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Abstract 

Stress and sleep are two important determinants of health, and the current research 

suggests a possible bi-directional association. However, the current understanding of stress-

sleep associations is primarily based on single measures of a group of individuals in a given 

moment in time or from highly controlled laboratory settings. Stress exposures or experiences 

and sleep can vary daily, and naturalistic experiences may not be equivalent to those from 

controlled environments. Thus, the single time-point measures or laboratory designs cannot 

accurately capture the fluctuating nature of stress and sleep in daily, naturalistic settings. The 

main aim of this thesis is to advance the stress-sleep associations knowledge base using a 

daily intensive longitudinal design with repeated ecological momentary assessments (across 

7-15 days), as well as integrating both subjective and objective measures of stress (i.e., 

perceived stress; salivary cortisol) and sleep (i.e., sleep diary; actigraphy; 

electroencephalography [EEG]). Specifically, this thesis tested the bi-directional and 

temporal associations between daily stress and the multi-faceted sleep (e.g., total sleep time; 

sleep onset latency; sleep efficiency; sleep architecture) at the between- and within-person 

level in young adults.  

 Overall, there was a more consistent direction of shorter sleep duration and poorer 

sleep quality, as well as shorter Rapid Eye Movement (REM) sleep and Slow-Wave Sleep 

(SWS), predicting next-day psychological stress compared to the opposite direction (i.e., 

psychological stress predicting subsequent sleep). These findings were within-person effects, 

meaning that regardless of an individual’s average sleep, when individuals had nights with 

shorter or poorer than their own usual sleep duration or quality, they experienced higher 

stress levels the following day. Most between-person effects (i.e., individual differences) 

were non-significant. When examining cortisol, a marker of physiological stress, higher 

within-person cortisol levels around pre-bedtime predicted subsequent shorter and poorer 
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sleep. Although within-person sleep did not predict next-day diurnal cortisol slope, a 

consistent pattern of between-person associations emerged. Specifically, individuals with 

poorer or shorter average sleep had a flatter diurnal cortisol slope, indicating a possible 

dysregulated stress response system. Collectively, these findings highlight the complexity of 

the temporal associations between stress and sleep in day-to-day settings, which differed 

across the sleep parameters and measures used.  

 This thesis also explored several theoretical and novel concepts to expand the current 

stress-sleep literature, given that stress and sleep are not only associated with one another but 

also with other factors that can impact health. This thesis had two exploratory aims: 1) to 

explore modifiable behaviours that may mitigate the associations between daily stress and 

subsequent sleep, and 2) to explore beyond testing stress or sleep as the outcome by 

examining their synergistic associations on another health behaviour. To test the first 

exploratory aim, this thesis examined whether and which daily coping strategies mitigated the 

associations of daily stress and subsequent sleep, which can further the understanding of 

potentially modifiable daytime behaviours that may moderate the impact of stress on sleep on 

a day-to-day basis. These findings showed that engaging in either problem-focused coping, 

emotional-approach coping, or emotional-avoidance coping in face of stress was associated 

with shorter sleep duration. However, engaging in high emotional-approach coping or low in 

emotional-avoidance coping when experiencing high stress was associated with higher sleep 

efficiency. Together, these findings show that coping strategies can differentially moderate 

the associations between stress and sleep.  

To test the second exploratory aim, this thesis examined the synergistic predictions of 

daily stress and nightly sleep on dietary intake. The findings showed that individuals with 

poorer and shorter sleep had higher total daily energy intake on days when they experienced 

higher than usual stress levels. There was also within-person evidence showing that shorter 
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sleep duration and REM sleep duration the previous night predicted a higher percentage of 

energy intake from discretionary food (i.e., junk food).  

Taken together, this thesis advanced the current understanding of the stress-sleep 

associations in naturalistic settings using rigorous designs and measures, as well as testing 

theoretical and novel concepts. These findings provide valuable evidence to advance the field 

of health psychology, methodological implications for future research, and evidence for 

interventions at the societal and individual level to improve health education delivery 

programs and incorporate daily strategies into everyday life.  
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CHAPTER 1: GENERAL INTRODUCTION 

Stress and sleep are linked, and they are important determinants of health (Benca, 

Obermeyer, Thisted, & Gillin, 1992; Cappuccio, Cooper, D'Elia, Strazzullo, & Miller, 2011; 

Cappuccio, D'Elia, Strazzullo, & Miller, 2010; Hall, Fernandez-Mendoza, Kline, & 

Vgontzas, 2017; Kendler, Hettema, Butera, Gardner, & Prescott, 2003; Kim & Dimsdale, 

2007; Richardson et al., 2012; Slopen, Lewis, & Williams, 2016). However, the current 

knowledge base of the stress-sleep associations is primarily based on cross-sectional or 

between-person evidence, limiting the understanding of several important concepts. Stress 

and sleep can fluctuate across days, and the cross-sectional evidence, usually based on single 

time-point measures, cannot examine how these associations vary within individuals’ daily, 

naturalistic life. Furthermore, sleep is a multi-dimensional construct that includes sleep 

duration, sleep continuity (e.g., sleep onset latency; wake after sleep onset; sleep efficiency), 

and sleep architecture (e.g., slow-wave sleep; rapid-eye-movement sleep), and these specific 

dimensions are associated with mental and physical health outcomes and mortality (Buysse, 

2014); however, whether each of these sleep dimensions relate to daily stress on a daily basis 

remains unclear. Thus, this thesis aimed to extend the current knowledge base using an 

intensive longitudinal design with repeated ecological momentary assessments (EMA) and 

incorporating objective stress and sleep measures. In addition to using a rigorous design and 

objective measures, this thesis also explored several theoretical and novel concepts to expand 

the current stress-sleep literature. Specifically, this thesis explored whether and which coping 

strategies mitigate (or exacerbate) the associations of daily stress and sleep, as well as the 

interaction effects of stress and sleep on dietary intake.  

Associations between Stress and Sleep  

Cross-sectional research has established a robust association between high perceived 

stress and self-reported poor, disturbed, or short sleep (Akerstedt, Kecklund, & Axelsson, 
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2007; Akerstedt et al., 2002; Alsaggaf, Wali, Merdad, & Merdad, 2016; Buxton et al., 2016; 

Martica Hall et al., 2000; Jerlock, Gaston-Johansson, Kjellgren, & Welin, 2006; Kashani, 

Eliasson, & Vernalis, 2012; Kim & Dimsdale, 2007; Lemma, Gelaye, Berhane, Worku, & 

Williams, 2012; Lund, Reider, Whiting, & Prichard, 2010; Palagini et al., 2016a; Palagini et 

al., 2016b; Slopen et al., 2016; Wiklund, Malmgren-Olsson, Öhman, Bergström, & Fjellman-

Wiklund, 2012). However, the directionality of these associations (i.e., whether stress 

predicts sleep or vice versa) cannot be drawn from cross-sectional evidence. A few 

longitudinal studies on the stress-sleep associations have shed light on these directions. For 

example, higher stress levels, stress-related intrusion (e.g., ruminating about the stressor), and 

work-related stressors were associated with subsequent development and maintenance of 

insomnia (Bernert, Merrill, Braithwaite, Van Orden, & Joiner Jr, 2007; Drake, Pillai, & Roth, 

2014; Jansson & Linton, 2006).  

Most of these studies have relied on group-level estimates or recalling experiences 

over a period of time (e.g., asking participants’ average sleep quality or stress levels over the 

past week or month). Group-level estimates are usually derived from cross-sectional, single 

time-point measurements, which cannot be applied to understanding the intraindividual 

processes and the directionality of the stress-sleep associations (Fisher, Medaglia, & 

Jeronimus, 2018). Although longitudinal studies provide a stronger test of directionality 

compared to cross-sectional designs, they often use few and long interval time points (e.g., 

two time-points one year apart). Thus, most longitudinal studies cannot examine how daily 

dynamic changes in both stress and sleep predict one another. Given the variable nature of 

stress and sleep, examining them over discrete time points with long intervals would not 

provide insight regarding any potential immediate effects that they have on one another. For 

example, whether experiencing higher stress today predicts subsequent sleep that night, or 

having poor or short sleep predicts next-day stress levels, cannot be answered from 
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longitudinal designs. Thus, examining these variables over continuous time may be more 

appropriate (Bolger & Laurenceau, 2013; Collins, 2006). Moreover, recalling an experience 

over a period of time may be subjected to recall bias. It is difficult to report an estimate of the 

average experience over a period; instead, individuals may retrieve and report the most 

memorable experiences, such as the night with the worst sleep quality or the day with the 

highest stress (Shiffman, Stone, & Hufford, 2008). Additionally, individuals may be affected 

by their mental state at the time of recall (Shiffman et al., 2008). Thus, these reports are 

subjected to systematic biases and may not accurately reflect the individual’s actual 

experiences.  

 Daily studies, or intensive longitudinal designs, can provide a stronger estimate of the 

direction of associations and temporal unfolding of daily stress and sleep in naturalistic 

settings. This design allows using repeated ecological momentary assessments (EMA), 

examining within-person effects, and accounting for lagged outcomes (Bolger & Laurenceau, 

2013; Shiffman et al., 2008). However, it is worth noting that not all daily studies use all 

these approaches. EMA are usually used in naturalistic settings, which maximises ecological 

observations that acknowledge the daily changes in an individual’s environment (e.g., at 

home, school, work, or social events). The repeated assessments within and across multiple 

days capture the individual’s current and variations in their experiences over time and 

minimise recall biases. Within-person differences, also known as intra-individual differences, 

are the deviations of scores from an individual’s own mean (e.g., days with higher stress 

levels compared to their own average). These processes emphasise how experiences change 

over time, rather than how individuals are different from one another (i.e., between-person 

effects). Examining within-person effects also are less affected by individual differences, as 

the individuals served as their own control. The use of daily studies and repeated EMA also 

allow for statistical analyses to account for lagged outcomes to account for temporal 
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dependence and strengthen the test of directionality. For example, in models testing whether 

today’s stress predicts tonight’s sleep, while controlling for previous night sleep, the 

prediction of sleep by stress cannot be attributed to sustained or carry-over effects from sleep 

the previous night, thus strengthening the directionality of the analyses. 

 Comparatively, fewer but emerging daily studies on the stress-sleep associations have 

been conducted (Akerstedt et al., 2012; Doane & Thurston, 2014; Garde, Albertsen, Persson, 

Hansen, & Rugulies, 2011; Hanson & Chen, 2010; Lee, Crain, McHale, Almeida, & Buxton, 

2017; Morin, Rodrigue, & Ivers, 2003; Philbrook & Macdonald-Gagnon, 2021; Sin et al., 

2017; Slavish et al., 2020; Winzeler et al., 2014). These studies showed that higher stress 

levels during the day or at bedtime predicted poorer self-reported sleep quality (Akerstedt et 

al., 2012; Garde et al., 2011; Lee et al., 2017; Morin et al., 2003; Winzeler et al., 2014) and 

actigraphic sleep duration that night (Hanson & Chen, 2010; Slavish et al., 2020). Only a few 

daily studies have explicitly and rigorously tested the bi-directional and temporal associations 

by including lagged outcomes (Lee et al., 2017; Sin et al., 2017), with even fewer studies 

using objective sleep measures (Doane & Thurston, 2014). For example, in working adults, 

higher than usual work-related stress predicted longer self-reported sleep onset latency 

(SOL), but that longer SOL did not predict higher next-day stress. However, self-reported 

poorer sleep quality and shorter sleep duration predicted higher next-day stress, whereas the 

opposite direction was non-significant (Lee et al., 2017). Likewise, Sin et al. (2017) found 

that poorer subjective sleep quality predicted higher odds of experiencing stressors the next 

day in working adults; however, the reverse direction did not emerge.  

 Using actigraphic measures, Doane and Thurston (2014) found a significant bi-

directional relationship between stress and sleep duration in adolescents. Specifically, higher 

within-person daily stress predicted shorter sleep duration that night, and shorter within-

person sleep duration predicted higher next-day stress. Moreover, lower sleep efficiency (SE) 
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that night predicted higher next-day stress, but the daily stress was not associated with SE 

that night. To date, only one study examined the daily stress-sleep relations using a 7-day 

daily diary design and electroencephalography (EEG) sleep measures (Slavish et al., 2020). 

EEG sleep measures may offer a more accurate measure of sleep compared to sleep diary or 

actigraphy measures. However, the findings showed that stress did not predict any of the 

subsequent EEG sleep variables, and the EEG sleep measures did not significantly predict 

next-day stress (Slavish et al., 2020).  It is worth noting that this study did not account for 

lagged outcomes. 

Taken together, the evidence from daily studies highlight the complex, bi-directional 

associations between stress and sleep, which differed across sleep parameters (i.e., duration; 

quality) and measurements (i.e., self-report vs actigraphic vs EEG). Although significant, 

self-reported sleep measures often overestimate TST and SOL compared to PSG estimates in 

healthy adults (Silva et al., 2007). The individuals’ self-reported sleep quality and behaviours 

also may be affected by their current state (e.g., expectancy effects of high stress or negative 

mood); for example, individuals with insomnia and/or mood symptoms tend to underestimate 

TST and overestimate wake (Fernandez-Mendoza et al., 2011). Differences in these findings 

also could be due to the time when stress was measured (e.g., recalling stress levels the 

previous day; during bedtime; averaged across the day). Nonetheless, these findings indicate 

that stress and sleep are likely to have bi-directional associations, and more rigorous daily 

studies incorporating subjective and objective sleep measures are needed to clarify these 

associations.  

Experimental designs provide strong causal associations and interpretations. A 

systematic review by Kim and Dimsdale (2007) showed that individuals exposed to 

experimentally manipulated stressors, including an indwelling catheter, first-night effects in a 

sleep laboratory, and psycho-emotional stress, had significantly lower SE, longer SOL, more 
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frequent night-time awakenings, and shorter Rapid Eye Movement (REM) and Slow Wave 

Sleep (SWS). More recent studies also showed that individuals exposed to emotional stress 

(e.g., failure feedback with difficult/unsolvable tasks; distressing films) showed significantly 

decreased TST and SE (Vandekerckhove et al., 2011) as well as less REM sleep (Talamini, 

Bringmann, de Boer, & Hofman, 2013; Vandekerckhove et al., 2011). Similarly, individuals 

had significantly lower SE, but not TST, during high-stress periods compared with low-stress 

periods (Petersen, Kecklund, D'onofrio, Nilsson, & Åkerstedt, 2013). These findings show 

that experimentally induced stressors can affect sleep parameters and architecture. It is 

worthwhile highlighting that there are also several null and contradictory findings, such that 

there were increases, decreases, or no changes in SWS or sleep duration following stressful 

experiences (Kim & Dimsdale, 2007; Petersen et al., 2013; Talamini et al., 2013; 

Vandekerckhove et al., 2011). These contradictory findings may be due to the experimental 

stressors not producing the experience of anticipation that reflects real-world stressors, and 

they may not be of high significance for the individual (Akerstedt, 2006), thus highlighting 

the need to examine stress in naturalistic settings.  

Research on the effects of experimentally manipulated sleep on stress is scarce. One 

study found that experimentally sleep-deprived individuals responded with greater 

psychological distress than well-rested individuals after experiencing minor stressors (Minkel 

et al., 2012). Neuroimaging evidence also showed increases in amygdala reactivity and 

reduced functional connectivity between the amygdala and medial prefrontal cortex when 

presented with negative stimuli in sleep-deprived individuals compared to controls (Yoo, 

Gujar, Hu, Jolesz, & Walker, 2007). These studies indicate that sleep deprivation can impair 

the emotional regulatory systems, which led individuals to perceive stressors as more intense. 

Several neuroimaging studies also have proposed the emotional regulatory role of SWS and 

REM sleep (Ben Simon, Rossi, Harvey, & Walker, 2020; van der Helm et al., 2011). For 
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example, individuals who had a night of sleep deprivation reported higher anxiety levels the 

following morning compared to the previous night and to well-rested individuals; within 

well-rested individuals, longer SWS was associated with lower levels of next-day anxiety 

(Ben Simon et al., 2020). Another study showed that well-rested individuals with 8 hours of 

sleep opportunity had decreased amygdala and emotional reactivity towards affective images, 

compared with sleep-deprived individuals (van der Helm et al., 2011). Within well-rested 

individuals, low EEG gamma activity (a biomarker of adrenergic activity that plays a role in 

emotional regulation and amygdala activity) during REM sleep was associated with 

reductions in both amygdala activity and emotional reactivity towards the affective stimuli 

(van der Helm et al., 2011). Together, these findings suggest that SWS and REM sleep play a 

role in emotional regulation.  

Collectively, these findings show that sleep deprivation affects our appraisal of stress 

and emotional reactivity, which could potentially be due to shorter SWS and REM sleep that 

play a role in emotion regulation. Although existing neuroimaging studies have only 

examined SWS or REM sleep predicting affect reactivity, it is possible that they also may 

play a role in regulating the appraisal and perception of stress given the inextricable link 

between emotions and stress. Furthermore, whether these findings translate into naturalistic 

settings remain unclear, especially where total sleep deprivation in daily life is rare, and the 

day-to-day fluctuations in sleep architecture remain underexplored. Lastly, individuals in 

these studies cannot be blinded to the sleep deprivation conditions, wherein their reported 

experiences following sleep deprivation could partially be due to expectancy effects. Thus, 

more research is needed to explicitly test whether SWS and REM sleep are associated with 

next-day stress experiences. 
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Associations between Cortisol and Sleep 

One daily study showed that self-reported somatic arousals (e.g., sweating; heart 

racing) mediated the associations between daily stress and subjective sleep quality (Winzeler 

et al., 2014), suggesting that the activation of the Hypothalamus-Pituitary-Adrenal (HPA) 

axis prior to sleep could be at play (Hirotsu, Tufik, & Andersen, 2015). The HPA axis is a 

central stress response system, with cortisol being the primary product and one biomarker of 

stress. Cortisol functions to regulate various physiological processes to help individuals adapt 

to environmental changes, such as energy and metabolic processes, blood pressure, and 

inflammatory and immune functioning. Cortisol often is used to assess HPA activity, given 

its responses to acute and chronic stressors (Adam et al., 2017). When encountering stressors, 

the body releases more cortisol to support catecholamine activity (e.g., the fight-or-flight 

response) and effectively cope with the stressor. However, prolonged exposure to stress can 

repeatedly activate the HPA axis and dysregulate the initiation and termination of the stress 

response system, thus leading to excessive, flattened, or blunted cortisol response (Adam et 

al., 2017; McEwen, 2004; Staufenbiel, Penninx, Spijker, Elzinga, & van Rossum, 2013). A 

flattened diurnal cortisol rhythm is indicative of dysregulated HPA activity. Cortisol secretion 

follows a diurnal rhythm; levels are high at awakening, peaking at about 30-40 minutes post-

awakening, and gradually decrease across the day, with the lowest levels around bedtime. A 

flatter diurnal cortisol slope, which could be due to lower awakening or higher evening 

cortisol level or both, is indicative of a dysregulated HPA functioning and is associated with 

poorer mental and physical health outcomes (Adam et al., 2017).  

The evidence for the associations between sleep and cortisol is comparatively more 

limited, and whether they mutually predict each other, especially on a day-to-day level, is still 

unclear. There is some cross-sectional (Backhaus, Junghanns, & Hohagen, 2004; Castro-

Diehl et al., 2015; Garde, Karlson, Hansen, Persson, & Åkerstedt, 2012; Kumari et al., 2009) 
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and experimentally-restricted sleep studies (Garde et al., 2012; Guyon et al., 2014; Omisade, 

Buxton, & Rusak, 2010) linking poor sleep quality or short sleep duration to lower cortisol at 

awakening, higher evening cortisol, and a flatter diurnal slope. However, the temporal order 

between sleep and cortisol could not be established from cross-sectional evidence, and that 

experimentally restricted sleep in laboratory settings may not be ecologically valid. Little 

research has examined the daily variation in sleep and diurnal cortisol rhythm. For example, a 

3-day study in young adults found that shorter between-person sleep duration was associated 

with flatter diurnal cortisol slope, and that within- and between-person shorter sleep duration 

predicted cortisol at awakening (Van Laethem, Beckers, van Hooff, Dijksterhuis, & Geurts, 

2016). Another 3-day study also found similar findings, where shorter between- and within-

person actigraphic sleep duration predicted flatter diurnal cortisol slope, and vice versa 

(Zeiders, Doane Sampey, & Adam, 2011).  

Together, these studies show that short sleep duration and poor sleep quality are 

associated with lower cortisol at awakening, higher evening or bedtime cortisol, and a flatter 

diurnal cortisol slope. There is also some evidence suggesting that a flatter slope is associated 

with shorter sleep duration. However, only a few daily studies on cortisol and sleep in 

naturalistic environments have been conducted, and the existing evidence is limited to 3-days 

of cortisol sampling. At least 10-days of cortisol sampling has been recommended to provide 

better reliability to detect between- and within-person person differences in diurnal cortisol 

(Segerstrom, Boggero, Smith, & Sephton, 2014). Furthermore, a minimum of one week, 

including weekends, is needed to capture variation in sleep (Wohlgemuth, Edinger, Fins, & 

Sullivan JR., 1999). Additionally, whether cortisol levels during pre-sleep or bedtime periods 

predict subsequent sleep remains unclear from these studies. Furthermore, the daily studies 

that exist relied on self-reported or actigraphic measures of sleep, which may not be as 
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accurate as EEG measures to capture the multiple facets of sleep. Thus, more research is 

needed to clarify these findings and to extend the current stress-sleep knowledge base.   

Explore to Extend: Modifiable Behaviours that Moderate the Stress-Sleep Association 

Although the stress-sleep association is established in cross-sectional studies 

(Akerstedt et al., 2007; Akerstedt et al., 2002; Alsaggaf et al., 2016; Buxton et al., 2016; 

Martica Hall et al., 2000; Jerlock et al., 2006; Kashani et al., 2012; Kim & Dimsdale, 2007; 

Lemma et al., 2012; Lund et al., 2010; Palagini et al., 2016a; Palagini et al., 2016b; Slopen et 

al., 2016; Wiklund et al., 2012), with emerging research extending the knowledge base to 

examine how stress affects sleep on a day-to-day basis (Doane & Thurston, 2014; Lee et al., 

2017; Philbrook & Macdonald-Gagnon, 2021; Sin et al., 2017; Slavish et al., 2020), it is still 

unclear what modifiable factors may moderate the effects of daily stress on sleep. Identifying 

and testing these factors may further the understanding of the stress-sleep associations, such 

as what and how these factors can mitigate or exacerbate the effects of sleep on stress. 

Understanding these factors also may inform interventions on how to mitigate the effects of 

stress on sleep.  

One potential moderator would be coping. Theoretical models highlight the role of 

coping strategies in moderating stress responses, such that individuals may cope by directly 

approaching (e.g., directly addressing the stressor or managing the emotional responses to the 

stressor) or avoiding (e.g., mental or behavioural disengagement) the stressor (Lazarus & 

Folkman, 1984; Snyder et al., 2017; Stanton, Kirk, Cameron, & Danoff-Burg, 2000; Stanton, 

Sullivan, & Austenfeld, 2009). Reviews of empirical studies show that approach-oriented 

coping often is associated with better, whereas avoidance-oriented coping with worse 

psychological well-being (Compas et al., 2017; Folkman, 2013; Snyder et al., 2017). These 

findings suggest that different coping strategies used in response to stress can have an impact 

on sleep. However, this concept remains relatively unexplored, especially in daily settings.  
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Few studies have examined the associations between coping and sleep. Cross-

sectional and longitudinal studies have consistently linked avoidance-oriented coping with 

poorer or shorter sleep, whereas results for approach-oriented coping remain inconclusive 

(Hall et al., 1997; Hicks, Marical, & Conti, 1991; Hoyt, Thomas, Epstein, & Dirksen, 2009; 

Jerlock et al., 2006; Matthews, Hall, Cousins, & Lee, 2016; Morin et al., 2003; Palagini et al., 

2016b; Taylor et al., 2015). Only two studies to date examined the moderating role of coping 

on the stress-sleep association (Maskevich, Cassanet, Allen, Trinder, & Bei, 2020; Sadeh, 

Keinan, & Daon, 2004). During a high-stress period, university students who used high vs 

low emotion-focused coping had shorter actigraphic sleep duration and reported poorer sleep 

quality (Sadeh et al., 2004). Furthermore, individuals who used higher problem-focused 

coping had longer actigraphic sleep duration regardless of high or low stress periods (Sadeh 

et al., 2004). Similarly, in older adolescents, problem-focused coping mitigated the 

associations of stress on both actigraphic and self-reported sleep initiation (Maskevich et al., 

2020).  

These findings suggest that approach- and avoidance-oriented coping may 

differentially moderate the associations between stress and sleep. However, these findings 

cannot inform how the daily dynamic interactions between stress, coping, and sleep unfold 

over time. Furthermore, most studies have examined only the broad constructs of coping (i.e., 

approach vs avoidance) or often equated emotion-focused coping to emotional avoidance, 

neglecting emotional approach coping. Emotional approach coping involves expressing and 

processing emotions. In the face of stress, individuals engaging in emotional approach coping 

would spend time understanding their own emotions and are likely to share or express them 

with other individuals, rather than avoiding or suppressing them. Hence, more research is 

needed to examine different coping strategies (i.e., problem-focused, emotional-approach, 

and emotional-avoidance) simultaneously, so their respective roles are better understood in 
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the same daily context. Understanding the role of these coping strategies would extend the 

stress-sleep knowledge base and inform interventions on coping strategies that may 

ameliorate or worsen the effects of stress on subsequent sleep. 

 

The Synergistic Effects of Stress and Sleep on Dietary Intake: Looking Beyond Stress or 

Sleep as Outcome 

High stress and poor sleep are associated with negative health outcomes, including 

cardiovascular diseases and diabetes (Cappuccio et al., 2010; Cappuccio et al., 2011; 

Richardson et al., 2012). It is possible that stress and sleep may increase the risk of 

developing these health conditions through their independent effects or partially through 

other health behaviours. One potential affected health behaviour is diet. It is well established 

that a healthy diet plays an essential role in bodily functions, health, and well-being, which 

reduces the risk of developing diet-related and chronic diseases such as obesity, hypertension, 

cardiovascular disease, and type-2 diabetes (Esposito, Maiorino, Ceriello, & Giugliano, 2010; 

Hooper et al., 2001; Ness & Powles, 1997; Threapleton et al., 2013). It is possible that stress 

and sleep may synergistically affect one’s dietary intake, given that current evidence suggests 

that stress and sleep are bi-directionally associated (Doane & Thurston, 2014; Kim & 

Dimsdale, 2007; Minkel et al., 2012), and both are associated with diet (Chaput, 2014; 

Dashti, Scheer, Jacques, Lamon-Fava, & Ordovás, 2015; Yau & Potenza, 2013). However, 

the synergistic predictions of stress and sleep on diet remains relatively underexamined in the 

current literature. More research is needed to advance the current understanding of the stress-

sleep literature by looking beyond these factors as the outcome and examine their synergistic 

effects on other health behaviours.  
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A healthy diet, as defined by the Australian Dietary Guidelines, includes consumption 

of various foods from each of the five food groups: 1) vegetables and legumes/beans, 2) fruit, 

3) grains and cereals, 4) lean meat, poultry, fish, eggs, legumes, tofu, nuts, and seeds, and 5) 

milk, yoghurt, cheese, or alternatives (National Health and Medical Research Council, 2013). 

Foods that are not part of these groups or not required for a healthy diet are considered as 

discretionary food, or also known as junk food. These foods and drinks are typically energy-

dense but nutrient-poor, and often contain excess or high saturated fat, sugar, salt, and/or 

alcohol, as well as low fibre (National Health and Medical Research Council, 2013). These 

foods include, but are not limited to, ice-cream, cakes, sugar-sweetened drinks, chocolate and 

confectionary, potato crisps and similar, and processed meats (Australian Bureau of Statistics, 

2014a; National Health and Medical Research Council, 2013). Consumption of excessive 

discretionary food is associated with an increased risk of developing diet-related and chronic 

health conditions (Gadiraju, Patel, Gaziano, & Djoussé, 2015; Payab et al., 2015). 

