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Abstract

Quasi-two-dimensional (Q2D) flows exhibit three-dimensionality which is either con-

tained to asymptotically small regions, or is asymptotically small in amplitude. In

spite of this, the oft-investigated route to large scale Q2D turbulence, from a Q2D lam-

inar state, is through the generation of small scale three-dimensional (3D) turbulence,

which two-dimensionalizes. The overarching aim of this thesis is to determine whether

a Q2D laminar state can directly transition to Q2D turbulence. However, the gold

standard for generating turbulence is with 3D perturbations, which cannot be present

in purely Q2D routes to turbulence.

This thesis shows that purely Q2D routes to turbulence are not only possible, but ex-

hibit distinct differences to the presumed optimal (maximized nonlinear growth) routes

to turbulence in 3D systems. Understanding a purely Q2D route to turbulence may

aid predictions of 3D magnetohydrodynamic (MHD) flows in Q2D regimes. Predicting

the properties of an MHD flow of an electrically conducting fluid through the coolant

ducts of a magnetic confinement fusion reactor forms the practical motivation of this

research.

The purely Q2D transitions are initiated by laminar perturbations, to permit ob-

servation of the inception of turbulence. First, perturbations maximizing transient

growth are considered. However, at subcritical Reynolds numbers, these trigger only

single turbulent episodes. In spite of this, further analysis provides key insights into how

nonlinearity manifests and turbulence develops. Nonlinear analogues of the Orr mech-

anism, and the formation of thin, arched jets of vorticity, which form the backbones

underlying the large Q2D structures, are particularly important.

Supercritical Reynolds numbers, and the dependence on the level of imposed friction

(magnetic field strength) are then considered. Interestingly, even when bifurcation

analysis implies that subcritical transitions are possible, they are rarely observed; in

such cases, even supercriticality is not sufficient to guarantee transition. This result

depends strongly on the imposed level of friction.

By focusing on a friction parameter capable of subcritical transition, purely Q2D

routes to the first sustained subcritical Q2D turbulence are observed. To initiate the

transition, it will ultimately prove best to forgo transient growth, and to instead opti-

mally energize the leading eigenmode, via its adjoint. This laminar nonmodal pertur-

bation provides access to the lower edge state on the laminar-turbulent basin, through
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a weakly nonlinear route. However, the direct numerical simulations slightly devi-

ate from the classical predictions of a subcritical bifurcation upon departing the edge.

Rather than a slow, modulated growth to turbulence, departure from the edge state is

rapid, which may indicate that the modulated base flow briefly experiences supercriti-

cal conditions. Overall, transitions to sustained turbulence are only observed at weakly

subcritical Reynolds numbers.

Thus, to tackle the practical application of this research, in reducing the Reynolds

number required to sustain turbulence in MHD cooling conduits under strong magnetic

fields, modifications are made to the base flow. Base flow inflection points are intro-

duced via a time-varying pressure gradient, which greatly reduces the critical Reynolds

number. However, inciting and sustaining turbulence with these modified base flows is

still problematic when at low Reynolds numbers.
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sels et al. 2019) (Pothérat 2007)(Vo et al. 2017)(Krasnov et al. 2010) (Roberts 1967)(Levin

et al. 2005)(Albrecht et al. 2006)(Pringle et al. 2012)(Kerswell et al. 2014)(Duguet et al.

2009)(Duguet et al. 2013) (Farano et al. 2016)(Zammert & Eckhardt 2019)(Duguet et al.

2012) (Cherubini et al. 2011)(Beneitez et al. 2019)(Vavaliaris et al. 2020)(Khapko et al.

2014)(Cherubini et al. 2015)(Budanur et al. 2020)(Schmid & Henningson 2001)(Butler

& Farrell 1992)(Hussam et al. 2012b)(Sheard et al. 2009) (Karniadakis et al. 1991)(Reddy

et al. 1993)(Trefethen et al. 1993)(Barkley et al. 2008) (Blackburn et al. 2008)(Pringle

et al. 2015)(Pringle & Kerswell 2010)(de les Valls et al. 2011)(Vetcha 2012)(Bühler

1995) (Bühler 1996)(Bühler 1998) (Smolentsev 2009)

xii



Contents

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Review of magnetohydrodynamics and its approximation in duct flows 11

2.1 Approximations made to MHD duct flows . . . . . . . . . . . . . . . . . 12

2.2 Derivation of the Q2D model . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Applicability and accuracy of the Q2D model; a literature review . . . . 22

2.4 Practical application and baseline comparisons from the literature . . . 31

2.5 The accuracy of Q2D modelling in the current context . . . . . . . . . . 34

3 The means by which perturbation energy grows and flows transition

to turbulence 45

3.1 The perturbation decomposition of an instantaneous flow field . . . . . . 46

3.2 Modal stability and criticality; exponential perturbation energy growth . 48

3.3 Nonmodal initial value problems; algebraic perturbation energy growth . 58

3.4 A dynamical systems perspecitive of transitions to turbulence, and some

criteria to aid identification of turbulence . . . . . . . . . . . . . . . . . 71

3.5 Some theoretical routes to turbulence . . . . . . . . . . . . . . . . . . . 78

3.6 Predicting and observing turbulent transitions; a literature review . . . 90

3.7 Kinetic energy budgets and identifying turbulence via Fourier spectra . 98

4 Aims 113

5 Subcritical route to turbulence via the Orr mechanism in a quasi-two-

dimensional boundary layer 115

5.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Transition to turbulence in quasi-two-dimensional MHD flow driven

by lateral walls 139

6.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xiii



7 Subcritical transitions to sustained turbulence in quasi-two-dimensional

duct flows 171

7.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 State space representation of sustained turbulence . . . . . . . . . . . . 174

7.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.4 Edge tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5 Edge state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6 Reynolds number and target time variation . . . . . . . . . . . . . . . . 189

7.7 Nonlinear transient growth . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 Stability of pulsatile quasi-two-dimensional duct flows under a trans-

verse magnetic field 203

8.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9 Conclusions 241

Appendices 245

A Support for claims that Q2D turbulence is observed 245

B Heat transfer enhancement computations with a passive scalar 251

C The effect of higher Reynolds number on sustaining turbulence 257

D Flow field comparisons; initial conditions and edge states 259

E The effect of amplitude ratio on Q2D transitions in pulsatile flows 265

F Support for claims that intermittent turbulence is sustained 269

G An improved estimate for the threshold Reynolds number above which

turbulence is sustained 273

xiv



Chapter 1

Introduction

1.1 Motivations

Broadly, fluid flows are either laminar or turbulent. A laminar flow is ordered, with flow

structures predominantly characterized by large length scales. Such flows exhibit poor

momentum transfer, as so few length scales are present. On the one hand, this leads to

smaller frictional forces transferred to the laminar flow, from a no-slip boundary. But

equally, other transfers from the wall, such as heat, are poor, and inefficiently mixed

through the fluid. In contrast, a turbulent flow is disordered, with flow structures

exhibiting a wide range of scales, from large, to very small. With so many scales

present, momentum is efficiently transferred. While this leads to increased frictional

forces, so too is mixing improved. In theory, the question the engineer then asks

themselves, is do I want a laminar flow, or a turbulent one? In reality, the question is

more often can the flow be kept laminar, given the ubiquity of turbulence in nature.

However, in this thesis, the question considered is instead, when can turbulence be

triggered and sustained? Thus, this work has two motivations, one practical, and the

other theoretical.

The practical motivation for this research focuses on the efficient excitement of tur-

bulence. Typically, turbulent duct flows are undesirable, due to increased pumping

costs (Hof et al. 2010; Kühnen et al. 2018). However, in certain situations, the benefits

of greatly enhanced turbulent mixing outweigh the drawbacks in pumping costs. One

such situation, toward which this thesis is directed, is the magnetohydrodynamic flow

through a dual coolant/reebreeder duct of a magnetic confinement fusion reactor (Bar-

leon et al. 2000a,b). The coolant ducts blanket the plasma chamber and are thereby

subjected to strong pervading magnetic fields, which tend to two-dimensionalize and

relaminarize the flow. The possibility of these coolant ducts being self-cooled, and
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thereby self-sufficient, is of practical interest due to their relative simplicity compared

to other designs. However, the predicted heat transfer rates are insufficient, if the duct

flows remain laminar. Thus, sustained turbulent flows, and their accompanying boost

to heat transfer rates, are sought.

The theoretical motivation regards the unexplored dynamics of the equations gov-

erning quasi-two-dimensional (Q2D) flows, which may be present in fusion relevant

regimes, and can also approximate large scale geophysical and astrophysical flows.

Clear subcritical transitions to sustained turbulence are yet to be numerically observed

in Q2D flows, and are not well understood. Furthermore, it is unknown whether Q2D

turbulence can be generated solely by Q2D mechanisms, or if Q2D turbulence is the

saturated state of initially three-dimensional (3D) turbulence. The complications quasi-

two-dimensionality introduces also necessitate new avenues of investigation, for what

is ultimately an old problem (Reynolds 1883). This new outlook may also aid in for-

mulating universal explanations of subcritical transitions to turbulence, as much still

remains unanswered in the field.

1.2 Foundations

The dimensional velocity vector ǔ = (ǔ, v̌, w̌) and pressure scalar p̌, for an incompress-

ible, Newtonian fluid with density ρ and kinematic viscosity ν, are solutions to the

Navier–Stokes equations:

∂ǔ

∂ť
= −(ǔ · ∇̌)ǔ− 1

ρ
∇̌p̌+ ν∇̌2ǔ+ f̌ , (1.1)

∇̌ · ǔ = 0, (1.2)

subject an initial condition, where ť is the dimensional time, and forcing and boundary

conditions, where f̌ represents a dimensional force. The dimensional gradient operator

is ∇̌ = (∂̌x, ∂̌y, ∂̌z), where ∇̌· represents taking the divergence, while ∇̌2 denotes the

vectorial Laplacian. Magnetohydrodynamic (MHD) phenomena will not be considered

until Chapter 2.

The selection or design of an initial condition on the velocity ǔ0 = ǔ(ť = 0) is a key

part of this thesis, and will be discussed in detail in later sections. For now, it is only

noted that the selection of ǔ0 requires the choice of the structure (e.g. random noise,

a leading eigenmode from stability analysis, an analytic solution under fully developed

flow assumptions) and magnitude of the initial velocity field. Magnitudes are quantified
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Figure 1.1: Sketch of the duct geometry, indicating the relevant characteristic lengths. The

streamwise direction is periodic, with ǔ(0) = ǔ(Lx) for all κ. For a specified n (n = 2 as

drawn), periodicity is also valid over ǔ(0) = ǔ(lx) when assuming linearity. A mode with

κ = n = 2 (blue) can, through nonlinear interaction, generate a mode with κ = 1 (< n;

red) which breaks periodicity over lx. This point is highlighted here as the orthodox choice

(κ = n = 1) is not always made in this thesis, to test domain length effects. The linear mode

is defined as the lowest mode periodic over lx, ǔ(0) = ǔ(lx).

by the energy norm

||ǔ||E =

(∫
ǔ · ǔdΩ

)1/2

, (1.3)

where Ω represents the computational domain, and where the use of the notation || . . . ||
should be taken to mean the energy norm squared, e.g. ||ǔ|| = ||ǔ||2E. Note from the

form of the Navier–Stokes equations, Eqs. (1.1) and (1.2), that an initial condition on

the pressure is not required.

The forcing condition f̌ may include body forces (e.g. gravity), driving forces (e.g. a

constant or time varying pressure gradient) or externally imposed frictional forces,

which may be a function of the velocity vector. Of these, body forces will be neglected,

driving forces will sometimes be included, and an externally imposed frictional force

will always be present.

Before moving to boundary conditions, the domain of interest is defined. With a

right-handed coordinate system, the position vector x̌ = (x̌, y̌, ž) fully describes each
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point in the spatial domain. As this thesis is solely focused on duct flows, the x direction

shall henceforth be known as the streamwise wall-parallel direction, the y direction the

in-plane wall-normal, and the z direction the out-of-plane wall-normal (the italicised

terms for short). By virtue of the duct walls, characteristic lengths at the duct scale in

the y and z directions will be based on the duct (half) height Ly and width Lz. These

characteristic lengths are sketched in Fig. 1.1. However, the streamwise direction yields

no natural characteristic length, as mathematically, the walls are perfectly smooth

and of infinite streamwise extent. Thus, the x direction is considered periodic, so

ǔ(x̌) = ǔ(x̌ + 2πn/α̌) and p̌(x̌) = p̌(x̌ + 2πn/α̌), where α̌ is the (dimensional) wave

number, and n an integer. The wave number α̌ then defines a characteristic wavelength

lx = 2π/α̌ and characteristic duct length Lx = nlx. Sinusoidal modes with wavelength

2πn/κα̌ exactly fit within the domain, for κ = 0, 1, 2, . . ., ∞. However, for any

κ < n, excluding the streamwise independent κ = 0, periodicity can be broken over

lx, ǔ(x̌) ̸= ǔ(x̌ + lx), as is shown in Fig. 1.1. Thus, nonlinearly, periodicity must be

enforced over Lx, ǔ(x̌) = ǔ(x̌ + Lx). Linearly, the κ = n mode cannot interact with

modes of any other wave number, and periodicity is maintained over ǔ(x̌) = ǔ(x̌+ lx).

If a driving pressure gradient is applied, it is included in the forcing condition f̌ , so the

fluctuating part of the pressure p̌, remains periodic.

To fully define the boundary conditions, and thereby the problem, requires con-

straints on ǔ and p̌ at the duct walls, and the selection of n and α̌. The selection of n

and α̌ is not trivial, and is also the focus of a large part of this thesis. At all duct walls,

impermeable ǔ · ň = 0 and no-slip ǔ = ǔwall boundary conditions are applied, where

ň is a wall-normal unit vector and ǔwall is the prescribed wall velocity. The no-slip

condition is a Dirichlet boundary condition on the velocity, where ǔwall may be zero,

constant or time varying, by design, to enable analysis of various flows. If non-zero,

it may be the characteristic velocity for the flow. In this work, the out-of-plane duct

walls will always have zero velocity Dirichlet boundary conditions.

When considering boundary conditions on the pressure, there are two things to

note. First, as ∇̌p̌, rather than p̌, appears in Eq. (1.1), the pressure is only uniquely

defined up to an arbitrary constant. Second, the pressure does not directly have an

evolution equation (there are no ∂p̌/∂ť terms). Thus at each time ť, the pressure p̌ only

acts to enforce the divergence free condition, Eq. (1.2).

Quasi-two-dimensional flows are now introduced. To do so, the flow components
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and flow dimensions are defined. The total number of velocity components which are

non-zero somewhere within the domain represents the total number of flow components.

For example, a two-component flow has two of the three velocity components non-zero

(e.g. ǔ and v̌ non-zero at some or all x̌, and w̌ zero at all x̌). The total number of

non-zero derivatives (of any flow component) somewhere within the domain represents

the total number of flow dimensions. For example, a two-dimensional flow has at least

two non-zero derivatives of any velocity components (of which there can still be three),

e.g. ∂̌x and ∂̌y of any flow quantity are non-zero, somewhere within the spatial domain,

and ∂̌z of all flow quantities zero everywhere within the domain.

Quasi-two-dimensional flows are a class of three dimensional flows, with any number

of flow components. For a 3D flow to be classed as Q2D, it must exhibit:

� Three-dimensionality, of any amplitude, only in regions of asymptotically small

thickness (typically boundary layers), and/or

� Three-dimensionality, in any region, that is asymptotically small in amplitude.

In the duct setup introduced earlier, Fig. 1.1, a flow will be classed as Q2D if ∂̌z (of any

flow quantity) is large, but finite, only in asymptotically small regions of the flow, and

satisfies ∂̌z ≪ ∂̌x, ∂̌y everywhere else. The asymptotic qualification on these conditions

will be discussed shortly. However, it is important to note that no approximations

have yet been made about the flow. A three-dimensional flow is merely classified as

quasi-two-dimensional flow if it exhibits the aforementioned properties.

Three schematics follow in Fig. 1.2, one for a 3D flow that cannot be classed as

Q2D, another a 3D flow that may be classed as Q2D, and last, a 2D flow. To do so, the

domain is first subdivided, into regions of asymptotically small thickness near the duct

walls (shaded) and the remaining core flow. Thus, if ∂̌z is only large within the shaded

regions, and if at all other points in the domain ∂̌z is small (relatively speaking), the flow

can be classed as Q2D. Note that ∂̌x and ∂̌y can be of any magnitude in any region of

the domain, so long as they are not so large that they invalidate the timescale analysis

introduced in Chapter 2, § 2.1. To facilitate this comparison, structures in Fig. 1.2

have been visualized with two isolines of an in-plane velocity component. For example,

the black solid curves represent v̌ = 0, and the black dotted curves v̌ = 0.5v̌max. Thus,

the difference in velocity between any two points from the dotted to the solid curve is

∆v̌ = 0.5v̌max always, and some approximations of ∆v̌/∆x̌, ∆v̌/∆y̌ and ∆v̌/∆ž can be
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constructed over finite distances, where e.g. ∆x̌ represents a finite distance in x̌ between

two points. However, note that the constraint of ∂̌z of zero applies at all points outside

shaded regions.

Let us first consider the 3D flow that cannot be classed as Q2D: the characteristic

lengths of each of the flow structures in all three directions are of similar order of mag-

nitude. Furthermore, the complexity of the flow structure yields large ∆v̌/∆ž at many

locations within the domain, see out-of-plane Slice A (left column), and importantly

outside the regions of asymptotically small thickness. Thus, this 3D flow cannot be

classed as Q2D. Next, consider the 3D flow which can be classed as Q2D. Note first,

that the structure is elongated in the z direction, such that the out-of-plane character-

istic length of the flow structure is much larger than any in-plane characteristic length.

This leads to small ∆v̌/∆ž in the bulk of the flow, which if asymptotically small may

permit this 3D flow as being classed as Q2D. In addition, although the impermeable,

no-slip walls still induce large ∆v̌/∆ž near the walls, this then occurs within the asymp-

totically small (shaded) regions. Note that the accompanying in-plane Slice B (right

column) exhibits large ∆v̌/∆x̌, ∆v̌/∆y̌ outside the asymptotically thin regions. This is

not an issue for the Q2D assumption, although is of interest in ensuring that ∂̌z ≪ ∂̌x,

∂̌y everywhere else. Finally, the 2D flow is now considered. This flow is not possible in

a duct configuration, as the out-of-plane boundary conditions would either have to be

periodic, or free-slip surfaces. However, it does provide context, as it is only when ∂̌z

is everywhere zero that a 2D flow is produced.

Note that the 2D flow is not the limiting case of the Q2D flow (at finite ν), as

the limiting case represents finite gradients maintained in asymptotically thinner and

thinner regions near the walls. This, in itself, presents quite a challenge. Numerical

analysis would be far simpler if the limiting case were the two-dimensional flow. Instead,

the direct numerical simulation (DNS) of a full 3D domain is required to evolve a flow

classed as Q2D without approximation, and with (computationally expensive) high

resolution necessary to resolve the asymptotically thin regions. This issue would be

further exacerbated by the parameter regimes at which Q2D flows are observed. To

circumvent these challenges, 2D models have been developed (hereafter referred to as

Q2D models, rather than 2D models, to indicate that a modified version of the Navier–

Stokes equations are solved in a 2D domain). These models are based upon equations

that govern the velocity field averaged along the z direction, rigorously derived by
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Slice A

Slice B

x

y

z

Slice A Slice B
3D; not Q2D

y

z.

∆v̌/∆ž large

∆v̌/∆ž large

y

x

∆v̌/∆x̌ large

∆v̌/∆y̌ large

3D; contender for Q2D classification

y

z

∆v̌/∆ž small ∆v̌/∆y̌ large

∆v̌/∆ž large
∆v̌/∆y̌ large

y

x

∆v̌/∆x̌ large

∆v̌/∆y̌ large

2D; not possible with no-slip walls

y

z

∆v̌/∆ž zero

∆v̌/∆y̌ large

y

x

∆v̌/∆x̌ large

∆v̌/∆y̌ large

Figure 1.2: Sketches of three-dimensional, quasi-two-dimensional and two-dimensional flows

on slices, A and B, of the full three-dimensional domain. Shaded regions represent subdi-

visions of the domain with (asymptotically) small thickness. Approximations of derivatives

can be large over ∆x̌ or ∆y̌. However, derivatives with respect to ž can only be large within

the asymptotically small (shaded) regions, and must be asymptotically small elsewhere. For

flow structures, solid black lines represent v̌ = 0, and dotted black lines v̌ = 0.5v̌max.
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Sommeria & Moreau (1982) and Pothérat et al. (2000), which can then be evolved in a

two-dimensional domain (the modelling aspect comes from the approximation of some

of the three-dimensional effects in the 2D domain).

There are two common averaging procedures upon which Q2D models are based.

Both are mentioned here, although only the latter is applied in Chapter 2, § 2.2. Al-

though the same (low order) three-dimensional effects are modelled, they are introduced

differently.

The first approach is to consider the limits of certain key parameters (e.g. the

Reynolds number Re ≫ 1, among others), to justify the decomposition of the velocity

field as (Bühler 1996)

ǔ(x̌, y̌, ž) = −∂ψ̌(x̌, y̌)
∂y̌

ȟ(ž), v̌(x̌, y̌, ž) = −∂ψ̌(x̌, y̌)
∂x̌

ȟ(ž), w̌ = 0, (1.4)

where ψ̌, the streamfunction, represents the Q2D solution of the averaged equations.

The limits under which such a decomposition is justified yield the asymptotic qualifi-

cations mentioned earlier. The term ȟ(ž), which retains the three-dimensional effects,

requires modelling.

The second approach is to integrate each term in the governing equations, as

(Pothérat et al. 2000)

ǧ⊥(x̌, y̌) =

∫ Lz/2

−Lz/2
ǧ(x̌, y̌, ž) dž, (1.5)

where ǧ⊥ represent the integrated (often referred to as averaged) term. Terms of the

form ∂ǔ/∂ž yield conditions on ǔ at the walls after integration, which vanish after

applying the zero boundary conditions on velocities at the out-of-plane walls. How-

ever, terms of the form ∂2ǔ/∂ž2 yield conditions on the shear stress ∂ǔ/∂ž after in-

tegration. These remaining constraints on the shear stresses at the walls retain the

three-dimensional effects, and require modelling. Part of this modelling involves series

expansions of each flow quantity, in terms of key flow parameters. The choice of when

to truncate the series yields the asymptotic qualifications introduced earlier (the work

described in this thesis takes only the zeroth order expansion, omitting higher order

terms).

This section concludes with an introduction of the natural and industrial conditions

under which 3D flows may be classed as Q2D. Four examples of physical phenomena

capable of reducing ∂/∂ž in the bulk flow are (Davidson 2013):
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� The interaction of a strong uniform magnetic field oriented in the z direction with

an electrically conducting fluid (the focus of this thesis),

� Domains with a small aspect ratio A = Ly/Lz (Hele–Shaw/shallow water flows),

� Rapid rotation about the z-axis (the Taylor–Proudman theorem),

� Stratification induced by density differences (due to temperature or salinity gra-

dients perpendicular to the z direction).

Thus, quasi-two-dimensionality is naturally observed in geophysical and astrophysi-

cal flows, which typically have small aspect ratios, as for oceanic and atmospheric flows,

or large rotation rates, as for protostellar or cold accretion disks (Lindborg 1999; David-

son 2013). By comparison, Q2D flows due to the interaction of a strong magnetic field

with an electrically conducting fluid are most commonly observed industrially (Smo-

lentsev et al. 2008). Magnetic fields may be intentionally applied to control flows in

the continuous casting of metals (Davidson 2001; Thomas et al. 2015a). Alternately,

magnetic fields may be unavoidable, as is in the design of magnetic confinement fusion

reactors (Abdou et al. 2015). As the dual purpose coolant/fuel rebreeder ducts require

the flow of an electrically conducting fluid, the ensuing interaction between the re-

breeder fluid and plasma confining magnetic field leads to quasi-two-dimensionalization

of the coolant duct flow.

Regardless of the phenomena responsible for inducing quasi-two-dimensionality, the

z-averaged Navier–Stokes equations, including only zeroth order three-dimensional ef-

fects, are identical (under the appropriate conversion of non-dimensional parameters,

and assuming axisymmetry and the inclusion of the Coriolis force for rotating flows).

Thus, flow solutions in any one system may be applicable to the other three. Note that

the lowest order three-dimensional effect is always a friction exerted on the bulk by

the out-of-plane boundary layers (in plane channels). However, some additional higher

order (recirculation) effects are also analogous (Pothérat et al. 2000). Thus, under-

standing the Q2D dynamics exhibited by any one of these flows may lead to a much

broader understanding of fluid dynamics as a whole.
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Chapter 2

Review of
magnetohydrodynamics and its
approximation in duct flows

The results presented in this thesis are the exact solutions of a model for quasi-two-

dimensional flows (numerical error aside). However, the Q2D solutions are only an

approximation of 3D magnetohydrodynamic duct flows. From a practical perspective,

the derivation and applicability of the Q2D model are quite important, as these factors

directly impact the translation of results to real world decisions. Thus, this chapter

introduces the various approximations made to MHD flows, while deriving the Q2D

model. To further gauge the relative importance of the approximations made, the

MHD literature is reviewed, with specific focus on the accuracy of Q2D predictions of

3D flows. As the issue of approximation predominantly pertains to practical application,

a benchmark of Q2D and 3D studies aimed at self-cooled fusion are reviewed. Finally,

error trends for the Q2D approximation are provided for the underlying steady flow.

Before proceeding with this chapter, it is worth noting the following. First, the

theoretical motivation of this thesis takes precedence over any possible practical appli-

cations. Thus, this chapter predominantly exists to provide providence for the Q2D

model, and to establish its validity and applicability. Second, this chapter does not aim

to educate the reader on the workings of nuclear fusion reactors, nor understand much

past the basics of magnetohydrodynamics, as for the most part, neither is required to

process the results chapters in this thesis. So long as the reader is satisfied with the

foundations of the Q2D model, then this chapter will have served its purpose. Where

possible, a broader context (beyond the scope of this research) is provided, particularly

throughout the literature review.
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2.1 Approximations made to MHD duct flows

Focus is now directed to the incompressible flow of a Newtonian, electrically conducting

fluid, having electrical conductivity σ and magnetic permeability µ, through a duct of

rectangular cross-section. The duct walls are electrically insulating, and the entire duct

is subject to an imposed uniform magnetic flux density B0 (henceforth magnetic field)

in the z-direction. The dimensional fluid velocity ǔ, magnetic field B̌, current density

ǰ, electric field Ě and pressure p̌ are solutions to the full MHD equations:

∂ǔ

∂ť
= −(ǔ · ∇̌)ǔ− 1

ρ
∇̌p̌+ ν∇̌2ǔ+ f̌ +

1

ρ
ǰ × B̌, (2.1)

∇̌ · ǔ = 0, (2.2)

∂B̌

∂ť
= ∇̌× (ǔ× B̌)− 1

σµ
∇̌2B̌, (2.3)

ǰ = σ(Ě + ǔ× B̌), (2.4)

∇̌× Ě = −∂B̌
∂ť

(2.5)

∇̌ · (∇̌× B̌) = µ∇̌ · ǰ, (2.6)

subject to initial, forcing and boundary conditions. Eqs. (2.1) through (2.6) are, re-

spectively, the momentum equation, incompressibility constraint, induction equation,

Ohm’s law, the Maxwell–Faraday equation, and the divergence of the differential form

of Ampère’s law (Davidson 2001). Note that the solenoidal condition on the magnetic

field ∇̌ · B̌ = 0, has been built into Eq. (2.3). Note also that simplifications made

in deriving the full MHD equations (e.g. non-relativistic velocities) are not of interest

in this work, being thoroughly discussed in Moreau (1990), Müller & Bühler (2001)

and Davidson (2001), although this lends a less conventional form to Eq. (2.6). The

key difference between the full MHD equations, and the Navier–Stokes equations intro-

duced earlier, Eqs. (1.1) and (1.2), is the final term on the right hand side of Eq. (2.1).

This term represents the Lorentz force, through which the (induced and/or imposed)

magnetic field interacts with the (induced and/or applied) current, resulting in a body

force on the fluid.

The first simplification made to the full MHD equations is the quasi-static approx-

imation. This approximates the induced magnetic field, specifically one governed by a

linearized version of Eq. (2.3), as time steady. In addition, an inductionless approxima-

tion of the flow will be considered, given the relatively low magnetic Reynolds numbers
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expected in liquid metal cooling conduits (discussed in further detail shortly). Under

the inductionless approximation, the magnetic field B̌ is composed entirely of the im-

posed field (the induced field being negligible), i.e. B̌ = B0ez in this setup, where ez is

a unit vector in the z-direction. These approximations then allow Eqs. (2.1) and (2.3)

to be decoupled, such that the magnetic field influences the velocity field, but ensures

that the velocity field cannot influence the magnetic field.

The quasi-static approximation is now derived. First, the magnetic field is decom-

posed into an imposed component B̌0 and an induced component b̌, so B̌ = B̌0 + b̌.

This decomposition is substituted into Eq. (2.3), and simplified based on the known

properties of the imposed field (which is uniform and time steady),

∂b̌

∂ť
−B0∇̌× (ǔ× ez)− ∇̌× (ǔ× b̌) +

1

σµ
∇̌2b̌ = 0. (2.7)

The order of magnitude of each term, taking characteristic scales for gradients, velocity,

the induced magnetic field and time as 1/Ly, U0, b and Lz/vA, respectively, are

∂b̌

∂ť
→ bvA

Lz
, (2.8)

B0∇̌× (ǔ× ez) →
B0U0

Ly
, (2.9)

∇̌× (ǔ× b̌) → U0b

Ly
, (2.10)

(σµ)−1∇̌2b̌ → b

σµL2
y

, (2.11)

where vA = B0(µ0ρ)
−1/2 is the Alfvén velocity (Alfvén 1942) and µ0 is the permeabil-

ity of free space. First, the convection and diffusion terms for the induced field are

compared,

∥∇̌× (ǔ× b̌)∥
∥(σµ)−1∇̌2b̌∥

→
U0bσµL

2
y

Lyb
= σµU0Ly = Rm. (2.12)

The ratio of the convection and diffusion terms yields the magnetic Reynolds number

(the ratio of induction to diffusion of the magnetic field at the duct scale). For most

liquid metals involved in laboratory and industrial applications Rm ≲ 10−2 (Moreau

1990; Knaepen et al. 2004) when at moderate Re ≲ 104. Whether industry operates

at Re ≲ 104 depends on the specifics of the application (some examples are considered

in § 2.3, with Re varying from order 102 to order 106); in the following Re ≲ 104 and

thereby Rm ≲ 10−2 are assumed. Thus, the convection term involving the induced

magnetic field is neglected, i.e. ∇̌× (ǔ× b̌) → 0, as the magnetic Reynolds number is
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small. Second, the temporal and diffusion terms for the induced field are compared,

∥∂b̌/∂ť∥
∥(σµ)−1∇̌2b̌∥

→
B0σµL

2
y

(µρ)1/2Lz
=

B0Lzσ
1/2

(ρU0Ly)1/2
L2
y

L2
z

(σµU0Ly)
1/2 = (N Rm)

1/2A2, (2.13)

recalling the definition of the Alfvén velocity vA = B0(µρ)
−1/2, which forms the char-

acteristic timescale for the induced magnetic field. Note that µ ≈ µ0 can be assumed

without issue for non-ferritic materials (Müller & Bühler 2001). The interaction pa-

rameter N = B2
0L

2
zσ(ρU0Ly)

−1 represents the ratio of electromagnetic to inertial forces

at the duct scale, while the aspect ratio A = Ly/Lz. Eq. (2.13) can also be rewritten,

taking 1/Lz as the characteristic scale for gradients to avoid the aspect ratio term,

∥∂b̌/∂ť∥
∥(σµ)−1∇̌2b̌∥

→ B0σµL
2
z

(µρ)1/2Lz
= (N Rm)

1/2 =

(
Ha2

Re
PrmRe

)1/2

= HaPrm
1/2 = S,

(2.14)

to yield the Lundquist number S, where the Hartmann number Ha = (NRe)1/2 =

LzB0(σ/ρν)
1/2 (the square root of the ratio of electromagnetic to viscous forces at the

duct scale) and the magnetic Prandtl number Prm = Rm/Re = νµσ. Thus, for liquid

metals at room temperature, with Prm of 10−5 to 10−6 (Pothérat & Kornet 2015),

a Ha ≲ 103 ensures Alfvén waves dissipate faster than they propagate. Equally, for

Rm ≲ 10−2 (Moreau 1990; Knaepen et al. 2004), and so for Re ≲ 104, the same condition

is ensured if N ≲ 100. Problematically, in magnetic confinement fusion reactors, Ha

can be of the order 104 to 105, N of the order 103 to 104 and Re of the order 102 to

106 (Abdou et al. 2015; Smolentsev et al. 2008, 2010b; Mistrangelo et al. 2014). At

these parameters, Alfvén waves may exist for significant periods of time. To maintain

freedom in the magnitude of Re, N ≲ 100 and Ha ≲ 1000 would need to be maintained

to ensure Alfvén waves are not present.

Even when Alfvén waves are absent, electromagnetic diffusion can still be rapid.

This permits the quasi-static approximation, under which the temporal term in Eq. (2.3)

can be neglected, so long as electromagnetic forces act far more rapidly than viscous

or inertial forces (in each of the in-plane directions). To show this, two timescale

comparisons at the duct scale are considered. The first is between in-plane inertial

and electromagnetic forces, and the second viscous and electromagnetic forces. The

remaining comparisons differ only by factors of the aspect ratio. By noting that the

imposed magnetic field is time steady, the ratio of the characteristic inertial timescale
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τI,L = Ly/U0 to the characteristic Alfvén wave timescale τA = Lz/vA, is

τI,L
τA

=
LyB0

U0Lz(µρ)1/2
=

B0Lzσ
1/2

(ρU0Ly)1/2
1

(µσLyU0)1/2
L2
y

L2
z

=

(
N

Rm

)1/2

A2

=
1

Prm
1/2

Ha

Re
A2. (2.15)

Thus, even with 1 < N ≪ 100, the ratio of the inertial velocity timescale to the Alfvén

timescale is large, as Rm ≪ 1, or equally if 103Ha ≫ Re for Prm of order 10−6. Hence,

any temporal variations in the in-plane velocity, due to inertia, occur far more slowly

than any temporal variations in the induced magnetic field (at N ≫ 1 as expected in

fusion conditions the timescale ratio would be even larger). By further establishing the

ratio of the characteristic viscous timescale τν,L = L2
y/ν to the characteristic Alfvén

wave timescale τA = Lz/vA,

τν,L
τA

=
L2
yB0

νLz(µρ)1/2
=

B0Lzσ
1/2

(ρU0Ly)1/2
1

(µσLyU0)1/2
LyU0

ν

L2
y

L2
z

=

(
N

Rm

)1/2

Re A2

=
Ha

Prm
1/2

A2, (2.16)

it is again shown that the induced magnetic field varies far more rapidly than the

velocity field (viscous forces acting a further Re times slower than inertial forces, and

Re ≫ 1 in the applications of interest). Although the induced magnetic field varies

rapidly, ∂b̌/∂ť→ 0 can still be assumed while ǔ varies slowly, recalling that B0 is steady.

This statement may appear contradictory. However, any departure from the steady

magnetic field (i.e. the distribution of field lines which satisfies the steady magnetic

boundary conditions, completely independent of the presence of the fluid) diffuses so

rapidly back to the steady result, that the velocity field never sees a magnetic topology

different to the steady, imposed one (Knaepen et al. 2004). Thus, under the quasi-static

approximation, Eq. (2.3) becomes

−B0∇̌× (ǔ× ez) + (σµ)−1∇̌2b̌ = 0. (2.17)

Before moving on to the inductionless approximation it is worth noting that the char-

acteristic velocity scale U0 is yet to be defined. Depending how the velocity field is

driven, e.g. by f̌ in Eq. (2.1), the most rapid changes to the velocity field should be

encapsulated in U0, for these approximations to be most useful.

The inductionless approximation is now considered, which aims to establish a ratio

of the size of B̌0 = B0ez to b̌. Under the quasi-static approximation, only two terms
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from Eq. (2.3) remain in Eq. (2.17). Thus, to balance, they must be of similar order of

magnitude,

∥B0∇̌× (ǔ× ez)∥
∥(σµ)−1∇̌2b̌∥

→
B0U0σµL

2
y

Lyb
=
B0Rm

b
→ 1

∴ B0

b
→ 1

Rm
. (2.18)

Thus, the characteristic scale for the induced field is Rm times smaller than the charac-

teristic scale for the imposed field. As the induced magnetic field is Rm times smaller

than the imposed field, if Rm ≪ 1 (which it may or may not be in the industrial appli-

cations of interest), the magnetic field can be approximated as being composed only of

the imposed field, i.e. B̌ = B̌0. Thus, under the inductionless approximation, Eq. (2.3)

is not required, so long as the substitution of B̌ = B0ez is made in Eqs. (2.1), (2.4)

and (2.6). As the induced magnetic field is neglected, and thus, the overall magnetic

field steady, the electric field is irrotational ∇̌× Ě = 0 from Eq. (2.5). Thus, an elec-

tric potential ϕ̌ can be introduced by the definition Ě = −∇̌ϕ̌, and substituted into

Eq. (2.4). This leaves:

∂ǔ

∂ť
= −(ǔ · ∇̌)ǔ− ρ−1∇̌p̌+ ν∇̌2ǔ+ f̌ +B0ρ

−1ǰ × ez, (2.19)

∇̌ · ǔ = 0, (2.20)

ǰ = σ(−∇̌ϕ̌+B0ǔ× ez), (2.21)

∇̌ · ǰ = 0. (2.22)

This work simplifies Eqs. (2.19) through (2.22) following the slightly different approach

of Pothérat et al. (2000). However, there is still much to be gained by showing the

common approach to simplify Eq. (2.19) by eliminating the current ǰ. Although it will

not allow as explicit a treatment of the matching conditions at the boundary layers, it

forms a key part of the SM82 model (Sommeria & Moreau 1982), which is the quasi-two-

dimensional model used and referenced throughout all the results chapters (if derived

slightly differently). First, the vector calculus identity,

∇× (∇×A) = ∇(∇ ·A)−∇2A, (2.23)

for an arbitrary vector field A is introduced. To simplify the final term of Eq. (2.19),

this identity, with A = ǰ × ez, is rearranged as

ǰ × ez = −∇̌−2
(
∇̌× [∇̌× (ǰ × ez)]− ∇̌[∇̌ · (ǰ × ez)]

)
. (2.24)
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The latter term is a gradient which can be absorbed in the forcing term f̌ as a constant

pressure gradient contribution (Pothérat et al. 2000; Sommeria & Moreau 1982); recall

that the absolute value of the pressure is arbitrary. Thus, in a Cartesian coordinate

system,

ǰ × ez =

[
− ∂ϕ̌

∂y̌
−B0ǔ

]
ex +

[
∂ϕ̌

∂x̌
−B0v̌

]
ey, (2.25)

so

∇̌× [∇̌× (ǰ × ez)] = B0

([
1

B0

∂

∂y̌
∇̌2ϕ̌− ∂2v̌

∂x̌∂y̌
+
∂2ǔ

∂y̌2
+
∂2ǔ

∂ž2

]
ex+[

1

B0

∂

∂x̌
∇̌2ϕ̌+

∂2v̌

∂x̌2
− ∂2ǔ

∂x̌∂y̌
+
∂2v̌

∂ž2

]
ey +

[
− ∂2ǔ

∂x̌∂ž
− ∂2v̌

∂y̌∂ž

]
ez

)
. (2.26)

Taking the divergence of Eq. (2.21),

σ−1∇̌ · ǰ = −∇̌ · ∇̌ϕ̌+B0∇̌ · (vex − uey), (2.27)

which is then zero from Eq. (2.22), yields,

1

B0
∇̌2ϕ̌ =

∂v

∂x
− ∂u

∂y
. (2.28)

Substituting Eq. (2.28) into Eq. (2.26), and rewriting the last term

∇̌× [∇̌× (ǰ × ez)] = B0

([
∂2ǔ

∂ž2

]
ex +

[
∂2v̌

∂ž2

]
ey

+

[
∂

∂ž

(
− ∂ǔ

∂x̌
− ∂v̌

∂y̌
− ∂w̌

∂ž

)
+
∂2w̌

∂ž2

]
ez

)
, (2.29)

which, with continuity, Eq. (2.20), simplifies to ∇̌× [∇̌×(ǰ×ez)] = B0∂
2ǔ/∂ž2. Thus,

ǰ × ez = −B0∇̌−2∂
2ǔ

∂ž2
+ ∇̌p̌f , (2.30)

assuming the operator ∇̌2 has appropriately defined boundary conditions to be invert-

ible, and where p̌f is absorbed into any constant pressure gradient present. Substituting

Eq. (2.30) into Eq. (2.19)

∂ǔ

∂ť
= −(ǔ · ∇̌)ǔ− ρ−1∇̌p̌t + ν∇̌2ǔ+ f̌ −B2

0ρ
−1∇̌−2∂

2ǔ

∂ž2
, (2.31)

where p̌t accounts for the pressure contribution from the irrotational component of

the Lorentz force. By assuming that ∂̌z ≪ ∂̌x, ∂̌y and that w̌ ≪ ǔ, v̌ (Sommeria &

Moreau 1982), i.e. that the flow can be classed as quasi-two-dimensional, the velocity

ǔ and gradient operator ∇̌ can be substituted for their two-dimensional counterparts,

ǔ⊥ = (ǔ, v̌) and ∇̌⊥ = (∂̌x, ∂̌y), respectively,

∂ǔ⊥
∂ť

= −(ǔ⊥ · ∇̌⊥)ǔ⊥ − ρ−1∇̌⊥p̌⊥,t + ν∇̌2
⊥ǔ⊥ + f̌⊥ −B2

0ρ
−1∇̌−2

⊥
∂2ǔ⊥
∂ž2

, (2.32)
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∇̌⊥ · ǔ⊥ = 0. (2.33)

Eq. (2.32) shows that the predominant action of the Lorentz force is a diffusion of mo-

mentum along magnetic field lines, when (for a given eddy) the action of the operator

∇̌−2
⊥ simplifies to multiplication by −L2

y (Sommeria & Moreau 1982). The timescale

for diffusion of momentum along magnetic field lines is τ2D = (ρ/σB2
0)(L

2
z/L

2
y) =

(1/N)(L4
z/U0L

3
y) (Pothérat 2007). Here, ρ/σB

2
0 is the Joule damping time, the timescale

for energy dissipation via the flow of electric current through the resistive fluid; heat

generated by both Ohmic and viscous dissipation are neglected, given their magnitude

relative to any wall or neutron heating (Hossain 1992). In a similar manner to the

quasi-static assumption, this momentum diffusion timescale τ2D can be compared to

those of inertia τI,L = Ly/U0 and viscosity τν,L = L2
y/ν, to provide a stronger constraint

on the bounds of validity of the quasi-two-dimensional approximation. Respectively,

these are τ2D/τI,L = 1/NA4 and τ2D/τν,L = 1/Ha2A4 (again, the remaining timescale

ratios which can be constructed differ only in the factors of the aspect ratio). Thus,

at fusion-relevant conditions, for a duct of order unity aspect ratio, large N and Ha

should ensure rapid diffusion of momentum via the Lorentz force, and yield flows which

can be classed as quasi-two-dimensional. The validity of the Q2D model is discussed

further in § 2.3. However, at its heart, so long as τ2D/τν,L and τ2D/τI,L are sufficiently

small, there should be little issue with the use of the Q2D model. Note that the Q2D

model is not Eqs. (2.32) and Eqs. (2.33); a different derivation of the Q2D model will

be followed to completion in § 2.2, after first returning to Eqs. (2.19) through (2.22).

2.2 Derivation of the Q2D model

With the last of the timescales compared, Eqs. (2.19) through (2.22) are nondimension-

alized, before being averaged to obtain the quasi-two-dimensional model. Taking the

characteristic scales for length, velocity, time, pressure, current and electric potential

as Ly, U0, Ly/U0, ρU
2
0 , σB0U0 and LyU0B0, respectively, the nondimensional governing

equations become (dropping the forcing term for now):

∂u

∂t
= −(u · ∇)u−∇p+

1

Re
∇2u+NA2j × ez, (2.34)

∇ · u = 0, (2.35)

j = −∇ϕ+ u× ez, (2.36)
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∇ · j = 0. (2.37)

To facilitate averaging, following Pothérat et al. (2000), Eqs. (2.34), (2.35) and (2.37)

are expanded into terms perpendicular and parallel to magnetic field lines, u = (u⊥, w),

j = (j⊥, jz), ∇ = (∇⊥, ∂z):

∂u⊥
∂t

= −(u⊥ ·∇⊥)u⊥−w∂u⊥
∂z

−∇⊥p+
1

Re
∇2

⊥u⊥+
1

Re

∂2u⊥
∂z2

+NA2j⊥×ez, (2.38)

∂w

∂t
= −(u⊥ · ∇⊥)w − w

∂w

∂z
− ∂p

∂z
+

1

Re
∇2

⊥w +
1

Re

∂2w

∂z2
, (2.39)

∇⊥ · u⊥ +
∂w

∂z
= 0, (2.40)

j = −∇ϕ+ u× ez, (2.41)

∇⊥ · j⊥ +
∂jz
∂z

= 0. (2.42)

As introduced earlier, the z-average of a quantity g is

ḡ(x, y) =

∫ Lz/2

−Lz/2
g(x, y, z)dz. (2.43)

Applying this average to Eq. (2.38), and neglecting the average of products of fluctua-

tions about the mean, leads to

∂ū⊥
∂t

= −(ū⊥ · ∇⊥)ū⊥ −∇⊥p̄+
1

Re
∇2

⊥ū⊥ +
1

Re

(
∂u⊥
∂z

∣∣∣∣
Lz/2

− ∂u⊥
∂z

∣∣∣∣
−Lz/2

)
+NA2j̄⊥ × ez, (2.44)

with zero Dirichlet boundary conditions eliminating the w∂u⊥/∂z term in Eq. (2.38).

The same occurs for ∂w/∂z in Eq. (2.40), while ∂jz/∂z in Eq. (2.42) vanishes as this

work always assumes walls are perfectly electrically insulating, leaving

∇⊥ · ū⊥ = 0, (2.45)

∇⊥ · j̄⊥ = 0. (2.46)

Given the identity ∇× (∇ϕ) = 0, the curl of Eq. (2.41) yields

∇× j = ∇× (u× ez) =
∂u

∂z
ex +

∂v

∂z
ey − (∇⊥ · u⊥)ez. (2.47)

Averaging Eq. (2.47), applying no-slip boundary conditions at the out-of-plane walls,

and substituting Eq. (2.45) yields ∇⊥ × j̄⊥ = 0. As j̄⊥ is both irrotational and incom-

pressible, it can be written as the gradient of a potential field j̄⊥ = ∇⊥ψ0/Ha (Pothérat

et al. 2000). This defines the two-dimensional forcing velocity

u0 = Ha j̄⊥ × ez, (2.48)
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as forced by the streamfunction ψ0. With electrically insulating walls this forcing

term can be absorbed into an adjusted pressure gradient, in the same manner as the

irrotational component of the Lorentz force, leaving only the shear stress terms to deal

with.

The shear stress terms require modelling. In the limits of large Ha and large N ,

which permit the flow to be classed as quasi-two-dimensional, an approximate solution

can be built, by matching the profiles for isolated exponential boundary layers at each

wall perpendicular to the magnetic field with the core flow. Recall that j⊥ × ez can be

written as proportional to a velocity, either as shown after Eq. (2.47), or in Eq. (2.32).

Thus, with a boundary layer approximation, (∂2/∂z2 − Ha2)u = 0, such that the

analytic solution for an isolated Hartmann boundary layer is an exponential profile

(Roberts 1967).

To aid this discussion, numerical solutions of the steady, streamwise invariant ve-

locity profile and induced current magnitude are shown in Fig. 2.1 at Ha = 300 (see

§ 2.3 for more). Overlaying the figure are various key features. Hartmann boundary

layers, forming on walls perpendicular to the magnetic field, each have thickness δH,

which scales as Ha−1 while laminar. Shercliff boundary layers, forming on walls parallel

to the magnetic field, each have thickness δS, which scales as Ha−1/2 while laminar.

Laminar (passive) Hartmann boundary layers are required for the validity of the Q2D

model. At Re = 105, Ha ≥ 200 is required for laminar Hartmann layers, and Ha ≥ 400

for laminar Shercliff layers (Krasnov et al. 2012). Thin sheets of current form in the

Hartmann boundary layers, as the walls are perfectly electrically insulating, and all

current loops must close within the duct. These current loops, which are highly dense

within the Hartmann boundary layers, spread almost equally through the core. Thus,

the Lorentz force applies a strong acceleration to flow within the Hartmann boundary

layers, and applies a corresponding (fairly uniform) damping, to the core flow. This

lends the Hartmann boundary layers their exponential profile. Note that even at this

large Ha, small induced currents are present within the Shercliff layers, lending them

some three-dimensionality (Pothérat et al. 2000).

Formally, at the edge of thin (Lz/Ha) Hartmann boundary layers, which contain

the majority of the induced current, in the scaled coordinate ξ = A2Haz, the limit of

u is

lim
ξ→∞

uH = u(−Lz/2) ≡ u−, (2.49)

20



(a) u(y, z) (b) |j|(y, z)

δS

δS

δH δH
B

fL

fL fL

Figure 2.1: Time steady, streamwise invariant duct flow at Ha = 300, with sketched features

following Müller & Bühler (2001). (a) Streamwise velocity profile, with a single contour line

at u = 0.99 to help define the boundary layer thicknesses (for the Shercliff layers, a rough

average width has been shown with dashed lines). (b) Induced current magnitude, with (light

red) contour lines at magnitudes of 0.005, 0.01, 0.02, 0.03 and 0.04 |j|. The remaining current

within the core has |j| < 0.005. Example current loops (black lines) are just for reference

(they are not a computed part of the solution; the ‘squared’ profile is to help indicate that

the Lorentz force fL is roughly equal everywhere within the core flow, and differs only in the

boundary layers).

where uH is the velocity profile of the Hartmann boundary layer, and u the velocity

profile in the bulk of the duct. An isolated exponential boundary layer, with zero

wall velocity, has the profile 1 − exp(−ξ) in the scaled wall coordinate. To satisfy the

matching condition at ξ → ∞, the Hartmann layer takes the form

u⊥ = u−[1− exp(−ξ)]. (2.50)

Considering the wall at z = Lz/2, ξ = −A2Haz, and from the chain rule

∂u⊥
∂z

∣∣∣∣
Lz/2

= −A2Ha
∂u⊥
∂ξ

∣∣∣∣
ξ=0

= −A2Hau−. (2.51)

Similarly at z = −Lz/2, ξ = A2Haz and

∂u⊥
∂z

∣∣∣∣
−Lz/2

= A2Ha
∂u⊥
∂ξ

∣∣∣∣
ξ=0

= A2Hau−. (2.52)

Assuming (for the first time) the flow is two-dimensional in the core, so u− ≊ ū⊥

(neglecting contributions of order Ha−1, N−1 or higher), and substituting Eq. (2.48)

for the forced velocity, and Eqs. (2.51) and (2.52) for the wall shear stresses, into
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Eq. (2.44), the governing equations for the quasi-two-dimensional SM82 model

∂ū⊥
∂t

= −(ū⊥ · ∇⊥)ū⊥ −∇⊥p̄⊥ +
1

Re
∇2

⊥ū⊥ +A2Ha

Re
(u0 − 2ū⊥), (2.53)

∇⊥ · ū⊥ = 0, (2.54)

are attained (with w = 0 and p̄⊥ in the place of p̄). The final term of Eq. (2.53) can

be rewritten, by introducing the Hartmann friction coefficient H = 2A2Ha (Pothérat

2007). This affords freedom in the selection of H, in spite of the Ha ≫ 1 constraint, as

A is only required when translating back to the full 3D problem (Ha alone not being a

true parameter of the Q2D problem). In addition, the forcing u0 can be absorbed into

the pressure, or included in f . Thus, henceforth, the following form of the SM82 model

will be considered (although overbars will be dropped):

∂ū⊥
∂t

= −(ū⊥ · ∇⊥)ū⊥ −∇⊥p̄⊥ +
1

Re
∇2

⊥ū⊥ − H

Re
ū⊥, (2.55)

∇⊥ · ū⊥ = 0. (2.56)

A final note for this section. All MHD aspects of the flow are encapsulated in the

friction term, directly related to the shear stresses at the out of plane walls, or are

absorbed into the pressure gradient (as for the irrotational part of the Lorentz force).

Thus, so long as any physical phenomena can be simplified in such a manner (as

only an irrotational contribution to pressure, and a contribution from shear stresses

at the walls), the governing equations, Eqs. (2.55) and (2.56), would remain identical

for the analogous system. Such simplifications are indeed possible for shallow water

flows, where thin channels induce Rayleigh friction, rather than Hartmann friction,

and axisymmetric flows under strong rotation (Pedlosky 1987; Vo et al. 2015), in which

Ekman friction is present. Thus, solutions for such flows can be solved in a Q2D

framework, assuming in the latter case that the Coriolis force is also modelled, making

Eqs. (2.55) and (2.56) much broader reaching than the field of magnetohydrodynamics.

Of course, the definition of the friction term would differ, see Vo et al. (2017) for

conversions, as would the bounds of validity of the model.

2.3 Applicability and accuracy of the Q2D model; a liter-
ature review

A complete numerical reproduction of a liquid metal duct flow in a fusion relevant

setting would require modelling a wide variety of physical phenomena. Such features
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include: a realistic geometry (duct corners/inlets/outlets), wall roughness or slip, ther-

modynamic heating (directly at the plasma facing wall, volumetrically via a neutron

flux, radiatively, and dissipatively, viscous or Ohmic), interactions with pumps or heat

exchangers, imperfect electrical conductivity of the walls, etc. (Smolentsev et al. 2010a;

Abdou et al. 2015). The exclusion of these complexities may impact both the efficacy

of the numerical solutions in making real-world predictions, and the validity of the

assumption of quasi-two-dimensionality. The latter is considered shortly. As for the

former, it is prudent to analyse an idealized, streamwise invariant duct first. The driv-

ing reason is that a great deal remains unknown about Q2D transitions and turbulence,

and particularly whether purely Q2D transitions are possible. Thus, the simplest ge-

ometry forms a natural starting point. This avoids any complexities which may obscure

the underlying dynamics; dynamics which, hopefully, may underlie many of the more

physically realistic flows.

First, the applicability of the Q2D model to fusion relevant regimes is consid-

ered. Table 2.1 provides some of the key parameters for anticipated liquid metal

coolant/reebreeder duct flows in magnetic confinement fusion reactors. For the most

part, based on this simple quantitative comparison, it is not unreasonable to expect

that solutions of the Q2D model should be good predictors of z-averaged fully 3D so-

lutions at comparable parameters (in a straight geometry). The main exception is that

the quasi-static assumption appears questionable. Although supported by the rapid

timescales of the induced field (e.g. τν,L/τA and τI,L/τA are often much greater than

unity), the accompanying requirement of rapid dissipation of Alvén waves is never sat-

isfied (S is never less than unity). However, the evolution of a time varying induced

magnetic field is rarely performed in either Q2D or 3D MHD problems in the field of

fluid mechanics, in laboratory and industrial contexts. This is primarily due to the

computational expense associated with introducing (and timestepping over) the Alfvén

timescale, see Choi et al. (1997) and Lee & Choi (2001) for more. Even if inappropri-

ate, a quasi-static induced field is almost always assumed, in both Q2D and full 3D

solvers. Thus, the issue is not further considered. Importantly, the timescale analysis

does otherwise support the classification of 3D flows as Q2D (Smolentsev et al. 2008),

based on fusion relevant parameters, as momentum diffusion along field lines is rapid.

Lastly, note that this work is motivated by self-cooled duct designs, which would most

resemble the design proposed in the rightmost column of Table 2.1, with U0 ≥ 1 ms−1.
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Conduit DCLL DCLL DCLL HCLL DRM
Reactor ITER DEMO DEMO ITER DEMO
Location Outboard Outboard Inboard Inboard Outboard
Refs. S10, A15 S10, A15 S10, A15 M14, A15 M11

U0 (ms−1) 0.04 0.07 0.15 10−3 0.1 - 1
B0 (T) 4 4 10 4 7
2Ly (m) 0.2 0.2 0.2 0.059 0.355
Lz (m) 0.2 0.2 0.2 0.265 0.610

Az = 2Ly/Lz 1 1 1 0.223 0.582
Re ≫ 1 3×104 6×104 1.2×105 670 3.3×105 - 3.3× 106

Ha ≫ 1 6.5×103 1.2×104 3×104 1.1×104 5.139×104

R = Re/2Ha
≲ 380

2.3 2.5 2 0.03 3.2 - 32

N ≫ 1 1.4×103 2.4×103 7.5×103 1.806× 105 8.0×102 - 8.0× 103

S ≪ 1 2.9 5.4 13.4 4.9 23.0
Rm ≪ 1 6×10−3 1.2×10−2 2.4×10−2 1.34×10−4 6.6×10−2 - 0.66

τI,L/τA ≫ 1 4.8×102 4.5×102 5.6×102 1.8×103 1.2 - 11.8
τν,L/τA ≫ 1 1.5×107 2.7×107 6.7×107 1.2×106 3.9×107

τ2D/τI,L ≪ 1 7.1×10−4 4.2×10−4 1.3×10−4 2.3×10−3 1.1×10−3 - 1.1×10−2

τ2D/τν,L ≪ 1 2.4×10−8 6.9×10−9 1.1×10−9 3.4×10−6 3.3×10−9

Ri ≪ 1 7.8 5.6×102 1.1×102 2.2×103 2.6× 10−4 - 2.6× 10−2

Table 2.1: Validity assessment of the Q2D assumption, particularly through timescale anal-

ysis of key flow parameters in proposed liquid metal coolant ducts of magnetic confinement

fusion reactors. A modified aspect ratio is temporarily considered (switching A = Ly/Lz for

Az = 2Ly/Lz), as many of the references for this table take the characteristic duct dimen-

sions as 2Ly and 2Lz (when defining Re or Ha), rather than 2Ly and Lz as in this work.

Note that where multiple references were required for the full spread of flow parameters,

the characteristic length implicit in Ha or Re may not exactly match with a characteris-

tic Ly or Lz stated elsewhere. As discussed later, laminar Hartmann layers are assumed

in the Q2D model, which requires R ≲ 380 (Krasnov et al. 2004; Moresco & Alboussiére

2004; Zienicke & Krasnov 2005). Furthermore, when calculating Rm = RePrm the value

of Prm was determined at fusion relevant conditions, rather than taking order 10−6 as at

room temperature (Pothérat & Kornet 2015). A representative value of Prm = 2 × 10−7

for PbLi17 was considered (based on Prm of 2.19 - 1.39× 10−7 at the bounding temperatures

of 600-800 K over which correlations were valid (Martelli et al. 2019), which was slightly

more pessimistic than Prm = 1.08865 × 10−7 at 773.15 K (Bühler & Mistrangelo 2013). As

a final note for the curious reader, the Richardson number (the ratio of buoyant to inertial

forces) has been included in the final row, even though heat transfer is not directly consid-

ered (excepting in Appendix B). Ri ≪ 1 represents negligible natural convection (assumed

in this work), while natural convection dominates for Ri ≫ 1. Acronyms and shorthand are

as follows: dual-coolant lead-lithium (DCLL), helium-cooled lead-lithium (HCLL), Spanish

acronym of modular dual-coolant (DRM), international thermonuclear experimental reactor

(ITER), demonstration power plant (DEMO). References are as follows: S10 - Smolentsev

et al. (2010b), A15 - Abdou et al. (2015), M14 - Mistrangelo et al. (2014) and M11 - de les

Valls et al. (2011).
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Since the seminal works of Kolesnikov & Tsinober (1974) and Alemany et al. (1979),

and the development of the SM82 model by Sommeria & Moreau (1982), both exper-

imental and numerical focus on Q2D flows has greatly increased. Various works of

particular importance follow, roughly in chronological order, although are by no means

exhaustive. These works are sufficiently broad to consider quasi-two-dimensionality of

everything from the underlying basic flows, to large scale eddies and finally, to fully

turbulent flows. Hopefully, the consistent observations of quasi-two-dimensionality, the

widespread use of Q2D modelling (e.g. for buoyant flows, cylinder wakes, electrically

driven vortices, etc.) and the accuracy of the Q2D model (when at the appropriate

parameters) will be made apparent by this literature review.

Kolesnikov & Tsinober (1974) experimentally investigated decaying grid generated

turbulence. A coefficient quantifying the degree of three-dimensionality of the turbu-

lence (0: 2D, to 1: 3D) was measured at near unity at a field strength of 0.08 T, and

decreased to order 10−3 at field strength 0.8 T. Furthermore, by introducing a passive

tracer, the momentum transfer parallel and perpendicular to the field, due to turbu-

lent perturbations, could be inferred. At higher field strengths, almost no transfer was

observed along field lines, with the turbulence inferred to be quasi-two-dimensional.

Alemany et al. (1979) also investigated decaying turbulence (behind a moving grid).

The observation of a power law scaling exponent of −3, for wave numbers parallel to

the magnetic field, indicated an equilibrium had been established between nonlinear

transfers and Joule dissipation. This balance represented the degree of anisotropy

maintained for a given magnetic field strength, as a function of the turbulent scales.

For a sufficiently high degree of anisotropy, or a sufficiently large magnetic field strength,

a quasi-two-dimensional phase could be attained.

Sommeria (1986) experimentally studied forced turbulence in a square box. The

validity of the Q2D equations were well supported as properties of the turbulent spectra

were consistently obtained under different experimental setups (differing field strength

and/or free/rigid upper surface), so long as the Reynolds number based on the friction

time Re/H was matched. Q2D dynamics were observed at lower field strengths than

Kolesnikov & Tsinober (1974), as low as 0.25 T, due to a smaller aspect ratio (of unity,

compared to 6/5 and 3). Sommeria (1986) also introduced conversion relations between

Q2D models of MHD flows and Q2D quasi-geostrophic models of atmospheric flows.

Although an analogous friction term could be derived, the Coriolis force contribution
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could not be translated to an equivalent term in the SM82 model (as energy would

be propagated by Rossby waves but dissipated in an MHD context). This would limit

Q2D modelling of atmospheric flows to either axisymmetric or very small aspect ratio

configurations.

Sommeria (1988) experimentally examined electrically driven vortices in a circular

tank, subjected to strong magnetic fields. Measurements of the electrical resistance

(electric potential/injected current) agreed well with asymptotic Q2D theory as the

magnetic field was increased, with excellent agreement at higher Ha. This was fur-

ther supported by observing that current was contained within thin layers of thickness

Lz/Ha, except in vortex cores of thickness Lz/Ha
1/2. The main differences between

the experimental and asymptotic results were expected due to recirculating flows not

accounted for in the Q2D model.

Davidson (1995) analytically assessed the the magnetic damping of jets and vortices.

Although these flows are not wall bounded, many of the conclusions are still relevant

to this work. Davidson (1995) showed that the predominantly diffusive action of the

Lorentz force, in elongating vortices along field lines, reduced the Joule dissipation

(relative to the kinetic energy). This ensured that linear momentum is conserved, and is

of relevance to duct flows with electrically insulating walls, as current loops are required

to close within the duct. As noted by Sommeria & Moreau (1982), this allows the

Lorentz force to act as a local source of momentum, so long as there is a corresponding

sink of momentum acting elsewhere on the same current loop. The angular momentum

parallel to the magnetic field was also shown to be conserved, explaining why Q2D

vortices are observed to have long lifetimes (many turnover times), in spite of Joule

dissipation induced by the Lorentz force.

Zikanov & Thess (1998) numerically simulated MHD flows in a periodic box, ob-

taining clear alignment of columnar vortical structures along the magnetic field di-

rection. However, the periodic boundary conditions meant these flows could be truly

two-dimensional. This was shown by Zikanov & Thess (1998) when the same final two-

dimensional state was obtained by both an isotropic 3D initial condition evolved with

the 3D Navier–Stokes equations, and from a 2D initial condition evolved with the 2D

Navier–Stokes equations (not a Q2D model), so long as the initial interaction parame-

ter was large (N = 10). With a large interaction parameter, any angular momentum

transferred to the perpendicular directions was rapidly dissipated by Joule damping.
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At lower interaction parameters, only when velocity variations in the field direction

were large could Joule damping reinstate a two-dimensional structure for a short time,

before nonlinear energy transfers between modes destabilized the columnar vortex.

Bühler (1996) numerically investigated, with a Q2D model, a variation in the elec-

trically conductivity of the wall perpendicular to the magnetic field. Vortex streets were

shed from the conducting region. However, the instability mechanism appeared to be

hydrodynamic in origin, as the smooth variation of the electrical conductivity avoided

the generation of three-dimensional instabilities. Overall, the critical Reynolds number

increased with an increasing magnetic field strength over the range of parameters for

which the Q2D model was valid.

Mück et al. (2000) numerically simulated the flow past a square cylinder, performing

full 3D DNS in a rectangular duct with electrically insulating walls. Q2D dynamics

were observed at 0.2 < N < 1 (based on velocity fluctations in the field direction

tending to zero), as further support of works such as Kolesnikov & Tsinober (1974) and

Bühler (1996) which also suggest that N ≫ 1 is not a necessary constraint for quasi-

two-dimensionality. A cigar or barrel shape was observed in the otherwise columnar

vortices, which were broadest at the midplane, but still remained perpendicular very

near to the Hartmann walls to a fairly good approximation, as predicted by Sommeria

& Moreau (1982).

Pothérat et al. (2000) analytically and numerically investigated the Q2D model

proposed by Sommeria & Moreau (1982). Analytic solutions (local and averaged) for

the three dimensional flow in a laminar Shercliff boundary layer and an isolated elec-

trically driven vortex were compared to the Q2D model solutions. The agreement in

the former case was very good (within 10% error). In the latter case, the Q2D solution

overpredicted the velocity close to the vortex core, and was excellent thereafter. Higher

order effects (recall the SM82 model is zeroth order in Ha and N) were also considered.

These included recirculating flows in the Hartmann layers, of order N−1, generating

current of order (HaN)−1 outside the Hartmann layers. A three-dimensional ‘barrel’

effect, of order Ha−1, was also predicted for vortices, as was observed by Mück et al.

(2000). The ‘barrel’ effect was induced by a two-dimensional force generated by the

perpendicular current density.

Burr et al. (2000) experimentally assessed turbulent flows in rectangular ducts with

electrically conducting walls. The degree of two-dimensionality (anisotropy of the tur-
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bulent flow) was quantified by deviations in fluctuations of the electric potential relative

to the field angle (fluctuations are purely perpendicular in a two-dimensional flow).

Clear anisotropy was present at Ha = 600, N = 3.6, and was particularly stark for

Ha = 1200, N = 14.4 and above. Some slight reductions in anisotropy were observed at

Ha > 1200, expected due to nonlinearity and the greatly increased shear generated by

electrically conducting walls at higher Ha (the shear does not increase as rapidly with

increasing Ha when the walls are insulating). Although the degree of isotropy increased

at the turbulent scale size reduced, measurements still indicated the small scales were

strongly anisotropic, and thereby possibly Q2D.

Barleon et al. (2000a) experimentally measured the critical Reynolds numbers for a

circular cylinder wake in a channel flow (magnetic field along the cylinder axis). Overall,

the theoretical prediction, of a linear dependence of the critical Reynolds number on

Ha, was well matched by the Q2D model for 250 < Ha < 1250. A linear dependence of

the critical parameter on the (length scale defined by the) damping term was considered

to be general to all Q2D flows.

Burr & Müller (2002) experimentally investigated Rayleigh–Bénard convection in

a rectangular box, and compared to predictions of a Q2D model including natural

convection. There was some agreement in the critical Rayleigh numbers for Ha of 400

and 800 (approximately 20% error), with quite erroneous Q2D predictions at lower

Ha ≲ 200. The Q2D model included significantly more Joule dissipation that the

experimental setup, as in the latter the side layers impinged upon the Hartmann layers.

The critical conditions at large H were further validated by Vo et al. (2017) using a

Q2D model of a duct flow with a heated bottom wall, at Re = 0.

Authié et al. (2003) numerically compared Q2D and 3D natural convection flows in

finite length ducts. Qualitative comparisons of the flow fields indicated the laminariza-

tion and clear quasi-two-dimensionality at Ha > 100 for Grashof numbers Gr = RiRe2

(ratio of buoyant to viscous forces at the duct scale) of order 106, and Ha > 200 for

Gr of order 107. Passive Hartmann layers (Hartmann layers that predominantly act to

damp the core flow) were required for quasi-two-dimensionality. A modified interaction

parameter NG = Ha2/Gr1/2 ≳ 4 was required for Q2D dynamics to be observed.

Krasnov et al. (2004), Zienicke & Krasnov (2005) and Moresco & Alboussiére (2004)

analysed the transition to turbulence in Hartmann layers. Although the transition

behavior is further discussed in Chapter 3, § 3.6, there is a direct relevance to Q2D
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modelling, which assumes passive, laminar Hartmann layers. The Hartmann layers

were observed to remain laminar when R = Re/2Ha < 380 (R is the Reynolds number

based on the Hartmann layer thickness). Recalling Table 2.1, the Hartmann layers are

thus expected to remain laminar at fusion relevant conditions.

Pothérat (2007) provided a detailed numerical analysis of the stability and transient

growth of Q2D pressure-driven flows. Although not a comparison between Q2D and

3D flows, Pothérat (2007) forms the basis of much of the present work. Furthermore,

the timescale analysis of the preceeding section was based on Pothérat (2007), as only

when τ2D ≪ τI,L and τ2D ≪ τν,L does momentum diffuse rapidly enough to quasi-two-

dimensionalize the entire core flow. It was also noted that the thickness of the Shercliff

layer is determined by the equality of the τ2D and τν,L timescales. Thus, viscous friction

will always have acted within the Shercliff layer, and momentum diffusing from outside

the Hartmann layers will by unable to quasi-two-dimensionalize parallel layers (which

always retain some intrinsic three-dimensionality). Pothérat (2007) also showed that

the thickness of the Q2D Shercliff layer scales as H−1/2, similar to the full 3D Shercliff

layer thickness scaling with Ha−1/2.

Krasnov et al. (2008) numerically investigated the optimal growth and transition

to turbulence in channel flows with a spanwise magnetic field. Although not directly

comparable to a Q2D flow, as the out-of-plane (magnetic field) direction was periodic,

it was still observed that Ha of 50 and 100 resulted in the optimal out-of-plane wave

number falling to zero (structures invariant along the magnetic field), for Re of 3000

and 5000, respectively. The energy amplification and optimal wave number in the field

direction were also found to vary as Ha−1 for large Ha.

Kanaris et al. (2013) and Dousset & Pothérat (2008) simulated the MHD flow

around a confined circular cylinder, in 3D and Q2D, respectively. The percentage

error in the critical Reynolds number was 20-30% (comparisons were hampered by the

different means of computation), although the error still reduced with increasing Ha.

In all other measures (drag coefficient, recirculation length, base pressure coefficient),

excellent agreement was obtained between the Q2D and 3D results, with maximum

errors of 10% and 6% at Ha = 320 and Ha = 1120, respectively. 3D effects were

predominantly contained in thin viscous layers, and in the smallest scales when vortices

were shed from the cylinder. The alignment of the vortex cores along the magnetic field

was also excellent, with minimal deviation, at Ha = 1120.
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Young et al. (2014) experimentally investigated underlying base flow profiles with

inflection points, by electrically driving the flow, while still otherwise maintaining elec-

trically insulating walls. A Q2D flow was observed at magnetic field strengths above

0.25 T. The velocity measured at the Hartmann wall then closely matched that in the

core flow.

Pothérat & Klein (2014) experimentally forced turbulence in an electrically insu-

lating cube. Electrical stimulation of the flow at the bottom wall generated structures

that could be qualitatively matched at the unforced top wall for N ′
t ≥ 65. Note that

the true interaction parameter N ′
t(Li) = (σB2Li/ρU

′
b)(2L/a)

−2 is a function of the

injection length scale Li, where U
′
b is the fluctuating velocity just outside the bottom

Hartmann layer. Even N ′
t as low as 4.5 was still sufficient for quantitative correlation of

flow structures across the entire box. As Q2D flows and 3D flows driven by viscous fric-

tion are inertialess, they obey a scaling in the measured bottom wall Reynolds number

of Reb ∼ Re0, where Re0 is the forcing Reynolds number, as predicted by Sommeria

(1988). By comparison, inertial and 3D turbulent flows scale as Reb ∼ Re
2/3
0 . By ob-

serving the switch in Re0 scaling coefficient, Pothérat & Klein (2014) were able to find

a clear Re ′b ≃ 1.27 × 103 above which the flow switched from an inertial to an inter-

tialess regime. Pothérat & Klein (2014) also found that although three-dimensionality

asymptotically reduces with an increasing true interaction parameter, there is no sharp

limit at which the flow becomes Q2D at all scales. However, for any Nt a cutoff scale

will still exist, sharply dividing those scales which are 3D and those which are Q2D.

