1,2, . . . ,nx}, k,k′ ∈ {1,2, . . . ,nf }

The statistic “maximum” is chosen to combine the weighted pairwise distances since the distance

measure is aimed at capturing the maximum variation of the measured variable within a panel. The
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statistic “maximum” is, however, affected by the number of comparisons (resulting pairwise dis-

tances). For example, for a (2,3) panel, there are 6 possible subsets of observations corresponding

to the combinations (a1,b1), (a1,b2), (a1,b3), (a2,b1), (a2,b2), (a2,b3), whereas for a (2,2) panel,

there are only 4 possible subsets (a1,b1), (a1,b2), (a2,b1), (a2,b2). Consequently, the measure

would have higher values for the panel (2,3) as compared to (2,2), since maximum is taken over

higher number of pairwise distances.

3.2.4 Adjusting for the number of comparisons

Ideally, it is desired that the proposed distance measure takes a higher value only if there is a

significant difference between distributions across categories, and not because the number of

categories nx or nf is high. That is, under designs like D /0, their distribution should not differ for a

different number of categories. Only then could the distance measure be compared across panels

with different levels. This calls for an adjusted measure, which normalizes for the different number

of comparisons.

Two approaches for adjusting the number of comparisons are discussed, both of which are substanti-

ated using simulations. The first one defines an adjusted measure wpdperm based on the permutation

method to remove the effect of different comparisons. The second approach fits a model to represent

the relationship between wpdraw and the number of comparisons and defines the adjusted measure

(wpdglm) as the residual from the model.

Permutation approach

This method is somewhat similar in spirit to bootstrap or permutation tests, where the goal is to test

the hypothesis that the groups under study have identical distributions. This method accomplishes

a different goal of finding the null distribution for different groups (panels in our case) and

standardizing the raw values using that distribution. The values of wpdraw are computed on many

(nperm) permuted data sets and stored in wpdperm-data. Then wpdperm is computed as follows:

wpdperm =
wpdraw −mean(wpdperm-data)

sd(wpdperm-data)

where mean(wpdperm-data) and sd(wpdperm-data) are the mean and standard deviation of wpdperm-data

respectively. Standardizing wpd in the permutation approach ensures that the distribution of wpdperm
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under D /0 has zero mean and unit variance across all comparisons. While this works successfully to

make the location and scale similar across different nx and nf , it is computationally heavy and time

consuming, and hence less user-friendly. Hence, another approach to adjustment, with potentially

less computational time, is proposed.

Modeling approach

In this approach, a Gamma generalized linear model (GLM) for wpdraw is fitted with the number of

comparisons as the explanatory variable. Since, wpdraw is a Jensen-Shannon distance, it follows a

Chi-square distribution (Menéndez et al., 1997), which is a special case of a Gamma distribution.

Furthermore, the mean response is bounded, since any JSD is bounded by 1 if a base 2 logarithm

is used (Lin, 1991). Hence, by Faraway (2016), an inverse link is used for the model, which

is of the form y = a+ b× log(z)+ e, where y = wpdraw, z = (nx × nf ) is the number of groups

and e are idiosyncratic errors. Let E(y) = µ and a+ b× log(z) = g(µ) where g(µ) = 1/µ and

µ̂ = 1/(â+ b̂ log(z)). The residuals from this model (y− ŷ) = (y−1/(â+ b̂ log(z))) would be

expected to have no dependency on z. Thus, wpdglm is defined as the residuals from this model

given by

wpdglm = wpdraw −1/(â+ b̂× log(nx ×nf ))

The distribution of wpdglm under D /0 will have approximately zero mean and a constant variance

(not necessarily 1).

Combination approach

The simulation results (in Section 3.3.3) show that the distribution of wpdglm under the null design

is similar for high nx and nf (levels higher than 5) but less so for lower values of nx and nf . An

empirical explanation for this is that with smaller nx and n f , the variance in the values of wpdraw is

greater Figure 13 of supplements. As a result, our modeling approach that fits wpdraw to the number

of comparisons performs poorly. In order to address this, a combination approach is proposed

where we use a permutation approach for categories with small numbers of levels, and a modeling

approach for categories with higher numbers of levels. This ensures that the computational load of

the permutation approach is alleviated while maintaining a similar null distribution across different

categories. This approach, however, requires that the adjusted variables from the two approaches
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are brought to the same scale. We define wpdglm-scaled = wpdglm ×σ2
perm/σ2

glm as the transformed

wpdglm with a similar scale as wpdperm. The adjusted measure from the combination approach,

denoted by wpd is then defined as follows:

wpd =


wpdperm, if nx,nf ≤ 5;

wpdglm-scaled otherwise.
(3.2)

3.3 Ranking and selection of cyclic granularities

A cyclic granularity is referred to as “significant” if there is a significant distributional difference

of the measured variable between different categories of the harmony. In this section, a selection

criterion to choose significant harmonies is provided, thereby eliminating all harmonies that exhibit

non-significant differences in the measured variable. The distance measure wpd is used as a test

statistic to test the null hypothesis that no harmony/cyclic granularity is significant. We select only

those harmonies/cyclic granularities for which the test fails. They are then ranked based on how

well they capture variation in the measured variable.

3.3.1 Selection

A threshold (and consequently a selection criterion) is chosen using the notion of randomization

tests (Edgington and Onghena, 2007). The data is permuted several times and wpd is computed for

each of the permuted data sets to obtain the sampling distribution of wpd under the null hypothesis.

If the null hypothesis is true, then wpd obtained from the original data set would be a likely value

in the sampling distribution. But in case the null hypothesis is not true, then it is less probable

that wpd obtained for the original data will be from the same distribution. This idea is utilized to

come up with a threshold for selection, denoted by wpdthreshold, defined as the 99th percentile of the

sampling distribution. A harmony is selected if the value of wpd for that harmony is greater than

the chosen threshold. The detailed algorithm for choosing a threshold and selection procedure (for

two cyclic granularities) is listed as follows:

• Input: All harmonies of the form {(A,B), A = {a j : j = 1,2, . . . ,nx}, B = {bk : k =

1,2, . . . ,nf }}, ∀(A,B) ∈ HNC .
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• Output: Harmony pairs (A,B) for which wpd is significant.

1. For each harmony pair (A,B) ∈ HNC , the following steps are taken.

a. Given the measured variable; {vt : t = 0,1,2, . . . ,T −1}, wpd is computed and is repre-

sented by wpdA,B
obs .

b. For i = 1, . . . ,M, randomly permute the original time series: {vi
t : t = 0,1,2, . . . ,T −1}

and compute wpdA,B
i from {vi

t}.

c. Define wpdsample = {wpdA,B
1 , . . . ,wpdA,B

M }.

2. Stack the wpdsample vectors as wpdall
sample and compute its p = 100(1−α) percentiles as

wpdthresholdp.

3. If wpdA,B
obs > wpdthresholdp, harmony pair (A,B) is selected at the 1− p/100 level, otherwise

rejected.

4. Harmonies selected using the 99th, 95th and 90th thresholds are tagged as ***, **, * respec-

tively.

3.3.2 Ranking

The distribution of wpd is expected to be similar for all harmonies under the null hypothesis,

since they have been adjusted for different number of categories for the harmonies or underlying

distribution of the measured variable. Hence, the values of wpd for different harmonies are

comparable and can be used to rank the significant harmonies. A higher value of wpd for a harmony

indicates that higher maximum variation in the measured variable is captured through that harmony.

Figure 3.3 also presents the results of wpd from the illustrative designs in Section 3.2. The value of

wpd under null design (a) is the least, followed by (b), (c) and (d). This aligns with the principle of

wpd, which is expected to have lowest value for null designs and highest for designs of the form

Df x (d). Moreover, note the relative differences in wpd values between (b) and (c). The value of the

tuning parameter λ is set to 2/3, which gives greater emphasis to differences in x-axis categories

than facets.

Again consider Figures 3.1(a) and 3.1(b) with a wpd value of 20.5 and 145 respectively. This is

because there is a more gradual increase across hours of the day than across months of the year. If
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the order of categories is ignored, the resulting wpd values are 97.8 and 161 respectively, because

differences between any hours of the day tend to be larger than differences only between consecutive

hours. Similarly, Figures 3.2(a) and (b) have wpd values of 110.79 and 125.82 respectively. The

ranking implies that the distributional differences are more prominent for the second household, as

is also seen from the bigger fluctuations in the 90th percentile than for the first household.

3.3.3 Simulations

Simulations were carried out to explore how the behavior of wpd as nx and nf were varied, in order

to compare and evaluate different normalization approaches for both m = 1 and m = 2. Here the

simulation design and results corresponding to m = 2 are presented. Similar design and results for

m = 1, although important, are not included in the paper but in the supplements along with other

more detailed simulation results.

