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ABSTRACT 

Biometric-based authentication has been massively deployed and played an essential part 

in our daily applications attributed to its convenience and decent verification performance. 

With the increasing deployment of biometric template storage, the security and privacy of 

biometric data have become more critical. Specifically, a stolen biometric template could 

lead to damaging events, e.g., permanent identity loss. Therefore, we must consider 

biometric template protection (BTP) to address potential threats. Although many BTP 

methods can be found in the literature, BTP is still an open issue, and there are still many 

unsolved problems. This thesis was established to study the security and privacy of the 

biometric system in terms of biometric template security. Throughout this research, there 

are three research outcomes. This thesis covers different mainstream biometric modalities, 

i.e., face, fingerprint, and iris. Proposals of this thesis are validated on several benchmarking 

datasets, including Fingerprint FVC, Face LFW, and Iris CASIA. 

 

In the first work, the main issue in the irisCode template protection, i.e., alignment-issue, is 

studied. Despite there are many iris template protection schemes reported, many schemes 

are not capable of handling the misalignment of the iris. As such, many iris BTP schemes 

require a pre-alignment process in which the computation overhead is increased. In this 

case, a new irisCode template protection scheme, namely, Random Augmented Histogram 

of Oriented Gradient (R∙HoG), is introduced. The R∙HoG is an alignment-robust biometric 

template protection scheme that could directly produce a cancellable template from the 

unaligned irisCode. Experiments are carried out to examine the verification performance of 

the biometric system after applying the proposed R∙HoG. The results show the proposed 

R∙HoG could maintain the matching performance, with the EER=0.62%. Other than that, the 

authentication process of R∙HoG is efficient, with 0.0916 seconds in the enrollment stage 

and 0.0811 seconds in the verification stage. 

 

In the second work, the problems of token management and feature incompatibility in the 

face and fingerprint-based template protection are addressed. A BTP scheme is usually 

designed as a two-factor authentication approach that is inconvenient when the user has to 

keep multiple tokens that are used for corresponding systems. Another problem in this work 

is the performance skewness of the feature incompatibility problem in which the verification 

performance of the fused cancellable template could be similar to the biometric feature that 
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holds wider value distribution. Motivated by these problems, two tokenless template 

protection schemes: Extended Feature Vector (EFV) hashing and Multimodal Feature 

Vector (M∙EFV) hashing are introduced for the face and fingerprint modalities. The proposed 

schemes are tokenless template protection in which the original transformation key is never 

stored or distributed. Experiments are conducted, and the results show both EFV and M∙EFV 

hashing possess decent verification performance. In particular, M ∙EFV hashing could 

achieve the best matching accuracy with EER= 0.24% ± 0.10 in FVC2002 + LFW dataset.  

 

In the third work, the “tradeoff between security and performance” problem in biometric 

template protection is addressed. This work is divided into two parts corresponding to the 

contributions iii and iv in this thesis, i.e., an enhanced matching mechanism (contribution iii) 

and authentication attack (contribution iv). For the first part, the problem is the weak decision 

environment problem (low decidability) in which the overlap region between the genuine and 

impostor score distributions is large. An enhanced matching mechanism is introduced to 

improve the decidability of the cancellable biometric schemes. The results show the 

verification performance of the tested schemes is improved. For instance, in M∙EFV hashing-

based multimodal system, the matching accuracy of FVC2004 DB1 + LFW is improved from 

EER = 0.38% to EER = 0.11%; while the decidability is improved from 𝑑′ = 5.37 to 𝑑′ = 9.62. 

It is observed that the enhanced matching mechanism enables the selection of a high 

matching threshold in the cancellable biometric scheme. For example, in M∙EFV hashing-

based multimodal system, the system threshold could be increased from 0.6400 to 0.8000 

with a 5% reduction of GAR after applying the enhanced matching mechanism. For the 

second part, an automated authentication attack, namely the Whale Optimization Algorithm-

based Authentication Attack (WO3A), is formalized to testify and quantify the security of the 

cancellable biometric schemes and enhanced matching mechanism experimentally. 

 

Since the subject of the study is biometric template protection, the proposed biometric 

template protection schemes are examined based on the irreversibility, unlinkability, 

renewability .and performance preservation as listed in the ISO/IEC Standard 24745 and 

30136. Various major security attacks are considered when evaluating the proposed 

schemes. Template inversion attacks via single and multiple records (ARM) are studied. 

Unlinkability and renewability of the template protection schemes are evaluated based on 

the benchmarking analysis framework.  
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𝜏L Local quantization threshold 

𝜏G System matching threshold 

𝐬 ∈ ℝ𝑛 Local score vector, each 0 ≤ 𝑠𝑖 ≤ 1 

𝑠G Global score (matching score) 

  

Chapter 5 (Authentication Attack) 

𝐗 ∈ ℝ𝑎×𝑏 Original biometric feature 

𝐑 ∈ ℝ𝑞×𝑒 Auxiliary data of the cancellable biometrics 

𝐂 ∈ ℝ𝑘×𝑚 Cancellable biometric template 

𝑓(. ) Cancellable transformation function, 𝑓(𝐗, 𝐑) → 𝐂 

𝐗′ = {𝐗′1, 𝐗′2, … , 𝐗′𝑢} Guessed biometric features, each 𝐗′ ∈ ℝ𝑎×𝑏 

𝐬 = [𝑠1, 𝑠2, … , 𝑠𝑢] Similarity score vector, each 0 ≤ 𝑠𝑖 ≤ 1 

𝑢 Number of guessed templates 

𝑡max Maximum attack iteration 

𝜏 System threshold 
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Chapter 1 INTRODUCTION  

 

This thesis aims to study the security and privacy of biometric verification in terms of 

biometric template protection and feature injection attack (type-4 attack). Section 1.1 

provides an overview of biometrics and biometric template protection. After that, the 

following three sections, i.e., 1.2 to 1.4, further discuss the research background, including 

biometric modalities, biometric system infrastructure, performance metrics, and threats. 

Followed by section 1.5 to discuss the motivation, research objectives & questions, 

contributions, and scope of the study. Lastly, section 1.6 outlines the thesis structure. 

Chapter 1:  

 

1.1 Overview 

Identity management (IdM) is the process of verifying, authenticating and authorizing the 

user for gaining access to the application/ service by associating access rights with the 

user’s identity (e.g., user account, name, etc.) [4]. As digital technology continues to 

enhance and gradually replace physical items/ services in many sectors (e.g., internet 

financial, digital currency), the demand to provide an effective authentication solution has 

become more prevalent towards the individual or organization. In 2018, Monash University 

implemented Okta multi-factor authentication (MFA) as the IdM solution to ensure staff and 

student login credentials and combat cyber-attack [5]. In IdM, linking user identity with the 

authentication factor(s) is the fundamental task. Generally, there are three types of 

authentication factors that can be employed in an IdM system [4]:  

 

• Knowledge factor (“What you know?”): User proves the identity by providing the 

“information” that is shared with the applications/ services. For example, a password 

system requires the user to provide a valid username and a string of characters 

(commonly known as a password) for gaining access. The authentication process of this 

model depends on the secrecy of the knowledge factor. This shows that if the knowledge 

factor was once disclosed to others or can be easily guessed, the security of the 

authentication process will be weakened. 
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• Possession factor (“What you have?”): Authentication process of this method relies 

on a physical item, e.g., physical keys, security tokens or access card. An example is an 

individual providing a USB drive (e.g., YubiKey [6]) to the computer system for logging 

into the web-service account. However, anyone with the possession factor can claim to 

be a genuine user and access the applications/ services. This shows that the user must 

manage the possession factor very carefully.     

 

• Inherence factor (“Who are you?”): This authentication factor is characterized by the 

uniqueness of the individual, including biological measurements from the individual. This 

method is usually known as biometrics. Compared to knowledge or possession factors, 

the inherence factor is more secure as it requires a high (financial or computational) cost 

to collect and forge the inherence factor. Yet, a drawback of using the inherence factor 

is the template is not changeable. 

 

Among the above authentication factors, knowledge and possession factors are deployed 

in many conventional IdM, e.g., password authentication in an organization's smartphone or 

ID-card system [4]. Yet, it is not reliable when identity management is purely relying on the 

knowledge and possession factors. First, frequent change of the password is always 

required to maintain a high-security level, but such a “secure” password is the one that the 

user cannot remember. On the other hand, these methods require the user to manage the 

authentication factor by himself. The individual must hold many authentication factors (e.g., 

physical key, password, ID-card) for accessing their daily applications (e.g., house, digital 

services, company building). It is not convenient to manage many external authentication 

factors as it requires additional physical space or human memory. Moreover, these 

authentication methods cannot precisely recognize the user, and the authentication factor 

can be easily forged or shared [4]. Unlike biometrics that can deploy liveness detection 

technology (e.g., [7]) to distinguish real or fake biometric features (inherence factor), anyone 

with the (real or fabricated) knowledge or possession factor can claim to be the genuine 

user. This could cause a severe issue involving privacy-sensitive information (e.g., financial 

statement or e-mail record). 

 

To overcome the limitations of knowledge and possession factors, biometrics was 

introduced. Integration of biometric recognition into identity management gains the following 

advantages and characteristics [4], [8], [9]: 
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• Uniqueness: Biometric features are unique, making the biometric system more precise 

in recognizing the user than the sharable knowledge and possession-based system. 

 

• Permanence: Biometric feature is always with the owner and remains constant for a very 

long period (probably owner’s lifespan) unless minor perturbation, e.g., burn or cut. 

Therefore, the biometric feature is a reliable authentication factor compared to 

passwords or tokens. 

 

• Improved user experience: This is the key reason that biometrics is so popular. First, 

the user does not need to manage the authentication factor because it is a body part. 

Moreover, the authentication process is swift and easy, where the user only needs to 

provide biometric features to the sensor and gain access. 

 

• Privacy-preserving and improved security: Biometric features, e.g., fingerprint or iris, 

are nearly impossible to be shared, stolen or lost compared to possession and 

knowledge factors. Therefore, only the owner with the biometric feature can gain access. 

This is very important, especially in a privacy-sensitive application, e.g., internet financial 

services, workstation device, email account, personal device, etc. 

 

Biometrics (or biometric recognition) refers to the identity management solution that 

recognizes the person by means of traits that are directly derived from the person (biometric 

modality) [10]. Traditional biometric modalities involve fingerprint, face, iris, etc. With the 

advancement of technological tools, emerging biometrics, e.g., brain and heart signals, are 

introduced to human identification. A basic biometrics framework comprises the biometric 

reader, feature extractor, matcher, decision module and biometric storage [4], [11]. A 

biometric reader is an interface for the user to provide biometric data to the system. A feature 

extractor is then used to filter and extract the biometric feature set from the input biometric 

data. During enrollment, the extracted biometric feature set is stored in biometric storage as 

the template for comparison purposes. During authentication, the user provides the 

biometric feature to the system and generates the query template. The query and pre-stored 

biometric template are then passed to the matcher to perform similarity checking (e.g., 

hamming similarity). There are two types of authentication: biometric identification and 

verification [4]. If the individual provides a biometric feature without a claimed identity (e.g., 
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passport or account), the system will compare the query template with all pre-stored 

templates in the database (1-to-𝑛 matching). As a result, the system returns a list of similarity 

checking results, and this process is called biometric identification. On the other hand, 

biometric verification is the process of comparing to the pre-stored template that is 

associated with the claimed identity (1-to-1 matching) [4]. This study focuses on security 

and privacy in the biometric verification system. 

 

With the popularity of biometrics, the massive deployment of biometrics is a known fact. A 

recent article from Okta reveals the use of biometrics increases the security of identity 

management and suggests the industry implements biometrics into multi-factor 

authentication for best practice [12]. There are also many biometric applications in our daily 

life, e.g., automated cross-border checking also requires the user to provide a passport and 

fingerprint/ face for identity verification. Moreover, many digital devices manufacturers 

deploy biometrics for logical access control, e.g., Apple Touch ID [13], Microsoft Windows 

Hello [14]. However, there are still some security and privacy issues in biometric applications 

that need to be overcome before biometrics can be a reliable solution. Particularly, the 

security of the biometric data in storage is questionable because biometric data is 

unchangeable. When the biometric data is compromised, many serious problems will occur, 

including permanent loss of identity and privacy invasion. A real-life example is that in 2015, 

about 1.1 - 5.6 million of biometric data (many with secret clearances) from the U.S federal 

Office of Personnel Management were stolen by hackers and this cost a minimum of $133 

million for providing identity theft protection to all victims [15]. 

 

The cryptographic hashing method [16] is the preemptive method in protecting the data 

because the original information is not recoverable from its protected instance. In 

cryptographic hashing, a one-way transformation transforms the input data into a non-

invertible hash code. However, this approach requires the consistency of the input data, 

which means the user needs to provide the (exactly) same biometric data every time. 

Otherwise, the authentication process will fail even if there is a minor change in the input 

biometric data. Due to the wide variations of biometric data during different acquisitions, it 

is impossible that the feature extractor can extract the same biometric data in each 

authentication. Therefore, it is not suitable to directly use the cryptography hashing method 

to protect biometric data. With the urgent need for protecting biometric data, a research 

area, namely “Biometric Template Protection” is getting attention.  



5 

 

 

Biometric template protection was first introduced by Ratha et al. [16], where they applied a 

repeatable distortion process onto the biometric signal to generate a non-invertible template. 

Until now, existing biometric template protection (BTP) methods can be broadly divided into 

biometric cryptosystems [17] and cancellable biometrics [18]. Biometric cryptosystem (or 

helper data-based approach) was initially designed to use biometrics to protect a 

cryptographic key or directly derive the cryptographic key from biometric data. It can also be 

used as biometric template protection [11]. In biometrics, there is public information called 

helper data derived from input data. Biometric Cryptosystem can be sub-categorized into 

key binding and key generation based on the usage of the helper data [17]. If the helper 

data is used to bind/ release a pre-existing cryptographic key, this method is called a key 

binding scheme. On the other hand, if the helper is used to derive a cryptographic key, this 

method is called a key generation scheme. 

 

 

Fig 1.1. Overview of cancellable biometrics (adopted from [19]) 

 

Cancellable Biometrics (or transformation-based template protection approach) is similar to 

cryptographic hashing in the sense that it transforms the input data into distorted data [19]. 

As depicted in Fig 1.1, the overarching idea of cancellable biometrics is to convert the 

biometric data into distorted data and then store it as the authentication template (usually 

known as cancellable template). In a cancellable biometric method, a one-way 

transformation function (𝑓 ) is applied onto the input biometric data (𝑥 ) to generate a 

cancellable template (𝑐 = 𝑓(𝑥, 𝑟)) where 𝑟 refer to the transformation key (a form of auxiliary 

data) [20]. During authentication, a query cancellable template (𝑐′ = 𝑓(𝑥′, 𝑟)) is generated 

using the same transformation function and key where the symbol ′ is used to distinguish 

the variables between enrollment and authentication. The components in cancellable 

biometrics are explained as below [20]:  
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• One-way transformation function (𝑓): A series of mathematical operations (e.g., many-

to-one modulo, substitution, etc.) to conceal the biometric information and produce a 

non-invertible output (cancellable template).  

 

• Transformation key (𝑟): Auxiliary data that is usually derived from a pseudo-random 

number generator (PRNG) or password [11]. The transformation key is used to 

randomize the biometric information and diversity the output cancellable template during 

the transformation. 

 

The resultant cancellable template is irreversible and renewable, so the user can use the 

biometric applications without exposing the original biometric template. If the pre-stored 

cancellable template is compromised, the user can always re-issue a new cancellable 

template generated by the same biometric feature and a new transformation key. With the 

simplicity and excellent verification performance, cancellable biometrics is preferable among 

the community. 

 

Ideally, a cancellable biometric scheme should achieve four requirements as specified in 

ISO/IEC Standard 24745 [21] and 30136 [22]: 

 

• Irreversibility (or Non-reversibility): Restoration of the original biometric template from 

the protected template should be computationally hard. This is to prevent the original 

biometric data from being recovered and abused for attacks, e.g., spoofing or replay 

attacks. 

 

• Unlinkability (or Non-linkability): It is computationally hard for the adversary to 

distinguish those multiple protected templates that originated from the same biometric 

feature. This is to prevent cross-matching of the templates across different biometric 

storages, and thus, protect users’ privacy.  

 

• Renewability (or Revocability): It should enable the user to re-issue a new protected 

template when the biometric storage is compromised. Moreover, it is computationally 

hard to recover the original biometric data from multiple protected templates that are 

generated from the same biometric data. 
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• Performance preservation: The template protection method should not degrade the 

verification performance (e.g., Equal Error Rate) of the original biometric system to a 

large degree to ensure the usability of the biometric system. 

 

Although various cancellable biometric methods are designed, biometric template protection 

is still an unsolved problem. Most of the existing template protection methods suffer from 

weaknesses, e.g.,  performance degradation, token management, template linkage and 

security weakness [23]. In particular, massive information loss is required to achieve strong 

irreversibility, reducing the verification performance of the biometric feature. For example, 

the well-known Biohashing [24] is reported to suffer major performance degradation (High 

Equal Error Rate) compared to the original biometric counterpart [25]. On the other hand, 

most of the existing methods are still vulnerable to major attacks, e.g., attack via record 

multiplicity, false acceptance attack etc. On the other hand, existing cancellable biometric 

methods are designed as a tokenized template protection method which requires the user 

to manage the transformation key as a token. The practicability for having the external token 

with the user is questionable since the token is easy to be stolen. Furthermore, there are 

still many other shortcomings in the existing cancellable biometric schemes, e.g., high 

computation overhead caused by the feature alignment problem or verification performance 

skewness caused by the feature incompatibility. 

 

On the other hand, injection of the biometric preimage before the matcher module is another 

potential issue towards a biometric system. Regardless of unprotected and protected, a 

biometric system is manifested as a thresholding-based decision system that grants access 

when the matching score (between the query and enrolled instances) surpasses the system 

threshold. Therefore, the adversary could launch authentication attacks [26] and attempt to 

get authenticated as the genuine user. In this attack, the adversary (i) sends the biometric 

primage to the matcher, (ii) randomly or strategically modifies the biometric preimage based 

on the matching score and (iii) repeats the former processes until the matching score 

surpasses the matching threshold. This could lead to the reconstruction of biometric 

information if the original biometric template is stored in the enrollment database. This attack 

is also applicable to the cancellable biometrics-enabled system where the adversary can 

just input the biometric preimage to the cancellable biometric scheme during the verification 

stage and perturb the biometric preimage until the access is granted. It is damaging, 
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especially since the adversary does not need to have the knowledge of the cancellable 

biometric scheme and does not need to compromise the template storage. Moreover, due 

to the higher false acceptance rate raised by the performance degradation problem [27] in 

biometric template protection, it is easier to launch this kind of attack towards a cancellable 

biometrics-enabled system. Although many studies (e.g., [26], [28]–[32])  can be found in 

the literature, to the author’s best knowledge, there is a limited number of studies of this kind 

of attack on a cancellable biometrics-enabled biometric system. Moreover, the method to 

increase the resistance of the biometric system towards this attack still remains unanswered. 

The details of the problems observed are further expanded in Section 1.5.1. In short, 

biometrics provides a convenient solution where the user just needs to show his fingerprint 

for accessing applications. Yet, there are still many security and privacy challenges needed 

to be addressed before biometrics can be a reliable authentication mechanism. 

 

1.2 Biometric modalities, feature, and dataset 

This section first revisits biometrics (or biometric recognition), followed by discussing the 

biometric modalities that have been employed in this thesis. Among various biometric 

modalities, iris, fingerprint, and face are the popular modalities that are widely adopted in 

today’s biometric-based authentication system (e.g., Apple Touch ID [13], etc.). Therefore, 

this study focuses on enhancing the security and privacy aspects of the iris, face, and 

fingerprint systems. 

 

When we have a glance at the term “biometrics”, we notice that it originated from two Greek 

words: “bios” and “metron”, with the bio meaning life and metric meaning measure [33]. 

While the initial use of biometrics can be traceback to 500BC in Babylon, the systematic 

biometric identification process first appeared in the 1870s when a French law enforcement 

officer - Alphonse Bertillon, invented a set of tools (known as the Bertillon System) to identify 

the individual based on the measurements, e.g., head diameter (length and breadth), length 

of the middle finger, left foot and cubit [34]. Later, with Sir Francis Galton’s discovery of 

valuable traits, e.g., fingerprint pattern, biometric recognition based on fingerprint matching 

was introduced [34]. Since then, the advancement of digital signal processing has resulted 

in the explosive growth of biometric recognition [34]. Until now, there are more and more 

biometric modalities (e.g., iris [35], face [36], electrocardiogram [37] etc.) being studied and 

introduced to today’s biometric recognition system. The following subsections further 
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discuss the feature and datasets for the iris, fingerprint, and face that are employed in this 

thesis. In addition, a brief discussion on other biometric modalities is also covered.  

 

1.2.1 Iris recognition 

Iris recognition refers to the biometric method that identifies or verifies the individual based 

on the unique features within the ring-shaped region in the eye iris [35]. Eye iris is one of 

the strong biometric traits due to its rich entropy [38]. Based on the statistical studies done 

by Daugman [39], [40], it shows that the iris biometric enjoys the merit of uniqueness, and 

the iris feature is highly discriminated among identical twins; thus, guaranteeing a high 

recognition performance. Structure-wise, the iris is a multilayered structure that can be 

broadly divided into epithelial, muscle, stromal and anterior border layers that serve different 

purposes [41]. For instance, the epithelial layer serves the purpose of rendering the color of 

the iris. The existing iris recognition relies on the visual appearance of the iris surface and 

the pattern that is manifested by stromal [41]. 

 

There are two (external and internal) areas that can be observed in an iris image [41], [42], 

which are as follows: 

 

• (Internal) Pupillary zone: An internal area of the iris that is between the pupillary 

boundary and collarette. 

 

• (External) Ciliary zone: The external area of the iris extending from the collarette to the 

limbus. 

 

In between the pupillary and ciliary zones, there is a line, so-called the collarette, that 

separates both zones [41], [42]. Speaking of the generation of the human iris pattern, the 

formation of the iris is initially found in the third month of gestation, and then the pattern of 

the iris continues to be formed until the eighth month [43], [44]. Next, the pigment 

accumulation can continue until the 1st year after birth. The complex structure allows us to 

find many high discriminative features from an iris image, e.g., furrows, ring and collarette 

[44]. For instance, we could observe some circular line patterns in the boundary of the ciliary 

zone  [41]. Iris is highly popular among the community due to the following advantages. First, 

the iris is a very stable biometric feature such that the pattern remains the same over a 

human’s lifetime [35]. Second, the iris is an internal organ that is not exposed to external 
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perturbation [41]. The iris is highly unique in the sense that the iris pattern is not the same 

among twins [39], [40]. Furthermore, the acquisition of an iris image does not require the 

individual to touch the scanner physically. In addition, the iris patterns of different eyes (from 

the same person) can be completely unrelated, and this made the iris a strong modality in a 

verification system [41], [42].  

 

A. Iris Feature 

Based on [35], Iris recognition is a set of processes that first use an iris scanner (e.g., Near 

Infrared (NIR) light iris sensor) to capture an iris image from the individual. Followed by 

processing the image by locating the circular structure outside the boundaries of the iris and 

pupil and, lastly, converting the iris texture into the iris feature (e.g., IrisCode [45]) for 

matching. Among various iris features, this thesis focuses on protecting the IrisCode-based 

verification system. This is because IrisCode is still the promising iris feature despite various 

alternative iris features being introduced [38]. IrisCode is an iris feature that was introduced 

by Daugman [45] in 1993 and has been continuously developed until now [46]. Structure-

wise, IrisCode is a binary feature that is extracted by encoding and quantizing the iris data 

onto the Gabor wavelets [45]. Therefore, it is easy to adapt the irisCode into the existing 

template protection method.  

 

The general process of extracting irisCode from an iris image is briefly discussed in this 

subsection. Given an iris image, the iris region is first detected, and then the iris and pupil 

boundaries are segmented. After that, rubbersheet transform is applied to normalize the 

segmented iris feature. Lastly, the normalized iris feature is encoded by means of Gabor 

wavelets [45]. Throughout this process, a compact binary iris feature (irisCode) is generated. 

Attributed to the rich entropy of the iris patterns, the irisCode-based verification system 

enjoys a high recognition performance [47], [48]. This is also supported by a recent statistical 

study conducted by Daugman and Downing [48], where a total of 3000 irisCodes were 

involved. Given the fine-tuned system threshold 𝜏 = 0.280  (based on the normalized 

Hamming distance), the iris system can achieve 1 in 1 million of False Acceptance Rate 

(FAR) and a very low False Rejection Rate that is near to 0 (FRR) [48]. This implies a strong 

matching performance for a recognition system. This thesis mainly employs the methods 

from [49], [50] to extract the irisCode for realizing the proposed schemes. 
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B. Iris Dataset 

In the existing iris template protection studies, the experiments were usually carried out 

using the iris database collected by the “Chinese Academy of Sciences’ Institute of 

Automation CASIA”. Until now, there are 4 editions of CASIA iris databases, namely the 

CASIA-Iris{V1, V2, V3 and V4}. The reader can refer to [51] for more details of every version 

of the databases. To be noted, CASIA-IrisV4 is an extension of the CASIA-IrisV3 with 

additional subsets. 

  

Among the four versions of the database, this thesis employed the subset from the CASIA-

IrisV3 database [52] to evaluate the schemes that are designed in this thesis. The CASIA-

IrisV3 consists of three subsets: “CASIA-Iris-Internal, CASIA-Iris-Lamp and CASIA-Iris-

Twins” [52]. Among the subsets, CASIA-IrisV3-Internal is mainly used for studying detailed 

iris features (e.g., furrows) since the iris images were captured using a close-up camera that 

is based on a fine-tuned circular Near-Infrared Ray (NIR) [52]. Therefore, the captured iris 

image is in high resolution and widely used in the existing BTP research [52]. On the other 

hand, iris images in CASIA-IrisV3-Lamp were taken using a hand-held iris sensor 

manufactured by Oki [52]. When capturing the iris images from each subject, the lamp was 

toggled to infuse more intra-class variations towards the subset. In particular, the intra-class 

variation of iris images in this subset is caused by the elastic deformation of iris texture [52]. 

Hence, CASIA-IrisV3-Lamp is mainly used for investigating the normalization and robust 

feature extraction problems [52]. In CASIA-IrisV3-Twins, the iris images were collected from 

a total of 100 pairs of twins using an Oki hand-held iris sensor. This subset is designed for 

studying the uniqueness of the iris traits among twins. 

 

As a summary, the entire CASIA-IrisV3 database consists of 22035 iris images and the iris 

images in this database are all in the specification of an 8-bit grayscale jpeg format [52]. A 

summary of the CASIA-IrisV3 database is also provided in the table below. In this thesis, 

CASIA-IrisV3-Internal is chosen for the experiments since the main theme of this thesis is 

to study biometric template protection in iris verification. More importantly, it is easier for 

benchmarking purposes since CASIA-IrisV3-Internal is employed by most of the existing iris 

template protection works (e.g., [53], [54]). 
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Fig 1.2. Sample iris image from CASIA-IrisV3 Internal (quoted from [52]) (available in: 
http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris#/datasetDetail/3 

 

Table 1.1: Summary of CASIA-IrisV3 (adopted from [52]) (available in: 
http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris#/datasetDetail/3) 

Dataset Iris Sensor 
Acquisition 

Environment 
Number of 
Subjects 

Number of 
Classes 

Total  
Images 

Image Size 
(𝑊 ×𝐻) 

CASIA-IrisV3 
-Internal 

Self-
developed 

Sensor 
Indoor 249 395 2639 320 × 280 

CASIA-
IrisV3-Lamp 

Oki 
IRISPASS-h 

Indoor 
(Lamp on/off) 

411 819 16212 640 × 480 

CASIA-
IrisV3-Twins 

Oki 
IRISPASS-h 

Outdoor 200 400 3183 640 × 480 

 

1.2.2 Fingerprint recognition 

A fingerprint recognition system refers to a biometric system that is based on the comparison 

between a pair of fingerprints [10]. The fingerprint is considered the oldest yet most popular 

biometric modality in a recognition system due to its permanence and uniqueness [55]. The 

fingerprint pattern is arguably to remain the same over time unless external perturbation, 

e.g., cut or burn, occurs [33]. Until now, fingerprint systems have been widely implemented 

in industry, e.g., Apple Touch ID [13], Microsoft Windows Hello [14], Zwipe payments 

solution [56] etc. The fingerprint is the feature that can be found in the fingertips, and it is 

formed by the pattern of valleys and ridges [57]. Instead of using raw fingerprint images, 

many existing fingerprint systems rely on the fingerprint representations that are observed 

from the fingerprint pattern [57].  

 

A fingerprint can be analyzed into three levels of representation, i.e., coarsest (or global) 

level, middle (or local) level and finest (or very-fine) level [10]: 

 

• First level representation: The fingerprint is represented in the form of a ridge 

orientation map and ridge frequency map at the first level [10]. The features that can be 

http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris#/datasetDetail/3
http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris#/datasetDetail/3
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observed in this level are singular points and coarse ridge shape [58]. Typically, the level-

1 features are used for fingerprint indexing and classification [58]. Since only the flow 

and frequency of the ridgeline are observed, a fingerprint scanner with a low hardware 

specification is sufficient to observe the features [10].  

 

• Second level representation: At the second level, a ridge skeleton image represents 

the fingerprint [10]. The features that can be observed in this level are different 

characteristics of the local ridge, so-called minutiae (e.g., ridge ending) [58]. The level-2 

features are very stable; hence, it is used by many conventional fingerprint recognition 

systems. A fingerprint scanner with 500 PPI is sufficient to observe level-2 features [10]. 

 

• Third level representation: In this level, the fingerprint is represented in intra-ridge 

details, e.g., edge and sweat pores in the finest level [10]. At this level, the features that 

are observed are sweat pores and ridge shapes [58]. However, the level-3 features are 

not suitable for commercial recognition systems due to the high hardware requirement 

for a fingerprint scanner [10]. In fact, the level-3 features are usually used for forensic 

applications. 

 

Table 1.2: Summary of 3 levels fingerprint representation (summarized from [10], [58]) 

Fingerprint 
Representation 

Level 
Features 

Required Fingerprint 
Scanner Resolution (PPI) 

Application 

Level 1 Singular points and 
coarse ridge shape 

≥ 250 Fingerprint indexing and 
classification 

Level 2 Minutiae points ≥ 500 Commercial fingerprint 
recognition 

Level 3 Pores and ridge shape ≥ 1000 Law enforcement and 
forensics 

 

The table above summarizes three levels of fingerprint representations. This thesis 

employed the fingerprint feature descriptor that is generated based on the level 2 fingerprint 

representation (minutiae point) since this feature has been widely adopted in the commercial 

system. A minutia refers to the discontinuous point of the ridge in a fingerprint pattern. Each 

extracted minutia can be represented as a point-based feature that consists of coordinates 

(or position) of the minutiae in fingerprint and orientation (or direction) of the minutiae. 

Usually, a minutia is treated as a point 𝒎 = {𝑥, 𝑦, 𝜃} where 𝑥, 𝑦 are the coordinates and 𝜃 is 

the orientation [10], [57], [59].  
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A. Fingerprint Feature 

Despite the coordinates (𝑥, 𝑦) and the orientation (𝜃) of the minutiae can be directly used 

for similarity comparison, the minutiae-based template faces several limitations, especially 

when the bio-cryptographic applications or template protection is required [55], [60]–[62]. It 

is known that a minutiae-based template is a point set data that is unordered and variable-

size due to the position change of the fingerprint during the acquisition process. Although 

the variable-size minutiae-based template can achieve decent verification performance, it 

usually requires complex algorithms (e.g., Lagrangian Relaxation strategy [63]) during the 

matching process; thus, resulting in a higher time complexity for the authentication process 

compared to a fixed-length representation. On the other hand, many existing biometric 

cryptosystem techniques (e.g., fuzzy commitment [64], symmetric key-ring encryption [65]) 

and cancellable biometrics (e.g., [53], [66], [67]) requires a fixed-length representation as 

input. This has limited the application of these schemes when the input fingerprint template 

is variable-size. There are many fixed-length fingerprint representations that can be found 

in the existing studies, e.g., [55], [60]–[62], [68]–[70].  

 

The general process of extracting the fixed-length fingerprint representation is outlined in 

this subsection. Given a fingerprint image, the initial step is to extract the minutiae points 

𝑀 = {𝒎1,𝒎2, … ,𝒎𝑛} where each 𝒎 = {𝑥, 𝑦, 𝜃}. After that, the minutiae points are converted 

into a set of local structures, so-called the minutiae descriptor (e.g., Minutia Cylinder Code 

MCC [63], Multi-line Code MLC [71]). Lastly, a learning-based point-to-string conversion 

method, e.g., bags-of-words (BOW) [55], kernel principal component analysis (KPCA) [62], 

K-means clustering [61], is applied to extract a fixed-length fingerprint representation from 

the minutiae descriptor. The generated fixed-length fingerprint representation enjoys the 

following merits: 

 

• The fixed-length fingerprint template can be easily adopted in many existing template 

protection schemes and biometric cryptosystems without the need to redesign the 

schemes. 

 

• Since the fingerprint representation is extracted based on the minutia local structures, 

the fixed-length fingerprint representation is an alignment-robust feature. Thus, a 

similarity comparison between a pair of fixed-length fingerprint templates can be made 

with a simple matcher. 
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This thesis employs the fixed-length fingerprint vector extraction technique originated from 

[62] for the experiments. 

 

B. Fingerprint Dataset 

Fingerprint verification competition (FVC) databases are widely deployed in fingerprint 

template protection studies. Until now, there are up to four editions of (Fingerprint 

Verification Competition (FVC) databases: FVC2000, FVC2002, FVC2004 and FVC2006. 

The reader can refer to [72] for more details of every edition of the database. Among the 

four editions, six datasets from FVC2002 [73] and FVC2004 [74] are employed in this thesis 

because these databases are employed in most of the existing fingerprint template 

protection works; and hence, can be used for benchmarking purposes. These databases 

are collected with the aim of providing an environment that allows the developers to testify 

and benchmark their designed method [74]. For FVC2002 and FVC2004 databases, each 

dataset consists of 100 subjects with 8 fingerprint samples per subject; thus, a total of 800 

fingerprint images are available for the experiment. Table 1.3 tabulates the information of 

each dataset in terms of the number of fingerprint images, specification of image and sensor 

used for collecting the dataset. 

 

Fig 1.3. Sample fingerprint images from FVC2002 and FVC2004 datasets (quoted from [73], [74]) (available 
in: http://bias.csr.unibo.it/fvc2002/ and http://bias.csr.unibo.it/fvc2004/) 

 

Table 1.3: Summary of FVC datasets employed in this thesis (adopted from [73]–[75]) (available in: 
http://bias.csr.unibo.it/fvc2002/ and http://bias.csr.unibo.it/fvc2004/) 

Dataset Fingerprint Sensor 
Number of 
Subjects 

Samples 
per Subject 

Total  
Images 

Image Size 
(𝑊 ×𝐻) 

Image 
Resolution 

FVC2002 

DB1 Optical Sensor 100 8 800 388 × 374 500 dpi 

DB2 Optical Sensor 100 8 800 296 × 560 568 dpi 

DB3 Capacitive Sensor 100 8 800 300 × 300 500 dpi 

DB4 Synthetic Fingerprint 100 8 800 288 × 384 ≈ 500 dpi 

FVC2004 

DB1 Optical Sensor 100 8 800 640 × 480 500 dpi 

DB2 Optical Sensor 100 8 800 328 × 364 568 dpi 

DB3 Thermal Sweeping Sensor 100 8 800 300 × 480 512 dpi 

DB4 Synthetic Fingerprint 100 8 800 288 × 384 ≈ 500 dpi 

http://bias.csr.unibo.it/fvc2002/
http://bias.csr.unibo.it/fvc2004/
http://bias.csr.unibo.it/fvc2002/
http://bias.csr.unibo.it/fvc2004/


16 

 

1.2.3 Face recognition 

Face recognition (FR) is the process of using the face pattern as the authentication identifier 

to identify or verify one’s identity. The face is one of the widely deployed biometric modalities 

in today’s world attributed to the highly distinctive and contactless acquisition [76]. The face 

acquisition process is highly convenient in the sense that there is no close contact between 

the user and the face scanner. Due to the explosive advancement of image capture 

technology (e.g., integrated camera in smartphone), face recognition has become a huge 

part of our daily applications. 

 

The face is a three-dimensional object that is easily affected by external factors, e.g., 

illumination, expression, pose during the capturing process; thus, face recognition is 

considered as a visual pattern recognition problem to recognize an individual in an image 

by face pattern [76].  A face system comprises 4 processes [76], as illustrated in Fig 1.4: 

 

• Face Detection: Given an image, this process first detects the face by segmenting the 

face from the background. After that, the landmarks of the face (e.g., face outline, eyes, 

etc.) are localized in this process [76]. Hence, a processed face image with face detected 

is produced. 

 

• Normalization: Given processed face image, this process normalizes the face image 

such that the face image is geometrically and photometrically standardized. For 

geometrical normalization, the face image is usually cropped into a fixed-size image 

frame, while the photometric normalization processes the images such that the 

properties, e.g., color scale of the images, are consistent in different authentication [76]. 

 

• Feature Extraction: The task of feature extraction is to convert the useful traits from the 

normalized face image into a face feature that is useful for similarity comparison. 

Attributed to the face detection and normalization processes, a face feature is usually 

invariant towards the geometric and photometric changes [76]. 

 

• Matching: The main task of this process is to determine the identity of the individual 

based on the query face feature. At first, the query face feature is compared to the 

enrolled face feature to compute the similarity score. When the similarity score surpasses 

the system threshold, the individual is recognized as the genuine user. 
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Fig 1.4. Overview of a face recognition system (adopted from [76]) 

 

A. Face Feature 

Face recognition (FR) has been a frequently discussed topic in the computer vision (CV) 

research area over the past decades [77]. Due to the success of the deep learning-based 

method, i.e., AlexNet in the image classification [78], deep learning-based approaches are 

then extensively studied in face recognition [77], [79]. Since then, there have been many 

notable deep learning-based face feature extraction methods introduced in the literature, 

e.g., DeepID3 [80], FaceNet [36], etc. Typically, a deep learning-based face feature 

extraction involves the use of the convolutional neural network (CNN) [78] that employs 

multiple layers of operation units to learn a unique feature from the input face image [77]. 

The hierarchical design of the CNN enables the deep learning-based method to extract 

multiple levels of facial features from different abstracts where the extracted feature is 

typically invariant to the illumination, expression, pose problem [77]. Briefly, the lowest 

layer(s) of the deep learning-based method extracts a rather coarse face feature that is 

equivalent to the handcrafted Gabor feature that was developed in the earlier stage of Face 

Recognition. With the increment of CNN’s layer, the deep learning-based method is able to 

extract a more precise face feature, e.g., facial emotion. Furthermore, the combination of 

face features extracted from different high layers produces a more stable face feature [77].  

 

A notable work is the DeepFace introduced by the Taigman et al. [81] from the Facebook AI 

Research, where the DeepFace is the first deep learning-based method that can nearly 

achieve human-level recognition performance with 97.35% accuracy on the benchmarking 

LFW dataset. Later, GaussianFace [82] shows the possibility that a deep learning-based 

method could surpass human-level performance. The continuous development of the 

DeepID series [80], [83] shows the prominence recognition performance of 99.53% that can 
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highly surpass the human-level performance of 97.53%. Attributed to these preemptive 

works, the research focus of the community has leaped into the era of deep learning. The 

later works, e.g., FaceNet [36], employed different network architecture or conducted 

training with other datasets to increase the recognition performance of the extracted face 

feature. A summary of these deep features can be found in [77]. The focus of this thesis is 

to design a scheme that enhances the security and privacy of a biometric system; hence, 

this thesis adopts FaceNet [36] to extract the face feature from the face image for 

experimentation purposes. 

 

B. Face Dataset 

Labeled Faces in the Wild (LFW) [84] is a publicly available dataset that was collected for 

providing a public benchmark environment for face verification. It is widely employed in the 

experimentations of recent face recognition research. The LFW dataset is formed by 

collecting face images over the web. In particular, the dataset consists of the face images 

taken from 5749 persons, with 1680 out of 5749 having more than two images [84]. Since 

the purpose of employing the face modality is to study the biometric fusion problem (with 

fingerprint modality) in the biometric template protection, a subset from the LFW dataset is 

formed to match the numbers of fingerprint images from the FVC databases. The details will 

be provided in the experiment section of the respective chapter. A summary of the LFW 

dataset is provided in Table 1.4. The reader can refer to [84], [85] for more information 

regarding the LFW dataset. 

 

 

Fig 1.5. Sample face images from Labeled Faces in the Wild (LFW) dataset (quoted from [84]) (available in: 
http://vis-www.cs.umass.edu/lfw/ 

 

Table 1.4: Summary of LFW dataset (adopted from [84]) (available in: http://vis-www.cs.umass.edu/lfw/) 

Total face images 13233 

Total subject 5749 

Subject with two or more face 
images 

1680 

 

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
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1.2.4 Other biometric modalities 

Other than iris, fingerprint and face, there are a lot of biometric modalities being used in 

human recognition. Based on [86] and [87], these modalities can be broadly categorized into 

traditional and emerging biometrics. Traditional biometrics refers to the modalities that are 

widely deployed in the conventional biometric system while emerging biometrics refers to 

the modalities that are introduced due to the uprising of the portable electronic device (PED) 

[87]. While the use of emerging modalities is an attractive idea, there are several challenges 

to be overcome before the emerging modalities can be widely deployed in the commercial 

biometric system [87]: 

 

• Certain emerging modalities, e.g., keyboard, are highly unstable and not available for 

everyone [87]. Therefore, the acceptance of emerging modalities is lower than traditional 

biometrics. 

 

• There is a limited selection of public datasets that can be used for testifying the designed 

scheme [87]. Hence, it is hard for the researcher to benchmark the performance of the 

proposed schemes. 

 

• Although the advancement of technological tools has reduced the cost of biometric 

sensors, it is still hard to find a biometric sensor (for some emerging modalities) that can 

be directly integrated into our daily application. One example is the acquisition process 

of the Electroencephalogram (EEG) requires the user to wear a head-mounted sensor 

[87]. 

 

On the other hand, face, fingerprint and iris are heavily used in commercial applications, and 

the deployment of the database is massive compared to the emerging modalities. Therefore, 

this thesis puts the focus on the face, fingerprint and iris.  

 

1.3 Biometric system and performance metrics 

This section presents the basic biometric system and performance metrics that are 

commonly used in the BTP research area as well as this thesis. The reader is also 

encouraged to refer to [21], [22], [33], [35], [76], [88]–[90] for more in-depth knowledge of 

biometrics. 
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1.3.1 Biometric system  

 

Fig 1.6. Graphical Illustration of a basic biometric system with five components (adopted from [4], [11]) 

 

A Biometric system refers to the automated tools to recognize the individual by means of 

the biometric characteristic. A biometric system can be operated into identification and 

verification modes [4], [11], and the terms identification and verification are listed as below:  

 

• Identification: The operation to identify the identity of the individual by searching and 

comparing the query biometric feature with all enrolled biometric instances in the 

database. In this case, the biometric system conducts 1-to-many matchings. 

 

• Verification: The operation to verify the claimed identity by comparing the query 

biometric feature with the enrolled biometric instance that is associated with the claimed 

identity. In this case, the biometric system conducts a 1-to-1 matching. 

 

A biometric system, regardless of identification and verification, is a process that establishes 

the connection between identity and authentication factors (biometric feature) and examines 

the identity of the individual that presented the biometric feature to the system [4]. This is 

achieved by the enrollment and authentication processes [4] (see Fig 1.6), which are 

explained below: 

 

• Enrollment: A process to link the identity and biometric feature(s). The biometric feature 

is stored as the authentication identifier at the end of enrollment. 

 

• Authentication: A process to determine the identity of the individual by comparing the 

query biometric feature and the enrolled authentication identifier. This process can be 
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operated as verification or identification based on the matching approaches (1-to-1 or 1-

to-many). 

 

A basic biometric system consists of five modules that are used to complete the process of 

enrollment and authentication [11]. These five modules are: 

 

• Biometric Reader: A biometric sensor or reader is operated as the user interface to 

acquire the digitized biometric data from the biometric feature presented. 

 

• Feature Extractor: A software to analyze the useful traits from the biometric data (e.g., 

minutiae point) and transform the traits into the feature descriptor (e.g., Minutia Cylinder 

Code [63]). 

 

• Storage (or biometric database): A mechanism that allows the computation unit (server 

or computer) to keep the enrollment information, i.e., biometric template.   

 

• Matcher: A logical module to calculate the similarity degree (e.g., hamming distance or 

normalized Euclidean similarity) between a pair of biometric templates. Typically, the 

result is returned as a matching score. 

 

• Decision Module: A logical module to decide whether the individual is the genuine user 

based on the matching score calculated from the matcher. A Biometric system is a 

thresholding-based system, such that the decision module recognizes the individual as 

the genuine user when the matching score surpasses the system threshold 𝜏.  

 

1.3.2 Performance evaluation metrics 

In BTP research, performance evaluation of a biometric system is usually conducted based 

on the recognition performance that is quantified by the genuine matching score distribution 

and impostor score distribution of a testing set [89]. Both distributions are generated through 

the genuine and impostor comparisons, which are as follows: 
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• Genuine comparison: Comparison between a pair of biometric features originated from 

the same individual (mated biometric pairs). The similarity score generated from this 

comparison is known as the genuine matching score. 

 

• Impostor comparison: Comparison between a pair of biometric features that are 

extracted from different individuals (non-mated biometric pairs). The similarity score from 

this comparison refers to an impostor matching score. 

 

Given a dataset with 𝑚  numbers of subject and 𝑛  biometric samples per subject, both 

genuine and impostor score distributions consist of 𝑚 ∗ (𝑛𝐶2) numbers of genuine matching 

scores and  𝑚𝐶2 numbers of impostor matching scores. Given the score distributions, the 

following performance metrics can be calculated [4]: 

 

• False Acceptance Rate (FAR): It is also rebranded as a false match rate (FMR). It is 

the possibility that the biometric system falsely recognizes the individual (impostor) as 

the user [4]. FAR is calculated by quantifying the numbers of false matches (the case 

that the matching score ≥ threshold) over the non-mated (impostor) biometric pairs: 

 

 FAR =
number of false matches

total impostor comparison
 (1.1) 

 

• False Rejection Rate (FRR): It is also rebranded as false non-match rate (FNMR). FRR 

is the case of false declaration of genuine matching as an impostor matching [4]. This 

metric is calculated based on the ratio between the number of false rejections (the case 

that the matching score< threshold) and total mated (genuine) comparison: 

 

 FRR =
number of false rejects

total genuine comparison
 (1.2) 

 

In addition to the false rejection rate (FRR), there is another performance metric, so-called 

the genuine acceptance rate (GAR) (or True Acceptance Rate, TAR), to quantify the level 

of genuine matches in a biometric system [4]. After acquiring the FRR, the GAR is calculated 

as GAR = 1 − FRR [4]. In this thesis, GAR is mainly used for estimating the system threshold 

𝜏 and quantifying the security strength of the proposed works. With the computed values of 
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FAR and FRR, the performance metric, namely the Equal Error Rate (EER), can be 

estimated as [4]: 

 

• Equal Error Rate (EER): Performance metric of a biometric system that is inferred from 

the intersection of the FAR and FRR.  

 

Evaluation-wise, the lower the FAR, FRR and EER, the better the verification performance 

of the biometric system [27]. Therefore, it is always desirable when the biometric system 

(with and without template protection) can achieve a low EER< 1%. An example of the 

genuine and impostor score distributions is depicted in Fig 1.7. In the figure, the red curve 

denotes the genuine score distribution, and the blue curve denotes the impostor score 

distribution. Any impostor matching score beyond the right side of the system threshold 𝜏 is 

considered as a false acceptance. On the contrary, a false rejection refers to the genuine 

matching score that drops at the left side of the 𝜏. The genuine and impostor curves can 

also be used to visualize the verification performance of the biometric system. Specifically, 

a large overlap region between the genuine and impostor curves indicates the undesirable 

matching performance of the system (high EER). The overlapping can also be quantified by 

the decidability (𝑑′) [89], which is calculated by the mean and variance of both curves (see 

equation (5.3)). In short, it is desirable when observing a small overlap region between both 

curves (low EER and high 𝑑′).  

 

 

 

Fig 1.7. Example of genuine/ impostor score distributions (adopted from [4]) 
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1.4 Security and privacy of biometric authentication 

 

Fig 1.8. A basic biometric system with eight possible attacks in the system (adopted from [11]) 

 

There are still many problems needed to be addressed so that a biometric system can be a 

reliable authentication mechanism. Specifically, the adversary could identify any security 

and privacy vulnerabilities in the biometric system to disrupt the biometric system (e.g., 

denial-of-service), which is also illustrated in Fig 1.8, where there are 8 possible attacks in 

a biometric system [11], [20]. It is noted that Fig 1.8 illustrates the components in a basic 

biometric system, while the actual implementation of the biometric system depends on the 

functionality of the system, e.g., key binding system, on-device verification system, etc. 

 

This thesis is established to study the security and privacy problems raised by the type-4 

attack (feature injection attack) and type-6 attack (storage attack) in a biometric system. In 

BTP research, a type-6 attack usually refers to the attack on the biometric template that is 

stored in storage [11]. Due to the fact that the biometric template is unique compared to the 

password or token, the following problems could occur when there is an exposure of the 

storage (type-6 attack in Fig 1.8) [11]: 

 

• An impostor may synthesize a fake biometric feature from the stolen biometric template 

and launch a spoofing attack to gain illegitimate access to the system. 

 

• An impostor may inject the stolen biometric template into the matcher module and gain 

illegitimate access to the application/ service. 

 

 io etric 

 eader

 eature

  tractor
 atcher

 ecision 

 odule

 torage

 . Spoofing Attack

 . Replay Attack

 . Software Override 

Attack

    eature  n ection 

 ttack

 . Matcher Override 

Attack

 . Decision Override 

Attack

 . Channel Interception 

Attack

    torage  ttack

                                 



25 

 

• Since biometric data is highly distinctive, the adversary can abuse the biometric template 

by attempting to crossmatch with other applications or other events (e.g., repudiation) to 

invade victims’ enrollment(s).  

  

By uniqueness of biometric features, the biometric system may be more accurate than token 

or password systems in recognizing the person. However, the biometric data breach is a big 

problem because the biometric template is not changeable [20]. Once the original biometric 

template is compromised, there is no security to the biometric system. As an example, an 

adversary can steal the biometric template from the storage (centralized biometric database 

or mobile phone) and use the stolen template to search for the victim’s private information 

in other applications, e.g., healthcare records or financial statements. It is noted that it is 

always easier to steal biometric data from digital storage than copy it from the physical 

biometric feature. A real-world example was in 2019, fingerprint and face data of over 1 

million people were exposed on a publicly accessible database that is managed by a security 

company called Suprema [91]. More critically, many important organizations, e.g., UK 

Metropolitan police or banks, deploy biometric access control from Suprema [91]. Therefore, 

it is important to protect the biometric template that is stored in storage. 

 

Other than the type-6 attack (storage attack), the type-4 attack (feature injection attack) is 

another damaging attack in a biometric system. The type-4 attack is a type of communication 

channel attack that aims to penetrate the security and privacy of a biometric system by 

means of a guessed query biometric feature [11]. Once the impostor manages to find a 

suitable guessed query biometric feature (or biometric preimage) and be granted as the user 

(using the biometric preimage), the impostor can access the system for the following harmful 

events [11]:  

 

• Privacy Leakage: Sensitive information disclosure occurs when the impostor can 

access the system and view the records that are stored in the system. 

 

• Service Disruption: The impostor can alter/ delete the system information/ configuration 

and make the victim (genuine user) being prohibited from accessing the system. 

 

This attack resembles a feature reconstruction attack when the pre-stored template is 

unprotected. In this sense, it enables the adversary to use the biometric preimage to perform 
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a replay attack [11]. Although a mechanism, e.g., time-out lock-out policy [92], [93] can be 

used to mitigate the effect of the type-4 attack and prevent the impostor from attempting the 

authentication attack, it is insufficient when the system purely relies on this type of 

mechanism. Since the lock-out penalization is applied for everyone (genuine user and 

impostor), the impostor could abuse the policy and attempt to lock the account with massive 

tries of authentication [93]. In addition, denial-of-service (dos) could occur when multiple 

accounts are locked [93]. Moreover, this mechanism is ineffective, especially when the 

adversary reduces the frequency of the attack within the authentication threshold [93]. Since 

the pre-stored templates are highly distinctive, it is also feasible to invade multiple accounts 

of the same victim. Therefore, it requires biometric template protection in the biometric 

system to provide an additional layer of security to the biometric-based authentication and 

prevent the replay attack.   

 

1.5 Problems, objectives, and outcomes 

This section starts by discussing the shortcomings that are identified in the existing biometric 

template protection works, followed by the formulated research questions and objectives 

that drive the research in this thesis. With the question and objectives, the following section 

expands the research goals and scope of this thesis. Lastly, this section outlines the 

outcomes and main contributions of this thesis. 

