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SUMMARY 

 

The occurrence of functional failures in various sub-systems of an urban train system, such as 

the brake and traction systems, causes cancellation and delays in services, thus reducing service 

reliability. Frequent disruptions in the service results in operational and financial losses to the 

operator. Thus, there is an imperative for operators to reduce the functional failure frequency 

(denoted as FFF in this study) of the sub-systems through an effective maintenance regime for 

minimum disruption in the service.  

Maintenance management systems based on reliability centred maintenance (RCM) have 

become commonly used for the maintenance planning of urban trains. There are three keys 

elements of RCM: the reliability analysis, the prioritisation of the maintenance strategies and 

the reliability measuring system. In RCM, the reliability analysis is used to identify the 

functionally critical sub-systems and the reasons for their criticality; maintenance strategies 

that are devised for the critical sub-systems are prioritised to achieve the maximum reduction 

in their FFF; and the effectiveness of these strategies is measured in terms of the key 

performance indicators (KPIs) for reliability. However, it is unclear how the third element (i.e. 

the data collected on the KPIs for both functional reliability and service reliability) is currently 

used in the other two elements of RCM. Furthermore, it is unknown how the influence of the 

latent variables (i.e. the operational constraints) on the operational performance of the sub-

systems is incorporated. 

The aim of this research is to investigate the RCM process used by the urban rail industry for 

the maintenance planning of trains, and to propose a new improved RCM process that achieves 

overall reliability by integrating the performance measures both for functional reliability and 

service reliability, and the influence of latent variables in the process. To achieve this broad 

aim, the research was divided into three key components, and a mixed-methods approach was 

adopted. 

First, the conventional approach of reliability analysis for the operational performance 

characterisation of the sub-systems of the urban train system was assessed through a case study 

of the urban train service in Melbourne. In the conventional approach, the aim of the analysis 

of the KPIs data is to establish nine different operational characteristics of the sub-systems 

using Simple Descriptive Analysis (SDA). Thus, SDA was applied to the UTS Melbourne KPIs 
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data for six years. It was found that SDA could be used to summarise the KPIs data based on 

frequency counts. However, only four characteristics of the sub-systems could be established 

to a limited degree, and this approach did not consider the influence of the latent variables on 

the operational performance of the sub-systems. Given these limitations, the maintenance 

planning ultimately relies on a simple increase or decrease in the values of the KPIs of the sub-

systems and thus does not establish whether each KPI has improved both individually and also 

in relation to each other. Hence, it was concluded that an improved approach for operational 

performance characterisation of the sub-systems is needed.  

To develop an improved approach to reliability analysis, the conventional approach was first 

modified by preserving the conventional single criterion (i.e. FFF), and using an exploratory 

multivariate data analysis technique called Principal Component Analysis (PCA) instead of 

SDA. Using this new approach, the same UTS data was analysed in MATLAB. The application 

of the KPI for functional reliability using PCA established five characteristics of the sub-

systems, and provided a clear insight into the effect of the latent variables. A comparison of 

PCA findings and SDA findings showed that PCA was a better technique for operational 

characterisation of the sub-systems. However, PCA cannot be applied for characterisation 

based on the multiple criteria that involve the KPIs for both functional reliability and service 

reliability.  

Next, to further improve the conventional approach, multiple criteria were used, and a 

technique which is an extension of PCA called Multiple Factor Analysis (MFA) was applied. 

This approach applied the KPIs for functional reliability and service reliability in their cause-

and-effect structure, and MFA was used to analyse the data set for FFF-and-number of services 

cancelled, and the data set for FFF-and-number of services delayed using RStudio.  The 

application of the KPI for functional reliability together with the KPIs for service reliability 

using MFA established the remaining four characteristics that could not be obtained using 

PCA. The comparison of the results obtained based on the multiple criteria using MFA with 

the results obtained based on the single criterion using PCA showed that the critical sub-

systems must be identified based on the multiple criteria. Based on these findings, a two-step 

process for characterisation of the sub-systems was devised to provide an improved framework 

for reliability analysis.  

Finally, to ensure the incorporation of the KPIs both for functional reliability and service 

reliability in the selection of the maintenance strategy for each sub-system, a reliability 
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performance-based model was developed that enables the overall reliability of the sub-system 

to be computed using a reliability index. This index explains the overall reliability of the sub-

system based on the impact of a change in its FFF on the change in the number of services 

cancelled and the number of services delayed due to a proposed maintenance strategy 

considering the influence of the latent variables. This model was used to predict service 

reliability in two hypothetical maintenance scenarios and it was shown that it can be used to 

compare the performance of different maintenance strategies, thus providing valuable 

assistance in the maintenance planning of urban trains.  

In this research, a better RCM process has been developed based on an improved approach for 

the reliability analysis used to characterise the operational performance of the urban train 

system, and a new maintenance model used to select the best maintenance strategies.  This 

RCM process can be used to achieve more effective maintenance planning that in turn will 

ensure greater service reliability.   
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 INTRODUCTION  

1.1 Introduction 

Reliability centred maintenance (known as RCM) is a strategical and tactical level engineering 

process for the development of the maintenance plan for an asset that is used in many industries, 

including in urban train systems. In order to improve reliability, RCM identifies the 

functionally critical sub-systems of the system based on the criteria set to meet the strategical 

goals of the business. It also determines the reasons for the functional failures of the identified 

critical sub-systems to establish the basis for maintenance planning (Deakin, 1996, Rausand, 

1998, Crespo Márquez, 2007).  

This research explores how RCM ensures the achievement of strategical targets of service 

reliability of a fleet of urban trains subject to the maintenance plan. It aims to develop an 

understanding of the conventional process in use for this, and to find opportunities for 

improvements in this process.  

This chapter introduces the background and motivation for this research, followed by the aims 

and objectives of the research. It also discusses the scope, limitations and contributions of this 

research. The chapter concludes by outlining the structure of this thesis.  

1.2 Research Background and motivation 

There is great commercial pressure on the operators of any urban train service to provide a 

reliable service to its users. On-time arrival of urban trains is an important measure of service 

reliability for passengers (Higgens A., Kozan E, 1998 cited in Treurnicht, 2012) and frequent 

disruptions in the service can discourage them from using the trains. Functional failures (FFs) 

in various sub-systems of the train system influence service reliability by bringing delays and 

cancellations in the service. These FFs can harm the company’s reputation and decrease its 

ridership. Any decrease in the number of passengers can make the operation of the service 

economically unviable. Hence, ensuring the delivery of reliable service to its users is a major 

concern for both owners and operators of an urban train system. 

The operators make a great effort to prevent the occurrence of FFs through an effective 

maintenance regime. Various approaches for developing an effective and efficient maintenance 
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plan have evolved including reliability centred maintenance (RCM) that has become a well-

known method for maintenance planning in many industries including the rail industry.  RCM 

offers a structured process to preserve the system’s functional state by developing the 

maintenance strategies based on the findings of the reliability analysis (Rausand, 1998, Crespo 

Márquez, 2007). The reliability analysis identifies and investigates the functionally critical sub-

systems. Its findings direct the process for the selection of the maintenance strategy that will 

offer the maximum reduction in the frequency of functional failures (FFF) in the critical sub-

systems under given constraints. However, decreasing the FFF does not always ensure a 

reduction in their consequences (Treurnicht, 2012) which are the cancellations and delays in 

the case of urban trains. 

To ensure not only the reduction in the FFF but also the reduction in their consequences, the 

maintenance planning must consider the KPIs for both functional and service reliability which 

are determined according to the perspectives of the main stakeholders (i.e. the users, owner and 

operator). FFF is used as a KPI for assessing functional reliability, and the number of delays 

and cancellations in service are used as KPIs for assessing service reliability. In RCM, although 

service reliability is observed against functional reliability, studies of reliability analysis do not 

show how all the data collected on the KPIs is manipulated for operational performance 

characterisation i.e. what information is extracted from the data and how the data is analysed. 

While it is claimed that considering all the KPIs in the process theoretically results in overall 

improvement in the reliability, in practice it is also possible that more frequent failures can 

cause less disruption in the service, while less frequent failures can bring more disruption 

(Bergström and Krüger, 2013). This is because of the influence of the latent variables of the 

dynamic operational environment of the urban rail system (Rezvanizaniani et al., 2009, 

Bergström and Krüger, 2013) . The latent variables govern the operational performance 

characteristics of any mode of public transport beyond the prescriptive procedures (Attah K. 

Boame (2004) and Daraio, C. and Simar, L. (2007) as cited in Georgiadis et al., 2020). 

However, the reliability analysis studies   do not provide a clear understanding of how the 

influence of these latent variables is considered in the analysis in characterizing the operational 

performance. In addition, modelling has not been undertaken that integrates the KPIs both for 

functional reliability and service reliability and of the influence of the latent variables to 

prioritise different maintenance strategies in the maintenance planning.  
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To address these gaps in understanding, the RCM process of urban train systems needs to be 

investigated in detail. To examine current practice, a case study of a good urban train service 

needs to be undertaken. In this research, the urban train service (UTS) Melbourne was selected 

for the case study. The UTS successfully delivers 2200+ services on a daily basis and generates 

233 million trips per annum (Lawson, 2017). The reliability performance has been constantly 

improved and the assigned targets have been achieved or surpassed (Victorian, 2016, 

Victorian-Auditor, 2016).  The focus of this research is thus to examine the conventional 

practice using data from UTS Melbourne and to propose an improved process. 

1.3 Aims and objectives 

The research reported in this thesis focusses on the RCM based maintenance planning of the 

fleet of urban trains with a broad aim: 

To investigate the RCM process used by the urban rail industry for trains, and to propose 

a new improved RCM process that achieves the overall reliability by integrating the 

performance measures for functional reliability and service reliability, and the influence 

of latent variables in the process. 

To achieve the broad aim of this research, the following research objectives have been framed. 

These research objectives were developed in response to the major research gaps identified in 

the literature review presented in Chapter 2.  

RO1 To investigate and find opportunities for improvement in the conventional approach of 

reliability analysis in the RCM process for the operational performance characterisation 

of a fleet of urban trains through a case study of the UTS Melbourne. 

RO2 To develop an improved approach for the reliability analysis by: 

(a) using an exploratory multivariate data analysis technique for better operational 

performance characterisation based on a single criterion considering the influence 

of the latent variables, and 

(b) using an extension of this data analysis technique based on multiple criteria to 

integrate the KPIs for both functional reliability and service reliability.  

RO3 To develop a model for prioritisation of the maintenance strategies based on their 

effectiveness at delivering overall improvement in the reliability of the sub-system or 

sub-systems.  
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In context of this thesis, the term “overall improvement in the reliability” refers to a level of 

reliability that is acceptable to all the main stakeholders. This improvement is established by 

striking a trade-off between the desired level of functional reliability and service reliability.  

The research approach adopted in this research is outlined in Figure 1-1.  It shows the three 

major research components with the research method used, the type of data inputs and the 

research objective for each component. The qualitative and quantitative data used in this 

research were obtained from UTS Melbourne. The selection of the analytical techniques for 

each research method used in each component is discussed in detail in the relevant chapters of 

the thesis. 

 

 

Figure 1-1: Research approach 

 

1.4 Scope and limitations of the research   

This study focuses on the key elements of reliability centred maintenance-based maintenance 

management system (RCM based MMS) of an urban train system that are the reliability 

analysis, prioritisation of the maintenance strategies and reliability measuring system. It is 

based on an investigation of the conventional process through a case study of RCM based MMS 

at UTS Melbourne. The conventional RCM process is investigated to understand how the KPIs 

are used for operational performance characterisation of the sub-systems in the reliability 

analysis and for prioritisation of the maintenance strategies, and to propose an improved 

process for overall improvement in the reliability of the urban trains.  However, the proposed 

RCM process has a wider application as it can be incorporated into the maintenance 
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management system for any urban train system when the particular requirements of that train 

system are taken into consideration. 

The improved RCM process is proposed based on multivariate data analytical techniques using 

KPIs for both functional reliability and service reliability for characterising the operational 

performance.  In addition, the process is extended by developing a model to provide a decision-

making tool that enables the selection of maintenance strategies by evaluating the influence of 

the improved functional reliability on service reliability. To evaluate the model performance, 

relevant data from the UTS Melbourne are used. However, some assumptions are made where 

data are not available or cannot be reported because of confidentiality concerns. All 

assumptions are clearly stated in the relevant sections of the thesis chapters.  

1.5 Contributions of this study 

The key contributions of this research are: 

(1) a detailed understanding of the reliability analysis in the RCM process currently used 

to characterise the operational performance of the urban train system in Melbourne 

(2) an improved analytical approach for better characterisation of the operational 

performance of the urban train system that enables the influence of the latent variables 

to be considered 

(3)  an improved multiple criteria approach for managing the concerns of all the main 

stakeholders in the analysis 

(4) a model for prioritising the maintenance strategies considering the impact of 

improved functional reliability on service reliability. 

The improved analytical approach presented in this thesis will enable reliability analysts and 

decision makers to assess the historical trends of overall reliability in the data. It will aid in 

establishing realistic performance benchmarks for the fleet. In addition, the proposed model 

for the evaluation of the proposed maintenance strategies will aid in better cross fleet 

management between the maintenance and the operational departments. Finally, this model 

will enable the strategical goals of both functional reliability and service reliability to be 

achieved. 
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1.6 Thesis structure 

The thesis has seven chapters including this introduction. The structure of the thesis is shown 

in Figure 1-2 which also highlights the original contributions to knowledge that are the 

outcomes achieved in each part of the research. The content of each chapter is outlined below.  

Chapter 2 – Literature Review – this chapter first presents important definitions and concepts 

that provide essential background for the review. Maintenance types and strategies that are 

conventionally used for maintenance planning of the urban trains are outlined, and the key 

elements of RCM based MMS summarised.  The development of the RCM process and its 

applications in the rail industry particularly for the urban train system, are reviewed.  The key 

elements of RCM based MMS are then critically reviewed to investigate the criteria and the 

data analysis techniques that are used in practice in each element. Finally, the advanced 

multivariate data analysis techniques that are beginning to be employed for big data 

management in the urban rail industry are discussed. The chapter concludes by highlighting 

the research gaps that have been identified in the review.  

Chapter 3 – The conventional approach of reliability analysis for operational 

performance characterisation of an urban trains fleet - This chapter first explores the 

conventional approach for reliability analysis for operational performance characterisation of 

the sub-systems using information collected from the UTS Melbourne and the literature review. 

Next the chapter assesses the approach by analysing the KPIs data collected from the UTS 

Melbourne using simple descriptive analysis. Potential ways to improve the conventional 

reliability analysis approach are established.  

Chapter 4 – Operational performance characterisation of an urban trains fleet based on 

a single conventional criterion by using principal component analysis - This chapter 

proposes an improved reliability analysis approach that uses the same single criterion, FFF, but 

a different data analysis technique, an exploratory multivariate data analysis technique called 

principle component analysis (PCA). This proposed approach aims to incorporate the influence 

of the latent variables into the analysis. The proposed approach is applied to analyse the same 

data from the UTS Melbourne to establish the operational performance characteristics, and the 

results are compared with those obtained using the conventional approach as reported in 

Chapter 3. It is found that PCA can be used for establishing five operational characteristics of 

the sub-systems considering the influence of the latent variables. 
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Chapter 5 – Operational performance characterisation of urban trains based on multi 

criteria by using multiple factor analysis - Based on the reliability approach presented in the 

previous chapter, this chapter proposes a reliability analysis approach that uses multiple criteria 

by integrating the KPIs for both functional reliability and service reliability, and applies a 

multiple factor data analysis technique, MFA, that is an extension of PCA. This approach aims 

to establish the operational characteristics that provides insight into the impact of functional 

reliability of the sub-systems on service reliability, thus integrating the KPIs in their cause-

and-effect structure into the analysis. The results obtained using MFA analysis with multiple 

criteria are compared with PCA results with FFF, and it is found that the operational 

characterisation using multiple criteria is needed for identification of the sub-systems that are 

critical in relation to both functional reliability and service reliability.  

Chapter 6 – Development of a simple model for reliability performance-based 

prioritisation of the maintenance strategies – In this chapter, a model is developed to 

prioritise the maintenance strategies by measuring the overall improvement in the reliability 

(i.e. improvement in functional reliability together with the improvement in service reliability) 

considering the influence of the latent variables. The model is validated by analysing the data 

collected from the UTS Melbourne. The chapter aims to provide a practical tool for comparing 

the different possible maintenance strategies by obtaining the value expected to be added to the 

overall reliability by the proposed strategies. 

Chapter 7 – Conclusions and recommendations for future work – this chapter presents the 

key findings of the research and outlines valuable directions for the future work.
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Figure 1-2: Thesis Structure and Research Contributions 
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 LITERATURE REVIEW 

 

2.1 Introduction 

Since the mid-1990s, reliability centred maintenance (RCM) has been widely used as the 

maintenance management system to improve the reliability of urban train systems. The aim of 

this review is to investigate the published research on the application of RCM-based 

maintenance planning for improving the operational performance of urban trains.  

As for any maintenance management system, the three major elements of an RCM based 

maintenance management system are: 

(1) reliability analysis (i.e. risk assessment) 

(2) prioritisation of the maintenance strategies (i.e. evaluation of the maintenance 

strategies for selection) 

(3) reliability measuring system (i.e. a set of key performance indicators for continuous 

monitoring of reliability-based operational performance) 

Thus, in this chapter studies of these elements of the RCM based maintenance management 

system are critically reviewed. However, essential background of reliability and the 

maintenance management system of urban trains is first presented, and important terms and 

concepts are explained to establish the theoretical understanding required for the review. The 

chapter concludes by summarising the findings from the literature.  

2.2 Basic definitions and the key concepts 

2.2.1 Reliability, maintainability and availability  

Reliability is defined as the probability of performing an intended function without any 

functional failure for a specific period under a given operating environment (MIL-STD-7217, 

1981 as cited in Treurnicht, 2012); more precisely this is called functional reliability (Cota and 

Halloran, 2016, Kiran, 2017). In the case of urban trains, the intended function is to transport 

passengers (i.e. the users). However, random functional failures (FFs) occur in various sub-

systems of the urban train system such as the brakes system, door system and traction system 
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(Teshome.M.M, 2012), thus taking the train out of operation and causing services to be 

cancelled and delayed.  

The users measure service reliability in terms of on-time arrival of trains (Higgens and Kozan, 

1998 as cited in Treurnicht, 2012). Since disruption in the service brings cost to the users 

(Transek, 2006 as cited in Bergström and Krüger, 2013), the frequent disruptions in the service 

negatively affect the relationship between the company and its users (McCredle, 2007). This 

results in financial losses to the company including the monetary penalties for the owner failing 

to provide services on time to its users. Hence, in ensuring the availability of the trains for 

operation, the operators pay great attention to improving functional reliability of the fleet 

through maintenance planning.  

However, improving functional reliability of the urban train system through maintenance 

planning is not simple. Maintenance planning aims to achieve functional reliability of the sub-

systems (Endrenyi et al., 2001) which can be measured in terms of mean distance between 

failures or of functional failure frequency (denoted as FFF) in a given period (Vaiciinas and 

Bureika, 2014). However, maintenance planning is constrained by the maintainability of the 

sub-systems which is measured in terms of ease, cost, safety and accuracy of performing the 

maintenance (Blanchard et al., 1995).  

Maintenance planning is a process inclusive of all the technical, administrative and managerial 

actions that are taken during the life-cycle of each sub-system to retain or restore the sub-

system to its functional state. By contrast the maintainability of the sub-system is a design 

parameter that refers to the ability of the sub-system to be maintained in a functional state 

(Blanchard et al., 1995, Crespo Márquez, 2007). These definitions make it clear that 

maintenance planning and maintainability are different terms. On the other hand, functional 

reliability and the maintainability are interrelated (Schenkelberg, 2021) since both depend on 

the inherit design characteristics of the sub-system (Kumar et al., 2000). Hence, functional 

reliability and maintainability jointly ensure the availability of the train for operation.  

Within maintenance planning the selection of different levels of functional reliability and 

maintainability affects the availability of urban trains as shown in Table 2-1. As can be seen 

in the table, if the maintenance planning keeps functional reliability of the sub-system constant, 

even at a high value, it does not result in an increase in the availability of the train if the 

maintainability of the sub-system decreases. Since maintainability is associated with the time 
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to re-instate the sub-system to its functional state (Kumar et al., 2000), a decrease in the 

maintainability involves an increase in the maintenance time that results in a decrease in the 

availability of the train. Similarly, keeping the maintainability of the sub-system constant, even 

if it involves much less time to restore the functional state of the sub-system, maintenance 

planning cannot increase the availability if functional reliability of the sub-system decreases. 

Hence, for the maintenance planning, the interaction between functional reliability and the 

maintainability determines the availability of the train for operation.  

 

Table 2-1: Impact of functional reliability and maintainability on availability  

 

Source: Table from Chapter 6: Introduction to repairable systems from System Analysis Reference: 

Reliability, Availability and Optimization (Reliasoft Corporation, 2003) that shows the impact of 

interaction between functional reliability and the maintainability on the availability of a system.  

 

In summary, this section has presented some basic definitions, highlighted the importance of 

functional reliability, and explained how functional reliability and the maintainability affect 

the availability of urban trains. 

2.2.2 Reliability based operational performance measuring system and latent variables  

With the growing need to report reliability based operational performance and the evolution of 

user-oriented maintenance planning, many key performance indicators (abbreviated as KPIs) 

have been developed over time to describe and to quantify the reliability of urban trains. The 

KPIs are selected for reporting and maintenance planning consistent with the perspectives of 

stakeholders, i.e. the users, owner and operator.  

KPIs for reporting - the reliability of urban trains is reported to: (1) internal management, (2) 

governments, authorities, or franchisors and (3) users and the media (Karathodorou and 
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Condry, 2016). Since the aim of reporting is to regulate the on-time arrival of trains, the 

reliability is reported in terms of the KPIs that quantify the occurrence of FFs and their effect 

on on-time arrival of trains (Melo et al., 2011). An occurrence of FF in any sub-system of an 

urban train system prevents the train from its on-time arrival at the station and causes delays 

and cancellations that affect service reliability. Thus, FFF is used to report functional 

reliability, and the number of services cancelled and number of services delayed are used to 

report service reliability. 

KPIs for maintenance planning - maintenance planning is carried out at three different levels 

of the organisational hierarchy -  strategic, tactical and operational levels (Crespo Márquez, 

2007). As each planning level has different objectives, different KPIs are used to quantify and 

describe the reliability of a fleet of urban trains at each level. For instance, at the strategic level, 

reliability is quantified in terms of functional failure frequency (i.e. FFF as defined earlier), 

while at the tactical level, mean distance between failures is usually used.  

Mean distance between failures is a criterion for measuring the reliability of urban trains which 

is defined as the mean distance between mechanical failures (MDBF) of a car causing a delay 

of equal to or greater than five minutes (CoMet and Nova Group, 2006). It characterises the 

operational performance of the service where the higher the MDBF is, the more efficient the 

service. Since MDBF is the ratio of total travelled distance to the FFF and it is measured by 

considering a delay in service equal to or greater than five minutes, the total travelled distance 

for computation of MDBF is eventually measured in relation to the basic KPIs i.e. FFF, the 

number of services delayed and by extension the number of services cancelled. Thus, these 

three basic KPIs are used to quantify the reliability both for reporting and for maintenance 

planning (and even for operational planning). These KPIs are used collectively to describe the 

reliability based operational performance of urban trains. The measures that explain the 

performance of any system in the given operational environment, including the combined effect 

of deign characteristics, manufacturing quality, maintenance, organisational policy etc, are 

known as reliability based operational performance measures (Kumar et al., 2000), and the 

system in which this data is collected refers as reliability measuring system.  

Many variables are combined together to form the operational environment of any system in 

which it operates (Kumar et al., 2000). Some of these variables are internal such as the asset 

condition, management policies and use of technology, while others are external such as the 
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weather, passenger behaviour, signalling or the urban rail infrastructure system (Melo et al., 

2011). The variables of the operational environment of any public transport mode affect its 

operational performance sometimes resulting in a failure to achieve the desired performance 

(Georgiadis et al., 2020), for instance, the degraded condition of track, which is an external 

variable that is beyond the control of the train’s maintenance department, may cause a FF to 

occur in a wheel. In addition, the combined effect of operational environment variables 

determined the number of services cancelled and delayed due to the occurrence of a FF in any 

sub-system of a system of an urban train. For example, the occurrence of a FF in the door 

system of a train at the busiest station can halt the whole operation for hours. It was found in a 

study of the service reliability of the Taipei railway (Lane, 2018) that an initial three minutes 

delay in service are the consequent of FF in any sub-system of train. Other studies by (Melo et 

al., 2011) and (Alwadood et al., 2012) discuss how the variables that affect service reliability 

(in terms of delays)  can cause the occurrence of FFs in trains.  

Since the influence of these variables is not directly observable, they are called the latent 

variables (Shyrane, 2011). Thus, in order to improve the reliability of urban trains, it is 

important to identify the latent variables of the operational environment that influence the 

operational performance (Melo et al., 2011). 

2.2.3 Maintenance types and strategies  

With the increase in the complexity of the design and operational challenges of an urban train 

system, different maintenance types (also known as techniques) broadly categorised as 

corrective, preventive or predictive have evolved over many years. These maintenance types 

have been defined in  International Standard IEC 60300-3-11 and its Australian version AS 

IEC 60300.3.11-2011 (Standards Australia Committee, 2011), and by a number of researchers 

(Duffuaa et al., 2000), (Kumar et al., 2000), (Moubray, 2001), (Crespo Márquez, 2007), (Wu, 

2020) and (Upkeep Maintenance Management, 2021). Definitions from the mentioned 

standards and the authors have informed the following definitions that are used in this study. 

While these standards and authors defined the maintenance types for maintenance of an item, 

here they are defined for maintenance of a sub-system. 

Corrective maintenance is a type of maintenance which is performed to restore the functional 

state of a sub-system after it has suffered a functional failure. It can be classified into two kinds 
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of maintenance known as immediate maintenance (also known as unplanned corrective 

maintenance) and deferred maintenance (also known as planned run-to-failure). 

Immediate maintenance involves the urgent and extensive repair of a sub-system that 

completely loses its functionality when an unplanned FF occurs, while deferred maintenance 

involves an urgent and extensive repair of the sub-system that is intentionally allowed to 

operate until it completely loses its functionality (i.e. when the FF is planned).   

Although run-to-failure maintenance makes the most of the maintenance process  for railway 

assets (Kefalidou et al., 2018) including urban trains, it is not the best choice because it is costly 

and negatively impacts the  service reliability (Umiliacchi et al., 2011).  

Preventive maintenance is a type of planned maintenance performed to reduce the FFF of a 

sub-system and it is undertaken before the actual occurrence of an FF in the sub-system. It can 

be further classified as time-based, usage-based or condition-based preventive maintenance.  

Preventive maintenance is time-based or periodic maintenance when it is planned to be 

performed at a fixed an interval of time throughout the year such as weekly, monthly, quarterly 

or yearly. Preventive maintenance is usage-based or performance-based maintenance when it 

is planned to be performed after specific measurement is reached such as a given number of 

KMs travelled or hours in operation. Finally, preventive maintenance is condition-based 

maintenance when there is a decline in its functional performance that is detected after 

monitoring of the actual condition of a sub-system.  

Preventive maintenance is the most commonly used type of maintenance performed on urban 

trains. However, there are a number of limitations with this type of maintenance, including 

inadequate proactive maintenance, the recurrence of the problem, inappropriate maintenance 

activities, more frequent disruption in service and the relapse into corrective maintenance 

(Smith, 1993 as cited in Rezvanizaniani et al., 2008). 

Predictive maintenance is an essentially condition-based maintenance, but it is performed 

following a prediction derived from the analysis of the data collected on certain parameters 

measuring the decline in the condition of the sub-system.  

This maintenance type is highly desirable for maintenance of urban trains as it is the most 

proactive approach to prevent the FFs. However, it is still not very common as it involves 
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integration of intelligent  technologies for condition monitoring  so it has not been explored  

much (Umiliacchi et al., 2011). 

Each maintenance type has its advantages and disadvantages. Predictive maintenance results 

in greater improvement in functional reliability of a sub-system by incurring less maintenance 

cost than preventative maintenance, and preventive maintenance than reactive maintenance 

(Umiliacchi et al., 2011, Nappi, 2014). By contrast, initial cost for implementation of predictive 

maintenance is greater than that of preventive maintenance, which is in turn greater than that 

of reactive maintenance. Furthermore, the maintenance requirements for each sub-system are 

different and they also affect the safety and comfort of users differently, and thus more than 

one type of maintenance needs to be used to develop the whole maintenance plan. Hence, to 

achieve  a cost-effective and well-balanced maintenance plan, a different maintenance strategy 

is developed for each sub-system by combining different maintenance types (Cheng and Tsao, 

2010, Vaiciinas and Bureika, 2014).   

Maintenance strategies are formulated from the maintenance objectives of the sub-systems that 

are consistent with the organisational strategical goals  (Duffuaa et al., 2000, Moubray, 2001, 

Crespo Márquez, 2007). Maintenance strategies have been defined in a number of very similar 

ways as follows: 

(1) a policy that explains which maintenance type is required to be performed on which 

component of the sub-system (Kumar et al., 2000). 

(2)  a set of rules that describes a sequence of steps for performing the planned 

maintenance of a sub-system (Sharma, 2012). 

(3)  a systematic process for detection, examination and execution of various maintenance 

decisions for repairing, replacing and inspecting different components of the sub-

system (Kelly 1997 as cited in Velmurugan and Dhingra, 2015) . 

(4)  a method adopts by the management to achieve the accepted maintenance objectives 

i.e. assigned targets (the British and European Standard for maintenance management 

BS EN 13306:2017 as cited in Adams, 2019). 

In this study, a maintenance strategy is taken to be a managerial policy for the maintenance of 

a sub-system that determines which maintenance type to use, when and how to use it and on 

which component of the sub-system. 
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In general, a maintenance strategy can be either corrective or proactive depending upon the 

maintenance type which contributes most in the formulation of this particular strategy.   

Common maintenance strategies that are listed in  (Kumar et al., 2000) and (Jidayi, 2015) are 

classified into these two types and are outlined below.  

Corrective maintenance strategies involve initiation of corrective maintenance activities 

after the occurrence of FF. A corrective maintenance strategy is usually considered for non-

critical sub-systems with a knowledge of the resulting consequences of FF. It is classified as a 

failure-based maintenance strategy if the FF was not anticipated, and a run-to-failure-based 

maintenance strategy if FF was anticipated.  

Proactive maintenance strategies involve implementation of preventive and predictive 

maintenance activities before the occurrence of FF. A proactive maintenance strategy is 

considered for critical sub-systems in which the occurrence of FF can result in poor 

consequences. It is classified as: 

(1) a time-based maintenance strategy if it involves scheduling of preventive maintenance 

of the sub-system at a fixed interval such as x number of years or x number of run 

hours. 

(2) an age-based maintenance strategy if it involves scheduling of preventive maintenance 

of the sub-system on reaching x age. 

(3) a condition-based maintenance strategy if it involves scheduling of preventive 

maintenance or predictive maintenance based on the deterioration in the functional 

performance of the sub-system below the certain observable threshold.  

(4) a design modification strategy if it involves redesign of the sub-system which is a part 

of the improvement maintenance strategy. It is applied only when the sub-system life 

cycle cost for maintenance and the downtime cost exceeds to the value of benefits i.e. 

availability of train for operation. 

Each maintenance strategy has a number of advantages and disadvantages. For example, the 

selection of a short interval in time-based maintenance strategy may affect functional reliability 

of the sub-system negatively due to maintenance-induced FF (Rausand, 1998). Hence, in 

maintenance planning, different strategies are developed and evaluated in order to select the 

one that can achieve the assigned targets by satisfying most of the defined concerns. 
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In summary, this section has discussed the maintenance types and strategies that are commonly 

employed in the maintenance planning of urban trains.  

2.2.4 Maintenance management systems 

As for any asset-intensive industry, the development of a well-balanced maintenance plan is 

the key to improve key to improve the operational performance of an urban train system. A 

maintenance plan is considered to be very effective if the percentage ratio of preventive 

maintenance to corrective maintenance is 80/20 in its formulation (Åhrén, 2008, Mike 

Shekhtman as cited in Sigga Technologies, 2021), but such a high ratio is rarely achieved. 

Although various maintenance strategies from reactive to proactive in nature have been 

evolved, a selection and execution of an appropriate strategy within a limited time is quite 

challenging.  

Given these issues, a centralised maintenance management system (MMS) has been developed 

to streamline the overall process of maintenance planning. A brief overview of a MMS and its 

development over a time is discussed by (Crespo Márquez, 2007) and it is outlined here. Crespo 

Márquez (2007) states that a comprehensive MMS aims to perform the following functions:  

(1) it defines the maintenance objectives (i.e. what are assigned maintenance performance 

targets?) 

(2) it determines the maintenance strategies (i.e. what is a managerial approach to achieve 

the assigned targets?) 

(3) it devises an implementation plan including details about maintenance quality control 

and improvement procedures and methods (i.e. how is maintenance executed?) 

However, over a time it has been realised that a well-designed MMS is needed of to deal with 

many concerns, data sources, strategies, techniques and tools. The MMS structured on an IT 

system, maintenance engineering process and the organisational values has been commenced 

to be installed. The MMS is characterised by the maintenance engineering process, while an 

IT system and the organisational values aid in the functioning of an engineering process in 

developing and executing the maintenance plan.  

The two most common maintenance engineering processes are total productive maintenance 

(TPM) and reliability centred maintenance (RCM). TPM aims to improve the  effectiveness of 

a system in terms of its availability for operation by eliminating various losses involved in the 
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process, while RCM aims to improve the reliability of a system by preserving its functional 

state (Marten Jr, 2009, Prabhakar P and V. P, 2019). This means that the selection of a 

maintenance engineering process reflects the underlying philosophy for the MMS of the 

particular organisation.  

Since RCM based MMS is widely used in the urban rail industry, it will be described in detail 

in the next section. 

2.2.5 Reliability centred maintenance-based maintenance planning 

RCM based maintenance planning provides a structured process for determining the 

maintenance needs of any physical asset in its operational context (Moubray, 2001). It is used 

to formulate a preventive maintenance plan for an asset in which it is assumed that the 

reliability of any asset relies on its inherent design characteristics and manufacturing quality 

(Rausand, 1998). The focus of RCM based maintenance planning is on preservation of a 

system’s functions by prioritising the maintenance tasks based on the criticality of failure 

modes of the system (Nowlan and Heap (1978) as cited in Backlund, 1999). The purpose of 

the formulated maintenance plan is to maintain, restore or improve the operational performance 

of the system (Farooq and Vallabh, 2010). It is a continuous closed loop process which is used 

to develop or to review a maintenance plan on the basis of functional failure analysis of the 

sub-systems that have a substantial influence on the safety, operations and lifecycle cost of the 

system (Lachemot, 2013). 

In the mid-to-late 70’s, (Nowlan and Heap) established the concept of RCM for aviation 

(Moubray, 2001). Nowlan and Heap (1978) stated in their work that “In the traditional 

approach, a scheduled maintenance plan was developed based on the concept that all items of 

a complex system required to be overhauled at a “right time”. Over the years, it was realised 

that many types of failures could not be prevented by this traditional approach. To resolve this 

issue, the designers started to design “failure-tolerant” airplanes by adding multiple engines, 

and by designing the damage-tolerant structures. This resulted in significant increase in design 

and maintenance cost of airplanes, but the failure rate of certain types of unreliable engines 

could not be improved by feasible options i.e. change in procedure or in frequency of scheduled 

overhauls. Thus, a task force was designed to develop an approach that can assist the aviation 

industry in developing an efficient preventive maintenance plan for airplanes.”  
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This reliability engineering-based systematic process was first used by the aviation industry 

and after its successful application in aviation, it was adopted by various industries (Bulmer 

(1996) including the urban rail industry. In the early 1990s, London Underground began 

implementing RCM on its trains, signals, and tracks (Dallaway, 1996) and several projects in 

the European Union including RAIL, REMAIN and Norway railways used RCM based 

maintenance planning for railway infrastructure (Carretero et.al. 2003 cited in Rezvanizaniani 

et al., 2008). Today, while this maintenance approach  is now used by railway companies all 

over the world, most focussed on applications of RCM for the maintenance of tracks and 

signals (Rezvanizaniani et al., 2008).  

To develop a maintenance plan, RCM answers the following seven questions about the 

system’s functionality as listed by (Moubray, 2001): 

(1) What are the functions and the associated performance standards of the system under 

the given operating environment? 

(2) In what ways does the system fail in performing the functions? 

(3) What are the causes of each functional failure? 

(4)  What happens when each failure occurs? 

(5)  In what way does each failure matter? 

(6)  What can be done to predict or prevent each failure? 

(7)  What should be done if a suitable proactive task cannot be found? 

The RCM based maintenance planning process is exhaustively explained in a number of studies 

including studies by (Nowlan and Heap, 1978) , (Rausand, 1998), (Moubray, 2001),(Crespo 

Márquez, 2007) ,(Rezvanizaniani et al., 2008), (Farooq and Vallabh, 2010), (Nordin, 2015) 

and (Emovon et al., 2016).  The steps in the closed-loop process are shown in Figure 2-1. 
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Figure 2-1: RCM based maintenance planning process. 

