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Abstract

This thesis contributes to the literature by developing new methods for estimating and forecast-

ing univariate time series, such as GDP, GDP growth rate, and inflation using a large number

of variables in a set of high-dimensional panel data as potential predictors. To this end, we use

a factor augmented regression [FAR] model that contains a small number of estimated factors as

predictors; the factors are estimated using the aforementioned set of panel data. The validity of

this forecasting method has been established when all the variables are stationary, I(0), and when

they all non-stationary with unit roots, I(1), but not when they consist of a mixture of I(0) and

I(1) variables. The central theme of this thesis is to advance the literature by extending the FAR

method to: include a mixture of stationary and non-stationary factors and observed variables

as predictors; allow time varying parameters; and allow two-level factors. Since the proposed

model relaxes the three assumptions that underlie the FAR method, indications are that the

new approaches explored in this thesis have the potential to improve over the corresponding

ones in the literature. The approaches are developed with the underlying assumptions being

progressively more general, and hence the methodology being progressively more challenging.

First, Chapter 2 in this thesis develops a method for constructing an asymptotically valid

prediction interval using an FAR model when the set of predictors includes a mixture of I(0)

and I(1) factors; we refer to this as mixture-FAR model. This method is important because a

set of factors estimated using a large set of panel data, such as FRED-QD, is likely to contain

a mixture of stationary and non-stationary variables. Although, in general, the form of non-

stationarity may be more general than I(1), this Chapter is restricted to I(1) variables only;

despite this restriction, the resulting model is still quite general and is an improvement over

the current literature. The methodology has been fully developed with rigorous mathematical

proofs for the proposed method. In a simulation study, we observed that the proposed mixture-

FAR method performed better than its competitor that requires all the predictors to be I(1);

the mean squared error of prediction was at least 33% lower for the mixture-FAR model. As

xii



an empirical illustration, we evaluated the aforementioned methods for forecasting the non-

stationary variables, GDP and Industrial Production [IP], using the quarterly panel data FRED-

QD on the US economic variables. We observed that the mixture-FAR model proposed in

Chapter 2 performed better than its competitors. The proofs of the theorems on the asymptotic

validity of the proposed method are provided in this thesis.

Second, for empirical application, a limitation of the mixture-FAR model studied here is that

it assumes that the regression parameters are constant throughout the estimation period. If the

panel data set spans a long time period, it is possible that the model parameter values may change

over time, in which case the constant parameter model studied previously would be misspecified

and hence the forecasts based on it are likely to be invalid. Therefore, we generalize the mixture-

FAR model by allowing key parameters to be time varying, albeit in a controlled manner. For

example, we assume that the factors follow a time-varying vector moving average model of infinite

order; this allows the factors to be locally stationary.We refer to the proposed model as a semi-

parametric FAR model. Chapter 3 in this thesis develops a new method of estimating the semi-

parametric FAR model and then using the estimated model for forecasting. Work is in progress

to derive the asymptotic properties of the proposed method derived for the case when the factors

are observed. In the numerical studies, we explored the latent factors being estimated by two

different methods: the conventional Principal Components Analysis (PCA) and a nonparametric

local estimation method. In a simulation study, we observed that the factors estimated by

a non-parametric method were not very sensitive to different bandwidths, but the estimated

coefficients in the FAR model were sensitive to the bandwidth choice. Therefore, we explored

cross-validation for choosing suitable bandwidths for factor estimation and parameter estimation.

Using the FRED-QD data set, we evaluated the performance of the new method for forecasting

the I(1) log(GDP), and two I(0) GDP growth rate and inflation. We observed that the model

with nonparametric estimates of factors forecasts inflation better than the semi-parametric FAR

model with PCA factors, whereas the model with PCA factors generated log(GDP) and GDP

growth rate forecasts better than the model with nonparametric counterparts.

Third, we further extend the semi-parametric FAR model in Chapter 4 by allowing two-level

factors, called global factors and group factors, where global factors are pervasive and group

factors are non-pervasive; global factors are related to all the predictor variables and the group

factors are related to a group of variables that forms a strict subset of the predictor variables.

For example, in the context of FREDQ data, a group factor could be related to a group of price
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variables. To allow for such two-level factors, we generate global and group factors from the

two-level factor panel model, and include them in the FAR model. We refer to the new model as

semi-parametric two-level FAR model. There is hardly any literature on forecasting using such

an FAR model; the presence of two-level factors and time varying parameters result in a model

that is complex. Based on the insights gained in the two previous extensions of FAR models, we

propose a method for estimating the model. For the estimation of the two-level factor model, we

adapt the method introduced by Breitung and Eickmeier [2016], where only the stationary case

was studied. The results of our empirical studies show that (a) the semi-parametric one-level

FAR model forecasts GDP in level better than its competitors, and (b) the semi-parametric two-

level FAR model forecasts GDP growth rate and inflation better than its competitors. These

observations provide some evidence that the proposed method is promising and it is likely to be

an improvement over the existing ones in the literature.
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Chapter 1

Introduction

1.1 Background and motivation

Inflation and GDP growth forecasts are frequently produced and used to improve decision-

making at the micro and macro levels. Therefore, generating accurate forecasts of GDP growth

and inflation of major countries and regions has been the primary focus of a vast number of

studies in the economic and econometric literatures. For example, see Banerjee and Marcellino

[2006], Demers and Cheung [2007], Barnett et al. [2014], Banerjee et al. [2005], Lahiri and Sheng

[2010], and Abbate and Marcellino [2014]. See also the recent survey papers Eickmeier and

Ziegler [2008] for forecasting GDP growth and inflation and Kavtaradze and Mokhtari [2018]

for inflation.

Abbate and Marcellino [2014] showed that the main reason for predictive failure is the use of

univariate models that by necessity can incorporate only a small subset of the variables. Thus,

predictive failure or inaccurate forecast is the result of (1) not taking account of all information

in the data, and (2) not taking account of model uncertainty. Since the advent of the factor

models by Stock and Watson [2002a, 2007] and Bai and Ng [2002, 2006] and thus the factor

augmented-regression (FAR) model, many of the aforementioned studies evaluated the accuracy

of forecasts by the univariate FAR model relative to standard time series models and those

based on economic theory such as Phillips curve. Evidence in the huge literature on this topic

demonstrate that the FAR model captures a large proportion of the information content in

the high-dimensional panel data through only a few factors and such FAR models out-perform

the time series models and economic theory based models in the out-of-sample predictions of

macroeconomic variables.
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The main objective of the thesis is to relax three assumptions that underlie the FAR method

and to propose improved FAR methods, and develop methodology for estimating and forecasting

key macroeconomic variables such as GDP (in level), GDP growth rate and inflation.

The widely studied FAR model includes only I(1) factors as predictors when forecasting I(1)

variables, whereas it includes only I(0) factors when forecasting I(0) variables. Moreover, the I(1)

factors were generated from the panel of I(1) variables, while I(0) factors were generated from

the panel of I(0) variables; see Bai and Ng [2002, 2006] and Choi [2017] for details. However, the

panel of FRED-QD data set (Stock and Watson 2002a) consists of I(0) and I(1) variables and

thus the factors estimated therein also consist of I(1) and I(0) mixture. The FAR method with

a mixture of I(1) and I(0) factors as predictors would improve the statistical efficiency and thus

accuracy of forecasting; we call this mixture-FAR model. This thesis develops some asymptotic

results, conducts a simulation study to evaluate the finite sample properties of the mixture-FAR

model parameter estimates and prediction intervals, and illustrate an empirical application of the

proposed method for forecasting non-stationary macroeconomic variables using the FRED-QD

data set.

The standard FAR models frequently ignore structural changes over time. When the rela-

tionship between a macroeconomic variable and its fundamentals changes over time, then the

underlying parameters and/or structure might change with time as well. The models with time-

varying parameters (TVP) explicitly allow non-linear reactions to the structural changes. These

models were found to produce more precise estimates over other econometric models (Abbate

and Marcellino 2014 and Kavtaradze and Mokhtari 2018).

Although progress has been made in the estimation and forecasting of univariate time series

models with time varying parameters, the literature on the FAR model with TVP for forecasting

is underdeveloped. Cai [2007] and Stock and Watson [2009] showed that time series models with

TVP can generate forecasts that are robust to structural changes. Furthermore, Cai [2007]

studied a time series model with TVP and serially correlated errors, and developed a non-

parametric local linear kernel method to estimate the trend and coefficient functions. Li et al.

[2011a] proposed a non-parametric method for estimating time-varying parameters in the panel

model and obtained faster convergence rates for the time trend and time-varying coefficients.

Fan and Huang [2005] introduced a profile least square (PLS) technique to estimate parametric

coefficients in a semi-parametric varying model. Chen et al. [2012] extended the semi-parametric

time-varying coefficients regression model to the panel data model structure. In this thesis, we
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adapt these estimation methods to our setting where the FAR model includes generated local

stationary factors as predictors and the parameters of these factor being time varying.

Albeit recent, the development of methodology for the estimation of multi-level factor model

together with empirical applications is a rapidly growing literature (Wang 2008, Boivin and Ng

2006, Beck et al. 2009, Breitung and Eickmeier 2016, and Rodŕıguez-Caballero 2021, to name a

few). A scenario in which the need for such multi-level factors may arise is the following. The

economy could be partitioned into several sectors, and a set of factors that are specific to only

one sector and hence has no effects on the variables in the other sectors. We call such factors

level-2 (non-pervasive) factors. In this case, some of the factor loadings would be structurally

zero. In such cases, making use of the structural zero restrictions could be expected to improve

statistical efficiency. To see the benefit of such factors, consider a group of price variables that

constitutes a sector. Generating a factor from this group and including it in the FAR model

would improve the out-of-sample forecast of inflation. Another example where two-level factors

arise is in international bilateral trade, wherein global factors may impact all the countries in the

panel, while level-two factors may impact countries from specific regions. For other examples,

see Breitung and Eickmeier [2016].

In this thesis, we progressively relax the three aforementioned assumptions that underpin the

FAR model and propose improved FAR methods and develop methodologies to estimate these

models. We assess the performance of models in terms of out-of-sample predictions of three key

macroeconomic variables GDP, GDP growth rate and inflation, and compare them against its

competitors. The improved methods and methodologies are proposed and studied in three main

Chapters of the thesis.

1.2 Outline of the thesis

In Chapter 2, we relax the assumption that the FAR model consists of only I(1) factors when

forecasting I(1) variables and allow the FAR to include a mixture of I(0) and I(1) factors as

predictors. The mixture of I(0) and I(1) factors are estimated from the large panel data such as

FRED-QD, which typically contains a mixture of stationary and non-stationary variables and

include them in the FAR model. We call this mixture-FAR model. The main methodological

contributions of this Chapter are: (a) it establishes the consistency of the estimated factors

up to a rotation of the latent factors; (b) it derives the consistency and asymptotic normality
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of the parameter estimators; and (c) it constructs an asymptotically valid prediction interval.

In a simulation study, we evaluate the finite sample properties of the mixture-FAR model and

compare its accuracy of out-of-sample forecasts relative to its competitors. In the empirical

application, we evaluate the out-of-sample predictability of the proposed method relative to its

competitors in the literature in forecasting log(GDP) and industrial production [IP].

In Chapter 3, we relax the assumption that parameters of the mixture FAR model are

constant over time and allow the key parameters of the mixture-FAR model to be time varying,

albeit in a controlled manner. Also, the factors are allowed to be locally stationary but globally

non-stationary. We refer to the proposed model as semi-parametric FAR model. Since developing

a new methodology for this rigorous model is very challenging, in this Chapter, we develop a

methodology under some assumptions. First, we assume that the latent factors are known and

follow a time-varying VMA(∞). So, these factors are locally stationary. Under this assumption,

work is in progress to drive the asymptotic properties of the estimated regression coefficients.

An extension to the case where the factors are unknown and estimated will be undertaken in

the future. Second, we allow the parameters of factors in the FAR model to be time-varying. A

profile least square (PLS) technique and non-parametric local estimation method are together

used to estimate both constant and time varying coefficients of the FAR model. In the numerical

studies, this Chapter explores two different methods for the estimation of the latent factors:

the conventional Principal Components Analysis (PCA) and a nonparametric local estimation

method. We conduct a simulation study to assess the sensitivity of the factors estimated by a

non-parametric method and estimated coefficients in the FAR model to different bandwidths.

Using the FRED-QD data set, we evaluate the performance of the new method for forecasting a

non-stationary variable, log(GDP), and two stationary variables GDP growth rate and inflation.

In Chapter 4, we relax the assumption that factor model consists of only global (one-level)

factors in the panel data model and allow two-level factors, which include level-1 and level-2

factors; see the previous section for a brief discussion. Since the panel data contains I(1) and

I(0) economic variables, the two-level factors estimated therein are also a mixture of I(0) and

I(1). Furthermore, we allow the parameters of the two-level factors in the FAR model to be

time varying. We refer to the proposed model as semi-parametric two-level FAR model. For

the estimation of the two-level factor model, we adapt the method introduced by Breitung

and Eickmeier [2016], where only the stationary panel data was studied, to our panel model

setup with mixture of I(0) and I(1) variables. Based on the insights gained in the previous
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two Chapters, we propose a kernel method for estimating the model. To improve the out-of-

sample predictive performance of the method in this Chapter, we included the economic policy

uncertainty index (EUI) as a predictor in the two-level FAR model, which is known to reduce the

instability in the forecast errors. We apply the new semi-parametric two-level FAR model for

forecasting log(GDP), GDP growth rate and inflation. The FRED-QD dataset is categorized

into 12 groups, such as employment and unemployment, prices, interest rates, and exchange

rates. These groups constitute 12 level-2 factors.

The novelty of the proposed method is that, based on prior knowledge and/or some infor-

mation criteria such as goodness-of-fit and correlation measures, we can select the number of

global and group factors that would be predictors in the FAR model for forecasting the desired

macroeconomic variable. Thus, we can specify three separate semi-parametric two-level FAR

models for forecasting log(GDP), GDP growth rate and inflation. By contrast, previous studies

mostly used the same global factors in the FAR model for forecasting macroeconomic variables.

By construction, the proposed model is likely to generate more accurate forecasts than the

FAR models used in the literature. The methodological developments for the semi-parametric

two-level FAR model is challenging, which will be a topic for the future research.

The final concluding Chapter briefly summarises the main findings of the research topics ad-

dressed in the three Chapters and provide some directions for future research.
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Chapter 2

Time Series Forecasting using a

Mixture of Stationary and

Nonstationary Predictors

2.1 Introduction

Construction of valid probability forecasts of key economic variables, such as GDP and Inflation,

is central to making reliable economic policy decisions. There is a large body of literature on

constructing probability forecasts for a stationary variable using other stationary variables as

predictors. By contrast, the literature on making probability forecasts for a nonstationary

variable using a mixture of stationary and nonstationary predictors remains underdeveloped. In

a method that has attracted considerable attention, a two-step method involving a factor model

for panel data and a regression model for predicting the time series are used jointly (Stock and

Watson 2002a). In the first step, the factor model is used for generating a small number of

factors to capture most of the information in a set of panel data for a large number of potential

predictors. In the second step, the regression model uses the generated factors as predictors,

instead of the large number of potential predictors in the panel data. The resulting regression

model is known as factor augmented regression[FAR] model, which is one of the well-known

models for constructing probability forecasts for a time series (Bernanke et al. 2005, Stock and

Watson [1998a, 1998b, 2002b]). The large number of economic variables that are potential

predictors typically includes a mixture of stationary and nonstationary variables. Consequently,

the collection of factors is also typically a mixture of stationary and nonstationary ones (Bai
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2004, Eickmeier 2005, Moon and Perron 2007, Smeekes and Wijler 2019). The objective of

this chapter is to develop a new method for constructing a valid prediction interval when the

predictors in the prediction model include a mixture of stationary and nonstationary factors.

For the main results of this chapter, the only nonstationary variables considered are I(1);

therefore, we use the term nonstationary as a synonym for I(1).

Related literature

The validity of the aforementioned general approach for forecasting using an FAR model

with estimated factors has been established when all the variables, including the factors, are

stationary (Bai 2003, Bai and Ng [2002, 2006], Gonçalves and Perron 2014), and also when

they are all nonstationary (Choi 2017), but not when they form a mixture of stationary and

nonstationary ones. This chapter builds on the aforementioned literature and develops a method

based on FAR models for forecasting, more specifically for constructing an asymptotically valid

prediction interval when the chosen set of factors is a mixture of stationary and nonstationary

ones.

Suppose that the variables are all nonstationary. Bai [2004] studied the consistency of the

estimated factors and proposed a method for estimating an optimal number of factors. The

limiting distributions of the estimators of factors and their loadings have also been obtained.

Choi [2017] used a method based on generalized principal components for estimating factors,

and studied the asymptotic properties of the generated nonstationary factors, their loadings,

and forecasts. Under the assumption T/N → 0, Choi [2017] showed that estimators of the

parameters in the forecasting model are consistent and asymptotically normal, and that the

forecasts converge at the rate T , where T and N are the time and cross-section dimensions

respectively.

Since the method in this chapter is based on the large literature for forecasting a stationary

variable using an FAR model, a few comments would be helpful. Suppose that we wish to

predict a stationary variable, such as inflation, using a method that requires all the predictors

in the prediction equation to be stationary, for example the method in Bai [2003] or that in Bai

and Ng [2006]. For this scenario, one could either delete all the I(1) variables or use the first

differences of the I(1) predictors instead of the original I(1) predictors (Ludvigson and Ng 2007,

Stock and Watson 2012, Cheng and Hansen 2015). While this adaptation is methodologically

valid, a natural question that arises is whether differencing a nonstationary variable could result
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in loss of information in the level-data that may be important for forecasting. Similar questions

also arise when forecasting a nonstationary variable, the topic of this chapter.

Suppose that the set of generated factors is a mixture of stationary and nonstationary vari-

ables, and we wish to predict a nonstationary variable, such as GDP, using a method that

requires all the predictors to be nonstationary, for example the method in Choi [2017]. For this

scenario, it has been suggested to delete all the predictors that are stationary and apply the

method. While this method is valid, deletion of predictors to suit a method is likely to result in

loss of information and hence loss of statistical efficiency.

The development of methodology for factor models has contributed to improve time series

forecasting, macroeconomic analysis, and monetary policy analysis. Empirical results from

several studies indicate that the generated factors often tend to be a mixture of stationary

and nonstationary variables. For example, Bai [2004] studied employment fluctuations across 60

industries in the US and found that two nonstationary and one stationary factors explain a large

part of the fluctuations in employment. Bernanke et al. [2005] used factor augmented vector

auto-regression and found that it contained information to accurately identify the monetary

transmission mechanism in the US. Eickmeier [2005] used a large-scale (N > 300) dynamic factor

model and concluded that the Euro-area economies shared four non-stationary factors and one

stationary factor. Eickmeier found that the factors represent mainly the variations in German

and French real economic activity as well as of producer prices and financial prices through

which they also studied the transmission channels and the impacts of macroeconomic shocks.

Moon and Perron [2007] studied the Canadian and US interest rates for different maturities

and risk, and found a single nonstationary factor and several stationary ones. The dominant

factors were interpreted as level and slope, as in the term structure literature. In a recent study,

Smeekes and Wijler [2019] provided an overview of forecasting macroeconomic time series in the

presence of unit roots and cointegration. They compared point forecasts of some key economic

variables in FRED-MD and FRED-QD data set and nowcasting of unemployment in another

data set that was constructed from Google trend using the two methods (a) transforming every

series to stationarity, and (b) directly modelling the level data. However, rigorous justification

for modelling the level data with unit roots and cointegration in the forecasting model is yet to

be provided.

The method in this chapter
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In this chapter, we use the methods in the literature (Bai 2004, and Moon and Perron 2007)

for generating factors that may be a mixture of stationary and nonstationary variables. Once

they have been generated, we use them as predictors in a factor-augmented regression [FAR]

model for forecasting; we refer to this as a mixture-FAR model. We develop new methods

for constructing asymptotically valid prediction intervals using the mixture-FAR model. Our

results, under the additional assumption that all the variables are stationary, reduce to the

corresponding ones in Bai and Ng [2006]. Similarly, our results, under the additional assumption

that all the variables are nonstationary, reduce to the corresponding ones in Choi [2017]. In this

sense, our results provide a way of combining and extending the existing results on this topic

that are limited to the two cases (a) when all the variables are stationary and (b) when all the

variables are nonstationary.

To state the asymptotic results, we introduce a diagonal matrix, denoted D1T ; its dimension

is equal to the number of predictors in the FAR model, and each of its diagonal element is

equal to either
√
T or T according as the corresponding predictor is stationary or nonstation-

ary. The joint limiting distribution of the generated factors is derived under the assumption
√
N
∥∥D−2

1T

∥∥→ 0, where and in what follows ‖A‖ = trace(A′A)1/2. We develop the main part of

the asymptotic results under the assumption T/N → 0. We show the consistency and asymp-

totic normality of estimators of the parameters of the forecasting model. For the case of normally

distributed errors in the prediction model with
√
N
∥∥D−2

1T

∥∥ → 0 and T/N → 0, we show that

forecast error has an asymptotically normal distribution, and use it to construct an asymptot-

ically valid prediction interval for the dependent variable in the forecast equation. To examine

the finite sample properties of the estimates, we conducted a simulation study with data gen-

erating processes [DGP] that contain mixtures of stationary and nonstationary variables. In

these simulations, we observed that the mixture-FAR method performed overall better than

the method that requires all the variables to be nonstationary. As an empirical illustration, we

evaluated the aforementioned methods for forecasting the nonstationary variables, GDP and in-

dustrial production [IP], using the quarterly panel data on US macroeconomic variables, known

as FRED-QD. We observed that the mixture-FAR model performed better than its aforemen-

tioned competitors. This observation also corroborates the general observation of our simulation

study, namely, the mixture-FAR method performed better than the competing methods.

The rest of this chapter is organized as follows. Section 2.2 introduces the model and the

assumptions, and establish the consistency and limiting distributions of the estimators. Section
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2.3 reports the results of the simulation study. The empirical example using the FRED-QD data

is presented in Section 2.4, and Section 2.5 concludes. The proofs of the theorems and lemmas,

and some simulation results are provided in the Appendix section 2.6.

2.2 Methodology

2.2.1 Model and notation

Let {Yt, t = 1, 2, . . .} denote an observable univariate time series that we wish to predict at

a future time T + h (h ≥ 1), using the information available up to time T . Let {Xit ∈ R :

i = 1, . . . , N ; t = 1, . . . , T} denote a set of panel data and {Wt ∈ Rm : t = 1, . . . , T} denote

a set of observable predictors; Wt may contain lagged values of Yt. The aforementioned factor

augmented regression[FAR] method for predicting YT+h uses the following two models:

Factor model: Xit = λ′iFt + eit (i = 1, ..., N ; t = 1, ..., T ) (2.1)

FAR model: Yt+h = θ′Ft + ω′Wt + εt+h (t = 1, ..., T ), (2.2)

where Ft is an r × 1 vector of unobservable factors, {eit, εt} are idiosyncratic errors, λi is an

r × 1 vector of factor loadings, and θr×1 and ωm×1 are unknown parameters (i = 1, . . . , N ; t =

1, . . . , T ); the number of factors r is assumed known. This was called a “diffusion index fore-

casting model” by Stock and Watson [2002a].

A point of departure of this chapter from the current literature is that we allow the r factors to

be used in the FAR-method, to be a mixture of stationary and nonstationary variables. Further,

we assume that Yt and Wt are nonstationary; as indicated previously, the only nonstationary

variables that we consider are I(1). We conjecture that the results in this chapter can be extended

to the case when the factors are I(d) (d = 2, 3, . . .); but, we do not consider such extensions in

this chapter.

Remark 1: (a). In model (2.1), the time series {Xit}t∈N, for a given i (i = 1, . . . , N), may be

stationary or non-stationary. Therefore, the model allows the panel to consist of only stationary

variables, or only nonstationary variables, or a mixture of stationary and nonstationary variables.

If all the panel variables are stationary, then the estimated factors would also be stationary. This

is because each factor is a linear combination of the panel variables; for example, F1t is of the

form
∑N

i=1 aiXit for some {a1, . . . , aN}.
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(b). One might ask whether it is possible to partition the variables into two groups such that

group 1 consists of only stationary variables and group 2 consists of only nonstationary variables,

and then estimate the stationary factors using group 1 and nonstationary factors using group 2.

Such a method is not valid for the following reasons. A stationary factor may be a function of

stationary and nonstationary variables in the panel. Therefore, it is not possible to use only the

stationary variables to estimate the stationary factors. Similarly, a nonstationary factor may be

a function of stationary and nonstationary variables in the panel. Therefore, it is not possible

to use only the nonstationary variables to estimate the nonstationary factors. Apart from

these limitations, the probability of misclassification resulting from the multiple tests needed to

partition the variables is likely to be very high.

(c). As it is unlikely to estimate the I(0) and I(1) factors separately from two sub-panels, the

estimation of the number of I(0) factors using IC based on the sub-panel with stationary Xit

and estimating the number of I(1) factors using IPC based on the nonstationary Xit is not valid.

Let X =
[
Xit

]
T×N denote the panel data in matrix form, F = (F1, . . . , FT )′ denote the T ×r

matrix of unobservable common factors, Λ = (λ1, . . . , λN )′ denote the matrix of factor loadings,

and e =
[
eit
]
T×N denote the matrix of error terms from the factor model. Then the factor

model (2.1) can also be expressed as X = FΛ′+e. Since the stationary and nonstationary terms

need to be treated differently, let us write F ′t = (E′t, G
′
t)
′, where Et is p× 1 and nonstationary,

Gt is q × 1 and stationary; p and q are assumed known. Therefore, Et = Et−1 + ut, where ut

is stationary. Substituting F ′t = (E′t, G
′
t)
′, the factor model (2.1) and the FAR model (2.2) take

the forms

Xit = λ
(1)′

i Et + λ
(2)′

i Gt + eit (i = 1, ..., N ; t = 1, ..., T ) (2.3)

Yt+h = α′Et + β′Gt + ω′Wt + εt+h (t = 1, ..., T ), (2.4)

respectively, where λi = (λ
(1)′

i , λ
(2)′

i )′ and θ = (α′, β′)′. As expected, estimates of the coefficients

α and β of the nonstationary and stationary variables in the FAR model (2.2), converge at the

rates T and T 1/2 respectively. Similarly, since Wt is I(1), we would expect that the estimator

ω̂ to converge at the rate T . Since estimators of coefficients corresponding to stationary and

nonstationary variable converge at different rates, we introduce the following scaling matrices:

D1T = diag(TIp, T
1/2Iq)r×r, D2T = TIm, DT = diag(D1T , D2T ). (2.5)
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Remark 2: Since the model allows a mixture of stationary and non-stationary factors, it is

also reasonable to allow the components of Wt to be a mixture of stationary and non-stationary

variables. Although, the methodological details in this thesis are presented only for the case when

Wt is nonstationary, the proposed method can be modified to allow for mixture of stationary

and non-stationary variables in Wt. The modifications would involve treating the nonstationary

components of Wt and nonstationary factors together, and the stationary components of Wt

and stationary factors together. Let us write Wt = (W ′1t,W
′
2t)
′, where W1t is an m1 × 1 vector

of a stationary observable variables, and W2t is an m2 × 1 vector of a nonstationary observable

variables. Then the model for Yt+h in (2.4) could be expressed as

Yt+h = α′Et + β′Gt + ω′1W1t + ω′2W2t + εt+h (t = 1, . . . , T ). (2.6)

The derivations that appear below for (2.4) could be modified to accommodate (2.6). For a

given matrix A, let A > 0 denote that it is positive definite. For given matrices X and Y ,

let X ⊕ Y denote diag(X,Y ). Finally, let
p−→ and

d−→ denote convergence in probability and in

distribution, respectively.

2.2.2 Estimation of the common factors

To estimate the latent factors for a given panel dataset X, we may use either the Gaussian

Maximum Likelihood Estimator (MLE) or the method based on Principal Component Analysis

[PCA]. In this chapter, we use the latter. To choose an optimal number of factors, r, we use

the Integrated Panel Criterion [IPC] and the panel Information Criterion [IC] introduced by Bai

[2004] and Bai and Ng [2002], respectively.

For estimating the number of stationary and nonstationary factors in the model, we first

estimate the total number, r, of factors in the model. To this end, we first form the differences

of the data, and then apply the panel information criterion (IC) in Bai and Ng[2002]; we use

differenced data since the IC method in Bai and Ng(2002) is for stationary variables. Since we

use stationary panel in this step, the conditions in Bai and Ng[2002] are satisfied and hence the

method estimates the optimal number of factors consistently. It is worthy of noting that, since

a factor is a linear combination of the variables in the panel, an I(1) factor in the level data

would become an I(0) factor for the first differences. Therefore, it is valid to estimate the total

number factors, using the first differenced data. After estimating the total number of factors,
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we estimate the number of I(1) factors using the IPC from Bai[2004] applied to the data without

differencing; it is has been shown that this criterion is applicable to a mixture of I(0) and I(1)

factors (Moon and Perron[2007]). Therefore, by adapting the IC and IPC criteria, we estimate

the numbers of I(0) and I(1) factors. In our simulation study, presented later in section 2.3.3,

this method performed well.

Let F̃T×r = (F̃1, . . . , F̃T )′ be defined as equal to D1T times the matrix formed by the r

eigenvectors corresponding to the r largest eigenvalues of the matrix XX ′. Since we use PCA,

F̃ is an estimator of F , the matrix of common factors. For the derivations of the asymptotic

results, we assume that the numbers of stationary and nonstationary factors is known. However,

in empirical studies, we apply one or more tests to each factor to determine whether it is

stationary or nonstationary. Therefore, it is clear that the estimation method has an element

of pre-testing. Assuming that a consistent test is applied for classifying a variable as stationary

or nonstationary, it follows that the probability of misclassification tends to zero, and hence the

asymptotic results would be unaffected by the pre-testing.

In empirical studies, after applying PCA to estimate the factors as a group, a challenge

encountered is in determining the appropriate number of I(0) and I(1) factors. It is possible that

a rotation of the factors may result in more or fewer I(1) factors. In empirical studies, researchers

usually prefer the factors to be interpretable in the context of the study. For statistical efficiency,

there may be some merit in ensuring that there is no cointegration. Thus, in view of the number

competing qualitative criteria, the choice of the appropriate number of I(1) is not that well

defined. In this thesis, we do not investigate these issues. Instead, our broad aim is to adapt the

existing methods and develop a new method that is methodologically sound and improves over

the current literature. We apply the integrated panel criterion studied in Bai (2004) to identify

the number nonstationary factors, and apply unit root tests to determine whether or not each

factor is stationary or nonstationary. This method has been used in the literature (see Moon

and Perron [2007]). We also conducted a simulation study to evaluate the proposed method.

The details of the method and simulation results are discussed in the rest of this chapter.

Once the factors have been estimated, a corresponding estimator of the factor loading matrix

Λ is Λ̃ = X ′F̃D−2
1T . Without loss of generality, we assume that the columns of F̃ are arranged

such that the first p have been classified as nonstationary and their corresponding eigenvalues

are in the decreasing order, and the remaining q columns have been classified as stationary

and their corresponding eigenvalues are in the decreasing order. Therefore, without loss of
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generality, we write F̃t = (Ẽ′t, G̃
′
t)
′ and Ft = (E′t, G

′
t)
′. Let Ṽp,NT denote the diagonal matrix

with diagonal elements equal to the largest p eigenvalues of XX ′ divided by T 2N and each

of the corresponding eigenvector has been classified as nonstationary; further, without loss of

generality, assume that the diagonal elements appear in the decreasing order. Similarly, let

Ṽq,NT denote the diagonal matrix with diagonal elements equal to the largest q eigenvalues of

XX ′ divided by TN and each of the corresponding eigenvector has been classified as stationary;

again, without loss of generality, assume that the diagonal elements appear in the decreasing

order. Let ṼNT = diag(Ṽp,NT , Ṽq,NT ). Therefore, ṼNT is equal to the diagonal matrix whose

diagonal elements are the r = (p + q) largest eigenvalues of the matrix XX ′ multiplied by

D−2
1T /N.

We adopt the standard procedure to ensure that the factors are identified up to a rotation.

To this end, we assume that F̃ satisfies the normalization D−2
1T F̃

′F̃ = Ir, Λ̃′Λ̃ is diagonal, and

define the rotation matrix H = N−1Ṽ −1
NTD

−2
1T F̃

′FΛ′Λ. If all the variables are stationary then

the foregoing H reduces to the expression in Bai and Ng [2002], and if all the variables are

nonstationary then it reduces to the forms in Bai [2004] and Choi [2017].

Let L̂t = (F̃ ′t ,W
′
t)
′ and δ = (θ′H−1, ω′)′; then, H and δ are also a functions of the data and

unknown population parameters. Then, the FAR model (2.4) can be written as

Yt+h = θ′Ft + ω′Wt + εt+h = θ′H−1(HFt − F̃t + F̃t) + ω′Wt + εt+h

= θ′H−1F̃t + ω′Wt + θ′H−1(HFt − F̃t) + εt+h

= δ′L̂t + θ′H−1(HFt − F̃t) + εt+h. (2.7)

Let (α̂′, β̂′, ω̂′) denote the ordinary least squares [OLS] estimator of (α′, β′, ω′) obtained by

regressing Yt+h on L̂t (t = 1, . . . , T − h). Then

δ̂ = (α̂′, β̂′, ω̂′)′ =

(
T−h∑
t=1

L̂tL̂t
′
)−1 T−h∑

t=1

L̂tYt+h. (2.8)

Later we will show that θ′H−1(HFt− F̃t) in (2.7) is asymptotically centered at zero in the limit,

and hence {θ′H−1(HFt − F̃t) + εt+h} could be treated as an error term centered at zero for the

purposes of estimating δ. In consequence, it turns out that δ̂ − δ is asymptotically normal with

mean zero, which will be used later for deriving a prediction interval.
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Remark 3: While it is not essential for the derivations, the following observation is helpful. Let

H1 = Ṽ −1
p,NT

Ẽ′E

T 2

Λ′1Λ1

N
, H2 = Ṽ −1

q,NT

G̃′G

T

Λ′2Λ2

N
, and H0 = diag(H1, H2). Then, it may be verified

that (H − H0) converges, in probability, to zero. Consequently, for the asymptotic results,

the rotation of the entire factor by H leads to the same asymptotic results as performing the

rotations separately for the nonstationary and stationary factors by H1 and H2, respectively. In

this sense, the two rotations can be performed independently.

Remark 4: In Principal Component (PC) method, we estimate the factors using the eigen-

vectors corresponding to the largest eigenvalues of the square matrix XX’, where X is the panel

data set. To estimate the eigenvalues and eigenvectors of the square matrix, we use single value

decomposition: XX ′ = UΣV ∗, where the diagonal elements of the matrix Σ are corresponding

to the eigenvalues (descending order) of XX ′, and U, V are the matrices of corresponding eigen-

vectors. Hence, the set of first r eigenvectors of matrix U is the estimated r factors of the panel

matrix x (without using the normalization condition). After estimating r eigenvectors, we apply

the corresponding normalization condition and estimate the factors.

2.2.3 Distribution theory

In this section, we study the asymptotic distributions of the generated factors and the estimators

of the regression parameters. First, we introduce some assumptions; in these assumptions,

M ∈ R denotes a generic constant, and hence it may be different in its different appearances.

Assumption 2.1 (Factors and factor loadings).

(i) The strictly stationary process ut in Et = Et−1 + ut, satisfies maxt≥1E ‖ut‖4+δ 6 M , for

some δ > 0.

(ii) E ‖F1‖4 6 M and D−1
1T

∑T
t=1 FtF

′
tD
−1
1T

d−→ ΣF as T → ∞, where ΣF is a positive definite

random matrix.

(iii) The number of factors r is known and does not depend on N or T ; further, factors are not

cointegrated.

(iv) The loadings λi are either deterministic and ‖λi‖ 6M satisfying Λ′Λ/N→ΣΛ as N →∞,

or they are stochastic and E ‖λi‖4 6 M satisfying Λ′Λ/N
p→ ΣΛ as N → ∞, for some r × r

positive definite non-random matrix ΣΛ.

(v) The eigenvalues of the matrix ΣΛΣF are distinct, almost surely.
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To estimate the number of factors, we assume that the factors are not cointegrated. If they

are cointegrated then the stationary and nonstationary factors cannot be identified because one

I(0) factor may represent a combination of cointegrated I(1) factors. By assuming ΣF and ΣΛ

are positive definite and the eigenvalues of ΣΛΣF are distinct, we ensure the identifiability of

the r factors. If all the factors are nonstationary then ΣF is distributed as
∫ 1

0 BF (r)B′F (r)dr,

and if the factors are all stationary then ΣF converges to the variance-covariance matrix of the

factors. To state the next assumption, let us introduce the following notation:

γst = E

(
N−1

N∑
i=1

eiseit

)
, τij,t = E (eitejt) , τij,ts = E (eitejs) (i, j = 1, . . . , N ; s, t = 1, . . . , T ).

Assumption 2.2 (Idiosyncratic errors).

(i) E (eit) = 0 and E |eit|8 6M (i = 1, . . . , N ; t = 1, . . . , T ).

(ii) |γss| 6M (s = 1, ..., T ), and T−1
∑T

s=1

∑T
t=1 |γst| 6M.

(iii) |τij,t| 6 |τij |, for some τij (i, j = 1, . . . , N ; t = 1, . . . , T ), and N−1
∑N

i=1

∑N
j=1 |τij | 6M.

(iv) (NT )−1
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| 6M.

(v) E
∣∣∣N−1/2

∑N
i=1 [eiseit − E (eiseit)]

∣∣∣4 6M (t, s = 1, . . . , T ).

Assumption 2.2 allows the idiosyncratic errors to have weak serial and cross sectional de-

pendence. Heteroskedasticity is also allowed in both the serial and the cross-section dimensions.

Since we allow weak correlations among the idiosyncratic errors in (2.1), it is an approximate

factor model ; for simplicity, we refer to it simply as a factor model.

Assumption 2.3 ( Dependence among λi, Ft, and eit).

(i) E

(
1

N

∑N
i=1

∥∥∥D−1
1T

∑T
t=1 Fteit

∥∥∥2
)
6M , and E(Ft eit) = 0 (i = 1, . . . , N ; t = 1, . . . , T ).

(ii) (1/N)
∑N

i=1

∑N
j=1E

(
λiλ
′
jeitejt

)
→ Γt as N →∞, for some Γt, and N−1/2Λ′et

d−→ N (0,Γt)

as N →∞, for each fixed t (t = 1, . . . , T ).

(iii) E
∥∥∥N−1/2D−1

1T

∑T
t=1 Λ′etF

′
t

∥∥∥2
6M .

Assumption 2.3 allows the factor loadings {λ1, . . . , λN}, the factors {F1, . . . , FT }, and the

idiosyncratic errors {eit, i = 1, . . . , N ; t = 1, . . . , T} to have a weak dependence among them.

Consistency of the generated factors

In the literature on FAR models, the consistency of the generated factors has been established

for both stationary and nonstationary factors separately. Bai and Ng [2002] and Bai [2004]
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showed that the time-averaged mean square of factor estimation error [MSE] has min{N,T}

and min{N,T 2} convergence rates for I(0) and I(1) factors separately. In our setting, the set

of latent factors F contains a mixture of I(1) and I(0) series, and we show that the generated

factors are jointly consistent and the convergence rate of MSE is min{N, ||D−2
1T ||−1}. To state

the consistency of generated factors in the next lemma, let us recall that the rotation matrix H

was defined as N−1Ṽ −1
NTD

−2
1T F̃

′FΛ′Λ.

Lemma 2.1. Suppose that Assumptions 2.1–2.3 are satisfied. Let δ−1
NT = max

[
N−1/2, ||D−1

1T ||
]
.

Then, T−1
∑T

t=1

∥∥∥F̃t −HFt∥∥∥2
= OP

(
δ−2
NT

)
.

This lemma states that the time averaged square of factor estimation error converges to

zero as N,T →∞ and the convergence rate is min{N, ||D−2
1T ||−1}. Therefore, we may estimate

a rotation of the mixture of latent factors consistently by the method of principal component

analysis. For the case when all the factors are stationary, the scaling matrix D1T is
√
TIr and

the convergence rate is min{N,T}; this is consistent with the corresponding result in Bai [2003].

For the case when all the factors are nonstationary, D1T = TIr and the convergence rate is

min{N,T 2}; this is consistent with Bai [2004].

Asymptotic distribution of the generated factors

To derive the asymptotic distributions of the estimated factors, we introduce the following

additional assumption.

Assumption 2.4 (Weak dependence of idiosyncratic errors).

(i)
∑T

s=1 |γst| 6M (t = 1, ..., T ), and

(ii)
∑N

j=1 |τij | 6M (i = 1, ..., N), where γst and τij are as in Assumption 2.2.

Lemma 2.2. Suppose that Assumptions 2.1–2.4 are satisfied. Then D−2
1T F̃

′F
d−→ Q as N,T →

∞, where Q = V 1/2Υ′Σ
−1/2
Λ is a random matrix, V = diag(v1, ..., vr) with {v1, . . . , vr} denoting

the eigenvalues of ΣΛΣF , and Υ is the corresponding matrix formed by scaled eigenvectors such

that Υ′Υ = Ir.

Lemma 2.3. Suppose that Assumptions 2.1–2.4 hold. Then, as N,T →∞ with
√
N ||D−2

1T || →

0, for each t, we have
√
N
(
F̃t −HFt

)
d−→ V −1QN (0,Γt)

d
=N(0,ΣF̃ ), where Q is defined in

Lemma 2.2, Γt is defined in Assumption 2.3, and Q is independent of N(0,Γt).

This lemma shows that the factor estimation error is asymptotically normal with mean zero;

this is important for estimating the parameters of the FAR model consistently, as indicated
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previously. Later we show that the asymptotic variance of
(
F̃t −HFt

)
can be estimated con-

sistently by Ṽ −1
NT Γ̂tṼ

−1
NT , which is used for constructing the prediction interval of h-step ahead

forecasts.

Asymptotic distribution of the estimators

To obtain the asymptotic distribution of the OLS estimator δ̂ of δ, we introduce the following

additional assumptions.

Assumption 2.5 (Weak dependence between idiosyncratic and regression errors).

(i) E
∣∣∣(TN)−1/2

∑T−h
s=1

∑N
i=1{eiseit − E (eiseit)}εs+h

∣∣∣2 6M ( t = 1, . . . , T ;h > 0).

(ii) E
∥∥∥(TN)−1/2

∑T−h
t=1

∑N
i=1 λieitεt+h

∥∥∥2
6 M, and E (λieitεt+h) = 0 (i = 1, . . . , N ; t =

1, . . . , T ).

Assumption 2.6 (Moment and CLT for score vector). Let Lt = (F ′t ,W
′
t)
′ . Then, the following

conditions are satisfied.

(i) E (εt+h) = 0 and E |εt+h|2 < M (t = 1, . . . , T ).

(ii) D−1
T

∑T
t=1 LtL

′
tD
−1
T

d−→ ΣL as N,T → ∞, where ΣL is a positive definite random matrix

with probability one.

(iii) D−1
T

∑T
t=1 Ltεt+h

d−→ Σ
1/2
εL N(0, I), where ΣεL > 0 with probability one.

Assumption 2.5 imposes restrictions on the degree of dependence among the idiosyncratic

errors over time, and between the idiosyncratic and regression errors. Part (ii) of Assumption 2.5

holds if {λi}, {eit}, and {εt} are mutually independent and Assumption 2.2 holds. Assumption

2.6 part (iii) assumes the limiting distribution of D−1
T

∑T
t=1 Ltεt+h. Under the following four

cases we can assume the limiting distribution of D−1
T

∑T
t=1 Ltεt+h to follow a normal distribution;

see Choi [2017].

Case 1: Suppose {Ft} are all I(1) and independent of {εt+h}, and {Wt, εt+h} are I(0), then together

with D1T = diag[T, . . . , T ] and D2T = diag[
√
T , . . . ,

√
T ], we have

ΣεL =

(∫ 1

0
BF (r)BF (r)′dr

)
σ2
ε ⊕ lim

T→∞

1

T
E

(
T−h∑
t=1

Wtεt+h

)(
T−h∑
t=1

Wtεt+h

)′
,

Case 2: If {Ft} is a mixture of I(0) and I(1) and independent of {εt+h}, and {Wt, εt+h} are I(0),

ΣεL = ΣF .σ
2
ε ⊕ lim

T→∞

1

T
E

(
T−h∑
t=1

Wtεt+h

)(
T−h∑
t=1

Wtεt+h

)′
,
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Case 3: If {Ft} are all I(1) and independent of {εt+h}, and {Wt} are I(1) and independent of

{εt+h}, we have

ΣεL =

(∫ 1

0
BFW (r)B′FW (r)dr

)
σ2
ε ,

Case 4: If {Ft} is a mixture of I(0) and I(1) and independent of {εt+h}, and {Wt} are I(1) and

independent of {εt+h}, we have

ΣεL = ΣFσ
2
ε

(∫ 1

0
BW (r)B′W (r)dr

)
,

where σ2
ε is the variance of {εt}, BFW (r) = (B′F (r), B′W (r))′, and BW (r) is the weak limit

of
1√
T
W[Tr].

Theorem 2.1. Suppose that Assumptions 2.1–2.6 hold and that T/N → 0. Let δ and the

OLS estimator δ̂ be as in (2.7) and (2.8), respectively. Then, as (N,T ) → ∞, we have

DT (δ̂ − δ) d−→ N
(
0,Σδ

)
and H ⊕ I d−→ Ψ, where Σδ = (Ψ′)−1Σ−1

L ΣεLΣ−1
L Ψ−1, and ΣL and ΣεL

are defined in Assumption 2.6.

