
Efficient Implementation Techniques for Lattice-based
Cryptosystems

by

Kuo ZHAO (Raymond K. Zhao), MNS, BEng

Thesis
Submitted by Kuo ZHAO (Raymond K. Zhao)

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: Dr. Ron Steinfeld

Associate Supervisor: Dr. Amin Sakzad

Faculty of Information Technology
Monash University

February, 2022

© Copyright

by

Kuo ZHAO (Raymond K. Zhao)

2022

Efficient Implementation Techniques for Lattice-based
Cryptosystems

Kuo ZHAO (Raymond K. Zhao), MNS, BEng
kuo.zhao@monash.edu
Monash University, 2022

Supervisor: Dr. Ron Steinfeld
Associate Supervisor: Dr. Amin Sakzad

Abstract

Lattice-based cryptosystems are promising candidates for the new standard of post-

quantum security due to their efficiency and strong mathematical guarantees. The num-

ber of their potential applications has increased in recent years too. Although typical

lattice-based cryptosystems are believed to be more efficient than the traditional cryp-

tosystems, their actual performance running on common platforms is believed to be

affected heavily by implementation barriers. The security of their implementations (soft-

ware or hardware) is also an important issue that needs to be considered and addressed

properly, since an unprotected implementation is vulnerable to various side-channel at-

tacks including timing and power attacks.

Therefore, this research studies the implementation of various lattice-based cryptosys-

tems and their applications. We aim at finding out better software implementation tech-

niques improving both the efficiency and security of such schemes. A systematic re-

search on software implementation techniques of lattice-based cryptosystems and their

applications is carried out during the study. We focus on studying the implementation is-

sues of discrete Gaussian samplers and lattice-based hierarchical identity-based encryp-

tion (HIBE) schemes, and make the following three main contributions in this thesis:

For zero-centered discrete Gaussian sampling, we propose a fast, compact, and

constant-time implementation of the binary sampling algorithm, originally introduced

in the BLISS signature scheme. Our implementation and its analysis adapt the Rényi

divergence and the transcendental function polynomial approximation techniques.

The efficiency of our scheme is independent of the standard deviation, and we show

evidence that our implementations are either faster or more compact than several

existing constant-time samplers. In addition, we show the performance of our imple-

mentation techniques applied to and integrated with two existing signature schemes:

qTesla and Falcon. On the other hand, the convolution theorems are typically adapted

iii

to sample from larger standard deviations, by combining samples with much smaller

standard deviations. As an additional contribution, we show better parameters for the

convolution theorems.

For arbitrary-centered discrete Gaussian sampling, we propose a compact and scalable

rejection sampling algorithm by sampling from a continuous normal distribution and

performing rejection sampling on rounded samples. Our scheme does not require pre-

computations related to any specific discrete Gaussian distributions. Our scheme can

sample from both arbitrary centers and arbitrary standard deviations determined on-the-

fly at run-time. In addition, we show that our scheme only requires a lownumber of trials

close to 2 per sample on average, and our schememaintains good performancewhen scal-

ing up the standard deviation. We also provide a concrete error analysis of our scheme

based on the Rényi divergence. We implement our sampler and analyse its performance

in terms of storage and speed compared to previous results. Our sampler’s run-time is

center-independent and is therefore applicable to implementation of convolution-style

lattice trapdoor sampling and identity-based encryption resistant against timing side-

channel attacks.

For lattice-based hierarchical identity-based encryption schemes, we provide the first

complete C implementation and benchmarking of Latte, a promising HIBE scheme en-

dorsed by European Telecommunications Standards Institute (ETSI). We also propose

further optimisations for the KeyGen, Delegate, and sampling components of Latte. We

adapt the Fast Fourier discrete Gaussian sampling procedures (ffSampling) from the Fal-

con signature scheme and provide an optimised Fast Fourier LDL∗ decomposition algo-

rithm (ffLDL), one of the key subroutines used by the ffSampling procedure, for lattice

basis in Latte HIBE.We show that our optimised ffLDL algorithm is more than 70% faster

than a generic naive implementation under 256-bit floating-point arithmetic precision

for all Latte parameter sets. In addition, we provide the first provable theoretical er-

ror analysis of the ffLDL algorithm and compute the numerical values of the precision

bounds for the Latte parameter sets. We evaluate the performance of our optimised

Latte implementation. As expected, the KeyGen, Extract, and Delegate components are

the most time consuming, with Extract experiencing a 35% decrease in op/s from the

first to second hierarchical level at 80-bit security. Our optimised implementation of the

Delegate function takes 1 second at this security level on a desktop machine at 4.2GHz,

significantly faster than the order of minutes estimated in the ETSI technical report.

Furthermore, our optimised Latte Encrypt/Decrypt implementation reaches speeds up

to 4.5x faster than the ETSI implementation.

iv

Efficient Implementation Techniques for Lattice-based
Cryptosystems

Declaration

This thesis is an original work of my research and contains no material which has been
accepted for the award of any other degree or diploma at any university or equivalent
institution and that, to the best of my knowledge and belief, this thesis contains no
material previously published or written by another person, except where due reference
is made in the text of the thesis.

Kuo ZHAO (Raymond K. Zhao)
February 7, 2022

v

Publications
Published works (included in the thesis):

• Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. FACCT: FAst, Compact, and

Constant-Time Discrete Gaussian Sampler over Integers. (2019). IEEE Transac-

tions on Computers. DOI 10.1109/TC.2019.2940949.

• Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: COmpact and Scal-

able Arbitrary-Centered Discrete Gaussian Sampling over Integers. (2020). Pro-

ceedings of PQCrypto 2020. DOI 10.1007/978-3-030-44223-1_16.

Preprint (included in the thesis):

• Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire

O’Neill. Quantum-safe HIBE: does it cost a Latte?. (2021). IACR Cryptology

ePrint Archive: Report 2021/222.

Other works during my PhD (not included in the thesis):

• Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and

Dongxi Liu. MatRiCT: Efficient, Scalable and Post-Quantum Blockchain Con-

fidential Transactions Protocol. (2019). Proceedings of ACM CCS’19. DOI

10.1145/3319535.3354200.

• Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. MatRiCT+: More Ef-

ficient Post-Quantum Private Blockchain Payments. Accepted by IEEE S&P 2022.

• Muhammed F. Esgin, Ron Steinfeld, Raymond K. Zhao. Efficient Verifiable

Partially-Decryptable Commitments from Lattices and Applications. Accepted by

PKC 2022.

vi

Acknowledgments

First, I would like to thank my supervisors, Associate Professor Ron Steinfeld and Dr.
Amin Sakzad. They provide me lots of guidance throughout the whole PhD journey.
Without their insight, patience, and endless support, I would not be able to come this far
in my PhD study. Their support is not only limited to the research. They provided me
the much-needed emotional help when I was isolated at my home during the COVID
lockdowns.

I would like to thank the Faculty of Information Technology and the Graduate Research
Office at Monash University for providing me the Monash International Tuition Scholar-
ship to cover the tuition fee during my PhD study. In addition, I would like to express my
gratitude to them for offering me the Monash University Graduate Research Completion
Award, the Faculty Graduate Research Completion Award, and Faculty of Information
Technology International Postgraduate Research Scholarship during the extremely hard
time of my thesis extension period in the middle of the COVID lockdown. Furthermore,
this research was supported by an Australian Government Research Training Program
(RTP) Scholarship.

I would like to thank the mental health nurses working in the Monash University Health
Services for helping me coping with the mental health issues caused by the COVID
lockdown. I would not even be able to restart working on my PhD thesis without their
professional mental health support.

I would like to thank my colleague, Muhammed Esgin, for the collaborations on various
other projects during my PhD candidature.

Finally, I would like to thank my parents. Without their understanding and support, I
might not even have decided to begin my PhD study in the first place.

Kuo ZHAO (Raymond K. Zhao)

Monash University
February 2022

vii

Contents

Abstract . iii

Acknowledgments . vii

List of Figures . xi

List of Tables . xii

List of Algorithms . xiv

1 Introduction . 1

1.1 Contributions . 3

1.2 Thesis Structure . 5

2 Preliminaries . 7

2.1 Notations . 7

2.2 Mathematical Background . 8

2.2.1 Lattice . 8

2.2.2 Arithmetic Errors . 9

2.2.3 Errors of Fast Fourier Transform . 11

2.2.4 Divergence . 13

2.2.5 FFT Sampling of Lattice Discrete Gaussian 14

2.2.6 (Hierarchical) Identity-based Encryption 16

2.2.7 Miscellaneous . 19

viii

3 Literature Review . 21

3.1 Discrete Gaussian Sampler . 21

3.1.1 Cumulative Distribution Table . 21

3.1.2 Knuth-Yao Algorithm . 23

3.1.3 Rejection & Binary Sampling . 24

3.1.3.1 Binary Sampling Method 26

3.1.4 Convolution Methods . 30

3.2 Lattice-based (Hierarchical) Identity-based Encryption 32

3.2.1 Summary of Latte HIBE Scheme . 33

4 Zero-centered Discrete Gaussian Sampler 41

4.1 Directly Approximating the Exp Function 42

4.2 FACCT Algorithm . 44

4.2.1 FACCT Relative Error Analysis . 44

4.2.2 AVX2 Implementation . 47

4.3 Concrete Rényi Divergence Based Convolution Sampling 47

4.4 Evaluation . 49

4.5 Applications . 54

4.5.1 Sampling from the BLISS-I Standand Deviation 54

4.5.2 qTesla . 55

4.5.3 Falcon . 56

4.6 Research Impact . 56

5 Arbitrary-centered Discrete Gaussian Sampler 59

5.1 COSAC Algorithm . 60

5.2 Accuracy Analysis . 65

5.3 Precision Analysis . 65

5.4 Evaluation . 67

5.5 Research Impact . 72

ix

6 Lattice-based HIBE (Latte) . 73

6.1 Latte Software Design Features and Considerations 74

6.1.1 Techniques from Falcon and ModFalcon 74

6.1.2 Discrete Gaussian Sampling over the Integers 77

6.2 Optimised ffLDL Algorithm . 80

6.3 ffLDL Error Analysis . 84

6.3.1 Error Analysis of D in ffLDL . 84

6.3.2 Error Analysis of L in ffLDL . 88

6.3.3 ffLDL Error Computation Algorithm 91

6.3.4 Practical Implication . 91

6.4 Evaluation . 99

7 Conclusion and Discussion . 103
7.1 Future Works . 104

References . 107

x

List of Figures

2.1 A 2-level HIBE scheme [ZMS+21]. 18

3.1 DDG tree, figure adapted from [RVV13]. 23

3.2 Bitslicing, figure adapted from [KRR+18]. 25

4.1 The polynomial approximation 𝑃 in the FACCT sampler implementation. 50

4.2 Comparison of the CPU cycles for different 𝜎 51

4.3 Comparison of the Bernoulli table size for different 𝜎 52

4.4 𝑡-values from the timing measurements of the FACCT Bernoulli sampler. 53

xi

List of Tables

2.1 Explanation of Notational Practice of 2-level HIBE Functions. 17

3.1 Latte Parameters [ETS19]. 33

4.1 Total Relative Errors for Different Number of Convolution Levels. 48

4.2 Convolution Parameters for 𝜎 ≈ 215. 49

4.3 Parameters for Implementations. 49

4.4 Comparison of the CPU Cycles for Generating 𝑚 = 1024 Samples from

𝒟ℤ,𝜎 , with 𝜎 ≈ 215. 54

4.5 Comparison of the Memory Consumption for 𝜎 ≈ 215. 55

4.6 Comparison of the CPU Cycles for qTesla-R2 (AVX2) KeyGen. 56

4.7 Signing Speed Comparison for Falcon. 56

5.1 Number of Samples per Second for Our Scheme with Fixed 𝜎 at 4.2GHz

(with 𝜆 = 128). 69

5.2 Summary of the Speed of Previous Works for Fixed 𝜎 at 4.2GHz (with

𝜆 = 128). 69

5.3 Summary of the Storage of Previous Works for Fixed 𝜎 at 4.2GHz (with

𝜆 = 128). 70

5.4 Number of Samples per Second Compared with the FACCT for Fixed 𝜎
and 𝑐 = 0 at 4.2GHz (with 𝜆 = 128). 70

6.1 Revised Latte Parameters. 78

6.2 Comparison of the Average Number of CPUCycles for ffLDLAlgorithms

in Latte. 82

6.3 Numerical Values of 𝛿𝜎 and ΔL for Latte Parameter Sets (𝑑 = 2). 96

xii

6.4 Numerical Values of 𝛿𝜎 and ΔL for Latte Parameter Sets (𝑑 = 3). 97

6.5 𝛿𝜎 in Practice for Latte-3. 98

6.6 Proof of Concept Latte Performance Results (op/s) from [ETS19] (Scaled

to 4.2GHz). 99

6.7 Our Optimised Latte Performance Results (op/s) at 4.2GHz. 100

6.8 Performance Results (op/s) for the DLP IBE Scheme from [ETS19] (Scaled

to 4.2GHz). 101

xiii

List of Algorithms

2.1 The ffLDL algorithm from [DP16, PFH+17]. 15

2.2 The ffSampling Tree computation algorithm [PFH+17]. 16

2.3 The ffSampling algorithm [PFH+17]. 16

3.1 Binary sampling scheme [DDLL13]. 27

3.2 Base sampler from BLISS [DDLL13]. 27

3.3 Bernoulli sampler from BLISS [DDLL13]. 28

3.4 Constant-time Bernoulli sampler [PBY17, EFGT17]. 29

3.5 Bernoulli sampler with constant number of iterations [BAA+17]. 29

3.6 Non-zero centered binary sampling scheme [DWZ19]. 30

3.7 KLD-based convolution sampling scheme [PDG14, KHR+18]. 31

3.8 Latte KeyGen algorithm [ETS19]. 34

3.9 Latte Delegate algorithm (from level ℓ − 1 to ℓ) [ETS19]. 36

3.10 Latte Extract algorithm (from level ℓ − 1 to user at level ℓ) [ETS19]. . . . 37

3.11 Latte Encrypt algorithm (at level ℓ) [ETS19]. 38

3.12 Latte Decrypt algorithm (at level ℓ) [ETS19]. 39

4.1 Rational function approximation algorithm of exp(𝑥) [PFH+17]. 42

4.2 FACCT Bernoulli sampler. 45

5.1 Rejection sampler adapted from [Dev86], pg. 117, ch. 3. 60

5.2 𝒟−𝑐𝐹 ,𝜎 sampler with domain ℤ ⧵ {0}. 62

5.3 𝒟𝑐,𝜎 sampler with domain ℤ. 62

6.1 NTRUSolve𝑁 ,𝑞 [PFH+17, PP19]. 75

xiv

6.2 Optimised Latte KeyGen algorithm. 76

6.3 Optimised Latte Delegate algorithm (from level ℓ − 1 to ℓ). 77

6.4 Optimised Latte Extract algorithm (from level ℓ − 1 to user at level ℓ). . . 78

6.5 Optimised Latte Encrypt algorithm (at level ℓ). 79

6.6 Optimised Latte Decrypt algorithm (at level ℓ). 79

6.7 Optimised ffLDL algorithm for (Mod)NTRU basis in Latte. 83

6.8 Computation of ΔD and ΔL for non-root nodes in the ffLDL tree. 92

xv

xvi

Chapter 1

Introduction

The majority of popular traditional public key cryptosystems, such as the de facto indus-

trial standards RSA algorithm [RSA78] and Elliptic-curve cryptography [Kob87, Mil85],

was shown to have a compromised security under quantum computing scenarios, due to

the evidence of Shor’s theoretical work [Sho94] and its recent primitive proof-of-concept

[MLL+13] showing that the integer factorisation problem can be solved in polynomial

time on quantum computers. On this occasion, the National Institute of Standards and

Technology (NIST) in the USA is running a competition (NIST PQC) [NIS16a] evaluat-

ing submissions for post-quantum public key cryptosystems. The winning algorithms

among all the candidates will hopefully become the new post-quantum security stan-

dard. Lattice-based cryptosystems are one of the promising candidates due to the strong

mathematical security guarantees and the fact that these cryptosystems have resisted

against any known quantum attacks so far. Recently, NIST announced the 3rd round can-

didates1 for further evaluations, and five among all the seven 3rd round finalists (71%)

are lattice-based cryptosystems. In addition to message encryptions, the lattice-based

cryptosystems have various applications in post-quantum security, such as digital sig-

natures [DDLL13], key exchange protocols [ADPS15], and (hierarchical) identity-based

encryption (IBE) schemes [ETS19].

A significant advantage of lattice-based cryptosystems is that these cryptosystems typi-

cally have a lower time complexity compared to traditional alternatives while still being

easy to implement, since the core operations of typical lattice-based cryptosystems be-

long to either the matrix arithmetic or the polynomial ring arithmetic operations. How-

ever, in spite of the theoretical efficiency analysis results, the actual performance of

lattice-based cryptosystems running on common platforms are heavily influenced by

1https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

1

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

2 CHAPTER 1. INTRODUCTION

their implementation techniques. Alkim et al. have shown the fact that the naive imple-

mentation for a lattice-based key exchange protocol only has a “disappointing” perfor-

mance in the run-time compared to a more optimised implementation [ADPS15]. Mean-

while, an unprotected implementation of lattice-based cryptosystem is also vulnerable

to side-channel attacks. For example, various side-channels were exploited in attacking

the lattice-based BLISS signature scheme [DDLL13], including the cache [BHLY16], or

timing and power [EFGT17]. Therefore, it is essential to study both efficient and secure

implementation techniques for lattice-based cryptosystems and their applications.

The general research aim of this study is to propose optimised and secure software imple-

mentation techniques for critical steps in various lattice-based cryptosystems and their

applications. Our study particularly focuses on the following areas:

Integer Discrete Gaussian Sampler: The integer discrete Gaussian sampler is one of

the key subroutines in lattice-based schemes based on the (Ring) Learning with Er-

rors problem [Reg05, LPR10] e.g. qTesla digital signature [BAA+17], in lattice trap-

door sampling algorithms [GPV08] e.g. used in Falcon digital signature [PFH+17],
and in fully homomorphic encryption schemes e.g. [FV12]. The performance of

the integer discrete Gaussian sampler is critical for the run-time speed of such

lattice-based cryptosystems [POG15]. In addition, insecure implementations of

integer discrete Gaussian samplers have recently become targets of various side-

channel attacks [BHLY16, EFGT17].

In this thesis, we study both the zero-centered and the arbitrary-centered integer

discrete Gaussian samplers. This is because lattice-based cryptosystems such as

the qTesla [BAA+17] only require sampling from a discrete Gaussian distribution

with a fixed center (typically, the center is 0), while in lattice trapdoor sampling

algorithms [GPV08] the integer discrete Gaussian sampler needs to sample with

arbitrary centers generated during the run-time.

Lattice-based Hierarchical Identity-based Encryption: To the best of our knowl-

edge, although there exists several practical lattice-based IBE implementation re-

sults [DLP14,MSO17, BFRS18, BEP+21], however, prior to our work, the only exist-

ing practical lattice-based hierarchical IBE (HIBE) implementation result was the

partial evaluation of the Bonsai-tree [CHKP10] based HIBE scheme called Latte

[ETS19], which only gave the performance results of the Encryption and the De-

cryption algorithms. Therewas little existing research on the practicality of lattice-

based HIBE schemes and therefore it was unclear how to efficiently implement a

lattice-based HIBE scheme, especially the Key Delegation algorithm (since the Key

Delegation algorithm only exists in HIBE but not in IBE).

Therefore, this research answers the following research questions (RQ):

1.1 CONTRIBUTIONS 3

RQ 1 How to design/develop efficient and constant-time implementation techniques for

the discrete Gaussian sampler with a fixed center?

RQ 2 How to design/develop efficient and constant-time implementation techniques for

the discrete Gaussian sampler with arbitrary centers generated during the run-

time?

RQ 3 How to design/develop efficient implementation techniques for Bonsai-tree based
HIBE schemes?

1.1 Contributions

• For RQ 1, we developed the FACCT sampler (see Chapter 4) to sample from zero-
centered discrete Gaussian distributions. This constant-time sampler is based on

the binary sampling algorithm [DDLL13], but we replaced the previous constant-

time Bernoulli sampler [PBY17, EFGT17, BAA+17] by polynomial approximations

of exp(𝑥) to directly evaluate the rejection condition in the binary sampling al-

gorithm instead. To reduce the precision requirements for both the base sampler

and the polynomial approximation, we adapted the Rényi divergence [BLL+15,
Pre17]. The benchmark results showed that our sampler is either faster or more

compact than previous constant-time discrete Gaussian sampler implementations

[BAA+17] or countermeasures [PBY17, EFGT17], especially for larger standard

deviations. In addition, our sampler has the advantage that the efficiency is in-

dependent of the standard deviation, and therefore it is more flexible in imple-

menting schemes requiring samples with different standard deviations. We also

adapted our developed techniques to improve the implementation of NIST PQC

2nd round candidates. We showed faster key generation speed in the qTesla sig-

nature [ABB+19] after adapting our techniques, and we implemented the exp(𝑥)
subroutine of the Falcon signature2 [PFH+17] in constant time with very slight

overhead.

• For RQ 2, we developed the COSAC sampler (see Chapter 5) to sample from

arbitrary-centered discrete Gaussian distributions, which is a key subroutine

in lattice trapdoor sampling algorithms [GPV08, Pei10]. We generalised the

rejection sampler from [Dev86]. Our scheme performs rejection sampling on

rounded continuous Gaussian samples [HLS18, ZCHW17] to generate samples

from the target discrete Gaussian distribution. Compared with previous arbitrary-

centered discrete Gaussian sampling techniques requiring pre-computations

2The original implementation of the Falcon signature in NIST PQC 1st round was non-constant time.

4 CHAPTER 1. INTRODUCTION

[MR18, MW17], our sampling algorithm does not need any pre-computations

related to a specific discrete Gaussian distribution or a specific standard deviation,

and both the center and the standard deviation can be arbitrary determined

on-the-fly at run-time. Our sampler also has a lower number of trials per sample

on average (close to 2 per sample) compared to typically about 8–10 per sample

on average in the naive rejection sampling algorithm [von51]. The rejection rate

of our scheme also decreases when scaling up the standard deviation. In addition,

we provided a center-independent run-time implementation (i.e. the run-time

is independent of the center), which potentially can be adapted to implement

some lattice trapdoor samplers [MP12, Pei10] and applications such as the IBE

[BFRS18] in constant time.

• For RQ 3, we optimised and developed the first full practical implementation of

Latte [ETS19] (see Chapter 6), a lattice-based HIBE scheme endorsed by the Euro-

pean Telecommunications Standards Institute (ETSI). We adapted techniques from

Falcon [PFH+17] and ModFalcon [CPS+20] in order to optimise the implemen-

tation, especially the Key Generation algorithm, the Key Delegation algorithm,

and the lattice discrete Gaussian sampling subroutine. We also adapted both our

FACCT sampler (RQ 1) and COSAC sampler (RQ 2) in order to accelerate the in-

teger discrete Gaussian sampling subroutines in our optimised Latte scheme. In

addition, for the (Mod)NTRU basis in Latte, we optimised the Fast Fourier Trans-

form (FFT) based LDL∗ decomposition algorithm (ffLDL) [DP16, PFH+17], which

is used in the lattice discrete Gaussian sampling procedure adapted from the Fal-

con digital signature [PFH+17]. Our optimised ffLDL algorithm achieves a 71.1%–

73.4% speedup on average compared to a naive generic ffLDL implementation used

by our old Latte implementation for such basis. Furthermore, since the Falcon

[PFH+17] only reported the heuristic error bounds of the ffLDL output based on

the experimental results with very little technical discussion, we provide the first

provable theoretical error analysis results of the ffLDL algorithm, with only a few

mild and explicitly stated heuristics, and compute the numerical values of our

precision bounds based on the Latte parameter sets. Combining all techniques dis-

cussed above, our optimised implementation of the Key Delegation function took

1 second at 80-bit security on a desktop machine at 4.2GHz, significantly faster

than the order of minutes estimated in the ETSI technical report [ETS19]. Fur-

thermore, our optimised Latte Encryption and Decryption implementations reach

speeds up to 4.5x faster than the ETSI implementation [ETS19].

1.2 THESIS STRUCTURE 5

1.2 Thesis Structure

We show the necessary notations and mathematical backgrounds of this thesis in Chap-

ter 2. In Chapter 3, we review the existing integer discrete Gaussian sampling techniques

and practical implementations of lattice-based (hierarchical) identity-based encryption

schemes. Our FACCT techniques for zero-centered discrete Gaussian sampling is demon-

strated in Chapter 4. Our COSAC techniques for arbitrary-centered discrete Gaussian

sampling is demonstrated in Chapter 5. In Chapter 6, we discuss the optimisation tech-

niques and error analysis of the Latte HIBE scheme. We conclude this thesis and discuss

both the limitations of our study and potential future works in Chapter 7.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Notations

Arithmetic We denote ℤ+ as the positive integer set {1, … ,∞}, ℤ− as the negative

integer set {−∞,… , −1}, and ℝ+ as the set of positive real number {𝑥 ∶ 𝑥 ∈ ℝ, 𝑥 > 0},
respectively. We define ⌊𝑥⌉ as the nearest integer to 𝑥 ∈ ℝ. We denote |𝑥| as the absolute

value of 𝑥 . The ring of integers mod 𝑞 is denoted asℤ𝑞 . The operator⊕means XOR. We

denote the conjugate of 𝑥 ∈ ℂ as 𝑥∗. Let gcd(𝑎, 𝑏) be the greatest common divisor of 𝑎, 𝑏.

Vectors/Polynomials/Matrices Vectors or, interchangeably through the canonical

embedding, polynomials will be denoted by bold small letters like f, matrices M. The

transposes of vector f and matrixM are denoted as fT andMT, respectively. Polynomial

ringℤ[𝑥]/⟨𝑥𝑁 +1⟩ is denoted asℜ, andℤ𝑞[𝑥]/⟨𝑥𝑁 +1⟩ is denoted asℜ𝑞 . The Euclidean

norm of a vector/polynomial f is denoted ‖f‖. The Hermitian transpose f∗ of polynomial

f = 𝑓0 + 𝑓1𝑥 + ⋯ + 𝑓𝑁−1𝑥𝑁−1 is defined as f∗ = 𝑓0 − 𝑓𝑁−1𝑥 − ⋯ − 𝑓1𝑥𝑁−1. We denote

M∗ as the Hermitian transpose of matrix M where (M∗)𝑖,𝑗 = (M𝑗,𝑖)∗. Let det(M) be the

determinant of matrixM, and let adj(M) be the adjugate matrix ofM. Let I𝑛 be the 𝑛 × 𝑛
identity matrix, and 0𝑛 be the 𝑛 × 𝑛 zero matrix. The Hermitian product of vectors a, b
is denoted as ⟨a, b⟩. The concatenation of several vectors f1, f2, … , f𝑁 will be written

as (f1|f2| ⋯ |f𝑁). A Gram-Schmidt orthogonalised basis is denoted as B̃ = {b̃1, … , b̃𝑁 }.
The rounding ⌊f⌉ of a polynomial f is taken to be coefficient-wise rounding. The Fast

Fourier Transform (FFT) and Number Theoretic Transform (NTT) of polynomial f are

the evaluations f(𝜔𝑖) for 𝑖 ∈ {0, … , 𝑁 − 1}, where 𝜔 is the 2𝑁 -th complex root of unity in

the FFT, and 𝜔 is the 2𝑁 -th root of unitymod 𝑞 in the NTT. The point-wisemultiplication

of vectors a, b is denoted as a⊙b. The maximal value among 𝑛 coordinates of scalar a is

denoted as max𝑛−1𝑖=0 a𝑖, and the minimal value is denoted as min𝑛−1𝑖=0 a𝑖. The notation 𝒜(f)

7

8 CHAPTER 2. PRELIMINARIES

refers to the anti-circulant matrix associated with polynomial f:

𝒜(f) =
⎛
⎜
⎜
⎜
⎝

f0 f1 … f𝑁−1
−f𝑁−1 f0 … f𝑁−2

⋮ ⋮ ⋱ ⋮
−f1 −f2 … f0

⎞
⎟
⎟
⎟
⎠

.

Distributions Let 𝜌c,𝜎 (x) = exp (− ‖x−c‖2
2𝜎2) be the 𝑛-dimensional (continuous) Gaus-

sian function on ℝ𝑛 with center c ∈ ℝ𝑛 and standard deviation 𝜎 . We denote the dis-

crete Gaussian distribution on lattice Λ with center c ∈ ℝ𝑛 and standard deviation 𝜎
by 𝒟Λ,c,𝜎 (x) = 𝜌c,𝜎 (x)/𝑆, where 𝑆 = 𝜌c,𝜎 (Λ) = ∑k∈Λ 𝜌c,𝜎 (k) is the normalisation

factor. We use single value instead of scalar i.e. 𝜌𝑐,𝜎 (𝑥) and 𝒟Λ,𝑐,𝜎 (𝑥) when the lat-

tice is 1-dimensional. We denote the (1-dimensional) continuous Gaussian (normal)

distribution with center 𝑐 and standard deviation 𝜎 by 𝒩 (𝑐, 𝜎2), which has the prob-

ability density function 𝜌𝑐,𝜎 (𝑥)/(𝜎√2𝜋). We omit the lattice notation (i.e. 𝒟𝑐,𝜎) for

𝒟ℤ,𝑐,𝜎 , and we omit the center in notations (i.e. 𝜌𝜎 (𝑥), 𝒟𝜎 (𝑥), and 𝒟Λ,𝜎 (x)) if the cen-

ter is zero. We denote 𝒟+𝜎 as the distribution of 𝑥 ↩ 𝒟𝜎 for all 𝑥 ∈ ℤ+ ∪ {0} (i.e.

𝒟+𝜎 (𝑥) = 𝜌𝜎 (𝑥)/∑𝑘∈ℤ+∪{0} 𝜌𝜎 (𝑘)). In addition, we denote the uniform distribution on

set 𝑆 as𝒰(𝑆) and the Bernoulli distribution with bias 𝑝 asℬ𝑝 (i.e. the probability distri-

bution with Pr(𝑋 = 1) = 𝑝 and Pr(𝑋 = 0) = 1−𝑝). A distribution is 𝐵-bounded for some

𝐵 ∈ ℝ+, if its support is in the interval [−𝐵, 𝐵] [BLL+15]. Sampling from a distribution

𝒫 is denoted by 𝑥 ↩ 𝒫 .

2.2 Mathematical Background

2.2.1 Lattice

An 𝑛-dimension lattice Λ(B) is the set of all integer linear combinations of some ba-

sis set B, where B = {b𝑖}𝑛−1𝑖=0 ⊆ ℝ𝑛 and b0, … , b𝑛−1 are linearly independent: Λ(B) =
{∑𝑛−1

𝑖=0 𝑐𝑖b𝑖 ∶ 𝑐𝑖 ∈ ℤ}. Lattice Λ is a 𝑞-ary lattice if 𝑞ℤ ⊆ Λ. For a lattice Λ and any

𝜖 ∈ ℝ+, we denote the smoothing parameter 𝜂𝜖(Λ) as the smallest 𝑠 ∈ ℝ+ such that

𝜌1/(𝑠√2𝜋)(Λ∗⧵{0}) ≤ 𝜖, whereΛ∗ is the dual lattice ofΛ: Λ∗ = {w ∈ ℝ𝑛 ∶ ∀x ∈ Λ,x⋅w ∈ ℤ}
[Pei10]. An upper bound on 𝜂𝜖(ℤ) is given by [Pei10]: 𝜂𝜖(ℤ) ≤ √ln(2 + 2/𝜖)/𝜋 .

Theorem 1 (Adapted from [Pei10], Lemma 2.4). For any 𝜖 ∈ (0, 1) and 𝑐 ∈ ℝ, if 𝜎 ≥
𝜂𝜖(ℤ)/√2𝜋 , then 𝜌𝑐,𝜎 (ℤ) = [1−𝜖1+𝜖 , 1] ⋅ 𝜌𝜎 (ℤ), and 𝜌𝜎 (ℤ) is approximately ∫∞−∞ 𝜌𝜎 (𝑥) d𝑥 =
𝜎√2𝜋 .

2.2 MATHEMATICAL BACKGROUND 9

Definition 1 (NTRU Lattice [HHP+03, DLP14]). Let 𝑞 be a positive integer. Let f, g ∈ ℜ
and h = g/f mod 𝑞. The NTRU lattice associated to h and 𝑞 isΛ = {x ∈ ℜ2 ∶ x ⋅(1,h) =
0 mod 𝑞}.

The determinant of the basis of an NTRU lattice is 𝑞𝑁 . A basis of the NTRU lattice Λ
associated with h and 𝑞 isB = (−𝒜(h) I𝑁𝑞I𝑁 0𝑁) [HHP+03, DLP14]. In addition, Another basis

of Λ is S = (𝒜(g) −𝒜(f)
𝒜(G) −𝒜(F)) such that det(S) = 𝑞𝑁 for some F,G ∈ ℜ i.e. det (g −f

G −F) =
fG − gF = 𝑞 mod 𝑥𝑁 + 1 [HHP+03, DLP14].

Definition 2 (ModNTRU Lattice [CKKS19, CPS+20]). Let 𝑞 be a positive integer. Let

h ∈ ℜ𝑑−1𝑞 . The 𝑑𝑁 -dimensional Module NTRU lattice associated to h and 𝑞 is Λ = {x ∈
ℜ𝑑 ∶ x ⋅ (1,h0, … ,h𝑑−2) = 0 mod 𝑞}.

The ModNTRU lattice is essentially the generalised NTRU lattice for 𝑑 > 2. A basis of

the ModNTRU lattice Λ associated with h and 𝑞 is [CKKS19, CPS+20]:

B =
⎛
⎜
⎜
⎜
⎝

−𝒜(A𝑑−2) 0𝑁 … 0𝑁 I𝑁
⋮ ⋮ ⋱ ⋮ ⋮

−𝒜(h0) I𝑁 … 0𝑁 0𝑁
𝑞I𝑁 0𝑁 … 0𝑁 0𝑁

⎞
⎟
⎟
⎟
⎠

.

In addition, another basis of Λ is:

S =
⎛
⎜
⎜
⎜
⎝

𝒜(s0,0) 𝒜(s0,1) … 𝒜(s0,𝑑−1)
𝒜(s1,0) 𝒜(s1,1) … 𝒜(s1,𝑑−1)

⋮ ⋮ ⋱ ⋮
𝒜(s𝑑−1,0) 𝒜(s𝑑−1,1) … 𝒜(s𝑑−1,𝑑−1)

⎞
⎟
⎟
⎟
⎠

,

for some s𝑖,𝑗 ∈ ℜ, 0 ≤ 𝑖, 𝑗 ≤ 𝑑 −1, such that h𝑖 = C𝑑−1,𝑖+1/C𝑑−1,0 mod 𝑞 for 0 ≤ 𝑖 ≤ 𝑑 −2,
where C is the cofactor matrix of S′ = (s𝑖,𝑗)0≤𝑖,𝑗≤𝑑−1 ∈ ℜ(𝑑−1)×(𝑑−1) [CKKS19, CPS+20].
The determinant of the basis of a ModNTRU lattice is also 𝑞𝑁 as in the NTRU lattice i.e.

det(S) = 𝑞𝑁 and det(S′) = 𝑞.

2.2.2 Arithmetic Errors

The absolute error between values 𝑎′ and 𝑎 is |𝑎′ − 𝑎| where 𝑎 is accurate and 𝑎′ is the

actual value with errors. Similarly, the relative error between 𝑎′ and 𝑎 is |𝑎′−𝑎𝑎 | or |𝑎′𝑎 − 1|.
Let the precision of floating-point number be 𝑝 bits and let 𝑢 = 2−𝑝 . Let RN(𝑎) be value

𝑎 rounded to precision 𝑝 by rounding to the nearest. From the IEEE-754 standard, for

𝑎, 𝑏 ∈ ℝ and 𝑧 ∈ {𝑎, 𝑎 + 𝑏, 𝑎 − 𝑏, 𝑎 ⋅ 𝑏, 𝑎/𝑏, √𝑎}, we have |RN(𝑧) − 𝑧| ≤ 𝑢|𝑧| [MBdD+10].

10 CHAPTER 2. PRELIMINARIES

In complex number arithmetic with precision 𝑝, for 𝑧 ∈ ℂ, we have |RN(𝑧) − 𝑧| ≤ 𝑢|𝑧|
[MBdD+10]. Muller et al. also provided the absolute error bounds |RN(𝑧)−𝑧| for 𝑧 ∈ {𝑎+
𝑏, 𝑎−𝑏, 𝑎⋅𝑏, 𝑎/𝑏}when 𝑎, 𝑏 ∈ ℂ are accurate [MBdD+10]. However, for the error analysis in

Chapter 6, we need the absolute error of complex number arithmetic when both 𝑎, 𝑏 are

actual values with errors. Here, we follow similar approaches to [MBdD+10, BJM+20]
and provide the arithmetic error bounds when 𝑎, 𝑏 contain errors.

Addition/Subtraction Let 𝑎, 𝑏 ∈ ℂ be the ideal (i.e. accurate) complex numbers and

𝑎′, 𝑏′ be the actual complex numbers with the absolute errors |𝑎′ − 𝑎| ≤ Δ𝑎 and |𝑏′ − 𝑏| ≤
Δ𝑏 . For complex number addition and subtraction 𝑎 ± 𝑏, we have the absolute error

Δ±(𝑎, 𝑏, Δ𝑎, Δ𝑏) = |RN(𝑧′) − 𝑧| for 𝑧 = 𝑎 ± 𝑏 and 𝑧′ = 𝑎′ ± 𝑏′:

Δ±(𝑎, 𝑏, Δ𝑎, Δ𝑏) = |RN(𝑎′ ± 𝑏′) − (𝑎 ± 𝑏)|
≤ |RN(𝑎′ ± 𝑏′) − (𝑎′ ± 𝑏′)| + |(𝑎′ ± 𝑏′) − (𝑎 ± 𝑏)|
≤ |RN(𝑎′ ± 𝑏′) − (𝑎′ ± 𝑏′)| + |𝑎′ − 𝑎| + |𝑏′ − 𝑏|
≤ 𝑢|𝑎′ ± 𝑏′| + Δ𝑎 + Δ𝑏
≤ 𝑢(|𝑎 ± 𝑏| + |𝑎′ − 𝑎| + |𝑏′ − 𝑏|) + Δ𝑎 + Δ𝑏
≤ 𝑢(|𝑎| + |𝑏|) + (1 + 𝑢)(Δ𝑎 + Δ𝑏).

Multiplication For complex number multiplication 𝑎 ⋅ 𝑏, we have the absolute error

Δ×(𝑎, 𝑏, Δ𝑎, Δ𝑏) = |RN(𝑧′) − 𝑧| for 𝑧 = 𝑎𝑏 and 𝑧′ = 𝑎′𝑏′:

Δ×(𝑎, 𝑏, Δ𝑎, Δ𝑏) = |RN(𝑎′𝑏′) − 𝑎𝑏| ≤ |RN(𝑎′𝑏′) − 𝑎′𝑏′| + |𝑎′𝑏′ − 𝑎𝑏|.

According to [MBdD+10], we have:

|RN(𝑎′𝑏′) − 𝑎′𝑏′| ≤ √5𝑢|𝑎′| ⋅ |𝑏′| ≤ √5𝑢(|𝑎| + Δ𝑎)(|𝑏| + Δ𝑏).

For |𝑎′𝑏′ − 𝑎𝑏|, we have:

|𝑎′𝑏′ − 𝑎𝑏| ≤ |𝑎′𝑏′ − 𝑎𝑏′| + |𝑎𝑏′ − 𝑎𝑏|
= |𝑎′ − 𝑎| ⋅ |𝑏′| + |𝑎| ⋅ |𝑏′ − 𝑏|
≤ Δ𝑎 |𝑏| + Δ𝑏 |𝑎| + Δ𝑎Δ𝑏 .

Therefore,

Δ×(𝑎, 𝑏, Δ𝑎, Δ𝑏) ≤ √5𝑢|𝑎| ⋅ |𝑏| + (√5𝑢 + 1)(Δ𝑎 |𝑏| + Δ𝑏 |𝑎| + Δ𝑎Δ𝑏).

2.2 MATHEMATICAL BACKGROUND 11

In addition, when 𝑎 ∈ ℂ and 𝑏 ∈ ℝ, we have |RN(𝑎′𝑏′) − 𝑎′𝑏′| ≤ 𝑢|𝑎′| ⋅ |𝑏′| instead.
Therefore, for the absolute error Δ×ℝ(𝑎, 𝑏, Δ𝑎, Δ𝑏) of complex number multiplication 𝑎 ⋅ 𝑏
where 𝑎 ∈ ℂ, 𝑏 ∈ ℝ, we have:

Δ×ℝ(𝑎, 𝑏, Δ𝑎, Δ𝑏) ≤ 𝑢|𝑎| ⋅ |𝑏| + (𝑢 + 1)(Δ𝑎 |𝑏| + Δ𝑏 |𝑎| + Δ𝑎Δ𝑏).