 

As can be seen in Figure 2-1, the RCM based maintenance planning process is composed of 

five elements (or stages) that include reliability analysis, formulation of maintenance strategies, 

selection of maintenance strategy, maintenance implementation and generation of data in 

reliability measuring system. These are discussed here: 

Reliability analysis establishes the reasons for the maintenance by performing risk assessment 

of the system in which the performance of a system is considered under the given operational 

environment. There are two steps in the reliability analysis. First the functionally critical sub-

systems are identified that have significant influence on the safety, operation and life-cycle 

cost of the system. In order to make the process cost-effective, only 10% - 20% of the critical 

sub-systems of the system are considered to make the process cost-effective (Farooq and 

Vallabh, 2010). In the case of a simple system, the critical sub-systems are obvious and there 

is no need to use any specific technique to identify them (Emovon et al., 2016). 

Next functional failure analysis (denoted as FFA in this study) of the identified operationally 

critical sub-systems is carried out. The FFA investigates the potential failure modes of the 

operationally critical sub-systems; whereas, a failure mode is an event that results in a 

functional failure in the sub-system i.e. failed state (Moubray, 2001). There are different 

techniques to perform the FFA such as Failure, Modes, Effects and Criticality Analysis 

(FMECA), fault tree analysis, root cause analysis, failure block diagram analysis and cause 
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consequence analysis.  However, FMECA is the most commonly used in practice as there are 

a number of published guidelines and standards that provide the qualitative and quantitative 

procedures to be performed in FMECA depending upon the availability of the data. In FMECA, 

a link is established between the probability of failure modes of components of the sub-system, 

their effect on the system’s mission and functions, and the causes and mechanism of failure 

modes to determine the risk associated with the failure modes.  

Reliability analysis is the core of the RCM process as it answers the first five questions. 

Formulation of maintenance strategies involves identification of a maintenance type for each 

identified critical sub-system, determination of maintenance intervals and optimisation of 

maintenance resources. Decision logic diagrams are usually used for identification of 

maintenance types, and the decision factors as per the company’s strategical aims are 

considered in the diagram. Safety is generally measured as first followed by reliability and cost 

(Cheng and Tsao, 2010). For maintenance scheduling and optimisation, complex algorithms 

and mathematical models are used. Several strategies are formulated based on different 

combination of maintenance types and the maintenance interval constraint to the available 

maintenance resources. 

The formulation of the maintenance strategies of the RCM process answers the remaining two 

questions. 

Selection of maintenance strategy strategies involves prioritisation of the formulated 

maintenance strategies based on their effectiveness in delivering the maintenance objectives. 

It involves complex decision-making with trade-offs between the achievement of different 

maintenance objectives. However, there is no established approach which is internationally 

recognised for prioritisation of maintenance strategies.  

Implementation involves the creation of a plan for implementation of the selected 

maintenance strategies. The plan contains details about quality control and improvement 

methods for effective execution of the plan maintenance plan. 

Generation of data in the reliability measuring system refers to the measurement and 

monitoring of the reliability based operational performance of a system in terms of KPIs for 

reliability. As highlighted by (Crespo Márquez, 2007), RCM identifies the maintenance types 

for a system considering the operating environment under which it operates. Since the 
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operational environment of the urban rail industry is not constrained by some physical 

boundary, as in production industry, data collected on the KPIs, in addition to measure against 

the assigned targets, are analysed to characterise the operational performance of a fleet of urban 

trains.  

Since maintenance planning is a closed loop process as shown in Figure 2-1, the outputs of the 

previous element are the inputs for the next element. The RCM based maintenance planning is 

mainly guided by the FFA using RCM technique i.e. FMECA. A widely accepted International 

Standard IEC 60300-3-11 and its identical Australian version AS IEC 60300.3.11-2011 

(Standards Australia Committee, 2011) provides a complete guideline for application of RCM 

technique for maintenance planning.  The overall process of maintenance planning in relation 

to an application of FMECA is shown in Figure 2-2 which is taken from the standard AS IEC 

60300.3.11-2011. 

 

Figure 2-2: An overall process of maintenance planning using RCM technique (i.e. FMECA) 

as given in AS IEC 60300.3.11-2011 
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The stages shown in Figure 2-2 are in consistent with the elements of the maintenance planning 

as shown in Figure 2-1. In Figure 2-2, the first two stages describe the process for conducting 

the FFA using FMECA i.e. Step 2 of reliability analysis. Stage 2 answers the first five questions 

about the sub- system’s functionality as listed earlier in this section, thus provide deep 

understanding about failure behaviour of the sub-system. The outputs of second stage establish 

reasons for determining the maintenance type for each component of each sub-system in Stage 

3 which comes under the formulation of maintenance strategies in relation to Figure 2-1. The 

fourth stage shows implementation of the maintenance plan and the last one involves collection 

of data on the KPIs for reliability for continuous improvement in the operational performance 

of the sub-systems. In addition, the standard AS IEC 60300.3.11-2011 provides a decision 

diagram for assistance in selection of an appropriate maintenance strategy in Stage 3 for failure 

management of the sub-system. Figure 2-3 shows a decision diagram which is taken from the 

standard AS IEC 60300.3.11-2011 (Standards Australia Committee, 2011). 

 

Figure 2-3: RCM decision diagram for selection of an appropriate maintenance strategy as given in 

AS IEC 60300.3.11-2011 
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As can be seen in Figure 2-3, the decision diagram first links the failure modes of the sub-

system with the consequences in terms of safety and economy, and then use this information 

in determining an appropriate maintenance type to manage each failure mode of the sub-system 

(Moubray, 2001, Crespo Márquez, 2007) . The decision diagram is a tree of RCM logics that 

assists and ensures consistency in making the decisions for the selection of maintenance type 

for the sub-system, thus answers the last two RCM questions as listed earlier in this section.  

In summary, RCM based maintenance planning determines the maintenance needs by 

investigating functional reliability of a system.  

2.3 Review of studies of RCM based maintenance planning for urban train 

systems 

This section presents a critical review of relevant studies available in the published literature 

of key elements of RCM based MMS. While there may be studies of research conducted within 

commercial enterprises, these remain confidential and thus there are only a small number of 

published studies that form the basis of this review. The aim is to establish current approaches 

to the conventional RCM process through published case studies of urban train systems and to 

evaluate these approaches to identify their strengths and limitations.  

2.3.1 Studies of reliability analysis  

There are only a few published studies of RCM based reliability analysis of urban train systems. 

These studies investigate the urban train systems in different countries particularly China, 

focusing on the reliability analysis of the different sub-systems of the trains including the brake, 

bogie, door, and heating, ventilation and air conditioning (i.e. HVAC) sub-systems. In most of 

the studies, the conventional technique applied for the reliability analysis is FEMCA while in 

a few others studies, different techniques were applied to overcome limitations of FMECA that 

include a lack of consideration for (1) the interdependency of the components, (2) random 

occurrence of FFs or (3) difficulty in obtaining the information related to the failure effects and 

probability. These studies are reviewed in this section to investigate the approaches including 

the criteria and the techniques that are commonly used in each step of the reliability analysis. 
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2.3.1.1 Studies using FMECA   

Details of the studies that applied FMECA for FFA of the critical sub-systems are presented in 

Table 2-2. The criteria that are used to identify the critical sub-systems in Step 1 of the analysis 

are listed. As shown in the table, while in two studies by (Guan, 2016) and (Catelani et al., 

2021) no criterion was reported, in most of these studies the only criterion applied to identify 

the critical sub-systems in Step 1 of the analysis was FFF. As can also be seen in the table, the 

technique applied to analyse the FFF data in Step 1 is also listed, but the only study that reported 

the technique that they used was the study by (Rezvanizaniani et al., 2009) where the 

researchers applied Pareto analysis, one of the simple descriptive analysis (SDA) techniques. 

Details of the functional failure analysis of the critical sub-systems in Step 2 of the FFA are 

also provided in Table 2.2. As can be seen in the table, in all the studies, the criticality of the 

failure modes of the critical sub-system was mainly determined using the following measures: 

ease in detection of the failure modes, frequency of their occurrence and severity of their impact 

on the functional performance of the sub-system and on the users’ safety. Other measures were 

used in  two of the studies. Jaehoon and Hyun-Yong (2013) considered the operational 

consequences in the computation of severity of the failure modes of the components of the 

critical sub-system but does not report which ones, while Dinmohammadi et al. (2016) 

considered the passengers’ dissatisfaction.  

In addition, the standard procedure of FMECA was applied in five of the seven the studies 

reviewed. In Feng et al. (2019) FMECA was applied in combination with the fuzzy method, 

and in Catelani et al. (2021) the authors  proposed an improved approach for FMECA to 

differentiate between the critical and insignificant failure modes of the critical sub-system. 

2.3.1.2 Studies using other techniques 

Findings from the studies that applied techniques other than FMECA for the FFA of the critical 

sub-systems in Step 2 of the reliability analysis are presented in Table 2-3. 

 As can be seen in Table 2-3,  none of the listed studies reported how the critical sub-systems 

were identified in Step 1of the reliability analysis. Only one study by Conradie et al. (2015)  

reported that they had applied the reliability block diagram in Step 1 not to identify the critical 

sub-systems but to consider the interdependency of the components of the critical sub-system 

in the reliability analysis, and thus the KPIs data were not analysed in this study. It is also 

clearly evident from Table 2-3 that all the listed studies had used different techniques in Step 
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2 for FFA of the critical sub-systems. Discussion of these techniques is beyond the scope of 

this study. However, in general these techniques apply the probability or uncertainty theory in 

the computation of criticality of the failure modes of the components of the critical sub-system 

based on their frequency of occurrence or failure rate. No information for application of the 

KPIs for service reliability was reported in any of these studies.  

In the studies of FMECA based reliability analysis, FFF is used as the conventional criterion 

in Step 1 for identification of the critical sub-systems and it is assumed that reducing the FFF 

in those critical sub-systems will improve functional reliability and thus service reliability. The 

review of the studies that used the techniques other than the FMECA, shows that the researchers 

simply state which sub-systems they will use for the analysis and they do not provide any 

details about the criteria used for the selection of these sub-systems. None of the studies has 

explained the operational performance characterisation of the sub-systems using the KPIs for 

reliability. In addition, no specific technique has been identified as a standard tool to identify 

the functionally critical sub-systems that would ensure uniformity in the analysis across such 

studies. 

 By contrast, FMECA is widely used as the standard tool to perform FFA in Step 2 of the 

reliability analysis.  Many studies also present an improved approach for FFA either by 

modifying FMECA or by developing a new method. Finally, none of the studies have 

considered the influence of the latent variables in the reliability analysis.  

In summary, it is concluded that further research is needed to gain an understanding about the 

conventional approach of reliability analysis for characterising the operational performance of 

urban trains using the KPIs data, and how the influence of the latent variables is considered in 

this approach.
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Table 2-2: Summary of the studies of reliability analysis of urban train systems using FMECA  

Authors’ names and 

study year 

Study 

Country 

Critical sub-

system 

selected for 

the analysis 

Step1: Identification of the 

critical sub-systems 

Step2: Functional failure analysis of the critical 

sub-system 

Criteria 
Technique for 

categorisation  

Criteria for computation of criticality of the 

failure modes 

Rezvanizaniani et al. 

(2008)  and 

Rezvanizaniani et al. 

(2009) 

Iran 
Wheel sets – 

bogie 
FFF 

Pareto 

Analysis 

Detection number, occurrence number and severity 

number 

Cheng et al. (2013) China Door FFF Not reported 
Failure rate, frequency ratio, failure effect 

probability and working time 

Jaehoon and Hyun-

Yong (2013) 
Korea Brake FFF Not reported 

Detectability, frequency and severity based on safety 

and operational consequences 

Dinmohammadi et al. 

(2016) 
Scotland Door FFF Not reported 

Likelihood of occurrence based on a failure rate and 

severity based on economic impacts, social impacts 

(i.e. passengers’ dissatisfaction), safety impacts and 

environmental impacts 

Guan (2016) China Brake 
Not 

mentioned 
Not reported 

Detection number, occurrence number and severity 

number 

Feng et al. (2019) China Door FFF Not reported Occurrence, severity, detection and maintainability 

Catelani et al. (2021) 
From 

Europe 
HVAC 

Not 

mentioned 
Not reported 

Detection number, occurrence number and severity 

number  
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Table 2-3: Summary of studies of reliability analysis of urban train systems using other techniques 

Authors’ names and 

study year 
Study Country 

Critical sub-

system selected 

for the analysis 

Step1: Identification of the critical 

sub-systems 

Step2: Functional failure 

analysis of the critical sub-

system 

Criteria Technique Technique 

Liming et al. (2010) China Door Not reported Not reported 
Monte Carlo based on Fault 

tree analysis 

Ren and Xing (2014) China Door Not reported Not reported FMEA based on fuzzy TOPSIS 

Shi et al. (2015) China Door Not reported Not reported 
Monte Carlo based on Fault 

tree analysis 

Conradie et al. (2015) South Africa Full coach Not applicable 

Reliability block 

diagram for 

interdependency 

of the sub-systems 

Reliability equations 

Lin et al. (2016) China Bogie Not reported Not reported Complex network theory 

Zhu et al. (2016) China Bogie Not reported Not reported 
Fault tree analysis by fuzzy 

importance degree analysis 

Cai et al. (2018) China Brake Not reported Not reported Go-Bayes 



 

43 

 

2.3.2 Studies of prioritisation of the maintenance strategies  

There have been only a few studies reported in the literature of the prioritisation of the 

maintenance strategies of urban train systems as  highlighted by (Mohammadi et al., 2020). 

Since there is no RCM based standard approach which is globally recognised for prioritisation 

of the strategies as discussed in Section 2.2.5., different approaches have been developed 

internally by the decision-makers for prioritisation of the strategies in different industries and 

even within the same industry (Tam and Price, 2008). 

 This section critically reviews published studies of maintenance optimisation and selection of 

maintenance strategies. The different approaches are examined including the criteria and the 

techniques used, and the models and decision-support tools commonly applied in the urban 

trains systems. In addition, studies of prioritisation of maintenance strategies in other industries 

are reviewed to explore the approaches used.  

2.3.2.1 Studies of urban trains systems 

Details of the studies of maintenance optimisation of urban trains systems are summarised and 

presented in Table 2-4. 

It can be seen in Table 2-4 that all studies of maintenance optimisation incorporated measures 

in the criteria that are related to maintenance planning and capacity planning. While passenger 

demand was considered in the criteria in the studies by (Wu and Lin, 2016) and (Lin and Lin, 

2017),  the ultimate objective in both studies was to optimise the maintenance schedule by 

considering workshop capacity. In addition, the modelling tool commonly used in these studies 

were variants of the genetic algorithm. In general, because genetic algorithms are known to 

solve both constrained and unconstrained problems of optimisation by using the natural 

selection process established in biological evolution (The MathWorks, 2021), a genetic 

algorithm is a popular choice  for dealing with  maintenance optimisation problems.  

Only three of these studies focus on the prioritisation of the maintenance strategies.  The study 

by (Cheng and Tsao, 2010) involved the selection of the maintenance strategy by using the 

analytical network process. As can be seen in Table 2-4, although the criteria incorporated 

functional reliability of the sub-system in terms of failure rate, this study aimed to prioritise the 

possible maintenance strategies based on their effectiveness in delivering a better ratio of 

preventive maintenance to corrective maintenance by optimising the replacement interval 
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constrained by the availability of spare parts. This means that the ultimate aim of the approach 

presented in this study is to optimise the maintenance resources.  In addition, in this study, the 

latent variables were known to the researchers, and factor analysis was applied to condense 

many latent variables into the high-level categories of quality and efficiency, cost and 

reliability, and safety. The reliability was represented in terms of condition of a system and the 

shut down time of the sub-system. However, this is the only study found in which the influence 

of the latent variables was considered in the approach presented for selection of the 

maintenance strategy.  

The study by (Lu, 2003) proposed a model to prioritise the maintenance strategies based on 

their effectiveness in accommodating the maximum consumer surplus (i.e. the users’ demand) 

subject to the constraints listed in the criteria in Table 2-4.  Since the time the train is out for 

maintenance impact the operational plan. The performance measures i.e. waiting time and head 

time variation were incorporated into the development of model to establish a relationship 

between the existing maintenance and the operational plan. Five simple models were developed 

within the model to quantify the impact of maintenance time on passengers’ spill, service 

operation, waiting time saving, traincrew and life cycle cost in monetary units. Although the 

model establishes a relationship between the maintenance and the operational plan, it does not 

incorporate measures that can assist in quantifying the improvement in operational 

performance of the sub-systems or train.    

The final study of the selection of the maintenance strategy is by (Aslam-Zainudeen and Labib, 

2011). The decision-making grid analysis presented in this study for selection of maintenance 

types was initially developed by (Aslam-Zainudeen and Labib) for application in the 

automotive industry (Labib et al., 1998), and then they applied it in the manufacturing industry 

(Labib, 2004). In the 2011 study, (Aslam-Zainudeen and Labib) applied the same approach to 

identify the maintenance strategies for the critical sub-systems of the fleet of Class 319 

operated by First Capital Connect in the UK. This approach is developed on a combination of 

rules-based approach (i.e. a set of rules that the experts use to reach decisions) and the analytical 

hierarchy process (Aslam-Zainudeen and Labib, 2011). The sub-systems were ranked in 

descending order of selected criteria i.e. FFF and delays (in minutes), Pareto analysis was 

applied to determine the top-most critical sub-systems based on each selected criterion, and 

each of the identified critical sub-system was then placed in a cell of the decision-making grid 

(DMG) according to their rank determined against each criterion. Each cell of the DMG 
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suggests a specific maintenance strategy which is determined by the analytical hierarchy 

process. 

Although this study addressed the issue of selection of maintenance strategy, there are some 

limitations in their approach. This approach is greatly influenced by expert judgement. It is 

specifically designed to determine the maintenance strategy based on the historical data, and it 

does not incorporate a procedure that can assist in evaluating the maintenance strategies based 

on their effectiveness in improving the operational performance of the sub-systems.  

2.3.2.2 Studies of prioritisation within urban rail and other industries  

There have been a number of relevant studies of maintenance optimisation in other industries, 

and they are reviewed here according to the industry in which each study occurred. 

Automotive and manufacturing industry:   Decision-making grid analysis has been applied 

for maintenance optimisation in the automotive industry (Labib et al., 1998), and in the 

manufacturing industry (Labib, 2004). These studies were discussed earlier.  

Power industry: Li and Brown (2004) developed a simple approach for prioritisation of the 

maintenance strategies for electric power and distribution industry. In this study the weighted 

average system reliability index, WASRI, is computed by incorporating the weighted impact 

of failure rate of the system on each factor of concern individually.  These factors included the 

system interruption frequency, system interruption duration and momentary interruption 

frequency. The mathematical formulation to measure the impact was the failure rate times the 

ratio of the factor to the base number and the indexes obtained were the system average 

interruption frequency index, the system average interruption duration and the momentary 

average interruption frequency. Thus, WASRI is a sum of three weighted indexes. Since 

WASRI was derived from the factors that measure the losses in the system, a lower value of 

WASRI indicates better performance of the system. The ratio of the computed WASRI to the 

cost associated with the maintenance task was used for prioritisation of maintenance tasks. This 

approach was then applied for evaluation of the utility system with more than 4000 components 

and five sub-stations that resulted in reduction in WASRI by 28% constrained within the given 

budget.  
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Urban rail industry 

Åhrén and Parida (2009) presented an approach to compute an overall railway infrastructure 

effectiveness (ORIE) based on the concept of overall equipment effectiveness from 

manufacturing industry. The study does not directly involve the prioritisation of the 

maintenance strategies; however, it assessed the operational performance of infrastructure by 

multiplying the infrastructure availability, the infrastructure performance rate and the 

infrastructure quality rate subject to the maintenance planning. The underlying assumption was 

that the variation in each of the incorporated measures would not affect the other measures. 

Although this approach is simple, obtaining each measure involves collection of data or 

computation of different parameters which are not always possible to access or compute easily. 

Most importantly the concept of overall effectiveness is applied in the maintenance planning 

which is based on the total productive maintenance process. 

Lai et al. (2015) developed a framework for an optimum allocation of resources between 

different components of the urban rails system such as trains, signals and tracks by a trade-off 

between life cycle cost, system reliability (i.e. mean time between failures) and service 

reliability (i.e. delays in minutes). The framework was composed of two models that are the 

alternative evaluator (AE) and investment selector (IS). The AE module evaluates all 

alternatives for each component of the urban rails system and IS determines the best investment 

alternative for each component based on (i) maximization in service reliability subject to life 

cycle cost and (ii) minimisation of life cycle cost subject to service reliability. In subsequent 

studies,  (Lai et al., 2017) and (Lu et al., 2017) applied the same framework to develop an 

integrated model for the development of an optimal investment plan subject to the acceptable 

life cycle cost, system reliability and service reliability. This framework can be used for 

prioritisation of the maintenance strategies for urban trains. However, it is a complex model, 

requires a proven software for application and the underlying concept of its functioning 

improvement in one measure by compromising improvement in another make it an 

inappropriate choice.  

It is evident from the review that maintenance problems are quite diverse in nature, and thus 

approaches developed for solving a particular problem are not necessarily suitable for solving   

other problems. There is currently no approach that involves the prioritisation of the 

maintenance strategies based on improvement in both functional reliability and service 
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reliability. Thus, further work is needed to develop such an approach and evaluate its 

performance.  

The model presented in the study by (Li and Brown, 2004) for prioritisation of maintenance 

strategies in the power industry in which multiple measures are integrated into a single index 

looks promising as the basis for developing a similar model for the urban trains. This is because 

(i) Li and Brown’s model  also aims to improve the reliability (ii) it integrates performance 

measures that are established based on the indicators that measure the losses in reliability in 

the same way that the performance measures of urban trains are established based on the KPIs 

that measure the losses in reliability (iii) it measures the impact of functional failures on each 

factor of concern individually and (iv) it incorporates weights in the equation that allows the 

influence of the latent variables to be considered in the evaluation.  
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Table 2-4: Summary of studies of maintenance optimisation 

Authors’ names and 

study year 
Aim Criteria  Modelling tool 

Sriskandarajah et al. 

(1998) 

Optimisation of maintenance 

overhaul scheduling 

Total cost of earliness and tardiness (or 

total penalty for not satisfying the due 

dates)   

Maintenance requirements  

Developed a genetic algorithm 

by using a heuristic technique for 

global optimisation   

Lu (2003) 

Selection of maintenance 

strategy based on effectiveness 

in delivering a maximum 

consumer surplus  

Budget, crew, vehicle capacity, policy  

Engineering, safety and workshop 

capacity 

Developed a model by 

establishing a relationship 

between operational and 

maintenance plan by integrating 

performance measures - average 

wait time and headway variation 

Rezvanizaniani et al. 

(2008) 

Optimisation of preventive 

maintenance interval 

Cost  

Un-necessary maintenance work 

Designed a logic tree decision 

diagram 

Cheng and Tsao (2010) 

Selection of maintenance 

strategy based on a ratio of 

preventive maintenance to 

corrective maintenance 

constraint to the number of spare 

parts 

Cost 

Reliability (in terms of condition) 

Safety of workers and trains 

Maintenance quality 

Work efficiency of staff 

Quantity of spare parts required and 

failure rate of trains 

Used analytic network process 

Park et al. (2011) 
Optimisation of preventive 

maintenance interval 

Life cycle cost   

Availability 
 Used AvSim software 
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Han et al. (2011) 

Optimisation of mean time to 

failure (MTTF) and mean time 

to repair (MTTR) 

 Life cycle cost  

 Availability 

Developed a hybrid genetic 

algorithm combined with a 

heuristic method 

Aslam-Zainudeen and 

Labib (2011) 
Selection of maintenance types 

Rate of occurrence of failure 

Downtime (delay minutes) 

Applied a decision-making grid: 

hybrid of rule-based approach 

and the multiple criteria analytic 

hierarchy process 

Umiliacchi et al. (2011) 

Optimisation of preventive 

maintenance processing in sub-

system of railway (like rolling 

stock) 

Mission critical fault occurrence  

Life cycle cost 
Applied ontology-based model 

Asekun (2014) 
Optimisation of maintenance 

schedule 

Cost  

Reliability  

Applied multi objective 

optimisation model (proposed by 

Moghaddam, & Usher, 2011) 

Wu and Lin (2016) 
Optimisation of major 

maintenance schedule 

Cost  

Peak period passenger demand  

Workshop capacity 

Developed a genetic algorithm 

with a time-space network   

Lin and Lin (2017) 

Optimisation of high 

maintenance plan by assigning 

schedule to each train and 

maximizing the utilization of 

remaining running mileage 

Cost 

Workshop capacity 

Maintenance rate  

Peak period passenger demand 

Developed a simulated annealing 

based heuristic algorithm  
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2.3.3 Studies of the application of data collected in reliability measuring system 

While the RCM based maintenance planning studies reviewed in the previous two subsections 

provide useful knowledge of the application of the data collected on the KPI for functional 

reliability, these studies do not discuss how the KPIs data for functional reliability and service 

reliability are analysed for operational characterisation of the sub-systems. Thus, this section 

presents a review of other studies of application of the KPIs for reliability for improving the 

reliability of trains. The aim is to develop an understanding of how this data has been applied.  

Many studies have been conducted on the use of the KPIs, particularly of the data for services 

delayed, in the operational planning of urban trains system. Schmöcker et al. (2005) used 

services delayed data for selection of the service restoration strategy after the occurrence of FF 

in a train. In this study, the impact of constraints such as service frequency on the effectiveness 

of the strategy was considered by using simple mathematics calculations and charts. Services 

delayed data was also applied by Jiang et al. (2007) who used the data to characterise the 

propagation of delays on the network. The researchers used a model to simulate the impact of 

changes in availability, buffer time and number of cold standby trains in a fleet on service 

punctuality and reliability. Other studies that also applied services delayed data were a study 

by Preston et al. (2009) who used the data to analyse the impact on users and freight trains in 

monetary units by using the traditional schedule utility approach and then a modelling approach 

to compute the reliability premiums. In order to develop a model to reduce the services delayed, 

Alwadood et al. (2012) reviewed (1) the types and causes of services delayed, (2) the impact 

of services delayed on operator and the passengers in monetary terms and (3) the reduction in 

services delayed due to various projects by different companies across Asia and Europe.  

Some other studies that also applied services delayed data were a study by (Bergström and 

Krüger, 2013) who applied the services delayed data to analyse the distribution of delays on 

the network with respect to their vulnerability, space and time in order to identify where the 

measures for improved reliability need to be provided on the network. Finally, a study by 

(Barron et al., 2013) who applied data collected on the FFs of trains together with the data on 

the hours of train delays and on the hours of delays for users. The authors used simple bar 

charts to analyse the impact of FFs on service reliability and on the users. One further study of 

the application of data collected in the reliability measurement system was a study by (Bernal 
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et al.) used services delayed data to analyse the impact on ridership by using GIS software and 

multiple linear regression.   

By contrast, there are very few studies of application of KPIs in the maintenance planning. In 

fact after an extensive literature research, only one study was found. Treurnicht (2012) analysed 

the FF data to determine the contribution of critical failure modes of the sub-systems of a 

system of urban trains to the number of services delayed, the number of services cancelled and 

the delays in minutes. The researchers then used SDA to analyse the data obtained in order to 

determine the cost for the loss in reliability due to the FFs in trains.  

It is clear from the review that studies of operational planning mainly used the data collected 

on the FFF and the number of services delayed for post disruption management, while only 

one study of maintenance planning by (Treurnicht, 2012) was found that analysed the KPIs 

data to determine the contribution of FFF in causing services delayed, services cancelled and 

delayed minutes to determine the consequential cost of the loss in reliability. Thus, it is still 

not known what information is assessed from the KPIs data for operational performance 

characterisation of the sub-systems for maintenance planning, and whether or not SDA is useful 

in characterising the operational performance of sub-systems. Thus, further research is needed 

to develop this understanding. 

2.4 Review of studies using exploratory multivariate data analysis 

techniques for big data analysis 

The reliability measuring system for an urban train fleet is an amalgamation of the different 

datasets from the reliability KPIs. This amalgamation results in an enormous amount of data 

that needs to be analysed using big data analytics tools to extract the maximum useful 

information from the data in the best possible way. There has been interest in the application 

of these tools in the railway industry (Thaduri et al., 2015) particularly given the clear 

advantages they offer over traditional analytical techniques that are based on SDA that only 

provides a summary of data (D’Agostino et al., 2016). In fact, there are reasonable number of 

studies that shows applications of different big data analytics tools for operation and 

maintenance of trains. Fink et al. (2013) applied a combination of conditional restricted 

Boltzmann machines and echo-state networks for binary time series prediction of occurrence 

of disruption in railway operation in terms of speed restrictions due to functional failures in 
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tilting system of train; also, Fink et al. (2015) used fuzzy classification with restricted 

Boltzmann machine and echo-state networks approach for prediction of failures in door system 

of the train; Fang et al. (2020) applied Mont Carlo Simulation for assessing the criticality of 

components of railway network in causing disruption on the network; Crespo Márquez et al. 

(2020) developed a predictive model using a combination of generalised linear models, 

artificial neural network, decision trees, random forest, gradient boosted trees and support 

vector machines for designing condition-based maintenance plan for axle bearings of trains. In 

all these studies, big data analytical tools were applied to approximate the original data for 

future outcomes. Big data analytical techniques are based on inferential statistics that enables 

analysts to learn from experience by recognising patterns, dependencies and relationships and 

to forecast outputs (D’Agostino et al., 2016).  

However, due to the complexity of big data, data dimension reduction techniques often need 

to be employed before statistical inference is performed (Fan et al., 2014). Exploratory 

multivariate data analysis techniques, such as principal component analysis (PCA) and multiple 

factor analysis (MFA), that are data dimension reduction techniques are commonly used for 

analysis of big data in many fields including the rail industry. Such as (Fink et al., 2013) applied 

PCA to reduce the dimensionality and to extract the important features from the speed 

restriction data of train for development of a prediction model. PCA is used to analyse a dataset 

that involves a single dataset, while MFA is used to analyse data involving multiple datasets.  

This section aims to provide a review of selected studies that used such techniques to analyse 

big data in order to understand why these techniques were selected. These studies can be 

grouped according to whether they involve a single dataset or multiple datasets.  

2.4.1 Studies of a single dataset using PCA  

PCA, the oldest exploratory multivariate data analysis technique, has been extensively used in 

scientific studies (Abdi and Williams (2010). PCA orthogonally transforms data that involves 

many variables that are highly correlated and dependent into data that involves few variables 

that are uncorrelated and independent from each other. This transformation occurs without 

much loss of information, and reveals the hidden structure of a dataset (Jolliffe, 2002, Abdi 

and Williams, 2010). This new set of the few variables which are generated by the linear 

combination of the many variables is called the principal components. The principal 

components are the factors that provide insight into the underlying phenomena which is 
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responsible for making the data variables highly correlated. PCA is used to analyse quantitative 

data and it can be performed either through eigen value decomposition or by singular value 

decomposition (SVD). However, PCA based on SVD is numerically more precise (Kalisch, 

2012) and the computation process is fast.  

Some recent studies from different fields show the range of applications of PCA.  PCA has 

been applied to examine the preferences of consumers for mineral and tap water (Platikanov et 

al., 2017); to investigate the performance of athletes in different decathlon events (Kassambara, 

2017b); to identify the key indicators responsible for degradation of insulation cable in a 

nuclear power plant (De Silva et al., 2017);  to evaluate the effect of chemical tests on patients 

(Qureshi et al., 2017); to  characterise the texture of pastries produced in different batches 

(Dunn, 2019).  

Other studies show applications of PCA in urban rail industry. It has been applied to 

characterise the reliability performance of a train passenger assess system under the tightened-

up operating conditions (Turgis et al., 2010); to evaluate the condition symptoms for 

classification of rail track for maintenance (Żółtowski, 2012); to categorise the trains stations 

based on their criticality in propagating (Dekker et al., 2019).  

Since the ultimate objective of these studies was to enable one choice to be made from the 

many available, PCA was selected as the technique to use.  In PCA, the data are characterised 

based on the underlying patterns and interrelationships between the data observations and the 

variables based on the influence of the variables that are not directly observable. Thus, PCA is 

a useful technique that makes it easier to deal with data sets that involve many variables where 

the analyst is required to determine which one among them needs to be selected for a particular 

purpose. It enables the dominant features of data to be extracted by eliminating the less 

important features. However, although PCA provides a sophisticated way of revealing the 

underlying causes of recurrent and non-recurrent variability patterns in the data, PCA has been 

found to sometimes fail  to reveal  important non-linear patterns from the data, and to be unable 

to characterise well  structures which are  not orthogonal to the previous principal component 

(Lever et al., 2017). 
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2.4.2 Studies of multiple datasets using MFA 

MFA is an extension of PCA which is used to analyse simultaneously multiple data sets that 

can include both qualitative and quantitative data.  Abdi et al. (2013) stated that the first step 

of MFA is to perform PCA on each dataset individually and then to normalize each dataset by 

dividing their elements with their first singular value. Normalization is crucial to eliminate the 

dominant effect of any data set having a larger number of variables than others.  All normalized 

datasets are then fused into one grand table. The second step of MFA is to perform PCA on the 

grand table.  

MFA has also been used in a wide range of fields. Pagès (2005) used MFA to determine the 

patterns of perceptions defined by several sensory parameters for evaluation of wines by 

experts; Wang et al. (2011) analysed the data from large scale blackout accidents  for 

performance assessment of electricity firms considering several risks associated with the power 

grid; Platikanov et al. (2017) determined the preference of consumers for mineral or tap water 

by studying  physiochemical parameters in relation to the rating given by  consumers. 

MFA has very similar advantages and disadvantages to those of PCA. The basic concept in 

applying MFA is that the same underlying pattern exists within the different datasets that is 

responsible for making the datasets similar and dissimilar from each other (De Roover et al., 

2012). For this reason, MFA is commonly applied in industries where numerous parameters 

are used for measurements from several perspectives that are linked with the goals of the 

particular business and the observations must be characterised with respect to all the 

parameters. One major limitation of MFA is that it may show a false relationship between the 

data variables and the latent variables associated with the dimensions for no apparent reason. 

Hence, for the synthetic non-feasible patterns to be disregarded, it is very important that both 

PCA and MFA are performed by an analyst who knows all the details of the process.  

It is clearly evident from the review that exploratory multivariate data analysis techniques are 

commonly used in many applications in which big data sets are involved, with PCA used when 

there is a single dataset and MFA when there are multiple datasets. Both these techniques 

characterise the data based on the amount of variance explained by the variables in the data 

that are not directly observable. Thus, these techniques are excellent to use to characterise the 

operational performance data of urban trains considering influence of the latent variables.  
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These techniques are discussed in more detail in Chapters 4 and 5 when they are used in the 

analysis of the complex big data sets from the UTS Melbourne urban train system.  

2.5 Summary 

This chapter has provided the theoretical background on RCM based MMS and reviewed 

relevant published studies of RCM based maintenance planning of urban train fleets. From the 

review of these studies, it is evident that the major gaps in the research are:  

(1) It is not known how the conventional approach of reliability analysis uses the KPIs 

data for characterisation of the operational performance of urban trains for 

maintenance planning. 

(2) There is no clear understanding of how the influence of the latent variables (i.e. the 

operational constraints) on the operational performance of the sub-systems is 

considered in the reliability analysis. 

(3) It is well-established that FFF is used as the conventional criterion for identification 

of the critical sub-systems in reliability analysis, but it is not known whether the sub-

systems identified as critical using only FFF are also critical for service reliability.  

(4) There is no specific tool that can be used to prioritise different maintenance strategies 

for urban trains that integrate the KPIs for both functional reliability and service 

reliability while considering the influence of the latent variables. 

Hence, the broader aim of this research, as stated in Section 1.3 of Chapter 1, is to investigate 

the RCM process used by the urban rail industry for trains, and to propose a new improved 

RCM process that achieves the overall reliability by integrating the performance measures for 

functional reliability and service reliability, and the influence of latent variables in the process. 

The rest of the thesis reports the research undertaken to achieve this aim. 
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Chapter 3:  THE CONVENTIONAL APPROACH OF RELIABILITY 

ANALYSIS FOR OPERATIONAL PERFORMANCE 

CHARACTERISATION OF AN URBAN TRAINS FLEET 

3.1 Introduction 

It is known from Chapter 2 that the reliability analysis realises the operational performance 

characterisation of an urban trains fleet considering the effect of functional reliability on service 

reliability for the maintenance planning. However, how the conventional approach of the 

reliability analysis applies the key performance indicators (KPIs) for the reliability for 

operational characterisation has not been investigated. Thus, there needs to be an investigation 

of the conventional reliability approach as stated in the first objective of the research in Chapter 

1. This will be achieved through a case study of the urban train service (UTS) in Melbourne in 

order to acquire the richest possible understanding of the conventional approach. 

To accomplish this research objective, the first step is to explain the conventional concept of 

operational performance characterisation of the sub-systems in the process of reliability 

analysis.  The next step is to demonstrate how the conventional approach works by using it to 

analyse the data collected from the UTS Melbourne. The final step is to evaluate the usefulness 

of the conventional approach in transforming the KPIs data into useful information for the 

maintenance planning. 