The appearance of the scaling matrix DT = diag(TIp, T
1/2Iq, T Im) in Theorem 2.1 shows

that the estimators α̂, β̂, and ω̂ converge at the rates T, T 1/2, and T , respectively. Consequently,

the limiting distribution in this theorem reduces to the following known corresponding results

in: (a) Bai and Ng [2002] for the FAR model with I(0) variables only, and (b) Choi [2017] for

the FAR model with I(1) variables only.

Since the limiting normal distribution in Theorem 2.1 has mean zero, it follows that the use

of generated factors, instead of the original unobservable factors in the model, does not affect

the consistency of the estimators. To arrive at this result, we used the assumption T/N → 0,

which ensures that the effect of the error resulting from factor estimation becomes negligible

in the limit. By contrast, if the assumption T/N → 0 is replaced by T/N → c, for some

0 < c < ∞, then the limiting normal distribution would have a nonzero mean, and hence the

estimator would not be consistent. In fact, Gonçalves and Perron [2014] showed, for the case

when all the variables are I(0), that if
√
T/N → c for some 0 < c < ∞, then there would be

asymptotic bias.
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The unknown covariance matrix Σδ may be estimated consistently by

Σ̂δ =

(
D−1
T

T−h∑
t=1

L̂tL̂
′
tD
−1
T

)−1(
D−1
T

T−h∑
t=1

ε̂2t+hL̂tL̂
′
tD
−1
T

)(
D−1
T

T−h∑
t=1

L̂tL̂
′
tD
−1
T

)−1

. (2.9)

This estimator is robust against heteroskedasticity in the regression error. For the special case

of homoskedastic errors, a simpler consistent estimator of Σδ is

Σ̂δ = σ̂2
ε

(
D−1
T

T−h∑
t=1

L̂tL̂
′
tD
−1
T

)−1

, (2.10)

where σ̂2
ε = T−1

∑T−h
t=1 ε̂2t+h is an estimator of the variance of regression errors.

2.2.4 Prediction interval

Let YT+h|T denote the conditional mean E[YT+h | FT ] where FT is the information up to time

T , and let (δ̂, L̂t) be as in (2.7) and (2.8). Then, an estimator of YT+h|T is ŶT+h|T = δ̂′L̂T ;

similarly, ŶT+h = δ̂′L̂T is also a point forecast of YT+h. In this section, we obtain a confidence

interval for YT+h|T and a prediction interval for YT+h. These are obtained by using the next

theorem.

Theorem 2.2. Suppose that Assumptions 2.1–2.6 hold. Further, suppose also that
√
N ||D−2

1T || →

0 and T/N → 0 as N,T → ∞, and that (Σ̂δ, Σ̂F̃ ) is a given consistent estimator of (Σδ,ΣF̃ ).

Then, we have B̂
−1/2
T {ŶT+h|T−YT+h|T }

d−→ N(0, 1) as N,T →∞, where B̂T =
[
L̂TD

−1
T Σ̂δD

−1
T L̂′T+

N−1θ̂′Σ̂F̃ θ̂
]

is a consistent estimator of the asymptotic variance, denoted BT , of the conditional

forecasting error that appears in the numerator.

To provide some insight into the foregoing suggested form for B̂T , note that the forecast

error can be expressed as

ŶT+h|T − YT+h|T = (δ̂ − δ)′L̂T + θ′H−1(F̃T −HFT ). (2.11)

This forecast error is the sum of two components: the first is due to the error in estimating

δ and the other is due to estimating the factor. Theorem 2.1 and Lemma 2.3 show that each

of these is asymptotically normal with mean zero. It turns out that these two are essentially

asymptotically independent and hence the asymptotic variances simply add up.
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To use Theorem 2.2 for inference in empirical studies, we need a suitable consistent estimator

(Σ̂δ, Σ̂F̃ ) of (Σδ,ΣF̃ ). For, Σ̂δ, we may use the estimators in (2.9) or (2.10) depending on the

assumptions. Using Lemmas 2.2 and 2.3, a consistent estimator of ΣF̃T
is

Σ̂F̃T
= Ṽ −1

NT Γ̂T Ṽ
−1
NT , (2.12)

where Γ̂T is an estimator of the asymptotic covariance matrix of
(
N−1/2Λ′et

)
, and ṼNT was

defined as a diagonal matrix of the largest r eigenvalues of XX ′ multiplied by D−2
1TN

−1.

To make use of the form in (2.12), we need a feasible estimator of ΓT . As suggested by Bai

and Ng [2006], depending on the assumptions, Γ̂T may take one of the following forms:

(a) Γ̂T =
1

N

N∑
i=1

ê2
iT λ̃iλ̃

′
i, (b) Γ̂T = σ̂2

e

1

N

N∑
i=1

λ̃iλ̃
′
i, (c) Γ̂T =

1

N

N∑
i=1

N∑
j=1

λ̃iλ̃
′
j êiT êjT , (2.13)

where êit = Xit−λ̃′iF̃t. For cross sectionally uncorrelated idiosyncratic errors, the first two forms

of Γ̂T in (2.13) are suitable. If the errors are homoskedastic and E(e2
it) = σ2

e , say, then σ2
e can

be estimated by σ̂2
e = (NT )−1

∑N
i=1

∑T
t=1 ê

2
it and the second form in (2.13) would be suitable.

The third form in (2.13) is suitable for estimating the asymptotic variance of generated factors

when the idiosyncratic errors have cross sectional correlation. By combining the aforementioned

estimators, we obtain a feasible estimator B̂T . Using these, a 100(1 − α)% confidence interval

for the conditional mean YT+h|T is

(
ŶT+h|T − z1−α/2

√
B̂T , ŶT+h|T + z1−α/2

√
B̂T

)
, (2.14)

where z1−α/2 stands for (1− α/2)th quantile of the standard normal distribution.

Next, consider constructing a forecast interval for YT+h. To this end, first note that the

forecast error is

ε̂T+h = ŶT+h|T − YT+h = L̂′T

(
δ̂ − δ

)
+ θ′H−1

(
F̃T −HFT

)
− εT+h. (2.15)

Therefore, the limiting distribution of forecast error also depends on the distribution of the

regression error εT+h. Let us suppose that εT+h ∼ N(0, σ2
ε ). Then, it follows from Theorem

2.2 that the forecasting error ε̂T+h is also asymptotically normal with mean zero and variance

BT + var(ε). Let σ̂2
ε denote a consistent estimator of σ2

ε ; for example, if {εt} are iid, then we
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may choose σ̂2
ε = T−1

∑T
t=1 ε̂

2
t . Then, an asymptotic 95% prediction interval for YT+h is

(
ŶT+h|T − z1−α/2

√
B̂T + σ̂2

ε , ŶT+h|T + z1−α/2

√
B̂T + σ̂2

ε

)
. (2.16)

Remark 5: The predictors L̂t (= (F̃ ′t , ,W
′
t)
′), the OLS estimator δ̂ in (2.8), and the point

predictor Ŷt+h do not depend on which components of Ft are identified as I(0) and which ones

as I(1). By contrast, the rate matrix DT , Σ̂δ in (2.10), the matrix B̂T , and the prediction interval

(2.16) based on Ŷt+h|T , depends on which components of Ft are identified as I(0) and which

ones as I(1).

2.3 Simulation study: finite sample properties

Design of the simulation study

The data generating process [DGP] for the FAR is

Yt+1 = αF1t + βF2t + ωYt + εt+1 (t = 1, . . . , T − 1) (2.17)

F1t = F1,t−1 + vt, (vt, F2,t) ∼MVN(0, C), C = (1, ρ | ρ, 1). (2.18)

For ρ in (2.18), we considered the values 0.0, 0.5, and 0.9. For the error term εt, we considered

both homoskedastic and heteroskedastic cases - see below. The T × N panel data set was

generated by

Xit = λ
(1)
i F1t + λ

(2)
i F2t + eit, (2.19)

with the λi’s drawn from N(0, 1) and the error terms {eit} as stated below.

Sixteen combinations of [T,N ] were considered with T = 30, 50, 100, 200 andN = 30, 50, 100, 200.

The parameter values were set at α = 0.5, β = 1, and ω = 0.5. We considered the following three

different DGPs for each ρ: (1) DGP1: eit ∼ N(0, 1) and εt ∼ N(0, 1); (2) DGP2: eit ∼ N(0, 1)

and εt ∼ N
(
0, 3−1F 2

2t

)
; (3) DGP3: eit ∼ N(0, σ2

i ) and εt ∼ N
(
0, 3−1F 2

2t

)
.

Among the three DGP’s, DGP1 is the simplest for which the errors are i.i.d. in both time

and cross-section dimensions. In DGP2, var(εt) depends on the stationary factor, and hence

conditionally heteroskedastic over time. In DGP3, var(εt) varies over time and var(eit) is

distributed uniformly over [0.5, 1.5]; therefore, the average variance is the same as that for the

homoskedastic case. All simulation estimates are based on 5000 repeated samples. Since the

FAR model has a lag term, we adopted a burn-in period of 100 time units; thus, for generating
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each sample, the first 100 observations were discarded. We used the Σ̂δ in (2.10) and (2.9) for

DGP1 and {DGP2, DGP3}, respectively.

The results are reported in two parts. The first part reports the simulation results for the

coverage rates of 95% prediction intervals in (2.16). The second part compares the out-of-sample

forecast performance of the method based on the mixture-FAR model developed in this chapter

with the methods based on a nonstationary-FAR and the AR(4) models.

2.3.1 Coverage rates of prediction intervals

Table 2.1 reports the coverage rates of 95% prediction intervals for YT+1. These are based on the

assumption that the regression errors are normal. The coverage rates of these intervals range

from 88% to 98% with most of them being close to the nominal 95%. Therefore, in terms of

coverage rates, the prediction intervals performed quite well.

Table 2.1: Coverage rates (%) of 95% prediction intervals for one-step ahead forecasts.

ρ = 0.0 ρ = 0.5 ρ = 0.9
T\N 30 50 100 200 30 50 100 200 30 50 100 200

DGP1 30 93 93 91 92 94 94 92 92 94 93 92 91
50 91 94 93 90 92 94 92 89 92 94 92 90

100 90 89 91 88 92 90 91 89 91 90 91 88
200 92 90 89 90 92 90 89 89 93 89 90 89

DGP2 30 97 96 95 94 95 95 95 94 97 98 97 95
50 96 96 98 94 97 97 94 94 98 97 96 95

100 97 95 97 95 96 95 95 95 96 96 95 95
200 96 96 96 94 96 96 94 94 97 96 95 94

DGP3 30 97 97 96 94 97 96 96 95 97 98 95 96
50 97 95 96 96 97 95 96 96 98 96 96 95

100 97 96 95 97 96 96 96 95 96 95 96 96
200 95 97 95 96 95 95 95 95 96 94 95 96

Note: The assumed error distribution of the forecasting model is normal.

2.3.2 Performance of mixture-FAR relative to non-stationary FAR

In this subsection, we evaluate the performance of the mixture-FAR method relative to nonstationary-

FAR method. Recall that the nonstationary-FAR model (see Choi 2017), requires all the vari-

ables in the FAR model to be I(1). We evaluate the out-of-sample forecast performance in terms
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of out-of-sample R-square, denoted R2
os, defined as

R2
os = 1−

 T∑
t=T1+1

(Yt − Ŷt)2

 T∑
t=T1+1

(Yt − Ỹt)2

−1

, (2.20)

where Ŷt = prediction using the mixture-FAR model, Ỹt = prediction using the competing or

reference model, the observations from the first (T1 + j) time points are used for estimating the

model, and the observation at time T1 + j + 1 is used for evaluating the performance of the

out-of-sample forecast at time (T1 + j + 1) (j = 0, . . . , T − (T1 + 1)). Thus, R2
os is a measure

of how well the mixture-FAR performed during the period [T1 + 1, T ], relative to the competing

model. As an example, if R2
os = 0.1 (respectively, R2

os = −0.1) then an estimate of the MSE

of prediction for the mixture-FAR model is 10% lower (respectively, higher) than that for the

competing model. In this simulation study, we chose the nonstationary-FAR as the competing

model. Throughout this chapter, forecast evaluations are based on expanding windows for the

estimation period, unless the contrary is made clear.

In this part of the study, we considered the DGP1 with T = [60, 90, 150, 300] and T1 =

[40, 60, 100, 200]. First, we consider forecasting a nonstationary series Yt using the mixture-FAR

model and compare it with the corresponding nonstationary-FAR. Table 2.2 provides the results

for this comparison. It is evident that the mixture-FAR method performed significantly better

than the competing nonstationary-FAR in terms of R2
os. As an example, the entry 0.43 in the

cell for T1 = 40 and N = 30 shows that the MSE of prediction for the mixture-FAR model is

43% lower than that for the nonstationary-FAR model. The table also shows that, for every

case considered in Table 2.2, the MSE of prediction for the proposed mixture-FAR model is

at least 33% lower than that for the nonstationary-FAR model. Therefore, in this simulation

study, the improvement of the mixture-FAR model compared to the nonstaionary-FAR model

is substantial.

In summary, for every case that we studied, the mixture-FAR model performed significantly

better than its corresponding competitor, the nonstationary-FAR, for forecasting a nonstationary

variable.
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Table 2.2: Values of R2
os for the performance of mixture-FAR model relative to the corresponding

nonstationary-FAR model.

T1\N
ρ = 0.0 ρ = 0.5 ρ = 0.9

30 50 100 200 30 50 100 200 30 50 100 200

40 0.43 0.44 0.45 0.46 0.41 0.42 0.42 0.43 0.33 0.34 0.35 0.35
60 0.45 0.46 0.46 0.47 0.42 0.43 0.44 0.45 0.36 0.36 0.36 0.37
100 0.46 0.47 0.48 0.48 0.44 0.45 0.46 0.46 0.37 0.38 0.38 0.39
200 0.47 0.48 0.48 0.49 0.45 0.46 0.46 0.46 0.38 0.39 0.39 0.39

Note: The values in this table are for one-step ahead out-of-sample forecasts. The forecasting variable Y is
nonstationary [I(1)].

2.3.3 Evaluation of the proposed factor estimation method

Simulation design

Considered DGP for the factor model is similar to the one in Bai and Ng [2005],

Xit = λ
(1)′

i Et + λ
(2)′

i Gt + eit, (2.21)

where λ
(1)
i , λ

(2)
i ∼ N(0, 1), eit ∼ N(0, 1), sets of nonstationary and stationary factors are gener-

ated as,

Et = α1Et−1 + U1t, (2.22)

Gt = α2Gt−1 + U2t, (2.23)

with α1 = 1, α2 = 0. The errors (U1t, U2t) ∼ MVN(0, C), C = (1, 0|0, 1). Nine combinations

of [T,N ] were considered with T = [50, 100, 200] and N = [50, 100, 200]. The total number of

factors, r, is considered to be 3 while p changes from 1 to 3. All the simulation results are based

on 5000 replications.

Using IC and IPC from Bai and Ng [2002], we calculate the total number of factors, r̂,

for 5000 replications and estimate the percentage of times r̂ = r is obtained. The results are

reported in Table 2.3. According to the results, we can see that the information criterion (IC)

in Bai and Ng [2002] accurately estimates number of total factors in the panel data set that

contains both stationary and nonstationary variables.

Results for estimating the number of nonstationary factors using IPC from Bai [2004] is

reported in Table 2.4. According to the results, we can see that when the latent factors is
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Table 2.3: Percentage for obtaining r̂ = r when panel contains both I(0) and I(1) factors

IC PIC

r p T\N 50 100 200 50 100 200

3 3 50 100 100 100 23.4 64.9 95.9
100 100 100 100 99.4 100 100
200 100 100 100 100 100 100

2 50 100 100 100 21.9 59.7 94.2
100 100 100 100 99.2 100 100
200 100 100 100 100 100 100

1 50 100 100 100 17.6 54.1 91.5
100 100 100 100 99.1 100 100
200 100 100 100 100 100 100

r is the number of total factors and p is the number of I(1) factors in the model.

a mixture of I(0) and I(1) series, IPC well estimate the number, p, of nonstationary factors.

However, performance of this method is low when the set of factors are fully nonstationary.

Table 2.4: Percentage for obtaining p̂ = p when panel contains both I(0) and I(1) factors

r p T/N 50 100 200

3 3 50 48.8 66.14 73.36
100 58.72 81.42 92.46
200 62.24 90.78 98.54

2 50 86.94 92.82 94.46
100 89.76 97.12 98.96
200 91.40 98.70 99.90

1 50 94.12 100 100
100 93.02 100 100
200 94.22 100 100

2.4 Empirical application

In this section we apply the mixture-FAR model for forecasting two key non-stationary macroe-

conomic variables, namely the GDP and the Industrial Production [IP]. Since we use quarterly

data, to capture the cyclic patterns of the response variable, we start with a basic AR(4) model

and augment it with factors to construct FAR models. For each model, we compute two sets

of prediction intervals, one is based on the asymptotic distribution of the standardized forecast
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and the other is based on the t-percentile bootstrap; the validity of the bootstrap is yet to be

established.

Recall that the forecast of the conditional mean, as shown in Theorem 2.2, is asymptotically

normal; this result does not require that the functional form of the error distribution be known.

The indications are that a residual based bootstrap method is likely to be valid for constructing

confidence interval for the forecast conditional mean and for constructing a prediction interval.

With this in mind, we expanded the simulation study in the previous section and evaluated

the coverage rates of residual based t-percentile bootstrap prediction intervals when the error

distribution is normal and when it is t with 5 degrees of freedom. Since we used residual based

bootstrap, it does not assume that the error distribution is known. The results are presented in

the two tables at the end of the Appendix to this Chapter; they show that the coverage rates

of the bootstrap prediction intervals are close to the nominal level. Therefore, the indications

are that it is reasonable to compare the bootstrap intervals with those based on (2.16). We

compare and contrast the out-of-sample forecasting performance of the mixture-FAR model with

the corresponding non-stationary-FAR and the AR(4) models. To quantify the out-of-sample

forecasting performance, we use R2
os defined in (2.20).

2.4.1 Data description

The data were collected from FRED-MD and FRED-QD; these are well-known databases for

macroeconomic variables containing monthly and quarterly data, respectively. The latter con-

tains 246 US macroeconomic time series for the period 1959:Q1 to 2018:Q4, with a total of 240

(T=240) observations. We excluded 36 variables because there were missing observations, and

used a balanced panel for 210 variables. The variables are categorized into 14 groups; for more de-

tails, see the updated appendix for FRED-QD at https : //s3.amazonaws.com/files.fred.stlouisfed.org/fred−

md/FRED − QDappendix.pdf . The macroeconomic variables in this balanced panel data set

are further categorized into two levels of aggregation, 110 “high-aggregates” and 100 “sub-

aggregates”. The panel data for N = 100 sub-aggregates were used for estimating the factors;

to this end, we used principal components analysis [PCA]. These sub-aggregates consist of both

stationary and nonstationary time series; for each series, the transformation to I(0) is given in

the third row of the data set.
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2.4.2 Estimation of factors

We follow a two-step approach by adapting the methods proposed in Bai and Ng [2002] and Bai

[2004] for choosing an ‘optimal’ number of factors. The method proposed by Bai and Ng [2002],

which is based on information criteria (IC) for stationary panel, led to the total number of factors

being eight for the set of 100 sub-aggregate macroeconomic variables. The corresponding IC(k)

for k = 1, . . . , 8 are given in Table 2.5. Then, we applied the method based on iterated panel

criterion to the original (level) panel dataset proposed by Bai [2004], and concluded that the

number of I(1) factors is four. The corresponding IPC(k) for k = 1, . . . , 8 are given in Table

2.6. Thus, we have four I(1) and four I(0) factors in the model.

Finally, we applied the Augmented-Dickey Fuller [ADF] test to each of the factors, and

observed that if the factors are ordered according to the magnitude of the eigenvalues, then the

factors {1, 2, 4, 5} are I(1) and the remaining ones, namely {3, 6, 7, 8}, are I(0). The overall

trends exhibited by the factors in Figure 2.1 are consistent with the aforementioned observation

that the factors {1, 2, 4, 5} are I(1) and the other four are I(0). Figure 2.1 shows time series plots

of the estimated factors. Plots of the two high-aggregate macroeconomic variables, GDP and IP,

are presented in Figure 2.2. This figure shows that both variables are nonstationary. Therefore,

the mixture-FAR method developed in this chapter is potentially applicable for forecasting GDP

and IP.

Table 2.5: Values of IC(k) in the determination of total number of factors

k 1 2 3 4 5 6 7 8

IC1(k) -2.91 -3.65 -4.15 -4.52 -4.74 -5.03 -5.31 -5.49
IC2(k) -2.91 -3.64 -4.13 -4.50 -4.71 -5.00 -5.28 -5.45
IC3(k) -2.93 -3.68 -4.19 -4.58 -4.81 -5.12 -5.41 -5.61

Table 2.6: Values of IPC(k) in the determination of number of nonstationary factors

k 1 2 3 4 5 6 7 8

IPC1(k) 1.38 0.89 0.45 0.21 0.29 0.23 0.25 0.28
IPC1(k) 1.42 0.96 0.57 0.40 0.44 0.46 0.52 0.58
IPC1(k) 1.43 0.98 0.59 0.43 0.47 0.49 0.55 0.62
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For the data set in this empirical study, the panel data model and the forecasting model

with a mixture of stationary and nonstationary factors take the forms,

Xit = λ′iFt + eit = λ
(1)′
i Et + λ

(2)′
i Gt + eit,

Yt+h = α′Ẽt + β′G̃t + ω1Yt + ω2Yt−1 + ω3Yt−2 + ω4Yt−3 + εt+h (h > 0),

where Ẽt is the set of four nonstationary generated factors, G̃t is the set of four stationary

generated factors, and α = (α1, α2, α3, α4)′ and β = (β1, β2, β3, β4)′ are their coefficients.
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Figure 2.1: A plot of the eight generated PCA factors from the panel data set of 100 variables

Assessing the out-of-sample forecast performance of mixture-FAR method

We considered the following four models; the basic AR(4), and three mixture-FAR models

obtained by augmenting the AR(4) with a mixture of the I(0) and the I(1) factors:
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Figure 2.2: Time series plots of log(GDP ) and log(IP ) for 1959:Q1 – 2018:Q4.

Model 1 : Yt+h = α′Ẽt + β′G̃t +

3∑
i=0

ω1+iYt−i + εt+h,

Model 2 : Yt+h = α′1Ẽt + α′2Ẽt−1 + β′1G̃t + β′2G̃t−1 +
3∑
i=0

ω1+iYt−i + εt+h,

Model 3 : Yt+h =
3∑
i=0

α′1+iẼt−i + β′1G̃t +
3∑
i=0

ω1+iYt−i + εt+h,

Model 4 : Yt+h =

3∑
i=0

ω1+iYt−i + εt+h.

Model 4, the basic AR(4) model, is used as the benchmark for forecast comparison. In

the FAR model, we have augmented the estimated factors with AR(4). Therefore, to compare

and contrast the contribution from estimated factors in the forecasting, AR(4) is a suitable

benchmark. This benchmark model is justified in the literature on forecasting univariate time

series using different model specifications such as FAR model, AR models, autoregressive dis-

tributed lag models; see Stock and Watson [1998a and 2005]. Model 1 is the AR(4) model

augmented with the eight generated factors; this is a mixture-FAR model. Model 2 is Model 1

augmented with one lag of each generated factor. Model 3 is Model 1 augmented with three lags

of each nonstationary factor and the stationary factor with no lags. Thus, Model 1 is nested in

Models 2 and 3. Much of this section focuses on comparing and contrasting the out-of-sample

forecast performance of Models 1 to 4. The plots in Figures 2.3 and 2.4 show the one-step

ahead out-of-sample forecasts of log(GDP ) and log(IP ), respectively, for the period 2006:Q1 -

2018:Q4 with the initial estimation period being 1959:Q1 - 2005:Q4. These plots indicate that
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the out-of-sample predictions of the two I(1) variables, GDP and IP, generally appear to be

good.
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Figure 2.3: The observed log(GDP ), and plots of one-step ahead out-of-sample forecasts of
log(GDP ) for 2006:Q1 – 2018:Q4. Blue * : predicted series with Model 1. Magenta dashed line
- -: predicted series with Model 2. Red dotted line: predicted series with Model 3. Green - . . :
predicted series with AR(4) model. Black solid line: the observed data.

One-step ahead out-of-sample forecast evaluations

We assess the relative predictive performance of the four models in terms of the out-of-sample

R2, denoted R2
os, defined in (2.20). In this subsection, AR(4) is used as the basic benchmark;

later we consider a nonstationary-FAR as the benchmark. We considered three different first

estimation periods; we also evaluated the forecasts with a rolling window of 40 years for the

estimation period, but there were no improvements in the forecast performance, compared to

the expanding window. The values of R2
os in Table 2.7 indicate that the mixture-FAR model,

Model 2, outperforms the benchmark model, AR(4) for forecasting GDP and IP. Overall, the

results presented in Table 2.7 indicate that Model 2 performs better than the other two models

as well.
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Figure 2.4: The observed log(IP ), and plots of one-step ahead out-of-sample forecasts of log(IP )
for 2006:Q1 – 2018:Q4. Blue * : predicted series with Model 1. Magenta dashed line - -: predicted
series with Model 2. Red dotted line: predicted series with Model 3. Green - . . : predicted
series with AR(4) model. Black solid line: the observed data.

2.4.3 Forecast evaluations with long forecast horizons

So far, we considered one-step ahead forecasts. Next, we evaluate and compare Models 1, 2, and

3 in terms of the accuracy of their forecasts over longer forecast horizons, instead of just one-step

ahead. We computed the forecasts with the first estimation period being 1959:Q1 - 1999:Q4.

We calculated R2
os for different specifications of mixture-FAR relative to AR(4). Figures 2.5 and

2.6 provide plots of R2
os against the forecast horizon h. These figures show that for forecasting

GDP and IP over horizons longer than 12 months (h > 12), the mixture-FAR models performed

better than the AR(4) model. Combining these observations with those in the previous sections,

we conclude that the mixture-FAR model performed better than the AR(4) for forecasting GDP

and IP over short and long horizons.

2.4.4 Mixture-FAR vs nonstationary-FAR models for forecasting GDP and

IP

For forecasting a nonstationary variable such as GDP and IP, a nonstationary-FAR model,

wherein all the variables including the factors are nonstationary, has been proposed in the

literature (Choi 2017). As in the earlier sections, we refer to this model as a nonstationary-FAR
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Table 2.7: Performance of mixture-FAR relative to AR(4), in terms of R2
os.

log(GDP ) log(IP )
First estimation period Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

1959:Q1 - 1999:Q4 -0.01 0.07 -0.00 -0.14 0.10 -0.21
1959:Q1 - 2005:Q4 -0.08 0.11 -0.01 0.17 0.33 0.11
1959:Q1 - 2008:Q4 0.09 0.16 0.18 0.06 0.28 -0.01

Note: Each entry in the table is the R2
os for a given mixture-FAR model relative to the AR(4) model. These

are for one-step ahead forecasts with expanding windows for estimation. The out-of-sample forecast period starts
from the end of the estimation period and extends to the end of 2018.
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Figure 2.5: Performance of mixture-FAR relative to AR(4) for long-term forecast of log(GDP ).
The graph is a plot of R2

os against the forecast horizon h. Black solid line is the R2
os for the

model 1 relative to AR(4). Red dash line is the R2
os for model 2 relative to AR(4). Blue dotted

dash line is the R2
os for the model 3 relative to AR(4).

model. To implement this method, first we performed principal component analysis on XX ′,

and chose only the nonstationary factors for use as predictors in the prediction model (2.2). We

wish to compare the aforementioned nonstationary-FAR method with the mixture-FAR method.

To this end, we chose Model 1 as our mixture-FAR model; for the nonstationary-FAR model,

we chose

Model 5[Nonstationary-FAR]: Yt+h = β′Ẽt +

3∑
i=0

ω1+iYt−i + εt+h.

The values of R2
os for these two models are provided in Table 2.8. Consider the entry 0.31 in

the column for log(IP ). This says that the sum of squares of forecast error [SSFE] for log(IP )

over the period 2009–2018 is 31% lower for mixture-FAR compared to the nonstationary-FAR.
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Figure 2.6: Performance of mixture-FAR relative to AR(4) for forecasting log(IP ) over long
forecast horizons. Each curve is a plot of R2

os for a given mixture-FAR relative to AR(4),
against the forecast horizon h. Black solid line: Model 1. Red dashed line: Model 2. Blue
dotted dash line: Model 3.

Table 2.8: Values of R2
os for mixture-FAR compared to the nonstationary-FAR.

First estimation period log(GDP ) log(IP )

1959:Q1 - 1999:Q4 0.21 0.17
1959:Q1 - 2005:Q4 0.21 0.39
1959:Q1 - 2008:Q4 0.50 0.31

Note: The mixture-FAR is Model 1 and the nonstationary-FAR is Model 5.

The table also shows that the SSFE for log(GDP ) over the period 2009–2018 is 50% lower for

mixture-FAR compared to nonstationary-FAR. In fact, Table 2.8 shows that the mixture-FAR

method proposed in this chapter performed significantly better than the method based on a

nonstationary-FAR for forecasting GDP and IP.

2.4.5 Prediction intervals

We computed 95% prediction intervals, based on the asymptotic results in Section 2.2 and the

bootstrap, for one-step-ahead prediction intervals for log(GDP ) and log(IP ) with expanding

window for the estimation period. Assuming that the regression error εt in (2.2) is normally

distributed, we constructed the asymptotic theory-based point-wise 95% prediction intervals for

log(GDP ) and log(IP ) for the out-of-sample period 2006:Q1 to 2018:Q4. These intervals are

shown in Figures 2.7 and 2.8 together with the observed values of log(GDP ) and log(IP ).
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We also estimated the symmetric bootstrap t-percentile prediction intervals using residual

bootstrap; to this end, we used 399 bootstrap replications. These are also shown in Figures

2.7 and 2.8. One important difference between the asymptotic theory-based and bootstrap

prediction intervals is that the latter does not assume that the error distribution has a known

functional form.

Figure 2.7 shows that, except for a very short interval around the crisis period 2009, the

observed values of GDP lie within the two prediction intervals. Figure 2.8 shows that every

observed value of IP lies within the two prediction intervals. Overall, the bootstrap prediction

interval is narrower than the one based on the asymptotic distribution of the forecast, for GDP

and IP. The bootstrap prediction interval for IP around the crisis period is large; this may

be because the financial and economic crisis introduced large fluctuations in IP. Overall, both

prediction intervals have high coverage rates for GDP and IP.
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Year
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9.7
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Figure 2.7: One-step ahead point-wise 95% prediction intervals for log(GDP ) using mixture-
FAR. The solid black line in the middle is a plot of the observed values of log(GDP ). Red
dashed line: the asymptotic theory based prediction interval. Blue dotted and dashed line: the
bootstrap prediction interval.
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Figure 2.8: One-step ahead point-wise 95% prediction intervals for IP using mixture-FAR.
The solid black line in the middle is a plot of the observed values of IP . Red dashed line:
the asymptotic theory based prediction interval. Blue dotted and dashed line: the bootstrap
prediction interval.

Remark 7: It is not possible to specify a guide on how a researcher may specify an FAR model

in empirical studies. Nevertheless, it is worth noting that the reason for studying mixture FAR

model in this thesis is to improve the current literature by providing a method to combine the

currently available two methods, one for FAR with stationary factors only and the other for

FAR with nonstationary factors only. Since mixture FAR models are more challenging to use, a

desirable approach to specifying a suitable mixture model is to start with a suitable FAR model

with only stationary factors, and another FAR model with only nonstationary factors. Then, the

mixture FAR approach could use the aforementioned preliminary analyses as a starting points

for mixture FAR approach.

2.5 Conclusion

This chapter developed methodology for forecasting nonstationary macroeconomic variables,

such as GDP and industrial production[IP], when a set of panel data is available for a large

number of potential predictors. We propose to estimate a small number of factors using the
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panel data, and use them as predictors for forecasting. The factors are chosen such that they

contain a large proportion of the information in the large number of potential predictors. The

validity of this method for forecasting has been established in the literature when all the variables

are stationary (Bai and Ng 2006), and also when they are all nonstationary (Choi 2017), but

not when they consist of a mixture of stationary and nonstationary variables. Typically, a

set of panel data on such a large number of macroeconomic variables would contain mixture

of stationary and nonstationay variables, which turned out be also the case in our empirical

example. Therefore, the method developed in this chapter is of practical significance. To

use the estimated mixture of stationary and nonstationary factors as predictors, and construct

an asymptotically valid prediction interval, this chapter developed the methodology. In our

simulation study, the mixture-FAR method developed in this chapter performed significantly

better than the one that uses only nonstationary variables. We applied the proposed method

for forecasting GDP and IP. We assessed the out-of-sample forecast performance of the mixture-

FAR relative to the corresponding nonstationary-FAR and the AR(4) models. We observed that

the mixture-FAR model performed significantly better than the aforementioned two competing

methods. In summary, this chapter provides an improved method of forecasting a nonstationary

variable using information from stationary and nonstationary variables.
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2.6 Appendices

Appendix A defines mathematical symbols. Appendix B gives the proofs of Lemmas 1–3 listed

in the main paper and then contains the proofs of the auxiliary lemmas used to prove the main

results in Appendix C. Simulation results for bootstrap are presented in Section D.

2.6.1 Appendix A: Mathematical Symbols

First, we introduce the following notation and mathematical symbols:

γst = E
(
N−1

∑N
i=1 eiseit

)
, ζst = N−1

N∑
i=1

(eiseit − E(eiseit)) , (A1.1)

ηst = N−1F ′sΛ
′et, ξst = N−1F ′tΛ

′es (A1.2)

τij,ts = E(eitejs), τij,t = τij,tt; (A1.3)

for i, j = 1, . . . N ; s, t = 1, . . . , T , and let us note that ηst = ξts.

Variables:

Y = (Yt)T×1 = (Y1, . . . , YT )′ , uni-variate dependent variable,

W = (Wit)T×m =


W11 . . . Wm1

...
. . .

...

W1T . . . WmT

 = (W ′1, . . . ,W
′
T )′ ;m is the number of observable

(nonstationary) regressors,

F = (Fit)T×r =


F11 . . . Fr1

...
. . .

...

F1T . . . FrT

 =


F ′1
...

F ′T

 ;F ′ = (F1, . . . , FT ),

Λ = (λij)N×r =


λ11 . . . λr1

...
. . .

...

λ1N . . . λrN

 =


λ′1
...

λ′N

 ; Λ′ = (λ1, . . . , λN ),

e = (eit)T×N =


e11 . . . eN1

...
. . .

...

e1T . . . eNT

 =


e′1
...

e′T

 ; e′ = (e1, . . . , eT ).

Scaling matrices:

D1T =

 TIp 0

0 T 1/2Iq

 ; p, q are the number of nonstationary and stationary factors re-

spectively.
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DT =


TIp 0 0

0 T 1/2Iq 0

0 0 TIm

.

‖D1T ‖ = O(T ), ‖D1T ‖−1 = O(T−1),
∥∥D−1

1T

∥∥ = O(T−1/2),
∥∥D−1

1T

∥∥−1
= O(T 1/2).

Matrices from Assumption 2.1:

D−1
1T

∑T
t=1 FtF

′
tD
−1
1T

d−→ ΣF(r×r)
; a positive definite random matrix,

N−1Λ′Λ→ ΣΛ(r×r)
or N−1Λ′Λ

p−→ ΣΛ(r×r)
; a positive definite non-random matrix.

Matrices with eigenvalues:

ṼNT = diag(Z̃)×N−1D−2
1T ; Z̃ = (ṽ1, . . . , ṽr); the r largest eigenvalues of XX ′,

Ṽ ∗NT = diag(Z̃∗)×D−2
1T ; Z̃∗ = (v∗1, . . . , v

∗
r ); the r largest eigenvalues of N−1FΛ′ΛF ′,

V = diag(Z);Z = (v1, . . . , vr); the eigenvalues of ΣΛΣF .

Rotation matrix:

H = N−1Ṽ −1
NTD

−2
1T F̃

′FΛ′Λ; r × r matrix.

Parameters:

δ =

(
α′ β′ ω′

)′
=

(
θ′ ω′

)′
; θ′ =

(
α′ β′

)
, where

α : p× 1 column vector of parameters corresponding to nonstationary factors,

β : q × 1 column vector of parameters corresponding to stationary factors,

ω : m× 1 column vector of parameters corresponding to observable regressors.

δ̂ denotes the OLS estimated coefficients.

Information criteria – Bai and Ng [2002]:

To estimate the total number of factors, r, we minimized the following criteria functions proposed

by Bai and Ng [2002]:

ICP1(k) = ln(V1(k, F̃ k)) + k

(
N + T

NT

)
ln

(
NT

N + T

)
, (A1.4)

ICP2(k) = ln(V1(k, F̃ k)) + k

(
N + T

NT

)
lnC, (A1.5)

ICP3(k) = ln(V1(k, F̃ k)) + k

(
N + T

NT

)(
lnC

C

)
, (A1.6)

where C = min[T,N ], σ̂2 be a consistent estimate of (NT )−1
∑N

i=1

∑T
t=1E(eit)

2, k be the

number of factors that we estimated by the principal components and F̃ k be the matrix of all
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k factors. The sum of squared residuals of the stationary data matrix ∆X on k factors is given

as,

V1(k, F̃ k) = min
Λ

1

NT

N∑
i=1

T∑
t=1

(
∆Xit − λ̃′ki F̃ kt

)2
, (A1.7)

and lnV1(k, F̃ k) + kg(N,T ) be the loss function where g(N,T ) is the penalty for over-fitting.

The optimal total number of factors is the inter that minimized the information criteria.

Integrated Panel Criteria – Bai [2004]:

To estimate the number of I(1) factors, we use the integrated panel information criteria proposed

by Bai [2004] to the estimated factors using level data.

IPCP1(k) = V2(k, F̃ k) + kσ̂2αT

(
N + T

NT

)
ln

(
NT

N + T

)
, (A1.8)

IPCP2(k) = V2(k, F̃ k) + kσ̂2αT

(
N + T

NT

)
lnC, (A1.9)

IPCP3(k) = V2(k, F̃ k) + kσ̂2αT

(
N + T − k

NT

)
lnNT , (A1.10)

where αT = T/[4lnln(T )] and

V2(k, F̃ k) = min
Λ

1

NT

N∑
i=1

T∑
t=1

(
Xit − λ̃′ki F̃ kt

)2
. (A1.11)

The optimal number of nonstationary factors in the model is p̂ = arg min06k6Kmax IPC(k).

Thus, we can obtain the optimal number of I(0) factors, q̂ = r̂ − p̂.

2.6.2 Appendix B: Proofs of the Auxiliary Lemmas

Before we provide the proofs of Theorems 1 and 2 in Appendix C below, we introduce a series

of auxiliary lemmas.

Lemma A. 1. Suppose that Assumptions 2.1–2.3 are satisfied. Then we have

(i) T−1
∑T

s=1

∑T
t=1 γ

2
st 6M,

(ii) T−1N−1
∑T

t=1 ‖Λ′et‖
2 = OP (1).

Proof. Part (i) Let ρst = γst(γssγtt)
−1/2 (s = 1, . . . , T ; t = 1, . . . , T ). Then |ρst| ≤ 1, and by

Assumption 2.2(ii), we have |γss| 6M .

1

T

T∑
s=1

T∑
t=1

γ2
st =

1

T

T∑
t=1

T∑
s=1

γssγttρ
2
st ≤M

1

T

T∑
t=1

T∑
s=1

|γssγtt|1/2|ρst| = M
1

T

T∑
t=1

T∑
s=1

|γst| ≤M2,
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since T−1
∑T

s=1

∑T
t=1 |γst| 6M by Assumption 2.2(ii).

Part (ii) Using the Assumptions 2.1(iv) and 2.2(iii), we obtain

1

TN

T∑
t=1

∥∥Λ′et
∥∥2

=
1

TN

T∑
t=1

(
N∑
i=1

λieit

)′ N∑
j=1

λjejt

 =
1

TN

T∑
t=1

N∑
i=1

N∑
j=1

λ′iλjeitejt,

E

(
1

TN

T∑
t=1

∥∥Λ′et
∥∥2

)
= E

 1

TN

T∑
t=1

N∑
i=1

N∑
j=1

λ′iλjeitejt

 6 1

TN

T∑
t=1

N∑
i=1

N∑
j=1

∣∣λ′iλj∣∣ |E(eitejt)|

=
1

TN

T∑
t=1

N∑
i=1

N∑
j=1

∣∣λ′iλj∣∣ |τij,t| 6M2 1

N

N∑
i=1

N∑
j=1

|τij | ≤M3.

Therefore, T−1N−1
∑T

t=1 ‖Λ′et‖
2 = T−1

∑T
t=1

∥∥∥N−1/2
∑N

i=1 eitλi

∥∥∥2
= OP (1). �

Let Ṽ ∗NT = diag(v∗1, . . . , v
∗
r )D

−2
1T , where v∗1, . . . , v

∗
r are the r non-zero eigenvalues ofN−1F (Λ′Λ)F ′.

Similarly, let V = diag(v1, ..., vr) where {v1, . . . , vr} are the eigenvalues of ΣΛΣF .

Lemma A. 2. Suppose that Assumptions 2.1–2.3 are satisfied. Then, as N,T → ∞ with

T/N → 0,

(i)

∥∥∥∥D−2
1T F̃

′
(
XX ′

N

)
F̃D−2

1T −D
−2
1T F̃

′F

(
Λ′Λ

N

)
F ′F̃D−2

1T

∥∥∥∥ = oP (1),

(ii) N−1D−2
1T F̃

′XX ′F̃D−2
1T = ṼNT

d−→ V ,

(iii) ‖H‖ =

∥∥∥∥Ṽ −1
NTD

−2
1T F̃

′F
Λ′Λ

N

∥∥∥∥ = OP (1).

Proof. Part (i) Let W = D−2
1T F̃

′ (XX ′N−1
)
F̃D−2

1T − D
−2
1T F̃

′F
(
Λ′ΛN−1

)
F ′F̃D−2

1T . By substi-

tuting X = FΛ′ + e, we obtain,

W = N−1D−2
1T F̃

′ (FΛ′ + e
) (
FΛ′ + e

)′
F̃D−2

1T −N
−1D−2

1T F̃
′FΛ′ΛF ′F̃D−2

1T

= N−1D−2
1T F̃

′ {FΛ′ΛF ′ + FΛ′e′ + eΛF ′ + ee′ − FΛ′ΛF ′
}
F̃D−2

1T

= N−1D−2
1T F̃

′ {FΛ′e′ + eΛF ′ + ee′
}
F̃D−2

1T = D−2
1T F̃

′W ∗,

where W ∗ = N−1 {FΛ′e′ + eΛF ′ + ee′} F̃D−2
1T . Using Cauchy Schwarz inequality, we have

‖W‖2 6
∥∥∥D−2

1T F̃
∥∥∥2
‖W ∗‖2. Consider W ∗. Let W ∗t = N−1D−2

1T F̃
′ {eet + FΛ′et + eΛFt} for

t = 1, . . . , T . Then,

‖W ∗‖2 =
∥∥(W ∗)′

∥∥2
=

∥∥∥∥ 1

N
D−2

1T F̃
′ (eΛF ′ + FΛ′e′ + ee′

)∥∥∥∥2

=

∥∥∥∥ 1

N
D−2

1T F̃
′ (eΛ (F1, . . . , FT ) + FΛ′ (e1, . . . , eT ) + e (e1, . . . , eT )

)∥∥∥∥2

= ‖(W ∗1 , . . . ,W ∗T )‖2 =
T∑
t=1

‖W ∗t ‖
2 ,
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where W ∗t = N−1D−2
1T F̃

′(eΛFt + FΛ′et + eet).

From the fact that (a+ b+ c+ d)2 6 4
(
a2 + b2 + c2 + d2

)
, we obtain,

‖W ∗‖2 =
T∑
t=1

∥∥∥N−1D−2
1T F̃

′ {eet + FΛ′et + eΛFt
}∥∥∥2

=
T∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sγst +D−2
1T

T∑
s=1

F̃sζst +D−2
1T

T∑
s=1

F̃sηst +D−2
1T

T∑
s=1

F̃sξst

∥∥∥∥∥
2

6 4
T∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sγst

∥∥∥∥∥
2

+

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sζst

∥∥∥∥∥
2

+

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sηst

∥∥∥∥∥
2

+

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sξst

∥∥∥∥∥
2


= 4

(
T∑
t=1

at +
T∑
t=1

bt +
T∑
t=1

ct +
T∑
t=1

dt

)
(say),

where

at =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sγst

∥∥∥∥∥
2

, bt =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sζst

∥∥∥∥∥
2

, ct =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sηst

∥∥∥∥∥
2

, dt =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sξst

∥∥∥∥∥
2

.

(B.1)

Now, consider each term separately. By Cauchy Schwarz inequality,

1

T

T∑
t=1

at =
1

T

T∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sγst

∥∥∥∥∥
2

6
∥∥D−1

1T

∥∥2
T∑
s=1

∥∥∥D−1
1T F̃s

∥∥∥2 1

T

T∑
s=1

T∑
t=1

γ2
st

From the normalization condition D−2
1T F̃

′F̃ = Ir, we have
∑T

s=1

∥∥∥D−1
1T F̃s

∥∥∥2
= OP (1). Us-

ing Lemma (B.1), we have T−1
∑T

s=1

∑T
t=1 γ

2
st = O(1). Therefore, we have T−1

∑T
s=1 at =

OP

(∥∥D−1
1T

∥∥2
)

.