Simulation design

Observations were generated from a N(0,1) distribution for each combination of nx and nf from

{2,3,5,7,14,20,31,50}, with ntimes = 500 observations drawn for each of the 64 combinations.

This design corresponds to D /0. For each of the categories, there were nsim = 200 replications, so

that the distribution of wpd under D /0 could be observed.

Results

Figure 3.5 shows that both the location and scale of the distributions change across panels. This

is not desirable under D /0 as it would mean comparisons of wpd values are not appropriate across

different nx and nf values. Table 3.2 gives the summary of a Gamma generalized linear model

to capture the relationship between wpdraw and the number of comparisons. The intercepts and

slopes are similar, independent of the underlying distributions (see Table 3 supplementary paper

for details) and hence the coefficients are shown for the case when observations are drawn from

a N(0,1) distribution. Figure 3.6 shows the distribution of wpdperm and wpdglm-scaled on the same

scale to show that a combination approach could be used for higher values of nx and nf to alleviate

the computational time of the permutation approach.
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Figure 3.5: Distribution of wpdraw is plotted across different nx and nf categories under D /0 through
density and rug plots for m = 2. Both location (blue line) and scale of the distribution
shifts for different panels. This is not desirable since under the null design, the
distribution is not expected to capture any differences.

Table 3.2: Results of generalised linear model to capture the relationship between wpdraw and the
number of comparisons.

term estimate std.error statistic p.value

Intercept 23.40 0.22 104.14 <.001
log(nx ×nf ) -0.96 0.04 -21.75 <.001

These results justify our use of the permutation approach when nx ≤ 5 and nf ≤ 5, and the use of

the GLM otherwise.

3.4 Application to residential smart meter dataset

The smart meter data set for eight households in Melbourne was procured by downloading individual

level data from energy suppliers/retailers. To reflect various energy behaviours, data was obtained

from friends and colleagues with different professions, lifestyles, and household sizes. This level

of data is private, and we thank our friends and colleagues for agreeing to have their data used

for this analysis. The data has been cleaned to form a tsibble (Wang, Cook, and Hyndman,

2020a) containing half-hourly electricity consumption from July to December 2019 for each of the
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Figure 3.6: The distributions of wpdperm and wpdglm-scaled are overlaid to compare the location and
scale across different nx and nf for m = 2. wpdnorm takes the value of wpdperm for lower
levels, and wpdglm-scaled for higher levels to to alleviate the problem of computational
time in permutation approaches. This is possible as the distribution of the adjusted
measure looks similar for both approaches for higher levels.

households. No behavioral pattern is likely to be discerned from the time plot of energy usage over

the entire period, since the plot will have too many observations squeezed in a linear representation.

When we zoom into the September 2019 data in Figure 3.7(b), some patterns are visible in terms of

peaks and troughs, but we do not know if they are regular or what is their period.

Electricity demand, in general, has daily, weekly and annual seasonal patterns. However, it is not

apparent from this view if all households have those patterns, or how strong they are in each case.

It is also not clear from this view if any other periodic patterns are present in any household. We

start the analysis by choosing a few harmonies, and ranking them for each of these households. The

ranking and selection of significant harmonies is validated by analyzing the distribution of energy

usage across significant harmonies.

Choosing cyclic granularities of interest and removing clashes

Let vi,t denote the electricity demand for the ith household in time period t. The series {vi,1, . . . ,vi,T}

is the linear granularity corresponding to half-hour since the interval of the tsibble is 30 minutes.

We consider coarser linear granularities like hour, day, week and month from the commonly used
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Figure 3.7: An ensemble plot with a heatmap (a), line plot (b), parallel coordinate plot (c) to
demonstrate energy behavior of the households in different ways. (a) and (b) display
the household ids in the same order as indicated by the same colour of the line plot in
(b) and box border in (a). (b) shows the raw demand series for September to highlight
the repetitive patterns of energy demand. (a) shows wpd values across harmonies
where a darker shade of red indicates a higher ranking harmony and gray represents a
clash. A significant harmony is shown with an asterisk. For example, ids 7 and 8 have
significant patterns across the pair (hod, dow) since the tile with hod as facet and dow
as x variable has an asterisk. (c) is useful for comparing households across harmonies.
For example, for the harmony (dow-hod), ids 1 and 7 have the least and highest wpd
respectively.
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Gregorian calendar. From the four linear granularities of hour, day, week, and month, we obtain

NC = 4×3/2 = 6 cyclic granularities: “hour_day”, “hour_week”, “hour_month”, “day_ week”,

“day_month” and “week_month” abbreviated as hod, how, hom, dow, dom and wom respectively.

Further, we add cyclic granularity day-type (“wknd wday”) to capture weekend and weekday

behavior (abbreviated as wnwd). Thus, seven cyclic granularities are considered to be of interest.

The pairs of cyclic granularities (CNC ) will have 7×6 = 42 elements. The set of possible harmonies

HNC from CNC are chosen by removing clashes using procedures described in Gupta et al. (2021).

Table 3.3 shows 14 harmony pairs that belong to HNC .

Table 3.3: Ranking of harmonies for the eight households with significance or different thresholds.
∗∗∗, ∗∗ and ∗ corresponds to the 99th, 95th and 90th percentile threshold. Rankings are
different and at most three harmonies are significant for any household. The number of
pair of cyclic granularities to explore is reduced from 42 to 3.

facet variable x variable id 1 id 2 id 3 id 4 id 5 id 6 id 7 id 8

hod wnwd 1∗∗∗ 2∗ 1∗∗ 2∗∗ 3 1∗∗ 3 3∗

dom hod 2∗∗∗ 4 3∗∗ 3∗∗ 4 3∗ 4 6

wnwd hod 3∗∗ 10 7 7 6 8 8 10

hod wom 4 9 6 5 5 5 5 5

wom wnwd 5 14 14 10 12 9 12 13

hod dow 6 1∗∗∗ 2∗∗ 1∗∗∗ 1∗ 2∗∗ 2∗∗ 1∗∗

wnwd wom 7 12 13 8 7 7 10 12

dow hod 8 3 4∗∗ 4∗∗ 2 4∗ 1∗∗∗ 2∗∗

hod dom 9 7 10 13 10 10 9 4

wom dow 10 6 8 9 8 6 7 9

dow wom 11 5 9 11 11 12 6 7

wom hod 12 8 5 6 9 11 11 8

dom wnwd 13 13 11 12 14 14 14 14

wnwd dom 14 11 12 14 13 13 13 11
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Selecting and ranking harmonies for all households

wpdi is computed on vi,t for all harmony pairs ∈ HNC and for each household i ∈ {1,2, . . . ,8}.

The harmony pairs are then arranged in descending order and highlighted with ***, ** and *

corresponding to the 99th, 95th and 90th percentile threshold. Table 3.3 shows the rank of the

harmonies for different households and the harmonies are sorted according to id 1. The rankings are

different for different households, which is a reflection of their varied behaviors. Most importantly,

there are at most three harmonies that are significant for any household. This is a huge reduction in

the number of potential harmonies to explore.

Detecting patterns not apparent from linear display

Figure 3.7 helps to compare households through the heatmap (a) across harmony pairs (lexico-

graphic order). Each household is represented by 25 tiles, each tile representing a pair of cyclic

granularities with x-variables on the horizontal axis and facet-variables on the vertical axis. The

colors (in shades of red) represent the value of wpd for each of the harmony pairs (in Table 3.3)

and the gray tiles correspond to clashes. A darker shade of red corresponds to higher values of wpd.

Those with * correspond to wpd values above wpdthreshold95.

We can now see some patterns in 3.7(a) that were not discernible in 3.7(b), including:

1. id 7 and 8 have the same significant harmonies despite having very different total energy

usage.

2. id 6 and 7 differ in the sense that for id 6, the difference in patterns is only during week-

day/weekends, whereas for id 7 all or few other days of the week are also important. This

might be due to their flexible work routines or different day-off.

3. There are no significant periodic patterns for id 5 when we fix the threshold to wpdthreshold95.

Note that the wpd values are computed over the entire range, but the linear display in (b) is only for

September, with the major and minor x-axis corresponding to weeks and days respectively.

