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Abstract

Recent advances in neural models have significantly improved the performance of the Neural

Text Generation (NTG) systems such as Machine Translation (MT) and Natural Language

Generation (NLG). A typical Neural Machine Translation (NMT) task is the process of

building and training a large neural network that takes a sentence in one language and gen-

erates a corresponding translation in another language. The classic neural NLG task aims to

generates coherent, informative documents from limited structured metadata to fulfil a com-

municative goal. Despite their improvements, the constraint on resources is still an open

problem in training accurate NTG models. Most of the existing NTG models are limited by

i) their inability to fully exploit the training resources, e.g., sentence-level text generation

approaches that can not go beyond the sentence-level context; and ii) their incapacity to deal

with the data scarcity issue, an example of which is bilingually low-resource scenarios for

training high-quality NMT/NLG models.

This research addresses those two limitations due to the resource constraints and in-

troduces novel approaches that transit knowledge from high-resource NTG models to low-

resource ones utilizing either transfer learning or knowledge distillation. In both transfer

learning and knowledge distillation approaches, we aim to transit knowledge from an ex-

pert model with higher knowledge capacity usually trained in a high-resource setting to

another model that needs to be trained in a low-resource scenario. In transfer learning, the

parameters of the expert model are used to initialize the new model from the same or re-

vii



lated task. This approach is practical when the source and target tasks have similar model

components in the knowledge transition scheme. In knowledge distillation, however, the

predictions of the expert model are used to train the new model where the source and target

tasks are the same for both models, but no sharing of model components is required. In this

thesis, we focus on three knowledge transition schemes in different low-resource scenarios:

i) Knowledge transition from a high-resource task (NMT) to a different low-resource task

(NLG): In this approach, we introduce a compact way of encoding the metadata available

in the original NLG database at the document-level and enrich the data with extra facts that

can be inferred with minimal knowledge of the task. We then initialize the NLG model

from a pretrained document-level NMT model while feeding it with document-level struc-

tured metadata from the NLG task. We show that our end-to-end NLG model trained with

document-level metadata is not only able to capture document-level structure coherently,

but also select and order metadata information in the generated story adequately. ii) Knowl-

edge transition from an ensemble of high-resource models to a low-resource model from the

same task (MT) in a bilingual setting, regardless of the relatedness/similarity of contributing

languages: In this approach, we first propose a many-to-one transfer learning method that

effectively transfers knowledge from multiple high-resource language pairs to a target low-

resource language-pair of interest in a bilingual setting. Since the fine-tuned models from

different high-resource language pairs may offer complementary syntactic and/or semantic

knowledge in the target language pair, we dynamically adjust the contribution of teachers

during the distillation process via our Adaptive Knowledge Distillation (AKD) approach,

aiming to utilize the best of all teachers in the ensemble. iii) Knowledge transition from the

groups of NMT models to a single multilingual NMT model given the language similarity

in a hierarchy structure: In this approach, we cluster languages based on their typological

similarities and then distill their related NMT models’ knowledge to group-specific teacher

assistant models. This process is repeated while different clusters are merged down to a

single super-cluster. Our Hierarchical Knowledge Distillation (HKD) approach yields a

multilingual NMT model that not only achieves high quality translations for low-resource

language pairs, but also mitigates negative transfer by leveraging common characteristics of
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languages belonging to the same language group.

In summary, contributions to this research improve the resource-constrained NMT and

NLG utilizing knowledge transition. In this thesis, we use different knowledge transition

methods, i.e., transfer learning and knowledge distillation, to address the research gaps in

low-resource text generation scenarios. Furthermore, we highlight the deficiency of conven-

tional transfer learning and knowledge distillation approaches and address it by introducing

the novel proposed techniques. All the methods introduced in this research are evaluated

on standard benchmark datasets, and the experiments provide compelling evidence that our

approaches are more efficient than the contemporary baselines.
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1 | Introduction

Neural Text Generation (NTG) systems have recently been introduced as a promising ap-

proach and achieved high-level performance on Natural Language Processing (NLP) tasks

such as Machine Translation (MT) and data-to-text generation (Stahlberg, 2019; Maruf,

Saleh, & Haffari, 2021; Gatt & Krahmer, 2018).

Specifically, Machine Translation is the process of building and training a system that

reads a sentence in source language and generates a corresponding translation in the target

language. Until a few years ago, MT was mainly formalized through statistical techniques,

known as statistical machine translation (SMT), in which translations are generated by ap-

plying statistical models based on the analysis of features extracted from the bilingual cor-

pus. With the insurgence of neural networks, however, the most advanced Neural Machine

Translation (NMT) systems emerged which require little to no feature engineering (Maruf

et al., 2021).

Data-to-text generation is a classic problem in Natural Language Generation (NLG)

which involves taking structured meta-data (e.g., a table) as input, and generating a fluent

descriptive document as an output (Kukich, 1983; Holmes-Higgin, 1994; Dale & Reiter,

1997). An example of which is “Automated journalism” or “Robot journalism” (Montal

& Reich, 2017) that have had a remarkable effect on the field of journalism in terms of

efficiency and cost-cutting (Van Dalen, 2012; Clerwall, 2014; Young & Hermida, 2015).
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Chapter 1. Introduction

Unlike the machine translation objective which is full transduction from a sentence in the

source language to the translation in the target language, data-to-text generation, typically

aims to transduce from the abstract structured meta-data to a full coherent document. This

objective requires addressing two separate challenges: (a) identifying the most important

information from input data, and (b) verbalizing data as a coherent document (Dale & Re-

iter, 1997; Jurafsky & Martin, 2009; Mei, Bansal, & Walter, 2016). These two challenges

have traditionally been addressed separately as different modules in pipeline SMT-like sys-

tems (McKeown, 1985; Reiter & Dale, 2000a). However, neural generation systems, which

are typically trained end-to-end as conditional language models (Mikolov, Karafiát, Bur-

get, Černockỳ, & Khudanpur, 2010) make an integration in this pipeline and remove the

distinction in these two challenges (Sutskever, Martens, & Hinton, 2011).

Basically, the most important advantage of neural models in both NMT and NLG is

their flexibility (no need to feature engineering) and their ability to learn in an end-to-end

manner. These advantages make the text generation tasks more effective and straightforward

than the pipeline statistical approaches which have strong assumptions of locality and need

feature engineering (Koehn, Och, & Marcu, 2003). Despite their advantages, neural models

are notoriously data-hungry. Therefore, they require a significant amount of labelled data

and have a steep learning curve according to the amount of training data, resulting in poorer

quality in low-resource settings, but better performance in high-resource ones (Koehn &

Knowles, 2017). Thus, when the training data is limited, neural models are prone to over-

fitting, resulting in inferior performance. Subsequently, for domains that suffer from a short-

age of annotated data like machine translation and data-to-text generation, the applicability

of deep learning methods becomes restricted to the small subset of world languages which

have a sizeable available volume of translation or text generation training resources. The

goal of this thesis is to develop effective methods for learning resource-constrained NTG

tasks. In this chapter, we first provide the motivation behind this research, followed by our

objectives. Then, we summarize our contributions and the thesis outline.
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Chapter 1. Introduction

1.1 Motivation

Despite the significant improvements of NTG systems such as NMT and NLG, there are

still some open challenges in this domain due to constraints on resources. The resource

limitation is sometimes rooted in the model’s incapability to use maximum resources (e.g.,

processing full document instead of processing sentences independently), or more typically

because of the lack of annotated training data.

Most of the recent NMT systems process sentences in isolation and tend to ignore extra-

sentential information from the context, even though an extended context help the system

to prevent mistakes in vague cases and thus improve translation coherency. This simplify-

ing independence assumption commonly made because of technical challenges raised by

representing text as documents rather than sentences. This is due to the enormity of the

search space over a large number of translation variables (i.e., the number of sentences in

the document) as well as their unbounded domain (i.e., all sentences in the target language).

However, the need for the wider context and discourse has been long identified by early

works on MT in 60’s (Bar-Hillel, 1964). However, this long-standing and challenging prob-

lem has not been given proper justice thus far. Bar Hillel’s famous example concerned the

following sentence:

The box was in the pen.

in the following paragraph:

Little John was looking for his toy box. Finally, he found it. The box was in the pen. John

was very happy.

Assume “pen” in English has the following two meanings: (1) a certain writing utensil,

(2) an enclosure where small children can play. No existing method will enable a machine

to determine that the word “pen” in the given sentence has the second of the above mean-

ings, whereas, every reader with sufficient knowledge of English will do this automatically.

Therefore, the issue is not the transition from one language to another, but rather a prelim-

inary stage of this process; the determination of the specific meaning in context of a word

3



Chapter 1. Introduction

which, in isolation, is semantically ambiguous (Bar-Hillel, 1964).

Moreover, neural systems begin to move toward generating longer outputs or full docu-

ments in response to longer and more complicated inputs (structured meta-data) (Puduppully,

Dong, & Lapata, 2019a; Lebret, Grangier, & Auli, 2016). However, there are still some open

challenges for generating descriptive document-level summaries conditioned on the struc-

tured meta-data (e.g., table records) in terms of adequacy1, coherency2, and fidelity to the

source material (Wiseman, Shieber, & Rush, 2017). The two main challenges which are

mostly addressed in data-to-text generation techniques are: “What to say?”, identifying the

most important information from input data, and “How to say?”, verbalizing data as a co-

herent document (Mei et al., 2016). These two challenges have been addressed separately

as different modules in pipeline systems (McKeown, 1985; Reiter & Dale, 2000a) or in an

end-to-end manner with SMT-like approaches (Mooney & Wong, 2007; Angeli, Liang, &

Klein, 2010; Konstas & Lapata, 2013), or more recently, with Neural Language Generation

models (Wiseman et al., 2017; Lebret et al., 2016; Mei et al., 2016). In spite of generating

fluent text, end-to-end neural generation models perform weakly in terms of best content

selection (Wiseman et al., 2017). Recently, (Puduppully, Dong, & Lapata, 2019a) trained

an end-to-end data-to-document generation model on the Rotowire dataset (English sum-

maries of basketball games with structured data)3. Although they aimed to overcome the

shortcomings of end-to-end NLG models, they still need explicitly modelling for content

selection and planning in their architecture.

The scarcity of parallel corpora is another major challenge for training high-quality

NMT and NLG models (Koehn & Knowles, 2017). Transfer learning by fine-tuning from

a model trained with a high-resource language-pair is a standard approach to tackle the

scarcity of the data in the target low-resource language-pair (Dabre, Nakagawa, & Kazawa,

2017; Kocmi & Bojar, 2018; Saleh, Bérard, Calapodescu, & Besacier, 2019; Y. Kim, Gao,

& Ney, 2019). However, this one-to-one approach is not able to exploit models trained for

1state of being sufficient for the purpose concerned
2having logical connection or consistency
3https://github.com/harvardnlp/boxscore-data
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multiple high-resource language-pairs for the target language-pair of interest. Furthermore,

models transferred from different high-resource language-pairs may have complementary

syntactic and/or semantic knowledge, hence using a single model may be sub-optimal. An-

other appealing approach is multilingual NMT, whereby a single NMT model is trained by

combining data from multiple high-resource and low-resource language-pairs (Johnson et

al., 2017; Ha, Niehues, & Waibel, 2016; Neubig & Hu, 2018). However, the performance of

a multilingual NMT model is highly dependent on the types of languages used to train the

model. Indeed, if languages4 are from very distant language families, they lead to negative

transfer, causing low translation quality in the multilingual system compared to the coun-

terparts trained on the individual language-pairs (Tan, Chen, et al., 2019; Oncevay et al.,

2020).

1.1.1 Problems

In summary, we can name three inherent weaknesses of current NTG systems (NMT and

LNG) by focusing the constraints on resources, when constraints come from either the in-

ability of the model to exploit the full resources or general data scarcity in low-resource

scenarios. These problems are listed as follows:

• Problem 1: Sentence-based text generation models suffer from a deficiency in co-

herency, adequacy, and fidelity to the source data.

• Problem 2: The scarcity of parallel corpora is a major challenge for training high-

quality NMT/NLG models.

• Problem 3: The conventional transfer learning and multilingual learning are sub-

optimal when a diverse set of languages are of interest.

4The languages studied in this thesis are: English, Kazakh, Belarusian, Bengali, Basque, Malay, Bosnian, Azerbaijani,
Urdu, Tamli, Mongolian, Marathi, Galician, Kurdish, Estonian, Georgian, Bokmal, Hindi, Slovenian, Armenian, Burmese, Finnish,
Macedonian, Lithuanian, Albanian, Danish, Swedish, Slovak, Indonesian, Thai, Czech, Ukrainian, Croatian, Greek, Serbian, Hungar-
ian, Persian, German, Japanese, Vietnamese, Bulgarian, Polish, Romanian, Turkish, Dutch, Chinese, Spanish, Italian, Korean, Russian,
Hebrew, French, Arabic, Portuguese.
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1.2 Aims and Objectives

The main goal of this research is to improve the performance of resource-constrained NMT/NLG

models using Knowledge Transition (KT) from high-resource NMT models to low-resource

NMT/NLG models. Note that “Knowledge Transition” is an overarching term defined for

the purpose of analysing “Transfer Learning” and “Knowledge Distillation” jointly. In both

transfer learning and knowledge distillation approaches, we aim to transit knowledge from

an expert model with higher knowledge capacity, usually trained in a high-resource setting,

to another model that needs to be trained in a low-resource scenario. In transfer learning,

the expert model’s parameters are often used to initialize the new model from the same or

related task. This approach is practical when the source and target tasks have similar model

components in the knowledge transition scheme. In knowledge distillation, however, the

predictions of the expert model are used in training the new model where the source and

target tasks are the same for both models, but no sharing of model components is required.

Motivated by the gaps in the literature mentioned in the previous section, this thesis aim at

the following objectives:

(i) Capturing document-wide interdependencies and generating faithful and fluent doc-

uments from limited structured meta-data using Transfer Learning from document-

level NMT to data-to-document generation task.

(ii) Improving NMT in bilingually low-resource scenarios by incorporating knowledge

from high-resource pretrained NMT models in the low-resource ones using Adaptive

Knowledge Distillation.

(iii) Improving low-resource NMT performance in a multilingual setting while avoiding

negative transfer using Hierarchical Knowledge Distillation.

To achieve the above objectives of this research, we present the following three knowledge

transition schemes in low-resource scenarios:

(i) Knowledge transition from a high-resource task (NMT) to a different low-resource
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task (NLG).

(ii) Knowledge transition from an ensemble of high-resource models to a low-resource

model from the same task (MT) in a bilingual setting regardless of the relatedness/similarity

of contributed languages.

(iii) Knowledge transition from the groups of bilingual NMT models to a single multilin-

gual model, considering the language similarity in a hierarchy structure.

1.3 Contributions

The major contribution of this thesis is three-fold, each of which achieves one of the three

objectives through one of the knowledge transition schemes mentioned above. The follow-

ing paragraphs move on to describe the contributions in detail.

1.3.1 Knowledge transition from NMT to NLG

We propose a novel approach to tackle the data scarcity problem in NLG by transitioning

knowledge from the NMT to the NLG task. This approach relies on the following intu-

ition: Machine translation and natural language generation are inherently the two sides of

one problem. One can define the data-to-text generation task as a type of translation task

which has abstract meta-data in the source side rather than a complete document. Consid-

ering this fact, we suggest leveraging the data from both NMT and NLG tasks with transfer

learning. As both tasks have the same target (e.g., English-language stories), they can share

the same decoder. The same encoder can also be used for NLG and MT if the NLG metadata

is encoded as a text sequence. In this contribution, we first train domain-adapted document-

level NMT models on large amounts of parallel data. Then, we fine-tune these models on

small amounts of NLG data, transitioning from NMT to NLG. To the best of our knowl-

edge, this is the first work which suggests separate data selection and data ordering steps are

not necessary in data-to-text generation if NLG model is transferred from a document-level

translation model and is given all meta-data as a document sequence. We propose a com-
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pact way to encode the data available in the original dataset and enrich it with some extra

facts that can be inferred with minimal knowledge of the task. We also show that an NLG

model trained with this data is able to capture document-level structure and select and order

information automatically. This is in contrast to existing methods that typically do explicit

modelling for content selection and planning in their architectures, thus perform weakly in

terms of best content selection, specially for the facts which are not explicitly present in

the meta-data but can be inferred with a good language model learned from the machine

translation task. Finally, our NLG models, bootstrapped from the NMT models, do fluent

and coherent text generation and are even able to infer some facts that are not explicitly

encoded in the structured data and outperform the previous state of the art on the Rotowire

NLG dataset 5. Meanwhile, our systems submitted to WNGT 2019 obtained the best results

on each of the 6 tasks (Hayashi et al., 2019).

This work has been published and orally presented in Proceedings of the 3rd Workshop

on Neural Generation and Translation (Saleh et al., 2019) and submitted as an industrial

patent. This work is done during the 6-month internship program in NAVER LABS Europe6,

France. The detail of this approach is presented in Chapter 3.

1.3.2 Adaptive Knowledge Distillation

We propose a novel approach to tackle the data scarcity problem in NMT using adaptive

knowledge distillation, in which we suggest distilling the knowledge of an ensemble of

high-resource teacher models to a single student model. What distinguishes our approach

from the previous distillation-based methods is the way we choose the best teachers statis-

tically based on the data and knowledge gap of the student model, rather than deterministi-

cally (Tan, Ren, et al., 2019). To the best of our knowledge, this is the first approach that

addresses the inefficiency of the original transfer learning by making a wiser use of high-

resource languages and pre-trained models in an effective collaborative learning manner.

We firstly propose a many-to-one transfer learning approach which can effectively transfer

5https://github.com/harvardnlp/boxscore-data
6https://europe.naverlabs.com/
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knowledge from multiple high-resource language pairs to a target low-resource language-

pair of interest. As the quality of these teacher models varies, we then propose an effective

Adaptive Knowledge Distillation (AKD) approach to dynamically adjust the contribution of

the teacher models during the distillation process. This idea is derived from the intuition

that models transferred from different high-resource language pairs may have complemen-

tary syntactic and/or semantic strengths on the target low-resource language. Furthermore,

it is not generally clear which high-resource language-pair offers the best transfer learning

for the target NMT setting in every mini-batch of data. In our AKD approach, the label

smoothing coming from different teachers is combined and regulated based on the loss in-

curred by the teacher models during the distillation process, and thus the contribution of

each teacher is changed based on its effectiveness of improving the student. Experiments

on transitioning knowledge from a collection of six language pairs from IWSLT (Cettolo,

Niehues, Stüker, Bentivogli, & Federico, 2014) to five low-resource language pairs from

TED dataset (Qi, Sachan, Felix, Padmanabhan, & Neubig, 2018) demonstrate the effective-

ness of our approach, achieving up to +0.9 BLEU score improvement compared to solid

baselines.

This work has been published and orally presented in the Proceeding of The 28th Inter-

national Conference of Computational Linguistics (COLING2020) (Saleh et al., 2020). The

detail of this approach is presented in Chapter 4.

1.3.3 Hierarchical Knowledge Distillation

We improve and extend our previous contribution by focusing on optimized language trans-

fer when transferring knowledge from multiple languages to a single multilingual student.

We propose hierarchical knowledge distillation (HKD), where the hierarchy represents the

similarity structure and relatedness of the languages based on different typological views.

This is then reflected into the NMT models corresponding to the language groups, i.e. the

nodes of the structure. Our main intuition is that distilling the knowledge of a diverse set

of teacher models into a student model may be suboptimal, as the teachers may compete
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instead of collaborate, resulting in a phenomenon called negative transfer, typically studied

in multitask/transfer learning (Zoph, Yuret, May, & Knight, 2016). However, the proposed

HKD process leads to training a higher-quality multilingual translation model by leveraging

common characteristics of languages belonging to the same language group. Our approach

to preventing negative transfer in knowledge distillation is clustering languages based on

their typological similarities and then distilling their related NMT models’ knowledge to

group-specific teacher assistant models. This process is repeated while different clusters are

merged down to a single super-group. To the best of our knowledge, this is the first work

which considers typological language relations by distilling knowledge hierarchically in a

multilingual regime. In this approach, we not only take advantage of multilingual learn-

ing by utilizing the training examples of multiple languages to improve the translation of

low-resource language pairs, but also we avoid negative transfer by effectively capturing

the language families relationships. Experiments on 53 languages from the TED dataset

(Qi et al., 2018) demonstrates the effectiveness of our approach in mitigating the negative

transfer in a multilingual translation setting. This work has been published in the 2021 Con-

ference on Empirical Methods in Natural Language Processing (Saleh, Buntine, Haffari, &

Du, 2021). We study and analyse this approach in chapter 5.

1.4 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 - Background.

This chapter provides a thorough overview of the methodologies and algorithms adopted

for the research described in this thesis. We start with the technical background related to

text generation systems such as NMT and NLG systems in general sequence to sequence

framework. We further introduce the two important techniques widely used in this thesis,

transfer learning and knowledge distillation.

Chapter 3 - From Machine Translation to Text Generation.
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This chapter is based on the following paper:

Fahimeh Saleh, Alexandre Berard, Ioan Calapodescu, and Laurent Besacier. "Naver

Labs Europe’s Systems for the Document-Level Generation and Translation Task

at WNGT 2019." In Proceedings of the 3rd Workshop on Neural Generation and

Translation, pp. 273-279. 2019.

In this chapter, we introduce our novel techniques for transitioning from NMT to NLG.

We propose to leverage data from both NMT and NLG and do transfer learning between

NMT, NLG, and NMT with source-side metadata. First, we train a document-based NMT

system with the DGT parallel data. Then, we augment this NMT model to obtain a “Data

+ Text to Text” model. Finally, we remove the source text to get a pure NLG system, able

to translate from metadata to full documents.

Chapter 4 - Improving Low-resource NMT using Adaptive Knowledge Distillation.

This chapter is based on the following paper:

Fahimeh Saleh, Wray Buntine, and Gholamreza Haffari. "Collective Wisdom: Im-

proving Low-resource Neural Machine Translation using Adaptive Knowledge Dis-

tillation." In Proceedings of the 28th International Conference on Computational

Linguistics, pp. 3413-3421. 2020.