Division Similarly, for complex number division 𝑎/𝑏, assuming no overflow/underflow

occurs, we have the absolute error Δ/(𝑎, 𝑏, Δ𝑎, Δ𝑏) = |RN(𝑧′) − 𝑧| for 𝑧 = 𝑎/𝑏 and

𝑧′ = 𝑎′/𝑏′:

Δ/(𝑎, 𝑏, Δ𝑎, Δ𝑏) = |RN (𝑎
′
𝑏′) −

𝑎
𝑏 | ≤ |RN (𝑎

′
𝑏′) −

𝑎′
𝑏′ | + |𝑎

′
𝑏′ −

𝑎
𝑏 | .

According to [MBdD+10], we have:

|RN (𝑎
′
𝑏′) −

𝑎′
𝑏′ | ≤ (5√2(1 + 6𝑢)𝑢) |𝑎

′|
|𝑏′| ≤ 5√2(1 + 6𝑢)𝑢 |𝑎| + Δ𝑎

|𝑏| − Δ𝑏
.

For |𝑎′𝑏′ −
𝑎
𝑏 |, we have:

| 𝑎
′
𝑏′ −

𝑎
𝑏 | =

|𝑎′𝑏 − 𝑎𝑏′|
|𝑏′| ⋅ |𝑏|

≤ |𝑎′𝑏 − 𝑎𝑏| + |𝑎𝑏 − 𝑎𝑏′|
|𝑏′| ⋅ |𝑏|

= |𝑎′ − 𝑎| ⋅ |𝑏| + |𝑎| ⋅ |𝑏 − 𝑏′|
|𝑏′| ⋅ |𝑏|

≤ Δ𝑎 |𝑏| + Δ𝑏 |𝑎|
(|𝑏| − Δ𝑏)|𝑏|

.

Therefore,

Δ/(𝑎, 𝑏, Δ𝑎, Δ𝑏) ≤
5√2(1 + 6𝑢)𝑢(|𝑎| + Δ𝑎) + Δ𝑎

|𝑏| − Δ𝑏
+ Δ𝑏 |𝑎|
(|𝑏| − Δ𝑏)|𝑏|

.

In addition, when 𝑎 ∈ ℂ and 𝑏 ∈ ℝ, we have |RN (𝑎′𝑏′) −
𝑎′
𝑏′ | ≤ 𝑢 |𝑎′||𝑏′| instead. Therefore, for

the absolute error Δ/ℝ(𝑎, 𝑏, Δ𝑎, Δ𝑏) of complex number division 𝑎/𝑏 where 𝑎 ∈ ℂ, 𝑏 ∈ ℝ,
we have:

Δ/ℝ(𝑎, 𝑏, Δ𝑎, Δ𝑏) ≤
𝑢|𝑎| + (𝑢 + 1)Δ𝑎

|𝑏| − Δ𝑏
+ Δ𝑏 |𝑎|
(|𝑏| − Δ𝑏)|𝑏|

.

2.2.3 Errors of Fast Fourier Transform

Brisebarre et al. provided the following bound for the error of the Cooley-Tukey Fast

Fourier Transform (FFT) [CT65] on the ring ℂ[𝑥]/⟨𝑥𝑁 − 1⟩ [BJM+20]:

12 CHAPTER 2. PRELIMINARIES

Theorem 2 (Adapted from [BJM+20], Thm. 8). Assume the floating-point precision is 𝑝
bits. Let 𝑢 = 2−𝑝 . Let z be the accurate 𝑁 -point Cooley-Tukey FFT result of a ∈ ℂ[𝑥]/⟨𝑥𝑁 −
1⟩, and let z′ be the actual FFT result with errors. Then,

‖z′ − z‖ ≤ ‖z‖ ⋅ [(1 + 𝑢)𝑛(1 + 𝑔)𝑛−2 − 1],

where 𝑛 = log2 𝑁 and

𝑔 = √2
2 𝑢 + √5𝑢 (1 + √2

2 𝑢) .

The exponent 𝑛 − 2 of 1 + 𝑔 in the inequality above comes from that the complex roots

of unity used by the first 2 levels of the Cooley-Tukey FFT on the ring ℂ[𝑥]/⟨𝑥𝑁 − 1⟩
can be exactly represented, and thus multiplication by them does not introduce errors

[BJM+20].

However, for lattice-based cryptosystems, we need the FFT on the ring ℂ[𝑥]/⟨𝑥𝑁 + 1⟩
instead. For the Cooley-Tukey FFT variant on the ring ℂ[𝑥]/⟨𝑥𝑁 + 1⟩ e.g. FFT used by

Falcon digital signature [PFH+17], only the complex root of unity used by the first level

of FFT can be exactly represented. In addition, for the error analysis in Chapter 6, we

need the absolute error bound max𝑁−1
𝑖=0 |z′𝑖 − z𝑖| of FFT coordinates. Since max𝑁−1

𝑖=0 |z𝑖| ≤
‖z‖ ≤ √𝑁 ⋅max𝑁−1

𝑖=0 |z𝑖| [BJM+20], we have the following theorem:

Theorem 3. Assume the floating-point precision is 𝑝 bits. Let 𝑢 = 2−𝑝 . Let z be the
accurate 𝑁 -point Cooley-Tukey FFT result of a ∈ ℂ[𝑥]/⟨𝑥𝑁 + 1⟩, and let z′ be the actual
FFT result with errors. Then, we have the absolute error ΔFFT of FFT coordinates:

ΔFFT = |z′𝑖 − z𝑖| ≤ 𝛿FFT ⋅ 𝑁−1
max𝑗=0 |z𝑗 |,

0 ≤ 𝑖 ≤ 𝑁 − 1, where 𝑛 = log2 𝑁 ,

𝛿FFT = √𝑁[(1 + 𝑢)𝑛(1 + 𝑔)𝑛−1 − 1],

and
𝑔 = √2

2 𝑢 + √5𝑢 (1 + √2
2 𝑢) .

In addition, for the Euclidean norm of the FFT result, we have:

Theorem 4 (Adapted from [BJM+20]). For 𝑁 -point FFT result z of scalar a, we have
‖z‖ = √𝑁 ‖a‖. Thus, |z𝑖| ≤ √𝑁 ‖a‖ for 0 ≤ 𝑖 ≤ 𝑁 − 1.

2.2 MATHEMATICAL BACKGROUND 13

2.2.4 Divergence

Definition 3 (Relative Error). For two distributions 𝒫 and 𝒬 such that Supp(𝒫) =
Supp(𝒬), the relative error between 𝒫 and 𝒬 is defined as:

Δ(𝒫 ||𝒬) = max
𝑥∈Supp(𝒫)

|𝒫 (𝑥) − 𝒬(𝑥)|
𝒬(𝑥) .

Definition 4 (Kullback-Leibler Divergence [PDG14]). For two discrete distributions 𝒫
and 𝒬 such that Supp(𝒫) ⊆ Supp(𝒬), the Kullback-Leibler divergence (KLD) is defined

as:

𝐾𝐿(𝒫 ||𝒬) = ∑
𝑥∈Supp(𝒫)

𝒫 (𝑥) ln 𝒫 (𝑥)
𝒬(𝑥) .

Definition 5 (Rényi Divergence [BLL+15, Pre17]). For two discrete distributions𝒫 and

𝒬 such that Supp(𝒫) ⊆ Supp(𝒬), the Rényi divergence (RD) of order 𝛼 ∈ (1, +∞) is

defined as:

𝑅𝛼 (𝒫 ||𝒬) = (∑
𝑥∈Supp(𝒫)

𝒫 (𝑥)𝛼
𝒬(𝑥)𝛼−1)

1
𝛼−1

.

In addition, for 𝛼 = +∞, we have:

𝑅∞(𝒫 ||𝒬) = max
𝑥∈Supp(𝑃)

𝒫 (𝑥)
𝒬(𝑥) .

Definition 6 (Max-log Distance [MW17]). For two discrete distributions 𝒫 and 𝒬 such

that Supp(𝒫) = Supp(𝒬), the max-log distance is defined as:

𝑀𝐿(𝒫 ||𝒬) = max
𝑥∈Supp(𝒫)

| ln𝒫 (𝑥) − ln𝒬(𝑥)|.

For tighter bounds, we use the following theorems in Chapter 4 and 5:

Theorem 5 (Tail-cut Bound, Adapted from [BLL+15], Thm. 2.11). Let 𝒟 ′𝜎 be the
𝐵-bounded distribution of 𝒟𝜎 by cutting its tail. For 𝑀 independent samples, we have
𝑅∞((𝒟 ′𝜎)𝑀 ||(𝒟𝜎)𝑀) ≤ exp(1) if 𝐵 ≥ 𝜎 ⋅ √2 ln(2𝑀).

Theorem 6 (Relative Error Bound, Adapted from [Pre17], Lemma 3 and Eq. 4). For two
distributions 𝒫 and 𝒬 such that Supp(𝒫) = Supp(𝒬), we have:

𝑅𝛼 (𝒫 ||𝒬) ≤ (1 + 𝛼(𝛼 − 1) ⋅ (Δ(𝒫 ||𝒬))2
2(1 − Δ(𝒫 ||𝒬))𝛼+1)

1
𝛼−1

.

14 CHAPTER 2. PRELIMINARIES

The right-hand side is asymptotically equivalent to 1 + 𝛼 ⋅ (Δ(𝒫 ||𝒬))2/2 as Δ(𝒫 ||𝒬) → 0.
In addition, if a signature scheme using𝑀 independent samples from 𝒬 is (𝜆+1)-bit secure,
then the signature scheme sampling from𝒫 will be 𝜆-bit secure if 𝑅2𝜆(𝒫 ||𝒬) ≤ 1+1/(4𝑀).

Typically, we have 𝑀 = 𝑚 ⋅ 𝑞𝑠 , where 𝑚 is the dimension of the lattice and 𝑞𝑠 is the

number of queries.

Theorem 7 (Adapted from [Pre17], Lemma 4). For two distributions 𝒫 and 𝒬 such that
Supp(𝒫) = Supp(𝒬), we have:

𝑅𝛼 (𝒫 ||𝒬) ≤ (1 + 𝛼(𝛼 − 1) ⋅ (𝑒𝑀𝐿(𝒫 ||𝒬) − 1)2
2(2 − 𝑒𝑀𝐿(𝒫 ||𝒬))𝛼+1)

1
𝛼−1

.

The right-hand side is asymptotically equivalent to 1+𝛼 ⋅ (𝑀𝐿(𝒫 ||𝒬))2/2 as𝑀𝐿(𝒫 ||𝒬) →
0.

2.2.5 FFT Sampling of Lattice Discrete Gaussian

In order to sample from the lattice Gaussian distribution 𝒟Λ(B),c,𝜎 , typically a discrete

Gaussian sampler requires either the Gram-Schmidt Orthogonalisation (GSO) of the ba-

sis B [Kle00, GPV08] or the largest singular value 𝑠1(B) [Pei10]. For the basis B ∈ ℜ𝑑×𝑑 ,
Ducas and Prest provided a fast orthogonalisation algorithm utilising the LDL∗ decom-

position and Fast Fourier Transform (FFT) [DP16].

Definition 7 (Gram-Schmidt Orthogonal Decomposition [DP16]). Let B ∈ ℜ𝑑×𝑑 be a

full-rank matrix. There exists a Gram-Schmidt Orthogonal (GSO) Decomposition B =
L ⋅ B̃, where L is unit lower triangular and rows B̃𝑖 of B̃ are pairwise orthogonal.

Definition 8 (LDL∗ Decomposition [DP16]). Let the full-rank Gram matrix G = BB∗

where B ∈ ℜ𝑑×𝑑 . There exists an LDL∗ Decomposition G = LDL∗, where L is a lower

triangular matrix with 1 on its diagonal and D is a diagonal matrix.

In addition, if B has the GSO decomposition B = L ⋅ B̃, then L ⋅ (B̃B̃∗) ⋅ L∗ is the LDL∗

decomposition of G = BB∗ [DP16]. Therefore, the diagonal of D in the LDL∗ decom-

position of G = BB∗ is essentially the square of the Euclidean norms of GSO vectors

‖B̃𝑖‖2.
For the ring ℂ[𝑥]/⟨𝑥𝑁 + 1⟩ where 𝑁 is power of 2, Ducas and Prest showed that the

ffLDL algorithm in Algorithm 2.1 can perform the LDL∗ decomposition on the input

G = BB∗ ∈ (ℂ[𝑥]/⟨𝑥𝑁 + 1⟩)𝑑×𝑑 in the FFT domain [DP16]. The leaf values of the tree 𝑇
are ‖B̃𝑖‖2.

2.2 MATHEMATICAL BACKGROUND 15

Definition 9 (splitfft). The splitfft function in Algorithm 2.1 is essentially the

Gentleman-Sande butterfly [GS66]:

(d0)𝑗 = 1
2[(D𝑖,𝑖)2𝑗 + (D𝑖,𝑖)2𝑗+1], (d1)𝑗 = 1

2[(D𝑖,𝑖)2𝑗 − (D𝑖,𝑖)2𝑗+1]𝜔−bitrev(𝑛/2+𝑗),

for 𝑗 ∈ {0, … , 𝑛/2 − 1}, where 𝜔 is the 2𝑁 -th complex root of unity and bitrev is the bit

reverse function.

Algorithm 2.1 The ffLDL algorithm from [DP16, PFH+17].
Input: Gram matrix G ∈ (ℂ[𝑥]/⟨𝑥𝑛 + 1⟩)𝑑×𝑑 in the FFT domain.
Output: Tree 𝑇 .
1: function ffLDL(G)
2: if 𝑛 = 1 then
3: 𝑇 .value ← G0,0.
4: else
5: L ← I𝑑 ,D ← 0𝑑 .
6: for 𝑖 = 0 to 𝑑 − 1 do
7: for 𝑗 = 0 to 𝑖 − 1 do
8: L𝑖,𝑗 ← 1

D𝑗,𝑗
(G𝑖,𝑗 −∑𝑘<𝑗 L𝑖,𝑘 ⊙ L∗𝑗,𝑘 ⊙ D𝑘,𝑘).

9: end for
10: D𝑖,𝑖 ← G𝑖,𝑖 −∑𝑗<𝑖 L𝑖,𝑗 ⊙ L∗𝑖,𝑗 ⊙ D𝑗,𝑗 .
11: end for
12: 𝑇 .value ← L.
13: for 𝑖 = 0 to 𝑑 − 1 do
14: d0,d1 ← splitfft(D𝑖,𝑖).
15: G′ = (d0 d1

d∗1 d0
).

16: 𝑇 .child𝑖 ← ffLDL(G′).
17: end for
18: end if
19: return 𝑇 .
20: end function

The Falcon digital signature [PFH+17] utilised the ffLDL tree 𝑇 and implemented a fast

discrete Gaussian sampler over lattice Λ(B). In order to sample from𝒟c+Λ(B),𝜎 for 𝑞-ary
lattice Λ(B), the FFT sampling procedure [PFH+17] works as follows:

1. Call Tree(B, 𝜎) function from Algorithm 2.2. The Tree function in Algorithm 2.2

performs the ffLDL decomposition of G = BB∗ by calling the ffLDL algorithm in

Algorithm 2.1 and then normalises the leaf values by using 𝜎 .

2. Let t = c ⋅ B−1. Call ffSampling(FFT(t), 𝑇) function from Algorithm 2.3. The

ffSampling function is essentially a randomised variant of the Fast Fourier nearest

plan algorithm [DP16]. The ffSampling algorithm returns a vector z in the FFT

16 CHAPTER 2. PRELIMINARIES

domain such that zB follows the distribution𝒟Λ(B),tB,𝜎 [PFH+17]. Thus, for 𝑞-ary
lattice Λ(B), (t − z)B follows the distribution 𝒟c+Λ(B),𝜎 [GPV08].

Algorithm 2.2 The ffSampling Tree computation algorithm [PFH+17].
Input: B, 𝜎 .
Output: Tree 𝑇 .
1: function Tree(B, 𝜎)
2: G ← BB∗.
3: 𝑇 ← ffLDL(FFT(G)).
4: For each leaf of 𝑇 , leaf.value ← 𝜎/√leaf.value.
5: return 𝑇 .
6: end function

Algorithm 2.3 The ffSampling algorithm [PFH+17].
Input: t = (t0, t1, … , t𝑑−1) in FFT format, tree 𝑇 .
Output: z = (z0, z1, … , z𝑑−1) in FFT format.
1: function ffSampling(t, 𝑇)
2: if 𝑛 = 1 then
3: 𝜎 ′ ← 𝑇.value.
4: 𝑧0 ← 𝒟𝜎 ′,𝑡0 .
5: 𝑧1 ← 𝒟𝜎 ′,𝑡1 .
6: return z = (𝑧0, 𝑧1).
7: else
8: 𝑚 ← number of children of 𝑇 .
9: for 𝑗 = 𝑚 − 1 downto 0 do

10: 𝑇𝑗 ← 𝑗-th child of 𝑇 .
11: t′𝑗 ← t𝑗 +∑𝑚

𝑖=𝑗+1(t𝑖 − z𝑖) ⋅ 𝑇 .value𝑖,𝑗 .
12: t′𝑗 ← splitfft(t′𝑗).
13: z′𝑗 ← ffSampling(t′𝑗 , 𝑇𝑗).
14: z𝑗 ← mergefft(z′𝑗).
15: end for
16: return z = (z0, z1, … , z𝑚−1).
17: end if
18: end function

2.2.6 (Hierarchical) Identity-based Encryption

The identity-based encryption (IBE) [Sha84] is the public key encryption scheme where

the user’s public key is (derived from) an arbitrary string i.e. identity. In an IBE system,

the key manager will first generate the master private key. The user can register and

request their private key from the key manager by using their identity string. The key

manager will extract the user’s private key by using themaster private key and the user’s

identity string. Users can then perform encryption/decryption by using their key pairs.

More specifically, an IBE scheme typically contains the following functions [BF03]:

2.2 MATHEMATICAL BACKGROUND 17

KeyGen: The master key generator establishes the master public and private keys.

Extract: The extractor uses the master public/private key pair and the user’s identity

string to extract and share user public/private keys.

Encrypt/Decrypt: Users can use their public key derived from their identity string and

their extracted private key to perform encryption and decryption.

Hierarchical identity-based encryption (HIBE) schemes were introduced by [HL02] and

can be considered a generalisation of an IBE scheme to multiple levels. There can be mul-

tiple (sub) key managers at each level and each (sub) key manager has their own master

public/private key pair. A key manager can use their own master private key and the

identity string of a sub key manager at next level to delegate a master public/private key

pair to that sub key manager. That sub key manager can use their received master key

pair to perform the Extract function as in a normal IBE for users at this level, or delegate

a master public/private key pair to another sub key manager at next level. Users at each

level can register and request their private key by using their identity string at any (sub)

key manager on the same level. More specifically, in addition to the 4 functions above

in an IBE scheme, an HIBE has an extra Delegate function. Through a delegation func-

tion, the master key generator creates a public/private key pair for the sub key manager.

This gives it the ability to delegate further key pairs, and extract user private keys at that

level.

Figure 2.1 shows how each component in a 2-level HIBE scheme interact with each other.

Label 1 in Figure 2.1 performs the KeyGen function, Label 2, 3 perform the Delegate func-

tion, Label 4 performs the Extract function, and Label 5 perform the Encrypt/Decrypt

functions.

Table 2.1 indicates the HIBE functions that can be performed at each hierarchical level

in a 2-level HIBE scheme. We consider a user at level ℓ can extract the user’s private

key by using the master key at level ℓ − 1. For example, a single-level IBE is the same as

considering only level 1 without the delegation. Delegation is from level ℓ − 1 to level ℓ.
A user at level ℓ + 1 can then extract the user’s private key by using this delegated key,

and this user’s key pair can be used to encrypt and decrypt at level ℓ + 1.

Table 2.1: Explanation of Notational Practice of 2-level HIBE Functions.
Level ℓ Function
ℓ = 0 Master KeyGen S0
ℓ = 1 Extracting with S0 → Enc/Dec

Delegating to S1
ℓ = 2 Extracting with S1 → Enc/Dec

18 CHAPTER 2. PRELIMINARIES

Figure 2.1: A 2-level HIBE scheme [ZMS+21].

1

Key
Generator

Sub Key
Manager

Sub Key
Manager

2

ID

3

4

5

Private key Public key

Sub Key
Manager

Extractor

2.2 MATHEMATICAL BACKGROUND 19

2.2.7 Miscellaneous

Cramer’s Rule Cramer’s rule [CG50] is used for solving systems of linear equations.

Consider a system of 𝑁 equations with 𝑁 unknowns, represented as Ax = b. Cramer’s

rule states that the solution can be written as x𝑖 = det(A𝑖)
det(A) , whereA𝑖 is the matrix formed

by replacing the 𝑖-th column of A by the column vector b.

20 CHAPTER 2. PRELIMINARIES

Chapter 3

Literature Review

3.1 Discrete Gaussian Sampler

This section reviews the discrete Gaussian sampling techniques with regards to lattice-

based cryptosystems. Since the majority of lattice-based cryptosystems either directly

uses samples from the zero-centered discrete Gaussian distribution 𝒟𝜎 e.g. the BLISS

digital signature [DDLL13], or employs an arbitrary-centered discrete Gaussian sampler

of the distribution𝒟𝑐,𝜎 as the subroutine to sample from a discrete Gaussian distribution

on some lattices e.g. [GPV08], we focus on the techniques to sample from a discrete

Gaussian distribution over integers in this section.

For the discussion with regards to the qTesla digital signature scheme [BAA+17,
ABB+19], since its sampling algorithm is drastically different between the NIST PQC

1st round implementation [BAA+17] and the NIST PQC 2nd round implementation

[ABB+19], we use the notations qTesla-R1 [BAA+17] and qTesla-R2 [ABB+19] to

distinguish these two works.

3.1.1 Cumulative Distribution Table

The Cumulative Distribution Table (CDT) method (or the Inversion method) [Dev86],

was adapted by [Pei10] in lattice-based cryptosystems. Let denoteΦ𝑐,𝜎 as the Cumulative

Distribution Function (CDF) of 𝒟𝑐,𝜎 for some fixed center 𝑐: Φ𝑐,𝜎 (𝑥) = ∑𝑥
𝑘=−∞𝒟𝑐,𝜎 (𝑘),

where 𝑥, 𝑘 ∈ ℤ. In order to generate 𝑥 ↩ 𝒟𝑐,𝜎 , the CDT algorithm performs a table

search to find such an 𝑥 that Φ𝑐,𝜎 (𝑥 − 1) < 𝑟 ≤ Φ𝑐,𝜎 (𝑥) for some random real 𝑟 ∈ [0, 1].
In the zero-centered case i.e. 𝑐 = 0, since 𝒟𝜎 is symmetrical with respect to 0, one

can fold 𝒟𝜎 to reduce the table storage by half [DB15]. Let define the folded discrete

21

22 CHAPTER 3. LITERATURE REVIEW

Gaussian distribution:

𝒟 ′𝜎 (𝑥) = {𝒟𝜎 (𝑥) 𝑥 = 0
2 ⋅ 𝒟𝜎 (𝑥) 𝑥 > 0

,

and its CDF Φ′𝜎 (𝑥) = ∑𝑥
𝑘=0𝒟 ′𝜎 (𝑥), where 𝑥, 𝑘 ∈ ℤ+. Then, one can sample from 𝒟𝜎

by performing the CDT algorithm on the table Φ′𝜎 and applying a sign bit with equal

probability.

The CDF Φ𝑐,𝜎 in actual implementations typically has a bounded support 𝑥 ∈ [𝑐 − 𝜏𝜎 , 𝑐 +
𝜏𝜎] (or 𝑥 ∈ [0, 𝜏𝜎] for the folded CDF Φ′𝜎), where 𝜏 is the tail-cut factor (typically, about

10–12). In addition, since 𝒟𝑐,𝜎 is a light-tailed distribution, the relative error of the tail

in the CDT may increase significantly. To reduce the error, Pöppelmann et al. suggested

computing the CDT in a reversed order [PDG14]: for the folded discrete Gaussian dis-

tribution 𝒟 ′𝜎 , one may let CDT[𝑖] − CDT[𝑖 + 1] = 𝒟 ′𝜎 (𝑖) for 𝑖 ∈ [0, 𝜏𝜎] to ensure the CDT

only enlarges the relative error by a factor of about 𝜎 .
To implement the CDT table search in constant time, a simple but inefficient method

is performing a full-table linear search algorithm with 𝒪(𝜏𝜎) time complexity by us-

ing constant-time comparisons between the randomness and each table entry [BCNS15].

Meanwhile, it is clear thatΦ𝑐,𝜎 is a strictly increasing function. Therefore, onemay adapt

a binary search algorithm to reduce the time complexity to 𝒪(log2 𝜏𝜎), which is much

faster than the𝒪(𝜏𝜎) linear search. However, a naive binary search implementationmay

take less than log2 𝜏𝜎 steps since it will terminate immediately when the randomness is

equal to a table entry in the CDT. Howe et al. suggested a binary search algorithm over

the CDT with constant number of iterations 𝒪(log2 𝜏𝜎) on hardware [HKR+18]. How-

ever, the memory access in this approach is not constant, which might cause potential

cache timing leakage in software implementations [KRR+18].

For smaller standard deviations, a more recent approach used in the qTesla-R2 digi-

tal signature [ABB+19] suggested generating a batch of randomness and performing

a constant-time sorting algorithm on the array containing all the randomness accompa-

nied by the CDT table entries. In the sorted array, the CDT table entries at their new

positions will separate the array into multiple intervals, and by definition of the CDT,

one can get the associated sample values at each interval.

In addition, for the arbitrary-centered discrete Gaussian distribution 𝒟𝑐,𝜎 , a variant of

the CDT method [Dev86] with multiple pre-computed tables was suggested by [MAR17,

MR18]. These algorithms will have two phases: online and offline. To be more specific,

for 𝑐 ∈ [0, 1), during the offline phase, the algorithm pre-computes multiple CDTs of

𝒟𝑖/𝑛,𝜎 , where 𝑖 ∈ {0, … , 𝑛 − 1} and 𝑛 ∈ ℤ+ is sufficiently large. During the online phase,

the algorithm picks a sample generated from either𝒟⌊𝑛(𝑐−⌊𝑐⌋)⌋/𝑛,𝜎 or𝒟⌈𝑛(𝑐−⌊𝑐⌋)⌉/𝑛,𝜎 as the

output. Although the algorithm is fast, however, 𝜎 is fixed during the offline computation

3.1 DISCRETE GAUSSIAN SAMPLER 23

and thus this algorithm cannot support sampling from 𝒟𝑐,𝜎 with both arbitrary 𝑐 and 𝜎
determined on-the-fly at run-time. Another issue is that the pre-computation table size

grows significantly when scaling up 𝜎 and therefore the algorithm is not scalable.

3.1.2 Knuth-Yao Algorithm

The Knuth-Yao sampling algorithm [KY76] generates new samples by traversing a Dis-

crete Distribution Generating (DDG) tree, which is constructed directly from the images

of 𝒟𝑐,𝜎 :

Definition 10 (DDG Tree [KY76]). A DDG tree of 𝒟𝑐,𝜎 is a binary tree where:

• Each non-leaf node has exactly two children.

• Each leaf node has a value 𝑥 ∈ ℤ in the support of 𝒟𝑐,𝜎 .

• The left edges in the DDG tree are labelled with 0, and the right edges in the DDG

tree are labelled with 1.

• If for some 𝑥 ∈ ℤ, the 𝑘-th bit of 𝒟𝑐,𝜎 (𝑥) in binary representation after the deci-

mal point is 1, then there exists exactly one leaf labelled with 𝑥 at the level 𝑘, i.e.
∑𝑚

𝑘=0
𝑐𝑥,𝑘
2𝑘 = 𝒟𝑐,𝜎 (𝑥), where 𝑐𝑥,𝑘 ∈ {0, 1} is the number of leaves labelled with 𝑥 at

the level 𝑘.

Figure 3.1: DDG tree, figure adapted from [RVV13].

To generate a sample, the Knuth-Yao algorithm randomly traverses the DDG tree: start-

ing from the root, the algorithm goes along the labelled edges by consuming one random

bit per edge, until the algorithm reaches a leaf node. The value on that leaf node is the

generated sample.

24 CHAPTER 3. LITERATURE REVIEW

This algorithm has low bit cost (i.e. the number of random bits consumed for generating

a new sample), approximately 4.05+log2 𝜎 on average [KY76]. In addition, the time com-

plexity of the algorithm is similar to its bit cost 𝒪(log2 𝜎), because the sampler consumes

exactly one random bit during each iteration. A more compact hardware implementa-

tion [RVV13] further reduced the memory consumption of this algorithm by partially

constructing the DDG tree during the run-time at the expense of a slight overhead on

the speed.

However, both the naive implementation and the compact sampler from [RVV13] are

not constant time, since the algorithm may reach a leaf node at some level less than the

depth 𝑑 of the tree. Similar to the constant time CDTmethod, a naive approach performs

a constant time full tree traverse or full table access, at the expense of a much larger

overhead compared to the CDT alternatives for the same standard deviation [KRR+18].
Instead, since each unique traverse route on the DDG tree is mapped to a specific sample,

Karmakar et al. suggested using the bitslicing method to convert the mapping between

a unique bit stream of length 𝑑 representing a traverse route and the binary bits in the

associated sample on the leaf node, to a sequence of boolean expressions [KRR+18]. To
accelerate this approach, they performed the bit operations on vectors instead and em-

ployed Single Instruction Multiple Data (SIMD) instructions such as the AVX2 to output

multiple samples in parallel.

We show the vectorisation approach from [KRR+18] here. Let denote the mapping be-

tween the random bit stream r ∈ {0, 1}𝑑 and the binary-represented sample x ∈ {0, 1}ℓ as
𝑥𝑖 = 𝑓𝑖(𝑟0, … , 𝑟𝑑−1), 0 ≤ 𝑖 ≤ ℓ − 1, where 𝑥𝑖 and 𝑟𝑖 are the 𝑖-th coordinate (bit) of x and

r, respectively, and 𝑓𝑖 is the 𝑖-th mapping function. For 𝑑 vectors v𝑖 ∈ {0, 1}𝑤 with the

length of the machine word width 𝑤 , to generate 𝑤 samples in parallel, the algorithm

first computes x𝑖 = 𝑓 ′𝑖 (v0, … , v𝑑−1) ∈ {0, 1}𝑤 , 0 ≤ 𝑖 ≤ ℓ − 1, where 𝑓 ′𝑖 is the SIMD-

parallelised variant of 𝑓𝑖 for 𝑤 parallel bits. Then, the sample x′𝑗 in binary representation

is x′𝑗 = (𝑥0,𝑗 , … , 𝑥𝑙−1,𝑗) ∈ {0, 1}ℓ, 0 ≤ 𝑗 ≤ 𝑤 − 1, where 𝑥𝑖,𝑗 is the 𝑗-th coordinate (bit) of x𝑖.
To optimise the bitslicing circuit, more recently, Karmakar et al. suggested building and

connecting small circuit blocks for the input bit streams rwith the same leading bits and

using the circuit minimisation heuristics to minimise each circuit block [KRVV19]. They

also demonstrated that their bitslicing approach is practical in one of the NIST PQC 3rd
round digital signature candidate Falcon [PFH+17].

3.1.3 Rejection & Binary Sampling

The classic rejection sampling algorithm [DN12, von51] can be adapted to sample from

a discrete Gaussian distribution. To sample from 𝒟𝑐,𝜎 , one can sample 𝑥 ↩ 𝒰([𝑐 −
𝜏𝜎, 𝑐 + 𝜏𝜎]∩ℤ) and accept 𝑥 with probability 𝜌𝑐,𝜎 (𝑥) as the output, where 𝜏 is the tail-cut

3.1 DISCRETE GAUSSIAN SAMPLER 25

Figure 3.2: Bitslicing, figure adapted from [KRR+18].

factor (typically, about 10–12). However, this method is slow as the number of trials is

2𝜏/√2𝜋 on average (about 8–10 for typical 𝜏). Recently, Karney presented an algorithm

sampling exactly from 𝒟𝑐,𝜎 without floating-point arithmetic [Kar16], which also has

a lower rejection rate compared to the classic rejection sampling algorithm. However,

this algorithm needs high number of bit operations to satisfy the precision requirements

in cryptography applications. In addition, the original algorithm from [Kar16] is not

constant-time. If one attempts to implement the scheme in constant-time, the imple-

mentation might be inefficient, since the implementation may always need to perform

the worst-case (i.e. maximum) number of bit operations sufficient to the precision re-

quirement of the target cryptography application. More recently, Du et al. extended

Karney’s algorithm to support 𝜎 and 𝑐 with arbitrary precision [DFW20] by combining

a variant of Karney’s sampler with the convolution technique from [MW17].

To reduce the rejection rate, recent works performed rejection sampling with regards to

some distributions much closer to 𝒟𝑐,𝜎 compared to a uniform distribution. The Falcon

signature [PFH+17] and its constant-time variant [PRR19] adapted a rejection sampling

method with regards to bimodal Gaussians: to sample from 𝒟𝑐,𝜎 where 𝑐 ∈ [0, 1], one
can choose some 𝜎 ′ ≥ 𝜎 and sample 𝑥 ↩ 𝒟+𝜎 ′ (i.e. the discrete Gaussian distribution

𝒟𝜎 ′ restricted to the domain ℤ+ ∪ {0}). The algorithm computes 𝑥′ = 𝑏 + (2𝑏 − 1) ⋅ 𝑥
where 𝑏 ↩ 𝒰({0, 1}). It was proved by [PFH+17, PRR19] that 𝑥′ has a bimodal Gaus-

sian distribution close to the target distribution. The algorithm then accepts 𝑥′ with

probability 𝐶(𝜎) ⋅ exp (𝑥2
2𝜎 ′2 −

(𝑥′−𝑐)2
2𝜎2) as the output, where the scaling factor 𝐶(𝜎) =

min(𝜎)/𝜎 when sampling from multiple 𝜎 . This scheme has the average acceptance rate

𝐶(𝜎) ⋅ 𝜌𝑐,𝜎 (ℤ)/(2𝜌𝜎 ′(ℤ+ ∪ {0})), which is proportional to min(𝜎)/𝜎 ′ [PFH+17, PRR19].
However, if the application needs to sample from different 𝜎 , the acceptance probability

is high only when min(𝜎) and max(𝜎) are sufficiently close. This is not an issue in the

Falcon signature, since the parameters in Falcon implies 𝜎 ′ is very close to max(𝜎) and
min(𝜎)/max(𝜎) ≈ 0.73 [PRR19]. However, if the gap between min(𝜎) and max(𝜎) is

large, since 𝜎 ′ ≥ max(𝜎), this algorithm might have a low acceptance rate.

26 CHAPTER 3. LITERATURE REVIEW

3.1.3.1 Binary Sampling Method

For the zero-centered discrete Gaussian distribution 𝒟𝜎 , another rejection sampling al-

gorithm that performs the rejection sampling with regards to some distributions much

closer to 𝒟𝜎 compared to a uniform distribution is the binary sampling method used in

the BLISS signature scheme [DDLL13]. Let 𝜎 = 𝑘𝜎0, 𝑘 ∈ ℤ+, and 𝜎0 = √1/(2 ln 2). This
algorithm samples from𝒟+𝜎 by first generating a sample 𝑥 ↩ 𝒟+𝜎0 from the base sampler

and an integer 𝑦 ↩ 𝒰({0, … , 𝑘 −1}), then performing a rejection sampling on 𝑧 = 𝑘𝑥 +𝑦 ,
with the acceptance rate:

𝑝 = exp (−𝑦(𝑦 + 2𝑘𝑥)
2𝜎2) . (3.1)

To generate negative samples, one can sample and apply a random sign bit, with the

exception of the rejection with probability 1/2 when 𝑧 = 0.

Theorem 8 (Adapted from [DDLL13], Thm. 6.6). Given 𝑥 ↩ 𝒟+𝜎0 and 𝑦 ↩ 𝒰({0, … , 𝑘 −
1}), the probability to output some integer 𝑧 = 𝑘𝑥 + 𝑦 is proportional to:

𝜌𝜎0(𝑥) ⋅ 𝑝 = exp (− 𝑥2
2𝜎20

− −𝑦(𝑦 + 2𝑘𝑥)
2(𝑘𝜎0)2

) = exp (−(𝑘𝑥 + 𝑦)2
2(𝑘𝜎0)2

) = 𝜌𝑘𝜎0(𝑧) = 𝜌𝜎 (𝑥).

The rejection framework of the binary sampling algorithm is shown in Algorithm 3.1.

The rejection sampling itself will not leak any secret information, if the underlying base

sampler and the Bernoulli sampler are side-channel resistant. Unfortunately, to achieve

efficient algorithms, the original sampler implementations in the BLISS signature are

not constant-time (see Algorithm 3.2 and Algorithm 3.3, respectively). When attacking

signature schemes similar to the BLISS, the attacker can gather the discrete Gaussian

vectors, or the intermediate base samples and Bernoulli samples, by exploiting the side-

channels, such as the cache [BHLY16], or timing and power [EFGT17], and then recover

the signing key by using the leaked information. These attacks only require about sev-

eral thousand signatures and the corresponding samples to succeed.

To mitigate these side-channel attacks against the binary sampling method, several ef-

forts have been proposed. We review them now.

Random Shuffle One commonly used heuristic countermeasure is performing the

Fisher-Yates random shuffle (or Knuth shuffle) [Knu98], to mask the relation between

the retrieved side-channel information of the samples and the secret, after performing

non-constant time sampling schemes [RRVV14, Saa16]. However, in the above men-

tioned attacking scenarios against the digital signature schemes, the random permuta-

tion cannot totally hide the statistical features of the distributions in the attacked vector.

By performing statistical analysis, it was shown by [Pes16] that an attacker only requires

3.1 DISCRETE GAUSSIAN SAMPLER 27

Algorithm 3.1 Binary sampling scheme [DDLL13].
Output: A sample from 𝒟+𝜎 .
1: function BinarySampler(𝑘)
2: Let 𝑥 ↩ 𝒟+𝜎0 .
3: Let 𝑦 ↩ 𝒰({0, … , 𝑘 − 1}).
4: Let 𝑧 = 𝑘𝑥 + 𝑦 .
5: Let 𝑡 = 𝑦(𝑦 + 2𝑘𝑥).
6: Let 𝑏 ↩ ℬexp(−𝑡/(2𝜎2)).
7: if 𝑏 = 0 then
8: Restart BinarySampler.
9: end if

10: return 𝑧.
11: end function

Algorithm 3.2 Base sampler from BLISS [DDLL13].
Output: A sample from 𝒟+𝜎0 .
1: function BaseSampler
2: Sample 𝑏 ↩ 𝒰({0, 1}).
3: if 𝑏 = 0 then
4: return 0.
5: end if
6: 𝑖 = 1
7: while true do
8: Sample (𝑏1, 𝑏2, … , 𝑏2𝑖−1) ↩ (𝒰({0, 1}))2𝑖−1.
9: if (𝑏1, 𝑏2, … , 𝑏2𝑖−2) ≠ (0, 0, … , 0) then

10: Restart BaseSampler.
11: end if
12: if 𝑏2𝑖−1 = 0 then
13: return 𝑖.
14: end if
15: 𝑖 = 𝑖 + 1.
16: end while
17: end function

28 CHAPTER 3. LITERATURE REVIEW

Algorithm 3.3 Bernoulli sampler from BLISS [DDLL13].
Input: Integer 𝑡 = 𝑦(𝑦 + 2𝑘𝑥) with 0 ≤ 𝑡 < 2ℓ and binary form 𝑡 = 𝑡ℓ−1… 𝑡0, where

𝑥 ↩ 𝒟+𝜎0 and 𝑦 ↩ 𝒰({0, … , 𝑘 − 1}). Pre-computed table 𝑝𝑖 = exp(−2𝑖/(2𝜎2)) for
𝑖 < ℓ.

Output: A sample from ℬ𝑝 , where 𝑝 = exp(−𝑡/(2𝜎2)).
1: function BernoulliSampler(𝑡)
2: for 𝑖 = ℓ − 1 downto 0 do
3: if 𝑡𝑖 = 1 then
4: Sample 𝑎 ↩ ℬ𝑝𝑖 .
5: if 𝑎 = 0 then
6: return 0.
7: end if
8: end if
9: end for

10: return 1.
11: end function

marginally larger yet still practical number of samples to rearrange the coordinates and

“undo” the shuffle.

Constant-time Base/Bernoulli Sampler The base sampler of the binary sampling

method can be implemented in constant-time by using a full-table access CDT sampler

[BCNS15]. More recently, Howe et al. suggested using a binary search CDT sampler

with constant number of iterations 𝒪(log2 𝐵) on hardware [HKR+18], where 𝐵 is the

tail-cut bound. However, the memory access in this approach is not constant, which

might cause potential cache timing leakage in software implementations [KRR+18]. On

the other hand, for the table-based Bernoulli sampler, the countermeasure of remov-

ing the branches and performing full-table access (see Algorithm 3.4) was suggested by

[BHLY16, PBY17, EFGT17]. However, this countermeasure adds significant overhead,

since it requires additional randomness for each table entry. A more recent lattice-

based digital signature implementation in the NIST PQC 1st round submission, qTesla-R1

[BAA+17], suggested a more efficient approach that the sampler computes the bias 𝑝 in

Equation 3.1 by multiplying table entries from each sub-table based on the binary repre-

sentation of the input, where every sub-tableℬ𝑖 has 32⋅8 = 256 bytes (see Algorithm 3.5).

However, although the number of iterations in this sampler is constant, the memory ac-

cess pattern depends on the size of the underlying CPU cachelines. This could cause a

potential leakage via cache timing side-channels on some architectures.