3.2 Conventional reliability analysis approach for operational performance 

characterisation of urban trains  

This section explains the conventional concept of operational performance characterisation of 

the sub-systems of an urban trains fleet for the maintenance planning based on the information 

collected from the UTS Melbourne. Information was collected through one-on-one and group 

meetings with their maintenance and operational personnel, a review of their internal 

documents that included the technical maintenance plan, monthly performance reports, 

diagnostic reports, engineering standards, assets class strategy, faults finding guidelines, 

reliability growth plan, and site visits. The concept is first discussed to develop an 

understanding of how the KPIs for reliability are applied for the operational characterisation 

i.e. what information is investigated from the KPIs data for the maintenance planning? Then, 



Chapter 3 

57 

 

section explores how the operational characterisation is achieved i.e. which an analytical 

technique is applied for it? 

3.2.1 Concept of operational performance characterisation of the sub-systems for 

maintenance planning 

The sub-systems of a complex urban train system have varying importance and challenges to 

the operation of service, so the operational performance characterisation of the sub-systems 

provides a lens to the differences in their operational performances for the maintenance 

planning. This characterisation aims to identify the operationally critical sub-systems by using 

the KPIs for reliability. The sub-systems are primarily categorised with respect to the functional 

failure frequency (FFF) for identification of the functionally critical sub-systems. In addition, 

the sub-systems are categorised with respect to the number of services cancelled and the 

number of services delayed caused by the FFF of various sub-systems for identification of the 

service critical sub-systems. This means that the operational performance characterisation of 

sub-systems using KPIs for reliability is performed in Step 1 of reliability analysis, follow by, 

functional failure analysis in Step 2. Although findings of Step 2 establish reasons for 

maintenance requirements of the sub-systems, the findings from Step 1 provides additional 

support in the decision-making process. However, identification of the operationally critical 

sub-systems is not as simple as it seems. The repository of operational performance data is very 

large in size, complex and multivariate given that the data measures the reliability of the 

multiple sub-systems of a complex system of an urban train in terms of the multiple KPIs under 

influence of the dynamic operational environment of the urban rail as shown in Figure 3-1. 
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Figure 3-1: Collection and extraction of operational performance data of the UTS Melbourne for 

maintenance planning.  

The figure shows that inputs from the multiple sources are used to generate a rich repository of 

operational performance data of the urban trains. This data is then cleaned and processed in order 

to retrieve the various datasets for operational characterisation. 

This big data is aggregated per month and per sub-system for each KPI for reliability. Although 

the impact of occurrence of functional failures in the sub-systems on the service reliability is 

measured in terms of number of services cancelled, number of services delayed and passenger 

weighted minutes, the discussion in this study is only limited to two KPIs for service reliability 

i.e. number of services cancelled and number of services delayed. The datasets of the monthly 

FFF profile, the sub-system FFF profile, services cancelled profile caused by the FFF of the 

sub-systems and the services delayed profile caused by the FFF of the sub-systems are retrieved 

from the repository of operational performance data as shown in Figure 3-1. These datasets are 

then used to establish various characteristics to trace and evaluate the trends and patterns of the 

operational performance of the sub-systems. In general, data for each month of the year for last 

few years are analysed in order to trace the trends and patterns of the operational performance 

of the sub-systems within a year and from year to year. This information enables the 

maintenance planners to trace the reason for changes in operational performance of the sub-

systems (if any) in relation to changes in the operational environment of an urban rail system. 

The operational characteristics are established based on an individual and relative assessment 

of elements of their relative datasets. Hence, each operational characteristic involves extraction 

of a specific feature from its relevant dataset that are crucial for a decisive decision-making in 

the maintenance planning. This study presents and discusses the operational characteristics of 

the sub-systems systematically in the best interest of supporting the decision-making process 
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of the maintenance planning. Table 3-1 lists the datasets that will be used to obtain the 

operational characteristics.  

 

Table 3-1:  Datasets and the corresponding operational characteristics  

Datasets Operational Characteristics 

Monthly FFF profile 

 

C1  the critical months 

C2  the similar and dissimilar months 

Sub-system FFF profile 

C3  the critical sub-systems 

C4  the similar and dissimilar sub-systems 

Monthly FFF profile together with sub-

system FFF profile 

C5  the relationship between the FFF profiles of sub- 

systems and the months 

Services cancelled profile caused by the 

FFF of the sub-systems 

C6  the critical sub-systems for services cancelled  

Services delayed profile caused by the 

FFF of the sub-systems 

C7  the critical sub-systems for services delayed  

Monthly FFF profile together with the 

services cancelled profile 

C8  relationship between the FFF and the number of 

services cancelled  

Monthly FFF profile together with the 

services delayed profile 

C9  relationship between the FFF and the number of 

services delayed  

 

Operational characteristics C1 to C5 as listed in Table 3-1 aim to establish the operational 

performance of the sub-systems based on the FFF, while operational characteristics C6 to C 

aim to establish the operational performance of the sub-systems considering the effect of their 

FFF on the KPIs for service reliability. The datasets, the operational characteristics obtained 

from them and their use in maintenance planning are outlined in this section. 

3.2.1.1 Monthly FFF profile 

The number of reported functional failures from the various sub-systems in a month is used to 

generate the monthly FFF profile. The monthly FFF profile is analysed for operational 

characteristics C - the critical months and C2 - the similar and dissimilar months.  
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Since the aggregated value of the KPI of the different sub-systems in a month gives the monthly 

value of that KPI, this means that the months represent the individuals in which the data on 

FFF of each sub-system is recorded. This monthly FFF is applied to categorise the months for 

identification of the critical months i.e.C1 A month is defined as critical if the FFF in that 

month not only supersedes the assigned monthly target, but it also makes a major contribution 

in generating the FFF of the year. Thus, the critical months in a year are the months that have 

provided the unfavourable operational environment for the operational performance of the sub-

systems. Hence, C1 identifies the months in which the problem occurred and there is a need 

to focus on them in the decision-making process of the maintenance planning to reduce the 

monthly FFF. 

C2 - the similar and dissimilar months differentiates between the similar and dissimilar 

months based on the contribution of FFF from different sub-systems in generation of the 

monthly FFF profile. Months that have comparable FFF from the same sub-systems are similar 

months, and the months that do not have comparable FFF are dissimilar months.  It is most 

likely that the months in which the sub-systems have similar operational performance may have 

some commonalities in their operational environment, and the months in which the sub-systems 

have dissimilar operational performance they may not. This means that C2 provides an 

assessment how the months are related to each other i.e. month-to-month relationship. Hence, 

C2 can be used to ease the decision-making process in the maintenance planning by dealing 

with the similar and dissimilar months in the groups instead of managing them one by one. 

To sum up, the monthly FFF profile is analysed to establish C1 and C2 by identifying the 

critical and non-critical months, and the similar and dissimilar months.   

3.2.1.2 Sub-system FFF profile 

The number of reported functional failures for each sub-system in each month is used to 

generate the sub-system FFF profile, which is then evaluated for operational characteristics C3 

– the critical sub-systems and C4 – the similar and dissimilar sub-systems. 

An aggregated value of FFF of the sub-systems in different months gives the sub-system FFF 

for a year. This sub-system FFF is applied to categorise the sub-systems for identification of 

the critical sub-systems in a year i.e. C3 – the critical sub-systems.  A sub-system is defined as 

critical if its FFF not only supersedes the assigned target, but it also makes a major contribution 

in generating the FFF of the year. Thus, the critical sub-systems in a year specify the sub-
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systems that are functionally unreliable. Hence, C3 identifies the sub-systems that are 

functionally unreliable and there is a need to focus on them in the decision-making process of 

the maintenance planning to reduce the sub-system FFF. 

C4 differentiates between the similar and dissimilar sub-systems based on their FFF recorded 

in various months. The sub-systems that have comparable FFF in the same months are similar 

sub-systems, and the sub-systems that do not have comparable FFF in the same months are 

dissimilar sub-systems. It is most likely that the sub-systems that have similar operational 

performance in the months may have some commonalities in their functional reliability, and 

the sub-systems that have dissimilar operational performance in the months may not have.  This 

means C4 - the similar and dissimilar sub-systems assesses how the sub-systems are related 

to each other i.e. subsystem-to-subsystem relationship. Hence, C4 can be used to ease the 

decision-making process in the maintenance planning by dealing with similar and dissimilar 

sub-systems in groups instead of managing them one by one. 

To sum up, the sub-system FFF profile is analysed to establish C3 and C4 by identifying the 

critical and non-critical sub-systems, and the similar and dissimilar sub-systems.   

3.2.1.3 Monthly FFF profile together with sub-system FFF profile  

Evaluation of the monthly FFF profile and the sub-system FFF profile as discussed above 

involve individual assessment of these profiles. An additional useful operational characteristic 

C5 – the relationship between the FFF profiles of sub-systems and the months is able to be 

established by the relative assessment of these two profiles in order to analyse the effect of 

improvement in one profile on the other. This can be interpreted in terms of subsystems-to-

months and months-to-sub-system relationships.  

The analysis of subsystems-to-months relationship establishes operational characteristic C5(a) 

- characterisation of the monthly FFF profiles. This operational characteristic explores the 

monthly FFF profiles to identify the sub-systems that contributed the most in making the 

months similar and dissimilar This enables a common latent variable to be traced in the 

operational environment of the months, and makes it possible to understand how its presence 

or absence can influence the operational performance of various sub-systems. Thus, this 

identifies the combination of the sub-systems in the decision-making process of the 

maintenance planning that needs to be focussed on for improvement in the FFF profiles, i.e. 

the reduction in the FFF of various months.  
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In addition, the months-to-subsystem relationship aims to establish operational characteristic 

C5(b) - influence of the sub-system on FFF of the months. It determines the sequence of 

influence of the sub-system on the months i.e. arrangement of months in descending order 

based on the FFF of the sub-system. C5(b) is required to analyse how the functional reliability 

of the sub-system varies in a year as this can facilitate in tracing the seasonal patterns over the 

years (if any exists). Hence, C5(b) enables the tracing of the latent seasonal variables in the 

decision-making process of the maintenance planning, so seasonal adjustment factors can be 

applied for the desired improvement in the operational performance of the sub-system. 

To sum up, the monthly FFF profiles in relation to the sub-system FFF profiles are analysed to 

establish C5(a) and C5(b) by identifying the combination of sub-systems that resulted in 

similar and dissimilar months, and sequence of months in descending order of FFF of the sub-

system in them.   

3.2.1.4 Services cancelled and services delayed profiles 

The reported number of services cancelled and the number of services delayed caused by the 

FFF of the sub-systems in various months are used to generate the services cancelled profile 

and the services delayed profile respectively. These profiles are analysed to obtain operational 

characteristics C6 – the critical sub-systems for services cancelled and C7 – the critical sub-

systems for services delayed. 

An aggregated value of the number of services cancelled and the number of services delayed 

caused by the FFF of the sub-systems in various months gives the corresponding total number 

of services cancelled and the total number of services delayed for the year. This means that the 

months represent the individuals in which the data on number of services cancelled and number 

of services delayed due to the FFF of each sub-system are recorded. The sub-systems are 

critical for service cancellation if the number of services cancelled not only supersedes their 

assigned target, but they have also a major contribution in the total number of services cancelled 

in the year. Similarly, the sub-systems are critical for service delays if the number of services 

delayed not only supersedes their assigned target, but they have also a major contribution in 

the total number of services delayed in the year. Identification of the critical sub-systems with 

respect to the effect of FFF on the number of services cancelled and the number of services 

delayed show the criticality of the sub-system for service reliability. Hence, C6 and C7 identify 
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the sub-systems that need to be focussed on for improvement in their functional reliability in 

order to achieve service reliability targets.  

To sum up, the services cancelled profile and the services delayed profile are analysed to 

establish C6 and C7 by identifying the critical sub-systems based on the effect of their FFF on 

the services cancelled and services delayed profiles. 

3.2.1.5 Services cancellation profile and services delayed profile together with monthly 

FFF profile 

Evaluation of the services cancelled profile and the services delayed profile as discussed above 

involve individual assessment of these profiles. Additional useful operational characteristics 

C8 - relationship between the FFF and the number of services cancelled and C9 - relationship 

between the FFF and the number of services delayed are able to be established by assessing the 

services cancelled profile in relation to the monthly FFF profile, and the services delayed 

profile in relation to the monthly FFF profile. The relative assessment of these profiles is 

needed to analyse the effectiveness of the maintenance plan in realising the strategical target 

for functional reliability together with the strategical targets for service reliability. This can be 

interpreted through the consolidated analysis of the KPIs in their cause-and-effect structure i.e. 

FFF-to-number of services cancelled and FFF to-number of services delayed. This implies that 

C8 and C9 involve the analysis of a one-to-one relationship to determine how the KPIs for 

functional reliability and service reliability varied together. Hence, C8 and C9 provide 

information about the relative status of the KPIs in the decision-making process of the 

maintenance planning.  

To sum up, the services cancelled profile and services delayed profile are analysed in relation 

to the monthly FFF profile to establish C8 and C9 by investigating the relationship between 

the KPIs for functional reliability and service reliability.  

This section shows that operational characterisation is a comprehensive process that involves 

extraction of trends and patterns of operational performance of the sub-systems. The 

operational characterisation determines the effectiveness of the maintenance plan in delivering 

the assigned targets for the KPIs in the face of operational challenges. These operational 

challenges are the latent variables related to the overall operational environment or the 

functional performance of the sub-systems in a given reporting month or a combination of both. 

Finally, this information is integrated into the decision-making process at the strategical level 
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of the maintenance planning to prioritise the sub-systems selected for the maintenance. It also 

provides guidance in determining the level of maintenance efforts that are required to improve 

the operational performance of the sub-systems. 

3.2.2 Analytical technique for establishing operational characteristics 

 As stated in Section 2.3.1 of Chapter 2, simple descriptive statistics is conventionally applied 

for an investigation of the KPIs of any urban train system. This technique is a primary tool for 

summarising any data as it is easy to perform the analysis and to present the results. Since the 

data analysis is an expensive process, an analysis is considered to be adequate if it is able to 

trace whether the trend is up or down and to compare the current values with the historic values 

(Stenström et al., 2012). Hence, this chapter also applies simple descriptive analysis (SDA) for 

establishing the operational characteristics of the sub-systems. Given that the KPIs for 

reliability are established based on the frequency counts of operational failures of the sub-

systems, an analytical model for the operational characterisation based on SDA mainly works 

on the rule of descending order. The different SDA tools that are applied for establishing the 

different operational characteristics are discussed here.  

Pareto curve: Operational characteristics C1, C3, C6 and C7 involve characterisation of the 

data in terms of detecting the important elements of their dataset. Hence, these characteristics 

are established by the Pareto analysis. This is simply achieved by arranging the dataset in 

descending order from the largest to the smallest value of the respective KPI. Data is sorted to 

rank the elements of the dataset that are then used to explain the level of their criticality. The 

sorted data is then visualised in a simple vertical bar chart that at a glance identifies the highest 

and the lowest value of the individuals in the dataset. The individuals involved in the data are 

then used together with the cumulative percentage of the KPI under study (i.e. FFF, number of 

services cancelled or number of services delayed) to plot a line graph which is the Pareto curve. 

Thus, the Pareto chart is a combination of a simple bar chart and the Pareto curve. The value 

of the KPI is displayed on the left y-axis, the cumulative percentage of the KPI on the Pareto 

curve is displayed on the right y-axis, and the individuals involved in the data (that are the 

months or the subsystems) are displayed along the x-axis.  
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The cumulative percentage of KPI at any point X on the Pareto curve can be computed by the 

formula shown in Equation 3-1: 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐾𝑃𝐼 𝑎𝑡 𝑋 = ( 
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒  𝐾𝑃𝐼 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑋 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾𝑃𝐼
) ∗ 100 

 

3-1 

 

 

Using a table in which the KPI data are arranged in ascending order, the cumulative value is 

obtained by adding the percentage of KPI at any point X to the sum of all its predecessors, 

while the total value of the KPI is the sum of KPI value for all months or the sub-systems. 

Since the data are arranged in ascending order, according to Eq 3.1, the cumulative percentage 

of KPI at X is greater than or equal to the cumulative percentage of the previous individual, 

and less than or equal to that of the next individual. The cumulative percentage of the last 

individual in the dataset is always equal to 100%.  

Since the Pareto analysis is applied to measure and categorise the individuals involved in the 

data, the cumulative percentage is used to determine the number of individuals (i.e. the months 

or sub-systems) that lie above (or below) a particular cumulative percentage value in the data 

set. The Pareto principal defines this value at 80% cumulative percentage of KPI as the Pareto 

principle states that 80% of consequences come from 20% of causes. For this reason, the Pareto 

principle is also known as 80/20 rule. Thus, to identify the critical months or the critical sub-

systems, a cut-off line is marked on the Pareto curve at 80% cumulative percentage of the KPI, 

and a vertical line from the point of intersection of the Pareto curve and the cut-off line is drawn 

to the x-axis thus dividing the months or the sub-systems into the critical or non-critical 

category. All months or sub-systems with cumulative percentage values up to the point where 

the vertical line meets the x-axis are the critical months or sub-systems, and the all other months 

with cumulative percentage values greater than the point are the non-critical months or sub-

systems.  

Based on the interpretation of the 80/20 rule, the identified critical months or the critical sub-

systems of the urban train system should be 20% of the months in a year or the sub-systems 

that account for 80% of their dataset. This signifies in the maintenance planning that there is 

80% opportunity for improvement in the operational performance by dealing with only 20% of 

the elements of the dataset. This theoretically fulfils the requirement for identification of the 
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topmost critical months for establishing C1, and topmost critical sub-systems for establishing 

C3, C6 and C7. 

Composite bar chart: Operational characteristics C2 and C4 characterise the data in terms of 

detection of relationships between the elements of the same dataset. Hence, these 

characteristics are established by compositional data analysis. The sub-systems are arranged in 

descending order of their FFF within each month for establishing C2. The sorted data is then 

visualised in the composite bar chart that shows the FFF profile of each month by stacking the 

FFF for each sub-system on top of each other. Hence, the size of the section of each sub-system 

indicates its contribution in generation of the monthly FFF profile. The sub-systems that have 

visually comparable sections in the bars of different months have comparable FFF in those 

months; hence, those months are the similar months. By contrast the sub-systems that have 

visually incomparable sections in the bars of different months have incomparable FFF in those 

months; hence those months are the dissimilar months. In the same way, the composite charts 

for C4 are plotted and interpreted. The only difference is that in case of C4 , the FFF for each 

month are stacked on top of each other to represent the composition of the FFF profile of each 

sub-system.  

In addition, the advantage of this compositional data analysis is that the same composite bar 

charts for C2 and C4 can be applied for establishing operational characteristics C5(a) and 

C5(b) respectively. In the case of C5(a), comparable sizes of sections of the sub-systems in 

bars of the same months indicate that these sub-systems have the greater contribution in making 

those months similar. By contrast, the non-comparable sizes of sections of the sub-systems in 

bars of the same months indicate that those sub-systems have the greater contribution in making 

those months dissimilar. In the case of C5(b), the months need to be arranged in descending 

order of their FFF for each sub-system. This sorting of data represents the sequence of influence 

of an individual sub-system in the FFF profiles of the months.   

Combination chart: Operational characteristics C8  and C9  characterise the data by detecting 

the relationship between the elements of two datasets. Hence, these characteristics are 

established by using bivariate data analysis. The aim is to trace the pattern of effect of change 

in one KPI on the other KPI. Therefore, this is achieved by a combination of a composite bar 

chart with a line curve. The line curve of the monthly FFF profile is combined with the 

composite bar chart of services cancelled profile for analysing C8 . Similarly, the line curve of 
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the monthly FFF profile is combined with the composite bar chart of services delayed profile 

for analysing C9 . A rise or fall in the line curve of monthly FFF together with an increase or 

decrease in the height of the bars will show the effect of the monthly FFF on the monthly 

number of services cancelled and the number of services delayed respectively. The analysis 

can be extended further to measure the effect of the monthly FFF on an individual sub-system 

by comparing the rise or fall in the line curve with an increase or decrease in the size of section 

of the same sub-system in the bars of different months.  

In summary, SDA is usually applied for operational characterisation of the sub-systems as it 

offers several simple tools to characterise the data in terms of descriptive parameters that are 

easy to report. In addition, an analytical model which is based on SDA is budget-friendly.  

3.3 Operational performance characterisation of the sub-systems by using 

SDA 

This section first discusses the data and confidentiality concerns, then presents and discusses 

the results obtained by the application of SDA to the data collected from the UTS Melbourne. 

The results are discussed to evaluate the usefulness of SDA in establishing the desired 

operational performance characteristics of the sub-systems.  

3.3.1 Data and its confidentiality concerns 

Raw data on operational performance of urban trains for six years were collected from the UTS 

Melbourne. Data were collected in Year 6, and by that time over 2300 train services on 16 

different lines were provided by UTS Melbourne each weekday. Over 230 million annual 

passenger trips were made which is predicted to be increased to 312 million by 2024. Data 

details are as follows: 

1 The focus of this study is only on urban trains not on any other system of urban rail industry 

such as signal system and infrastructure, thus data on FFF of urban trains were only 

collected. 

2 Data on delays and cancellations in service due to occurrence of FFs in trains were only 

collected. This means that disruption in service due to occurrence of FFs in any other sub-

system of urban rail system such as signals and infrastructure, and due to any other reason, 

such as strikes and planned maintenance were not included in the data.  
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3 Trains from four different manufacturers comprised the fleet. Trains from each 

manufacturer represent one train type in the fleet, and they were coded as A, B, C and D 

for analysis.  

4 No new trains were introduced in these six years. However, the oldest trains i.e. those of 

train type D, were removed from the service after Year 3. 

5 The total fleet was made up of 421 trains excluding train type D. A unit of 3 cars, composed 

of 2 driving motor cars and one intermediate trailer, were operated as 6-car trains.  

6 Train type A was 185 in number, train type B was 72 in number and train type C was 164 

in number. 

7 All trains of type A, B and C were continuously in operation i.e. no major out of operation 

period in six years. Similarly, there was no major out of operation period for train type D 

from Year 1 to Year 3. 

8 An average age of train type A, B and C was 30 years, 11 years and 6 years respectively. 

9 There were 19 sub-systems on a train that were coded as S1, S2, …., S19. All train types 

had the same sub-systems. 

10 There was a maintenance strategy for each sub-system and there was no major change in it 

through six years.  

Since the focus of this study is on operational performance characterisation of the sub-systems, 

no information relating to the functional characteristics of the sub-systems such as failure 

modes or the configuration of the sub-systems was collected. Thus, the analysis presented in 

this study is limited to the operational characterisation of sub-systems using the KPIs for 

reliability. Due to the confidentiality concerns of UTS in Melbourne, passenger weighted 

minutes was not included in the analysis presented in this study. Thus, data was only collected 

for each KPI for reliability except passenger weighted minutes for each month of the year. Data 

was processed and cleaned in Microsoft excel. An occurrence of each FF does not result in 

disruption in service in terms of delays and cancellations. Thus, non-adherence to scheduled 

arrival time is used as a measure for reduction in operational performance of sub-systems due 

to the occurrence of FFs. A threshold of 04’59” for on-time arrival was applied to compute the 

FFF per sub-system and per month. This means that the functional failures that resulted in 

delays of less than or equal to the threshold of on-time arrival were discarded from the analysis. 

The number of services cancelled and the number of services delayed were then calculated 

from the collected data.  
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To protect the data, the names of the manufacturing companies and the sub-system were coded 

to protect the use of confidential data. In addition, the results are only discussed in order to 

evaluate the conventional reliability analysis approach. Hence, the findings cannot be used to 

assess the performance of the fleet of the participating franchise by any means.  

3.3.2 Analysis of the operational characteristics of the sub-systems 

This section presents the operational characteristics of the sub-systems linked to their datasets 

that were obtained by the application of SDA to the data of the UTS Melbourne. The results 

are discussed to evaluate the usefulness of SDA in establishing the operational characteristics 

of the sub-systems. 

3.3.2.1 Evaluation of the monthly FFF profile 

In order to evaluate the usefulness of SDA to characterise the monthly FFF profile, the monthly 

FFF profile for each study year is first evaluated based on the FFF for each month to analyse 

C1 – the critical months. It is then evaluated based on contribution of the FFF from each of the 

nineteen sub-systems in the FFF of each month to analyse C2 – the similar and dissimilar 

months. Figure 3-2 shows the mapping of FFF of the months for the six study years in the 

Pareto charts. Using the Pareto principle, the percentage at which the curve reaches 80% is 

used to identify the critical and non-critical months. 

 

 



Chapter 3 

70 

 

 

 

 



Chapter 3 

71 

 

 

 

Figure 3-2: Criticality categorisation of the months for identification of the critical months. 

Monthly FFF for each study year are mapped in the Pareto chart. Each chart shows the months in 

descending order of their FFF. On each chart, a cut-off is marked at 80% of cumulative FFF that 

identifies the months as critical or non-critical. 

 

 

As can be seen in Figure 3-2, there are 8, 9, 10, 9, 8, 8 months identified as critical in Years 1, 

2, 3, 4, 5 and 6 respectively. It is clear that too many critical months have been identified in 

each year using the Pareto curve. As stated in Section 3.2.2, the application of the Pareto 

principle aims to identify 20% of the months in the year that account for 80% of the yearly 

FFF, and then the maintenance plan can focus on those few months to deliver the biggest impact 
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in terms of reduction in the yearly FFF.  However, in this case the Pareto principle identified 

66.6% of the months as critical in Years 1, 5 and 6; 75% of the months as critical in Years 2, 4 

and 10; and 83.3% of the months as critical in Year 3. Hence, it is concluded that identification 

of only the topmost critical months is not achievable by application of SDA.  

To make it easier to analyse whether a particular month is critical or non-critical for any year, 

the critical and non-critical months for the six study years are presented in calendar order in 

Table 3-2. 

 

Table 3-2: Criticality categorisation of the months  

Study Year Critical months Non-critical months 

1 Jan, Feb, Mar, Apr, May, Jun, Sep and Dec Jul, Aug, Oct and Nov 

2 Jan, Feb, Mar, Apr, May, Jun, Jul, Oct and Nov  Aug, Sep, and Dec 

3 
Jan, Feb, Mar, Apr, May, Jun, Jul, Oct, Nov and 

Dec 
Aug and Sep 

4 Jan, Feb, Mar, May, Jul, Aug, Sep, Oct and Dec Apr, Jun and Nov 

5 Jan, Feb, May, Jun, Aug, Sep, Oct and Dec Mar, Apr, Aug and Nov 

6 Jan, Feb, Mar, May, Jun, Jul, Aug and Dec Apr, Sep, Oct and Nov 

 

 

As can be seen in Table 3-2, there are some months that are recurrently identified as critical 

for the six study years, for instance January and February. However, some of the months are 

recurrently identified as critical in some years and as non-critical in the other years. For 

instance, April is recurrently identified as critical and August as non-critical in the first three 

years, and then April is recurrently identified as non-critical and August as critical in the next 

three years. There are also some months that occasionally show the non-recurrent pattern. For 

example, December is non-recurrently identified as non-critical in Year 2. Hence, it is clearly 

evident that the data contains recurrent and some non-recurrent patterns of the FFF in the 

months. However, this is unstructured information and thus it does not provide any indication 
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for the latent variables that are responsible for inducing the recurrent and non-recurrent patterns 

in the FFF of the months. 

Another major observation is that there are problems with the application of the Pareto 

principle in the criticality categorisation of the months. For instance, the monthly FFF of July 

in Years 1, 2, 3, 4, 5 and 6 are 194, 197, 169, 162, 191 and 140 respectively as shown in Figure 

3-2.It can also be seen in Table 3-2 that July is categorised as a non-critical month in Year 1, 

and as a critical month in all the later years even though its FFF in the later years except in 

Year 2 is less than its FFF in Year 1. Likewise, the monthly FFF of December in Years 1, 2, 3, 

4, 5 and 6 are 275, 177, 157, 162, 191 and 140 respectively as can be seen in Figure 3-2. 

However, it can also be seen in Table 3-2 that December  is categorised as a  critical month in 

all study years except in Year 2 in which it is categorised as a non-critical month even though 

the FFF of December in the later years except in Year 5 is lower than its FFF in Year 2.  The 

reason for this is that the criticality categorisation of the months is relative to the yearly FFF 

and thus, the change in the criticality of the monthly FFF between the years cannot be 

meaningfully traced when SDA is used.  

To analyse operational characteristic C2 the similar and dissimilar months, the monthly 

functional failure frequency profile was plotted in  the composite bar charts for the six study 

years in Figure 3-3. 
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Figure 3-3: Compositional analysis of monthly FFF profiles to differentiate between similar and 

dissimilar months. 

 The monthly FFF profiles for each study year are mapped in the composite bar chart. The months 

are represented by bars and each bar is composed of nineteen sections for the representation of 

contribution of FFF from each of the nineteen sub-system into the monthly FFF. Thus, on the y-axis 

the height of bars shows the FFF of the months, while the height of sections shows the FFF of the 

sub-systems.   

 

 

As can be seen in Figure 3-3, it is difficult to compare the monthly FFF profiles because many 

variables, i.e. 19 sub-systems, are involved. It is also difficult to identify any sub-system with 

zero FFF in any month because of non-representation of its zero-size section. Thus, this 

graphical representation of the data by SDA cannot be used to differentiate between the similar 

and dissimilar months. 

It is concluded that while C1 – the critical months can be established by using SDA, there are 

major limitations.  In addition, C2  the similar and dissimilar months cannot be established 

by using SDA. 
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3.3.2.2 Evaluation of the sub-system FFF profile 

In order to evaluate the usefulness of SDA to characterise the sub-system FFF profile, the sub-

system FFF profile for each study year is first evaluated based on the FFF of the sub-systems 

to analyse C3 the critical sub-systems. It is then evaluated based on the FFF of the sub-systems 

recorded in different months of the year to analyse C4 the similar and dissimilar sub-systems. 

Figure 3-4 shows the mapping of FFF of the sub-systems for the six study years in the Pareto 

charts.  Again, using the Pareto principle, the percentage at which the curve reaches 80% is 

used to identify the critical and non-critical sub-systems. 
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Figure 3-4: Criticality categorisation of the sub-systems based on the FFF for identification of the 

functionally critical sub-systems. 

 The FFF of the sub-systems for each study year are mapped in the Pareto chart. Each chart shows 

the sub-systems in descending order of their FFF. On each chart, a cut-off is marked at 80% of 

cumulative FFF that identifies the sub-systems as critical or non-critical. 

 

 

As can be seen from Figure 3-4, there are 6, 5, 6, 5, 5 and 5 sub-systems identified as critical 

in Years 1, 2, 3, 4, 5 and 6 respectively. It is clear that an application of Pareto principle has 

resulted in identification of reduced number of sub-systems, but these numbers are much 

greater than 20% of the sub-systems of the urban train system. In this case, the Pareto principle 

has identified 31.6% of the sub-systems as critical in Years 1 and 3; 26.3% of the sub-systems 

in Years 2, 4, 5 and 6. Hence, it is concluded that identification of only the topmost functionally 

critical sub-systems is not achievable by application of SDA.  

To make it easier to analyse whether a particular sub-system is critical or non-critical for any 

year, the critical and the non-critical sub-systems for the six study years are presented in their 

coding order in Table 3-3. 
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Table 3-3: Criticality categorisation of the sub-systems  

Study 

Year 
Critical sub-systems Non-critical sub-systems 

1 S2, S3, S4, S5, S7, S12 and S16 
S1, S6, S8, S9, S10, S11, S13, S14, S15, S17, 

S18 and S19 

2 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, 

S15, S17, S18 and S19 

3 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, 

S15, S17, S18 and S19 

4 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S13, S14, S15, 

S17, S18 and S19 

5 S3, S4, S7, S9 and S16 
S1, S2, S5, S6, S8, S10, S11, S12, S13, S14, 

S15, S17, S18 and S19 

6 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, 

S15, S17, S18 and S19 

 

As can be seen in Table 3-3,  sub-systems S2, S3, S4, S7 and S16 are recurrently identified as 

critical for the six study years, and all the other sub-systems are recurrently identified as non-

critical. In addition, data has shown some non-recurrent patterns, for instance, S2 is non-

recurrently identified as non-critical in Year 5; S5 and S9 are non-recurrently identified as 

critical in Years 1 and 5. Hence, it is clearly evident that the data contains recurrent and some 

non-recurrent patterns of the FFF in the sub-systems. However, this is unstructured information 

and thus it does not provide any indication about the latent variables that are responsible for 

inducing the recurrent and non-recurrent patterns in the FFF of the sub-systems.  

Another major observation is that the application of the Pareto principle for categorisation of 

the sub-systems does not provide any information that can assist in concluding whether 

functional reliability of the sub-system has improved or worsened over the years. For instance, 

the FFF of S3 in Years 1, 2, 3, 4, 5 and 6 are 481, 662, 489, 430, 440 and 382 as shown in 

Figure 3-4. This clearly shows that the only information which is extractable is a relative 

increase or decrease in the FFF of S3 between different years. Hence, the yearly trends for 

change in the criticality of the sub-system with respect to the FFF are not meaningfully traced 

when SDA is used. 
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To analyse operational characteristic C4  the similar and dissimilar sub-systems, Figure 3-5 

shows the composite bar charts for the six study years.  
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Figure 3-5: Compositional analysis of sub-system FFF profiles to differentiate between similar and 

dissimilar sub-systems. 

The FFF profiles for nineteen sub-systems for each study year are mapped in the composite bar 

chart. The sub-systems are represented by bars, and each bar is composed of twelve sections 

representing the FFF of the sub-system in each month of the year. Thus, on the y-axis the height of 

bars shows the yearly FFF of the sub-system, while the height of sections shows the FFF of the sub-

system in the months. 
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As can be seen in Figure 3-5, it is difficult to compare the sub-system FFF profiles as many 

variables are involved i.e. 12 months. In addition, there is a significant difference in the FFF 

of the sub-systems that has resulted in bars of incomparable sizes; furthermore, the sub-systems 

with zero FFF are not identifiable. Thus, this graphical representation of the data by SDA 

cannot be used to differentiate between the similar and dissimilar sub-systems.  

It is concluded that C3 – the critical sub-systems can be established by using SDA, but with 

major limitations. Furthermore, C4 – the similar and dissimilar sub-systems cannot be 

established by using SDA. 

3.3.2.3 Evaluation of the relationship between the FFF profiles of sub-systems and 

months 

In order to evaluate the usefulness of SDA for a relative assessment of the FFF profiles of the 

months and sub-systems, Figure 3-4 can be used to analyse C5 (a) - characterisation of the 

monthly FFF profiles, and Figure 3-5 can be used to analyse C5 (b) - influence of the sub-

systems on FFF of the months. 

In order to analyse C5 (a) it is required to identify the sub-systems that contributed the most in 

making the months similar and dissimilar with respect to their FFF. Since an application of 

SDA has not resulted in differentiation between the similar and dissimilar months as concluded 

in Section 3.3.2.1, the analysis cannot be extended to identify the sub-systems that make the 

months similar and dissimilar. Similarly, in order to analyse C5 (b), it is required to identify 

the sequence of the months in descending order of FFF for the sub-systems in them. As can be 

seen in Figure 3-5, the months are arranged in their calendar order within a bar for each sub-

system.  Rearranging the months in descending order of FFF of the sub-systems would require 

time-consuming and thus costly sorting of the monthly FFF from highest to lowest for one sub-

system at a time for the nineteen sub-systems in the six years of data.   

It is concluded that C5 (a) and C5(b) cannot be established by using SDA.  

3.3.2.4 Evaluation of the services cancelled profile and services delayed profile 

In order to evaluate the usefulness of SDA to characterise the service cancellation profile and 

the services delayed profile, the service cancellation profile for each study year is first 

evaluated based on the number of services cancelled to analyse C6 – the critical sub-systems 

for services cancelled, and then the service delayed profile for each study year based on the 

number of services delayed to analyse C7 – the critical sub-systems for services delayed. 
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Figure 3-6 shows the mapping of the number of services cancelled for the six study years in 

the Pareto charts. Using the Pareto principle as before, the percentage at which the curve 

reaches 80% is used to identify the critical and non-critical sub-systems. 
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Figure 3-6: Criticality categorisation of the sub-systems based on number of services cancelled for 

identification of service critical sub-systems.  

The number of services cancelled caused by the FFF of the sub-systems for each study year is 

mapped in the Pareto chart. Each chart graphs the sub-systems in descending order of their number 

of services cancelled. On each chart, a cut-off is marked at 80% of cumulative number of services 

cancelled that identifies the sub-systems as service critical or non-critical. 

 

As can be seen in Figure 3-6, there are 7, 5, 6, 5, 5 and 6 sub-systems identified as service 

critical with respect to the number of services cancelled in Years 1, 2, 3, 4, 5 and 6 respectively. 