 

1.5.1 Problem statement 

Provided that storage and feature injection attacks lead to many serious problems and 

biometric-based authentication is heavily implemented in today’s applications, biometric 

template protection (BTP) is essential. In particular, the research in this thesis is mainly 

motivated by the following observations from the existing BTP studies: 

 

• Security and privacy vulnerabilities: Many existing template protection methods are 

subject to different attacks, e.g., authentication attack, preimage attack, birthday attack 

etc. Since the protected templates are stored as public information, the adversary may 

compromise one or multiple protected templates and attempt security and privacy 

attacks. For example, the Bloom filter-based template protection method [94] was 

reported that two protected templates generated from the same biometric data could be 

cross-matched [95]. BioEncoding suffers from the risk of original template recovery 



27 

 

attack when the transformation key and the protected biometric template are known to 

the adversary [96]. Another example is the adversary could estimate a biometric 

preimage and use it to bypass the BioHashing-based system [97]. Therefore, the 

cancellable biometric methods need to be strengthened to provide more resistance to 

different attacks. 

 

• Token management: Most of the existing template protection methods are designed as 

a tokenized authentication method that distributes the transformation key into an external 

factor, e.g., token or password. However, the necessity for having the user manage the 

transformation key invites several issues. First, since the method requires two inputs 

(biometric feature and transformation key) from the user, it requires the user to bear the 

inconvenience of keeping an external factor with them. This is serious when the user 

enrolls in multiple systems. Besides, the user might lose or forget the external 

transformation key, and this leads to the stolen-token scenario [19]. In the stolen-token 

scenario, the adversary could use the compromised key to conduct a zero-effort false 

acceptance attack and gain access to the system. This is critical when the performance 

degradation of the template protection is large. Additionally, the exposure of the 

transformation key could cause the recovery of the original biometric template from the 

protected template(s), especially in the salting-based template protection method [17], 

[19]. Therefore, a tokenless authentication approach is desirable. 

 

• Performance degradation: Performance degradation is another open issue in template 

protection [27]. The fundamental task of template protection is to distort the original 

biometric template and store the distorted template for future authentication [27]. To 

achieve the high irreversibility of the protected template, a large distortion of the input 

biometric data (information loss) is usually required. This would impact the biometric 

system and increase the rate that valid users get rejected (False Rejection Rate). Many 

existing template protection methods, e.g., [24], [54], are reported from suffering 

performance degradation issues. For instance, the well-known BioHashing [24] was 

reported from major performance degradation. Therefore, it requires the produced 

cancellable template to maintain the matching accuracy of the original biometric 

template. 
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• Biometric fusion in template protection: Biometric fusion is the approach to improve 

the verification performance by integrating two or multiple biometric features into a 

biometrics system [9]. In recent years, biometric fusion has been getting attention in 

template protection research as it compensates for the performance degradation issue 

of the unimodal template protection method [98]. In the biometric template protection 

context, there are three fusion approaches: score-level, decision-level and feature-level 

[99]. Among three fusion approaches, feature-level fusion is the most suitable in template 

protection because it requires lesser processing overhead and storage space. Yet, it is 

a non-trivial task when trying to combine multiple biometric features into a protected 

template. As feature-level fusion is not merely a concatenation process, it requires a 

transformation that can cope with different biometric features. Incompatibility between 

different biometric features (value distribution, alignment issue, data type, etc.) would 

highly impact the matching accuracy of the system (or cancellable biometric method in 

this thesis) [9]. As an example, the value distribution problem between two input 

biometric features will result in the matching accuracy of the protected template biased 

to the biometric feature that holds a wider range of value distribution. Therefore, it 

requires a cancellable biometric method that can overcome this issue.  

 

• Alignment issue: The alignment issue is a well-known problem in the irisCode feature, 

and this is due to the displacement (e.g., rotation or position) during the acquisition of 

the biometric feature [4]. In iris verification, the correlation-based strategy is used for 

template matching to compensate for the misaligned issue. For example, the irisCode 

requires a horizontal shifting for ±𝑛 bits of the templates during matching [53]. This would 

require a total of 2𝑛 + 1  shifting. However, this invites an efficiency problem when 

applying for biometric template protection. Most of the existing template protection 

methods are worked with a fixed-sized and aligned biometric feature. Therefore, it will 

lead to failure in recognizing the user when directly applying the template protection 

method onto the unaligned biometric feature. The straightforward solution is to apply the 

template protection method to multiple shifted instances of the biometric template during 

the enrollment/ verification stage (e.g., [53]). However, this could increase the processing 

overhead to repeatedly executing the cancellable transformation and the storage space 

to store the output cancellable templates. Therefore, it requires an alignment-robust 

cancellable biometric method that can directly encode the unaligned irisCode template 

into an aligned template while providing strong concealment to the biometric information.  
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• Weak decision environment: Recognition performance of a (protected or unprotected) 

biometric system is characterized by the decision environment that is based on the score 

distributions from the genuine and impostor comparisons [89]. Typically, a biometric 

system is a thresholding-based decision system that relies on a predefined matching 

threshold 𝜏 to determine the identity of the individual. For instance, the individual is 

recognized as the genuine user when the similarity score 𝑆 between the enrolled and 

query biometric features surpasses the matching threshold (i.e.,  𝑆 ≥ 𝜏). In this case, the 

adversary could apply the feature injection attack and get authenticated as the genuine 

user. Although adjusting the matching threshold 𝜏 could increase the resistance against 

this kind of attack, it is not the best solution, especially when high overlapping between 

the genuine/ impostor score distributions is observed in the system. Despite the feature 

injection attack being harder to be conducted when the 𝜏 is set to a high value, it will lead 

to a situation that the genuine user easily gets rejected (higher false rejection rate), and 

the verification performance is degraded. On the other hand, a lower 𝜏 increases the 

false acceptance of the impostor as well as the feasibility of the feature injection attack. 

Therefore, it urges for a solution that can improve the decision environment as well as 

enhance the security resistance against the security attack. 

 

1.5.2 Research questions and objectives 

Based on the observations from the existing studies, the following research questions are 

devised: 

 

• How to resolve alignment issues in iris template protection?  

 

• How to resolve token management issues in the fingerprint protection method? 

 

• How to combine multiple biometric features using the proposed template protection 

method? 

 

• Can a cancellable biometrics-enabled system get attacked by a type-4 (authentication) 

attack, and how to perform this attack? 
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• How to improve the biometric decision environment and improve the security resistance 

of the cancellable biometrics-enabled system against the authentication attack? 

 

To address the above questions, the research objectives are formulated as follows: 

 

• Design an alignment-robust iris template protection scheme that can directly derive a 

protected biometric template that is robust towards the alignment issue of the biometric 

feature. 

 

• Design a tokenless fingerprint template protection method that satisfies the template 

protection requirements: irreversibility, unlinkability, renewability and performance 

preservation. 

 

• Integrate additional feature transformation and another biometric modality to reduce 

performance degradation of the unimodal tokenless template protection 

 

• Formalize an automated authentication (type-4) attack towards the cancellable 

biometrics-enabled biometric system  

 

• Design an enhanced matching mechanism to improve the decision environment and 

security resistance of the cancellable biometrics-enabled biometric system. 

 

1.5.3 Research goal and scope 

Based on the formulated questions and objectives, the goal of this thesis is to  

 

“ nhance the security and privacy of bio etric authentication systems.” 

 

This thesis focuses on the protection of the biometric template in the storage and the 

enhanced matching mechanism. The research aims to provide strong concealment towards 

the biometric information, such that the original biometric information is hard to obtain even 

though the protected template is stolen by the adversary. Other than that, the user is allowed 

to use the same biometric feature in different systems where the resultant templates in 

different systems are non-correlated. Besides that, this research also studies the trade-off 



31 

 

between security and performance issue led by the canonical matching mechanism and 

designs an enhanced matching mechanism that can improve the decision environment of 

the cancellable biometrics-enabled biometric system. With the improved decision 

environment, developers of the biometric system are allowed to choose a higher system 

threshold without sacrificing the verification performance so much. With the increment of the 

system threshold, security resistance towards the authentication attack is increased. This 

thesis also formalizes an optimization-driven authentication attack to experimentally study 

the security resistance of the cancellable biometrics-enabled biometric system that is 

enhanced by the proposed enhanced matching mechanism.  

 

In short, this thesis studies the potential security and privacy threats in a biometric system 

and proposes several techniques that can be considered when building the biometric 

system. The proposed techniques are mainly examined based on biometric security criteria 

as listed in the ISO/IEC Standard 24745 [21] and 30136 [22]: irreversibility, unlinkability, 

renewability and performance preservation. Since the schemes are mainly designed for the 

fixed-length matrix and vector-based biometric feature, the schemes can be easily 

propagated to the biometric modalities other than the face, fingerprint and iris that are 

covered in this thesis. Implementation-wise, the proposed techniques can be adapted to the 

existing biometric-based authentication mechanism to provide another layer of security and 

privacy.  

 

1.5.4 Research outcomes and contributions 

This thesis focuses on the prevention of the original biometric template being recovered for 

abusive activity and enhancing the secure matching process. The outcomes and 

contributions of this thesis are highlighted as follows: 

 

• Contribution i: An alignment-robust biometric template protection method, namely the 

Random Augmented Histogram of Gradients (R∙HoG), is designed to protect the iris 

feature. The proposed R∙HoG overcomes the misalignment issue in the iris feature and 

directly transforms the unaligned iris feature (with ±16  bits displacement) into the 

protected template. The generated protected template is robust towards the alignment, 

and thus, the authentication process is efficient compared to the existing iris template 

protection methods. Analysis based on the four biometric template protection 

requirements: irreversibility, unlinkability, renewability and performance preservation are 
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conducted to justify the feasibility of adopting the proposed R∙HoG in the real-world 

application. Besides that, major security attacks, i.e., false acceptance and birthday 

attacks, are carried out to examine the security aspect of the produced cancellable 

template. 

 

• Contribution ii: Two tokenless biometric template protection methods, namely the 

Extended Feature Vector (EFV) Hashing and Multimodal Extended Feature Vector 

(M∙EFV) Hashing are introduced for face and fingerprint-based biometric systems. The 

former method is a unimodal fingerprint template protection method, while the latter 

method is a feature-level fusion-based multimodal (face and fingerprint) template 

protection method. It is worth noting that the proposed M ∙EFV Hashing is the first 

tokenless multimodal template protection method in the literature. Both methods are 

tokenless template protection methods such that the user does not need to manage the 

transformation key. Specifically, the XOR encryption/ decryption notions are operated on 

the transformation key for producing the auxiliary information that can be stored 

alongside the enrolled cancellable template, which achieves the tokenless property. 

Rigorous analyses are conducted, and it is shown that the recovery of the original key is 

impossible even if multiple cancellable templates and auxiliary data are present. 

Moreover, the empirical results show that both the EFV and M∙EFV hashing satisfy the 

biometric template protection requirements as specified in the ISO/IEC Standard 24745 

[21] and 30136 [22]. 

 

• Contribution iii: An enhanced matching mechanism is proposed to enhance the decision 

environment of a cancellable biometrics-enabled system. The proposed enhanced 

matching mechanism is a dual-phase score quantization mechanism that could produce 

a matching score in which the gap between the mean of genuine/ impostor matching 

scores is increased. As such, the proposed matching mechanism could improve the 

verification performance and decidability of the system. Comprehensive experiments are 

carried out to justify the system performance after applying the enhanced matching 

mechanism. Experiment results suggest the enhanced matching mechanism could 

increase the verification performance of the system as well as separate the mean of 

genuine/ impostor score distributions. The proposed enhanced matching mechanism 

can be considered as a matching strategy in the sense that it can be applied to any 

cancellable biometric scheme. 
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• Contribution iv: An automated authentication attack, namely the whale optimization 

algorithm authentication attack (WO3A), is formalized to testify the security resistance of 

a cancellable biometrics-enabled system (with and without the enhanced matching 

mechanism) towards the type-4 attack. The formalized attack is designed with the 

inspiration of the recently introduced whale optimization algorithm (WOA) [100]. Two 

mechanisms, namely the uni-step binarization function and adaptive mutation 

mechanism, are applied to improve the efficiency and genericity of the WO3A. The 

experiments are carried out on the existing biometric template protection scheme, 

namely the Index-of-Max (IoM) hashing [66]. Furthermore, the M ∙EFV hashing and 

R∙HoG introduced in this thesis are also being tested. The result suggests that the 

formalized WO3A could compromise the security of the tested scheme (in its original 

form) in a short time, which is not favorable since the user could not respond to the attack 

and renew the cancellable template. The result also suggests the enhanced matching 

mechanism could improve the security resistance of the tested scheme towards the 

WO3A. 

 

1.6 Thesis organization 

This subsection summarizes the contents of each chapter in this thesis. The main theme of 

this thesis is the security and privacy of the face, fingerprint, and iris verification. Fig 1.9 

provides an overview of the organization of this thesis. In particular, this thesis consists of 6 

chapters. Chapters 1 and 2 provide a background study on the research context and an 

overview of this thesis. After that, chapters 3, 4 and 5 present the works that have been 

accomplished in this thesis, with each chapter discussing the scheme design and evaluation. 

Lastly, chapter 6 concludes the findings of the thesis. 
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Fig 1.9. Overview of thesis organization 

 

The remaining parts of this thesis are organized as follow: 

 

• Chapter 2 revisits the existing works that are related to the research carried out in this 

thesis. Chapter 2 first reviews the existing iris template protection schemes in terms of 

the alignment-based and alignment-robust approaches. The chapter then discusses the 

token management in the face and fingerprint template protections and reviews the 

works that are related to the (unimodal and multimodal) Extended Feature Vector (EFV) 

hashing that will be presented in chapter 4. Lastly, this chapter reviews the related works 

on the type-4 attack that is targeted on the protected and unprotected biometric system. 

 

• Chapter 3 presents the proposal of alignment-robust template protection for iris 

verification that overcomes the alignment problem of the irisCode feature in biometric 

template protection. The chapter first discusses the shortcomings of the current biometric 

template protection for the well-known iris feature, irisCode. The chapter then introduces 

the proposal of alignment-robust template protection, namely the Random Augmented 

Histogram of Gradients (R∙HoG). After that, the experimental results and analyses are 
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presented to demonstrate the R∙HoG achieved four design criteria of biometric template 

protection. The chapter is concluded by discussing the findings of the research.  

 

• Chapter 4 presents the proposal of tokenless template protection for face and fingerprint-

based biometric systems that reduce the token management burden of a user. The 

chapter starts off by discussing the token management and performance degradation 

faced by the face and fingerprint template protection. After that, the chapter presents the 

proposal tokenless template protection, namely the Extended Feature Vector (EFV) 

hashing and Multimodal Extended Feature Vector (M ∙EFV) hashing. The following 

section of this chapter discusses the experimental results and analyses. Lastly, the 

findings of this research are outlined. 

 

• Chapter 5 presents the proposal of the enhanced matching mechanism that aims to 

improve the decision environment of the cancellable biometrics-enabled system. The 

chapter begins with an introduction to the transformation-based biometric template 

protection (or cancellable biometrics) and the potential security threats towards the 

thresholding-based decision-making mechanism. After that, the chapter introduces the 

enhanced matching mechanism that can replace the canonical matching mechanism to 

improve the verification performance of a cancellable biometric scheme and allow the 

matching process to produce the genuine/ impostor matching scores that are highly 

separated. Other than the matching mechanism, this chapter also formalizes an 

automated type-4 attack to testify the security resistance of the BTP-enabled biometric 

system. The chapter then presents the experimental results. Lastly, this chapter 

discusses the findings. 

 

• Chapter 6 summarizes this thesis by first discussing the outcomes and findings from the 

research conducted. This chapter first presents the summary of the thesis chapter with 

the focus on presenting the original contributions and impacts made in this thesis. Future 

recommendations are also discussed. 
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Chapter 2 LITERATURE REVIEW 

 

This chapter reviews the existing works that are related to the proposals section by 

section. Since the first proposal in this thesis is an alignment-robust iris template 

protection, this chapter first revisits the existing iris template protection works in section 

2.1. After that, section 2.2 revisits the template protection works that are relevant to the 

token management problem identified in the face and fingerprint template protection. 

Lastly, section 2.3 presents the existing works that are associated with the security and 

privacy of the biometric system in regard to thresholding-based decision-making. 

Chapter 2:  

 

2.1 Alignment problem in iris template protection 

In this section, several iris cancellable biometrics primitives are revisited in terms of (a) 

alignment-based and (b) alignment-robust approaches. In an alignment-based approach, 

the cancellable biometric scheme requires a feature alignment process to compensate for 

the alignment issue of the iris. In general, there are two types of feature alignment 

processes. The first type of feature alignment is to create multiple shifted instances from the 

input iris feature. After that, the shifted instances are transformed into the cancellable 

templates for storing or matching purposes. Another feature alignment process is to extract 

a robust biometric feature based on reference biometric feature(s) from the user and then 

transform the robust biometric feature into the cancellable biometric template. On the other 

hand, the alignment-robust approach refers to the BTP scheme that can produce a similar 

cancellable template for two unaligned biometric features without the feature alignment 

process. The time complexity of the alignment-robust approach is usually lower than the 

alignment-based approach.  

 

2.1.1 Alignment-based iris template protection 

Random Projection (RP) is a well-known biometric salting technique due to its performance 

preservation property. In the RP approach, the cancellable template is generated by 

projecting the original biometric features onto a random subspace via randomly generated 

auxiliary data. In RP, the formula to form cancellable template 𝐱′ can be simplified as below 
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 𝐱′ = 𝐑𝐱 (2.1) 

 

where 𝐱 denote the biometric data, and 𝐑 denote the transformation key. From equation 

(2.1), the re-issue of a new cancellable template 𝐱′ can be done by replacing the 𝐑. Pillai et 

al. [101], [102] propagate RP into iris template protection. Due to the outliers remaining in 

the iris vector, e.g., eyelids and specular reflections., application of the linear transformation 

(i.e., RP) to the entire iris vector will corrupt the iris data; thus, the result cancellable template 

is less discriminative. Therefore, the sectored random projection process in [101] was 

introduced to solve this issue. In [101], the iris vector is firstly divided into several sectors, 

and RPs are applied to the sectors independently; hence the cancellable iris template is 

generated by combining and encoding the transformed sectors. To handle the misalignment 

issue that is caused by the rotating iris images, a two-stage alignment process is merged 

with the proposed cancellable biometric scheme to obtain the final matching result  [102]. 

Later work of Pillai et al. [102] extends the methodology in [101] so that the RP works in 

video-based iris recognition. One drawback of using the random projection-based template 

protection method is that it requires the user to keep the transformation key 𝐑 securely as 

the transformation process is vulnerable to the template inversion attacks (e.g., [97]).  

 

Ouda et al. [103] proposed a cancellable iris scheme, namely “BioEncoding”. In [103], the 

consistent bits 𝐜 ∈ [0,1]𝑛 are first determined from multiple IrisCode of each user where the 

consistent bits refer to the bits that remained the same in different irisCode samples for the 

same user. After that, 𝐜 is partitioned into multiple 𝑚-bits binary blocks and the binary blocks 

are then converted into integer values. This yields an integer vector 𝐱 ∈ [0,2𝑚−1]𝑛/𝑚. Lastly, 

the cancellable iris template (BioCode 𝐛 ∈ [0,1]𝑛/𝑚) is generated by substituting each of the 

element in the integer vector 𝐱 ∈ [0,2𝑚−1]𝑛/𝑚  by the element in a randomly generated 

transformation key 𝑆 ∈ [0,1]2
𝑚−1. As such, the same integer value (𝑥) will be substituted by 

the same bit and this achieves a many-to-one mapping. To handle the irisCode 

misalignment issue, BioEncoding based schemes (e.g., [103]–[105]) require a pre-alignment 

process to obtain the consistent bit vector from the irisCode [103]. In particular, the pre-

alignment process requires the user to perform scanning and shifting multiple times to have 

the several aligned irisCodes to be extracted. After that, the most consistent bits from the 

aligned irisCodes are extracted to form the consistent bit vector. The pre-alignment process 

increases computation overhead where multiple rounds of iris scanning are involved. 
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Hämmerle-Uhl et al. [106] obtain the revocable wavelet-based iris feature using the key-

dependent wavelet transforms. In their work, there are two schemes: parameterized wavelet 

filter and wavelet packets [106]. In the parameterized wavelet filter approach, the 

parameterized filters are used to replace the quadratic spline wavelet (QWS) of the iris 

feature extraction technique (i.e., [107]). As for the wavelet packets approach, the 

decomposition of the iris image is limited to 8 stages to generate up to 510 different sub-

bands. After that, 20 sub-bands are randomly selected to form the revocable iris template, 

which will then be encoded into the cancellable irisCode. In [106], a key-dependent wavelet 

transform is directly applied to the feature extraction stage to avoid the data loss and 

alignment problem which usually occurs in the image warping process (i.e., [108]). Although 

the transformation process could avoid the alignment problem, the produced cancellable 

irisCode is not alignment-robust since iris mask shifting is required during the matching 

process. Furthermore, the security of the cancellable irisCode is an issue because both 

schemes are biometric-salting approaches such that the iris template is invertible if the 

transformation key is presented [106].  

 

Dwivedi and Dey [109] utilize the concept of a lookup table to create a cancellable iris 

template. In [109], a pre-alignment process is applied to generate a rotation-invariant iris 

template as the input for the cancellable transformation. The pre-alignment process 

performs horizontal shifting on input irisCode with reference to a sample irisCode from the 

same user. After that, all rows of the rotation-invariant iris template are concatenated into a 

single bit-vector 𝐜 ∈ [0,1]𝑛. The bit-vector 𝐜 is then partitioned into several sub-bit blocks 

with the size of 𝑚-bits where 𝑚 can be user-specific to improve security [109]. A binary-to-

decimal conversion is applied to all the sub-bit blocks and yield a decimal vector 𝐝 ∈

[0,2𝑚−1 ]𝑚/𝑛. With a randomly generated lookup table 𝐌 ∈ [0,1 ]2
𝑚×𝑚, each 𝑑 ∈ 𝐝 is used to 

look up 𝐌 for selecting 𝑑 numbers of bits in a certain row and combine the selected bits to 

produce the final cancellable template. The follow-up study done by Dwivedi et al. [110] 

applied the consistent bit extraction to the bit-vector 𝐜 to improve the matching accuracy. 

One drawback of this scheme is the lookup table 𝐌 must be kept secretly, otherwise the iris 

template can be easily recovered by reverse lookup the 𝐌 and a cancellable template [53]. 

 

Lai et al. [53] proposed a locality-sensitive hashing inspired scheme, namely the Indexing 

First One (IFO) Hashing in iris template protection. The concept of the IFO hashing is to 
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record the index value of the first ′1′ in the binary iris vector. The procedures of IFO hashing 

to transform the binary iris vector 𝐱 ∈ [0,1]𝑑 to the cancellable iris template 𝐜 ∈ [1, 𝑘 − τ]𝑞 

are explained as follows: 1) Given the randomly generated permutation matrices 𝐏𝑖 ∈

[0,1]𝑑×𝑑 where 𝑖 = 1…𝑛, transform the 𝐱 via the following formula to generate 𝑝 numbers of 

permuted vectors 𝐱perm𝑖 ∈ [0,1]
𝑑: 

 

 𝐱perm𝑖   = 𝐱𝐏𝑖; (2.2) 

   

2) Calculate the Hadamard product of the permuted vectors via the formula 𝐡 = ∏ 𝐱perm𝑖
𝑝
𝑖=1  

where 𝑖 = 1…𝑛; 3) Record the index value of the first ′1′ in the Hadamard product 𝐡 ∈ [0,1]𝑑 

as 𝑐𝑗; 4) Re-calculate the 𝑐𝑗′ = 𝑐𝑗mod(𝑘 − τ) where 𝑘 and τ are the pre-defined parameters; 

and 5) Repeat steps 1 − 4 for (𝑞 − 1) times until every 𝑐𝑗 ∈ 𝐜 are recorded where 𝑗 = 1…𝑞. 

In IFO hashing, the use of 𝑞 numbers of random matrices 𝐏 ∈ [0,1]𝑑×𝑑 in step 1 enables the 

revocation of the cancellable template. Despite [53] achieving a good matching accuracy 

with the Jaccard similarity matcher, it requires a pre-alignment process to alleviate the 

alignment issue [53]. Specifically, the original irisCode is horizontally shifted for ±𝑛 bits to 

produce up to 2𝑛 + 1 shifted instances. Then, all the shifted instances are transformed into 

the IFO hashed codes and matched to the enrolled IFO hashed code. The highest similarity 

score from the many-to-one matching process is returned as the matching result. Although 

this can achieve a desired matching result, the pre-alignment process increases the 

computation time for the entire matching process since multiple rounds of irisCode shifting 

and IFO transformations are involved. 

 

2.1.2 Alignment-robust iris template protection 

Zuo et al. [18] proposed two alignment-robust cancellable biometric schemes, i.e., GRAY-

COMBO and BIN-COMBO. The underlying concept of the COMBO approach is to randomly 

shift and combine the given rows in the iris template. Briefly, an iris template is transformed 

to the cancellable iris template through the following steps: 1) Each row of the input template 

is circularly shifted according to a key (or random offset), and 2) A pair of selected rows are 

combined via mathematical operation, e.g., XOR according to another key (or row selection). 

Due to the mixing nature, the generated template could resist template inversion attacks 

[18]. If the cancellable template is compromised, GRAY-COMBO and BIN-COMBO allow 

the renewal of the new cancellable template by applying a new key in steps 1 and 2, as 
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mentioned above. Among the two approaches, BIN-COMBO is designed for the irisCode 

feature, while GRAY-COMBO is designed for unwrapped iris image [18]. Both GRAY-

COMBO and BIN-COMBO are claimed to be registration-free (or alignment-robust) BTP 

schemes where the shifted rows of the iris template usually possess the same orientation 

regardless of rotation difference in the input iris image. This is validated by the experiment 

in [18] where multiple randomly shifted iris templates are involved. However, a good quality 

iris image is required to achieve the desired matching result [111]. 

 

Rathgeb et al. [54], [94] introduced the Bloom filter-based BTP scheme that can transform 

the unaligned irisCode into an alignment-robust protected template. In [54], the irisCode 𝐈 ∈

[0,1]𝐻×𝑊 is first partitioned into 𝐾 numbers of sub-matrix with column size of 𝑙 =
𝑊

𝐾
. Each 

sub-matrix 𝐁𝑖 ∈ [0,1]
𝐻×𝑙 is then used to generate a Bloom filter vector 𝐛𝑖 ∈ [0,1]

2𝑤 where 𝑖 =

1,2, … , 𝐾 and 𝑤 ≤ 𝐻. Generation of each Bloom filter 𝐛𝑖 is done by setting 1 in 𝐛𝑖 according 

to the position(s) pointed by the codeword 𝑥𝑗 ∈ [0,2
w − 1]𝑤  converted from 𝐁𝑖 ∈ [0,1]

𝐻×𝑙 

where 𝑗 = 1,2, … 𝑙. During the transformation process, [54], [94] only consider the codeword 

𝑥𝑗 converted from the upper 𝑤-bits of each column in 𝐁𝑖. Since multiple codewords point to 

the same position in the Bloom filter vector, a many-to-one effect is achieved, and this 

enables the alignment-robust transform. Lastly, 𝐾 numbers of Bloom filters are generated 

as the cancellable template. To achieve renewability, Bloom filter-based approach 

generates the final cancellable template by applying XOR operation between the codeword 

𝑥𝑗 ∈ [0,2
w − 1]𝑤 and an application-specific secret 𝑇. As such, a new cancellable template 

can be obtained by applying a new application-specific secret onto the XOR operation. 

Despite the Bloom filter approach possesses a good irreversibility property (many-to-one 

mapping), it was not satisfying non-linkability criteria [95]. Security analysis done by Hermas 

et al. [95] showed that it is possible that two protected templates generated from the same 

iris input (with different 𝑇) are highly correlated. Later, Gomez-Barrero et al. [112] resolve 

the correlation issue of the Bloom filter approach by applying a row-wise permutation onto 

the biometric feature before the Bloom filter-based transformation takes place. Bringer et al. 

[113] showed that the original irisCode can be recovered via brute force attack (preimage 

attack) when the size of the application-specific secret (𝑇) is very small. Therefore, 𝑇 should 

be sufficiently large to provide security resistance. Yet, this could increase the performance 

degradation of the Bloom filter-based transformation [113]. 
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Lai et al. [114] propose an alignment-robust IFO hashing to directly transform the unaligned 

irisCode into the alignment-robust cancellable template. The underlying concept of the 

alignment-robust IFO hashing is to integrate an alignment-robust transformation (Bloom 

Filters [54]) into the IFO transformation function. In this sense, the pre-alignment process 

that involves multiple shifted instances generation and transformation is not required. 

Specifically, [114] first utilizes the Bloom Filters to first transform the unaligned irisCode into 

a Bloom Filter vector 𝐛. It is noted the 𝐛 is generated without using any auxiliary data. After 

that, 𝐛 is passed to the IFO [53] to have the cancellable template be generated. Attributed 

to the Bloom Filters transformation, the generated cancellable template can be directly used 

for matching without pre-alignment. [114] also shows the alignment-robust IFO hashing is 

more efficient than the original IFO hashing by comparing the authentication time. However, 

the performance degradation is higher than the alignment-based counterpart [53]. 

 

Ajish and AnilKumar [115] propose the Double Bloom Filter to improve the performance 

preservation of the Bloom Filter [54], [94] approach. Similar to Bloom Filter, the input 

irisCode is first partitioned into multiple sub-matrix 𝐁𝑖 ∈ [0,1]
𝐻×𝑙 . After that, each 𝐁𝑖  is 

converted to the bloom filter vector 𝐛𝑖 ∈ [0,1]
𝑞 by setting 1 that is pointed by the codeword 

where 𝑞 = 2𝑤/2. In contrast to the canonical Bloom Filter, [115] further divide each column 

vector in 𝐁𝑖 into upper and lower columns, and then convert each column into the codeword. 

The codeword converted from the upper-column is used for setting 1 in the first 𝑞/2 part of 

the 𝐛𝑖; while the lower-column is used for setting another part of the 𝐛𝑖. Similar to Bloom 

Filter, an application secret 𝑇 is applied to each codeword to enable the renewability. Since 

the transformation function is derived from Bloom Filter, [115] is naturally alignment-robust. 

Despite the [115] improves the matching accuracy, the correlation between cancellable 

templates from the same iris is high, with the global linkage indicator 𝐷𝑠𝑦𝑠
↔ 
= 0.68 when 𝑤 =

10. 

 

2.2 Token management in unimodal and multimodal BTP 

In this section, related works on existing (mainly face and fingerprint) template protection 

methods are reviewed in terms of tokenized unimodal, tokenized multimodal and tokenless 

unimodal template protection methods. A tokenized approach refers to the template 

protection scheme that is designed in the sense that the scheme distributes a user-specific 

token (storage for the transformation key) during the enrollment process. Users are required 
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to keep the token securely where disclosure of the user-specific token could lead to many 

problems, e.g., zero-effort false acceptance attack [27]. On the other hand, a tokenless 

approach, sometimes rebranded as “one-factor template protection”, refers to the template 

protection approach that does not require the user to manage the user-specific key. 

Typically, the tokenless scheme transforms the transformation key into public information 

(auxiliary data) that is independent of the cancellable template and store it in the enrollment 

database. In this case, the user does not need to manage anything other than their biometric 

trait for the authentication. To the author’s best knowledge, until now, there is no tokenless 

template protection method for multimodal cancellable biometrics. 

 

Additionally, the proposed tokenless template protection scheme demonstrates a hybrid 

characteristic (cancellable biometrics + biometric cryptosystems) where XOR notions are 

employed in generating the auxiliary data. Thus, this section also reviews the existing hybrid 

template protection works. The difference between the scheme and the existing approach 

will be discussed in Chapter 4. 

 

2.2.1 Tokenized unimodal template protection 

A special instance of RP, namely the Biohashing [24], was proposed in fingerprint template 

protection. Briefly, the Biohashing accepts a biometric vector 𝐱 ∈ ℝ𝑛 and a random matrix  

𝐑 ∈ ℝ𝑛×𝑞  𝑞 ≤ 𝑛. Then, the Biohashing constructs 𝐲 by projecting 𝐱 via inner product, i.e., 

𝐲 = 𝐱𝐑, and followed by a binarization process to convert 𝒚 into the bioCode 𝐛 = [0,1]𝑞 

(cancellable template). The binarization process is shown as below: 

 

 𝑏𝑖 = {
0
1
  
, if 𝑦𝑖 ≤ 𝜏 
, otherwise

 (2.3) 

   

where 𝑖 = 1,… , 𝑞 and 𝜏 is a binarization threshold. With the generic property, Biohashing 

has been propagated to other biometric modalities, e.g., face, iris, palmprint, as reported in 

[116]–[120]. However, the user of the Biohashing must keep the random matrix 𝐑 (i.e., user-

specific token) securely due to the problems identified in [25], [97]. In [25], the experiments 

showed that the Biohashing is suffering from significant performance degradation when the 

same random matrix 𝐑 is applied to every user. Therefore, the adversary can break into the 

system easily with a false accept attack when the random matrix 𝐑 is revealed. Other than 

that, the original biometric vector 𝐱  can be recovered when the random matrix 𝐑  is 
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compromised. Despite the binarization process can effectively prevent the adversary to 

attempt for reversing the bioCode 𝐛 to original biometric vector 𝐱, the 𝐱 can be recovered by 

a preimage attack. In [97], a pseudo-inverse operation (preimage attack) was demonstrated 

to estimate the original biometric vector 𝐱 from the bioCode 𝐛 and random matrix 𝐑. 

 

Wang and Hu [121] proposed a fingerprint cancellable biometric scheme that does not 

require an alignment process during matching. This scheme utilizes many-to-one transform 

machinery, so-called the “densely infinite-to-one mapping (DITOM)” to generate a 

cancellable template for matching. Briefly, this scheme quantizes every minutia pair into a 

binary string, followed by a Discrete Fourier Transformation (DFT) to transform the binary 

string into a complex vector 𝑪. The cancellable template 𝑻 is then generated by combining 

a randomly generated parameter key 𝐑 with the complex vector. The combination function 

is described as follow: 

 

 𝑻 = 𝐑𝑪 (2.4) 

   

Different from Biohashing, this approach generates an irreversible instance from biometric 

data, then combines the irreversible instance with the key to generate the cancellable 

template. Later in [122], Wang and Hu proposed another non-invertible transformation-

based cancellable scheme on the fingerprint system that demonstrates enhanced security 

and accuracy compared to DITOM. In [122], the curtailed circular convolution is applied to 

the paired-minutiae vector to generate an alignment-free cancellable template for matching. 

Wang and Hu [122] also pointed out the DITOM required high memory storage due to the 

large key size of the auxiliary data. 

 

Savviddes et al. [123] proposed the cancelable biometric filters (CBF) in the face template 

protection, which is based on the random convolution method. In this work, a randomly 

generated number (or PIN) is employed as the seed to form a random convolution kernel 

(or random kernel). After that, a set of convolved training images are generated by 

convolving the random kernel with a set of training facial images. A minimum average 

correlation energy (MAGE) filter 𝐟 is then generated by the convolved training images with 

the formula as below: 

 

 𝐟 = 𝐑−1𝐗(𝐗+𝐑−1𝐗)−1𝐜 (2.5) 
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where +  denote the complex conjugate transpose, 𝐗 denote the matrix with consist of 𝑛 

training images with 𝑤 × ℎ  pixels, 𝐑 denote the average power spectrum of the training 

images, and 𝐜 is a vector with size 𝑛 consist of the correlation values for 𝑛 training images 

[123]. The generated MAGE filter is then stored in storage as the verification/ identification 

identifier. During the authentication stage, the user presents their face (to generate a facial 

image) and the PIN (to generate the random kernel). The given facial image and random 

kernel are convolved to generate a convolved facial image, which is matched to the pre-

stored MAGE filter for recognition [123]. In the CBF approach, cancellability is achieved by 

replacing the PIN number for the kernel generation. Later, Takahashi and Hirata [124] 

applied a similar approach to the fingerprint system, which is based on the famous chip 

matching algorithm. 

 

Cappelli et al. [63] proposed a state-of-art fingerprint minutiae descriptor, namely Minutia 

Cylinder Code (MCC). MCC is the technique to convert minutiae point set 𝑀 =

{𝒎1,𝒎2, … ,𝒎𝑛} to a set of cylinder 𝐶 = {𝒄1, 𝒄2, … , 𝒄𝑛} where each 𝒎 = {𝑥, 𝑦, 𝜃} and 𝑛 is the 

amount of minutiae extracted, A cylinder refer to the data structure that records the 

directional (orientation) and spatial (position) relationships between the central minutia and 

its neighbourhood minutiae within a fixed radius 𝑟 [63]. Despite MCC possessing superior 

matching performance, it is possible to obtain the original minutiae point set from the MCC 

template [125]. Therefore, the protected minutia cylinder code (P-MCC) was proposed to 

protect the MCC template. General speaking, the P-MCC method converts the MCC 

template 𝐶 = {𝒄1, 𝒄2, … , 𝒄𝑛}  to P-MCC template 𝑉 = {𝒗1, 𝒗, … , 𝒗𝑛}  via a one-way 

transformation function so-called “B-KL projection” [125]. Although P-MCC generated an 

irreversible instance that ensures the security of the MCC template, users of P-MCC cannot 

use the same fingerprint to re-issue the P-MCC template [126]. Due to the cancellability 

issue, a permutation-based cancellable scheme, i.e., the two-factor protected minutia 

cylinder code (2P-MCC), was proposed [126]. In 2P-MCC, a user-specific secret key 𝑠 is 

used to perform partial permutation onto the P-MCC template to generate the 2P-MCC 

template [126]. Therefore, renewal of a 2P-MCC template can be done by replacing the 𝑠. 

 

In the concept of ranking-based transformation, the cancellable template is generated by 

replacing the value in the original biometric feature with the “index value” during 

transformation. A Locality Sensitive Hashing (LSH) [127] inspired cancellable scheme, 
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namely the Index-of-Max (IoM) Hashing [66], was proposed to protect the fingerprint 

template which is generated via [62]. In the literature, LSH refers to a dimensionality 

reduction technique to hash the input high dimension data and map similar data to the same 

“bucket” [127]. In [66], there are two transformation strategies in the IoM hashing, i.e., 

Gaussian Random Projection (GRP) and Uniformly Random Permutation (URP). For GRP-

based IoM: 1) After IoM takes input 𝐱, the scheme generates a set of random projection 

matrices 𝐑 = {𝐑1, … , 𝐑𝑞} where each 𝐑𝑖 ∈ ℝ
𝑙×𝑑  and 𝑑 denotes the size of 𝐱 2) After that, 

project the 𝐱 into multiple random sub-spaces and this yields a set of projected vectors 𝐯 =

{𝐯1, 𝐯2, … , 𝐯𝑞 } where each 𝐯𝑖 = 𝐱𝐑𝑖 and 𝑖 = 1,… , 𝑞; 3) Lastly, record the index value that is 

corresponding to the maximum value of each 𝐯𝑖 and this form the IoM hashed code 𝐭GRP ∈

[0, 𝑙 − 1]𝑞. While for URP-based IoM: 1) Generates 𝑚 independent hash functions ℎ𝑖(𝐱) ∈

[1, 𝑘] where 𝑖 = 1, … ,𝑚 and each ℎ𝑖(𝐱) consist of 𝑝-order Hadamard product; 2) The IoM 

hashed code 𝐭URP ∈ [1, 𝑘]
𝑚 is then formed by concatenating the output from the 𝑚 hash 

functions ℎ(𝐱). To achieve cancelability, IoM applied the replace token: gaussian projection 

matrices 𝐑  (for GRP-based IoM) and 𝑝 -order Hadamard product (for URP-based IoM) 

during the enrollment of IoM hashed codes [66]. 

 

2.2.2 Tokenless unimodal template protection 

Ouda et al. [103] proposed the tokenless template protection scheme, namely 

“BioEncoding”. The BioEncoding was discussed earlier in section 2.1 by focusing on the 

pre-alignment process required in the scheme. This scheme is revisited in this subsection 

because it is the preemptive tokenless cancellable biometric scheme in the literature. Apart 

from the discussion in section 2.1, this subsection focuses on the tokenless property of the 

scheme. In [49], the two required inputs to generate the BioCode 𝐛 ∈ [0,1]n/m  are the 

irisCode 𝐜 ∈ [0,1]𝑛 and a randomly generated transformation key 𝑆 ∈ [0,1]2
𝑚−1 where 𝑚 is 

a system parameter which will be discussed later. After 𝐜 and 𝑆 are inputted to the scheme, 

the following procedures are carried out to embed the two entities into the 𝐛 : 1) 𝐜  is 

segmented into several binary blocks with 𝑚-bits; 2) The binary blocks are then converted 

to a set of integer value which yields an integer vector 𝐱 ∈ [0,2𝑚−1]𝑛/𝑚; and 3) Each 𝑥 ∈ 𝐱 is 

transformed into the binary value via following Boolean function 𝑓(. ):  

 

 𝑓(𝑥𝑖) = 𝑆[𝑥𝑖] (2.6) 
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where 𝑆[𝑥𝑖] returns the 𝑥𝑖 -th binary value in 𝑆. In this sense, the 𝑆 is used to build the 

Boolean function. The BioCode 𝐛 is formed after each of 𝑥 ∈ 𝐱 are converted to the binary 

vector. With the many-to-one mapping process, it is hard for the adversary to recover the 

original irisCode 𝐜 from the BioCode 𝐛 even if the transformation key 𝑆 is publicly known. 

Therefore, the transformation key 𝑆 is directly stored in the database as a publicly accessible 

system parameter to realize the tokenless authentication [103]. However, Lacharme [96] 

revealed that the original biometric data 𝐛  can be recovered when multiple sets of 

transformation key 𝑆 and BioCode 𝐛 is known to the adversary. Specifically, the adversary 

could perform cross-correlation analysis between multiple sets of 𝑆 and 𝐛 to recover the 

original irisCode 𝐜. Thus, the tokenless property of BioEncoding is questionable. 

 

Inspired by LSH-based iris template protection - IFO hashing [53], Kim and Teoh [128] 

propose tokenless IFO hashing for fingerprint systems. In the tokenless IFO, two 

independent IFO transformation functions are deployed to generate the cancellable 

template [53]. During the enrollment stage, the biometric input 𝐱 is transformed into the IFO 

hashed code 𝐡1 with a randomly generated permutation seed. In the meantime, a random 

bit-string 𝐫 is transformed in the second IFO hashed code 𝐡2 with the second permutation 

seed. The 𝐡2 is served as the pseudo-identifier for matching. After that, the 𝐡1 and 𝐡2 are 

XOR-ed and yield a XOR vector 𝐜 = 𝐡1⊕𝐡2. At the end of enrollment, every information 

including 𝐡2, 𝐜, permutation seed 1 and permutation seed 2 are stored in the database. 

During the verification, the 𝐡2′ is recovered by the 𝐡1′ generated from the user. After that, 

the recovered 𝐡2′  is processed by IFO hashing and yields the query template 𝐜′  for 

matching. Since the 𝐡1′ can only be re-generated by the genuine user, all the auxiliary 

information could be stored in the database for realizing tokenless authentication.  

 

2.2.3 Tokenized multimodal template protection 

With the drawback of unimodal Biohashing that degrades the matching performance, Nanni 

and Lumini [129] extended the Biohashing to a multimodal system [129]. In [129], 

Biohashing was used to transform the face and fingerprint templates separately. During the 

verification stage, a fused matching score is calculated by using the mean rule on the 

outcomes of face authentication and fingerprint authentication [129]. On the other hand, 

Maiorana et al. [130] proposed another score-level fusion cancellable scheme, namely the 

Bioconvolving in an online signature-based biometric system. Instead of fusing the matching 
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score of different biometric features, Bioconvolving fuses matching scores of different 

matchers for the same signature feature. In Bioconvolving, the two widely used signature 

matchers, i.e., Hidden Markov Models (HMMs) and Dynamic Time Warping (DTW), are 

employed during the cancellable template matching [130]. After that, the outcomes of two 

matches are fused together to estimate the fused matching score. As reported in [129], 

[130], the matching performance of score-level fusion is outperforming the unimodal 

cancellable system.  

 

Paul and Gavrilova [131] proposed a feature-level fusion cancellable scheme that is based 

on random projection and the feature extraction and selection in the transformed domain. At 

first, the ear and face images are divided into two parts (e.g., ear fold 1 and ear fold 2) via a 

pseudorandom function. The parts of ear and face images are then combined to form two 

fused images (e.g., ear-face fold 1). After that, the two fused images are transformed into a 

single cancellable template through the following procedures: 1) The fused images are 

transformed to low-dimension features via random projection and principal component 

analysis (PCA); 2) With k-means clustering,  a distance-based feature is extracted from each 

low-dimension feature; and 3) The two distance-based features are then combined by the 

linear discrimination analysis (LDA) to form the final cancellable template. As shown in [131], 

the matching performance of the fused cancellable template is better than the unimodal 

cancellable template. Since the biometric source is represented in an image, the 

incompatible issue of biometric feature vectors (e.g., feature type, feature-length) does not 

exist in [131]. 

 

Chin et al. [132] proposed feature-level fusion on fingerprint and palmprint-based biometric 

systems. Briefly, [132] is a three-stage hybrid method that transforms fingerprint and 

palmprint templates into a single cancellable template. At first, the normalized fingerprint 

and palmprint images are integrated into a fused feature by an XOR operation. Then, the 

fused feature is transformed into another form, so-called the RT feature, by a parameterized 

function (known as Random Tiling, RT). Generally speaking, with a user-specific key, the 

Random Tiling extracts a set of random rectangles (RT feature) from the fused feature; thus, 

the renewability property of [132] is achieved by replacing the key for RT transformation. 

Lastly, the RT feature is binarized to produce a bit-string template as the final cancellable 

template.  
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In [133], Rathgeb et al. proposed a multimodal Bloom filter that performs feature-level fusion 

on face and iris templates to generate the cancellable template. Briefly, the multimodal 

Bloom filter [133] performs Bloom filter transformation (refer to [94]) on the binary face 

feature and irisCode separately to generate a cancellable face template 𝐂face  and 

cancellable iris template 𝐂iris. After that, the two entities are fused together to generate the 

final cancellable template 𝐂 as below: 

 

 𝐂 = OR(𝐂face, 𝐂iris) (2.7) 

 

where the OR(.) denotes the bitwise-OR operation. Recently, Gomez et al. [99] enhanced 

the multimodal Bloom filter framework and propagated the methodology to face + finger-

vein and face + iris-based systems. In [99], a weighted fusion strategy was proposed for the 

enhanced multimodal Bloom filter transformation, and it can increase the matching accuracy 

when fusing multiple biometric features in different sizes [99]. During the Bloom filter 

transformation, a weight 𝛼𝑖  is allocated to each cancellable template 𝐂𝑖  where 𝑖 = 1…𝑛 

indicates the number of different biometric characteristics. After that, the weighted sum (i.e., 

weight × similarity score) is calculated as the fused score. The formula is re-written as 

below: 

 

 𝑆 =∑(𝛼𝑖 × 𝐻𝐷(𝐂𝑖, 𝐂𝑖′)

𝑛

𝑖=1

) (2.8) 

 

where 𝐻𝐷(. ) denotes the Hamming distance function, 𝑛 represents the number of biometric 

characteristics and 𝐂𝑖′ denote the query template. 

 

Recently, Yang et al. [134] proposed a non-invertible transformation-based cancellable 

scheme, namely the enhanced partial discrete Fourier transform (EP-DPT) in the fingerprint 

and fingervein-based biometric system. In general, the EP-DPT performs feature-level 

fusion on the minutiae-based fingerprint feature and image-based finger-vein feature into a 

single cancellable template. In [134], the bit-string fingerprint template 𝐱face ∈ [0,1]
𝑑  and 

finger-vein template 𝐱vein ∈ [0,1]
𝑑  are transformed into a single cancellable template 𝐜 ∈

[0,1]𝑚  where 𝑑 is the size of the bit-string template and 𝑚 is the size of the cancellable 

template. 
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2.2.4 Hybrid template protection 

Ao and Li [135] proposed a key binding scheme that integrates the cancellable biometric 

scheme (Biohashing [24]) and a key binding scheme (Bose-Chaudhuri-Hocquenghem, 

BCH) in face biometrics. The primary goal of [135] is to bind the cancellable template 

(generated by Biohashing) with a cryptographic key. Initially, [135] followed the Biohashing 

technique to transform the near-infrared (NIR) face image to a binary string 𝐛 (or Biohashed 

code) for the cancellability. Then, the binary string 𝐛 is used as the input for the BCH scheme 

to bind a cryptographic key. Due to the fact that ECC algorithm cannot be applied on the 

binary string 𝐛, [135] enhanced the Biohashing by applying a NXOR mask onto the binary 

string 𝐛 before it is input to the Error Correction Code (ECC) (a component of BCH key 

binding scheme). During authentication stage, the same NXOR mask is applied to the binary 

string 𝐛′ before the key release process. Application of the NXOR mask provides a more 

reliable binding process for a biometric key where the performance degradation was 

minimized to 1~2% degradation rate [135]. 

 

Feng et al. [136] proposed another hybrid cancellable biometric scheme to protect the face 

templates. Briefly, [136] is a three-stage transformation scheme that integrates the 

cancellable transformation (i.e., random projection) and biometric cryptosystem (i.e., fuzzy 

commitment) in generating a secure face template. At first, the random projection (RP) 

transforms the input face template 𝐱  to a projected vector 𝐯 = 𝐱𝐑  to achieve the 

cancellability where 𝐑 is the projection matrix (in the form of user-specific token). After that, 

the projected vector 𝐯 is binarized by the discriminability preserving (DP) transformation and 

yield a binary vector 𝐛. Lastly, the 𝐛 is passed to the fuzzy commitment (with ECC enabled) 

to produce an encrypted template 𝐞 and auxiliary data 𝐚, During authentication, the input 

face template 𝐱′ is firstly used to release a binary vector 𝐛′ from 𝐚 via fuzzy commitment. 

Lastly, the 𝐛′ is encrypted to the query template 𝐞′ for matching.  

 

Jin et al. [137] proposed a biometric key binding scheme using cancellable transform for 

fingerprint templates. Given a binary key, the binding/release idea is to encode 1s with true 

templates while encodes 0s with synthetic templates. Cancellable transform is used to 

generate multiple cancellable templates in order to encode multiple 0s and 1s in the 

cryptographic key. Error correction code (ECC) is abandoned in this proposal. Hence, 

vulnerabilities, e.g., performance-key size trade-off and statistical attack associated with 
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ECCs no longer exist. Although the primary goal of this proposal is meant to bind/release a 

cryptographic key (key protection), cancellable transform enables the secure templates 

generation (template protection). 

 

2.3 Security and privacy of thresholding-based decision making 

A (protected and unprotected) biometric system is manifested as a thresholding-based 

decision system that determines the identity of the individual based on the similarity score 

that is acquired from the similarity comparison between the enrolled and query instances. In 

this case, the adversary could exploit the similarity score obtained from the matching 

process and launch an attack that aims to breach the security and privacy of the biometric 

system. In the biometric research area, this attack is sometimes rebranded as a type-4 

attack in a biometric system [27]. In this kind of attack, the adversary aims to acquire a 

guessed biometric template (or preimage) that is highly similar to the enrolled biometric 

template by means of trial-and-error towards the matcher module. More deadly, this attack 

does not require the adversary to compromise the template storage. This consequence of 

this attack is further exacerbated in a biometric system that directly stores the original 

biometric feature in the storage since a high similarity score usually indicates that the 

guessed template is approximately close to the original biometric template, which leads to 

the reconstruction of the biometric template in the existing studies. This enables the 

adversary to conduct a replay attack (to other applications) due to the irrevocable trait of the 

biometric feature. In this section, the existing works that are related to the injection of the 

guessed biometric template before the matcher module are revisited. To the author’s best 

knowledge, there are limited works to improve the security resistance of the biometric 

system towards this type of attack in terms of the matching mechanism. Therefore, the 

literature review in this section focuses on the type-4 attack, which corresponds to the 

contribution iv of this thesis. 

 

A brute-force attack is the most straightforward approach that performs trial-and-error on 

every possible combination of guessed query biometric templates towards the biometric 

system until access is granted. In [138], a brute-force attack model is formalized towards a 

minutiae point-based fingerprint system. In the naïve approach, the attack complexity of the 

brute-force attack is determined by the probability that each guessed minutia is matched to 

one of the minutiae in the enrolled fingerprint template. The probability 𝑝 is calculated as 

below 
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 𝑝 =
𝑁

𝐾 ∗ 𝑑
 (2.9) 

 

where 𝑁  is the total number of minutiae in the fingerprint template, 𝑑  denotes the total 

possible value for the minutia orientation, and 𝐾 is the possible value for the minutia position. 

In addition to the naïve approach, [138] factors in the probability of minutia are counted as 

the middle point of the fingerprint to leverage a more realistic scenario. Nevertheless, the 

exhaustive search manner of the brute-force attack requires high attack complexity for a 

successful attempt, which is infeasible for a biometric template that is sufficiently large in 

terms of template space. This is pointed out by [138], where the brute-force attack is 

plausible when the number of the information for the fingerprint template is small. By 

increasing the number of information, the attack complexity for the brute-force attack is 

increasing drastically. 