On the other hand, Du et al. suggested that the binary sampling method can also be

extended to the arbitrary-centered discrete Gaussian distributions [DWZ19]. For any

center 𝑐 ∈ ℝ, sampling from 𝒟𝑐,𝜎 is equivalent to sampling from 𝒟𝑐𝐹 ,𝜎 + ⌊𝑐⌋, where

𝑐𝐹 = 𝑐 − ⌊𝑐⌋ ∈ [0, 1) is the fractional part of 𝑐. In addition, for 𝑐𝐹 ∈ [1/2, 1), sampling

3.1 DISCRETE GAUSSIAN SAMPLER 29

Algorithm 3.4 Constant-time Bernoulli sampler [PBY17, EFGT17].
Input: Integer 𝑡 = 𝑦(𝑦 + 2𝑘𝑥) with 0 ≤ 𝑡 < 2ℓ and binary form 𝑡 = 𝑡ℓ−1… 𝑡0, where

𝑥 ↩ 𝒟+𝜎0 and 𝑦 ↩ 𝒰({0, … , 𝑘 − 1}). Pre-computed table 𝑝𝑖 = exp(−2𝑖/(2𝜎2)) for
𝑖 < ℓ.

Output: A sample from ℬ𝑝 , where 𝑝 = exp(−𝑡/(2𝜎2)).
1: function BernoulliSampler(𝑡)
2: Let 𝑟 = 1.
3: for 𝑖 = ℓ − 1 downto 0 do
4: Sample 𝑎 ↩ ℬ𝑝𝑖 .
5: Set 𝑟 = 𝑟 ⋅ (1 − 𝑡𝑖 + 𝑎𝑡𝑖).
6: end for
7: return 𝑟 .
8: end function

Algorithm 3.5 Bernoulli sampler with constant number of iterations [BAA+17].
Input: Integer 𝑡 = 𝑦(𝑦 +2𝑘𝑥)with 0 ≤ 𝑡 < 215, where 𝑥 ↩ 𝒟+𝜎0 and 𝑦 ↩ 𝒰({0, … , 𝑘−1}).

Pre-computed Bernoulli table entries ℬ𝑖,𝑗 = exp(−2(𝑗⋅32𝑖)/(2𝜎2)), where 𝑖, 𝑗 ∈ ℤ+,
0 ≤ 𝑖 < 3, and 0 ≤ 𝑗 < 32. Each ℬ𝑖,𝑗 has 8 bytes.

Output: A sample from ℬ𝑝 , where 𝑝 = exp(−𝑡/(2𝜎2)).
1: function BernoulliSampler(𝑡)
2: Sample 𝑟 ↩ 𝒰({0, 1}62).
3: Let 𝑐 = 262.
4: Let 𝑠 = 𝑡 .
5: for 𝑖 = 0 to 2 do
6: Set 𝑐 = 𝑐 ⋅ ℬ𝑖,𝑠 mod 32.
7: Set 𝑠 = 𝑠/32.
8: end for
9: if 𝑟 ≥ ⌊𝑐⌉ then

10: return 0.
11: else
12: return 1.
13: end if
14: end function

30 CHAPTER 3. LITERATURE REVIEW

from 𝒟𝑐𝐹 ,𝜎 is equivalent to sampling from 1 − 𝒟𝑐′𝐹 ,𝜎 where 𝑐′𝐹 = 1 − 𝑐𝐹 ∈ (0, 1/2]. A

modified binary sampling scheme [DWZ19] (see Algorithm 3.6) can then be adapted to

sample from𝒟𝑐′𝐹 ,𝜎 with any 𝑐′𝐹 ∈ (0, 1/2], in which the average number of trials is upper-

bounded by 𝜎2
𝜎0𝜎−𝜎20 ⋅

𝜌𝜎0(ℤ+)
𝜎√𝜋/2−1

, where 𝜎0 = √1/(2 ln 2) and 𝜎 = 𝑘𝜎0 for some 𝑘 ∈ ℤ+. This
upper-bound is about 1.47 for large 𝜎 [DWZ19], which is the same as the original binary

sampling method [DDLL13].

Algorithm 3.6 Non-zero centered binary sampling scheme [DWZ19].
Input: Center 𝑐′𝐹 ∈ (0, 1/2].
Output: A sample from 𝒟𝑐′𝐹 ,𝜎 .
1: function BinarySamplerEx(𝑐′𝐹 , 𝑘)
2: Let 𝑥 ↩ 𝒟+𝜎0 .
3: Let 𝑦 ↩ 𝒰({0, … , 𝑘 − 1}).
4: Let 𝑠 ↩ 𝒰({−1, 1}).
5: Let 𝛿 = ⌈𝑘𝑥 + 𝑠𝑐′𝐹 ⌉ − 𝑘𝑥 − 𝑠𝑐′𝐹 .
6: if 𝑦 + 𝛿 ≥ 𝑘 then
7: Restart BinarySamplerEx.
8: end if
9: Let 𝑧 = ⌈𝑘𝑥 + 𝑠𝑐′𝐹 ⌉ + 𝑦 .

10: Let 𝑡 = 2𝑘𝑥(𝑦 + 𝛿) + (𝑦 + 𝛿)2.
11: Let 𝑏 ↩ ℬexp(−𝑡/(2𝜎2)).
12: if 𝑏 = 0 then
13: Restart BinarySamplerEx.
14: end if
15: return 𝑠 ⋅ 𝑧.
16: end function

3.1.4 Convolution Methods

For the zero-centered discrete Gaussian distributions, one can apply the following KLD-

based convolution theorem [PDG14, KHR+18] to construct discrete Gaussian sampling

algorithms:

Theorem 9 (KLD-based Convolution Theorem, Adapted from [PDG14], Lemma 3). Let
𝑥1 ↩ 𝒟ℤ,𝜎1 and 𝑥2 ↩ 𝒟𝑘ℤ,𝜎2 for some 𝜎1, 𝜎2 ∈ ℝ+. Let 𝜎−23 = 𝜎−21 +𝜎−22 and 𝜎2 = 𝜎21 +𝜎22 .
For any 𝜖 ∈ (0, 1/2), if 𝜎1 ≥ 𝜂𝜖(ℤ)/√2𝜋 and 𝜎3 ≥ 𝜂𝜖(𝑘ℤ)/√2𝜋 , then the distribution 𝒫 of
𝑥1 + 𝑥2 satisfies:

𝐾𝐿(𝒫 ||𝒟𝜎) ≤ 2 (1 − (1 + 𝜖
1 − 𝜖)

2
)
2
≈ 32𝜖2.

For the deviation 𝜎 ≈ 215 in the BLISS-I parameter set [DDLL13], one can generate

𝑥1, 𝑥2 ↩ 𝒟𝜎1 and compute 𝑥1 + 𝑘1𝑥2, where 𝜎1 = 𝜎/√1 + 𝑘21 ≈ 19.53 and 𝑘1 = 11.
Sampling from 𝒟𝜎1 can be further decomposed into 𝑥3 + 𝑘2𝑥4, where 𝑥3, 𝑥4 ↩ 𝒟𝜎2 , 𝜎2 =

3.1 DISCRETE GAUSSIAN SAMPLER 31

𝜎1/√1 + 𝑘22 ≈ 6.18, and 𝑘2 = 3 (see Algorithm 3.7). If the sampling algorithm of 𝒟𝜎2 (or
𝒟𝜎1) is constant-time, then the whole sampling scheme will be constant-time. To sample

from 𝒟𝜎2 , Karmakar et al. adapted the bitslicing method to implement the Knuth-Yao

algorithm [KY76] more efficiently in constant-time [KRR+18, KRVV19], compared to the

previous full-table access CDT approach.

Algorithm 3.7 KLD-based convolution sampling scheme [PDG14, KHR+18].
Output: A sample from 𝒟𝜎 , where 𝜎 ≈ 215.
1: function ConvolutionSampler
2: Sample 𝑥1, 𝑥2, 𝑥3, 𝑥4 ↩ 𝒟𝜎0 , where 𝜎0 ≈ 6.18.
3: Let 𝑦 = (𝑥1 + 3𝑥2) + 11 ⋅ (𝑥3 + 3𝑥4).
4: return 𝑦 .
5: end function

Meanwhile, Micciancio and Walter proposed the following max-log based convolution

theorems [MW17]:

Theorem 10 (Adapted from [MW17], Cor. 4.1). Let z = (𝑧1, … , 𝑧𝑛) ∈ ℤ𝑛 be a nonzero
vector with gcd(𝑧1, … , 𝑧𝑛) = 1 and 𝜎 = (𝜎1, … , 𝜎𝑛) ∈ ℝ𝑛 with 𝜎𝑖 ≥ ‖z‖∞ ⋅ 𝜂𝜖(ℤ)/√𝜋 for all
𝑖 ≤ 𝑛. Let y ↩ (𝒟 ′𝜎𝑖)𝑛, with 𝑀𝐿(𝒟 ′𝜎𝑖 ||𝒟𝜎𝑖) ≤ 𝜇𝑖 for all 𝑖. Let 𝜎2 = ∑𝑧2𝑖 𝜎2𝑖 and 𝒫 be the
distribution of∑𝑧𝑖𝑦𝑖. Then, 𝑀𝐿(𝒫 ||𝒟𝜎) ≤ 2𝜖 + ∑𝜇𝑖.

Theorem 11 (Adapted from [MW17], Cor. 4.2). Let 𝑥1 ↩ 𝒟 ′ℤ,𝜎1 and 𝑥2 ↩ 𝒟 ′𝑘ℤ,𝜎2 for
some 𝜎1, 𝜎2 ∈ ℝ+. Let 𝜎−23 = 𝜎−21 + 𝜎−22 and 𝜎2 = 𝜎21 + 𝜎22 . If 𝜎1 ≥ 𝜂𝜖(ℤ)/√2𝜋 , 𝜎3 ≥
𝜂𝜖(𝑘ℤ)/√2𝜋 , 𝑀𝐿(𝒟 ′ℤ,𝜎1 ||𝒟ℤ,𝜎1) ≤ 𝜇1, and 𝑀𝐿(𝒟 ′𝑘ℤ,𝜎2 ||𝒟𝑘ℤ,𝜎2) ≤ 𝜇2, then the distribution
𝒫 of 𝑥1 + 𝑥2 satisfies 𝑀𝐿(𝒫 ||𝒟𝜎) ≤ 4𝜖 + 𝜇1 + 𝜇2.

For the arbitrary-centered discrete Gaussian distributions, Micciancio and Walter pre-

sented a recursive convolution sampling scheme for 𝒟𝑐,𝜎 [MW17] as follows: suppose

the center 𝑐 has 𝑘 fractional bits. Let 𝜎0 = 𝜎/√∑𝑘−1
𝑖=0 2−2𝑖. One can sample 𝑥𝑘 ↩ 𝒟𝑐𝑘 ,𝜎0

where 𝑐𝑘 = 2𝑘−1 ⋅ 𝑐, then use 𝑦𝑘 = 2−𝑘+1 ⋅ 𝑥𝑘 to round 𝑐 to a new center 𝑐′ = 𝑐 − 𝑦𝑘 with

𝑘′ = 𝑘−1 fractional bits. Set 𝑐 = 𝑐′ and 𝑘 = 𝑘′ in the next iteration until 𝑘 = 0, and∑𝑘
𝑖=1 𝑦𝑖

will be a sample distributed as𝒟𝑐,𝜎 . The authors separated this algorithm into an online

phase and an offline phase, where the offline phase will generate samples 𝑥𝑖 in batch

and the online phase will compute the linear combinations of 𝑥𝑖 for 𝑖 ∈ {1, … , 𝑘} [MW17].

The online phase is very fast and can be implemented in constant-time. However, for

implementations where both sampling from 𝒟𝑐𝑖,𝜎0 and computing the linear combina-

tions need to be carried during the run-time, it is unclear how to efficiently implement

the𝒟𝑐𝑖,𝜎0 sampling algorithm in constant-time (which is another discrete Gaussian sam-

pler supporting a small amount of centers 𝑐𝑖). The offline batch sampler also consumes

significant amount of memory.

32 CHAPTER 3. LITERATURE REVIEW

3.2 Lattice-based (Hierarchical) Identity-based Encryp-
tion

In this section, we focus on the existing practical implementations of lattice-based (hi-

erarchical) identity-based encryption schemes. Typically, the lattice-based (H)IBE con-

structions rely on the lattice trapdoors [GPV08, ABB10a]. Two types of lattice trap-

doors have been employed in lattice-based (H)IBE schemes with practical implementa-

tion results: the (Mod)NTRU trapdoor [HHP+03, SS11, CKKS19] and the gadget trapdoor

[MP12, GM18].

(Mod)NTRU Trapdoor Based IBE Although the theoretical construction of lattice-

based (H)IBE was discussed by [GPV08, ABB10a], however, it was never instantiated in

practice until 2014 that Ducas et al. proposed the first efficient lattice-based identity-

based encryption scheme with implementation results [DLP14]. They based their con-

struction on the IBE scheme by [GPV08], using a variant of NTRU lattices [SS11]. The

underlying security problems are the NTRU problem [HHP+03, SS11] for key generation

and Ring Learning with Errors (Ring-LWE) [LPR10] for the encryption. They showed

that the NTRU trapdoor is very efficient to sample in software implementation. The use

of structured lattices also allowed for implementation optimisations such as the Number

Theoretic Transform (NTT), as demonstrated later by McCarthy et al., whose software

performance of the DLP IBE [MSO17] outperformed that of a classical elliptic-curve

based IBE scheme [BF03]. McCarthy et al. also showed that 64-bit precision is sufficient

to implement the integer discrete Gaussian sampling subroutine used by the lattice dis-

crete Gaussian sampler [Kle00, GPV08] for the DLP IBE parameter sets [MSO17]. More

recently, Cheon et al. provided an IBE scheme [CKKS19] based on the ModNTRU lat-

tice [CKKS19, CPS+20], which is essentially the generalisation of the DLP IBE scheme

[DLP14] to ModNTRU lattices with lattice dimension greater than 2𝑁 .

Gadget Trapdoor Based IBE Another type of lattice trapdoors which is efficient to

sample in practice is the gadget trapdoor [MP12, GM18]. One advantage of the gadget

trapdoor is that it is based on the standard assumptions i.e. does not require the NTRU

assumptions [HHP+03, SS11]. Bert et al. proposed the first practical lattice-based IBE

scheme based on gadget trapdoor with implementation result [BFRS18]. They built their

construction on the Ring-LWE version of the IBE scheme based on standard models

[ABB10a], using a variant of gadget trapdoors [GM18]. This is also the first practical

lattice-based IBE implementation based on standard models, since the DLP IBE scheme

[DLP14] is based on the random oracle models. The authors also showed that double

precision floating-point arithmetic is sufficient for their parameter sets [BFRS18], by

3.2 LATTICE-BASED (HIERARCHICAL) IDENTITY-BASED ENCRYPTION 33

directly adapting the precision analysis results from [GM18]. Very recently, Bert et al.

[BEP+21] proposed an IBE scheme based on themodule [LS15] gadget trapdoor, which is

essentially themodule lattice version of the IBE scheme from [BFRS18]. The authors also

introduced new lattice discrete Gaussian sampling techniques to module gadget lattice

settings. However, the arithmetic precision requirement of the lattice discrete Gaussian

sampler in [BEP+21] is unclear, since it was not discussed in details by the authors.

For lattice-based hierarchical identity-based encryption schemes, although there exists

several theoretical constructions [CHKP10, ABB10a, ABB10b], however, to the best of

our knowledge, the only practical implementation result of lattice-based HIBE by far is

the partial evaluation result of the Latte HIBE [ETS19]. The Latte HIBE [ETS19] can

be considered as a combination of the DLP IBE scheme [DLP14] with the Bonsai-tree

HIBE construction [CHKP10] to create a hierarchical lattice-based IBE scheme. How-

ever, the proposed Latte specification [ETS19] only provided the Encrypt and Decrypt

performance results, and it was unclear if Latte KeyGen, Delegate, and Extract are prac-

tical at all.

Here, we summarise the KeyGen, Delegate, Extract, Encrypt, and Decrypt algorithms of

Latte [ETS19].

3.2.1 Summary of Latte HIBE Scheme

The Latte parameter sets are shown in Table 3.1. In the following Latte algorithm de-

scription, user identities at level ℓ are denoted IDℓ. A hash function from an arbitrary

length input to a vector of integers of length 𝑁 is written as 𝐻 ∶ {0, 1}∗ → ℤ𝑁𝑞 .

Table 3.1: Latte Parameters [ETS19].

Set Security 𝑁 𝑞 𝜎ℓ
ℓ = 0 ℓ = 1 ℓ = 2

Latte-1 128 1024 224 − 214 + 1 105.9 5499.6 -
Latte-2 256 2048 225 − 212 + 1 105.9 7880.6 -
Latte-3 80 1024 236 − 220 + 1 6777.4 351958.7 22559368.5
Latte-4 160 2048 238 − 226 + 1 9583.5 713152.4 65487839.3

KeyGen The Latte KeyGen algorithm is shown in Algorithm 3.8. The algorithm is

very similar to the KeyGen algorithm of the DLP IBE scheme [DLP14], which generates

a secret short basis S0 = (𝒜(g) −𝒜(f)
𝒜(G) −𝒜(F)) and the associated public basis B0 = (−𝒜(h) I𝑁𝑞I𝑁 0𝑁)

for some f, g, F,G ∈ ℜ such that fG− gF = 𝑞 mod 𝑥𝑁 + 1 and h = g/f mod 𝑞 (see Sec-

tion 2.2.1). The algorithm first samples f, g from 𝒟𝜎0 , where 𝜎0 = 1.17√𝑞/(2𝑁) [DLP14].

Then, the KeyGen algorithm performs the norm check (Line 3–6 in Algorithm 3.8) to

ensure the Gram-Schmidt norm ‖S̃0‖ of the generated NTRU basis S0 is less than 𝜎0√2𝑁 .

34 CHAPTER 3. LITERATURE REVIEW

This is necessary since in order to use the Klein-GPV sampler to sample from𝒟Λ(Sℓ−1),c,𝜎ℓ
in Latte Delegate and Extract (Line 6 in Algorithm 3.9; Line 5 in Algorithm 3.10), 𝜎ℓ
must be greater than (𝜂𝜖(ℤ)/√2𝜋) ⋅ ‖S̃ℓ−1‖ for ℓ > 0 and some 𝜂𝜖(ℤ) [GPV08, DN12],

where 𝜎ℓ = (𝜂𝜖(ℤ)/√2𝜋)√(ℓ + 1)𝑁𝜎ℓ−1 in the Latte parameter sets [ETS19]. Then, the

algorithm uses the resultant method [HHP+03, DLP14] to find F′,G′ ∈ ℜ such that

fG′ − gF′ = 𝑞 mod 𝑥𝑁 + 1 (Line 7–12 in Algorithm 3.8). The coefficient size of F′,G′ is
then reduced by length reduction [HHP+03, DLP14] (Line 13–14 in Algorithm 3.8). The

master private key at level 0 is S0 = (g −f
G −F) ∈ ℜ2×2, and the master public key at level 0

is (h, b) ∈ ℜ2𝑞 for h = g/f mod 𝑞 and some random b ↩ 𝒰(ℜ𝑞).

Algorithm 3.8 Latte KeyGen algorithm [ETS19].
Input: 𝑁 , 𝑞, 𝜎0.
Output: S0 ∈ ℜ2×2,h, b ∈ ℜ𝑞 .
1: function KeyGen
2: f, g ↩ 𝒟𝑁𝜎0 .
3: Norm ← max (‖g, −f‖, ‖(𝑞⋅f∗

f⋅f∗+g⋅g∗ ,
𝑞⋅g∗

f⋅f∗+g⋅g∗)‖).
4: if Norm > 𝜎0 ⋅ √2𝑁 then
5: goto Step 2.
6: end if
7: Using extended Euclidean algorithm, compute u𝑓 ,u𝑔 ∈ ℜ and 𝑟𝑓 , 𝑟𝑔 ∈ ℤ such

that f ⋅ u𝑓 = 𝑟𝑓 mod 𝑥𝑁 + 1 and g ⋅ u𝑔 = 𝑟𝑔 mod 𝑥𝑁 + 1.
8: if 𝑟𝑓 = 0 mod 𝑞 or gcd(𝑟𝑓 , 𝑟𝑔) > 1 then
9: goto Step 2.

10: end if
11: Using extended Euclidean algorithm, compute 𝑣𝑓 , 𝑣𝑔 ∈ ℤ such that 𝑣𝑓 𝑟𝑓 + 𝑣𝑔 𝑟𝑔 =

1.
12: F′ ← −𝑞𝑣𝑔 ⋅ u𝑔 , G′ ← 𝑞𝑣𝑓 ⋅ u𝑓 .
13: k = ⌊F′⋅f∗+G′⋅g∗

f⋅f∗+g⋅g∗ ⌉ ∈ ℜ.

14: F ← F′ − k ⋅ f, G ← G′ − k ⋅ g.
15: h ← g ⋅ f−1 mod 𝑞.
16: b ↩ 𝒰(ℜ𝑞).
17: return S0 = (g −f

G −F) ,h, b.
18: end function

Delegate The Latte Delegate algorithm is shown in Algorithm 3.9. Let denote A𝑖 =
𝐻(ID1| … |ID𝑖) and h𝑖 = (h,A1, … ,A𝑖) for 1 ≤ 𝑖 ≤ ℓ, where h is from the master public

key at level 0. Assume the master private key Sℓ−1 from level ℓ−1 is a (Mod)NTRU basis

associated with hℓ−1. For user identity IDℓ at level ℓ, the algorithm generates a secret

3.2 LATTICE-BASED (HIERARCHICAL) IDENTITY-BASED ENCRYPTION 35

short (ℓ + 2)𝑁 -dimensional ModNTRU basis:

Sℓ =
⎛
⎜
⎜
⎜
⎝

𝒜(s0,0) 𝒜(s0,1) … 𝒜(s0,𝑑−1)
𝒜(s1,0) 𝒜(s1,1) … 𝒜(s1,𝑑−1)

⋮ ⋮ ⋱ ⋮
𝒜(s𝑑−1,0) 𝒜(s𝑑−1,1) … 𝒜(s𝑑−1,𝑑−1)

⎞
⎟
⎟
⎟
⎠

,

associated with hℓ (see Section 2.2.1), by using Klein-GPV sampler [Kle00, GPV08] with

Sℓ−1. At the beginning, the algorithm generates ℓ + 1 short vectors (s𝑖,0, s𝑖,1, … , sℓ+1) ∈
ℜℓ+2 from the ModNTRU lattice associated with hℓ (Line 3–10 in Algorithm 3.9). To re-

alise this, for each vector (s𝑖,0, s𝑖,1, … , sℓ+1), the algorithm first samples s𝑖,ℓ+1 ↩ 𝒟𝑁𝜎ℓ (Line

4 in Algorithm 3.9). Then, the algorithm samples z ↩ 𝒟Λ(Sℓ−1),c,𝜎ℓ by using Klein-GPV

sampler [Kle00, GPV08] for center c = (−s𝑖,ℓ+1 ⋅ Aℓ, 0, … , 0) and let (s𝑖,0, s𝑖,1, … , s𝑖,ℓ) ←
c−z (Line 5–6 inAlgorithm 3.9). From [GPV08], c−z follows the distribution𝒟c+Λ(Sℓ−1),𝜎ℓ .
Since Λ(Sℓ−1) is a (Mod)NTRU lattice, by Definition 2, we have the following equations

in ℜ𝑞:

(s𝑖,0, s𝑖,1, … , s𝑖,ℓ) ⋅ (1,h,A1, … ,Aℓ−1) = −s𝑖,ℓ+1 ⋅ Aℓ
⟹ (s𝑖,0, s𝑖,1, … , s𝑖,ℓ+1) ⋅ (1,h,A1, … ,Aℓ−1,Aℓ) = 0.

Therefore, by Definition 2, (s𝑖,0, s𝑖,1, … , s𝑖,ℓ+1) is in the ModNTRU lattice associated with

hℓ. Then, similar to the Latte KeyGen, the algorithm also performs the norm check (Line

7–9 in Algorithm 3.9) to ensure the Gram-Schmidt norm ‖S̃ℓ‖ of the generated Mod-

NTRU basis Sℓ is less than 𝜎ℓ√(ℓ + 2)𝑁 . The remainder of the Delegate algorithm, in

which (sℓ+1,0, sℓ+1,1, … , sℓ+1,ℓ+1) is generated (Line 11–25 in Algorithm 3.9), is a higher-

dimensional analogue of Latte KeyGen. The algorithm first uses the resultant method to

find sℓ+1,𝑗 ∈ ℜ, 0 ≤ 𝑗 ≤ ℓ+1, such that sℓ+1,0⋅M0+⋯+sℓ+1,ℓ+1⋅Mℓ+1 = 𝑞 mod 𝑥𝑁+1, where

M𝑗 = Cℓ+1,𝑗 for the cofactor matrix C of S′ℓ = (s𝑖,𝑗)0≤𝑖,𝑗≤ℓ+1 ∈ ℜ(ℓ+2)×(ℓ+2) (Line 11–19

in Algorithm 3.9). Therefore, det(S′ℓ) = 𝑞 and Sℓ is a ModNTRU basis (see Section 2.2.1).

Cramer’s rule is then utilised to reduce the size of coefficients in (sℓ+1,0, sℓ+1,1, … , sℓ+1,ℓ+1)
(Line 20–25 in Algorithm 3.9). The delegated master private key for user identity IDℓ at
level ℓ is Sℓ = (s𝑖,𝑗)0≤𝑖,𝑗≤ℓ+1 ∈ ℜ(ℓ+2)×(ℓ+2).

Extract The Latte Extract algorithm is shown in Algorithm 3.10. For user identity IDℓ
at level ℓ, the algorithm generates a secret short solution (t0, t1, … , tℓ+1) to the equation:

t0 + t1 ⋅ h + t2 ⋅ A1 + ⋯ + tℓ+1 ⋅ Aℓ = b mod 𝑞, (3.2)

by using the Klein-GPV sampler [Kle00, GPV08] with the master private key Sℓ−1 from

level ℓ − 1, where A𝑖 = 𝐻(ID1| … |ID𝑖) for 1 ≤ 𝑖 ≤ ℓ and h, b are from the master public

36 CHAPTER 3. LITERATURE REVIEW

Algorithm 3.9 Latte Delegate algorithm (from level ℓ − 1 to ℓ) [ETS19].
Input: 𝑁 , 𝑞, 𝜎ℓ, Sℓ−1, 𝐻 ∶ {0, 1}∗ → ℜ𝑞 , IDℓ.
Output: Sℓ ∈ ℜ(ℓ+2)×(ℓ+2).
1: function Delegate
2: Aℓ ← 𝐻(ID1| … |IDℓ).
3: for 𝑖 = 0 to ℓ do
4: s𝑖,ℓ+1 ↩ 𝒟𝑁𝜎ℓ .
5: c ← (−s𝑖,ℓ+1 ⋅ Aℓ, 0, … , 0).
6: (s𝑖,0, s𝑖,1, … , s𝑖,ℓ) ← c − Klein-GPV(Sℓ−1, c, 𝜎ℓ).
7: if ‖(s𝑖,0, s𝑖,1, … , s𝑖,ℓ, s𝑖,ℓ+1)‖ > √(ℓ + 2)𝑁 ⋅ 𝜎ℓ then
8: Resample.
9: end if

10: end for
11: for 𝑗 = 0 to ℓ + 1 do
12: M𝑗 ← (−1)𝑗+ℓ+1 det (

s0,0 … s0,𝑗−1 s0,𝑗+1 … s0,ℓ+1
s1,0 … s1,𝑗−1 s1,𝑗+1 … s1,ℓ+1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

sℓ,0 … sℓ,𝑗−1 sℓ,𝑗+1 … sℓ,ℓ+1
).

13: Using extended Euclidean algorithm, compute u𝑗 ∈ ℜ and 𝑟𝑗 ∈ ℤ such that
M𝑗 ⋅ u𝑗 = 𝑟𝑗 mod 𝑥𝑁 + 1.

14: end for
15: Using (a series of) extended Euclidean algorithm, compute 𝑣0, … , 𝑣ℓ+1 ∈ ℤ such

that 𝑣0𝑟0 + ⋯ + 𝑣ℓ+1𝑟ℓ+1 = 1.
16: if failed then
17: goto Step 3.
18: end if
19: sℓ+1,𝑗 ← 𝑞𝑣𝑗 ⋅ u𝑗 , for 0 ≤ 𝑗 ≤ ℓ + 1.
20: Set C = (c𝑖,𝑗), where c𝑖,𝑗 = s𝑗,0 ⋅ s∗𝑖,0 + ⋯ + s𝑗,ℓ+1 ⋅ s∗𝑖,ℓ+1, 0 ≤ 𝑖, 𝑗 ≤ ℓ.
21: Set d = (d𝑖), where d𝑖 = sℓ+1,0 ⋅ s∗𝑖,0 + ⋯ + sℓ+1,ℓ+1 ⋅ s∗𝑖,ℓ+1, 0 ≤ 𝑖 ≤ ℓ.
22: Let k = (k𝑖)0≤𝑖≤ℓ be the solution to C ⋅ k = d. By Cramer’s rule, k𝑖 = det(C𝑖(d))

det(C) ,

where C𝑖(d) is the matrix C with its 𝑖𝑡ℎ column replaced by d.
23: for 𝑖 = 0 to ℓ do
24: (sℓ+1,0, … , sℓ+1,ℓ+1) = (sℓ+1,0, … , sℓ+1,ℓ+1) − ⌊k𝑖⌉ ⋅ (s𝑖,0, … , s𝑖,ℓ+1).
25: end for
26: return Sℓ = (s𝑖,𝑗), for 0 ≤ 𝑖, 𝑗 ≤ ℓ + 1.
27: end function

3.2 LATTICE-BASED (HIERARCHICAL) IDENTITY-BASED ENCRYPTION 37

key at level 0. To realise this, similar to the Latte Delegate, the algorithm first samples

tℓ+1 ↩ 𝒟𝑁𝜎ℓ (Line 3 in Algorithm 3.10). Then, the algorithm samples z ↩ 𝒟Λ(Sℓ−1),c,𝜎ℓ
by using Klein-GPV sampler [Kle00, GPV08] for center c = (b − tℓ+1 ⋅ Aℓ, 0, … , 0) and
let (t0, t1, … , tℓ) ← c − z (Line 4–5 in Algorithm 3.10). From [GPV08], c − z follows the

distribution𝒟c+Λ(Sℓ−1),𝜎ℓ . Since Λ(Sℓ−1) is a (Mod)NTRU lattice, by Definition 2, we have

the following equations in ℜ𝑞:

(t0, t1, … , tℓ) ⋅ (1,h,A1, … ,Aℓ−1) = b − tℓ+1 ⋅ Aℓ
⟹ t0 + t1 ⋅ h + t2 ⋅ A1 + ⋯ + tℓ+1 ⋅ Aℓ = b.

Therefore, the user private key for identity IDℓ at level ℓ is (t0, t1, … , tℓ+1) ∈ ℜℓ+2𝑞 .

Algorithm 3.10 Latte Extract algorithm (from level ℓ − 1 to user at level ℓ) [ETS19].
Input: 𝑁 , 𝑞, 𝜎ℓ, Sℓ−1, 𝐻 ∶ {0, 1}∗ → ℤ𝑁𝑞 , IDℓ.
Output: t0, … , tℓ+1 ∈ ℜ𝑞 .
1: function Extract
2: Aℓ ← 𝐻(ID1| … |IDℓ).
3: tℓ+1 ↩ 𝒟𝑁𝜎ℓ .
4: c ← (b − tℓ+1 ⋅ Aℓ, 0, … , 0).
5: (t0, t1, … , tℓ) ← c − Klein-GPV(Sℓ−1, c, 𝜎ℓ).
6: return t0, … , tℓ+1 ∈ ℜ𝑞 .
7: end function

Encrypt/Decrypt An extended version of traditional Ring-LWE encryption/decryption

[LPR10] is used for Latte Encrypt and Decrypt as given in Algorithm 3.11 and Algo-

rithm 3.12, respectively. A random 𝑠𝑒𝑒𝑑 is sampled and used together with a Key

Derivation Function (KDF) to one-time-pad the message 𝜇 i.e. 𝑍 ← 𝜇 ⊕KDF(𝑠𝑒𝑒𝑑) (Line
2–3 in Algorithm 3.11). The 𝑠𝑒𝑒𝑑 is encoded to m ∈ ℜ𝑞 (Line 9 in Algorithm 3.11) and

then encrypted using Ring-LWE over ℜ𝑞 (Line 5–8, 10 in Algorithm 3.11) [LPR10]:

⎛
⎜⎜⎜⎜⎜
⎝

Cℎ
C1
⋮
Cℓ
C𝑏

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

h
A1
⋮
Aℓ
b

⎞
⎟⎟⎟⎟⎟
⎠

⋅ e +

⎛
⎜⎜⎜⎜⎜
⎝

eℎ
e1
⋮
eℓ
e𝑏

⎞
⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
m

⎞
⎟⎟⎟⎟⎟
⎠

,

where e, e1, … , eℓ, eℎ, e𝑏 are ephemeral private keys deterministically sampled from 𝒟𝜎𝑒
by using the seed KDF(𝑠𝑒𝑒𝑑|𝑍) (Line 4 in Algorithm 3.11), A𝑖 = 𝐻(ID1| … |ID𝑖) for 1 ≤
𝑖 ≤ ℓ, and h, b are from the master public key at level 0. The ciphertext consists of the

encrypted message 𝑍 , deterministically generated ephemeral public keys C1, … ,Cℓ,Cℎ
and the encrypted 𝑠𝑒𝑒𝑑 , C𝑏 . This is a variant of the Fujisaki-Okamoto transform [FO99]

38 CHAPTER 3. LITERATURE REVIEW

to protect against invalid ciphertexts. The Decrypt process takes the user private key

(t0, t1, … , tℓ+1) to decrypt the 𝑠𝑒𝑒𝑑 (Line 2–3 in Algorithm 3.12) and reconstruct the mes-

sage. This works as follows by operations over ℜ𝑞:

V = C𝑏 − t1 ⋅ Cℎ − t2 ⋅ C1 − ⋯ − tℓ+1 ⋅ Cℓ
= (b ⋅ e + e𝑏 +m) − t1(h ⋅ e + eℎ) − t2(A1 ⋅ e + e1) − ⋯ − tℓ+1(Aℓ ⋅ e + eℓ)
= e𝑏 +m − t1 ⋅ eℎ − t2 ⋅ e1 − ⋯ − tℓ+1 ⋅ eℓ + t0 ⋅ e,

where the first equality is derived by substituting C𝑏 ,Cℎ,C𝑖 with their definitions, and

the second equality holds based on Equation 3.2. By construction, the error and private

key terms are small enough so that V is decoded successfully to recover the 𝑠𝑒𝑒𝑑 (Line

3 in Algorithm 3.12). By using the 𝑠𝑒𝑒𝑑 , the message 𝜇 is straightforwardly recovered

from 𝑍 (Line 12 in Algorithm 3.12).

Algorithm 3.11 Latte Encrypt algorithm (at level ℓ) [ETS19].
Input: 𝑁 , 𝑞, 𝜎𝑒 ,h, b,KDF, IDℓ, 𝜇 ∈ {0, 1}256.
Output: 𝑍 ∈ {0, 1}256,C1, … ,Cℓ,Cℎ,C𝑏 ∈ ℜ𝑞 .
1: function Encrypt
2: 𝑠𝑒𝑒𝑑 ↩ {0, 1}256.
3: 𝑍 ← 𝜇 ⊕ KDF(𝑠𝑒𝑒𝑑).
4: e, e1, … , eℓ, eℎ, e𝑏 ↩ 𝒟𝑁𝜎𝑒 by using the seed KDF(𝑠𝑒𝑒𝑑|𝑍).
5: for 𝑖 = 1 to ℓ do
6: C𝑖 ← A𝑖 ⋅ e + e𝑖 where A𝑖 = 𝐻(ID1| … |ID𝑖).
7: end for
8: Cℎ ← h ⋅ e + eℎ.
9: m ← Encode(𝑠𝑒𝑒𝑑).

10: C𝑏 ← b ⋅ e + e𝑏 +m.
11: return 𝑍 ∈ {0, 1}256,C1, … ,Cℓ,Cℎ,C𝑏 ∈ ℜ𝑞 .
12: end function

3.2 LATTICE-BASED (HIERARCHICAL) IDENTITY-BASED ENCRYPTION 39

Algorithm 3.12 Latte Decrypt algorithm (at level ℓ) [ETS19].
Input: 𝑁 , 𝑞, 𝜎𝑒 ,h, b,KDF, IDℓ, 𝑍 , (C1, … ,Cℓ,Cℎ,C𝑏), (t0, … , tℓ+1).
Output: 𝜇′.
1: function Decrypt
2: V ← C𝑏 − Cℎ ⋅ t1 − C1 ⋅ t2 − ⋯ − Cℓ ⋅ tℓ+1.
3: 𝑠𝑒𝑒𝑑′ ← Decode(V).
4: e′, e′1, … , e′ℓ , e′ℎ, e′𝑏 ↩ 𝒟𝑁𝜎𝑒 by using the seed KDF(𝑠𝑒𝑒𝑑′|𝑍).
5: for 𝑖 = 1 to ℓ do
6: C′

𝑖 ← A𝑖 ⋅ e′ + e′𝑖 where A𝑖 = 𝐻(ID1| … |ID𝑖).
7: end for
8: C′

ℎ ← h ⋅ e′ + e′ℎ.
9: m′ ← Encode(𝑠𝑒𝑒𝑑′).

10: C′
𝑏 ← b ⋅ e′ + e′𝑏 +m′.

11: Check (C′
1, … ,C′

ℓ ,C′
ℎ,C′

𝑏) agrees with (C1, … ,Cℓ,Cℎ,C𝑏), else return ⊥.
12: return 𝜇′ = 𝑍 ⊕ KDF(𝑠𝑒𝑒𝑑′).
13: end function

40 CHAPTER 3. LITERATURE REVIEW

Chapter 4

Zero-centered Discrete Gaussian
Sampler
FAst, Compact, and Constant-Time (FACCT)

This chapter was published as:

• Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. FACCT: FAst, Compact, and

Constant-Time Discrete Gaussian Sampler over Integers. (2019). IEEE Transac-

tions on Computers. DOI 10.1109/TC.2019.2940949.

In this chapter, we introduce several new constant-time implementation techniques to

address the efficiency issues of the binary sampling method discussed in Section 3.1.3.1.

In particular, we make the following contributions:

• Our main contribution is to show that instead of storing many pre-computed

exp(𝑥) evaluations [BAA+17] or combining many Bernoulli samples [PBY17,

EFGT17], the exp(𝑥) polynomial approximation techniques with a carefully

chosen precision can achieve faster and more compact constant-time implemen-

tations of the binary sampling expander. To minimise the required polynomial

approximation precision, we show how to apply the Rényi divergence analysis

to the binary sampling algorithm. Previous works on the Rényi divergence

used a different order [BLL+15], only applied this technique to the rejection

in the BLISS signing algorithm [Pre17], or applied to a different sampling

method [MR18]. As opposed to [DG14], where the authors discussed the simple

polynomial approximation to the exp(𝑥) function but discarded it as inefficient

in discrete Gaussian sampling, we show that with carefully chosen polynomial

approximation parameters, our constant-time implementation techniques can

actually be more efficient than other methods.

41

42 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

• We show that our scheme enjoys the property that the implementation efficiency

is independent of the standard deviation. In addition, we show that our imple-

mentation techniques are flexible to integrate with existing cryptosystems, such

as qTesla [ABB+19] and Falcon [PFH+17].

• As an additional independent contribution, we show how to adapt the Rényi di-

vergence analysis to the convolution sampling algorithm and achieve smaller 𝜎0
for the base sampler, compared to the existing Kullback-Leibler Divergence (KLD)

based algorithms [PDG14, KHR+18].

4.1 Directly Approximating the Exp Function

The Bernoulli bias 𝑝 in Equation 3.1 can be directly computedwithin double precision (53

bits), if the RD-based relative error bound (Theorem 6) is adapted [Pre17]. The NIST PQC

1st round implementation of the lattice-based digital signature scheme Falcon [PFH+17]
applied this approach to compute the rejection bias when sampling from the arbitrary-

centered discrete Gaussian distribution, by using a rational function approximation of

exp(𝑥), similar to the implementation in the C standard library (see Algorithm 4.1). How-

ever, the floating-point division instructions on the Intel CPUs have various latency and

throughput [Int19]. Furthermore, the compiler may replace the division operation with

its own run-time library routine, which may not be constant-time [OSHG19]. Therefore,

the division arithmetic should be generally avoided in constant-time implementation.

Algorithm 4.1 Rational function approximation algorithm of exp(𝑥) [PFH+17].
Input: 𝑥 ∈ ℝ, such that |𝑥| ≤ ln 2.
Output: 𝑒𝑥 with about 50-bit precision.
1: function exp(𝑥)
2: Let 𝑝1 = 1.66666666666666019037 ⋅ 10−1.
3: Let 𝑝2 = −2.77777777770155933842 ⋅ 10−3.
4: Let 𝑝3 = 6.61375632143793436117 ⋅ 10−5.
5: Let 𝑝4 = −1.65339022054652515390 ⋅ 10−6.
6: Let 𝑝5 = 4.13813679705723846039 ⋅ 10−8.
7: Let 𝑠 = 𝑥/2.
8: Let 𝑡 = 𝑠2.
9: Let 𝑐 = 𝑠 − 𝑡 ⋅ (𝑝1 + 𝑡 ⋅ (𝑝2 + 𝑡 ⋅ (𝑝3 + 𝑡 ⋅ (𝑝4 + 𝑡 ⋅ 𝑝5)))).