It is clear that too many critical sub-systems have been identified in each year using the Pareto 

curve. In this case, rather than identifying the 20% of the sub-systems that account for 80% of 

the yearly number of services cancelled, the Pareto principle identified 36.8% of the sub-

systems as critical in Year 1, 26.3% in Years 2, 4 and 5, and 31.6% in Year 3 and 6. Hence, it 

is concluded that identification of only topmost service critical sub-systems is not achievable 

by application of SDA.  

To make it easier to analyse whether a particular sub-system is critical or non-critical for any 

year, the critical and the non-critical sub-systems for the six study years are presented in 

numerical order in Table 3-4: 
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Table 3-4: Criticality categorisation of the sub-systems with respect to the number of services cancelled 

Study 

Year 
Critical sub-systems Non-critical sub-systems 

1 
S1, S3, S4, S5, S7, S12 and 

S16 

S2, S6, S8, S9, S10, S11, S13, S14, S15, S17, S18 

and S19 

2 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, S15, 

S17, S18 and S19 

3 S2, S3, S4, S7, S12 and S16 
S1, S5, S6, S8, S9, S10, S11, S13, S14, S15, S17, 

S18 and S19 

4 S3, S4, S7, S8, S12 and S16 
S1, S2, S5, S6, S9, S10, S11, S13, S14, S15, S17, 

S18 and S19 

5 S3, S4, S7, S9 and S16 
S1, S2, S5, S6, S8, S10, S11, S12, S13, S14, S15, 

S17, S18 and S19 

6 S2, S3, S4, S7, S8 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, S15, 

S17, S18 and S19 

 

As can be seen in Table 3-4, S3, S4, S7 and S16 are recurrently identified as the critical sub-

systems for the six study years, and all the other sub-systems are recurrently identified as non-

critical. However, there are some non-recurrent patterns in the data as well. For example, S1 is 

non-recurrently identified as critical in Year 1, S8 in Years 4 and 6 and S9 in Year 5.  In 

addition, some of the sub-systems are recurrently identified as critical in some years and as 

non-critical in the other years. For example, S2 is recurrently identified as critical in Years 2 

and 3, and then it is recurrently identified as non-critical in Years 4 and 5. Hence, it is clearly 

evident that the data contains some recurrent and some non-recurrent patterns in the number of 

services cancelled caused by the FFF of different sub-systems. However, this is unstructured 

information and thus it does not provide any indication for the latent variables that are 

responsible for inducing these recurrent and non-recurrent patterns in the number of services 

cancelled.   

Another major observation is that the application of the Pareto principle for categorisation of 

the sub-systems does not establish whether the effect of the FFF of the sub-systems on service 

reliability has improved or worsened over the years. For instance, the numbers of services 

cancelled caused by the FFF of S3 in Years 1, 2, 3, 4, 5 and 6 were 392, 804, 399, 396, 421 
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and 418 as can be seen in Figure 3-6. The only information which is extractable is a relative 

increase or decrease in the number of services cancelled which does not provide any 

information about the change in service criticality of that sub-system between different years.  

Hence, the yearly trends for change in the service criticality of the sub-system with respect to 

the number of services cancelled are not meaningfully traceable when SDA is used. 

To analyse C7 the critical sub-systems for services delayed, Figure 3-7 shows the mapping 

of number of services delayed for the six study years in the Pareto charts. In this case, the 

Pareto principle is also used to identify the critical and non-critical sub-systems. 
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Figure 3-7: Criticality categorisation of the sub-systems based on number of services delayed for 

identification of service critical sub-systems.  

The number of services delayed caused by the FFF of the sub-systems for each study year is mapped 

in the Pareto chart. Each chart graphs the sub-systems in descending order of their number of 

services delayed. On each chart, a cut-off is marked at 80% of cumulative number of services 

cancelled that identifies the sub-systems as service critical or non-critical. 

 

As can be seen in Figure 3-7, there are 7 sub-systems in Year 1 and 5 sub-systems from Year 

2 to Year 6 identified as service critical with respect to the number of services cancelled. Thus, 

36.8% of the sub-systems are identified as critical in Year 1 and 26.3% in Years 2, 3, 4, 5 and 

6.  Again, too many critical sub-systems have been identified in each year using the Pareto 

principle to enable the maintenance plan to be focussed on those few sub-systems to deliver 

the biggest impact in terms of reduction in the yearly number of services delayed. Hence, it is 

concluded that identification of only topmost service critical sub-systems is not achievable by 

application of SDA. 

To make it easier to analyse whether a particular sub-system is service critical or non-critical 

for any year, the critical and non-critical sub-systems for the six study years are presented in 

their numerical coding order in Table 3-5: 
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Table 3-5: Criticality categorisation of the sub-systems with respect to the number of services delayed 

Study 

Year 
Critical sub-systems Non-critical sub-systems 

1 
S1, S3, S4, S5, S7, S12 and 

S16 

S2, S6, S8, S9, S10, S11, S13, S14, S15, S17, S18 and 

S19 

2 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, S15, S17, 

S18 and S19 

3 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, S15, S17, 

S18 and S19 

4 S2, S3, S4, S7 and S16 
S1, S5, S6, S8, S9, S10, S11, S12, S13, S14, S15, S17, 

S18 and S19 

5 S3, S4, S7, S9 and S16 
S1, S2, S5, S6, S8, S10, S11, S12, S13, S14, S15, S17, 

S18 and S19 

6 S3, S4, S7, S9 and S16 
S1, S2, S5, S6, S8, S10, S11, S12, S13, S14, S15, S17, 

S18 and S19 

 

As can be seen in Table 3-5, S3, S4, S7 and S16 are recurrently identified as the critical sub-

systems for the six study years, and all the other sub-systems are recurrently identified as non-

critical. However, there are some non-recurrent patterns in the data as well. For example, S1, 

S5 and S12 are non-recurrently identified as critical in Year 1, while there are some sub-

systems that are recurrently identified as critical in some years and as non-critical in the other 

years. For example, S9 is recurrently identified as non-critical from Year 1 to Year 4, and then 

it is recurrently identified as non-critical in Years 5 and 6. Hence, it is clearly evident that the 

data contains some recurrent and some non-recurrent patterns in the number of services delayed 

caused by the FFF of various sub-systems. However, this is unstructured information and thus 

does not provide any indication of the latent variables that are responsible for inducing the 

recurrent and non-recurrent patterns of the number of services delayed.   

Another major observation is that the application of the Pareto principle for categorisation of 

the sub-systems does not establish whether the effect of the FFF of the sub-systems on service 

reliability has improved or worsened over the years. For instance, the numbers of services 

cancelled caused by the FFF of S3 in Years 1, 2, 3, 4, 5 and 6 were 4164, 3927, 2739, 3054, 

3381 and 2973 as can be seen in Figure 3-7. This clearly shows that only information which is 
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extractable is a relative increase or decrease in the number of services delayed which does not 

provide any information about the change in service criticality of that sub-system between 

different years.  Hence, the yearly trends for change in the service criticality of the sub-system 

with respect to the number of services delayed are not meaningfully traced when SDA is used. 

It is concluded that although C6 - the critical sub-systems for services cancelled and C7 - the 

critical sub-systems for services delayed can be established by using SDA, but with major 

limitations.   

3.3.2.5 Evaluation of services cancelled profile and services delayed profile in relation to 

monthly FFF profile 

In order to evaluate the usefulness of SDA for a relative assessment of the KPIs of service 

reliability and functional reliability, the services cancelled profile for each study year is first 

evaluated in relation to the monthly FFF profile to analyse  C8 - relationship between the FFF 

and the number of services cancelled; and then the services delayed profile for each study 

year is evaluated in relation to the monthly FFF to analyse C9 - relationship between the FFF 

and the number of services delayed.  Figure 3-8 shows the mapping of the monthly FFF and 

the monthly services cancelled profile for the six study years in the compound charts. 
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Figure 3-8: Relationship analysis between the monthly FFF and the number of services cancelled per 

month. 

The  figure shows the numbers of services cancelled per month with the contribution from the 

nineteen sub-systems in composite bar charts, and the monthly FFF in the red line curve for the six 

study years.  

 

As can be seen in Figure 3-8, for some months an increase in the monthly FFF caused an 

increase in the number of services cancelled such as from August to September in Year 1, 

October to December in Year 3 and May to June in year 5, while for the other months an 

increase in the monthly FFF caused decrease in the number of services cancelled such as from 

November to December in Year 2, January to April in Year 4 and July to August in Year 6. 

Similarly, for some months a decrease in the monthly FFF caused a decrease in the number of 

services cancelled, for example, from July to August in Years 2 and 3, and from March to April 

in Year 5, while for the other months a decrease in the monthly FFF caused an increase in the 

number of services cancelled. For example, April to May in Year 1, June to July in Year 2 and 

August to September in Year 6.  Thus, there appears to be some relationships between the 

monthly FFF and the number of services cancelled per month. However, the relationship is 

varying from month -to-month and hence, the overall relative status of the two KPIs is not 

assessable by using SDA. 
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To analyse C9 - relationship between the FFF and the number of services delayed, Figure 3-9,  

maps the monthly FFF and the monthly services cancelled profile for the six study years in 

compound charts.  
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Figure 3-9: Relationship analysis between the monthly FFF and the number of services delayed per 

month. 

The  figure shows the numbers of services delayed per month with the contribution from the 

nineteen sub-systems in composite bar charts, and the monthly FFF in the red line curve for the six 

study years. 
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As can be seen in Figure 3-8, for some months an increase in the monthly FFF caused an 

increase in the number of services delayed such as from August to September in Year1, from 

October to December in Year 3 and May to June in Year 5, while for the other months an 

increase in the monthly FFF caused decrease in the number of services delayed such as from 

September to October in Year 2, July to August in Year 4 and August to September in Year 6. 

Similarly, for some months a decrease in the monthly FFF caused a decrease in the number of 

services cancelled, for example, from February to March in Year 2, January to April in Year 3 

and June to July in Year 5, while for the other months a decrease in the monthly FFF caused 

an increase in the number of services delayed. For example, from October to December in Year 

1, January to February in Year 2, May to June in Year 5. As identical to the findings of C8, 

there appears to be some relationships between the monthly FFF and the number of services 

delayed per month. However, the relationship is varying from month -to-month and hence, the 

overall relative status of the two KPIs subject to the maintenance plan is not assessable by using 

SDA. 

These findings of C8 and C9 compliment the earlier findings from the literature review, it 

is not necessary that the more frequent failures cause more disruption, and the less frequent 

failures cause less (Bergström and Krüger, 2013). Even though, SDA is useful in 

determining the month-to-month relationship between the FFF and the number of services 

cancelled, and the FFF and the number of services delayed; however, the overall relative status 

of the two KPIs is not deducible from this information. Hence, it is concluded that C8 

relationship between the FFF and the number of services cancelled and C9 relationship 

between the FFF and the number of services delayed cannot be established by SDA. 

3.4 Evaluation of application of SDA for operational performance 

characterisation of the sub-systems 

The discussion in Section 3.3.2 has shown that SDA is suitable for summarising the operational 

performance data of urban trains. It has allowed for ease in the data visualisation to analyse 

operational characteristics of the sub-systems. However, in order to evaluate the overall 

usefulness of SDA for operational characterisation of the sub-systems, Table 3-6 summarises 

the information that SDA delivers, and the outcomes that are desired from the analysis. 

 



Chapter 3 

101 

 

Table 3-6:   Information delivered by SDA and desirables outcomes 

Operational 

characteristics 
Status Limitations Desirables outcomes 

C1 – the critical months Achievable 

Identifies too many months as 

critical 

Identifies only the most critical 

months 

Only informs whether the 

monthly FFF increases or 

decreases over the years 

Informs whether the criticality 

of the months improves or 

becomes worse over the years 

C2 – the similar and 

dissimilar months 

Not 

achievable 
- - 

C3 – the critical sub-

systems 
Achievable 

No indication of the latent 

variables for the criticality of the 

sub-systems 

Indication of the latent variables 

for the criticality of the sub-

systems 

 

 
Only informs whether the sub-

system FFF increases or 

decreases over the years 

Informs whether the criticality 

of the sub-systems improves or 

becomes worse over the years 

C4 – the similar and 

dissimilar sub-systems 

Not 

achievable 
- - 

C5 (a) – characterisation 

of the monthly FFF 

profiles 

Not 

achievable 
- - 

C5 (b) – influence of the 

sub-system on FFF of the 

months 

Not 

achievable 
- - 

C6 – the critical sub-

systems for services 

cancelled 

Achievable 

Identifies criticality based on the 

number of services cancelled 

without considering the impact 

of FFF of the sub-systems 

Identifies criticality by 

considering the impact of FFF of 

the sub-systems on the number 

of services cancelled 

C7 – the critical sub-

systems for services 

delayed 

Achievable 

Identifies criticality based on the 

number of services delayed 

without considering the impact 

of FFF of the sub-systems 

Identifies criticality by 

considering the impact of FFF of 

the sub-systems on the number 

of services delayed 

C8 – relationship between 

the FFF and the number 

of services cancelled 

Not 

achievable 
- - 

C9 – relationship between 

the FFF and the number 

of services delayed 

Not 

achievable 
- - 
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As evident in Table 3-6,  operational characteristics C1 , C3 , C6  and C7 can be established 

by using SDA, but with major limitations. An analytical model based on SDA uses the feature 

of the failure frequency counts for identification of the critical months and the critical sub-

systems i.e. the higher the frequency counts, the greater the criticality is. However, the 

criticality categorisation is constrained by the maximum and the minimum value of the KPI 

data for the analysis period. This results in identification of too many months and sub-systems 

as critical as there is not a significant difference between their values. In addition, the criticality 

categorisation of the months and the sub-systems of different years cannot be easily compared. 

SDA only informs whether the KPI value increases or decreases i.e.  whether the trend is 

upward or downward. Hence, it does not provide any indication for the latent variables that 

influence the operational performance of the sub-systems. In addition, the findings have shown 

that even though C6  and C7 can be analysed, the approach is eventually cascaded down to the 

FFF of the sub-systems. Because SDA is not able to establish the link between the KPIs for 

functional reliability and service reliability, so this results in general assumption in the 

maintenance planning process that a reduction in the FFF will help in improving service 

reliability as well.  

Similarly, the analytical model based on SDA uses the feature of the relative comparison of the 

frequency counts of the KPI in various months and sub-systems for analysing operational 

characteristics C2 and C4 . Hence, the analysis is only able to explain whether the KPI 

frequency counts in the months or the sub-systems under consideration are more or less. This 

interpretation is also only extractable in terms of striking a comparison between the total 

frequency counts of the KPI for the months or the sub-systems. Hence, the analysis of the 

month-to-month or subsystem-to-subsystem relationship is not achievable. Since C2 and C4  

are not achievable, C5  is not deliverable as it involves the relative assessment of the monthly 

FFF profile and the sub-system FFF profile. Likewise, operational characteristics C8  and C9  

can only be explained in terms of increase or decrease in the in the monthly FFF together with 

the frequency counts of the KPIs for service reliability. As a result, no conclusion can be drawn 

about the relationship between the KPIs of functional reliability and the KPIs of service 

reliability.  

In addition, the analysis has revealed the data characteristics that are also useful to develop 

understanding regarding limitations of the results obtained by SDA. The criticality 

categorisation of the months and the sub-systems have shown that the data contains some 
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recurrent and some non-recurrent patterns. Also, the graphical representation of the data in 

composite charts and the compound charts has shown that too many variables are involved in 

the data i.e. multivariate. Given that the data contains redundant information; hence, there is 

an inconsistency in the data that has resulted in extraction of meaningless information. 

In summary, SDA is not suitable for operational characterisation of the sub-systems.  Hence 

an improved analytical tool is required for operational performance characterisation of the sub-

systems. 

3.5 Summary 

The research presented in this chapter has provided insight into the conventional approach used 

for operational performance characterisation of the sub-systems for the maintenance planning 

through the case study of UTS Melbourne. The approach applies the KPIs for reliability for 

establishment of the operational characteristics of the sub-systems in order to support the 

decision-making process of the maintenance planning, and achieves this by using SDA as an 

analytical tool. The demonstration of the approach has shown that SDA is useful in 

summarising the data both in simple and in more complex composite bar charts that are easy 

to understand. However, SDA is based on the frequency counts of KPIs for functional and 

service reliability, and thus only indicates increases or decreases in their values rather than 

explaining whether each KPI has improved or not. Furthermore, it does not explain the vital 

relationships between these KPIs and also does not provide any information about the latent 

variables that have influenced the functional or service reliability. Due to these limitations, 

while SDA does deliver four operational characteristics to a certain extent, it is not able to 

deliver all the operational characteristics.  

Therefore, it is clear that an improved approach for characterising the operational performance 

is required. Such an approach is proposed in the next chapter. 
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Chapter 4:  OPERATIONAL PERFORMANCE CHARACTERISATION 

OF AN URBAN TRAINS FLEET BASED ON A SINGLE 

(CONVENTIONAL) CRITERION BY USING PRINCIPAL 

COMPONENT ANALYSIS 

4.1 Introduction 

The previous chapter presented and assessed the conventional approach of the reliability 

analysis for operational performance characterisation of an urban trains fleet. It was concluded 

that simple descriptive analysis which is applied as an analytical tool summarises the data in a 

manner which is easy to understand, but it is not suitable for establishing the operational 

characteristics of the sub-systems. Hence, another data analysis technique is needed that can 

be used for such a big and multivariate dataset. This part of the research focuses on Research 

Objective 2(a) that seeks to improve the conventional approach which is used to characterise 

the operational performance of the fleet to enhance its effectiveness in the decision-making 

process of the maintenance planning.  

To achieve this research objective, a new approach is developed in this chapter. In the new 

approach, the approach is modified by preserving the conventional single criterion for 

characterisation i.e. functional failures frequency (FFF), while applying an exploratory 

multivariate data analysis technique called principal component analysis (PCA). 

In order to evaluate the suitability of PCA for analysis of the operational performance 

characteristics of the sub-systems based on the FFF, this chapter first presents the PCA 

technique and then applies it to the same data which is used in the previous chapter. The data 

structure for analysis and the software used are described in detail, and the script is validated 

using several examples. The results of PCA analysis are then presented and finally the 

performance of the new approach is compared to that of the conventional approach.   

4.2 Selection of PCA for operational performance characterisation of the 

sub-systems  

This section explains the applicability of PCA for analysis of the operational performance 

characteristics of the sub-systems by using the FFF.  The data characteristics are first discussed, 

the analysis objectives are then restated as they are the determinants for selection of an 
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analytical technique for any data. Finally, the usefulness of PCA for analysing the FFF data of 

urban trains systems is assessed.   

The FFF is documented per month and per sub-system producing big and redundant data. 

However, in each case the FFF is cascaded down at the sub-system level; therefore, the sub-

systems are the observable variables for the FFF data. This data shows recurrent and non-

recurrent patterns in the measurements of FFF for various months and the sub-systems. This is 

also evident from the findings of Chapter 3 that some months and sub-systems were repetitively 

identified as critical or non-critical, while some months and sub-systems were non-repetitively 

identified as critical or non-critical. These patterns indicate the dependency of the FFF on the 

characteristics of the month and the sub-system. The FFF of the month depends on the 

operational environment of that month which is a product of a combination of different 

variables such as abrupt changes in the weather, unforeseen issues in the technology, and 

unexpected changes in the variables related to infrastructure, maintenance planning and the 

operational planning. Similarly, the FFF of the sub-system depends on functional reliability of 

that sub-system which is a product of multiple variables related to its inherent design 

characteristics, and the design and implementation of its maintenance plan such as unexpected 

changes in the maintenance interval and complexities in executing the maintenance activities 

due to the configurational dependency of the sub-systems.  These variables related to both the 

operational environment of the month and functional reliability of the sub-system influence the 

operational performance of the sub-systems individually and in relation to each other. The 

variables induce similarities and dissimilarities in their FFF profiles that result in similar and 

dissimilar months and similar and dissimilar sub-systems. However, their influence cannot be 

observed directly from the FFF data as the FFF is just a simple count of non-performance of 

the sub-systems as discussed in Section 3.3.3 of Chapter 3. Therefore, these variables are called 

the “latent variables” as explained in Section 2.2.2 of Chapter 2.  

It is important to consider the influence of these latent variables to accurately characterise the 

operational performance of the different sub-systems. This influence is traceable by means of 

exploring the latent structure of the data which is constructed within the data by the latent 

variables. In order to understand the latent structure, let us take an example – it might be 

recurrently found from the data that the FFF profile of the sub-systems X and Y are highly 

correlated. However, the correlation between the FFF of the two sub-systems is not feasible as 
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the sub-systems of a complex system like urban train may have configurational dependency 

but their functional failures are independent from each other. This implies that there is no 

dependency between the FFF profile of X and Y; however, there might be a  correlation if a 

third variable is considered i.e. the latent variable (Shyrane, 2011). For example, on 

investigation data might show that sub-systems X and Y incur high FFF on passing the 

operational mileage above a specific value. This shows that a correlation exists between the 

operational mileage and the FFF profile of sub-system X, as well as a correlation between the 

operational mileage and the FFF profile of sub-system Y. Hence, the operational mileage is the 

underlying reason for similarities in the FFF profiles of both sub-system X and Y.  

This implies that the correlation between the observable variables and the latent variables exists 

within the data in a hidden manner; therefore, it is called the latent structure. If the latent 

variables are considered, the correlation between the observable variables become weaker and 

this will result in a clear manifestation of the latent structure of the data i.e. the correlation 

between the observable variables and the latent variables (Shyrane, 2011). This provides an 

opportunity to measure the influence of the latent variables on the observable variables. An 

understanding of the latent structure will enable the reliability analyst (who knows all the 

maintenance and the operational history) to recognise the latent variables and learn from the 

historical decisions and events influencing the operational performance of the sub-systems, 

thus resulting in data-driven decision-making. Hence, considering the influence of the latent 

variables in the analysis can be incorporated to enhance the conventional complement the 

conventional approach of the reliability analysis for operational performance characterisation 

of the sub-systems. 

In order to explore the latent structure of the data, it is first necessary to know what information 

needs to be extracted from this data. As discussed in Section 3.2.1 of Chapter 3, the objective 

of analysing the operational performance characteristics of the sub-systems based on the FFF 

is to evaluate the monthly and the sub-system FFF profiles individually and in relation to each 

other.  The operational characteristics of interest in the historical FFF data are: 

C1  the critical months 

C2  the similar and dissimilar months 

C3  the critical sub-systems 

C4  the similar and dissimilar sub-systems 
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C5  the relationship between the FFF profiles of sub-systems and months 

(a) characterisation of the monthly FFF profiles in relation to the sub-system FFF profiles 

(b) influence of the sub-system on the monthly FFF profiles  

The extraction of this information from the big data by elimination of the less important or 

redundant information requires the application of a multivariate data analysis technique.  PCA 

offers great potential as a possible technique since it removes redundancy from the data and 

extracts important information from the data based on the proportion of variance explained by 

the latent variables in the data (Steorts, Abdi and Williams, 2010, Jolliffe and Cadima, 2016, 

Hartmann, 2018a). Variance is a measure of a dispersion and when a variable has a larger 

variance, it indicates that this latent variable contains larger information. Abdi and Williams 

(2010) state that PCA first orthogonally transforms correlated original variables into the 

coordinate system of un-correlated variables. There are then fewer new variables than original 

variables and the new variables, called the principal components, represent the latent variables.  

PCA then projects the original data into the coordinate system of the PCs. The first PC 

represents a direction on which the data projection shows the largest variance. The second PC 

is orthogonal to the first PC and it is found in the direction that shows the next largest variance 

after the first PC and so on. This orthogonal transformation results in a minimum loss of the 

original information from the data (Abdi and Williams, 2010). The orthogonal properties of 

PCA makes it an appropriate choice (Dunia et al., 1996) for analysis of the FFF data of an 

urban trains fleet.  

Other advantages of PCA are:  

(i) it can be performed to analyse the latent structure within data without labelling the PCs 

(Raschka, 2014, Steorts); 

(ii) it extracts the important characteristics of a dataset without losing much of its original 

information (Shang, 2011, Tibshirani, 2013); and 

(iii) it provides visual tools that make the presentation and discussion of the results easier 

(Shang, 2011).  

In addition, PCA has been successfully applied in various industries including the rail industry. 

Żółtowski (2012) applied PCA to the data of rail track condition symptoms for the 

classification of the track for condition-based maintenance while (Dekker et al., 2019) applied 

PCA for analysis of the delays data of the urban trains. In Dekker’s study, train delays data 
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from ProRail in the Netherlands was investigated. The data matrix was composed of the 

disrupted days of the week in the rows and the stations on the network in the columns. The 

extent of propagation of accumulated train delays at stations is influenced by several latent 

variables related to both the technical components of the railway system and the human 

elements such as network capacity, station operational capacity, human decisions for re-routing 

or cancellation of services. Typically, the raw data is summarised as train delays time and 

frequency of train delays which does not provide any information about the patterns of 

transition regime in the train delays framework due to the influence of these latent variables.  

However, it is crucial to consider influence of the latent variables to identify the critical stations 

for the development of an improved train management plan. PCA was used to identify the 

stations on the railway network that were critical for the delays dynamics of the system at 

macro-scale, and it was found that all stations identified as critical were located on the three 

busiest train lines that carried international passenger trains and connected the major cities in 

the Netherlands. Hence, the latent variable that makes the stations critical for the delays 

dynamics of the system at macro-scale was their geographical location. Thus, this study 

established PCA could be used to identify not only the critical stations, but also the underlying 

reason for their criticality. In summary, PCA is a multivariate data analysis technique that can 

be used to effectively analyse the latent structure within the operational performance data of 

any urban trains fleet; thus, PCA was selected for use in this study. 

4.3 Data analysis plan 

This section explains the data analysis plan which was designed for the application of PCA to 

the urban trains data in this study. The data and the software used for the analysis are first 

presented, and its script design outlined and then validated through examples. The usefulness 

of PCA as a complex decision-making process is highlighted.  

4.3.1 Data collection and structure 

The same data that was collected from the UTS Melbourne for SDA as reported in Chapter 3 

was used in this chapter for PCA. In Chapter 3, the FFF recorded for 12 months of the year for 

19 different sub-systems of the urban train system (that were coded as S1, S2,.…, S19) for the 

six study years was used for analysing the operational characteristics merely based on the FFF. 

Hence, in this chapter the same FFF data was structured in a 12x19 matrix for the analysis; 
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wherein, the months in rows represent the individuals in which the FFF were documented, and 

the sub-systems in columns represent the original variables from which the FFF were 

measured. Data for each month of the year for last few years are analysed in order to trace the 

trends and patterns of operational performance of the sub-systems within a year and from year 

to year. This information enables the maintenance planners to trace the reason for change in 

operational performance of the sub-systems in relation to change in operational environment 

of urban rails. 

4.3.2 Software and script design  

MATLAB version 9.4 (R2018a) by (The MathWorks Inc) was used to perform PCA.  It has an 

inbuilt function - PCA () in its statistics and machine learning toolbox. An algorithm of this 

function is based on the singular value decomposition (The MathWorks Inc., 2019). The 

singular value decomposition is slightly more numerically precise than the eigenvalue 

decomposition (Kalisch, 2012, The MathWorks Inc., 2019). It performs stable computation  for 

data that has more variables than the individuals (Donev, 2011, Kalisch, 2012). .  

Based on the data characteristics, the script was designed with the following considerations to 

perform PCA on the raw data for each study year: 

(1) Data centring: the inbuilt function- PCA () in MATLAB2018a by default centre the data 

before running PCA. Data centring does not affect the resulting PCs (Raschka, 2014) 

besides it improves the interpretability of the results (Eriksson et al., 2013). 

(2) An unscaled PCA – unscaled PCA is an appropriate choice when variables are measured 

in same unit and their absolute values matters (Tibshirani, 2014, Taylor and Bacallado, 

2019). Since the FFF is observed for all the sub-systems in each month in the same unit, 

and their absolute values is of concern so, unscaled PCA was considered. 

(3) Covariance matrix – a covariance matrix is recommended for PCA computation when 

variables scale is same.  The computation of a covariance matrix is based on the raw data 

that accounts the actual dispersion in the data (Tinsley & Tinsley, 1987 as cited inField, 

2013). An advantage of using a covariance matrix is that it determines the loadings of the 

original variables which are easy to interpret. The inbuilt function of PCA() in 

MATLAB2018a by default computes the covariance matrix of the data after centring it.  It 

was incorporated in the script design.  
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The script designed to perform PCA in MATLAB is presented in Appendix A.  

4.3.3 Validation of script and justification for selection of PCA  

Two published studies that use PCA were selected for validation of the designed script based 

on the availability of their data. One example (Dunn, 2019) was taken from the food 

manufacturing industry and another example (Kassambara, 2017) was taken from the sports 

industry. In both examples, the variables in the original data were measured in different units; 

therefore, an additional step was required for standardisation of the data before performing 

PCA. For this, an inbuilt function z-score in MATLAB was used and the script was then run 

on the standardised data. The same results as reported in Dunn 2019a were obtained in our 

work; however, in the second example (Kassambara)  different results with values with 

opposite signs were obtained in our work. This is due to the differences in coding or the use of 

a different software package (Jolliffe and Cadima, 2016). However, the interpretation of the 

results does not change because of the change in the signs (The MathWorks, 2019). In Easy 

(2020), the published results are identical as that were obtained from the designed script. 

Hence, the results obtained with the designed script validate the script design and its 

functioning.  The obtained results for both examples were mapped into the typical plots of PCA 

and are presented in Appendix B. In order to establish that PCA can be used to reveal the latent 

structure of the data, the key findings of both examples are discussed here. 

In the first example the data involved are measurements of various physical properties of pastry 

samples from different batches. Despite the same manufacturing process being used, pastries 

are produced with varied texture. This is due to the influence of the latent variables such as 

variations in baking temperature and overhandling of the dough. Therefore, food scientists 

apply PCA for texture characterisation of the pastry samples considering the influence of the 

latent variables for process control and monitoring. In Dunn’s study, it was found that the pastry 

samples that obtained positive scores on principal component I (PC-I) were brittle, flaky and 

light due to high percentage of oil, more crispiness, low density and small fracture angle. By 

contrast, the pastry samples that obtained negative scores on PC-I were chewy, hard and brittle 

due to low percentage of oil, less crispiness, high density and larger fracture angle. This implies 

that the latent variable associated with PC-I is essential for production of fine texture pastries.  

By comparison, the pastry samples that obtained positive scores on principal component II 

(PC-II) were hard due to high value on the hardness scale and the low percentage of oil. This 
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implies that the latent variable associated with PC-II needs to be resolved to adjust the hardness 

of the pastries. All this information informs the decision-makers that, in order to improve the 

process, it is required to adjust the variable related to the hardness of the pastry without 

changing the other properties.  

In the second example, the data involved are performance scores of various athletes in the 

different events of a decathlon. Different variables like athlete physique and skills required to 

win decathlon events influence the scores performance. Hence, the sports scientists applied 

PCA for evaluation of the scores performance. In Kassambara’s study, it was found that the 

athletes that obtained positive scores on PC-I had high scores in X400m, X100m.hurdle, 

X100m and long jump in comparison to shot put, discus and high jump. It is important to note 

that having high scores in the former group of events and low scores in the latter group of 

events represents poor performance. This suggests that the latent variable associated with PC-

I is related to speed. It was also found that the athletes were distributed in ascending order of 

their total scores from positive direction to negative direction of PC-I. This implies that a 

decrease in influence of the associated latent variable can result in an increase in the total scores 

of the athletes. On PC-II, it was found that the athletes that obtained positive sores on PC-II 

had high scores in X1500m and pole vault in comparison to high jump. This suggests that the 

latent variable associated with PC-II is related to strength. All this together indicates that the 

athletes in quadrant I are weak in speed, but strong in strength events; the athletes in quadrant 

II are good in both speed and strength events; the athletes in quadrant III are good in speed, but 

weak in strength events; and the athletes in quadrant IV are weak in both speed and strength 

events. This information is utilised by the coaches for training purpose and in selection of the 

athletes for construction of a balanced team for the future events.  

Both examples show that an application of PCA facilitates in investigating, visualising and 

interpreting with ease the latent structure of the dataset. Using PCA enables the analyst to 

differentiate between the individuals (entities that are represented in the rows) based on the 

similarities and dissimilarities in their profiles. The inner-structure of the PCs clarifies how the 

data variables interact individually and in relation to each other considering the influence of 

the latent variables. In addition, PCA also reveals which variables contribute the most in 

making the profiles of individuals similar and dissimilar. All this information jointly enables 
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the decision-makers to recognise the latent variables and to formulate the improvement 

strategies accordingly.  

4.3.4 Relevancy between examples and the urban trains data  

The complexity of the selected examples in terms of their data characteristics and analysis 

objectives is comparable with the complexity of the present urban trains study.  The data 

characteristics and the analysis objectives are summarised in Table 4-1: 

Table 4-1:  Data characteristics and analysis objectives of examples and urban trains 

 Example 1 Example 2 Research Project 

Data characteristics 

Highly correlated variables ✓ ✓ ✓ 

Redundancy ✓ ✓ ✓ 

Recurrent and non-recurrent patterns ✓ ✓ ✓ 

Multivariate ✓ ✓ ✓ 

Complexity ✓ ✓ ✓ 

Analysis objectives 

Identification of new un-correlated variables  ✓ ✓ ✓ 

Reduction in number of variables ✓ ✓ ✓ 

Extraction of important features by 

elimination of less important features 
✓ ✓ ✓ 

As can be seen n Table 4-1, the data characteristics are the same.  When the data is multivariate, 

complex, redundant and involves highly correlated variables, it is quite challenging for analysts 

to characterise it. In any industry where the data has similar characteristics to those listed in 

Table 4-1, data analysts is interested to extract important information from the data but with 

minimum loss of information. The objective of the analysis is to characterise the rows and 

columns of their data matrix individually and in relation to each other. In both examples, PCA 

enabled the desired objectives to be achieved by making the information more interpretable 

and easier to visualise.   

In summary, PCA is clearly able to analyse successfully data with similar characteristics to the 

operational performance data of urban trains in this study. 
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4.3.5 Application of PCA to the urban trains data 

The yearly matrix X of the FFF of each study year was analysed using PCA. This section 

discusses the computational process used in PCA for analysing the data of urban trains. 

As discussed in Section 4.3.1, X is a matrix of order 12 x 19 where the rows are the 12 months 

of the year and the columns are the 19 sub-systems.  Each individual element in X is represented 

by xij which implies that x - FFF lodged in ith month by jth sub-system. This means that the 

elements of ith row forms a p-dimension vector of ith month denoted by Mi and the elements of 

jth column forms a n-dimension vector of jth sub-system denoted by Sj. PCA orthogonally 

transforms X into a set of r-PCs which is equal to the minimum (number of rows, number of 

columns) minus one (Adams et al., 2001, Smoliński et al., 2002). Given that the minimum 

(12,19) minus one is equal to 11; hence, it generates 11 PCs for each study year. The structuring 

of the PCs explains the latent structure within X based on the common latent variables. The 

PCs are the directional vectors (Hartmann, 2018b, Dunn, 2019), and in matrix form each PC is 

a loading vector of order 19  x 1. The PCs can be labelled by the related latent variables, but 

recognition of the latent variables needs complete details of the maintenance and the 

operational history of the study period. In this study, the requisite information could not be 

obtained due to restricted access to the data and the confidentiality concerns, so the PCs were 

simply labelled as principal component I, principal component II and so on. Using the SVD, 

PCA decomposes the data matrix X into a product of left and right singular vectors denoted by 

U and V respectively and a square matrix D of singular values as shown in Equation 4-1. 

 X =  UD𝑉𝑡   4-1 

 

with UTU = VTV=I. 

The matrix U is of order 12 x 11, D is of order 11x 11 and Vt is of order 11 x 19. The algorithm 

first conditions the matrix X to centre by each column for computation of XtX = ∑iMiM
t. It is 

proportional to the covariance matrix for the variables of Mi (i.e. the covariance matrix of the 

sub-systems). Then, XtX is diagonalized which results in VD2Vt. The first resultant matrix V 

is the orthogonal matrix of the right singular vectors and it is denoted by {Vr}. This spans the 

system of the monthly FFF profile and provides an orthonormal basis for {Mi}. The matrix V 

is basically the set of PCs that contains the coefficients of the sub-systems on the PCs, and it is 
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equivalent to the loading matrix of the sub-systems (i.e. V = W)  (Surawski et al., 2017) . The 

loading of each sub-system on each PC explains its correlation with the latent variable. The 

loadings of p – subsystems on kth PC is represented by [w1, k, w2, k, w3,k ..., wp, k], while the 

second resultant matrix D is a matrix of singular values that contains only non-zero values 

along its diagonal. Provided that each singular value is associated with one PC, there were 11 

PCs for each study year. The singular values describe a magnitude of the variance captured by 

the corresponding PC. Hence, the singular values explain the strength of influence of the latent 

variables in generation of X. The first singular value is more important than the second, and 

the second singular value is more important than the third, and so on (i.e. σ1 > σ2 >…… σr). 

This means that the singular values are arranged in the descending order of their importance.  

This also indicates the importance of information within each PC i.e. the first PC is the most 

significant, and the last PC (which is eleventh PC in this study for each study year) is the least 

important. The squared of singular values produced eigenvalues of PCA which are proportional 

to the variance of the PCs. The next step is a computation of U which is a matrix of left singular 

vectors and it is represented by {Ur}. The algorithm computes U by using a relation XVS-1. 