Pothérat & Kornet (2015) numerically simulated 3D decaying turbulence in a Hart-

mann channel flow (two periodic directions). In flows governed by Q2D dynamics (once

most of the turbulent scales became Q2D), dissipation predominantly occurred in the

Hartmann layers. In the presence of Hartmann walls, anisotropy was observed to in-

crease more rapidly in the larger scales, and the energy in the velocity component

aligned with the field decayed much faster, with increasing field strength. The two-

dimensionality of the turbulence was measured by the skewness, which for sufficiently

long evolution times tended to zero for Ha < 224 (the final result of higher Ha simula-

tions remained unknown). Further support of the barrel effect (Pothérat et al. 2000),

induced due to currents of order Ha−1, was also consistently observed, regardless of

the degree of three-dimensionality in the initial condition. The barrel effect was less

observable at higher Ha, and with the barrel structures only slowly varying in time.

30



Baker et al. (2018) experimentally validated the numerical observation of a cutoff

length, based only on the true interaction parameter, between scales exhibiting Q2D

and 3D dynamics (Pothérat & Klein 2014). The cutoff length scale was shown to vary

as N
−1/3
t , until the injection scale is reached (below which an inverse energy cascade

cannot transfer energy and three dimensionality is maintained). However, an inverse

cascade was still observed at scales well below the cutoff scale (possibly attributed to

the forcing not acting at a single precise injection scale), in addition to the direct energy

cascade expected to be present. Joule dissipation damped all scales of energy in 3D

turbulence, while Q2D turbulence was only appreciably damped if the turnover time

exceeded the friction time.

Cassels et al. (2019) compared numerical solutions of Q2D and 3D linear transient

growth optimals. For a given Reynolds number, a sufficiently large Hartmann number

could induce Q2D dynamics (in a 3D simulation), such that Q2D predictions of modal

growth and structure became excellent; see also Chapter 6 (Camobreco et al. 2021b),

Table II therein. Even in increasingly Q2D regimes, inertial effects were still the pre-

dominant driver of non-normality (and thereby transient growth). The level of Joule

dissipation in the bulk flow dropping below that in the Hartmann layers was the clearest

means of identifying the Q2D regime. Q2D transient growth scaled with a Reynolds

number based on the thickness of the Shercliff layer (Ha−1/2, i.e. the ratio of 2D inertia

to the Lorentz force). This translated to RH = Re/Ha < 33.3 for Q2D dynamics to

be observed, well below the Re/2Ha < 380 requirement for laminar Hartmann layers

(Zienicke & Krasnov 2005).

This concludes the literature review of Q2D modelling studies. Hopefully, the use-

fulness of the Q2D model is now apparent, given the various flow configurations which

can exhibit Q2D dynamics, and given that parameter ranges exist in which Q2D solu-

tions should be excellent predictions of the fully 3D solutions.

2.4 Practical application and baseline comparisons from
the literature

The motivation for this work stems from improving the performance of dual purpose tri-

tium breeder/coolant blanket module designs in magnetic confinement fusion reactors,

and specifically, their efficient cooling. If the blanket ducts were solely for cooling, non-

electrically conducting fluids would be the simplest design solution, as they would avoid
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the action of the Lorentz force, regardless of their proximity to the plasma-confining

magnetic field. However, a lithium alloy (likely lead lithium) is necessary to rebreed the

tritium required to sustain the plasma reactions. Thus, an electrically conducting fluid

cannot be simply avoided. Many of the MHD phenomena resulting from the action

of the Lorentz force were discussed in the preceding sections; some of the engineering

aspects are discussed here. The two key efficiency aspects are:

� The rate of heat transfer (per unit length) at the plasma facing wall.

� The pressure drop (per unit length) necessary to drive the lead lithium fluid.

Given the complexity of nuclear fusion reactors, there remain many other design issues

to consider, besides the rate of heat transfer and pressure drop. However, due to

the reactor’s complexity, many studies (this thesis included) isolate only one or two

design issues to analyse. There is undeniable danger in such a method, as not only

could the solution to one problem impact possible solutions to another, but many

issues are intertwined, and cannot always be easily isolated (e.g. buoyant forces, due

to temperature differences, can influence the velocity field, but are neglected on the

grounds of a small Richardson number in the self-cooled conduit design investigated in

this work). Even so, computational limits exist, which prevent modelling all real-world

details. Thus, a solution to an isolated problem, which minimally impacts the ability

for other researchers or engineers to solve their own problems is preferred, and this

thesis strives to find such a (minimally impactful) solution. Although the engineering

problems which are beyond the scope of this work need not be understood, neither

can they be completely ignored, and so the following list acknowledges the existence of

reactor blanket engineering problems:

� A flow rate that ensures the maximum pressure drop does not exceed structural

limitations of ≈ 2 MPa (Smolentsev et al. 2010a,b). The total pressure drop

for a 3D blanket flow was estimated to be 1.17 MPa (Smolentsev et al. 2010b),

predominantly from 3D effects, for a flow velocity of 0.015 m/s (35 kg/s flow

rate) at Re = 1.2×105. This implies a limit on the maximum operating Reynolds

number, or equally on the maximum increase in the pressure gradient.

� An acceptable first wall temperature, which must have outlet flow temperatures

below 550 ◦C with Eurofer steel (de les Valls et al. 2011), or below 700 ◦C with the
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addition of Silicon Carbide flow channel inserts (the latter primarily electrically

insulate the duct to reduce the driving pressure required but also allow for higher

wall temperatures). Extended operation at these high temperatures could cause

thermal creep to be of concern.

� Imperfections in the electrically insulating wall coating (Bühler 1995, 1996) can

drastically impact the required pressure gradient. An ideal wall insulation should

provide a uniform wall conductivity σw < 0.1 S/m (Smolentsev et al. 2008).

� Mechanical and thermal stresses introduced by strong temperature or velocity

fluctuations; the former are due predominantly to uneven volumetric heating from

the plasma neutron flux (Zikanov et al. 2013). These fluctuations can generate

low frequency convective rolls, although buoyant temperature fluctuations appear

relevant only at Ri > 0.5 for Ha < 500 (Belyaev et al. 2018).

� Non-uniform volumetric heating, which occurs when energy is released by the

neutron-lithium reactions during fuel rebreed events. This is not localized at the

plasma facing wall, but must still be efficiently transported through the coolant

ducts. The estimated neutron load is 0.78 MW/m2 (Smolentsev et al. 2008).

� Interfacial slip, which may be sizeable at the conditions expected within DCLL

blankets (Smolentsev et al. 2010a). Slip can quite drastically change the base flow

profile, particularly as the slip length can be comparable to the thickness of the

Hartman layer. However, this increases the thickness of the parallel boundary

layers, which is likely to be beneficial at reducing the critical Reynolds number,

and also increases the Hartmann braking time (Smolentsev 2009). Overall, inter-

facial slip could be beneficial, although would warrant further investigation of the

actual base flow profiles.

� Corrosion, which is a significant structural issue for all blanket concepts, as the

rate of corrosion is much higher in the presence of a magnetic field for high tem-

perature lead lithium alloys (Bucenieks et al. 2006); as observed in experiments

conducted on Eurofer steel at 550 ◦C up to 1.7 T, at velocities up to 0.05 m/s.

Higher duct velocities, and turbulence, can further exacerbate the issue (Smolent-

sev et al. 2013; Abdou et al. 2015).

� Recirculating flows are an issue both for impeding the extraction of tritium from
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the rebreeder ducts, and due to high temperature fluid remaining in contact with

the wall for damaging periods of time (Klüber et al. 2019).

� Fluid interactions in complex duct geometries (including pumps, heat exchangers

and sharp corners) could drastically alter the mean flow (Sapardi et al. 2017).

Note that duct lengths are approximately 20 (DEMO) to 50 (ITER) times longer

than characteristic in plane dimensions, helping the flow settle (Smolentsev et al.

2008).

� Electromagnetic coupling between inboard and outboard ducts (Smolentsev et al.

2008, 2010a,b) by virtue of current distributions which loop through multiple

channels. However, in a self-cooled design, all walls are electrically insulated.

Focus is now placed on the efficiency considerations. Sadly, a benchmark for the

enhancement of heat transfer for a time-averaged turbulent flow, relative to the com-

monly used laminar baseline, is lacking (for a duct with perfectly electrically insulating

walls, with either wall or volumetric heating). Thus, it is not possible to comment

as to whether inciting turbulence to enhance heat transfer will be more effective than

previous attempts to enhance heat transfer in MHD flows, e.g. via vortex promoters

(Kolesnikov & Andreev 1997; Barleon et al. 2000a; Hussam & Sheard 2013; Cassels

et al. 2016; Hamid et al. 2016a,b; Hussam et al. 2018; Murali et al. 2021). This thesis

attempts to rectify this issue by computing a baseline for the heat transfer enhance-

ment ratio (of a passive scalar) in a sustained subcritical Q2D turbulent flow, detailed

in Appendix B. While these computations may serve as a useful benchmark for fu-

ture works which aim to assess heat transfer enhancement, it is also worth determining

the minimum necessary conditions required to trigger and sustain turbulence. If these

conditions (e.g. very large Reynolds numbers, very small duct aspect ratios) are by

themselves impractical, this may rule out a simple self-cooled blanket design. However,

if these conditions are accessible, they can then form the focus of any (future) heat

transfer computations.

2.5 The accuracy of Q2D modelling in the current context

The preceding sections have elucidated the breadth of the background for MHD flows

in cooling conduits. However, this work specifically focuses on streamwise invariant,

electrically insulating duct flows, in Q2D regimes. Thus, this section considers time
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steady fully developed solutions for 3D MHD duct flows and compares them to their

Q2D equivalents. These fully developed profiles are the underlying laminar base flows

upon which turbulence may develop. When all walls are perfectly electrically insulating,

these base flows yield the lowest driving pressure gradient for a given flow rate and Ha

(Müller & Bühler 2001), and are thereby the most efficient pressure driven flows.

First, a brief introduction of how these base flows are computed. Interestingly, the

most computationally efficient method, when interested in solutions over a wide range of

Ha, is to independently solve both the momentum and induction equations, Eqs. (2.1)

and (2.3), prior to the invocation of the quasi-static and inductionless approximations.

Eqs. (2.1) and (2.3) are simplified by seeking streamwise invariant (∂x → 0), time

steady solutions for u and b. Once non-dimensionalized in the same manner as before,

Eqs. (2.1) and (2.3) become (Müller & Bühler 2001):

Re
∂p

∂x
=
∂2u

∂y2
+
∂2u

∂z2
+Ha

∂bx
∂z

, (2.57)

0 =
∂2bx
∂y2

+
∂2bx
∂z2

+Ha
∂u

∂z
, (2.58)

where bx is the x-component of the induced magnetic field, and Eq. (2.6) was used to

simplify the Lorentz force term. Continuity, in concert with zero velocity wall boundary

conditions on v and w and zero far field boundary conditions on by and bz, ensures that

v = w = by = bz = 0 everywhere within the domain. Furthermore, as the Hartmann

number can be adjusted by varying either the fluid’s electrical conductivity or the

magnetic field strength, B0 is constrained to unity by appropriate choice of reference

variables (as required to permit the preceding simplifications). Eqs. (2.57) and (2.58)

are also subject to zero Dirichlet boundary conditions on the induced magnetic field,

bx(y = ±1, z = ±1) = 0, as all walls are perfectly electrically insulating.

The first setup investigated, shown in Fig. 2.2(a), has zero Dirichlet velocity bound-

ary conditions applied at all walls, u(y = ±1, z = ±1) = 0, with the driving pressure

gradient set to ∂p/∂x = −1/Re (the pressure gradient can be arbitrarily set to attain

the desired flow rate). The second setup investigated, shown in Fig. 2.2(b), has zero

driving pressure gradient, ∂p/∂x = 0, with the flow driven by constant velocity Shercliff

walls u(y = 1, z) = US1, u(y = −1, z) = US0; the Hartmann walls remain stationary,

u(y, z ± 1) = 0. Q2D equivalents to both setups are investigated in Chapter 6 (Camo-

breco et al. 2021b); in the latter case, at the top Shercliff wall US1 = 1 and at the

bottom Shercliff wall, the wall velocity is varied through −1 < US0 < 1.
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(a) MHD-Poiseuille (b) MHD-Couette
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Figure 2.2: Two setups for which the Q2D equivalent is investigated in this work, and for

which the accuracy of the Q2D model is directly calculated (relative to the z-averaged 3D

solutions). (a) Pressure driven MHD-Poiseuille flow, with stationary Hartmann and Shercliff

walls, and a driving pressure gradient. (b) MHD-Couette flow, with stationary Hartmann

walls and moving Shercliff walls, and with no driving pressure gradient. In all setups, bx =

0 on all walls. Two example streamwise invariant velocity profiles are overlayed (positive

streamwise velocity is into the page), each at Ha = 10. In the MHD-Poiseuille case, the

pressure gradient is chosen to ensure unit maximum velocity. In the MHD-Couette case, the

same is achieved by taking a top Shercliff wall velocity US1 = 1 always. US0 = −1 is only for

MHD-Couette flow; other base flow velocity profiles are obtained as US0 is varied between −1

and 1. Red flooding (solid lines) denote positive streamwise velocity, blue flooding (dotted

lines) negative.

Eqs. (2.57) and (2.58) are decoupled via the introduction of the Elsasser variables

A = u+ b and A′ = u− b (Dragoş 1975; Müller & Bühler 2001), and become:

Re
∂p

∂x
=
∂2A

∂y2
+
∂2A

∂z2
+Ha

∂A

∂z
, (2.59)

Re
∂p

∂x
=
∂2A′

∂y2
+
∂2A′

∂z2
−Ha

∂A′

∂z
. (2.60)

For a non-zero pressure gradient, boundary conditions become A(y = ±1, z = ±1) =

A′(y = ±1, z = ±1) = 0. For a zero pressure gradient, boundary conditions become

A(y, z = ±1) = A′(y, z = ±1) = 0, A(y = 1, z) = A′(y = 1, z) = US1, A(y = −1, z) =

A′(y = −1, z) = US0. Thus, Eqs. (2.59) and (2.60) can be solved independently,

and the velocity and induced magnetic fields reconstructed via u = (A + A′)/2 and

b = (A−A′)/2. The magnitude of the induced current

|j| = 1

Rm

[(
∂bx
∂y

)2

+

(
∂bx
∂z

)2]1/2
, (2.61)
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is also computed, from Eq. (2.6), where Rm is taken as unity without loss of generality.

Müller & Bühler (2001) provide solutions to Eqs. (2.59) and (2.60) that are either

approximations for large Ha, or series solutions for small Ha. Although the latter were

used for numerical validation, it was simpler to numerically solve Eqs. (2.59) and (2.60)

when interested in a wide range of Ha. The numerical method used to solve Eqs. (2.59)

and (2.60) is similar to that discussed in Chapter 6 (Camobreco et al. 2021b). A

Chebyshev discretization was applied to both the y and z directions, and derivative

matrices incorporating boundary conditions constructed, following Weideman & Reddy

(2001) and Trefethen (2000). Nc = 120 Chebyshev points was found to be sufficient to

both provide clean solutions, and to match series solutions well at low Ha (not shown).

As the numerical solution of elliptic equations in two dimensions is thoroughly covered

in Trefethen (2000), as is the application of various boundary conditions, the interested

reader is directed there.

The motionless wall, pressure driven solutions are depicted first, in Fig. 2.3, with

comparisons to Q2D profiles following after comparison to wall-driven flows. A Poiseuille-

like profile is observed for Ha ≤ 1 (the Ha = 0.01 and Ha = 1 cases are virtually coinci-

dent, indicating a hydrodynamic equivalent solution has been reached). At higher Ha,

the velocity profiles rapidly flatten over an increasing extent of the duct, with very thin

Hartmann layers forming on walls perpendicular to the magnetic field, as shown by the

u = 0.99 contour lines plotted in Fig. 2.3(a). These contour lines are nearly parallel to z

at large Ha, indicating quasi-two-dimensionalization at large magnetic field strengths.

Accompanying the thinner Hartmann layers are increasingly thinner sheets of induced

current (Fig. 2.3(b) has been rotated almost 90 degrees to help show this). Note that

the current magnitude also increases, to account for the increased shear in the thinner

Hartmann layers, but this is normalized out as plotted in Fig. 2.3(b). Only at lower

Ha does appreciable induced current leak into the core.

The zero pressure gradient, moving wall solutions are shown in Fig. 2.4, taking

US1 = 1, US0 = −1, to compare to a Couette like flow. At small Ha, as in the pressure

driven case, the hydrodynamic Couette flow solution (of a linear velocity profile) is well

attained. With increasing Ha, the profile flattens through a broader region of the core,

approaching a step velocity profile. Unlike the pressure driven solution, current sheets

do not form along the entirety of the Hartmann walls (note the Hartmann walls are

stationary). Instead, spikes of current from both the Hartmann and Shercliff layers
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(a) (b)

Figure 2.3: Streamwise invariant, time steady velocity and induced current profiles with

a finite pressure gradient. The maximum velocity and current magnitude were normalized

to unity. The colored contour lines represent Ha of: − 1000, − 300, − 100, − 30, − 10,

− 1, − 0.01. (a) Velocity profiles, with a single contour line at u = 0.99 to help define the

boundary layer thicknesses (the most transparent case is the largest Ha). (b) Induced current

magnitudes, with contour lines at magnitudes of 0.001, 0.04, 0.1 and 0.15 |j|.

merge at the corners. Again, with reducing Ha, these spikes of current increasingly

encroach on the core flow.

Additional solutions for the zero pressure gradient, moving wall case are provided

in Fig. 2.5, taking US1 = 1 and varying US0. The Q2D equivalent of Poiseuille flow will

appear to be similar to the 3D solution when US0 = 1, while the Q2D equivalent of

Couette flow is similar to the 3D solution when US0 = −1. Figure 2.5 also provides two

cases at different Ha in separate figures, to help show the flattening of the core region,

and thinning of boundary layers, at larger Ha.

With the 3D streamwise invariant, time steady profiles qualitatively considered,

formal comparisons are made to the equivalent Q2D solutions. The normalized Q2D

motionless wall, pressure driven velocity profile is (Pothérat 2007)

u⊥(y) =
cosh(H1/2)

cosh(H1/2)− 1

(
1− cosh(H1/2y)

cosh(H1/2)

)
, (2.62)

while the Q2D moving wall, zero pressure gradient family of solutions (a new result

investigated in this thesis) is

u⊥(y) = C1 exp(−H1/2y) + C2 exp(H
1/2y), (2.63)
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(a) (b)

Figure 2.4: Streamwise invariant, time steady velocity and induced current profiles with zero

pressure gradient, and Shercliff walls moving at US1 = 1, US0 = −1. The maximum velocity

and current magnitude were normalized to unity. The colored contour lines represent Ha

of: − 1000, − 300, − 100, − 30, − 10, − 1, − 0.01. (a) Velocity profiles, with a single

contour line at u = 0.01 (the most transparent case is the smallest Ha). (b) Induced current

magnitudes, with contour lines at magnitudes of 0.001, 0.04, 0.1, 0.15 and 0.4 |j|.

(a) Ha = 10 (b) Ha = 100

Figure 2.5: Streamwise invariant, time steady velocity profiles with zero pressure gradient,

and Shercliff walls moving at US1 = 1 and varied US0. (a) Ha = 10. (b) Ha = 100. The

colored contour lines represent US0 of: − 1, − 0.95, − 0.9, − 0.8, − 0.5, − 0.1, − 0, −
−0.5, − −1; the contour lines are at these velocity levels. The most transparent case is the

largest US0.
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as given in Chapter 6 (Camobreco et al. 2021b), where

C1 =
UR exp(H1/2)− exp(−H1/2)

exp(2H1/2)− exp(−2H1/2)
, C2 =

exp(H1/2)− UR exp(−H1/2)

exp(2H1/2)− exp(−2H1/2)
. (2.64)

UR is the velocity of the Shercliff wall at y = −1, as the y = 1 wall is at unit velocity,

and H is as introduced earlier. The Q2D velocity profiles of Eqs. (2.62) and (2.63)

are compared to various z = cons. slices of the full 3D solutions, and in particular

are compared to the z-average of the 3D solution, based on the average introduced in

Eq. (2.43). Integration of the numerical solution over z is performed with Clenshaw–

Curtis quadrature for each yn, following Trefethen (2000), where yn are the y locations

of the Nc − 1 internal Chebyshev nodes. The sum squared error

ϵSS =

n=Nc−1∑
n=1

[u⊥(yn)− up(yn)]
2 (2.65)

is used to quantify comparisons, where up is from the 3D solution, either the z-averaged

profile, or a profile at z = cons. (in either case normalized to unit maximum).

The pressure driven velocity profiles (Q2D, 3D slices and 3D averaged) are displayed

in Figs. 2.6(a-c) at Ha = 10, 100 and 1000, with the sum squared error over a wide

range of Ha depicted in Fig. 2.6(d). There is very good agreement between the various

3D profiles, and the Q2D profile, for all Ha, although with a slight overprediction of the

Shercliff boundary layer thickness in the Q2D profile. Interestingly, as shown in Fig.

2.6(d), the agreement at small Ha is actually quite good for the pressure driven profiles

(recalling Fig. 2.3(a), a Poiseuille-like profile is well achieved), with the smallest errors

around Ha = 10. At higher Ha the error for the centreline profile (z = 0) becomes

largest, although the overall error between the Q2D and averaged profile remains quite

small. More importantly, the error decreases proportional to Ha−1/4 at larger Ha.

The zero pressure gradient, moving wall profiles are depicted in Figs. 2.7(a-c) at the

same Ha as the pressure driven case, with the sum squared error shown in Fig. 2.7(d).

In particular, note that these results are a new contribution provided by this thesis, to

further validate the use of the Q2D model in the moving wall setups investigated in this

work. Unlike the pressure driven case, there are appreciable differences between the

Q2D profile and 3D z = cons. slices, particularly for Ha ≤ 10. In spite of this, there

is still good agreement between the Q2D and 3D z-averaged profiles, as highlighted

particularly well in Fig. 2.7(a). Differences between the z = cons. slices of the 3D

profile noticeable reduce by Ha = 100, although again the Q2D profile is overpredicting
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Figure 2.6: (a-c) Constant z and z-averaged velocity profiles for the pressure driven, mo-

tionless wall flow for various Hartmann numbers, compared to the Q2D profile. (d) Sum

squared error (relative to the Q2D profile) for a range of Ha. All velocity profiles were nor-

malized to unit maximum. The Q2D profiles were computed with H = Ha.

the height of the Shercliff layers, particularly so near the Hartmann walls. However,

the sum squared errors are still reducing for the slices near the Hartmann walls, but

remain much larger than the error between the Q2D and 3D z-averaged profile (which

again exhibits a local minimum near Ha = 10). Again, the errors reduce as Ha−1/4 for

large Ha. However, as this is a global error measure, and as the Hartmann layers will

become increasingly thin but never vanish, this error is unlikely to drop to zero in the

Ha → ∞ limit.

Last, comparisons between the Q2D and z-averaged profiles are shown for various

lower Shercliff wall velocities US0 at Ha = 10 and Ha = 100 in Figs. 2.8(a-b). The
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(a) Ha = 10 (b) Ha = 100
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Figure 2.7: (a-c) Constant z and z-averaged velocity profiles for moving wall, zero pressure

gradient flow at various Hartmann numbers, compared to the Q2D profile. (d) Sum squared

error (relative to the Q2D profile) for a range of Ha. The Q2D profiles were computed with

H = Ha.

sum squared errors between the Q2D and z-averaged profiles are shown in Fig. 2.8(c),

and between the Q2D and z = 0.9511 slice in Fig. 2.8(d). Qualitatively, the results

at Ha = 10 and Ha = 100 appear relatively similar regardless of US0. At small Ha,

the errors (considering either the z-averaged or z = 0.9511 results) steadily increase

with increasing lower wall velocity (US0 = 1 yields the largest errors), even though the

velocity difference through the profile is smallest in these cases (the velocity difference

through the profile is largest, and yet the error smallest, when US0 = −1). However,

once Ha ≥ 10, the error is smallest the closer the velocity of the bottom wall is to zero

(with a zero bottom wall velocity all error is then concentrated in the top wall Shercliff

layer). The motionless wall, pressure driven case is also provided for comparison in Figs.
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Figure 2.8: (a-b) Comparison between the z-averaged (dashed) and Q2D (solid) velocity

profiles for various lower Shercliff wall velocities at Ha = 10 and Ha = 100, respectively.

(c-d) Sum squared error (relative to the Q2D profile) for a range of Ha for the z-averaged

and z = 0.9511 slice, respectively. The Q2D profiles were computed with H = Ha.

2.8(c-d). The pressure driven case yields the smallest error in the near wall z = 0.9511

slice for all Ha, although the error in the averaged profile is larger than any US0 case

for Ha ≳ 10 (and has a smaller error than any US0 case for Ha ≲ 7). Again at larger

Ha, regardless of US0 or the presence of a driving pressure gradient, the sum squared

error reduces as Ha−1/4.

In summary, this chapter has introduced the information pertinent to the practical

motivation of this work, the design of cooling conduits for magnetic confinement fusion

reactors. First, the quasi-two-dimensional model was derived, with particular focus

on the realm of validity of key approximations (such as the quasi-static, inductionless
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and quasi-two-dimensional approximations). Second, fusion relevant parameters were

tabulated, with most shown to fit well within the bounds for which Q2D models should

reasonably match their full 3D equivalents. Third, to further support the use of Q2D

models, literature providing both numerical and experimental evidence of good agree-

ment between Q2D and 3D solutions was provided. Some key findings of these MHD

studies were also discussed, as well as a baseline for currently proposed cooling conduit

strategies provided. Finally, quantitative error bounds were computed for the under-

lying base flows in pressure- and wall-driven conduit flows, by comparing averaged 3D

solutions to their Q2D counterparts (error bounds on the transitional or fully turbulent

flows being beyond the scope of the investigation).

Having covered the key aspects of the practical motivation, focus turns in the next

chapter to introducing the concepts and literature relevant to the theoretical motivation

of this work: understanding how Q2D flows might undergo subcritical transitions to

turbulence.
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Chapter 3

The means by which
perturbation energy grows and
flows transition to turbulence

This chapter introduces the concepts necessary to explain how flows may transition to

turbulence. This work is theoretically motivated by understanding whether Q2D flows

are able to transition to turbulence at subcritical Reynolds numbers (Reynolds numbers

at which linear eigenmodes exponentially decay) via purely Q2D mechanisms, and

explaining how this may occur. Much like the breakdown of the transition process into

various stages, so too is this chapter subdivided. First, concepts such as perturbations

and criticality are defined. Second, the various linear and nonlinear mechanisms by

which a perturbation (with small initial amplitude) can experience energy growth are

described, and contextualized within the Q2D duct setup investigated. Before detailing

the transitional stages, the scene is set by introducing the dynamical systems viewpoint

and providing a clearer definition of turbulence. Third, as the underlying processes

behind subcritical transitions are not well understood, some of the lasting theories

(minimal defect, weakly nonlinear/Stuart–Landau) are presented. Fourth, in light of

these theories, two case studies are considered, in which numerical and experimental

transition thresholds matched well. Although useful, these case studies both required

three-dimensionality to observe turbulent transitions, and thus, cannot be replicated

in a purely Q2D environment. Finally, the ability to indefinitely sustain turbulence is

considered, as are means of identifying turbulence.
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3.1 The perturbation decomposition of an instantaneous
flow field

Attention is now directed to the topic of transitions to turbulence. To analyse the tran-

sition process, the Q2D velocity and pressure (with overbars dropped) are decomposed

into base (U⊥, P⊥) and perturbation components (û⊥, p̂⊥), as

u⊥ = U⊥ + û⊥, p⊥ = P⊥ + p̂⊥. (3.1)

The base flow velocity and pressure (U⊥, P⊥) are laminar solutions of the Q2D equa-

tions, Eqs. (2.55) and (2.56), subject to the appropriate boundary conditions. These

laminar base flow solutions are in equilibrium. If in stable equilibrium, there exists a

bounding energy, for which any perturbation to the equilibrium, with energy less than

this bounding energy, will eventually decay, with the equilibrium base flow solution

reinstated. If in unstable equilibrium, even a perturbation with infinitesimally small

energy will force the solution away from the laminar base flow indefinitely. Some ex-

amples of said laminar solutions were provided in Chapter 2, § 2.3. Note that this work

only investigates streamwise-invariant base flow solutions, which may be either time

steady, or time periodic. No constraints are placed on the form of the velocity and

pressure perturbations (û⊥, p̂⊥), except that the perturbation velocity field must be

divergence free

∇⊥ · û⊥ = 0, (3.2)

as enforced by p̂⊥, and subject to zero Dirichlet velocity boundary conditions on all

duct walls. As the instantaneous flow (u⊥, p⊥) must satisfy the Q2D equivalent of the

Navier–Stokes equations, if the perturbation (û⊥, p̂⊥) remains laminar, then so too

does the instantaneous flow. Whereas, if the perturbation becomes turbulent, then the

instantaneous flow has transitioned to turbulence; see § 3.4 for the criteria employed to

identify turbulence.

Two reasons why the decomposition introduced in Eq. (3.1) was chosen are discussed

here; another is discussed in § 3.7. First, such a decomposition provides a very simple

means of measuring the difference between the full Q2D flow (u⊥, p⊥) and the laminar

base flow (U⊥, P⊥), the equilibrium point, at any given time. This greatly aids in

identifying transitions to turbulence. Perturbation energy is measured by computation

of either an energy norm or a 2-norm of a perturbation:

||û⊥|| =
∫

û⊥ · û⊥ dΩ =

∫
û2⊥ + v̂2⊥ dΩ, (3.3)
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||û⊥||2 =
(∑

û2
⊥

)1/2

=

(∑
û2⊥ + v̂2⊥

)1/2

, (3.4)

respectively, the former introduced earlier in Eq. (1.3), and where in the latter the sum

is taken over all points within the domain. Moreover, as only streamwise invariant

base flows U⊥ = (U⊥, V⊥) = (U⊥(y), 0) are considered in this work, any non-zero

wall-normal velocity v̂⊥ immediately identifies a perturbation. Thus, a common norm

used in this work will be (for a complex valued perturbation)

||v̂⊥||2 =
(∑

|v̂⊥|2
)1/2

. (3.5)

The second reason for a perturbation decomposition, rather than a Reynolds decom-

position of fluctuations about a time mean, stems from the necessity of linear growth

mechanisms (Joseph 1976; Henningson 1996; Schmid & Henningson 2001). As the

model system considered in this work is two-dimensional, which greatly eases the iden-

tification of the various modal and nonmodal growth mechanisms, it is worth briefly

reviewing this necessity. First, an equation governing the full nonlinear evolution of

a perturbation is derived. Eq. (3.1) is substituted into Eqs. (2.55) and (2.56), and all

terms which involve only the laminar base flow cancelled, as the laminar base flow satis-

fies Eqs. (2.55) and (2.56) by definition. The remaining terms are a nonlinear evolution

equation for the perturbation velocity

∂û⊥
∂t

= −(û⊥·∇⊥)U⊥−(U⊥·∇⊥)û⊥−(û⊥·∇⊥)û⊥−∇⊥p̂⊥+
1

Re
∇2

⊥û⊥−
H

Re
û⊥, (3.6)

∇⊥ · û⊥ = 0. (3.7)

Taking the dot product of Eq. (3.6) with û⊥ and integrating over the streamwise peri-

odic domain Ω gives (summing over repeated indices)

∂

∂t

∫
û⊥iû⊥i dΩ =

∫
−2û⊥v̂⊥

∂U⊥
∂y

− 1

Re

(
∂û⊥i
∂xj

∂û⊥i
∂xj

)
− 2

H

Re
û⊥iû⊥i dΩ, (3.8)

after the use of Eq. (3.7), the divergence theorem, and zero Dirichlet boundary condi-

tions for the perturbation velocity on all walls. The first term on the right hand side

of Eq. (3.8) has also been simplified based on a Q2D streamwise invariant base flow, to

show that the laminar base flow can only transfer energy to the perturbation through

û⊥v̂⊥ (when their product is of opposite sign to ∂U⊥/∂y). The remaining terms on the

right hand side represent perturbation energy decay due to viscous dissipation and Hart-

mann friction. Note that the nonlinear terms have vanished in determining Eq. (3.8),
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highlighting their energy conserving nature, acting only to redistribute energy. Thus,

Eq. (3.8) is independent of the perturbation amplitude, and although the evolution

of the perturbation û⊥ is not linear, any instantaneous growth of perturbation energy

remains governed by linear equations. As mentioned in Henningson (1996), a decompo-

sition about a time mean, as proposed by Waleffe (1995), rather than about the laminar

base flow, would render Eq. (3.8) nonlinear, as the time mean flow (which would appear

in the first term in the right hand side of Eq. (3.8) in the place of U⊥) would depend

on the perturbation amplitude ϵ. This lends a great deal of credence to linear analy-

sis even when attempting to understand nonlinear processes, as instantaneous energy

growth remains linear, even when perturbations have finite (not infinitesimally small)

amplitudes, when viewed relative to the laminar base flow.

3.2 Modal stability and criticality; exponential perturba-
tion energy growth

Analysis now turns to modal instabilities. In this thesis, modal instabilities are consid-

ered to be linear instabilities (perturbations governed by linear evolution equations),

which contain all perturbation energy in a single eigenmode of the linear operator (intro-

duced shortly), at a single specified streamwise wave number α (due to the streamwise

invariance of U⊥). No perturbation energy will be present in any other eigenmode at

that, or any other, streamwise wave number (at any time). Such perturbations are

useful to analyse as they allow a precise injection of energy into the system, through

a well-defined perturbation structure with calculable linear growth properties, unlike,

say, spatially distributed random noise.

An equation governing the linear evolution of a perturbation is obtained by neglect-

ing the nonlinear term in Eq. (3.6),

∂û⊥,L
∂t

= −(û⊥,L ·∇⊥)U⊥− (U⊥ ·∇⊥)û⊥,L−∇⊥p̂⊥,L+
1

Re
∇2

⊥û⊥,L−
H

Re
û⊥,L. (3.9)

While the amplitude ϵ of a nonlinear perturbation û⊥ remains small, ϵ≪ 1, the linear

predictions of the growth of û⊥,L, from Eq. (3.6), may reasonably predict the nonlinear

perturbation growth of û⊥ from a full direct numerical simulation. Taking twice the curl

of Eq. (3.9), and substituting Eq. (3.7) to eliminate û⊥,L, yields a 4th-order equation

for v̂⊥,L,

∂v̂⊥,L
∂t

=

[
∇−2

⊥

(
∂2U⊥
∂y2

∂

∂x
− U⊥

∂

∂x
∇2

⊥ +
1

Re
∇4

⊥ − H

Re
∇2

⊥

)]
v̂⊥,L, (3.10)
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subject to v̂⊥,L(y = ±1) = ∂v̂⊥,L/∂y|y=±1 = 0. Henceforth, the linear operator refers

to all terms within the square brackets of Eq. (3.10).

In this section, the search for solutions of Eq. 3.10 is restrained to all perturbations

which exhibit exponential growth (or decay), and for which all energy is contained

within a single eigenmode. In § 3.3, the search criteria for solutions will be broadened

to admit any perturbation composed of a weighted sum of eigenvectors, by virtue of the

linearity of Eq. (3.10). Not only do such styles of perturbation have calculable growth

properties, but the linear growth can be maximized or optimized over setup parameters

(such as wavelength, eigenmode to energize, etc.). Such predictability is desirable

to assess which features of an initial condition are the key to inciting transitions to

turbulence, and sustaining said turbulence.

Due to the streamwise invariance of U⊥, modal instabilities take the form

v̂⊥,m = ṽ⊥e
iαxe−iλt, (3.11)

where the imaginary unit i = (−1)1/2, α is the streamwise wave number and ṽ⊥ rep-

resents any one eigenvector of the linear operator with a corresponding complex eigen-

value λ. The eigenmode has a growth rate of Im(λ), and advects with a wave speed

of Re(λ)/α. Note that v̂⊥,m specifically represents a modal perturbation of the form

introduced in Eq. (3.11), while v̂⊥,L represents an otherwise arbitrary linear (ϵ ≪ 1)

perturbation, composed of the sum of any number of eigenvectors of the linear operator.

Substituting Eq. (3.11) into Eq. (3.10) yields the eigenvalue problem

−iλṽ⊥ =

[
L −1

(
iα
∂2U⊥
∂y2

− iαU⊥L +
1

Re
L 2

)
− H

Re

]
ṽ⊥, (3.12)

where L = ∂2/∂y2−α2. As all base flow solutions investigated in this work are Q2D and

streamwise invariant, analytic expressions for U⊥ (and thereby ∂U⊥/∂y and ∂2U⊥/∂y
2)

were determined. For reference, the expressions for all base flows investigated in this

work are listed here. Examples of the MHD-Couette-Shercliff profiles were provided

earlier, in Figs. 2.6 through 2.8, while examples of the pulsatile profiles can be found

in Chapter 8 (Camobreco et al. 2021a). The base flows investigated in this work are:

� An isolated exponential boundary layer (a function of zero parameters, as it rep-

resents the limit of H → ∞):

U⊥(y) = 1− exp(−y). (3.13)
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� The family of MHD-Couette-Shercliff profiles (a function of two parameters, the

friction parameter H and the ratio of the Shercliff wall velocities UR):

U⊥(y) = C1 exp(−H1/2y) + C2 exp(H
1/2y), (3.14)

where

C1 =
UR exp(H1/2)− exp(−H1/2)

exp(2H1/2)− exp(−2H1/2)
, C2 =

exp(H1/2)− UR exp(−H1/2)

exp(2H1/2)− exp(−2H1/2)
. (3.15)

Note that the Q2D Shercliff boundary layer thickness (also denoted by δS, as for

the 3D case) for these velocity profiles scales as H−1/2 for large H.

� The pulsatile velocity profiles composed of the sum of a steady pressure driven and

oscillatory wall driven flow (a function of four parameters, the Reynolds number

Re, Strouhal number Sr , friction parameter H and amplitude ratio Γ):

U⊥(y, t) =
Γ

Γ + 1

cosh(H1/2)

cosh(H1/2)− 1

(
1− cosh(H1/2y)

cosh(H1/2)

)
+

1

Γ + 1
Re

(
cosh((r + si)y)

cosh(r + si)
eit

)
, (3.16)

where

r = H1/2[(SrRe/H)2 + 1]1/4 cos([tan−1(SrRe/H)]/2), (3.17)

s = H1/2[(SrRe/H)2 + 1]1/4 sin([tan−1(SrRe/H)]/2). (3.18)

Note that Eq. (3.12) was non-dimensionalized based on the characteristic scales

relevant to the family of MHD-Couette-Poiseuille base flows, Eq. (3.14), which are

most often investigated in this work. Eq. (3.12) is still valid for the isolated exponential

boundary layer by performing a change of variables, and redefining the Reynolds number

based on the Shercliff layer thickness, via δS = L/H1/2 (with the boundary condition

pertaining to y → ∞ also adjusted). For time-periodic base flows, see Chapter 8

(Camobreco et al. 2021a) for the appropriate modifications to permit solution of the

eigenproblem. Considering a base flow from Eq. (3.14) for the remainder of this section,

a choice of H, Re and α allow Eq. (3.12) to be numerically solved. The linear evolution

operator is discretized with Nc Chebyshev nodes (Trefethen 2000; Weideman & Reddy

2001)

y = cos(πj/Nc) = sin(π[Nc − 2j]/2Nc), j = 0, 1, 2, . . . , Nc, (3.19)
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over the domain y ∈ [−1, 1]. Derivative operators, to represent partial derivatives

with respect to y, with boundary conditions built in, are constructed following Tre-

fethen (2000). Once the linear operator has been discretized, Eq. (3.12) is solved for

a subset of the eigenvalues λj and eigenvectors ṽ⊥,j of the discretized linear evolution

operator. Note that the eigenvalues could also be computed via Eq. (3.10), after as-

suming a streamwise dependence of eiαx (so ∂/∂x→ iα). However, different eigenvalue

routines would be required. Regardless of the computational approach, if operators

are constructed with sufficient discretization, the eigenvalues and eigenvectors of the

discretized operator have been shown to be sufficiently good approximations of the

eigenvalues and eigenvectors of the (continuous) linear evolution operator (Reddy et al.

1993). Some discussion of the various means of computing eigenvalues and eigenvectors

is provided in Chapter 8 (Camobreco et al. 2021a). Further details, relevant to either

Eq. (3.10) or Eq. (3.12), can be found in Lehoucq et al. (1998), Anderson et al. (1999)

or Barkley et al. (2008). For the most part, a call to the MATLAB routine eig (or

eigs) is the simplest, when considering Eq. (3.12), which yields Nc − 1 eigenvalues, for

a domain discretized with Nc − 1 internal points. Eigenvalues are provided to a toler-

ance ||Aṽ⊥,j − ṽ⊥,jΛ||2/||A||2 < 10−14, where A represents the linear operator once

multiplied by i (noting that, in Eq. (3.12), the −i coefficient is not usually absorbed into

the definition of λ), ṽ⊥,j are the right eigenvectors (in columns), and Λ a diagonalized

matrix of the corresponding eigenvalues.

There are two key parameters when performing modal stability analysis. The first

is the wave number αmax, which for a given Re and H, provides the largest growth

rate Im(λj) over all wave numbers, where the j’th eigenmode is of interest. Note that

αmax is sometimes defined based on the largest growth rate over all eigenvalues Im(λ)

and over all wave numbers, a definition which is not applied here. αmax is of particular

importance given the setup introduced in Fig. 1.1. By setting the domain length based

on αmax, a specific perturbation (eigenvector) can be given the greatest chance of be-

coming dominant in DNS. Equally, the domain length could be set with a wave number

far from αmax, to attempt to avoid a modal instability, allowing nonlinear analysis of

an optimally growing nonmodal instability. The second key parameter is the critical

Reynolds number Rec, the smallest Reynolds number at which a non-negative growth

rate is attained at wave number αmax, for the eigenvalue with the largest imaginary

component (i.e. the slowest decaying/fastest growing). Interest in the critical Reynolds
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number stems from the fact that an eigenmode with positive growth rate, can, with

sufficient time, grow from near zero amplitude (e.g. 10−16), to an amplitude of similar

order to the base flow (i.e. where ϵ≪ 1 will no longer be satisfied). While the amplitude

of the perturbation is not relevant in a linear analysis, a modal instability targeted in

nonlinear DNS could trigger a transition to turbulence once at sufficiently large am-

plitudes (those amplitudes approaching the characteristic magnitude of the base flow).

This would arguably be the most efficient route to turbulence, if a transition indeed

occurs at a supercritical Reynolds number, and if efficiency is measured solely by the

magnitude of the initiating perturbation. However, in this work, efficiency is measured

both by the magnitude of the initiating perturbation and by the size of the Reynolds

number necessary to transition to and sustain turbulence. Note that the latter clause

does not render modal analysis irrelevant (fusion relevant conditions are expected to be

at, often severely, subcritical Reynolds numbers), as modal stability behavior increas-

ingly dictates nonmodal stability behavior at large evolution times. In particular, in

Q2D systems, the initial nonmodal growth stages will be of less interest when optimizing

transitions to turbulence, than the large time modal stability behavior.

Some examples of the determination of αmax and Rec follow shortly, as there are

some slight complications introduced as H is varied. However, first some definitions

are provided, regarding modal instabilities analysed with respect to a given base flow:

� Stable: No eigenvalues have positive imaginary components; the Reynolds num-

ber may be greater or less than Rec, as αmax may not have been selected. If

simulating αmax stability can only be assumed to imply Re < Rec if the base

flow is independent of Re, which is not always the case, recalling Eqs. (3.16) and

(3.17).

� Unstable: At least one eigenvalue has a positive imaginary component; it is only

safe to assume this implies Re > Rec if the base flow does not depend on Re.

� Stabilization: An increase in Rec for a given change in another parameter (e.g. H,

UR, Sr or Γ, where said other parameter is modifying the base flow profile).

� Destabilization: A decrease in Rec for a given change in another parameter.

For each wave number, the discretized eigenvalues λj are ordered by imaginary

component, such that λ1 has the largest imaginary component. Examples of the growth
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Figure 3.1: Eigenvalues with the largest growth rate for each wave number, over α ∈
[0.1, 100], comparing H = 100 and H = 10, with a Shercliff velocity profile at UR = 1, recall-

ing Eq. (3.14). (a & c) Growth rates. (b & d) Wave speeds. At H = 100, Rec = 4.40263×105

and 21 curves are plotted, at Re = rcRec, where rc = 1.1, 1.09, 1.08, . . . , 0.91, 0.9. AtH = 10,

Rec = 7.91232× 104 and 25 curves are plotted at Re = rcRec, where rc = 2, 1.9, 1.8 . . . 0.3,

0.2, 0.19, 0.18, . . . , 0.15, 0.14.

rate and wave speed for λ1 over a wide range of wave numbers are plotted in Fig. 3.1 at

H = 100 and H = 10. The curve pertaining to the critical Reynolds number (rc = 1)

just touches the zero growth line in Figs. 3.1 (a & c). However, the present work is

often more interested in the determination of αmax. At H = 100, the set of narrow

peaks which pierce the positive imaginary half plane rapidly diminish with reducing

Re; for rc = Re/Rec ≤ 0.92 this local peak cannot be observed in Fig. 3.1(a). This

is also shown by plotting the corresponding wave speeds in Fig. 3.1(b), where, for

example, there is no break in the set of symbols representing rc = 0.9. The wave speed
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Figure 3.2: rc = Re/Rec curves (see legends) for each of the first three eigenmodes with the

largest growth rates for a range of wave numbers, comparing H = 100 and H = 10, with a

Shercliff velocity profile at UR = 1. (a & c) Growth rates. (b & d) Wave speeds (every third

symbol plotted).

often forms a simple means of assessing which eigenvector to target (i.e. the eigenmode

which will eventually attain positive growth rates), as identified by a wave speed in the

vicinity of 0.8 for wall-driven flows, for the parameters investigated in this work. By

comparison, at H = 10, a local maximum can still be observed until rc ≤ 0.14, with a

similar corresponding wave speed. Note that when determining αmax, it is only the local

maximum yielding the least negative growth rate that is searched for when Re < Rec,

as the lower streamwise wave numbers do not correspond to the eigenmode of interest.

To further highlight the importance of finding a local maximum, rather than merely

the largest growth rate, Fig. 3.2 depicts the leading three eigenvalues over a range of

wave numbers near αmax. It is particularly clear at H = 100 that the local maximum
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Figure 3.3: (a) Shercliff base flow velocity profiles, with dot-dashed lines indicating the

critical layer heights at various H (as highlighted in inset; dot-dot-dashed lines in inset

indicate the wave speed of the TS wave for each of these H). (b) The real and imaginary

components of the eigenvector corresponding to the TS wave at H = 1000, at rc = 1.

follows through to the subdominant eigenvalues, such that these subdominant eigen-

modes should also be considered when attempting to determine αmax at more strongly

subcritical rc. The wave speeds depicted in Fig. 3.2(b) again indicate that the local

maxima for these subdominant eigenvalues correspond to the eigenmode of interest

(wave speed around 0.8).

The eigenmode of interest, subcritically or supercritically, and with wave speed

around 0.8, has an eigenvector corresponding to the Q2D equivalent of the Tollmien–

Schlichting (TS) wave (when the base flow is steady). In hydrodynamic duct flows

(H → 0), the TS wave is a wall-bounded mode, with a wave speed of 0.736000 at the

critical Reynolds number; or 0.264000 in the H → 0 pressure driven duct flow variant

(Drazin & Reid 2004). As an example, Fig. 3.3(a) depicts the Shercliff base flow at

H = 1000, and Fig. 3.3(b) depicts the corresponding (real and imaginary components

of the) Q2D equivalent TS wave. Henceforth, this one eigenmode will be referred to

as two TS wave modes (one at each wall). Note that this symmetry in the TS wave

is present only because the UR = 1 base flow is symmetric, so the Shercliff walls both

move at unit velocity. Thus, the two TS wave modes can advect along the walls at

the same wave speed, and grow in amplitude at the same rate; that of the overall

eigenmode. For any other UR (combination of Shercliff wall velocities), the TS waves
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will advect at different velocities along each wall. In such cases, the TS waves at each

wall will be observed in different eigenmodes. The corresponding eigenvalues will only

have identical growth rates if the local shear in each boundary layer is also identical,

e.g. only UR = −1 and UR = 1. However, these TS waves will still be similar in all

other respects.

At lower H, the wall-boundedness of the TS wave modes can be difficult to observe,

particularly when depicting just the wall-normal perturbation for symmetric base flows.

Thus, both v̂⊥,m and û⊥,m are depicted in Fig. 3.4, for all three Shercliff profiles consid-

ered in Fig. 3.3(a). At lower H, the perturbation structures are conjoined, as indicated

by v̂⊥,m, and become isolated at higher H. However, for all H, two TS waves running

along each wall are still observable in û⊥,m. Once at high H, the TS waves running

along each wall are isolated, and cannot appreciably interact. At high H, each TS wave

behaves as if evolving in an isolated exponential boundary layer (Takashima 1996,

1998; Pothérat 2007), identifiable by an eigenmode wave speed of 0.844996 at rc = 1,

or 0.155004 in the pressure driven equivalent.

The existence and dynamics of the TS wave are now briefly discussed, with the

reader referred to Baines & Mitsudera (1994) and Baines et al. (1996) for further details.

The key dynamics of the TS wave are related to the action of viscosity, as by Rayleigh

and Fjørtoft’s inflection point criteria (Schmid & Henningson 2001), the steady base

flows investigated in this work are stable to inviscidly evolving perturbations. Viscosity

acts in two locations in duct shear flows (per half height), at the wall, as necessary to

satisfy the no-slip criterion, and at the critical layer. The critical layer, for a given j’th

eigenmode, forms at the y location where the base flow velocity equals the wave speed

of that eigenmode, U⊥(yc) = Re(λj)/α. Viscosity must act in the vicinity of the critical

layer (Schmid & Henningson 2001) to ensure non-trivial solutions to Eq. (3.12) exist.

This is shown by rearranging Eq. (3.12),

iα

(
U⊥ − λj

α

)
L ṽ⊥,j =

(
iα
∂2U⊥
∂y2

+
1

Re
L 2 − H

Re
L

)
ṽ⊥,j , (3.20)

which has a left hand side of zero at the critical layer, and no non-trivial solutions if

Re → ∞; ∂2U⊥/∂y
2 is non-zero at the critical layer for base flows investigated in this

work.

The action of viscosity at the wall and at the critical layer differs. At the wall,

viscosity forces a response to what is denoted an inviscid partial mode of the TS wave

(Baines et al. 1996), where the latter satisfies a free slip boundary condition. The
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(a) H = 10 (b) H = 100 (c) H = 1000

y
y

x x x

Figure 3.4: Eigenvectors expanded in the streamwise direction at rc = 1. (a) H = 10. (b)

H = 100. (c) H = 1000. Top row: wall-normal perturbation v̂⊥,m = ṽ⊥e
iαx. Bottom row:

streamwise perturbation û⊥,m = ũ⊥e
iαx, where ũ⊥ = i(∂ṽ⊥/∂y)/α. Solid lines (red flooding)

denote positive velocities, dotted lines (blue flooding) negative.

viscous partial mode applies a restoring force to ensure the no-slip condition is satisfied.

If the least damped viscous mode has the appropriate phase relative to the inviscid

mode, the amplitude of the viscous mode can be increased by advection (the partial

modes constructively interfere when in phase, thereby increasing in amplitude).

Viscosity at the critical layer is then relevant as it introduces an additional length

scale into the system. This additional length scale is shown in the inset of Fig. 3.3(a).

The dot-dashed lines represent the critical layers corresponding to the TS wave mode,

where the critical layers form at the intersections between the base flow velocity and

perturbation advection speed (the wave speeds for each H indicated with dot-dot-

dashed lines). Resonant effects, generated by the viscous response at the wall, can then

occur, further amplifying the TS wave eigenmode, allowing for positive growth rates at

sufficiently large Re. Resonance occurs when the perturbation advection speed yields

a critical layer height in appropriate ratio to the key base flow length scale, i.e. a ratio

of length scales that is roughly an integer multiple. Advection speeds yielding larger

integer multiples then yield other discrete modes of the linear operator. However, as

weaker resonances, they are rarely sufficiently amplified to attain positive growth rates

at the Re of interest. Note that the ratio of key base flow length scale to critical layer

height is not always well defined, being either L/(1 − yc) or δS/(1 − yc), depending

whether H is sufficient to ensure δS < L. Note also that 1− yc is the distance from the

wall to the critical layer, or the critical layer height for short, which differs from the
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H Rec αmax Re(λ1)/αmax 1− yc δS δS/(1− yc)
10 7.91232× 104 0.968327 0.84728883566370 0.0526 0.3162277660 6.01
100 4.40263× 105 1.738971 0.84525720091868 0.0168 0.1 5.95
1000 1.52869× 106 5.10755 0.84499623551127 0.0053 0.0316227766 5.97

Table 3.1: Critical layer and boundary layer heights for the three H cases considered in

Fig. 3.3, where yc represents the y location of the critical layer, and δS = H−1/2.

Re-dependent width of the layer (Schmid & Henningson 2001).

The wave speeds, critical layer heights and boundary layer heights are tabulated

in Table 3.1 for the Shercliff flows considered in Fig. 3.3(a). These further highlight

that the TS wave mode remains wall bounded for all H, as the critical layer heights

remain small, regardless of whether the mode appears conjoined or isolated. It is also

interesting that the ratios of the boundary layer to the critical layer heights remains

roughly constant over a wide range of H, highlighting the similarity in the TS wave

modes over this range of H. Note that for Shercliff flow (UR = 1), isolated boundary

layer dynamics hold only for H ≥ 1000, see Chapter 6 (Camobreco et al. 2021b), yet

δS/(1−yc) remains similar for H ≳ 10, further indicating the importance of the critical

layer in generating the TS wave disturbance. For reference, the hydrodynamic flow has

1 − yc = 0.142 and an L/yc = 7.04. The difference (an approximate integer ratio of 7

rather than 6) may be due to L not being as meaningful a choice of length scale as a

boundary layer height in the hydrodynamic problem, as at low H, the boundary layer

height cannot be defined to any greater accuracy than L. Alternately, it may be due

to the critical layer height being much larger in the hydrodynamic problem (with an

integer multiple of 6 no longer being feasible).

3.3 Nonmodal initial value problems; algebraic perturba-
tion energy growth

3.3.1 Methods to compute and optimize nonmodal transient growth

Having previously discussed the means of analysing the modal stability of the linear

operator, focus now turns to nonmodal perturbations. Investigating nonmodal pertur-

bations, which are capable of transient and exponential growth, allows further diagnosis

of which initial conditions may be beneficial (or detrimental) to triggering transitions

to turbulence. Importantly, nonmodal initial conditions are not too complicated that

their linear growth cannot be efficiently calculated, permitting the broad investigation
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of the parameter space necessary to determine which features (of either the setup, or

initial condition) are desirable for triggering turbulent transitions.

Nonmodal perturbations consist of the weighted sum of any number of modal per-

turbations,

v̂⊥,L(t, x, y) = v̂⊥,nm(t, y)e
iαx =

M∑
j=1

γj(t)ṽ⊥,j(y)e
iαx, (3.21)

where γ(t) is a time dependent set of weighting coefficients (amplitudes) for each eigen-

mode, and ṽ⊥,j(y) are the eigenvectors of the linear evolution operator. Note that, at

least for unbounded flows, the eigenmodes of the linear operator have been shown to

be a complete set. Thus, any smooth perturbation can be represented to an arbitrar-

ily high accuracy if a sufficient number of eigenmodes are included (Gustavsson 1979;

Schmid & Henningson 2001). As an initial value problem, interest is then in the initial

amplitude spectrum γ(t = 0), assigned to the eigenmodes of the linear operator. Such

an initial condition presumes the eigenvalues and eigenvectors of the discretized linear

evolution operator are known, from Eq. (3.12).

Nonmodal stability considers linear superposition of modal solutions, so the gov-

erning linear evolution equation takes the form

∂γ1
∂t

ṽ⊥,1 +
∂γ2
∂t

ṽ⊥,2 + . . .+
∂γM
∂t

ṽ⊥,M =

[
L −1

(
iα
∂2U⊥
∂y2

− iαU⊥L +
1

Re
L 2

)
− H

Re

](
γ1ṽ⊥,1 + γ2ṽ⊥,2 + . . .+ γM ṽ⊥,M

)
. (3.22)

By virtue of linearity, each term in Eq. (3.22) can be considered separately, and defining

everything inside the set of square brackets as the operator L, the j’th term of Eq. (3.22)

satisfies
∂γj
∂t

ṽ⊥,j = Lγj ṽ⊥,j . (3.23)

As the eigenmodes form the basis of nonmodal perturbations, and as the linear evolution

behavior of the former is known from Eq. (3.12), then, for the j’th eigenmode

−iλj ṽ⊥,j = Lṽ⊥,j . (3.24)

Substituting, Eq. (3.24) into Eq. (3.23) yields

∂γj
∂t

= −iλjγj . (3.25)

Note that as only the amplitude of each eigenvector varies with time, recalling Eq. (3.21),

each amplitude in the spectrum is constrained to grow or decay exponentially at the
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rate of the corresponding j’th eigenvalue (for a steady base flow). The solution of

Eq. (3.25) yields an initial value problem

γj(t) = γj(t = 0)e−iλjt, (3.26)

subject to a choice of γj(t = 0). Or, considering all terms simultaneously,

γ(t) = γ(t = 0)e−iΛt, (3.27)

where Λ is a diagonalized matrix of the eigenvalues of the discretized linear stability

operator.

The question becomes how to choose γj(t = 0), which is usually computed via the

optimization of a chosen functional. Common goals informing design of the functional

are (Farrell 1988):

� Optimal excitation: what is the smallest total initial energy, distributed over a

subset of eigenmodes, that will yield a unit initial energy in a chosen eigenmode?

� Optimal linear growth: for a unit total initial energy, distributed over a subset of

eigenmodes, what is the largest ratio of final to initial perturbation energy at a

chosen final (target) time?

The latter option, optimal linear growth, is by far the most commonly investigated.

Motivation stems from the observations that the linear operator can be highly non-

normal (Farrell 1988; Butler & Farrell 1992; Farrell & Ioannou 1993; Trefethen et al.

1993; Reddy & Henningson 1993; Reddy et al. 1993). A non-normal operator allows

for growth in the total perturbation energy (growth in
∫
û⊥,L · û⊥,L dΩ) at subcritical

Reynolds numbers, in spite of no nonlinear interactions, and while all eigenvectors ṽ⊥,j

linearly decay. This is by virtue of the fact that the eigenvectors of normal operators

are orthogonal, while the eigenvectors of highly non-normal operators are highly non-

orthogonal. Interest is then specifically in those non-orthogonal eigenvectors which

are almost anti-parallel, as if said eigenvectors also have a large difference in decay

rate, significant transient growth is produced, as shown schematically in Fig. 3.5. The

summation of anti-parallel eigenvectors leads to some cancellation in the initial con-

dition (when summing two vectors, tip to tail, that point in opposite directions, the

cancellation is the overlap). As evolution progresses, if the decay of these eigenvectors

reduces their cancellation, which is possible for eigenvectors with large differences in
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Figure 3.5: Examples of transient growth or transient decay of initial conditions composed

of two eigenmodes (increasing time from left to right), following Schmid & Henningson (2001).

In each case, the green eigenvector decays slowly (still exponentially), while the blue eigen-

vector decays rapidly. If there is no cancellation in the initial condition, e.g. the eigenvectors

are orthogonal (top row), parallel (middle row), or have any acute angle between them,

when placed tail to tail, no transient growth occurs (i.e. the magnitude of the sum of the

eigenvectors, indicated by the red dashed arrow, reduces). Any non-zero cancellation in the

initial condition (i.e. any obtuse angle between the eigenvectors) leads to some initial transient

growth, with maximum transient growth achieved by anti-parallel eigenvectors (bottom row).

Once the rapidly decaying eigenvector reaches zero magnitude, transient growth ceases, and

all cases decay exponentially. Note that growth should be normalized by the initial length

of the sum of the eigenvectors (the red dashed arrows). Also note that only approximations

of the parallel and antiparallel cases have been drawn, to highlight the contributions of the

various eigenmodes to the sum.

decay rate, this then incurs a growth in energy. Note that the predominant contri-

bution of a parallel laminar base flow is downstream advection, hence eigenmodes are

predominantly parallel or anti-parallel to the base flow, permitting large cancellation

(Grossmann 2000).

This transient growth scenario forms an enticing alternative for reaching nonlinear

amplitudes through linear mechanisms. If an initial condition with a linearly small ini-

tial energy (not infinitesimal, but still with ϵ ≪ 1), underwent sufficient linear growth

to drive the perturbation to nonlinear amplitudes, a turbulent transition could be ob-

served at a Reynolds number well below critical. This, in particular, aligns with the
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aims of this work, in investigating the most efficient route to turbulence, where effi-

ciency is quantified based on both the magnitude of the Reynolds number and initial

energy. However, interestingly, it will not prove the most efficient route to turbulence,

at the very least in Q2D systems, as discussed in Chapter 7.

The optimal linear growth in perturbation energy over all non-zero initial conditions

is given by (Schmid & Henningson 2001)

G(t) = max
v̂⊥,L(t)

v̂⊥,L(t = 0)
= max

γ(t)

γ(t = 0)
= ||e−iΛt||, (3.28)

recalling, in particular, Eqs. (3.3) and (3.27). For further details, see Reddy & Hen-

ningson (1993), Reddy et al. (1993) and Schmid & Henningson (2001), or Farrell (1988)

and Butler & Farrell (1992) for a similar, variational approach.

An alternate means to compute linear growth is by direct forward evolution of the

linear perturbation evolution equation, Eq. (3.10), rewritten here as

∂v̂⊥,L
∂t

=

[
L −1

(
iα
∂2U⊥
∂y2

− iαU⊥L +
1

Re
L 2

)
− H

Re

]
v̂⊥,L

= Lv̂⊥,L. (3.29)

Note that the linear operator L still remains identical to that introduced previously,

with L = ∂2/∂y2−α2 as before; note eig(iL) yields the eigenmodes for perturbations

with exponential time dependence assumed, as for a steady base flow. While Eq. (3.29)

can compute the linear growth of any initial condition, to specifically determine which

initial condition obtains optimal growth requires penalizing all other initial conditions

which yield less growth (for a given time interval). To filter out the initial conditions

yielding less growth, a Lagrange multiplier, the adjoint velocity perturbation ξ̂⊥,L, is

introduced (the properties of the adjoint will be discussed shortly). A perturbation,

with evolution governed by the direct (forward) linear operator L, and always assumed

normalized to unit initial energy, has an energy growth at the time t = τ optimized

over all initial conditions given by

G(τ) = (v̂⊥,L(τ), v̂⊥,L(τ)) = (Lv̂⊥,L(0),Lv̂⊥,L(0)) = (v̂⊥,L(0),L
‡Lv̂⊥,L(0))

= (v̂⊥,L(0), ξ̂⊥,L(0)) (3.30)

where (·, ·) denotes the inner product in the energy norm introduced in Eq. (3.3), L‡ is

the adjoint evolution operator and ξ̂⊥,L = (η̂⊥,L, ξ̂⊥,L) the adjoint velocity perturbation.

The adjoint evolution operator is derived from the definition of the adjoint, e.g. for the
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wall-normal perturbation (Schmid & Henningson 2001),∫ 1

−1
ξ̂⊥Lv̂⊥ dy =

∫ 1

−1
v̂⊥(L

‡ξ̂⊥)
∗ dy, (3.31)

where ∗ represents complex conjugation. Note that the choice of norm defines the

adjoint operator; the norm introduced in Eq. (3.3) defines the linear adjoint operator

in the energy norm. It is important to note that the chosen norm is always ‘built-

in’ to an adjoint operator, and henceforth, any computations in the adjoint system,

based on L‡, are confined to the energy norm. This is beneficial, as the energy norm

is physically meaningful, and thus no further conversions are required to compute the

adjoint eigenvectors in the energy norm. Note that this also greatly simplifies the

computation of the optimal excitation; see below, compared to Farrell (1988), where in

the latter, the forward system with an adjustment from L2 to energy norm is instead

employed. After integrating Eq. (3.31) by parts, and defining boundary conditions of

ξ̂⊥,L(y = ±1) = ∂ξ̂⊥,L/∂y|y=±1 = 0, the adjoint evolution operator is determined to be

∂ξ̂⊥,L
∂t

=

[
L −1

(
2iα

∂U⊥
∂y

∂

∂y
+ iαU⊥L +

1

Re
L 2

)
− H

Re

]
ξ̂⊥,L

= L‡ξ̂⊥. (3.32)

An auxillary benefit of this approach is that it can compute linear modal or nonmodal

growth for base flows with any time variation (e.g. those which are periodic, rather than

time steady), as discussed in Chapter 8 (Camobreco et al. 2021a) and Barkley et al.

(2008), as the time dependence of the perturbation evolved is completely arbitrary.

It is worth taking a moment to point out some of the key features of the forward and

adjoint systems (see Luchini & Bottaro 2014, particularly its supplemental material,

for further details). First, the eigenvalues of both the direct and adjoint systems are

identical; i.e. λj = λ‡∗j for all j. Note that as the adjoint system is already in the

physically meaningful energy norm, the eigenmodes for the adjoint system are directly

obtained by discretizing the adjoint operator, and calling eigs(−iL‡) in MATLAB,

assuming exp(+iλ‡jt) time dependence. Note also that the conjugate in the eigenvalue

equality accounts for a return to a positive time measure, as naturally the growth of

the adjoint modes is backwards in time, which is equivalent to the decay of the forward

modes forward in time. Second, the forward and adjoint eigenvectors are mutually

orthogonal; i.e. û⊥,L,i · ξ̂⊥,L,j = δij , where δij is the Kronecker delta. Thus, the j’th

adjoint eigenvector, evolved via the forward operator L, in the limit of t → ∞, will
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yield the j’th forward eigenvector. Even more importantly, the j’th adjoint eigenvector

represents the initial condition with the largest projection (of all initial conditions) on

the j’th forward eigenvector as t→ ∞. As in, û⊥,L,i · ξ̂⊥,L,j = δij ensures that the j’th

adjoint eigenvector must have zero projection (amplitude) in all but the i = j’th forward

eigenvector in the limit t→ ∞. Thus, the j’th adjoint eigenvector will optimally excite

the j’th forward eigenvector, in the sense that it will generate the largest linear transient

growth subject to the constraint that in the limit t→ ∞, all energy is contained in the

j’th forward eigenvector. Equally the amplitudes (weighting coefficients in the forward

eigenvector basis) will obey, e.g. γ1 → 1 and γ¬1 → 0 as t→ ∞, where ¬ represents not

equal to, if i = j = 1. Furthermore, as t → ∞, these amplitudes will yield the largest

ratio of ‘final’ to initial perturbation energy, of all initial conditions, as eventually they

decay slowest/grow fastest. Thus, to optimally excite the leading eigenmode of the

forward system, the initial condition should be the leading eigenmode of the adjoint

system. No other optimization is required when the desired goal is optimal excitation,

when working in the energy norm. See also Farrell (1988) and Farrell & Ioannou (1999).

The same is not true when the goal is optimal linear growth at finite target times,

which requires optimizing the initial condition maximizing growth. With (a starting

guess for the) initial condition v̂⊥,L(t = 0), forward evolution proceeds via Eq. (3.29)

to a target time τ , providing v̂⊥,L(τ) = Lv̂⊥,L(0). Defining an ‘initial’ condition of

ξ̂⊥,L(τ) = Lv̂⊥,L(0), backward evolution via Eq. (3.32) to t = 0 gives ξ̂⊥,L(0) =

L‡Lv̂⊥,L(0). Importantly, note that Eq. (3.32) has been written so that when time

integrating (temporal iteration index i) with the 3rd-order Adams–Bashforth scheme

v̂i+3
⊥,L = v̂i+2

⊥,L +∆t

(
23

12
[O v̂⊥,L]

i+2 − 16

12
[O v̂⊥,L]

i+1 +
5

12
[O v̂⊥,L]

i

)
, (3.33)

the operator O can represent either L or L‡ without having to step backward in time

(computationally, both forward and adjoint evolutions proceed from t = 0 to t = τ).

Each forward-backward evolution is normalized to unit energy at t = 0, with a seed of

random noise applied to initiate the iterative procedure. Forward-backward iterations

continue until a desired tolerance is reached. This tolerance may be the change in G(τ)

between iterations, if the growth is computed directly from integrating the perturbation

energy over the computational domain at the start and end of the forward iterations,

or from Eq. (3.30). Alternately, to aid convergence, the eigenvalues λG,j representing

growth under the combined action of the discretized L‡L operator can be computed

with a Krylov subspace scheme. Either the change in the eigenvalue each iteration,
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Figure 3.6: Energy norm
∫
û⊥,L · û∗

⊥,LdΩ as a function of time, evolving initial conditions

optimized for various τ , as annotated in legend (each normalized to unit initial energy). From

v̂⊥,L, the streamwise velocity perturbation is computed as û⊥,L = i(∂v̂⊥,L/∂y)/α. From this,

the optimal growth over τ ∈ [1, 100] at H = 10, rc = 0.9 and α = 1 is determined to be

τopt ≈ 31 (the first light orange curve).

or the size of the imaginary component of the eigenvalue (for linear transient growth

computations only, as it should be zero) can then form convergence tolerances. With

eigenvalues sorted in ascending order by largest real component, the maximum growth

over all initial conditions at a specified τ is G(τ) = λG,1.

For a given Re, H and α, the optimal initial condition yielding the maximum growth

(over all initial conditions) for a given target time τ can be computed. However, the

growth at t = τ may not be the largest growth achieved over all times through which

that initial condition evolves, nor may it be the largest growth obtained by any other

linear initial condition. Thus, τ is varied until the maximal growth over all τ and all

initial conditions is determined. This process is depicted in Fig. 3.6. A similar process

can be performed for all other α, which then yields the maximum growth achievable at

that H and Re, defined as Gmax, which occurs at τopt, αopt. Note that if Re > Rec,

then Gmax → ∞ and τopt → ∞, if at a wave number yielding positive growth rates.

Thus, usually Re < Rec are simulated, or a local maximum (with τ of order 100) found

if Re > Rec are worth investigating. Note that a lower bound of Gmax = 1 is also of

interest, as it defines the energetic Reynolds number ReE, below which transient growth

does not occur. This bound signifies that the sum of dissipation and friction exceed
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production at all times, rather than just at large times. However, as it is such a small

focus of this work, energetic analysis is not discussed further here.

3.3.2 The physical mechanisms by which Q2D nonmodal perturba-
tions grow

In the modal stability section, § 3.2, only the physical mechanism which generated the

Tollmien–Schlichting wave instability was of interest. However, an analogous form of

the modal TS wave can be observed in nonmodal initial value problems. Important

differences exist between the modal and nonmodal TS waves. Discussion as to which

is best at triggering subcritical turbulence is contained in Chapter 7. Note that the

nonmodal TS wave only truly recovers the modal TS wave as t→ ∞ (and with optimal

excitation only if the initial condition was the mutually orthogonal adjoint eigenvector).

Here, the formation process and evolution of the nonmodal TS wave are discussed; refer

to § 3.2 for the modal equivalent.