This chapter introduces our novel adaptive knowledge distillation approach which im-

proves low-resource NMT. In this chapter, we tackle the data scarcity problem in NMT

using knowledge distillation, where we propose to distill the knowledge of ensemble of

teacher models to a single student model. As the quality of these teacher models varies,

we propose an effective adaptive knowledge distillation approach to dynamically adjust

the contribution of the teacher models during the distillation process.

Chapter 5 - Multilingual NMT with Hierarchical Knowledge Distillation.

This chapter is based on the following paper:
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Fahimeh Saleh, Wray Buntine, Gholamreza Haffari, and Lan Du . "Multilingual

Neural Machine Translation: Can Linguistic Hierarchies Help?" In Proceedings of

the 2021 Conference on Empirical Methods in Natural Language Processing.

In this chapter, we generalize our previous contribution to a multilingual setting, focusing

on optimized language transfer. We propose a Hierarchical Knowledge Distillation (HKD)

approach for MNMT which capitalises on language groups generated according to typo-

logical features and phylogeny of languages to overcome the issue of negative transfer.

HKD generates a set of multilingual teacher-assistant models via a selective knowledge

distillation mechanism based on the language groups, and then distills the ultimate multi-

lingual model from those assistants in an adaptive way.

Chapter 6 - Conclusion. In this chapter, we summarise the main contributions of this

thesis and discusses the most promising future research directions stemming from this

research.
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2 | Background

In this chapter, we introduce the machine learning techniques, architectures, and methods

that have been used in this thesis. In particular, we review the neural text generation systems

and sequence to sequence framework with a focus on transformer architecture which has

been widely used in this thesis for both machine translation and text generation purposes.

We also elaborate on different properties of sentence-level, document-level, and multilingual

NMT. Later, we have an overview on transfer learning and knowledge distillation methods

to help the readers better understand the following chapters.

2.1 Text Generation

Text Generation is the process of generating descriptive linguistic text or speech in one of

the human’s languages from text or non-linguistic input (Gatt & Krahmer, 2018). The Text

Generation approaches can be categorized into two groups based on the type of the input: i)

text-to-text generation, when the input is text; ii) data-to-text generation, when the input

is non-linguistic representation of information (Reiter, Mellish, & Levine, 1995; Reiter &

Dale, 1997, 2000b).
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Chapter 2. Background

Text-to-text generation:

Text-to-text generation approaches take existing text as their input and automatically gener-

ate a coherent text as output. Some example applications of text-to-text generation include:

machine translation (Delavenay & Delavenay, 1960; Och & Ney, 2003; Koehn, 2009), sum-

marization (generating a concise text from an existing text) (Clarke & Lapata, 2010), sim-

plification (generating a simple format of text from an existing complex text) (Siddharthan,

2014; Siddharthan & MacDonald, 2016), automatic spelling, grammar and text correction

(Kukich, 1992; Dale, Anisimoff, & Narroway, 2012), automatic peer reviews generation

(Bartoli, De Lorenzo, Medvet, & Tarlao, 2016), paraphrase generation (Bannard & Callison-

Burch, 2005; Kauchak & Barzilay, 2006), and question generation (J. Brown, Frishkoff, &

Eskenazi, 2005).

In particular, Machine Translation (MT) is the task of automatically translating the text

in one natural language (source language) to text in another language (target language)

(Russell & Norvig, 2010). The task of machine translation has been done for a long time

(1950s-1980s) in a rule-based manner called rule-based machine translation (RBMT) which

was based on linguistic information about the source and target languages basically retrieved

from dictionaries and grammars (Toma, 1977). Later, with the advances in statistics, Statis-

tical machine translation (SMT) has been introduced in which translations are generated

by applying statistical models based on the analysis of bilingual corpus (Koehn, 2009;

P. F. Brown et al., 1990). SMT is a data-driven approach and it is no longer required to

specify the rules of translation as in RBMT. However, these traditional phrase-based SMT

systems typically consist of many small sub-components that are tuned separately. This lim-

itation has been addressed by introducing Neural machine translation (NMT) which was an

attempt to build and train a single, end-to-end model using neural networks to predict the

likelihood of a sequence of words, typically modeling entire sentences in a single integrated

model (Cho et al., 2014; Sutskever, Vinyals, & Le, 2014).

Although the main research on NMT started with bilingual translation systems, which

generally build a translation model between two languages, the NMT framework can also
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Chapter 2. Background

leverage multiple languages in a translation process (Y. Chen, Liu, Cheng, & Li, 2017;

Cheng, 2019; Y. Chen, Liu, & Li, 2018; Dong, Wu, He, Yu, & Wang, 2015; Firat, Cho,

Sankaran, Vural, & Bengio, 2017; Dabre, Chu, & Kunchukuttan, 2020). In this thesis, we

refer to the NMT system which incorporates more than one language pair in the translation

process as Multilingual NMT (MNMT). The main aim of the MNMT system is doing the

translation of multiple languages with a single model, which is effectively efficient consider-

ing the fact that training separate models for different language pairs is resource consuming

while there are thousands of languages in the world (Campbell, 2008).

In an MNMT system, the translation direction can be from one-to-many (Dong et al.,

2015), many-to-one (Lee, Cho, & Hofmann, 2017), or many-to-many (Firat et al., 2017)

using parallel corpora for multiple language pairs. For bilingually low-resource language

pairs, MNMT provides additional parallel training signals from the high-resource language

pairs to improve the low-resource ones. In fact, representing multiple languages through the

same vector space in the MNMT system provides a transfer learning (Pan & Yang, 2009)

to utilize data from high-resource language pairs to improve the translation of low-resource

language pairs.

The majority of works on MNMT mainly focus on different parameter sharing mech-

anisms for designing the MNMT models (Firat et al., 2017; Lu et al., 2018; Johnson et al.,

2017; Ha, Niehues, & Waibel, n.d.). Different architectural choices are basically defined

by the degree of parameter sharing among various supported languages, e.g., minimal pa-

rameter sharing by sharing either encoder, decoder or attention module (Firat et al., 2017;

Lu et al., 2018) or complete parameter sharing by sharing the entire models (Johnson et al.,

2017; Ha et al., n.d.). Both of these two groups of techniques generally focus on design-

ing better parameter sharing for multilingual translation by implicitly assuming that a set of

languages are pre-given without considering the effect of language transfer between the lan-

guages shared in one model. That is why they generally achieved comparable results with

individual models (trained with individual language pairs) only when the languages are less

diverse, or from the same language family (Littell et al., 2017b), or when the number of lan-
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guages is small. When dozens or hundreds of diverse language pairs are taken to account for

training a massive MNMT system, the negative language transfer1 usually happens between

more distant languages, and the translation accuracy of the multilingual model downgrades

(Oncevay et al., 2020). It is indeed challenging to train a multilingual translation model

supporting many diverse language pairs while achieving comparable accuracy to individual

models. In the 4th and 5th chapters of this thesis, we focus exclusively on the former type of

text generation, machine translation. In the 5th chapter of this thesis we propose and develop

an approach to overcome the shortcoming of MNMT.

Data-to-text generation:

Data-to-text generation approaches, automatically interpret, organize, and generate human-

readable text from a non-linguistic meta-data. Basically, the process involves an algorithm

that scans large amounts of provided data (tables, images, etc.), selects and orders the criti-

cal information, inserts details (e.g., names, places, numbers, statistics, etc.), and generates

a readable, coherent, and descriptive text. The output can also be customized according

to a specific voice, tone, or style (N. S. Cohen, 2015). “Automated journalism” or “Robot

journalism” (Montal & Reich, 2017), is the most important example application of such ap-

proaches which have had a remarkable effect on the field of journalism in terms of efficiency

and cost-cutting (Van Dalen, 2012; Clerwall, 2014; Young & Hermida, 2015). Some devel-

oped applications which generate text from meta-data, to name but a few, include: soccer

reports generation (Theune, Klabbers, de Pijper, Krahmer, & Odijk, 2001; D. L. Chen &

Mooney, 2008), virtual newspaper generation (Molina, Stent, & Parodi, 2011; Leppänen,

Munezero, Granroth-Wilding, & Toivonen, 2017), weather and financial report generation

(Goldberg, Driedger, & Kittredge, 1994; Turner, Sripada, Reiter, & Davy, 2007; Plachouras

et al., 2016), and clinical patient information generation (Kraus, 2003; Banaee, Ahmed, &

Loutfi, 2013).
1Negative transfer happens when differences between the two languages’ structures cause systematic errors

in learning the other language. Positive transfer transpires when the similarity between the two languages
promotes learning the other language.
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In the third chapter of this thesis, we propose and develop a text generation model

with the type of data-to-text generation. In this approach, we generate the descriptive bas-

ketball games’ reports from structured meta-data (table records). In the following, we will

dive into details of text generation systems by introducing the Encoder-Decoder structure of

sequence-to-sequence systems, the training objectives, attention mechanisms, and the two

important architectures including Recurrent Neural Networks (RNNs) and Transformers.

2.1.1 Encoder-Decoder Structure

As mentioned, in text generation problem, we process an input sequence to generate an out-

put sequence also named as sequence-to-sequence (seq2seq) problem. The encoder-decoder

is the standard modeling paradigm to address this problem (Cho et al., 2014; Sutskever et

al., 2014). Seq2seq models consist of two neural networks that are trained jointly to map an

input sequence to an output sequence. As shown in Figure 2.1, the first neural network is the

encoder which reads the sequence of source symbol representations, x = (x1, x2, ..., xn),

and as a result encodes a fixed compact representation c trying to summarize all of its in-

formation. Then, this representation vector acts as an input or initial state to the decoder.

The decoder then predicts the probability of the target sequence, conditioned on the source

sequence. In fact, at each time step, the decoder generates a symbol of the target sequence

as y = (y1, y2, ..., ym) based on the input received and its current state, as well as updating

its own state for the next time step. Later in this section, we will introduce Recurrent Neu-

ral Networks and Transformers as the two well-known architectures for Encoder-Decoder

pipeline.

... ...

...

Encoder Decoder

Figure 2.1: A general overview of an encoder-decoder model for sentence-level NMT.
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2.1.2 Recurrent Neural Networks

Here, we describe briefly one of the well-known architectures, called Recurrent Neural Net-

works (RNNs) for the Encoder-Decoder pipeline, proposed by (Cho et al., 2014; Sutskever

et al., 2014). As mentioned in the previous part, in the Encoder–Decoder framework, an

encoder reads the input sequence, x = (x1, x2, ..., xn) into a representation vector c. The

most common approach is to use an RNN, in which at each time step t, the hidden state ht

of that RNN is updated by:

ht = f(xt, ht−1) (2.1)

where f is a non-linear activation function which can be a simple logistic sigmoid func-

tion or a complex function such as long short-term memory (LSTM) unit (Hochreiter &

Schmidhuber, 1997). In the Encoder-Decoder pipeline, the encoder is an RNN that reads

each element (symbol) of an input sequence x sequentially. By reading each symbol, the

hidden state of the RNN changes according to Eq. 2.1. After reading the end of the se-

quence (marked by an end-of-sequence symbol, e.g., < /s >), the hidden state of the RNN

is a compact representation c of the entire input sequence.

The decoder is another RNN which is trained to generate the output sequence by predicting

the next symbol yt given the hidden state ht. However, here both yt and ht are also condi-

tioned on yt−1 and on the compact representation c of the input sequence. Hence, the hidden

state of the decoder at time t is computed as:

ht = f(ht−1, yt−1, c) (2.2)

and thus the conditional distribution of the next symbol is:

P (yt|yt−1, yt−2, ..., y1, c) = g(ht, yt−1, c) (2.3)

where g is a nonlinear, potentially multi-layered, function that can generate valid outputs as
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the probabilities.

2.1.3 Training Objective

Given a training setD containing N parallel source-target sequence pairs, (x, y), the goal of

a seq2seq system is to model the probability of a target sequence given a source sequence,

p(y|x). All parameters in the encoder-decoder architectures are jointly trained via back

propagation (LeCun, 1988; Rumelhart, Hinton, & Williams, 1986) to minimize the negative

log-likelihood (conditional) over the training set. The conditional log-likelihood is defined

as the sum of the log-probability of predicting a correct symbol yn in the output sequence

for each instance x in the training set. Thus, we want to find the optimum set of model

parameters θ∗ as follows:

θ∗ = argmin
θ

∑
(x,y)∈D

− log pθ(y|x) (2.4)

= argmin
θ

∑
(x,y)∈D

m∑
i=1

− log pθ(yi|y<i, x)

2.1.4 Inference: Greedy Decoding and Beam Search

After training a seq2seq model, e.g., an NMT model, we need to use it to translate or decode

unseen source sentences. Indeed, the objective of the decoding phase is finding the highest

probability translation for a given source sentence which can be formulated as follow:

ŷ = arg max
y

Pθ(y|x) (2.5)

Where y is the space of possible translations for the source sentence x. This is an

intractable searching problem as the space of possible translations is exponentially large with

respect to the output length |y| and solving this optimisation problem is computationally

complex (Hoang, Haffari, & Cohn, 2017). An approximate solution to this problem can
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be obtained using conventional heuristic-based searching strategies like greedy decoding or

beam search.

The idea of greedy decoding is to pick the word that has the highest probability (i.e. act

greedily) at each decoding step until the end-of-sentence token is generated. Choosing the

best word might be advantageous for one timestep, but it may be sub-optimal when it comes

to the whole sentence. Beam search (Graves, 2012), on the other hand, selects multiple (var-

ied based on the tunable parameter of beam width) translation hypotheses with the highest

log-probability at each timestep based on the conditional probability. A complete hypothe-

sis (containing the end-of-sentence token) is added to the final candidate list. The algorithm

then picks the translation with the highest log-probability (normalised by the number of

target words) from this list (Maruf et al., 2021). Y. Chen, Li, et al. (2018) argued that the

translation quality obtained via beam search algorithm with the beam-width of 4 is remark-

ably better than the translation obtained via greedy decoding. Nevertheless, beam search is

computationally much more expensive than greedy decoding depending on the number of

words to keep in memory at each step to permute the possibilities.

2.1.5 Attention Mechanism

In the Encoder-Decoder structure, the encoder compresses the entire source sequence into a

single fixed representation vector c. For the encoder, the task of compressing all the infor-

mation of the source sequence into a single vector is challenging as there is a high possibility

that some of the information is forgotten, especially when the length of the source sequence

is relatively long. Moreover, during the generation process in the decoder, at each gener-

ation step, some parts of the source sequence can be more relevant than others. However,

with the current setting, the decoder has to extract relevant information for generating all of

the elements of the target sequence from the same single representation. By introducing the

“Attention Mechanism in NMT” (Bahdanau, Cho, & Bengio, 2014), this problem of fixed-

length vector started to be solved by allowing a model to automatically search for parts of a

source sequence that are relevant to predicting a target element. In this mechanism, instead
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of relying on a fixed-length vector, a context vector is used for predicting each element of

the target sequence. This weighted context vector is obtained dynamically by applying a

content-based attention mechanism over the source sequence.

In order to formulate the attention mechanism, consider the source sequence x =

[x1, x2, ..., xn] of length n and we try to output a target sequence y = [y1, y2, ..., ym] of

length m. Also, assume that the encoder is a bidirectional RNN. Bidirectional RNN is two

independent RNNs in which the input sequence is fed in positive time order (forward) for

one network and in reverse time order (backward) for another. Then, the outputs of the two

networks are usually concatenated at each time step to form the final output. We show the

forward hidden state
−→
hi , and a backward one

←−
hi and the concatenation of two hidden states

represents the encoder state as,

hi = [
−→
hi

⊤
,
←−
hi

⊤
]
⊤
, i = 1, 2, ..., n (2.6)

Also, assume that the decoder network has hidden state st = f(st−1, yt−1, ct) for the output

word at position t, t = 1, . . . ,m, where the context vector ct is the weighted sum of hidden

states of the input sequence as follows:

ct =
n∑

i=1

αt,ihi (2.7)

where αt,i indicates how well the inputs around position i and the output at position t match.

αt,i =
exp(score(st−1, hi))∑n
k=1 exp(score(st−1, hk))

(2.8)

In particular, in (Bahdanau et al., 2014), the alignment model (score) is parametrized as a

feed-forward neural network which is jointly trained with all the other components of the

proposed system. Therefore, given that tanh is used as the non-linear activation function,
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...

...

... ...

Figure 2.2: Attentional RNN-based architecture

the score function is as follows:

score(st, hi) = v⊤a tanh(Wa[st;hi]) (2.9)

where va and Wa are weight matrices to be learned in the alignment model. Note that the

score function can be as simple as a dot product as well.

In summary, the weights αt,i, reflects the importance of the hidden state hi corresponding to

the word xi with respect to the previous hidden state st−1 of the target sequence in deciding

the next state st and generating yt. Intuitively, this is an attention mechanism in which the

decoder decides about those parts of the source sentence to pay attention to.
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2.1.6 Transformers

As mentioned in the previous section, the attention mechanism helped to improve the per-

formance of the RNN encoder-decoder neural seq2seq system by making use of a weighted

sum of all the past encoder states, which allows the decoder to assign more importance

to certain elements of the input for generating each element of the output. However, this

approach continues to have an important limitation as each sequence must be treated one

element at a time. The fundamental constraint of sequential computation in RNN-based

encoder-decoder approaches forces both the encoder and the decoder to wait for the com-

pletion of t−1 steps to process the tth step, leading to a time-consuming and computationally

inefficient process, especially when dealing with a huge corpus. To address this problem,

Transformer architecture (Vaswani et al., 2017b) has been proposed that is relying entirely

on self-attention mechanism, eliminates the need for recurrent network units in sequence to

sequence modelling, leading to a significantly more parallelization.

Multi-Head Self-Attention

The main component in the transformer architecture is the multi-head self-attention unit

illustrated in Figure 2.3. The attention mechanism maps a query and a set of key-value

pairs to an output, where the query, keys, values, and output are all vectors. In particular,

both the keys and values with dimension n (input sequence length) are the encoder’s hidden

states. In the decoder, the previous output is compressed into a query (of dimension m) and

the next output is computed as a weighted sum of the values, where the weight assigned to

each value is computed by a compatibility function such as dot-product of the query with

the corresponding key computed as follows:

Attention(Q,K, V ) = softmax(
QK⊤
√
n

)V (2.10)

Moreover, in the transformer architecture, to let the model focus on different things, instead

of using a single attention function, multi-head attention is utilized which contains sev-
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Figure 2.3: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel (Vaswani et al., 2017a)

eral "heads" working independently whose results are concatenated at the end. Multi-head

attention allows the model to jointly attend to information from different representation sub-

spaces at different positions. In particular, in transformer architecture, we linearly project

the queries, keys and values h times with different, learned linear projections where the

projections are parameter matrices as follows,

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)W
O (2.11)

where,

headi = Attention(QWQ
i , KK

i , V V
i ) (2.12)

Model Architecture

Given the information provided about the main component of the Transformer, in this part,

we will look into the whole architecture of the transformer. The Transformer-based NMT is

based on the encoder-decoder structure we have discussed in Section 2.1.1 which a different

internal architecture. As mentioned before, the main innovation of the transformer architec-
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Figure 2.4: Transformer architecture (Vaswani et al., 2017a)

ture is the self-attention layer in both the encoder and the decoder. This attention mechanism

is in addition to the standard attention in which the decoder attends to the encoder context

vector. In the self-attention encoder layers, every word in the source sentence attends to

every other word in that sentence, and the resulting attention vector is used as the represen-

tation of that word in that layer. The attention in the decoder works similarly, but with a

masking mechanism to prevent the model from using words that have not yet been gener-

ated to generate the current word. As illustrated in Figure 2.4, the encoder is composed of

a stack of N (originally N = 6) identical layers. Each layer has a multi-head self-attention

layer and a simple position-wise fully connected feed-forward network. The output of each

sub-layer follows the form of LayerNorm(x + Sublayer(x)) which is obtained by utiliz-

ing a residual connection (He, Zhang, Ren, & Sun, 2016) around each of the two sub-layers,
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followed by layer normalization (J. L. Ba, Kiros, & Hinton, 2016). Note that all the sub-

layers as well as the embedding layers output data of the same dimension dmodel = 512.

These layers are stacked on top of each other to encode the final representation of the source

sentence.

The transformer decoder has a similar structure as the encoder but with an additional

sub-layer which performs multi-head attention over the output of the encoder stack. More-

over, in the decoder architecture, the self-attention sub-layer is modified to prevent positions

from attending to subsequent positions to ensures that the predictions for position i can

depend only on the known outputs at positions less than i and not on the future.

Moreover and similar to other sequence modeling problems, the learned embeddings

are utilized to convert the input tokens and output tokens to vectors of the same dimen-

sion dmodel = 512. To preserve the position information, a sinusoid-wave-based positional

encoding is applied and summed with the embedding output. Finally, a linear layer and a

softmax function are added to the final decoder output to predict the next-token probabilities.

2.1.7 Evaluation

Several automatic evaluation metrics have been proposed so far to evaluate the quality of

the machine translation and data-to-text generation models by comparing system outputs to

reference text. Here, we mention two of the most popular n-gram matching metrics, BLEU

and METEOR as they are the most relevant for the purposes of this thesis. At the end of

this section, we also explain the “perplexity” measure which is the best evaluation metric

for evaluating language models 2

BLEU (Bilingual Evaluation Understudy). This metric is one of the most popular evalu-

ation measures for machine translation and data-to-text generation tasks proposed by (Papineni,

Roukos, Ward, & Zhu, 2002a) in 2002 which ranges from 0 to 1 (1 means an identical trans-

lation with the reference). The main idea behind this measure is to aggregate the count
2The interested readers can get an in-depth review of MT evaluation from (Chatzikoumi, 2020) and can

find an empirical comparison from (Zhang*, Kishore*, Wu*, Weinberger, & Artzi, 2020).
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of words and phrases (n-grams) that overlap between machine and reference texts based

on a modified precision for n-grams. The modified n-gram precision for a candidate text

generated by the model is calculated as a geometric average:

pn =

∑
n-gram∈{candidate−generated−text}Countclip(n-gram)∑

n-gram′∈{candidate−generated−text}Count(n-gram′)
(2.13)

where Count(n-gram) is is the number of mutual n-grams in a machine generated text

and reference. Countclip(n-gram) is the number of mutual n-grams clipped by the maximum

repetition of n-grams in the reference. For a generated text with the length t and the reference

of length r, the BLEU score is formulated as follows:

BLEU = BP exp
( N∑

n=1

wn log pn

)
(2.14)

where N is the maximum length of n-grams (usually up to 4), wn is weight for the modified

n-gram precision and usually is uniform. BP is the brevity penalty used to penalise outputs

longer than references and is defined as:

BP =

1, if t > r.

exp(1−r/c), if t ≤ r.