 

Knowing that high complexity is required for a brute-force approach, the hill-climbing 

approach is then introduced in the literature. Hill climbing is a mathematical local 

optimization technique that employs iterative modification onto the guessed instance until 

an optimal result is achieved. In a biometric system, a hill climbing-based attack model 

usually starts by randomly guessing a biometric template and injecting it into the matcher 

module. After that, the attack model intercepts the similarity score from the matching process 

and factors it into the modification scheme to improve the guessed template. In [26], Uludag 

and Jain devise a hill climbing-based attack model that is targeted towards an (unprotected) 

minutiae-based fingerprint system. In this work, the adversary aims to bypass the 

authentication process using a guessed minutiae template that is sufficient to be recognized 

as a genuine user. The five steps procedures of the attack framework in [26] are: 1) The 

attack framework initializes 𝑛 numbers of guessed minutiae template, each with 𝑚 numbers 

of minutiae points; 2) Iteratively inject the 𝑛 numbers of guessed minutiae template into the 

system and intercept the matching scores for each comparison; 3) Based on the matching 

scores intercept, the attack framework selects the best matching template as the initial 

guessed template for the modification attempt; 4) After acquiring the initial guessed 

template, a series of operations, i.e., perturbation, insertion, replacement and deletion are 

performed towards the guessed template; 5) Inject the modified template to the matcher 

module to obtain the matching result. The step 4-5 repeats until the matching score surpass 
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the system threshold. Since the minimum distance between the ridges is identified as 9 

pixels, a rectangular grid (with 9 × 9 cells) is applied to avoid the creation of minutiae points 

that are close to each other during the step 1. Besides that, the orientation for each guessed 

minutiae point is selected from 16 possible values that are quantized from the range of 

[0,2𝜋). Attributed to the grid formulation and the orientation quantization, the total numbers 

of possible values for each guessed minutiae point are greatly reduced; and thus, this attack 

framework is more efficient than the brute-force approach. 

 

Marta et al. [139], [140] proposed another hill climbing-based attack to exploit the privacy 

aspect of the online signature and face verification system in the sense that the biometric 

feature is reconstructed via the attack framework. In [139], [140], the Nelder-Mead (or 

Downhill Simplex) algorithm [141] is adopted as the modification scheme to update the 

guessed biometric feature that is in the format of the fixed-dimensional real-valued vector. 

In this attack, the operation to obtain a similarity score between the enrolled biometric 

template and the guessed instance refers to evaluating an objective function 𝐹(. ). Since the 

biometric comparison of the targeted biometric system relies on a normalized similarity score 

(not distance), the Downhill Simplex algorithm is operated inversely such that the 

modification scheme is maximizing the 𝐹(. ). Thus, this attack is rebranded as Uphill Simplex 

Hill Climbing. Suppose a biometric feature 𝐱 ∈ ℝ𝑛 with 𝑛 dimensions, this attack framework 

is formed by a series of iterative process are as follow: 1) the attack framework first establish 

𝑛 + 1 numbers of guessed instances (simplex vertices) 𝐱𝑣 where 𝑣 = 1,2, … , 𝑛 + 1 and each 

𝑥 ∈ 𝐱𝑣 is randomly chosen from the statistical model of a pool of users; 2) Compute the 

centroid 𝐜 of the vertices by averaging the value of every 𝐱𝑣 where 𝑣 = 1,2, … , 𝑛 + 1; 3) After 

that, the attack framework evaluate the 𝐹(. ) of 𝐱𝑣 where 𝑣 = 1,2, … , 𝑛 + 1 to identify the 𝐱ℎ 

(vertex with highest matching score) and 𝐱𝑙  (vertex with lowest matching score); 4) The 

computed 𝐜, 𝐱ℎ and 𝐱𝑙, are then inputted to the Nelder-Mead algorithm [141] to update each 

𝐱𝑣 with a series of processes, i.e., expansion and contraction. The step 2-4 repeat until the 

maximum iteration is reached or the matching score surpasses the system threshold. Since 

the attacks were targeted onto the biometric system that directly stores the original biometric 

feature in the template storage, a successful attack attempt means the reconstruction of the 

original biometric feature. As such, the estimated template can be used for replay attack due 

to the irrevocable traits of biometrics. This also shows the importance of employing biometric 

template protection (BTP) in a biometric system to mitigate the effect of the type-4 attack.  
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Hill climbing is an optimization technique that finds the best solution by means of local 

search. The output guessed feature of a hill climbing-based attack is the best solution 

(hereafter refer as local optimum) bounded by its neighboring candidature solutions. As 

such, it could lead to the situation that there is no feasible guessed feature throughout the 

attack (refer to as the local optimum problem). To overcome this problem, Pashalidis [142] 

devised another variation of hill climbing-based attacks, namely the simulated annealing 

attack, to bypass the authentication process of a minutiae-based fingerprint system. The 

attack is optimized for the fingerprint system that employs the vicinity-based matcher, where 

it is not required to explore the entire search space during the attack attempt. Furthermore, 

this work demonstrates the possibility of conducting the type-4 attack in biometric template 

protection (BTP)-enabled system since the experiments in [142] were conducted on the 

PMCC [125] enabled fingerprint system. Similar to the aforementioned attacks, the 

simulated annealing attack is an iterative modification process of improving the guessed 

biometric template until a desirable authentication outcome is achieved. The initial step of 

this attack is to create an initially guessed fingerprint template 𝑇  which contains 𝑎 × 𝑏 

numbers of vicinities. Each vicinity is formed by 𝑛 numbers of minutiae where 𝑛 is randomly 

chosen within the range from 𝑛min until 𝑛max, and the attributes of the minutiae (i.e., location 

and orientation) are randomly generated. After that, the attack create a candidature guessed 

fingerprint template 𝑇′ by replacing one vicinity in the 𝑇 with a randomly generated vicinity 

and inject the 𝑇′ to the system for matching. The attack then set 𝑇 = 𝑇′ if the matching score 

of 𝑇′ is higher than the 𝑇. Differ to the classical hill climbing-based attack, the simulated 

annealing attack occasionally replace the 𝑇 to a 𝑇′ that possesses a lower matching score 

based on a configurable probability to reduce the local optimal problem. Although the 

aforementioned works show the possibility of obtaining a guessed biometric template with 

sufficient matching score in a BTP-enabled system, the works never show the guessed 

biometric template can compromise the privacy of the system especially when the stored 

template is a cancellable template that can be revoked and renewed.  

 

Although the brute-force, hill climbing, and simulated annealing-based attacks can be used 

to obtain a guessed biometric template with a sufficient matching score, the attack 

complexity tends to be higher when the template space is sufficiently large. Knowing the 

bottleneck of the local search algorithm (e.g., hill climbing), the population-based search 

algorithm (e.g., genetic algorithm) is then explored to study the security and privacy of 

biometric authentication. A genetic algorithm (GA) is an optimization algorithm that imitates 
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the biological genetic development process that can be divided into natural selection, 

genetics and evolution [143]. Differ from the local search approaches that iteratively modify 

a guessed biometric template, the GA modifies a list of guessed biometric templates (so-

called population) within a fixed interval of attack iterations. Given a list of guessed biometric 

templates that are randomly initialized, the GA performs a series of processes in each attack 

iteration: selection, crossover and mutation. In each iteration, the selection process is first 

conducted to choose the template with the high matching score as the parents. After that, 

the crossover process creates the children by mixing a portion of the parent with randomly 

generated information. The children refer to the list of guessed biometric templates 

(population) for the next iteration of the attack. The last step in each attack iteration is the 

mutation process that randomly perturbs the children to diversify the population. The attack 

continues until the best matching score from the population is higher than the system 

threshold or the maximum attack iteration is reached. Galbally et al. [31] demonstrate the 

utilization of the genetic algorithm in reconstructing the iris image without prior knowledge 

towards the binary irisCode that is stored in the system. Specifically, the attack framework 

utilizes the genetic algorithm that aims to minimize the pairwise irisCodes distance by 

iteratively modifying the guessed iris image until the desired result (i.e., high similarity score) 

is achieved. In [31], the necessity of having biometric template protection is mentioned so 

that the possibility of the original biometric template being reconstructed can be reduced.  

 

Knowing that biometric template protection is essential in preventing the original biometric 

template from being reconstructed, [29] studies both security and privacy aspects of a 

fingerprint system that is enforced by the Protected Minutia Cylinder Code (PMCC) [125]. In 

[29], security refers to the case that the guessed fingerprint template can achieve a sufficient 

matching score and bypass the authentication process, while privacy refers to the case that 

the guessed fingerprint template is identical to the original fingerprint template. Since PMCC 

is a transformation-based template protection scheme, the attack is conducted by guessing 

the input for the PMCC scheme. Specifically, the attack framework utilizes the population-

based modification traits of the genetic algorithm to first populate a group of guessed 

fingerprint templates. After that, the guessed templates are fed to the PMCC to have the 

transformed templates to be generated and matched to the pre-stored template. Similar to 

most of the aforementioned attacks, the attack is an iterative modification scheme that 

continues until the authentication is granted or the max iteration is reached. Due to the 

thresholding decision-making nature of the PMCC, the attack framework is able to obtain a 
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guessed fingerprint template that can be used to bypass the authentication process. Despite 

the [29] is able to compromise the security (authentication process) of the system, the 

privacy aspect of the system is protected where the guessed fingerprint template is not 

identical to the original fingerprint template. This also shows that it is important to employ 

biometric template protection in a biometric system. 

 

2.4 Summary 

In this chapter, the existing biometric template protection (BTP) related works are revisited, 

and the revisited works are mostly associated with the face, fingerprint and iris modalities. 

The works are presented in section-by-section based on the main issue identified: (i) 

alignment problem in iris template protection, (ii) token management in unimodal and 

multimodal BTP and (iii) security and privacy of thresholding-based decision making. 

Despite there are various numbers of work introduced in the literature, biometric template 

protection is still an open issue with a few concerns, e.g., verification performance, alignment 

issue, token management and security vulnerabilities that have yet to be fully solved. For a 

quick overview, the reviewed works are summarized in the three tables below in the 

respective categories, with Table 2.1 summarizing the existing iris template protection 

scheme. The iris template protection schemes are revisited in regard to the capability of 

handling the unaligned iris feature during the transformation process. Although a number of 

works showed the capability of directly transforming the unaligned iris feature, it is noticed 

that certain vulnerabilities are yet fully resolved. Table 2.2 covers the existing unimodal and 

multimodal template protection works in terms of tokenized and tokenless authentications. 

It is observed that there are limited studies on the template protection scheme that can 

address token management and biometric fusion problems simultaneously. Lastly, Table 

2.3 outlines the compromisation of the security and privacy aspects in a biometric matching 

process through the type-4 attack. The reviewed works demonstrate the importance of 

biometric template protection to conceal the original biometric feature in the sense that the 

original biometric feature cannot be fully recovered even if the matching process of a BTP-

enabled system is compromised. Yet, there is limited study on a solution that can further 

enhance the security resistance of the BTP-enabled system in terms of the threshold 

selection. This drove the author to explore the type-4 attack as well as a solution that can 

further improve the security resistance of the BTP-enabled system.  
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Enlightened from these impactful works, the author carried out research, and the outcomes 

of this thesis are: (i) an iris template protection scheme with the alignment-robust property, 

(ii) two tokenless face and fingerprint-based template protection schemes, (iii) a robust 

matching mechanism that improves the security resistance of the system and (iv) an 

automated type-4 attack scheme that aims to bypass the authentication process. The 

proposals are presented in the remaining parts of this thesis on a chapter-by-chapter basis, 

with Chapter 3 presenting the work (i), Chapter 4 presenting the work (ii), and Chapter 5 

presenting the works (iii) and (iv). 

 

Table 2.1: Summary of reviewed works in section 2.1  

Method 
Alignment 

Mechanism 
Technique Observation(s) 

Alignment-based approach 

Pillai et al. [101], [102] 
 

- Two-stage 
alignment 
estimation 

- Biometric Salting 
- Random Projection 

with partitioning 
approach 

- Increased computation 
overhead due to the two-
stage pre-alignment 
process 

- User-specific token 
required  

Ouda et al [103] 
(BioEncoding) 

- Shifting-based 
consistent bit 
vector 
generation 

- Random many-to-one 
mapping 

- Random XOR/ 
permutation before 
BioEncoding [105] 

- Increased computation 
overhead due to multiple 
irisCode extractions for 
handling irisCode 
misalignment 

Hämmerle-Uhl et al. 
[106] 

- Shifting bit-
mask during 
matching 

- Biometric Salting 
- Key-dependent 

wavelet transform 

- Token management 
issue [106] 

Dwivedi et al. [109], 
[110] 
 

- Rotation 
invariance 
mechanism 

- Consistent bit 
generation 

- Lookup table mapping 

- Performance 
degradation when 
transforming unaligned 
irisCode 

- Reference images 
required for generating 
rotation invariant code 

Lai et al. [53] 
(IFO hashing) 

- Consistent bit 
vector 
generation 

- Locality Sensitive 
Hashing (LSH) 

- Min-Hash 

- High computation 
overhead and increased 
matching time due to the 
shifting-based alignment 
process [114] 

Alignment-robust approach 

Zuo et al. [18] 

- The shifted 
row of iris 
feature share 
the same 
orientation 

- Biometric Salting 
- Random offset shifting 
- Combination of 

features via 
multiplication/ addition 
(GRAY-COMBO) or 
XOR/ XNOR (BIN-
COMBO) 

- High quality of input iris 
image required [18] 

Rathgeb et al. [54], [94] 
and Marta et al. [112] 
(Bloom Filters) 

- Many-to-one 
mapping  

- Bloom Filter mapping 
For [54], [94]: 
- Unlinkability not satisfied 

[95]  
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 - Binary-to-decimal 
conversion (many-to-
one) 

- Row-wise permutation 
[112] 

- Vulnerable to preimage 
attack when key space is 
small [113] 

For  [112]: 
- Resolves linkage issue of 

previous works 

Lai et al. [114] - Integration of 
Bloom Filter 

- Bloom Filter  
- IFO 

 

- Higher performance 
degradation  

Ajish and AnilKumar 
[115] 

- Bloom Filter 
transform 

- Divide a bloom filter 
into upper and lower 
parts 

- High template linkage 

 

Table 2.2: Summary of reviewed works in section 2.2 

Method 
Biometric 
Modality 

Technique Observation(s) 

Tokenized (or two-factor) unimodal template protection 

Teoh et al. [24] 
(BioHashing)  

Fingerprint 
- Random Projection 
- Uni-step binarization 

- Token management 
issue [25], [97] 

- Performance 
degradation [25] 

Wang and Hu [121] 
(densely infinite-to-one 
mapping, DITOM) 

Fingerprint 
- Discrete Fourier 

Transformation 
- Random Projection 

- The large size of the 
auxiliary data [122] 

Savviddes et al. [123] 
(Cancelable biometric 
filters, CBF) 

Face - Random convolution 
- Training required 
- The user needs to 

memorize the PIN 

Cappelli et al. [63], 
[126] 
(2P-MCC) 

Fingerprint  

- KL projection + 
Binarization 

- Full/ partial 
permutation 

- Specific for fingerprint 
minutia descriptor (MCC 
[63]) 

Jin et al. [66] 
(IoM hashing) 

Fingerprint 
- Ranking-based 

locality-sensitive 
hashing 

- Performance 
degradation 

Tokenless (or one-factor) unimodal template protection 

Ouda et al. [103]  
(BioEncoding) 

Iris 

- Consistent bit vector 
generation 

- Random many-to-one 
mapping 

- Random XOR/ 
permutation before 
BioEncoding [105] 

- Vulnerable to cross-
correlation attack [105] 

- IrisCode is recoverable 
when the random key is 
disclosed [96] 

Kim and Teoh [128] 
(One-factor IFO 
hashing) 

Fingerprint 

- Two-stages IFO 
hashing 

- Locality sensitive 
hashing 

- Performance 
degradation 

- Specific for binary input 

Tokenized (or two-factor) multimodal template protection 

Nanni and Lumini [129] 
- Face 
- Fingerprint 

- Biohashing 
transformation 

- Score-level fusion 

- User-specific token 
required 

- Increased computation 
overhead and storage 
space due to multiple 

Maiorana et al. [130] 
(Bioconvolving) 

On-line signature 
templates 

- Random mapping 
- Score-level fusion via 

Hidden Markov Models 

- The user-specific token 
is required 
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(HMMs) and Dynamic 
Time Warping 

Paul and Gavrilova 
[131] 

- Ear 
- Face 

- Random projection 
and principal 
component analysis 
(PCA) 

- Feature-level fusion 
via linear 
discrimination analysis 
(LDA) 

- The user-specific token 
is required 

Chin et al. [132] 
- Fingerprint  
- Palmprint  

- Feature fusion via 
XOR operation 

- User-specific key 
guided random 
rectangle extraction 

- The user-specific token 
required 

Rathgeb et al. [133] 
- Face 
- Iris 

- Bloom Filter 
transformation 

- Weighted sum-based 
score-level fusion 

- User-specific token 
required 

- Increased computation 
overhead due to multiple 
Bloom Filter 
transformations is 
required 

Yang et al. [134] 
- Finger-vein  
- Fingerprint  

- Discrete Fourier 
Transform 

- User-specific token 
required 

Hybrid scheme (cancellable biometrics + biometric cryptosystems) 

Ao and Li [135] Fingerprint 
- Biohashing 
- BCH key binding 

- Error Correction Code 
(ECC) required 

Feng et al. [136] Face 

- Random projection 
- Fuzzy commitment 
- Discriminability 

preserving 
transformation 

- User-specific token 
required 

Jin et al. [137] Fingerprint 

- Random permutation 
- Minutiae vicinity 

decomposition (MVD) 
- Randomized GHE 

- Error Correction Code 
(ECC) is not required for 
the key binding 

 
Table 2.3: Summary of reviewed works in section 2.3 

Method Targeted System Technique Observation(s) 

Ratha et al. [138]  

Unprotected 
fingerprint 
minutiae-based 
system 

- Brute-force attack 
- High attack complexity 

due to exhaustively 
search manner 

Uludag and Jain [26] 

Unprotected 
fingerprint 
minutiae-based 
system 

- Manual hill-climbing 

- Quantize the search 
space (e.g., fingerprint 
orientation) to reduce 
attack complexity 

- Specific for fingerprint 
minutiae-based system 

Marta et al. [139], [140] 
Unprotected face 
and online 
signature systems 

- Uphill simplex 
algorithm 

- The estimated feature 
can be used for a replay 
attack 

- The importance of 
biometric template 
protection is highlighted 

Pashalidis [142] 
PMCC protected 
fingerprint system 

- Simulated annealing 
algorithm 

- Optimized for fingerprint 
vicinity-based system 
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- The possibility of 
bypassing the 
authentication in a 
protected system is 
demonstrated 

- The attack scheme is not 
tested for compromising 
the privacy aspect of the 
targeted system 

Galbally et al. [31] 
Unprotected Iris 
system 

- Genetic algorithm 

- Possibility of recovering 
the input irisCode 

- The importance of 
biometric template 
protection is highlighted 

Rozsa et al. [29] 
PMCC protected 
fingerprint system 

- Genetic algorithm 

- The possibility of 
bypassing the 
authentication in a 
protected system is 
evidenced with 
experimental results 

- Highlights the biometric 
template protection 
guarantee the privacy 
aspect because the 
estimated template is not 
identical to the original 
input biometric template 
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Chapter 3 ALIGNMENT-ROBUST IRIS TEMPLATE PROTECTION  

 

In this chapter, the alignment problem (bit-displacement) of the irisCode template 

protection is addressed, and a Histogram of Oriented Gradient (HoG) inspired cancellable 

biometrics, coined as Random Augmented Histogram of Gradients (R∙HoG) is proposed. 

The proposed R∙HoG is constructed based on two main mechanisms: 1) column vector-

wise random augmentation and 2) gradient orientation grouping to protect the irisCode. 

The essence of the proposed R∙HoG is an alignment-robust scheme that can produce an 

alignment-robust cancellable template, which is crucial for an efficient authentication 

process. The experimental result shows reasonable performance on the benchmarking 

CasiaV3 iris dataset with the lowest EER= 0.62% in the protected system. It is worth 

noticing that the performance preservation is acceptable as compared to the original 

counterpart (EER= 0.50%). Other than that, the irreversibility and security properties are 

studied with major security and privacy attacks in the biometric system, e.g., false 

acceptance attack and birthday attack. With the quantitative evaluation framework, the 

proposed scheme is shown to satisfy the unlinkability property. 

Chapter 3:  

 

3.1 Background 

 

Fig 3.1. Graphical representation of shifting-based matching for unaligned IrisCode with horizontal ±1 bit 
shifting (adopted from [144]) 

 

Iris is one of the most promising biometric traits for identity verification because of the rich 

entropy in the iris pattern [44]. In iris recognition, IrisCode is the well-known iris feature 

descriptor although many alternatives are introduced in the literature [38], [145]. Due to the 
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rotational inconsistency of the iris image (caused by head tilt) during the acquisition process, 

it is known that the extracted irisCode possesses a bit-displacement (or alignment) issue. 

For instance, the query irisCode cannot be directly matched to the enrolled irisCode even 

the irisCodes are extracted from the same iris. To achieve the optimal verification result, 

pre-alignment of the IrisCode templates is required during the authentication process [144], 

[146], [147]. One common approach is to perform horizontal shift for ±𝑛 bits on the query 

IrisCode to produce up to 2𝑛 + 1 shifted instances (e.g., [53], [94], [144], [147]). The final 

verification result is done by obtaining the highest matching score from the comparison 

between the enrolled irisCode and the shifted instances. One drawback of the pre-alignment 

process is that it increases the processing overhead for the iterative shifting process. This 

problem is amplified when an additional mechanism, e.g., biometric template protection is 

applied to the iris verification system. Despite a number of iris template protection methods, 

iris template protection is still an unsolved issue. For instance, the recently developed IFO 

hashing [53] is identified from suffering the high processing overhead where multiple rounds 

of transformation and matching are required. Hence, it urges for a new alignment-robust 

solution to protect the iris feature.  

 

In this chapter, a cancellable biometric scheme, namely the Random Augmented Histogram 

of Gradients (R∙HoG) is introduced to protect the irisCode. Unlike existing biometric works 

that consider HoG as a feature extraction method [148]–[150], this chapter demonstrates a 

new variant of HoG that can directly transform the unaligned irisCode feature into an 

alignment-robust cancellable template. The motivations that HoG is a suitable descriptor to 

enable the cancellable biometric scheme are outlined as below: 

 

• HoG is derived by statistical readings of the local information, which possesses the 

alignment-free property. Hence, this mechanism can be used to eliminate the irisCode 

bit-shifting process (alignment) when performing the cancellable transformation. 

 

• A many-to-one mapping was utilized in HoG to offer the concealment of the original 

feature vector, which is critical for the non-invertible property. 

 

Since the resultant cancellable template is robust towards the alignment issue, feature 

alignment is not required during the authentication process, and this increases the efficiency 

of the authentication process. Contributions of this chapter are explained as follows: 
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• A new cancellable biometric scheme, namely the random augmented histogram of 

gradients (R∙HoG) is introduced to protect the iris feature. The proposed scheme is 

inspired by the well-known histogram of oriented gradients in object detection [151]–

[153] to directly transform the unaligned irisCode feature into a renewable and 

irreversible template. The generated template is alignment-robust. 

 

• Verification performance is justified on the benchmarking CASIA-IrisV3 dataset and 

compared to the state-of-the-art iris cancellable biometric schemes. Other than that, 

benchmarking evaluation frameworks are employed to validate unlinkability property 

 

• Rigorously analysis of the security and privacy aspects of R∙HoG is carried out in both 

qualitative and quantitative manners. Particularly, existing major attacks, e.g., attack via 

input enumerations, brute force attack, false acceptance attack and birthday attack, are 

conducted, and the attack complexity is calculated.  

 

This chapter is organized as follows: Section 3.2 discusses the preliminaries relevant to the 

proposed scheme, followed by the methodology (i.e., enrollment and verification phases) in 

section 3.3. Section 3.4 presents the experiment result in terms of parameters estimation 

and computation efficiency. After that, section 3.5 evaluates the proposed scheme. Lastly, 

the findings of this chapter are summarized in section 3.6. 

 

3.2 Preliminary 

This section presents the histogram of oriented gradient (HoG) on which the proposed 

cancellable biometric scheme is built upon. 

 

3.2.1 Histogram of oriented gradient (HoG) 

Histogram of oriented gradient (HoG) [151]–[153] is a feature descriptor that has been widely 

used within the field of computer vision (CV) to detect an object in an image. In general, a 

HoG descriptor is formed by characterizing the local structure and shape of the object by 

means of gradient magnitudes and orientations. For a simple view of HoG feature extraction, 

a histogram is used to statistically record the frequency distribution (gradient magnitude) of 
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the gradient orientations in localized portions of an image. The implementation of a classical 

HoG feature extraction is described as follows:  

 

1) Given an image 𝐼, the HoG extraction technique divides the 𝐼 into several overlapping 

regions called cells and computes a histogram of gradient orientations for each cell. Each 

histogram bin is defined by a fixed-range orientation across 0° − 180° or 0° − 360°. 

 

2) After that, each cell adds the gradient magnitude to the corresponding histogram bin.  

 

3) Lastly, normalization of the histograms is applied to improve the robustness of the HoG 

feature towards the illumination variation. In the HoG algorithm, several overlapping cells 

are grouped as a block, and the normalization is done in each block. In the end, the 

normalized block histograms represent the HoG descriptor.  

 

3.3 Methodology 

This section is devoted to presenting the proposed alignment-robust biometric template 

protection scheme. Notations being used in the methodology are provided in the table below. 

 

Table 3.1: NOMENCLATURE 

Notation(s) Description 

𝐙 ∈ [0,1]𝑚×𝑛  Unaligned irisCode  

𝐙̈ ∈ [0,1]𝑑×𝑛  Random augmented biometric matrix 

𝐙́ ∈ ℝ𝑑×𝑛  Gradient orientation matrix 

𝐙 ∈ ℝ𝑑×𝑛  Gradient magnitude matrix 

𝐗 ∈ [−1,1]𝑑×𝑛  Neighbour horizontal difference 

𝐘 ∈ [−1,1]𝑑×𝑛  Neighbour vertical difference 

𝐩 ∈ [1,𝑚]𝑑  Random augmentation seed 

𝐭 ∈ ℝℎ  Local histogram vector 

𝐜 ∈ ℝℎ𝑜 
 Alignment-robust biometric vector (cancellable    
 template) 

𝑎 ∈ ℤ  Segment column size  

𝑏 ∈ ℤ  Segment row size  

ℎ ∈ ℤ  Local histogram vector bins 

𝑜 ∈ ℤ  Number of partitioned biometric vector 

𝛽 =
𝑑

𝑏
  Feature dimension for each z-score normalization 

To be noted, symbol ′ (e.g., 𝐳 and 𝐳′) is used to distinguish the same variable 
during the enrollment and verification phase 
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3.3.1 Overview 

 

Fig 3.2. Overview of Random Augmented Histogram of Gradients (R∙HoG) 

 

The proposed template protection methodology can be decomposed into two main 

processes: a) a randomize and discriminative feature transformation of the input irisCode. 

This involves the use of a randomly generated transformation key to augment the input 

irisCode in a column vector-wise manner. b) a many-to-one mapping and non-invertible 

transformation process to transform the randomized irisCode feature into an alignment-

robust cancellable template. This involves the gradient occurrence count in each non-

overlapped segment of the randomized irisCode feature. Since two unaligned irisCode (±𝑛 

bits bit displacement) can produce similar cancellable templates, the matching between the 

enrolled and query templates can be done efficiently without a pre-alignment strategy (e.g., 

[144], [146], [147]). 

 

3.3.2 Detailed approach 

A. Alignment-robust cancellable transformation 

In iris verification, the head tilt, camera tilt, or eye rotation during the iris image capturing 

cause the horizontal bit-displacement issue in the extracted irisCode [144]. The bit-

displacement issue could result in a severe matching performance degradation, and thus, 

many existing iris cancellable biometric schemes require a pre-alignment process to deal 

with this issue. However, the pre-alignment process might increase the time complexity for 

the matching process. This section demonstrates a novel usage of Histogram of Oriented 

Gradients (HoG) to construct an alignment-robust cancellable template from the unaligned 
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irisCode feature. Histogram of Oriented Gradient (HoG) was originally designed for the 

statistical record of the frequency distribution of the pixel gradient to detect an object in an 

image [151]–[153]. In contrast to the existing HoG related works that consider HoG as the 

feature extraction (e.g., [149], [150]), an unconventional usage of HoG is explored to 

overcome the pre-alignment issue in iris template protection and directly transform the 

irisCode feature into an irreversible and renewable template.  

 

 

Fig 3.3. Process of the proposed R∙HoG to transform the irisCode to the alignment-robust cancellable template   

 

The proposed Random Augmented Histogram of Gradients (R∙HoG) is an extension of 

Histogram of Oriented Gradients (HoG) coupled with random augmentation and gradient 

orientation grouping mechanisms, which are explained as below: 

 

• In the proposed scheme, the alignment-robust biometric vector (cancellable template) is 

produced by using the histogram vector to record the frequency distribution of the 

gradient orientations in the irisCode. It is known that biometric feature (irisCode) is noisy 
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data that has the intra/ inter-class similarity issue [8]. To increase the intra-class 

similarity, the feature augmentation process is applied to the input irisCode. As such, the 

population of the gradient orientations is increased, and this improves the similarity of 

the output cancellable template for the similar input irisCodes. Thus, the matching 

performance of the biometric system is largely preserved. Due to the horizontal bit-

displacement of the irisCode, the random augmentation is carried out in a column vector-

wise manner. Since randomly generated information is involved, this enables the 

proposed scheme to produce multiple independent cancellable templates for the same 

input irisCode; and thus, guarantee the renewability and unlinkability properties. 

 

• In R∙HoG, each of the histogram vectors is constructed by using an orientation-based 

histogram to record the gradient magnitude for each 𝑧𝑖𝑗 ∈ 𝐙 where 𝐙 ∈ [0,1]𝑚×𝑛 denotes 

the biometric feature. Since 𝐙  is a binary matrix with only ′0′  and ′1′ , the possible 

gradient orientations are −135°, −90°, −45°, 0°, 45°, 90°, 135° and 180°. To improve 

the concealment towards the biometric information, the approach that spread the 

histogram bins over 0 − 180° is considered in the proposed R∙HoG. In particular, the 

gradient orientations with 180° difference (e.g., −45∘  and 135∘ ) are grouped into the 

same histogram bin. The imposed gradient orientation grouping mechanism induced a 

many-to-one mapping effect where gradient magnitudes from different orientations are 

mapped into the same histogram bin; thus, strengthening the irreversibility properties. 

Besides that, the orientation grouping reduces the affection of the random augmentation 

towards the size of the cancellable template where the histogram vector in R∙HoG is a 

compact data structure. 

 

Given an unaligned irisCode 𝐙 ∈ [0,1]𝑚×𝑛 and the random augmentation seed 𝐩 ∈ [1,𝑚]𝑑, 

with the transformation parameters {segment row size 𝑏 ∈ ℤ, segment column size 𝑎 ∈ ℤ 

and histogram bin ℎ ∈ ℤ }, the procedures (Algorithm 1) to generate an alignment-robust 

biometric vector 𝐜 ∈ ℝℎ𝑜 are described as follows: 

 

1) For each of the column vector 𝐳𝑗 = [𝑧1𝑗, 𝑧2𝑗, … , 𝑧𝑚𝑗] in the 𝐙 ∈ [0,1]𝑚×𝑛 where 𝑗 = 1…𝑛 

indicates the 𝑗-th column, the random augmentation seed 𝐩 ∈ [1,𝑚]𝑑 is applied onto the 

𝐳𝑗 to produce a random augmented column vector 𝐳̈𝑗 = [𝑧̈1𝑗, 𝑧̈2𝑗 , … , 𝑧̈𝑑𝑗]. Specifically, the 

random augmentation process first initializes an empty 𝐳̈𝑗. With each 𝑝 ∈ 𝐩 act as the 
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index value for 𝐳𝑗, each 𝑧 ∈ 𝐳𝑖 are then randomly chosen with replacement and added 

into the 𝐳̈𝑗. Lastly, 𝑛 numbers of 𝐳̈𝑗 are horizontal concatenated to produce the random 

augmented biometric matrix 𝐙̈ =  𝐳̈1 ||𝐳̈2|| … ||𝐳̈𝑛. To be noted, random augmentation is a 

form of permutation. Involvement of the randomly generated data (i.e., 𝐩) induces a 

randomization effect towards the proposed scheme; and hence enables the renewal of 

the cancellable template. 

 

2) In this step, the gradient orientation and magnitude corresponding to each 𝑧̈𝑖𝑗 ∈ 𝐙̈ are 

calculated and stored in the orientation matrix 𝐙́ = ℝ𝑑×𝑛 and magnitude matrix 𝐙 = ℝ𝑑×𝑛. 

Particularly, the horizontal and vertical difference of the neighboring elements for each 

𝑧̈𝑖𝑗 ∈ 𝐙̈ are first calculated with: 

 

 𝐗 = rcirshift( 𝐙̈, −1) − rcirshift( 𝐙̈, 1) 

 

(3.1) 

 𝐘 = ccirshift( 𝐙̈, 1) − ccirshift( 𝐙̈, −1) (3.2) 

 

 where 𝐗 is the horizontal difference matrix and 𝐘 is the vertical difference matrix, while 

rcirshift(. ) and ccirshift(. ) are the row-wise and column-wise circular shifting functions, 

e.g., rcirshift( 𝐙̈, 1) means shift the 𝐙̈ row-wise by 1 (i.e., right shift). After obtaining the 

𝐗 and 𝐘, the orientation matrix 𝐙́ and magnitude matrix 𝐙 are calculated as follow: 

 

 
𝑧𝑖𝑗 = √(𝑥𝑖𝑗)

2
+ (𝑦𝑖𝑗)

2
  , 𝑧𝑖𝑗 ∈ 𝐙 

 

(3.3) 

 𝑧́𝑖𝑗 =  arctan (𝑦𝑖𝑗/𝑥𝑖𝑗), 𝑧́𝑖𝑗 ∈ 𝐙́ (3.4) 

 

 where 𝑖 = 1…𝑑 and 𝑗 = 1…𝑛 indicate the position (row and column) of the elements in 

the matrices. 

  

3) The core of the alignment-robust transformation is to use a histogram feature to record 

the occurrence (sum of gradient magnitude) of gradient orientation corresponding to 

each 𝑧̈𝑖𝑗 ∈ 𝐙̈. To increase the matching accuracy, the feature matrix is partitioned into 𝑜 

numbers of non-overlapping sub-matrices with equal size of 𝑏 × 𝑎 , and then be 
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transformed to a local histogram vector 𝐭 ∈ ℝℎ where 𝑜 =
𝑑

𝑏
∗
𝑛

𝑎
. Let 𝐙̈

part
∈ [0,1]𝑏×𝑎 be 

each of the non-overlapped partitioned matrix, a local histogram vector 𝐭 ∈ ℝℎ  is 

constructed by adding the gradient magnitude 𝑧𝑖𝑗 ∈ 𝐙 to the 𝐭 according to the gradient 

orientation 𝑧́𝑖𝑗 ∈ 𝐙́, where ℎ refers to the number of histogram bins; while the 𝑧𝑖𝑗 and 𝑧́𝑖𝑗 

are the magnitude and orientation values corresponding to each (𝑧̈part)
𝑖𝑗
∈  𝐙̈

part
 

respectively, where 𝑖  and 𝑗  are the row and column number of elements in 𝐙 and 𝐙́ 

respectively. As mentioned previously, the histogram bins are defined as: 

{ −135° or 45° }, { −90°or 90°}, { −45° or 135° } and {0° or 180°}. After 𝑜 numbers of the 

(unnormalized) histogram vector 𝐭 ∈ ℝℎ are constructed, the histogram vectors (i.e., 𝐭) 

are vertically concatenated and yield a histogram matrix 𝐓 = [

𝐭1
…
𝐭𝑜

].  

 

4) For each of the column vector 𝐭𝑗 = [𝑡1𝑗, 𝑡2𝑗 , … , 𝑡𝑜𝑗]  in the 𝐓 ∈ ℝ𝑜×ℎ  where 𝑗 = 1…ℎ 

indicates the 𝑗-th column. A z-score normalization (irreversible transformation) is applied 

onto the 𝐭𝑗 to produce a normalized histogram vector 𝐭̂𝑗. Each 𝑡̂𝑖𝑗 ∈ 𝐭̂𝑗 is computed based 

on the following formula: 

 

 
𝑡̂𝑖𝑗 =

𝑡𝑖𝑗 − 𝜇

𝜎
 

(3.5) 

 

 where 𝑖 = 1…𝑜  indicates the 𝑖 -th element in the 𝐭̂ , {𝜇  and 𝜎}  are the normalization 

parameters. The z-score normalization (with the same 𝜇 and 𝜎) is applied to every 𝛽-

dimension of values in 𝐭̂𝑗  where 𝛽 =
𝑑

𝑏
. Therefore, the 𝜇 and 𝜎 are re-calculated after 

normalizing every 𝛽-dimension of values in 𝐭̂𝑗 . Since 𝐭𝑗  is transformed from biometric 

information, 𝜇 and 𝜎 are biometric dependent information; thus, only the genuine user 

can regenerate the correct 𝜇 and 𝜎 and produce the 𝐭̂𝑗. In this case, the normalization 

could be operated as an irreversible transformation where 𝜇 and 𝜎 are disposed of after 

the normalization process. Without storing 𝜇 and 𝜎, normalization is merely a many-to-

one transformation that could map different data into the normalized data with a similar 

scale. This offers another layer of the many-to-one mapping effect. 
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Lastly, ℎ numbers of 𝐭̂ ∈ ℝ𝑜  are concatenated to produce the alignment-robust biometric 

vector (cancellable template) 𝐜 ∈ ℝℎ𝑜  where 𝐜 = 𝐭̂1
⟙
||𝐭̂2

⟙
||. . . ||𝐭̂ℎ

⟙
. Fig 3.3 depicts the 

R∙HoG transformation to generate the alignment-robust cancellable template 𝐜 ∈ ℝℎ𝑜 for the 

irisCode 𝐙 ∈ [0,1]3×5 with the parameters setting of 𝑎 = 3 , 𝑏 = 1 and 𝑑 = 6. Besides that, 

algorithm 3.1 shows the pseudo-code of the R ∙HoG transformation. Whenever 𝐜  is 

compromised, a new cancellable template (𝐜∗) can be always be generated by transforming 

the same irisCode 𝐙 with a new random augmentation seed 𝐩∗ ∈ [1,𝑚]𝑑. Since 𝐜 is a large 

real-valued and randomized vector, it is unlikely that the new cancellable template 𝐜∗ can 

be collided with the old cancellable template 𝐜 . Hence, renewability property is 

demonstrated. The proposed scheme is essentially an alignment-robust transformation 

scheme that transforms the unaligned irisCode 𝐙 ∈ [0,1]𝑚×𝑛  into an alignment-robust 

cancellable template 𝐜 ∈ ℝℎ𝑜. Thus, the proposed scheme can perform the matching for the 

cancellable templates without additional pre-alignment. 

 

Suppose 𝑅𝐻𝑂𝐺(. ) is the transformation function for the proposed scheme, the following 

case is used to describe the alignment-robust property in the proposed R∙HoG generally. 

 

Case 3.1: Given two vectors 𝐱 ∈ [0,1]𝑚  and 𝐱′ ∈ [0,1]𝑚  that possess 𝑛  element-wise 

horizontal displacement, i.e., cirshift(𝐱′, 𝑛) = 𝐱 where cirshift(. ) refers to circular left shift 

function. The 𝑅𝐻𝑂𝐺(. ) produce the same output for the 𝐱 and 𝐱′, such that 𝑅𝐻𝑂𝐺(𝐱) =

𝑅𝐻𝑂𝐺(𝐱′). 

 

Discussion: In step-3 transformation, the proposed scheme transforms the biometric 

feature into a histogram vector 𝐭 ∈ ℝℎ  that statistically counts the gradient magnitude 

corresponding to the gradient orientation. In this case, a many-to-one mapping is achieved 

where gradient magnitudes for the same gradient orientation are mapped to the same 

histogram bin. Considering an example of two vectors: 𝐱1 = [0,1,0] and 𝐱2 = [1,0,0] where 

cirshift(𝐱1, 1) = 𝐱2. The gradient magnitude and orientation for 𝐱1 are 𝐳1 = [1,0,1] and 𝐳́1 =

[0°, 0°, 180°] ; as for 𝐱2 , 𝐳2 = [0,1,1]  and 𝐳́2 = [0°, 0°, 180°] . To be noted, the proposed 

scheme pad ′0′ to the top and bottom of the vectors during the calculation of gradient 

magnitude and orientation if the vectors do not have neighboring top and bottom elements. 

Given the gradient magnitude (i.e., 𝐳1 and 𝐳2) and orientation (i.e., 𝐳́1 and 𝐳́2), the proposed 

scheme generates the histogram vectors 𝐭1 = [0,0,0,2]  and 𝐭2 = [0,0,0,2]  where the 
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histogram bins are:{−135° or 45°}, {−90° or 90°}, {−45° or 135°}, and {0° or 180°}. Since 

𝐭1 ≈ 𝐭2, the step-4 transformation will produce the similar output 𝐜 for 𝐱1 and 𝐱2. Hence, 

given 𝐱 ∈ [0,1]𝑚  and 𝐱′ ∈ [0,1]𝑚  where cirshift(𝐱′, 𝑛) = 𝐱 , the proposed Random 

Augmented Histogram of Gradients (R ∙HoG) overcomes the misalignment issue and 

generates similar output, such that 𝑅𝐻𝑂𝐺(𝐱) ≈ 𝑅𝐻𝑂𝐺(𝐱′).  

 

With the statement above, it is shown that the proposed scheme can transform the irisCode 

𝐙 ∈ [0,1]𝑚×𝑛 into an alignment-robust cancellable template 𝐜 ∈ ℝℎ𝑜. To compensate for the 

performance degradation that is caused by the many-to-one transformation in the scheme, 

two strategies are employed in the proposed scheme. (a) In step 3, the 𝐙̈ is partitioned into 

multiple parts and then transformed into the histogram vector (i.e., 𝐭), which will be used to 

form the cancellable template 𝐜. (b) Data augmentation is carried out onto the input 𝐙 ∈

[0,1]𝑚×𝑛 to increase the information for histogram formalization. In addition, experiments are 

carried out to validate the performance preservation effect of the two strategies. 

 

B. Cancellable Template Matching 

Typically, similarity comparison between normalized histogram features can be made by 

calculating the Euclidean distance. In the proposed scheme, the cancellable iris template is 

a concatenated histogram vector; and thus, normalized Euclidean similarity is used to 

perform similarity comparison between the cancellable templates. Given the enrolled 

cancellable iris template 𝐜 ∈ ℝℎ𝑜  and the query cancellable iris template 𝐜′ ∈ ℝℎ𝑜 , the 

similarity score 𝑆 ∈ [0,1] is obtained via the following formula: 

 

 
𝑆 = 1 −

||𝐜 − 𝐜′||𝟐
||𝐜||𝟐 + ||𝐜′||𝟐

 
(3.6) 

 

where ||. ||𝟐 is a norm function. 𝑆 ranged from 0 to 1, which indicates the similarity level 

between 𝐜 and 𝐜′. Since the generated cancellable iris template is an alignment-robust 

feature, there is no pre-alignment (e.g., horizontal shifting [144]) required throughout the 

matching process, which guarantees an efficient authentication process.  
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Algorithm  3.1. The pseudocode of alignment-robust biometric vector generation 

Input: Unaligned irisCode 𝐙 ∈ [0,1]𝑚×𝑛, Random augmentation seed 𝐩 ∈ [1,𝑚]𝑑 

Transformation parameter: Histogram bins ℎ ∈ ℤ, ℎ ≥ 2, Segment column size 𝑎 ∈

ℤ, 0 < 𝑎 ≤ 𝑛, Segment row size 𝑏 ∈ ℤ, 0 < 𝑏 ≤ 𝑑, 𝛽 =
𝑑

𝑏
   

Output: Alignment-robust biometric vector 𝐜 ∈ ℝℎ𝑜 

1: Step 1: Column-wise Random Augmentation  

2:    Initialize 𝐙̈ = [0]𝑑×𝑛, 𝐜 = [] 
3:    for 𝑖 ← 1 𝐭𝐨 𝑑 and 𝑗 ← 1 𝐭𝐨 𝑛 

4:          𝑧̈𝑖𝑗 = 𝑧𝑝𝑖𝑗 

5:    end for 
6: Step 2: Gradient Orientation and Magnitude Calculation 

7:    𝐗 = rcirshift( 𝐙̈, −1) − rcirshift( 𝐙̈, 1) // horizontal difference 

8:    𝐘 = ccirshift( 𝐙̈, 1) − ccirshift( 𝐙̈, −1) // vertical difference 

9:    Initialize 𝐙́ = [0]𝑑×𝑛 // orientation matrix 

10:    Initialize 𝐙 = [0]𝑑×𝑛 // magnitude matrix 
11:    for 𝑖 ← 1 𝐭𝐨 𝑑 and 𝑗 ← 1 𝐭𝐨 𝑛 

12:          𝑧𝑖𝑗 = √(𝑥𝑖𝑗)
2
+ (𝑦𝑖𝑗)

2
   

13:          𝑧́𝑖𝑗 =  arctan (𝑦𝑖𝑗/𝑥𝑖𝑗) 

14:    end for 
15: Step 3: Histogram Formalization  
16:    Initialize 𝐓 = [] //  HoG feature 

17:    Partition the 𝐙́ and 𝐙 into 𝑜 numbers of non-overlapped sub-blocks with size of 
𝑏 × 𝑎 

18:    for 𝑖 ← 1 𝐭𝐨 𝑜 

19:         Initialize 𝐭 = [0]h // local histogram vector  

20:         Let 𝒁́part ∈ ℝ𝑏×𝑎 be a partitioned orientation matrix 

21:         Let 𝒁⃛part ∈ ℝ𝑏×𝑎 be a partitioned magnitude matrix 
22:         for 𝑗 ← 1 𝐭𝐨 𝑎 and 𝑘 ← 1 𝐭𝐨 𝑏 

23:              Add the value of 𝑧𝑘𝑗 ∈ 𝐙block into 𝐭 according to the bins value pointed by 

𝑧́𝑘𝑗 ∈  𝐙́block 

24:         end for 
25:         vertical concatenate 𝐭 to 𝐓 
26:    end for 
27:  Step 4: Z-score transformation 
28:    for 𝑗 ← 1 𝐭𝐨 ℎ 

29:         Initialize 𝐭̂ = [0]𝑜 
30:         Get each column vector 𝐭𝑗 from 𝐓 

31:         Calculate mean (𝜇) of first 𝛽-dimension values in 𝐭𝒋 

32:         Calculate standard deviation (𝜎) of first 𝛽-dimension values in 𝐭𝑗 

33:         for 𝑖 ← 1 𝐭𝐨 𝑜  

34:              Compute each 𝑡̂𝑖 = (𝑡𝑖𝑗 − 𝜇)/𝜎  // z-score normalization 

35:              if (𝑖 − 1)% 𝛽 == 0 

36:                      Re-calculate 𝜇 and 𝜎 based on next 𝛽-dimension of values in 𝐭𝑗 

37:               end if 

38:         end for 

39:         𝐜 = 𝐜||𝐭̂ 
40:    end for     
41: return 𝐜 

To be noted, rcirshift(. )  and ccirshift(. )  represent the row-wise and column-wise 

circular shift functions. For example, ccirshift(𝐙, 1) means to shift the matrix 𝐙 column-
wise by 1.  
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3.4 Experiments and discussions 

This section is devoted to presenting the experimental result of the proposed method in 

terms of verification performance via parameter estimation.  

 

3.4.1 Experimental setup 

This subsection presents the experimental setup for the experiments in terms of the dataset, 

matching protocol and feature extraction. The implementation of the proposed scheme is 

written using MATLAB and being executed in a PC with the hardware specification of Solid-

State Drive (SSD)@480GB, Intel Core i7 7th-Gen CPU and Memory DDR4@20GB. 

 

A. Dataset and matching protocol 

The benchmarking CASIA-IrisV3-Internal [52] dataset is used for the experiment. Briefly, 

this dataset consists of 249 subjects with different amounts of iris images per subject. To be 

consistent with the existing iris cancellable biometrics works (e.g., [53], [54]) and standardize 

the matching numbers for each subject, the experiments are conducted based on the left 

iris image. The dataset is a subset by choosing the subjects with 7 iris images. In short, a 

total of 868 irisCodes (124 subjects × 7 irisCodes) are extracted for the experiment. 

 

In the experiment, the assessment of the matching accuracy is based on the Equal Error 

Rate (EER) (%) of the intra/ inter-class matching score distributions. Both score distributions 

are generated from the following matching attempts: 

 

• Intra-class (or Genuine) matching attempt: Crossmatch all the cancellable iris 

templates generated from the same subject; and thus, a total of  7C2 = 21 intra-class 

matching scores are generated for each subject with 7 cancellable iris templates.  

 

• Inter-class (or Impostor) matching attempt: Crossmatch all the cancellable iris 

templates generated from the first iris image of different subjects; and thus, a total of 

 124C2 = 7626  inter-class matching scores are generated for 124  cancellable iris 

templates generated from different subjects. 

 

In each experiment, the intra-class score distribution consists of 2604 matching scores, 

while inter-class score distribution contains 7626  matching scores. Since randomly 
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generated information (e.g., random augmentation seed 𝐩 ∈ [1,𝑚]𝑑 ) is involved in the 

proposed scheme, a total of 5 experiments are conducted with different sets of 𝐩 ∈ [1,𝑚]𝑑 

for more precise reading of the matching accuracy. To be noted, the experiments are 

conducted under the worst-case (stolen token) scenario by assuming the transformation key 

or parameters is compromised by the impostor. Therefore, one 𝐩 ∈ [1,𝑚]𝑑 is shared among 

every subject in each experiment. 

 

B. IrisCode extraction 

This chapter focuses on the proposal of the cancellable biometric scheme that can transform 

the unaligned irisCode into the alignment-robust cancellable iris template. Therefore, the 

methods from [49], [50] are adopted to extract the irisCode 𝐙 ∈ [0,1]20×512 as the input for 

the proposed scheme. Given an iris image, the irisCode extraction process is as follows: 

 

1) In this step, Weighted Adaptive Hough Transform is first applied to locate the iris [154]. 

After that, iris and pupil boundaries are segmented by means of Ellipsopolar Transforms 

[154]. Next, the rubbersheet transform [44] is employed to normalize the iris texture into 

a fixed-size matrix 𝐙̈50×512.  

 

2) The 𝐙̈50×512 is divided into 10 stripes, and then each stripe in the normalized iris texture 

is averaged into a 1-D signal vector [155]. The Gabor filter is then applied to convolute 

the signal vectors and produce a complex iris feature 𝐙̅10×512.  

 

Lastly, the complex iris features 𝐙̅10×512 is converted into the irisCode 𝐙 ∈ [0,1]20×512 [155]. 

The table below tabulates the summary of the tested iris dataset in terms of verification 

performance and the total number of irisCode 𝐙 ∈ [0,1]20×512 extracted. Summary of the 

employed iris dataset and the extracted irisCode are tabulated in the table below. 

 

Table 3.2: Summary of the iris subset 

 CASIA-IrisV3-Internal 

Number of iris images per user 7 

User 124 

Total irisCode extracted 868 

Equal Error Rate (EER) (%) 
(±𝟏𝟔 bit shifting) 

0.50 
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3.4.2 Parameter estimation 

This subsection presents the experimental result of selecting the best-tuned parameters for 

the proposed method, i.e., random augmentation size 𝑑, partition column 𝑎 and row size 𝑏. 

Notice that the parameter ℎ is fixed to 4; while 𝛽 is fixed as 
𝑑

𝑏
. 

 

A. Effect of random augmentation size 𝑑 

In this subsection, the effect of the random augmentation size 𝑑 towards the verification 

performance of the proposed method is examined. Recall the methodology, a random 

augmentation process is applied onto the input irisCode to increase the information for the 

gradient orientation binning as well as improve the uniqueness of the produced cancellable 

template. In here, the random augmentation size 𝑑 is used to control the column size of the 

augmentation irisCode. To examine the 𝑑, experiments are conducted by setting 𝑑 from 

20 − 250, with an increment interval of 25, and the remaining parameters are fixed at 𝑎 =

32, 𝑏 = 1. Since the row size of the irisCode is 20, the proposed method under 𝑑 = 20 

achieves only a random shuffle effect. In the table below, the EERs and cancellable template 

dimensions under different settings of 𝑑 are tabulated. The experimental results show the 

verification performance is improved (lower EER) when 𝑑 is set to a higher value; hence, 

the random augmentation is taking effect. In 𝑑 = 250, the equal error rate reaches the lower 

point where EER= 0.62%. Although the result suggests that it is possible to obtain lower 

EER when 𝑑 > 250, the setting beyond 250 is not considered because of the increment of 

template size as well as computing overhead. With the slight increment of 56%  in the 

template size from 20 × 512 = 10240  dimensions to 16000 dimensions and reasonable 

verification performance of EER= 0.62%, 𝑑 = 250 is chosen as the best setting. 

Table 3.3: EERs and template size of the cancellable template under different 𝑑 

Augmentation 
Column Size 

𝑑 

EER 
(Unprotected) (%) 

EER 
(Protected) 

(%) 

Original 
irisCode 

Dimension 

Cancellable Template 
Dimension 

20 

0.50 

3.01 ± 0.51 

20 × 512 

1280 

50 1.48 ± 0.35 3200 

75 1.04 ± 0.28 4800 

100 1.01 ± 0.18 6400 

125 0.85 ± 0.16 8000 

150 0.84 ± 0.22 9600 

175 0.74 ± 0.18 11200 

200 0.70 ± 0.13 12800 

225 0.69 ± 0.17 14400 

𝟐𝟓𝟎 𝟎. 𝟔𝟐 ± 𝟎. 𝟏𝟒 𝟏𝟔𝟎𝟎𝟎 
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B. Effect of partition column and row size (𝑎, 𝑏) 

In the proposed scheme, the shift-invariant biometric vector is formed by concatenating the 

local histogram vectors for multiple non-overlapping partitioned blocks of the irisCode. 