Comparing households and validating rank of harmonies

Figure 3.7(c) shows a parallel coordinate plot across different harmonies with harmonies arranged

from highest to lowest wpd values averaged over all households. This display is useful for
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comparing households across harmonies. For example, for the harmony pair (dow-hod), household

id 7 has the greatest value of wpd, while id 1 has the least. From Table 3.3 it can be seen that the

harmony pair (dow, hod) is important for id 7; however, it has been labeled as an insignificant pair

for id 1. The distribution of energy demand for both of these households, with dow as the facet and

hod on the x-axis, may help explain the choice. Figure 3.8 demonstrates that for id 7, the median

(black) and quartile deviation (orange) of energy consumption fluctuates for most hours of the

day and days of the week, while for id 1, daily patterns are more consistent within weekdays and

weekends. As a result, for id 1, it is more appropriate to examine the distributional difference solely

across (dow, wnwd), which has been rated higher in Table 3.3.
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Figure 3.8: Comparing distribution of energy demand shown for household id 1 (a) and 7 (b) on
logarithmic scale across hod in x-axis and dow in facets through quantile area plots.
The value of wpd in Table 3 suggests that the harmony pair (dow, hod) is significant
for household id 7, but not for id 1. This implies that distributional differences are
captured more by this harmony for id 7, which is apparent from this display with
more fluctuations across median and 75th percentile for different hours of the day
and day of week. For id 1, patterns look similar within different days of weekdays
and weekends. Here, the median is represented by the black line, the orange area
corresponds to quartile deviation and the green area corresponds to area between 10th

and 90th quantile. The display with hod vs wnwd would have shown higher values of
wpd for id:1 (as can be verified from Table 3).
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3.5 Discussion

Exploratory data analysis involves many iterations of finding and summarizing patterns. With

temporal data available at finer scales, exploring time series has become overwhelming with so

many possible granularities to explore. A common solution is to aggregate and look at the patterns

across the usual granularities such as hour-of-day or day-of-week, but there is no way to know the

“interesting” granularities a priori. A huge number of displays need to be analyzed or we might

end up missing informative granularities. This work refines the search for informative granularities

by identifying those for which the differences between the displayed distributions are greatest and

rating them in order of importance of capturing maximum variation.

The significant granularities across different datasets (individuals/subjects) do not imply similar

patterns across different datasets. They simply mean that maximum distributional differences are

being captured across those granularities. A future direction of work is to be able to explore and

compare many individuals/subjects together for similar patterns across significant granularities.

Computational time

The computation time of wpd for a cyclic granularity or harmony is determined by its levels. For

example, in a harmony with 6 ≤ nx,nf ≤ 50, the computation time grows with the number of

levels and ranges from 30 to 300 seconds. wpd becomes computationally more expensive for

cyclic granularities with lower levels nx,nf ≤ 5. It is around 40 to 50 minutes for nx,nf = {2,3}.

To perform these computations, R version 4.0.1 (2020-06-06) with the platform: x86 64-apple-

darwin17.0 (64-bit) running under: macOS Mojave 10.14.6 and MonaRCH is utilized. Even with

parallel computation, computing wpd for many individuals and cyclic granularity/harmonies takes

a long time. One solution could be to obtain the significant granularities for a smaller number of

individuals in order to get a sense of the significant granularities for the context and then computing

wpd only for those granularities for other individuals. However, information may be lost for

individuals with different sets of significant granularities. In any case, additional studies may be

conducted to speed up the processing of cyclic granularities with low levels.
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Chapter 4

Clustering time series based on

probability distributions across

temporal granularities

Clustering is a potential approach for organizing large collections of time series into small ho-

mogeneous groups, but a difficult step is determining an appropriate metric to measure similarity

between time series. The similarity metric needs to be capable of accommodating long, noisy,

and asynchronous time series and also capture cyclical patterns. In this paper, two approaches

for measuring distances between time series are presented, based on probability distributions over

cyclic temporal granularities. Both are compatible with a variety of clustering algorithms. Cyclic

granularities like hour-of-the-day, work-day/weekend, and month-of-the-year, are useful for finding

repeated patterns in the data. Measuring similarity based on probability distributions across cyclic

granularities serves two purposes: (a) characterizing the inherent temporal data structure of long,

unequal-length time series in a manner robust to missing or noisy data; (b) small pockets of similar

repeated behaviors can be captured. This approach is capable of producing useful clusters, as

demonstrated on validation data designs and a sample of residential smart meter records.
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4.1 Introduction

Time series clustering is the process of unsupervised partitioning of n time series data into k (k < n)

meaningful groups such that homogeneous time series are grouped together based on a certain

similarity measure. The time series features, length of time series, representation technique, and,

of course, the purpose of clustering time series all influence the suitable similarity measure or

distance metric to a meaningful level. The three primary methods of time series clustering (Liao,

2005) are algorithms that operate directly with distances or raw data points in the time or frequency

domain (distance-based), with features derived from raw data (feature-based), or indirectly with

models constructed from raw data (model-based). The efficacy of distance-based techniques is

highly dependent on the distance measure utilized. Defining an appropriate distance measure for

the raw time series may be a difficult task since it must take into account noise, variable lengths

of time series, asynchronous time series, different scales, and missing data. Commonly used

distance-based similarity measures as suggested by a review of time series clustering approaches

(Aghabozorgi, Shirkhorshidi, and Wah, 2015) are Euclidean, Pearson’s correlation coefficient and

related distances, Dynamic Time Warping (DTW), Autocorrelation, Short time series distance,

Piecewise regularization, cross-correlation between time series, or a symmetric version of the

Kullback–Liebler distances (Liao, 2007) but on vector time series data. Among these alternatives,

Euclidean distances have high performance but need the same length of data over the same period,

resulting in information loss regardless of whether it is on raw data or a smaller collection of

features. DTW works well with time series of different lengths (Corradini, 2001), but it is incapable

of handling missing observations. Surprisingly, probability distributions, which may reflect the

inherent temporal structure of a time series, have not been considered in determining time series

similarity.

This work is motivated by a need to cluster a large collection of residential smart meter data, so

that customers can be grouped into similar energy usage patterns. These can be considered to be

univariate time series of continuous values which are available at fine temporal scales. These time

series data are long (with more and more data collected at finer resolutions), are asynchronous,

with varying time lengths for different houses and sporadic missing values. Using probability

distributions is a natural way to analyze these types of data because they are robust to uneven length,

missing data, or noise. This paper proposes two approaches for obtaining pairwise similarities
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based on Jensen-Shannon distances between probability distributions across a selection of cyclic

granularities. Cyclic temporal granularities (Gupta, Hyndman, and Cook, 2021), which are temporal

deconstructions of a time period into units such as hour-of-the-day or work-day/weekend, can

measure repetitive patterns in large univariate time series data. The resulting clusters are expected

to group customers that have similar repetitive behaviors across cyclic granularities. The benefits of

this approach are as follows.

• When using probability distributions, data does not have to be the same length or observed

during the exact same time period (unless there is a structural pattern).

• Jensen-Shannon distances evaluate the distance between two distributions rather than raw

data, which is less sensitive to missing observations and outliers than other conventional

distance methods.

• While most clustering algorithms produce clusters similar across just one temporal granularity,

this technique takes a broader approach to the problem, attempting to group observations with

similar distributions across all interesting cyclic granularities.

• It is fair to describe a time series based on its degree of trend and seasonality, and to cluster it

based on these features. The addition of probability distributions across cyclic granularities

to the data structure ensures, there is no need to de-trend or de-seasonalize the data prior to

using the clustering algorithm. For similar reasons, there is no need to exclude holiday or

weekend routines.

The primary application of this work is data from the Smart Grid, Smart City (SGSC) project

(2010–2014) available through Department of the Environment and Energy (2018). Half-hourly

measurements of usage for more than 13,000 electricity smart meter customers are provided from

October 2011 to March 2014. Customers vary in size, location, and amenities such as solar panels,

central heating, and air conditioning. The behavioral patterns differ amongst customers due to many

temporal dependencies. Some customers use a dryer, while others dry their clothes on a line. Their

weekly usage profile may reflect this. They may vary monthly, with some customers using more

air conditioners or heaters than others, while having equivalent electrical equipment and weather

circumstances. Some customers are night owls, while others are morning larks. Daily energy usage
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varies depending on whether customers stay home or work away from home. Age, lifestyle, family

composition, building attributes, weather, availability of diverse electrical equipment, among other

factors, make the task of properly segmenting customers into comparable energy behavior complex.

When there is no further customer data available, such as property type, location, or family size, the

problem is to cluster customers into these sorts of predicted patterns, as well as other unexpected

patterns, using just their energy consumption history (Ushakova and Jankin Mikhaylov, 2020).

There is a growing need to have methods that can examine the energy usage heterogeneity observed

in smart meter data and what are some of the most common power consumption patterns.