(2.15)

Although BLEU has a high correlation with human judgment (Papineni et al., 2002a), it

relies on precision alone and does not consider recall. METEOR then is proposed to address

this drawback.

METEOR (Metric for Evaluation for Translation with Explicit Ordering). This met-

ric is proposed by (Banerjee & Lavie, 2005; Lavie & Agarwal, 2007) and measures the

sentence-level similarity by explicitly performing a word-to-word alignment between the

generated text and a given reference.
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The alignments are produced via a sequence of word matchers modules such as: Exact

(identical words), Stem (identical stem using Porter stemmer), Synonym (the words are

synonyms of each other). After the final alignment, METEOR computes an F-score:

Fmean =
P ·R

α · P + (1− α) ·R
(2.16)

Which is the parameterised harmonic mean of unigram precision (R) and recall (R)

(Rijsbergen, 1979). After obtaining the final alignment, the METEOR Score is calculated

as follows:

METEOR = (1− Penalty) · Fmean (2.17)

Accordingly, METEOR penalises the generated text based on the order of matched

words in the output and reference. The Penalty ∝ (
chunks

m
), where chunks is the smallest

number of matched words, such that the matched words in each chunk are adjacent and in

the same word order (in the output and reference), and m is the number of matched words.

PPL (Perplexity). Unlike the BLEU and METEOR which evaluate the models by em-

ploying them in an actual task (MT or NLG), PPL evaluates the language model itself with-

out taking to the account the specific task. A language model is a probability distribution

over entire sentences or texts and PPL is calculated based on the inverse probability of the

translation sentence, normalised by the number of words:

PPL(y) = T

√
1

ΠT
i=1p(yi|y<i, x)

(2.18)

So, intuitively, PPL measures the confidence of the model regarding the estimated dis-

tribution. A low perplexity indicates the probability distribution is good at predicting the

sample (Neubig, 2017).
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2.1.8 Document-level NMT

Most of the MT models including the phrase-based models or the most advanced NMT

models process sentences in isolation and ignore extra-sentential information from the con-

text. However, from the linguistics point of view, an extended context can prevent mistakes

in vague cases and improve the translation coherence (Maruf et al., 2021). To overcome

this shortcoming of sentence-based NMT, a lot of works recently have been undertaken in

the space of document-level NMT. In this section we have a brief overview of the problem

definition, training, and decoding of document-level NMT3.

Problem definition. Given a document d, where the set of sentences in source language

are X = {x1, . . . ,x|d|}, the goal of document-level MT is to generate the set of translations

in the target language Y = {y1, . . . ,y|d|}. The probability of a document translation given

the source document using the chain rule can be formulated as follows:

Pθ(Y |X) ∝ exp

|d|∑
j=1

logPθ(y
j|xj,Y −j,X−j) (2.19)

where Y −j represents all the other sentences in the target document except the jth sentence.

In the sentence-level NMT, the conditional probability of a target sentence y given the source

sentence x is decomposed as:

Pθ(y | x) =
N∏

n=1

Pθ(yn | y<n,x) (2.20)

where yn is the current target word and y<n are the previously generated words.

Training. Given a normalised document MT model, the training objective minimise the

3We direct interested readers to read the “A Survey on Document-level Neural Machine Translation: Meth-
ods and Evaluation” by (Maruf et al., 2021) which covers this topic in detail.
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negative log-likelihood over the set of bilingual training documents (D):

θ∗ = arg min
θ

∑
d∈D

|d|∑
j=1

− logPθ(y
j|xj,Y −j,X−j)

= arg min
θ

∑
d∈D

|d|∑
j=1

|yj |∑
n=1

− logPθ(y
j
n | y

j
<n,x

j,Y −j,X−j) (2.21)

This training objective is a generalisation of the objective for sentence-level NMT.

In sentence-level NMT, the conditional log-likelihood is defined as the sum of the log-

probability of predicting a correct symbol yn in the output sentence for each instance x

in the training set D. Thus, the optimum set of parameters θ∗ are found as follows:

θ∗ = arg min
θ

∑
(x,y)∈D

− logPθ(y | x) (2.22)

= arg min
θ

∑
(x,y)∈D

|y|∑
n=1

− logPθ(yn | y<n,x) (2.23)

The partition function in Eq. 2.19 is intractable searching problem due to the huge search

space over the possible translations which is exponentially large with respect to the number

of sentences in the documents. However, the parameters can be learned by resorting to

minimising the negative pseudo-likelihood (Besag, 1975) as suggested in (Maruf & Haffari,

2018).

Decoding. The same as sentence-level NMT, for document-level NMT we also need to

generate the highest probability translation but for a given source document instead of source

sentence. To do so, the following optimisation problem needs to be solved:

arg maxY Pθ(Y |X)

where Y := {y1, . . . ,y|d|} is the translation document, and θ refers to the parameters of

normalised model. In sentence-level NMT, the best output sentence ŷ for a given input
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sentence x and corresponding reference sentence y is produced by:

ŷ = arg max
y

Pθ(y|x) (2.24)

In the third chapter of this thesis, we train a document-level NMT model and we use it

to initialize our data-to-document generation model.

2.2 Transfer Learning

Transfer Learning is a machine learning technique where the knowledge learned in one

setting (task/domain) is utilized as the starting point for learning a new task in a new setting.

Humans also do this rather inherently (Torrey & Shavlik, 2010). For example, in human

cognitive system, learning to recognize apples helps to recognize pears (Pan & Yang, 2009).

In neural text generation, transfer learning is an appealing approach to address the dearth

of data for low-resource scenarios when fine-tuning a pre-trained model (trained with high-

resource pair of languages) with low-resource data improves the accuracy of low-resource

model (Dabre et al., 2017; Kocmi & Bojar, 2018).

Here, we first introduce transfer learning and highlights its benefits. To do so, we

elaborate the differences between traditional Machine Learning and Transfer Learning (See

Figure 2.5 and Figure 2.6). Traditional machine learning approaches are isolated and make

predictions purely based on the models trained on specific tasks and specifically collected

labelled or unlabeled training data. The models trained with traditional machine learning

should be rebuilt from scratch once the feature-space distribution changes. No knowledge

is preserved to transfer from the earlier trained models to the related new models. Trans-

fer learning, in contrast, transcends the isolated learning paradigm by leveraging knowl-

edge (features, weights, etc.) gained in previously trained models for training the related

new models. Reusing knowledge by transfer learning usually tackles the problems of data

scarcity for newer tasks (Sarkar, Bali, & Ghosh, 2018).
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Figure 2.5: Traditional ML
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Figure 2.6: Transfer learning

Formal definition. To define the formulation of transfer learning, we need first to define

the terms of domain and task (Pan & Yang, 2009). A domain D is defined based on two

components: a) feature space X and b) marginal probability distribution P (X), where X =

{x1, . . . , xn} ∈ X . A task T given a specific domain D = {X , P (X)} also consists of two

components: a) a label space Y and b) an objective predictive function f : X → Y which

is a predictive function for a new data point x. The task, T = {Y , f(x)} is learned from

the training data consisting of pairs {xi, yi}, where xi ∈ X and yi ∈ Y (Torrey & Shavlik,

2010).
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Given a source domain Ds and learning task Ts, a target domain Dt and learning task

Tt , transfer learning aims to help improve the learning of the target predictive function ft(·)

in Dt using the knowledge in Ds and Ts, where Ds ̸= Dt , or Ts ̸= Tt.

Once we make sure that we have a machine learning setting where transfer learning is

applicable, we have to answer three critical questions: What, When, and How to transfer?

This is important to know which part of the knowledge is useful and transferable to

transfer from the source task/domain to the target task/domain. To find the answer to this

question, we need to identify which part of knowledge is common between source and target

task/domain and in which cases knowledge is specified for only the source task/domain

(Sarkar et al., 2018; Yosinski, Clune, Bengio, & Lipson, 2014). Choosing the less relevant

knowledge from the source domain/task to the target domain/task may inversely hurt the

target performance, a phenomenon known as negative transfer (Z. Wang, Dai, Póczos, &

Carbonell, 2019).

Once the most relevant and useful knowledge to transfer is identified, we need to know

in which stage of the training, transfer learning should and in which situations should not

occur. The optimal stage for transferring knowledge can vary based on the discrepancy in

the joint distributions between the source and target domains and the size of the data in

source and target tasks (Torrey & Shavlik, 2010). Brute-force transfer may cause a negative

transfer when the source and target domain are unrelated.

Different transfer learning strategies can be categorized and applied under three sub-

settings regarding the various situations between the source and target domains and tasks.

These three categories are listed as follows: a) Inductive transfer learning setting in which

the source and target domains are similar; however, the source and target tasks are not. b)

Unsupervised transfer learning setting in which the source and target domains are similar,

but the tasks are different and labelled data is unavailable in either domain. c) Transductive

transfer learning setting where the source and target tasks are the same but the source and

target domains are not. In this setting, the source domain has many labelled data, while the
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target domain has none. This setting can be classified into subcategories, where either the

feature spaces or the marginal probabilities are different (Sarkar et al., 2018).

Most of transfer learning approaches implicitly assuming that the source and target

domains are related. Nevertheless, how to avoid negative transfer is still an important open

question when the source and target domains are different (Sarkar et al., 2018). In chapters

4 and 5 of this thesis, we will introduce two different solutions to avoid negative transfer

when we aim to transfer knowledge from different domains (language pairs).

Language transfer. Transfer learning through a multilingual setting from high-resource

to low-resource language pairs is a widely used approach for improving the accuracy of

low-resource scenarios in NLP. In such approaches, the high-resource language is usually

referred to as the parent language (teacher model), and the low-resource language is referred

to as the child language (student model) (Pan & Yang, 2009). This approach has been

explored widely in the key tasks of NLP (Hwa, Resnik, Weinberg, Cabezas, & Kolak, 2005;

McDonald, Petrov, & Hall, 2011; Petrov, Das, & McDonald, 2012; Zhang & Barzilay, 2015)

and particularly in machine translation (Zoph et al., 2016; Dabre, Fujita, & Chu, 2019; Gu,

Wang, Chen, Li, & Cho, 2018). Transfer learning approaches that are conducted in NMT can

be categorized into five groups: i) transfer learning on the source-side, ii) transfer learning

on the target-side, iii) transferring lexical knowledge, iv) transferring syntactic knowledge,

and v) transfer learning based on language similarity (Dabre et al., 2020).

In transfer learning from the source-side, both high-resource and low-resource NMT

tasks share the same target language. For example, we have German-to-English as an high-

resource NMT task and Galician-to-English as a low-resource NMT task. The simplest

way to apply such an approach is fine-tuning the high-resource model (German-to-English)

with low-resource data (Galician-to-English). In other words, the child model is initialized

with the parent’s parameters while trained with the low-resource parallel corpus (Zoph et

al., 2016). In such approaches, deciding about the amount of fine-tuning (selectively tune

a subset of the child’s parameter or tune the whole model) is very important. In a study
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proposed by (Zoph et al., 2016), the optimal solution is to fine-tune all parameters except

the input and output embedding. However, this might be different for different language

pairs and different settings in NMT. Given the languages utilized to train the child and the

parent models, and the size of the data, optimizing the parent model may not be the best

objective for the child task. A better approach can be training a parent model to some extent

which can be adjusted and fine-tuned on child tasks quickly. Gu, Wang, et al. (2018) pro-

posed a meta-learning approach by extending the model-agnostic meta-learning algorithm

(Finn, Abbeel, & Levine, 2017) to learn the best parameter initialization from multilingual

high-resource language tasks that facilitates transfer learning to the new language pairs with

the minimum training examples. This approach with meta-learned parameter initialization

shows its significant effectiveness comparing to the general multilingual transfer learning,

especially for highly low-resource tasks.

While the majority of transfer learning based approaches in multilingual NMT have

the same target languages in parent and child models, there are also some approaches which

have different target languages and do transfer learning on the target-side (Johnson et

al., 2017; Dabre et al., 2019). In these approaches, transfer learning is more challenging

due to the catastrophic forgetting risk (Robins, 1995). To this end, Dabre et al. (2019)

proposed a multi-stage training approach when multiple target languages are involved, and

the source language is fixed as English. The training stages include the pre-training stage

on a parallel corpus for a high resource language pair, the mixed pre-training/fine-tuning

stage on a mixture of parallel corpora including helper high-resource and one or more low-

resource language pairs, and the last pure fine-tuning stage using only a parallel corpus

for a particular low-resource language pair. They performed the sequential fine-tuning by

involving the parallel corpora with the relatively larger size in the intermediate level of fine-

tuning to help the low-resource language pairs training in the last stage of fine-tuning. This

approach outperforms the one-to-one transfer learning in one-to-many multilingual settings.

Transferring knowledge from high-resource to low-resource NMT task not only is ef-

fective for initializing the child model’s parameters but also can be done for initializing the
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word embedding of the child source language known as the lexical transfer. Basically, the

multilingual NMT model is trained with a vocabulary set consisting of the vocabularies of

all involving languages. In this setting, each word has its own representation, and there is

no shared embedding space between the words in multiple languages. This is not prob-

lematic for high-resource languages with enough data; however, it is sub-optimal for truly

low-resource languages which have not most of the vocabulary units in their training data.

Sharing the sub-units between the languages is a possible solution when there is a big over-

lap between the lexicons in high-resource and low-resource languages (Sennrich, Haddow,

& Birch, 2016b; Y. Kim, Jernite, Sontag, & Rush, 2016; Luong & Manning, 2016; Lee et

al., 2017). Otherwise, a shared semantic representation between languages is needed. This

can be done by mapping pre-trained monolingual word embeddings of the parent and child

sources to a shared vector space (Gu, Hassan, Devlin, & Li, 2018; Y. Kim, Gao, & Ney,

2019).

Fine-tuning the high-resource NMT model with low-resource data is not optimal when

high-resource and low-resource languages do not have syntactic converge. There are few

pieces of research that work on syntactic transfer to address this aspect of language trans-

fer in multilingual transfer learning. Murthy et al. (2019) suggested an approach to reduce

the syntactic divergence between source languages in parent and child models by reordering

the parent’s sentences to match the word order in child language. This approach achieved

significant improvement for multilingual NMT in an extremely low-resource setting. Re-

ordering the words was also proposed in SMT (M. Collins, Koehn, & Kučerová, 2005), and

NMT (Zhao, Zhang, & Zong, 2018) to get over syntactic divergence between source and tar-

get languages in machine translation. Besides the mentioned word reordering approaches,

which all are applied in the preprocessing step, (Y. Kim, Petrov, Petrushkov, Khadivi, & Ney,

2019) introduced a new approach to overcome the syntactic divergence by training the par-

ent encoder with noisy source data. The main motivation of this approach is preventing the

parent encoder from being over-optimized on the syntactic of the parent’s source language,

which allows the model to learn better the syntactic of the child’s source language. Using
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multiple high-resource languages in the parent side is another effective approach proposed

by (Gu, Hassan, et al., 2018) to control the syntactic language divergence in multilingual

transfer learning.

All the aforementioned approaches outperform unsupervised learning and gain sig-

nificant improvement, especially for extremely low-resource scenarios regardless of the

language relatedness. This success can be credited to the NMT models’ ability to learn

cross-lingual representations. However, when distant languages come to account, learning

cross-lingual representations does not achieve its optimal performance (Pires, Schlinger, &

Garrette, 2019; Søgaard, Ruder, & Vulić, 2018; Dabre et al., 2020). A new direction that

has recently emerged uses typological guidance as a form of non-parallel linguistic infor-

mation in knowledge transfer. This direction comes from the fact that languages have some

systematic inter-lingual relations at different typological levels (e.g. similarities in language

structure or language morphology, etc.), in spite of their significant diversity (O’Horan et

al., 2016). Those relations has been captured in typological classifications and then ap-

plied as a guide to define the optimal language transfer direction in a variety of NLP tasks

(Bender, 2011; Hana, Feldman, & Brew, 2004; Wisniewski, Pécheux, Gahbiche-Braham,

& Yvon, 2014; S. B. Cohen & Smith, 2009; McDonald et al., 2011; Berg-Kirkpatrick &

Klein, 2010; Naseem, Chen, Barzilay, & Johnson, 2010; Täckström, McDonald, & Nivre,

2013). In particular, for multilingual NMT, (Zoph et al., 2016) and (Dabre et al., 2017)

argued that having related languages in parent and child models has a substantial impact on

transfer learning result. (Maimaiti, Liu, Luan, & Sun, 2019) also showed that using highly

related high-resource language pairs on the parent side along with multistage fine-tuning

can significantly improve the translation results. Following this literature, in Chapter 5, we

will introduce our hierarchical knowledge distillation approach which can effectively transit

knowledge from clusters of relevant high-resource language pairs to the low-resource ones

in a hierarchy structure.

37



Chapter 2. Background

2.3 Knowledge Distillation

Deep neural networks have achieved significant achievements in real-world applications,

particularly when a massive amount of data is available. Nevertheless, the resource-intensive

deployment process of deep neural models in constrained environments such as mobile ap-

pliances or IoT devices is still a major challenge due to the limited memory capacity and

low computational power of these devices. To address this issue, different model com-

pression (Cheng, Wang, Zhou, & Zhang, 2017) techniques have been developed, which

can be categorized as the parameter pruning and quantization, low-rank factorization, trans-

ferred/compact convolutional filters, and knowledge distillation. In this section, we only fo-

cus on knowledge distillation as it is the most relevant model compression technique which

is used for the purpose of this thesis.

The idea of knowledge distillation is initiated for the first time with Buciluaˆ et al.

(2006). They proposed a compression approach to decrease deep neural models’ deployment

footprint in low-power and resource-limited devices without a significant drop in accuracy.

The main idea is to compress the knowledge which is learned by a complex model (teacher)

or ensemble of complex models and transfer it into a smaller, faster model (student) while

the student is able to produce competitive or even better results compared to the cumbersome

teacher network. This idea is then generalized and named Knowledge Distillation with

Hinton et al. (2015) motivated by the well-known property of deep neural networks, which

is the universal approximation.

A vanilla knowledge distillation framework usually has three important components:

Knowledge, distillation approach, and the teacher-student architecture. The small “student”

neural model learns to mimic the behavior of the large “teacher” model under a supervision

signal from a teacher, referred to the “knowledge”. This knowledge which is learned by

the teacher and then transferred to the student, is not explicitly provided by the training

data samples and thus named dark knowledge (Hinton et al., 2015). In vanilla knowledge

distillation, which is used for the purpose of this thesis, the logits (the last layer’s output in
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Figure 2.7: Examples of hard and soft targets and the effect of temperature raising in a network’s
softmax function which results as softened soft targets.

a deep neural network) of a large deep model are used as the teacher knowledge (Hinton et

al., 2015; J. Kim, Park, & Kwak, 2018; L. J. Ba & Caruana, 2014; Mirzadeh et al., 2020).

However, the activations, neurons or features of intermediate teacher network’s layers or

the parameters of the teacher model can also be transferred as knowledge to the student

model (Gou et al., 2020; Romero et al., 2015; Huang & Wang, 2017; Ahn, Hu, Damianou,

Lawrence, & Dai, 2019; Heo, Lee, Yun, & Choi, 2019; Komodakis & Zagoruyko, 2017; Liu

et al., 2019).