Parameters 𝑎 and 𝑏 are used to determine the column and row size for each partitioned 

block. The effect of parameters 𝑎 and 𝑏 is examined by testing the verification performance 

of the cancellable template generated using different scales of partition size (𝑎 and 𝑏). In the 

experiments, the 𝑎 and 𝑏 are tested under different values while the 𝑑 is fixed at 250. The 

table below tabulates the EERs of the proposed method under different settings of 𝑎 and 𝑏. 

As expected, partitioning the biometric feature into multiple non-overlapping sub-blocks can 

improve the matching accuracy of the alignment-robust biometric vector. From the table, the 

EER is at the highest degree when 𝑎 = 512 and 𝑏 = 125. From the table, the EERs of the 

proposed method decrease with the lower value of 𝑎 and 𝑏, which shows the partitioning 

strategy is taking effect for improving verification performance. It is observed that the 

histogram formulation serves the best performance preservation effect when 𝑏 = 1 with 

different settings of 𝑎. On the other hand, 𝑎 cannot be set to a lower value (≤ 16) as the 

EERs start to increase. Hence, it is concluded that 𝑎 = 32 and 𝑏 = 1 are the best settings. 

 

Table 3.4: EERs (%) under different settings of 𝑎 and 𝑏  

Partition Column Size 
𝑎 

Partition Row Size 
𝑏 

𝟏 𝟐 𝟓 𝟏𝟎 𝟐𝟓 𝟓𝟎 𝟏𝟐𝟓 

𝟖 3.28 2.98 3.28 3.98 5.84 7.89 18.80 
𝟏𝟔 0.95 1.07 1.35 1.82 3.31 6.63 20.57 
𝟑𝟐 𝟎. 𝟔𝟐 0.69 1.06 1.65 3.83 7.93 26.16 

𝟔𝟒 1.23 1.37 1.95 3.22 7.71 13.52 30.30 

𝟏𝟐𝟖 2.65 3.00 4.55 6.46 13.15 21.04 37.54 

𝟐𝟓𝟔 5.88 6.34 8.08 11.33 19.93 28.32 41.29 

𝟓𝟏𝟐 7.94 9.10 11.62 1.575 24.49 31.38 48.48 

 

C. Summary of parameter estimation 

Throughout the experiments, observations of the result are concluded as below: 

 

1) Increment of the random augmentation size 𝑑 can effectively reduce the Equal Error 

Rate (EER) (%) of the generated alignment-robust biometric vector (cancellable 

template) 𝐜 ∈ ℝℎ𝑜. This is because of the increment of the gradient orientations for the 

similar biometric feature (irisCode) during the histogram formulation process; thus, the 

intra-class variance of 𝐜 ∈ ℝℎ𝑜 can be reduced. 
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2) Increment of random augmentation size 𝑑 resulting in the increment of template size for 

the alignment-robust biometric vector as well as time complexity for generating the 

template. Hence, the trade-off between template size and matching accuracy must be 

considered when choosing a suitable value for 𝑑. 

 

3) The matching accuracy of the original irisCode is well preserved by partitioning the 

irisCode into multiple sub-blocks and then converting the sub-blocks into a local 

histogram vector. Parameters 𝑎 and 𝑏 are used to determine the column and row size 

for the sub-block. As observed, smaller values of 𝑎 and 𝑏 lead to a better matching 

accuracy of the alignment-robust biometric vector. It should take note that 𝑎 cannot be 

set to a low value to prevent insufficient gradient orientations of each sub-block for 

histogram formulation. 

 

Table 3.5: Optimal parameter setting for R∙HOG 

Parameters Value 

𝑑 250 

𝑎 32 

𝑏 1 

ℎ 4 

𝛽 
𝑑

𝑏
  

 

3.4.3 Verification performance and comparison 

It is noticed that existing iris template protection studies have no standardized experiment 

matching protocols and the numbers of testing iris images; hence, it is impossible to perform 

a fair comparison between the proposed scheme and the existing works. Nevertheless, the 

verification performance of the proposed method and the existing iris template protection 

methods are presented for benchmarking purposes. Table 3.6 tabulates the summary of 

different iris template protection methods, and it is observed that:  

 

• The verification degradation rate of the proposed scheme is 0.12% compared to the 

original iris counterpart, which indicates the proposed scheme has reasonable 

performance preservation property.  
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• Verification performance of the proposed scheme (refer to EER with protection) is 

comparable to existing iris template protection methods. This is attributed to the original 

irisCode and the nice performance preservation property. 

 

Table 3.6: Verification performance of existing iris template protection methods under CASIA-IrisV3-Internal 

Method Pre-alignment 
Total Iris 

Images Used 

EER (%) 
without 

protection 

EER (%) 
with 

protection 

Proposed Scheme Not required 
𝟖𝟔𝟖 

(Left eye) 
𝟎. 𝟓𝟎 𝟎. 𝟔𝟐 

IFO Hashing [53] Required 
868 

(Left eye) 
0.38 0.54 

BioEncoding [103] Required 740 6.02 6.27 

Dwivedi et al. [110] Required 2639 0.39 0.43 

Bin-Combo [18] Not required 
1332 

(Left eye) 
0.81 4.41 

Adaptive Bloom Filters 
[54] 

Not required 
1332 

(Left eye) 
1.19 1.14 

Lai et al. [114] Not required 
868 

(Left eye) 
0.38 0.69 

 

3.4.4 Computation efficiency 

The computation efficiency of the proposed scheme is also examined in terms of the 

machine runtime (in second) to transform the irisCode into the cancellable template. The 

processing time of the proposed scheme in enrollment and verification stages are tabulated 

in the table below. From the table, the average enrollment time is 0.0916 seconds, and the 

verification time is 0.0811 seconds. This shows that it is feasible to adapt the proposed 

scheme to real-world applications. On the other hand, it is observed that the enrollment 

stage is slightly higher compared to the verification stage. This is mainly due to the 

initialization of the auxiliary information (i.e., random augmentation seed 𝐩 ∈ [1,𝑚]𝑑) in the 

enrollment. However, initialization is required once in the enrollment stage. 

 

Table 3.7: Time complexity for R∙HoG in enrollment and verification stages 

Process Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average 

Enrollment Stage (sec) 

R∙HoG 0.0782 0.0849 0.0845 0.1099 0.1007 0.0916 

Verification Stage (sec) 

R∙HoG 0.0716 0.0822 0.0749 0.0813 0.0945 0.0809 

Matching 0.0003 0.0002 0.0001 0.0001 0.0002 0.0002 

Total 0.0719 0.0824 0.0750 0.0814 0.0947 0.0811 
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3.5 Security and privacy analysis 

Security and privacy are the important aspects of the biometric template protection method. 

The analyses are based on the biometric template protection requirements as listed in the 

ISO/IEC Standard 24745 [21] and 30136 [22], i.e., irreversibility, unlinkability and 

renewability. Other than that, the security property is analyzed by evaluating the attack 

complexity required for the attack to guess the cancellable template and use it for matching. 

 

3.5.1 Irreversibility analysis 

Irreversibility refers to the infeasibility in recovering the original irisCode 𝐙 ∈ [0,1]𝑚×𝑛 from 

the cancellable iris template 𝐜 ∈ ℝℎ𝑜. In this subsection, the irreversibility is evaluated using 

three attacks where the attacker aims to recover the input irisCode 𝐙 ∈ [0,1]𝑚×𝑛 from single/ 

multiple compromised cancellable iris template(s) 𝐜 ∈ ℝℎ𝑜 and random augmented seed(s) 

𝐩 ∈ [1,𝑚]𝑑.  

 

A. Template inversion via single record 

The transformation procedure of the proposed scheme is revisited before commencing the 

discussion of the inversion attack. Suppose there is an input irisCode 𝐙 ∈ [0,1]𝑚×𝑛 , the 

proposed scheme first applied 𝐩 ∈ [1,𝑚]𝑑 onto each column vector of 𝐙 and this produce a 

random augmented irisCode 𝐙̈ ∈ [0,1]𝑑×𝑛 . After that, 𝐙̈ ∈ [0,1]𝑑×𝑛  is partitioned into 𝑜 

numbers of sub-blocks  𝐙̈
part

∈ [0,1]𝑏×𝑎, which is then be converted into a histogram vector 

𝐭 ∈ ℝℎ where 𝑎 = 32 and 𝑏 = 1. The histogram vectors are then vertically concatenated into 

a histogram matrix 𝐓 = [𝐭1…𝐭𝑜]
⟙ . Lastly, a z-score normalization is applied to each column 

vector 𝐭𝑗 ∈ 𝐓 and the normalized vector 𝐭̂𝑗  are concatenated to produce the cancellable 

template 𝐜 = 𝐭̂1
⟙
||𝐭̂2

⟙
||. . . ||𝐭̂ℎ

⟙
, where 𝑗 = 1…ℎ and the normalization parameters are re-

calculated for every 𝛽-dimension of values in 𝐭𝑗. 

 

Knowing the cancellable template 𝐜 is formed by a set of normalized histogram vectors in 

which 𝐜 = 𝐭̂1
⟙
||𝐭̂2

⟙
||. . . ||𝐭̂ℎ

⟙
, the attacker can attempt to reverse each 𝐭̂𝑖 instead of reversing 

each entry of the cancellable template. Given a 𝐭̂𝑖, the attacker must traverse through the 

process of recovering the unnormalized 𝐭𝑖 from 𝐭̂𝑖, then recover the gradient magnitudes 

and orientations from 𝐭𝑖  and eventually, recover the 𝐙̈
part

. After 𝑜  numbers of 𝐙̈
part

 are 

acquired, the attacker can use 𝐩 ∈ [1,𝑚]𝑑 to perform reverse permutation and recover the 
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original irisCode feature 𝐙 ∈ [0,1]𝑚×𝑛. In the inversion attack, the first step is to recover the 

original 𝐭 ∈ ℝ𝑜  from the normalized 𝐭̂ ∈ ℝ𝑜 . The following cases are used to discuss the 

feasibility of reverse transform 𝐭̂ ∈ ℝ𝑜. 

 

Case 3.2: Given a z-score normalized vector 𝐭̂ ∈ ℝ𝑜, mean 𝜇 and standard deviation 𝜎, the 

attacker can recover the original vector 𝐭 ∈ ℝ𝑜. 

 

Discussion: Suppose there is a vector 𝐭 ∈ ℝ𝑜 , the z-score normalization constructs a 

normalized vector 𝐭̂ ∈ ℝ𝑜 with the following formula:  

 

 
𝑡̂𝑖 =

𝑡𝑖 − 𝜇

𝜎
 

(3.7) 

 

where 𝑖 = 1,… , 𝑜. The recovery of 𝐭 (de-normalization) can be carried out by inverting the 

normalization process. In this case, Equation (3.7) can be inverted to calculate 𝑡𝑖 ∈ 𝐭. The 

reverse transformation is written as below:  

 

 𝑡𝑖 = (𝑡̂𝑖 ∗ 𝜎) + 𝜇 (3.8) 

 

where 𝑖 = 1,… , 𝑜. Knowing 𝐭̂, 𝜇 and 𝜎, it is feasible for the attacker to calculate each 𝑡𝑖 and 

reconstruct the original vector 𝐭 ∈ ℝ𝑜. 

 

Case 3.3: Without knowing 𝜇 and 𝜎, it is infeasible to reconstruct the original vector 𝐭 ∈ ℝℎ 

from the z-score normalized vector 𝐭̂ ∈ ℝℎ. 

 

Discussion: Z-score normalization is a process that utilizes the probability distribution of 

the input data to transform the input data to re-scaled (normalized) data. In general, z-score 

normalization could produce the normalized data with a similar scale for different inputs. 

Given three vectors, i.e., 𝐭1 = [1,0,1], 𝐭2 = [2,0,2] and 𝐭3 = [3, 0, 3], a z-score normalization 

is applied with 𝜇 and 𝜎 set to the mean and standard deviation of the respective vector. 

Despite the 𝐭1 , 𝐭2  and 𝐭3  are different, the z-score normalization produces a similar 

normalized vector, i.e., 𝐭̂1 = 𝐭̂2 = 𝐭̂3 = [0.58,−1.15,0.58]. Therefore, it is difficult to recover 

the original vector 𝐭 without knowing the exact values of 𝜇 and 𝜎. In this case, the z-score 

normalization can be operated as an irreversible transformation function. 
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The above cases discuss the feasibility of recovering the original vector from the normalized 

vector in a reverse transform manner. It clearly demonstrates that a normalization process 

is irreversible when the normalization parameters (i.e., 𝜇  and 𝜎 ) are not known. In the 

proposed scheme, 𝜇 and 𝜎 are biometric dependent information, and the genuine user can 

regenerate 𝜇 and 𝜎 during the verification stage. Therefore, 𝜇 and 𝜎 are disposed and not 

stored after the cancellable template 𝐜 is generated. Since 𝜇  and 𝜎  are not stored, it is 

difficult to reveal the original vector 𝐭𝑗 ∈ ℝ
𝑜  for further inversion attempts. Besides that, 

knowing the transformation key (i.e., random augmented seed 𝐩 ∈ [1,𝑚]𝑑 ) is helpless 

towards the inversion attack as there is no direct link between 𝐩 and 𝐭𝑗 ∈ ℝ
𝑜, where 𝐩 is not 

directly involved in the z-score normalization process. In short, it is difficult for the attacker 

to attempt the inversion attack via a single cancellable template  𝐜 ∈ ℝℎ𝑜  and random 

augmented seed 𝐩 ∈ [1,𝑚]𝑑. 

 

B. Template inversion via multiple records 

In this attack, the attacker attempts to recover the irisCode feature 𝐙 ∈ [0,1]𝑚×𝑛 based on 

multiple compromised cancellable templates 𝐜 ∈ ℝℎ𝑜  and random augmented seeds 𝐩 ∈

[1,𝑚]𝑑. In biometric template protection, this attack is also rebranded as an attack via record 

multiplicity [156]. This attack is more damaging than the previous attack, where the attacker 

had gained extra information and can try to exploit the privacy linkage of multiple 

compromised information and reconstruct the irisCode 𝐙 ∈ [0,1]𝑚×𝑛. 

 

Recall the methodology, 𝐩 is first applied to random augment 𝐙 ∈ [0,1]𝑚×𝑛 into a random 

augmented irisCode 𝐙̈ ∈ [0,1]𝑑×𝑛. To be noted, random augment is a form of permutation to 

provide randomness towards the irisCode in different applications. After that, an irreversible 

transformation is applied on 𝐙̈ ∈ [0,1]𝑑×𝑛  to produce a cancellable template 𝐜 ∈ ℝℎ𝑜 . As 

stated above, the irreversibility of 𝐜 ∈ ℝℎ𝑜 is based on the z-score normalization and the 

disposable parameters (i.e., 𝜇 and 𝜎). With the extra information of multiple cancellable 

templates 𝐜 ∈ ℝℎ𝑜, the attacker could proceed with the inversion attack by trying to estimate 

the normalization parameters, i.e., 𝜇 and 𝜎, from the cancellable templates. In this attack, 

the attacker can attempt to use multiple 𝐜s to infer the value of 𝜇 and 𝜎 to perform a further 

inversion attack. Given 𝐜 = 𝐭̂1
⟙
||𝐭̂2

⟙
||. . . ||𝐭̂ℎ

⟙
, the following case is used to discuss the 

feasibility to recover 𝜇 and 𝜎 from  𝐭̂ of multiple cancellable templates 𝐜s. 
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Case 3.4: Given two z-score normalized vector 𝐭̂1 ∈ ℝ
𝑜 and 𝐭̂′1 ∈ ℝ

𝑜 from different 𝐜/𝐜′ that 

are generated from the same input 𝐙 ∈ [0,1]𝑚×𝑛, it is difficult to obtain 𝜇 and 𝜎 for recovering 

the original 𝐭1 and 𝐭′1. 

 

Discussion: In the proposed scheme, a random augmentation process is applied onto the 

input 𝐙 to produce 𝐙̈. Since the randomization process is involved, different 𝐙̈s are formed 

in different applications; hence, 𝐭̂1 and 𝐭̂′1 are independent of each other and have different 

values of 𝜇 and 𝜎. Thus, the attacker cannot use 𝐭̂1 and 𝐭̂′1 to estimate 𝜇 and 𝜎. Given an 

irisCode 𝐙 = [
0 1 0 1
1 0 1 1
1 1 0 0

]  with two random augmentation seeds, i.e., 𝐩 = [1,3,2,1]  and 

𝐩′ = [3,2,2,1] , the proposed scheme first augment 𝐙  into 𝐙̈ = [

0 1 0 1
1 1 0 0
1 0 1 1
0 1 0 1

]  and 𝐙̈′ =

[

1 1 0 0
1 0 1 1
1 0 1 1
0 1 0 1

] . With the parameter {𝑎 = 4, 𝑏 = 1, 𝛽 =
𝑑

𝑏
= 4}, the 𝐭1 = [0, 1.4142, 0, 0]  and 

𝐭′1 = [1.4142, 0, 1.4142, 0] are derived from the 𝐙̈ and 𝐙̈′. Since 𝛽 is same as the dimension 

of 𝐭1/𝐭′1, there is only 1 set of {𝜇, 𝜎} calculated for the 𝐭1/𝐭′1. Given 𝐭1 and 𝐭′1, 𝜇 and 𝜎 are 

calculated as 𝜇 = 0.3536, 𝜎 = 0.7071, 𝜇′ = 0.7071 and 𝜎′ = 0.8165. Therefore, 𝐭̂1 ∈ ℝ
𝑜 and 

𝐭̂′1 ∈ ℝ
𝑜 from the same input 𝐙 are normalized using different 𝜇, 𝜎, 𝐭1  and 𝐭′1. Since the 

normalized parameters (i.e., 𝜇 and 𝜎) and the value of the unnormalized vectors (𝐭1 and 𝐭′1) 

are different for 𝐭̂1 and 𝐭̂′1, it is unlikely that the resultant 𝐭̂1 and 𝐭̂′1 are collided. Therefore, it 

is difficult for the attacker to use 𝐭̂1 and 𝐭̂′1 to infer the values of 𝜇 and 𝜎, and recover the 

original 𝐭1 and 𝐭′1. Moreover, the 𝜇, 𝜎, 𝐭1  and 𝐭′1 are not stored. 

 

The above statements discuss the inversion attempt of using multiple 𝐭̂ to recover 𝜇 and 𝜎 

for recovering the original vector 𝐭 . Since the cancellable template 𝐜  is formed as 𝐜 =

𝐭̂1
⟙
||𝐭̂2

⟙
||. . . ||𝐭̂ℎ

⟙
, the attacker cannot attempt to recover each 𝐭̂𝑖 to 𝐭𝑖 even the attacker has 

compromised multiple cancellable templates 𝐜 from different applications. This prohibits the 

attacker from further inversion attacks to recover the irisCode 𝐙 ∈ [0,1]𝑚×𝑛. In practical, 𝐙̈ ∈

[0,1]𝑑×𝑛 is a large binary feature with the dimension of 250 × 512; thus, it is unlikely that 𝐙̈s 

in different systems can collide. Since multiple 𝐙̈s are randomized independent instances, 
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the generated 𝐜s are uncorrelated to each other. Moreover, as stated previously, there is no 

direct link between 𝐜 and 𝐩. Hence, given multiple 𝐜s and 𝐩s, it is clueless for the attacker 

to attempt the inversion attack and restore 𝐙̈ ∈ [0,1]𝑑×𝑛 (or even the original 𝐙 ∈ [0,1]𝑚×𝑛). 

This also shows that 𝐩 can be stored alongside with 𝐜 and reduce the user’s burden of 

managing 𝐩. To sum up, the analysis shows the proposed scheme satisfies irreversibility as 

the original biometric feature (i.e., 𝐙 ∈ [0,1]𝑚×𝑛) is not recoverable with the inversion attacks. 

 

C. Attack via input enumeration 

In this attack, the attacker aims to recover the original irisCode 𝐙 ∈ [0,1]𝑚×𝑛 via attack via 

input enumeration. This attack differs from the previous attacks that attempt to recover the 

original irisCode 𝐙 ∈ [0,1]𝑚×𝑛 by reverse processing the cancellable iris template 𝐜 ∈ ℝℎ𝑜, 

the attacker guesses a fake 𝐙∗  and inject 𝐙∗  to the proposed scheme to produce a 

cancellable iris template 𝐜∗. The template 𝐜∗ is then matched to the compromised 𝐜. This 

attack is simple and effective as it does not require prior knowledge of the transformations 

function. In this attack, recovery of 𝐙  is considered successful when the attacker can 

produce 𝐜∗ that is equal to 𝐜 (𝐜∗ = 𝐜). The attack complexity of this attack can be calculated 

using the below formula: 

 

 Attack Complexity = Guess Attempt ×Time Complexity (3.9) 

 

where guess attempt refers to the total rounds required to guess a 𝐙∗ that can produce a 𝐜∗ 

which is equal to the compromised 𝐜 and the time complexity refers to the time required to 

transform a guessed 𝐙∗ into 𝐜∗. Since the matching is done using a simple matcher, the 

matching time is not factored into the formula. In the proposed scheme, the original irisCode 

𝐙 ∈ [0,1]𝑚×𝑛 is a binary matrix; hence, the guess complexity for each correct entry 𝑧 ∈ 𝒁 is 

2/2 = 1, where the possible values of 𝑧 are 0 and 1. Therefore, the guess attempt for the 

entire 𝐙 is equal to 220×512/2, where 20 × 512 is the dimension of the extracted irisCode in 

the proposed scheme. Based on section 0, the time complexity is referred from the average 

processing time for the verification stage. To sum up, this attack requires a total of 

(220×512/2) × 0.0811 (seconds)  to recover the entire 𝐙 . From the calculated value, it is 

computation infeasible for the attacker to recover the original irisCode 𝐙; and hence, the 

proposed scheme shows resistance against attack via input enumeration. 
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3.5.2 Security analysis 

Security refers to the feasibility of a method to withstand the attack, which is used to gain 

illegal access with a fake query cancellable template that is similar to the pre-stored enrolled 

template. In this subsection, the security aspect of the proposed method is examined using 

three main attacks in biometric-based authentication. 

 

A. Brute-force attack 

In this attack, the attacker guesses the cancellable template 𝐜∗ exhaustively and compare 

𝐜∗ to the enrolled cancellable template 𝐜. The brute-force (BF) attack succeed when the 

attacker obtains the 𝐜∗ that is the same as the enrolled 𝐜 (𝐜∗ = 𝐜). In the proposed scheme, 

𝐜 ∈ ℝℎ𝑜 is a real-valued vector with a size of ℎ𝑜 = 16000 (generating using the best-tuned 

parameters) and value distribution of [𝐿𝐵𝐜, 𝑈𝐵𝐜], where 𝑈𝐵 and 𝐿𝐵 denote the upper and 

lower value bounds for each 𝑐𝑖 ∈ 𝐜. In this attack, the attacker is required to guess each 𝑐𝑖 ∈

𝐜, where 𝑖 = 1,… ,16000  is the 𝑖 -th element in 𝐜 and 16000  is the size of 𝐜. The guess 

attempt for each 𝑐∗ 𝑖 ∈ 𝐜
∗ is determined by the value range (i.e., 𝐿𝐵𝐜 and 𝑈𝐵𝐜) and the guess 

precision for the real-valued 𝑐𝑖 in decimal points. For instance, given 𝑐 ∈ [−0.02,0.02] and a 

guess precision of 2 decimal points, it requires 5 guess attempts to guess a correct 𝑐 out of 

−0.02, −0.01, 0.00, 0.01 and 0.02. In short, the guess attempt for a correct guess of 𝑐𝑖 ∈ 𝐜 

is formulated as below: 

 

 Guess Attempt = ‖𝑈𝐵𝐜 − 𝐿𝐵𝐜‖ × 10
decimal points + 1 (3.10) 

 

The guess complexity for the entire 𝐜∗  is calculated as Guess Complexity =

 Guess Attemptsize where size refers to the size of 𝐜∗ . Since 𝐜∗ is a vector with the size of 

ℎ𝑜 = 16000, is it unlikely that the attacker can guess the entire 𝐜∗ within a feasible time. 

 

The guess complexity with different guess precisions is calculated and evidenced in the 

table below. The cancellable template 𝐜 ∈ ℝℎ𝑜  is generated using the best-tuned 

parameters {𝑑 = 250, 𝑎 = 32, 𝑏 = 1}. In the table, the lowest guess precision requires a total 

of 8716000 guess attempts. Thus, it is clearly infeasible for the attacker to carry out the BF 

attack onto the proposed scheme. Therefore, the analysis shows the proposed scheme can 

resist the BF attack. 

 



84 

 

Table 3.8: Brute force attack complexity with different guess precisions 

Transformation 
Parameters Value 

Distribution of 𝐜 
Guess 

Precision 

Guess 
Complexity for 

each 𝒄𝑖 ∈ 𝐜 

Guess Complexity 
for 𝐜 

𝑑 𝑎 𝑏 

250 32 1 [−2.6668, 5.9799] 

1 87 8716000 
2 865 86516000 
3 8647 864716000 
4 86468 8646816000 

 

B. False acceptance attack 

A Biometric system is a thresholding-based decision system that grants access when the 

matching score can surpass the system's pre-defined threshold 𝜏. The attacker can exploit 

the false acceptance rate (FAR) of the biometric system and gain illegal access to the 

system. Unlike the brute-force attack that manually guesses each entry of the cancellable 

iris template, a false acceptance attack (or dictionary attack) requires less guess complexity 

where it only requires the fake cancellable template 𝐜∗  to surpass the minimal system 

threshold 𝜏 [157]. Typically, a false acceptance (FA) attack is analyzed by calculating the 

attack complexity for generating 𝐜∗  that surpass the 𝜏, where 𝜏 is the point when False 

Acceptance Rate (FAR) = False Rejection Rate (FRR) (refer to [66] for the analysis). 

However, this is not secure, especially when the attacker initially generates 𝐜∗ which drops 

in the upper-bound (𝑈𝐵imp) of impostor scores distribution, where the matching score is 

initially higher than 𝜏. Thus, 𝜏 should always be tuned under the case that FAR= 0% to 

maintain sufficient security. However, higher 𝜏 leads to a lower genuine acceptance rate 

(GAR), which is the trade-off between security and matching performance. In this 

subsection, the false acceptance attack is analyzed towards the proposed scheme and 

choose a suitable system threshold 𝜏. 

 

The FA attack is conducted in the worst-case scenario by assuming the attacker first 

generate a 𝐜∗, where the similarity score between 𝐜 and 𝐜∗ is equal to 𝑈𝐵imp. After that, the 

attacker perturbs 𝐜∗ by guessing each correct 𝑐∗ ∈ 𝐜∗  until 𝑆(𝐜, 𝐜∗ ) = 𝜏 . For the security 

consideration, 𝜏 is a secure matching threshold that sacrifices a certain level of GAR and 

always higher than 𝑈𝐵imp . Given the guessed template 𝐜∗ and enrolled template 𝐜, the 

attack complexity required to increase the matching score 𝑆(𝐜, 𝐜∗ ) from 𝑈𝐵imp to 𝜏 and is 

calculated with the following formula: 
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 Attack complexity = (𝑁c)
𝑆𝐼𝑍𝐸c×(𝜏−𝑈𝐵imp) (3.11) 

 

where 𝑁𝐜 is the possible value for each 𝑐 ∈ 𝐜 and 𝑆𝐼𝑍𝐸𝐜 denotes the size of 𝐜. Since 𝐜 is a 

real-valued vector with value distribution of [𝐿𝐵𝐜, 𝑈𝐵𝐜], the 𝑁𝐜 is calculated based on the 

formula as discussed in Section 3.5.2A using different guess precisions. The formula is as 

below: 

 

 𝑁𝐜 = ‖𝑈𝐵𝐜 − 𝐿𝐵𝐜‖ × 10
decimal points + 1 (3.12) 

 

where 𝑆𝐼𝑍𝐸𝐜 = 2ℎ𝑜 = 16000. Since the main purpose of this evaluation is to find a suitable 

𝜏, the analysis is carried out using different 𝜏s with respect to the GAR. 

 

Table 3.9: False acceptance attack complexity under different settings of 𝜏 

Value 
Distribution of 𝐜 

Guess 
Precision 

System 
Threshold 

𝜏 
𝑈𝐵imp 𝜏 − 𝑈𝐵imp 𝑁𝐜 FA Attack Complexity 

GAR= 𝟗𝟓% 

[−2.6668, 5.9799] 

1 

0.4021 0.3938 0.0083 

87 8716000×0.0083 ≈ 87132 
2 865 86516000×0.0083 ≈ 865132 
3 8647 864716000×0.0083 ≈ 8647132 
4 86468 8646816000×0.0083 ≈ 86468132 

GAR= 𝟗𝟎% 

[−2.6668, 5.9799] 

1 

0.4151 0.3938 0.0213 

87 8716000×0.0213 ≈ 87340 
2 865 86516000×0.0213 ≈ 865340 
3 8647 864716000×0.0213 ≈ 8647340 
4 86468 8646816000×0.0213 ≈ 86468340 

GAR= 𝟖𝟓% 

[−2.6668, 5.9799] 

1 

0.4219 0.3938 0.0281 

87 8716000×0.0281 ≈ 87449 
2 865 86516000×0.0281 ≈ 865449 
3 8647 864716000×0.0281 ≈ 8647449 
4 86468 8646816000×0.0281 ≈ 86468449 

 

Table 3.9 tabulates FA attack complexity for the proposed scheme under different matching 

thresholds 𝜏. From the table, it is observed that the minimum attack complexity is reduced 

from 8716000 to 87132 compared to the brute force attack. Besides that, another observation 

is that 𝑈𝐵imp and 𝜏 are consistent under different guess precisions, and this shows it is not 

required to guess 𝐜∗ with high guess precision. Yet, a minimum of 87132 attempts are still 

required to gain access to the system, which is computationally infeasible for the attacker to 

carry out the FA attack towards the proposed scheme. With the minimum attack complexity 

of 87132 attempts and GAR= 95%, the verification rate is still reasonable. 
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C. Birthday attack 

Birthday attack [158] is the well-known cryptanalytic technique that exploits the birthday 

problem [158] to find the collision likelihood between the ciphertexts of different clear texts. 

In the biometrics context, a birthday attack refers to the scenario where the attacker aims to 

generate a fake cancellable template 𝐜∗ ∈ ℝℎ𝑜 using the collisions of the input irisCode 𝐙 ∈

[0,1]𝑚×𝑛 and use 𝐜∗ to gain access to the system. In other words, the attacker aims to obtain 

a fake input irisCode 𝐙∗ , such that 𝑅𝐻𝑂𝐺(𝐙∗) = 𝑅𝐻𝑂𝐺(𝐙)  where 𝑅𝐻𝑂𝐺(. )  refers to the 

transformation function for the proposed scheme. In this case, 𝐙 and 𝐙∗ is the collision pair 

and 𝐙 ≠ 𝐙∗ . This attacker requires less attack complexity than the BF and FA attacks 

because the estimated 𝐙∗ does not need to be the same as the 𝐙. 

 

This analysis is determined by calculating the birthday bound [158] in terms of the guess 

attempts. Here, a brief description of the birthday bound [158] is given, followed by the 

formalization of the birthday attack. Suppose a transformation function 𝑓(𝑥)  that can 

produce 𝐻  numbers of possible outputs, the minimum attack attempts (birthday bound) 

required to obtain 𝑥∗, such that 𝑓(𝑥) = 𝑓(𝑥∗) can be calculated  

 

 Birthday bound = √2𝐻 ⋅ ln(1/(1 − 𝑝)) (3.13) 

 

where 𝑝 is the collision rate between 𝑥 and 𝑥∗, and 𝐻 refers to the possible combinations for 

the output of 𝑓(𝑥). 

 

The birthday attack is conducted as an extension of the FA attack where the attacker initially 

guessed 𝐙∗  that can produce 𝐜∗  which is initially drops in the upper-bound (𝑈𝐵imp ) of 

impostor scores distribution. Then, the attacker perturb each 𝑧𝑖𝑗 ∈ 𝐙
∗  until 𝑆(𝐜, 𝐜∗ ) = 𝜏 , 

where 𝜏 is the system threshold. Since there are (𝑁c)
𝑆𝐼𝑍𝐸𝐜  of possible 𝐜′s where 𝑆𝐼𝑍𝐸𝐜 =

ℎ𝑜 = 16000 is the template size for 𝐜; the birthday attack complexity can be estimated as 

follows: 

 

 
Attack Complexity = √2(𝑁c)

𝑆𝐼𝑍𝐸c×(𝜏−𝑈𝐵imp) ⋅ ln(1/(1 − 𝑝)) 
(3.14) 
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where 𝑝 is the collisions rate for 𝐙∗ that is falsely recognized as the genuine 𝐙. In this case, 

𝑝 is calculated based on the False Acceptance Rate (FAR) in genuine/ impostor score 

distributions. 𝑁c is the number of possible 𝑐 ∈ 𝐜, which is calculated based on the Eq. (3.12) 

in Section 3.5.2B with the guess precision = 1. As observed from FA attack analysis, the 

attacker is not required to perform the attack with high guess precision. Thus, the analysis 

is not considering the attack under guess precision > 1. In this subsection, analysis of the 

birthday attack is conducted towards the proposed scheme under different GARs and 

choose the suitable system threshold 𝜏.  

 

Table 3.10 tabulates the attack complexity for the CASIAv3 dataset under different GARs. 

From the table, we observed the minimum attack complexity is reduced from 87132  to 

(87132/2  ∙ 0.110) (attempts) compared to the false acceptance attack. However, the attack 

complexity is sufficient to resist the birthday attack. The security strength can be further 

increased by adjusting 𝜏 to a higher value. With the minimum attack complexity of (87132/2 ∙

0.110) attempts and GAR= 95%, the verification performance remains reasonable. 

 

Table 3.10: Birthday attack complexity under different settings of 𝜏 

𝑁𝒄 
(Guess precision =1) 𝑝 

System 
Threshold 

𝜏 
𝑈𝐵imp 𝜏 − 𝑈𝐵imp ln(1/(1 − 𝑝)) 

Birthday Attack 
Complexity 

GAR= 𝟗𝟓% 

87 0.0060 0.4021 0.3938 0.0083 ≈ 0.006 ≈ 87132/2 ∙ 0.110 

GAR= 𝟗𝟎% 

87 0.0060 0.4151 0.3938 0.0213 ≈ 0.006 ≈ 87340/2 ∙ 0.110 

GAR= 𝟖𝟓% 

87 0.0060 0.4219 0.3938 0.0281 ≈ 0.006 ≈ 87449/2 ∙ 0.110 

 

3.5.3 Unlinkability and renewability analysis 

Unlinkability and renewability properties are important towards a cancellable biometric 

scheme to allow the reproduction of cancellable templates for the same biometric input while 

minimizing the linkage between multiple cancellable templates generated from the same 

biometric input. This section examines the unlinkability and renewability properties of the 

proposed scheme via quantitative experiments. Throughout the experiments, the 

cancellable templates 𝐜s are generated using best-tuned parameters as listed in Section 

3.4.2C. 
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A. Unlinkability analysis 

In this section, the benchmarking unlinkability analysis framework [159] is employed to 

examine the unlinkability of the proposed scheme. Particularly, this assessment framework 

relies on the two indicators, 𝐷  
↔(𝑠) and 𝐷𝑠𝑦𝑠

↔ 
, to quantify the unlinkability level of a biometric 

system [159]: 

 

• Local measure, 𝐷  
↔(𝑠): 𝐷

 
↔(𝑠) is a local score-wise indicator that is found between 

mated/ non-mated score distributions according to the likelihood ratio [159]. 

 

• Global Measure, 𝐷𝑠𝑦𝑠
↔ 

: 𝐷𝑠𝑦𝑠
↔ 

 assesses the unlinkability of the whole system [159]; thus, 

𝐷𝑠𝑦𝑠
↔ 

 is usually used for benchmarking purpose [159].  

 

Specifically, the indicators are calculated based on the mated/non-mated samples score 

distributions that are generated from the following matching attempts [126], [159]: 

 

• Mated-samples matching attempt: Cross-matching multiple cancellable templates 𝐜s 

which are generated from the same iris instance of the same subject. 

 

• Non-mated samples matching attempt: This matching attempt is conducted by 

matching 𝐜s generated from the first sample of different subjects 

 

In both matching attempts, every 𝐜s is generated using different 𝐩 ∈ [1,𝑚]𝑑 to simulate the 

situation that the cancellable templates 𝐜s are from different system databases. Particularly, 

5 random augmentation seeds 𝐩s are used to generate up to 5 𝐜s for each iris.  𝐷  
↔(𝑠) and 

𝐷𝑠𝑦𝑠
↔ 

 ranged from 0 to 1, which indicates the linkage level of the cancellable templates [159]. 

The computed 𝐷  
↔(𝑠) and 𝐷𝑠𝑦𝑠

↔ 
 should remain as low as possible to provide a considerable 

level of unlinkability. Besides that, 𝐷𝑠𝑦𝑠
↔ 

 can also be used to verify the renewability property. 

Particularly, the low linkage between the cancellable templates for the same user (low 𝐷𝑠𝑦𝑠
↔ 

) 

shows that the newly generated cancellable template is indistinguishable from other users. 

 

Throughout the unlinkability assessment, the cancellable templates are generated with 

respect to the best-tuned parameters, as discussed in Section 3.4.2C. The parameter of the 
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evaluation framework ϖ is set to 1 to evaluate the linkage of cancellable templates under 

the worst-case scenario [159]. Fig 3.4 shows the result of the unlinkability analysis in terms 

of mated/ non-mated score distributions and 𝐷𝑠𝑦𝑠
↔ 

. The plotted score distributions show the 

proposed scheme is achieving a nearly unlinkable scenario where both score distributions 

are highly overlapped. Other than that, the calculated global measure 𝐷𝑠𝑦𝑠
↔ 
≈ 0.04 shows that 

the proposed scheme meets the unlinkability requirement. 

 

 

Fig 3.4. Unlinkability analysis of CASIAv3 dataset with best-tuned parameters  

 

B. Renewability (or revocability) analysis 

Renewability refers to the reproduction of the cancellable templates 𝐜 using the same input 

biometric feature 𝐙 [19]. 𝐷𝑠𝑦𝑠
↔ 
= 0.04 calculated from the unlinkability analysis shows the 

proposed scheme having renewability property where multiple cancellable templates 𝐜s 

from the same 𝐙 have low linkage. This subsection further investigates the renewability by 

performing a quantitative experiment as suggested in [66]. This experiment is built upon 

three score distributions: Genuine, Impostor and Pseudo-impostor Score distributions by 

assuming the cancellable templates are generated under different cases. The matching 

attempts, as discussed in Section 3.4.1A, are followed to generate the genuine and impostor 

score distributions. Differ from the experiment in Section 3.4.1A, the renewability property is 

evaluated under the real-world scenario where the cancellable templates for different users 

are generated using different transformation keys. Hence, different random augmentation 

seed 𝐩s are assigned to different users during the impostor matching attempt. Besides that, 

the pseudo-impostor matching attempt is followed to generate the pseudo-impostor score 

distributions: 
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• Pseudo-impostor matching attempt: Different random augmentation seed 𝐩s are 

used to generate up to 51 cancellable templates 𝐜s for the same input irisCode 𝐙. Then, 

the first 𝐜 is matched to the 50 𝐜s and form the mated-sample score distribution. 

 

This pseudo-impostor matching attempt is carried out by matching the "compromised" (or 

old) cancellable template to many "renewed" cancellable templates. In this case, each 

renewed cancellable template is assumed as the impostor template that does not belong to 

the enrolled user. Therefore, the pseudo-impostor score distribution should not highly 

overlap with the genuine matching score distribution to demonstrate the renewability 

property of the scheme. Fig 3.5 shows the genuine, impostor and mated samples score 

distributions of the cancellable templates 𝐜s generated via the proposed R∙HoG scheme. 

From the figure, it is observed that the impostor and genuine score distributions are not 

overlapped, and this implies the newly generated cancellable template 𝐜 are not same as 

the “old” template. In conclusion, this shows that the proposed scheme satisfies the 

renewability property. 

  

 

Fig 3.5. Renewability of CASIAv3 dataset with best-tuned parameter 

 

3.5.4 Summary of security and privacy analysis 

Throughout the security and privacy analyses, the observations are summarized as below: 

 

• The key ingredients (i.e., 𝜇 and 𝜎) to form the cancellable template 𝐜 ∈ ℝℎ𝑜 are biometric 

dependent parameters that are not stored in the storage. Therefore, it is hard for reverse 

transforming the 𝐜 ∈ ℝℎ𝑜  to the irisCode 𝐙 ∈ [0,1]𝑚×𝑛  even the random augmented 
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seeds 𝐩 ∈ [1,𝑚]𝑑 are known. Whenever the 𝐜 is compromised, the user can renew the 

template by using a different 𝐩, thus, shows renewability.  

 

• The proposed scheme can withstand major security attacks (e.g., false acceptance and 

birthday attacks) while maintaining reasonable verification performance.  

 

• The unlinkability evaluation result suggests the proposed scheme allows the user to 

enroll/ re-enroll into different applications with the same iris feature. The renewability 

analysis shows the renewed cancellable template is independent of the old cancellable 

template. 

 

3.6 Summary and contributions 

In this chapter, the main problem in the irisCode template protection is perceived as the 

degraded authentication efficiency that is caused by the alignment issue in the irisCode 

feature. The main research outcome in this chapter is an alignment-robust cancellable 

biometric scheme dubbed the Random Augmented Histogram of Gradients (R∙HoG) that 

could overcome the pre-alignment issue of the iris feature and produce an alignment-robust 

cancellable iris template for efficient matching. Two mechanisms: column vector-wise 

random augmentation and gradient orientation grouping, are used to consolidate this 

proposal in terms of performance preservation and irreversibility. Matching performance is 

validated under the worst-case (stolen token) scenario, and it shows reasonable matching 

accuracy. With the comprehensive analysis that is supported by the empirical data, the 

R∙HoG cancellable biometric scheme is proved to withstand major security and privacy 

attacks, e.g., false acceptance attack and birthday attacks. By sacrificing a certain level of 

genuine acceptance rate for the higher system threshold 𝜏, the proposed scheme can resist 

the birthday attack, with the minimum attack complexity of 87132/2  ∙ 0.110 attempts and 

GAR=95% . Besides that, the quantitative analysis framework suggests the proposed 

scheme achieve unlinkability requirement with the calculated 𝐷𝑠𝑦𝑠
↔ 

 close to 0. Renewability 

is enabled by using a different random augmentation seed during the re-enrollment. More 

importantly, the R ∙HoG enjoys the merit of the fast similarity comparison where the 

generated cancellable template does not require pre-alignment during the matching 

process, which is crucial for the efficient authentication process. 
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Chapter 4 TOKENLESS FINGERPRINT AND FACE TEMPLATE 

PROTECTION 

 

Most of the face and fingerprint cancellable biometric schemes are commonly designed 

to protect biometric templates with two input factors, i.e., biometrics and a token used in 

template replacement. However, the token is often required to be kept secretly; otherwise, 

the protected template could be vulnerable to several security attacks and breaches of 

privacy. In this chapter, two tokenless cancellable biometric schemes, namely the 

Extended Feature Vector (EFV) Hashing and the Multimodal Extended Feature Vector 

(M∙EFV) Hashing, are proposed for the face and fingerprint-based biometric systems. The 

former scheme is a unimodal fingerprint cancellable biometric scheme that focuses on 

resolving token management issues. The EFV hashing utilizes a permuted key that is 

separated from the biometric data to serve as an identifier for matching. The crux that 

enables the tokenless authentication in EFV hashing is the permutation seed of the key is 

derived from the biometric features of the user, but not from the external factor (e.g., 

token). The latter scheme is essentially an enhanced version of the former scheme that 

explores biometric fusion to resolve the performance degradation issue. The proposed 

M ∙EFV hashing stresses on multimodal biometrics where the real-valued face and 

fingerprint vectors are fused and embedded into a binarized cancellable template. Several 

benchmarking datasets, i.e., fingerprint {FVC2002, FVC2004} and face {LFW}, are used 

in experiments to evaluate the proposed schemes. The verification performance is 

validated by employing the FVC matching protocol. Several major attacks are simulated 

and analyzed in the worst-case scenario. Lastly, unlinkability and renewability properties 

are examined experimentally. 

Chapter 4:  

 

4.1 Background 

In this chapter, the problems of biometric template protection in the face and fingerprint 

verification is mainly perceived as key management and feature incompatibility problems: 

Face and fingerprint-based cancellable biometrics are commonly designed as a two-factor 

authentication scheme that requires to present the biometric feature and a token (storage 
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for the transformation key) where the token is used for the template revocation and renewal. 

The two-factor authentication mechanism has distorted the usability of biometric systems. 

First of all, the token could be stolen and utilized for unfavorable events, e.g., impersonation, 

original template inversion attack and cross-matching [27]. Most of the existing multimodal 

cancellable biometric schemes, i.e., [99], [129], [132], [134], are designed to be a two-factor 

scheme. Although the use of a user-specific key (i.e., token) satisfies the renewability and 

unlinkability requirements, a failure in managing the key can lead to several security-related 

problems, as mentioned. In this sense, a sole biometric instance-enabled tokenless scheme 

is preferable. However, a tokenless scheme produces additional auxiliary data, which is 

derived from the transformation key and stored alongside the cancellable template after 

enrollment, which is absent for tokenized schemes. Moreover, a tokenless scheme requires 

an additional process to recover the transformation key from the auxiliary data in the 

verification stage. In short, a tokenless scheme trades extra storage and additional 

processing costs for better usability due to the absence of the key. 

 

Multimodal biometric systems are gaining the public’s interest as they compensate for issues 

of unimodal systems such as recognition performance limitation [27], [98], [160]. However, 

multimodal biometric systems do suffer from the same privacy issues mentioned above, yet 

it could even be more severe due to multiple templates of different modalities being stored 

(and compromised eventually). Therefore, multimodal biometric template protection 

deserves urgent attention. In multimodal biometrics, there are three major fusion strategies 

available, i.e., feature, score and decision level fusion [9]. Although score and decision level 

fusion gain better accuracy performance, they require cancellable templates to be generated 

and stored separately, which may prompt complications in template and storage 

management [99], [134]. Therefore, the feature-level fusion that integrates multiple biometric 

modality features into a single cancellable template is preferred. Yet, it is challenging to 

design a feature-level fusion cancellable biometric scheme. This is due to the incompatibility 

issue of different biometric modalities, such as different biometric feature types (e.g., 

fingerprint minutiae point and face deep feature) [9]. 

 

To address the above challenges, this chapter introduces two tokenless cancellable 

biometric schemes, namely the Extended Feature Vector (EFV) Hashing and Multimodal 

Extended Feature Vector (M∙EFV) Hashing for both unimodal and multimodal biometric 

systems without requiring the user to manage the key, as the key is released upon the 
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presence of the biometrics. The proposed schemes are salted by an XOR encryption/ 

decryption machinery, which is adopted from the fuzzy commitment scheme (an instance of 

a biometric cryptosystem). Specifically, XOR is used to bind or retrieve the transformation 

key, which enables the “tokenless” property for both EFV hashing and M∙EFV hashing. The 

proposed schemes are distinguishable from the existing hybrid schemes (cancellable 

biometrics + biometric cryptosystems) in the sense that: 

 

1) The existing hybrid schemes (e.g., [135]–[137], [161], [162]) are primarily used for 

binding/releasing a key, while the proposed tokenless schemes are meant to generate 

secure and revocable templates while avoiding a two-factor approach. 

 

2) As the hybrid schemes are key binding, the exact key must be recovered in these 

schemes. In contrast, the tokenless scheme might never produce the exact key. Instead, 

given genuine  uery biometrics, recovery of a ‘similar’ random string is to facilitate secure 

template generation. 

 

3) Error correction codes (ECCs) [135], [161], [162] or other mechanisms [136] (e.g., 

thresholding [137]) are applied to correct the errors in the reviewed hybrid schemes, 

while the tokenless scheme does not require error correction. 

 

In short, the contributions made in this chapter are highlighted as follows: 

 

• A new tokenless authentication mechanism that addresses the key management issue 

for unimodal and multimodal cancellable biometrics is introduced. As the token is 

abandoned, the associated attacks are therefore no longer considered a threat. Other 

than that, tokenless authentication reduces the burden for users to manage an external 

token for authentication. 

 

• A feature-level fusion method is proposed to embed the real-valued face and fingerprint 

feature vectors into a binarized feature vector without sacrificing the discriminative traits 

of the face and fingerprint features. In addition, with the generic property of accepting 

real-valued, fixed-length face and fingerprint vectors as input, the proposed scheme can 

be transferred to other biometric traits exhibiting the same form factor. To the author's 
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best knowledge, there is no existing tokenless multimodal biometric template protection 

in the literature. 

 

• Security and privacy aspects of the resultant cancellable template are examined in both 

quantitative and qualitative manner. Supported by the empirical results, it is proved that 

the proposed M ∙ EFV hashing satisfies the major biometric template protection 

requirements. In addition, major security attacks are carried out to examine the security 

strength of the proposed schemes and choose the suitable secure system threshold. 

 

• This chapter further analyses the birthday attack, which was a new type of attack and 

first proposed by [66] for cancellable biometrics. Specifically, the analyses in this chapter 

factor in the worst-case scenario that the adversary is able to obtain a good guessed 

biometric input which drops at the upper bound of impostor matching score distributions. 

Other than that, the birthday attack is launched in a different manner from [66], where it 

estimates the input which is used for generating the cancellable template. As such, attack 

complexity is shown to be much lower compared to attacking the large cancellable 

template. 

 

This chapter is organized as follows: Section 4.2 discusses the proposed EFV hashing, 

which was designed in the earlier stage and the preliminary in which the stage-2 

transformation of the proposed M ∙EFV hashing is built upon. After that, section 4.4 

introduces the methodology of the proposed M∙EFV hashing, followed by section 4.5 to 

present the experiment results in terms of parameters estimation, analysis on stage-1 

transformation and computation efficiency. Section 4.6 examines the irreversibility, security 

and unlinkability properties of the proposed M∙EFV hashing. Lastly, section 4.7 concludes 

the findings of this chapter. 

 

4.2 Preliminaries 

This section is devoted to presenting the preliminary works (i.e., Index-of-Max (IoM) Hashing 

and Extended Feature Vector (EFV) Hashing), which the proposed Multimodal Extended 

Feature Vector (M∙EFV) Hashing is built upon. 
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4.2.1 Index-of-Max (IoM) Hashing 

Index-of-Max (IoM) hashing is a ranking-based cancellable biometric scheme that was 

originally proposed for fingerprint template protection [66]. In the proposed scheme, the IoM 

hashing plays an important role in the stage-2 transformation in the proposed scheme where 

it transforms the original biometric vector 𝐱 ∈ ℝ𝑑 into a binary vector (refer to IoM Bio. Vector  

𝐡 ∈ [0,1]2𝑑) where the value of the binary vector represents the index of the maximum value 

of the feature vector during the IoM transformation. This subsection gives a brief account of 

the Gaussian Random Projection (GRP) based IoM hashing function. Given a set of random 

projection matrices 𝐏 = {𝐏1, … , 𝐏𝑞} where each 𝐏𝑖 ∈ ℝ
𝑚×𝑑, the procedures to transform the 

original biometric vector 𝐱 ∈ ℝ𝑑  to the IoM hashed code 𝐡 ∈ [0,𝑚 − 1]𝑞 are described as 

below: 

 

1) Project 𝐱 onto a random sub-space and form a projected vector 𝐯𝑖 ∈ ℝ
𝑚 by computing 

𝐯𝑖 = 𝐱 ∙ 𝐏𝑖. 

 

2) Record the index value which corresponds to the maximum value in the 𝐯𝑖 as the IoM 

hashed code ℎ𝑖:  

 

 ℎ𝑖  = argmax(𝐯𝑖) (4.1) 

 

where argmax(. ) is the argument maximum function. 

 

Repeat step 1-2 for 𝑖 = 1…𝑞  rounds until the IoM hashed code 𝐡 ∈ [0,𝑚 − 1]𝑞  is 

constructed. 
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4.3 Methodology – Extended Feature Vector (EFV) hashing 

This section is devoted to presenting the methodology of the Extended Feature Vector (EFV) 

hashing. 

 

Extended feature vector (EFV) hashing [1] is the preemptive tokenless cancellable biometric 

method that was introduced in the earlier stage of the research in this thesis. EFV hashing 

was originally designed for unimodal fingerprint template protection. Since the EFV hashing 

is a part of the Multimodal EFV hashing, this section gives a brief description of the EFV 

hashing. Briefly, EFV hashing is a permutation-based template protection method that 

utilizes a permuted key as a reference (cancellable template) for verification [1]. Unlike 

existing template protection methods that store the transformation key in a token or 

password, the proposed method transforms the transformation key into the form of an 

encrypted key and stores it alongside the cancellable template. In particular, during 

enrollment, the transformation key is derived from the pseudo-random number generator. 

After the cancellable template is generated, the transformation key will be encrypted into the 

encrypted key via XOR encryption. Therefore, the original biometric data and genuine 

transformation key are not stored. During verification, after the biometric data is accepted 

by the EFV hashing, an approximate transformation key is released by XOR-ing the input 

biometric feature and the encrypted key. The approximate transformation key is then used 

to generate the query template for matching. In a nutshell, EFV hashing only requires the 

user to provide a  biometric feature for enrollment/ verification. 