There is an extensive body of literature focused on time series clustering related to smart meter

data. Tureczek and Nielsen (2017) conducted a systematic study of over 2100 peer-reviewed papers

on smart meter data analytics. The most often used algorithm is k-means (Rhodes et al., 2014).

k-means can be made to perform better by explicitly incorporating time series features such as

correlation or cyclic patterns rather than performing it on raw data. To reduce dimensionality,

several studies use principal component analysis (PCA) or factor analysis to pre-process smart-

meter data before clustering (Ndiaye and Gabriel, 2011). PCA eliminates correlation patterns and

decreases feature space, but loses interpretability. Other algorithms utilized in the literature include

k-means variants, hierarchical clustering, and greedy k-medoids. Many techniques mentioned in

Tureczek and Nielsen (2017) fail to recognize smart meter readings as a data type with a temporal

component (Tureczek, Nielsen, and Madsen, 2018). Only one study (Ozawa, Furusato, and Yoshida,

2016) identified time series characteristics by first conducting a Fourier transformation, to convert

data from time to frequency domain, followed by k-means to cluster by greatest frequency. Motlagh,

Berry, and O’Neil (2019) suggested that the time feature extraction is limited by the type of noisy,

patchy, and unequal time series common in residential customers and addresses model-based

clustering by transforming the series into other objects such as structure or set of parameters which

can be more easily characterized and clustered. Chicco and Akilimali (2010) addressed information

theory-based clustering such as Shannon or Renyi entropy and its variations. Melnykov (2013)

discussed how outliers, noisy observations and scattered observations can complicate estimating

mixture model parameters and hence the partitions. None of these methods focuses on exploring

heterogeneity in repetitive patterns based on the dynamics of multiple temporal dependencies using

probability distributions, which forms the basis of the methodology reported here.
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This paper is organized as follows. Section 4.2 provides the clustering methodology. Section 4.3

shows data designs to validate our methods. Section 4.4 discusses the application of the method to

a subset of the real data. Finally, we summarize our results and discuss possible future directions in

Section 4.5.

4.2 Clustering methodology

The existing work on clustering probability distributions assumes we have independent and identi-

cally distributed samples f1(v), . . . , fn(v), where fi(v) denotes the distribution from observation i

over some random variable v = {vt : t = 0,1,2, . . . ,T −1} observed across T time points. In our

approach, instead of considering the probability distributions of the linear time series, we compare

them across different categories of a cyclic granularity. We can consider categories of an individual

cyclic granularity (A) or combination of categories for two interacting granularities (A,B) to have a

distribution, where A and B are defined as A = {a j : j = 1,2, . . .J} and B = {bk : k = 1,2, . . .K}.

For example, let us consider two cyclic granularities, A and B, representing hour-of-day and

day-of-week, respectively. Then A = {0,1,2, . . . ,23} and B = {Mon,Tue,Wed, . . . ,Sun}. In case

individual granularities are considered, there are J = 24 distributions of the form fi, j(v) or K = 7

distributions of the form fi,k(v) for each customer i. In case of interaction, J×K = 168 distributions

of the form fi, j,k(v) could be conceived for each customer i. Hence clustering these customers is

equivalent to clustering these collections of conditional univariate probability distributions. Towards

this goal, the next step is to decide how to measure distances between collections of univariate

probability distributions. Here, we describe two approaches for finding distances between time

series. Both of these approaches may be useful in a practical context, and produce very different

but equally useful customer groupings. The distances can be supplied to any usual clustering

algorithm, including k-means or hierarchical clustering, to group observations into a smaller more

homogeneous collection. The flow of the procedures is illustrated in Figure 4.1 and is further

described in the following subsections.

4.2.1 Selecting granularities

Gupta, Hyndman, and Cook (2021) provide a distance measure (wpd) for determining the sig-

nificance of a cyclic granularity, and a ranking of multiple cyclic granularities. (This extends
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Figure 4.1: Flow chart illustrating the pipeline for our method for clustering time series.

to harmonies, pairs of granularities that might interact with each other.) We define “significant”

granularities as those with significant distributional differences across at least one category. The

reason for subsetting granularities in this way is that clustering algorithms perform badly in the

presence of nuisance variables. Granularities that do not have some difference between categories

are likely to be nuisance variables. It should be noted that all of the time series in a collection may

not have the same set of significant granularities. This is the approach for generating a subset (Sc)

of significant granularities across a collection of time series:

(a) Remove granularities from the comprehensive list that are not significant for any time series.

(b) Select only the granularities that are significant for the majority of time series.

4.2.2 Data transformation

The shape and scale of the distribution of the measured variable (e.g. energy usage) affects distance

calculations. Skewed distributions need to be symmetrized. Scales of individuals need to be

standardized, because clustering is to select similar patterns, not magnitude of usage. (Organizing

individuals based on magnitude can be achieved simply by sorting on a statistic like the average

value across time.) For the JS-based approaches, two data transformation techniques are recom-

mended, normal-quantile transform (NQT) and robust scaling (RS) referred to as JS-NQT and

JS-RS respectively. The approach based on wpd is referred to as WPD. While Gupta, Hyndman,

and Cook (2021) already use NQT when computing wpd, it could be useful to standardize it for

the selected set of significant granularities prior to computing the distances. In both the JS-NQT
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and JS-RS approaches, each observation is scaled individually, but in the WPD approach, each

observation may or may not be scaled, resulting in usable groups in either scenario.

• RS: The normalized ith observation is denoted by vnorm = vt−q0.5
q0.75−q0.25

, where vt is the actual

value at the tth time point and q0.25, q0.5 and q0.75 are the 25th, 50th and 75th percentiles of the

time series for the ith observation. Note that vnorm has zero mean and median, but otherwise

the shape does not change.

• NQT: The raw data for all observations is individually transformed (Krzysztofowicz, 1997),

so that the transformed data follows a standard normal distribution. NQT will symmetrize

skewed distributions. A drawback is that any multimodality will be concealed. This should

be checked prior to applying NQT.

4.2.3 Data pre-preprocessing

The initial data in R is supposed to be a “tsibble object” (Wang, Cook, and Hyndman, 2020a) with

an index variable representing inherent ordering from past to present, a key variable that specifies

observational units through time, and measured variables. As a result, the measured variable for a

key is a sequence of values that is time-indexed. However, this sequence may be shown in a variety

of ways. A shuffling of the raw sequence may reflect hourly consumption over the course of a day,

a week, or a year.

The data object will change when cyclic granularities are computed, as multiple observations will be

categorized into levels of the granularity, thus inducing multiple probability distributions. Directly

calculating Jensen-Shannon distances between all probability distributions can be time-consuming.

As a result, it is suggested that quantiles be employed to characterize probability distributions. In

the final data object, each category of cyclic granularity corresponds to a list of numbers, which is

composed of a few quantiles.

4.2.4 Distance metrics

The total (dis) similarity between each pair of customers is obtained by combining the distances

between the collections of conditional distributions. This needs to be done in a way such that the
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resulting metric is a distance metric, and could be fed into the clustering algorithm. Two types of

distance metrics are considered:

JS-based distances

This distance metric considers two time series to be similar if the distributions of each category of

an individual cyclic granularity or combination of categories for interacting cyclic granularities

are similar. In this study, the distribution for each category is characterized using deciles (can

potentially consider any list of quantiles), and the distances between distributions are calculated

using the Jensen-Shannon distances (Menéndez et al., 1997), which are symmetric and thus could

be used as a distance measure.

The sum of the distances between two observations x and y in terms of a cyclic granularity A is

defined as

SA
x,y = ∑

j∈A
D(x j,y j)

where D is the Jensen-Shannon distances, x j is the set of quantiles over the values filtered by jth

level of granularity A for observation x (similar for y).

The sum of the distances between two observations x and y in terms of a pair of cyclic granularities

(A,B) is defined as

SA,B
x,y = ∑

( j,k)∈(A,B)

D(x jk,y jk)

x jk is the set of quantiles over the values filtered by the combination of jth level of granularity A

and kth level of granularity B for observation x (similar for y).

After determining the distance between two series in terms of one granularity, we must combine

them to produce a distance based on all significant granularities. When combining distances from

individual L cyclic granularities Cl with nl levels,

Sx,y = ∑
l∈L

SCl
x,y/nl

is employed, which is also a distance metric since it is the sum of JS distances. This approach is

expected to yield groups, such that the variation in observations within each group is in magnitude
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rather than distributional pattern, while the variation between groups is only in distributional pattern

across categories.

wpd-based distances

We compute weighted pairwise distances wpd (Gupta, Hyndman, and Cook, 2021) for all considered

granularities for all observations. wpd is designed to capture the maximum variation in the measured

variable explained by an individual cyclic granularity or their interaction. It is estimated by the

maximum pairwise distances between distributions across consecutive categories normalized by

appropriate parameters. A higher value of wpd indicates that some interesting patterns are expected,

whereas a lower value would indicate otherwise.

Once we have chosen wpd as a relevant feature for characterizing the distributions across one

cyclic granularity, we have to decide how we combine differences between the multiple features

(corresponding to multiple granularities) into a single number. The Euclidean distance between

them is chosen, with the granularities acting as variables and wpd representing the value under

each variable. With this approach, we should expect the observations with similar wpd values to

be clustered together. Thus, this approach is useful for grouping observations that have a similar

significance of patterns across different granularities. Similar significance does not imply a similar

pattern, which is where this technique varies from JS-based distances, which detect differences in

patterns across categories.