Since
∥∥D−1

1T

∥∥2
= O(T−1), we obtain

T∑
t=1

at = OP
(
T ||D−1

1T ||
2
)

= OP (1). (B.2)

Now, consider the second term. Using the Cauchy Schwarz inequality, we have

1

T

T∑
t=1

bt =
1

T

T∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sζst

∥∥∥∥∥
2

6
∥∥D−1

1T

∥∥2
T∑
s=1

∥∥∥D−1
1T F̃s

∥∥∥2 1

T

T∑
t=1

T∑
s=1

|ζst|2︸ ︷︷ ︸
K1 (say)

.

Using Assumption 2.2(v), we have E
∣∣∣N−1/2

∑N
i=1 [eiseit − E (eiseit)]

∣∣∣4 = N2E |ζst|4 6M <∞.

Therefore,

E |K1| 6
1

T

T∑
t=1

T∑
s=1

E |ζst|2 6
1

T

T∑
t=1

T∑
s=1

M1

N
= O

(
T

N

)
,
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where M1 is a finite constant. Thus, together with the fact that, T ||D−2
1T || = O(1), we obtain

1

T

T∑
t=1

bt = OP

(∥∥D−1
1T

∥∥2
)
OP

(
T

N

)
= OP

(
1

N

)
.

Hence, we have
T∑
t=1

bt = OP

(
T

N

)
. (B.3)

Now, consider the third term. Using Cauchy Schwartz inequality, Assumption 2.1, normalization

condition on factors, and Lemma (B.1), we obtain,

1

T

T∑
t=1

ct =
1

T

∑T
t=1

∥∥∥D−2
1T

∑T
s=1 F̃sηst

∥∥∥2
=

1

T

∑T
t=1

∥∥∥∥D−2
1T

∑T
s=1 F̃s

F ′sΛ
′et

N

∥∥∥∥2

(B.4)

6
1

N

1

T

T∑
t=1

∥∥∥∥Λ′et√
N

∥∥∥∥2

︸ ︷︷ ︸
OP (1)

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sF
′
s

∥∥∥∥∥
2

︸ ︷︷ ︸
K2 (say)

,

where we have

K2 = OP

(∑T
s=1

∥∥∥D−1
1T F̃s

∥∥∥2
)
OP

(∑T
s=1

∥∥D−1
1T Fs

∥∥2
)

= OP (1)

Therefore, T−1
∑T

t=1 ct = OP
(
N−1

)
. Hence we have,

T∑
t=1

ct = OP

(
T

N

)
. (B.5)

Similarly, we can show that
∑T

t=1 dt = OP
(
TN−1

)
. Using Cauchy Schwarz inequality,

1

T

T∑
t=1

dt =
1

T

T∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

ξstF̃s

∥∥∥∥∥
2

=
1

T

T∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F ′tΛ
′es

N
F̃s

∥∥∥∥∥
2

6
1

TN

(
T∑
t=1

∥∥D−1
1T Ft

∥∥2

)(
1

N

T∑
s=1

∥∥Λ′es
∥∥2

)(
T∑
s=1

∥∥∥D−1
1T F̃s

∥∥∥2
)

= OP

(
1

N

)
.

Thus,
T∑
t=1

dt = OP

(
T

N

)
. (B.6)

From equations (B.2)–(B.6), we have

‖W ∗‖2 6 4

(
T∑
t=1

at +

T∑
t=1

bt +

T∑
t=1

ct +

T∑
t=1

dt

)
= OP (1) +OP

(
T

N

)
.
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Thus,

‖W‖ 6
∥∥D−1

1T

∥∥∥∥∥D−1
1T F̃

′
∥∥∥ ‖W ∗‖ = O

(∥∥D−1
1T

∥∥)OP (1)

{
OP (1) +OP

(√
T√
N

)}
= oP (1),

as N,T →∞.

Part (ii) By the definition of eigenvalues and eigenvectors, N−1XX ′F̃D−2
1T = F̃ ṼNT , and

the normalization condition, D−2
1T F̃

′F̃ = Ir, we have, N−1D−2
1T F̃

′XX ′F̃D−2
1T = ṼNT . Now,

together with part (i), we can write∥∥∥∥ṼNT −D−2
1T F̃

′F

(
Λ′Λ

N

)
F ′F̃D−2

1T

∥∥∥∥ = oP (1). (B.7)

Furthermore, recall that Ṽ ∗NT is the diagonal matrix with largest r eigenvalues of F
(
Λ′ΛN−1

)
F ′

multiplied by D−2
1T and F̃ ∗ be the corresponding eigenvector matrix such that D−2

1T F̃
∗′F̃ ∗ = Ir.

Then, using similar arguments as in part (i), we have∥∥∥∥D−2
1T F̃

′F

(
Λ′Λ

N

)
F ′F̃D−2

1T −D
−2
1T F̃

∗′F

(
Λ′Λ

N

)
F ′F̃ ∗D−2

1T

∥∥∥∥ = oP (1). (B.8)

Again, by the definition of eigenvalues and eigenvectors, and the normailzation condition, we

may write N−1D−2
1T F̃

∗′(FΛ′ΛF ′)F̃ ∗D−2
1T = Ṽ ∗NT . Then, equation (B.8) gives∥∥∥∥Ṽ ∗NT −D−2

1T F̃
′F

(
Λ′Λ

N

)
F ′F̃D−2

1T

∥∥∥∥ = oP (1). (B.9)

Therefore, we have,

∥∥∥ṼNT − Ṽ ∗NT∥∥∥ =

∥∥∥∥ṼNT −D−2
1T F̃

′F

(
Λ′Λ

N

)
F ′F̃D−2

1T −
(
Ṽ ∗NT −D−2

1T F̃
′F

(
Λ′Λ

N

)
F ′F̃D−2

1T

)∥∥∥∥
6

∥∥∥∥ṼNT −D−2
1T F̃

′F

(
Λ′Λ

N

)
F ′F̃D−2

1T

∥∥∥∥+

∥∥∥∥Ṽ ∗NT −D−2
1T F̃

′F

(
Λ′Λ

N

)
F ′F̃D−2

1T

∥∥∥∥
= oP (1).

Thus, we have ṼNT = Ṽ ∗NT + oP (1).

Since the r largest eigenvalues of F
(
Λ′ΛN−1

)
F ′ are the same as those of

(
Λ′ΛN−1

)
F ′F ,

elements of Ṽ ∗NT are equal to the eigenvalues of (Λ′ΛN−1)F ′F multiplied by D−2
1T . Then, under

the Assumption 2.1, we have that Ṽ ∗NT converges, in distribution, to V , positive definite diagonal

matrix with eigenvalues of ΣΛΣF . Therefore, ṼNT
d−→ V and Ṽ −1

NT = OP (1).

Part (iii) This part directly holds form the Part (ii), and Assumption 2.1.

‖H‖ =

∥∥∥∥Ṽ −1
NTD

−2
1T F̃

′F
Λ′Λ

N

∥∥∥∥ ≤ ∥∥∥Ṽ −1
NT

∥∥∥∥∥∥D−2
1T F̃

′F
∥∥∥∥∥∥∥Λ′Λ

N

∥∥∥∥ = OP (1).

�
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The next lemma proves the consistency of factors, and is stated in the main paper.

Lemma A. 3. Suppose that Assumptions 2.1–2.3 are satisfied. Let δ−1
NT = max

[
N−1/2, ||D−1

1T ||
]
.

Then, there exists an (r × r) non-singular matrix H, called a rotation matrix, such that

1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥2
= OP

(
δ−2
NT

)
.

Proof. By the identity F̃ = N−1XΛ̃Ṽ −1
NT , as stated in Bai and Ng(2002), and Λ̃ = X ′F̃D−2

1T , we

have F̃ = N−1X(X ′F̃D−2
1T )Ṽ −1

NT . Using H = Ṽ −1
NTD

−2
1T F̃

′F
{
N−1Λ′Λ

}
and expanding XX ′, we

obtain

F̃ − FH ′ = 1

N
XX ′F̃D−2

1T Ṽ
−1
NT − F

(
Ṽ −1
NTD

−2
1T F̃

′F
Λ′Λ

N

)′
=

1

N
XX ′F̃D−2

1T Ṽ
−1
NT − F

Λ′Λ

N
F ′F̃D−2

1T Ṽ
−1
NT

=

{
1

N
XX ′ − FΛ′ΛF ′

N

}
F̃D−2

1T Ṽ
−1
NT

=
1

N

{
FΛ′e′ + eΛF ′ + ee′

}
F̃D−2

1T Ṽ
−1
NT .

Since F̃ =
(
F̃1, . . . , F̃T

)′
, and F = (F1, . . . , FT )′, in vector notation, the above equation be-

comes

F̃t −HFt = Ṽ −1
NTD

−2
1T

1

N
F̃ ′
{
eet + FΛ′et + eΛFt

}
= Ṽ −1

NTD
−2
1T

{
1

N

T∑
s=1

F̃se
′
set +

1

N

T∑
s=1

F̃sF
′
sΛ
′et +

1

N

T∑
s=1

F̃se
′
sΛFt

}
.

Then we have,

F̃t −HFt = Ṽ −1
NT

{
D−2

1T

T∑
s=1

F̃sγst +D−2
1T

T∑
s=1

F̃sζst +D−2
1T

T∑
s=1

F̃sηst +D−2
1T

T∑
s=1

F̃sξst

}
, (B.10)

where γst, ζst, ηst and ξst as defined before.

Since Ṽ −1
NT = OP (1) by Lemma B.2, and the fact that (a+ b+ c+ d)2 6 4

(
a2 + b2 + c2 + d2

)
,

we obtain
∥∥∥F̃t −HFt∥∥∥2

≤ 4 (at + bt + ct + dt) where,

at =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sγst

∥∥∥∥∥
2

, bt =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sζst

∥∥∥∥∥
2

, ct =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sηst

∥∥∥∥∥
2

, dt =

∥∥∥∥∥D−2
1T

T∑
s=1

F̃sξst

∥∥∥∥∥
2

.
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Then, T−1
∑T

t=1

∥∥∥F̃t −HFt∥∥∥2
6 T−1

∑T
t=1 4 (at + bt + ct + dt) . In the proof of Lemma (B.2)

(equations (B.2)–(B.6)), we have

1

T

∑T
t=1 at = OP

(∥∥D−2
1T

∥∥) , 1

T

T∑
t=1

bt = OP

(
1

N

)
, (B.11)

1

T

∑T
t=1 ct = OP

(
1

N

)
,

1

T

T∑
t=1

dt = OP

(
1

N

)
. (B.12)

Thus, we obtain

1

T

T∑
t=1

∣∣∣∣∣∣F̃t −HFt∣∣∣∣∣∣2 =
{
OP
(
||D−2

1T ||
)

+OP
(
N−1

)}
= max[OP

(
||D−2

1T ||
)
, OP

(
N−1

)
] = OP

(
δ−2
NT

)
,

where δ−1
NT = max

[
N−1/2, ||D−1

1T ||
]
. �

Lemma A. 4. Suppose that Assumptions 2.1–2.4 satisfied. Then, as N,T →∞, we have

(i) A1t = D−2
1T

∑T
s=1 F̃sγst = OP

(
||D−1

1T ||δ
−1
NT

)
(ii) A2t = D−2

1T

∑T
s=1 F̃sζst = OP

(
N−1/2δ−1

NT

)
,

(iii) A3t = D−2
1T

∑T
s=1 F̃sηst = OP

(
N−1/2

)
,

(iv) A4t = D−2
1T

∑T
s=1 F̃sξst = OP

(
N−1/2δ−1

NT

)
.

Proof. Part (i) Let us write

A1t = D−2
1T

T∑
s=1

F̃sγst = D−2
1T

T∑
s=1

(
F̃s −HFs

)
γst +D−2

1T

T∑
s=1

HFsγst = A11t +HA12t, (B.13)

and consider each part separately. Using Cauchy Schwartz inequality, Assumption 2.4, Lemma

(B.1), and Lemma (2.1), and the fact that
∥∥D−2

1T

∥∥ = O(T−1), we have,

‖A11t‖ =

∥∥∥∥∥D−2
1T

T∑
s=1

(
F̃s −HFs

)
γst

∥∥∥∥∥
6
∥∥D−2

1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

︸ ︷︷ ︸
OP (
√
Tδ−1

NT )

(
T∑
s=1

|γst|2
)1/2

︸ ︷︷ ︸
O(1)

= OP
(
||D−1

1T ||δ
−1
NT

)
,

E ‖A12t‖ = E

∥∥∥∥∥D−2
1T

T∑
s=1

Fsγst

∥∥∥∥∥ 6 ∥∥D−2
1T

∥∥ T∑
s=1

E ‖Fsγst‖ 6 ||D−2
1T ||

T∑
s=1

(
E||Fs||2

)1/2 (
E |γst|2

)1/2

6M ||D−2
1T ||

T∑
s=1

|γst| = O(||D−2
1T ||),
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since we assume that
(
E||Ft||4

)
6 M and

∑T
s=1 |γst| 6 M for some finite constant M in the

Assumptions 2.1 and 2.4(i). Then, together with ‖H‖ = OP (1) from Lemma (B.2), and the fact

that δ−1
NT = max[N−1/2, ||D−1

1T ||], we obtain

A1t = OP
(
||D−1

1T ||δ
−1
NT

)
+OP (1)OP

(
||D−2

1T ||
)

= OP
(
||D−1

1T ||δ
−1
NT

)
.

Part (ii) Similar to Part (i), we can decompose A2t as follows:

A2t = D−2
1T

T∑
s=1

F̃sζst = D−2
1T

T∑
s=1

(
F̃s −HFs

)
ζst +D−2

1T

T∑
s=1

HFsζst = A21t +HA22t. (B.14)

By Cauchy Schwarz inequality and Assumption 2.2(v), we have

‖A21t‖ =

∥∥∥∥∥D−2
1T

T∑
s=1

(
F̃s −HFs

)
ζst

∥∥∥∥∥ 6 ∥∥D−2
1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2( T∑

s=1

‖ζst‖2
)1/2

︸ ︷︷ ︸
A23t

,

where we have

E(A2
23t) = E

 T∑
s=1

∥∥∥∥∥ 1

N

N∑
i=1

(eiseit − E (eiseit))

∥∥∥∥∥
2


≤ 1

N

 T∑
s=1

E

∣∣∣∣∣ 1√
N

N∑
i=1

(eiseit − E (eiseit))

∣∣∣∣∣
2
 = O

(
T

N

)
.

Then, together with T ||D−2
1T || = O(1), we get

A21t = O
(
||D−2

1T ||
)
OP

(
T 1/2δ−1

NT

)
OP

(
T 1/2N−1/2

)
= OP

(
N−1/2δ−1

NT

)
.

Consider the second term of A2t. Again by Cauchy Schwarz inequality and T ||D−2
1T || = O(1),

E ‖A22t‖ = E

∥∥∥∥∥D−2
1T

T∑
s=1

Fsζst

∥∥∥∥∥ 6 ∥∥D−2
1T

∥∥ T∑
s=1

(
E ‖Fs‖2

)1/2 (
E |ζst|2

)1/2

6M
∥∥D−2

1T

∥∥ T∑
s=1

(
E |ζst|2

)1/2
= O

(
||D−1

1T ||√
N

)
,

thus we have

A22t = OP

(
||D−1

1T ||√
N

)
,

where the second inequality holds as we assume E ‖Fs‖4 6 M < ∞ in Assumption 2.1(ii), and

the second equality holds by following the Assumption 2.1(v).
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Then, together with Lemma (B.2), ‖H‖ = OP (1), we obtain

A2t = OP

(
N−1/2δ−1

NT

)
+OP

(
N−1/2

∥∥D−1
1T

∥∥) = OP

(
N−1/2δ−1

NT

)
.

Part (iii) Again, as in the Part (i), let us write,

A3t = D−2
1T

T∑
s=1

F̃sηst = D−2
1T

T∑
s=1

(
F̃s −HFs

)
ηst +HD−2

1T

T∑
s=1

Fsηst = A31t +HA32t.

By Cauchy Schwarz inequality, Lemma (2.1), Lemma (B.1), and Assumptions 2.1 and 2.3, we

have,

‖A31t‖ =

∥∥∥∥∥D−2
1T

T∑
s=1

(
F̃s −HFs

)
ηst

∥∥∥∥∥ 6 ∥∥D−2
1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2


T∑
s=1

‖ηst‖2︸ ︷︷ ︸
A33t


1/2

,

where we have

E (A33t) = E

(
T∑
s=1

∥∥∥∥F ′sΛ′etN

∥∥∥∥2
)
6

T∑
s=1

E

∥∥∥∥F ′sΛ′etN

∥∥∥∥2

6
T∑
s=1

E
∥∥F ′s∥∥2

E

∥∥∥∥Λ′et
N

∥∥∥∥2

= E

∥∥∥∥Λ′et
N

∥∥∥∥2 T∑
s=1

E
∥∥F ′s∥∥2

= O

(
T

N

)
.

Thus, we have A31t = O
(∥∥D−2

1T

∥∥)OP (√Tδ−1
NT

)
OP

(√
T√
N

)
= OP

(
1√

NδNT

)
.

Consider the second part of A3t,

‖A32t‖ =

∥∥∥∥∥D−2
1T

T∑
s=1

Fsηst

∥∥∥∥∥ =

∥∥∥∥∥D−2
1T

T∑
s=1

FsF
′
s

Λ′et
N

∥∥∥∥∥
6

∥∥∥∥Λ′et
N

∥∥∥∥
∥∥∥∥∥
T∑
s=1

D−1
1T FsF

′
sD
−1
1T

∥∥∥∥∥ 6
∥∥∥∥Λ′et
N

∥∥∥∥
(

T∑
s=1

∥∥D−1
1T Fs

∥∥2

)
= OP

(
N−1/2

)
.

Therefore, we have A3t = OP
(
N−1/2δ−1

NT

)
+OP (1)OP

(
N−1/2

)
= OP

(
N−1/2

)
.

Part (iv) We can similarly decompose A4t as follows:

A4t = D−2
1T

T∑
s=1

F̃sξst = D−2
1T

T∑
s=1

(
F̃s −HFs

)
ξst +D−2

1T

T∑
s=1

HFsξst = A41t +HA42t.
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Using Cauchy Schwartz inequality, Lemma (2.1), Lemma (B.1), and Assumptions 2.1 and 2.3,

we obtain,

‖A41t‖ =

∥∥∥∥∥D−2
1T

T∑
s=1

(
F̃s −HFs

)
ξst

∥∥∥∥∥ =

∥∥∥∥∥D−2
1T

T∑
s=1

(
F̃s −HFs

)
F ′t

Λ′es
N

∥∥∥∥∥
6
∥∥D−2

1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2


T∑
s=1

∥∥∥∥F ′t Λ′es
N

∥∥∥∥2

︸ ︷︷ ︸
A43t


1/2

,

where we have

E(A43t) = E

(
T∑
s=1

∥∥∥∥F ′t Λ′es
N

∥∥∥∥2
)
6

T∑
s=1

E

∥∥∥∥F ′t Λ′es
N

∥∥∥∥2

6
T∑
s=1

E ‖Ft‖2E
∥∥∥∥Λ′es
N

∥∥∥∥2

= E ‖Ft‖2
T∑
s=1

E

∥∥∥∥Λ′es
N

∥∥∥∥2

= O

(
T

N

)
,

and thus

‖A41t‖ =
∥∥D−2

1T

∥∥OP (√T
δNT

)
OP

(√
T√
N

)
= OP

(
1√

NδNT

)
.

Consider the second part of A4t. Using Cauchy Schwartz inequality, Assumptions 2.1 and

2.3(iii), we have,

E ‖A42t‖ = E

∥∥∥∥∥D−2
1T

T∑
s=1

F ′tΛ
′esF

′
s

N

∥∥∥∥∥ 6 ∥∥D−1
1T

∥∥E ∥∥∥∥∥D−1
1T F

′
t

T∑
s=1

Λ′esF
′
s

N

∥∥∥∥∥
6
∥∥D−1

1T

∥∥(E ‖Ft‖2)1/2

E ∥∥∥∥∥D−1
1T

T∑
s=1

Λ′esF
′
s

N

∥∥∥∥∥
2
1/2

= O

(∥∥D−1
1T

∥∥
√
N

)
.

Thus, we have ||A4t|| = OP
(
N−1/2δ−1

NT

)
+OP

(
||D−1

1T ||N−1/2
)

= OP
(
N−1/2δ−1

NT

)
. �

Lemma B. 1. Suppose that Assumptions 2.1–2.4 are satisfied. Then, D−2
1T F̃

′F
d−→ Q as N,T →

∞, where Q = V 1/2Υ′Σ
−1/2
Λ is a random matrix, V = diag(v1, ..., vr) with {v1, . . . , vr} denoting

the eigenvalues of ΣΛΣF , and Υ is the corresponding matrix formed by scaled eigenvectors such

that Υ′Υ = Ir.

Proof. Since ṼNT is the diagonal matrix of r largest eigenvalues of XX ′ multiplied by N−1D−2
1T ,

we have XX ′F̃N−1D−2
1T = F̃ ṼNT . Now, multiplying both side by

(
Λ′ΛN−1

)1/2 (
D−2

1T F
′), we

have (
Λ′Λ

N

)1/2 (
D−2

1T F
′)XX ′F̃ 1

N
D−2

1T =

(
Λ′Λ

N

)1/2 (
D−2

1T F
′) F̃ ṼNT . (B.15)
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Since X = FΛ′ + e, we can expand XX ′, and we obtain,

XX ′F̃
1

N
D−2

1T =
FΛ′ΛF ′

N
F̃D−2

1T +

(
FΛ′e′ + eΛF ′ + ee′

N

)
F̃D−2

1T .

Then, we may rewrite equation (B.15) as

(
Λ′Λ

N

)1/2

D−2
1T F

′
(
FΛ′ΛF ′

N
F̃D−2

1T +

(
FΛ′e′ + eΛF ′ + ee′

N

)
F̃D−2

1T

)
=

(
Λ′Λ

N

)1/2

D−2
1T F

′F̃ ṼNT(
Λ′Λ

N

)1/2

D−2
1T F

′F

(
Λ′Λ

N

)(
F ′F̃D−2

1T

)
+ANT =

(
Λ′Λ

N

)1/2

D−2
1T F

′F̃ ṼNT ,

where ANT =
(
N−1Λ′Λ

)1/2
D−2

1T F
′ (FΛ′e′ + eΛF ′ + ee′) F̃N−1D−2

1T . We may show that ANT =

oP (1).

Using the proof of Lemma (2.1), we have N−1 (FΛ′e′ + eΛF ′ + ee′) F̃D−2
1T Ṽ

−1
NT = F̃ − FH ′.

Therefore, we can write

ANT =

(
Λ′Λ

N

)1/2

D−2
1T F

′ (FΛ′e′ + eΛF ′ + ee′
)
F̃

1

N
D−2

1T

=

(
Λ′Λ

N

)1/2 (
D−2

1T F
′
(
F̃ − FH ′

))
ṼNT

=

(
Λ′Λ

N

)1/2
(
D−2

1T

T∑
t=1

Ft

(
F̃t −HFt

)′)
ṼNT .

Using Cauchy-Schwarz inequality and Lemma (B.2), ṼNT = OP (1), we have

‖ANT ‖2 =

∥∥∥∥∥
(

Λ′Λ

N

)1/2
(
D−2

1T

T∑
t=1

Ft

(
F̃ −HFt

)′)
ṼNT

∥∥∥∥∥
2

6

∥∥∥∥Λ′Λ

N

∥∥∥∥
∥∥∥∥∥
T∑
t=1

D−2
1T Ft

(
F̃t −HFt

)′∥∥∥∥∥
2 ∥∥∥ṼNT∥∥∥2

6

∥∥∥∥Λ′Λ

N

∥∥∥∥∥∥D−1
1T

∥∥2

(
T∑
t=1

∥∥D−1
1T Ft

∥∥2

)(
T∑
t=1

∥∥∥F̃t −HFt∥∥∥2
)

where Lemma (B.2) has been used for the last inequality.

Using Assumption 2.1, we have
∥∥N−1Λ′Λ

∥∥ = OP (1) and
(∑T

t=1

∥∥D−1
1T Ft

∥∥2
)

= OP (1). Also,

by Lemma (2.1),

(
T−1

∑T
t=1

∥∥∥F̃t −HFt∥∥∥2
)

= OP (δ−2
NT ). Then, as T

∥∥D−2
1T

∥∥ = O(1), we obtain

ANT = OP
(
δ−1
NT

)
= oP (1).

Therefore, we have

(
Λ′Λ

N

)1/2 (
D−2

1T F
′F
)(Λ′Λ

N

)(
F ′F̃D−2

1T

)
+ oP (1) =

(
Λ′Λ

N

)1/2 (
D−2

1T F
′F̃
)
ṼNT . (B.16)



52 CHAPTER 2. MIXTURE FAR MODEL

Let BNT =
(
N−1Λ′Λ

)1/2 (
D−2

1T F
′F
) (
N−1Λ′Λ

)1/2
and

CNT =

(
Λ′Λ

N

)1/2 (
F ′F̃D−2

1T

)
. (B.17)

We may show that, D−2
1T F

′F̃ = F ′F̃D−2
1T , asymptotically. Consider,

D−2
1T F

′F̃ = D−2
1T F

′
(
F̃ − FH ′ + FH ′

)
= D−2

1T F
′FH ′ +D−2

1T F
′
(
F̃ − FH ′

)
.

Using Cauchy Schwartz inequality, Lemma (2.1) and Assumption 2.1, we have,

∥∥∥D−2
1T F

′
(
F̃ − FH ′

)∥∥∥ 6 ∥∥D−1
1T

∥∥∥∥D−1
1T F

′∥∥∥∥∥F̃ − FH ′∥∥∥ = oP (1).

Thus, we have D−2
1T F

′F̃ = D−2
1T (F ′F )H ′ + oP (1).

Since we assume that the factors are not cointegrated, and define the rotation matrix, H,

to be asymptotically diagonal (with ±1), we have D−2
1T F

′FH ′ as a block diagonal matrix. This

implies that F ′F̃ is asymptotically block diagonal. Therefore, we can write D−2
1T F

′F̃ = F ′F̃D−2
1T

asymptotically.

Then, we can rewrite the equation (B.16) as

(BNTCNT +ANT ) = CNT ṼNT or
(
BNT +ANTC

−1
NT

)
CNT = CNT ṼNT .

Since ṼNT is diagonal, it follows that the columns of CNT are eigenvectors of the matrix

BNT + ANTC
−1
NT . However, this CNT is not of unit length. Let ΥNT = CNT Ṽ

†−1/2
NT , where

Ṽ †NT is a diagonal matrix with diag
(
Ṽ †NT

)
= diag (C ′NTCNT ), the r largest eigenvalues of

FN−1Λ′ΛF ′. Then, we have
(
BNT +ANTC

−1
NT

)
ΥNT = ΥNT ṼNT , where ΥNT is the collection

of unit length eigenvectors of the matrix BNT + ANTC
−1
NT . By the Assumption 2.1, we have(

N−1Λ′Λ
) p−→ ΣΛ and

(
D−1

1T F
′F
) d−→ ΣF . Also, we have ANT = oP (1). Furthermore, we may

show that C−1
NT = OP (1).

Since F ′F̃D−2
1T is asymptotically block diagonal, we have CNT as an asymptotically diagonal

matrix. We may show that limT,N→∞CNT,ii 6= 0, in probability, for i = 1, . . . r, where CNT,ii is

the iith term of the matrix CNT . Consider (CNT )′ (CNT ).

C ′NTCNT = D−2
1T F̃

′F

(
Λ′Λ

N

)1/2(Λ′Λ

N

)1/2

F ′F̃D−2
1T = D−2

1T F̃
′
(
XX ′

N

)
F̃D−2

1T + oP (1)

= ṼNT + oP (1),

where the second and third equalities followed by the Lemma (B.2) (i) and (ii). Using Lemma

(B.2), we have ṼNT = OP (1) and Ṽ −1
NT = OP (1), which implies that limN,T→∞ṼNT,ii 6= 0, in

probability. Then, limN,T→∞C
2
NT,ii 6= 0, in probability for i = 1, . . . r. Thus, we have CNT
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is bounded away from zero, C−1
NT = OP (1). Hence, together with ANT = oP (1), we obtain

BNT +ANTC
−1
NT converges, in distribution, to B = Σ

1/2
Λ ΣFΣ

1/2
Λ .

Furthermore, by Assumption 2.1(v), we assume that the eigenvalues of ΣΛΣF are distinct.

Then, the eigenvalues of BNT + ANTC
−1
NT are also distinct for large N and T . This im-

plies that the eigenvectors of the BNT + ANTC
−1
NT are unique except for the fact that these

eigenvectors can be replaced by their negative (other sign) of themselves. Since CNT and

ΥNT = CNT Ṽ
†−1/2
NT are functions of F̃ , given the column sign of F̃ , ΥNT is uniquely deter-

mined. Using the eigenvalue perturbation theory, we have a unique eigenvector matrix Υ of B

such that ΥNT
d−→ Υ. Since

(
N−1Λ′Λ

)
is positive definite, we can rewrite equation (B.17) as

D−2
1T F̃

′F = C ′NT
(
N−1Λ′Λ

)−1/2
= Ṽ

†1/2
NT Υ′NT

(
N−1Λ′Λ

)−1/2
. Thus, together with Ṽ †NT

d−→ V in

Lemma (B.2), we have

D−2
1T F̃

′F
d−→ V 1/2Υ′Σ

−1/2
Λ := Q.

�

Lemma B. 2. Suppose that Assumptions 2.1–2.4 hold. Then, as N,T →∞ with
√
N ||D−2

1T || →

0 for each given t, we have
√
N
(
F̃t −HFt

)
d−→ V −1QN (0,Γt)

d
=N(0,ΣF̃ ), where Q is defined

in Lemma (2.2), Γt is defined in Assumption 2.3, and Q is independent of N(0,Γt).

Proof of Lemma 2.3. Using the identity for F̃ , Λ̃ and H as in the proof of Lemma (2.1), we

obtain

F̃t −HFt = Ṽ −1
NT

(
D−2

1T

T∑
s=1

F̃sγst +D−2
1T

T∑
s=1

F̃sζst +D−2
1T

T∑
s=1

F̃sηst +D−2
1T

T∑
s=1

F̃sξst

)
= Ṽ −1

NT (A1t +A2t +A3t +A4t) .

Using Lemma (B.2), we have Ṽ −1
NT = OP (1). Furthermore, in Lemma (B.4), we have

shown that A1t = OP
(∥∥D−1

1T

∥∥ δ−1
NT

)
, A2t = OP

(
N−1/2δ−1

NT

)
, A3t = OP

(
N−1/2

)
and A4t =

OP
(
N−1/2δ−1

NT

)
. Then, we have,

√
N
(
F̃t −HFt

)
= OP

(√
N
∥∥D−1

1T

∥∥ δ−1
NT

)
+OP

(
δ−1
NT

)
+OP (1).

Since δ−1
NT = max[N−1/2,

∥∥D−1
1T

∥∥], we consider the following two cases:

Case 1. If O
(
N−1/2

)
> O(

∥∥D−1
1T

∥∥), we have O
(
δ−1
NT

)
= O

(
N−1/2

)
, then,

√
N
(
F̃t −HFt

)
= OP (

∥∥D−1
1T

∥∥) +OP

(
N−1/2

)
+OP (1).

Case 2. If O(
∥∥D−1

1T

∥∥) > O
(
N−1/2

)
, we have O

(
δ−1
NT

)
= O

(∥∥D−1
1T

∥∥), then,

√
N
(
F̃t −HFt

)
= OP (

√
N
∥∥D−2

1T

∥∥) +OP
(∥∥D−1

1T

∥∥)+OP (1).
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Thus, for both cases, limiting distribution of
√
N
(
F̃t −HFt

)
is determined by the third

term under the condition limN,T→∞(N1/2
∥∥D−2

1T

∥∥)→ 0.

Therefore, we have

√
N
(
F̃t −HFt

)
= Ṽ −1

NTN
1/2D−2

1T

T∑
s=1

F̃s
F ′sΛ

′et
N

+ oP (1) = Ṽ −1
NTD

−2
1T

T∑
s=1

(
F̃sF

′
s

) 1√
N

N∑
i=1

λieit + oP (1).

By Assumption 2.3(ii), N−1/2
∑N

i=1 λieit
d−→ N (0,Γt). Hence, together with Lemma (2.2)

and Lemma (B.2), we have,
√
N
(
F̃t −HFt

)
d−→ V −1QN(0,Γt),

where Γt = limN,T→∞N
−1
∑N

i=1

∑N
j=1E

(
λiλ
′
jeitejt

)
. Since Q, the limiting distribution of

D−2
1T F̃

′F , is determined only by the common factors, Q is independent of N(0,Γt). �

Lemma A. 5. Suppose that Assumptions 2.1–2.6 are satisfied. Then, D−2
1T

∑T−h
t=1

(
F̃t −HFt

)
εt+h =

OP
(
T−1/2δ−1

NT

)
where δ−1

NT = max[N−1/2,
∥∥D−1

1T

∥∥].

Proof. First, recall the identity (B.10),

F̃t −HFt = Ṽ −1
NT

{
D−2

1T

T∑
s=1

F̃sγst +D−2
1T

T∑
s=1

F̃sζst +D−2
1T

T∑
s=1

F̃sηst +D−2
1T

T∑
s=1

F̃sξst

}
.

Using the above identity, we have

D−2
1T

T−h∑
t=1

(
F̃t −HFt

)
εt+h = Ṽ −1

NT (I + II + III + IV ) , (B.18)

where I = D−4
1T

∑T−h
t=1

∑T
s=1 F̃sγstεt+h, II = D−4

1T

∑T−h
t=1

∑T
s=1 F̃sζstεt+h, III = D−4

1T

∑T−h
t=1

∑T
s=1 F̃sηstεt+h

and IV = D−4
1T

∑T−h
t=1

∑T
s=1 F̃sξstεt+h.

According to Lemma (B.2), we have Ṽ −1
NT = OP (1), and we may show that

I = OP
(
T−1/2δ−1

NT

)
, II = OP

(
N−1/2T−1/2

)
, III = OP

(
N−1/2

∥∥D−1
1T

∥∥) , IV = OP
(
N−1/2

∥∥D−1
1T

∥∥) .
Consider each term of equation (B.18) separately.

I = D−4
1T

T−h∑
t=1

T∑
s=1

F̃sγstεt+h = D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
γstεt+h +D−4

1T

T−h∑
t=1

T∑
s=1

HFsγstεt+h = I1 +HI2 (say).
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Using Cauchy Schwarz inequality,

||I1|| =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
γstεt+h

∥∥∥∥∥ =

∥∥∥∥∥D−4
1T

T∑
s=1

(
F̃s −HFs

)(T−h∑
t=1

γstεt+h

)∥∥∥∥∥
6
∥∥D−4

1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

 T∑
s=1

∣∣∣∣∣
T−h∑
t=1

γstεt+h

∣∣∣∣∣
2
1/2

6 T 2
∥∥D−4

1T

∥∥ 1√
T

(
1

T

T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2(

1

T

T∑
s=1

T−h∑
t=1

|γst|2
1

T

T−h∑
t=1

|εt+h|2
)1/2

= T 2
∥∥D−4

1T

∥∥ 1√
T
OP
(
δ−1
NT

)
,

since

(
T−1

∑T
s=1

∥∥∥F̃s −HFs∥∥∥2
)

= OP (δ−2
NT ) from Lemma (2.1), T−1

∑T
s=1

∑T−h
t=1 |γst|

2 6 M

from Lemma (B.1), and T−1
∑T−h

t=1 E |εt+h|2 = O(1) by Assumption 2.6. Therefore, together

with the fact that T ||D−2
1T || = O(1), we have ‖I1‖ = OP

(
T−1/2δ−1

NT

)
.

Now, consider the second part of I. Using Cauchy-Schwarz inequality,

E ‖I2‖ = E

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

Fsγstεt+h

∥∥∥∥∥ 6 ∥∥D−4
1T

∥∥ T−h∑
t=1

T∑
s=1

E ‖Fsγstεt+h‖

6
∥∥D−4

1T

∥∥ T−h∑
t=1

T∑
s=1

|γst|
(
E ‖Fs‖2

)1/2 (
E |εt+h|2

)1/2
= O

(∥∥D−2
1T

∥∥) ,
as we have E ‖Fs‖2 6 M and E |εt+h|2 6 M , and T−1

∑T−h
t=1

∑T
s=1 |γst| 6 M for some finite

constant M by the Assumptions. Hence, I = OP
(
T−1/2δ−1

NT

)
+OP

(∥∥D−2
1T

∥∥) = OP
(
T−1/2δ−1

NT

)
as δ−1

NT = max[N−1/2,
∥∥D−1

1T

∥∥].

Now, we may show that II = OP
(
N−1/2T−1/2

)
.

II = D−4
1T

T−h∑
t=1

T∑
s=1

F̃sζstεt+h = D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
ζstεt+h +D−4

1T

T−h∑
t=1

T∑
s=1

HFsζstεt+h = II1 +HII2.
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Using Cauchy Schwarz inequality and Assumption 2.5(i), we have

||II1|| =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
ζstεt+h

∥∥∥∥∥ 6 ∥∥D−4
1T

∥∥∥∥∥∥∥
T∑
s=1

(
F̃s −HFs

) T−h∑
t=1

ζstεt+h

∥∥∥∥∥
6
∥∥D−4

1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

 T∑
s=1

∥∥∥∥∥
T−h∑
t=1

ζstεt+h

∥∥∥∥∥
2
1/2

= T 2
∥∥D−4

1T

∥∥( 1

T

T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

 1

T

T∑
s=1

∣∣∣∣∣ 1

T

T−h∑
t=1

ζstεt+h

∣∣∣∣∣
2

︸ ︷︷ ︸
II3(say)


1/2

= T 2
∥∥D−4

1T

∥∥( 1

T

T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

(II3)1/2,

where we have

E(II3) 6
1

T

T∑
s=1

E

∣∣∣∣∣ 1

T

T−h∑
t=1

ζstεt+h

∣∣∣∣∣
2

=
1

T

T∑
s=1

E

∣∣∣∣∣ 1

T

T−h∑
t=1

1

N

N∑
i=1

(eiseit − E(eiseit)) εt+h

∣∣∣∣∣
2

= O

(
1

NT

)
.

Then, using Lemma (2.1), we obtain, ||II1|| = O(1)OP (δ−1
NT )OP

(
N−1/2T−1/2

)
= OP

(
N−1/2T−1/2δ−1

NT

)
.

By Cauchy Schwarz inequality, Assumption 2.1, and the fact that E(II3) = O
(
N−1T−1

)
,

we have,

‖II2‖ =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

Fsζstεt+h

∥∥∥∥∥ 6 ∥∥D−3
1T

∥∥∥∥∥∥∥
T−h∑
t=1

T∑
s=1

D−1
1T Fsζstεt+h

∥∥∥∥∥
=
∥∥D−3

1T

∥∥∥∥∥∥∥
T∑
s=1

D−1
1T Fs

T−h∑
t=1

ζstεt+h

∥∥∥∥∥ 6 ∥∥D−3
1T

∥∥( T∑
s=1

∥∥D−1
1T Fs

∥∥2

)1/2
 T∑
s=1

∥∥∥∥∥
T−h∑
t=1

ζstεt+h

∥∥∥∥∥
2
1/2

= O
(∥∥D−3

1T

∥∥)OP (1)OP

(
T 3/2

√
NT

)
= OP

(
1√
NT

)
.

Thus, together with Lemma (B.2) and H = OP (1), we obtain

II = II1 +HII2 = OP

(
N−1/2T−1/2δ−1

NT

)
+OP (1)OP

(
N−1/2T−1/2

)
= OP

(
N−1/2T−1/2

)
.

Similar to the first and second terms, we can decompose the third term in equation (B.18) as

follows:

III = D−4
1T

T−h∑
t=1

T∑
s=1

F̃sηstεt+h = D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
ηstεt+h +D−4

1T

T−h∑
t=1

T∑
s=1

HFsηstεt+h = III1 +HIII2.
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Using Cauchy Schwarz inequality,

‖III1‖ =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
ηstεt+h

∥∥∥∥∥ 6 ∥∥D−4
1T

∥∥∥∥∥∥∥
T∑
s=1

(
F̃s −HFs

) T−h∑
t=1

ηstεt+h

∥∥∥∥∥
6
∥∥D−4

1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2


T∑
s=1

∥∥∥∥∥
T−h∑
t=1

ηstεt+h

∥∥∥∥∥
2

︸ ︷︷ ︸
III3(say)


1/2

,

where we have

E(III3) 6
T∑
s=1

E ∥∥∥∥∥
T−h∑
t=1

ηstεt+h

∥∥∥∥∥
2
 =

T∑
s=1

E

∥∥∥∥∥
T−h∑
t=1

F ′sΛ
′et

N
εt+h

∥∥∥∥∥
2

=
T∑
s=1

E

∥∥∥∥∥F ′s
T−h∑
t=1

Λ′etεt+h
N

∥∥∥∥∥
2

6
T∑
s=1

E ‖Fs‖2
E ∥∥∥∥∥

T−h∑
t=1

Λ′etεt+h
N

∥∥∥∥∥
2
 = O

(
T 2

N

)
,

since E ‖Fs‖2 = O(1) and E
∥∥∥N−1/2T−1/2

∑T−h
t=1

∑N
i=1 λieitεt+h

∥∥∥2
= O(1) by Assumptions 2.1

and 2.5.

Therefore, using Lemma (2.1) and the fact that T
∥∥D−2

1T

∥∥ = O(1), we have,

‖III1‖ = OP

(
||D−4

1T ||
√
Tδ−1

NTTN
−1/2

)
= OP

(
N−1/2

∥∥D−1
1T

∥∥ δ−1
NT

)
.

Again, using Cauchy Schwartz inequality, T
∥∥D−2

1T

∥∥ = O(1), and Assumptions 2.1 and 2.5, we

have,

III2 =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

Fsηstεt+h

∥∥∥∥∥ =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

FsF
′
s

Λ′et
N

εt+h

∥∥∥∥∥
6
∥∥D−2

1T

∥∥∥∥∥∥∥
T−h∑
t=1

T∑
s=1

D−2
1T FsF

′
s

Λ′etεt+h
N

∥∥∥∥∥ =
∥∥D−2

1T

∥∥∥∥∥∥∥
(

T∑
s=1

D−2
1T FsF

′
s

)(
T−h∑
t=1

Λ′etεt+h
N

)∥∥∥∥∥
6
∥∥D−2

1T

∥∥∥∥∥∥∥D−2
1T

T∑
s=1

FsF
′
s

∥∥∥∥∥
∥∥∥∥∥
T−h∑
t=1

Λ′etεt+h
N

∥∥∥∥∥ =
∥∥D−2

1T

∥∥OP (1)OP

(√
T√
N

)
= OP

(∥∥D−1
1T

∥∥
√
N

)
.

Therefore, we have, III = OP
(
N−1/2

∥∥D−1
1T

∥∥ δ−1
NT

)
+OP

(
N−1/2

∥∥D−1
1T

∥∥) = OP
(
N−1/2

∥∥D−1
1T

∥∥) .
Again from the decomposition, we have

IV = D−4
1T

T−h∑
t=1

T∑
s=1

F̃sξstεt+h = D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
ξstεt+h +D−4

1T

T−h∑
t=1

T∑
s=1

HFsξstεt+h = IV1 +HIV2.
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Consider each term separately. Using Cauchy-Schwartz inequality,

‖IV1‖ =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

(
F̃s −HFs

)
ξstεt+h

∥∥∥∥∥ 6 ∥∥D−4
1T

∥∥∥∥∥∥∥
T∑
s=1

(
F̃s −HFs

) T−h∑
t=1

ξstεt+h

∥∥∥∥∥
6
∥∥D−4

1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2


T∑
s=1

∥∥∥∥∥
T−h∑
t=1

ξstεt+h

∥∥∥∥∥
2

︸ ︷︷ ︸
IV3 (say)


1/2

.

From Lemma (B.1), and Assumptions 2.1 and 2.6, we obtain

E(IV3) = E

 T∑
s=1

∥∥∥∥∥
T−h∑
t=1

F ′tΛ
′es

N
εt+h

∥∥∥∥∥
2
 = E

 T∑
s=1

∥∥∥∥∥
(

Λ′es
N

)′ T−h∑
t=1

Ftεt+h

∥∥∥∥∥
2


6
T∑
s=1

E

∥∥∥∥Λ′es
N

∥∥∥∥2

E

∥∥∥∥∥
T−h∑
t=1

Ftεt+h

∥∥∥∥∥
2

6
T∑
s=1

E

∥∥∥∥Λ′es
N

∥∥∥∥2 T−h∑
t=1

E ‖Ftεt+h‖2

6
T∑
s=1

E

∥∥∥∥Λ′es
N

∥∥∥∥2 T−h∑
t=1

E ‖Ft‖2E ‖εt+h‖2 = O

(
T 2

N

)
.

Therefore, together with the fact that T
∥∥D−2

1T

∥∥ = O(1) and Lemma (2.1), we have,

‖IV1‖ = O
(∥∥D−4

1T

∥∥)OP (T 1/2δ−1
NT

)
OP

(
TN−1/2

)
= OP

(
N−1/2

∥∥D−1
1T

∥∥ δ−1
NT

)
.

Again, using Cauchy-Schwartz inequality and Assumptions 2.1, 2.3 and 2.6, we have

‖IV2‖ =

∥∥∥∥∥D−4
1T

T−h∑
t=1

T∑
s=1

Fsξstεt+h

∥∥∥∥∥ =

∥∥∥∥∥D−2
1T

(
D−1

1T

T∑
s=1

Λ′esF
′
s

N

)(
T−h∑
t=1

D−1
1T Ftεt+h

)∥∥∥∥∥
6
∥∥D−2

1T

∥∥∥∥∥∥∥D−1
1T

T∑
s=1

Λ′esF
′
s

N

∥∥∥∥∥
∥∥∥∥∥
T−h∑
t=1

D−1
1T Ftεt+h

∥∥∥∥∥
6
∥∥D−2

1T

∥∥∥∥∥∥∥D−1
1T

T∑
s=1

Λ′esF
′
s

N

∥∥∥∥∥
(
T−h∑
t=1

∥∥D−1
1T Ft

∥∥2

)1/2(T−h∑
t=1

|εt+h|2
)1/2

= OP

(∥∥D−2
1T

∥∥ √T√
N

)
= OP

(∥∥D−1
1T

∥∥
√
N

)
.