Approximately 35% of the total daily energy intake in Australian adults aged 19 – 30 is 

contributed from discretionary foods (Australian Bureau of Statistics, 2014b).  

Stress plays a role in our dietary intake and behaviours. Cross-sectional and 

longitudinal research has linked higher perceived stress with increased food intake, increased 

snacking, decreased intake of fruits and vegetables, and increased discretionary foods, 

particularly foods high in fat and/or sugar (Barrington, Beresford, McGregor, & White, 2014; 

Cartwright et al., 2003; Errisuriz, Pasch, & Perry, 2016; Groesz et al., 2012; Kandiah, Yake, 

Jones, & Meyer, 2006; Kim, Yang, Kim, & Lim, 2013; Wardle, Steptoe, Oliver, & Lipsey, 

2000). A few daily studies also have supported these results. Days with higher than usual 

daily stress or hassles predicted greater snack intake of foods high in fat and sugar (Conner, 

Fitter, & Fletcher, 1999; O'Connor, Jones, Conner, McMillan, & Ferguson, 2008; Zenk et al., 

2014). Experimental studies showed that individuals under high-stress conditions, such as 
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being given unsolvable puzzles or difficult arithmetic tasks, consumed more foods high in fat 

and sugar compared to those under low-stress conditions (Habhab, Sheldon, & Loeb, 2009; 

Kistenmacher et al., 2018; Wallis & Hetherington, 2004).  

However, there also are experimental and daily studies linking higher stress with 

decreased food intake or null findings (Oliver, Wardle, & Gibson, 2000; Stone & Brownell, 

1994). Inconsistency in these findings could be due to individual differences, such as 

different eating styles, cortisol reactivity status, stressor types, as well as methodological 

differences in measuring dietary intake (Epel, Lapidus, McEwen, & Brownell, 2001; Hill et 

al., 2021; O'Connor et al., 2008; Oliver et al., 2000; Wallis & Hetherington, 2004). For 

instance, while there were no main effects of stress on total energy intake and food 

preferences, individuals who reported high stress and high emotional eating consumed more 

high-fat and high-sugar snacks (i.e., cakes and chocolate snacks) as well as energy-dense 

meals following a laboratory stress task (Oliver et al., 2000). Individuals with high cortisol 

reactivity also reported increased snacking when experiencing higher daily hassles or 

consuming more calories following a stress task (Epel et al., 2001; Newman et al., 2007). 

These findings highlight the heterogeneity of the stress-dietary intake associations.  

A recent meta-analysis recommended future studies to examine potential moderators 

of the stress-dietary intake relationship that may help to explain these inconsistent findings 

(Hill et al., 2021). Sleep may be one key moderator of the stress-diet relationship. Emerging 

evidence from cross-sectional research shows that shorter self-reported sleep duration or 

poorer sleep quality is associated with higher energy intake and poorer diet quality (Dashti et 

al., 2015; Grandner, Jackson, Gerstner, & Knutson, 2013). From a hormonal perspective, 

evidence from laboratory findings demonstrated that individuals with a restricted time in bed 

of approximately 4-hours of bed time increased ghrelin levels (i.e., hunger hormone) by 28% 

and decreased Leptin levels by 19% (i.e., satiety hormone) compared to well-rested 
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individuals (Spiegel, Tasali, Penev, & Van Cauter, 2004). This indicates that short sleep 

duration can disrupt the appetite-regulating hormones that can influence dietary intake and 

behaviours. Sleep manipulation studies support this interpretation, such that individuals with 

restricted sleep opportunity (4.5 – 5.5 hours) eat more energy-dense snacks and have higher 

total energy intake compared to individuals with 8.5 – 9 hours of sleep opportunity 

(Broussard et al., 2016; Markwald et al., 2013; Nedeltcheva et al., 2008). It is worthwhile 

noting that although results showed similar caloric intake for lunch and dinner meals for both 

conditions, those with restricted sleep had increased ghrelin levels (i.e., hunger regulating 

hormone) and ate more energy-dense snacks (Broussard et al., 2016) with an average of extra 

328±140 kcal (or 1372±585 kJ) between meals. Only a few studies have examined the 

associations between sleep architecture and dietary intake (Crispim et al., 2011; Shechter et 

al., 2012). For example, a cross-over sleep restriction study found that lower SWS and REM 

sleep percentage were associated with higher fat intake, and higher REM sleep percentage 

was associated with lower carbohydrate intake (Shechter et al., 2012). Furthermore, shorter 

REM sleep duration was also associated with higher perceived hunger (Shechter et al., 2012). 

Although there were no changes in overall energy intake, these findings suggest that changes 

in sleep architecture are associated with dietary intake. 

The studies discussed have only tested the associations of stress or sleep 

independently on dietary intake or behaviours. Whether high stress and poor sleep combined 

can predict worse diet, or good sleep can buffer the associations of stress and diet, is still 

unclear. To our knowledge, only one study has examined the moderating role of sleep on the 

stress-diet association on a daily level (Liu et al., 2017). A 21-day study found that higher 

work-related stress in the morning predicted lower number of healthy food (e.g., fruits; 

vegetables) and higher number of unhealthy foods (e.g., soda; sugary drinks) consumed in the 

evening. However, on days when participants reported better sleep quality, the relationship 
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between stress and unhealthy food consumption was weaker than days with poorer sleep 

quality. This suggests that good sleep quality may mitigate (or worse sleep exacerbates) the 

impact of stress on discretionary food intake. However, it is worth noting that the 

consumption of healthy vs unhealthy foods was assessed using a checklist of specified foods 

consumed. It is still unclear whether other objectively-measured sleep parameters (e.g., EEG 

sleep duration; sleep efficiency) and sleep architecture may mitigate the association of stress 

with dietary intake. Given that studies have shown the emotional regulatory benefits of SWS 

and REM sleep (Ben Simon et al., 2020; van der Helm et al., 2011), it is possible that they 

can ameliorate the impact of stress on dietary intake.  

Collectively, these findings show that high stress and poor sleep are associated with 

poor diet, and one study showed the moderating role of sleep on the stress-diet association. 

However, more research is needed to test the stress-sleep interactions on diet, especially on a 

daily basis, to examine how these processes unfold over time in naturalistic settings. 

Additionally, most studies only measured limited to types of foods or drinks consumed (e.g., 

pre-specified, limited checklist of foods), which cannot capture the variety of foods 

consumed, especially in day-to-day, naturalistic settings, and the energy intake at the daily 

level.  

Summary and Overview of Thesis Aims and Structure  

The current understanding of the stress-sleep associations is largely based on cross-

sectional or between-person evidence, which cannot be generalised to our understanding of 

the intra-individual differences in stress and sleep. Comparatively fewer daily studies in 

naturalistic environments have been conducted, with even fewer studies used repeated EMA 

of daily stress and objectively measured sleep and explicitly testing their bi-directional, 

temporal associations. Furthermore, nightly variations in sleep architecture and its association 

with daily stress remain underexamined. Thus, the main aim of this thesis is to examine the 
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stress-sleep associations using a daily intensive longitudinal design with repeated EMA, as 

well as integrating both subjective and objective measures of stress and sleep. Paper 1 

(Chapter 2) examined the bi-directional associations between daily stress and self-reported 

and actigraphic sleep. Paper 3 (Chapter 4) extended Paper 1 by testing the bi-directional 

associations between daily stress and EEG sleep, including sleep architecture. Paper 4 

(Chapter 5) extended Paper 1 and 3 by examining the associations between cortisol and 

EEG sleep. Together, these chapters advance the current stress-sleep knowledge base using 

one of the strongest available measures and designs possible for observational studies in 

naturalistic settings.  

This thesis also explored theoretical and novel concepts that can strengthen and 

deepen the understanding of the stress-sleep associations. Paper 2 (Chapter 3) tested 

whether and which daily coping strategies mitigate (or exacerbate) the associations of daily 

stress on subsequent sleep. These findings can further the understanding of potential 

modifiable, daytime behaviours that may moderate the impact of stress on sleep on a day-to-

day basis. Paper 5 (Chapter 6) moved beyond examining stress or sleep as the outcome. 

This chapter explored the synergistic predictions of stress and sleep on dietary intake. A 

summary of the overview of the thesis structure is summarised in Figure 1.



Page | 44  

 



Page | 45  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: 

Bi-Directional Relations Between Stress and Self-Reported and Actigraphy-Assessed Sleep: 
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Preface to Chapter 2 

 As highlighted in Chapter 1: Introduction, the current understanding of the 

association between perceived stress and sleep is limited to cross-sectional or between-person 

evidence. How daily fluctuations in stress predict sleep and vice versa remains unclear.  

This chapter aims to extend the current stress-sleep association knowledge base by 

examining the bi-directional and temporal associations using a daily intensive longitudinal 

design with repeated ecological momentary assessments, as well as self-reported and 

actigraphic sleep measures. Data for this paper came from two existing daily datasets – 1) 

Activity, Coping, Emotions, Stress & Sleep (ACES) study (conducted between April – December 

2017) and 2) Diet, Exercise, Stress, Emotions, Speech, and Sleep (DESTRESS) study (conducted 

between May – August 2018). Both studies used intensive longitudinal designs with repeated 

EMA to measure self-reported stress and sleep, and actigraphy to estimate objective sleep.  

 This chapter comprises a published manuscript in Sleep.  

Yap, Y., Slavish, D. C., Taylor, D. J., Bei, B., & Wiley, J. F. (2020). Bi-directional relations 

 between stress and self-reported and actigraphy-assessed sleep: a daily intensive 

 longitudinal study. Sleep, 43(3). doi:10.1093/sleep/zsz250 

 

 

  



Page | 47  

 



Page | 48  

 



Page | 49  

 



Page | 50  

 



Page | 51  

 



Page | 52  

 



Page | 53  

 



Page | 54  

 



Page | 55  

 



Page | 56  

 

 

  



Page | 57  

 

Supplementary Material 

 



Page | 58  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3:  

Daily Coping Moderates the Relations Between Stress and Actigraphic Sleep: A Daily 

Intensive Longitudinal Study with Ecological Momentary Assessments 
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Preface to Chapter 3 

 Chapter 2 demonstrated that higher within-person evening stress levels (i.e., higher  

than usual evening stress) predicted shorter self-reported and actigraphic sleep that night. 

This chapter builds upon the findings from Chapter 2 by exploring modifiable factors that 

can moderate the prediction of sleep by stress, thus deepening our understanding of the 

stress-sleep associations.  

This chapter explored whether and which daily coping strategies (i.e., problem-

focused coping, emotional approach coping, and avoidance coping) moderate the associations 

of evening stress with sleep duration and quality, using a daily, intensive longitudinal design 

with repeated ecological momentary assessments. Data for this paper came from ACES and 

DESTRESS studies.  

 

 This chapter has been submitted to Sleep Medicine and is presented in manuscript 

form.  The status of this manuscript is currently a revise and resubmit. 
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Abstract 

Background: Theoretical models argue that coping reduces stress responses, yet no studies 

have tested whether coping moderates the prospective stress effects on sleep in daily life.  

Purpose: This study tested if coping moderates the stress-sleep association using a daily, 

intensive longitudinal design.  

Methods: 326 young adults (Mage=23.24±5.46) reported perceived stress and coping 

(problem-focused, emotional-approach, and avoidance) every evening between 20:00–02:00, 

providing over 2400 nights of sleep data and 3000 stress surveys from all participants. 

Actigraphy and sleep diaries measured total-sleep-time and sleep efficiency. Multilevel 

models tested the interaction effects of within- and between-person stress and coping on 

sleep.  

Results: Within-person problem-focused and emotional-approach coping moderated the 

within-person stress effects on actigraphic total-sleep-time (both p=.02); higher stress 

predicted shorter total-sleep-time only during high use of problem-focused coping or 

emotional-approach coping (both p=.01). Between-person avoidance moderated the between-

person stress effect on actigraphic total-sleep-time (p=.04); higher stress predicted shorter 

total-sleep-time for high avoidance coping (p=.03). Within-person emotional-approach 

coping buffered the between-person stress effect on actigraphic sleep efficiency (p=.02); 

higher stress predicted higher sleep efficiency for high emotional-approach coping (p=.04).  

Conclusions: This study showed that daily coping moderates the effects of evening stress on 

sleep that night. More efforts to cope with stress before bedtime had a short-term cost of 

shorter sleep that night. However, high use of emotional-approach coping buffered the impact 

of stress to promote sleep quality.  

Key Words: Multilevel Model; Daily Stress; Daily Sleep; Daily Coping; Ecological 

Momentary Assessments  
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Introduction 

The stress-sleep relationship is well established in cross-sectional studies1 with 

emerging research extending the knowledge base to examine how stress affects sleep on a 

day-to-day basis. Using ecological momentary assessments, a few recent studies showed 

higher daily stress predicted shorter self-report and actigraphic sleep duration.2,3 However, 

what modifiable factors may moderate the effects of daily stress on sleep are poorly 

understood.  

When faced with stress, people often engage coping strategies—behaviors or 

strategies that attempt to address real or perceived demands and stressors.4 Coping strategies 

can be broadly categorized as aiming to approach or avoid a stressor, paralleling behavioral 

approach/inhibition systems work.5 Approach-oriented coping can be further distinguished as 

coping strategies aimed at directly resolving the stressor (i.e., problem-focused coping [PFC]) 

or strategies that actively address emotional responses to the stressor (i.e., emotional-

approach coping [EAC]).4,6 Theoretical models highlight the role of coping in moderating 

stress responses,4 and reviews of empirical studies demonstrate that often approach-oriented 

coping is associated with better and avoidance-oriented coping (AVC) with worse 

psychological well-being.7-9 Thus, coping may moderate how stress affects sleep, an 

important aspect of well-being, which could inform interventions on what coping strategies 

may ameliorate or worsen the effects of stress on subsequent sleep. 

Few studies have examined the association between coping and sleep. Cross-sectional 

studies show a consistent link between AVC with poor or short sleep, while results for 

approach-oriented coping and sleep are inconclusive.10-12 For instance, a 7-day study in 

adolescents show that approach-oriented coping was associated with delayed bedtime and 

increased daytime sleepiness, and AVC was associated with shorter actigraphic sleep 

duration, more wake after sleep onset, and more daytime sleepiness.10 Currently available 

prospective studies also showed similar results, where higher use of AVC predicted poorer 
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sleep quality or higher sleep interference, whereas results for approach-oriented coping were 

inconclusive.13,14 For example, in patients with breast cancer, higher use of AVC was 

associated with more sleep problems and longer sleep onset latency, whereas approach-

oriented coping was unrelated to sleep.13 In patients with prostate cancer, higher AVC and 

lower approach-coping were related to higher self-reported sleep problems, and higher 

approach-coping was related to shorter self-reported sleep onset latency.13 

To our knowledge, only two studies examined whether coping moderates the effects 

of stress on sleep, and neither utilized daily measures of stress or coping.15,16 During a high-

stress period, university students who used high emotion-focused coping had shorter 

actigraphic total sleep time and reported poorer sleep quality compared to low emotion-

focused coping; further, in both high- and low-stress periods, individuals who used higher 

PFC had longer actigraphic total sleep time.15 Similarly, in older adolescents, PFC buffered 

the effects of stress on sleep initiation measured using both actigraphy and self-report.16 This 

study also reported that EAC was associated with lower, whilst AVC was associated with 

higher pre-sleep arousal, a construct that mediated the effects of stress on sleep onset 

difficulties.16 These findings suggest that high PFC and EAC and low AVC may be optimal 

for good sleep. However, research also shows that acute engagement with a task or stressor 

can be associated with at least a short-term physiological toll, with studies showing optimistic 

people both engaged more with difficult tasks17 and short-term had worse immune function 

during conflicts.18 Thus, it is possible that PFC and EAC, which promote engagement with 

stressors, may result in at least short-term costs to sleep. 

Current study 

The current literature has several gaps. First, there is a lack of understanding whether 

engaging in any coping strategies in response to daily stress can mitigate the deleterious 

effects of stress on sleep, especially in a naturalistic, day-to-day setting. Second, most studies 

are cross-sectional in nature. Stress, coping, and sleep are dynamic processes, and a cross-
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sectional design cannot provide information regarding how these processes unfold over time. 

As noted, although PFC and EAC have been found to be associated with better sleep, no 

existing studies to our knowledge have examined daily stress and daily coping, which are 

needed to understand the immediate effects of coping and to examine not only differences 

between people but also within people across time. Finally, most studies examined only the 

broad construct of coping, so there is a need to examine different coping strategies (e.g., PFC, 

EAC, AVC) at the same time so their respective roles are better understood in the same 

context.  

Given the aforementioned limitations, this study aimed to test whether and which 

daily coping strategies (i.e., PFC, EAC, and AVC) moderate the effects of evening stress on 

sleep duration and quality, using a daily, intensive longitudinal design with repeated 

ecological momentary assessments. It was hypothesized that on days where individuals used 

higher approach-oriented coping (i.e., PFC and EAC) and lower AVC, the effects of evening 

stress on subsequent sleep duration and quality (i.e., longer total sleep time and higher sleep 

efficiency, respectively) would be weaker compared to days of low approach-oriented or high 

AVC coping.  

Methods 

Participants  

The current study follows the Strengthening The Reporting of Observational Studies19 

and Checklist for Reporting Ecological Momentary Assessments Studies 20 reporting 

guidelines. Participants were drawn from two studies with overlapping eligibility criteria, 

design, and recruitment strategies – 1) The Activity, Emotions, Stress, and Sleep (ACES) 

study, and 2) Diet, Exercise, Stress, Emotion, Speech, and Sleep (DESTRESS) study. 

DESTRESS was an extension of ACES, where it was conducted to recruit a larger sample to 

support other aims and subgroup analyses not related to this paper. The number of days 

observed on ACES and DESTRESS were 12 and 7 days, respectively. ACES was conducted 
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from April 2017 to December 2017, while DESTRESS was conducted from May 2018 to 

August 2018. Among 514 participants who consented (for both studies), 329 of them started 

the daily study (after excluding participants who are ineligible, could not be contacted, and 

asked to withdraw). The final sample consisted of 326 participants (ACES N = 191, 

DESTRESS N = 135), after excluding those who experienced technical errors and did not 

complete any of the daily surveys. Further details on the sample and flowchart are reported in 

our previous work.3 A priori power analyses indicated that 60 participants (assuming 75% 

completion rate) provide 80% power to detect a small-medium effect size at the within-

person level.  

Design and Procedure 

Monash University Human Research Ethics Committee approved all procedures 

(Project IDs #8245 & #12637) and all participants provided consent. Both studies used daily, 

intensive, longitudinal designs with repeated ecological momentary assessments, where 

participants can report their real-time experiences in their natural setting. This helps to 

maximize external validity, reduce recall biases, and provide strong tests of directionality in a 

naturalistic environment.21 Further, through repeated assessments across the days and 

creating within-person data centered on the individual’s average, allowed participants to 

serve as their own control (i.e., controlling for individual differences) and provided a strong 

and rigorous test of directionality.  

First, participants completed a baseline survey consisting of demographic 

characteristics, covariates, and other measures related to the studies. Participants then 

attended an introductory session where they were demonstrated how to wear the actigraphy 

device and complete the daily surveys via a mobile application (i.e., MetricWire).  

Throughout the daily study period, participants completed their sleep diaries in the mornings 

when surveys are opened (anytime between 11:00 – 15:00) and reported their coping 

strategies for the day and perceived stress levels over the last few hours in the evenings 
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(20:00 – 02:00). Automated push notifications were sent to participants when surveys were 

available and reminders after every hour until completed. On average, participants completed 

the morning surveys 0.80 hours after the morning surveys are available and took 

approximately 2 minutes to complete. Evening surveys were completed approximately 3.06 

hours prior to bedtime and took approximately 4 minutes to complete. Participants were only 

able to complete the surveys during the specified time-window to ensure real-time 

experiences are captured. Participants also wore the actigraphy device throughout the study 

period. Hypothesized moderating pathways, study design, and procedure are summarized in 

Figure 1.  
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Measures 

Sleep. Actigraphic sleep estimates (i.e., total sleep time, sleep onset latency, wake 

after sleep onset, and sleep efficiency) were scored in 60-second epochs collected from 

ActiGraph wGT3X-BT wrist-worn accelerometers, which have good validity and reliability 

against polysomnography estimates.22 The sleep data were scored using the ActiLife software 

(v.6.13.3) with the integrated Cole-Kripke scoring algorithm,23 as well as following an 

established protocol based on activity, light, and sleep diary. Self-report sleep items were 

adapted from the Consensus Sleep Diary,24 where participants reported bed and rise times, 

sleep onset latency, and the number of and total time of wake after sleep onset. 

Evening Stress. A single item ranging from 0 (Not at all stressful) to 10 (Very 

stressful), adapted from the Daily Inventory of Stressful Events scale,25,26 was used. 

Specifically, “Since the afternoon survey (or since 3:30pm if you did not do the afternoon 

survey), how stressful has your day been?”. We referred this as evening stress given that the 

survey covers primarily the evening period (and a small part of late afternoon), and surveys 

were opened at 20:00. To strengthen directionality of stress predicting subsequent sleep, only 

evening stress was examined in this study given the closest proximity to sleep.   

Coping strategies. Coping strategies were measured daily in the evening surveys, 

asking participants what they have been doing to cope with any stress or hassles experienced 

today. PFC and AVC strategies were assessed using items from the active, planning, and 

mental disengagement subscales from the COPE inventory.27 For PFC, the subscale consisted 

of 4-items in ACES (a subset of active and planning) and 8-items in DESTRESS, the full 

active and planning subscales. An example item is, “I tried to come up with a strategy about 

what to do”. AVC was measured using the mental disengagement subscale consisting of 4 

items from the COPE, e.g., “I daydreamed about other things than this”. EAC strategies were 

measured using the Emotional Approach Coping Scale,6 which combined two subscales with 

4 items each assessing emotional processing and expression; for instance, “I take time to 
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figure out what I am really feeling” and “I let my feelings come out freely”. All responses 

were recorded on a 4- and 7-point scale in ACES and DESTRESS, respectively. Given the 

difference in the units of measurement, the scores were z-scored in each study. For both 

studies, the omega coefficient for internal consistency reliability for all coping strategies at 

the between-person level were ≥ .84; within-person level reliability for all coping strategies is 

summarized in Table 1. 

Covariates. Covariates were selected based on previous studies demonstrating their 

associations with stress and sleep.28-32 Between-person covariates assessed at baseline 

included age (years), sex (female/male), education level (university graduate and 

below/postgraduate),  race/ethnicity (White/Asian/Other), body mass index (BMI; kg/m2), 

employment status (working/not working), school status (in school/not in school), smoking 

(current or former/ never), and alcohol consumption (abstainers/moderate/at-risk). Alcohol 

consumption was measured using the WHO Alcohol Use Identification Test,33 using the first 

three items to classify participants as abstainers, moderate, or at-risk based on the National 

Institute on Alcohol Abuse and Alcoholism guidelines.34 Daily covariates included study day 

and day of the week (weekend/weekday), as individuals tend to sleep shorter and report 

higher negative affect during weekdays compared to weekends.35,36  

Analytic Approach 

Multilevel linear models tested the interaction effects of evening stress and coping on 

sleep at the between- and within-person level, alongside fixed and random effects and effect 

sizes in R v.3.4.4.37 Evening stress and coping strategies were separated into between-person 

(i.e., interindividual differences or the participants’ own average) and within-person (i.e., 

deviations from participants’ own average) levels of analyses. Fixed effects included all 

covariates and between- and within-person predictors, whereas random effects included 

intercepts, lagged outcome variables (i.e., sleep variables on the previous nights), and within-

persons predictors.  
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All associations were tested prospectively and accounted for lagged outcomes 

(previous night sleep) to ensure a strong test of directionality. We tested the appropriate 

number of lagged nights to be included in the models (i.e., one to three lagged sleep 

outcomes) through model comparisons and Bayesian Information Criterion; the results 

showed that the model with up to three nights of lagged sleep was the best model. Thus, all 

models included previous night 1, 2 and 3 sleep outcomes. Our previous work showed that 

the first order lagged evening stress was the most appropriate model.3 Non-significant 

interactions were excluded from the analyses, and significant interactions were further tested 

using simple slopes tests through ±1 SD from the mean of between or within-person coping.38 

Given the low within-person reliability for AVC (i.e., .52 and .36 for ACES and DESTRESS, 

respectively), within-person levels of AVC were dropped from all analyses and included only 

between-person level of AVC. Results from the unadjusted models are included in the 

electronic supplementary material 1.  

Due to skewness, several variables were winsorized and transformed for subsequent 

analyses. Specifically, both actigraphic and self-reported sleep onset latency, wake after sleep 

onset were winsorized and square-root transformed. Self-reported sleep efficiency was 

winsorized and square-root transformed, and actigraphic sleep efficiency was winsorized. 

Results 

Descriptive Results 

The sociodemographic profile and daily study variables from ACES and DESTRESS 

are summarized in Table 1. For baseline sociodemographic characteristics, participants were 

mostly Asian undergraduate students, with over half being female. Most participants reported 

never having smoked, being either abstainers or moderate drinkers, and having an average 

BMI within the healthy range for adults, suggesting an overall healthy sample.    

For the daily variables, on average, participants reported low evening stress levels, 

and their actigraphic and self-reported total sleep time were within the recommended 7 to 9 
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hours of sleep duration for adults.39 Further, both actigraphic and self-reported sleep 

efficiency were above 85%, indicating that participants were sleeping well on average.40 

There were low missing daily surveys on average. 
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Table 1. Descriptive Results for Demographic and Daily Study Variables by Study (N=326) 

 ACES  

(N=191) 

DESTRESS  

(N=135) 

ICC 

 

No. of   

Obs 

P 

Participant Characteristic M (SD) / N (%) M (SD) / N (%)    

Age 22.55 (4.13) 24.76 (7.51) — 325 < .001 

BMI 22.30 (3.59) 22.63 (3.51) — 325 .40 

Female (%) 127 (66.50) 102 (75.60) — 326 .86 

Race/Ethnicity (%)    — 325 .16 

White/European 44 (23.20)  42 (31.10) —   

Asian 111 (58.40) 65 (48.10) —   

Others 35 (18.40) 28 (20.70) —   

Undergrad and below (vs 

postgrad %) 

139 (72.80) 82 (60.70) — 326 .02 

In school (vs not in school %) 175 (91.60) 100 (76.30) — 322 <.001 

Working (vs not working %) 61 (31.90) 55 (42.00) — 298 .08 

Smoking Status (%)   — 325 .04 

Current 2 (1.10) 2 (1.50) —   

Former 5 (2.60) 12 (8.90) —   

Never 183 (96.30) 121 (89.60) —   

Alcohol risk (%)   — 324 .05 

Abstainer 35 (18.40) 39 (29.10) —   

Moderate 128 (67.40) 74 (55.20) —   

At-risk 27 (14.20) 21 (15.70) —   

Daily Study Variables      

Evening stress 2.32 (1.60) 2.10 (1.61) .34(66%) 3017 .22 

Actigraphic Sleep      

Total sleep time (hours) 7.32 (0.97) 7.33 (0.92) .27(73%) 2442 .91 

Sleep onset latency (mins) 7.14 (4.24) 5.61 (4.66) .17(82%) 2442 .01 

Wake after sleep onset (mins) 57.55 (28.19) 52.95 (24.18) .40(60%) 2442 .22 

Sleep efficiency (%) 87.27 (4.98) 88.52 (4.45) .42(58%) 2442 .06 

Time in bed (hours) 8.40 (1.11) 8.31 (1.03) .30(70%) 2442 .56 

Bedtime (hours from 18:00) 6.61 (1.52) 6.41(1.51) .56(44%) 2442 .33 

Rise time (hours from 00:00) 9.01 (1.27) 8.72 (1.36) .46(54%) 2442 .10 

Self-Reported Sleep      

Total sleep time (hours) 7.86 (0.94) 7.75 (1.14) .23(76%) 2966 .34 

Sleep onset latency (mins) 28.72 (35.36) 27.68 (34.26) .51(49%) 2983 .79 

Wake after sleep onset (mins) 9.64 (12.14) 9.84 (14.30) .33(67%) 2982 .90 

Sleep efficiency (%) 0.93(0.05) 0.93 (0.06) .44(55%) 2966 .91 

Time in bed (hours) 8.46 (1.15) 8.32 (1.08) .31(69%) 3003 .27 

Bedtime (hours from 18:00) 6.58 (1.53) 6.44 (1.41) .55(45%) 3004 .43 

Rise time (hours from 00:00) 9.04 (1.25) 8.76 (1.38) .46(54%) 3004 .05 

Coping Strategies       

Problem-Focused (.78/.73)† 2.15 (0.62) 3.89 (1.09) .55(45%) 2961 — 

Emotional-Approach (.81/.80)† 2.32 (0.56) 3.79 (1.10) .61(38%) 2971 — 

Avoidance (.52/.36)† 2.02 (0.55) 3.04 (1.09) .58(42%) 2968 — 

Missing Daily Surveys (%) 0.08 (0.09) 0.13 (0.13) — — <.001 

Note. ICC = Intraclass Correlations. No. of Obs = Number of observations. Coping, actigraphic and 

self-reported sleep efficiency, sleep onset latency, and wake after sleep onset presented are raw 

values. P-values are based on independent samples t-tests after first averaging values for each 

participant. P-values for coping strategies were not included given the different units of measurement 

(1-4 in ACES; 1-7 in DESCTRESS). †= omega coefficient for internal consistency reliability at 

within-level by study (ACES/DESTRESS).   
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Moderating Role of Coping Strategies on Evening Stress and Total Sleep Time 

The adjusted models of the interactions between coping and evening stress on 

actigraphic and self-reported total sleep time are summarized in the first two columns of 

Tables 2 (PFC), 3 (EAC), and 4 (AVC).  