4.2.5 Clustering

Number of clusters

Determining the number of clusters is typically a difficult task. Many metrics have been defined

for choosing clusters. Most metrics for choosing the optimal number of clusters are based on

comparing distances between observations within a class to those distances between observations

between classes, which makes the assumption that there are some separated clusters. Some common

procedures include the gap statistic (Tibshirani, Walther, and Hastie, 2001), average silhouette

width (Rousseeuw, 1987), Dunn index (Dunn, 1973) and the separation index (sindex) (Hennig,

2019, 2014). These are constructed by balancing within-cluster homogeneity and between-cluster

separation.
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All of the common approaches can give contradictory suggestions for the optimal number of

clusters, particularly when the data does not naturally break into groups, or in the presence of

nuisance variables (no contribution to clustering) or nuisance observations (inlying and outlying

observations falling between clusters). There is no one best metric, which is perhaps a reason why

so many metrics exist.

In this work, we have chosen to use sindex. It is a very simple but effective metric. This is

computed by averaging the smallest 10% of inter-cluster distances. It is relatively robust to nuisance

observations. The value of sindex always decreases, and sharp drops in value indicate candidates

for the optimal number of clusters. The number of clusters corresponding to the value before the

drop is the recommendation.

Algorithm

With a way to obtain pairwise distances, any clustering algorithm can be employed that supports

the given distance metric as input. A good comprehensive list of algorithms can be found in Xu

and Tian (2015) based on traditional ways like partition, hierarchy, or more recent approaches like

distribution, density, and others. We employ agglomerative hierarchical clustering in conjunction

with Ward’s linkage. Hierarchical cluster techniques fuse neighboring points sequentially to form

bigger clusters, beginning with a full pairwise distance matrix. The distance between clusters is

described using a “linkage technique”. This agglomerative approach successively merges the pair

of clusters with the shortest between-cluster distance using Ward’s linkage method.

Characterization of clusters

Cluster characterization is an important final stage of a cluster analysis. The primary purpose is

to compare the homogeneity within a cluster to the heterogeneity of clusters. This can be done

numerically, by tabulating cluster means and standard deviations (Dasu, Swayne, and Poole, 2005),

and visually using methods for graphics multivariate data. Cook and Swayne (2007) provide

visual examples using both tours (Asimov, 1985) and parallel coordinate plots (Wegman, 1990).

Dimension reduction techniques like principal component analysis (Jolliffe and Cadima, 2016),

multidimensional scaling (MDS) (Borg and Groenen, 2005), t-distributed stochastic neighbor

embedding (t-SNE) (Van der Maaten and Hinton, 2008) and linear discriminant analysis (LDA)

(Fisher, 1936) are also useful.
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Table 4.1: The range of parameters used for the validation study, for the three different scenarios,
number of simulations (R) for each design, differences between means (µ) across
granularities and series lengths (T ).

scenario designs R µ T
S1 5
S2 4
S3 4

25, 250, 500 1, 2, 5 300, 1000, 5000

4.3 Validation

To validate our clustering methods, we have created several different data designs containing

different granularity features. There are three circular granularities g1, g2 and g3 with categories

denoted by {g10,g11}, {g20,g21,g22} and {g30,g31,g32,g33,g34} and levels ng1 = 2, ng2 = 3 and

ng3 = 5. These categories could be integers or some more meaningful labels. For example, the

granularity “day-of-week” could be either represented by {0,1,2, . . . ,6} or {Mon,Tue, . . . ,Sun}.

Here categories of g1, g2 and g3 are represented by {0,1}, {0,1,2} and {0,1,2,3,4} respectively.

A continuous measured variable v of length T indexed by {0,1, . . .T −1} is simulated such that

it follows the structure across g1, g2 and g3. We constructed independent replications of all data

designs R = {25,250,500} to investigate if our proposed clustering method can discover distinct

designs in small, medium, and big numbers of series. All designs employ T = {300,1000,5000}

sample sizes to evaluate small, medium, and large-sized series. Variations in method performance

may be due to different jumps between categories. So a mean difference of µ = {1,2,5} between

categories is considered. The performance of the approaches varies with the number of granu-

larities which has interesting patterns across its categories. So three scenarios are considered to

accommodate that. Table 4.1 shows the range of parameters considered for each scenario.

4.3.1 Data generation

Each category or combination of categories from g1, g2 and g3 are assumed to come from the

same distribution, a subset of them from the same distribution, a subset of them from separate

distributions, or all from different distributions, resulting in various data designs. As the methods

ignore the linear progression of time, there is little value in adding time dependency to the data

generating process. The data type is set to be “continuous,” and the setup is assumed to be Gaussian.

When the distribution of a granularity is “fixed”, it means distributions across categories do not
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vary and are considered to be from N (0,1). µ alters in the “varying” designs, leading to varying

distributions across categories.

4.3.2 Data designs

Individual granularities

Scenario 1 (S1) - All granularities significant: Consider the instance where g1, g2, and g3 all

contribute to design distinction. This means that each granularity will have significantly different

patterns at least across one of the designs to be clustered. In Table 4.2 various distributions across

categories are considered (top) which lead to different designs (bottom). Figure 4.2 shows the

simulated variable’s linear (left) and cyclic (right) representations for each of these five designs. The

structural difference in the time series variable is impossible to discern from the linear view, with all

of them looking very similar. The shift in structure may be seen clearly in the distribution of cyclic

granularities. The following scenarios use solely graphical displays across cyclic granularities to

highlight distributional differences in categories.

Scenario 2 (S2) - Few significant granularities: This is the case where one granularity will remain

the same across all designs. We consider the case where the distribution of v varies across g2

levels for all designs, across g3 levels for a few designs, and g1 does not vary across designs. The

proposed design is shown in Figure 4.3(right).

Scenario 3 (S3) - Only one significant granularity: Only one granularity is responsible for

identifying the designs in this case. This is depicted in Figure 4.3 (right) where only g3 affects the

designs significantly.

Table 4.2: Summary of the data generating process for S1. The various distributions across levels
of different granularities result in five designs. The granularities g1, g2 and g3 have 2,3
and 5 levels, each of which follows a normal distribution. The means of the distribution
are presented for each level, and the standard deviation is set to 1. For example, g1 in
design-2 is (0,2) implies g11 ∼ N(0,1) and g12 ∼ N(2,1).

design g1 g2 g3

design-1 (0,0) (0,0,0) (0,0,0,0,0)
design-2 (0,2) (0,0,0) (0,0,0,0,0)
design-3 (0,0) (2,1,0) (0,0,0,0,0)
design-4 (0,0) (0,0,0) (0,1,2,1,0)
design-5 (0,2) (2,1,0) (0,1,2,1,0)
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Figure 4.2: The linear (left) and cyclic (right) representation is shown under scenario S1 using
line plots and boxplots respectively. Each row represents a design. Distributions of
categories across g1, g2 and g3 change across at least one design as can be observed in
the cyclic representation. It is not possible to comprehend these structural differences
in patterns just by looking at or considering the linear representation.
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Figure 4.3: Boxplots showing distributions of categories across different designs (rows) and gran-
ularities (columns) for scenarios S2 and S3. In S2, g2, g3 change across at least one
design but g1 remains constant. Only g3 changes across different designs in S3.
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Interaction of granularities

The proposed methods could be extended when two granularities of interest interact and we want

to group subjects based on the interaction of the two granularities. Consider a group that has a

different weekday and weekend behavior in the summer but not in the winter. This type of combined

behavior across granularities can be discovered by evaluating the distribution across combinations

of categories for different interacting granularities (weekend/weekday and month-of-year in this

example). As a result, in this scenario, we analyze a combination of categories generated from

different distributions. Display of design and related results can be found in supplementary material.

4.3.3 Visual exploration of results

All of the approaches were fitted to each data design and to each combination of the considered

parameters considered in Table 4.1. The formed clusters have to match the design, be well

separated, and have minimal intra-cluster variation. MDS and parallel coordinate graphs are used

to demonstrate the findings, as well as an index value plot to provide direction on the number

of clusters. In the following plots, results for JS-NQT are reported, and results with JS-RS or

wpd-based distances are in the supplementary material.

Figure 4.4 shows sindex plotted against the number of clusters (k) for the range of mean differences

(rows) under the different scenarios (columns). This can be used to determine the number of clusters

for each scenario. When sindex for each scenario are examined, it appears that k = {5,4,4} is

justified for scenarios S1, S2, and S3, respectively, given the sharp decrease in sindex from that

value of k. Thus, the number of clusters corresponds to the number of designs that were originally

considered in each scenario.

Figure 4.5 shows separation of our clusters. It can be observed that in all scenarios and for different

mean differences, clusters are separated. However, the separation increases with an increase in

mean differences across scenarios. This is intuitive because, as the difference between categories

increases, it gets easier for the methods to correctly distinguish the designs.