Thus, we have IV = OP
(
N−1/2

∥∥D−1
1T

∥∥ δ−1
NT

)
+OP

(∥∥D−1
1T

∥∥N−1/2
)

= OP
(∥∥D−1

1T

∥∥N−1/2
)
.

Since Ṽ −1
NT = OP (1), Lemma (B.2), we have,

D−2
1T

T−h∑
t=1

(
F̃t −HFt

)
εt+h = Ṽ −1

NT

{
OP

(
T−1/2δ−1

NT

)
+OP

(
N−1/2T−1/2

)
+OP

(
N−1/2

∥∥D−1
1T

∥∥)}
= OP

(
T−1/2δ−1

NT

)
.
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Therefore, we have shown D−1
1T

∑T−h
t=1

(
F̃t −HFt

)
εt+h

p−→ 0 as T,N →∞. �

Lemma A. 6. Let Assumptions 2.1–2.6 hold. If, in addition, T/N → 0, then as T,N → ∞,

we have D−1
1T

∑T−h
t=1 L̂t

(
F̃t −HFt

)′
(H−1)′θ

p−→ 0.

Proof. By replacing L̂t =
(
F̃ ′t W ′t

)′
, we obtain,

D−1
T

T−h∑
t=1

L̂t

(
F̃t −HFt

)′ (
H−1

)′
θ = D−1

T

T−h∑
t=1

(
F̃tWt

)(
F̃t −HFt

)′ (
H−1

)′
θ

= D−1
T

T−h∑
t=1

 F̃t −HFt +HFt

Wt

(F̃t −HFt)′ (H−1
)′
θ

=


D−1

1T

∑T−h
t=1 (F̃t −HFt +HFt)

(
F̃t −HFt

)′ (
H−1

)′
θ

1

T

∑T−h
t=1 Wt

(
F̃t −HFt

)′ (
H−1

)′
θ



=


D−1

1T

∑T−h
t=1

(
F̃t −HFt

)(
F̃t −HFt

)′ (
H−1

)′
θ

0



+


D−1

1T

∑T−h
t=1 HFt

(
F̃t −HFt

)′ (
H−1

)′
θ

1

T

∑T−h
t=1 Wt

(
F̃t −HFt

)′ (
H−1

)′
θ

 =

 A1 +A2

A3

(H−1
)′
θ (say),

where A1 = D−1
1T

∑T−h
t=1

(
F̃t −HFt

)(
F̃t −HFt

)′
, A2 = D−1

1T

∑T−h
t=1 HFt

(
F̃t −HFt

)′
, and

A3 = T−1
∑T−h

t=1 Wt

(
F̃t −HFt

)′
.

By considering each term separately, we shall show that A1, A2, and A3 converge to 0, in

probability, as N,T →∞ with T/N → 0.

First, recall the equation (B.10).

F̃t −HFt = Ṽ −1
NT

{
D−2

1T

T∑
s=1

F̃sγst +D−2
1T

T∑
s=1

F̃sζst +D−2
1T

T∑
s=1

F̃sηst +D−2
1T

T∑
s=1

F̃sξst

}
,

= Ṽ −1
NT (A1t +A2t +A3t +A4t) ,
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whereA1t = D−2
1T

∑T
s=1 F̃sγst, A2t = D−2

1T

∑T
s=1 F̃sζst, A3t = D−2

1T

∑T
s=1 F̃sηst andA4t = D−2

1T

∑T
s=1 F̃sξst.

Then, we may write A1 as follows:

A1 = D−1
1T

T−h∑
t=1

(
F̃t −HFt

)(
F̃t −HFt

)′
= D−1

1T Ṽ
−1
NT
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NT

= D−1
1T Ṽ

−1
NT

4∑
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AitA
′
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NT +D−1
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−1
NT

4∑
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4∑
j 6=i=1

T−h∑
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′
jtṼ
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NT .

Using the triangle inequality,

‖A1‖ =

∥∥∥∥∥∥D−1
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NT
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′
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∥∥∥∥∥∥
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1T Ṽ
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4∑
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T−h∑
t=1

AitA
′
jtṼ
−1
NT

∥∥∥∥∥∥
= a1 + a2 (say).

Consider the two terms separately. Using Cauchy Schwartz inequality and Lemma (B.2),∥∥∥Ṽ −1
NT

∥∥∥ = OP (1), we have

a1 =
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1T Ṽ

−1
NT
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′
itṼ
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NT
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6 T

∥∥D−1
1T

∥∥ 4∑
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1

T

T−h∑
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‖Ait‖2 .

In the proof of Lemma (2.1), we have shown that

T−1
∑T−h

t=1 ‖A1t‖2 = OP
(∥∥D−2

1T

∥∥) , T−1
∑T−h

t=1 ‖A2t‖2 = OP
(
N−1

)
,

T−1
∑T−h

t=1 ‖A3t‖2 = OP
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N−1

)
, T−1

∑T−h
t=1 ‖A4t‖2 = OP

(
N−1

)
.

Therefore, a1 = O
(
T
∥∥D−1

1T

∥∥) {OP (∥∥D−2
1T

∥∥)+OP
(
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)}
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T
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1T
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NT

)
.

Then, consider the cross terms such as AitA
′
jt; i, j = 1, . . . , 4 for i 6= j. We may prove that the

following cross term, a2, is of order oP (1) under the condition T/N → 0.

a2 =
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1T Ṽ
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NT
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6 T
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T
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′
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Using Cauchy Schwarz inequality and the proof of Lemma (2.1), we have

∥∥∥∥∥T−1
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′
2t
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N
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√
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)
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′
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Similarly, we can show that the other cross terms T−1
∑T−h

t=1 A2tA
′
4t and T−1

∑T−h
t=1 A3tA

′
4t

are also OP
(
N−1

)
. Then, as

√
T/N → 0, we have,

a2 = T
∥∥D−1
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√
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)
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)
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Together with the fact that T
∥∥D−2

1T

∥∥ = O(1) and δ−1
NT = max[N−1/2,

∥∥D−1
1T

∥∥],

A1 = a1 + a2 = OP
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T
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1T

∥∥ δ−2
NT

)
+OP

(
1√
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)
+OP

(√
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)
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Then, consider the second term A2 = D−1
1T

∑T−h
t=1 HFt

(
F̃t −HFt

)′
. By Cauchy Schwarz in-

equality, Assumption 2.1, Lemma (A.2) and Lemma (2.1), we obtain

‖A2‖ =

∥∥∥∥∥D−1
1T
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(
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Since δ−1
NT = max[N−1/2, ||D−1

1T ||], and T
∥∥D−2

1T

∥∥ = O(1), we have δ−1
NT = O

(
T−1/2

)
as T/N → 0.

This implies, ‖A2‖ = OP (1).

Thus, we cannot use this method to show A2
p−→ 0 as N,T →∞ with T/N → 0. Therefore,

using F̃t −HFt = Ṽ −1
NT {A1t +A2t +A3t +A4t}, we may rewrite A2 as follows:

D−1
1T

T−h∑
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HFt

(
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)′
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1T

T−h∑
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NT , (B.20)
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We may consider each term separately.
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Using Cauchy Schwarz inequality, Lemma (B.1), and Lemma (2.1) we have,
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t=1

Ft

(
D−2

1T

T∑
s=1

γ′st

(
F̃s −HFs

)′)∥∥∥∥∥
6

(
T−h∑
t=1

∥∥D−1
1T Ft

∥∥2

)1/2


T−h∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

γ′st

(
F̃s −HFs

)′∥∥∥∥∥
2

︸ ︷︷ ︸
b11t


1/2

,

where we have,

b11t 6
∥∥D−2

1T

∥∥2

(
T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)(

T∑
s=1

|γst|2
)

= Op
(∥∥D−2

1T

∥∥ δ−2
NT

)
Hence, we obtain, ‖B11‖ = OP

(
δ−1
NT

)
.

Consider B12 = D−1
1T

(
D−2

1T

∑T−h
t=1

∑T
s=1 Ftγ

′
stF
′
s

)
. By Cauchy Schwarz inequality and As-

sumption 2.1(i), we obtain,

E

∥∥∥∥∥D−2
1T

T−h∑
t=1

T∑
s=1

Ftγ
′
stF
′
s

∥∥∥∥∥ 6 ∥∥D−2
1T

∥∥ T−h∑
t=1

T∑
s=1

E
∥∥Ftγ′stF ′s∥∥

6
∥∥D−2

1T

∥∥ T−h∑
t=1

T∑
s=1

(
E ‖Ft‖2

)1/2 (
E ‖Fs‖2

)1/2 (
E|γst|2

)1/2
= O(1),
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since T−1
∑T

t=1

∑T
s=1 |γst| 6 M by Assumption 2.2, and E ‖Ft‖2 6 M by Assumption 2.1.

Therefore, B12 = Op
(∥∥D−1

1T

∥∥). Thus, we have

B1 = D−1
1T

T−h∑
t=1

FtA
′
1t = OP

(
δ−1
NT

)
+OP

(∥∥D−1
1T

∥∥) = OP
(
δ−1
NT

)
. (B.21)

Then, consider the second term in equation (B.19),

B2 = D−1
1T

T−h∑
t=1

FtA
′
2t = D−1

1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

F̃sζst

)′

= D−1
1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
ζst

)′
+D−1

1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

HFsζst

)′
= B21 +B22H

′.

Using Cauchy Schwartz inequality, we have,

E ‖B22‖ = E

∥∥∥∥∥D−1
1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

F ′sζst

)∥∥∥∥∥ 6 ∥∥D−3
1T

∥∥ T−h∑
t=1

(
E||Ft||2

)1/2E ∥∥∥∥∥
T∑
s=1

F ′sζst

∥∥∥∥∥
2
1/2

.

Using Assumptions 2.1 and 2.2, we obtain, E
∥∥∥∑T

s=1 F
′
sζst

∥∥∥2
= O

(
TN−1

)
. Therefore, together

with the fact that T
∥∥D−2

1T

∥∥ = O(1), we have, E ‖B22‖ = O
(
N−1/2

)
. Again, using the Cauchy

Schwartz inequality and Lemma (2.1), we have,

‖B21‖ =

∥∥∥∥∥∥D−1
1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
ζst

)′∥∥∥∥∥∥
6
∥∥D−2

1T

∥∥(T−h∑
t=1

∥∥D−1
1T Ft

∥∥2

)1/2
T−h∑

t=1

∥∥∥∥∥
T∑
s=1

(
F̃s −HFs

)
ζst

∥∥∥∥∥
2
1/2

6
∥∥D−2

1T

∥∥(T−h∑
t=1

∥∥D−1
1T Ft

∥∥2

)1/2(T−h∑
t=1

T∑
s=1

|ζst|2
T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

= OP
(∥∥D−2

1T

∥∥)OP ( T√
N

√
Tδ−1

NT

)
= OP

( √
T

δNT
√
N

)
,

since E
∣∣∣N−1/2

∑N
i=1 (eiseit − E(eiseit))

∣∣∣4 6M .

Together with Lemma (B.2), ‖H‖ = OP (1), we have

B2 = OP

( √
T

δNT
√
N

)
+OP

(
1√
N

)
. (B.22)
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Similar to B1 and B2, we can rewrite B3 as follows:

B3 = D−1
1T

T−h∑
t=1

FtA
′
3t = D−1

1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

F̃sηst

)′

= D−1
1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
ηst

)′
+D−1

1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

HFsηst

)′
= B31 +B32H

′.

Again, using Cauchy Schwartz inequality, Assumptions 2.1 and 2.3(iii), and Lemma (2.1), we

obtain,

‖B31‖ =

∥∥∥∥∥D−1
1T

T∑
s=1

(
F̃s −HFs

)′(
D−2

1T

T−h∑
t=1

Ftηst

)∥∥∥∥∥
6
∥∥D−1

1T

∥∥( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

 T∑
s=1

∥∥∥∥∥D−2
1T

T−h∑
t=1

Ftηst

∥∥∥∥∥
2
1/2

= Op

(
T 1/2δ−1

NTN
−1/2

)
.

Again, using a similar argument, we have,

‖B32‖ =

∥∥∥∥∥D−1
1T

T−h∑
t=1

Ft

T∑
s=1

D−2
1T F

′
sηst

∥∥∥∥∥ 6
(
T−h∑
t=1

∥∥D−1
1T Ft

∥∥2

)1/2
T−h∑

t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F ′sηst

∥∥∥∥∥
2
1/2

= OP

(√
T√
N

)

Since H = OP (1), Lemma (B.2), we have,

B3 = B31 +B32H
′ = OP

( √
T√

NδNT

)
+OP

(√
T√
N

)
= OP

(√
T√
N

)
. (B.23)

Similarly, we can show that B4 = OP
(
T 1/2N−1/2δ−1

NT

)
+OP

(
N−1/2

)
.

B4 = D−1
1T

T−h∑
t=1

FtA
′
4t = D−1

1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

F̃sξst

)′

= D−1
1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
ξst

)′
+D−1

1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

HFsξst

)′
= B41 +B42H

′.

Using Cauchy Schwartz inequality, Assumptions 2.1 and 2.3, Lemma (B.1), and the Lemma

(2.1), we obtain,

B41 = D−1
1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

(
F̃s −HFs

) Λ′esFt
N

)′
=

(
T−h∑
t=1

D−1
1T FtF

′
tD
−1
1T

)(
D−1

1T

T∑
s=1

N−1Λ′es

(
F̃s −HFs

))
︸ ︷︷ ︸

B43

,
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where we have,

‖B43‖ =
∥∥D−1

1T

∥∥( 1

N2

T∑
s=1

∥∥Λ′es
∥∥2

)1/2( T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)1/2

=
∥∥D−1

1T

∥∥OP (√T√
N

)(√
Tδ−1

NT

)
.

Hence, B41 = OP
(
T 1/2N−1/2δ−1

NT

)
.

Given Assumptions 2.1 and 2.3(iii), we obtain,

B42 = D−1
1T

T−h∑
t=1

Ft

(
D−2

1T

T∑
s=1

Fs
Λ′esFt
N

)′
=

T−h∑
t=1

D−1
1T FtF

′
tD
−1
1T

(
D−1

1T

T∑
s=1

Λ′esF
′
s

N

)
= OP

(
1√
N

)
.

Therefore, we have

B4 = OP

(
T 1/2N−1/2δ−1

NT

)
+OP

(
N−1/2

)
. (B.24)

Thus, together with ‖H‖ = OP (1) and
∥∥∥Ṽ −1

NT

∥∥∥ = OP (1), from Lemma (B.2), and equations

(B.21)-(B.24) we have

D−1
1T

T−h∑
t=1

HFt

(
F̃t −HFt

)′
= H (B1 +B2 +B3 +B4) Ṽ −1

NT

= OP

(
1

δNT

)
+

(
OP

( √
T√

NδNT

)
+OP

(
1√
N

))
+OP

(√
T√
N

)
.

Since δ−1
NT = max[N−1/2,

∥∥D−1
1T

∥∥] and T
∥∥D−2

1T

∥∥ = O(1), as T,N → ∞ with T/N → 0, we have

δ−1
NT = max[N−1/2,

∥∥D−1
1T

∥∥] = max[N−1/2, T−1/2] = T−1/2. Hence, as T,N →∞ with T/N → 0,

we obtain,

D−1
1T

T−h∑
t=1

HFt

(
F̃t −HFt

)′
= OP

(
T−1/2

)
+OP

(
N−1/2

)
+OP

(
T 1/2N−1/2

)
= oP (1).

Now, consider the third term A3 = T−1
∑T−h

t=1 Wt

(
F̃t −HFt

)′
. Using Cauchy Schwartz

inequality and Lemma (2.1), we have

‖A3‖ =

∥∥∥∥∥ 1

T

T−h∑
t=1

Wt

(
F̃t −HFt

)′∥∥∥∥∥ ≤
(

1

T

T−h∑
t=1

‖Wt‖2
)1/2(

1

T

T−h∑
t=1

∥∥∥F̃t −HFt∥∥∥2
)1/2

= OP

(√
T

δNT

)
.

Thus, we cannot use this method to prove that A3
p−→ 0 as N,T →∞ with T/N → 0. Therefore,

we consider the following method. Rewrite A3 using A1t, A2t, A3t and A4t defined in Lemma

(B.4),

A3 =
1

T

T−h∑
t=1

Wt

(
F̃t −HFt

)′
=

1

T

T−h∑
t=1

Wt (A1t +A2t +A3t +A4t)
′ Ṽ −1
NT = (d1 + d2 + d3 + d4)′ Ṽ −1

NT ,

(B.25)
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where d1 = T−1
∑T−h

t=1 WtA
′
1t, d2 = T−1

∑T−h
t=1 WtA

′
2t, d3 = T−1

∑T−h
t=1 WtA

′
3t, and d4 = T−1

∑T−h
t=1 WtA

′
4t.

Replacing A1t by its definitions, we have

d1 =
1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

F̃sγst

)′
=

1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
γst

)′
+

1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

F ′sγ
′
stH

′

)
= d11 + d12H

′.

By Cauchy- Schwartz inequality and Lemma (2.1), we have,

||d11|| 6

(
1

T

T−h∑
t=1

||Wt||2
)1/2

 1

T

T−h∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

(
F̃s −HFs

)′
γ′st

∥∥∥∥∥
2
1/2

(B.26)

= OP

(√
T
)
OP
(
||D−1

1T ||δ
−1
NT

)
= OP (δ−1

NT ),

since we assume that the observable seriesWt are I(1), and we have shown that

∥∥∥∥D−2
1T

∑T
s=1

(
F̃s −HFs

)′
γ′st

∥∥∥∥2

=

OP
(∥∥D−2

1T

∥∥ δ−2
NT

)
. Using Cauchy Schwartz inequality and Assumption 2.1, we have,

‖d12‖ =

∥∥∥∥∥ 1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

F ′sγ
′
st

)∥∥∥∥∥ 6
(

1

T 2

T−h∑
t=1

‖Wt‖2
)1/2

T−h∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F ′sγ
′
st

∥∥∥∥∥
2
1/2

= OP
(∥∥D−1

1T

∥∥) .

Note that using Cauchy Schwartz inequality and Lemma (B.1), we have,

E

T−h∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F ′sγ
′
st

∥∥∥∥∥
2
 6 T−h∑

t=1

E

∥∥∥∥∥D−2
1T

T∑
s=1

F ′sγ
′
st

∥∥∥∥∥
2
 6 ∥∥D−2

1T

∥∥2
T−h∑
t=1

(
T∑
s=1

E ‖Fs‖2
)

T∑
s=1

|γst|2

= O
(∥∥D−2

1T

∥∥) .
Thus,

d1 = OP (δ−1
NT ) +OP (||D−1

1T ||) = OP (δ−1
NT ). (B.27)

Now, consider the second term d2.

d2 =
1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

F̃sζst

)′
=

1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
ζst

)′
+

1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

F ′sζ
′
stH

′

)
= d21 + d22H

′.



2.6. APPENDICES 67

From Cauchy Schwartz inequality, Assumption 2.2(v), and Lemma (2.1), we obtain,

||d21||2 6 ||D−2
1T ||

2

(
1

T

T−h∑
t=1

||Wt||2
) 1

T

T−h∑
t=1

∥∥∥∥∥
T∑
s=1

ζ ′st

(
F̃s −HFs

)∥∥∥∥∥
2


= ||D−2
1T ||

2

(
1

T

T−h∑
t=1

||Wt||2
)(

1

T

T−h∑
t=1

T∑
s=1

|ζst|2
)(

T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)

= OP
(
T ||D−2

1T ||
2
)
OP

(
T

N

)
OP
(
Tδ−2

NT

)
= OP

(
T

Nδ2
NT

)
.

||d22|| =

∥∥∥∥∥ 1

T

T−h∑
t=1

WtD
−2
1T

T∑
s=1

F ′sζ
′
st

∥∥∥∥∥ 6
(

1

T

T−h∑
t=1

||Wt||2
)1/2

 1

T

T−h∑
t=1

∥∥∥∥∥D−2
1T

T∑
s=1

F ′sζst

∥∥∥∥∥
2
1/2

= OP

(√
T√
N

)
.

Then, we have

d2 = OP

(
T 1/2N−1/2δ−1

NT

)
+OP

(
T 1/2N−1/2

)
= OP

(
T 1/2N−1/2

)
. (B.28)

Now, consider the third term in equation (B.25). Similar with d2, we can rewrite d3 as follows:

d3 =
1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

F̃sηst

)′
=

1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
ηst

)′
+

1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

F ′sη
′
stH

′

)
= d31 + d32H

′.

Using Cauchy Schwartz inequality, we have,

‖d31‖ =

∥∥∥∥∥∥ 1

T

T−h∑
t=1

Wt

(
D−2

1T

T∑
s=1

(
F̃s −HFs

)
ηst

)′∥∥∥∥∥∥
6
∥∥D−2

1T

∥∥( 1

T

T−h∑
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||Wt||2
)1/2(

1

T

T−h∑
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T∑
s=1
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T∑
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∥∥∥F̃s −HFs∥∥∥2
)1/2

= O
(∥∥D−2

1T

∥∥)OP (√T)OP (∥∥D−1
1T

∥∥−1

√
N

)
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(√
Tδ−1

NT

)
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(∥∥D−1
1T

∥∥−1

√
NδNT

)
.

Note that from Lemma (B.1) and Assumption 2.1, we have,

1

T

T−h∑
t=1

T∑
s=1

‖ηst‖2 =
1

T

T−h∑
t=1

T∑
s=1

∥∥∥∥F ′sΛ′etN

∥∥∥∥2

6
1

T

T−h∑
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∥∥∥∥Λ′et
N

∥∥∥∥2 T∑
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‖Fs‖2 =

∥∥D−2
1T

∥∥−1

N
.

Since we assume that Wt ∼ I(1), and
∑T−h

t=1

∥∥∥D−2
1T

∑T
s=1 Fsηst

∥∥∥2
= OP

(
N−1

)
, we have,

‖d32‖ =

∥∥∥∥∥ 1

T
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s=1

Fsηst

)∥∥∥∥∥ 6
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1

T 2
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t=1
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2
1/2
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(
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)
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Thus,

d3 = OP

(
N−1/2

∥∥D−1
1T

∥∥−1
δ−1
NT

)
+OP

(
N−1/2

)
= OP

(
N−1/2

)
(B.29)

as T,N →∞ with T/N → 0.

Similarly, we may show that d4 = OP
(
N−1/2

)
.

d4 =
1
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Fsξst

)′
H ′

= d41 + d42H
′

Using Cauchy Schwartz inequality and Lemma (2.1), we have,
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1
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6
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1

T 2
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∥∥D−1
1T

∥∥2
T−h∑
t=1

T∑
s=1

∥∥D−1
1T ξst

∥∥2

︸ ︷︷ ︸
d43

T∑
s=1

∥∥∥F̃s −HFs∥∥∥2


1/2

,

where we have,

d43 =
T−h∑
t=1

T∑
s=1

∥∥∥∥D−1
1T

F ′tΛ
′es

N

∥∥∥∥2

6
T−h∑
t=1

∥∥D−1
1T Ft

∥∥2
T∑
s=1

∥∥∥∥Λ′es
N

∥∥∥∥2

= OP

(
T

N

)
.

We used Lemma (B.1) to bound d43.

Thus, we have

d41 = OP (1)OP

(∥∥D−1
1T

∥∥√T
√
N

)
OP

(√
Tδ−1

NT

)
= OP

( √
T√

NδNT

)
.

Again, by Cauchy Schwartz inequality and Assumptions 2.1 and 2.3(iii), we obtain,

‖d42‖2 =

∥∥∥∥∥ 1

T

T−h∑
t=1

WtD
−1
1T

(
T∑
s=1

D−1
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′
tΛ
′esFs
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)∥∥∥∥∥
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∥∥D−1

1T
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(
1

T 2

T−h∑
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)T−h∑
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∥∥∥∥∥
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D−1
1T F

′
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′
s
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∥∥∥∥∥
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∥∥2

(
1

T 2
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‖Wt‖2
)
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1T Ft
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∥∥∥∥∥
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Λ′esFs
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∥∥∥∥∥
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1T
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N

)
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(
1

N

)
.

Hence,

||d4|| = OP

(
T 1/2N−1/2δ−1

NT

)
+OP

(
N−1/2

)
= OP

(
N−1/2

)
(B.30)
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as T,N →∞ with T/N → 0.

Therefore, together with Lemma (B.2) and equations (B.27)-(B.30), as T/N → 0 for T,N →∞,

we have,

A3 = (d1 + d2 + d3 + d4) Ṽ −1
NT = OP (δ−1

NT ) +OP

(
T 1/2N−1/2

)
+OP

(
N−1/2

)
= oP (1).

Hence, we have shown that

D−1
T

T−h∑
t=1

L̂t

(
F̃t −HFt

)′ (
H−1

)′
θ =

 A1 +A2

A3

(H−1
)′
θ =

 oP (1) + oP (1)

oP (1)

OP (1)Plim(θ̂)

p−→ 0 as N,T →∞ with T/N → 0.

�

2.6.3 Appendix C: Proofs of the Main Results

With the necessary lemmas listed in Appendix B, we are ready to prove the main theorems.

Theorem 1. Suppose that Assumptions 2.1–2.6 hold and that T/N → 0. Let δ and the OLS

estimator δ̂ be as in equation (9). Then, as (N,T )→∞, we have DT (δ̂ − δ) d−→ N
(
0,Σδ

)
, where

Σδ = (Ψ′)−1Σ−1
L ΣεLΣ−1

L Ψ−1, ΣL and ΣεL are defined in Assumptions 2.1–2.6, and H ⊕ I d−→ Ψ.

Proof of Theorem 1. LetDT = [D1T ⊕D2T ] whereD1T defined asD1T = diag[TIp⊕
√
TIq]r×r

and D2T = diag[T, ..., T ]m. Then, the OLS estimator δ̂ of the forecasting model

Yt+h = L̂t
′
δ + θ′H−1

(
HFt − F̃t

)
+ εt+h

can be written as

DT (δ̂ − δ) =

(
D−1
T

(
T−h∑
t=1

L̂tL̂
′
t

)
D−1
T

)−1(
D−1
T

T−h∑
t=1

L̂tεt+h +D−1
T

T−h∑
t=1

L̂t

(
HFt − F̃

)′
H−1θ

)

=

D−1
T

(
T−h∑
t=1

L̂tL̂
′
t

)
D−1
T︸ ︷︷ ︸

Z


−1{

D−1
T

T−h∑
t=1

 HFt

Wt

 εt+h +D−1
T

T−h∑
t=1

 F̃t −HF

0

 εt+h

+D−1
T

T−h∑
t=1

L̂t(HFt − F̃ )′(H−1)′θ

}
= (Z)−1 (A+B + C) (say)
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Then, we may consider each term separately.

A = D−1
T

T−h∑
t=1

 HFt

Wt

 εt+h = D−1
T

T−h∑
t=1

 H 0

0 Im

 Ft

Wt

 εt+h

= D−1
T

T−h∑
t=1


H1 0 0

0 H2 0

0 0 Im




Et

Gt

Wt

 εt+h = (H1 ⊕H2 ⊕ Im)D−1
T

T−h∑
t=1

Ltεt+h

d−→ ΨΣ
1/2
εL N(0, I),

sinceD−1
T

∑T
t=1 Ltεt+h

d−→ Σ
1/2
εL ×N(0, I), using Assumption 2.6(iii) and (H1⊕H2⊕Im) = Ψ0 → Ψ

as N,T →∞.

By Lemma (B.5), we have B = D−1
1T

∑T−h
t=1

(
F̃t −HFt

)
εt+h

p−→ 0 as N,T → ∞, and by

Lemma (B.6), if T/N → 0 as T,N →∞, we have C = D−1
T

∑T−h
t=1 L̂T (HFt− F̃t)′(H−1)′θ

p−→ 0. 1

Then, we may consider Z = D−1
T

(∑T−h
t=1 L̂tL̂

′
t

)
D−1
T . By writing L̂t = Ψ0Lt + L̂t − Ψ0Lt, we

obtain,

D−1
T

(
T−h∑
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D−1
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(
T−h∑
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′
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D−1
T

= D−1
T
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L̂t −Ψ0Lt
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D−1
T

+D−1
T

(
T−h∑
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((
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)
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(
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)(
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= Ψ0D
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T

(
T−h∑
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LtL
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D−1
T Ψ′0 +D−1
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t=1

(
L̂t −Ψ0Lt

)
L′t

)
D−1
T Ψ′0

+Ψ0D
−1
T

(
T−h∑
t=1

Lt

(
L̂t −Ψ0Lt

)′)
D−1
T +D−1

T

(
T−h∑
t=1

(
L̂t −Ψ0Lt

)(
L̂t −Ψ0Lt
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D−1
T

≡ z1 + z2 + z3 + z4 (say).

1If T/N → a(> 0), then C 9 0 in probability as N,T → ∞. Then there is a bias term as discussed in
Goncalves (2014).
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Then, we may show that z2 + z3 + z4 = oP (1). First, consider z2.

z2 = D−1
T

(
T−h∑
t=1

(
L̂t −Ψ0Lt

)
L′t

)
D−1
T Ψ′0

=

 D1T 0

0 TIm
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) (
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In the proof of Lemma (B.6), we have shown that A2 =

(
D−1

1T

∑T−h
t=1 HFt

(
F̃t −HFt

)′) p−→ 0,

and A3 =

(
T−1

∑T−h
t=1 Wt

(
F̃t −HFt

)′) p−→ 0 for T,N →∞ with T/N → 0. Thus, z2 = oP (1).

Also, z3 = z′2 = oP (1). Now, consider the last term of Z.

z4 = D−1
T

(
T−h∑
t=1

(
L̂t −Ψ0Lt

)(
L̂t −Ψ0Lt

)′)
D−1
T = D−1

T
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1T

T−h∑
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(
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)(
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)′
D−1

1T .

Method 1

By the proof of Lemma (B.6), as N,T →∞ with T/N → 0, we have

z4 = A1D
−1
1T = OP

(
T
∥∥D−1

1T

∥∥ δ−2
NT

)
OP
(∥∥D−1

1T

∥∥) = OP
(
δ−2
NT

) p−→ 0.

Method 2: Similar arguments to the proof of Lemma B.7 of Choi (2017)

Using Lemma (2.3), asymptotic distribution of estimated factors, forN,T →∞ with
√
N ||D−2

1T || →

0, we have (F̃t − HFt) = OP
(
N−1/2

)
. Hence,

(
F̃t −HFt

)(
F̃t −HFt

)′
= OP

(
N−1

)
. As

T
∥∥D−2

1T

∥∥ = O(1), we have, D−1
1T

∑T−h
t=1

(
F̃t −HFt

)(
F̃t −HFt

)′
D−1

1T = OP
(∥∥D−2

1T

∥∥TN−1
)

=

oP (1). Therefore, we have z4 = oP (1). However, to follow this method, we need to have the

condition
√
N
∥∥D−2

1T

∥∥→ 0 also.

Thus, we obtain

Z = z1 + oP (1) = Ψ0D
−1
T

(
T−h∑
t=1

LtL
′
t

)
D−1
T Ψ′0 + oP (1)

d−→ ΨΣLΨ′,
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by Assumption 2.6(ii) and Ψ0
p−→ Ψ where ΣL is a random matrix defined as in Assumptions.

Then, together with the previous results for A,B, and C, we obtain

DT (δ̂ − δ) d−→
(
ΨΣLΨ′

)−1
{

ΨΣ
1/2
εL N(0, I)

}
d−→
(
Ψ′
)−1

Σ−1
L Σ

1/2
εL N(0, I).

Hence, DT (δ̂ − δ) d−→ N(0,Σδ) where Σδ = (Ψ′)−1Σ−1
L ΣεLΣ−1

L Ψ−1.

�

Theorem 2. Let Assumptions 2.1–2.6 hold. Furthermore, suppose that
√
N ||D−2

1T || → 0 and

T/N → 0 as N,T →∞, and that (Σ̂δ, Σ̂F̃ ) is a given consistent estimator of (Σδ,ΣF̃ ). Then,

we have
ŶT+h|T − YT+h|T√

B̂T

d−→ N(0, 1) as N,T →∞

where B̂T =
[
L̂TD

−1
T Σ̂δD

−1
T L̂′T + N−1θ̂′Σ̂F̃ θ̂

]
is a consistent estimator of the asymptotic vari-

ance, denoted BT , of the conditional forecasting error that appears in the numerator.

Proof of Theorem 2. Since an estimator of YT+h|T is ŶT+h|T = δ̂′L̂T , and

YT+h|T = δ′L̂T + θ′H−1
(
HFT − F̃T

)
,

we have,

ŶT+h|T − YT+h|T =
(
δ̂ − δ

)′
L̂T + θ′H−1

(
F̃T −HFT

)
=
(
δ̂ − δ

)′
DTD

−1
T L̂T +

1√
N
θ′H−1

√
N
(
F̃T −HFT

)
=
(
DT

(
δ̂ − δ

))′
D−1
T L̂T +

1√
N
θ′H−1

√
N
(
F̃T −HFT

)
.

Using Theorem (1), the limiting distribution of the estimated parameters, along with T/N →

0, we have DT

(
δ̂ − δ

)
d−→ N(0,Σδ).

By Lemma (2), the limiting distribution of the estimated factors for
√
N ||D−2

1T || → 0, we

have
√
N
(
F̃t −HFt

)
d−→ N(0,ΣF̃t

).

Moreover, DT

(
δ̂ − δ

)
and
√
N
(
F̃t −HFt

)
are asymptotically independent as the limit of

the first term determined by the regression errors and the limit of the second term determined

by the idiosyncratic errors. Hence, the limiting distribution of the forecast error conditional on

{Lt}Tt=1 is

ŶT+h|T − YT+h|T
d−→ N (0, BT ) ,
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where BT = L̂′TD
−1
T ΣδD

−1
T L̂T +N−1θ′ΣF̃T

θ.

Furthermore, B̂T = L̂′TD
−1
T Σ̂δD

−1
T L̂T +N−1θ̂′Σ̂F̃T

θ̂ is the consistent estimator of the asymp-

totic variance of the forecast error where Σ̂δ and Σ̂F̃T
defined as in the main paper. Therefore,

ŶT+h|T − YT+h|T√
B̂T

d−→ N(0, 1) as N,T →∞.

�

2.6.4 Appendix D: Simulation Results

In this section we present the simulation results on the coverage rates of residual based t-

percentile bootstrap prediction intervals when the error distribution is normal and when it is t

with 5 degrees of freedom.

Results when the error distribution is normal

The design of the simulation for this part is the same as that in section 3 of the main paper.

Thus, the two DGPs are:

DGP1 : εt ∼ N(0, 1)

DGP2 : εt ∼ N(0, 3−1F 2
2t).

Table 2.9: Coverage rates (%) of residual based 95% bootstrap (t-percentile) prediction intervals
for one-step ahead forecasts when the error distribution is normal

ρ = 0.0 ρ = 0.5 ρ = 0.9

T\N 30 50 100 200 30 50 100 200 30 50 100 200

DGP1 30 82 84 87 90 82 82 88 89 83 82 86 91

50 83 86 88 87 82 87 89 86 82 87 90 86

100 78 82 88 86 80 82 89 87 81 82 89 87

200 85 84 84 88 85 84 85 89 86 84 85 88

DGP2 30 88 90 91 92 90 88 91 90 90 91 91 92

50 90 92 93 93 89 93 93 94 91 94 94 95

100 89 88 91 92 88 89 90 90 90 91 94 93

200 86 87 93 90 86 86 93 89 89 88 94 92
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Results when the error distribution is t5

For this part of the simulation study, we used DGP1 as for the previous table, except that the

errors {εt} were generated from t5 distribution, instead of the normal distribution. Top panel

of Table 2.10 provides the coverage rates of the 95% asymptotic prediction interval obtained

assuming that the errors are normal. Bottom panel of Table 2.10 provides the coverage rates

for the residual based 95% bootstrap t-percentile prediction interval.

Table 2.10: Coverage rates (%) of 95% prediction intervals for one-step ahead forecasts when
the error distribution is t5.

ρ = 0.0 ρ = 0.5 ρ = 0.9

T\N 30 50 100 200 30 50 100 200 30 50 100 200

Forecast interval assuming that the errors are normally distributed

30 96 95 97 95 97 95 97 96 97 95 96 95

50 94 93 94 96 94 93 94 96 93 94 93 97

100 95 93 96 97 95 93 96 97 95 93 96 97

200 94 96 94 95 94 96 94 95 94 97 94 96

Residual based bootstrap prediction interval

30 84 84 87 88 84 84 86 87 84 84 85 87

50 82 84 87 90 84 84 88 90 85 85 87 89

100 83 83 88 91 84 84 89 91 84 84 88 92

200 83 88 83 86 84 89 84 86 85 90 84 87
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Chapter 3

Forecasting Univariate Time Series

using a Semiparametric FAR model

3.1 Introduction

In macroeconomics, methods for choosing a good forecasting model, estimation of its parameters,

and construction of reliable forecasts based on the estimated model have been active areas of

research.

Within this broad framework, a two-step factor augmented regression [FAR] method has

attracted considerable attention in the recent literature. Chapter 2 discussed validity of the

FAR model under the following three scenarios:

(a) All the panel variables and predictors are stationary (Bai and Ng [2002, 2006], Bai 2003,

Gonçalves and Perron 2014).

(b) All the variables follow unit root nonstationary processes (Bai 2004, Maciejowska 2010, Choi

2017).

(c) The set of predictors contains I(0) and I(1) processes (Smeekes and Wijler 2019, Hannadige

et al. 2021).

The parameters in the models appearing in the aforementioned studies were assumed to be

time invariant; we refer to them as the parametric FAR model. The objective of this chapter

is to propose, evaluate, and illustrate a method for forecasting a univariate time series in a

more general setting than those in the aforementioned studies. More specifically, we allow the

coefficients of the factors in the FAR model to be time varying, and the factors themselves to

be locally stationary but possibly globally nonstationary.
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In the literature, time series analysis involving I(1) processes have been extended to include

other nonstationary processes. One important direction allows locally stationary processes (see

Dette and Wu 2022). They have been used in empirical studies in economics and finance (see

Hansen 2001, Stock and Watson [2016], and Yan et al. [2021]). In this chapter we extend

the method developed in the previous chapter to include locally stationary processes. Locally

stationary process has a more general structure than the usual stationary process. They need

not be stationary, but estimation methods for stationary processes can be combined with kernel

smoothing to estimate locally stationary processes.

In a setting such as that in FRED-QD, where the panel data set is observed over a long

period of time, it is likely that the values of some of the parameters might have changed over

time. In such cases, estimates based on a model that assumes that the parameters are invariant

over time would be inconsistent. To address this issue, this Chapter allows the parameters to

be time varying.

Related literature

Forecasting of univariate time series using stationary factor models with possible structural

breaks has a long history (Banerjee et al. 2008, Stock and Watson 2009). Banerjee et al. [2008]

reported the results of a comprehensive simulation study on the forecasting performance of

factor models when there are structural instabilities. They observed that although discrete

changes in the factor loadings affect the performance of factor models, continuous changes do

not affect the performance significantly. Stock and Watson [2009] also arrived at a similar

conclusion about the effect of structural instabilities in factor models. To make the forecasts

more robust to structural breaks, Stock and Watson also recommended using the full sample for

estimating the latent factors and sub-samples or time-varying coefficients for forecasting. This

is because, even if the factor loadings are structurally unstable, factors can be well estimated if

the instability is independent across the observable variables. Several authors have developed

methods of forecasting, using sub-samples or time varying coefficients, when there are structural

instabilities (Li et al. 2016, Li et al. 2011a). In this chapter, we develop a related method for

forecasting that involves time varying parameters in the forecasting model.

Since structural instabilities affect the performance of factors models, methods have been

developed for testing the presence of such instabilities, some with known break points and others

with unknown break points (Breitung and Eickmeier 2011, Corradi and Swanson 2014, Su and

Wang 2017, Bates et al. 2013, Li et al. 2016, Chen and Hong 2012). Corradi and Swanson [2014]
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emphasized that not only the factor loading instabilities but also the coefficient instabilities

may lead to unreliable forecasts. A local version of principal components analysis [PCA] and a

penalized PCA have been proposed to accommodate structural breaks in factor models (see Li

et al. [2016], Su and Wang [2017], Motta et al. [2011] ).

Statistical inference based on time series models with time varying parameters has been

studied extensively in the literature (Gao and Hawthorne 2006, Zhou and Wu 2010, Li et al.

2020). Some of the basic ideas underlying such time varying parameter models have also been

extended to panel data models, which include the diffusion index model ( Wei and Zhang 2020,

Li et al. 2011a). Wei and Zhang [2020] used local PCA to estimate the factor loadings in the

factor model and the local constant method to estimate the time-varying coefficients in the

forecasting model; the asymptotic validity of the method in Wei and Zhang [2020] is yet to be

established. These developments are for time series and panel data models with time varying

parameters.

The foregoing ideas have also been extended to semiparametric models, more specifically

models with a mixture of constant and varying coefficients. A standard method of estimation in

such models is profile least squares[PLS] (Fan and Huang 2005), which has also been extended

to time series models ( Li et al. 2011b, Zhang et al. 2012). By replacing the partially varying

coefficients in Fan and Huang [2005] with time-varying coefficients, Chen et al. [2012] extended

the nonparametric idea to semi-parametric trending panel data models by proposing a pooled

profile likelihood estimation method. The aforementioned methods have also been illustrated

in different empirical studies (Chen et al. 2018, Silvapulle et al. 2017, Silvapulle and Jayasuriya

2018).

Contribution of this chapter

The first main point of departure of this Chapter is that the panel data model contains

locally stationary factors. Once the factors have been estimated, we use them as regressors in

the forecasting model. The coefficients corresponding to the factors in the forecasting regression

model are assumed to be smooth time-varying functions. By contrast, the coefficients corre-

sponding to the observable predictors are assumed to be time invariant. We refer to the FAR

model discussed in this chapter as semi-parametric FAR model. Both the time-varying and the

constant coefficients are estimated using the PLS approach and the local constant method. Us-

ing simulation studies and an empirical example, we evaluated both nonparametric kernel and

orthogonal polynomial based methods for estimating the time varying component of the FAR
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model. In these evaluations, the nonparametric smoothing kernel method performed better for

forecasting. Therefore, we proceeded with only the kernel estimation method. The details about

the orthogonal polynomial method and the results to support the kernel method are provided in

an appendix to the chapter. The main conclusion of this Chapter, supported by simulation stud-

ies and an empirical application, is that the method proposed in this Chapter for the intended

scenarios, is an improvements over the one in the previous Chapter.

Outline of the Chapter

The rest of the Chapter is organized as follows. Section 3.2 introduces the semi-parametric

FAR model. Section 3.3 reports the results of a comprehensive simulation study. Section 3.4

presents an empirical application that uses the FRED-QD data set. Section 3.5 concludes.

Appendix A provides the results for comparison the kernel and the sieve method based on two

different orthonormal bases. Numerical studies on the choice of bandwidths are presented in

Appendix B. Some additional analyses evaluating the use of rolling window in the empirical

study is provided in Appendix C.

3.2 Methodology

3.2.1 Model and notations

Let {Yt : t = 1, 2, . . .} denote an observable univariate time series that we wish to forecast

one-step ahead using information available at time T . Let {Xit ∈ R : i = 1, . . . , N ; t = 1, . . . , T}

denote a set of panel data, and {Vt ∈ Rm : t = 1, . . . , T} denote a set of observable predictors.

The factor augmented regression[FAR] model studied in this chapter is

Yt+1 = α′tFt + β′Vt + ηt+1 (t = 1, . . . , T ), (3.1)

where {ηt ∈ R : t ∈ N} is a sequence of martingale difference sequence, β is an m× 1 vector of

time-invariant parameters, αt is an r × 1 vector of time-varying parameters, and Ft is an r × 1

vector of unobservable factors. The factors {Ft} are to be estimated using the set of panel data

{Xit ∈ R : i = 1, . . . , N ; t = 1, . . . , T} as described later in this Chapter; the resulting estimator

F̃t will be substituted for Ft (t = 1, . . . , T ) in (3.1) for estimating the unknown parameters in

that model. Then the estimated model is to be used for forecasting YT+1.

Let τt = t/T (t = 1, . . . , T ). In contrast to the previous chapter, in this chapter we assume

that {Ft}t∈N and {Vt}t∈N are vector moving average [VMA(∞)] processes of infinite order taking
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the forms

Ft = µ(τt) +
∞∑
j=0

Bj(τt)εt−j (t = 1, . . . , T ), (3.2)

Vt = γ +
∞∑
j=0

Ajζt−j (t = 1, . . . , T ), (3.3)

where µ(τt) is an r × 1 vector of unknown trending functions, γ is an m× 1 vector of unknown

constant (i.e. time invariant) parameters, {εt}t∈N and {ζt}t∈N are two martingale difference

sequences of dimension r × 1 and m × 1 respectively, and {Bj(·) ∈ Rr×r, Aj ∈ Rm×m : j =

0, 1, . . .} are deterministic coefficients. The set of factors {Ft}t∈N is VMA(∞) with time-varying

coefficients, behave almost as a stationary process locally. The set of observable variables {Vt}t∈N

is stationary.