Nonmodally, in 2D or Q2D parallel shear flows, there is only one mechanism capable

of transiently growing perturbation energy. This is the well known Orr mechanism (Orr

1907; Butler & Farrell 1992; Schmid & Henningson 2001), which, with the appropriate

initial conditions, generates the nonmodal TS wave. Other common nonmodal growth

mechanisms, such as the oblique-wave and lift-up mechanisms, require the out-of-plane

dimension. The dynamics behind the Orr mechanism are highlighted in the Reynolds–

Orr energy equation. In 2D or Q2D systems, the production term (the only means for

perturbation energy growth) has only a single component for streamwise invariant base

flows, rewritten here from Eq. (3.8),∫
−2û⊥,Lv̂⊥,L

∂U⊥
∂y

dΩ = −2

∫
v̂⊥,L
û⊥,L

û2⊥,L
∂U⊥
∂y

dΩ = −2

∫
∂y

∂x

∣∣∣∣
ψ

û2⊥,L
∂U⊥
∂y

dΩ, (3.34)

following Butler & Farrell (1992), where the definition of a streamline ∂y/∂x|ψ =

v̂⊥,L/û⊥,L, a line everywhere tangent to the velocity vector, is introduced. Note that

the production term is linear (valid for any ϵ) and inviscid, and thus so too is the

Orr mechanism. Note specifically, as discussed earlier, that the production term is

only linear due to the chosen definition for a perturbation. If contributions from the

mean flow, or even just the zeroth perturbation harmonic, were included in Eq. (3.34),

a nonlinear analogue of the Orr mechanism would instead be observed. In any case,

Eq. (3.34) highlights that any region of the fluid domain where perturbation stream-

lines ∂y/∂x|ψ = v̂⊥,L/û⊥,L have the opposite sign as the base flow gradient is a source
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of production (energy is transferred from the base flow, or equivalently, the pressure

gradient, or wall motion, driving the flow). Any region where streamlines have the same

sign as the base flow gradient are a sink of production (energy is transferred from the

perturbation to the base flow). Note that perturbation energy then reduces due to the

production, dissipation and friction terms. Structures which are a production source

or sink are respectively termed a structure with tilt (lean) opposite to the base flow, or

tilt into the base flow. Note that tilting is driven by U∂v̂⊥,L/∂x, recalling Eq. (3.9).

Although Eq. (3.34) identifies regions where perturbation energy is produced, in

proportion with û2⊥,nm = −(∂v̂⊥,nm/∂y)
2/α2, it does not explain the energy growth

(e.g. how the size of û⊥,L increases). To do so, it is worth considering two key aspects

of the tilting process. The first aspect is highlighted in Fig. 3.7, and is related to the

continuity constraint ∂û⊥,L/∂x = −∂v̂⊥,L/∂y. Note that, as drawn in Fig. 3.7(a), the

approximation ∆v̂⊥,L/∆y over finite distances is considered. Two phase lines inter-

secting the maximum and minimum perturbation velocity have a small distance ∆y

between them at t = 0.7071. As the initial condition eventually tilts, as observed at

the much later t = 49.50, ∆y has greatly increased, such that ∆v̂⊥,L must also have

increased to satisfy continuity. This is reflected in max(|v̂⊥,L|) having increased over 40

fold between Figs. 3.7(a) and (b). The greater the tilt opposite the base flow shear in

the initial condition, or equivalently the smaller the initial ∆y, the greater the transient

growth achieved by the perturbation. Further perturbation growth occurs so long as

the phase lines remain opposite the mean shear. This is the case until the time of

optimal growth in Fig. 3.7(c), with the structure then upright. As time progresses, the

perturbation decays as it leans into the mean shear, Fig. 3.7(d). If the viscous and

Hartmann dissipation (which act through the entire process) are neglected, cumulative

energy decay (transfers from the perturbation to the base flow) for t > τopt,S cancels

all cumulative energy growth (transfers from the base flow to the perturbation) for

t < τopt,S, if Re < Rec. Finally, note that the statement ‘∆v̂⊥,L must also have in-

creased to satisfy continuity’ is actually a slight misnomer. As û⊥,L = i(∂v̂⊥,L/∂y)/α,

continuity is always satisfied by default. Given that the initial condition was a source

of production, by virtue of Eq. (3.34), it follows that increases in the magnitudes of

v̂⊥,L and û⊥,L were likely, although equally both could have fallen and continuity still

been satisfied (so long as ∆v̂⊥,L fell further, given that ∆x in ∆û⊥,L/∆x is fixed from

linearity). Thus, the initial evolution process is further considered, to highlight how
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(a) t = 0.7071, max(|v̂⊥|) = 0.0258 (b) t = 49.50, max(|v̂⊥|) = 1.0778

y

max(v̂⊥)

min(v̂⊥)∆y
y

max(v̂⊥)
min(v̂⊥)

∆y
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(c) t = τopt,S = 59.40, max(|v̂⊥,L|) = 1.5563 (d) t = 70.71, max(|v̂⊥,L|) = 0.8919

y y

x x

Figure 3.7: Snapshots of v̂⊥,L linearly evolving into a nonmodal TS wave at ReS = 1.414×
104 in an isolated exponential boundary layer, U⊥(y) = 1 − exp(−y), with sketched lines

following Jiménez (2013). Lengths were non-dimensionalized by δS, so the Shercliff layer

is one wall-normal unit thick. The base flow velocity profile is overlayed with a red solid

line in each subfigure. An indication of energy growth at each t is provided by max(|v̂⊥|),
with growth peaking at t = τopt,S. Note the structure has advected through the domain

once over this set of subfigures. Solid lines (red flooding) denote positive v̂⊥,L, dotted lines

(blue flooding) negative; lines are only applied to the zero, maximum and minimum velocity

contours. Phase lines intersect the maximum and minimum v̂⊥,L, to provide a rough guide of

the tilt of the perturbation, and aid in the assessment of ∆v̂⊥,L/∆y. Note that phase shifts

aside, the wall normal velocity contours are of very similar appearance to the streamlines,

such that the latter are not overlayed, although are more relevant to Eq. (3.34).
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t = 0.707, v̂m = 0.023 t = 2.83, v̂m = 0.026 t = 5.66, v̂m = 0.032 t = 8.49, v̂m = 0.040

y

t = 11.3, v̂m = 0.051 t = 14.1, v̂m = 0.065 t = 28.3, v̂m = 0.187 t = 42.4, v̂m = 0.589

y

x x x x

Figure 3.8: Snapshots of v̂⊥,L linearly evolving (eventually into a nonmodal TS wave) at

ReS = 1.414× 104 in an isolated exponential boundary layer, U⊥(y) = 1− exp(−y). Lengths
were non-dimensionalized by δS, so the Shercliff layer is one wall-normal unit thick. As

shorthand, v̂m = max(|v̂⊥,L|), to provide an indication of energy growth at various t. On each

subfigure, the annotation denotes the number of local maxima in v̂⊥,L along the corresponding

dashed vertical lines (which each roughly intersect the overall local maximum of the flow

field). Note for the streamwise perturbation velocity, recall that û⊥,nm = i(∂v̂⊥,nm/∂y)/α,

so if ∂v̂⊥,nm/∂y has multiple local maxima along a line in the wall normal direction, then

û⊥,nm is varying between positive and negative values along that line also. Note also that

the structure has (or substructures have) yet to advect once through the domain (this first

occurs at t ≈ 70). Solid lines (red flooding) denote positive v̂⊥,L, dotted lines (blue flooding)

negative.

growth in v̂⊥,L is initiated, which then helps force growth in û⊥,L. Note that the per-

turbation pressure, the physical means by which continuity is enforced, also plays a

role in inhibiting the streamwise velocities at small times, which then leads to growth

in û⊥,L as the inhibition diminishes due to the structures tilting (Jiménez 2013).

The perturbation evolution over early times is depicted in Fig. 3.8. The first inter-

esting thing to note is that tilting is not observed before t ≈ 30, in the sense of the tilting

shown in Figs. 3.7(b-d); i.e. where advection of the nonmodal TS wave advects both

the structure as a whole, and causes the upper regions to roll over the lower regions.

This highlights the second key aspect of the Orr mechanism, growth due to constructive

interference of in-phase waves. Considering Fig. 3.7(a), the initial condition makes an

acute angle with the Shercliff wall (measured clockwise from the −x direction). At this

ReS, the initial condition then covers four full periods of the domain. Note that each
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subfigure is annotated with the number of local maxima along a vertical line through

the duct, which at this t, is still representative of the number of layers in (or windings

of) the initial condition. However, travelling along the diagonal windings of the initial

condition (e.g. starting at the wall and staying only in red regions of the t = 0.7071

subfigure, like travelling along the phase lines drawn in Fig. 3.7(a)), the magnitude

of v̂⊥,L varies. As advection (or ‘tilting’) is driven by U∂v̂⊥,L/∂x = iαUv̂⊥,L, then if

v̂⊥,L is sufficiently small further from the wall where U⊥ is larger, these upper regions

are able to stay in phase with the local maxima of the layers of each of the waves be-

low. Streamwise perturbation velocities also partially cancel between layers, resisting

sliding and helping keep the layers in phase, recalling the caption of Fig. 3.8. This

allows for constructive interference between the various layers of the initial condition,

so long as the positive v̂⊥,L regions in each layer remain in phase (with the same true

for the negative v̂⊥,L regions). As time passes, from t = 2.828 to t = 8.485, the four

local maxima clearly remain in phase as all four layers advect along, constructively

interfering as they do. They also become more distinct, and by t = 8.485, are almost

completely separated in the streamwise direction (e.g. the red regions are very nar-

row between the blue regions, and vice versa). By t = 11.31, the underlying form of

two separate structures is visible, and from constructive interference, only three local

maxima in the wall-normal direction remain (two having combined). However, v̂⊥,L is

still small enough that tilting of the entire structure does not yet occur. This allows

further interference between the layers, leading to still larger v̂⊥,L. By t = 28.28 there

are only two local maxima in the wall-normal direction. Soon thereafter, a structure

with a single local maximum in the wall-normal direction forms, which has large v̂⊥,L

far from the wall, such that the rotation observed in Fig. 3.7 proceeds. Therefore, the

more acute the angle the initial condition makes with the Shercliff wall, the more layers

there will be in the initial condition and the more highly sheared it is. Thus, there

will be more local maxima (one for each layer) able to constructively interfere with one

another, resulting in a larger overall transient growth.

It is worth mentioning, following Jiménez (2013), that although the Orr mechanism

is inherently linear, a more general nonlinear form of the Orr mechanism can be con-

sidered. In essence, linearity is not essential to the Orr mechanism. In the previous

discussion, linearity ensures that the streamwise spacing of structures does not vary,

with implications on the continuity constraint. However, the key to the Orr mechanism
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is not just amplification via pressure (continuity), as growth is predominantly driven by

the interaction between waves at different wall-normal heights (and thereby different

levels of base flow shear). So long as the waves remain in phase, aided by the cancelling

of streamwise perturbation velocities, then the wall-normal perturbation velocities can

constructively interfere. This interference is in no way related to the linear interac-

tion between, or evolution of, the waves, which can equally behave nonlinearly, so long

as they remain in phase, as aided by continuity. In either case, the more (layers of)

waves that remain in phase, and the longer the waves remain in phase, the greater the

transient growth.

Having discussed the relevant linear growth mechanisms, the remainder of this in-

troduction focuses on, and formalizes some of, the various roles of nonlinearity. Again,

recall that this in no way implies that linear mechanisms are not important even when

nonlinear effects are considered, as the perturbation energy growth required to both

transition to and sustain turbulence has a linear origin. However, one way or another,

nonlinearity must be considered when dealing with turbulence. The first consideration

will be the nonlinear equivalent of linear transient growth, which will be framed both

from the conventional viewpoint of an initial value problem (much like this section), as

well as from the perspective of the fixed points and attractors of a dynamical system.

3.4 A dynamical systems perspecitive of transitions to
turbulence, and some criteria to aid identification of
turbulence

Discussion now turns to the dynamical systems viewpoint, and the means by which the

edge states of the turbulent attractor can be found. Some additional methods to de-

termine edge states are detailed in Beneitez et al. (2020), and references therein. First,

some definitions are provided, which are hopefully precise enough to illustrate the gen-

eral concepts, while bypassing the more exacting mathematical details and terminology

(which are not directly relevant to the aims of this thesis):

� A dynamical system ẋ = F (x) governs the time variation of the set of points

x.

� A state space is the set of all configurations of the points x; here the set of all

solutions of the Navier–Stokes equations. Each solution corresponds to a point x,
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with the state space configured in some manner such that moving between points

corresponds to evolution of the Navier–Stokes equations.

� A metric is the norm by which different points in the state space are compared,

e.g. an L2 or kinetic energy norm.

� A trajectory is a path through the state space as time varies. Trajectories of

interest must necessarily connect points in the state space in a manner following

evolution of the Navier–Stokes equations and satisfying applied boundary condi-

tions. The initial condition starts the trajectory.

� An attractor is a configuration in the state space to which nearby trajectories

converge, which could be a fixed point, or a subset of points which themselves

form a trajectory.

� A laminar attractor is specifically the only linearly stable fixed point in the

entire state space (Duguet et al. 2013).

� A laminar basin is a region of the state space, which if the initial condition is

within the laminar basin, will result in the trajectory converging to the laminar

fixed point.

� A turbulent attractor or turbulent state is a region of the state space toward

which trajectories not initially on or in the laminar basin converge.

� A laminar/turbulent basin boundary, separatrix, edge manifold, edge or

Σ is an invariant set delineating those trajectories which converge toward either

the laminar fixed point, for initial conditions within the laminar basin, or converge

toward the turbulent state (Vavaliaris et al. 2020), for initial conditions within

the turbulent basin. Initial conditions on the edge manifold will have trajectories

that remain on the edge manifold for all time (Duguet et al. 2013). Note that

no trajectories commencing in the laminar basin can cross the edge manifold and

thereby leave the laminar basin. If trajectories commencing in the turbulent basin

can cross out of the basin, it is termed a weak edge, if such trajectories cannot,

it is termed a strong edge (Beneitez et al. 2020).

� A relative attractor or edge state is (typically) a saddle point embedded on

the edge manifold, corresponding to a travelling wave, periodic orbit, torus or
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chaotic attractor (Beneitez et al. 2020). Each saddle point is an intersection

point between a stable manifold (the edge) and an unstable manifold.

� An edge trajectory travels along (or nearby to) the edge manifold until it

reaches an edge state, at which point the trajectory departs toward either the

laminar or turbulent attractor (Duguet et al. 2009). Thus, edge trajectories tran-

siently visit flow solutions which are exact coherent states.

� A minimal seed is an initial condition just across the (stable) edge manifold,

on the turbulent basin’s side, but with the smallest value of the chosen metric,

as measured relative to the laminar fixed point. A trajectory with the minimal

seed as initial condition will thereby most efficiently (in the chosen metric) reach

turbulence. If the minimal seed has been found, it represents an initial condition

(almost) on the edge manifold, and therefore must be attracted to at least one edge

state before transitioning to turbulence. Both the minimal seed and corresponding

edge state accessed for transition are important, and are discussed in Chapter 7

for Q2D subcritical transitions.

With these definitions in hand, the bypass transition process (Reshotko 2001; Za-

mmert & Eckhardt 2019) can be described at subcritical Reynolds numbers, which

ensures the fixed point is linearly stable. To further aid this discussion, a schematic

of the state space is provided in Fig. 3.9, valid for a single streamwise wave number

α. First, consider perturbations maximizing linear transient growth (denoting IC1 as

the mode with leading growth, and IC2 the next best growth, for an optimized target

time), which have flow structures independent of amplitude. With zero perturbation

energy, the trajectories corresponding to any initial condition start at the laminar fixed

point L. However, by incrementally increasing the initial energy of each initial condition

(i.e. starting from a point further outward along the dashed lines in the schematic), a

number of interesting trajectories can be observed. Those that are of particular interest

are the edge trajectories, which have been drawn with colored arrows. With a small

change in the initial energy, the initial condition near M has a trajectory either starting

just inside, or just outside, the laminar basin. Both initial conditions follow the edge

Σ, growing for a while, before decaying toward a saddle point S1 embedded on the

edge manifold. At this saddle point, the two trajectories, which had very similar initial

energy, diverge. One returns to the laminar fixed point and the other transitions to a
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turbulent state. Note that a trajectory with initial condition outside the laminar basin

need not be turbulent for all time, but must reach the turbulent region of the state

space at least once. Still considering IC1, with a much larger initial energy, the edge of

the turbulent basin can again be found, in a region between O and another saddle point

S2 embedded in the edge. These two locations in the state space, M and O, denote

the lower and upper edge states, delineating initial conditions which either transition

to turbulence, or return to the laminar fixed point.

In 3D systems, although possibly not in Q2D systems, it can be quite difficult to

determine the minimal seed, after having determined the locations M and O with a

linearly optimized initial condition (IC1). For example, using a different initial condi-

tion, IC2, the locations N and P in the state space can be found, which also yield edge

trajectories with vastly different final states (L and T). Having drawn the entire edge

Σ in Fig. 3.9, it is immediately apparent that M is the minimal seed, as M is closer to

the fixed point than either N, or any other point on the edge. If the entire edge had not

been drawn, as in practice only a fraction of the edge can be explored, another loca-

tion of the edge could well have been closer to L, and yielded a more efficient route to

turbulence. And this is where nonlinear transient growth becomes particularly useful.

For linear transient growth to identify the optimal route to turbulence requires (for

a given α and Re) that a linear initial condition intersects the edge at M. With a linear

scheme, where the only means of varying the structure of the initial condition is through

the target time τ , this is by no means guaranteed, as the state space encompasses all

solutions of the Navier–Stokes equations, not just those which are infinitesimally small.

For canonical flows in three-dimensions, it appears unlikely that linear schemes are

capable of finding M (Duguet et al. 2009; Pringle & Kerswell 2010; Cherubini et al.

2011; Pringle et al. 2012; Duguet et al. 2013; Kerswell et al. 2014; Khapko et al. 2014;

Cherubini et al. 2015; Pringle et al. 2015; Marensi et al. 2019; Budanur et al. 2020;

Vavaliaris et al. 2020). Thus, nonlinear transient growth, which has access to the entire

state space, becomes necessary.

The nonlinear transient growth scheme can employ a small target time τ , to de-

termine equivalent nonlinear optimals in the vicinity of L, in the hope that M is close

enough to L for these to be useful. Alternately, the target time can be set large enough

for an initial condition to reach the turbulent attractor by t ≤ τ . Both methods are

useful. The latter method directly determines if a trajectory has an initial condition
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Figure 3.9: Pedagogical sketch of the state space, following Duguet et al. (2013) and Bu-

danur et al. (2020). All points other then L have non-zero perturbation energy. The sketch

assumes equal energy growth in û⊥ and v̂⊥ corresponds to trajectories travelling at 45◦ from

the horizontal (e.g. roughly from L to T). The black filled circle represents the laminar fixed

point (L). The laminar-turbulent basin boundary (stable edge manifold) is denoted by Σ. Any

trajectory starting (colored filled circles) on the laminar side of the basin boundary returns to

L. All other trajectories reach turbulence (T), although do not necessarily remain turbulent

for all time thereafter (purple dotted arrows). Solid double-sided black arrows denote the

saddle-point edge states (S). Black dotted lines denote unstable manifolds (a saddle point

is an intersection between the stable edge and an unstable manifold). Radial dashed black

lines denote initial conditions (IC) with identical appearance along the dashed line and with

initial energy proportional to distance from the laminar fixed point (e.g. a rescaled linear

transient growth optimal). If the black dashed lines curved through the state space, they

might better represent nonlinear transient growth optimals (which have energy dependent

structures) with a similar optimization goal. The dotted circle around L denotes a constant

value of the energy metric. M denotes the minimal seed, as it is closer to L than N, although

both access the same lower edge state (S1). O and P access different upper edge states (S2

and S3) when transitioning to turbulence.
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outside the laminar basin. Once such an initial condition is found, the initial energy

is incrementally reduced (rerunning the nonlinear scheme), until the edge, and likely

M, is found. However, determination of the minimal seed still remains a function of

the target time. A nonlinearly evolving initial condition can remain laminar until τ ,

by appearing to saturate to a finite amplitude state (which is linearly unstable but

nonlinearly stable), but may be able transition to turbulence with a much larger τ

(Pringle et al. 2012). Thus, even nonlinear transient growth can struggle to find M,

due to the expense of computations with large τ . Due to the size of τ necessary to reach

turbulence in Q2D systems, this method of using nonlinear transient growth appears

unfeasible; nonlinear transient growth with smaller τ is primarily used to validate the

linear-nonlinear scheme employed in Chapters 5 (Camobreco et al. 2020) and 7. Note

that this discussion presumes the edge state and minimal seed are being determined for

a single α and Re; the effects of varying both α and Re are considered in Chapters 5

(Camobreco et al. 2020) and 7, and are found to be as important as τ .

With the transition process discussed, some interpretations of turbulence from the

dynamical systems framework are provided. These are quite speculative, given the

current level of understanding of turbulence, and are an amalgamation of various con-

jectures (Grossmann 2000; Biau & Bottaro 2009; Duguet et al. 2009, 2013; Khapko et al.

2014; Budanur et al. 2020). The criteria for a flow to be deemed turbulent applied in

this work follows Grossmann (2000), in that subcritical turbulence has:

� A transition with a double threshold, based on both initial energy E0 and Reynolds

number, i.e. if a given E0-Re combination incite transition, the transtion only has

a double threshold if, at fixed Re, reductions in E0 eventually lead to initial condi-

tions unable to trigger transition and, if at fixed E0, reductions in Re eventually

lead to initial conditions unable to trigger transition. Note that supercritical

transitions have a single threshold, as at a fixed supercritical Re, there may be

no finite E0 for which transition would not occur.

� A state space dimension (number of degrees of freedom) that becomes very large

rapidly after the transition. Note that it is still unproven whether turbulence can

be truly represented with a finite number of degrees of freedom, although Hopf

(1948) conjectured that the turbulent state should be asymptotically confined to

a finite dimensional manifold of the state space, at finite Reynolds number. In
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practice, turbulence is identified by all resolved Fourier modes (in the order of 100

modes) being appreciably energized, compared to a chaotic flow that may exhibit

10 to 20 energized Fourier modes.

� Turbulent fluctuations which cannot be individually identified, i.e. in the time for

a single turbulent region to both form and decay, other turbulent regions of the

fluid will have spawned or spread, such that each cannot be individually tracked

or identified. Note that fluctuations are always transient by definition. At large

enough Re, the turbulent fluctuations (or chaotic dynamics) should continually

overlap. These topics will be discussed further in § 3.6.

� A scale independent energy cascade, over an inertial subrange of wave numbers,

to be introduced in § 3.7.

In the dynamical systems framework, the turbulent flow is presumed to be com-

posed of strongly chaotic dynamics, organized around a finite (hopefully small) set of

exact coherent solutions. Chaotic trajectories in the state space occur as the flow visits

one exact coherent solution after another, travelling between them via the stable and

unstable manifolds (e.g. travelling in some loop along the black solid and/or dotted

lines of Fig. 3.9). If a chaotic repeller is present, the trajectory can be kept within the

turbulent basin indefinitely, thereby sustaining turbulence, which may or may not be

fully developed (i.e. domain filling). Whether the turbulence is intermittent (i.e. ex-

hibiting relaminarization interspersed between turbulent episodes) may then depend

on the clustering of the edge states. Note that, as drawn in Fig. 3.9, the turbulent

region of the state space is quite small. An actual state space, at large Re, may ex-

hibit chaotic dynamics over a much larger region of the state space. However, chaotic

dynamics do not necessarily meet the definitions of turbulence; conditions solely met

within the vicinity of T. It is also unclear whether the edge manifold can exhibit chaotic

dynamics, or if only points within the turbulent basin can. Although Budanur et al.

(2020) observe a chaotic upper edge state in pipe flow, it can be difficult to prove that

a simple invariant state would not be approached with longer time evolution, made

possible by selecting an initial energy that ensures the trajectory commences from a

point closer to the edge manifold (Khapko et al. 2014). A chaotic upper edge state may

also be observed in Chapter 5 (Camobreco et al. 2020).

At lower Re, the turbulent region of the state space may instead be occupied by
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a chaotic saddle, rather than an attractor (Khapko et al. 2014). As a consequence,

the stable edge manifold may be entagled with the turbulent dynamics (e.g. the solid

black and purple lines in Fig. 3.9 may intermingle). Thus, a flow which becomes

turbulent may relaminarize, ‘using’ turbulence to cross the stable edge manifold out of

the turbulent basin (the edge is no longer a strong enough chaotic repeller as for larger

Re). This may result in a high probability of relaminarization for almost any turbulent

trajectory, which may be observed in this work when α is far from αmax, see Chapters 5

(Camobreco et al. 2020) and 7.

This concludes the discussion of nonlinear transient growth and the dynamical sys-

tems viewpoint of subcritical transitions (based around varying the initial energy of

linear or nonlinear optimals, before either is nonlinearly evolved). The next section

considers two alternate theories of how subcritical transitions may occur, with the aid

of some simplifying approximations.

3.5 Some theoretical routes to turbulence

At subcritical Reynolds numbers, instantaneous perturbation energy growth is governed

by linear mechanisms. However, turbulence is distinctly nonlinear, and thus cannot be

attained (from a perturbed laminar state) solely via linear transient growth. Although

nonlinear transient growth simulates entire routes to turbulence (e.g. linear and non-

linear stages, if both exist), it can can be difficult to discern the importance of specific

flow features or setup parameters, or else is computationally prohibitive. These issues

warrant consideration of alternate methods of elucidating routes to turbulence. Two

alternate methods, minimal defect theory and weakly nonlinear analysis, are discussed

here. While both leave some gaps in explaining how a perturbation of the laminar

fixed point leads to turbulence, they help clarify which underlying flow features are

important, and how they interact.

3.5.1 Minimal defect theory

Minimal defect theory (Bottaro et al. 2003; Biau & Bottaro 2004, 2009; Nouar & Bottaro

2010) is attractively simple. A streamwise invariant modulation to a reference base flow

Uref , with sufficiently large (although small in practice) energy norm

ζ =

∫ 1

−1
(U⊥ − Uref)

2 dy, (3.35)

78



may permit exponential growth at subcritical Reynolds numbers. Note that subcritical

always refers to the reference base flow.

This work only investigates minimal defects modulating the Shercliff reference base

flow at H = 10, recalling Eq. (3.14), and only in this section of the introduction.

Although the idea behind minimal defect theory, of a base flow modulation driving

a subcritical reference profile supercritical, may be quite important, as discussed in

Chapter 7, minimal defect theory is not investigated in detail as its mathematical

foundations are quite tenuous. This is predominantly due to the modulation not being a

full solution of the Navier–Stokes equations. As the modulation is streamwise invariant,

it is a solution of the Euler equations, but is otherwise subject to time unsteadiness due

to diffusion. Thus, accurate linear computations of the growth rate of the modulated

profile can be problematic, as discussed below.

In theory, the plan is as follows: determine a modulated base flow profile U⊥(y) =

Uref(y) + Umod(y) capable of shifting at least one eigenvalue to the positive (unstable)

complex half plane, while at a subcritical Reynolds number. The modulation Umod

capable of achieving this with the minimum norm ζ is the minimal defect. However, as

mentioned, there are complications. In particular, no matter how well Umod is designed,

attempting to destabilize a single eigenmode will also disturb the other eigenmodes of

the linear system. This can be either beneficial or detrimental to linear transient growth

(which is ultimately based on a large number of eigenmodes, and particularly those most

sensitive to perturbation), depending on the modulation profile and streamwise wave

number. Furthermore, the linearized analysis of § 3.2, for which minimal defect theory

pertains, assumes a time steady base flow. Any modulation to the reference base

flow is subject to decay, via both viscous diffusion and Hartmann friction. Minimal

defect theory presumes these processes occur at timescales much larger than that of

linear growth, which cannot be guaranteed. More importantly, the timescale for linear

growth tends to infinity as the modulated profile approaches neutral stability. Thus,

in the vicinity of neutral stability, base flow timescales must necessarily be smaller

than those of the modulation, invalidating a frozen linear stability analysis (which

approximates the base flow as time steady). A possible counterpoint, particularly

relevant to uncovering routes to turbulence, is that nonlinear processes could forseeably

regenerate a base flow modulation, via production from higher harmonics, counteracting

friction and diffusion and thereby reducing unsteadiness. However, if such additional
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harmonics reduced unsteadiness, they may themselves invalidate the linear assumptions

of scale separation. Scale separation in the linearized analysis permits inclusion of

only terms of magnitude ϵ ≪ 1 and ϵ ≫ ϵ2. If the base flow modulation also had

magnitude ϵ≪ 1, and if this magnitude was sufficient to modify the growth rate of the

leading instability, then higher-order feedback regenerating the base flow modulation

may not invalidate scale separation (although, if true, this would likely be very difficult

to prove). The final complication is that once the base flow is modulated, the wave

number maximizing the growth rate of the leading modal instability changes. In the

linearized analysis, computations of the reference and modulated base flows can easily

be performed at different wave numbers. However, in a nonlinear analysis, such wave

number adjustments cannot be easily accommodated.

The minimal defect generates the largest improvement in the growth rate of a single

targeted i’th eigenmode, for a given Re and ζ. Note that the eigenmode to target,

which provides the greatest improvement in growth rate for a given ζ, is not known

for the Q2D Shercliff profile. Although the leading eigenvalues have the largest growth

rates on the reference base flow (are naturally closest to the upper half plane), their

optimally modulated growth rates can be eclipsed by modulations targeting eigenmodes

with larger sensitivities; e.g. those modes with eigenvalues near the branch intersection

(Reddy & Henningson 1993; Reddy et al. 1993; Bottaro et al. 2003). At large Re,

operator conditioning issues limited accurate computations when targeting eigenmodes

near the branch intersection. Of the eigenmodes which could be targeted, only results

for the leading mode (i = 1) will be discussed, given the importance of the TS wave

in Q2D systems. However, targeting i = 6 often yielded much larger improvements in

growth rates, even at weakly subcritical Re.

An example optimal modulation (for i = 1) at a weakly subcritical rc = 0.9 is

considered in Fig. 3.10, before the details of the optimization scheme are provided. Note

that the aim of the optimization procedure is to shift at least one (target) eigenvalue

into the upper half plane with the minimum modulation norm ζ. Figure 3.10(a) depicts

eigenvalue spectra for the reference and modulated base flows. From the scale of the

plot, it is difficult to observe the shift in the target (leading) eigenmode, whereas there

is clear movement of the far more sensitive eigenvalues near the branch intersection.

Figure 3.10(b) zooms in on a section of the eigenvalue spectrum, and highlights that

the target leading eigenvalue is just unstable (has crossed into the positive half plane),
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Figure 3.10: Optimized base flow modulation at rc = 0.9 for the Shercliff flow profile at

H = 10, with ζ = 8.1225× 10−10, targeting the leading eigenmode. (a) Eigenvalue spectrum

for the reference and optimally modulated base flow. (b) Zoomed view of the rectangular

region of the eigenvalue spectrum in (a), with arrows indicating the shift of the eigenvalues.

Note the leading eigenvalue just crosses into the complex half plane with this ζ. (c) The

optimal base flow modulation. (d) The reference base flow Uref , compared to the total base

flow U⊥ = Uref + 1000Umod, where the modulation is arbitrarily rescaled by a factor of 1000

for visibility; see (c) for the raw magnitude of the modulation.

with any modulation norm ζ ≥ 8.1225× 10−10 for this Re, in Shercliff flow at H = 10.

Note that the modulated base flow maximizes growth at αmax = 0.988264, rather than

αmax = 0.979651 (the difference in α grows with decreasing Re), with some slight

implications for direct numerical simulation. The raw base flow modulation designed

to target the leading eigenmode is provided in Fig. 3.10(c), and exhibits near zero

magnitude over most of the duct, to minimize the energy norm. Due to its small

magnitude, the modulation is arbitrarily rescaled for the sake of visualization, and
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the total modulated base flow shown in Fig. 3.10(d), relative to the reference profile.

Without the rescaling both profiles would be indistinguishable by eye, yet even such a

slight change in the base flow is capable of driving an eigenvalue to the positive half

plane.

The minimal defect computation is as follows. Variations to the base flow U⊥+δU⊥,

eigenvalue λ+ δλ and eigenvector ṽ⊥ + δṽ⊥ are introduced into Eq. (3.12). Taking the

inner product of Eq. (3.12) with the adjoint eigenvector ξ̂⊥ yields (Bottaro et al. 2003),

δλ

α

∫ 1

−1
ξ̂∗⊥L ṽ⊥ dy =

∫ 1

−1
δU⊥

[
ξ̂∗⊥L ṽ⊥ − ∂2(ξ̂∗⊥ṽ⊥)

∂y2

]
dy

=

∫ 1

−1
δU⊥GU dy (3.36)

where L = ∂2/∂y2−α2 and ∗ represents complex conjugation as before, and where GU

is the linear response of an eigenvalue, corresponding to eigenvector ṽ⊥, to a change in

the base flow, δλ/α = (GU, δU⊥). ξ̂⊥ is normalized to ensure the left most integral of

Eq. (3.36) evaluates to unity.

Selecting the i’th eigenmode, and for a given ζ, the largest change in λi is attained

by rendering the functional (Bottaro et al. 2003; Nouar & Bottaro 2010)

f := λi + χ

(∫ 1

−1
(U⊥ − Uref)

2 dy − ζ

)
(3.37)

stationary with respect to δU⊥, where χ is a Lagrange multiplier enforcing Eq. (3.35).

Setting δf/δU⊥ to zero, and with δω = (GU, δU⊥), gives

0 = Im(GU) + 2χ(U⊥ − Uref). (3.38)

Thus, the modulated profile Umod = U⊥ − Uref = −Im(GU)/2χ is directly related to

the imaginary part of the eigenvalue sensitivity GU, where from Eqs. (3.35) and (3.38),

χ =

(
1

4ζ

∫ 1

−1
Im(GU)

2 dy

)1/2

. (3.39)

The optimal modulation is iteratively computed with an under-relaxed scheme (Nouar

& Bottaro 2010), to ensure the same eigenmode is always tracked through the complex

half plane.

Minimal defect theory thereby forms a simple means of ensuring growth of even in-

finitesimal perturbations at subcritical Reynolds numbers. However, the large ‘gap’ in

the theory regards how the base flow becomes modulated in the first place. Originally,

minimal defect theory proposed that a base flow modulation could account for finite
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amplitude uncertainty in an experimental setup, due to imperfect wall boundary con-

ditions or measurement error (Bottaro et al. 2003). If the uncertainty were larger than

the norm ζ, then the experimental setup may actually be operating at a supercritical

Reynolds number (relative to the modulated profile), even when the experimentalist sets

a flow rate corresponding to a subcritical Reynolds number (relative to the reference

profile). This could then explain the appearance of turbulence at subcritical Reynolds

numbers. However, in a purely computational environment, where such factors do not

exist, the base flow can only be modulated by nonlinear interactions. Even simplified

models of turbulence involve some modulation, feedback, or regeneration of modula-

tions of the base flow (Biau & Bottaro 2009; Lozano-Durán et al. 2021). However, there

is not necessarily a simple means of computing the higher wave number (κ ≥ 1) modes

necessary to nonlinearly generate a minimal defect. Furthermore, an optimal modu-

lation only guarantees the improved growth rate of a single eigenmode, an eigenmode

which may have little to do with the base flow regeneration process. Thus, depend-

ing how the modulation interacts with other eigenmodes, and how eigenmodes interact

with one another, this could hamper the ability to regenerate the optimal modulation.

It would indeed be beneficial if the feedback loop were far simpler. If the modulation

improved the growth of the (targeted) leading eigenmode, and the leading eigenmode

were then almost solely responsible for generating/regenerating the base flow modu-

lation (through nonlinear interaction/production), a simple route to turbulence could

be foreseen, as once the modulation is sufficient to ensure the leading eigenmode has

a positive growth rate, the system should runaway to turbulence. However, as this

process occurs (i.e. while the base flow modulation is being generated by the leading

eigenmode, and the feedback process is beginning to improve the growth rate of the

leading eigenmode), other mechanisms are required to offset the initial decay of the

leading eigenmode. Such processes are at the heart of weakly nonlinear analysis, as

follows.

3.5.2 Weakly nonlinear analysis

Weakly nonlinear analysis revolves around the leading eigenmode. Specifically, interest

is in the leading eigenmode and a truncated set of its nonlinear interactions (Schmid &

Henningson 2001; Moresco & Alboussiére 2003; Drazin & Reid 2004; Hagan & Priede

2013b), one of which will be the base flow modulation we desire. These interactions
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may often be referred to as modes, but it is worth making the clear distinction that

these interactions do not have anything to do with any of the other eigenmodes of the

linear operator. The term harmonics will be henceforth used to denote these nonlinear

interactions. Note that for weakly nonlinear analysis to remain accurate, the leading

eigenmode and its harmonics must have growth rates outstripping those of the other

eigenmodes. Thus, for the purpose of identifying bifurcations in this work, weakly

nonlinear analysis is performed at Reynolds number, wave number combinations just

inside the neutral stability curve, resulting in growth rates of the leading mode which

are just slightly positive (order 10−7 at most) and ensuring all other eigenmodes decay.

Depending on α and Re, one of two bifurcations in the amplitude-Reynolds number

space (|A|-Re) could be identified. A supercritical bifurcation corresponds to a point

in |A|-Re space at which, for smaller Re, only one stable amplitude exists (zero), and

at larger Re, the amplitude of the stable solutions continuously increases (a finite

amplitude is stable). Conversely at Re past a subcritical bifurcation, the amplitude of

the stable solution discontinuously increases, while at smaller Re, two stable amplitudes

exist in the vicinity of the subcritical bifurcation point (zero and finite amplitude; the

stable finite amplitude continuously increasing with reducing Re).

To properly explain the roles of the harmonics in the weakly nonlinear process, it

is instructive to begin with the Stuart–Landau equation (Landau 1944; Stuart 1958;

Drazin & Reid 2004),

∂|A|2
∂t

= 2µ1(Re − Rec)|A|2 − µ2|A|4, (3.40)

which governs the magnitude of the complex amplitude A of the leading eigenmode,

with |Re − Rec| ≪ 1. As written, the equation is truncated to include only the linear

term, where µ1(Re − Rec) is the linear growth rate correction, and the first nonlinear

term, where µ2 is the first Landau coefficient (there may be infinitely many other

Landau coefficients, but under certain circumstances they can be neglected). Even

with just these two terms, four non-trivial behaviors are observed; trivial results are

µ2 = 0, resulting in linear behavior, and µ1 = µ2 = 0, describing neutral stability. Only

two of the four non-trivial behaviors are viable routes to either turbulence, or similarly

chaotic dynamics, with the discussion following Drazin & Reid (2004).

� µ1(Re−Rec) > 0 and µ2 > 0 or supercritical stability (not turbulent). As the base

flow is linearly unstable, positive µ1 forces growth from the laminar fixed point.
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Initially linear growth leads to an increase in perturbation amplitude, which is

attenuated by the leading nonlinear term, recalling the negative sign in front µ2 in

Eq. (3.40). The perturbed flow is thus nonlinearly (or supercritically) stable, and

saturates to an equilibrium amplitude. If this equilibrium amplitude Ae is not

large (e.g. not order unity), higher order terms may not be required in Eq. (3.40).

In this case, the equilibrium amplitude depends only on the relative magnitudes

of µ1(Re − Rec) and µ2, as |Ae| = [2µ1(Re − Rec)/µ2]
1/2. Such a supercritcally

(nonlinearly) stable laminar flow is independent of the initial condition, excepting

phase differences for travelling wave states.

� µ1(Re − Rec) < 0 and µ2 > 0 or subcritical stability (not turbulent). With µ1

negative, the initial perturbation linearly decays toward the laminar fixed point.

This decay is exacerbated by the leading nonlinear term, further hastening decay

toward the laminar fixed point. Technically, subcritical stability can be observed

at Re > Rec if at a wave number outside the neutral curve. Thus, subcritical

stability really implies µ1(Re−Remarg) < 0, where Remarg is the Reynolds number

intersecting the neutral stability curve at the α of interest.

� µ1(Re − Rec) > 0 and µ2 < 0 or supercritical instability (turbulent). Again the

base flow is linearly unstable, and positive µ1 generates exponential growth from

the laminar fixed point. This is assisted by the nonlinear term, resulting in super-

exponential growth as the amplitude rapidly increases. Once the amplitude is of

order unity, higher order terms must be included to prevent breakdown of the

solution. One could argue that this forms the simplest route to turbulence, as

the large amplitude solution is able to simply excite and energize more and more

harmonics, meeting the large state space requirement of turbulence. Note for this

case that the transition to turbulence does not have a double E0-Re threshold

(where E0 is the finite initial perturbation energy), as exponential growth can

excite an infinitesimally small initial perturbation. Thus, there is only a single

transition threshold parameter, Re.

� µ1(Re − Rec) < 0 and µ2 < 0 or subcritical instability (turbulent), and the sce-

nario of greatest interest to this work. Interestingly, in fully 3D hydrodynamic

transitions, a bypass route to turbulence is often observed, which does not revolve

around the leading eigenmode (Zammert & Eckhardt 2019). However, the lead-
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ing eigenmode is intrinsic to the Q2D transitions in Chapter 7, hence the interest

in this subcritical instability scenario. Linearly, a finite amplitude perturbation

would decay toward the finite amplitude fixed point. However, as µ2 < 0, the first

nonlinear term is generating growth in amplitude. The question then becomes

whether nonlinear growth outweighs linear decay, which is a function only of the

initial amplitude. Below a critical initial amplitude |Ac| = [2µ1(Re−Rec)/µ2]
1/2,

nonlinear growth reduces the rate of perturbation decay, but is ultimately insuf-

ficient in preventing decay back to the laminar fixed point. However, for initial

amplitudes greater than |Ac|, nonlinear growth outpaces linear decay, eventually

leading to solution breakdown at large times, similar to the supercritical insta-

bility scenario. Once the amplitude grows to order unity (although the growth

is not super-exponential any more), all higher harmonics become energized, thus

possibly generating a turbulent flow. However, given the slow growth, higher

order terms may become relevant at amplitudes below unity in an observable

manner. This may be of relevance as the transition scenarios observed in Chap-

ter 7 often depict the energization of an increasing number of modes toward the

time of transition (although the growth is rarely slow). Note that although the

expressions for Ae and Ac are identical, they represent the opposite behaviors (Ac

delineates initial conditions which exhibit either net decay or growth, while Ae is

a saturation amplitude).

The subcritical instability scenario is of greatest interest to this work, although

it is interesting to consider a slight complexity. Instead of assuming that the initial

condition is the leading eigenmode, one could instead apply a nonmodal instability ex-

citing the leading eigenmode at a later time. It would then be at that later time that

the perturbation amplitude should be compared to the critical ‘initial’ amplitude of the

subcritical scenario. At that point in the evolution, if the current amplitude were below

the critical amplitude, decay to the laminar fixed point would be expected. However,

if the current amplitude exceeded the critical amplitude, instability and a transition to

turbulence would follow. Effectively exciting the leading eigenmode (e.g. via the leading

adjoint eigenmode) at a later time would then be exceedingly important for efficient

subcritical transitions to turbulence. The flow state when the leading eigenmode (and

its weakly nonlinear iteractions) reach the critical ‘initial’ amplitude may then repre-

sent an exact coherent structure on an edge manifold. Evolution would continue along
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the edge manifold, approximately maintaining this critical amplitude with a departure

at the edge state (saddle point) toward turbulence if the perturbation has an ampli-

tude just above the critical amplitude (with a return to the laminar fixed point for an

amplitude slightly below critical). Such an edge state would then be predominantly

composed of only three harmonics (0 through 2), based around the TS wave (harmonic

1).

A second complexity can also be introduced to the subcritical scenario. Although

weakly nonlinear analysis involves the excitation of higher harmonics, it also modu-

lates lower harmonics, and thereby modulates the base flow. Conceivably, this could

couple back to the leading eigenmode, altering its growth rate, such that µ1 is then

also time and amplitude dependent (usually only µ2 contains such effects). In par-

ticular, a scenario could be envisaged where this coupling, having altered µ1, further

improves feedback to the base flow, which further increases µ1, before eventually µ1

becomes positive, and the subcritical growth scenario becomes supercritical (relative to

the modulated base flow).

Details of the weakly nonlinear calculations up to the second harmonic follow, as the

subcritical transition scenario, and particularly the transitions observed in Chapter 7,

are predominantly governed by the zeroth through second harmonics. The full weakly

nonlinear calcuations, up to the third harmonic, were performed to determine the bi-

furcation type (e.g. subcritical or supercritical) along the neutral curve, as detailed in

Chapter 6 (Camobreco et al. 2021b). However, interest is often in α-Re locations further

from the neutral curve, and at these points, the computations along the neutral curve

are a guide at best, although they do help rule out supercritical stability as an explana-

tion for the lack of observed transitions at lowH in Chapter 6 (Camobreco et al. 2021b).

Fig. 3.11 depicts an example neutral curve for H = 10 Shercliff flow and indicates the

sign of µ1 and µ2 just inside the neutral curve. From Fig. 3.11(a), µ1(Re − Remarg) is

everywhere positive, as µ1 is only negative in regions where Re−Remarg is also negative,

recalling all computations are performed just inside the neutral curve. Thus, the sign

of µ2 alone defines whether the flow is supercritically stable or unstable just inside the

neutral curve, being supercritically unstable where µ2 is positive, and supercritically

stable where µ2 is negative (only a small region along the lower branch). The five most

commonly investigated α-Re points are also marked on Fig. 3.11, indicating that these

locations are all likely subcritically unstable (4 markers), or supercritically unstable (1
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Figure 3.11: Bifurcation behavior along the neutral stability curve as a function of Reynolds

number, for the Shercliff flow profile at H = 10. (a) Indication of the sign (black: positive,

red: negative) of the linear growth rate correction coefficient, Re(µ1). (b) Indication of the

sign of the Landau coefficient, Re(µ2). Anywhere where both Re(µ1) and Re(µ2) are positive

indicates an achievable subcritical bifurcation. The five markers indicate the most commonly

investigated parameter combinations in this work, in Chapters 6 (Camobreco et al. 2021b)

and 7.

marker). For the full details of the weakly nonlinear computations, see Hagan & Priede

(2013b) and Chapter 6 (Camobreco et al. 2021b).

The weakly nonlinear computations follow. Note that the weakly nonlinear compu-

tations are numerically simplified by a different scaling to that used previously. The

eigenvalues and eigenvectors in the preceding sections were λ and v̂⊥, in this section,

the equivalent eigenvalues and eigenvectors are ω and ŵ⊥, respectively. These translate

through λ = −Im(ω)/(Reα) + iRe(ω) and v̂⊥ = Reŵ⊥ (in the latter, normalization

renders the change in definition irrelevant, for all except the zeroth harmonic).

To perform weakly nonlinear analysis, the amplitude dependence of the (leading)

eigenmode ŵ⊥,n(y) = ŵ⊥(y)e
iαnx is expanded as a sum of its harmonics

ŵ⊥,n =

∞∑
m=0

ϵ|n|+2mÃ|n||Ã|2mŵ⊥,n,|n|+2m, (3.41)

where ŵ⊥,n,|n|+2m denotes an individual harmonic (specifically, the first subscript is its

harmonic number, the second its amplitude), and where Ã = A/ϵ is the normalized am-

plitude. Nonlinear interaction between the leading eigenmode ŵ⊥,1,1 and itself excites

a second harmonic ŵ⊥,2,2. Nonlinear interaction between the leading eigenmode ŵ⊥,1,1

and its complex conjugate ŵ⊥,−1,1 generates a modification to the base flow û⊥,0,2 (Ha-
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gan & Priede 2013b). Details for computation of û⊥,0,2, ŵ⊥,1,1 and ŵ⊥,2,2 are relegated

to Chapter 6 (Camobreco et al. 2021b). In the subcritical transition scenario, ŵ⊥,1,1

will be a TS wave, while ω1 will be complex, with a negative growth rate. If the weakly

nonlinear perturbation ŵ⊥,2,2 exceeds the critical amplitude, the second harmonic may

generate sufficient perturbation energy growth to both offset the decay of the leading

eigenmode, and drive the flow toward turbulence. However, it is important to note that

û⊥,0,2 can also modify the growth rate of the leading eigenmode, in a manner similar

to that proposed by minimal defect theory.

As the effect of û⊥,0,2 on the growth rate of ŵ⊥,1,1 is not directly included in the

weakly nonlinear analysis, due to the time dependence of the base flow modulation

û⊥,0,2 (i.e. ŵ⊥,1,1 is based solely on the time steady Uref) it shall be briefly considered

here. Thus, the effect of û⊥,0,2 on ŵ⊥,1,1 is shown in Fig. 3.12, computed as discussed

in Chapter 6 (Camobreco et al. 2021b), and recalling Fig. 3.10 for comparison be-

tween the optimal and weakly nonlinear modulations. The eigenvalue spectrum with

the frozen modulated base flow U⊥ = Uref + û⊥,0,2, where û⊥,0,2 is scaled to norm

ζ = 2.2137× 10−7, indicates the possibility of linear growth of the leading eigenmode,

without support from its weakly nonlinear interaction ŵ⊥,2,2. Given how small ζ is,

weakly nonlinear modulations may still be able to provide access to supercritical tran-

sition scenarios, if the modulated profile provides exponentially growing eigenmodes,

even when at subcritical Re (relative to the reference profile). More importantly, the

means of generating and regenerating the weakly nonlinear modulation, solely via the

leading eigenmode, is clear (and possibly quite efficient, given how self contained the

system is), unlike the minimal defect.

This concludes the discussion of the various transition processes investigated in this

work, which were: supercritical modal, subcritical nonmodal and finally optimally or

weakly nonlinearly modulated. The final sections of the introduction will discuss the

current state of the art in predicting the routes and Reynolds number thresholds for

both hydrodynamic and MHD turbulent transitions, and then concludes with a brief

discussion of some of the key features of established turbulent states.
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Figure 3.12: Weakly nonlinear modulation (wave number optimized) at rc = 0.9 for Shercliff

flow at H = 10, with ζ = 2.2137 × 10−7, targeting the leading eigenmode. (a) Eigenvalue

spectrum for the reference and weakly nonlinearly modulated base flow. (b) Zoomed view of

the rectangular region of the eigenvalue spectrum in (a), with arrows indicating the shift of

the eigenvalues. Note the leading eigenvalue just crosses into the complex half plane with this

ζ. (c) The weakly nonlinear base flow modulation û⊥,0,2. (d) The reference base flow Uref ,

compared to the total base flow U⊥ = Uref + 100û⊥,0,2, where the modulation is arbitrarily

rescaled by a factor of 100 for visibility.

3.6 Predicting and observing turbulent transitions; a lit-
erature review

This work has two overarching motivations. The first, of theoretical interest, regards

how quasi-two-dimensional duct flows transition to turbulence, particularly at subcrit-

ical Reynolds numbers. The previous sections have introduced various tools to analyse

how laminar perturbations may give rise to turbulence. From a theoretical point of

view, it is unlikely that turbulent (or random) perturbations, excluding those at van-
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ishingly small energy, are as useful in truly understanding the process of a laminar-

turbulent transition. For how can the route to turbulence be found, if a turbulent

initial condition is applied? However, the current understanding of subcritical routes

to turbulence generated by purely laminar perturbations still leaves much to be desired.

Nonlinear transient growth has begun to improve the overall level of understanding, but

there is still much to elucidate. Hence, the first theoretical motivation of this work.

There is, of course, a great deal of work on subcritical transition thresholds, where

turbulent (or a mix of laminar and turbulent) initial conditions are applied. With

turbulent perturbations (i.e. perturbations obtained by decomposing the instantaneous

flow at a higher Reynolds number, which produced turbulence, and adding this higher

Re turbulent perturbation onto a base flow at a lower Re), or white noise perturbations,

these works manage to obtain excellent agreement between DNS and experiments, with

two case studies discussed below. Given the second, practical motivation of this work,

of efficiently triggering turbulence in operating coolant duct flows, it is important to

introduce these works, as they form a practical means of generating sustained turbu-

lence. However, it is still an open question whether the route to Q2D turbulence is

purely Q2D, or is via short-lived 3D turbulence, which may also depend on the mag-

netic field strength and/or aspect ratio. Which route to turbulence is more efficient, in

terms of both E0 and Re, is also unknown.

3.6.1 Case Study 1: Hartmann channel flow

The first case study regards Hartmann channel flow (Hartmann 1937). The Hartmann

channel setup differs from the duct setup, as it does not have Shercliff walls. To numer-

ically achieve such a setup, the parallel (y) direction would also have periodic boundary

conditions applied, in the same manner as the streamwise direction. Experimentally,

behavior similar to a Hartmann channel was achieved by applying high magnetic field

strengths (> 4 T was sufficient, with field strengths up to 13 T tested) in an annular

configuration (Moresco & Alboussiére 2004). At these high field strengths, secondary

flows are not overly relevant. By comparing the experimentally measured wall friction

relative to that of a laminar flow solution, Moresco & Alboussiére (2004) were able to

obtain a fairly sharp Reynolds number RH = Re/Ha ≈ 380 demarcating the transition

to turbulence. RH is the Reynolds number based on the Hartmann boundary thick-

ness, and is the relevant non-dimensional parameter when Ha is large. The transition
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threshold for Re was only weakly dependent on magnetic field strength over the range

130 < Ha < 1690.

With an experimental transition threshold to validate against, Krasnov et al. (2004)

numerically tested a hypothesized two-step transition process, put forward for hydro-

dynamic shear flows, in an attempt to match transition at RH ≈ 380. The two-step

transition process is as follows (Schmid & Henningson 2001; Krasnov et al. 2004):

� A laminar roll, or streamwise invariant linear transient growth optimal, is seeded

onto the laminar base flow, with small (but finite) initial energy. Growth of

the finite energy linear optimal modulates the laminar base flow. Note that the

laminar roll is optimized for maximum linear growth over target times and both

wave numbers perpendicular to the magnetic field. The laminar roll is streamwise

invariant as the optimal streamwise wave number was zero.

� The base flow, once sufficiently modulated (at t > 0) becomes linearly unstable

with respect to fully three-dimensional perturbations. Application of small, but

again finite, 3D noise triggers a transition to fully fledged turbulence.

As a brief aside, note two key differences between theirs and the present work. First,

with a Q2D domain, the second stage of the transition process cannot be replicated.

Interestingly, turbulence is still able to be triggered in Q2D flows regardless of this fact,

as shown in Chapter 7. Second, Q2D streamwise invariant flow features can only decay

(so a streamwise invariant solution is no longer optimal), with linear transient growth

greatly reduced without amplification by three-dimensional growth mechanisms.

The results of Krasnov et al. (2004), regarding the first stage of the transition

process, are as follows. The initial energy of the 2D laminar roll was varied between

10−5 and 10−1. The smaller the initial energy the larger the transient growth, with

maximum energies approximately 30 and 1.4 times the initial energies of 10−5 and 10−1

at RH = 200, respectively. However, larger initial energy linear optimals generated

larger base flow modulations. Base flow modulation proved so important for the second

stage of the transition process that the magnitude of any linear growth in the first stage

did not appear to be particularly relevant (although only if local inflection points formed

in the base flow profile). The insignificance of transient growth, and the importance of

base flow modulation, are clear themes of this work, particularly in Chapter 7.
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Three dimensional noise was then applied in Krasnov et al. (2004)’s numerical sim-

ulations. Interestingly, the effect of the noise was not observable until well after it had

been applied, and was always observed after the time of maximum growth of the two-

dimensional streamwise invariant linear optimal (even if the 3D noise is applied at t = 0

with the linear optimal). Although the magnitude of the 3D noise required to trigger

transition varied with Re, it became small quickly. For example, at the admittedly

supercritical RH = 1000 (rc ≈ 2.63), 3D noise of amplitude 1.5 × 10−14 was sufficient

to trigger turbulence. However, without this 3D noise, turbulence was not triggered

(e.g. numerical truncation ‘noise’ was insufficient), even at supercritical conditions.

Finally, Krasnov et al. (2004) attempted to match the threshold Reynolds number

of Moresco & Alboussiére (2004) at Ha = 10, testing initial energies of the streamwise

invariant optimal up to 10−1, and for the 3D noise up to 10−3. For RH < 350, turbulence

was not triggered at the largest initial energies tested. For RH > 400, transition could

always be achieved, so long as the initial energy of the streamwise invariant optimal was

sufficient to generate inflection points in the modulated base flow. For 350 < RH < 400,

there was an initial energy for the first stage streamwise optimal below which second

stage three-dimensional noise of any tested magnitude could not trigger turbulence,

but above this (RH dependent) initial energy threshold turbulence could be observed.

However, the instability and transition could not be correlated to the formation or lack

of inflection points in the modulated base flow in this regime. To further improve the

match with Moresco & Alboussiére (2004), Zienicke & Krasnov (2005) simulated Ha >

10. With increasing Ha, the first Re for which turbulence could be triggered increased

weakly. At Ha = 10, 40 and 100, the corresponding RH required to observe turbulence

were RH = 350, 370 and 390, respectively. The agreement at larger Ha, between the

DNS of Zienicke & Krasnov (2005) and experiments of Moresco & Alboussiére (2004)

was excellent, with slight differences assumed due to wall roughness. Thus, the two-

stage process appeared a promising contender for describing the turbulent transition in

this regime. Note that at all these conditions the interaction parameter was small, with

N < 1. Thus, the transitions in these regimes were far from exhibiting Q2D dynamics,

but were transitions of strongly three-dimensional MHD flows in a channel setup.

Analysis of turbulent transitions in a numerical setup closer to the duct setup ap-

proximated in this work was performed in Krasnov et al. (2008). The magnetic field was

aligned with the y direction (spanwise), however, the y direction was periodic, unlike
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for a duct flow. With this modification, the linear transient growth optimal is no longer

streamwise invariant at large Ha (at small Ha, α → 0 is still optimal). Instead with

increasing Ha, the optimal spanwise wave number β → 0. Thus, a two-dimensional

Orr mode, with axis aligned with the magnetic field, became most efficient at generat-

ing linear transient growth as Ha → ∞ (although the growth falls off as Ha−2). The

dependence of the transition process on the initial condition was also tested. With

streamwise rolls (α = 0, β), in the same manner as Krasnov et al. (2004), the addition

of 3D noise to low energy 2D initial perturbations was unable to trigger turbulence,

but above a certain initial (2D) energy, the 3D noise could trigger turbulence. With a

single oblique wave (α, β), the transition process was more efficient, with turbulence

triggered by initial energies as low as 100 times smaller, but ultimately 3D noise was

still required to initiate the transition. However, with an initial condition of two oblique

waves (α, β) and (α, −β), the three dimensional noise became unnecessary, with the

initial perturbations all that were required to trigger turbulence. As each oblique wave

mode could nonlinearly interact with the other, additional Fourier modes were quickly

excited, and the flow developed a high degree of three-dimensionality that triggered a

turbulent transition. Of particular note was the rapid excitation of the Orr mode (2α,

β = 0) by the two oblique waves, so that a single oblique wave transition (for which 3D

noise was required) also attained less growth than a dual oblique wave transition.

Purely Orr mode (α, β = 0) initial conditions were also tested in Krasnov et al.

(2008). At sufficiently high Re, growth of the Orr mode was able to modulate the base

flow. At Ha = 100 and with large initial energies, the Orr mode evolved into a purely

2D nonlineary stable finite amplitude state (simulated at the subcritical Re = 5000).

A hydrodynamic equivalent to this finite amplitude state has been observed (Jiménez

1990). However, the application of 3D noise destabilized the nonlinearly stable 2D

finite amplitude state, either preventing evolution toward the nonlinearly stable state,

or inducing decay back to the laminar fixed point. As this behavior was observed for

Ha ≥ 30, Krasnov et al. (2008) tentatively concluded that if only Orr modes remain

at high Ha, it would be unlikely they could generate turbulence. This thesis focuses

on this latter point in particular, given the high Ha of fusion environments, and as the

configuration investigated in this thesis is effectively the Ha → ∞ (strictly 2D) limit

of Krasnov et al. (2008). Much of this thesis is devoted to comparing the ability for

Orr modes (which provide optimal Q2D transient growth) and TS wave eigenmodes
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(which maximize exponential growth) to generate and sustain turbulence. Indeed, with

certain setup parameters, either Orr or TS wave modes will prove able to generate

turbulence, while at other setup parameters, behaviors similar to Krasnov et al. (2008)

will be observed (in which turbulence is either not generated, or not sustained).

3.6.2 Case Study 2: Hydrodynamic pipe flow

The second case study, indicating clear agreement between numerical and experimental

results, and a distinct transition threshold, does not pertain to MHD flows. Findings

presented in this section predominantly pertain to hydrodynamic pipe (Poiseuille) flow

driven with a fixed flow rate based on the laminar profile Up(r) = 1−r2, and defined by

a Reynolds number based on the mean flow velocity and pipe diameter. Experimentally,

pipes were thousands of diameters long, permitting observations times of the order of

105 time units, while numerically, periodic pipes had lengths of the order of hundreds

of diameters (observation times of the order of 104 time units). The precision of the

Reynolds number threshold, below which sustained turbulence was not observed, was

quite remarkable (to within ≈ ±0.5% of the threshold value). Note that the Reynolds

number threshold does not demarcate a transition per se, as the threshold was not shown

to depend on initial energy (recalling the criteria for turbulent transitions in § 3.4 that

this works follows). However, unlike the present work, the initial conditions considered

in this second case study were turbulent (or chaotic); no laminar perturbations were

investigated.

A distinct Reynolds number threshold was established by comparing two stochastic

properties of turbulence (Avila et al. 2011). Specifically, if the mean lifetime of a

turbulent region (e.g. a puff in the pipe flow lexicon) was shorter than its mean splitting

time, then in the thermodynamic limit of large times, all turbulent regions should vanish

(Avila et al. 2011), with the flow remaining laminar for all time thereafter (all Re being

subcritical for pipe flow). This condition is equivalent to a greater probability for the

decay of, rather than splitting of, a turbulent flow feature. The turbulent fraction

(percentage of the domain occupied by turbulent flow features) is then zero, as the

entire flow has returned to the laminar fixed point. By definition, all Re below the

threshold Reynolds number have zero turbulent fraction (Barkley 2016). However, for

all Re above the threshold, for which the probability of splitting is greater than the

probability of decay, a non-zero turbulent fraction should, on average, exist. To show
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this, the Re dependence of the probabilities of decay and splitting events are required

(Hof et al. 2006; Avila et al. 2011). Note that splitting is quite a harsh term, as at larger

Re, the turbulent patches spread increasingly smoothly, with newly spawned turbulent

regions difficult to identify (Avila et al. 2011; Avila & Hof 2013); this fits well with the

criteria for turbulence introduced in § 3.4.

The probability for decay events was determined first, experimentally (Hof et al.

2006), and later numerically (Avila & Hof 2013). Characteristic lifetimes of turbulent

puffs as a function of Reynolds number were determined. The probability P of observing

a turbulent flow feature at a time t, when the same turbulent flow feature formed at

the previous time t0, took the form PD(t,Re) = exp[−(t− t0)/τD(Re)], where only the

characteristic lifetime τD is a function of Reynolds number. The exponential dependence

indicated a memoryless process, in which the chance of decay does not depend on the

lifetime of any individual turbulent region. Note that the time t0, when a turbulent flow

feature is observed to form, is not necessarily the seeding time of the initial turbulent

perturbation. However it is important in ensuring the process is memoryless (Avila

et al. 2011). As a memoryless process, like radioactive decay (half-life), the decay of

a turbulent flow feature cannot be deterministically predicted. By ensemble averaging

many realizations of the experiment (a pipe with length 7500 times the diameter) the

characteristic lifetime was shown to exponentially depend on Reynolds number (Hof

et al. 2006). This was contrary to previous predictions of an infinite characteristic

lifetime for sufficiently large Reynolds numbers (Faisst & Eckhardt 2004; Peixinho &

Mullin 2006). Thus, any turbulent flow feature is predicted to decay, eventually, at

any finite Reynolds number, for a sufficiently (ludicrously) long pipe observed for a

sufficiently long time. Alternately interpreted, the probability of a turbulent region

surviving forever (against dissipation) asymptotically approaches unity with increasing

Reynolds number. To clarify, when a turbulent flow feature splits, it should be thought

of as one ‘new’ and one ‘old’ turbulent flow feature, although identifying which is

which would not necessarily be possible at increasingly large Re (the generation of the

‘new’ flow features allows the turbulence as a whole to survive forever, although each

individual turbulent region must eventually decay at finite Re).

With the dependence of the key characteristic time scale established, the dependence

of key turbulent length scales was numerically assessed in Avila & Hof (2013). A similar

approach was taken, with the probability of a turbulent flow feature having length L > l
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taking the form PT(t,Re) = exp[(l−LT,0)/LT(Re)]; laminar flow features had the same

functional dependence, see Avila & Hof (2013) for the laminar/turbulent classification

criteria. These scalings were determined to be independent of the pipe length and

initial condition, and were considered to be an intrinsic property of the system in the

thermodynamic limit. The Re dependence of the turbulent length scale LT was found

to be superexponential. Thus, turbulent flow features rapidly spread with increasing

Re, until they dominate the entire domain. However, if the superexponential fit is

extrapolated to larger Re it would still predict a continuous increase in LT with Re.

Thus, neither the characteristic turbulent length or time scales diverge with increasing

Re. Therefore, a fully (100%) turbulent flow is predicted to be unattainable at finite

Re, with the chance of even extreme relaminarization events always possible, however

unlikely (although random and deterministically unpredictable).

However, this is only half the story, as to obtain a clear threshold Reynolds num-

ber, the Re dependence of both decay and splitting probabilities is required. Although

each turbulent flow feature (puff) must inevitably decay, if it can split, and spawn

multiple descendant turbulent puffs before it decays, the turbulent fraction of the flow

can increase. Such predictions of the probability of spreading events, and compu-

tations of the turbulent fraction of the flow in the thermodynamic limit, have been

performed for pipe (Avila et al. 2011), Taylor–Couette (Lemoult et al. 2016) and

Waleffe (Chantry et al. 2017) flows. For pipe flows, Avila et al. (2011) show that

the splitting probability has the same functional dependence as the decay probability

PS(t,Re) = 1− exp[−(t− t0)/τS(Re)]. Again, the splitting process is memoryless, with

the splitting probability not depending on the lifetime of the turbulent flow feature, and

depending solely on Re. Thus, the Reynolds number at which the characteristic life-

times τD and τS intersect yields a threshold between flows which will be purely laminar

in the thermodynamic limit if τD < τS (decay faster than split), or intermittently tur-

bulent if τD > τS (split faster than decay). For pipe flow this threshold was observed at

Re ≈ 2040, based on a mean velocity and pipe diameter (Avila et al. 2011), and further

supported with additional validation (Mukund & Hof 2018). With increasing Reynolds

number, the turbulent fraction in the thermodynamic limit then continuously increases,

asymptotically approaching unity (thus, less and less intermittency is observed with in-

creasing Re). Note that the characteristic timescales at the threshold Reynolds number

were of the order of 107, and with superexponential dependence on Re, meant that less
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than a one percent shift in Re would result in the splitting rate outweighing the de-

cay rate by a factor of 4 (or vice versa). Thus, the threshold Reynolds number can

be considered relatively distinct, and dependent only on the base flow profile of the

laminar fixed point. Note also that although the characteristic timescales determined

numerically and experimentally agreed well, numerical methods were of limited use

near the threshold Reynolds number, given the time horizon required to reach a close

approximation of the thermodynamic limit (Avila et al. 2011).

3.6.3 Case study summary

Hopefully, these two cases studies have highlighted two distinctly different means of

predicting turbulent transitions, or threshold Reynolds numbers, to similar effect. Fur-

thermore, these case studies highlight very different aspects of the dynamics underlying

3D transitions. However, to generate purely Q2D transitions, an alternate route to tur-

bulence will be demonstrated, and specifically one which is distinctly different not only

because it is Q2D, but also because the initial conditions are always purely laminar at

subcritical Re. The use of laminar perturbations is partly driven by the strong theoret-

ical foundations laid by Stuart and Landau (Landau 1944; Stuart 1958; Drazin & Reid

2004) in weakly nonlinear analysis. However, as mentioned earlier, it also concerns the

sensibility of using turbulent initial conditions to analyse the route to turbulence, and

allows a more detailed assessment of which features of the initial condition are impor-

tant in either generating or sustaining turbulence. Furthermore, laminar perturbations

can modulate the base flow at much slower timescales than turbulent flow features

(Barkley 2016; Lozano-Durán et al. 2021), which may provide highly efficient routes to

turbulence if the base flow is appropriately modulated.

3.7 Kinetic energy budgets and identifying turbulence via
Fourier spectra

A significant portion of this thesis is devoted to analysing transitions to turbulence.

For this reason, perturbations were defined relative to the laminar fixed point, û⊥ =

u⊥ − U⊥. This decomposition will be contrasted with the Reynolds decomposition,

which is more common when analysing turbulent flows in engineering applications.

However, the Reynolds decomposition is not used to analyse DNS results, for reasons

to be discussed shortly. In particular, the perturbation decomposition is applied to
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compute Fourier spectra, to assess whether flows become turbulent (if they meet the

criteria introduced in § 3.4).

This section also discusses some of the larger scale (domain averaged) measures of

turbulence sustainment, given the practical motivations of this work, such as production-

dissipation balances, and the role of the base flow in regard to this. Such concepts are

not the most common when discussing turbulence sustainment. However, the conven-

tional three-stage description of a self-sustaining turbulent process (Waleffe 1997) is not

applicable to Q2D turbulence. The conventional sustainment process revolves around

streamwise invariant rolls (structures which provide optimal transient growth in 3D,

but only decay in Q2D), creating spanwise inflections (streaks) of the streamwise ve-

locity, leading to fully 3D travelling waves. The interaction of the travelling waves and

their complex conjugates regenerate the streamwise rolls, allowing the process to repeat

indefinitely (as breifly discussed in § 3.5, the interaction of a travelling wave instability

and its complex conjugate can generate a streamwise invariant base flow modulation in

any generic, Q2D or 3D, flow). However, all stages of this conventional self-sustaining

process are three-dimensional, and thus inapplicable to Q2D flows. Thus, as a Q2D

sustainment mechanism cannot yet be described, this section is instead devoted to con-

cepts generic to sustaining either Q2D or 3D turbulence, in particular, the turbulent

kinetic energy budget, and the roles of dissipation and production.

Finally, before proceeding with said discussion, it is worth making some mention of

the computational costs associated with the direct numerical simulations of Q2D tran-

sitions and turbulence to be performed. As quasi-two-dimensional flows are simulated

on a 2D-meshed domain, it is compuationally most efficient to perform simulations on a

single processor (as was the case for all simulations performed). These meshes required

approximately 4 gigabytes of memory for the subcritical DNS presented in Chapters 5

(Camobreco et al. 2020) and 7, and approximately 8 gigabytes for the supercritical DNS

presented in Chapters 6 (Camobreco et al. 2021b) and 8 (Camobreco et al. 2021a); ex-

tended up to 16 gigabytes of memory for the simulations presented in Appendix C. On

a single processor, DNS to determine the edge state behaviour took approximately one

week, while verification that finite amplitude states were stable, or that subcritical tur-

bulence was sustained, took 6 to 12 months. Attempts to time average turbulent flows

were simulated for well over 12 months, but had yet to converge. Although the domains

were two dimensional, the large (order 105) Reynolds numbers required very small time
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steps for turbulent evolution, ultimately leading to computationally expensive direct

numerical simulations, and to difficulties in extracting time-averaged information. The

additional wall-normal resolution, due to the sharper gradients present in the base

flows at higher friction parameters, was also a factor adding noticeable computational

expense, particularly in terms of the time step size.

3.7.1 Reynolds-averaged Navier–Stokes

The are a few key differences between the laminar-perturbation and mean-fluctuation

(Reynolds) decompositions. First, as introduced in § 3.1, the laminar base flow is inde-

pendent of perturbation amplitude, whereas the mean flow is not, which had ramifica-

tions on the linearity of instantaneous energy growth. Second, following Pope (2000),

the Reynolds decomposition defines fluctuations

ú⊥ = u⊥ − ⟨u⊥⟩, (3.42)

of the instantaneous velocity field u⊥ about the time mean ⟨u⊥⟩, where ⟨. . .⟩ represent
taking the time mean unless stated otherwise. Thus, fluctuations have a time mean of

zero, unlike perturbations which must include a time mean component, except in the

unlikely event of U⊥ = ⟨u⊥⟩. Like perturbations, both the fluctuation and time mean

satisfy ∇⊥ · ú⊥ = 0 and ∇⊥ · ⟨u⊥⟩ = 0. Substituting Eq. (3.42), into the final form

of the SM82 momentum equations, Eq. (2.55), and time averaging the result, yields, in

tensor notation, an evolution equation for the mean flow

∂⟨u⊥j⟩
∂t

= −⟨u⊥i⟩
∂⟨u⊥j⟩
∂xi

− ∂⟨ú⊥iú⊥j⟩
∂xi

− ∂⟨p⊥⟩
∂xj

+
1

Re
∇2

⊥⟨u⊥j⟩ −
H

Re
⟨u⊥j⟩. (3.43)

The mean flow would evolve in an identical manner to the instantaneous flow if not

for the Reynolds stress term, where the 4 (3 unique) component Reynolds stresses

are ⟨ú⊥iú⊥j⟩. This relatively innocuous Reynolds stress term is the reason why the

Reynolds decomposition is not used in this work, as to determine the fluctuation in

Eq. (3.42) at an observation time t1, requires knowing the mean (time independent)

flow ⟨u⊥⟩. The closure problem (Pope 2000) prohibits Eq. (3.43) from being expressed

solely as a function of ⟨u⊥⟩. Thus, to compute ⟨u⊥⟩ requires averaging DNS results

of the full SM82 equations, Eqs. (2.55) and (2.56), in theory to t → ∞, to then have

information about the fluctuation at the previous time t1. As the Q2D turbulent flows

in this work are at large Re, and exhibit intermittent turbulence, the time horizon

required to obtain the time average flow to any useful accuracy is beyond practical
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computational limits. As a useful approximation of the mean flow ⟨u⊥⟩ is not feasibly
attained, the laminar-perturbation definition û⊥ = u⊥ −U⊥ is applied when the flow

is turbulent.