After controlling for covariates and lagged outcomes, there was a significant 

interaction between within-person PFC and within-person evening stress on actigraphic total 

sleep time (p = .02). Simple slopes analyses showed evening stress predicted actigraphic total 

sleep time on nights when participants used high levels of PFC (Figure 2, panel A). This 

indicates that on evenings with higher than usual stress, individuals who use higher than 

usual PFC (compared to their own means) had shorter subsequent actigraphic total sleep time. 

Although low PFC was not significantly different than zero, it was significantly different 

from high PFC.  

Similarly, within-person EAC also moderated the relations between within-person 

evening stress and actigraphic total sleep time (p = .02). Simple slopes analyses (Figure 2, 

panel B) indicated a significant relationship between higher within-stress and lower 

actigraphic total sleep time for those who used high within-person EAC.  

At the between-person level, there was a significant interaction between AVC and 

evening stress on actigraphic total sleep time (p = .04). Simple slopes analyses showed 

(Figure 2, panel C) a significant relationship between higher stress and shorter actigraphic 

total sleep time for those with overall high AVC. This indicates that for those who are 

generally stressed and typically use AVC generally had shorter actigraphic total sleep time.  

No significant interactions between any coping strategies and stress levels on self-

reported total sleep time were found on both between and within-person levels.  

Moderating Role of Coping Strategies on Evening Stress and Sleep Efficiency 

There was a significant within-person EAC and between-person evening stress 

interaction effect on actigraphic sleep efficiency (p=.02; Table 3). Simple slope analyses 
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revealed that individuals with higher average stress had higher actigraphic sleep efficiency 

than individuals with lower average stress on days they used higher than usual EAC (Figure 

2, Panel D). No significant interaction effects between other coping strategies and stress 

emerged for both self-reported and actigraphic sleep efficiency at either between or within-

person levels. 

Exploratory Analyses 

Given the significant interactions of PFC, EAC, and AVC and evening stress on 

actigraphic total sleep time, further exploratory analyses were conducted to examine bedtime. 

There was a significant interaction between evening stress and EAC on actigraphic bedtime 

at the within-person level (b = 0.07, p = .02, CI [0.01, 0.12], Cohen’s f2 < .01). Specifically, 

higher within-person stress predicted earlier bedtime for low within-person EAC (simple 

slope b = -0.05, p = .03). Although high EAC (simple slope b = 0.02, p = .31) was not 

significantly different than zero, it was significantly different from low EAC. No significant 

interaction effects were found for other coping strategies on either actigraphic or self-reported 

bedtime.  

Further exploratory analyses were conducted on actigraphic sleep onset latency and 

wake after sleep onset for EAC, given its significant interactions with evening stress on 

actigraphic SE. There was a significant interaction between EAC and evening stress on 

actigraphic sleep onset latency (b = -0.15, p = .04, 95% CI = [-0.30, -0.01], Cohen’s f2 = 

0.01) at the between-person level. Simple slopes analyses showed a significant negative 

relationship between evening stress and actigraphic sleep onset latency for those with high 

EAC (b = -0.14, p =.07), but a positive relationship for those with low EAC (b = 0.10, p 

= .21). Although neither of the simple slopes was significantly different from zero, they were 

significantly different from each other.  

Further, there was a significant within-person EAC and between-person evening 

stress interaction effect on actigraphic wake after sleep onset (b = -0.17, p = .01, 95% CI = [-
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0.30, -0.04], Cohen’s f2 <.01). Simple slopes analyses indicated that people with higher 

average evening stress had shorter actigraphic wake after sleep onset on days they used 

higher than average EAC (b = -0.22, p =.01), but not on days they used lower than average 

EAC (b = -0.04, p = .67).  
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Table 2. Multilevel Models Examining the Interaction Effects between Problem-Focused 

Coping and Evening Stress Predicting Actigraphic and Self-Reported TST and SE  

 Actigraphic 

TST 

Self-Report  

TST 

Actigraphic 

SE 

Self-Report 

SE 

Between Person 

Effects 

    

PFC -0.10, <.01 

[-0.28, 0.07] 

0.06, <.01 

[-0.11, 0.23] 

0.23, <.01  

[-0.71, 1.16] 

  1.44, 0.01 

[-0.17, 3.05] 

     

Evening stress -0.01, <.01 

[-0.11, 0.08] 

-0.05, <.01 

[-0.15, 0.05] 

0.29, <.01  

[-0.23, 0.80] 

  0.10, <.01  

[-0.81, 1.02] 

     

Within Person Effects     

PFC 0.06, 0.04 

[-0.07, 0.19] 

-0.001, <.01 

[-0.12, 0.12] 

0.32, <.01 

[-0.13, 0.78] 

0.50, <.01  

[-0.26, 1.27] 

     

Evening Stress -0.02, <.01  

[-0.06, 0.01] 

-0.05, 0.01** 

[-0.29, -0.16] 

-0.03, <.01 

[-0.13, 0.19] 

-0.19, <.01 

[-0.45, 0.07] 

     

Lag1 TST/SE -0.19, 0.05*** 

[-0.25, -0.13] 

-0.23, 0.19*** 

[-0.28, -0.17] 

-0.13, 0.02*** 

[-0.19, -0.07] 

-0.09, 0.02** 

[-0.14, -0.03] 

     

Lag2 TST/SE -0.19, 0.05*** 

[-0.25, -0.13] 

-0.23, 0.10*** 

[-0.26, -0.16] 

-0.15, 0.03*** 

[-0.21, -0.09] 

-0.09, 0.01** 

[-0.14, -0.03] 

     

Lag3 TST/SE -0.14, 0.02*** 

[-0.20, -0.08] 

-0.15, 0.03*** 

[-0.21, -0.09] 

-0.08, 0.01** 

[-0.14, -0.02] 

-0.14, 0.02*** 

[-0.20, -0.09] 

     

Interaction Effects     

WSTRESS:WPFC -0.07, 0.01* 

[-0.12, -0.01] 

— 

 

— — 

     

Note. Results are coefficients, Cohen’s f2, [95% confidence intervals]. * p <.05, ** p <.01. 

*** p<.001. PFC = Problem-Focused Coping. BSTRESS = Between-person evening Stress. 

WSTRESS = Within-person evening Stress. BPFC = Between-person Problem-Focused 

Coping. WPFC= Within-person Problem-Focused Coping. TST = Total Sleep Time. SE = 

Sleep Efficiency. Covariates were adjusted in all models including age, sex, body mass index, 

race, alcohol use, smoking status, education level, school status, employment status, day of 

week, and study day 1 to 12. Non-significant interactions were dropped from analyses. 
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Table 3. Multilevel Models Examining the Interaction Effects between Emotional-Approach 

Coping and Evening Stress Predicting Actigraphic and Self-Reported TST and SE   

 Actigraphic 

TST 

Self-Reported  

TST 

Actigraphic 

SE 

Self-Report 

SE 

Between Person Effects     

EAC -0.10, <.01  

[-0.28, 0.08] 

0.03, <.01  

[-0.14, 0.21] 

0.20, <.01 

[-0.78, 1.18] 

1.25, 0.01  

[-0.38, 2.88] 

     

Evening stress -0.02, <.01 

[-0.12, 0.07] 

-0.04, <.01  

[-0.13, 0.06] 

0.31, 0.01 

[-0.19, 0.81] 

0.29, <.01  

[-0.60, 1.18] 

     

Within Person Effects     

EAC 0.05, <.01 

[-0.08, 0.19] 

0.01, <.01  

[-0.13, 0.15] 

-0.76, <.01  

[-1.74, 0.22] 

0.76, 0.03  

[-0.23, 1.74] 

     

Evening stress -0.02, <.01 

[-0.06, 0.02] 

-0.05, 0.01**  

[-0.09, -0.01] 

0.04, <.01 

[-0.12, 0.20] 

-0.16, <.01*  

[-0.41, 0.10] 

     

Lag1 TST/SE -0.19, 0.05*** 

[-0.24, -0.13] 

-0.22, 0.06*** 

[-0.28, -0.17] 

-0.13, 0.02***  

[-0.19, -0.07] 

-0.09, 0.02 ** 

[-0.14, -0.03] 

     

Lag2 TST/SE -0.18, 0.04*** 

[-0.24, -0.12] 

-0.17, 0.04*** 

[-0.23, -0.11] 

-0.15, 0.03***  

[-0.21, -0.09] 

-0.09, 0.01 ** 

[-0.14, -0.03] 

     

Lag3 TST/SE -0.14, 0.02*** 

[-0.20, -0.08] 

-0.15, 0.02*** 

[-0.20, -0.09] 

-0.08, 0.01**  

[-0.15, -0.02] 

-0.15, 0.01 *** 

[-0.20, -0.09] 

     

Interaction Effects     

     

WSTRESS:WEAC -0.08, 0.01*  

[-0.14, -0.01] 

— — — 

     

BSTRESS:WEAC — — 0.47, 0.01* 

[0.06, 0.87]  

— 

Note. Results are coefficients, Cohen’s f2, [95% confidence intervals]. * p<.05, ** p< .01. 

*** p<.001. EAC = Emotional-Approach Coping. BSTRESS = Between-person evening 

Stress. WSTRESS = Within-person evening Stress. BEAC = Between-person Emotional-

Approach Coping. WEAC= Within-person Emotional-Approach Coping. TST = Total Sleep 

Time. SE = Sleep Efficiency. Covariates were adjusted in all models including age, sex, body 

mass index, race, alcohol use, smoking status, education level, school status, employment 

status, day of week, and study day 1 to 12. Non-significant interactions were dropped from 

analyses. 
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Table 4. Multilevel Models Examining the Interaction Effects between Avoidance Coping and 

Evening Stress Predicting Actigraphic and Self-Reported TST and SE  

 Actigraphic 

TST 

Self-Reported  

TST 

Actigraphic 

SE 

Self-Report 

SE 

Between Person Effects     

AVC 0.37, 0.01* 

[0.07, 0.66] 

0.02, <.01 

[-0.15, 0.20] 

0.47, <.01 

[-0.44, 1.37] 

-1.56, 0.01 

[-3.15, 0.03] 

     

Evening stress -0.04, <.01  

[-0.14, 0.06] 

-0.07, <.01 

[-0.17, 0.04] 

0.23, <.01  

[-0.28, 0.74] 

0.47, <.01 

[-0.45, 1.40] 

     

Within Person Effects     

     

Evening Stress -0.02, <.01  

[-0.06, 0.02] 

-0.05, 0.06  

[-0.09, 0.00] 

0.03, <.01 

[-0.13, 0.19] 

-0.16, <.01 

[-0.42, 0.09] 

     

Lag1 TST/SE -0.21, 0.12*** 

[-0.27, -0.14] 

-0.23, 0.21*** 

[-0.30, -0.17] 

-0.13, 0.02***  

[-0.19, -0.07] 

-0.08, 0.01 ** 

[-0.14, -0.03] 

     

Lag2 TST/SE -0.23, 0.09*** 

[-0.28, -0.17] 

-0.22, 0.10*** 

[-0.28, -0.17] 

-0.15, 0.02***  

[-0.21, -0.09] 

 -0.09, 0.01 *** 

[-0.15, -0.04] 

     

Lag3 TST/SE -0.14, 0.02*** 

[-0.20, -0.08] 

-0.15, 0.03*** 

[-0.20, -0.09] 

-0.08, <.01**  

[-0.14, -0.02] 

 -0.15, 0.02 *** 

[-0.20, -0.09] 

Interaction Effects     

BSTRESS:BAVC -0.12, 0.01* 

[-0.23, 0.00] 

— — — 

     

Note. Results are coefficients, Cohen’s f2, [95% confidence intervals]. * p<.05, ** p< .01. 

*** p<.001. AVC = Avoidance Coping. BSTRESS = Between-person evening Stress. 

WSTRESS = Within-person evening Stress. BAVC = Between-person Avoidance Coping. 

TST = Total Sleep Time. SE = Sleep Efficiency. Covariates were adjusted in all models 

including age, sex, body mass index, race, alcohol use, smoking status, education level, 

school status, employment status, day of week, and study day 1 to 12. Non-significant 

interactions were dropped from analyses. 

 

  



Page | 80  

 

Discussion 

This study examined the moderating role of daily coping strategies on the relationship 

between evening stress and self-report and actigraphic sleep. Findings indicated that high 

engagement in PFC, EAC, or AVC was associated with stronger negative association 

between evening stress on subsequent actigraphic total sleep time, which was contrary to the 

hypothesized direction for PFC and EAC. Results partially supported the hypothesis for sleep 

efficiency. Specifically, engaging in high EAC strategies buffered the effects of evening 

stress on subsequent actigraphic sleep efficiency. Further exploratory analyses showed that 

higher evening stress predicted longer actigraphic bedtime for high EAC compared to low 

EAC. Engaging in high EAC buffered the effects of evening stress on subsequent actigraphic 

sleep onset latency and wake after sleep onset.  

Moderating Role of Coping Strategies on Total Sleep Time 

Within-person effects showed that on evenings with higher than usual stress, 

individuals who used more than usual levels of PFC or EAC had shorter actigraphic total 

sleep time that night. Similar results emerged for PFC and self-report total sleep time. 

Further, between-person effects indicated that individuals who generally experience high 

levels of evening stress and use high AVC on average also had shorter actigraphic total sleep 

time, which is consistent with previous studies.10,13,14 

Although the direction of results for PFC and EAC were contrary to hypotheses, 

previous research on the relations between approach-oriented or PFC and sleep has been 

inconsistent, with higher levels of PFC related to longer actigraphic total sleep time,15 

delayed bedtime,10 or null findings.12,14 Inconsistencies in these findings may be due to 

methodological differences in assessing coping, such as daily versus single-timepoint 

assessments, and different coping measurements.  

Both PFC and EAC involve actively engaging in addressing the demands of the 

stressor, either directly to resolve it or to address the emotional sequelae. Either form of 
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coping requires time, which may delay bedtime and reduce sleep duration. For example, 

additional study or work time (actively addressing the stressor) for an upcoming test or 

deadline (on days with higher than usual stress) can come at the expense of sleep. Similarly, 

actively expressing emotions (e.g., communicating and sharing feelings) when experiencing 

an interpersonal argument in the evening can also delay bedtime and result in shorter sleep. In 

adolescents, Matthews and colleagues10 showed that high use of approach-coping strategies 

was associated with delayed bedtime. To explore this speculation in our own data, we carried 

out exploratory analyses on bedtime and found that higher within-person stress predicted later 

bedtime for high within-person EAC compared to low within-person EAC. These findings 

support our interpretation that high engagement in EAC is associated with a delayed bedtime 

in the presence of higher than usual stress.   

Besides potential behavioral mechanisms via delayed bedtime, increased arousal may 

be another pathway to shorter total sleep time with increased coping. A small literature 

suggests that although coping may have beneficial effects in the following months, arousal is 

acutely increased while actively recalling or expressing emotions regarding a stressor.41 

Relatedly, the literature showing the benefits of PFC and EAC associated with better 

psychological adjustment and well-being has primarily relied on cross-sectional or 

longitudinal designs.8,42,43 Over these broader time frames (compared to acute, daily stress, 

and coping), there may indeed be beneficial effects, yet engaging in these approach-oriented 

coping strategies may have short-term costs, including sleep duration when such relationships 

are examined on a daily basis. 

Results also showed that individuals who experienced overall high evening stress and 

generally engaged in high AVC had shorter sleep duration. This is consistent with previous 

literature that linked AVC to poor or short sleep.10-14 Although avoidance may appear not to 

require time or resources, research has long shown paradoxical effects, whereby attempting to 
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avoid or suppress thoughts backfires and results in greater pre-occupation.44 Avoiding the 

problems also may reduce efforts in finding effective resolutions, thereby exacerbating the 

problem and ruminations that can interfere with sleep quantity. Thus, avoiding the stressor 

and the possibility of increased pre-occupation and rumination regarding stressors are 

plausible pathways linking greater use of AVC to shorter sleep duration in the presence of 

stress.  

Moderating Role of Coping Strategies on Actigraphic Sleep Efficiency 

For individuals who generally experience high evening stress, they had better sleep 

quality (higher actigraphic sleep efficiency) on days when they engaged in higher than usual 

EAC. Exploratory analyses suggest this was due to reduced shorter time taken to fall asleep 

(lower actigraphic sleep onset latency) and night-time awakening (lower actigraphic wake 

after sleep onset). Previous studies that examined the broad construct of approach coping (the 

combination of both PFC and EAC) showed inconsistent results.13,14 Our findings extend the 

current literature by distinguishing PFC and EAC and showing the benefits of EAC on sleep 

quality. Engaging in EAC may improve sleep quality through processing and expressing the 

negative emotions related to the stressors. This process may include positive cognitive 

reappraisals of the stressor that can reduce rumination and enhance perceived resources in 

managing the increased demands, and thereby reducing night-time awakenings and 

improving sleep quality.  

Limitations and Strengths  

Several limitations should be acknowledged. First, as with all EMA methods, it is 

possible that participants’ report on their stress levels or coping strategies may be affected 

(e.g., reflecting more on these experiences) when asked to report over multiple days, leading 

to reactivity effects and potential biases.20,45 Second, the low reliability for within-person 

AVC limits the examination of its interactions with stress on sleep. AVC measures are known 

to have poor reliability,27,46 highlighting a need for further psychometric work to develop 
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valid and reliable measures of AVC. Third, the coping strategies measured may not represent 

how participants coped with stress in the evening, given that they were asked to think about 

how they coped throughout the day. Future studies are recommended to measure participants’ 

coping strategies at multiple time points within the day to strengthen the temporal inferences.  

Third, periods of quiet wakefulness (i.e., lying in bed with eyes rested without activity) may 

be scored as sleep in actigraphy data, thus underestimating sleep onset latency and its 

associated results (e.g., sleep efficiency and total sleep time). Although partially accounted by 

including self-reported sleep measures, self-reported sleep onset latency and total sleep time 

are often overestimated.47 Fourth, the sample in this study reported relatively low average 

stress levels (M = 2.23 on a 10-point scale), which may lead to floor effects or reduced 

variability. Given the low stress levels, these findings cannot be generalized to populations 

experiencing high stress levels (e.g., clinical populations), and require further validation in 

these populations. Lastly, the types and perceived control of stress were not tested in this 

study. Research including experimental studies show that the effectiveness of coping 

strategies depends on the perceived controllability of the stressor (e.g., upcoming 

examination for high perceived control; major physical illness for low perceived control).8,48 

Given the significant findings using the general perceived overall evening stress in our study, 

future research should extend these findings by examining the severity of different stressors 

and their associated perceived controllability.  

Our study also had notable strengths. To our knowledge, this is the first study that 

examined the moderating role of coping on the stress-sleep relationship on a daily basis in a 

large sample of young adults with diverse gender and race/ethnicity. The use of a daily, 

intensive longitudinal design with repeated ecological momentary assessments in naturalistic 

environments, as well as the examination of specific types of approach-coping strategies (i.e., 

PFC and EAC), extended the findings of previous cross-sectional and prospective studies by 
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capturing the daily interaction of these variables. Additionally, this study employed rigorous 

analyses to examine the moderating role of daily coping on the relations between evening 

stress and subsequent sleep (self-reported and actigraphic measures), as well as accounting 

for the effects of three previous nights of sleep. Confidence in our findings was strengthened 

by separating between and within-person effects in all analyses alongside effect sizes.  

Conclusions and Implications 

We found that daily coping moderated the relations between evening stress and 

subsequent sleep duration and quality. Engaging in either PFC, EAC, or AVC in the presence 

of high stress was associated with shorter sleep duration. Direct attempts to address the 

emotional sequalae of stress were associated with better sleep quality.  

Coping strategies are routinely incorporated and promoted in the management of high 

stress. Despite research showing the long-term benefits of approach coping in well-being and 

health, our study suggests that even what is typically considered “helpful” coping (e.g., 

actively communicating and sharing feelings) may reduce sleep duration in the short-term. 

Stress management could consider ways to offset the reduced sleep duration associated with 

coping (e.g., encourage problem-solving during the day, wind down before bedtime). This 

may be particularly important for individuals who may be overly concerned about sleep loss 

(e.g., individuals with insomnia). Future studies should extend these findings by examining 

the long-term effects of these coping strategies on sleep.  

Results from this intensive longitudinal study further support findings in the literature 

that approach-oriented coping processes improve sleep quality, and that the use of avoidance-

oriented coping worsens sleep duration. Reducing the use of avoidance-oriented coping (e.g., 

disengaging and distracting oneself from the stressor) and replacing with either more 

approach-oriented coping (e.g., actively process or communicate emotions) may be a 

profitable direction for future research to support good sleep.  
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Electronic Supplementary Material  

 

Table S1. Unadjusted Multilevel Models Examining the Interaction Effects between 

Problem-Focused Coping and Evening Stress Predicting Actigraphic and Self-Reported 

TST and SE  

 Actigraphic 

TST 

Self-Report  

TST 

Actigraphic 

SE 

Self-Report 

SE 

Between Person 

Effects 

    

PFC -0.06, <.01 

[-0.23, 0.10] 

0.07, <.01 

[-0.09, 0.23] 

0.39, <.01  

[-0.51, 1.28] 

  1.64, 0.01* 

[0.15, 3.14] 

     

Evening stress -0.02, <.01 

[-0.11, 0.06] 

-0.09, 0.01* 

[-0.17, 0.00] 

0.34, <.01  

[-0.12, 0.80] 

  -0.24, <.01  

[-1.03, 0.55] 

     

Within Person Effects     

PFC 0.03, 0.02 

[-0.09, 0.15] 

-0.01, <.01 

[-0.12, 0.09] 

0.18, <.01 

[-0.24, 0.61] 

0.50, <.01  

[-0.20, 1.20] 

     

Evening Stress -0.03, <.01  

[-0.07, 0.00] 

-0.05, 0.01** 

[-0.09, -0.02] 

-0.005, <.01 

[-0.15, 0.14] 

-0.18, <.01 

[-0.42, 0.06] 

     

Lag1 TST/SE -0.18, 0.04*** 

[-0.24, -0.13] 

-0.22, 0.17*** 

[-0.29, -0.16] 

-0.12, 0.02*** 

[-0.17, -0.07] 

-0.07, 0.01** 

[-0.12, -0.02] 

     

Lag2 TST/SE -0.19, 0.05*** 

[-0.24, -0.13] 

-0.21, 0.09*** 

[-0.26, -0.16] 

-0.15, 0.03*** 

[-0.21, -0.10] 

-0.08, 0.01** 

[-0.13, -0.02] 

     

Lag3 TST/SE -0.14, 0.02*** 

[-0.19, -0.09] 

-0.15, 0.03*** 

[-0.20, -0.10] 

-0.11, 0.01*** 

[-0.16, -0.05] 

-0.14, 0.02*** 

[-0.19, -0.09] 

     

Interaction Effects     

WSTRESS:WPFC -0.06, 0.01* 

[-0.12, -0.01] 

-— — — 

     

Note. Results are coefficients, Cohen’s f2, [95% confidence intervals]. * p <.05, ** p <.01. 

*** p<.001. PFC = Problem-Focused Coping. BSTRESS = Between-person evening Stress. 

WSTRESS = Within-person evening Stress. BPFC = Between-person Problem-Focused 

Coping. WPFC= Within-person Problem-Focused Coping. TST = Total Sleep Time. SE = 

Sleep Efficiency. 
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Table S2. Unadjusted Multilevel Models Examining the Interaction Effects between 

Emotional-Approach Coping and Evening Stress Predicting Actigraphic and Self-Reported 

TST and SE   

 Actigraphic 

TST 

Self-Reported  

TST 

Actigraphic 

SE 

Self-Report 

SE 

Between Person Effects     

EAC -0.05, <.01  

[-0.22, 0.12] 

0.03, <.01  

[-0.13, 0.19] 

0.46, <.01 

[-0.46, 1.38] 

1.66, 0.01*  

[-0.16, 3.15] 

     

Evening stress -0.03, <.01 

[-0.11, 0.06] 

-0.07, <.01  

[-0.15, 0.01] 

0.37, 0.01 

[-0.08, 0.82] 

-0.09, <.01  

[-0.86, 0.68] 

     

Within Person Effects     

EAC 0.01, <.01 

[-0.12, 0.13] 

-0.03, <.01  

[-0.15, 0.10] 

0.16, <.01  

[-0.34, 0.66] 

0.84, 0.02  

[-0.04, 1.71] 

     

Evening stress -0.03, <.01 

[-0.07, 0.01] 

-0.06, 0.01**  

[-0.09, -0.02] 

-0.002, <.01 

[-0.15, 0.14] 

-0.15, <.01*  

[-0.38, 0.09] 

     

Lag1 TST/SE -0.19, 0.05*** 

[-0.24, -0.14] 

-0.22, 0.07*** 

[-0.27, -0.17] 

-0.12, 0.02***  

[-0.18, -0.07] 

-0.07, 0.01 ** 

[-0.12, -0.01] 

     

Lag2 TST/SE -0.19, 0.04*** 

[-0.24, -0.13] 

-0.17, 0.04*** 

[-0.22, -0.11] 

-0.16, 0.03***  

[-0.21, -0.10] 

-0.08, 0.01 ** 

[-0.13, -0.03] 

     

Lag3 TST/SE -0.14, 0.02*** 

[-0.19, -0.08] 

-0.14, 0.02*** 

[-0.20, -0.09] 

-0.11, 0.01***  

[-0.16, -0.05] 

-0.14, 0.02 *** 

[-0.19, -0.09] 

     

Interaction Effects     

     

WSTRESS:WEAC -0.07, <.01*  

[-0.13, -0.01] 

— — — 

     

Note. Results are coefficients, Cohen’s f2, [95% confidence intervals]. * p<.05, ** p< .01. 