The term locally stationary process has appeared in the literature. The following definition

of local stationarity is consistent with that in Vogt [2012]. Let St ∈ R denote a given stochastic

process. The process St is locally stationary if for each re-scaled time point u ∈ [0, 1] there exists

an associated process Zt(u) with the following two properties:

(i). Zt(u) is strictly stationary with some probability density function,

(ii).

|St − Zt(u)| ≤
(
| t
T
− u|+ 1

T

)
Ut(u) (a.s)

where Ut(u) > 0 satisfies E[U(t(u))a] < C for some a > 0 and C <∞ independent of {u, t, T}.

Since the moments of Ut(u) are uniformly bounded, we have

|St − Zt(u)| = Op
(
|(t/T )− u|+ (1/T )

)
.

In this sense, St is approximated by the stationary process Zt(u) in the local neighbourhoods

of the re-scaled time point u ∈ [0, 1]. A locally stationary process is typically nonstationary,

although a stationary process is also locally stationary, and it is not a mixture of I(0) and I(1)

processes. In the context of this thesis, an advantage of incorporating locally stationary processes

is the combined effect of the following: They allow us to use certain nonstationary processes that

were not allowed in the previous Chapter, and they allow us to develop methods of estimation

by adapting methods for estimating stationary processes and local kernel smoothing techniques.

These qualitative notions do need rigorous developments, nevertheless they do highlight the

potential benefits of locally stationary processes.
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The method of estimation and forecasting developed in this Chapter do not require the

VMA(∞) structure, but it is required for the informal arguments leading to the asymptotic

distributions of the estimators and forecasts. These informal arguments not presented in the

thesis.

We assume that the αt in (3.1) is of the form

αt = α(τt) (t = 1, . . . , T ), (3.4)

where α(.) is an unknown smooth function. Let us introduce the notation

Bt(L) =
∞∑
j=0

Bj(τt)L
j , A(L) =

∞∑
j=0

AjL
j ,

where L is the lag operator, and Bj(τt) and Aj are the deterministic coefficients in (3.2) and

(3.3), respectively. Then we have

Ft = µ(τt) +
∞∑
j=0

Bj(τt)εt−j = µ(τt) + Bt(L)εt (t = 1, . . . , T ), (3.5)

Vt = γ +
∞∑
j=0

Ajζt−j = γ + A(L)ζt (t = 1, . . . , T ). (3.6)

When µ(τt) and Bj(τt) are time invariant, µ(τt) = µ,Bj(τt) = Bj , the factor structure reduces

to a stationary linear process. Therefore, our factor structure can incorporate certain stationary

processes as well. More importantly, these models are obtained by smooth but small variations

of stationary processes.

Let F̂t denote an estimator of Ft (t = 1, . . . , T ), where the estimation is performed using the

set of panel data {Xit}; the precise form of F̂t is discussed later in the Chapter. The ultimate

goal of the foregoing formulation is to estimate

Yt+1 = α′tF̂t + β′Vt + error (t = 1, . . . , T ) (3.7)

as an approximation of (3.1), and using the estimated model for forecasting YT+1.

In the simulation and empirical studies presented later in this Chapter, we estimate Ft by

nonparametric estimation. It will be seen that we do not estimate the coefficients {Aj , Bj(τt) :

t = 1, . . . , T ; j = 0, 1, . . .}; this was expected since the method in this Chapter does not require

the predictors to be VMA(∞). The assumption that {Ft} and {Vt} are VMA(∞) processes is
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used in the simulations study. These observations emphasize the fact that the method is appli-

cable when {Ft} and {Vt} are more general than VMA(∞). In the next subsection, we propose

a method of estimating the FAR model (3.1) when the values of the factors are known; then

in the following subsection, we propose a method of estimating the factors and then estimating

the approximate version (3.7) with estimated factors in place of the unobservable factors.

3.2.2 Estimation of the FAR model when the factors are known

We apply the profile least squares[PLS] method in Fan and Huang [2005], with local constant,

for estimating the constant parameters and time-varying coefficients. Let K(.) denote a given

kernel smoothing function that satisfies
∫
K(u)du = 1,

∫
uK(u)du = 0, and

∫
u2K(u)du < ∞.

Ordinary least squares estimation of the time-varying parameter α(τ), at any fixed τ in the

range [τ1, τT ], is achieved by minimizing

T−1∑
s=1

(
Ys+1 − β′Vs − α(τ)′Fs

)2
K

(
τs − τ
h

)
, (3.8)

where h is a given bandwidth. For any β, the expression in (3.8) is minimized when α(τ) =

α̃(τ ;β), where

α̃(τ ;β) =

(
T−1∑
s=1

FsK

(
τs − τ
h

)
F ′s

)−1 T−1∑
s=1

FsK

(
τs − τ
h

)
(Ys+1 − β′Vs). (3.9)

Therefore, we concentrate out αt in (3.1) by substituting α̃(τt;β) for αt to obtain

Yt+1 = α̃(τt;β)′Ft + β′Vt + error

= F ′t

(
T−1∑
s=1

FsK

(
τs − τt
h

)
F ′s

)−1 T−1∑
s=1

FsK

(
τs − τt
h

)(
Ys+1 − β′Vs

)
+ β′Vt + error. (3.10)

Let

Ỹt+1 = Yt+1 − F ′t

(
T−1∑
s=1

FsK

(
τs − τt
h

)
F ′s

)−1 T−1∑
s=1

FsK

(
τs − τt
h

)
Ys+1, (3.11)

Ṽt = Vt − F ′t

(
T−1∑
t=1

FsK

(
τs − τt
h

)
F ′t

)−1 T−1∑
t=1

FsK

(
τs − τt
h

)
Vs. (3.12)

Then (3.10 ) takes the form

Ỹt+1 = β′Ṽt + error (t = 1, . . . , T ). (3.13)
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Estimation of β in (3.13) by ordinary least squares leads to

β̂ =

(
T−1∑
t=1

ṼtṼ
′
t

)−1(T−1∑
t=1

ṼtỸt+1

)
, (3.14)

which is a function of the data only, except for the bandwidth h. Next, substitute the β̂ in (3.14)

for β in (3.1) to obtain

Yt+1 − β̂′Vt = α(τt)
′Ft + error (t = 1, . . . , T ). (3.15)

Now, estimate α(τ), at any fixed τ ∈ [τ1, τT ] with β̂ held fixed, by kernel based least squares.

Therefore, the resulting estimator of α(τ) is

α̂(τ) =

(
T−1∑
t=1

FtK

(
τt − τ
h

)
F ′t

)−1 T−1∑
t=1

FtK

(
τt − τ
h

)(
Yt+1 − β̂′Vt

)
; (3.16)

this process can be repeated for τ = τ1, . . . , τT . Finally, (α̂(τ1), . . . , α̂(τT ), β̂) with α̂(τ) as in

(3.16) and β̂ in (3.14) provide the PLS estimates of (α(τ1), . . . , α(τT ), β). We implement the

foregoing derivations in the following algorithm for computing the estimates of the coefficients

in the model (3.1), for a given bandwidth h:

Algorithm for estimating the FAR model when {Ft} are known:

Step 1: Compute (Ỹt+1, Ṽt), defined in (3.11) and (3.12) for t = 1, . . . , T .

Step 2: Compute β̂ in (3.14).

Step 3: Compute α̂(τT ) using (3.16).

Once α̂(τT ) and β̂ have been computed, a point forecast of YT+1 is

ŶT+1 = α̂(τT )′FT + β̂′VT ,

where we used FT , instead of F̂T because in this subsection we assumed that the factors are

known. Although α̂(τ1), . . . , α̂(τT−1) do not appear explicitly in ŶT+1, their values enter the

calculation of ŶT+1, as is clear from the foregoing derivations.

Informal arguments suggest that (a)
√
T
(
β̂ − β

)
d−→ N(0,Σβ) as T → ∞, for some Σβ,

and (b)
√
Th (α̂(τ)− α(τ)− C(τ, h))

d−→ N (0,Σα), for some Σα and C(τ, h). Although we

have a mixture of locally stationary and stationary regressors {Ft, Vt} in the forecasting model,

convergence rate for β̂ did not change compared to the convergence rates of coefficients in semi-

parametric stationary regression models (Li et al. [2011b]). Formal rigorous proofs of these
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two results are not provided in this thesis. These two results are indicative of the asymptotic

behaviour of the estimators; these results are not assumed or used in the mathematical arguments

in the rest of this thesis. Nevertheless, they play a part informally.

3.2.3 Nonparametric estimation of factors when the factors are unknown

In this subsection, we consider the case when the factors are unobservable and hence estimated

factors are used for estimating the FAR model. To this end, we propose a method of estimating

the factors; once they have been estimated, we propose to use the estimated factors in the method

described in the previous subsection with the known factors therein replaced by the estimated

factors. Throughout, we assume that a set of panel data {Xit : i = 1, . . . , N ; t = 1, . . . , T} is

available for estimating the factors, and that the factors satisfy a standard factor model for the

set of panel data. More specifically, we assume that the factor model for the panel data takes

the form,

Xit = λ′iF (τt) + eit (i = 1, . . . , N ; t = 1, . . . , T ), (3.17)

where F (τt) is an r-dimensional vector of unknown factors at time t, λi is the factor loading for

ith cross-sectional unit, and eit is the idiosyncratic error term.

First, we propose a method of estimating the factor model.

Step 1. Estimate the factor model (3.17) by the standard principal component analysis [PCA]

method. Let the resulting estimates of {F (τt), λi} be denoted by {F̃ (τt), λ̃i} ( i =

1, . . . , N ; t = 1, . . . , T ). As usual, we assume that the factors are standardized by T−1F̃ ′F̃ =

Ir.

Step 2. Holding the factor loadings {λ̃i : i = 1, . . . , N} obtained in the previous step fixed, estimate

F (τ) by

F̂ (τ) =

(
N∑
i=1

T∑
t=1

λ̃iλ̃
′
iK

(
τt − τ
hf

))−1( N∑
i=1

T∑
t=1

λ̃iXitK

(
τt − τ
hf

))
, (3.18)

where K(.) is the kernel function and hf is the bandwidth for factor estimation. We refer

to these estimated factors as nonparametric[NP] factors.

Step 3. Using the estimated factors F̂ (τt) (t = 1, . . . , T ) in the previous step, re-estimate the

factor loadings by ordinary least squares. Therefore, the estimated factor loadings may be
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expressed as

λ̂i =

(
T∑
t=1

F̂ (τt)F̂
′(τt)

)−1( T∑
t=1

F̂ (τt)Xit

)
. (3.19)

This nonparametric method of estimating the factors, does not assume that factors are

VMA(∞); it is applicable more generally to processes that are locally stationary. Once the fac-

tors have been estimated, the FAR model may be estimated by the 3-step method in subsection

3.2.2 with F (τt) therein replaced by the estimates F̂ (τt) (t = 1, . . . , T ) proposed in (3.18). This

is the method adopted in the simulation and empirical studies of this chapter.

Remark 1: The method described by the aforementioned three steps is feasible because it

provides closed form expression for the quantity to be computed in each step. Feasibility in this

sense, by itself, does not imply that the method itself is methodologically sound. Although we do

not provide a rigorous proofs, we conjecture that the method is sound. Local stationarity of the

model suggests that if we estimate it by combining a method for estimating stationary process

and a kernel smoothing type nonparametric method, then the estimated model is likely to be

close to the true model. Therefore, we conjecture that the qualitative nature of local stationarity

is sufficient for the local estimation outlined in the aforementioned three-step procedure to be

sound. We emphasize that these arguments do not constitute a rigorous proof, but our conjecture

is based on a range of insights. We do not claim that our method has advantages over other

methods, since we do not have theory for other methods of estimation for the context studied in

this thesis. Our objective was to develop a method that has a sound foundation. The simulations

results in the next section corroborate our conjecture.

Remark 2: The assumption that Ft is a smooth function of t imposes more restriction

than the assumption that Ft is a time-dependent variable or a process. The former restrictive

smoothness assumption is likely to provide stronger support for the suitability of the kernel based

estimator, although it is possible that the rates of convergence may possibly be unaffected. Since

we do not provide rigorous derivations of the asymptotic properties, we can only conjecture how

the estimators might behave. Additionally, it is reasonable to think that the factor loadings also

need to be time-varying to capture the structural changes in the panel data set. However, in

the literature, it has been discussed that even if the factor loadings are structurally unstable,

we can well estimate the factors using full sample and time-invariant factor loadings; see Stock

and Watson [2009], Banerjee et al. [2008]
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3.3 Simulation study

In this simulation study, we consider one-step ahead forecasting of a univariate time series

using special cases of the semi-parametric FAR model in subsection 3.2 with two factors and one

observable regressor. Both known and unknown factor cases are considered in this study. The

known factor case is useful for evaluating the component of the method proposed in subsection

3.2.2 that forms part of the entire method. Throughout this simulation study we use the

Gaussian kernel, K(u) = (2π)−1/2 exp (−u2/2) for nonparametric estimation.

3.3.1 The DGPs for the regressors and the FAR model

The FAR model contained are two factors and a scalar predictor Vt. Therefore, we may express

the FAR model as

Yt+1 = α1(τt)F1(τt) + α2(τt)F2(τt) + βVt + ηt+1 (τt = t/T ; t = 1, . . . , T − 1) , (3.20)

where ηt ∼ N(0, 1). We considered VMA(2) and VAR(2) processes for the factors and the

regressor Vt.

VMA(2) process:

F (τt) = µ(τt) + εt +B1(τt)εt−1 +B2(τt)εt−2 (3.21)

Vt = γ + ζt +A1ζt−1 +A2ζt−2 (3.22)

where (εt, ζt) ∼MVN (1, ρ|ρ, 0.8).

VAR(2) structure:

F (τt) = µ(τt) +B1(τt)F (τt−1) +B2(τt)F (τt−2) + εt (3.23)

Vt = γ +A1Vt−1 +A2Vt−2 + ζt, (3.24)

where B1(τt), B2(τt), and (εt, ζt) are as for the VMA(2) in (3.21) and (3.22). In this design, the

factors F (τt) and the regressor Vt are observable.

We considered the four different DGPs in Table 3.1, each with VMA(2) and again each with

VAR(2), providing eight DGPs. To provide an over view of the range of settings considered

in the study, let us note the following: (a) Both DGP1 and DGP2 have polynomial functions

of τt for time-varying parameters α(.) while DGP3 and DGP4 have sine/cosine functions. (b)
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The coefficient β of the observable regressor is fixed at 0.7 in all DGPs. (c) The VMA(2) and

VAR(2) coefficients of factor 1 have sine/cosine functions in DGP1 and DGP3, and exponential

functions in DGP2 and DGP4. (d) The VMA(2) and VAR(2) coefficients of factor 2 and Vt in

all four DGPs are time-invariant; hence they are stationary.(e) The functions B1(u) and B2(u)

(u ∈ [0, 1]) in the four DGPs of Table 3.1, are continuously differentiable and have bounded first

derivative. If we define Zt(u) = µ(u) + εt+B1(u)εt−1 +B2(u)εt−2 then Ft satisfies the definition

of local stationarity. Factor 1 is locally stationary while factor 2 and the observable regressor,

Vt, are stationary.

Table 3.1: The coefficients of the data generating processes[DGP] for the simulation study

DGP1 DGP2

α1(τt) = (1/2)(1 + τt) α1(τt) = (1/2)(1 + τt)
α2(τt) = τt + τ2

t α2(τt) = τt + τ2
t

β = 0.7 β = 0.7

µ(τt) = [0.5 sin(2πτt), 0.5] µ(τt) = [0.5 sin(2πτt), 0.5]
B′1(τt) = [0.5 + 0.3 sin(2πτt), 0.8] B′1(τt) = [0.7 exp(−0.8 + τt), 0.5]
B′2(τt) = [−0.5 + 0.3 cos(2πτt),−0.2] B′2(τt) = [−0.2 exp(−0.5 + τt),−0.8]

γ = 0.5 γ = −0.5
A1 = 0.3 A1 = 0.3
A2 = −0.3 A2 = −0.3

DGP3 DGP4

α1(τt) = (1/3) sin(2πτt) α1(τt) = (1/3) sin(2πτt)
α2(τt) = cos(2πτt) α2(τt) = cos(2πτt)
β = 0.7 β = 0.7

µ(τt) = [0.5 sin(2πτt), 0.5] µ(τt) = [0.5 sin(2πτt), 0.5]
B′1(τt) = [0.5 + 0.3 sin(2πτt), 0.8] B′1(τt) = [0.7 exp(−0.8 + τt), 0.5]
B′2(τt) = [−0.5 + 0.3 cos(2πτt),−0.2] B′2(τt) = [−0.2 exp(−0.5 + τt),−0.8]

γ = 0.5 γ = −0.5
A1 = 0.3 A1 = 0.3
A2 = −0.3 A2 = −0.3

Measures of performance

All the simulation estimates are based on 1000 replications. Let α̂(s)(τ) is the value of α̂(τ)

in the sth replication, β̂(s) is the corresponding value of β̂ in the sth replication (s = 1, . . . , S),
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and ¯̂α(τt) and
¯̂
β are the means of estimated parameters over the S replications, defined as

¯̂α(τt) =
1

S

S∑
s=1

α̂(s)(τt),
¯̂
β =

1

S

S∑
s=1

β̂(s).

Based on S = 1000 replications, we estimate the bias, root mean square error [RMSE], and the

standard deviation[SD] of the estimates of the coefficients in the FAR model as follows:

Bias of α̂ =
1

T

T∑
t=1

1

S

S∑
s=1

(α̂(s)(τt)− α(τt)) =
1

T

T∑
t=1

( ¯̂α(τt)− α(τt)) (3.25)

Bias of β̂ =
1

S

S∑
s=1

(β̂(s) − β) (3.26)

RMSE of α̂ =

√√√√ 1

ST

T∑
t=1

S∑
s=1

(
α̂(s)(τt)− α(τt)

)2
(3.27)

RMSE of β =

√√√√ 1

S

S∑
s=1

(
β̂(s) − β

)2
(3.28)

SD of α̂ =

√√√√ 1

T

T∑
t=1

1

S

S∑
s=1

(
α̂(s)(τt)− ¯̂α(τt)

)2
(3.29)

SD of β̂ =

√√√√ 1

S

S∑
s=1

(
β̂(s) − ¯̂

β
)2
, (3.30)

Note that

[RMSE of α̂]2 =
1

ST

T∑
t=1

S∑
s=1

(
α̂(s)(τt)− α(τt)

)2

= [SD of α̂]2 +
1

T

T∑
t=1

( ¯̂α(τt)− α(τt))
2

6= [SD of α̂]2 + [Bias of α̂]2,

where 6= holds, in general. Therefore, RMSE of α̂ provides information not contained in the

standard deviation or Bias of α̂. By contrast, β̂ is not time varying, and we have

[RMSE of β̂]2 = [SD of β̂]2 + [Bias of β̂]2.

The next two subsections provide the details for VMA(2) and for VAR(2), respectively.
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3.3.2 Simulation with known factors

Simulation results when the regressors are known and are VMA(2)

Let us consider the case when the two factors and the scalar regressor in (3.20) are observable;

we assume that and they are VMA(2) with the coefficients being defined by one of the four

DGPs in Table 3.1. Heuristic arguments suggest that the optimal bandwidth is dT−1/5 for some

d > 0. In this simulation study, we first estimated a suitable value for d when T = 100, and

then used the chosen value of d in the other simulations with T = 300 and T = 800. Since

cross-validation is computing intensive, the aforementioned procedure is reasonable for choosing

a bandwidth for the simulation study with large values for T .

Let us denote the estimate of α(τt) when the tth observation is deleted from the sample as,

α̂(−t)(τt) =

 T−1∑
u=1,u6=t

FuK

(
τu − τt
h

)
F ′u

−1
T−1∑

u=1,u6=t
FuK

(
τu − τt
h

)(
Yu+1 − β̃′Vu

)

in which

β̃ =

(
T−1∑
t=1

Ṽ ′(−t)Ṽ(−t)

)−1 T−1∑
t=1

Ṽ ′(−t)Ỹ(−(t+1)),

Ỹ−(t+1) = Yt+1 − F ′t

 T−1∑
u=1,u6=t

FuK

(
τu − τt
h

)
F ′u

−1
T−1∑

u=1,u6=t
FuK

(
τu − τt
h

)
Yu+1,

Ṽ(−t) = Vt − F ′t

 T−1∑
u=1,u6=t

FuK

(
τu − τt
h

)
F ′u

−1
T−1∑

u=1,u 6=t
FuK

(
τu − τt
h

)
Vu.

Let α̂
(s)
(−t)(τt) and β̃(s) are the values of α̂(−t)(τt) and β̃ in the sth replication (s = 1, . . . , S),

respectively. Then,

CV 1(d) =
1

TS

S∑
s=1

T−1∑
t=1

(
Y

(s)
t+1 −

(
α̂

(s)
(−t)(τt)

′
F

(s)
t + β̃(s)′V

(s)
t

))2
(3.31)

is the mean cross validation measure taken over S = 1000 repeated samples. Values of CV 1(d)

for ten different values of d when T = 100 are provided in Table 3.2. The values in this table

show that C̄V (d) decreases with increasing d for each of the four DGPs. For d > 1.133, the

value of CV 1(d) changes hardly for each DGP. Therefore, we chose d = 1.133.

With d = 1.133 and h = dT−1/5, we estimated bias, RMSE, and SD of {α̂1, α̂2, β̂} for the

models defined by Table 3.1. The computed values appear in Table 3.3. The results in this table
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indicate that, for each DGP, both SD and RMSE decrease with increasing T ; further, the bias

decreases with increasing T , for most cases. The overall performance of the method improves

as T increases, which provides confidence in the proposed nonparametric kernel based method.

Table 3.2: Calculated CV (d) when the regressors are known and are VMA(2) processes

d 0.050 0.267 0.483 0.7 0.917 1.133 1.35 1.567 1.783 2.00
hp 0.020 0.106 0.192 0.279 0.365 0.451 0.537 0.624 0.710 0.796

DGP1 32.69 2.93 2.55 2.27 2.11 2.03 1.99 1.96 1.95 1.95
DGP2 3.59 2.96 2.66 2.41 2.24 2.12 2.10 2.08 2.07 2.06
DGP3 34.04 2.85 2.33 2.13 2.07 2.05 2.03 2.03 2.03 2.02
DGP4 3.64 2.79 2.36 2.20 2.14 2.13 2.12 2.11 2.11 2.11

The bandwidth hp = dT−1/5 and T = 100.

Simulation results when the regressors are known and are VAR(2)

The design of the simulation study in this subsection is essentially the same as that in the

previous subsection for VMA(2) except that VMA(2) is replaced by VAR(2). The model is

defined in (3.23) and (3.24), and the parameter values are provided in Table 3.1. Just as in

the previous subsection for VMA(2), we computed the mean of the cross-validation values for

ten bandwidths; they are presented in Table 3.4. Based on the results in this table, and by

arguments similar to those applied to Table 3.2, we chose d = 1.35; therefore, we chose the

bandwidth as hp = 1.35T−1/5 for all values of T . Table 3.5 provides estimates of Bias, RMSE,

and standard deviation[SD]; the interpretation for this Table is same as that for Table 3.3. Table

3.5 shows that, as T increases, SD decreases, Bias increases for most of the cases, and RMSE

decreases for most of the cases. Again, the overall performance of the method improves as T

increases, which provides confidence in the proposed nonparametric kernel based method.

The kernel method of estimating factors in Subsection 3.2.3 is new. The simulations in

this section with known factors, help us to evaluate the reliability of the method without the

confounding effects of factor estimation. If the method were to perform poorly in simulations

with known factors, then the chances that the method would not perform well when the factors

are estimated. In this sense, the simulations in this section with known factors is a designed

experiment to learn about the proposed kernel method. The fact that our method performed well

in these simulations provides us the evidence needed to proceed to the next stage of investigating
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the method for the case when factors are estimated. These positive outcomes do not guarantee

that the method will work well with estimated factors, but the indications are promising.

3.3.3 Simulation with estimated factors

We extended the simulation study in the previous subsection to the case when the factors are

unobservable, and hence estimated factors are used for estimating the FAR model. Therefore,

the extension in this subsection involves the additional steps of generating the panel data and

estimating the factors. We also adopted a method similar to that in the previous subsection for

choosing the bandwidth for estimating the factors non-parametrically.

In what follows, we first list the simulations steps for a given bandwidth, and then describe

the method that we adopted for choosing the bandwidth for the simulation study. In general, the

bandwidth performs well if it is data dependent and is chosen in a robust and optimal way. We

did not use a data dependent bandwidth in these simulations. The main reason are that we did

not study the bandwidth choice rigorously, and we needed to manage the high computational

demands that data dependent bandwidth introduce. We chose a bandwidth that is likely to

behave robustly by conducting some exploratory simulation studies. Since we do not have a

data dependent method that has a sound theoretical basis for optimal choice, we believe that

it is sufficient to implement the aforementioned method that may not be optimal but likely to

be adequate for our intended purposes. The method of choosing the bandwidth adopted in the

empirical example, presented in a later section, is data dependent and hence is different.

Simulation Steps:

Step 1. Generate the two factors {F1(τt), F2(τt) : t = 1, . . . , T} as in subsection 3.3.1 using a DGP

in Table 3.1.

Step 2. Generate the panel data set {Xit : i = 1, . . . , N ; t = 1, . . . , T} using the factor model

Xit = λi1F1(τt) + λi2F2(τt) + eit (i = 1, . . . , N ; t = 1, . . . , T ),

where λi1, λi2, and eit are independent and identically distributed with common distribu-

tion function N(0, 1) (i = 1, . . . , N ; t = 1, . . . , T ).

Step 3. Estimate the factors F1(τt) and F2(τt) by the method proposed in Subsection 3.2.3.
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Step 4. Estimate the FAR model

Yt+1 = α1(τt)F̃1(τt) + α2(τt)F̃2(τt) + βVt + ηt+1 (t = 1, . . . , T − 1) , (3.32)

which is the same as that in (3.20) except that the factors F1(τt) and F2(τt) are replaced

by the estimates obtained in the previous step.

The foregoing simulation steps assume that the bandwidths are given. In this simulation

study, we adopted a method similar to that suggested by Table 3.2. Let N = 100 and T = 100.

Since the nonparametric structure is only on the set of factors, which is a function of time t,

we estimate the factors Ft nonparametrically based on the time series dimension. Heuristic

arguments suggest that the optimal bandwidth for factor estimation is also cT−1/5 for some

c > 0. Therefore, executed the first three steps of the simulation method introduced in this

section with hf = cT−/5 for ten different values of c. The cross-validation measure CV SEf was

computed for these ten values of c as,

CV SEf (h) =
1

TNS

S∑
s=1

N∑
i=1

T∑
t=1

(
X

(s)
it − λ̃

(s)′

i F̂
(s)
(−t)(τt)

)2
(3.33)

where F̂
(s)
(−t) is the nonparametrically estimated factor without the tth observation, λ̃

(s)
i is the

ith factor loading estimated from PCA for sth replication, and S is the number of replications.

The results are summarized in Tables 3.6 and 3.7; the definitions of Bias, SD and RMSE are as

in the previous subsection. The figures in Table 3.6 show that the cross validation measure is

smallest when c = 0.05.

The results in Table 3.7 show that nonparametric factor estimators are not that sensitive to

the choice of the bandwidth. Results in the columns under the NP factors correspond to the

nonparametrically estimated factors, and the results under the PCA column are for the estimated

factors and the loadings using PCA. The SD and RMSE of nonparametrically estimated factors

are lower compared to those for the PCA estimator. The entries in this table show that as

T increases with fixed N , both RMSE and SD decrease for almost all cases. The bias of the

estimators of time varying parameters in DGP3 and DGP4 increase as T increases. Overall, the

results in Table 3.7 suggest that values of c larger than 0.05 are desirable. Based on the overall

performance in terms of the different criteria presented in the two tables, we chose c = 0.05.

Therefore, we proceeded assuming that hf = 0.05T−1/5 is a suitable way of setting bandwidths

for values of T larger than 100.
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Next, we performed a similar simulation study to choose a suitable bandwidth for hp. Let

N = 100 and T = 100. We conducted the simulation experiment for the four DGPs in Table 3.1

with hp = dT−1/5 for ten different values of d. Table 3.8 shows that the CV SEp decreases as

hp increases for all four DGPs. For d > 1.133, the value of CV SEp changes hardly. This table

shows that d = 1.133 is a suitable choice. One of our main objectives of the simulation study is

to investigate whether our proposed nonparametric method is stable and performs in a reliable

manner. For this purpose, the method that we adopted for choosing the bandwidth serves our

purpose well.

For the rest of this simulation study, we fixed the bandwidths as hp = 1.133T−1/5 and

hf = 0.05T−1/5 with T and N taking the values 100, 300 and 500. We considered the same DGPs

as in Table 3.1 with the factors being VMA(2) and the coefficients as in Table 3.1. As stated

in Chapter 2, the coefficients are estimated up to a rotation, H, which is a function of latent

factors and factor loadings. Therefore, when factors are estimated, we cannot directly estimate

the bias, SD, and RMSE of the estimated coefficients as the rotation matrix is infeasible. Hence,

we first estimate the rotation matrix by replacing the estimated factors and factor loadings.

The bias, SD, and RMSE of the coefficients are estimated compared to αH̃−1 where H̃ is the

estimated rotation matrix. The results are in Table 3.9.
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Table 3.3: Estimated bias, RMSE, and standard deviation[SD] for the estimates when the
regressors are known and are VMA(2)

DGP1 DGP2

T 100 300 800 100 300 800

α̂1 Bias -190 -172 -146 6.7 18 15.1
RMSE 278 206 167 197 126 86
SD 192 106 71 174 101 64

α̂2 Bias 111 113 97 -27 -25 -21
RMSE 490 404 332 434 342 272
SD 191 106 70 153 86 53

β̂ Bias -26 -14 -7.5 4.6 1.8 -0.5
RMSE 114 61 34 111 59 33
SD 111 60 33 111 59 33

DGP3 DGP4

α̂1 Bias -100 -75 -59 -65 -54 -50
RMSE 291 210 163 286 224 191
SD 209 128 88 188 109 72

α̂2 Bias 20.7 -3.3 -21 -41 -48 -51
RMSE 723 672 616 700 651 593
SD 228 137 96 173 103 66

β̂ Bias 5.8 6.8 5.9 -22 -18 -16
RMSE 137 77 41 136 79 44
SD 137 77 41 134 77 41

Each entry is multiplied by 1000. The set {α̂1, α̂2} and β̂ correspond to the estimated time-varying and constant
parameters, respectively. The bandwidth for parameter estimation is hp = 1.133T−1/5.

Table 3.4: Calculated CV 1(d) for all four DGPs, when regressors are known and are VAR(2)

d 0.050 0.267 0.483 0.70 0.917 1.133 1.350 1.567 1.783 2.00
hp 0.020 0.106 0.192 0.279 0.365 0.451 0.537 0.624 0.710 0.796

DGP1 4.28 3.49 3.13 2.82 2.61 2.49 2.43 2.41 2.39 2.38
DGP2 4.22 3.51 3.12 2.78 2.57 2.45 2.39 2.36 2.35 2.34
DGP3 5.14 3.83 3.14 2.90 2.82 2.79 2.78 2.77 2.77 2.76
DGP4 4.81 3.67 3.02 2.78 2.70 2.67 2.66 2.65 2.64 2.64

The bandwidth hp = dT−1/5 and number of observations, T = 100.
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Table 3.5: Estimated bias, RMSE, and standard deviation[SD] for the estimates when the
regressors are known and are VAR(2)

T 100 300 800 100 300 800

DGP1 DGP2

α̂1 Bias 9.8 -160.0 -223.2 -0.4 -42.0 -43.1
RMSE 138.5 181.1 229.5 150.3 114.3 92.7
SD 93.3 75.6 51.2 105.5 67.4 44.0

α̂2 Bias -18.8 26.4 71.0 -14.9 0.7 -3.0
RMSE 467.3 414.0 383.6 476.0 401.1 329.7
SD 133.2 76.0 46.4 153.9 96.8 61.2

β̂ Bias 7.1 -14.6 -19.3 4.8 14.6 5.5
RMSE 123.7 66.4 42.5 125.1 67.5 37.0
SD 123.5 64.7 37.8 125.0 65.9 36.6

DGP3 DGP4

α̂1 Bias 69.5 162.9 156.0 16.6 -20.1 -33.5
RMSE 247.4 241.1 233.5 235.7 188.6 161.4
SD 121.6 102.3 65.8 125.6 80.3 53.7

α̂2 Bias -83.1 -117.9 -136.0 -69.0 -64.9 -69.8
RMSE 716.1 705.5 698.2 722.9 688.8 648.4
SD 170.3 107.8 71.6 199.2 134.8 93.1

β̂ Bias 15.7 40.2 30.3 -9.7 -12.1 -17.4
RMSE 166.0 97.8 59.4 169.3 93.3 55.9
SD 165.3 89.2 51.1 169.0 92.5 53.2

The entries in the table have been multiplied by 1000. {α̂1, α̂2} and β̂ correspond to the estimated time-varying
and constant parameters respectively. Bandwidth for parameter estimation, hp = 1.133T−1/5.

Table 3.6: Estimated CV SEf for 10 different bandwidths, [T,N ] = [100, 100]

c 0.050 0.267 0.483 0.700 0.917 1.133 1.350 1.567 1.783 2.000
hf 0.020 0.106 0.192 0.279 0.365 0.451 0.537 0.624 0.710 0.796

DGP1, DGP3 313.9 407.9 416.4 424.6 425.3 428.0 430.0 432.5 427.2 436.5
DGP2, DGP4 345.4 415.8 422.9 427.0 429.9 432.0 433.6 434.7 435.4 436.0

The bandwidth for factor estimation is hf = cT−1/5. The DGP1 and DGP3 have the same factors, while DGP2
and DGP4 has the same factors. Highlighted c, hf values provied the least estimated CV SEf values.
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Table 3.7: Estimated bias, RMSE, and standard deviation of the estimated NP and PCA factor and their loadings for [T,N ] = [100, 100]

DGP1 and DGP3

NP factors
PCAc 0.050 0.267 0.483 0.700 0.917 1.133 1.350 1.567 1.783 2.000

hf 0.020 0.106 0.192 0.279 0.365 0.451 0.537 0.624 0.710 0.796

F̂1 Bias 200.8 201.1 201.2 201.2 201.2 201.1 201.1 201.1 201.0 201.0 200.1
SD 406.7 185.2 146.0 127.7 117.9 112.7 110.0 108.7 107.9 107.5 494.3
RMSE 1149.7 1276.4 1291.2 1300.2 1306.3 1310.3 1313.0 1314.8 1316.0 1316.9 970.6

F̂2 Bias 95.1 95.6 96.7 97.4 97.4 97.1 96.8 96.5 96.3 96.1 95.3
SD 307.3 115.9 79.2 63.0 54.2 49.3 46.7 45.2 44.3 43.8 668.0
RMSE 1302.4 1342.1 1332.5 1318.2 1308.3 1303.2 1300.7 1299.6 1299.0 1298.7 1477.7

λ̂1 Bias -4.6 -4.2 -7.0 -16.9 -13.7 -25.8 -35.6 -46.4 -50.0 -37.9 -3.8
SD 2059.7 2019.7 2423.9 3946.8 6231.0 10149.5 13939.7 19443.7 26940.9 37299.5 1368.5

λ̂2 Bias 2.0 1.8 2.1 4.5 2.7 4.1 5.5 4.7 1.4 -5.5 2.3
SD 634.5 634.7 722.4 1031.1 1472.2 2240.3 3059.4 4292.1 6038.2 8505.5 575.8

DGP2 and DGP4

NP factors PCA

F̂1 Bias 217.0 217.3 217.3 217.3 217.3 217.2 217.2 217.2 217.2 217.1 217.1
SD 327.2 140.9 110.9 96.8 89.1 85.0 82.9 81.8 81.2 80.8 488.5
RMSE 1042.3 1186.0 1203.2 1213.2 1219.8 1224.1 1226.8 1228.7 1230.0 1231.0 968.4

F̂2 Bias 26.6 26.6 27.3 27.7 27.8 27.6 27.4 27.2 27.1 27.0 26.6
SD 371.4 161.3 118.3 100.3 91.5 86.9 84.5 83.2 82.4 82.0 714.1
RMSE 1562.3 1462.1 1432.2 1410.4 1396.9 1389.8 1386.3 1384.4 1383.4 1382.8 1557.8

λ̂1 Bias -4.8 -4.0 -3.9 -0.3 5.8 -3.1 6.6 -9.9 -52.7 -67.2 -4.0
SD 2083.9 1803.2 1985.8 2592.1 4531.6 7048.4 11904.7 16914.7 22729.3 28693.3 1435.2

λ̂2 Bias 1.1 1.4 1.3 -0.3 -4.0 -1.7 -5.9 -1.1 9.8 10.1 1.3
SD 649.9 690.4 791.5 1070.6 2008.3 2883.0 4298.1 5592.3 7023.0 8786.3 597.6

All the results are multiplied by 1000. Results under the NP panel are corresponding to the nonparametrically estimated factors and the PCA column is corresponding to the
PCA estimated factors. Bandwidth in factor estimation for NP factors is hf = cT−1/5.
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Table 3.8: Estimated CV SEp for all four DGPs when factors are estimated, [T,N ] = [100, 100]

d 0.050 0.267 0.483 0.700 0.917 1.133 1.35 1.567 1.783 2.00
hp 0.020 0.106 0.192 0.279 0.365 0.451 0.537 0.624 0.710 0.796

DGP1 19.14 2.44 2.13 1.99 1.95 1.93 1.93 1.92 1.92 1.92
DGP2 5.87 2.26 2.09 1.99 1.96 1.95 1.95 1.94 1.94 1.94
DGP3 19.32 2.57 2.21 2.12 2.10 2.08 2.08 2.08 2.08 2.08
DGP4 6.05 2.37 2.17 2.10 2.07 2.06 2.05 2.05 2.05 2.05

The factor estimation bandwidth is fixed to be hf = 0.05T−1/5 and the bandwidth for model estimation, hp =
dT−1/5.

After choosing the two optimal bandwidths, ĥf = 0.05T−1/5 and ĥp = 1.133T−1/5, the semi-

parametric model was estimated for the nine combinations of [T,N ] using kernel estimation.

The results, presented in Table 3.9, show that as T increases (with fixed N) both RMSE and

SD decrease for most of the cases. Also, bias of the time-varying parameters in DGP3 and

DGP4 increase as T increases while bias of the constant parameter decreases in all four DGPs.

According to the simulation design in Table 3.1, ranges of the coefficients are: DGP 1 and 2:

α1 = [0, 1], α2 = [0, 2], β = 0.7, DGP 3 and 4: α1 = [−0.3, 0.3], α2 = [−1, 1], β = 0.7. The scale

of maximum bias and RMSE of the estimated coefficients in Table 3.9 for all four DGPs are:

DGP 1 and 3: α1 : 0.3, α2 : 0.6 and β : 0.04. The results in Table 3.9 are of the same scale as

the result in Table 3.3, for known factor case. Additionally, as a ratio, the estimated bias and

RMSE of the coefficients are not that high.
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Table 3.9: Estimated bias, RMSE, and standard deviation of the estimated coefficients when factors are unknown, T = [100, 300, 500]

N
DGP1 DGP2 DGP3 DGP4

T 100 300 500 100 300 500 100 300 500 100 300 500

100 α̂1 Bias -196.48 -236.99 -253.60 60.73 14.80 -26.37 58.57 93.86 98.67 -12.38 41.90 48.30
std 300.58 288.81 268.21 320.36 287.76 252.10 350.92 382.96 376.78 363.09 366.24 342.81
RMSE 369.18 379.17 375.62 345.08 301.72 266.84 397.62 420.93 411.81 414.38 409.13 381.76

α̂2 Bias 431.90 402.26 381.05 341.58 339.86 333.80 -111.47 -147.08 -166.66 -67.98 -116.23 -135.31
std 163.20 104.92 84.14 165.91 111.24 94.04 195.69 121.13 98.31 210.33 148.25 124.23
RMSE 694.02 635.07 601.57 616.17 574.67 553.64 737.52 722.93 716.99 730.23 711.42 701.98

β̂ Bias -18.25 -8.54 -4.39 6.63 6.41 5.63 7.81 7.00 7.65 -7.61 -5.61 -3.33
std 103.21 58.39 44.07 107.95 59.60 44.38 109.39 62.74 46.27 113.19 62.25 46.23
RMSE 104.81 59.01 44.29 108.15 59.94 44.73 109.67 63.13 46.90 113.44 62.51 46.35

300 α̂1 Bias -164.23 -239.28 -238.54 95.79 13.83 -25.47 86.52 110.61 121.06 27.92 54.83 66.29
std 304.61 287.53 275.44 330.30 280.49 254.11 353.24 376.99 392.60 378.40 357.25 352.30
RMSE 356.48 379.78 369.65 362.39 295.36 265.49 404.87 419.95 434.61 428.37 403.34 395.17

α̂2 Bias 431.49 403.63 385.42 337.30 339.74 332.34 -113.42 -146.12 -160.66 -77.22 -123.51 -140.60
std 162.67 101.63 83.11 165.95 107.33 90.68 192.77 123.40 96.70 214.49 142.81 126.03
RMSE 694.77 635.74 604.69 614.94 576.65 553.36 737.09 724.12 716.67 731.90 711.68 704.24

β̂ Bias -18.52 -11.61 -8.20 9.21 4.01 3.08 10.41 5.10 4.38 -4.46 -7.03 -5.62
std 101.82 58.37 45.05 106.72 59.77 46.30 110.57 61.36 47.98 115.34 62.20 47.57
RMSE 103.49 59.51 45.80 107.12 59.90 46.41 111.06 61.57 48.18 115.42 62.60 47.90

500 α̂1 Bias -157.54 -234.41 -253.82 81.58 16.71 -25.07 84.60 111.45 111.40 16.75 57.64 74.53
std 308.29 285.06 268.61 334.30 284.92 253.42 357.49 380.48 381.73 381.29 367.77 351.21
RMSE 356.51 373.90 374.93 362.31 297.97 264.71 408.89 424.41 420.83 429.81 413.71 396.15

α̂2 Bias 423.99 407.63 382.46 329.97 341.95 333.62 -117.22 -143.87 -162.18 -84.76 -124.39 -142.38
std 165.43 101.75 80.00 167.36 105.86 89.15 196.14 117.81 94.95 214.06 144.49 120.69
RMSE 687.82 638.57 602.00 610.82 576.85 554.07 739.07 722.88 716.58 732.81 713.38 703.36

β̂ Bias -17.71 -9.46 -4.34 8.05 7.03 6.10 11.08 6.59 8.48 -7.80 -4.34 -1.48
std 107.37 57.22 44.35 108.28 58.95 45.19 114.18 61.42 47.30 114.90 62.28 47.17
RMSE 108.82 58.00 44.56 108.58 59.36 45.60 114.71 61.77 48.06 115.17 62.43 47.19

All the values are multiplied by 1000. The semiparametric FAR model is considered with nonparametrically estimated factors. Two optimal bandwidths considered in NP
factor estimation and model estimation are {hf , hp} = {0.05T−1/5, 1.133T−1/5}.
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3.4 Empirical application

In this section we apply the semi-parametric FAR model for forecasting the three key economic

variables, log(GDP), GDP growth rate, and inflation. Since the data set contains quarterly

data, we start with a basic AR(4) (and AR(1)) model and augmented it with the nonparametric

FAR model. The coefficients of the lag terms in the autoregressive part of the model are

assumed to be time invariant in every model, and the coefficients of the factors are allowed to

be varying with time unless the contrary is made clear. We compare and contrast the in-sample

and out-of-sample forecast performance of the semi-parametric models with AR models and the

mean model. For the semi-parametric FAR models, we consider both PCA and nonparametric

estimates of the factors. To quantify forecast performance of different models, we use in-sample

mean squared error (MSE in-sample) and out-of-sample R-square R2
os defined as,

R2
os = 1−

 T∑
t=T1+1

(Yt − Ŷt)2

 T∑
t=T1+1

(Yt − Ỹt)2

−1

, (3.34)

where T1 is the end of the estimation period, and Ŷt and Ỹt are the predictions based on the semi-

parametric FAR model and the benchmark model, respectively. In our comparisons, we consider

AR(1) to be the benchmark model. The Gaussian kernel, denoted K, is used throughout.

3.4.1 Data description

We used the same FRED-QD panel data set as that in Chapter 2; therefore, T = 240 and

N = 100. The variables in the set of panel data are categorized into two aggregation levels

called “ high-aggregates” containing 110 variables and “sub-aggregates” containing 100 variables.

The variables in sub-aggregates are used for estimating the factors and the resulting estimated

factors are used as predictors to forecast the response variables in the high-aggregates. The

three variables that we wish to forecast, namely log(GDP), GDP growth rate and inflation are

in the high-aggregate group. Time series plots of these variables are presented in Figure 3.1.

3.4.2 Nonparametric factor estimation

The purpose of this subsection is to compare and contrast the nonparametric method of estimat-

ing factors introduced in Subsection 3.2.3 with the PCA estimates. We choose that r = 8, where

r is the number of factors. The previous Chapter provide the rational for choosing 8 factors

by applying Bai and Ng [2002] information criteria (see Chapter 2, section 4). We estimated
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Figure 3.1: Time series plots of the three response variables

the eight factors and their corresponding loadings by PCA, and treated them as the initial es-

timates of the factors and factor loadings required in Step 1 of the nonparametric estimation

procedure in Subsection 3.2.3. To implement Step 2 of the procedure therein, we need to choose

a bandwidth hf . To this end, we assumed that the optimal bandwidth satisfies hf = cT−1/5,

for some unknown c. We chose the value of c and hence the bandwidth, ĥf , by minimizing the

leave-one-out cross-validation criterion,

CV SEf (h) =
1

TN

N∑
i=1

T∑
t=1

(
Xit − λ̃′iF̂(−t)(τt)

)2
, (3.35)

where λ̃i is the ith factor loading estimated using PCA and F̂(−t)(τt) is the set of nonparamet-

rically estimated factors (NP factors) by leaving the tth observation out. We computed the

cross-validation criterion for a set of grid values of c, and chose the value c for which CV SEf (h)

was the minimum; this involved, estimating the eight factors nonparametrically for each band-

width using the panel data on 100 variables. The chosen value of the bandwidth was hf = 0.017.

