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Abstract

A complete description of the evolution of variable density flows requires measurement
of both the velocity and density field. At present, there are very few well-developed
techniques for studying the density field in variable density jets, let alone the three-
dimensional structure of turbulence. In this work, we develop the tomographic background-
oriented schlieren (TBOS) technique for high-quality 3D density field measurements in
heated jets with low temporal and spatial blurring. TBOS is a refraction-based method,
where density gradients are related to the refractive index through the Gladstone-Dale
relation. Based on path-integrated apparent displacements in a background pattern from
path variations in light rays travelling through the flow, a tomographic reconstruction
of the three-dimensional refractive index gradients can be obtained. A Poisson equa-
tion of the reconstructed gradients is solved to obtain the 3D refractive index field, from
which the density and temperature can be obtained. This thesis presents the systematic
development of a TBOS method.

TBOS experiments suffer from a compromise between measurement sensitivity and
defocus blur. The latter obscures the resolution of small scales and is detrimental to tur-
bulence measurements. Temporal blurring must also be considered in the measurements.
Furthermore, the tomographic reconstruction of the refractive index gradient field utilises
multiple cameras placed around the flow. Reconstruction accuracy depends on the wave-
length of the fluctuations, the number and position of cameras around the volume, and
the ability of the reconstruction algorithm to cope with both measurement noise and
limited camera numbers. These issues are addressed in a three-part investigation.

Using a synthetic density field, the first part of the investigation quantifies the per-
formance of the filtered back-projection (FBP) reconstruction, the iterative algebraic re-
construction technique (ART), simultaneous algebraic reconstruction technique (SART),
and a sequential usage of two techniques (FBP+ART), modified with a series of inter-
mediate filtering, windowing and reconstruction damping techniques that are used to
improve the reconstruction quality and accuracy. Background displacements, which are
used as input to the reconstruction algorithms, are produced by ray tracing through the
synthetic refractive index field. It is shown that all techniques under-resolve fluctuations
with wavelengths less than 4 voxels. FBP introduces strong reconstruction artefacts due
to an inadequate number of projections in a typical BOS setup. An optimised ART is
developed, which is the most accurate of all techniques tested and converges in 100 iter-
ations. The quality of FBP+ART is sensitive to appropriate mask selection, the absence
of which can lead to a degradation in reconstruction quality and a proliferation of recon-
struction artefacts. The optimal FBP+ART is marginally less accurate than the optimal
ART due to under-prediction of peak gradients, but it converges in only 20 iterations.
When the density field is obtained from the reconstructed gradients, a gradient inte-
gration scheme that attenuates higher frequencies is recommended. The high-frequency
information from the reconstruction is unusable and likely to propagate noise unneces-



sarily. In present cases, a Poisson equation is solved to obtain the density field, and it
was found that the filtering characteristics of a second-order central difference of both
the volume and gradients resulted in the optimal balance between truncation error and
propagation of reconstruction noise.

In the second part of the investigation, the density field of a heated jet obtained
via direct numerical simulation is used to validate a proposed 15-camera experimental
setup. The simulation contains the near-field laminar-to-turbulent transition of a jet with
a Reynolds number based on nozzle diameter D of ReD = 10, 000 and exit-to-ambient
density ratio ρe/ρ∞ = 0.8. This case is ideal for further testing of the reconstruction
algorithms on a realistic flow. Temporal and defocus blurring are found to be detrimental
to the measurement quality and are the dominant sources of error in a typical experiment.
Defocus blur at the measurement object δ should be limited to δ/D ≤ 11 % to preserve
smaller scales, based on the correlation between the blurred and true fields. The temporal
blurring is controlled by the exposure time of the BOS images, and should not exceed 10%
of the flow’s characteristic timescale tc. If both sources of blurring are controlled, very
detailed and accurate reconstructions of the flow can be obtained using the optimised
ART.

The last part of the work concerns experimental TBOS measurements. To address the
temporal blurring issue, a pulsed laser-speckle TBOS technique is devised. A high-power,
short-pulse laser is used for both illumination and creation of the background pattern in
a 15-camera setup using a laser-speckle pattern. The high-power laser ensures adequate
exposures in nanoseconds, so temporal integration is minimised in each measurement.
A novel method of identifying the ideal compromise between measurement sensitivity,
defocus blur and speckle size through considered selection of the focal length, aperture
and focussing distance is presented. Reconstructions of the near-field of a heated jet
show excellent resolution of 3D flow structures, and good agreement with thermocouple
measurements. A comparison is made with DNS measurements to show the influence of
Mach number and boundary conditions on the measurement. A demonstration of TBOS
for use in turbulence modelling measurements is presented, which shows that the peak
scalar dissipation in the near-nozzle measurement domain occurs in the shear layer asso-
ciated with vortex roll-up. An analysis of the 3D density potential core structure reveals
that the potential core undergoes stretching and fragmentation during the turbulence
transition.
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4.1 Possible TBOS investigations (shaded) using ray-tracing of the synthetic
and DNS heated jet fields (True solution). This work focuses on investi-
gating spatial averaging (chapter 5), temporal averaging (chapter 5)
and reconstruction methods and Poisson equation (chapters 4 and
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4.2 Schematic of the synthetic TBOS setup, with jet flowing into the page.
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4.4 RMS error between the synthetic refractive index fields and the refractive
index fields calculated by the Poisson solver, ns and nr, respectively, within
twice the jet half-width r ≤ 2r1/2 = 2σ

√
2 ln 2, as a function of fluctuation

wavelength L/λx,z and additive Gaussian noise level σnoise/∇npeak. The
error is calculated within the jet core for varying kernel sizes in the dis-
cretisation used in the left-hand side (multigrid) and right-hand side (cal-
culating Laplacian from the reconstructed refractive index gradient field),
respectively: a) 3 and 3 points, b) 3 and 5 points, c) 5 and 3 points, d)
5 and 5 points. Each data point is averaged over 100 samples of added
random noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 RMS (left) and peak (right) errors between the synthetic refractive index
fields and the refractive index fields calculated by the Poisson solver, ns
and nr, respectively, for fluctuation wavelength λx,z = L/14, calculated

up to: twice the half-width r ≤ 2r1/2 = 2σ
√

2 ln 2 (top row), and in the
whole domain (bottom row). Errors are shown as a function of additive
Gaussian noise level σnoise/∇npeak. The error is calculated for varying
kernel sizes in the discretisation used in the left-hand side (multigrid) and
right-hand side (calculating Laplacian from the reconstructed refractive
index gradient field), respectively: 3 and 3 points ; 3 and 5 points ; 5
and 3 points ; 5 and 5 points . Each data point is averaged over 100
samples of added random noise; error bars indicate the 95% confidence
level and are approximately the same size as the markers. . . . . . . . . . 51

4.6 Bode magnitude plot of the analytical (A) and finite-difference Poisson
equation transfer functions H as a function of spatial frequency ω. The
finite-difference schemes are denoted by the number of left- and right-hand
side points used in the discretisation kernel as per table 4.1, e.g. (3, 5) for
3 points on the left-hand side and 5 points on the right-hand side. The
Nyquist frequency is ωx = 0.5 voxel−1, or λx,z ≈ L/32. . . . . . . . . . . . 52

4.7 Contour plots, and profiles through x = 0 (black dotted line is the original
synthetic field and red dashed line is the reconstruction), for the recon-
structed refractive index gradient ∂n/∂x for 16 cameras and λx,z = L/8:
a) synthetic field, b) FBP. Bottom row is λx,z = L/14: c) synthetic field,
d) FBP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Contour maps of the RMS (a) and peak (b) errors within twice the half-
width r ≤ 2r1/2 = 2σ

√
2 ln 2 between the synthetic and FBP reconstructed

refractive index fields ns and nr, respectively, as a function of wavelength
and camera number, normalised by the peak change in the synthetic re-
fractive index field from the Poisson solution. The minimum RMS and
peak errors are 0.3% and 0.7%, respectively. The maximum RMS and
peak errors are 35% and 97%, respectively. . . . . . . . . . . . . . . . . . 54

4.9 Contour plots, and profiles through x = 0 (black dotted line is the original synthetic field

and red dashed line is the reconstruction), of the ART reconstructed refractive index

gradient ∂n/∂x for 16 camera reconstruction and λx,z = L/14 after 100 iterations with

λj = 1.0: a) synthetic field; b) case B in table 4.2; c) case C; d) case D; e) case I; and

f) case K (best case). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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4.10 RMS error (a) and peak error (b) between the reconstructed gradients ∇nr
and synthetic gradients ∇ns for 16 camera reconstruction and λx,z = L/14

in the region twice the half-width r ≤ 2r1/2 = 2σ
√

2 ln 2, as a function
of ART iterations with relaxation parameter λj = 1.0 for various ART
modification schemes. Shown are: case A in table 4.2 ; case B ; case
C ; case I ; and, case K . Cases are consistent with gradient field
visualisations presented in figure 4.9. . . . . . . . . . . . . . . . . . . . . 58

4.11 RMS error in the refractive index gradients ∇n (a) and the refractive
index fields n (b) for 16 camera reconstruction and λx,z = L/14 in the

region twice the half-width r ≤ 2r1/2 = 2σ
√

2 ln 2, as a function of ART
iterations for: ART λj = 0.2 ; ART λj = 0.5 ; ART λj = 1.0 ; ART
λj = 4.0 ; SART λj = 1.0 ; SART λj = 4.0 . In all cases the Poisson
equation is solved using 3- and 5-point kernels for the left- and right-hand
side calculation, respectively. Reconstructions use case K in table 4.2. . . 60

4.12 Contour maps (top row) of the RMS (a) and peak (b) errors between the
synthetic and optimised ART reconstructed refractive index fields, ns and
nr, respectively, with 100 iterations within twice the half-width r ≤ 2r1/2 =

2σ
√

2 ln 2 as a function of wavelength L/λx,z and camera number ncameras,
normalised by the peak change in the synthetic refractive index field from
the Poisson solution npeak. The minimum RMS and peak errors for ART
are 0.6% and 1.5%, respectively. The maximum RMS and peak errors are
3.0% and 11.2%, respectively. Colourbar is consistent with figure 4.8 for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 RMS error (top row) and peak error (bottom row) in the reconstructed
refractive index gradients ∇n (left column) and the refractive index fields
n (right column) for 16 camera reconstruction and λx,z = L/14 in the

region twice the half-width r ≤ 2r1/2 = 2σ
√

2 ln 2, as a function of the
number of ART iterations for the cases shown in the table below. In all
cases the Poisson equation is solved using 3- and 5-point kernels for left-
and right-hand side discretisation, respectively. All ART and FBP+ART
reconstructions are performed using randomly-ordered cameras and pixels
with Hamming windowed corrections and relaxation λj = 0.5. ART and
FBP+ART use a sharp cut-off mask with rmask = 30 voxels (3.3σ, 2.8r1/2).
Progressively tightened Gaussian mask decreases from rm = 35 voxels
(3.9σ, 3.3r1/2) to rm,final = 30 voxels. ART case A is the same as case K
from table 4.2 with λj = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.14 Contour plots, and profiles through x = 0 (black dotted line is the original
synthetic field and red dashed line is the reconstruction), for the recon-
structed refractive index gradient ∂n/∂x for 16 camera reconstruction and
λx,z = L/14: a) synthetic field; b) FBP and 100 ART iterations with grad-
ual unmasked and Hamming windowed correction (case C in the table of
figure 4.13); c) FBP multiplied by progressively tightened Gaussian mask
and 100 ART iterations with Hamming windowed corrections (case E), and
d) FBP multiplied by progressively tightened Gaussian mask and 100 ART
iterations with inversely iteration-weighted Gaussian filter and Hamming
windowed corrections (case G). . . . . . . . . . . . . . . . . . . . . . . . 65
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4.15 Average absolute error |...r − ...s|bin in the reconstructed refractive index
gradients ∇n normalised by ∇npeak (a), and the refractive index fields n
normalised by npeak (b) for 16 camera reconstruction and λx,z = L/14, as
a function of normalised radial position r/σ with a bin size of σ/4. Shown
are: FBP , ART case A from figure 4.13 ×, and FBP+ART case E from
figure 4.13 (the latter two both correspond to the same markers in figure
4.13). Vertical dotted line indicates the usual 2r1/2 = 2σ

√
2 ln 2 limit that

the RMS error is calculated within. Sharp cut-off mask radius is located at
rmask = 3.3σ. Initial width of the progressively tightened Gaussian mask
is rm = 3.9σ, and the final width is rm,final = 3.3σ. . . . . . . . . . . . . 66

4.16 Power spectral density of the analytical ∂n/∂x|x=0, z for different imposed
frequency fluctuations ω, from L/2 to L/32, in increments of L/2 (ω =
0.03 voxel−1), left to right. Each frequency (individual lines) produces a
distinct, sharp peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Peak power (left column), and relative peak power (right column), of power
spectral density of ∂n/∂x|x=0, z for different imposed frequency fluctuations
ω, from L/2 to L/32, in increments of L/2 (ω = 0.03 voxel−1). L/32 corre-
sponds to the Nyquist frequency ω = 0.5 voxel−1. Top row corresponds to
A = 0.125, while the bottom row corresponds to the usual A = 0.25. Red
horizontal dashed line indicates 50% relative power criterion. Shown are
peak powers of the spectra for: the analytical fields , FBP , selected ART
case ×, and selected FBP+ART case (the latter two both correspond to
the same markers in figure 4.13). . . . . . . . . . . . . . . . . . . . . . . 67

4.18 Contour plots, and profiles through x = 0 (black dotted line is the original
synthetic field and red dashed line is the reconstruction), for the recon-
structed Poisson solved refractive index n0−n for 16 camera reconstruction
and λx,z = L/14: a) synthetic field; b) FBP; c) selected ART 100 iterations
(case A in figure 4.13); d) selected FBP+ART 100 iterations (case E in
figure 4.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.19 RMS error (top row) and peak error (bottom row) in the refractive index
gradients ∇n (left column), and refractive index fields n (right column)
for 16 camera reconstruction and λx,z = L/14 calculated within twice the

half-width r ≤ 2r1/2 = 2σ
√

2 ln 2, as a function of the standard deviation
of added noise normalised by the peak displacement σnoise/∆Xpeak. Shown
are: FBP , selected ART case ×, and selected FBP+ART case (the lat-
ter two both correspond to the same markers in figure 4.13). The Poisson
solution uses 3- and 5-point kernels for the left- and right-hand sides, re-
spectively. Each point is averaged over 100 samples of added noise; error
bars indicate the 95% confidence level and are approximately the size of
the markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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4.20 Average absolute errors in the refractive index gradients ∇n (a) and re-
fractive index fields n (b) as a function of radial position r/σ for noise
level σnoise/∆Xpeak = 5% for 16 camera reconstruction and λx,z = L/14.
Shown are: FBP , selected ART case ×, and selected FBP+ART case
(the latter two both correspond to the same markers in figure 4.13). Faint
lines indicate the error with no added noise (figure 4.15). The Poisson
solution uses 3- and 5-point kernels for the left- and right-hand sides, re-
spectively. Each point is averaged over 100 samples; error bars indicate
the 95% confidence level and are approximately the size of the markers.
The red vertical line indicates the 2r1/2 = 2σ

√
2 ln 2 limit up to which the

RMS error is calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.21 Contour plots, and profiles through x = 0 (black dotted line is the original synthetic

field and red dashed line is the reconstruction), for reconstructed ∂n/∂x (left column)

and n0 − n (right column) with λx,z = L/14 and 16 camera reconstruction from dis-

placements with σnoise/∆Xpeak = 5% added noise for: FBP (top row); selected ART

(middle row); selected FBP+ART (bottom row). . . . . . . . . . . . . . . . . . 72

5.1 Slice through z/D = 0 of the DNS heated jet density ratio field ρ/ρ∞ at
one snapshot. Flow is from left to right. Dotted lines : show evenly-spaced
transverse slices for reconstruction from x/D = 0.28 to 9.28. . . . . . . . 76

5.2 The proposed 15-camera experimental setup. . . . . . . . . . . . . . . . . 76
5.3 Correlation coefficient (a) and RMS error (b) between the true and com-

puted refractive index fields for one snapshot as a function of axial distance
x/D and blurring δ non-dimensionalised by nozzle diameter D. Dotted
lines indicate (from bottom to top) blurring for the current optical setup
with apertures varied from f/16, f/11, and f/8. Red dashed line - - in-
dicates blurring from 16-pixel interrogation windows on the displacement
fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Cross-section contours of normalised ‘excess’ density for one snapshot (same
as previous figure) as a function of blurring δ/D and axial distance x/D. 79

5.5 RMS (a) and peak (b) errors between the Poisson solution of the transverse
gradients and the true DNS density field as a function of axial distance
x/D. Errors are normalised by the peak refractive index difference near
the nozzle ∆np(x/D = 0.28) and averaged over the 104 samples. Marker
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and δ/5, respectively. Error bars are approximately the size of the markers
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5.6 a) Instantaneous density ratio ρ/ρ∞ as a function of the characteristic
time scale of the jet tc for all available samples at x/D = 5.2, y/D = 0,
z/D = 0.5 (i.e. r/D = 0.5), with the running average given by red crosses
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5.7 RMS (a) and peak (b) errors between the Poisson solution of the recon-
structed gradients and the Poisson solution of the blurred true gradients
as a function of axial distance x/D. Errors are normalised by the peak
refractive index difference near the nozzle ∆np(x/D = 0.28) and averaged
over the 104 samples. Markers correspond to: FBP ; ART 10 iterations
from null initial conditions ; ART 40 iterations ; ART 100 iterations ;
FBP+ART 10 iterations ; FBP+ART 40 iterations ; FBP+ART 100
iterations . All optimised ART/FBP+ART cases use the sharp cut-off
mask, relaxation parameter λi = 0.5, inversely iteration-weighted Gaus-
sian filter, Hamming windowed corrections, random camera and ray order
and Gaussian mask. FBP+ART initial FBP solution is filtered with the
Gaussian mask. Error bars are approximately the size of the markers and
indicate a 95% confidence level. . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 Absolute error as a function of radius (normalised by nozzle radius R) and
axial length (normalised by nozzle diameter D) for a) FBP, and b) ART
100 iterations, both averaged over the 104 samples. Markers show the
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∣∣∣ < 0.1 pixels. Markers show the calculated sharp cut-off mask

radius rm. Radial bin size is equal to 0.4R. . . . . . . . . . . . . . . . . . 83
5.9 Cross-section contours of normalised ‘excess’ density for one snapshot at

x/D = 5.2, and corresponding centreline profiles at z/D = 0, for: a)
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100 iterations; d) optimised FBP+ART with 100 iterations. . . . . . . . 84

5.10 RMS (a) and peak (b) errors for the ART reconstruction with 40 itera-
tions, averaged over the 104 samples, as a function of axial distance x/D.
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6.1 Configurations for laser-speckle BOS introduced by Meier and Roesgen
[81]. a) ‘Single-pass’ mode, where the expanded laser illuminates a sur-
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‘Double-pass’ mode, where the illumination is introduced in-line with the
camera’s optical axis. Notice that in both of these modes, the camera is
not necessarily focussed on the speckle surface (l 6= ZD) like in traditional
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6.2 a) Experimental setup with 15 cameras modified for laser-speckle TBOS,
b) schematic of laser expansion. Optical axis of camera 1 is aligned with
the global z-axis, and x is the jet axis. The laser beam is guided into the
beam splitter at the correct orientation using an articulated arm (ILA 5150
Articulated Mirror Arm, not pictured). Bottom: photograph of expanded
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small bench that fits onto the ‘table top’ and over the top of cameras. The
bench is visible in the bottom-right corner of the bottom photo. Additional
annotated photographs given in Appendix C.1. . . . . . . . . . . . . . . . 92

6.3 A severe example of shot-to-shot variations in intensity in the speckle im-
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6.5 Cutaway schematic of converging nozzle with matched-cubic profile [93].
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6.8 a) Sensitivity ∆/ tan ε (mm), and b) blur at object in pixels di/lpix, as a
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6.9 Recorded laser speckles images in a 100 × 100-pixel area for apertures: a)
f/8, b) f/11 and c) f/16. Red squares show a 16 × 16-pixel area. Physical
pixel size is 3.45 × 3.45 µm/pixel. Brightness and contrast of images b) and
c) have been enhanced for clarity. Bottom: speckle patterns recorded by
each camera at f/11 superimposed on the experimental setup (illustration). 99

6.10 a) Horizontal displacements for camera 1, and b) vertical displacements
for camera 1 using the median of multiple reference images for one time-
step (physical pixel size is 3.45 × 3.45µm/pixel, and spatial resolution at
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6.11 Reconstructed refractive index gradient magnitude |∇n| at one time-step.
Longitudinal slices (flow is from bottom to top): a) y/D = 0; b) z/D =
0. Transverse cross-section slices (on the same colour bar as the above
longitudinal slices): c) x/D = 0.3; d) x/D = 1.3; e) x/D = 1.8; f)
x/D = 2.6; g) x/D = 3.4; h) x/D = 4.3. . . . . . . . . . . . . . . . . . . 103

6.12 Reconstructed density field ρ (kg m−3) at one time-step. Domain length is
0.3 < x/D < 4.6. Top: longitudinal slice at y/D = 0, flowing from bottom
to top. Transverse slices (on same colourbar as the longitudinal slice): a)
x/D = 0.3; b) x/D = 1.3; c) x/D = 2.3; d) x/D = 3.2; e) x/D = 4.2.
Also see Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.13 Convergence of BOS mean density statistics. First row shows values at
centreline r/D = 0: a) centreline mean density ratio ρ/ρ∞, and b) cen-

treline normalised RMS density fluctuation

√
ρ′2/ρ∞. Second row shows

radial profiles at x/D = 2.3 with azimuthal averaging using a bin width
of ∆r/D = 0.084: c) mean density ratio, and d) normalised RMS density
fluctuation. Results are shown for 500 to 5,000 samples in increments of
500 samples. The darker the marker colour, the more samples are used.
Pale yellow is 500 samples and black is 5,000 samples. . . . . . . . . . . . 106

6.14 a) Mean temperature field from TBOS (flow is from left to right) as a
function of radial position r/D and axial position x/D, with red dashed
lines - - showing locations of thermocouple measurements. Comparison
of temperature between BOS and thermocouple × at: b) x/D = 0.3;
c) x/D = 1.3; d) x/D = 2.3; e) x/D = 3.2; f) x/D = 4.2. Error bars
represent a 95% confidence level and are approximately the same size as
the markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.15 Comparison of BOS and DNS mean density statistics. First row shows
mean density ratio ρ/ρ∞ for a) BOS, and b) DNS;second row shows nor-

malised RMS density fluctuation

√
ρ′2/ρ∞ for c) BOS, and d) DNS, as

a function of radial position r/D and axial position x/D. Comparison
of BOS and DNS e) centreline mean density ratio, and f) centreline
normalised RMS density fluctuation, as a function of axial position x/D.
Error bars on the centreline mean density ratio indicate a 95% confidence
level and are approximately the same size as the markers. . . . . . . . . . 109

6.16 Comparison of BOS and DNS halfwidth r1/2/D based on local nor-
malised ‘excess’ centreline density (ρ∞ − ρ)/(ρ∞ − ρc), where subscript c

indicates local centreline value. . . . . . . . . . . . . . . . . . . . . . . . 110
6.17 Favre-averaged a) scalar dissipation rate χ̃ normalised by T 2

∞/tc, and b)
dissipation time scale τ normalised by tc, as a function of radial position
r/D and axial position x/D. . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.18 Contours of normalised ‘excess density’ (ρ∞ − ρ)/(ρ∞ − ρe), coloured by
normalised density fluctuation ρ′/ρ∞. Flow is from bottom to top. Solid
contours indicates potential core, defined as (ρ∞ − ρ)/(ρ∞ − ρe) = 0.9.
Transparent contours indicate (ρ∞−ρ)/(ρ∞−ρe) = 0.25. Various patterns
are observed, labelled as: a) stretching, b) stretching with 1 fragment, c)
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6.19 Histogram illustrating frequency of samples as a function of number of
potential core fragments observed using the (ρ∞ − ρ)/(ρ∞ − ρe) > 0.9
criterion. a) All potential core fragments, b) fragments with a volume
V ≥ 0.05V pc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.20 Box-and-whisker plots (first and third rows) and scatter plots (second and
fourth rows) of the potential core fragments’ volumes (normalised by D3)
and the corresponding centres of mass as a function of position, respec-
tively. Only potential core structures/fragments with (ρ∞−ρ)/(ρ∞−ρe) >
0.9 with a volume V ≥ 0.05V pc are considered. a) Fields with 1 structure,
b) fields with two structures, c) fields with three structures, d) fields with
four structures. Box-and-whisker plots: orange line – is the median, box
represents the interquartile range IQR (Q1 to Q3), whiskers extend to 1.5×
IQR beyond Q1 and Q3, black circles are outliers, red dashed line - - is
the volume of the mean potential core V pc. Scatter plots: largest structure
(main potential core) , second-largest structure , third-largest structure
, fourth-largest structure ; red cross × shows the centre of mass of the

mean potential core (translated slightly off-axis for clarity). . . . . . . . . 115
6.21 Centres of mass of the 2-structure fields from figure 6.20 as a function of

position (magnified for clarity) coloured by volume V normalised by D3.
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for clarity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1 a) Average absolute error of the ART gradient field reconstruction as a
function of normalised radial position r/σ with a bin size of σ/4. The
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Chapter 1

Introduction

Turbulent, variable density jets are fluid flows that arise in a wide variety of natural and
industrial processes, such as convective cooling, combustion, pollutant dispersion and
spray drying. Jets consist of high-momentum fluid issuing into an ambient environment
from a nozzle or orifice. Variable density effects influence the development and character-
istics of jets, in which fluids of different chemical composition are mixed, or are subject
to thermal or compressibility effects. Due to the impossibly high computational demand
of direct numerical simulation of flows of practical interest, the governing equations must
be modelled to predict and control these flows. A complete description of variable density
flows requires modelling of the turbulent fluctuations of the density and velocity fields and
their interactions. The models must be informed by, and evaluated against, high-quality
experimental measurements of the density and velocity fields.

Velocity field measurement techniques have seen rapid development over the past few
decades from point measurements using hot-wire anemometry and doppler velocimetry to
two- and three-dimensional velocity field measurements (including time-resolved capabil-
ity) using particle-image velocimetry (PIV), for a wide variety of flows. Density measure-
ment techniques have not enjoyed the same rapid advancement. It remains uncommon
to see a three-dimensional quantification of the density field, let alone the existence of
a standard, well-developed technique for these measurements. Optical methods present
a promising avenue to conduct non-intrusive measurements of the density field in tur-
bulent flows, which take advantage of the relation between a fluid’s density field and its
refractive index field. Background-oriented schlieren (BOS) is one such technique based
on this relation, which utilises a camera to image a textured background pattern while
looking through the flow of interest [112]. When imaged from multiple perspectives, the
apparent distortions of the background images due to refractive index gradients can be
used as the basis for a tomographic reconstruction of the 3D refractive index field, from
which the density and temperature fields may be obtained.

The accuracy of tomographic BOS (TBOS) measurements depends strongly on both
the ability to resolve background displacements and the reconstruction of the gradient
field. For the former, a prominent dilemma in the BOS experimental setup is the compro-
mise between measurement sensitivity and defocus blur. The sensitivity to background
pattern displacements is increased by increasing the distance between the flow and the
background, and by using longer focal length lenses. However, this also increases the
defocus blurring in the measured object, which obscures the flow features. Further com-
promises between image illumination and temporal blurring arise when one attempts to
solve the original dilemma. These issues have not been satisfactorily addressed in pre-
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vious work, and a key objective of this research is to develop a methodology to find
the ideal compromise between measurement sensitivity and defocus blurring while mit-
igating temporal blurring. Regarding the tomographic reconstruction, there are special
considerations in fluid mechanics measurements such as TBOS and TPIV that are not
found in other fields such as medical imaging. For example, the short timescales of the
flow requires that all of the projections are recorded simultaneously. This requires that
each projection correspond to an individual camera, limiting the number of projections
that can be used due to physical packaging constraints. Ultimately, the limited num-
ber of views results in an imperfect reconstruction which will under-resolve high spatial
frequency flow features and produce undesirable reconstruction artefacts. Furthermore,
unique to TBOS, the reconstructed quantity is a gradient that can be positive or negative,
unlike intensity-based reconstructions. The current work presents the development of an
optimised reconstruction algorithm for TBOS suitable for limited-view tomography. The
resulting findings are used to develop an experimental setup capable of high-quality 3D
density measurements of heated jets with low temporal and defocus blurring.

1.1 Aims and overview of the thesis

The progression of the current work is divided into three sequential parts, and the aims
of each part are listed below.

1. Development of TBOS reconstruction methods using a heated jet phantom. Aims:

(a) Optimise the reconstruction methods to improve accuracy and measurement
quality.

(b) Determine the appropriate number of cameras for high-quality reconstruction.

(c) Identify the range of spatial scales resolvable by the reconstruction methods
relative to the Nyquist frequency of the optical system, as a function of camera
number.

2. Validation using a realistic flow: the heated jet direct numerical simulation (DNS).
Aims:

(a) Validation of a proposed 15-camera experimental TBOS setup.

(b) Identify the limit on temporal blurring due to exposure time for high-quality
measurements relative to the jet’s characteristic time scale.

(c) Identify the limit on defocus blurring for high-quality measurements relative
to the jet’s nozzle diameter as a function of camera aperture.

3. Demonstration of an improved experimental technique: pulsed laser-speckle TBOS.
Aims:

(a) Implement pulsed laser-speckle TBOS as a novel method to mitigate temporal
blurring.

(b) Develop a systematic procedure to enable optical setup optimisation iden-
tifying the ideal compromise between measurement sensitivity and defocus
blurring.
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(c) Demonstration of 3D measurements of the potential core in a heated jet to
identify transitional behaviour.

In chapter 2, the background to the present work is discussed. The characteristics,
complexity and open questions on heated jets are introduced. The principles and qual-
ities of different measurement techniques for density, temperature, and concentration in
variable density jets are compared. The current work focuses on refraction-based density
measurements, which can produce the desired 3D density field measurements. A den-
sity gradient method known as BOS is selected for further development. BOS is chosen
because of its simple and versatile experimental setup, which can be expanded to the
necessary multiple-camera setup for 3D density field measurements.

Chapter 3 discusses BOS in greater detail. The principles of the technique are out-
lined, including the compromise between measurement sensitivity and defocus blur. The
background design and displacement calculation methods are presented. Finally, the
tomographic reconstruction of 3D density fields from BOS image displacements are con-
sidered, including past approaches.

Part 1 of the research is presented in chapter 4, which is focussed on developing
and validating four tomographic reconstruction methods using a synthetic density field
phantom (test case). A ray tracing procedure is developed to create synthetic BOS
displacements from the phantom to use as input to the reconstruction. This allows a
systematic assessment of the accuracy and measurement quality of four reconstruction
methods. Modifications are introduced to enhance convergence, improve the prediction of
gradients, and reduce reconstruction artefacts associated with limited-view tomography.
The reconstruction error and range of resolvable spatial scales are quantified.

Part 2 is presented in chapter 5. Having established the optimal reconstruction
method, the reconstruction method is tested using the data from DNS of a heated jet with
the virtual version of a proposed 15-camera experimental setup. The study gauges the
accuracy of the technique on a realistic flow to validate the proposed setup. Furthermore,
the study establish limits on the allowable defocus blur and temporal blurring in TBOS
measurements for high-quality 3D flow measurements. Because this approach starts by
considering the impact of temporal and defocus blurring relative to the flow structures,
the present work demonstrates a significant step forward in addressing the compromise
between measurement sensitivity and defocus blurring in TBOS.

The last part of the research is presented in chapter 6. In part 3, the guidelines es-
tablished in part 2 are used to develop the 15-camera experimental setup for 3D density
measurements in a heated jet. This chapter demonstrates the implementation of a novel
pulsed laser-speckle tomographic background-oriented schlieren method. A laser-speckle
pattern is used as the background for all cameras. This modification mitigates temporal
blurring in the measurements and furthers the use of TBOS to the study of turbulent
flow structures and their statistics. A systematic procedure is developed to control defo-
cus blurring in the measurement and maximise measurement sensitivity. This creates an
extremely useful set of guidelines to optimise future TBOS experiments. Finally, mea-
surements of the near-nozzle region of a heated jet are presented, including validation
against thermocouple measurements and insights on the breakup of the potential core of
a heated based on 3D experimental data.

Chapter 7 concludes the work with a summary of the key findings. Remarks on the po-
tential applications and limitations of the technique are presented, and recommendations
for future work are made.
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Chapter 2

Background

This chapter first introduces the characteristics of variable density jets, and how their
governing equations and behaviour differ from the canonical incompressible jet. Varia-
tions in density can be due to heating, high-speed compressibility effects, or the mixing
of various species. The current project investigates heated jets emanating from round
nozzles. Important findings from previous studies are outlined, including the statistics
and coherent structures in these flows, and open research questions on heated jets are
introduced.

Subsequently, classes of techniques for experimental density, temperature and con-
centration measurements in variable density flows are compared. These measurements
are critical to further the understanding of the structure of heated jets. The range of
techniques available span 1D (point), 2D and 3D measurements.

The discussion narrows towards refraction-based density measurement techniques,
which are preferred in the current work due to their non-intrusive nature. The background-
oriented schlieren technique is a member of a sub-class, density gradient methods, which
is selected for further development.

2.1 A description of variable density jets

A jet is a free shear flow in which fluid emanates from a nozzle or orifice into ambient fluid.
The ambient fluid may have its own motion, such as counter-, cross- or co-flow to the jet’s
axis, or be quiescent, which is known as a submerged jet [2]. The canonical jet is a well-
studied flow with incompressible fluid emanating from a round nozzle into a quiescent
fluid with identical properties. The evolution of the jet flow is broadly characterised by
the Reynolds number based on nozzle diameter,

ReD =
ρeUeD

µe
, (2.1)

which describes the relative importance of inertia to viscous effects, where ρ is the fluid
density, U is the average velocity, D is the nozzle diameter, µ is the kinematic viscosity
and subscript e refers to conditions at the nozzle exit. Except for very low Reynolds
numbers where the developing flow is completely laminar, the shear between the jet and
ambient fluid causes turbulent motions and induces enhanced mixing. These motions are
instigated by the development of shear layer instabilities.

Although variable density jets, which are the subjects of this study, introduce some
changes to the jet’s behaviour, a description of the canonical case is still helpful in un-
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Figure 2.1: Evolution of a submerged free jet with downstream length x (not to scale),
adapted from Abdel-Rahman [1] and Ball et al. [11]. Flow is from left to right. The
jet is initially laminar, emerging from a contoured nozzle with exit diameter D. The
growth of instabilities transitions the flow to a turbulent state, encouraging mixing with
the ambient fluid. Pertinent flow features are labelled in the top half of the diagram.
Axial regions are labelled in the bottom half. Radial regions are labelled on the right.

derstanding the evolution of jets. Figure 2.1 illustrates the zones of development and
flow features in the canonical jet, which can also be understood in terms of their axial
distance x from the source relative to the nozzle diameter, i.e. x/D. The potential core
is the region of unmixed fluid near the source, typically in the region 0 ≤ x/D ≤ 7 [11].
The fluid in this region may be laminar or turbulent, depending on the upstream condi-
tions inside the nozzle. For jets of practical interest, a turbulent region exists far from
the nozzle where ambient fluid is entrained into the jet through the action of turbulent
eddies. The transition from a laminar potential core to a turbulent far-field can occur
from 7 ≤ x/D ≤ 70 and is initiated through the development of shear layer instabilities,
which result in vortex roll-up (Kelvin-Helmholtz instability) and pairing. The instabil-
ities extract energy from the flow and their break-down near the end of the potential
core gives rise to the transition region of the jet. Beyond the transition region exists
the far-field, which is characterised by chaotic motions across a range of scales. The jet
achieves self-similarity in the mean and fluctuating profiles of velocity and transported
scalar in the far-field. The effects of buoyancy become more important in the far field
of a variable density jet, as the jet’s momentum is steadily decreased through the action
of turbulent motions. Radially, the jet can be divided into a centreline region, the shear
layer, and outer region. The shear layer is most interesting as the flow structures and
mixing with the ambient environment originate here.