This spans the system of FFF profile per sub-system and forms an orthonormal basis for {Sj}. 

Finally, the algorithm projects X into the new coordinate system of the PCs by using a relation 

UD which is equivalent to XV=XW (as V=W). The resultant matrix represents the factor scores 

of the months denoted by T.  The scores are obtained by mapping each row of X on the system 

of the PCs. The scores of the ith month on the kth PC is represented by t i, k. and this is obtained 

by the product of p – dimension vector of ith row of X with the p- dimension vector of kth 

column of V=W. It is expressed as: 

 t i, k = x i,1 * w1, k + xi,2 * w2, k + xi,3 * w3, k ---, xi,p * wp,k 4-2 

 

Equation 5.2 shows that the scores are the composite measures of the months on the PCs and 

each month has one score along the direction of each PC.  Consistent with the order of 

importance of the PCs, the scores of months on the first PC are more important than those on 

the second PC and so on. As UD = T and V= W, equation 4-1 can be rewritten as: 

 X =  𝑈𝐷𝑉𝑡 = (𝑈𝐷)𝑉𝑡 =  𝑇𝑊𝑡 4-3 
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Equation 4-3 shows that PCA transforms X into the scores of months, i.e. T, and the loadings 

of the sub-systems, i.e. W. The information within both resultant matrices is arranged from 

order of high to low importance consistent with the arrangement of the singular values. 

Equation 4-3 also shows that X is a product of T and Wt. The transformation of X into T and 

Wt discloses the latent structure that exists within the data. Thus, PCA can be used to transform 

the urban trains data into meaningful information.   

4.4 Analysis of the operational performance characteristics using PCA 

This section discusses the results obtained by the application of PCA to the urban trains data 

for the six study years. The aim is to evaluate whether PCA can establish the desired operational 

characteristics of the sub-systems.  

4.4.1 Selection of the number of principal components for further analysis 

As discussed in Section 4.3.5, PCA generated 11 PCs for each study year.  As these PCs were 

arranged in order of importance from highest to lowest, the first PC accounted for the greatest 

variation in the data and the last PC the least, so a selection of an adequate number of PCs is 

required for a better approximation of the yearly matrix X of the FFF. This number of PCs can 

be determined from the cumulative percentage of variance plot that is a plot with the number 

of PCs on the x-axis and the cumulative percentage of variance explained by them on the y-

axis. A cut-off value for the cumulative percentage of variance needs to be defined to determine 

the number of PCs to be retained for further analysis. It is recommended to retain at least as 

many the PCs, so that the cumulative percentage of variance explained by them is no less than 

70%. (Jolliffe, 2002, Yang, 2015, De Silva et al., 2017).  Figure 4-1 presents the cumulative 

percentage of variance plots for all six study years. 
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Figure 4-1:Cumulative percentage of variance plot for each study year.  

A red dotted on each chart shows the cumulative percentage of variance which is explained by PC-I 

and PC-II in each study year. 
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As can be seen in Figure 4-1, if we retain one PC, the cumulative percentage of variance is 

approximately 52%, 51%, 57%, 60%, 44% and 40% in study years 1,2,3,4,5 and 6, 

respectively. This shows that PC-I alone explains more than half of the total variance in the X 

(i.e. the matrix of FFF) except in years 5 and 6. However, if we retain two PCs, then the 

cumulative percentage of variance is about 74%, 75%, 71%, 73%, 74% and 65% in years 

1,2,3,4,5 and 6 respectively. This means that PC-II alone explains the variance by 22%, 25%, 

14%, 14%, 29% and 25% in the study year 1,2,3,4,5 and 6, respectively.  However, if we retain 

three PCs, then the cumulative percentage of variance is about 83%, 84%, 83%, 87%, 85% and 

82% in years 1,2,3,4,5 and 6 respectively. This means that PC-III alone explains the variance 

by 9%, 9%, 12%, 14%, 11% and 17% in the study year 1,2,3,4,5 and 6, respectively. The 

percentage of variance captured by PC-III in each study year is sufficiently smaller than the 

percentage of variance captured by PC-I and PC-II. In addition, as can be seen in Figure 4-1,  

there is a significant dropped in the percentage of variance between the PCs from PC-III to 

onward until the curve is levelled off in all study years. The greater percentage of variance 

captured by the PC is a theoretical indicative of important information that we want to detect, 

while the PCs with the little variance are indicative of data noise. Hence, PC-III and the 

subsequent PCs can be discarded from the analysis. Whereas, the cumulative percentage of 

variance explained by PC-I and PC II exceeds from the minimum requirement of capturing 

70% of the total variance in study years 1-5 and is 65% in year 6. The cumulative percentage 

of variance of 65% is taken as sufficiently close to 70% for our purposes, so in this study, the 

cut-off of 65% for the cumulative percentage of variance is deemed to be acceptable for 

determining the number of PCs. Hence, only PC-I and PC-II are retained for further analysis 

as they are considered sufficient to explore the latent structure of X in all the study years. 

4.4.2 Evaluation of the monthly functional failure frequency profile 

In order to understand the latent structure of the monthly FFF profile, the factor scores of the 

months were mapped in the coordinate system defined by PC-I and PC-II. In this section, first 

we discuss how the features of scores plot can be used to evaluate the monthly FFF profile. We 

then define the criteria to analyse the requisite operational characteristics related to the monthly 

FFF profile (i.e. C1- the critical months and C2 - the similar and dissimilar months), and  

finally,  we interpret the scores plots obtained for each study year.  
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4.4.2.1 Features of the scores plot for evaluation of the monthly FFF profile 

The first feature of the scores plot is the position of the months on each PC which corresponds 

to the scores of the months on the PCs. The position of the months on each PC can be used to 

analyse the month-to-PC relationship, i.e. the extent of influence of the characteristics of the 

PC in the construction of the monthly FFF profile. The position of the months are the signed 

distances from the origin of the plot, where the sign indicates a positive or negative relationship 

between the month and the PC, and the distance numerically quantifies the strength of a 

relationship. Together the sign and the distance explain the month-to-PC relationship. Thus, 

the months with high positive scores are strongly related to the PC; the months clustered near 

the origin are moderately related and the months with low negative scores are weakly related 

to the PC. This enables the months to be categorised as critical, moderately critical, and non-

critical. This scores-based categorisation clearly indicates that the FFF of the critical sub-

systems in the critical months is higher than the average score, close to the average in the 

moderately critical months (Eriksson et al., 2013, Dunn, 2019) while it is lower than the 

average in the non-critical months. In brief, the critical months can be identified considering 

influence of the latent variables which means the achievement of operational characteristic C1-

critical months. 

The second feature of the scores plot is the distribution of the months along the PCs. This 

distribution can be used to analyse the month-to-month relationship (i.e. whether they are 

similar or dissimilar) considering the influence of the latent variables associated with each PC. 

When the rows of X are multiplied by the coefficients of the same PC, this results in distribution 

of the similar months in the same direction of the PC and of the dissimilar months in the 

opposite direction of the PC. It can be stated as that the months with scores with the same sign 

are similar, and the months with scores with different signs are dissimilar in their FFF profiles. 

This means that the larger the distance between positions of any two months on the PC, the 

greater the dissimilarities between their monthly FFF profiles. Similarly, as smaller the distance 

between positions of any two months on the PC, as greater the similarities between their 

monthly FFF profiles. The relationship of the months to the PC is the reason for distributing 

them near or at a distance from each other. Hence, the distribution of the months along the PCs 

reveals which months are similar and which months are dissimilar. Thus, the similar and 

dissimilar months can be differentiated considering the influence of the latent variables which 

means the achievement of operational characteristic  C2-similar and dissimilar months.  
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In summary, the features of the scores plot can be used to analyse the latent structure of the 

monthly FFF profile and can develop a clear understanding about influence of the latent 

variables in construction of the monthly FFF profile individually and in relation to each other.  

4.4.2.2 Criteria for evaluation of the monthly FFF profile 

To identify C1- the critical months, a simple approach based on the scores of the months on 

the PCs is adopted to define the criterion for the criticality categorisation of the months. The 

ranges for criticality categories of the months are defined in such a way that they best fit values 

to the lowest negative and the highest positive score of the months on the PCs for each study 

year. The months with scores ≥ +10 are defined as critical, the months with scores between -

10 and +10 are defined as moderately critical, and the months with scores ≤ -10 are defined as 

non-critical.  

To differentiate between C2 - the similar and dissimilar months, the criterion is defined based 

on the relative distribution of months along the PCs is used. The months distributed in the same 

direction of the PCs (i.e. the months within the same criticality category) are defined as similar 

to each other, the months clustered near the origin of the plot have some similarities and some 

dissimilarities (i.e. the months within the category of moderately critical) and the months in the 

opposite directions of the PCs are dissimilar (i.e. the months in the different criticality 

categories).  

4.4.2.3 Analysis of the operational characteristics in relation to the monthly FFF profile  

The factor scores of the months for the six study years are plotted in Figure 4-2. The scores 

plot for each study year shows the position of each month on PC-I and PC-II, and the relative 

distribution of months along the length of each PC. 
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Figure 4-2 :  Factor scores plot for six study years for evaluation of the monthly FFF profiles.  

In each plot, the x-axis represents PC-I and the y-axis represents PC-II, and the percentage of 

variance captured by PC-I and PC-II are given with the axis titles. Each scatter plot graphs the 

scores of months on PC-I along the x-axis and the scores of months on PC-II along the y-axis. 
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In order to determine the critical months, the months were categorised based on their scores 

on PC-I and PC-II and the results are presented in Table 4-2 and in  Table 4-3. 

 

Table 4-2: Criticality categorisation of the months in relation to PC-I 

Study 

Year 

 

Critical months 

 

Moderately critical months 

 

 

Non-critical months 

 

Year 1 
March, April, May and 

December 

January, February, June, September, 

and November 

July, August, and 

October 

Year 2 
January, February, March 

and May 
April and June 

July, August, September, 

November, October and 

December 

Year 3 
January, February, and 

March 

April, May, June, July, October and 

December 

August, September and 

November 

Year 4 January 

February, March, April, May, July, 

August, September, October, 

November, and December 

June 

Year 5 
January, July, October and 

December 

February, March, May, June, 

September, November 
April and August 

Year 6 January, February, March, 

May and June  

April, July and August September, October, 

November, and 

December 

Table 4-3: Criticality categorisation of the months in relation to PC-II 

Study 

Year 
Critical months 

 

Moderately critical months 

 

 

Non- critical months 

 

Year 1 June and December 

February, March, April, May, July, 

August, September, October, and 

November 

January 

Year 2 
February, June and 

October 

January, July, August, September, 

November, and December 
March, April, and May 

Year 3  - 

January, February, April, May, June, 

July, August, September, October, 

November, and December 

March 

Year 4 September and October 
January, February, April, May, August, 

November, and December 
March, June, and July 

Year 5 January 

February, March, April, May, June, 

August, September, October, 

November, and December 

December 

Year 6 
January, February and 

December 

March, June, July, August, October, 

and November 

April, May and 

September 

 

As can be seen in Table 4-2,  in relation to PC-I, there are 4, 4, 3, 1, 4 and 5 months are 

identified as critical in the study years 1, 2, 3, 4, 5 and 6 respectively.  Table 4-3 shows that in 

relation to PC-II, there are 2, 3, 0, 2, 1 and 3 months are critical in the study years 1, 2, 3, 4, 5 

and 6 respectively. This means in order to improve the FFF profiles of this number of the 
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critical months, the maintenance plan needs to be focussed on the characteristics of only two 

variables (i.e. PC -I and PC-II). Hence, PCA has successfully reduced the number of variables 

that must be dealt with and provides a clear indication of the reason for the criticality of the 

months which is explainable by the inner-structure of the related PC. It is also evident from 

Table 4-2 and Table 4-3 that some of the months that are critical in relation to PC-I are also 

critical in relation to PC-II. For example, December in year 1, February in year 2, and January 

in years 5 and 6 are critical in relation to both PCs. This is the variance partitioning effect that 

explains the spread in the characteristics of the operational environment of these months. It can 

also be seen in Table 4-3 that there is no month critical in relation to PC-II in year 3. Further, 

as it can be seen in Table 4-2 that August is non-critical in relation to PC-I from years 1 to 3, 

moderately critical in year 4, non-critical in year 5 and critical in year 6; however, Table 4-3 

shows that August is moderately critical in relation to PC-II in all study years. The examples 

of these months show that the scores-based categorisation enables the monthly FFF profiles to 

be evaluated within a year, year-to-year and over many years. Hence, the yearly trends for 

change in the criticality status of the months are traceable with ease by using PCA. Overall, it 

is concluded that PCA has successfully categorised the months considering the influence of the 

latent variables.  

Table 4-2 and Table 4-3 also provide information about similar and dissimilar months. As can 

be seen in Table 4-2, March, April, May and December are similar months in relation to PC-I 

in year 1, as are July, August and October. By contrast, March, April, May and December are 

dissimilar to July, August and October, whereas January, February, June and December are 

similar in some ways and dissimilar in other ways with each other in their FFF profiles. The 

results for each year can be interpreted in the same way. Thus, the months can be differentiated 

based on the similarities and dissimilarities in their FFF profiles considering the influence of 

the latent variables by the application of PCA.  

In summary, the scores plot provides a clear understanding of the latent structure of the monthly 

FFF profile and enables the achievement of both operational characteristics C1 - the critical 

months and C2 - the similar and dissimilar months. 

4.4.3 Evaluation of the sub-system FFF profile 

In order to understand the latent structure of the sub-system FFF profile, the weights of the 

sub-systems by which they were loaded on PC-I and PC-II were mapped in the coordinate 
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system defined by both PCs.  In this section, first we discuss how the features of loading plot 

can be used to evaluate the sub-system FFF profile. We then define the criteria to analyse the 

requisite operational characteristics related to the sub-system FFF profile i.e. C3-the critical 

sub-systems and C4 -the similar and dissimilar sub-systems, and finally, we interpret the 

loading plots obtained for each study year. 

4.4.3.1 Features of the loading plot for evaluation of the sub-system FFF profile  

The first feature of the loading plot is the position vectors of the sub-systems in the coordinate 

system defined by PC-I and PC-II. An imagination of the component vectors of the position 

vector of each sub-system explains the sub-system-to-PC relationship, i.e. the extent of 

variance of the sub-system FFF profile represented by that PC in generation of X (i.e. FFF data 

matrix). The length of the component vector corresponds to the magnitude of weight of the 

sub-system on the PC which varies between 0 to 1, and its direction can be positive or negative 

depending on the sign of the weight. The positive direction indicates the positive relationship 

between the sub-system and the PC, and the negative direction shows the negative relationship 

between them. Together the length and direction of the component vector explains the 

subsystem-to-PC relationship. This means that the component vectors with loading close to +1 

indicates the strong influence of the sub-systems in construction of the PC while loadings close 

to zero shows a weak influence (Minitab, 2020),  and the negative loadings indicate an absence 

of relationship (Burstyn, 2004). Hence, the high positive loading sub-systems are critical in 

relation to the latent variables associated with the PCs; whereas, the small negative loadings 

are non-critical in relation to the latent variables associated with the PCs. This enable the sub-

systems to be categorised as critical and non-critical. Thus, the critical sub-systems can be 

identified considering influence of the latent variables which means the achievement of 

operational characteristic C3 - the critical sub-systems. 

The second feature of the loading plot is the relative direction of the position vectors of the 

sub-systems with reference to the origin of the plot. The relative direction of the position 

vectors explains the subsystem-to-subsystem relationship (i.e. whether they are similar or 

dissimilar) considering influence of the latent variables associated with the PCs.  The 

orthogonal transformation of the linear combination of the columns of X results in directionally 

parallel vectors of the sub-systems that are similar, non-parallel vectors of the sub-systems that 

are similar in some ways and dissimilar in other ways, anti-parallel vectors of the sub-systems 
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that are dissimilar and perpendicular vectors of the sub-systems that do not have any 

correspondence in their FFF profiles. Hence, the relative direction of the position vectors of 

the sub-systems with reference to the origin reveals which sub-systems are similar and which 

are dissimilar in relation to each PC. Thus, similar and dissimilar sub-systems can be 

differentiated considering influence of the latent variables which means the achievement of 

operational characteristic C4-similar and dissimilar sub-systems. 

In summary, the features of the loading plot can be used to analyse the latent structure of 

the sub-system FFF profile and can develop a clear understanding of the influence of the 

latent variables in the construction of the FFF profile of the sub-systems individually and in 

relation to each other. 

4.4.3.2 Criteria for evaluation of the sub-system FFF profile 

To identify C3- the critical sub-systems, a standard approach based on the loadings of the 

sub-systems on the PCs is adopted to define the criterion for the criticality categorisation of the 

sub-systems. Since loadings vary between -1 and +1; therefore, it is required to define the cut-

off loading value to categorise the sub-systems as critical and non-critical. The published cut-

off loading values are 0.25 (Peres-Neto et al., 2003) , 0.3 (Lebart et al. (1982) as cited in Jolliffe, 

2002, Peres-Neto et al., 2003), 0.5 (Lirn et al., 2014) and 0.7  Jolliffe (1972) as cited in Jolliffe 

(2002).  Defining a very high cut-off value (close to +1) will result in the selection of too few 

variables; similarly, defining a very low cut-off value (close to 0) will result in the selection of 

too many variables. (Burstyn, 2004) stated in his study that the loadings < +0.3 are insignificant 

and the negative loadings are not of concern in PCA. Hence, in this study the cut-off value is 

defined at +0.3 loading which implies that the sub-systems with loadings ≥ +0.3 are the critical 

sub-systems, and the sub-systems with loadings < +0.3 are the non-critical sub-systems.  

To differentiate between C4 -the similar and dissimilar sub-systems with respect to each PC, 

the criterion is defined based on the relative location of the position vectors in the quadrants of 

the coordinate system defined by PC-I and PC-II. The relative location of the position vectors 

in the quadrants elucidates the relative direction of the vectors which in turn provides an 

indication of the relationship between the sub-systems. For example, the position vectors of 

the dissimilar sub-systems with respect to both PCs are directionally anti-parallel; therefore, 

they are placed in diagonally opposite quadrants (Surawski et al., 2017, Dunn, 2019, Hartmann, 

2018b). Using this concept, the criterion is defined as if the position vectors of the sub-systems 
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are located in the same quadrant, and this indicates that they share some similarities in their 

FFF profile with respect to both PCs. If the vectors of the sub-systems are in the adjacent 

quadrants, this indicates that they share some similarities with respect to the PC that defines 

the mutual boundary between the quadrants, and they share some dissimilarities with respect 

to the other PC. Similarly, if the vectors are in diagonally opposite quadrants, this indicates that 

they share some dissimilarities in their FFF profile with respect to both the PCs. Also, if the 

vectors of the sub-systems meet at a right angle, this indicates that there is no correspondence 

in their FFF profile.  

4.4.3.3 Analysis of the operational characteristics in relation to the sub-system FFF 

profile 

The loading plots of the sub-systems for the six study years are presented in Figure 4-3.  The 

loading plot for each study year shows the position vector of each sub-system and their relative 

distribution in the coordinate system defined by PC-I and PC-II. 
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Figure 4-3:Loading plot for six study years for evaluation of the sub-system FFF profiles.  

In each plot, the x-axis represents PC-I and the y-axis represents PC-II, and the percentage of 

variance captured by PC-I and PC-II are given with the axis titles. Each loading plot graphs the 

weights of the sub-systems on PC-I along the x-axis, and the loadings of the sub-systems on PC-II 

along the y-axis. 

  
 

In order to determine the critical sub-systems, the sub-systems in the six study years were 

categorised based on their loadings on PC-I and PC-II and the results are presented in Table 

4-4 and Table 4-5. 
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Table 4-4: Criticality categorisation of the sub-systems in relation to PC-I 

Study Year Critical sub-systems Non-critical sub-systems 

Year 1 S4 and S16 
S1, S2, S3, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, 

S17, S18 and S19 

Year 2 S4, S7, S12 and S16 
S1, S2, S3, S5, S6, S8, S9, S10, S11, S13, S14, S15, S17, S18 

and S19 

Year 3 S3, S7, S12 and S16 
S1, S2, S4, S5, S6, S7, S8, S9, S10, S11, S13, S14, S15, S17, 

S18 and S19 

Year 4 S8 and S12 
S1, S2, S3, S4, S5, S6, S7, S9, S10, S11, S13, S14, S15, S16, 

S17, S18 and S19 

Year 5 S3, S8 and S16 
S1, S2, S4, S5, S6, S7, S9, S10, S11, S1 2, S13, S14, S15, 

S17, S18 and S19 

Year 6 S3, S4, S7 and S16 S1, S2, S5, S6, S8, S9, S10, S11, S12, S13, S14, S15, S17, 

S18 and S19 

Table 4-5: Criticality categorisation of the sub-systems in relation to PC-II 

Study Year Critical sub-systems Non-critical sub-systems 

Year 1 S3 and S7 
S1, S2, S4, S5, S6, S8, S9, S10, S11, S12, S13, S14, S15, S16, 

S17, S18 and S19 

Year 2 S3 
S1, S2, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, 

S16, S17, S18 and S19 

Year 3 S3 
S1, S2, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, 

S16, S17, S18 and S19 

Year 4 S3 and S4 
S1, S2, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, 

S17, S18 and S19 

Year 5 S3 
S1, S2, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, 

S16, S17, S18 and S19 

Year 6 S9 and S16 S1, S2, S3, S4, S5, S6, S7, S8, S10, S11, S12, S13, S14, S15, 

S17, S18 and S19 

 

As can be seen in Table 4-4,  in relation to PC-I, there are 2, 4, 4, 2, 3 and 4 sub-systems 

identified as critical in study years 1, 2, 3, 4, 5 and 6 respectively. Table 4-5 shows that in 

relation to PC-II, there are 2, 1, 1, 2, 1 and 2 sub-systems identified as critical in study years 1, 

2, 3, 4, 5 and 6 respectively. This means that in order to improve the FFF of these number of 

the critical sub-systems, the maintenance plan needs to resolve only two variables i.e. the latent 

variables associated with PC-I and PC-II.  This criticality categorisation also explains the inner-

structure of the PCs, and using this information the latent variables can be traced from the 
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maintenance record and the FFF of these critical sub-systems can be improved. Hence, PCA 

has successfully reduced the number of variables to deal with and provides a clear indication 

of the latent variables that influenced the operational performance of the sub-systems. In 

addition, as can be seen in both tables, some sub-systems are identified as critical in relation to 

both PCs, for instance, S3 in year 5 and S16 in year 6 are critical in relation to both PCs. This 

is the variance partitioning effect that explains the spread in the characteristics of functional 

reliability of these sub-systems i.e. these sub-systems have the characteristics of the latent 

variables associated with both PCs. It can also be seen in both tables that S4 is critical in relation 

to PC-I in years 1 and 2, and S3 in years 5 and 6, whereas S16 is identified as critical in relation 

to PC-I in all the study years except in year 4. Similarly, S3 is critical in relation to PC-II in all 

the study years except in years 3 and 6. The examples of these sub-systems proves that the 

loading-based categorisation of the sub-systems enables the FFF profiles of the sub-system to 

be evaluated within the same year, from year-to-year and over many years. Hence, the yearly 

trends for change in functional reliability of the sub-systems in relation to the PCs are easily 

traceable by using PCA. Overall, it is concluded that PCA has successfully categorised the sub-

systems considering the influence of the latent variables.  

In order to determine C4 - the similar and dissimilar sub-systems, the location of the sub-

systems must be located in the quadrants. The critical sub-systems are of concern; therefore, 

for analysis of C4 only the critical sub-systems listed in Table 4-4 and Table 4-5 were  

considered. Figure 4-3 shows that these critical sub-systems are located in either quadrant I or 

in quadrant IV or on the boundary between these quadrants and these locations are summarised 

in Table 4-6. 

Table 4-6: Location of critical sub-systems in quadrants of the coordinate system defined by PC-I and 

PC-II 

Study 

Year 

Critical sub-systems in 

quadrant-I 

Critical sub-systems on 

boundary between quadrant I 

and IV 

Critical sub-systems in 

quadrant-IV 

1 S3, S7 S4 S16 

2 S16, S12, S3 S7 S4 

3 S3 - S16, S7, S12 

4 S8, S12, S3, S4 - - 

5 S3 S16 S8 

6 S9, S16 S3 S7, S4 
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As can be seen in Table 4-6, in year 1, S3 and S7 are similar sub-systems in relation to PC-I 

and PC-II. S3 and S7 are also similar to S4 and S16 in relation to PC-I. By contrast, S3 and S7 

are dissimilar to S16 in relation to PC-II, and S3 and S7 do not have any correspondence with 

S4 in relation to PC-II. The results for each year can be interpreted in the same way. Thus, the 

sub-systems can be differentiated based on the similarities and dissimilarities in their FFF 

profiles considering the influence of the latent variables by the application of PCA.  

In summary, the loading plot provides a clear understanding of the latent structure of the sub-

system FFF profile and enables the achievement of both operational characteristics C3-the 

critical sub-systems and C4 -the similar and dissimilar sub-systems.  

4.4.4 Relationship analysis between the FFF profiles of the sub-systems and the months  

To analyse C5- the relationship between the FFF profiles of sub-systems and months,  the 

scores plot of the months was superimposed on  the loading plot of the sub-systems to produce 

a bi-plot. The use of common axis in both plots provide relevancy for overlaying the scores of 

the months on the loadings of the sub-systems. However, the scales of axis in the both plots 

are different; therefore, the biplot function in MATLAB automatically scales the scores of 

months to adjust them well in the plot. This results in an approximate representation of scores 

and loadings in a compromised space; thus, the bi-plot is interpreted in terms of the direction 

of the vectors and the distribution of the points along them.  

In this section, first we discuss how the features of bi-plot can be used to analyse the 

relationship between the FFF profiles of the sub-systems and the months. We then define the 

criteria to analyse the requisite operational characteristics related to relationship analysis 

between the two profiles i.e. C5(a) – characterisation of the monthly FFF profile and C5(b) – 

influence of the sub-system on the monthly FFF profiles, and finally, we interpret the 

loading plots obtained for each study year. 

4.4.4.1 Features of the bi-plot for relationship analysis between the FFF profiles of sub-

systems and the months 

The first feature of the bi-plot is the relative distribution of the months with reference to the 

relative direction of the position vectors of the sub-systems in the coordinate system defined 

by PC-I and PC-II. This can be useful to analyse the subsystems-to-months relationship i.e. 

identification of the sub-systems that contributed the most in making the months similar and 
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dissimilar in their FFF profile. Provided that the months and the sub-systems are in intact with 

their characteristics in relation to the PCs. Therefore, the months that are distributed in the 

direction of parallel vectors are similar in relation to the sub-systems represented by that 

vectors; likewise, the months that are distributed in the direction of non-parallel vectors are 

similar in some ways and dissimilar in other ways in relation to the sub-systems represented 

by that vectors; the months that are distributed on the opposite directions of the directionally 

anti-parallel vectors are dissimilar in relation to the sub-systems of that vectors. Hence, the 

relative distribution of the months considering the relative direction of the vectors enables to 

identify the sub-systems that contributed the most in making the months similar and dissimilar. 

Thus, the monthly FFF profiles can be characterised in relation to the sub-system FFF profiles 

which means the achievement of operational characteristic C5(a) – characterisation of the 

monthly FFF profile. 

 

The second feature of the bi-plot is relative distribution of the months along the length of 

position vector of any sub-system. This can be used to analyse the months-to-subsystem 

relationship i.e. influence of an individual sub-system in the construction of FFF profiles of the 

months. Using the concept discussed by (Kohler and Luniak, 2005, Kroonenberg, 2008), the 

months that are distributed far away in the direction of the vector, they have the FFF of the 

sub-system above than its average FFF; the months that are distributed near the origin, they 

have the FFF of the sub-system close to its average FFF; the months that are distributed far 

away in the opposite direction of the vector, they have  the FFF of the sub-system below than 

its average FFF. Hence, the relative distribution of the months along the length of the vector of 

the sub-system provides an approximate indication of influence of the sub-system in the 

construction of monthly FFF profiles. Thus, influence of the sub-system in the construction of 

monthly FFF profiles can be determined considering influence of the latent variables which 

means the achievement of the operational characteristic C5(b) – influence of the sub-system 

on the monthly FFF profiles. 

In summary, the features of the bi-plot can be used to analyse the FFF profiles of the months 

together with the FFF profiles of the sub-systems and can develop a clear understanding how 

these two profiles are related to each other.  
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4.4.4.2 Criteria for relationship analysis between the FFF profiles of sub-systems and the 

months 

To analyse C5(a) – characterisation of the monthly FFF profile, the criterion is defined based 

on the location of the months and the vectors in the quadrants of the coordinate system of PC-

I and PC-II. If the vectors are located within the same quadrant as that of the months, the months 

are similar in their FFF profiles with respect to the FFF of those sub-systems in relation to both 

PCs. Likewise, if the vectors are in one of the adjacent quadrants in which the months are 

located, the months are similar in some ways with respect to the FFF of the sub-systems in 

relation to the PC which defines the boundary between those quadrants, and they are dissimilar 

in the other ways with respect to the FFF of the sub-systems in relation to another PC. If the 

vectors are located in the quadrant which is diagonally opposite to the quadrant in which the 

months are located, the months are dissimilar with respect to the FFF of the sub-systems in 

relation to both PCs.  

To identify C5(b) – influence of the sub-system on the monthly FFF profiles, the approach as 

discussed by Kohler and Luniak (2005) and demonstrated by (Marcresearch) is adopted. 

Firstly, the vector of the sub-system which is required to be analysed is extended in both 

directions. Then, a perpendicular line is drawn on the vector close to the outer edge of the plot, 

but in the direction of the vector. This perpendicular line is required to be moved in the opposite 

direction of the vector of the sub-system. The sequence in which the perpendicular line hits the 

points of the months is the sequence of influence of the FFF of the sub-system in the 

construction of the FFF profile of the months.  

4.4.4.3 Analysis of operational characteristics in relation to the FFF profile of sub-systems 

and the months 

The bi-plots of the sub-systems for the six study years are presented in Figure 4-4. The bi-plot 

for each study year shows the relative distribution of the months and sub-systems in the 

coordinate system defined by PC-I and PC-II.  
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Figure 4-4: Bi-plots for six study years for evaluation of relationship between the FFF profiles of the 

months and sub-systems.  

In each plot, the x-axis represents PC-I and the y-axis represents PC-II, and the percentage of 

variance captured by PC-I and PC-II are given with the axis titles. Each bi-plot graphs the months 

and sub-systems in the compromised space. 
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It is of interest which critical sub-systems contributed the most in making the critical months 

similar and dissimilar in their FFF profiles; therefore, only the critical sub-systems and the 

critical months were considered for the analysis of characterisation of the monthly FFF 

profiles in relation to the sub-system FFF profiles. It can be seen in Figure 4-4 that the 

critical sub-systems are located either in quadrant I, IV or at the boundary between quadrants 

I and IV (i.e. positive PC-I), while the critical months are located either in quadrant I, II or IV.  

The location of the critical sub-systems for each study year can be tallied from Table 4-6, and 

the location of the critical months for each study year are presented here in Table 4-7. 

 

Table 4-7: Location of the critical months in the coordinate system of PC-I and PC-II 

Study Year 
Critical months in 

quadrant I 

Critical months in 

quadrant II 

Critical months in 

quadrant IV 

Year 1 March, May and December  June April 

Year 2 January and February June, and October March and May 

Year 3 January, February and July  April March 

Year 4 January September and October - 

Year 5 January, July and October - December 

Year 6 
January, February, March 

and August 
December May 

 

The relative location of the critical sub-systems in Table 4-6 were paired up with the relative 

location of the critical months in Table 4-7 for each possible combination that resulted in eight 

different scenarios as shown in Table 4-8. Using this information, the last column in Table 

4-8 summarises the characteristics of the FFF profiles of the critical months in relation to the 

FFF profiles of the critical sub-systems.    
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Table 4-8: Possible characteristics of the FFF profiles of the critical months with respect to the location 

of the critical sub-systems in the coordinate system of PC-I and PC-II 

Scenario 

Location of the 

critical sub-

systems 

Location of the 

critical months 

Possible characteristics in the FFF profiles of the 

critical months in relation to the critical sub-

systems 

I quadrant I quadrant I 
The FFF profiles of the critical months are similar in 

relation to the loadings of the critical sub-systems on 

both PCs. 

II quadrant I 

some are in quadrant I 

and some are in 

quadrant II 

The FFF profiles of the critical months are similar in 

relation to the loadings of the critical sub-systems on 

PC-II, and they are dissimilar in relation to the 

loadings of the critical sub-systems on PC-I. 

III quadrant I 

some are in quadrant I 

and some are in 

quadrant IV 

The FFF profiles of the critical months are similar in 

relation to the loadings of the critical sub-systems on 

PC-I, and they are dissimilar in relation to the 

loadings of the critical sub-systems on PC-II. 

IV quadrant IV quadrant IV 
The FFF profiles of the critical months are similar in 

relation to the loadings of the critical sub-systems on 

both PCs. 

V quadrant IV 

some are in quadrant I 

and some are in 

quadrant IV 

The FFF profiles of the critical months are similar in 

relation to the loadings of the critical sub-systems on 

PC-I, and they are dissimilar in relation to the 

loadings of the critical sub-systems on PC-II. 

VI quadrant IV 

some are in quadrant II 

and some are in 

quadrant IV 

The FFF profiles of the critical months are dissimilar 

in relation to the loadings of the critical sub-systems 

on both PCs. 

VII 

on the 

boundary 

between 

quadrants I and 

IV 

some are in quadrant I 

and some are in 

quadrant IV 

The FFF profiles of the critical months are dissimilar 

in relation to the loadings of the critical sub-systems 

on PC-I. 

VIII 

on the 

boundary 

between 

quadrants I and 

IV 

some are in quadrant I 

and some are in 

quadrant IV 

The FFF profiles of the critical months are similar in 

relation to the loadings of the critical sub-systems on 

PC-I. 
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Using the information given in Table 4-8,   it can be concluded that May, March and December 

in year 1 are similar in their FFF profiles in relation to the loadings of S3 and S7 on both PCs 

(i.e. scenario I). They are similar in their FFF profiles to June in relation to the loadings of S3 

and S7 on PC-II, but they are dissimilar in their FFF profiles in relation to the loadings of S3 

and S7 on PC-I (i.e. scenario II).  They are also dissimilar in their FFF profiles to June in 

relation to the loadings of S4 and S16 on PC-I (i.e. scenario VII). Likewise, they are also similar 

in some ways in their FFF profiles to April in relation to loadings of S3 and S7 on PC-I; 

however, they are dissimilar in the other ways in their FFF profiles to April in relation to S3 

and S7 on PC-II (i.e. scenario III). They are also similar in their FFF profiles to April in relation 

to loadings of S4 and S16 on PC-I (i.e. scenario VIII). In the same way, the results for each 

study year can be interpreted. Hence, the relative location of the critical sub-systems and the 

critical months provides information about how their FFF profiles are related to each other.   

In order to trace the seasonal trends of the FFF of the sub-systems, the operational characteristic 

C5(b) – influence of the sub-system on the monthly FFF profiles was only analysed for the 

sub-systems S3, S4, S7 and S16 that were identified as critical in most of the study years. Using 

the defined procedure, the sequence of influence of these critical sub-systems on the monthly 

FFF profile are presented in Table 4-9, Table 4-10, Table 4-11 and Table 4-12 respectively. 

 

Table 4-9: Sequence of influence of S3 on the FFF profiles of the months 

Year Sequence of months 

1 Jun Dec Mar May Apr Feb Sep Oct Jul Nov Aug Jan 

2 Oct Feb Jun Jan Jul Nov Sep Dec May Aug, 

Mar 

Apr  - 

3 Jan Feb Jul Apr Jun May Dec Sep Aug Nov Oct Mar 

4 Oct Sep Aug Apr Dec Jan Feb May Nov Mar Jul Jun 

5 Jan Jul Jun Feb Oct May Sep Mar Nov Aug Dec Apr 

6 May Jun Feb Jan Mar Aug Jul Apr Oct Nov Dec Sep 
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Table 4-10: Sequence of influence of S4 on the FFF profiles of the months 

Year Sequence of months 

1 Apr May Dec Mar Jan Feb Jun Sep Nov Oct Jul, 

Aug 

- 

2 Jan Mar Feb May Apr Jun Aug Jul Dec Nov Sep Oct 

3 Not identified as critical in this year 

4 Jan Oct Sep Aug, 

Apr 

Dec Feb, 

May 

Nov Mar Jul Jun - - 

5 Not identified as critical in this year 

6 May Jun Mar Jan Aug Feb Jul Apr Oct Nov Sep Dec 

 

Table 4-11: Sequence of influence of S7 on the FFF profiles of the months 

Year Sequence of months 

1 Dec Jun Mar May Apr Feb Sep Nov Oct Jul Jan Aug 

2 Jan Feb Mar May Apr Jun Jul Aug Dec Oct,

Nov 

Sep - 

3 Mar Oct Nov May Feb Jan Jun Dec Sep Jul Aug Apr 

4 Jan Mar Jul Jun Nov Dec Feb May Apr Sep Aug Oct 

5 Not identified as critical in this year  

6 May Jun Mar Jan Aug Feb Jul Apr Oct Nov Sep Dec 

 

Table 4-12: Sequence of influence of S16 on the FFF profiles of the months 

Year Sequence of months 

1 Apr May Jan Mar Dec Feb Sep Nov Jun Aug Oct Jul 

2 Jan Feb May Mar Jun Apr Oct Jul Nov Dec Aug Sep 

3 Mar Feb Oct Jan May Jun Nov Dec Jul Sep Apr Aug 

4 Not identified as critical in this year 

5 Dec Oct Jul Jan Feb Sep Jun Mar Nov May Aug Apr 

6 Feb Jan Aug Mar Dec Jun Nov Jul Oct Apr May Sep 
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It can be seen from the tables that there is no consistent pattern in the FFF of the sub-systems 

in various months over the years. For instance, in Table 4-12, in Year 1 April  is first in the 

sequence; in Year 2, it is sixth ; in Year 3, it is eleventh, in Year 4, it was non-critical; in Year 

5, it is twelfth and in Year 6, it is tenth in the sequence. Hence, no particular seasonal trend is 

traceable for any of the critical sub-systems. Thus, the presence of a seasonal trend can be 

analysed for any sub-system considering the influence of the latent variables.   