*** p<.001. EAC = Emotional-Approach Coping. BSTRESS = Between-person evening 

Stress. WSTRESS = Within-person evening Stress. BEAC = Between-person Emotional-

Approach Coping. WEAC= Within-person Emotional-Approach Coping. TST = Total Sleep 

Time. SE = Sleep Efficiency. 
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Table S3. Unadjusted Multilevel Models Examining the Interaction Effects between 

Avoidance Coping and Evening Stress Predicting Actigraphic and Self-Reported TST and SE  

 Actigraphic 

TST 

Self-Reported  

TST 

Actigraphic 

SE 

Self-Report 

SE 

Between Person Effects     

EAVC 0.15, <.01  

[-0.02, 0.32] 

0.07, <.01 

[-0.09, 0.23] 

0.73, 0.01 

[-0.15, 1.61] 

-0.98, <.01 

[-2.46, 0.49] 

     

Evening stress -0.08, <.01  

[-0.17, 0.01] 

-0.11, 0.01* 

[-0.20, -0.02] 

0.24, <.01  

[-0.23, 0.70] 

0.07, <.01 

[-0.75, 0.89] 

     

Within Person Effects     

     

Evening Stress -0.03, <.01  

[-0.07, 0.01] 

-0.05, 0.04*  

[-0.09, -0.01] 

-0.0005, <.01 

[-0.15, 0.15] 

-0.16, <.01 

[-0.40, 0.07] 

     

Lag1 TST/SE -0.20, 0.10*** 

[-0.26, -0.14] 

-0.23, 0.18*** 

[-0.29, -0.17] 

-0.12, 0.02***  

[-0.18, -0.07] 

-0.07, 0.01 * 

[-0.12, -0.02] 

     

Lag2 TST/SE -0.22, 0.09*** 

[-0.28, -0.17] 

-0.21, 0.09*** 

[-0.26, -0.16] 

-0.15, 0.03***  

[-0.20, -0.10] 

 -0.08, 0.01 ** 

[-0.13, -0.03] 

     

Lag3 TST/SE -0.14, 0.02*** 

[-0.19, -0.09] 

-0.15, 0.03*** 

[-0.20, -0.10] 

-0.10, 0.01***  

[-0.16, -0.05] 

 -0.14, 0.02 *** 

[-0.19, -0.10] 

Interaction Effects     

 — 

 

— — — 

     

Note. Results are coefficients, Cohen’s f2, [95% confidence intervals]. * p<.05, ** p< .01. 

*** p<.001. AVC = Avoidance Coping. BSTRESS = Between-person evening Stress. 

WSTRESS = Within-person evening Stress. BAVC = Between-person Avoidance Coping. 

TST = Total Sleep Time. SE = Sleep Efficiency. 
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CHAPTER 4:  

Daily Relations Between Stress and EEG-Assessed Sleep: A 15-Day Intensive Longitudinal 

Design with Ecological Momentary Assessments 
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Preface to Chapter 4 

To address the limitations highlighted and extend the findings shown in Chapter 2, 

this chapter examined the bi-directional associations between daily stress and EEG-assessed 

sleep using a 15-day intensive longitudinal design in a sample of young adults who relocated 

from a different state or country for undergraduate studies. This population is assumed to 

experience higher stress levels, as the normal transitional challenges may be compounded by 

relocation and losing existing social support. Furthermore, international students may 

experience additional acculturative stressors, such as language barriers and foreign 

educational systems. The use of EEG-sleep allows the examination of a more accurate 

estimation of sleep parameters compared to actigraphy or self-report measures, as well as 

sleep architecture in relation to stress on a daily basis. This chapter also examined pre-

bedtime stress in relation to subsequent sleep (a closer proximity to sleep), rather than 

evening stress as examined in chapter 2. Data for this paper came from the Stress and Health 

Study (conducted between February 2019 – June 2020), which used a 15-day intensive 

longitudinal design.   

 

 

 This chapter has been submitted to Annals of Behavioral Medicine and is presented 

in manuscript form. The status of this manuscript is currently a revise and resubmit.  
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Abstract 

Background: Recent studies have found bi-directional relations between stress and sleep. 

However, few studies have examined the daily associations between stress and 

electroencephalography (EEG) measured sleep. 

Purpose: This study examined the temporal associations between repeated ecological 

momentary assessments of stress and EEG-estimated sleep.  

Methods: 98 international or interstate undergraduate students (Mage=20.54±1.64, 76.5% 

Female, 84.7% Asian) reported their stress levels four times daily at morning awakening, 

afternoon, evening, and pre-bedtime across 15 consecutive days (>4,000 total observations). 

Next-day stress was coded as an average of morning, afternoon, and evening stress. Z-

Machine Insight+ recorded over 1,000 nights EEG total sleep time (TST), sleep onset 

latency, wake after sleep onset, sleep efficiency (SE), slow-wave sleep (SWS) and rapid eye 

movement (REM) sleep duration. Cross-lagged multilevel models, adjusted for covariates 

(i.e., sociodemographic, health factors, and daily covariates) and lagged outcomes, tested the 

daily within- and between-level stress-sleep associations.  

Results: Within-person shorter TST (b=-0.11[-0.21,-0.01], p=.04), lower SE (b=-0.02[-0.03, 

0.00], p=.04), less SWS (b=-0.38[-0.66, -0.10], p =.008), and less REM sleep (b=-0.32[-

0.53, -0.10], p =.004) predicted higher next-day stress. Pre-bedtime stress did not predict 

same-night sleep. No significant results emerged at the between-person level.Conclusions: 

These findings demonstrate that poor or short sleep, measured by EEG, is predictive of higher 

next-day stress. Results for sleep architecture support the role of SWS and REM sleep in 

regulating the perception of stress. Given that only within-person effects were significant, 

these findings highlight the importance of examining night-to-night fluctuations in sleep 

affecting next-day stress and its impact on daytime functioning. 

Key Words 

stress, sleep, EEG, EMA, daily, international students 
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Introduction 

Previous research has established cross-sectional associations between high stress and 

poor or short sleep [1], with both contributing to higher risks of poor health outcomes [2-5]. 

Recent studies have extended these findings by determining bi-directional or temporal 

associations between stress and sleep using daily sleep diary or actigraphy measures [6-11]. 

However, few studies to date have examined the relationship between stress and sleep using 

objective, electroencephalography (EEG) measures on a daily basis. Laboratory studies have 

shown restorative and emotional regulative benefits of Slow Wave Sleep (SWS) and rapid 

eye moment (REM) sleep [12-15]. We sought to determine whether laboratory findings 

translate to naturalistic conditions, and whether stress and sleep architecture bi-directionally 

influence each other on a daily basis in young adult undergraduate students. In recent years in 

developed countries over half of young adults pursue tertiary education, making this 

transitional period from high school to university a normative developmental period applying 

to most young adults. Within tertiary education students, those who move from a different 

state or country for the first time are particularly vulnerable as the normal transitional 

challenges may be compounded by relocation (e.g., adapt to living independently in new 

environments) and losing existing routine, community, and social support [16]. Furthermore, 

international students may experience additional acculturative stressors, such as language 

barriers and foreign educational systems [17, 18]. Although there is an increasing number of 

international and interstate students worldwide [19], and that relocated students represent an 

at-risk subset of tertiary education students, no known studies have explicitly examined the 

day-to-day stress and sleep associations in this population.  

Studies have examined daily stress-sleep relations, with those that explicitly tested the 

temporal order of the stress-sleep associations finding complex, bi-directional and temporal 

associations [6-9]. Results differ across different aspects (e.g., duration, quality) and 
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measurement of sleep (e.g., self-report, actigraphy) [6-9]. For instance, a 12-day study found 

that evenings with higher than usual stress levels predicted both shorter actigraphic and self-

reported total sleep time (TST) that night, and that shorter actigraphic and self-reported TST 

predicted higher stress the next day [6]. Furthermore, worse than usual sleep quality (i.e., 

self-reported sleep onset latency [SOL], self-reported wake after sleep onset [WASO], and 

actigraphic and self-reported sleep efficiency [SE]) predicted higher next-day stress [6]. 

However, there is contrary evidence, showing that stress did not predict same-night self-

reported TST, whereas self-reported TST and sleep quality predicted higher next-day stress 

[8]. Inconsistent findings may be due to differences in sleep measures. Self-reported sleep is 

susceptible to individuals' mood state and perception about sleep; for example, those with 

insomnia and/or mood symptoms tend to under-estimate TST and over-estimate wake [20]. 

Movement-based actigraphy on the other hand, may underestimate SOL compared to 

polysomnography (PSG) [21].  

Neither self-reported nor actigraphic measures of sleep can accurately assess sleep 

architecture, which requires measurements of EEG. The sleep architecture consists of three 

non-rapid eye movement (NREM) sleep stages, i.e., stage N1, N2 and N3, and rapid eye 

movement (REM) sleep. A typical sleep cycle starts with entering the NREM sleep stages, 

followed by REM sleep. Each NREM sleep stage is progressively deeper and has unique 

brain waves, e.g., rhythmic alpha waves in N1, sleep spindles and K-complexes in N2, and 

high-voltage, slow-wave-activity in N3. REM sleep, on the other hand, has low-voltage, 

high-frequency brain wave activity.[22] Few studies have demonstrated the effects of both 

experimentally induced and naturally occurring stress on subsequent EEG-assessed sleep. 

Individuals exposed to emotional stress showed significantly decreased TST and SE [23], as 

well as less REM sleep [23-25]. Similarly, individuals had significantly lower SE, but not 

TST, during high-stress periods compared with low-stress periods [25]. Reported findings for 
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SWS are inconsistent, as individuals exposed to emotional stress or experiencing high stress 

periods have shown an increase, decrease, or no change in SWS [23-26].  

When people experience sleep loss, they tend to exhibit greater psychological stress 

and emotional reactivity [12, 27]. Evidence from neuroimaging studies suggests that SWS 

and REM sleep may play an emotional regulatory role, which may potentially explain these 

findings [14, 15]. For example, individuals who had a night of sleep deprivation reported 

higher anxiety levels the following morning compared to the previous night and to well-

rested individuals; within well-rested individuals, longer SWS was associated with lower 

levels of next-day anxiety [15]. Another study showed that well-rested individuals with 8 

hours of sleep opportunity had decreased amygdala and emotional reactivity towards 

affective images, compared with sleep-deprived individuals. Within well-rested individuals, 

low EEG gamma activity (a biomarker of adrenergic activity that plays a role in emotional 

regulation and amygdala activity) during REM sleep was associated with reductions in both 

amygdala activity and emotional reactivity towards the affective stimuli [14]. These findings 

have demonstrated that SWS and REM sleep are associated with mood and emotional 

reactivity. Although perceived stress was not examined in these studies, given the 

inextricable link between stress and emotions, it is possible that SWS and REM sleep also 

may regulate one’s perception and appraisal of stress severity in addition to emotional 

responses. However, this notion remains untested, especially in daily settings. 

The use of daily diary designs with repeated ecological momentary assessments 

(EMAs) allows daily variations in stress to be related to subsequent or previous sleep 

architecture. Furthermore, these designs allow ecological changes in stress or sleep to be 

studied in naturalistic settings, rather than relying on extreme manipulations used in 

experimental studies (e.g., sleep deprivation). Only one study to date examined the daily 

stress-sleep relations, using a 7-day daily diary design and EEG sleep measures [28]. The 
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findings showed that stress did not predict any of the subsequent EEG sleep variables, and the 

EEG sleep measures did not significantly predict next-day stress.  

 The current study aimed to examine the bi-directional and temporal associations 

between stress and sleep across 15 days, using an intensive longitudinal design with repeated 

EMAs and a single-channel EEG sleep measure in young adults who are international or 

interstate undergraduate students. Specific hypotheses were: 1) higher pre-bedtime stress will 

predict subsequent shorter sleep duration (TST), worse sleep quality (i.e., longer SOL, higher 

WASO, and lower SE), and less SWS and REM sleep duration. 2) Shorter sleep duration, 

worse sleep quality, and less SWS and REM sleep will predict higher next-day stress. 

 

Methods 

Participants 

The Stress and Health Study was conducted from February 2019 to June 2020 and 

recruited participants who had moved from a different state or country for undergraduate 

studies in Victoria, Australia. All participants moved to Victoria for the first time and had not 

previously spent more than six months in Victoria in the past 10 years. Participants were 

recruited through the XXXXXXX Research Participation Platform, social media (e.g., 

Facebook), word-of-mouth, in-class presentations, and learning management systems (e.g., 

Moodle posts). Figure 1 summarizes the participant flow chart and eligibility criteria of the 

Stress and Health Study. A priori power analysis indicated that 68 participants, with the 

assumption of a 75% completion rate, would provide 80% power to detect small-to-medium 

effect sizes at the within-person level for stress and sleep. Additional participants were 

recruited to account for potential attrition, missing data, and other aims not related to the 

current paper.   
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Design and Procedure 

 XXXXXX (project ID: XXXX) approved all procedures, and all participants provided 

consent. This study used an intensive longitudinal design with repeated EMA for 15 

consecutive days. This approach captures real-time variability of experiences in naturalistic 

settings, maximizing external validity and reducing memory and other biases related to 

conventional retrospective recall methods [29, 30]. Participants also served as their own 

control through the repeated assessments across days. These methods provide a rigorous test 

of directionality and temporal order between stress and sleep (e.g., examining pre-bedtime 

stress collected during pre-bedtime predicting subsequent sleep that night) [30]. Detailed 

procedures are in Figure 2. This study follows the Strengthening The Reporting of 

Observational Studies in Epidemiology and Checklist for Reporting EMA Studies reporting 

guidelines [31, 32]. 
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Measures 

Sleep. Daily objective estimates of sleep (i.e., TST, SOL, WASO, SE, SWS, and 

REM sleep) were measured in 30-second epochs using the Z-Machine Insight+, a portable, 

single-channel EEG sleep-monitoring device. There were three sensors: one sensor (signal) 

was placed behind each ear (i.e., differential mastoids A1 and A2 ), and one on the center of 

the neck below the hairline (ground). Raw EEG signals were automatically scored as sleep or 

wake through the Z-ALG13 (for more information on the Z-ALG algorithm and scoring 

methods, see original publication by Kaplan and colleagues [33]). The scored data were then 

processed by the Z-PLUS [34] algorithm to determine sleep stages as light (N1 and N2), 

SWS or REM sleep. Previous studies showed that the Z-ALG13 has high sensitivity and 

specificity for determining sleep (95.5% and 92.5%, respectively), and the Z-PLUS has 

positive predictive values of 0.85 for light sleep, 0.83 for SWS, and 0.76 for REM sleep in 

normal, healthy sleepers compared to PSG consensus [33, 34]. Reported sensitivities of Z-

PLUS are 0.83 for light sleep, 0.77 for SWS, and 0.74 for REM sleep [34]. Overall kappa 

agreement is 0.85 and 0.72 for Z-ALG13 and Z-PLUS, respectively [34]. Self-report sleep 

measures in our study were adapted from the Consensus Sleep Diary [35] and included 

bedtime, rise time, SOL, number of awakenings, and WASO.  

Daily Stress. Daily stress was measured using a self-reported adaptation from the 

Daily Inventory of Stressful Events scale, [36, 37] completed four times each day (i.e., 

mornings, afternoons, evenings, and pre-bedtime). The number of surveys completed for each 

timepoint, alongside completion duration and time, are summarized in Figure 1. In this study 

we focused on a single item ranging from 0 (Not at all stressful) to 10 (Very stressful), i.e., 

“Since the previous survey, how stressful has your day been?”. Stress values from the 

morning, afternoon, and evening surveys (See Figure 2 for survey periods) were averaged by 

participant and day to create a composite of daily stress with ωwithin = 0.635, ωbetween = 0.98, 
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indicating adequate and excellent reliability at the within and between levels, respectively. In 

analysis, daily stress was examined following sleep, thus named as next-day stress.  

Covariates. Covariates were determined apriori based on research demonstrating their 

association with stress and sleep. Previous studies have shown several sociodemographic 

variables that are associated with stress or sleep. For example, individuals who are females 

(vs males) [38, 39], non-White (vs White) [40, 41], or reported lower subjective social [42] 

had reported higher stress or poorer sleep. Thus, the sociodemographic variables included as 

covariates in our model include: age (years) [38], sex (coded as male/female) [38, 39], 

race/ethnicity (coded as white/Asian/other) [40, 41], employment status (coded as 

working/not working)[40, 43], student status (coded as international/interstate) [18], time 

spent in Victoria (years), English language acculturation (using the adapted Short 

Acculturation Scale for Hispanics to refer to participants’ native language instead of Spanish) 

[17, 44], and subjective social status [42, 45, 46]. Furthermore, COVID-19 period (coded as 

pre [before Victoria lockdown 2020 March 8] vs. during) were included as recent study has 

shown the impact of the pandemic on psychological well-being and sleep [47]. Several 

confounding health factors that can impact stress or sleep were also included. For example, 

higher body mass index (BMI), smoking, and alcohol consumption are associated with higher 

stress and poorer sleep [48-51]. Thus, BMI (kg/m2 from self-reported height and weight), 

smoking (coded current/former vs never), and alcohol risk (coded as abstainers/moderate/at-

risk based on the National Institute on Alcohol Abuse and Alcoholism guidelines [52] using 

the first three items of the World Health Organization Alcohol Use Identification Test [53]) 

were included as covariates. Daily covariates that may impact experiences of stress and sleep 

included day of the week, such that individuals have longer sleep and experience lower 

negative affect during weekends, as well as daily circadian misalignment (measured using 

Composite Phase Deviation) [54], as it is associated with affect and sleep architecture [55-57] 
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Analytic Approach 

Cross-lagged multilevel linear models were run in R (v.4.0.3), using restricted 

maximum likelihood and lme4 v1.1-13 to estimate the models, and lmerTest v2.0-33 to 

estimate degrees of freedom and p-values. Cohen’s f2 type effect size for all predictors was 

also calculated. These models, separated by sleep variable, tested the temporal order and bi-

directional associations between stress and sleep at between (i.e., interindividual differences; 

the participants’ own average) and within-person levels (i.e., deviations from the individual’s 

own average across the 15 days), and included lagged outcomes to allow for a rigorous test of 

directionality. The first set of models tested daily pre-bedtime stress levels as predictors of 

sleep that night (TST, SOL, WASO, SE, SWS, and REM sleep), controlling for previous 

night sleep. The second set of models tested next-day stress levels as the outcome of previous 

night sleep, controlling for previous night pre-bedtime stress. The number of lagged variables 

to be included in these models was determined through stepwise addition (i.e., first to fourth 

order stress and sleep lags) and model comparisons using the Bayesian Information Criterion 

(BIC). All models showed that the first-order lag was the most appropriate model (i.e., lowest 

BIC value). Fixed effects included all covariates and between- and within-person predictors, 

whereas random effects included intercepts, lagged outcome variables, and within-person 

predictors. These models were also applied to self-reported sleep variables; these results are 

reported in Electronic Supplementary Material (Table S2 and S3). Intra-class correlations 

(ICC; between-person level variance/total variance) for the stress and sleep variables 

(reported in Table 1 showed that a high proportion of the variance is within-person (45 – 

74%), justifying the use of cross-lagged multilevel models. 

 All dependent variables and model diagnostics were checked for relevant assumption 

violations. Due to skewness, SOL and WASO were square-root transformed and winsorized 

and SE was winsorized (top and bottom 0.5%). For nights with EEG sleep recordings that 
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were identified as sensor errors or battery issues after the first sleep epoch, TST, WASO, SE, 

SWS, and REM were set as missing; SOL was retained given that it occurred before sleep. 

Model convergence failure was addressed using the Nelder-Mead algorithm and tightening 

tolerance values. If the singularity persisted, the random effect variable with the lowest 

variance was dropped from the model.  

Results 

Descriptive 

 Figure 1 summarizes the participant flow chart and eligibility criteria of the current 

study. From 117 participants who were invited to the daily study, 5 withdrew prior to starting, 

and 12 withdrew within 48 hours after starting the daily study. Two participants were 

excluded due to not completing any daily surveys. The final sample consisted of 98 

participants (Mage= 20.54, SD = 1.64 years). Most participants were female (76%), of Asian 

descent (84%), and were international students (91%) who had spent less than a year in 

Melbourne. Only 5% of the sample is currently taking oral contraceptives, and the others 

were currently not taking any medications. Most participants had a BMI within the healthy 

adult range (18.5 – 24.9 kg/m2), were moderate drinkers (65%), and had never smoked 

(95%). Table 1 shows the number of observations, descriptive statistics for demographic and 

daily variables, alongside ICCs for all daily variables. 

 On average, participants’ pre-bedtime and next-day stress level throughout the study 

period were 2.49±1.63 and 1.93±1.49 (M±SD; possible range 0–10), respectively, 

representing normative stress levels comparable to daily stress levels reported in other studies 

including healthy undergraduate students in Australia [6] and adults [10]. Participants 

reported the highest number of work or university related stressors (13.94%) and lowest 

discrimination-related stressors (0.55%) (see Table S2). Participants’ average self-reported 

TST was 7.44±0.96 h, within the recommended sleep duration for adults, and the average 
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self-reported SE was 94±8%, indicative of good sleep quality [58, 59]. However, EEG-

estimated average TST was 6.23±0.90 h, below the recommended sleep duration for adults, 

and average SE was 83±6%. The proportion of SWS and REM sleep were typical of the 

healthy young adult population without sleep complaints [60]. On average, participants 

completed 73% of all possible stress surveys (i.e., across morning, afternoon, evening, and 

pre-bedtime). Across all nights, 74% of the EEG TST, WASO, SE, SWS, and REM, as well 

as 86% SOL, were usable for analysis.  

There were no significant differences in stress levels or EEG sleep variables between 

international and interstate students (all p > .37). Comparing pre and during the COVID-19 

period, there were no significant differences in stress levels, or in self-reported or EEG-

estimated TST and SE. However, participants during the COVID-19 period had significantly 

shorter overall SWS (1.22±0.28 hr) compared to individuals during pre-COVID-19 

(1.50±0.28 hr), p<.001. These results are reported in Electronic Supplementary Material 

(Table S1).  
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Table 1. Descriptive Statistics for Demographic and Daily Variables (N =98) 

 M (SD) / N (%) No. of Obs ICC 

Participant Characteristics    

Age (years) 20.54 (1.64) 98 — 

Time Spent in Melbourne (years) 0.73 (0.94) 98 — 

Body Mass Index (kg/m2) 21.94 (3.48) 98 — 

Language Acculturation 3.85 (1.02) 98 — 

Subjective Social Status 5.52 (1.44) 98 — 

Sex   98  

Male 20 (20.50%) — — 

Female 75 (76.50%) — — 

Others 3 (3.00%) — — 

Race/Ethnicity   98  

Asian 83 (84.70%) — — 

White/European 9 (9.20%) — — 

Others 6 (6.10%) — — 

International Student (vs. Interstate) 90 (91.80%) 98 — 

Working (vs. not working) 22 (22.40%) 98 — 

Never smoked (vs. Current/Former)  94 (95.90%) 98 — 

Before COVID-19 Period (vs. During) 72 (73.50%) 98 — 

Alcohol risk  98  

Abstainer 23 (23.50%) — — 

Moderate 64 (65.30%) — — 

At risk 11 (11.20%) — — 

Daily Study Variables    

Stress levels    

Pre-Bed  2.49 (1.63) 1279 .38 (61%) 

Next-Day 1.93 (1.49) 1359 .50 (50%) 

Self-reported sleep    

Total sleep time (h) 7.44 (0.96) 1379 .27 (73%) 

Sleep onset latency (min) 25.83 (43.59) 1394 .55 (45%) 

Wake after sleep onset (min) 5.77 (7.63) 1396 .29 (71%) 

Sleep efficiency (%) 93.69 (7.81) 1379 .48 (52%) 

EEG-estimate sleep    

Total sleep time (h) 6.23 (0.90) 1086 .27 (73%) 

Sleep onset latency (min) 22.74 (11.53) 1272 .26 (74%) 

Wake after sleep onset (min) 47.64 (21.86) 1086 .37 (63%) 

Sleep efficiency (%) 83.31 (5.84) 1086 .32 (68%) 

SWS (h) 1.43 (0.30) 1086 .31 (69%) 

REM sleep (h) 1.64 (0.44) 1086 .40 (60%) 

Note. ICC = Intraclass Correlations, the proportion of total variance between people. Values 

in parentheses in the ICC column are the remaining variance, that is, the percent of variance 

within individuals. No. of Obs = Number of observations. EEG = Electroencephalogram. 

SWS = Slow Wave Sleep. REM = Rapid Eye Movement Sleep. EEG-estimated and self-

reported sleep efficiency, sleep onset latency, and wake after sleep onset presented are raw 

values.  
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Pre-bedtime Stress Predicting EEG-Estimated Sleep 

Table 2 shows the unadjusted and adjusted cross-lagged multilevel models of pre-

bedtime stress predicting EEG-estimated sleep, showing the between-person and within-

person effects. For the unadjusted models, between-person effects showed that individuals 

with generally higher pre-bedtime stress had longer SOL (b = 0.17, 95% CI [0.02, 0.32], p 

= .03), lower SE (b= -0.87, 95% CI [-1.62, -0.12], p = .03), and less REM sleep (b = -4.51, [-

8.12, -0.91], p = .02), adjusting for previous night sleep. However, after adjusting for 

covariates, pre-bedtime stress did not significantly predict sleep at either the between- or 

within-person levels. Similarly, the post-hoc exploratory analyses also showed that pre-

bedtime stress did not predict self-reported sleep at either the between or within-person levels 

(Supplementary Table S3). 
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Table 2. Cross-lagged Multilevel Model Testing Pre-Bedtime Stress as Predictor of EEG-

Estimated Sleep  

 Between-Person 

Unadjusted 

Within-Person 

Unadjusted 

Between-Person 

Adjusted 

Within-Person 

Adjusted 

TST 

(min) 

-1.58, <0.01  

[-8.67, 5.51] 

-1.44, <0.01 

[-4.24, 1.36] 

3.36, <0.01 

[-5.09, 11.81] 

-0.25, <0.01 

[-3.14, 2.64] 

     

SOL 

(√min) 

0.17, 0.02* 

[ 0.02, 0.32] 

-0.03, <0.01 

[-0.08, 0.02] 

0.16, 0.01  

[-0.04, 0.35] 

-0.03, <0.01 

[-0.09, 0.04] 

     

WASO 

(√min) 

0.20, 0.02  

[ 0.00, 0.39]   

-0.005, <0.01  

[-0.07, 0.06] 

0.09, <0.01  

[-0.15, 0.33] 

0.005, <0.01  

[-0.06, 0.07] 

     

SE 

(%) 

-0.87, 0.03*  

[-1.62, -0.12] 

0.08, <0.01 

[-0.18, 0.35] 

-0.30, <0.01  

[-1.20, 0.61] 

0.09, <0.01  

[-0.17, 0.36] 

     

SWS 

(min) 

-0.98, <0.01  

[-3.36, 1.40] 

0.35, <0.01  

[-0.51, 1.22] 

-0.07, <0.01   

[-3.33, 1.90] 

0.44, <0.01  

[-0.48, 1.36] 

     

REM 

(min) 

-4.51, 0.03*  

[-8.12, -0.91]  

-0.84, <0.01  

[-1.99, 0.30] 

 

-1.92, 0.01  

[-6.20, 2.36] 

-0.76, <0.01  

[-1.94, 0.42] 

Note. Results are unstandardized regression coefficients, Cohen’s f2, [95% confidence 

intervals]. * p < .05. TST = Total Sleep Time; SOL = Sleep Onset Latency 

(square-root transformed); WASO = Wake After Sleep Onset (square-root transformed), SE 

= Sleep Efficiency (winsorized); SWS = Slow Wave Sleep. REM = Rapid Eye Movement. 