In their reviews on the canonical jet, Abdel-Rahman [1] and Ball et al. [11] classify
previous work broadly into two categories: study of jet’s statistics (especially the far-
field), and study of coherent flow structures (especially in the near- to intermediate-
field). The former is useful for model development and validation, and these studies
have been conducted over nearly a century. In the far-field, where the jet exhibits self-
similarity of mean velocity and concentration profiles, the characteristics of the flow
can be estimated through the Reynolds-averaged Navier-Stokes (RANS) equations and
assuming a turbulence model such as the k − ε model. These characteristics include
the mean velocity and concentration self-similarity scaling, decay rate, spreading rate
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Figure 2.2: Cutaway normalised density field of a heated jet from direct numerical simula-
tion, with Reynolds number based on nozzle diameter ReD = 10, 000, exit Mach number
Ma = 0.6 and exit density ratio ρe/ρ∞ = 0.8. Flow is from left to right. Details of the
simulation are given in chapter 5.

and turbulent stresses, among other properties [103]. Point-based measurements of the
far-field velocity are numerous, due in part to the limited measurement techniques, and
agree well with the modelled far-field characteristics [11]. The classical view of far-field
jet statistics originating with Kolmogorov asserts that the small-scale turbulence in the
far-field is isotropic. This allows the jet to be treated as a point source of momentum at a
virtual origin producing a universal far-field. More recent work questions this view, and
the inflow and boundary conditions are found to have an impact on the jet’s stream-wise
evolution, which has been reviewed by George [41] and shows that differences in inflow
boundary conditions, such as velocity profile and turbulence intensity, can significantly
alter the development of the jet’s near-field turbulent structures, with evidence that the
far-field characteristics are influenced as well. Ball et al. [11] and George [41] summarise
the key findings of recent studies on the influence of initial conditions on the far-field
characteristics of the jet. It is seen that there are at least three forms of self-similar
behaviour in the far-field which arise from the initial conditions: self-similarity of all
statistical moments and scales, self-similarity of a limited number of moments and scales,
and local self-similarity as the profiles scale with local quantities. George [40] notes that
development of the shear layer depends on the growth of a sequence of instabilities and
coherent structures near the nozzle, eventually influencing the jet’s far-field growth. The
dependence of the jet’s far-field characteristics on the initial conditions and near-nozzle
development complicate the development of turbulence models and prediction, which
should also consider the influence of inlet conditions and near-nozzle structures.
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The jet may also have a different density to its ambient environment due to the
added fluid having a different temperature or molecular composition. Changes in density
may also be due to compressibility effects, when the local Mach number Ma > 0.3.
The variations in density can modify the jet’s growth, as will be discussed. The spatial
and temporal evolution of temperature and molecular composition (concentration) of the
jet due to mixing with the environment can be described through the scalar transport
equation. Both these effects may be present simultaneously. The density variation is
characterised through the exit-to-ambient density ratio, ρe/ρ∞. The jet is light if ρe/ρ∞ <
1, and heavy if ρe/ρ∞ > 1.

The density and scalar fields of variable density jets can be extremely complex, like
the velocity field. If the scalar transport has little or no effect on fluid properties such
as density, it is considered a passive scalar. Examples include weakly-heated jets, or
concentration of an injected dye or tracer particles. However, if the scalar influences the
fluid properties, it is an active scalar. This includes strongly heated jets, where the active
scalar is temperature (and a thermodynamic equation-of-state is also required to relate
temperature and density) and mixing of different chemical species such as helium in air,
where the active scalar is species concentration. In this study, compressibility effects
associated with high-speed flows (Mach number Ma > 0.3) are not considered. These
flows possess their own unique characteristics, especially the supersonic jet, and their
modelling is significantly different to low-speed flows [25].

A section of the density field in a heated jet obtained via direct numerical simulation
(DNS) is shown in figure 2.2, which demonstrates the complex transition to turbulence
through the growth of instabilities. Small- and large-scale features can be seen far from
the inlet. Chassaing et al. [25] provide an extensive description of the theory of variable
density jets, and a summary of previous experiments. They note that the spreading rate,
turbulence intensity and peak Reynolds stresses are inversely proportional to the density
ratio. A related flow to the variable density jet, the plume, is produced by a source of
buoyancy, with no point-source of momentum such that the flow is not inertia-dominated
[74]. As mentioned previously, buoyancy also becomes important in the Boussinesq regime
of the heated jet, where the flow resembles a plume.

Modelling a variable density flow is significantly more complex than an incompressible
flow. In addition to the continuity and momentum equations, an equation for concentra-
tion of each additional species is required [25],

∂(ρC)

∂t
+∇ · (ρC~v) = ∇ · (ρDC∇C) + ρSC , (2.2)

where ρ is the density field, C is the concentration field, t is time, ~v is the velocity field,
DC is the mass diffusivity of the species, and SC is a source term. Heat transfer is
described by the energy equation,

∂ (ρcpT )

∂t
+∇ · (ρcpT~v) =

∂P

∂t
+ ~v · ∇P + Φν +∇ · (k∇T ) + qrad, (2.3)

where T is the temperature field, cp is the specific heat at constant pressure, P is the
pressure field, Φν is the viscous dissipation rate, k is the thermal conductivity and qrad
represents radiative heat transfer.

Peters [101] explains that the evolution of any active scalar ψ, assuming low speed flow
such that pressure variations and viscous dissipation can be neglected, can be expressed
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in the general form,

∂ (ρψ)

∂t
+∇ · (ρ~vψ) = ∇ · (ρDψ∇ψ) + ρSψ, (2.4)

where Dψ is a diffusivity and Sψ is a source term, e.g. heat release from chemical reac-
tion (which is not relevant to a non-reacting jet). By introducing the density-weighted
decomposition of the scalar, also called Favre averaging,

ψ = ψ̃ + ψ′′ (2.5)

where

ψ̃ =
ρψ

ρ
, (2.6)

and the over-bar refers to the ensemble average, the density-weighted scalar variance is

defined as ψ̃′′2. Mixing in the flow can be described by the transport equation for scalar
variance [101, 144],

∂
(
ρψ̃′′2

)
∂t︸ ︷︷ ︸
1

+∇ ·
(
ρ~̃vψ̃′′2

)
︸ ︷︷ ︸

2

+∇ ·
(
ρ~̃v′′ψ′′2

)
︸ ︷︷ ︸

3

= ∇ · (ρDψ∇ψ′′2) + 2ψ′′∇ ·
(
ρDψ∇ψ̃

)
︸ ︷︷ ︸

4

− 2ρ~̃v′′ψ′′ · ∇ψ̃︸ ︷︷ ︸
5

− 2ρDψ (∇ψ′′ · ∇ψ′′)︸ ︷︷ ︸
6

,

(2.7)

where the terms refer to:

1. Unsteadiness of the scalar variance.

2. Mean convection.

3. Turbulent transport.

4. Molecular diffusion, which should be negligible for a turbulent flow.

5. Turbulent production.

6. Fluctuating scalar dissipation rate due to turbulence.

The terms on the right-hand side require modelling informed by experimental measure-
ments. For example, the second-last term, −2ρDψ (∇ψ′′ · ∇ψ′′), is unclosed, and affects
the flow’s mixing by dictating the dissipation of turbulent motions. The transport equa-

tion of the Favre-averaged Reynolds stress ~̃v′′~v′′ also provides insight on the mechanisms
of mixing in these flows. Panchapakesan and Lumley [100] find positive production of

turbulence kinetic energy (TKE) tr
(
~̃v′′~v′′

)
in an incompressible air jets, which is nearly

twice as high in the far-field of a helium-air jet (ρe/ρ∞ = 0.14). In contrast, Charonko and
Prestridge [24] found negative production of turbulent kinetic energy near the centreline
in the far-field of a sulphur hexafluoride (SF6)-air jet (ρe/ρ∞ = 4.2), but positive pro-
duction in the shear layer with a similar magnitude to a constant density air jet. A large
turbulent flux is observed near the centreline, which is absent in the air jet, which the
authors state is responsible for transporting TKE from the shear layer to the centreline.
The mechanisms underlying the spreading and mixing behaviour of variable density jets
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are quite poorly understood, which in turn affects the quality of flow modelling. Addi-
tional experimental measurements of the density and concentration fields are invaluable
to furthering our understanding of these flows.

Even in low-speed jets, the vortex roll-up and potential core break-down can lead to
large fluctuations in density in the near- to intermediate-region of the jet. Using the
Reynolds average notation,

ψ = ψ + ψ′, (2.8)

Chassaing et al. [25] notes some observations on the correlations of fluctuating velocity,
density and scalar in low-speed (isobaric) jets:

� In lighter jets, where ρe/ρ∞ < 1, the mean velocity-density fluctuation correlations
ρ′u′i are negative. In heavy jets, where ρe/ρ∞ > 1, these correlations are positive.
In the radial velocity correlation, this signifies that the motion of lighter fluid into
heavier fluid is statistically dominant.

� The density-concentration fluctuation correlation ρ′C ′ has the same sign as ρ′u′i,
but the density-temperature fluctuation correlation ρ′T ′ is always negative.

� The higher order correlation of density and temperature ρT ′2 is always negative
(note that instantaneous density is used). The correlation ρT ′u′i is positive in light
jets and negative in heavy jets. The concentration correlation ρC ′u′i is always
positive.

Although these observations provide some insight on the jet’s mixing, experimental data
are required to meaningfully develop models of the jet’s mixing. Ultimately, simultaneous
density and velocity measurements are required to investigate the density-velocity corre-
lations. The present work takes a step towards this by developing a density measurement
technique to complement existing velocity measurement techniques.

In addition to statistical characterisation of the jet, the study of coherent structures
can provide insights on the underlying flow physics. Various definitions of coherent struc-
tures have been proposed, defined based on statistical correlation of flow quantities or
through modal analysis supporting qualitative inspection [11]. Coherent structures can
be identified through flow visualisation and 2D or 3D velocity or concentration measure-
ments. Until recently, these visualisations were limited to qualitative inspections of the
flow’s development, e.g. through dye or smoke injection. True- or high-fidelity simula-
tions such as DNS and large-eddy simulation (LES) are also employed in the study of
coherent structures. In variable density flows, optical techniques based on the relation-
ship between a fluid’s density and refractive index can be used for both qualitative and
quantitative flow visualisation, which will be discussed in more detail in the next section.

The flow structures which develop in the near- to intermediate-regions of the jet are
complex, three-dimensional and can be quite well-organised in time and space. The
Reynolds number and initial conditions also play a large role in determining the nature
of these structures. For example, Mi et al. [86] observed that a fully developed pipe jet of
identical Reynolds number to contoured nozzle jet does not display a laminar potential
core and possesses much smaller and less well-organised vortical structures. The pipe jet
consequently achieves self-similarity much earlier. As discussed previously, shear layer
instabilities cause vortex rings to form, which pair and merge at the end of the potential
core. Shearing may cause the paired rings to be oriented off-axis [78]. The end of
the potential core is ‘pinched’ by the merging rings, and dramatically disintegrates into
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chaotic multi-scale turbulence. Previous experiments have demonstrated that trains of
vortex rings may form along the shear layer, with the rings pairing alternately, with
the end of the potential core bobbing up and down as a result [154]. These trains
breed streamwise-oriented vortices between them, known as braids, which may organise
into counter-rotating pairs spaced evenly around the circumference of the vortex rings.
Liepmann and Gharib [78] found small mushroom-shaped radial ejections in transverse
slice visualisations through the jet, which they associated with fluid being pushed out
radially between the braids. However, the chaotic nature of the vortex ring pairing ensures
that the mushrooms do not grow very large before they are destroyed at the end of the
potential core.

When the density ratio ρe/ρ∞ . 0.7 and ρe/ρ∞ � 1, the jet’s structures can be
significantly different to the incompressible jet. The light jet is a well-studied case, yet
the formation of the near-nozzle region structures is still poorly understood. The heavy
jet is not even well-studied, with only Charonko and Prestridge [24] recently investigating
a heavy jet (ρe/ρ∞ = 4.2) and finding more mixing than in an incompressible jet very near
the nozzle but hindered spreading further downstream. As the density ratio is lowered,
the formation of structures in the near-field shear layer becomes more organised for an
initially laminar jet [117]. This contributes to a mild increase in spreading compared to
the incompressible case along the length of the jet. Below a certain density ratio, many
studies have noted the formation of spectacular side jets, which emit a large quantity
of fluid perpendicular to the jet’s axis. The side jets form sporadically, are short-lived,
and are spaced evenly along the jet’s azimuth. The side jets are believed to be related
to the formation of an oscillating instability originating from a self-excited low-density
potential core. The exact value of the density ratio which corresponds to the onset of
the instability is the subject of debate. Monkewitz and colleagues estimated a density
ratio ρe/ρ∞ < 0.72 using linear stability theory, which was also observed experimentally
[58, 92]. Kyle and Sreenivasan [70] disagree and report that their experiments required
ρe/ρ∞ < 0.6 before side jets were observed as they posit a strong dependence on the initial
momentum thickness of the jet’s velocity profile as well, which reconciles the reports of
increased mixing from only ρe/ρ∞ < 0.6 in many older experiments, e.g. Corrsin and
Uberoi [27]. Russ and Strykowski [117] confirmed that the side jets require an initially-
laminar flow, indicating that the well-organised shear layer structures are required for
the formation of the side jets, and not only a low density ratio. Further investigation of
a forced, incompressible jet DNS by Brancher et al. [17] showed that the side jets may be
related to mushroom structures being allowed to persist and grow for a longer time by
the well-organised vortex ring train. However, the reason for their sporadic rapid growth
is not well understood.

The transition to turbulence in jets is complex. Three-dimensional measurements of
the density and velocity field are needed not only for the study of flow structures, but
for generating experimental data to validate flow and heat transfer models. Thus, it is
imperative to develop and validate an experimental technique which can be used to study
the development of the jet structure, which is the primary aim of this work.
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Figure 2.3: A non-exhaustive family tree of density, temperature and concentration mea-
surement techniques in variable density gas flows. Shading indicates the path to the
selected techniques in this project.

2.2 Overview of experimental techniques for density,

temperature and concentration measurements in

variable density jets

As discussed in the previous section, variations in density in low-speed flows can be due to
thermal or concentration effects. Numerous techniques have been developed to indirectly
measure density fields through the temperature or concentration fields in gases.

These techniques can broadly be described as contact or non-contact methods, addi-
tive or non-additive methods. Figure 2.3 illustrates the classification of the measurement
techniques used for density, temperature and concentration field measurement in gases.
The family of techniques that are the focus of this project, refractive index gradient
methods, are highlighted. The density field in gases is also related to the refractive in-
dex field, n. A family of techniques has been developed which rely on measuring the
disturbances to light propagating through the flow of interest. These techniques are
non-contact and non-additive, with absolutely no disturbance to the flow. Qualitative
flow visualisation, and quantitative density field measurements, can be obtained through
measurement of the refractive index, or its spatial gradients, based on the deflection of
light. This gives rise to further subcategories: shadowgraphy, density gradient methods
(including background-oriented schlieren), and phase difference methods (which include
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holography). In all of these techniques, a camera is used to record the passage of light
rays through the volume. This allows the measurement of a large and continuous field
of view. These refraction-based methods will be discussed in further detail in the next
section. But one should also briefly consider other prominent measurement techniques,
which were the backbone of many experimental studies underpinning our understanding
of variable density jets, and still have a place in fluid diagnostics.

The oldest methods for quantitative measurements have involved the use of electrical
or mechanical probes inserted into the flow which produce point measurements. These
are obviously contact methods, but require no additional substances introduced to the
flow. Electrical probes are mostly used to measure temperature, and include the ther-
mocouple, thermistors, resistance temperature detectors (RTDs) and cold wire systems.
Thermocouples utilise the Seebeck effect, and the temperature is inferred from the volt-
age generated at the junction between two dissimilar metals. Thermistors and RTDs
are electrical elements, whose resistance depends strongly on the temperature, and are
actively powered by a constant current circuit. Cold wire systems are similar in princi-
ple to thermistors and RTDs but operate using a constant voltage circuit (like hot-wire
anemometry) with a very small temperature difference between the wire and ambient
temperature. The ‘point-wise’ nature of these measurements really depends on the size
of the thermocouple junction or element size, and there is an associated spatial averaging.
These techniques are precise to the order of a tenth of a Kelvin, but the probes record
only their own temperature, rather than the flow temperature [118]. There are further
disadvantages associated with using probes for turbulence measurements. Physical dis-
turbance of the flow means that it is difficult to detect coherent flow structures with
probe arrays. Electrical probes often suffer from slow response times (milliseconds or
seconds) which further confounds efforts to detect structures, there is a thermal inertia
associated with the sensing element, and they may heat themselves due to electrical re-
sistance (particularly thermistors). The sensing element of the probe also conducts heat
to the associated circuitry, which are termed ‘end-losses’. It is possible to correct for
thermal inertia and end-losses in cold wire systems, such that the measurement rate can
be on the order of a few kilohertz [26, 83]. Concentration measurements using probes are
far less common than temperature measurements. Way and Libby [148] described a hot
wire-film probe for concentration measurements in helium-air jets. The thermal fields of
the wire and film overlap, and the extent of the film’s field increases with the concen-
tration of helium which is detected by the wire. This probe was used by Panchapakesan
and Lumley [100] for their extensive measurements of the velocity and concentration field
characteristics in helium-air jets. Although cost-effective, non-intrusive techniques have
gained traction over probes in modern turbulence diagnostics due to the disadvantages
of probe methods.

Non-contact methods based on optical phenomena include absorption/emission meth-
ods, scattering techniques, and the refraction-based methods. Point-based measurements
can be obtained non-intrusively by utilising scattering phenomena, while fluorescence
methods can provide planar or volumetric measurements of temperature or concentra-
tion in variable density gas flows. The development and application of these methods is
broad and mature, and comprehensive reviews of scattering and fluorescence techniques
are provided by Kowalewski et al. [69] and Lee [75]. The response and acquisition times
of these techniques are far shorter than probes and are typically much shorter than flow
characteristic time scales, so they are ideal for the study of turbulent flows. Rayleigh
scattering describes the scattering of light by particles much smaller than the wavelength
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of the incident light. It is an elastic phenomenon, meaning that the scattered light is
of the same frequency as the incident light. Richards and Pitts [113] utilised Rayleigh
scattering in their characterisation of the far-field in isothermal helium-air, methane-air
and propane-air free jets. The authors noted that the technique required a clean facility,
free of dust, to prevent the measurements being contaminated by the more-dominant
Mie scattering. A similar technique based on inelastic scattering, Raman scattering, has
been used to determine the composition of flames; combined Rayleigh-Raman scattering
techniques can be used to determine both the flow temperature and composition fields.
Mie scattering involves the elastic scattering of light by particles much larger than the
wavelength of the light. Sautet and Stepowski [119, 120] utilised Mie scattering in their
investigation of the near-nozzle development of hydrogen-air jets to obtain the scalar
concentration profiles. Furthermore, combined Rayleigh and Mie scattering have been
used to provide simultaneous point concentration and velocity measurements [88, 89].
Although the present discussion of non-contact methods is limited to optical methods,
note that acoustic methods have also been used to provide point-wise temperature and
velocity measurements in heated gaseous flows [52].

A prominent example of absorption/emission methods for concentration measure-
ments is laser-induced fluorescence (LIF), which is based on the emission of light (fluo-
rescence) from a substance molecule after excitation, and subsequent relaxation, from a
laser source of a particular wavelength. The fluorescence is emitted at another, longer
wavelength. LIF is used for fluid concentration measurements by contaminating a flow
with a fluorescent substance, e.g. acetone, and guiding a laser to illuminate a section
of the flow. The intensity of the fluorescence wavelength is dependent on the local con-
centration of the substance through the Beer-Lambert law and is captured by a camera.
The concentration field can then be related to the density. The laser can be formed
into a sheet to illuminate a 2D plane in the flow, called planar laser-induced fluorescence
(PLIF), or used for volumetric illumination, called volumetric laser-induced fluorescence
(VLIF). In the latter case, to obtain 3D measurements of intensity/concentration, it is
necessary to use emission tomography from multiple cameras viewing the flow simulta-
neously. PLIF is a well-established diagnostic for variable density turbulent flows. For
example, Charonko and Prestridge [24] paired PLIF with particle image velocimetry to
simultaneously measure velocity and concentration in air and sulphur hexafluoride (SF6)
jets. This was used to yield the profiles of the Favre-averaged Reynolds stresses, and
investigate the budget of terms in the Favre-averaged turbulent kinetic energy transport
equation.

2.3 Refraction-based density measurements

Optical techniques for fluid density measurement are based on relations between a fluid’s
refractive index and its density. Merzkirch [84] describes the derivation of the Clausius-
Mosotti relation between the refractive index n of a fluid (liquid or gas) to its density
ρ, based on the propagation of electromagnetic waves, i.e. light, through a medium of
variable density and its effect on the polarity of fluid molecules. In gases, the Clausius-
Mosotti relation simplifies to the Gladstone-Dale relation,

n− 1 = ρG, (2.9)

where G is the Gladstone-Dale constant which depends on the species composition of
the gas, and weakly on temperature and the wavelength λ of the light itself. Assuming
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Figure 2.4: The deflection of the ray within the volume has been exaggerated for clarity.

the Gladstone-Dale constant of the gas is known, the density field of the gas can be
determined by measuring the refractive index field. Hence, it is established the refractive
index field allows the measurement of the density field. Now consider how the refractive
index field itself can be measured. The propagation of light rays through a volume with
varying refractive index is described by the Fermat principle [16],

d

ds

(
n

d~x

ds

)
= ∇n, (2.10)

where ~x is the position vector, ds is a differential length along a light ray and ∇n is the
(spatial) refractive index gradient. Sharma et al. [125] and Hewak and Lit [55] use the
variable substitution dt = nds to obtain,

d

dt

(
n2 d~x

dt

)
=

1

n
∇n, (2.11)

and subsequently use the variable substitution du = ds/n to rewrite the Fermat principle
in the following form:

d2~x

du2
= n · ∇n. (2.12)

Equation 2.12 is numerically integrated using a Runge-Kutta method to find the deviation
of light rays passing through a medium of variable refractive index due to changes in wave
speed [125]. This is known as ray tracing. The deviation of rays can also be understood in
terms of the optical wavefront, as light rays are perpendicular to the wavefront. Huygen’s
principle states that the wavefront is a source of secondary spherical waves [16], which
dictates that the rays (normal vectors to the wavefront) are oriented towards the region of
higher refractive index [124]. In experiments, the refractive index field and its gradients
are not known. They are sought to measure the fluid density field. From the Fermat
principle, it is seen that detecting changes in the trajectory of light rays passing through
the flow can be used to measure the refractive index field and its gradients.

Equation 2.12 demonstrates the effect of the variable refractive index field on the
trajectory of a ray passing through the medium. By comparing the difference in trajec-
tory or travel time between this ray and a ray that does not encounter any refractive
index gradients, it is possible to measure the strength of the refractive index gradients.
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Figure 2.5: Experimental setup for collimated light shadowgraphy. Light can be colli-
mated from a point source using lenses or a parabolic mirror.

Consider a three-dimensional volume of variable refractive index situated in otherwise
ambient conditions (n is constant outside the volume), illustrated in figure 2.4. In am-
bient conditions (no refractive index gradients), light rays travel in a constant direction.
A light ray is launched through the volume, initially oriented in the z′ direction. The
variable refractive index field will result in the ray following a curved path through the
volume, but restricting the discussion to weak refractive index gradients such as those
in heated gases and a thin volume relative to the ray’s path, the ray leaves at roughly
the same position in x′ and y′ but travelling in a different direction. The weak refraction
implies that the slope of the exiting ray, ∂x′/∂z′ and ∂y′/∂z′, are small and it can be
approximated as a small deflection of angle ε′ from the boundary of the refractive object.
Equation 2.12 simplifies to describe the ray’s curvature:

∂2xr
∂z′2

=
1

n

∂n

∂xr
, (2.13)

where xr denotes the components x′ and y′. Finally, a photodetector, photographic film
or camera sensor records the ray’s position at a plane on the opposite side of the volume.
Lenses may be used, in which case standard geometric optics can be applied to determine
the modified ray path from the lens to the sensor. The ray curvature equation is the basis
of the refraction-based measurement techniques. However, which aspect of the light ray’s
deflection is measured depends on the technique.

Perhaps the most straightforward refraction-based technique is the shadowgraph. The
simplest shadowgraphs can be formed with only a point or collimated light source, the
refractive object to be measured, and a screen on which to cast the object’s shadow. This
is illustrated in figure 2.5. The deflection of the light rays from their ambient path leaves
a shadow at their ambient position on the screen, with the ray instead illuminating a
point ~∆X away. A sharper shadow is cast using collimated light. The shadow is related
to the gradients of the deflection angle ε′, which is the second derivative of refractive
index ∂2n/∂x2

r, and the change in intensity I at a point on the screen is given by:

∆I

I
= ∆Z ′

∫ (
∂2

∂x′2
+

∂2

∂y′2

)
lnn dz′. (2.14)

A somewhat-related technique is silhouette photography [130], which places illumination
in line with a camera’s optical axis using a semi-silvered mirror. The illumination passes
once through the flow, and retroreflective material then casts the light back through the
volume towards the camera, casting a shadow with detailed flow structures. The shad-
owgraph and silhouette photograph are useful and versatile tools for flow visualisation,
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but the nature of shadow formation and the double integration means that it is difficult
to develop these techniques to produce quantitative measurements of the refractive in-
dex field. As shown in the family tree in figure 2.3, these techniques are considered to
stand apart from other refraction-based methods which can more readily be extended to
quantitative measurements.

Instead, consider measurement of a ray’s deflection angle. The deflection of the light
ray can be found by integrating the ray curvature equation along the ray’s line of sight,

tan ε′xr =

∫
1

n

∂n

∂xr
dz′. (2.15)

In the simple setup with no imaging optics, e.g. camera lens, shown in figure 2.4, it is seen
that tan ε′ = ~∆X/∆Z ′. For the weak refractive index gradients associated with heated
flows, one may use the small angle approximation tan ε′ ≈ ε′. Equation 2.15 shows
that the deflection angle, or displacement, is related to the path-integrated refractive
index gradients. This integral equation is in the form of a tomographic reconstruction
inverse problem. Solving these problems allows the reconstruction of an object based
on its projections and they will be discussed in detail in the next chapter. For now,
let it suffice that solving the inverse problem, with the deflection angles as the input,
allows the three-dimensional reconstruction of the refractive index field, which is our aim.
Tomographic reconstruction of complex flow structures requires projections of the object
from multiple views, and the short time scales of turbulent flows mean that these views
must be recorded simultaneously for instantaneous density field measurements. The exact
number of views required for a high-quality reconstruction will be investigated in later
chapters, but obviously the selected method should lend itself well to a multiple-camera
setup. There are many implementations of deflection angle measurement, which are also
known as density gradient methods. These methods will be the focus of this project.
Now consider the most prominent density gradient methods, to evaluate which methods
are conducive to a multiple-camera setup for quantitative 3D density field measurements.

Perhaps the best known density gradient method is schlieren, or Töpler schlieren
after its inventor. Although there are many variations of the Töpler schlieren system,
the simplest places the refractive object to be measured in a beam of collimated light,
after which a converging lens is placed. A knife-edge or grid is placed at the focus of
the lens, such that half the beam is blocked, after which the imaging system is located,
as shown in figure 2.6a. In practice, parabolic mirrors are used to collimate or focus the
light source, as large mirrors can be obtained more easily than large lenses and, hence,
a much greater field of view can be achieved. The deflection of the rays allows them to
either pass over the knife-edge, or be obstructed by the knife-edge. Correspondingly, a
bright or dark region is formed on the screen, and the change in intensity is given by:

∆I

I
=
f1

a

∫
1

n

∂n

∂xr
dz′, (2.16)

where a is the height of the image in the image plane. Non-coherent light is preferred,
as diffraction effects from the knife-edge are minimised. Note that the orientation of the
knife-edge is important in determining which component of the refractive index gradient
is measured; by rotating the knife-edge through 90° about the optical axis, the other
component of the refractive index gradient may be captured as well. Like shadowgraphy,
it is difficult to obtain quantitative information on the refractive index gradients from
Töpler schlieren because only changes in intensity are recorded. However, in some simple
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(a)

(b)

(c)

(d)

(e)

Figure 2.6: Experimental setup for density gradient methods: a) Töpler schlieren,
b) moiré deflectometry, c) speckle photography, d) structured light refractography, e)
background-oriented schlieren (BOS).
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cases such as 2D flow, it is possible to obtain density and temperature measurements
from schlieren photographs. Zamyatina et al. [156] were able to obtain the time-averaged
axisymmetric temperature field in a round heated jet from schlieren photographs in the
1960s. Merzkirch [84] and Settles [124] detail several modified experimental setups. No-
table modifications include double-pass and focussing schlieren, which increase sensitivity
and resolution, respectively, and colour schlieren, which provides spectacular colour im-
ages of the density gradients by replacing the knife-edge with a colour filter. Elsinga
et al. [35] obtained path-integrated quantitative measurements of the density field of the
supersonic flow over a two-dimensional wedge by calibrating the colour shift in colour
schlieren to corresponding density values. The colour filter can be designed to record ray
deflections in perpendicular directions simultaneously, which is not possible with stan-
dard Töpler schlieren. They note that this method had a high noise level and smaller
dynamic range compared to background-oriented schlieren.

As it is seen from shadowgraphy and Töpler schlieren, recording only changes in in-
tensity in a bright- or dark-field due to light ray deflections is generally not conducive
to quantitative measurements of the refractive index gradients. The solution is to or-
ganise the light into a structured pattern before it reaches the image sensor. In ambient
conditions, the structured light will be imaged as a pattern. Then the ray deflections
correspond to measurable shifts in the pattern ~∆X, which may be related to the deflec-
tion angle as discussed previously. Now consider four different methods of generating the
pattern of structured light: moiré deflectometry, speckle photography, structured light
refractography, and background-oriented schlieren.

Moiré deflectometry uses an experimental setup very similar to Töpler schlieren, with
the omission of the knife-edge at the beam focus. Instead, two fine rulings of alternating
opaque and transparent lines known as Ronchi gratings are placed away from the beam
focus as shown in figure 2.6b. The rulings are oriented at a slight angle to one another as
seen from the camera, which produces a fringe pattern called moiré in the image in the
absence of any refractive object. When the refractive object is introduced, the deflection
of light rays accordingly shifts the fringes. The method was introduced by Kafri [61],
and subsequently used to measure the time-averaged axisymmetric temperature field in
flames [12, 67]. The authors noted the similarity of the moiré fringes to those produced
in interferometry (discussed later), except that the technique was much more robust
to vibrations and that the sensitivity could be easily adjusted by altering the distance
between the Ronchi gratings. Both schlieren and moiré deflectometry methods can be
difficult to set up due to the need to collimate the light source.

Speckle photography requires a laser to be used as the light source. By expanding
the beam to cover the required field of view, and passing through a ground-glass diffuser
as shown in figure 2.6c. Transmission of the coherent light through the diffuser’s rough
surface results in random deflection and interference [37]. The interference pattern is
imaged by the camera as a random pattern of bright and dark spots, which is called a
speckle pattern. With no refractive object present, the speckle pattern is stable. When
the refractive object is introduced, the ray deflection causes an apparent shift in the
speckles ~∆X. The original method of recording specklegrams on photographic plates and
interpreting deflections based on Young’s fringes [85] has been superseded by recording
the speckles directly onto an image sensor and evaluating the speckle shifts directly. This
makes the speckle photography much less prone to errors, as well as being more practical
and straightforward to process. The theory of speckle formation will be revisited in
chapter 6, as this work combines speckle photography with background-oriented schlieren.
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Instead of producing a random interference pattern, a laser beam can also be shaped
into precise patterns such as an array of dots or rings, lines, concentric circles, or waves.
These can be achieved through an arrangement of optics, including lenses, diffraction
gratings and fly-eye condensers [79], as shown in figure 2.6d. This technique is called
structured light refractography, and the ray deflections are measured as shifts in the laser
pattern, like speckle photography [114].

Background-oriented schlieren (BOS) is both the most recent, and simplest, density
gradient method that will be discussed here. Introduced by Raffel et al. [105], the BOS
setup requires only a printed background pattern, ordinary non-coherent lighting, and
a camera. The camera images the background pattern, and ray deflections from the
refractive object result in an apparent shift of background features compared to ambi-
ent conditions. The simplicity of the setup lends itself well to a multiple-camera setup
required for tomographic setup, and, as such, BOS is chosen for further development
in this project. This is in stark contrast to more complicated setups such as calibrated
colour schlieren that could also deliver quantitative measurements. Compared to the
other density gradient methods, the resolution of BOS is limited due to the camera being
focussed on the background pattern rather than the flow. As shown in the next chapter,
the sensitivity of the method to refractive index gradients requires that the background
pattern be far from the flow, so there are conflicting requirements. Developing the ideal
compromise between measurement resolution and sensitivity in BOS is a major theme of
this work.

Lastly, consider a separate class of refraction-based density measurements, interfer-
ometry. Interferometric techniques measure the phase difference ∆ϕ in coherent light
passing through the (weakly) refractive object compared to ambient conditions,

∆ϕ =
2π

λ

∫
n− n0 dz, (2.17)

where λ is the wavelength of light and n0 is the ambient refractive index value. The phase
difference, which cannot be measured with any of the previously discussed techniques, is
captured by introducing a secondary beam that does not pass through the flow. These
methods have a much higher sensitivity than the previously discussed methods. Up to
fractions of a wavelength in the optical path difference can be detected [121]. Although
there are many types of interferometers, the discussion is restricted to holographic inter-
ferometers, which are the most widely used. An overview of other interferometers used
in fluid mechanics is given by Merzkirch [84].

The holographic interferometer relies on splitting a laser beam into two branches, as
shown in figure 2.7. One branch passes around the flow in ambient conditions (reference
beam), while the other (signal beam) passes through the region where the refractive
object will be. A fringe pattern is formed on the holographic plate or digital sensor by
the interference of the two beams. An initial interference pattern (hologram) is recorded
with no flow present, and subsequent holograms can be recorded with the signal beam
attenuated by the flow. The process of viewing holograms recorded on holographic plates
is detailed by Briers [18], but this process has been almost entirely superseded by digital
recording. The phase of the initial and subsequent holograms is reconstructed using the
Fresnel approximation [121], and from the difference between the two, one obtains the
path-integrated phase distribution of the flow.

Holographic interferometry has been applied to 3D flow measurements, but the com-
plexity of the experimental setup has generally limited these investigations to single-
camera measurements of the time-averaged axisymmetric flow field of jets. It is difficult
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Figure 2.7: Experimental setup for digital holographic interferometry. The holograms
can be recorded without imaging optics, e.g. camera lens.

to extend these techniques to a multiple-view system for tomographic reconstruction
of a complex flow field [147]. However, there are some notable studies. Timmerman
[139, 140] used a rapid-switching double-pulsed laser to create a complex two-view sys-
tem, while Doleček et al. [33] reconstructed the phase-averaged density fields of a starting
jet through synchronisation of the exposures with the flow’s frequency. The sensitivity of
these systems to vibration and dust also hinders their wider adoption. This was partially
overcome by Guo et al. [50], who combined a moiré system with a 4f optical correlator to
generate a laser interferometric system with one beam and presented the axisymmetric
time-averaged temperature field in a flame from tomographic reconstruction.

Note that in the interest of brevity, the density gradient methods and interferome-
try are presented as entirely separate techniques. However, there can be considerable
overlap in experimental setups, such as holographic schlieren, and moiré interferometry.
Briers [18] presents a detailed discussion of the relationship between schlieren, speckle
photography, moiré and holography. These overlaps are often invented to improve mea-
surement resolution or overcome experimental difficulties such as sensitivity to unwanted
vibrations. Undoubtedly, more variations of refraction-based density measurements will
emerge. But this project develops background-oriented schlieren due to its simple exper-
imental setup and potential for conducting 3D density measurements through multiple-
view tomographic reconstruction.
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Chapter 3

The tomographic
background-oriented schlieren
(TBOS) technique

3.1 Principles and overview of the TBOS measure-

ment process

In the last chapter, it was shown that BOS has arguably the simplest experimental setup
of all density gradient methods. It requires only a printed background pattern facing
a camera, with the flow located in between the two. The background pattern may be
illuminated by ordinary, non-coherent light. Now the intricacies of the BOS measurement
process will be explained.