Figure 4.6 depicts a parallel coordinate plot with the vertical bar showing total inter-cluster distances

with regard to granularities g1, g2, and g3 for all simulation settings and scenarios. So one line

in the figure shows the inter-cluster distances for one simulation setting and scenarios vary across
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facets. The lines are not colored by group since the purpose is to highlight the contribution

of the factors to categorization rather than class separation. Panel S1 shows that no variable

stands out in the clustering, but the following two panels show that {g1} and {g1, g2} have very

low inter-cluster distances, meaning that they did not contribute to the clustering. It is worth

noting that these facts correspond to our original assumptions when developing the scenarios,

which incorporate distributional differences over three (S1), two (S2), and one (S3) significant

granularities. Hence, Figure 4.6 (S1), (S2), and (S3) validate the construction of scenarios (S1),

(S2), and (S3) respectively.

The JS-RS and wpd-based methods perform worse for nT = 300, then improve for higher nT

evaluated in the study. However, a complete year of data is the minimum requirement to capture

distributional differences in winter and summer profiles, for example. Even if the data is only

available for a month, nT with half-hourly data is expected to be at least 1000. As a result, as long

as the performance is promising for higher nT , this is not a challenge.

In our study sample, the method JS-NQT outperforms the method JS-RS for smaller differences

between categories. More testing, however, would be needed to to be confident in this conclusion.

4.4 Application

Clustering with the new distances is illustrated on the smart meter energy usage for a sample

of customers from Department of the Environment and Energy (2018). The full data contains

half-hourly general supply in kWh for 13,735 customers, resulting in 344,518,791 observations in

total. The raw data for these consumers is of unequal length, with varying starting and end dates.

Additionally, there were missing values in many series. (The supplementary material contains

details from checking for systematic missingness.) Because our proposed methods evaluate

probability distributions rather than raw data, these data issues are not problematic, unless there is

any systematic structure related to granularities.

Huge data sets present more complications for clustering. Clustering algorithms work well when

there are well-separated clusters, with no nuisance variables or nuisance observations. When

converting a series to granularities, many variables (each level of a granularity) are generated,

possibly creating a slew of nuisance variables. Some customers may have a mix of energy use
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Figure 4.4: Choosing optimal cluster number across the range of scenarios and mean differences
used in the validation study, using the cluster separation index (sindex) for the JS-NQT.
S1 has a sharp decrease in sindex from 5 to 6, whereas S2 and S3 have a decrease from
4 to 5, especially when mean difference is large, providing the recommended number
of clusters to be 5, 4, 4, respectively. This precisely reflects the structure in designs
that we would hope the clustering could recover.

patterns, which could be considered nuisance observations located between major clusters. For this

reason, we have chosen to select a small group of customers with relatively distinct and different

patterns in order to illustrate the clustering more simply. Figure 4.7 shows the distribution across

hod, moy and wnwd for the set of 24 customers used to illustrate clustering. The customers are

displayed in two columns of 12 for space reasons. Each row, of each column, represents the profile

of a single customer across different variables. Each customer is associated with an identifier of

the form [a-b], where a ∈ {1,2, . . . ,24} represents the customer-prototype id and b ∈ {1,2, . . . ,5}

indicates the label of the prototype in which a customer was placed. This is often a good approach

to tackling a big analysis task, to start with a simpler task. The approach, however, is applicable to

all customers.

As a result, we dissect the larger problem and test our solutions on a small sample of prototype

customers. To do this, data is first filtered to generate a small sample, and then significant cyclic

granularities (variables) for them are chosen (as described in Section 4.4.1). The sample set is

subsequently examined along all dimensions of interest, to ensure that they reveal some patterns
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Figure 4.5: MDS summary plots of clusters obtained from employing JS-NQT on the validation
data sets. It illustrates the cluster separation for the range of mean differences (rows)
under the different scenarios (columns). It can be observed that clusters become more
compact and separated for higher mean differences between categories across all
scenarios. Between scenarios, separation is least prominent corresponding to Scenario
(S3) where only one granularity is responsible for distinguishing the clusters.
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Figure 4.6: Exploring the contribution of granularities in the clustering for scenarios S1, S2, S3,
using parallel coordinate plots. Inter-cluster distances are displayed vertically. All
three granularities g1, g2, and g3 have high inter-cluster distances for S1, suggesting
all are important. In S2 g1 and in S3 both g1 and g2 have smaller inter-cluster
distances, indicating that they did not contribute to clustering.

across at least one specified variable (as described in Section 4.4.2). Because the data does not

contain additional customer characteristics, we cannot explain why consumption varies, but can

only identify how it varies.

4.4.1 Data filtering and variable selection

The steps for customer filtering and variable selection were:

1. Choose a smaller subset of randomly selected 600 customers with no implicit missing values

for 2013.

2. Obtain wpd for all cyclic granularities considered for these customers. It was found that hod

(hour-of-day), moy (month-of-year) and wnwd (weekend/weekday) are significant for most

customers. We use these three granularities while clustering.

3. Remove customers whose data for an entire category of hod, moy or wnwd is empty. For

example, a customer who does not have data for an entire month is excluded because their

monthly behavior cannot be analyzed.
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4. Remove customers whose energy consumption is 0 in all deciles. These are the clients whose

consumption is likely to remain essentially flat and with no intriguing repeated patterns that

we are interested in studying.

4.4.2 Selecting prototypes

It is common to filter data prior to fitting a supervised classification model using instance selection

(Olvera-López et al., 2010) which removes observations that might impede the model building.

For clustering, this is analogous to identifying and removing nuisance observations. Prototype

selection is more severe than instance selection, because only a handful of cases is selected. Cutler

and Breiman (1994) proposed a method called archetypal analysis which has inspired this approach

but the procedure we have used follows Fan et al. (2021). First, dimension reduction such as t-SNE,

MDS or PCA is used to project the data into a 2D space. Second, a few “anchor” customers far

apart in 2D space are selected. Additional close neighbors to the anchors are selected. To check the

selections relative to the full set of variables, we used a tour linked to a t-SNE layout using the R

package liminal (Lee, 2021). This ensured that the final sample of clustered customers were also

far apart in the high-dimensional space. (See the supplementary materials for further details.)

4.4.3 Clustering results

Clustering of the 24 prototypes was conducted with all three distances, JS-NQT, JS-RS and WPD,

and is summarized in Figures 4.8, 4.9 and 4.10. The t-SNE visualization suggests that there are

four well-separated clusters. It is possible that because the representation is only 2D, the fifth group

from the original prototype selection is distinctly different in high dimensions. The sindex plots

for the three methods indicate some disagreement: JS-NQT suggests 3, JS-RS suggests 2 or 5 and

WPD suggests 3 or 5. JS-RS would appear to match the original prototypes with the five cluster

solution, but it actually differs. Even though the sindex for JS-NQT suggests three clusters, the

five cluster solution more closely matches the original prototypes. The WPD clustering provides a

different grouping of the customers, and even though it disagrees with the original prototypes it is a

useful grouping.

Figure 4.9 displays the summarized distributions across 4 and 5 clusters from JS-NQT clustering

in (a) and (b) respectively, and helps to characterize each cluster. In the quantile plots the line
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Figure 4.7: The distribution of electricity demand across individual customers over three granular-
ities hod, moy, and wnwd are shown for the 24 selected customers using quantile and
box plots. They are split into batches of 12 in (a) and (b), with each row in (a) or (b)
representing a customer. The number indicates a unique customer id and a prototype
id. In each of the plots, the line represents the median, and the gray region shows the
area between the 25th and 75th percentiles.

represents the median, and the region shows the area between the 25th and 75th percentiles. The

only difference between the four and five cluster solution is that A-4 divides further into B-4 and

B-5. This additional division makes a clearer clustering, because it resolves the heterogeneity

in moy creating a group (B-5, customers 1-3) which has a winter peak in usage, and a group

(B-4, customers 16-20) which has a start of the year peak in usage. B-2 (customers 4-9) and B-1

(customers 21-24) have distinctive hod patterns but are both heterogeneous in moy and wnwd. B-3

(customers 10-15) has peak usage at the end of the year, but is heterogeneous on hod and wnwd.

This clustering almost agrees with the clusters visible in the t-SNE plot. This display also serves

as a visual summary of why three clusters are insufficient using JS-NQT approach, however it is

recommended by sindex summary plots in Figure 4.8.
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Figure 4.8: Clustering summaries: (a) t-SNE computed on the 24 selected customers, and (b)
separation index (sindex) for 2-10 clusters using JS-NQT, JS-RS and WPD. Various
choices in number of clusters would be recommended. Four clusters are visible in
t-SNE, although it might hide a fifth cluster because dimension reduction to 2D may be
insufficient to see the difference. JS-NQT suggests 3, JS-RS suggests 2 or 5 and WPD
suggests 3 or 5.