 

EFV hashing consists of a 4 -step procedure to transform the fingerprint vector into a 

cancellable template [1]. Given a fingerprint vector 𝐱 ∈ [0,1]𝑝 and a randomly generated 

transformation key 𝐫 ∈ [0,1]𝑝𝑛 , the below procedures are followed to generate the EFV 

hashed code 𝐭 ∈ [0,1]𝑝𝑛: 

 

1) Feature Augmentation: The 𝐱  is augmented by repeatedly appending the 𝐱  to the 

extended feature vector 𝐱̅ for 𝑛 − 1 times. Throughout this process, a 𝐱̅ ∈ [0,1]𝑝𝑛 is yield. 

 

2) Sub-block Construction: Each 𝑥̅𝑖 ∈ 𝐱̅ , it is appended with the corresponding (𝑘 − 1) 

element(s) from the 𝐱̅ ; a sub-bits block [𝑥̅𝑖 |𝑥̅𝑖+1| … |𝑥̅𝑖+(𝑘−1)]  is constructed where | 

denotes the concatenation. 
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3) Binary-to-Decimal Conversion: Each sub-bits block [𝑥̅𝑖 |𝑥̅𝑖+1| … |𝑥̅𝑖+(𝑘−1)] is converted to 

an integer number 𝑥̂𝑖 ∈ ℤ. After 𝑝𝑛 numbers of sub-bits blocks are converted, an integer 

vector 𝐱̂ ∈ [1, 𝑝𝑛]𝑝𝑛  is formed. To be noted, each 𝑥̂𝑖 ∈ 𝐱̂ is re-calculated as 𝑥̂𝑖=((𝑥̂𝑖 +

1) × 𝑖)mod(𝑝𝑛 + 1) to ensure the value of 𝑥̂𝑖 is bounded from 1 until 𝑝𝑛. 

 

4) EFV Hashed Code formalization: Given the 𝐫 ∈ [0,1]𝑝𝑛 and 𝐱̂ ∈ [1, 𝑝𝑛]𝑝𝑛, each 𝑡𝑖 ∈ 𝐭 is 

computed as 𝑡𝑖 = 𝑟𝑥̂𝑖 where 𝑖 = 1…𝑝𝑛. Lastly, the EFV hashed code 𝐭 = [𝑟𝑥̂2 , … , 𝑟𝑥̂𝑝𝑛] ∈

[0,1]𝑝𝑛 is formed. 

 

Since the EFV hash code 𝐭 ∈ [0,1]𝑝𝑛 is a binary vector, comparison between the enrolled 𝐭 

and query 𝐭′ can be made using the normalized hamming similarity [1]. Despite the EFV 

hashing resolved token management issue in biometric template protection, there are two 

shortcomings observed in the original construction of EFV hashing [1]:  

 

• Performance degradation is observed in the unimodal EFV hashing. From [1], the Equal 

Error Rate (EER) (%) of the fingerprint system in FVC2002 DB2 is observed to be 

increased from 4.39% to 6.27%. 

 

• Despite EFV hashing showing a strong irreversibility property when there is only one set 

of the cancellable template and encrypted string are compromised, it is potentially that 

the original fingerprint vector can be recovered if multiple cancellable templates and 

encrypted string are involved. Particularly, the attacker could perform correlation analysis 

between multiple cancellable templates and encrypted string [1]. 
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4.4 Methodology – Multimodal EFV (M∙EFV) hashing 

This section is devoted to presenting the proposal face and fingerprint-based multimodal 

template protection scheme, i.e., Multimodal Extended Feature Vector (M∙EFV) hashing. 

Mathematical notations of the proposed M∙EFV hashing are listed in the table below. 

 

Table 4.1: NOMENCLATURE 

Notation(s) Description 

𝐱 ∈ ℝ2𝑑  Original Bio. Vector 

𝐡 ∈ [0,1]2𝑑  IoM Bio. Vector 

𝐡̂ ∈ [0,1]2𝑑𝑛  Augmented Bio. Vector 

𝐡⃛ ∈ [1, 2𝑘]2𝑑𝑛  Integer Bio. Vector 

𝐜 ∈ [0,1]2𝑑𝑛  Cancellable Template 

 𝐫 ∈ [0,1]2𝑑  Transformation Key (Random String) 

𝐞 ∈ [0,1]𝟐𝒅  Encrypted String 

 𝐏 = {𝐏1, 𝐏2…𝐏𝑞},  each 𝐏𝑖 ∈

ℝ𝑚×𝟐𝑑 
 Projection Seed 

𝛼 ∈ ℝ, 𝛼 > 0  Rescale ratio 

𝑛 ∈ ℤ, 𝑛 >  1  Number of Appending Round 

 𝑠 ∈ ℤ, 𝑠 ≥ 1  Number of Bit Shifting 

 𝑘 ∈ ℤ, 𝑘 ≥ 2  Sub-Block Size 

𝛽 ∈  ℤ, 1 ≤ 𝛽 ≤  2𝑘  Many-to-One Modulo Threshold 

Note that the symbol ′  is used to differentiate the same variable in the 

enrollment/ verification stage, e.g., 𝐱 and 𝐱′. 

 

4.4.1 Overview 

 

 

Fig 4.1. Overview of M∙EFV hashing in enrollment and verification stages [3] 
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M∙EFV hashing is essentially an extension of EFV hashing where it integrates an additional 

face modality and additional mechanism (refer to stage-2 and stage-3 transformation) to 

realize the biometric fusion for tokenless biometric template protection and enhance the 

irreversibility property. In essence, M∙EFV hashing is a feature-level fusion-based biometric 

template protection scheme that fuses face and fingerprint features into a cancellable 

template. As shown in Fig 4.1, M∙EFV hashing is a multi-stage transformation method that 

combines the real-valued face and fingerprint vectors into a cancellable template, the staged 

transformations are briefly explained as below: 

 

1) In the first stage, M∙EFV hashing normalizes and combines the input face and fingerprint 

vectors into a fused vector. In this stage, the value distribution of the face or fingerprint 

vector is rescaled, such that the domination of the face or fingerprint vector during the 

fusion process is reduced, and the resultant fused template is robust.  

 

2) The second stage randomizes and binarizes the fused biometric template into an IoM 

hashed vector that is essential for the third stage transformation. 

 

3) Lastly, the IoM hashed vector is passed to the irreversible transformation function to yield 

the cancellable template. In this stage, the XOR encryption/ decryption notion is used to 

convert the transformation key into auxiliary data and achieve the tokenless property. 

 

Given the real-valued face vector 𝐱1  and fingerprint vector 𝐱2 , the three-stage 

transformation can be briefly explained as follows: During the stage-1 transformation, 𝐱1 and 

𝐱2 are normalized and concatenated to form the fused biometric vector 𝐱 = 𝐱1|𝐱2. The 𝐱 is 

then transferred to the stage-2 transformation for randomization and binarization, yielding 

the binary IoM hashed vector 𝐡. Lastly, 𝐡 is further processed in the stage-3 transformation 

to generate c, which is the cancellable biometric template in the proposed scheme. The 

random transformation key r is encrypted by h yielding the encrypted string e, which will be 

stored in the database. As such, the original 𝐫 is never kept in the system, and there is no 

additional information needed to be managed by the user. 

 

Differ from the EFV hashing, the XOR operation to generate the encrypted string 𝐞  is 

conducted on the transformation key 𝐫  and the IoM hashed vector 𝐡  (the randomized 

biometric vector). Since the 𝐡 is a randomized vector, multiple 𝐡s (from the same biometric 
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feature) in different applications are independent of each other, and the attacker could not 

perform correlation analysis on multiple encrypted string 𝐞s and attempt to reveal the 𝐫, 

which resolves the shortcoming of EFV hashing. 

 

4.4.2 Generation of cancellable template 

This subsection presents the details of the M∙EFV hashing to transform the input face vector 

𝐱1 ∈ ℝ
𝑑 and fingerprint vector 𝐱2 ∈ ℝ

𝑑 into a cancellable template 𝐜 ∈ [0,1]2𝑑𝑛. 

 

A. Stage-1 transformation (feature rescaling and concatenation) 

The main task of stage-1 transformation is to rescale and combine the face and fingerprint 

vectors into a fused template (original bio. vector 𝐱 ). As there is a value-distribution 

difference between the input face and fingerprint vectors, it will affect the matching accuracy 

of the cancellable template. In particular, the matching result (similarity score) will bias to 

the biometric vector that holds a larger value scale as the calculation of scalar product for 

the biometric feature is involved in the proposed scheme. 

 

Example 4.1: Let 𝐱1 ∈ [−50,50]
𝑑  be the face vector and 𝐱2 ∈ [−5,5]

𝑑  be the fingerprint 

vector where there is a huge scale difference between the 𝐱1 and 𝐱2. Suppose a feature-

level fusion transformation first combines both 𝐱1  and 𝐱2  into the fused vector 𝐱 = 𝐱1|𝐱2 

where the | denote the concatenation process. Then, the 𝐱 is randomly projected into a 

random vector 𝐯 = 𝐱𝐑 where R is the projection matrix. Due to the fact that the value 

distribution 𝐱1 is higher than the 𝐱2, the magnitude of the 𝐯 is skewed to the 𝐱1. In other 

words, the biometric vector with larger value distribution (refer as 𝐱L ) is dominance 

throughout the transformation process and resulting the verification performance produced 

cancellable template is biased towards the 𝐱L. This is unfavorable, especially when the 

dominant biometric feature is low in verification performance. To support this reasoning, a 

detailed experiment is conducted in Section 4.5.3 to study the effect of stage-1 

transformation towards the proposed method. 

 

Based on the reasoning above, rescaling is essential towards a feature-level fusion 

multimodal biometric template protection scheme, especially when fusing multiple biometric 

vectors with huge scale differences. Instead of using a fixed-valued parameter to rescale 

the two vectors into a fixed scale, the proposed method employs a dynamic parameter, 
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coined as the rescale ratio 𝛼 ∈ ℝ in the feature rescaling process. Given the face vector 𝐱1 ∈

ℝ𝑑 and fingerprint vector 𝐱2 ∈ ℝ
𝑑, the procedure (also shown in Algorithm  4.1) to fuse the 

𝐱1 and 𝐱2 into the original bio. vector 𝐱 ∈ ℝ2𝑑 is as follow: 

 

1) Calculate the rescale ratio 𝛼, which is then used for the rescaling process. 𝛼 is calculated 

based on the following formula: 

 

 
𝛼 =  {

 Max(𝐱1)/Max(𝐱2)
 Max(𝐱2)/Max(𝐱1)

    
if Max(𝐱1) ≥ Max(𝐱2)

otherwise
 

(4.2) 

 

2) Rescale the biometric vector with the smaller Max(.) value by multiplying it with the 

rescale ratio 𝛼. For example, if Max(𝒙1) ≥ Max(𝒙2), the 𝐱2 will be re-scaled as 𝐱2 = 𝐱2 ∗

𝛼. 

 

3) Generate the original bio. vector 𝐱 by computing 𝐱 = 𝐱1|𝐱2.    

 

Algorithm  4.1. Stage-1 Transformation 

Input (From User): Face vector 𝐱𝟏 ∈ ℝ
𝒅 , Fingerprint 

vector 𝐱𝟐 ∈ ℝ
𝒅 

Output: Original bio. vector 𝐱 ∈ ℝ𝟐𝒅 

1: if  Max(𝐱1) ≥ Max(𝐱2) 
2:       𝛼 = Max(𝐱1)/Max(𝐱2) 
3:       𝐱2 = 𝐱2 × 𝛼 
4: else 
5:       𝛼 = Max(𝐱𝟐)/Max(𝐱1) 
6:       𝐱1 = 𝐱1 × 𝛼 
7: end if 
8: compute 𝐱 = 𝐱1|𝐱2 
9: return 𝐱 

 

B. Stage-2 transformation (binarization and prior-randomization) 

After the original bio. Vector 𝐱 ∈ ℝ2𝑑  is generated, 𝐱 ∈ ℝ2𝑑  is passed to stage-2 

transformation to yield the IoM bio. vector 𝐡 ∈ [0,1]2𝑑 . Briefly, the main task of stage-2 

transformation is to binarize and increase the randomness of the 𝐱 before non-invertible 

transformation, or XOR encryption is applied. To counter the attack via record multiplicity 

(ARM), a prior-randomization process is always needed in a template protection method. 

The example below is given to present the reason for applying prior randomization in 

template protection. 
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Example 4.2: Assume there is a biometric feature 𝐱 and a transformation key 𝐫, a template 

protection method 𝑓(. )  is applied to takes 𝐱  and 𝐫  as input to produce a cancellable 

template 𝐜 . For simplicity, an XOR-encryption will be used as the example for 𝑓(. ) . 

Therefore, this process is re-written as 𝐜 = 𝐱⊕ 𝐫. If the 𝐜 is compromised, the user can re-

issue a new cancellable template 𝐜2 using a new transformation key 𝐫2. To sum up, the new 

cancellable template 𝐜2 = 𝐱⊕ 𝐫2. Now, assume that the attacker compromised one 𝐜 and 

attempted to recover the 𝐱. Not to mention the 𝐫, it computationally hard for the attacker to 

recover the 𝐱 from a single 𝐜. However, if the attacker compromised multiple 𝐜s, it is possible 

for the attacker to perform cross-XOR on multiple 𝐜 to first cancel out the 𝐱 since each 𝐜 =

𝐱⊕ 𝐫, 𝐜2 = 𝐱⊕ 𝐫2, etc. Then, the attacker could analyze the cross-XOR products of 𝐫s with 

the 𝐜s and recover 𝐱. This scenario is known as Attack via Record Multiplicity (ARM) [156]. 

To counter the ARM, one can reduce the redundancy of the input 𝐱  among different 

applications by converting the 𝐱 into multiple independent randomized vector 𝐡s so that 

each 𝐜 = 𝐡⊕ 𝐫, 𝐜2 = 𝐡2⊕𝐫2. 

 

Other than randomization, binarization is another important aspect of the M∙EFV hashing. 

Since the stage-3 transformation accepts only a binary vector as input, a binarization 

process is required. In the proposed scheme, the concept of locality-sensitive hashing from 

IoM hashing [66] is adapted to perform binarization and randomization at once. As [66] can 

be adjusted to arbitrary size, it can be used to handle unequal size or different data types 

(matrix/ vector) of different biometric features and produce a fixed-sized binary vector. The 

procedure in Algorithm  4.2 is followed to transform the original bio. vector 𝐱 into the IoM 

bio. vector 𝐡. Since the purpose of the stage-2 transformation is merely randomization and 

binarization, the parameter 𝑚 is fixed as 𝑚 = 2, and 𝑞 = 2𝑑 (the size of 𝐱). 

 

Algorithm  4.2. Stage-2 Transformation 

Input (From User): Original bio. vector 𝐱 ∈ ℝ𝟐𝒅 

Parameter: Desired upper limit 𝑚 , Projection round 𝑞 , 

Random projection matrices 𝐏 = {𝐏1, … , 𝐏𝑞}  where each 

𝐏𝑖 ∈ ℝ
𝑚×2𝑑 

Output: IoM bio. vector 𝐡 ∈ [0,𝑚 − 1]𝑞 
1: Initialize 𝐡 = [0]𝑞 
2: for 𝑖 ← 1 to 𝑞 

3:       𝐱 = 𝐱𝐏𝑖 
4:       Set 𝜈 equal to the index of ArgMax(𝒙) 
5:       ℎ𝑖 = 𝜈  
6: end if 
7: return 𝐡 
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C. Stage-3 transformation (non-invertible transformation) 

Lastly, the IoM bio. Vector 𝐡 ∈ [0,1]2𝑑  is passed to the irreversible transformation function 

generate a cancellable template 𝐜 ∈ [0,1]2𝑑𝑛 for matching. The stage-3 transformation is 

essentially an enhanced version of [1] where it requires a smaller 𝑛 to achieve a competitive 

verification performance. The enhanced version introduces bit-shifting and many-to-one 

modulo mappings during the transformation. In the stage-3 transformation, a hashed vector 

augmentation is carried out to transform 𝐡 into the augmented IoM hashed vector 𝐡̂. The 

notion of  bit-shifting is to demolish the repetition of 𝐡 in 𝐡̂, which can improve the matching 

performance. For clarification, an example is given. 

 

Example 4.3: Given 𝐡 = [0,1,1,0] , 𝑛 = 3  and 𝐡̂  is initially equal to 𝐡 . Suppose the 

augmentation process appends 𝐡  to 𝐡̂  for 𝑛  rounds, there are two scenarios to be 

considered: 

 

• Scenario-1: No bit-shifting for 𝐡 during the augmentation; and thus, the final 𝐡̂ is formed 

as 𝐡̂ = [0,1,1,0,0,1,1,0,0,1,1,0]. The repetition pattern in 𝐡̂ is obvious as it is formed by 

three sub-groups “0,1,1,0”. Accordingly, the cancellable template 𝐜 also possesses the 

same pattern, and verification performance is constant under different 𝑛s. 

 

• Scenario-2: 𝐡 is circularly right shifted for 1-bit during each appending round and 𝐡̂ is 

formed as 𝐡̂ = [0,1,1,0,0,0,1,1,1,0,0,1] . In this case, there is no repetition pattern 

observed. 

 

From the scenarios above, bit-shifting is important when performing the hashed vector 

augmentation as it affects the verification performance of the cancellable template 𝐜. To 

support the reasoning, an experiment is conducted in Section 4.5.2B to investigate the effect 

of bit-shifting. Given the IoM bio. vector 𝐡 ∈ [0,1]2𝑑  and transformation key  𝐫 ∈ [0,1]2𝑑 , 

process below (Algorithm  4.3) is followed to generate the cancellable template 𝐜 ∈ [0,1]2𝑑𝑛: 

 

1) Hashed vector augmentation: Generate 𝐡̂  by computing 𝐡̂ = 𝐡̂|𝐡  for (𝑛 − 1)  rounds 

where | is the concatenation process. In the proposed method, scenario-1 is followed, 

and 𝐡 is circularly right shifted for 𝑠-bits in each round of concatenation. 
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2) Sub-blocks formalization: A sub-block is constructed for each ℎ̂𝑖 ∈ 𝐡̂ where 𝑖 = 1…𝑑𝑛. 

This is done by appending its following ℎ̂s to it until the size of the sub-block equals to 

𝑘-bits. The process is repeated until 2𝑑𝑛 numbers of sub-blocks are constructed. 

 

3) Binary-to-Decimal conversion: Each sub-block is converted to the integer number ℎ⃛𝑖 

where 𝑖 = 1…𝑑𝑛. After 2𝑑𝑛 numbers of  sub-blocks are converted, 𝐡⃛ ∈ [0,2𝑘 − 1]2𝑑𝑛 is 

formed. 

 

4) Many-to-One modulo: Modulate each ℎ⃛𝑖 ∈ 𝐡⃛ by a pre-fixed threshold 𝛽 ∈ ℤ. By doing so, 

the range of  𝐡⃛ ∈ [0,2𝑘 − 1]2𝑑𝑛 is remapped to 𝐡⃛ ∈ [0, 𝛽 − 1]2𝑑𝑛. Since the 𝛽 is always a 

small value, a many-to-one mapping is taking effect, and the security of the 

transformation function is enhanced. 

 

5) Index Rescaling: Transform each ℎ⃛𝑖 ∈ 𝐡⃛ with the equation below:  

 

 ℎ⃛𝑖 = ((ℎ⃛𝑖 + 1) × 𝑖) mod 2𝑑 (4.3) 

 

 

where 𝑑 is the size of the random string 𝐫 and 𝑖 = 1…𝑑𝑛. Then set each ℎ⃛ ∈ 𝐡⃛ to 2𝑑 if 

ℎ⃛ = 0. As a result, 𝐡⃛ ∈ [0, 𝛽 − 1]2𝑑𝑛 is rescaled to 𝐡⃛ ∈ [1, 2𝑑]2𝑑𝑛.  

 

6) Index-to-Binary substitution: The cancellable template is first initialized as 𝐜 = 𝐡⃛. After 

that, each 𝑐𝑖 ∈ 𝐜  is transformed in accordance with 𝑐𝑖 = 𝜋(𝐫, 𝑐𝑖)  where 𝜋(. )  is a 

substitution box and 𝐫 ∈ [0,1]2𝑑 is the transformation key. The function 𝜋(. ) is defined as 

follows: 

 

Given 𝐫 ∈ [0,1]2𝑑 the substitution table of the substitution function, 𝜋(. ) returns 𝑟 ∈ 𝐫 where 

𝑐𝑖 indicates the index of 𝑟, which  is simplified as 𝜋(𝐫, 𝑐𝑖) → 𝑟𝑐𝑖. Since the size of 𝐫 is smaller 

than 𝐜, multiple 𝑐𝑖 will be substituted by the same 𝑟, which achieves another many-to-one 

mapping. As a result, a cancellable template 𝐜 ∈ [0,1]2𝑑𝑛 is generated.  

 

Apart from 𝐡 (or 𝐱), the 𝐫 ∈ [0,1]𝑑  is another piece of information required to generate 𝐜. 

Since 𝐫 is sensitive data and should not be disclosed, 𝐫 is encrypted to the encrypted string 
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𝐞 = 𝐫⨁𝐡 where ⨁ is the XOR operator. In particular, during enrollment 𝐫 is generated by a 

PRNG and input to transform the iom bio. vector 𝐡 into the cancellable template 𝐜. After that, 

an XOR operation is applied to 𝐡 and 𝐫 to produce the encrypted string 𝐞 = 𝐡⊕ 𝐫. Lastly, 𝐜 

and 𝐞 are stored in storage. Since 𝐡 and 𝐞 are distorted from different processes, 𝐡 and 𝐞 

are independent of each other. During verification, the iom bio. vector 𝐡′ is first generated 

from the input biometric feature and be used to compute the approximated transformation 

key 𝐫′ = 𝐡′ ⊕ 𝐞. The 𝐫′ is then be used to generate the query template 𝐜′ for verification. 

This ensures there is the only valid user can generate the approximated transformation key 

𝐫′ for generating cancellable templates. However, due to the inconsistency of the biometric 

input, the genuine user cannot fully recover 𝐫  and induces large intra-class variation 

between the cancellable template 𝐜 and query template 𝐜′. Step-1 transformation is used to 

reduce the discrepancy of the generated 𝐜/𝐜′ and overcome the performance degradation 

problem.  

 

Algorithm  4.3. Stage-3 Transformation 

Input (From User): IoM bio. vector 𝐡 ∈ [0,1]2𝑑 

Input (From System): Transformation key 𝐫 ∈ [0,1]2𝑑 
Parameter: Duplicative factor 𝑛 , Shifting factor 𝑠 , Sub-block 
Size 𝑘, Modulo threshold 𝛽 

Output: Cancellable template 𝐜 ∈ [0,1]2𝑑𝑛 

1: Initialize 𝐡̂ = 𝐡 
2: for 𝑙 ← 1 to (𝑛 − 1) 
3:       Circular right shift 𝐡 for 𝑠-bit(s) 

4:       𝐡̂ =  𝐡̂|𝐡 
5: end for 

6: Initialize 𝐜 = [0]𝑑𝑛 
7: for 𝑖 ← 1 to 𝑑𝑛 

8:       for 𝑗 ← 1 to (𝑘 − 1) 

9:             ℎ̂𝑖 =  ℎ̂𝑖|ℎ̂𝑗 

10:       end for 

11:       Convert ℎ̂𝑖 to ℎ⃛𝑖 ∈ ℤ 

12:       ℎ⃛𝑖 = ℎ⃛𝑖mod 𝛽 

13:        ℎ⃛𝑖 = (ℎ⃛𝑖 × 𝑖) mod 2𝑑 

14:       if ℎ⃛𝑖 = 0 then 

15:             ℎ⃛𝑖 = 2𝑑 
16:       end if 
17:       𝑐𝑖 = 𝑟ℎ⃛𝑖 

18: end for 
19: return 𝐜 

 

4.4.3 Matching of cancellable template 

Since the protected template is a fixed-length and aligned binary vector, similarity 

comparison between the query template and the pre-stored template is based on the 
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normalized Hamming similarity. Assume the pre-stored template to be 𝐜 ∈ [0,1]𝑑 and query 

template to be 𝐜′ ∈ [0,1]𝑑 where 𝑑 refer to the dimension of both vectors, matching process 

of 𝐜 and 𝐜′ is as follow:   

 

a) Compute XOR-product 𝐳 = 𝐜⊕ 𝐜′ 

 

b) Calculate similarity score 𝑆 = 1 − (
∑ 𝑧𝑖
𝑑
𝑖=1

𝑑
) 

 

Similarity score 𝑆 = [0,1] indicates the similarity degree between 𝐜 and 𝐜′. The higher the 𝑆, 

the more similar for 𝐜 and 𝐜′. After the 𝑆 is calculated, 𝑆 is passed to the decision module for 

getting the final result. Given the pre-defined threshold 𝜏, the final decision is computed as: 

 

 
 final decision = {

genuine user, 𝑆 ≥ 𝜏
impostor, 𝑆 < 𝜏

 
(4.4) 

 

4.4.4 Renewal of cancellable template 

Renewal of the cancellable template is an important part of a cancellable biometrics-enabled 

system. Whenever the pre-stored cancellable template 𝐜  and encrypted string 𝐞  are 

compromised, the user can re-issue a new cancellable template 𝐜 with different projection 

matrices 𝐏 and transformation key 𝐫. This process is outlined as follows:  

 

1) The system/ application deletes the old cancellable template 𝐜, projection matrices 𝐏 and 

transformation key 𝐫. 

 

2) The user provides face and fingerprint to the biometric reader and has the face and 

fingerprint vectors (𝐱1 and 𝐱2) to be extracted. 

 

3) At the same time, the system/ application employs PRNG to generate the new projection 

matrices 𝐏 and transformation key 𝐫. 

 

4) 𝐱1, 𝐱2, 𝐏 and 𝐫 are passed to M∙EFV hashing to generate the cancellable template 𝐜 and 

encrypted string 𝐞.  
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Lastly, the system stores 𝐜 and 𝐞 in the storage for authentication purposes. Since there are 

two randomization processes are involved in the M∙EFV hashing, it is unlikely that the new 

cancellable template can collide with the old cancellable template. 

 

4.5 Experiments and discussions 

This section presents the experimental studies of the proposed scheme in terms of matching 

performance and time complexity. Comparison with the state-of-the-art cancellable 

biometric schemes is conducted for benchmarking purposes. In addition, an analysis on the 

stage-1 transformation is conducted to support the reasoning discussed earlier. 

 

4.5.1 Experimental setup 

This subsection presents the experimental setup to realize the proposed scheme, including 

the datasets, matching protocol and feature extraction methods. The implementation of the 

proposed scheme is written using MATLAB (Ver. R2017b) and being executed in a PC with 

the hardware specification of Solid-State Drive (SSD)@128GB, Intel Core i7 7th-Gen 

CPU@2.80Hz and Memory DDR4@8GB. 

 

A. Dataset and matching protocol 

Eight datasets from Fingerprint Verification Competition (FVC) are chosen as the test 

datasets for fingerprint modality. These datasets include FVC2002 (DB1, DB2 and DB3) [73] 

and FVC2004 (DB1, DB2 and DB3) [74]. Each sub-dataset from FVC2002 and FVC2004 

datasets consists of 100 users with 8 fingerprint samples for each user. Labeled Faces in 

the Wild (LFW) [84], [85] is the test dataset for face modality. There are a total of 13233 

facial images and 5749 users in the dataset. Among 5749 users, 1680 users have two or 

more face images in the dataset. For experiment purposes, the first 100 users with 5 face 

images are chosen to pair with the FVC2002 and FVC2004 fingerprint datasets. 

 

To evaluate the matching performance of the M∙EFV hashing, the FVC full matching protocol 

is followed to generate the Equal Error Rate (EER) (%) for each dataset. FVC matching 

protocol [163] is the benchmarking performance evaluation method in a verification system. 

The assessment of this matching protocol is based on the Equal Error Rate (EER) (%), 

which is calculated from the genuine and impostor score distributions. Both score 

distributions are generated via the following matching attempts [163]: 
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• Genuine matching attempt: All biometric samples of the same user are cross-matched, 

and the similarity scores are recorded. For a user with 𝑚 numbers of samples, this 

attempt generated 𝑚C2 genuine matching scores. 

 

• Impostor matching attempt: The first biometric samples of all users are cross-matched, 

and the similarity scores are recorded. For a dataset with 𝑛  numbers of users, this 

attempt generated 𝑛C2 impostor matching scores. 

 

The genuine matching attempt is formulated by assuming the user performs the matching 

process during different scanning, while the impostor matching attempt is formulated by 

assuming the attacker attempts to use their biometric feature for performing matching with 

the pre-stored biometric template. Both matching attempts of this matching protocol avoid 

the symmetric matching, that is, the case where 𝑎 is matched to 𝑏 at first, 𝑏 matched to 𝑎 is 

the symmetric matching [163]. Finally, for a dataset with 𝑛 numbers of users and 𝑚 numbers 

of samples per user, this matching protocol generate a total of (𝑛 ∗ 𝑚C2) numbers of genuine 

matching scores and  𝑛C2 numbers of impostor matching scores. In this paper, a total of 

1000 genuine scores and 4950 impostor scores are generated for each experiment. 5 

repetitions with 5 sets of auxiliary data {𝐏, 𝐫} are carried out for each experiment to have a 

precise reading on matching accuracy. Since the proposed scheme is a tokenless scheme, 

there is no genuine-token/ stolen-token scenario. All experiments are conducted by 

assuming every individual uses the pre-stored information to generate the query instance 

for matching, which is similar to the stolen-token scenario in two-factor schemes. 

 

B. Face vector extraction 

For the face modality, this chapter adopted the well-known FaceNet [36] to extract a real-

valued face vector 𝐱1 ∈ ℝ
𝑑  from the facial image. Specifically, FaceNet [36] is a deep 

convolutional network based method that transforms the facial image into a compact 

Euclidean space [36]. This subsection focuses on the face vector generation (i.e., testing 

phase) of FaceNet since the pre-trained models are publicly available on GitHub. The 

procedure for generating the face vector is explained as below: 

 

1) MTCNN [36] is employed to align and crop the input image into the size of 160 × 160. 
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2) The processed face image is then input to FaceNet [36] for extracting the real-valued 

face vector. 

 

Lastly, a real-valued face vector with dimensions of 256 is extracted to represent the input 

face image. In this thesis, the feature extraction is conducted using the pre-trained model 

that was trained based on the MS-Celeb-1M dataset [164]. The extraction and pre-trained 

model are adopted from David Sandberg’s open-source implementation [165]. The reader 

may refer to [36] for the detailed process of FaceNet. Summary of the employed face dataset 

and the extracted face vector are tabulated in the table below. 

 

Table 4.2: Summary of LFW datasets 

 LFW dataset 

Total face images 13233 

User 5749 

User with two or more face images 1680 

EER(%) 0.60 

 

C. Fingerprint vector extraction 

The fingerprint vector extraction technique originated from [62] is adopted to extract a fixed-

length and aligned fingerprint vector as the input for the proposed method. Briefly, [62] utilize 

kernel principal component analysis (KPCA) to transform the fingerprint minutiae point set 

into a compact real-valued vector 𝐱2 ∈ ℝ
𝑑 with the following procedures: 

 

1) The open-source minutiae extraction tool, namely the FingerJetFXOSE [166], is adopted 

to extract minutiae point set 𝑀 = {𝐦1,𝐦2, …𝐦𝑗} from a fingerprint image where each 

𝐦𝑖 = {𝑥𝑖 , 𝑦𝑖, 𝜃𝑖} with 𝑥, 𝑦 the spatial position and 𝜃 the orientation of the minutia within the 

fingerprint. 

 

2) The 𝑀 is then converted to a minutiae descriptor 𝛀. In this research, the state-of-the-art 

MCC descriptor [63] is chosen due to its superior matching performance. To be noted, 

the MCC descriptor is generated using the transformation parameters as reported in [63]. 

 

Since [62] is a learning-based method, the following procedures are separated into training-

phase and testing-phase. During training-phase,  
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1) Given a set of training samples (i.e., MCC minutiae descriptors) 𝛀 = {𝛀𝑡(𝑖)|𝑖 = 1,… ,𝑁𝑡}, 

a kernel matrix 𝐊 ∈ ℝ𝑁𝑡×𝑁𝑡 is first computed by cross-matching the training samples. This 

step is summarized as below: 

 

 K(𝑖, 𝑗) = exp (−0.5(1 − 𝑆MCC(𝛀
𝑡(𝑖),𝛀𝑡(𝑗)))2/𝜎2) (4.5) 

 

where 𝜎  denote the spread factor [62], and 𝑆MCC = [0,1]  denote the MCC matching 

score. Note that MCC matching score is computed based on the matching parameters 

reported in [63]. 

 

2) Kernel Principal Component Analysis (KPCA) is then applied to compute the 

eigenvectors 𝐄 ∈ ℝ𝑁𝑡×𝑑  from the kernel matrix 𝐊, where the parameter 𝑑 controls the 

desired dimension of the output fingerprint vector (𝑑 = 256 in this thesis). 

 

3) The training samples 𝛀𝒕 and the eigenvectors 𝐄 are then stored for fingerprint vector 

generation (i.e., testing phase). 

 

During testing-phase,  

 

1) A query MCC descriptor is 𝛀𝑞  is extracted and be matched to pre-stored training 

samples 𝛀𝒕 ; a score vector 𝐬 ∈ [0,1]𝑁𝑡  is generated with each 𝑠𝑖 = SMCC(𝛀
𝑞 , 𝛀𝑡(𝑖)) 

where 𝑖 = 1…𝑁𝑡. 

 

2) The score vector 𝐬 is then transformed to 𝐬̅ ∈ ℝ𝑁𝑡 with the formula 𝐬̅ = exp (−(1 − 𝐬)2/

2𝜎2) where 𝜎 denote the spread factor [62]. 

 

3) Finally, an ordered and fixed-length fingerprint vector 𝐱2 ∈ ℝ
𝑑 is generated by computing 

𝐱2 = 𝐬̅𝐄 where 𝐄 denote the pre-stored eigenvectors. 

 

Lastly, a real-valued fingerprint vector with 256  dimensions is generated for the 

experiments. To extract the fingerprint vector from each dataset, the first three samples of 

each user will be used for the training phase, while the remaining samples will be used for 

generating fingerprint vectors. Summary of the employed fingerprint dataset and the 

extracted fingerprint vector are tabulated in the table below. 
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Table 4.3: Summary of fingerprint vector extracted from FVC2002 and FVC2004 datasets 

 FVC2002 FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

Number of fingerprint 
vector 

500 500 500 500 500 500 

Dimension of fingerprint 
vector 

256 256 256 256 256 256 

EER (%) 0.15 0.49 2.47 2.11 5.08 3.62 

 

4.5.2 Parameter estimation 

This subsection examines the matching performance of the proposed scheme in terms of 

testifying the scheme under different settings of transformation parameters. The 

experiments are mainly focusing on the parameters of the stage-3 transformation, i.e., 𝑛, 𝑠 

and 𝑘. Stage-1 and stage-2 parameters (i.e., 𝛼, 𝑞 and 𝑚) are not examined due to the 

following reasons: (i) the rescale ratio 𝛼 is a dynamic parameter and (ii) the parameters 𝑞 

and 𝑚 are constant in the sense that 𝑞=2𝑑 and 𝑚 are fixed at 2. 

 

A. Effect of parameter 𝑛 

In the proposed scheme, 𝑛 controls the hashed vector augmentation, which turns a binary 

IoM hashed vector 𝐡 ∈ [0,1]2𝑑 into its augmented counterpart 𝐡̂ ∈ [0,1]2𝑑𝑛. As a result, the 

cancellable template 𝐜 ∈ [0,1]2𝑑𝑛 is large when 𝑛 is large. As stated in Section 4.4.2C, the 

intra-class variation of the template and query instance is large since 𝐫 cannot be fully 

recovered. The use of 𝐡̂ can reduce the discrepancy of 𝐜 and 𝐜′; and thus, improve the 

verification performance. To testify the effect of 𝑛, 𝑛 varies from 10 until 250 with a step size 

of 15, 𝑘 = 3,4,5,6,7 and other parameters are fixed at 𝑠 = 1 and 𝛽 = 3. Fig 4.2 depicts the 

curves of EER vs 𝑛 for the FVC2002+LFW dataset pair under different settings of 𝑘. The 

highest EERs is observed when 𝑛 = 10. Then, the EERs decrease significantly from 𝑛 = 10 

to 40. The decline of EERs becomes slower for 40 ≤ 𝑛 ≤ 55. The EERs become lowest 

when 𝑛 = 55 in most of the tested datasets. After that, the EERs level off when 𝑛 ≥ 55. For 

certain datasets such as FVC2002 DB3+LFW, the EERs remain decreasing slowly even for 

𝑛 ≥ 55. To sum up, high 𝑛  offers decent verification performance. Yet, the large 𝑛  will 

induces large template size due to 𝐜 ∈ [0,1]2𝑑𝑛. 
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Fig 4.2. Curves of EER (%) vs 𝑛 in FVC2002+LFW datasets 

 

B. Effect of parameter 𝑠 

Other than 𝑛, 𝑠 is another parameter used in the hashed vector augmentation. Briefly, the 

augmentation produces the 𝐡̂  by appending 𝐡  to 𝐡̂  for (𝑛 − 1 ) times. In each round of 

augmentation, the proposed scheme circularly right shifts 𝐡 before it is appended to 𝐡̂. In 

this case, 𝑠 is used to define the bit-shifting interval and demolish the repetition pattern of 𝐡 

in 𝐡̂. To validate the reasoning, the effect of the bit-shifting during the augmentation process 

is examined. Given the 𝐡 ∈ [0,1]2𝑑, 𝑛 and 𝑠, two experiments are conducted by considering 

the below scenarios: 

 

• Scenario-1 (without bit-shifting): An augmented IoM hashed vector 𝐡̂ is generated by 

computing 𝐡̂ = 𝐡̂|𝐡 for (𝑛 − 1) times where | is the concatenation where there is no bit-

shifting for 𝐡 throughout the augmentation process. 

 

• Scenario-2 (with bit-shifting): The 𝐡̂ is generated by computing 𝐡̂ = 𝐡̂|𝐡 for (𝑛 − 1) 

rounds. The 𝐡 is circularly right shifted for 𝑠-bits during each round of augmentation.   

 

In the experiment, 𝑛 is examined from 1 through 55 with step size 5, 𝑘 = 3 and 𝛽 = 3. As 

observed from Fig 4.3 (a), EERs remain constant under different settings of 𝑛 if there is no 

bit-shifting (𝑠 = 0). From Fig 4.3 (b), it is observed that the bit-shifting notion (𝑠 = 1) is taking 

effect as the EERs decrease with respect to the 𝑛. Therefore, it is proven that the repetitive 

sub-groups jeopardize the hashed vector augmentation as well as the verification 

performance of the produced cancellable template. Since the repetitive sub-groups (refer to 

scenario-1) make no difference for matching accuracy, the case that 𝐡 shifts back to the 
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starting position must be avoided. Hence, 𝑠𝑛 should be smaller than the size of 𝐡, which is 

2𝑑 in this context. 

 

 

Fig 4.3. Curves of EEF (%) vs 𝑛 in every dataset under the two scenarios where (a) does not perform shifting 

and (b) performs bit-shifting with 𝑠 = 1 

 

C. Effect of parameter 𝑘 

One of the important procedures in the stage-3 transformation is to substitute the 𝑟 ∈ 𝐫 with 

the integer value from 𝐡⃛ ∈ [1,2𝑘]2𝑑𝑛. As stated in Section 4.4.2C, 𝐡⃛ is converted by sub-

blocks with 𝑘-bits; and hence, the upper limit of each converted ℎ ∈ 𝐡⃛ is equal to 2𝑘. Despite 

a large 𝑘 can increase the upper limit of ℎ ∈ 𝐡⃛, the possibility that a sub-block consists of an 

error bit is also increased. This implies the verification performance of the proposed scheme 

will decrease for large 𝑘. In the experiments, 𝑘 varies from 3 through 20 with step size 1, 

while 𝑛 = 55, 𝑠 = 1 and 𝛽 = 3. Fig 4.4 presents the experimental results for all datasets. As 

observed, the lowest EER is found at 𝑛 = 3, and EERs start to increase when 𝑛 is varied 

from 3 until 6. When 𝑛 ≥ 6, the increments of EERs are getting slower. An interesting 

observation is that EERs reach the lowest point and increase afterward, e.g., at 𝑘 = 15 in 

FVC2002 DB3+LFW dataset. Overall, the results suggest a low 𝑘 to maintain the verification 

performance. 

 

Fig 4.4. Curves of EER (%) vs 𝑘 in every dataset pairs where (a) is FVC2002+LFW and (b) is FVC2004+LFW 

1

1.5

2

2.5

3

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

EE
R

 (%
)

Parameter n

EER (%) vs n 
when s=0

FVC02 DB1 + LFW FVC02 DB2 + LFW
FVC02 DB3 + LFW FVC04 DB1 + LFW
FVC04 DB2 + LFW FVC04 DB3 + LFW

0

0.5

1

1.5

2

2.5

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

EE
R

 (%
)

Parameter n

EER (%) vs n 
when s=1

FVC02 DB1 + LFW FVC02 DB2 + LFW

FVC02 DB3 + LFW FVC04 DB1 + LFW

FVC04 DB2 + LFW FVC04 DB3 + LFW

(a) (b)

(a) (b)

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

EE
R

 (
%

)

Parameter k

EER (%) vs k 
(FVC2002+LFW)

DB1+LFW DB2+LFW DB3+LFW

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

EE
R

 (
%

)

Parameter k

EER (%) vs k 
(FVC2004+LFW)

DB1+LFW DB2+LFW DB3+LFW



115 

 

 

D. Summary of parameter estimation 

Parameter setting is important in the M∙EFV hashing as it will affect the matching accuracy 

of the generated cancellable template. The experiments conducted to estimate the 

parameters were actually done by testing each parameter under different settings. Then, the 

suitable parameter was observed from the curve of EERs plotted. In this subsection, the 

summarized effect of the parameters in M∙EFV hashing is explained as below: 

 

1) Increment of 𝑛 is helpful to elevate performance. However, the performance is saturated 

and then degraded when 𝑛 is set too large. 

 

2) The larger the 𝑘, the poorer the matching accuracy of M∙EFV hashing. This is due to the 

enlargement of intra-class variation in terms of error bits during the transformation. 

 

3) The use of 𝑠 promotes accuracy enhancement. However, larger 𝑠 would limit 𝑛 to be 

chosen since 𝑠𝑛 < 𝑑. 

 

The best parameter setting from the experiments is shown in the table below. The remaining 

experiments in this chapter will follow the parameter setting. Other than that, the value 

distribution of the extracted face and fingerprint vector in each dataset is also tabulated.  

 

 

Table 4.4: Best-tuned parameters for M∙EFV hashing 

Parameter Value 

Stage-1 Transformation 

𝛼 - 

Stage-2 Transformation 

𝑚 2 

𝑞 d (size of the original 
bio. vector) 

Stage-3 Transformation 

𝑛 55 

𝑠 1 

𝑘 3 

𝛽 3 
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Table 4.5: Summary of value distribution of the extracted biometric feature in different datasets 

Dataset Distribution 

Fingerprint 

FVC2002 DB1 [−0.21,0.15] 
FVC2002 DB2 [−0.24,0.24] 
FVC2002 DB3 [−0.23,0.15] 
FVC2004 DB1 [−0.18,0.13] 
FVC2004 DB2 [−0.19,0.23] 
FVC2004 DB3 [−0.18,0.19] 

Face LFW [−0.34,0.34] 

 

4.5.3 Analysis on Stage-1 Transformation 

In the proposed scheme, rescaling of the real-valued biometric vectors is essential to 

eliminate the dominance of the huge scale vector during the transformation process. In this 

subsection, the effect of the rescaling process in stage-1 transformation is investigated (see 

Section 4.4.2A). Given 𝐱1 ∈ ℝ
𝑑  the face vector and 𝐱2 ∈ ℝ

𝑑  the fingerprint vector, the 

experiments are conducted in the following scenarios: 

 

• Scenario-1: Fusion and transformation for the 𝐱1 and 𝐱2 are carried out without feature 

rescaling. 

 

• Scenario-2: 𝐱1 and 𝐱2 are re-scaled according to a dynamic parameter, i.e., 𝛼 during the 

transformation. 

 

In the experiments, 𝑛 is changed from 1 to 50 with step size 5,  𝑘 = 3 and 𝛽 = 3. From Fig 

4.5 (a), the EERs from different dataset pairs are observed to have a similar value for 

different 𝑛. This is mainly attributed to the face vector which is larger in scale (refer to Table 

4.5) dominates the transformation. This is unfavorable, especially when the dominant 

biometric, which is the face in this context, is less discriminative (refer to the results of 

FVC2002 DB1+LFW). On the other hand, the EERs in scenario-2 are not overlapping as 

observed from Fig 4.5 (b). This implies that rescaling is effective where the face vector is 

not dominating. The worst EER (FVC2004 DB2+LFW from Fig 4.5  (b)) in scenario-2 is still 

lower than the best EER (FVC2002 DB2+LFW from Fig 4.5 (a)). To sum up, the results of 

the experiments suggest that rescaling is essential for feature-level fusion on real-valued 

biometric vectors. 
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Fig 4.5. Curves of EER (%) vs 𝑛 in two scenarios where (a) without rescaling, and (b) with feature rescale 

 

4.5.4 Verification performance and comparison 

This subsection presents the verification performance of the proposed scheme in unimodal 

and multimodal modes. The results presented are: 

 

• Verification performance comparison between the proposed method (unimodal mode) 

and existing unimodal template protection methods is presented in Table 4.6.  

 

• Verification performance comparison between the proposed method under unimodal and 

multimodal modes (blue, bold fonts represent the best performance) is presented in 

Table 4.7. Additionally, verification performance results of the multimodal system are 

also presented under different settings of 𝑘 and 𝑛. 

 

Note that it is hard to perform a fair comparison between the proposed multimodal 

cancellable biometric scheme and the existing schemes because the configurations, i.e., 

fusion strategy, biometric modalities and datasets selection, are different. From the 

tabulated results, it is observed that: 

 

• The matching accuracy of the proposed scheme (unimodal mode) is slightly degraded 

compared to the original fingerprint and face counterparts [36], [62]. This is mainly 

attributed to the hashed vector augmentation in the proposed scheme. Nevertheless, the 

matching accuracy of the proposed scheme in the unimodal system is still comparable 

or even better than the existing unimodal template protection schemes. 
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• The proposed scheme achieves a good verification accuracy in unimodal and multimodal 

settings. This is due to the superior learning-based face and fingerprint vector extraction 

techniques [36], [62] and the exceptional performance preservation property. 

 

• From Table 4.6 and Table 4.7, the matching accuracy of the multimodal system 

outperforms the unimodal system, e.g., EER  in FVC2002DB1+LFW versus EER  in 

FVC2002DB1/ LFW under the same parameter setting. Furthermore, the matching 

accuracy of the cancellable templates exceeds the original biometric input in certain 

dataset constellations such as FVC2004DB1+LFW. 

 

Table 4.6: Verification performance of the proposed M∙EFV hashing  (unimodal mode) versus the state-of-the-
arts unimodal template protection schemes 

 FVC2002 (EER) (%) FVC2004 (EER) (%) 
LFW 

DB1 DB2 DB3 DB1 DB2 DB3 

Original counterpart [36], 
[62] 

0.15 0.49 2.47 2.11 5.08 3.62 0.60 

Proposed M ∙ EFV hashing  
(unimodal mode) 

0.40 0.86 4.61 𝟐. 𝟖𝟔 6.27 5.38 𝟏. 𝟖𝟕 

Existing unimodal template protection schemes 

2P − MCC64,64 [126] 3.3 1.8 7.8 6.3 − − − 

Bloom Filter [167] 2.3 1.8 6.6 13.4 8.1 9.7 − 

URP-based IoM hashing 
[66] 

0.46 2.10 6.60 4.51 8.02 8.46 − 

GRP-based IoM hashing 
[66] 

𝟎. 𝟐𝟐 𝟎. 𝟒𝟕 𝟑. 𝟎𝟕 4.74 𝟒. 𝟏𝟎 𝟑. 𝟗𝟗 − 

Biohashing [24] 15 15 27 − − − − 

Yang et al. [168] 5.75 4.71 10.22 − 12 − − 

Wang and Hu [121] 3.5 − − − 5 7.5 − 

Wang and Hu [122] 2 − − − 3 6.12 − 

 

Table 4.7: Verification performance of proposed M∙EFV hashing  (multimodal mode)  under different 𝑛 and 𝑘 

Parameter 
𝑛 

FVC2002 + LFW (EER) (%) FVC2004 + LFW (EER) (%) 

DB1 DB2 DB3 DB1 DB2 DB3 

Parameter 𝑘 = 𝟑 

𝟏 1.04 ± 0.23 1.23 ± 0.29 2.38 ± 0.23 1.62 ± 0.28 2.35 ± 0.31 2.07 ± 0.31 

𝟏𝟎 0.31 ± 0.11 0.43 ± 0.16 1.04 ± 0.13 0.46 ± 0.11 0.87 ± 0.11 0.74 ± 0.22 

𝟐𝟓 0.25 ± 0.09 0.36 ± 0.16 0.91 ± 0.11 0.39 ± 0.13 0.83 ± 0.16 0.68 ± 0.18 

𝟓𝟓 𝟎. 𝟐𝟒 ± 𝟎. 𝟏𝟎 𝟎. 𝟑𝟐 ± 𝟎. 𝟏𝟓 𝟎. 𝟗𝟏 ± 𝟎. 𝟏𝟔 𝟎. 𝟑𝟖 ± 𝟎. 𝟏𝟑 𝟎. 𝟕𝟖 ± 𝟎. 𝟏𝟓 𝟎. 𝟔𝟔 ± 𝟎. 𝟏𝟗 

Parameter 𝑘 = 𝟒 

𝟏 1.64 ± 0.18 1.82 ± 0.25 3.07 ± 0.37 2.26 ± 0.25 3.60 ± 0.47 2.78 ± 0.69 

𝟏𝟎 0.37 ± 0.12 0.52 ± 0.20 1.04 ± 0.13 0.65 ± 0.08 1.04 ± 0.19 0.74 ± 0.23 

𝟐𝟓 0.30 ± 0.11 0.45 ± 0.16 0.94 ± 0.14 0.54 ± 0.09 0.93 ± 0.28 0.67 ± 0.19 
𝟓𝟓 0.29 ± 0.13 0.42 ± 0.13 0.92 ± 0.18 0.54 ± 0.09 0.89 ± 0.18 0.65 ± 0.21 

Parameter 𝑘 = 𝟓 

𝟏 2.32 ± 0.44 2.62 ± 0.37 3.85 ± 0.52 3.28 ± 0.69 4.44 ± 0.68 3.63 ± 0.72 

𝟏𝟎 0.43 ± 0.11 0.64 ± 0.19 1.21 ± 0.19 0.67 ± 0.13 1.25 ± 0.23 0.98 ± 0.25 
𝟐𝟓 0.34 ± 0.14 0.51 ± 0.17 1.08 ± 0.18 0.54 ± 0.17 1.07 ± 0.20 0.77 ± 0.27 

𝟓𝟓 0.31 ± 0.14 0.46 ± 0.17 1.02 ± 0.20 0.53 ± 0.16 0.98 ± 0.14 0.69 ± 0.20 
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4.5.5 Computation efficiency 

Apart from matching accuracy, the runtime of the M∙EFV hashing in multimodal template 

protection mode is also evaluated to show the feasibility of deploying M∙EFV hashing onto 

a biometric system. The runtime of the M ∙EFV hashing is evaluated in terms of the 

computation time (in second) to transform the input face and fingerprint vectors into the 

cancellable template during enrollment and verification (multimodal template protection). 

From the tabulated results, the average runtime for the M∙EFV hashing in enrollment ≈ 0.006 

seconds, while the average runtime during verification ≈ 0.0065 seconds. Therefore, the 

results suggest it is feasible to deploy the M∙EFV hashing onto a biometric system. 

 

Table 4.8: Computation efficiency for M∙EFV hashing 

Transformation 
Stage 

FVC2002 + LFW FVC2004 + LFW 

DB1 DB2 DB3 DB1 DB2 DB3 

Enrollment (in sec) 

1 0.000018 0.000016 0.000017 0.000017 0.000017 0.000017 

2 0.004028 0.004008 0.004039 0.003863 0.003918 0.003960 

3 0.002285 0.002130 0.002401 0.002273 0.002137 0.002212 

Total 𝟎. 𝟎𝟎𝟔𝟑𝟑𝟎 𝟎. 𝟎𝟎𝟔𝟏𝟓𝟓 𝟎. 𝟎𝟎𝟔𝟒𝟓𝟖 𝟎. 𝟎𝟎𝟔𝟏𝟓𝟑 𝟎. 𝟎𝟎𝟔𝟎𝟕𝟏 𝟎. 𝟎𝟎𝟔𝟏𝟖𝟗 

Verification (in sec) 

1 0.000014 0.000014 0.000015 0.000014 0.000013 0.000014 

2 0.004008 0.003965 0.004043 0.003846 0.003912 0.003965 

3 0.002532 0.002313 0.002600 0.002449 0.002355 0.002426 

Total 𝟎. 𝟎𝟎𝟔𝟓𝟓𝟓 𝟎. 𝟎𝟎𝟔𝟐𝟗𝟑 𝟎. 𝟎𝟎𝟔𝟔𝟓𝟗 𝟎. 𝟎𝟎𝟔𝟑𝟎𝟗 𝟎. 𝟎𝟎𝟔𝟐𝟖𝟏 𝟎. 𝟎𝟎𝟔𝟒𝟎𝟓 

 

4.6 Security and privacy analysis 

This section is devoted to presenting the analyses of the security and privacy aspects of the 

produced cancellable template, including the irreversibility, security, unlinkability and 

renewability properties. 