The principles of BOS displacements are shown in figure 3.1 using a simple camera
model. The camera is focussed on the background pattern, which is located at a distance
ZB from the camera’s lens. The flow is placed an arbitrary distance between the two, a
distance ZD from the background and a distance ZA from the lens. A light ray propagating
towards the camera will be deflected due to the variable refractive index along its path,
compared to the path followed in a uniform refractive index field. As discussed in chapter
2, the curved path of the deflected light can be approximated by a single deflection event
with refraction angle ~ε about the centre of the volume. This approximation is made due to
the typically weak refractive index gradients in gaseous flows, and assuming that the depth
of the flow is small compared to ZB [104]. The deflection means that the ray appears to

come from the position ~Pr instead of its true position ~P0. The background displacements
can be determined to sub-pixel accuracy (≈ 0.1 pixels) using cross-correlation methods
for PIV, or optical flow techniques, which will both be discussed in detail later in the
chapter. On the image plane, following Richard and Raffel [112] by assuming a thin lens
and in-focus background, the ray’s displacement can be related to its deflection angle
using geometric optics by

~∆X =

(
ZDf

ZB − f

)
tan ~ε, (3.1)

where f is the lens focal length.
Weak refraction allows the use of the small angle approximation, tan ~ε ≈ ~ε. Increasing

the distance between the volume and the background will increase the displacement of
the ray, however it will also reduce the magnification of the background meaning that
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Figure 3.1: Schematic of BOS ray deflection and nomenclature. In traditional BOS, the
camera (composed of image plane, lens, and aperture) is focussed on the background
(l = +ZD). In the laser speckle BOS implemented in chapter 6, the camera may be
focussed anywhere in the range −(ZA + f) < l < +∞. The global coordinate system
origin is located at the centre of the refractive volume. The optical axis of camera 1 is
oriented in the global z-axis.

the background features’ sizes must often be tailored for each BOS experimental setup.
As discussed in the previous chapter, the deflection angles are the path-integrated

refractive index gradients encountered by a light ray,

tan εxr =
1

n0

∫
∂n

∂xr
dz′, (3.2)

where n0 is the ambient refractive index. Equations 3.1 and 3.2 demonstrate that the
sensitivity to the refractive index gradients is increased by moving the camera closer
to the refractive volume, increasing the distance between the camera and background
(ZD/ZB → 1), and using longer focal length lenses (maximising f). The maximum
displacement will be obtained when the lens is as close to the measurement volume as
possible and the background is as far as possible, approaching a maximum displacement
of ~∆X ≈ f~ε for a given deflection angle.

Notice that the camera is focussed on the background, but the flow may be located
much closer to the camera to increase the measurement sensitivity. One must consider
the impact of the defocus blurring that is introduced into the measurement owing to this,
which is illustrated in figure 3.2. The light that falls on the sensor will be collected from
multiple rays, which fall within a cone with a diameter δ at the object plane (refractive
volume), which is related to the aperture diameter da by:

δ ≈ da

(
ZD
ZB

)
. (3.3)

This represents the resolution of the gradient field that can be resolved by the optical
setup and imposes a restriction on the background distance, since in the limit of infinite
background distance and negligible distance between the lens and the volume, δ → da.
Defocus blurring, i.e. circle of confusion di, in the image plane of a point at the refractive
volume ZA, when the camera is focussed on the background ZB is given by,

di = daZI

∣∣∣∣ 1f − 1

ZA
− 1

ZI

∣∣∣∣ (3.4)
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where

ZI =

(
1

f
− 1

ZB

)−1

, (3.5)

following Rowlands [116]. Minimising defocus blurring requires smaller apertures and
shorter focal length lenses, as well as moving the background/focus plane closer to the
measurement object [44]. The diffraction limit also needs to be considered, as this dictates
the smallest features that can be captured in the background pattern. According to Raffel
[104], the diffraction limit of background features on the image plane is given by

dd = 2.44λ
f

da

(
ZI
ZB

+ 1

)
, (3.6)

where λ is the wavelength of the light. The overall blur size on the image plane is

dΣ =
√
d2
i + d2

d (3.7)

For a typical BOS setup, di > dd so that dΣ ≈ di, and the priority should be to min-
imise di. But the requirements for minimising blur are contrary to those required for
maximising sensitivity. Given that displacement calculation methods such as digital
cross-correlation PIV analysis introduce spatial averaging to the measurement over a
search area (interrogation window) dIW , the effective spatial averaging in the measured
background distortions will be the larger of the defocus blurring or interrogation window.
It is therefore sufficient to make blur smaller than the window size. This will be explored
further in chapter 5.

Although discussed in the seminal paper by Richard and Raffel [112], the careful
selection of appropriate focal length, aperture, and distances to strike a compromise
between blur and sensitivity does not seem to have been a priority in some later studies
using BOS or TBOS, e.g. [96], but considered in others, e.g. [72]. The careful selection
of the setup dimensions, lens focal length and aperture is required to minimise defocus
blurring to a reasonable range while maintaining sensitivity so that flow features are
faithfully captured.

Decreasing the lens aperture is often a practical solution to reduce blur while main-
taining sensitivity. But this requires that the light source must be very bright. To
complicate the matter, minimising temporal blurring in the measurement to freeze the
turbulent flow features in each snapshot requires short exposure times. This places more
emphasis on a bright light source. So, the sensitivity/defocus blur compromise in BOS
means that obtaining high-quality 3D density measurements of gaseous flows with low
temporal and spatial integration is very challenging.

Mitigating temporal blur, while finding a balance between defocus blur and measure-
ment sensitivity is a recurring theme in this thesis. Chapter 5 contains an evaluation of
the impact of increasing defocus blurring and temporal blurring on the ability to capture
turbulent flow features in a heated jet. A reasonable limit on defocus blurring in TBOS
measurements is proposed to ensure smaller scale turbulence is captured. In chapter 6, a
set of guidelines is created which can be used to design a BOS experimental setup with
an ideal compromise between defocus blurring and measurement sensitivity.

Returning to the discussion on the deflection of light rays, the path-integrated in-
formation on the refractive index gradients provided by equation 3.2 is insufficient to
provide three-dimensional information on the refractive index gradients themselves for
an arbitrary three-dimensional turbulent flow. The introduction of additional cameras to
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(a)

(b)

Figure 3.2: Two ways of considering the origin of defocus blur in the BOS measurement.
In both cases, the camera is focussed on the background image (l = ZD), which dictates
the distance ZI . a) A cone of light from a point at the background has a finite diameter
δ when it passes through the refractive volume (object plane). b) A cone of light from a
point at the object plane (thick lines) is not brought to a focus (sharp point) at the image
plane due to ZI being chosen for the background plane ZB, and instead has a diameter
of di at the image plane.

monitor the flow from different viewpoints enables the tomographic reconstruction of the
three-dimensional refractive index gradient fields ∇n in a global coordinate system. A
detailed presentation and discussion of the tomographic reconstruction of the refractive
index gradients is provided later in the chapter. Given a reconstructed three-dimensional
refractive index gradient field, the refractive index field itself and hence, the density field,
in a global coordinate system is obtained by solving a Poisson equation [6],

∇2n =
∂2n

∂x2
+
∂2n

∂y2
+
∂2n

∂z2
= q, (3.8)

where the right-hand side of the equation is populated by taking the derivatives of the
reconstructed gradient fields,

q ≡ ∂

∂x

(
∂n

∂x

)
recon

+
∂

∂y

(
∂n

∂y

)
recon

+
∂

∂z

(
∂n

∂z

)
recon

. (3.9)

Subsequently, the Gladstone-Dale relation can be applied to obtain the measured density
field.
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A camera calibration model is required to relate the image plane coordinates (X, Y )
to the global coordinate system centred on the measurement volume (x, y, z). This can
be done using a pinhole model [141], as follows:

ζ

XY
1

 = ~K ~R

xy
z

− ~K ~R~c (3.10)

~K =


−f
lpx

OX 0

0 −f
lpx

OY

0 0 1

 , (3.11)

~R =

cosα − sinα 0
sinα cosα 0

0 0 1

 cos β 0 sin β
0 1 0

− sin β 0 cos β

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 , (3.12)

where f is the focal length of the lens, lpx is the image plane pixel size, OX and OY

are the centre of the image plane in pixels, α, β and γ are rotations of the camera with
respect to the global z, y and x axes, respectively and ~c is the vector representing the
optical centre of the camera relative to the origin of the measurement volume. These
matrices are populated through a calibration procedure, e.g. [157]. A ray between the
optical centre of the camera through a given point on the image plane can similarly be
computed from: xy

z

 = ~c+ ζ ~R−1 ~K−1

XY
1

 , (3.13)

where ζ represents the relative position along this ray. This enables the incident angle
and the path of the ray through the volume to be determined.

The process of obtaining three-dimensional density measurements from BOS images is
given in figure 3.3 and summarised below. Note that there are several differing approaches
reported in previous studies, which will be discussed in subsequent sections, but they
generally involve the following steps to obtain the three-dimensional refractive index
field:

1. Recording apparent deflections of background patterns using cameras looking through
the flow. The apparent deflections are caused by the observed variations in the
flow’s refractive index. The optical setup is often a compromise between maximising
sensitivity to the flow’s refractive index gradients, and minimising defocus blurring.
The choices of background pattern are discussed later in the chapter.

2. Calculating the background pattern displacements. These are related to the path-
integrated refractive index gradients observed by the cameras using equations 3.1
and 3.2.

3. Tomographic reconstruction of the three-dimensional refractive index gradients. Solv-
ing the ill-posed tomographic reconstruction problem relating the deflection angle
of light rays seen by all cameras to the refractive index gradients in a global coor-
dinate system. The cameras are calibrated to the global coordinate system using a
multiple-camera calibration procedure, e.g. [56, 157].
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Figure 3.3: Process for density measurements using TBOS. After the refractive index field
n(x, y, z, t) has been reconstructed, the density field can be obtained using the Gladstone-
Dale relation. Numbers correspond to the steps listed on page 25.

4. Solution of a Poisson equation, or integration of the gradients, to obtain the three-
dimensional refractive index field itself. The Poisson equation is usually discretised
using finite differences. From here the Gladstone-Dale relation can be used to obtain
the density field. The temperature field could also be obtained for an ideal gas with
a known pressure field and ideal gas constant.

Each of these steps will be explored further in the remaining sections of this chapter.

3.2 Background design and displacement calculation

methods

Aside from the optical setup, the choice and design of background pattern is crucial to
accurate TBOS measurements. The displacement calculation method, too, must suit the
type of background pattern used. In this section, several approaches used in previous
studies will be discussed.
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(a) (b) (c)

(d) (e)

Figure 3.4: Types of backgrounds used in previous studies: a) random dots, b) horizontal
lines, c) wavelet noise, d) laser speckles, e) checkerboard.

3.2.1 Background design

The studies of Raffel et al. [105] and Richard and Raffel [112] aimed to develop a den-
sity measurement technique with a simple experimental setup. They were inspired by
laser speckle photography [85], but in creating BOS they desired a simpler experimental
setup that was robust to vibrations and readily scalable to large-scale industrial studies.
Modelling the background after a particle image velocimetry (PIV) image, these studies
used background patterns of random white dots painted on a black surface to study the
flow around helicopter blades. Independently, Dalziel et al. [29] developed a ‘synthetic
schlieren’ method using a horizontal line background pattern. In general, background
patterns with periodic features have fallen out of favour, because flow structures located
in between the background’s period (or an integer multiple of it) cannot be detected.
This risk is minimised by using random patterns. A comparison of these backgrounds
in shown in figure 3.4. The dot background pattern is easy to generate and can be de-
signed to conform to guidelines for PIV cross-correlation methods (discussed in the next
section), so that high-quality displacement fields are obtained. Coloured patterns have
also been used in place of monochrome backgrounds. Overlapping coloured dots [99, 131]
allow the information density of the background pattern to be increased by minimising
featureless space. The displacements from each dot colour are processed separately by
filtering the other colours out.

Atcheson et al. [7] proposed using wavelet noise patterns instead of dots. They argue
that this type of background carries several advantages over dot background patterns.
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Foremost is that wavelet noise patterns contain features at multiple scales, so it is possible
to use a single background pattern for experiments with different magnifications rather
than designing an optimised background for each setup. In their tests on synthetic
data, the authors also found that the wavelet noise pattern resulted in displacement
fields with higher accuracy than dot patterns when using optical flow for displacement
calculations. They also suggest that this type of background, combined with optical flow,
is immune to ‘peak-locking’, where the cross-correlation displacements incorrectly tend
to integer values. Despite these advantages, the dot background pattern has proliferated,
mainly because strong density gradients can totally smear out the features in wavelet
backgrounds, making displacement calculation impossible.

Meier and Roesgen [82] returned to the roots of BOS in laser speckle photography
by using the diffuse reflection of a laser off a rough surface to produce a laser speckle
background pattern. Instead of forming specklegrams, the laser speckle background is
used in the same way as a dot pattern. The characteristics of the speckles can be adjusted
using the lens aperture, and bear the unique property that the speckle is always in focus
regardless of the camera’s focussing distance. The sensitivity of the measurement can
also be increased by focussing closer than the object [22, 81, 87]. This decouples the
optical setup from the physical dimensions of the setup. The laser speckle background is
favoured in the current study and is discussed in more detail in chapter 6.

In general, BOS measurements cannot be performed in real time because the displace-
ment calculation is often much slower than the image acquisition. A special mention is
made of the checkerboard BOS developed by Wildeman [151]. This method uses a Fourier
demodulation algorithm to calculate the displacements of a checkerboard pattern with
similar accuracy to, and much faster than, cross-correlation and optical flow methods.
With a GPU implementation, the author reports that real-time BOS measurements up
to 190 Hz are easily achieved, while an optical flow pipeline could only operate at 1 Hz.

3.2.2 Displacement calculation methods

Background image displacements have been calculated using digital cross-correlation PIV
analysis. Optical flow and particle-tracking methods are also used.

Digital cross-correlation methods have traditionally been used on dot- or speckle-type
BOS backgrounds, because they mimic the particle images found in PIV. A brief de-
scription of the principles of cross-correlation is relayed here with detailed explanations
provided by Soria [129] and Raffel et al. [106]. Cross-correlation methods calculate the
displacement between the reference and distorted images in small regions known as in-
terrogation windows. The position of each window is fixed at the same location in both
the reference and distorted images, and only the particles inside the window are dis-
placed. It is assumed that the displacement of particles within the interrogation window
between the two images is uniform, i.e. that the gradient of displacement in the window
is zero. This, of course, is very unlikely to be true for any flow of interest, but it can be
a reasonable approximation for small window sizes.

The reference and displaced interrogation windows contain information on the inten-
sity of Nsm distinct particles with an assumed Gaussian intensity distribution I (which
may be less than the true number of particles in the window N). The reference and
displaced signals containing the position and intensity information of the particles are
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written as

S1 (~x, t) =
Nsm∑
i=1

Ii

(
~X, t; dpi

)
, (3.14)

S2 (~x, t+ ∆t) =
Nsm∑
i=1

Ii

(
~X, t+ ∆t; dpi

)
, (3.15)

respectively, where ~x is the location of the interrogation window and dpi is the diameter of
the ith particle. In BOS, t refers to the reference image and t+ ∆t is the distorted image,
rather than an actual time difference. The cross-correlation between the two signals can
be computed using Fourier transforms,

RS1,S2 (~η) = F−1
[
F
[
S1

(
~X, t
)]∗
F
[
S2

(
~X, t+ ∆t

)]]
, (3.16)

where [ ]∗ is the complex conjugate and ~η represents the position in the space of possible

particle displacements. The displacement of each particle is given byRii

(
~η − ~∆X

(
~Xi (t)

))
(which can be used for particle tracking), and the most likely displacement of particles
in the interrogation window is given by a peak in the correlation plane,

~∆X = arg max
η

RS1,S2 (~η) . (3.17)

The particle intensity distributions can be modelled by a Gaussian function, and a Gaus-
sian function can be fitted to the correlation function to determine the window displace-
ment to a sub-pixel level. An example of the interrogation window and correlation plane
from experimental speckle images is shown in figure 3.5. As well as a strong peak just
off-centre corresponding to a displacement magnitude of 2.15 pixels, there are nearby
fluctuations which are associated with measurement noise.

Some rules-of-thumb have emerged for optimising the accuracy of the cross-correlation
method for PIV and measurements [39, 43, 106, 145, 152] that may be pertinent to BOS
measurements as well, including:

� The displacements should not exceed half the window size, otherwise many particles
will exit the window. The displacements in BOS are typically much smaller than
those in PIV, e.g. 1–2 pixels in an 8- or 16-pixel square window, so this is usually
not a problem.

� The particle size should be at least 2 pixels in diameter to avoid peak-locking, which
results in the displacements incorrectly tending to integer values.

� There should be at least 7–10 particles per window. They should cover as much of
the window as possible, i.e. they should not be clustered.

� A smaller window size results in less spatial averaging but a lower signal-to-noise
ratio.

Obviously, not all guidelines for optimising the digital PIV cross-correlation analysis will
be relevant to BOS, especially those concerning out-of-plane displacements, which do not
exist in BOS measurements.

The principles of optical flow are unrelated to those of cross-correlation. Optical flow
methods are based on the assumption that the intensity of moving structures is constant
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(a) (b) (c)

Figure 3.5: A 16 × 16 pixel cross-correlation interrogation window of a laser speckle
background pattern with a heated jet. Axes coordinates are in pixels. a) Reference
image interrogation window, b) displaced image interrogation window, c) correlation
plane (zero displacement origin marked with yellow cross). A clear, white peak is visible
in the correlation plane (marked with red cross), as well as measurement noise, indicating
a displacement of 1.35 pixels to the right and 1.67 pixels downwards (magnitude 2.15
pixels).

from shot to shot [13, 31]. The intensity I of an image region between two shots must
follow

I
(
~X, t
)

= I
(
~X + ~∆X, t+ ∆t

)
. (3.18)

Like cross-correlation for BOS, t and t+ ∆t do not refer to time, but instead refer to the
reference and displaced images, respectively. From a Taylor series expansion of the left-
hand side of equation 3.18 with second- and higher-order terms neglected, and after some
algebraic manipulation, Davies [31] derives the fundamental equation of optical flow:

∂I

∂X

∆X

∆t
+
∂I

∂Y

∆Y

∆t
+
∂I

∂t
= 0. (3.19)

The intensity gradients ∂I/∂X and ∂I/∂Y are obtained from the BOS images, but this
equation has two unknown displacement components ∆X and ∆Y . To obtain a unique
solution, additional equations are required. Atcheson et al. [7] compared three implemen-
tations of optical flow using synthetic BOS images: Lucas-Kanade [80], Horn-Schunck [57]
and Brox [20]. The Lucas-Kanade algorithm considers an interrogation window around
each pixel and solves an overdetermined system of optical flow equations in a least-squares
sense. The Horn-Schunck algorithm adds regularisation to the optical equation to enforce
smoothness while minimising a cost function. The Brox algorithm assumes constancy in
other properties related to the brightness such as the Laplacian and seeks to minimise an
energy function that incorporates this additional information.

Grauer and Steinberg [47] took advantage of the fact that the optical flow displace-
ments can be represented in terms of the gradients of intensity to incorporate the optical
flow displacement calculation into the camera calibration and BOS tomographic recon-
struction. This creates a ‘unified’ one-step reconstruction pipeline, where the BOS images
are used as input, and the density field is obtained with no intermediate intervention from
users.

Although Atcheson et al. [7] report higher accuracy using the optical flow algorithms
on synthetic BOS images than cross-correlation, one must consider that all the optical
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flow algorithms contain a tuning parameter that must be optimised to obtain the correct
displacements. The authors note that this is not a straightforward task for experimental
data. This uncertainty, and the constant intensity assumption, lead to the selection of
cross-correlation over optical flow in this investigation. In particular, Atcheson et al.
[7] discouraged the use of fluorescent lighting due to flickering and the associated shot-
to-shot variations in intensity. The present work implements laser speckle BOS with a
high-power pulsed laser, for reasons that will become clear in the following chapters, and
this also produces shot-to-shot variations in illumination intensity. Therefore, although
it may have higher accuracy than cross-correlation in some situations, optical flow is
unsuitable for the current application as the experimental images would violate its basic
constant intensity assumption.

Rajendran et al. [108] developed a particle-tracking method which utilised the known
location of dots in the reference background image to improve the accuracy and dynamic
range of the displacement calculation compared to cross-correlation alone. The particle
identification and centroid location is done using an image segmentation algorithm, which
is then refined using an additional cross-correlation in a tight window around each particle.
The authors report that the optimised method has a noise floor three times smaller than
cross-correlation and a four-fold higher dynamic range, in terms of sensitivity to minimum
and maximum detectable refractive index gradient, from tests using synthetic images.
However, the authors also disclose that the method is not ideal for background patterns
with high-density, overlapping or greyscale dot patterns (rather than black dots on a
white background). The performance of this method with regards to speckle patterns
was left as an open question. For this reason, the present study will use the traditional
digital cross-correlation PIV analysis.

3.3 Tomographic reconstruction of the refractive in-

dex field

In general, the aim of tomographic reconstruction is to solve for a distribution g(x, y, z)
given path-integrated projections P of the field along several lines running through the
field [62]. For a 2D field with 1D projections, each line (ray) is described by the angle θ
and distance t from a global origin, and could represent the pixels in a sensor:

Pθ(t) =

∫
s

g(x, z) ds, (3.20)

or if the rays are perpendicular to the sensor plane (they need not be),

Pθ(t) =

∫ ∫
R2

g(x, z)δ̂(x cos θ + z sin θ − t) dx dz (3.21)

where ds is a differential length along the line and δ̂ is the Dirac delta function. This
is illustrated in figure 3.6. The extension to three-dimensional data is similar, but a
3D reconstruction can also be achieved by stacking multiple 2D planes of the field g.
Only the projections P are available, but g is desired; this is called an ‘inverse problem’.
Notice that equation 3.20 has a similar form to equation 3.2, if Pθ ≡ tan εxr and g ≡
1
n0

∂n
∂xr

. Obtaining the three-dimensional refractive index gradients, or refractive index
field itself, from path-integrated BOS displacements is therefore an inverse problem that
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Figure 3.6: Principle of tomographic reconstruction. A ray passing through the field of
interest g generates a projection on the sensor plane Pθ. The rays need not be perpen-
dicular to the sensor plane. Adapted from Kak and Slaney [62].

can be achieved through tomographic reconstruction. The projections P are the Radon
transform of the field g. It is mathematically possible to obtain g using the inverse
Radon transform given an infinite number of perfect projections, but this is obviously
not practical under real constraints such as a limited camera number and measurement
noise. In practice, other algorithms are used which account for these limitations. There
are essentially two classes of reconstruction algorithms: analytical methods, and iterative
methods. Analytical methods are related to the inverse Radon transform and use the
Fourier slice theorem to relate the projections to the desired field. Iterative methods,
broadly, discretise the field into a basis such as pixels (in 2D) or voxels (in 3D), and
seek to describe the contribution of the voxels to the line integral in a linear system
of equations such that they produce measured projections. The following sections will
discuss the principles of a popular analytical method, filtered back-projection (FBP), and
an analytical method, algebraic reconstruction technique (ART), in a general sense. In
chapter 4, implementations of these techniques specific to TBOS will be presented.

Note that this project is focussed on developing reconstruction methods for full three-
dimensional density measurements. As such, methods for axisymmetric BOS measure-
ments will not be discussed in detail. Significant inroads have been made for axisym-
metric BOS measurements such as the time-averaged density field of a round jet by Tan
et al. [136] and Xiong et al. [153]. These measurements can utilise classical axisymmetric
reconstruction methods closely related to the inverse Radon transform such as reduced
back-projection, the onion-peeling method and three-point Abel transform [30]. In recent
years, specialised axisymmetric BOS reconstruction techniques have been developed and
validated, such as the adaptive Fourier-Hankel Abel algorithm [136], and an ‘indirect’ ap-
proach which first relates the BOS deflection angles to the path-integrated density which
is then subjected to the Abel transform [153].
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Figure 3.7: Illustration of Fourier slice theorem. The Fourier transform S of the pro-
jections of angle θ with discrete data points t fills a line in the 2D frequency domain of
the object field g. Under-sampling of higher frequencies relative to lower frequencies is
evident as the increasing distance between adjacent data points from different projections.

3.3.1 Filtered back-projection (FBP)

Filtered back-projection relies on the Fourier slice theorem, which states the Fourier
transform of a projection, denoted as S, is equivalent to a slice through the Fourier
transform of the object field f , i.e.

Sθ(w) =

∫
R
Pθ(t) exp [−2πiwt] dt

=

∫ ∫
R2

g(x, z) exp [−2πiw (x cos θ + y sin θ)] dx dy,

(3.22)

where the first line of the equation is the Fourier transform of the projection, the second
line is the Fourier slice theorem, and w is a Fourier-space frequency variable. This implies
that the field g can be recovered by taking the inverse 2D Fourier transform of all the
projections. Unfortunately, reconstruction of the true field requires an infinite number of
projections in θ and along t in each θ. Using a limited number of projections results in an
incomplete 2D frequency space representation of the object, as shown in figure 3.7. The
lower frequencies (small u and v) are sampled more than the higher frequencies, which
results in some blurring of the object. Intermediate values require interpolation, which
implies that there is a higher error at higher frequencies.

Attempting to reconstruct the object from the noisy, limited-view data will result in a
corrupted reconstruction. Filtered back-projection is a modification to this process that
attempts to deal with these shortcomings by first filtering the data in frequency space,

Qθ(t) =

∫
R
Sθ(w)|w| exp [2πiwt] dw, (3.23)

before inversion, where |w| is a frequency-space filter that regularises the frequency infor-
mation. Often a simple ramp function is used as the filter. The field is finally obtained
by integrating over all the filtered projections,

g(x, z) =

∫ π

0

Qθ (x cos θ + y sin θ) dθ. (3.24)
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Figure 3.8: Discretisation of the reconstruction volume into voxels for ART. The ith ray
passes through all voxels marked with a star, i.e. these voxels have a non-zero weight
wij for this ray (dashed outline). Red stars (red outline) are voxels containing the field,
while grey stars (black outline) mark voxels that do not contain the field. The latter
can be prevented from being updated during the reconstruction process through masking
to speed up computations. Like FBP, the rays need not be perpendicular to the sensor
plane.

The integration range assumes that all the projections were captured in a semicircle, but
this does not have to be the case. The last step is known as back-projection and dictates
that each point t in the projection has an equal contribution to all of the reconstructed
points along the ray leading to point t. A common description of back-projection is that
the projection is smeared back along the object [62], which blurs the field further.

The entire FBP reconstruction can be performed very efficiently by making use of
Fast Fourier Transforms. TBOS reconstructions of the density field via FBP have been
performed by Goldhahn and Seume [45], Schröder et al. [122], Venkatakrishnan and Meier
[143] and Hartmann and Seume [53]. Goldhahn and Seume [45] used a ‘one-step’ recon-
struction where the deflection angles are used to reconstruct the density field directly,
eliminating the need to solve the Poisson equation. Although FBP is orders of magni-
tude faster than an equivalent iterative reconstruction, a key observation is the formation
of reconstruction artefacts around the object, e.g. the jet core, due to the inadequate
number of views and measurement noise, and the associated errors at higher frequencies
as discussed above. The reconstruction improves as the number of views is increased,
but the artefacts can easily be confused with genuine flow features. This will become
apparent in the next chapter when the BOS implementation of FBP is introduced.

3.3.2 Algebraic reconstruction technique (ART)

Iterative tomographic reconstruction is very different from the analytical methods, as
the goal is to solve a system of equations that relate the volume points to the recorded
projections. The main advantages of ART over FBP are flexible camera placement and a
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more accurate solution in limited-view tomography [62]. ART discretises the field g into
j discrete cells, as shown in figure 3.8. The ray corresponding to a projection i is also
assumed to have a finite width as it traverses the volume. Equation 3.20 can be rewritten
as

Pi =
∑
j

wijgj, (3.25)

where wij is the weight (contribution) of the jth voxel to the ith ray. There are many
choices of weights, including: binary box function wij = 1 if any part of the ray crosses the
voxel or 0 otherwise [54], radially symmetric wij = max (0, 1− b) where b is the distance
between the ray centre and voxel centre [6], linear radial basis wij = max (0, 1− b/r)
where r is the radius of the voxel [9], and a trilinear basis function [59]. As each ray will
only pass through a few voxels, the weight matrix w is typically sparse. The tomographic
reconstruction has been recast as the solution to the system of equations, but an ill-
posed one. According to Hadamard [102], a system of equations is well-posed if the
solution exists, is unique, and is stable. Tomographic reconstruction cannot meet the
second condition as the system is under-determined (the number of voxels far exceeds
the number of rays), and the presence of measurement noise can create an unstable
solution.

ART solves the system of equations using Kaczmarz’s algorithm [54, 62],

gk+1
j = gkj + λj

Pi −
∑

j g
k
jwij∑

j w
2
ij

wij, (3.26)

where superscript k refers to the iteration number and λj is a relaxation factor. The aim
is to update the field to minimise the difference between projections through the recon-
structed field and the actual recorded projections. ART requires an initial guess, which
may arbitrarily be set to a zero field or incorporate information about the characteristics
of the field known prior to reconstruction, e.g. values must be non-negative in intensity-
based measurements (such as in medical imaging). One must be careful in setting the
prior characteristics, for example positive and negative values of the gradient are valid
in TBOS refractive index gradient reconstruction. The weighting matrix wij means that
only voxels intersected by a ray are updated, by smearing the second term in the above
equation along all of the intersected voxels like back-projection. As discussed by Tanabe
[137] and Kak and Slaney [62], ART converges to a solution which is nearest to the initial
solution, i.e. the solution is not unique. This implies that there is scope to improve
the accuracy of the reconstruction through careful choice of the initial solution, which
is considered in the next chapter. ART reconstructs lower spatial frequency features in
earlier iterations, and higher frequencies are updated in later iterations. This means that
the general (large-scale) features of a field can be obtained with only a few iterations. In
the presence of measurement noise, the ART algorithm has a regularising effect on the
solution as the iterations progress [34].

TBOS reconstructions using ART have been conducted by Atcheson et al. [6] and Lang
et al. [72]. Atcheson et al. [6] used synthetic displacements of a heated jet CFD simulation
created via ray tracing as the basis for ART reconstruction, and reported good agreement
between their simulated BOS and ground-truth CFD. Lang et al. [72] also considered the
effect of camera number and placement and voxel size using a synthetic case. Their
experimental temperature field measurements in a swirling jet matched thermocouple
measurements in the shear layer to within 1 K, although the centreline temperature was
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under-predicted by up to 16 K due to excessive defocus blurring reducing the measured
gradients.

A noteworthy modification to the basic ART scheme is simultaneous ART (SART)
[5]. During each iteration, ART makes corrections to each voxel multiple times based on
the number of rays crossing the voxel. SART corrects each voxel once per iteration based
on the information from all projections:

gk+1
j = gkj + λj

∑
i

[
wij

Pi−gkjwi∑
j wi

]
∑

iwij
(3.27)

This yields a faster convergence than ART while improving its noise suppression charac-
teristics. This survey of ART algorithms is not exhaustive, and other approaches such
as multiplicative ART (MART) are used extensively in other fields of study such as to-
mographic PIV due to superior particle reconstruction ability [8]. But these approaches
may not be suitable for TBOS. For example, the denominator in the MART algorithm,

gk+1
j = gkj

(
Pi∑
j wijg

k
j

)λwij

, (3.28)

may be zero due to the addition of positive and negative gradient contributions along
a ray. As such, the next chapter concentrates on implementations of modified standard
ART and SART for TBOS measurements.

3.3.3 Other iterative reconstruction techniques for BOS

As discussed, the tomographic reconstruction is an ill-posed problem. As well as using
a ‘one-step’ reconstruction where the density field is obtained directly from the BOS
deflections, Nicolas et al. [96] approached TBOS from the point of Tikhonov regularisation
which aims to solve a well-conditioned system in place of the ill-conditioned system [138].
They rewrite the system of equations,

~ε = ~w ~Dρ, (3.29)

where ~w is a weight matrix as before and ~D is a finite difference operator which allows the
density to be related to the refractive index gradients and, hence, the deflections. The
reconstruction is the weighted least-squares solution to a system describing the observed
deflections including a regularisation parameter λr which enforces smoothness on the
density field,

J (ρ) = ||~w ~Dρ− ε||2 + λrR(ρ), (3.30)

R(ρ) = ||D′ρ||2 = −ρT∇2ρ. (3.31)

The system is solved using conjugate gradient minimisation method [32]. The optimal
value of λr is selected using an L-curve criterion by plotting ||D′ρ||2 as a function of

||~w ~Dρ − ε||2 with several λr. The point on the curve with highest curvature indicates
a solution with minimal error compared to a ground-truth case. The L-curve must be
constructed for each camera setup. Nicolas et al. [96] present detailed 3D reconstructions
of the density field of a candle plume and heat gun, and this initial study was supported
by further measurements in a supersonic jet [97]. It is an interesting approach to TBOS
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reconstructions, but one that offers no apparent advantage in accuracy over the ART re-
constructions. However, the ‘one-step’ reconstruction may be more convenient and faster
than an equivalent two-step reconstruction, by virtue of having fewer computations. Fur-
thermore, Grauer and Steinberg [47] reported that their ‘unified’ method, which also
incorporates displacement calculation into the reconstruction, was more than 60% faster
than their previous one-step reconstruction which still had a separate displacement cal-
culation step.

The studies by Grauer [48, 49] use a Bayesian framework tomographic reconstruction.
This approach uses a one-step method like Nicolas et al. [96] with a simultaneous iterative
reconstruction technique (SIRT) reconstruction. Bayesian statistics are used to update
the reconstruction by marrying the observed data with prior knowledge of the process
using Bayes’s equation

Π(~g|~P ) =
Π(~P |~g)Πprior(~g)

Π(~P )
∝ Π(~P |~g)Πprior(~g), (3.32)

where Π(~g|~P ) is the posterior probability density function (PDF), Π(~P |~g) is the likeli-

hood PDF, Π(~P ) is the evidence PDF and Πprior(~g) is the prior information PDF. The

reconstructed field is chosen to be ~gmax = arg max Π(~g|~P ). The prior information PDF is
formulated to incorporate Tikhonov regularisation for a smooth solution, and total vari-
ation regularisation so that sharp variations in density, e.g. at shocks and flame fronts,
are still permitted in the smoothed solution. The likelihood and evidence PDFs contain
the linear system to be solved by a least squares approach. This approach was able to
reconstruct the large-scale features in a flame simulation, but appeared to struggle with
smaller scale features.

3.3.4 Integration of the reconstructed gradients

After tomographic reconstruction of the three 3D refractive index gradient components
∇n, the refractive index field itself is obtained by solving a Poisson equation (equation
3.8). Both sides of the equation can be discretised using finite differences, e.g. second-
order accurate central differences [72] with first-order discretisation at the boundaries [6]
or the use of ghost points as the ambient value is known so Dirichlet boundary conditions
can be employed. The impact of different discretisation schemes will be examined in the
next chapter. Atcheson et al. [6] suggested an anisotropic diffusion scheme where the
right-hand side source term q is multiplied by a diffusion tensor. This has the effect of
regularising noise while not over-smoothing edges. This scheme will be explained in more
detail, and evaluated, in chapter 5.

The discretised equation is to be solved at all points, leading to a linear system of
equations of the type ~A~x = ~b that is sparse and positive definite [6]. Various iterative
techniques have been used to solve for the refractive index field, including successive
over-relaxation [143] and conjugate gradients [6, 72]. Demmel [32] provides a comparison
of the complexity for solving the Poisson equation on a grid with N points with various
direct and iterative methods. The standard Gauss-Seidel direct method requires O(N2)
operations to solve the system. The successive over-relaxation and conjugate gradient
iterative methods both require O(N3/2) operations. The fastest direct method is block
cyclic reduction, which requires O(N logN) operations. The iterative multigrid methods
are the optimal iterative solver for linear systems, delivering the solution for a system of
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N points in just O(N) operations. In this project, a multigrid method is preferred for
this reason.

Instead of solving the Poisson equation, Rajendran et al. [107] proposed a weighted
least squares integration of the refractive index gradients. The grid points are weighted
based on the local measurement uncertainty in the density gradients. This uncertainty
itself is related to the uncertainty in the displacement calculation, which can be estimated
using various methods developed for PIV [14, 123] and their earlier work for BOS [110,
111]. The integration is then formulated as an optimisation problem which requires
minimising a cost function based on the difference between the reconstructed gradients
and the finite-difference gradients of the solved refractive index field. This is a promising
method of obtaining the refractive index field that can limit the spread of measurement
noise from a localised region, e.g. due to uneven illumination. In such a situation, the
Poisson equation may instead propagate the noise over a larger volume. However, the
authors note that although their experimental demonstration reduced the uncertainty in
the measurement compared to the Poisson solver, they were not able to show that the
error itself was reduced.
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Chapter 4

A parametric study of TBOS
methods in a fluctuating density field

Part 1 of the research road map. Development of reconstruction methods using a heated
jet phantom.

4.1 Aims and overview of the chapter

The initial stage of this project is focussed on developing, optimising, validating, and
comparing several tomographic reconstruction algorithms using a synthetic density field
phantom (test case). Introduced in section 4.2, this investigation will compare four
‘classical’ methods: filtered back-projection (FBP), algebraic reconstruction technique
(ART), simultaneous ART (SART) and a hybrid FBP+ART method. The phantom is
modelled on the self-similar region of a heated jet modulated with sinusoidal variations to
mimic turbulence fluctuations, which allows the range of scales resolved by each method
to be determined. Using the ray tracing procedure discussed in section 4.3, synthetic
background displacements are generated for a virtual camera setup with a variable number
of cameras. The synthetic displacements are used as input to the reconstruction methods
to assess their accuracy while modifications are made to the basic algorithms to increase
the reconstruction quality.