Adjusted models included baseline and daily covariates: age; sex; race/ethnicity; body mass 

index; employment status; English language acculturation; subjective social status; time spent 

in Melbourne; COVID-19 period; student status; smoking status; alcohol consumption; day 

of week; composite phase deviation.  
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EEG-estimated Sleep Predicting Next-day Stress 

Adjusted and unadjusted models of EEG-estimated sleep predicting next-day stress 

are summarized in Table 3. In the unadjusted models, between-person effects showed that 

longer SOL (b = 0.35, 95% CI [ 0.09, 0.61], p = .009), lower SE (b = -0.07, 95% CI [-0.13, -

0.02], p = .02), and less REM sleep (b = -0.84, 95% CI [-1.55, -0.16], p = .02) predicted 

higher next-day stress, adjusting for previous pre-bedtime stress. Within-person effects 

showed similar trends, with longer SOL (b = 0.06, 95% CI [ 0.01, 0.11], p = .02), lower SE 

(b = -0.01, 95% CI [-0.02, 0.00], p =.047), less REM sleep (b = -0.21, 95% CI [-0.39, -0.03], 

p = .02), and less SWS (b = -0.36, 95% CI [-0.59, -0.13], p = .002) predicting higher next-day 

stress.  

Adjusting for covariates, within-person effects showed that when individuals had 

shorter TST (b = -0.11, 95% CI [-0.21, -0.01], p = .04), lower SE (b = -0.02, 95% CI [-0.03, 

0.00], p =.04), less SWS (b = -0.38, 95% CI [-0.66, -0.10], p = .008), and less REM sleep (b 

= -0.32, 95% CI [-0.53, -0.10], p = .004) relative to their average levels, they had higher 

stress the following day. No significant associations were found for between-person sleep and 

next-day stress. For self-reported sleep, shorter within-person TST predicted higher next-day 

stress (p = .041); no other significant results emerged (Supplementary Table S4). 
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Table 3. Cross-lagged Multilevel Model Testing EEG-Estimated Sleep as a Predictor of 

Next-Day Stress  

 Between-Person 

Unadjusted 

Within-Person 

Unadjusted 

Between-Person 

Adjusted 

Within-Person 

Adjusted 

TST 

(h) 

-0.08, <.01  

[-0.45, 0.29] 

-0.06, 0.04  

[-0.15, 0.03] 

0.22, 0.01  

[-0.21, 0.65] 

-0.11, 0.03* 

[-0.21, -0.01] 

     

SOL 

(√𝒎𝒊𝒏) 

0.35, 0.04**  

[ 0.09, 0.61] 

0.06, <.01*  

[ 0.01, 0.11] 

0.32, 0.04 

[ 0.00, 0.64] 

0.05, <.01  

[-0.02, 0.11] 

     

WASO 

(√𝒎𝒊𝒏) 

0.19, 0.02 

[-0.02, 0.40] 

-0.01, <.01  

[-0.06, 0.04] 

0.19, 0.02  

[-0.01, 0.40] 

-0.02, <.01  

[-0.07, 0.03] 

     

SE 

(%) 

-0.07, 0.04*  

[-0.13, -0.02] 

-0.01, <.01*  

[-0.02, 0.00] 

-0.03, 0.01  

[-0.10, 0.04] 

-0.02, 0.01* 

[-0.03, 0.00] 

     

SWS 

(h) 

-0.80, 0.01  

[-1.90, 0.30] 

-0.36, 0.01**  

[-0.59, -0.13] 

-0.92, .01  

[-2.38, 0.54] 

-0.38, 0.02**  

[-0.66, -0.10] 

     

REM 

(h) 

-0.84, 0.04* 

[-1.55, -0.16] 

-0.21, 0.01* 

[-0.39, -0.03] 

-0.44, 0.01  

[-1.28, 0.40] 

-0.32, 0.02**  

[-0.53, -0.10] 

Note. Results are unstandardized regression coefficients, Cohen’s f2, [95% confidence 

intervals]. * p < .05, **p <.01. TST = Total Sleep Time; SOL = Sleep Onset Latency 

(square-root transformed); WASO = Wake After Sleep Onset (square-root transformed), SE 

= Sleep Efficiency (winsorized); SWS = Slow Wave Sleep. REM = Rapid Eye Movement. 

Adjusted models included baseline and daily covariates: age; sex; race/ethnicity; body mass 

index; employment status; English language acculturation; subjective social status; time spent 

in Melbourne; COVID-19 period; student status; smoking status; alcohol consumption; day 

of week; composite phase deviation. 
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Discussion 

This study examined the temporal relations between daily stress and EEG-measured 

sleep across a 15-day intensive longitudinal design with repeated EMA, extending the stress-

sleep literature that is primarily based on cross-sectional evidence. All models controlled for 

lagged outcomes to provide a rigorous test of directionality. The results showed that pre-

bedtime stress did not predict any of the subsequent EEG-sleep variables after accounting for 

covariates. However, compared to one’s own mean, nights with shorter TST, lower SE, less 

REM sleep, and less SWS predicted higher next-day stress, even after adjusting for 

covariates. These findings indicate a stronger unidirectional effect from sleep to next-day 

stress, compared to pre-sleep stress on sleep. Furthermore, after controlling for covariates, 

stress and EEG-sleep were not significantly associated on the between-person level, 

underlining the importance of considering day-to-day fluctuations in sleep. 

Pre-bedtime Stress Predicting Same-night Sleep 

Findings from the unadjusted models, with lagged outcomes included, showed that 

individuals with generally higher pre-bedtime stress (i.e., between-person effects) had 

significantly longer SOL, lower SE, and less REM sleep. These findings are consistent with 

previous studies where individuals exposed to experimentally-manipulated stressors (e.g., 

emotional stress from a failure experience) or during high-stress periods had significantly 

lower EEG-estimated SE or less REM sleep compared with neutral groups or during low-

stress periods [23-25]. However, these findings became non-significant when adjusted for 

baseline (e.g., demographics and health factors) and daily (e.g., day of week; circadian 

misalignment) covariates. These adjusted findings are similar to those of a recent 7-day study 

showing no association between daily stress and EEG sleep adjusting for day of week, 

gender, and age [28].  

The non-significant findings could be due to our sample not being powered to detect 

small effect sizes or that in young adults, naturalistic levels of stress do not predict 
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subsequent sleep. This direction is also observed in other daily studies that showed a more 

consistent direction of sleep predicting stress, rather than stress predicting sleep [9, 11], 

although one study found that higher within-person stress predicted longer self-reported sleep 

onset latency [8]. Differences in these findings could be due timing of the sleep measures, 

such that participants’ sleep was measured in the following evening (vs the following 

morning in this study) that may have influenced the accuracy of the report. Additionally, it 

could be that major stressful events (e.g., after traumatic events; severed relationships) may 

have a larger and more consistent impact on sleep compared to daily stress [26]. Although 

our sample consisted of international and interstate students, their average daily stress levels 

were similar to other undergraduate students and international students in Australia [6], 

suggesting that despite additional demands due to moving and entering another culture, these 

students have normative stress levels. There also may be differences between perceived stress 

and physiological stress responses (e.g., cortisol). For example, in a sample of nurses and 

physicians, increased cortisol responses were associated with occurrences of stressful events 

(e.g., medical emergency; routine care), but over 70% of these responses occurred without 

individuals perceiving the events as stressful [61]. Future research should incorporate 

physiological markers, such as collecting daily cortisol samples or other biomarkers (e.g., 

skin conductance, heart-rate variability), in addition to perceived stress to understand 

interactions between psychological and physiological stress on daily sleep.  

EEG-estimated Sleep Predicting Next-day Stress 

 After adjusting covariates, EEG sleep variables did not significantly predict next-day 

stress on the between-person level. On the within-person level, when individuals had a 

shorter than their own usual TST, SWS, or REM sleep, or lower than their usual SE, they 

experienced higher stress levels the following day. These results were adjusted for pre-sleep 

stress levels of the previous night, so the associations cannot be attributed to sustained or 
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carry-over stress from the previous day. These results are in line with previous daily studies 

using actigraphic and self-reported sleep measures that linked shorter and poorer sleep with 

higher stress [6, 7]. Our findings contrast with the null findings from the previous study 

examining nightly EEG sleep and daily stress [28]. This could be due to differences in 

assessing stress levels (e.g., retrospective recall assessing stress once per day in the mornings 

vs EMA in this study), analytical approach (i.e., we included lagged outcomes and influential 

covariates), or population as our sample was younger and diverse racially versus middle-aged 

and predominantly White. Our findings also add to the growing evidence consistent with 

emotional regulatory benefits of SWS and REM sleep [14, 15].   

The observed stress-sleep relationships could be explained by previous studies 

showing the impact of short and poor sleep on the emotional regulatory system by 

potentiating emotional responses to stressor intensity [27, 62]. This interpretation is 

supported by our findings that less SWS and REM sleep predicted higher next-day stress, in 

accord with studies that have uncovered the functional role of SWS and REM sleep in mood 

and emotional regulation [12, 14, 15]. For example, a recent study suggested the anxiolytic 

benefits of SWS, as longer SWS was associated with higher medial pre-frontal cortex activity 

(important for emotional regulation) and lower self-reported anxiety levels [15]. Furthermore, 

neurobiological frameworks have indicated the functional benefits of REM sleep in optimal 

emotional regulation [12]. Although emotional reactivity towards stressors were not tested in 

this study, given the robust link between stress and emotions, it is possible that short and poor 

sleep can impact one’s regulation of stress perception. In other words, it is possible that on 

nights when individuals had less SWS or REM sleep, they may have been deprived of the 

usual regulatory benefits, leading to a stronger reactivity to next-day stressors and thus 

perceiving them as more intense. Nonetheless, future studies are needed to further explore 

and clarify whether SWS and REM sleep predicts next-day emotional reactivity (e.g., 
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increased negative affect and dampened positive affect) towards daily stressors on a daily, 

naturalistic basis. 

Strengths and Limitations 

 This study is one of the first to examine the daily associations between stress and 

sleep in an understudied population of young adults who relocated from a different state or 

country for undergraduate studies. Our rigorous study design included repeated EMAs to 

measure perceived stress levels multiple times across the day, EEG-derived estimates of 

sleep, and a 15-day intensive longitudinal design. These methods addressed key limitations of 

previous studies, such as recall biases, under- and overestimations of sleep using actigraphic 

and self-report measures, and the reliance of single time-point or cross-sectional evidence. 

This study is one of the first to explore the ecology of nightly variations in EEG-estimated 

sleep parameters and architecture in relation to next-day stress, extending the findings from 

sleep-manipulation studies conducted in laboratory settings. Furthermore, our rigorous 

analytical methods allowed for a robust test of temporal directionality by including both 

within- and between-person predictors and lagged outcomes in all models. The confidence in 

our findings and precision estimation are further strengthened by including important 

covariates, such as daily circadian misalignment.   

 Nonetheless, several limitations should be acknowledged. First, participants were 

young adults and relatively healthy, thus the findings cannot be generalized to other age 

groups (e.g., children, older adults) or populations experiencing clinical conditions (e.g., 

individuals with insomnia or mood disorders). Future studies are needed to confirm these 

results in clinical populations and of different age groups, which may show and may show 

stronger associations and larger effect sizes. Second, the missing data in stress surveys and 

EEG-sleep measures may have influenced the results. For example, it is possible that 

participants may not wear the EEG device during nights with more stressful events, e.g., 
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working on an assignment until late at night and going to bed immediately after, although we 

found no significant differences in pre-bedtime stress between nights with missing vs non-

missing EEG sleep data. Relatedly, within-person reliability for next-day stress was on the 

low end of acceptable, which may explain some non-significant findings. It is also important 

to acknowledge that the current study only used a single-channel EEG to estimate the sleep 

parameters and architecture, which may still be less accurate than the gold-standard PSG  

sleep measure. There also may be first-night effects using the Z-Machine Insight+, as with 

every other in-person PSG studies, such that individual’s sleep on the first night may be 

impacted by wearing the device [63], although this is mitigated by the within-person levels of 

analyses in our study. It is worthwhile noting that we did not control for multiple 

comparisons, which may increase our chances for making Type 1 error. Given that this is one 

of the first studies examining daily EEG sleep in naturalistic settings, we think it is important 

to examine the multi components of EEG sleep (i.e., parameters and architectures) and their 

associations with daily stress. Nonetheless, future studies are needed to replicate these 

findings. Finally, although every effort was made to robustly test the directionality of results 

through time-lagged predictions and covariates, our findings may still be influenced by 

unexplored confounds. Future studies involving experimentally-manipulated sleep in 

naturalistic settings (i.e., at home and, rather than severe sleep deprivation, manipulating 

sleep by minutes or hours) or populations with greater sleep disruption (e.g., shift workers) 

could provide evidence for whether there are causal effects of sleep on next-day stress in an 

ecologically valid context. 

Conclusion and Implications 

 Our findings showed that young adult perceived higher stress the next day after nights 

with shorter than usual EEG-measured TST, REM sleep, SWS, and poorer than usual sleep 

quality. However, higher pre-bedtime stress was not associated with same-night sleep over 
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and above the effects of covariates. There are several implications, particularly for the 

educational sector and tertiary educational institutions as they relate to international students’ 

daily well-being. First, all significant associations were within-person effects, highlighting 

the importance of day-to-day fluctuation of sleep on each individual’s next-day experiences. 

The lack of robust between-person association between sleep and stress suggests that simply 

identifying poor sleepers may not be sufficient. Although the effect sizes observed may be 

relatively small, which could partly be attributable to the sleep measurement scale (i.e., in 

minutes, hours, or percentages), these results are still significant as having poor or short 

nightly sleep and high daily stress can cumulatively impact both physical and mental health 

[2-5]. Behavioural sleep strategies that are appliable in everyday settings for managing the 

fluctuating nature of nightly sleep, especially on nights of particularly short or poor sleep is 

needed. Finally, this study identified sleep architecture (especially REM and SWS) as an 

aspect of sleep that is relevant to individuals’ experiences of stress. With the advancement of 

portable and consumer EEG, the incorporation of sleep architecture measures (e.g., SWS; 

REM) could be a fruitful area for future research to better understand sleep and its function in 

everyday life.  
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Electronic Supplementary Materials 

Table S1. Descriptive Statistics for Demographic and Daily Variables by COVID-19 Period 

Participant Characteristics Pre-COVID Period 

M (SD) 

During COVID Period 

M (SD) 

p-value 

Daily Study Variables    

Stress levels    

Pre-Bed  2.40 (1.60) 2.76 (1.71) .34 

Next-Day 1.85 (1.38) 2.15 (1.77) .37 

Self-reported sleep    

Total sleep time (h) 7.40 (1.01) 7.56 (0.82) .46 

Sleep onset latency (min) 25.79 (49.31) 25.94 (21.63) .99 

Wake after sleep onset (min) 5.05 (5.46) 7.76 (11.64) .12 

Sleep efficiency (%) 93.88 (8.65) 93.16 (4.91) .69 

EEG-estimate sleep    

Total sleep time (h) 6.21 (0.96) 6.30 (0.71) .64 

Sleep onset latency (min) 23.19 (11.52) 21.51 (11.70) .53 

Wake after sleep onset (min) 49.24 (24.75) 47.18 (15.12) .69 

Sleep efficiency (%) 83.62 (6.23) 84.37 (4.35) . 58 

SWS (h) 1.50 (0.28) 1.22 (0.28) <.001 

REM sleep (h) 1.62 (0.45) 1.69 (0.43) .51 

Note. EEG = Electroencephalogram. SWS = Slow Wave Sleep. REM = Rapid Eye Movement 

Sleep. EEG-estimated and self-reported sleep efficiency, sleep onset latency, and wake after 

sleep onset presented are raw values. Participants’ values were first averaged and p-values 

were based on the comparison between pre- and during COVID period using Independent-

samples t-tests.  
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Table S2. Proportion of pre-bedtime stressors reported 

Pre-bedtime Stressor Type % 

Work/School   13.94% 

Health  5.13% 

Finance  1.73% 

Argument  6.24% 

Home  2.68% 

Discrimination  0.55% 

Relationship  1.42% 

Others  1.89% 
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Table S3. Cross-lagged Multilevel Model Testing Pre-Bedtime Stress as Predictor of Self-

Reported Sleep  

 Between-Person 

Unadjusted 

Within-Person 

Unadjusted 

Between-Person 

Adjusted 

Within-Person 

Adjusted 

TST 

(min) 

-1.66, <.01  

[-9.86, 6.55]    

-1.44 <.01 

[-4.32, 1.45] 

-1.55 <.01  

[-11.41, 8.30] 

-0.77, <.01  

[-3.51, 1.97] 

     

SOL 

(√min) 

0.09, <.01   

[-0.21, 0.40] 

-0.04, <.01   

[-0.10, 0.02] 

0.17, 0.01   

[ -0.18, 0.51] 

-0.04, <.01  

[-0.10, 0.02] 

     

WASO 

(√min) 

-0.01, <0.01   

[-0.17, 0.14] 

0.01, <0.01  

[-0.06 0.07] 

0.01, <0.01   

[-0.16, 0.19] 

0.01, <0.01   

[-0.04, 0.07] 

     

SE 

(%) 

-0.33, <0.01    

[-1.69, 1.04] 

0.10, <0.01    

[-0.20, 0.40] 

-0.62, <0.01     

[-2.17, 0.94] 

0.12, <0.01     

[-0.20, 0.44] 

     

Note. Results are unstandardized regression coefficients, Cohen’s f2, [95% confidence 

intervals]. TST = Total Sleep Time; SOL = Sleep Onset Latency 

(square-root transformed); WASO = Wake After Sleep Onset (square-root transformed), SE 

= Sleep Efficiency (winzorised). Adjusted models included baseline and daily covariates: 

age; sex; race/ethnicity; body mass index; employment status; English language 

acculturation; subjective social status; time spent in Melbourne; COVID-19 period; student 

status; smoking status; alcohol consumption; day of week; composite phase deviation.  
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Table S4. Cross-lagged Multilevel Model Testing Self-Reported Sleep as Predictor of Next-

Day Stress 

 Between-Person 

Unadjusted 

Within-Person 

Unadjusted 

Between-Person 

Adjusted 

Within-Person 

Adjusted 

TST 

(h) 

0.04, <.01  

[-0.26, 0.34] 

-0.04, 0.02 

[-0.10, 0.03] 

-0.05, <.01 

[-0.38, 0.29] 

-0.07*, <.01  

[-0.13, 0.00] 

     

SOL 

(√min) 

0.03, <.01 

[-0.11, 0.16] 

0.02, 0.03  

[-0.03, 0.07] 

0.10, 0.01  

[-0.05, 0.25] 

0.02, <.01 

[-0.03, 0.06] 

     

WASO 

(√min) 

0.10, <.01 

[-0.17, 0.37] 

0.003, 0.04 

[-0.06, 0.07] 

0.15, 0.01  

[-0.18, 0.48] 

0.004, 0.03 

[-0.06, 0.07] 

     

SE 

(%) 

-0.01, <.01  

[-0.04, 0.02] 

0.004, <.01   

[-0.01, 0.00] 

-0.02, <.01   

[-0.06, 0.01] 

-0.004, <.01   

[-0.01, 0.00] 

     

Note. Results are unstandardized regression coefficients, Cohen’s f2, [95% confidence 

intervals]. * p < .05. TST = Total Sleep Time; SOL = Sleep Onset Latency 

(square-root transformed); WASO = Wake After Sleep Onset (square-root transformed), SE 

= Sleep Efficiency (winzorised). Adjusted models included baseline and daily covariates: 

age; sex; race/ethnicity; body mass index; employment status; English language 

acculturation; subjective social status; time spent in Melbourne; COVID-19 period; student 

status; smoking status; alcohol consumption; day of week; composite phase deviation.  
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Preface to Chapter 5 

Findings from Chapter 4 showed that stress level around pre-bedtime was not 

associated with subsequent sleep. Chapter 4 suggests that there may be differences in 

psychological versus physiological stress responses.  

Chapter 5 aims to extend the findings of chapter 4 by examining a biomarker of 

stress, i.e., cortisol, and its association with sleep over 15-days. Specifically, daily diurnal 

cortisol was collected over 14 consecutive days, and EEG-sleep was recorded over 15 

consecutive nights. In addition to extending the findings of Chapter 4, this chapter also 

provide physiological evidence of stress and its association with EEG-sleep, thus advancing 

and strengthening the stress-sleep knowledge base. Data from this study came from the Stress 

and Health Study.  

This chapter is formatted as a manuscript in preparation for submission to SLEEP 
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Abstract 

Study Objectives 

Current evidence suggests that cortisol levels and trajectories are bi-directionally associated 

with sleep. However, the daily, naturalistic cortisol-sleep associations remain unclear as the 

current evidence is mostly cross-sectional. This study tested whether pre-sleep cortisol 

predicts sleep duration and quality, and whether sleep parameters predict the following day’s 

diurnal cortisol slope using a two-week intensive longitudinal design with 

electroencephalographic measures and saliva sampling.  

Methods 

Ninety-five young adults (Mage=20.48±1.59) provided saliva samples at awakening and pre-

sleep over 14 consecutive days, providing 2345 samples (85% viable). Z-Machine Insight+ 

recorded over 900 nights of total sleep time (TST) and sleep efficiency (SE). Multilevel 

models, adjusting for covariates, tested these data at the between- and within-person level.   

Results 

Higher pre-sleep cortisol predicted shorter TST (p<.001), lower SE (p<.001), and longer SOL 

(p=.005) at the within-person level. Individuals with shorter average TST or lower average 

SE had flatter diurnal cortisol slope compared to those with longer average TST or lower 

average SE (both p<.001). Individuals with shorter average TST (vs longer average TST) had 

higher pre-sleep cortisol (p=.04), whereas those with lower average SE (vs higher average 

SE) had lower awakening cortisol (p=.002). 

Discussion 

Our findings provide evidence that higher pre-sleep cortisol predicts shorter and poorer 

quality sleep at the within-individual level under naturalistic conditions. Furthermore, 

individuals with short or poor sleep had flatter diurnal cortisol slope and higher pre-sleep 
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cortisol levels. These findings suggest that sleep maintains the regulation of the stress-

response system, which is protective against mental and physical disorders.   

Key Words 

Sleep, EEG, Cortisol, Daily 
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Statement of Significance 

 

This study examined the daily associations between cortisol and sleep using a powerful daily 

intensive longitudinal design with saliva sampling across 14 consecutive days and 

electroencephalographic sleep recordings across 15 consecutive nights. We found that, 

compared to one’s own average, higher pre-sleep cortisol levels predicted subsequent shorter 

and poorer quality sleep that night. Individuals with shorter or poorer sleep on average had 

significantly flatter diurnal cortisol slope, which is indicative of a dysregulated stress-

response system. These findings reinforce the importance of good sleep in regulating the 

stress-response system and maintaining good health.  
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Introduction 

The Hypothalamus-Pituitary-Adrenal (HPA) axis is the central stress-response 

system, with cortisol being its primary end product and a biomarker of stress.1 Cortisol often 

is used to assess HPA activity, given its responses to acute and chronic stressors.2 Research 

suggests a bi-directional association between cortisol and sleep, such that higher cortisol 

levels can impair sleep, and poor quality or short sleep can lead to dysregulated cortisol 

levels.3-5 The associations between day-to-day variations in cortisol and sleep under 

naturalistic conditions are not well understood because most data are from cross-sectional or 

laboratory designs. Most field studies of sleep have not used electroencephalographic (EEG) 

measures, and no studies to date have incorporated daily cortisol and EEG sleep measures 

across multiple days. Thus, this study examined whether pre-sleep cortisol levels predict 

subsequent EEG-assessed sleep, and whether EEG-assessed sleep predicts next-day diurnal 

cortisol, using a 15-day, intensive longitudinal design.  

Higher daily stress is linked with shorter sleep and poorer sleep quality.6-9 One study 

showed that self-reported pre-sleep somatic symptoms (e.g., sweating, heart racing) mediate 

this association.10 One explanation for these findings is that the experience of stressors near 

bedtime activates HPA axis activity, leading to increased cortisol levels and physiological 

arousals that disrupt sleep.11 This interpretation is supported by several cross-sectional studies 

showing that higher evening or bedtime cortisol levels are associated with shorter and poorer 

quality sleep from self-report or actigraphy measures.12,13 Individuals with insomnia have 

been found to have higher evening and nocturnal cortisol compared to healthy controls;14,15 

higher evening and nocturnal cortisol levels were associated with more awakenings at night 

in both groups.14 However, the temporal order of whether increases in cortisol levels during 

pre-sleep or bedtime can impair subsequent sleep, especially in naturalistic settings, remain 

unclear from these findings.   
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Cortisol secretion follows a diurnal rhythm; levels are high at awakening, peaking at 

about 30-40 minutes post awakening, and gradually decreasing across the day with the lowest 

levels around bedtime. Short or poor quality sleep has been associated with lower cortisol 

levels at awakening, higher evening or bedtime cortisol levels, and a flatter diurnal cortisol 

slope,5,16-20 suggesting a potential bi-directional association between sleep and cortisol. A 

flatter diurnal cortisol slope, which could be due to lower awakening cortisol levels, higher 

evening cortisol levels, or both, is indicative of dysregulated HPA activity and has been 

associated with poorer mental and physical health outcomes.2 Only a few studies to date have 

tested the associations between daily variations in sleep and cortisol in naturalistic conditions. 

A 3-day study in young adults found that shorter average sleep duration was associated with 

flatter diurnal cortisol slope, and that between- and within-person shorter sleep duration 

predicted lower next-day cortisol at awakening.19 Another 3-day study had similar findings, 

where shorter between- and within-person actigraphic sleep duration predicted flatter diurnal 

cortisol slope.18  

Although these findings show the daily associations between sleep and cortisol in 

naturalistic settings, they may not fully capture the variations in cortisol and sleep over longer 

periods. Recent evidence shows that 10 days of cortisol sampling is needed to reliably detect 

both between- and within-person differences in diurnal cortisol,21 and a minimum of one 

week is needed to capture variation in sleep.22 Furthermore, previous daily studies relied on 

self-reported or actigraphic measures of sleep, which may not be as accurate as EEG 

measures. Thus, this study examined the cortisol-sleep associations with 14-days of saliva 

sampling and 15-nights of EEG-assessed sleep. Specific hypotheses were: 1) higher pre-sleep 

cortisol levels (at the between- and within-person levels) will predict same-night shorter total 

sleep time (TST) and lower sleep efficiency (SE), and 2) shorter TST and lower SE (at the 

between and within-person levels) will predict a flatter next-day diurnal cortisol slope.  
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Methods 

Transparency and Openness  

Research materials are available [https://doi.org/10.17605/OSF.IO/TZ48Y]. Data will 

be made available on reasonable request and are planned for future public sharing in redacted 

form. The study and analysis plan were not pre-registered. Power analyses with α=0.05, 80% 

power as the target, and 10 predictors total, testing a single predictor with Cohen’s f2 effect 

sizes of 0.05 (small-to-medium, approximately equivalent to a correlation of r = .20, a 

“small” correlation) and 0.15 (the conventional cut off for a medium effect size) required 167 

and 63 independent observations, respectively. Assuming a 75% completion rate on average 

over 14 days and intraclass correlation coefficients of 0.2 or 0.4, 75 participants provide 271 

and 164 effective independent observations, respectively, achieving 80% power. Additional 

participants were recruited to account for potential attrition, missing data, and aims not 

related to this paper. 

Participants 

Ninety-eight undergraduate students participated in the Stress and Health Study, 

conducted between Feb 2019 – June 2020. This study focuses on stress, resilience, and health 

behaviours in emerging adults who recently relocated for tertiary education, and therefore the 

sample was predominantly of international descent. Ninety-five participants had usable 

cortisol samples.  Figure 1 summarizes the eligibility criteria and participant flowchart, and 

Table 1 summarizes the participant characteristics.  
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Design & Procedure 

The study procedures were approved by Monash University Human Research Ethics 

Committee, and all participants provided informed consent. This study used a daily intensive 

longitudinal design. First, participants completed a baseline survey (~45 min) consisting of 

questions related to sociodemographic details, psychosocial factors, and health status. 