To provide some insight into the suitability of the bandwidth, recall that T = 240. Therefore,
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hf = 0.017 corresponds to T × hf = 4.1; thus the kernel, the standard normal density, is ap-

plied with a bandwidth of approximately 4 quarters. Therefore,in the context of these data,

hf = 0.017 does not appear to be too small or too large. The estimated PCA and NP factors

are shown in Figure 3.2. This figure shows that for each factor, the estimate obtained by the

proposed nonparametric method has the same trend as the one estimated by PCA, but the

former is smoother compared to the latter.
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Figure 3.2: The plot of 8 estimated NP and PCA factors using the panel dataset of 100 variables

The blue solid lines are corresponding to the nonparametrically estimated factors and red dash lines are corre-
sponding to the PCA factors. The bandwidth for the factor estimation is 0.017.

3.4.3 One-step ahead forecasting evaluation

The FAR models that we considered are formed by including the factors as additional predictors

to AR(1) and AR(4) models. Therefore, a suitable way to assess whether the inclusion of factors
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improve the performance of predictors is to use the models without the factors as benchmarks.

Therefore, we considered AR(1) and AR(4) as benchmarks. Furthermore, AR models and mean

models have been used in the literature as benchmark models for evaluating the forecasting

models, see Stock and Watson [1998a, 2005, and 2012]. The model specifications are as follows:

FAR models,

Model 1: Yt+1 = α′tF̂t + βYt + ηt+1, (3.36)

Model 2: Yt+1 = α′tF̃t + βYt + ηt+1, (3.37)

Model 3: Yt+1 = α′tF̂t +

3∑
i=0

βiYt−i + ηt+1, (3.38)

Model 4: Yt+1 = α′tF̃t +
3∑
i=0

βiYt−i + ηt+1, (3.39)

AR models and mean model

Model 5: Yt+1 = βYt + ηt+1, (3.40)

Model 6: Yt+1 =
3∑
i=0

βiYt−i + ηt+1, (3.41)

Model 7: Yt+1 = Ȳ + ηt+1, (3.42)

where F̂ is the set of 8 estimated factors using the nonparametric estimation and F̃ is the set

of estimated factors using PCA, αt is the time-varying coefficients of factors, β is the set of

coefficients of lagged terms, and Ȳ is the in-sample mean of the response variable.

Assessing the in-sample performance

By examining the sensitivity of in-sample performance to bandwidth using arguments similar

to those in Appendix for out-of-sample sensitivity, we chose ĥf = 0.011. For bandwidth hp we

assumed that the optimal value satisfies hp = dT−1/5 for some unknown d. We considered 10

different values for d in the interval (0.05, 2.00) and estimated the model using semi-parametric

estimation. Table 3.10 provides the in-sample MSE of prediction for all the model specifications

for the three response variables. Table 3.10 shows that the FAR models have the least MSE

when hp = 0.017. Moreover, the FAR model with nonparametrically estimated factors and four

lags of the response variable, performed better in in-sample forecasting for log(GDP) and GDP

growth rate. For inflation, Model 4, which contains PCA estimated factors, has the least MSE
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compared to the other models. Overall, for all bandwidths hp, FAR model specifications perform

better than the AR models and mean model in in-sample performance for the three response

variables.

Table 3.10: In-sample performance of the models in terms of MSE for different bandwidths hp

hp 0.017 0.089 0.162 0.234 0.306 0.379 0.451 0.524 0.596 0.668

log(GDP)

Model 1 2.59 8.16 10.74 11.72 12.11 12.35 12.50 12.60 12.68 12.73
Model 2 3.54 9.06 10.30 11.00 11.36 11.61 11.77 11.88 11.95 12.01
Model 3 1.72 7.76 10.08 11.00 11.34 11.52 11.63 11.69 11.74 11.78
Model 4 2.98 8.59 9.90 10.50 10.79 10.98 11.10 11.18 11.23 11.26
AR(1) 16.46
AR(4) 13.91
Mean model -

GDP growth rate

Model 1 5.38 10.74 11.75 12.14 12.36 12.51 12.62 12.69 12.74 12.78
Model 2 3.29 9.41 10.53 11.13 11.46 11.68 11.81 11.89 11.95 11.99
Model 3 2.67 9.98 11.13 11.58 11.81 11.95 12.04 12.10 12.14 12.17
Model 4 3.09 8.99 10.10 10.66 10.95 11.15 11.26 11.33 11.38 11.41
AR(1) 14.70
AR(4) 13.76
Mean model 16.07

Inflation

Model 1 2.07 3.55 4.44 4.73 4.86 4.92 4.96 4.99 5.00 5.01
Model 2 1.31 3.79 4.49 4.77 4.91 4.99 5.04 5.07 5.09 5.10
Model 3 1.07 3.30 4.18 4.44 4.54 4.60 4.63 4.65 4.66 4.67
Model 4 1.00 3.58 4.14 4.37 4.50 4.58 4.62 4.66 4.68 4.69
AR(1) 5.72
AR(4) 4.98
Mean model 13.53

All the entries in this table have been multiplied by 1000. The bandwidth for factor estimation is hf = 0.011.
For log(GDP), the mean model is not considered as the series is nonstationary. Highlighted values correspond to
the least MSE value for the response variable.

Assessing the out-of-sample performance

In this section, we consider the expanding window one-step ahead out-of-sample forecasting.

The out-of-sample forecasting performance is evaluated in terms of R2
os defined in (3.34). For

both stationary and nonstationary response variables, we consider the basic AR(1) model as the

benchmark to calculate R2
os. Here, we consider the same ten bandwidth values for hp. Unlike in

the in-sample evaluation, we considered different bandwidths for factor estimation for the three

response variables. In expanding window forecast, 1959:Q1 - 1998:Q4 is considered as the first in-

sample period and forecast one-step ahead for 1999:Q1 - 2018:Q4 time period. For hf , we chose
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the values 0.011, 0.024, and 0.04 for log(GDP), GDP growth rate, and inflation, respectively. A

justification for these bandwidth choices is given in the Appendix under sensitivity analysis.

Table 3.11 provides the calculated R2
os compared to basic AR(1) model for all model spec-

ifications. According to the results in the table, except for first two hp, all four FAR models

have better performance compared to the AR models for forecasting log(GDP). For forecasting

GDP growth rate, the two FAR models with nonparametrically estimated factors have negative

R2
os for all the bandwidths, and the two FAR models with PCA factors have positive R2

os for

hp > 0.0234. This implies, for forecasting GDP growth rate, that the semi-parametric FAR

models with PCA factors have improved forecast performance compared to the AR(1) model.

Model 4, the FAR model augmented with PCA factors, has better performance in out-of-sample

forecasting for log(GDP) and GDP growth rate when hp = 0.0379. For inflation forecasting, the

two FAR models with AR(4) terms have negative values for R2
os for all the bandwidth options.

For forecasting inflation, Model 1, FAR model augmented with nonparametrically estimated

factors, has better forecast performance compared to the PCA analogue with every bandwidth,

except for hp = 0.017. Model 1 with hp = 0.668 has the highest calculated R2
os for forecasting

inflation, hence, this model has the best out-of-sample forecast performance for in forecasting

inflation. Overall, with some specific bandwidths, the FAR models outperform the basic AR

models and the mean model in out-of-sample forecasting for both stationary and nonstationary

response variables.

The plots in Figures 3.3 - 3.5 show the one-step ahead out-of-sample (expanding window)

forecasting for log(GDP), GDP growth rate and inflation, for the period 1999:Q1 - 2018:Q4 with

the initial estimation period being 1959:Q1 - 1998:Q4. Figure 3.3 indicates that the prediction

series of log(GDP) using the four FAR models are very close to each other and they appear to

be close to the original time series. The predicted series of GDP growth rate and inflation by

four FAR models are comparably close to each other and seem to pick the fluctuations of the

original series.
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Table 3.11: Out-of-sample performance of the models relative to AR(1), in terms of R2
os for

expanding window forecast

hp 0.017 0.089 0.162 0.234 0.306 0.379 0.451 0.524 0.596 0.668

log(GDP)

Model 1 -1.22 -0.05 0.01 0.03 0.05 0.03 0.01 -0.01 -0.01 -0.02
Model 2 -4.69 0.01 0.20 0.24 0.26 0.25 0.25 0.24 0.23 0.23
Model 3 -0.37 -0.06 0.02 0.06 0.08 0.07 0.06 0.05 0.05 0.046
Model 4 -4.11 -0.03 0.21 0.27 0.29 0.29 0.29 0.29 0.29 0.29
AR(4) -1.05
Mean –

GDP growth rate

Model 1 -15.23 -0.31 -0.24 -0.20 -0.14 -0.11 -0.09 -0.08 -0.08 -0.07
Model 2 -7.19 -0.26 -0.01 0.04 0.06 0.06 0.06 0.06 0.06 0.05
Model 3 -8.71 -0.27 -0.23 -0.20 -0.13 -0.10 -0.08 -0.07 -0.06 -0.05
Model 4 -7.04 -0.29 -0.02 0.05 0.07 0.07 0.07 0.06 0.05 0.05
AR(4) -0.02
Mean -0.26

Inflation

Model 1 -80.83 -0.23 0.03 0.05 0.06 0.07 0.07 0.07 0.07 0.07
Model 2 -5.05 -0.47 -0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.04
Model 3 -98.45 -0.31 -0.10 -0.06 -0.03 -0.02 -0.01 -0.01 -0.01 -0.01
Model 4 -3.38 -0.80 -0.20 -0.12 -0.10 -0.10 -0.10 -0.11 -0.11 -0.11
AR(4) -0.22
Mean -0.29

The hf for the three response variables log(GDP), GDP growth rate, and inflation are 0.011,0.024, and 0.040
respectively. The first in-sample size period is 1959:Q1-1998:Q4 and the out-of-sample period is 1999:Q1-2018:Q4.
Mean model results for log(GDP) are not included as the series is non-stationary. The highlighted values corre-
spond to the highest R2

os.
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Figure 3.3: The observed log(GDP) and one-step ahead out-of-sample expanding window fore-
cast for log(GDP) using semi-parametric FAR models

The black solid line: observed time series, red solid line: prediction series from Model 1, green dash line: prediction
series from Model 2, blue *:prediction series from Model 3, magenta -.: prediction series from Model 4. The
bandwidth for the factor estimation is 0.011 and bandwidth for model estimation is 0.379.
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Figure 3.4: The observed GDP growth rate and one-step ahead out-of-sample expanding window
forecast for GDP growth rate using semi-parametric FAR models

The black solid line: observed time series, red solid line: prediction series from Model 1, green dash line: prediction
series from Model 2, blue *:prediction series from Model 3, magenta -.: prediction series from Model 4. The
bandwidth for the factor estimation is 0.024 and bandwidth for model estimation is 0.379
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Figure 3.5: The observed inflation series and one-step ahead out-of-sample expanding window
forecast for inflation

The black solid line: observed time series, red solid line: prediction series from Model 1, green dash line: prediction
series from Model 2, blue *:prediction series from Model 3, magenta -.: prediction series from Model 4. The
bandwidth for the factor estimation is 0.040 and bandwidth for model estimation is 0.071.
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Remark 3: In this empirical example, we observe that the best model in terms of in-sample

performance is not the same as that in terms of out-of-sample performance. This is consistent

with what we often observe in practice, mainly because of over-fitting, but it may also be because

the chosen model is not appropriate. To address some of these issues, it would help to use various

specification tests, a topic outside the scope of this paper, and hardly any methods are available

at this stage. Nevertheless, it is important to know how to specify the best model in practice

to avoid over-fitting. One possible way is to adopt the technique in this empirical study, by

evaluating the out-of-sample forecast performance over a period of time. If it performs well

in out-of-sample forecasting for some adequate number of times in the recent past, then that

would be an indication of the reliability of the method. Whether or not the model over-fits

is not that important for forecasting if it forecasts reliably. If the objective is an inference

about individual coefficients, then the issues are different and the role of out-of-sample forecast

performance would be different. However, as our model is not fully nonparametric, only some

of the coefficients are time-varying, the model is still linear in variables. Hence, the over-fitting

issue may not be serious as the fully nonparametric model.

3.5 Conclusion

This chapter proposed a new approach to forecast a univariate time series using a semi-parametric

model combined with a factor model for a large set of panel data. We assumed that the large

number of variables in the panel data are also potential predictors. A factor model is used for

reducing the dimension of the panel data and thus to reduce variability in the estimates and

forecasts. Since there are a large number of potential predictors in the panel data, it is very

likely that these variables, and hence the factors extracted from them, are a mixture of station-

ary and nonstationary variables. Further, we also assumed that the panel data spans a long

time period and hence econometric models in this setting are likely to contain parameters that

change over time to represent structural changes. The methodology developed in this chapter

is specifically designed to accommodate the aforementioned type of mixture of stationary and

nonstationary predictors and time-varying parameters. The simulations studies show that the

proposed method makes significant improvements over its competitors. The empirical example,

on forecasting log(GDP), GDP growth rate, and Inflation illustrates the relevance and contribu-

tion of the proposed method for forecasting a macroeconomic variable. In summary this makes
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a significant contribution by proposing a a new method for forecasting a macroeconomic vari-

able. The numerical studies, albeit limited by necessity, demonstrates that the proposed method

makes a significant contribution to advance econometric methodology.



108 CHAPTER 3. SEMIPARAMETRIC FAR MODEL

3.6 Appendices

3.6.1 Appendix A: Comparison of methods for estimating α(τt)

In this appendix, we present the results of our evaluations to compare Hermite polynomial,

trigonometric polynomial, and kernel methods for estimating the time-varying parameter α(τt)

in the FAR model. We also compare the parametric method with the aforementioned three

methods.

Estimation method

First, let us recall the semi-parametric FAR model,

Yt+1 = α(τt)
′F̃t + β′Vt + ηt+1, (τt = t/T ; t = 1, . . . , T ), (A2.1)

where F̃t is the r-dimensional estimated factor and Vt is the m-dimensional observable regressor.

We estimate the time-varying parameter, α(τt), and constant parameter β by the following

3-step algorithm:

Step 1: First, approximate αj(τt) (j = 1, . . . , r) by the sum of the first few terms in a

representation of αj(τt) using an orthonormal basis of the function space. We may express such

an approximation by

αj(τt) ≈
k∑
i=1

Zi(τt)cij ,

where {Zi(.); 1 6 i 6 k} are the first k elements of the basis, cij (i = 1, . . . , k; j = 1, . . . , r are

unknown coefficients. Let

C =


c1,1 . . . c1,r

...
. . .

...

ck,1 . . . ck,r

 ;

k is usually called the truncation parameter. Then, we obtain,

Yt+1 =
(
F̃ ′t ⊗ Zk(τt)′

)
vec(C) + β′Vt + ηt+1; (A2.2)

where we have used ηt+1 as a generic error term; strictly speaking, the ηt+1 in (A2.2) and that

in (A2.1) are not equal.
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Step 2: Let δ =

(
(vec(C))′ β′

)′
and W̃t =

(
F̃ ′t ⊗ Zk(τt)′ V ′t

)′
for (t = 1, . . . , T ). Then,

we have

Yt+1 = W̃ ′tδ + ηt+1. (A2.3)

Let δ̂ =

(
[vec(Ĉ)]′ β̂′

)′
denote the OLS estimator of δ; therefore,

δ̂ =

(
T−1∑
t=1

W̃tW̃
′
t

)−1(T−1∑
t=1

W̃tYt+1

)
.

Step 3: Estimate αj(τt) by α̂j(τt) =
∑k

i=1 Zi(τt)ĉij , (j = 1, . . . , r), where Ĉ = (ĉij).

Model estimation using Hermite polynomials

Let L2[R, exp(−ω2/2)] denote the Hilbert space of continuous functions on R with the inner

product defined by < g1, g2 >=
∫
g1(ω)g2(ω) exp(−ω2/2) dω. Let Hi(·) (i = 0, 1, . . .) denote the

sequence of Hermite polynomials defined by

Hi(ω) = (−1)iexp(ω2/2)
di

dωi
exp(−ω2/2) (i = 0, 1, . . . , ).

Then, the first few Hermite polynomials are H0(ω) = 1, H1(ω) = ω, H2(ω) = ω2 − 1, and

H3(ω) = ω3−3ω. These polynomials are orthogonal in the sense
∫
Hi(ω)Hj(ω)exp(−ω2/2)dω =

√
π2ii!δij , where δij is the Kronecker delta. Let Hi(ω) =

(√
2πi!

)−1/2
Hi(ω). Then, {Hi(ω), i =

0, 1, . . .} is an orthonormal basis of the Hilbert space L2(R, exp(−ω2/2)).

Let g(ω) ∈ L2[R, exp(−ω2/2)]. Then the orthogonal series expansion for the unknown func-

tion is

g(ω) =
∞∑
i=0

ciHi(ω) = gk(ω) + γk(ω).

where

ci = 〈g(ω),Hi(ω)〉, gk(ω) =

k−1∑
i=0

ciHi(ω), γk(ω) =

∞∑
i=k

ciHi(ω).

Therefore,

g(ω) = Zk(ω)′c+ γk(ω), (A2.4)

where c[k×1] = (c0, c1, . . . , ck−1)′ and Zk(ω) = (H0(ω),H1(ω), . . . ,Hk−1(ω))′.
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Now, using (A2.4), the semi-parametric FAR model (A2.1) can be expressed as,

Yt+1 =
(
F̃ ′t ⊗ Zk(τt)′

)
vec(C) + β′Vt + ηt+1,

where C[k×r] = {cij ; i = 1, . . . , k, j = 1, . . . , r}. Let (Ĉ, β̂) denote the OLS estimate of (C, β);

also let Ĉ = (ĉij). Then, we have α̂(τt) =
∑k

i=1 Zi(τt)ĉk, where ĉk = (ĉk1, . . . , ĉkr)
′.

Model estimation using trigonometric polynomials

In trigonometric polynomial estimation method we approximate the α(τt) by the a trigonometric

series; for example Zk = (1, cos(v), sin(v); cos(2v), sin(2v); . . . , cos(kv), sin(kv))′ with v = 2πτt.

Then, again for W̃t =

(
F̃ ′t ⊗ Zk(τt)′ V ′t

)
and δ =

(
(vec(C))′ β′

)′
, we have

Yt+1 = W̃ ′tδ + ηt+1.

by which we can estimate (α̂(τt), β̂).

Choice of truncation parameter

In practice, the truncation parameter is an unknown integer, and estimated using the dataset.

In the literature on non-parametric and semi-parametric model estimation using orthogonal

polynomials, it has been discussed that the truncation parameter k ∼ T 1/c where c ∈ [1/a, 1/4)

and a > 7 (see Gao et al. 2002, Gao 2007, Hall et al. 2007, Dong et al. 2015, Dong et al.

2019, Zhou et al. 2020, and Dong et al. 2021) The following two criteria have been proposed for

obtaining an optimal truncation parameter, k̂, for stationary time series models, which can also

be used in the panel data models.

1)GCV method:

Gao et al. [2002] proposed the generalized cross-validation method to obtain the estimator k̂:

k̂GCV = arg min
k

(
1− k

T

)−2 1

T

T∑
t=1

(
Yt+1 − Ŷt+1,k

)2
. (A2.5)

2) AIC method:

Cai [2007] proposed the following estimator based on the Akaike information criterion (AIC):

k̂AIC = arg min
k

log

(
1

T

(
Yt+1 − Ŷt+1,k

)2
)

+ 2
Tλ,k + 1

T − Tλ,k − 2
, (A2.6)
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where Ŷt+1,k is the one-step ahead forecast using the truncation parameter k and Tλ,k is the

trace of W̃t,k

(
W̃ ′t,kW̃t,k

)−1
W̃t,k and W̃t,k = W̃t is as in (A2.3).

Rigorous methodology has not yet been developed for the optimal choice of the truncation

parameter in semi-parametric models with both stationary and nonstationary processes. Since

our main focus is to obtain better forecasting performances, we shall choose the truncation

parameter for the model through in-sample and out-of-sample forecasting performance in terms

of mean squared error (Dong et al. [2018]).

Simulation study with different methods for estimating α(τt)

This section reports the results of preliminary simulation studies to different methods for esti-

mating α(τt).

Design of the Simulation

We considered the following DGP:

Yt+1 = α1tF1t + α2tF2t + βYt + ηt+1, ηt ∼ N(0, 1), (t = 1, . . . , T − 1), (A2.7)

F1t = F1,t−1 + vt, (vt, F2t) ∼MVN(0, ρ), ρ = (1, 0|0, 1), (A2.8)

Xit = λ
(1)
i F1t + λ

(2)
i F2t + eit, λi ∼ N(0, 1), eit ∼ N(0, 1), (t = 1, . . . , T ; i = 1, . . . , N).

(A2.9)

The following two DGP s were considered for the time varying parameters (α1t and α2t):

DGP1: α1t = (1/2)(1 + τt), α2t = τt + τ2
t , and β = 0.7.

DGP2: α1t = (1/3)sin(2πτt), α2t = cos(2πτt), and β = 0.7, (τt = t/T ; t = 1, . . . , T ).

We considered the following seven different values for the truncation constant k in the polyno-

mial approximations for the time varying parameters: k =
⌈
cT 1/7

⌉
, c = [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.4];

see Dong et al. [2015] for a discussion on the rationale for these choices; these values of k lie in

the interval [4, 10]. For a given value of the truncation parameter k, we chose the corresponding

bandwidth h as 1/k for the kernel estimation method. Since the FAR model contains a lag

term of the response variable as a regressor, we included a burn-in period of 100 time units.

Hence, the first 100 observations of each data sample were discarded. We chose the length of

time period T = 300, and the number of variables in the panel data N = 100. The estimated

in-sample sum of squared error (SSE) and out-of-sample mean square forecast errors (MSFE) are

reported in Tables 3.12 and 3.13. Table 3.12 shows that the Hermite polynomial estimation has

better in-sample performance (except when k = 9). Overall, the in-sample performances of the
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three estimation methods for the semi-parametric model are better than that of the parametric

method. The out-of-sample performance reported in Table 3.13 shows that the semi-parametric

model estimated by the kernel method is not very sensitive to the choice of the bandwidth com-

pared to the choice of the truncation parameter in the polynomial estimation methods. Further,

the forecasting performance of the former is also is better compared to other two estimation

methods. Overall, kernel estimation method performed better in both in-sample and out-of

sample forecasting.

Table 3.12: In-sample sum of squares of error[SSE] for the estimation methods when the factors
are estimated

k
DGP1 DGP2

Hermite Kernel Trig. Para. Hermite Kernel Trig. Para.

4 0.99 1.28 1.13 1.93 1.03 1.43 1.04 1.82
5 0.98 1.18 1.09 0.97 1.35 1.01
6 0.97 1.12 1.05 0.96 1.29 0.98
7 0.97 1.08 1.02 0.95 1.24 0.96
8 0.96 1.05 0.99 0.94 1.21 0.94
9 1.42 1.02 0.97 1.01 1.14 0.93
10 1.01 1.01 0.95 1.01 1.12 0.91

Notes: 1)The values under Trig. and Para. columns correspond to the results from trigonometric estimation and
parametric estimation respectively. 2) Bandwidth for kernel estimation is h = 1/k.

Table 3.13: Out-of-sample mean square of forecast error[MSFE] for the estimation methods
when factors are estimated

k
DGP1 DGP2

Hermite Kernel Trig. Para. Hermite Kernel Trig. Para.

4 1.10 1.27 3.23 2.33 1.09 1.40 2.01 2.07
5 1.11 1.15 3.17 1.12 1.30 2.18
6 1.19 1.09 3.13 1.15 1.22 2.51
7 1.44 1.06 3.29 1.40 1.16 2.71
8 1.67 1.05 3.53 1.64 1.12 2.95
9 2.19 1.03 3.74 3.22 1.09 3.02
10 5.58 1.02 3.88 4.21 1.06 3.00

Notes: 1)Full sample size is T = 300, and T1 = 250, where T1 is the end of first in-sample period. 2) One-step
ahead out-of-sample forecasting was conducted with expanding window. 3) For the kernel estimation method,
bandwidth h = 1/k. 4) The values under Trig. and Para. columns correspond to the results from trigonometric
estimation and parametric estimation respectively.



3.6. APPENDICES 113

Empirical Application

We use the setting of the empirical example in the empirical study section, Section 3.4, of this

Chapter to evaluate the three estimation methods. In this section we restrict to the FAR model

with the unknown factors replaced by the PCA factors, more specifically

Yt+1 = α′tF̃t + βYt + ηt+1, (A2.10)

where F̃t is the factor estimated by PCA. For this particular model, we estimated the time

varying parameter αt by three different methods: Hermite polynomial, trigonometric polynomial,

and the kernel method. We chose the truncation parameter k in the range [1, 10] for Hermite

and trigonometric polynomial estimations; for each value of the truncation parameter k, the

corresponding bandwidth for the kernel method was chosen as h = 1/k Table 3.14 provides the

estimated sum of squares of error[SSE] for the three estimation methods. The results in this

table show that the methods based on Hermite polynomial, trigonometric polynomial, and the

kernel method have approximately the same in-sample performance in terms of SSE.

Table 3.14: Estimated SSE (in-sample) using three different estimation methods

log(GDP) GDP growth rate Inflation

k Hermite Kernel Trig. Para k Hermite Kernel Trig. Para k Hermite Kernel Trig. Para

1 1.86 1.84 1.89 1.86 1 1.77 1.75 1.72 1.77 1 2.48 2.47 1.90 2.48

2 1.76 1.80 1.59 2 1.75 1.71 1.50 2 2.21 2.42 1.87

3 1.79 1.76 1.45 3 1.66 1.67 1.32 3 1.99 2.34 1.70

4 1.80 1.74 1.41 4 1.63 1.65 1.21 4 1.84 2.26 1.34

5 1.86 1.74 1.27 5 1.76 1.65 1.16 5 1.83 2.19 1.09

6 1.55 1.75 0.93 6 1.44 1.64 0.90 6 1.75 2.14 0.91

7 1.41 1.74 0.76 7 1.32 1.62 0.73 7 1.51 2.09 0.69

8 1.30 1.73 0.58 8 1.26 1.60 0.60 8 1.49 2.04 0.55

9 1.26 1.72 0.41 9 1.22 1.58 0.46 9 1.39 2.00 0.41

10 6.67 1.72 0.30 10 4.80 1.57 0.30 10 1.27 1.96 0.31

Notes: 1) The SSFE values have been multiplied by 1000. 2) The figures under Trig. column correspond to the
results for trigonometric estimation method. 3) The figures under para. column correspond to the parametric
FAR estimation.

Evaluation in terms of out-of-sample forecast performance

We evaluate the one-step ahead out of sample forecast performance of the methods for four

different initial in-sample periods. The four initial in-sample periods are defined in Table 3.15.

The symbol T2 in Table 3.15 indicates that it refers to the initial estimation and the cor-

responding forecast periods being 1959:Q1-2003:Q4 and 2004:Q1-2018:Q4, respectively. The
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Table 3.15: Initial in-sample and out-of-sample periods

First estimation period (Ti) Out-of-sample period

T1 1959:Q1-1998:Q4 1999:Q1-2018:Q4
T2 1959:Q1-2003:Q4 2004:Q1-2018:Q4
T3 1959:Q1-2008:Q4 2009:Q1-2018:Q4
T4 1959:Q1-2013:Q4 2014:Q1-2018:Q4

estimated out-of-sample SSFE for the estimation methods are reported in the Table 3.16. In

contrast to the results based on in-sample SSE, the out-of-sample SSFE for both Hermite and

trigonometric polynomials are comparably higher than that for kernel estimation method. Fur-

thermore, the out-of-sample SSFE for the two polynomial estimations are sensitive to the choice

of the truncation parameters. Although the foregoing evaluations considered only a small num-

ber of scenarios, the results are presented are sufficient for us to prefer the kernel method to the

two polynomial methods.

3.6.2 Appendix B: Additional results for bandwidth selection

In this appendix, we report the results on bandwidth selection for factor and parameter estima-

tions. These results are based on a simulation study and an empirical application.

Additional results from the simulation study

Simulation results when factors are known (observed)

The estimated Bias, RMSE, and standard deviation[SD] for β̂ and for the local estimates α̂1 and

α̂2 are reported in Tables 3.17-3.20. Table 3.17 provides the results for ten bandwidths when the

factors are known and are VMA(2). Both tables are for T = 100. Table 3.17 for VMA(2) factors

show that for most cases Bias of every estimate strictly increases with increasing bandwidth.

The RMSE of each estimate has a single minimum as a function of bandwidth. For each row of

RMSE in Table 3.17, the local minimum occurs for bandwidth between 0.483 and 1.133 (between

3rd and 6th columns).

Table 3.18 reports the corresponding results for the case when factors follow VAR(2) pro-

cesses. The main observations for this case are very similar to those for VMA(2) in the previous

paragraph. Except for α̂2 in DGP3, each row of RMSE, as a function of bandwidth, has one min-

imum. Therefore, the optimal bandwidth, with respect to RMSE, lies in the range of bandwidths
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Table 3.16: One-step ahead out-of-sample forecasting performance of three model estimation
methods, in terms of SSFE

k
Hermite Kernel Trigonometric

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

log(GDP)

1 2.80 2.31 0.51 0.06 2.74 2.23 0.51 0.06 3.27 2.09 0.93 0.19
2 3.38 2.52 0.96 0.44 2.67 2.07 0.53 0.07 3.50 2.56 1.22 0.15
3 4.37 3.29 0.99 0.20 2.64 1.97 0.55 0.09 5.69 4.59 1.97 0.34
4 7.32 4.33 1.60 0.37 2.69 1.99 0.56 0.09 6.64 5.53 2.50 0.83
5 10.58 7.60 4.00 1.46 2.76 2.02 0.58 0.09 7.65 6.34 2.98 0.81
6 15.28 12.26 3.50 0.55 2.83 2.05 0.61 0.08 10.58 7.76 3.87 0.81
7 23.85 18.52 8.16 1.26 2.90 2.09 0.64 0.07 28.74 12.06 6.58 1.68
8 53.87 32.69 20.25 2.71 2.99 2.15 0.67 0.07 33.70 19.81 6.09 2.07

GDP growth rate

1 2.53 1.83 0.53 0.06 2.49 1.75 0.52 0.05 3.41 2.25 1.34 0.23
2 3.35 2.42 0.97 0.45 2.45 1.62 0.53 0.05 4.01 3.12 1.30 0.17
3 3.93 2.80 0.85 0.11 2.47 1.57 0.54 0.07 5.33 4.39 1.75 0.43
4 8.45 4.68 1.88 0.26 2.51 1.61 0.54 0.07 5.98 4.96 2.24 0.71
5 10.97 8.37 3.73 1.54 2.54 1.66 0.56 0.08 7.99 5.05 2.14 0.41
6 12.99 9.81 3.62 0.78 2.58 1.71 0.59 0.08 14.68 11.10 4.80 0.35
7 21.68 16.94 9.45 1.37 2.64 1.77 0.61 0.08 28.74 14.50 8.49 2.77
8 1835 540 19.40 1.86 2.74 1.84 0.64 0.08 24.03 17.98 5.69 2.54

Inflation

1 2.86 2.51 0.47 0.28 2.87 2.51 0.47 0.27 2.83 2.56 0.71 0.33
2 3.40 2.88 0.82 0.36 2.90 2.52 0.46 0.27 3.75 3.37 0.88 0.49
3 4.11 3.70 1.22 0.52 2.90 2.53 0.45 0.26 4.76 4.40 1.16 0.52
4 5.96 5.42 1.40 0.42 2.92 2.57 0.46 0.26 5.99 5.38 1.61 0.55
5 9.54 8.58 2.31 0.61 2.95 2.63 0.48 0.26 6.61 5.90 1.98 0.44
6 13.63 12.38 5.20 1.90 3.04 2.73 0.51 0.27 9.43 7.83 3.00 0.53
7 20.58 19.08 9.04 1.69 3.18 2.88 0.55 0.28 11.30 9.56 3.87 1.10
8 33.28 29.08 19.80 4.55 3.37 3.06 0.59 0.29 14.42 11.26 4.43 1.61

Notes: 1) The SSFE entries in the table have been multiplied by 1000. 2) One-step ahead out-of-sample forecasting
is conducted with expanding window. 3) For the kernel estimation method, bandwidth h = 1/k.

chosen for this simulation study; it appears that a value between 0.483 and 1.133 (between 3rd

and 6th columns) is suitable.

Simulation with estimated factors

Table 3.19 provides the Bias, RMSE, and standard deviation[SD]of the estimates when the FAR

model uses estimated factors, instead of known factors. The results in these simulations are for

T = 100 and N = 100. Table 3.19 shows that, for DGP1 and DGP2, the Bias and SD of the

estimates strictly decrease as functions of bandwidth. For every DGP, RMSE has a minimum

between the two extremes of the bandwidth in the table; with respect to RMSE, an optimal

choice of the bandwidth could be a value between 0.05 and 2.0. In Section 3.4, the Empirical
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Application section of the chapter, we used cross validation as the criterion for choosing the

bandwidth.

Table 3.20 provide the bias, RMSE and standard deviation of the non-parametrically and

PCA estimated factors for nine combinations of [T,N ]. Results in the columns under the NP

factors are corresponding to the non-parametrically estimated factors, and the results under the

PCA column are for the estimated factors and the loadings using PCA.
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Table 3.17: Estimated Bias, RMSE, and standard deviation[SD] of estimates for the case when factors
are known and are VMA(2).

d 0.050 0.267 0.483 0.700 0.917 1.133 1.350 1.567 1.783 2.000

DGP1
α̂1 Bias 4.48 -32.13 -87.58 -143 -174 -190 -199 -204 -208 -210

RMSE 6596 471 315 257 263 277 289 298 304 309
SD 6592 458 293 210 194 192 192 194 195 195

α̂2 Bias -14.80 13.63 47.83 82.95 100 111 117 122 125 127
RMSE 6554 456 344 373 439 490 525 550 567 580
SD 6550 443 284 207 192 190 191 192 194 195

β̂ Bias -5.40 -1.27 -2.81 -9.50 -18.35 -26.14 -32.11 -36.50 -39.73 -42.13
RMSE 120 103 102 103 107 113 119 125 129 132
SD 120 103 102 102 105 110 115 119 123 125

DGP2
α̂1 Bias -2.79 0.20 3.23 2.42 4.00 6.72 9.18 11.08 12.51 13.58

RMSE 754 283 221 196 192 197 203 208 212 215
SD 753 282 217 189 178 174 173 173 173 174

α̂2 Bias -5.66 -11.27 -19.87 -23.66 -25.80 -27.08 -27.77 -28.14 -28.35 -28.46
RMSE 586 242 242 303 375 434 475 505 526 541
SD 585 231 182 161 154 152 152 153 154 155

β̂ Bias -2.19 -2.73 -3.44 -1.36 1.84 4.61 6.65 8.10 9.13 9.88
RMSE 120 103 101 101 105 111 116 121 125 128
SD 120 103 101 101 105 110 116 121 125 128

DGP3
α̂1 Bias 18.96 -53.71 -54.55 -66.89 -89.15 -100 -105 -107 -108 -108

RMSE 6665 566 365 286 281 290 299 305 310 314
SD 6637 519 356 251 218 208 205 203 203 202

α̂2 Bias -28.06 23.27 -19.87 -30.10 -4.19 20.75 39.46 52.96 62.77 70.01
RMSE 6622 550 557 657 703 722 732 737 740 741
SD 6595 507 362 268 237 227 224 222 221 221

β̂ Bias -5.31 -1.81 -0.99 2.21 4.43 5.84 6.84 7.58 8.12 8.52
RMSE 120 103 108 121 131 136 139 140 141 142
SD 120 103 108 121 131 136 139 140 141 141

DGP4
α̂1 Bias -6.44 -28.59 -45.11 -54.62 -61.36 -64.80 -66.34 -67.04 -67.37 -67.53

RMSE 755 305 271 273 280 286 290 293 296 297
SD 755 293 237 211 195 188 184 182 181 181

α̂2 Bias -2.25 -6.35 -41.72 -62.07 -55.81 -40.81 -26.39 -14.73 -5.73 1.18
RMSE 587 299 463 604 671 699 712 718 721 723
SD 586 244 206 188 177 172 170 169 168 168

β̂ Bias -2.67 -4.03 -11.04 -16.97 -20.23 -22.05 -23.17 -23.88 -24.37 -24.71
RMSE 120 104 106 119 130 135 138 139 140 140
SD 120 103 106 118 128 133 136 137 138 138

Notes: (1) The estimates in the table have been multiplied by 1000. (2) β̂ is the profile least squares estimate;
{α̂1, α̂2} are kernel based estimates of the time-varying coefficients of the factors. 3) Bandwidth for parameter
estimation is hp = dT−1/5;T = 100.
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Table 3.18: Estimated bias, RMSE, and standard deviation for the estimated coefficients with 10 band-
widths when factors are known and have VAR(2) structure, T = 100

d 0.050 0.267 0.483 0.700 0.917 1.133 1.350 1.567 1.783 2.000

DGP1
α̂1 Bias -4.60 2.69 5.84 7.63 8.71 9.39 9.83 10.13 10.34 10.49

RMSE 363 140 112 109 117 128 138 145 151 155
std 363 140 110 99.29 94.89 93.51 93.35 93.59 93.93 94.26

α̂2 Bias -1.72 -8.80 -14.72 -18.39 -19.46 -19.32 -18.85 -18.36 -17.95 -17.61
RMSE 293 137 188 274 358 422 467 498 520 536
std 293 120 111 116 122 128 133 136 138 140

β̂ Bias -2.05 1.46 2.30 3.28 4.66 6.03 7.15 8.02 8.67 9.16
RMSE 126 102 101 103 109 116 123 130 135 139
std 126 102 101 103 108 116 123 129 135 139

DGP2
α̂1 Bias -3.69 -1.99 0.01 0.20 -0.01 -0.27 -0.48 -0.66 -0.79 -0.90

RMSE 413 156 125 122 130 141 150 157 162 166
std 413 156 121 109 105 104 105 106 107 108

α̂2 Bias -0.77 -6.29 -12.72 -16.03 -16.49 -15.81 -14.92 -14.13 -13.48 -12.97
RMSE 328 153 200 285 368 431 476 506 528 543
std 328 137 129 134 142 149 153 157 159 161

β̂ Bias 3.11 4.10 3.38 3.36 3.81 4.36 4.84 5.22 5.51 5.73
RMSE 123 101 100 102 108 116 125 132 137 142
std 123 101 100 102 108 116 125 132 137 142

DGP3
α̂1 Bias -0.88 28.79 54.60 63.42 66.36 68.19 69.57 70.61 71.38 71.96

RMSE 364 168 185 207 225 238 247 253 258 261
std 364 151 132 126 123 122 121 121 121 121

α̂2 Bias -1.73 -30.57 -83.33 -111 -109 -96.56 -83.09 -71.91 -63.17 -56.43
RMSE 295 239 456 606 675 704 716 721 724 725
std 295 160 176 179 175 172 170 169 169 168

β̂ Bias -2.53 2.87 8.70 13.47 15.48 15.91 15.76 15.47 15.19 14.94
RMSE 126 104 114 137 153 161 166 168 169 170
std 126 104 114 136 152 161 165 167 168 169

DGP4
α̂1 Bias -0.28 15.08 24.09 22.29 19.13 17.37 16.58 16.25 16.12 16.08

RMSE 414 179 181 196 212 225 235 242 247 251
std 414 167 142 133 128 126 125 125 125 124

α̂2 Bias -1.33 -29.26 -79.49 -103 -98.13 -83.39 -69.03 -57.40 -48.43 -41.57
RMSE 330 254 470 618 684 711 722 728 730 732
std 329 180 204 209 205 201 199 198 197 197

β̂ Bias 1.91 1.02 -4.70 -8.61 -10.04 -10.11 -9.74 -9.30 -8.92 -8.60
RMSE 123 103 113 137 155 164 169 171 173 174
std 123 103 113 136 154 164 169 171 173 174

Notes: (1) The estimates in the table have been multiplied by 1000. (2) β̂ is the profile least squares estimate of
β; {α̂1, α̂2} are kernel based estimates of the time-varying coefficients of the factors. 3) Bandwidth for parameter
estimation is hp = dT−1/5;T = 100
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Table 3.19: Estimated bias, RMSE, and standard deviation for 10 bandwidths when factors are estimated
and have VMA(2) structure, [T,N ] = [100, 100]

d 0.050 0.267 0.483 0.700 0.917 1.133 1.350 1.567 1.783 2.000

DGP1
α̂1 Bias -54.44 -47.55 -91.12 -140 -167. -180. -187 -191 -193 -195

RMSE 2469 557 426 376 361 360 362 365 368 370
SD 2468 548 409 343 311 298 292 290 289 289

α̂2 Bias 22.71 79.12 222 345 403 431 446 455 461 464
RMSE 4772 574 476 576 651 691 714 729 738 745
SD 4770 539 289 189 165 158 156 155 154 154

β̂ Bias -3.81 -5.01 -7.49 -12.25 -16.35 -19.30 -21.39 -22.87 -23.95 -24.75
RMSE 123 104 103 102 102 103 103 104 104 104
SD 123 104 102 101 101 101 101 101 101 101

DGP2

α̂1 Bias -2.76 -0.80 27.20 55.34 71.55 79.29 83.05 85.01 86.12 86.78
RMSE 2291 552 423 374 356 349 347 347 347 348
SD 2291 551 418 360 333 321 315 312 311 310

α̂2 Bias -10.05 48.50 152 253 310 337 352 360 365 368
RMSE 2073 402 383 482 564 612 641 659 672 680
SD 2072 377 243 187 168 162 160 159 159 159

β̂ Bias -3.71 -2.04 -0.62 1.17 3.20 4.75 5.82 6.56 7.09 7.48
RMSE 123 109 108 108 108 108 109 109 110 110
SD 123 109 108 107 108 108 109 109 110 110

DGP3

α̂1 Bias -55.15 -2.47 15.77 35.47 49.77 59.46 65.85 70.14 73.10 75.22
RMSE 2490 639 515 441 405 394 393 394 396 398
SD 2488 631 509 422 370 346 335 330 327 326

α̂2 Bias -7.80 -47.98 -152 -170 -136 -108 -90.14 -77.66 -69.03 -62.86
RMSE 4776 608 616 718 735 735 734 734 733 733
SD 4773 549 320 219 196 190 188 187 187 187

β̂ Bias -3.81 -2.13 -0.21 4.49 7.20 8.57 9.38 9.89 10.24 10.48
RMSE 123 104 104 106 107 108 109 109 109 110
SD 123 104 104 105 107 108 108 109 109 109

DGP4

α̂1 Bias -13.44 -8.24 -11.31 -3.96 7.50 15.50 20.46 23.61 25.71 27.17
RMSE 2313 626 516 458 431 420 416 415 415 415
SD 2312 617 496 427 388 368 358 353 351 349

α̂2 Bias -27.02 -38.32 -102 -119 -95.68 -71.63 -54.00 -41.59 -32.77 -26.34
RMSE 2079 466 573 685 719 729 732 734 734 735
SD 2077 410 304 240 216 209 207 206 206 206

β̂ Bias -3.91 -3.34 -2.93 -4.41 -6.12 -7.08 -7.60 -7.90 -8.08 -8.20
RMSE 123 110 110 112 114 115 116 117 117 117
SD 123 110 110 112 114 115 116 116 117 117

Note: 1) The entries in the table have been multiplied by 1000. 2) Model is considered with nonparametrically
estimated factors. 3) The bandwidth for factor estimation is hf = 0.02.
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Table 3.20: Bias and standard deviations[SD] of the estimated factors and the factor loadings; hf = 0.05T−1/5

DGP1 and DGP3 DGP2 and DGP4

NP factors PCA factors NP factors PCA factors
N T 100 300 500 100 300 500 100 300 500 100 300 500

100 F̂1 Bias 200 200 200 217 200 200 217 215 216 217 215 216
SD 406 256 207 488 486 486 327 195 156 488 480 481
RMSE 1149 1244 1264 968 970 970 1042 1147 1170 968 968 968

F̂2 bias 95.2 94.5 95.3 26.6 94.5 95.3 26.7 26.8 28.0 26.6 26.8 28.0
SD 307 198 163 714 665 667 371 248 202 714 711 708
RMSE 1302 1331 1345 1557 1473 1473 1562 1506 1492 1557 1554 1556

λ̂1 bias -4.7 9.6 3.5 -4.1 6.5 2.7 -4.8 8.6 3.7 -4.1 6.2 3.4
SD 2059 1815 1707 1435 1358 1358 2083 1693 1606 1435 1424 1426

λ̂2 bias 2.0 -5.0 -0.8 1.3 -4.5 -0.7 1.1 -5.5 -0.7 1.3 -4.8 -0.5
SD 634 589 578 597 572 569 649 629 618 597 591 589

300 F̂1 bias 200 200 200 200 200 200 214 213 215 214 213 215
SD 402 254 205 491 486 482 324 192 153 481 478 477.
RMSE 1151 1247 1264 970 969 969 1041 1150 1170 968 968 968

F̂2 bias 96.7 95.9 100.4 96.7 95.9 100.4 28.5 27.7 30.5 28.4 27.7 30.6
SD 306 198 160 659 656 656 372 249 202 707 705 703
RMSE 1301 1335 1346 1474 1475 1470 1564 1512 1494 1557 1556 1555

λ̂1 bias 2.3 3.4 2.7 1.7 2.0 2.1 2.3 2.7 2.4 1.8 1.9 2.1
SD 2059 1817 1708 1366 1363 1358 2076 1695 1606 1431 1427 1426

λ̂2 bias -0.5 -1.4 -1.5 -0.5 -1.2 -1.3 -0.2 -1.5 -1.6 -0.4 -1.4 -1.5
SD 631 583 574 573 568 566 640 623 614 589 585 585

500 F̂1 bias 200 202 201 200 202 201 211 214 215 211 214 215
SD 404 255 205 490 485 481 325 192 154 479 476.5 476
RMSE 1149 1248 1264 969 971 970 1039 1149 1171 967 968 968

F̂2 bias 91.8 100 103 91.9 100 103 21.9 31.7 33.8 21.9 31.7 33.9
SD 304 196 161 653 653 654 373 249 203 707 705 702
RMSE 1302 1334 1346 1475 1473 1470 1565 1510 1492 1557 1556 1554

λ̂1 bias -0.4 0.1 4.3 -0.3 0.5 3.1 -0.1 -0.1 3.6 -0.4 0.6 2.8
SD 2052 1829 1712 1367 1363 1357 2072 1700 1607 1431 1428 1424

λ̂2 bias 0.2 0.2 -2.6 -0.1 0.2 -2.5 0.0 0.1 -2.9 -0.1 0.1 -2.8
SD 629 585 574 573 570 566 639 623 614 588 585.1 584

All the values are multiplied by 1000. The NP factors are estimated using hf = 0.05T−1/5
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Additional results from the empirical application

We evaluated 100 different values for the pair (hf , hp) in terms of out-of-sample forecast error

when expanding windows are used. We carried out separate evaluations for log(GDP ), GDP

Growth Rate, and Inflation. The initial estimation period is 1959:Q1-1998:Q4, and hence the

corresponding forecast period is 1999:Q1-2018:Q4. Tables 3.21 to 3.23 provide the out-of-sample

sum of squared forecasting error [SSFE]. For forecasting log(GDP), we chose hf = 0.011 because

Table 3.21 shows that hf = 0.011 provides the best overall performance in terms of SSFEs.