Table 4.3: Summary table from WPD clusters showing median wpd values (moy, hod, wnwd),
cluster size (nobs) and the list of the customer-prototype id for each cluster with 3 and 5
number of clusters (k). It is to be noted that P−1, Q−1 and P−2, Q−2 are identical
and P−3 gets split into Q−3, Q−4 and Q−5.

k group nobs moy hod wnwd customer-prototype id
P-1 2 66.7 -2.7 39.4 18, 16
P-2 9 129.0 -0.4 12.7 12, 9, 17, 2, 19, 13, 20, 10, 113
P-3 13 14.9 24.5 4.4 8, 22, 23, 24, 14, 15, 3, 1, 4, 21, 5, 6, 7
Q-1 2 66.7 -2.7 39.4 18, 16
Q-2 9 129.0 -0.4 12.7 12, 9, 17, 2, 19, 13, 20, 10, 11
Q-3 4 88.2 29.4 2.6 22, 14, 4, 6
Q-4 4 10.1 32.1 4.2 23, 21, 5, 7

5

Q-5 5 14.9 11.9 4.6 8, 24, 15, 3, 1
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Figure 4.9: Visual summary of why three clusters are insufficient for JS-NQT approach, however it
is recommended by sindex. The plot shows four and five clusters from JS-NQT showing
the distribution of electricity demand combined for all members over hod, moy, and
wnwd. Groups A-1 (customers 21-24), A-2 (customers 4-9), and A-3 (customers 10-15)
profiles correspond to Groups B-1, B-2, and B-3, respectively. Cluster A-4 splits into
B-4 (customers 16-20) and B-5 (customers 1-3) to produce the five clusters, which
better resolves the moy distribution.

Figure 4.10 shows the wpd values of the 24 customers over hod, moy, and wnwd , colored by 3 (a)

and 5 (b) clusters from WPD clustering using a parallel coordinate plot. The variables (wpd for

different granularities) are standardized prior to clustering using WPD. In the display, the variables

are sorted according to their separation across groups. This means that wnwd is the most important

variable in distinguishing the groups, followed by hod and moy for both (a) and (b). Groups P-1 and

P-2 correspond to Q-1 and Q-2 respectively. Cluster P-3 splits into Q-3, Q-4 and Q-5. Customers

16 and 18 are characterized by unusual high values of wpd on wnwd compared to the rest of the

customers and hence form a group. This could again be verified from Figure 4.7, where these were

the only two customers with a difference in their wnwd behavior. They are represented by P-1. P-2

has lower wpd for hod than moy and wnwd. P-3 behaves opposite to P-2 with higher wpd for hod
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Figure 4.10: Summary plots for three (a) and five (b) clusters from WPD approach showing the wpd
values of each customers across hod, moy, and wnwd through a parallel coordinate
plot. P-1 and P-2 groups correspond to Q-1 and Q-2, respectively. Cluster P-3 is
subdivided into Q-3, Q-4, and Q-5. P-1 (customers 16, 18) is distinguished by high
wpd on wnwd values. P-2 has lower wpd than moy and wnwd for hod. P-3 operates
in the opposite way as P-2, with larger wpd for hod in comparison to moy and wnwd.
For the 5 cluster solution, this group is divided into Q-3, Q-4, Q-5, which are distinct
due to their different relative significance of moy and wnwd.
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compared to moy and wnwd. These are the customers who have some significant pattern across hod

and this can again be validated by looking at Figure 4.7. For a 5 cluster solution, this group gets

split into Q-3, Q-4 and Q-5 characterizing different relative significance of moy and wnwd. For

example, Q-4 and Q-5 have almost no pattern across moy, but Q-3 has a moy pattern and thus it

is reasonable to split them. The patterns could be different, but they are significant. Q-4 and Q-5

are separated because of their different significance of hod. All of these can also be verified from

Table 4.3 which shows the cluster summaries with members and median values of wpd for the three

variables.

In summary, none of the methods captured the five original prototypes exactly. JS-NQT was almost

identical, but WPD produced quite a different grouping. This is quite a reasonable result and

illustrates both the difficulties of clustering to obtain a particularly expected grouping and the ability

to learn unexpected patterns in the data. It is possible that the JS-based distances were distracted by

the presence of nuisance variables, levels of the granularities that do not contribute to clustering.

This would also be supported by the results of the validation study, where clustering was less

effective in S2 and S3, where only some granularities had differences between levels. Clustering

using WPD is expected to produce quite different results because it will group only by overall value

of a granularity, not a particular pattern. A cluster summary like Figure 4.9 is not possible because

there may be different but equally interesting patterns (e.g. high evening hod and high daytime

hod) in the same cluster. Simply it provides information that across a collection of customers this

specific cluster has interesting patterns in a granularity (e.g. hod). One would need to post-process

the cluster to separate specific patterns.

4.5 Discussion

4.5.1 Conclusions

Clustering methods perform effectively when clusters are well-separated and there are no nuisance

variables or observations. In practice, most problems will contain nuisance observations or variables,

and well-separated clusters are uncommon. As a result, picking a small group of observations with

somewhat diverse and distinctive patterns (prototypes) rather than a brute force method is usually

a good way to learn about the clustering and the data set, as demonstrated in this chapter. We
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offer two approaches for calculating pairwise distances between time series based on probability

distributions over multiple cyclic granularities at once. Depending on the goal of the clustering,

these distance metrics, when fed into a hierarchical clustering algorithm using Ward’s linkage,

yield meaningful clusters for the prototypes. Probability distributions provide an intuitive method

to characterize noisy, patchy, long, and unequal-length time series data. Distributions over cyclic

granularities help to characterize the formed clusters in terms of their repeating behavior over these

cyclic granularities. Furthermore, unlike earlier efforts that group customers based on behavior

across only one cyclic granularity (such as hour-of-day), our method is more comprehensive in

detecting clusters with repeated patterns at all relevant granularities.

4.5.2 Limitations and future research

There are a few areas to extend this research. Firstly, larger data sets with more uncertainty

complicate matters, as is true for any clustering task. Characterizing clusters with varied or

outlying customers can result in a shape that does not represent the group. Moreover, integrating

heterogeneous consumers may result in visually identical end clusters, which are potentially not

useful. Hence, a way of appropriately scaling it up to many customers such that anomalies are

removed before clustering would be useful for bringing forth meaningful, compact and separated

clusters. Secondly, the conditional distributions are assumed to remain constant for the observation

period. In reality, however, it might change. For the smart meter example, the distribution for

a customer moving to a different house or changing electrical equipment can change drastically.

Our current approach cannot detect these dynamic changes. Thirdly, it is possible that for a

few customers, data for some categories from the list of considered significant granularities are

missing. In our application, we have removed those customers and done the analysis but the metrics

used should be able to incorporate those customers with such structured missingness. Moreover,

experiments can also be run with non-hierarchy based clustering algorithms to verify if these

distances work better with other algorithms.

For larger data sets, most clustering tasks become increasingly computationally intensive. The

computational time for determining pairwise distances presented in this paper is determined by

the number of cyclic granularities evaluated. For JS-NQT, the time required to compute distances

between two observations based on 1, 2, and 3 cyclic granularities is 4.5s, 5.8s, and 8.2s, respectively.
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For JS-RS, the time is comparable. The time required for WPD will be longer because the statistic

wpd must be computed for each observation and cyclic granularity. Even with parallel computing,

wpd is computationally costly for cyclic granularities with fewer levels. Further research may

improve the efficiency of the computations to tackle large-scale clustering challenges.
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Chapter 5

Conclusion

This thesis presents methods for visualizing and analyzing distributions of large temporal data by

deconstructing time into temporal granularities. This chapter summarizes the thesis content, outlines

the original contributions, software development, and possible directions for future research.

5.1 Original contributions

Exploratory time series analysis entails numerous iterations of identifying and summarizing tempo-

ral dependencies. It is common practice to divide time into years, months, weeks, days, and so on

in order to make inferences at both finer and coarser scales. In the literature, the formalization of

these temporal deconstructions (granularities) is limited to linear time granularities such as hours,

days, weeks, and months that respect the linear progression of time and are non-repeating. Cyclic

granularities that are repeating in nature are useful for finding patterns in temporal data. They can be

circular, quasi-circular, or aperiodic in nature. Hour-of-the-day and day-of-the-week are examples

of circular granularities; the day-of-the-month is an example of a quasi-circular granularity; and

public holidays and school holidays are examples of aperiodic granularities. Additionally, time

deconstructions can be based on a time hierarchy. Thus, single-order-up granularities such as

second of minute or multiple-order-up granularities such as second of hour can be envisioned. The

definitions and rules defined in the literature for linear granularities are insufficient for describing

various types of cyclic granularities.
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Chapter 2 provides a formal characterization of cyclic granularities as well as tools for classifying

and computing potential cyclic granularities from an ordered temporal index. It also allows for

the manipulation of single- and multiple-order-up time granularities via cyclic calendar algebra.