Results are presented in section 4.5. Using the optimised methods, this study de-
termines the appropriate number of cameras for an experimental TBOS setup. As well
as optical limits to the range of flow scales that can be resolved in the BOS measure-
ment, the reconstruction algorithm will have a limit on the scales that can be measured.
This study investigates the range of scales that can be reconstructed faithfully up to
the Nyquist frequency (dictated by grid spacing), assuming that the defocus blurring is
small relative to reconstruction grid spacing. Fluctuations of increasingly higher spatial
frequency are imposed on the density field to determine the performance of the TBOS
methods by comparing the true and reconstructed power spectra of the phantom. This
chapter will also examine the characteristics of different discretisation schemes in terms
of resolvable scales and propagating measurement noise in the reconstruction.
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4.2 Implementation of a tomographic BOS recon-

struction

To perform a TBOS reconstruction from an arrangement of cameras, it is necessary to
relate the background displacements computed in each camera to the density gradients
in the global coordinate system. The global position and orientation of each camera is
determined using a standard camera calibration procedure [157], which populates the pin-
hole matrices from equations 3.11 and 3.12. Background displacements in each camera’s
image plane can be calculated using the methods discussed in the previous chapter.

Following figure 3.1, the deflection of the light ray from the centre of each interrogation
window, ~Xo, is determined by using the camera model (equation 3.13) to project the non-

refracted ray from the the image plane to the corresponding point on the background ~Po.
The point where this ray crosses the centre of the measurement volume is denoted by
~Io. This ray is represented by a vector ~x′ = ~IoPo in global coordinates, with local axes
orthogonal to this ray denoted as ~y′ and ~z′. A second ray is projected from the displaced
point in the image plane ~Xo + ~∆X to the background point ~Pr. The deflection of the
non-refracted ray is therefore the angle between the vector ~x′ and the vector ~r = ~IoPr.
Using the small angle approximation, the estimated angles εx′ , εy′ and εz′ about the local
axes become

εx′ = ~r · ~x′, (4.1)

εy′ = ~r · ~y′, (4.2)

εz′ = ~r · ~z′. (4.3)

In this project, tomographic reconstruction of the refractive index gradient fields
∂n
∂x

(x, y, z), ∂n
∂y

(x, y, z) and ∂n
∂z

(x, y, z) fields that correspond to the measured background
displacements and associated ray deflections will be performed using ‘classical’ methods,
either Fourier-slice based filtered back-projection (FBP) [62] or iterative algebraic recon-
struction techniques (ART) [54]. As discussed in the previous chapter, FBP is a popular
technique in the medical field where a single sensor is often rotated in a single plane
around a stationary object, which allows the recording and reconstruction of hundreds of
slices through a volume. The time scales of turbulent flows require that the projections
are recorded simultaneously using individual cameras. Owing to cost, and the need to
physically package these systems in experimental facilities, the number of projections is
necessarily limited. ART typically behaves better in the case of limited projections and
requires no fundamental restrictions on camera spacing and placement, however its iter-
ative nature makes it far more computationally expensive. This study will consider the
use of both methods for TBOS density measurements in heated jets.

4.2.1 Filtered back-projection (FBP)

Filtered back-projection makes use of the inverse Radon transform to relate a sinogram,
representing the sum of a scalar quantity through a volume along the line of sight of a sen-
sor as a function of the position and angle of the sensor, to the corresponding distribution
of the scalar within the volume [62]. Assuming each camera records parallel projections,
and the sensor resolution remains constant across all angles, this transformation can be
performed rapidly using Fast Fourier Transforms. Presently, the reconstruction of each
refractive index gradient is performed independently based on sinograms that represent
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the sum of each component of the refractive index gradient,
∑

ray∇n, along the camera’s
axis at each position along the camera’s interrogation windows. In this case, a camera
corresponds to a different projection angle. The sum of the gradients at each window are
determined by solving the following system of equationsεx′εy′

εz′

 =
1

n0

~x′
T

~y′
T

~z′
T

∑
ray

∇n∆x (4.4)

where n0 is the refractive index outside the measurement volume and ∆x is the voxel
width. Reconstruction is performed following the common practice of taking the inverse
Radon transform of ramp-filtered sinograms. A cylindrical reconstruction domain is ap-
plied which corresponds to the common view of all cameras, outside which the density
gradients are set to zero.

4.2.2 Algebraic reconstruction technique (ART)

Algebraic reconstruction is based on representing a series of projections or views of a
volume Pi in terms of a weighted contribution from a discretised point in the volume Ij
such that the final reconstruction should satisfy,

Pi =
∑
j

wijIj, (4.5)

where wij is the weighted contribution of the j-th point in the volume to the i-th ray
seen by one of the cameras. These algorithms iteratively update Ij based on the dif-
ference between the estimated projections

∑
j wijIj and the measured projections Pi of

the volume. In TBOS, Pi represents the measured deflections of the refracted light rays,
which needs to be formulated in terms of the refractive index gradients. This can be done
following equation 3.2, such that the deflection of the i-th ray in the local ray coordinate
system that results from the k-th iteration of the reconstruction of the gradient field in
the volume is given by the integral of the weighted dot product of the vector of the local
axis in global coordinates with the gradient vector of the refractive index field ∇n

εkx′i = Li

∑
j wij

~x′·∇nk
j

no
∑

j wij
, (4.6)

εky′i = Li

∑
j wij

~y′·∇nk
j

no
∑

j wij
, (4.7)

εkz′i = Li

∑
j wij

~z′·∇nk
j

no
∑

j wij
, (4.8)

where Li is the length of the path followed by the ray through the measurement volume.
Following Atkinson and Soria [9], the weighted contribution of each point in the volume
j to a ray i from a given interrogation window depends on the volume intersection of
the voxel and the projection of the window, which can be approximated by representing
the voxel as a sphere of equivalent volume and the projection of each ray as a cylinder
with equivalent cross-sectional area. This allows the contribution to be parameterised in
terms of each radius and the shortest distance between the ray and the centre of each
voxel. This volume can be calculated analytically [71], or can be approximated and more
rapidly computed by a linear radial basis:

wij = max

(
0, 1− b

r

)
, (4.9)
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where b is the shortest distance between the ray and the centre of the voxel and r is the
radius of the voxel. Using the full analytically derived volume intersection had negligible
effect on the reconstruction accuracy when compared to the radial basis approximation
above.

The iterative correction of the density gradients at each point in the volume is per-
formed one ray at a time by relating the difference between the measured ray deflections
to the projection, εx′i − εkx′i, to the required correction in each of the refractive index
gradient components ∇nk+1

j −∇nkj following

λjnowij
Li

εx′i − εkx′iεy′i − εky′i
εz′i − εkz′i

 =

~x′
T

~y′
T

~z′
T

(∇nk+1
j −∇nkj

)
, (4.10)

where λj is a relaxation parameter associated with the reconstruction. This correction is
based on a standard additive ART correction [54]. While multiplicative algorithms are
favoured in limited-view tomographic PIV and medical imaging due to their lower noise
[8], the reconstruction of density gradients differs from intensity-based reconstructions
because the gradient is not restricted to a positive value. The summed quantity may also
be zero from a contribution of positive and negative gradients along a ray. This precludes
the use of reconstruction algorithms which involve normalisation with denominators that
could be zero in this application.

Various methods are explored to improve the reconstruction quality including: ran-
dom ordering of projections; Gaussian filtering of the density fields after each iteration,
with filtering relaxed to zero as the final iteration is approached; Hamming windowed
correction to penalise the generation of artefacts at the boundaries of the reconstruction;
gradual unmasking that restricts corrections below a threshold that tends to zero with
progressing iterations [77]; and using FBP as an initial solution to the iterative ART [53].
This work also tests the simultaneous correction of the volume from all rays using simul-
taneous ART, or SART [5], where the left-hand side of equation 4.10 is now averaged
over all rays (and the right-hand side is unchanged),

1

Σiwij
Σi

λjnowij
Li

εx′i − εkx′iεy′i − εky′i
εz′i − εkz′i

 =

~x′
T

~y′
T

~z′
T

(∇nk+1
j −∇nkj

)
. (4.11)

Details and results of the improvements are covered in section 4.5.3.

4.2.3 Calculation of the refractive index field

Refractive index fields n(x, y, z) can be calculated from the reconstructed components of
∇n by solving a Poisson equation (equation 3.8). The right-hand side term q (equation
3.9) is populated by taking the derivatives of the reconstructed gradient fields. The
present work uses a finite difference discretisation to solve this equation numerically from
the reconstructed gradient data. The solution to this equation involves a second-derivative
finite difference discretisation of the refractive index field (left-hand side), and a first-
derivative discretisation of the reconstructed gradients (right-hand side). The accuracy
of the solution is therefore dependent on the order of the finite difference scheme used
for both sides of the equation, which do not have to be the same. Examples of the finite
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difference discretisation for different order schemes can be found in Appendix A.1. The
gradients ∇n are reconstructed without the need for any finite difference type gradient
calculation and hence, without any associated truncation error (but possibly with defocus
blurring from the optical setup). This should result in a lower truncation error from the
right-hand side of the Poisson equation than the left-hand side, for the same kernel
size, because the input gradients themselves are not computed from finite differences.
As higher order difference schemes are used this problem will be diminished, however
relatively low order schemes are often required in the analysis of experimental data, in
order to reduce the influence of any reconstruction noise, in analogy to what is done with
PIV data by Foucaut and Stanislas [38]. The effect of altering the kernel size and the
order of the difference scheme will be investigated in section 4.5.1.

A universal Dirichlet boundary condition of n0 is applied with q = 0 at all boundaries
far outside the flow, with an appropriate number of ghost points used for a given dis-
cretisation scheme order. The measurement domain is large enough to capture the full
extent of all gradients present in the flow. The present chapter is restricted to examining
a 2D slice transverse to the jet axis.

The discretised Poisson equation is solved using an algebraic multigrid method [98].
As discussed in section 3.3.4, multigrid methods are the optimal iterative solver for linear
systems. The multigrid solver runs until the iterative residual to n is O(10−16).

4.3 Numerical validation procedure

To assess the ability of the different reconstruction methods to resolve small scale den-
sity fluctuations in turbulent heated jets, synthetic BOS displacements were created by
tracing rays from each camera using the pinhole model through a known refractive index
distribution.

The direction of the ray is updated at each step using Snell’s law where the refracted

vector ~̂t is given by:

~̂t =
n1

n2

~̂i+

n1

n2

(
~̂i · ~̂n

)
−

√
1−

(
n1

n2

)2(
1−

(
~̂i · ~̂n

)2
) ~̂n, (4.12)

n2 = n1 +∇n ·~̂i, (4.13)

where ~̂i is the unit vector of the incident ray, ~̂n is the unit vector of ∇n and n1 is the
local refractive index of the incoming ray [90]. Upon exiting the measurement volume,
the final ray direction is maintained and projected onto the background plane, from
which the displacement from the projected un-refracted ray is obtained. The use of
Snell’s law, rather than the integration of density gradients along a fixed ray, allows
for the inclusion of the variations in the ray path which could affect the accuracy of
the TBOS reconstruction in the presence of strong localised refractive index variations.
This analytical refractive index distribution could also be used to explore the influence
of the exact refractive index distribution and the influence of the circle of confusion on
fluctuation scales down to Nyquist, however as shown in subsequent sections fluctuation
begins to be poorly resolved even at twice the Nyquist wavelength.

Figure 4.1 presents the investigation methodology for chapters 4 and 5. Starting
from a known density field, the synthetic displacements are generated using ray tracing.
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Figure 4.1: Possible TBOS investigations (shaded) using ray-tracing of the synthetic and
DNS heated jet fields (True solution). This work focuses on investigating spatial av-
eraging (chapter 5), temporal averaging (chapter 5) and reconstruction methods
and Poisson equation (chapters 4 and 5), shown with darker shading.

The synthetic displacements are used to investigate the error of each step in the TBOS
measurement process in isolation from the other steps. The present chapter focuses on
optimising the tomographic reconstruction. The next chapter will investigate the im-
pact of defocus blurring, temporal blurring, spatial averaging from solving the Poisson
equation using a test case more representative of experimental measurements, a heated
jet DNS. Previous studies have also investigated the displacement calculation methods
using synthetic images in a similar fashion [7, 108, 109], and so this aspect will not be
covered in this project. The accuracy presented here assumes a perfect calibration, with-
out distortion or displacement error, and hence, the best-case input to the tomographic
reconstruction.

4.4 A synthetic fluctuating density field test case:

the heated jet phantom

This study uses a phantom (test case) based on the far-field of an air jet exiting from
a round orifice with a time-averaged Gaussian temperature distribution. The jet allows
the implementation of simple boundary conditions in the Poisson equation because the
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Figure 4.2: Schematic of the synthetic TBOS setup, with jet flowing into the page.
Cameras are positioned circumferentially to the jet axis. Only two cameras are shown
for simplicity; up to 22 cameras positioned in a 180° arc are tested.

flow far outside is quiescent with known properties. The jet phantom has a peak change
in refractive index of ∆np = n0 − ncentreline = 1.5 × 10−4 from the ambient refractive
index n0 = 1.000293, corresponding to a centreline temperature of approximately 286◦C
at standard atmospheric temperature and pressure according to the following relation for
ideal gases derived from the ideal gas law and Gladstone-Dale relation,

n = 1 + (n0 − 1)
P

P0

T0

T
, (4.14)

where P is pressure, T is absolute temperature and subscript 0 refers to the ambient
(reference) value. It is assumed that the jet does not deviate from ambient pressure,
which should hold for a low-speed heated jet [25]. The synthetic jet will be modelled on
the properties of a low-density jet at a downstream distance of x/D = 25, where it is fully
turbulent. The geometric arrangement was chosen such that the interrogation window of
diw = 16 pixels would correspond to 16 voxels (0.66 mm) when projected to the volume
centre using

δIW ≈ dIW

(
ZA − f
f

)
, (4.15)

and would remain larger than the BOS resolution estimated by equation 3.3, so that the
resolution is limited by the displacement interrogation window size. The measurement
domain of 65× 3× 65 voxels (42.9× 1.98× 42.9 mm) was sized based on a jet diameter
of D = 2 mm and 3.75× 3.75 µm2 pixel cameras equipped with f = 25 mm focal length
lenses at an aperture of da = f/22. The optical centre of the camera is positioned 275 mm
from the centre of the volume and 575 mm from the background. The spatial resolution
at the jet is 0.04125 mm/px. The synthetic fields were generated at the same resolution
to remove any effects of spatial filtering from the analysis, i.e. the volume discretisation
∆x matches the optical resolution of the BOS system δ and δIW . Synthetic background
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images were created for different camera numbers, with cameras evenly spaced in a 180◦

arc about the jet axis in the transverse x-z plane, as shown in figure 4.2. This camera
configuration is practical to set up and lends itself well to FBP. It also allows a more
efficient comparison of the different reconstruction methods by limiting our region of
interest to a thin slice normal to the jet axis.

Because a primary goal of this analysis is to assess the ability of TBOS to resolve
spatial density fluctuations across multiple wavelengths, the Gaussian refractive index
distribution was modulated using sinusoids in the x and z directions as given by:

n(x, y, z) = no −∆np exp
[
−[x2 + z2]/(2σ2)

] [
1 + A sin

(
2π

λx
x

)
sin

(
2π

λz
z

)]
, (4.16)

where λx and λz are wavelengths which are varied to represent density fluctuations of
differing length scales. Unless otherwise stated, the wavelengths in both directions are set
identically, i.e. λx = λz = λx,z. For the current spatial resolution of 0.66 mm/voxel, the
wavelength corresponding to the Nyquist frequency (ω = 0.5 voxels−1) is λx,z Nyquist =
1.32 mm, or λx,z Nyquist ≈ L/32, where L = 42.9 mm is the domain length in x and z.
The standard deviation of the jet’s Gaussian profile is σ = 9 voxels = 5.94 mm, which is
chosen to suit the desired downstream distance of x/D ≈ 25, based on an approximate
relationship between spreading of the half-width r1/2 and downstream distance, r1/2/D =
0.13(x/D) from the helium jet of Panchapakesan and Lumley [100], and the relationship
between the half-width of a Gaussian and its standard deviation, r1/2 = σ

√
2 ln 2. A is

the amplitude of the modulation, which unless otherwise stated was set to 0.25. This
corresponds to a density field with fluctuations up to 25% of the mean value which decay
towards the jet boundaries, like passive scalar fluctuations in a fully developed turbulent
round jet [100].

As BOS projections do not record the integrated density gradients along a single ray,
but rather the integrated density gradients (denoted with a tilde) along all rays within
the finite aperture limit resolution δ of the system, the averaged density gradient is given
by,

∂ñ

∂x
(x, z) =

−∆np
δ2

∫ x+δ/2

x−δ/2

∫ z+δ/2

z−δ/2
exp

[
−[x2 + z2]

2σ2

]
·2πA cos

(
2πx
λx,z

)
sin
(

2πz
λx,z

)
λx,z

−
x
(
A sin

(
2πx
λx,z

)
sin
(

2πz
λx,z

+ 1
))

σ2

 dz dx, (4.17)

∂ñ

∂z
(x, z) =

−∆np
δ2

∫ x+δ/2

x−δ/2

∫ z+δ/2

z−δ/2
exp

[
−[x2 + z2]

2σ2

]
·2πA cos

(
2πx
λx,z

)
sin
(

2πz
λx,z

)
λx,z

−
z
(
A sin

(
2πx
λx,z

)
sin
(

2πz
λx,z

+ 1
))

σ2

 dz dx, (4.18)

The above equations the density gradient are obtained by taking the analytical partial
derivatives of equation 4.16, and integrating across the voxel to represent the spatial
averaging of the true local gradients. As δ is chosen to match the voxel size, equations
4.17 and 4.18 correspond to the spatially-averaged gradients at each point in the domain.
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Figure 4.3: Convergence of displacement, as a function of sub-grid steps along the ray,
at pixel with highest displacement for a camera oriented at θ = 45° to the volume with
λx,z = L/14. The volume has 65 grid points in each direction.

4.4.1 Convergence of the ray tracing method

The ray tracing method used to generate the synthetic background displacements must
be sufficiently accurate to ensure that no significant bias is introduced into the subsequent
reconstruction and analysis. In the current ray tracing scheme, each interrogation window
in the displacement field corresponds to one ray using the pinhole model described in
section 4.3. The path, and hence, the displacement, of a ray converges as the number of
steps along the ray through the refractive index volume is increased, because the sampling
of the refractive index variations is increased. The number of steps along a ray is increased
beyond the number of refractive index grid points by interpolating sub-grid values with
three-dimensional linear interpolation. The convergence of rays can be measured in terms
of the residual of displacements as a function of step number.

Typical experimental displacement calculation methods, like cross-correlation, offer
subpixel accuracy of displacements to the order of 10−1 pixels. Additionally, the recon-
struction methods were set to cut-off the displacements to the same order, so any further
accuracy is not accounted for in the reconstruction. To concretely define convergence of a
ray’s displacement for our purpose, the ray path is therefore considered to have converged
if the displacement residual is smaller than the 10−1 pixels criterion. A convergence study
was undertaken to determine the required number of steps to reduce the residual beyond
10−1 pixels.

The number of steps is chosen based on a study with a camera oriented at θ = 45° to
the volume with λx,z = L/14. Figure 4.3 shows the variation in displacement at the pixel
with the highest recorded displacement. It is observed that by 125 steps, nearly twice as
much as the linear dimension of the volume, the displacement has converged to the order
of 10−3 pixels, which is well beyond the accuracy with which the background displacement
can be determined by cross-correlation or optical flow. Therefore, it is specified that at
least 125 steps are used in this investigation.
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4.5 Results and discussion

The results presented here focus on optimising the reconstruction methods for turbulence
measurements in the fully developed region of a heated jet, and assessing the range of
turbulence fluctuations that can be faithfully resolved by these methods. This study
investigates the effect of camera number, noise, turbulence fluctuation wavelength, and
modifications to the reconstruction schemes, to comprehensively tune the TBOS schemes
for the desired measurements and assess their capabilities and limitations.

In section 4.5.1, the behaviour of the Poisson solver is examined with respect to the
spatial frequency of fluctuations. Even if the gradients are perfectly reconstructed, any
error imparted by the Poisson solver will be present in the final measurement. Thus,
it is crucial to understand the behaviour of the solver itself and its ability to handle
noise in the reconstructed gradients. The Poisson-solved gradients, for four different
discretisation schemes, will be compared to the original refractive index field as a function
of fluctuation wavelength and added noise. A simplified, one-dimensional model of the
Poisson equation is also used to conduct a von Neumann stability analysis, to compare
the transfer function of the discretised solver to the analytical transfer function as a
function of input fluctuation frequency.

In section 4.5.2, the behaviour of the FBP reconstruction, with no added displacement
field noise, is examined as a function of camera number and wavelength. This is used to
determine if FBP is suitable for turbulence measurements in the self-similar region of the
heated jet, and if so, the minimum number of cameras required for this. The assessment of
the reconstruction methods is conducted with noiseless, perfect background displacement
fields using 6 to 22 evenly-spaced cameras, with fluctuation wavelengths from λx,z = 4
(twice the Nyquist frequency) to 32 voxels, or ∼ L/16 to ∼ L/2.

Section 4.5.3 evaluates ART in a similar manner; it is shown that quality of the ART
reconstruction depends greatly on the modifications made to the basic reconstruction
method. Section 4.5.4 assesses the FBP+ART method, with appropriate modification
to remove FBP artefacts. A direct comparison of the reconstruction error as a function
of position, and the range of scales that can be resolved by the optimised algorithms,
is presented in section 4.5.5. The investigation is concluded in section 4.5.6 with an
examination of the effect of displacement field noise, with varying strength, on the recon-
struction. These findings on the nature of noise propagation through the reconstruction
are combined with our understanding of the Poisson solver to recommend an optimal
discretisation scheme.

Unless otherwise stated, the reconstruction accuracy is measured in the region up to
twice the jet half-width, i.e. r ≤ 2r1/2 = 2σ

√
2 ln 2 (note 2r1/2 ≈ 2.35σ = 21.2 mm).

To measure the quality of the reconstruction schemes, this study will typically use the
RMS error

√
〈(...r − ...s)2〉 and peak error max |...r− ...s| in the refractive index gradients

∇n or refractive index field n between the synthetic field (denoted by subscript s) and
reconstructed field (denoted by subscript r). Errors in the gradients will be normalised by
the local peak gradient ∇npeak, and errors in the refractive index field will be normalised
by ∆np ≡ npeak.

4.5.1 Finite difference schemes to solve the Poisson equation

In the absence of any random displacement calculation or reconstruction errors (a perfect
reconstruction with infinite views), the error in the TBOS reconstruction is a combination
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Table 4.1: Central finite-difference schemes used to solve the Poisson equation. In each
scheme, each dimension has the same order of accuracy. Left-hand side is abbreviated as
LHS, and the right-hand side is abbreviated as RHS. The ‘No. points’ column refers to
the number of points considered by the finite-difference equation in each dimension. The
entries in the ‘Abbreviation’ column will be used to refer to these schemes henceforth.

Abbreviation LHS RHS
Order No. points Order No. points

(3, 3) 2 3 2 3
(3, 5) 2 3 4 5
(5, 3) 4 5 2 3
(5, 5) 4 5 4 5

of the systematic error from blurring and spatial averaging of the reconstructed gradients,
and the truncation of terms in the finite difference discretisation used to solve the Poisson
equation. As discussed in section 4.2.3, the refractive index field is recovered by calculat-
ing the second derivatives of the reconstructed density field for the right-hand side of the
Poisson equation (equations 3.8 and 3.9), that is then solved numerically with a chosen
discretisation of the left-hand side. The influence of the finite difference schemes used to
evaluate the right-hand side of the Poisson equation and the kernel size used in the dis-
cretised solution to the equation, was investigated by using spatially averaged analytical
refractive index gradients (from equations 4.17 and 4.18) as input to the Poisson solver.
A description of the schemes tested is provided in table 4.1, and the finite-difference
equations for each scheme (in 1D for brevity) are provided in the Appendix A.1 in table
A.1.

As the finite difference discretisation can amplify noise in the input fields, it is also of
interest to see how the final measurement would be degraded by noise in the reconstruc-
tion. This is investigated in figure 4.4, by comparing the RMS error between the synthetic
refractive index fields and the refractive index fields calculated by the Poisson solver, ns
and nr, respectively, as a function of fluctuation wavelength and added Gaussian noise
for a variety of left- and right-hand side discretisation orders. The standard deviation of
added noise to the gradient fields is expressed as a percentage of the peak true gradient,
i.e. σnoise/∇npeak, from 0% (no added noise) to 10%. The results presented at each data
point are averaged over 100 samples of added random noise. At low additive noise levels
(σnoise/∇npeak < 4%), both schemes using a 5-point kernel for the right-hand side dis-
cretisation are similarly accurate. It would be expected that the staggered discretisation
scheme (3-point left-hand side and 5-point right-hand side) would better account for the
smaller truncation error in the gradient fields, as the gradients are returned directly from
the reconstruction and do not need to be computed from finite differences, and so produce
a smaller error than the scheme using a higher-order on both sides (5, 5). This difference
appears to be negligible in practice for the tested cases, and both schemes behave very
similarly across the range of wavelengths and noise levels. The (3, 5) and (5, 5) kernels
give the lowest RMS and peak errors across the range of noise levels tested, calculated
within r ≤ 2r1/2 as in figure 4.4 and figures 4.5a and b; as discussed below, this is not
true if the whole domain is considered (i.e. ambient points included). The schemes using
a 5-point right-hand side kernel exhibit a sharper increase in error as a function of noise,
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Figure 4.4: RMS error between the synthetic refractive index fields and the refractive
index fields calculated by the Poisson solver, ns and nr, respectively, within twice the
jet half-width r ≤ 2r1/2 = 2σ

√
2 ln 2, as a function of fluctuation wavelength L/λx,z and

additive Gaussian noise level σnoise/∇npeak. The error is calculated within the jet core
for varying kernel sizes in the discretisation used in the left-hand side (multigrid) and
right-hand side (calculating Laplacian from the reconstructed refractive index gradient
field), respectively: a) 3 and 3 points, b) 3 and 5 points, c) 5 and 3 points, d) 5 and 5
points. Each data point is averaged over 100 samples of added random noise.

to the point that at a noise level of σnoise/∇npeak = 10%, these schemes have a similar
error to the schemes using a 3-point left-hand side.

A closer look at the trends of the RMS and peak errors of the solved fields is shown in
figure 4.5, for one wavelength λx,z = L/14. The behaviour of the different discretisation
schemes is quite different depending on whether the jet core (within twice the half-width
2r1/2) or the whole domain is considered. This is because outside the jet the density
gradients approach zero, and so the addition of a constant noise level has a larger effect
there. Within the jet (figures 4.4a and b), the higher-order right-hand side schemes
clearly deliver the lowest RMS and peak errors up to the highest noise level tested. For
σnoise/∇npeak < 4%, the staggered (3, 5) scheme delivers a marginally better than the
(5, 5) scheme, for the reason discussed above. Beyond this, the (5, 5) scheme has a less
sharp increase in error with increasing noise level.

These trends change when the ambient points are considered as well (figures 4.4c and
d). At low noise levels (σnoise/∇npeak ≤ 2%), the lowest RMS and peak errors are still
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Figure 4.5: RMS (left) and peak (right) errors between the synthetic refractive index fields
and the refractive index fields calculated by the Poisson solver, ns and nr, respectively,
for fluctuation wavelength λx,z = L/14, calculated up to: twice the half-width r ≤
2r1/2 = 2σ

√
2 ln 2 (top row), and in the whole domain (bottom row). Errors are shown

as a function of additive Gaussian noise level σnoise/∇npeak. The error is calculated for
varying kernel sizes in the discretisation used in the left-hand side (multigrid) and right-
hand side (calculating Laplacian from the reconstructed refractive index gradient field),
respectively: 3 and 3 points ; 3 and 5 points ; 5 and 3 points ; 5 and 5 points . Each
data point is averaged over 100 samples of added random noise; error bars indicate the
95% confidence level and are approximately the same size as the markers.

delivered by the 5-point gradient (right-hand side) discretisation schemes. But it becomes
apparent that using a higher discretisation order on noisy reconstructed data (3, 5 and
5, 5 schemes) creates a higher measurement error from as early as σnoise/∇npeak = 3%.
At higher random noise levels, the lowest-order discretisation scheme (3, 3) avoids sharp
amplification of the gradient field noise in the final refractive index measurement. The
reverse-staggered (5, 3) scheme delivers the lowest error of all at σnoise/∇npeak = 10%,
but its poor performance within the jet may preclude its use. The ambient regions
could typically be filtered in an experimental measurement, which may allow the use of
higher-order right-hand (3, 5 and 5, 5) schemes in the whole domain. This indicates
that the optimal Poisson discretisation scheme depends on the local signal-to-noise ratio
throughout the domain. Of course, this is not practical, so it is recommended to use a
lower order scheme to avoid propagating noise.
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Figure 4.6: Bode magnitude plot of the analytical (A) and finite-difference Poisson equa-
tion transfer functions H as a function of spatial frequency ω. The finite-difference
schemes are denoted by the number of left- and right-hand side points used in the dis-
cretisation kernel as per table 4.1, e.g. (3, 5) for 3 points on the left-hand side and 5
points on the right-hand side. The Nyquist frequency is ωx = 0.5 voxel−1, or λx,z ≈ L/32.

To gain further insight on the behaviour of the different discretisation schemes, con-
sider the one-dimensional Poisson equation,

d 2n

dx2
= q ≡ d

dx

(
dn

dx

)
recon

(4.19)

As explained in Appendix A.1, this can be considered as a single-input single-output
(SISO) system between the reconstructed gradients and the desired refractive index field.
Although obviously much simpler than the 2D or 3D Poisson equations, through von
Neumann stability analysis, the transfer function of this system can effectively illustrate
the effect of discretisation on the calculated solution.

Figure 4.6 shows the Bode magnitude plot of the analytical and finite-difference trans-
fer functions for the one-dimensional Poisson equation. It is immediately obvious that
for lower spatial frequency fluctuations (longer wavelengths), all of the finite-difference
schemes are able to match the behaviour of the analytical transfer function. Similarly,
as the frequency of the fluctuations approaches the Nyquist frequency (ω = 0.5 voxel−1,
λx,z ≈ L/32), all of the discretisation schemes strongly diverge from the analytical transfer
function, which indicates a strong attenuation of these higher frequencies. The staggered
(3, 5) scheme provides a closer match to the analytical transfer function across the fre-
quency range than the other schemes, but this would also allow higher-frequency noise
to have a greater effect in the final measurement.

This approach can be used to select the most suitable discretisation scheme, if the
range of frequencies resolved by the reconstruction, and the nature of the noise, can be
estimated. These will be examined in sections 4.5.5 and 4.5.6, and the investigation will
return to this analysis to select the most appropriate scheme.

4.5.2 FBP reconstruction

In the limit of infinite views, FBP should provide both an accurate and efficient recon-
struction of the refractive index gradients. However, in the case of limited simultaneous
viewing angles, this approach can generate significant reconstruction artefacts outside the
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Figure 4.7: Contour plots, and profiles through x = 0 (black dotted line is the original
synthetic field and red dashed line is the reconstruction), for the reconstructed refractive
index gradient ∂n/∂x for 16 cameras and λx,z = L/8: a) synthetic field, b) FBP. Bottom
row is λx,z = L/14: c) synthetic field, d) FBP.

jet. The artefacts can clearly be seen in the 16 camera reconstruction with a fluctuation
wavelength of λx,z = L/14 in figure 4.7. The nature of the artefacts seems to depend
on the spatial frequencies present in the reconstruction, and they can become indistin-
guishable from the flow itself. This makes filtering the artefacts out more challenging in
general, although for the self-similar region of the heated round jet, it is known that the
density field should conform to a Gaussian envelope which can be used for filtering the
flow.

The performance of FBP seems to be very sensitive to the number of cameras used.
Given enough cameras, the refractive index field in the jet’s core can be predicted very
well by FBP, as seen in figures 4.8, assuming the background displacements are calculated
exactly. This seems to require at least 12 cameras and using any less than this causes
an exponential increase in the RMS and peak errors. Using any more than 12 cameras,
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Figure 4.8: Contour maps of the RMS (a) and peak (b) errors within twice the half-
width r ≤ 2r1/2 = 2σ

√
2 ln 2 between the synthetic and FBP reconstructed refractive

index fields ns and nr, respectively, as a function of wavelength and camera number,
normalised by the peak change in the synthetic refractive index field from the Poisson
solution. The minimum RMS and peak errors are 0.3% and 0.7%, respectively. The
maximum RMS and peak errors are 35% and 97%, respectively.

the rate of decrease of RMS and peak error is far less dramatic, indicating diminishing
returns (see also figure 4.12e and f). For the range of wavelengths tested, using more
than 16 cameras does not significantly increase the accuracy of the FBP reconstruction.

For a given number of cameras, the FBP RMS and peak errors steadily decrease with
wavelength, i.e. increase with spatial frequency (also see figure 4.12c and d). For the
longest wavelengths tested, L/λx,z ≤ 4, FBP is the most accurate reconstruction method
in the region of interest, but the ART methods introduced in the following section are
superior at shorter wavelengths (L/λx,z > 4). This study will return to exploring the
performance of FBP with increasing wavelengths in section 4.5.5. If the jet’s core is well-
predicted by FBP, then it may be a reasonable basis for a reconstruction which is further
enhanced by mitigating artefacts. This will be explored further in section 4.5.4, where
the FBP reconstruction is used as the initial solution to an iterative ART reconstruction
to possibly shorten the convergence of ART.

4.5.3 ART reconstruction schemes and enhancements

The performance of ART is strongly related to the modifications made to the basic re-
construction scheme. The modifications aim to improve the quality of the reconstruction
in three categories: rate of convergence, accuracy of predicted gradients, and reduction
of artefacts. Examples of the ART reconstruction and the influence of different recon-
struction schemes are shown in figure 4.9, for 16 cameras with a fluctuation wavelength
of λx,z = L/14 after 100 iterations with a relaxation parameter λj = 1.0. The conver-
gence of these schemes is shown in figure 4.10. The basic ART method in figure 4.9b
contains visible artefacts like FBP, while under-predicting the gradients to a much greater
degree than FBP. As combinations of modifications are progressively added from figures
4.9c to 4.9f, the artefacts are diminished, and the strength of the predicted gradients are
improved by concentrating the corrections towards the centre of the volume.

First, consider a constant 16-camera reconstruction with λx,z = L/14, and the mod-
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Table 4.2: Influence of ART reconstruction techniques for 16 camera reconstruction and
λx,z = L/14 after 100 iterations with relaxation parameter λj = 1.0. RMS errors√
〈(...r − ...s)2〉 and peak errors max |...r − ...s| are given for the reconstructed gradi-

ent fields ∇n and Poisson-solved reconstructed refractive index fields n, where subscripts
...r and ...s denote the reconstructed and true synthetic fields, respectively. R...r...s de-
notes the correlation coefficient between the reconstructed and synthetic fields. Errors
and correlation coefficients are calculated within a radius that is twice the half-width
r ≤ 2r1/2 = 2σ

√
2 ln 2. The Poisson equation is solved with the (3, 5) discretisation

scheme. Gradients are presented both normalised by the peak difference between the
centreline and outer flow refractive index ∆np divided by domain size L, and as a per-
centage of the peak gradient in the spatial average synthetic field ∇npeak. Errors in the
Poisson solved refractive index field n are given as a percentage of ∆np. Case K is selected
for further investigation (bold text, red ticks).