10: Let 𝑟 = 1 − ((𝑠 ⋅ 𝑐)/(𝑐 − 2) − 𝑠).
11: return 𝑟2.
12: end function

Another classical method to compute the exp(𝑥) is the Padé approximation [Pre17],

which uses 𝑃(𝑥)/𝑄(𝑥) to approximate exp(𝑥) for some polynomials 𝑃(𝑥) = 𝑄(−𝑥). For
the BLISS signature scheme, to satisfy the relative error bound by Theorem 6, 𝑃(𝑥) and

4.1 DIRECTLY APPROXIMATING THE EXP FUNCTION 43

𝑄(𝑥) need to be at least degree 7 by our experiments in the sagemath tool. To com-

pare 𝑢 < 𝑃(𝑥)/𝑄(𝑥) for some 𝑢 ↩ 𝒰([0, 1)) in the rejection step of the binary sampling

scheme, one may instead perform the comparison of 𝑢 ⋅𝑄(𝑥) < 𝑃(𝑥) to avoid the floating-

point division. However, it is unclear how to choose the precision of 𝑢 and the 𝑢 ⋅ 𝑄(𝑥)
multiplication operation for this method. Another issue is how to efficiently implement

this approach in constant-time, since the implementation may involve either a high pre-

cision floating-point multiplication for 𝑢 ⋅𝑄(𝑥) or computing the multiplication between

the mantissas of 𝑢 and 𝑄(𝑥) with integer arithmetic larger than 64 bits.

We compute the exp(𝑥) by evaluating a polynomial at point 𝑥 instead, where only the

floating-point additions and multiplications are involved. Both the addition and the mul-

tiplication instructions on the Intel CPUs have constant latency and throughput [Int19].

To find such an exp(𝑥) approximation with sufficient precision, we use the following

approach:

1. Let 𝑡 = 𝑦(𝑦 + 2𝑘𝑥). First, we observe that since 𝜎0 = √1/(2 ln 2) and 𝜎 = 𝑘𝜎0, the
Bernoulli bias 𝑝 in Equation 3.1 can be re-written as:

𝑝 = exp(−𝑡/(2𝜎2)) = exp(− ln 2 ⋅ 𝑡/𝑘2) = 2−𝑡/𝑘2 .

Therefore, we can find a polynomial approximation of 2−𝑡/𝑘2 for 𝑡 ≥ 0.

2. Second, we adapt the method from [MBdD+10]. Let 𝑎 = −𝑡/𝑘2. We get:

2𝑎 = 2⌊𝑎⌋+𝑧 = 2⌊𝑎⌋ ⋅ 2𝑧 ,

for 0 ≤ 𝑧 < 1, where 𝑧 is the remaining part of rounding operation. We can directly

get the multiplication with 2⌊𝑎⌋ by changing the exponent of a floating-point vari-

able. To approximate 2𝑧 , we use the sollya tool [CJL10] to find a polynomial with

sufficient number of terms, such that the minimax error is within the RD-based

relative error bound.

According to themanual of the sollya tool [CLJ18], we use the following three functions

to get such a polynomial and verify its precision:

• The guessdegree(𝑓 , 𝐼 , 𝛿 , 𝜔) function finds the minimal degree sufficient for

the polynomial approximation 𝑃 of function 𝑓 over the interval 𝐼 , such that

‖𝑃𝜔 − 𝑓 ‖∞ < 𝛿 . For example, we use the command guessdegree(1,[0,1],1b-

45,1/2^x) to estimates the minimal degree of polynomial approximation 𝑃(𝑥)
over the interval [0, 1], such that:

‖𝑃/2𝑥 − 1‖∞ < 2−45 ⟹ Δ(𝑃||2𝑥) < 2−45.

44 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

• The fpminimax(𝑓 , 𝑛, 𝐿, 𝐼 , floating, relative) function performs the heuristic from

[BC07] to find a degree-𝑛 polynomial approximation 𝑃 of function 𝑓 over the in-

terval 𝐼 , such that 𝑃 has the minimal minimax relative error, with the 𝑖-th floating-

point coefficient 𝑐𝑖 having precision 𝐿𝑖 for all 𝑖 ≤ 𝑛. For example, we use the

command fpminimax(2^x,9,[|1,D...|],[0,1],floating,relative) to find

the polynomial approximation 𝑃(𝑥) of 2𝑥 over the interval [0, 1], with degree 9

(the result from the previous guessdegree command) and double precision coeffi-

cients (“D” represents double precision in this command). To make sure 𝑃(0) = 1,
we set 𝐿0 = 1 (1-bit precision), which results in coefficient 𝑐0 = 1.

• The supnorm(𝑝, 𝑓 , 𝐼 , relative, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) function computes the interval bound 𝑟 =
[ℓ, 𝑢] for the supremum norm of the relative error Δ = |𝑝/𝑓 − 1| over the interval

𝐼 , such that sup𝑥∈𝐼 {Δ(𝑥)} ⊆ 𝑟 and 0 ≤ |𝑢/ℓ − 1| ≤ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 . For example, we use

the command supnorm(P,2^x,[0,1],relative,1b-128) to verify Δ(𝑃||2𝑥) over
the interval [0, 1] is smaller than the required relative error bound, where 𝑃 is the

polynomial approximation computed in the previous fpminimax command.

4.2 FACCT Algorithm

Our constant-time Bernoulli sampler adapting the exp(𝑥) approximation approach above

is shown in Algorithm 4.2. Let the standard deviation 𝜎 = 𝑘𝜎0, where 𝑘 ∈ ℤ+ and

𝜎0 = √1/(2 ln 2). Let 𝑃(𝑧) be the polynomial approximation of 2𝑧 with 𝛿𝑃 -bit precision
for 0 ≤ 𝑧 < 1. Given an integer 𝑡 = 𝑦(𝑦 + 2𝑘𝑥), where 𝑥 ↩ 𝒟+𝜎0 with tail-cut bound

𝐵 and 𝑦 ↩ 𝒰({0, … , 𝑘 − 1}), this algorithm generates a sample from ℬ𝑝 , where 𝑝 =
exp(−𝑡/(2𝜎2)) = 2−𝑡/𝑘2 . We assume an IEEE-754 floating-point value 𝑓 ∈ (0, 1] with

(𝛿𝑓 + 1)-bit precision is represented by 𝑓 = (1 +𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ⋅ 2−𝛿𝑓) ⋅ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 , where integer

𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 has 𝛿𝑓 bits and 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ∈ ℤ−.

4.2.1 FACCT Relative Error Analysis

Here, we analyse the relative error of Algorithm 4.2. Since the algorithm will output 1

when 𝑓 = 1.0, we only consider the case when 𝑓 ∈ (0, 1), which implies 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 < 0.
Let 𝒫FACCT and 𝒫IDEAL represent the distribution of the FACCT Bernoulli sampler and

the ideal Bernoulli sampler, respectively. Since 𝑎 = −𝑡/𝑘2 and 𝑧 = 𝑎 − ⌊𝑎⌋, we have:

𝒫IDEAL(⌊𝑎⌋, 𝑧) = exp(−𝑡/(2𝜎2)) = 2𝑎 = 2𝑧+⌊𝑎⌋.

4.2 FACCT ALGORITHM 45

Algorithm 4.2 FACCT Bernoulli sampler.

Input: Deviation 𝜎 = 𝑘𝜎0, where 𝑘 ∈ ℤ+ and 𝜎0 = √1/(2 ln 2). Integer 𝑡 = 𝑦(𝑦 +
2𝑘𝑥), where 𝑥 ↩ 𝒟+𝜎0 with tail-cut bound 𝐵 and 𝑦 ↩ 𝒰({0, … , 𝑘 − 1}). Polynomial
approximation 𝑃(𝑧) of 2𝑧 with 𝛿𝑃 -bit precision for 0 ≤ 𝑧 < 1. Bit length ℓ ≥ 2𝐵 + 1.

Output: A sample from ℬ𝑝 , where 𝑝 = exp(−𝑡/(2𝜎2)) = 2−𝑡/𝑘2 .
1: function BernoulliSampler(𝑡)
2: Let 𝑎 = −𝑡/𝑘2.
3: Let 𝑧 = 𝑎 − ⌊𝑎⌋.
4: Evaluate 𝑠 = 𝑃(𝑧) on point 𝑧.
5: Let 𝑓 = 𝑠 ⋅ 2⌊𝑎⌋.
6: Let represent 𝑓 by 𝑓 = (1 + 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ⋅ 2−𝛿𝑓) ⋅ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 , with 𝛿𝑓 -bit 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎.
7: Sample 𝑟𝑚 ↩ 𝒰({0, 1}𝛿𝑓+1).
8: Sample 𝑟𝑒 ↩ 𝒰({0, 1}ℓ).
9: if (𝑟𝑚 < 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 + 2𝛿𝑓 and 𝑟𝑒 < 2ℓ+𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡+1) or 𝑓 = 1.0 then

10: return 1.
11: else
12: return 0.
13: end if
14: end function

Theorem 12 (Adapted from [MBdD+10], Def. 5.1 and Eq. 5.7). The absolute error be-
tween an accurate polynomial evaluation 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 and the evalu-
ation 𝐻(𝑥) by using Horner’s rule with 𝛿-bit precision floating-point arithmetic is:

|𝐻 (𝑥) − 𝑃(𝑥)| ≤ 𝛾2𝑛 ⋅
𝑛
∑
𝑖=0

|𝑎𝑖| ⋅ |𝑥 |𝑖,

where 𝛾2𝑛 ≈ 2𝑛 ⋅ 2−𝛿 if 2𝑛 is much smaller than 1/2−𝛿 .

The polynomial approximation 𝑃 from the sollya tool is evaluated by using Horner’s

rule (see Figure 4.1 for an example). Assume a degree-𝑛 polynomial approximation 𝑃
only has positive coefficients. Sincewe use (𝛿𝑓+1)-bit precision floating-point arithmetic

to compute 𝑃(𝑧) for 0 ≤ 𝑧 < 1, by adapting Theorem 12, we have:

𝒫FACCT(⌊𝑎⌋, 𝑧) = (𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 + 2𝛿𝑓)
2𝛿𝑓+1

⋅ 2
ℓ+𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡+1

2ℓ
= (1 + 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ⋅ 2−𝛿𝑓) ⋅ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡
= 𝑓
≤ (1 + 2𝑛 ⋅ 2−(𝛿𝑓+1))(𝑃(𝑧) ⋅ 2⌊𝑎⌋),

where the last inequality follows because |𝐻 (𝑧)/𝑃(𝑧)−1| ≤ 𝛾2𝑛 and 𝛾2𝑛 ≈ 2𝑛 ⋅2−(𝛿𝑓+1) due
to Theorem 12 (The multiplication with 2⌊𝑎⌋ does not change the error since we directly

change the exponent of a floating-point variable). Then, the relative error Δ between

46 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

𝒫FACCT and 𝒫IDEAL is:

Δ = max
⌊𝑎⌋,𝑧 |

𝒫FACCT(⌊𝑎⌋, 𝑧)
𝒫IDEAL(⌊𝑎⌋, 𝑧)

− 1|

≤ max
⌊𝑎⌋,𝑧 |

(1 + 2𝑛 ⋅ 2−(𝛿𝑓+1))(𝑃(𝑧) ⋅ 2⌊𝑎⌋)
2𝑧+⌊𝑎⌋ − 1|

≤ (1 + 𝑛 ⋅ 2−𝛿𝑓)(1 + 2−𝛿𝑃) − 1 (by definition of 𝛿𝑃)
= 2−𝛿𝑃 + 𝑛 ⋅ (2−𝛿𝑓 + 2−(𝛿𝑃+𝛿𝑓)). (4.1)

We also need to make sure that ℓ + 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 1 ≥ 0 during the comparison in Algo-

rithm 4.2. Let Δ be the relative error in Equation 4.1. Since 𝑎 = −𝑡/𝑘2, by definitions of

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 and Δ from Equation 4.1, we have:

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ≥ ⌊log2((1 − Δ) ⋅ 2−𝑡/𝑘2)⌋
≥ ⌊−1 − 𝑡/𝑘2⌋ (we make Δ ≤ 1/2)

≥ ⌊−1 − 𝑦(𝑦 + 2𝑘𝑥)
𝑘2 ⌋ (by definition of 𝑡)

≥ ⌊−1 − 𝑦2
𝑘2 − 2𝑘𝑥𝑦

𝑘2 ⌋

≥ −2𝐵 − 2 (by definitions of 𝑥 and 𝑦).

Therefore, if ℓ + 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 1 ≥ 0, we have:

ℓ ≥ 2𝐵 + 1. (4.2)

To ensure that the compiler will not replace any floating-point arithmetic with its own

run-time library implementation, we manually write the arithmetic in the source code

by using constant-time instructions with the Intel intrinsics. This also enables the SIMD

instruction sets, such as the AVX2, which computes 4x double precision floating-point

arithmetic in parallel.

Compared with the previous table-based constant-time Bernoulli sampling techniques

[BHLY16, PBY17, EFGT17, BAA+17], where the number of table entries is proportional

to the bit length of 𝑡 , our implementation is more compact in terms of the memory con-

sumption, since we only need to store a small number of polynomial coefficients. For

example, in the BLISS-I parameter set, 𝑘 = 254, which implies 0 ≤ 𝑡 < 221. This requires
at least 21 table entries in the previous techniques, compared to only 9 coefficients for

about 45-bit precision in our implementation (see Section 4.4). Also, our implementa-

tion is more efficient for large standard deviations, since the code is independent of 𝜎

4.3 CONCRETE RÉNYI DIVERGENCE BASED CONVOLUTION SAMPLING 47

(assuming −1/𝑘2 is a pre-computed constant), while the number of iterations (propor-

tional to the number of table entries) relies on 𝑘 in previous table-based approaches. In

addition, if the application requires samples from several different standard deviations,

our implementation does not need additional pre-computed tables for each different 𝑘.

4.2.2 AVX2 Implementation

In order to implement the binary sampling scheme (Algorithm 3.1) with our FACCT

Bernoulli sampler (Algorithm 4.2) by using the AVX2 instructions, since each sample

is independent i.e. data and arithmetic operations are independent between samples,

we can simply vectorise the arithmetic operations in Algorithm 3.1 and compute the re-

jection conditions by using the vectorised Algorithm 4.2 in batch. We then discard the

rejected samples and continue the batch sampling process until we generate the required

amount of samples. Since the sampler needs to generate and apply a sign bit for each

sample, we choose 8 as the batch size, in which case an extra random byte is generated

during each batch and the 8 bits of this random byte become the sign bits of 8 samples in

the batch. Each arithmetic operation performed in the batch is parallelised by two 4×64-
bit AVX2 instructions. Note that since our main purpose of using the AVX2 instructions

is to avoid the non-constant time floating-point code generated by the compiler, max-

imising the performance is not the priority. Therefore, our AVX2 implementation may

not be optimal in terms of the speed since our implementation does not consider the

latency and throughput of the AVX2 instructions [Sei18, CHK+21] or the pipelines of

the target CPU [BHK+22].

4.3 Concrete Rényi Divergence Based Convolution Sam-
pling

Prest only implied the potentially tighter parameters for the convolution theorem based

samplers by adapting the Rényi divergence [Pre17]. In this section, we discuss the con-

crete parameter choice for the RD-based convolution sampling scheme.

Recall that 𝑀𝐿(𝒫 ||𝒬) ≈ Δ(𝒫 ||𝒬) when Δ(𝒫 ||𝒬) → 0 (Lemma 4.2 in [MW17]). Also, in

the convolution sampler adapting Theorem 10, typically z = (𝑘 − 1, 𝑘) for some 𝑘 ≥ 4
[MW17]. Therefore, by applying Theorem 6, we provide the following concrete RD-

based parameter choice lemmas:

Lemma 1. Let 𝑥1, 𝑥2 ↩ 𝒟 ′𝜎0 , with 𝜎0 = 𝜎/√(𝑘 − 1)2 + 𝑘2 for some 𝜎 ∈ ℝ+ and 𝑘 ≥ 4. If
𝜎0 ≥ 𝑘𝜂𝜖(ℤ)/√𝜋 and Δ(𝒟 ′𝜎0 ||𝒟𝜎0) ≤ 𝜇, then for𝑀 independent samples, sampling from the
distribution𝒫 of (𝑘 −1)𝑥1+𝑘𝑥2 will be 𝜆-bit secure, if Δ(𝒫 ||𝒟𝜎) ≤ 2𝜖 +2𝜇 ≤ √1/(4𝜆 ⋅ 𝑀).

48 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

Lemma 2. Let 𝑥1, 𝑥2 ↩ 𝒟 ′𝜎0 , with 𝜎0 = 𝜎/√1 + 𝑘2 for some 𝜎 ∈ ℝ+ and 𝑘 ≥ 2. If:

𝜎0 ≥ 𝜂𝜖(ℤ)/√2𝜋,
√

1
𝜎−20 + (𝑘𝜎0)−2

≥ 𝑘𝜂𝜖(ℤ)/√2𝜋,

and Δ(𝒟 ′𝜎0 ||𝒟𝜎0) ≤ 𝜇, then for 𝑀 independent samples, sampling from the distribution 𝒫
of 𝑥1 + 𝑘𝑥2 will be 𝜆-bit secure, if Δ(𝒫 ||𝒟𝜎) ≤ 4𝜖 + 2𝜇 ≤ √1/(4𝜆 ⋅ 𝑀).

Proof. We show that for distributions 𝒫 and 𝒬, and 𝑀 independent samples, sampling

from 𝒫 will be 𝜆-bit secure, if 𝑀𝐿(𝒫 ||𝒬) ≤ √1/(4𝜆 ⋅ 𝑀). Let 𝛼 = 2𝜆. By combining

Theorem 6 and Theorem 7, we get:

𝑅2𝜆(𝒫 ||𝒬) ≤ 1 + 𝜆 ⋅ (𝑀𝐿(𝒫 ||𝒬))2 ≤ 1 + 1/(4𝑀) ⟹ 𝑀𝐿(𝒫 ||𝒬) ≤ √1/(4𝜆 ⋅ 𝑀).

Then, let 𝜎0 = 𝜎/√(𝑘 − 1)2 + 𝑘2, z = (𝑘 − 1, 𝑘), and 𝜎 = (𝜎0, 𝜎0) in Theorem 10 to get

Δ(𝒫 ||𝒟𝜎) ≤ 2𝜖 + 2𝜇. Let 𝜎0 = 𝜎/√1 + 𝑘2, 𝜎1 = 𝜎0, and 𝜎2 = 𝑘𝜎0 in Theorem 11, we get

Δ(𝒫 ||𝒟𝜎) ≤ 4𝜖 + 2𝜇. We replace 𝑀𝐿 with Δ in both Theorem 10 and Theorem 11, then

get Lemma 1 and Lemma 2, respectively.

Since the constraint for 𝜎0 in Lemma 2 is looser than in Lemma 1 (about √2 times), but

𝜎0 shrinks faster in Lemma 1 instead, one can apply both lemmas on different recursion

levels. For example, one may adapt Lemma 1 on all the intermediate levels and use

Lemma 2 on the bottom level, to achieve possibly smaller base sampler deviation.

The total relative errors for different number of convolution levels are shown in Ta-

ble 4.1. Typically, the standard deviations in lattice-based cryptosystems require 3 levels

at maximum. Let Δ be the relative error of the base sampler. The “Mixed-𝑘” in Table 4.1

represents the example we discussed above.

For 𝜎 ≈ 215 in the BLISS-I parameter set, the base sampler deviation 𝜎0 and convolution

parameters z𝑖 are shown in Table 4.2 for 𝑖 ≤ ℓ, where ℓ is the number of convolution

levels. We assume𝑀 = 𝑚 ⋅ 𝑞𝑠 with 𝑚 = 1024, 𝑞𝑠 = 264, 𝜆 = 128, and Δ ≤ 2−53. Compared

with the KLD-based convolution schemes [PDG14, KHR+18, KRR+18], our RD-based

convolution parameter choice lemmas generate smaller base sampler deviations for the

same number of convolution levels.

Table 4.1: Total Relative Errors for Different Number of Convolution Levels.
z 1 Level 2 Levels 3 Levels

(𝑘 − 1, 𝑘) 2𝜖 + 2Δ 6𝜖 + 4Δ 14𝜖 + 8Δ
(1, 𝑘) 4𝜖 + 2Δ 12𝜖 + 4Δ 28𝜖 + 8Δ

Mixed-𝑘 4𝜖 + 2Δ 10𝜖 + 4Δ 22𝜖 + 8Δ

4.4 EVALUATION 49

Table 4.2: Convolution Parameters for 𝜎 ≈ 215.
Method ℓ 𝜎0 z𝑖

KLD 1 19.53 z1 = (1, 11)
KLD 2 6.18 z1 = (1, 11), z2 = (1, 3)

RD (𝑘 − 1, 𝑘) 1 17.92 z1 = (8, 9)
RD (1, 𝑘) 2 5.67 z1 = (1, 12), z2 = (1, 3)

RD Mixed-𝑘 2 5.67 z1 = (8, 9), z2 = (1, 3)

4.4 Evaluation

We implement the binary sampling scheme (Algorithm 3.1) by combining the constant-

time CDT base sampler with the FACCT Bernoulli sampler (Algorithm 4.2). We choose

the tail-cut bound 𝐵 by Theorem 5, which guarantees that the 𝑅∞ between the tail-cut

and the ideal discrete Gaussian is ≤ exp(1) over all 𝑀 = 𝑚 ⋅ 𝑞𝑠 samples, corresponding

to a loss of at most log2(exp(1)) ≈ 1.44 bits of security for the tail-cut samples relative

to the ideal discrete Gaussian sampling case. On the other hand, we choose Δ𝒟+𝜎0 and

Δℬ𝑝 by Theorem 6, which guarantees that we lose at most 1 bit of security due to the

relative precision errors, respectively. Hence overall our choice of tail-cut and precision

parameters ensure that we lose at most 1 + 1 + 1.44 = 3.44 bits of security with respect

to the ideal discrete Gaussian sampling over 𝑀 samples. Since our FACCT Bernoulli

sampler is independent of 𝜎 , we pick the precision 𝛿𝑃 of the polynomial approximation

and bit length ℓ in Algorithm 4.2 by using Equation 4.1 and Equation 4.2, respectively.

We use double precision floating-point, where the mantissa has 𝛿𝑓 = 52 bits, and we fix

the parameters in Table 4.3 for our implementations in the benchmarks.

Table 4.3: Parameters for Implementations.
Parameter Description Value

𝑀 Number of discrete Gaussian samples 274
𝜆 Security level 128
𝐵 Tail-cut bound 9
𝛿𝑃 Precision of the polynomial approximation 45
𝛿𝑓 Number of bits in the mantissa 52
ℓ Bit length in Algorithm 4.2 19

Δ𝒟+𝜎0 Relative error of the base sampler 2−46
Δℬ𝑝 Relative error of the Bernoulli sampler 2−44.99

We employ the full-table access CDT base sampler. We select the parameters in Table 4.3

such that the base sampler has about 126-bit absolute precision. We store eachCDT entry

in two 63-bit integers, then the constant-time comparison of 𝑥 < 𝑦 , where 0 ≤ 𝑥, 𝑦 < 263,
can be performed by a 64-bit signed integer subtraction, since the sign bit of 𝑥−𝑦 will be 1
when 𝑥 < 𝑦 . We compute the CDT in reversed order such that𝒫 (𝑖) = CDT[𝑖]−CDT[𝑖+1]
for 𝑖 ∈ [0, 𝐵], where the subtraction only enlarges the relative error by a factor of about

50 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

𝜎0 [PDG14, MR18]. For the uniform sampling over the range [0, 𝑘 − 1], we adapt similar

techniques as in [SSZ18] to reduce the rejection rate. We generate random integers over

a larger range [0, 2ℓ−1] instead, where 2ℓ > 𝑘, and then perform themodulo 𝑘 operations.

In addition, we show how to get the polynomial approximation 𝑃 in our FACCT sampler

implementation by using the sollya tool in Figure 4.1, and we verify Δ(𝑃||2𝑥) < 2−45.9
over the interval [0, 1].

Figure 4.1: The polynomial approximation 𝑃 in the FACCT sampler implementation.

> guessdegree(1,[0,1],1b-45,1/2^x);
[9;9]
> P=fpminimax(2^x,9,[|1,D...|],[0,1],floating,relative);
> P;
1 + x * (0.69314718056193380668617010087473317980766296386719
+ x * (0.24022650687652774559310842050763312727212905883789
+ x * (5.5504109841318247098307381293125217780470848083496e-2
+ x * (9.6181209331756452318717975913386908359825611114502e-3
+ x * (1.3333877552501097445841748978523355617653578519821e-3
+ x * (1.5396043210538638053991311593904356413986533880234e-4
+ x * (1.5359914219462011698283041005730353845137869939208e-5
+ x * (1.2303944375555413249736938854916878938183799618855e-6
+ x * 1.43291003789439094275872613876154915146798884961754e-7))))))))
> supnorm(P,2^x,[0,1],relative,1b-128);
[1.4918069016855064039857437282944775430163557005892e-14;
1.4918069016855064039857437282944775430206027262258424e-14]

For the benchmarks, we select 𝜎 ≈ {25, 215, 211, 17900, 217, 220}, where 215 (approxi-

mately 27.7) and 17900 (approximately 214.1) are the standard deviations from the BLISS-I

[DDLL13] and the Dilithium-G [DLL+17] recommended parameter sets1, respectively.

We compare the run-time of our implementations with the binary sampling scheme

from qTesla-R1 [BAA+17] and the countermeasures from [PBY17, EFGT17]. Since

the countermeasures did not have a full implementation code available, we simply

replace the Bernoulli sampling subroutine in our non-AVX2 reference implementa-

tion with the countermeasures. Because the optimal convolution sampling schemes

[KRR+18, KRVV19] require major refactoring of the bitslicing base sampler for each

different 𝜎 , we exclude it from this benchmark. We use the AES256 counter mode

with hardware AES instructions (AES-NI) [Gue09] to generate the randomness in all

the implementations. We use clang 8.0.0 to compile our AVX2 implementation, and

1The Dilithium-G parameter sets are availabe at the old version of the preprint from the authors: https:
//eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/633&version=20170627:201152&file=633.pdf.

https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/633&version=20170627:201152&file=633.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/633&version=20170627:201152&file=633.pdf

4.4 EVALUATION 51

use gcc 9.1.1 to compile all the other implementations, with the compiling options

-O3 -march=native enabled for both compilers. The benchmark is running on an

Intel i7-7700K CPU at 4.2GHz, with the Hyperthreading and the Turbo Boost disabled.

We generate 𝑚 = 1024 samples for 1000 times and measure the median number of

the consumed CPU cycles. The comparison results are shown in Figure 4.2. The “Ref”

in the following figures and tables represents non-AVX2 reference implementations.

We implement the non-AVX2 reference implementations by using the constant-time

SSE4 floating-point instructions, which is available on the Intel Nehalem architecture

back to 2008 and all subsequent Intel architectures. However, older Intel CPUs such as

the Pentium III may not support constant-time hardware floating-point multiplication

instructions [BBE+19]. In addition, our techniques should be portable to other archi-

tectures supporting constant-time hardware floating-point instructions (addition and

multiplication). However, on architectures where the floating-point unit is unavailable,

the floating-point arithmetic will be emulated by the software routines from the C

run-time library, which is usually not constant-time [OSHG19]. One may consider

to use the variant from the subsequent work GALACTICS [BBE+19] instead on these

architectures, which computes the polynomial approximation results in fixed-point

arithmetic by only using integers.

Figure 4.2: Comparison of the CPU cycles for different 𝜎 .

We measure the table size of the Bernoulli sampler by computing the number of table

entries times the size of the variable type (in bytes) for each implementation. Since we

store vectors instead of single values in our AVX2 implementation, the table size is 4x our

non-AVX2 reference implementation. The comparison results are shown in Figure 4.3.

52 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

Figure 4.3: Comparison of the Bernoulli table size for different 𝜎 .

From Figure 4.2, compared to the countermeasures, our non-AVX2 reference implemen-

tation is 1.5x–3.7x faster, and our AVX2 implementation is 3.5x–8.3x faster, respectively,

especially for the larger 𝜎 . In addition, our AVX2 implementation is 1.6x–1.8x faster than

the qTesla-R1 sampler. Note that our non-AVX2 reference implementation is suboptimal

on the run-time speed, since the constant-time floating-point arithmetic instructions for

a single value have similar latencies and throughputs as their SIMD counterparts on

the Intel CPUs [Int19]. Therefore, our optimal AVX2 implementation should be used if

run-time speed is concerned.

From Figure 4.3, our implementations have much smaller table sizes than the qTesla-

R1 sampler (9.6x–28.8x for our non-AVX2 reference implementation and 2.4x–7.2x for

our AVX2 implementation), especially for the larger 𝜎 . In addition, compared to the

countermeasures, our non-AVX2 reference implementation has 1.5x–4.5x smaller table

size, and our AVX2 implementation has similar table size, respectively.

From both Figure 4.2 and Figure 4.3, we also verify that the efficiency of our implemen-

tations is independent of 𝜎 .

We also verify that our implementations of the FACCT Bernoulli sampler in Algo-

rithm 4.2 are constant-time by using the dudect tool [RBV17]. The dudect tool first

takes a number of execution timing measurements for a program by using two different

sets of input data: a fixed class with constant values e.g. zeros as the input and a

random class with fresh random input data during each measurement. Then, the

dudect tool checks whether the distributions between the two sets of measurements

are statistically different, by performing the Welch’s 𝑡-test against the null hypothesis

4.4 EVALUATION 53

that the distributions of timing measurements between the fixed and the random classes

are the same. The non-constant time threshold for the 𝑡-value is 10 in the dudect tool

i.e. if the 𝑡-value is higher than 10, then the program is categorised as non-constant time.

Since the compiler optimisations may accidentally hide2 the timing leakage, we test our

implementations compiled with both -O3 -march=native (full optimisations, same as

in our benchmarks) and -O0 -march=native (no compiler optimisations) options. We

compile the non-AVX2 reference implementation by using gcc, and compile the AVX2

implementation by using clang. We take up to 100 million measurements, and the

results are demonstrated in Figure 4.4. From Figure 4.4, for both compiler optimisation

options -O0 and -O3, the 𝑡-values for our non-AVX2 reference implementation and

the AVX2 implementation of the FACCT Bernoulli sampler are less than 4 for up to

100 million measurements, which is well below the non-constant time threshold. On

the contrary, the 𝑡-value of the non-constant time Bernoulli sampler (Algorithm 3.3)

from the original BLISS implementation3 [DDLL13] compiled with the -O0 option

quickly exceeds the non-constant time threshold within 20000 measurements in our

experiment.

Figure 4.4: 𝑡-values from the timing measurements of the FACCT Bernoulli sampler.

2See the “Further notes” at https://github.com/oreparaz/dudect/blob/master/README.md.
3https://bliss.di.ens.fr/bliss-06-13-2013.zip.

https://github.com/oreparaz/dudect/blob/master/README.md
https://bliss.di.ens.fr/bliss-06-13-2013.zip

54 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

4.5 Applications

In this section, we compare the performance of our software implementations4 with

previous implementations from actual cryptosystems.

4.5.1 Sampling from the BLISS-I Standand Deviation

In this section, we compare the performance of our FACCT sampler implementations

with the sampler implementations from qTesla [BAA+17, ABB+19], the bitslicing con-

volution scheme [KRR+18], and previous countermeasures [PBY17, EFGT17], using the

BLISS-I parameter set. Since other convolution schemes [PDG14, KHR+18] only have

hardware implementations, we only compare with the software implementation of the

bitslicing convolution [KRR+18].

The BLISS-I parameter set has 𝑘 = 254 and 𝜎 ≈ 215. We use the similar benchmark

setup as Section 4.4, with 𝜆 = 128, 𝑚 = 1024, and 𝑞𝑠 = 264, which gives the same number

of samples 𝑀 as in Table 4.3. For the bitslicing convolution scheme, we compare with

the implementation of 128-bit absolute precision. We directly use the benchmark script5

from the authors tomeasure the number of the CPU cycles of generating 64 base samples,

and scale the result up to 4𝑚 = 4096 base samples. We also scale this number by the

same factor as in [KRR+18] to retrieve the AVX2 result. The CPU cycles are shown in

Table 4.4.

Table 4.4: Comparison of the CPU Cycles for Generating 𝑚 = 1024 Samples from 𝒟ℤ,𝜎 ,
with 𝜎 ≈ 215.

Scheme CPU Cycles (Ref) CPU Cycles (AVX2)
qTesla-R1 162215 −
qTesla-R2 2531610 −
Bitslicing ≈ 532800 ≈ 254708

Countermeasure 459297 −
FACCT 221991 87192

To measure the memory consumption of each implementation, we compute the table

sizes for both the base samplers and the Bernoulli samplers by using similar approaches

as in Section 4.4. Since the bitslicing approach does not require a table, but has a rather

large code size [KRR+18], for a fair comparison, we also measure the assembly code size

(in bytes) of the sampling functions. We compile the source codes by using the compil-

ing options -Os -march=native to generate more compact assembly code, and use the

objdump command to perform the disassembly. The memory consumption comparison

4The implementation source codes are available at https://gitlab.com/raykzhao/gaussian.
5https://github.com/Angshumank/const_gauss.

https://gitlab.com/raykzhao/gaussian
https://github.com/Angshumank/const_gauss

4.5 APPLICATIONS 55

results are shown in Table 4.5. The “Table” represents the total table size, and for binary

sampling variants, the results are in the form of “base sampler table size+Bernoulli sam-

pler table size”. The “Code” represents the code size, and the “Total” represents the sum

of the table size and the code size.

Table 4.5: Comparison of the Memory Consumption for 𝜎 ≈ 215.
Scheme Table (Bytes) Code (Bytes) Total (Bytes)

qTesla-R1 192+1280 597 2069
qTesla-R2 90816 961 91777
Bitslicing − ≈ 98816 ≈ 98816

Countermeasure 144+168 440 752
FACCT (Ref) 144+80 659 883

FACCT (AVX2) 576+320 1275 2171

From Table 4.4, in addition to the results from Figure 4.2, our implementations signifi-

cantly outperform the bitslicing convolution scheme (2.4x for the reference implementa-

tion and 2.9x for the AVX2 implementation). Our implementations are also significantly

faster than the qTesla-R2 sampling algorithm for larger 𝜎 ≈ 215 (11.4x for the reference

implementation and 29.0x for the AVX2 implementation).

From Table 4.5, in addition to the results from Figure 4.3, our non-AVX2 reference im-

plementation consumes 2.3x smaller memory space than the qTesla-R1 sampler, and

has similar memory consumption compared to the countermeasures, respectively. Our

AVX2 implementation has similar memory consumption compared to the qTesla-R1 sam-

pler. However, for larger 𝜎 , as shown in Figure 4.3, the qTesla-R1 sampler will consume

significantly more memory space to store the Bernoulli table, while our implementa-

tions maintain similar memory consumption. Both of our implementations consume

much smaller memory space than the bitslicing convolution scheme (111.9x for the non-

AVX2 reference implementation and 45.5x for the AVX2 implementation). In addition,

our implementations have much lower memory consumption compared to the qTesla-

R2 sampler for larger 𝜎 ≈ 215 (103.9x for the non-AVX2 reference implementation and

42.2x for the AVX2 implementation).

4.5.2 qTesla

To test the run-time speed of our sampler in a cryptosystem, we replace the sampler

in the AVX2 implementation of qTesla-R2 with our FACCT AVX2. Since the cSHAKE

[NIS16b] software random generator used by qTesla-R2 is much slower than the AES-

NI [Gue09], we measure the performance after replacing the random generator of the

sampler with the AES-NI in the implementations. The CPU cycles measured by the

benchmark script from qTesla-R2 are shown in Table 4.6. The qTesla-R2 KeyGen with

56 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

our AVX2 sampler (AES-NI) is 2.3x–2.8x faster than the original implementations (mod-

ified to use AES-NI instead of cSHAKE). Note that the standard deviations in qTesla-R2

(𝜎 ≈ 10.2–22.93) is smaller than the deviations in previous benchmarks. Therefore, our

implementation maintains good performance even for smaller 𝜎 .

Table 4.6: Comparison of the CPU Cycles for qTesla-R2 (AVX2) KeyGen.
Scheme Original (cSHAKE) Original (AES-NI) FACCT
qTesla-I 1093917 1009155 402022

qTesla-III 2875728 2419416 1039426
qTesla-V 14352751 11607570 4007417

4.5.3 Falcon

To test the performance of our proposed constant-time exp(𝑥) implementation in Sec-

tion 4.1, we replace the exp(𝑥) in Falcon [PFH+17] with our non-AVX2 reference imple-

mentation. Since the exp(𝑥) is used when performing the rejection sampling from the

arbitrary-centered discrete Gaussian in the signing, we measure the signing speed by us-

ing the benchmark script from Falcon. The results are shown in Table 4.7. Our constant-

time exp(𝑥) reference implementation only adds very slight overhead (6.5%–8.2%) to the

signing (However, the rejection rate of sampling may still be secret dependent).

Table 4.7: Signing Speed Comparison for Falcon.
𝑁 Original (sig/s) Our Implementation (sig/s)

256 17844.457 16375.575
384 10232.885 9561.668
512 8781.839 8076.828
768 5281.893 4933.550

1024 4443.585 4086.705

4.6 Research Impact

Recently, GALACTICS [BBE+19], a fully constant-time implementation of the BLISS sig-

nature scheme, adapted a variant of our FACCT sampling algorithm without floating-

point arithmetic. The polynomial approximation in this implementation has the same

degree 9 as our FACCT sampler and employs only the integer arithmetic, which is more

suitable for architectures where constant-time hardware floating-point instructions (ad-

dition and multiplication) or even the floating-point unit may not be available. However,

the techniques from [BBE+19] require a different polynomial approximation for each dif-

ferent 𝜎 and therefore lose the 𝜎-independent feature of our FACCT sampling algorithm.

4.6 RESEARCH IMPACT 57

In addition, Howe et al. adapted a variant of our constant-time exp(𝑥) implementa-

tion as a subroutine of their constant-time discrete Gaussian sampler [HPRR20]. Their

constant-time discrete Gaussian sampler is employed in the latest constant-time Falcon

digital signature implementation [PRR19] (a NIST PQC 3rd round finalist). In addition,

the authors of the constant-time Falcon implementation [PRR19] have verified that the

relative error of our constant-time exp(𝑥) is less than 2−45. Very recently, Mera et al.

employed our FACCT sampler in the implementation of their lattice-based functional

encryption scheme [MKMS21].

58 CHAPTER 4. ZERO-CENTERED DISCRETE GAUSSIAN SAMPLER

Chapter 5

Arbitrary-centered Discrete Gaussian
Sampler
COmpact and Scalable Arbitrary-Centered (COSAC)

This chapter was published as:

• Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: COmpact and Scal-

able Arbitrary-Centered Discrete Gaussian Sampling over Integers. (2020). Pro-

ceedings of PQCrypto 2020. DOI 10.1007/978-3-030-44223-1_16.

In this chapter, we introduce a novel arbitrary-centered discrete Gaussian sampling al-

gorithm over integers by generalising ideas from [Dev86]. Our scheme samples from a

continuous normal distribution and performs rejection sampling on rounded samples by

adapting techniques from [HLS18, ZCHW17]. Compared to previous arbitrary-centered

discrete Gaussian sampling techniques discussed in Chapter 3, our scheme has the fol-

lowing advantages:

• Our sampling algorithm does not require any pre-computations related to a spe-

cific discrete Gaussian distribution or a specific standard deviation, and both the

center and the standard deviation can be arbitrary determined on-the-fly at run-

time.

• In addition, we show in Section 5.1 that our sampling method only requires a

low number of trials close to 2 per sample on average compared to about 8–10

on average in the rejection sampling with regards to a uniform distribution, and

the rejection rate of our algorithm decreases when scaling up 𝜎 . Therefore, our

sampling algorithm is not limited to small 𝜎 and can be adapted to sample from

larger 𝜎 without affecting the efficiency.

59

60 CHAPTER 5. ARBITRARY-CENTERED DISCRETE GAUSSIAN SAMPLER

• Since sampling from a continuous normal distribution is a well-studied topic

[TLLV07] and the sampling algorithms are implemented in many existing

software libraries (including the C++11 STL) and hardware devices, one can easily

implement our scheme by employing existing tools.

• We provide a center-independent run-time implementation of our algorithm with-

out timing leakage of the center and it can be adapted to achieve constant-time

implementation of convolution-style lattice trapdoor sampler [MP12, Pei10] and

IBE [BFRS18].

5.1 COSAC Algorithm

Devroye defined a variant of the discrete Gaussian distribution as Pr[𝑋 = 𝑧] = 𝐶 ⋅
exp(−(|𝑧| + 1/2)2/(2𝜎2)) [Dev86], where 𝑧 ∈ ℤ and 𝐶 is the normalisation constant, i.e.