Formal definition. In the distillation process, for a general classification problem, the

teacher’s knowledge is transferred to the student by minimizing a loss function in which the

target is the output of a softmax function on the teacher model’s logits. In other words, given

a vector of logits z as the output of the last fully connected layer of a deep teacher model, in

which zi is the logit for the i-th class, the probability pi of the i-th class can be estimated by

a softmax function,

pi =
exp (zi)∑
j exp (zj)

(2.25)

This prediction obtained from the teacher model is referred to as soft target. Com-

pared to conventional one-hot ground truth, named hard targets, soft targets has scores for

all classes. However, in many cases, this probability distribution assigns a very high prob-

ability (close to 1) to the correct class while all other class probabilities are very close to
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0, which is indicating higher certainty in the prediction; however, it does not provide much

information beyond the one-hot ground truth labels already provided in the dataset. Hinton

et al. (2015) suggest that the distribution of the incorrect class labels holds valuable infor-

mation which defines a rich similarity structure over the data that can be learned from. They

explain that soft targets provide much more information per training case than hard targets

as the soft targets have higher entropy and less variance in the gradient between training

cases. Therefore, the small student model can take advantage of a higher learning rate while

using much less data than the original complex teacher model. So, the concept of softmax

temperature denoted by T is introduced to soften the distribution of probabilities over the

class labels (Hinton et al., 2015):

pi =
exp (zi/T )∑
j exp (zj/T )

(2.26)

According to Equation 2.26, when temperature grows, the probability distribution over

classes becomes softer. For instance, when T → ∞, the same probability is assigned to all

classes and when T → 0, the soft targets become the same as the hard targets. In Figure

2.7 you can see an example of hard and soft targets and the effect of temperature raising in

a network’s softmax function, which results in softened soft targets. The softened outputs

reveal the dark knowledge embedded in the teacher model and are transferred to the student

during the distillation process. As you can see in Figure 2.8, both original hard targets

and the softened targets are involved during the training of the student. The first is used

for calculating the general student loss and the second is utilized for distillation loss. In

fact, in the distillation process, the student model is trained to imitate the soft targets by

minimizing the sum of two different cross-entropy functions which are used for ultimate

loss: one involving the softened targets referred to as distillation loss, and one involving

the original hard targets named student loss (see Figure 2.8. The distillation loss can be

formulated as following where the logits of student model zs and the logits of teacher model
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Figure 2.8: Vanilla knowledge distillation framework (Gou et al., 2020)

zt are matched through a cross-entropy loss:

LD(p(zt, T ), p(zs, T )) =
∑
i

−pi(zti , T ) log(pi(zsi , T )) (2.27)

The student loss is formulated as the cross-entropy between the ground truth vector

(hard targets) y and the soft logits of the student model (Gou et al., 2020):

LS(y, p(zs, T )) =
∑
i

−yi log(pi(zsi , T )) (2.28)

As it is shown in figure 2.8, the same logits of the student model are used for both student

loss and distillation loss; however, for the student loss with softmax temperature = 1 and

for distillation loss with softmax temperature = t. The ultimate loss for training the vanilla

knowledge distillation method is a joint of student and distillation loss as follow (Gou et al.,

2020):

LKD(x, θ) = α ∗ LD(p(zt, T ), p(zs, T )) + (1− α) ∗ Ls(y, p(zs, T )) (2.29)

Where x is the training input sample, θ are the parameters of the student model, and α is the

weighting factor to control the contribution of components of the ultimate loss.
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In Chapter 4, we will present our novel ensemble knowledge distillation approach

which adaptively distill knowledge from ensemble of teachers to a student. In this approach,

the label smoothing coming from different teachers is combined and regulated, based on the

loss incurred by the teacher models during the distillation process, and thus the contribution

of each teacher is changed based on its effectiveness to improve the student.
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3 | From Machine Translation to Document Gener-

ation

Recently, neural models led to significant improvements in both machine translation (MT)

and natural language generation tasks (NLG). However, generation of long descriptive sum-

maries conditioned on structured data remains an open challenge. Likewise, MT that goes

beyond sentence-level context is still an open issue (e.g., document-level MT or MT with

metadata). To address these challenges, we propose to leverage data from both tasks and

do transfer learning between MT, NLG, and MT with source-side metadata. First, we train

a document-based NMT system with the DGT parallel data. Then, we augment this NMT

model to obtain a “Data + Text to Text” model. Finally, we remove the source text to get a

pure NLG system, able to translate from metadata to full documents. This end-to-end NLG

approach, without data selection and planning, outperforms the previous state of the art on

the Rotowire NLG dataset. Meanwhile, our systems submitted to WNGT 2019 obtained the

best results on each of the 6 tasks.

3.1 Introduction

Neural Machine Translation (NMT) and Neural Language Generation (NLG) are the top

lines of the recent advances in Natural Language Processing. Although state-of-the-art

NMT systems have reported impressive performance on several languages, there are still
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many challenges in this field especially when context is considered. Currently, the major-

ity of NMT models translate sentences independently, without access to a larger context

(e.g., other sentences from the same document or structured information). Additionally, de-

spite improvements in text generation, generating long descriptive summaries conditioned

on structured data is still an open challenge (e.g., table records). Existing models lack accu-

racy, coherence, or adequacy to source material (Wiseman et al., 2017).

The two aspects which are mostly addressed in data-to-text generation techniques are

identifying the most important information from input data, and verbalizing data as a coher-

ent document: “What to talk about and how?" (Mei et al., 2016). These two challenges have

been addressed separately as different modules in pipeline systems (McKeown, 1985; Reiter

& Dale, 2000a) or in an end-to-end manner with PCFGs or SMT-like approaches (Mooney

& Wong, 2007; Angeli et al., 2010; Konstas & Lapata, 2013), or more recently, with neural

generation models (Wiseman et al., 2017; Lebret et al., 2016; Mei et al., 2016). In spite of

generating fluent text, end-to-end neural generation models perform weakly in terms of best

content selection (Wiseman et al., 2017). Recently, (Puduppully, Dong, & Lapata, 2019a)

trained an end-to-end data-to-document generation model on the Rotowire dataset (English

summaries of basketball games with structured data).1 They aimed to overcome the short-

comings of end-to-end neural NLG models by explicitly modelling content selection and

planning in their architecture.

We suggest in this chapter to leverage the data from both MT and NLG tasks with trans-

fer learning. As both tasks have the same target (e.g., English-language stories), they can

share the same decoder. The same encoder can also be used for NLG and MT if the NLG

metadata is encoded as a text sequence (See Figure 3.1). We first train domain-adapted

document-level NMT models on large amounts of parallel data. Then we fine-tune these

models on small amounts of NLG data, transitioning from MT to NLG. We show that sepa-

rate data selection and ordering steps are not necessary if NLG model is trained at document-

level and is given enough information. We propose a compact way to encode the data avail-

1https://github.com/harvardnlp/boxscore-data
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able in the original database, and enrich it with some extra facts that can be easily inferred

with a minimal knowledge of the task. We also show that NLG models trained with this data

capture document-level structure and can select and order information by themselves.

Figure 3.1: Our transfer learning scheme in DGT shared task for transitioning from machine
translation task to data-to-text generation task. In NMT track, the source document is trans-
lated to the target document (Doc-MT model). In NMT+NLG track, the source document
concatenated with structured meta data is translated to the target document (contextual MT
model). In NLG track, the meta-data is translated to the target document (NLG model).

3.2 Related Work

The data-to-text generation literature mostly focuses on two main challenges including: i)

content selection and planning, and ii) summary generation or surface realization. These

challenges have been addressed either in the pipeline approaches or in end-to-end systems.

A considerable amount of research has been published on content planning as the key com-

ponent in data-to-text generation problems. This component, which is named in the lit-

erature by “Text Planner”, “Document Planner”, or “Macroplanner”, basically combines

content selection and content structuring. The resulting text plan of content planning stage

is the input to the “Sentence Planner” or “Microplanner”, which combines and aggregates all

selected words and phrases into well-formed sentences to express the information in sum-

mary generation (Gatt & Krahmer, 2018). Content selection has been developed with either

hand-built rules (Kukich, 1983; Dale & Reiter, 1997; Duboué & McKeown, 2003) or has
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been learned from the data (Barzilay & Lapata, 2005; Duboue & McKeown, 2001; Duboué

& McKeown, 2003; Liang, Jordan, & Klein, 2009; J. Kim & Mooney, 2010; Konstas &

Lapata, 2013). Earlier content selection components have been developed based on generic

planners (Dale, 1989) or discourse-dependent planners (Hovy, 1993) which are based on

hand-crafted domain-dependent structuring rules (called “schemata” by (McKeown, 1985))

obtained from the target text2. For example, Williams and Reiter (2008) used a constraint ap-

proach to maximise readability where constraints are based on corpus analysis and linguisti-

cally motivated rules using Rhetorical Structure Theory (RST) relations. In their approach,

document planner generates a tree, in which core messages are connected by discourse rela-

tions. Duboué and McKeown (2003) learn Content Selection rules, using texts paired with

a frame-based knowledge graph. The semantic data which is used in the text matching was

clustered and scored according to its occurrence in text. More recent work gradually moves

towards data-driven statistical approaches and focuses on end-to-end systems in which con-

tent selection and surface realization are jointly learned. Konstas and Lapata (2013) train

a model which captures the implicit relationship between the records of the database and

the text. The key contribution of this work is representing content plans as grammar rules

using a probabilistic context-free grammar (PCFG) approach and intersecting this grammar

with an n-gram language model and a dependency model. Thus, this approach casts the

two phases of content selection and summary generation to a common parsing problem.

As they train a single model for both content selection and surface realization stages, their

model is conceptually more straightforward than the previous similar approaches (Angeli et

al., 2010; J. Kim & Mooney, 2010) which broke up the generation task into a sequence of

local decisions to select the meaningful and related record of the database. This approach

has been applied on weather forecasts dataset and performed well compared to its counter-

parts. However, it is not easily generalizable to larger data with longer summaries and more

diverse vocabularies.

Later, Wiseman et al. (2017) introduced a larger dataset of basketball games for data-

2Example: In basketball game summary generation, two consecutive scores of a player should be described
in one sentence (Gatt & Krahmer, 2018).
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to-text generation task with 628 input records and the average length of 330 words per

summary. They also proposed the new qualitative metrics to measure the quality and ade-

quacy of generated text. Another large dataset is the MLB dataset which is introduced by

(Puduppully, Dong, & Lapata, 2019a). This dataset contains about 25k records along with

the summaries which describe the baseball games based on the the game statistics. These

datasets with sufficient data opened the way for neural generation systems with encoder-

decoder architecture to be used for data-to-text generation (Lebret et al., 2016; Mei et al.,

2016; Wiseman et al., 2017). Although the neural generation models perform well in gener-

ating fluent and coherent documents, they still tend to generate hallucinations and underper-

form in content selection and generating adequate document. One of the widely suggested

solution to tackle this problem is changing the way that statistical information (entities)

are represented by entity modelling (Puduppully, Dong, & Lapata, 2019b) or using entity-

tracking module (Iso et al., 2020). In these approach, the entity-specific representations are

dynamically updated during the text generation and fed to the model along with the textual

input table.

Inspired by our work represented in this chapter, (Puduppully & Lapata, 2021) pro-

posed a plan-and-generate approach called macro planning. The paragraph plans are basi-

cally the sequence of paragraphs separated by special indicators. Each paragraph is a text

sequence which contains special tags to indicate the entity’s types along with the textual

entities’ values. They first trained a macro plan model to compute the paragraph plan repre-

sentations. Then for the text generation step, they maximized the log likelihood of the output

text given the macro plan’s representations. They showed that macro-planning approach is

fairly successful in generating faithful and coherent long documents.

3.3 Document-Level Generation and Translation Task

The goal of the Document-Level Generation and Translation (DGT) task (Shown in Figures

3.2, 3.3) is to generate summaries of basketball games, in two languages (English and Ger-

man), by using either structured data about the game, a game summary in the other language,
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or a combination of both. The task features 3 tracks, times 2 target languages (English or

German) which are described as follows (Hayashi et al., 2019):

• NLG (Data→ En, Data→ De): Generate document summaries in a target language

(German or English) given only structured data.

• MT (De↔ En): Translate documents in the source language (German or English) to

the target language (English or German).

• MT+NLG (Data+En → De, Data+De → En): Generate document summaries given

the structured data and the summaries in another language.

The data and evaluation are document-level, encouraging participants to generate full docu-

ments, rather than sentence-based outputs. The main dataset used in this task is RotoWire3.

The original RotoWire dataset is a monolingual English dataset that has been used for data-

to-text natural language generation, and we have had a portion of this dataset manually

translated into German called DGT dataset. RotoWire data set has 4853 distinct rotowire

summaries/data, covering NBA games played between 2014 to 2017. Each sample is a

JSON file and contains a list of JSON objects corresponding to each aligned summary/data

pair. Each JSON object has the following fields: Name of the home team, city of the home

team, name of visiting team, city of visiting team, date of the game, tokenized summary of

the game, home team line-scores and visiting team line-scores. DGT dataset has subsets of

242 samples for train, 240 samples for validation, and 241 samples for test in both German

and English. Table 3.1 describes other allowed parallel and monolingual corpora.

3.4 Proposed Transfer Learning Approach

The main contribution of our systems submitted to the DGT shared task is related to our

NLG approach which is proposed for data-to-text generation tracks. In this section, we will

explain the problem definition and the modeling assumptions and hypotheses underlying our

3https://github.com/harvardnlp/boxscore-data
4https://sites.google.com/view/wngt19/home?authuser=0
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Figure 3.2: All sub-tasks of DGT challenge. This task has 3 tracks, times 2 target languages
(English or German): NLG (Data to Text), MT (Text to Text), and MT+NLG (Text + Data
to Text).

Figure 3.3: A sample of training data for DGT shared task4. The left table shows the struc-
tured metadata which shows the information about basketball game such as scores, name of
the players and the teams, and etc. The documents shown in the right side of this figure are
the text summaries in German and English generated based on the game’s metadata.
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Corpus Lang(s) Split Docs Sents

DGT EN-DE
train 242 3247
valid 240 3321
test 241 3248

Rotowire EN
train 3398 45.5k
valid 727 9.9k
test 728 10.0k

WMT19-sent
EN-DE train

– 28.5M
WMT19-doc 68.4k 3.63M

News-crawl
EN

train
14.6M 420M

DE 25.1M 534M

Table 3.1: Statistics of the allowed resources. The English sides of DGT-train, valid and
test are respectively subsets of Rotowire-train, valid and test. More monolingual data is
available, but we only used Rotowire and News-crawl.

system design.

3.4.1 Problem Definition

We hypothesize that document-level story generation given a single document-level sequen-

tial metadata should work better compared to generating from a set of sparse table records

using content selection and planning. By having a single document-level sequential meta-

data as an input we can simulate the data-to-text generation task to the machine translation

task by training a model which jointly learns “what to say?” and “how to say?”. In other

words, we can see the machine translation and data-to-text generation as two sides of one

problem. A machine translation model should find the words in a new language and ver-

balize the translated words in the syntactic structure of the target language. A data-to-text

generation model should choose the information from the structured meta-data and verbalize

the selected information in a coherent story.

Indeed, document-level sequential metadata is a high-level organization of the docu-

ment content and document structure which are especially useful for generating document-

level stories with a large vocabulary space that requires capturing long-range dependencies

in text.
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We assume the input to our model is a set of meta-data consisting of special tokens

(entity) followed with positional information (attribute) related to the entities. We model the

process of generating output summary y given the meta-data input x as a two-step process,

namely, generating a document-level story-plan p given the structured meta-data x and gen-

erating the output summary y given the document-level story-plan p. So, a story-plan is a

sequence of meta-data with entities and attributes describing the game. By entities, we mean

the key fields of our structured meta-data, while attributes refer to the values of respected

keys. An example of a story-plan is shown at the first row of Table 3.2. Within a story plan,

meta-data are verbalized into a text sequence. We retain the same position for entities and

attributes in all story-plans.

3.4.2 Model Description

The generated document-level story-plan is a verbalized version of table records that can be

treated as a version of the story in the same language but with a very special syntax.

In our first task, document-level NMT, the encoder learned to capture the document-

level representation of the story in either English or German. The conditional probability of

a target document y given the source document x is decomposed as:

Pθ(y | x) =
N∏

n=1

Pθ(yn | y<n,x) (3.1)

where yn is the current target word and y<n are the previously generated words in our

document. The conditional log-likelihood is defined as the sum of the log-probability of

predicting a correct symbol yn in the output document for each instance x in the training set

D. Thus, the optimum set of parameters θ∗ are found as follows:

θ∗ = arg min
θ

∑
(x,y)∈D

− logPθ(y | x) (3.2)

= arg min
θ

∑
(x,y)∈D

|y|∑
n=1

− logPθ(yn | y<n,x) (3.3)
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So, we already have a very strong language model that can predict each word in the

document given the previous words. In the new task, data-to-text generation, the trained

model needs to recall what it learned in the NMT task while learning the new syntax of the

augmented language and generating the output stories given the story-plan.

Given a story-plan p, where the set of meta-data segments in the input are S =

{s1, . . . , s|p|}, the goal of document-level NLG is to generate a document y. The prob-

ability of a document generation given the source story-plan using the chain rule can be

formulated as follows:

Pθ(y | p) =
N∏

n=1

Pθ(yn | y<n,p) (3.4)

The conditional log-likelihood is defined as the sum of the log-probability of predicting

a correct symbol yn in the output document for each instance p in the training set D and the

optimized θ is defined as follows:

θ∗ = arg min
θ

∑
(p,y)∈D

− logPθ(y | p) (3.5)

= arg min
θ

∑
(p,y)∈D

|y|∑
n=1

− logPθ(yn | y<n,p) (3.6)

3.5 Our MT and NLG Systems

All our systems submitted to this shared task (MT, NLG, MT+NLG) are based on Trans-

former Big (Vaswani et al., 2017b). Details for each track are given in the following sections.

3.5.1 Machine Translation Track

For the MT track, we followed these steps (Shown in Figure 3.4):

1. Train sent-level NMT models on all the WMT19 parallel data (document and sentence)
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plus DGT-train.

2. Back-translate (BT) the German and English News-crawl by sampling (Edunov, Ott,

Auli, & Grangier, 2018).

3. Re-train sentence-level NMT models on a concatenation of the WMT19 parallel data,

DGT-train and BT. The later was split into 20 parts, one part for each training epoch.

This is almost equivalent to oversampling the non-BT data by 20 and doing a single

epoch of training.

4. Fine-tune the best sentence-level checkpoint (according to valid perplexity) on document-

level data. Like (Junczys-Dowmunt, 2019), we truncated the WMT documents into se-

quences of maximum 1100 BPE tokens. We also aggregated random sentences from

WMT-sent into documents, and upsampled the DGT-train data. Contrary to (Junczys-

Dowmunt, 2019), we do not use any sentence separator or document boundary tags.

5. Fine-tune the best document-level checkpoint on DGT-train plus back-translated Rotowire-

train and Rotowire-valid.

We describe the pre-processing and hyperparameters in Section 3.6. In steps (1) and

(3), we train for at most 20 epochs, with early stopping based on newstest2014 perplexity.

In step (4), we train for at most 5 additional epochs, with early stopping according to DGT-

valid perplexity (document-level). In the last step, we train for 100 epochs, with BLEU

evaluation on DGT-valid every 10 epochs. We also compute the BLEU score of the best

checkpoint according to DGT-valid perplexity, and keep the checkpoint with highest BLEU.

The models in step (5) overfit very quickly, reaching their best valid perplexity after

only 1 or 2 epochs. For DE-EN, we found that the best DGT-valid BLEU was achieved

anywhere between 10 and 100 epochs (sometimes with a high valid perplexity). For EN-DE,

perplexity and BLEU correlated better, and the best checkpoint according to both scores was

generally the same. The same observations apply when fine-tuning on NLG or NMT+NLG

data in the next sections.
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Figure 3.4: Our machine translation system submitted for MT track in DGT shared task.

Like (Berard, Ioan, & Roux, 2019), all our NMT models use corpus tags: each source

sentence starts with a special token which identifies the corpus it comes from (e.g., Paracrawl,

Rotowire, News-crawl). At test time, we use the DGT tag.

One thing to note, is that document-level decoding is much slower than its sentence-

level counterpart.5 The goal of this document-level fine-tuning was not to increase transla-

tion quality, but to allow us to use the same model for NMT and NLG, which is easier to do

at the document-level.

3.5.2 Natural Language Generation Track

Original metadata consists of one JSON document per game, containing information about

teams and their players. We first generate compact representations of this metadata as text

sequences (story-plan). Then, we fine-tune our document-level NMT models (from step 4)

on the NLG task by using this representation on the source side and full stories on the target

side. We train on a concatenation of DGT-train, Rotowire-train and Rotowire-valid. We

filter the later to remove games that are also in DGT-valid. Our story-plan has the following

structure:

1. Date of the game as text.

2. Home team information (winner/loser tag, team name and city, points in the game, season wins

and losses and team-level scores) and information about its next game (date, home/visitor tag,

other team’s name), inferred from the other JSON documents in Rotowire-train.

5On a single V100, sent-level DGT-valid takes 1 minute to translate, while document-level DGT-valid takes
6 minutes.
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3. Visiting team information and details on its next game.

4. N best players of the home team (player name, followed by all his non-zero scores in a fixed

order and his starting position). Players are sorted by points first, then by rebounds and assists.

5. N best players of the visiting team.

To help the models identify useful information, we use a combination of special tokens and

positional information. For instance, the home team is always first, but a <WINNER> tag

precedes the winning team and its players. We ignore all-zero statistics, but always use the

same position for each type of score (e.g., points, then rebounds, then assists) and special

tokens to help identify them (e.g., <PTS> 16 and <REB> 8). We try to limit the number

of tags to keep the sequences short (e.g., made and attempted free throws and percentage:

<FT> 3 5 60). An example of metadata representation (story-plan) is shown in Table 3.2.

3.5.3 MT+NLG Track

For the MT+NLG track, we concatenate the MT source with the NLG data. We use the same

metadata encoding method as in the NLG track and we fine-tune our document-level NMT

models (from step 4). We also randomly mask tokens in the MT source (by replacing them

with a <MASK> token), with 20% or 50% chance (with one different sampling per epoch).

The goal is to force the model to use the metadata because of missing information in the

source. At test time, we do not mask any token.