Eligible participants were then invited to the daily phase commencing on a Monday and 

ending 15 days after (i.e., Tuesday). On the first day, participants attended a 1-hour 

orientation to the study, where they were shown how to provide their saliva samples and wear 

the EEG sleep monitoring device (Z-Machine Insight+). For saliva cortisol collection, 

participants were instructed to provide saliva samples two times (i.e., at awakening and at 

pre-sleep) per day for 14 consecutive days. Once collected, participants wrote the date and 

time on the Salivette tubes, took photographs of those tubes, and uploaded them onto the 

MetricWire app to allow for digital timestamp and cross-examination of the written collection 

date and time. Participants were instructed not to 1) provide the samples when waking ± 2 

hours outside of habitual wake time, or sleeping ± 4 hours outside of habitual bedtime; 2) 

brush their teeth, eat, or drink within the 30 minutes prior to sampling; and 3) have any dental 

work done within the 24 hours prior to sampling. Participants also were instructed not to 

consume any major meals, alcohol, nicotine (smoking), caffeine, and/or medication within 

the 60 minutes before saliva collection, and not to chew gum, perform vigorous physical 

activity, or drink water right before saliva collection. Participants were instructed to report 

any of these violations in the pre-sleep survey via MetricWire each day. For the EEG sleep 

monitoring device, participants were asked to wear the machine for 15 consecutive nights. 

Participants were instructed to clean their skin with the provided alcohol wipes and apply the 

sensors approximately 30 minutes before bedtime. Participants were instructed only to start 

the recording when they attempt to sleep.  
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Measures 

Salivary cortisol. Salivary samples were collected using Salivettes23 twice daily for 14 

days: 1) at awakening within ±2 hours of habitual wake time, and 2) at bedtime within ±4 

hours of habitual sleep time. The time window for saliva collection was based on a previous 

study to partially control for the influence of circadian phase on cortisol.24 The decision to 

collect two samples per day was based on a previous study demonstrating that two cortisol 

samples taken per day for 10 days can better detect between- and within-person differences in 

diurnal cortisol slope compared to taking five samples per day for four days.21 Diurnal slopes 

measured based on two cortisol samples taken at wake time and 21:00 correlated .97 and .99 

with diurnal slopes measured using four and three samples, respectively. Thus, this approach 

can maximize the power to detect both between- and within-person differences while 

minimizing the cost of the collection and assay analysis, as well as participant burden. 

Samples were removed if 1) they were collected outside of the respective habitual wake or 

sleep time, 2) > 1-hour discrepancy between the digital timestamp and written label, and 3) > 

30 min after waking. In total, 85% of the saliva samples were usable for analyses.  

Sleep. EEG-estimated TST and SE were measured using the Z-Machine Insight+. 

Raw EEG signals were automatically scored as sleep or wake through an automated sleep–

wake detection algorithm (Z-ALG).25 Previous studies showed that the Z-ALG has high 

sensitivity and specificity for determining sleep (95.5% and 92.5%, respectively). High 

agreement between Z-ALG and polysomnography technologists is observed, with r = .95 for 

TST and r =.93 for SE.25 On nights where we identified sensor errors or battery issues, TST, 

Wake After Sleep Onset (WASO), and SE for that night were set as missing. In total, 66% of 

EEG recordings for TST, WASO, and SE, and 77% of Sleep Onset Latency (SOL), were 

usable for analyses.  
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Covariates. Covariates were determined based on previous studies showing their 

associations with cortisol and sleep: age (years),26,27 sex (coded as male/female),26,27 

race/ethnicity (coded as Asian/White/Others),28,29 alcohol risk (coded as 

abstainer/moderate/at-risk),26,30 smoking (coded as never vs current/former),26,31 COVID-19 

period (coded as pre [before Victoria lockdown 2020 March 8] vs. during),32 work status 

(coded as working/not working),29 student status (coded as international/interstate),33 oral 

contraceptive use (coded as using vs not using),26 body mass index (kg/m2),31,34 daily stress,2,6 

daily negative affect,35,36 depressive symptoms,37,38 anxiety symptoms,37,38 day of week,39 and 

daily circadian misalignment.40-42 Saliva collection compliance, such as consuming any major 

meals, alcohol, nicotine (smoking), caffeine, and/or medication 60-minutes before saliva 

collection, and chewing gum, engaging in vigorous physical activity, or drinking water right 

before saliva collection, were included (coded as no violations/violations).26,35      

Analytical Approach 

All analyses were conducted in R v4.0.3, and a two-level linear mixed model (with 

observations nested within participants and using lme4 v1.1-26) was used to analyze these 

data. Degrees of freedom were tested and significance testing was performed using lmerTest 

v3.1-3. Pre-sleep cortisol and sleep variables were separated into between-person (i.e., the 

individual’s average cortisol or sleep values across the study period) and within-person levels 

(i.e., the deviation of the cortisol or sleep values from the individual’s average, also called 

person-mean centered). Given the skewness, cortisol was log transformed, and SE was 

winsorized (top and bottom 0.5%).  

For models testing sleep as the outcome, pre-sleep cortisol, the lagged sleep outcome 

(to strengthen the test of directionality), and covariates were entered as predictors of sleep 

that night (i.e., TST and SE). To test diurnal cortisol slope as the outcome, the models 

included the interaction between time (i.e., awakening and pre-sleep) and sleep (between and 
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within-person levels), and covariates as predictors. Significant interaction effects were probed 

using simple slopes tests for long TST or high SE (i.e., M+1SD) and short TST or low SE 

(i.e., M-1SD). Mean differences between long/short TST or high/low SE within timepoints 

also were conducted to determine whether slopes were due to changes in awakening or pre-

sleep cortisol levels (using emmeans v1.5.4). Follow-up analyses were planned for SOL and 

WASO if results for SE were significant. Due to skewness, SOL and WASO were square-

root transformed and winsorized (top and bottom 0.5%). Cohen’s f2 effect size was calculated 

for all predictors. All adjusted models included between- and within-person predictors and 

covariates as fixed effects, whereas intercepts and within-person predictors were included as 

random effects. Convergence issues were resolved using the Nelder-Mead algorithm and by 

tightening tolerance values. Singularity issues were resolved by dropping the random effect 

variables with the lowest variance. Unadjusted models are reported in Supplementary S1.   

Results 

 Table 1 summarizes the participant characteristics. Participants were mostly females 

(72%), international students (92.6%), and of Asian descent (85.3%). Participants were 

generally healthy with most indicating they never smoked (95.8%), were moderate drinkers 

(65.3%), and were within the healthy BMI range (67.4% within normal range, 16.8% 

underweight, and 14.7% overweight). Most participants were not using daily medications 

(94.7%), and about 5% reported using oral contraceptives. Participants’ depression and 

anxiety symptoms were within normal levels (PROMIS T-Scores with a population mean = 

50, SD = 10).43 Daily average stress levels and negative affect were similar to young adults 

and working adults reported in other daily studies.6,9,44 On average, participants’ total sleep 

time was 6.23 hours (below the recommended 7-9 hours for young adults), and sleep 

efficiency was 83.9% (slightly below the recommended ≥ 85% cut-off).45,46    
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Table 1. Sample Characteristics (N = 95) 

Variables M (SD)/N (%) n (ICC) 

Age (years) 20.48 (1.59) 95 

Female (vs Male)  75 (78.9%) 95 

International Student (vs interstate) 88 (92.6%) 95 

Race  95 

Asian 81 (85.3%) – 

White 8 (8.4%) – 

Others 6 (6.3%) – 

Not working (vs working) 75 (78.9%) 95 

Never Smoked (vs Current/Former) 91 (95.8%) 95 

Not using oral contraceptive (vs using)  90 (94.7%) 95 

Alcohol risk  95 

Abstainer 22 (23.2%) – 

Moderate 62 (65.3%) – 

At-risk 11 (11.6%) – 

Body Mass Index (kg/m2) 21.84 (3.43) 95 

Depression (possible range: T-Score 31.7–81.3)  52.75 (9.24) 95 

Anxiety (possible range: T-Score 31.7–81.3) 56.07 (9.09) 95 

Average Daily Stress (possible range: 0–10) 2.14 (1.49) 95 

Average Daily Negative Affect (possible range: 1–5) 1.48 (0.51) 95 

Total Sleep Time (h) 6.21 (0.90) 943 (.71) 

Sleep Onset Latency (min) 22.48 (11.62) 1100 (.74) 

Wake After Sleep Onset (min) 48.36 (22.32) 943 (.64) 

Sleep Efficiency (%) 83.90 (5.76) 943 (.65) 

Awakening Cortisol (nmol/L) 11.32 (14.68) 1142 (.77) 

Pre-Sleep Cortisol (nmol/L) 1.29 (1.93) 1203 (.66) 

Note. ICC = Intraclass Correlations. n = Number of observations. Values in parenthesis for 

n(ICC) indicate percent of variance within individuals. Sleep Onset Latency, Wake After 

Sleep Onset, and Sleep Efficiency, and Cortisol presented are raw values.  
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Pre-sleep Cortisol Predicting Sleep  

 Table 2 (first four rows) summarises the adjusted models of pre-sleep cortisol 

(between- and within-person levels) predicting sleep. Within-person effects showed that a 

higher pre-sleep cortisol level was significantly associated with shorter subsequent TST (p 

<.001) and lower SE (p <.001). This indicates that on days when participants had higher than 

usual pre-sleep cortisol levels, they had shorter sleep duration and poorer SE that night. 

Given the significant association with SE, follow-up analyses were conducted on SOL and 

WASO. Higher than usual pre-sleep cortisol predicted longer SOL (p = .005) but did not 

associate with WASO. No significant results emerged at the between-person level. Results 

for unadjusted models (see Supplementary Table S1) showed that higher pre-sleep cortisol 

predicted shorter TST and lower SE. However, unadjusted results for SOL were non-

significant.   

Sleep Predicting Diurnal Cortisol Slope  

Table 2 (last four rows) summarizes the adjusted models of the interaction between 

sleep (between- and within-person levels) and time (awakening and pre-sleep), predicting 

next-day diurnal cortisol slope. A significant time x TST interaction effect on next-day 

cortisol (p <.001) emerged at the between-person level (Figure 1, Panel A). Specifically, 

individuals with shorter average TST had a flatter diurnal cortisol slope (b = -2.24, p <.001) 

compared to individuals with longer average TST (b = -2.71, p <.001). A similar interaction 

emerged for SE at the between-person level (b = -0.03, p <.001; Figure 1, Panel B). 

Individuals with a lower average SE had a significantly flatter diurnal cortisol slope (b = -

2.20, p <.001) compared to individuals with higher average SE (b = -2.74, p <.001). Follow-

up analyses were conducted to clarify whether the flatter slopes were due to lower cortisol 

levels in the morning and/or higher cortisol levels during pre-sleep. Individuals with shorter 
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average TST had significantly higher pre-sleep cortisol levels compared to individuals with 

longer average TST (Mdiff = 0.38, p = .04); no significant differences emerged for awakening 

cortisol levels between long vs short TST. Individuals with lower average SE had 

significantly lower awakening cortisol levels compared to individuals with higher average SE 

(Mdiff = -0.49, p = .002); no significant differences emerged for pre-sleep cortisol levels 

between high vs low SE.   

Follow-up analyses were conducted on SOL and WASO given the significant effects 

of time x SE on diurnal cortisol. Results showed a significant time x WASO interaction at the 

between (p <.001) and within-person levels (p = .011). Specifically, longer average WASO 

(between-person effects; b = -2.36, p <.001) or longer than average WASO (within-person 

effects; b -2.39, p <.001) on the previous night predicted a flatter diurnal cortisol slope. 

Similar to SE, longer average WASO (vs shorter average WASO; Mdiff = 0.25, p = .009) or 

longer than usual WASO (vs shorter than usual WASO; Mdiff = 0.14, p = .01) the previous 

night had lower awakening cortisol. No significant differences emerged for pre-sleep cortisol 

levels. No significant findings emerged for SOL. 

Results for unadjusted models showed a significant interaction of between-person 

TST, SE, or WASO and Time on diurnal cortisol, and the directions were similar to the 

adjusted models (see Supplementary Table S1). No significant results emerged for within-

person WASO. 
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Table 2. Multilevel Model Testing Cortisol as Predictor and Outcome of Sleep (N = 95) 

 Between-Person level Within-Person level 

 Pre-Sleep Cortisol as Predictor of Sleep 

TST (h) 
-0.44 [-0.91,  0.02] 

p = .07,  f2<.01  

-0.39 [-0.55, -0.24] 

p <.001,  f2=0.04 

   

SE (%) 
-2.08 [ -5.12, 0.97] 

p = .19,  f2<.01 

-1.91 [ -2.74, -1.08] 

p <.001,  f2=0.04  

   

SOL (√min)† 
0.13 [-0.52, 0.79] 

p = .69,  f2<.01 

0.30 [0.09, 0.51] 

p = .005, f2=0.02  

   

WASO (√min)† 
0.32 [-0.49, 1.14] 

p = .44, f2<.01  

0.14 [-0.08, 0.35] 

p = .22, f2<.01  

   

 Sleep x Time as Predictor of Diurnal Cortisol Slope 

TST(h) x Time  
-0.16 [-0.25, -0.08]  

p <.001, f2=0.01 

0.03 [-0.03, 0.09] 

p = .40,  f2<.01 

   

SE (%) x Time 

 

-0.03 [-0.05, -0.02]  

p <.001, f2 =0.02 

-0.01 [-0.02, 0.00]  

p = .12,  f2<.01  

   

SOL(√min) x Time†  

 

0.01 [-0.06, 0.07] 

p = .86, f2<.01  

-0.01[-0.06, 0.04] 

p = .66, f2<.01  

   

WASO(√min) x Time† 

 

0.09 [0.04, 0.14]  

p <.001, f2=0.01  

0.05 [0.01, 0.10] 

p = .011,  f2=0.01   

Note. Results are reported as unstandardized coefficients, [95% Confidence Interval], p-

values, f2 effect size. Values in bold denote significant results. Cortisol values are log 

transformed. SOL and WASO are square-root transformed. TST = Total Sleep Time. SE = 

Sleep Efficiency. SOL = Sleep Onset Latency. WASO = Wake After Sleep Onset. † = Follow 

up analyses given significant results for Sleep Efficiency. 
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Discussion 

 This study tested the daily cortisol-sleep associations using an intensive longitudinal 

design with 14 days of cortisol sampling and 15 nights of EEG-assessed sleep. We found that 

higher pre-sleep cortisol levels predicted subsequent shorter TST and lower SE at the within-

person level. No significant results emerged for average pre-sleep cortisol levels predicting 

sleep (i.e., between-person effects). Individuals with shorter TST and lower SE on average 

had a flatter diurnal cortisol slope across the day (i.e., between-person effects). No significant 

results emerged for nightly variations in TST or SE predicting diurnal cortisol slope, although 

follow-up analyses showed that longer average WASO and longer than usual WASO 

predicted a flatter diurnal slope the next day.   

  The current findings determine the temporal relationships between cortisol and sleep 

at a daily level, extending on previous cross-sectional studies12-14. Specifically, regardless of 

individuals’ own average pre-sleep cortisol levels, on nights where individuals had higher 

than usual pre-sleep cortisol levels, they had shorter EEG-estimated sleep duration and lower 

sleep efficiency that night. The directionality of these findings was further strengthened by 

the inclusion of lagged outcomes, meaning that the effects on sleep observed that night are 

independent of the previous night’s sleep. These associations may be due to a direct effect of 

cortisol on sleep. Cortisol secretion is associated with physiological arousals (e.g., increased 

heart rate; temperature) and subsequent increase in feelings of alertness or activeness.47 These 

physiological and cognitive arousals can disrupt sleep. This interpretation is supported by our 

follow-up analyses showing that higher pre-sleep cortisol levels predicted longer time taken 

to fall asleep. Together, these findings showed that higher than usual cortisol levels around 

bedtime predicts poorer and shorter subsequent sleep.  

 Individuals with short or poor sleep on average had flatter diurnal cortisol slope 

across the day compared to individuals with average long or good sleep. These findings are in 
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line with previous studies showing shorter average sleep duration or self-reported poorer 

sleep quality associate with flatter diurnal slope.5,16-20 However, we did not find any 

significant within-person effects, which is contrary to previous findings showing shorter than 

usual sleep duration predicted flatter diurnal slope the following day.18 Inconsistencies in 

these findings could be due to the differences in cortisol saliva sampling frequency (14 days 

in this study vs three days in the previous study) and sleep measurements (EEG vs 

actigraphy). Our follow-up analyses indicated that individuals with shorter average sleep 

duration (vs longer average sleep duration) had significantly higher pre-bedtime cortisol, 

resulting in a flatter diurnal slope. Previous studies have shown that individuals with partial 

or total sleep restriction have slower decline of cortisol concentrations throughout the day, 

resulting in higher evening cortisol levels, which reflect dysregulation of the negative 

feedback regulation of the HPA axis.48,49 Furthermore, individuals with low average sleep 

efficiency (vs high average sleep efficiency) had significantly lower awakening cortisol 

levels. Previous studies show that night-time awakenings are associated with a subsequent 

increase in cortisol level, followed by a temporary inhibition of cortisol secretion.3,50 Thus, it 

is possible that lower awakening cortisol levels could be due to the temporary inhibition of 

secretion after elevation of night-time cortisol from the night-time awakenings, as 

hypothesized by Backhaus and colleagues.16 Supporting this explanation, our follow-up 

analyses indicated that individuals with high average WASO, as well as on nights with higher 

than usual WASO, had significantly lower awakening cortisol levels the following day. 

Nonetheless, this hypothesis cannot be directly tested in our study, since cortisol was not 

sampled overnight. Collectively, these findings suggest that poor and short sleep are 

associated with a dysregulated HPA axis, as indicated by a dysregulated diurnal cortisol 

slope.  
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 A key strength of our study was the collection of salivary cortisol across 14 

consecutive days and the use of EEG sleep recordings across 15 consecutive nights, 

extending previous cross-sectional and daily studies. Specifically, this study was longer than 

most previous studies examining the cortisol-sleep relationship and used more accurate sleep 

measures compared to studies using self-report or actigraphic measures.5,18,19 Together, these 

methods allowed a more reliable detection of within- and between-person differences in 

diurnal cortisol slope.21 Our focus on maximizing compliance (85% usable cortisol data) and 

minimizing participant burden in cortisol collection also strengthened results.51 Furthermore, 

our rigorous analyses examined cortisol and sleep variables at the between- and within-

person levels, adjusted for multiple covariates, and accounted for lagged outcomes for models 

examining cortisol predicting subsequent sleep to strengthen the directionality of effects. 

Nonetheless, our study only examined cortisol levels twice daily, which cannot provide 

information on cortisol awakening responses or reliable estimates of total daily cortisol 

output. Furthermore, these results cannot provide a full understanding of the HPA axis and 

other stress-response systems (e.g., autonomic nervous system), as other physiological 

indicators were not examined. Although multiple covariates related to cortisol and sleep were 

adjusted for in our analyses, these findings may still be impacted by unexplored confounds, 

such as menstrual cycle phase, and should not be interpreted as causal.26 Lastly, these 

findings cannot yet be generalized to clinical populations, individuals on medications, or to 

older populations that have different cortisol and sleep profiles.26,52     

 In summary, our findings provide a deeper understanding of the cortisol-sleep 

relationship in a naturalistic setting. Our results provide within-person evidence of higher 

cortisol levels at pre-sleep time predicting shorter sleep, poorer sleep quality, and longer time 

to fall asleep that night. These findings support cortisol levels during pre-sleep as a potential 

mechanism for the association between daily stress and sleep. Moreover, individuals with 
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shorter or poorer average sleep had a significantly flatter diurnal cortisol slope. These 

findings could inform daily interventions aiming to reduce cortisol levels to improve sleep. 

For example, meta-analyses suggest that mindfulness-based interventions can reduce cortisol 

levels 53,54 and improve sleep duration and quality.55,56 It is possible that these interventions 

may improve sleep partly through reducing cortisol levels, although future studies are needed 

to test these mediating pathways. These findings also reinforce the importance and benefits of 

good sleep (both duration and quality) on our HPA axis functioning. Flatter diurnal slope is 

associated with poorer mental and physical health outcomes.2 Improving sleep duration and 

quality may help maintain or improve the HPA regulation, thus lowering risks of developing 

mental and physical disorders.  
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Table S1. Multilevel Model Testing Cortisol as Predictor and Outcome of Sleep (N = 95) 

 Between-Person level Within-Person level 

 Pre-Sleep Cortisol as Predictor of Sleep 

TST (h) 
-0.26 [-0.63, 0.10] 

p = .16,  f2 <.01  

-0.39 [-0.53, -0.25]    

p <.001,  f2=0.03  

   

SE (%) 
-0.47 [-2.87, 1.94] 

 p = .70,  f2<.01  

-1.84 [-2.62, -1.06]  

p <.001,  f2=0.04  

   

SOL (√min)† 
-0.02 [-0.46, 0.42]  

p = .92,  f2<.01  

0.16 [-0.01, 0.33]  

p = .08,  f2=0.02  

   

WASO (√min)† 
-0.12 [-0.76, 0.52] 

p = .71,  f2 <.01  

0.13 [-0.07, 0.33]  

p = .20, f2 <.01  

   

 Sleep x Time as Predictor of Diurnal Cortisol Slope 

TST(h) x Time  
-0.15 [-0.23, -0.08] 

p <.001,  f2 =0.01  

0.02 [-0.04, 0.07] 

p = .54,  f2<.01  

   

SE (%) x Time 

 

-0.03 [-0.04, -0.02] 

p <.001,  f2=0.01  

0.004 [-0.01, 0.01] 

p = .41,  f2<.01 

   

SOL(√min) x Time†  

 

0.02 [-0.04, 0.07]  

p = .57, f2<.01  

-0.005 [-0.04, 0.03] 

p = .81,  f2<.01  

   

WASO(√min) x Time† 

 

0.07 [0.03,0.12]  

p = .001, f2=.01  

0.02 [-0.01, 0.06] 

p = .20, f2<.01  

Note. Results are from unadjusted models. Results are reported as unstandardized 

coefficients, [95% Confidence Interval], p-values, f2 effect size. Values in bold denote 

significant results. Cortisol values are log transformed. SOL and WASO are square-root 

transformed. TST = Total Sleep Time. SE = Sleep Efficiency. SOL = Sleep Onset Latency. 

WASO = Wake After Sleep Onset. † = Follow up analyses given significant results for Sleep 

Efficiency 
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Sleep Moderates the Association Between Stress and Dietary Intake: A 7-Day Intensive 

Longitudinal Design With Ecological Momentary Assessments 
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Preface to Chapter 6 

This chapter moves beyond examining stress or sleep as the outcome; instead, the 

synergistic predictions of sleep and stress on dietary intake were examined. Research shows 

that poor or short sleep and high psychological stress are associated with increased food 

intake and poor diet quality. However, the current understanding of the associations of stress 

and sleep with diet is based mainly on cross-sectional or between-person evidence, and most 

studies only examined these associations independently. Whether stress and sleep interact to 

predict dietary intake, especially in a daily, naturalistic setting, remains unclear. Given that 

Chapter 2 and 4 showed that longer and better sleep predicted lower stress, it is possible that 

sleep can mitigate the impact of stress on dietary intake. This study examined whether sleep 

would moderate the associations between daily stress and dietary intake using a 7-day 

intensive longitudinal design. Data for this paper came from the Stress and Health Study.  

 

This chapter has been submitted to SLEEP and is presented in manuscript form.   
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Abstract 

Study Objectives 

When individuals are stressed or have poor sleep, they tend to have poorer diet quality. How 

sleep, stress, and diet interact in a daily, naturalistic setting remains unclear. This study tested 

the interaction between electroencephalography (EEG) assessed sleep and daily stress on 

daily dietary intake using a 7-day intensive longitudinal design in 72 young adults. 

 

Methods 

Stress was measured four times daily (morning, afternoon, evening, and pre-bedtime). 

ZMachine Insight+ recorded EEG total sleep time (TST), sleep efficiency (SE), slow-wave 

sleep, and rapid eye movement (REM) sleep. Automated Self-Administered 24-hour food 

records measured daily energy intake and percentage of energy intake from discretionary 

food. Cross-lagged multilevel models, adjusted for covariates and lagged outcomes, were 

used to analyze the data.  

Results 

A crossover interaction emerged for within-person stress with between-person TST (p=.046) 

and REM sleep (p=.011) predicting energy intake, with higher stress predicting greater 

energy intake for short TST (p=.068) or REM sleep (p=.053), but lower energy intake for 

long TST (p =.27) or REM sleep (p =.072). Between-person SE moderated the between-

person stress effect on energy intake (p=.041), with higher stress predicting greater energy 

intake for low SE (p=.014). Main effects showed that shorter within-person TST (p =.030) or 

REM sleep (p=.008) predicted a higher percentage of energy intake from discretionary food.  

Discussion 
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These findings show that sleep is an important moderator of stress-diet associations. The 

results suggest that behavioral interventions aiming to improve diet could be enhanced by 

targeting sleep. 

Key Words 

Stress, Sleep, Diet, EMA, Daily 
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Statement of Significance  

This study tested the moderating role of sleep on the stress-diet association using a 7-

day intensive longitudinal design. Daily stress was measured using repeated ecological 

sampling, and objective nightly sleep parameters and architecture were measured using 

electroencephalography. A robust food record captured food and beverage intake, allowing 

total energy intake and energy intake from discretionary foods to be calculated at the daily 

level. Findings showed that individuals with overall short sleep duration, poor sleep quality, 

or short rapid eye movement (REM) sleep duration had significantly more total daily energy 

intake when experiencing higher daily stress. Furthermore, compared to one’s average, nights 

with shorter sleep duration or REM sleep predicted higher consumption of energy from 

discretionary foods.  
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Introduction 

Poor diet is associated with negative health outcomes, including obesity, 

hypertension, diabetes, and cardiovascular diseases.1,2 Factors that can contribute to poor diet 

include high psychological stress and poor sleep, which are associated with increased food 

intake or consuming more unhealthy foods.3-5 However, most studies have only examined the 

effects of stress or sleep on diet independently. It remains unclear whether stress and sleep 

synergistically interact to influence dietary intake, especially in naturalistic settings. Thus, we 

aimed to test whether poor sleep moderates the associations between daily stress and dietary 

intake.  

Research has linked higher perceived stress with increased food intake and increased 

intake of unhealthy foods.4 These unhealthy foods can be categorized as discretionary foods 

(e.g., ice cream; potato chips), which are not required in a healthy diet. These discretionary 

foods are usually high in energy, saturated fat, sugar, salt, and/or low fiber and essential 

nutrients.2 Stress manipulation studies show that individuals under high-stress conditions 

(e.g., unsolvable puzzle; difficult arithmetic tasks) consume more high-fat and high-sugar 

food than individuals under low-stress conditions (e.g., easy Sudoku puzzle; easy arithmetic 

tasks).6-8 In naturalistic settings, a few daily studies show that individuals who experience 

higher than usual daily hassles report greater intake of snacks high in fat and sugar, more 

unhealthy snacking, and higher perceived food intake.9-12 However, there is other evidence 

also linking higher stress with decreased food intake or null findings.4,13,14 These findings 

highlight the heterogeneity of the stress-dietary intake associations, perhaps due to individual 

differences (e.g., eating style behaviors; cortisol reactivity levels).4,10,13,15  

A recent meta-analysis recommended future studies to examine potential moderators 

of the stress-dietary intake relationship that could help to explain inconsistent findings.4 

Sleep, a modifiable factor, may be one key moderator of the stress-dietary intake relationship. 
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Sleep and stress are bi-directionally associated,16 and poor and short sleep also are linked 

with poor diet quality.3,5 Sleep manipulation studies show that individuals with restricted 

sleep opportunity (4 – 5.5 hours) eat more energy-dense snacks and have higher total energy 

intake compared to individuals with 8 – 12 hours of sleep opportunity.17-21 Cross-sectional 

findings show a similar trend, with shorter self-reported sleep duration and poorer sleep 

quality associated with higher energy intake and poorer diet quality.3,22 Only a few studies 

have examined the associations between sleep architecture and dietary intake.23,24 One 

crossover sleep restriction study found that lower slow-wave sleep (SWS) and rapid eye 

movement (REM) sleep percentages were associated with higher fat intake, and higher REM 

sleep percentage was associated with lower carbohydrate intake.24 Although there were no 

changes in overall energy intake, these findings suggest that changes in SWS and REM sleep 

are associated with one’s dietary intake. However, whether these findings translate into 

naturalistic settings remains unclear.  