In spite of this, it is still worth introducing the equation governing the time evolution

of the fluctuation, and thereby the turbulent kinetic energy (TKE) of the fluctuation (in

this work the perturbation kinetic energy will be the analogous quantity). Subtracting

Eq. (3.43) from Eq. (2.55), and substituting Eq. (3.42) yields an evolution equation for

the fluctuation

∂ú⊥j
∂t

= −ú⊥i
∂ú⊥j
∂xi

− ú⊥i
∂⟨u⊥j⟩
∂xi

+
∂⟨ú⊥iú⊥j⟩

∂xi
− ∂ṕ⊥
∂xj

+
1

Re
∇2

⊥ú⊥j −
H

Re
ú⊥j , (3.44)

where the Reynolds stress term now has the opposite sign, where the analagous equation

for the perturbation is Eq. (3.6), and where ṕ = p⊥ − ⟨p⊥⟩.
Taking the dot product of Eq. (3.44) with ú⊥j , and time averaging, yields an equa-

tion for the turbulent kinetic energy

∂⟨ú⊥j ú⊥j⟩/2
∂t

+ ⟨u⊥i⟩
∂⟨ú⊥j ú⊥j⟩/2

∂xi
+∇⊥ ·

[
1

2
⟨ú⊥iú⊥j ú⊥j⟩+ ⟨ú⊥iṕ⊥⟩

− 1

Re

〈
ú⊥j

(
∂ú⊥i
∂xj

+
∂ú⊥j
∂xi

)〉]
= −⟨ú⊥iú⊥j⟩

∂⟨u⊥i⟩
∂xj

−
[

1

2Re

〈(
∂ú⊥i
∂xj

+
∂ú⊥j
∂xi

)(
∂ú⊥i
∂xj

+
∂ú⊥j
∂xi

)〉]
− H

Re
⟨ú⊥j ú⊥j⟩/2, (3.45)

or
∂k

∂t
+ ⟨u⊥i⟩

∂k

∂xi
+∇⊥ · T́i = P− ϵD − H

Re
k, (3.46)

where k is the turbulent kinetic energy, T́i the turbulent transport terms (due to triple

correlations, pressure and viscosity; first set of large square brackets), P the turbu-

lent production and ϵD the turbulent dissipation (second set of large square brack-

ets). Recall the analogous production term for perturbations introduced in Eq. (3.8),

−2û⊥v̂⊥∂U⊥/∂y. However, while only a single production term contributed to Q2D

perturbation energy growth, there are four non-zero components contributing to Q2D

turbulent fluctuation energy growth.

To sustain turbulence, or equally to maintain a given amount of TKE, requires

that the production term P balances both the friction and dissipation terms ϵF =

ϵD + Hk/Re, as the transport terms only redistribute TKE. Note that the only time

dependence in the production term −⟨ú⊥iú⊥j⟩∂⟨u⊥i⟩/∂xj is in the fluctuations, as the

true mean flow ⟨u⊥i⟩ is time independent. Only the true time mean profile has sampled
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the turbulence (statistics) at all times, and so may be able to balance the dissipation

of any of its instantaneously observed turbulent fluctuations.

In practice, sustaining turbulence is a fine balance. The modulated base flow pro-

duces TKE, to counteract dissipation and friction, while the turbulent fluctuations

attempt to feedback and drive the modulated base flow toward its (unknown) time

mean. This feedback from the turbulent fluctuations is represented by the Reynolds

stress term in Eq. (3.43), or equally by noting that the production term P in Eq. (3.46)

is not always positive (recall from § 3.3 that production from even the reference base

flow can be both positive and negative, based on tilting into or opposite the base flow

shear). Note that TKE is always reduced by dissipation and friction, while TKE can

increase or decrease depending whether production is positive (and greater than ϵF), or

negative. However, TKE lost to dissipation and friction is converted to heat (this heat

is neglected), whereas TKE ‘lost’ due to negative production reappears as an increase in

the energy of the modulated base flow profile, via the Reynolds stress term. Note also

that production is a local quantity, and so regions of negative production can modulate

the base flow (hopefully toward the time mean profile), even when overall production

may yield an increase in TKE. Base flow modulations also increase wall shear stresses,

thereby requiring an increase in the driving pressure gradient, if aiming to maintain

a constant flow rate. However, this work simulates flows driven by constant pressure

gradients — as shown in Chapter 8 (Camobreco et al. 2021a) by converting wall motion

to a pressure driven equivalent condition — rather than constant flow rates.

3.7.2 A return to the laminar base flow-perturbation decomposition

Without the time mean flow, the true production term cannot be computed. However,

the analogous terms based on a laminar-perturbation decomposition can. The total

production to/from the modulated base flow (the modulated base flow includes the

laminar base flow and the zeroth perturbation harmonic) from/to the n’th perturbation

harmonic (n > 0) is (Jin et al. 2021)

P(n) = P(Ln) + P(0n) = −
[ ∫

v̂
(n)
⊥
∂U⊥
∂y

û
(−n)
⊥ dΩ +

∫
v̂
(n)
⊥
∂û

(0)
⊥i
∂y

û
(−n)
⊥i dΩ

]
, (3.47)

where harmonics are now denoted by a bracketed exponent, and where (−n) denotes

the complex conjugate to harmonic (n). Note that the modulated base flow must

be streamwise invariant, but the time mean flow need not be. Note also that the

direction of energy transfer is unknown until the integral in Eq. (3.47) is computed.
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The total production is then the integral over all harmonics κ, which must balance

the corresponding dissipation and friction integrals for the integrated turbulent kinetic

energy of the perturbation to remain relatively constant. In this subsection, TKE

refers to the turbulent kinetic energy of the perturbation, rather than the TKE of

the fluctuation, as in the previous subsection. Having defined the production, and for

completeness providing the corresponding expression for nonlinear energy transfers (Jin

et al. 2021) between harmonics (n) and (m),

N(mn) = −
∫
û
(n−m)
⊥j

∂û
(m)
⊥i

∂xj
û
(n)
⊥i + û

(n+m)
⊥j

∂û
(−m)
⊥i
∂xj

û
(−n)
⊥i dΩ, (3.48)

for m ̸= n, a simplified picture of turbulence can be painted, see Fig. 3.13. The

simplification is in part due to unanswered questions about turbulence, and in part

due to the use of the modulated base flow, rather than the time mean flow. Note that

for the remainder of this section, the use of the word dissipation will refer to both the

viscous dissipation and Hartmann friction terms of Eq. (3.46), e.g. ϵF rather than ϵD.

Turbulence is sustained when, on average, production balances dissipation (this dis-

cussion assumes everything is on average, unless specified otherwise). A relatively large

amount of TKE is produced by the laminar base flow. However, the TKE produced

in/by each harmonic rapidly falls off with increasing harmonic (production depends on

the velocity magnitudes of each harmonic, and the velocity magnitudes of the higher

harmonics are invariably quite small). Thus, to satisfy the definition of turbulence,

which requires a large number of energized harmonics, nonlinearity must play a vital

role in transferring energy between harmonics. This will be discussed in more detail

shortly. Staying with the lower harmonics, some will exhibit negative production, rep-

resenting a loss of TKE, which acts to generate or regenerate the base flow modulation.

Others will exhibit positive production, acting to increase TKE at the expense of the

modulated base flow’s gradients. Note that when the pressure gradient is held constant

(or equivalent boundary conditions imposed), the modulation is not supplied energy by

the driving force; only the laminar profile is, assuming the pressure gradient is set based

on the laminar profile. Thus, for the modulation to furnish TKE to the fluctuations, it

must come at the expense of its own velocity gradients. The velocity gradients of the

modulation will not naturally replenish, and require feedback from fluctuations if the

modulated profile is to be sustained, let alone approach the time mean profile. Note also

that shear in the modulated profile is usually much larger near the wall, and relatively
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Figure 3.13: Schematic representing a few of the key features of turbulence near the wall

at an instant in time, partially following Lozano-Durán et al. (2021). The key components

are the laminar base flow U⊥ (time steady), the streamwise component of the streamwise

invariant base flow modulation û
(0)
⊥ (which differs from the time mean flow), and a series

of harmonics representing streamwise Fourier modes û
(n)
⊥ = (û

(n)
⊥ , v̂

(n)
⊥ ) and their conjugates

û
(−n)
⊥ ; although only the first 6 modes of each are drawn. Focus is placed on production, with

the actions of both dissipation and friction not represented (two energy-conserving nonlinear

transfers are also indicated). The green arrows represent production from the laminar base

flow to the Fourier modes. As drawn, all reduce the energy in the laminar profile, which is

offset by the driving pressure gradient, to generate an increase in TKE in each mode. More

energy is produced in the lower harmonics, represented by thicker arrows. The blue arrows

represent production from the base flow modulation, which reduces TKE in the leading two

harmonics (1 and 2), and increases TKE in harmonics 3 through 6 (again, having a greater

effect on the lower harmonics). Thus, harmonics 1 and 2 are acting to regenerate the base

flow modulation (e.g. increasing its gradients, at the expense of their TKE), while harmonics

3-6 are degrading the modulation (e.g. eroding its gradients, to increase their TKE). Note

that production requires both the n and −n harmonics, and is only drawn correctly for P(L1)

(the modulated profile doesn’t just effect the negative harmonics, and the laminar profile the

positive). The locations of the arrows are also arbitrary, and do not necessarily represent

local increases or reductions in base flow gradients.

small in the bulk flow (mean velocity profiles in turbulent flows are often flat in the core

due to modulation of the laminar profile, see Fig. 3.13 for an idealized example). Thus,

most positive production to/from the modulation occurs near the wall, and negative

production in the bulk, whereas positive production in the bulk flow is predominantly

due to the laminar profile.

Thus, two balances are required for the sustainment of turbulence. First, the pro-

duction in each harmonic must, on average, balance the dissipation in said harmonic,

to maintains its TKE (in the thermodynamic limit of large times). Second, there must

be a balance in production to and from the base flow modulation, such that it can
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eventually become time independent (e.g. become the mean flow). Recall that this is

required if the Reynolds stress term is non-zero, the laminar base flow then not being

a solution of the evolution equation for the time mean flow, Eq. (3.43).

Depending on the level of dissipation, proportional to Re−1, these balances are not

guaranteed. Thus, in the thermodynamic limit, there may be no turbulence whatso-

ever, intermittent turbulence, or fully developed turbulence (Barkley 2016). The first

case, no turbulence whatsoever, simply occurs when dissipation is too great, and any

incited turbulence decays. Intermittent turbulence is somewhat more complicated. If

turbulence is triggered by the laminar profile, generation of the base flow modulation

may begin, at the expense of TKE of the newly incited turbulence. However, the cost

of generating the modulation may be too great (observable when the the total modu-

lated profile becomes quite flat in the core), with the turbulent state then collapsing.

With the collapse of turbulence, the base flow eventually settles back to the reference

profile, which can again trigger turbulence. This process repeats, with unsustainable

modulations forming, followed by the collapse of the turbulent states thereafter, and

the settling back to the reference base flow. Finally, fully developed turbulence is ob-

tained when the base flow modulation is sustained (and approaches the mean flow),

and when TKE is maintained in all harmonics by the modulated base flow. Note that

intermittent turbulence is often referred to as localized, when the base flow modulation

is not streamwise invariant, as only patches or puffs of turbulence are observed. Once

turbulence spreads throughout the duct it is considered fully developed (Barkley 2016),

although instantaneously, its behavior is still stochastic (recall that turbulent lifetimes

are memoryless, with an exponential chance of decay with increasing time). Thus,

there is always the possibly of isolated relaminarization events, where turbulence is not

sustained locally, with a laminar island transiently appearing (Avila & Hof 2013). The

true limit of fully developed turbulence (e.g. turbulence absolutely everywhere for all

time) is only reached asymptotically as Re → ∞ (Avila et al. 2011; Avila & Hof 2013).

Before moving on to nonlinear interactions, it is worth noting that dissipation de-

pends on the local fluctuation magnitude, whereas production depends on local fluctu-

ation magnitude weighted by the local base flow gradient, recalling Eq. (3.45). Thus,

near the wall, production often outweighs dissipation, as base flow shear near the wall

is high, supporting turbulence. However, far from the wall, dissipation often outweighs

production. When the base flow is flat far from the wall, either naturally (e.g. due to
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friction present in the system), or due to modulation from lower harmonics, this impact

to bulk production can significantly hamper the ability to sustain turbulence (Budanur

et al. 2020), leading to intermittency.

Although nonlinear interactions conserve TKE, they play a very important role in

both generating and sustaining turbulence. In many of the transition scenarios intro-

duced earlier, nonlinearity provides a downscale transfer of energy from the leading har-

monics (0 through 2) to the higher harmonics. Particularly in supercritical bifurcation

scenarios, the remaining harmonics rapidly become energized, generating turbulence.

Although energized, the fluctuation magnitudes in these intermediate harmonics are

small, and thereby so too is dissipation. Thus, in spite of low levels of production, they

can still remain energized. However, dissipation (although not friction) also depends

on length scale. Thus, once even higher harmonics becomes energized, a regime will

eventually be reached, where the gradients of the fluctuations, and thereby dissipation,

become too large for production to maintain a constant TKE.

Interestingly, the role of nonlinearity then differs drastically for flows with are 3D,

and those which are Q2D/2D. The general arguments for production and dissipation

remain the same. Dissipation is largest in the smallest scales, once their local gradients

outweigh small fluctuation velocities, while production from the mean flow is largest

at the largest scales. However, between the smallest and largest scales, for sufficiently

large Re, an inertial subrange can form. Within these intermediate scales, the non-

linear transfer term of Eq. (3.46) is dominant, relative to production and dissipation,

and transfers of TKE within the subrange are independent of scale. However, for 3D

flows, net transfers within the inertial subrange are commonly downscale, toward higher

harmonics. Whereas in Q2D/2D, net transfers of energy are always upscale, toward

lower harmonics, as the vortex stretching/strain self-amplification mechanisms which

drive net downscale transfers of energy cannot occur (Bos 2021). Note that in Q2D,

enstrophy can still cascade downscale, as discussed shortly. Interestingly for 3D MHD

flows, a clear cutoff between upscale transfers of energy (lower ‘2D’ harmonics) and

downscale transfers of energy (higher ‘3D’ harmonics) can be observed (Baker et al.

2018). Note that energy does not build up in Q2D/2D systems due to friction, which

damps energy at all scales. If only viscous dissipation were present, insufficient energy

would be removed from the system at the smallest scales to permit thermodynamic

equilibrium in domains of finite size (with realistic boundary conditions).
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The inertial subrange covers all scales very large relative to the highly dissipative

scales, and very small relative to the highly productive scales. Regardless of the direc-

tion of transfer, for the inertial subrange in Q2D and 3D flows, the turbulent kinetic

energy varies as k(κ) ∼ κ−5/3 (Pope 2000), assuming no other extrinsic mechanisms are

present. Before considering an example of this −5/3 spectrum, there are three things

worth noting. First, the inertial subrange forms only at large Re, when scale separation

is significant. Second, the power law scaling for the inertial subrange is based on an

integral measure, thus transfers over the subrange are not all downscale (if 3D), or all

upscale (if 2D/Q2D). In particular, recalling Fig. 3.13, all nonlinear transfers require an

intermediary (the harmonic responsible for advection of the velocity gradient). Because

of the intermediary, a net upscale transfer must necessarily have some downscale com-

ponent, and vice versa. Third, for Q2D flows, although energy is transferred upscale,

dissipative scales can still be identified by a downscale enstrophy cascade, E(κ) ∼ κ−3.

The (Q2D) enstrophy E =
∫
|ωz|2 dΩ forms a useful measure of dissipation, by mea-

suring velocity gradients via vorticity magnitude (Kraichnan 1967; Sommeria 1986).

Hence, the sole observation of an inverse energy cascade is not sufficient to fully char-

acterize Q2D turbulence.

To assist this discussion, time-averaged Fourier coefficients (where instantaneous

snapshots of sustained turbulent DNS velocity fields were time-averaged) are pro-

vided in Fig. 3.14. Note that the Fourier coefficients measure the perturbation energy

E = k̂ =
∫
û2⊥ + v̂2⊥ dΩ, not the turbulent kinetic energy k, as computing the time

mean flow was prohibitively expensive. However, this simplification does not appear to

have any significant implications on analysis. Note the three subdivisions of Fig. 3.14.

Technically, there should be a large scale separation between the ranges representing

dominant production, nonlinear transfer, and dissipation. However, the demarcating

lines have been intentionally placed to indicate which harmonics are predominantly re-

sponsible for each of the key features of turbulence. Computations (not shown) of the

production integral, Eq. (3.47), indicate that the first six harmonics have relatively large

contributions to production, and often have negative production relative to the base

flow modulation (indicating regeneration of the modulation at the expense of TKE).

Hence, the energy-containing range is shown spanning 1 ≤ κ ≤ 6. Nonlinear transfers

dominate in the inertial subrange, and as a κ−5/3 fit best approximates the Fourier

coefficients over 7 ≲ κ ≲ 70, this may indicate the formation of an inertial subrange at
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Figure 3.14: Time and y-averaged Fourier coefficients for Shercliff flow at H = 10, rc = 1.1

(Re = 8.70355 × 104), see Chapter 6 (Camobreco et al. 2021b) for details. E = k̂ is a

measure of the perturbation energy (about the laminar profile), whereas k is a measure of

the fluctuation energy (about the time mean). The latter was not feasible to compute, given

the time required for the mean flow to saturate. The terminology of Pope (2000) is followed,

noting that production is dominant in the energy-containing range, dissipation dominant in

the dissipative range, nonlinear transfers dominant in the inertial subrange and friction scale

independent (although still proportional to fluctuation magnitude). Scale separation between

the various ranges is assumed large; representative sharp κ bounds indicated by the dashed

lines separate the ranges. In the energy-containing range, production is (on average) from

the reference profile and to the modulation profile (the computations indicating this is the

case for κ ≲ 6 not shown). Numerical resolution was insufficient to identify a clear direct

enstrophy cascade, with κ over a few hundred underresolved, although a “direct enstrophy

cascade” label has been included on the figure anyway, solely for illustrative purposes. Finally,

while it is not possible to infer the existence of an inverse energy cascade, solely by observing

the κ−5/3 trend in the inertial subrange, inverse cascades have been observed previously in

Q2D systems (Sommeria 1986). However, if different trends had been present in the Fourier

coefficients, they could have ruled out an inverse energy cascade.
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this Re. It is also likely that an inverse energy cascade occurs throughout the inertial

subrange, although quasi-two-dimensionality only ensures that all nonlinear transfers

are net upscale (but not necessarily scale independent). Finally, the dissipative range

covers modes κ ≳ 70 (perhaps κ ≳ 100 if properly considering scale separation between

the various ranges). However, as the streamwise direction of the DNS domain is dis-

cretized, the threshold for well-resolved Fourier modes lies somewhere between κ = 100

and 200. Thus, the Fourier coefficients deviate from a κ−3 direct (forward) enstrophy

cascade, which would otherwise be expected at sufficiently large Re.

Finally, the physical mechanisms behind the inverse energy cascade in 2D (and

possibly Q2D) flows are briefly discussed, culminating in some filtered examples of

Q2D turbulence. In 2D, and absent of external forcing, vorticity is a conserved quantity.

Comparatively, in 3D, velocity gradients perpendicular to a vorticity component can

stretch (amplify) vorticity. This is an impossibility in Q2D flows, as ωz is the only

non-zero vorticity component, while all velocity gradients in the out-of-plane direction

∂z are necessarily zero, and so incapable of vortex stretching. With similar reasoning,

self-strain amplification, the other dominant means of driving a direct cascade of energy

(Carbone & Bragg 2020; Bos 2021), can also be disregarded in Q2D flows.

Thus, a different mechanism drives inverse cascades than forward cascades. It was

originally presumed that vortex merger events were responsible for the inverse energy

cascade (Rivera 2000), as merger events are commonly observed in decaying turbulence

(Jiménez 2020). However, vortex merger events provide no means of transferring energy

over a large range of scales (Xiao et al. 2009). Currently, numerical and experimental

studies indicate that vortex thinning is the key mechanism driving the inverse energy

cascade in 2D turbulence (Chen et al. 2006; Xiao et al. 2009), or more precisely vorticity

thinning, as vortices are not a necessity. It is important to note that this explanation

of inverse energy cascades pertains to 2D (box) turbulence; it remains an open ques-

tion whether the same mechanism applies to inverse cascades in Q2D turbulence in

duct flows. Vortex thinning relies on the conservation of vorticity in Q2D/2D flows.

For example, if an initially circular vortex were sheared in one direction, the resulting

elliptic vortex would have an identical area, but reduced velocity magnitudes, given

the increased circumference. An identical area, or equally an identical line integral

of (reduced) velocity about the (increased) circumference, is ensured by vorticity con-

servation. The reduced velocity magnitudes, and thereby energy, must be transferred
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(a) H = 3, Re/Rec = 1.1, E0 = 10−4, −0.733 < ω̂z < 0.798
y

x

(b) H = 10, Re/Rec = 0.9, E0 = 3.0577× 10−6, 10−4 < |ω̂z| < 10

y

x

Figure 3.15: Streamwise high-pass-filtered snapshots of Shercliff flow shortly after the tran-

sition to turbulence. Streamwise Fourier coefficients of modes |κ| ≤ 9 have been removed.

(a) In-plane perturbation vorticity; solid lines (red flooding) denote positive vorticity, dotted

lines (blue flooding) negative. (b) Absolute value of in-plane perturbation vorticity.

somewhere. Given that the ellipse is now long and thin, the circumferential velocities

are now predominantly directed along the major axis. Thus, shear along the major

axis increases. Hence, if a small scale circular vortex is subjected to a large scale strain

field, deforming it into an elliptic vortex, the deformation will generate a shear stress

aligned with, and thereby reinforcing, the large scale strain. Thus, any energy lost by

the small scale vortex is transferred to the large scale strain field. Note that ‘energy’

stored in the strain field is equally ‘energy’ stored in velocity gradients, as the strain

rate S = (1/2)[(∇⊥û⊥ + (∇⊥û⊥)
T]. It is worth noting that as stresses at the small

scales must be aligned with the large scale strains for an inverse cascade, then the small

scale strains (velocity gradients) must necessarily act at 45◦ angles to the large scale

strains (Chen et al. 2006).

To finish this discussion of the physical mechanisms behind the inverse energy cas-

cade, some snapshots of Q2D turbulence from DNS are provided. The inclusion of Fig.

3.15 here not only allows for familiarization with what Q2D turbulence looks like, as
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it is not as widely depicted as its 3D counterpart, but also indicates the prevalence of

narrow, highly sheared layers of vorticity; see Chapters 6 (Camobreco et al. 2021b) and

7 for further details. Such structures are particularly common, and long-lived, in the

Q2D turbulence observed in this thesis. Given the previous discussion of the mecha-

nisms of the inverse cascade, it is interesting to note the inclination (although not 45◦)

of the weakly unsteady highly thinned vortical structures, relative to the streamwise

parallel walls which drive the flow

With this tantalizing snapshot of Q2D turbulence, the introduction is concluded.

Having detailed the necessary information, the aims are now discussed, and clarified into

specific questions this research seeks to answer. Overall, these aims focus on elucidating

transition scenarios, and particularly, in identifying those features desirable in initial

conditions to most efficiently trigger turbulence, and to indefinitely sustain turbulence.

Obtaining an understanding of the ensuing turbulent flows, such as the energy transfer

mechanisms, is a challenge left open for future work.
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Chapter 4

Aims

From the theoretical perspective, this research would seek solely to further understand-

ing of subcritical routes to Q2D turbulence. However, practical aspects only necessitate

a decrease in the Reynolds number required to sustain turbulence, subcritical or oth-

erwise. This work will thereby investigate both subcritical and supercritical routes

to Q2D turbulence. Specific aims for both subcritical and supercritical investigations

follow; in each case, directions are provided to locate individual results of interest.

Investigations of subcritical routes to turbulence involve the following:

� Establishing the regions of the parameter space within which subcrit-

ical transitions can be triggered. See Chapter 6 (Camobreco et al. 2021b)

for weakly nonlinear bifurcation analysis of the α-Re space toward answering this

question, and see Chapters 5 (Camobreco et al. 2020) and 7 for the fully nonlin-

ear analysis of the double threshold E0-Re space, indicating a possible lower and

upper delineating energy, or edge state, for a given Re.

� Elucidating the key stages and physical mechanisms behind subcritical

routes to turbulence. See Chapter 5 (Camobreco et al. 2020) for the role of

nonlinear growth, and particularly nonlinear modifications to the later stages of

the Orr mechanism. See Chapter 7 for a full breakdown of the transition, into

the key stages of initial linear transient growth, weakly nonlinear edge trajectory

and fully nonlinear departure to turbulence upon reaching the edge state. Also

see Chapter 7 for the clearest identification of the lower edge state.

� Determining the most efficient route to sustained turbulence, to assist

predictions of turbulence in practical application. See Chapter 7 for the

importance of optimal energization of the leading eigenmode in efficiently trigger-

113



ing turbulence. Optimal energization by the leading adjoint mode is shown to be

far more important than optimal linear or nonlinear growth in both sustaining,

and efficiently triggering, turbulence.

� Considering the transport of a passive scalar after sustained subcritical

turbulence has been achieved, for practical application of cooling effi-

ciency. See Appendix B for the heat transfer enhancement ratios with a passive

thermal field in either the sustained turbulent, or saturated finite amplitude, flow

conditions of Chapter 7.

Investigations of supercritical routes to turbulence involve the following:

� Establishing the effect of the friction parameter H on steady base flows.

See Chapter 6 (Camobreco et al. 2021b) for a thorough coverage of the linear

stability, energetics, transient growth and weakly nonlinear bifurcation behavior

of the family of MHD-Couette-Shercliff profiles over a wide range of H. Focus

is placed on the interplay between base flow symmetries and the magnitude of

H, with symmetric Shercliff (or pressure-driven equivalent) profiles always least

stable.

� Assessing the ability to generate and sustain supercritical turbulence

over a wide range of H. See Chapter 6 (Camobreco et al. 2021b) and Ap-

pendix C for the Re, H combinations able to sustain turbulence. When weakly

supercritical, smallH are unable to trigger turbulence (strongly supercritical cases

are able to trigger turbulence). High H could trigger turbulence, but are unable

to sustain turbulence, likely due to a lack of base flow production. Only inter-

mediate H could both trigger and sustain turbulence when weakly supercritical.

Also compare to Chapter 8 (Camobreco et al. 2021a), in which supercritical tur-

bulence is not observed at any H tested, due to extreme linear growth resulting

in detrimental nonlinear base flow modulation.

� Considering methods to reduce the critical Reynolds numbers. See

Chapter 8 (Camobreco et al. 2021a) for an investigation of symmetric base flows

including both a steady an oscillatory component. Optimising the frequency and

amplitude of the oscillatory flow component results in large reductions in the

critical Reynolds number.
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Chapter 5

Subcritical route to turbulence
via the Orr mechanism in a
quasi-two-dimensional boundary
layer

5.1 Perspective

This chapter presents the first paper, published in 2020 in Physical Review Fluids, enti-

tled a “Subcritical route to turbulence via the Orr mechanism in a quasi-two-dimensional

boundary layer”. As the current (nonlinear) literature were simulating Reynolds and

Hartmann numbers still well below those expected at fusion relevant conditions, re-

calling Table 2.1, a new approach was taken. Given the small thickness of Shercliff

boundary layers, an isolated Q2D boundary layer could be simulated, of thickness

δS = Ly/H
−1/2, at a given ReS = U0δS/ν, and the results directly translated to finite

H and Re = U0Ly/ν (and thereby any specific fusion reactor configuration). This cir-

cumvented the issue of simulating either large Re at small H, or small Re at large H,

or the extrapolation of results. The generality of the isolated Q2D boundary layer also

permits extension of the results to a variety of geophysical and astrophysical flows.

The current state of the art in transitions to turbulence was also reviewed. This

revolved around nonlinear transient growth, or similar edge tracking algorithms, com-

posed of individually linear growth stages. After first establishing that linear and

nonlinear transient growth were effectively equivalent in Q2D systems, as only the Orr

mechanism was present, initial conditions were constructed based on linear optimiza-

tion maximizing transient growth. This permitted both a baseline comparison to other

works (in different systems) using similar strategies, as well as allowed investigation of
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the various linear and nonlinear stages of Orr growth toward turbulence. From non-

linear evolution of linear initial conditions, possibly the first simulated transient Q2D

turbulence was triggered from a Q2D laminar initial condition at a subcritical Reynolds

number (further supported by additional analysis included in Appendix A). Key flow

features were also identified and characterized. Both streamwise sheets of negative ve-

locity, and arched jets of vorticity (emanating from the region where the wall-normal

velocity changes sign near the wall) were observed, and will be consistently observed

in all future works in this thesis. The former flow feature, streamwise velocity sheets,

appeared detrimental to sustaining turbulence, whereas the latter jetting phenomenon

appeared key to generating turbulence. While turbulence was not sustained in the fol-

lowing paper, jets were observed in sustained subcritical turbulence in Chapter 7, as

contrasted in Appendix D.

In either case, it is of particular theoretical interest that turbulence was triggered

without the use of 3D noise (and so was purely Q2D) and with an initial condition com-

posed of only a single energized harmonic (κ = 1), rather than some small scale (high

harmonic) forcing. Under these constraints, the region of the parameter space in which

purely Q2D subcritical transitions were viable was established, for the practical import

of self-sufficient fusion blanket operation. However, only weakly subcritical ReS were

capable of inciting transitions to turbulence, and once scaled to finite H, remained at

quite large Re (likely practically unrealisable, but not unrealistically large). Analysis at

weakly subcritical ReS revealed the presence of both lower and upper delineating ener-

gies; the latter only recently reported in 3D hydrodynamic flows (Budanur et al. 2020).

However, even at initial energies between the lower and upper bounds, turbulence was

unable to be sustained, which is of concern for practical application. Although attempts

to extend the turbulent episode were successful, by considering larger ReS (supercritical

but outside the neutral curve) and longer domains, the results were not of immediate

practical application. Theoretically, the form of the state space generating a single

turbulent episode was tantalizing, as tests in longer domains indicated no change in

the lower delineating energy, but a raising of the upper delineating energy, which may

permit turbulent episodes at lower ReS. Note that the form of the state space, and

the generation of sustained turbulence (rather than single turbulent episodes) will be

revisited in Chapter 7. For now, the first published article is included in the pages to

follow.
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Subcritical route to turbulence via the Orr mechanism
in a quasi-two-dimensional boundary layer
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A subcritical route to turbulence via purely quasi-two-dimensional mechanisms, for
a quasi-two-dimensional system composed of an isolated exponential boundary layer, is
numerically investigated. Exponential boundary layers are highly stable and are expected
to form on the walls of liquid metal coolant ducts within magnetic confinement fusion
reactors. Subcritical transitions were detected only at weakly subcritical Reynolds numbers
(at most ≈70% below critical). Furthermore, the likelihood of transition was very sensitive
to both the perturbation structure and initial energy. Only the quasi-two-dimensional
Tollmien–Schlichting wave disturbance, attained by either linear or nonlinear optimization,
was able to initiate the transition process, by means of the Orr mechanism. The lower
initial energy bound sufficient to trigger transition was found to be independent of the
domain length. However, longer domains were able to increase the upper energy bound,
via the merging of repetitions of the Tollmien–Schlichting wave. This broadens the range of
initial energies able to exhibit transitional behavior. Although the eventual relaminarization
of all turbulent states was observed, this was also greatly delayed in longer domains. The
maximum nonlinear gains achieved were orders of magnitude larger than the maximum
linear gains (with the same initial perturbations), regardless if the initial energy was above
or below the lower energy bound. Nonlinearity provided a second stage of energy growth
by an arching of the conventional Tollmien–Schlichting wave structure. A streamwise
independent structure, able to efficiently store perturbation energy, also formed.

DOI: 10.1103/PhysRevFluids.5.113902

I. INTRODUCTION

There is significant interest in understanding transitions to quasi-two-dimensional (Q2D) turbu-
lence, given the wide range of natural and industrial flows which exhibit quasi-two-dimensionality.
These include magnetohydodynamic (MHD), shallow channel, and atmospheric flows [1,2]. The
conditions under which 3D MHD turbulence becomes quasi-two dimensional, and the appearance
of three-dimensionality in Q2D MHD turbulence have been clarified [3–6]. However, a clear
subcritical path to Q2D turbulence from a Q2D laminar state has not been identified. The aim of the
present work is thus to establish a purely Q2D subcritical route to turbulence. This is motivated
by the design of coolant ducts in magnetic confinement fusion reactors, where pervading field
strengths range between 4 and 10 T [7,8]. Understanding transition in coolant ducts is important
for ensuring sufficient heat transfer at the plasma-facing (Shercliff) wall [9–13] and to establish the
feasibility of self-cooled reactor designs [7]. Limits on maximum pressure gradient [9,14,15] and
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pumping efficiency [11,16–18] motivate seeking the most efficient route to turbulence. However,
quasi-two-dimensional turbulence is unlikely to arise in blankets via strongly three-dimensional
turbulence [7]. Thus, this work limits itself only to the use of an initial two-dimensional perturbation;
secondary excitations with three-dimensional random noise are not applied.

Transitions in MHD flows have previously been initiated by a perturbation comprising either two
three-dimensional oblique-waves or a two-dimensional initial field with three-dimensional random
noise [19,20], which are routes prohibited in Q2D systems. Using these techniques, for Hartmann
channel flow, Ref. [19] found excellent agreement with the critical Reynolds numbers at which
transition was observed experimentally [21], observing a strongly three-dimensional subcritical
transition. Although less energetic perturbations generated more growth, they did not sufficiently
modulate the base flow. The perturbations which attained the highest maximum energy, regardless
of initial energy, were most likely to incite transition. Complicating matters at high field strengths,
three-dimensional noise relaminarized the flow, instead of triggering transition.

To assess subcritical transitions in Q2D MHD flows, the SM82 model [3] is applied, as
realistic magnetic confinement field strengths (4–10 T) are currently beyond the capability of
three-dimensional numerics. The SM82 model governs the evolution of a velocity field averaged
along uniform magnetic field lines. In the limit of quasistatic Q2D MHD, the magnetic field is
imposed and the Lorentz force dominates all other forces. The bulk flow is two-dimensional, with
thin Hartmann layers formed along walls perpendicular to field lines. In the SM82 model, the
presence of Hartmann layers is modeled with linear friction on the average flow. The validity of
the SM82 approximation is well supported in the quasi-two-dimensional limit [22–25]. Departure
from the two-dimensional average has been observed in regions of strong viscosity or inertia.
Reference [23] demonstrates errors less than 10% between quasi-two-dimensional and laminar
three-dimensional Shercliff layers, which do not vanish, even in the asymptotic limit when the
Lorentz force dominates. There is also excellent agreement at high magnetic field strengths [26]
between the linear transient growth of full three-dimensional simulations, and Q2D simulations
based on the SM82 model.

The linear stability and linear transient growth of duct flows under strong magnetic fields are
determined solely by boundary layer dynamics [27,28]. Direct numerical simulations depict insta-
bilities isolated to the Shercliff layers, on walls parallel to the magnetic field [26,29]. As such, an
exponential boundary layer in isolation is considered. The isolated quasi-two-dimensional boundary
layer profile is identical to an asymptotic suction boundary layer [30], where friction replaces wall
suction. The analogy has been highlighted in [31], by performing a change of variables, such that
the wall suction boundary condition becomes impermeable. This introduces an additional term in
the governing equations for the transformed velocity, of the form −(∂u/∂y)/Re. Comparatively, the
friction term in the SM82 model is −u/Re. However, as the underlying exponential boundary layer
remains the same, both flows are very stable [30,32].

Nonlinear optimization and edge tracking algorithms have been widely used to assess subcritical
turbulent transitions in hydrodynamic pipe [33,34], plane Couette [35,36], and plane Poiseuille
flows [37,38], as well as in Blasius [39–42] and asymptotic suction [43,44] boundary layers. A
fundamental part of this process involves searching the state space for seperatrices, which divide
the basins of attraction of the laminar fixed point and turbulent state [43]. The minimal seed is
then the nonlinearly optimized perturbation with the smallest initial energy that is able to cross
the separatrix [33]. Separatrix 1 is henceforth defined as a segment of the laminar-turbulent basin
boundary where the minimal seed crosses. Hydrodynamic studies of three-dimensional turbulent
transitions have determined that the laminar-turbulent basin boundary is the “edge” of a stable
manifold. At a saddle node (the edge state) an unstable solution crosses [43,45]. However, such
an unstable solution is not necessarily the minimal seed [36] as the seperatrix can be closer to the
fixed laminar point elsewhere in the state space. This discussion is aided by Fig. 1, which depicts
two initial conditions with slightly different initial energies. One perturbation has an initial energy
E0 < ED and returns back to the laminar state without crossing separatrix 1, such that ED is the
minimum initial energy sufficient to cross separatrix 1. The case with E0 > ED continues on to
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FIG. 1. A state space representation of the problem. Four cases are considered, two with initial energies E0

just below and above the minimum initial energy sufficient to cross separatrix 1 (ED) and two with E0 just above
and below the maximum initial energy sufficient to cross separatrix 2 (ED,2). An initial energy ED < E0 < ED,2

either crosses separatrix 1 (red curve crosses solid dark green line) or avoids crossing separatrix 2 (blue curve
eventually avoids solid light green line) to transition to turbulence. Eventually the turbulent state relaminarizes.

the turbulent attractor. An upper bound on the edge state was also identified by [45]. It stemmed
from additional dissipation generated by distortion of overly energized initial seeds. This segment
of the laminar-turbulent boundary is henceforth defined as separatrix 2. The perturbation with initial
energy E0 > ED,2 crosses seperatrix 2, missing the trajectory toward the turbulent attractor, such that
ED,2 is the maximum initial energy sufficient to avoid separatrix 2. The perturbation with E0 < ED,2

reaches the turbulent attractor, following an almost identical trajectory to the turbulent state as the
perturbation with E0 > ED. After remaining in the basin of the turbulent attractor for some time,
relaminarization occurs.

Nonlinear optimization has also been used to demonstrate that nonlinear transient growth occurs
solely via the collaboration of multiple linear transient growth mechanisms [34]. This cannot occur
in two-dimensional systems, as only the Orr mechanism is present. Thus, nonlinear optimization
effectively degenerates to linear optimization. The two-dimensional inviscid Orr mechanism is
characterized by an initial perturbation that is tilted opposite to the mean shear [46]. Energy from
the mean shear transiently grows the perturbation energy, as the base flow advects the structure
into an upright position. Perturbation energy decays as the structure is further tilted into the mean
shear, returning energy to the base flow [47]. Initially, this work compares linearly and nonlinearly
optimized perturbations, which may form the minimal seeds for inciting subcritical turbulent
transitions.

Therefore, this paper considers:
(1) What roles linear transient growth (in particular, the Orr mechanism) and nonlinearity play

in Q2D transition scenarios.
(2) Whether distinct initial energies representing separatrix 1 and 2 on the laminar-turbulent

boundary can be defined, as for 3D systems.
(3) How sensitive transition is to the structure and wavelength of the initial field.
This paper proceeds as follows: the problem setup, Sec. II, establishes the Shercliff boundary

layer domain and base flow. Section III details the determination, validation and results of the
linear transient growth analysis, as linear optimals form the initial seeds for nonlinear simulations.
Section IV discusses and validates the approach for determining nonlinear optimals and compares
the linear optimals to their nonlinear counterparts for small target times. Section V validates the
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FIG. 2. Schematic diagram of the sidewall domain with a characteristic length of the Shercliff boundary
layer height δS. The thick horizontal line represents an impermeable no-slip boundary. The dotted line
represents a stress-free parallel flow condition. The vertical dashed lines represent a periodicity constraint
on velocity and fluctuating pressure. A uniform magnetic field is directed into the page. The out-of-plane
Hartmann walls (the sources of linear friction) are not drawn.

nonlinear evolutions of linear optimals, for prescribed initial energies, and then considers the
energies delineating transitional states, perturbation structures through growth and decay stages,
and the effect of domain length. Conclusions are drawn in Sec. VI.

II. PROBLEM SETUP AND SOLUTION PROCESS

A. Problem setup

An incompressible Newtonian fluid with density ρ, kinematic viscosity ν and electric conductiv-
ity σ flows through a duct with rectangular cross-section of width a (z direction) and height 2L (y
direction). A uniform magnetic field Bez is imposed. Quasi-two-dimensionality, based on the SM82
model [3,23] is assumed. The revelant length scale is the Q2D Shercliff boundary layer thickness
δS = L/H1/2, where the Hartmann friction parameter H = L2(2B/a)(σ/ρν)1/2 [27]. Normalizing
lengths by δS, velocities by maximum undisturbed duct velocity U0, time t by δS/U0 and pressure p
by ρU 2

0 , the governing momentum and mass conservation equations become

∂u
∂t

= −(u · ∇⊥)u − ∇⊥ p + 1

ReS
∇2

⊥u − 1

ReS
u, (1)

∇⊥· u = 0, (2)

where u = (u, v) is the quasi-two-dimensional velocity vector, representing the z-averaged field,
and ∇⊥ = (∂x, ∂y) and ∇2

⊥ = ∂2
x + ∂2

y are the quasi-two-dimensional gradient and vector Laplacian
operators, respectively. The flow is governed by one dimensionless parameter, a Reynolds num-
ber based on the boundary layer thickness, ReS = U0δS/ν. Hereafter, quantities are expressed in
dimensionless form unless specified otherwise. The rightmost term in Eq. (1) is a linear friction
term describing Hartmann braking from the two out-of-plane duct walls [3]. At H � 100, δS � L
[26,27], such that the sidewall boundary layer that dictates transition behavior is isolated. A domain
extending from the sidewall a distance Ly into the flow is considered, with streamwise-periodic
length Lx, as depicted in Fig. 2. The streamwise length Lx = nlx spans n integer repetitions of a flow
structure having streamwise length lx = 2π/α and streamwise wave number α.

Instantaneous variables (u, p) are decomposed into base (U , P) and perturbation (û, p̂) com-
ponents via small parameter ε, as u = U + εû; p = P + ε p̂, for use in linear transient growth
analysis. The fully developed, time steady, parallel flow U = U (y)ex, with boundary conditions
U (y = 0) = 0, U (y → ∞) = 1, and a constant driving pressure gradient scaled to achieve a unit
maximum velocity, is U = [1 − exp(−y), 0].

B. Solver

An in-house nodal spectral element solver temporally integrates Eqs. (1) and (2) using a third-
order backward differencing scheme with operator splitting. The two-dimensional Cartesian domain
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is discretized with quadrilateral spectral elements over which Gauss–Legendre–Lobatto nodes are
placed. The Navier–Stokes solver, with the inclusion of the friction term, has been previously
introduced and validated [11,26,48,49]. No-slip velocity boundary conditions are applied at the
impermeable wall, u = û = 0, supplemented by high-order Neumann pressure boundary conditions
[50]. Pressure is decomposed into a constant pressure gradient, and a fluctuating component p′,
and periodicity is imposed between the upstream and downstream boundaries on the velocity and
fluctuating pressure. At the stress-free boundary a parallel flow condition (v = v̂ = 0) is strongly
enforced. A constant flow rate condition is also enforced in nonlinear simulations, by appropriate
adjustment of the flow rate after each time step.

III. LINEAR TRANSIENT GROWTH

A. Formulation and validation

At subcritical Reynolds numbers, all eigenmodes of the linear evolution operator decay. Thus,
to begin establishing a subcrtical route to turbulent transitions, the linear initial value problem
is considered. Linear growth is generated by the superposition of decaying nonorthogonal Orr–
Sommerfeld modes [51,52]. To interrogate the transient growth of a perturbation, total kinetic
energy E = (1/2)

∫
û · û d
 = (1/2)‖û‖ is chosen to quantify growth, following [53,54], where


 represents the computational domain. The maximum possible linear transient growth is found
by determining the initial condition for perturbation ûτ (t = 0) maximizing G = ‖û(τ )‖/‖û(0)‖ via
evolution to time τ . For a given ReS, Gmax = max[G(τ, α)] is sought, along with the optimal time
horizon τopt and streamwise wave number αopt. Thereby lx,opt = 2π/αopt. The analysis proceeds
with integration of the linearized forward evolution equations,

∂û
∂t

= −(û · ∇⊥)U − (U · ∇⊥)û − ∇⊥ p̂ + 1

ReS
∇2

⊥û − 1

ReS
û, (3)

∇⊥ · û = 0, (4)

from time t = 0 to t = τ . This is followed by backward time integration of the adjoint equations,

∂û‡

∂t
= (∇⊥U )T · û‡ − (U · ∇⊥)û‡ − ∇⊥ p̂‡ − 1

ReS
∇2

⊥û‡ − 1

ReS
û‡, (5)

∇⊥ · û‡ = 0, (6)

for the Lagrange multiplier of the velocity perturbation û‡, from t = τ to t = 0. Boundary con-
ditions û = û‡ = 0 are applied at the wall and v̂ = v̂‡ = 0 at the stress-free boundary. “Initial”
conditions for forward and backward evolution are û(0) = û‡(0) and û‡(τ ) = û(τ ), respectively.
G is then the largest real eigenvalue of the operator representing the sequential action of forward
then adjoint evolution [53,54], obtained by a Krylov subspace scheme. The scheme iterates until a
specified eigenvalue tolerance is reached. The corresponding eigenvector contains the optimal initial
field (optimal for short).

The mesh for computation of linear optimals has a region of high resolution near the wall, with
sparse resolution further away. Element spacing is also sparse in the streamwise direction, as the
variation must be sinusoidal (from linearity). Three key factors are considered when assessing
accuracy, the number of elements in the wall normal direction, the temporal resolution and the
domain height where the stress-free condition is applied, as shown in Tables I and II. Based on the
magnitude and behavior of the errors, the highest near wall resolution (Nel = 154 mesh from Table I)
was selected, with �t = 1.25 × 10−3. Based on Table II, Ly = 14.14 is sufficient for determining
the linear τopt and αopt. However, it was deemed pertinent to increase Ly to 28.28 and to recompute
time and wave number optimized fields to initiate the nonlinear evolutions reported in Sec. V. This
ensures that the parallel flow assumption remains valid if structures increase in height due to vortex
merging.
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TABLE I. The real component of the leading eigenvalue, at ReS = 7.071 × 103, α = 0.7071, and τ =
42.43 (close to optimal), with domain height Ly = 14.14 and polynomial order Np = 15 for various numbers of
elements. Meshes with 1, 2, and 4 elements per unit height (Nel = 70, 98, and 154, respectively) within the first
five units from the wall are compared. Absolute percentage errors are quoted for each mesh separately, relative
to the smallest time step case, except the last row, which compares to the Nel = 154 mesh. The eigenvalue
convergence tolerance is 10−7.

�t Nel = 70 |% Error| Nel = 98 |% Error| Nel = 154 |% Error|
2.5 × 10−3 33.25571762 2.45 × 10−1 33.36191967 2.59 × 10−3 33.36189331 2.60 × 10−3

1.25 × 10−3 33.23149556 1.72 × 10−1 33.36145641 1.20 × 10−3 33.36142823 1.20 × 10−3

6.25 × 10−4 33.20232632 8.45 × 10−2 33.36122729 5.15 × 10−4 33.36119843 5.15 × 10−4

3.125 × 10−4 33.17957603 1.59 × 10−2 33.36111304 1.73 × 10−4 33.36108413 1.72 × 10−4

1.5625 × 10−4 33.17428683 0 33.36105549 0 33.36102678 0
5.60 × 10−1 8.61 × 10−5

B. Results

At least one infinitisemal disturbance can achieve exponential growth at Reynolds numbers above
the critical Reynolds number ReS,crit . ReS,crit thereby forms a bound above which transition to
turbulence is possible, so long as the domain length has a corresponding wave number within the
neutral curve. For this problem, ReS,crit can be determined by rescaling the results of Ref. [27];
changing length scale from L to δS. Thus ReS,crit = 4.835 × 104 and αS,crit = 0.1615. The ratio
rc = ReS/ReS,crit is then defined.

Linear transient growth results are presented in Fig. 3. Duct results from Ref. [27] at finite H
are also included in Fig. 3(a), supporting the argument that the boundary layer at each duct wall is
sufficiently isolated at large H , and can be modeled separately. At rc = 0.00135, Gmax = 1, while
by rc = 1, Gmax ≈ 100. This modest rise in gain with increasing rc may be attributed to two factors.
The first is that the base flow is naturally highly stable [32]. The second is that two-dimensional
systems only permit growth via the Orr mechanism [47]. This greatly reduces optimal growth,
and produces the modest scaling of Gmax ∼ Re2/3

S for large ReS. Representative initial and optimal
fields are provided in Fig. 4, which exhibit the classic initial condition of a strongly sheared wave
which transiently grows as it is advected upright, until τopt. The modes otherwise resemble those of
Ref. [27], excepting wall confinement effects at low H in the aforementioned work.

IV. NONLINEAR TRANSIENT GROWTH

A. Formulation and validation

In this work, nonlinear transient growth is employed solely to assess the similarities between
the linear and nonlinear optimals for small target times (τ ∼ τopt). Admittedly, nonlinear transient

TABLE II. The real component of the leading eigenvalue, varying the domain height, for various ReS.
Initially, ReS = 7.071 × 103 at α = 0.7071 and τ = 42.43 was tested as part of a formal validation, Nel = 154
for Ly = 14.14, �t = 2.5 × 10−3, Np = 15. The optimals at ReS = 7.071 × 102 and 7.071 × 104 were tested
post validation, Nel = 250 for Ly = 14.14, �t = 1.25 × 10−3, Np = 13.

Ly 7.071 × 102 |% Error| 7.071 × 103 |% Error| 7.071 × 104 |% Error|
14.14 6.11779740087 3.14 × 10−6 33.3619198126 2.66 × 10−6 166.410928536 1.04 × 10−3

28.28 6.11779759275 7.63 × 10−10 33.3619206992 7.05 × 10−10 166.409189845 2.76 × 10−9

56.57 6.11779759280 0 33.3619206994 0 166.409189849 0
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FIG. 3. Linear transient growth of an exponential boundary layer as a function of rc = ReS/ReS,crit .
(a) Growth optimized over initial field, wave number and time interval. Present data (squares) are compared
against Q2D duct results from [27] (circles). The arrow indicates increasing H through 1, 3, 10, 100, and 1000.
With increasing H , the duct results [27] approach the isolated exponential boundary layer results (this work).
(b) Optimal wave number. (c) Optimal time interval.

FIG. 4. Optimized v̂-velocity fields. (a) rc = 0.0146, αopt = 0.7071. (b) rc = 0.146, αopt = 0.5586. Sim-
ulations computed with Ly = 28.28 and images clipped at y = 10. Solid lines (red flooding) positive; dotted
lines (blue flooding) negative.
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growth routines can identify the initial energy representing separatrix 1, if the target time specified is
long enough to allow the minimal seed to reach the turbulent attractor [33,34]. This target time is not
known a priori. It is shown in Sec. V that the turbulent attractor is reached between t = 1.4 × 103

and t = 2 × 103 at rc = 0.585. As τopt = 75.94 at rc = 0.585 (Fig. 3) the additional computation
cost is proportional to t/τopt = 18.44–26.34. In contrast, the hydrodynamic pipe flow work in [33]
had τopt � 30, while the minimal seed reached the turbulent attractor by t = 75, so t/τopt � 2.5.
Thus, for this problem, it was not amenable to determine separatrix 1 directly from the nonlinear
transition growth algorithm.

The scheme to determine the nonlinear growth GN = ‖û(τ )‖/‖û(0)‖, for a specified target time
τ , optimized over all initial perturbations, requires maximizing the functional [33,55],

L :=
〈

1

2
û(τ )2

〉
− λ0

[〈
1

2
û(0)2

〉
− EP

]
−

∫ τ

0
〈�∇⊥ · û〉dt −

∫ τ

0
�(t )〈û · ez〉dt

−
∫ τ

0

〈
û‡ ·

[
∂û
∂t

+ (U · ∇⊥)û + (û · ∇⊥)U + (û · ∇⊥)û + 1

ρ
[�(t )ez + ∇⊥ p′]

− 1

ReS
∇2

⊥û + 1

ReS
û
]〉

dt, (7)

where the Lagrange multipliers λ0, � and �(t ) are constraints on the specified initial energy of
the perturbation EP = (1/2)

∫
û(0)2d
, mass conservation and flow rate, respectively. Pressure is

decomposed into a time-varying pressure gradient �(t ), to maintain the flow rate, and fluctuating
component p′. 〈. . . 〉 represent integrals over the computational domain. The Lagrange multiplier û‡

ensures that the full nonlinear Navier–Stokes equations are enforced over all times 0 < t < τ [56].
Each iteration j of the optimization procedure begins with the forward evolution, from t = 0 to
t = τ , of the nonlinear perturbation equation [within the square brackets of the last term of Eq. (7)].
If GN for iteration j is larger than for iteration j − 1, then the adjoint “initial” field is û‡(τ ) = û(τ )
and the iteration continues with backward evolution via the adjoint equations,

∂û‡

∂t
= (∇⊥U )T · û‡ − (U · ∇⊥)û‡ + (∇⊥û)T · û‡ − (û · ∇⊥)û‡

+�(t )ez − ∇⊥� − 1

ReS
∇2

⊥û‡ − 1

ReS
û‡, (8)

∇⊥ · û‡ = 0, (9)

from time t = τ to t = 0. An under-relaxation factor εN is chosen (say, 0.5) for the first iteration,
or adjusted as described in Ref. [33]. The initial field for the j + 1 iteration is û j+1(0) = û j (0) +
εN[−λ0û j (0) + û‡, j (0)]/λ0, where λ0 is sought such that 〈û j+1(0) · û j+1(0)〉 = 2EP. However, if
GN does not increase in iteration j, then adjoint evolution is not performed, as the updated field
(iteration j) is further from the optimal than the previous ( j − 1) field. An additional adjustment is
then made to the under-relaxation factor, εN → εN/4. The forward iteration restarts with û j (0) =
û j−1(0) + εN[−λ0û j−1(0) + û‡, j−1(0)]/λ0. This ensures monotonic growth in successive iterations,
and avoids contaminating the initial field after iterations with too large an εN. Iterations continue
until the relative change in λ0 and residual [δL /δû(0)]/λ2

0 are both below a specified tolerance,
following Ref. [33].

Validation of the nonlinear transient growth is provided in Table III at rc = 0.293, considering
the polynomial order and time step, for two initial energies. The same mesh for determination of
the linear optimals is used, with Ly = 28.28. As the nonlinear transient growth scheme does not
evolve the perturbations through turbulent states, the resolution requirements are similar to those
of the linear computations, Sec. III A, rather than the nonlinear forward evolutions, Sec. V A. For
consistency, the same time step of �t = 1.25 × 10−3 was selected, with Np = 15.
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TABLE III. Validation of the time step and polynomial order for the nonlinear transient growth, for initial
perturbation energies of 10−6 and 10−4, at rc = 0.293, n = 1. The mesh is based on the Nel = 154 case from
linear optimization, except with Ly = 28.28. The tolerance for convergence was 10−7. Nonlinear computations
use the linear αopt and τopt.

�t GN; EP = 10−6 |% Error| Np GN; EP = 10−4 |% Error|
5 × 10−3 55.9721743040676 1.88 × 10−5 11 54.6714139912327 5.24 × 10−4

2.5 × 10−3 55.9721692244256 9.69 × 10−6 13 54.6711233880979 7.81 × 10−6

1.25 × 10−3 55.9721654578752 2.96 × 10−6 15 54.6711274190738 4.31 × 10−7

6.25 × 10−4 55.9721633006764 8.91 × 10−7 17 54.6711283768056 1.32 × 10−6

3.125 × 10−4 55.9721637995307 0 19 54.6711276549269 0

B. Results

Nonlinear optimals were computed with τ = τopt and domain lengths based on n = 1, n = 2 or
n = 3 repetitions of lx,opt, for various initial energies. These results are shown in Fig. 5(a), which
compares the difference between the linear transient growth of the linear optimal and the nonlinear
transient growth of the nonlinear optimal (red data points), with the former always greater than the
latter (all results are positive valued). As nonlinear collaboration between linear transient growth
mechanisms cannot occur, the maximum growth obtained at vanishingly small initial energy is
greater than with finite initial energy. Figure 5(a) also shows that for an initial energy defined per
unit duct length, the results are not dependent on domain length. Thus, it is the initial energy density
that is the important parameter.

Additionally, Fig. 5(a) compares the difference in the linear transient growth of the linear optimal
and the nonlinear transient growth of the linear optimal scaled to E0 (square symbols). These
results are almost coincident with those for the nonlinear growth of the nonlinear optimal (triangle
symbols). Thus, the difference between the nonlinear and linear growth is mostly due to the finite

FIG. 5. Comparison between linear and nonlinear optimals for various initial energies E0 = ∫
û2 +

v̂2 d
/
∫

U 2 d
 at rc = 0.293. (a) Difference in the maximum linear growth obtained with the linear optimal
(LOP) and maximum nonlinear growth with the nonlinear optimal (NLOP), for three domain lengths, and
difference in the linear growth of the LOP and the nonlinear growth of the LOP scaled to E0 (n = 1 only).
(b) Comparison between the nonlinear growth of the NLOP and nonlinear growth of the LOP scaled to E0

(n = 1). The linear growth of the LOP is Gmax = 55.9876.
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energy of the initial field. The mode structure is only very weakly dependent on initial energy (the
linear and nonlinear optimals are virtually indistinguishable; not shown). This supports a remark
made by [34], that in two-dimensional systems the nonlinear optimal contains the linear mode
trivially. This comparison is further highlighted in Fig. 5(b), which directly compares the nonlinear
growth of the nonlinear optimal to the nonlinear growth of the linear optimal. This difference is
very small for initial energies up to E0 ≈ 10−6, where E0 = ∫

û2 + v̂2 d
/
∫

U 2 d
 is considered
to account for the varying domain length.

For E0 � 10−6 the nonlinear growth of the nonlinear optimal then slightly exceeds the nonlinear
growth of the rescaled linear optimal. However, the differences are still small at E0 = 10−5, which
is an initial energy more than sufficient to generate large amounts of nonlinear second-stage growth,
as is discussed in detail in Sec. V. Thus, there is little “error” in estimating the minimal seed energy
with the linear optimal, for the initial energies of interest.

V. NONLINEAR EVOLUTION AT SPECIFIED INITIAL ENERGIES

A. Validation

The initial energy of each linear optimal is scaled to E0 when seeded onto the base flow. Forward
evolution of the full nonlinear Eqs. (1) and (2) then commences. The measures Ev = (1/2)

∫
v̂2 d


and E = (1/2)
∫

û2 + v̂2 d
 are defined. These separate the growth of the perturbation, captured by
Ev, and the effective modulation of the base flow, via a streamwise-independent structure, captured
by E .

The effect of time step variation is depicted in Figs. 6(a) and 6(b). These show negligible
differences between �t = 1.25 × 10−3 and significantly smaller time step sizes. �t = 1.25 × 10−3

was therefore deemed satisfactory. The polynomial order has to be more carefully selected, as the
spatial accuracy is strongly dependent on ReS and E0, as shown in Figs. 6(c) and 6(d). Discrepancies
within chaotic regions cannot reasonably be avoided, although the trajectories thereafter match well.
A polynomial order of Np = 19 is sufficient for smaller initial energies (all rc), and either Np = 23
(rc = 0.293 or 0.585) or Np = 29 (rc = 1.463) for larger initial energies, based on resolution testing
approximately 40 different ReS − E0 combinations.

B. Delineation energy

The nonlinear evolution of linear optimal perturbations in domains with lengths based on n = 1
repetitions of lx,opt are considered first. The lower delineation energy ED, representing separatrix
1, is shown in Fig. 7(a) as a function of Reynolds number. Figures 7(b) and 7(c) demonstrate how
the delineation energy is determined at rc = 0.585 (ED = 2.69187 × 10−6). ED is determined with
a bisection method [35,41,42]. However, the bisection method is modified as when E0 = ED the
energy-time history does not hover about a mean value [41], as the solution is not on the edge of a
stable manifold. Furthermore, all turbulent flows eventually relaminarize. Thus, the flow is deemed
returning to a laminar state if its energy reaches a secondary local maximum, and is deemed to
be turbulent if its energy exhibits a secondary local inflection point. An initial energy between the
largest initial energy that remains laminar, and smallest that incurs transition to turbulence, is then
tested, and defined as either the new laminar or new turbulent bound. This process is repeated until
ED is determined to 4 significant figures.

For the rc simulated, Fig. 7(a), there is no clear trend in ED with ReS (the dashed guideline has
an r−1

c trend). A dot-dashed line at rc = 0.293 provides a rough lower estimate for the ReS at which
no perturbation is capable of reaching the turbulent attractor, with any initial energy (in an n = 1
domain). At rc = 0.293 nonlinear second-stage growth yielded a maximum in E greater than the
initial linear maximum, at best. For rc � 0.146 the linear growth provided the global maximum
in E .

A second delineation energy ED,2 = 1.09646 × 10−5 could also be defined for rc = 0.585, de-
noting seperatrix 2. The bisection method is unchanged, except that now it is the larger initial energy
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FIG. 6. (a, b) temporal and (c, d) spatial resolution testing of the nonlinear evolution of linear optimals,
for various initial energies E0. (a & c) rc = 0.293. (b & d) rc = 0.585. The smaller polynomial order (value
annotated for each curve), or larger time step (see legend), is denoted by a long dashed line for each E0. n = 1
unless otherwise stated. A black long dashed line represents the linear evolution.

that is considered laminar, and the smaller initial energy that transitions to tuburbulence. Thus, there
is only a finite band of initial energies ED � E0 � ED,2 able to attain a temporary turbulent state.
Only perturbations which resemble conventional, linearly grown TS waves were able take advantage
of the nonlinear second-stage growth, which appears to be the only subcritical route to high energy
turbulent states. This process is disrupted at larger E0, which noticeably distort the perturbation,
inducing rapid decay after the linear growth, similar to the discussion in Ref. [45]. These arguments
are also supported by additional nonlinear simulations, at rc = 0.585 and rc = 1.463. The initial
seeds tested for comparison were the eigenvector field which generates the second largest linear
growth in τopt, and random noise, in the same size domains and over a wide range of initial energies.
In none of these simulations was a TS wave structure observed akin to that necessary to obtain
the nonlinear second-stage growth observed in Fig. 7(b). The eigenvector generating the second
largest linear growth managed to achieve only very small amounts of nonlinear second-stage growth.
Random noise seeds monotonically decayed. Overall, only the eigenvector which generates the
largest linear growth was able to transition to turbulence, by virtue of at least an additional order of
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FIG. 7. (a) The lower delineation energy as a function of rc = ReS/ReS,crit (n = 1 domain). The dot-dashed
line roughly approximates the maximum rc for which the delineation energy is undefined. (b) Energy time
histories at rc = 0.585, varying E0. Light red curves with E0 < ED have a secondary local maximum at best.
The orange arrow indicates the switch from local maximum to inflection point, and the lowest initial energy
(dashed dark green curve; ED) sufficient to cross separatrix 1. All green curves transition to turbulence. The
largest initial energy that avoids crossing separatrix 2 (ED,2) is also dashed. Light blue curves with E0 > ED,2,
which are briefly chaotic, all cross separatrix 2, with the purple arrow indicating the switch back from an
inflection point to a local maximum. All curves are rescaled to start at unity to aid visualization, and the linear
curve is denoted with a black long dashed line. At rc = 0.585, Gmax = 89.9630, while the maximum gain at
E0 = ED exceeds 103. (c) Same results as (b), except depicted as a 3D surface, to accentuate the discontinuous
changes at the separatrices.

magnitude of nonlinear growth. It will be shown later that ED does not vary with n (for rc � 0.439)
but that ED,2 does.

C. Temporal evolution of optimals

The observable effects of nonlinearity are similar so long as nonlinear second-stage growth
occurs and regardless whether E0 > ED, E0 < ED or if ED is even defined (rc = 0.293). As such, a
linearized evolution at rc = 0.293 is depicted in Fig. 8 and compared to the corresponding nonlinear
evolution at E0 = 1.10 × 10−5 in Fig. 9. Animations comparing the linear and nonlinear evolutions
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FIG. 8. Linearized evolution at rc = 0.293, Ly = 28.28; v̂-velocity contours. Solid lines (red flooding)
positive; dotted lines (blue flooding) negative.

are also provided as supplementary material [57]. The first relevant differences are discerned at
t = 49.50. The nonlinear evolution shows a mode which appears pinched at the wall, while the linear
structure remains flat-bottomed. Following the nonlinear case, as time progresses, the structure
rolls over this more slowly moving pinch point. At t = 63.64, additional localized circulation has
appeared near the wall, with a very small region of negative velocity immediately upstream of the
pinch point (at x ∼ 10.5). Nonlinear second-stage growth then occurs, as the structure alternates
between an arched TS wave (t = 155.6) and structures which break apart (t = 169.7) and coalesce
into an arched TS wave again (t = 282.8). After this occurs a few times, the arched TS wave
structure retains the form seen at t = 282.8 for over a thousand times units [see Fig. 13(b) for the
corresponding energy time history], unlike the rapidly decaying linear counterpart. The advecting
arched TS wave structure is eventually smoothed out near the wall (online animation only), and

FIG. 9. Nonlinear evolution at rc = 0.293, Ly = 28.28, E0 = 1.10 × 10−5; v̂-velocity contours. Solid lines
(red flooding) positive; dotted lines (blue flooding) negative.
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FIG. 10. (a) An example of the arched TS wave depicted by the v̂-velocity contour lines (solid positive;
dotted negative), at rc = 0.585, E0 = 2.69187 × 10−6 > ED, t = 2.121 × 103. The underlying backbone of the
arch is highlighted by overlaying the high-pass-filtered vorticity ω̂z, where streamwise Fourier coefficients of
modes κ � 3 have been removed. (b) An example of the conventional TS wave from the linear transient growth
analysis, at rc = 0.585, t = 77.78.

finally decays in the same manner as the linear counterpart. The linearized evolution monotonically
decays as the structure leans into the mean shear (t = 63.64). This decay is more rapid for the near
wall structure, leaving teardrop-shaped remnants outside the boundary layer as shown at t = 1273.

The arching of the TS wave appears paramount to the second-stage growth, as flatter TS waves
only decay, if outside the neutral curve. An enlarged arched TS wave is shown in Fig. 10(a). A high-
pass-filtered in-plane vorticity ω̂z = ∂ v̂/∂x − ∂ û/∂y is overlaid (streamwise Fourier coefficients of
modes κ � 3 have been removed) to help guide the eye along the backbone of the arch, which
is a thin, highly sheared layer. The largest vorticity magnitudes are still near the pinch point. To
highlight the differences, a conventional TS wave is provided in Fig. 10(b), in its upright position,
from the linear simulation. The arch is distinctly nonlinear, as the high-pass-filtered vorticity is zero
for the conventional, linear TS wave. With increasing time, the conventional TS wave will tilt into
the mean shear, whereas the arched TS wave remains upright, and will continue advecting through
the domain relatively unchanged.

D. Roles of streamwise and wall-normal velocity components

The disturbance is now considered in more detail by separating growth solely in E , Fig. 11(a),
and Ev, Fig. 11(b), for E0 just greater than ED. Growth appears larger in the latter measure as the
wall-normal velocity makes up a smaller fraction of the energy in the initial field. Both û2 and v̂2

show noticeable second-stage growth. However, the v̂-velocity magnitudes rapidly decrease after
the second-stage growth, while the û-velocity magnitudes, and thus E , decrease slowly.

The flow structures throughout this evolution are depicted in Fig. 12(a) for û and Fig. 12(b) for
v̂. While the maximum and minimum v̂-velocities have similar magnitude, the û structures have a
much larger magnitude minimum velocity (compared to the positive maximum). The û structures
elongate until they eventually become uniform in the streamwise direction. Thus, as v̂ decays, rather
than reducing the magnitude of û, continuity [Eq. (2)] is instead satisfied by reducing ∂ û/∂x. This
stores perturbation energy, recalling the slow decay of E in Fig. 11(a). The streamwise-independent
structure forms regardless if E0 > ED or E0 < ED. However, there is more perturbation energy
to store if the flow transitions to turbulence, when E0 > ED. Last, it is worth noting that in this
configuration, any nonsinusoidal streamwise variation indicates nonlinearity. Thus, the formation
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FIG. 11. Energy growth at rc = 0.439, E0 = 3.869 × 10−6 > ED, n = 1. (a) E = (1/2)
∫

û2 + v̂2 d
.
(b) Ev = (1/2)

∫
v̂2 d
. At rc = 0.439, Gmax = 73.9706, and ED = 3.853 × 10−6. All curves are rescaled to

unit initial energy. The linear evolution is shown as a black long dashed line.

of the streamwise-independent structure is distinctly nonlinear. Streamwise-independent structures
are also commonly observed in the final form of 3D simulations, e.g., Ref. [19]. By comparison, the
v̂ structures maintain similar size until they rapidly decay to a structure resembling the long time
state of the linear optimal.

FIG. 12. Temporal evolution at rc = 0.439, Ly = 28.28, n = 1, with E0 = 3.869 × 10−6 > ED. (a) Stream-
wise perturbation û = u − U . (b). Wall-normal perturbation v̂ = v. Solid lines (red flooding) positive; dotted
lines (blue flooding) negative.
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FIG. 13. Energy time histories at rc = 0.293, varying the initial energy and domain length via repetitions
n of lx,opt. (a) E = (1/2)

∫
û2 + v̂2 d
. (b) Ev = (1/2)

∫
v̂2 d
. Additional nonlinear growth is provided for

even multiples of n, for all initial energies tested at rc = 0.293, via pairwise coalescence of TS wave repetitions.
All curves are rescaled to unit initial energy. The linear curves are presented with black long dashed lines. At
rc = 0.293, Gmax = 55.9876.

E. Influence of domain length

In Sec. V B, ED and ED,2 were considered in n = 1 domains. The effect of increasing the domain
length on ED and ED,2 is now discussed, for integer repetitions up to n = 4 (Lx = nlx,opt). Growth
measures E and Ev are shown in Fig. 13 for rc = 0.293, with four distinct influences of domain
length discussed. Recall that in the n = 1 domain at rc = 0.293 some E0 can attain growth to
a secondary local maximum (e.g., E0 = 1.10 × 10−5) but no E0 transition to turbulence (cross
separatrix 1). The first influence of domain length is that if two instances of the same perturbation
evolve in an n = 2 domain, an inflection point appears in the energy-time history, indicating a
crossing of separatrix 1. This occurs as the two individual repetitions of the TS wave structure
coalesce into a single wave structure, with a rapid jump in energy at the secondary maximum
from the n = 1 case. Second, at E0 = 1.10 × 10−5, but with an n = 3 domain, this extra jump in
energy does not occur (n = 3 follows n = 1). There would be a mismatch in wavelengths if only
one pair of structures coalesced, prohibiting the interaction of all three repetitions. Third, again
at E0 = 1.10 × 10−5, the n = 4 case can experience both the n = 2 pairwise coalescence (4 → 2
repetitions), and then another coalescence (2 → 1 repetition), which allows for an additional, albeit
smaller, jump in energy. In the E0 = 1.10 × 10−5 case, the n = 4 curve closely follows the n = 2
curve early on, indicating the time it takes for the lower energy case to sense the full domain
length. However, fourth, the E0 = 5.48 × 10−5 case differs between n = 2 and n = 4, with the
structure able to increase in size more rapidly in the latter case when reforming to an arched
TS wave structure. This is inhibited in smaller (n = 1) domains, in which the structure decays
because it is distorted by too large an initial energy. The same is true of even larger initial energies,
E0 = 1.64 × 10−4 and 3.29 × 10−4, which undergo second-stage growth in the n = 2 domain, while
the n = 1 cases only decay after the linear maximum.