3.6 Experiments

3.6.1 Data Pre-processing

We filter the WMT19-sent parallel corpus with langid.py (Lui & Baldwin, 2012) and

remove sentences of more than 175 tokens or with a length ratio greater than 1.5. Then,

we apply the official DGT tokenizer (based on NLTK’s word_tokenize) to the non-

tokenized text (everything but DGT and Rotowire).
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Story-plan <DATE> Freitag Februar 2017 <WINNER> Oklahoma City Thunder <PTS>
114 <WINS> 29 <LOSSES> 22 <REB> 47 <AST> 21 <TO> 20 <FG> 38 80 48
<FG3> 13 26 50 <FT> 25 33 76 <NEXT> Sonntag Februar 2017 <HOME>
Portland Trail Blazers <LOSER> Memphis Grizzlies <PTS> 102 <WINS>
30 <LOSSES> 22 <REB> 29 <AST> 21 <TO> 12 <FG> 40 83 48 <FG3> 3
19 16 <FT> 19 22 86 <NEXT> Samstag Februar 2017 <VIS> Minnesota
Timberwolves <WINNER> <PLAYER> Russell Westbrook <PTS> 38 <REB>
13 <AST> 12 <STL> 3 <PF> 2 <FG> 8 20 40 <FG3> 5 7 71 <FT> 17 17
100 <POS> Guard <PLAYER> Steven Adams <PTS> 16 <REB> 12 <AST>
2 <STL> 1 <BLK> 2 <PF> 4 <FG> 7 13 54 <FT> 2 6 33 <POS> Center
<PLAYER> Joffrey Lauvergne <PTS> 16 <REB> 8 <AST> 2 <PF> 3 <FG>
6 7 86 <FG3> 3 4 75 <FT> 1 2 50 <POS> Bank <LOSER> <PLAYER> Marc
Gasol <PTS> 31 <REB> 4 <AST> 8 <STL> 2 <BLK> 1 <PF> 4 <FG> 14
24 58 <FG3> 0 4 0 <FT> 3 3 100 <POS> Center <PLAYER> Mike Conley
<PTS> 18 <REB> 1 <AST> 2 <STL> 3 <FG> 7 16 44 <FG3> 1 5 20 <FT> 3
5 60 <POS> Guard <PLAYER> Zach Randolph <PTS> 16 <REB> 10 <AST> 3
<STL> 1 <PF> 4 <FG> 6 14 43 <FG3> 0 1 0 <FT> 4 4 100 <POS> Bank

Reference story The Oklahoma City Thunder defeated the visiting Memphis Grizzlies 114 - 102 , at Chesapeake
Energy Arena on Friday evening . The Grizzlies led by four after three quarters , but then Rus-
sell Westbrook went absolutely ballistic in the fourth quarter , scoring 19 points in the quarter ,
including 15 points straight and unanswered , to take his team from down 102 - 99 to the final
score of 114 - 102 . This snaps the Grizzlies three-game win streak , while Westbrook added to his
ridiculous triple-double count , as he notched his 25th of the season . The Thunder ( 29 - 22 ) only
scored 21 points in the first quarter , before outscoring the Grizz by 12 in the second , to take an
eight-point lead into half time . They were then outscored by 12 in the third , and entered the fourth
down by four . The Thunder outscored the Grizz by 14 in the fourth , behind Russell Westbrook
and his takeover .Westbrook finished with 38 points , 13 rebounds , 12 assists and three steals to
lead his squad to a big win . Westbrook also matched a career-best as he went 17-of-17 from the
foul line . Three other players scored in double digits for the Thunder , including Steven Adams
and Joffrey Lauvergne , who pitched in 16 points each . The Thunder go on to visit Portland on
Sunday . Meanwhile , the Grizzlies ( 30 - 22 ) saw their win streak come to an end as they went
scoreless in the last 2:50 as they were stifled by an overwhelming push of energy and intensity
from the Thunder and their home crowd . Marc Gasol finished with a team-high 31 points , to go
along with eight assists , four rebounds , two steals and one block , in 42 minutes . Zach Randolph
came up big in 29 minutes off the bench , with 16 points and 10 rebounds , while Mike Conley
chipped in 18 points , three steals and two assists . Chandler Parsons added 12 points on 3-of-6
shooting , in 25 minutes . The Grizzlies will have to put this one in the past , as they go right back
in action on Saturday , when they visit Minnesota to take on the Timberwolves .

Generated story The Oklahoma City Thunder defeated the Memphis Grizzlies , 114 - 102 , at Chesapeake Energy
Arena on Friday . Despite there being just five ties and six lead changes in this game , it was close
throughout . In fact , neither team led by more than 12 points , as the nine-point final margin was
one of the largest leads of the game . Oklahoma City actually won this game , despite being out
shot from the field , from three-point range and from the free-throw line . Rebounding was the
decisive statistic , with the Thunder winning that battle , 47 - 29 . They also dominated the assist-
to-turnover ratio , recording 10 more assists and committing three less turnovers . The Grizzlies (
30 - 22 ) have now lost three of their last four games , as they continue to fall down the standings
. Marc Gasol did all he could for Memphis , as he led the team with 31 points , four rebounds ,
eight assists and two steals . Mike Conley finished second on the team , totaling 18 points , two
assists and three steals . Mike Conley finished second on the team , amassing 18 points and three
steals . Zach Randolph was huge off the bench , providing 16 points , 10 rebounds and three assists
. The Grizzlies will be off until Saturday , when they play the Minnesota Timberwolves on the road
for their next game . The Thunder ( 29 - 22 ) have rode Russell Westbrook ’s triple-double train
all year and they got another one here . Westbrook collected 38 points , 13 rebounds , 12 assists
and three steals . Steven Adams recorded a double-double , amassing 16 points and 12 rebounds
. Joffrey Lauvergne was a nice spark off the bench , providing 16 points and eight rebounds . The
Thunder will look to keep rolling on Sunday against the Portland Trail Blazers .

Table 3.2: Story-plan: our encoded metadata. Reference story: story #48 from DGT-valid. Gen-
erated story: output of the English NLG model (3-player). Green: text based on facts from the
metadata. Blue: correct facts which are not explicitly in the metadata. Red: hallucinations or incor-
rect facts. Orange: repetitions.
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We apply BPE segmentation (Sennrich, Haddow, & Birch, 2016a) with a joined SentencePiece-

like model (Kudo & Richardson, 2018), with 32k merge operations, obtained on WMT +

DGT-train (English + German). The vocabulary threshold is set to 100 and inline casing is

applied (Berard et al., 2019). We employ the same joined BPE model and Fairseq dictionary

for all models. The metadata is translated into the source language of the NMT model used

for initialization,6 and segmented into BPE (except for the special tokens) to allow trans-

fer between NMT and NLG. Then, we add a corpus tag to each source sequence, which

specifies its origin (Rotowire, News-crawl, etc.)

Like (Junczys-Dowmunt, 2019), we split WMT19 documents that are too long into

shorter documents (maximum 1100 BPE tokens). We also transform the sent-level WMT19

data into document-level data by shuffling the corpus and grouping consecutive sentences

into documents of random length. Finally, we upsample the document-level data (WMT19

and DGT) by 8 times its original size (in terms of sentence count). We do so by sampling

random spans of consecutive sentences until reaching the desired size.

The DGT and Rotowire data is already tokenized and does not need filtering nor trun-

cating. We segment it into BPE units and add corpus tags.

3.6.2 Settings

All the models are Transformer Big (Vaswani et al., 2017b), implemented in Fairseq (Ott,

Edunov, Grangier, & Auli, 2018). We use the same hyper-parameters as (Ott et al., 2018),

with Adam and an inverse square root schedule with warmup (maximum LR 0.0005). We

apply dropout and label smoothing with a rate of 0.1. The source and target embeddings

are shared and tied with the last layer. We train with half-precision floats on 8 V100 GPUs,

with at most 3500 tokens per batch and delayed updates of 10 batches. When fine-tuning

on DGT-train or Rotowire + DGT-train (Step 5 of the MT track, or NLG/MT+NLG fine-

tuning), we use a fixed learning rate schedule (Adam with 0.00005 LR) and a much smaller

batch size (1500 tokens on a single GPU without delayed updates). We train for 100 epochs,

6Only week days, months and player positions need to be translated.
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Track Target Constrained Valid Test
NLG

EN

no 23.5 20.5
MT yes 60.2 58.2
MT no 64.2 62.2
MT+NLG yes 64.4 62.2
NLG

DE
no 16.9 16.1

MT yes 49.8 48.0
MT+NLG yes 49.4 48.2

Table 3.3: Document-level BLEU scores on the DGT valid and test sets of our submitted
models in all tracks.

compute DGT-valid perplexity at each epoch, and DGT-valid BLEU every 10 epochs.

3.6.3 BLEU evaluation

Submitted models. For each track, we selected the best models according to their BLEU

score on DGT-valid. The scores are shown in Table 3.3, and a description of the submitted

models is given in Table 3.4. We compute BLEU using SacreBLEU with its tokenization set

to none,7 as the model outputs and references are already tokenized with NLTK. (Hayashi et

al., 2019) give the full results of the task: the scores of the other participants, and values of

other metrics (e.g., ROUGE). Our NLG models are “unconstrained” because the WMT19

parallel data, which we used for pre-training, was not allowed in this track. Similarly, we do

two submissions for DE-EN MT: one constrained, where we fine-tuned the document-level

NMT model on DGT-train only, and one unconstrained, where we also used back-translated

Rotowire-train and valid. All the NMT and NMT+NLG models are ensembles of 5 fine-

tuning runs. Cascading the English NLG model with the ensemble of EN-DE NMT models

gives a BLEU score of 14.9 on DGT-test, slightly lower than the end-to-end German NLG

model (16.1). We see that in the same data conditions (unconstrained mode), the MT+NLG

models are not better than the pure MT models. Furthermore, we evaluated the NMT+NLG

models with MT-only source, and found only a slight decrease of ≈ 0.3 BLEU, which

confirms our suspicion that the NLG information is mostly ignored.

7SacreBLEU signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.none+version.1.3.1

58



Chapter 3. From Machine Translation to Document Generation

Track N best players Details
NLG (EN) 4 Rotowire BT + DGT-train + tags
NLG (DE) 6 Rotowire BT + DGT-train + tags

MT (DE-EN) N/A

Unconstrained: Rotowire BT +
DGT-train + tags + ensemble
Constrained: DGT-train only +
ensemble

MT (EN-DE) N/A DGT-train only + ensemble

MT+NLG (EN) 3
Rotowire BT + DGT-train + 20%
text masking + tags + ensemble

MT+NLG (DE) 3
Rotowire BT + DGT-train +
tags + ensemble

Table 3.4: Description of our all submissions for 6 tracks of DGT shared task.

Model Target Valid Test News 2019
FAIR 2019

EN

48.5 47.7 41.0
Sent-level 55.6 54.2 40.9

Document-level 56.5 55.0 38.5
Fine-tuned 61.7 59.6 21.7
FAIR 2019

DE

37.5 37.0 40.8
Sent-level 47.3 46.7 42.9

Document-level 48.2 47.5 41.6
Fine-tuned 48.0 46.7 41.3

Table 3.5: BLEU scores of the NMT models at different stages of training, and comparison
with the state of the art. Scores on DGT-valid and DGT-test are document-level, while News
2019 is sent-level (and so is decoding). On the latter, we used the DGT corpus tag for DE-
EN, and the Paracrawl tag for EN-DE (we chose the tags with best BLEU on newstest2014).
Scores by the “fine-tuned” models are averaged over 5 runs.

NMT analysis. Table 3.5 shows the BLEU scores of our NMT models at different stages

of training (sent-level, document-level, fine-tuned), and compares them against one of the

top contestants of the WMT19 news translation task (Ng et al., 2019a). The reason of

conducting this experiences is to compare different version of proposed NMT model with

other popular test sets (News 2019).

English NLG analysis. Table 3.6 shows a 5.7 BLEU improvement on Rotowire-test by

our English NLG model compared to the previous state of the art. Figure 3.5 shows the

DGT-valid BLEU scores of our English NLG models when varying the number of players
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Model Rotowire test
(Wiseman et al., 2017) 14.5

(Puduppully, Dong, & Lapata, 2019a) 16.5
Ours (4-player) 22.2

Table 3.6: English NLG comparison against state-of-the-art on Rotowire-test. BLEU of sub-
mitted NLG (EN) model, averaged over 3 runs. Because Rotowire tokenization is slightly
different, we apply a set of fixes to the model outputs (e.g., 1-of-3→ 1 - of - 3).
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Figure 3.5: DGT-valid BLEU (by the best checkpoint) depending on the maximum number
of selected players for the English NLG track.

Model Valid Test
Baseline (3 players, sorted) 22.7 20.4
No player 20.1 18.8
All players, sorted 22.7 20.9
All players, shuffled 22.0 20.0
(1) No next game 22.0 19.9
(2) No week day 22.2 20.5
(3) No player position 22.6 20.5
(4) No team-level sums 22.5 20.5
(5) Remove most tags 22.6 20.8
(1) to (5) 21.3 19.7

Table 3.7: English NLG ablation study, starting from a 3 best player baseline (the submitted
NLG model has 4 players). BLEU averages over 3 runs. Standard deviation ranges between
0.1 and 0.4.

selected in the metadata. We see that there is a sweet spot at 4, but surprisingly, increasing

the number of players up to 8 does not degrade BLEU significantly. We hypothesize that

because the players are sorted from best to worst, the models learn to ignore the last players.

From Table 3.7, we see that sorting players helps, but only slightly. Using only team-
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Stadium name (+)

REF: The Golden State Warriors ( 56 - 6 ) defeated the Orlando
Magic ( 27 - 35 ) 119 - 113 at Oracle Arena on Monday .
NLG: The Golden State Warriors ( 56 - 6 ) defeated the Orlando
Magic ( 27 - 35 ) 119 - 113 on Monday at Oracle Arena .

Team alias (+)

REF: The Heat held the Sixers to 38 percent shooting and
blocked 14 shots in the win .
NLG: The Sixers shot just 38 percent from the field and 32
percent from the three-point line , while the Heat shot 44 percent
from the floor and a meager 28 percent from deep .

Double-doubles or
triple-doubles (+)

REF: Kevin Love ’s 29-point , 13-rebound double-double led
the way for the Cavs , who ’d rested Kyrie Irving on Tuesday .
NLG: Love led the way for Cleveland with a 29-point ,
textbf 13-rebound double-double that also included three assists
and two steals .

Player injuries (-)
NLG: The Timberwolves ( 28 - 44 ) checked in to Saturday ’s
contest with an injury-riddled frontcourt , as Ricky Rubio ( knee )
and Karl-Anthony Towns ( ankle ) were sidelined .

Ranking (-)
NLG: The Heat ( 10 - 22 ) fell to 10 - 22 and remain in last place
in the Eastern Conference ’s Southeast Division .

Season-level
player stats (-)

NLG: It was a season-high in points for Thomas , who ’s now
textbf averaging 17 points per game on the season

Table 3.8: Correctly predicted information that is not explicitly in the metadata (+), or hal-
lucinations (-).

level information, and no information about players gives worse but still decent BLEU

scores.

Week day, player position or team-level aggregated scores can be removed without

hurting BLEU. However, information about next games seems useful. Interestingly, relying

on position only and removing most tags (e.g., <PTS>, <FT>) seems to be fine. In this case,

we also print all-zero stats, for the position of each statistic to be consistent across players

and games.

Train-test overlap on Rotowire. We found a significant overlap between Rotowire train

and test: 222 out of 728 Rotowire-test games are also in Rotowire-train (68/241 for DGT-

test). The corresponding stories are always different but bear many similarities (some sen-

tences are completely identical). Rotowire-train gets 24.2 BLEU when evaluated against
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Rotowire-test (subset of 222 stories). This gives us an estimate of human-level performance

on this task. Our submitted NLG model gets 21.8 on the same subset. This overlap may

cause an artificial increase in BLEU, that would unfairly favor overfitted models. Indeed,

when filtering Rotowire-train to remove games that were also in DGT test, we found a slight

decrease in BLEU (19.8 instead of 20.4).

3.6.4 Qualitative evaluation

As shown in Table 3.2, the NLG model (3-player) has several good properties besides co-

herent document-level generation and the ability to “copy” metadata. It has learned generic

information about the teams and players. As such, it can generate relevant information

which is absent from metadata (see Table 3.8). For example, the model correctly predicts

the name of the stadium where the game was played. This implies that it knows which team

is hosting (this information is encoded implicitly by the position of the team in the data),

and what is the stadium of this team’s city (not in the metadata). Other facts that are absent

from the metadata, and predicted correctly nonetheless, are team aliases (e.g., the Sixers)

and player nicknames (e.g., the Greek Freak). The model can also generate other surface

forms for the team names (e.g., the other Cavalier).

The NLG model can infer some information from the structured data, like double-digit

scores, “double-doubles” (e.g., when a player has more than 10 points and 10 assists) and

“triple-doubles”. On the other hand, some numerical facts are inaccurate (e.g., score differ-

ences or comparisons). Some facts which are not present in the structured data, like player

injuries, season-level player statistics, current ranking of a team, or timing information are

hallucinated. We believe that most of these hallucinations could be avoided by adding the

missing facts to the structured data. More rarely, model duplicates a piece of information.

Another of its flaws is a poor generalization to new names (team, city or player). This

can quickly be observed by replacing a team name by a fictional one in the metadata. In this

case, the model almost always reverts to an existing team. This may be due to overfitting,

as earlier checkpoints seem to handle unknown team names better, even though they give
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lower BLEU. This generalization property could be assessed by doing a new train/test split,

that does not share the same teams.

3.6.5 DGT shared task evaluation

In this section, we outline the summary of all evaluated systems in DGT shared task 2019

(listed in Table 3.9). We first briefly describe the evaluation metrics used for the evaluation

and then we show the results of all participated teams accordingly.

Evaluation Metrics. The systems submitted to DGT shared task are evaluated based on

textual accuracy and content accuracy. Standard automatic metrics, BLEU (Papineni et

al., 2002a) and ROUGE (Lin, 2004) has been used as the textual accuracy measures for

both MT and NLG tracks. To measure the content accuracy for the (monolingual) NLG

track, three metrics have been used: (i) Content Selection, which is a precision and recall

metric of unique relations extracted from a document, (ii) Relation Generation, which shows

the precision and number of unique relations extracted from a document, and (iii) Content

Ordering, which measures how well the system orders the the table records in the generated

document. These metrics introduced for the first time by (Wiseman et al., 2017).

System Ref.

EdiNLG (Puduppully, Mallinson, & Lapata, 2019)
Naver Labs Europe (Saleh et al., 2019)

FIT-Monash (Maruf & Haffari, 2019)
Microsoft (Werlen, Marone, & Hassan, 2019)

SYSTRAN-AI (Li, Crego, & Senellart, 2019)

Table 3.9: Participated systems in DGT share task. “Naver Labs Europe” is our submitted system.

Evaluation Results : All systems are evaluated for three tracks: MT, NLG, and MT+NLG.

The evaluation results for NLG track are listed in Figures 3.6, 3.7, 3.8, and 3.9 and in Tables

3.12, 3.13, 3.10, and 3.11. In the NLG-related evaluations, DGT shared task had two base-

lines: i) NCP+CC (pretrained): Pretrained model made available by (Puduppully, Dong, &
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Lapata, 2019a), and ii) NCP+CC (de): Model (Puduppully, Dong, & Lapata, 2019a) trained

only on RotoWire En-De. "Oracle" is the evaluation using reference summary.

The evaluation results of MT+NLG-related tasks are shown in Tables 3.14, 3.15, 3.16,

and 3.17. The results related to MT tasks also represented in Table 3.18. In MT and

MT+NLG-related tracks, the baseline is FairSeq (WMT’19), a pretrained (single) model

from (Ng et al., 2019b).

All the evaluation results reported in this section are based on the official website of

DGT-shared task 20198 and the DGT public leader-board 9.

NLG: Data→ En

ROUGE-L
System BLEU P R F

SYSTRAN-AI 17.59 27.96 26.97 25.6
SYSTRAN-AI-Detok 18.32 28.00 26.97 25.61

EdiNLG 17.01 29.34 24.31 25.38
Naver Labs Europe 20.52 30.83 27.77 27.29
Microsoft-GPT-90 13.03 21.39 23.33 21.34
Microsoft-GPT-50 15.17 25.43 22.66 22.93

Microsoft-End-to-End 15.03 28.79 22.29 23.86
NCP+CC(pretrained) 15.80 25.72 23.5 23.46

Table 3.10: DGT shared task’s result based on the textual accuracy for NLG (data→ En) track.

8https://sites.google.com/view/wngt19/home?authuser=0
9https://docs.google.com/spreadsheets/d/18ZYbK67uJ2yGlJ48IRWEIkVHN

_fP135Ecg-BVPhJeXI/edit#gid=2090491847
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Figure 3.6: DGT shared task’s result based on the textual accuracy for NLG (data → En) track
(WNGT, 2019).

NLG: Data→ En

RG CS CO
System P P R DLD

SYSTRAN-AI 83.22 31.74 44.9 20.73
SYSTRAN-AI-Detok 84.16 34.88 43.29 22.72

EdiNLG 91.41 30.91 64.13 21.72
Naver Labs Europe 94.08 41.13 54.20 25.64
Microsoft-GPT-90 88.70 32.84 50.58 17.36
Microsoft-GPT-50 94.35 33.91 53.82 19.30

Microsoft-End-to-End 93.38 32.4 58.02 18.54
NCP+CC(pretrained) 88.59 30.47 55.38 18.31

Oracle 100.00 100.00 100.00 100.00

Table 3.11: DGT shared task’s result based on the content accuracy for NLG (data→ En) track.

65



Chapter 3. From Machine Translation to Document Generation

Figure 3.7: DGT shared task’s result based on the content accuracy for NLG (data→ En)
track (WNGT, 2019).

NLG: Data→ De

ROUGE-L
System BLEU P R F

EdiNLG 10.95 25.94 17.99 19.7
Naver Labs Europe 16.13 25.06 23.67 23.09
Microsoft-GPT-90 10.43 18.34 20.26 18.43
Microsoft-GPT-50 11.84 21.71 19.52 19.68

Microsoft-End-to-End 11.66 25.09 19.16 20.67
NCP+CC(de) 7.29 18.75 16.18 16.06

Table 3.12: DGT shared task’s result based on the textual accuracy for NLG (data→ De) track.

NLG: Data→ De

RG CS CO
System P P R DLD

EdiNLG 70.23 23.40 41.83 16.06
Naver Labs Europe 79.47 29.40 54.31 20.62
Microsoft-GPT-90 75.05 31.23 41.32 16.32
Microsoft-GPT-50 82.79 34.81 42.51 17.12

Microsoft-End-to-End 80.30 28.33 49.13 16.54
NCP+CC(de) 49.69 21.61 26.14 11.84

Oracle 100.00 100.00 100.00 100.00

Table 3.13: DGT shared task’s result based on the content accuracy for NLG (data→ De) track.
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Figure 3.8: DGT shared task’s result based on the textual accuracy for NLG (data → De)
track (WNGT, 2019).

Figure 3.9: DGT shared task’s result based on the content accuracy for NLG (data→ De)
track (WNGT, 2019).

MT+NLG: Data + En→ De

ROUGE-L
System BLEU P R F

EdiNLG 36.85 59.07 55.62 57.25
Microsoft 47.90 65.98 65.33 65.61

Naver Labs Europe 48.24 66.38 65.50 65.90
FairSeq (WMT’19) 36.26 57.16 55.68 56.38

Table 3.14: DGT shared task’s result based on the textual accuracy for MT+NLG (data+En→ De)
track.
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MT+NLG: Data + En→ De

RG CS CO
System P P R DLD

EdiNLG 81.01 77.32 78.49 62.21
Microsoft 80.98 76.88 84.57 67.84

Naver Labs Europe 80.65 75.10 88.72 69.17
FairSeq (WMT’19) 81.64 77.67 75.82 60.83

Oracle 100.00 100.00 100.00 100.00

Table 3.15: DGT shared task’s result based on the content accuracy for MT+NLG (data + En→ De)
track.