To our knowledge, only one study has tested the interaction of stress and sleep on 

diet.25 A 21-day study found that higher work-related stress in the morning predicted a lower 

number of healthy food (e.g., fruits, vegetables) and a higher number of unhealthy foods 

(e.g., soda, sugary drinks) consumed in the evening. However, on days when participants 

reported better sleep quality, the relationship between stress and unhealthy food consumption 

was weaker than on days with poorer sleep quality. This suggests that good sleep quality may 

mitigate (or poor sleep can exacerbate) the impact of stress on discretionary food intake.25 

Given that studies have shown the emotional regulatory benefits of SWS and REM sleep,26-28 

it is possible that SWS and REM sleep can ameliorate the impact of stress on dietary intake.  

Because most studies have examined stress and sleep independently as predictors of 

dietary intake, the stress x sleep interaction on dietary intake, especially in a naturalistic 

setting, remains unclear. Thus, this study tested whether sleep moderates the stress-diet intake 
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association using a seven-day, intensive longitudinal design in young adults. We used 

ecological momentary assessments (EMA) to measure daily stress, electroencephalography 

(EEG) measures of sleep, and a rigorous dietary food record to measure dietary intake. We 

hypothesized that sleep would moderate the associations between daily stress and dietary 

intake (i.e., total daily energy intake and percentage of total energy intake from discretionary 

food). Specifically, the positive association between daily stress (at the between and within-

person level) and dietary intake would be stronger when individuals had poor sleep (i.e., 

between-person or within-person previous night shorter TST, lower sleep efficiency, less 

SWS, and less REM sleep) compared to individuals with good sleep.  

Methods 

Participants  

Ninety-eight participants participated in the Stress and Health Study, which aimed to 

examine the daily interactions between stress, resilience, and health behaviors in young adults 

who moved from a different state or country for their tertiary studies in Victoria, Australia. 

The dataset was restricted to 72 participants with plausible average reported energy intake 

based on the revised Goldberg cut-off method, which is commonly used to identify 

misreporting of self-reported food intake 29,30 More specifically, participants with an average 

Energy Intake

Basal Metabolic Rate
 ratio outside of the 95% confidence limits were excluded from analysis (i.e., 

values below or above the 95% confidence limits indicate under- or over-reporting, 

respectively), as this is suggestive of misreporting. A total of 26 participants (24 under-

reporters, one over-reporter, and one missing diet data) were excluded. Figure 1 illustrates the 

participant flow diagram and eligibility criteria.  
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Design & Procedure 

All procedures were approved by the Monash University Human Research Ethics 

Committee (#17281). All participants provided informed consent. The current study used a 

seven-day intensive longitudinal design with repeated EMA. This approach captures 

participants' experiences in real-time and naturalistic settings, which enhances external 

validity while reducing memory biases associated with retrospective recall methods.31,32 

Through repeated assessments, participants also served as their own control.31  

Participants first completed a baseline survey (approximately 45 minutes) assessing 

demographics and other self-reported psychological and health measures. Participants then 

attended a 1-hour, in-person orientation to the study on a Monday, where they collected the 

research devices and were shown how to apply the EEG sleep device (Z-Machine Insight+), 

complete the daily surveys via a mobile application (MetricWire), and complete their food 

record via Automated Self-Administered 24-hour (ASA-24) Dietary Assessment Tool 

(version 2016), developed by the National Cancer Institute.33 Participants were instructed to 

complete the food record immediately after consuming any meals, snacks, or drinks to 

encourage complete reporting of all foods and drinks, as well as the amounts. Participants 

also were instructed to maintain their usual dietary intake and habits throughout the study 

period, and they were provided with contact information to clarify any collection procedures 

or potential issues. Participants commenced the daily phase on a Tuesday and ended seven 

days after, providing five weekdays and two weekend days.  
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Measures 

Perceived Daily Stress. Throughout the study period, participants completed four 

stress surveys per day: morning (06:00–11:00), afternoon (12:00–15:00), evening (16:00–

19:00), and during pre-bedtime (20:30–04:30). These surveys were open only during each 

time window to ensure real-time experiences were captured. Automatic hourly push 

notifications were sent to participants if surveys were not completed. The median completion 

time for the surveys were: 19.7 min after waking for morning survey, 66.3 min after open for 

afternoon survey, 60.7 min after open for evening survey, and 51.8 min before bedtime. 

Perceived daily stress was self-reported based on an adaptation of the Daily Inventory of 

Stressful Events scale.34,35 In this study, we analyze a single item, “Since the previous survey, 

how stressful has your day been?” ranging from 0 (Not at all stressful) to 10 (Very stressful). 

The four surveys were averaged each day to create a composite measure of daily stress.  

Sleep. Z-Machine Insight+, a single-channel EEG sleep monitoring device 

manufactured by General Sleep, Inc. Cleveland, OH, recorded daily TST, sleep efficiency, 

SWS, and REM sleep at 30-seconds epoch. The Z-ALG13 automatically scored EEG signals 

as sleep or wake, with high sensitivity (95.5%) and specificity (92.5%) for determining 

sleep.36 The Z-PLUS algorithm determined sleep stages as light, SWS, or REM sleep, with 

predictive positive values of 0.85, 0.83, and 0.76, respectively.37 Overall kappa agreement is 

0.85 and 0.72 for Z-ALG13 and Z-PLUS, respectively.37 Self-reported bed and rise time, 

adapted from the Consensus Sleep Diary38, were collected during the wake survey to cross-

validate the sleep period. For nights with EEG sensor errors or battery issues TST, sleep 

efficiency, SWS and REM were set as missing. In total, 81% of the sleep data were usable for 

analyses. 

Dietary Food Record. Dietary records were collected for seven consecutive days 

using the Australian version of the ASA-24 dietary assessment tool.33 In its original 24-hour 
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recall form, this tool has been validated against interviewer-administered 24-hour recall39 and 

biomarkers.40 Participants can select the type of food item eaten from a list, or enter a new 

food, and pictures of different sized portions are shown to assist with reporting of the amount 

consumed. The ASA-24 provides estimates for total energy intake (kJ) at the daily level as 

well as a food code for each item based on the Australian Food, Supplement, and Nutrient 

(AUSNUT) 2011-2013 database.41 Discretionary items were determined by matching the 

food codes from participants’ reported intake with the discretionary food items provided by 

the Australian Bureau of Statistics.42 Percentage of daily energy intake from discretionary 

food was determined by dividing daily energy intake (kJ) from discretionary food by total 

daily energy intake (kJ). Text messages were sent to remind participants to complete their 

food records, and follow-up phone calls were made on Thursdays to clarify any issues related 

to the food record. On days where participants’ food record was indicative of underreporting 

(i.e., flagged based on Goldberg’s original underreporting cut-off value 
Energy Intake

Basal Metabolic Rate
  ratio 

< 0.90),30,43 participants were followed up via phone call to clarify their food intake. 

Covariates. Baseline sociodemographic and daily covariates were selected based on 

previous studies showing their associations with diet. These included: Age (years),44 sex 

(male/female),45 Body Mass Index (BMI; kg/m2),46 race/ethnicity (White/Asian/Other),47 

student status (international/interstate),48 employment status (working/not working),49 time 

spent in Melbourne (years),47 smoking status (Never/Current/Former),50 alcohol intake 

(Abstainer/Moderate/At-Risk),51-53 COVID-19 period (pre [before the start of Victoria 

lockdown on 08/03/2020] vs. during lockdown),54 subjective social status,55,56 adequacy of 

factors influencing diet (e.g., cooking skills; appliances for food preparation),57 day of the 

week,58 and daily physical activity (average Metabolic Equivalents during wake hours)59 

using an accelerometer (ActiGraph wGT3X-BT) worn continuously throughout the study.  

Analytical Approach 
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All analyses were run in R (v.4.0.3).60 Linear mixed models (lme4 v1.1-26), with 

degrees of freedom and significance testing using lmerTest v3.1-3, tested the cross-level 

interactions between stress and sleep on dietary intake (i.e., total daily energy intake and 

percentage of daily energy intake from discretionary food). SE and total daily energy intake 

were winsorized at the top and bottom 0.5% and 1%, respectively, and percentage of total 

energy intake from discretionary food was square-root transformed to address skewness. 

Repeatedly measured predictors were decomposed into between-person (i.e., participants’ 

own average) and within-person (i.e., deviations from the individual’s own mean) levels.  

In all adjusted models, cross-level interactions between stress and sleep (i.e., between-

person daily average stress, between-person average sleep, within-person daily average 

stress, and within-person previous night sleep), lagged outcome (i.e., within-person diet [Day 

i-1]), and covariates were included as fixed effects. Lagged outcome and covariates were 

included to strengthen the test of directionality and precision of estimates. Random effects 

included random intercept by ID. Given the singularity issues, within-person predictors were 

removed from the random effects in all models. Model diagnostics were conducted. Residuals 

distributions improved after removing extreme values (at 0.5% with 4-17 observations and/or 

1-2 IDs removed across all models) for models with total daily energy intake as the outcome. 

Non-significant interactions were dropped from the model, and significant interactions were 

followed up using simple slopes tests (using emmeans v1.5.4) for longer/better (+1 SD from 

the mean) and shorter/poorer (-1 SD from the mean) sleep.61 Models were separated by each 

sleep variable. Main effects of daily average stress and sleep on the dietary intake outcomes 

were tested. Sensitivity analyses are in the supplement, including unadjusted models (Table 

S1) and results with under- and over-reporters of diet included (Table S2). 
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Results 

Descriptive 

Table 1 summarizes participant characteristics and descriptive statistics for study 

variables. Participants were mostly young adults (Mage = 20.66, SD = 1.60 years), female 

(80%), international students (90.3%), of Asian descent (81.9%), and had spent less than a 

year in Melbourne on average. Most participants had never smoked (97.2%) and were 

moderate drinkers (69.4%). On average, participants’ BMI was within the healthy range.  

On average, participants’ daily energy intake was 7454 kJ, and 31% of this intake was 

discretionary food. Participants’ average daily stress level was 2.20±1.52 (M±SD, possible 

range 0 – 10), which is typical for daily stress levels in international students, young adults, 

and adults reported in other daily studies.10,16,62 On average, participants slept 6.26 hours, 

which is below the recommended sleep duration for optimal health in this population (7 – 9 

hours). Participants’ average sleep efficiency was 84.4%, which is slightly below the ≥85% 

threshold for good quality sleep.63,64 The intraclass correlation coefficients for daily study 

variables showed that 48 – 84% of the variances were attributed to fluctuations within people. 
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Table 1. Descriptive Results for Demographic and Daily Study Variables (N=72) 

 M (SD)/ N (%) ICC No. of Days 

Baseline Participant Characteristics    

Age (years), M (SD) 20.66 (1.60) — — 

Time Spent in Melbourne (years), M (SD) 0.75 (1.00) — — 

Body Mass Index (kg/m2), M (SD) 21.55 (3.11) — — 

Female (vs. Male), N (%) 58 (80.06) — — 

Race/Ethnicity, N (%)  — — 

Asian 59 (81.90)   

White/European 8 (11.10)   

Others 5 (6.90)   

Before COVID-19 period (vs. during), N (%) 55 (76.40) — — 

International Student (vs. Interstate), N (%) 65 (90.30) — — 

Working (vs. not working), N (%) 16 (22.20) — — 

Never smoked (vs. Former), N (%) 70 (97.20) — — 

Alcohol risk, N (%)  — — 

Abstainer 14 (19.40)   

Moderate 50 (69.40)   

At risk 8 (11.10)   

Daily Study Variables    

Total daily EI (kJ), M (SD) 7454 (1645) 0.20 (80%) 583 

Total daily discretionary food EI (%), M (SD) 31 (12) 0.17 (83%) 523 

Daily Stress level, M (SD) 2.20 (1.52) 0.52 (48%) 578 

EEG-Estimated Sleep, M (SD)    

TST (h) 6.26 (0.95) 0.27 (73%) 475 

Sleep efficiency (%) 84.43 (5.64) 0.36 (64%) 475 

Deep sleep (h) 1.46 (0.32) 0.31 (69%) 475 

REM sleep (h) 1.68 (0.49) 0.46 (54%) 475 

Physical Activity (METs), M (SD) 1.73 (0.37) 0.43 (57%) 558 

Note. EI = Energy Intake. EEG = Electroencephalography. REM = Rapid Eye Movement. 

MET = Metabolic Equivalents. ICC = Intraclass Correlation Coefficient, the proportion of 

total variance explained by between-person differences (% variance within person). No. of 

Days = Number of days of unique data. Raw values were presented for total daily energy 

intake, percentage of total daily energy intake from discretionary food, and sleep efficiency.   
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Primary Results 

No significant interactions emerged for percentage of total energy intake from 

discretionary food. There was a significant cross-level interaction of between-person TST and 

within-person daily stress on total daily energy intake (b = -229 [-453, -5.00], p = .046, f2 

=0.02). Simple slopes analyses (Figure 2, panel A) showed that higher daily stress predicted 

higher total daily energy intake for individuals with shorter average TST (M–1SD; b = 265 [-

19, 550],  p = .068), whereas higher stress predicted lower total daily energy intake for those 

with longer average TST (M+1SD; b = -133 [-371, 105]  p = .27). Although neither of the 

slopes were significantly different from zero, they were significantly different from each 

other.   

A significant interaction of between-person sleep efficiency and between-person daily 

stress on total daily energy intake emerged (b = -40 [-8.00, -2.80], p = .041, f2 =0.02). Simple 

slopes analyses (Figure 2, panel B) showed that higher average daily stress was associated 

with higher total daily energy intake for individuals with lower average sleep efficiency (M-

1SD; b = 340 [73, 608], p = .014), whereas higher average daily stress was associated with 

lower total daily energy intake for those with higher average sleep efficiency (M+1SD; b = -

74 [-410, 262], p = .660).  

Additionally, there was a significant interaction of between-person REM sleep and 

within-person stress on total daily energy intake (b = -499 [-883, -115], p = .011,  f2 =0.02). 

Simple slopes analyses (Figure 2, panel C) indicated higher daily stress predicted higher total 

daily energy intake for individuals with shorter average REM sleep (M–1SD; b = 234 [-3.00, 

471],  p = .053), whereas higher stress predicted lower total daily energy intake for those with 

longer average REM sleep (M+1SD; b = -255 [-535, 23],  p = .072). Although neither of the 

slopes were significantly different from zero, they were significantly different from each 

other.   
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There were no significant main effects of daily stress levels or sleep variables 

predicting total daily energy intake. For discretionary food intake, shorter within-person TST 

(p = .030) and shorter within-person REM sleep duration (p = .008) the previous night 

predicted higher percentage of total daily energy intake from discretionary foods. Table 2 

summarizes the main effects of stress and sleep on total daily energy intake and percentage of 

total daily energy intake from discretionary food.   

Sensitivity and Exploratory Analyses 

Results from unadjusted models (see Supplementary S1) and with all participants 

included (adjusted and unadjusted models; see Supplementary S2) showed a significant 

interaction of between-person REM sleep and within-person daily stress on total daily energy 

intake (similar directions), as well as the main effects of shorter within-person REM sleep or 

within-person TST predicting higher percentage of total daily energy intake from discretionary 

food.  

  

 



Page | 182  

 



Page | 183  

 

 

Table 2. Main Effects of Previous-Night Sleep and Stress on Total Energy Intake and 

Percentage of Total Daily Energy Intake from Discretionary Food (N = 72) 

 Between-Person Level Within-Person Level 

 Total Daily Energy Intake (kJ) 

Daily Stress main effect not shown due to 

interaction (Figure 2B) 

main effect not shown due to 

interaction (Figure 2A & 2C) 

   

TST (h) main effect not shown due to 

interaction (Figure 2A) 

-95.30 [ -288.49, 97.88] 

f2 <0.01 

   

SE (%) main effect not shown due to 

interaction (Figure 2B) 

6.10 [-31.96, 44.16] 

f2 <0.01 

   

SWS (h) 793.35 [-338.76, 1925.46] 

f2 <0.01 

-155.39 [-818.16, 507.39] 

f2 <0.01 

   

REM (h) main effect not shown due to 

interaction (Figure 2C) 

-249.92 [-755.97, 256.14] 

f2 <0.01 

   

 Percentage of Daily Energy Intake from Discretionary Food (√%) 

Daily Stress  -0.06 [-0.24, 0.12] 

f2 <0.01 

-0.04 [-0.18, 0.09] 

f2 <0.01 

   

TST (h) -0.11 [-0.43, 0.21] 

f2 <0.01 

-0.18 [-0.35, -0.02]* 

f2 =0.02 

   

SE (%) -0.02 [-0.07, 0.03] 

f2 <0.01 

-0.01 [-0.04, 0.02] 

f2 <0.01 

   

SWS (h) 0.38 [-0.57, 1.33] 

f2 <0.01 

-0.25 [-0.83, 0.32] 

f2 <0.01 

   

REM (h) 0.07 [-0.54,  0.69] 

f2 <0.01 

-0.59 [-1.02, -0.15]** 

f2 =0.02 

Note. ** = p <.01. * = p <.05. TST = Total Sleep Time. SE = Sleep Efficiency. SWS = 

Slow Wave Sleep. REM = Rapid Eye Movement. Results presented are from adjusted 

models. Results are unstandardized regression coefficient, 95% confidence interval, and 

Cohen’s f2 type effect size. Extreme values (4-17 observations and 1-2 IDs) were removed 

for models testing daily energy intake as the outcome. Results for Between-Person TST, 

SE, and REM, and Between- and Within-Person Stress for Total Daily Energy Intake are 

not presented given the significant interaction, instead the simple slopes are graphed and 

simple slope coefficients reported in Figure 2. Percentage of Total Daily Energy Intake 

from Discretionary Food was square-root transformed. Covariates include age, sex, body 

mass index, race/ethnicity, student status, employment status, time spent in Melbourne, 

smoking status, alcohol intake, COVID-19 period, adequacy of factors influencing diet, 

day of week, and daily physical activity.  
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Discussion 

This study extends current knowledge of the stress-diet relationship by showing that 

sleep is a potential moderator in a daily, naturalistic setting. Specifically, cross-level 

interactions emerged, such that individuals with shorter average TST or REM sleep were 

more likely to have higher total energy intake on days when they experienced higher than 

usual stress. Conversely, individuals with longer average TST or REM sleep had lower total 

energy intake on days with higher than usual stress levels. Furthermore, individuals with 

lower average sleep efficiency and higher average stress levels had higher total energy intake. 

These findings are in line with previous work showing the moderating role of self-reported 

sleep quality on the associations between stress and number of self-reported unhealthy foods 

consumed.25 Additionally, within-person, shorter TST or REM sleep also predicted higher 

next-day discretionary food intake. This indicates that after nights with shorter than usual 

TST or REM sleep, these individuals consumed a higher percentage of their energy intake 

from discretionary food.   

Interaction Effects of Sleep and Stress on Dietary Intake 

Theoretical models and research show that in the face of stressful situations, 

especially when cognitive or self-regulatory resources are overloaded, individuals may avoid 

the stressor by eating to temporarily alleviate or regulate the negative emotional 

consequences.4,25,65 The overloaded capacity for self-regulation also can increase one’s 

impulsivity, which could shift one’s priorities towards immediate, temporary reliefs over 

other long-term goals.65 The non-significant main effects of daily stress in our findings 

suggest that the stress levels reported in this sample may not be severe enough, or have 

enough days with high stress, to overload one’s cognitive or self-regulatory capacity. 

However, when paired with short sleep duration, the positive stress-diet association emerged.  
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There are several potential mechanisms for the sleep-diet association (discussed 

below). One possibility is that individuals with generally short sleep or poor sleep quality 

may lack sufficient replenishment or resources from sleep to regulate emotions 

effectively.3,5,66,67 The significant interaction effect of REM sleep duration supports this 

explanation, as previous studies show that REM sleep plays a role in emotional regulation.28 

Thus, individuals with short sleep, poor sleep, or short REM sleep duration may be more 

vulnerable to the effects of high stress (e.g., react more strongly to stressors or perceive 

stressors as more severe) and turn to eating for relief. Conversely, our simple slopes analysis 

also showed daily higher daily stress and lower total energy intake for individuals with 

generally long sleep duration, high sleep efficiency, or short REM sleep. These individuals 

may have better emotional regulatory functioning or sufficient replenishment from sleep, or 

are less sensitive towards food cues. As such, these individuals may actively engage with the 

stressor (e.g., active coping strategies), which displaces time spent eating. Another possibility 

is that other factors may contribute to both average sleep duration and adaptive dietary 

response to stress. For example, compared to individuals with short average sleep duration, 

those who typically obtain longer sleep duration may have overall better lifestyle habits, such 

that they are both more likely to ensure sufficient sleep, and to use other non-dietary related 

coping in face of stress. Nonetheless, these explanations remain speculative, and future 

studies are needed to replicate and confirm these findings, especially for the moderating role 

of sleep architecture.   

Main Effects of Sleep on Discretionary Food Intake 

There were no significant interaction effects of stress and sleep on discretionary food 

intake. Findings from main effects show that individuals had a higher percentage of energy 

intake from discretionary food after nights with shorter than usual TST or REM sleep. These 

findings extend previous studies linking shorter sleep with poorer diet quality3,17,22,23 and 
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shorter REM sleep associated with higher fat and carbohydrate intake.24 Although there were 

no total daily energy intake changes, replacing healthy, nutritious foods with discretionary 

foods can lead to poorer health outcomes.1,2 

Short sleep can affect reward saliency, inhibitory control, and emotional regulation, 

which can potentiate the sensitivity and preference for palatable, discretionary foods.3,5,66,67 

For example, individuals who were sleep-deprived showed decreased activity in the frontal 

and insula cortex (regions associated with cognitive control) and increased amygdala activity 

during food desirability choice task. Furthermore, individuals who were sleep-deprived also 

preferred energy-dense foods compared to well-rested individuals.66 Although the role of 

REM sleep on dietary intake remains underexamined, previous neuroimaging studies have 

linked shorter REM sleep with heightened amygdala reactivity towards negative stimuli.26 

Thus, it may be that nights with shorter total or REM sleep potentiate reward sensitivity and 

impair cognitive control, thus leading to higher consumption of palatable, discretionary 

foods. From a behavioral perspective, it is possible that nights with shorter sleep duration 

provide additional opportunity for eating (given the longer hours of wakefulness), particularly 

during late nights where consumption of convenient, energy-dense foods are likely.3 

Alternatively, young adults may be tired after nights with shorter sleep and opt for more 

readily accessible foods (which tend to be discretionary) that require minimal or no 

preparation.  

Changes in appetite-related hormones also may explain these results. Higher ghrelin 

(i.e., appetite-stimulating hormones) and lower leptin (i.e., appetite-suppressing hormones) 

are linked with disrupted sleep.3,5 Although there were no significant changes in total energy 

intake in our findings, elevated levels of ghrelin from short sleep could be associated with the 

consumption of discretionary foods. For example, Broussard et al.17 found that individuals 

restricted to 4.5 hours of sleep had increased levels of ghrelin compared to normal sleepers, 
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and that higher ghrelin levels were associated with higher consumption of discretionary food. 

However, it is worthwhile to note that the homeostatic explanations are not well-supported by 

recent evidence.5 Taken together, the mechanism for these findings could be a combination of 

the cognitive, behavioral, and homeostatic perspectives. These explanations could not be 

directly tested in our study. Future research should examine the interaction of these factors 

and replicate results, particularly for sleep architecture. 

Strengths and limitations 

To our knowledge, this study is one of the first to test the interaction of daily stress 

and EEG-assessed sleep on dietary intake in a naturalistic setting, extending previous studies 

that relied on between-person or cross-sectional evidence, as well as sleep or stress 

manipulations and self-reported sleep. The use of detailed dietary food records for seven 

days, repeated EMA for daily stress levels, and EEG-sleep measures also were the strengths 

of the study. Specifically, the detailed food record captures a variety of food and drinks, 

which are connected to the AUSNUT database,41 consumed in naturalistic settings and 

provides total energy intake at the daily level. The use of food codes also allowed for 

classifying discretionary foods more rigorously than previous studies (e.g., studies that relied 

on pre-specified, limited checklists of unhealthy foods or snacks consumed). As participants 

were instructed to report their intake immediately after consuming any meals, snacks, or 

drinks, memory biases are reduced. The follow-up procedures (e.g., text messages and phone 

calls) also minimized reporting errors and underreporting. Furthermore, the use of daily EEG-

sleep measures allowed for exploring the role of nightly variations in sleep architecture on 

dietary intake. In addition to the use of intensive design and measures, our rigorous analyses 

also allowed for more precise estimates and testing of temporal directionality by 

decomposing daily predictors into within- and between-person levels, and including lagged 

outcomes and important covariates. 
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Limitations should be acknowledged. Although every effort was made to ensure 

participants completed their food record accurately, it is possible that participants still did not 

report all foods consumed (e.g., foods or drinks not available on ASA-24; consciously 

deciding not to report) or did not report the correct amount consumed, which are inherent 

issues in dietary intake assessment. Although the ASA-24 food recall has been validated 

against interviewer-administered 24-hour recall,39 the food record format has not been 

validated. Additionally, dietary intake in this study was examined at the nutrient level (i.e., 

energy intake), and the findings could not be generalized to one’s dietary pattern (e.g., eating 

behaviors; food groups). Future studies are needed to examine how daily stress and sleep can 

predict both dietary intake and patterns. Given the daily design with repeated EMA, reactivity 

could have occurred due to the intensity of completing the food record (e.g., participants may 

change their intake due to the need to report or decided not to report because of the intensity). 

Furthermore, the temporal associations between daily stress and dietary intake in this study 

could not be established, given that the values were averaged across the day. Future studies 

could specifically examine whether variations in stress levels could affect subsequent dietary 

intake within the day. Types of stressors were not examined in this study. Research has 

shown that emotional and work-related stressors are associated with increased snacking of 

high fat/sugar food, whereas physical stressors (e.g., feeling anxious/frightened; feeling ill; 

feeling threatened) are associated with decreased snacking.10 Future studies can extend these 

results by examining the severity of different types of stressors as well as the moderating role 

of sleep on dietary intake. Lastly, given that our participants are generally healthy young 

people, these findings cannot be generalized to other clinical populations (e.g., individuals 

with obesity or chronic diseases) or age groups. 
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Conclusion 

Our findings show that shorter sleep duration, poorer sleep quality, and shorter REM 

sleep duration moderated the associations between daily stress and total daily energy intake. 

Furthermore, shorter than usual sleep duration or REM sleep duration the previous night 

predicted higher percentage of total daily energy intake from discretionary food.  

Among adults, emerging adults are known to have poor health behaviors including 

poor sleep68 and the highest percentage with poor diet.69,70 Our findings could help improve 

the delivery of health education by helping emerging adults to understand the connections 

and importance of both sleep and diet and the role of stress in their health behaviors. 

Current behavioral interventions aiming to address diet-related issues in young adults (e.g., 

changing diet or dietary behaviors; treating or preventing the development of obesity) 

typically do not include sleep as part of the component.71,72 Considering our findings, 

addressing nightly fluctuations in sleep to address poor dietary habits in existing behavioral 

diet interventions may help bolster their efficacy and warrants further investigation. 