The v̂-velocity fields are depicted in Fig. 14 for E0 = 5.48 × 10−5, n = 2 at rc = 0.293. Recall
that with n = 1, E0 = 1.10 × 10−5 attains second-stage growth, whereas E0 = 5.48 × 10−5 is too
highly energized and rapidly decays, as the flow field does not resemble an arched TS wave,
e.g., Fig. 10(a). The two repetitions of the distorted TS wave shown in Figs. 14(a), 14(b) are not
yet interacting. The interaction between the two wavelengths is shown in Fig. 14(c), where one
repetition becomes dominant, and will shortly subsume the other, Fig. 14(d). In Fig. 14(e), the wave
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FIG. 14. Temporal evolution at rc = 0.293, Ly = 28.28, n = 2, E0 = 5.48 × 10−5; v̂-velocity contours.
Solid lines (red flooding) positive; dotted lines (blue flooding) negative. This case decays in an n = 1 domain,
but undergoes second-stage growth in an n = 2 domain because it restructures to an arched TS wave after the
coalescence of the two individual perturbation repetitions.

has re-formed into a single repetition of the arched TS wave structure. The arched TS wave then
undergoes nonlinear second-stage growth, as it slowly relaxes back to a conventional TS wave,
Fig. 14(g). It finally decays to a field resembling the long time solution of a linear transient growth
computation. However, unlike a linear optimal, this process will still have stored perturbation energy
in a sheet of negative û-velocity, visible when comparing the energy measures shown in Figs. 13(a)
and 13(b).

The energy growth at larger Reynolds numbers is depicted in Fig. 15. These illustrate the length
of time over which high energy states are maintained when E0 > ED. At rc = 0.585, n = 1, E0 =

FIG. 15. Energy time histories, varying the initial energy and domain length via repetitions n of lx,opt.
(a) rc = 0.585, Gmax = 89.9630, ED = 2.6919 × 10−6, maximum nonlinear gain observed for E0 > ED is
≈4 × 103 (n = 2). (b) rc = 1.463, Gmax = 166.4092, ED = 1.2096 × 10−6, maximum nonlinear gain observed
for E0 > ED is ≈2 × 104 (n = 2). All curves are rescaled to unit initial energy. E0 < ED are unable to take
advantage of the extra domain length, and still rapidly decay.
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FIG. 16. Contours of v̂-velocity at rc = 0.585, E0 = 1.43 × 10−5, Ly = 28.28 at t ≈ 2.8 × 103. (a) n = 3.
(b) n = 4. Solid lines (red flooding) positive; dotted lines (blue flooding) negative. Although the n = 3 and
n = 4 cases coalesce, without the TS wave having an arched appearance, they decay monotonically.

2.67 × 10−6 < ED rapidly decays, while E0 = 2.71 × 10−6 > ED maintains large energies for the
order of 104 time units, particularly so when n = 2. This is even clearer at rc = 1.463, with very
large amounts of growth, and a very slow decay, when E0 = 1.213 × 10−6 > ED. A case E0 =
1.209 × 10−6 just slightly below ED = 1.2096 × 10−6 provides a clearer indication of the additional
growth due to reaching the turbulent attractor, compared to the underlying nonlinear second-stage
growth (to a local maximum). Of additional interest is that it takes a far greater time to relaminarize
turbulent states in larger domains. The oscillations appear to be less energetic, or otherwise damped
out more rapidly, in the n = 1 domains. Last, all rc = 0.585 and rc = 1.463 cases show that E0 < ED

cannot take advantage of the extra space afforded in n = 2 domains, and decay following the n = 1
curves, such that ED does not depend on domain length. Note that at rc = 1.463 the wave numbers
in n = 1 and n = 2 domains are outside the neutral curve.

One final influence of the domain length is considered. At rc = 0.585, ED,2 = 1.09646 × 10−5

when n = 1, Fig. 7(b). Over-energized cases, with E0 = 1.43 × 10−5 > ED,2 and in longer domains
(n = 2 through n = 4), are shown in Fig. 15(a). These all appear to decay coincidentally with the
n = 1 case, seemingly implying that ED,2 has not significantly changed with increasingly domain
length, at rc = 0.585. Comparatively, at rc = 0.293 with n = 2 (Fig. 13) second-stage growth
is observed (akin to cases with ED � E0 � ED,2), in multiple over-energized situations, via the
restructuring depicted in Fig. 14. This would imply that at rc = 0.293, ED,2 has changed noticeably
with increasing domain length. At rc = 0.585, with a larger initial energy, the vortex merging
process may occur too rapidly, unlike the rc = 0.293, n = 2 cases. At rc = 0.585 the n = 3 and
n = 4 cases reformed into the simpler conventional flat bottomed TS wave structure, shown part
way through their decay in Fig. 16, rather than arched TS waves capable of nonlinear second-stage
growth. This issue may also be exacerbated by the wavelength restrictions imposed by the periodic
boundary conditions, recalling the rc = 0.293, n = 3 case indicated that a mismatch in wavelength
between TS wave instances can also prevent growth. Overall, results in longer domain do not
contradict the fact that E0 = 1.43 × 10−5 does not incite sustained turbulence at rc = 0.585, so
that separatrix 2 is still clearly defined. However, they do indicate that ED,2 can be very difficult to
accurately determine, as consistent behavior was not observed across all Reynolds numbers tested.
As a final note, the investigations at rc = 0.585, n = 3 and n = 4 also highlight that the energy
growth is due to the form of the merged structure, and not coalescence, as the cases monotonically
decay after the linear peak, during which time they are merging.
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VI. CONCLUSIONS

The present work has numerically illustrated a subcritical route to turbulence driven by purely
quasi-two-dimensional mechanisms, in a laminar Q2D exponential boundary layer. This system
approximates a magnetohydrodynamic duct flow under a strong transverse magnetic field. It was
shown that the linear optimals form an excellent approximation of the nonlinear optimals, when
tested for small (linear τopt) target times. The transition process then has two stages. First, linear
transient growth, via the Orr mechanism. This was followed by a second stage of substantial
nonlinear growth, able to propel the flow across the laminar-turbulent basin boundary. However,
only linear optimals with specific initial energies ED � E0 � ED,2 were capable of following this
route to a temporary turbulent state, before later relaminarizing. The lower bound, ED, defines the
minimal seed energy capable of transition. The upper bound, ED,2, represents an initial perturbation
too highly energized, which chaotically distorts the TS wave, inducing rapid dissipation, rather than
transitioning to turbulence.

The additional nonlinear growth which leads to the existence of the delineation energy ED

(separating states which rapidly relaminarize, and those which temporarily maintain turbulence) is
linked to the formation of an arched TS wave, which forms when a conventional TS wave becomes
pinched close to the wall. The arched TS wave still provides significant nonlinear growth when
E0 < ED, but does not transition because the optimal is too far (measured in an energy norm)
from the boundary of the turbulent attractor. While closer to the basin boundary at E0 > ED,2,
distortion of the conventional TS wave prevents the arch from forming. If the arch forms, then
the relaxing of the arched TS wave into its conventional counterpart eventually results in the decay
of the perturbation. However, during this process, perturbation energy is stored in a streamwise
sheet of negative velocity, which effectively becomes a modulation to the original base flow. This
modulated base flow may prove easier to re-excite if targeted by flow control methods. Overall, this
quasi-two-dimensional system was found to be highly sensitive to the energy and structure of the
initiating perturbation, with only the optimal initial field capable of transition for tests in shorter
domains.

Larger domain lengths were also investigated. First, this showed that successive vortex merging
may be capable of increasing the upper delineating energy ED,2, by allowing distorting structures
which would naturally rapidly decay, to instead coalesce into an arched TS wave structure, capable
of sustaining turbulence over longer times. However, for sufficiently large initial energy, even very
long domains still indicated the existence of high energy states which only rapidly decay after the
initial linear growth. Perturbations with energy below the lower delineating energy ED could not
make use of the merging process, and still decayed in longer domains. Perturbations with E0 >

ED, which are sufficient to transition to turbulence, made use of the longer domains by pairwise
coalescence of TS wave repetitions, achieving up to an order of magnitude of additional growth
(compared to the shorter domains). The largest nonlinear gains are therefore achieved with E0 > ED

and in longer domains. The comparison between the nonlinear growth of the linear optimal and the
linear growth of the linear optimal is striking at larger Reynolds numbers. The nonlinear gains
achieved, at Reynolds numbers approximately 40% below and above critical, were ≈4 × 103 and
≈2 × 104, respectively, compared to the optimized linear gains of 89.96 and 166.4, respectively.
Furthermore, it appeared to take noticeably longer for turbulent oscillations to become subdued in
longer domains.

The prospect of subcritical transitions is promising for the feasibility of self-cooled liquid
metal reactor ducts. However, the fact that all Reynolds numbers are scaled on the boundary layer
thickness must be kept in mind. Although a sidewall Reynolds number of 105 provided both very
large growth, and slow relaminarization, at a realistic magnetic field strength, the corresponding
Reynolds number based on the half duct height would be around 107. This is well beyond what is
currently expected for reactor operation, which range from 104 to 106 [7,58,59]. Furthermore, no
assessment of the sensitivity to wall properties on the formation of the arched TS wave has been
performed, which given the thermal, electrical and slip issues considered in magnetohydrodynamic
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coolant duct flows [60–63], provides an important avenue for future work for self-cooled reactor
designs.

Last, further investigation is warranted from a theoretical point of view. Although subcritical
turbulent transitions were obtained, it is curious that all turbulent flow fields relaminarized. It would
be worth exploring whether the turbulent states are in a true basin of attraction. The Q2D turbulent
states may be unstable, such that a small deviation from their trajectory drives them out of the
basin, causing relaminarization. However, it cannot be excluded that the behavior originates from
the numerical method, or choice of periodic boundary conditions.

ACKNOWLEDGMENTS

The authors are grateful for discussions with Ashley Willis regarding the iterative approach ap-
plied to the nonlinear transient growth scheme. C.J.C. receives an Australian Government Research
Training Program (RTP) Scholarship. A.P. is supported by Wolfson Research Merit Award Scheme
Grant No. WM140032 from the Royal Society. This research was supported by the Australian
Government via the Australian Research Council (Discovery Grants No. DP150102920 and No.
DP180102647), the National Computational Infrastructure (NCI) and Pawsey Supercomputing
Centre (PSC), and Monash University via the MonARCH cluster.

[1] E. Lindborg, Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?
J. Fluid Mech. 388, 259 (1999).

[2] A. Pothérat and J. Schweitzer, A shallow water model for magnetohydrodynamic flows with turbulent
Hartmann layers, Phys. Fluids 23, 055108 (2011).

[3] J. Sommeria and R. Moreau, Why, how, and when MHD turbulence becomes two-dimensional, J. Fluid
Mech. 118, 507 (1982).

[4] A. Thess and O. Zikanov, Transition from two-dimensional to three-dimensional magnetohydrodynamic
turbulence, J. Fluid Mech. 579, 383 (2007).

[5] R. Klein and A. Pothérat, Appearance of Three-Dimensionality in Wall Bounded MHD Flows, Phys. Rev.
Lett. 104, 034502 (2010).

[6] A. Pothérat and R. Klein, Why, how and when MHD turbulence at low Rm becomes three-dimensional, J.
Fluid Mech. 761, 168 (2014).

[7] S. Smolentsev, R. Moreau, and M. Abdou, Characterization of key magnetohydrodynamic phenomena in
PbLi flows for the US DCLL blanket, Fusion Eng. Des. 83, 771 (2008).

[8] V. Klüber, L. Bühler, and C. Mistrangelo, Numerical simulations of 3D magnetohydrodynamic flows in
dual-coolant lead lithium blankets, Fusion Eng. Des. 146, 684 (2019).

[9] L. Barleon, U. Burr, K. J. Mack, and R. Stieglitz, Heat transfer in liquid metal cooled fusion blankets,
Fusion Eng. Des. 51, 723 (2000).

[10] U. Burr, L. Barleon, U. Müller, and A. Tsinober, Turbulent transport of momentum and heat in magneto-
hydrodynamic rectangular duct flow with strong sidewall jets, J. Fluid Mech. 406, 247 (2000).

[11] O. G. W. Cassels, W. K. Hussam, and G. J. Sheard, Heat transfer enhancement using rectangular vortex
promoters in confined quasi-two-dimensional magnetohydrodynamic flows, Int. J. Heat Mass Transf. 93,
186 (2016).

[12] C. Mistrangelo and L. Bühler, Influence of helium cooling channels on magnetohydrodynamic flows in
the HCLL blanket, Fusion Eng. Des. 84, 1323 (2009).

[13] C. Mistrangelo, L. Bühler, and G. Aiello, Buoyant-MHD flows in HCLL blankets caused by spatially
varying thermal loads, IEEE Trans. Plasma Sci. 42, 1407 (2014).

[14] S. Smolentsev, C. Wong, S. Malang, M. Dagher, and M. Abdou, MHD considerations for the DCLL
inboard blanket and access ducts, Fusion Eng. Des. 85, 1007 (2010).

[15] C. Mistrangelo and L. Bühler, Magnetohydrodynamic pressure drops in geometric elements forming a
HCLL blanket mock-up, Fusion Eng. Des. 86, 2304 (2011).

113902-20

136



SUBCRITICAL ROUTE TO TURBULENCE VIA THE ORR …

[16] W. K. Hussam, M. C. Thompson, and G. J. Sheard, Enhancing heat transfer in a high Hartmann number
magnetohydrodynamic channel flow via torsional oscillation of a cylindrical obstacle, Phys. Fluids 24,
113601 (2012).

[17] A. H. A. Hamid, W. K. Hussam, and G. J. Sheard, Combining an obstacle and electrically driven vortices
to enhance heat transfer in a quasi-two-dimensional MHD duct flow, J. Fluid Mech. 792, 364 (2016).

[18] A. H. A. Hamid, W. K. Hussam, and G. J. Sheard, Heat transfer augmentation of a quasi-two-dimensional
MHD duct flow via electrically driven vortices, Numer. Heat Tr. A-Appl. 70, 847 (2016).

[19] D. S. Krasnov, E. Zienicke, O. Zikanov, T. Boeck, and A. Thess, Numerical study of the instability of the
Hartmann layer, J. Fluid Mech. 504, 183 (2004).

[20] D. Krasnov, M. Rossi, O. Zikanov, and T. Boeck, Optimal growth and transition to turbulence in channel
flow with spanwise magnetic field, J. Fluid Mech. 596, 73 (2008).

[21] P. Moresco and T. Alboussiére, Experimental study of the instability of the Hartmann layer, J. Fluid Mech.
504, 167 (2004).

[22] B. Mück, C. Günther, U. Müller, and L. Bühler, Three-dimensional MHD flows in rectangular ducts with
internal obstacles, J. Fluid Mech. 418, 265 (2000).

[23] A. Pothérat, J. Sommeria, and R. Moreau, An effective two-dimensional model for MHD flows with a
transverse magnetic field, J. Fluid Mech. 424, 75 (2000).

[24] V. Dousset and A. Pothérat, Numerical simulations of a cylinder wake under a strong axial magnetic field,
Phys. Fluids 20, 7104 (2008).

[25] N. Kanaris, X. Albets, D. Grigoriadis, and S. Kassinos, Three-dimensional numerical simulations of
magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic
fields, Phys. Fluids 25, 074102 (2013).

[26] O. G. W. Cassels, T. Vo, A. Pothérat, and G. J. Sheard, From three-dimensional to quasi-two-dimensional:
Transient growth in magnetohydrodynamic duct flows, J. Fluid Mech. 861, 382 (2019).

[27] A. Pothérat, Quasi-two-dimensional perturbations in duct flows under transverse magnetic field, Phys.
Fluids 19, 074104 (2007).

[28] T. Vo, A. Pothérat, and G. J. Sheard, Linear stability of horizontal, laminar fully developed, quasi-two-
dimensional liquid metal duct flow under a transverse magnetic field heated from below, Phys. Rev. Fluids
2, 033902 (2017).

[29] D. Krasnov, O. Zikanov, M. Rossi, and T. Boeck, Optimal linear growth in magnetohydrodynamic duct
flow, J. Fluid Mech. 653, 273 (2010).

[30] P. H. Roberts, An Introduction to Magnetohydrodynamics (Longmans, Green, New York, 1967).
[31] O. Levin, E. N. Davidsson, and D. S. Henningson, Transition thresholds in the asymptotic suction

boundary layer, Phys. Fluids 17, 114104 (2005).
[32] T. Albrecht, R. Grundmann, G. Mutschke, and G. Gerbeth, On the stability of the boundary layer subject

to a wall-parallel Lorentz force, Phys. Fluids 18, 098103 (2006).
[33] C. C. T. Pringle, A. P. Willis, and R. R. Kerswell, Minimal seeds for shear flow turbulence: Using nonlinear

transient growth to touch the edge of chaos, J. Fluid Mech. 702, 415 (2012).
[34] R. R. Kerswell, C. C. T. Pringle, and A. P. Willis, An optimization approach for analyzing nonlinear

stability with transition to turbulence in fluids as an exemplar, Rep. Prog. Phys. 77, 085901 (2014).
[35] Y. Duguet, P. Schlatter, and D. S. Henningson, Localized edge states in plane Couette flow, Phys. Fluids

21, 111701 (2009).
[36] Y. Duguet, A. Monokrousos, L. Brandt, and D. S. Henningson, Minimal transition thresholds in plane

Couette flow, Phys. Fluids 25, 084103 (2013).
[37] M. Farano, S. Cherubini, J.-C. Robinet, and P. D. Palma, Subcritical transition scenarios via linear and

nonlinear localized optimal perturbations in plane poiseuille flow, Fluid Dyn. Res. 48, 1409 (2016).
[38] S. Zammert and B. Eckhardt, Transition to turbulence when the Tollmien–Schlichting and bypass routes

coexist, J. Fluid Mech. 880, R2 (2019).
[39] Y. Duguet, P. Schlatter, D. S. Henningson, and B. Eckhardt, Self-Sustained Localized Structures in a

Boundary Layer Flow, Phys. Rev. Lett. 108, 044501 (2012).
[40] S. Cherubini, P. D. Palma, J.-C. Robinet, and A. Bottaro, The minimal seed of turbulent transition in the

boundary layer, J. Fluid Mech. 689, 221 (2011).

113902-21

137



CAMOBRECO, POTHÉRAT, AND SHEARD

[41] M. Beneitez, Y. Duguet, P. Schlatter, and D. S. Henningson, Edge tracking in spatially developing
boundary layer flows, J. Fluid Mech. 881, 164 (2019).

[42] C. Vavaliaris, M. Beneitez, and D. S. Henningson, Optimal perturbations and transitions thresholds in
boundary layer shear flows, Phys. Rev. Fluids 5, 062401(R) (2020).

[43] T. Khapko, Y. Duguet, T. Kreilos, P. Schlatter, B. Eckhardt, and D. S. Henningson, Complexity of
localized coherent structures in a boundary-layer flow, Eur. Phys. J. E 37, 32 (2014).

[44] S. Cherubini, P. D. Palma, and J.-C. Robinet, Nonlinear optimals in the asymptotic suction boundary
layer: Transition thresholds and symmetry breaking, Phys. Fluids 27, 4108 (2015).

[45] N. B. Budanur, E. Marensi, A. P. Willis, and B. Hof, Upper edge of chaos and the energetics of transition
in pipe flow, Phys. Rev. Fluids 5, 023903 (2020).

[46] P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer-Verlag, New York,
2001).

[47] K. M. Butler and B. F. Farrell, Three-dimensional optimal perturbations in viscous shear flow, Phys.
Fluids A 4, 1637 (1992).

[48] W. K. Hussam, M. C. Thompson, and G. J. Sheard, Optimal transient disturbances behind a circular
cylinder in a quasi-two-dimensional magnetohydodynamic duct flow, Phys. Fluids 24, 024105 (2012).

[49] G. J. Sheard, M. J. Fitzgerald, and K. Ryan, Cylinders with square cross-section: Wake instabilities with
incidence angle variation, J. Fluid Mech. 630, 43 (2009).

[50] G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for the incompressible
Navier-Stokes equations, J. Comput. Phys. 97, 414 (1991).

[51] S. C. Reddy, P. J. Schmidt, and D. S. Henningson, Pseudospectra of the Orr–Sommerfeld operator, SIAM
J. Appl. Math. 53, 15 (1993).

[52] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, Hydrodynamic stability without
eigenvalues, Science 261, 578 (1993).

[53] D. Barkley, H. M. Blackburn, and S. J. Sherwin, Direct optimal growth analysis for timesteppers, Int. J.
Numer. Methods Fluids 57, 1435 (2008).

[54] H. M. Blackburn, D. Barkley, and S. J. Sherwin, Convective instability and transient growth in flow over
a backward-facing step, J. Fluid Mech. 603, 271 (2008).

[55] C. C. T. Pringle, A. P. Willis, and R. R. Kerswell, Fully localized nonlinear energy growth optimals in
pipe flow, Phys. Fluids 27, 064102 (2015).

[56] C. C. T. Pringle and R. R. Kerswell, Using Nonlinear Transient Growth to Construct the Minimal Seed
for Shear Flow Turbulence, Phys. Rev. Lett. 105, 154502 (2010).

[57] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.113902 for
comparisons of linear and nonlinear evolution; short and long time histories.

[58] E. M. de les Valls, L. Batet, V. de Medina, J. Fradera, and L. A. Sedano, Qualification of MHD effects in
dual-coolant DEMO blanket and approaches to their modeling, Fusion Eng. Des. 86, 2326 (2011).

[59] N. Vetcha, Study of instability and transition in MHD flows as applied to liquid metal blankets, Doctor of
Philosophy, University of California, Los Angeles (2012).

[60] L. Bühler, The influence of small cracks in insulating coatings on the flow structure and pressure drop in
MHD channel flows, Fusion Eng. Des. 27, 650 (1995).

[61] L. Bühler, Instabilities in quasi-two-dimensional magnetohydrodynamic flows, J. Fluid Mech. 326, 125
(1996).

[62] L. Bühler, Laminar buoyant magnetohydrodynamic flow in vertical rectangular ducts, Phys. Fluids 10,
223 (1998).

[63] S. Smolentsev, MHD duct flows under hydrodynamic “slip” condition, Theor. Comput. Fluid Dyn. 23,
557 (2009).

113902-22

138



Chapter 6

Transition to turbulence in
quasi-two-dimensional MHD flow
driven by lateral walls

6.1 Perspective

This chapter comprises the paper “Transition to turbulence in quasi-two-dimensional

MHD flow driven by lateral walls”, as published in Physical Review Fluids in 2021.

The paper was inspired by the idea of ‘designer turbulence’, which employs active or

passive flow controls to adjust key flow features to attain desirable turbulent properties.

Rather than looking at flow control, per se, the aim was to ascertain whether variations

in key properties of the base flow (symmetry and base flow gradients), would ease

inciting and sustaining turbulence within this broadened parameter space. Given the

two additional parameters upon which the base flow depends, a supercritical analysis

was deemed a suitable place to start, avoiding the introduction of a third parameter,

the initial perturbation energy.

Of the two aspects of the base flow that were varied, the degree of symmetry and

magnitude of gradients (base flow flatness in the bulk), both proved important in very

different ways. Symmetric base flows (Shercliff profiles, or their pressure-driven equiva-

lent) always resulted in the lowest critical Reynolds numbers. The introduction of asym-

metry to the base flow reduced constructive interference between instabilities forming

in the Shercliff boundary layers, and lead to increased critical Reynolds numbers. With

enough asymmetry, and at sufficiently low friction parameters (the friction parameter

controlling the level of interference between the boundary layers), the critical Reynolds

number would asymptote to infinity, completely cutting off the supercritical route to

turbulence. This is of theoretical interest, as the basis of the nonmodal Orr mecha-
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nism is the constructive interference between multi-layered instabilities at each wall,

recalling Fig. 3.8. Varying the level of symmetry provided examples of both complete

destructive interference (infinite Rec at low H with any non-zero amount of asymme-

try), or increasing constructive interference between both modal instabilities across the

duct with reducing asymmetry (if H was not too large). The latter result proved to

be of importance to the study presented in Chapter 7. The former result may also be

of some theoretical interest, given the speculation of Falkovich & Vladimirova (2018),

that the MHD-Couette base flow may be the only global attractor in Q2D, as aided by

destructive interference. However, variations in base flow symmetry appeared to pro-

vide little practical gain, given that only the symmetric base flow could be generated in

a pressure driven conduit, and that this was already the least stable. Furthermore, the

energetics and linear transient growth varied little when varying the degree of base flow

symmetry. Both energetics and linear transient growth predominantly depended on

base flow flatness, even by intermediate H ≈ 10. Transient growth was also relatively

subdued in Q2D flows. However, weakly nonlinear analysis promisingly indicated that

subcritical transitions were feasible over large regions of the α-Re parameter space,

with their dependence on H elucidated.

Finally, fully nonlinear simulations indicated the possibility for sustained Q2D tur-

bulence. Lower H were unable to trigger turbulence even at 10% supercritical Reynolds

numbers. As weakly nonlinear analysis suggested that subcritical bifurcations should

be possible at nearby parameters, this inability to trigger turbulence was presumed

due to even supercritical Re being too small to trigger turbulence, an explanation sup-

ported in Appendix C. Much larger H triggered a single turbulent episode, much like

the subcritical H → ∞ results reported in Chapter 5 (Camobreco et al. 2020). Large

near wall gradients likely provide sufficient production to trigger turbulence, while bulk

flow flatness, over a large portion of the duct, leads to insufficient production to sustain

turbulence. However, at the intermediate H = 10, the first supercritical Q2D turbu-

lence to be both triggered and sustained was observed. Given this confirmation of the

ability to sustain turbulence, subcritical investigations at H = 10 were quickly planned,

and are reported in the work continued in Chapter 7. For now, the published article is

included in the following pages.
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This work investigates the mechanisms that underlie transitions to turbulence in a
three-dimensional domain in which the variation of flow quantities in the out-of-plane
direction is much weaker than any in-plane variation. This is achieved using a model
for the quasi-two-dimensional magnetohydrodynamic flow in a duct with moving lateral
walls and an orthogonal magnetic field, where three dimensionality persists only in regions
of asymptotically small thickness. In this environment, conventional subcritical routes to
turbulence, which are highly three dimensional (with large variations from nonzero out-of-
plane wave numbers), are prohibited. To elucidate the remaining mechanisms involved
in quasi-two-dimensional turbulent transitions, the magnetic field strength and degree
of antisymmetry in the base flow are varied, the latter via the relative motion of the
lateral duct walls. Introduction of any amount of antisymmetry to the base flow drives
the critical Reynolds number infinite, as the Tollmien-Schlichting instabilities take on
opposite signs of rotation and destructively interfere. However, an increasing magnetic
field strength isolates the instabilities, which, without interaction, permits finite critical
Reynolds numbers. The transient growth obtained by similar Tollmien-Schlichting wave
perturbations only mildly depends on the base flow, with negligible differences in growth
rate for friction parameters H � 30. Weakly nonlinear analysis determines the local bifur-
cation type, which is always subcritical at the critical point, and along the entire neutral
curve just before the magnetic field strength becomes too low to maintain finite critical
Reynolds numbers. Direct numerical simulations, initiated with random noise, indicate
that a subcritical bifurcation is difficult to achieve in practice, with only supercritical
behavior observed. For H � 1, supercritical exponential growth leads to saturation but
not turbulence. For higher 3 � H � 10, a turbulent transition occurs and is maintained at
H = 10. For H � 30, the turbulent transition still occurs, but is short lived, as the turbulent
state quickly collapses. In addition, for H � 3, an inertial subrange is identified, with the
perturbation energy exhibiting a −5/3 power law dependence on wave number.

DOI: 10.1103/PhysRevFluids.6.013901

I. INTRODUCTION

This work is concerned with the mechanisms that underpin transitions to turbulence in quasi-
two-dimensional (Q2D) shear flows, specifically, flow in a rectangular duct pervaded by a transverse
magnetic field. A number of natural and industrial flows exhibit quasi-two-dimensional dynamics,
where departures from two dimensionality are either asymptotically small in amplitude or only
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occur in regions of asymptotically small thickness (for example, boundary layers). This invariably
raises the challenge of understanding the appearance of turbulence. In the context of magnetohydro-
dynamics (MHD), motivation arises from the search for an efficient design of liquid metal cooling
blankets, which extract heat from the adjacent plasma in proposed nuclear fusion reactors [1]. The
strength of the plasma-confining magnetic field, which extends into the adjacent blanket ducts,
makes the flow there mostly quasi-two-dimensional. Furthermore, turbulence is rapidly damped via
the Lorentz force [2]. Though less pertinent to this problem, a second motivation to study Q2D
MHD flows has been their remarkable ability to reproduce at laboratory scale the main features of
two-dimensional turbulence observed in shallow channel and atmospheric flows [3–5].

Two- or quasi-two-dimensional MHD turbulence was first encountered as a limit state of three-
dimensional MHD turbulence at low magnetic Reynolds number [6–8] in domains where out-of-
plane boundaries were respectively periodic and no slip. In this limit, the induced magnetic field
can be neglected [9], and predominantly the Lorentz force diffuses momentum along the magnetic
field lines [10]. When the Lorentz force dominates both diffusive and inertial forces (in the ratios
Ha−2 and N−1, respectively, where Ha and N are the Hartmann number and interaction parameter),
the flow becomes two- or quasi-two-dimensional depending on the boundary conditions [11–14].
Along walls perpendicular to magnetic field lines, viscous forces oppose momentum diffusion by
the Lorentz force, forming Hartmann boundary layers of thickness ≈ Ha−1 [10,15]. A cutoff length
scale lc

⊥ ∼ N2/3 separates the larger Q2D scales from the smaller 3D ones [10,16]. However, this
cutoff scale cannot drop below that of horizontal viscous friction, so boundary layers parallel to the
magnetic field, of thickness ≈ Ha−1/2, remain intrinsically three-dimensional [17].

The conditions at which 3D MHD turbulence becomes quasi-two-dimensional and the formation
of three dimensionality in Q2D turbulence have been clarified [10,13,18,19]. However, a clear path
to Q2D turbulence from a quasi-two-dimensional laminar state is yet to be established. This question
is specifically important in the context of duct flows and particularly in fusion blanket design.
Indeed, if quasi-two-dimensional turbulence is to arise in blankets, it is unlikely to do so out of
three-dimensional turbulence [1].

Research on transition to turbulence in MHD conduits has been mostly experimental [20] or
based on fully three-dimensional simulations at moderate values of Ha (<100) and N , when the
turbulent state can be expected to remain three dimensional [21,22]. However, these regimes stand
very far from fusion relevant regimes (Ha � 104). The only study to date approaching these regimes
indicated that the growth of three-dimensional perturbations in electrically insulating ducts was
impeded at Hartmann numbers as low as Ha � 300, where the less efficient, quasi-two-dimensional
Orr mechanism remains the only source of transient growth [23]. The corresponding optimal growth
stood at least one order of magnitude below its 3D counterpart, raising the question as to whether
the sort of subcritical transition normally associated with shear flows may indeed take place in the
quasi-two-dimensional limit.

With these limitations in mind, a number of shallow water models can be derived to represent
MHD flows in a quasi-two-dimensional state [10,24–26] very much in the spirit of shallow water
models in rotating flows [27]. Such models have proved to be accurate, sometimes surprisingly so,
for a number of complex flows including simple straight ducts [17,23,28], vortex lattices [29–31],
sheared turbulence [24,32], flows around obstacles [33–37], and convective flows [38], linearly and
nonlinearly. The clear advantage of these models is their low computational cost, as full three-
dimensional numerics are prohibitively expensive for large Re, Ha, and N . As such, they offer a
unique chance to identify and obtain insight into laminar to turbulent transitions in duct flows in
these regimes.

In these regimes, traditional subcritical routes to turbulence may be obstructed, which would
be detrimental to the efficient extraction of heat in the blanket coolant ducts [1]. Hence, beyond
the classical Shercliff profile of insulating ducts [39], it is legitimate to consider whether alternative
profiles may more efficiently generate turbulence or be less prone to suppressing it. As modifications
to the base flow appear to be a more promising direction for turbulence suppression than influencing
turbulent fields directly [40], it is instead worth exploring whether it is more efficient to select an
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FIG. 1. Schematic diagram of the problem setup, with characteristic length of the duct half height L. The
vertical dashed lines denote a periodicity constraint. The thick horizontal lines represent impermeable, no-slip
boundaries, where the velocity is fixed (nondimensional boundary conditions provided), with an extent based
on the streamwise wavelength or corresponding wave number being considered. Fully developed Shercliff
boundary layers form on these walls, of thickness δS, which is a function of the friction parameter H . A
uniform magnetic field is imposed normal to the page. The fixed out-of-plane Hartmann walls are the sources
of the linear friction (not drawn).

optimal base flow, rather than an optimal perturbation, to generate and sustain turbulence. Although
the flow was not natively quasi-two-dimensional, Refs. [40] and [41] applied forces designed to
flatten the base flow away from the walls in an attempt to suppress turbulence. In both cases,
the preferred force accelerates flow near the walls and decelerates flow in the bulk. Flatter base
flows noticeably reduce turbulence production [42] and if sufficiently flattened can relaminarize
the flow. This may take place in plug-like Shercliff flows. Linear transient growth was also found
to be a good proxy for turbulent production far from the wall [42]. A different strategy was taken
by Ref. [43], where base flow inflexion points were smoothed to eliminate turbulence. Conversely,
Ref. [28] applied the inverse strategy of introducing inflexion points for the promotion of turbulence
in MHD duct flows. As such, understanding the role of the base flow in the transition process appears
to be crucial both in the fusion context and more generally. In particular, the questions we set out to
answer are the following:

(1) What are the quasi-two-dimensional linear mechanisms promoting the growth of perturba-
tions in quasi-two-dimensional duct flows?

(2) What is the nature of the bifurcation to any turbulent states that ensue?
(3) Can a subcritical transition take place at fusion-relevant parameters?
(4) Do the answers to these questions change, as the base flow profile is varied?
We address these questions by studying a quasi-two-dimensional wall-driven duct flow using

the shallow water (SM82) model proposed in Ref. [10], where electromagnetic forces reduce to
a linear friction exerted by the Hartmann layers on the bulk flow. The relative velocity of the
walls can be continuously varied to achieve a range of base flows from symmetric to antisymmetric
with an inflexion point. These flows are introduced in Sec. II. We then perform linear modal and
nonmodal analyses to identify the linear growth mechanisms (Secs. III and V). A lower bound for
their activation is obtained via the energy stability method (Sec. IV). The nature of the bifurcation
is then sought through weakly nonlinear stability analysis (Sec. VI) before addressing the question
of the fully nonlinear transition by means of two-dimensional DNS (Sec. VII) over a limited range
of parameters.

II. PROBLEM FORMULATION

A. Problem setup

An incompressible Newtonian fluid, with density ρ, kinematic viscosity ν, and electrical conduc-
tivity σ flows through a duct of height 2L (y direction) and width a (z direction), see Fig. 1. The flow
over a streamwise length W is periodic in the x direction. The duct walls are impermeable, no-slip,
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and electrically insulating. Fluid motion is generated by the streamwise motion of the walls at
y = ±L, at dimensional velocities U0 (top) and U1 (bottom). A homogeneous magnetic flux density
(hereafter magnetic field for brevity) Bez pervades the entire domain. In the limit where the Lorentz
force outweighs viscous and inertial forces, the flow is quasi-two-dimensional, with z variation of
pressure and velocity exclusively localized in boundary layers on the out-of-plane walls. The bulk
velocity outside these layers is O(Ha) close to the local z-averaged velocity along the duct and
accurately represented by the SM82 model [10],

∇⊥ · u = 0, (1)

∂u
∂t

+ (u · ∇⊥)u = −∇⊥ p + 1

Re
∇2

⊥u − H

Re
u, (2)

where the last term on the right-hand side of Eq. (2) represents the source of friction. Here, the
nondimensional variables t , p, and u = (u, v) represent time, pressure, and the 2D z-averaged
velocity vector, respectively, while ∇⊥ = (∂x, ∂y) and ∇2

⊥ = ∂2
x + ∂2

y are the 2D gradient and
Laplacian operators, respectively. These were scaled by L/U0, ρU 2

0 , U0, 1/L, and 1/L2, respectively.
The relevant nondimensional groupings are the Reynolds number (representing the ratio of inertial
to viscous forces at the duct scale)

Re = U0L

ν
, (3)

and the friction parameter (representing the ratio of friction in the Hartmann layers to viscous forces
at the duct scale)

H = 2
L2

a2
Ha = 2

L2

a2
aB

(
σ

ρν

)1/2

. (4)

The SM82 approximation assumes Ha � 1 and Ha2/Re � 1, which are obtainable for any H with
appropriate choice of a, as discussed in Ref. [38]. The last governing nondimensional grouping is
the dimensionless bottom wall velocity

UR = U1

U0
. (5)

UR varies in the range [−1, 1], where the quasi-two-dimensional counterpart of MHD-Couette flow
is represented by UR = −1 and Shercliff flow by UR = 1.

B. Base flows

The steady, fully developed solution for the parallel base flow, U = U (y)ex, without a driving
pressure gradient, is

U (y) = C1 exp(−H1/2y) + C2 exp(H1/2y), (6)

where

C1 = UR exp(H1/2) − exp(−H1/2)

exp(2H1/2) − exp(−2H1/2)
, C2 = exp(H1/2) − UR exp(−H1/2)

exp(2H1/2) − exp(−2H1/2)
. (7)

Example base flows for various values of UR are provided in Fig. 2. UR = −1 constitutes the MHD-
Couette limit, in which U (y) = sinh(H1/2y)/ sinh(H1/2). This simplifies to pure Couette flow in the
hydrodynamic case: As H → 0, U (y) = y. UR = 1 constitutes the Shercliff limit, in which U (y) =
cosh(H1/2y)/ cosh(H1/2). This expression differs from the Shercliff profile derived by Ref. [17] for
pressure-driven flows, by the finite wall velocity (an unavoidable translation), and by a negative
multiplicative factor reflecting different ratios of centerline to bottom wall velocity in pressure-
driven and wall-driven flows (the coefficient of Ref. [17] can be matched with appropriate choice
of UR, or by redefining Re). The Shercliff profile, with UR = 1, does not simplify to the Poiseuille
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FIG. 2. Base flow profiles U (y), at various H , for UR = −1, −0.5, 0, 0.1, 0.5, 0.8, 0.9, 0.95, 1.

flow solution in the limit H → 0 because of the absence of a pressure gradient, unlike the profile
derived in Ref. [17]. In the hydrodynamic wall-driven flow, viscous diffusion is unopposed and
the momentum imparted by the walls is fully diffused across the channel, unlike in finite pressure
gradient Poiseuille flow. Interestingly, when H > 0 Hartmann friction balances diffusion in both
wall- or pressure-driven flows, in an identical fashion, which explains the similarity between the
profiles in this work and those in Ref. [17].

Varying UR therefore varies the base flow through the family of MHD-Couette-Shercliff profiles.
Unlike in the classical MHD-Couette or Shercliff flows, the nondimensional velocity 1 − Umin,
where Umin = min{U (y)}, depends on the friction parameter H (recalling that velocities are nondi-
mensionalized by U0). Therefore, it is useful to express our results using an alternative definition of
the Reynolds number

Re� = U�L

ν
= Re (1 − Umin), (8)

based on a velocity scale U� = U0 (1 − Umin). Similarly, a nondimensional timescale t� = t U0/

U� = t/(1 − Umin) is also defined.
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C. Perturbation equations

Much of this work is dedicated to analyzing infinitesimal perturbations (û, p̂) about the base
flow,

u = U (y)ex + û , p = p̂. (9)

The equations governing û are obtained by substituting Eq. (9) into Eqs. (1) and (2) and neglecting
terms of O(|û|2), yielding

∇⊥ · û = 0, (10)

∂û
∂t

+ (û · ∇⊥)U + (U · ∇⊥)û = −∇⊥ p̂ + 1

Re
∇2

⊥û − H

Re
û. (11)

On the lateral walls, û = ∂yû = 0 boundary conditions are applied.

III. LINEAR STABILITY

A. Formulation

A sufficient condition for the base flow to be unstable is determined by seeking the least stable
infinitesimal perturbation. Taking twice the curl of Eq. (11), substituting Eq. (10), and projecting
along ey provides an equation for the wall-normal component of the velocity perturbation

∂

∂t
∇2

⊥v̂ = ∂2U

∂y2

∂

∂x
v̂ − U

∂

∂x
∇2

⊥v̂ + 1

Re
∇4

⊥v̂ − H

Re
∇2

⊥v̂. (12)

As linearity is assumed, each mode evolves independently, with perturbations decomposed into
plane waves (by virtue of the problem’s invariance in the streamwise direction)

v̂(y) = Re{ṽ(y)eiαxe−iλt }, (13)

with eigenvalue λ, eigenvector ṽ(y), streamwise wave number α, exponential growth rate Im(λ),
and wave speed Re(λ)/α. Substituting Eq. (13) into Eq. (12) provides an SM82 modification to the
Orr-Sommerfeld equation [44],

[−iλ(D2 − α2)]ṽ =
[

iαU ′′ − iαU (D2 − α2) + 1

Re
(D2 − α2)2 − H

Re
(D2 − α2)

]
ṽ, (14)

where, respectively, primes and Dn represent derivatives and the nth order derivative operator, with
respect to y. Boundary conditions are now ṽ = Dṽ = 0.

Equation (14) is discretized with Nc Chebyshev collocation points [45]. Differentiation matrices
Dn and boundary conditions are implemented following Ref. [46]. The eigenvalue problem is solved
in MATLAB in the standard form at default tolerance of 10−14. λ j is defined as the jth eigenvalue of
the discretized operator, sorted by descending growth rate, with corresponding eigenvector ṽ j . The
critical Reynolds number is attained when Im(λ1) is zero for a single wave number αc. For the linear
stability analysis, for all base flows, operators are discretized with Nc = 200, 350, 500, and 800 for
H � 102, 5×102, 103, and 104, respectively, which ensures at least 30 Chebyshev points reside
within a single Shercliff boundary layer. This enables the dominant wave number and growth rate
to be determined to respective precisions of seven and nine significant figures (Table I). Spurious
eigenvalues [47] are not an issue for the linear analysis, as they are situated sufficiently far below
the real axis.

B. Results

The linear stability results for the family of Q2D mixed MHD-Couette-Shercliff flows are shown
in Fig. 3. Figure 3(a) depicts the critical Reynolds number Re�c as a function of the friction
parameter H . The symmetric Shercliff flow [17,38] has finite Re�c for all nonzero H . Once the
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TABLE I. Resolution testing for eigenvalue problems. Left: energetic stability at H = 100, Re = 500,
MHD-Couette flow (UR = −1). Right: linear stability at H = 1000, Re = 107, Shercliff flow (UR = 1). The
bold resolutions were chosen, as discussed in Secs. III A and IV A. αmax is the wave number with max [Im(λ1)]
for a given Re.

Nc αmax 101 max [Im(λ1)] Nc αmax 102 max [Im(λ1)]

20 6.38246470 −1.53187927830825 200 3.48248937 1.78999418074040
40 6.42263964 −1.53055895392212 300 3.47528224 1.79276681627594
60 6.42263962 −1.53055895418749 400 3.47527862 1.79275949928794
80 6.42263963 −1.53055895418486 500 3.47527864 1.79275949851556
100 6.42263954 −1.53055895418970 600 3.47527873 1.79275949846157

symmetry of the base flow is broken, a value of H , H∞(UR) exists, below which the critical
Reynolds number is infinite. Hence, except for the symmetric Shercliff flow, Re�c can initially be
reduced with increasing H . Re�c decreases to a minimum for H > H∞, so that past this minimum,
increasing the friction parameter stabilizes all flows to infinitesimal perturbations (Re�c increases
monotonically with increasing H). A greater degree of antisymmetry (UR closer to −1) requires a
larger value of H before the critical Reynolds number becomes finite (H∞ monotonically increases
with decreasing UR), and provides increasing stability to infinitesimal perturbations. As such, the
antisymmetric MHD-Couette flow is the most stable base flow for a given H and has finite Re�c for
H � 15.102. The asymptotic behavior is also reflected in the critical wave numbers, Fig. 3(b), where
αc → 0 for sufficiently small H . As discussed in Ref. [48], disturbances with finite wavelength
are stable in the inviscid limit, Re� → ∞. Hence, a finite wave number cannot be maintained as
Re�c → ∞.

As observed in Ref. [49] for the even and odd modes of Hartmann flow, the asymptotic behavior
(Re�c → ∞, αc → 0) is explained by the interaction between the Tollmien-Schlichting (TS) wave

FIG. 3. Linear stability results, with arrows indicating increasing UR. (a) Critical Reynolds num-
ber. (b) Critical wave number. Rec → ∞ asymptotes are computed to Re = 107. As H → ∞, Re�c =
4.83468×104 H 1/2 and αc = 0.161513H1/2, which agree well with Ref. [17]. As H → 0, Re�c → 5772.22
for UR = 1. MHD-Couette (UR = −1) results are modified by a factor of 1/2. The isolated boundary layer
on the top wall sees an effective local minimum velocity of Umin,eff = 0, just at the edge of the boundary
layer. However, the velocity profile across the entire duct still has Umin = −1, at the bottom wall, resulting in
(1 − Umin,eff )/(1 − Umin ) = 1/2.
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FIG. 4. Eigenvectors ṽ1 from the linear stability analysis, UR = 0.99 (H∞ = 0.02898). Comparison
between H = 0.8, Re�c = 1.07724×104 (Re�c is smaller, due to constructive interference; indicated by
approximate symmetry in imaginary component) and H = 0.08, Re�c = 1.99932×104 (Re�c is larger, due
to destructive interference; indicated by approximate antisymmetry in imaginary component). (a) Real compo-
nents. (b) Imaginary components.

structures running along the top and bottom walls. Note that as the base flow is not symmetric
(respectively, antisymmetric) unless UR = 1 (respectively, UR = −1), the entire domain y ∈ [−1, 1]
is always simulated. This allows natural, sometimes approximate, symmetries in the dominant
eigenmode to be observed. For symmetric modes, which can only be supported by symmetric base
flows, the instabilities at the top and bottom walls rotate in the same direction, and constructively
interfere along the centerline, causing additional destabilization (compared to an isolated TS wave).
For antisymmetric modes, the instabilities rotate in the opposite direction along the top and bottom
walls, and hence destructively interfere. The destructive interference is maximum at UR = −1 and
H = 0, to the point of preventing the growth of any perturbation, such that Re�c diverges in this
limit. Increasing H from 0, for a given value of UR, reduces the length scale of the TS waves attached
to the top and bottom wall, causing them to separate from each other, which reduces interference.
For H > H∞, the destructive interference between TS waves is insufficient to prevent the growth of
all perturbations and the flow becomes linearly unstable. Subsequent increases in H further reduce
the level of destructive interference, leading to a drop in Re�c(H ). Once all destructive interference
has been eradicated, a subsequent increase in H only results in higher friction that impedes modal
growth. As such, Re�c(H ) increases. This explains the presence of a minimum in Re�c(H ).
Similarly, increasing UR progressively from −1 introduces increasingly more symmetry in the most
unstable mode, which forms an alternate means of decreasing the amount of destructive interference.
As such, lower values of H become sufficient to suppress complete destructive interference, and
H∞(UR) decreases monotonically with increasing UR. For UR sufficiently close to 1, and for H
sufficiently above H∞, the mode can even experience noticeable constructive interference (resulting
in a second set of local minima, recalling Fig. 3, which appear slightly above the curve for the
purely symmetric UR = 1 case). A comparison of the two local minima is considered in Fig. 4, for
UR = 0.99 (almost symmetric base flow). The degree of symmetry in the imaginary component of
the eigenvector provides a clear indication of the type of interference. There is a much greater degree
of antisymmetry in the imaginary component at H = 0.08, near the first local minimum, indicating
some destructive interference, than at H = 0.8, near the second local minimum, which experiences
significant constructive interference (the imaginary component is almost symmetric). However, as
the real component has a much larger magnitude than the imaginary component, the overall mode
structures look very similar.
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FIG. 5. Dominant eigenvectors of the linear stability analysis, v̂-velocity contours; solid lines (red flooding)
positive; dotted lines (blue flooding) negative. [(a)–(c)] Shercliff flow. [(d)–(f)] MHD-Couette flow.

The collapse of the critical Reynolds numbers and wave numbers in the limit H → ∞ is due to
the isolation of the boundary layers, already noted for Shercliff [17] and Hartmann layers [50,51].
For these large H , the critical Reynolds numbers and wave numbers scale with H1/2, consistent
with the thickness of a Shercliff boundary layer. The separation mechanism for TS waves at high
H is illustrated in Fig. 5, for Shercliff [Figs. 5(a)–5(c)] and MHD-Couette [Figs. 5(d)–5(f)] flows.
The TS wave pattern in the Shercliff flow displays the progressive separation of one central wave
structure into two distinct TS wave structures as H increases, as found in the Hartmann flow [52].
Conversely, for flows with any degree of antisymmetry (excepting MHD-Couette flow) the velocity
gradient at one wall will always be larger than at the other, drawing and confining the central mode
toward the more highly sheared wall region as H increases, which isolates the modes to a greater
degree when UR is smaller, for a given H .

IV. ENERGETIC ANALYSIS

A. Formulation

The largest Reynolds number at which any perturbation would decay monotonically, ReE,
is determined from the equation governing the evolution of the perturbation energy. Following
Ref. [44], taking the dot product of the perturbation ui with Eq. (11) and integrating over a volume
V , such that all divergence terms vanish, yields

dE

dt
= −1

2

∫
V

uiu j

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
dV − 1

Re

∫
V

∂ui

∂x j

∂ui

∂x j
dV − 2E

H

Re
. (15)

The terms on the right-hand side respectively describe energy transfer from mean shear, viscous
dissipation, and Hartmann friction [17]. The perturbation that maximizes 1/Re is found by us-
ing variational calculus and introducing a Lagrange multiplier to enforce the constraint of mass
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FIG. 6. Energetic analysis results, with arrows indicating increasing UR. (a) Energy Reynolds number
(UR = −1 and −0.5 cases collapse at high H if ReE is plotted, but appear translated with Re�E plotted, as
discussed for UR = −1 in the caption of Fig. 3). (b) Energy wave number. As H → ∞, Re�E = 65.3288H1/2

and αE = 0.863470H1/2, which agree well with Ref. [17]. As H → 0, Re�E → 87.5933 for UR = 1.

conservation [44,53,54], which, once eliminated and when we seek plane-wave solutions, leads to
the following eigenvalue problem:

[−iλE(D2 − α2)]ṽE =
[

1

2
iαU ′′ + iαU ′D + 1

Re
(D2 − α2)2 − H

Re
(D2 − α2)

]
ṽE. (16)

Equation (16) is discretized and solved in an identical manner to the linear stability problem in
Sec. III A. ReE is obtained when the largest imaginary component over all eigenvalues λE, j is zero
for a single wave number αE. Nc = 60, 80, and 140 for H � 102, 103, and 104 again allow the
dominant wave number and growth rate to be determined to respective precisions of seven and nine
significant figures (Table I).

B. Results

The energetic Reynolds numbers are shown in Fig. 6(a). Unlike the linear stability analysis,
Fig. 3(a), none of the curves asymptote to infinite Reynolds number, for profiles with any degree
of antisymmetry, at low H . Overall, the energetic analysis indicates a limited influence of the base
flow profile, as using the appropriate velocity scale in the Reynolds number, the results are virtually
coincident for all MHD-Couette-Shercliff profiles, for all H . Note that in the high-H region, the
curves collapse in ReE rather than Re�E, as only the local difference in the maximum and minimum
velocity over an isolated boundary layer is important. The collapse to dynamics dominated by an
isolated boundary layer occurs for all base flows simultaneously, and is initiated at much lower H
(H � 30) than the linear analysis (which collapses between H � 300 for UR = −1 to H � 1000
for UR = 1). The wave numbers from the energetic analysis, Fig. 6(b), are also notably larger than
those from the linear stability analysis, Fig. 3(b).

The eigenvectors from the energetic analysis are provided in Fig. 7. Unlike the linear stability
analysis, these modes do not directly represent solutions to the SM82 equations [17]. Similar to
the linear stability analysis, at higher H , a wall mode forms, which again is increasingly compacted
toward the wall as H increases. Discounting the irrelevant symmetry or antisymmetry, as in focusing
on −1 < y < 0 in Fig. 7, the modes effectively appear identical. Thus, varying the base flow through
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FIG. 7. Dominant eigenvectors of the energetic analysis, comparing Shercliff and MHD-Couette flows,
v̂-velocity contours: solid lines (red flooding) are positive; dotted lines (blue flooding) are negative.

UR has little effect on the overall dynamics of the dominant modes of the energetic analysis (when
comparing the same H).

V. LINEAR TRANSIENT GROWTH AND PSEUDOSPECTRA

A. Formulation

A lower bound for the Reynolds number at which an instability exponentially grows, and an
upper bound on the Reynolds number at which all instabilities monotonically decay, have been
derived in the preceding sections. However, nonorthogonality of the linearized evolution operator
can lead to the transient growth of a superposition of linearly decaying eigenvectors [44]. To this
end, transient growth analysis is performed for ReE < Re � Rec. The maximum possible transient
growth is found by seeking the initial condition for perturbation ûτ (t = 0) that maximizes the gain
functional G = ||û(t = τ )||/||û(t = 0)|| at prescribed time t = τ of the pertubation’s linearized
evolution. G represents the gain in perturbation kinetic energy as per Ref. [55] under the norm
||û|| = ∫

û · û d�, where � represents the computational domain. The maximum possible gain Gmax

is found at optimal time τopt for which the value Gmax(τopt ) of the optimized functional is maximum.
In practice, since û is a plane wave, v̂τ (t = 0) is obtained as the solution of an optimization problem
with the linearized evolution equation

∂ v̂

∂t
= (D2 − α2)−1

[
−iαU (D2 − α2) + iαU ′′ + 1

Re
(D2 − α2)2 − H

Re
(D2 − α2)

]
v̂ (17)

as constraint. The optimal is obtained iteratively from a timestepper, set up in MATLAB, which first
evolves Eq. (17) to time τ , then evolves the adjoint equation

∂ξ̂

∂t
= (D2 − α2)−1

[
iαU (D2 − α2) + 2iαU ′D + 1

Re
(D2 − α2)2 − H

Re
(D2 − α2)

]
ξ̂ , (18)

for the Lagrange multiplier of the velocity perturbation ξ̂ , from t = τ to t = 0, until ûτ (t = 0)
has converged to the desired precision. A third-order forward Adams-Bashforth scheme [56] is
used to integrate Eqs. (17) and (18) in time, subject to v̂ and ξ̂ satisfying boundary conditions
v̂ = Dv̂ = ξ̂ = Dξ̂ = 0 at all walls, and “initial” condition ξ̂ (τ ) = v̂(τ ). The jth eigenvalue λG, j

of the operator representing the action of direct then adjoint evolution is determined with a Krylov
subspace scheme [55,57]. With eigenvalues sorted in descending order by largest real component,
the optimized growth G = λG,1. The iterative scheme is initialized with random noise for v̂(t = 0).

Validation against literature is provided in Table II. Validation against the rescaled results of
Ref. [58] is also visible in Fig. 8. To maintain six significant figure accuracy in Gmax requires a time
step of �t = 2×10−5, 20 forward-backward iterations, and Nc = 60, 80 and 100 Chebyshev points
for H � 10, 30, and 100, respectively (for Re � 105). τopt and αopt are computed to three significant
figures.
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TABLE II. Comparisons of the Gmax calculated in the present work, and those calculated by Ref. [23] for
various H , MHD-Poiseuille flow profile, at Re = 5×103 and 1.5×104. The results of Ref. [23], kindly provided
from their Fig. 2, are wave number optimized in a full three-dimensional domain, but time optimized at the 3D
optimal wave number in a two-dimensional domain. The discrepancy at low H reflects the breakdown of the
quasi-two-dimensionality assumption, not numerical error.

Re = 5×103 Re = 1.5×104

H Ref. [23] Present Error (%) Ref. [23] Present Error (%)

10 14.65 14.8272 1.195 27.4 34.0552 19.542
30 7.62330 17.7 17.7515 0.290
50 6.08 6.13073 0.827 14.2 14.4036 1.414
100 4.61 4.60979 0.004 11.0 11.0476 0.431
150 3.88 3.89381 0.355 9.43 9.44834 0.194
300 2.90 2.90575 0.198 7.11 7.19654 1.203
600 2.16 2.16392 0.181 5.43 5.44425 0.262
800 1.91 1.91680 0.355 4.83 4.83895 0.185

Additionally there was excellent agreement with results obtained with the matrix method (pro-
vided in Appendix A of Ref. [44]) at low Reynolds and Hartmann numbers. As such, the matrix
method is used to further assess the transient growth capability by considering the non-normality
of the operator, via the pseudospectrum and condition number of the energy norm weight matrix.
A point z on the complex plane is within the εp pseudospectrum of the SM82-modified Orr-
Sommerfeld operator if ||(zI − LOS)−1|| � ε−1

p [59]. For a normal operator, a point z on the complex
plane will be at most at a distance εp from any eigenvalue. A greater degree of non-normality is
correlated with a greater ratio of the distance between a point z and the nearest eigenvalue, to the
bounding value of εp at the point z. The extent of the pseudospectra into the complex upper half-
plane forms a lower bound on transient growth [44,46,59–61]. The pseudospectrum is computed
by evaluating ||W (1/(zI − λ))W −1||2, with energy norm weight matrix W [44], identity matrix
I, and diagonalized eigenvalues λ of the discretized SM82-modified Orr-Sommerfeld operator.
Computations were performed with a discretization of Nc = 400 and truncated to the 240 modes
with largest imaginary component.

B. Results: Transient growth

The optimized growth for various base flows, over a range of H values, is depicted in Fig. 8.
Unlike in 3D flows where the lift-up mechanism incites significant growth [44,62], Q2D transient
growth is driven by the less efficient Orr mechanism. The maximum transient growth found in the
present study is accordingly lower, scaling as Gmax ∼ Re2/3, with magnitudes of only Gmax � 102

for Reynolds numbers of 104 to 105, depending on H and UR. At H = 30, the transient growth
already closely matches that of an isolated exponential boundary layer (long dashed lines in Fig. 8)
for all UR. By H = 100, Gmax, αopt, and τopt all respectively collapse to that limit. As in the energetic
analysis, this collapse occurs at far lower H than the linear stability analysis. This could be due to
the much larger wave numbers at which the transient growth and energetic analysis optimals occur.
The TS waves thereby penetrate a shorter distance into the bulk (see Fig. 9) and therefore become
isolated at a smaller friction parameter. The TS wave optimals otherwise have the same general
appearance as the linear stability eigenmodes (Fig. 5), except that both MHD-Couette and Shercliff
flows have wave structures at both walls, which thereby require similar friction parameters to isolate.
This leads to the overall difference in transient growth across the family of profiles to be negligible
even at relatively low H � 30. Constructive interference between modes at the top and bottom
walls may be the cause of the slightly larger growth observed for symmetric base flows at smaller
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FIG. 8. Transient growth results for various UR and H . (a) Time and wave number optimized maximum
growth. (b) Optimal time interval. (c) Optimal wave number. Re� and τ�opt = τopt/(1 − Umin ) are plotted for
H = 1, and Re and τopt for H = 10, 30, and 100. The black long dashed lines correspond to an isolated Shercliff
boundary layer [58], at H = 10, 30, 100, and 300. For these, plotted quantities are Re = ReS H 1/2, αopt =
αopt,S H 1/2, and τopt = τopt,S/H 1/2. The Re2/3 and Re1/3 power laws for Gmax and τopt are approximate.

H . However, even this is not large, such that the base flow does not make a significant difference
in generating Q2D linear transient growth. Furthermore, the degree of symmetry in the base flow
is not relevant once H is sufficiently large to flatten the central region, and isolate the boundary
layers, after which all growth values collapse to those of an isolated exponential boundary layer.

C. Results: Pseudospectra

The transient growth results are also supported by the pseudospectra. Figure 10 depicts pseu-
dospectra obtained at Re� ≈ 104 for both the Shercliff and MHD-Couette base flows, at H = 10
and H = 100. Increasing the Reynolds number directly brings more eigenvalues close to the real
axis, allowing smaller perturbations to cross to the positive imaginary half-plane, thereby generating
more transient growth [59]. However, as demonstrated in Fig. 10, increasing the Hartmann friction
parameter mainly stretches the pseudospectra along the real axis, with the further separation of the
eigenvalues appearing to lead to reduced transient growth for a given Reynolds number. This is
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FIG. 9. Optimized perturbations at Re� ≈ 104, at t = 0 (top row) and linearly evolved to t = τopt (bottom
row), comparing Shercliff and MHD-Couette flows. v̂-velocity contours: solid lines (red flooding) are positive;
dotted lines (blue flooding) are negative.

supported by determining the condition number of the basis, κ = ||W ||2||W −1||2 [44,59], recalling
that a normal operator has a condition number of unity. At or near hydrodynamic conditions, the
condition number of MHD-Couette flow is much higher than for Shercliff flow. This was observed
in 3D non-MHD Couette and Poiseuille flows [59] and remains unexplained. For example, at H = 1,
Re� ≈ 103, the condition numbers for Shercliff and MHD-Couette flows are 1.9×103 and 1.2×108,
respectively (at αopt). However, at H = 100, Re� ≈ 103, the condition numbers are respectively
1.0×104 and 1.3×106. Hence, an increasing Hartmann friction parameter acts to reorient eigenvec-
tors such that they are more normal for MHD-Couette flow and less normal for Shercliff flow. It
also indicates the increasing similarity between these base flow profiles with increasing H .

VI. WEAKLY NONLINEAR STABILITY

A. Formulation

By assuming a small perturbation amplitude O(ε), to allow linearization, linear stability analysis
becomes amplitude independent. However, if amplitude dependence is maintained, a weakly non-
linear analysis can be performed. To remain accurate, the weakly nonlinear analysis is concerned
only with expansion about a leading perturbation which is close to neutrally stable. This ensures
only one mode is unstable [53]. Linearly, a single unstable mode would either slowly grow or
decay exponentially. However, if weakly nonlinear self-interaction occurs, the overall growth rate
will increase or decrease, depending on whether the leading nonlinear growth term is positive
or negative. A positive nonlinear growth can outweigh a negative linear growth rate if the linear
growth is sufficiently small (close to the neutral curve), such that growth occurs at Re < Rec until
a saturation amplitude, or a turbulent state, is reached (in which case the bifurcation is subcritical).
If the nonlinear term is negative, Re > Rec is required for nontransient growth (the bifurcation is
supercritical). The amplitude dependence of the plane-wave mode ŵn(y) = w(y)eiαnx is expanded as

ŵn =
∞∑

m=0

ε|n|+2mÃ|n||Ã|2mŵn,|n|+2m, (19)

where ŵn,|n|+2m now denotes a perturbation (the first subscript is the harmonic, the second is the
amplitude), in line with Ref. [49], and Ã = A/ε is the normalized amplitude. The wave frequency
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FIG. 10. Pseudospectra (contours from 10−8 to 1, labeled by exponent) at Re� ≈ 104, comparing Shercliff
and MHD-Couette flows (the latter symmetric about the imaginary axis). Red crosses denote eigenvalues from
the linear stability analysis λ, computed at the same parameters as the linear transient optima.

ω is also expanded as ω = ω0 + ε2ω̃2 + · · · , where the normalized amplitude ω̃2 = ω2/ε
2. The

linearly unstable mode ŵ1,1 (which is v̂ under rescaling) of O(ε) excites via self-interaction
through the nonlinear term a second harmonic ŵ2,2 and a modification to the base flow û0,2 (zeroth
harmonic), which both have amplitude of O(ε2) [49]. These harmonics also interact with the
original perturbation, resulting in another harmonic ĥw

1,3 with amplitude of O(ε3) [49]. Higher order
terms are neglected, as they have a rapidly increasing radius of convergence [44]. However, such an
expansion is sufficient to define the bifurcation type as sub- or supercritical and determine whether
the system is sensitive to subcritical perturbations of finite amplitude.

The weakly nonlinear stability is calculated following the method outlined in Ref. [49], where the
key equations are provided here. Denoting U = û0 in line with Ref. [49], the equations governing
higher order harmonics of the base flow and the perturbation are

D2û0,2m − Hû0,2m = ĝ0,2m, (20)

Lnŵn = [(
D2

n − iλn
)
D2

n − HD2
n − iαn

(
û′′

0 − u0,0D2
n

)]
ŵn = ĥw

n,|n|+2m, (21)
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respectively, where Dn = ∂/∂yey + inαex and where the right-hand sides, representing the curl of
the nonlinear term, are

ĝ0,2m = i
∞∑

m �=0

(αm)−1ŵ∗
mD2ŵm, (22)

ĥw
n,|n|+2m = n

∞∑
m �=0

m−1
(
ŵn−mD2

mDŵm − D(ŵm)D2
n−mŵn−m

)
. (23)

Here ∗ denotes complex conjugation. Equations (20) and (21) are identical to those used to
determine the base flows in Sec. II B and the linear stability results in Sec. III, respectively,
if the right-hand sides are set to zero (taking m = 0, n = 1). Equations (20) through (23) are
discretized into matrix operators and solved as follows, noting that after determining the right-hand
sides of Eqs. (20) and (21), the amplitude expansion for ŵn should be substituted in. First, the
SM82-modified Orr-Sommerfeld eigenvalue problem[

A−1
1 M1(u0,0) − λI

]
w1 = 0 (24)

is solved in the standard form, which provides the leading eigenvalue λ1, with frequency ω0 =
Im(λ1), and the corresponding right and left eigenvectors, w1,1 and w

†
1,1, respectively. Rec and

αc are determined from the linear stability problem, Eq. (24), with neutral conditions satisfying
Re(λ1) = 0 in this formulation. The following are then solved:

u0,2 = −2α−1(D2 − HI)−1Im(w∗
1,1F0D2w1,1), (25)

w2,2 = (M2 − 2iω0A2)−1[2F2D(D(w1,1Dw1,1) − 2(Dw1,1)2)], (26)

hw
1,3 = 0.5[w∗

1,1A2Dw2,2 − D(w2,2)A1w
∗
1,1] − [w2,2A1Dw∗

1,1 − D(w∗
1,1)A2w2,2], (27)

where

An = D2 − n2α2I, Nn(u0,0) = iα(u′′
0,0I − u0,0An), Mn = Fn

[
A2

n − HAn + ReNn
]
, (28)

with boundary condition matrix Fn as given in Refs. [47,49]. w1,1 is normalized such that
D2w1,1(1) = 1, and w

†
1,1 such that w1,1 · w

†
1,1 = 1.

The n = 3 harmonic of Eq. (21) only has a solution when the right-hand side is not proportional
to w1,1. Thus, the right-hand side must be orthogonal to the adjoint eigenfunction w

†
1,1 [49]. The

n = 3 harmonic is(
A−1

1 M1 − iω0I
)
w1,3 = A−1

1

(
F1hw

1,3 + |A|−2{F1N1[(Re − Rec)u0 + |A|2u0,2] + iω2A1}w1,1
)
.

(29)
The right-hand side will be zero once orthogonal to w

†
1,1 if the frequency perturbation satisfies

iω2 = μ1(Re − Rec) + μ2|A|2, (30)

where

μ1 = w
†
1,1 · A−1

1 F1N1w1,1, (31)

μ2 = w
†
1,1 · A−1

1 F1
(
N1(u0,2)w1,1 − hw

1,3

)
. (32)

The linear growth rate correction is then μ1(Re − Rec) and the first Landau coefficient μ2 [44,53].
Rearranging the real part of Eq. (30) yields |A|2 = −(Re − Rec)Re(μ1)/Re(μ2). Thus, Re(μ1) > 0
is required for the existence of a finite amplitude state, while Re(μ2) > 0 (respectively, Re(μ2) < 0)
defines a subcritical (respectively, supercritical) bifurcation. Note that all coefficients quoted in this
paper are rescaled by α2Re, following Refs. [49] and [63].

Weakly nonlinear analysis is valid only near the neutral curve, such that only one mode is
ever unstable. However, MHD-Couette flow yields a conjugate pair of equally unstable modes.
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TABLE III. Resolution testing for the weakly nonlinear analysis, MHD-Couette flow (UR = −1 + 10−10)
at H = 1000, Rec = 1.52886×106, αc = 5.10748. The bold resolution was chosen, identical to that for the
linear stability analysis.

Nc 10−6 Re (μ1) 10−8 Im (μ1) 103 Re (μ2) 104 Im (μ2)

400 1.02741326199010 −1.78689676323013 1.08671495177896 5.88065081880331
500 1.02741326027113 −1.78689676325672 1.08671494954617 5.88065083277250
600 1.02741326031740 −1.78689676325717 1.08671494979183 5.88065083423307
700 1.02741326030699 −1.78689676325563 1.08671494908700 5.88065083086592

This issue has been circumvented by taking UR = −1 + 10−10 to approximate MHD-Couette flow,
which breaks antisymmetry above machine precision. This ensures that there is only one unstable
eigenvalue, while having a negligible effect on the linear computations.

Extensive literature comparisons [63–65] were performed when Ref. [49] validated their method,
for the H = 0 Posieuille flow problem. Testing the present formulation against this benchmark
recovered the values for μ1 and μ2 to all six significant figures provided in Ref. [49]. The resolution
required for higher H , Table III, demonstrates that the discretization for the linear stability problem
yields acceptable results for the additional weakly nonlinear computations.

B. Results

Figure 11 depicts the weakly nonlinear behavior solely at the critical points (Fig. 3). Locally,
the transition is subcritical (μ2 > 0) and the finite amplitude state can be reached (μ1 > 0) at all
critical points, including along the Rec → ∞ asymptotes. However, the magnitude of μ2 directly
quantifies the level of subcriticality of the transition. The variations of Re(μ2(H )) are opposite
to those of Rec(H ). As such, for the larger values of H , Re(μ2) scales with the Shercliff layer
thickness and decreases as Re(μ2) ∼ H−1/2. Near asymptotes where Rec diverges, on the other
hand, Re(μ2) increases sharply with H from −∞. This is expected, since in this limit, any growth
of finite amplitude takes place at a vanishingly small critical parameter Re/Rec − 1. The by-product
of this is that the saturation amplitude at which the perturbation is large enough for nonlinear effects
to be important increases with H , as |A|2 ∼ H5/2 for large H ; see Fig. 11(c). However, to compare
between H , a constant Re/Rec scaling of |A|2 ∼ H2 is more appropriate, as Rec ∼ H1/2 for large
H . Since, at constant Re, linear transient growth decreases at least as H−1/2 [23], it is unlikely to
provide a mechanism to support the growth of perturbations at large H . Thus, although subcritical
bifurcations exist, they are unlikely to be obtained, given the lack of transient growth at subcritical
Re.

Re(μ2) is depicted along neutral curves from the linear stability analysis in Fig. 12, for Shercliff,
MHD-Couette, and mixed (UR = 0.85) base flows. For Shercliff flow, at H = 1 and 10, Re(μ2)
changes sign twice along the lower branch, so the bifurcation associated with modes on this branch
is supercritical between these two points and subcritical elsewhere. At H = 100, the bifurcation
becomes supercritical at a much higher Reynolds number (likely because the TS mode does not
define the edge of the neutral curve there) and remains supercritical to the computed extent of the
lower branch (to Re = 107). Comparatively, for MHD-Couette flow, at H = 15.11 and 30, there is
no supercritical region. At H = 100, a supercritical bifurcation appears along the lower branch, as
at higher H , there is less sensitivity to the exact base flow profile. The mixed flow displays a clearer
transition from subcritical to supercritical bifurcation with increasing H . At H near H∞ (0.601 and
1), the bifurcation is everywhere subcritical. At H = 10, a small region of supercritical bifurcation
exists along the lower branch. By H = 100, this region of supercritical bifurcation is much larger
and does not switch back to subcritical to the computed extent of the neutral curve (Re = 107).
However, the top branch always remains open to subcritical bifurcation.
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FIG. 11. Weakly nonlinear stability for various UR at the critical points (recall Fig. 3). (a) Real part of linear
growth rate correction coefficient. (b) Real part of first Landau coefficient. (c) Normalized amplitude. Arrows
indicate increasing UR. As H → ∞, |A|2 = 29.8970H5/2(Rec − Re).