MT+NLG: Data + De→ En

ROUGE-L
System BLEU P R F

EdiNLG 41.15 68.87 64.60 66.62
Microsoft 57.99 76.43 74.54 75.44

Naver Labs Europe 62.24 77.78 76.62 77.17
FairSeq (WMT’19) 42.91 69.94 67.50 68.66

Table 3.16: DGT shared task’s result based on the textual accuracy for MT+NLG (data + De→ En)
track.

MT+NLG: Data + De→ En

RG CS CO
System P P R DLD

EdiNLG 91.40 78.99 63.04 51.73
Microsoft 95.77 92.49 91.62 84.70

Naver Labs Europe 95.63 91.71 92.69 85.05
FairSeq (WMT’19) 93.53 83.33 84.22 70.47

Oracle 100.00 100.00 100.00 100.00

Table 3.17: DGT shared task’s result based on the content accuracy for MT+NLG (data + De→ En)
track

3.7 Conclusion

We participated in the 3 tracks of the DGT task: MT, NLG and MT+NLG. Our systems rely

heavily on transfer learning, from document-level MT (high-resource task) to document-

level NLG (low-resource task). Our submitted systems obtained the best results on each of
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System BLEU
(DE→ EN) (EN→ DE)

FIT-Monash 47.39 41.46
EdiNLG 41.15 36.85

Naver Labs Europe I 62.16 48.02
Naver Labs Europe II 58.22 47.90

Microsoft 57.99 47.90
FairSeq (WMT’19) 42.91 36.26

Table 3.18: DGT shared task’s result based on the textual accuracy for MT tracks.

the 6 tasks, and this regardless of the metric used.

For the MT task, the usual domain adaptation techniques performed well. The NMT+NLG

models did not show any significant improvement over pure NMT. The NMT models are al-

ready very good and probably do not need the extra context (which is generally encoded

in the source-language summary already). Finally, our NLG models, bootstrapped from

the NMT models, do fluent and coherent text generation and are even able to infer some

facts that are not explicitly encoded in the structured data. Some of their current limitations

(mostly hallucinations) could be solved by adding extra information (e.g., injured players,

current team rank, number of consecutive wins, etc.). Our approach is generalizable to other

data-to-text generation tasks specially when there is enough available in-domain data which

can be used for adapting the machine translation model to the target domain.

Our aggressive fine-tuning allowed us to specialize NMT models into NLG models, but

it will be interesting to study a single model can solve both tasks at once (i.e., with multi-task

learning), possibly in both languages and whether this multi-task learner is better adaptable

when NMT and NLG data are from two different domains.
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4 | Improving Low-resource NMT using Adaptive

Knowledge Distillation

Scarcity of parallel sentence-pairs poses a significant hurdle for training high-quality Neu-

ral Machine Translation (NMT) models in bilingually low-resource scenarios. A standard

approach is transfer learning, which involves taking a model trained on a high-resource

language-pair and fine-tuning it on the data of the low-resource MT condition of interest.

However, it is not clear generally which high-resource language-pair offers the best trans-

fer learning for the target MT setting. Furthermore, different transferred models may have

complementary semantic and/or syntactic strengths, hence using only one model may be

sub-optimal. In this chapter, we tackle this problem using knowledge distillation, where we

propose to distill the knowledge of ensemble of teacher models to a single student model.

As the quality of these teacher models varies, we propose an effective adaptive knowledge

distillation approach to dynamically adjust the contribution of the teacher models during

the distillation process. Experiments on transferring from a collection of six language pairs

from IWSLT to five low-resource language-pairs from TED Talks demonstrate the effective-

ness of our approach, achieving up to +0.9 BLEU score improvement compared to strong

baselines.
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4.1 Introduction

Neural models have been revolutionising machine translation (MT), and have achieved state-

of-the-art for many high-resource language pairs (M. X. Chen et al., 2018; Stahlberg, 2019;

Maruf et al., 2021). However, the scarcity of bilingual parallel corpora is still a major chal-

lenge for training high-quality NMT models (Koehn & Knowles, 2017). Transfer learning

by fine-tuning, from a model trained for a high-resource language-pair, is a standard ap-

proach to tackle the scarcity of the data in the target low-resource language-pair (Dabre et

al., 2017; Kocmi & Bojar, 2018; Saleh et al., 2019; Y. Kim, Gao, & Ney, 2019). How-

ever, this is a one-to-one approach, which is not able to exploit models trained for multiple

high-resource language-pairs for the target language-pair of interest. Furthermore, models

transferred from different high-resource language-pairs may have complementary syntactic

and/or semantic strengths, hence using a single model may be sub-optimal.

Another appealing approach is multilingual NMT, whereby a single NMT model is

trained by combining data from multiple high-resource and low-resource language-pairs

(Johnson et al., 2017; Ha et al., 2016; Neubig & Hu, 2018). However, the performance of

a multilingual NMT model is highly dependent on the types of languages used to train the

model. Indeed, if languages are from very distant language families, they lead to negative

transfer, causing low translation quality in the multilingual system compared to the counter-

parts trained on the individual language-pairs (Tan, Chen, et al., 2019; Oncevay et al., 2020).

To address this problem, (Tan, Ren, et al., 2019) has proposed a knowledge distillation ap-

proach to effectively train a multilingual model, by selectively distilling the knowledge from

individual teacher models to the multilingual student model. However, still all the language

pairs are trained in a single model with a blind contribution during training.

In this chapter, we propose a many-to-one transfer learning approach which can effec-

tively transfer models from multiple high-resource language-pairs to a target low-resource

language-pair of interest. As the fine-tuned models from different high-resource language

pairs can have complementary syntactic and/or semantic strengths in the target language-
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pair, our idea is to distill their knowledge into a single student model to make the best use

of these teacher models. We further propose an effective adaptive knowledge distillation

(AKD) approach to dynamically adjust the contribution of the teacher models during the

distillation process, enabling making the best use of teachers in the ensemble. Each teacher

model provides dense supervision to the student via dark knowledge (Hinton et al., 2015)

using a mechanism similar to label smoothing (Szegedy, Vanhoucke, Ioffe, Shlens, & Wo-

jna, 2016; Müller, Kornblith, & Hinton, 2019), where the amount of smoothing is regulated

by the teacher. In our AKD approach, the label smoothing coming from different teach-

ers is combined and regulated, based on the loss incurred by the teacher models during the

distillation process.

Experiments on transferring from a collection of six language pairs from IWSLT to five

low-resource language-pairs from TED Talks demonstrate the effectiveness of our approach,

achieving up to +0.9 BLEU score improvements compared to strong baselines.

4.2 Proposed Method

We address the problem of low-resource NMT, assuming that we have access to models for

high-resource languages, and data for low-resource model. Our approach relies on two main

steps, (i) Transferring from high-resource to low-resource language-pairs by fine tuning the

high-resource models using the small amount of bilingual data, and (ii) Adaptive distillation

of knowledge from the teacher models to the student model.

More specifically, given a training dataset for a low-resource language-pair, DLR :=

{(x1,y1), .., (xn,yn)} and multiple individual high-resource NMT models {θl}Ll=1 fine-

tuned on DLR (teachers), we are interested in training a single NMT model (student) by

adaptively distilling knowledge from all teachers based on their effectiveness to improve the

accuracy of the student. Knowledge distillation (KD) is a process of improving the perfor-

mance of a simple student model by using a distribution over soft labels obtained from an

expert teacher model instead of hard ground-truth labels (Hinton et al., 2015). The training
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Figure 4.1: Adaptive Knowledge Distillation. (Top) Teachers’ contribution weight calcu-
lation. T1:n and d1:n denote the freezed teacher models and their corresponding probability
distributions respectively. (Bottom) Training the student with adaptive knowledge distilla-
tion. S, SM , and GT denote the student model, softmax function, and ground-truth respec-
tively.

objective to distill the knowledge from a single teacher to the student involves,

−
∑

x,y∈DLR

∑|y|
t=1

∑
v∈V Q(v|y<t,x, θ

l) logP (v|y<t,x, θLR) (4.1)

where θl and θLR are the parameters of the teacher and student models, respectively. P (. |

.) is the conditional probability with the student model and Q(. | .) denotes the output

distribution of the teacher model. According to Equation 1, knowledge distillation provides

dense training signal as each word in the vocabulary (V ) contributes to the training objective,

regulated by a weight coming from the teacher. This is in contrast to the negative log-

likelihood training objective, which only provides supervision signal based on the correct

target words according to the bilingual training data,

LNLL(DLR, θLR) := −
∑

x,y∈DLR

∑|y|
t=1 logP (yt|y<t,x, θLR). (4.2)

Given a collection of teacher models {θl}Ll=1, we pose the following training objective,
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−
∑

x,y∈DLR

∑L
l=1 αl

∑|y|
t=1

∑
v∈V Q(v|y<t,x, θ

l) logP (v|y<t,x, θLR)

Ladaptive
KD (DLR, θLR, {θl}L1 ,α) :=

(4.3)

where αl regulates the contribution of the l-th teacher. We dynamically adjust the contri-

bution weights over the course of the distillation process, in order to effectively address the

knowledge gap of the student during the training process. This is achieved based on the

rewards (negative perplexity) attained by the teachers on the data, where these values are

passed through a softmax transformation to turn into a distribution. To stabilize these con-

tribution weights over the course of the training process, we smooth them using a running

geometric average.

The student model is trained end-to-end with a weighted combination of losses coming

from the ensemble of teachers and the data,

λ1LNLL(DLR, θLR) + λ2Ladaptive
KD (DLR, θLR, {θl}L1 ,α)

Ladaptive
ALL (DLR, θLR, {θl}L1 ,α) :=

(4.4)

where λ1 = 0.5 and λ2 is started from 0.5 and gradually increased to 3 following the an-

nealing function of (Bowman et al., 2016) in our experiments. Our approach is summarized

in Algorithm 4.1 and Figure 4.1.

4.3 Experiments

4.3.1 Settings

Data. We conduct our experiments on the European languages of IWSLT and TED datasets.

The language pairs with more than 100K training data are considered as high-resource and

the ones less than 15k are assumed as low-resource. The high-resource models are trained

on IWSLT2014 (ru, de, it, pl, nl, es-en). IWSLT 2014 MT task data (sl-en) (Cettolo et al.,

2014), and TED talk data (gl, et, nb, eu-en) (Qi et al., 2018) are used as low-resource lan-

guages. Detail about the preprocessing step and the statistics of data and language codes
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Algorithm 4.1: Soft Adaptive Knowledge Distillation
Input : DLR := {(x1,y1), .., (xn,yn)}, low-resource dataset, Individual models

{θl}Ll=1 for L language pairs, Total training epochs: N
Output: θLR: low-resource model
Randomly initialize low-resource model θLR ;
n = 0 ;
while n < N do

DLR = random_permute(DLR) ;
b1, .., bM = create_minibatches(DLR) ;
m = 1 ;
while m ≤M do

// compute contribution weights;
for l ∈ L do

∆l = −ppl(θl(bm)) ;

α = softmax(∆1, ..,∆L) ;
// compute the gradient ;
g = ∇θLR

Ladaptive
ALL (bm, θLR, {θl}L1 ,α) ;

// updates the parameters using the optimiser ADAM ;
θLR = update_param(θLR, g) ;
m = m+ 1 ;

n = n+ 1 ;

based on ISO 639-1 standard1 are listed in table 4.1.

Training configuration. Individual low-resource and high-resource NMT models are trained

on the low-resource data. The first trained from scratch and the later by finetuning with the

vanilla transformer architecture. We used a shared vocabulary across all languages used for

teachers and student models to make the knowledge distillation feasible. For multilingual

NMT, we train a single model with all high-resource and the up-sampled of low-resource

language pairs by using a decoder language embedding layer to identify the type of lan-

guage during the inference step. Multilingual selective knowledge distillation (Tan, Ren,

et al., 2019) is trained with all language pairs while matching the outputs of each low-

resource model simultaneously through knowledge distillation. For training our approach,

we fine-tune the high-resource models with low-resource languages and treat them as teach-

1http://www.loc.gov/standards/iso639-2/php/English_list.php
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Algorithm 4.2: Hard Adaptive Knowledge Distillation
Input : DLR := {(x1,y1), .., (xn,yn)}, low-resource dataset, Individual models

{θl}Ll=1 for L language pairs, Total training epochs: N
Output: θLR: low-resource model
Randomly initialize low-resource model θLR ;
n = 0 ;
while n < N do

DLR = random_permute(DLR) ;
b1, .., bM = create_minibatches(DLR) ;
m = 1 ;
while m ≤M do

// compute contribution weights;
for l ∈ L do

∆l = −ppl(θl(bm)) ;

α = softmax(∆1, ..,∆L) ;
// chooses one teacher by multinomial sampling from the α distribution ;
l ∼ α ;
// compute the gradient ;
g = ∇θLR

Ladaptive
ALL (bm, θLR, θ

l) ;
// updates the parameters using the optimiser ADAM ;
θLR = update_param(θLR, g) ;
m = m+ 1 ;

n = n+ 1 ;

ers. When training on the low-resource language, we load teacher models into memory and

train a single low-resource model (student) from scratch while using the weighted average

of teachers’ probabilities based on their contribution weight. In order to make clear how

different teachers contribute during training the student, we illustrate contribution weights

of all teachers for first 30 iterations of different mini-batches during the training in Figure

4.2. To measure the performance of the teachers, we choose perplexity rather than BLEU2

unlike (Tan, Ren, et al., 2019), since the perplexity shows how close the teacher’s estimated

distribution is to that of the ground truth (S. F. Chen & Goodman, 1999). The lower the

perplexity, the better teacher estimation.

2BLEU score (Papineni, Roukos, Ward, & Zhu, 2002b) aggregates the count of words and phrases (n-
grams) that overlap between machine and reference translations and does not measure the confidence of the
model regarding the estimated distribution.
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High-resource Languages

Language name Russian German Italian Spanish Polish Dutch

Code ru de it es pl nl

size (#sent(k)) 153\6.9\5.5 160\7.2\6.7 167\7.5\5.5 169\7.6\5.5 128\5.8\5.4 153\6.9\5.3

Low-resource Languages

Language name Basque Galician Norwegian Slovenian Estonian

Code eu gl nb sl et

size (#sent(k)) 3.3\0.3\0.3 8.4\0.6\1 14\0.8\0.8 14.5\1.4\0.6 7.7\0.7\1

Table 4.1: Language names and statistics for bilingual resources (Language → English),
(train\dev\test)

Model configuration. All models are trained with Transformer architecture

(Vaswani et al., 2017b), with the model hidden size of 256, feed-forward hidden size of

1024, and 2 layers, implemented in Fairseq framework (Ott et al., 2019). We use the Adam

optimizer (Kingma & Ba, 2015) and an inverse square root schedule with warm-up (maxi-

mum LR 0.0005). We apply dropout and label smoothing with a rate of 0.3 and 0.1 respec-

tively. The source and target embeddings are shared and tied with the last layer. We train

with half-precision floats on one V100 GPU, with at most 4028 tokens per batch.

4.3.2 Results

In Table 4.2, we compare our approach with individual NMT models, transferred models

from high-resource language pairs, multilingual NMT, and multilingual selective knowl-

edge distillation (Tan, Ren, et al., 2019). We selected the best models according to the

SacreBLEU3 score on the validation set. In our experiments, bold numbers indicate the

best results and underlined numbers show the second best ones. According to the con-

ducted experiments, transfer learning results are inline with the language family relation-

ships (Littell et al., 2017b). The high-resource languages which are linguistically close to

the low-resource languages have the most impact on low-resource model’s improvement.

Likewise, the contribution weights of different teachers are consistent with the performance

3SacreBLEU signature: BLEU+case.mixed+numrefs.1+ smooth.exp+tok.none+version.1.3.1
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Figure 4.2: Teachers’ contribution weights during the training of low-resource NMT models for “sl-
en", “gl-en", and “nb-en" language pairs, first 30 iterations for different mini-batches.

of the teachers as hypothesized (See Figure 4.2). According to Table 4.2, the multilingual

models (with and without knowledge distillation) are less accurate than at least one of the

transferred models from high-resource languages4. This suggests a weak link may exist

4Except for the Basque language which is extremely low-resource and is linguistically as distant to all the
languages in the multilingual setting.
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MT Task Individual Individual Teachers Multi-Lingual Multi-Teacher
x→en student ru de it es pl nl Uniform Selec. KD Adap. KD

sl 10.58 10.36 14.09 13.29 16.89 17.63 16.67 15.97 16.17 18.35

nb 26.38 32.24 32.77 31.90 30.04 30.66 32.86 30.06 31.08 33.72

gl 13.87 11.88 17.66 21.90 27.49 16.67 17.05 25.27 25.08 24.50

eu 6.50 9.54 10.68 9.92 11.00 10.50 10.02 10.11 11.03 11.38

et 10.15 12.18 14.85 14.93 15.53 14.25 13.66 14.91 15.15 16.20

Table 4.2: BLEU scores of the translation tasks from five languages into English. Our approach (last
column) is compared with individual NMT models, transferred models from high-resource language
pairs (individual teacher models), multilingual uniform NMT, and multilingual selective knowledge
distillation (Tan, Ren, et al., 2019) The bold numbers show the best result and the underlined numbers
indicate the second-best results.

between the impact of each high-resource language and its contribution during the train-

ing multilingually. Adaptive knowledge distillation compensates this blind collaboration

between teachers by weighting the teachers’ contributions particularly for the cases where

majority of teachers and student are linguistically close such as “nb-en". The qualitative

examples are presented in Section 4.4.3. It is worth noting that, we empirically observed

when there is more diversity in teachers (e.g, in case of “gl-en" in Table 4.2), adaptive KD

underperforms compared to the best teacher and we hypothesise this happens because there

is an empirically dominant teacher (“es"). This observation suggests that a prior effort for

choosing the proper teacher languages (e.g., based on the language family information) will

directly impact the performance of the low-resource NMT model.

4.4 Analysis

This section analyses our result more in detail based on three essential factors: Contribution

weight policy, contribution temperature scaling, and finally, the generated translation quality.
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4.4.1 Contribution Weight Analysis

To analyse the effect of teachers’ contribution weights, we compare three different contri-

bution settings:

• (i) Soft adaptive contribution: This contribution policy assigns the contribution weights

to all the teachers based on their performance per mini-batch as explained in Section

4.2 and Algorithm 4.1.

• (ii) Hard adaptive contribution: This contribution policy chooses one teacher by

multinomial sampling from the α distribution per mini-batch (See Algorithm 4.2).

• (iii) Equal contribution: This contribution policy gives simply all the teachers the

same contribution weights.

According to Table 4.3, the worst contribution weight setting is for equal contribution

especially for the languages with more inconsistent teachers (based on BLEU score) e.g.,

“gl-en" where hard adaptive performs better. However, in other cases with more consistent

teachers (based on BLEU score), soft adaptive performs the best (e.g.,“nb-en”).

Contribution weight setting gl-en nb-en

Soft Adaptive contribution 24.50 33.72
Hard adaptive contribution 25.67 33.55
Equal contribution 19.10 32.60

Table 4.3: Effect of different contribution settings.

4.4.2 Contribution Temperature Scaling

Through the experiments, we observed that when most of the teachers do not agree (in terms

of perplexity), a constant temperature is not an ideal option. An alternative is to adaptively

change the value of the temperature given the agreement among the teachers determined

based on the distance between the maximum and minimum perplexity between teachers
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which can be formulated as:

τ =
1− (max(S)−min(S))

L
(4.5)

where S is the output of the softmax operation on the negative perplexity of all L teach-

ers and (max(S)−min(S)) is inversely proportional to the extent of the agreement between

teachers. Such temperature scaling encourages the contribution of better teachers in case of

the existence of a disagreement, while it allows similar contributions when all teachers agree

on a mini-batch. Table 4.4 shows the effect of adaptive temperature for two languages.

Contribution temperature eu-en sl-en

with adaptive temp 11.38 18.35
without temp 10.52 18.05

Table 4.4: Effect of adaptive temperature.

4.4.3 Translation Examples

Table 4.5 showcases the generated English translations by the individual student, all the

teachers, and student trained through adaptive knowledge distillation from Norwegian lan-

guage. This example shows that while there is a diversity between different teachers’ trans-

lations e.g., for the verb of “provoke", the student is impacted by the agreement of the

majority of teachers. Moreover, this example shows that our adaptive KD model captures

the best of all teachers resulting in a higher quality translation.

4.5 Conclusion

In this chapter, we presented an adaptive knowledge distillation approach to improve NMT

for low-resource languages. We addressed the inefficiency of the original transfer learning

and multilingual learning by making wiser use of all high-resource languages and models

in an effective collaborative learning manner. Our approach shows its effectiveness in the

translation of low-resource languages, especially when there is complementary knowledge
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Model Translation

Ref And great creativity is needed to do what it does so well
: to provoke us to think differently with dramatic creative
statements .

Individual kepler great mission mission to do it as well : to grow us to
think with dramatic creativity .

Teacher (ru-en) and the first creativity needed to do what it does : to pro-
mote us to think about the dramatic creativity .

Teacher (de-en) now , the future creativity needs to do it as it does : to
provoke us to think differently with dramatic creative ex-
pression .

Teacher (it-en) now , the future creativity is needed to do what it does so
well : to provocate us to think differently about dramatic
reactive .

Teacher (es-en) the future of creativity to do that as it’s doing so good : to
provocate us to think differently about dramatic creativity
.

Teacher (pl-en) the future of creativity to do what it does so good : to
promise others with dramatic creativity .

Teacher (nl-en) now , the frequent creativity is to make it that it makes so
good : to provoke us with dramatic creative .

Proposed Adapt. KD now , they need great creativity to do what it does so well
: provoke us to think differently with dramatic creativity.