Case

√〈
(∇nr −∇ns)2

〉
max |∇nr −∇ns| R∇nr∇ns

√〈
(nr − ns)2

〉
max |nr − ns| Rnrns

∆np

L ∇npeak%
∆np

L ∇npeak% ∆np% ∆np%

A 3.09 16.68 14.58 78.77 0.757 3.07 14.93 0.990
B 3.09 16.68 14.57 78.74 0.757 3.06 14.86 0.990
C 2.76 14.90 12.08 65.30 0.810 2.74 12.55 0.992
D 2.76 14.90 12.15 65.66 0.810 2.76 12.75 0.992
E 2.75 14.85 12.01 64.93 0.812 2.72 12.58 0.992
F 1.99 10.76 7.75 41.89 0.905 1.97 8.76 0.996
G 1.99 10.76 7.78 42.02 0.906 2.00 8.96 0.996
H 1.97 10.64 7.77 41.99 0.909 1.84 8.35 0.997
I 1.94 10.46 7.24 39.12 0.913 1.83 8.15 0.997
J 1.59 8.70 6.59 35.95 0.944 1.16 4.36 0.999
K 1.24 6.78 4.52 24.65 0.966 1.00 3.35 0.999
L 1.62 8.85 6.74 36.77 0.940 1.18 3.72 0.999
M 1.27 6.92 4.58 24.97 0.964 1.09 3.42 0.999

Case Random order Sharp-cutoff Inversely Gradual Hamming Progressively
mask iteration-weighted unmasking -windowed tightened

Gaussian filter correction Gaussian mask

A
B X
C X X
D X X X
E X X X
F X X X
G X X X X
H X X X X
I X X X X X
J X X X X
K X X X X X
L X X X X X
M X X X X X X

ifications which may be made to enhance the rate of convergence. ART algorithms are
known to become unstable at higher values of λj, however the value at which this occurs
depends on the modifications (to be discussed) to the algorithm that are used. So this
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study will first devleop an optimal set of modifications that improves accuracy, before
examining the effects of varying the relaxation parameter λj. Unless otherwise stated,
the results will use a relaxation value of λj = 1.0. Given enough iterations to reach a
converged state with a given set of modifications, the choice of λj is not critical so long
as the solution does not diverge. Kak and Slaney [62] describe another well-established
method of improving the rate of convergence by randomising the order in which rays and
cameras are considered during an iteration, rather than considering them sequentially.
This allows the volume to be ‘filled-in’ faster. The effect of convergence of randomised
ray and camera ordering (case B) compared to sequential ordering (case A) is presented
in figure 4.10, and the impact on the accuracy of the final measurement is shown in ta-
ble 4.2. It is demonstrated that randomising the camera and ray orders each iteration
marginally accelerated the convergence of the reconstruction during the early iterations
yet had negligible effect on the final reconstruction when 10 or more iterations were
performed. Cases B onward retain the random camera and ray ordering.

Now consider modifications targeting artefact reduction and increasing the strength
of the predicted gradients. Given that the artefacts appear outside the jet, the simplest
means of reducing artefacts is to add a sharp cut-off mask which masks the volume so
that the reconstructed gradients are set to zero beyond a specified radius r from the
centre of the reconstructed volume;

∇nkj = 0,where r > rmask, (4.20)

and rmask = 30 voxels (3.3σ, 2.8r1/2) in this case. Care must be taken not to cut off areas
of the domain that could legitimately be inhabited by significant flow features. There
are various methods to implement this. The mask size can be automatically detected
from the displacement fields decreasing below a certain threshold, e.g. 0.1 pixels, which
signifies the edge of the jet. This is like the ‘visual hull’ approach used by Atcheson et al.
[6], and others, which prevents any gradient reconstruction in regions clearly outside the
flow. As the sharp cut-off mask restricts the reconstruction algorithm from spreading the
reconstructed gradients across the whole domain, the strength of the predicted gradients
at the centre of volume naturally increases. This results in a modest reduction in the
RMS and peak errors, as seen by comparing cases C and B in table 4.2 and figure 4.10.

An inversely iteration-weighted Gaussian filtering of the reconstructed gradients is
introduced, with a standard deviation of 0.5 voxels (σGF/σ = 0.06 where σGF is the
standard deviation of Gaussian filtering) expressed as,

∇nkj = ∇nkj
∣∣
unfiltered

+

(
1− k

0.5Nit

)[
∇nkj

∣∣
filtered

− ∇nkj
∣∣
unfiltered

]
,where k ≤ 0.5Nit,

(4.21)
where Nit is the total number of iterations to be performed. The Gaussian filtering of
each point is performed on a 5×5 kernel with its neighbours on the same transverse plane.
Neighbours outside of the domain are assigned a value of zero, as they are far outside
the jet and the refractive index gradients are negligible there. The inversely iteration-
weighted Gaussian filtering aims to aggressively reduce artefacts as soon as they appear
in the earliest iterations, backing off as the iteration process continues. A sensitivity
study on the effect of standard deviation is provided in the Appendix A.2, which shows
that a value close to σGF = 0.5 voxels (σGF/σ = 0.06) is optimal for lower RMS and peak
errors. With no other modifications save for the random ordering and sharp cut-off mask,
the inversely iteration-weighted Gaussian filtering presents only a marginal improvement
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Figure 4.9: Contour plots, and profiles through x = 0 (black dotted line is the original synthetic field
and red dashed line is the reconstruction), of the ART reconstructed refractive index gradient ∂n/∂x for
16 camera reconstruction and λx,z = L/14 after 100 iterations with λj = 1.0: a) synthetic field; b) case
B in table 4.2; c) case C; d) case D; e) case I; and f) case K (best case).
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Figure 4.10: RMS error (a) and peak error (b) between the reconstructed gradients
∇nr and synthetic gradients ∇ns for 16 camera reconstruction and λx,z = L/14 in the

region twice the half-width r ≤ 2r1/2 = 2σ
√

2 ln 2, as a function of ART iterations with
relaxation parameter λj = 1.0 for various ART modification schemes. Shown are: case
A in table 4.2 ; case B ; case C ; case I ; and, case K . Cases are consistent with
gradient field visualisations presented in figure 4.9.

in accuracy (compare cases D and C in table 4.2). However, as will be discussed later, the
inversely iteration-weighted Gaussian filter is a crucial addition to the optimal scheme
(case K), where its presence results in a large decrease in the measurement error.

Following Liao [77], a gradual unmasking method is tested, which appears to reduce
artefact formation in limited-view ART. This approach is based on recovering the most
intense features (highest gradient magnitude in this case) first in early iterations, then
allowing lower intensity features to develop. Gradual unmasking aims to prevent artefacts
forming through an update to the reconstruction at each iteration using a progressively
decreased threshold given by:

∇nkj = 0,where
∣∣∇nkj ∣∣ < to

(
1− tok

N

)
, (4.22)

where to is an initial threshold level set at t0 = 0.00044∆np

∆x
. This modification, at best,

marginally improves measurement accuracy (e.g. comparing cases E and D in table 4.2),
but it may also slightly increase the error in certain cases (e.g. cases L and J). Due to
its negligible impact, it does not feature in the optimal ART scheme. Still, due to its
potential in reducing artefacts, this modification will be revisited when in the discussion
of the hybrid FBP+ART method in section 4.5.4.

As the jet is centred in the domain, artefacts form away from the centre. Based on
this, a Hamming windowed correction is proposed:

∇nk+1
j = ∇nkj +W(∇nk+1

j −∇nkj ), (4.23)

W = 0.54− 0.46 cos

(
2πζ

Li

)
, (4.24)

where ζ is the relative position along a ray through the reconstruction volume of length
Li. This modification acts to weight the correction in the gradient fields towards the
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centre of the volume, consistent with the location of the jet in this case. Out of all of the
modifications tested, this is the most effective in reducing the artefacts and improving
the prediction of the gradients (especially in conjunction with the progressively tightened
Gaussian mask which will be introduced later). This is clearly demonstrated in table
4.2 through the decrease in RMS and peak errors, and increase in correlation coefficient
(discussed below) between the reconstructed and original fields (compare cases F and C).

Lastly, consider a progressively tightened Gaussian mask which acts to further con-
centrate the corrections towards the centre of the volume,

∇nk = ∇nk−1

[
exp

(
−r

2(rm/3)2

)]
, (4.25)

where k is the iteration number and rm is the mask width. The mask width rm starts
with an initial value of rm,initial = 35 voxels (3.9σ, 3.3r1/2) and decreases linearly with
respect to iteration number to rm,final = 30 voxels (3.3σ, 2.8r1/2) at the final iteration.
A sensitivity study on mask size is presented in Appendix A.3; the mask can over-
restrict the reconstruction, and so an over-sized mask is preferred (both rm,initial, rm,final >
3σ). This modification also significantly reduces the measurement errors, in addition
to the Hamming windowed corrections (compare cases F and J in table 4.2). Adding
the inversely iteration-weighted Gaussian filter as well (case K) achieved the best ART
reconstruction. Case K manages to capture the large, sharp gradients in the λx,z = L/14
field, as shown in figure 4.9, although the convergence does appear to be slower than the
methods which do not use the progressively tightened Gaussian mask (see figure 4.10).

It is important to note that unlike standard intensity-based reconstructions (e.g med-
ical imaging or tomographic PIV), the TBOS reconstruction can produce positive and
negative gradients at the opposite sides of the volume which may cancel each other out
when a ray is projected through them. These gradients may satisfy the observed ray
deflection, but result in the spurious gradients outside the jet observed in figure 4.9b (for
example). As the basic reconstruction scheme only seeks that the iterated gradient field
satisfies the observed displacements, these would be a totally valid (but completely un-
physical) solution, which enforces the need for these modifications. This is the rationale
for using the correlation coefficient as an additional metric for the reconstruction quality
in table 4.2, as it provides a measure of similarity between the reconstruction and original
field. Note that the Poisson solver acts to filter out some of these spurious fluctuations
as well, so they do not propagate fully from the reconstructed gradients to the final re-
fractive index field. Although the improvements in RMS and peak errors and correlation
coefficient within r ≤ 2r1/2 = 2σ

√
2 ln 2 may be slight between successive modifications

presented in table 4.2, it is found from figure 4.9 that artefacts can be removed com-
pletely, and the field is predicted very well, with the prescribed modifications (e.g. case
K) compared to the standard sequential-order ART or unmodified random-order ART
(case B).

Having selected the optimal reconstruction scheme, it is prudent to test the effect of
relaxation factor λj on the optimised ART (case K), and using SART instead of ART. The
SART iterative correction [5] is based on simultaneously satisfying all observed projections
rather than considering rays sequentially, given by equation 4.11. The aim is to provide
a reasonable reconstruction in just one iteration. Figure 4.11 shows the RMS and peak
errors for both ART and SART approaches, using the case K modifications. Experiments
using SART show slower convergence, owing to the attempt to simultaneously satisfy
every projection of the volume at once. SART convergence can be accelerated via the use
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Figure 4.11: RMS error in the refractive index gradients ∇n (a) and the refractive index
fields n (b) for 16 camera reconstruction and λx,z = L/14 in the region twice the half-

width r ≤ 2r1/2 = 2σ
√

2 ln 2, as a function of ART iterations for: ART λj = 0.2 ; ART
λj = 0.5 ; ART λj = 1.0 ; ART λj = 4.0 ; SART λj = 1.0 ; SART λj = 4.0 .
In all cases the Poisson equation is solved using 3- and 5-point kernels for the left- and
right-hand side calculation, respectively. Reconstructions use case K in table 4.2.

of a larger relaxation parameter, λj, although care must be taken to ensure the solution
does not become unstable. Both ART and SART approaches were found to be stable if
λj ≤ 4, but as shown the accuracy of the gradient field and final Poisson solution were
not independent of this parameter. It seems that 100 iterations is sufficient for ART to
converge when 0.5 ≤ λj ≤ 4.0. SART behaves like a slower-converging ART, so a larger
λj is required for it to converge in 100 iterations. Negligible difference was observed in the
final reconstruction quality between these two approaches. As it converges very slowly
compared to ART for values of λj that do not cause the solution to diverge, from here
on, SART will be not considered.

In summary, ART was found to be most accurate when using randomly-ordered cam-
eras and vectors, a sharp cut-off mask, Gaussian filtering, Hamming windowed corrections
and the progressively tightened Gaussian mask (case K in table 4.2). These modifications
increase the quality and accuracy of the reconstruction by concentrating the iterative cor-
rections towards the centre of the volume. Although this ART scheme tends to converge
more slowly than other tested schemes, it is observed that the relaxation parameter λj
has the greatest effect on convergence. Setting 0.5 ≤ λj ≤ 4.0 allows the reconstruction
to converge within 100 iterations while avoiding the possibility of a diverging solution.

Using case K as the optimal method, the variation in accuracy for ART with camera
number and fluctuation wavelength is shown in figure 4.12. Unlike FBP, ART copes much
better with fewer cameras, and does not show as sharp an increase in RMS and peak error
with decreasing camera numbers. The performance of ART within the jet when using
less than 12 cameras is far superior to FBP. As little as 6 cameras could be used. Apart
from wavelengths L/λx,z < 6, the modified ART is superior to the FBP reconstruction
for the 16 camera reconstruction. The modified ART does not under-predict the peaks
in the gradient field as much as the FBP, and it does not suffer from artefacts.

Ultimately, the accuracy of a TBOS reconstruction depends not only on the recon-
struction methodology but also on the number and orientation of the background views,
the strength of the density gradients and the relative distance between the volume and the
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background. A range of 6 to 18 cameras is considered practical, as fewer cameras results
in significant errors and the benefit associated with the use of more cameras diminishes
significantly, not to mention the cost and geometric challenges associated with the use
of higher camera numbers. Note that this study has only considered an even camera
spacing across a 180◦ arc in a plane transverse to the jet axis. Nicolas et al. [96] have
tested the effect of camera placement for their iterative method, and found that spreading
the cameras out is necessary for a high-quality reconstruction. Clustering the cameras
closely together does not provide the reconstruction algorithm with enough information
on the distribution of refractive index gradients. It does not matter if the cameras are
evenly spread out across a 180◦ arc, or across a full 360◦ range, as the displacements are
path-integrated and, hence, the same information is captured.

4.5.4 Hybrid FBP+ART reconstructions

Given that ART requires an initial guess, which is often set arbitrarily to zero, it is logical
to try to use FBP as the initial guess to ART (FBP+ART) to try to improve the rate of
convergence. It is clear that FBP is less accurate than ART, so care must be taken to
avoid corrupting the ART solution due to the FBP input. There is no expectation for
FBP+ART to be more accurate than the optimised ART, but any improvement in the
rate of convergence is most welcome. In the current study, it has been shown that FBP
captures the fluctuations in the core of the jet quite well, although the peak gradients
are under-predicted (figure 4.7). This indicates, like Hartmann and Seume [53], that
FBP may provide ART a good baseline for resolving the turbulent fluctuations in the jet
in fewer iterations than starting from arbitrary initial conditions. The artefacts which
are introduced by FBP outside the jet, which inflate its calculated RMS error, should be
removed completely in the optimised ART. This study demonstrate a few combinations of
the modifications discussed previously in section 4.5.3 on the FBP+ART reconstruction,
with the aim of finding an optimised FBP+ART method that converges quicker than the
optimised ART, with comparable accuracy.

A comparison between the FBP, optimised ART and a few variations of FBP+ART
is presented in figure 4.13 for 16 camera measurements with a fluctuation wavelength of
λx,z = L/14. All ART iterations are performed using random camera and pixel ordering
and the sharp cut-off mask; λj is now set to a very conservative 0.5 to minimise the
risk of a diverging solution brought about by the growth of FBP artefacts. FBP+ART
is tested with different combinations of inversely iteration-weighted Gaussian filtering,
gradual unmasking and the progressively tightened Gaussian mask to gauge their effects
on reconstruction error and artefact removal. The progressively tightened Gaussian mask
acts on the FBP reconstruction before the FBP+ART iterations begin:

∇nk=0 = ∇nFBP
[
exp

(
−r

2(rm/3)2

)]
, (4.26)

where k = 0 refers to the initial guess for the ART iterations, ∇nFBP are the FBP
reconstructed gradients and rm is the effective radius. A sensitivity study of initial and
final mask size on the FBP+ART reconstruction is presented in Appendix A.4, where
the change in error of the input FBP solution to FBP+ART as rm,initial is varied is
examined, and also the change in the final FBP+ART error as rm,initial is kept constant
and rm,final is varied. Based on this study, the initial radius of the Gaussian mask is
chosen to be rm,initial = 35 voxels (3.9σ, 3.3r1/2). The mask width is decreased linearly
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Figure 4.12: Contour maps (top row) of the RMS (a) and peak (b) errors between the synthetic
and optimised ART reconstructed refractive index fields, ns and nr, respectively, with 100
iterations within twice the half-width r ≤ 2r1/2 = 2σ

√
2 ln 2 as a function of wavelength L/λx,z

and camera number ncameras, normalised by the peak change in the synthetic refractive index
field from the Poisson solution npeak. The minimum RMS and peak errors for ART are 0.6%
and 1.5%, respectively. The maximum RMS and peak errors are 3.0% and 11.2%, respectively.
Colourbar is consistent with figure 4.8 for comparison.
Line plots (middle row) show RMS (c) and peak errors (d) as function of wavelength for: 8-
camera FBP and optimised ART ×; 16-camera FBP and optimised ART ×; 20-camera FBP

and optimised ART ×. FBP data is from figure 4.8.
Line plots (bottom row) show RMS (e) and peak errors (f) as a function of camera number for
wavelength L/λx,z = 14 only: FBP , and optimised ART .
Optimised ART corresponds to case K from table 4.2 with λj = 0.5.
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with respect to iteration number, such that rm,final = 30 voxels (3.3σ, 2.8r1/2) by the final
iteration (identical settings to the progressively tightened Gaussian mask for ART). This
is aimed at removing the reconstruction artefacts introduced by the FBP, while leaving
the gradients at the centre of the jet unaffected.

Along with the visual comparison of the FBP+ART reconstructions in figure 4.14, it
is clear that FBP+ART requires that the ART introduces some form of filtering (pro-
gressively tightened Gaussian mask or inversely iteration-weighted Gaussian filtering)
to avoid maintaining, and even strengthening, the FBP artefacts. If this is not done,
FBP+ART can have a higher error than either FBP or ART alone (case C in figure 4.13
and figure 4.14b), due to the presence of artefacts and weak gradients. Although gradual
unmasking is used, it does not prevent the growth of artefacts, and this case essentially
combines the worst of both methods.

The remaining FBP+ART cases (cases D-H) in figure 4.13 use either the progres-
sively tightened Gaussian mask or inversely iteration-weighted Gaussian filtering, or both.
These methods all manage lower RMS and peak errors after 100 iterations than FBP
alone, but to varying degrees. They also show different convergence behaviours. Cases
using the inversely iteration-weighted Gaussian filter (cases D, G and H) possess the
slower convergence style similar to the selected ART case (case A in figure 4.13, which
is the same as case K from table 4.2 but using λj = 0.5). The two cases which use the
progressively tightened mask, and forgo the inversely iteration-weighted Gaussian filter
(cases E and F), show rapid convergence, with negligible improvements after 20 itera-
tions. Although the errors of schemes E and F are higher than best ART case A (and
indeed the very similar FBP+ART case G which uses the same settings), the improved
rate of convergence for cases E and F may favour their use for analysis of large data sets
because a marginal loss in accuracy may be worth the large savings in computation time.
Again, the gradual unmasking results in a slightly higher error for these two otherwise
identical cases but has little effect on modifying the convergence rate. The error of case F
is higher than case E because the gradual unmasking encroaches on the smaller gradients
near the 2r1/2 limit up to which the errors are calculated.

Further evidence of the FBP+ART method’s fast convergence is observed by compar-
ing figure A.5 in Appendix A.5 and figure 4.13. Figure A.5 shows the convergence of the
ART method with the different modification schemes from figure 4.13. It is clear that
FBP+ART schemes E and F of figure 4.13 converge faster than any tested ART scheme
in figure A.5.

A comparison of the FBP+ART reconstructed gradient fields in figure 4.14 shows
that the higher error in the fast-converging FBP+ART case E (figure 4.14c) compared
to the most-accurate FBP+ART case G (figure 4.14d) is due to under-prediction of the
highest gradients. Note the extreme similarity between these two reconstructions and the
best two ART reconstructions shown in figures 4.9e and f. In subsequent comparisons
featuring the FBP+ART method, case E is used. Although it is somewhat less accurate
than case G, its fast convergence may be extremely valuable in practice.

4.5.5 Comparison of the optimised FBP, ART and FBP+ART
methods

Now it is possible to directly compare the optimal FBP, ART and FBP+ART methods.
From the many reconstruction schemes tested, FBP, ART case A from figure 4.13, and
FBP+ART case E from figure 4.13 (the latter two with 100 iterations) are selected for
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Figure 4.13: RMS error (top row) and peak error (bottom row) in the reconstructed
refractive index gradients∇n (left column) and the refractive index fields n (right column)
for 16 camera reconstruction and λx,z = L/14 in the region twice the half-width r ≤
2r1/2 = 2σ

√
2 ln 2, as a function of the number of ART iterations for the cases shown

in the table below. In all cases the Poisson equation is solved using 3- and 5-point
kernels for left- and right-hand side discretisation, respectively. All ART and FBP+ART
reconstructions are performed using randomly-ordered cameras and pixels with Hamming
windowed corrections and relaxation λj = 0.5. ART and FBP+ART use a sharp cut-
off mask with rmask = 30 voxels (3.3σ, 2.8r1/2). Progressively tightened Gaussian mask
decreases from rm = 35 voxels (3.9σ, 3.3r1/2) to rm,final = 30 voxels. ART case A is the
same as case K from table 4.2 with λj = 0.5.

Marker Case Type Inversely iteration-weighted Gradual unmasking Progressively tightened
Gaussian filter Gaussian mask

× A ART X X
B FBP n/a n/a n/a
C FBP+ART X
D FBP+ART X X
E FBP+ART X
F FBP+ART X X
G FBP+ART X X
H FBP+ART X X X
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Figure 4.14: Contour plots, and profiles through x = 0 (black dotted line is the original
synthetic field and red dashed line is the reconstruction), for the reconstructed refractive
index gradient ∂n/∂x for 16 camera reconstruction and λx,z = L/14: a) synthetic field; b)
FBP and 100 ART iterations with gradual unmasked and Hamming windowed correction
(case C in the table of figure 4.13); c) FBP multiplied by progressively tightened Gaussian
mask and 100 ART iterations with Hamming windowed corrections (case E), and d)
FBP multiplied by progressively tightened Gaussian mask and 100 ART iterations with
inversely iteration-weighted Gaussian filter and Hamming windowed corrections (case G).

further examination. To address the aims of this study, it is required to judge the accuracy
of the reconstructions across the domain and determine the range of scales that are well-
resolved for each method. Consider the average error of the reconstructed gradients and
Poisson-solved refractive index fields as a function of normalised radius r/σ in figure
4.15. Results are presented for fluctuations of a single wavelength for clarity and brevity,
but similar behaviour is observed for other wavelengths down to λx,z = L/16. Within

r ≤ σ (recall that the half-width is r1/2 = σ
√

2 ln 2 ≈ 1.17σ), ART maintains the lowest
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Figure 4.15: Average absolute error |...r − ...s|bin in the reconstructed refractive index
gradients ∇n normalised by ∇npeak (a), and the refractive index fields n normalised by
npeak (b) for 16 camera reconstruction and λx,z = L/14, as a function of normalised
radial position r/σ with a bin size of σ/4. Shown are: FBP , ART case A from figure
4.13 ×, and FBP+ART case E from figure 4.13 (the latter two both correspond to the
same markers in figure 4.13). Vertical dotted line indicates the usual 2r1/2 = 2σ

√
2 ln 2

limit that the RMS error is calculated within. Sharp cut-off mask radius is located at
rmask = 3.3σ. Initial width of the progressively tightened Gaussian mask is rm = 3.9σ,
and the final width is rm,final = 3.3σ.

Figure 4.16: Power spectral density of the analytical ∂n/∂x|x=0, z for different imposed
frequency fluctuations ω, from L/2 to L/32, in increments of L/2 (ω = 0.03 voxel−1), left
to right. Each frequency (individual lines) produces a distinct, sharp peak.

error of all, while FBP and FBP+ART errors possess very similar characteristics and are
noticeably higher than ART due to under-prediction of the peak gradients. After peaking
in error within r < σ, the ART and FBP+ART errors steadily decline with increasing
radius, as the modifications to these methods (sections 4.5.3 and 4.5.4) are able to remove
artefacts outside the jet and return to ambient conditions. Conversely, the FBP increases
again from r > σ, especially up to twice the half-width r ≤ 2r1/2 = 2σ

√
2 ln 2, which

contributes to the higher indicated RMS errors. The error is especially high in this region
because the gradients in the jet approach zero, but the FBP artefacts actually start from
here outwards.
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Figure 4.17: Peak power (left column), and relative peak power (right column), of power
spectral density of ∂n/∂x|x=0, z for different imposed frequency fluctuations ω, from L/2
to L/32, in increments of L/2 (ω = 0.03 voxel−1). L/32 corresponds to the Nyquist
frequency ω = 0.5 voxel−1. Top row corresponds to A = 0.125, while the bottom row
corresponds to the usual A = 0.25. Red horizontal dashed line indicates 50% relative
power criterion. Shown are peak powers of the spectra for: the analytical fields , FBP
, selected ART case ×, and selected FBP+ART case (the latter two both correspond

to the same markers in figure 4.13).

Having assessed the errors of the reconstructions for larger scales, now consider the
performance of these methods for the full range of scales, up to the Nyquist frequency
ω = 0.5 voxel−1 (λx,z ≈ L/32). Under-prediction of the gradients has been identified
as the primary issue that is detrimental to reconstruction performance. Consider a new
metric to assess a method’s ability to resolve fluctuations of a particular frequency. As the
frequency of the fluctuation is increased, the power spectrum of a line through ∂n/∂x(x =
0, z), i.e. |F [∂n

∂x
|x=0,z]|2 (where F is the Fourier transform), will show a clear peak at each

frequency, illustrated in figure 4.16. Given that the reconstructions have been observed
thus far to under-predict the gradients, but still correctly identify the frequency, the
power spectrum of the reconstructions should also show a peak at each frequency, but
smaller in magnitude.

The left column of figure 4.17 compares the peak of each spectrum of the analytical and
reconstructed fields for increasing fluctuation frequency. The amplitudes of turbulence
fluctuations are inversely proportional to their spatial frequency, and so it is wise to check
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if the reconstruction methods can resolve the higher frequencies when their amplitude is
smaller than the usual A = 0.25. Consequently, A = 0.125 has also been tested in 4.17.
For both amplitudes, all three of the methods are able to match the peaks of the analytical
field very well up to a frequency of ω ≤ 0.1 voxel−1 (λx,z ≥ 10 voxels or λx,z ≤ L/6.5),
indicating that none of the methods struggle with large-scale features. When ω > 0.1
voxel−1, the ART and FBP+ART methods show a reduced ability to match the peak
power of the analytical gradients, which manifests as under-predicted gradients. All of
the methods show a sharp decline in peak power after approximately ω = 0.22 voxel−1

(λx,z ≈ L/14) up to the Nyquist frequency, which shows that these scales are poorly
resolved.

The relative ability of a method is measured in the right column of figure 4.17 simply as
the ratio of the method’s peak power to the analytical field peak power for each frequency.
The criterion for a frequency to be considered ‘strongly under-resolved’ is defined as when
this ratio is below 0.5 (50% strength). It is indeed clear that the ART and FBP+ART
methods under-resolve the fluctuations at frequencies that are far lower than for FBP, at
both tested amplitudes A = 0.125 and the usual A = 0.25. ART and FBP+ART show
similar behaviour in the relative peak power for smaller frequencies, but diverge from each
other from ω > 0.1 voxel−1. FBP+ART shows a sharper decline in relative peak power
than ART until ω = 0.3 voxel−1. Despite this, both methods reach the 50% strength
criterion near ω = 0.22 voxel−1 (λx,z = 4.5 voxels ≈ L/14). FBP crosses the threshold
at ω = 0.3 voxel−1 (λx,z = 3.3 voxels ≈ L/20) onwards. Even though FBP performs
up to a higher frequency than the other two methods, recall that the artefacts become
stronger too, and it may be impossible to distinguish between artefacts and genuine flow
features. This is particularly challenging considering that the gradients can legitimately
be positive or negative, unlike an intensity-based reconstruction where only a strictly
positive quantity is sought. This analysis also shows that the range of resolvable scales
is not a significant factor in choosing between ART and FBP+ART; the reconstruction
errors and rate of convergence provide more distinction between the two methods.

It is apparent that the reconstruction of the small scales can suffer well before they
approach the Nyquist frequency of the optical system, for the amplitudes tested. The
resolution of higher frequencies may improve with a greater number of cameras, but the
number of cameras required to resolve a significantly larger range of frequencies (i.e.
up to ω = 0.5 voxel−1) would be impractically high. This suggests that the best way
to resolve small-scale features is to increase the magnification of the flow, so that they
appear larger relative to the size of a voxel. But as discussed in section 3.1, defocus
blurring may increase as well, which would also prevent these scales from being captured.

Referring back to figure 4.6, these frequency characteristics also makes selection of the
appropriate Poisson discretisation scheme easier. It is not necessary for the discretisation
scheme to maintain a high gain, matching the analytical transfer function, up to the
highest frequencies (i.e. beyond ω & 0.25 voxel−1). The reconstructions themselves
resolve these frequencies poorly, and they are likely to become polluted with displacement
field noise, so it is even helpful if the Poisson scheme can attenuate the information
at these frequencies. A lower-order scheme will complement the characteristics of the
reconstruction methods.

Returning now to the well-resolved λx,z = L/14, consider the predicted refractive
index fields. The refractive index fields that result from the application of the Poisson
solution (with the 3, 5 scheme) to the FBP, ART and FBP+ART reconstructed gradient
fields are shown in figure 4.18. The predictions inside the jet are very similar for the three
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Figure 4.18: Contour plots, and profiles through x = 0 (black dotted line is the original
synthetic field and red dashed line is the reconstruction), for the reconstructed Poisson
solved refractive index n0 − n for 16 camera reconstruction and λx,z = L/14: a) syn-
thetic field; b) FBP; c) selected ART 100 iterations (case A in figure 4.13); d) selected
FBP+ART 100 iterations (case E in figure 4.13).

methods. Across the whole domain, ART and FBP+ART are almost indistinguishable
and match the true field very closely, but the FBP reconstruction has persistent artefacts
in the ambient region. Because both the reconstruction and discretised Poisson equa-
tion resolve the λx,z = L/14 wavelength quite well, the measured refractive index fields
strongly resemble the analytical field.

4.5.6 Effect of displacement field noise

Up to now, this study has only considered the accuracy of the reconstruction using
perfect background displacements. In reality, the displacements are estimated, which
introduces random noise that is propagated through the reconstruction and the Poisson
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Figure 4.19: RMS error (top row) and peak error (bottom row) in the refractive index gra-
dients ∇n (left column), and refractive index fields n (right column) for 16 camera recon-
struction and λx,z = L/14 calculated within twice the half-width r ≤ 2r1/2 = 2σ

√
2 ln 2,

as a function of the standard deviation of added noise normalised by the peak displace-
ment σnoise/∆Xpeak. Shown are: FBP , selected ART case ×, and selected FBP+ART
case (the latter two both correspond to the same markers in figure 4.13). The Poisson
solution uses 3- and 5-point kernels for the left- and right-hand sides, respectively. Each
point is averaged over 100 samples of added noise; error bars indicate the 95% confidence
level and are approximately the size of the markers.

solution. For example, when using standard PIV algorithms to estimate the deflection
of the background, one would expect a random error on the order of 0.1 pixels [128],
which for the current maximum background displacement of 2 pixels corresponds to a
5% random error. To investigate the effect of the displacement field random error on
the reconstruction, Gaussian-distributed noise is added to the displacements. The added
noise is expressed as a percentage of the true peak displacement σnoise/∆Xpeak. This was
done for each camera. The results presented are averaged over 100 instances of added
noise to the reconstructions.

The influence of this noise on the λx,z = L/14 reconstruction from 16 cameras with
different fluctuations wavelengths are shown in figure 4.19. The RMS and peak errors
in the gradients and Poisson-solved refractive index field within r ≤ 2r1/2 = 2σ

√
2 ln 2

increase steadily with increasing noise level. The RMS error in all three methods increase
at similar rates, but the peak error in ART appears to grow at a faster rate than FBP
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Figure 4.20: Average absolute errors in the refractive index gradients ∇n (a) and refrac-
tive index fields n (b) as a function of radial position r/σ for noise level σnoise/∆Xpeak =
5% for 16 camera reconstruction and λx,z = L/14. Shown are: FBP , selected ART case
×, and selected FBP+ART case (the latter two both correspond to the same markers
in figure 4.13). Faint lines indicate the error with no added noise (figure 4.15). The
Poisson solution uses 3- and 5-point kernels for the left- and right-hand sides, respec-
tively. Each point is averaged over 100 samples; error bars indicate the 95% confidence
level and are approximately the size of the markers. The red vertical line indicates the
2r1/2 = 2σ

√
2 ln 2 limit up to which the RMS error is calculated.

or ART with increasing noise level. The outer noise in the FBP+ART appears to be due
to stronger artefacts in the initial FBP solution, which are retained through the ART
iterations. As an aside, similar behaviour was observed for other wavelengths down to
λx,z = L/14, and the RMS and peak error decreased only marginally with increasing
camera number up to 22 cameras.

From figure 4.20, the increase in absolute error as a function of radius seems quite
evenly distributed across the domain. Although ART shows the highest increase in error
towards the centre of the domain (r < σ), the error in the ART reconstruction is still
considerably lower than that of FBP and FBP+ART. FBP+ART shows the greatest
increase in the region 1 < r/σ < 2. A look at the noisy gradient field reconstructions,
and Poisson-solved refractive index fields, in figure 4.21 shows that the jet’s features
are affected negligibly, although the edge of the jet develops a patchy appearance. A
reasonably small noise level such as σnoise/∆Xpeak = 5% should not be too troublesome
in terms of affecting the quality of measurements of turbulence measurements within
twice the half-width, but additional filtering of the outer regions may be required.

4.6 Summary and conclusions

This study focussed on the development of a robust tomographic reconstruction algorithm
for TBOS. The FBP, ART and FBP+ART methods were compared using the reconstruc-
tion of a heated jet phantom. The phantom has a variable spatial fluctuation wavelength,
which allows the range of resolvable scales to be characterised. A range of 2 to 22 cameras
in the virtual setup were spaced equally in a 180◦ arc in a plane transverse to the jet
axis. This configuration was chosen because it is convenient to implement in an experi-
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Figure 4.21: Contour plots, and profiles through x = 0 (black dotted line is the original synthetic
field and red dashed line is the reconstruction), for reconstructed ∂n/∂x (left column) and n0 − n (right
column) with λx,z = L/14 and 16 camera reconstruction from displacements with σnoise/∆Xpeak = 5%
added noise for: FBP (top row); selected ART (middle row); selected FBP+ART (bottom row).
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mental setup. The optical parameters for this chapter were chosen to remove the impact
of defocus blurring and concentrate the analysis on the behaviour of the reconstruction
algorithms.

It was shown that FBP suffers greatly as the number of cameras used for recon-
struction is reduced, with RMS errors and peak errors increasing exponentially. It is
not practical to use FBP with less than 12 cameras to measure fluctuations across the
tested wavelengths. The main disadvantage of FBP is the introduction of reconstruction
artefacts to the measured field, which can be indistinguishable from flow features.

A range of modifications were introduced to the ART algorithm which focussed on
artefact reduction and reducing the under-prediction of the reconstructed gradients.
The sharp cut-off mask, inversely iteration-weighted Gaussian filter and progressively-
tightened Gaussian mask had the largest impact on reducing the reconstruction error
and mitigating the artefacts. The optimised ART algorithm provide reasonable recon-
structions with as few as 6 cameras. The reconstruction time using the optimised ART
is orders of magnitude higher than FBP, but the high-quality reconstruction means that
it is the preferred method in this study.

The FBP+ART method has shown mixed results. Without appropriate modifications,
FBP+ART encourages the growth of the FBP artefacts. This results in a solution with a
higher error than either FBP or the basic ART alone. The rationale for using FBP+ART
is to improve the rate of convergence compared to ART, but this was achieved only for
certain modifications. The fastest-converging FBP+ART reconstructions featured the
progressively tightened Gaussian mask and converged in a fifth of the iterations required
for the optimised ART, but with marginally higher error.

The error in all reconstructions increases steadily with the strength of Gaussian noise
added to the displacement fields. The largest impact of noise is found outside the flow,
in the ambient regions, which lead to a patchy appearance there. For the typical dis-
placement field noise level of ±0.1 pixels (5% of peak displacements in the current case),
the impact on the final jet density and temperature measurements is expected to be
negligible.

For all reconstruction methods, the degree to which the fluctuations are poorly re-
solved increases with fluctuation frequency. This study introduces the definition of under-
resolved fluctuation to mean the peak power of the reconstructed field being less than
50% of the peak power of the analytical field. The optimised ART and FBP+ART recon-
struction methods under-resolve fluctuations with a spatial frequency ω & 0.22 voxel−1

(λx,z < 4.5 voxels), or a little more than half the Nyquist frequency of the optical system.
FBP under-resolves frequencies ω ≥ 0.3 voxel−1 (λx,z < 3.3 voxels), but the generation
of strong artefacts precludes its use.