At large Reynolds numbers, the scalings α ∼ Re−1, Re(μ1) ∼ Re−1, and Re(μ2) ∼ Re−1 hold,
and the phase speed asymptotes to a constant. Furthermore, as Re(μ1)(Remarg − Re) always remains
positive, the finite amplitude state can always be reached (Remarg is the Reynolds number on the
neutral curve).

VII. DIRECT NUMERICAL SIMULATIONS

A. Formulation

Finally, we shall now assess whether transition to quasi-two-dimensional turbulence may ac-
tually take place under the full nonlinear dynamics, by performing direct numerical simulations
(DNS) of Eqs. (1) and (2). Natural conditions are reproduced with white noise added in varying
fraction E0(t = 0) = ∫ 1

−1 û2 + v̂2 d�/
∫ 1
−1 U 2 d�, where � represents the computational domain.

Periodic boundary conditions, u(x = 0) = u(x = W ) and p(x = 0) = p(x = W ), are applied at the
downstream and upstream boundaries of a domain with length W = 2π/αmax set to match the wave
number that achieved maximal linear growth. The simulations typically exhibited a rapid drop in
disturbance energy, followed by a linear phase of exponential growth, which is finally superseded
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FIG. 12. Weakly nonlinear stability along the neutral curve. [(a), (b)] UR = 1. [(c), (d)] UR = −1 + 10−10.
[(e), (f)] UR = 0.85. Neutrally stable wave numbers (left column) and real part of the first Landau coefficient
(right column). Dotted lines denote where Re(μ2) was negative, indicating supercritical bifurcation. “L” and
“U” denote the lower and upper branches of the neutral curve, respectively.
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TABLE IV. DNS mesh resolution testing at H = 100 and Re = 106, for Shercliff (Rec = 4.40223×105;
αmax = 1.52813 at Re = 106) and MHD-Couette (Rec = 4.87187×105; αmax = 1.39883 at Re = 106) flow.
The interpolant for each spectral element is order Np = 19 and the time step is �t = 1.25×10−3, as validated
in Ref. [58]. The final resolution choices are in bold, where Ex and Ey represent the number of elements per
unit length in x and y, respectively. The chosen resolution has roughly 650 elements and 6.25×105 degrees of
freedom for these wave numbers.

Ex Ey σ�max, UR = 1 Error (%) σ�max, UR = −1 Error (%)

3 12 5.13119051×10−3 2.236×10−1 3.92816302×10−3 1.367×10−1

6 12 5.13138001×10−3 2.273×10−1 3.92831007×10−3 1.394×10−1

3 24 5.11994480×10−3 3.959×10−3 3.93378788×10−3 6.248×10−3

6 24 5.11998768×10−3 4.797×10−3 3.93158203×10−3 4.983×10−2

LSA LSA 5.11974211×10−3 3.93354213×10−3

by nonlinear effects. The exponential growth rate σmax from the linear growth regime is obtained by
fitting the natural logarithm of

∫ |v| d� data over a few thousand time units. As t� = t/(1 − Umin),
the rescaled growth rate σ�max = σmax/(1 − Umin).

The random noise seeds (perturbations) are evolved with an in-house spectral element solver,
which employs a third-order backward differencing scheme, with operator splitting, for time inte-
gration [66]. High-order Neumann pressure boundary conditions are imposed on impermeable walls
to maintain third-order time accuracy [66]. The Cartesian domain is discretized with quadrilateral
elements over which Gauss-Legendre-Lobatto nodes are placed (Np = 19 nodes per element to
take advantage of spectral convergence). Elements are uniformly distributed in both streamwise
and transverse directions, with greater element compression in the wall-normal direction. At the
highest H value simulated, at least 20 nodes reside within the Shercliff boundary layer. The solver,
incorporating the SM82 friction term, has been previously introduced and validated [23,35,37,67].

Mesh validation results are provided in Table IV, comparing growth rates measured in the DNS
against linear stability analysis (LSA) predictions. The agreement is excellent in the exponential
growth (or decay) stages. Some additional comparisons at the chosen resolution (3 elements per
unit length in x, 24 elements per unit height in y) can be found in Table V.

Fourier analysis is also performed at select instants in time, exploiting the streamwise periodicity
of the domain. The absolute values of the Fourier coefficients cκ = |(1/Nf )

∑n=Nf −1
n=0 [û2(xn) +

v̂2(xn)]e−2π iκn/Nf | were obtained using the discrete Fourier transform in MATLAB, where xn repre-
sents the nth x location linearly spaced between x0 = 0 and xNf = W , interpolating in the discretized
domain when necessary, and taking Nf = 10 000. A mean Fourier coefficient c̄κ is obtained by
averaging the coefficients obtained at 21 y values. A time-averaged mean Fourier coefficient 〈c̄κ〉t is
also determined by averaging over approximately 20 time instants, for stages after the initial linear

TABLE V. Subcritical test cases for Shercliff flow at H = 1, with different levels of criticality at E0 = 10−2

(left) and with different values of E0 at Re/Rec = 0.9 (right).

104σ�max 104σ�max

Re/Rec LSA DNS Error (%) E0 LSA DNS Error (%)

0.5 −76.4704 −76.4726 2.9×10−3 102 −8.97961 −8.98230 3.0×10−2

0.6 −52.0623 −52.0586 7.1×10−3 10−0 −8.97961 −8.98277 3.5×10−2

0.7 −33.9759 −33.9774 4.4×10−3 10−2 −8.97961 −8.98232 3.0×10−2

0.8 −20.0392 −20.0420 1.4×10−2 10−4 −8.97961 −8.98240 3.1×10−2

0.9 −8.97961 −8.98232 3.0×10−2 10−6 −8.97961 −8.94802 3.5×10−1
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FIG. 13. Temporal evolution of perturbations initiated with random noise for MHD-Couette flow
(UR = −1) at Re/Rec = 1.1, and various H > H∞ and E0. (a)

∫
û2 + v̂2 d�. (b)

∫
v̂2 d�.

and nonlinear growth. Note that although the number of sample points Nf is high, only κ up to about
100 to 200 are well resolved by the spatial discretization, depending on H .

B. Subcritical regime

The results for DNS at subcritical Reynolds numbers are collated in Table V. All initial seeds
decayed exponentially, with excellent agreement to the LSA decay rates and without any observable
linear transient growth. It appears that supercritical Reynolds numbers are required to induce
nonlinear behavior and transitions to turbulence, if the initial field is random noise, more in line
with a supercritical bifurcation. Thus, subcritical transitions may only be attainable for a small
range of Reynolds numbers near Rec. Subcritical tests of MHD-Couette flow for H < H∞ (for
which αmax → 0) were also simulated, with W = 20π arbitrarily chosen; only monotonic decay
was observed. Note that in all these cases, the transient growth optimals have wavelengths shorter
than the domain length required to maximize linear growth, and are hence not excluded.

C. Supercritical regime

The energy growth for supercritical MHD-Couette flow (for H > 15.102) is shown in Fig. 13
and for supercritical Shercliff flow in Fig. 14. These are separated into growth in

∫
û2 + v̂2d�,

to represent the total perturbation kinetic energy and to highlight the formation of streamwise
independent structures, and growth in

∫
v̂2d�, which better isolates the growth or decay of the per-

turbation. The linear growth, nonlinear growth, and initial turbulent stages are very similar between
the MHD-Couette and Shercliff flows. However, the relaminarization and decay stages are quite
different. For MHD-Couette flow (Fig. 13),

∫
v̂2d� displays clear re-excitations. The H = 30 and

H = 100, E0 = 10−4 cases relaminarize, but are both quickly re-excited (very rapidly in the H = 30
case) while at high amplitudes, when nonlinearity still plays a role. The H = 100, E0 = 10−2 case
cleanly decays to the floor, after which growth begins again, via the linear mechanism. This was
not observed for Shercliff flow, with both (smaller E0) H = 30 and H = 100 cases relaminarizing
and rapidly monotonically decaying (the larger E0 cases require exceedingly small time steps and
as such their final behaviors remain unknown). The smaller E0 case at H = 30 also relaminarizes
and decays more rapidly than at H = 100, in spite of less Hartmann friction. Note that the energy in
the Shercliff and MHD-Couette base flows at the same H differ, so it is not necessarily appropriate
to compare the same E0 between different base flows.
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FIG. 14. Temporal evolution (rescaled time) of perturbations initiated with random noise for Shercliff flow
(UR = 1) at Re/Rec = 1.1, and various H and E0. (a)

∫
û2 + v̂2 d�. (b)

∫
v̂2 d�.

Computations of Shercliff flow reveal two interesting changes in behavior with decreasing H .
Unlike the relaminarization and monotonic decay for H � 30, the H = 3 and H = 10 cases (with
E0 = 10−4) maintain turbulent states. At H = 3 relaminarization again occurs, but the perturbation
saturates to a stable finite amplitude state, rather than decaying. However, H = 10 maintains the
turbulent state for the computed extent of the simulation, excepting two brief attempts at relaminar-
ization, which are not stable, resulting in a return to turbulence. With further decreasing H � 1, no
turbulent state is triggered by the linear and nonlinear growth, with only an eventual saturation to a
stable finite amplitude state. This behavior echoes that discussed in Ref. [68], which observes that
for all Ha � 0 a purely two-dimensional finite-amplitude state can be reach via evolution of an Orr
mode formed of purely spanwise vortices (recall Sec. V B indicating that the transient Orr optimal
was almost identical to the linear optimal). However, the addition of three-dimensional noise to
the finite-amplitude state triggers (3D) turbulence at low Ha but destabilizes the finite-amplitude
state at high Ha such that the solution decays back to the laminar base state, with only short-lived
turbulence. It is presumed by Ref. [68] that this is due to nonlinear interactions feeding energy from
2D modes to 3D modes, which are then more rapidly dissipated at high Ha. Since this could not
occur in these purely Q2D simulations, a different mechanism may be at play. References [41] and
[42] argue that in hydrodynamic pipe flows, the flattening of the mean profile reduces turbulence
production in the bulk, such that turbulence cannot be sustained. In the present configuration,
production is almost solely due to ûv̂∂U/∂y. The vanishing of this term in the core flow for
H � 30 may therefore explain why turbulence collapses in this parameter regime. Turbulence can
still be re-excited as ∂U/∂y remains large near the wall. A possible explanation of the lack of
transition at lower H then follows, as with reducing H , ∂U/∂y near the wall reduces, and so too
production.

Figures 15 and 16 depict the y-averaged Fourier coefficients c̄κ to compare the three different
behaviors observed when H � 1 (high amplitude nonturbulent), 1 < H < 30 (possibly long-lived
turbulence), or H � 30 (short-lived turbulence). Very few modes are energized throughout the linear
region, with a rapid jump in the number of modes energized in the nonlinear growth phase. This is
shown in any one of Figs. 15(a)–15(d), by comparing the fourth and fifth curves, which are closely
spaced in time but which exhibit approximately an order of magnitude increase in the number of
noticeably (relative to the floor) energized modes. For the H = 1 case, there is then no further
change in the general form of the c̄κ curves. However, for H � 3 even more modes continue to be
energized, until the spectra are contaminated by under-resolution for κ � 200. This is also shown in
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FIG. 15. Instantaneous (rescaled time) values of the y-averaged Fourier coefficients for 1 < κ < 103, for
Shercliff flow (UR = 1) at Re/Rec = 1.1; E0 = 10−4 for H � 10; E0 = 10−6 for H = 30.

Fig. 16(a) by comparing the time-averaged c̄κ , averaged only after the initial nonlinear growth.
Only the cases with H � 3, for either Shercliff or MHD-Couette flow, demonstrate a range of
wave numbers with perturbation energy with a κ−5/3 dependence, which suggests the formation
of an inertial subrange. There is also a sudden jump in the spectral floor for cases with H � 3
(also shown in Fig. 15, particularly at H = 10, comparing the curves at times t� = 1.2057×104

and t� = 1.2561×104). This is a good indication of a transition to turbulence, as the chaotic state
with a limited number of excited modes becomes a turbulent state, where all available modes are
excited. Conversely, the H = 1 data do not hold to the κ−5/3 dependence for any distinct inertial
subrange of κ , and a floor of low-energy modes is always observed, such that the low-H state never
becomes turbulent. The H = 30 case in Fig. 15 also shows the resulting decay of the perturbation
at larger times, with a rapid reduction in the number of energized modes, until the energy in all
modes reaches the floor (the −5/3 trend holds briefly before this occurs). Figure 16(b) further
supports the temporary turbulent nature of the flow in this H = 30 case, with the clear energization
of all modes at t� ≈ 1.25×104, and the rapid decay of all but the zeroth mode (the streamwise
independent structure) shortly thereafter, at t� ≈ 1.4×104. It also provides a different means of
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FIG. 16. (a) Time and y-averaged Fourier coefficients for 1 < κ < 103, for both Shercliff and MHD-
Couette flows at Re/Rec = 1.1, for various H and E0. The thin black lines show κ−5/3 trends. H � 30 for
Shercliff flow are not shown as the turbulence is short lived. (b) y-averaged Fourier coefficients as a function
of rescaled time t� for Shercliff flow at Re/Rec = 1.1, H = 30, and E0 = 10−6. Modes 0 < κ < 13 are as
defined in the legend. Thereafter, every fifth mode is plotted, with 15 < κ < 100 in red, 105 < κ < 1000 in
green, and 1005 < κ < 5000 in blue. The black solid line is twice the perturbation energy, identical to that
from Fig. 14(a).

viewing the energization of an increasing number of modes before noticeable nonlinear growth is
achieved.

Representative flow fields are depicted for MHD-Couette flow in Fig. 17, at H = 100, Re/Rec =
1.1, and E0 = 10−2 (energy growth depicted in Fig. 13). In the linear growth region, 2×102 � t �
1.24×104, a pattern of similar structure to the linear stability eigenvector is observed in Fig. 17(a)
(recall Fig. 5), although both the left and right running eigenvectors are observable in the nonlinear
computation. Most of the energy in û2 is located where gradients in v̂ are largest, i.e., very close
to the walls. During the initial nonlinear growth period, 1.24×104 � t � 1.26×104, the additional
growth originates from the TS wave arching, as visible in the v̂ field in Fig. 17(c), and the form
of this dominant structure persists through the turbulent stage, 1.26×104 � t � 1.78×104. Some
underlying smaller scale features are also visible in Fig. 17(c). This dominant modulated TS wave
can periodically break down and reform (as energy is driven to larger scales) throughout the
turbulent stages. Linear transient optimals were found to experience a secondary nonlinear growth
through the same mechanism in isolated exponential boundary layers [58], with a large-scale arched
TS wave structure similarly persistent. The appearance of û also starkly changes with the nonlinear
growth and transition to turbulence, with two elongated streamwise structures rapidly forming at
each wall, which tend to reduce the local shear. These structures store perturbation energy, as shown
by the slow decay of the zeroth mode in Fig. 16(b), and by comparing Figs. 13(a) and 13(b). After
relaminarization, 1.78×104 � t � 2.5×104, the TS wave flattens out [Fig. 17(e)], is pushed away
from the high shear region (by the streamwise independent structure), and cleanly decays. As the
Reynolds number is supercritical, the linear mode is re-excited from noise at the numerical floor.

However, the smaller turbulent scales in Fig. 17 are occluded by the dominance of the arched
TS wave. Figure 18 depicts two snapshots revealing key flow features present in the smaller scales.
In these snapshots, a high-pass filter has been applied to remove streamwise Fourier modes |κ| � 9
from the flows. Strongly localized jets emanating from the sidewalls entrain narrow shear layers,
observable in the example at H = 3, while at H = 100 a myriad of smaller scale features are present.
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FIG. 17. Temporal snapshots of MHD-Couette flow at Re/Rec = 1.1, H = 100, E0 = 10−2 (Fig. 13). Wall-
normal velocity perturbation v̂ (left); streamwise velocity perturbation û (right). Solid lines (red flooding)
positive; dotted lines (blue flooding) negative. The linear TS wave evolves into an arched TS wave, leading to
a turbulent state and the rapid growth of a streamwise independent structure. The TS wave then flattens out and
relaminarization occurs.

VIII. CONCLUSIONS

This work examined the influence of the base flow in the scenario of transition to turbulence in a
quasi-two-dimensional duct flow with a transverse magnetic field. The base flow is varied through
the relative velocity of the two lateral walls. This is of particular importance in the context of recent
developments in flow control, where turbulence is suppressed via the introduction of a friction effect
to flatten the base flow [40,41,43]. Ideas along the same lines can be conversely applied to the
promotion, rather than the suppression, of turbulence. Promoting turbulence to enhance heat transfer
is indeed necessary for one of the motivations of this work: to assess the feasibility of dual-purpose
liquid metal coolant ducts in magnetic confinement fusion reactors [1]. Fluid structures have a strong
tendency to two dimensionalize within these ducts, which exhibit naturally flat base flows, due to the
action of the Lorentz force. The linear stability of quasi-two-dimensional MHD-Couette-Shercliff
base flows provided two key insights. First, the addition of any amount of antisymmetry to the
base flow eventually leads to unconditional stability to infinitesimal perturbations at sufficiently
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FIG. 18. Streamwise high-pass-filtered snapshots of Shercliff flow shortly after the transition to turbulence
at Re/Rec = 1.1. Streamwise Fourier coefficients of modes |κ| � 9 have been removed. Solid lines (red
flooding) positive; dotted lines (blue flooding) negative.

low friction parameters H . The reason is that the antisymmetric part of the base flow drives the
TS wave structures to destructively interfere, preventing growth. Conversely, an increasing friction
parameter, beyond a critical value H∞, flattens the central region of the base flow and isolates
the wave structures at each wall, limiting their interaction, allowing growth to occur at finite critical
Reynolds numbers. H∞ increases with decreasing velocity of the bottom wall UR, which controls the
level of antisymmetry in the base flow (the top wall is at fixed velocity of unity). Only a symmetric,
Shercliff base flow has finite Rec for all nonzero H . Second, the critical parameters collapse to
those of an isolated exponential boundary layer at high H , which occurs with noticeably lower
imposed friction for increasingly antisymmetric base flow profiles. Antisymmetric profiles have a
larger base flow velocity gradient at one wall than the other, leading the TS wave instability to
preferentially form at only the one wall where the mean shear is largest. In such cases, friction need
only keep the instability sufficiently far from the other wall to avoid any interference. This requires
comparatively less friction than isolating two waves from one another (the greatest constructive
interference thereby occurs in the symmetric Shercliff flow).

Conversely, the energetics of all Q2D MHD-Couette-Shercliff flows show little dependence on
the degree of antisymmetry in the base flow. As such, the energetic Reynolds numbers are always
finite. Furthermore, the transient growth of Q2D MHD-Couette-Shercliff flows is also not strongly
dependent on the degree of antisymmetry in the base flow, with variations in growth between
base flows only visible at H � 10. Destructive interference could explain the slight reduction in
transient growth for more strongly antisymmetric base flows when H is small enough to permit
interference. At larger friction parameters, H � 30, transient growth is almost identical for all base
flows. The growth attained is equivalent to that of an isolated exponential boundary layer [58] and
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is increasingly damped with increasing H . Given that H would be of order 104 in a realistic fusion
environment, linear transient growth may not be very relevant in their context.

The weakly nonlinear analysis also compounds the difficulties in promoting turbulence in
realistic fusion environments, given the scaling of the equilibrium amplitude with H5/2 for all base
flows. However, the weakly nonlinear analysis still indicates the possibility of subcritical transitions
for any H . Supercritical bifurcations are only found along the lower branch of the neutral curve and
only for H � H∞. At lower friction parameters, for base flows with any degree of antisymmetry,
the entire computed neutral curve indicates a subcritical bifurcation.

As the transient growth depicted little base flow dependence and has been previously analyzed
in Ref. [58], direct numerical simulations target the exponential growth predicted by the linear
stability analysis. There are two key findings. First, the relaminarization of turbulent states in
symmetric Shercliff flows always occurred through a monotonic decay, while MHD-Couette flows
experienced re-excitation to a turbulent state, in some cases at amplitudes where nonlinearity was
relevant. Second, the magnitude of the friction parameter seemed to largely dictate the ability to
trigger turbulence. At low H � 1, the linear and nonlinear growth led only to a saturated state,
without turbulence. At intermediate 3 � H � 10, a transition to turbulence was observed, and at
H = 10 the turbulence state was maintained to the computed extent of simulations. Fourier analysis
also indicated the presence of an inertial subrange, where the perturbation energy exhibited a
wave number dependence of κ−5/3. At higher H � 30 (the bound above which transient growth is
equivalent to that of an isolated exponential boundary layer), although transition was observed, the
turbulent state quickly collapsed. In all cases, the nonlinear growth and turbulence were dominated
by a persistent large-scale arched TS wave. Streamwise independent structures also formed, which
stored perturbation energy and which reduced the gradients in the boundary layers. Overall, the
general features of the secondary nonlinear growth mirror that observed for the finite-amplitude
linear transient optimals simulated in Ref. [58], where nonlinear growth is due to the arching of the
conventional TS wave.

As a final word, the results of this paper indicate that it may be exceedingly difficult to obtain
Q2D subcritical transitions with random, and even optimized, initial conditions. Future work may
therefore be best focused on directly reducing Rec, permitting supercritical transitions at lower
Reynolds numbers. Inflection points, introduced to the base flow with increasing antisymmetry,
were not beneficial in this work due to their location. However, investigating the capabilities of
inflection points within the boundary layers remains as a promising avenue for destabilizing Q2D
flows (an ongoing work), which can be achieved through the use of time-periodic, rather than steady,
wall motion.
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Chapter 7

Subcritical transitions to
sustained turbulence in
quasi-two-dimensional duct flows

7.1 Perspective

Immediately apparent from the previous work, is that when at friction parameter H =

10, a 10% supercritical Re could trigger and sustain Q2D turbulence, while turbulence

was not triggered at subcritical Re. Both larger and smaller H required much larger

ratios of Re/Rec to incite and possibly sustain turbulence, as shown in Appendix C.

Thus, this chapter, presenting work currently being prepared for publication, places

sole focus on H = 10, at subcritical Re. However, note that Chapter 6 (Camobreco

et al. 2021b) simulates conditions maximizing the exponential growth rate of a modal

instability, while Chapter 5 (Camobreco et al. 2020) simulates conditions maximizing

the transient growth of a nonmodal instability. Thus, there were two key differences

between the studies contained in Chapters 5 (Camobreco et al. 2020) and 6 (Camobreco

et al. 2021b), excluding the different Re for the moment. First, there was a different H.

Second, there was a different wave number, representing different perturbations via an

altered perturbation aspect ratio L/(2π/α); discussed further in Appendix D. To isolate

each effect, the work contained herein first compares nonmodal instabilities at different

wave numbers, while holding H and Re constant. Note that all initial conditions

employed in this chapter are nonmodal perturbations; different target perturbations,

selected via α, are attained once the initial condition is evolved to a specified target

time. This preliminary investigation leads to quite an interesting result. Targeting the

nonmodal instability maximizing linear growth is less efficient at triggering turbulence,

and leads to turbulence which is not sustained. By comparison, targeting the modal
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instability minimizing exponential decay is more efficient at triggering turbulence, in

spite of less linear transient growth, and leads to sustained turbulence.

To explain these results, a few factors have to be separated. The first factor re-

gards why targeting the modal instability is more efficient. Simulations holding the

wave number constant, while linearly (or nonlinearly) optimizing with larger and larger

target times, leads to less linear growth, but more efficient transitions to turbulence (a

reduction in the initial energy required). As the target time is increased, the result-

ing nonmodal perturbation contains an increasingly greater fraction of energy in the

leading modal instability at the target time. Growth is effectively maximized at large

times by compromising between an initial spurt of linear growth, and transferring a

large fraction of energy to the slowest decaying eigenmode. Thus, the initial condition

converges toward the perturbation optimally energizing the leading eigenmode, i.e. the

leading adjoint mode, which does not generate the maximum possible transient growth,

but most efficiently triggers turbulence.

The second factor regards the theories proposed by Stuart and Landau (Landau

1944; Stuart 1958; Drazin & Reid 2004) on subcritical bifurcations. Recalling the dis-

cussion of Chapter 3, § 3.5, when performing an amplitude expansion about the leading

modal instability, for a given Re, a critical amplitude exists. Above the critical am-

plitude, the decay of the leading eigenmode is offset by the nonlinear growth of its

harmonic, with excess growth to spare. This slow growth (nonlinear minus linear) is

predicted to eventually excite additional harmonics, and incite a transition to turbu-

lence. This theory will match most of the following results well. When the nonmodal

instability maximizing linear growth is targeted, the leading eigenmode is not well en-

ergized, and does not generate the necessary additional harmonic to offset its decay.

However, the nonmodal instability minimizing linear decay (optimally energizing the

leading eigenmode), can go on, through weakly nonlinear interaction, to generate the

harmonic required to offset its decay. If the initial energy (multiplied by some linear

growth) exceeds the critical amplitude, the system should transition to turbulence, and

more importantly, sustain said turbulence. It is also interesting to note that the dy-

namical systems viewpoint of the edge state and edge trajectory, recalling Chapter 3,

§ 3.4, also parallels this discussion. The edge trajectory represents being exactly at the

critical amplitude, while energization to slightly above the critical amplitude represents

an initial condition with trajectory beginning within the turbulent basin. The edge
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state, or saddle point, from which the edge trajectory turns toward turbulence, is then

the superposition of the linear eigenmode and its weakly nonlinear interactions.

Although it is pleasing that much of the following work will fit with previous theories

and interpretations, some complications remain. The first is that growth from the edge

state toward turbulence appears to be superexponential, which does not match the

slow growth of a subcritical bifurcation. A possible explanation is that the Stuart–

Landau theory (Landau 1944; Stuart 1958; Drazin & Reid 2004) may not appropriately

account for the weakly nonlinear interaction of the leading eigenmode and its complex

conjugate. Admittedly, a simultaneous coupling of the leading eigenmode modulating

the base flow, and a corresponding adjustment to the exponential growth rate by the

modulation, was mentioned by Stuart (1958), but not explicitly considered as it is in

this chapter. Importantly, this base flow modulation can be fed more and more energy

by the lower harmonics (negative production from harmonics to the modulation), the

longer the trajectory remains near the edge. Eventually, the modulated base flow

may become supercritical, which would explain the superexponential growth. Such

supercritical modulations have been theorized, in the minimal defect theory discussed

in Chapter 3, § 3.5. However, production to the minimal defects is unaccounted for in

said theories, and could introduce significant inefficiencies to transitions via the minimal

defect. These inefficiencies are not present in the modified Stuart–Landau theory, as the

weakly nonlinear modulation (suboptimally) improves the growth rate of the leading

eigenmode, but maintains direct feedback from the leading eigenmode, via negative

production, to the modulation. Note that if properly accounting for the base flow

modulation, the perturbation aspect ratio to target would be the leading eigenmode

minimizing decay on the modulated, rather than the unmodulated, base flow (which

may yield a lower critical amplitude and more efficient route to turbulence).

The second complication regards the intermittent behavior of the sustained turbu-

lence. Although introduced for hydrodynamic pipe flows in Chapter 3, § 3.6, turbulent

intermittency, as measured by a turbulent fraction, exhibited a superexponential de-

pendence on Re. However, considering the simulations in both this chapter, and in

Chapter 6 (Camobreco et al. 2021b), intermittency is observed over 0.9 < rc < 1.1 at

the very least. Compared to Avila et al. (2011), this is quite a large range of Reynolds

numbers over which extreme relaminarization events are observed (although domain

length effects cannot be ruled out).
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Figure 7.1: State space representation of turbulent transitions, based on domain integrated

streamwise and wall-normal perturbation velocities. Random noise initial conditions at the

maximal wave number for exponential growth of a modal instability at rc = 1.1, for various

H (one case at H = 10 slowly dropped to rc = 0.9 post transition). At H = 10, intermittent

turbulence was sustained, subcritically and supercritically.

7.2 State space representation of sustained turbulence

Before proceeding with this chapter, some initial evidence that turbulence can be in-

definitely sustained at subcritical Re is provided in Fig. 7.1. Note that the data sets at

supercritical Re presented in Fig. 7.1, which target modal instabilities, are the same as

those in Chapter 6 (Camobreco et al. 2021b), except with some cases having extended

time histories, and with the inclusion of a single case at H = 10 with the Reynolds

number dropped to rc = 0.9. Recall that at H ≥ 30, weakly supercritical Reynolds

numbers transitioned to turbulence, but were unable to sustain turbulence, while at

H ≤ 3, turbulence was either not sustained or not triggered at all (as shown in Ap-

pendix C, this was due to the magnitude of Re). However, at H = 10, turbulence was

both triggered and indefinitely sustained, excluding multiple brief attempts at relam-

inarization, both at rc = 1.1, and at rc = 0.9, after having incrementally reduced rc

from 1.1 to 0.9. Thus, H = 10 forms the focus of this chapter.

This chapter proceeds as follows. After introducing the problem setup, § 7.3, the

common ‘edge tracking’ approach (Pringle et al. 2012; Kerswell et al. 2014; Duguet

174



et al. 2013; Zammert & Eckhardt 2019; Farano et al. 2016; Duguet et al. 2012; Cherubini

et al. 2011; Beneitez et al. 2019; Duguet et al. 2009; Vavaliaris et al. 2020; Khapko et al.

2014; Cherubini et al. 2015; Budanur et al. 2020) is employed to identify the edge state,

based on nonmodal instabilities targeting domains with lengths based on either the

optimal nonmodal growth (case 0) or minimal modal decay (case 1), in § 7.4. For each

case, the asymptotic edge state(s) on the laminar-turbulent basin boundary (or edge

manifold), and the delineation energy, representing the energy of an initial condition

just past the edge manifold, are determined. Only the lower branch (or separatrix) is

investigated in this chapter. Although the upper edge can also be identified, its basis

is in chaotic distortion of the initial condition (Budanur et al. 2020), and is of less

interest in efficiently triggering turbulence. The laminar and turbulent Fourier spectra

for these cases (cases 0 and 1) are investigated, and the ability to sustain turbulence

compared. The composition of the edge state, derived from the minimal modal decay

scenario (case 1), is scrutinized, and compared to the weakly nonlinear interactions

of the leading eigenmode in § 7.5. Variations in the target time for optimization are

considered in § 7.6, with significant ramifications on the delineation energy, and further

extended over a broader range of Reynolds numbers. Nonlinear optimals are shown

to be effectively identical to their linear counterparts, over this larger range of target

times, for the initial energies of interest, in § 7.7. Overall conclusions are provided in

§ 7.8.

7.3 Problem formulation

A streamwise invariant duct flow with streamwise periodic x-direction (wave number

α), wall-normal height 2L (y-direction) and out-of-plane width a (z-direction), is inves-

tigated. Only the x-y (perpendicular) plane of the duct is shown in Fig. 7.2, as Q2D

approximations of the z-averaged 3D solution are of interest. Flow is driven by the

synchronous motion of the lateral walls at constant velocity U0.

With length, velocity, time and pressure non-dimensionalized by L, U0, L/U0 and

ρU2
0 , respectively, the Q2D equivalent of the Navier–Stokes equations become

∇⊥ · u⊥ = 0, (7.1)

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ = −∇⊥p⊥ +
1

Re
∇2

⊥u⊥ − H

Re
u⊥, (7.2)
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ǔ⊥ = U0, v̌⊥ = 0, û⊥ = 0

ǔ⊥ = U0, v̌⊥ = 0, û⊥ = 0

y

xz 2L

2π/α

H = 1000

H = 10−2

Figure 7.2: A schematic representation of the system. Dimensional variables are indicated

as, e.g. ǔ⊥. Solid lines denote lateral walls moving with constant dimensional velocity U0.

Short dashed lines represent the streamwise extent of the periodic domain, with wave number

α. Examples of the laminar base flow velocity profile are plotted for H of (left to right) 1000,

300, 100, 30, 10 (red), 3, 1, 10−2. Flow is in the positive x direction.

where u⊥ = (u⊥, v⊥) and ∇⊥ = (∂x, ∂y), with non-dimensional boundary condi-

tions of u⊥(y = ±1) = (1, 0). The only difference between the Q2D and 2D Navier–

Stokes equations is the linear friction term −Hu⊥/Re that models the effect of shear

stresses acting at the out-of-plane duct walls. Although this term breaks the natural

Galilean invariance of the 2D Navier–Stokes equations, it also permits exact conver-

sion between wall-driven and pressure-driven flow dynamics for non-zero H, as shown

in Chapter 8 (Camobreco et al. 2021a). The governing non-dimensional parameters,

H = 2(L2/a)B0(σ/ρν)
1/2 and Re = U0L/ν, have been previously introduced.

Perturbations are defined as

û⊥ = u⊥ −U⊥, p̂⊥ = p⊥, (7.3)

to place focus on the deviation between the instantaneous flow (u⊥, p⊥) and the laminar

fixed point U⊥. In this chapter, the fixed point is the streamwise independent, time

steady, parallel base flow U⊥(y) = (U⊥, 0), where U⊥(y) = cosh(H1/2y)/ cosh(H1/2).

H = 10 is of particular interest to this work, with this base flow highlighted in Fig. 7.2.
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7.4 Edge tracking

7.4.1 Formulation

The edge tracking process has three components. First, the initial condition maximizing

linear transient growth is computed. Second, the initial condition is rescaled to a

specified finite energy, and seeded onto the laminar base flow for full DNS. Third, the

initial condition is classified as either remaining laminar, or reaching the turbulent

attractor, and the second component is iterated towards the initial energy required to

just reach the turbulent attractor. Further details for these three components follow.

First, the initial condition maximizing growth in the functional G = ||û⊥(t =

τ)||/||û⊥(t = 0)|| is sought, for a prescribed target time τ , and wave number α. G

represents the gain in perturbation kinetic energy under the norm ||û⊥|| =
∫
û⊥ ·û⊥ dΩ

(Barkley et al. 2008), over computational domain Ω. The initial condition is computed

with two independent solvers; the MATLAB solver is detailed here. For the primitive

variable solver, see Chapter 5 (Camobreco et al. 2020).

The perturbation definitions, Eq. (7.3), are substituted into Eqs. (7.1) and (7.2),

and all terms linear in the perturbation are isolated. Taking twice the curl of the

result, applying the divergence free constraint on the perturbation, and assuming plane

wave solutions with streamwise variation exp(iαx), provides the linearized perturbation

evolution equation

∂v̂⊥
∂t

= A−1

[
−iαU⊥A+ iαU ′′

⊥ +
1

Re
A2 − H

Re
A

]
v̂⊥, (7.4)

where A = D2 − α2, and D represents ∂y. The adjoint evolution equation

∂ξ̂⊥
∂t

= A−1

[
iαU⊥A+ 2iαU ′

⊥D +
1

Re
A2 − H

Re
A

]
ξ̂⊥, (7.5)

is derived from Eq. (7.4) based on the definition of the adjoint velocity perturbation

ξ̂⊥ introduced in Schmid & Henningson (2001). The domain y ∈ [−1, 1] is discretized

with Nc+1 Chebyshev nodes (Trefethen 2000; Weideman & Reddy 2001), and D (and

higher orders) approximated with derivative matrices incorporating boundary condi-

tions (Trefethen 2000). A third-order forward Adams–Bashforth scheme (Hairer et al.

1993) integrates Eq. (7.4) from t = 0 to t = τ , and with ‘initial’ condition ξ̂⊥(τ) = v̂⊥(τ),

integrates Eq. (7.5) from t = τ back to t = 0. After normalizing to ||v̂⊥(0)|| = 1 the

next iteration proceeds. Boundary conditions are v̂⊥ = Dv̂⊥ = ξ̂⊥ = Dξ̂⊥ = 0 at all

walls. The j’th eigenvalue λG,j of the operator representing the sequential action of
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direct and adjoint evolution is determined with a Krylov subspace scheme (Barkley

et al. 2008; Blackburn et al. 2008). With eigenvalues sorted in ascending order by

largest real component, the optimized growth G = λG,1 with corresponding eigenvector

ṽ⊥,G(t = 0). The iterative scheme is initialized with random noise.

Second, the initial condition is seeded onto the base flow u⊥(t = 0) = U⊥ + û⊥,G,

where û⊥,G = χRe[(i∂yṽ⊥,G/α, ṽ⊥,G) exp(iαx)], and where χ allows the initial perturba-

tion energy, quoted as E0(t = 0) =
∫
û2
⊥,G(t = 0)dΩ/

∫
U2
⊥dΩ, to be varied. Nonlinear

evolution of û⊥ commences, via Eqs. (7.1) and (7.2), using a primitive variable spectral

element solver (linear optimals were recomputed in the primitive variable solver, see

Table 7.1). The time integration scheme is third order backward differencing, with op-

erator splitting, while high-order Neumann pressure boundary conditions are imposed

on the lateral walls to maintain third order time accuracy (Karniadakis et al. 1991).

The x-y plane is discretized with quadrilateral elements, within which Gauss–Legendre–

Lobatto nodes (polynomial order Np) are distributed. The mesh design is based on the

resolution testing contained in Chapters 5 (Camobreco et al. 2020) and 6 (Camobreco

et al. 2021b). 12 spectral elements are equispaced in the streamwise direction, and 48 in

the wall-normal direction (the latter are geometrically biased toward both lateral walls,

with bias ratio 0.7). A polynomial order of Np = 13 was sufficient for recomputing

linear optimals, increased to Np = 19 for nonlinear evolution, as these results agreed

well with further validation in this setup at Np = 23 (not shown). The timestep of

∆t = 1.25 × 10−3, as in Chapters 5 (Camobreco et al. 2020) and 6 (Camobreco et al.

2021b), was also employed (although a greatly reduced ∆t is required once turbulence

is triggered).

Third, the initial condition is either classified as reaching the turbulent attractor, or

remaining laminar. E0 is adjusted downward or upward as appropriate, and the second

and third steps are repeated until an accuracy of 4 significant figures is reached in the

lower delineation energy ED. Note that 4 significant accuracy is maintained by simula-

tions with either half the time step size, or double the streamwise resolution. However,

additional accuracy in ED cannot be guaranteed unless temporal and streamwise res-

olutions are increased. In addition, a higher accuracy in ED requires that trajectories

remain in the vicinity of the edge for increasingly large times, and thus noticeably

increases the computational expense.

Depending on the choice of α and Re, two definitions are considered for this edge
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Case MATLAB Linear primitive |% Error| Nonlinear primitive |% Error|
0 97.55253053 97.55254271 1.25× 10−5 97.55170092 8.50× 10−4

1 78.14835970 78.14836801 1.06× 10−5 78.14805012 3.96× 10−4

2 91.63907657 91.63914267 7.21× 10−5 91.63846567 6.67× 10−4

Table 7.1: Validation of the transient growth G(τ) achievable for various cases (differing α,

τ) at rc = 0.9. The MATLAB solver had Nc = 80 Chebyshev points, timestep ∆t = 4× 10−5

and 20 forward-backward iterations. The discretization for the linear transient growth solver

is detailed in the text, with ∆t = 1.25× 10−3, and a convergence tolerance of 10−7 between

iterations. The nonlinear transient growth computations (details in § 7.7) had identical

degrees of freedom, timestep and tolerance. However, the non-zero initial energy (E0 = 10−8)

induces a finite ‘error’ when comparing linear and nonlinear cases. Percent errors are relative

to MATLAB results.

tracking process. If the turbulent state is sustained, and if the edge state is able to

maintain a near constant energy for an arbitrarily long time (as E0 → ED), the classical

definition (Duguet et al. 2009; Beneitez et al. 2019; Vavaliaris et al. 2020), as introduced

in Chapter 3, § 3.4, suffices. Two energy bounds, one above and one below the edge

state energy are specified. If an initial condition crosses the upper bounding energy

(from below), it is considered to reach the turbulent attractor, while if it crosses the

lower bounding energy (from above) it is considered to remain laminar. However, if the

delineating energy does not yield a clear edge state, the alternate definition introduced

in Chapter 5 (Camobreco et al. 2020) is adopted. In such cases, if the energy time

history attains a secondary local maximum after the initial linear transient growth,

the initial condition is considered to remain laminar. Instead, if there is a secondary

inflection point after the linear transient growth, the initial condition is classed as

reaching the turbulent attractor.

To support the classification of initial conditions realizing turbulence, energy spec-

tra are computed at select instants in time, as the discretized streamwise direction is

periodic. Fourier coefficients cκ = |(1/Nf)
∑n=Nf−1

n=0 [û2⊥(xn) + v̂2⊥(xn)]e
−2πiκn/Nf | were

computed with the discrete Fourier transform in MATLAB, where xn represents the

n’th x-location linearly spaced between x0 = 0 and xNf
= 2π/α. A mean Fourier co-

efficient c̄κ is obtained by averaging the coefficients obtained at 21 y-values. Although

Nf = 10000 was chosen, only the first 70 to 80 Fourier modes are well resolved by the

streamwise discretization.

Three types of initial condition are investigated, to determine the conditions nec-

essary to sustain turbulence. Different initial conditions are obtained by varying the
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domain length (via α) and the target time to achieve optimal growth. The first type,

hereafter case 0, simulates conventional linear transient growth optimals, with both α

and τ optimized to yield the largest growth over all initial conditions, wave numbers

and target times. The second, case 1, has the wave number set to that achieving min-

imal decay rate of the leading modal instability (henceforth αmax) at the chosen Re,

with τ optimized for maximal growth at this fixed wave number. The third, case 2,

again sets the wave number to αmax, but is time optimized at α = 2αmax, so that the

optimal initial condition has two repetitions within the full αmax based domain. Thus,

case 2 initially has an effective wave number closer to αopt, but if a period doubling

occurs, will have an effective wave number of αmax. All results until § 7.6 are at a

critical Reynolds number ratio rc = Re/Rec = 0.9, where Rec = 79123.2 at H = 10,

recalling Chapter 6 (Camobreco et al. 2021b), as rc = 0.9 has been shown to sustain

turbulence that was generated from a supercritically evolved modal instability. For

reference, at rc = 0.9, αopt = 1.49 and αmax = 0.979651 (all modal instability results

are computed with the MATLAB solver). Validation for this setup is provided in Table

7.1; the agreement is excellent.

7.4.2 Results

With the linear optimals computed, edge tracking is performed for the three cases

previously discussed; see Table 7.2 for the key results. Of particular interest is the

delineation energy ED. Examples of how ED was defined are shown in the left column of

Fig. 7.3. Case 2 exhibits the largest ED, and so is furthest from the turbulent attractor,

and of least interest. Case 2 represents a compromise between maintaining the largest

linear transient growth while still having access to αmax, via period doubling. Although

period doubling was often observed in an isolated exponential boundary layer, recalling

Chapter 5 (Camobreco et al. 2020), it was prohibited by the extra constriction from the

upper wall in a full duct flow; Fig. 7.3(c), right column, indirectly implies that period

doubling did not occur. Case 0 focused solely on maximizing linear transient growth,

in the hope that this would yield the lowest ED. Compared to case 2, case 0 generated

approximately 6% more linear transient growth, yet reduced ED by a factor of more

than one half. However, the maximal linear transient growth still does not yield the

lowest ED. This, in itself, may imply that searching for the most explosively growing

initial conditions is not optimal when attempting to trigger transitions to turbulence.
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Case α τ G/Gmax ED

2 0.979651 (αmax) 19.4 0.939 2.547× 10−4

0 1.49 (αopt) 23.4 1 6.347× 10−5

1 0.979651 (αmax) 31.0 0.801 3.0577× 10−6

Table 7.2: Key results for the three cases investigated. Case 1 yields the smallest ED, in

spite of the smallest linear transient growth, by energizing the leading modal instability.

Since in Q2D flows Gmax is typically 100 times lower than in 3D flows, this may indicate

that linear transient growth is less relevant to Q2D transitions to turbulence. Case 1

simultaneously generated the least linear transient growth and yielded the lowest ED

(for all the α and τ considered thus far at rc = 0.9), with ED over 20 times smaller than

for case 0. Case 1 selected the wave number minimizing the decay rate of the leading

modal instability. As the modal instability is important in nonmodal analysis (Reddy

& Henningson 1993; Reddy et al. 1993), after the initial linear transient growth, the

optimal adjusts, so as to contain most of its energy to the leading eigenmode. This

minimizes its decay rate, and keeps G large for larger τ (Trefethen et al. 1993). Hence,

targeting the leading eigenmode (by selecting αmax) may be more important than solely

optimising G. Overall, as τ has increased, ED has decreased, which is investigated

further in § 7.6.

Returning to how the delineation energy is computed (the left column of Figure 7.3),

as measured in the perturbation energy E =
∫
û2
⊥,GdΩ, it is interesting to note that

the cases (0 and 2) not relying on the modal instability can only define ED based on the

local maximum criteria introduced in Chapter 5 (Camobreco et al. 2020). However, case

1, which yields the lowest ED, and directly targets the modal instability, satisfies both

the local maximum criterion (although unable to be observed at the scale of the plot),

and the more conventional constant energy criterion usually used to define edge states

(Duguet et al. 2009; Beneitez et al. 2019; Vavaliaris et al. 2020). It is also interesting to

note, by considering the Fourier spectra at select instants in time in the right column of

Fig. 7.3, that while cases 0 and 2 are unable to sustain turbulence, case 1 can. Further

numerical evidence of this is provided in Appendix A.

Turbulence is identified with two key measures, the number of energized modes

(Grossmann 2000), and the formation of an inertial subrange, identified by a (y-

averaged) perturbation energy spectrum c̄κ with (−5/3) power law dependence (Pope

2000). Considering the Fourier spectra of Fig. 7.3(b), as it focuses on the initial tran-
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(a) Case 0; α = αopt, τ = τopt (unconstrained α)

E c̄ κ

(b) Case 1; α = αmax, τ = τopt (at α = αmax)

E c̄ κ

(c) Case 2; α = αmax, τ = τopt (at α = 2αmax)

E c̄ κ

t κ

Figure 7.3: Nonlinear evolution of linear optimals at rc = 0.9, for the three cases (do-

main/initial condition combinations) of interest. Left column: determination of delineation

energy. Right column: Fourier spectra at select instants in time (see legends) to indicate

whether a flow (with E0 > ED) sustains turbulence. Dashed black lines denote κ−5/3 trends;

dash-dotted black lines denote exp(−3κ/2) trends.
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sition, while on the edge state (1.92 × 103 < t < 9.23 × 103), only 10-15 modes have

non-floor energy levels. Upon departing the edge state there is a steady increase in

the number of energized modes, with 30 or so energized by t = 1.008 × 104. Once a

turbulent state is achieved around t = 1.100×104, all resolvable modes are appreciably

energized. Furthermore, for t ≥ 1.100× 104, even without a time average, results from

instantaneous velocity fields for case 1 scale with κ−5/3 quite well. However, for cases 0

and 2, the κ−5/3 scaling is not maintained. In the case 0 example, Fig. 7.3(a), recorded

times 1.87× 103 ≲ t ≲ 2.38× 103 fit such a trend, indicating that turbulence was trig-

gered. However, at later times, the energy in each mode decays. At even larger times,

only the base flow modulation (κ = 0) has appreciable energy, although it too slowly

decays. Similarly, case 2 unsustainably triggers turbulence, with relaminarization and

rapid decay of all but the zeroth (slowly decaying) mode. Overall, case 1, being both

at αmax and targeting an instability that energized the leading eigenmode (large τ),

was the only combination able to sustain turbulence. Thus, it is likely that to sustain

turbulence, the modal instability must be significantly energized, and sufficient domain

length must be afforded. Whether the modal instability has a positive or negative

growth rate on the nonlinearly modulated base flow is investigated in § 7.5. However,

for a 3D flow, Lozano-Durán et al. (2021) have shown that turbulence can be sustained,

if, after transition occurs, all modal instabilities decay (by artificially introducing lin-

ear friction to ensure all growing modes instead decay). It is also remarkable to note

that the turbulence observed in case 1 is temporally intermittent. The flow returns on

a relaminarization path multiple times, as was previously observed supercritically at

H = 10 in Chapter 6 (Camobreco et al. 2021b) and highlighted in the state space rep-

resentation in § 7.2. However, even when relaminarization is achieved, the turbulence

consistently reappears. For 3D flows, Hof et al. (2006) and Avila & Hof (2013) have

shown that turbulence remains intermittent at any finite Re, even in domains hundreds

to thousands of times the duct (or pipe) height. However, the characteristic turbulent

length scale varies superexponentially with Re, so extreme relaminarization events, or

laminar islands (Avila & Hof 2013), become exceedingly rare even at relatively mod-

erate Re. Although domain length effects cannot be ruled out, the ability to observe

extreme relaminarization events at large Re (also see Appendix F) may plausibly be

explained by the stabilizing effects of the friction term.

While either on the edge state and before a turbulent transition, for case 1, or after
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y

x

Figure 7.4: Streamwise high-pass filtered snapshot of 10−4 < |ω̂z,|κ|≥10| < 10 shortly after

the transition to turbulence, at t = 1.1× 104, rc = 0.9, case 1.

the turbulent state relaminarizes, for case 0 in particular, the energy contained in each

Fourier mode scales exponentially with wave number. This is highlighted in Fig. 7.3(b),

where for 1.92 × 103 < t < 7.48 × 103, the energy contained in each mode varies as

exp(−3κ/2) for the case 1 edge state. The κ coefficient (with magnitude less than 3/2

for t < 6.48×103) is time dependent as the flow relaminarizes for case 0, Fig. 7.3(a), but

the energy variation is still approximately exponential. Note that exponential trends

implicitly define a key length scale, while power law trends are scale-independent.

To conclude this section, and to give some idea of the appearance of Q2D turbulence,

a snapshot of the turbulent state is provided in Fig. 7.4. This is only made possible by

applying a high-pass filter, to exclude the most energetic (low wave number) streamwise

Fourier modes.

7.5 Edge state

7.5.1 Formulation

Henceforth, only case 1 is investigated, as it yielded the lowest ED, and transitions from

the edge state developed into sustained turbulence. In this section the edge state, a

travelling wave, is scrutinized. Analysis of the initial conditions that generate the edge

state can be found in §§ 7.6 and 7.7. To verify the importance of the leading modal

instability in generating the edge state, DNS results along the edge are decomposed into

Fourier modes, by isolating each wave number. The κ = 1 mode extracted from DNS

is directly compared to the linearly computed modal instability. Further comparisons

are made by assuming that if the edge state is evolved for large times, but still well
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before transition, the leading eigenmode has sufficient time to self-interact (supported

by the energy being predominantly contained in the leading few modes). The weakly

nonlinear interaction of the leading eigenmode with itself is compared to the κ = 2 mode

extracted from DNS, and the weakly nonlinear interaction of the leading eigenmode

with its complex conjugate to the κ = 0 mode extracted from DNS. Recall from Fig.

7.3(b) that the energy of the edge state is about four orders of magnitude below the

magnitudes at which turbulence is observed, supporting the validity of weakly nonlinear

analysis.

To perform weakly nonlinear analysis, the amplitude dependence of the plane-wave

mode v̂⊥,n(y) = v̂⊥(y)e
iαnx is expanded as

v̂⊥,n =

∞∑
m=0

ϵ|n|+2mÃ|n||Ã|2mv̂⊥,n,|n|+2m, (7.6)

where v̂⊥,n,|n|+2m denotes a perturbation (n is the harmonic, |n|+2m the amplitude), in

line with Hagan & Priede (2013b), and Ã = A/ϵ is the normalized amplitude. Nonlinear

interaction between the linear mode v̂⊥,1,1 and itself excites a second harmonic v̂⊥,2,2.

Nonlinear interaction between the linear mode v̂⊥,1,1 and its complex conjugate v̂⊥,−1,1

generates a modification to the base flow û⊥,0,2 (Hagan & Priede 2013b). The equations

necessary to compute û⊥,0,2, v̂⊥,1,1 and v̂⊥,2,2, are detailed in Chapter 6 (Camobreco

et al. 2021b), which also provides the details to compute higher harmonics.

The linear (v̂⊥,1,1) and weakly nonlinear (û⊥,0,2, v̂⊥,2,2) results are compared to

Fourier components from DNS of the edge state. Fourier components were obtained by

projecting the Np = 19 DNS results to Np = 50, and computing the Fourier coefficients,

cκ = |(1/Nf)
∑n=Nf−1

n=0 f̂(xn)e
−2πiκn/Nf |, along 4000 y-slices, each withNf = 1000, where

f̂ is the variable of interest, e.g. v̂⊥. All except the j’th (and Nf − j’th) Fourier

coefficients were set to zero cκ,¬j = 0, and the inverse discrete Fourier transform f̂|κ|=j =∑κ=Nf−1
κ=0 cκ,je

2πiκn/Nf computed, isolating the j’th mode in the physical domain.

7.5.2 Results

The edge state generated by a nonlinearly evolved linear transient growth optimal with

E0 = 3.5077 × 10−6 > ED is analysed for case 1 here. First, snapshots from the fully

nonlinear DNS are provided in Fig. 7.5 at t = 7.38× 103. The edge state is a travelling

wave taking the form of a nonlinearly modulated Tollmien–Schlichting (TS) wave. A

slight negative slant appears in the negative velocity half-wave, and a slight positive
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(a) −1.778× 10−3 < v̂⊥ < 1.778× 10−3 (b) −9.433× 10−3 < û⊥ < 9.433× 10−3

y

(c) −1.781× 10−3 < v̂|κ|=1,⊥ < 1.781× 10−3 (d) −1.340× 10−4 < v̂|κ|=2,⊥ < 1.340× 10−4

y

x x

Figure 7.5: Snapshots of the DNS velocity field, a travelling wave, representing the edge

state (at t = 7.48 × 103). (a-b) All Fourier modes. (c) Only the κ = 1 mode, the TS

wave modal instability. (d) Only the κ = 2 mode, which leads to the slanting of the TS

wave observed in (a). Solid lines (red flooding) denote positive velocities, dotted lines (blue

flooding) negative.

slant to the positive velocity half-wave in Fig. 7.5(a). Otherwise the resemblance to

the TS wave is remarkable. To highlight the similarity, Fig. 7.5(c) depicts the κ = 1

Fourier component of the DNS, which is observed to be an unmodulated TS wave.

The κ = 2 mode, Fig. 7.5(d), is predominantly responsible for the modulation of the

full TS wave, as the positive and negative velocity regions reinforce the κ = 1 mode

in the appropriate locations for the negative-positive slant indicated. Note that at

t = 7.38× 103, the cumulated energy up to modes of κ = 0, 1 and 2 contribute 43.0%,

56.3% and 93.7% of the total energy of the full DNS result, respectively; and > 99.9%

once six modes are included (or thirteen if counting conjugates separately). Note that

the κ = 1 mode contributes relatively little to the energy sum (13.3%) as its streamwise

velocity contribution is small. This is not shown, although the magnitude of û⊥ can

be inferred from wall-normal gradients in v̂⊥. The κ = 0 and κ = 2 modes have much

larger streamwise velocity contributions, particularly for κ = 0, and thus contain much

greater energy overall. The percentage contributions vary little at all times for which

the edge state is maintained, and thus, only the first three modes are considered. The

energy in the leading three modes (κ = 0 through 2) drops to around 60% of the total

once turbulence is triggered.

To assess the role of the leading modal instability, and further scrutinize the edge

state, x = cons. slices of the κ = 0, 1 and 2 DNS Fourier components are compared to
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v̂⊥,|κ|=1, v̂⊥,1,1 v̂⊥,|κ|=2, v̂⊥,2,2

(c)
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(d)
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û⊥,κ=0, û⊥,0,2 t

Figure 7.6: Linear (v̂⊥,1,1) and weakly nonlinear (v̂⊥,2,2 and û⊥,0,2) perturbations (dashed

black lines) compared to the corresponding Fourier components from DNS at different times

(solid colored lines; see legends). The trajectory remains in the neighborhood of the edge for

1.92× 103 ≲ t ≲ 7.48× 103, while t = 10.08× 103 is just after departing the edge state. (a)

κ = 1, wall-normal velocity. (b) κ = 2, wall-normal velocity. (c) κ = 0, streamwise velocity.

(d) Absolute value of the growth rate of the leading modal instability on the modulated

streamwise invariant base flow, once the edge state is attained (the dot-dashed line represents

the corresponding absolute decay rate for the reference base flow).

the linear and weakly nonlinear results in Fig. 7.6(a-c). Note that all comparisons are

normalized to unit maximum to avoid any phase differences (after isolating individual

Fourier components, the DNS results are at x = 0). The absolute values of the complex

perturbations v̂⊥,1,1 and v̂⊥,2,2 are also normalized to unity, with the sign adjusted

where appropriate. Figure 7.6(a) further supports the agreement between the κ = 1

DNS component and the leading modal instability at all times on the edge state (as

shown for extractions from t = 1.92 × 103 to t = 7.48 × 103). The importance of
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the modal instability is also highlighted in Fig. 7.6(b), as the κ = 2 DNS component

again almost exactly matches the weakly nonlinear interaction of the linear eigenmode

with itself, at all times on the edge state. The only slight differences between weakly

nonlinear and full DNS results are observed in Fig. 7.6(c), which depicts the streamwise

invariant base flow modulations on the edge state (compared to the interaction of

the linear eigenmode and its complex conjugate). Although the differences are quite

large at early times on the edge state (t = 1.92 × 103), the longer the edge state

is maintained, the closer the extractions come to the weakly nonlinear result, with

little difference by t = 7.48 × 103. Thereafter, the edge state is departed toward the

turbulent attractor. If ED were computed to higher accuracy (6+ significant figures),

the edge state could be maintained for longer times, and the collapse of the full DNS

result to the profile predicted by the weakly nonlinear analysis improved. Between

t = 7.48× 103 and t = 8.48× 103, there is almost no visible change in the modulation

(they appear coincident as plotted). Extractions at t ≥ 9.48×103 show the modulation

clearly departing the weakly nonlinear result, particularly with large jets of negative

velocity forming near the walls. However, the κ = 1 and κ = 2 profiles are slower

to adjust, and are yet to show meaningful changes by t = 10.08 × 103. Overall, as

the first three modes contain 93.8% of the total energy, the modal instability, and

its weakly nonlinear interactions, provide a comprehensive picture of the edge state

and its behavior. Although the edge bears some clear resemblances to the modal TS

wave, there is still a significant adjustment that either linear or nonlinear mechanisms

must provide for an initial condition to be able to evolve to the edge state (if it would

otherwise evolve into a modal TS wave).

As the streamwise base flow modulation is most sensitive to the initial departure

from the edge state (toward the turbulent attractor), its linear stability is further

investigated, as shown in Fig. 7.6(d). The reference base flow is modulated by the

κ = 0 Fourier component from the full DNS, as U⊥,mod = U⊥ + û⊥,κ=0, and the

linear eigenvalue problem, solved in exactly the same manner as when the base flow

was unmodulated (replacing U⊥ by U⊥,mod). Note that the linear growth predictions

treat û⊥,κ=0 as time steady for each extraction. Although this is not the case, varia-

tions are minor while on the edge state, and particularly around t = 7.48 × 103. The

absolute value of the growth rates are plotted in Fig. 7.6(d), with the growth rate

rescaled as Re(λ1/Re) to the more conventional form (Schmid & Henningson 2001).
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While on the edge state, the decay rate of the leading eigenmode is roughly constant,

around Re(λ1/Re) = −2.5 × 10−4, compared to Re(λ1/Re) = −5.94084 × 10−4 for

the unmodulated base flow. The magnitude of the decay rate rapidly decreases for

7.48 × 103 ≲ t ≲ 9.43 × 103, before growth of the leading instability is first attained

at t = 9.48 × 103. Up until t = 1.023 × 104 the growth rate of the leading instability

monotonically increases, before a turbulent state is achieved.

7.6 Reynolds number and target time variation

7.6.1 Formulation

The methodologies used in this section are identical to those introduced in § 7.4.1. All

setups are case 1, with results at subcritical Reynolds number ratios rc = 0.3, 0.4 and

0.6 compared to those at rc = 0.9. Additional supporting computations at rc = 0.7

and 0.8 are included in Appendix G. The nonlinear behavior of the linear optimals

maximizing growth at larger target times is also investigated. Ratios of the target time

to the optimal target time T = τ/τopt up to 8 are simulated, where τopt corresponds to

the time for optimal growth constrained by α = αmax (αmax varying with rc).

The initial condition most efficiently energizing the leading eigenmode of the forward

linear evolution operator is also of interest. The leading adjoint mode is the initial

condition with the largest projection onto the (slowest decaying) leading forward mode

as T → ∞, as discussed in Chapter 3, § 3.3. Although the leading forward mode decays

equally as slowly as the leading adjoint mode as t→ ∞, the leading adjoint mode also

generates some linear transient growth (which the leading forward mode is incapable

of), thus yielding the largest energization in the limit of large times.

The leading adjoint mode, in the energy norm, can be computed directly from (a

large, but truncated set of) the eigenvectors of the forward linear evolution operator,

as shown in Farrell (1988). However, it is more accurate to determine the leading

adjoint mode ξ̃⊥,1 directly from Eq. (7.5), which was derived in the energy norm,

either directly by timestepping, or by calling eigs(−iL‡) in MATLAB, where L‡ is the

linear adjoint evolution operator. This assumes exp(+iλ‡jt) time dependence, with the

adjoint eigenvalues λ‡j to be sorted in ascending order. As the leading adjoint mode

most efficiently energizes the leading forward mode (as t→ ∞), it is a prime candidate

for efficiently generating turbulence through weakly nonlinear routes.

For clarity, the initial condition nonlinearly evolved from in DNS is always the
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rc = 0.3 rc = 0.4 rc = 0.6 rc = 0.9
T EG/G 103ED EG/G 104ED EG/G 105ED EG/G 106ED

1 1 2.630 1 3.142 1 4.328 1 3.058
2 0.3700 1.535 0.3653 2.970 0.3940 3.382 0.4127 1.954
3 0.5463 0.7984 0.5532 1.792 0.5518 2.351 0.5461 1.495
4 0.5799 0.7453 0.5726 1.727 0.5618 2.304 0.5520 1.475
6 0.5857 0.7379 0.5759 1.718 0.5635 2.298 0.5530 1.473
8 − − 0.5761 1.717 0.5636 2.297 0.5530 1.473

Table 7.3: Convergence to a minimum overall ED with increasing T for each rc. This is

in spite of the reduced linear transient growth, where EG = max[E(t ≤ Tτopt)]/E(t = 0)

represents the maximum growth at any t ≤ Tτopt, relative to G(1τopt). Note that rc = 0.3

has G(8τopt) < 1, and so does not provide an equivalent converging optimal in the primitive

variable solver. ED is computed to 4 significant figures.

nonmodal perturbation optimising linear transient growth at the target time τ , and is

never the initial condition ξ̃⊥,1 optimally energizing the leading eigenmode; the use of

ξ̃⊥,1 directly is left for future work.

7.6.2 Results

The growth ratios and delineation energies for rc from 0.3 to 0.9 and T = τ/τopt from

1 to 8 are provided in Table 7.3. The delineation energy increases by about an order

of magnitude for each of the rc reductions shown in Table 7.3, which is problematic

for efficiently triggering turbulence subcritically. However, for each rc, ED appears

to be converging with increasing T . Thus, increasing T yields a more efficient initial

condition to trigger a turbulent transition, with the initial field possibly converging on

some global optimum. The global optimum appears to be the leading adjoint mode,

which optimally energizes the leading forward mode, and which most efficiently triggers

turbulence in this Q2D setup. Additional computations, as a precursor to future work,

indicate that use of the leading adjoint mode ξ̃⊥,1 directly yields ED identical to four

significant figures to the T = 8 nonmodal perturbations for 0.4 ≤ rc ≤ 0.9.

The linear optimals for various T at rc = 0.9 are depicted in Fig. 7.7. From Fig.

7.7(a) it is clearly visible that by selecting a larger T , the perturbation at the time τ

comes closer to matching the profile of the leading eigenmode, with the two profiles

coincident by eye for T ≥ 4. Thus, increasing T has allowed for a more effective

energization of the leading mode v̂⊥,1,1, which can go on, through weakly nonlinear

interaction, to generate û⊥,0,2 and v̂⊥,2,2, and thereby maintain a edge state, consistent

with the findings of § 7.5. The initial condition most efficiently energizing the leading
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(a)

y

(b)

y

û⊥,G,1(t = Tτopt), v̂⊥,1,1 û⊥,G,1(t = 0), ξ̃⊥,1

Figure 7.7: (a) Comparison between the linear transient optimal evolved to t = Tτopt and

the leading direct eigenmode (dashed black lines), for various T , on a shared abscissa. (b)

Comparison between the linear transient optimal at t = 0 and the leading adjoint eigenmode

(dashed black lines).

eigenmode is also compared to the initial conditions attained for various T . There

are marked differences at small times, with the additional undulations in the initial

conditions providing the larger transient growth attained at smaller T (recalling T =

1 yields optimal growth). However, the agreement is excellent by T = 8. Thus, a

larger T leads to improved energization of the leading mode, thereby reducing ED.

More importantly, this implies that seeking the initial condition that yields the largest

transient growth is not likely to be the most efficient at reaching the edge state, and

thereby not the most efficient at triggering a transition. Instead, the initial condition

most efficiently energizing the leading eigenmode is of greatest interest.

The energy-time histories for rc = 0.9 through rc = 0.3 are displayed in Fig. 7.8,

for all T tested. It is immediately apparent, for a given rc, that regardless of T , the

edge state attained is the same, although cases with larger T reach the edge state from

a smaller E0. This allows for identification of the edge state energy EE for each rc

(although only very roughly for rc = 0.3), see Table 7.4. The edge state energy also

allows for an alternate means of determining the efficiency of an initial condition. The

T = 1 case generates a great deal of inconsequential linear transient growth, before

falling back to the edge state. The overshoot for T = 2 through 8 are much smaller,

although still hint at some inconsequential growth.

Departures from the edge state, for cases with E0 > ED, differ vastly with rc.
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(a) rc = 0.9 (b) rc = 0.6

E E
t t

(c) rc = 0.4 (d) rc = 0.3

E E

t t

Figure 7.8: DNS of linear transient optimals with T of 1 through 8 for rc of 0.9 through

0.3. E0 are selected to be just above and just below ED (ED varying with T ). Regardless

of T , the edge state energy EE (dot-dashed line) is the same for each rc. However, larger T

have smaller E0, and overshoot EE less.

rc 0.3 0.4 0.6 0.9
ED 7.379× 10−4 1.717× 10−4 2.297× 10−5 1.473× 10−6

EE 1.25× 10−2 3.15× 10−3 7.18× 10−4 8.03× 10−5

EE/ED 16.9 18.3 31.3 54.5
Emax 1.136× 10−1 3.243× 10−1 6.060× 10−1 6.582× 10−1

Emax/EE 9.09 1.03× 102 8.44× 102 8.20× 103

Table 7.4: For various rc (largest T cases), the energy of the edge state, EE, the amplitude

yielding a balance in decay of the linear and growth of the weakly nonlinear mode(s), is

compared to the delineation energy ED, and maximum energy over all t, Emax. Note that

EE roughly varies as r−4.5
c and ED as r−5.6

c
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Nonlinear growth from the edge state, quantified by the ratio of Emax to EE, are also

included in Table 7.4, as are the ultimate values of Emax. The additional propensity

for growth at rc = 0.6 and rc = 0.9, as well as the larger Emax, allow both these rc to

transition to turbulence. While intermittent turbulence is sustained at rc = 0.9, the

flow quickly relaminarizes at rc = 0.6. Additional simulations performed at rc = 0.7 and

rc = 0.8 are also included in Appendix G (just T = 1 and T = 8), to obtain an improved

estimate of the threshold rc required to indefinitely sustain Q2D turbulence at H = 10

(in the thermodynamic limit of large times). However, to improve the estimate of this

threshold rc requires increasingly long time evolutions, with an estimate of rc ≳ 0.8 as

the requirement for sustained turbulence the best that was attained. At rc = 0.4, the

secondary nonlinear growth still well exceeds the linear growth, although turbulence is

not triggered. For simplicity, an ED is still ‘defined’ for this rc (and rc = 0.3), as a

clear edge state behavior, reminiscent of the pull of a turbulent attractor, is observed.

Interestingly, the nonlinear growth allows flows at rc ≤ 0.4 to develop into a stable

finite amplitude state, in case 1 setups, but not case 0. Even at rc = 0.9, recalling Figs.

7.3(a & c), cases 0 and 2 decay to a slowly diffusing, streamwise-invariant modulation,

with modes κ ≥ 1 devoid of energy.

The neutral stability of the finite amplitude state at rc = 0.3, post nonlinear growth,

and at rc = 0.6, post relaminarization, is further assessed via the Fourier spectra

depicted in Fig. 7.9. rc = 0.3 displays an exponential variation with κ for all t, Fig.

7.9(a). In particular, the finite amplitude state settles to an exp(−0.156κ) dependence.

Unlike the exponential wave number dependence observed on the edge state, recalling

Fig. 7.3(b), here a large number of modes exhibit non-zero energy once the stable finite

amplitude state forms. However, the first three modes still cumulatively contain a

very similar fraction (94.3%) of the total energy. At rc = 0.4, the story is similar,

although the trend is exp(−0.098κ). At rc = 0.6, the flow is briefly turbulent, before

relaminarizing, and settling to an exp(−0.055κ) dependence (the first three modes

cumulatively containing 93.2% of the total energy). Otherwise, none of the rc ≤ 0.6

tested show signs of decaying back to the original laminar fixed point, or to the edge

state. Example flow fields of the stable finite amplitude states are provided in Fig.

7.10, for each rc. There are clear similarities between the flow structures at all three rc

(0.3, 0.4 and 0.6), regardless of whether the finite amplitude state forms after a brief

turbulent episode, or whether the flow remains laminar through the entire nonlinear
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(a) rc = 0.3 (b) rc = 0.6

c̄ κ c̄ κ

κ κ

Figure 7.9: Fourier spectra at select instants in time (see legends). At large times, the

Fourier spectra settle as a stable finite amplitude state forms. (a) rc = 0.3. The dash-dotted

black line denotes an exp(−0.156κ) trend. (b) rc = 0.6. The dashed black line denotes a

κ−5/3 trend, and dash-dotted black line an exp(−0.055κ) trend.

growth stage. In addition, the finite amplitude states have similar appearance to their

2D hydrodynamic equivalent (Jiménez 1990). Last, note that frozen linear stability

analysis of the modulated streamwise invariant base flows for these finite amplitude

states (at all three rc) yielded decaying leading eigenmodes. Thus, it is again likely

that higher wave numbers κ ≥ 2 are transferring energy to the leading eigenmode,

which remains as the basis of the finite amplitude state, offsetting its decay.

7.7 Nonlinear transient growth

7.7.1 Formulation

In an isolated Q2D boundary layer, the linear and nonlinear transient growth was

remarkably similar for the initial energies of interest, E0 ≲ ED, as shown in Chapter 5

(Camobreco et al. 2020), hence the use of only linear optimals thus far. However, it is

still worth ensuring that the same holds for the present setup, and worth considering

some target time variation. As Q2D nonlinear transient growth pales in comparison to

3D nonlinear transient growth (Pringle & Kerswell 2010; Cherubini et al. 2011), the time

to reach the turbulent attractor can be very large. Thus, nonlinear transient growth

is not directly used to identify ED. For example, consider a 3D hydrodynamic pipe

flow, with large nonlinear transient growth, and a turbulent transition by t/τopt ≳ 2.5
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(a) rc = 0.3, max(v̂⊥) = 6.415× 10−2 max(û⊥) = 2.081× 10−1

y

(b) rc = 0.4, max(v̂⊥) = 1.115× 10−1 max(û⊥) = 3.082× 10−1

y

(c) rc = 0.6, max(v̂⊥) = 1.646× 10−1 max(û⊥) = 3.825× 10−1

y

x x

Figure 7.10: Snapshots of the DNS velocity fields representing the stable finite amplitude

state. (a) rc = 0.3 at t = 1.492 × 104. (b) rc = 0.4 at t = 1.099 × 104. (c) rc = 0.6 at

t = 1.762× 104 (post relaminarization). Solid lines (red flooding) denote positive velocities,

dotted lines (blue flooding) negative.

(Pringle et al. 2012). The Q2D results for an isolated boundary layer were already

restrictively expensive with transitions occurring between t/τopt = 18.44 to 26.34 (at

rc = 0.585), as discussed in Chapter 5 (Camobreco et al. 2020). At the most commonly

investigated rc = 0.9, case 1 setup in this work, the turbulent attractor is reached at

the prohibitively expensive t/τopt = 248 to 297 (depending on the T chosen for linear

optimization of the initial condition). However, the edge state is reached much earlier

than this, and instead forms a viable target for nonlinear verification.