In summary, the bi-plot provides a clear understanding of the relationship between the two 

profiles and enables the achievement of both operational characteristics C5(a)-

characterisation of the monthly FFF profile and C5(b) – influence of the sub-system on the 

monthly FFF profiles. 

4.5 Comparison of the results obtained by SDA and PCA 

In this section, the performance of the simple descriptive analysis presented in Chapter 4 is 

compared with the performance of PCA.  

4.5.1 Identification of the critical sub-systems by SDA and PCA 

Identification of the critical sub-systems is the core of operational characterisation of the sub-

systems; therefore, the results obtained for the critical sub-systems by application of both 

techniques are compared here.  Table 4-13 presents the critical sub-systems identified as 

critical using SDA from Table 4-4 in chapter 4, and those identified as critical using PCA from 

Table 4-4 and Table 4-5 in this chapter.  
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Table 4-13: Comparison of critical sub-systems identified by SDA and PCA 

Study year 
Critical sub-systems identified by 

application of SDA 

Critical sub-systems identified by 

application of PCA 

PC-I PC-II 

Year 1 S1, S3, S4, S5, S7, S12 and S16 S4 and S16 S3 and S7 

Year 2 S2, S3, S4, S7 and S16 S4, S7, S12 and S16 S3 

Year 3 S2, S3, S4, S7, S12 and S16 S3, S7, S12 and S16 - 

Year 4 S3, S4, S7, S8, S12 and S16 S8 and S12 S3 and S4 

Year 5 S3, S4, S7, S9 and S16 S3, S8 and S16 S3 

Year 6 S2, S3, S4, S7, S8 and S16 S3, S4, S7 and S16 S9 and S16 

  

Table 4-13 clearly shows that PCA has identified fewer sub-systems as critical than SDA. This 

is because as PCA orthogonally transforms the data that results in removal of redundancy from 

the data and extraction of important information (i.e. identification of the critical sub-systems 

in relation to the PCs) by supressing the less important ones, while SDA simply works on the 

failure frequency count that results in identification of too many sub-systems as critical. 

Furthermore, PCA has identified the critical sub-systems in relation to the PCs which indicates 

the underlying causes for the criticality of the sub-systems; by contrast, this information is not 

obtainable by SDA.  Hence, it is concluded that PCA is clearly an appropriate choice for the 

analysis of the operational characteristics of the sub-systems.  

4.5.2 Operational performance characteristics delivered by SDA and PCA 

A comparison between SDA and PCA is performed here in order to evaluate their effectiveness 

in delivering the operational characteristics of the sub-systems from C1 to C5 i.e. the 

operational characteristics based on the FFF. Table 4-14 compiles the findings that were 

presented in Table 4-6 in chapter 4 and in the previous section of this chapter.  
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Table 4-14: Comparison between SDA and PCA in delivering the operational characteristics of the 

sub-systems based on FFF 

Operational Characteristic SDA PCA 

C1 - the critical months 
Achievable but with 

limitations 
Achievable 

C2 - the similar and dissimilar months Not achievable Achievable 

C3 - the critical sub-systems Achievable but with 

limitations 
Achievable 

C4 - the similar and dissimilar sub-systems Not achievable Achievable 

C5(a) - characterisation of the monthly FFF profiles in relation 

to the sub-system FFF profiles 
Not achievable Achievable 

C5(b) - influence of the sub-system on the monthly FFF 

profiles 
Not achievable Achievable 

 

Table 4-14 clearly shows that PCA has successfully delivered all the operational 

characteristics of the sub-systems. Thus, it is concluded that PCA provides an excellent 

approach for the operational performance characterisation of the sub-systems.  

4.6 Summary 

This chapter has developed the new approach for operational performance characterisation of 

the sub-systems by partially modifying the conventional approach. The new approach 

preserves the conventional single criterion for characterisation i.e. FFF, and replaces the 

analytical technique i.e.  SDA by PCA. The demonstration of the new approach by its 

application to the FFF data of the urban trains that was collected from the UTS Melbourne has 

shown the transformation of the big data of urban trains into coherent information. PCA has 

successfully established the five different operational performance characteristics that are 

based on the FFF, and it has provided a clear insight into the latent structure of the FFF profiles 

of the months and the sub-systems individually and in relation to each other. In addition, the 



Chapter 4 

144 

 

results of PCA are presented in plots that provide rich information and are easy to interpret. 

The comparison of the results obtained from PCA with those of SDA has proved that PCA can 

be used for establishing the operational characteristics of the sub-systems considering influence 

of the latent variables; thus, enabling the better decision-making in the process of maintenance 

planning for the fleet of urban trains.  

However, despite its significant advantages, PCA can only deal with a single criterion for the 

data characterisation. Therefore, PCA cannot be applied for operational characterisation of the 

sub-systems based on the multi-criteria i.e. operational characteristics that involves the KPIs 

for both functional reliability and service reliability. Hence, the next chapter aims to apply a 

technique, which is an extended version of PCA, for identification of the critical sub-systems 

by using the multi-criteria.  
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Chapter 5:  OPERATIONAL PERFORMANCE CHARACTERISATION 

BASED ON MULTIPLE CRITERIA USING MULTIPLE 

FACTOR ANALYSIS 

5.1 Introduction 

In the previous chapter, a new approach was developed for operational performance 

characterisation of the fleet of urban trains by preserving the conventional single criterion (i.e. 

functional failure frequency) while applying PCA. It was concluded that PCA can be used to 

establish five of the operational characteristics of the sub-systems considering the influence of 

the latent variables; however, it cannot be used to obtain the other four operational 

characteristics that need to be established based on multiple criteria in line with Research 

Objective 2(b). Hence, another technique is needed that not only characterises the operational 

performance of the sub-systems considering the influence of the latent variables, but that can 

establish the operational characteristics considering the KPIs of both functional reliability and 

service reliability. This is required in order to evaluate whether there are differences in the 

critical sub-systems identified based on multiple-criteria that entail the concerns of main 

stakeholders and those identified as critical based on the single criterion.  

This chapter reports the development of this multiple criteria approach obtained by pairing the 

KPIs in their cause-and-effect structure (i.e. FFF-and-number of services cancelled, and FFF-

and-number of services delayed), and then applying a technique called multiple factor analysis 

(MFA) which is an extension of PCA.  

This chapter first presents The MFA technique explaining why it was selected for operational 

characterisation based on multiple criteria. Next the data structure based on multiple criteria 

for analysis and the software used are described in detail, and the script is validated using an 

example. The results of the multiple criteria approach are then presented and compared to the 

results obtained using the single criterion approach developed in Chapter 4. Finally, the chapter 

concludes by recommending an improved analytical framework for the reliability analysis. 
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5.2 Selection of the multiple factor analysis technique 

This section explains why MFA was selected as the multiple-criteria analysis method for the 

operational performance characterisation of the sub-systems. The data characteristics are first 

discussed and the usefulness of MFA for analysing the operational performance data of urban 

trains is then assessed.  

The discussion in Section 3.3.2 of Chapter 3 clearly shows that the data collected on the number 

of services cancelled and the number of services delayed contain redundant information, they 

are multivariate, and show recurrent and non-recurrent patterns in measuring the KPIs in 

various sub-systems. As discussed in Section 4.2 of Chapter 4, the presence of recurrent and 

non-recurrent patterns in the data indicates the influence of the latent variables. Therefore, for 

accurate characterisation of the performance of the sub-systems, it is important to consider the 

influence of the latent variables and this can be achieved by investigation of the latent structure 

within the data.  

Before considering the technique for analysis, it is important to know what information needs 

to be extracted from the data. To achieve Research Objective 2(b), the operational 

characteristics from C6 to C8 (listed in Section 3.2.1 of Chapter 3) need to be evaluated based 

on the multiple criteria that are defined by the KPIs of both functional reliability and service 

reliability. For convenience, these operational characteristics are listed here again: 

C6     the critical sub-systems for services cancelled 

C7     the critical sub-systems for services delayed 

C8     relationship between the FFF and the number of services cancelled  

C9     relationship between the FFF and the number of services delayed  

Analysis of these operational characteristics by applying multiple criteria requires the 

application of a technique that can characterise the sub-systems considering various KPIs for 

reliability, and can describe the complex relationships between the KPIs. MFA is a promising 

technique that is designed to deal with complex multiple datasets, and can be used to find the 

common latent structure between them. It has been extensively used in many fields including 

sensory science, molecular biology, environmental science, ecology, surveys analysis and in 

time series studies. MFA can be applied in any industry that involves wide data bases 

(Kassambara, 2017a).  
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Due to its flexibility and robustness, MFA has been increasingly used in engineering and 

business studies in recent years. Some of these studies apply MFA to analyse data that involve 

variables entailing the concerns of stakeholders. For example, Wang et al. (2011) analysed 

large scale blackout accidents data for performance assessment of electricity firms considering 

several risks associated with the power grid; Visbal-Cadavid et al. (2020) evaluated sustainable 

development data of higher education institutes for their performance assessment considering 

several outcome indicators; and Duarte and Campos (2020) studied the inter-organisation 

collaborative network data for evaluation of improvement in performance of organisations 

considering several attributes. These studies succeeded in identifying the individuals that are 

critical in relation to the concerns of different stakeholders by considering the influence of the 

latent variables and the relationships between the variables. Hence, the successful application 

of MFA in these studies clearly shows MFA offers great potential to analyse data which is 

complex, multivariate and involves multiple datasets. 

Additionally, MFA has the great advantage that it is based on PCA which has already been 

used to analyse the urban trains data in the previous chapter. MFA performs a global analysis 

on a set of variables that is measured on the same individuals or on the same variables that are 

measured on different individuals (Pages, 2004, De Tayrac et al., 2009, De Roover et al., 2012). 

MFA investigates the similarities and differences between the different datasets based on the 

common latent structure (De Roover et al., 2012). Abdi et al. (2013) states that the first step in 

MFA is to perform PCA on each dataset separately, and then to normalise each dataset by 

dividing all the elements by the first singular value obtained for that dataset using PCA. This 

transformation ensures that the first singular value of each data set is equal to 1 which nullifies 

the dominant effect of any dataset in the common solution (Abdi and Valentin, 2007, Abdi et 

al., 2013). In the second step, all normalised datasets are combined into a grand table, and then 

PCA is applied to the grand normalised datasets for global analysis, thus establishing the 

common scores for the individuals and the loadings of the variables on the dimensions (i.e. the 

constructed principal components). This means that dimensions represent the latent variables 

in MFA. The common scores provide an assessment of the individuals in the global space i.e. 

from the perspectives of all the datasets, while the loadings determine the relationships between 

the variables.  

In the current research, the sub-systems need to be characterised considering the KPIs of both 

functional reliability and service reliability, and the relationships between these KPIs. In 
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addition, the individuals need to be evaluated in relation to each dataset which can be utilised 

to compare the performance of the sub-systems with respect to the types of trains in the fleet. 

Thus, MFA was selected to characterise the operational performance of the sub-systems based 

on multiple criteria.  

5.3 Data analysis plan 

This section explains how the data were analysed using MFA. The data and the software used 

for the analysis are first presented, and the script design is outlined and then validated through 

an example. The usefulness of MFA in characterising the individuals in the data considering 

all variables in all datasets is highlighted.  

5.3.1 Data collection and structure 

To characterise the sub-systems based on the effect of FFF of the sub-systems on the number 

of services cancelled and on the number of services delayed, MFA was performed on the two 

datasets. The data obtained using SDA and reported in Chapter 3 were used to carry out this 

analysis. Since data re-structuring is required in order to expose the influence of the latent 

variables that are common between datasets (Xu and Goodacre, 2012), the data were structured 

into groups with respect to the different types of trains in the fleet. The four different types of 

train in the UTS fleet in Melbourne were coded for analysis as A, B, C and D.  No new trains 

were introduced in six years. However, the oldest trains i.e. those of train type D were removed 

from the service after Year 3 as discussed in Section 3.3.1 of Chapter 3. Thus, all four groups 

i.e. A, B, C and D were analysed for the first three years, and when train type D was removed 

from service after study Year 3, the three remaining groups were analysed for the last three 

years. In each group, the first variable was FFF in both datasets, while the second variable was 

the number of services cancelled and the number of services delayed in Set I and Set II 

respectively.  The variables were measured on the 19 different sub-systems that were coded as 

S1, S2. …., S19 in Chapter 3. Thus, the data for each train type was structured into a 19 x 2 

matrix, wherein, the sub-systems in rows represent the individuals that were assessed for 

reliability, and the KPIs in columns represent the original variables that were used for 

measuring reliability. The matrices for train types were then combined in grand matrices X1 

and X2 for Set I and Set II respectively, resulting in a 19 x 8 grand matrix for study years 1, 2 
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and 3 with four types of train as the groups, and a 19 x 6 grand matrix for study years 4, 5 and 

6 with three types of trains as groups.   

5.3.2 Software and script design  

The analysis was performed in RStudio version 3.5.0 by R Core Team (2018). The script for 

MFA in RStudio by Kassambara (2017a) was used as an example. The multivariate data 

analysis packages FactoMine version 2.4 (Husson et al., 2008) and Factoextra version 1.0.7 

(Kassambara and Mundt, 2008) were used for the script design. FactoMine offers an inbuilt 

function – MFA (), while FactoExtra provides functions that are easy to use for visualisation 

and quick extraction of the results from the analysis (Husson et al., 2008).  Based on the data 

characteristics, the following points were considered in the pre-processing of the data and in 

assigning the values to various arguments within the function of MFA (): 

(1) Scaled data: Functional failures are measured in frequency (i.e. counts for a given reported 

period), while the KPIs for service reliability are measured in terms of numbers that are 

caused by the occurrence of functional failures in the sub-systems. As we discussed in 

Section 5.3.2 of Chapter 5, data scaling is required when variables are in different units. 

Data scaling is also required when the datasets vary in their ranges which is the case with 

the datasets of FFF and the KPIs for service reliability. Therefore, data scaling was required 

before performing the analysis in this study. The min-max scaling technique is 

recommended when there is a difference in the ranges of the datasets (Lakshmanan, 2019, 

Bhandari, 2020). Hence, the min-max scaling was applied for re-scaling the ranges of all 

the datasets to the scale of [0 100].  

(2) Number and type of groups:   In case of both Set I and Set II, the four types of trains for 

years 1, 2 and 3, and the three types of trains for years 4, 5 and 6 were defined as active 

groups, and the Null value was assigned to the number of supplementary groups. By 

default, the argument “group” balances the influence of each group of variables in the 

construction of the dimensions (Kassambara, 2017a).  

(3) Number and type of variables:  There were two variables in each group and all groups of 

variables were quantitative. RStudio by default standardises the quantitative variables to 

unit variance in order to make them comparable.  
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Additionally, the supporting packages named as devtool version 1.13.5 (Wickham et al., 2018), 

ggplot2 (Wickham, 2009), ggrepel version 0.9.1 (Slowikowski et al., 2021), Rarpack version 

0.11-0 (Qiu and Mei, 2016), rJava version 0.9-9 (Urbanek, 2017), xlsx version 0.6.1  

(Dragulescu and Arendt, 2018) and Xlsxjars version 0.6.1 (Dragulescu, 2014) were 

incorporated in the script for expediting the process, for better visualisation of the results,  and 

for quick extraction and importation of the results.  

The script designed to perform MFA in RSTUDIO is presented in Appendix C.  

5.3.3 Validation of the script  

Based on the availability of detailed data, a study by Kassambara (2017b) that used MFA for 

quality characterisation of the wines was selected for validation of the designed script. In 

Kassambara’s study, 21 samples of wines from different origin were evaluated against 27 

sensory variables those were structured in four groups. The groups were named after the 

sensory tests that included the odour test, visual test, odour after shaking test and the taste test. 

The number of variables in these groups were 5, 3, 10 and 9 respectively. The designed script 

was used for performing MFA on this data in RStudio. The values for the different arguments 

were assigned as per the given data, and the same results as reported by (Kassambara) were 

obtained. Hence, it validates the script design and its functioning. The typical MFA plots for 

obtained results were mapped and are presented in Appendix D. In order to develop 

understanding about usefulness of MFA in revealing the common latent structure that exists 

between and within the multiple datasets, the key findings of the example are presented here.  

The production process of all wine samples only differs with respect to the type of soil for the 

wine fields. This results variation in the quality of winesS; thus, the sensory scientists apply 

MFA for characterisation of the wines considering influence of all variables in all groups.  In 

Kassambara’s study, dimension I represented the common structure between all groups and 

within each group. In relation to it, it was found that the wine 1DAM had the highest common 

scores, while the wines IVAU and the 2ING had the least common scores. The cross checking 

with the raw data showed that IDAM was the most intense and harmony wine among all 

samples, while IVAU and the 2ING were the least intense and the harmony wines. The second 

structure represented by dimension II was related to three groups i.e. odour, odour after shaking 

and taste, but it was not related to vision. The wines T1 and T2 attained the highest common 

scores on this dimension. The cross checking with the raw data informed that these wines were 
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spicy and had vegetal characteristics. Hence, it was concluded that the latent variable associated 

with dimension I is essential for production of highly intense and harmony wine, while the 

latent variable associated with dimension II is necessary for spiciness and vegetal 

characteristics in the wine.  

The above example clearly shows that MFA reveals the common structure that exists between 

and within the study groups. This enables the characterisation of the individuals involved in 

the study considering all variables within all groups, and the analysis of the relationships 

between the variables. This example in terms of its complexity and the analysis objectives is 

similar to the present study. Hence, MFA can also be applied to the operational performance 

data of the urban trains.         

5.3.4 Application of MFA to the urban trains data 

The yearly matrix X1 for FFF-and-number of services cancelled for Set I and the yearly matrix 

X2 for FFF-and-number of services delayed for Set II were analysed using MFA. The 

computational process is the same for both sets; the only difference is in terms of the 

involvement of the KPI for service reliability. Hence, the computational process is explained 

here only by using the yearly matrix X1 comprising the data from the four groups A, B, C and 

D. As defined in Section 5.3.1, the yearly X1, also called the grand matrix X1 or the global 

matrix, is of order 19 x 8. This can be represented as X1 = [XA| XB| XC| XD]. Each individual 

element in X1 is represented by xijk which implies that the x value is lodged by ith sub-system 

on jth KPI in the kth group. This means that the elements of ith row form a p-dimension vector 

of ith sub-system denoted by Si, and the elements of jth column that fall in the kth group forms 

an n-dimension vector of jth KPI denoted by Rj. 

The first step of MFA is to perform PCA on the matrix of each group individually by using the 

same computational steps as outlined in Section 4.3.5 of Chapter 4. The weight for each group 

is then established by taking the inverse of its first singular value (i.e. σ1) obtained by PCA. If 

the weight is represented by α, then the α weights for k groups can be stored in a J by 1 vector 

denoted by a. It can be represented as a = [αA1T
|A|, αB1T

|B|, αC1T
|C|, αD1T

|D|]; whereas, 1k shows 

Jk by 1 vector of ones i.e. J= 8 by 1 vector.  To obtain the normalised matrix for each group 

without disturbing their internal structure, the weight for the group is multiplied with all the 

elements within that group (Josse et al.). This normalisation adjusts the highest variance of 

each group to unit that nullifies the influences of the groups (Josse et al., Abdi et al., 2013). 
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The normalised matrices for the four groups are then concatenated into the grand normalised 

matrix ZX1 (also called the global matrix) of order 19 x 8. This global matrix for operational 

performance of the fleet of urban trains can be represented as ZX1= [ZA| ZB| ZC| ZD]. Using 

PCA, MFA decomposes ZX1 into a product of three matrices i.e.  the matrices of the left and 

right singular vectors (denoted by U and V respectively) and a square matrix D of singular 

values as shown in Equation  

5-1: 

 𝑍𝑋1 =  𝑈𝑋1𝐷𝑋𝑉
𝑋1

𝑡
𝑡     

where Ut
x
t
1MUx1 = 

Vt
x
t
1AVx1=I 

 

5-1 

 

In comparison to Equation 4.1 in Chapter 4, the decomposition of ZX1 involves two additional 

definite matrices M and A that represent the constraints on its rows and its columns 

respectively. The matrix M is a diagonal matrix of order 19 x 19 which is established by using 

M = diag{m}, while m is a vector of equal masses that are assigned to the individuals (i.e. the 

sub-systems) by using m = 1/I.  Likewise, A is a diagonal matrix of order 8 x 8 which is 

established by using A = diag{a}, while a is a vector of α weights. These constraints are applied 

to ensure the orthogonality of the matrices Ux1 and Vx1. 

The matrix Vx1 is the first resultant matrix which spans the operational performance of the sub-

systems and provides an orthonormal basis for {Si}. Vx1 is the matrix of the set of dimensions 

that contains the coefficients of the KPIs on the dimensions. Given that the number of 

individuals is greater than the number of variables,  the orthogonal transformation of ZX1 results 

in the number of dimensions being equal to the number of variables (Adams et al., 2001); 

hence, 8 dimensions are produced. The scree plot maps the number of dimensions and the 

percentage of variance explained by each of the extracted dimension. This plot is used to 

determine the number of dimensions to be retained for further analysis. The columns of Vx1 

represents the set of dimensions; thus, it is a matrix of order 19 x 8. 

MFA determines the first dimension in a direction that represents the greatest link between all 

groups (Husson, Visbal-Cadavid et al., 2020). The second dimension is orthogonal to the first 

dimension and it is determined by the next greatest link between the groups and so on. In this 

way, in addition to the general results of the standard PCA, MFA reveals the relationship 

between the dimensions and the groups of variables, and between different groups of variables. 



Chapter 5 

153 

 

This information is mapped in the plot known as groups representation which can be used to 

compare the operational performance of different types of train in the fleet considering the 

influence of the common latent variables.  

The second matrix D is a diagonal matrix of singular values representing the amount of 

variance captured by each dimension; hence, it is of order 8 x 8. The singular values are in 

descending order of their importance and they explain the magnitude of influence of the latent 

variables in the construction of Zx1 which is the normalised matrix of X1. The final matrix Ux1 

spans the KPIs for reliability and forms an orthonormal basis for {Rj}; hence, Ux1 is a matrix 

of order 19x8. We also know from Section 4.3.5 of Chapter 4 that Equation  

5-1 can be re-written as:  

 𝑍𝑋1 =  (𝑈𝑋1𝐷𝑋1) 𝑉
𝑋1

𝑡
𝑡 = 𝑇𝑋1𝑊

𝑋1
𝑡

𝑡  
5-2 

 

In Equation 5-2,  TX1 stores the common factor scores for the sub-systems considering the 

influence of all variables of all groups. The common scores of the sub-systems can be plotted 

in a similar way to the scores plot in PCA. Thus, the representation of the sub-systems in the 

global environment of MFA characterises the sub-systems with respect to their operational 

performance in all types of train. Hence, it can be used to identify the sub-systems that are 

critical in the overall train fleet.  

Considering the group structure of the matrix ZX1, the common scores for the sub-systems can 

be split into their partial scores, i.e. scores of the sub-systems with respect to the group of each 

type of train in the fleet. The partial scores for the kth group can be computed by multiplying 

the data matrix of the group with its loading matrix considering the diagonal matrix Ak of α 

weights for the group i.e. Tk = ZkAkWk (Abdi et al., 2013). Using the partial scores of the sub-

systems for the four types of trains, the matrix for the common scores of the sub-systems i.e. 

TX1 can be written as shown in Equation 5-3:  

 

Equation 5-3 clearly shows that the common scores for the sub-systems are the average of the 

scores for the sub-systems from the four groups. Hence, the contribution of the different types 

of train in the common scores for the sub-systems can be analysed. The partial scores can be 

 𝑇𝑋1 =  1/4(𝑍𝐴 𝐴𝐴𝑊𝐴 +  𝑍𝐵𝐴𝐵𝑊𝐵 + 𝑍𝐶 𝐴𝐶𝑊𝐶 + 𝑍𝐷 𝐴𝐷𝑊𝐷) 5-3 
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superimposed on the common scores plot of the sub-systems to identify the sub-systems critical 

with respect to the types of train in the fleet. Another term Wt
X1 in Equation 5-2 stores the 

loadings of the KPIs for reliability on dimensions. MFA plots the loadings of the sub-systems 

on the dimensions in a two-dimensional circle (also called a correlation circle) with a unit 

radius. This plot is useful for analysing the relationship between the KPIs for reliability and the 

latent variables associated with the dimensions. In addition, the principal components obtained 

by individual PCA of each group can be projected on the correlation circle defined by the 

dimensions obtained from MFA. The correlations of the principal components of each group 

with the dimensions of MFA are used as coordinates for the mapping. This is referred to as a 

partial axes plot and it is useful for analysing the relationship between the principal components 

of each individual analysis and the dimensions of the global analysis.  

Equation 5-2 shows that MFA transforms the normalised matrix of original data into the 

common scores of the sub-systems, i.e. TX1, and the loadings of the KPIs for reliability on the 

dimensions, i.e. WX1, by imposing constraints on its columns and the rows. This transformation 

results in the generation of several plots that provide insight into the common latent structure 

within and between the datasets. Since the computational process for X1 has shown, it has also 

shown the process for X2. Thus, MFA can be used to analyse the functional failures data of the 

urban trains together with the services cancelled data, and the services delayed data.  

5.4 Set I: Analysis of operational performance characteristics based on the 

impact of FFF on the number of services cancelled 

This section discusses the results obtained for Set I by the application of MFA to the urban 

trains data for the six study years. The aim is to identify the critical sub-systems with respect 

to the impact of FFF of the sub-systems on the number of services cancelled, and to analyse 

the relationship between the FFF and number of services cancelled. 

5.4.1 Selection of the number of dimensions for further analysis 

As explained in Section 5.3.4, the decomposition of matrix X1 results in the number of 

dimensions equivalent to the number of KPIs involved in its construction.  Matrix X1 for Years 

1, 2 and 3 generated a set of 8 dimensions and for Years 4, 5 and 6 a set of 6 dimensions. We 

also know from Section 4.4.1 of Chapter 4 that it is important to retain an adequate number of 

dimensions for the best approximation of the original data matrix.  
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From different approaches for the selection of number of dimensions, the scree plot was 

selected. This plot is a line plot which is mapped between the number of dimensions on the x-

axis and the variance explained by them on the y-axis (Yang, 2015, De Silva et al., 2017). The 

amount of variance which is explained by the dimensions can be represented by both singular 

values and the eigenvalues depending on the selection of the matrix decomposition method and 

the software package. These values are interchangeable, but it is easier to communicate the 

variance when it is given as a percentage. The FactoMine package in RStudio represents the 

percentage of variance explained by each of the dimensions on the y-axis. It also provides an 

option to plot the scree plot as a line chart, a bar chart or a combination of both. By default, it 

generates the scree plot as a combination of both line chart and the bar chart (STHDA: 

Statistical tools for high-throughput data analysis), which is also used in this study. 

The scree test is applied for determining the number of dimensions to be retained for further 

analysis. According to the scree test, the number of dimensions before or up to the elbow point 

that joins the steep and the flat parts of the plot (i.e. a bend) in the scree plot are adequate for 

an approximation of the original data matrix (Yang, 2015, De Silva et al., 2017). The steep part 

indicates an explanation of the maximum percentage of variance in the data by the number of 

dimensions that fall on it. By contrast, the flat part indicates an explanation of a small or 

negligible percentage of variance in the data by the number of dimensions that fall on it. Hence, 

it is better to retain the number of dimensions before or up to the elbow point  rather than the 

number of dimensions after the elbow point that add little or no more information (McDonald, 

1985). To decide between the number of dimensions to be retained before or up to the elbow 

point, we combine the scree test with the cumulative percentage of variance explained by the 

dimensions. As discussed in Section 5.4.1 of Chapter 5, the minimum recommended number 

of dimensions corresponds to a cumulative percentage of variance of 70% (Jolliffe, 2002, 

Yang, 2015, De Silva et al., 2017).  

The scree plots for all six study years are presented in Figure 5-1.  
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Figure 5-1: Scree plot for the six study years showing the percentage of variance explained by each 

dimension. 
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As can be seen in Figure 5-1, the elbow point appears at dimension II in the scree plot of each 

study year. This implies that only dimension 1 or both dimensions I and II can be retained for 

further analysis. Using the cumulative percentage of variance approach, Figure 5-1 also shows 

that if we retain only dimension 1, the cumulative percentage of variance is 76.2%, 76.9%, 

75.9%, 58.8%, 71.6% and 68.9% for study years 1,2,3,4,5 and 6, respectively. This shows that 

dimension I alone explains the cumulative percentage of variance in X1 (i.e. the global matrix 

of operational performance of urban trains established on FFF and the number of services 

cancelled) greater than the minimum threshold of 70% except in years 4 and 6.  In addition, 

the percentage of variance explained by dimension II is 14.1%, 14.0%, 15.0%, 21.3%, 19.6% 

and 20.6% in study years 1,2,3,4,5 and 6, respectively. This means that if we retain both 

dimensions I and II, the cumulative percentage of variance is 90.3%, 90.9%, 90.9%,80.1%, 

91.2% and 89.5% in years 1,2,3,4,5 and 6 respectively which far exceeds the minimum 

threshold for each study year. Even though dimension I alone is almost enough to serve the 

purpose, the mapping of the results in two-dimensional space is better for visualisation of the 

results. Hence, both dimensions I and II are retained for investigating the latent structure of X1.  

5.4.2 Characterisation of operational performance of different types of train in the fleet 

The operational performance of the different types of train in the fleet can be compared based 

on the strength of the relationship between the performance of each train type and the two 

dimensions i.e. influence of the latent variables on the operational performance of train types. 

The amount of variance (also known as inertia) explained by each dimension can be used as a 

measure of strength of this relationship, and it is equivalent to the sum of variance of the 

performance of each train type (also known as the partial inertia). The proportion by which the 

partial inertia of each train type contributes to the total inertia of the dimension defines the 

strength of the relationship of its operational performance with the latent variable associated 

with the dimension. This implies that a larger proportion is an indication of a strong relation 

between the operational performance of the train type and the dimension. Hence, the partial 

inertias obtained for the different types of train were mapped in the groups representation plot. 

In this plot, the partial inertias define the coordinates for the mapping of the train types in the 

coordinate system defined by dimensions I and II. The coordinates vary between 0 and 1; thus, 

a cut-off value needs to be defined to categorise the train types in the fleet as strongly related 

and weakly related to the dimension. The groups representation plot is analogous to the 
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loadings plot (Abdi et al., 2013), so the cut-off value at 0.3 loadings that was chosen in Section 

5.4.3.2 of Chapter 5 can be used. Hence, the train types with coordinates ≥ +0.3 on the 

dimension are strongly related, while the train types with coordinates < +0.3 on the dimensions 

are weakly related.  

Figure 5-2 presents the groups representation plots for the different types of train in the fleet 

for the six study years.  
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Figure 5-2: Groups representation plot for the six study years. 

The distribution of types of train along the length of each dimension is a measure of the proportion of 

their partial inertia in the inertia of the dimension. The greater the distance between the point 

(representing the train type) and the origin of the plot on any dimension, the greater is its proportion in 

the inertia of the dimension. 

 

As can be seen in Figure 5-2, in relation to dimension I the performances of all train types 

involved in each year are strongly related to this dimension for the six study years. In relation 

to dimension II, only the performance of train type C is strongly related to this dimension in 

all study years except Year 1 in which the performances of all train types are weakly related. 

Overall, this shows that the operational performance of train types A, B and D is strongly 

related to the latent variable associated with dimension I, while the operational performance of 

train type C is strongly related to the latent variable associated with both dimensions I and II. 

However, in order to analyse whether the relationship is positive or negative, it is required to 

investigate the inner-structure of the dimensions 

These findings also indicate that the latent structure associated with dimension I is common 

between and within the groups of train types A, B, C and D for the six study years, while the 

latent structure associated with dimension II only exists within the group of train type C except 

in Year 1. In other words, the latent variable associated with dimension I is crucial for the 

operational performance of all train types, while the latent variable associated with dimension 
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II is only crucial for the operational performance of train type C. Hence, it is concluded that 

MFA clearly reveals how the operational performances of different train types are related to 

each other in terms of common latent variable that affects their operational performance.  

In summary, using MFA enables to compare the operational performances of different train 

types considering strength of their relationship with the dimensions, and it exposes the 

similarities in the latent structure which is common between and within the groups of train 

types.  

5.4.3 Characterisation of operational performance of the sub-systems based on FFF-and-

number of services cancelled 

In order to identify the critical sub-systems considering the effect of their FFF on the number 

of services cancelled, the common factor scores of the sub-systems were mapped in the 

coordinate system defined by dimensions I and II. This plot provides insight into the 

characteristics of the performance of the sub-systems for all train types in the fleet. As only the 

critical sub-systems are of interest, a cut-off method is adopted to define the criterion. 

Considering the distribution of the sub-systems along the length of each dimension for each 

study year, the cut-off value is defined at +1 common scores. This implies that the sub-systems 

with the common scores ≥ +1 are the critical sub-systems, and the sub-systems with the 

common scores < +1 are the non-critical sub-systems.  

The common factor scores plots for all the sub-systems for the six study years are presented in 

Figure 5-3. 
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Figure 5-3: Common factor scores plot of the sub-systems for the six study years based on FFF-and-

number of services cancelled. 

In each plot, the x-axis shows the common scores of the sub-systems on dimension I, and the y-axis shows 

the common scores of the sub-systems on dimension II. The position of the sub-systems on each dimension 

indicates the criticality of their operational performance in relation to the dimension. 

 

As can be seen in Figure 5-3, some sub-systems are distributed on the positive direction 

of the dimensions, while most of the sub-systems are distributed on the negative direction 

of the dimensions. When the rows of Zx1 are multiplied by the coefficients of the same 

dimensions this results in distribution of the similar sub-systems in the same direction of the 

dimension and of the dissimilar sub-systems in the opposite direction of the dimension. For the 

sub-systems distributed on the positive direction, their FFF and the effect of their FFF on the 

number of services cancelled are influenced by the characteristics of the dimensions, while for 

those distributed on the negative direction, their FFF and the effect of their FFF on the number 

of services cancelled are not. Hence, this distribution clearly differentiates the sub-systems 

that are operationally unreliable from those that are operationally reliable based on the 

combination of their FFF and the effect of their FFF on the number of services cancelled. 

However, to identify the critical sub-systems the defined criterion was applied. The sub-

systems that are critical in relation to dimension I and dimension II are presented in Table 5-1.  

 



Chapter 5 

163 

 

 

Table 5-1: Critical sub-systems based on the FFF-and-number of services cancelled 

Study Year 
Critical sub-systems in relation to 

dimension I 

Critical sub-systems in relation to 

dimension II 

Year 1 S3, S4, S7 and S16 S7 

Year 2 S3, S4, S7 and S16 S4 

Year 3 S3, S4, S7 and S16 S4 

Year 4 S3, S4, S7, S8 and S16 S1 and S4 

Year 5 S3, S4, S7 and S16 S4 

Year 6 S3, S4, S7 and S16 S4 

 

As can be seen in Table 5-1, in relation to dimension I, only 4 out of 19 sub-systems are critical 

in all study years except in Year 4 when 5 sub-systems are identified as critical. Similarly, in 

relation to dimension II, only 1 sub-system is identified as critical in all study years except in 

year 4 when two sub-systems are identified as critical. Hence, MFA successfully reduces the 

number of sub-systems to be dealt with.  In addition, since MFA identifies the critical sub-

systems related to the dimensions, to improve the operational performance of these critical sub-

systems subject to FFF and number of services delayed, the improvement strategies need to be 

focussed on the characteristics of dimensions I and II. Thus, MFA provides a clear indication 

of the reason for the criticality of the sub-systems.  

It is also evident from Figure 5-3 in relation to dimension I, S3 is the most critical sub-system 

followed by S7 and S16 in Years 2-5, while S7 is the most critical followed by S3 and S16 in 

Years 1 and 6.  By contrast, in relation to dimension II, S4 is the only critical sub-system for 

the six study years. Since the same three sub-systems in the same criticality sequence are 

identified as critical in relation to dimension I in Years 2-5 and in Years 1 and 6, this could be 

because of the association of the same latent variable in Years 2-5, then another latent variable 

in Years 1 and 6. Similarly, the same sub-system is identified as critical in relation to dimension 

II for all study years, this could be because of the association of the same latent variable. 