Similarly, for forecasting GDP Growth Rate we chose hf = 0.024 because Table 3.22 shows that

hf = 0.024 provides the best overall performance in terms of SSFEs. Finally, or forecasting

inflationf we chose hf = 0.04 because Table 3.23 shows that the chosen figure provides the best

overall performance in terms of SSFEs.

Table 3.21: Sum of squared forecast error for one-step ahead forecast of log(GDP)

Model 1
Model 2

hp\hf 0.011 0.014 0.017 0.020 0.024 0.027 0.030 0.033 0.037 0.040

0.017 8.12 13.04 15.66 15.93 65.15 554 190 336 277 8067 20.82

0.089 3.86 3.83 3.68 3.54 3.47 3.36 3.20 3.07 3.00 2.96 3.65

0.162 3.65 3.66 3.66 3.69 3.71 3.73 3.73 3.72 3.70 3.68 2.93

0.234 3.55 3.62 3.66 3.71 3.76 3.79 3.80 3.80 3.78 3.74 2.78

0.306 3.49 3.61 3.70 3.78 3.86 3.92 3.96 3.98 3.98 3.96 2.73

0.379 3.56 3.71 3.83 3.94 4.04 4.12 4.19 4.23 4.26 4.27 2.73

0.451 3.63 3.79 3.93 4.05 4.16 4.25 4.33 4.40 4.45 4.47 2.75

0.524 3.68 3.85 3.99 4.11 4.23 4.33 4.42 4.50 4.56 4.59 2.78

0.596 3.71 3.88 4.02 4.15 4.27 4.37 4.47 4.56 4.63 4.67 2.81

0.668 3.73 3.90 4.04 4.17 4.29 4.40 4.51 4.60 4.67 4.72 2.83

hp Model 3 Model 4

0.017 5.00 7.30 9.13 20.24 181 586 167 225 654 77.83 18.70

0.089 3.89 3.71 3.53 3.42 3.38 3.31 3.12 2.90 2.75 2.65 3.76

0.162 3.58 3.51 3.50 3.61 3.80 3.96 4.03 4.00 3.88 3.73 2.89

0.234 3.43 3.46 3.55 3.71 3.93 4.15 4.34 4.44 4.44 4.36 2.67

0.306 3.37 3.47 3.58 3.73 3.91 4.10 4.29 4.46 4.57 4.61 2.61

0.379 3.41 3.54 3.67 3.81 3.99 4.19 4.41 4.63 4.81 4.92 2.59

0.451 3.45 3.59 3.71 3.86 4.04 4.25 4.49 4.73 4.95 5.11 2.59

0.524 3.47 3.61 3.73 3.87 4.05 4.27 4.52 4.78 5.02 5.20 2.59

0.596 3.49 3.61 3.74 3.88 4.06 4.27 4.53 4.80 5.05 5.25 2.60

0.668 3.49 3.62 3.74 3.88 4.06 4.27 4.53 4.81 5.07 5.27 2.61

Notes: 1) All the values have been multiplied by 1000. 2) First in-sample period is 1959:Q1-1998:Q4 and the
corresponding forecast period is 1999:Q1-2018:Q4. 3) Models 1 and 3 contain NP estimated factors and Models
2 and 4 contain PCA estimated factors. 4) We use these results to select the optimal ĥf . 5) These forecasts used
expanding window.
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Table 3.22: Sum of squared (expanding window) forecasting error for the one-step ahead fore-
casting, GDP growth rate

Model 1
Model 2

hp\hf 0.011 0.014 0.017 0.020 0.024 0.027 0.030 0.033 0.037 0.040

0.017 23.62 36.33 38.06 40.19 43.50 43.84 56.84 64.02 138 5725 21.96

0.089 4.23 4.17 3.95 3.67 3.52 3.50 3.54 3.60 3.62 3.61 3.38

0.162 3.41 3.34 3.28 3.28 3.31 3.36 3.40 3.42 3.44 3.44 2.70

0.234 3.16 3.17 3.19 3.21 3.22 3.22 3.22 3.22 3.21 3.20 2.58

0.306 2.96 2.99 3.02 3.04 3.05 3.05 3.06 3.06 3.06 3.05 2.53

0.379 2.89 2.92 2.94 2.95 2.96 2.97 2.97 2.98 2.98 2.99 2.51

0.451 2.87 2.90 2.91 2.92 2.92 2.93 2.93 2.94 2.95 2.96 2.51

0.524 2.87 2.89 2.90 2.90 2.90 2.90 2.91 2.92 2.93 2.94 2.52

0.596 2.88 2.89 2.89 2.89 2.88 2.89 2.89 2.90 2.92 2.94 2.53

0.668 2.88 2.89 2.89 2.88 2.87 2.87 2.88 2.89 2.91 2.93 2.54

hp Model 3 Model 4

0.017 9.52 14.47 18.84 21.81 26.01 27.78 53.01 44.62 58.30 136 21.55

0.089 3.99 3.96 3.77 3.55 3.41 3.38 3.41 3.47 3.52 3.53 3.47

0.162 3.37 3.31 3.27 3.27 3.31 3.35 3.40 3.42 3.44 3.43 2.72

0.234 3.14 3.17 3.19 3.20 3.21 3.22 3.21 3.20 3.19 3.17 2.54

0.306 2.93 2.98 3.01 3.03 3.03 3.04 3.03 3.03 3.02 3.01 2.49

0.379 2.84 2.89 2.92 2.93 2.94 2.94 2.94 2.94 2.94 2.94 2.49

0.451 2.82 2.86 2.88 2.88 2.89 2.89 2.89 2.89 2.89 2.90 2.50

0.524 2.81 2.84 2.86 2.86 2.85 2.85 2.86 2.86 2.87 2.88 2.52

0.596 2.81 2.83 2.84 2.84 2.83 2.83 2.84 2.84 2.85 2.87 2.54

0.668 2.81 2.83 2.83 2.83 2.82 2.82 2.82 2.83 2.84 2.86 2.56

Notes: 1) All the values are multiplied by 1000. 2) First in-sample period is 1959:Q1- 1998:Q4 and forecasting
period is 1999:Q1- 2018:Q4. 3) Model 1 and 3 contain NP estimated factors and Model 2 and 4 contain PCA
estimated factors. 4) We use these reults to select the optimal hf , ĥf , to the main part of the chapter.
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Table 3.23: Sum of squared (expanding window) forecasting error for the one-step ahead fore-
casting, inflation

Model 1
Model 2

hp\hf 0.011 0.014 0.017 0.020 0.024 0.027 0.030 0.033 0.037 0.040

0.017 20.93 43.29 49.81 42.97 44.01 46.22 59.42 65.87 284 246 18.22

0.089 4.48 4.44 4.23 4.02 3.85 3.71 3.62 3.62 3.66 3.71 4.43

0.162 3.26 3.14 3.06 3.01 2.97 2.95 2.93 2.92 2.93 2.93 3.09

0.234 3.04 3.01 2.98 2.96 2.94 2.92 2.90 2.89 2.88 2.87 2.97

0.306 2.95 2.94 2.93 2.91 2.89 2.88 2.86 2.85 2.84 2.83 2.94

0.379 2.91 2.90 2.89 2.88 2.86 2.85 2.84 2.83 2.82 2.81 2.92

0.451 2.89 2.88 2.87 2.86 2.85 2.84 2.83 2.82 2.81 2.80 2.92

0.524 2.87 2.87 2.86 2.85 2.84 2.83 2.82 2.81 2.81 2.80 2.91

0.596 2.86 2.86 2.85 2.85 2.84 2.83 2.82 2.81 2.80 2.80 2.91

0.668 2.86 2.85 2.85 2.84 2.83 2.83 2.82 2.81 2.80 2.80 2.90

hp Model 3 Model 4

0.017 7.51 17.38 24.16 21.85 21.03 26.41 30.90 39.43 80.71 299 13.19

0.089 4.55 4.26 4.03 3.95 3.91 3.84 3.78 3.79 3.86 3.94 5.41

0.162 3.90 3.67 3.50 3.40 3.34 3.31 3.30 3.30 3.30 3.30 3.62

0.234 3.54 3.45 3.39 3.35 3.31 3.29 3.27 3.24 3.22 3.20 3.35

0.306 3.40 3.35 3.31 3.27 3.24 3.21 3.18 3.16 3.13 3.11 3.31

0.379 3.34 3.30 3.26 3.22 3.18 3.15 3.13 3.10 3.08 3.06 3.31

0.451 3.31 3.27 3.23 3.19 3.15 3.12 3.10 3.08 3.06 3.04 3.32

0.524 3.30 3.25 3.21 3.17 3.14 3.11 3.08 3.06 3.04 3.03 3.33

0.596 3.29 3.24 3.20 3.16 3.13 3.10 3.07 3.05 3.04 3.02 3.33

0.668 3.28 3.23 3.19 3.15 3.12 3.09 3.07 3.05 3.03 3.02 3.34

Notes: 1) All the values are multiplied by 1000. 2) First in-sample period is 1959:Q1- 1998:Q4 and forecasting
period is 1999:Q1- 2018:Q4. 3) Model 1 and 3 contain NP estimated factors and Model 2 and 4 contain PCA
estimated factors. 4) We use these reults to select the optimal hf , ĥf , to the main part of the chapter.

We use these three different bandwidths to estimate the factors in out-of-sample (expanding

window) forecasting in the main chapter.
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3.6.3 Appendix C: Rolling window forecast

This section provides results to support our choice to use expanding window, instead of the rolling

window, in the empirical application presented in Section 3.4. We considered rolling window

forecast for the following cases. Window sizes: 80 and 120; bandwidth for factor estimation: hf =

0.011; and ten values for hp. Table 3.24 provides the values of R2
os with AR(1) as the benchmark

model. The results in Table 3.24 show that FAR models with non-parametrically estimated

factors have negative values for R2
os for forecasting each of the three variables. The FAR models

with PCA factors have better performance with hp = 0.668 for forecasting log(GDP). For

forecasting GDP Growth Rate, except for Model 2, every model specification with any of the

bandwidths considered have lower predictive performance compared to the AR models. For

Inflation forecasting, all the model specifications have negative R2
os with the window size 80.

Model 2 with hp = 0.451 has better forecast performance than with window size 120. Overall,

for a few bandwidth options, semi-parametric FAR models with PCA factors have better out-

of-sample forecasting performance compared to the AR models and the mean model. Hence, for

forecasting any of the three response variables by a semi-parametric FAR model, the performance

with expanding window is better than that with the rolling window.
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Table 3.24: Out-of-sample performance of the models relative to AR(1), in terms of R2
os for

rolling window forecast

Window size hp 0.017 0.089 0.162 0.234 0.306 0.379 0.451 0.524 0.596 0.668

log(GDP)

80 Model 1 -121 -0.50 -0.19 -0.10 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05
Model 2 -632 -0.78 -0.27 0.01 0.08 0.11 0.12 0.14 0.15 0.15
Model 3 -114 -0.42 -0.18 -0.11 -0.14 -0.16 -0.16 -0.15 -0.15 -0.14
Model 4 -848 -0.91 -0.32 -0.03 0.03 0.04 0.05 0.06 0.06 0.07
AR(4) -1.50

120 Model 1 -4.33 -0.26 -0.19 -0.15 -0.19 -0.21 -0.20 -0.19 -0.18 -0.17
Model 2 -12.73 -0.27 -0.04 0.07 0.09 0.09 0.09 0.09 0.09 0.09
Model 3 -2.66 -0.21 -0.29 -0.27 -0.32 -0.33 -0.33 -0.32 -0.31 -0.30
Model 4 -21.17 -0.41 -0.09 0.04 0.09 0.10 0.10 0.10 0.10 0.10
AR(4) -1.44

GDP growth rate

80 Model 1 -126 -1.29 -0.54 -0.32 -0.26 -0.22 -0.18 -0.16 -0.14 -0.13
Model 2 -1072 -1.28 -0.54 -0.19 -0.08 -0.04 -0.02 0.00 0.01 0.02
Model 3 -34.54 -1.09 -0.51 -0.35 -0.30 -0.27 -0.24 -0.22 -0.20 -0.19
Model 4 -1132 -1.57 -0.63 -0.23 -0.12 -0.09 -0.07 -0.06 -0.05 -0.05
AR(4) -0.01
Mean model -0.15

120 Model 1 -28.25 -0.88 -0.44 -0.29 -0.23 -0.18 -0.15 -0.12 -0.10 -0.09
Model 2 -22.58 -0.64 -0.22 -0.03 0.02 0.01 0.00 -0.01 -0.01 -0.02
Model 3 -5.14 -0.63 -0.44 -0.33 -0.29 -0.24 -0.20 -0.18 -0.17 -0.16
Model 4 -27.87 -0.77 -0.29 -0.08 -0.01 -0.01 -0.03 -0.04 -0.05 -0.05
AR(4) 0.01
Mean model -0.18

Inflation

80 Model 1 -1619 -1.67 -0.82 -0.58 -0.41 -0.31 -0.26 -0.23 -0.22 -0.21
Model 2 -188 -3.01 -1.29 -0.53 -0.24 -0.15 -0.12 -0.10 -0.10 -0.09
Model 3 -382 -1.22 -0.76 -0.62 -0.52 -0.43 -0.37 -0.33 -0.31 -0.29
Model 4 -81.86 -2.52 -1.33 -0.71 -0.39 -0.30 -0.26 -0.24 -0.23 -0.22
AR(4) -0.13
Mean model 0.10

120 Model 1 -9.23 -0.61 -0.41 -0.19 -0.08 -0.05 -0.03 -0.03 -0.03 -0.03
Model 2 -13.12 -0.85 -0.33 -0.02 0.04 0.05 0.06 0.06 0.05 0.05
Model 3 -2.16 -0.35 -0.42 -0.30 -0.22 -0.18 -0.16 -0.15 -0.14 -0.13
Model 4 -7.94 -0.82 -0.53 -0.20 -0.09 -0.06 -0.05 -0.04 -0.04 -0.04
AR(4) -0.12
Mean model -0.17

Notes: 1) The hf for the three response variable is 0.011. 2) Mean model results for log(GDP) is not included as
the series is non-stationary. 3) The highlighted values are corresponding to the highest R2

os.
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Chapter 4

Forecasting Univariate Time Series

using a Semiparametric Multi-level

FAR model

4.1 Introduction

Accurate forecasting of key economic variables, such as GDP growth and inflation, is central to

making economic policy decisions. Therefore, forecasting GDP growth and inflation is a popular

topic among applied researchers. In a method that has attracted considerable attention in the

recent literature, an approximate factor model and a regression model are used for predicting

macroeconomic variables; this method has two steps for using the two models jointly in a

sequential manner. In the first step, the approximate factor model is used for estimating a small

number of global (pervasive) factors to extract a large proportion of the information contained in

a set of panel data on a large number of economic variables that are potential predictors. In the

second step, the generated factors are included in a separate model, called a factor augmented

regression (FAR) model, for forecasting the desired macroeconomic variable. This method was

reviewed and extended in the previous two chapters. The objective of this Chapter is to build

on the previous chapters and develop a new improved method for forecasting macroeconomic

variables.

Albeit recent, there is a growing literature on what are called multi-level factor models

(for example, Wang 2008, Boivin and Ng 2006, Beck et al. 2009, Breitung and Eickmeier 2016,

and Rodŕıguez-Caballero 2021). In the factor models studied in the previous Chapters and
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those studied in the literature, the factors are permitted to impact all the variables in the high-

dimensional panel data. Consequently, a large number of factor loadings need to be estimated.

The idea that underlies the multi-level panel model is that researchers are able to use their prior

knowledge and partition the panel data into several distinct groups; as an example, the groups

may be economic sectors, or geographical regions. The factors generated using the variables

in one particular group are assumed to impact only the variables in that particular group, not

the variables in the other groups. These restrictions were exploited in the proposition of the

two-level factor model, in which the global (pervasive) factors affect all the variables in the panel

and the group (non-pervasive) factors impact only the specific group.

The aim of this Chapter is to combine the literature on the aforementioned two-level factor

models and the new developments in the previous two chapters of this thesis, and propose a two-

level FAR model that allows for a mixture of I(1) and I(0) level-1 and level-2 factors and time

varying coefficients for the factors. We call this model the semi-parametric two-level FAR model.

We evaluate the accuracy of proposed model for out-of-sample predictions of log(GDP), GDP

growth, and inflation. We compare our proposed method with its competitors that include the

mixture-FAR model and the semi-parametric one-level mixture FAR model studied in Chapters

2 and 3 respectively, and some time series models.

The two-level factor model is estimated by the method introduced by Breitung and Eickmeier

[2016], where the panel of only I(0) variables and thus I(0) factors are studied. We adapt this

method to our panel data model setup with I(1) and I(0) variables and hence a mixture of

I(0) and I(1) global and group factors. A kernel method that is similar to the one proposed in

Chapter 3 is used for the estimation of semi-parametric two-level FAR model.

Although there are advances made on the development of the estimation of multi-level factor

models (Wang 2008, and Breitung and Eickmeier 2016), empirical applications of this method

were largely focused on explaining the underlying behavior of business cycles, international

business cycles and international trades. Beck et al. [2009] used the two-level factor model (with

national factors and regional factors) and showed that they play a major role in explaining

inflation variability in the regional inflation from six Euro area countries. To our knowledge, the

two-level factors are not yet used to improve the FAR model which is widely used for forecasting

macroeconomic variables.

For forecasting I(0) variables, inflation and GDP growth rate, using FAR models and time

series models, the aforementioned studies recommend the rolling window-sampling scheme over
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the recursive (expanding) window sampling scheme. Further, Rossi and Inoue [2012] derived an

optimum rolling widow size for forecasting GDP growth and inflation using time series models

with observable variables. Recently, Inoue et al. [2017] studied such time series models with

time-varying parameters and derived the optimal rolling window size for forecasting stationary

macroeconomic variables. They found that the proposed method works well for forecasting in-

flation but not for GDP growth. The model that we study in this Chapter has several additional

features: two-level factor structure in the FAR, factors are mixture of I(0) and I(1), and factor

parameters are time-varying. In this Chapter, we will consider both the expanding (recursive)

window and the rolling window sampling schemes and assess the sensitivity of forecasts to the

two sampling schemes as well to the window size.

The main contribution of this Chapter is to develop a method for forecasting univariate

macroeconomic variables by extending the well-known factor model to include the following

three new features: the factor model and thus the FAR model include two-level factors, the

factor parameters are time-varying, and the FAR includes mixture of I(1) and I(0) two-level

factors. As will be seen later in this Chapter, based on prior knowledge or selection criteria such

as goodness-of-fit and correlation measures, we can select the appropriate number of global and

group factors as predictors in the FAR model for the desired macroeconomic variable. Thus,

this Chapter builds three separate semi-parametric two-level FAR models for the three variables

log(GDP), GDP and inflation.

The rest of this Chapter is organized as follows. Section 4.2 introduces the model setup and

notations, and proposes a kernel method for the estimation of the semi-parametric mixture-FAR

model with two-level factor structure. Section 4.3 reports the results of the estimation and the

selection of global and group factors as predictors. Section 4.4 evaluates the accuracy of the

models’ forecasts; the results are analysed in these sections. Section 4.5 concludes the Chapter.

The results of the empirical analysis are reported in tables and plots in the Appendix to this

Chapter.

Related literature

Inflation and GDP growth forecasts are frequently produced and used to improve decision-

making at the micro and macro levels. Therefore, generating accurate forecasts of GDP growth

and inflation of major countries and regions has been the main focus of a vast number of studies

in the economic and econometric literature. For example, see Banerjee and Marcellino [2006] for

forecasting GDP growth and inflation for the US, Demers and Cheung [2007] for Canada, Barnett
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et al. [2014] for the UK, and Banerjee et al. [2005] for Euro area, and Lahiri and Sheng [2010] for

G7 countries. See also the recent survey papers Eickmeier and Ziegler [2008] for forecasting GDP

growth and inflation and Kavtaradze and Mokhtari [2018] for inflation. Forecasting inflation

was shown to be difficult (Stock and Watson 2007) which led to the emergence of huge literature

in theory and applications on modeling and assessing the accuracy of forecasting inflation by

applied researchers and central bankers.

Abbate and Marcellino [2014] showed that the main reason for predictive failure is the use

of single models that by necessity can only incorporate a small subset of the variables. Thus,

predictive failure or inaccurate forecast is the result of (1) not taking account of all information

in the data, and (2) not taking account of model uncertainty.

Since the advent of the factor models by Stock and Watson [2002a] and Stock and Watson

[2007], Bai and Ng [2002] and Bai and Ng [2006] and thus the FAR model, many of the afore-

mentioned studies assessed the accuracy of forecasts by the univariate FAR model relative to

standard time series models and those based on economic theory such as Phillips curve. Evidence

in the huge literature on this topic indicate that the FAR model captures a high proportion of

the information content in the large panel data through only a few factors. Such FAR mod-

els out-perform the time series models and economic theory based model in the out-of-sample

predictions.

The standard FAR model frequently ignores structural changes over time. When the rela-

tionship between a macroeconomic variable and its fundamentals changes over time, the un-

derlying parameters and structure might change with time as well. Models with time varying

parameters (TVP) explicitly allow non-linear reactions to the structural changes. These mod-

els were found to produce more precise estimates over other econometric models. The most

important advantage of the model with time-varying coefficients is that it corrects specification

errors as a result of incorrect functional forms, omitted variables and measurement errors in

models. Moreover, the TVP models are able to show improved forecasting ability even when

dealing with non-stationary variables and seasonally unadjusted data (Abbate and Marcellino

2014 and Kavtaradze and Mokhtari [2018]). In this Chapter, we allow the parameters of FAR

model to be time-varying and evidence in the literature indicates that such model tends to

improve out-of-sample predictions.

Testing and modeling structural instabilities in the factor loadings and the FAR model pa-

rameters were given attention in the recent literature. For example, see Banerjee et al. [2008]
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and Stock and Watson [2009], Corradi and Swanson [2014], and Su and Wang [2017]. Albeit

the development of methods allows structural instabilities in both panel data model and FAR

model, only the in-sample properties of these models were studied and the performance of such

an FAR model in the out-of-sample prediction is largely unknown. Wei and Zhang [2020] used a

time-varying diffusion index model for forecasting stationary variables. Furthermore, the afore-

mentioned methods are developed only for the I(0) factors and the FAR model for I(0) variables.

In this thesis, we assume constant factor loadings and allow TVP in the FAR model.

Recently, a methodology for the multi-level factor model of I(0) variables was developed

and studied the movements of international business cycle (nationally and regionally) and in-

ternational trades. Several approaches have been proposed for estimating multi-level factors.

Wang [2008] developed an iterative principal component (PC) method for a large dimensional

multi-level factor model with stationary factor structure, and showed consistency and asymp-

totic normality of the factor estimators. In a comparative study of alternative multi-level factor

estimation methods, such as the two-step PCA estimator, a sequential PCA approach, and a

quasi-ML approach, Breitung and Eickmeier [2016] recommended the use of a sequential least

squares (LS) algorithm for the estimation of multi-level factors and implemented them to es-

timate two-level and three-level factors. This LS method is a two-step approach based on

a canonical correlation analysis (CCA). Through a simulation study, Breitung and Eickmeier

[2016] showed that, under certain conditions, sequential LS estimators tend to outperform the

quasi ML estimator and two-step PCA estimator. Choi et al. [2018] proposed a sequential PCA

estimation approach to consistently estimate global and regional stationary factors and derived

the asymptotic normality of the PCA estimators. Choi et al. [2018] used the CCA, which is

similar to Breitung and Eickmeier [2016], to estimate the initial global factors and multi-level

factors. Under the assumption that the number of global factors are known, Choi et al. [2018]

also proposed several information criteria to estimate the optimal number of regional factors.

In this Chapter, we adapt the LS method introduced by Breitung and Eickmeier [2016],

which was proposed for the panel with I(0) variables, to the panel with both I(0) and I(1)

variables.
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4.2 Methodology

4.2.1 Model setup and notations

Let X[T×N ] = {Xit; t = 1, . . . , T, i = 1, . . . , N} be the panel of observable time series that has

a common factor structure, and let Y[T×1] = {Yt; t = 1, . . . , T} be the observable series that we

wish to forecast. The factor model with one-level (global) factor structure given as,

one-level factor model: Xit = λ′iFt + eit, (i = 1, . . . , N, t = 1, . . . , T ), (4.1)

where F = {Ft; t = 1, . . . T} is the T × r matrix of unobservable global (pervasive) factors, Λ =

{λi; i = 1, . . . , N} is the N ×r matrix of factor loadings, and e = {eit; i = 1, . . . , N, t = 1, . . . , T}

is the T ×N matrix of errors of the factor model.

Let us consider a two-level factor model which consists of a set global (level-1) factors and

another set of group (level-2) factors. The global factors affect all the variables in the panel

model, whereas each of the group factors affect only a group of variables in the panel.

Remark 1: In the empirical application that we study in this paper, we develop a semi-

parametric two-level FAR model for forecasting three macroeconomic variables, GDP in level

(I(1)) and GDP growth and inflation (both are (I(0)). We use the widely studied FRED-QD

data set in the factor model and thus the construction of FAR model for forecasting the three

variables. Stock and Watson (2002) categorised 100 sub-aggregate variables into 12 groups; see

the Appendix for details. In our applications, we estimate level-1 factors and level-2 factors from

12 groups. Therefore, we refer to these factors as group factors. We will use this terminology

throughout the paper. Further we use global factor and level-1 as well as group factor and level-2

factor synonymously.

Remark 2: To our knowledge, formal methods are not yet developed for estimating the number

of levels in multi-level factors. The choice of the number of (level 1 and level 2) factors depends

on the problem in hand. Studies by Breitung and Eickmeier [2016], Beck et al. [2009], and Hirata

et al. [2013] provide heuristic methods to determine the number of levels, the size of S, and the

number of level 1 and level 2 factors in their empirical analyses. We proposed heuristic methods

that suit our empirical setting, which involves generating two-level factors for forecasting GDP,



4.2. METHODOLOGY 133

GDP growth and inflation. Stock and Watson categorized the panel of variables into 12 groups.

Therefore, we set S = 12 in our empirical study.

Let s indicate group s and xs,it be the ith variable in group s observed at time t. Then, the

two-level factor model can be specified as,

Two-level factor model: xs,it = γ′s,iHt +λ′s,iRs,t + es,it (i = 1, . . . , Ns, s = 1, . . . , S), (4.2)

where Ht is an rG × 1 vector of global factors, Rs,t is an rs × 1 vector of group factors, γs,i and

λs,i respectively are their factor loadings, es,it is the set of idiosyncratic errors, S is the number

of groups and Ns is number of variables in group s such that N = N1 + . . .+NS .

Let us express model (4.2) in a matrix form as,

Xs,t =

(
Γs Λs

) Ht

Rs,t

+ es,t, (4.3)

where Γs and Λs are factor loadings corresponding to global and group factors for the group s,

and es,t, Xs,t are the sets of Ns idiosyncratic errors and variables in group s respectively. The

two-level factor model (4.3) with S groups with necessary block restrictions can be specified as,


X1,t

...

XS,t

 =



Γ1 Λ1 0 . . . 0

Γ2 0 Λ2 . . . 0

...
. . .

...

ΓS 0 0 . . . ΛS





Ht

R1,t

...

RS,t


+


e1,t

...

eS,t

 (4.4)

Xt = ΛmFmt + et, (4.5)

whereXt = (X ′1,t, . . . , X
′
S,t)
′, Fmt = (H ′t, R

′
1,t, . . . , R

′
S,t)
′ and Λm = (Γ′,Λ) for Λ = diag(Λ1, . . . ,ΛS),

Γ = (Γ′1,Γ
′
2, . . . ,Γ

′
S)′, Λ is a block diagonal matrix and each of its elements is the factor loadings

for variables in each group. The number of global factors, rG, and group factors rR =
∑S

s=1 rs

are assumed to be known. Thus, the two-level factor model can be succinctly defined as,

X = FmΛm
′
+ e. (4.6)

whereX = (X1, . . . , XT )′. If ΓsHt is known for (s = 1, . . . , S), then the group specific factors Rs,t

and their factor loadings Λs can be estimated from the factor model, Xs,t−ΓsHt = ΛsRs,t+ es,t

using data from group s. On the other hand, if ΛRt is known, then Ht and Γ can be obtained
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from factor model Xt − ΛRt = ΓHt + et using the data from all the S groups. However, in

practice, both global and group specific factors and their factor loadings are unknown and they

need to be estimated jointly.

In this model, we allow both global and group factors to be a mixture of I(0) and I(1) latent

time series. So, let us define Fmt =
(
Em

′
t , Gm

′
t

)′
, where Emt is the set of non-stationary global

and group specific factors and Gm
′

t is the set of such stationary factors. Therefore,

Emt = Emt−1 + ut, (4.7)

where ut is stationary. Then, the two-level factor model takes the form,

Xt = Λ(m1)Emt + Λ(m2)Gmt + et, (t = 1, . . . , T ), (4.8)

where Λ(m1) and Λ(m2) are the sets of factor loadings corresponding to non-stationary and

stationary factors respectively.

Let us assume that the factor parameters are time-varying. Then, the semi-parametric two-

level FAR model for forecasting Yt at t+h, can be specified as,

Yt+h = α′tE
m
t + β′tG

m
t + ω′Wt + εt+h = θ′tF

m
t + ω′Wt + εt+h, (t = 1, . . . , T ), (4.9)

where Wt is a set of observable regressors, ω is n × 1 vector of unknown constant parameters.

The set of θt = (α′t, β
′
t)
′ is an r× 1 set of unknown time-varying parameters which are functions

of time and take the following form,

αt = α(τt) and βt = β(τt) for τt = t/T, t = 1, . . . , T,

where α(.) and β(.) are unknown smoothing functions.

The novelty of this model is that it is a flexible and richer semi-parametric FAR model with

two-level factors which are in turn a mixture of I(0) and I(1) factors. We refer to this model as

semi-parametric two-level FAR model.

4.2.2 Two-level factor estimation and identification

Recently, Breitung and Eickmeier [2016] proposed a sequential least squares (LS) approach for

estimating two-level and three-level factors from the factor model with stationary variables.
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In this paper, we extend this method to the two-level factor model with stationary and non-

stationary factors. Therefore, we need to justify if some conditions are met in applying this

method to empirical problems.

As the coefficients in model (4.9) that correspond to nonstationary and stationary time series

are expected to have different convergence rates, we derive two new scaling matrices. Let p1

and q1 be the number of I(1) and I(0) global factors respectively, and let ps,2 and qs,2 be the

number of I(1) and I(0) group factors generated from group s. Let us define two different scaling

matrices for global and group factors as,

D1T = diag(TIp1 , T
1/2Iq1)rG×rG , D2T = diag(D1,2T , . . . , DS,2T )rR×rR , (4.10)

where Ds,2T = diag(TIps,2 , T
1/2Iqs,2)rs×rs for s = 1, . . . , S.

We impose the following restrictions in order to estimate and identify the global and group

factors using the PCA estimation methods. Two normalization and diagonalization restrictions

are imposed to estimate global factors, and another two that ensure the identification of the

regional factors. These restrictions are:

i) ΣH = D−1
1T

∑T
t=1HtH

′
t and Σs = D−1

s,2T

∑T
t=1Rs,tR

′
s,t for s = 1, . . . , S are orthonormal

matrices.

ii) The two matrices N−1Γ′sΓs and N−1λ′sλs are diagonal for s = 1, . . . , S.

iii) S blocks of group factors are uncorrelated with the block of global factors.

Sequential least-square estimation of two-level factor model

Let us define the objective function, which is the sum of square residuals (SSR) of model (4.2),

as,

SSR(Fm,Λm) =

S∑
s=1

Ns∑
i=1

T∑
t=1

(
xs,it − γ′s,iHt − λ′s,iRs,t

)2
. (4.11)

The approach to the estimation of two-level factor involves the following steps:

Step 1: Find a set of initial estimators for both global and group factors, which we denote by,

Ĥ(0) =
(
Ĥ

(0)
1 , Ĥ

(0)
2 , . . . , Ĥ

(0)
T

)
and R̂

(0)
s =

(
R̂

(0)
s,1, R̂

(0)
s,2, . . . , R̂

(0)
s,T

)
for all s = 1, . . . , S respectively.

Breitung and Eickmeier [2016] and Wang [2008] have shown that initial values for two level

factors can be consistently estimated using Canonical Correlation Analysis (CCA), Maximum
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Likelihood Estimating (MLE), or Principal Components (PC) analysis. Employing a consistent

estimator for initial values in the algorithm, we can ensure that the estimation starts in a

neighbourhood of the global minimum and it will avoid unnecessary iterations.

Step 2: Estimate the factor loadings of global and group factors using the factor model with

known initial factors, defined as,

xs,it = γ′s,iĤ
(0)
t + λ′s,iR̂

(0)
t + ẽs,it. (4.12)

Let the estimators of factor loading be γ̂
(0)
s,i and λ̂

(0)
s,i for S groups. In matrix form, γ̂

(0)
s =

(γ̂
(0)
s,1 , γ̂

(0)
s,2 , . . . , γ̂

(0)
s,Ns

)′ and Λ̂
(0)
s =

(
λ̂

(0)
s,1, . . . , λ̂

(0)
s,Ns

)′
.

Step 3: Construct the matrix of (estimated) factor loadings with block-diagonal matrix for

the group factor loadings as follows:

Λ̂m(0) =



Γ̂
(0)
1 Λ̂

(0)
1 0 · · · 0

Γ̂
(0)
2 0 Λ̂

(0)
2 · · · 0

...
. . .

...

Γ̂
(0)
S 0 0 Λ̂

(0)
S


(4.13)

Step 4: Re-estimate the factors using updated factor loading matrix Λ̂m(0).

F̂
m(1)
t =



Ĥ
(1)
t

R̂
(1)
1,t

...

R̂
(1)
S,t


=
(

Λ̂m(0)′Λ̂m(0)
)−1

Λ̂m(0)′Xt. (4.14)

Step 5: Replace the factors in (4.12) with the updated factors, and re-estimate the factor

loadings.

Step 6: Repeat step 2 to step 5 until the factor and loading matrices converge with a norm

1× 10−4 (or 1000 iterations).

It was shown that this LS approach consistently estimates the two-level factors and the

factor loadings only up to a rotation, Q. See Wang [2008] and Breitung and Eickmeier [2016]
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for details. The semi-parametric FAR model (4.9) two-level factor structure can be specified as,

Yt+h = θ′tF
m
t + ω′Wt + εt+h = θ′tQ

−1
(
QFmt − F̂mt + F̂mt

)
+ ω′Wt + εt+h

= θ′tQ
−1F̂mt + ω′Wt + θ′tQ

−1
(
QFmt − F̂mt

)
+ εt+h

= θ′tQ
−1F̂mt + ω′Wt + error. (4.15)

Remark 3: In the empirical application presented in Section 4.3, we forecast GDP, GDP

growth rate and inflation. The level 2 factor structure in the two-level factor model depends

on the practical problem in hand. In the context of improving the widely studied FAR model

with global factors forecasting, we aim to chose a set of global and group factors collectively

the information contents in the factors may enrich the FAR model for forecasting a specific

macroeconomic variable. To this end, the main question we seek to answer is: what is the

optimum number of global factors and the optimum number of group factors should be included

in the FAR model for forecasting GDP growth? In Chapter 2, we have eight global factors

estimated from the panel of 100 sub-aggregate variables by the PCA method. Of these eight

factors, we choose the ones that are highly correlated with GDP growth and also based on the

increase in R2 goodness-of-fit measure by each factor. Additionally, we use the plots of these

global factors with GDP growth superimposed and visualization would indicate how well these

factors track the behavior of GDP growth. Using this approach, we find the appropriate number

of factors to be three. We use these three global factors as the initial values in the rest of the

estimation process. Moreover, we choose the groups1 that contain variables that are drivers

of GDP growth, Group 1 with employment and unemployment, Group 2 with various interest

rates, and so on. Thus, we chose seven groups; details are given in Section 4.3.

4.2.3 Semi-parametric estimation of FAR model with two-level factor struc-

ture

Let us consider the semi-parametric FAR model with two-level factor structure:

Yt+h = θ′tF̂
m
t + ω′Wt + εt+h, (4.16)

1See the Appendix for a brief description of 12 groups.
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where F̂mt is the set of estimated global and group factors, and Wt is the set of observable

regressors. We estimate the model by non-parametric kernel smoothing method that was de-

veloped for models with stationary predictors; see Gao and Hawthorne [2006], Li et al. [2011a],

Chen et al. [2012], and Wei and Zhang [2020]. We adapt these methodologies for estimating the

coefficients in the semi-parametric FAR model with non-stationary and stationary predictors.

Let us define a weight function VT (τt, t) of the form,

VT (τt, τ) =

K

(
τt − τ
hw

)
∑T

u=1K

(
τu − τ
hw

) , (4.17)

where K(.) is the kernel smoothing function, and hw is the bandwidth. Generally, the kernel

function is a continuous non-negative smoothing function that satisfies the following properties:

i)
∫
K(u)du = 1, ii)

∫
uK(u)du = 0, and iii)

∫
u2k(u)du = κ < ∞. In this paper, we use the

Gaussian kernel function defined as,

K(u) =
1√
2π
exp−u

2/2, (4.18)

for estimating the time-varying factor coefficients in model (4.16), bandwidth hw satisfies the

conditions that hw → 0 and Thw → ∞ as T → ∞. Bandwidth selection is a crucial part of

non-parametric estimation, and is typically data-driven. Therefore, in our empirical study, we

chose the bandwidth accordingly. See, Section 4.3 for details.

The following three-step method is used in the semi-parametric estimation.

Step 1: Nonparametric estimation of time-varying factor parameters

For a given ω, we estimate the time-varying coefficients θ(τt) by minimizing the loss function,

T−h∑
t=1

(
Yt+h − ω′Wt − θ(τ)′F̂mt

)2
K

(
τt − τ
hw

)
. (4.19)

Therefore, the estimated θ(τ) is given as,

θ̃(τ) =

(
T−h∑
t=1

F̂mt K

(
τt − τ
hw

)
F̂m

′
t

)−1 T−h∑
t=1

F̂mt K

(
τt − τ
hw

)
Yt+h

−

(
T−h∑
t=1

F̂mt K

(
τt − τ
hw

)
F̂m

′
t

)−1 T−h∑
t=1

F̂mt K

(
τt − τ
hw

)
ω′Wt.
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Step 2: Estimation constant parameters

Replace θ(τt) by its estimator θ̃(τt) in (4.16), and obtain,

Yt+h = θ̃(τt)
′F̂mt + ω′Wt + εt+h

= F̂m
′

t

(
T−h∑
s=1

F̂ms K

(
τs − τt
hw

)
F̂m

′
s

)−1 T−h∑
s=1

F̂ms K

(
τs − τt
hw

)(
Ys+h − ω′Vs

)
+ ω′Wt + εt+h.

Let

Ỹt+h = Yt+h − F̂m
′

t

(
T−h∑
s=1

F̂ms K

(
τs − τt
hw

)
F̂m

′
s

)−1 T−h∑
s=1

F̂ms K

(
τs − τt
hw

)
Ys+h, (4.20)

W̃t = Wt − F̂m
′

t

(
T−h∑
s=1

F̂ms K

(
τs − τt
hw

)
F̂m

′
s

)−1 T−h∑
s=1

F̂ms K

(
τs − τt
hw

)
Ws. (4.21)

Then, consider the linear model Ỹt+h = ω′W̃t + εt+h. The least-square estimate of ω is given by

ω̂ =

(
T−h∑
t=1

W̃ ′tW̃t

)−1(T−h∑
t=1

W̃ ′t Ỹt+h

)−1

. (4.22)

Step 3: Semi-parametric estimation of FAR model

Replace ω with ω̂ in the equation of θ̃(τ) (infeasible estimate) and, obtain the feasible estimate

θ̂(τ) as,

θ̂(τ) =

(
T−h∑
t=1

F̂mt K

(
τt − τ
hw

)
F̂m

′
t

)−1 T−h∑
t=1

F̂mt K

(
τt − τ
hw

)
(Yt+h − ω̂Wt) . (4.23)

4.2.4 Bandwidth selection

Silverman’s (1986) rule-of-thumb bandwidth is defined as hw ≈ 1.06 × σ̂T−1/5, where σ̂ is the

standard deviation of the sample of size T. Chen et al. [2012] introduced a correction factor to

this bandwidth, which is defined as hw ∝ T−(1+c)/5 for c < 4−10/δ, where δ > 10/3. Therefore,

we consider a range of bandwidths for the optimal bandwidth selection in the non-parametric

kernel smoothing estimation of models. Since the FAR models under study consist of a mixture

of nonstationary and stationary regressors, we consider three initial values for the bandwidth

hw ∼ T−c1/5 with c1 = {0.5, 1.0, 1.5}, where T is the number of observations. In a preliminary

analysis, we find that, except for c1 = 1, the time-varying coefficient estimates corresponding to

the other two bandwidths seem to have high volatility and some boundary issues. Therefore, we
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consider the Gaussian kernel function together with the bandwidth hopt ∼ T−1/5 as the initial

value, and some points in the neighbourhood of c2 × T−1/5 with c2 ∈ (0.5, 1.15).

By minimizing the asymptotic mean integrated squared error (AMISE) of the time-varying

coefficients, we find an optimal bandwidth hopt = 0.9 × T−1/5 ≈ 0.3. We also considered two

bandwidths for the two sets of coefficients, αt and βt, of the FAR model as they correspond to

nonstationary and stationary factors respectively. However, the lowest AMISE was achieved for

the same bandwidth of hopt = 0.9× T−1/5.

4.3 Empirical application

4.3.1 Data description

We use the widely studied database FRED-QD, which consists of 240 quarterly macroeconomic

time series in the US for the period from 1959:Q1 to 2018:Q4. A balanced panel data of 210

time series over 60 years (T = 240) is used in this empirical study, which excludes 36 variables

with missing observations. According to the level of aggregation, the data set is categorized into

110 “high-aggregate” variables and 100 “sub-aggregate” variables which are further categorized

into 12 groups.2 We use the panel of 100 sub-aggregates for estimating two-level factors which

are used in the FAR model for forecasting three key macroeconomic variables. The method

proposed in Chapter 2 showed a mixture of I(0) and I(1) factors can be used for forecasting I(1)

response variables such as GDP. The results established in (Phillips [2015]) show that a mixture

of I(0) and I(1) series can also be applied for forecasting I(0) response variables such as GDP

growth and inflation. Figure 4.1 exhibits the plots of these three series.

4.3.2 Estimation of two-level factors

Estimation of level-1 factors

We use both Panel Information criterion (IC) and Integrated Panel Criterion (IPC) introduced

by Bai and Ng [2002] and Bai [2004], respectively, for estimating the optimum number of global

factors and the factors themselves. These factors were estimated from the panel of 100 variables

which are a mixture of I(0) and I(1) variables. The panel criterion selected eight global factors

which is the optimal number of factors (See Chapter 2, Section 2.4). They are sufficient to

2There are 12 groups listed in the updated Appendix of FRED-QD. In this thesis we use only 12 groups and
omitted the group listed as “other”. https : //s3.amazonaws.com/files.fred.stlouisfed.org/fred−md/FRED−
QDappendix.pdf .