The behaviour of the Poisson solver used to obtain the refractive index field is strongly
dependent on the discretisation scheme used for both the refractive index field (left-
hand side) and the discretisation of the reconstructed gradients (right-hand side). As
it is known that the optimal ART under-resolves frequencies ω & 0.22 voxel−1, the
Poisson discretisation scheme that is selected only needs to transmit information up to this
frequency. As the higher frequencies are likely to be more affected by noise, it is actually
advantageous if they are attenuated. For these reasons, a lower-order discretisation of
the gradients (right-hand side) should be used, e.g. the (3, 3) scheme. If it is required to
obtain more information on scales smaller than 4.5 voxels, the only reasonable solution is
to modify the optical characteristics of the TBOS system, such that higher magnification
is achieved with small defocus blurring.
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Chapter 5

Numerical validation of a proposed
experimental setup and assessment
of three-dimensional TBOS density
measurements of a heated jet
simulation

Part of the research presented in this chapter has been already been published in the article
by Amjad et al. [4], which is also listed in the Publications and awards from this
work.

Part 2 of the research roadmap. Validation using a realistic flow: the heated jet DNS.

5.1 Aims and overview of the chapter

The previous chapter focussed on developing and characterising tomographic reconstruc-
tion algorithms for TBOS density measurements using a density phantom. Now, this
study will numerically validate the optimised reconstruction algorithm for a proposed
15-camera experimental setup on a significantly more complex and realistic test case, the
density field of a heated jet direct numerical simulation (DNS) following the investigation
methodology in section 4.3.

As well as gauging the accuracy of the reconstructed fields, the effect of increasing
defocus and temporal blurring on the measurement will be quantified. These results are
used to establish practical limits for defocus blurring and temporal blurring in heated jet
measurements, in terms of the jet characteristic length scale and characteristic time scale,
respectively. The limits provide a guideline for experiment design in the next chapter.

Finally, a numerical assessment of FBP, ART and a combined FBP+ART method for
instantaneous 3D turbulent density measurements is presented. The performance of these
algorithms is gauged with downstream location, as the jet transitions from a laminar state
at the exit to fully turbulent at the end of the domain. This will demonstrate the spatial
scales that can be resolved with each technique. The effect of displacement field noise on
the experimental reconstruction is also evaluated.
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5.2 Details of the heated jet direct numerical simu-

lation (DNS)

As in the previous chapter, simulated BOS displacement fields are created to assess
the reconstruction methods by ray tracing through a known refractive index field to
a multiple-camera BOS setup. This time, the refractive index field is obtained using
the Gladstone-Dale relation on the density field of a heated free jet simulation. An in-
house high-fidelity multi-block DNS parallel code (ECNSS) that has been tested and
validated in previous studies is used to solve the compressible Navier-Stokes equations
[63, 64, 66, 132, 133]. Karami et al. [65] give full details on the numerical method.

The configuration is a heated free jet with an exit-to-ambient density ratio of ρe/ρ∞ =
0.8 (an exit temperature of 361 K assuming an ideal gas with constant pressure and an
ambient temperature of 300 K), with a Reynolds number based on nozzle diameter D
of ReD = 10, 000 and bulk nozzle exit velocity Ue, Mach number Ma = 0.6 and an
initial momentum thickness of 0.02D. The jet issues from an orifice in an isothermal flat
plate at ambient temperature. The simulation domain extends to 30D in the streamwise
direction x (with a sponge region from x/D > 20) and 15D in the radial direction r.
Convective boundary conditions are used at all boundaries, except the flat plate. There
are Nx×Nr×Nθ = 1280× 448× 144 computational grid points in the streamwise, radial
and azimuthal directions, respectively. A uniform grid is employed in the azimuthal
direction. In the axial direction, stretch grid points are used, with two stretching rates;
a fine grid is used in the region 0 < x/D < 20. In the radial direction, a fine grid is
employed in the centre of the mixing layer with a polynomial stretch of the grid towards
the centre of the jet and the far-field. The Kolmogorov scale is defined as η̃k = (ν̃3/ε̃)1/4

and is used to assess the turbulence resolution in this test case. The simulation was
run for 3 jet through-times, tj = Lx/Ue where Lx is the domain length, to obtain a
statistically stationary solution. This study uses 104 snapshots from the last 0.5tj in the
present study with an interval of 0.35tc, where tc is the characteristic time scale of the
jet. The minimum η̃k/dx occurs in the shear layer, where a resolution of η̃k/dx > 0.5 is
maintained, which is sufficient for DNS [103]. The integration time-step was adjusted to
maintain a constant Courant-Friedrichs-Lewy (CFL) number of 1.5.

For subsequent analysis, the density field was interpolated onto a uniform Cartesian
grid with a spacing of 0.0204D in all directions. A slice through z/D = 0 of the DNS
heated jet density field shown in figure 5.1. The gradients of the refractive index are found
with 6th-order central differences. The domain is large enough to assume zero density
gradients at the boundaries.

Ten downstream transverse planes are investigated, covering the laminar, transitional,
and turbulent regions, from 0.28D to 9.28D in increments of approximately one nozzle
diameter. The size of each plane is 476× 476 grid points, reaching far outside the jet so
that Dirichlet boundary conditions are applicable in the Poisson equation.

5.3 Validation of proposed experimental setup

A virtual optical setup is created around the DNS heated jet for ray tracing, shown in
figure 5.2. This setup is proposed for construction, but the expected quality of the re-
constructions should be assessed first. There are 15 cameras placed in a full circle in
a y − z plane circumferentially around the jet axis. Each camera has a corresponding
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Figure 5.1: Slice through z/D = 0 of the DNS heated jet density ratio field ρ/ρ∞ at one
snapshot. Flow is from left to right. Dotted lines : show evenly-spaced transverse slices
for reconstruction from x/D = 0.28 to 9.28.

Figure 5.2: The proposed 15-camera experimental setup.

background pattern on the opposite side of the jet. Consistent with the previous chapter,
and previous studies on TBOS [72, 96], this number and placement delivers reconstruc-
tion accuracy towards the upper limit of the TBOS technique for a practical number of
cameras. Each virtual camera uses a f = 25 mm focal length lens. The usable range of
apertures will be decided based on the findings of this chapter to limit defocus blur. The
choice of aperture will also influence the illumination used in the experiment, because
if very small apertures are required then powerful pulsed lighting must be used to both
limit temporal blur and form well-lit images.

The front of each camera lens is ZA = 490 mm from the jet axis, and the background
is a further ZD = 500 mm behind the jet axis. The resolution at the object plane (jet) is
68µm/px, based on a camera with 3.45µm pixels. The jet diameter is 10 mm, meaning
each grid point in the DNS represents a 3 pixel ‘inherent’ window, or grid size dgp = 3
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pixels, while the blur is 12 pixels from equation 3.3. Blur is simulated by applying a box
filter to each point with its immediate neighbours. The reader is referred to Appendix
B.1 for further discussion on the definition of the blur kernel.

The number of steps for ray tracing was chosen to be at least the number of grid
points along the diagonal of a slice, which reduces the residual in the displacements to
less than 10−3 pixels (two orders of magnitude smaller than the 0.1 pixel resolution of
typical displacement calculation methods). Further details on the convergence of the ray
tracing method are provided in Appendix B.2. The ray’s direction is held constant once it
leaves the volume, until it intersects with the imaging plane and creates the background
displacement.

5.4 Results and discussion

A truly accurate TBOS measurement can only be achieved with perfect calibration, zero
reconstruction error, no defocus blurring, no temporal blurring, and a perfect Poisson
solution discretisation that introduces no truncation error and hence, no spatial averaging.
The latter four sources of error will be investigated independently. These are repeatable
errors in the TBOS measurement. Additionally, uncertainty in the BOS measurement is
present due to random errors from noise in the calculated displacement field. This will
also be investigated.

5.4.1 Impact of defocus blurring and other spatial averaging on
TBOS measurements

Figure 5.3 shows the correlation coefficient and RMS error introduced to the jet because
of blurring compared to the true DNS density field, assuming a perfect reconstruction and
Poisson solution are achieved. Blur is nondimensionalised by the nozzle diameter to make
the results generalisable for a heated jet. Errors are presented relative to the difference
in refractive index between the centreline and ambient values at x/D = 0.28, which is
∆np = 3.82×10−5. The black dotted lines compare the effect of the aperture stop f/N on
the measurement quality from f/16, f/11 and f/8. The measurement quality decreases
considerably with apertures larger than f/11 for this setup, with low correlation (R < 0.9)
in the laminar region. The red dashed line shows the spatial averaging introduced to the
displacements by a 16-pixel cross-correlation interrogation window, which for this setup
is comparable to using f/11. The limiting factor in any BOS measurement may be either
the window size or blurring, depending on which is larger.

Furthermore, figure 5.4 qualitatively compares the blurred field in the laminar, tran-
sitional, and turbulent regions as blur is increased. The laminar region is more strongly
affected for a given blur, with lower correlation and higher RMS error with the true
field. The jet has a sharp transition (i.e. strong gradient peaks) between its core and the
ambient surroundings in this region and is affected to a greater extent than the gentler
gradient fluctuations further downstream. Sharp gradients are smeared with increasing
blurring, which is especially evident close to the nozzle, which causes the density to be
under-predicted and the jet to appear larger. As the jet transitions to turbulence, the
blurring causes the small scales to be lost. Beyond δ/D = 6% blurring, some pockets
of high- and low-density fluid at x/D = 5.2 and x/D = 9.2 inside the jet appear to be
mixed. But beyond δ/D = 11% blurring, the small-scale features are lost and the jet is
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Figure 5.3: Correlation coefficient (a) and RMS error (b) between the true and computed
refractive index fields for one snapshot as a function of axial distance x/D and blurring
δ non-dimensionalised by nozzle diameter D. Dotted lines indicate (from bottom to
top) blurring for the current optical setup with apertures varied from f/16, f/11, and
f/8. Red dashed line - - indicates blurring from 16-pixel interrogation windows on the
displacement fields.

severely smeared, with the correlation coefficient R < 0.9.
Therefore, δ/D = 11% is established as the limit of acceptable defocus blur for heated

jet measurements to preserve large scale structures. Note that preserving smaller scale
structures depends not only on defocus blur, but also the grid resolution. During the
design of a BOS experiment, the researcher should check that this δ/D = 11% criterion
is not exceeded by any camera, and can adjust the focal length f , aperture stop f/N , or
relative distances ZA/ZB and ZD/ZB accordingly. Often, the experiment is constrained
by the available physical space, and using adjustable-focal length lenses for a multiple-
camera setup is expensive, so the only practical option is to use smaller apertures. This
will limit the light collected by the camera during each image exposure, so it is tempting to
use a longer exposure. But this leaves the measurement vulnerable to temporal blurring,
which will be investigated in the next section.

Returning to spatial averaging, it is expected that the error introduced to the solution
through defocus blurring will often be much greater than the filtering introduced by the
Poisson solver discretisation. The previous chapter’s study set the spatial resolution of
the virtual optical setup such that the blurring was smaller than the grid size and hence,
any filtering effects related to discretisation. This may not always be the case, so it is wise
to check if the effect of defocus blurring or discretisation-related filtering is larger when
the two are of comparable physical size. Figure 5.5 compares the following two cases
against the true DNS density field: the Poisson solution of the true DNS gradients, and
the Poisson solution of the blurred gradients. To decouple the effect of the growing jet size
for the constant domain size on the RMS error, the RMS error is only calculated within
the mean local jet diameter that is found from the displacements (shown in figure 5.8).
Furthermore, it can be concluded from figure 5.5 that, for a given blur (e.g. δ/D = 6%),
there is negligible benefit to the measurement accuracy in using a grid resolution that is
smaller than the blur (e.g. dgp = δ/5 and δ/15 in figure 5.5) and when the blur is larger
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Original DNS δ/D = 6% δ/D = 11% δ/D = 15%

x/D = 0.28

x/D = 5.28

x/D = 9.28

Figure 5.4: Cross-section contours of normalised ‘excess’ density for one snapshot (same
as previous figure) as a function of blurring δ/D and axial distance x/D.

than the spatial averaging due to the Poisson solution. Together with our findings in the
previous chapter, it is demonstrated that it is acceptable to use lower-order discretisations,
and perhaps even preferable to avoid propagating measurement noise, because the defocus
blurring is larger.

It is clearly demonstrated, that in the proposed setup, the defocus blur is the domi-
nant source of spatial averaging, not the filtering associated with discretising the Poisson
equation. Significant improvement to the measurement can only be achieved if the dom-
inant source of spatial averaging is reduced. Thus, it is a priority to restrict the defocus
blurring in our experiment. The largest errors are occur in regions of sharp gradients;
this is especially prominent in the shear layer of the transitional region.
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Figure 5.5: RMS (a) and peak (b) errors between the Poisson solution of the transverse
gradients and the true DNS density field as a function of axial distance x/D. Errors
are normalised by the peak refractive index difference near the nozzle ∆np(x/D = 0.28)
and averaged over the 104 samples. Marker represents the Poisson solution of the
true gradients with no blurring and (3, 5) discretisation. Markers and represent
the Poisson solution of the gradients with blurring δ/D = 6% for grid resolutions of
dgp = δ/15 and δ/5, respectively. Error bars are approximately the size of the markers
and indicate a 95% confidence level.
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Figure 5.6: a) Instantaneous density ratio ρ/ρ∞ as a function of the characteristic time
scale of the jet tc for all available samples at x/D = 5.2, y/D = 0, z/D = 0.5 (i.e.
r/D = 0.5), with the running average given by red crosses ×. b) Autocorrelation of the
density ratio signal at the same location, with the red dashed line indicating tc = 1.

5.4.2 Impact of temporal blurring on TBOS measurements

While it is true that increasing the light intensity allows the dependence between sen-
sitivity and defocus blur to be uncoupled, with reference to equations 3.1 and 3.4, the
issue of temporal blurring and exposure time is then brought into play. Often the only
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practical way of controlling defocus blurring is to reduce the lens aperture. This can
severely restrict the amount of light that is collected by the sensor during an exposure
for the BOS images because each successive stop on a standard aperture scale halves the
aperture area. Decreasing the aperture to very small diameters to reduce the defocus
blurring then places a premium on the illumination intensity while the requirements for
a short exposure time to freeze the flow remain unchanged. To ensure adequate illumi-
nation, one can either use longer exposures or more powerful lighting. A high-quality
measurement must mitigate both defocus and temporal blurring.

It can be expensive to change lighting systems in an experimental setup, while using a
longer exposure is more convenient. But long exposures increase the amount of temporal
blurring (temporal integration) in the measured density field. It is not possible to conduct
a truly ‘instantaneous’ measurement, as the camera must integrate the flow measurement
over some interval, no matter how small. Thus, it would be wise to see how the quality of
the ‘instantaneous’ measurement is degraded as the temporal integration range increases.

The temporal integration can be expressed non-dimensionally as a function of the
jet’s characteristic time scale, tc = D/Uj. Increasing temporal blurring will first obscure
the smallest scales. As the temporal integration increases, larger and larger scales will
be affected. In figure 5.6, the density field is probed at x/D = 5.2, r/D = 0.5 (the shear
layer) as a function of time scale tc. Figure 5.6a illustrates how rapidly the signal can
change as a function of time. For example, in this figure the density ratio fluctuates from
ρ/ρ∞ = 1.02 at tc = 8.5 to ρ/ρ∞ = 0.79 at tc = 10.

The autocorrelation of the signal in figure 5.6b confirms the previous observation,
and it shows that the correlation of the measured signal decreases very rapidly within
an integration time of tc = 1. After an exposure of tc = 1, the density field will have
little resemblance to that at the beginning of the integration, such that the correlation
decreases to R < 0.5. Therefore, the temporal integration must be limited to a fraction
of the jet’s characteristic time, say 0.1tc, to preserve the measurement quality.

Furthermore, the temporal blurring must not exceed the time taken for flow structures
to convect at a speed of Uj over the length of a grid point dgp, which is tgp = dgp/Uj.
This time will often be smaller than the 0.1tc requirement. Overall, the exposure time
must be less than the smaller of 0.1tc and tgp.

Consider a typical value of tc for experimental measurements in a heated jet. For
example, the DNS heated jet has a Reynolds number ReD =

ρUjD

µ
= 10, 000 and ρe/ρ∞ =

0.8. Creating an air jet experimentally at these conditions in a standard laboratory
environment, with D = 10 mm, one obtain an exit velocity of Uj = 22 m s−1 (calculations
are covered in detail in Appendix C.2), such that tc = 455 µs (0.1tc = 45 µs). The
grid convection time for this setup is tgp = 9.3 µs. Therefore, the maximum acceptable
exposure time should be 9.3 µs.

Combined with the use of small apertures, this almost certainly necessitates using
very powerful lighting, such as an over-driven pulsed LED or pulsed laser.

The previous studies on non-time-averaged TBOS used the following light sources and
exposure times:

� Atcheson et al. [6] used 800 W halogen stage lights. The exposure time was not
specified.

� Nicolas et al. [96] used 500 W halogen spotlights. The exposure time was 750 µs.

� Lang et al. [72] used 1000 W halogen lights. The exposure time was 2 ms.
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� Nicolas et al. [97] used a pulsed laser with a 10 ns exposure time, although they did
not use the laser speckle method introduced in the next chapter. This was required
to mitigate temporal blurring, i.e., freeze the flow.

� Grauer et al. [48] used 200 W LED floodlights. The exposure time was 300 µs for
adequate illumination.

Most of these studies achieve adequate lighting, at the expense of a longer exposure
time and hence, larger temporal blurring. Only the laser illumination method used by
Nicolas et al. [97] would be appropriate for the present study. Preliminary experimental
tests of over-driven LED lighting shows that the required illumination and short exposure
time can be achieved in a narrow field of view. Thus, each camera would require its own
LED, which is prohibitively expensive and also difficult to package when using the design
like that of Buchmann et al. [21]. So, this study will consider spreading a high-power,
pulsed laser beam as a possible solution to this problem in the next chapter.

5.4.3 Comparison of FBP, ART and FBP+ART reconstructions
of the heated jet

The error introduced by the tomographic reconstruction is in addition to that introduced
by blurring and the Poisson solution spatial averaging. The last chapter focussed on the
development of the optimised ART and FBP+ART algorithms for high-quality recon-
structions of the synthetic density field phantom. Now, it is must shown that the same
high-quality measurements can be expected for the DNS heated jet and, by extension,
the experimental TBOS measurements. Figure 5.7 presents the RMS and peak errors
from FBP, ART and FBP+ART Poisson-solved reconstructions, in the absence of dis-
placement field noise. The errors are relative to the Poisson solution of the blurred, true
DNS gradients. This allows the reconstruction error to be isolated from the error due
to blurring. Further, figure 5.8 compares the distribution of error in the FBP and ART
reconstructions as a function of radius and downstream position. The mean jet radius r
at each axial station is identified based on the radial position where the mean displace-

ment from all cameras is less than 0.1 pixels,
∣∣∣ ~∆X

∣∣∣ < 0.1 pixels. The radius of the sharp

cut-off mask rm at each instant at each axial station is identified as the maximum radial
position from all cameras where the displacement magnitude is less than 0.1 pixels with
a 10% margin. Figure 5.9 provides a direct comparison of the blurred, reconstructed,
Poisson-solved density fields at x/D = 5.2 for FBP, ART and FBP+ART against the
density field from the blurred, Poisson-solved true DNS gradients.

Figure 5.7 shows that the FBP introduces the largest error of the three methods
across the jet’s length, as expected. Figure 5.8 shows that the FBP can capture the
jet’s laminar core (up to x/D = 2), but it introduces strong reconstruction artefacts
immediately outside this area, as seen by the increase in the error. The streaky nature of
these artefacts can be seen in figure 5.9. The artefacts still fall within the detected mask,
and so are not removed. Figure 5.8 also shows that without the sharp cut-off mask, the
FBP artefacts continue to the domain edges and that the overall error of the FBP inside
the jet is higher than for ART. The error for FBP appears more evenly distributed inside
the jet further downstream. As expected, the number of cameras that are typical of a
BOS experimental setup are therefore insufficient for high-quality FBP reconstructions
of the instantaneous turbulent density field of a heated jet.
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(a) (b)

Figure 5.7: RMS (a) and peak (b) errors between the Poisson solution of the reconstructed
gradients and the Poisson solution of the blurred true gradients as a function of axial
distance x/D. Errors are normalised by the peak refractive index difference near the
nozzle ∆np(x/D = 0.28) and averaged over the 104 samples. Markers correspond to:
FBP ; ART 10 iterations from null initial conditions ; ART 40 iterations ; ART 100
iterations ; FBP+ART 10 iterations ; FBP+ART 40 iterations ; FBP+ART 100
iterations . All optimised ART/FBP+ART cases use the sharp cut-off mask, relaxation
parameter λi = 0.5, inversely iteration-weighted Gaussian filter, Hamming windowed
corrections, random camera and ray order and Gaussian mask. FBP+ART initial FBP
solution is filtered with the Gaussian mask. Error bars are approximately the size of the
markers and indicate a 95% confidence level.

(a) (b)

Figure 5.8: Absolute error as a function of radius (normalised by nozzle radius R) and
axial length (normalised by nozzle diameter D) for a) FBP, and b) ART 100 iterations,
both averaged over the 104 samples. Markers show the mean jet radius r calculated

based on displacement magnitude threshold
∣∣∣ ~∆X

∣∣∣ < 0.1 pixels. Markers show the

calculated sharp cut-off mask radius rm. Radial bin size is equal to 0.4R.
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(a) (b)

(c) (d)

Figure 5.9: Cross-section contours of normalised ‘excess’ density for one snapshot at
x/D = 5.2, and corresponding centreline profiles at z/D = 0, for: a) Poisson solution
of the blurred gradients; b) FBP; c) optimised ART with 100 iterations; d) optimised
FBP+ART with 100 iterations.
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The ART and FBP+ART methods fare much better than FBP for the same number
of cameras. Figures 5.7 and 5.8 show that the RMS error is approximately halved along
the length of the jet, while figures 5.8 and 5.9 show that reconstruction artefacts are not
introduced outside the jet. From figure 5.8, ART errors decay in the shear layer even
within the sharp cut-off mask due to the Hamming windowed corrections. Figure 5.9
qualitatively demonstrates how prominent the artefacts from FBP can be. The peak
errors of ART therefore appear closer to the jet centreline, unlike FBP. ART generally
predicts all regions of the jet core more accurately than FBP and converges quickly. From
figure 5.7, the RMS solution error is reduced by only approximately 0.5% from 10 to 40
iterations (average across the jet length), and even less from 40 to 100 iterations (0.1%
average across the jet length). This agrees well with our findings in the previous chapter,
and shows that a marginal sacrifice in reconstruction accuracy can greatly reduce the
computational cost.

Because FBP does not perform well in the jet core, it is expected that FBP+ART
could hardly be an improvement on ART from null initial gradients. Indeed, without
filtering the FBP gradient fields before using them as the initial solution to ART using
a Gaussian mask (equation 4.26), the FBP+ART solution can have a much higher error
than ART which is only marginally lower than FBP, consistent with the previous chapter.
With masking and progressively relaxed Gaussian filtering in place, FBP+ART is only
marginally worse than the ART from null gradients. Figure 5.7 shows that FBP+ART
converges at a similar rate to ART, discussed previously, and that the RMS error across
the jet length is like ART. The peak errors of FBP+ART vary slightly more from ART,
with a tendency to have a marginally higher error than ART (average 0.1% higher) at
10 iterations and slightly lower peak error (average 0.5% higher) at 100 iterations. The
idea of using FBP as the initial solution to reduce ART underprediction by preserving
regions of high (or overpredicted) [53] is not realised in practice due to the strong artefacts
throughout the domain (figure 5.9), exacerbated by the Gaussian mask which is necessary
to reduce the growth of the FBP artefacts. This contrasting result to the previous studies
on FBP+ART can be explained in terms of the flow under study. The present flow is
significantly more complex than the one used by Hartmann and Seume [53], with a wide
range of scales to be captured, and is not reconstructed adequately by FBP. It confirms
that for FBP+ART to have any advantage over ART, the FBP solution itself must be
adequate. Overall, it is concluded that FBP is a more disruptive initial solution to ART
for the instantaneous density gradient field reconstruction, marginally slowing the ART
convergence down compared to starting from null gradients.

5.4.4 Effect of displacement field noise on ART reconstruction

Figures 5.10 and 5.11 show the effect of adding noise to the displacement field. In line
with the typical accuracy of cross-correlation methods [128], uniform random noise in
the range ±0.1 pixels was added to each window in the displacement field. For the given
optical setup, the peak displacements were approximately 1 pixel, with a mean of ap-
proximately 0.7 pixels from all cameras across the length of the jet, thus the added noise
is approximately 15% of the typical displacements. Without any additional filtering or
conditioning of the displacements the accuracy in the laminar region suffers most, from
figure 5.10. This is due to corruption of the sharp displacement peaks which contribute
to the ‘top-hat’ profile of the laminar region. In figure 5.11, the overall appearance of
the jet at x/D = 5.2 is retained despite the noise. Gaussian filtering, Hamming win-
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Figure 5.10: RMS (a) and peak (b) errors for the ART reconstruction with 40 iterations,
averaged over the 104 samples, as a function of axial distance x/D. Markers show
the ideal case with no displacement field noise (identical to figure 5.7); markers show
reconstruction accuracy with random uniform noise added to the displacements in the
range ±0.1 pixels. Error bars are approximately the size of the markers and indicate a
95% confidence level.

dowed corrections and gradual unmasking marginally improve the solution, particularly
by smoothing out sharp local fluctuations. However, the input displacements themselves
are affected (which ART compares its solution against) and so the solution remains noisy
throughout the iteration process. The features of the jet core appear to be preserved, but
outside the jet core patchy regions are observed. These may be due to the comparatively
large-magnitude noise in these low-displacement regions. The spatial averaging that is
imparted by the solution of the Poisson equation also helps to reduce the impact of the
noisy gradient field on the reconstructed density field. These observations are consistent
with the previous chapter and indicate that the typical levels of displacement field noise
will have a negligible effect on the measurement quality. Appendix B.3 also investigates
potential improvements in accuracy from noisy displacements using an anisotropic diffu-
sion scheme in the Poisson solver, as used by Atcheson et al. [6]. No improvement was
observed by using this scheme.

5.5 Summary and conclusions

This study aimed to validate an experimental TBOS setup, and assess the impacts of
defocus blur, temporal blur, and reconstruction error on TBOS measurements of a heated
jet. The method of ray tracing through a heated jet DNS density field allows these sources
of error in the TBOS measurement to be examined in isolation from one another and the
uncertainty due to random error.

Spatial averaging in the TBOS measurement process results from two sources, one
inherent from the defocus blurring, and the other a second-order effect from discretising
the Poisson solver. This study shows that the impact of blurring is much greater than
the spatial averaging introduced through the discretisation of the Poisson equation, for
the proposed experimental setup. Both sources are seen to produce higher RMS and
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Figure 5.11: Contours of normalised ‘excess’ density for one snapshot (on the same colour
scale as figure 5.9) at x/D = 5.2, and corresponding centreline profiles at z/D = 0, for:
a) the Poisson solution of the reconstructed ideal blurred gradients (no displacement field
noise), and b) Poisson solution of the reconstructed gradients from noisy displacements.
Dotted line indicates Poisson solution of blurred gradients (figure 5.9a).

peak errors in the region x/D < 4 and gradually decrease thereafter. The errors due to
blurring are hardly affected by using a finer grid resolution. The sharp gradient peaks
contributing to the ‘top-hat’ profile in the laminar region are smoothed due to spatial
averaging and this leads to an under-predicted solution. The correlation coefficient may
decrease to below R = 0.9 in this region when the blur δ/D > 11%.

Temporal blurring can also severely degrade the measurement quality. The temporal
integration time must be limited to just a fraction of the jet’s characteristic timescale, as
well as being less than the grid convection time. In practice, this necessitates microsecond
exposures, and very strong lighting for the experimental setup.

The optimised ART performs well on the complex DNS heated jet density field. The
ART solution converges quickly, with little change observed between 40 to 100 itera-
tions. This indicates that a compromise between computation time (which is significantly
greater than for FBP) and accuracy can be made with minimal impact on measurement
accuracy due to the small change in error. The best ART reconstruction adds only a
modest amount to the blurring error, at most an additional 4.5% RMS and 25% peak
of the blur error in the transitional region from x/D = 3 to 6, for the proposed setup.
Thus, efforts to improve the accuracy of TBOS should focus on reducing defocus blurring
rather than improving the reconstruction quality.

This study establishes an optimised reconstruction method, a validated experimental
setup concept for heated jet measurements, and practical limits for defocus and temporal
blurring. Next, these will be applied to obtain experimental 3D density measurements.
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Chapter 6

Experimental three-dimensional
density field measurements of a
heated jet using laser-speckle TBOS

Part 3 of the research roadmap. Demonstration of an improved experimental technique:
pulsed laser-speckle TBOS.

6.1 Aims and overview of the chapter

The previous two chapters focussed on developing an optimised TBOS reconstruction
algorithm, validating an experimental setup concept, and establishing the limits of defo-
cus and temporal blurring. This chapter reports on a study that applies these findings
to construct an optimal experimental setup for TBOS 3D density measurements in a
heated jet and its analysis. The most pressing need is to restrict the temporal blurring,
and so this study considers the laser-speckle BOS technique, where a laser is used for
background illumination. In contrast to the limited number of previous studies on laser-
speckle BOS, the present work proposes using a high-power, pulsed laser, which makes
the temporal integration negligible. Lasers are a coherent light source, and this can be
taken advantage of to both create a background pattern and illuminate the setup. An
important contribution of this chapter is to present a systematic selection methodology
for the camera lens focal length, aperture and focussing distance which restricts defocus
blur to permissible levels while finding a good compromise with the measurement sensi-
tivity. Finally, experimental density and temperature measurements of a heated jet are
reported, which are validated against thermocouple measurements and compared with a
heated jet DNS. The behaviour of the jet’s potential core is examined, which can provide
insight on the unique behaviour of variable density jets.

6.2 Laser-speckle BOS

Lasers are a coherent light source, meaning that the light may be treated as waves of
identical frequency that may interfere. Speckle patterns are generated when coherent light
is diffusely reflected off a surface with roughness of similar size to the light’s wavelength.
The phase differences of the diffusely reflected light propagating through free space results
in interference. The incident light on an observation plane will be viewed as a pattern of
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light and dark patches known as speckles due to the interference. The characteristics of
the speckle pattern depend on whether the observation plane is also located in free space,
in which an ‘objective speckle pattern’ is formed, or if optical elements such as lenses are
used to record the light on an imaging plane, in which a ‘subjective speckle pattern’ is
formed [146].

The speckle pattern that is formed depends on the roughness distribution of the
surface that diffusely reflects the laser. Rather than seeking to describe the pattern
exactly, it is more common (and practical) to describe the pattern statistically instead.
Goodman [46] provides a detailed explanation and derivation of speckle statistics, and
finds that the intensity of speckles on discrete camera pixels follows a gamma distribution.
Although quantisation effects and aliasing should be considered if the aim is to faithfully
capture the speckle pattern [127], it is not critical to fully-resolve the speckle pattern
to conduct accurate speckle measurements which require recording the displacements of
speckles [76].

Laser speckle BOS is a promising solution to the sensitivity/defocus blurring dilemma.
Although used extensively in other fluid diagnostic techniques [37], laser speckles were
introduced more recently to BOS by Meier and Roesgen [81], who replaced the traditional
printed background pattern with the speckle pattern generated by illuminating a rough
surface from the side with an expanded laser (‘single-pass mode’). One can consider laser
speckle BOS to be a simpler, more versatile implementation of the older laser speckle
photography technique [85]. Meier and Roesgen [81] were able to exactly replicate the
BOS displacements using the speckle background as they had obtained using a printed
background. The method was developed further, taking advantage of the unique proper-
ties of speckle imaging. Firstly, that the speckles are always sharply imaged, regardless of
the camera focussing on the speckle surface or closer or further. In this way, the sensitiv-
ity and blurring of the setup is decoupled from the most restrictive element of the BOS
setup, the overall dimension ZB, and equation 3.1 for the image displacement vector ~∆X
and equation 3.5 for the focal plane distance ZI can now be written as,

~∆X =

(
fl

l + ZA − f

)
tan ~ε, (6.1)

and

ZI =

(
1

f
− 1

ZA + l

)−1

, (6.2)

respectively. Here l is the focus distance along the camera’s optical axis measured relative
to the centre of the refractive volume, i.e., l = 0 means that the camera is focussed on the
measurement volume, l > 0 refers to focussing further away, l < 0 refers to a focussing
closer than the volume, and l = ZD means that the camera is focussed on the background
like traditional BOS. The camera may be focussed closely up to l > −(ZA+f), or further
up to l <∞ [81]. The equation for on the image plane (equation 3.4) still has the same
form, but the equation for the blur cone at the object plane (equation 3.3) for l > 0 can
be rewritten as

δ ≈ da

(
l

ZA + l

)
. (6.3)

The perceived size of the speckles on the image sensor is only dependent on the f-
number (N) being used, due to diffraction-limited imaging. A smaller aperture (larger
N) results in larger speckles, and Meier and Roesgen [81] derive a rough relationship
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for the ‘average’ speckle diameter ds on the image sensor based on an imaging model
described by Goodman (2007) [as cited in 81],

ds ≈ 4λN/π, (6.4)

but speckles of many sizes coexist due to the random interference of light off the rough
surface. Thus, an additional compromise is added to the selection of the aperture, which
is to optimise the speckle size.

Meier and Roesgen [81] introduced alternative experimental setups that allow the
sensitivity of the measurement to be increased, by illuminating the surface in line with the
camera’s optical axis, similar to silhouette photography [130]. As shown in figure 6.1, the
light passes through the refractive volume twice, once forward to the speckle surface, and
then back to the camera (‘double-pass’). The authors also introduced an ‘interferometry
mode’ where the inline illumination is again used, but the camera is focussed on the
refractive volume itself. This only generates a displacement from the light’s forward pass
through the volume; the advantage is that defocus blur is removed. While this would
solve the sensitivity/defocus blurring dilemma, in practice it may be unfeasible to achieve
inline illumination for the typical number of cameras needed for tomographic BOS due
to the cost of the required optics such as beam-splitters and mirrors (which may cost
more than the cameras themselves). Therefore, only the ‘single-pass’ mode is considered
in this study.

Meier and Roesgen [81] use a low-power continuous wave laser to generate the speckles.
The current work will investigate the use of a high-power, short-pulse laser to generate
both sufficient illumination and short exposure times for the small-aperture, low temporal
integration images for high-quality turbulence measurements. With appropriate selection
of the focal length, and varying the aperture and focus distance, it will be possible to
obtain well-illuminated images with enough sensitivity for a high signal-to-noise ratio
for the displacement calculation method, with blurring smaller than the interrogation
window size.

6.3 Experimental setup and method

6.3.1 Camera and laser configuration and control

Following the last chapter, a 15-camera setup is utilised to conduct TBOS density mea-
surements. The cameras are 3 megapixel Daheng MER302-56U3M USB3-interface monochrome
machine vision cameras with a pixel size of 3.45 × 3.45 µm and 10-bit image recording.
The cameras are placed circumferentially around the reconstruction volume, and each
face a plane speckle surface (acrylic sheet with adhesive paper film) oriented towards the
camera that is 100 mm wide × 130 mm high. The cameras and opposing backgrounds
are roughly equidistant 500 mm from the centre of the reconstruction volume. In order to
illuminate all of the surfaces with a single laser, the experimental setup deviates slightly
from the proposed setup in chapter 5 by placing all of the cameras on one half of the
circumference, and all of the speckle surfaces on the other, shown in figure 6.2. This
will have no adverse effect on the measurement quality, because BOS measurements are
path-integrated, and the same information is captured by the 15 cameras although half
of them are now on the opposite side (tests on the DNS jet confirm this).

A 120 mJ Nd:YAG dual-cavity PIV laser (λ = 532 nm, New Wave Solo 120) is used
to generate the speckle patterns. Only a single cavity is required to conduct the BOS
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(a)

(b)

(c)

Figure 6.1: Configurations for laser-speckle BOS introduced by Meier and Roesgen [81].
a) ‘Single-pass’ mode, where the expanded laser illuminates a surface without passing
through the refractive volume (flow) under study. b) ‘Double-pass’ mode, where the
illumination is introduced in-line with the camera’s optical axis. Notice that in both of
these modes, the camera is not necessarily focussed on the speckle surface (l 6= ZD) like
in traditional BOS (cf. figure 3.1). c) ‘Interferometry mode’, like ‘double-pass’ mode
except that the camera is focussed on the refractive volume (l = 0).

measurements, as the reference images are taken before the flow is started, and images
containing the flow require only a single exposure. The pulse time of the laser is 10 ns,
which controls the effective exposure time of the images. The cameras themselves use an
exposure time of 400µs, but do not capture anything when the laser is not firing. The
10 ns exposure is expected to be much smaller than the characteristic time scale of the
flow for any practical flow configuration, meaning that temporal blurring is negligible.
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(a) (b)

Figure 6.2: a) Experimental setup with 15 cameras modified for laser-speckle TBOS,
b) schematic of laser expansion. Optical axis of camera 1 is aligned with the global
z-axis, and x is the jet axis. The laser beam is guided into the beam splitter at the
correct orientation using an articulated arm (ILA 5150 Articulated Mirror Arm, not
pictured). Bottom: photograph of expanded laser beams illuminating the backgrounds.
The cylinder placed above the nozzle is used to check that the beams do not directly
cross the reconstruction volume. In the real experiment, the laser optics and mirror arm
are not directly attached to the rig’s ‘table top’ upper surface as shown in (a) and (b),
but rather are magnetically secured to the underside of a small bench that fits onto the
‘table top’ and over the top of cameras. The bench is visible in the bottom-right corner
of the bottom photo. Additional annotated photographs given in Appendix C.1.