In addition, Table 5-1 shows that in relation to both dimensions, S7 is identified as critical in 

Year 1, and S4 is identified as critical in all other years.  This can be explained by the variance 

partitioning effect that describes the spread in the characteristics of the operational performance 
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of these sub-systems i.e. their operational performance tends to be influenced by the 

characteristics of both dimensions.  

In summary, MFA allows the critical sub-systems to be identified based on FFF-and-number 

of services cancelled for the overall train fleet and thus, operational characteristic C6 -     the 

critical sub-systems for services cancelled is hereby achieved.  

In order to identify the critical sub-systems for each train type in the fleet, the partial scores 

of the sub-systems were superimposed onto the common scores plot which is presented in 

Figure 5-4. Since the sub-systems S3, S4, S7 and S16 were the ones identified as critical 

in all study years, they are the only ones considered here to trace pattern for the operational 

performance with respect to each train type over these years.  
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Figure 5-4: Partial factor scores plot of the sub-systems for the six study years based on FFF-and-

number of services cancelled. 

In each plot, the points representing the common scores of the critical sub-systems are in the centre, 

they are connected by the dotted lines to the points representing the partial scores for the critical 

sub-systems with respect to each train type. The relative distance and direction of the partial points 

of the sub-systems from the origin of the plot provide an indication of the contribution of each train 

type in the generation of the common scores of the sub-systems. 

 

 

As can be seen in Figure 5-4, for the six study years, S3 is characterised by high values for 

train type A; S4 is characterised by high values for train type C; S7 is characterised by high 

values for train type D in years 1 and 2 and for train type B in all other study years; S16 is 

characterised by high values for the train type A except  in years 2 and 3 when it shows high 

values for train type B. Overall, this shows that S3, S4, S7 and S16 are the most critical in 

relation to the train type A, C, B and A respectively. This means in order to deliver the biggest 

impact for the combined reduction in FFF and the number of services cancelled for train type 

A, it is required to focus on S3 and S16; and for train types B and C, it is required to focus on 

S7 and S4 respectively.  
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In summary, the common scores plot enables operational characteristic C6 -     the critical 

sub-systems for services cancelled to be established for the overall train fleet, and 

superimposition of the partial scores for the sub-systems on this common scores plot further 

enables the critical sub-systems for each type of train in the fleet to be identified. 

5.4.4 Relationship between the FFF of the sub-systems and the number of services 

cancelled 

In order to analyse the relationship between the FFF and the number of services cancelled, the 

loadings of the KPIs on dimensions I and II were mapped in the correlation circle. Since in the 

data structuring the KPIs were grouped in columns for each train type, loadings for KPIs are 

obtained with respect to each train type involved in the study year. This plot provides insight 

into the relationship between the KPIs and between the KPIs and the dimensions. The plot is 

interpreted in the same way as was PCA loadings plot as reported in Section 4.4.3.2 of Chapter 

4. Thus, the same cut-off value of 0.3 can be used to categorise the KPIs as critical and non-

critical in relation to the dimensions. Hence, the KPIs with loadings ≥ +0.3 on each dimension 

are defined as critical, while the KPIs with loadings < +0.3 are defined as non-critical.  

The correlation circles for the KPIs for each study year are presented in Figure 5-5. 
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Figure 5-5: Correlation circle for the KPIs for six study years. 

The KPIs are represented by vectors which originate from the origin of the plot. The smaller the angle 

between the vectors, the stronger the relationship between them. In addition, the relative length and 

direction of the vectors with respect to the origin indicate the relationship of the KPIs to each dimension. 

In this figure, colours represent the train types. 

 

As can be seen in Figure 5-5, the vectors representing the FFF and the number of services 

cancelled for each train type are grouped together, and the angle between them is quite small. 
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This means that the FFF and the number of services cancelled for each train type are positively 

related to each other for the six study years, thus establishing operational characteristic C8 – 

the     relationship between the FFF and the number of services cancelled. In addition, in 

relation to dimension I for the six study years, Figure 5-5 shows that both KPIs (i.e. the FFF 

and the number of services cancelled) for all the train types are critical, while in relation to 

dimension II, the KPIs for  train type C are critical except in year 1 in which the KPIs for  train 

type D are  critical. This means that the operational performance of all train types is positively 

related to dimension I, while the operational performance of only train type C is positively 

related to dimension II. Hence, these findings provide additional information reported in the 

earlier findings of Section 5.4.2 regarding the operational performance of different types of 

trains in relation to dimensions I and II.  

In summary, MFA has enabled operational characteristic C8 - the     relationship between the 

FFF and the number of services cancelled  to be established, as well as  the relationship 

between the KPIs and the two dimensions. 

5.4.5 Relationship between the latent structure of PCA of each train type and MFA of the 

overall fleet 

In order to analyse relationship between the latent structure of the datasets of each train type 

and the dataset for overall fleet of trains, MFA was used to generate the partial axes plot.  In 

this plot the principal components obtained by the individual PCA of each train type are 

superimposed over the dimensions obtained by MFA of the overall fleet as discussed in Section 

5.3.4, thus providing insight into the relationship between the PCs of each train type and the 

dimensions of MFA. Since the partial axes plot is analogous to the correlation circle, the same 

cut-off value at coordinate of 0.3 can be used to analyse whether the PCs of PCA for each train 

type are strongly related or weakly related to the dimensions of MFA. This means that the PCs 

of the train types with coordinates ≥ +0.3 on a particular dimension are strongly related to that 

dimension of MFA, while those with coordinates < +0.3 are weakly related to that dimension. 
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 The partial axes plot for the six study years are presented in Figure 5-6. 
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Figure 5-6: Partial axes plot for the six study years. 

The relative length and direction of PCs for each train type with reference to the dimensions of MFA 

indicate the relationship between them. In this figure, colours represent the train types. 

 

As can be seen in Figure 5-6, for the six study years, PC-I for all train types are strongly related 

to dimension I of MFA. However, in year 1, PC-I of train types B and D and PC-II of train type 

C are strongly related to dimension II of MFA; from years 2 to 6 only PC-I of train type C and 

in years 4 and 5 both PCs I and II of train type C are strongly related to dimension II of MFA. 

Hence, these results show that the variance explained by dimension I in X1 (i.e. the global 

matrix of operational performance of urban trains) is related to the operational performance of 

all train types in the fleet, but the variance explained by dimension II in X1 is only related to 

the operational performance of train type C except in Year 1. These findings agree well with 

the findings reported in Sections 5.4.2 and 5.4.4.  

In summary, using MFA enables the relationship between the latent structure that exists within 

the dataset of each train type and in the dataset of overall fleet of trains to be realised.  
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5.5 Set II: Analysis of operational performance characteristics based on the 

impact of FFF on the number of services delayed 

This section discusses the results obtained for Set II by the application of MFA to the urban 

trains data for the six study years. The aim is to identify the critical sub-systems with respect 

to the impact of FFF of the sub-systems on the number of services delayed and to analyse the 

relationship between the FFF and the number of services delayed. 

While the data in each dataset are different, both datasets I and II are similar in their structure 

and are analysed using MFA, with the results being mapped in similar plots. Thus, the criteria 

and the arguments for interpretation of the plots presented here are essentially the same as those 

given in the previous section.  

5.5.1 Selection of the number of dimensions for further analysis 

Similar to matrix X1, matrix X2 for Years 1, 2 and 3 generated a set of 8 dimensions and for 

Years 4, 5 and 6 a set of 6 dimensions. In order to select the number of dimensions to be 

retained for further analysis from a set of dimensions for each year, the scree plots for the six 

study years are presented in Figure 5-7.  To determine the number of dimensions to be retained 

before or up to the elbow point, the scree test is combined with the cumulative percentage of 

variance explained by the dimensions as discussed in Section 5.4.1 
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Figure 5-7:  Scree plot for the six study years showing the percentage of variance explained by each 

dimension. 

 

As can be seen in Figure 5-7, the elbow point appears at dimension II in the scree plot of each 

study year as in Figure 5-1. Hence, the argument for retaining dimensions presented here is 

essentially the same argument that was presented in Section 6.4.1. Since the elbow point 

appears at dimension II, only dimension 1 or both dimensions I and II can be retained for further 

analysis. Using the cumulative percentage of variance approach, Figure 5-7 shows that if we 

retain only dimension 1, the cumulative percentage of variance is 79.1%, 78.5%, 81.6%, 

69.8%, 73.0% and 72.1% for study years 1,2,3,4,5 and 6, respectively. This shows that 
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dimension I alone explains the cumulative percentage of variance in X2 (i.e. the global matrix 

of operational performance of urban trains established on FFF and the number of services 

delayed) greater than the minimum threshold of 70% except in years 4 and 6. In addition, the 

percentage of variance explained by dimension II is 15.3%, 13.9%, 12.9%, 19.6%, 19.6% and 

19.6% in study years 1,2,3,4,5 and 6, respectively. This means that if we retain both dimensions 

I and II, the cumulative percentage of variance is 94.4%, 92.4%, 94.5%,89.4%, 92.6% and 

91.7% in years 1,2,3,4,5 and 6 respectively which far exceeds the minimum threshold for each 

study year. Even though dimension I alone is sufficient to serve the purpose, the mapping of 

the results in two-dimensional space is better for visualisation of the results. Hence, as with X1 

in Section 5.4.1, both dimensions I and II are retained for investigating the latent structure of 

X2.  

5.5.2 Characterisation of operational performance of different types of train in the fleet 

To compare the operational performance of different types of train in the fleet, the groups 

representation plot for each study year was produced by mapping the partial inertias of train 

types in the coordinate system defined by dimensions I and II. The cut-off value at 0.3 

coordinate, as was chosen in Section 5.4.2, is used here to categorise the train types as strongly 

related or weakly related to the dimensions. This means that the operational performance of 

the train types with coordinates ≥ +0.3 are strongly related to the latent variable associated with 

the dimension, while the train types with coordinates < +0.3 are poorly related to this latent 

variable.  

Figure 5-8 presents the groups representation plots for the different types of train in the fleet 

for the six study years. 
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Figure 5-8: Groups representation plot for the six study years. 

The distribution of types of train along the length of each dimension is a measure of proportion of their 

partial inertia in the inertia of the dimension. The greater the distance between the point (representing the 

train type) and the origin of the plot on any dimension, the greater is its proportion in the inertia of the 

dimension. 

 

As can be seen in Figure 5-8, in relation to dimension I for the six study years, the 

performances of all train types involved in each year are strongly related to this dimension.  In 

relation to dimension II, in Year 1, all train types are weakly related to this dimension; in years 

2 and 3, only train type D is strongly related; in years 4, 5 and 6, only train type C is strongly 

related. Overall, this shows that the operational performance of train types A and B are strongly 

related to dimension I, while the operational performance of train type C is strongly related to 

dimension I for the first three years, and to both dimensions I and II for the last three years. In 

addition, the operational performance of train type D is strongly related to both dimensions I 

and II for all years except in Year 1 when it is weakly related to dimension II.   

These findings also indicate that the latent structure associated with dimension I is common 

between and within the groups of train types A, B, C and D for the six study years, while the 

latent structure associated with dimension II only exists within the group of train type D for 

Years 2 and 3, and it only exists within the group of train type C for Years 4-6. In other words, 

the latent variable associated with dimension I is crucial for the operational performance of all 



Chapter 5 

178 

 

train types, while the latent variable associated with dimension II is crucial only for the 

operational performance of train type D. However, after the removal of train type D from the 

fleet, dimension II represents the latent variable which is crucial only for the operational 

performance of train type C. Hence, it is concluded that MFA clearly reveals how the 

operational performances of different train types are related or not related to each other in terms 

of common latent variables that affect their operational performance.  

In summary, using MFA enables to the operational performances of different train types to be 

compared considering the strength of their relationship with the dimensions, and it exposes the 

similarities in the latent structure which is common between and within the groups of train 

types.  

5.5.3 Characterisation of operational performance of the sub-systems based on FFF-and-

number of services delayed 

In order to identify the critical sub-systems considering the effect of their FFF on the number 

of services delayed, the common factor scores of the sub-systems were mapped in the 

coordinate system defined by dimensions I and II. The cut-off value at +1 common scores as 

defined in Section 5.4.3 is used to categorise the sub-systems as critical and non-critical 

considering all train types in the fleet. This means that the sub-systems with the common scores 

≥ +1 are the critical sub-systems, and the sub-systems with the common scores < +1 are the 

non-critical sub-systems. 

The commons scores plots for the sub-systems for the six study years are presented in Figure 

5-9. 
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Figure 5-9: Common factor scores plot of the sub-systems for six study years based on FFF-and-number 

of services delayed. 

In each plot, the x-axis shows the common scores of the sub-systems on dimension I, and the y-axis shows 

the common scores of the sub-systems on dimension II. The position of the sub-systems on each dimension 

indicates the criticality of their operational performance in relation to the dimension. 

 

As can be seen in Figure 5-9, some sub-systems are distributed on the positive direction of 

the dimensions, while most of the sub-systems are distributed on the negative direction of 

the dimensions. When the rows of Zx2 are multiplied by the coefficients of the same 

dimensions, this results in distribution of the similar sub-systems in the same direction of the 

dimension and of the dissimilar sub-systems in the opposite direction of the dimension. This 

distribution of the sub-systems clearly differentiates the sub-systems that are operationally 

unreliable from those that are operationally reliable based on the combination of their FFF and 

the effect of their FFF on the number of services delayed as discussed in Section 5.4.3. 

However, to identify the critical sub-systems, the defined criterion was applied and the sub-

systems that are critical in relation to dimension I and dimension II are presented in Table 5-2 
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Table 5-2: Critical sub-systems based on the FFF-and-number of services delayed 

Study Year 
Critical sub-systems in relation to 

dimension I 

Critical sub-systems in relation to 

dimension II 

Year 1 S3, S4, S7 and S16 S7 

Year 2 S3, S4, S7 and S16 S4 

Year 3 S3, S4, S7 and S16 S4 

Year 4 S3, S4, S7 and S16  S4 

Year 5 S3, S4, S7 and S16 S4 

Year 6 S3, S4, S7 and S16 S4 

 

As can be seen in Table 5-2, for the six study years, only 4 out of 19 sub-systems are critical 

in relation to dimension I, while only 1 sub-system is critical in relation to dimension II. 

Hence, MFA successfully reduces the number of sub-systems to be dealt with. In addition, 

since MFA identifies the critical sub-systems related to the dimensions, to improve the 

operational performance of these critical sub-systems subject to FFF and number of services 

delayed, the improvement strategies need to be focussed on the characteristics of dimensions I 

and II. Thus, MFA provides a clear indication of the reason for the criticality of the sub-

systems.  

It is also evident from Figure 5-9, in relation to dimension I, S7 is the most critical sub-

system followed by S3 and S16 for the six study years. By contrast, in relation to dimension 

II, S7 is the only critical sub-system in Year 1, and S4 is the only critical sub-system in Years 

2-6.  Since the same three sub-systems are identified as critical in relation to dimension I for 

all study years, this could be because of the association of the same latent variable. Similarly, 

the same sub-system is identified as critical in relation to dimension II for all study years except 

Year 1, this could be because of association of the association of one variable in Year 1, then 

another latent variable in Years 2 to 6.  

In addition, Table 5-2 shows that in relation to both dimensions, S7 is identified as critical in 

Year 1 and S4 is identified as critical in all other years. This can be explained by the variance 

partitioning effect as discussed in Section 5.4.3. These findings suggest that the operational 

performances of S7 in Year 1 and S4 in Years 2-6 tend to be influenced by the characteristics 

of both dimensions.  
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In summary, MFA allows the critical sub-systems to be identified based on FFF-and-number 

of services delayed for the overall train fleet. Thus, operational characteristic C7 -     the critical 

sub-systems for services delayed is hereby achieved. In order to identify the critical sub-

systems for each train type in the fleet, the partial scores of the sub-systems were 

superimposed onto the common scores plot which is presented in Figure 5-10. Since sub-

systems S3, S4, S7 and S16 were the ones identified as critical in all study years, they are 

the only ones considered here to examine their operational performance with respect to 

each train type over these years.  
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Figure 5-10: Partial factor scores plot of the sub-systems for the six study years based on FFF-and-

number of services cancelled. 

In each plot, the points representing the common scores of the critical sub-systems are in the centre, 

they are connected by the dotted lines to the points representing the partial scores for the critical 

sub-systems with respect to each train type. The relative distance and direction of the partial points 

of the sub-systems from the origin of the plot provide an indication of the contribution of each train 

type in the generation of the common scores of the sub-systems. 

 

As can be seen in Figure 5-4, S3 is characterised by high values for train type C in Year 1 and 

by high values for train type A for Years 2-6, S3 is characterised by high values for train type 

A; S4 is characterised by high values for train type C; S7 is characterised by high values for 

train type D in Years 1 and 2 and high values for train type B for Years 3-6; S16 is characterised 

by high values for train type A in all study years. Overall, this shows that S3, S4, S7 and S16 

are the most critical in relation to train type A, C, B and A respectively. This means that in 

order to deliver the biggest impact for the combined reduction in FFF and the number of 

services delayed in train type A, it is required to focus on S3 and S16; and in train type B and 

C, it is required to focus on S7 and S4 respectively.  
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In summary, the common scores plot enables operational characteristic C7 -     the critical 

sub-systems for services delayed to be established for the overall train fleet, and 

superimposition of the partial scores for the sub-systems on this common scores plot further 

enables the critical sub-systems for each type of train in the fleet to be identified. 

 

5.5.4 Relationship between the FFF of the sub-systems and the number of services 

delayed 

In order to analyse the relationship between the FFF and the number of services delayed, the 

loadings of the KPIs on dimensions I and II were mapped in the correlation circle. The cut-off 

value at loadings of 0.3 as defined in Section 5.4.4 is used to categorise the KPIs as critical and 

non-critical in relation to the dimensions. This means that the KPIs with loadings ≥ +0.3 on 

each dimension are defined as critical, while the KPIs with loadings < +0.3 on the dimensions 

are defined non-critical. The correlation circles for the KPIs for the six study years are 

presented in Figure 5-11. 
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Figure 5-11: Correlation circle for the KPIs for the six study years. 

The KPIs are represented by vectors which originate from the origin of the plot. The smaller the angle 

between the vectors, the stronger the relationship between them. In addition, the relative length and 

direction of the vectors with respect to the origin indicate the relationship of the KPIs to each dimension. 

In this figure, colours represent the train types. 

 

 



Chapter 5 

188 

 

As can be seen in Figure 5-11, the vectors representing the FFF and the number of services 

delayed for each train type are grouped together, and the angle between them is quite small. 

This means that the FFF and the number of services delayed for each train type are positively 

related to each other for the six study years, thus establishing  operational characteristic C9 – 

the     relationship between the FFF and the number of services delayed. In addition, in 

relation to dimension I for the six study years, Figure 5-11 shows that both KPIs (i.e. FFF and 

the number of services delayed) for all train types are critical, while in relation to dimension 

II, the KPIs  only for train type D are critical in years 2 and 3, and then the KPIs only for train 

type C are critical in years 4, 5 and 6. This means that the operational performance of all train 

types is positively related to dimension I, while in relation to dimension II the operational 

performances are positive only of train type D  in Years 2 and 3 and  only of train type C  in 

Years 4-6. Hence, these findings provide additional information to the earlier findings reported 

in Section 5.5.2 regarding the operational performance of different types of trains in relation to 

dimensions I and II. 

In summary, MFA has enabled operational characteristic C9 -     relationship between the 

FFF and the number of services delayed to be established, as well as  the relationship between 

the KPIs and the two dimensions. 

5.5.5 Relationship between the latent structure of PCA of each train type and MFA of the 

overall fleet 

In order to analyse relationship between the latent structure of the datasets of each train type 

and the dataset for overall fleet of trains, MFA was used to generate the partial axes plot. As 

discussed in Section 5.4.5, this plot superimposes the principal components obtained by PCA 

of each individual train type over the dimensions obtained by MFA of the overall fleet, thus 

providing insight into the relationship between the PCs of each train type and the dimensions 

of MFA. The cut-off value at coordinate of 0.3, as chosen in the previous section, is applied 

here to analyse whether the PCs of PCA for each train type are strongly related or weakly 

related to the dimensions of MFA. This means that the PCs of the train types with coordinates 

≥ +0.3 on a particular dimension are strongly related to that dimension of MFA, while those 

with coordinates < +0.3 are weakly related to that dimension. 
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The partial axes plot for the six study years are presented in Figure 5-12. 

 

 

  

  



Chapter 5 

190 

 

  

Figure 5-12:Partial axes plot for the six study years. 

The relative length and direction of PCs for each train type with reference to the dimensions of MFA indicate 

the relationship between them. In this figure, colours represent the train types. 

 

As can be seen in Figure 5-12, for the six study years, PC-I for all train types are strongly 

related to dimension I of MFA. However, in year 1, PC-I of train types B and D; in Year 2, 

only PC-I of train type D; in Year 3, both PC-I and PC-II of train type D; and in years 4-6 only 

PC-I of train type C are strongly related to dimension II of MFA. Hence, these results show 

that the variance explained by dimension I in X2 (i.e. the global matrix of operational 

performance of urban trains) is related to the operational performance of all train types in the 

fleet, but the variance explained by dimension II in X2 is related to the operational performance 

of train types B and D in Year 1, only train type D in Years 2-3, and then only train type C 

Years 4-6. These findings agree well with the findings reported in Sections 5.5.2 and 5.5.4.  

In summary, using MFA enables the relationship between the latent structure that exists within 

the dataset of each train type and in the dataset of overall fleet of trains to be realised. 
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5.6 Comparison of the results obtained by single criterion using PCA and 

multiple criteria by using MFA 

In order to establish whether the sub-systems identified as critical by using PCA based on the 

single conventional criterion are the same as the sub-systems identified as critical by using 

MFA based on multiple criteria, the critical subsystems identified are listed in Table 5-3 and 

are compared.  The sub-systems identified as critical using PCA are taken from Table 4-4 and 

Table 4-5 in Chapter 4, and those identified as critical using MFA are taken from Table 5-1 

and Table 5-2 in this chapter.  

 

 Table 5-3:  Comparison of the critical sub-systems identified using PCA based on the single 

conventional criterion and using MFA based on the multiple criteria 

Study year 

Critical sub-systems 

identified using single 

criterion, FFF  

Critical sub-systems 

identified using the FFF-

and-number of services 

cancelled  

 Critical sub-systems 

identified using the FFF-and-

number of services delayed 

Year 1 S3, S4, S7 and S16 S3, S4, S7 and S16 S3, S4, S7 and S16 

Year 2 S3, S4, S7, S12 and S16 S3, S4, S7 and S16 S3, S4, S7 and S16 

Year 3 S3, S7, S12 and S16 S3, S4, S7 and S16 S3, S4, S7 and S16 

Year 4 S3, S4, S8 and S12 S1, S3, S4, S7, S8 and S16 S3, S4, S7 and S16 

Year 5 S3, S8 and S16 S3, S4, S7 and S16 S3, S4, S7 and S16 

Year 6 S3, S4, S7, S9 and S16 S3, S4, S7 and S16 S3, S4, S7 and S16 

 

As can be seen in the Table 5-3, the characterisation of the sub-systems using MFA based on 

FFF-and-number of services cancelled and on FFF-and-number of services delayed results in 

the identification of the same critical sub-systems except in Year 4.  In year 4, the variation in 

the subsystems identified as critical for both datasets is likely to be associated with the latent 

variable which is more critical for service cancellations than services delayed. In all other years, 

the same subsystems are identified as critical and this is likely to be because of the association 

of the same latent variables to the dimensions of both datasets.  

More importantly, as can be seen in the table, there are differences between the sub-systems 

identified as critical using PCA based on the single conventional criterion and those identified 
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using MFA based on multiple criteria in all years except in Year1. This shows that 

characterising the sub-systems based on only FFF results in the identification of the sub-

systems that are functionally critical, but not necessarily those that are also service critical. 

Hence, characterising the sub-systems based on multiple criteria successfully identifies the sub-

systems that are critical concerning to both functional reliability and service reliability and 

brings the concerns of all main stakeholders into the analysis, thus providing more accurate 

identification of the critical sub-systems for maintenance planning.  

5.7 Recommended analytical framework for the reliability analysis of urban 

trains 

As discussed in the literature review in Chapter 2 and in the investigation of the conventional 

approach of reliability analysis for operational characterisation of the sub-systems reported in 

Chapter 4, FFF is a widely accepted criterion for identification of operationally critical sub-

systems. However, from the previous section it is clear that the sub-systems identified as 

critical based on a single criterion are not necessarily the same as those identified based on 

multiple criteria. This means that critical sub-systems identified based only on the FFF in Step 

1 of reliability analysis are only considered for functional failure analysis in Step 2 as discussed 

in Section 2.2.5 in Chapter 2. Since maintenance planning is a closed loop process as shown in 

Figure 2-1 in Chapter 2, there is an implication for this discrepancy on the effectiveness of the 

whole process of maintenance planning. Due to this reason, the strategical targets of service 

reliability cannot be ensured through maintenance planning. Hence, a multiple criteria-oriented 

framework for reliability analysis is needed to meet the diverse concerns of the multiple 

stakeholders associated with the operational performance of urban trains.  

To achieve such a framework, a number of modifications to the conventional framework are 

recommended, and the steps in this proposed framework are shown in the flowchart shown in 

Figure 5-13. 
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Figure 5-13: Recommended framework for reliability analysis in comparison to conventional 

framework. 

 

 

As shown in Figure 5-13,  the first step in the conventional analytical framework involves 

operational characterisation of the sub-systems based on single criterion (i.e. FFF) by using 

SDA. It establishes four operational characteristics, but with major limitations as reported in 

Section 3.4 of Chapter 3. The critical sub-systems that are identified in the first step are only 

functionally critical, and they are used as inputs in the second step for functional failure 

analysis. Information from both steps is used in the decision-making process. It is clearly 

evident from the flow of information that the selection of the single criterion and the technique 

in the first step governs the whole process.  

 An improved approach is presented in Figure 5-13.  As can be seen, in the first step multiple 

criteria are applied by using MFA, and four operational characteristics are established. To 

consider the KPIs in their cause-and-effect structure, MFA is performed on the two data sets 

(i.e. one data set for the FFF-and-the number of services cancelled, and another data set for the 

FFF-and-the number of services delayed) as reported in this chapter. This step ensures that the 

critical sub-systems are identified considering the combined effect of the KPIs for functional 

reliability and service reliability. In addition, this step provides insight into the common latent 

structure between the two data sets. Hence, the findings from step 1 will enable improvements 

in the interdepartmental communication and strategies that will result in the achievement of 
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both the strategical targets of functional reliability and service reliability subject to the 

maintenance plan.  

The second step is to characterise the sub-systems identified as critical in the first step based 

on the single conventional criterion (i.e. FFF) by using PCA in parallel to the standard 

functional failure analysis of those sub-systems. In this step the detailed operational 

characteristics of these critical sub-systems are analysed with respect to the monthly FFF 

profile and the system FFF profile as carried out in the work presented in Chapter 5, and five 

operational characteristics are established that provide insight into the latent structure within 

the FFF data. Hence, findings from this step will enable improvements in the intradepartmental 

communication and strategies leading to a better maintenance plan. Finally, the findings from 

both steps are used in the decision-making process.  

In summary, this section presents an improved approach for the reliability analysis of the urban 

train system.   

5.8 Summary 

This chapter has presented the development of an improved multiple criteria approach for the 

operational performance characterisation of the fleet of urban trains. This approach applies the 

KPIs for functional reliability and service reliability in their cause-and-effect structure by using 

MFA. Using MFA, the four operational performance characteristics have been successfully 

established that could not be obtained using PCA. The comparison of the results obtained based 

on multiple criteria by using MFA with the results obtained based on the single criterion by 

using PCA has clearly shown that the critical sub-systems must be identified based on multiple 

criteria for improved maintenance planning. Hence, an improved framework has been proposed 

for the reliability analysis of the fleet of urban trains. 

Since the findings of the reliability analysis are used as inputs of the maintenance planning, the 

next chapter presents the development of a multiple criteria model for prioritisation of the 

maintenance strategies based on an overall improvement in reliability of the sub-systems. 
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Chapter 6:  DEVELOPMENT OF A MODEL FOR RELIABILITY 

PERFORMANCE-BASED PRIORITISATION OF THE 

MAINTENANCE STRATEGIES  

6.1  Introduction 

The previous two chapters reported the development of an improved reliability analysis 

approach in the RCM process for operational performance characterisation of the sub-systems 

of the urban train fleet.  The improved approach is based on the KPIs for both functional 

reliability and service reliability and the effect of the latent variables on the reliability.  

However, it was established in the literature review that the current maintenance models do not 

incorporate the KPIs for both functional reliability and service reliability and the influence of 

the latent variables to prioritise different maintenance strategies in the maintenance planning.  

Thus, a new model needs to be developed that incorporates all measures for reliability for 

prioritisation of the maintenance strategies based on their effectiveness at delivering 

improvement in the overall reliability of the sub-system.  This is the final research objective of 

this research. 

To achieve this research objective, this chapter proposes a reliability performance-based model 

named Overall Sub-System Reliability Index (OSRI) to prioritise the maintenance strategies. 

The model enables the overall reliability of the sub-system to be computed in a composite 

index. The index is based on a calculation of the impact of change in the FFF of the sub-system 

on the change in the number of services cancelled and of services delayed due to the proposed 

maintenance strategy. In the development of the model, the same approach as was used in 

developing a multiple criteria approach for operational performance characterisation of the sub-

systems is used as reported in Chapter 5. In other words, the KPIs for functional reliability and 

service reliability in their cause-and-effect structure are integrated into the proposed model and 

the influence of the latent variables on the operational performance of the sub-system assessed 

using MFA is taken into consideration. 

This chapter first proposes the model, and then demonstrates how it can be used. In the model 

demonstration, the data used and the assumptions made are first discussed. Two hypothetical 

maintenance scenarios are then developed, and the results obtained using the model for each 

scenario are discussed in detail. Next, the model is validated by using a mixed approach based 
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on the available evidence from the literature and expert opinion of maintenance managers from 

UTS Melbourne. Finally, the usefulness of the model in maintenance planning is outlined.  

6.2 Development of an overall sub-system reliability index model 

The concept of this model is based on a model named the Weighted Average System Reliability 

Index (known as WASRI) developed by Li and Brown (2004) for prioritisation of the 

maintenance strategies for a distribution system in the power and electricity industry. The 

WASRI was discussed in Section 2.3.2 of Chapter 2 with models used in other industries. Since 

Li and Brown’s model is based on the impact of a system’s failure on each factor individually 

and incorporates the weights to consider the relative extent of impact of the system’s failure on 

each factor, a similar model is developed in this work.  

The proposed reliability index model is established using the basic equation of risk assessment, 

where the risk assessment measures the loss of reliability due to the occurrence of functional 

failures in the train system. This equation states that the risk equals the probability of failure 

multiplied by the consequences (Farmer et al., 1990, Todinov, 2006, Webster, 2011). The 

probability of failure for the sub-system can be determined by the failure rate of its functional 

reliability, denoted by λ, which is  equivalent to the reciprocal of MDBF (Lai et al., 2017, Qin 

and Jia, 2019)  and the consequences are the sum of the number of services cancelled, C, out 

of the total number of services scheduled for operation, N, and the number of services delayed, 

D, out of the total number of services, N. Thus, the overall reliability of ith sub-system, denoted 

by OSRi, can be expressed as: 

𝑂𝑆𝑅𝑖  =  (𝜆 x 
𝐶

𝑁
)

𝑖
+ (𝜆 x 

𝐷

𝑁
)

𝑖
 6-1 

 

Equation 6-1 shows that the impact of λ on C and D is measured individually in the computation 

of OSRi. We know from Section 2.3.3 of Chapter 2 that the MDBF is a ratio of the total sub-

system distance, d, to the functional failure frequency of the sub-system, that is FFF. Thus, λ 

in Equation 6-1 can be replaced by these terms in order to expand the equation in terms of KPIs 

for functional reliability and service reliability as shown in the following equation: 
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𝑂𝑆𝑅𝑖 = (
𝐹𝐹𝐹

𝑑
x

𝐶

𝑁
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𝑖
+  (

𝐹𝐹𝐹

𝑑
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𝐷

𝑁
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 6-2 

 

It is clear from Equation 6-2 that the KPIs both for functional reliability and service reliability 

are integrated in their cause-and-effect structure in the computation of OSRIi. However, it is 

also important to consider in the computation of OSRIi how FFF causes C and D. Since the 

distributions of occurrence of services cancelled and services delayed due to the occurrence of 

functional failures in ith sub-system are unknown, a simple assumption is made that both C and 

D vary linearly to the failure rate of the ith sub-system. Given this,  the first term of Equation 

6-4, 
𝐹𝐹𝐹

𝑑
𝑋

𝐶

𝑁
, determines  the average number of services cancelled  and the second term, 

𝐹𝐹𝐹

𝑑
 𝑋

𝐷

𝑁
, determines the average number of services delayed due to the occurrence of functional 

failures in the ith sub-system over a given sub-system distance. Hence, these terms can be 

named as the ith sub-system average cancellation index (denoted as SACIi) and the ith sub-

system average delays index (denoted as SADIi) respectively. Thus, Equation 6-4 can be 

simplified as follows: 

𝑂𝑆𝑅𝐼𝑖 =  𝑆𝐴𝐶𝐼𝑖 + 𝑆𝐴𝐷𝐼𝑖 6-3 

Equation 6-3 shows that OSRIi is the sum of two service interruption indexes, so 𝑂𝑆𝑅𝐼𝑖  is a 

measure of the operational performance risk of the ith sub-system. This means that the smaller 

the OSRI of the sub-system, the better its operational performance. However, the contribution 

of each index in the computation of OSRIi is governed by the extent to which the latent 

variables influence the operational performance characteristics of the ith sub-system, i.e. the 

number of services cancelled and the number of services delayed due to the functional failures 

in the ith sub-system. According to the weighted risk assessment, the variation in the importance 

of each risk factor or index can be incorporated by assigning weights to them (Holt et al., 2005). 

Hence, in order to capture the operational performance characteristics of the sub-system in the 

computation of OSRIi, weights w1 and w2 need to be assigned to the indexes SACI and SADI 

respectively. These weights can be obtained by using MFA to analyse the datasets of FFF-and-

number of services cancelled, and FFF-and-number of services delayed as reported in the 

previous chapter. So, Equation 6-3 can now be expressed as:  
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𝑂𝑆𝑅𝐼𝑖 =  𝑤1 𝑋 𝑆𝐴𝐶𝐼𝑖 +  𝑤2  𝑋 𝑆𝐴𝐷𝐼𝑖 6-4 

Equation 6-4 can be used to compute the change in the OSRI of the ith sub-system before 

maintenance and after maintenance using the proposed maintenance strategy to evaluate the 

effectiveness of the strategy in improving the OSRIi. In conventional maintenance planning, it 

is assumed that the proposed maintenance strategy will result in X number of savings in F 

which results in a reduction in λ after maintenance (Corman et al., 2017). Given that service 

reliability varies linearly with the change in functional reliability, the values for C and D will 

be reduced corresponding to the savings in F. This implies that the service interruption indexes 

(i.e. SACI and SADI) for the ith sub-system will change after maintenance. Hence, the 

difference between the indexes before and after maintenance is a measure of change in the 

overall reliability of the sub-system, denoted as ΔOSRIi, due to the proposed maintenance 

strategy.  

However, in the computation of ΔOSRIi it is also assumed that the values for w1 and for w2 

before and after maintenance do not change because there is no change in the operational 

environment. Thus, Δ OSRIi, can be given by Equation 6-5.  

𝛥𝑂𝑆𝑅𝐼𝑖 =  𝑤1 x 𝛥𝑆𝐴𝐶𝐼𝑖 +  𝑤2 x 𝛥𝑆𝐴𝐷𝐼𝑖 6-5 

Since OSRI is established on the KPIs that measure the losses in functional reliability and 

service reliability of the sub-system, the maintenance strategy prioritisation approach is to 

minimise the OSRI subject to the base OSRI, i.e. a reference value for measuring the 

improvement which is the value before maintenance of the ith sub-system. Hence, the 

effectiveness, E, of the maintenance strategy in improving the overall reliability of the ith sub-

system is given by: 

𝐸 = (
𝛥𝑂𝑆𝑅𝐼𝑖

 𝑂𝑆𝑅𝐼𝑖𝑏𝑎𝑠𝑒
) X 100 6-6 

Equation 6-6 clearly shows that the larger the reduction in OSRIi, the greater the effectiveness 

of the proposed maintenance strategy in improving the overall reliability of the ith sub-system.  
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In summary, a simple model has been developed that can be used for prioritisation of the 

maintenance strategies for the sub-system based on their effectiveness in improving the overall 

reliability of the sub-system. 

6.3 Demonstration of the model 

This section first presents the data and the two simple hypothetical maintenance scenarios used 

for the demonstration of the model. The model results are then presented and discussed to 

evaluate whether the OSSRI model can successfully prioritise the maintenance strategies for 

the sub-systems.  