Pr[𝑋 = 𝑧] ∝ 𝜌−1/2,𝜎 (𝑧) for 𝑧 ≥ 0 and Pr[𝑋 = 𝑧] ∝ 𝜌1/2,𝜎 (𝑧) for 𝑧 < 0, where 𝜌𝑐,𝜎 (𝑧) is the
1-dimensional (continuous) Gaussian function with center 𝑐 and standard deviation 𝜎 as

defined in Section 2.1. A rejection sampling algorithm (see Algorithm 5.1) was provided

by [Dev86] with rejection probability less than (2/𝜎)⋅√2/𝜋 for such a distribution, which

is fast for large 𝜎 .
Algorithm 5.1 Rejection sampler adapted from [Dev86], pg. 117, ch. 3.
Input: Standard deviation 𝜎 ∈ ℝ+.
Output: A sample 𝑧 distributed as Pr[𝑋 = 𝑧] = 𝐶 ⋅ exp(−(|𝑧| + 1/2)2/(2𝜎2)).
1: function Sampler(𝜎)
2: Sample 𝑥 ↩ 𝒩 (0, 𝜎2).
3: Sample 𝑟 ↩ 𝒰([0, 1)).
4: Let 𝑌 = (|⌊𝑥⌉| + 1/2)2 − 𝑥2.
5: if 𝑟 < exp(−𝑌/(2𝜎2)) then
6: Let 𝑧 = ⌊𝑥⌉.
7: else
8: goto 2.
9: end if

10: return 𝑧.
11: end function

Here, we generalise Algorithm 5.1 to sample from 𝒟𝑐,𝜎 (𝑧). By removing the absolute

value and replacing the fixed center −1/2 with a generic center 𝑐 in Algorithm 5.1, we

observe that if (𝑐 ≥ 1/2, 𝑥 ≥ 0) or (𝑐 ≤ −1/2, 𝑥 < 0), then 𝑌 ′ = (⌊𝑥⌉+𝑐)2−𝑥2 ≥ 0.1 There-

fore, we can replace 𝑌 with 𝑌 ′ and perform a similar rejection sampling to Algorithm 5.1

when sampling from𝒟𝑐,𝜎 (𝑧) for some 𝑐 and 𝑧 = ⌊𝑥⌉. To extend Algorithm 5.1 to support

all 𝑐 ∈ ℝ and 𝑧 ∈ ℤ, we first compute 𝑐𝐼 = ⌊𝑐⌉ and 𝑐𝐹 = 𝑐𝐼 − 𝑐, where 𝑐𝐹 ∈ [−1/2, 1/2].
1The conditions of 𝑐, 𝑥 here when 𝑌 ′ ≥ 0 are not exhaustive.

5.1 COSAC ALGORITHM 61

Then, we can sample from 𝒟−𝑐𝐹 ,𝜎 instead, since 𝒟𝑐,𝜎 = 𝒟−𝑐𝐹 ,𝜎 + 𝑐𝐼 . To sample from

𝒟−𝑐𝐹 ,𝜎 for all 𝑐𝐹 ∈ [−1/2, 1/2], we instinctively2 shift the center of the underlying con-

tinuous normal distribution by ±1, i.e. sampling 𝑦 ↩ 𝒩 (𝑐𝑁 , 𝜎2) for 𝑐𝑁 = 1 or −1, and
perform a rejection sampling over 𝑧 = ⌊𝑦⌉ with acceptance rate exp(−𝑌″/(2𝜎2)) where

𝑌″ = (⌊𝑦⌉+𝑐𝐹)2−(𝑦∓1)2 (we also need to ensure 𝑌″ ≥ 0 before performing this rejection

sampling). The sampling algorithm for 𝒟−𝑐𝐹 ,𝜎 is presented in Algorithm 5.2. Note that

the output of Algorithm 5.2 is restricted to the domain ℤ⧵ {0}. Therefore, the algorithm

needs to output 0 with probability 𝒟−𝑐𝐹 ,𝜎 (0). We present the full algorithm in Algo-

rithm 5.3. Since both Algorithm 5.2 and Algorithm 5.3 do not require pre-computations

related to 𝜎 , our scheme can support arbitrary standard deviations determined on-the-fly

at run-time in addition to arbitrary centers.

Theorem 13. The output 𝑧 sampled by Algorithm 5.2 is distributed as𝒟−𝑐𝐹 ,𝜎 with domain
ℤ ⧵ {0}. The output of Algorithm 5.3 is distributed as 𝒟𝑐,𝜎 with domain ℤ.

Proof. When 𝑏 = 0, 𝑦 is distributed as 𝒩 (−1, 𝜎2). For step 11 in Algorithm 5.2, we have

𝑌1 = (⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 + 1)2 ≥ 0 for any 𝑐𝐹 ∈ [−1/2, 1/2] when 𝑦 ≤ −1/2. Therefore,

the rejection condition exp(−𝑌1/(2𝜎2)) ∈ (0, 1]. Let 𝑧0 = ⌊𝑦⌉. We have the output

distribution:

Pr[𝑧 = 𝑧0] ∝ ∫
𝑧0+1/2

𝑧0−1/2
exp (−(𝑦 + 1)2

2𝜎2) ⋅ exp (−(𝑧0 + 𝑐𝐹)2 − (𝑦 + 1)2
2𝜎2) d𝑦

= ∫
𝑧0+1/2

𝑧0−1/2
exp (−(𝑧0 + 𝑐𝐹)2

2𝜎2) d𝑦 = 𝜌−𝑐𝐹 ,𝜎 (𝑧0). (1)

In this case, the distribution of 𝑧 = 𝑧0 is 𝒟−𝑐𝐹 ,𝜎 restricted to the domain ℤ− (due to the

rejection of 𝑦 to (−∞, −1/2]).

Similarly, when 𝑏 = 1, 𝑦 is distributed as 𝒩 (1, 𝜎2). For step 23 in Algorithm 5.2, we

have 𝑌2 = (⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 − 1)2 ≥ 0 for any 𝑐𝐹 ∈ [−1/2, 1/2] when 𝑦 ≥ 1/2. Therefore,
the rejection condition exp(−𝑌2/(2𝜎2)) ∈ (0, 1]. Let 𝑧0 = ⌊𝑦⌉. We have the output

distribution:

Pr[𝑧 = 𝑧0] ∝ ∫
𝑧0+1/2

𝑧0−1/2
exp (−(𝑦 − 1)2

2𝜎2) ⋅ exp (−(𝑧0 + 𝑐𝐹)2 − (𝑦 − 1)2
2𝜎2) d𝑦

= ∫
𝑧0+1/2

𝑧0−1/2
exp (−(𝑧0 + 𝑐𝐹)2

2𝜎2) d𝑦 = 𝜌−𝑐𝐹 ,𝜎 (𝑧0). (2)

2Note that the shifting by ±1 is not optimal. For the optimal shifting, please refer to the subsequent
work [SZJ+21].

62 CHAPTER 5. ARBITRARY-CENTERED DISCRETE GAUSSIAN SAMPLER

Algorithm 5.2 𝒟−𝑐𝐹 ,𝜎 sampler with domain ℤ ⧵ {0}.
Input: Center 𝑐𝐹 ∈ [−1/2, 1/2]. Standard deviation 𝜎 ∈ ℝ+.
Output: A sample 𝑧 distributed as 𝒟−𝑐𝐹 ,𝜎 restricted to the domain ℤ ⧵ {0}.
1: function RoundingSampler(𝑐𝐹 , 𝜎)
2: Sample 𝑥 ↩ 𝒩 (0, 1).
3: Sample 𝑏 ↩ 𝒰({0, 1}).
4: if 𝑏 = 0 then
5: Let 𝑦 = 𝜎 ⋅ 𝑥 − 1.
6: if 𝑦 > −1/2 then
7: goto 2.
8: end if
9: Sample 𝑟 ↩ 𝒰([0, 1)).

10: Let 𝑌1 = (⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 + 1)2.
11: if 𝑟 < exp(−𝑌1/(2𝜎2)) then
12: Let 𝑧 = ⌊𝑦⌉.
13: else
14: goto 2.
15: end if
16: else
17: Let 𝑦 = 𝜎 ⋅ 𝑥 + 1.
18: if 𝑦 < 1/2 then
19: goto 2.
20: end if
21: Sample 𝑟 ↩ 𝒰([0, 1)).
22: Let 𝑌2 = (⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 − 1)2.
23: if 𝑟 < exp(−𝑌2/(2𝜎2)) then
24: Let 𝑧 = ⌊𝑦⌉.
25: else
26: goto 2.
27: end if
28: end if
29: return 𝑧.
30: end function

Algorithm 5.3 𝒟𝑐,𝜎 sampler with domain ℤ.

Input: Center 𝑐 ∈ ℝ. Standard deviation 𝜎 ∈ ℝ+. Normalisation factor 𝑆 = 𝜌𝑐,𝜎 (ℤ) ≈
𝜎√2𝜋 .

Output: A sample distributed as 𝒟𝑐,𝜎 (ℤ).
1: function RoundingSamplerFull(𝑐, 𝜎)
2: Let 𝑐𝐼 = ⌊𝑐⌉ and 𝑐𝐹 = 𝑐𝐼 − 𝑐.
3: Sample 𝑟 ↩ 𝒰([0, 1)).
4: if 𝑟 < exp(−𝑐2𝐹/(2𝜎2))/𝑆 then
5: Let 𝑧′ = 0.
6: else
7: Let 𝑧′ = RoundingSampler(𝑐𝐹 , 𝜎).
8: end if
9: return 𝑧′ + 𝑐𝐼 .

10: end function

5.1 COSAC ALGORITHM 63

In this case, the distribution of 𝑧 = 𝑧0 is 𝒟−𝑐𝐹 ,𝜎 restricted to the domain ℤ+ (due to the

rejection of 𝑦 to [1/2,∞)). Therefore, the output 𝑧 in Algorithm 5.2 is distributed as

𝒟−𝑐𝐹 ,𝜎 restricted to the domain ℤ ⧵ {0}.
In Algorithm 5.3, the probability Pr[𝑧′ = 0] = exp(−𝑐2𝐹/(2𝜎2))/𝑆 = 𝒟−𝑐𝐹 ,𝜎 (0). Therefore,
variable 𝑧′ is distributed as 𝒟−𝑐𝐹 ,𝜎 with domain ℤ. Since 𝑐 = 𝑐𝐼 − 𝑐𝐹 , we have the output

𝑧′ + 𝑐𝐼 distributed as 𝒟𝑐,𝜎 with domain ℤ.

To prove the rejection rate of Algorithm 5.2, we need the following lemma:

Lemma 3. For any 𝜖 ∈ (0, 1) and 𝑐 ∈ [−1/2, 1/2], if 𝜎 ≥ 𝜂𝜖(ℤ)/√2𝜋 , then both 𝜌𝑐,𝜎 (ℤ−)
and 𝜌𝑐,𝜎 (ℤ+) have the lower bound: 1

2 ⋅
1−𝜖
1+𝜖 ⋅ 𝜌𝜎 (ℤ) − 1.

Proof. When 𝑐 ∈ [−1/2, 1/2], for 𝜌𝑐,𝜎 (ℤ−), we have:

𝜌𝑐,𝜎 (ℤ) = 𝜌𝑐,𝜎 (ℤ+) + 𝜌𝑐,𝜎 (ℤ− ∪ {0}) ≤ 2𝜌𝑐,𝜎 (ℤ− ∪ {0}) = 2𝜌𝑐,𝜎 (ℤ−) + 2𝜌𝑐,𝜎 (0).

Therefore,

𝜌𝑐,𝜎 (ℤ−) ≥ 1
2 ⋅ 𝜌𝑐,𝜎 (ℤ) − 𝜌𝑐,𝜎 (0)

≥ 1
2 ⋅ 1 − 𝜖

1 + 𝜖 ⋅ 𝜌𝜎 (ℤ) − 𝜌𝑐,𝜎 (0) (By Theorem 1).

We have 𝜌𝜎 (0) ≥ 𝜌𝑐,𝜎 (0) for 𝑐 ∈ [−1/2, 1/2]. Therefore,

𝜌𝑐,𝜎 (ℤ−) ≥ 1
2 ⋅ 1 − 𝜖

1 + 𝜖 ⋅ 𝜌𝜎 (ℤ) − 1.

Similarly, when 𝑐 ∈ [−1/2, 1/2], for 𝜌𝑐,𝜎 (ℤ+), we have:

𝜌𝑐,𝜎 (ℤ) = 𝜌𝑐,𝜎 (ℤ−) + 𝜌𝑐,𝜎 (ℤ+ ∪ {0}) ≤ 2𝜌𝑐,𝜎 (ℤ+ ∪ {0}) = 2𝜌𝑐,𝜎 (ℤ+) + 2𝜌𝑐,𝜎 (0).

Therefore, since 𝑐 ∈ [−1/2, 1/2], we have:

𝜌𝑐,𝜎 (ℤ+) ≥ 1
2 ⋅ 𝜌𝑐,𝜎 (ℤ) − 𝜌𝑐,𝜎 (0)

≥ 1
2 ⋅ 1 − 𝜖

1 + 𝜖 ⋅ 𝜌𝜎 (ℤ) − 𝜌𝑐,𝜎 (0) (By Theorem 1)

≥ 1
2 ⋅ 1 − 𝜖

1 + 𝜖 ⋅ 𝜌𝜎 (ℤ) − 1 (𝜌𝜎 (0) ≥ 𝜌𝑐,𝜎 (0) when 𝑐 ∈ [−1/2, 1/2]).

Theorem 14. For 𝜎 ≥ 𝜂𝜖(ℤ)/√2𝜋 , the expected number of trials 𝑀 in Algorithm 5.2 has
the upper bound: 𝑀 ≤ 2 ⋅ 1+𝜖1−𝜖 ⋅

𝜎√2𝜋
𝜎√2𝜋−1−2⋅ 1+𝜖1−𝜖

. If 𝜎 is much greater than (1 + 2 ⋅ 1+𝜖1−𝜖) /√2𝜋 ,
then 𝑀 ≤ 2 ⋅ (1 + 𝒪(𝜖) + 𝒪(1/𝜎)).

64 CHAPTER 5. ARBITRARY-CENTERED DISCRETE GAUSSIAN SAMPLER

Proof. By Theorem 13, when 𝑏 = 0, we have the output probability density func-

tion 𝑓 (𝑦) = 𝜌−𝑐𝐹 ,𝜎 (⌊𝑦⌉)/𝜌−𝑐𝐹 ,𝜎 (ℤ−) and the input probability density function

𝑔(𝑦) = 𝜌−1,𝜎 (𝑦)/(𝜎√2𝜋). The expected number of trials can be written as:

𝑀 = max
𝑓 (𝑦)
𝑔(𝑦) = max (𝜌−𝑐𝐹 ,𝜎 (⌊𝑦⌉)𝜌−1,𝜎 (𝑦)

⋅ 𝜎√2𝜋
𝜌−𝑐𝐹 ,𝜎 (ℤ−)) .

We have:

𝜌−𝑐𝐹 ,𝜎 (⌊𝑦⌉)
𝜌−1,𝜎 (𝑦)

=
exp (− (⌊𝑦⌉+𝑐𝐹)2

2𝜎2)
exp (− (𝑦+1)2

2𝜎2)
= exp (−(⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 + 1)2

2𝜎2) ≤ 1.

Therefore,

𝑀 ≤ 𝜎√2𝜋
𝜌−𝑐𝐹 ,𝜎 (ℤ−) ≤ 2 ⋅ 1 + 𝜖

1 − 𝜖 ⋅
𝜎√2𝜋

𝜌𝜎 (ℤ) − 2 ⋅ 1+𝜖1−𝜖
≤ 2 ⋅ 1 + 𝜖

1 − 𝜖 ⋅
𝜎√2𝜋

𝜎√2𝜋 − 1 − 2 ⋅ 1+𝜖1−𝜖
,

where the second inequality follows from Lemma 3, and the third inequality follows from

𝜌𝜎 (ℤ) = 𝜌𝜎 (ℤ− ∪{0})+𝜌𝜎 (ℤ+ ∪{0})−1 and the sum-integral comparison: 𝜌𝜎 (ℤ− ∪{0}) ≥
∫0−∞ 𝜌𝜎 (𝑥) d𝑥 = 𝜎√𝜋/2 and 𝜌𝜎 (ℤ+ ∪ {0}) ≥ ∫∞0 𝜌𝜎 (𝑥) d𝑥 = 𝜎√𝜋/2.

Similarly, when 𝑏 = 1, we have the output probability density function 𝑓 (𝑦) =
𝜌−𝑐𝐹 ,𝜎 (⌊𝑦⌉)/𝜌−𝑐𝐹 ,𝜎 (ℤ+) and the input probability density function 𝑔(𝑦) = 𝜌1,𝜎 (𝑦)/(𝜎√2𝜋).
The expected number of trials can be written as:

𝑀 = max
𝑓 (𝑦)
𝑔(𝑦) = max (𝜌−𝑐𝐹 ,𝜎 (⌊𝑦⌉)𝜌1,𝜎 (𝑦)

⋅ 𝜎√2𝜋
𝜌−𝑐𝐹 ,𝜎 (ℤ+)) .

We have:

𝜌−𝑐𝐹 ,𝜎 (⌊𝑦⌉)
𝜌1,𝜎 (𝑦)

=
exp (− (⌊𝑦⌉+𝑐𝐹)2

2𝜎2)
exp (− (𝑦−1)2

2𝜎2)
= exp (−(⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 − 1)2

2𝜎2) ≤ 1.

Therefore,

𝑀 ≤ 𝜎√2𝜋
𝜌−𝑐𝐹 ,𝜎 (ℤ+) ≤ 2 ⋅ 1 + 𝜖

1 − 𝜖 ⋅
𝜎√2𝜋

𝜌𝜎 (ℤ) − 2 ⋅ 1+𝜖1−𝜖
≤ 2 ⋅ 1 + 𝜖

1 − 𝜖 ⋅
𝜎√2𝜋

𝜎√2𝜋 − 1 − 2 ⋅ 1+𝜖1−𝜖
,

where the second inequality follows from Lemma 3, and the third inequality follows

from 𝜌𝜎 (ℤ) ≥ 𝜎√2𝜋 − 1.

5.2 ACCURACY ANALYSIS 65

When 𝜎 is much greater than (1 + 2 ⋅ 1+𝜖1−𝜖) /√2𝜋 , 𝜎√2𝜋 is much greater than 1 + 2 ⋅ 1+𝜖1−𝜖 .
Thus,

𝑀 ≤ 2 ⋅ 1 + 𝜖
1 − 𝜖 ⋅

𝜎√2𝜋
𝜎√2𝜋 − 1 − 2 ⋅ 1+𝜖1−𝜖

≤ 2 ⋅ (1 + 𝒪(𝜖) + 𝒪(1/𝜎)).

5.2 Accuracy Analysis

We now analyse the relative error of Algorithm 5.2 here. Let the absolute error of the

continuous Gaussian sample 𝑥 be 𝑒𝑥 : 𝑥′ = 𝑥 + 𝑒, where 𝑥′ is the actual sample, 𝑥 is the

ideal sample, and the error |𝑒| ≤ 𝑒𝑥 . We denote the actual distribution by 𝒫actual and the

ideal distribution by𝒫ideal. Since the variable 𝑦 might be rounded to an incorrect integer

due to the error from 𝑥 when 𝑦 is close to the boundaries 𝑧0 ± 1/2 [HLS18], we have:

Δ(𝒫actual||𝒫ideal) = max |𝒫actual

𝒫ideal
− 1|

= max𝑧0

|||||

∫𝑧0+1/2+𝜎𝑒𝑥𝑧0−1/2−𝜎𝑒𝑥 exp (− (𝑧0+𝑐𝐹)2
2𝜎2) d𝑦

𝜌−𝑐𝐹 ,𝜎 (𝑧0)
− 1

|||||
(by (1), (2), and 𝑦 = 𝜎𝑥 ± 1)

= max𝑧0
| (1 + 2𝜎𝑒𝑥) ⋅ 𝜌−𝑐𝐹 ,𝜎 (𝑧0)

𝜌−𝑐𝐹 ,𝜎 (𝑧0)
− 1| = 2𝜎𝑒𝑥 .

By Theorem 6, for 𝜆-bit security, we need:

𝑅2𝜆(𝒫actual||𝒫ideal) ≤ 1 + 1
4𝑀 ⟹ 1 + 2𝜆 ⋅ (Δ(𝒫actual||𝒫ideal))2

2 ≤ 1 + 1
4𝑀

⟹ 𝑒𝑥 ≤ 1
4𝜎√𝜆𝑀

.

Note that both 𝒫actual and 𝒫ideal have the same normalisation factor, since 𝒫actual is ob-

tained by the imperfect continuous Gaussian distribution with the rounding error con-

tributed to the interval of the integral [HLS18].

5.3 Precision Analysis

To avoid sampling a uniformly random real 𝑟 with high absolute precision at rejection

steps 11 and 23 in Algorithm 5.2, and step 4 in Algorithm 5.3, we adapt the comparison

approach similar to the FACCT in Chapter 4. Assume an IEEE-754 floating-point value

𝑓 ∈ (0, 1) with (𝛿𝑓 + 1)-bit precision is represented by 𝑓 = (1 +𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ⋅ 2−𝛿𝑓) ⋅ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ,
where integer 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 has 𝛿𝑓 bits and 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ∈ ℤ−. To check 𝑟 < 𝑓 , one can sample

66 CHAPTER 5. ARBITRARY-CENTERED DISCRETE GAUSSIAN SAMPLER

𝑟𝑚 ↩ 𝒰({0, 1}𝛿𝑓+1), 𝑟𝑒 ↩ 𝒰({0, 1}ℓ), and check 𝑟𝑚 < 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 + 2𝛿𝑓 and 𝑟𝑒 < 2ℓ+𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡+1
instead for some ℓ such that ℓ + 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 1 ≥ 0.

Here, we analyse the precision requirement of 𝑟𝑒 . We have the following theorem for the

worst-case acceptance rate in Algorithm 5.2:

Theorem 15. Assume 𝑥 ∈ [−𝜏 , 𝜏] and 𝑦 ∈ [−𝜏𝜎 − 1, 𝜏𝜎 + 1]. In worst case, step 11 in
Algorithm 5.2 has the acceptance rate:

𝑝1 ≥ exp (−(−2𝜏𝜎 + 𝑐𝐹 − 3/2)(𝑐𝐹 − 3/2)
2𝜎2) ,

and step 23 in Algorithm 5.2 has the acceptance rate:

𝑝2 ≥ exp (−(2𝜏𝜎 + 𝑐𝐹 + 3/2)(𝑐𝐹 + 3/2)
2𝜎2) .

Proof. For 𝑏 = 0 and 𝑦 ≤ −1/2, we have the acceptance rate 𝑝1 = exp(−𝑌1/(2𝜎2)) at step
11 in Algorithm 5.2 where:

𝑌1 = (⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 + 1)2
= (𝑦 + 𝛿 + 𝑐𝐹)2 − (𝑦 + 1)2 (⌊𝑦⌉ = 𝑦 + 𝛿 where 𝛿 ∈ [−1/2, 1/2])
= (2𝑦 + 𝛿 + 𝑐𝐹 + 1)(𝛿 + 𝑐𝐹 − 1)
≤ (−2𝜏𝜎 + 𝑐𝐹 − 3/2)(𝑐𝐹 − 3/2) (when 𝛿 = −1/2 and 𝑦 = −𝜏𝜎 − 1).

Similarly, for 𝑏 = 1 and 𝑦 ≥ 1/2, we have the acceptance rate 𝑝2 = exp(−𝑌2/(2𝜎2)) at
step 23 in Algorithm 5.2 where:

𝑌2 = (⌊𝑦⌉ + 𝑐𝐹)2 − (𝑦 − 1)2
= (𝑦 + 𝛿 + 𝑐𝐹)2 − (𝑦 − 1)2 (⌊𝑦⌉ = 𝑦 + 𝛿 where 𝛿 ∈ [−1/2, 1/2])
= (2𝑦 + 𝛿 + 𝑐𝐹 − 1)(𝛿 + 𝑐𝐹 + 1)
≤ (2𝜏𝜎 + 𝑐𝐹 + 3/2)(𝑐𝐹 + 3/2) (when 𝛿 = 1/2 and 𝑦 = 𝜏𝜎 + 1).

Let Δ ≤ 1/2 be the maximum relative error of the right hand side computations at rejec-

tion steps 11 and 23 in Algorithm 5.2, and step 4 in Algorithm 5.3. For exp(−𝑌1/(2𝜎2))

5.4 EVALUATION 67

at step 11 in Algorithm 5.2, we have:

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡1 ≥ ⌊log2((1 − Δ) ⋅ exp(−𝑌1/(2𝜎2)))⌋
≥ ⌊−1 − (−2𝜏𝜎 + 𝑐𝐹 − 3/2)(𝑐𝐹 − 3/2)

2𝜎2 ⋅ log2 𝑒⌋ (by Theorem 15 and Δ ≤ 1/2)

≥ ⌊−1 − 2𝜏𝜎 + 2
𝜎2 ⋅ log2 𝑒⌋ (when 𝑐𝐹 = −1/2).

Similarly, for exp(−𝑌2/(2𝜎2)) at step 23 in Algorithm 5.2, we have:

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡2 ≥ ⌊log2((1 − Δ) ⋅ exp(−𝑌2/(2𝜎2)))⌋
≥ ⌊−1 − (2𝜏𝜎 + 𝑐𝐹 + 3/2)(𝑐𝐹 + 3/2)

2𝜎2 ⋅ log2 𝑒⌋ (by Theorem 15 and Δ ≤ 1/2)

≥ ⌊−1 − 2𝜏𝜎 + 2
𝜎2 ⋅ log2 𝑒⌋ (when 𝑐𝐹 = 1/2).

For exp(−𝑐2𝐹/(2𝜎2))/𝑆 at step 4 in Algorithm 5.3, we have:

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡3 ≥ ⌊log2((1 − Δ) ⋅ exp(−𝑐2𝐹/(2𝜎2))/𝑆)⌋
≥ ⌊−1 − 1

8𝜎2 ⋅ log2 𝑒 − log2(𝜎√2𝜋)⌋ (when 𝑐𝐹 = ±1/2 and Δ ≤ 1/2).

Therefore, we have:

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ≥ min {⌊−1 − 2𝜏𝜎 + 2
𝜎2 ⋅ log2 𝑒⌋ , ⌊−1 − 1

8𝜎2 ⋅ log2 𝑒 − log2(𝜎√2𝜋)⌋} .

Since the probability Pr[−𝜏 ≤ 𝑥 ≤ 𝜏] = erf(𝜏/√2) for 𝑥 ↩ 𝒩 (0, 1), to ensure 1−Pr[−𝜏 ≤
𝑥 ≤ 𝜏] ≤ 2−𝜆, we need 𝜏 ≥ √2 ⋅ erf−1(1 − 2−𝜆). Therefore, for 𝜆 = 128 and 𝜎 ∈ [2, 220],
we have 𝜏 ≥ 13.11, 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ≥ −23, and thus ℓ ≥ 22, i.e. 𝑟𝑒 needs to have at least 22 bits.

5.4 Evaluation

Side-channel Resistance Our implementation is not fully constant-time because the

rejection rate may still reveal 𝜎 due to Theorem 14. However, since the rejection rate

is independent of the center, our implementation can achieve fully constant-time with

respect to the secret if 𝜎 is public. The 𝜎 in convolution-style lattice trapdoor samplers

[MP12, Pei10] is typically a public constant, but 𝜎 in GPV-style sampler [GPV08] de-

pends on the secret. Note that the IBE implementation from [BFRS18] adapted a variant

of [MP12], but it appears that the implementation source code3 of [BFRS18] used a dif-

ferent distribution and the side-channel resistance perspective is unclear. Our sampling

3https://github.com/lbibe/code.

https://github.com/lbibe/code

68 CHAPTER 5. ARBITRARY-CENTERED DISCRETE GAUSSIAN SAMPLER

algorithm can be applied in the IBE implementation of [BFRS18] to give a fully constant-

time IBE implementation.

We perform benchmarks of Algorithm 5.3 with fixed 𝜎 and random arbitrary centers. We

employ the Box-Muller continuous Gaussian sampler [HLS18, ZCHW17] implemented

by using the VCL library [Fog17], which provides 𝑒𝑥 ≤ 2−48 [HLS18]. To compare with

[MR18], we select 𝜎 = {2, 4, 8, 16, 32}, and to compare with [MW17], we choose 𝜎 = 215.
In addition, we also compare with the FACCT in Chapter 4 and the variant [DWZ19] of

the binary sampling algorithm [DDLL13] for additional 𝜎 = {217, 220}. From the error

analysis in Section 5.2, for given 𝑒𝑥 and 𝜆: 𝑀 ≤ 1
16𝜆𝑒2𝑥𝜎2 . For 𝜎 ∈ [2, 220] and 𝜆 = 128,

we have 𝑀 ≤ 245. We adapt techniques similar to the FACCT in Chapter 4 to avoid

high precision arithmetic (see Section 5.3 for details) and the scheme is implemented4

by using the double precision i.e. 𝛿𝑓 = 52. We also compute the normalisation factor 𝑆
in double precision. We use the AES256 counter mode with hardware AES instructions

(AES-NI) [Gue09] to generate the randomness in our implementations. We provide both

the non-constant time reference implementation and the center-independent run-time

implementation. We take care of all the branches for the center-independent run-time

implementation by adapting constant-time selection techniques [Aum19]. For the non-

constant time reference implementation (the “Reference” column in Table 5.1), we use

the exp(𝑥) from the C library, which provides about 50-bit precision [PFH+17], while for

the center-independent run-time implementation (the “Center-independent” column in

Table 5.1), we adapt the FACCT techniques from Chapter 4 with about 45-bit precision.
From the precision analysis from [Pre17] and Chapter 4, the above precisions (including

the precision of 𝑆) are sufficient for 𝜆 = 128 and 𝑀 ≤ 245.

The benchmark is carried on as follows: we use g++ 9.1.1 to compile our implementations

with the compiling options -O3 -march=native enabled. The benchmark is running on

an Intel i7-7700K CPU at 4.2GHz, with the Hyperthreading and the Turbo Boost disabled.

We generate 1024 samples (with a random arbitrary center per sample) for 1000 times and

measure the consumed CPU cycles, with the exception that we fix 𝑐 = 0 and compare our

center-independent run-time implementation with the FACCT in Chapter 4, since the

FACCT is essentially a constant-time zero-centered discrete Gaussian sampler. Then, we

convert the CPU cycles to the average number of samples per second for the comparison

purpose with previous works.

The benchmark results of our scheme are shown in Table 5.1 (in the format of mean ±
standard deviation). We also summarise the performance of previous works in Table 5.2,

and show the comparison with the FACCT in Table 5.4 when 𝑐 = 0. Since previous works

[DWZ19, MR18, MW17] measured the number of generated samples per second running

4Our implementation is available at https://gitlab.com/raykzhao/gaussian_ac.

https://gitlab.com/raykzhao/gaussian_ac

5.4 EVALUATION 69

on CPUs with different frequencies, we scale all the numbers to be based on 4.2GHz.5

In addition, since some previous works [MR18, MW17] require pre-computations to im-

plement the sampling schemes, we summarise the pre-computation memory storage

consumption in Table 5.3.6 Because the TwinCDT method [MR18] provided different

tradeoffs between the run-time speed and the pre-computation storage consumption,

we show all 3 different sampling speeds and the corresponding pre-computation stor-

age consumption for each 𝜎 from [MR18]. Note that although our sampling scheme does

not require pre-computations, however, the exp(𝑥) implementation typically consumes

a small amount of memory to store the coefficients of the polynomial approximation.

For example, the polynomial approximation of the exp(𝑥) in our center-independent

run-time implementation (adapted from the FACCT in Chapter 4) has degree 10 with

double precision coefficients, and therefore it consumes (10 + 1) ⋅ 8 = 88 bytes.

Table 5.1: Number of Samples per Second for Our Scheme with Fixed 𝜎 at 4.2GHz (with
𝜆 = 128).

𝜎 Reference (×106) Center-independent (×106)
2 10.33 ± 0.18 8.96 ± 0.16
4 11.57 ± 0.18 10.87 ± 0.15
8 11.95 ± 0.17 11.61 ± 0.13

16 12.14 ± 0.16 12.00 ± 0.12
32 12.19 ± 0.15 12.21 ± 0.11
215 11.70 ± 0.13 11.57 ± 0.09
217 11.20 ± 0.14 11.63 ± 0.10
220 11.17 ± 0.13 11.28 ± 0.09

Table 5.2: Summary of the Speed of PreviousWorks for Fixed 𝜎 at 4.2GHz (with 𝜆 = 128).
𝜎 Number of Samples (×106/sec)

2 [MR18] 51.01/62.45/76.43
4 [MR18] 45.50/56.44/69.09
8 [MR18] 37.70/53.31/63.51

16 [MR18] 31.29/37.63/52.29
32 [MR18] 34.38/39.76/42.60

215 [MW17] ≈ 12.35 (online), 1.78 (online+offline)
4–220 [DWZ19] ≈ 16.3

From Table 5.1, our scheme has good performance for both small and large 𝜎 (11.53×106
samples per second for the non-constant time reference implementation and 11.27 × 106
samples per second for the center-independent run-time implementation on average).

5The online benchmark result from [MW17] is based on the authors’ reference implementation, which
is not claimed to be optimal. In addition, the online+offline benchmark result of [MW17] is obtained and
scaled from the variant implemented by [DWZ19].

6The base sampler and the Bernoulli sampler of [DWZ19] may require pre-computations depending
on the implementation techniques.

70 CHAPTER 5. ARBITRARY-CENTERED DISCRETE GAUSSIAN SAMPLER

Table 5.3: Summary of the Storage of Previous Works for Fixed 𝜎 at 4.2GHz (with 𝜆 =
128).

𝜎 Pre-computation Storage (KB)
2 [MR18] 1.4/4.6/46
4 [MR18] 1.9/6.3/63
8 [MR18] 3/10/100

16 [MR18] 5.2/17/172
32 [MR18] 9.5/32/318

215 [MW17] 25.4
4–220 [DWZ19] −

Table 5.4: Number of Samples per Second Compared with the FACCT for Fixed 𝜎 and
𝑐 = 0 at 4.2GHz (with 𝜆 = 128).

𝜎 COSAC (×106/sec) FACCT (×106/sec)
2 9.44 19.87
4 11.10 19.04
8 12.08 19.04

16 12.63 18.62
32 12.93 18.80
215 12.67 18.36
217 12.67 18.90
220 13.04 18.70

In particular, our scheme has better performance for large 𝜎 since the number of trials

becomes lower by Theorem 14. Note that the amount of randomness required by the

comparison steps in Section 5.3 will significantly increase for very small or very large

𝜎 . Therefore, our implementation consumes different amount of randomness in com-

parison steps for each 𝜎 based on Section 5.3, and the performance for some larger 𝜎 is

slightly slower than smaller 𝜎 in Table 5.1 due to the increased amount of randomness

required. The overhead introduced by the center-independent run-time implementation

is at most 13.33% in our benchmarks. Note that the overhead of the center-independent

run-time implementation is smaller for large 𝜎 due to the lower probability of outputting

𝑧′ = 0 in Algorithm 5.3.

For 𝜎 ∈ [2, 32], although the TwinCDT method [MR18] is 2.5x–7.3x faster than

our non-constant time reference implementation, however, this method requires a

pre-computation with at least 1.4 KB memory consumption to store the CDT, while our

scheme only requires at most several hundred bytes if considering all the polynomial

approximation coefficients (including those functions used by the Box-Muller contin-

uous Gaussian sampler). When scaling up 𝜎 , the TwinCDT method [MR18] also costs

much larger amount of memory (the pre-computation storage size increases by a factor

of 6.7–6.9 when 𝜎 changes from 2 to 32), and the performance becomes significantly

worse (the number of samples per second decreases by 32.6–44.3% when 𝜎 changes from

5.4 EVALUATION 71

2 to 32). On the contrary, the pre-computation storage of our scheme is independent

of 𝜎 and only relies on the precision requirements. Our scheme is also scalable and

maintains good performance even for large 𝜎 = 215. In addition, for applications

sampling from various 𝜎 such as the DLP IBE scheme [DLP14], one sampler subroutine

implemented by using our scheme is able to serve all 𝜎 since the implementation does

not require any pre-computations depending on 𝜎 , while the TwinCDT method [MR18]

needs to pre-compute a different CDT for each 𝜎 .

Compared with [MW17] for 𝜎 = 215, if we measure both the online and offline phase

run-time speed in total, our center-independent run-time implementation7 achieves bet-

ter performance in terms of both timing (6.5x faster) and pre-computation storage (the

reference implementation from [MW17] requires about 42 KB to implement the Knuth-

Yao offline batch sampler). The online-phase only run-time speed in [MW17] is slightly

(1.07x) faster than our scheme. On the other hand, our scheme requires no offline pre-

computations related to a specific discrete Gaussian distribution. In addition, our scheme

can also be accelerated if we generate all the continuous Gaussian samples during the

offline phase and only perform the rejection during the online phase. In this case, our

center-independent run-time implementation generates 13.73 × 106 samples per second

during the online phase, which is 1.11x faster than [MW17].

For the comparison with variants of the binary sampling algorithm, in Table 5.2, our

non-constant time reference implementation is about 28.2% slower than [DWZ19] for

𝜎 ∈ [4, 220] with arbitrary centers, and from Table 5.4, our center-independent run-time

implementation is 30.3%–52.5% slower than the FACCT when 𝑐 = 0 and 𝜎 ∈ [2, 220].
However, the FACCT scheme in Chapter 4 does not support an arbitrary center, while

the side-channel resistance perspective of [DWZ19] is unclear. We expect that our im-

plementation can achieve at most about 73.5% of the run-time speed of [DWZ19] and

the FACCT on average for large 𝜎 , since both binary sampling variants require less than

1.47 trials per sample on average, while the average number of trials per sample is close

to 2 in our scheme for large 𝜎 .

In addition, the performance of our scheme heavily relies on the underlying continuous

Gaussian sampling algorithm. Currently the Box-Muller continuous Gaussian sampler

[HLS18, ZCHW17] employed by our scheme is implemented by using the general pur-

pose arithmetic routines (notably sqrt, ln, sin, and cos) from the VCL library [Fog17].

However, if lower precision is sufficient for the application, to achieve better perfor-

mance in terms of speed and memory consumption, one may replace these general pur-

pose arithmetic routines with hand-optimised code tailored for the target precision. To

7Here, we compare the performance with our center-independent run-time implementation because
the implementation from [MW17] is constant-time.

72 CHAPTER 5. ARBITRARY-CENTERED DISCRETE GAUSSIAN SAMPLER

realise this, the polynomial approximation techniques discussed in Chapter 4 might be

handy.

5.5 Research Impact

Very recently, a variant of the COSAC sampler [SZJ+21] further reduced the average

number of trials from 2 to nearly 1 per sample. Instead of shifting the centers of samples

from the continuous Gaussian distribution by 1, this variant shifts the centers by 𝑐𝐹
from the input. The average number of trials is also center-independent in this sampler.

In practice, the sampler implementation from [SZJ+21] achieves a 1.46x–1.63x speedup

compared to our COSAC implementation for 𝜎 ∈ [2, 220] during the benchmarks.

In addition, very recently, Aranha et al. employed our COSAC sampler in the implemen-

tation of their lattice-based electronic voting scheme [ABG+21].

Chapter 6

Lattice-based HIBE (Latte)

This chapter was partially stored in the preprint:

• Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire

O’Neill. Quantum-safe HIBE: does it cost a Latte?. (2021). IACR Cryptology

ePrint Archive: Report 2021/222.

This chapter provides the first performance benchmarking of a quantum-safe HIBE

scheme, Latte, written in C.1 We also identify bottlenecks, propose optimisations for

Latte and consider its suitability for such applications. In more detail, the contributions

of this chapter are:

• We adapt the FFT sampling procedures from Falcon [PFH+17], which is faster than

the Klein-GPV sampler [Kle00, GPV08] used in the original Latte technical report

[ETS19]. In addition, the proposed Latte specification [ETS19] did not discuss the

integer discrete Gaussian sampling techniques suitable for the needed standard

deviations. We integrate efficient sampling techniques including the FACCT in

Chapter 4 and the variant [SZJ+21] of the COSAC techniques in Chapter 5 in our

optimised Latte implementation.

• For the (Mod)NTRU basis in Latte, we provide an optimised ffLDL algorithm

[DP16, PFH+17], which is used by the FFT sampling procedure [PFH+17]. We

observe that for the (Mod)NTRU basis in Latte, the computation of D in the ffLDL

algorithm [DP16, PFH+17] when performing the LDL∗ decomposition in the FFT

domain can be done by solely using the real number arithmetic without complex

number arithmetic. By adapting this observation, under 256-bit floating-point

arithmetic precision, our optimised ffLDL implementation achieves a 71.1%–73.4%

1The latest implementation source code is available at https://gitlab.com/raykzhao/latte.

73

https://gitlab.com/raykzhao/latte

74 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

speedup on average compared to a naive generic ffLDL implementation for the

(Mod)NTRU basis with the Latte parameter sets.