The cameras and laser are triggered externally using a BeagleBone board to synchro-
nise the timing [36]. A custom-made trigger box relays the signal to all 15 cameras.
The MATLAB Image Acquisition Toolbox is used to facilitate image acquisition from the
cameras to computer memory via USB3 connection. As the images are quite small, only
one computer with additional USB3 ports installed is required. To avoid lost frames, the
image acquisition frequency is limited to 5 Hz while the laser operates at 15 Hz.

A plate beam splitter (Thorlabs BSS10) and mirror (Thorlabs NB1-K12) are used
to create two branches of the laser beam, as shown in figure 6.2b, which are separately
expanded using groups of lenses. Spherical concave lenses (f = −25 mm, Thorlabs
LD2297-A) are used to expand each beam to ensure vertical coverage and initial horizon-
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(a) (b)

Figure 6.3: A severe example of shot-to-shot variations in intensity in the speckle images.
No flow is present in either image (ambient environment). The locations of the speckles
do not seem to be affected, only their intensity.

tal spreading. The beams subsequently pass through one or two cylindrical concave lenses
(f = −9.69 or −15 mm) for additional horizontal spreading (Thorlabs LK1836L1-A or
LK1753L1-A, respectively). One branch illuminates 8 speckle surfaces, the other illumi-
nates 7 speckle surfaces. As discussed in section 6.2, it is difficult to enable ‘double-pass’
or ‘interferometry’ mode on all the cameras. To ensure that all cameras record in ‘single-
pass’ mode, the expanded laser branches are skirted around the measurement volume on
their way to the speckle surfaces, illustrated in figure 6.2b. A cylinder, representing the
measurement volume, is placed over the nozzle during alignment of the optics to ensure
that the light from the branches does not directly pass through the volume. Only diffuse
reflected light from the speckle surfaces may pass through the volume in ‘single-pass’
mode.

It is expected that there will be shot-to-shot variations in illumination intensity. A
severe example of this is given in figure 6.3. These variations do not affect the position
of the speckles, which would be a larger issue, when the laser is fully warmed-up before
use, which is estimated to take at least 1.5 hours. But the variations will prevent smaller,
dimmer speckles from being recorded in occasional shots. Although the impact of this
is small, because the observed displacement with no flow present is less than 0.1 pixels,
to mitigate this, it is specified that each camera must record multiple (30) reference
images. Then each instantaneous flow image from a camera is compared with each of
that camera’s reference images. The median of these 30 displacements is used as the
instantaneous displacement field for that camera for the reconstruction at that time-step.

As discussed in section 3.1, camera calibration is required in tomographic BOS for
three reasons: to locate the origin of the global coordinate system; to establish the ro-
tation (pose) and translation of the cameras relative to the global coordinate system;
and, to accurately locate the background distance and orientation from each camera.
This investigation utilises the multiple-camera calibration toolbox developed by Himpel
et al. [56]. The advantage of this toolbox is that it uses a calibration target with dots.
Because the global origin is often out of focus in BOS (the cameras are focussed further
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(a) (b) (c)

Figure 6.4: Calibration target, designed by Himpel et al. [56], imaged from three adjacent
cameras. The inverted T-shaped structure is used to determine the orientation of each
camera relative to camera 1. The cameras are mounted sideways to align the longer edge
of the sensor with the streamwise direction, so the T-shaped structure appears to (subtly)
move up and down in the images of adjacent cameras, not left and right.

away or closer to increase sensitivity), it can be difficult to accurately locate the corners
of a traditional checkerboard pattern, which become blurred. The centroid of dots can
still be located accurately when they are out of focus, encouraging their use for TBOS
calibration. Figure 6.4 shows the calibration target viewed simultaneously by three ad-
jacent cameras. Notice that the dots are not sharply imaged. Using at least 10 images
per camera with a clear view of the target, reprojection errors around 0.25 pixels in the
calibration are obtained. The two-element radial and tangential distortion coefficients
ki and pi, respectively, are also obtained. A standard polynomial relation between lens
distortion and radial distance from the image optical centre is assumed, where the radial
distortion affects the image coordinates (X, Y ) according to,

Xdist = X
(
1 + k1r

2 + k2r
4
)
, (6.5)

Ydist = Y
(
1 + k1r

2 + k2r
4
)
. (6.6)

Likewise, the tangential distortion which is due to misalignment between the imaging
plane and lens plane, is represented by,

Xdist = X +
(
2p1XY + p2

(
r2 + 2X2

))
, (6.7)

Ydist = Y +
(
p1

(
r2 + 2y2

)
+ 2p2XY

)
. (6.8)

These models are used in the OpenCV package to undistort the images with a linear
image interpolation scheme before displacement calculation.

6.3.2 Heated jet

The heated jet is generated using a compressed air supply and inline heater (Omegalux
AHP-7562). The air mass flow rate is regulated using a pressure regulator and mass flow
meter (Alicat M-500SLPM-D), while the jet temperature is controlled by adjusting the
heater voltage with a Variac device (up to 240 V at 3 A). The maximum mass flow rate
of the system is 500 standard litres per minute, approximately 10−2 kg s−1. After passing
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Figure 6.5: Cutaway schematic of converging nozzle with matched-cubic profile [93].
Dimensions are in millimetres. The matched cubic contour itself is 50 mm in length from
entrance to exit.

through an aluminium settling chamber equipped with three levels of meshes, the jet
emits through an aluminium nozzle, with the profile shown in figure 6.5. The nozzle has
an exit diameter of D = 10 mm and an entrance-to-exit area contraction ratio of 13.69:1.
The internal contour of the nozzle is a matched-cubic profile derived using the method
devised by Morel [93].

For each flow configuration, the approximate nozzle centre exit temperature (at x/D =
0.3) is recorded to determine the appropriate warm-up and cool-down times for the jet to
reach a stable temperature after the heater is activated. Figure 6.6 shows the warm-up
and cool-down temperature traces for the jet when the mass flow rate is set to 1.7 ×
10−3 kg s−1 and the heater voltage to 120 V, producing a stable exit temperature of
approximately 91 °C. The stable exit temperature is repeatable to within ±1 °C for the
same mass flow rate and heater voltage, seen on four separate runs. The laser is warmed
up for 2 hours (half an hour beyond the stable jet temperature) to ensure a stable speckle
pattern is maintained. In this experiment, the reference images are taken after the jet
has cooled down, because the warm-up time of the jet coincides with the warm-up time
of the laser. The jet is allowed to cool for 30 minutes after the heater is turned off before
the reference images are taken, which allows the entire rig to reach ambient temperature.

As the air is heated, the settling chamber and nozzle will be heated too. This could
affect the boundary conditions of the domain and induce convective currents around the
hot nozzle. To mitigate this, several layers of thermal wool insulation (RS Pro Superwool)
are wrapped around the heater, settling chamber and nozzle. Thermal images of the fully
warmed-up nozzle, for the conditions described in figure 6.6, show that the outermost
layers of insulation reach a temperature of approximately 40 °C, as seen in figure 6.7.
Thermocouple temperature profiles near the jet, discussed in section 6.5.1, show that the
radial boundary condition is still at ambient temperature, indicating the insulation is
effective.
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Figure 6.6: Thermocouple temperature traces of nozzle centreline exit temperature
(x/D = 0.3) as a function of time for a) warmup and b) cooldown (after one hour of
stable heating), when the air mass flow rate is 1.7 × 10−3 kg s−1 and the heater voltage
is 120 V. Samples are recorded at intervals of dt = 2 seconds.

Figure 6.7: Thermal image of the insulated nozzle when the jet is at an exit temperature
of 91 °C. Image captured using Seek Thermal Compact camera.

6.4 A systematic selection methodology for camera

lens focal length, aperture and focussing distance

Appropriate selection of lens focal length, aperture and focussing distance requires careful
thought. The BOS setup should have the ideal compromise between sensitivity and
defocus blur, which have conflicting requirements. The proposed pulsed laser speckle
TBOS method allows a short exposure time so that the temporal blurring constraint is
met. Even though the laser is very intense, it can still be difficult to achieve adequate
brightness in the images when using an aperture small enough to limit defocus blurring.
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Thus, the smallest aperture setting which allows a reasonable illumination is constrained.
To keep blurring to a reasonable level, one must then adjust the focus distance (laser
speckle TBOS) or change the distance between flow and background (traditional BOS).
This has the effect of reducing sensitivity, as seen from equation 3.1 and 6.1. So, in
practice, there will always be some compromise in sensitivity if it is desired to keep
temporal and defocus blurring in check. Incorporating the laser speckle technique into
the BOS optical setup provides an additional tool to optimise the measurement with
various experimental constraints.

From previous TBOS studies [48, 72, 96], it is not clear how this can be found, as
most have shown little regard for finding the ideal compromise. This work outlines a
systematic approach that will be useful for researchers. The results of section 5.4.2 show
that mitigating the temporal blurring is most critical to high-quality measurements, and
thus it cannot be compromised. As the short exposure time constraint has been addressed
using the pulsed laser, there are three remaining constraints: spatial (defocus) blurring,
sensitivity or signal-to-noise ratio, and appropriate speckle size. The acceptable values
for each of these constraints must now be decided.

Digital cross-correlation PIV analysis is used to obtain the displacements, which in-
troduces blurring in each displacement field over an interrogation window. Too large a
window will increase the spatial averaging at each displacement vector, and too small a
window will increase the random noise. Testing shows that a 16-pixel window appears
to offer good compromise, although this ultimately depends on the background speckle
density (the characterisation of which is not straightforward). Therefore, the defocus
blurring can have a maximum size of 16 pixels without further reducing the effective
spatial resolution. Figure 6.8 shows the variation in sensitivity and blur for different
focal lengths and apertures. Sensitivity is expressed as ∆/ tan ε, where ∆ and ε are one
component of the displacement and deflection angle, respectively, from equation 6.1, as a
function of focus distance l for fixed ZA = 500 mm for easy comparison of different focal
lengths and focussing distances (the lines begin at the minimum possible focus distance
for each focal length); obviously, a higher sensitivity is desired. Defocus blur is calculated
using equations 3.4 and 6.2 also as a function of focussing distance for fixed ZA = 500
mm; blur is normalised by the pixel size to easily identify when the 16-pixel constraint is
crossed. Blur is also expressed as a percentage of nozzle diameter at the spatial resolution
at the measurement volume, so that the δ/D ≤ 11% criterion is met, which must also
be considered. Figure 6.8 shows that higher sensitivity can be achieved in the l < 0
region (focussing closer than the object), but this also causes the blur to grow much more
rapidly than the l > 0 region. Due to this, only the l > 0 region will be considered.

Although the expected speckle size can be calculated using equation 6.4, it is still
wise to check if the speckles are small enough to fit within the 16-pixel windows, and
large enough to avoid peak-locking (> 2 pixels). Speckle size is not related to the surface
characteristics and depends only on the lens aperture and camera pixel size. Figure
6.9 compares the speckles for 3 apertures. Using f/8 generates speckles that are too
small and using f/16 generates speckles that are too large for the current pixel size and
interrogation window dimensions. Hence, the ideal aperture is in between these two, and
f/11 is selected as the optimal aperture for this setup.

A comparison of possible choices is shown in table 6.1, where the focus distance is
chosen to maximise the sensitivity until the blur reaches δ/D = 11%. Based on the
constraints, the optimal selection is to use focal lengths of f = 25 mm at f/11 with
l = 450 mm for ZA = 500 mm. The optimal f = 25 mm and f = 50 mm choices have
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(a) (b)

Figure 6.8: a) Sensitivity ∆/ tan ε (mm), and b) blur at object in pixels di/lpix, as a
function of focussing distance l (mm) for ZA = 500 mm. Legend for b): solid line
f = 25 mm at f/8; dotted line f = 25 mm at f/16; dash-dot line f = 50 mm at
f/16.

very similar sensitivity, and the blur δ/D was chosen to be the same. To choose between
the two, consider the field of view. The advantage of the f = 25 mm lens is a larger field
of view over the f = 50 mm lens. The illuminated sensor size of the cameras is quite
small, so it is desirable to increase the field of view in the jet so that both the near-nozzle
laminar region and transition to turbulence can be captured simultaneously. For any of
the given setups in table 6.1, it would also be possible to increase sensitivity by accepting
an increase in defocus blurring by moving the focus distance further away.

Note that the diffraction-limited spot size (equation 3.6) and total blur (equation 3.7)
were not considered. For the given range of apertures, the diffraction-limited spot size is
expected to be much smaller than the defocus blur. For example, option 6 (f = 50 mm,
f/16, l = 95 mm) in table 6.1 has the largest diffraction-limited spot size, dd = 6.6 pixels.
Option 1 (f = 25 mm, f/8, l = 260 mm) has the smallest diffraction-limited spot size
dd = 3.1 pixels. They have total blur sizes of dΣ = 17.1 and 16.3 pixels, respectively, given
that di = 16 pixels, so defocus blur is far more important than the diffraction-limited
spot size.

Note that the selection methodology for traditional BOS with a printed background
will be slightly different, because the speckle size is no longer a consideration. The
aperture only affects illumination and blur. It may be worthwhile considering the total
blur dΣ rather than only the defocus blur di, because diffraction-limited blur dd can
become around the same size as, or larger than, the defocus blurring at small apertures.
A multi-objective optimisation method may then be necessary to find the optimal balance
between sensitivity, defocus blur and diffraction-limited blur.

The final experimental parameters are given in table 6.2. The spatial resolution at the
object and focus planes is determined by placing a ruler at the respective plane, but they
can also be determined using geometric optics if the camera’s pixel size lpix is known.
The spatial resolution at the object can be estimated by (ZAlpix)/ZI , and likewise for
the background resolution using (ZBlpix)/ZI . Although the cameras have a full sensor
size of 2048 × 1536 pixels, only a 640 × 600 pixel section is used at present. This is
due to difficulties in expanding the laser with the available optics. This smaller sensor
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Figure 6.9: Recorded laser speckles images in a 100 × 100-pixel area for apertures: a)
f/8, b) f/11 and c) f/16. Red squares show a 16 × 16-pixel area. Physical pixel size is
3.45 × 3.45µm/pixel. Brightness and contrast of images b) and c) have been enhanced
for clarity. Bottom: speckle patterns recorded by each camera at f/11 superimposed on
the experimental setup (illustration).

Table 6.1: Combinations of camera lens focal length, aperture and focussing distance
(independent variables) for laser speckle BOS evaluated by sensitivity to displacements,
blur at the object and average speckle size (dependent variables, bold). For all options
ZA = 500 mm; camera pixel size is lpix = 3.45 µm. Focus distances are chosen such that
blur δ/D ≈ 11% for all options. The closest cross-correlation window size for focal length
f = 25 mm is 16 pixels, while for f = 50 mm it is 32 pixels. Text colour indicates: red is
unfavourable (speckles too small/large for current pixel size); orange is sub-optimal (field
of view too small); black is selected.

Independent variables Dependent variables

Focal length Aperture Focus Blur Blur Sensitivity Speckle size
f (mm) f/N distance di/lpix δ/D ∆/ tan ε ds/lpix

l (mm) (px) (%) (mm) (px)

25 8 260 16.0 10.7 8.8 1.57
25 11 450 16.0 10.7 12.2 2.16
25 16 1145 16.0 10.7 17.7 3.14
50 8 100 32.0 10.4 9.1 1.57
50 11 148 32.0 10.4 12.4 2.16
50 16 249 32.0 10.4 17.8 3.14
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Table 6.2: Experimental setup parameters

Parameter Value

Number of cameras 15
Nominal angular spacing of cameras 12°
Nominal ZA 515 mm
Nominal l 490 mm
Focal length and aperture 25 mm at f/11
Pixel size, active sensor size 3.45 ×3.45µm, 640 × 600 pixels
Spatial resolution at measurement volume (ZA) 72 µm/pixel
Spatial resolution at focus plane (ZA + l) 140 µm/pixel
Effective exposure time 10 ns at 5 Hz
Nozzle diameter D 10 mm
Field of view at object plane 4.6D × 4.3D

size means that a larger field of view of the f = 25 mm focal length lens is even more
desirable, allowing the domain from the nozzle outlet up to the turbulence transition to
be captured.

Image displacements are calculated using an in-house digital cross-correlation PIV
analysis code. The in-house code is well-known and has been developed, validated and
applied in many studies over nearly three decades, e.g. [10, 126, 128]. Square 16-pixel
interrogation windows are used with a grid spacing of 8 pixels in each direction (50%
window overlap), employing Hart’s correlation-based correction [51], and median value
validation of 2 pixels [150].

The selection methodology for laser speckle TBOS measurements of heated jets can
be summarised as:

1. Determine the maximum allowable blur in relation to the jet’s characteristic length
scale, i.e. δ/D. The nozzle diameter (characteristic length) D is often fixed. For
the 11% limit established in the previous chapter, the maximum allowable blur will
be δ = 0.11D. For the current setup, δ = 0.11× 10 = 1.1 mm.

2. Select a range of available focal lengths and aperture combinations. For the current
setup, f = 25 mm and f = 50 mm focal lengths are available. Longer focal lengths
allow higher magnifications but increase the blur, while the field of view may be
severely restricted depending on the camera sensor size. The minimum focussing
distance also increases, meaning that larger apertures cannot be used as the lens
cannot focus closely enough to negate the compounded increase in blur. Apertures
of f/8, f/11 and f/16 are considered. The largest aperture f/8 is chosen based
on testing which shows that the speckles become very small beyond this, and so
are unsuitable for cross-correlation. The smallest aperture f/16 is chosen based on
testing which shows that the speckles become dim for f = 25 mm (as the amount
of light entering the aperture is restricted) and very large. Recall that equation 6.4
can be used to find the approximate speckle size, which can be normalised by lpix.

3. Calculate the focussing distance l which sets δ = 0.11D for each combination of focal
length and aperture. This can be done by rearranging equation 6.3 (and restricting
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l > 0 as discussed previously):

l =
δZA
da − δ

(6.9)

where da = f/N , e.g. da = 25÷11 = 2.3 mm for f = 25 mm at f/11. This requires
da > δ, which is true for typical BOS experiments.

4. Calculate the blurring on the image plane di using equations 6.2 and 3.4. Normalise
by the pixel size lpix.

5. Determine the closest cross-correlation interrogation window size to the choices of
di/lpix. Common sizes are 8, 16, 24, 32, 48, 64, 96, 128 and 256 pixels; a rule of
thumb is to choose an integer power of two, but other sizes are possible. For each
focal length and aperture combination, the focussing distance l should be adjusted
so that blur di approximately matches the nearest window size.

6. Select the optimal aperture for laser speckles. At this point, it is possible to rule
out apertures which produce speckles that are not optimal for the chosen cross-
correlation interrogation window size. The speckles may be too small or too large,
too dense or too sparse.

7. Calculate the relative sensitivity ∆/ tan ε for the remaining choices using equation
6.1. For each focal length, only consider the remaining choices with the highest
sensitivity.

8. Lastly, select between the focal lengths by considering the field of view. The spatial
resolution at the object can be estimated by (ZAlpix)/ZI . Together with the sensor
size, one can obtain the field of view at the object. The field of view can also be
non-dimensionalised by D. If a large field of view is desired, use a smaller focal
length. For example, using a sensor of 600 pixels with ZA = 500 mm and D = 10
mm, the field of view at the object for f = 25 mm at f/11 with l = 450 mm is
4.6D. For f = 50 mm at f/11 with l = 148 mm, the field of view at the object is
only 2D. Therefore, the f = 25 mm lens is selected.

6.5 Results and discussion

The experimental measurements from one case are presented here. The jet mass flow
rate is set to 1.7 × 10−3 kg s−1 with an exit temperature of 90 °C based on thermocou-
ple measurement. Using the calculations described in Appendix C.2, these conditions
approximately correspond to an exit velocity of Uj = 22 m s−1, Reynolds number based
on jet diameter of ReD = 10, 000 and exit-to-ambient density ratio of ρe/ρ∞ = 0.8. It
was not possible to characterise the jet’s exit velocity profile, velocity field and turbu-
lence intensity in the present study. The jet’s characteristic time scale is estimated to be
tc = D/Ue = 450 µs and the grid convection time is tgp = 3.3 µs where the grid size is
taken to be the spatial resolution at the object of 72µm/pixel. One could instead use the
16-pixel interrogation window size as dgp, which instead gives tgp = 52.4 µs. The smallest
of these values is taken in accordance with the guidelines of the previous chapter, the
maximum allowable exposure time is 3.3 µs. As the laser pulse is only 10 ns, temporal
blurring is negligible. The Reynolds number and density ratio of this case are chosen to
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Figure 6.10: a) Horizontal displacements for camera 1, and b) vertical displacements for
camera 1 using the median of multiple reference images for one time-step (physical pixel
size is 3.45 × 3.45µm/pixel, and spatial resolution at the focus plane is 140 µm/pixel).
Flow is from bottom to top. Bottom image: measured displacement magnitude (0 to 1.5
pixels) captured by each camera at a given instant superimposed on the experimental
setup (illustration).

match the heated jet DNS from the previous chapter, and the experimental BOS mea-
surements will be compared with the DNS. In the DNS the Mach number is Ma = 0.6
whereas the experiment has an estimated Mach number of Ma ≈ 0.06, which will have
the most impact in the jet’s near-field.

From each camera, 5,100 flow images are collected. Each instantaneous image is
correlated against 30 reference images from that camera and the median is used as the
input to the instantaneous reconstruction to compensate for shot-to-shot variations in
illumination intensity. An example of the obtained median instantaneous displacement
fields based on multiple reference images is shown in figure 6.10. The displacements
caused by the jet are clearly visible, and spurious displacements caused by variations in
laser speckle intensity are negligible. The displacements fall within the sub-pixel range,
with the peak displacement magnitude measured to be approximately 1.5 pixels.

The reconstructed refractive index gradient magnitude at one instant is shown in
figure 6.11. The reconstruction domain uses a Cartesian coordinate system, such that
the optical axis of camera 1 is aligned with the global z-axis and with x being the jet axis.
There are 50 × 59 × 59 voxels in (x, y, z), with a grid spacing of 0.84 mm/voxel in each
direction. The reconstruction is performed using the optimised ‘best case’ ART algorithm
denoted as case K in table 4.2. Using 100 iterations and the discussed modifications, no
reconstruction artefacts are visible, and the flow features are distinct from the ambient
environment. Preliminary tests show that the FBP reconstruction is obtained in less than
1 second per sample, but the reconstruction is unusable due to strong artefacts throughout
the domain. The 100 iteration ART reconstruction was completed in approximately 40
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Figure 6.11: Reconstructed refractive index gradient magnitude |∇n| at one time-step.
Longitudinal slices (flow is from bottom to top): a) y/D = 0; b) z/D = 0. Transverse
cross-section slices (on the same colour bar as the above longitudinal slices): c) x/D = 0.3;
d) x/D = 1.3; e) x/D = 1.8; f) x/D = 2.6; g) x/D = 3.4; h) x/D = 4.3.

minutes on a workstation using a single core, but this large increase in the time taken
for reconstruction is necessary for high quality measurements. It is possible to optimise
the ART implementation further by utilising parallel processing or GPU computing, but
this is beyond the scope of the current work.

A reconstructed density field at one instant is shown in figure 6.12. Additional visuali-
sations are provided in the Appendix C.3. The laminar region, potential core instabilities
and transition to turbulence are captured with striking detail. The flow field is quali-
tatively consistent with the description of potential core evolution by Yule [154], where
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Figure 6.12: Reconstructed density field ρ (kg m−3) at one time-step. Domain length
is 0.3 < x/D < 4.6. Top: longitudinal slice at y/D = 0, flowing from bottom to
top. Transverse slices (on same colourbar as the longitudinal slice): a) x/D = 0.3; b)
x/D = 1.3; c) x/D = 2.3; d) x/D = 3.2; e) x/D = 4.2. Also see Appendix .
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the downstream growth of instability wave in the shear layer results in the formation of
vortex rings which merge at the end of the potential core. These subsequently ‘pinch’
and break off from the potential core, from which point the flow becomes turbulent. The
transverse slices clearly show the growth and development of the secondary instabilities
described by Liepmann and Gharib [78], where mushroom-like structures are ejected ra-
dially outwards. These are secondary instabilities with high streamwise vorticity which
engulf ambient fluid between them. This contributes to the spreading of the jet, like the
well-studied incompressible round jet [11], with the exception that the potential core in
this jet is likely much shorter than an incompressible jet of equivalent Reynolds number
[73]. This similarity is expected as the density ratio is not low enough to trigger the
spectacular side jets and the associated enhanced mixing [70], as ρe/ρ∞ > 0.6 presently.
Overall, these observations instill confidence that the optimised TBOS experiment is able
to faithfully capture the coherent structures related to the jet’s transition to turbulence.

The convergence of the mean density and RMS density fluctuations are shown in
figure 6.13. Azimuthal averaging with a bin width of ∆r/D = 0.084 is employed for radial
profiles, lending a smooth profile. For both the centreline and radial profiles shown, both
the mean density and RMS density fluctuations converge quickly. There is negligible
variation beyond using 2,000 samples.

6.5.1 Comparison of mean temperature field with thermocouple
measurements

The mean temperature field obtained from TBOS is validated against thermocouple mea-
surements of the radial temperature distribution at several axial stations. The Type-K
thermocouple wire has a bead diameter of approximately 0.5 mm, cf. TBOS voxel side
length 0.84 mm. The wire is sheathed in a rigid insulating ceramic coating, which itself
is located within an aluminium sleeve connecting the thermocouple to a spring-loaded
linear traverse. The traverse provides radial movement with a resolution of 0.01 mm.
The thermocouple bead traverses along the y-axis, with z = 0. Thus the thermocouple
measurements correspond to measurements in a radial direction to the jet r/D. Note
that there is a slight offset of the thermocouple bead from the y/D = 0 position by
1 mm due to limitations in the reach of the thermocouple and traverse, i.e. thermocouple
measurements start from r/D = 0.1. This offset was measured by fitting a machined tip
snugly into the nozzle to identify its centreline and measuring the radial distance to the
thermocouple bead through caliper measurements. Movement in x of the thermocouple
is performed without a traverse, and the axial location of the bead from the nozzle exit
plane is measured using calipers.

Thermocouple measurements are performed at four axial locations with a radial in-
crement of ∆r/D = 0.05 (0.5 mm): x/D = 0.3, x/D = 1.3, x/D = 2.3, x/D = 3.2,
x/D = 4.2. These axial locations allow comparisons along the full length of the BOS
domain. During measurement, the thermocouple is traversed to a particular radial sta-
tion and held for 30 s to allow the temperature to stabilise; the temperature at each
station is recorded for 30 s at 1 Hz and the average of these measurements is presented.
It is observed that the indicated thermocouple temperature could fluctuate in a range
±0.8 °C depending on location (thermal inertia was not compensated for). Locations
near the centreline and outer region fluctuate in a narrower range than the shear layer,
as expected.

The comparison of measurements is shown in figure 6.14. The mean TBOS temper-
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Figure 6.13: Convergence of BOS mean density statistics. First row shows values at
centreline r/D = 0: a) centreline mean density ratio ρ/ρ∞, and b) centreline normalised

RMS density fluctuation

√
ρ′2/ρ∞. Second row shows radial profiles at x/D = 2.3 with

azimuthal averaging using a bin width of ∆r/D = 0.084: c) mean density ratio, and
d) normalised RMS density fluctuation. Results are shown for 500 to 5,000 samples in
increments of 500 samples. The darker the marker colour, the more samples are used.
Pale yellow is 500 samples and black is 5,000 samples.

ature is obtained by averaging across all 5,100 samples, and further by averaging in the
azimuthal direction. It is assumed that the ideal gas law with constant pressure will
approximate the jet temperature field based on the measured density field, given that the
pressure difference and fluctuations in a low-speed jet, where Ma < 0.3, are practically
negligible [11]. Across the measured length of the jet, the mean TBOS temperature field
matches the thermocouple temperature very well in the outer region and shear layer, with
a maximum difference in temperature between TBOS and the thermocouple of approx-
imately 2 °C. TBOS underestimates the jet temperature towards the centreline, which
is exaggerated near the nozzle at x/D = 0.3, where the maximum observed difference
rises to 7 °C. Like Lang et al. [72], this can be attributed chiefly to the defocus blurring,
which reduces the strength of measured density gradients. The limited sensitivity will
also increase the noise floor for the measured gradients which also means that smaller
gradients near the jet centreline are not correctly measured. Still, the close agreement
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between the thermocouple and BOS measurements are encouraging and demonstrate the
potential of our optimised TBOS to be a versatile flow diagnostic technique.

6.5.2 Comparison of density field statistics with heated jet DNS

Although the experimental measurement and DNS case are approximately matched in
terms of Reynolds number and density, the Mach numbers and boundary conditions are
significantly different. As discussed in chapter 2, differences in inflow boundary condition
and velocity profile can significantly alter the development of the jet’s near-field, with
evidence that the far-field characteristics are influenced as well, in contradiction to the
long-standing belief in a universal far-field condition [11, 68, 70, 86, 94, 115, 117].

The experimental heated jet emerges from a contoured heated nozzle with free space
around the nozzle. However, the DNS jet emerges from an orifice in flat boundary.
The boundary is isothermal with no-slip conditions. The flat boundary is expected to
increase the entrainment from the jet’s surrounds at the nozzle exit, as well as pushing the
development of instabilities and the vortex roll-up further downstream [115]. The nozzle
exit boundary layer thickness also strongly influences the development of instabilities,
the jet spreading and the point of turbulent transition [70, 117]. The nozzle contour itself
plays a part in determining the exit boundary layer thickness, and it is worth noting
that in the extreme case of a fully developed pipe flow at the nozzle exit, the large scale
structures such as vortex roll-up are not observed and the transition to turbulence is more
sudden [86]. For the current experiment, it is expected that the nozzle contraction ratio
of 13.69 is sufficient to generate a thin exit boundary layer, similar to those used in the
DNS hyperbolic tangent exit profile [65]. But the heated nozzle in the experiment may
also create convective currents around the laminar core at the jet exit. Furthermore, the
experimental setup may contain upstream or external disturbances producing instabilities
that affect the development of the jet.

The DNS Mach number of Ma = 0.6 is an order of magnitude higher than the exper-
iment, and well beyond the range for low-speed flows, Ma < 0.3, where compressibility
effects are negligible. Increasing the Mach number restricts the jet’s near-field spreading
[73, 155], but this does not necessarily mean that the point of turbulent transition is
closer to the nozzle, e.g. as measured by the increase in the RMS density fluctuation.
The two can be independent.

The comparison of the experiment and DNS in figure 6.15 does, indeed, show the
significance of the Mach number and inflow conditions on the near-field development
of the heated jet. Matching the density ratio and Reynolds number is not sufficient to
produce ‘identical’ flows. However, it is not possible to determine in what proportion these
differences are attributable to compressibility effects, differences in boundary conditions,
or upstream conditions such as instabilities. As expected, the spreading of the DNS jet is
restricted close the nozzle, when x/D < 2, illustrated in the density ratio field ρ/ρ∞. This
is also seen in figure 6.16 the normalised half-width r1/2/D based on normalised ‘excess’
density (ρ∞−ρ)/(ρ∞−ρc), where subscript c indicates the centreline value. Although the
shear layer in the DNS is thinner than the experimental jet for any x/D in the domain,
the RMS density fluctuations are much more intense than the experiment, with the peak

normalised RMS density fluctuation

√
ρ′2/ρ∞ in the DNS approximately double that of

the experiment. This may be at least partially attributable to the spatial filtering in the
experimental data. The experiment also shows mild fluctuations outside the jet close
to the nozzle, which could be associated with convective currents generated by the hot
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Figure 6.14: a) Mean temperature field from TBOS (flow is from left to right) as a
function of radial position r/D and axial position x/D, with red dashed lines - - showing
locations of thermocouple measurements. Comparison of temperature between BOS
and thermocouple × at: b) x/D = 0.3; c) x/D = 1.3; d) x/D = 2.3; e) x/D = 3.2; f)
x/D = 4.2. Error bars represent a 95% confidence level and are approximately the same
size as the markers.
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Figure 6.15: Comparison of BOS and DNS mean density statistics. First row shows mean
density ratio ρ/ρ∞ for a) BOS, and b) DNS;second row shows normalised RMS density

fluctuation

√
ρ′2/ρ∞ for c) BOS, and d) DNS, as a function of radial position r/D and

axial position x/D. Comparison of BOS and DNS e) centreline mean density ratio,
and f) centreline normalised RMS density fluctuation, as a function of axial position x/D.
Error bars on the centreline mean density ratio indicate a 95% confidence level and are
approximately the same size as the markers.
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nozzle. Furthermore, although the centreline density ratio shows good agreement (the
effect of the TBOS underestimating the gradients is clearly visible), the centreline RMS
density fluctuation shows a sharp increase from x/D > 3, while the experiment continues
to show a linear increase in this region. This signifies that the end of the laminar potential
core has been reached in the DNS, while the end of the potential core in the experimental
jet is not contained in the measured domain.

6.5.3 Insights on the scalar variance transport equation for tem-
perature

With reference to equation 2.4, the temperature equation for non-reacting low-speed flows
can be written as,

∂ (ρT )

∂t
+∇ · (ρ~vT ) = ∇ · (ρκ∇T ) , (6.10)

where ~v is the velocity vector, κ = k/ (ρcp) is the thermal diffusivity, k is the thermal con-
ductivity, cp is the specific heat at constant pressure [101]. Interestingly, the temperature
equation can be used to obtain the velocity field by solving an optimisation problem if
the instantaneous scalar field and its temporal evolution are described [23, 28, 134, 135].
For the subsonic heated jet, the density field can be obtained from TBOS, and the tem-
perature field obtained as well through the ideal gas law by assuming a constant pressure
field. Though beyond the scope of this work, the temporal evolution of the density fields
can also be obtained by using high-speed imaging TBOS or by using both laser cavities in
the current setup and staggering the camera exposures, which will facilitate simultaneous
3D velocity, density, and temperature measurements.

As discussed in section 2.1, examination of the scalar variance can provide insights
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on the flow’s mixing. The temperature variance transport equation is

∂
(
ρT̃ ′′2

)
∂t︸ ︷︷ ︸
1

+∇ ·
(
ρ~̃vT̃ ′′2

)
︸ ︷︷ ︸

2

+∇ ·
(
ρ~̃v′′T ′′2

)
︸ ︷︷ ︸

3

= ∇ · (ρκ∇T ′′2) + 2T ′′∇ ·
(
ρκ∇T̃

)
︸ ︷︷ ︸

4

− 2ρ~̃v′′T ′′ · ∇T̃︸ ︷︷ ︸
5

− 2ρκ (∇T ′′ · ∇T ′′)︸ ︷︷ ︸
6

,

(6.11)

with the numbering scheme following equation 2.7. The dissipation term−2ρκ (∇T ′′ · ∇T ′′)
can be modelled by introducing the scalar dissipation rate,

χ = κ (∇T ′′ · ∇T ′′) . (6.12)

The dissipation term can be rewritten as −2ρχ. Using the definition of Favre averaging,
ρχ = ρχ̃, the dissipation term is simply −2ρχ̃. The magnitude of χ̃ corresponds to the
degree of small-scale turbulent mixing in the flow. It can also be written in terms of
Reynolds-averaged quantities,

χ̃ =
1

ρ

k

cp

(
∇T ′ −∇

(
ρ′T ′

ρ

))
·
(
∇T ′ −∇

(
ρ′T ′

ρ

))
. (6.13)

Additionally, the dissipation time scale can be defined as

τ =
T̃ ′′2

2χ̃
, (6.14)

where the density-weighted scalar variance can be written in terms of Reynolds-averaged
quantities as

T̃ ′′2 = T ′2 −
(
ρ′T ′

)2

ρ2 +
ρ′T ′2

ρ
. (6.15)

Figure 6.17 illustrates the measured scalar dissipation rate and mixing time scale for
the jet obtained from the TBOS measurements. These provide a deeper insight on the
mixing between the hot jet and ambient environment than the mean density field, as they
are directly related to the actions of the large-scale turbulent structures [19]. The vortex
roll-up ingests and mixes fluid from both the jet and the ambient fluid starting from the
upstream instability waves. The peak value of the dissipation rate appears in the shear
layer near x/D = 1, which is associated with the vortex roll-up and large temperature
gradients. The dissipation time scale τ is much longer than the jet’s characteristic time
scale tc, indicating that the mixing due to the large scale occurs much more slowly than
the motion of the bulk fluid exiting the nozzle.