6.3.1 Data and software used for the model demonstration 

To demonstrate the functionality of the model in the hypothetical maintenance scenarios, the 

critical sub-systems S3, S7 and S16 for train type A were selected. The data that was used to 

determine the values for the parameters of the model are UTS Melbourne data from study Year 

6 together with assumed data, and these data are described in detail in this section.  

1 Number of functional failures: Data from Year 6 on the FFF for the selected sub-systems 

was used to obtain the number of functional failures before maintenance. To determine the 

value for FFF after maintenance, the FF savings assumed in the scenario from 1 to 10 were 

subtracted from the FFF value before maintenance.  

2 Weights (w1 and w2): The approach used here is the same as the approach used in Chapter 

6 to determine w1 and w2. In the previous chapter, MFA was performed on the data for each 

year for each train type on FFF-and-number of services cancelled, and on FFF-and-number 

of services delayed. To obtain w1 and w2, MFA was performed for each month of Year 6 

on FFF-and-number of services cancelled, and on FFF-and-number of services delayed for 

Train A.  

3 Total sub-system distance (d): Data for total sub-system distance was required to be 

collected. Since the data provided by UTS Melbourne was on the total train distance from 

Year 6, it was assumed that the total sub-system distance, d, is equal to the total train 

distance. It was further assumed that d was same for each sub-system before and after 

maintenance.  
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4 Number of services cancelled and the number of services delayed (C and D): Since 

forecasting of C and D was beyond the scope of this study, a simplified form of the equation 

provided in the studies by Lu (2003), Lai et al. (2017), Lu et al. (2017) was used to compute 

C and D. The equations are given by 𝐶 = 𝐹 𝑋 𝐶𝑎𝑣𝑔  and 𝐷 = 𝐹 𝑋 𝐷𝑎𝑣𝑔. Besides, because 

the data on Cavg and Davg were not provided, the values for these parameters were roughly 

estimated from the Year 6 data.  

5 Number of scheduled services (N):  Since computation of N is a part of operational 

planning which was beyond the scope of this study, N number of total trains scheduled for 

operation in a normal month of 30 days was computed based on basic mathematics. The 

number of trains scheduled for operation was first calculated for one day by multiplying 

the number of trains scheduled for operation during a peak hour by the number of peak 

hours per day, and multiplying the number of trains scheduled for operation during an off-

peak hour by the number of off-peak hours per day, and then adding these two numbers 

together.  

The number of trains scheduled for operation during a peak hour was taken from the UTS 

Melbourne data. It was assumed that a normal day contains 8 peak hours and the number 

of trains scheduled for operation during an off-peak hour was taken as 70% of the number 

of trains scheduled for operation in a peak hour.  

6 Proposed maintenance strategies: Since each maintenance strategy offers some FF 

savings, there were in total 10 proposed maintenance strategies in correspondence to FF 

saving from 1 to 10.   

7  Maximum percentage of improvement in the OSRI of the sub-system: It was assumed 

that the maximum improvement in the OSRI of any sub-system that could be achieved is 

limited to 95%. Thus, after arriving at this point, the %OSRI of the sub-system remained 

constant at 95% despite any more FF savings. 

These data were used for modelling by developing spreadsheets for each sub-system in 

Microsoft Excel by Microsoft Corporation (2019). The results were mapped in simple line 

curves by using the tool available in Microsoft Excel.   

6.3.2 Hypothetical maintenance scenario I 

It is assumed that a maintenance plan needs to be designed that promises to improve functional 

reliability of each critical sub-system S3, S7 and S16 by at least 10% (i.e. the reduction in the 
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FFF of each critical sub-system should be equal to or greater than 10%). This maintenance plan 

must also ensure an equivalent improvement (i.e.10%) in the overall reliability of the critical 

sub-systems associated with the improvement in functional reliability of the critical sub-

systems. Hence, a maintenance strategy needs to be selected for each sub-system that satisfies 

both assigned targets. 

Since the operational characteristics of the sub-systems vary each month, the need for the 

savings in the FFF of each sub-system is different each month. Accordingly, the %OSRI of the 

sub-system varies from month to month. Hence, the selection of the maintenance strategy for 

the ith sub-system involves a complex decision-making process which involves a compromise 

between the improvement in its functional reliability and in its overall reliability in various 

months of the year. The optimum maintenance strategy for the ith sub-system is the one that 

commits to deliver the given targets for both the improvement in its functional reliability and 

in its overall reliability in most months of the year. This strategy for the ith sub-system is 

achieved by carrying out the following simple steps using the OSRI model: 

Step 1 Compute the %OSRI of the ith sub-system for the FF savings from 1 to 10 for each 

month of the year using the OSRI model. 

Step 2 Plot the impact of the FF savings on the %OSRI for the ith sub-system for each month 

of the year. 

Step 3  On the curve for every month of the year, put the month number (i.e. 1-12) at the point 

where the number of FF savings provides the required improvement (i.e.10%) in 

functional reliability of the ith sub-system.  

Step 4 Determine the number of FF savings which is required by most of the months to achieve 

the given target for improvement in functional reliability. This number of FF savings 

is called the concentrated FF savings number. 

Step 5 Assess whether the concentrated FF savings number delivers the desired %OSRI or 

not.  

Step 6 If the desired %OSRI is not achieved by the concentrated FF savings number, repeat 

steps 4-6 for a higher FF savings number that needs to be negotiated with the owner 

because of additional cost for maintenance to achieve the given target. 
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To demonstrate hypothetical maintenance scenario I, the %OSRI of the ith sub-system obtained 

in Step 1 for each month of the year were used to plot the impact of the FF savings of the ith 

sub-system on the %OSRI. These plots are presented in Figure 6-1. 
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Figure 6-1: Impact of the FF savings on the %OSRI of the ith sub-system in each month of a year. 

The point corresponding to the requisite FF savings for 10% improvement in functional reliability 

for each sub-system is marked on the line curve for the months by the number of the month in the 

year. The months that require the FF savings by the same number are enclosed in the red circle, 

thus establishing the concentrated FF saving number. The red dashed lines indicate the minimum 

and the maximum %OSRI of each sub-system corresponding to the concentrated FF savings of that 

sub-system. 

 

As can be seen in Figure 6-1, in order to improve functional reliability of S3, S7 and S16 by 

the given target, the number of FF savings needed for these sub-systems is the same in 7, 9 and 

6 months respectively out of the12 months of the year. This means that the concentrated FF 

savings for S3, S7 and S16 are 3, 2 and 2 in number respectively. In addition, for S3, there are 

3 months that require FF savings fewer than 3, and 2 months that require more than 3; for S7, 

there is 1 month that requires FF savings fewer than 2, and 2 months that require more than 2; 

and for S16, there is 1 month that requires FF savings fewer than 2, and 4 months that require 

more than 2. Thus, the maintenance strategy associated with the concentrated FF savings 

improves functional reliability of S3, S7 and S16 by equal to or greater than 10% in a total of 

10, 10 and 7 months respectively. In addition, as can be seen in Figure 6-1, corresponding to 

the concentrated FF savings for each sub-system, the minimum and the maximum %OSRI of 

each sub-system are both also greater than the given target i.e. 10%. Thus, it is clear that this 

maintenance strategy corresponding to the concentrated FF savings is likely to provide both 

given targets. Figure 6-1 also shows that, in order to deliver these targets for all 12 months, the 

maintenance strategy associated with the FF savings of 4, 5 and 3 for S3, S7 and S16 

respectively must be selected. However, selecting the maintenance strategy that offers the FF 

savings less than or greater than the concentrated FF savings results in an under-designed and 
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over-designed maintenance plan respectively. Therefore, the maintenance strategy associated 

with the concentrated FF savings of 3, 2 and 2 is the optimum strategy for S3, S7 and S16 

respectively in order to improve their functional reliability together with the improvement in 

the %OSRI by at least 10%.  

Thus, it has been shown that, for this scenario, the OSRI model enables the maintenance 

strategies to be prioritised for a sub-system based on the impact of the improvement in its 

functional reliability on the %OSRI in different months of the year.  

6.3.3 Hypothetical maintenance scenario II:  

It is assumed that a maintenance plan needs to be designed that promises to cumulatively 

improve functional reliability and the %OSRI of S3, S7 and S16 by x% and y% respectively. 

Since the sub-systems vary in their operational characteristics, the extent by which functional 

reliability and thus the %OSRI of the sub-systems can be improved is different for each sub-

system. Thus, the given targets are required to be allocated between the critical sub-systems 

which involves a compromise between the improvement in their functional reliability and in 

their overall reliability.  

In order to assess the contribution of each sub-system, it must be established which sub-systems 

are maintenance intensive and which can deliver a better index. The sub-systems that are 

maintenance intensive are those that require relatively more FF savings to achieve the same 

level of improvement in their functional reliability, while the sub-systems that can deliver a 

better index are those that result in relatively high %OSRI to achieve the same level of 

improvement in their functional reliability. Considering this S3, S7 and S16 were evaluated for 

10% improvement in their functional reliability in three different months of the year by using 

the OSRI model. The sub-systems which are maintenance intensive and which can deliver a 

better can be identified in the following simple steps by using the OSRI model. 

Step 1 Compute the %OSRI of S3, S7 and S16 for the FF savings from 1 to 10 for the three 

months by using the OSRI model.  

Step 2 Plot the impact of the FF savings on the %OSRI of each sub-system for each chosen 

month. 
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Step 3 On the curve for every sub-system, put the sub-system name (i.e. S3, S7 and S16) at 

the point where the number of FF savings provides the required improvement (i.e.10%) 

in their functional reliability.  

Step 4 Determine the %OSRI corresponding to the FF savings for each sub-system. 

Step 5 Arrange the sub-systems in descending order of their values for the FF savings and for 

the %OSRI.  

To demonstrate hypothetical maintenance scenario II, the %OSRI of each sub-system obtained 

in Step 1 for each month were used to plot the impact of the FF savings of each sub-system on 

the %OSRI. These plots are presented in Figure 6-2. 
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Figure 6-2: Impact of the FF savings on the %OSRI of the three critical sub-systems in each month. 

The requisite FF savings for 10% improvement in functional reliability of S3, S7 and S16 and the 

resultant %OSRI are marked by the dashed vertical and the horizontal lines respectively.  

 

As can be seen in Figure 6-2, for 10% improvement in functional reliability of each sub-system, 

the sub-system with the highest value for the FF savings on the x-axis is maintenance intensive, 

while the sub-system with the highest value for the resultant %OSRI on the y-axis delivers a 

better index. The findings are summarised in Table 6-1. 

 

Table 6-1: Sub-systems in descending order of their values for FF savings and %OSRI for an 

equivalent improvement in their functional reliability 

Month Sub-systems in descending order of 

maintenance intensiveness 

Sub-systems in descending order of 

%OSRI delivery 

1 S16>S3>S7 S3>S16>S7 

2 S3>S7 and S16 S7 and S16>S3 

3 S3>S7 and S16 S7>S16>S3 

 

Table 6-1 shows that, in month 1, S7 is the least maintenance intensive, but delivers the smallest 

%OSRI; in months 2 and 3, both S7 and S16 are the least maintenance intensive, but in month 

2, they deliver the same %OSRI, whereas in month 3, S7 delivers a better index than S16. 

Based on these findings, different combinations of the assigned targets can be allocated to the 

sub-systems. For example, one combination without considering any other constraints is to 
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allocate a greater proportion of the given target to S3 in month 1, to S7 and S16 in month 2 and 

to S7 in month 3. Using this combination, the maintenance strategy that offers the improvement 

in functional reliability and in the %OSRI of the selected sub-systems corresponding to the 

identified proportions should be selected to achieve the given targets.  

In addition, as can be seen in  Figure 6-2 (b), the line curve for S16 is exactly the same as the 

line curve of S7 for month 2. Consequently, both sub-systems are equally maintenance 

intensive and deliver the same %OSRI. However, the values of the ΔOSRI obtained using the 

OSRI model showed that the ΔOSRI for S7 is greater than that for S16. This difference in value 

reflects a difference in their operational characteristics which are considered in the model by 

the weights w1 and w2. This means that in month 2, because of the unfavourable operational 

environment for S7, it is more difficult to improve the reliability of S7 than it is to improve the 

reliability of S16. Thus, it can be concluded that since the model is able to capture differences 

in the operational environment, it is functioning well.  

In summary, it has been shown that the OSRI model enables the maintenance strategies to be 

prioritised for different sub-systems considering the impact of the improvement in their 

functional reliability on the %OSRI in a given month, and hence the OSRI model can be used 

to develop a well-balanced and improved maintenance plan. 

6.4 Model validation and usefulness  

To evaluate the practical utility of the OSRI model, the results obtained using the model are 

compared to the results of the assessment of the reliability loss conducted by UTS Melbourne 

for the same year. Using their standard method, the UTS maintenance managers determined 

two internally used measures for evaluating the loss in reliability of the urban train system, one 

focused on the performance of the urban train system alone and the other based on the relative 

performance of the urban train system to that of the other urban rail systems that are not 

reported here due to confidentiality concerns. The results obtained were a loss in reliability of 

0.6%% and of 7% respectively. Although a direct comparison cannot be made between these 

values and the values obtained using the model, the question is whether the model provides a 

reasonable estimate for practical maintenance planning purposes.  

The values for %OSRIbase obtained for S3, S7 and S16 using the model for each month of the 

year showed that the minimum cumulative loss in reliability was 0.7% and the maximum 
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cumulative loss in reliability was 4.6%. It can be seen that these values computed using the 

model do provide a reasonable approximation to the values obtained by the maintenance 

managers to give them confidence in the performance of this tool.   

The simple OSRI model has been developed in order to assist in practical decision-making in 

the maintenance planning process for an urban train system. It provides a tool that is easy for 

maintenance managers to compute as it does not involve complex statistical analysis or 

computer software. The model enables the maintenance strategies for each sub-system alone 

and all the sub-systems together to be prioritised based on their effectiveness in improving the 

overall sub-system reliability index, sub-system average cancellation index and sub-system 

average delay index. Additionally, the model can be used to establish internal benchmarks for 

improvement in the KPIs for reliability and improve coordination between the maintenance 

and other departments in the organisation.  

6.5 Summary 

This chapter has presented the development of a new simple model that enables the 

maintenance strategies for the sub-systems to be prioritised based on their effectiveness in 

delivering the strategical targets for reliability. The model explicitly computes the %OSRI of 

the sub-system by measuring the impact of the improvement in functional reliability of the sub-

system due to the proposed maintenance strategy on the number of services cancelled and on 

the number of services delayed. In the computation of the index, the model considers the 

influence of the latent variables on the operational characteristics of the sub-system. The 

demonstration of the model in two hypothetical maintenance scenarios has shown that the 

model can be used to identify the optimum maintenance strategy for each sub-system by 

trading-off its functional reliability and the overall reliability, and to identify the best 

maintenance strategies for a number of sub-systems by trading-off their functional reliability 

and overall reliability. Hence, the model provides a valuable tool for improving the decision-

making process of the maintenance planning.  
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Chapter 7:  CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK  

7.1 Conclusions 

The main aim of this research was to investigate the RCM process used by the urban rail 

industry for the maintenance planning of trains, and to propose a new improved RCM process 

that achieves overall reliability by integrating the performance measures both for functional 

reliability and service reliability, and the influence of latent variables in the process. To achieve 

this broad aim, the research was divided into three key components: 

(1) assessment of the conventional approach of reliability analysis for operational 

performance characterisation of sub-systems using the KPIs for reliability 

(2) development of an improved approach for the reliability analysis by using exploratory 

multivariate data analysis techniques and by integrating the KPIs both for functional 

reliability and service reliability 

(3)  development of a model for prioritisation of the maintenance strategies based on their 

effectiveness at delivering overall improvement in the reliability of each sub-system 

and the sub-systems overall. 

The conclusions from each of these research components are highlighted here. 

7.1.1 Assessment of the conventional approach of reliability analysis 

The conventional approach of reliability analysis for the operational performance 

characterisation of the sub-systems of the urban train system was assessed through a case study 

of the urban train service in Melbourne. It was found that in this approach the KPIs data are 

applied in order to establish nine different operational characteristics of the sub-systems using 

simple descriptive analysis. SDA was found to be useful in summarising the data both in simple 

and in more complex composite bar charts that are easy to understand. However, SDA is based 

on the frequency counts of the KPIs for functional and service reliability, and thus only 

indicates increases or decreases in their values rather than explaining whether each KPI has 

improved or not. Furthermore, it does not explain the vital relationships between these KPIs or 

provide any information about the latent variables that have influenced the functional or service 

reliability. Given these limitations, only four of the nine characteristics of the sub-systems can 
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be established to a limited degree. In addition, this approach does not consider the influence of 

the latent variables on the operational performance of the sub-systems.  This means that the 

maintenance planning ultimately relies on a simple increase or decrease in the values of the 

KPIs of the sub-systems and thus does not establish whether each KPI has improved or not 

both individually and also in relation to each other. This component of the research provides a 

detailed understanding of the reliability analysis approach in the RCM process currently used 

to characterise the operational performance of the urban train system in Melbourne, and 

identifies where improvements could be made in this approach. 

7.1.2 Development of an improved approach for the reliability analysis 

In this research component, the new improved approach of reliability analysis for operational 

performance characterisation was developed from the conventional approach in two steps. 

First the conventional approach was partially modified by preserving the conventional single 

criterion for characterisation, i.e. FFF, and by replacing the analytical technique, i.e. SDA, by 

principal component analysis. Using this approach on the FFF data collected from UTS 

Melbourne, five operational performance characteristics based on the FFF are successfully 

established. The results of PCA are presented in plots that provide rich information and are 

easy to interpret. The comparison of the results obtained from PCA with those from SDA 

showed that PCA establishes the operational characteristics of the sub-systems considering the 

influence of the latent variables, thus providing a clear insight into the latent structure of the 

FFF profiles of the months and the sub-systems individually and in relation to each other. 

However, since PCA can only be applied for a single criterion, it cannot be applied for 

characterisation based on multiple criteria that incorporate the KPIs for both functional and 

service reliability.  

Next, an improved multiple criteria approach was developed for the operational performance 

characterisation using multiple factor analysis. This approach applies the KPIs for functional 

reliability and service reliability in their cause-and-effect structure by using MFA, and the four 

remaining operational performance characteristics are successfully established. The 

comparison of MFA results obtained based on multiple criteria with PCA results obtained 

based on the single criterion clearly shows that better maintenance planning can be achieved 

when the critical sub-systems are identified based on multiple criteria. Finally, an improved 
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framework for the operational characterisation was proposed using a combination of PCA 

based on a single criterion and MFA based on multiple criteria. 

7.1.3 Development of a model for prioritisation of the maintenance strategies 

In the final component of the research, a simple reliability index model was developed that can 

be used to compute the overall sub-system reliability Based on the computed values, the 

maintenance strategies for the sub-systems can be prioritised based on their effectiveness in 

delivering the strategical targets for reliability. The index explicitly computes the percentage 

of overall reliability index, %OSRI, of the sub-system by measuring the impact of the 

improvement in functional reliability of the sub-system due to the proposed maintenance 

strategy on the number of services cancelled and on the number of services delayed. In the 

computation of the index, the model integrates the influence of the latent variables on the 

operational characteristics of the sub-system in terms of weights.  

The model can be used to identify the optimum maintenance strategy for each sub-system by 

trading-off its functional reliability and its overall reliability. It can also be used to identify the 

best maintenance strategies for a number of sub-systems by trading-off their functional 

reliability and overall reliability. It provides a tool that is easy for maintenance managers to 

compute as it does not involve complex statistical analysis or computer software.  Hence, the 

model provides a valuable tool for improving the decision-making process of the maintenance 

planning.  

In summary, in this research a better RCM process for the urban train system has been 

developed based on an improved approach for the reliability analysis used to characterise the 

operational performance and a new reliability index model used to select the best maintenance 

strategies.  This RCM process can be used to achieve more effective maintenance planning that 

in turn will ensure greater service reliability.   

7.2 Significance of the work 

This section briefly discusses the novelty and scientific contribution of the work presented in 

this thesis.  

This research is the first comprehensive study of operational performance characterisation of 

the sub-systems of a complex urban train system in the process of RCM based maintenance 
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planning. This research provides a valuable new approach for implementation of the RCM 

method in the maintenance planning of the urban train systems. While in the conventional 

approach, a single criterion, the KPI for functional reliability, is used for identification of the 

critical sub-systems, in the new approach, multiple criteria that integrate the KPIs both for 

functional reliability and service reliability are used. The operational performance 

characterisation of the sub-systems based on multiple criteria successfully identifies the sub-

systems that are critical with respect to both functional reliability and service reliability, thus, 

enabling more effective reliability analysis to be performed for improved maintenance 

planning. 

Furthermore, this research provides an improved analytical framework for reliability analysis 

by developing an advanced two step approach instead of the conventional simple single step 

approach. The two step process has been designed to overcome the limitations of the 

conventional approach. In the first step, four operational performance characteristics are 

established based on multiple criteria using MFA that provide valuable insights into the 

common latent structure between the two data sets. In the second step, an additional five 

characteristics are established based on single conventional criterion using PCA that provide 

insight into the latent structure within the FFF data. Hence, based on the improved 

understanding of these nine characteristics and the latent structure in the data, the proposed 

analytical framework will enable significant improvements in the maintenance planning 

process to be achieved.  

In addition, in the conventional maintenance planning process, the maintenance strategies are 

prioritised based on their effectiveness in delivering maximum improvement in the functional 

reliability of the sub-systems i.e. maximum reduction in the FFF. However, an improvement 

in the functional reliability of the sub-systems does not always guarantee an improvement in 

the service reliability. This research introduces a new approach to prioritise the maintenance 

strategies based on their effectiveness in terms of overall improvement in reliability by striking 

a balance between both the functional reliability and service reliability of sub-systems i.e. a 

reduction in FFF together with a reduction in the number of services cancelled and the number 

of services delayed.  

Finally, this research also develops a model to determine a consolidated index of the overall 

improvement in reliability of the sub-system when a particular maintenance strategy is used.  
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This model provides a simple tool that can be used by maintenance planners to evaluate 

different maintenance strategies. 

7.3 Challenges in application of PCA and MFA to the urban trains data 

The challenges in application of PCA and MFA to the operational performance data of urban 

trains are the same as that can be incurred in the implementation of any new technology. An 

organisation’s culture is one of the big barriers that influences the acceptance of changes in the 

process. To overcome this challenge, PCA and MFA need to be implemented gradually.  

Another challenge is that staff need training to use PCA and MFA since these methods are 

exploratory data analysis techniques that require specific knowledge and expertise for 

application. Communication could be another challenge as the identification of the latent 

variables associated with the PCs in PCA and with the dimensions in MFA is a process that is 

based on the agreement of staff within or from the different departments.  

7.4 Recommendations for future work 

An improved reliability management process for the urban train fleet has been proposed in this 

research. To extend the findings of this work, the following recommendations for further 

research are made.  

(1) In this research, there were a number of non-disclosure constraints imposed on the reporting 

of the data provided by UTS Melbourne. In order to de-identify some of the data, the 

computed principal components reported in Chapter 4 and the dimensions reported in 

Chapter 5 were kept unlabelled. This has limited the development of a more comprehensive 

understanding of the underlying phenomena that affect the operational performance of 

urban trains. It is recommended that further work be carried out to identify the latent 

variables that could be used for labelling. This would provide a useful understanding of the 

dynamics of an operational environment of any typical urban trains service, thus leading to 

improved practices for both maintenance and operational planning.  

 

(2) This research has produced a large amount of information for operational characteristics of 

sub-systems based on FFF using PCA. Since PCA detects the patterns from historical data 

that can then be applied for prediction, PCA has a proven track record of application in 
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predictive analytics. However, since it was beyond the scope of the work reported in this 

thesis, a model based on historical patterns of operational performance characteristics of 

sub-systems for prediction of FFF was not developed.  Using the findings from PCA 

reported in Chapter 4, where the historical FFF data was characterised, it would be very 

useful to develop a model to predict FFF for future maintenance planning. Such a model 

would enable precise prediction of FFF, thus enabling better maintenance planning.  

 

(3) A good understanding of the effect of using KPIs both for functional reliability and service 

reliability on the identification of critical sub-systems has been acquired using MFA in 

Chapter 5, and based on this, much progress has been made in developing an improved 

approach of reliability analysis for operational performance characterisation. However, in 

order to detect the patterns from the data by using MFA, it is assumed that there is a linear 

relationship between the variables. Further research is necessary to better understand 

whether the relationship between the KPIs is linear or non-linear, and then MFA based on 

simple PCA (as in this research) or nonlinear PCA can be incorporated in the analysis. 

 

(4) In this study, the simple OSRI model was developed for prioritisation of the maintenance 

strategies. While this model is able to provide a satisfactory estimation of the overall 

reliability of sub-system, several assumptions were made in generating data for 

demonstration of the model as reported in Section 6.2 of Chapter 6. This means that the 

outputs of the model are based on a combination of actual and generated data. Thus, in 

order to make the model more accurate, it is recommended that further work be undertaken 

to calibrate the model based on field findings.  
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APPENDIX A:  SCRIPT DESIGNED TO PERFROM PCA IN MATLAB 

A script designed to perform PCA on FFF data of urban trains in MATLAB is presented here. This code was 

run for each study year separately.   

 

%%Principle Component Analysis of Functional Failure Data of Urban Trains: 
  
load('Year1_inputs'); 
  
%Compute principal components for functional failure data of urban trains and the variance accounted for by 
each component: 
  
[coeff,score,latent,explained]=pca(A1); 
  
 w=coeff(:,1:2); 
 t=score(:,1:2); 
 var=explained; 
  
 %Scree plot for representation of percentage of variability explained by each principle component 
  
figure  
plot((cumsum(latent)/sum(latent)*100),'-bx','linewidth',2) 
title ('Cumulative Percentage of Variance Explained by the PCs for Study Year 1','Fontsize',14,'Fontweight','bold') 
xlabel ('Number of Principal Components','Fontsize',12,'Fontweight','bold') 
ylabel ('Cumulative Percentage of Variance','Fontsize',12,'FontWeight','bold') 
xlim ([1 11])  
ylim ([40 100]) 
  
%Score plot for analysing the distribution of months 
 
figure 
scatter(score(:,1),score(:,2),250,'m','filled') 
title('Factor Scores of the Months for Study Year 1','Fontsize',14,'Fontweight','bold') 
xlabel('Principle Component I','Fontsize',12,'Fontweight','bold') 
ylabel('Principle Component II','Fontsize',12,'Fontweight','bold') 
labels1={'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sept','Oct','Nov','Dec'}; 
text(score(:,1),score(:,2),labels1,'Fontsize',12,'Fontweight','bold') 
xlim([-40 40])  
ylim([-30 30]) 
  
  
%Loading plot for reflection of sub-systems interrelation and identification of most influential sub-systems  
  
systems={'S1','S2','S3','S4','S5','S6','S7','S8','S9','S10','S11','S12','S13','S14','S15','S16','S17','S18','S19'}; 
months={'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sept','Oct','Nov','Dec'}; 
figure 
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h=biplot(w,'varlabels',systems,'color','b','LineWidth',1.5,'marker','^','MarkerFaceColor','b','MarkerEdgeColor','b'); 
title('Loadings of the Sub-Systems For Study Year 1','Fontsize',14,'Fontweight','bold') 
xlabel('Principle Component I ','Fontsize',12,'Fontweight','bold') 
ylabel('Principle Component II','Fontsize',12,'Fontweight','bold') 
xlim([-1 1])  
ylim([-1 1]) 
  
% to change the variable font 
for k = 39:57 
    h(k).FontWeight= 'Bold';  
end 
  
% to change the variabkle font 
for k = 39:57 
    h(k).FontSize= 12;  
end 
  
%Biplot for determining why months end up in the score plot the way they do 
  
systems={'S1','S2','S3','S4','S5','S6','S7','S8','S9','S10','S11','S12','S13','S14','S15','S16','S17','S18','S19'}; 
months={'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sept','Oct','Nov','Dec'}; 
  
 
figure 
h1=biplot(w,'Scores',t,'varlabels',systems,'obslabels',months,'markersize',20); 
title('Biplot For Study Year 1','Fontsize',14,'Fontweight','bold') 
xlabel('Principle Component I','Fontsize',12,'Fontweight','bold') 
ylabel('Principle Component II','Fontsize',12,'Fontweight','bold') 
xlim([-1 1])  
ylim([-1 1]) 
  
h1(1:70); 
  
% to change the line width 
for k = 1:19 
    h1(k).LineWidth = 2;  
end 
  
% to change the line color 
for k = 1:19 
    h1(k).Color = 'b';  
end 
  
% to change the line marker type 
for k = 20:38 
    h1(k).Marker = '^';  
end 
  
% to change the line marker size 
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for k = 20:38 
    h1(k).MarkerSize = 5;  
end 
  
  
% to change the line marker color (filled) 
for k = 20:38 
    h1(k).MarkerFaceColor = 'b';  
end 
  
% to change the line marker color (filled) 
for k = 20:38 
    h1(k).MarkerEdgeColor = 'b';  
end 
  
% to change the variable font 
for k = 39:57 
    h1(k).FontWeight= 'Bold';  
end 
  
% to change the variable font 
for k = 39:57 
    h1(k).FontSize= 12;  
end 
  
% to change the months size 
for k = 58:69 
    h1(k).MarkerSize =50;  
end 
  
% to change the months color 
for k = 58:69 
    h1(k).Color ='m';  
end 
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APPENDIX B:  PCA PLOTS OF EXAMPLES 

Two published studies that use PCA were selected for validation of the designed script based 

on the availability of their data. One example (Dunn, 2019) was taken from the food 

manufacturing industry and another example (Kassambara, 2017) was taken from the sports 

industry.  

These examples were discussed in Section 4.3.3 of Chapter 4, and PCA plots obtained for these 

examples by using designed script in MATLAB are presented here.  

 

Example 1 - PCA plots of example from food manufacturing industry 
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Figure B-1: PCA plots of example 1 from food manufacturing industry 
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Example 2 - PCA plots of example from sports industry 
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Figure B-2: PCA plots of example 2 from sports industry 
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APPENDIX C:  SCRIPT DESIGNED TO PERFORM MFA IN RSTUDIO 

A script designed to perform MFA on Set I: FFF-and-number of services cancelled and on Set II: FFF-and-

number of services delayed is presented here. This script was run for each study year separately for each 

dataset.  

# get working directory 

getwd() 

# load libraries 

library(FactoMineR) 

library(devtools) 

library(ggplot2) 

library(factoextra) 

library(rARPACK) 

library(ggrepel) 

# import and load data 

data1<-read.csv(file.choose(),header=TRUE,row.names = 1,sep=",") 

# code for MFA  

#Years 1 to 3 

res.mfa<MFA(data1,group=c(2,2,2,2),type=c(rep("s",4)),ncp=5,name.group=c("A","B","C","D"),num.group.sup=NULL) 

#Years 4 to 6 

res.mfa<MFA(data1,group=c(2,2,2),type=c(rep("s",3)),ncp=5,name.group=c("A","B","C"),num.group.sup=NULL) 

#outputs 

summary(res.mfa,ncp=5,nbelements=Inf) 

# Set it globally: 

options(ggrepel.max.overlaps = Inf) 

 

## to extract specific information 

## screeplot 

eig.val <- get_eigenvalue(res.mfa) 

head(eig.val) 

jpeg('Plot1.jpg') 
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fviz_screeplot(res.mfa,addlabels=TRUE, main="Percentage of Variance Expalined by the Dimensions\n For Study Year 
1", xlab= "Number of Dimensions", ylab="Percentage of  Variance")+scale_y_continuous(limits 
=c(0,100),breaks=seq(0,100,20)) +theme(plot.title = element_text(hjust=0.5,lineheight= 1.3, size=14,face = 
"bold"),axis.title.x = element_text(size=12,face = "bold"),axis.title.y = element_text(size = 12,face = "bold"),axis.text.x 
= element_text(size=10, face="bold"),axis.text.y = element_text(size=10, face="bold"),panel.border = 
element_rect(colour = "black", fill=NA, size=0.5)) 

dev.off() 

## Representation of groups of variables 

group <- get_mfa_var(res.mfa,"group") 

group 

jpeg('Plot2.jpg') 

fviz_mfa_var(res.mfa,"group", geom=c("point","text"), col.var="blue",repel= TRUE, shape.var = 19, 
pointsize=5)+scale_x_continuous(limits =c(0,1),breaks = seq(0,1,0.2), expand = c(0,0))+scale_y_continuous(limits = 
c(0,1),breaks = seq(0,1,0.2), expand = c(0,0))+labs(title ="Groups Representation Plot For Different Types of Trains\n 
in the Fleet For Study Year 1")+theme(plot.title = element_text(hjust=0.5,lineheight= 1.3, size=14,face = 
"bold"),axis.title.x = element_text(size=12,face = "bold"),axis.title.y = element_text(size = 12,face = "bold"),axis.text.x 
= element_text(size=10, face="bold"),axis.text.y = element_text(size=10, face="bold"),panel.border = 
element_rect(colour = "black", fill=NA, size=0.5)) 

dev.off() 

## Individual Factor Map (Subsystems Profile) 

ind <- get_mfa_ind(res.mfa) 

ind 

 

jpeg('Plot3.jpg') 

fviz_mfa_ind(res.mfa,invisible="quali.var",repel = TRUE,habillage = "none",col.ind = "blue", 
pointsize=5)+scale_x_continuous(limits =c(-5,5),breaks = seq(-5,5,2))+scale_y_continuous(limits = c(-5,5),breaks = 
seq(-5,5,2))+labs(title="Common Factor Scores Plot For the Sub-Systems\n For Study Year 1")+theme(plot.title = 
element_text(hjust=0.5,lineheight= 1.3, size=14,face = "bold"),axis.title.x = element_text(size=12,face = 
"bold"),axis.title.y = element_text(size = 12,face = "bold"),axis.text.x = element_text(size=10, face="bold"),axis.text.y 
= element_text(size=10, face="bold"),panel.border = element_rect(colour = "black", fill=NA, size=0.5)) 

dev.off() 

## correlation Circle for analysing variables i.e. sub-systems 

jpeg('Plot4.jpg') 

fviz_mfa_var(res.mfa, "quanti.var", arrowsize=1, repel = TRUE, palette = "rainbow")+scale_x_continuous(breaks = 
seq(-1,1,0.4))+scale_y_continuous(breaks = seq(-1,1,0.4))+labs(title="Correlation Circle For the KPIs For Study Year 
1")+theme(plot.title = element_text(hjust=0.5,lineheight= 1.3, size=14,face = "bold"),axis.title.x = 
element_text(size=12,face = "bold"),axis.title.y = element_text(size = 12,face = "bold"),axis.text.x = 
element_text(size=10, face="bold"),axis.text.y = element_text(size=10, face="bold"),panel.border = 
element_rect(colour = "black", fill=NA, size=0.5), legend.position = "None") 

dev.off() 
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# (optional) to obtain map with specific partial sub-systems 

jpeg('Plot5.jpg') 

fviz_mfa_ind(res.mfa, invisible="quali",partial = c("S3","S4","S7","S16"),col.ind = 
"blue",pointsize=5)+scale_x_continuous(limits =c(-3,+10),breaks = seq(-3,+10,2))+scale_y_continuous(limits = c(-
7,+10),breaks = seq(-7,+10,2))+labs(title="Partial Factor Scores Plot For the Sub-Systems\n For Study Year 
1")+theme(plot.title = element_text(hjust=0.5,lineheight= 1.3, size=14,face = "bold"),axis.title.x = 
element_text(size=12,face = "bold"),axis.title.y = element_text(size = 12,face = "bold"),axis.text.x = 
element_text(size=10, face="bold"),axis.text.y = element_text(size=10, face="bold"),panel.border = 
element_rect(colour = "black", fill=NA, size=0.5)) 

dev.off() 

## graph of partial axes 

jpeg('Plot6.jpg') 

fviz_mfa_axes(res.mfa, arrowsize=1, repel = TRUE, palette = "rainbow")+scale_x_continuous(breaks = seq(-
1,1,0.4))+scale_y_continuous(breaks = seq(-1,1,0.4))+labs(title="Partial Axes Plot For Study Year 1")+theme(plot.title 
= element_text(hjust=0.5,lineheight= 1.3, size=14,face = "bold"),axis.title.x = element_text(size=12,face = 
"bold"),axis.title.y = element_text(size = 12,face = "bold"),axis.text.x = element_text(size=10, face="bold"),axis.text.y 
= element_text(size=10, face="bold"),panel.border = element_rect(colour = "black", fill=NA, size=0.5), 
legend.position = "None") 

dev.off() 
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APPENDIX D:  MFA PLOTS OF EXAMPLE 

Based on the availability of detailed data, a study by Kassambara (2017b) that used MFA for 

quality characterisation of the wines was selected for validation of the designed script. In 

Kassambara’s study, 21 samples of wines from different origin were evaluated against 27 

sensory variables those were structured in four groups. This example was discussed in Section 

5.3.3 of Chapter 5, and the plots obtained by using designed script in RStudio are presented 

here. 
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S  

Figure D-1: MFA plots of example of a sensory evaluation of wines  
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