4.3. EMPIRICAL APPLICATION 141

1960 1970 1980 1990 2000 2010

Time

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10
lo

g(
G

D
P

)

(a) log(GDP) - I(1) series

1960 1970 1980 1990 2000 2010

Time

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

G
D

P
 g

ro
w

th
 ra

te

(b) GDP growth rate - I(0) series

1960 1970 1980 1990 2000 2010

Time

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

In
fla

tio
n

(c) Inflation - I(0) series

Figure 4.1: Plots of log(GDP), GDP growth and inflation

explain the large variation (95%) in the panel of 100 sub-aggregate variables. The number of

non-stationary factors are identified using IPC and found that it contains four I(1) and four I(0)

factors. Figure 4.2 shows the plots of eight factors. The Augmented-Dickey fuller (ADF) test

results provide additional evidence that the factors {1, 2, 4, 5} are I(1) and the factors {3, 6, 7, 8}

are I(0) series. The estimates of idiosyncratic errors, {êit; t = 1, . . . , T} of all 100 variables are

also found to be I(0). The one-level (global) factor model with estimated factors is specified as,

xit = λ̃i
(1)′
Ẽt + λ̃i

(2)′
G̃t + êit (t = 1, . . . , T, i = 1, . . . , N),

where Ẽt is the set of four generated non-stationary factors and G̃t is the set of four generated

stationary factors.

Selection of global factors

As our interest lies in forecasting GDP, GDP growth, and inflation, we use some basic criteria

to select the number of global factors that would improve the FAR model for forecasting each of

the three response variables. We consider the correlations between the response variable and the

estimated eight global factors that appear in Table 4.1. Furthermore, we superimpose the plot

of the response variable on those of the global factors and visualize how many factors can closely
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Figure 4.2: Generated eight factors from the panel of 100 variables

Notes: Generated factors 1,2,4 and 5 are I(1) & 3,6,7 and 8 are I(0).

track the response variable. Figures 4.6, 4.7, and 4.8 (in Appendix 4.6.1) present such plots for

log(GDP), GDP growth and inflation respectively. For log(GDP), we select global factors 2, 5

and 6; for GDP growth, global factors 1, 7 and 8; and for inflation, global factors 1, 2 and 4.

These factors constitute initial values required for the two-level factor estimation. Let us denote

the initial global factors by Ĥ
(0)
t .

Estimation of level-2 factors

We consider the two-level factor model, which is defined in model (4.3), of 100 variables in FRED-

QD data which consists of 12 groups. For example, group 1 consists of 23 economic variables

such as consumption expenditure, exports, imports, and real disposable personal income; and

group 2 includes 50 variables related to employment and unemployment. See Table 4.11 for a

brief description of the groups.
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Table 4.1: Correlation between estimated 8 global factors and the response variables

Response variable
Estimated factors

1 2 3 4 5 6 7 8

log(GDP) -0.13 0.83 0.10 -0.06 0.49 0.21 -0.02 0.05
GDP growth rate -0.24 -0.23 0.10 -0.19 -0.14 0.17 -0.26 -0.29
Inflation -0.21 -0.40 -0.04 0.51 0.19 0.09 0.15 0.15

Notes: 1) The values in bold correspond to high correlations. 2) Hence, we select the estimated global factors 2,5,
and 6 for log(GDP); 1,7, and, 8 factors for GDP growth rate; and 1, 2, and 4 for inflation in the semi-parametric
FAR model.

Following the estimation of the initial global factors Ĥ
(0)
t , we remove effects of these global

factors from the panel variables in model (4.2) and then categorize the purged panel data into

the 12 groups according to the group code in FRED-QD data set.

Let us denote the estimated group factors by R̂
(0)
s,t (s = 1, . . . , 12). Thus, we have the

required initial values for both level-1 and level-2 factors. Let us denote the set of factors by

F̂
(0)m
t =

(
Ĥ

(0)′

t , R̂
(0)′

1,t , . . . , R̂
(0)′

13,t

)′
.

Estimation of two-level factor model

We use the initial estimates of global and group factors obtained in the previous sections and

the sequential LS based algorithm outlined in Section 4.2 for estimating the optimum global

and group factors from the panel of 100 variables. Let us denote the set of final estimates of the

factors as F̂mt =
(
Ĥ ′t, R̂

′
1,t, . . . , R̂

′
12t

)′
. ADF test results indicate that the set of estimated group

factors is a mixture of I(0) and I(1) series.

Selection of level-2 factors

From the estimated 12 group factors, we select the level-2 factors that would improve the

out-of-sample predictability of semi-parametric two-level factor FAR models for forecasting each

of the three variables log(GDP), GDP growth and inflation. To select suitable level-2 factors,

we use prior knowledge of potential drivers of these three variables. Additionally, we assess the

strength of the relationship based on the correlations between these 12 group factors and the

variable, say GDP growth, and the increase in R2 in the goodness of fit of the FAR model when

each group factor is added. The results are presented in Tables 4.2 and 4.3, respectively.

The selected group factors for the three variables are:
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Table 4.2: Correlation of the estimated 12 group specific factors and the response variables

Response variable
Group specific factors

1 2 3 4 5 6 7 8 9 10 11 12

log(GDP) -0.17 -0.10 -0.11 -0.09 -0.14 -0.09 -0.15 0.05 -0.17 -0.16 -0.07 -0.11
GDP growth rate 0.14 -0.27 -0.16 -0.21 -0.28 -0.27 -0.27 -0.04 -0.24 -0.26 -0.20 -0.18
Inflation -0.05 0.07 0.18 0.06 0.16 0.13 0.12 0.22 0.26 0.14 0.18 0.11

Notes: 1) The values in bold correspond high correlations. 2) These highly correlated groups specific factors are
taken into account in choosing the level-2 factors.

Table 4.3: In-sample performance of the original semi-parametric two-level FAR model with
three global factors and one group factor, in terms of R2 for the three response variables

Response variable
Group specific factors

1 2 3 4 5 6 7 8 9 10 11 12

log(GDP) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.998
GDP growth rate 0.22 0.21 0.21 0.26 0.22 0.23 0.23 0.25 0.22 0.21 0.24 0.21
Inflation 0.65 0.65 0.66 0.65 0.65 0.65 0.65 0.66 0.66 0.65 0.66 0.65

Notes: 1) The semi-parametric FAR model (4.16) augmented with AR(4) is considered with generated three
global factors selected from the Table 4.1 and one group specific factor. 2) The figures for log(GDP) indicate that
irrespective to the selection of level 2 factors, the model has good in-sample performance with level 1 factors. 3)
Highlighted figures are corresponding to the highest R2 values. 4) We use this information, among others, in the
selection of group factors for each response variable.

• Group factors for log(GDP): 2, 3, 4, 5, 7, 9 and 12

• Group factors for GDP growth: the same group factors as for log(GDP)

• Group factors for Inflation: 3, 4, 6, 8, 9, 10, and 11

The two-level factor model can be specified as:

xs,it = γ̂′s,iĤt + λ̂′s,iR̂s,t + ês,it (i = 1, . . . , Ns, s = 1, . . . , S, t = 1, . . . , T ) .

Clearly, two-level factors are a mixture of I(1) and I(0) series. Therefore, we classify the

factors into two sets: Êmt is the set of non-stationary global and group factors, whereas Ĝmt is

the set of stationary global and group factors.
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Hence, the fitted two-level factor model and the semi-parametric two-level factor FAR model

can be given as,

Xt = Λ̂(1)mÊmt + Λ̂(2)mĜmt + êt, (4.24)

Yt+h = α′tÊ
m
t + β′tĜ

m
t + ω1Yt + ω2Yt−1 + ω3Yt−2 + ω4Yt−3 + εt+h (h > 0). (4.25)

4.3.3 Forecasting macroeconomic variables

Model selection criteria

We compare the in-sample predictive performance of the semi-parametric two-level FAR model

using the sum of square errors (in-sample SSE). In order to evaluate the out-of-sample pre-

dictability of the models relative to the benchmark model, we use the out-of-sample R-square

(R2
os) defined as:

R2
os = 1−

 T∑
t=T1+1

(Yt − Ŷt)2

 T∑
t=T1+1

(Yt − Ỹt)2

−1

, (4.26)

where Ŷt is the prediction of Yt by the semi-parametric two-level FAR, Ỹt is the prediction of Yt

by the benchmark model, and T1 is the initial in-sample size for the expanding widow method.

Since we consider one-step ahead forecasting, the T1 + j observations are used for estimation of

the models and one-step ahead predictions are made at T1 + j + 1 (j = 0, . . . , T − (T1 + 1)).

FAR and time series model specifications

We evaluate the in-sample and out-of-sample predictability of parametric and semi-parametric

two-level factor FAR models. For the purpose of forecast comparison, we consider both one-level

FAR and two-level FAR models. Note that, in Chapter 3, we proposed semi-parametric one-level

FAR model and assessed the accuracies of the models in forecasting the same three variables,

GDP, GDP growth and inflation. In this Chapter, we will assess accuracy of the improved

semi-parametric two-level factor FAR in comparison to the one-level factor FAR counterparts

and some time series models.
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Consider the model specifications given as:

Model 1 : Yt+1 = ωYt + εt+1,

Model 2 : Yt+1 =

3∑
i=0

ω1+iYt−i + εt+1,

Model 3 : Yt+1 = α′Êmt + β′Ĝmt + ωYt + εt+1,

Model 4 : Yt+1 = α′Êmt + β′Ĝmt +
3∑
i=0

ω1+iYt−i + εt+1,

Model 5 : Yt+1 = α′tÊ
m
t + β′tĜ

m
t + ωYt + εt+1,

Model 6 : Yt+1 = α′tÊ
m
t + β′tĜ

m
t +

3∑
i=0

ω1+iYt−i + εt+1,

Model 7 : Yt+1 = α′Êmt + β′tĜ
m
t + ωYt + εt+1,

Model 8 : Yt+1 = α′Êmt + β′tĜ
m
t +

3∑
i=0

ω1+iYt−i + εt+1,

Model 9 : Yt+1 = c+ εt+1,

where Êmt , Ĝ
m
t are the sets of nonstationary and stationary two-level factors, α and αt are the

sets of coefficients of nonstationary factors, β and βt are the coefficients of stationary factors,

and ω is the set of coefficients of lagged dynamics.

Models 1 and 2 are the basic autoregressive models, Models 3 and 4 are the two-level FAR

models with constant parameters, Models 5–8 are two-level FAR models with time-varying

parameters, and Model 9 is the simple mean model. Moreover, we include economic policy

uncertainty index (EUI) in the models (3)–(8) as a predictor and consider the models with and

without EUI as a predictor.

Remark 4: Recall that the FAR models 3-8 include both global (pervasive) factors and

group (non-pervasive) factors. For comparison purpose, we also consider the same FAR model

specifications 3–8 but only with global factors, which we studied in the previous Chapter. The

FAR models with global factors with constant and/or time varying parameters are not explicitly

specified here to save space. In these specifications, coefficients (Êmt , Ĝ
m
t ) in Models 3–8 are

replaced by (Ẽt, G̃t) respectively.

In-sample predictability of the models
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The semi-parametric two-level FAR models given in Models 3–8 were estimated by the Gaus-

sian kernel method with a bandwidth of hopt = 0.3. We assessed the in-sample fit of the models

using the sum of squares of errors (SSE) and the results are reported in Table 4.4. The values in

columns 2 and 3 are SSEs of models for log(GDP) without and with EUI in the model, respec-

tively. Clearly, Model 6 with EUI is the winner in terms of in-sample predictability of log(GDP)

relative to other models.

Table 4.4: In-sample performance of the two-level FAR models, in terms of sum of squared
errors, SSE

log(GDP) GDP growth rate Inflation

EUI 0 1 0 1 0 1

Model 3 10.96 10.89 10.75 10.74 4.20 4.13
Model 4 10.50 10.45 10.32 10.32 3.94 3.87
Model 5 10.14 10.06 9.78 9.76 4.08 4.02
Model 6 9.71 9.64 9.45 9.44 3.84 3.76
Model 7 10.95 10.89 10.40 10.39 4.11 4.04
Model 8 10.49 10.44 10.00 10.00 3.84 3.76

Notes: 1) All the values are multiplied by 1000. 2) Models 1 to 8 are defined in Section 4.3. 3) Models 1-2
are basic AR models, models 3-4 are parametric FAR, and models 5-8 are semiparametric FAR models. 3) ”1”
indicates that presence of EUI in the model and ”0” indicate absence of EUI. 4) The figures in bold indicates the
least SSE. 5) EUI variable has consistently improped the in-sample predictability for all the model specifications.

Furthermore, for comparison, we estimated the semi-parametric one-level FAR Models 3–8

and the results are reported in Table 4.7 (in Appendix 4.6.2). Again the modified Model 6,

which is the semi-parametric one-level FAR, outperforms the other one-level FAR models for

log(GDP). By contrast, for log(GDP) and the two I(0) variables GDP growth and inflation, the

semi-parametric two-level FAR models perform better than the one-level FAR counterparts in in-

sample predictability. For GDP growth, Model 6 (semi-parametric two-level FAR) outperforms

the other models, while Model 8 is the winner for inflation relative to others.

4.4 Evaluation of out-of-sample predictability of models

4.4.1 Forecasts of log(GDP), GDP growth and inflation

To assess the out-of-sample predictability of the models, we generate one-step ahead point

forecasts from Models 3–8 and compute R2
os (defined in (4.26)) against the benchmark models;
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when forecasting I(1) variables the benchmark is Model 2 and when forecasting I(0) variables

the benchmark is Model 2 or Model 9.

In the expanding (recursive) window sampling design, we consider four sets of initial es-

timation window sizes to evaluate the one-step ahead out-of-sample forecasts of models. The

one-step ahead forecasts were generated by expanding the end of the sample (window) period

by one quarter. The four initial window sizes used in the assessment of out-of-sample forecasts

are defined in Table 4.5.

Table 4.5: Initial window sizes and out-of-sample forecasting time periods

Ti First estimation period Out-of-sample period

T1 1959:Q1 - 1998:Q4 1999:Q1 - 2018:Q4

T2 1959:Q1 - 2003:Q4 2004:Q1 - 2018:Q4

T3 1959:Q1 - 2008:Q4 2009:Q1 - 2018:Q4

T4 1959:Q1 - 2013:Q4 2014:Q1 - 2018:Q4

GDP forecast evaluation

The out-of-sample predictive performance of semi-parametric two-level FAR Models 3–8 for

log(GDP), GDP growth rate and inflation were assessed relative to Model 2 in terms of R2
os. The

results are reported in Table 4.6. The values in the first panel show that the semi-parametric

two-level Models 3–7 do not perform as well as the AR(4) model in forecasting log(GDP). The

best performer is Model 8 (without EUI) which has the only positive R2
os, while they are negative

for other models.

Furthermore, we estimated the semi-parametric one-level FAR Models 3–8. The calculated

R2
os are reported in Table 4.8 (in Appendix 4.6.2). In contrast to the findings of two-level FAR

models, semi-parametric one-level FAR models have better performance against AR(4) model

for the initial expanding window sizes T3 and T4. The results in the first panel indicate that the

Model 3 performs the best in the out-of-sample prediction of log(GDP) for the window size T4.

The forecast performance of the models appear to be sensitive to initial window size.

We use Models 3, 5 and 7 (with one-level factors only) to generate one-step-ahead forecasts of

log(GDP) for the window size T1. Plots of the forecasts along with the observed log(GDP) series

in Figure 4.3 indicate that these forecasts are capture the trend of log(GDP) and fluctuations

around that trend reasonably well.
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Table 4.6: Out-of-sample expanding window forecasting performance of the two-level FAR mod-
els, in terms of R2

os

Models Without EUI With EUI
T1 T2 T3 T4 T1 T2 T3 T4

log(GDP)
Model 3 -0.164 -0.234 -0.278 -1.068 -0.222 -0.284 -0.282 -0.709
Model 4 -0.239 -0.323 -0.269 -1.257 -0.293 -0.369 -0.271 -0.849
Model 5 -0.107 -0.143 -0.168 -0.049 -0.143 -0.167 -0.215 -0.030
Model 6 -0.149 -0.215 -0.169 -0.088 -0.185 -0.244 -0.212 -0.055
Model 7 0.010 -0.031 -0.279 -1.443 -0.046 -0.046 -0.300 -1.097
Model 8 0.028 -0.017 -0.193 -0.923 -0.038 -0.050 -0.237 -0.751

GDP growth rate

Model 3 0.036 0.130 -0.058 -0.740 0.042 0.148 -0.031 -0.726
Model 4 0.026 0.096 -0.077 -1.076 0.029 0.098 -0.058 -1.057
Model 5 0.094 0.121 0.053 -0.102 0.098 0.128 0.082 -0.104
Model 6 0.088 0.104 0.071 -0.143 0.097 0.110 0.095 -0.137
Model 7 0.166 0.211 0.075 0.366 0.172 0.219 0.097 0.331
Model 8 0.170 0.185 0.080 0.266 0.172 0.191 0.110 0.245

Inflation

Model 3 0.210 0.219 0.212 0.230 0.220 0.228 0.219 0.196
Model 4 0.071 0.078 0.115 0.237 0.094 0.103 0.071 0.188
Model 5 0.140 0.140 0.160 0.251 0.150 0.152 0.173 0.210
Model 6 0.001 -0.005 0.017 0.212 0.023 0.021 -0.013 0.146
Model 7 -0.021 -0.017 0.091 0.124 -0.015 -0.010 0.078 0.100
Model 8 -0.141 -0.154 -0.027 0.156 -0.119 -0.127 -0.094 0.106

Notes: 1) All the R2
os values are calculated by considering AR(4) as the bench-mark model. 2) T1, T2, T3, and T4

are the first in-sample periods as stated in Table 4.5. 3) Model specifications 3 to 8 are defined in the previous
section. 4) Highlighted values provide the models that have highest R2

os values for each response variable for all
four different in-sample periods.

GDP growth forecast evaluation

The semi-parametric two-level FAR model with various specifications given in Models 3–8

for GDP growth were estimated by the Gaussian kernel with the bandwidth, hopt = 0.3. The

out-of-sample predictive performance of Models 3–8 for GDP growth were assessed against the

benchmark AR(4) Model 2 in terms of out-of-sample R2
os. The results in the second panel of

Table 4.6 show that overall, the semi-parametric two-level FAR Models 5–8 perform better than

the AR(4) model across all four window sizes and that the best performer is Model 7 (without

EUI) with the highest R2
os relative to other models.

Further analysis of these results for GDP growth indicate that, for smaller window sizes T1

and T2, the semi-parametric two-level FAR models with EUI outperform the models without
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Figure 4.3: The observed log(GDP), and plots of one-step ahead out-of-sample forecasts of log(GDP)
for 1999:Q1- 2018:Q4. Red solid line: predicted series with Model 3. Blue crosses: predicted series with
Model 5. Magenta dotted line: predicted series with Model 7. Black solid line: observed data.

EUI. This observation is consistent across all the Models 3–8. Furthermore, the semi-parametric

one-level Models 3–8 are estimated, and the calculated R2
os are reported in Table 4.8 (in Ap-

pendix 4.6.2). We generated one-step-ahead GDP growth forecasts with Models 3, 5 and 7 for

the window size T1 and the plots along with GDP growth are shown in Figure 4.4. They indi-

cate some important features of the semi-parametric two-level FAR models with EUI in their

out-of-sample predictive performance. For T1 (1959:Q1-1998:Q4) and the out-of-sample period

1999:Q1-2018:Q4, Model 5 with all factor parameters time-varying and EUI performs the best

in comparison with the other models. This model’s forecasts clearly capture the downturn in

2003 due to war and the deep downturn in GDP growth the US experienced during the GFC.

Inflation forecast evaluation

The semi-parametric two-level FAR model with various specifications given in Models 3–8

were estimated by the Gaussian kernel method with bandwidth, hopt = 0.3 for the four initial

expanding window sizes listed in Table 4.5. The out-of-sample predictive performance of Models

3–8 for inflation were assessed relative to Model 2 in terms of the R2
os measure. The results

reported in the third panel of Table 4.6 show that overall, the semi-parametric two-level Models

3-8 perform better than the AR(4) model across all four window sizes, with Model 5 being the
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Figure 4.4: The observed GDP growth rate, and plots of one-step ahead out-of-sample forecasts
of GDP growth rate for 1999:Q1- 2018:Q4. Red solid line: predicted series with Model 3. Blue
crosses: predicted series with Model 5. Magenta dotted line: predicted series with Model 7.
Black solid line: observed data.

best performer. Moreover, the results in Table 4.6 indicate that the best performer is Model 5

(without EUI) with the highest R2
os relative to other models.

Further analysis of the results for inflation forecasts indicate that, for smaller window sizes

T1 and T2, the semi-parametric two-level FAR models with EUI outperforms the model without

EUI. This observation is consistent across Models 3–8. These observations are very similar to

what was observed for GDP growth forecasts. We generated one-step-ahead inflation forecasts

with Models 3, 5 and 7 for the window size T1. The plots along with observed inflation in Figure

4.5 indicate some important features of the semi-parametric two-level FAR Model 7 with EUI

and its out-of-sample forecast performance. Specifically, Model 7 with time-varying coefficients

of stationary factors, and with EUI performs the best in comparison with the other models.

This Model’s forecasts clearly capture the low inflation level experienced in the US caused by

the GFC.

4.4.2 Sensitivity analysis

Sensitivity analysis of expanding window size
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Figure 4.5: The observed inflation, and plots of one-step ahead out-of-sample forecasts of in-
flation for 1999:Q1- 2018:Q4. Red solid line: predicted series with Model 3. Blue crosses:
predicted series with Model 5. Magenta dotted line: predicted series with Model 7. Black solid
line: observed data.

The R2
os measures in Table 4.6 indicate that there is no single FAR model that outperforms

the rest of the models across all four initial expanding window sizes. That is, the out-of-sample

forecast performance of the models is sensitive to window size. To further understand the nature

of the sensitivity to the initial expanding window size, we consider 61 different initial window

sizes, Ti (i = 1, . . . , 61). We start with a first window size of T1 with 40 years, from 1959:Q1

to 1999:Q4 and then extend the end of sample period by one quarter until we reach the final

expanding window size of 55 years from 1959:Q1 to 2013:Q4. Thus, we consider 61 different

window sizes that provide initial estimation periods.

In this sensitivity analysis, we examine the effect of the initial expanding window size on the

out-of-sample predictability of the models under investigation. The plots of out-of-sample R2
os

values for the Model 3–8 appear in Figures 4.9, 4.10, 4.11 (in Appendix 4.6.3). They show that,

for forecasting GDP with smaller window sizes, the semi-parametric FAR models perform better

than the other models, and with the large window sizes, the parametric models outperform the

semi-parametric counterparts. For forecasting GDP growth rate with smaller window sizes, on

the other hand, the two-level semi-parametric FAR models perform better than other models

and with large window sizes one-level semi-parametric models outperform other models. The
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two-level semi-parametric FAR models show better forecastability throughout the different in-

sample periods for forecasting Inflation.

Comparison of expanding window and rolling window schemes

Albeit limited, we generated out of sample forecasts with one-level FAR models using the

rolling window sampling scheme with the initial window size of 40 years from 1959:Q1-1998:Q4.

The rolling window size of 160 quarters moved forward by one quarter until the end of the

sampling period is 2013:Q4. The out-of-sample R2
os values of forecasts of log (GDP), GDP

growth and inflation are reported in Table 4.9 (in Appendix 4.6.3). We have used two more

rolling window sizes of 45 years and 50 years. Generated forecasts and R2
os values show that the

forecast performance of these model declined for the two larger window sizes (see Table 4.9).

The out-of-sample R2
os values show that the expanding window sampling scheme generates better

forecasts relative to the rolling window sampling scheme. Our finding is in contrast to recent

findings of several studies (mentioned in the introduction) which find that the rolling widow

scheme is better than the expanding (recursive) window scheme for generating out-of-sample

forecasts.

However, our findings are not surprising because previous studies mostly used stationary FAR

models and time series models and generated forecasts of stationary time series. The models

used in this thesis are nonlinear FAR models, which include three distinct features: the generated

factors in the FAR model are a mixture of I(1) and I(0) variables; the factors can be two-level

factors; and the factor parameters are time varying. To have a deep understanding on how the

two sampling scheme will work for models, a large scale simulation study and methodological

developments along the line of Inoue et al. [2017] are required. We leave them for the future

research.

Remark 5: As discussed in Chapter 3, there maybe an over-fitting problem when the semi-

parametric two-level FAR model is used for forecasting. However, the semi-parametric model

that we use is linear in regressors and the coefficients of the factors vary over time. Thus,

although present, the over-fitting problem in this case may not be as serious as in fully nonpara-

metric models. To circumvent the over-fitting problem, various model specifications, different

in-sample sizes to estimate the models in both recursive window and rolling window setting in

order to generate out-of-sample predictions. Based on these out-of sample predictions, we have

selected the best model that predict the response variable well relative to other models.
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4.5 Conclusion

This Chapter proposes a new semi-parametric two-level factor structure to the widely studied

FAR model for forecasting univariate time series GDP, GDP growth and inflation. We relax

three main assumptions that underlie the standard one-level (global) FAR model. The features

of the improved method includes two-level factor structure, factors are a mixture of I(0) and

I(1) series and the parameters of factors are time-varying.

There are several stages involved in estimation of the new models for forecasting macroeco-

nomic variables. First, we setup a two-level factor data model, which include global (pervasive)

factors and group (non-pervasive) factors. We consider 12 groups of economic variables defined

in Stock and Watson [2002a] and include them in the two-level factor model through block re-

strictions. The two-level factor model is estimated by the sequential algorithm-based LS method

proposed by Breitung and Eickmeier [2016]. An advantage of this method is that a set of global

(level-1) factors and group (level-2) factors can be selected as predictors in the FAR model

for desired macroeconomic variables. Such a FAR model is likely to generate more accurate

forecasts relative to its competitors.

To further improve out-of-sample predictability, we include the economic policy uncertainty

index (EUI) in the semi-parametric two-level FAR model, which is known to reduce the insta-

bility in forecast errors. The proposed semi-parametric two-level factor FAR model generates

better forecasts for the two stationary variables, GDP growth and inflation, relative to its com-

petitors. By contrast, the semi-parametric one-level factor FAR model generates better forecasts

for the non-stationary variable, GDP, in comparison to other models.

We find that models’ forecast performance largely depend on the sampling scheme used in the

forecast evaluation. The expanding window works better than the rolling window scheme for the

semi-parametric one-level FAR model forecasts of log(GDP), while rolling window works better

than the expanding window for the proposed semi-parametric two-level FAR model forecasts of

GDP growth and inflation. Further research is required to assess the validity of the results of the

comparison between the two sampling schemes, which will be undertaken in future research.
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4.6 Appendices

4.6.1 Appendix A: Initial Global Factors

Figures 4.6– 4.8 report the data visualizations used in the selection of global factors for the FAR

specifications.
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Figure 4.6: Plot of the generated 8 global factors and observed log(GDP) series

Notes: 1)The blue solid lines are corresponding to the estimated global factors and orange line is corresponding
to the observed response series. 2) Using these plots, we visualize well the response variables can tract these
factors. 3)These plots were exploited along with the correlation measures to select the number global factors for
each response variable, which in turn used as the initial values required for the estimation of the two-level factor
model.
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Figure 4.7: Plot of the generated 8 global factors and observed GDP growth rate series

Notes: 1)The blue solid lines are corresponding to the estimated global factors and orange line is corresponding
to the observed response series. 2) Using these plots, we visualize well the response variables can tract these
factors. 3)These plots were exploited along with the correlation measures to select the number global factors for
each response variable, which in turn used as the initial values required for the estimation of the two-level factor
model.
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Figure 4.8: Plot of the generated 8 global factors and observed inflation series

Notes: 1)The blue solid lines are corresponding to the estimated global factors and orange line is corresponding
to the observed response series. 2) Using these plots, we visualize well the response variables can tract these
factors. 3)These plots were exploited along with the correlation measures to select the number global factors for
each response variable, which in turn used as the initial values required for the estimation of the two-level factor
model.
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4.6.2 Appendix B: Results for Semiparametric One-level FAR model

In-sample forecasting performance

Table 4.7: In-sample performance of the one-level FAR models, in terms of sum of squared
errors, SSE

log(GDP) GDP growth rate Inflation

EUI 0 1 0 1 0 1

Model 1 16.46 15.39 14.30 14.67 5.70 5.67

Model 2 13.91 13.65 13.80 13.73 5.00 4.91

Model 3 12.14 12.12 12.07 12.04 5.16 5.08

Model 4 11.33 11.32 11.45 11.43 4.76 4.67

Model 5 11.22 11.21 11.33 11.32 4.90 4.85

Model 6 10.67 10.67 10.83 10.82 4.49 4.42

Model 7 11.35 11.34 11.53 11.52 5.03 4.96

Model 8 10.79 10.78 11.03 11.02 4.60 4.53

Notes: 1) All the values are multiplied by 1000. 2) Models 1 to 8 are defined in Section 3.3. 3) Models 1-2
are basic AR models, models 3-4 are parametric FAR, and models 5-8 are semiparametric FAR models. 3) ”1”
indicates that presence of EUI in the model and ”0” indicate absence of EUI. 4) The figures in bold indicates the
least SSE. 5) EUI variable has consistently improped the in-sample predictability for all the model specifications.
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Out-of-sample forecasting performance

Table 4.8: Out-of-sample expanding window forecasting performance of the one-level FAR mod-
els, in terms of R2

os

Models Without EUI With EUI
T1 T2 T3 T4 T1 T2 T3 T4

log(GDP)
Model 3 -0.063 -0.145 0.297 0.455 -0.065 -0.155 0.292 0.498
Model 4 0.030 -0.029 0.215 0.352 0.005 -0.058 0.208 0.436
Model 5 -0.007 0.026 0.253 0.189 0.028 0.044 0.233 0.305
Model 6 0.042 0.068 0.191 0.076 0.043 0.059 0.177 0.197
Model 7 0.019 0.042 0.242 0.171 0.004 0.029 0.243 0.322
Model 8 0.062 0.080 0.187 0.040 0.026 0.049 0.181 0.226

GDP growth rate

Model 3 -0.038 0.028 0.160 0.416 -0.042 0.026 0.171 0.403
Model 4 -0.065 0.014 0.115 0.327 -0.074 0.008 0.131 0.321
Model 5 -0.020 0.160 0.188 0.297 -0.061 0.158 0.170 0.317
Model 6 0.005 0.146 0.146 0.202 -0.056 0.131 0.134 0.220
Model 7 -0.050 0.160 0.159 0.334 -0.029 0.158 0.194 0.284
Model 8 -0.039 0.139 0.119 0.230 -0.011 0.139 0.158 0.195

Inflation

Model 3 0.023 0.030 0.161 0.001 0.019 0.023 0.179 0.010
Model 4 -0.135 -0.141 0.056 0.026 -0.124 -0.129 0.025 0.008
Model 5 0.007 0.017 0.169 0.107 -0.031 -0.029 0.170 0.067
Model 6 -0.119 -0.124 -0.045 0.058 -0.164 -0.172 -0.002 0.027
Model 7 -0.032 -0.028 0.139 0.064 -0.001 0.007 0.208 0.108
Model 8 -0.184 -0.193 0.000 0.048 -0.115 -0.119 -0.018 0.037

Notes: 1) All the R2
os values are calculated by considering AR(4) as the bench-mark model. 2) T1, T2, T3, and T4

are the first in-sample periods as stated in Table 4.5. 3) Model specifications 3 to 8 are defined in the previous
section. 4) Highlighted values provide the models that have highest R2

os values for each response variable for all
four different in-sample periods.
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4.6.3 Appendix C: Results for Sensitivity Analysis

Rolling window forecasting

Table 4.9: Out-of-sample rolling window forecasting performance of the one-level FAR models,
in terms of R2

os

log(GDP GDP growth rate Inflation

Window size(years) 40 45 50 40 45 50 40 45 50

Model 3 0.027 -0.081 -0.275 0.043 -0.090 -0.220 -0.050 -0.008 -0.002
Model 4 0.233 0.226 0.194 0.097 -0.052 -0.151 -0.047 0.018 -0.248
Model 5 -0.030 0.002 0.007 -0.049 -0.005 0.010 0.018 -0.005 -0.078
Model 6 -0.053 -0.032 -0.018 -0.044 -0.065 -0.009 -0.136 -0.147 -0.839
Model 7 0.054 -0.021 -0.045 -0.100 -0.035 -0.031 -0.002 -0.069 -0.163
Model 8 -0.011 -0.043 -0.061 -0.078 -0.088 -0.049 -0.153 -0.226 -1.029

Notes: 1) One-step ahead forecasts are generated with rolling window sampling scheme with the 40,45 and 50
years of window sizes. 2) All the R2

os values are calculated by considering AR(4) as the bench-mark model. 3)
Model specifications 3 to 8 are defined in Section 4.3.2. 4) Highlighted values provide the models that have highest
R2

os values for each response variable for all four different in-sample periods.

Table 4.10: Out-of-sample rolling window forecasting performance of the two-level FAR models,
in terms of R2

os

log(GDP GDP growth rate Inflation

Window size(years) 40 45 50 40 45 50 40 45 50

Model 3 -0.015 -0.056 0.199 0.220 0.303 0.348 -0.049 -0.065 0.272
Model 4 0.200 0.231 0.294 0.264 0.227 0.285 -0.045 -0.053 0.093
Model 5 0.091 0.060 -0.028 0.147 0.203 0.014 0.101 0.090 0.354
Model 6 0.080 0.020 -0.107 0.164 0.207 0.030 -0.030 -0.062 -0.024
Model 7 0.165 0.084 0.103 0.246 0.295 0.355 -0.048 -0.112 -0.034
Model 8 0.092 0.106 0.163 0.250 0.256 0.323 -0.217 -0.271 -0.550

Notes: 1) One-step ahead forecasts are generated with rolling window sampling scheme with the 40,45 and 50
years of window sizes. 2) All the R2

os values are calculated by considering AR(4) as the bench-mark model. 3)
Model specifications 3 to 8 are defined in Section 4.3.2. 4) Highlighted values provide the models that have highest
R2

os values for each response variable for all four different in-sample periods.
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Results for sensitivity analysis of expanding window size
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Figure 4.9: Out-of-sample R2
os of all the model specifications for forecasting GDP growth with

61 expanding window sizes

Notes: 1). Plot (a) represents R2
os of the FAR models with one-level factor structure. Plots (b) show R2

os for the
two-level FAR models. 2) R2

os caluclated compared to mean model. 3) All the 61 expanding window sample size
periods start from 1959:Q1, with T1 = 1959:Q1-1998:Q4 and T61 = 1959:Q1-2013:Q4. The x-axis in the plot is
denoting the time Ti, end of the first estimation period. 4) Blue and red dash lines represent the AR(1) and AR(4)
models, the purple and yellow lines with dots represent the parametric FAR augmented with AR(1) and AR(4).
The green and cyan solid lines represent the two semi-parametric FAR models with (αt, βt) augmented with AR(1)
and AR(4) respectively. Blue and brown lines with ’x’ represent the semi-parametric FAR (α, βt) augmented with
AR(1) and AR(4) respectively. 5) The plots conclude that the two-level FAR models show higher predictability
for small first in-sample periods (such as T1– T37) and the one-level FAR models show better predicabilty for
larger first in-sample periods. 6) There is an acute structural difference between the first estimation periods
1959:Q1-2007:Q2 and 1959:Q1-2008:Q2.
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Figure 4.10: Out-of-sample R2
oss of models for forecasting inflation with expanding window sizes

Notes: 1) Plot (a) represent R2
oss of the FAR models with one-level factor structure. Plots (b) represent R2

os

for the two-level FAR models with 3 global factors. 2) R2
oss measures are calculated against the mean model as

benchmark. 3) The 61 expanding window sizes start from 1959:Q1, with T1 = 1959:Q1-1998:Q4, T61 = 1959:Q1-
2013:Q4. The Ti appears on the x-axis denotes the end of window size i. Legend are same as for Figure 4.9. 4)
The plots conclude that irrespective to the choice of the first in-sample period, all the one-level and two-level
FAR models show better forecastability compared to the mean Model 9. 5) There is an acute structural difference
between the first estimation periods 1959:Q1-2007:Q2 and 1959:Q1-2008:Q2.
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Figure 4.11: Calculated R2
os for 61 different first in-sample periods, log(GDP)

Notes: 1) Plots represent R2
os for the one-level FAR models. 2) The 61 expanding window sizes start from 1959:Q1,

with T1 = 1959:Q1-1998:Q4, T61 = 1959:Q1-2013:Q4. The Ti appears on the x-axis denotes the end of window
size i. The FAR models with one-level factor structure 3) R2

oss measures are calculated against the AR(4) model
as benchmark. 4) Legend are same as for Figure 4.9. 5) The plots conclude that the semi-parametric FAR models
show higher predictability for small first in-sample periods (such as T1– T37) and the parametric FAR models
show better predicabilty for larger first in-sample periods
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4.6.4 Appendix D: Panel variables

Table 4.11 provides a brief information about the 12 groups that we used as potential level-2

factors in this study.

Table 4.11: The 12 groups of the panel data of 100 variables and some economic variables

Number Group Variables

1 NIPA Consumption:Durable
Real private fixed investment
Real Exports of Goods & Services
. . .

2 Industrial Production IP: Durable Materials
IP:Nondurable Materials
Capacity Utilization: Total Industry
. . .

3 Employment and Unemployment All Employees: Durable goods
All Employees: Education & Health Services
All Employees: Government
. . .

4 Housing New Private Housing Units Authorized
All-Transactions House Price Index for the United States
. . .

5 Inventories, Orders, and Sales Real Retail and Food Services Sales
Real Value of Manufacturers’ New Orders
. . .

6 Prices Business Sector: Implicit Price Deflator
Personal consumption expenditures: Durable goods
. . .

7 Earnings and Productivity Manufacturing Sector: Real Compensation Per Hour
Business Sector: Real Compensation Per Hour
. . .

8 Interest Rates Effective Federal Funds Rate
3-Month Treasury Bill: Secondary Market Rate
. . .

9 Money and Credit Real Commercial and Industrial Loans
Total Real Nonrevolving Credit Owned and Securitized
. . .

10 Household Balance Sheets Real Total Liabilities of Households and Nonprofit Organizations
Real Net Worth of Households and Nonprofit Organizations
. . .

11 Exchange Rates Trade Weighted U.S. Dollar Index: Major Currencies
U.S. / Euro Foreign Exchange Rate
. . .

12 Stock Markets CBOE S&P 100 Volatility Index: VXO
S&P’s Common Stock Price Index: Composite
. . .

For more details, see the updated appendix of FRED-QD https :
//s3.amazonaws.com/files.fred.stlouisfed.org/fred−md/FRED −QDappendix.pdf .
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Chapter 5

Conclusion and Future Direction

5.1 Conclusion

Accurate forecasting of key macroeconomic variables such as GDP growth and inflation is cen-

tral to making economic policy decisions. Therefore, a huge literature emerged on forecasting

key macroeconomic variables using improved time series models and economic theory based

models for generating accurate forecasts of macroeconomic variables. A method that has at-

tracted considerable attention in the literature (in theory and empirical application) is the FAR

model. Despite its popularity, in light of recent developments, we can identify the three main

assumptions that underpin the FAR model. The objective of this thesis is to relax the these

assumptions and propose improved methods for forecasting macroeconomic variables such as

GDP, GDP growth rate and inflation. The accuracy of the proposed models is assessed against

its competitors.

This thesis contains three main Chapters. The three assumptions that underlie the FAR

model are progressively relaxed in each Chapter and new FAR methods are developed and used

for forecasting macroeconomic variables and assessed the accuracy of these models’ forecasts

relative to its competitors. In this final Chapter, the objective of the three Chapters are briefly

stated and discuss the main findings. We also provide directions for potential future research

topics.

In Chapter 2, we relax the assumption that the FAR model consists of only I(1) factors when

forecasting I(1) variables and allow the model to consist a mixture of I(0) and I(1) factors as

predictors. The mixture of I(0) and I(1) factors are estimated from the large panel data typically

contains a mixture of stationary and non-stationary economic variables and include them in the

FAR model. This Chapter derives asymptotic results for a method for estimating the FAR
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model when the set of predictors includes a mixture of I(0) and I(1) factors and constructing an

asymptotically valid prediction interval.

In a simulation study, we find that parameter estimates of the improved FAR model have

favourable properties in moderate samples. The out-of-sample prediction intervals have the

coverage probabilities that are close to nominal probabilities in moderate samples. The mixture

FAR model was used to generate out-of-sample predictions of non-stationary variables, GDP and

Industrial Production [IP], using the quarterly panel data, FRED-QD, on US macroeconomic

variables. In an evaluation of accuracy of forecasts using the out-of-sample R2
os, we find that

the proposed model outperforms the standard FAR model and time series models. We have

highlighted the complexities involved in deriving the asymptotic results for the mixture-FAR, and

shown the potential gains in statistical efficiency. In both empirical application and simulations

study, we have shown that the accuracy of the mixture FAR is better than its competitors.

In Chapter 3, we relax the assumption that parameters of the proposed FAR model in the

previous Chapter are constant over time and allow the key parameters of the mixture-FAR model

to be time varying, albeit in a controlled manner. This Chapter develops a method of estimating

proposed semi-parametric FAR model and then uses the estimated model for forecasting three

key macroeconomic variables GDP, GDP growth and inflation.

In a simulation study, we explored two sperate methods for estimation of the latent factors:

the conventional Principal Components Analysis (PCA) and a nonparametric local estimation

method. We observed that the factors estimated by a non-parametric method were not very

sensitive to different bandwidths, but the estimated coefficients in the FAR model were sensi-

tive to the bandwidth choice. Therefore, we studied the cross-validation for choosing suitable

bandwidths for both factor estimation and parameter estimation. Using the FRED-QD data

set, we evaluated the performance of the new method for forecasting the I(1) log(GDP), and

two I(0) GDP growth rate and inflation. The results show that our proposed semi-parametric

FAR method forecasts all three aforementioned variables better than the competing models.

Moreover, we observe that the model with nonparametric estimates of factors forecasts infla-

tion better than the semi-parametric FAR model with PCA factors, whereas the model with

PCA factors generated log(GDP) and GDP growth rate forecasts better than the model with

nonparametric counterparts. Since the proposed FAR include two new features, I(1) and I(0)

factors and the key parameters are time varying, the derivation of the asymptotic properties for

the proposed model is very demanding. We would approach this in two stages: (i) we assume
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that the factors in the FAR are known; and (ii) we assume that the factors unknown, which is

the case in practice, and estimated. Work is in progress to derive the asymptotic properties of

the method under assumption (i) and will complete the derivations under assumption (ii) in the

future.

In Chapter 4, we allow the semi-parametric FAR model to include a mixture of I(0) and

I(1) two-level factors, called global factors and group factors. This proposed FAR model is an

extension of the one studied in Chapter 3. We refer to the proposed model as semi-parametric

two-level FAR model. To improve the out-of-sample predictive performance of the method

further, we included the economic policy uncertainty index (EUI) as an additional predictor in

the two-level FAR model.

We estimated a mixture of stationary and non-stationary eight global and 12 group factors

(Stock and Watson 2002a) from the panel of 100 economic variables by the sequential least

squares algorithm based method proposed by Breitung and Eickmeier [2016]. This method is

developed for estimating I(0) two-level factors from the panel of I(0) variables, which we adapt

to our model setup. Since the results from kernel estimation method outperformed the Hermite

and trigonometric polynomial estimations for the same FRED-QD panel dataset in Chapter 3,

the semi-parametric two-level FAR model was estimated by a kernel method. The novelty of the

proposed model is that, based on prior knowledge about the relationship between the two-level

factors the desired macroeconomic variable and selection criteria such as goodness-of-fit and

correlation measures, we can select the number of global and group factors to be included in

each of the three semi-parametric two-level FAR models for log(GDP), GDP growth rate and

inflation. For example, we select three global and seven group factors as predictors in the FAR

model for inflation. In contrast, the FAR models that studied in the literature, the same set of

global factors was used for forecasting macroeconomic variables. Thus, the proposed method

in this Chapter is likely to improve the accuracy of the forecasts relative to its competitors.

Furthermore, the models with EUI perform better than those without EUI.

We observed that the semi-parametric two-level FAR model forecast the two stationary

variables GDP growth rate and inflation better than the semi-parametric one-level FAR model

proposed in Chapter 3 and other time series models. For forecasting the non-stationary variable

log(GDP), on the other hand, the semi-parametric one-level FAR performs better than the semi-

parametric two-level FAR model. Furthermore, the semi-parametric two-level FAR model’s

forecasts largely depend on the initial expanding window size and that, under this sampling
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scheme, the proposed model generates better out-of-sample forecasts in small window sizes.

Moreover, we find that the semi-parametric two-level FAR models more accurate out-of sample

predictions for the rolling window sampling scheme than for the expanding window scheme. The

reverse is true for the semi-parametric one-level FAR model. This finding is in contrast to the

recommendations by previous studies to use rolling window scheme for forecasting stationary

variables such as GDP growth and inflation.

5.2 Future research direction

From our experience on working on the methodological developments and empirical applications

studied in this thesis, we present some research topics that could provide directions for future

research.

In order to obtain the asymptotic distributions of the parametric and nonparametric coeffi-

cients in the semi-parametric FAR model proposed in Chapter 3, we assumed that the factors

are known and follows a time-varying VMA(∞) process. Work is in progress to derive the

asymptotic properties of the proposed method. However, these factors are unknown in practice

and they need to be estimated from the panel data set and the estimated factors appear in

the semi-parametric FAR model. For this case, the derivation of asymptotic properties of the

parameter estimates and the prediction intervals is very demanding and will be undertaken in

the future.

In this thesis, we have adapted the estimation methods proposed in the literature for the

estimation of the both two-level factor panel model, which consists of I(0) and I(1) variables and

the semi-parametric two-level FAR model. A methodological development involving derivations

of asymptotic results for the flexible FAR models’ parameter estimates and prediction intervals

would advance the research in the area. Once we complete the methodological developments

proposed in Chapter 3, the derivations of asymptotic results for the method proposed in Chapter

4 will become manageable.

The two information criteria proposed by Bai and Ng [2002] and Bai [2004] do not provide

a consistent estimator of the optimal number of factors in the multi-level factor model. Thus,

a new information criterion to estimate the optimal number of stationary and non-stationary

factors in the multi-level factor model needs to be introduced.
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