6.5.4 Potential core behaviour in the heated jet

The near-field behaviour of the jet is described by the emergence of the bulk fluid from
the nozzle, the growth of shear layer instabilities into coherent vortex rings which pair
and merge, and their eventual breakup into turbulence. The potential core is the central
structure in the near field consisting of unmixed fluid, around which the instabilities and
transition occur. As discussed, it is well known that the potential core of a heated jet can
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Figure 6.17: Favre-averaged a) scalar dissipation rate χ̃ normalised by T 2
∞/tc, and b)

dissipation time scale τ normalised by tc, as a function of radial position r/D and axial
position x/D.

produce events of significantly increased spreading known as side jets. The conditions
under which side jets form has been the subject of investigation [70, 91, 92], but the
flow evolution leading to their production is still poorly understood. This phenomenon
has been considered from the perspective of the velocity field in forced flows which ap-
proximate the same behaviour due to the belief that the hot potential core acts as an
instability that can be replicated by external forcing in incompressible jets [17, 142],
where side jets can be reproduced with regularity. But there is strong evidence that the
density distribution in the near field has a significant role in the formation of side jets
due its interactions with the velocity field [15], and it seems less predictable in the heated
jet [95].

Laser-speckle TBOS will be a useful tool for studying the near field behaviour of
heated jets that lead to side jet formation. Although the current jet does not fall within
the ρ/ρ∞ < 0.61 criterion for heated jet formation proposed by Kyle and Sreenivasan
[70], this study will examine the characteristics of the heated jet observed from TBOS
measurements to demonstrate this potential application. There is a lack of data on the
potential core of heated jets in any case, and the optimised TBOS technique developed
in this project can be used to parametrically investigate the behaviour of the potential
core, though a more extensive investigation is beyond the scope of this work.

The unmixed fluid in the potential core can be identified based on an ‘excess’ velocity
criterion, (ux − U∞)/(Ue − U∞) > 0.9, where ux is the axial velocity and U∞ is the
freestream velocity (e.g. coflow velocity) [42]. Consider a similar definition to define the
density potential core, (ρ∞− ρ)/(ρ∞− ρe) > 0.9, with the corresponding contours shown
in figure 6.18 for a few instantaneous samples. The location of the end of the potential
core, based on the location of ‘pinching’, varies significantly and tends to bob up and
down. Time-resolved data is needed to confirm if there is any periodicity to the location
of pinching, but these measurements agree well with previous schlieren visualisations
that show that the instantaneous potential core length varies significantly [117]. In some
instances, the potential core is stretched to a degree where the end is not captured in the
domain.

Pinching tends to break the potential core into smaller fragments. Figure 6.19 shows
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Figure 6.18: Contours of normalised ‘excess density’ (ρ∞ − ρ)/(ρ∞ − ρe), coloured by
normalised density fluctuation ρ′/ρ∞. Flow is from bottom to top. Solid contours indi-
cates potential core, defined as (ρ∞ − ρ)/(ρ∞ − ρe) = 0.9. Transparent contours indicate
(ρ∞ − ρ)/(ρ∞ − ρe) = 0.25. Various patterns are observed, labelled as: a) stretching, b)
stretching with 1 fragment, c) pinching, d) compressed with 1 fragment, e) compressed
with 2 fragments, f) compressed splattering.
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Figure 6.19: Histogram illustrating frequency of samples as a function of number of
potential core fragments observed using the (ρ∞ − ρ)/(ρ∞ − ρe) > 0.9 criterion. a) All
potential core fragments, b) fragments with a volume V ≥ 0.05V pc.

the frequency of samples as a function of number of the potential core fragments ob-
served. Occasionally, multiple fragments are visible, but it is not possible to determine
if this is due to the ejection of multiple fragments in quick succession, or the breakup of
one fragment into smaller fragments still. When considering only larger structures, e.g.
with volume greater than 5% of the mean potential core volume V pc in figure 6.19b, most
fields tend to have only one structure, which is the potential core itself. This could ei-
ther indicate that the majority of pinching and fragments form outside the measurement
domain, or that the ‘excess’ density of the majority of fragments has decreased so that
they do not fall within the (ρ∞−ρ)/(ρ∞−ρe) > 0.9 criterion. Figures 6.20 compares the
distribution of fragments’ volumes and their centres of mass. The greater the number
of structures, the lower the volume of the main potential core. The fragments, whether
on-axis or off, tend to be much smaller than the main potential core, but the multiple
fragments themselves are similar in size. The four structure fields, indicative of the ‘splat-
tering’ behaviour are very infrequent. The centres of mass of fields with two structures
shown in figure 6.21 indicate that the off-axis structures tend to be much smaller than
the on-axis structures. In fact, no large structures appear off-axis in the two-, three- or
four-structure fields, in which case the two-structure fields show potential core itself and
a minute off-axis fragment.

6.6 Summary and conclusions

The short exposure time requirement for high-quality BOS images is a challenging aspect
of experiment design. As well as having a short pulse time, the lighting system must be
practical for illuminating a 15-camera setup. The use of high-power, pulsed PIV laser
was chosen as the solution.

Informed by the findings of Meier and Roesgen [81], the present work takes advantage
of the coherent laser illumination to create a laser speckle pattern for the BOS back-
ground. This decouples the BOS equations from the physical setup dimensions. This
is advantageous for optimising the BOS optical setup, as the measurement sensitivity
and defocus blur are functions of the camera lens focal length, aperture and focussing
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Figure 6.20: Box-and-whisker plots (first and third rows) and scatter plots (second and
fourth rows) of the potential core fragments’ volumes (normalised by D3) and the cor-
responding centres of mass as a function of position, respectively. Only potential core
structures/fragments with (ρ∞ − ρ)/(ρ∞ − ρe) > 0.9 with a volume V ≥ 0.05V pc are
considered. a) Fields with 1 structure, b) fields with two structures, c) fields with three
structures, d) fields with four structures. Box-and-whisker plots: orange line – is the
median, box represents the interquartile range IQR (Q1 to Q3), whiskers extend to 1.5×
IQR beyond Q1 and Q3, black circles are outliers, red dashed line - - is the volume
of the mean potential core V pc. Scatter plots: largest structure (main potential core) ,
second-largest structure , third-largest structure , fourth-largest structure ; red cross
× shows the centre of mass of the mean potential core (translated slightly off-axis for
clarity).
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Figure 6.21: Centres of mass of the 2-structure fields from figure 6.20 as a function of
position (magnified for clarity) coloured by volume V normalised by D3. a) Largest
structure (main potential core), b) fragment. Red cross × shows the centre of mass of
the mean potential core (translated slightly off-axis for clarity).

distance.
This study presents a selection methodology to address the compromise between mea-

surement sensitivity and blur. Such a methodology has not been demonstrated before.
The methodology is ‘blur-led’, in that it focuses on mitigating the impact of defocus blur
on the measurement first, informed by the limits that are identified in chapter 5, and
then sequentially optimising the speckle size, measurement sensitivity and field-of-view.
Such a systematic design of the BOS experimental setup is previously unseen, and will
allow BOS measurements to move beyond simple qualitative visualisation or quantita-
tive measurements of large-scale features only. This novel contribution can be applied
to future BOS experiments to obtain high-quality measurements of the 3D density field
across a range of spatial scales by striking an optimal balance between defocus blurring
and measurement sensitivity.

The 15-camera experimental setup with laser-speckle TBOS and the optimised recon-
struction algorithm was used to study the density field of a heated jet. Flow features in
the near- to intermediate-field were identified with excellent resolution. Measurements
were validated against thermocouple measurements, which show good agreement in the
shear layer. TBOS under-predicts temperature near the jet centreline in the near-field
due to defocus blurring and limited measurement sensitivity. A comparison against DNS
provides insights on the effect of Mach number and boundary conditions on the devel-
opment of the near-field structures and potential core length. This study demonstrates
that the optimised laser-speckle TBOS can be used for numerical model validation, and
to investigate the potential core evolution in variable density jets.

116



Chapter 7

Summary and conclusions

Prediction and control of variable density jets requires models which are informed by ex-
perimental measurements. There are presently a limited number of techniques which can
provide 3D density measurements. This study presents the development of a refraction-
based density measurement technique known as tomographic background-oriented schlieren
with the goal of obtaining faithful 3D measurements with low temporal and spatial blur-
ring. The work was conducted in three parts to systematically develop each aspect of the
TBOS measurement process.

In the first part, a synthetic density field phantom with variable frequency fluctuations
was used to test and develop four reconstruction algorithms: FBP, ART, SART and
FBP+ART. The key findings from this part are:

� For the typical range of cameras in a TBOS setup, 4-22 cameras, FBP reconstruc-
tions contain artefacts outside the jet core which are indistinguishable from flow
features. At least 12 cameras are required for a reasonable FBP reconstruction.

� The basic ART algorithms requires several modifications to produce high-quality
reconstructions. The modifications are aimed at improving convergence, reducing
artefacts, and masking and concentrating iterative corrections towards the location
of the jet. A reasonable reconstruction from perfect displacements was obtained
with 6-8 cameras and diminishing returns thereafter.

� FBP+ART in practice delivers no significant advantage over the optimised ART.

� SART is slower to converge than ART, but produces the same result.

� If the reconstruction grid size is larger than the defocus blurring, then the maximum
spatial frequency that can be resolved is limited by the reconstruction algorithm.
In this situation, fluctuations with wavelengths smaller than 4 voxels are under-
resolved.

� Lower-order discretisations are preferred to solve the Poisson equation via finite dif-
ferences. The higher spatial frequencies are attenuated by either the reconstruction
algorithm or defocus blur, so there is no benefit to using higher-order discretisations,
with the added risk of amplifying measurement noise.

� The optimised ART is robust to displacement field noise, for the typical level of
random noise expected from the digitial cross-correlation PIV analysis.
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The second part of the work focussed on validating a proposed 15-camera experimental
setup and testing the reconstruction algorithms on a realistic flow, the density field of a
heated jet obtained via DNS. The key findings are:

� In a typical experimental setup, where compromises between measurement sensi-
tivity, defocus blur, adequate illumination and exposure time must be considered,
the defocus blur is the dominant source of spatial averaging in the measurement.

� In a heated jet, the defocus blur should be limited to δ/D ≤ 11% to preserve smaller
scales in the turbulent transition.

� The temporal blurring should not exceed 0.1tc, nor the grid convection time tgp, to
prevent degradation of the measurement. Temporal blurring is more detrimental
to the measurement than defocus blurring in a typical experimental setup.

� A high-quality reconstruction of the near- to intermediate-field flow structures can
be obtained with the proposed 15-camera setup and optimised ART. Reconstruction
artefacts are not visible.

The final part of the work implemented an experimental technique for low temporal
and spatial blurring measurements. The key findings and contributions are:

� A pulsed laser-speckle TBOS method can be used to overcome temporal blur-
ring. This method provides adequate illumination with temporal integration much
shorter than the jet’s characteristic time scale. The laser-speckle background pat-
tern decouples the measurement sensitivity and defocus blurring from the physical
setup dimensions. This allows the compromise between measurement sensitivity
and defocus blurring to be addressed by only adjusting the lens focus distance and
aperture, which is much more convenient than adjusting the background distance
as in traditional BOS.

� Development of a novel method of optimising the optical setup. This strikes an ideal
compromise between measurement sensitivity and defocus blurring. This method is
based on limiting blur to the δ/D ≤ 11% threshold, and subsequently determining
the appropriate speckle size and highest possible measurement sensitivity.

� Establishment of a 15-camera facility to conduct laser-speckle TBOS measurements
on jets. 3D measurements show excellent resolution of near- to intermediate-field
flow structures.

� Laser-speckle TBOS measurements compare well with thermocouple temperature
measurements in the shear layer.

� Comparison with DNS shows the influence of Mach number and boundary condi-
tions on the near-field development of the jet.

� Laser-speckle TBOS can be used for closure model measurements.

� Measurements of the potential core show that it is subject to stretching and frag-
mentation.
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The numerical and experimental validation procedures inspire confidence in the accu-
racy of the optimised laser-speckle TBOS. The development phase of the technique can be
concluded, at least for the investigation of heated jets. The most significant improvement
to the current implementation of the technique would be a reduction in the reconstruc-
tion time by implementing parallel processing or GPU computing. A double-pulse PIV
laser can be used to obtain temporal information on the density field as well, which
could be used to estimate the velocity field through the scalar transport equation. The
laser-speckle TBOS method can pivot away from the development phase, and is ready
to be applied to the studies of near- to intermediate-field coherent structures, collection
of flow statistics, and model validation. The technique can be used in conjunction with
velocity measurement techniques such as tomographic PIV or scalar imaging velocimetry
[23, 28, 134, 135], to obtain information on the density-velocity correlations in these flows.

The ability to extend these measurements further downstream depends on sensitivity
to the density gradients, as they are expected to decrease significantly in the far-field,
where the turbulence approaches statistical isotropy. This study presents a method of
scaling the experimental setup parameters to measure these regions of the flow, accounting
for the increased sensitivity required. Expanding to other flow configurations, such as
an annular jet or thermal boundary layer, will require some knowledge of the geometry,
to appropriately modify the masking and windowing techniques in the reconstruction
algorithm, and for the Poisson equation boundary conditions.
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Appendix A

Material related to chapter 4

A.1 Transfer function of the discretised 1D Poisson

equation

This discussion is restricted to examining the one-dimensional Poisson equation, as it is a
single-input single-output (SISO) system with an easily-derivable single transfer function.
Conducting the von Neumann stability analysis, one can see the behaviour of the analyt-
ical and finite-difference transfer functions with respect to the fluctuation frequency ω.
The one-dimensional Poisson equation is given in equation 4.19. Letting the reconstructed
gradient be (

dn

dx

)
recon

≡ m, (A.1)

by taking the Laplace transform of the Poisson equation, the analytical system transfer
function is found to be

N(s)

M(s)
=

1

s
(A.2)

where s is the complex frequency variable.
The finite difference (FD) equations for the different discretisation schemes are given

in table A.1. To obtain the transfer function (TF) of the finite-difference equations, the
Z-transform is used. The transfer functions are also given in table A.1, where z is the
complex frequency variable for a discrete signal.

The response of the analytical and discrete transfer functions with respect to the
spatial frequency of the signals ω is given the Bode magnitude plot in figure 4.6.

A.2 Sensitivity study of ART inversely iteration-weighted

Gaussian filtering standard deviation

It is seen in table 4.2 that using inversely iteration-weighted Gaussian filtering along-
side the sharp cut-off mask, Hamming windowed corrections and progressively tightened
Gaussian mask can reduce the RMS and peak errors in the reconstructed gradients fur-
ther (e.g. case J to case K in table 4.2). The moderation provided to the reconstruction
by the inversely iteration-weighted Gaussian filtering can be controlled by adjusting the
standard deviation of the Gaussian filter σGF (the filter acts on a 5 × 5 kernel). Figure
A.1 presents the change in absolute error as a function of radial position, and the change
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Table A.1: One-dimensional Poisson equation finite difference (FD) schemes and corre-
sponding transfer functions (TF).

Scheme Equation

(3, 3) FD
ni−1−2ni+ni+1

dx2 = −(1/2)mi−1+(1/2)mi+1

dx

TF
dx[(1/2)z2−(1/2)]

z2−2z+1

(3, 5) FD
ni−1−2ni+ni+1

dx2 = (1/12)mi−2−(2/3)mi−1+(2/3)mi+1−(1/12)mi+2

dx

TF
dx[−(1/12)z4+(2/3)z3−(2/3)z+(1/12)]

z3−2z2+z

(5, 3) FD
−(1/12)ni−2+(4/3)ni−1−(5/2)ni+(4/3)ni+1−(1/12)ni+2

dx2 = −(1/2)mi−1+(1/2)mi+1

dx

TF
dx[(1/2)z3−(1/2)z]

−(1/12)z4+(4/3)z3−(5/2)z2+(4/3)z−(1/12)

(5, 5) FD
−(1/12)ni−2+(4/3)ni−1−(5/2)ni+(4/3)ni+1−(1/12)ni+2

dx2

= (1/12)mi−2−(2/3)mi−1+(2/3)mi+1−(1/12)mi+2

dx

TF
dx[−(1/12)z4+(2/3)z3−(2/3)z+(1/12)]

−(1/12)z4+(4/3)z3−(5/2)z2+(4/3)z−(1/12)

in RMS error, as σGF is varied. This figure indicates that there may be an optimal value
of σGF in case K which minimises both errors. The optimal value may slightly change
depending on the wavelength of fluctuations to be measured, but for the tested case as
the value of σGF is increased from the optimal value, the errors will increase too as smaller
scales are strongly attenuated (washed out), and then plateau to an error that is smaller
than that without filtering. A value of σGF = 0.5 voxels = σGF/σ = 0.06 is chosen for all
cases in the investigation.

A.3 Sensitivity study of ART progressively tightened

Gaussian mask

The progressively tightened Gaussian mask radius rm is decreased linearly as ART iter-
ations progress. An oversized mask is used, where rm,initial is a fixed 35 voxels = 3.9σ,
and then vary its final value rm,final. In figure A.2, the absolute error with respect to
radial position and the RMS error are shown as functions of rm,final. The errors appear
quite sensitive to rm,final, which is due to the mask clipping the gradients. If this region
is avoided, the mask can be very useful in improving the quality of the reconstruction.
For the current reconstruction, a lower error is obtained when rm,final is within 85% of
the current value of rm,initial = 35 voxels. A value of rm,final = 30 voxels = 3.3σ is chosen
for all cases in the investigation.
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Figure A.1: a) Average absolute error of the ART gradient field reconstruction as a
function of normalised radial position r/σ with a bin size of σ/4. The lightness of the lines
(purple to yellow in colour, dark grey to light grey in greyscale) shows σGF increasing from
0.1 voxels to 2 voxels in increments of 0.1 voxels (0.011 ≤ σGF/σ ≤ 0.22 in increments
of 0.011σGF/σ) and from 2 voxels to 5 voxels in increments of 1 voxel (0.22 < σGF/σ ≤
0.56 in increments of 0.11σGF/σ). b) Normalised RMS error between the reconstructed
gradients and synthetic field as a function of σGF/σ. Results are presented for a 16-
camera reconstruction and λx,z = L/14. ART uses the same modifications as case A

(selected ART) in figure 4.13. Vertical dotted line indicates the 2r1/2 = 2σ
√

2 ln 2 limit
for the RMS error.
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Figure A.2: a) Average absolute error of the ART gradient field reconstruction as a
function of normalised radial position r/σ with a bin size of σ/4; the lightness of the
lines shows rm,final increasing from 0 to 3.5σ in increments of 0.5σ (purple to yellow
in colour, dark grey to light grey in greyscale). b) Normalised RMS error between the
FBP+ART reconstructed gradients and synthetic field as a function of rm,final normalised
by σ. Results are presented for a 16-camera reconstruction and λx,z = L/14. ART uses
the same modifications as case A (selected FBP+ART) in figure 4.13 with 100 iterations.
Initial mask size rm is fixed at rm = 35 voxels = 3.9σ. Vertical dotted line indicates the
2r1/2 = 2σ

√
2 ln 2 limit for the RMS error.
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Figure A.3: a) Average absolute error of the masked FBP gradient field reconstruction
as a function of normalised radial position r/σ with a bin size of σ/4; the lightness of
the lines shows rm,initial increasing from 0.5σ to 5.5σ in increments of 0.5σ (purple to
yellow in colour, dark grey to light grey in greyscale), and the black dashed line is the
FBP solution from figure 4.15. b) Normalised RMS error between the masked FBP
reconstructed gradients and synthetic field as a function of rm,initial normalised by σ.
Results are presented for a 16-camera reconstruction and λx,z = L/14. Vertical dotted

line indicates the 2r1/2 = 2σ
√

2 ln 2 limit for the RMS error.

A.4 Sensitivity study of FBP+ART progressively tight-

ened Gaussian mask parameters

The Gaussian mask modification described by equation 4.26 is applied to the FBP re-
constructed gradients before the ART iterations begin, i.e. when k = 0. The strength
of the mask is dictated by position and the mask’s effective radius rm. As the iterations
progress, the size of the mask is decreased, linearly with respect to iteration number,
from the initial rm,initial to a final mask size rm,final.

First, consider the effect of changing rm when the Gaussian mask is initially applied to
the pure FBP reconstructed gradients. Figure A.3 presents: the radial position absolute
error of the masked FBP solution (similar to figure 4.15) for different rm,initial; and, the
RMS error of the masked FBP solution as a function rm,initial. From the absolute error as
a function of radius, it can be seen that increasing rm,initial decreases the error somewhat
in the region r > 2r1/2 as intended, but the error within r . r1/2 ≈ 1.2σ increases instead.
As the FBP predicts this inner region quite well, the damping predictably worsens the
reconstruction here. The FBP reconstruction should be preserved in this region, as this
region should help improve the convergence of FBP+ART. As long as rm,initial is not
made too small (0 < rm,initial < 2σ), the masked FBP does not seem to be very sensitive
to this parameter. Hence, rm,initial = 35 voxels = 3.9σ is chosen.

Now consider the change in error in the FBP+ART reconstructed gradients when
rm,initial is a fixed 35 voxels, and its final value rm,final is varied instead. Results are
presented in figure A.4, with the FBP+ART reconstruction otherwise using all of the
same modifications as the best FBP+ART case in figure 4.13 (case E). The FBP+ART
reconstruction appears to be even less sensitive to rm,final than rm, at least for the value
of rm used here.
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Figure A.4: a) Average absolute error of the FBP+ART gradient field reconstruction as a
function of normalised radial position r/σ with a bin size of σ/4; the lightness of the lines
shows rm,final increasing from 0 to 3.5σ in increments of 0.5σ (purple to yellow in colour,
dark grey to light grey in greyscale). b) Normalised RMS error between the FBP+ART
reconstructed gradients and synthetic field as a function of rm,final normalised by σ.
Results are presented for a 16-camera reconstruction and λx,z = L/14. FBP+ART uses
the same modifications as case E (selected FBP+ART) in figure 4.13 with 100 iterations.
Initial mask size rm is fixed at rm = 35 voxels = 3.9σ. Vertical dotted line indicates the
2r1/2 = 2σ

√
2 ln 2 limit for the RMS error.

A.5 Convergence of ART schemes compared to FBP+ART

To aid comparison between ART and FBP+ART, figure A.5 presents the convergence
of several ART modification schemes for λj = 0.5, similar to figure 4.13 does with
FBP+ART. The case names and markers in both figures correspond to the same modifi-
cations. From these two figures, it is seen that FBP+ART really can improve the rate of
convergence, as none of the ART cases in figure A.5 possess the ‘flat’ convergence curve
of FBP+ART cases E and F in figure 4.13.
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Figure A.5: RMS error (top row) and peak error (bottom row) in the reconstructed
refractive index gradients∇n (left column) and the refractive index fields n (right column)
for 16 camera reconstruction and λx,z = L/14 in the region twice the half-width r ≤
2r1/2 = 2σ

√
2 ln 2, as a function of the number of ART iterations for the cases shown in the

table below. In all cases the Poisson equation is solved using 3- and 5-point kernels for left-
and right-hand side discretisation, respectively. All ART reconstructions are performed
using randomly-ordered cameras and pixels with Hamming windowed corrections and
relaxation λj = 0.5. ART uses a sharp cut-off mask with rmask = 30 voxels (3.3σ,
2.8r1/2). Progressively tightened Gaussian mask decreases from rm = 35 voxels (3.9σ,
3.3r1/2) to rm,final = 30 voxels. ART case A is the same as case K from table 4.2 but
with λj = 0.5.

Marker Case Type Inversely iteration-weighted Gradual unmasking Progressively tightened
Gaussian filter Gaussian mask

× A ART X X
B FBP n/a n/a n/a
C ART X
D ART X X
E ART X
F ART X X
G ART X X X
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Appendix B

Material related to chapter 5

B.1 Definition of the blur kernel

Blur is introduced into the measurement through defocusing effects and windowing from
displacement calculation methods. The larger of these two is the effective blur. Blur of
a volume point from defocusing will have a truncated conical shape due to the diffuse
spreading of light rays from the background, while blur due to windowing will have a
rectangular shape. Blur from many views will be those shapes, revolved about the point.
The blur (whether due to defocussing or cross-correlation windowing) was implemented
here using a rectangular blur kernel. The truncated cone shape can also be approximated
with the rectangular shape when three factors are considered:

� The shallow expansion angle of the blur cone, due to the large distance between
the background and lens aperture.

� All cameras are placed in a plane circumferential to the jet axis, i.e. there is no
vertical angle between the cameras and hence, the blur cones.

� Blurring from each view of the flow so that the blur cone essentially becomes re-
volved around the jet axis.

Figure B.1 can be used to visualise these points. Individual voxels are shown in
a transverse slice through the jet (as is used in all analyses here). The point under
consideration is marked as an orange cross. The blur cone expands from the background
towards the aperture with an angle of 2α. At the point under consideration, the cone has
a width of δ.

When the width δ is revolved around that point (axis into the page), it forms a
circle. This is approximated with a square-shaped kernel. A circle whose diameter is the
same as the side length of a square has an area that is π/4 ≈ 0.785 times that of the
square. In order to correct for this discrepancy in area between a true circular kernel
and a square kernel with side length δ′/D, the equivalent blur diameter δ/D is given
by δ/D = (δ′/D)

√
4/π) ≈ 1.12(δ′/D) when quantifying the blur in terms of the nozzle

diameter, e.g. in the vertical axis of figure 5.3.
To apply blur parametrically to the DNS field, the following method is used. The grid

resolution of the DNS field is 0.0204D, the displacement field resolution is 0.068 mm/px
and the jet diameter is D = 10 mm. Therefore, the physical size of each grid point
is dgp = 0.0204 × 10 = 0.204 mm per grid point (and there are 10 ÷ 0.204 = 49 grid
points across the nozzle diameter). This means that each grid point is equivalent to
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Figure B.1: Illustration of blur from one camera at a point in the reconstruction volume.

Figure B.2: Convergence of the calculated displacements (in pixels) as a function of
number of steps taken through the slice, relative to 5,000 steps, for a camera at x/D =
9.28. The slice contains 462 grid points in each direction.

dgp = 0.204÷ 0.068 = 3 displacement field pixels. The blur is implemented over a square
kernel where the side length is an odd number of pixels. So, to implement, say, a blur of
δ′ = 15 pixels, a kernel with a side length of δ′ ÷ dgp = 15÷ 3 = 5 grid points is used. In
terms of the nozzle diameter, this is δ′/D = 5÷ 49 = 10.2% whereupon the correction of
1.12 is applied so that δ/D = 11.4%). Even-numbered blurring is taken as the average
of the adjacent integer-valued blur kernels.

The test of increasing grid resolution for a constant blur in figure 5.5, e.g. keeping
blur at δ/D = 6% while increasing the grid resolution from δ/5 to δ/15, was achieved
by upscaling the true DNS field by a factor of 3 so that dgp = 1 pixel. The blur kernels
are then applied on a 1:1 basis between pixels and grid points, e.g. a blur of 15 pixels
is applied using a kernel with a side length of 15 grid points. As seen from figure 8, the
error changes only marginally when the grid resolution is made finer, but the blur is the
same size in terms of nozzle diameter, indicating that the effect of defocus blurring has a
greater impact than grid resolution when the blur is larger than the grid resolution.

B.2 Convergence of the ray tracing method

The ray tracing convergence analysis presented in section 4.4.1 is repeated for the DNS
field. As an example, shown in figure B.2 is the average variation (residual) in transverse
displacement of all rays inside the cut-off mask for a camera at x/D = 9.28 oriented along
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the z-axis as the number of steps is increased, compared to the displacement obtained
with 5,000 steps through the volume (where the values of refractive index gradient are
linearly interpolated for sub-grid values). Other cameras show similar behaviour. The
DNS field contains 462 points in each orthogonal direction (x and z) perpendicular to
the jet axis.

The maximum variation in the calculated displacement field with increasing iterations
is smaller than 10−4 pixels. This is considered negligible, as this is approximately 3
orders of magnitude finer than the criterion of 10−1 pixels. Based on these findings, the
number of steps along the ray is chosen to be at least 1.5 times the number of grid points
encountered by the non-refracted ray (in this example, 700 steps).

B.3 Anisotropic diffusion modification to the Pois-

son solver

The Poisson equation assumes that ∇ ×∇n = 0, which may not be true for the recon-
structed field in which blurring and measurement noise are present. Atcheson et al. [6]
noted that this can cause overshoots in the solution of the Poisson equation due to the
imperfect reconstruction. To combat this, they introduce an anisotropic diffusion scheme
following Agrawal et al. [3] and Weickert [149]. The anisotropic diffusion model used by
Atcheson et al. [6] is applied to the right-hand side source term q,

q ≡ ∇ ·
(
D∇nrecon

)
, (B.1)

where ∇nrecon are the reconstructed gradients and D is the anisotropic diffusion tensor.
This tensor places more weight on information from similar isosurfaces, which can be

useful in inhibiting the effects of noisy information. When D is the identity tensor, this
method naturally becomes the same as the normal Poisson solver. Following Atcheson
et al. [6], the anisotropic diffusion tensor is calculated at each point by constructing the

structure tensor Jσ at the point,

Jσ = Kσ ∗ (∇nrecon ⊗∇nT
recon), (B.2)

where ⊗ is the outer product and Kσ∗ indicates that each component of the structure
tensor (e.g. (∂n/∂x)2, (∂n/∂x)(∂n/∂y), etc.) have been individually convolved with a
Gaussian blur kernel with a standard deviation of σ = 0.5 voxels (points outside the
domain are given a value of 0). An eigendecomposition is applied to the structure tensor,

Jσ = V ΛV
−1
. (B.3)

Then the diffusion tensor at that point is

D = V Λ̃V
−1
, (B.4)

where Λ̃ is a modified eigenvalue array,

Λ̃ =


α 0 0

0 α + (1− α) exp
(
−max|∇nrecon|
k(λ0−λ1)2

)
0

0 0 α + (1− α) exp
(
−max|∇nrecon|
k(λ0−λ2)2

)
 . (B.5)
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Figure B.3: RMS (left) and peak (right) errors for the ART reconstruction with 40
iterations in the noise-free (top) and noisy cases (bottom) averaged over the 104 samples,
as a function of anisotropic diffusion parameter α. Noisy samples are the same as those
used in section 5.4.4. Markers correspond to: x/D = 0.28 , x/D = 5.28 , and
x/D = 9.28 . Error bars are approximately the size of the markers and indicate a 95%
confidence level.

The λ terms, λ0 ≥ λ1 ≥ λ2, are the ordered eigenvalues of Jσ, and k and α are tuning
constants, and max |∇nrecon| refers to the maximum of the absolute value of the gradients
at that point, i.e. max (|∂n/∂x| , |∂n/∂y| , |∂n/∂z|). Identical to Atcheson et al. [6],
k = 0.5× 10−5 is used. They indicated that using lower values of the tuning constant α
provides better noise removal and settled on α = 0.8 from their ‘ground-truth’ CFD data
study.

The impact of using anisotropic diffusion for the Poisson solver, for both noise-free
(but blurred) and noisy data, is also evaluated. The RMS and peak errors in the 40-
iteration optimised ART reconstruction are shown in figure B.3 as parameter α is varied
from 0.5 to 1.5.

The behaviour of the error appears similar regardless of the presence of significant
random noise. The increase in error in all cases is due to the under-prediction of the
solved refractive index field increases as α strays from 1.0. Although there may be a
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small benefit in reducing peak error near the nozzle by using α > 1, this study is not
able to replicate the findings of Atcheson et al. [6] with the present data and methods to
show that using α < 1 is beneficial for noise removal.
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Appendix C

Material related to chapter 6

C.1 Additional experimental setup photographs

Figure C.1: Multiple-camera heated jet rig used for laser speckle TBOS experiment. In
normal use, the entire rig is barricaded with black boards, as seen at the back of shot,
to prevent stray laser light from injuring users. Not pictured: electronic control system
for camera triggering, computer, and heater voltage control are located to the left; laser
is located to the right; compressed air input, inline air heater, settling chamber located
beneath rig.
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Figure C.2: The settling chamber and nozzle are shrouded in thermal insulation (partially
unwrapped to show the layers). They are mounted to a height-adjustable platform which
is positioned using linear bearings on guide rails (one on each corner of the platform). The
platform is moved using a hydraulic jack located below (not pictured). The compressed
air line and inline air heater connect to the settling chamber from below the platform.
The temperature at the settling chamber inlet is measured using a thermocouple.

C.2 Matching non-dimensional jet parameters to ex-

perimental conditions

The round heated jet can be characterised by the exit-to-ambient density ratio ρe/ρ∞
and the exit Reynolds number based on nozzle diameter D,

ReD,e =
ρeUeD

µe
, (C.1)

where Ue is the average exit velocity and µe is the exit viscosity [25]. However, the
experimental setup requires setting the mass flow rate and heater voltage, which both
influence the exit properties of the jet. To set these parameters such that the jet matches
a given Reynolds number and density ratio, say ρe/ρ∞ = 0.8 and ReD,e = 10, 000, the
following procedure is used.

1. The ambient conditions are assumed to be T∞ = 20 °C and P = 101.325 kPa.
Measurements show that the lab temperature does not fluctuate more than ±0.5 °C,
while the pressure does fluctuate depending on weather, but these fluctuations
should have a negligible impact on the experimental conditions.

2. Assuming dry air, the ideal gas law (R = 0.287 kJ kg−1 K−1) is used to obtain the
ambient density ρ∞. If the target density ratio is ρe/ρ∞ = 0.8, then the required
exit density is ρe = 0.96 kg m−3. Again using the ideal gas law, the target exit
temperature is found to be Te = 91 °C. This will be used to set the heater voltage
once the required mass flow rate is determined.

3. To determine the mass flow rate, the Reynolds number is used to calculate the
required exit velocity, Ue =

ReD,eµe
ρeD

, where D = 10 mm. Linear interpolation

viscosity data from Incropera et al. [60] for ρe yields µe = 214.4 × 10−7 Pa s. The
exit velocity is found to be Ue = 22.3 m s−1.
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(a) (b)

Figure C.3: Close up of lens groups showing how they are magnetically attached to the
underside of the bench. a) Laser arm outlet, plate beam splitter and lens group 1. b)
High-energy mirror and lens group 2.

4. Assuming a top-hat velocity profile at the nozzle exit, the mass flow rate is found
to be ṁ = ρeAnUe = 1.7×10−3 kg s−1, where An = (π/4)D2 is the nozzle exit area.

5. The exit Mach number is defined as Mae = Ue/ce, where ce =
√
γRTe = 382 m s−1

is the speed of sound at exit conditions with γ = 1.4. The exit Mach number is
found to be Mae = 0.058, which is well below the DNS Mach number of Ma = 0.6.

6. The DNS jet does not consider gravitational effects, therefore buoyancy is not
present in the simulation. To be consistent with the simulation, the experimen-
tal jet should be momentum-dominated, rather than buoyant, which indicates that
the Richardson number in the region of interest (near nozzle region) should be
Ri � 1. The Richardson number based on nozzle diameter at exit conditions is
RiD = gβ(Te−T∞)D

U2
e

= 3.85 × 10−5, where β = 1/Te is the expansion coefficient at

exit conditions and g = 9.81 m s−2. Also, the Froude number should be Fr � 1.
The Froude number at the exit is FrD = Ue√

gD
= 71. These indicate that the ex-

perimental jet exit is momentum-dominated like the DNS, and gravitational effects
are negligible.

Temporal blurring should also be considered. It is insignificant if the effective exposure
time of the BOS images texp is much shorter than the characteristic time scale of the jet
tc = D/Ue. For the jet described above, the characteristic time scale is tc = 4.5 × 10−4

s. The pulse time of the laser illumination is texp = 10−8 s = 2.2 × 10−5tc, so temporal
blurring is not a problem.
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(a) (b)

Figure C.4: Perpendicular cross-sections through the density field at one instant: a) x−y
plane at z = 0, b) x− z plane at y = 0.

C.3 Additional experimental density field visualisa-

tions

All contour plots use the same colour bar scale and domain as figure 6.12.
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Figure C.5: Transparent contour view of density field at one instant.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.6: Cross-section of density field in x − y plane at z = 0 captured in eight
successive instances. The measurement is not time-resolved.
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