 

4.6.1 Irreversibility analysis 

In biometric template protection, the irreversibility property ensures that it is hard to recover 

the original biometric feature if one or multiple cancellable templates and auxiliary data are 

presented. In this subsection, several inversion attacks are conducted towards the proposed 

method to justify the irreversibility property. In this subsection, the irreversibility is evaluated 

using three attacks where the attacker aims to recover the input face vector 𝐱1 ∈ ℝ
𝑑 and 

fingerprint vector 𝐱2 ∈ ℝ
𝑑  from single/ multiple compromised information, which includes 
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cancellable fused template 𝐜 ∈ [0,1]2𝑑𝑛 , projection seed 𝐏 = {𝐏1, 𝐏2…𝐏𝑞} with each 𝐏𝑖 ∈

ℝ𝑚×𝟐𝑑 and encrypted string 𝐞 ∈ [0,1]𝟐𝒅. 

 

A. Template inversion via Single Record 

In this attack, the attacker attempts to obtain the original bio. vector 𝐱 by reversing the 

cancellable template 𝐜 with the compromised information, i.e., one set of projection matrices 

𝐏 , cancellable template 𝐜 , and encrypted string 𝐞 . During the attack, the attacker can 

analyze the relation between the compromised data, i.e., cancellable template 𝐜 , 

transformation parameters and auxiliary data (𝐏 and 𝐞). 

 

Recall the methodology, the key process of generating 𝐜 is to substitute the real-value 

elements in 𝐡⃛ with the binary element in 𝐫. In other words, each 𝑐 ∈ 𝐜 is constructed as 𝑐 =

𝐫ℎ⃛. The chief idea of this attack is: At first, 𝐫 is revealed. A correlation analysis is conducted 

between 𝐫 and 𝐜 to estimate 𝐡⃛, which is to be reversed to 𝐡. Lastly, 𝐱 is recovered by 𝐡 and 

𝐏 . Since 𝐫  is not stored, the adversary must recover 𝐫  first. Among the compromised 

information, 𝐞 is related to 𝐫 as 𝐞 = 𝐫⊕ 𝐡. Therefore, the easiest way to recover 𝐫 is to 

perform an XOR operation between the stolen 𝐞 and 𝐡. However, 𝐡 is not accessible since 

𝐡 is a randomized vector generated from the biometric input. Thus, the adversary cannot 

recover 𝐫  from 𝐞  without 𝐡 . Nevertheless, the attacker may attempt to guess 𝐫  from 𝐞 . 

However, it is infeasible since the adversary has no way to verify the guessed 𝐫  (𝐜 is 

independent of 𝐞). 

 

Alternatively, the adversary attempts to guess both 𝐡 ∈ [0,1]2𝑑 and 𝐫 ∈ [0,1]2𝑑 based on 𝐞 ∈

[0,1]2𝑑. With two entities, the adversary can perform a preimage attack to generate a ‘fake’ 

cancellable template 𝐜∗ . After the adversary verified 𝐜∗ with the compromised 𝐜 , the 

adversary uses 𝐡∗ and the stolen 𝐏 to recover 𝐱. This attack is possible when the key space 

of 𝐞 is small; however, 𝐞 is always a large binary vector (≥ 512-bits). For each 𝑒 ∈ 𝐞, there 

are 2 possible ℎ ∈ 𝐡 and 𝑟 ∈ 𝐫 ; thus, a total of 2/2 = 1 guess to reveal the correct ℎ ∈ 𝐡 

and 𝑟 ∈ 𝐫. Since 𝐞 ∈ [0,1]2𝑑 and 𝑑 = 256 (refer to Sections 4.5.1B and 4.5.1C), a total of 

2512/2 ≈ 2511 guesses are required to recover the complete 𝐡 and 𝐫. Thus, it is infeasible 

to conduct this attempt before 𝐡 is revealed for any further attempt. In short, the result 

implies restoring the original bio. vector 𝐱 from a set of compromised information is not 

possible. 



121 

 

B. Template inversion via Multiple Records 

Similar to the approach above, the adversary tries to inverse the cancellable template 𝐜 and 

recover the original biometric vector 𝐱. In contrast, this attack is more damaging and related 

to the Attack via Record Multiplicity (ARM) [168], [169] where multiple sets of cancellable 

template 𝐜 and auxiliary data (𝐏 and 𝐞) are involved.  

 

As stated previously, the most straightforward way to obtain 𝐱 is to recover the 𝐫 and 𝐡 from 

𝐞, then perform correlation analysis. Unlike the previous attack that can only guess the 𝐫 

and 𝐡, this attack enables the attacker to analyze the relation between multiple 𝐞s to reveal 

𝐡. The recovered 𝐡 can be further used for the attempt to recover the original 𝐱. In here, an 

assumption is made where the attacker compromised three sets of {𝐜, 𝐞, 𝐏}. During the 

analysis, the nominal value from A  to C  is used to differentiate multiple compromised 

information, e.g., 𝐜A, 𝐜B.  

 

As described above, encrypted string 𝐞 is the XOR product of 𝐫 and 𝐡. The attacker can 

perform correlation analysis on multiple 𝐞s to reveal the 𝐡. This attempt is possible when 

one of the key ingredients (𝐡 or 𝐫) for the 𝐞s is identical. In here, we first analyze the case 

where 𝐞s are formed by the same 𝐡, followed by the actual situation (different 𝐡s) in the 

proposed scheme. Firstly, the generation of different 𝐞s is summarized as follows:  

 

 𝐞𝐀 = 𝐡𝐀⊕ 𝐫𝐀 

𝐞𝐁 = 𝐡𝐁⊕ 𝐫𝐁 

𝐞𝐂 = 𝐡𝐂⊕𝐫𝐂 

(4.6) 

 

In the first case, 𝐞s are formed by the same 𝐡; therefore, 𝐡A = 𝐡B = 𝐡C. Since 𝐡s are the 

same, the attacker can perform cross-XOR on multiple 𝐞s and generate XOR-ed vectors of 

different 𝐫 s. During the cross-XOR process, 𝐡 s are canceled out, e.g., 𝐫A⊕𝐫B⊕

(𝐡A⊕𝐡B) = 𝐫A⊕ 𝐫B⊕𝟎 where 𝐡A = 𝐡B; therefore, a set of correlated 𝐫 is generated. 

 

 𝐞𝐀⊕𝐞𝐁 = 𝐫𝐀⊕ 𝐫𝐁 

𝐞𝐁⊕𝐞𝐂 = 𝐫𝐁⊕ 𝐫𝐂 

𝐞𝐀⊕𝐞𝐂 = 𝐫𝐀⊕ 𝐫𝐂 

(4.7) 
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After that, the attacker can perform frequency analysis on the correlated 𝐫s and recover the 

𝐡 in a short time. This is unfavorable, especially when 𝐡 is the original biometric input, not 

to mention the attack complexity of the frequency analysis attack. In the proposed scheme, 

a prior-randomization process is utilized to resist this attack. Using the prior-randomization 

process (stage-2 transformation), the 𝐡  is a randomized binary vector generated from 

biometric input 𝐱 ∈ ℝ2𝑑 and randomly generated projection matrices 𝐏. Thus, for each user, 

different 𝐡s are generated and used for generating 𝐜 and 𝐞 in different applications, which 

achieve a One-Time-Pad (OTP) effect. Since 𝐡 is usually a large binary vector (512-bits), it 

is unlikely the 𝐡s of different applications can collide. In other words, to overcome the 

correlation analysis attack, the projection matrices 𝐏  (for stage-2 transformation) and 

transformation key 𝐫 (for stage-3 transformation) must not be re-used for the same user. 

 

Besides that, an adversary can guess 𝐡 and perform a preimage attack at the stage-3 

transformation (as stated in the previous attack). Due to prior randomization, the adversary 

cannot use the 𝐜s to verify the guessed 𝐡. The attack complexity of this attempt is similar to 

the previous section, where it requires at least 2511 guesses to recover 𝐡 before any further 

attempt; thus, 𝐏 does not need to be kept secretly. To sum up, the analysis shows that the 

proposed scheme satisfies the irreversibility property as the original biometric input 𝐱 (or 𝐱1 

and 𝐱2) are not recoverable with the reverse transformation. 

 

C. Attack via input enumeration 

Apart from reverse processing the compromised information {𝐜, 𝐞, 𝐏} , the attacker can 

recover the original biometric input, i.e., original bio. vector 𝐱 by performing a preimage 

attack. It is easier as the attacker just guess the input face and fingerprint vectors (𝐱1 and 

𝐱2) and transform it into 𝐜′ without knowing the details of the transformation function. Recall 

the transformation function, the face vector 𝐱1 ∈ ℝ
𝑑 and fingerprint vector 𝐱2 ∈ ℝ

𝑑 are firstly 

rescaled according to the parameter 𝛼, followed by concatenation process to form 𝐱 = 𝐱1|𝐱2. 

Thus, the attacker can guess the 𝐱 instead of 𝐱1 and 𝐱2. Assume the original bio. vector 𝐱 is 

a real-valued vector with the distribution of [𝐿𝐵𝐱, 𝑈𝐵𝐱] where 𝐿𝐵 is upper bound (maximum 

value) and 𝑈𝐵  is upper bound (minimum value). The guess attempt of each 𝑥 ∈ 𝐱  is 

determined by the range between 𝑈𝐵𝐱 and 𝐿𝐵𝐱, and the guess precision (decimal point). As 

an example, given a vector 𝑥 ∈ [−0.02,0.01], the distribution range is 0.03. If the guess 

precision is two decimal places (0.00, 0.0  … so on), the guess attempt will be 4. The 
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calculation of attack complexity is summarized as Guess Attempt = (‖𝑈𝐵𝐱 − 𝐿𝐵𝐱‖ ×

10decimal points + 1) 𝑆𝐼𝑍𝐸x  where 𝑆𝐼𝑍𝐸x denote the size of the 𝐱. 

 

Here, the attack complexity is calculated and tabulated in the table below. During the 

calculation, the guess precision is set to 1 to determine the lowest attack complexity. From 

the result, it is hard to recover the full 𝐱 even with the lowest guess precision. It is harder 

when the attacker tries to obtain a more precise biometric vector 𝐱. 

 

Table 4.9: Complexity for the attack via input enumeration where guess precision = 1 decimal place 

Dataset 
Distribution of Biometric Inputs [𝐿𝐵x, 𝑈𝐵x] Attack Complexity 

(Attempt) 𝐱𝟏 𝐱𝟐 𝐱 

FVC02DB1+LFW [−0.21,0.15] [−0.34,0.34] [−0.34,0.34] 7.8512 ≈ 8512 
FVC02DB2+LFW [−0.24,0.24] [−0.34,0.34] [−0.34,0.34] 7.8512 ≈ 8512 
FVC02DB3+LFW [−0.23,0.15] [−0.34,0.34] [−0.34,0.34] 7.8512 ≈ 8512 
FVC04DB1+LFW [−0.18,0.13] [−0.34,0.34] [−0.34,0.34] 7.8512 ≈ 8512 
FVC04DB2+LFW [−0.19,0.23] [−0.34,0.34] [−0.34,0.34] 7.8512 ≈ 8512 
FVC04DB3+LFW [−0.18,0.19] [−0.34,0.34] [−0.34,0.34] 7.8512 ≈ 8512 

 

4.6.2 Security analysis 

In biometric template protection, security refers to the resistance strength of the cancellable 

template toward the attacks that are attempted to bypass the system authentication. In this 

subsection, the security property of the proposed scheme is examined with several security 

attacks which are specifically targeted to the scheme. 

 

A. Brute-force attack 

Brute-force (BF) attack is the commonly known instance of security attack, with the intention 

to guess the cancellable template 𝐜′ manually. This attack attempt is considered successful 

when the guessed 𝐜′ = 𝐜. In the proposed scheme, 𝐜 is a large binary with the size of 2𝑑𝑛 

where 2𝑑 is the size of original biometric input (fused face and fingerprint vectors), and 𝑛 is 

the parameter. For each 𝑐 ∈ 𝐜, a total of 𝑁𝐜 guess attempts are required where 𝑁𝐜 denote 

the total possible value in 𝐜 (𝑁𝐜 = 2); thus, a total of ((𝑁𝐜)
2𝑑𝑛/2) guess attempts are required 

before any correct 𝐜′  is guessed. This subsection studies the attack complexity under 

different configurations of 𝑛 = 1,10,25,55  and 100 . The brute-force attack complexity is 

calculated and evidenced in Table 4.10. As observed from the tabulated result, the attack 

complexity is in the lowest degree (2511  attempts) when 𝑛 = 1 . The attack complexity 

increases when 𝑛 is tuned to a higher value, i.e., from 2511 (𝑛 = 1) to 25119 (𝑛 = 10). This 



124 

 

implies the cancellable template is more secure with the increment of template size (𝑛 is 

high). For verification rate, the cancellable template achieves a low EER when 𝑛 is high 

,e.g., EER= 0.24 ± 0.10 % in FVC2002 DB1+LFW when 𝑛 = 55. However, the verification 

performance is degraded when 𝑛 too large.  

 

Table 4.10: Brute-force (BF) attack complexity 

Proposed Multimodal Cancellable Scheme Total Combinations 
of 𝐜 

Attack Complexity 
(Attempt) 𝑛 𝑑 2𝑑𝑛 

1 

256 

512 2512 (2512/2)  = 2511 
10 5120 25120 (25120/2) = 25119 
25 12800 212800 (225600/2) = 212799 
55 28160 228160 (228160/2) = 228159 

 

B. False acceptance attack 

False acceptance (FA) attack (or Dictionary Attack) is another well-known security attack in 

a biometric system [157]. In a false acceptance attack, the adversary estimates an 

approximated cancellable template 𝐜′ which can exceed the matching threshold. In other 

words, the adversary is recognized as the genuine user when the matching score between 

𝐜′ and the pre-stored 𝐜 (refer to 𝑆(𝐜, 𝐜′)) surpasses the system threshold 𝜏  (or matching 

threshold). Traditionally, FA attack is analyzed by calculating the attack complexity 

(attempts) where the adversary manually guesses an approximated 𝐜′ can surpass 𝜏. In this 

case, 𝜏 is the matching threshold when False Acceptance Rate (FAR) = False Rejection 

Rate (FRR). However, such 𝜏 (when FAR=FRR) is yet to be secure especially when the 

adversary randomly generate a 𝐜′ which drops in the upper-bound (𝑈𝐵imp) of impostor 

scores distribution. Therefore, security-wise, the 𝜏 should always be higher than impostor 

scores distribution (FAR= 0%); however, this leads to another situation, so-called the trade-

off between security and Genuine Acceptance Rate (GAR). 

 

In this subsection, the FA attack is conducted by assuming the adversary randomly generate 

an approximated 𝐜′ where 𝑆(𝐜, 𝐜′) = 𝑈𝐵imp (worst-case scenario). Then, the value of the 𝐜′ 

is increased in a fixed-degree (one-bit per attack attempt) until the 𝑆(𝐜, 𝐜′) ≥ 𝜏. In this case, 

𝜏 is defined as a secure matching threshold that sacrifices a certain degree of GAR. To 

summarize, the attack attempts required for the adversary to increase the matching score 

from 𝑈𝐵imp to 𝜏 is formulated as follows: 
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 Attack complexity = (𝑁c)
𝑆𝐼𝑍𝐸c×(𝜏−𝑈𝐵imp) (4.8) 

 

where 𝑁𝐜 is the total value in 𝐜 and 𝑆𝐼𝑍𝐸𝐜 denote the size of 𝐜. In the implementation, 𝑁𝐜 = 2 

and 𝑆𝐼𝑍𝐸𝐜 = 2𝑑𝑛. Analysis of FA attack is conducted to find the most suitable 𝜏 based on 

the attack complexity and GAR. The evaluations are conducted in every dataset pair with 

the best-tuned parameters (see Section 4.5.2D) under different settings of 𝜏 (with respect to 

the GAR). To be noted, attack complexity is not calculated when (𝜏 − 𝑈𝐵imp) ≤ 0 since the 

𝐜′ can surpass the secure matching threshold 𝜏. 

 

Table 4.11: False acceptance (FA) attack complexity under different 𝜏s 

Dataset 
Proposed Scheme 

(𝑁c)
𝑆𝐼𝑍𝐸c (𝜏 − 𝑈𝐵imp) 

Attack Complexity (Attempt) 

(𝑁c)
𝑆𝐼𝑍𝐸c×(𝜏−𝑈𝐵imp) 2𝑑𝑛 𝑁𝐜 𝑈𝐵imp 𝜏 

𝐆𝐀𝐑 = 𝟗𝟓% 

FVC02 DB1+LFW 

28160 2 

0.555 0.582 

228160 

0.027 228160∗0.027 ≈ 2760 
FVC02 DB2+LFW 0.569 0.579 0.010 228160∗0.01 ≈ 2282 
FVC02 DB3+LFW 0.565 0.568 0.003 228160∗0.003 ≈ 285 
FVC04 DB1+LFW 0.567 0.573 0.006 228160∗0.006 ≈ 2169 
FVC04 DB2+LFW 𝟎. 𝟓𝟔𝟖 𝟎. 𝟓𝟔𝟓 −𝟎. 𝟎𝟎𝟑 n/a 

FVC04 DB3+LFW 𝟎. 𝟓𝟕𝟏 𝟎. 𝟓𝟔𝟕 −𝟎. 𝟎𝟎𝟒 n/a 

𝐆𝐀𝐑 = 𝟗𝟎% 

FVC02 DB1+LFW 

28160 2 

0.555 0.594 

228160 

0.039 228160∗0.039 ≈ 21098 
FVC02 DB2+LFW 0.569 0.593 0.024 228160∗0.024 ≈ 2676 
FVC02 DB3+LFW 0.565 0.580 0.015 228160∗0.015 ≈ 2422 
FVC04 DB1+LFW 0.567 0.587 0.020 228160∗0.02 ≈ 2563 
FVC04 DB2+LFW 0.568 0.574 0.006 228160∗0.006 ≈ 2169 
FVC04 DB3+LFW 0.571 0.578 0.007 228160∗0.027 ≈ 2197 

𝐆𝐀𝐑 = 𝟖𝟓% 

FVC02 DB1+LFW 

28160 2 

0.555 0.603 

228160 

0.048 228160∗0.048 ≈ 21352 
FVC02 DB2+LFW 0.569 0.599 0.03 228160∗0.03 ≈ 2845 
FVC02 DB3+LFW 0.565 0.589 0.024 228160∗0.024 ≈ 2676 
FVC04 DB1+LFW 0.567 0.595 0.028 228160∗0.028 ≈ 2789 
FVC04 DB2+LFW 0.568 0.582 0.014 228160∗0.014 ≈ 2394 
FVC04 DB3+LFW 0.571 0.587 0.016 228160∗0.016 ≈ 2451 

 

Table 4.11 tabulates FA attack complexity against the proposed scheme under different 

matching thresholds 𝜏  with respect to the GAR. To be noted, the results with bold red 

indicate the system is not secure as the adversary is recognized as the genuine user without 

any attack attempt. From Table 4.11, the proposed scheme is not secure in some datasets, 

i.e., FVC2004{DB2, DB3}+LFW when GAR= 95%. On the other hand, the proposed scheme 

is considered secure after sacrificing a certain amount of GAR. The upper-bounds of 

impostor scores distributions do not exceed the matching threshold 𝜏 when GAR is reduced 

to 90%. For the complexity, it requires a minimum of 2169 attempts before the access can 
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be gained, which implies the scheme can resist the FA attack after sacrificing 10% of GAR. 

In addition, the attack complexity can be further increased by tuning the 𝜏 to a higher value. 

However, this will reduce the verification performance of the scheme (lower GAR). To sum 

up, with the best configurations of parameters, the proposed scheme can resist the FA 

attack with the minimum attack complexity of 2169 in the worst-case scenario with a certain 

sacrifice of GAR. Yet, the attack complexity can be further increased by tuning the parameter 

𝑛. 

 

C. Birthday attack 

Apart from the BF and FA attacks that aim to estimate a 𝐜′, birthday attack [158] in the 

analysis aims to estimate and inject the source input (refer to 𝐱 ∈ ℝ2𝑑  for stage-2 

transformation or 𝐡 ∈ [0,1]2𝑑 for stage-3 transformation) for generating a 𝐜′. In contrast to 

previous security attacks, a birthday attack is more damaging due to the small template size 

of input 𝐱/ 𝐡 and short transformation time. Briefly, a birthday attack [158] is a cryptanalytic 

technique that utilizes the birthday problem in probabilistic theory for finding the collisions 

between the ciphertexts (refer to the cancellable template) of different inputs.  

 

In the analysis, the birthday attack is conducted by estimating an IoM bio. vector 𝐡imp ∈

[0,1]2𝑑 and injecting it for generating a 𝐜′ ∈ [0,1]2𝑑𝑛. Let 𝐜 be the pre-stored template, 𝐡1 

denote the original input to generate 𝐜 and 𝑓(. ) denote the stage-3 transformation function 

(in verification mode), i.e., 𝑓(𝐡1, 𝐞) → 𝐜 where 𝐞 is the encrypted string from the database, 

the adversary aims to estimate a 𝐡imp  such that 𝑓(𝐡1, 𝐞) = 𝑓(𝐡imp, 𝐞) where 𝐡imp ≠ 𝐡1 . 

Such pair of 𝐡imp, 𝐡1 is a collision. Here, the analysis is conducted in every dataset pair with 

the best configuration of transformation parameters where the attack complexity is 

determined by the birthday bound [158] in terms of attack attempts. 

 

Extended from false acceptance attack, birthday attack is conducted in the worst-case 

scenario where the initial 𝐡imp  can be transformed to 𝐜′ which possesses the matching 

score at the upper-limit of impostor scores distribution (refer to 𝑈𝐵imp); and hence, the 

adversary just need to permute the 𝐡imp until the matching score of 𝐜′ surpasses the secure 

matching threshold 𝜏 . Given the transformation function 𝑓(𝐡imp, 𝐞) →  𝐜′  which yields 

(𝑁𝐜)
𝑆𝐼𝑍𝐸𝐜 of possible 𝐜′s where 𝑁𝐜 is the total value of 𝐜 and 𝑆𝐼𝑍𝐸𝐜 is the template size, the 

birthday attack attempt is calculated with the following formula: 
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Birthday Attack Attempt = √2(𝑁c)
𝑆𝐼𝑍𝐸c×(𝜏−𝑈𝐵imp) ⋅ ln(

1

1 − 𝑝
) 

(4.9) 

 

where 𝑝 is the probability of collisions in 𝐡 and 𝑆𝐼𝑍𝐸𝐜 = 2𝑑𝑛. The 𝑝 is calculated as 𝑝 = 𝐹𝐴𝑅 

which is based on genuine/ impostor scores distributions of the input 𝐡. 

 

Table 4.12: Birthday attack complexity (birthday bound) under different 𝜏s 

Dataset 
Proposed Scheme 

2(𝑁c)
𝑆𝐼𝑍𝐸𝐜×(𝜏−𝑈𝐵imp) ln(1/(1 − 𝑝)) 

Attack Complexity 
(Birthday Bound) 2𝑑𝑛 𝑈𝐵imp 𝜏 𝑝 

𝐆𝐀𝐑 = 𝟗𝟎% 

FVC02 DB1+LFW 

28160 

0.555 0.594 0.0010 ≈ 21099 ≈ 0.001 ≈ 0.03 ∗ 2550 
FVC02 DB2+LFW 0.569 0.593 0.0030 ≈ 2677 ≈ 0.003 ≈ 0.05 ∗ 2339 
FVC02 DB3+LFW 0.565 0.580 0.0046 ≈ 2423 ≈ 0.006 ≈ 0.07 ∗ 2212 
FVC04 DB1+LFW 0.567 0.587 0.0034 ≈ 2564 ≈ 0.004 ≈ 0.06 ∗ 2282 
FVC04 DB2+LFW 0.568 0.574 0.0032 ≈ 2170 ≈ 0.004 ≈ 0.06 ∗ 285 
FVC04 DB3+LFW 0.571 0.578 0.0043 ≈ 2198 ≈ 0.006 ≈ 0.07 ∗ 299 

𝐆𝐀𝐑 = 𝟖𝟓% 

FVC02 DB1+LFW 

28160 

0.555 0.603 0.0010 ≈ 21353 ≈ 0.001 ≈ 0.03 ∗ 2677 
FVC02 DB2+LFW 0.569 0.599 0.0030 ≈ 2846 ≈ 0.003 ≈ 0.05 ∗ 2423 
FVC02 DB3+LFW 0.565 0.589 0.0046 ≈ 2677 ≈ 0.006 ≈ 0.07 ∗ 2339 
FVC04 DB1+LFW 0.567 0.595 0.0034 ≈ 2790 ≈ 0.004 ≈ 0.06 ∗ 2395 
FVC04 DB2+LFW 0.568 0.582 0.0032 ≈ 2395 ≈ 0.004 ≈ 0.06 ∗ 2198 
FVC04 DB3+LFW 0.571 0.587 0.0043 ≈ 2452 ≈ 0.006 ≈ 0.07 ∗ 2226 

 

Table 4.12 tabulates the birthday attack complexity for every dataset under different GARs. 

As stated previously, the proposed scheme is not secure when GAR= 95% (worst-case 

scenario); thus, the attack complexity is not calculated. By adjusting the matching threshold 

𝜏 to the case when FAR= 0% and GAR= 90%, the minimum attack complexity (birthday 

bound) is 0.06 ∗ 285. In other words, it requires at most 0.06 ∗ 285 attack attempts to estimate 

the 𝐡′ which can gain access to the system. Yet, the estimated 𝐡′ is not equal to the original 

𝐡. This implies the adversary has to re-estimate the 𝐡′ when the victim renew the cancellable 

template, which requires another 0.09 ∗ 285 attack attempts. Other than that, it is expected 

the proposed scheme is more secure by degrading the GAR. For instance, the minimum 

attack complexity is increasing from 0.06 ∗ 285  to 0.06 ∗ 2198  when GAR is reduced from 

90% to 85%. Other than adjusting 𝜏, the attack complexity can be increased by tuning 

parameter 𝑛, which increases the size of the cancellable template. As summarized from the 

results, the proposed scheme is considered secure when 𝜏 is set according to FAR= 0% 
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and GAR= 90% (in the worst-case scenario). With the minimum attack complexity of 0.06 ∗

285 attempts and GAR= 90%, the verification performance is still acceptable. 

 

4.6.3 Unlinkability analysis 

Unlinkability is an important property in biometric template protection that refers to the 

dissimilarities between multiple cancellable templates that are generated from the same 

biometric input. In this thesis, the recent unlinkability analysis framework [159] is adopted to 

evaluate the unlinkability degree of proposed schemes statistically (see Section 3.5.3A for 

the detailed discussions on the evaluation framework). Briefly, the evaluation of this 

framework is built upon the mated and non-mated sample score distributions, which are 

generated from the cross-match attempts between cancellable templates generated from 

the same biometric feature (mated samples) and different biometric features (non-mated 

samples). After that, both distributions are used to calculate two linkage indicators, i.e., the 

local measure 𝐷⟷(s) and global measure 𝐷𝑠𝑦𝑠
↔ 

. Differ from the 𝐷⟷(s) that evaluate the 

linkage of the score distributions based on the score-wise basis, 𝐷𝑠𝑦𝑠
↔ 

 measure the 

unlinkability of the whole system [159]. Therefore, 𝐷𝑠𝑦𝑠
↔ 

 can be used for benchmarking the 

unlinkability level of the biometric template protection. The value range of both 𝐷⟷(s) and 

𝐷𝑠𝑦𝑠
↔ 

 is bounded from 0 to 1, where 0  shows the best unlinkable between different 

cancellable templates. To shows a reasonable unlinkable level of a template protection 

method, it is suggested the computed 𝐷𝑠𝑦𝑠
↔ 

 to be as low as possible (𝐷𝑠𝑦𝑠
↔ 
≤ 0.14) [159]. In 

the experiment, 3 set of auxiliary data are used to generate the cancellable templates for 

each biometric instance. 

 

The evaluation result for the proposed M∙EFV hashing is illustrated in Fig 4.6. The blue line 

represents the trend of local measure 𝐷⟷(s) among the score distributions. The higher the 

blue line, the higher the linkage level of the cancellable templates is the specific point. The 

green distribution describes the mated sample score distribution, while the red distribution 

describes the non-mated sample score distribution. According to [159], a fully unlinkable 

case can be identified when the red distribution and green distribution are overlapping, while 

a fully linkable case is observed when both score distributions do not overlap. As observed 

from Fig 4.6, the unlinkability of M∙EFV hashing is nearly a fully unlinkable case since both 

score distributions are highly overlapped. As a result, the global measures 𝐷𝑠𝑦𝑠
↔ 
  are 

averagely near to 0. This shows a decent privacy level of the cancellable templates (from 
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the same biometric feature) generated via M ∙EFV hashing. It is important that multiple 

cancellable templates generated should not be distinguishable. If the cancellable templates 

are identical, the attacker can attempt to use a compromised cancellable template to track 

the users or perform a replay attack on the matcher.  

 

 

Fig 4.6. Unlinkability analysis result in FVC(2002, 2004)+LFW dataset 

 

4.6.4 Renewability analysis 

Renewability is one of the template protection requirements that means the user can use 

the same biometric feature to revoke and renew the cancellable template. In other words, 

multiple cancellable templates generated from the same biometric feature are independent 

of each other (similar to unlinkable). In this subsection, a quantitative experiment is 

conducted to verify the renewability of the cancellable templates, where a detailed 

discussion on this quantitative experiment is provided in section 3.5.3B. Briefly, the 

evaluation of this experiment is built upon the score distributions that are generated from 

the genuine, impostor and pseudo-impostor matching attempts. In the experiment, a 

pseudo-impostor matching attempt is assumed by matching the old cancellable template to 

a variety of re-new cancellable templates. Therefore, for each tested biometric sample there 

are up to 51 cancellable templates are generated using different transformation keys. The 

first cancellable templates are then be matched to the remaining 50 cancellable templates 
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to produce the pseudo-impostor matching score. Since the renewed cancellable template 

should be independent of the old cancellable template, the matching score between these 

two entities should be similar or lower than the matching score between the genuine user 

and impostor user by assuming the renewed template as the impostor. Thus, the pseudo-

impostor score distribution should not be overlapped with the genuine score distribution to 

show the renewability of the cancellable template.  

 

The experiment result of this evaluation model is illustrated in Fig 4.7. Blue distribution 

describes the pseudo-impostor score distribution. Red distribution is the impostor score 

distribution. As observed from Fig 4.7, pseudo-impostor score distribution and impostor 

score distribution are mostly overlapped. This shows that up to 50 newly generated 

cancellable template is not even the same as the old cancellable template. In a nutshell, the 

result suggests that M∙EFV hashing satisfies the renewability requirement. 

 

 

 

 

 

Fig 4.7. Renewability (or revocability) analysis result in FVC(2002, 2004)+LFW dataset 
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4.6.5 Summary of security and privacy analysis 

Throughout the analyses, several points are summarized: 

 

• It is hard to inverse the cancellable template 𝐜 back to the original face vector 𝐱1 and 

fingerprint vector 𝐱2 even multiple sets of the cancelable template and auxiliary data are 

known. Whenever the cancellable template is compromised, the user can always revoke 

and renew the cancellable template by using a different set of auxiliary data. 

 

• The XOR encryption/ decryption is the key notion in enabling the tokenless property of 

the proposed method. The key idea of the tokenless is to convert the transformation key 

into auxiliary data that is insensitive for the original biometric feature recovery. Coupled 

with the prior-randomization mechanism, it is shown that the transformation key is not 

recoverable even if multiple databases are compromised. This prohibits the adversary 

from any further attack, e.g., template inversion.  

 

• With the empirical results of the benchmarking assessment framework, multiple 

produced cancellable templates from the same biometric feature are independent of 

each other. Thus, unlinkability property is guaranteed. 

 

4.7 Summary and contributions 

This chapter focuses on the token management and fusion incompatibility problems in 

the face and fingerprint template protection. Two research outcomes (template protection 

scheme), namely the Extended Feature Vector (EFV) Hashing and Multimodal Extended 

Feature Vector (M∙EFV) Hashing are introduced to protect the face and fingerprint templates 

where the latter is the enhanced version of the former scheme that can is used to fuse the 

face and fingerprint features into a cancellable template. This chapter demonstrates a 3-

stage transformation mechanism that could efficiently embed the real-valued face and 

fingerprint vectors into a binarized cancellable template. In contrary to the tokenized 

authentication approaches, the proposed EFV hashing and M∙EFV hashing incorporate the 

XOR encryption/ decryption machinery to enable the “one-factor” property. Comprehensive 

experiments are established to study and select the best-tuned parameters for generating 

the cancellable template. Notably, the verification accuracy of the M∙EFV hashing could 

reach as low as EER= 0.24 ± 0.10 %. Furthermore, the theoretical justification and attack 
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complexity suggest it is infeasible to recover the original face and fingerprint vector even if 

multiple sets of cancellable template and auxiliary data are compromised. The security 

property of the proposed scheme is justified by calculating the attack complexity of several 

security attacks which are damaging to the biometric system. In this chapter, the well-known 

false acceptance and birthday attacks are considered as the attack model in the analyses. 

It is revealed that a system is insecure when the matching threshold is set at the point where 

FAR=FRR. To resolve this issue, the matching threshold is suggested to be adjusted to the 

case when FAR< 0%  in which a certain degree of GAR is traded for the security 

consideration. With the minimum attack complexity of  0.06 ∗ 285 attempts and GAR= 90%, 

the proposed scheme can preserve verification performance while resisting the birthday 

attack. Lastly, unlinkability and renewability criteria are examined based on a recently 

developed unlinkability analysis framework [159]. The unlinkability measure (i.e., 𝐷𝑠𝑦𝑠
↔ 

) is 

reported for benchmarking purposes. Lastly, it is concluded that the proposed scheme is 

proved to satisfy the irreversibility, unlinkability, renewability and performance preservation 

properties. 
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Chapter 5 BIOMETRIC DECISION ENVIRONMENT AND 

AUTHENTICATION ATTACK 

 

This chapter focuses on the biometric decision environment and authentication attack for 

the cancellable biometrics-enabled system. This chapter can be divided into two parts 

corresponding to the contributions iii and iv in this thesis, i.e., an enhanced matching 

mechanism (contribution iii) and authentication attack (contribution iv). A biometric 

system, no matter protected or unprotected, utilizes the matching threshold to verify the 

identity of an individual. The trade-off between security and verification performance is 

inevitable towards a biometric system. To resolve this issue, an enhanced matching 

mechanism is introduced for the cancellable biometrics-enabled system, i.e., IoM hashing-

based fingerprint system, R ∙ HoG-based iris system, and M ∙ EFV hashing-based 

multimodal system. The proposed enhanced matching mechanism is essentially a dual-

phase score quantization scheme that aims to increase the intra-class similarity and 

reduce inter-class similarity of the cancellable template matching. Comprehensive 

experiments are conducted in the benchmarking fingerprint FVC, iris CASIAv3 and face 

LFW datasets. Experimental results suggest the proposed enhanced matching 

mechanism could improve the verification performance of the system. On the other hand, 

this chapter also studies the type-4 attack in the cancellable biometrics-enabled system 

and formalizes an automated authentication attack scheme, namely Whale Optimization 

Algorithm-based Authentication Attack (WO3A). A type-4 attack refers to the attack that 

aims to estimate and inject a guessed biometric template into the system for gaining illegal 

access. Differ from the classical false acceptance attack or birthday attack; the type-4 

attack relies on the intercepted matching score to perform perturbation on the guessed 

biometric template. The intuition of formalizing the WO3A is to testify and quantify the 

security resistance of the cancellable biometric schemes and enhanced matching 

mechanism experimentally. Security analysis via WO3A shows the proposed enhanced 

matching mechanism is able to improve the security resistance of the cancellable 

biometric scheme towards WO3A. Under the same attack setting, the proposed enhanced 

matching mechanism is able to reduce the attack success rate. 

Chapter 5:  
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5.1 Background 

Cancellable biometrics (CB) [19] is important biometric template protection primitive that 

plays a crucial role in numerous biometric-based authentication systems to prevent the 

recovery of original biometric features from the enrollment information (e.g., pre-stored 

biometric instance and auxiliary data) for the unfavorable event, such as impersonation and 

privacy invasion [11]. In general, cancellable biometrics is a feature transformation-based 

approach that utilizes an auxiliary data-guided transformation function to transform the 

original biometric feature into an irreversible template (or cancellable template). Suppose 

𝑓(. ) as the cancellable transformation function, 𝑥 and 𝑥′ are the biometric features belong 

to the same person and 𝑟 represents the auxiliary data, a cancellable biometric scheme 

generates the cancellable templates that are highly similar in which 𝑓(𝑥, 𝑟)~𝑓(𝑥′, 𝑟) even 

there are minor differences between 𝑥 and 𝑥′. Therefore, the authentication process can be 

carried out in the transformed domain without revealing original biometric information, and 

the verification performance is comparable to the original biometric system. Due to the 

simplicity and decent verification performance, cancellable biometrics is popular among the 

community. In general, a decent cancellable biometric scheme offers the following 

enforcements towards a biometric system [19]: 

 

• Irreversibility: It is hard to recover the original biometric information from the protected 

instance (cancellable template) even if multiple cancellable templates and auxiliary data 

are known to the adversary. 

 

• Unlinkability: The user can use the same biometric feature in different cancellable 

biometrics-enabled systems without worrying about privacy invasion occurring. Multiple 

produced cancellable templates are independent of each other such that it is infeasible 

for the adversary to perform a cross-matching attack.  

 

• Renewability: Since the same biometric feature can produce different cancellable 

templates, the user can revoke and renew once the system security (or database) is 

compromised. 

 

Although cancellable biometrics prevents the original biometric information from being 

recovered and allows the renewal of enrollment using the same biometric feature, a 
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cancellable biometrics-enabled system still faces a potential security threat where the 

adversary can attempt to gain illegal access to the system by performing the feature injection 

attack towards the system (refers to the type-4 attack [27], [170]). In particular, this attack is 

an iterative modification scheme that exploits the thresholding decision-making of the 

biometric system and aims to find a guessed biometric template that can produce a sufficient 

similarity score and bypass the authentication for one system. A general view of the attack 

model for this attack is given in here. In this attack, the adversary first randomly generates 

the biometric template. After that, the adversary injects the biometric template into the 

cancellable biometrics-enabled system for matching. Assuming the adversary can access 

the evaluation metric (i.e., similarity score 𝑆 ), the attack framework then updates the 

biometric preimage based on the S. This attack repeats until S ≥ τ or the stopping threshold 

of the attack framework is met. Most of the existing cancellable biometric schemes are 

manifested as a thresholding-based system; hence this attack is feasible if the adversary 

could compromise the auxiliary data (or token) and attempt to inject it with a guessed 

biometric preimage into the system (e.g., [29], [142]). Moreover, this attack could be easily 

conducted since the estimated biometric preimage does not need to be the same as the 

original biometric input. Attributed to the renewability property, a decent cancellable 

biometric scheme allows the renewal of a cancellable template once the security 

(authentication) is compromised. In this sense, the estimated biometric preimage could not 

be used for the authentication attack. Therefore, cancellable biometrics is always desired to 

protect the system. 

 

Although renewal of the cancellable template could prevent the attacker from using the 

estimated preimage for the replay attack, it is unfavorable that the adversary could gain 

illegal access to the system in a short time. Furthermore, this could induce privacy risk (e.g., 

personal information leakage) when the genuine user could not respond and renew the 

cancellable template in a given time. Since a cancellable biometrics-enabled system utilizes 

the thresholding mechanism to determine an individual's identity, a straightforward approach 

to improve the security resistance of the system towards the type-4 attack is to set a high 

matching threshold (or system threshold). However, this could lead to the increment of false 

rejection of the system where the matching score between the pre-stored template and 

query template from the genuine user is harder to surpass the threshold, which refers to a 

case of the trade-off between security and performance [27]. This problem is further 

exacerbated in a cancellable biometrics-enabled system due to the performance 
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degradation issue where the overlap region of the genuine and impostor score distributions 

is larger than the unprotected counterpart [11].  

 

This chapter deduces the performance degradation issue as the weak decision environment 

problem of the biometric template protection, especially a unimodal biometric template 

protection scheme. The concept of a weak decision environment is inspired by Daugman’s 

work [89], where the decision environment refers to the biometric system's performance 

indicators that are based on the separation between the genuine and impostor score 

distributions. To further improve the decision environment of the cancellable biometric 

scheme, this chapter proposes an enhanced matching mechanism that aims to reduce the 

intra-class variation and increase inter-class variation for the generated cancellable 

biometric template. The essence of the proposed matching mechanism is that it is a dual-

phase score quantization scheme that reduces the overlap region between the mean of 

genuine and impostor score distributions. As such, it allows the system developer to choose 

a higher system threshold while minimizing the sacrifice of the genuine acceptance rate 

(GAR) of the system. While the cancellable biometrics offers the irreversibility, unlinkability 

and renewability solutions, the proposal matching mechanism enhances the decision 

environment in terms of reducing overlap regions between genuine and impostor score 

distributions. As such, both solutions can be coupled to further reduce the effect of the type-

4 attack. 

 

Other than that, the security of a cancellable biometrics-enabled biometric system is studied 

in the case that an adversary attempts to use an automated authentication attack (type-4 

attack) to gain illegal access to the system. Thus, other than the enhanced matching 

mechanism, this chapter also formalizes an authentication attack scheme and conducts it 

towards the cancellable biometrics-enabled system. To sum up, the contributions of this 

chapter are outlined as follows: 

 

• An enhanced matching mechanism is proposed to further improve the verification 

performance of the IoM hashing-based fingerprint system [66], R∙HoG-based iris system, 

and M∙EFV hashing-based multimodal system [3]. Specifically, the proposed enhanced 

matching mechanism reduces the overlap region between the genuine and impostor 

score distribution. As such, the proposed enhanced matching mechanism allows a higher 
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matching threshold to be chosen while maintaining the verification performance of the 

system.  

 

• Comprehensive experiments are conducted on several benchmarking datasets, 

including FVC2002 [73], FVC2004 [74], CASIA-IrisV3-Internal [52] and LFW [84] to justify 

the improvement of verification performance after applying the enhanced matching 

mechanism. The experimental result suggests the proposed enhanced matching is 

effective in enhancing the decidability of the tested cancellable biometric schemes in the 

sense that the mean of genuine score distribution is increased and the mean of impostor 

score distribution is decreased. 

 

• A new type-4 attack, namely the whale optimization algorithm-based authentication 

attack (WO3A) is formalized to testify the security resistance of the cancellable biometric 

schemes and proposed an enhanced matching mechanism. The formalized attack 

scheme is an automated authentication attack in the sense that the perturbation of the 

guessed biometric template is done strategically instead of the manual bit-by-bit 

perturbation in a brute-force or manual hill-climbing approach. Thus, the WO3A can be 

more efficient than the brute-force or manual hill-climbing approaches. 

 

• The WO3A is conducted on the tested cancellable biometric schemes to examine the 

security resistance of the schemes towards the WO3A attack. The security resistance of 

the cancellable scheme is evaluated by calculating the success rate of the WO3A with 

respect to the system threshold. The experiments are conducted in the cases that (i) the 

cancellable biometric schemes are in the original construction and (ii) the cancellable 

biometric schemes are enforced with the proposed enhanced matching mechanism to 

show the increment of the security resistance towards the attack scheme.  

 

This chapter is organized as follows: Section 5.2 discusses the decision environment of a 

biometric system and the proposal of an enhanced matching mechanism, followed by 

section 5.3 to examine the proposed enhanced matching mechanism in terms of parameter 

estimation, verification performance and computation efficiency. Section 5.4 outlines the 

authentication attack and formalizes a practical attack scheme. After that, section 5.5 

evaluates the security resistance of the tested cancellable scheme and the proposed 

enhanced matching mechanism. Lastly, the findings are summarized in section 5.6. 
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5.2 Biometric decision environment 

This chapter is divided into two parts: decision environment and authentication attack. This 

section focuses on the decision environment and proposes an enhanced matching 

mechanism that could improve the verification performance of the cancellable biometric 

scheme.  

 

5.2.1 Overview 

 

Fig 5.1. A biometric system with different settings of matching threshold (𝜏) 

 

Recognition performance of a (protected or unprotected) biometric system is characterized 

by the decision environment that is built upon the score distributions from the genuine and 

impostor comparisons [89]. The genuine comparison refers to the matching between the 

biometric templates of the same individual, while impostor comparison refers to the 

comparison between the biometric templates from different individuals. Most of the existing 

type-4 attacks attempt to use the fake input biometric template 𝐗∗ and get recognized as a 

genuine user. Typically, this attack begins by random initializing a 𝐗∗, and then input the 𝐗∗ 

to the system for matching. The attack continues until the matching score between the fake 

input (e.g., 𝐗∗) and the pre-stored instance (e.g., 𝐗) (refer to 𝑆(𝐗, 𝐗∗)) surpass the system 

threshold 𝜏 , i.e., 𝑆(𝐗, 𝐗∗)) ≥ 𝜏 . Therefore, selection of system threshold 𝜏  is crucial to 

provide security resistance towards potential security attacks. In most of the cases, the 𝜏 is 

set at the point when False Acceptance Rate (FAR) = False Rejection Rate (FRR). However, 

this 𝜏 is yet to be secure. For security consideration, 𝜏 should always be higher than the 

impostor score distribution (FAR = 0%). Yet, this leads to another scenario, so-called the 

trade-off between security and performance (genuine acceptance rate GAR). An example 

is shown in Fig 5.1 with two settings of the 𝜏 in the system. In Fig 5.1 (a), the 𝜏 is set slightly 
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higher than the upper bound of impostor score distribution with minimal sacrifice of GAR to 

provide a certain level of security resistance. The 𝜏 could be set higher to increase the 

security resistance. However, this could further sacrifice the GAR and greatly reduce the 

usability of the system (see Fig 5.1 (b)). The limitation of selecting a suitable 𝜏  is 

exacerbated in a cancellable biometric-enabled system due to the performance degradation 

problem. 

 

As mentioned above, the decision environment of a biometric system is characterized by 

the genuine and impostor score distributions, especially the overlap region between both 

distributions. For instance, a high Equal Error Rate (ERR) is estimated when both 

distributions are highly overlapped. In this case, selecting the 𝜏 at the point when FAR = 0% 

results in high FRR . Therefore, it is desirable when the overlap region between both 

distributions can be reduced, or ideally, there is a separation between both distributions, 

which allows a higher 𝜏 without worrying about high FRR. 

    

 

Fig 5.2: Graphical representation of an optimal case where a biometric system with high separation between 
the mean of genuine and impostor score distributions 

 

Ideally, a decision environment with the mean of the genuine/ impostor score distributions 

highly separated (refer to Fig 5.2) enjoys the following merits:  

 

• The verification performance of the biometric system is improved in terms of lower false 

acceptance rate (FAR) and false rejection rate (FRR). This is because of the decrement 

of the overlap region between the mean of the genuine and impostor score distributions. 
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• The matching threshold 𝜏 can be set to a high value to improve the security resistance 

towards the security attack without worrying the verification performance is degraded too 

much. In particular, the sacrifice degree of the GAR is reduced when eliminating the FAR 

of the system. The security resistance is increased in the sense that the gap between 

the 𝜏 and the adversary starting point (assuming it is in 𝑈𝐵imp) is large. Hence, it requires 

higher attack complexity to break into the system. 

 

5.2.2 Proposed enhanced matching mechanism 

This subsection presents the proposed enhanced matching mechanism. For the sake of 

readability, the table below lists the notations that are being used in the proposed matching 

mechanism. 

 

 Table 5.1: NOMENCLATURE 

Notation(s) Description 

𝐗 ∈ ℝ𝑎×𝑏 Original biometric feature 

𝐑 ∈ ℝ𝑞×𝑒 
Auxiliary data of the cancellable 
biometrics 

𝐂 ∈ ℝ𝑘×𝑚 Cancellable biometric template 

𝑓(. ) 
Cancellable transformation function,  

𝑓(𝐗, 𝐑) → 𝐂 

𝑛 Number of local cancellable template 

𝐏 = {𝐏1, 𝐏2, … , 𝐏𝑛} Permutation seed, each 𝐏 ∈ ℝ𝑙×𝑜 
𝜏L Local quantization threshold 

𝜏G System matching threshold 

𝐬 ∈ ℝ𝑛 Local score vector, each 0 ≤ 𝑠𝑖 ≤ 1 

𝑠G Global score (matching score) 

 

The proposed enhanced matching mechanism is a simple yet effective matching mechanism 

that can improve the decision environment by reducing the overlap region between the 

genuine and impostor score distributions. The proposed enhanced matching mechanism is 

a dual-phase score quantization scheme that aims to enhance the matching process of a 

biometric system by separating the similarity scores that can be acquired from the genuine 

comparison and impostor comparison. The proposed matching mechanism consists of two 

phases: (i) transformation and (ii) matching. During the transformation phase, multiple 

randomized instances of the input biometric template are firstly generated based on the 

permutation seeds. To be noted, each randomized instance is a partial input biometric 

template in the sense that a random undersampling process is used to generate the 

randomized instances. After that, the cancellable transformation is employed to transform 
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the randomized instances into 𝑛 numbers of cancellable biometric templates and then store 

the templates into the storage. 

 

During the matching phase, the query template set is first generated and then be matched 

to the pre-stored template set, which yields 𝑛 numbers of similarity score (refer as local 

similarity score). After that, the local similarity scores are quantized into 0 or 1 based on a 

parameter, so-called the local quantization threshold. Lastly, the final matching score is 

calculated by averaging the 𝑛 numbers of the local quantized score. The underlying concept 

of the proposed matching mechanism is to statistically count the similarity scores from the 

local matchings, where each local score is quantized based on a local quantization threshold 

that is set under at the point when FAR=FRR or higher. As such, a separation of the genuine 

and impostor scores is achieved where the matching score of the genuine score is increased 

while the impostor score is decreased. This is mainly due to the number of 0 or 1 calculated 

from the local matchings. In other words, the genuine comparison can obtain more ‘1’ from 

the local matchings, and hence, genuine comparison matching can produce a higher 

matching score. The transformation and matching phases of the enhanced matching 

mechanism are explained as follows. 

 

A. Transformation (or Enrollment) phase 

During the transformation phase, the proposed scheme transforms the input biometric 

template into multiple instances of the cancellable template. Given the biometric feature 𝐗 ∈

ℝ𝑎×𝑏 , cancellable transformation function 𝑓(. ), the auxiliary data for the transformation 

function 𝐑 ∈ ℝ𝑞×𝑒  and a set of random permutation seeds 𝐏 = {𝐏1, … , 𝐏𝑛}, the proposed 

scheme first produce a set of local cancellable templates 𝐂 = {𝐂1, … , 𝐂𝑛} where each 𝐂𝑖 ∈

ℝ𝑘×𝑚 with the following procedures: 

 

1) Set random undersampling: Generate 𝑛 numbers of permuted biometric features 𝐕𝑖 by 

using each 𝐏𝑖 to permute the 𝐗 where 𝑖 = 1…𝑛. To be noted, this process is a random 

undersampling process in the sense that each permuted biometric feature 𝐕𝑖 is the partial 

information of the original biometric template. In particular, the parameter 𝑙 and 𝑜 are 

used to control the size of the each 𝐕𝑖. Given the input biometric feature 𝐗 ∈ ℝ𝑎×𝑏, 𝑙 ≤ 𝑎 

and 𝑜 ≤ 𝑏 , a set of permuted biometric features 𝐕 = {𝐕1, … , 𝐕𝑛}  is generated by 

computing 𝐕𝑖 = perm(𝐗, 𝐏𝑖)   where each 𝐕𝑖 ∈ ℝ
𝑙×𝑜  and perm(.) denotes the random 
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undersampling function. Each 𝐕𝑖 are independent of each other because of the random 

undersampling process, which induces another layer of randomization effect. 

 

2) Local cancellable template generation: Each 𝐕𝑖  is transformed to the cancellable 

template 𝐂𝑖  by computing 𝐂𝑖 = 𝑓(𝐕𝑖, 𝐑 ) where 𝐑  is the auxiliary data for the 

transformation function, 𝑓(. ) denotes the cancellable transformation function and 𝑖 =

1…𝑛. To further improve the randomness of the local cancellable templates, each 𝐂𝑖 is 

generated using different auxiliary data 𝐑 . Therefore, a set of auxiliary data 𝐑 =

{𝐑1, … , 𝐑𝑛} is used for the cancellable transformation. 

 

After that, the cancellable template set 𝐂 = {𝐂1, … , 𝐂𝑛}  are stored in storage for 

authentication purposes. It is noted that the intermediate product, i.e., 𝐕 = {𝐕1, … , 𝐕𝑛} is 

deleted after the generation of the cancellable template set. In the event that the template 

storage is compromised, the user can revoke and renew the enrollment by replacing the 𝐏 

and 𝐑. Since multiple randomization processes are involved, it is unlikely that the renewed 

cancellable template set  (𝐂′) can collide with the compromised cancellable template set. 