Additionally, our results suggest that individuals with typically short sleep may be more 

vulnerable to the effects of stress on their dietary intake. Interventions that only aimed to 

reduce negative emotions or stress levels to address poor dietary habits are sub-optimal,71 and 

these interventions may be more effective if they also address sleep duration. Finally, with 

the proliferation of consumer-grade sleep tracking wearables, sleep duration is a potential 

marker for vulnerability that is increasingly accessible to consumers and healthcare providers. 

More research is needed to explore its roles in domains beyond sleep, such as stress, diet, and 

other lifestyle factors  
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Supplementary S1 – Unadjusted Models 

 

Results presented are unadjusted models. The interaction of between-person TST and 

within-person stress on total daily energy intake was not significant (b = -209.93 [-427.66, 

7.80],  p = .059,  f2 =0.02). The interaction of between-person sleep efficiency and between-

person stress on total daily energy intake was not significant (b = -4.88 [-44.87, 3.50], p 

= .812, f2 <0.01). There was a significant interaction of between-person REM sleep and 

within-person stress on total daily energy intake (b = -512.58 [-887.37, -137.78], p = .007, f2 

=0.02). Simple slopes analyses indicated higher daily stress was associated with higher total 

daily energy intake for individuals with shorter average REM sleep (M–1SD; b = 177 [-48, 

4.4],  p = .12), whereas higher stress was associated with lower total daily energy intake for 

those with longer average REM sleep (M+1SD; b = -325 [-530, -57.5],  p = .017). No 

significant interactions emerged for percentage of total energy intake from discretionary food. 

Unadjusted main effects are presented in Table S1.  
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Table S1. Main Effects of Previous-Night Sleep and Stress on Total Energy Intake and Percentage of Total 

Daily Energy Intake from Discretionary Food (N = 72) 

 Between-Person Level Within-Person Level 

 Total Daily Energy Intake (kJ) 

Daily Stress -88.27 [-302.99, 126.46] 

f2 <0.01 

Not presented due to significant 

interaction 

   

TST (h) 162.28 [-260.44, 584.99] 

f2 <0.01 

-103.57 [-289.35, 82.20] 

f2 <0.01 

   

SE (%) 49.02 [-12.70, 110.74] 

f2 = 0.01  

15.64 [-20.38, 51.66]  

f2 <0.01 

SWS (h) -183.55 [-1368.06, 1000.97] 

f2 <0.01 

72.59 [-556.74, 701.93] 

f2 <0.01     

   

REM (h) Not presented due to significant 

interaction 

-236.96 [-722.35, 248.43]  

f2 <0.01     

   

 Percentage of Daily Energy Intake from Discretionary Food (√%) 

Daily Stress  0.02 [-0.15, 0.18]  

f2 <0.01 

-0.08 [-0.21, 0.05] 

f2 =0.01 

   

TST (h) -0.20 [-0.47,  0.07] 

f2 =0.01 

-0.20 [-0.36, -0.04]* 

f2 =0.02 

   

SE (%) -0.03 [-0.08,  0.01] 

f2 =0.01 

0.004 [-0.03,  0.04] 

f2 <0.01 

   

SWS (h) 0.14 [-0.68, 0.96] 

f2 <0.01 

-0.18 [-0.74, 0.38] 

f2 <0.01 

   

REM (h) -0.12 [-0.60,  0.36] 

 f2 <0.01 

-0.57 [-1.00, -0.14]** 

f2 =0.01 

Note. ** = p <.01. * = p <.05. TST = Total Sleep Time. SE = Sleep Efficiency. SWS = Slow Wave Sleep. 

REM = Rapid Eye Movement. Results presented are from unadjusted models. Results are unstandardized 

regression coefficient, 95% confidence interval, and Cohen’s f2 type effect size. Results for Between-Person 

REM and Within-Person Stress for Total Daily Energy Intake are not presented given the significant 

interaction. Percentage of Total Daily Energy Intake from Discretionary Food was square-root transformed. 

Covariates include age, sex, body mass index, race/ethnicity, student status, employment status, time spent 

in Melbourne, smoking status, alcohol intake, COVID-19 period, adequacy of factors influencing diet, day 

of week, and daily physical activity.  
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Supplementary S2 – Full Dataset 

No significant interactions emerged for percentage of total energy intake from 

discretionary food. The interaction of between-person TST and within-person stress on total 

daily energy intake (adjusted: b = -183.00 [ -378.25, 12.25],  p = .067,  f2 =0.01; unadjusted: -

174.71 [-370.67, 21.25],  p = .081,  f2 =0.02).  The interaction of between-person sleep 

efficiency and between-person stress on total daily energy intake was not significant (b 

adjusted: b= -37.73 [-76.18, 0.72], p = .059, f2 =0.02; unadjusted: -15.48 [-57.40, 26.44], p 

= .047,  f2 <0.01). There was a significant interaction of between-person REM sleep and 

within-person stress on total daily energy intake (adjusted: b = -411.59[-752.12, -71.05], p 

= .018,  f2 =0.01; unadjusted: b = -426.10 [-760.21,  -92.00], p = .013, f2 =0.02). Simple slopes 

analyses indicated higher daily stress was associated with higher total daily energy intake for 

individuals with shorter average REM sleep (adjusted: M–1SD; b = 235 [-35.3, 484.8],  p 

= .02; unadjusted: b = 189 [-6.5, 385.18],  p = .058) whereas higher stress was associated 

with lower total daily energy intake for those with longer average REM sleep (adjusted: 

M+1SD; b = -160 [-82.5, -1.30],  p = .19; unadjusted: -228 [-8.37, -1.896],  p = .0586). Table 

S2 summarizes the main effects of stress and sleep on total daily energy intake and 

percentage of total daily energy intake from discretionary food.   
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Table S2. Main Effects of Previous-Night Sleep and Stress on Total Energy Intake and Percentage of Total 

Daily Energy Intake from Discretionary Food (N = 98) 

     

 Between-Person  

(Unadjusted) 

Within-Person  

(Unadjusted) 

Between-Person 

(Adjusted) 

Within-Person 

(Adjusted) 

 Total Daily Energy Intake (kJ) 

Daily Stress 69.00  

[-162.27, 300.27] 

f2 <0.01 

– 103.15  

[-101.25, 307.55] 

f2 <0.01 

– 

     

TST (h) 107.96  

[-325.69,  541.62] 

f2 <0.01 

-70.92  

[-232.39, 90.55] 

f2 <0.01 

-21.69  

[-431.67, 388.30] 

f2 <0.01 

-82.47  

[-245.09, 80.15] 

f2 <0.01 

     

SE (%) 25.38  

[-41.04, 91.81] 

f2 <0.01 

22.65  

[-8.28, 53.57] 

f2 <0.01 

-25.86  

[-91.78, 40.06] 

f2 <0.01  

15.95  

[-15.85, 47.75] 

f2 <0.01 

     

SWS (h) 142.33  

[-974.29, 1258.95] 

]f2 <0.01 

164.95  

[-363.14, 693.05] 

f2 <0.01     

564.17  

[-614.57, 1742.91] 

f2 =0.01 

11.46  

[-533.83, 556.74] 

f2 <0.01     

     

REM (h) – -140.09  

[-543.41, 263.23] 

f2 <0.01     

– -109.88  

[-522.46, 302.71] 

f2 <0.01     

     

 Percentage of Daily Energy Intake from Discretionary Food (√%) 

Daily Stress  0.02  

[-0.14, 0.17] 

f2 <0.01 

-0.08  

[-0.20, 0.05] 

f2 <0.01 

-0.05  

[-0.22, 0.13] 

 f2 <0.01 

-0.03  

[-0.16, 0.10] 

f2 <0.01 

     

TST (h) -0.14  

[-0.42,  0.13] 

f2 <0.01 

-0.20 

[-0.35, -0.04]* 

f2 =0.01 

-0.05  

[-0.36,  0.25] 

f2 <0.01 

-0.17  

[-0.33, -0.02]* 

f2 =0.01 

     

SE (%) -0.02  

[-0.07,  0.02] 

f2 <0.01 

0.003 

[-0.03,  0.03] 

f2 <0.01 

-0.01 

[-0.06,  0.04] 

f2 <0.01 

-0.01 

[-0.04,  0.02] 

f2 <0.01 

     

SWS (h) 0.12 

[-0.67, 0.92] 

f2 <0.01 

-0.04 

[-0.55, 0.46] 

f2 <0.01 

|0.44  

[-0.48, 1.36] 

f2 <0.01 

-0.07  

[-0.59, 0.45] 

f2 <0.01 

     

REM (h) -0.07  

[-0.56,  0.41] 

f2 <0.01 

-0.44 

[-0.83, -0.06]* 

f2 =0.01 

-0.03  

[-0.58,  0.53] 

 f2 <0.01 

-0.42 

[-0.81, -0.03]* 

f2 =0.01 

Note. * = p <.05. TST = Total Sleep Time. SE = Sleep Efficiency. SWS = Slow Wave Sleep. REM = Rapid 

Eye Movement. Results are unstandardized regression coefficient, 95% confidence interval, and Cohen’s f2 

type effect size. Results for Between-Person REM and Within-Person Stress for Total Daily Energy Intake 

are not presented given the significant interaction. Percentage of Total Daily Energy Intake from 

Discretionary Food was square-root transformed. Covariates include age, body mass index, race/ethnicity, 

student status, employment status, time spent in Melbourne, smoking status, alcohol intake, COVID-19 

period, adequacy of factors influencing diet, day of week, and daily physical activity.  
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CHAPTER 7:  

GENERAL DISCUSSION  
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Summary and Synthesis of findings 

This thesis examined how stress interacts with health behaviours in everyday life. 

Sleep and diet are two key pillars of health. Understanding the factors associated with these 

health pillars, and how changes in these health pillars are associated with daily psychological 

well-being, is important for maintaining and maximizing both mental and physical health. 

Our understanding of these associations is primarily based on evidence from a snapshot of a 

group of individuals’ experiences in a single moment in time (i.e., cross-sectional studies) or 

from highly controlled laboratory settings (e.g., lab-based sleep manipulation studies). 

Humans are complex, and no two days are the same; therefore, it is important to understand 

how these daily factors interact in the context of everyday life and how they unfold over time. 

 Findings from Paper 1 (Chapter 2) and Paper 3 (Chapter 4) demonstrate a more 

consistent direction of sleep duration and quality predicting next-day psychological stress 

compared to psychological stress levels predicting subsequent sleep. These directions are 

similar to existing daily studies showing more support of sleep as a predictor of next-day 

psychological stress (Lee, Crain, McHale, Almeida, & Buxton, 2017; Philbrook & 

Macdonald-Gagnon, 2021; Sin et al., 2017), which is consistent with the notion of good sleep 

as a source of resilience and replenishment of energy and emotional regulation (Goldstein & 

Walker, 2014). This notion is further supported by the significant results of longer SWS and 

REM sleep, which were proposed to have roles in emotional regulation (Ben Simon et al., 

2020; van der Helm et al., 2011), predicting next-day psychological stress reported in Paper 

3 (Chapter 4). Most of these findings were significant at the within-person level, whereas 

most between-person effects were non-significant. However, when examining cortisol, a 

marker of physiological stress, a more consistent pattern of between-person level associations 

between sleep and diurnal cortisol slope emerged, as shown in Paper 4 (Chapter 5). These 

findings suggest that nightly changes in sleep may have an immediate impact on our next-day 
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perception of stress but not the regulation of the HPA axis. However, dysregulation of the 

HPA axis (i.e., a flatter diurnal cortisol slope), rather than psychological stress, can be 

observed in individuals with generally short or poor sleep.  

The lack of consistent findings for daily psychological stress predicting subsequent 

sleep could be due to various factors, as discussed in Papers 1 and 3 (Chapters 2 and 4). 

One notable aspect could be that the low psychological stress levels reported may not be 

severe enough to impact sleep (and dietary intake, as shown in Paper 5 [Chapter 6]). There 

also may be differential effects of psychological and physiological stress markers on sleep, as 

previous studies showed that individuals had increased cortisol responses towards the 

occurrence of stressful events even without perceiving them as stressful (Fischer, Calame, 

Dettling, Zeier, & Fanconi, 2000). Paper 4 (Chapter 5) also showed that higher within-

person cortisol levels during pre-sleep predicted subsequent shorter and poorer sleep. 

Collectively, these findings show the complex associations between stress and sleep, which 

differed across sleep parameters and measures used. 

Findings from Paper 2 (Chapter 3) also may shed light on the inconsistent results of 

psychological stress predicting sleep. Findings showed that engaging in either problem-

focused coping, emotional-approach coping, or avoidance-approach coping in the presence of 

high daily psychological stress levels was associated with shorter sleep duration. However, 

direct attempts to manage the emotional consequences of psychological stress were 

associated with better sleep quality. These findings highlight the differential moderating role 

of coping in response to daily psychological stress on different sleep parameters. 

Beyond examining stress or sleep as the outcome, Paper 5 (Chapter 6) explored the 

synergistic effects of psychological stress and sleep on dietary intake. Findings showed that 

poorer and shorter sleep exacerbated the effects of daily psychological stress on dietary 

intake. There is also within-person evidence showing that shorter sleep and REM sleep 
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duration the previous night predicted higher percentage of energy intake from discretionary 

food. Similar to sleep, there were no main effects of daily psychological stress on dietary 

intake. 

Contribution of Current Thesis: Significance and Implications 

Together, this thesis advanced the current understanding of the stress-sleep 

associations in naturalistic settings using rigorous designs and measures. These findings also 

provide valuable evidence to advance the field of health psychology, as well as evidence for 

interventions incorporating daily strategies into everyday life. The overall significance and 

implications of this thesis are discussed below.  

Firstly, the significance of this thesis is the use of an intensive daily longitudinal 

design. It moved beyond just examining the average, between-person, or inter-individual 

differences and examined the within-person or intra-individual differences. Findings from 

this thesis did not provide strong evidence to support between-person effects of sleep 

predicting stress and vice versa, suggesting that individuals with generally poor or short sleep 

do not necessarily experience higher stress levels (and vice versa). These findings differed 

from previous cross-sectional studies, which could be due to how psychological stress and 

sleep were measured. The existing cross-sectional evidence is largely based on single time-

point measures, which could not determine the directionality of these findings. It is possible 

that the previous significant findings observed were due to sleep predicting psychological 

stress, rather than psychological stress predicting sleep. Furthermore, most of the previous 

cross-sectional studies relied on individuals recalling their average psychological stress or 

sleep in the past week or month. As highlighted in Introduction (Chapter 1), these 

measurements are prone to systematic recall biases. This thesis addressed this issue by 

incorporating repeated EMAs in measuring daily stress and real-time, objective measures of 

sleep using actigraphy and EEG. Based on these designs and measures, the results showed 
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stronger support for within-person effects of sleep predicting next-day psychological stress. 

These findings support the notion that no two days are the same, wherein psychological stress 

and sleep are not ergodic processes and can fluctuate across and within days. These findings 

also highlight the importance of considering the daily, ecological variations in psychological 

stress and sleep in each individual, and that generalizing the between-person evidence to 

factors with non-ergodic processes may not be appropriate.  

Another significant component of this thesis is the use of objective sleep measures, a 

biomarker of stress (i.e., cortisol), and a rigorous food record. Most daily field studies on 

sleep use sleep diary or actigraphy or both, which limits our understanding of how sleep 

architecture may be related to our daily experiences in naturalistic settings. The use of a 

portable, single-channel EEG sleep device advanced the current sleep measurement in field 

studies, which provided a higher accuracy in estimating the multi-faceted sleep parameters 

(e.g., TST, SOL, WASO, SE) and allowed the examination of the nightly variations in sleep 

architecture in naturalistic settings. Furthermore, the incorporation of daily cortisol saliva 

sampling also furthered the understanding of how a biomarker of stress, in addition to 

psychological stress, is associated with sleep. The repeated saliva sampling over 14 

consecutive days provided reliable between- and within-person estimates of the diurnal 

cortisol slope. With the focus of reducing participant burden and strengthening valid saliva 

samples, 85% of the samples collected were valid for analyses. The use of a rigorous food 

record is also a notable strength, as it captured various foods and drinks consumed and 

provided daily total energy intake and energy intake from discretionary food at the daily 

level. 

 In addition to using rigorous designs and incorporating objective measures, this thesis 

strengthened the confidence of results by including apriori covariates based on the literature, 

between- and within-person levels of the predictor in the same model, and lagged outcomes 
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to strengthen the directionality and temporal order of these associations. Collectively, this 

thesis advanced the current understanding of stress-sleep associations in daily, naturalistic 

settings by using one of the most robust tests of directionality possible in observational 

designs and incorporating repeated experience sampling and rigorous, objective measures.    

Findings from this study may benefit public health and the general community, 

especially young adults, in understanding health behaviours and improving health behaviour 

change. Young adults are known to have high stress levels and poor health behaviours, 

including poor sleep and poor diet (Australian Institute of Health and Welfare, 2021; Fayet-

Moore et al., 2019; Lund et al., 2010; Rehm, Peñalvo, Afshin, & Mozaffarian, 2016). This 

may be in part due to young and emerging adults having high perceived invulnerability and 

downplaying the risks of stress and poor health behaviours (Lao, Tao, & Wu, 2016; Millstein 

& Halpern-Felsher, 2002). Our findings can benefit public health by helping the delivery of 

health education for young adults, which may help support their health and well-being. For 

example, the delivery could emphasise how daily psychological processes and health 

behaviours are intricately linked, and that they do not only occur in discrete events (e.g., 

experiencing a major stressful life event) or individuals with high stress or poor sleep; 

instead, they occur every day and even in relatively healthy individuals. Young adults also 

may benefit from understanding the vicious daily cycle between stress (physiologically and 

psychologically) and sleep and what factors can help manage or break this cycle. 

Furthermore, young adults also can benefit from understanding how their dietary behaviours 

and intake may be impacted by sleep and stress levels. Our findings also may help health 

delivery programs to tackle young adults’ perceived invulnerability. As suggested by 

Wickman, Anderson, and Smith Greenberg (2008), the programs could focus on current 

experiences (e.g., poor sleep tonight affects stress the following day) rather than future risks 

(e.g., poor sleep can increase the risk of developing chronic diseases in the future). 
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Additionally, the programs also could shift young adults’ perception from “I am young and 

healthy, so it will not happen to me” to “Even though I am young and healthy, it could still 

happen to me”. Together, these findings may benefit health education delivery programs for 

young adults to improve health literacy and promote health behaviour change.  

Additionally, this thesis had many participants who are international university 

students. These findings may benefit the educational sector and tertiary educational 

institutions to implement or deliver tailored health programs for this population to help 

improve their well-being. This is important, especially given that there is comparatively little 

research in and less support for international students (Forbes-Mewett, 2019), yet the number 

of international university students in Australia and other developed countries is growing 

(Organisation for Economic Co-operation and Development, 2021) and make important 

contributions to the economy (e.g., 40 billion AUD to the Australian economy annually prior 

to COVID-19 pandemic; Australian Bureau of Statistics, 2021). Thus, improving the 

knowledge and understanding of the connection of these factors may improve young adults’ 

health behaviours to help prevent or reduce the burden of many preventable, chronic diseases 

and may reduce the health disparities that exist in international students. 

 Findings also may benefit clinicians and current interventions aiming to improve 

health behaviour change to maximize health. Although the current sample is comprised of 

relatively healthy young adults, these findings may still provide evidence for developing 

effective strategies for healthcare consumers and non-clinical populations to develop, 

manage, or maintain healthy behaviours that can prevent the risk of developing or 

acceleration of chronic diseases. Given the success of using daily diary with EMA and real-

time health behaviour tracking devices (with relatively low missing data as demonstrated in 

the experimental chapters), these findings further support using these strategies for clinicians, 

as well as the individuals themselves, to better understand their daily psychological well-
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being and health behaviours, and in turn provide guidance to adopt timely countermeasures. 

Additionally, these findings may provide evidence and inform the emerging field of Just-In-

Time Adaptive Interventions ([JITAI]; Nahum-Shani et al., 2018). JITAI leverages on the 

current advancement in technology (e.g., smartphones; wearable health trackers) to deliver 

personalised support at the right time and context (e.g., the moment and context where the 

individual would benefit most from the intervention) to improve and promote health 

behaviour change (Nahum-Shani et al., 2018). The focus on the day-to-day, immediate 

effects of psychological processes on health behaviours (and vice versa) in this thesis may 

provide beneficial evidence for JITAIs to target which proximal outcome (i.e., short-term 

goals of the intervention used for decision-making, such as adapting or optimizing variables)  

to achieve distal outcomes. Together, these findings provide beneficial evidence for both 

clinicians and emerging digital health interventions.  

Our findings suggest that enhancing emotional-approach coping while reducing 

emotional-avoidance coping is a potential strategy worth further investigation to improve 

sleep quality and continuity in face of stress. This would be possible as research has 

demonstrated the success of reducing one’s emotional-avoidance coping while enhancing 

emotional-approach (e.g., regulation; expression; processing), which led to improvements in 

depressive and anxiety symptoms (e.g., Unified Protocol for the Transdiagnostic Treatment 

of Emotional Disorders; Ehrenreich, Goldstein, Wright, & Barlow, 2009). However, it is 

important to note that engaging in any coping strategies, even the coping strategies that are 

considered as generally “helpful” and associated with better health outcomes, may have a 

short-term cost on sleep duration. This highlights that stress management strategies could 

consider ways to offset the reduced sleep duration associated with coping (e.g., encourage 

problem-solving during the day, wind down before bedtime). Additionally, behavioural sleep 

strategies that are appliable in everyday settings for managing the fluctuating nature of 
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nightly, especially on nights of particularly short or poor sleep, are needed. Our findings also 

suggest that improving REM and SWS may be a targetable area to improve daytime 

experiences. Young adults may benefit from adopting good sleep hygiene into their daily and 

nightly routines; for example, having a consistent sleep/wake schedule and avoiding alcoholic 

beverages before sleep can help maintain the normal cycle of sleep architecture (Ebrahim, 

Shapiro, Williams, & Fenwick, 2013). Nevertheless, more research is needed to understand 

what daily modifiable strategies can improve or maintain sleep architecture, and whether 

current behavioural sleep interventions can benefit sleep architecture in addition to sleep 

duration, quality, and insomnia symptoms (Friedrich & Schlarb, 2018; Kodsi, Bullock, 

Kennedy, & Tirlea, 2021).  

In addition to interventions at the individual level, tertiary education institutions also 

may consider investing in a university-wide program to promote healthy sleep, which may 

include the delivery of sleep education (e.g., online or workshops) and funded (partially or 

fully) screening and treatment plans (Hartmann & Prichard, 2018; McCabe, Troy, Patel, 

Halstead, & Arana, 2018; Prichard & Hartmann, 2019). Investing and funding a healthy sleep 

program can not only benefit students at the individual level (e.g., better health and academic 

performance), but also support the university’s educational mission, such as improved 

academic performances, reduced drop-out rates, and increased retention and graduation rate 

(Hartmann & Prichard, 2018; Prichard & Hartmann, 2019). 

 Furthermore, findings from this thesis also suggest there may be value in building and 

optimizing personalised, holistic interventions, as demonstrated by the synergistic effects of 

stress and sleep on dietary intake. Current interventions aiming to change diet or dietary 

behaviours in young adults tend to focus on one component at a time (e.g., aiming to reduce 

negative emotions to improve diet) and do not include sleep as part of the component (Ashton 

et al., 2019; Kankanhalli, Shin, & Oh, 2019). However, individuals are complex, and 
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interventions that overlook other factors that influence their feelings or other health 

behaviours may be less effective. For example, interventions that only aimed to reduce 

negative emotions to address poor dietary habits are sub-optimal (50% effective; Ashton et 

al., 2019). Considering our findings that individuals with typically short sleep may be more 

vulnerable to the effects of stress on their dietary intake, these interventions may be more 

effective if they also address sleep. These findings suggest that addressing sleep and 

psychological well-being (e.g., mood, stress, and/or emotions) could be part of a personalized 

and holistic intervention to target dietary intake or behaviours, and that an individual’s poor 

diet is unlikely to be driven by a single source. Nonetheless, more research and trials are 

needed to target these components to maximize improvements in dietary intake and 

behaviours as well as health outcomes.   

Limitations and Future Directions  

Specific limitations pertaining to each study are discussed in their respective chapters. 

One common limitation for the overall thesis is the measure of daily stress. Although EMA 

was used, only perceived overall stress was examined in these studies, providing limited 

contextual information. Future studies could extend these findings by examining which 

stressor (e.g., interpersonal; work-related; financial-related) has the strongest (or weakest) 

impact on sleep or diet. In addition to the types, future research also can delve into the 

context of the stressor, such as the perceived controllability and whether the stressor 

experienced has been resolved. Given the advancement in smartphones, future studies also 

can include the location in which the individual reported their perceived stress levels, food 

consumed, or where they had sleep (e.g., at home vs at work or anywhere else), which may 

provide additional situational and contextual information of where these psychological 

processes and health behaviours occur. Understanding the multi-facets and context of these 

factors can further the understanding the pathways of how daily stress impact sleep, and how 
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sleep affects the appraisals of the stressors, as well as providing contextual evidence of these 

associations that can inform the emerging field JITAIs and digital health interventions. 

Furthermore, our samples were relatively healthy young adults, which could partially 

explain the low stress levels reported. Thus, these findings cannot be generalised to 

individuals with known mental or physical health conditions or other age groups. For 

example, individuals with depression and older adults have different sleep profiles, such as 

reduced REM sleep latency and increased REM sleep density in individuals with depression 

and reduced SWS in older populations (Goldstein & Walker, 2014; Ohayon, Carskadon, 

Guilleminault, & Vitiello, 2004). Thus, future studies are needed to replicate these studies in 

these populations to not only confirm these findings but also offer interventions critical 

insights as to how these factors may perpetuate one another and form chronic conditions. 

Nonetheless, these findings are the first few steps into understanding these daily interactions 

between psychological processes and health behaviours in everyday life. These findings may 

still benefit non-clinical populations or healthcare consumers to improve health 

consciousness and literacy, as well as to develop and maintain healthy lifestyle choices to 

reduce risks of developing chronic diseases.  

Although the number of days and observations sampled in the current studies were 

longer than many previous daily studies and accounted for weekend and weekday 

differences, they are still a comparatively short period in an individual’s life. The day-to-day 

experiences and health behaviours during young adulthood are likely to be different when 

they enter adulthood, and whether they develop diseases in the future is also unknown. 

Furthermore, the days and observations also were predominantly sampled during semester, 

which could not offer insights into participants’ experiences and health behaviours during 

holidays. Future studies could consider implementing measurement burst designs, i.e., bursts 

of daily intensive longitudinal studies over longer intervals (e.g., two daily studies [during 
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semester and holidays] during adolescence, and repeated daily studies during young 

adulthood), which may not only provide information about the day-to-day experiences and 

health behaviours across- and within-days, but also across- and within developmental periods 

of each individual.  

Conclusion 

 How we feel can affect our health behaviours, and changes in our health behaviours 

also affect how we feel. This cyclical process occurs every day and plays a role in 

maintaining a healthy lifestyle and maximizing mental and physical health. Although this 

process occurs daily, it is different each day and for each individual. This thesis targeted a 

part of this psychological process and health behaviours relations by examining and 

advancing the understanding of daily stress-sleep associations in naturalistic settings.  

This thesis rigorously tested the temporal, bi-directional associations, examined both 

the inter- and intraindividual differences, and used both subjective and objective stress and 

sleep measures. This thesis furthered the understanding of the stress-sleep associations by 

exploring coping strategies as potential moderators. Beyond outcomes, this study explored 

whether stress and sleep synergistically predict dietary intake, one of the key pillars of health. 

This thesis provided within-person evidence of these daily processes and offered strong 

methodological, theoretical, and practical implications for future research, the educational 

sector, clinicians, and interventions.  
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