• We provide the provable theoretical error analysis for our optimised ffLDL algo-

rithm in Latte. This is the first provable concrete error analysis of the ffLDL al-

gorithm, with only a couple of mild and explicitly stated heuristics, since Falcon

[PFH+17] only provided the heuristic error bounds based on experimental results

with very little technical discussion. based on the Latte parameter sets and show

that for (Mod)NTRU basis in the Latte scheme, both the relative error of the stan-

dard deviation 𝜎 (i.e. 𝜎 used by the integer discrete Gaussian sampling subroutine

in the FFT sampling procedure) at leaves of the ffSampling tree and the absolute
error of L (i.e. values at non-leaf nodes in the tree) in the ffLDL output are linearly

proportional to the floating-point arithmetic precision.

• We adapt the NTRUSolve function from Falcon [PFH+17] in order to efficiently

solve the NTRU equation in our optimised Latte KeyGen algorithm. The NTRU-

Solve is both faster and more compact [PP19] than the resultant method [HHP+03,
DLP14] used in the original Latte technical report [ETS19]. In addition, we adapt

the technique from ModFalcon [CPS+20] and the length reduction technique by

using Cramer’s rule [ETS19] in order to efficiently solve the NTRU equation for

higher lattice dimensions in our optimised Latte Delegate algorithm.

• We give the first complete performance results of a lattice-based HIBE scheme,

including the KeyGen, Delegate, and Extract algorithms, for which the implemen-

tation results were unclear in the original Latte technical report [ETS19]. This

technical report estimated that Delegate would have run-time in the order of min-

utes on a desktop machine. Using the optimised techniques in this chapter, we

show that an efficient implementation can perform the Delegate function in only

a few seconds on a desktop machine.

6.1 Latte Software Design Features and Considerations

6.1.1 Techniques from Falcon and ModFalcon

Our optimised software design of Latte utilises techniques from the digital signature

scheme Falcon [PFH+17]. The two schemes are closely related; they are instantiated

over the same type of lattice and share key generation and sampling procedures. Fal-

con makes use of the “tower of rings” structure to find a solution to the NTRU equation

fG − gF = 𝑞 mod 𝑥𝑁 + 1, for a given f and g in the NTRUSolve sub-algorithm of

6.1 LATTE SOFTWARE DESIGN FEATURES AND CONSIDERATIONS 75

KeyGen. The tower of rings approach utilises the fact that computations over poly-

nomials f, g ∈ ℂ[𝑥]/⟨𝑥𝑁/2 + 1⟩ are equivalent to computations over f(𝑥2), g(𝑥2) ∈
ℂ[𝑥]/⟨𝑥𝑁 +1⟩. When𝑁 = 2𝑘 , for some 𝑘 ∈ ℤ, this can be applied repeatedly so that com-

putations are performed over polynomials of degree 1. This brings advantages in terms

of both memory usage and speed [PP19]. Therefore, we replace the resultant method

[HHP+03, DLP14] of solving the NTRU equation in the original Latte KeyGen (Line 7–14

in Algorithm 3.8) with the NTRUSolve function [PFH+17, PP19] (see Algorithm 6.1) in

our optimised Latte KeyGen algorithm (Line 7–10 in Algorithm 6.2). 𝑁(f), 𝑁 (g) at Line
10–11 in Algorithm 6.1 are the field norms of f, g ∈ ℤ[𝑥]/⟨𝑥𝑛 + 1⟩ as defined in [PP19].

Algorithm 6.1 NTRUSolve𝑁 ,𝑞 [PFH+17, PP19].
Input: f, g ∈ ℤ[𝑥]/⟨𝑥𝑁 + 1⟩.
Output: F,G ∈ ℤ[𝑥]/⟨𝑥𝑁 + 1⟩ such that fG − gF = 𝑞 mod 𝑥𝑁 + 1.
1: function NTRUSolve𝑁 ,𝑞(f, g)
2: if 𝑁 = 1 then
3: Compute 𝑢, 𝑣 ∈ ℤ such that 𝑢f − 𝑣g = gcd(f, g).
4: if gcd(f, g) ≠ 1 then
5: abort.
6: end if
7: (F,G) ← (𝑣𝑞, 𝑢𝑞).
8: return (F,G).
9: else

10: f′ ← 𝑁(f).
11: g′ ← 𝑁(g).
12: (F′,G′) ← NTRUSolve𝑁/2,𝑞(f′, g′).
13: F ← F′(𝑥2) ⋅ f′(𝑥2)/f(𝑥).
14: G ← G′(𝑥2) ⋅ g′(𝑥2)/g(𝑥).
15: k ← ⌊F⋅f∗+G⋅g∗f⋅f∗+g⋅g∗ ⌉ ∈ ℜ.
16: F ← F − k ⋅ f and G ← G − k ⋅ g.
17: return (F,G).
18: end if
19: end function

In addition, to accelerate the lattice discrete Gaussian sampling, the Klein-GPV sampler

[Kle00, GPV08] used in the original Latte scheme (Line 4–5 in Algorithm 3.9; Line 4–5

in Algorithm 3.10) is replaced by the FFT sampling procedures (see Section 2.2.5) from

Falcon [PFH+17] in our optimised Latte Delegate and Extract algorithms (Line 3, 6–8 in

Algorithm 6.3; Line 4–7 in Algorithm 6.4).

Furthermore, in Latte Delegate, to complete the delegated basis Sℓ for lattice dimension

higher than 2𝑁 , we adapt the technique from ModFalcon [CPS+20]. Let Sℓ = (vT M
Gℓ F′ℓ

) be

the delegated basis, where Gℓ = sℓ+1,0, F′ℓ = (sℓ+1,1, … , sℓ+1,ℓ+1), v = (s0,0, s1,0, … , sℓ,0),
and M = (s𝑖,𝑗) for 0 ≤ 𝑖 ≤ ℓ and 1 ≤ 𝑗 ≤ ℓ + 1. By Schur complement, if M is invertible,

76 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

Algorithm 6.2 Optimised Latte KeyGen algorithm.
Input: 𝑁 , 𝑞, 𝜎0.
Output: S0 ∈ ℜ2×2,h, b ∈ ℜ𝑞 .
1: function KeyGen
2: f, g ↩ 𝒟𝑁𝜎0 .
3: Norm ← max (‖g, −f‖, ‖(𝑞⋅f∗

f⋅f∗+g⋅g∗ ,
𝑞⋅g∗

f⋅f∗+g⋅g∗)‖).
4: if Norm > 𝜎0 ⋅ √2𝑁 then
5: goto Step 2.
6: end if
7: F,G ← NTRUSolve𝑁 ,𝑞(f, g).
8: if NTRUSolve is aborted then
9: goto Step 2.

10: end if
11: h ← g ⋅ f−1 mod 𝑞 in NTT domain.
12: b ↩ 𝒰(ℜ𝑞) in NTT domain.
13: return S0 = (g −f

G −F) ,h, b.
14: end function

we have:

det(Sℓ) = det(M) ⋅ det(Gℓ − F′ℓ ⋅M−1 ⋅ vT) = det(M) ⋅ (Gℓ − F′ℓ ⋅M−1 ⋅ vT)
= det(M) ⋅ Gℓ − F′ℓ ⋅ adj(M) ⋅ vT.

Since one can choose any (Sℓ)𝑙+1 = (Gℓ, F′ℓ) such that det(Sℓ) = 𝑞 when filling the bottom

row (Sℓ)𝑙+1 of Sℓ, let F′ℓ have the form (Fℓ, 0, … , 0). We have det(Sℓ) = det(M) ⋅Gℓ−Fℓ ⋅u0
where u0 is the first coordinate of u = adj(M) ⋅ vT. In order to fill the bottom row

(sℓ+1,0, … , sℓ+1,ℓ+1) of Sℓ, ifM is invertible, we can use the same NTRUSolve algorithm as

in Latte KeyGen to find Fℓ,Gℓ such that det(M) ⋅Gℓ−Fℓ ⋅u0 = 𝑞, and we simply resample

when det(M) = 0. The resultant approach in the original Latte Delegate (Line 11–19

in Algorithm 3.9) is replaced by the technique above in our optimised Latte Delegate

algorithm (Line 13–22 in Algorithm 6.3).

However, since the NTRUSolve algorithm [PP19] performs the length reduction based

on the size of the coefficients in the input, the coefficient size of the output Fℓ,Gℓ will be

approximately the coefficient size of the input det(M),u0. Since M is an (ℓ + 1) × (ℓ + 1)
sub-matrix of Sℓ with size of coordinate in the order of 𝑞 among each element, the size

of coefficient in det(M),u0, and Fℓ,Gℓ will be in the order of 𝑞ℓ+1. In order to adapt the

estimation of ‖(Sℓ)ℓ+1‖ from [Pre15] when analysing the errors in Section 6.3.4, (Sℓ)ℓ+1
must be fully length-reduced against (Sℓ)𝑖 for 0 ≤ 𝑖 ≤ ℓ. Therefore, we need further

length reduction by using Cramer’s rule from the original Latte Delegate algorithm (Line

20–25 in Algorithm 3.9).

6.1 LATTE SOFTWARE DESIGN FEATURES AND CONSIDERATIONS 77

Our optimised Latte Key Generation, Delegate, and Extract algorithms are shown in

Algorithm 6.2, Algorithm 6.3, and Algorithm 6.4, respectively.

Algorithm 6.3 Optimised Latte Delegate algorithm (from level ℓ − 1 to ℓ).
Input: 𝑁 , 𝑞, 𝜎ℓ, Sℓ−1, 𝐻 ∶ {0, 1}∗ → ℜ𝑞 , IDℓ.
Output: Sℓ ∈ ℜ(ℓ+2)×(ℓ+2).
1: function Delegate
2: Aℓ ← 𝐻(ID1| … |IDℓ) in NTT domain.
3: 𝑇ℓ−1 ← Tree(Sℓ−1, 𝜎ℓ).
4: for 𝑖 = 0 to ℓ do
5: s𝑖,ℓ+1 ↩ 𝒟𝑁𝜎ℓ .
6: t ← (−s𝑖,ℓ+1 ⋅ Aℓ, 0, … , 0) ⋅ S−1ℓ−1.
7: z ← FFT−1(ffSampling(t, 𝑇ℓ−1)).
8: (s𝑖,0, s𝑖,1, … , s𝑖,ℓ) ← (t − z) ⋅ Sℓ−1.
9: if ‖(s𝑖,0, s𝑖,1, … , s𝑖,ℓ, s𝑖,ℓ+1)‖ > √(ℓ + 2)𝑁 ⋅ 𝜎ℓ then

10: Resample.
11: end if
12: end for
13: Set M = (s𝑖,𝑗), for 0 ≤ 𝑖 ≤ ℓ and 1 ≤ 𝑗 ≤ ℓ + 1.
14: if M is not invertible then
15: goto Step 4.
16: end if
17: u ← adj(M) ⋅ (s0,0, s1,0, … , sℓ,0)T.
18: (Fℓ,Gℓ) ← NTRUSolve𝑁 ,𝑞(det(M),u0) where u0 is the first coordinate of u.
19: if NTRUSolve is aborted then
20: goto Step 4.
21: end if
22: (sℓ+1,0, … , sℓ+1,ℓ+1) ← (Gℓ, Fℓ, 0, … , 0).
23: Set C = (c𝑖,𝑗), where c𝑖,𝑗 = s𝑗,0 ⋅ s∗𝑖,0 + ⋯ + s𝑗,ℓ+1 ⋅ s∗𝑖,ℓ+1, 0 ≤ 𝑖, 𝑗 ≤ ℓ.
24: Set d = (d𝑖), where d𝑖 = sℓ+1,0 ⋅ s∗𝑖,0 + ⋯ + sℓ+1,ℓ+1 ⋅ s∗𝑖,ℓ+1, 0 ≤ 𝑖 ≤ ℓ.
25: Let k = (k𝑖)0≤𝑖≤ℓ be the solution to C ⋅ k = d. By Cramer’s rule, k𝑖 = det(C𝑖(d))

det(C) ,

where C𝑖(d) is the matrix C with its 𝑖𝑡ℎ column replaced by d.
26: for 𝑖 = 0 to ℓ do
27: (sℓ+1,0, … , sℓ+1,ℓ+1) = (sℓ+1,0, … , sℓ+1,ℓ+1) − ⌊k𝑖⌉ ⋅ (s𝑖,0, … , s𝑖,ℓ+1).
28: end for
29: return Sℓ = (s𝑖,𝑗), for 0 ≤ 𝑖, 𝑗 ≤ ℓ + 1.
30: end function

6.1.2 Discrete Gaussian Sampling over the Integers

In Latte KeyGen, f, g may need to be resampled multiple times due to the norm check

and possible failure to find solutions of the NTRU equation. In order to sample 2𝑁 co-

ordinates efficiently from 𝒟𝜎0 , we employ the FACCT sampler in Chapter 4, which is

fast and compact even for larger 𝜎0 used in Latte-3 and 4 parameter sets. However,

78 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

Algorithm 6.4 Optimised Latte Extract algorithm (from level ℓ − 1 to user at level ℓ).
Input: 𝑁 , 𝑞, 𝜎ℓ, Sℓ−1, 𝐻 ∶ {0, 1}∗ → ℤ𝑁𝑞 , IDℓ.
Output: t0, … , tℓ+1 ∈ ℜ𝑞 .
1: function Extract
2: Aℓ ← 𝐻(ID1| … |IDℓ) in NTT domain.
3: tℓ+1 ↩ 𝒟𝑁𝜎ℓ .
4: 𝑇ℓ−1 ← Tree(Sℓ−1, 𝜎ℓ).
5: t ← (b − tℓ+1 ⋅ Aℓ, 0, … , 0) ⋅ S−1ℓ−1.
6: z ← FFT−1(ffSampling(t, 𝑇ℓ−1)).
7: (t0, t1, … , tℓ) ← (t − z) ⋅ Sℓ−1.
8: return t0, … , tℓ+1 ∈ ℜ𝑞 in NTT domain.
9: end function

since the FACCT sampler can only sample with 𝜎 = 𝑘√1/(2 ln 2) where 𝑘 is a pos-

itive integer, we slightly increase 𝜎0 ≈ 1.17√𝑞/(2𝑁) in Latte parameters by setting

𝑘 = ⌈1.17√𝑞/(2𝑁)/√1/(2 ln 2)⌉. This will also slightly increase 𝜎ℓ for all ℓ > 0 since

𝜎ℓ is computed from 𝜎0 [ETS19]. Our revised Latte parameter sets are shown in Ta-

ble 6.1. Compared to the original Latte parameters in Table 3.1, 𝜎ℓ is only at most 0.28%

bigger for all ℓ ≥ 0 in our revised Latte parameter sets. In addition, our security analysis

[ZMS+21] shows that the revised Latte parameters increase the decryption failure rate

by at most 1 bit compared to the original Latte parameters in [ETS19].

Table 6.1: Revised Latte Parameters.

Set Security 𝑁 𝑞 𝜎ℓ
ℓ = 0 ℓ = 1 ℓ = 2

Latte-1 128 1024 224 − 214 + 1 106.2 5513.3 -
Latte-2 256 2048 225 − 212 + 1 106.2 7900.2 -
Latte-3 80 1024 236 − 220 + 1 6777.6 351968.4 22559988.0
Latte-4 160 2048 238 − 226 + 1 9583.7 713170.8 65489528.1

Let Sℓ = L ⋅ S̃ℓ be the Gram-Schmidt Orthogonal (GSO) decomposition of the delegated

basis Sℓ ∈ ℜ(ℓ+2)×(ℓ+2), where L is unit lower triangular and rows s̃𝑖 of S̃ℓ are pairwise or-

thogonal. We find that the Euclidean norm of the last GSO vector s̃ℓ+1 is very small (less

than 1 in our experiment for Latte-3 and 4) compared to s̃0, … , s̃ℓ. This is because rows

s0, … , sℓ of Sℓ are sampled with a large 𝜎ℓ but det(Sℓ ⋅ S∗ℓ) = ∏ℓ+1
𝑖=0 ⟨s̃𝑖, s̃𝑖⟩ is constant and

always equal to 𝑞2 [CPS+20]. The experiment results in Fig.3 of [CKKS19] also verified

that ‖s̃ℓ+1‖ decreases significantly by increasing ‖s0‖ for Sℓ ∈ ℜ3×3. In this case, the ratio

between the maximal and minimal standard deviation 𝜎 ′ used by the integer discrete

Gaussian sampling subroutine in ffSampling (Line 4, 5 in Algorithm 2.3) is very large

and the isochronous sampler [HPRR20] used by the constant-time Falcon implementa-

tion [PRR19] will be inefficient for our scheme, since the rejection rate of [HPRR20] is

proportional to (max(𝜎 ′)/min(𝜎 ′)). In order to sample with 𝜎 ′ in a broad range, we

6.1 LATTE SOFTWARE DESIGN FEATURES AND CONSIDERATIONS 79

employ a variant [SZJ+21] of the COSAC sampler in Chapter 5 instead, which is scalable

to large 𝜎 ′ without sacrificing the efficiency.

To accelerate the Latte Encrypt and Decrypt speed, we change the distribution of

ephemeral private keys e, e1, … , eℓ, eℎ, e𝑏 from 𝒟𝜎𝑒 (Line 4 in Algorithm 3.11; Line 4 in

Algorithm 3.12) to a binomial distribution with center 0 and small standard deviation

𝜎𝑒 = 2.0 (Line 4 in Algorithm 6.5; Line 4 in Algorithm 6.6). Sampling from a binomial

distribution is much faster than sampling from 𝒟𝜎𝑒 and the impact on security is

negligible in the encryption [ADPS15]. Our optimised Latte Encrypt and Decrypt

algorithms are shown in Algorithm 6.5 and Algorithm 6.6, respectively.

Algorithm 6.5 Optimised Latte Encrypt algorithm (at level ℓ).
Input: 𝑁 , 𝑞, 𝜎𝑒 ,h, b,KDF, IDℓ, 𝜇 ∈ {0, 1}256.
Output: 𝑍 ∈ {0, 1}256,C1, … ,Cℓ,Cℎ,C𝑏 ∈ ℜ𝑞 .
1: function Encrypt
2: 𝑠𝑒𝑒𝑑 ↩ {0, 1}256.
3: 𝑍 ← 𝜇 ⊕ KDF(𝑠𝑒𝑒𝑑).
4: Sample e, e1, … , eℓ, eℎ, e𝑏 from a binomial distributionwith center 0 and standard

deviation 𝜎𝑒 using the seed KDF(𝑠𝑒𝑒𝑑|𝑍).
5: for 𝑖 = 1 to ℓ do
6: C𝑖 ← A𝑖 ⋅ e + e𝑖 where A𝑖 = 𝐻(ID1| … |ID𝑖) in NTT domain.
7: end for
8: Cℎ ← h ⋅ e + eℎ.
9: m ← Encode(𝑠𝑒𝑒𝑑).

10: C𝑏 ← b ⋅ e + e𝑏 +m.
11: return 𝑍 ∈ {0, 1}256,C1, … ,Cℓ,Cℎ,C𝑏 ∈ ℜ𝑞 in NTT domain.
12: end function

Algorithm 6.6 Optimised Latte Decrypt algorithm (at level ℓ).
Input: 𝑁 , 𝑞, 𝜎𝑒 ,h, b,KDF, IDℓ, 𝑍 , (C1, … ,Cℓ,Cℎ,C𝑏), (t0, … , tℓ+1).
Output: 𝜇′.
1: function Decrypt
2: V ← C𝑏 − Cℎ ⋅ t1 − C1 ⋅ t2 − ⋯ − Cℓ ⋅ tℓ+1.
3: 𝑠𝑒𝑒𝑑′ ← Decode(V).
4: Sample e′, e′1, … , e′ℓ , e′ℎ, e′𝑏 from a binomial distribution with center 0 and stan-

dard deviation 𝜎𝑒 using the seed KDF(𝑠𝑒𝑒𝑑′|𝑍).
5: for 𝑖 = 1 to ℓ do
6: C′

𝑖 ← A𝑖 ⋅ e′ + e′𝑖 where A𝑖 = 𝐻(ID1| … |ID𝑖) in NTT domain.
7: end for
8: C′

ℎ ← h ⋅ e′ + e′ℎ.
9: m′ ← Encode(𝑠𝑒𝑒𝑑′).

10: C′
𝑏 ← b ⋅ e′ + e′𝑏 +m′.

11: Check (C′
1, … ,C′

ℓ ,C′
ℎ,C′

𝑏) agrees with (C1, … ,Cℓ,Cℎ,C𝑏), else return ⊥.
12: return 𝜇′ = 𝑍 ⊕ KDF(𝑠𝑒𝑒𝑑′).
13: end function

80 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

Due to the changes of parameters and distributions, our optimised Latte implementa-

tion will produce different Known Answer Test (KAT) responses compared to the orig-

inal Latte scheme [ETS19]. Therefore, our optimised Latte scheme is incompatible (i.e.

not a drop-in replacement) with the original Latte scheme and keys/ciphertexts of both

schemes should not be mixed.

6.2 Optimised ffLDL Algorithm

The original generic FFT sampling procedure from Falcon [PFH+17] is discussed in Sec-

tion 2.2.5, which includes the ffLDL algorithm for the Fast Fourier LDL∗ decomposition

(see Algorithm 2.1) and the ffSampling algorithm to sample from lattice discrete Gaus-

sian distributions (see Algorithm 2.3). However, for the (Mod)NTRU basis Sℓ in Latte,

we observe the following theorem, which can be adapted to accelerate the computation

of the ffLDL algorithm:

Theorem 16. In the ffLDL tree of the Gram matrix G = SℓS∗ℓ ∈ (ℂ[𝑥]/⟨𝑥𝑁 +1⟩)𝑑×𝑑 in the
FFT domain and Sℓ is a (Mod)NTRU basis, we have:

1. ∀𝑖 ∈ {0, … , 𝑑 − 1} ∶ D𝑖,𝑖 ∈ ℝ𝑛 for some 𝑛 = 2𝑘 ≤ 𝑁 in every node of the tree.

2. ∀𝑗 ∈ {0, … , 𝑁 − 1} ∶ ∏𝑑−1
𝑖=0 (D𝑖,𝑖)𝑗 = 𝑞2 in the root of the tree.

3. ∀𝑗 ∈ {0, … , 𝑛 − 1} ∶ (D0,0)𝑗(D1,1)𝑗 = D′
2𝑗D

′
2𝑗+1 for some 𝑛 = 2𝑘 ≤ 𝑁/2 in every

non-root node of the tree, where D′ ∈ {D𝑖,𝑖}𝑑−1𝑖=0 is from its parent.

4. ∀𝑖 ∈ {0, … , 𝑑 − 1}, 𝑗 ∈ {0, … , 𝑛 − 1} ∶ (D𝑖,𝑖)𝑗 ∈ ℝ+ for some 𝑛 = 2𝑘 ≤ 𝑁 in every node
of the tree.

Proof. 1. From Algorithm 2.1, we have (D0,0)𝑗 = (G0,0)𝑗 and (D1,1)𝑗 = (G1,1)𝑗 −
|(L1,0)𝑗 |2(G0,0)𝑗 , 0 ≤ 𝑗 ≤ 𝑛 −1, for some input matrix G in the FFT domain in every

node of the tree. In addition, we have (D𝑖,𝑖)𝑗 = (G𝑖,𝑖)𝑗 − ∑𝑘<𝑖(|(L𝑖,𝑘)𝑗 |2(D𝑘,𝑘)𝑗) at
the root when 𝑑 > 2. Therefore, we have D𝑖,𝑖 ∈ ℝ𝑛 assuming that G𝑖,𝑖 ∈ ℝ𝑛 for all

𝑖 ∈ {0, … , 𝑑 −1}. To show that latter assumption is true, we observe that at the root

we have the input G = SℓS∗ℓ in the FFT domain, G𝑖,𝑖 ∈ ℝ𝑁 for 0 ≤ 𝑖 ≤ 𝑑 − 1. Thus,
D𝑖,𝑖 ∈ ℝ𝑁 for 0 ≤ 𝑖 ≤ 𝑑 − 1 at the root. Assuming D𝑖,𝑖 ∈ ℝ𝑛 for 0 ≤ 𝑖 ≤ 𝑑 − 1 at an

non-leaf node, for its 𝑖-th child, we have the ffLDL input G′
0,0 = G′

1,1 = d0, where

(d0)𝑗 = 1
2[(D𝑖,𝑖)2𝑗 + (D𝑖,𝑖)2𝑗+1] ∈ ℝ for 𝑗 ∈ {0, … , 𝑛/2 − 1}. Thus, D′

0,0,D′
1,1 ∈ ℝ𝑛/2 in

this child and we can deduce the conclusion by induction.

2. Since by Definition 8, L is a lower triangular matrix with 1 on its diagonal andD is

a diagonal matrix, we have det(D) = ∏𝑑−1
𝑖=0 D𝑖,𝑖 = det(G). Because G = SℓS∗ℓ at the

6.2 OPTIMISED FFLDL ALGORITHM 81

root and the determinant of a (Mod)NTRU basis Sℓ is 𝑞, we have ∏𝑑−1
𝑖=0 (D𝑖,𝑖)𝑗 = 𝑞2

in the FFT domain at the root for 0 ≤ 𝑗 ≤ 𝑁 − 1.

3. For the 𝑖-th child of an non-leaf node, we have the ffLDL input G′ = (d0 d1
d∗1 d0

) for

d0,d1 ← splitfft(D𝑖,𝑖), 0 ≤ 𝑖 ≤ 𝑑 − 1. By the definition of the LDL∗ decomposition,

for this child, we have D′
0,0D

′
1,1 = det(G′) = d20 − d1d∗1. Thus, in the FFT domain,

we have:

(D′
0,0)𝑗(D′

1,1)𝑗 = (d0)2𝑗 − |(d1)𝑗 |2

= (12[(D𝑖,𝑖)2𝑗 + (D𝑖,𝑖)2𝑗+1])
2

− |12[(D𝑖,𝑖)2𝑗 − (D𝑖,𝑖)2𝑗+1]𝜔−bitrev(𝑛/2+𝑗)|
2
,

for 0 ≤ 𝑗 ≤ 𝑛/2−1. Since (D𝑖,𝑖)2𝑗 , (D𝑖,𝑖)2𝑗+1 ∈ ℝ and |𝜔| = 1, we get (D′
0,0)𝑗(D′

1,1)𝑗 =
(D𝑖,𝑖)2𝑗(D𝑖,𝑖)2𝑗+1.

4. The ffLDL algorithm computes the LDL∗ decomposition in the FFT domain. Let

Sℓ = L ⋅ S̃ℓ be the GSO decomposition of Sℓ ∈ ℜ𝑑×𝑑 where rows of S̃ℓ are pairwise

orthogonal. For the inputG = SℓS∗ℓ at the root, we haveG = LDL∗ whereD = S̃ℓS̃∗ℓ
[DP16]. Thus, in the FFT domain, D𝑖,𝑖 ∈ (ℝ+)𝑁 at the root. Assuming D𝑖,𝑖 ∈ (ℝ+)𝑛
for some 𝑖 ∈ {0, … , 𝑑 − 1} at an non-leaf node, for the 𝑖-th child of this node, we

have (D′
0,0)𝑗(D′

1,1)𝑗 = (D𝑖,𝑖)2𝑗(D𝑖,𝑖)2𝑗+1 ∈ ℝ+ for 0 ≤ 𝑗 ≤ 𝑛/2 − 1. Because (D′
0,0)𝑗 =

(d0)𝑗 = 1
2[(D𝑖,𝑖)2𝑗 + (D𝑖,𝑖)2𝑗+1] ∈ ℝ+ due to the ffLDL input G′ = (d0 d1

d∗1 d0
) where

d0,d1 ← splitfft(D𝑖,𝑖), we getD′
0,0,D′

1,1 ∈ (ℝ+)𝑛/2. Thus, we deduce the conclusion

by induction.

We can utilise Theorem 16when computingD in the ffLDL algorithm for the (Mod)NTRU

basis Sℓ in Latte with 𝑑 ∈ {2, 3}: D𝑑−1,𝑑−1 at the root can be computed by (D𝑑−1,𝑑−1)𝑗 =
𝑞2

∏𝑑−2
𝑖=0 (D𝑖,𝑖)𝑗

for 0 ≤ 𝑗 ≤ 𝑁 − 1. For all the non-root nodes, we can directly compute

D0,0,D1,1 by using (D0,0)𝑗 = (G0,0)𝑗 and (D1,1)𝑗 = D′
2𝑗D

′
2𝑗+1

(D0,0)𝑗 , 0 ≤ 𝑗 ≤ 𝑛 − 1, for some

D′ ∈ ℝ2𝑛, G0,0 = d′0 ∈ ℝ𝑛 from its parent. Since we have ∀𝑖 ∈ {0, … , 𝑑 − 1} ∶ D𝑖,𝑖 ∈
ℝ𝑛 in every node of the tree, the computation of D above can be done by solely using

the real number arithmetic i.e. without complex number arithmetic. Because every

complex number arithmetic computation contains multiple underlying floating-point

(real number) arithmetic operations, by replacing complex number arithmetic with real

number arithmetic when computing D, we reduce the total amount of floating-point

82 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

arithmetic operations. Therefore, this optimisation technique will accelerate the run-

time speed of the ffLDL algorithm (see Table 6.2 for the performance results).

Our optimised ffLDL algorithm for the (Mod)NTRU basis in Latte is shown in Algo-

rithm 6.7. We also implement this algorithm and perform the benchmarks by using ran-

domly generated (Mod)NTRU basis input Sℓ with the Latte parameter sets in Table 6.1.

We employ the mpfr [FHL+07] library for multiprecision floating-point arithmetic, and

we use the mpc [EGTZ18] library for multiprecision complex number arithmetic, respec-

tively. The precision of floating-point and complex numbers in our implementation is

𝜆 = 256 bits. We obtain the benchmark results in terms of number of CPU cycles from

a desktop machine with an Intel i7-7700K CPU at 4.2GHz, with both hyper-threading

and TurboBoost disabled. We use the gcc 11.2.0 compiler with compiling options -

O3 -march=native enabled. We also compare the run-time speed of our optimised

ffLDL algorithm with a naive implementation2 of the generic ffLDL algorithm in Algo-

rithm 2.1. Both algorithms are implemented by using the same arithmetic libraries i.e.

mpfr [FHL+07] and mpc [EGTZ18] with the same arithmetic precision 𝜆 = 256 bits in

our benchmark.

The benchmark results are given in Table 6.2. From Table 6.2, our optimised ffLDL im-

plementation for (Mod)NTRU basis in Latte achieves a 71.1%–73.4% speedup compared

to the naive generic ffLDL implementation on average for all the Latte parameter sets,

including both cases of 𝑑 = 2 and 𝑑 = 3.

Table 6.2: Comparison of the Average Number of CPU Cycles for ffLDL Algorithms in
Latte.

𝑑 = 2 𝑑 = 3
Set Naive Optimised Naive Optimised
Latte-1 111456703 30225360 - -
Latte-2 248906053 66146509 - -
Latte-3 108951820 30369396 179996339 51995773
Latte-4 240682381 66045384 394954988 112447886

Since both the (Mod)Falcon digital signature schemes [PFH+17, CPS+20] and the Latte

HIBE [ETS19] use similar (Mod)NTRU lattices [DLP14, CPS+20], our optimised ffLDL al-

gorithm should also be applicable to (Mod)Falcon. However, we expect that the speedup

under the Falcon settings [PFH+17] might be less significant than our Latte HIBE set-

tings. This is because the speedup of our optimised ffLDL algorithm mainly comes

from replacing complex number arithmetic with real number arithmetic, and the Fal-

con implementation [PFH+17] has lower complex number arithmetic overhead due to

2The naive implementation of the generic ffLDL algorithm in comparison was used in
our old Latte implementation, which is available at https://gitlab.com/raykzhao/latte/-/tree/
17228bd03d471ff94a6dab0da1ab53ba0e4b514b.

https://gitlab.com/raykzhao/latte/-/tree/17228bd03d471ff94a6dab0da1ab53ba0e4b514b
https://gitlab.com/raykzhao/latte/-/tree/17228bd03d471ff94a6dab0da1ab53ba0e4b514b

6.2 OPTIMISED FFLDL ALGORITHM 83

Algorithm 6.7 Optimised ffLDL algorithm for (Mod)NTRU basis in Latte.

Input: Gram matrix G ∈ (ℂ[𝑥]/⟨𝑥𝑛 + 1⟩)𝑑×𝑑 in the FFT domain. 𝑑 ∈ {2, 3}. D′ ∈ (ℝ+)2𝑛.
Output: Tree 𝑇 .
1: function ffLDL(G,D′)
2: if 𝑛 = 1 then
3: 𝑇 .value ← G0,0.
4: else
5: L ← I𝑑 ,D ← 0𝑑 .
6: for 𝑗 = 0 to 𝑛 − 1 do
7: (D0,0)𝑗 ← (G0,0)𝑗 .
8: (L1,0)𝑗 ← (G1,0)𝑗

(D0,0)𝑗 .
9: if 𝑑 = 2 then

10: if 𝑛 = 𝑁 then
11: (D1,1)𝑗 ← 𝑞2

(D0,0)𝑗 .
12: else
13: (D1,1)𝑗 ←

D′
2𝑗D

′
2𝑗+1

(D0,0)𝑗 .

14: end if
15: else if 𝑑 = 3 then
16: (D1,1)𝑗 ← (G1,1)𝑗 − |(G1,0)𝑗 |2

(D0,0)𝑗 .

17: (D2,2)𝑗 ← 𝑞2
(D0,0)𝑗(D1,1)𝑗 .

18: (L2,0)𝑗 ← (G2,0)𝑗
(D0,0)𝑗 .

19: (L2,1)𝑗 ← (G2,1)𝑗−(G2,0)𝑗(L1,0)∗𝑗
(D1,1)𝑗 .

20: end if
21: end for
22: 𝑇 .value ← L.
23: for 𝑖 = 0 to 𝑑 − 1 do
24: d0,d1 ← splitfft(D𝑖,𝑖).
25: G′ = (d0 d1

d∗1 d0
).

26: 𝑇 .child𝑖 ← ffLDL(G′,D𝑖,𝑖).
27: end for
28: end if
29: return 𝑇 .
30: end function

84 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

the lower floating-point arithmetic precision (double precision) compared to our current

Latte HIBE settings (256-bit multiprecision).

6.3 ffLDL Error Analysis

The Rényi divergence argument [PFH+17, HPRR20] for the arithmetic precision require-

ment of the FFT sampling procedure from Falcon [PFH+17] needs the upper bound of

the relative error 𝛿𝜎 among the standard deviation 𝜎 and the upper bound of the absolute
error Δ𝑐 among the center 𝑐 for the integer discrete Gaussian sampling subroutine in

ffSampling, where 𝜎 is related to the leaf values of ffLDL, and 𝑐 relies on the result of L
in ffLDL. However, Falcon [PFH+17] only provided the heuristic error bounds based on

experimental results of their parameter sets with very little technical discussion.

Since the leaf values of the ffLDL tree are computed from D of their parents in Algo-

rithm 6.7, here we provide our provable theoretical error analysis of the optimised ffLDL

algorithm in Algorithm 6.7 for the (Mod)NTRU basis in Latte, including the errors of

both D (see Section 6.3.1) and L (see Section 6.3.2). In addition, we also provide the nu-

merical values of our error bounds computed from the Latte parameter sets in Section

6.3.4.

6.3.1 Error Analysis of D in ffLDL

ByTheorem 16, we haveD ∈ (ℝ𝑛)𝑑×𝑑 in every node of the ffLDL tree and the computation

of D is done by solely using real number arithmetic in Algorithm 6.7. Let the relative
error of the floating-point arithmetic be 𝑢 i.e. 𝑢 = 2−𝑝 for floating-point with precision

𝑝. In this section we derive the simplified upper bounds on the absolute errors in D
values of the ffLDL tree in terms of a small number of quantities. We will bound these

quantities in Section 6.3.4.

ΔD0,0 at the root: The absolute error bound ΔD0,0 at the root is ΔG0,0 for the input G in

the FFT domain, since (D0,0)𝑗 = (G0,0)𝑗 , 0 ≤ 𝑗 ≤ 𝑁 − 1.

ΔD1,1 at the root: Since the computation of D1,1 is different between 𝑑 = 2 and 𝑑 = 3
at the root in Algorithm 6.7, here we analyse ΔD1,1 in these two cases:

When 𝑑 = 2: Assume 𝑞 can be exactly represented within the floating-point precision

without rounding. By Theorem 16, since (D1,1)𝑗 = 𝑞2/(D0,0)𝑗 and (D0,0)𝑗 ∈ ℝ+,
0 ≤ 𝑗 ≤ 𝑁 − 1, we have the following absolute error bound ΔD1,1 . Here, we

6.3 FFLDL ERROR ANALYSIS 85

assume that 𝑞2 may contain errors i.e. 𝑞2 may not be exactly represented within

the floating-point precision. This is the case for 𝑞 in the Latte-3 and 4 parameter

sets in Table 6.1 when using e.g. double precision.

ΔD1,1 ≤
𝑁−1
max𝑗=0 [(1 + 𝑢) (1 + 𝑢)𝑞2

(D0,0)𝑗 − ΔD0,0
− 𝑞2
(D0,0)𝑗

]

= 𝑁−1
max𝑗=0 [(𝑢2 + 2𝑢)𝑞2

(D0,0)𝑗 − ΔD0,0
+

𝑞2ΔD0,0
((D0,0)𝑗 − ΔD0,0)(D0,0)𝑗

]

≤ (𝑢2 + 2𝑢)𝑞2
min𝑁−1

𝑗=0 (D0,0)𝑗 − ΔD0,0
+

𝑞2ΔD0,0

(min𝑁−1
𝑗=0 (D0,0)𝑗 − ΔD0,0) ⋅min𝑁−1

𝑗=0 (D0,0)𝑗
.

When 𝑑 = 3: From Line 16 in Algorithm 6.7, we have (D1,1)𝑗 = (G1,1)𝑗 −
|(G1,0)𝑗 |2/(D0,0)𝑗 , 0 ≤ 𝑗 ≤ 𝑁 − 1. By Theorem 16 and G = SℓS∗ℓ in the FFT

domain, we have (G1,1)𝑗 , (D0,0)𝑗 , (D1,1)𝑗 ∈ ℝ+. Thus, we have the following

absolute error bound ΔD1,1 :

ΔD1,1 ≤
𝑁−1
max𝑗=0 [(1 + 𝑢) ((G1,1)𝑗 + ΔG1,1 − (1 − 𝑢)

(1 − 𝑢)(|(G1,0)𝑗 | − ΔG1,0)2
(D0,0)𝑗 + ΔD0,0

)

−((G1,1)𝑗 −
|(G1,0)𝑗 |2
(D0,0)𝑗

)]

= 𝑁−1
max𝑗=0 [𝑢 ⋅ (G1,1)𝑗 + (1 + 𝑢)ΔG1,1

+
|(G1,0)𝑗 |2 − (1 + 𝑢)(1 − 𝑢)2(|(G1,0)𝑗 | − ΔG1,0)2

(D0,0)𝑗 + ΔD0,0

+
|(G1,0)𝑗 |2ΔD0,0

((D0,0)𝑗 + ΔD0,0)(D0,0)𝑗
] .

Since (D1,1)𝑗 = (G1,1)𝑗 − |(G1,0)𝑗 |2/(D0,0)𝑗 ∈ ℝ+, we have |(G1,0)𝑗 |2/(D0,0)𝑗 ≤
(G1,1)𝑗 and |(G1,0)𝑗 | ≤ √(G1,1)𝑗(D0,0)𝑗 for (G1,1)𝑗 , (D0,0)𝑗 ∈ ℝ+. Therefore,

ΔD1,1 ≤
𝑁−1
max𝑗=0 [𝑢 ⋅ (G1,1)𝑗 + (1 + 𝑢)ΔG1,1 + (1 − (1 + 𝑢)(1 − 𝑢)2)(G1,1)𝑗

+
2(1 + 𝑢)(1 − 𝑢)2ΔG1,0√(G1,1)𝑗

√(D0,0)𝑗
+

ΔD0,0
(D0,0)𝑗 + ΔD0,0

(G1,1)𝑗]

≤ (2𝑢 + 𝑢2 − 𝑢3 +
ΔD0,0

min𝑁−1
𝑗=0 (D0,0)𝑗 + ΔD0,0

) ⋅ 𝑁−1
max𝑗=0 (G1,1)𝑗 + (1 + 𝑢)ΔG1,1

+
2(1 + 𝑢)(1 − 𝑢)2ΔG1,0√max𝑁−1

𝑗=0 (G1,1)𝑗

√min𝑁−1
𝑗=0 (D0,0)𝑗

.

86 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

ΔD2,2 at the root (𝑑 = 3): Assume 𝑞 can be exactly represented within the floating-

point precision without rounding. By Theorem 16, since (D2,2)𝑗 = 𝑞2
(D0,0)𝑗(D1,1)𝑗 and

(D0,0)𝑗 , (D1,1)𝑗 ∈ ℝ+, 0 ≤ 𝑗 ≤ 𝑁 − 1, we have the following absolute error bound ΔD2,2 .

Here, we also assume that 𝑞2 may not be exactly represented within the floating-point

precision and may contain errors.