Table 4.5: The generated outputs from the individual student, all teachers, and student
trained with multi-teachers (Proposed Adapt. KD) for “nb-en" MT task. Some of the correct
keyword translations are indicated with green colour while hallucinations are represented by
red. The bold-green shows the best of the teachers’ output which is also captured with the
student.

in multiple high-resource languages from the same linguistic family and it is not explicitly

clear which language has more impact in every mini-batch of low-resource training data.

Experiments on the translation of five extremely low-resource languages to English show

improvements compared to the strong baselines.
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Distillation

Following the previous chapter, we continue studying the problem of low-resource Neu-

ral Machine Translation using knowledge distillation with the focus on using multiple lan-

guages in a multilingual translation regime while avoiding the negative transfer. Multilin-

gual Neural Machine Translation (MNMT) trains a single NMT model that supports trans-

lation between multiple languages, rather than training separate models for different lan-

guages. Learning a single model can enhance the low-resource translation by leveraging

data from multiple languages pairs in a unified training process. However, the performance

of an MNMT model is highly dependent on the type of languages used in training, as trans-

ferring knowledge from a diverse set of languages degrades the translation performance

due to negative transfer. In this chapter, we propose a Hierarchical Knowledge Distillation

(HKD) approach for MNMT which capitalises on language groups generated according to

typological features and phylogeny of languages to overcome the issue of negative transfer.

HKD generates a set of multilingual teacher-assistant models via a selective knowledge dis-

tillation mechanism based on the language groups, and then distills the ultimate multilingual

model from those assistants in an adaptive way. Experimental results derived from the TED

dataset with 53 languages demonstrate the effectiveness of our approach in avoiding the

negative transfer effect in MNMT, leading to an improved translation performance (about 1
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BLEU score on average) compared to strong baselines. In summary, this chapter serves a

two-fold purpose: to demonstrate how hierarchical knowledge distillation is helpful to ad-

dress the low-resource challenges in multilingual setting, and how cluster-based teachers in

a hierarchy are effective to avoid negative transfer.

5.1 Introduction

The surge over the past few decades in the number of languages used in electronic texts

for international communications has promoted Machine Translation (MT) systems to shift

towards multilingualism. However, most successful MT applications, i.e., Neural Machine

Translation (NMT) systems, usually rely on supervised deep learning, which is notoriously

data-hungry (Koehn & Knowles, 2017). Despite decades of research, high-quality annotated

MT resources are only available for a subset of the world’s thousands of languages (Paolillo

& Das, 2006). Hence, data scarcity is one of the significant challenges which comes along

with the language diversity and multilingualism in MT. One of the most widely-researched

approaches to tackle this problem is unsupervised learning which takes advantage of avail-

able unlabeled data in multiple languages (Lample, Conneau, Denoyer, & Ranzato, 2017;

Arivazhagan et al., 2019; Snyder et al., 2010; Xu, Qin, Wang, & Liu, 2019). However,

unsupervised approaches have relatively lower performance compared to their supervised

counterparts (Dabre et al., 2020). Nevertheless, the performance of the supervised MNMT

models is highly dependent on the types of languages used to train the model (Tan, Chen,

et al., 2019). If languages are from very distant language families, they can lead to nega-

tive transfer (Torrey & Shavlik, 2010; Rosenstein, 2005), causing lower translation quality

compared to the individual bilingual counterparts.

To address this problem, some improvements have been achieved recently with so-

lutions that employ some sort of supervision to guide MNMT using linguistic typology

(Oncevay et al., 2020; Chowdhury, España-Bonet, & van Genabith, 2020; Kudugunta,

Bapna, Caswell, & Firat, 2019; Bjerva, Östling, Veiga, Tiedemann, & Augenstein, 2019).

The linguistic typology provides this supervision by treating the world’s languages based on
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their functional and structural characteristics (O’Horan et al., 2016). Taking advantage of

this property, which explains both language similarity and language diversity, we aim in our

approach to combine two solutions for training an MNMT model: (a) creating a universal,

language-independent MNMT model (Johnson et al., 2017); (b) systematically designing

the possible variations of language-dependent MNMT models based on the language rela-

tions (Maimaiti et al., 2019).

Our approach to preventing negative transfer in MNMT is to group models which be-

have similarly in separate language clusters. Then, we perform a Knowledge Distillation

(KD) (Hinton et al., 2015) approach by selectively distilling the bilingual teacher models’

knowledge in the same language cluster to a multilingual teacher-assistant model. The in-

termediate teacher-assistant models are representative of their own language cluster. We

further adaptively distill knowledge from the multilingual teacher-assistant models to the

ultimate multilingual student. In summary, our main contributions are as follows:

• We use cluster-based teachers in a hierarchical knowledge distillation approach to prevent

negative transfer in MNMT. Different from the previous cluster-based approaches in mul-

tilingual settings (Oncevay et al., 2020; Tan, Chen, et al., 2019), our approach makes use

of all the clusters with a universal MNMT model while retaining the language relatedness

structure in a hierarchy.

• We distill the ultimate MNMT model from multilingual teacher-assistant models, each

of which represents one language family and usually perform better than the individual

bilingual models from the same language family. Thus, the cluster-based teacher-assistant

models can lead to a better knowledge distillation compared to a diverse set of bilingual

teacher models as used in multilingual KD (Tan, Ren, et al., 2019).

• We explore a mixture of linguistic features by utilizing different clustering approaches

to obtain the cluster-based teacher-assistants. As the language groups created by differ-

ent language feature vectors can contribute differently to translation, we adaptively distill

knowledge from teacher-assistant models to the ultimate student to improve the knowl-

edge gap of the student.
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• We perform extensive experiments on 53 languages, showing the effectiveness of our ap-

proach in avoiding negative transfer in MNMT, leading to an improved translation perfor-

mance (about 1 BLEU score on average) compared to strong baselines. We also conduct

comprehensive ablation studies and analysis, demonstrating the impact of language clus-

tering in MNMT for different language families and in different resource-size scenarios.

5.2 Related Work

The majority of works on MNMT mainly focus on different architectural choices varying in

the degree of parameter sharing in the multilingual setting. For example, the works based

on the idea of minimal parameter sharing share either encoder, decoder, or attention module

(Firat et al., 2017; Lu et al., 2018), and those with complete parameter sharing tend to

share entire models (Johnson et al., 2017; Ha et al., n.d.). In general, these techniques

implicitly assume that a set of languages is pre-given without considering the positive or

negative effect of language transfer between the languages shared in one model. Hence,

they can usually achieve comparable results with individual models (trained with individual

language pairs) only when the languages are less diverse or the number of languages is small.

When several diverse language pairs are involved in training an MNMT system, the negative

transfer (Torrey & Shavlik, 2010; Rosenstein, 2005) usually happens between more distant

languages, resulting in degraded translation accuracy in the multilingual setting. To address

this problem, Tan, Chen, et al. (2019) suggested a clustering approach using either prior

knowledge of language families or using language embedding. They obtained the language

embedding by retrieving the representation of a language tag which is added to the input of

an encoder in a universal MNMT model. Later, Oncevay et al. (2020) introduced another

clustering technique using the multi-view language representation. They fused language

embeddings learned in an MNMT model with syntactic features of a linguistic knowledge

base (Dryer & Haspelmath, 2013). Tan, Ren, et al. (2019) proposed a knowledge distillation

approach which transfers knowledge from bilingual teachers to a multilingual student when

the accuracy of teachers are higher than the student. Their approach eliminates the accuracy
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gap between the bilingual and multilingual NMT models. However, we argue that distilling

knowledge from a diverse set of parent models into a student model can be sub-optimal,

as the parents may compete instead of collaborating with each other, resulting in negative

transfer due to language discrepancy.

5.3 Technical Background

As we already discussed the technical aspects related to Neural Machine Translation and

Knowledge Distillation in Chapter 2, here we only focus on the background which is tech-

nically related linguistic topology and language clustering.

5.3.1 Linguistic Typology

Language, a structured system of communication used by humans, evolved and diversified

over time. The language divisions are mostly developed arbitrarily or based on the polit-

ical or geographical basis (e.g., “German”, “Japanese”, “Hindi”). In a scientific study of

language, called linguistic typology, languages have been studied and classified based on

“functional” and “structural” properties to explain both the similarities and the structural

diversity of languages (Campbell, 2013; O’Horan et al., 2016). One of the simple and early

used property by typologists was word order in different languages like SVO (Subject, Verb,

Object), VSO, SOV, etc. This property then extended to a wide range of features such as

phonological, semantic, lexical, and morphosyntactic properties 1.

The linguistic study can be categorized based on three typologies: i) Qualitative typol-

ogy, which defines the language features and their diversity. ii) Quantitative typology, which

measures and analyzes the linguistic features across empirical data, and iii) Theoretical ty-

pology, which explains the pattern observed in qualitative typology (Bickel, 2007).

The theoretical typology is not always in line with authenticated theories of language

1We direct the interested readers to (Bickel, 2007; Daniel, 2011) for an in-depth overview about these
features.
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relations based on geographical or historical parameters. The typological classification of

languages supports the linguistic theories of causation, such as historical, areal or phyloge-

netic relations, however, these causation hypotheses come after theoretical typology derived

from the measurements and analyses of the linguistic features across empirical data (Bickel,

2007). Therefore, Turkish and Korean, which are usually considered as highly dissimilar

languages based on lexical features, are categorized as structurally similar based on syn-

tactic features. Such deep and abstract evidence of similarity is of high value for training

deep neural networks in NLP, which essentially tries to model cross-linguistic relations and

variations rather than explain language relations (O’Horan et al., 2016).

Although, much invaluable information conducted in linguistic studies is not usable by

NLP due to the inconsistent definitions across languages, there are some publicly accessible

databases suitable for NLP applications. O’Horan et al. (2016) introduced the most impor-

tant available databases in their survey on the use of typological information in NLP and we

also show their list here in Table 5.1 for further reference. The table represents some ba-

sic information such as type, coverage, and additional notes about the following databases:

Syntactic Structures of the World’s Languages (SSWL) (C. Collins & Kayne, 2009), the

World Atlas of Language Structures (WALS) (Dryer & Haspelmath, 2013) which is the

most popular and commonly-used typological resource in NLP, the Phonetics Information

Base and Lexicon (PHOIBLE) (Moran & McCloy, 2019), the URIEL Typological Com-

pendium (Littell et al., 2017a), the Atlas of Pidgin and Creole Language Structures (APiCS)

(Michaelis et al., 2013), and the Lyon-Albuquerque Phonological Systems Database (LAP-

SyD) (Maddieson et al., 2013).

Thanks to the aforementioned available databases, in recent years, linguistic typology

either explicitly or implicitly has widely used in many of the current popular solutions to

multilingual NLP, such as: transfer learning from high-resource to low-resource languages

(Padó & Lapata, 2005; Khapra, Joshi, Chatterjee, & Bhattacharyya, 2011; Das & Petrov,

2011; Täckström, McDonald, & Uszkoreit, 2012), joint multilingual learning (Snyder et al.,

2010; S. B. Cohen, Das, & Smith, 2011; Navigli & Ponzetto, 2012), and development of

88



Chapter 5. Multilingual NMT with Hierarchical Knowledge Distillation

Accessible Databases in Linguistic Typology

Name Type Coverage Notes

WALS
Phonology

Morphosyntax
Lexico Semantics

2676 languages;
192 features;

17% of features have values Defines language features and provides values
for a large set of languages; originally intended
for study of a real distribution of features.

SSWL Morphosyntax

262 languages;
148features;

45% of features have values Similar to WALS, but differs in being fully
open to public editing (Wikipedia-style), and by
the addition of numerous example sentences for
each feature

APiCS

Phonology
Morphosyntax

Lexicosemantics

76 languages;
130 features;

18526 examples Designed to allow comparison with WALS

LAPSyD Phonology 422 languages Documents a broader range of features than
PHOIBLE, including syllable structures and
tone systems; provides bibliographic informa-
tion and links to recorded samples

PHOIBLE Phonology
1672 languages;
2160 segments Collates and standardises several phonological

segmentation databases, in addition to new data

URIEL

Phonology
Morphosyntax

Lexicosemantics

8070 languages/dialects;
284 features;

439000 feature values Collates features from WALS, SSWL,
PHOIBLE, and ‘geodata’ (e.g. language
names, ISO codes,etc.) from sources such
as Glottolog and Ethnologue; includes cross-
lingual distance measures based on typological
features; provides estimates for empty feature
values

Table 5.1: An overview of the most commonly used publicly available databases of typological in-
formation suitable for application in NLP (O’Horan et al., 2016). The full name and references of the
abbreviations are as follow: the World Atlas of Language Structures (WALS) (Dryer & Haspelmath,
2013), the Syntactic Structures of the World’s Languages (SSWL) (C. Collins & Kayne, 2009),
the Atlas of Pidgin and Creole Language Structures (APiCS) (Michaelis et al., 2013), the Lyon-
Albuquerque Phonological Systems Database (LAPSyD) (Maddieson et al., 2013), the Phonetics
Information Base and Lexicon (PHOIBLE) (Moran & McCloy, 2019), and the URIEL Typological
Compendium (Littell et al., 2017a).

universal models (De Marneffe et al., 2014; Nivre et al., 2016). On the other hand, the neural

language models trained on a multilingual text corpus can be used to induce distributed

representations of languages and capture the abstract features of languages which are not

available in KBs. This is a case which shows how NLP and linguistic typology can interact

and benefit one another and lead the future of NLP and linguistic-related sciences.
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5.3.2 Language Clustering

The goal of language clustering and language ranking is to choose similar and dominant

languages to perform the best transfer learning in different tasks, such as multilingual NMT.

Language vectors are essential properties to do the language clustering. There are three

general ways to define language vectors in NLP:

Spars language vectors from typological knowledge bases (KB) database. Linguis-

tic typology does support and investigate language variation based on their functional and

structural features. Categorical language features are obtainable from several typological

knowledge bases (KB) that have been created and publicly available (Littell et al., 2017b)

(See table 5.1). Nevertheless, the sparsity and heterogeneity in those KB databases in for-

mat, semantics, language, and feature naming is still an open challenge for integrating them

to end-to-end NLP algorithms. For example, the World Atlas of Language Structure (Dryer

& Haspelmath, 2013) which is currently the most commonly-used typological resource in

NLP due to its broad coverage of features and languages, has only a mean coverage of 14%

per language.

Dense learned language embedding vectors from multilingual NLP tasks. To over-

come the challenges of using sparse language vectors, dense data-driven language represen-

tations have emerged. These language representations are computed from multilingual NLP

tasks like language modelling (Östling & Tiedemann, 2016) or neural machine translation

(NMT) (Malaviya, Neubig, & Littell, 2017). Unlike the sparse language vectors, which treat

languages as discrete categories, dense language embedding vectors allow the interpolation

between languages and capture the linguistic relations. However, due to the limitation of

available corpora, language diversity in the task-learned representations is limited.

The mix of KB and task-learned language vectors. To leverage the best of both views

(KB and task-learned) with minimal information loss, (Oncevay et al., 2020) fuse both views

using singular vector canonical correlation analysis and investigate how the sparse and dense
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language vectors from both views can benefit from each other. They project a shared space

of discrete and continuous features using a variant of canonical correlation analysis (Raghu,

Gilmer, Yosinski, & Sohl-Dickstein, 2017).

In this work, we take advantage of all of the above language vectors for clustering

similar languages. We train the multilingual expert student in our knowledge distillation

approach while distilling knowledge from similar languages in the clusters. Using four

different clustering approaches obtained from different language vectors allows us to access

to four clusters for each language representing different features per language.

5.4 Hierarchical Knowledge Distillation

We address the problem of data scarcity and negative transfer in MNMT with a Hierar-

chical Knowledge Distillation (HKD) approach. The hierarchy in HKD is constructed in

such a way that the node structure captures the similarity structure and the relatedness of the

languages. Specifically, in an inverse pyramidal structure as shown in Figure 5.1, the root

node corresponds to the ultimate MNMT model that we aim to train, the leave nodes corre-

spond to each individual bilingual NMT models, and the non-terminal nodes represent the

language clusters. Our hypothesis is that leveraging common characteristics of languages

in the same language group, which is formed using clustering algorithms based on the ty-

pological properties of languages (O’Horan et al., 2016), the HKD method can train a high

quality MNMT model by distilling knowledge from related languages, rather than diverse

ones.

Our HKD approach consists of two knowledge distillation mechanisms, providing two

levels of supervision for training the ultimate MNMT model (illustrated in Figure 5.1), in-

cluding: (i) selective distillation of knowledge from individual bilingual teachers to the

multilingual intermediate teacher-assistants, each of which corresponds to one language

group; and (ii) adaptive distillation of knowledge from all related cluster-wise teacher-

assistants to the super-multilingual ultimate student model in each mini-batch of training
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Figure 5.1: HKD approach: In the first phase of knowledge distillation, aka “Selective KD”, the
knowledge is transferred from bilingual teacher models per clusters (orange circles) to the multilin-
gual teacher-assistant models (green circles). For example Tl1 , Tl2 , Tl4 , and Tl6 are belonged to one
cluster and distilled to teacher-assistant model Tc1 . In the second KD phase, aka “Adaptive KD”,
knowledge is transferred from ensemble of intermediate related teacher-assistant models to the ulti-
mate student (red circle) adaptively.

per language pair. Note that we do not utilize multilingual adaptive KD in both distillation

phases as we need to have the predictions of all the relevant experts in adaptive KD. Using

adaptive KD for both stages is particularly impractical when there is a huge set of diverse

teachers as in the first phase. Hence, in the first distillation phase, we aim to generate the

cluster-wise teacher assistants using selective KD as the pre-requisites for the adaptive KD

phase. The main steps of HKD are elaborated as follows:

Clustering: Clustering can be conducted using different language vectors such as: i) sparse

language vectors from typological knowledge base (KB) databases, ii) dense learned lan-

guage embedding vectors from multilingual NLP tasks, and iii) the combination of KB

and task-learned language vectors. The implicit causal relationships between languages are

usually learned from translation tasks; the genetic, the geographical, and the structural sim-

ilarities between languages are extracted from typlogical KBs (Bjerva et al., 2019). Thus,

the language groups created by different language vectors can contribute differently to the

translation and it is not quite clear which types of language features are more helpful in

MNMT systems (Oncevay et al., 2020). For example, “Greek” can be clustered with “Ara-
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bic” and “Hebrew” based on the mix of KB and task-learned language vectors. Meanwhile,

it can be clustered with “Macedonian” and “Bulgarian” based on NMT-learned language

vectors. Therefor, we cluster the languages based on all types of language representations

and propose to explore a mixture of linguistic features by utilizing all clusters in training

the ultimate MNMT student. So, given a training dataset consisting of L languages and

K clustering approaches, where each clustering approach creates n clusters, we are inter-

ested in training a many-to-one MNMT model (ultimate student) by hierarchically distilling

knowledge from all M clusters to the ultimate student, where M :=
∑K

k=1 nk.

Multilingual selective knowledge distillation: Assume we have a language cluster that

consists of L′ languages, where l ∈ {1, 2, . . . , L′}. Given a collection of pretrained indi-

vidual teacher models {θl}L′

l=1, each handling one language pair in {Dl}L′

l=1, and inspired

by (Tan, Ren, et al., 2019), we use the following knowledge distillation objective for each

language l in the cluster.

−
∑

x,y∈Dl

∑|y|
t=1

∑
v∈V Q(v|y<t,x, θ

l) logP (v|y<t,x, θ
c)

Lselective
KD (Dl, θc, θl) :=

(5.1)

where θc is the teacher assistant model, |V | is the vocabulary set, P (· | ·) is the conditional

probability of the teacher assistant model, and Q(· | ·) denotes the output distribution of

the bilingual teacher model. According to Eq. (5.1), knowledge distillation regularises the

predictive probabilities generated by a cluster-wise multilingual model with those generated

by each individual bilingual models. Together with the translation loss (LNLL), we have the

following selective KD loss to generate the intermediate teacher-assistant model:

(1− λ)LNLL(Dl, θc) + λLselectiveKD (Dl, θc, θl)

LselectiveALL (Dl, θc, θl) :=
(5.2)

where λ is a tuning parameter that balances the contribution of the two losses. Instead of

using all language pairs in Eq (5.1), we used a deterministic but dynamic approach to exclude

language pairs from the loss function if the multilingual student surpasses the individual
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Algorithm 5.1: Multilingual Selective Knowledge Distillation (Tan, Ren, et al., 2019)

Input : Training corpora: {Dl}Ll=1; where Dl := {(xl
1,y1), .., (x

l
n,yn)};

List of all languages: L;
Individual models {θl}L′

l=1;
List of language pairs per cluster: L′ ;
Total training epochs: N ;
Distillation check step: Ncheck;
Threshold of distillation accuracy: T

Output : θc: multilingual model for each cluster,

Randomly initialize multilingual model θc, accumulated gradient g = 0, distillation flag f l = True for l ∈ L′ ;
n = 0 ;
while n < N do

g = 0;
for l ∈ L′ do

Dl = random_permute(Dl) ;
bl1, .., b

l
J = create_minibatches(Dl) ,where bl = (xl, y) ;

j = 1 ;
while j ≤ J do

if f l == True then
//compute and accumulate the gradient on loss Lselective

ALL ;
g = ∇θcLselective

ALL (blj , θ
c, θl) ;

// updates the parameters using the optimiser ADAM ;
θc = update_param(θc, g) ;

else
//compute and accumulate the gradient on loss LNLL ;
g = ∇θcLNLL(b

l
j , θ

c, θl) ;
// updates the parameters using the optimiser ADAM ;
θc = update_param(θc, g) ;

j = j + 1 ;

if N%Ncheck == 0 then
for l ∈ L′ do

if Accuracy(θc) < Accuracy(θl)+ T then
f l = True

else
f l = False

n = n+ 1 ;

models on some language pairs during the training, which makes the training selective.

This selective distillation process2 is applied to all clusters obtained from different clus-

tering approaches. It is noteworthy that (i) the selective knowledge distillation generates a

teacher-assistant model for each cluster, i.e., c ∈ {1, 2, . . . ,M}; (ii) each language can be in

multiple clusters due to the use of different language representations, thus there can be more

than one effective teacher-assistant model for any given language pair (illustrated in Fig-

2The training algorithm of selective knowledge distillation is summarized in Alg. 5.1, which is similar to
the one used in (Tan, Ren, et al., 2019).
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ure 5.2). So for each language pair, we have a set of effective clusters: c ∈ {1, 2, . . . , Csim}.