 

Algorithm  5.1. Enhanced matching mechanism - 
Transformation  

Input (From User): Biometric feature 𝐗,  Cancellable 

transformation 𝑓(. ) , random permutation seeds  𝐏 =
{𝐏1, … , 𝐏𝑛}, Transformation auxiliary data 𝐑 = {𝐑1, … , 𝐑𝑛} 
Parameters: number of local 𝑛,  
Output: A set of cancellable templates 𝐂 = {𝐂1, 𝐂2, … , 𝐂𝑛} 

1: for 𝑖 ← 1 to 𝑛 

2:       Random undersampling 𝐗  based on 𝐏𝑖  and produce 
𝐕𝑖 

3:       Compute 𝐂𝑖 = 𝑓(𝐕𝑖 , 𝐑𝑖) 
4: end for 
5: return 𝐂 = {𝐂1, … , 𝐂𝑛}  

 

B. Matching (or Verification) phase 

During the matching phase, the individual provides the biometric feature 𝐗′ to the system 

for generating the query template set 𝐂′ = {𝐂′1, … , 𝐂′𝑛}, then the 𝐂′ is matched to the pre-

stored 𝐂. In contrast to the standard matching that uses a simple matcher (e.g., Hamming 

similarity or Euclidean similarity), the proposed enhanced matching mechanism is a dual-

phase score quantization scheme that is built upon the local matching and counting collision 

pair mechanisms. Given the enrolled template set 𝐂 = {𝐂1, … , 𝐂𝑛} and the query template 

set 𝐂′ = {𝐂′1, … , 𝐂′𝑛}, the procedures to obtain the global similarity score 𝑠G are as follow: 
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1) Local similarity comparison: Similarity comparison between 𝐂𝑖 and 𝐂′𝑖 is performed to 

obtain the local matching score 𝑠𝑖 where 𝑖 = 1…𝑛 and the 𝑠𝑖 is a normalized score that 

is within 0 to 1. A local score vector 𝐬 = {𝑠1, … , 𝑠𝑛} is formed after 𝑛 numbers of similarity 

comparison. 

 

2) Local score quantization: For each 𝑠𝑖 ∈ 𝐬, a uni-step function is applied to quantize the 

each 𝑠𝑖 to 0 or 1. Given that each 𝑠𝑖 is calculated from the similarity comparison between 

a pair of 𝐂𝑖 and 𝐂′𝑖, the proposed enhanced matching mechanism determine the 𝐂𝑖 and 

𝐂′𝑖  as a collision pair when 𝑠𝑖 ≥ 𝜏L  where 𝑖 = 1…𝑛  indicates 𝑖 -th local cancellable 

template. As such, each 𝑠𝑖 ∈ 𝐬 is computed as 

 

 
𝑠𝑖 = {

0, 𝑠𝑖 < 𝜏L
1, 𝑠𝑖 ≥ 𝜏L

 
(5.1) 

 

where 𝜏𝑙 is the parameter to control the quantization process. Throughout this process, 

the 𝐬 is a model with binary outcomes (each 𝑠𝑖 = 0 or 1). 

 

3) Global score calculation: Compute the global similarity score 𝑠G =
∑ 𝑠𝑖
𝑛

𝑖=1

𝑛
 where each 

𝑠𝑖 ∈ 𝐬.  

 

In the proposed enhanced matching mechanism, the global similarity score (𝑠G) is the final 

matching score of the authentication process. Lastly, the 𝑠G is passed to the decision module 

to determine the identity of the individual based on the system matching threshold 𝜏G, where 

the decision rules are as follows:  

 

 
Decision = {

Impostor, 𝑠G < 𝜏G
Genuine, 𝑠G ≥ 𝜏G

 
(5.2) 

 

On the whole, the value of the 𝑠G is amplified by the local matchings. Given the similar input 

𝐗 and 𝐗′, the proposed enhanced matching mechanism produces the 𝐂 = {𝐂1, … , 𝐂𝑛} and 

𝐂′ = {𝐂′1, … , 𝐂
′
𝑛} , such that majority of 𝐂𝑖  and 𝐂′𝑖  are highly similar. In this sense, the 

enhanced matching mechanism could produce a 𝑠G that is close to 1, which maximizes the 

intra-class similarity. 
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Algorithm 5.2. Enhanced matching mechanism -  Matching  

Input (From User): Query template set 𝐂′ = {𝐂′1, … , 𝐂
′
𝑛} 

Input (From System): Enrolled template set 𝐂 = {𝐂1, … , 𝐂𝑛} , 
Local quantization threshold 𝜏L  
Output: Global similarity score 𝑠G 

6: // Step 1 and 2: Local similarity comparison + score 
quantization 

7: initialize 𝐬 = [0]𝑛 
8: for 𝑖 ← 1 to 𝑛  

9:       𝑠𝑖 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐂𝑖 , 𝐂𝑖′) 
10:       if 𝑠𝑖 ≥ 𝜏L 
11:           𝑠𝑖 = 1 
12:       else 
13:           𝑠𝑖 = 0 
14: end for 
15: // Step 3: Global score calculation 

16: compute 𝑠G =
∑ 𝑠𝑖
𝑛
𝑖=1

𝑛
 

17: return 𝑠G 

 

5.3 Experiments and discussions 

This section is devoted to presenting the experiment results for the proposed enhanced 

matching mechanism in terms of verification performance and decidability. The experiments 

are conducted on a machine with the hardware specification of Solid-State Drive 

(NVMe)@480GB, Intel Core i7-7700 CPU@2.80Hz, Memory DDR4@24GB. Realization of 

the proposed enhanced matching mechanism and formalized attack scheme are written 

using MATLAB R2019a. 

 

5.3.1 Experimental setup 

This subsection presents the experimental setup in terms of matching protocol, evaluation 

metric, dataset and feature extraction. Other than that, this subsection outlines the targeted 

cancellable biometric schemes: Index-of-Max (IoM) hashing, M∙EFV hashing and R∙HoG. 

 

A. Matching protocol and evaluation metric 

The well-known FVC full matching protocol [163] is followed to study the recognition 

performance of the biometric system. Briefly, the assessment of this protocol is mainly 

relying on the Equal Error Rate (EER) (%) that is calculated from the genuine/ impostor 

score distributions. Given a dataset with 𝑛 numbers of subject and 𝑚 numbers of biometric 

feature, the genuine/ impostor score distributions are generated via following matching 

attempts: 
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• Genuine (or intra-class) matching attempt: Crossmatch all cancellable templates from 

the same subject. Thus, a total of 𝑛 (𝑚𝐶2) genuine matching scores are generated from 

genuine matching attempts. 

 

• Impostor (or inter-class) matching attempt: Crossmatch all cancellable templates 

generated from the first biometric feature of different subjects. This yield 𝑛𝐶2 impostor 

matching scores for the entire impostor matching attempt. 

 

On the other hand, decidability [89] is another important metric in this research to indicate 

the separation between the genuine and impostor score distributions. Decidability (𝑑′) is a 

decision-making measurement that is determined based on the means and variances of the 

genuine and impostor score distributions. Given the genuine and impostor score 

distributions that are generated based on the FVC full matching protocol [163], the mean 

(𝜇gen, 𝜇imp) and variance (𝜎gen
2 , 𝜎imp

2 ) of the score distributions are first calculated. After that, 

the formula in [89] is followed to calculate the decidability 𝑑′: 

 

 
𝑑′ =

|𝜇gen − 𝜇imp|

√0.5(𝜎gen2 + 𝜎imp
2 )

  
(5.3) 

 

The higher 𝑑′ is calculated when there is a high separation of the score distributions. Thus, 

it indicates a good decision environment for a biometric system when the computed 𝑑′ is 

high [89]. 

 

Since randomly generated auxiliary information is involved in the tested cancellable 

biometric schemes and the proposed enhanced matching mechanism, each experiment is 

conducted up to 5 times with different sets of auxiliary information for a more precise reading 

of Equal Error Rate (EER) and decidability (𝑑′). To be noted, each experiment is conducted 

under the worst-case assumption where the auxiliary information (e.g., transformation key 

𝐑 for cancellable transformation or permutation seed 𝐏 for the proposed enhanced matching 

mechanism) is compromised by the adversary (stolen-token scenario). Hence, the same 

auxiliary information is shared among the subjects in each experiment. On the other hand, 

since the M∙EFV hashing [Chapter 4] is a tokenless scheme, there is no stolen-token 
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scenario. The experiments for M∙EFV hashing are conducted by assuming every individual 

uses the pre-stored information to generate the query instance for matching, which is similar 

to the stolen-token scenario. 

 

B. Dataset and feature extraction 

This subsection shows the employed datasets and feature extraction methods in the 

experiments. For the fingerprint modality, six benchmarking datasets, i.e., FVC2002 (DB1, 

DB2 and DB3) [73] and FVC2004 (DB1, DB2 and DB3) [74] are employed. Each fingerprint 

subset consists of 100 subjects and 8 fingerprint images per subject. Fingerprint vector 

extraction technique originated from [62] is adopted to extract the fingerprint vector 

𝐱fingerprint ∈ ℝ
1×256 from the fingerprint image. Given a fingerprint image, the fingerprint 

vector extraction processes are: (i) Extract the minutiae point set from the fingerprint image 

via the open-source tool, i.e., FingerJetFXOSE [166], (ii) Transform the extracted minutiae 

point set to Minutia Cylinder Code (MCC) descriptor [63] and (iii) KPCA-based learning is 

employed to convert the MCC descriptor to the fixed-length fingerprint vector 𝐱fingerprint ∈

ℝ1×256 . Since the adopted technique is a learning-based method, the first 3 fingerprint 

images per subject are employed for learning phase, while the remaining 5  fingerprint 

images are used to generate the fingerprint vector. Therefore, for each subset, a total of 

500 (100 × 5) fingerprint vectors 𝐱fingerprint ∈ ℝ
1×256 are extracted.  

 

For the face modality, this chapter employed the publicly available dataset, namely the 

Labeled Faces in the Wild (LFW) [84]. The LFW dataset consists of 13233 face images from 

5749 subjects. To standardize the matching numbers for each subject in the matching 

protocol [163] as well as pairing with the FVC2004 dataset for experiments, the top 100 

subjects with 5 face samples from the dataset are chosen as the testing set. The well-known 

face vector extraction technique, namely the FaceNet [36], is employed to extract the face 

vector 𝐱face ∈ ℝ
1×256 from the face image. Given the face image, FaceNet first employs the 

MTCNN [171] to crop and align the image into a 160 × 160 (pixel) image. After that, an end-

to-end learning process is conducted to learn a real-valued vector 𝐱face ∈ ℝ
1×256 from the 

face image [36]. In this thesis, the face feature extraction is conducted using the pre-trained 

model that was trained based on the MS-Celeb-1M dataset [164]. The extraction and pre-

trained model are adopted from David Sandberg’s open-source implementation [165]. To 

sum up, a total of 500 face vectors 𝐱face ∈ ℝ
1×256 are extracted for the experiments. 
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For the iris modality, the CASIA-IrisV3-Internal dataset [52] is chosen for the experiment. 

This dataset is heavily used by existing cancellable biometrics works (e.g., [53], [94]). Briefly, 

this dataset contains 249 subjects with different amounts of iris images. To standardize the 

matching numbers for each subject in the matching protocol [163], the dataset is a subset 

by choosing the subjects with 7 left iris images. Therefore, a total of 868 iris images are used 

for generating the irisCode. This chapter adopts the irisCode extraction methods originated 

from [49], [50] to extract the irisCode 𝐗iris ∈ [0,1]
20×512 . The table below tabulates the 

verification performance of the face, fingerprint and iris datasets that are examined based 

on the FVC full matching protocol [163]. Due to the fact that the extracted irisCode 

possesses an alignment issue, the pre-alignment matching approach from [144] is followed 

to obtain the optimal verification performance. 

 

Table 5.2: Summary of verification performance for the unprotected biometric systems 

Dataset EER (%) 

FVC2002 DB1 0.15 

FVC2002 DB2 0.49 

FVC2002 DB3 2.47 

FVC2004 DB1 2.11 

FVC2004 DB2 5.08 

FVC2004 DB3 3.62 

LFW 0.60 

CASIA-IrisV3-Internal (±16 bits 
shifting) 

0.50 

 

C. Targeted system 

In the experiment, the proposed enhanced matching mechanism and formalized attack 

scheme are tested on several cancellable biometric schemes for different biometric 

modalities, including the Index-of-Max (IoM) hashing-based fingerprint system [66] and 

R∙HoG-based iris system Chapter 3 and the M∙EFV-based multimodal system Chapter 4. 

This subsection discusses the transformation process of the tested cancellable biometric 

schemes. 

 

IoM Hashing [66]: Index-of-Max (IoM) Hashing [66] is one of the recently developed 

fingerprint cancellable biometric schemes. The core concept of IoM Hashing relies on the 

locality sensitive hashing (LSH)-based transformation that hashes the input fingerprint 

vector  𝐱fingerprint ∈ ℝ
1×256 into a set of independent integer hash codes, which is then used 
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to form the cancellable template. Given a set of random projection matrices 𝐏 = {𝐏1, … , 𝐏𝑞} 

where each 𝐏𝑖 ∈ ℝ
𝑙iom×256 , the procedures to transform the 𝐱fingerprint ∈ ℝ

1×256  to the 

cancellable template 𝐜 ∈ [0, 𝑙iom − 1]
𝑞 are as below: 

 

3) Project 𝐱 onto a random sub-space and form a projected vector 𝐯𝑖 ∈ ℝ
𝑙iom by computing 

𝐯𝑖 = 𝐱 ∙ 𝐏𝑖. 

 

4) Record the index value which corresponds to the maximum value in the 𝐯𝑖 as the IoM 

hashed code 𝑐𝑖: 

 𝑐𝑖  = argmax(𝐯𝑖) (5.4) 

 

where argmax(. ) is the argument maximum function. 

 

Steps 1 and 2 are repeated for 𝑖 = 1…𝑞 times until the 𝐜 ∈ [0, 𝑙iom − 1]
𝑞  is formed. This 

chapter considers the commonly used normalized Euclidean similarity as the matcher to 

quantify the similarity between a pair of cancellable templates. Given a pair of IoM 

cancellable templates (𝐜 and 𝐜′), the similarity score 𝑆 is computed as follow: 

 

 
𝑆 = 1 −

||𝐜 − 𝐜′||𝟐
||𝐜||𝟐 + ||𝐜′||𝟐

 
(5.5) 

 

where ||. ||𝟐 is a norm function. In the IoM hashing, there are two parameters 𝑙iom and 𝑞, with 

𝑙iom  controls the value upper-bound of the 𝐜  and 𝑞  controls the dimension of the 𝐜 . 

According to [66], the parameters 𝑙iom doesn’t affect the EER of the protected system too 

much; thus, 𝑙iom in this research is fixed at 16. Table below tabulates the EERs of the 

protected fingerprint system with different settings of 𝑞. 

 

Table 5.3: EER of the protected fingerprint system under 𝑙iom = 16 and different 𝑞 in FVC2002 dataset 

Parameter 
𝑞 

Equal Error Rate (EER) (%) 

DB1 DB2 DB3 

10 25.67 24.69 30.92 

20 18.26 17.79 25.95 

50 9.70 9.79 18.26 

100 5.05 5.33 13.19 

150 3.32 3.85 10.86 

250 1.69 2.55 8.39 

𝟓𝟎𝟎 𝟎. 𝟕𝟎 𝟏. 𝟔𝟔 𝟔. 𝟏𝟕 
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Other than the IoM hashing, the proposed matching mechanism and formalized attack 

scheme are also tested on the Random Augmented Histogram of Oriented Gradient (R∙HoG) 

and Multimodal Extended Feature Vector (M∙EFV) Hashing, which are introduced in Chapter 

3 and Chapter 4. The former scheme is an alignment-robust iris template protection scheme 

that transforms unaligned irisCode into an alignment-robust cancellable template, while the 

latter scheme is a tokenless (face and fingerprint)-based multimodal template protection 

scheme that fuses the face and fingerprint vector into a single cancellable template. 

Cancellable templates for both schemes are generated with the best-tuned parameters as 

mentioned in Sections 3.4.2C (R∙HoG) and 4.5.2D (M∙EFV hashing).  

 

Table 5.4 tabulates the summary of the verification performance for the R∙HoG and M∙EFV 

hashing. Other than that, the parameter settings of the tested cancellable biometric schemes 

are tabulated in Table 5.6. To be noted, some parameters are different for the original and 

enhanced schemes. In the experiments, the undersampling size (i.e., 𝑙 and 𝑜) is fixed and 

the settings are listed in Table 5.5. It is noted that the undersampling process for the irisCode 

in R∙HoG is carried out on the column vector-wise basis due to the iris alignment issue (refer 

to Chapter 3 for the alignment issue). 

 

Table 5.4: Verification performance of M∙EFV hashing and R∙HoG with best-tuned parameters 

Method Dataset 
Equal Error Rate 

(EER) (%) 

M ∙ EFV hashing 
[Chapter 4] 

FVC2004 DB1 + LFW 0.38 

FVC2004 DB2 + LFW 0.78 

FVC2004 DB3 + LFW 0.66 

R∙HoG [Chapter 3] CASIA V3 0.62 

 

 

 

Table 5.5: Random undersampling size for the tested cancellable biometric schemes 

Method 
Random Undersampling Size 

𝑙 𝑜 

IoM hashing 1 100 

R∙HoG 15 512 

M∙EFV hashing 1 200 
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Table 5.6: Summary of the parameter setting for the tested cancellable biometric schemes 

Parameter Value 

IoM Hashing 

𝑞 500 (Without enhanced matching 
mechanism) 

𝑜 (With enhanced matching mechanism) 

𝑙iom 16 

M∙EFV Hashing 

𝛼 - 

𝑚 2 

𝑞 

size of the input biometric vector (Without 
enhanced matching mechanism) 

𝑜 (With enhanced matching mechanism) 

𝑛MEFV 55 

𝑠 1 

𝑘 3 

𝛽 3 

R∙HoG 

𝑑 250 (Without enhanced matching 
mechanism) 

75 (With enhanced matching mechanism) 

𝑎 32 

𝑏 1 

ℎ 4 

𝛽 

𝑑

𝑏
 (Without enhanced matching mechanism) 

𝑜RHOG (With enhanced matching mechanism) 

 

5.3.2 Performance evaluation and parameter estimation 

This subsection presents the experimental result of selecting the best-tuned parameters for 

the proposed enhanced matching mechanism, i.e., number of local cancellable template 𝑛 

and local quantization threshold 𝜏𝐿. 

 

A. Effect of local quantization threshold 𝜏𝐿 

Recall the methodology, in the matching phase, a local matching is conducted between 𝑛 

numbers of the pre-stored cancellable templates and query templates to produce the local 

similarity score vector 𝐬 ∈ ℝ𝑛 where each 0 ≤ 𝑠𝑖 ≤ 1 and 𝑖 = 1…𝑛. After that, each 𝑠𝑖 ∈ 𝐬 is 

quantized to 0 or 1 according to the parameter 𝜏𝐿 where the 𝑠𝑖 ≥ 𝜏𝐿 is quantized to 1 and 

𝑠𝑖 < 𝜏𝐿 is quantized to 0. Lastly, the final matching score 𝑠G is calculated by averaging the 

quantized 𝐬, i.e., 𝑠G =
∑ 𝑠𝑖
𝑛

𝑖=1

𝑛
. Since the 𝑠G is calculated based on the quantized 𝐬, the local 

quantization process is crucial towards the verification performance of the proposed 

enhanced matching mechanism. Specifically, inappropriate setting of the parameter 𝜏𝐿 

could lead to the following unfavorable scenarios:  
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• Scenario-1 (high value of 𝜏𝐿): When the 𝜏𝐿 is tuned to a high value, each 𝑠𝑖 ∈ 𝐬 in the 

genuine comparison is hard to achieve the requirement of 𝑠𝑖 ≥ 𝜏𝐿; and hence resulting 

in the majority of the 𝑠𝑖 ∈ 𝐬 are quantized into 0. Subsequently, the value of the final 

matching score 𝑠G  for the genuine comparison is highly overlap with the impostor 

comparison. A high false rejection rate (FRR) and low decidability (𝑑′) could be observed 

in this scenario. 

 

• Scenario-2 (low value of 𝜏𝐿): In the case that the 𝜏𝐿 is tuned to a low value, each 𝑠𝑖 ∈ 𝐬 

in the impostor comparison could easily surpass the 𝜏𝐿 and then be quantized into 1, 

which results in the calculated 𝑠G possesses a high value (close to the upper bound of 

the similarity score distribution). Therefore, the impostor score distribution is “shifted” to 

the right-side and overlaps with the genuine score distribution. An observation in this 

scenario could be a high false acceptance rate (FAR) and low decidability (𝑑′). 

 

As mentioned above, inappropriate setting of 𝜏𝐿  could significantly affect the verification 

performance of the authentication process in terms of the FAR and FRR. Therefore, several 

experiments are conducted to evaluate the effect of 𝜏𝐿  towards the proposed enhanced 

matching mechanism and select a suitable setting of 𝜏𝐿. In the experiments, the initial value 

of the 𝜏𝐿  is varying based on the tested schemes. To testify the effect of 𝜏𝐿 , several 

experiments are conducted by setting the 𝜏𝐿 with the interval of ±0.1, while the 𝑛 is fixed at 

30 . The remaining parameters are based on Table 5.6 and Table 5.5. Since the 

aforementioned reasonings emphasized the FAR and FRR in the system, the experiments 

focus on examining the effect of 𝜏𝐿 towards the FAR, FRR and 𝑑′ of the system. 

 

Experimental results for the tested cancellable biometric schemes are tabulated in the tables 

below. From the tabulated results, it is observed that the tested systems possess high FAR 

and low 𝑑′ when the 𝜏𝐿 is set to a low value. This is expected from the reasoning above, 

where the impostor matching scores are averagely higher and skew to the genuine matching 

scores, which results in high overlapping between both score distributions. With the 

increment of the 𝜏𝐿, it is observed that the FARs are greatly reduced. In the meantime, the 

FRRs are slightly increasing. However, the slight increment of FRRs is still acceptable to 

trade with the huge decrement of FAR. For instance, in the tested IoM-based fingerprint 

system in FVC2002 DB1, the system performance is changed from {FAR= 83.52% ; 
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FRR=0.00%, 𝑑′ = 0.59} to {FAR=0.24%; FRR=0.38%, 𝑑′ = 9.36} when 𝜏𝐿  increased from 

0.57 to 0.67. With the increment of 𝜏𝐿, it is observed that the 𝑑′ continues to be increased. 

However, when the 𝜏𝐿 is set too high, the FRRs start to increase. This is as expected where 

the local matching scores in the genuine comparison cannot surpass the 𝜏𝐿 and resulting in 

the final matching score of genuine comparison skew to the impostor comparison. From the 

results, it shows the inappropriate setting of 𝜏𝐿 could lead to scenario-1 and scenario-2 in 

the system. It is observed that 𝜏𝐿 = 0.67 (for IoM hashing), 𝜏𝐿 = 0.62 (MEFV hashing) and 

𝜏𝐿 = 0.415 (for RHoG) serve the best effect in enhancing the verification performance (EER) 

and decidability (𝑑′). 

 

Table 5.7: Effect of different 𝜏𝐿 in IoM Hashing-based fingerprint system (FVC2002 dataset) 

Parameters False Acceptance 
Rate (FAR) (%) 

False Rejection 
Rate (FRR) (%) 

Decidability (𝑑′) 
𝑛 𝜏𝐿 

FVC2002 DB1 

30 

0.57 83.52 0.00 0.59 

𝟎. 𝟔𝟕 𝟎. 𝟐𝟒 𝟎. 𝟑𝟖 𝟗. 𝟑𝟔 
0.77 0.00 21.96 1.35 

FVC2002 DB2 

30 

0.57 84.86 0.00 0.57 

𝟎. 𝟔𝟕 𝟎. 𝟒𝟑 𝟎. 𝟓𝟖 𝟕. 𝟔𝟏 
0.77 0.00 17.10 1.54 

FVC2002 DB3 

30 

0.57 83.51 0.66 0.56 

𝟎. 𝟔𝟕 𝟓. 𝟒𝟗 𝟒. 𝟑𝟎 𝟑. 𝟕𝟓 
0.77 0.00 49.46 0.88 

 

 

Table 5.8: Effect of different 𝜏𝐿 in M∙EFV Hashing-based multimodal system (FVC 2004 + LFW dataset)  

Parameters False Acceptance 
Rate (FAR) (%) 

False Rejection 
Rate (FRR) (%) 

Decidability (𝑑′) 
𝑛 𝜏𝐿 

FVC2004 DB1 + LFW 

30 

0.52 0.31 0.07 4.74 
𝟎. 𝟔𝟐 𝟎. 𝟏𝟑   𝟎. 𝟏𝟕 𝟗. 𝟏𝟓 
0.72 0.01 9.33 1.82 

FVC2004 DB2 + LFW 

30 

0.52 0.31 0.30 4.65 
𝟎. 𝟔𝟐 𝟎. 𝟑𝟏 𝟎. 𝟑𝟑 𝟔. 𝟐𝟓 
0.72 0.00 17.53  1.56 

FVC2004 DB3 + LFW 

30 

0.52 0.48 0.23 4.45 
𝟎. 𝟔𝟐 𝟎. 𝟐𝟒 𝟎. 𝟐𝟕 𝟕. 𝟒𝟔 
0.72 0.00 13.50 1.73 
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Table 5.9: Effect of different 𝜏𝐿 in R∙HoG-based iris system (CASIA v3 dataset) 

Parameters False Acceptance 
Rate (FAR) (%) 

False Rejection 
Rate (FRR) (%) 

Decidability (𝑑′) 
𝑛 𝜏𝐿 

30 

𝟎. 𝟑𝟏𝟓 85.36 0.00 0.53 
𝟎. 𝟒𝟏𝟓 𝟎. 𝟓𝟎 𝟎. 𝟔𝟗 𝟕. 𝟎𝟎 
𝟎. 𝟓𝟏𝟓 0.00 50.79 0.91 

 

B. Effect of parameter 𝑛 

In the proposed enhanced matching mechanism, there are two phases: (i) transformation 

and (ii) matching. In transformation, multiple cancellable templates are generated from the 

input biometric feature and stored into the dataset. As such, in the matching phase, 

comparison between the query instances and the pre-stored cancellable template set will 

produce multiple local similarity scores, which are then be quantified into 0 or 1. The final 

matching score is calculated by averaging the quantized local scores. In the proposed 

matching mechanism, the parameter 𝑛 is used to control the numbers of the generated 

cancellable templates as well as the numbers of the local similarity score produced in the 

matching phase. To examine the effect of 𝑛 towards the decidability (𝑑′) and verification 

performance of the cancellable biometrics-enabled system, several experiments are 

conducted by setting the 𝑛 from 1 until 100; while the parameter 𝜏L is fixed to the best-tuned 

setting acquired from the previous section. In the experiments, the cancellable templates 

are generated using the best-tuned parameters that are mentioned in Section 5.3.1C. It is 

noted that the proposed matching mechanism is merely a single-phase score quantization 

scheme when 𝑛 = 1 since there is only 1 local similarity score produced. Thus, in the case 

that 𝑛 = 1, the recognition performance of the system is easily affected by the local similarity 

score, especially the outlier in the genuine and impostor matchings (refer to the false 

rejection and false acceptance).  

 

The experimental results for the targeted systems under different 𝑛 are tabulated in the 

tables below. In addition, Fig 5.3 visualizes the genuine and impostor score distributions for 

the M∙EFV hashing-based multimodal system under the cases of: 

 

a) The cancellable biometric scheme is operated in its original construction. 

 

b) The cancellable biometric scheme is enhanced by the proposed enhanced matching 

mechanism with parameter 𝑛 = 30. 
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c) The cancellable biometric scheme is enhanced by the proposed enhanced matching 

mechanism with parameter 𝑛 = 100. 

 

 

Fig 5.3. Genuine and distribution score distributions for M∙EFV Hashing-based multimodal system where (a) 
is the original construction, (b) is after being enhanced with 𝑛 = 30 and (c) is after being enhanced with 𝑛 =
100 

 

From Fig 5.3, it is observed that the mean of genuine/ impostor score distributions are close 

to each other when the M∙EFV hashing is not enhanced. After applying the proposed 

enhanced matching mechanism, the mean of genuine/ impostor score distributions is highly 

separated. In this sense, the proposed enhanced matching mechanism achieves the effect 

of improving decidability. From the tabulated results, it is observed that the EERs are starting 

at the highest point when 𝑛 = 1. This is as expected where the final matching score 𝑠G in 

single-phase score quantization (𝑛 = 1 ) is directly calculated by quantizing one local 

matching score 𝑠𝑖  where 𝑖 = 1. In this case, the outlier(s) in the genuine and impostor 

comparisons could easily affect the verification performance of the system. It is observed 

that the increment of 𝑛 leads to the higher separation between the genuine/ impostor score 

distributions (higher 𝑑′) and better verification performance (lower EER) in the systems. This 

implies the parameter 𝑛 is taking effect in enhancing the decision environment of the system 

in terms of EER and 𝑑′. The EERs and 𝑑′s of the systems are improved significantly when 

𝑛 increased from 1 to 30. After that, the improvement of the decision environment is at a 

slower pace when 𝑛 > 30. From the results, 𝑑′ is observed to be increased alongside the 

increment of 𝑛. Throughout the experiments, it is observed that the 𝑛 = 100 serves the best 

effect since the EER and 𝑑′ are averagely desirable in every tested dataset. Therefore, 𝑛 =

100 is concluded to be the best-tuned setting in the experiment. 
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Table 5.10: Effect of different 𝑛 in IoM Hashing-based fingerprint system (FVC2002 dataset) 

Parameters Equal Error Rate 
(EER) (%) 

Decidability (𝑑′) 
 𝜏𝐿 𝑛 

FVC2002 DB1 

0.67 

1 5.89 3.81 
5 1.73 6.96 
10 1.08 7.85 

15 0.77 8.56 
30 0.21 9.36 
50 0.17 9.65 
𝟏𝟎𝟎 𝟎. 𝟏𝟑 𝟏𝟎. 𝟑𝟎 

FVC2002 DB2 

0.67 

1 6.48 3.56 
5 2.54 5.93 
10 1.29 6.62 

15 0.99 7.11 
30 0.50 7.61 
50 0.43 7.71 
𝟏𝟎𝟎 𝟎. 𝟑𝟔 𝟕. 𝟕𝟓 

FVC2002 DB3 

0.67 

1 12.88 2.28 
5 6.79 3.27 
10 7.26 3.53 

15 4.94 3.61 
30 4.89 3.75 
50 4.31 3.78 
𝟏𝟎𝟎 𝟐. 𝟗𝟏 𝟑. 𝟖𝟒 

Table 5.11: Effect of different 𝑛 in M∙EFV Hashing-based multimodal system (FVC2004 + LFW dataset) 

Parameters Equal Error Rate 
(EER) (%) 

Decidability (𝑑′) 
 𝜏𝐿 𝑛 

FVC2004 DB1 + LFW 

0.62 

1 3.58 5.12 
5 0.58 7.55 
10 0.29  8.80 
15 0.22 9.06 
30 0.15 9.15 
50 0.09 9.37 
𝟏𝟎𝟎 𝟎. 𝟏𝟏 𝟗. 𝟔𝟐 

FVC2004 DB2 + LFW 

0.62 

1 5.66  3.96 
5 1.00 5.42 
10 0.82 6.01 
15 0.51 6.15 
30 0.32 6.25 
50 0.22 6.29 
𝟏𝟎𝟎 𝟎. 𝟐𝟕 𝟔. 𝟒𝟏 

FVC2004 DB3 + LFW 

0.62 

1 4.75 4.42 
5 0.75 6.68 
10 0.81 6.82 
15 0.34 7.44 
30 0.25 7.46 
50 0.20  7.62 
𝟏𝟎𝟎 𝟎. 𝟐𝟐 𝟕. 𝟕𝟒 
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Table 5.12: Effect of different 𝑛 in R∙HoG-based iris system (CASIA v3 dataset) 

Parameters Equal Error Rate 
(EER) (%) 

Decidability (𝑑′) 
𝜏𝐿 𝑛 

0.415 

1 7.37 4.41 
5 1.58 6.55 

10 0.85 7.34 
15 0.75 6.91 
30 0.59 7.00 
50 0.63 6.77 

𝟏𝟎𝟎 𝟎. 𝟓𝟖 𝟕. 𝟎𝟐 

 

C. Summary of parameter estimation 

Throughout the parameter estimation process, several points are summarized: 

 

• In the proposed enhanced matching mechanism, the parameter 𝑛 is used to control the 

number of the local cancellable template generated as well as the number of the local 

scores. The proposed mechanism is merely a single-phase score quantization scheme 

when 𝑛 = 1. In this case, the final matching score 𝑠G is directly calculated by quantizing 

one local matching score 𝑠𝑖 where 𝑖 = 1. Therefore, the 𝑠G can be highly affected by the 

outliner in the genuine or impostor comparison and result in low verification performance 

of the system where 𝑛 = 1. The experimental results suggest the 𝑛 to be tuned to a 

higher value to improve verification performance as well as the decidability of the system. 

 

• 𝜏𝐿 is the parameter that controls the quantization process in the proposed enhanced 

matching. It is observed that the system possesses a high false acceptance rate (FAR) 

when 𝜏𝐿 is tuned to a lower value; while a high false rejection rate (FRR) is observed 

when 𝜏𝐿 is tuned too high. Therefore, selection of the 𝜏𝐿 should be very careful.  

 

From the experiments, it is concluded that the 𝑛 should be set higher to serve the best effect 

in improving the verification performance and decidability, while the 𝜏𝐿 is varied based on 

the tested system. The table below lists the best-tuned setting of the proposed enhanced 

matching mechanism for the tested cancellable biometric schemes. 
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Table 5.13: Best-tuned parameter setting of the proposed enhanced matching mechanism for the tested 
cancellable biometric schemes  

Parameter Value 

IoM Hashing-based Fingerprint System 

𝑛 100 

𝜏𝐿 0.67 

M∙EFV Hashing-based Multimodal System 

𝑛 100 

𝜏𝐿 0.62 

R∙HoG-based Iris System 

𝑛 100 

𝜏𝐿 0.415 

 

5.3.3 Verification performance and comparison 

This subsection presents the verification performance and decidability of the proposed 

enhanced matching mechanism. A comparison of the system performance in terms of equal 

error rate (EER) and decidability (𝑑′) to the original counterparts (cancellable biometric 

schemes) is conducted for benchmarking purposes. The cancellable templates are 

generated using the best-tuned parameters listed in Table 5.6, and the proposed enhanced 

matching mechanism is operated using the best-tuned parameters (see Section 5.3.2C). In 

addition, the verification performance of the tested unimodal template protection schemes 

and the-start-of-the-art schemes are listed for benchmarking purposes. From the tabulated 

results, it is observed that: 

 

• The EERs of the system after applying the proposed enhanced matching mechanism is 

averagely lower compared to the unenhanced system. Besides that, it is observed that 

the 𝑑′  of the cancellable biometric schemes after applying the proposed matching 

mechanism is higher than the original construction of the tested schemes. This is 

attributed to the local quantization mechanism in the proposed scheme that enables the 

high separation between the mean of genuine/ impostor matching score distributions. 
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Table 5.14: Comparison of the EERs and 𝑑′ in the system under (i) original construction and (ii) enhanced by 
the proposed enhanced matching mechanism 

Method Subset 
Similarity 

Metric 
Equal Error Rate (EER) 

(%) 
Decidability (𝑑′) 

(Unimodal Fingerprint) FVC2002 Dataset 

IoM Hashing [66] 

DB1 

Normalized 
Euclidean 
Similarity 

0.70 4.34 

DB2 1.66 4.17 

DB3 6.17 2.82 

IoM Hashing with 
proposed matching 
mechanism (𝑛 =
100, 𝜏L = 0.67) 

DB1 𝟎. 𝟏𝟑 𝟏𝟎. 𝟑𝟎 

DB2 𝟎. 𝟑𝟔 𝟕. 𝟕𝟓 

DB3 𝟐. 𝟗𝟏 𝟑. 𝟖𝟒 

(Unimodal Iris) CASIA-IrisV3 Dataset 

R∙HoG [Chapter 3] 
CASIA-IrisV3-

Internal 
Normalized 
Euclidean 
Similarity 

0.62 3.47 

R∙HoG with 
proposed matching 
mechanism (𝑛 =
100, 𝜏L = 0.415) 

CASIA-IrisV3-
Internal 

𝟎. 𝟓𝟖 𝟕. 𝟎𝟐 

(Multimodal Fingerprint  + Face) FVC2004 + LFW Dataset  

M∙EFV hashing 
[Chapter 4] 

DB1 

Normalized 
Hamming 
Similarity 

0.38 5.37 

DB2 0.78 4.68 

DB3 0.66 4.92 

M∙EFV hashing with 
proposed matching 
mechanism (𝑛 =
100, 𝜏L = 0.62) 

DB1 𝟎. 𝟏𝟏 𝟗. 𝟔𝟐 
DB2 𝟎. 𝟐𝟕 𝟔. 𝟒𝟏 

DB3 𝟎. 𝟐𝟐 𝟕. 𝟕𝟒 

 

 

 

Table 5.15: Comparison to the state-of-the-art unimodal fingerprint template protection scheme in FVC2002 
dataset 

Method 
Equal Error Rate (EER) (%) 

DB1 DB2 DB3 

IoM Hashing without proposed 
matching mechanism [66] 

0.70 1.66 6.17 

IoM Hashing with proposed matching 
mechanism 

𝟎. 𝟏𝟑 𝟎. 𝟑𝟔 𝟐. 𝟗𝟏 

Existing scheme 

2P − MCC64,64 [126] 3.3 1.8 7.8 

Bloom Filter [167] 2.3 1.8 6.6 

Biohashing [24] 15 15 27 

Yang et al. [168] 5.75 4.71 10.22 

Wang and Hu [121] 3.5 − − 

Wang and Hu [122] 2 − − 
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Table 5.16: Comparison to the state-of-the-art unimodal iris template protection scheme in CASIA v3 dataset 

Method Pre-alignment 
Total Iris 

Images Used 

EER (%) 
without 

protection 

EER (%) 
with 

protection 

R∙HoG with proposed 
matching mechanism 

Not required 
𝟖𝟔𝟖 

(Left eye) 
𝟎. 𝟓𝟎 𝟎. 𝟓𝟖 

IFO Hashing [53] Required 
868 

(Left eye) 
0.38 0.54 

BioEncoding [103] Required 740 6.02 6.27 

Dwivedi et al. [110] Required 2639 0.39 0.43 

Bin-Combo [18] Not required 
1332 

(Left eye) 
0.81 4.41 

Adaptive Bloom Filters 
[54] 

Not required 
1332 

(Left eye) 
1.19 1.14 

Lai et al. [114] Not required 
868 

(Left eye) 
0.38 0.69 

  

5.3.4 System threshold with respect to Genuine Acceptance Rate 

This subsection reports the system threshold 𝜏G for each tested dataset with respect to the 

Genuine Acceptance Rate (%). The 𝜏G is used for estimating the attack success rate in 

Section 5.5.2C. It is noted the 𝜏G may varies due to the randomization effect (auxiliary data) 

of cancellable biometrics. 

 

Table 5.17: System threshold 𝜏G of IoM hashing-based fingerprint system with respect to Genuine Acceptance 
Rate (%) in FVC2002 dataset 

 
Genuine 

Acceptance Rate 
(%) 

System threshold 
𝜏G 

FVB2002 DB1 

Without enhanced 
matching mechanism 

95% 0.6855 

90% 0.6950 

85% 0.7034 

With enhanced matching 
mechanism 

95% 0.6900 

90% 0.8000 

85% 0.8700 

FVB2002 DB2 

Without enhanced 
matching mechanism 

95% 0.6752 

90% 0.6907 

85% 0.7021 

With enhanced matching 
mechanism 

95% 0.5400 

90% 0.7400 

85% 0.8500 

FVB2002 DB3 

Without enhanced 
matching mechanism 

95% 0.6428 

90% 0.6544 

85% 0.6639 

With enhanced matching 
mechanism 

95% 0.1600 

90% 0.3200 

85% 0.4500 
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Table 5.18: System threshold 𝜏G of R∙HoG-based fingerprint system with respect to Genuine Acceptance Rate 
(%) in CASIAv3 dataset 

 
Genuine 

Acceptance Rate 
(%) 

System threshold 
𝜏G 

Without enhanced 
matching mechanism 

95% 0.4021 

90% 0.4151 

85% 0.4219 

With enhanced matching 
mechanism 

95% 0.4700 

90% 0.7000 

85% 0.8000 

 

Table 5.19: System threshold 𝜏G  of M ∙EFV hashing-based multimodal system with respect to Genuine 
Acceptance Rate (%) in FVC2004+LFW dataset 

 
Genuine 

Acceptance Rate 
(%) 

System threshold 
𝜏G 

FVC2004 DB1+LFW 

Without enhanced 
matching mechanism 

95% 0.6251 

90% 0.6472 

85% 0.6563 

With enhanced matching 
mechanism 

95% 0.6400 

90% 0.8000 

85% 0.8700 

FVC2004 DB2+LFW 

Without enhanced 
matching mechanism 

95% 0.6050 

90% 0.6214 

85% 0.6343 

With enhanced matching 
mechanism 

95% 0.4100 

90% 0.6000 

85% 0.7100 

FVC2004 DB3+LFW 

Without enhanced 
matching mechanism 

95% 0.6180 

90% 0.6355 

85% 0.6501 

With enhanced matching 
mechanism 

95% 0.5300 

90% 0.7000 

85% 0.8000 

 

5.3.5 Computation efficiency 

Recall the methodology of the proposed enhanced matching mechanism, it involves multiple 

rounds of local cancellable template generation and local matching in which the computation 

overhead is increasing. This indicates the proposed mechanism is trading a certain level of 

computation efficiency for enhancing the decision environment. In this subsection, the time 

complexity of the cancellable biometric schemes after being enhanced by the proposed 

enhanced matching mechanism is examined to show the practicability of adapting the 

enhanced matching mechanism in a real-world application. In the experiment, the time 

complexity is tested in terms of the processing time required for the enrollment and 
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verification stages. The table below tabulates the processing time for each tested 

cancellable biometric scheme. From the tabulated results, it is observed the processing 

times of the enrollment stage are averagely higher than the verification stage. This is mainly 

due to the auxiliary data generation overhead in the enrollment stage. Nevertheless, it is a 

one-time process for the enrollment process. Other than that, a varying processing time is 

observed for different tested cancellable biometric schemes, which is mainly due to the (i) 

size of the input biometric template and (ii) complexity of the transformation function. Among 

the tested schemes, R∙HoG requires the longest processing time for both stages, and this 

is mainly due to the high computation overhead in calculating the partitioned row and column 

during the transformation process (see Section 3.3.2A). Overall, the processing time for the 

cancellable biometric schemes after being enhanced by the proposed enhanced matching 

mechanism is acceptable. 

 

Table 5.20: Time complexity of the cancellable biometric scheme after being enhanced with the proposed 
enhanced matching mechanism 

Scheme 
Time Complexity (Sec) 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Average 

Enrollment stage 

IoM Hashing 0.5016 0.5926 0.5827 0.5861 0.5658 
R∙HoG 1.3670 1.4535 1.3865 1.3960 1.4008 
M∙EFV hashing 0.5495 0.4811  0.4441 0.4605 0.4838 

Verification stage 

IoM Hashing 0.1441 0.1288 0.1320 0.1324 0.1343 
R∙HoG 1.4423 1.3939 1.3944 1.3113 1.3855 
M∙EFV hashing 0.2368 0.2446 0.2271 0.2567 0.2413 

 

5.3.6 Discussion on Attack via Record Multiplicity (ARM) 

This section discusses the feasibility for the adversary to recover the original biometric input 

𝐗 from the compromised information, i.e., cancellable template set 𝐂 and auxiliary data 

{𝐏, 𝐑} based on the Attack via Record Multiplicity (ARM) [168], [169]. ARM refers to the 

dreadful privacy attack that aims to recover the original biometric input 𝐗 from multiple 

cancellable templates and the auxiliary data. The proposed enhanced matching mechanism 

can be referring as a Single Input Multiple Output (SIMO) model that takes one biometric 

template 𝐗  as input, and then produce the cancellable template set 𝐂 = {𝐂1, 𝐂2, … . 𝐂𝑛} . 

Therefore, one might worry about the case that the 𝐂 from one or multiple applications are 

compromised for the ARM attack. A simple view of the transformation phase in the proposed 

enhanced matching mechanism is provided to leverage the analysis. Given an original 

biometric template 𝐗 , the proposed enhanced matching mechanism first random 
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undersampling the 𝐗 into an intermediate product, so-called the permuted biometric feature 

𝐕 = {𝐕1, … , 𝐕𝑛} where 𝐏 = {𝐏1, … , 𝐏𝑛} is the permutation seed set. Due to the randomization 

effect of the random undersampling process, the 𝐕𝑖 are independent of each other. After 

that, the cancellable transformation function is applied to each 𝐕𝑖  to produce the local 

cancellable template 𝐂𝑖 where the 𝐑𝑖 refers to the auxiliary data for the cancellable biometric 

scheme. In short, 𝐕 = {𝐕1, … , 𝐕𝑛} and the 𝐑 = {𝐑1, … , 𝐑𝑛} are transformed to the cancellable 

template set 𝐂 = {𝐂1, … , 𝐂𝑛}. With the random undersampling process, each 𝐕𝑖  is partial 

information of 𝐗  and hence, each 𝐂𝑖  is uncorrelated to each other. At the end of the 

enrollment phase, the intermediate product, i.e., the 𝐕 is deleted and never stored in the 

system.  

 

With the randomization effect of the cancellable biometric scheme and random 

undersampling process (generation of the 𝐕), each 𝐂𝑖 is unlikely to collide with each other, 

and hence, the feasibility of recovering the original biometric template could be deduced 

back to the irreversibility property of the IoM hashing, M∙EFV hashing and R∙HoG. The 

reader is encouraged to refer to Section 3.5.1B (R∙HoG), Section 4.6.1B (M∙EFV hashing) 

and [66] (IoM hashing) for the comprehensive discussion on the biometric template inversion 

analysis and unlinkability analysis for the respective scheme. While guaranteed by the 

irreversibility of the cancellable biometric scheme and the disposable intermediate product 

𝐕 = {𝐕1, … , 𝐕𝑛}, it is infeasible for the adversary to obtain the original biometric feature 𝐗 via 

ARM. It is also noted that the auxiliary date, i.e., 𝐏 and 𝐑 should not be re-used to prevent 

the collision of 𝐂 and 𝐂′ in different applications. 

 

5.4 Authentication attack 

Another part of this chapter is the type-4 (authentication) attack in the biometric template 

protection. In biometric template protection, authentication attack refers to a scenario where 

the adversary tries to gain illegal access to the system by means of guessed biometric input. 

To be noted, this is not a biometric template recovery attack where the guessed biometric 

input does not resemble the original biometric input. Therefore, a decent biometric template 

protection scheme could block the access of the adversary by renewing the cancellable 

template. Yet, an efficient authentication attack is still unfavorable. In this section, a practical 

authentication attack, namely the Whale Optimization Algorithm-based Authentication 

Attack (WO3A) is formalized and simulated on the tested cancellable biometric schemes. 
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5.4.1 Preliminary - Whale optimization algorithm (WOA) 

This section discusses the preliminary work on which the formalized attack scheme is built 

upon. In this work, the whale optimization algorithm (WOA) [100] is selected as the 

modification scheme to modify the guessed biometric template due to the simplicity of 

implementation. On the other hand, the formalized attack scheme can employ other 

optimization algorithms as well. Nevertheless, the intuition of formalizing the attack scheme 

is to evaluate the security resistance of the biometric system towards this type of automated 

attack scheme. Whale optimization algorithm (WOA) is a relatively new population-based 

optimization algorithm introduced by Mirjalili and Lewis [100] that mimics the humpback 

whales' predation behavior. The underlying concept of WOA relies on the unique bubble-net 

foraging method to find the optimal solution within the search space. The classical WOA is 

built upon exploitation and exploration phases, which are briefly discussed in the following 

subsections. 

 

A. Encircling prey 

Suppose 𝐗 as each search agent within the search space, the WOA aims to search for the 

optimal solution 𝐗∗ within the search space through iteratively updating the 𝐗s and 𝐗∗. In 

each iteration, the WOA first determines the 𝐗∗ and then updates each 𝐗 based on the 

exploitation and exploration phases. The coefficient 𝐴 is used to decide the phase to be 

employed in each iteration. When ||𝐴|| < 1, the WOA gets into the exploitation phase and 

updates the 𝐗 where the 𝐴 is generated by computing 𝐴 = 2𝑣𝑤 − 𝑣 where 𝑤 is a random 

value fallen within [0,1], 𝑣 = (2 − 𝑡 ∙
2

𝑡max
), 𝑡 refers to the current iteration and 𝑡max is the 

maximum iteration for the searching attempt. Exploitation can be divided into two processes: 

encircling prey and bubble-net attack. In the encircling prey mechanism, each 𝐗 is updated 

by computing  

 

 𝐗(𝑡 + 1) = 𝐗∗(𝑡) − 𝐴 ∙ 𝐷 (5.6) 

 

where 𝑡 = 1,2, … 𝑡max indicate the 𝑡-th iteration and 𝑡max is the maximum iteration, 𝐴 and 𝐶 

are the coefficients. 𝐶 and 𝐷 are calculated as follow 

 

 𝐶 = 2 ∙ 𝑤 (5.7) 
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 𝐷 = ||𝐶 ∙ 𝐗∗(𝑡) − 𝐗(𝑡)|| (5.8) 

 

B. Exploitation phase – Bubble net attack 

In bubble net attack, the 𝐗 is updated by computing 𝐗(𝑡 + 1) = 𝐷′ ∙ 𝑒𝑦𝑙 ∙ cos(2𝜋𝑙) + 𝐗∗(𝑡) 

where 𝐷′ = ||𝐗∗(𝑡) − 𝐗(𝑡)|| denote the distance between the 𝐗 and 𝐗∗, 𝑦 = 1 is a constant 

value, and 𝑙 is randomly chosen between [−1,1]. Since the exploitation phase consists of 

two different processes, WOA uses a probability variable 𝑝 that is randomly chosen from 

[0,1]  to select the process to update the 𝐗 . In short, the mathematical model of the 

exploitation phase is described as follow: 

 

 𝐗(𝑡 + 1) = {
𝐗∗(𝑡) − 𝐴 ∙ 𝐷, 𝑝 ≤ 0.5

 𝐷′ ∙ 𝑒𝑦𝑙 ∙ cos(2𝜋𝑙) + 𝐗∗(𝑡), otherwise
 (5.9) 

 

where 𝑝 ∈ [0,1] is a random number that represents the probability factor. 

 

C. Exploration phase – Prey searching 

Lastly, in the case that ||𝐴|| ≥ 1, the exploration phase is employed to modify each 𝐗. The 

motivation of the exploration phase is to diversify the search space and reduce the local 

optimal problem [100]. Specifically, each 𝐗 is updated by computing 

 

 𝐗(𝑡 + 1) = 𝐗rand(𝑡) − 𝐴 ∙ ||𝐶 ∙ 𝐗rand(𝑡) − 𝐗(𝑡)|| (5.10) 

 

where 𝑡 = 1… 𝑡max indicate the 𝑡-th iteration and 𝐗rand(𝑡) is a random position vector for the 

agent randomly selected from the current population. 

 

5.4.2 Formalized attack scheme – WO3A 

This subsection presents the formalized authentication attack: Whale Optimization 

Algorithm-based Authentication Attack (WO3A). 

 

A. Overview of attack scheme 

In this section, an optimization algorithm-based authentication attack, namely the Whale 

Optimization Algorithm-based Authentication Attack (WO3A) is formalized to attack the 

cancellable biometrics-enabled system and testify the effect of the proposed enhanced 
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matching mechanism. The main motivation of adopting the whale optimization algorithm 

(WOA) [100] in the WO3A is that there are fewer parameters to be tuned since most of the 

parameters in the WOA are randomly generated. The essence of this attack scheme is that 

it is an automated attack framework that is not based on the manual perturbation of the 

guessed biometric template during the attack. Thus, the formalized WO3A offers a certain 

level of efficiency in attacking the system as compared to the manual hill-climbing approach.  

 

 

Fig 5.4. Overview of the formalized attack framework 

 

The formalized attack is a type-4 attack that is cast as an authentication attack that aims to 

gain illegal access to the system by means of guessed biometric preimage 𝐗∗ where the 𝐗∗ 

is not the same as the original biometric input 𝐗. 

 

Attack scenario: Assuming a scenario where the adversary knows the auxiliary data 𝐑 that 

is corresponding to the victim cancellable template 𝐂, the adversary tries to gain illegal 

access to the system. The adversary attempts to use WO3A guess a suitable biometric 

preimage 𝐗∗ that can be used to generate a fake cancellable template 𝐂∗ such that the 

similarity between the victim’s pre-stored cancellable template 𝐂 can surpass the system 

threshold 𝜏. It is noted that the estimated 𝐗∗ is not sufficient for a replay attack where the 

renewal of the cancellable template 𝐂 could block the access. This is because the estimated 

𝐗∗ is not similar to the original 𝐗. Yet, an efficient type-4 attack could lead to serious issues, 

especially when the user could not renew the cancellable template in the given time. 
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Instead of using a manual hill-climbing approach to update the 𝐗∗  (e.g., perturb fixed 

numbers of elements in 𝐗∗ in each attack iteration), an optimization algorithm is employed. 