ΔD2,2 ≤
𝑁−1
max𝑗=0 [(1 + 𝑢) (1 + 𝑢)𝑞2

(1 − 𝑢)((D0,0)𝑗 − ΔD0,0)((D1,1)𝑗 − ΔD1,1)
− 𝑞2
(D0,0)𝑗(D1,1)𝑗

]

= 𝑁−1
max𝑗=0 [(𝑢2 + 3𝑢)𝑞2

(1 − 𝑢)((D0,0)𝑗 − ΔD0,0)((D1,1)𝑗 − ΔD1,1)

+
𝑞2((D0,0)𝑗ΔD1,1 + (D1,1)𝑗ΔD0,0 − ΔD0,0ΔD1,1)

((D0,0)𝑗 − ΔD0,0)((D1,1)𝑗 − ΔD1,1)(D0,0)𝑗(D1,1)𝑗
]

For Latte parameter sets in Table 6.1, we have the empirical observation (D2,2)𝑗 ∈ [0, 1],
0 ≤ 𝑗 ≤ 𝑁 −1, at the root when 𝑑 = 3 in our experiment. Since (D0,0)𝑗(D1,1)𝑗(D2,2)𝑗 = 𝑞2
at the root from Theorem 16, we have (D0,0)𝑗(D1,1)𝑗 ≥ 𝑞2. Then,

((D0,0)𝑗 − ΔD0,0)((D1,1)𝑗 − ΔD1,1)
= (D0,0)𝑗(D1,1)𝑗 − (D0,0)𝑗ΔD1,1 − (D1,1)𝑗ΔD0,0 + ΔD0,0ΔD1,1

≥ 𝑞2 − (D0,0)𝑗ΔD1,1 − (D1,1)𝑗ΔD0,0 + ΔD0,0ΔD1,1 .

Let x be the common terms in the numerator and denominator:

x𝑗 = (D0,0)𝑗ΔD1,1 + (D1,1)𝑗ΔD0,0 − ΔD0,0ΔD1,1 ,

for 0 ≤ 𝑗 ≤ 𝑁 − 1. Assuming 𝑞2 > x𝑗 , we have:

ΔD2,2 ≤
𝑁−1
max𝑗=0

(𝑢2 + 3𝑢)𝑞2 + (1 − 𝑢)x𝑗
(1 − 𝑢)(𝑞2 − x𝑗)

≤
(𝑢2 + 3𝑢)𝑞2 + (1 − 𝑢) ⋅max𝑁−1

𝑗=0 x𝑗

(1 − 𝑢) (𝑞2 −max𝑁−1
𝑗=0 x𝑗)

.

where

x𝑗 ≤ ΔD1,1 ⋅
𝑁−1
max𝑗=0 (D0,0)𝑗 + ΔD0,0 ⋅

𝑁−1
max𝑗=0 (D1,1)𝑗 − ΔD0,0ΔD1,1 .

ΔD0,0 at non-root nodes: For a non-root node, from Line 7, 24 in Algorithm 6.7 and

by Definition 9, we have (D0,0)𝑗 = 1
2(D′

2𝑗 + D′
2𝑗+1), 0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ (ℝ+)2𝑛

6.3 FFLDL ERROR ANALYSIS 87

from its parent. Thus, we have the following absolute error bound ΔD0,0 :

ΔD0,0 ≤
𝑛−1
max𝑗=0 [12(1 + 𝑢)(D′

2𝑗 + D′
2𝑗+1 + 2ΔD′) − 1

2(D
′
2𝑗 + D′

2𝑗+1)]

= 𝑛−1
max𝑗=0 [12𝑢(D

′
2𝑗 + D′

2𝑗+1) + (1 + 𝑢)ΔD′] .

D′
2𝑗 + D′

2𝑗+1 gets the maximal value when both D′
2𝑗 ,D′

2𝑗+1 have the largest value of D′.
Thus,

ΔD0,0 ≤ 𝑢 ⋅ 2𝑛−1max𝑗=0 D′
𝑗 + (1 + 𝑢)ΔD′ .

Note that 𝑇 .value at leaves in Algorithm 6.7 is equal to D0,0. Therefore, the absolute

error of 𝑇 .value at leaves is ΔD0,0 .

ΔD1,1 at non-root, non-leaf nodes: For a non-root, non-leaf node, from Line 13, 24 in

Algorithm 6.7 and by Definition 9, we have (D1,1)𝑗 = D′
2𝑗D

′
2𝑗+1/(D0,0)𝑗 =

D′
2𝑗D

′
2𝑗+1

1/2⋅(D′
2𝑗+D′

2𝑗+1)
,

0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ (ℝ+)2𝑛 from its parent. For D′
2𝑗 ,D′

2𝑗+1 ∈ ℝ+, D′
2𝑗D

′
2𝑗+1

1/2⋅(D′
2𝑗+D′

2𝑗+1)
gets the maximal value when both D′

2𝑗 and D′
2𝑗+1 get their maximal values. Thus, we

have the following absolute error bound ΔD1,1 :

ΔD1,1 ≤
𝑛−1
max𝑗=0 [(1 + 𝑢)

(1 + 𝑢)(D′
2𝑗 + ΔD′)(D′

2𝑗+1 + ΔD′)
1
2(1 − 𝑢)(D′

2𝑗 + D′
2𝑗+1 + 2ΔD′)

−
D′
2𝑗D

′
2𝑗+1

1
2(D′

2𝑗 + D′
2𝑗+1)

]

≤ 𝑛−1
max𝑗=0 [

2(𝑢2 + 3𝑢)D′
2𝑗D

′
2𝑗+1

(1 − 𝑢)(D′
2𝑗 + D′

2𝑗+1)

+
2ΔD′(1 + 𝑢)2((D′

2𝑗 + D′
2𝑗+1)2 + ΔD′(D′

2𝑗 + D′
2𝑗+1))

(1 − 𝑢)(D′
2𝑗 + D′

2𝑗+1 + 2ΔD′)(D′
2𝑗 + D′

2𝑗+1)
] .

Since D′
2𝑗 ,D′

2𝑗+1 ∈ ℝ+, we have:

(D′
2𝑗 + D′

2𝑗+1)2 + ΔD′(D′
2𝑗 + D′

2𝑗+1) ≤ (D′
2𝑗 + D′

2𝑗+1 + 2ΔD′)(D′
2𝑗 + D′

2𝑗+1).

Thus, we get:

ΔD1,1 ≤
(𝑢2 + 3𝑢) ⋅max2𝑛−1𝑗=0 D′

𝑗 + 2(1 + 𝑢)2ΔD′

1 − 𝑢 .

From Algorithm 2.2, the standard deviation 𝜎 of the integer discrete Gaussian in ffSam-

pling is 𝜎ℓ/√leaf.value for some 𝜎ℓ. By combining all the error analysis above, since

88 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

𝑇 .value at leaves is equal to D0,0, we get the following relative error bound 𝛿𝜎 :

𝛿𝜎 ≤ max
all leaves

⎡⎢⎢⎢
⎣

(1 + 𝑢) (1+𝑢)𝜎ℓ
(1−𝑢)√D0,0−ΔD0,0

𝜎ℓ
√D0,0

− 1
⎤⎥⎥⎥
⎦

= (1 + 𝑢)2
1 − 𝑢 √

max
all leaves

D0,0
D0,0 − ΔD0,0

− 1.

6.3.2 Error Analysis of L in ffLDL

Here, we analyse the absolute error of L in our optimised ffLDL algorithm in Algo-

rithm 6.7. Similar to Section 6.3.1, in this section we derive the simplified upper bounds

on the absolute errors in L values of the ffLDL tree in terms of a small number of quan-

tities. We will bound these quantities in Section 6.3.4.

ΔL1,0 at the root: We have (L1,0)𝑗 = (G1,0)𝑗/(D0,0)𝑗 , 0 ≤ 𝑗 ≤ 𝑁 − 1, at the root for

the input G = SℓS∗ℓ in the FFT domain. By Theorem 16, since (D0,0)𝑗 ∈ ℝ+, we have the

upper bound of |(L1,0)𝑗 |:

|(L1,0)𝑗 | ≤
max𝑁−1

𝑘=0 |(G1,0)𝑘 |
min𝑁−1

𝑘=0 (D0,0)𝑘
,

and the absolute error bound:

ΔL1,0 ≤ Δ/ℝ (
𝑁−1
max𝑗=0 |(G1,0)𝑗 |,

𝑁−1
min𝑗=0 (D0,0)𝑗 , ΔG1,0 , ΔD0,0) .

ΔL2,0 at the root (𝑑 = 3): Similar to L1,0, since (L2,0)𝑗 = (G2,0)𝑗/(D0,0)𝑗 , 0 ≤ 𝑗 ≤ 𝑁 − 1,
at the root for the input G in the FFT domain, we have the upper bound of |(L2,0)𝑗 |:

|(L2,0)𝑗 | ≤
max𝑁−1

𝑘=0 |(G2,0)𝑘 |
min𝑁−1

𝑘=0 (D0,0)𝑘
,

and the absolute error bound:

ΔL2,0 ≤ Δ/ℝ (
𝑁−1
max𝑗=0 |(G2,0)𝑗 |,

𝑁−1
min𝑗=0 (D0,0)𝑗 , ΔG2,0 , ΔD0,0) .

ΔL2,1 at the root (𝑑 = 3): From Line 19 in Algorithm 6.7, we have (L2,1)𝑗 =
(G2,1)𝑗−(G2,0)𝑗(L1,0)∗𝑗

(D1,1)𝑗 , 0 ≤ 𝑗 ≤ 𝑁 − 1, at the root for the input G in the FFT domain. Let

x𝑗 = (G2,1)𝑗 − (G2,0)𝑗(L1,0)∗𝑗 be the numerator of (L2,1)𝑗 . We have the upper bound of

6.3 FFLDL ERROR ANALYSIS 89

|x𝑗 |:
|x𝑗 | ≤

𝑁−1
max
𝑘=0

|(G2,1)𝑘 | + (𝑁−1
max
𝑘=0

|(G2,0)𝑘 |) (
𝑁−1
max
𝑘=0

|(L1,0)𝑘 |) ,

and the absolute error bound:

Δx ≤ Δ± [𝑁−1
max𝑗=0 |(G2,1)𝑗 |, (

𝑁−1
max𝑗=0 |(G2,0)𝑗 |) (

𝑁−1
max𝑗=0 |(L1,0)𝑗 |) , ΔG2,1 ,

Δ× (
𝑁−1
max𝑗=0 |(G2,0)𝑗 |,

𝑁−1
max𝑗=0 |(L1,0)𝑗 |, ΔG2,0 , ΔL1,0)] .

By Theorem 16, since (D1,1)𝑗 ∈ ℝ+, for (L2,1)𝑗 = x𝑗/(D1,1)𝑗 , we have the upper bound of

|(L2,1)𝑗 |:

|(L2,1)𝑗 | ≤
max𝑁−1

𝑘=0 |x𝑘 |
min𝑁−1

𝑘=0 (D1,1)𝑘
,

and the absolute error bound:

ΔL2,1 ≤ Δ/ℝ (
𝑁−1
max𝑗=0 |x𝑗 |,

𝑁−1
min𝑗=0 (D1,1)𝑗 , Δx, ΔD1,1) .

ΔL1,0 at non-root, non-leaf nodes: From Line 8, 24 in Algorithm 6.7 and by Defini-

tion 9, at a non-root, non-leaf node, we have:

(L1,0)𝑗 =
(G′

1,0)𝑗
(D0,0)𝑗

=
[(D′

2𝑗 − D′
2𝑗+1)𝜔−bitrev(𝑛/2+𝑗)]∗
D′
2𝑗 + D′

2𝑗+1
,

0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ (ℝ+)2𝑛 from its parent, where 𝜔 is the 2𝑁 -th complex root

of unity. Since |𝜔| = 1, for D′
2𝑗 ,D′

2𝑗+1 ∈ ℝ+, we have:

|(L1,0)𝑗 | =
|D′

2𝑗 − D′
2𝑗+1|

D′
2𝑗 + D′

2𝑗+1
≤

max2𝑛−1𝑘=0 D′
𝑘 −min2𝑛−1𝑘=0 D′

𝑘
max2𝑛−1𝑘=0 D′

𝑘 +min2𝑛−1𝑘=0 D′
𝑘
.

The inequality above is because
|D′

2𝑗−D′
2𝑗+1|

D′
2𝑗+D′

2𝑗+1
has the maximal value when one of

D′
2𝑗 ,D′

2𝑗+1 ∈ ℝ+ gets the largest value max2𝑛−1𝑘=0 D′
𝑘 and the other gets the smallest value

min2𝑛−1𝑘=0 D′
𝑘 .

For the absolute error ΔL1,0 , we have:

ΔL1,0 ≤
𝑛−1
max𝑗=0 Δ/ℝ[|D′

2𝑗 − D′
2𝑗+1| ⋅ |𝜔−bitrev(𝑛/2+𝑗)|,D′

2𝑗 + D′
2𝑗+1,

Δ×ℝ(|𝜔−bitrev(𝑛/2+𝑗)|, |D′
2𝑗 − D′

2𝑗+1|, Δ𝜔 , Δ(D′
2𝑗−D′

2𝑗+1)), Δ(D′
2𝑗+D′

2𝑗+1)],

90 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

where the absolute error of complex root of unity Δ𝜔 ≤ 𝑢/√2 [BJM+20]. For the absolute
error of D′

2𝑗 − D′
2𝑗+1, since D

′
2𝑗 ,D′

2𝑗+1 ∈ ℝ+, we have:

Δ(D′
2𝑗−D′

2𝑗+1) ≤ (1 + 𝑢)(|D′
2𝑗 − D′

2𝑗+1| + 2ΔD′) − |D′
2𝑗 − D′

2𝑗+1|
= 𝑢|D′

2𝑗 − D′
2𝑗+1| + 2(1 + 𝑢)ΔD′ .

Similarly, for the absolute error of D′
2𝑗 + D′

2𝑗+1, we have:

Δ(D′
2𝑗+D′

2𝑗+1) ≤ (1 + 𝑢)(D′
2𝑗 + D′

2𝑗+1 + 2ΔD′) − (D′
2𝑗 + D′

2𝑗+1)
= 𝑢(D′

2𝑗 + D′
2𝑗+1) + 2(1 + 𝑢)ΔD′ .

Therefore, we have:

ΔL1,0 ≤
𝐶1|D′

2𝑗 − D′
2𝑗+1| + 𝐶2ΔD′

(1 − 𝑢)(D′
2𝑗 + D′

2𝑗+1) − 2(1 + 𝑢)ΔD′

+
2(1 + 𝑢)ΔD′ |D′

2𝑗 − D′
2𝑗+1|

[(1 − 𝑢)(D′
2𝑗 + D′

2𝑗+1) − 2(1 + 𝑢)ΔD′](D′
2𝑗 + D′

2𝑗+1)
,

where

𝐶1 = 𝑢 [√22 𝑢3 + (3√22 + 1) 𝑢2 + (3√22 + 3) 𝑢 + √2
2 + 4] ,

𝐶2 = √2𝑢4 + (3√2 + 2)𝑢3 + (3√2 + 6)𝑢2 + (√2 + 6)𝑢 + 2.

Since D′
2𝑗 ,D′

2𝑗+1 ∈ ℝ+, we have |D′
2𝑗 − D′

2𝑗+1| ≤ D′
2𝑗 + D′

2𝑗+1. Then, for the second term

in the inequality of ΔL1,0 above, we have:

2(1 + 𝑢)ΔD′ |D′
2𝑗 − D′

2𝑗+1|
[(1 − 𝑢)(D′

2𝑗 + D′
2𝑗+1) − 2(1 + 𝑢)ΔD′](D′

2𝑗 + D′
2𝑗+1)

≤ 2(1 + 𝑢)ΔD′

(1 − 𝑢)(D′
2𝑗 + D′

2𝑗+1) − 2(1 + 𝑢)ΔD′
.

Thus, we have:

ΔL1,0 ≤
𝐶1|D′

2𝑗 − D′
2𝑗+1| + 𝐶′2ΔD′

(1 − 𝑢)(D′
2𝑗 + D′

2𝑗+1) − 2(1 + 𝑢)ΔD′

≤
𝐶1 (max2𝑛−1𝑘=0 D′

𝑘 −min2𝑛−1𝑘=0 D′
𝑘) + 𝐶′2ΔD′

2(1 − 𝑢) ⋅min2𝑛−1𝑘=0 D′
𝑘 − 2(1 + 𝑢)ΔD′

,

where

𝐶′2 = √2𝑢4 + (3√2 + 2)𝑢3 + (3√2 + 6)𝑢2 + (√2 + 8)𝑢 + 4.

6.3 FFLDL ERROR ANALYSIS 91

6.3.3 ffLDL Error Computation Algorithm

Combining the error analysis of D in Section 6.3.1 and the error analysis of L in Section

6.3.2, we can compute ΔD and ΔL recursively for every node in the ffLDL tree. Since

both ΔD and ΔL at non-root nodes need the bounds max2𝑛−1𝑗=0 D′
𝑗 and min2𝑛−1𝑗=0 D′

𝑗 for some

D′ ∈ (ℝ+)2𝑛 from its parent, herewe provide the following lemma to analyse themaximal

and minimal values of D′:

Lemma 4. For every non-root, non-leaf node in an ffLDL tree, we have:

2𝑛−1
min𝑘=0 D

′
𝑘 ≤ (D𝑖,𝑖)𝑗 ≤

2𝑛−1
max
𝑘=0

D′
𝑘 ,

𝑖 ∈ {0, 1}, 0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ (ℝ+)2𝑛 from its parent.

Proof. From Theorem 16, for a non-root, non-leaf node, since (D0,0)𝑗 = 1
2(D′

2𝑗 + D′
2𝑗+1),

0 ≤ 𝑗 ≤ 𝑛 − 1, for some D′ ∈ (ℝ+)2𝑛, (D0,0)𝑗 gets the minimal value min2𝑛−1𝑘=0 D′
𝑘 when

both D′
2𝑗 ,D′

2𝑗+1 = min2𝑛−1𝑘=0 D′
𝑘 . Similarly, (D0,0)𝑗 gets the maximal value max2𝑛−1𝑘=0 D′

𝑘
when both D′

2𝑗 ,D′
2𝑗+1 = max2𝑛−1𝑘=0 D′

𝑘 . For (D1,1)𝑗 = D′
2𝑗D

′
2𝑗+1/(D0,0)𝑗 =

D′
2𝑗D

′
2𝑗+1

1/2⋅(D′
2𝑗+D′

2𝑗+1)
, it

gets the minimal value min2𝑛−1𝑘=0 D′
𝑘 when both D′

2𝑗 ,D′
2𝑗+1 = min2𝑛−1𝑘=0 D′

𝑘 and (D1,1)𝑗 gets
the maximal value max2𝑛−1𝑘=0 D′

𝑘 when bothD′
2𝑗 ,D′

2𝑗+1 = max2𝑛−1𝑘=0 D′
𝑘 forD

′ ∈ (ℝ+)2𝑛.

From Lemma 4, if the ancestor of a non-root, non-leaf node is the 𝑚-th child of the root,

0 ≤ 𝑚 ≤ 𝑑 − 1, then (D𝑖,𝑖)𝑗 of this node has the minimal value min𝑁−1
𝑘=0 (D′𝑚,𝑚)𝑘 and

the maximal value max𝑁−1
𝑘=0 (D′𝑚,𝑚)𝑘 , 𝑖 ∈ {0, 1}, 0 ≤ 𝑗 ≤ 𝑛 − 1, for D′𝑚,𝑚 from the root,

respectively. Therefore, we can first compute ΔD and ΔL of the root and then use the

recursive algorithm in Algorithm 6.8 to compute ΔD and ΔL for every non-root node by

using the results from the root as the input.

6.3.4 Practical Implication

In order to compute ΔD and ΔL at the root for the input G = SℓSℓ ∈ (ℂ[𝑥]/⟨𝑥𝑁 + 1⟩)𝑑×𝑑
in the FFT domain, where Sℓ is a (Mod)NTRU basis in Latte, from the analysis in Section

6.3.1 and Section 6.3.2, we need the following bounds of elements from the input G:

When 𝑑 = 2: ΔG0,0 , max𝑁−1
𝑗=0 |(G1,0)𝑗 |, ΔG1,0 .

When 𝑑 = 3: ΔG0,0 , max𝑁−1
𝑗=0 (G1,1)𝑗 , ΔG1,1 , max𝑁−1

𝑗=0 |(G1,0)𝑗 |, ΔG1,0 , max𝑁−1
𝑗=0 |(G2,0)𝑗 |,

ΔG2,0 , max𝑁−1
𝑗=0 |(G2,1)𝑗 |, ΔG2,1 .

92 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

Algorithm 6.8 Computation of ΔD and ΔL for non-root nodes in the ffLDL tree.

Input: 𝑚1 = max2𝑛−1𝑘=0 (D′)𝑘 , 𝑚2 = min2𝑛−1𝑘=0 (D′)𝑘 , ΔD′ for some D′ from the parent. Ring
dimension 𝑛. Relative error 𝑢 of floating-point arithmetic.

Output: ΔD0,0 , ΔD1,1 , ΔL1,0 .
1: function ffLDLErr(𝑚1, 𝑚2, ΔD′ , 𝑛)
2: ΔD0,0 ← 𝑢𝑚1 + (1 + 𝑢)ΔD′ .
3: if 𝑛 = 1 then
4: 𝛿𝜎 ← (1+𝑢)2

1−𝑢 √
𝑚2

𝑚2−ΔD0,0
− 1.

5: else
6: ΔD1,1 ← (𝑢2+3𝑢)𝑚1+2(1+𝑢)2ΔD′

1−𝑢 .
7: max𝑛−1𝑗=0 |(L1,0)𝑗 | ←

𝑚1−𝑚2
𝑚1+𝑚2

.

8: 𝐶1 = 𝑢 [√22 𝑢3 + (3√22 + 1) 𝑢2 + (3√22 + 3) 𝑢 + √2
2 + 4].

9: 𝐶′2 = √2𝑢4 + (3√2 + 2)𝑢3 + (3√2 + 6)𝑢2 + (√2 + 8)𝑢 + 4.
10: ΔL1,0 ←

𝐶1(𝑚1−𝑚2)+𝐶′2ΔD′
2(1−𝑢)𝑚2−2(1+𝑢)ΔD′

.
11: ffLDLErr(𝑚1, 𝑚2, ΔD0,0 , 𝑛/2).
12: ffLDLErr(𝑚1, 𝑚2, ΔD1,1 , 𝑛/2).
13: end if
14: end function

We have (Gorig)𝑖,𝑗 = ∑𝑑−1
𝑘=0(Sℓ)𝑖,𝑘(S∗ℓ)𝑘,𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 𝑑 − 1, for Gorig = SℓS∗ℓ in the coefficient

domain. Therefore, G𝑖,𝑗 = ∑𝑑−1
𝑘=0 FFT(Sℓ)𝑖,𝑘 ⊙ FFT(S∗ℓ)𝑘,𝑗 in the FFT domain. By Theo-

rem 4, we have |FFT((Sℓ)𝑖,𝑗)𝑘 | ≤ √𝑁 ‖(Sℓ)𝑖,𝑗‖ for 0 ≤ 𝑘 ≤ 𝑁 − 1. From Algorithm 6.2 and

Algorithm 6.3, we have ‖(Sℓ)𝑖‖ ≤ 𝜎ℓ√𝑑𝑁 for 0 ≤ 𝑖 ≤ 𝑑 − 2 and thus ‖(Sℓ)𝑖,𝑗‖ ≤ 𝜎ℓ√𝑑𝑁 for

0 ≤ 𝑖 ≤ 𝑑 − 2, 0 ≤ 𝑗 ≤ 𝑑 − 1. Therefore, we have |FFT((Sℓ)𝑖,𝑗)𝑘 | ≤ 𝜎ℓ𝑁√𝑑 for 0 ≤ 𝑖 ≤ 𝑑 − 2,
0 ≤ 𝑗 ≤ 𝑑 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1.

To estimate max𝑁−1
𝑘=0 |FFT((Sℓ)𝑑−1,𝑗)𝑘 |, 0 ≤ 𝑗 ≤ 𝑑 − 1, we adapt the following heuristic

estimation of ‖(Sℓ)𝑑−1‖ from [Pre15]. For fully length-reduced (Sℓ)𝑑−1, we have:

‖(Sℓ)𝑑−1‖2 = ‖(S̃ℓ)𝑑−1‖2 +
𝑑−2
∑
𝑖=0

‖r(Sℓ)𝑖‖2,

where r has coefficients in [−1/2, 1/2] and (S̃ℓ)𝑑−1 is orthogonal to Span((Sℓ)0, … , (Sℓ)𝑑−2).
We have the heuristic estimation ‖r(Sℓ)𝑖‖ ≈ √𝑁/12‖(Sℓ)𝑖‖ [HHP+03, Pre15]. Since

‖(S̃ℓ)𝑑−1‖ ≤ 𝜎ℓ√𝑑𝑁 for a (Mod)NTRU basis generated by Algorithm 6.2 and Al-

gorithm 6.3 in Latte, we have ‖(Sℓ)𝑑−1‖ ≤ 𝜎ℓ√𝑑𝑁(1 + (𝑑 − 1)𝑁/12) and thus

‖(Sℓ)𝑑−1,𝑗 ‖ ≤ 𝜎ℓ√𝑑𝑁(1 + (𝑑 − 1)𝑁/12), |FFT((Sℓ)𝑑−1,𝑗)𝑘 | ≤ 𝜎ℓ𝑁√𝑑(1 + (𝑑 − 1)𝑁/12)
for 0 ≤ 𝑗 ≤ 𝑑 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1.

Therefore, we have the following upper bounds of |(G𝑖,𝑗)𝑘 | for G𝑖,𝑗 = ∑𝑑−1
𝑘=0 FFT(Sℓ)𝑖,𝑘 ⊙

FFT(S∗ℓ)𝑘,𝑗 in the FFT domain:

6.3 FFLDL ERROR ANALYSIS 93

When 0 ≤ 𝑖, 𝑗 ≤ 𝑑 − 2:
|(G𝑖,𝑗)𝑘 | ≤ 𝜎2ℓ 𝑁 2𝑑2.

When 𝑖 = 𝑑 − 1, 0 ≤ 𝑗 ≤ 𝑑 − 2 or 0 ≤ 𝑖 ≤ 𝑑 − 2, 𝑗 = 𝑑 − 1:

|(G𝑖,𝑗)𝑘 | ≤ 𝜎2ℓ 𝑁 2𝑑2√1 + (𝑑 − 1)𝑁/12.

When 𝑖 = 𝑗 = 𝑑 − 1:
|(G𝑖,𝑗)𝑘 | ≤ 𝜎2ℓ 𝑁 2𝑑2(1 + (𝑑 − 1)𝑁/12).

When 𝑑 = 2, we have the absolute error bounds ΔG0,0 and ΔG1,0 :

ΔG0,0 (𝑑 = 2): We have (G0,0)𝑘 = |FFT((Sℓ)0,0)𝑘 |2 + |FFT((Sℓ)0,1)𝑘 |2 ∈ ℝ+. By using the

error analysis for real number arithmetic and Theorem 3, we get:

ΔG0,0 ≤
𝑁−1
max
𝑘=0

[(1 + 𝑢)[(1 + 𝑢)(|FFT((Sℓ)0,0)𝑘 | + ΔFFT((Sℓ)0,0))2

+ (1 + 𝑢)(|FFT((Sℓ)0,1)𝑘 | + ΔFFT((Sℓ)0,1))2]
− (|FFT((Sℓ)0,0)𝑘 |2 + |FFT((Sℓ)0,1)𝑘 |2)]
≤ [(1 + 𝑢)2(1 + 𝛿FFT)2 − 1] ⋅ 𝑁−1

max
𝑘=0

(|FFT((Sℓ)0,0)𝑘 |2 + |FFT((Sℓ)0,1)𝑘 |2)

≤ [(1 + 𝑢)2(1 + 𝛿FFT)2 − 1] ⋅ 4𝜎2ℓ 𝑁 2.

ΔG1,0 (𝑑 = 2): By Theorem 3, we have:

ΔG1,0 ≤ Δ± [𝑁−1
max
𝑘=0

(|FFT((Sℓ)1,0)𝑘 | ⋅ |FFT((Sℓ)0,0)∗𝑘 |),
𝑁−1
max
𝑘=0

(|FFT((Sℓ)1,1)𝑘 | ⋅ |FFT((Sℓ)0,1)∗𝑘 |),

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)1,0)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,0)∗𝑘 |, ΔFFT((Sℓ)1,0), ΔFFT((Sℓ)0,0)) ,

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)1,1)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,1)∗𝑘 |, ΔFFT((Sℓ)1,1), ΔFFT((Sℓ)0,1))]

≤ Δ±(2𝜎2ℓ 𝑁 2√1 + 𝑁/12, 2𝜎2ℓ 𝑁 2√1 + 𝑁/12, Δ, Δ),

where

Δ = Δ×(𝜎ℓ𝑁√2 + 𝑁/6, 𝜎ℓ𝑁√2, 𝛿FFT ⋅ 𝜎ℓ𝑁√2 + 𝑁/6, 𝛿FFT ⋅ 𝜎ℓ𝑁√2).

When 𝑑 = 3, because the upper bound of |FFT((Sℓ)1,𝑗)𝑘 | is equivalent to the upper bound

of |FFT((Sℓ)0,𝑗)𝑘 |, 0 ≤ 𝑗 ≤ 𝑑 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1, we have the upper bound of ΔFFT((Sℓ)1,𝑗)
equivalent to the upper bound of ΔFFT((Sℓ)0,𝑗) by Theorem 3. Thus, the upper bound of

94 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

ΔG1,1 is equivalent to the upper bound ofΔG0,0 , and the upper bound ofΔG2,1 is equivalent

to the upper bound of ΔG2,0 . Similar to the case when 𝑑 = 2, we have the absolute error

bounds ΔG0,0 , ΔG1,0 , ΔG2,0 :

ΔG0,0 (𝑑 = 3): Wehave (G0,0)𝑘 = |FFT((Sℓ)0,0)𝑘 |2+|FFT((Sℓ)0,1)𝑘 |2+|FFT((Sℓ)0,2)𝑘 |2 ∈ ℝ+.
Therefore, we get:

ΔG0,0 ≤
𝑁−1
max
𝑘=0

[(1 + 𝑢)[(1 + 𝑢)[(1 + 𝑢)(|FFT((Sℓ)0,0)𝑘 | + ΔFFT((Sℓ)0,0))2

+ (1 + 𝑢)(|FFT((Sℓ)0,1)𝑘 | + ΔFFT((Sℓ)0,1))2]
+ (1 + 𝑢)(|FFT((Sℓ)0,2)𝑘 | + ΔFFT((Sℓ)0,2))2]
− (|FFT((Sℓ)0,0)𝑘 |2 + |FFT((Sℓ)0,1)𝑘 |2 + |FFT((Sℓ)0,2)𝑘 |2)]
≤ [(1 + 𝑢)3(1 + 𝛿FFT)2 − 1] ⋅ 𝑁−1

max
𝑘=0

(|FFT((Sℓ)0,0)𝑘 |2 + |FFT((Sℓ)0,1)𝑘 |2)

+ [(1 + 𝑢)2(1 + 𝛿FFT)2 − 1] ⋅ 𝑁−1
max
𝑘=0

|FFT((Sℓ)0,2)𝑘 |2

≤ [(1 + 𝑢)3(1 + 𝛿FFT)2 − 1] ⋅ 6𝜎2ℓ 𝑁 2 + [(1 + 𝑢)2(1 + 𝛿FFT)2 − 1] ⋅ 3𝜎2ℓ 𝑁 2.

ΔG1,0 (𝑑 = 3): We have:

ΔG1,0 ≤ Δ± [𝑁−1
max
𝑘=0

(|FFT((Sℓ)1,0)𝑘 | ⋅ |FFT((Sℓ)0,0)∗𝑘 | + |FFT((Sℓ)1,1)𝑘 | ⋅ |FFT((Sℓ)0,1)∗𝑘 |),
𝑁−1
max
𝑘=0

(|FFT((Sℓ)1,2)𝑘 | ⋅ |FFT((Sℓ)0,2)∗𝑘 |),

Δ± [𝑁−1
max
𝑘=0

(|FFT((Sℓ)1,0)𝑘 | ⋅ |FFT((Sℓ)0,0)∗𝑘 |),
𝑁−1
max
𝑘=0

(|FFT((Sℓ)1,1)𝑘 | ⋅ |FFT((Sℓ)0,1)∗𝑘 |),

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)1,0)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,0)∗𝑘 |, ΔFFT((Sℓ)1,0), ΔFFT((Sℓ)0,0)) ,

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)1,1)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,1)∗𝑘 |, ΔFFT((Sℓ)1,1), ΔFFT((Sℓ)0,1))] ,

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)1,2)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,2)∗𝑘 |, ΔFFT((Sℓ)1,2), ΔFFT((Sℓ)0,2))]

≤ Δ±[6𝜎2ℓ 𝑁 2, 3𝜎2ℓ 𝑁 2, Δ±(3𝜎2ℓ 𝑁 2, 3𝜎2ℓ 𝑁 2, Δ, Δ), Δ],

where

Δ = Δ×(𝜎ℓ𝑁√3, 𝜎ℓ𝑁√3, 𝛿FFT ⋅ 𝜎ℓ𝑁√3, 𝛿FFT ⋅ 𝜎ℓ𝑁√3).

6.3 FFLDL ERROR ANALYSIS 95

ΔG2,0 (𝑑 = 3): We have:

ΔG2,0 ≤ Δ± [𝑁−1
max
𝑘=0

(|FFT((Sℓ)2,0)𝑘 | ⋅ |FFT((Sℓ)0,0)∗𝑘 | + |FFT((Sℓ)2,1)𝑘 | ⋅ |FFT((Sℓ)0,1)∗𝑘 |),
𝑁−1
max
𝑘=0

(|FFT((Sℓ)2,2)𝑘 | ⋅ |FFT((Sℓ)0,2)∗𝑘 |),

Δ± [𝑁−1
max
𝑘=0

(|FFT((Sℓ)2,0)𝑘 | ⋅ |FFT((Sℓ)0,0)∗𝑘 |),
𝑁−1
max
𝑘=0

(|FFT((Sℓ)2,1)𝑘 | ⋅ |FFT((Sℓ)0,1)∗𝑘 |),

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)2,0)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,0)∗𝑘 |, ΔFFT((Sℓ)2,0), ΔFFT((Sℓ)0,0)) ,

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)2,1)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,1)∗𝑘 |, ΔFFT((Sℓ)2,1), ΔFFT((Sℓ)0,1))] ,

Δ× (
𝑁−1
max
𝑘=0

|FFT((Sℓ)2,2)𝑘 |,
𝑁−1
max
𝑘=0

|FFT((Sℓ)0,2)∗𝑘 |, ΔFFT((Sℓ)2,2), ΔFFT((Sℓ)0,2))]

≤ Δ±[6𝜎2ℓ 𝑁 2√1 + 𝑁/6, 3𝜎2ℓ 𝑁 2√1 + 𝑁/6,
Δ±(3𝜎2ℓ 𝑁 2√1 + 𝑁/6, 3𝜎2ℓ 𝑁 2√1 + 𝑁/6, Δ, Δ), Δ],

where

Δ = Δ×(𝜎ℓ𝑁√3 + 𝑁/2, 𝜎ℓ𝑁√3, 𝛿FFT ⋅ 𝜎ℓ𝑁√3 + 𝑁/2, 𝛿FFT ⋅ 𝜎ℓ𝑁√3).

In addition, to use Algorithm 6.8 to compute ΔD and ΔL for non-root nodes, we need

max𝑁−1
𝑗=0 (D𝑖,𝑖)𝑗 and min𝑁−1

𝑗=0 (D𝑖,𝑖)𝑗 for each D𝑖,𝑖 ∈ (ℝ+)𝑁 , 0 ≤ 𝑖 ≤ 𝑑 − 1, at the root. Here,

we analyse these bounds of (D𝑖,𝑖)𝑗 for both 𝑑 = 2 and 𝑑 = 3.

When 𝑑 = 2: Since (D0,0)𝑗 = (G0,0)𝑗 , we have (D0,0)𝑗 ≤ max𝑁−1
𝑘=0 |(G0,0)𝑘 | ≤ 4𝜎2ℓ 𝑁 2.

By Theorem 16, (D1,1)𝑗 = 𝑞2/(D0,0)𝑗 and thus (D1,1)𝑗 ≥ 𝑞2
4𝜎2ℓ 𝑁 2 . Similarly, since

(D1,1)𝑗 = (G1,1)𝑗 − |(G1,0)𝑗 |2/(D0,0)𝑗 where (G1,1)𝑗 , (D0,0)𝑗 , (D1,1)𝑗 ∈ ℝ+, we

have (D1,1)𝑗 ≤ (G1,1)𝑗 ≤ max𝑁−1
𝑘=0 |(G1,1)𝑘 | ≤ 4𝜎2ℓ 𝑁 2(1 + 𝑁/12). Then, we have

(D0,0)𝑗 = 𝑞2/(D1,1)𝑗 ≥ 𝑞2
4𝜎2ℓ 𝑁 2(1+𝑁/12) by Theorem 16.

When 𝑑 = 3: Similar to the case when 𝑑 = 2, we have (D0,0)𝑗 = (G0,0)𝑗 ≤ 9𝜎2ℓ 𝑁 2 and

(D0,0)𝑗 ≤ (G1,1)𝑗 ≤ 9𝜎2ℓ 𝑁 2. By using the empirical observation that (D2,2)𝑗 ∈ [0, 1] in
our experiment for Latte parameter sets in Table 6.1, we get (D0,0)𝑗(D1,1)𝑗 ≥ 𝑞2 by using

(D0,0)𝑗(D1,1)𝑗(D2,2)𝑗 = 𝑞2 from Theorem 16. Thus, we get (D0,0)𝑗 , (D1,1)𝑗 ≥ 𝑞2
9𝜎2ℓ 𝑁 2 . For

(D2,2)𝑗 , we have (D2,2)𝑗 ≤ 1 from our observation. By Theorem 16, we have (D2,2)𝑗 =
𝑞2

(D0,0)𝑗(D1,1)𝑗 ≥
𝑞2

81𝜎4ℓ 𝑁 4 .

96 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

By using the Latte parameter sets in Table 6.1, we can compute the numerical values of

the relative error 𝛿𝜎 and the absolute error ΔL in our optimised Latte scheme by applying

the error analysis above. We use the parameters of basis S0 when computing 𝛿𝜎 , ΔL for

𝑑 = 2, and we use the parameters of the delegated basis S1 when computing 𝛿𝜎 , ΔL for

𝑑 = 3, respectively. Note that only Latte-3 and 4 need the ffLDL algorithm of 𝑑 = 3 for the
delegated basis S1, since Latte-1 and 2 are essentially single-level IBE schemes without

delegation. Results of 𝛿𝜎 and ΔL for Latte parameter sets with different floating-point

arithmetic errors 𝑢 are shown in Table 6.3 and Table 6.4 for 𝑑 = 2 and 𝑑 = 3, respectively.
Columns in Table 6.3 and Table 6.4 with parameter 𝑚 are the errors of non-root nodes

whose ancestor is the 𝑚-th child of the root.

Table 6.3: Numerical Values of 𝛿𝜎 and ΔL for Latte Parameter Sets (𝑑 = 2).
𝑢 = 2−96

ΔL1,0 (root) ΔL (𝑚 = 0) 𝛿𝜎 (𝑚 = 0) ΔL (𝑚 = 1) 𝛿𝜎 (𝑚 = 1)
Latte-1 2−22 2−46 2−47 2−17 2−18
Latte-2 2−15 2−41 2−42 2−9 2−10
Latte-3 2−22 2−46 2−47 2−17 2−18
Latte-4 2−15 2−41 2−42 2−9 2−10

𝑢 = 2−112
ΔL1,0 (root) ΔL (𝑚 = 0) 𝛿𝜎 (𝑚 = 0) ΔL (𝑚 = 1) 𝛿𝜎 (𝑚 = 1)

Latte-1 2−38 2−62 2−63 2−33 2−34
Latte-2 2−31 2−57 2−58 2−25 2−26
Latte-3 2−38 2−62 2−63 2−33 2−34
Latte-4 2−31 2−57 2−58 2−25 2−26

𝑢 = 2−128
ΔL1,0 (root) ΔL (𝑚 = 0) 𝛿𝜎 (𝑚 = 0) ΔL (𝑚 = 1) 𝛿𝜎 (𝑚 = 1)

Latte-1 2−55 2−78 2−79 2−49 2−50
Latte-2 2−48 2−74 2−75 2−41 2−42
Latte-3 2−55 2−78 2−79 2−49 2−50
Latte-4 2−48 2−74 2−75 2−41 2−42

From Table 6.3 and Table 6.4, for the same Latte parameter set, ΔL and 𝛿𝜎 are linearly

proportional to the relative error 𝑢 of floating-point arithmetic at every node (including

both the root and non-root nodes) of the ffLDL tree in both cases when 𝑑 = 2 and 𝑑 = 3.
However, both ΔL and 𝛿𝜎 have big gaps between the cases when 𝑚 < 𝑑 −1 and 𝑚 = 𝑑 −1
for all Latte parameter sets. For example, both ΔL and 𝛿𝜎 have about 30 bits difference

between 𝑚 = 0 and 𝑚 = 1 in Table 6.3 when 𝑑 = 2, and the gap is more than 45 bits

between 𝑚 ∈ {0, 1} and 𝑚 = 2 in Table 6.4 when 𝑑 = 3. The reason for these gaps

is that when computing ΔD𝑑−1,𝑑−1 at the root in Section 6.3.1, the minimal value of the

denominator is estimated by using the smallest value among coordinates of some vector

minus the maximal absolute error among coordinates of the same vector. The result is

very likely to be much smaller than one could get in practice and it may significantly

6.3 FFLDL ERROR ANALYSIS 97

Ta
bl
e
6.
4:

N
um

er
ic
al

V
al
ue

s
of

𝛿 𝜎
an

d
Δ L

fo
r
La

tt
e
Pa

ra
m
et
er

Se
ts

(𝑑
=
3).