The nonlinear growth GN = ∥û⊥(τ)∥ / ∥û⊥(0)∥, for a specified target time τ , opti-

mized over all initial perturbations, is determined by maximizing the functional (Pringle

et al. 2012, 2015)

L (û⊥(t = 0)) =

〈
1

2
û⊥(τ)

2

〉
− λ0

[〈
1

2
û⊥(0)

2

〉
− EP

]
−
∫ τ

0
⟨Π∇⊥ · û⊥⟩dt

−
∫ τ

0
Γ(t)⟨û⊥ · ez⟩dt−

∫ τ

0

〈
û‡
⊥ ·

[
∂û⊥
∂t

+ (U⊥ · ∇⊥)û⊥ + (û⊥ · ∇⊥)U⊥

+ (û⊥ · ∇⊥)û⊥ +
1

ρ
[Λ(t)ez +∇⊥p

′
⊥]−

1

Re
∇2

⊥û⊥ +
H

Re
û⊥

]〉
dt, (7.7)

where λ0, Π and Γ(t) are Lagrange multipliers for the conditions constraining initial
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perturbation energy EP = (1/2)
∫
û⊥(0)

2dΩ, mass conservation and the flow rate,

respectively. Pressure is decomposed into a time-varying pressure gradient Λ(t), to

maintain a constant flow rate, and a fluctuating component p′⊥. ⟨. . . ⟩ represent integrals
over the computational domain. Each iteration j begins with forward evolution of the

nonlinear perturbation equation (within the large square brackets of the last term of

Eq. (7.7)) from t = 0 to t = τ . The adjoint ‘initial’ field is û‡
⊥(τ) = û⊥(τ), with

backward evolution from time t = τ to t = 0 proceeding via

∂û‡
⊥

∂t
= (∇⊥U⊥)

T · û‡
⊥ − (U⊥ · ∇⊥)û

‡
⊥ + (∇⊥û⊥)

T · û‡
⊥

+ Γ(t)ez −∇⊥Π− 1

Re
∇2

⊥û
‡
⊥ − H

Re
û‡
⊥, (7.8)

∇⊥ · û‡
⊥ = 0. (7.9)

The initial field for the (j + 1)’th iteration is ûj+1
⊥ (0) = ûj⊥(0) + ϵN(−λ0ûj⊥(0) +

û‡,j
⊥ (0))/λ0, with λ0 ensuring ⟨ûj+1

⊥ (0) · ûj+1
⊥ (0)⟩ = 2EP and under-relaxation factor

ϵN. Iterations continue until the relative changes in λ0 and residual (δL /δû⊥(0))/λ
2
0

drop below a specified tolerance, following Pringle et al. (2012). For further details of

the iterative procedure, see Chapter 5 (Camobreco et al. 2020).

7.7.2 Results

The similarity between the linear and nonlinear optimals is highlighted in Table 7.5,

for T of 1 through 8. The percentage difference in the ratio of the nonlinear energy

growth at the target time, between linear and nonlinear initial conditions, is < 7% for

all T investigated at rc = 0.9. Furthermore, the rate of increase of the percentage error

reduces with T . The linear growth of the linear optimal is also included for each T , to

give an idea of how small the magnitude of the growth differences would be (e.g. 6.5%

of G ≈ 22 relative to the almost 4 orders of magnitude of nonlinear growth during the

final stage of the transition process).

The capability for the nonlinear scheme to directly simulate the edge state is now

assessed. The nonlinear optimals, and corresponding initial conditions, are depicted in

Fig. 7.11. For T = 1 or T = 2 both the initial conditions remain quite complicated and

the optimal field does not resemble the edge state (of a slanted TS wave). With T = 3

the initial condition is predominantly a single layer of a highly sheared wave near the

wall (compared to the three or so layers at each wall with T = 1), with the perturbation

at the target time having the underlying form of the edge state. With increasing T from
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(a) T = 1, t = 0, max(v̂⊥) = 7.073× 10−5 t = τopt, max(v̂⊥) = 5.396× 10−3
y

(b) T = 2, t = 0, max(v̂⊥) = 8.215× 10−5 t = 2τopt, max(v̂⊥) = 2.794× 10−3

y

(c) T = 3, t = 0, max(v̂⊥) = 8.240× 10−5 t = 3τopt, max(v̂⊥) = 1.888× 10−3

y

(d) T = 4, t = 0, max(v̂⊥) = 8.240× 10−5 t = 4τopt, max(v̂⊥) = 1.793× 10−3

y

(e) T = 6, t = 0, max(v̂⊥) = 8.224× 10−5 t = 6τopt, max(v̂⊥) = 1.774× 10−3

y

(f) T = 8, t = 0, max(v̂⊥) = 8.205× 10−5 t = 8τopt, max(v̂⊥) = 1.775× 10−3

y

(g) Optimal excitation (linear) DNS; max(v̂⊥) = 1.778× 10−3

y

x x

Figure 7.11: (a-f) Nonlinear transient growth optimals at rc = 0.9 for various T , at t = 0

(left column) and at t = Tτopt (right column). (g) The optimal excitation of the leading

eigenmode (left column) and DNS of the edge state at t = 7.48 × 103 (right column). Solid

lines (red flooding) denote positive velocities, dotted lines (blue flooding) negative.
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Optimal: Linear Linear Nonlinear Comparison
Evolution: Linear Nonlinear Nonlinear Nonlinear

T G (E(t = Tτopt)/ED)/G GN/G |% Error|
1 78.14835970 0.99699972 0.99881097 0.18
2 30.94185832 0.99127623 1.01459824 2.30
3 26.85825421 1.01943101 1.05902352 3.73
4 25.62489920 1.05079656 1.10210351 4.66
6 23.76862631 1.12126805 1.18981807 5.76
8 22.07877539 1.20110373 1.28485597 6.52

Table 7.5: Similarity between the nonlinear growth of linear and nonlinear optimals at

rc = 0.9. Nonlinear computations have E0 > ED. Linear growth results provide a baseline.

4 through 8, the initial condition simplifies through the duct centre, until there only

remains a highly sheared wave at each wall (constructive interference between the waves

at each wall occurs across the entire duct, yielding perturbation energy growth). At

these larger T , the final perturbation clearly resembles the edge state captured by the

DNS, with similar maximum velocity magnitude as the DNS result. The convergence of

the nonlinearly optimized initial conditions toward the optimal energization the leading

eigenmode, from § 7.6, is also clear.

7.8 Conclusions

A quasi-two-dimensional streamwise periodic duct flow was numerically simulated. Im-

portantly, the first subcritical route to sustained, if intermittent, Q2D turbulence was

discovered. Thereafter, the aims were three-fold. First, identify the most efficient quasi-

two-dimensional routes to turbulence by locating the lower edge state. Second, analyse

the lower edge state, and understand the underlying dynamics of the transition process.

Third, determine the conditions able to sustain turbulence.

The most efficient route to turbulence was based around the optimal energization of

the leading eigenmode, arising from global linear stability analysis. This was shown at

a weakly subcritical Reynolds number ratio of rc = 0.9 in two ways. First, by adjusting

the wave number of the domain, from αopt (maximizing linear transient growth) to

αmax (minimizing the decay rate of the leading modal instability); the latter time

optimized nonmodal perturbation was found to trigger turbulence with an initial energy

≈ 20 times smaller than the former. This was despite the latter case also generating

less linear transient growth. In addition, the latter case generated turbulence which

was sustained, if intermittent, while all tested routes to turbulence that did not aim
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to energize the leading eigenmode quickly decayed back to the laminar fixed point.

Second, once having selected αmax, the target time τ for optimization of the nonmodal

perturbation was increased. The larger the target time, the smaller the linear transient

growth obtained, but also the smaller the initial energy required to reach turbulence.

As linear transient growth is an initial value problem, it can only generate large growth

at small τ . Once τ becomes large, the avenue to maximize growth at τ devolves to a

redistribution of energy into the slowest decaying (leading) eigenmode. Thus, the larger

τ is, the more energy ends up in the leading eigenmode. As discussed in Farrell (1988),

because of the initial transient growth, for a given target time τ it is always more

efficient to distribute energy across multiple eigenmodes of the linear operator at t = 0,

undergo some nonmodal growth for small t ≲ τopt, and then have nonmodal processes

redistribute all energy back into the leading eigenmode at large t, than it is solely to put

all the initial energy in the leading eigenmode, and have it decay for all t. This work

shows that target times of 6τopt to 8τopt are sufficient for the nonmodal perturbation

to be an excellent proxy for the true optimal energization of the leading eigenmode

(τ → ∞, i.e. the leading adjoint mode), and that these initial conditions require the

smallest initial energies to reach turbulence. These nonmodal perturbations also all

manage to sustain turbulence, although the turbulence was intermittent. Furthermore,

performing nonlinear transient growth with increasingly large target times also showed

convergence toward the optimal energization. Ultimately, in Q2D systems, maximizing

linear transient growth was never the most efficient route to triggering turbulence;

optimal energization of the leading eigenmode was always best.

The underlying dynamics of the transition process were then analyzed. As discussed,

after the initial linear transient growth, the leading eigenmode (the Q2D equivalent of

the Tollmien–Schlichting wave) becomes energized, although is decaying. Fully nonlin-

ear DNS shows that the total perturbation energy remains relatively constant between

t ≈ 100 and t ≈ 8000 (at rc = 0.9). Thus, it is conjectured that the initial condition has

reached the neighborhood of an edge manifold, and that the trajectory travels along

the edge until reaching the lower edge state. Furthermore, Fourier analysis indicated

that three modes contained 93.7% of the total energy while on the edge, or 43.0%,

13.3% and 37.4% for the zeroth, first and second harmonics, respectively. As only

three modes were predominantly involved, the behavior appeared to match that of a

subcritical bifurcation, where if at the critical amplitude, the decay rate of the leading
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eigenmode would be exactly offset by the growth of its (the second) harmonic. Thus,

the leading three Fourier components from DNS were compared to their weakly nonlin-

ear equivalents. While on the edge, there was excellent agreement between the first and

second Fourier components from DNS, and the linear eigenmode and its weakly non-

linear self-interaction, respectively. Some slight differences between the zeroth Fourier

mode from the DNS, and the weakly nonlinear interaction of the leading eigenmode and

its complex conjugate, were observed. However, the longer the trajectory remained on

the edge, the smaller the difference became, and with a more accurate computation of

the delineation energy ED, the agreement would likely further improve. Note that due

to difficulties arising from abstruse scalings and definitions, the amplitude of the edge

state could not be directly compared to the critical amplitude obtained from solution

of the Stuart–Landau equation (Drazin & Reid 2004).

As the lower edge state was shown to be well represented by the weakly nonlinear

(Stuart–Landau) analysis, the route to turbulence from the edge state was considered.

Once the perturbation has an amplitude slightly above the critical amplitude, nonlinear

growth of the second harmonic will outweigh linear decay. Eventually, order unity

amplitudes would be reached, necessitating the inclusion of higher harmonics in the

analysis. However, this is a relatively slow route to turbulence. A superexponential

route to turbulence, considering only three modes, is also possible, if both the leading

eigenmode and its harmonic have positive growth rates; a supercritical bifurcation

recalling Chapter 3, § 3.5. Although the former, slower route to turbulence is plausible,

given the results presented, the latter route to turbulence was further investigated. This

is primarily as frozen linear stability analysis of the (weakly nonlinearly) modulated

base flow showed that the growth rate of the leading eigenmode became positive, while

on and just departing the edge state. Thus, the route to turbulence may be through

supercritical instability, even though the flow is subcritical relative to the reference

base flow. However, the frozen stability assumption, and particularly the behavior of

higher order terms, may be worth future consideration. Overall, the most efficient route

from the initial condition to the lower edge state, through optimal energization of the

leading eigenmode, is clear, while questions remain about the route from the edge to

turbulence.

A supercritical instability, relative to a modulated base flow, has been elsewhere

conjectured (Bottaro et al. 2003; Nouar & Bottaro 2010). These previous works focused
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on optimal base flow modulations, in the sense of obtaining the largest increase in the

exponential growth rate of a target (assumed leading) eigenmode, for a given base flow

modulation energy. As shown in Chapter 3, § 3.5, the optimal base flow modulation

(minimal defect) has little resemblance to the weakly nonlinear modulation. Some

theories regarding why the optimal modulation may not be relevant in this system

are briefly discussed. First, the structure of a nonmodal instability able to generate

the optimal modulation, once seeded on the reference base flow, remains unknown, and

thus may rapidly decay if it shares little resemblance to the leading eigenmode. Second,

any base flow modulation is subject to diffusion and friction. As the base flow diffuses

toward the steady reference profile, the growth rate of any linear instabilities reduces

(in computations frozen at each time). However, in the case of the weakly nonlinear

self interaction, not only is the modulation sustained for around 8 000 time units at

rc = 0.9, but the modulation continues to approach the weakly nonlinear result, not

decay away from it. Thus, nonlinear transfers (production from higher harmonics to the

base flow modulation) act to regenerate the profile against diffusion and friction. This

occurs even when only the first and second harmonic are present. More importantly,

the overall process appears quite efficient. As the leading eigenmode regenerates the

base flow modulation, the base flow modulation improves the growth rate of the leading

eigenmode, and the positive reinforcement process repeats, in something of a bootstrap

route to turbulence. By comparison, any optimal modulation would improve the growth

rate of the leading eigenmode (and admittedly would provide a greater improvement

to the growth rate of the leading eigenmode for a given modulation energy norm),

but would not necessarily be regenerated by that eigenmode, as the leading eigenmode

regenerates the weakly nonlinear modulation. Thus, the optimal modulation would

require a non-normal (linear or nonlinear) process, to redistribute energy away from the

leading eigenmode, to then feed back and regenerate the optimal modulation. Although

speculative, the weakly nonlinear modulation may still represent the most efficient route

to turbulence, rather than alternate optimized base flow modulations.

To provide further insight into the route to turbulence, and to further establish

which subcritical conditions can sustain turbulence, additional rc were investigated.

Although a more substantial investigation of the parameter space remains as future

work, a wide variety of dynamics were observed. While rc = 0.6 managed to trigger

turbulence, like rc = 0.9, the former did not sustain turbulence, manifesting only a sin-
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gle turbulent episode. However, having still energized the leading eigenmode (α = αmax

and large τ), relaminarization was not toward the fixed point (like cases at αopt), with

saturation toward a stable finite amplitude state. This finite amplitude state was also

observed at rc = 0.3 and rc = 0.4, although neither of these lower Re cases triggered

turbulence between the nonlinear growth from the edge, and saturation to the stable

finite amplitude state. The finite amplitude states showed no signs of decaying, remain-

ing nonlinearly stable for over 20 000 time units (their computed extent). These states

were far more complex than the edge, with around 60 Fourier modes clearly excited, and

with a perturbation energy following an exponential dependence of exp(−Cκ), where
C was a constant inversely proportional to Re. With increased streamwise resolution,

higher Fourier modes may also have followed these trends. Given the large number

of excited Fourier components, and the relatively large amplitude of the finite ampli-

tude state, it is unlikely that these states represent supercritical stability (Drazin &

Reid 2004). Frozen linear stability analysis of the base flow modulations of these finite

amplitude states also indicates a decaying leading eigenmode, likely offset by growth

in higher harmonics. The nonlinear growth from the edge state was also shown to be

strongly dependent on rc, and may have been a strong contributor to the ability to

generate turbulence.

Finally, some further avenues for future work are proposed, besides the widespread

use of the leading adjoint mode as an initial condition. Although the effect of domain

length in subcritical Q2D transitions was shown to have no effect on the lower delin-

eation energy in Chapter 5 (Camobreco et al. 2020), these investigations were of tran-

sient growth maxima (α = αopt), with turbulent episodes which were not sustained.

Thus, the effect of domain length on both the lower and upper delineating energies

should be reconsidered (the latter not investigated in this chapter). Furthermore, the

effect of domain length on intermittency could be elucidated. Alternately, once the

base flow becomes modulated, the wave number maximizing exponential growth shifts.

Preliminary investigations indicate that selecting αmax relative to the modulation yields

further reductions in ED, which may be worth further investigation. Finally, whether

optimal energization is most efficient in full 3D DNS is also of interest. Varying the

degree of three dimensionality, via the magnetic field, may indicate when optimally

energizing the leading eigenmode is more efficient that maximizing nonlinear transient

growth (linear and nonlinear transient growth differing greatly hydrodynamically).
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Chapter 8

Stability of pulsatile
quasi-two-dimensional duct flows
under a transverse magnetic field

8.1 Perspective

The previous chapter highlighted that purely Q2D routes to sustained turbulence can

be attained at subcritical Re. Although an exhaustive search of the parameter space

is yet to be performed, the purely Q2D constraint may limit sustained turbulence to

only weakly subcritical Re. At H = 10, turbulence was sustained at critical Reynolds

number ratios rc ≳ 0.8, while at lower rc ≲ 0.7, nonlinear growth lead to saturation

to a finite amplitude state. Thus, to account for practical considerations, two further,

separate investigations were performed.

The first involves assessing whether significant improvements in heat transfer can be

attained either by the sustained turbulence at rc ≈ 0.9, or by the stable (laminar) finite

amplitude states at rc ≲ 0.6, as detailed in Appendix B. Overall, from the results of

Appendix B, the improvements to heat transfer may not be sufficient to warrant such

large Re, although Appendix B does only consider heat transfer based on a passive

scalar. Furthermore, as the finite amplitude states were only observed at intermediate

to low H ≤ 10, to match this friction parameter at high magnetic field strength, very

small aspect ratios (order 0.01) would be required, but may not be feasible in practice.

The second investigation involves redesigning the base flow. This is the focus of this

chapter, which contains the paper entitled “Stability of pulsatile quasi-two-dimensional

duct flows under a transverse magnetic field” published in Physical Review Fluids in

2021. These redesigns require both large reductions in the Reynolds number at which

turbulence can be sustained, and the ability to observe turbulence at higher H.
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The base flow is redesigned via the addition of an oscillating component to the

underlying steady base flow. In a practical sense, this would require a time varying

driving pressure gradient, which, if slowly varying, is not unfeasible. To ensure net

transfer of both tritium and thermal energy through the cooling conduits, only steady

flow components which are never smaller than the oscillating components are inves-

tigated. Furthermore, this will allow for simple comparisons between the pulsatile

(steady + oscillating) and purely steady base flows. In a similar manner to the anal-

ysis of steady base flows in Chapters 6 (Camobreco et al. 2021b) and 7, supercritical

transitions are investigated first (with subcritical transitions to be assessed in future

work), which reduces the number of parameters to cover (the base flow now depends

on three non-dimensional parameters, and the linear stability behavior on four).

As an initial foray in the investigation, a large amplitude ratio (ratio of the maximum

velocities of the steady and oscillating components) of Γ = 100 was considered. This

provided the clearest picture of the role played by the oscillating base flow component’s

frequency. At low frequencies, those best for practical operation, a small degree of

destabilization was observed, while higher frequencies stabilized the flow. The degree

of destabilization at low frequencies consistently improved with decreasing amplitude

ratio (the inclusion of a greater oscillatory fraction). Furthermore, the percentage

reduction in Rec relative to the steady result was also found to consistently improve with

increasing H. This was an especially important result, and one due to the additional

degrees of freedom introduced by the extra parameters involved in redesigning the base

flow. At high H, the steady Rec is large, yet the steady, streamwise invariant base flow

remains independent of Re. When an Re dependent oscillatory component is added,

the critical Reynolds number can be reduced until H and SrRe (Strouhal by Reynolds

number) become of similar magnitude, leading to large percentage reductions in Rec.

Although the linear stability results were promising, nonlinear modulation of the

base flow proved quite detrimental for the smallest tested amplitude ratio, Γ = 1.

Nonlinear modulation of the base flow prevented even supercritical Re (relative to the

pulsatile base flow) from transitioning to turbulence. Given the large reductions in Rec,

the magnitude of Re could have hampered transition (weakly supercritical pulsatile Re

being order 103 rather than order 104 as for a steady base flow at H = 10). A lack

of linear growth was not the issue, with around 18 orders of magnitude of intracyclic

growth and decay observed. Worse still, even increasing the amplitude ratio, as shown
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in Appendix E, was rarely effective at inciting transition, at H = 10 or H = 100.

Even with less linear growth (8 to 9 orders of magnitude at H = 10), detrimental

nonlinear modulation still inhibited the transition to turbulence. Of further concern,

intermediate amplitude ratios are far less effective at reducing Rec. At H = 10, and

taking 10% supercriticality into account, an equivalent rc = 0.737 was unable to trigger

turbulence with a pulsatile base flow (while a steady base flow can sustain turbulence

at rc ≳ 0.8). Thus, unless the amplitude ratio is quite small, or H > 10 simulated,

pulsatility may provide little benefit. However, simulations were hampered at higher H,

due to operator sensitivity issues. These results are presented in the published article,

included on the pages to follow.
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2000)(Pothérat & Schweitzer 2011)(Pedlosky 1987)(Young et al. 2014)(Thess 1992a)(Thess
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The stability of a pulsatile quasi-two-dimensional duct flow was numerically investi-
gated. Flow was driven, in concert, by a constant pressure gradient and by the synchronous
oscillation of the lateral walls. This prototypical setup serves to aid understanding of
unsteady magnetohydrodynamic flows in liquid metal coolant ducts subjected to transverse
magnetic fields, motivated by the conditions expected in magnetic confinement fusion
reactors. A wide range of wall oscillation frequencies and amplitudes, relative to the
constant pressure gradient, were simulated. Focus was placed on the driving pulsation
optimized for the greatest reduction in the critical Reynolds number for a range of friction
parameters H (proportional to magnetic field strength). An almost 70% reduction in the
critical Reynolds number, relative to that for the steady base flow, was obtained toward
the hydrodynamic limit (H = 10−7), while just over a 90% reduction was obtained by
H = 10. For all oscillation amplitudes, increasing H consistently led to an increasing
percentage reduction in the critical Reynolds number. This is a promising result, given
fusion relevant conditions of H � 104. These reductions were obtained by selecting a
frequency that both ensures prominent inflection points are maintained in the base flow
and a growth in perturbation energy in phase with the deceleration of the base flow.
Nonlinear simulations of perturbations driven at the optimized frequency and amplitude
still satisfied the no net growth condition at the greatly reduced critical Reynolds numbers.
However, two complications were introduced by nonlinearity. First, although the linear
mode undergoes a symmetry-breaking process, turbulence was not triggered. Second, a
streamwise invariant sheet of negative velocity formed, able to arrest the linear decay
of the perturbation. Although the nonlinearly modulated base flow maintained a higher
time-averaged energy, it also stabilized the flow, with exponential growth not observed at
supercritical Reynolds numbers.

DOI: 10.1103/PhysRevFluids.6.053903

I. INTRODUCTION

The aim of this paper is to assess the generation and promotion of turbulence in oscillatory
magnetohydrodynamic (MHD) duct flows. Motivation stems from proposed designs of dual purpose
tritium breeder/coolant ducts in magnetic confinement fusion reactors [1]. These coolant ducts
are plasma facing, hence subjected to both high temperatures and a strong pervading transverse
magnetic field [2]. At the same time, obtaining turbulent heat transfer rates is crucial to the long-term
operation of self-cooled duct designs [3]. This can be achieved by keeping the flow turbulent.
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Various strategies to promote turbulence in MHD flows include the placement of physical obstacles
of various cross sections [4–6], inhomogeneity in electrical boundary conditions [7], electrode
stimulation [8,9], and localized magnetic obstacles [10]. The approach to promote turbulence taken
in this paper is to superimpose a time periodic flow, of specified frequency and amplitude, onto
an underlying steady flow. The benchmark used, particularly in the linear analysis, is the critical
Reynolds number for the steady flow. The goal is to obtain the greatest reduction in the critical
Reynolds number (considered as the degree of destabilization) with the addition of a time-periodic
flow component of optimized frequency and amplitude. Ultimately, this approach seeks an estimate
of the lowest Reynolds number at which turbulence may be incited and sustained by the addition of
a pulsatile component to the base flow.

In MHD flows, the predominant action of the Lorentz force on the electrically conducting fluid
is to diffuse momentum along magnetic field lines [11,12]. When the Lorentz force dominates both
diffusive and inertial forces, the flow becomes quasi-two-dimensional (Q2D) [13–15]. In the limit
of quasistatic Q2D MHDs, the magnetic field is imposed and the Lorentz force dominates all other
forces far from walls normal to the field. Three dimensionality only remains when asymptotically
small in amplitude or in regions of asymptotically small thickness. The boundary layers remain
intrinsically three-dimensional. Hartmann boundary layers form on walls perpendicular to magnetic
field lines, with a thickness scaling as Ha−1 [12,16], while the thickness of parallel wall Shercliff
boundary layers scales as Ha−1/2 [17]. The Hartmann number Ha = aB(σ/ρν)1/2 represents the
square root of the ratio of electromagnetic to viscous forces, where a is the distance between Hart-
mann walls, B the imposed magnetic field strength, and σ , ρ, and ν the incompressible Newtonian
fluid’s electrical conductivity, density, and kinematic viscosity, respectively. Nevertheless, although
not asymptotically small, three-dimensionality in Shercliff layers remains small enough for Q2D
models to represent them with high accuracy [18]. The remaining core flow is uniform and well
two-dimensionalized in fusion relevant regimes [2]. A Q2D model proposed by Ref. [12] (hereafter
the SM82 model) is applied, which governs flow quantities averaged along the magnetic field
direction. In the Q2D setup, the Hartmann walls are accounted for with the addition of linear friction
acting on the bulk flow, valid for laminar Hartmann layers [12]. Shercliff layers still remain in the
averaged velocity field, even in the quasistatic limit of a dominant Lorentz force, of thickness scaling
as H−1/2 [17], where H = 2(L/a)2Ha is the friction parameter and L the characteristic wall-normal
length. The accuracy of the SM82 model is well established for the duct problem [19–21], with less
than 10% error between the Q2D and the three-dimensional laminar boundary layer profiles [18].

The linear stability of steady Q2D duct flow was analyzed by Ref. [17]. As the magnetic field
is strongly stabilizing, the critical Reynolds number for a steady base flow, beyond which modal
instabilities grow, scales as Recrit,s = 4.835 × 104H1/2 for H � 1000 [17,22,23]. The Reynolds
number Re = U0L/ν represents the ratio of inertial to viscous forces. In this paper, both transient
and steady inertial forces will be encapsulated in U0, a characteristic velocity based on both the
steady and oscillating flow components. Instability occurs via Tollmien–Schlichting (TS) waves
originating in the Shercliff layers. The instabilities become isolated at the duct walls with increasing
magnetic field strength [17,22], eventually behaving as per an instability in an isolated exponential
boundary layer [17,22,24]. To the authors’ knowledge, oscillatory or pulsatile Q2D flows have
yet to be analyzed under a transverse magnetic field. Weak in-plane fields have been analyzed for
oscillatory flows, although pulsatility was not considered [25,26].

The destabilization of hydrodynamic plane channel flows with the imposition of an oscillating
flow component was assessed by Ref. [27]. Using series expansions to evaluate Floquet expo-
nents, the range of frequencies that induce destabilization was determined. Womersly numbers
1 � Wo � 13 were destabilizing and Wo � 14 stabilizing, for low Reynolds numbers and pulsation
amplitudes, where the Womersly number Wo = ωL2/ν characterizes the square root of transient
inertial to viscous forces, and where ω is the pulsation frequency. The problem was revisited with
advanced computational power and techniques [28,29]. However, even large-scale Floquet matrix
problems struggled to adequately resolve larger-amplitude pulsations [28,29], as the required num-
ber of Fourier modes rapidly increases with increasing pulsation amplitude. Instead, direct forward
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evolution of the linearized Navier–Stokes equations is required. Improved bounds for destabilizing
frequencies of 5 � Wo < 13 were determined [29], with the optimum frequency for destabilization
at Wo = 7. The optimized amplitude ratio for the pulsation was also found to be near unity (steady
and oscillatory velocity maximums of equal amplitude) at lower frequencies [28]. In addition,
a small destabilization was observed at very high frequencies, for small pulsation amplitudes.
Although Ref. [28] did not focus on obtaining the maximum destabilization, an approximately 33%
reduction in the critical Reynolds number (relative to the steady result) was observed at the lowest
frequency tested, near an amplitude ratio of unity. Further improvement, with an approximately 57%
reduction in the critical Reynolds number [30], was attained by the imposition of an oscillation with
two modes of different frequencies. Given the size of the parameter space, there remains significant
potential to further destabilize both hydrodynamic and MHD flows, with single-frequency optimized
pulsations.

At lower frequencies, the perturbation energy varies over several orders of magnitude within a
single period of evolution [29,31]. This intracylcic growth and decay predominantly occurs during
the deceleration and acceleration phases of the base flow, respectively. The intracylcic growth
increases exponentially with increasing pulsation amplitude [29]. At smaller pulsation amplitudes,
a cruising regime [29] has been identified, where the perturbation energy remains of similar
nonlinear magnitude throughout the entire cycle. At larger pulsation amplitudes and at smaller
frequencies, a ballistic regime [29] was identified, where the perturbation energy varies by many
orders of magnitude over the cycle, and is propelled from a linear to nonlinear regime through this
growth. However, in full nonlinear simulations of Stokes boundary layers, an incomplete decay
of the perturbation over one cycle is observed [32]. This has little effect on growth in the next
cycle, thereby leading to either an intermittent or sustained turbulent state [32]. Thus, ballistic
regimes form an enticing means to sustain turbulence under fusion relevant conditions. To assess the
effectiveness of this strategy, we must understand the conditions of transition to turbulence in a duct
flow pervaded by a strong enough magnetic field to assume quasi-two-dimensionality. Specifically,
this paper seeks to answer the following questions:

(1) Will superimposing an oscillatory flow onto an underlying steady base flow still be effective
at reducing the critical Reynolds number in high H , fusion-relevant regimes?

(2) What pulsation frequencies and amplitudes are most effective at destabilizing the flow, both
hydrodynamically and toward fusion-relevant regimes?

(3) Are the parameters at which reductions in Recrit are observed viable for both SM82 modeling
and fusion relevant applications?

(4) Are reductions in Recrit sufficient to observe turbulence at correspondingly lower Re?
This paper proceeds as follows: In Sec. II, the problem is nondimensionalized and the base flow

for the duct problem derived in the SM82 framework. Particular focus is placed on the dependence of
the base flow on all four nondimensional parameters. Pressure- and wall-driven flows are compared
before determining the bounds for validity of the SM82 approximation for pulsatile flows. In
Sec. III A, the linear problem is formulated and both the Floquet and timestepper methods are
introduced. The long-term stability behavior is considered in Sec. III B, with particular focus on the
optimal conditions for destabilization. Intracyclic growth and the linear mode structure are analyzed
in more detail in Sec. III C. Section IV focuses on targeted direct numerical simulations (DNSs) of
the optimized pulsations. Emphasis is placed on comparing linear and nonlinear evolutions and
symmetry breaking induced by nonlinearity.

II. PROBLEM SETUP

A. Geometry and base flows

This study considers a duct with rectangular cross section of wall-normal height 2L (y direction)
and transverse width a (z direction), subjected to a uniform magnetic field Bez, see Fig. 1. The
duct is uniform and of infinite streamwise extent (x direction). A steady base flow component is
driven by a constant pressure gradient, producing a maximum undisturbed dimensional velocity
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FIG. 1. A schematic representation of the system under investigation. Solid lines denote the oscillating,
impermeable, no-slip walls. Short dashed lines indicate the streamwise extent of the periodic domain defined
by streamwise wave number α. Examples of the steady base flow component [U1,B(y); dashed line] and the
normalized total pulsatile base flow [(1 + 1/�)U (y, t ); 11 colored lines over the full period, 2π ] are overlaid
at H = 10, � = 10, Sr = 5 × 10−3, and Re = 1.5 × 104.

U1. An oscillatory base flow component is driven by synchronous oscillation of both lateral walls
at velocity U2 cos(ωť ), with maximum dimensional velocity U2. The pulsatile flow, the sum of the
steady and oscillatory components, has a maximum velocity over the cycle of U0. In the limits
Ha = aB(σ/ρν)1/2 � 1 and N = aB2σ/ρU0 � 1, the flow is Q2D and can be approximated with
the SM82 model [12,18]. A more detailed assessment of the the validity of the SM82 model follows
in Sec. II B. Normalizing lengths by L, velocity by U0, time by 1/ω, and pressure by ρU 2

0 , the
governing momentum and mass conservation equations become

Sr
∂u
∂t

= −(u · ∇⊥)u − ∇⊥ p + 1

Re
∇2

⊥u − H

Re
u, (1)

∇⊥ · u = 0, (2)

where u = (u, v) is the Q2D velocity vector, representing the z-averaged field, and ∇⊥ = (∂x, ∂y)
is the two-dimensional gradient operator. Four nondimensional parameters govern this problem: the
Reynolds number Re = U0L/ν, the Strouhal number Sr = ωL/U0, the Hartmann friction parameter
H = 2B(L2/a)(σ/ρν)1/2 and the amplitude ratio � = U1/U2. � = 0 represents a flow purely driven
by oscillating walls (no pressure gradient) and � → ∞ a pressure driven flow (no wall motion). The
Womersly number Wo2 = SrRe is sometimes used instead of Sr as a dimensionless frequency.

The nondimensional pulsatile base flow is U (y, t ) = γ1U1,B(y) + γ2U2,B(y, t ), where γ1 =
�/(� + 1) and γ2 = 1/(� + 1), following Ref. [28], with steady component U1,B(y) and oscillat-
ing component U2,B(y, t ). This work considers 1 � � < ∞. Thus, the magnitude of the steady
component of the base flow is never smaller than that of the oscillating component, ensuring
net transfer of tritium/heat is dominant. The nondimensional wall oscillation is cos(t )/�, and
the maximum velocity over the cycle U0 = max{y,t}(U ) = 1/(1 + 1/�) for � � 1 (henceforth,
� � 1). The normalized time tP = t/2π is also defined. To assess the degree of destabilization, the
Reynolds number ratio rs = [Re/(1 + 1/�)]/Recrit,s is defined, comparing the Reynolds number in
this problem to the critical Reynolds number for a purely steady base flow [17,22,23]. The wave
number is similarly rescaled, as αs = α/αcrit,s.

Instantaneous variables (u, p) are decomposed into base (U , P) and perturbation (û, p̂) com-
ponents via small parameter ε, as u = U + εû; p = P + ε p̂. The fully developed, steady parallel
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flow U1,B = U1,B(y)ex, with boundary conditions U1,B(y ± 1) = 0 and a constant driving pressure
gradient scaled to achieve a unit maximum velocity is [17]

U1,B = cosh(H1/2)

cosh(H1/2) − 1

(
1 − cosh(H1/2y)

cosh(H1/2)

)
. (3)

The fully developed, time periodic, parallel flow U2,B = U2,B(t, y)ex = U2,B(t + 2π, y)ex, with
boundary conditions U2,B(y ± 1) = cos(t ), ∂U2,B/∂t |y±1 = − sin(t ) expresses as

U2,B = Re

(
cosh[(r + si)y]

cosh(r + si)
eit

)
= b(y)eit + b∗(y)e−it , (4)

where the inverse boundary layer thickness and the wave number of the wall-normal oscillations are
represented by

r = [(SrRe)2 + H2]1/4 cos([tan−1(SrRe/H )]/2),
(5)

s = [(SrRe)2 + H2]1/4 sin([tan−1(SrRe/H )]/2),

respectively, i = (−1)1/2 and ∗ represents the complex conjugate. In the hydrodynamic limit of
H → 0, r = s = (SrRe/2)1/2. In the limit of H → ∞, at constant Re and Sr, r ∼ H1/2 and s → 0.
If Re is also varied, it must vary at a rate H p, with p � 1, for the limiting cases to differ. Note
that the oscillating component of the base flow depends only on two parameters (SrRe = Wo2 and
H). Although these choices mean the base flow is Re dependent, they allow Recrit to be found at a
constant frequency (constant Sr), as a constant Wo instead represents a constant oscillating boundary
layer thickness. Examples of the base flow at � = 1.2 are illustrated in Fig. 2, with the total pulsatile
profile plotted as (1 + 1/�)U (y, t ) to show oscillation about the steady component U1,B.

Both dominant transient inertial forces (large Sr) or dominant frictional forces (large H) are
capable of flattening the central region of the oscillating flow component. In Fig. 2(a), the oscillating
component is flattened by large transient inertial forces, while the steady flow still exhibits a curved
Poiseuille-like profile as H is small. Whereas, in Fig. 2(c), it is the large H value that is flattening
both the steady and oscillating flow components. However, inflection points, which are important
for intracyclic growth, are no longer present in Fig. 2(c), as H is large, but can be observed in the
boundary layers of Figs. 2(a) and 2(b), as Sr is large.

It is instructive to consider the velocity profile for the simpler problem of the SM82 equivalent
of an isolated Stokes layer, U (y, t ) = e−ry cos(sy − t ), where r and s remain as defined in Eq. (5),
except scaled by H−1/2 to account for the isolated boundary layer nondimensionalization. This
highlights the effects of r and s on the boundary layer, as the base flow becomes akin to a damped
harmonic oscillator. Increasing either H or SrRe increases r, in turn, and reduces the boundary layer
thickness. However, increasing H reduces s. Thus, inflection points are eliminated with increasing
H , and the boundary layer just appears as shifted exponential profiles, as is observed in Fig. 2(c).
Decreasing SrRe reduces s, and also eliminates inflection points, whereas increasing SrRe increases
s, promoting inflection points, but containing them within a thinner oscillating boundary layer.

It is also worth considering the pulsatile base flow in a broader context, as past literature is
divided on the method of oscillation. Among many others, Refs. [29,33] impose an oscillatory
pressure gradient, while Refs. [28,34] impose oscillating walls. For the unbounded, oscillatory
Stokes flow, the eigenvalues of the linear operator, with either imposed oscillation, have been proven
identical [35]. Furthermore, it has also been shown that (transient) energy growth is also identical
between the two methods of oscillation [36]. However, the full linear and nonlinear problems can
be shown to be identical. Defining a motionless frame G and a frame Ḡ in motion with arbitrary,
time varying velocity V (t ), the two frames are related through

x̄ = x −
∫

V dt, t̄ = t, ū = u − V . (6)

Under extended Galilean invariance, ∂ū/∂ x̄ = ∂u/∂x and Sr∂ū/∂ t̄ + (ū · ∇̄⊥)ū = Sr(∂u/∂t −
∂V/∂t ) + (u · ∇⊥)u [37]. In frame G, a constant driving pressure gradient, and oscillatory wall
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FIG. 2. Base flow profiles at � = 1.2. Equispaced over one period: oscillating component (left), (1 + 1/�)
rescaled pulsatile base flow (right). A black dashed line denotes the steady component, U1,B.

motion U (y ± 1, t ) = U2,B(y ± 1, t )/� are imposed. V (t ) = (U2,B(y ± 1, t )/�, 0) is selected so the
walls appear stationary, Ū (y ± 1, t ) = 0, in the moving frame Ḡ. Substituting the relations in Eq. (6)
into Eqs. (1) and (2), the governing equations in the moving frame become

Sr

(
∂ū
∂ t̄

+ ∂V
∂t

)
= −(ū · ∇̄⊥)ū − ∇̄⊥ p + 1

Re
∇̄2

⊥ū − H

Re
(ū + V ), (7)

∇̄⊥ · ū = 0. (8)
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As the pressure does not have a conversion relation, the driving pressure in the moving frame can
be freely chosen as

p̄(t ) = p + x

�

(
Sr

∂U2,B(y ± 1, t )

∂t
+ H

Re
U2,B(y ± 1, t )

)
. (9)

Substituting Eq. (9) into Eq. (7) and canceling yields

Sr
∂ū
∂ t̄

= −(ū · ∇̄⊥)ū − ∇̄⊥ p̄ + 1

Re
∇̄2

⊥ū − H

Re
ū, (10)

∇̄⊥ · ū = 0. (11)

Thus, in frame Ḡ, the governing equations, Eqs. (10) and (11), are identical to the governing
equations in G, Eqs. (1) and (2). However, in Ḡ the walls are stationary, and the pressure forcing p̄
is the sum of a steady and oscillatory component. Thus, the linear and nonlinear dynamics when the
flow is driven by oscillatory wall motion (G), or an oscillatory pressure gradient (Ḡ), are identical
in all respects, as they are both the same problem viewed in different frames of reference. These
arguments do not hold if H = 0 in the steady limit (� → ∞, U2,B = 0) or if the oscillation of both
walls is not synchronous. Note that the constant pressure gradient in the fixed frame could also be
considered as a constant wall motion for nonzero H . If so, the oscillations would be about a finite
wall velocity rather than about zero.

B. Validity of SM82 for pulsatile flows

With the pulsatile base flow established, the realm of validity of the SM82 model is assessed.
The dimensional equation governing the induced magnetic field b̌ is [38]

∂ b̌
∂ ť

= B0(ez · ∇̌)ǔ + (b̌ · ∇̌)ǔ − (ǔ · ∇̌)b̌ + 1

μ0σ
∇̌2b̌, (12)

where a background uniform steady field B0ez is imposed. The aim is to show that the induced
magnetic field diffuses Rm times faster than it locally varies, where the magnetic Reynolds number
Rm = μ0σU1L and where μ0 is the permeability of free space. The low-Rm approximation assumes
that one of the bilinear terms is much smaller than the diffusive term, |(ǔ · ∇̌)b̌| 	 |(μ0σ )−1∇̌2b̌|.
Once nondimensionalized by U1 and L, this imposes an Rm 	 1 constraint. This is well satisfied for
liquid metal duct flows, with Rm of the order of 10−2 [39,40]. Note that |B0(ez · ∇̌)ǔ| remains of the
same order as |(μ0σ )−1∇̌2b̌| when the background magnetic field is imposed.

The quasistatic approximation assumes |∂ b̌/∂t | 	 |(μ0σ )−1∇̌2b̌|. Note that a low Rm does not
necessarily imply that |∂ b̌/∂ ť | is small. Based on a typical out-of-plane steady velocity scale of
a/U1, |∂ b̌/∂ ť | may be reasonably assumed to scale as |(ǔ · ∇̌)b̌|, and thereby be small if Rm were
small. However, a pulsatile flow introduces an additional velocity timescale, based on the forcing
frequency, to also compare against. Hence, nondimensionalizing |∂ b̌/∂ ť | 	 |(μ0σ )−1∇̌2b̌| based
on a timescale of 1/ω yields a constraint on the shielding parameter Rω = μ0σωL2 	 1 [39]. This
translates to RmSr 	 1, or Sr 	 R−1

m , to ensure that diffusion of the induced field is not contained
to small boundary regions of the domain. Given Rm of 10−2 is typical of liquid metal duct flows at
moderate Reynolds numbers [39,40], since Rm = RePrm and the magnetic Prandtl number Prm =
νμ0σ is of the order of 10−6 for liquid metals [16], the shielding condition of Sr 	 R−1

m requires
Sr 	 100.

Furthermore, for the induced magnetic field to be treated as steady, the induced magnetic field
must vary rapidly relative to a slowly varying velocity field. This requires the Alfvén timescale (time
taken for the Alfvén velocity to cross the duct width) be much smaller than the pulsation (transient
inertial) timescale. The Alfvén velocity vA = B/(μ0ρ)1/2 = (NL/Rm )1/2(U1L/a) is expressed in
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terms of the interaction parameter NL = a2B2σ/ρU1L. Thus the Alfvén timescale is τA = a/vA =
(Rm/NL )1/2(a2/U1L), while the steady inertial timescale τI,L = L/U1 and the pulsation timescale
τP = 1/ω. Thus, τA/τI,L = (Rm/NL )1/2(a2/L2) and τA/τP = (Rm/NL )1/2Sr(U0/U1)(a2/L2). If
Sr(U0/U1) < 1, or equally Sr(1 + 1/�) < 1, no SM82 assumptions are in question. This requires
Sr < 1/2 at � = 1 (and Sr < 1 for � → ∞) at equivalent N � 1 and Rm 	 1 conditions as for a
steady case. Recall that Sr 	 100 was required from the shielding constraint.

Finally, the quasistatic approximation is only valid if Alfvén waves dissipate much faster than
they propagate. This is ensured if |∂ b̌/∂t | 	 |(μ0σ )−1∇̌2b̌| is satisfied when considering the last
remaining characteristic timescale, the Alfvén timescale τA = a/vA. This places a condition on the
Lundquist number S = (NLRm )1/2 = HaPr1/2

m 	 1. Given Prm of the order of 10−6 [16], and with
Rm of 10−2 [39,40], this translates to conditions on the interaction parameter and Hartmann number
of NL � 100 and Ha � 1000, respectively.

An additional component of the SM82 model is the Q2D approximation, which requires the
timescale for two-dimensionalization to occur via diffusion of momentum along magnetic field
lines, τ2D = (ρ/σB2)(a2/L2) = (1/NL )(a4/U1L3) [17], be much smaller than the inertial and pulsa-
tion timescales. These ratios are τ2D/τI,L = (1/NL )(a4/L4) and τ2D/τP = (Sr/NL )(U0/U1)(a4/L4).
Thus, if Sr < 1/2 for otherwise equivalent conditions as for a steady case, momentum is diffused
across the duct more rapidly by the magnetic field than by steady or transient inertial forces. The
SM82 approximation also assumes 1 	 Ha � 1000 and N � 1, NL � 100. These constraints can
be met with any H if a and L are chosen appropriately, as discussed in Ref. [23].

The SM82 model is more generally applicable to flows which exhibit a linear friction and a
strong tendency to two-dimensionalize. Axisymmetric quasigeostrophic flows, with frictional forces
imparted by Ekman layers, and Hele-Shaw (shallow water) flows, with Rayleigh friction, both tend
to two-dimensionality if the aspect ratio L/a is small. In these flows, a formally equivalent Q2D
model can be derived [7,41] (with the addition of a term representing the Coriolis force in the
quasigeostrophic case), although the physical meaning of the friction term differs, as do the bounds
of validity [23].

III. LINEAR STABILITY ANALYSIS

A. Formulation and validation

Linear stability is assessed via the exponential growth rate of disturbances, with unstable pertur-
bations exhibiting net growth each period. The linearized evolution equations,

Sr
∂û
∂t

= −(û · ∇⊥)U − (U · ∇⊥)û − ∇⊥ p̂ + 1

Re
∇2

⊥û − H

Re
û, (13)

∇⊥ · û = 0, (14)

are obtained by neglecting terms of O(ε2) in the decomposed Navier–Stokes equations. A single
fourth-order equation governing the linearized evolution of the perturbation is obtained by taking
twice the curl of Eq. (13) and substituting Eq. (14). By additionally decomposing perturbations into
plane-wave solutions of the form v̂(y, t ) = eiαx ṽ(y, t ), by virtue of the streamwise invariant base
flow U (y, t ), yields

∂ ṽ

∂t
= L −1

[
iα

Sr

∂2U

∂y2
− Uiα

Sr
L + 1

SrRe
L 2 − H

SrRe
L

]
ṽ, (15)

where L = (∂2/∂y2 − α2) and where the perturbation eigenvector ṽ(y, t ) still contains both expo-
nential and intracyclic time dependence. Integrating Eq. (15) forward in time, with a third-order
forward Adams–Bashforth scheme [42] and with the renormalization ‖ṽ‖2 = 1 at the start of each
period, forms the timestepper method. After sufficient forward evolution, all but the fastest growing
mode is washed away, providing the net growth of the leading eigenmode over one period. A
Krylov subspace scheme [43] is also implemented to aid convergence and provide the leading few
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TABLE I. � = 0, H = 0 cases validating and testing the resolution of the Floquet matrix method, consid-
ering the real part of even and odd modes separately. From Ref. [34], parameters convert as Sr = hBB06/ReBB06

and Re = 2hBB06ReBB06, where hBB06 = 16 and ReBB06 = 847.5. Nc accounts for the entire domain.

Nc (T = 300) Re(λ1) |% Error| T (Nc = 150) Re(λ1) |% Error|
50 0.4719273115651 3.02 ×101 200 0.9493815978240 4.04 ×101

100 0.6762032203289 6.39 ×10−3 250 0.6761968753200 5.45 ×10−3

150 0.6761968755932 5.45 ×10−3 300 0.6761968755932 5.45 ×10−3

Ref. [34], even 0.67616 0 0.67616 0
50 0.4689789806609 3.06 × 101 200 0.8329627125585 2.33 × 101

100 0.6756830883343 6.38 × 10−3 250 0.6756767389579 5.44 × 10−3

150 0.6756767389579 5.44 × 10−3 300 0.6756767389579 5.44 × 10−3

Ref. [34], odd 0.67564 0 0.67564 0

eigenvalues λ j with the largest growth rate (real component). The domain y ∈ [−1, 1] is discretized
with Nc + 1 Chebyshev nodes. The derivative operators, incorporating boundary conditions, are
approximated with spectral derivative matrices [44]. The spatial resolution requirements are halved
by incorporating a symmetry (respectively, antisymmetry) condition along the duct centreline, and
resolving even (respectively, odd) perturbations separately. Even perturbations were consistently
found to be less stable than odd perturbations.

The eigenvalues of the discretized forward evolution operator are also determined with a Floquet
matrix approach [28,34]. The exponential and time-periodic growth components of the eigenvector
are separated by defining

ṽ(y, t ) = eμFt
n=∞∑

n=−∞
ṽn(y)eint , (16)

with Floquet multiplier μF and harmonic n. This sum is numerically truncated to n ∈ [−T, T ], to
obtain a finite set of coupled equations

μṽn = − iα

Sr
(Mṽn+1 + M∗ṽn−1)

+
{

1

SrRe
L −1L 2 − H

SrRe
− in − iαγ1

Sr

[
L −1

(
U1,BL − ∂2U1,B

∂y2

)]}
ṽn, (17)

after substituting Eq. (16) into Eq. (15), where M = γ2[L −1(bL − ∂2b/∂y2)]. This system of
Chebyshev-discretized equations is set up as a block tridiagonal system, with the coefficients
of ṽn+1, ṽn and ṽn−1 placed on super, central and subdiagonals, respectively. Spectral derivative
matrices are built as before. The MATLAB function eigs is used to find a subset of eigenvalues of
the block tridiagonal system located near zero real component (neutral stability), with convergence
tolerance 10−14. Re and α are varied until only a single wave number, αcrit , attains zero growth rate,
at Recrit (for specified Sr, �, and H).

The numerical requirements for the Floquet and timestepper approaches are highly parameter
dependent. Validation against the hydrodynamic oscillatory problem [34] is provided in Table I.
Further assurance of the validity of the numerical method is provided in the excellent agreement
between pulsatile and steady Recrit values (e.g., rs → 1) at very small and large Sr in Sec. III B and
the agreement between the timestepper and Floquet growth rates shown in Sec. III B. Sporadic
resolution testing, post determination of Recrit, was also performed, with an example shown in
Table II.

As a rough guide, for the Floquet method, Nc varies between 100 and 400 and T between 100
and 600, with an eigenvalue subset size of around 200. For the timestepper, Nc varies between
40 to 240, with 105 to 4 × 107 time steps per period, and 6 to 4000 iterations. As discussed in
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TABLE II. Resolution test at H = 10, � = 10 (at large Re, and small Sr = 1.12 × 10−2). The Floquet
method was used to determine Recrit = 8.1243 × 105 and αcrit = 0.91137, at Nc = 200 and T = 400. This
Recrit and αcrit were input into the timestepper to validate the timestepper and the Floquet Recrit value (note the
neutrally stable growth rate Re(λ1) ≈ 0). Nc accounts for the entire domain with an even mode enforced.

Nc Time steps (per period) Iterations ‖ṽ‖2 (final iteration) Re(λ1) Im(λ1)

100 4 × 105 40 0.991293824970121 −0.001391699032636 0.962888347220989
140 4 × 105 20 1.000006449491397 0.000001028054446 0.955814791449918
180 4 × 105 20 0.999993672187703 −0.000001007773833 0.955795855565797
220 7 × 105 20 0.999993546425103 −0.000001027780526 0.955795848436100
240 106 10 0.999993662207549 −0.000001011050606 0.955795855979765

Refs. [28,29], with increasing pulsation amplitude (decreasing �), decreasing Sr and increasing
Re, the intracylcic growth can become stupendously large. The matrix method becomes problem-
atic when the intracylcic growth exceeds four to six orders of magnitude, while the timestepper
withstands approximately 10 to 15 orders of magnitude of intracylcic growth (the perturbation
norm ‖ṽ‖2 does not cleanly converge thereafter). Very roughly, for Sr � 10−3 and/or � � 2 and/or
Re � 105 when H � 10 the intracyclic growth was greater than even the timestepper could handle.
However, given the specific aims of this paper, this does not obstruct too large a fraction of the
parameter space we wish to explore.

B. Long-term behavior

A neutrally stable perturbation exhibits no net growth or decay over each cycle. Neutral stability
is first achieved at Recrit and αcrit as Re is increased. However, such a definition conceals the
intracylic dynamics, which strongly influence Recrit , as is further discussed in Sec. III C. Two key
results are shown in Fig. 3, considering the effect of varying H on Recrit . First, at large H , Recrit for
a purely steady base flow scales as H1/2, while all pulsatile cases scale as H p, with 1/2 � p < 1.
For large H , r is dominated by [(SrRe)2 + H2]1/4, which is always greater than H1/2. As the
isolated boundary layer thickness is defined by e−ry (Sec. II), increasing H stabilizes pulsatile base
flows more rapidly than steady base flows. Thus, the thinner pulsatile boundary layers are always
more stable than their thicker counterpart exhibited by steady base flows. Note that in the high
H regime, when the boundary layers are isolated for any frequency pulsation, the stability results
are defined solely by the dynamics of an isolated boundary layer, as observed in steady MHD or
Q2D studies [17,22,23,45], and for high frequency oscillatory hydrodynamic flows [34]. Second,
variations in the pulsation frequency and amplitude roughly act to translate the stability curves,
without significantly changing the overall trends (a slight change, the local minimums in Fig. 3(c),
are explained when considering Sr variations at fixed H shortly). At � = 100, differences between
pulsatile and steady results are not easily observed, confirming the accuracy of the Floquet solver.
The � = 10 curves overlay the steady trend at respective high and low frequencies of Sr = 1 and
Sr = 10−3. At Sr = 10−2, the flow is more unstable as H → 0, with rs → 0.8651. However, for
H � 2400 the additional stability conferred by thinner pulsatile boundary layers pushes rs above
unity. The pulsatile flow is then more stable than the steady counterpart. Note that so long as Recrit

varies as H p with p < 1 (as observed for all H simulated), then Re does not increase quickly enough
to offset the eventual s → 0 and r ∼ H1/2 trends as H → ∞. Eventually, the exponent p should
settle to 1/2, after which Recrit should vary as H1/2 for very large H > 104. At Sr = 10−1, the flow
is hydrodynamically more stable (rs → 2.4258 as H → 0) and is even more strongly stabilized at
higher H . The Sr = 10−1 curve in Fig. 3(c) is not smooth as different least stable modes become
dominant, as shown in the jumps in critical wave number, clearest in Fig. 3(d). In steady Q2D flows
[17,22,23], αcrit also scales with H1/2 for high H , like Recrit. However, perplexingly for the pulsatile
cases, the αcrit trends are as Hq, with a lower exponent than the steady case, q � 1/2.
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FIG. 3. Rescaled Recrit and αcrit as a function of H for 10−3 � Sr � 1 and � � 10. The steady (� → ∞)
results from Ref. [22] have been included for direct comparison in the top row (black dashed lines) and are
divided out to compute rs and αs in the bottom row.

Variations in rs as a function of Sr are depicted for various H under a weak pulsatility of � = 100
in Fig. 4(a) and at � = 10 in Fig. 5(a). The deviations from the steady Recrit are modest at � = 100
(between −1% and +4%). However, it helps provide a clearer picture of the underlying dynamics.
Considering the hydrodynamic case (approximated by H = 10−7) as an example, the steady Recrit is
approached (rs → 1) as Sr → 0. In this limit, transient inertial forces act so slowly that viscosity can
smooth out all wall-normal oscillations in the velocity profile over the entire duct within a single
oscillation period (2π ). Although large intracylic growth occurs during the deceleration phase of
the base flow (effectively due to an adverse pressure gradient), this is not augmented by additional
growth as inflection points are absent. Therefore, the growth is entirely canceled out by decay (due to
an equivalent-magnitude favorable pressure gradient) in the acceleration phase. With increasing Sr,
inflection points are present over a greater fraction of the deceleration phase, in spite of the action of
viscosity, and become more prominent, providing a reduction in rs. However, increasing Sr reduces
the effective duration of the deceleration phase of the base flow, leaving less time for intracyclic
growth. Thus, the local minimum in rs occurs when the benefits of promoting and maintaining
inflection points for a larger time (increasing Sr) is counteracted by reducing the duration of the
growth phase (decreasing Sr). However, although increasing Sr promotes inflection points, these
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FIG. 4. Variation in rs and αs as a function of Sr at � = 100, curves of constant H (arrows indicate
increasing H ). As Sr → 0 and Sr → ∞, the agreement with the steady result is further validation.

points also become increasingly isolated as the oscillating boundary layers become thinner. The
thinner boundary layers reduce constructive interference between modes at each wall, stabilizing
the flow [22]. Eventually, the oscillating boundary layers become so thin that they are immaterial
and rs drops to recover the steady value (Sr → ∞).

The other friction parameters are now considered. For larger H , as H is increased, the curves
in figure Fig. 4(a) shift to larger Sr. Increasing H smooths inflection points within the pulsatile
boundary layer. Recall that a pulsatile isolated SM82 boundary layer has the form e−ry cos(sy − t ),
and increasing H decreases s, thereby increasing the wavelength of wall-normal oscillations in the
base flow. Larger Sr values are then required to offset the larger H values, ensuring that inflection
points remain within the boundary layer, and provide enough intracylic growth to reduce rs. Thus,
the local minimum of rs does not strongly depend on H , although the corresponding Sr value
varies greatly. Importantly, for fusion relevant regimes, the percentage reduction in Recrit appears

FIG. 5. Variation in rs and αs as a function of Sr at � = 10, curves of constant H (arrows indicate increasing
H ). Dashed curve indicates restabilization and a second destabilization with increasing Re > Recrit at H = 10.
The stable region is below the continuous solid-dashed-solid curve.
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FIG. 6. Exponential growth rate as a function of α with increasing Re (8 × 104 through 8 × 105) at
H = 10, � = 10, comparing Sr. At Sr = 1.8 × 10−2 the TS-like mode does not become unstable, thus
Recrit = 6.40840 × 105 is much larger than Recrit = 8.50617 × 104 at Sr = 1.7 × 10−2. As additional vali-
dation, symbols (timestepper) show excellent agreement with curves (Floquet).

to steadily improve with increasing H , although the shift to higher Sr may eventually invalidate
the SM82 assumption requiring Sr < 1/2 for � � 1. The pulsatile boundary layers also become
increasingly isolated with increasing H , as r increases with H , resulting in the steady increase
in the maximum of rs. At � = 100, the variations in Recrit are small, with the Reynolds number
dependence of the base flow having little effect, relative to the Sr and H variations (this is not the
case at � = 10). As a last note, for � = 100, the smooth αs curves in Fig. 4(b) also show that the
variations in rs represent the same instability mode for all Sr (henceforth the TS-like mode).

At the lower � = 10, Fig. 5, the oscillating component plays a much greater role. The underlying
behaviors discussed for � = 100 still hold for smaller Sr, including the region of minimum rs, and
for much larger Sr. Furthermore, the local minimum in rs still becomes more pronounced with
increasing H , with an approximately 33.0% reduction in Recrit, compared to the steady value at
H = 10. H = 1000 could not be computed over a wide range of Sr at � = 10 but the partial data
collected (not shown) demonstrated a further reduction in rs of up to 42.4%.

The degree of stabilization at � = 10 is far more striking. The sudden jumps in αs, shown in the
inset of Fig. 5(b), indicate different instability modes. These modes are increasingly stable, with
much larger accompanying rs values (the H = 10 case peaks with an approximately 804% increase
over the steady Recrit). Because the Reynolds numbers are significantly far from the steady Recrit

values, the change in Reynolds number has had a noticeable effect on the base flow profiles. At
larger Reynolds numbers, the oscillating boundary layers become much thinner, so inflection points
are not positioned where they could underpin sizable intracyclic growth.

This explains the discontinuous change in rs with a slight shift in Sr. At fixed Sr, at Reynolds
numbers near the steady Recrit value, a TS-like mode is excited, but not necessarily unstable. The
TS-like mode is based on the instability of the steady flow, i.e., the TS wave. For Re > Recrit, its
exponential growth rate increases with increasing Reynolds number. However, the same increase in
Re increasingly isolates and thins the boundary layers, thus reducing the exponential growth rate.
The isolation of the boundary layers (the effect of Re on the base flow) eventually overcomes any
increases in exponential growth rate (the effect of Re on the perturbation). At higher Sr, when
the oscillating boundary layers are naturally further apart, the increased isolation prevents the
instability of the TS-like mode. This is shown at Sr = 1.8 × 10−2 in Fig. 6(b), or to the right of
the discontinuity in rs on Fig. 5(a). The sudden increase in rs in Fig. 5(a) reflects the stabilization
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FIG. 7. Neutral curves for various Sr, at � = 10, H = 10, with instability to the right of open curves. (a) Sr
from the steady result, to the first destabilization of the TS-like mode (unstable pocket) at Sr � 1.748 × 10−2.
(b) Dominance of the TS-like mode, and eventual vanishing of the restabilization region for Sr � 1.1 × 10−2.
(c) Instability for all Re > Recrit , including the local Recrit minimum (near Sr = 9 × 10−3). However, stable
pockets form at higher Re. The black dashed curves correspond to the steady base flow at H = 10 [22].

of the TS-like mode (another mode is destabilized at a much higher Re). At smaller Sr, the effect
of Re on increasing the growth rate allows the TS-like mode to become unstable, if only briefly at
Sr = 1.7 × 10−2 in Fig. 6(a). With further increasing Re, the isolation and thinning of the boundary
layers leads to the TS-like mode becoming stable again; the stable region is bounded by the dashed
curve in Fig. 5(a). At Sr = 1.7 × 10−2, a different mode becomes unstable at much higher Re, as
also shown in Fig. 6(a). This mode is a very similar to that at Sr = 1.8 × 10−2, so the dashed curve
in Fig. 5(a) follows the trend of increasing rs from the right of the discontinuity. Eventually, for all
Sr < 1.12 × 10−2 (H = 10, � = 10), with oscillating boundary layers that start out closer together,
at least one mode is unstable for all Re.

Further considering � = 10 and H = 10, neutral (zero net growth) curves at several Sr are pre-
sented in Fig. 7. The Sr = 1 neutral curve is indistinguishable from that of the steady base flow [22].
With decreasing Sr, the critical Reynolds number rapidly increases and the neutral curve broadens,
see Fig. 7(a). At Sr = 1.8 × 10−2, just to the right of the discontinuity, waviness in the neutral curve
reflects the excitation of multiple modes, as shown in Fig. 6(b). At Sr = 1.748 × 10−2, just to the left
of the discontinuity, the TS-like mode is first destabilized. The increasing isolation of the oscillating
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FIG. 8. Exponential growth rate as a function of α and Re (Recrit through 5 × 106). At low Re, only the
TS-like mode is unstable. After this mode restabilizes, multiple modes are excited, separated by sharp valleys.
These modes have negative growth for some Re at Sr = 1.12 × 10−2, but have positive growth at Sr = 8 ×
10−3. Solid lines denote positive growth; dotted lines negative. Zero growth is emphasized with a thick black
line on a gray intersecting plane.

boundary layers quickly restabilizes the flow, resulting in a very small instability pocket. Moving to
Fig. 7(b), with slight decreases in Sr, the (TS-like mode’s) instability pocket rapidly occupies more
of the wave number space, and the pocket terminates before it reaches the broader, pulsatile part
of the neutral curve at Sr = 1.12 × 10−2 (the leftmost point of the dashed curve in Fig. 5). With a
slight drop to Sr = 1.1 × 10−2, the two curves meet, with a small throat allowing a path through
wave number space with increasing Re that always attains positive growth. At Sr = 1.12 × 10−2,
also shown in Fig. 8(a), the TS-like mode (the first local maximum) initially peaks and then falls
away with increasing Re. A small band of Reynolds numbers fail to produce net growth (along the
line of six depressions in the wave-number space). Increasing Re, multiple pulsatile modes become
excited from the baseline spectrum and become unstable. At Sr = 1.1 × 10−2, the rising pulsatile
modes outpace the falling TS-like mode, so at least one mode always maintains positive growth, see
Fig. 8(b).

At Sr = 10−2, three stable pockets are observed, see Fig. 7(c). At lower Sr, the growth rates of the
TS-like mode decrease more rapidly, leaving only pulsatile modes in control of the neutral stability
behavior. Because these modes are excited in narrow resonant peaks in wave-number space, stable
regions can be present between the peaks. Thus, at lower Sr, multiple stable pockets surrounded
by unstable conditions form. Further reduction in Sr produces more resonant peaks, and more
interleaved stable pockets, as shown at Sr = 8 × 10−3 in Fig. 8(b). Further reducing Sr, for large
H and Re, reaches the limit of the capability of the timestepper to cleanly resolve the entire neutral
curves. By Sr = 10−3, the part of the neutral curve able to be computed is approaching that of the
steady base flow [22].

The influence of � is now considered. Over 1 � � � 100, different effects on rs are observed
at Sr = 1, Fig. 9(a), and at Sr = 10−2, Fig. 9(b). As Sr = 1, close to the steady limit, rs remains
near unity. At small H , only stabilization is observed for all � � 1. With increasing H , a slight
destabilization can be observed with increasing H , up to H ≈ 10. Further increasing H induces
restabilization. This echoes the Sr variation, where the local minimum shifts to smaller Sr for H �
10, and shifts back to larger Sr for H � 10. At higher H , H offsets Sr, so the results for the steady
base flow are only recovered at increasingly large Sr. On the other hand, at Sr = 10−2 in Fig. 9(b),
rs is far from unity, and the effect of varying the Reynolds number on the base flow must again
be considered. At smaller Re, the oscillating boundary layers are much thicker, with prominent

053903-15

221



CAMOBRECO, POTHÉRAT, AND SHEARD

FIG. 9. Variation in rs as a function of � � 1 at Sr = 1 and Sr = 10−2, curves of constant H (arrows
indicate increasing H ). Small Sr and � present significant potential for destabilization.

inflection points well placed to promote intracyclic growth. This part of the base flow becomes
increasingly dominant with decreasing �, favoring the destabilization of the TS-like mode. Given
that (SrRe)2 � H2, Recrit depends far more on the pulsatile process and only weakly on H , until
SrRe becomes small. However, the Recrit for the steady base flow strongly depends on H , so rs

reduces with increasing H . rs continues to decrease up to � � 1 for H � 10, matching well with
the conclusion of Ref. [28] that the maximum reduction in Recrit occurs near unity amplitude ratio.
At higher H , the magnitude of intracylic growth eventually limited computations (to � > 1). At
H = 100, Sr = 10−2 no local minimum is observed for � � 1. However, these results still indicate
that for H � 100 and � � 1, a 70 to 90% reduction in the critical Reynolds number is possible with
the addition of pulsatility. They further support that the percentage reduction in Recrit improves with
increasing H . The mode defining this local minimum, even at small �, still appears to be directly
related to the TS-like mode (as there were no sharp changes in the dominant α through the entire
Sr − � − Re space).

Given the results of Fig. 9(b), it is worth considering the maximum reduction in rs that can be
obtained via optimization of the pulsation over 10−4 < Sr < 1 and 1 < � < ∞. These have been
tabulated for increasing H in Table III. These optimized pulsations truly highlight how effective
pulsatility can be in destabilizing a Q2D channel flow, both at hydrodynamic conditions, with a
69.3% reduction at H = 10−7, all the way up to a 90.3% reduction at H = 10. Still larger percentage
reductions are predicted at higher H , as rs consistently decreases with increasing H .

C. Intracylcic behavior

This section is focused on processes taking place within each cycle that are obscured in the net
growth quantifications. All results in this section are at Recrit.

The TS-like mode at � = 100 and H = 100 is considered first, in Fig. 10, over a range of Sr.
The perturbation norm ‖ṽ‖2 is compared to EU(t ) = ∫

U 2 dy − 〈∫ U 2 dy〉t (taking the value of the
current base flow energy about the time mean solely to aid figure legibility). There are only simple,
sinusoidal energy variations at these conditions and perturbation energies remain order unity over
the entire cycle (akin to the cruising regime). The key result is that the phase difference between the
perturbation and base flow energy curves changes as Sr is varied. Measuring the phase difference
ψd of the local minimums of the perturbation and base flow energies appears most meaningful and
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TABLE III. Optimization of the pulsation (optimizing �, Sr, and α) for the greatest reduction in the rescaled
critical Reynolds number relative to the steady result. This is achieved at � just above unity and pulsation
frequencies similar to those of the local minimum for the TS-like mode, Figs. 4(a) and 5(a). Importantly,
the percentage reduction improves with increasing H , with over an order of magnitude reduction in critical
Reynolds number for H � 10.

H Recrit,s αcrit,s � Sr Recrit/(1 + 1/�) α rs αs % Reduction

10−7 5772.22 1.02055 1.29 7.8 × 10−3 1773.29 1.3812 0.3072 1.3534 69.28
0.01 5808.04 1.01991 1.29 7.8 × 10−3 1777.58 1.3804 0.3061 1.3535 69.39
0.1 6136.85 1.01435 1.29 7.8 × 10−3 1816.18 1.3823 0.2959 1.3628 70.41
0.3 6908.55 1.00291 1.27 7.6 × 10−3 1902.79 1.3857 0.2754 1.3816 72.46
1 10033.2 0.97163 1.24 7.2 × 10−3 2215.87 1.3980 0.2209 1.4388 77.91
3 21792.6 0.93194 1.19 6.3 × 10−3 3185.90 1.4343 0.1462 1.5391 85.38
10 72436.8 0.96833 1.19 5.6 × 10−3 7050 1.59 0.0973 1.6420 90.27

these values are annotated on Fig. 10. The perturbation energy variation exhibits a lag to the base
flow energy variation at Sr = 10−3, with ψd = −0.2446, and is closer to in phase by Sr = 10−2,
ψd = −0.1466 (the optimal Sr is 1.5 × 10−2 for minimising rs at � = 100). By Sr = 10−1, the
perturbation energy leads the base flow energy (positive ψd), and intracyclic growth in noticeably
smaller. Sr = 1 is close enough to the Sr → ∞ limit to produce negligible intracyclic growth. The
minimum in rs tends to occur when the perturbation and base flow energy growths are close to being
in phase. Thus, selecting the optimal Sr to minimize rs at a given � (and H) amounts to tuning the
frequency of the oscillating flow component to ensure growth in the base flow and perturbation
energies coincide.

The energy norms at � = 10, H = 10 are displayed in Fig. 11. At Sr = 10−3, Fig. 11(a), toward
the steady base flow limit, the variation of the perturbation is again a simple sinusoid, slightly
lagging behind the base flow energy variation, as for � = 100, Fig. 10(a). However, at � = 10,
the increase in intracylcic growth with reducing � can be clearly observed, eclipsing six orders of
magnitude. Thus, at lower � and Sr, a behavior akin to the ballistic regime is reached. At Sr = 10−2,
intracyclic growth remains large (the local minimum in rs occurs at Sr = 9 × 10−3). An additional
complexity in the form of a brief growth in perturbation energy (at tP ≈ 0.25) occurs during the
acceleration phase of the base flow and is not detected at Sr < 9 × 10−3. The additional growth
incurred by the presence of inflection points is somewhat obscured by the lower Recrit at Sr = 10−2.
Increasing Sr to 10−1, the TS-like mode is no longer the least stable. At this Sr, the intracyclic
growth is relatively small, likely falling in the cruising regime, while by Sr = 1 the intracylcic
growth again becomes trivial.

The linearized evolutions of the leading eigenvector are depicted over the period of the base
flow in Fig. 12. At � = 100, the dominant mode is the TS-like mode for all Sr, with a structure
that does not observably change with time, as shown in the accompanying animation [46]. The
amplitude variations are also small; many repetitions of the wave are visible at lower Sr as the
advection timescale is much smaller than the transient inertial timescale. Although the mode has a
very similar appearance to that of a steady TS wave, the additional isolation of the boundary layers
means that the H = 100 pulsatile mode resembles a H = 400 steady mode [22]. Once H is reduced,
separate TS waves are no longer observed at each wall, but appear as a single conjoined structure.
While at larger Sr, the H = 10, � = 10 mode structure still displays minimal time variation. Only at
Sr = 10−2 is significant unsteadiness observed, slightly towards the walls, and prominently during
the disruption of the decay phase (at tP ≈ 0.25). However, the general appearance of the structure
as a conjoined TS wave persists (this case is also animated [46]).