In this section, a Whale Optimization Algorithm (WOA) inspired attack scheme, namely the 

Optimization Algorithm Authentication Attack (WO3A) is formalized. In essence, the 

formalized WO3A is an iterative modification scheme that is formed by three main processes 

(see Fig 5.4): 

 

1) Assuming the adversary knows the template format of the input biometric feature set 

(e.g., feature dimension, value type and distribution) based on his own feature, 𝑛 

numbers of guessed biometric template 𝐗′s are first initialized where the value of each 

𝐗′𝑖  is randomly generated based on the value distribution determined and 𝑖 = 1…𝑢. 

Other than that, the attack scheme is able to intercept the matching score 𝑆 from the 

system. 

 

2) 𝑢 numbers of 𝐗′s are iteratively inputted to the cancellable biometrics-enabled system to 

have the query cancellable templates 𝐂′s to be generated. After that, the generated 𝐂′s 

are matched to the pre-stored cancellable template 𝒄, and 𝑛 numbers of matching scores 

𝑠 are returned to the attack framework.  

 

3) Update the best biometric preimage 𝐗∗ based on the similarity score returned. To be 

noted, biometric preimage 𝐗∗ is the best instance (highest similarity score) chosen from 

𝐗′s. After that, perturb each 𝐗′𝑖 ∈ 𝐗
′ via the modification scheme in the WO3A. 

 

B. Detailed approach 

In this subsection, the details of the formalized Whale Optimization Algorithm-based 

Authentication Attack (WO3A) are explained. The WO3A is a new variation of the well-

known Whale Optimization Algorithm [100] that can be cast as an authentication attack 

towards the biometric system. Since WO3A is an optimization algorithm-driven scheme, the 

cancellable transformation and comparison are used to mimic the objective function 

evaluation. A simple view of the transformation and comparison are explained as below: 

 

• Cancellable transformation and comparison: The guessed biometric template 𝐗′ is 

transformed via the targeted cancellable biometric scheme and the resultant cancellable 

template 𝐂′  is matched to the pre-stored cancellable template 𝐂  from the template 
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storage using the system matcher (e.g., canonical Cosine similarity or the proposed 

enhanced matching mechanism). Lastly, a normalized similarity score 𝑠 is returned as 

the matching result.  

 

Other than that, two new mechanisms: the uni-step binarization and adaptive mutation, are 

introduced in the WO3A to expand the genericity of the attack scheme and improve the 

attack efficiency. The mechanisms are explained as below: 

 

• Uni-step binarization function: Since the classical Whale Optimization Algorithm [100] 

is designed for finding the optimal solution in a real-valued space, it is not suitable for 

the cancellable biometrics-enabled system that requires binarized input. To increase the 

genericity of the attack framework, the uni-step binarization function is applied to allow 

the WO3A to produce the binarized instance and input it into the cancellable 

transformation function for the attack attempt. 

 

• Adaptive mutation mechanism: It is noticed from the literature that the classical Whale 

Optimization Algorithm suffers from slow convergence when dealing with high dimension 

data [172]. To accelerate the efficiency of the WO3A for obtaining a 𝐗∗ with high 𝑠∗, an 

adaptive mutation mechanism is applied to further diversify guessed biometric templates 

𝐗′  after the modification process in each attack iteration. Specifically, the mutation 

mechanism choose a random portion from each 𝐗𝑖
′ and random scrambling it where 𝑖 =

1…𝑢 indicates the 𝑖-th guessed template in 𝐗′. To prevent the randomization effect of 

the mutation dominating the WO3A, the mutation occurs with the possibility that is 

bounded between 0.2 (or 20%) and 0.5 (or 50%). 

 

Suppose a cancellable transformation 𝑓(𝐗,𝐑) → 𝐂  where 𝐗 ∈ ℝ𝑎×𝑏 , 𝐑 ∈ ℝ𝑞×𝑒 , 𝐂 ∈ ℝ𝑘×𝑚  

respectively represent the input biometric feature, auxiliary data and the produced 

cancellable template, the formalized attack scheme is a population-based iterative 

modification scheme that aims to find a 𝐗∗ ∈ ℝ𝑎×𝑏 such that 𝑓(𝐗∗, 𝐑)~𝑓(𝐗,𝐑). Consider a 

worst-case scenario where the adversary compromised the auxiliary data 𝐑 ∈ ℝ𝑑×𝑒 , the 

adversary first randomly generates a population of guessed templates 𝐗′ = {𝐗′1, 𝐗′2, … , 𝐗′𝑢} 

where each 𝐗′𝑖 ∈ ℝ
𝑎×𝑏 is randomly generated and 𝑖 = 1…𝑢. Then, the procedures below 

are followed to obtain the 𝐗∗ ∈ ℝ𝑎×𝑏:  

 



168 

 

1) Cancellable transformation and comparison: Each of the 𝐗′𝑖  and 𝐑 are iteratively 

injected into the system for comparison and the similarity score 𝑠𝑖 is intercepted where 

𝑖 = 1…𝑢 indicated the 𝑖-th guessed template from the population. In particular, each 𝐗′𝑖 

and 𝐑 are first inputted to the cancellable transformation function 𝑓(. ) to have the query 

cancellable template 𝐂′𝑖 to be generated. If the 𝑓(. ) requires binarized input, the uni-step 

binarization function is applied to generate the binarized instance 𝐗̈′𝑖 of 𝐗′𝑖 and use it as 

the input for the cancellable transformation function. The binarized instance 𝐗̈′ is formed 

by computing each 𝑥̈′𝑖𝑗 ∈ 𝐗̈′ as below 

 

 
𝑥̈′𝑖𝑗 = {

0, 𝑥′𝑖𝑗 < 0

1, 𝑥′𝑖𝑗 ≥ 1
 

(5.11) 

 

where 𝑖 = 1…𝑎  and 𝑗 = 1…𝑏 . After that, the 𝐂′𝑖  is compared to the pre-stored 

cancellable template 𝐂 using the system matcher. The similarity score 𝑠𝑖 is intercepted 

by the attack scheme and stored into a score vector 𝐬.  

 

2) Best template selection: Given the population of guessed templates 𝐗′ =

{𝐗′1, 𝐗′2, … , 𝐗′𝑢} and the score vector 𝐬 = [𝑠1, 𝑠2, … , 𝑠𝑢], the 𝐗∗ ∈ ℝ𝑎×𝑏 is selected. If the 

current attack iteration is the first iteration, the 𝐗′𝑖 with the best similarity score 𝑠𝑖 is set 

as 𝐗∗  where 𝑖 = idxmax(𝐬) and idxmax(. ) denote the function to determine the index 

value of the maximum value in the input vector (𝐬 in this context). For the remaining 

attack iterations, a comparison between the similarity scores of the 𝐗∗ and 𝐗′𝑖, i.e., the 

𝑠∗ and 𝑠′𝑖. If 𝑠′𝑖 ≥ 𝑠
∗, update the 𝐗∗ by setting 𝐗∗ = 𝐗′𝑖. To be noticed, the 𝑠∗ is recorded 

for comparison purposes. If the 𝑠∗ ≥ 𝜏, the attack scheme immediate stops the process 

and returns the 𝐗∗ and the 𝑠∗ as a result.  

 

3) Perturbation of the guessed templates: In this step, each of the 𝐗′𝑖 ∈ 𝐗 is perturbed 

to diversify the search space (𝐗) so that the formalized WO3A able to efficiently find 𝐗∗ 

with higher 𝑠∗. In the formalized attack scheme, the modification scheme from the Whale 

Optimization Algorithm [100] is adopted as the primary process to perturb the guess 

biometric templates. Briefly, there are two types of perturbation process in [100]: 

exploitation and searching in this step. Two coefficients, i.e., 𝐴 and 𝐶 are used to decide 

the type of perturbation in each iteration of attack. Given a 𝑤 that is randomly chosen 
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between [0,1]  and 𝑣 = (2 − 𝑡
2

𝑡max
)  where 𝑡  refer to the 𝑡 -th attack iteration, 𝐴  is 

calculated as 𝐴 = 2𝑣𝑤 − 𝑣, while 𝐶 = 2𝑤. When ||𝐴|| ≥ 1, searching is carried out to 

perturb each 𝐗′𝑖 ∈ 𝐗 where 𝑖 = 1…𝑢. In searching, each 𝐗′𝑖 is computed as 

 

 𝐗′𝑖 = 𝐗rand
′ − 𝐴 ∙ ||𝐶 ∙ 𝐗rand

′ − 𝐗′𝑖|| (5.12) 

 

where 𝐗rand
′  is randomly chosen from the guessed templates 𝐗′ = {𝐗′1, 𝐗′2, … , 𝐗′𝑢}. On 

the other hand, exploitation is conducted to perturb each 𝐗′𝑖 ∈ 𝐗  when ||𝐴|| < 1 . In 

exploitation, the perturbation process is controlled by the parameter 𝑝 which is randomly 

generated from [0,1]. Specifically, each 𝐗′𝑖 ∈ 𝐗 is computed as: 

 

 𝐗′𝑖 = {
𝐗∗ − 𝐴 ∙ 𝐷, 𝑝 ≤ 0.5

 𝐷′ ∙ 𝑒𝑦𝑙 ∙ cos(2𝜋𝑙) + 𝐗∗, otherwise
 (5.13) 

 

where 𝐷 = ||𝐶𝐗∗ − 𝐗′𝑖||, 𝑦 = 1 and 𝑙 is randomly chosen from [−1,1]. 

 

4) Adaptive mutation mechanism: To prevent the bottleneck of updating the 𝐗∗  (or 

maximizing the 𝑠∗), an adaptive mutation mechanism is introduced to further diversify 

the 𝐗′ = {𝐗′1, 𝐗′2, … , 𝐗′𝑢}. Given a mutation possibility 𝑝𝑚 = 0.2, a random value between 

𝑝̈𝑚 ∈ [0,1] if first generated. If 𝑝̈𝑚 ≥ 𝑝𝑚, the random scrambling process is applied to 

each 𝐗′𝑖 ∈ 𝐗′ where the random portion of the 𝐗′𝑖 is scrambled instead of the entire 𝐗′𝑖. 

Rather than perturbing the 𝐗′𝑖 based on a fixed 𝑝𝑚, the mutation mechanism increase 

the 𝑝𝑚 when the 𝐗∗ is not updated for 10 attack iterations, with 0.02 per increment. The 

maximum 𝑝𝑚 is 0.5. This is to prevent the modification of 𝐗′ from being dominated by the 

random scrambling process. 

 

Repeat steps 1 − 4 until the stopping criteria are met. The criteria can be either (i) maximum 

attack iteration 𝑡max is reached or (ii) the similarity score (𝑠∗) of the 𝐗∗ can surpass the 

system threshold 𝜏 (𝑠∗ ≥ 𝜏). 
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5.5 Attack simulation and discussions 

In this section, several experiments are conducted to testify the effect of the formalized 

WO3A towards the tested cancellable biometric schemes (with and without the proposed 

enhanced matching mechanism). 

 

5.5.1 Attack model and matching protocol 

The attack model of the WO3A is formulated to leverage the experiment in the following 

subsections. Suppose a cancellable biometric transformation function 𝑓(. ) that transform 

the biometric feature 𝐗 and auxiliary data 𝐑 (or transformation key) into the cancellable 

template 𝐂 , in which 𝑓(𝐗,𝐑) → 𝐂 , the attack model of the formalized attack scheme is 

explained as below: 

 

• Attack scenario: The adversary aims to gain illegal access to a targeted system with 

the victim’s auxiliary data 𝐑 and estimated biometric preimage 𝐗∗. Consider a worst-case 

scenario, the system is very weak in the sense that it is not protected against malicious 

software, i.e., the formalized WO3A. 

 

•  dversary’s goal: In the attack attempt, the adversary aims to find a biometric preimage 

𝐗∗ (or guessed biometric template) that can produce a fake cancellable template 𝐂∗, 

such that the similarity score between the 𝐂′ and victim’s pre-stored cancellable template 

𝐂 could surpass the system matching threshold 𝜏. To be noted, the guessed biometric 

preimage is not required to be the same as the original biometric input (𝐗∗ ≠ 𝐗). 

 

•  dversary’s knowledge: The adversary knows the template format of the input 

biometric feature 𝐗, including the feature dimension, value type, value distributions. The 

adversary does not know about the details of the cancellable biometric scheme that is 

implemented in the system and the cancellable template 𝐂. Assume it is a worst-case 

scenario where the auxiliary data 𝐑  for cancellable transformation is compromised/ 

accessible to the adversary. 

 

•  dversary’s capability: The adversary can access the input interface of the cancellable 

biometric scheme to inject the guessed biometric template 𝐗∗ to the system. Other than 

that, the adversary is able to intercept the matching score 𝑠 (or 𝑠G for the enhanced 
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matching mechanism) for each comparison. Assuming the system is still secure in the 

sense that the transformation function and template storage is not compromised, the pre-

stored cancellable templates are inaccessible to the adversary. 

 

To simulate the attack scenario, the below attack matching attempt is followed when 

attacking the system: 

 

• Attack matching attempt: The attack scheme repeatedly produce a biometric preimage 

𝐗∗ and input the 𝐗∗ to the cancellable biometric scheme for authentication. Each attempt 

is halted when the stopping criteria of the attack scheme are met: (i) matching score 𝑆 

surpass the system threshold 𝜏G or (ii) the maximum attack iteration 𝑡max is met. 

 

Throughout the attack matching attempt in the tested dataset, the matching scores are used 

to form the attack score distribution. Since the objective of the attack is to gain illegal access 

to the system, the genuine and attack score distributions should be highly overlapped to 

show the effectiveness of the attack framework. The reader may refer to section 5.3.1A for 

the procedure to generate genuine and impostor score distributions. 

 

A. Security evaluation criteria, parameter control and dataset selection 

In this subsection, a definition is formulated for evaluating the security resistance of the 

tested cancellable biometric scheme and proposed an enhanced matching mechanism. 

Other than that, the WO3A attack parameters and database section for the experiment are 

also outlined. 

 

Given an observation set with 𝛼 number of subjects, each with 𝛽 numbers of cancellable 

biometric templates (samples). To be noted, 𝑀 = 𝛼 ∗ 𝛽 denotes the total number of samples 

in the observation set. The security resistance is determined by the False Acceptance Rate 

(FAR) (or success rate) that is calculated from the attack score distribution and genuine 

score distribution. In each attack attempt, the adversary utilizes the WO3A and attempts to 

guess and inject a fake input biometric feature 𝐗∗ to the system until the maximum attack 

iteration (𝑡max) is met. Based on the statement above, a definition is formulated for the 

security assessment. 
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Definition 5.1: Among 𝑀 targeted sample (cancellable template), we could say the scheme 

is (𝑡max, 𝑟)-secure if the adversary can launch WO3A attack with a success rate equal to 𝑟 

within 𝑡max , where 𝑟 ∗ 𝑀  is equal to the numbers of succeeding attacked samples with 

respect to the system threshold 𝜏G. 

 

WO3A Parameter setting: Recall the methodology of the WO3A, there are three tunable 

parameters, i.e., 𝑢, 𝑡max, 𝜏G. For a fair comparison between the tested cancellable biometric 

schemes and the proposed enhanced matching mechanism, the WO3A is operated with the 

same setting, with the 𝑢 = 5, 𝑡max = 500. 𝑡max and 𝑢 are limited for the computation time of 

an authentication attack in a real-world scenario. The parameter 𝜏G is set to 1 for observing 

the security resistance of the tested cancellable biometric scheme and proposed enhanced 

matching mechanism throughout each attack attempt. 

 

Dataset selection: To improve the comparison efficiency, a subset is created from each data 

set to form the observation set. This is done by randomly choosing 10 subjects, each with 3 

biometric samples. Therefore, each attack experiment is conducted on the subset that is 

extracted from FVC2002, FVC2004, LFW and CASIAv3. A total of 30 genuine matching 

scores. 45 impostor matching scores and 30 attack matching scores are generated for each 

attack experiment. 

 

5.5.2 Attack attempt 

A. Attack on the original cancellable biometric schemes 

In this subsection, several experiments are conducted to evaluate the security resistance of 

the tested cancellable biometric schemes, i.e., IoM Hashing, M∙EFV hashing and R∙HoG, 

towards the formalized WO3A. The tested cancellable biometric schemes employ their 

original matcher for template comparison. 

 

To testify the effect of the WO3A on the tested cancellable biometric schemes, several 

experiments are conducted on each scheme, and the cancellable templates are generated 

using different parameter settings. For IoM Hashing, the cancellable templates are 

generated with varying settings of parameter 𝑞 = 150,250,500, while the 𝑙iom is fixed to 16. 

For R ∙HoG, the cancellable templates are generated with settings of parameter 𝑑 =

175,200,225,250, while the remaining parameters are following the best-tuned setting listed 
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in Table 5.6. Recall the methodology of M∙EFV hashing, one of the important parameters is 

the 𝑛. To prevent confusion between the parameter 𝑛 for M∙EFV hashing and the proposed 

enhanced matching mechanism, the notation, i.e., 𝑛MEFV is used to represent the 𝑛 for the 

M∙EFV hashing. Thus, for M∙EFV hashing, the cancellable templates are generated with 

different settings of 𝑛MEFV = 5,15,55; while the remaining parameters are following Table 

5.6. The reader may refer to Sections 3.4.2 (R∙HoG), 4.5.2 (M∙EFV hashing), 5.3.1C (IoM 

Hashing) for the details of the parameters. 

 

Figures below depict the attack results for the tested cancellable biometric schemes, with 

the red curve representing genuine score distribution, the blue curve representing impostor 

score distribution and the black curve representing attack score distribution. From the 

figures, it is observed that it is possible for the adversary to bypass the authentication within 

the attack attempt where the attack score distribution is largely overlapped with the genuine 

score distribution. For IoM hashing-based fingerprint system, it is observed that the WO3A 

is effective in compromising the authentication process when 𝑞 = 150, where the attack 

score distribution is observed to be highly overlapped with the genuine score distribution. 

With the increment of parameter 𝑞 , it is observed that the IoM hashing provides more 

security resistance towards the WO3A where the overlap region between the attack and 

genuine score distributions is reduced. Similar observations are found in the R∙HoG-based 

iris system and M∙EFV-based multimodal system, where the appropriate transformation 

parameter could improve the security resistance of the schemes. It is observed that the 

R∙HoG and M∙EFV hashing could provide more security resistance than the IoM hashing, 

where the overlap region between the attack and genuine score distribution is much smaller 

compared to IoM hashing. Nevertheless, the WO3A is still possible to bypass the 

authentication process since the upper bound of the attack score distribution is very close 

to the genuine score distribution. To improve the resistance of the schemes towards the 

WO3A, one may sacrifice a certain level of genuine acceptance rate (GAR) and increase 

security resistance by adjusting the matching threshold 𝜏G to be above the upper bound of 

the attack score distribution. 
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Fig 5.5. Attack Results on IoM-based Fingerprint System FVC2002 subset where (a-c) is DB1, (d-f) is DB2 
and (g-i) is DB3 

 

 

Fig 5.6. Attack Results on R∙HoG-based Iris System in CASIA V3 dataset 
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Fig 5.7. Attack Results on M∙EFV-based Multimodal System in FVC2004+LFW subset where (a-c) is DB1, (d-
f) is DB2 and (g-i) is DB3 

 

B. Attack on the enhanced cancellable biometric schemes 

In this subsection, the WO3A is conducted on the cancellable biometric schemes that are 

enhanced by the proposed enhanced matching mechanism.  

 

The cancellable templates are generated using the best-tuned setting listed in Table 5.6 and 

Table 5.5. Since the main purpose of this subsection is to testify the security resistance of 

the cancellable biometric schemes after being enhanced, several experiments are 

conducted using different settings for the parameter 𝑛 in the proposed enhanced matching 

mechanism. In particular, 𝑛  is testified for 𝑛 = 5,30,100  in each experiment, while the 

parameter 𝜏L is fixed to the best-tuned setting that is determined in Section 5.3.2A. 
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Figures below depict the attack results for the proposed enhanced matching mechanism in 

terms of the score distributions, with the red curve representing genuine score distribution, 

the blue curve representing impostor score distribution and the black curve representing 

attack score distribution. From the figures, it is observed the mean of the genuine and 

impostor score distributions are highly separated. This is as expected where the proposed 

enhanced matching mechanism achieves the effect of separating the matching score that 

can be obtained by the genuine or impostor matching attempt. From the depicted result, it 

is observed that the security resistance of the cancellable biometric schemes is enhanced 

since the mean of the attack score distributions is not getting close to the mean of the 

genuine score distribution.  

 

Overall, it is observed the proposed enhanced matching mechanism improves the security 

resistance of the cancellable biometric scheme towards the WO3A. It is observed under the 

same attack parameter, the R ∙HoG-based iris system and M ∙EFV-based multimodal 

systems (after enhanced) could provide more security resistance as compared to the IoM 

hashing-based fingerprint system, where the gap between the attack score distribution and 

the mean of genuine score distribution is larger than the unenhanced counterpart. This is 

mainly due to the guessed biometric template generated by the adversary could not surpass 

the 𝜏L that is set for the R∙HoG-based iris system and M∙EFV hashing-based multimodal 

system; and hence, it is hard for the WO3A to obtain a higher global matching score 𝑆G 

throughout the attack attempt.  On the other hand, it is observed in the IoM-based fingerprint, 

it is still possible for the attacker to obtain high matching score when 𝑛 is tuned to a lower 

value (𝜏G = 5). By incrementing the 𝑛, it is observed the proposed enhanced matching 

mechanism is taking effect where the gap between the upper bound of attack score 

distribution and mean of genuine score distribution is enlarged. Therefore, it is suggested 

that the parameter 𝑛 be tuned higher to provide more security resistance for the cancellable 

biometric scheme. In short, the proposed enhanced matching mechanism could improve the 

security resistance of the tested systems against the WO3A, where the attack success rate 

is reduced. 
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Fig 5.8. Attack Results on Enhanced IoM-based Fingerprint System in FVC2002 subset where (a-c) is DB1, 
(d-f) is DB2 and (g-i) is DB3 

 

 

Fig 5.9. Attack Results on Enhanced R∙HoG-based Fingerprint System in CASIA v3 
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Fig 5.10. Attack Results on enhanced M∙EFV-based Multimodal System in FVC2004+LFW subset where (a-
c) is DB1, (d-f) is DB2 and (g-i) is DB3 

 

C. Comparison of the attack results 

This subsection further studies the WO3A attack results and performs a comparison 

between the tested cancellable biometric schemes and the proposed enhanced matching 

mechanism. Recall the definition 5.1 in section 5.5.1A, the scheme is (𝑡max, 𝑟)-secure if the 

𝑟% of targeted samples are compromised in the sense that the adversary is able to surpass 

the threshold 𝜏G . Therefore, the 𝑟 should be as lower as possible to reflect the security 

resistance towards the WO3A. 

 

As mentioned earlier, the security of a biometric system can be enhanced by tuning the 𝜏G. 

However, this could lead to the trade-off between security and performance [27], which is 

unavoidable for a biometric system. Specifically, the sacrifice of the Genuine Acceptance 

Rate (GAR) is required for the higher 𝜏G that could help to lower attack success rate 𝑟. In 
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this subsection, an analysis is conducted to evaluate the attack success rate, 𝑟 of the WO3A 

with respect to the threshold 𝜏G under different GARs. For a more precise reading of 𝑟, the 

𝜏G for each dataset is acquired from Section 5.3.4. The WO3A is operated with the same 

parameter setting (𝑡max) for a fair comparison between the cancellable biometric scheme 

and the proposed enhanced matching mechanism. To be noted, the cancellable biometric 

schemes are operated using the same best-tuned setting as discussed in previous sections 

(see Table 5.6 and Table 5.13). The security resistance (𝑡max, 𝑟) with respect to the GAR 

are tabulated in the table below, where the red font points out the potential security risk. To 

be noted, for the security consideration, GAR= 100% is not included in the evaluation. From 

the tabulated results, several observations are made: 

 

• The formalized WO3A is effective in maximizing the attack score when the cancellable 

biometric schemes are not being enhanced by the proposed enhanced matching 

mechanism. For instance, in IoM hashing-based fingerprint system, the attack success 

rate 𝑟 is very high even the system threshold is tuned to a higher value (with lowest 

GAR= 85%). This also shows that the IoM hashing is highly vulnerable to the WO3A 

attack. 

 

• The proposed enhanced matching mechanism could improve the security resistance of 

the cancellable biometric schemes in the sense that the attack success rate 𝑟  is 

averagely reduced. Furthermore, the gap between the upper bound of the attack score 

distribution (refer to 𝑈𝐵attacker ) and the system threshold is larger compared to the 

unenhanced counterpart.  

 

• The proposed enhanced matching mechanism is very effective in strengthening the 

security resistance of the M∙EFV hashing and R∙HoG in the sense that the attack success 

rate 𝑟 is reduced to 0% after applying the enhanced matching mechanism. After applying 

the enhanced matching mechanism, both M∙EFV hashing and R∙HoG could resist the 

WO3A attack with (500, 0)-secure and maintain decent verification performance with 

GAR= 95%. It is observed the attack score distribution is not even close to the genuine 

score distribution. 

 

• For the IoM hashing (after enhanced), it is observed that the attack success rate 𝑟 =

97% in the FVC2002 DB3 subset when GAR = 95%. This is mainly due to the outliner in 
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the genuine score distributions that limits the selection of system threshold. By sacrificing 

the GAR from 95% to 85%, the success rate is reduced from 97% to 0%. As compared 

to the original counterpart, where the success rate 𝑟  is equal to 93 − 100%  under 

different GAR, the improvement is significant after applying the enhanced matching 

mechanism. With the GAR= 85% and the reduced attack success rate, the verification 

performance of the system is still reasonable. These results also show that the parameter 

𝑛 for IoM hashing should be tuned higher to further improve the security resistance. 

 

From the observations above, it is concluded that the proposed enhanced matching 

mechanism is able to increase the security resistance of the system under the same attack 

parameter. The proposed enhanced matching mechanism also reduces the scarification 

degree of the genuine acceptance rate (GAR) for the higher security resistance. With the 

GAR= 90 − 85%, the verification performance is still reasonable, and the system can 

provide more resistance towards the WO3A compared to the unenhanced system. It is noted 

that the WO3A is an authentication attack such that the estimated biometric preimage could 

not be re-used after the user renews the cancellable template. It is observed that under the 

same attack parameter settings, the attack required much more computation resources to 

conduct the attack attempt. Yet, the attack success rate is minimal as compared to the 

unenhanced system. The increase of security resistance allows the user to respond to an 

attack event and renew the cancellable template before the attack can succeed. 

 

One may argue that the attacker could increase the WO3A attack iteration 𝑡max for a higher 

attack success rate towards the proposed enhanced matching mechanism. However, it is 

infeasible for the attacker to do so due to the time complexity of attacking each sample. 

Under the same attack parameter, it is observed that the WO3A requires much more time 

to perform an attack on the enhanced scheme and yet, the increment of the attack success 

rate 𝑟 is minimal as compared to the attack on the unenhanced scheme. For instance, the 

attack time (per sample) for IoM hashing (in FVC2002) is increased from an average of 

36.2325  seconds to an average of 559.5348  seconds after the proposed enhanced 

matching mechanism is applied, while the attack success rate is decreased from an average 

of 53% to 32% when the GAR of the system is equal to 95%. In addition, with the slight 

decrease of GAR, the system (after enhanced) could provide more security resistance. As 

compared to the unenhanced systems, the sacrifice of GAR is minimal. Furthermore, it is 

shown in Fig 5.8, incrementing the parameter 𝑛  could help to increase the security 
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resistance of the proposed enhanced matching mechanism as well as the decidability of the 

system. Therefore, it is also suggested to tune the parameter 𝑛 for a higher value to counter 

the WO3A attack. It is also noted the increment of parameter 𝑛 could increase the attack 

time complexity. In short, the experiment result shows that the proposed enhanced matching 

mechanism is able to enhance the security resistance of the cancellable biometric scheme 

towards the WO3A and allow a higher matching threshold (with minimal reduction of GAR) 

to be set in the system.  

 

 

 

Table 5.21: Attack analysis on IoM Hashing-based fingerprint system with respect to the Genuine Acceptance 
Rate (FVC2002) 

Method Subset 𝑈𝐵attacker 
System 

threshold 
𝜏G 

Attack 
Iteration 
𝑡max 

Attack 
success 

rate 
𝑟 (%) 

Security 
resistance 
(𝑡max, 𝑟) 

Average time 
taken for each 

sample 
(sec) 

GAR=95% 

IoM Hashing 
(original) 

DB1 𝟎. 𝟔𝟗𝟗𝟗 𝟎. 𝟔𝟖𝟓𝟓 500 𝟏𝟎 (𝟓𝟎𝟎, 𝟏𝟎) 32.8473 

DB2 𝟎. 𝟔𝟖𝟎𝟕 𝟎. 𝟔𝟕𝟓𝟐 500 𝟓𝟎 (𝟓𝟎𝟎, 𝟓𝟎) 36.7436 

DB3 𝟎. 𝟔𝟗𝟕𝟐 𝟎. 𝟔𝟒𝟐𝟖 500 𝟏𝟎𝟎 (𝟓𝟎𝟎, 𝟏𝟎𝟎) 39.1066 

IoM Hashing 
with proposed 
matching 
mechanism 
(𝑛 = 100, 𝜏L =
0.67) 

DB1 0.3800 0.6900 500 0 (500,0) 585.3941 

DB2 0.3800 0.5400 500 0 (500,0) 547.3615 

DB3 𝟎. 𝟑𝟐𝟎𝟎 𝟎. 𝟏𝟔𝟎𝟎 500 𝟗𝟕 (𝟓𝟎𝟎, 𝟗𝟕) 545.8487 

GAR=90% 

IoM Hashing 
(original) 

DB1 𝟎. 𝟔𝟗𝟗𝟗 𝟎. 𝟔𝟗𝟓𝟎 500 𝟑 (𝟓𝟎𝟎, 𝟑) 32.8473 

DB2 𝟎. 𝟔𝟖𝟎𝟕 𝟎. 𝟔𝟗𝟎𝟕 500 𝟑 (𝟓𝟎𝟎, 𝟑) 36.7436 

DB3 𝟎. 𝟔𝟗𝟕𝟐 𝟎. 𝟔𝟓𝟒𝟒 500 𝟏𝟎𝟎 (𝟓𝟎𝟎, 𝟏𝟎𝟎) 39.1066 

IoM Hashing 
with proposed 
matching 
mechanism 
(𝑛 = 100, 𝜏_L =
0.67) 

DB1 0.3800 0.8000 500 0 (500,0) 585.3941 

DB2 0.3800 0.7400 500 0 (500,0) 547.3615 

DB3 𝟎. 𝟑𝟐𝟎𝟎 𝟎. 𝟑𝟐𝟎𝟎 500 𝟑 (𝟓𝟎𝟎, 𝟑) 545.8487 

GAR=85% 

IoM Hashing 
(original) 

DB1 𝟎. 𝟔𝟗𝟗𝟗 𝟎. 𝟕𝟎𝟑𝟒 500 0 (500,0) 32.8473 

DB2 𝟎. 𝟔𝟖𝟎𝟕 𝟎. 𝟕𝟎𝟐𝟏 500 0 (500,0) 36.7436 

DB3 𝟎. 𝟔𝟗𝟕𝟐 𝟎. 𝟔𝟔𝟑𝟗 500 𝟗𝟑 (𝟓𝟎𝟎, 𝟗𝟑) 39.1066 

IoM Hashing 
with proposed 
matching 
mechanism 
(𝑛 = 100, 𝜏_L =
0.67) 

DB1 0.3800 0.8700 500 0 (500,0) 585.3941 

DB2 0.3800 0.8500 500 0 (500,0) 547.3615 

DB3 0.3200 0.4500 500 0 (500,0) 545.8487 
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Table 5.22: Attack analysis on M ∙EFV hashing-based multimodal system with respect to the Genuine 
Acceptance Rate (FVC2004 + LFW) 

Method Subset 𝑈𝐵attacker 
System 

threshold 
𝜏G 

Attack 
Iteration 
𝑡max 

Attack 
success rate 

𝑟 (%) 

Security 
resistance 
(𝑡max, 𝑟) 

Average time 
taken for each 

sample 
(sec) 

GAR=95% 

M∙EFV hashing 
(original) 

DB1 𝟎. 𝟔𝟑𝟔𝟎 𝟎. 𝟔𝟐𝟓𝟏 500 𝟏𝟎 (𝟓𝟎𝟎, 𝟏𝟎) 44.9462 

DB2 𝟎. 𝟔𝟑𝟐𝟓 𝟎. 𝟔𝟎𝟓𝟎 500 𝟒𝟕 (𝟓𝟎𝟎, 𝟒𝟕) 44.1383 

DB3 𝟎. 𝟔𝟐𝟒𝟓 𝟎. 𝟔𝟏𝟖𝟎 500 𝟑 (𝟓𝟎𝟎, 𝟑) 43.3733 

M∙EFV hashing 
with proposed 
matching 
mechanism 
(𝑛 = 100, 𝜏L =
0.62) 

DB1 0.0300 0.6400 500 0 (500,0) 817.7611 

DB2 0.0400 0.4100 500 0 (500,0) 808.1642 

DB3 0.0400 0.5300 500 0 (500,0) 805.6682 

GAR=90% 

M∙EFV hashing 
(original) 

DB1 𝟎. 𝟔𝟑𝟔𝟎 𝟎. 𝟔𝟒𝟕𝟐 500 0 (500,0) 44.9462 

DB2 𝟎. 𝟔𝟑𝟐𝟓 𝟎. 𝟔𝟐𝟏𝟒 500 𝟐𝟑 (𝟓𝟎𝟎, 𝟐𝟑) 44.1383 

DB3 𝟎. 𝟔𝟐𝟒𝟓 𝟎. 𝟔𝟑𝟓𝟓 500 0 (500,0) 43.3733 

M∙EFV hashing 
with proposed 
matching 
mechanism 
𝑛 = 100, 𝜏L =
0.62) 

DB1 0.0300 0.8000 500 0 (500,0) 817.7611 

DB2 0.0400 0.6000 500 0 (500,0) 808.1642 

DB3 0.0400 0.7000 500 0 (500,0) 805.6682 

GAR=85% 

M∙EFV hashing 
(original) 

DB1 𝟎. 𝟔𝟑𝟔𝟎 𝟎. 𝟔𝟓𝟔𝟑 500 0 (500,0) 44.9462 

DB2 𝟎. 𝟔𝟑𝟐𝟓 𝟎. 𝟔𝟑𝟒𝟑 500 0 (500,0) 44.1383 

DB3 𝟎. 𝟔𝟐𝟒𝟓 𝟎. 𝟔𝟓𝟎𝟏 500 0 (500,0) 43.3733 

M∙EFV hashing 
with proposed 
matching 
mechanism 
𝑛 = 100, 𝜏L =
0.62) 

DB1 0.0300 0.8700 500 0 (500,0) 817.7611 

DB2 0.0400 0.7100 500 0 (500,0) 808.1642 

DB3 0.0400 0.8000 500 0 (500,0) 805.6682 
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Table 5.23: Attack analysis on R∙HoG-based iris system with respect to the Genuine Acceptance Rate (CASIA 
V3) 

Method 𝑈𝐵attacker 
System 

threshold 
𝜏G 

Attack 
Iteration 
𝑡max 

Attack 
success rate 

𝑟 (%) 

Security 
resistance 
(𝑡max, 𝑟) 

Average time 
taken for each 

sample 
(sec) 

GAR=95% 

R∙HoG (original) 𝟎. 𝟒𝟎𝟒𝟒 𝟎. 𝟒𝟎𝟐𝟏 

500 

𝟏𝟑 (𝟓𝟎𝟎, 𝟏𝟑) 274.1536 

R∙HoG with proposed 
matching mechanism 
(𝑛 = 100, 𝜏L = 0.415) 

0.3700 0.4700 0 (500,0) 2867.8720 

GAR=90% 

R∙HoG (original) 𝟎. 𝟒𝟎𝟒𝟒 𝟎. 𝟒𝟏𝟓𝟏 

500 

0 (500,0) 274.1536 

R∙HoG with proposed 
matching mechanism 
(𝑛 = 100, 𝜏L = 0.415) 

0.3700 0.7000 0 (500,0) 2867.8720 

GAR=85% 

R∙HoG (original) 𝟎. 𝟒𝟎𝟒𝟒 𝟎. 𝟒𝟐𝟏𝟗 

500 

0 (500,0) 274.1536 

R∙HoG with proposed 
matching mechanism 
(𝑛 = 100, 𝜏L = 0.415) 

0.3700 0.8000 0 (500,0) 2867.8720 

 

5.6 Summary and contributions 

This chapter focuses on the decision environment and authentication attack in a cancellable 

biometrics-enabled system. The two research outcomes are enhanced matching 

mechanism and whale optimization algorithm-based authentication attack (WO3A). The 

enhanced matching mechanism is a dual-phase score quantization scheme that is able to 

improve the verification performance and decidability of the cancellable biometric schemes. 

Comprehensive experiments are conducted to examine the verification performance on 

several benchmarking datasets. The proposed enhanced matching mechanism is shown to 

improve the verification performance for IoM hashing, R∙HoG and M∙EFV hashing. The high 

separation between the mean of genuine/ impostor score distributions allows the high 

matching threshold for higher security resistance. Apart from that, this chapter studies the 

authentication attack and formalizes a practical attack scheme, namely the WO3A. The 

WO3A is conducted on the IoM hashing, R∙HoG and M∙EFV hashing. The attack result 

shows the IoM hashing is highly vulnerable towards the WO3A in the sense that a high 

attack success rate is observed. Although a high matching threshold could help IoM hashing 

to reduce the attack success rate, it requires a high reduction of the Genuine Acceptance 

Rate (GAR). Other than that, the WO3A is also conducted to the schemes that are enhanced 

by the proposed enhanced matching mechanism under the same attack scenario. The 

attack result shows that the enhanced matching mechanism could improve the security 
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resistance where the attack success rate is greatly reduced. It is also observed that the 

proposed enhanced matching mechanism allows the lower sacrifice of GAR to improve the 

security resistance as compared to the unenhanced counterpart. Furthermore, the proposed 

enhanced matching mechanism could be further tuned to increase the security resistance 

of the cancellable biometric scheme. It is noted that the main purpose of formalizing WO3A 

is to simulate an authentication attack where the guessed biometric template does not 

resemble the original biometric template (or even the biometric feature). Therefore, the 

extension of the WO3A to template recovery attack or other extensive scenarios could be 

interesting future work. 
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Chapter 6 CONCLUSIONS 

 

This chapter concludes the thesis by discussing the summary of thesis chapters and 

plausible future directions of the proposal work in this thesis. Security and privacy of 

biometric identity management (IdM) is an open problem until now. Among various 

aspects, biometric template protection requires attention as the compromise of the original 

biometric templates usually implies permanent identity loss. Specifically, the victim is 

prohibited from using the same biometric feature due to the irrevocable nature of 

biometrics. As one of the consequences, tremendous monetary loss is required to recover 

from the damage. For instance, in 2015, roughly $133 million dollars was costed to the 

U.S federal Office of Personnel Management for covering up the loss when 1.1 − 5.6 

million of biometric data were compromised [15]. In this thesis, a study on biometric 

template protection for face, fingerprint, and iris modalities was carried out. There are 5 

outcomes throughout the venture: (i) 3  template protection schemes, (ii) 1  enhanced 

matching mechanism and (iii) 1 automated type-4 attack. Among the works, 3 template 

protection methods, i.e., R∙HoG, EFV hashing and M∙EFV hashing, are dedicated to 

alignment-robust cancellable transformation and tokenless cancellable transformation, 

respectively. The enhanced matching mechanism is devoted to enhancing the decision 

environment of the biometric authentication, while the type-4 attack, i.e., WO3A, is 

formulated for testifying security and privacy aspects of the biometric system. The 

proposals are presented, and the experimental results are evidenced chapter-by-chapter 

throughout the thesis. 

Chapter 6:  

 

6.1 Summary of thesis chapters 

This section revisits each thesis chapter and briefly discusses the research outcomes and 

contributions. In Chapter 2, an extensive literature review is conducted based on the three 

research contexts of this thesis: (i) alignment problem in iris template protection, (ii) token 

management in unimodal and multimodal template protection and (iii) security and privacy 

in thresholding-based matching. Throughout the literature searching process, various 

numbers of works that are associated with the face, fingerprint and iris modalities are 

revisited and have been discussed section-by-section. The chapter first revisits the existing 

iris template protection works in the categories of alignment-based and alignment-robust 
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approaches. The former approach refers to the template protection method that requires a 

pre-alignment process to deal with the unaligned iris feature, while the latter approach could 

directly derive a protected iris template from the unaligned iris feature. In the process of 

revisiting the existing works, it is observed that the alignment-robust approach is preferable 

compared to the alignment-based approach. Although the alignment-based approach gains 

a slight advantage in terms of verification performance, the necessity of having pre-

alignment could drastically slow down the authentication process. For instance, the recently 

developed IFO hashing [53] employs the shifting-based pre-alignment to compensate for 

the inability to transform the unaligned irisCode. Subsequently, the time complexity of the 

IFO hashing is highly affected by the repeating shifting and transformation process. To 

reduce the time complexity, a number of alignment-robust approaches are introduced in the 

literature. It is still observed that some concerns, e.g., performance degradation, security 

vulnerabilities, are yet to be fully resolved. This drove the author to propose the alignment-

robust iris template protection scheme, i.e., R∙HoG. The next section in Chapter 2 puts the 

focus on token management in unimodal and multimodal biometric template protection. In 

this section, the works are reviewed in the classification of tokenized unimodal/ multimodal 

template protection and tokenless multimodal template protection. In addition, due to the 

hybrid nature of the author’s proposal, this section also revisits hybrid template protection 

works. Due to the increment of the needs of biometric template protection, the tokenless 

approach that does not require the user to handle the transformation key gains more 

attention since this approach could reduce the burden of managing the token, especially the 

user enrolled into multiple cancellable biometrics-enabled systems. Moreover, due to the 

lack of an efficient template protection scheme that can handle the biometric feature fusion 

and tokenless approach, the author is motivated to propose the face and fingerprint-based 

template protection schemes, i.e., EFV hashing and M ∙EFV hashing. Lastly, Chapter 2 

explores the type-4 attack that targeted the security and privacy of the thresholding-based 

matching. From the reviewed work, it is observed that the type-4 attack could recover the 

original biometric feature when the system is unprotected; hence the importance of biometric 

template protection is demonstrated. Despite biometric template protection offering a 

privacy solution by replacing the protected template once the authentication of the system 

is compromised, it is unfavorable that the adversary could compromise the authentication 

process in a short time. More deadly, the type-4 attack does not require the guessed input 

biometric feature to be similar to the original biometric feature. To provide sufficient security 

resistance towards the type-4 attack, one has to trade the Genuine Acceptance Rate (GAR) 
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for a higher system threshold. However, due to the performance degradation in biometric 

template protection, the sacrifice of GAR is usually large. This motivated the author to 

explore a solution that can further improve the performance preservation of the cancellable 

biometric scheme. 

 

Chapter 3 studies the alignment problem in iris template protection and introduces an 

alignment-robust iris template protection scheme coined as Random Augmented Histogram 

of Oriented Gradient (R∙HoG). In iris recognition, irisCode is the most employed iris feature 

despite a various number of alternatives being introduced. The most challenging task in 

protecting the irisCode feature is to overcome the alignment issue when transforming the 

irisCode into the protected template (cancellable template). To address this problem, the 

Random Augmented Histogram of Oriented Gradient (R∙HoG) is proposed. R∙HoG is an 

alignment-robust cancellable biometric scheme that transforms the unaligned irisCode into 

a cancellable template without the necessity of having a pre-alignment process. The 

matching process can be completed rapidly since the resultant cancellable templates can 

be directly compared to the query template. Differ from the existing studies that employ the 

well-known Histogram of Oriented Gradient (HoG) for feature extraction, the author 

demonstrated an unconventional usage of HoG in biometric template protection by coupling 

it with two mechanisms, i.e., (i) column vector-wise random augmentation and (ii) gradient 

orientation grouping. The mechanism (i) enables the cancellability property and 

compensates for the performance degradation that is led by the alignment-robust 

transformation, while the mechanism (ii) induces security property and enables the R∙HoG 

to produce a compact cancellable template. Experimental results showed the R ∙HoG 

achieving a decent verification performance with the EER= 0.62% in CASIA-IrisV3-Internal 

dataset. Since the main functionality of R∙HoG is to protect the irisCode template, several 

analyses and experiments were carried out to examine the R∙HoG in terms of irreversibility, 

unlinkability and renewability properties. With the employment of disposable parameters 

during the transformation process, it is hard for the adversary to recover the original irisCode 

input if even multiple cancellable templates and transformation keys are generated. An 

interesting finding is that in the proposed R∙HoG, the z-score normalization process can be 

operated as an irreversible transformation. Specifically, R∙HoG utilizes the many-to-one 

mapping trait of the normalization process and the disposable transformation parameter to 

increase the difficulty of reverse transforming the cancellable template. The security aspect 

of the R∙HoG is examined by conducting three main security attacks that aim to generate a 
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guessed template for matching. The security analysis showed that the sacrifice of GAR=5% 

provides decent security strength to combat the birthday attack. On the other hand, the 

unlinkability and renewability properties of the R∙HoG are well examined via a benchmarking 

evaluation framework [112]. More remarkably, R∙HoG enables the fast similarity comparison 

in iris verification system in which the produce cancellable template can be directly 

compared, and the pre-alignment process is not required. 

 

Chapter 4 focuses on the token management problem in the face and fingerprint-based 

template protection. In the existing studies, most of the existing face and fingerprint-based 

template protection schemes are manifested as a tokenized authentication scheme that 

requires two input factors, i.e., biometric feature and a token for cancellable template 

generation and matching. The tokenized approach requires the user to keep the token 

securely; otherwise, there could be a security and privacy risk when the token is exposed to 

the adversary. For instance, a zero-effort false acceptance attack could be launched to gain 

illegal access to the system [27]. As compared to tokenized schemes, tokenless schemes 

abandon the external token; hence, the security and privacy threats that are related to the 

exposure of tokens could be mitigated. Furthermore, the removal of tokens improves the 

convenience of the cancellable biometric scheme where there is no need for the user to 

manage the token. On the other hand, biometric fusion is getting the public’s interest 

because it improves the verification performance of a biometric system. However, the 

security and privacy issue of the multimodal biometric system could be more severe than a 

unimodal biometric system since the templates of multiple biometric modalities are stored. 

Based on these issues, two tokenless template protection schemes: (i) Extended Feature 

Vector (EFV) hashing and (ii) Multimodal Extended Feature Vector (M∙EFV) hashing are 

proposed for fingerprint and face-based biometric systems. In particular, the former scheme 

focuses on exploring the tokenless template protection in a unimodal fingerprint system, 

while the latter scheme extends and enhances the methodology of the former scheme. Differ 

from the existing cancellable biometric schemes that store the transformation key as an 

external token, the proposed EFV and M ∙EFV hashing employ the XOR encryption/ 

decryption to transform the transformation key into an encrypted string. Since another 

ingredient for generating the encrypted string is biometric-dependent information that can 

be regenerated by the genuine user, all the ingredients for the encrypted string are discarded 

from the system once the encrypted string is generated. Hence, the original transformation 

key can never be recovered. On top of the EFV hashing, M∙EFV hashing introduces the 
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prior-randomization mechanism to improve the capability to combat the Attack via Record 

Multiplicity (ARM) [168], [169]. Other than that, M∙EFV hashing conducted an in-depth study 

of fusing the real-valued biometric vectors and pointed out an ineffective biometric fusion 

could highly affect the verification performance of the generated cancellable template. The 

proposed EFV and M∙EFV hashing are examined and proved to satisfy the irreversibility, 

unlinkability, renewability and performance preservation properties.  

 

Chapter 5 studies the security threat and the weak decision environment problem for a 

cancellable biometrics-enabled system. The tradeoff between security and performance is 

inevitable in a biometric system [23], where the sacrifice of Genuine Acceptance Rate (GAR) 

for security consideration is required. The scarification degree of a cancellable biometric 

scheme is larger due to the performance degradation issue. Therefore, it requires a solution 

that can further reduce the performance degradation issue of a cancellable biometric 

scheme. Motivated by the aforementioned problem, an enhanced matching mechanism is 

proposed for the IoM hashing [66], R∙HoG and M∙EFV hashing-based biometric system. The 

enhanced matching mechanism is a dual-phase score quantization scheme that could 

enhance the decidability of the cancellable biometric in the sense that the gap between the 

mean of genuine/ impostor matching score distributions is increased. The high separation 

of the genuine/impostor scores allows the system developer to choose a higher matching 

threshold with minimal sacrifice of genuine acceptance rate (GAR). Comprehensive 

experiments were carried out to assess the verification performance and decidability of the 

cancellable biometric schemes after applying the proposed enhanced matching mechanism. 

The experiment results suggest the proposed enhanced matching mechanism could 

improve the decidability and verification performance of the system.  

 

Besides that, chapter 5 also studies the type-4 attack and has formalized an automated 

type-4 attack, namely Whale Optimization Algorithm-based Authentication Attack (WO3A) 

that aims to bypass the authentication process of a cancellable biometrics-enabled system. 

By considering the WO3A as the attack model, security assessments are conducted on the 

cancellable biometric scheme and the proposed enhanced matching mechanism. The 

security assessment suggests the proposed enhanced matching mechanism could improve 

the security resistance of the cancellable biometric scheme. It is also showing the potential 

of further improving the security resistance by tuning the parameter of the enhanced 

matching mechanism. 
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6.2 Future recommendations 

This section outlines the plausible extensions that are based on the research outcomes and 

findings in this thesis. 

 

• Expansion of scheme design: There are several directions to expand the methodology 

of the proposed works. For instance, parallel processing techniques (e.g., multi-

threading or SSE programming [173]) could be integrated into the proposed enhanced 

matching mechanism to realize parallel local template generation and matching; hence, 

optimizing the efficiency of the authentication process. On the other hand, since M∙EFV 

hashing and R∙HoG were designed for different biometric features, the design concept 

of both schemes could be combined to produce a new variation of the biometric template 

protection that can handle a wider range of input biometric features (e.g., fingerprint + 

iris). 

 

• Propagation of the schemes to other biometric modalities: This thesis focuses on 

the face, fingerprint and iris modalities and designed three biometric template protection 

schemes. Since the proposed template protection schemes accept the matrix or vector-

based biometric feature as the input, it is possible to propagate the proposed schemes 

to other biometric modalities, e.g., fingervein and speech. It would involve the 

modification of the scheme since the structure of the extracted feature would not be 

exactly the same as the adopted biometric feature in this thesis. Hence, it would be an 

exciting venture to explore the usage of the proposed works on other biometric 

modalities. 

 

• Hybrid biometric template protection: Biometric key binding is the sub-class of 

biometrics cryptosystem that focuses on using the biometric feature to bind or release 

the cryptographic key. Recent studies have pointed out the direct employment of the 

original biometric feature for key binding could lead to the recovery of the biometric 

feature when the auxiliary data is compromised. As such, many existing studies combine 

the key binding system with cancellable biometrics to prevent the direct involvement of 

the original biometric feature in the key binding process. Such an approach is recognized 

as hybrid template protection. Most of the existing hybrid schemes are tokenized 

authentication approaches that suffer from token management issues. Therefore, future 

research could explore tokenless authentication in the biometric key binding. 
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6.3 Concluding remarks 

 

Fig 6.1. Graphical illustration of basic biometric system infrastructure and the research outcomes 

 

Biometric template protection (BTP) is one of the essential aspects of the biometric system 

in the sense that the original biometric information is never revealed. As such, the security 

and privacy threats that are associated with the biometric template storage compromisation 

could be mitigated. Until now, biometric template protection is still an open issue with the 

various numbers of unsolved security and privacy shortcomings. This thesis was established 

to address the unsolved problems in face, fingerprint and iris template protection. In short, 

this thesis designed 3 cancellable biometrics schemes, 1 enhanced matching mechanism 

and 1 automated type-4 attack (Fig 6.1).  

 

One of the outcomes is the tokenless multimodal template protection scheme (i.e., M∙EFV 

hashing). The M ∙EFV hashing shows the possibility of a tokenless template protection 

scheme that overcomes the feature incompatibility issue in the real-valued face and 

fingerprint vector and produces the fused cancellable template. The existence of M∙EFV 

hashing points out the potential expansion of tokenless biometric template protection. A new 

alignment-robust iris template protection scheme (i.e., R∙HoG) is proposed to resolve the 

alignment issue in irisCode template protection. With the alignment-robust and decent 

performance preservation properties, it is concluded that the proposed R ∙HoG can be 

employed in the existing iris verification system. Apart from that, an interesting finding is that 

the verification performance and decidability of a cancellable biometrics-enabled system 

could be further improved by replacing the canonical matching mechanism with an 

enhanced matching mechanism. The proposed template protection schemes and enhanced 
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matching mechanism were tested on the benchmarking fingerprint FVC [73], [74], face LFW 

[84] and iris CASIA [52] databases. Various experiments and analyses were conducted, and 

the results are presented in the respective chapter.  

 

Apart from that, it is worthwhile to draw attention to an article by Jain et al. [23], where the 

biometric community has made a massive progression on the automated biometric system 

over the past 50 − 60 years. The advancement of technological tools has increased the 

applications of biometric identity management, e.g., biometric authentication in smart 

devices [23]. While the intuition of deploying a biometric system is to secure identity 

management from illegal access, there is no guarantee that the biometric system itself can 

be completely secure [23]. Hence, the security and privacy problems of the biometric system 

should be studied to address the potential threats, so that the biometric recognition could be 

brought to the next level. 
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