𝑢=
2−

24
0

Δ L
1,0

(r
oo

t)
Δ L

2,0
(r
oo

t)
Δ L

2,1
(r
oo

t)
Δ L

(𝑚
=
0)

𝛿 𝜎
(𝑚

=
0)

Δ L
(𝑚

=
1)

𝛿 𝜎
(𝑚

=
1)

Δ L
(𝑚

=
2)

𝛿 𝜎
(𝑚

=
2)

La
tt
e-
3

2−
13
2

2−
12
9

2−
32

2−
17
1

2−
17
2

2−
12
3

2−
12
4

2−
75

2−
76

La
tt
e-
4

2−
12
3

2−
11
9

2−
15

2−
16
6

2−
16
7

2−
11
3

2−
11
4

2−
61

2−
62

𝑢=
2−

25
6

Δ L
1,0

(r
oo

t)
Δ L

2,0
(r
oo

t)
Δ L

2,1
(r
oo

t)
Δ L

(𝑚
=
0)

𝛿 𝜎
(𝑚

=
0)

Δ L
(𝑚

=
1)

𝛿 𝜎
(𝑚

=
1)

Δ L
(𝑚

=
2)

𝛿 𝜎
(𝑚

=
2)

La
tt
e-
3

2−
14
9

2−
14
5

2−
49

2−
18
8

2−
18
9

2−
14
0

2−
14
1

2−
92

2−
93

La
tt
e-
4

2−
14
0

2−
13
6

2−
31

2−
18
2

2−
18
3

2−
13
0

2−
13
1

2−
78

2−
79

𝑢=
2−

27
2

Δ L
1,0

(r
oo

t)
Δ L

2,0
(r
oo

t)
Δ L

2,1
(r
oo

t)
Δ L

(𝑚
=
0)

𝛿 𝜎
(𝑚

=
0)

Δ L
(𝑚

=
1)

𝛿 𝜎
(𝑚

=
1)

Δ L
(𝑚

=
2)

𝛿 𝜎
(𝑚

=
2)

La
tt
e-
3

2−
16
4

2−
16
1

2−
64

2−
20
3

2−
20
4

2−
15
5

2−
15
6

2−
10
7

2−
10
8

La
tt
e-
4

2−
15
5

2−
15
1

2−
47

2−
19
8

2−
19
9

2−
14
5

2−
14
6

2−
93

2−
94

98 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

increaseΔD𝑑−1,𝑑−1 . This larger boundΔD𝑑−1,𝑑−1 will then be propagated to the computation

of ΔL and 𝛿𝜎 in non-root nodes whose ancestor is the (𝑑 − 1)-th child of the root when

using Algorithm 6.8.

In addition, there is near 100 bits difference between ΔL1,0 (or ΔL2,0) and ΔL2,1 in Ta-

ble 6.4 when 𝑑 = 3. This is because the maximal value of the numerator (G2,1)𝑗 −
(G2,0)𝑗(L1,0)∗𝑗 in (L2,1)𝑗 may be significantly overestimated by using max𝑁−1

𝑘=0 |(G2,1)𝑘 | +
(max𝑁−1

𝑘=0 |(G2,0)𝑘 |) (max𝑁−1
𝑘=0 |(L1,0)𝑘 |) in Section 6.3.2.

Furthermore, there is a big gap between our provable error analysis results and the errors

one can get in practice. For both 𝑑 = 2 and 𝑑 = 3, we measure the 𝛿𝜎 in Latte-3 by

comparing the 𝜎 computed with 𝑝 = {72, 80, 96, 128, 256} bit floating-point precision

against the “accurate” 𝜎 computed with 1024 bit high precision when using the same

random seed in our experiment. Results of the maximal 𝛿𝜎 among 1000 different random

seeds are shown in Table 6.5. On the one hand, the results in Table 6.5 verify that 𝛿𝜎 is

linearly proportional to the relative error 𝑢 of floating-point arithmetic for Latte-3 in

both cases when 𝑑 = 2 and 𝑑 = 3 in practice. On the other hand, Table 6.5 shows the

difference between 𝛿𝜎 and 𝑢 in practice is 2 bits when 𝑑 = 2 and 7 bits when 𝑑 = 3 at
most for Latte-3, which is much smaller than 49–78 bits (𝑑 = 2) and 67–164 bits (𝑑 = 3)
from the numerical results of our provable error analysis in Table 6.3 and Table 6.4. We

will leave improving our theoretical error bounds in order to reduce the huge gap from

practice as future works.

Table 6.5: 𝛿𝜎 in Practice for Latte-3.
Precision 𝛿𝜎 (𝑑 = 2) 𝛿𝜎 (𝑑 = 3)

72 2−69 2−65
80 2−78 2−75
96 2−94 2−92

128 2−126 2−123
256 2−254 2−251

Our provable error analysis has another issue that it still contains heuristic components,

namely:

1. The heuristic estimation of ‖(Sℓ)𝑑−1‖ from [HHP+03, Pre15].

2. The empirical observation (D2,2)𝑗 ∈ [0, 1], 0 ≤ 𝑗 ≤ 𝑁 − 1, at the root when 𝑑 = 3
in our experiment for Latte parameter sets in Table 6.1.

Note that the second heuristic above is likely to be true only for a delegated ModNTRU

basis in Latte HIBE, and should not be applied to other ModNTRU based schemes such

as [CKKS19, CPS+20], where a fresh ModNTRU basis is directly generated as the master

private key during the Master KeyGen. This is because in schemes such as [CKKS19,

6.4 EVALUATION 99

CPS+20], the 𝜎0 used for the Master KeyGen is chosen to keep the Gram-Schmidt norm

‖S̃𝑖‖ close to each other between each Gram-Schmidt vector S̃𝑖 of the generated secret

basis S, similar to how 𝜎0 is chosen in the DLP IBE [DLP14]. However, in the Latte HIBE,

𝜎ℓ = (𝜂𝜖(ℤ)/√2𝜋)√(ℓ + 1)𝑁𝜎ℓ−1 due to the GPV sampling condition [GPV08, ETS19]

(see Section 3.2.1), and the Euclidean norms of the last 𝑁 Gram-Schmidt vectors are

likely to be much smaller compared to the first (𝑑 − 1)𝑁 Gram-Schmidt vectors in a

delegated basis, as discussed in Section 6.1.2. Since the bounds of (D2,2)𝑗 are related to

the Euclidean norms of the last 𝑁 Gram-Schmidt vectors by Lemma 4, (D2,2)𝑗 is likely to

be small only for the delegated basis in Latte HIBE but not for the master private keys in

other ModNTRU based schemes. We will leave the proof of these heuristic assumptions

to future works.

6.4 Evaluation

The first published specification of Latte is [ETS19]. However, it only provided the En-

crypt and Decrypt performance results. The performance results in [ETS19] were ob-

tained from an AMD A10-6700 CPU at 3.7GHz, which has a different CPU frequency

compared to our benchmark platform with an Intel i7-7700K CPU at 4.2GHz. There-

fore, we scale all the performance results from [ETS19] to 4.2GHz in this section. The

Encrypt/Decrypt performance results of the original Latte implementation [ETS19] are

displayed in Table 6.6, scaled and converted into op/s at 4.2GHz.

Table 6.6: Proof of Concept Latte Performance Results (op/s) from [ETS19] (Scaled to
4.2GHz).

ℓ = 1 ℓ = 2
Set Enc Dec Enc Dec
Latte-1 2911 2987 - -
Latte-2 1335 1351 - -
Latte-3 1892 1774 1455 1474
Latte-4 709 668 568 541

Here, we give the first full performance results for our optimised variant of Latte, includ-

ing KeyGen, Extract, and Delegate. We employ the gmp [GT15], mpfr [FHL+07], and
mpc [EGTZ18] libraries for multiprecision integer, floating-point, and complex number

arithmetic, respectively. The precision of floating-point and complex numbers in our

implementation is 𝜆 = 256 bits. In addition, we use the AES-256 CTR mode with hard-

ware AES-NI instructions [Gue09] as the pseudorandom generator, and use SHAKE-256

[NIS15] as the KDF in Latte Encrypt and Decrypt. The performance results have been

100 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

obtained from a desktopmachinewith an Intel i7-7700KCPU at 4.2GHz, with both hyper-

threading and TurboBoost disabled. We use the gcc 11.2.0 compiler with compiling op-

tions -O3 -march=native enabled. Results are given in Table 6.7.

Table 6.7: Our Optimised Latte Performance Results (op/s) at 4.2GHz.
ℓ = 1 ℓ = 2

Set KeyGen Ext Enc Dec Del Ext Enc Dec
Latte-1 4.7 5.8 12187.7 10424.9 - - - -
Latte-2 1.4 2.0 5776.4 4935.1 - - - -
Latte-3 3.6 5.8 6334.7 5240.3 1.0 3.7 5234.7 4396.8
Latte-4 1.0 2.0 3094.3 2580.9 0.4 1.3 2569.2 2166.5

As expected, the KeyGen, Extract, and Delegate processes are the most time consuming

components of the scheme, and this increases as security and therefore lattice dimension

increase. The trend down the hierarchical levels is that the Extract, Encrypt, and Decrypt

all become more time consuming as hierarchical level increases. For Extract in Latte-

3 and 4, this corresponds to about 35% decrease in op/s from level 1 to level 2. On

the other hand, for the Encrypt and Decrypt, our implementation is 3.0x–4.5x faster

compared to the previous performance results from [ETS19]. The speedup might be due

to: (1) We change the distribution of the ephemeral private keys from discrete Gaussian

distribution to binomial distribution. (2)We only performNTT for the ephemeral private

keys and m during the Encrypt and Decrypt, since other inputs are already in the NTT

domain. In addition, our optimised Latte Delegate only takes about 1–2.5 seconds on

a desktop machine at 4.2GHz, which is practical and much faster than the estimated

run-time (in the order of minutes) for the Delegate in the un-optimised variants of Latte

[ETS19].

Comparison to DLP IBE Performance results of the single-level DLP IBE scheme

from [ETS19] (converted to op/s at 4.2GHz) are given in Table 6.8. Since the decryption

in the DLP IBE did not include ciphertext validation, for a fair comparison with Latte,

we use the sum of DLP encryption and decryption run-time to compute the op/s of de-

cryption in Table 6.8. We focus on the comparison between Latte-1 and DLP-3, since

the sizes of parameters 𝑁 and 𝑞 are similar. The KeyGen speed of our Latte-1 imple-

mentation is similar to DLP-3, and the Encrypt/Decrypt speed is 4.6x–6.4x faster in our

implementation. However, the speed of Extract in our implementation is very slow. For

example, our Latte-1 Extract implementation is about 78x slower than DLP-3 extraction.

This is mainly because we use 256-bit multiprecision in the key sub-algorithms (Tree and

ffSampling) and in the variant of COSAC sampler used by our implementation, while it

is sufficient to use less than 64-bit precision in DLP extraction [MSO17].

6.4 EVALUATION 101

Table 6.8: Performance Results (op/s) for the DLP IBE Scheme from [ETS19] (Scaled to
4.2GHz).

Set Security 𝑛 log2 𝑞 KeyGen Ext Enc Dec
DLP-0 80 512 22 14.7 873.2 8731.8 6202.9
DLP-3 192 1024 22 4.9 454.1 2639.8 1621.6

102 CHAPTER 6. LATTICE-BASED HIBE (LATTE)

Chapter 7

Conclusion and Discussion

In this thesis, we present fast, compact, and constant-time (FACCT) zero-centered dis-

crete Gaussian sampler over integers, by implementing the Bernoulli sampler in the bi-

nary sampling scheme with a constant-time exp(𝑥) polynomial approximation. Our im-

plementation is faster than previous countermeasures [PBY17, EFGT17], more compact

than both the qTesla-R1 [BAA+17] and R2 [ABB+19] samplers, and outperforms the bit-

slicing convolution scheme [KRR+18] in both timing andmemory consumption. Our im-

plementation techniques are also independent of the standard deviation, and have good

flexibility and performance in various applications. In addition, we show the smaller

base sampler deviations for the convolution schemes by adapting the Rényi divergence.

We generalise the idea from [Dev86] and present a compact and scalable arbitrary-

centered discrete Gaussian sampling scheme over integers. Our scheme performs

rejection sampling on rounded samples from a continuous normal distribution, which

does not rely on any discrete Gaussian sampling implementations. We show that our

scheme maintains good performance for 𝜎 ∈ [2, 220] and needs no pre-computations

related to any specific 𝜎 , which is suitable to implement applications that requires

sampling from multiple different 𝜎 . In addition, we provide concrete rejection rate

and error analysis of our scheme. The performance of our scheme heavily relies on

the underlying continuous Gaussian sampling algorithm. However, the Box-Muller

sampler [HLS18, ZCHW17] employed in our implementation does not have the fastest

sampling speed compared to other algorithms according to a survey [TLLV07]. The

main reason behind the choice of the continuous Gaussian sampler in our implementa-

tion is because the Box-Muller sampler is very simple to implement in constant-time

[HLS18]. If the side-channel perspective is not a concern, one may employ other more

efficient non-constant time algorithms from the survey [TLLV07] to achieve a faster

implementation of our scheme.

103

104 CHAPTER 7. CONCLUSION AND DISCUSSION

We adapt the NTRUSolve function and the FFT sampling procedure from (Mod)Falcon

[PFH+17, CPS+20] in order to optimise the implementation of the Latte HIBE scheme

[ETS19]. For the lattice basis in Latte, we provide an optimised Fast Fourier LDL∗ de-

composition (ffLDL) algorithm, which is one of the key subroutines used by the FFT

sampling procedure [PFH+17]. Our optimised ffLDL algorithm is more than 70% faster

than a generic naive ffLDL implementation under 256-bit floating-point arithmetic pre-

cision for Latte parameter sets. In addition, we provide the first provable theoretical

error analysis of the ffLDL algorithm and compute the numerical values of the precision

bounds based on the Latte parameter sets. We also adapt both the FACCT and the COSAC

integer discrete Gaussian samplers in our optimised Latte implementation. Combining

all techniques above, we provide the first complete implementation result of the Latte

HIBE. We show that the Delegate function in our optimised Latte implementation will

only take a few seconds on a desktop machine, which is significantly faster than the

estimated run-time (in the order of minutes) in [ETS19]. However, our current imple-

mentation is not constant-time, since the arithmetic in KeyGen, Delegate, and Extract

relies on multiprecision libraries [EGTZ18, FHL+07, GT15]. In addition, the multipreci-

sion arithmetic is also the bottleneck in the Latte Extract, and we find that the speeds

of Latte KeyGen, Delegate, and Extract are linearly proportional to the precision in our

experiment. Furthermore, our provable theoretical precision upper bounds of the ffLDL

algorithm might be significantly overestimated, as discussed in Section 6.3.4.

7.1 Future Works

ARMCortex-M4 Implementations The main target of our techniques in this thesis

is the powerful Intel platform. However, it remains an interesting question whether

our techniques can also be adapted to more resource-constrained platforms, such as the

ARM Cortex-M4, which is currently used in many embedded devices. There are two

main challenges of adapting our techniques on Cortex-M4 platforms:

• The implementations of our FACCT and COSAC samplers in Chapter 4 and 5 heav-

ily rely on (constant-time) hardware double precision floating-point instructions.

However, Cortex-M4 platforms may optionally1 provide the floating-point unit

i.e. hardware floating-point instructions, supporting only the single precision2

floating-point arithmetic. Therefore, on Cortex-M4 platforms, our current FACCT

and COSAC implementations need to be significantly modified in order to avoid

1https://developer.arm.com/documentation/ddi0439/b/Floating-Point-Unit.
2https://developer.arm.com/documentation/ddi0439/b/Floating-Point-Unit/About-the-FPU.

https://developer.arm.com/documentation/ddi0439/b/Floating-Point-Unit
https://developer.arm.com/documentation/ddi0439/b/Floating-Point-Unit/About-the-FPU

7.1 FUTURE WORKS 105

the potentially non-constant time software routines [OSHG19] from the C run-

time library computing the double precision floating-point arithmetic. One ap-

proach to realise this is adapting the fixed-point arithmetic from the GALACTICS

[BBE+19], which only involves integers.

• Although the technical report of the original Latte scheme [ETS19] demonstrated

that the Encrypt and Decrypt of the original Latte implementation have run-time

in the order of milliseconds on an ARM1176 embedded processor at 700MHz, how-

ever, our benchmark results on the Intel platform in Section 6.4 indicate that the

KeyGen, Delegate, and Extract of our optimised Latte implementation are com-

putation intensive. Since our optimised Latte implementation shares several key

subroutines (notably NTRUSolve, ffLDL, and ffSampling) with the Falcon digital

signature scheme [PFH+17], we may adapt optimisation techniques from the Fal-

con Cortex-M4 implementation [Por19]. However, the challenge is how to adapt

the optimisation techniques from [Por19] for the much larger parameters and po-

tentially higher precision requirements of Latte compared to Falcon [PFH+17].

Power Analysis Resistant FACCT Sampler Our FACCT sampler is designed to re-

sist timing/cache side-channel attacks but not power analysis attacks. Very recently,

Marzougui et al. reported that our FACCT sampler and its variant used by the unmasked

GALACTICS digital signature implementation [BBE+19] are insecure against machine

learning based power analysis side-channel attacks [MWG+21]. For applications that re-
quire power analysis side-channel resistance, it is an interesting open problem to design

a practical power analysis resistant variant of the FACCT sampler with a small efficiency

overhead over the original FACCT algorithm.

Complete Provable Precision Analysis of Latte HIBE As mentioned in Section

6.3, in order to adapt the Rényi divergence argument from Falcon [PFH+17, HPRR20] to

provide the provable arithmetic precision bounds of the FFT sampling procedure under

the Latte HIBE settings, in addition to the analysis of 𝛿𝜎 in Section 6.3, we also need the

upper bound of the absolute errorΔ𝑐 among the center 𝑐 for the integer discrete Gaussian

sampling subroutine in ffSampling. We believe this can be done using a similar approach

as our ffLDL error analysis in Section 6.3 to analyse the absolute errors of the ffSampling

algorithm and leave it to future work.

Improved Precision Analysis for Latte HIBE in Practice Although we may adapt

our provable precision analysis results in the Latte implementation, however, as dis-

cussed in Section 6.3.4, our provable precision upper bounds might be significantly over-

estimated at the root of the ffLDL tree. These overestimated errors from the root will

106 CHAPTER 7. CONCLUSION AND DISCUSSION

then be propagated to the error analysis of other non-root nodes in the tree. Therefore,

one open problem is to sharpen our theoretical error bounds for ffLDL to reduce the

large gap in the error bounds we obtained among the tree values. Another approach

could be to use the empirical experimental results instead for the error bounds of the

root in the ffLDL tree, and then use Algorithm 6.8 to work out the errors of non-root

nodes. Since the run-time speed of the Latte algorithms are linearly proportional to

the floating-point arithmetic precision, we can also accelerate the run-time speed of our

Latte implementation by improving the precision analysis.

Fully Constant-time Latte HIBE Implementation As mentioned above, our cur-

rent Latte HIBE implementation is not constant-time. To make the Latte HIBE imple-

mentation constant-time, we need to fix the floating-point arithmetic precision in our

constant-time implementation and employ suitable constant-time floating-point arith-

metic operations i.e. replacing those non-constant time arithmetic operations from mul-

tiprecision libraries [EGTZ18, FHL+07, GT15]. For the constant-time floating-point arith-

metic operations, we can adapt techniques from the constant-time Falcon implementa-

tion [PRR19].

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE

in the standard model. In EUROCRYPT, volume 6110 of Lecture Notes in
Computer Science, pages 553–572. Springer, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation

in fixed dimension and shorter-ciphertext hierarchical IBE. In CRYPTO,
volume 6223 of Lecture Notes in Computer Science, pages 98–115. Springer,

2010.

[ABB+19] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Patrick Longa, and Jeffer-

son E. Ricardini. The lattice-based digital signature scheme qTESLA. IACR
Cryptology ePrint Archive, 2019:85, 2019.

[ABG+21] Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and Thor

Tunge. Lattice-based proof of shuffle and applications to electronic voting.

In CT-RSA, volume 12704 of Lecture Notes in Computer Science, pages 227–

251. Springer, 2021.

[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-

quantum key exchange - a new hope. IACR Cryptology ePrint Archive,
2015:1092, 2015.

[Aum19] Jean-Philippe Aumasson. Guidelines for low-level cryptography software.

https://github.com/veorq/cryptocoding, 2019. Accessed: 2020-01-28.

[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Jo-

hannes Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick

Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. Submis-

sion to NIST’s post-quantum project: lattice-based digital signature scheme

qTESLA. https://qtesla.org/, 2017. Accessed: 2018-11-03.

107

https://github.com/veorq/cryptocoding
https://qtesla.org/

108 REFERENCES

[BBE+19] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Mélissa

Rossi, and Mehdi Tibouchi. GALACTICS: Gaussian sampling for lattice-

based constant- time implementation of cryptographic signatures, revisited.

In CCS, pages 2147–2164. ACM, 2019.

[BC07] Nicolas Brisebarre and Sylvain Chevillard. Efficient polynomial l-

approximations. In IEEE Symposium on Computer Arithmetic, pages 169–

176. IEEE Computer Society, 2007.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-

quantum key exchange for the TLS protocol from the ring learning with

errors problem. In IEEE Symposium on Security and Privacy, pages 553–570.
IEEE Computer Society, 2015.

[BEP+21] Pauline Bert, Gautier Eberhart, Lucas Prabel, Adeline Roux-Langlois, and

Mohamed Sabt. Implementation of lattice trapdoors on modules and appli-

cations. In PQCrypto, volume 12841 of Lecture Notes in Computer Science,
pages 195–214. Springer, 2021.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the

weil pairing. SIAM J. Comput., 32(3):586–615, 2003.

[BFRS18] Pauline Bert, Pierre-Alain Fouque, Adeline Roux-Langlois, and Mohamed

Sabt. Practical implementation of ring-SIS/LWE based signature and IBE.

In PQCrypto, volume 10786 of Lecture Notes in Computer Science, pages 271–
291. Springer, 2018.

[BHK+22] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and

Shang-Yi Yang. Neon NTT: faster dilithium, kyber, and saber on cortex-a72

and apple M1. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):221–244,
2022.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.

Flush, gauss, and reload - A cache attack on the BLISS lattice-based signa-

ture scheme. In CHES, volume 9813 of Lecture Notes in Computer Science,
pages 323–345. Springer, 2016.

[BJM+20] Nicolas Brisebarre, Mioara Joldes, Jean-Michel Muller, Ana-Maria Nanes,

and Joris Picot. Error analysis of some operations involved in the cooley-

tukey fast fourier transform. ACM Trans. Math. Softw., 46(2):11:1–11:27,
2020.

REFERENCES 109

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Ste-

infeld. Improved security proofs in lattice-based cryptography: Using the

Rényi divergence rather than the statistical distance. In ASIACRYPT (1),
volume 9452 of Lecture Notes in Computer Science, pages 3–24. Springer,

2015.

[CG50] Cramer and Gabriel. Introduction a l’analyse des lignes courbes algebriques
par Gabriel Cramer. chez les freres Cramer & Cl. Philibert, 1750.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gre-

gor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for ntt-

unfriendly rings new speed records for saber and NTRU on cortex-m4 and

AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees,

or how to delegate a lattice basis. In EUROCRYPT, volume 6110 of Lecture
Notes in Computer Science, pages 523–552. Springer, 2010.

[CJL10] Sylvain Chevillard, Mioara Joldes, and Christoph Quirin Lauter. Sollya: An

environment for the development of numerical codes. In ICMS, volume

6327 of Lecture Notes in Computer Science, pages 28–31. Springer, 2010.

[CKKS19] Jung Hee Cheon, Duhyeong Kim, Taechan Kim, and Yongha Son. A new

trapdoor over Module-NTRU lattice and its application to ID-based encryp-

tion. IACR Cryptol. ePrint Arch., 2019:1468, 2019.

[CLJ18] Sylvain Chevillard, Christoph Lauter, and Mioara Joldes. Users‘ manual for

the sollya tool. https://www.sollya.org/releases/sollya-7.0/sollya-7.0.pdf,

2018. Accessed: 2021-10-11.

[CPS+20] Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre

Wallet, and Keita Xagawa. Modfalcon: Compact signatures based on

module-ntru lattices. In AsiaCCS, pages 853–866. ACM, 2020.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of

complex Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[DB15] Chaohui Du and Guoqiang Bai. Towards efficient discrete Gaussian sam-

pling for lattice-based cryptography. In FPL, pages 1–6. IEEE, 2015.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.

Lattice signatures and bimodal Gaussians. In CRYPTO (1), volume 8042

of Lecture Notes in Computer Science, pages 40–56. Springer, 2013.

https://www.sollya.org/releases/sollya-7.0/sollya-7.0.pdf

110 REFERENCES

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,

New York, NY, USA, 1986.

[DFW20] Yusong Du, Baoying Fan, and Baodian Wei. Arbitrary-centered discrete

gaussian sampling over the integers. In ACISP, volume 12248 of Lecture
Notes in Computer Science, pages 391–407. Springer, 2020.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete

gaussians for lattice-based cryptography on a constrained device. Appl.
Algebra Eng. Commun. Comput., 25(3):159–180, 2014.

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor

Seiler, and Damien Stehlé. CRYSTALS - dilithium: Digital signatures from

module lattices. IACR Cryptology ePrint Archive, 2017:633, 2017.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-

based encryption over NTRU lattices. In ASIACRYPT (2), volume 8874 of

Lecture Notes in Computer Science, pages 22–41. Springer, 2014.

[DN12] Léo Ducas and Phong Q. Nguyen. Faster Gaussian lattice sampling using

lazy floating-point arithmetic. In ASIACRYPT, volume 7658 of Lecture Notes
in Computer Science, pages 415–432. Springer, 2012.

[DP16] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In ISSAC,
pages 191–198. ACM, 2016.

[DWZ19] Yusong Du, Baodian Wei, and Huang Zhang. A rejection sampling algo-

rithm for off-centered discrete Gaussian distributions over the integers. SCI-
ENCE CHINA Information Sciences, 62(3):39103:1–39103:3, 2019.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.

Side-channel attacks on BLISS lattice-based signatures: Exploiting branch

tracing against strongswan and electromagnetic emanations in microcon-

trollers. In CCS, pages 1857–1874. ACM, 2017.

[EGTZ18] Andreas Enge, Mickaël Gastineau, Philippe Théveny, and Paul Zimmer-

mann. mpc — A library for multiprecision complex arithmetic with exact
rounding. INRIA, 1.1.0 edition, January 2018. http://mpc.multiprecision.

org/.

[ETS19] ETSI. Quantum-Safe Identity-based Encryption. Technical report, The Eu-

ropean Telecommunications Standards Institute, Sophia-Antipolis, France,

2019.

http://mpc.multiprecision.org/
http://mpc.multiprecision.org/

REFERENCES 111

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and

Paul Zimmermann. MPFR: A multiple-precision binary floating-point li-

brary with correct rounding. ACM Trans. Math. Softw., 33(2):13, 2007.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric

and symmetric encryption schemes. In CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 537–554. Springer, 1999.

[Fog17] Agner Fog. VCL C++ vector class library. www.agner.org/optimize/

vectorclass.pdf, 2017. Accessed: 2019-08-01.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-

phic encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[GM18] Nicholas Genise and Daniele Micciancio. Faster gaussian sampling for trap-

door lattices with arbitrary modulus. In EUROCRYPT (1), volume 10820 of

Lecture Notes in Computer Science, pages 174–203. Springer, 2018.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for

hard lattices and new cryptographic constructions. In STOC, pages 197–

206. ACM, 2008.

[GS66] W. Morven Gentleman and G. Sande. Fast fourier transforms: for fun and

profit. In AFIPS Fall Joint Computing Conference, volume 29 of AFIPS Con-
ference Proceedings, pages 563–578. AFIPS / ACM / Spartan Books, Wash-

ington D.C., 1966.

[GT15] Torbjrn Granlund and Gmp Development Team. GNU MP 6.0 Multiple Pre-
cision Arithmetic Library. Samurai Media Limited, London, GBR, 2015.

[Gue09] Shay Gueron. Intel’s new AES instructions for enhanced performance and

security. In FSE, volume 5665 of Lecture Notes in Computer Science, pages
51–66. Springer, 2009.

[HHP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman,

andWilliamWhyte. NTRUSIGN: digital signatures using the NTRU lattice.

In CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages 122–

140. Springer, 2003.

[HKR+18] James Howe, Ayesha Khalid, Ciara Rafferty, Francesco Regazzoni, and

Máire O’Neill. On practical discrete Gaussian samplers for lattice-based

cryptography. IEEE Trans. Computers, 67(3):322–334, 2018.

www.agner.org/optimize/vectorclass.pdf
www.agner.org/optimize/vectorclass.pdf

112 REFERENCES

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryp-

tion. In EUROCRYPT, volume 2332 of Lecture Notes in Computer Science,
pages 466–481. Springer, 2002.

[HLS18] Andreas Hülsing, Tanja Lange, and Kit Smeets. Rounded Gaussians - fast

and secure constant-time sampling for lattice-based crypto. In Public Key
Cryptography (2), volume 10770 of Lecture Notes in Computer Science, pages
728–757. Springer, 2018.

[HPRR20] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi.

Isochronous gaussian sampling: From inception to implementation. In

PQCrypto, volume 12100 of Lecture Notes in Computer Science, pages 53–

71. Springer, 2020.

[Int19] Intel. Intel intrinsics guide. https://software.intel.com/sites/landingpage/

IntrinsicsGuide/, 2019. Accessed: 2019-03-06.

[Kar16] Charles F. F. Karney. Sampling exactly from the normal distribution. ACM
Trans. Math. Softw., 42(1):3:1–3:14, 2016.

[KHR+18] Ayesha Khalid, James Howe, Ciara Rafferty, Francesco Regazzoni, and

Máire O’Neill. Compact, scalable, and efficient discrete gaussian samplers

for lattice-based cryptography. In ISCAS, pages 1–5. IEEE, 2018.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close.

In SODA, pages 937–941. ACM/SIAM, 2000.

[Knu98] Donald Ervin Knuth. The art of computer programming, Volume II: Seminu-
merical Algorithms, 3rd Edition. Addison-Wesley, 1998.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[KRR+18] Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Ver-

cauteren, and Ingrid Verbauwhede. Constant-time discrete Gaussian sam-

pling. IEEE Trans. Computers, 67(11):1561–1571, 2018.

[KRVV19] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid

Verbauwhede. Pushing the speed limit of constant-time discrete Gaussian

sampling. A case study on falcon. IACR Cryptology ePrint Archive, 2019:267,
2019.

[KY76] D. Knuth andA. Yao. Algorithms and Complexity: NewDirections and Recent
Results, chapter The complexity of nonuniform random number generation.

Academic Press, 1976.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

REFERENCES 113

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and

learning with errors over rings. In EUROCRYPT, volume 6110 of Lecture
Notes in Computer Science, pages 1–23. Springer, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reduc-

tions for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[MAR17] Carlos Aguilar Melchor, Martin R. Albrecht, and Thomas Ricosset. Sam-

pling from arbitrary centered discrete Gaussians for lattice-based cryptog-

raphy. In ACNS, volume 10355 of Lecture Notes in Computer Science, pages
3–19. Springer, 2017.

[MBdD+10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre

Jeannerod, Vincent Lefèvre, GuillaumeMelquiond, Nathalie Revol, Damien

Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser,
2010.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO, volume

218 of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.

[MKMS21] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam

Soleimanian. Efficient lattice-based inner-product functional encryption.

IACR Cryptol. ePrint Arch., page 46, 2021.

[MLL+13] E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X. . Zhou, and J. L.

O’Brien. Experimental realisation of Shor’s quantum factoring algorithm

using qubit recycling. In 2013 Conference on Lasers Electro-Optics Europe
International Quantum Electronics Conference CLEO EUROPE/IQEC, pages
1–1, May 2013.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,

tighter, faster, smaller. In EUROCRYPT, volume 7237 of Lecture Notes in
Computer Science, pages 700–718. Springer, 2012.

[MR18] Carlos Aguilar Melchor and Thomas Ricosset. CDT-based Gaussian sam-

pling: From multi to double precision. IEEE Trans. Computers, 67(11):1610–
1621, 2018.

[MSO17] Sarah McCarthy, Neil Smyth, and Elizabeth O’Sullivan. A practical imple-

mentation of identity-based encryption over NTRU lattices. In IMACC, vol-
ume 10655 of Lecture Notes in Computer Science, pages 227–246. Springer,

2017.

114 REFERENCES

[MW17] Daniele Micciancio and Michael Walter. Gaussian sampling over the in-

tegers: Efficient, generic, constant-time. In CRYPTO (2), volume 10402 of

Lecture Notes in Computer Science, pages 455–485. Springer, 2017.

[MWG+21] Soundes Marzougui, Nils Wisiol, Patrick Gersch, Juliane Krämer, and Jean-

Pierre Seifert. Machine-learning side-channel attacks on the GALACTICS

constant-time implementation of BLISS. CoRR, abs/2109.09461, 2021.

[NIS15] NIST. SHA-3 standard: Permutation-based hash and extendable-output

functions. https://doi.org/10.6028/NIST.FIPS.202, 2015.

[NIS16a] NIST. NIST post-quantum competition. http://csrc.nist.gov/groups/ST/

post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf,

2016. Accessed: 2018-10-31.

[NIS16b] NIST. SHA-3 derived functions: cSHAKE, KMAC, TupleHash, and Parallel-

Hash. https://doi.org/10.6028/NIST.SP.800-185, 2016.

[OSHG19] Tobias Oder, Julian Speith, Kira Höltgen, and Tim Güneysu. Towards prac-

tical microcontroller implementation of the signature scheme falcon. In

PQCrypto, volume 11505 of Lecture Notes in Computer Science, pages 65–80.
Springer, 2019.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not

to be: Attacking strongswan’s implementation of post-quantum signatures.

In CCS, pages 1843–1855. ACM, 2017.

[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-

based signatures on reconfigurable hardware. In CHES, volume 8731 of

Lecture Notes in Computer Science, pages 353–370. Springer, 2014.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In

CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 80–97.

Springer, 2010.

[Pes16] Peter Pessl. Analyzing the shuffling side-channel countermeasure for

lattice-based signatures. In INDOCRYPT, volume 10095 of Lecture Notes
in Computer Science, pages 153–170, 2016.

[PFH+17] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William

Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier lattice-based compact sig-

natures over NTRU. https://falcon-sign.info/, 2017. Accessed: 2018-10-31.

https://doi.org/10.6028/NIST.FIPS.202
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.6028/NIST.SP.800-185
https://falcon-sign.info/

REFERENCES 115

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance

ideal lattice-based cryptography on 8-bit atxmega microcontrollers. In LAT-
INCRYPT, volume 9230 of Lecture Notes in Computer Science, pages 346–365.
Springer, 2015.

[Por19] Thomas Pornin. New efficient, constant-time implementations of falcon.

IACR Cryptol. ePrint Arch., page 893, 2019.

[PP19] Thomas Pornin and Thomas Prest. More efficient algorithms for the NTRU

key generation using the field norm. In Public Key Cryptography (2), volume

11443 of Lecture Notes in Computer Science, pages 504–533. Springer, 2019.

[Pre15] Thomas Prest. Gaussian sampling in lattice-based cryptography, 2015.

[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using the

Rényi divergence. InASIACRYPT (1), volume 10624 of Lecture Notes in Com-
puter Science, pages 347–374. Springer, 2017.

[PRR19] Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Simple, fast and

constant-time Gaussian sampling over the integers for Falcon. Second PQC

Standardization Conference, https://csrc.nist.gov/CSRC/media/Events/

Second-PQC-Standardization-Conference/documents/accepted-papers/

rossi-simple-fast-constant.pdf, 2019. Accessed: 2019-08-13.

[RBV17] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code

constant time? In DATE, pages 1697–1702. IEEE, 2017.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and

cryptography. In STOC, pages 84–93. ACM, 2005.

[RRVV14] Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Ver-

bauwhede. Compact and side channel secure discrete Gaussian sampling.

IACR Cryptology ePrint Archive, 2014:591, 2014.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for

obtaining digital signatures and public-key cryptosystems. Commun. ACM,

21(2):120–126, 1978.

[RVV13] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High

precision discrete Gaussian sampling on fpgas. In Selected Areas in Cryp-
tography, volume 8282 of Lecture Notes in Computer Science, pages 383–401.
Springer, 2013.

[Saa16] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermea-

sures for ring-lwe. IACR Cryptology ePrint Archive, 2016:276, 2016.

https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf

116 REFERENCES

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for ring-LWE

lattice cryptography. IACR Cryptology ePrint Archive, 2018:39, 2018.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In

CRYPTO, volume 196 of Lecture Notes in Computer Science, pages 47–53.

Springer, 1984.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms

and factoring. In FOCS, pages 124–134. IEEE Computer Society, 1994.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case

problems over ideal lattices. In EUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 27–47. Springer, 2011.

[SSZ18] Ron Steinfeld, Amin Sakzad, and Raymond K. Zhao. Titanium: Proposal for

a nist post-quantum public-key encryption and kem standard specifications

document version 1.1. http://users.monash.edu.au/~rste/Titanium_v11.pdf,

2018. Submitted to NIST Post-Quantum Competition. Accessed: 2019-01-

08.

[SZJ+21] Shuo Sun, Yongbin Zhou, Yunfeng Ji, Rui Zhang, and Yang Tao. Generic, ef-

ficient and isochronous gaussian sampling over the integers. IACR Cryptol.
ePrint Arch., 2021:199, 2021.

[TLLV07] David B. Thomas, Wayne Luk, Philip Heng Wai Leong, and John D. Vil-

lasenor. Gaussian random number generators. ACM Comput. Surv.,
39(4):11, 2007.

[von51] John von Neumann. Various techniques used in connection with random

digits. In A.S. Householder, G.E. Forsythe, and H.H. Germond, editors,

Monte Carlo Method, pages 36–38. National Bureau of Standards Applied

Mathematics Series, 12, Washington, D.C.: U.S. Government Printing Of-

fice, 1951.

[ZCHW17] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William Whyte. NIST

PQ submission: pqNTRUSign a modular lattice signature scheme. https:

//www.onboardsecurity.com/nist-post-quantum-crypto-submission, 2017.

Accessed: 2019-08-01.

[ZMS+21] Raymond K. Zhao, SarahMcCarthy, Ron Steinfeld, Amin Sakzad, andMáire

O’Neill. Quantum-safe HIBE: does it cost a latte? IACR Cryptol. ePrint Arch.,
page 222, 2021.

http://users.monash.edu.au/~rste/Titanium_v11.pdf
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	1.1 Contributions
	1.2 Thesis Structure

	Preliminaries
	2.1 Notations
	2.2 Mathematical Background
	2.2.1 Lattice
	2.2.2 Arithmetic Errors
	2.2.3 Errors of Fast Fourier Transform
	2.2.4 Divergence
	2.2.5 FFT Sampling of Lattice Discrete Gaussian
	2.2.6 (Hierarchical) Identity-based Encryption
	2.2.7 Miscellaneous

	Literature Review
	3.1 Discrete Gaussian Sampler
	3.1.1 Cumulative Distribution Table
	3.1.2 Knuth-Yao Algorithm
	3.1.3 Rejection & Binary Sampling
	3.1.3.1 Binary Sampling Method

	3.1.4 Convolution Methods

	3.2 Lattice-based (Hierarchical) Identity-based Encryption
	3.2.1 Summary of Latte HIBE Scheme

	Zero-centered Discrete Gaussian Sampler
	4.1 Directly Approximating the Exp Function
	4.2 FACCT Algorithm
	4.2.1 FACCT Relative Error Analysis
	4.2.2 AVX2 Implementation

	4.3 Concrete Rényi Divergence Based Convolution Sampling
	4.4 Evaluation
	4.5 Applications
	4.5.1 Sampling from the BLISS-I Standand Deviation
	4.5.2 qTesla
	4.5.3 Falcon

	4.6 Research Impact

	Arbitrary-centered Discrete Gaussian Sampler
	5.1 COSAC Algorithm
	5.2 Accuracy Analysis
	5.3 Precision Analysis
	5.4 Evaluation
	5.5 Research Impact

	Lattice-based HIBE (Latte)
	6.1 Latte Software Design Features and Considerations
	6.1.1 Techniques from Falcon and ModFalcon
	6.1.2 Discrete Gaussian Sampling over the Integers

	6.2 Optimised ffLDL Algorithm
	6.3 ffLDL Error Analysis
	6.3.1 Error Analysis of D in ffLDL
	6.3.2 Error Analysis of L in ffLDL
	6.3.3 ffLDL Error Computation Algorithm
	6.3.4 Practical Implication

	6.4 Evaluation

	Conclusion and Discussion
	7.1 Future Works

	References