Finally, at H = 1, the optimized conditions (� = 1.24, Sr = 7.2 × 10−3) and nearby Sr are
considered, with the energy norms displayed in Fig. 13. A smaller � features staggering intracyclic
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FIG. 10. The perturbation norm (solid; black) and the base flow energy relative to the time mean (dashed;
red) over one period at critical conditions at H = 100, � = 100, for various Sr. The phase differences ψd

between the local minimums of each pair of curves are also annotated.

growth, with almost 24 orders of magnitude of growth at Sr = 10−3. Similar to previous cases,
at lower Sr the local minimum in perturbation energy significantly lags behind the minimum in
the base flow energy, ψd = −0.2380. However, an additional feature at smaller Sr and � is that
the perturbation decay is more rapid, and almost plateaus at low energies (with neither a smooth
transitioning from growth to decay nor sharp bounce back up). At the slightly larger Sr = 4 × 10−3,
the decay is not so rapid (decaying over 0.112 < tP < 0.653 compared to 0.008 < tP < 0.491),with
a sharp bounce back to growth and a smaller lag in the locations of the local minima, ψd = −0.0996.
At the optimized Sr = 7.2 × 10−3, the decay rate of the perturbation is matched to the period of the
base flow, the local minima in energy are close to coinciding (ψd = −0.0282), and so inflection
points are maintained throughout the deceleration phase (rs is then minimized). At larger Sr, the
perturbation energy leads the base flow energy (ψd = 0.0195), and the deceleration phase is not
used to its full extent.

The evolution of the optimized perturbation at H = 1 is shown in Fig. 14, and in a supplementary
animation [46]. From tP = 0, the perturbation is slowly growing, aided by the single large inflection
points present in each half of the domain. As these become less pronounced, the wings of the
perturbation are pulled in (tP = 0.2). By this point, inflection points in the base flow have vanished,
as the wall oscillation follows through to negative velocities, although a small amount of residual
growth is maintained. The pull of the walls on the central structure sweeps the wings forward (tP =
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FIG. 11. The perturbation norm (solid, black) and the base flow energy relative to the time mean (dashed,
red) over one period at critical conditions at H = 10, � = 10, for various Sr. The phase differences ψd between
the local minimums of each pair of curves are also annotated.

0.3) as the base flow velocity in the central region is smaller than the velocities near the walls. The
downstream pull of the walls acts to increasingly shear the structure, with perturbation decay until
tP = 0.738. The structure rapidly reorients to the wider forward winged structure just as inflection
points reappear in the base flow, near tP = 0.75. As these inflection points become more pronounced,
rapid growth occurs, while the wings are swept further forward.

IV. NONLINEAR ANALYSIS

A. Formulation and validation

We now seek to investigate the nonlinear behavior of the optimized pulsations at various H . As a
first step in investigating transitions to turbulence, the modal instabilities predicted in the preceding
sections are targeted by the DNS. Although linear or nonlinear transiently growing disturbances may
initiate bypass transition scenarios [47–51], the modal instability seemed the natural starting point.
Furthermore, if the modal instability has a large decay rate, linear transient growth mechanisms can
be strongly compromised [52], as observed for cylinder wakes in particular [53]. Finally, previous
work on steady Q2D transistions observed that only turbulence generated by a modal instability
[22,24] was sustainable in wall-driven channel flows.
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FIG. 12. The linear evolution of the leading eigenvector ṽ(y, t ) over one period. Linearly spaced contours
between ± max |ṽ| are plotted, solid lines (red flooding) denote positive values, dotted lines (blue flooding)
negative values, except for H = 10, Sr = 10−2, with logarithmically spaced contours between −15 and 15.
Perturbation norms ‖ṽ‖2 from Figs. 10 and 11 are overlaid.
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FIG. 13. The perturbation norm (solid, black) and the base flow energy relative to the time mean (dashed,
red) over one period at critical conditions at H = 10, � = 1.24, for various Sr. The Sr = 7.2 × 10−3 case
represents the optimized pulsation for this H , recalling Table III. The phase differences ψd between the local
minimums of each pair of curves are also annotated.

The DNS of Eqs. (1) and (2) is performed as follows. The initial field is solely the analytic
solution from Sec. II, u = U (y, t = 0). The initial phase did not prove relevant with either an
initial seed of white noise, or no initial perturbation. The flow is driven by a constant pressure
gradient, ∂P/∂x = γ1(cosh(H1/2)/(cosh(H1/2) − 1))H/Re, with the pressure decomposed into a
linearly varying and fluctuating periodic component, as p = P + p′, respectively. Periodic boundary
conditions, u(x = 0) = u(x = W ) and p′(x = 0) = p′(x = W ), are applied at the downstream and
upstream boundaries. The domain length W = 2π/αmax is set to match the wave number that
achieved maximal linear growth αmax. Synchronous lateral wall movement generates the oscillating
flow component, with boundary conditions U (y ± 1, t ) = γ2 cos(t ).

Simulations are performed with an in-house spectral element solver, employing a third-order
backward differencing scheme, with operator splitting, for time integration. High-order Neumann
pressure boundary conditions are imposed on the oscillating walls to maintain third order time
accuracy [54]. The Cartesian domain is discretized with quadrilateral elements over which Gauss–
Legendre–Lobatto nodes are placed. The mesh design is identical to that of Ref. [22]. The wall-
normal resolution was unchanged, although the streamwise resolution was doubled. Elements are
otherwise uniformly distributed in both streamwise and transverse directions, ensuring perturbations
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FIG. 14. Snapshots of the eigenvector expanded in the streamwise direction v̂ = ṽ(y, t ) exp(iαx) through
one cycle tP ∈ [0, 1] at H = 1, � = 1.24, Sr = 7.2 × 10−3. The base flow is overlaid (the black dashed line
indicates zero base flow velocity). Red flooding positive, blue flooding negative.

remain well resolved during all phases of their growth. The solver, incorporating the SM82 friction
term, has been previously introduced and validated [4,19,55,56].

Further validation, depicted in Fig. 15(a), is a comparison between the nonlinear time evolution
in primitive variables (the in-house solver, referred to as DNS in the future) and the linearized
evolution with the timestepper, introduced earlier. These are both computed using the Recrit and
αcrit from the Floquet method, at H = 10, � = 10 and H = 100, � = 100, both at Sr = 10−2 (cases
discussed in Sec. III C). Initial seeds of white noise have specified initial energy E0(t = 0) = ∫

û2 +
v̂2 d�/

∫
U 2(t = 0) d�, where � represents the computational domain. Linearity is ensured with

E0 = 10−6. The DNS settles after a short period of decay, and then attains excellent agreement
with the intracyclic growth curves from the linearized timestepper, both in magnitude and dynamics
over the cycle. The only difference is that for the � = 10 case, at small perturbation amplitudes (near
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FIG. 15. Resolution testing at critical conditions. (a) Comparison of nonlinear DNS (in-house solver, solid
lines) and linearized timestepper (dashed lines) at Sr = 10−2. An initial perturbation of white noise with E0 =
10−6 was applied to the DNS. (b) Nonlinear DNS with no initial perturbation of the H = 1 optimized pulsation
(� = 1.24, Sr = 7.2 × 10−3), varying polynomial order.

10−10) the nonlinear evolution cuts out and remains at roughly constant energy until the deceleration
phase of the base flow to begin growth again, while the linearized evolution continues on a smooth
decay-growth trajectory.

The resolution requirements are assessed by varying the polynomial order Np of the spectral
elements. Figure 15(b) depicts simulations, with no initiating perturbation, driven by the optimized
pulsation at H = 1, at critical conditions. Excluding the initial growth, which is always resolution
dependent, the agreement in the intracylic growth stages is excellent (see box out). The slight
differences predominantly originate from the initial growth stage, translating the curves with respect
to one another. Np = 19 was deemed sufficient for the pulsatile problem, as for the steady base flow
problem [22].

Fourier analysis is also performed in the nonlinear simulations, exploiting the stream-
wise periodicity of the domain. The absolute values of the Fourier coefficients cκ =
|(1/Nf )

∑n=Nf −1
n=0 f̂ (xn)e−2π iκn/Nf | were obtained using the discrete Fourier transform in MATLAB,

where xn represents the nth x location linearly spaced between x0 = 0 and xNf = W . f̂ may be û,
v̂, ω̂z = ∂ v̂/∂x − ∂ û/∂y or û2 + v̂2, depending on the property of interest. In the y direction, either
a mean Fourier coefficient c̄κ is obtained by averaging the coefficients obtained at 21 y values,
and taking Nf = 10000. Alternately, considering 912 y values, and taking Nf = 380, all except the
jth (and Nf − jth) Fourier coefficients were set to zero, cκ,¬ j = 0, and the inverse discrete Fourier
transform f̂ j = ∑κ=Nf −1

κ=0 cκ, je2π iκn/Nf computed. After isolating the jth mode in the physical domain
f̂ j , an assessment of the degree of symmetry within that mode was determined by computing

f̂s, j = (
∑m=Ny

m=0 [ f̂ j (ym) − f̂ j (−ym)]2)1/2, where ym represents the mth y location linearly spaced
between y0 = −1 and yNy = 0 − 1/(Ny − 1) and taking Ny = 912/2. Thus, a purely symmetric
mode has f̂s, j = 0 as f̂ j (ym)= f̂ j (−ym) for all ym.

B. Critical conditions

This section focuses solely on the minimum rs conditions of Table III, at Recrit. The first factor
is the role of the initial perturbation. Comparing a simulation without an initiating perturbation
(e.g., numerical noise), and simulations initiated with white noise of specified magnitude, Fig. 16,
yields two key results. The first is that all the initial energy trajectories collapse to the numerical
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FIG. 16. Effect of varying E0, between 100 and 10−10, on nonlinear evolution, compared to a case without
an initial perturbation [black dashed line in (a) and solid line in (b)] and a case linearly evolved (pink dot-
dashed line), for the optimized pulsation at H = 1, � = 1.24, Sr = 7.2 × 10−3. (a) Ev = ∫

v̂2d�. (b) E =∫
û2 + v̂2d�.

noise result within the first period of evolution, except E0 = 1 (slightly offset). For E0 < 1, the
perturbation energy decays no further than for the case initiated from numerical noise and plateaus
until the next deceleration phase of the base flow. Once this occurs, all energies grow in unison.
As the �, Sr optima are within the ballistic regime; they decay to linearly small energies every
period [29]. Hence, unless a transition to turbulence occurs in the first period of the base flow, the
initial energy has no influence on subsequent cycles. The second key result is that the linear and
nonlinear evolutions compared via Ev = ∫

v̂2d� are similar, see Fig. 16(a), while they are not via
E = ∫

û2 + v̂2d�, Fig. 16(b). In the second period of the base flow, the nonlinear intracyclic decay
is largely truncated. After another period, the nonlinear case saturates to relatively constant energy
maxima and minima [Fig. 16(b) inset]. Previous works [22,24] have shown that growth in v̂ is
stored in streamwise independent structures, û, in nonlinear modal and nonmodal growth scenarios
of steady Q2D base flows. A similar process occurs here, as further discussed shortly.

The lack of nonlinear net growth at the critical conditions for the remaining cases in Table III
is depicted in Fig. 17, again without specifying an initial perturbation. At higher H , nonlinear
intracyclic growth was smaller than expected (linearly, intracyclic growth increased with increasing
H at Re = Recrit). However, the final result of no net growth is still maintained, as expected at Recrit .
The only slight difference is that at higher H , and thereby larger Re, the maximum and minimum
energies reached are becoming inconsistent (see box-out). In the linear solver, such inconsistencies
would eventually limit the accurate computation of Recrit.

C. Supercritical conditions

Supercritical Reynolds numbers are briefly considered, again without specifying an initial pertur-
bation. As the base flow is Reynolds number dependent, only a 10% and a 20% increase (not shown)
in the Reynolds number were attempted, for the values of � and Sr that minimize rs for H � 10.
The overall behaviors at Re/Recrit = 1 (Fig. 17) and Re/Recrit = 1.1 (Fig. 18) are virtually identical,
even though exponential growth is predicted linearly at Re/Recrit = 1.1. Nonlinearly, the intracyclic
growth in the first period is large enough to reach nonlinear amplitudes, which quickly modulates
the base flow, resulting in the no net growth behavior. However, turbulence is not observed at these
supercritical conditions, with only some chaotic behavior following the symmetry breaking of the
linear mode. The severity of the decay in the acceleration phase may be the main factor preventing
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FIG. 17. Nonlinear evolutions of the optimized pulsations, at various H , from Table III. (a) Ev = ∫
v̂2d�.

(b) E = ∫
û2 + v̂2d�. The ultimate result of the nonlinear evolutions is no net growth at Recrit .

the transition to turbulence. However, the magnitude of H and Re could be a factor, since H < 3 are
unable to trigger turbulence for the case of a steady base flow at the equivalent Re/Recrit ratio [22].
Although higher H were able to trigger turbulence in the classical duct flow, the magnitude of the
Reynolds numbers were larger for the steady base flow, as optimising for minimum rs results in an
order of magnitude reduction in Recrit .

D. Role of streamwise and wall-normal velocity components

Two aspects of the nonlinear evolution are considered in more detail. The first is the slight
difference between the linear and nonlinear growth in v̂, observed in Fig. 16(a). Snapshots of
the v̂ velocity from the DNS are depicted in Fig. 19 over tP ∈ [1.5, 2.5]; the linear case at the
same conditions was shown in Fig. 14, over tP ∈ [0, 1]. An animation comparing these cases is

FIG. 18. Nonlinear evolutions of the optimized Sr and � for minimum rs, for various H , at Re/Recrit = 1.1.
(a) Ev = ∫

v̂2d�. (b) E = ∫
û2 + v̂2d�. These results are very similar to those at Re/Recrit = 1 (Fig. 17) in

spite of the fact that linearly, exponential growth is predicted.
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FIG. 19. Nonlinear evolution of v̂-velocity perturbation contours at H = 1, � = 1.24, Sr = 7.2 × 10−3

through one cycle tP ∈ [1.5, 2.5]. The base flow is overlaid (the black dashed line indicates zero base flow
velocity). Red flooding positive; blue flooding negative.

also provided [46]. When at small energies at tP = 1.61, the highly sheared structure along the
centreline of the nonlinear case has a very similar appearance to its linear counterpart (around
tP = 1.7). However, some higher wave number effects are still visible near the walls in the nonlinear
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case even at these small energies. The reformation of the nonlinear structure, as it spreads over
the duct (tP = 1.7–1.75) and as the wings pull forward (tP = 1.925), when inflection points form
in the base flow, are also very similar to the linear case. However, past tP ≈ 1.925, the linear
growth rate slightly diminishes, while the nonlinear growth rate remains higher, again recalling
Fig. 16(a). This is related to nonlinearity inducing a symmetry breaking of the linear mode, from
around tP = 1.965, with the region of positive v̂-velocity structure tilting downward and the region
of negative velocity tilting upward. Eventually, secondary structures separate from each core before
the structures eventually break apart around tP = 2.155. From tP = 2.22 through to tP = 2.5, the
decay induced by the downstream pull of the walls creates a single highly sheared structure along
the centreline, as for the linear case.

The second aspect of the nonlinear evolution is the limited decay of E = ∫
û2 + v̂2d�, of only

three orders of magnitude, compared to the 18 or so orders of magnitude of decay in Ev = ∫
v̂2d�

(Fig. 16 or 17). Snapshots of the û velocity from the DNS are shown in Fig. 20 over the first
two periods. An animation comparing the linear and nonlinear û velocity is also provided as
Supplemental Material [46]. The û perturbation is initially close to symmetric (see animation) with
a central positive streamwise sheet of velocity, bounded by two negative sheets at each wall. The
negative sheet of velocity near the bottom wall intensifies and expands to fill the lower half of
the duct, while pushing the positive sheet of velocity into the upper half of the duct, at tP = 0.22
(the sheet of negative velocity near the top wall almost vanishing). By tP = 0.6, the û perturbation is
close to purely antisymmetric. However, opposite-signed velocity near the walls begins encroaching
on the streamwise sheets around the time when inflection points form in the base flow. This
generates the linear mode observable at tP = 0.925. At tP = 0.965, the symmetry breaking observed
in v̂ is also observed in û, disrupting the linear mode. This disruption eventually eliminates the
positive velocity structures, leaving a wavy sheet of negative velocity, at tP = 1.3. Throughout the
acceleration phase of the base flow the sheet smooths out until it is streamwise invariant. This now
symmetric sheet of negative velocity stores a large amount of perturbation energy, that produces a
relatively large minimum û-velocity. This sheet acts as a modulation to the base flow, and is highly
persistent. Similar behaviors are observed in steady duct flows [22]. Throughout the linear growth
stage, the linear perturbation is able to form over the negative sheet, between tP = 1.9 to tP = 1.965,
before nonlinearity again breaks symmetry in the linear mode past tP = 1.965.

E. Symmetry breaking

The symmetry-breaking process was further analyzed by measuring the degree of symmetry
separately for each mode j, via f̂s, j = (

∑m=Ny

m=0 [ f̂ j (ym) − f̂ j (−ym)]2)1/2. This is depicted for v̂, û
and ω̂z in Figs. 21(a) through 21(c), while a measure of the y-averaged energy in each mode is
provided in Fig. 21(d). The key result is that when the nonlinear DNS had a similar appearance
and growth rate to the linear simulation (e.g., from tP ≈ 0.75 + q to tP ≈ 0.95 + q, for q = 0, 1, 2),
every resolved v̂ mode (κ = 0 through 100) is close to purely symmetric, Fig. 21(a). Once symmetry
breaking occurs, at tP ≈ 0.965, every odd v̂ mode (first, third, etc.) becomes antisymmetric. See
also see the vorticity measure, Fig. 21(c), for the first 50 or 60 modes. Thus, the symmetry
breaking does not appear to be connected to any asymmetry introduced by numerical noise in
the initial perturbation, as every mode becomes symmetric through the preceding linear phase.
The measure of symmetry in û is effectively the photo negative of v̂ (if v̂ is almost symmetric,
û is almost antisymmetric). The exception is the zeroth mode, which remains symmetric after the
first period. The zeroth mode stores a large amount of perturbation energy, Fig. 21(d), and decays
very slowly compared to the higher modes. Hence, the DNS measure of the perturbation energy
E closely resembles the energy in the zeroth mode. As a final note, although a large number of
modes become appreciably energized, the floor of the energy in the highest modes (after the base
flow modulation occurs) is not clearly raised, and no distinct inertial subrange forms (not shown).
Hence, as turbulence is not observed, it cannot initiate the symmetry breaking. However, exactly
how nonlinearity induces the symmetry breaking remains unknown.
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FIG. 20. Nonlinear evolution of û-velocity perturbation contours at H = 1, � = 1.24, Sr = 7.2 × 10−3

through two cycles tP ∈ [0, 2]. The base flow is overlaid (the black dashed line indicates zero base flow
velocity). Red flooding positive; blue flooding negative.

V. CONCLUSIONS

This work numerically investigates the stability of pulsatile Q2D duct flows, motivated by their
relevance to the cooling conduits of magnetic confinement fusion reactors. The linear stability over
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FIG. 21. A measure of the symmetry in the zeroth through one-hundredth isolated streamwise Fourier
modes. (a) Wall-normal velocity perturbation. (b) Streamwise velocity perturbation. (c) In-plane vorticity
perturbation. Small values of the symmetry measure indicate the mode is almost symmetric (light blue), while
large vales indicate the mode is almost antisymmetric (orange/yellow). (d) The y-averaged Fourier coefficient
for each mode, based on f̂ = û2 + v̂2, compared to the DNS measure E = ∫

û2 + v̂2d�. Note that for modes
100 < κ � 5000, only every fifth κ is plotted.

a large Re, H , Sr, � parameter space was analyzed to both determine the pulsation optimized for the
greatest reduction in Recrit and more generally to understand the role of transient inertial forces in
unsteady MHD duct flows. At large amplitude ratios (� = 100, near the conditions of a steady base
flow), the effect of varying Sr was clearest. Increasing Sr lead to both more prominent inflection
points, acting to reduce Recrit , and thinner oscillating boundary layers, acting to increase Recrit .
Although more prominent inflection points generated additional growth during the deceleration of
the base flow, the effective length of the deceleration phase increases with decreasing Sr. Thus, by
tuning Sr (for a given H , �), the minimum Recrit is reached as the perturbation and base flow energy
variations fall in phase, so long as inflection points remain prominent. Furthermore, the percentage
reduction in Recrit always improved with increasing H , when free to adjust Sr. This observation,
that pulsatility was still effective at destabilizing the flow in (or toward) fusion relevant regimes,
satisfies the first question the paper put forward.
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At intermediate amplitude ratios (� = 10), the addition of the oscillating flow component lead to
large changes in Recrit compared to the steady base flow. At these amplitude ratios the effect of Re
on the base flow becomes important. Increasing Re reduces the oscillating boundary layer thickness
and restabilizes the flow for a small range of frequencies. Although the base flow became more
stable with increasing Re, a large enough Re was eventually reached to destabilize other instability
modes (different from the TS-like mode).

At smaller, near-unity amplitude ratios (equal steady and oscillating base flow maxima), the
largest advancements in Recrit over the steady value were observed. At H = 10−7, an almost 70%
reduction in Recrit was attained, while by H = 10, there was over an order of magnitude reduction
(90.3%). These improvements were attained at Sr of order 10−3, a region of the parameter space
more than amenable to both SM82 modeling, and fusion relevant applications. Particularly in the
latter case, a low-frequency driving force would be far simpler to engineer than a high-frequency
oscillation. These results answer the second and third questions put forth in the paper.

At these conditions, the onset of turbulence was not observed in nonlinear DNS. Within the first
oscillation period, the intracyclic growth was able to propel an initial perturbation of numerical noise
to nonlinear amplitudes. This modulated the base flow by generating a sheet of negative velocity
along the duct centreline. Although this modulated base flow had no effect on the growth of the
wall-normal velocity perturbation, it was able to saturate the exponential growth at supercritical
Reynolds numbers. Although turbulence was not triggered, the nonlinear growth was still a promis-
ing result. However, without a wider nonlinear investigtion of the parameter space, the capability
for Recrit reductions to translate to reductions in the Re at which turbulence is observed (the
fourth question put forward), remains partially unresolved. At nonlinear amplitudes, a symmetry
breaking process was observed within each cycle. The ensuing chaotic flow may naturally improve
mixing, improving cooling conduit performance, without the severe increase in frictional losses
accompanying a turbulent flow [57]. This is an avenue for future work.

Finally, the capability for the optimized pulsations to nonlinearly modulate the base flow within
one cycle favors linear transient growth as a strong contender for enabling bypass transitions to
turbulence. This is a key area of future research, as if the flow is transiently driven over a partial
oscillation cycle (and steadily driven thereafter), turbulence may be rapidly triggered. A caveat to
such a method is that it is the continually driven time periodic base flow which yields eigenvalues
with positive growth rates at greatly reduced Reynolds numbers. Without such an underlying base
flow, the leading eigenvalues may be strongly negative and severely limit any transient growth, as
for cylinder wake flows [53]. This may be particularly problematic if large amounts of regenerative
transient growth are the key to sustaining turbulent states [52,58], a point that also requires further
investigation.

Overall, the large reductions in Recrit, occurring in a viable region of the parameter space,
form too promising a direction to cease investigating. The first steps to this are to assess the heat
transfer characteristics of the pulsatile base flow, which may naturally be more efficient than the
steady equivalent, and investigating linear transient optimals. Other than linear transient growth,
the use of pulsatility in concert with one of the various Q2D vortex promoters [4–10] could aid in
sustaining turbulence. Past the Q2D setup, the full 3D duct flow could be tackled. In particular,
the interaction between the Stokes and Hartmann layers could result in new avenues to reach
turbulence. The reduced constriction of the full 3D domain may also aid in sustaining turbulence.
Note that for fusion applications, oscillatory wall motion is not viable. Therefore, in the context
of a 3D domain, oscillatory pressure gradients are more relevant (note that the fully nonlinear
wall- and pressure-driven flows are only equivalent in the 2D averaged equations). Lastly, with a
broader scope, even electrically conducting walls could be investigated. Although less prevalent in
self-cooled designs [2], the larger shear present in boundary layers forming on conducting walls pro-
vides conditions more susceptible to transitions to turbulence and larger turbulent fluctuations [59].
The interactions between flow pulsatility and electrically conducting walls could yield many new
insights.
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Chapter 9

Conclusions

The most important result to take from this thesis is that using a Q2D, purely laminar

initial condition, purely Q2D routes to sustained turbulence were numerically observed.

This result relies on four key findings. First, that Q2D linear and nonlinear transient

growth are virtually identical, for the initial energies, domain sizes and evolution times

of interest. Second, that it is better to optimally energize the leading eigenmode, rather

than attempt to maximize Q2D linear transient growth. This is important not only

for most efficiently reaching turbulence, but also in ensuring turbulence is sustained.

Third, that the lower edge state is almost entirely composed of the leading eigenmode

(first harmonic), which is the Q2D equivalent of the Tollmien–Schlichting wave, and its

weakly nonlinear self-interactions (zeroth and second harmonics). Thus, the edge state

is able to be reached by nonmodal perturbations that reasonably well approximate the

initial condition optimally energizing the leading eigenmode, i.e. that reasonably ap-

proximate (or are) the leading adjoint mode. Fourth, although subcritical bifurcations

are (weakly nonlinearly) predicted over a wide range of friction parameters H, attain-

ing sufficient nonlinear growth to trigger turbulence is not necessarily guaranteed at

subcritical Re for those H. When possible, transitions were only observed at weakly

subcritical Re. In addition, the ability to sustain turbulence, which strongly depends

on base flow production, is compromised by flat base flow profiles at high H. Thus,

only a small range of H were viable candidates for observing purely Q2D subcritical

routes to turbulence (as shown at H = 10).

Regarding the practical application of the research, reducing the Reynolds number

required to sustain turbulence in magnetohydrodynamic flows under strong magnetic

fields (ultimately to improve turbulent heat transfer rates), these results were quite re-

strictive. Only observing sustained Q2D turbulence in the vicinity of H = 10 constrains
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the aspect ratio necessary to match the friction parameter to the applied field strength.

Even then, only weakly subcritical Re sustain turbulence at H = 10. Thus, the linear

stability of pulsating base flows, composed of a steady and oscillatory flow component,

were analyzed, to inform nonlinear simulations attempting to sustain turbulence at

lower Re and higher H. Linear analysis of optimized (amplitude and frequency) base

flows indicated large reductions in the critical Reynolds number. Percentage reductions

of over an order of magnitude were observed for H ≥ 10. These optimized parameters

corresponded to a low frequency driving force, equally generated by a pressure gradient

or wall oscillation, making such a base flow modification feasible to generate in practice.

However, turbulence was not triggered in the equivalent nonlinear simulations targeting

modal instabilities.

This leads to the considerations for future work. First, as the pulsatile base flow

modulations were optimal (attaining maximum growth/minimum decay of the leading

eigenmode) in a feasible region of the parameter space, nonmodal perturbations over

a wider range of Reynolds numbers are worth investigating. This is of particular im-

portance given the key theoretical finding of this research: the nonmodal perturbation

optimally energizing the leading eigenmode not only provides the most efficient route to

turbulence, but also generate a base flow modulation capable of sustaining turbulence.

Second, of both theoretical and practical interest (in ensuring a feasible aspect ratio),

testing whether the optimal energization remains the most efficient initial condition to

trigger turbulence in full 3D domains is a priority. It may be that at large Hartmann

numbers Ha, linear and nonlinear growth remain similar, with the optimal energization

remaining as the most efficient route to turbulence. Eventually, as Ha is reduced, and

nonlinear growth via 3D mechanisms becomes significant, maximizing initial nonlinear

growth may be a more efficient means of triggering turbulence than optimally energizing

the leading eigenmode (assuming a maximized growth strategy also results in sustained

turbulence). Alternately, the optimal energization may remain the most efficient route

to turbulence at all Ha, even in the Ha → 0 hydrodynamic limit when nonlinear growth

far exceeds its linear counterpart. To the author’s knowledge, nonlinear hydrodynamic

simulations with the leading adjoint mode as the initial condition have not been per-

formed. If the optimal energization is still more efficient in the hydrodynamic limit, it

would then be interesting to compare numerically attained Reynolds number transition

thresholds to the numerous experimentally obtained ones. Recall that the energization
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of the leading eigenmode is only ‘optimal’ as it includes initial linear growth (e.g. via

the highly efficient lift-up mechanism), but merely constrains the initial condition to

eventually transfer all energy to the leading eigenmode (admittedly some compromise

to the growth rate of the leading eigenmode would be required to optimize the initial

growth via the lift-up effect). Finally, it is worth investigating whether the numeri-

cally predicted purely Q2D routes to turbulence can be observed experimentally. In

particular, it is important to verify that the proposed growth mechanisms observed in

simulations of the SM82 model can occur in reality. Amplification of the Tollmien–

Schlichting wave is intrinsically related to the action of viscosity at the critical layer, a

critical layer which is approximately a factor of 6 smaller than the Shercliff boundary

layer height, recalling Chapter 3, § 3.2. While the SM82 model does not guarantee

accuracy at length scales below the Shercliff boundary layer height, there are exam-

ples of SM82 accuracy in shear layers thinner than this limit (Pothérat et al. 2000).

Experiments are thus crucial to validate the proposed route to turbulence. However,

experiments face significant difficulties, not the least of which being how to immerse a

sufficiently long duct in a high strength homogeneous magnetic field. Possibly, approx-

imation with an annular flow could be a viable alternative, although it may be difficult

to also maintain an acceptable aspect ratio to test friction parameters H ∼ 10. If such

experiments are plausible, and if appropriate analogues of the leading adjoint initial

conditions can be designed, it would be interesting to observe whether an intermediate

stage of 3D turbulence forms between the Q2D laminar and Q2D turbulent states, or

whether the entire route to turbulence remains purely Q2D.

To conclude this thesis, it is worth briefly considering the plausibility of said exper-

iments, or the viability of 3D simulations, in light of the Q2D findings of this study.

Ultimately, it is only in 3D domains that the observations of sustained turbulence (for

certain parameter values), or a lack thereof (at others), can be either deemed to be ac-

curate representations of reality, or merely artefacts of the Q2D model. Recalling that

sustained Q2D turbulence was only convincingly observed in the vicinity ofH = 10, and

at a minimum Re ≈ 7× 104, some constraints on 3D setups can be estimated. Recall-

ing the summary of constraints in Table 2.1, for a 3D setup to exhibit Q2D dynamics,

and with laminar Hartmann layers to match the Q2D model assumptions, requires

Re/2Ha ≲ 380 and N = Ha2/Re ≫ 1 (as limits on the required interaction parameter

can vary wildly, N ≳ 4 shall be presumed here). For Re ≈ 7 × 104, these translate to
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Ha ≳ 92 and Ha ≳ 530, respectively. While these Hartmann numbers were shown to

be reasonably attained under fusion blanket operation, these constraints are somewhat

problematic, but not entirely unreasonable, for simulations and experiment. However,

bear in mind that Re ≈ 7×104 is also required, which would induce significant difficulty

for both well-resolved simulations and experiments. Even then, these difficulties are fur-

ther compounded by the duct dimensions, as to match a friction parameter of H = 10

would require a duct aspect ratio of A = Ly/Lz ≳ 10.3. Furthermore, anything other

than an annular experimental setup would provide unfeasibly short observation times,

while a numerical setup would require a significant increase in domain length to safely

rule out any influence of periodic boundary conditions (although a formal constraint

cannot easily be estimated). Thus, it is unlikely that the parameter values at which

Q2D turbulence is sustained, as observed in this thesis, can be translated to more phys-

ically realistic simulations or experiments in the immediate future, or if so, with only

a vary sparing number of simulations, or exceedingly carefully designed experiments.

Furthermore, this makes it nigh impossible to provide an a posteriori assessment of the

Q2D model validity, or equally to guarantee that the sustained turbulent episodes are

physically meaningful.
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Appendix A

Support for claims that Q2D
turbulence is observed

Throughout this thesis, various flow conditions are defined as having triggered turbu-

lence, sustained turbulence, relaminarized, saturated to a finite amplitude state, etc.

Although some support for these claims are provided in the preceding works, partic-

ularly in the form of instantaneous snapshots of the streamwise Fourier coefficients

(following κ−5/3 trends), further support is provided here. Large data sets of the time

histories for various key cases in Chapters 5 (Camobreco et al. 2020), 6 (Camobreco

et al. 2021b) and 7 are provided in Figs. A.1, A.2 and A.3, covering variations in initial

energy, Hartmann friction parameter, and Reynolds number, respectively. Note that

due to the size of some of the data sets, the y-averaged Fourier coefficients, c̄κ, were av-

eraged over only 7 slices, rather than 21 as for Chapters 6 (Camobreco et al. 2021b) and

7. As before, the Fourier coefficients cκ = |(1/Nf)
∑n=Nf−1

n=0 [û2⊥(xn)+ v̂
2
⊥(xn)]e

−2πiκn/Nf |
were computed with the discrete Fourier transform in MATLAB, where xn represents

the n’th x-location linearly spaced between x0 = 0 and xNf
= 2π/α.

Figure A.1 bolsters the claims of Chapter 5 (Camobreco et al. 2020), that ED and

ED,2 are the lower and upper delineating energies bounding those initial conditions

which transition to turbulence, or relaminarize. As the transition to turbulence occurs

rapidly (if it occurs at all), Fourier coefficients are computed from the time of the

initial seeding of the nonmodal perturbation. The initial condition with E0 < ED, Fig.

A.1(a), does not transition to turbulence. Linear growth occurs within the first ≈ 60

time units, and then nonlinear growth for ≈ 850 time units. Decay is slow at first,

then rapid around t ≈ 2000 time units, after which only the zeroth mode is appreciably

energized. Note that energy decayed in the intermediate modes (30 ≲ κ ≲ 100) much
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(a) E0 = 2.69139× 10−6 < ED (b) E0 = 2.69187× 10−6 > ED

c̄ κ c̄ κ

(c) E0 = 1.09646× 10−5 < ED,2 (d) E0 = 1.09693× 10−5 > ED,2

c̄ κ c̄ κ

t t

Figure A.1: Time histories of y-averaged streamwise Fourier coefficients; nonmodal per-

turbations maximizing linear transient growth for an isolated exponential boundary layer

(H → ∞) at rc = 0.585. With E0 < ED there is nonlinear growth, but no transition. With

ED < E0 < ED,2, there is a clear raising of the floor of the Fourier coefficients (all become

excited), indicative of a turbulent transition, although with later relaminarization. With

E0 > ED,2 transition does not occur. Symbols at each recorded time instant are included on

streamwise modes 0 through 10, see legend. Thereafter, only lines are plotted, and only for

every 2nd mode, up to the 200th, and then every 100th, up to the 4800th.

earlier, at t ≈ 950. Comparatively, the initial condition with E0 > ED, Fig. A.1(b),

undergoes a transition to turbulence, with a clear raising of the floor of energized modes

at t ≈ 1100 time units. However, as discussed in Chapter 7, the leading eigenmode was

not well energized by the initial condition maximizing linear transient growth. Due also

to the intermediate rc = 0.585, relaminarization occurs even with E0 > ED, appearing

quite abruptly around t ≈ 2400, although overall decay is slow.
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(a) H = 1 (b) H = 3

c̄ κ c̄ κ

(c) H = 10 (d) H = 100

c̄ κ c̄ κ

t t

Figure A.2: Time histories of y-averaged streamwise Fourier coefficients; random noise ini-

tial conditions supercritically evolved for Shercliff flow (various H) at rc = 1.1. At H = 1,

rc = 1.1 is insufficient to trigger turbulence. It is likely that turbulence is triggered at H = 3

(H = 3 saturates to a finite amplitude state, like H = 1), see Chapter 6 (Camobreco et al.

2021b) for more. At H = 10 turbulence is clearly triggered, and indefinitely sustained. At

H ≥ 30 (shown at H = 100) turbulence is triggered, but rapidly relaminarizes. Symbols are

included on streamwise modes 0 through 10, see legend on Fig. A.1(a). Thereafter, lines are

plotted for every 2nd mode, up to the 200th, and then every 50th, up to the 2500th.

As for the cases below and above ED, the cases above and below ED,2 are also

differentiated by the lack and presence of turbulence, respectively. For E0 < ED,2,

Fig. A.1(c), turbulence is triggered, although due to the larger E0, and a more chaotic

initial condition, the shift in the energy floor appears smaller. However, by comparison

to E0 > ED,2, Fig. A.1(d), the effect of the slight change in initial energy is still clear.

With larger E0, turbulence is not triggered, with decay setting in around t ≈ 650.

Having considered the results in the limit of H → ∞, the Fourier coefficients for
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Shercliff flow profiles at finite H are now analysed. Note that the initial conditions

applied to the finite H cases take significantly longer to trigger turbulence. Thus, data

was collected from arbitrarily selected times pre-transition (but well after t = 0), and

gathered until a reasonable picture of the resulting dynamics could be ascertained.

At rc = 1.1, after a lengthy period of exponential growth, simulations at H = 1 and

H = 3 saturated to a stable finite amplitude state. Note that at H = 1, Fig. A.2(a),

turbulence was not triggered after either the exponential or nonlinear (superexponen-

tial) growth stages. However, at t ≈ 2.3 × 104, after the nonlinear growth, but before

saturation, a broadband oscillation of the energy in all of the Fourier coefficients is

observed (this does not change the energy floor, however). The reason for this sudden

change is unknown, although is also observed at other H, at Re insufficient to trigger

turbulence (see Fig. A.3(b) at rc = 0.4, H = 10). At H = 3, Fig. A.2(b), it is likely

that turbulence is triggered after the exponential and nonlinear growth, although the

flow is only briefly turbulent, with saturation to the finite amplitude state thereafter

(not shown here).

By comparison, a clear transition (raising of the floor) is observed at H = 10, Fig.

A.2(c). Turbulence is sustained at H = 10, and this was the first setup in which

sustained Q2D turbulence was observed in this work. However, at rc = 1.1, turbulence

was not sustained for H ≥ 30. At H = 100, Fig. A.2(d), the decay of energy in

each Fourier mode appears to begin almost immediately after transition. This high H

relaminarization differs from the relaminarization depicted at H → ∞ in Fig. A.1(b),

as the latter was due to both insufficient Re, and poor energization of the leading

eigenmode (the former only suffers from low Re).

Finally, subcritical rc variations are considered for the Shercliff profile at H = 10.

All nonmodal initial conditions were large T = τ/τopt (T = 6 or T = 8) approxima-

tions of the initial condition optimally energizing the leading eigenmode. Linear growth

propels the initial condition to the edge, where the weakly nonlinear edge trajectory is

followed (indicated by near constant E), until the edge state is reached. Data gathering

begins roughly when the edge is departed. At rc = 0.3, Fig. A.3(a), a small amount

of nonlinear growth occurs after departing the edge state. However, this is insufficient

to trigger turbulence, or even to slightly excite modes with κ ≳ 60. At rc = 0.4, Fig.

A.3(b), nonlinear growth is still insufficient to trigger turbulence. However, there is

some energization of all resolved modes. Thus, for this case, the lack of the formation
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(a) rc = 0.3 (b) rc = 0.4

c̄ κ c̄ κ

(c) rc = 0.6 (d) rc = 0.9

c̄ κ c̄ κ

t t

Figure A.3: Time histories of y-averaged streamwise Fourier coefficients; nonmodal per-

turbations almost optimally energizing the leading eigenmode for Shercliff flow at H = 10,

rc < 1. At rc = 0.3 turbulence is not triggered. At rc = 0.4 it is unclear whether turbulence

is triggered, see Chapter 7 for more. At rc = 0.6 turbulence forms, but slowly relaminarizes.

At rc = 0.9, turbulence is triggered and indefinitely sustained. Symbols are included on

streamwise modes 0 through 10, see legend on Fig. A.1(a). Thereafter, lines are plotted for

every 2nd mode, up to the 200th, and then every 6th, up to the 476th.

of an inertial subrange (indicated by an exponential rather than power law dependence

on wave number) was used to rule out turbulence at rc = 0.4 (not shown). Although

insufficient for turbulence, rc = 0.4 was sufficient for the almost spontaneous introduc-

tion of a broadband oscillation of the energy in all Fourier modes, around t ≈ 4× 103.

This broadband oscillation was also observed at H = 1, rc = 1.1, also at Re insufficient

to trigger turbulence (even though supercritical). As will be shown in Appendix C, at

H = 1, rc = 2 is sufficient to trigger turbulence. Thus, the broadband oscillation may

indicate that rc = 0.4 is just slightly too small to trigger turbulence.
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Returning to the H = 10 case in Fig. A.3(c), rc = 0.6 triggers a single turbulent

episode. However, relaminarization is to a stable finite amplitude state (one very sim-

ilar to the stable finite amplitude states observed at rc = 0.3 and rc = 0.4). Note

that fluctuations in the lower, smaller κ modes appear to die out earlier, with progres-

sively higher κ modes, which contain less energy, relaminarizing (smoothing out) at

increasingly larger times. Finally, at rc = 0.9, Fig. A.3(d), turbulence is triggered and

indefinitely sustained. Note that the length of time required to simulate the turbulent

phases of the flow (at reduced ∆t) limit the ability to gather a continuous data set

covering the initial transition, a turbulent phase, a brief relaminarization event, and

then a return to turbulence.
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Appendix B

Heat transfer enhancement
computations with a passive
scalar

Ultimately, the practical motivation of this research is to enhance heat transfer, possibly

via turbulence. As this work is motivated by self-cooled duct designs, and recalling

Chapter 2, Table 2.1, focus is placed on small Richardson numbers, where Ri quantifies

the ratio of natural to forced convection, or equivalently, buoyant to inertial forces.

Thus, the impact of buoyant forces on the velocity field is assumed minimal. By taking

Ri = 0, the momentum and energy equations can be decoupled; the former influencing

the latter, but the latter not reflecting back on the former. This is equivalent to the

evolution of a passive scalar. Thus, in this regime, predictions of turbulence can be

made without simulating a scalar field, as has otherwise been performed throughout

this thesis, except in this Appendix. To the author’s knowledge, no Nusselt number

calculations have been performed for high Re electrically insulated (Q2D or 3D) planar

MHD duct flows. Thus, the results contained in Appendix B provide a benchmark for

high Re electrically insulated duct flows in the limit of purely forced convection.

As evolution is of a passive scalar, the SM82 continuity and momentum equations,

Eqs. (2.55) and (2.56), remain unchanged. The SM82 equivalent for the dimensional

energy equation is
∂θ̌⊥
∂ť

+ (ǔ⊥ · ∇̌⊥)θ̌⊥ = κth∇̌2
⊥θ̌⊥, (B.1)

where θ̌⊥ is the z-averaged temperature and κth the fluid’s thermal diffusivity. Assum-

ing a constant background streamwise thermal gradient ∂Θ̌⊥/∂x, the temperature field

can be decomposed as

θ̌⊥ =
∂Θ̌⊥
∂x̌

x̌+ θ̌′⊥, (B.2)
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where θ̌′⊥ is a streamwise periodic temperature fluctuation. Substituting Eq. (B.2) into

Eq. (B.1) and taking characteristic scales for length, velocity and time as Ly, U0 and

Ly/U0, as before, yields,

∂θ′⊥
∂t

+ (u⊥ · ∇⊥)θ
′
⊥ +

1

PrReQ
u⊥ =

1

PrRe
∇2

⊥θ
′
⊥, (B.3)

where Pr = ν/κth is the Prandtl number of the fluid, and where Q =
∫ 1
−1 U⊥dy is the

dimensionless flow rate of the streamwise invariant base flow. Note that the temperature

has been non-dimensionalized based on a characteristic temperature difference across

the duct of Ly[∂θ̌⊥/∂y̌|y̌=Ly−∂θ̌⊥/∂y̌|y̌=−Ly ], as from conservation of energy ∂Θ̌⊥/∂x̌ =

κth[∂θ̌⊥/∂y̌|y̌=Ly − ∂θ̌⊥/∂y̌|y̌=−Ly ]/Q; net heat flux only exits the domain once carried

out of by the flow (rate), at the downstream boundary. In the following, to avoid a

variable coefficient in Eq. (B.3), Neumann boundary conditions ∂θ′⊥/∂y|y=−1 = −1 and

∂θ′⊥/∂y|y=1 = 0 are applied (unity heat flux entering the domain at the bottom wall,

and no heat flux exiting the domain at the top wall). Dirichlet boundary conditions

would fix the temperature, but would permit variable heat fluxes at each wall. Note

that the original simulations of Chapter 7 were driven by constant wall motion, with a

fixed flow rate condition not enforced. However, only the flow rate contribution from

the base flow is included in Eq. (B.3), which ensures a time steady coefficient.

For baseline comparison, the Nusselt number corresponding to passive scalar trans-

port by the Re independent streamwise invariant base flow is determined. The time

steady, streamwise invariant, analytic base flow temperature fluctuation, with boundary

conditions ∂Θ′
⊥/∂y|y=−1 = −1 and ∂Θ′

⊥/∂y|y=1 = 0, is

Θ′
⊥ =

U⊥
QH

− 1

2

(
y +

1

H

)
, (B.4)

where U⊥ = cosh(H1/2y)/ cosh(H1/2). Note that Θ′
⊥ is time steady as the non-

dimensionalization accounts for the fact that all net heat flux is carried out of the

domain by the flow. However, as the analytic solution is defined only up to an ar-

bitrary constant, the additional constraint
∫ 1
−1Θ

′
⊥dy = 0 has been imposed. This

condition is imposed in the in-house solver, and by translating the temperature profile

by this constant, the analytic Nusselt number will be identical regardless if Neumann or

Dirichlet boundary conditions had been applied (the translation offsetting the different

wall heat fluxes).
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Figure B.1: (a) Temporal evolution of perturbation energy E =
∫
û2⊥ + v̂2⊥dΩ for various

rc (rc ≤ 0.6 on left axis, rc = 0.9 on right axis). Note the temporal axis has been offset, so

that all cases start at t+ toff = 1. The perturbation energy has also been rescaled to unity at

t+ toff = 1. (b) Corresponding heat transfer enhancement ratio. Note that some small spikes

in the Nusselt number results, particularly noticeable in the lower rc cases, are due to an

issue with the scheme used to numerical integrate Nu (it has limited effect on time averages).

The Nusselt number per unit streamwise length is defined as

Nu =
1

2πn/α

∫ 2πn/α

0

1

θ′⊥,b − θ′⊥(y = −1)

∂θ′⊥
∂y

∣∣∣∣
y=−1

dx, (B.5)

where θ′⊥,b =
∫ 1
−1 θ

′
⊥u⊥dy/

∫ 1
−1 u⊥dy. The analytic Nusselt number based on passive

transport of Θ′
⊥ by U⊥ is Nu0 = 1.731474152252995 at H = 10, independent of Pr

and Re. The heat transfer enhancement ratio is defined as HR = Nu/Nu0, where

Nu(Pr , Re) is numerically integrated from the DNS velocity and temperature fields via

Eq. (B.5), at rc = 0.3, 0.4, 0.6 and 0.9. A Prandtl number of Pr = 0.022 is selected

consistent with previous literature (Cassels et al. 2016; Murali et al. 2021) and is similar

to the Prandtl number of lead lithium at operating temperatures; for lead lithium, Pr

varies between 0.0194 and 0.00804 between 600 K and 800 K, respectively (Martelli

et al. 2019).

Nusselt numbers were computed after the offset time toff , once the optimally en-

ergized simulations of Chapter 7 either began saturating to a finite amplitude state

(rc ≤ 0.6), or reached a turbulent state (rc = 0.9), as indicated by the perturbation

energies in Fig. B.1(a). For reference, the offset times are toff = 1.114×104, 1.180×104,

2.156× 104 and 1.080× 104, for rc = 0.3, 0.4, 0.6 and 0.9, respectively. However, there

is still some slight development of the finite amplitude state at rc = 0.3 and rc = 0.4
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(although minimal noting the axis scale), whereas rc = 0.6 had saturated well, while

the turbulent state at rc = 0.9 was also still in its initial phase.

The corresponding heat transfer enhancement ratios HR = Nu/Nu0 are provided

in Fig. B.1(b). Heat flux is introduced at toff , with an initial temperature field of

zero. Once thermal diffusion balances advection of the passive scalar (after at least

103 time units) some idea of the capability for various rc to enhance heat transfer

is ascertained. Although the temperature field for the turbulent case (rc = 0.9) is

yet to settle, it clearly attains the greatest enhancement in heat transfer. However,

the turbulent heat transfer rates do not appear to be significantly better than those

provided by the finite amplitude states (if one imagined a finite amplitude state, scaled

up to rc = 0.9, the heat transfer enhancement ratio may well be relatively similar to

the turbulent flow’s). For rc ≤ 0.6, the lowest three harmonics (0 ≤ κ ≤ 2) contain

93% to 94% of the total perturbation energy. Thus, as the finite amplitude states are

large scale, overturning (counter-rotating) structures, they may well be quite effective

at enhancing heat transfer. At rc = 0.9, the turbulent flow has anywhere from 54% to

86% of the total perturbation energy in the lowest three harmonics, and must instead

rely on the smaller scales. However, even though there is still a significant fraction of

energy contained in the lowest harmonics when rc ≤ 0.6, the actual amount of energy in

the harmonics, and thereby the velocity magnitudes, still strongly depend on rc. This is

encapsulated in Table B.1, where by rc = 0.3 (still a relatively large Re = 2.37370×104)

the improvement in the time averaged rate of heat transfer is only 19.7%. At even lower

Re, the effectiveness of the finite amplitude states should further worsen.

Four additional ratios have been included in Table B.1. These pressure penalty ra-

tios PR serve to measure the additional pumping costs of turbulent flows, relative to the

laminar base line. Note that in the wall driven setup, where the pressure drop is fixed

regardless of the flow conditions, the conventional PR is undefined, or unity, depend-

ing on frame of reference; the extended Galilean transform is discussed in Chapter 8

(Camobreco et al. 2021a). Of the proxy PR which can be constructed, the most useful

are based around the ratio of the time averaged measured flow rate to the analytic flow

rate. By comparing the heat transfer enhancement ratio to the proxy PR, an overall

efficiency for the heat transfer enhancement can be computed (as a measured increase

in flow rate, relative to the analytic result, would permit a greater amount of heat to be

advected out of the domain, than in the analytic case). The overall efficiency further
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rc 0.3 0.4 0.6 0.9

HR =
Nu

Nu0
1.1973 1.4274 1.7019 2.1109

PRQ =
Qm

Q
1.1495 1.3143 1.4880 1.4967

HR

PRQ
1.0416 1.0861 1.1437 1.4104

PRf =
fm,ν

fν
0.9656 1.1614 1.4230 1.7338

HR

PRf
1.2404 1.2290 1.1960 1.2175

HR

PRQ

HR

PRf
1.2921 1.3348 1.3679 1.7171

Table B.1: Heat transfer enhancement ratio as a function of rc at Pr = 0.022 and H = 10

(Nu0 = 1.731474152252995). In addition, the efficiency of the heat transfer enhancement is

considered via some proxy pressure penalty ratios (in this setup the actual pressure penalty

ratio is unity), where Qm is the measured flow rate, Q the analytic flow rate (Re invariant),

fm,ν the viscous forces integrated over the top and bottom walls per unit length, and fν the

analytic (Re dependent) integrated viscous force. Note that all measured quantities (Nu, Qm

and fm,ν) are time averaged over 4× 104 data points (a few thousand time units).

highlights the relatively poor performance of the lower rc finite amplitude states, with

efficiencies between 4% and 14% (third row of results in Table B.1). The turbulent

state then exhibits a clear jump in efficiency, to around 41%.

A proxy PR based on the non-dimensional viscous wall shear stresses was also

considered. The wall shear stress fm,ν = −(1/Re)(1/(2πn/α))
∫ 2πn/α
0 [∂u⊥/∂y|y=−1 +

∂u⊥/∂y|y=1]dx, per unit length, was compared to the analytic equivalent fν . In this

measure, the heat transfer efficiency degrades with increasing Re, for rc < 0.6. However,

such a measure would not account for the increased flow rate at larger rc, as the force

based measure may only be appropriate when enforcing a fixed flow rate. Both efficiency

measures can be considered simultaneously, as shown in the last row of Table B.1.
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Appendix C

The effect of higher Reynolds
number on sustaining turbulence

As mentioned in Chapter 6 (Camobreco et al. 2021b), the supercritical rc = Re/Rec =

1.1 simulations at H = 1 and H = 3 did not sustain turbulence, as supported by

Appendix A. At H = 1 turbulence was not triggered, and at H = 3 an exceedingly

brief turbulent episode was triggered. In both cases, the flow saturated to a stable

finite amplitude state, having a very similar appearance to the finite amplitude states

observed at subcritical rc ≤ 0.6 at H = 10 in Chapter 7. This Appendix contains

results at rc = 2 and rc = 5, to indicate that the magnitude of the Reynolds number

was the key factor hampering transitions to turbulence, at low H in particular.

Note that at H = 1, rc = 1.1 still corresponds to quite a large Reynolds number,

Re∆ = 1.10365 × 104 in the notation of Chapter 6 (Camobreco et al. 2021b), yet was

unable to trigger turbulence. However, at H = 1 and H = 3, rc = 2 and rc = 5

are both sufficient to trigger turbulence, as shown in Fig. C.1. The turbulence at

these H ≤ 3 is still unable to be sustained at rc = 2, with eventual relaminarization

to a stable finite amplitude state, as shown in the inset of Fig. C.1(a). At rc = 5,

the fate of the simulations remains unknown, due to the expense of simulations with

smaller time steps. Note to account for the increased Re, 48 spectral elements were

employed in both the streamwise and wall-normal directions, which is approximately 3

times the number of elements in the streamwise direction as employed in the rc = 1.1

simulations of Chapter 6 (Camobreco et al. 2021b). Excepting the use of a smaller initial

energy E0 = 10−8, and increased resolution, there are no other differences between

these simulations, and those in Chapter 6 (Camobreco et al. 2021b). Thus it may be

concluded that Re was the key factor hampering the transition to turbulence at low
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H

(a) rc = 2 (b) rc = 5

E E
t∆ t∆

Figure C.1: Time histories (rescaled time) of perturbation energy E =
∫
û2⊥ + v̂2⊥dΩ for

various H (see legend); Shercliff flow (UR = 1) simulations initiated with random noise of

initial energy E0 = 10−8. (a) rc = 2. (b) rc = 5. Some simulations (larger H) were

discontinued as the timestep required to evolve the turbulent flows became unfeasible. The

rest just progress slowly due to the increased spatial resolution.

H. However, rc > 2 appear to be required to sustain turbulence at H ≤ 3. In contrast,

turbulence at H = 30 and H = 100 appears likely to be sustained at rc = 2 (although

their ultimate fates are unknown, both at rc = 2 and rc = 5), whereas turbulence

relaminarized at these H at rc = 1.1 in Chapter 6 (Camobreco et al. 2021b). This

further supports that different mechanisms lead to relaminarization at high H, than

low H, with the former relaminarizing due to a lack base flow production, and the latter

due to the magnitude of Re for a given level of criticality.
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Appendix D

Flow field comparisons; initial
conditions and edge states

This Appendix serves two purposes. First, it highlights some of the key differences

between the various initial conditions targeted in or employed by Chapters 5 (Camo-

breco et al. 2020), 6 (Camobreco et al. 2021b) and 7. Second, it aims to compare

some of the nonlinear flow fields from Chapters 5 (Camobreco et al. 2020) and 7, and

in particular, indicate how the more complicated structures at lower H, which permit

constructive interference between walls, have underlying features which can be observed

in the H → ∞ instabilities.

Chapter 5 (Camobreco et al. 2020) simulated subcritical transitions in the tra-

ditional manner, in selecting the optimal time and wave number to maximize linear

transient growth. Having linearly evolved the nonmodal perturbation to this optimal

time, the corresponding H → ∞ and H = 10 optimals are depicted in Figs. D.1(b) and

D.2(b), respectively. These represent what all simulations target in Chapter 5 (Camo-

breco et al. 2020), and what case 0 simulations target in Chapter 7. By comparison,

the supercritical simulations of Chapter 6 (Camobreco et al. 2021b) target the leading

eigenmode, as shown in Figs. D.1(a) and D.2(a), for H → ∞ and H = 10, respectively.

In particular, note the different aspect ratio. Taking advantage of this difference, the

work in Chapter 7 then applies nonmodal linear transient growth techniques to obtain

nonmodal equivalents of Figs. D.1(a) and D.2(a). As shown in Chapter 7, for suffi-

ciently large target times, the nonmodal equivalents of the leading eigenmode will be

indiscernible from Figs. D.1(a) and D.2(a), with one exception. As discussed in Chap-

ter 3, § 3.3, the nonmodal perturbation is tilted into the base flow shear at early times

(extracting energy from the base flow), and is tilted against the base flow shear at large
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(a) α = αmax, linear (b) α = αopt, linear (c) nonlinear

y

x x x

Figure D.1: Example flow fields at rc = 0.585, H → ∞. (a) Leading eigenmode. (b)

Nonmodal perturbation optimized over all wave numbers and target times (at the optimal

time). (c) Nonlinearly evolved linear optimal. Perturbation structures are indicated by v̂⊥

velocity contour lines. The nonlinear case also includes the high-pass filtered vorticity ω̂z,|κ|≥4,

where streamwise Fourier coefficients of modes κ < 4 have been removed. Positive (negative)

velocities denoted by solid (dashed) lines; positive (negative) vorticity denoted by red (blue)

flooding; plotted between −max(|v̂⊥|) < v̂⊥ < max(|v̂⊥|), or −max(|ω̂z,|κ|≥4|) < ω̂z,|κ|≥4 <

max(|ω̂z,|κ|≥4|). The vorticity highlights the key arched feature of the TS wave.

times (being upright only near the time of maximum growth). By comparison, the lead-

ing eigenmode advects in the upright position for its entire (linear) lifetime, without

any tilt. Thus, with any finite target time for nonmodal optimization, there will remain

some differences between the nonlinear optimal targeting the leading eigenmode and

the leading eigenmode itself. Note that as the wave number maximizing linear growth

differs significantly from the wave number minimizing linear decay, the linear optimals

employed in Chapter 5 (Camobreco et al. 2020) may never appreciably excite the lead-

ing eigenmode. Specifically, recall how thin the wave number bands which excite the

linear instability are at large H, as shown in Chapter 3, § 3.2. This may have serious

implications on the ability to sustain turbulence.

Chapter 5 (Camobreco et al. 2020) also introduced a nonlinear equivalent to the

Tollmien–Schlichting wave, termed the arched TS wave therein. Figure D.1(c) high-

lights the two key features of the arched TS wave. The first is the arch itself, a thin jet,

or shear layer, of positive and negative vorticity. The vorticity magnitudes in the arch

have never been observed to be symmetric (in this case, the upstream half of the arch

has larger magnitudes, although sometimes the downstream half may instead). This

results in the second key feature, a pinching of the TS wave along the line of the arch,
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(a) α = αmax, linear
y

(b) α = αopt, linear

y

(c) nonlinear

y

x

Figure D.2: Example flow fields at rc = 0.6, H = 10. (a) Leading eigenmode. (b) Nonmodal

perturbation optimized over all wave numbers and target times (at the optimal time). (c)

Nonlinearly evolved linear optimal. Note that at H = 10 the TS waves are conjoined, rather

than isolated at each wall, as in Chapter 6 (Camobreco et al. 2021b). Perturbation structures

are indicated by v̂⊥ velocity contour lines. The nonlinear case also includes the high-pass

filtered vorticity ω̂z,|κ|≥10, where streamwise Fourier coefficients of modes κ < 10 have been

removed. Positive (negative) velocities denoted by solid (dashed) lines; positive (negative)

vorticity denoted by red (blue) flooding; plotted between −max(|v̂⊥|) < v̂⊥ < max(|v̂⊥|),
or −max(|ω̂z,|κ|≥10|) < ω̂z,|κ|≥10 < max(|ω̂z,|κ|≥10|). The vorticity still highlights the arched

features of the finite amplitude state, which is observed to be stable for over 2 × 104 times

units, as shown in Chapter 7.
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(a)
y

(b)

y

x

Figure D.3: Example flow fields at rc = 0.6, H = 10. (a) The slanted TS wave, represen-

tative of a slight departure from the weakly nonlinear edge state near the critical amplitude;

see Chapter 7 for a breakdown of the edge state. (b) The generation of the arch feature,

by virtue of pinch points (velocity dipoles) near the duct walls, which act as a precursor

for turbulence. Perturbation structures are indicated by v̂⊥ velocity contour lines. Both

cases are nonlinear, although only (b) includes the high-pass filtered vorticity ω̂z,|κ|≥4, where

streamwise Fourier coefficients of modes κ < 4 have been removed. The slanted TS wave is

predominantly composed of only three harmonics, which is insufficient to clearly highlight the

arch (it is only barely visible in (b) as it is). Positive (negative) velocities denoted by solid

(dashed) lines; positive (negative) vorticity denoted by red (blue) flooding; plotted between

−max(|v̂⊥|) < v̂⊥ < max(|v̂⊥|), or −max(|ω̂z,|κ|≥4|) < ω̂z,|κ|≥4 < max(|ω̂z,|κ|≥4|). Dipoles of

v̂⊥ velocity (adjacent positive and negative wall-normal velocity) are located near the base

of each arch, near x = 1.7 along the bottom wall and x = 4.9 along the top wall.

originating at a pinch point close to the wall. Although not observable in Fig. D.1(c),

the pinch point originates from a localized velocity dipole. The equivalent situation at

H = 10 is shown in Fig. D.3(b); for H → ∞, the interested reader is referred to the

supplementary material accompanying Camobreco et al. (2020). Although the arch in

Fig. D.3(b) is yet to distinctly form, the underlying lines of the arch can be observed

between the velocity dipoles (i.e. near x = 1.7 for the bottom wall arch, and x = 4.9

for the top wall arch).

Note that the velocity dipoles/pinch points appear to foreshadow turbulent episodes,
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although whether the turbulence is transient or sustained is a different matter entirely.

By comparison, the arches (or jets), which appear related to the dipoles, seem to

be an integral component of both sustained supercritical or subcritical turbulence,

as observed in high-pass filtered snapshots in Chapters 6 (Camobreco et al. 2021b)

and 7, respectively. Furthermore, the arches are the dominant feature of the stable

(and thereby indefinitely sustained) finite amplitude states observed at rc ≤ 0.6 in

Chapter 7. Thus, Figs. D.1(c) and D.2(c) compare the respectively unstable and stable

finite amplitude states observed in Chapters 5 (Camobreco et al. 2020) and 7 at H → ∞
and H = 10. Note that the stable finite amplitude state at H = 10 has two arches, one

at each wall, although the jets emanating from near the top wall are more pronounced.

Also note the deformation of the TS wave which the arches induce, which evidently

assists its finite amplitude stability. Although the entire conjoined arched TS wave

advects through the domain, the snapshots of Fig. D.2(c) and D.3(b) were intentionally

selected so there phase was almost identical, to help cement the idea of the arches

emanating from the pinch points/velocity dipoles. Exactly why the H → ∞ arched

TS wave is not stable at finite amplitudes remains unknown. However, recall that the

results of Chapter 5 (Camobreco et al. 2020) considered α = αopt, whereas the stable

finite amplitude states were observed at α = αmax, which may make all the difference.

Finally, one additional TS wave image has been included in Fig. D.3(a). This depicts

the slight deformation of the slanted TS wave, as in Chapter 7, which eventually leads

to the formation of pinch points, and then on to turbulence.
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Appendix E

The effect of amplitude ratio on
Q2D transitions in pulsatile flows

As discussed in Chapter 8 (Camobreco et al. 2021a), transitions to turbulence were not

observed for pulsatile flows at rc = 1.1 at H ≤ 10, Γ = 1. Although up to 18 orders of

magnitude of growth was attained, nonlinear modulation stabilized the base flow, with

saturation to a periodic, but evidently laminar, finite amplitude state. Thus, Fig. E.1

depicts the results of simulations both at larger H, as in Chapter 6 (Camobreco et al.

2021b) these were better able to transition to turbulence, and at larger Γ (supposing,

for the moment, that less linear growth will lead to a less severe nonlinear modulation,

and possibly permit turbulence).

Considering H = 100 first, a transition to turbulence was observed in the Γ → ∞
steady equivalent; see Chapter 6 (Camobreco et al. 2021b), Fig. 14 therein. However,

relaminarization occurred shortly thereafter. From Fig. E.1(a), at Γ = 100, no clear

transition is observed, although there may be a fleeting turbulent episode. However,

neither is there saturation to a stable finite amplitude state. Thus, at large Γ, the

base flow has not been nonlinearly stabilized, with relaminarization toward the laminar

fixed point. At Γ = 10 the intracyclic growth is much larger. A first excursion toward

the turbulent basin occurs, although its fate is unclear, as for Γ = 100. Relaminariza-

tion appears to be toward the laminar fixed point. However, being at a supercritical

Reynolds number, the leading eigenmode is re-excited, with the return of both expo-

nential and intracyclic growth. On the second excursion toward the turbulent basin,

clear nonlinear modulation of the base flow is observed, as identified by the intracyclic

decay being severely truncated, recalling Chapter 8 (Camobreco et al. 2021a). Although

turbulence is not clearly observed after this second excursion at Γ = 10, neither does
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(b) H = 10
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Figure E.1: Temporal evolution (rescaled time tP = t/2π) of the perturbation energy mea-

sured as Ev =
∫
v̂2⊥dΩ (left column) and E =

∫
û2⊥ + v̂2⊥dΩ (right column). (a) H = 10. (b)

H = 100. Simulations initiated with random noise (E0 = 10−6), and at Sr minimizing rs

(the ratio of the critical Reynolds number for the pulsatile base flow to that for the steady

base flow). At rc = 1, the optimal Sr is ≈ 9 × 10−3 for both H = 100 cases, ≈ 1.6 × 10−2

for Γ = 10, H = 10 and ≈ 1.5× 10−2 for Γ = 100, H = 10 (the optimal Sr varies weakly for

these Γ). rc = Re/Rec as before, where Rec is defined by the pulsatile base flow.

indefinite nonlinear stabilization of the base flow occur, with decay again toward the

laminar fixed point.

At H = 10, Γ = 10, intracyclic growth is still quite large, and after the initial

stage of both exponential and intracyclic growth, nonlinear stabilization of the base

flow ensues. Saturation to the finite amplitude state appears indefinite. However, at

H = 10, Γ = 100, being much closer to the steady limit, there is far less intracyclic

growth, and thereby reduced nonlinear stabilization of the base flow. In this case, after

the exponential growth, a transition to turbulence occurs. While observing transition at
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H = 10, Γ = 100 matches theoretical expectations, this result raises practical concerns,

as the critical Reynolds number was only reduced by approximately 0.573% relative to

the steady equivalent (compared to 33.0% at H = 10, Γ = 10). However, triggering

turbulence at Γ = 10 appears unlikely, at least when targeting the leading eigenmode

in this manner.

Note that two subcritical Reynolds numbers were also simulated at H = 10 as

control cases. They sensibly decay, as expected, and provide a base line for comparison

for any nonlinear modulation (which appears in E, but not Ev), which is small, but

observable.
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Appendix F

Support for claims that
intermittent turbulence is
sustained

Further numerical evidence that intermittent turbulent states are sustained is provided

here. The effect of varying the initial condition (through τ , but while at α = αmax)

at rc = 0.9 is shown in Fig. F.1(a). As shown, turbulence is sustained for all initial

conditions tested. Furthermore, the likelihood of brief relaminarization events (inter-

mittency) appears stochastic, with no clear trend when varying T = τ/τopt (although

with such a small sample, it is hard to be conclusive). The effect of rc, and particularly

the criticality, is depicted in Fig. F.1(b). As discussed in Chapter 7, § 7.6, rc = 0.6 is

sufficient to trigger, but not sustain, turbulence. Comparatively, rc = 0.9 sustains tur-

bulence, but with stochastic relaminarization events. Thus, rc = 1.1 was also tested, to

determine if supercriticality might ensure fully developed turbulence. Both a nonmodal

perturbation (the choice of initial energy not greatly relevant) and white noise initial

seed were separately evolved at rc = 1.1. Both also appear to sustain turbulence, but

again intermittently, even though the Reynolds number is supercritical. Note that the

rc = 1.1 white noise case is also depicted in the state space discussed in Chapter 7, § 7.2;

the clear relaminarization event shown in the state space corresponding to t ≈ 3.3×104.

For direct comparison, a state space representation of the subcritical, nonmodal per-

turbations yielding the smallest ED found in Chapter 7, § 7.6 is also provided in Fig.

F.2. It bears many resemblances to the state space discussed in Chapter 7, § 7.2, as

although the latter was at fixed rc = 1.1, as H varies, so too does the magnitude of the

Reynolds number. Thus, criticality does not appear greatly relevant to either ensuring

turbulence is sustained, or is fully developed. At very low Re, the flow always remains
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Figure F.1: (a) DNS of linear transient optimals with T = τ/τopt of 1 through 8 at rc = 0.9;

data identical to Fig. 7.8(a) except zoomed in. (b) DNS of linear transient optimals with

T = 1 varying rc; data identical to Figs. 7.3(b) and 7.8(b) except zoomed in, excepting the

white noise case, from Chapter 6 (Camobreco et al. 2021b).

laminar, at intermediate Re, there is a single turbulent episode, and at large Re (at

rc > 1, for H ≤ 3 and H ≥ 30, and rc < 1 at H = 10), turbulence is sustained, but

intermittent.

Finally, the effect of increasing the domain length on intermittency is briefly consid-

ered at rc = 0.9. Sadly, due to the additional numerical cost induced by doubling the

domain length (the initial condition is composed of two repetitions so that α = αmax)

these results are not yet convincing, but are presented regardless in Fig. F.3. Promis-

ingly, doubling the domain length has had no effect on ED, which remains identical (to

4 significant figures) to the original domain length cases. However, whether the tur-

bulence which is triggered is intermittent or indefinitely sustained (but not necessarily

fully developed, with sporadic relaminarizations present) remains unclear.
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Figure F.2: (a) State space representation of the largest T , smallest ED cases for each rc

(see legend), with E0 just above, and just below, ED. The initial conditions are marked with

filled black circles. (b) Zoom in on the fate of cases with E0 > ED.

(a)

E

(b)

E

t t

Figure F.3: DNS of linear transient optimals at rc = 0.9, varying E0, with a setup identical

to case 1 except with the domain length doubled (and with two repetitions of the initial

condition). (a) T = 1 (E0 = 3.058 × 10−6 > ED unchanged relative to the original domain

length simulations). (b) T = 8 (E0 = 1.473× 10−6 > ED also unchanged).
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Appendix G

An improved estimate for the
threshold Reynolds number
above which turbulence is
sustained

Recalling Chapter 7, rc = 0.6 was unable to sustain turbulence in the thermodynamic

limit of large times, while rc = 0.9 was able to. Note that Avila et al. (2011) indicate

that Re is the sole parameter governing the ability to sustain turbulence, at least

for hydrodynamic pipe flows in sufficiently long pipes. Thus, this Appendix presents

additional computations at rc = 0.7 and rc = 0.8 to slightly improve the estimate of

the threshold Reynolds number above which turbulence can be indefinitely sustained

(at H = 10 for case 1). As shown in Fig. G.1, for cases with E0 > ED (T = 1 and T = 8

initial conditions), rc = 0.7 eventually relaminarizes. Note that, comparing the times

taken to relaminarize (T = 8 initial conditions), rc = 0.6 relaminarizes at t ≈ 7× 103,

whereas rc = 0.7 takes approximately twice as long, relaminarizing at t ≈ 1.4 × 104.

If the dependence of relaminarization time on rc is superexponential, it could take

until t ≈ 3 × 104 to ascertain the fate of turbulence at rc = 0.8. For now, rc = 0.8

is tentatively assessed as indefinitely sustaining turbulence, although with additional

simulation time this claim could be strengthened.
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(a)

E

(b)
E

t t

Figure G.1: DNS of linear transient optimals at rc = 0.7 and rc = 0.8, varying E0 (after

having first determined ED) for T = 1 and T = 8 initial conditions. (a) rc = 0.7; eventual

relaminarization, as highlighted in inset. (b) rc = 0.8; possible indefinite turbulent sustain-

ment, although as highlighted in inset, the turbulence may be yet to saturate.
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Jiménez, J. 1990 Transition to turbulence in two-dimensional Poiseuille flow. J. Fluid

Mech. 218, 265–297.
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Pothérat, A. & Dymkou, V. 2010 Direct numerical simulations of low-Rm MHD

turbulence based on the least dissipative modes. J. Fluid Mech. 655, 174–197.
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Pothérat, A. & Kornet, K. 2015 The decay of wall-bounded MHD turbulence at

low Rm. J. Fluid Mech. 783, 605–636.
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