The approach is generalizable to non-temporal hierarchical granularities with an ordered index.

Visualizing probability distributions conditional on one or more cyclic granularities is a powerful

exploration tool. However, there may be too many cyclic granularities to look at manually for

comprehensive exploration, and not all pairs of granularities can be effectively explored together.

Chapter 2 also provides a recommendation on whether a pair of granularities can be meaningfully

plotted or analyzed together (a “harmony”) or when they cannot (a “clash” or “near-clash”).

Cyclic granularities could be used to create a wide range of displays. And, when there are numerous

granularities to choose from, deciding which one to display can be difficult. Moreover, only a

few of them may be useful in revealing major patterns. In Chapter 3, the search for informative

granularities is facilitated by selecting “significant” granularities. A cyclic granularity is referred to

as “significant” if there is a significant distributional difference of the measured variable between

different categories. Chapter 3 defines a distance measure to quantify these distributional differences.

A higher value of the distance measure for a cyclic granularity or harmony implies that they could

be interesting for further investigation, whereas a low value indicates that nothing noteworthy is

unfolding. A threshold and, consequently, a selection criterion are chosen using a permutation

test such that cyclic granularities with significant values of the distance measure are selected. In

addition, the distance metric has been appropriately adjusted, allowing it to be compared not only

across cyclic granularities with different numbers of categories but also across a set of time series.

As a result, it can also be used to rank the displays according to their ability to capture the greatest

amount of variation across one or multiple time series.

The ideas in Chapters 2 and 3 can be used for studying patterns in individual time series or

comparing a few time series together. This is extended in Chapter 4 to allow for the exploration

of distributions for multiple time series at the same time using unsupervised clustering. In the

time series clustering literature, probability distributions across cyclic granularities have not been

considered in determining similarity. However, such a similarity measure can be useful for

characterizing the inherent temporal data structure of long, unequal-length time series in a way

that is resistant to missing or noisy data while allowing for the detection of similar repeated
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patterns. Chapter 4 proposes two approaches for calculating distances between time series based on

probability distributions across cyclic granularities. The first approach considers two time series

to be similar if the distributions of each category of one or more cyclic granularities are similar.

The second approach considers two time series to be similar if they have a similar significance

of patterns across different granularities. A similar significance does not imply a similar pattern,

which is where this technique varies from the former. When the distances from these approaches

are fed into a hierarchical clustering algorithm, they yield small groups of time series with similar

distributions or significance over multiple granularities. Our method is capable of producing useful

clusters for both approaches, as demonstrated by testing on a range of validation data designs and a

sample of residential smart meter consumers.

5.2 Software development

This thesis focuses on translating research approaches into open source R packages for reproducibil-

ity and ease of use in other applications. So a significant amount of work has been devoted to the

development of R packages gravitas, hakear, and gracsr, each of which corresponds to a

chapter presented in this thesis.

5.2.1 gravitas

The gravitas package provides very general tools to compute and manipulate cyclic granularities

and generate plots displaying distributions conditional on those granularities. The functions

search_gran(), create_gran(), harmony(), gran_advice() and prob_plot() provides

the entire workflow for an analyst to systematically explore large quantities of temporal data

across different harmonies (pairs of granularities that can be analyzed together). This package

was developed as part of my internship at Google Summer of Code, 2019. It has been on CRAN

since January 2020. The website (https://sayani07.github.io/gravitas) includes full

documentation and two vignettes about the package usage. There has been a total of 12K downloads

from the RStudio mirror dating from 2020-11-01 to 2021-11-01. This package supplements the

paper corresponding to Chapter 2, which has won the ACEMS Business Analytics Award 2021.

The package can be generalized to non-temporal applications for which a hierarchical structure can

be construed similar to time.
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5.2.2 hakear

The R package hakear (https://github.com/Sayani07/hakear) provides tools for select-

ing and sorting significant cyclic granularities. The function wpd() computes the weighted

pairwise distances (wpd) for each cyclic granularity or pair of granularities, and the function

select_harmonies() chooses those with significant patterns and ranks them from highest to

lowest wpd. This package is reliant on parallel processing using multiple multi-core computers for

faster computation of wpd. The selected harmonies can be plotted using package gravitas for

potentially interesting displays. Currently, hakear implements ideas presented in Chapter 3, but it

will be integrated with gravitas in the future to explore distributions of a smaller number of time

series.

5.2.3 gracsr

The R package gracsr (https://github.com/Sayani07/gracsr) has functions for explor-

ing a large number of time series using the clustering methodology described in Chapter 4. The

workflow begins with the function scale_gran(), which may be used to scale individual series

using NQT/RS. The distances for the JS and WPD approaches are computed in the second phase of

the workflow using dist_gran()/dist_ wpd(). The distances can then be used to do clustering

with clust_gran(). The package has received a grant (AUD 3000) as part of the ACEMS

Business Analytics Prize towards polishing the functions and preparing it for CRAN.

5.2.4 Computational resources

Simulation studies were carried out to study the behavior of wpd, build the normalization method

as well as compare and evaluate different normalization approaches in Chapter 3. In Chapter 4, our

methods were tested on several data designs with different parameters to evaluate their performance.

wpd is computationally heavy for cyclic granularities with smaller levels. JS and WPD approaches

are also computationally intensive when run on large number of customers. Hence, most of the

scripts used to run these studies use parallel processing for better computational speed. R version

4.0.1 (2020-06-06) is utilized on the platform x86 64-apple-darwin17.0 (64-bit) operating on

macOS Mojave 10.14.6, as well as the High Performance Computing (HPC) resources provided by

MonARCH.
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5.3 Limitations and future ideas

We address several limitations of the current framework that might serve as natural next steps for

this work and some potential short- and long-term aims in future ideas.

5.3.1 Limitations

The time series are observed over a short period of time (1–3 years) in the motivating example of

this research, and they are assumed to be stationary. But it is possible that the distributions change

over time, even over a short period. For the smart meter example, the distribution for a customer

moving to a different house or changing electrical equipment may change drastically. To detect

these dynamic changes, non-stationarity in time series has to be incorporated while visualizing

distributions and also computing distances for two non-stationary time series or one stationary and

another non-stationary time series.

Additionally, it is possible that data for a whole category of cyclic granularity is unavailable or

that there are insufficient observations to compute distributions. For example, a customer may not

have data for a particular day of the week or month throughout their observation period. While

visualizing probability distributions across categories in Chapters 2 and 3, this can be indicated

by displaying dot plots instead of summarizing distributions. But the distances in Chapter 4 can

not handle missing observations if they are structured like this. We would like to be able to think

about designing a distance metric that can incorporate customers with structural missingness and

also comprehend its implications while visually characterizing them. Another related direction

is how to manage the swarm of nuisance variables produced by transforming the time series to

cyclic granularities. Because the design of our existing framework treats each level of granularity

as a variable, it is important to identify levels of granularity that do not contribute to clustering

and remove them from the distance metric in order to improve the performance of the clustering

algorithm.

5.3.2 Future ideas

The standard methodologies provide contradicting recommendations for the optimal number of

clusters when there are nuisance variables (no contribution to clustering) or nuisance observations
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(inlying and outlying observations falling between clusters). As a result, a more realistic short-term

goal should be to test the persistence of clustering solutions in the presence of nuisance variables

for the chosen number of clusters. This can be done by introducing slightly different samples into

the study and observing how the clustering methods handle increased heterogeneity.

Another possible direction is to reduce computational time so that the proposed methods are easily

scalable to many customers. The distance measure, wpd is computationally heavy even under

parallel computation. Moreover, while computing distances between time series, the proposed

methods compute all possible pairwise distances, which acts as a computational barrier. Faster

nearest-neighbor search algorithms can be employed here to decrease the computational load.

A longer-term goal would be to create a similar framework for visualizing and analyzing multivariate

time series data. With multiple time series available for each observation, the complexity of efficient

exploration and visualization grows exponentially. In this case, conditional distributions include

not only temporal dependency but also variables and their dependencies. This adds to the already

high-dimensional data structures that result from studying distributions. This big problem can

be tackled by first incorporating time’s inherent characteristics while visualizing one or a few

multivariate time series data. Unsupervised clustering can then be used to group multiple time

series across multiple time granularities and variables. This is a method similar to the one used in

this thesis for dealing with univariate time series.

Another long-term goal would be to develop a comparable framework with a spatial component for

analysis. Electricity data is commonly found in a spatio-temporal format with some type of area

code, such as a postcode or administrative unit. Assuming that households in certain residential

neighborhoods have similar energy usage patterns, future research could look into clustering and

visualization methods for analyzing probability distributions of spatio-temporal data, perhaps

through some variation of the glyph maps.
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