Figure 5.2: Effective teachers for each language after clustering. C refers to the clustering type and
T refers to the Teacher. For language a, we have two effective teachers: T 1

C1
and T 1

C2
.

Multilingual adaptive knowledge distillation: Given a collection of effective teacher-

assistant models {θc}Csim
c=1 , where Csim is the number of effective clusters per language,

we devise the following KD objective for each language pair,

−
∑Csim

c=1

∑
x,y∈Dl αc

∑|y|
t=1

∑
v∈V Q(v|y<t,x, θ

c) logP (v|y<t,x, θs)

LadaptiveKD (Dl, θs, {θc}Csim
1 ,α) :=

(5.3)

where α dynamically weigh the contribution of the teacher-assistants/clusters. α is com-

puted via an attention mechanism based on the rewards (negative perplexity) attained by the

teachers on the data, where these values are passed through a softmax transformation to turn

into a distribution (Saleh et al., 2020). This adaptive distillation of knowledge allows the

student model to get the best of teacher-assistants (which are representative of different lin-

guistic features) based on their effectiveness to improve the knowledge gap of the student.

The total loss function then becomes a weighted combination of losses coming from the

ensemble of teachers and the data,
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λ1LNLL(Dl, θs) + λ2Ladaptive
KD (Dl, θs, {θc}Csim

1 ,α)

Ladaptive
ALL (Dl θs, {θc}Csim

1 ,α) :=
(5.4)

The training process is summarized in Alg. 5.2.

Algorithm 5.2: Multilingual Adaptive KD
Input : Training corpora: {Dl}Ll=1, where Dl := {(xl

1,y1), .., (xl
n,yn)} ;

List of languages:L;
List of language clusters: {Cm}Mm=1 ;
Cluster-based MNMT models: {θc}Mc=1 ;
Total training epochs: N ;

Output : Ultimate multilingual student model: θs;

Randomly initialize multilingual model θs, accumulated gradient g = 0, distillation flag f l = True for l ∈ L ;
n = 0 ;
while n < N do

g = 0;
Csim = [];
for l ∈ L do

// find the effective clusters with similar languages;
for c ∈ {C}M1 do

if l ∈ c then
Csim.append(c)

Dl = random_permute(Dl) ;
bl1, .., b

l
J = create_minibatches(Dl)

//where bl = (xl, y) ;
j = 1 ;

while j ≤ J do
// compute contribution weights;
for c ∈ Csim do

∆c = −ppl(θc(blj)) ;

α = softmax(∆1, ..,∆c) ;
//compute the gradient on loss Ladapt.

ALL ;
g = ∇θsL

adapt.
ALL (blj , θs, {θc}C1 ,α) ;

// updates the parameters ;
θs = update_param(θs, g) ;
j = j + 1 ;

n = n+ 1 ;

5.5 Experiment Settings

In this section, we study the efficacy of our HKD approach equipped with language clusters

generated using different language features.

Data: We conducted extensive experiments on a parallel corpus (53 languages→English)
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Figure 5.3: The size of the training data (based on the number of sentences) for TED-53
bilingual resources (Language→English)

from TED talks transcripts 3 created and tokenized by Qi et al. (2018). This corpus has 26%

of language pairs having less than or equal to 10k sentences (extremely low-resource), and

33% of language pairs having less than 20k sentences (low-resource). All the sentences were

segmented with BPE segmentation (Sennrich, Haddow, & Birch, 2016c). We used a shared

vocabulary across all languages used for teachers and student models to make the knowledge

distillation feasible. Detail about the size of training data and language codes based on ISO

639-1 standard4 are listed in Table 5.2 and visualised in Figure 5.3. We concatenated all

data which have the Portuguese-related languages in the source (pt→en, pt-br→en). We

also concatenated all data with French-related languages in the source (fr→en, fr-ca→en).

We removed any sentences in the training data which has overlap with any of the test sets.

For multilingual training, as a standard practice (X. Wang, Tsvetkov, & Neubig, 2020),

we up-sampled the data of low-resource language pairs to make all language pairs having

roughly the same size and adjust the distribution of training data.

Clustering: We clustered all the languages based on the three different types of repre-

sentations discussed in Section 5.3.2 in order to take advantage of a mixture of linguistic

features while training the ultimate student. Following Oncevay et al. (2020), we adopted

their multi-view language representation approach that uses Singular Vector Canonical Cor-

3https://github.com/neulab/word-embeddings-for-nmt
4http://www.loc.gov/standards/iso639-2/php/English_list.php
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TED-53 Languages

Language name Kazakh Belarusian Bengali Basque Malay Bosnian

Code kk be bn eu ms bs

train-size (#sent(k)) 3.3 4.5 4.6 5.1 5.2 5.6

Language name Azerbaijani Urdu Tamli Mongolian Marathi Galician

Code az ur ta mn mr gl

train-size (#sent(k)) 5.9 5.9 6.2 7.6 9.8 10

Language name Kurdish Estonian Georgian Bokmal Hindi Slovenian

Code ku et ka nb hi sl

train-size (#sent(k)) 10.3 10.7 13.1 15.8 18.7 19.8

Language name Kurdish Estonian Georgian Bokmal Hindi Slovenian

Code ku et ka nb hi sl

train-size (#sent(k)) 10.3 10.7 13.1 15.8 18.7 19.8

Language name Armenian Burmese Finnish Macedonian Lithuanian Albanian

Code hy my fi mk lt sq

train-size (#sent(k)) 21.3 21.4 24.2 25.3 41.9 44.4

Language name Danish Swedish Slovak Indonesian Thai Czech

Code da sv sk id th cs

train-size (#sent(k)) 44.9 56.6 61.4 87.4 96.9 103

Language name Ukrainian Croatian Greek Serbian Hungarian Persian

Code uk hr el sr hu fa

train-size (#sent(k)) 108.4 122 134.3 136.8 147.1 150.8

Language name German Japanese Vietnamese Bulgarian Polish Romanian

Code de ja vi bg pl ro

train-size (#sent(k)) 167.8 168.2 171.9 174.4 176.1 180.4

Language name Turkish Dutch Chinese Spanish Italian Korean

Code tr nl zh es it ko

train-size (#sent(k)) 182.3 183.7 184.8 195.9 204.4 205.4

Language name Russian Hebrew French Arabic Portuguese

Code ru he fr ar pt

train-size (#sent(k)) 208.4 211.7 212 213.8 236.4

Table 5.2: Bilingual resources of 53 Languages → English from TED dataset. Language names,
language codes based on ISO 639-1 standard5, and training size based on the number of sentences in
bilingual resources are shown in this table.

relation Analysis – SVCCA (Raghu et al., 2017) to fuse the one-hot encoded KB represen-

tation obtained from syntactic features of WALS (Dryer & Haspelmath, 2013) and a dense

NMT-learned view obtained from MNMT (Tan, Chen, et al., 2019). Specifically, SVCCA-

53 uses 53 languages of TED dataset to build the language representations and generates
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Clustering type (1)

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

Japanese
Korean

Mongolian
Burmese

Malay
Thai

Vietnamese
Chinese

Indonesian

Marathi
Tamli

Bengali
Georgian

Kurdish
Persian
Kazakh
Basque
Hindi
Urdu

Greek
Arabic
Hebrew

Turkish
Azerbaijani

Finnish
Hungarian
Armenian

Ukrainian
Polish

Russian
Macedonian
Lithuanian
Belarusian

Slovak

Czech
Estonian
Albanian
Croatian
Bosnian

Slovenian
Serbian

Bulgarian
Romanian
Spanish
Galician
Italian

Portuguese

French
Danish

Swedish
Dutch

German
Bokmal

Table 5.3: Clustering type (1): SVCCA-53 (Oncevay et al., 2020), clustering based on multi-view
representation using both syntax features of WALS and language vectors learned by multilingual
NMT model trained with TED-53.

Clustering type (2)

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

Korean
Bengali
Marathi
Hindi
Urdu

Basque
Arabic
Hebrew

Armenian
Persian
Kurdish

Hungarian
Turkish

Azerbaijani
Japanese

Mongolian

Georgian
Tamli

Kazakh
Burmese

Macedonian
Albanian

Polish
Slovak

Croatian
Bosnian

Belarusian
Estonian

Russian
Ukrainian
Slovenian
Serbian
Finnish
Czech

Lithuanian

Chinese
Thai

Indonesian
Vietnamese

Malay

Bulgarian
Swedish
Danish
Bokmal
German
Dutch

Romanian
Greek

Spanish
Italian

Galician
French

Portuguese

Table 5.4: Clustering type (2): SVCCA-23 (Oncevay et al., 2020), clustering based on multi-view
representation using both syntax features of WALS and language vectors learned by multilingual
NMT model trained with WIT-23.

10 clusters, the languages within each of which usually have the same phylogenetic or ge-

ographical features. SVCCA-23 instead uses 23 languages of WIT-23 (Cettolo, Girardi, &

Federico, 2012) to compute the shared space. We also generated language clusters based

on either KB-based representation using syntax features of WALS (Dryer & Haspelmath,

2013) and NMT-learned representation alone. Tables 5.3-5.6 show the generated language

clusters.

Training Configuration: All models are trained with Transformer architecture (Vaswani

et al., 2017a), implemented in the Fairseq framework (Ott et al., 2019). The individual

models are trained with the model hidden size of 256, feed-forward hidden size of 1024,
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Clustering type (3)

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10 cluster 11

Estonian
Finnish

Hindi
Burmese
Armenian
Georgian

Basque
Azerbaijani

Kazakh
Mongolian

Urdu
Marathi
Bengali
Tamli

Kurdish
Bosnian

Belarusian
Malay

Galician
French
Italian

Spanish
Portuguese

Bokmal
Danish

Swedish

German
Dutch

Chinese
Japanese
Korean

Hungarian
Turkish

Lithuanian
Slovenian
Croatian
Serbian
Czech
Slovak
Polish

Russian
Ukrainian

Persian
Indonesian

Arabic
Hebrew

Thai
Vietnamese

Romanain
Albanian

Macedonian
Bulgarian

Greek

Table 5.5: Clustering type (3): clustering based on NMT-learned representation using a set of 53
factored language embeddings (Oncevay et al., 2020; Tan, Chen, et al., 2019).

Clustering type (4)

cluster 1 cluster 2 cluster 3

Bengali
Marathi
Chinese
Burmese
Korean

Japanese
Mongolian

Kazakh
Azerbaijani

Turkish
Hindi
Urdu
Tamli

Thai
Vietnamese
Indonesian

Malay

Georgian
Arabic
Hebrew
French
Czech

Lithuanian
German
Russian

Belarusian

Slovenian
Serbian

Ukrainian
Croatian

Macedonian
Slovak

Romanian
Albanian

Greek

Hungarian
Dutch

Swedish
Danish
Bokmal
Galician

Portuguese
Spanish
Italian

Estonian
Finnish

Armenian
Polish

Bulgarian
Bosnian
Persian
Kurdish
Basque

Table 5.6: Clustering type (4): clustering based on KB-based representation using syntax features
of WALS (Oncevay et al., 2020).

and 2 layers. All multilingual models either cluster-based or universal MNMT models with

or without knowledge distillation were trained with the model hidden size of 512, feed-

forward hidden size of 1024, and 6 layers. We use the Adam optimizer (Kingma & Ba,

2015) and an inverse square root schedule with warmup (maximum LR 0.0005). We apply

dropout and label smoothing with a rate of 0.3 and 0.1 for bilingual and multilingual models

respectively.

For the first phase of distillation, i.e., the multilingual selective KD, the distillation

coefficient λ is equal to 0.6. In the second phase of distillation, i.e., the multilingual adaptive

KD, we applied λ1 = 0.5 and λ2 is started from 0.5 and increased to 3 using the annealing
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function of (Bowman et al., 2016; Saleh et al., 2020). We train our final multilingual student

with mixed-precision floats on up to 8 V100 GPUs for maximum 100 epochs (≈ 3 days),

with at most 8192 tokens per batch and early stopping at 20 validation steps based on the

BLEU score. The translation quality is also evaluated and reported based on the BLEU

(Papineni, Roukos, Ward, & Zhu, 2002c) score6. We did not carry out intense parameter

tuning to search for the best parameter settings of each model for the sake of simplicity.

It is noteworthy that the purpose of our experiments is rather to demonstrate the benefit of

considering different type of language clusters through a unified hierarchical KD.

5.6 Findings

The translation results of (53 languages → English) for all cluster-based approaches are

summarised in Table 5.7. The language pairs are sorted based on the size of training data

in an ascending order. The translation quality is evaluated and reported based on the BLEU

score (Papineni et al., 2002c).

5.6.1 Studies of cluster-based MNMT models

In this section, we discuss the cluster-based MNMTs’ results in different data-size situations

and for different language families through the following observations.

Low-resource vs high-resource languages: All cluster-based MNMT and baseline ap-

proaches are ranked based on the number of the times they got the first or second-best

score in different resource-size scenarios in Table 5.9. Based on this result and also the

result represented in Table 5.7, the massive MNMT models with all languages (second col-

umn under baseline and first column under selective KD in Tables 5.7, 5.9) outperform the

cluster-based MNMT models (columns (2-5) under selective KD in Tables 5.7, 5.9) in ex-

tremely low-resource scenarios (e.g., bn-en, ta-en, eu-en). This result shows that having

more data either from related languages or distant languages has the most impact on train-

6SacreBLEU signature:BLEU+case.mixed+numrefs.1+smooth.exp+tok.none+version.1.3.1
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R
es

ou
rc

e

MT task
[lang]-en

size
# sent.

Baseline Multilingual Selective KD

Individ. Multi.
All

languages
Clus.
type1

Clus.
type2

Clus.
type3

Clus.
type4

E
xt

re
m

el
y

lo
w

-r
es

ou
rc

e

kk 3314 3.42 5.05 4.66 7.00 3.51 3.10 8.13
be 4508 5.13 12.51 12.36 12.78 10.81 8.46 15.18
bn 4647 5.06 12.50 12.58 9.13 10.11 12.16 10.13
eu 5180 4.40 13.12 12.00 9.08 9.70 8.14 11.03
ms 5219 3.78 13.88 14.61 12.93 12.94 7.63 12.98
bs 5661 7.92 14.82 15.46 18.05 16.89 9.03 19.02
az 5944 5.79 10.32 9.91 9.59 9.17 8.64 9.23
ur 5965 8.98 12.76 16.50 13.35 13.17 12.02 13.39
ta 6223 4.57 5.86 6.19 4.02 5.76 3.96 3.49

mn 7604 3.54 6.11 5.82 5.75 6.60 5.39 6.20
mr 9837 6.92 10.53 10.72 8.70 9.00 8.39 9.04
gl 10009 13.5 22.04 22.44 25.53 26.81 26.93 25.90
ku 10308 6.30 10.32 12.12 9.43 6.98 9.22 12.93
et 10738 8.24 12.21 13.19 13.47 13.21 10.44 13.94

L
ow

-r
es

ou
rc

e

ka 13177 8.64 8.18 8.66 9.28 10.85 9.14 8.88
nb 15819 26.36 28.49 29.08 33.55 34.31 28.79 30.87
hi 18789 10.66 16.03 17.93 13.27 12.09 12.16 12.80
sl 19824 11.45 15.12 15.39 16.48 16.54 17.75 18.31

E
no

ug
h

re
so

ur
ce

hy 21337 11.14 14.07 15.12 13.76 12.77 10.81 17.17
my 21495 4.91 10.70 11.11 9.65 6.35 8.48 9.54
fi 24219 8.16 11.69 12.23 11.36 12.57 10.59 12.76

mk 25326 18.32 20.63 21.09 21.48 20.06 24.65 23.8
lt 41910 14.78 15.44 16.76 16.98 16.9 17.96 18.24
sq 44489 22.62 24.44 25.22 24.74 23.22 26.89 26.42
da 44925 31.85 30.39 30.61 35.02 39.76 30.58 32.04
sv 56629 27.20 27.18 26.84 31.36 34.52 26.81 28.65
sk 61454 19.36 22.04 22.58 22.49 21.18 24.08 23.77
id 87401 20.51 20.89 20.69 21.11 21.13 22.56 21.12
th 96954 20.46 21.34 21.72 22.94 22.94 23.09 22.87
cs 103062 20.13 22.01 22.07 21.72 22.49 23.12 22.86
uk 108478 21.32 22.11 23.07 23.06 22.91 23.58 23.66
hr 122074 25.89 26.51 27.17 27.56 25.62 28.66 28.34
el 134311 26.82 26.07 28.51 30.05 31.35 29.13 29.66
sr 136891 26.94 25.43 25.88 27.48 25.75 27.69 27.12
hu 147190 18.46 17.61 18.55 19.08 18.41 20.16 19.82
fa 150813 23.60 21.7 21.29 21.31 22.44 23.51 22.24
de 167864 15.23 14.83 16.69 16.88 17.79 15.44 16.67
ja 168289 10.11 8.61 8.93 10.14 10.14 10.17 8.69
vi 171971 18.97 19.19 20.58 21.60 21.60 21.30 20.33
bg 174428 28.85 27.66 29.14 31.67 32.18 29.86 30.48
pl 176134 17.23 18.62 19.45 19.45 18.37 19.93 20.26
ro 180460 25.21 25.97 26.53 28.03 28.43 28.90 27.35
tr 182387 17.72 10.2 10.01 18.66 18.19 19.85 18.27
nl 183737 27.65 26.91 26.82 28.05 29.07 29.17 28.03
zh 184821 20.44 22.10 22.71 22.19 22.11 23.91 22.84
es 195993 30.17 29.55 30.00 29.06 33.45 31.46 31.82
it 204438 26.84 25.13 27.99 30.57 30.85 30.36 29.45
ko 205436 15.98 15.71 16.41 15.17 15.18 17.45 16.00
ru 208413 19.76 19.83 20.86 20.85 20.80 21.25 21.49
he 211761 29.35 28.03 28.27 32.82 32.18 31.32 30.02
fr 212078 30.08 30.55 30.28 32.25 32.19 31.14 31.34
ar 213880 25.36 23.89 24.48 28.53 28.03 27.46 25.85
pt 236498 30.99 31.12 30.85 33.36 33.84 33.25 32.56

Table 5.7: Comparison of the clustering approaches with the baselines based on the BLEU score.
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MT task
[lang]-en

Baseline Multilingual Selective KD

Individ. Multi.
All

languages
Clus.
type1

Clus.
type2

Clus.
type3

Clus.
type4

Avg. 18.50 18.64 19.24 19.84 19.87 19.35 20.05

Table 5.8: The average BLEU scores of the translation tasks for 53 Languages→ English.

Resource-size size (# sent.)
Baseline Multilingual Selective KD

Individ. Multi. All langs Clus. type1 Clus. type2 Clus. type3 Clus. type4

Extremely low-resource <= 10k 0% 21.43% 28.57% 14.28% 7.14% 3.58% 25.00%

Low-resource > 10k and <= 20k 0% 12.50% 12.50% 25.00% 25.00% 12.50% 12.50%

Enough resource > 20k 1.39% 1.39% 2.78% 20.83% 25.00% 27.78% 20.83%

Table 5.9: The translation ranking ablation study for all approaches excluding the HKD approach
based on the percentage of the times they got the 1st or 2nd best results. Sum of percentages in each
row = 100%.

ing a better MNMT model for under-resourced languages. Furthermore, clustering type (4)

is dominant among other clustering approaches for under-resourced situations. This result

is also explainable based on the size of the clusters in clustering type (4). The translations of

extremely low-resource languages are significantly improved when they have been clustered

in the third cluster of clustering type (4) with 35 languages (shown in Table 5.6). However,

for languages with enough resources, the multilingual baselines with all languages under-

performed other cluster-based MNMT models.

Related vs isolated languages: A group of languages that originated from a similar ancestor

is known as a language family; and a language that does not have any relationship with

another languages is called a language isolate. The language families (Eberhard et al.,

2019) are shown in Table 5.10.

According to the results shown in Table 5.9, clustering approaches usually have the

same behaviour and less diversity for clustering languages belonged to IE/Germanic, IE/Italic,

Afroasiatic, and Austronesian families. In comparison, there is more diversity, and less con-

sensus for clustering languages belonged to IE/Balto-Slavic, IE/Indo-Iranian, Turkic, Uralic,

and Sino-Tibetan families. Moreover, the isolated languages (shown in the last 11 columns

of Table 5.10) generally have the same behaviour and less variance in BLEU scores in dif-

103



Chapter 5. Multilingual NMT with Hierarchical Knowledge Distillation

IE
/B

alt
o-S

lav
ic

IE
/It

ali
c

IE
/In

do
-Ir

an
ian

IE
/G

er
man

ic

Tu
rk

ic

Ura
lic

Afro
as

iat
ic

Sin
o-T

ibe
tan

Aus
tro

ne
sia

n

K
or

ea
ni

c

Ja
po

ni
c

A
us

tr
oa

si
at

ic

IE
/H

el
le

ni
c

K
ra

-D
ai

IE
/A

lb
an

ia
n

IE
/A

rm
en

ia
n

K
ar

tv
el

ia
n

M
on

go
lic

D
ra

vi
di

an

Is
ol

at
e

(B
as

qu
e)

be, bs, sl, mk, lt, sk
cs, uk, hr, sr, bg, pl, ru

bn, ur, ku
hi, fa, mr

gl, pt, ro
fr, es, it

nb, da
sv, de, nl kk, az, tr et, fi, hu he, ar my, zh ms, id ko ja vi el th sq hy ka mn ta eu

Table 5.10: Language families (Eberhard et al., 2019). IE refers to Indo European.

ferent clustering approaches. This observation shows that cluster-based MNMT models

(regardless of the clustering type) do not significantly improve the translation of isolated

languages unless the isolated languages have extremely low-resources and have been clus-

tered in a huge cluster (e.g., eu-en, hy-en). The results of cluster-based MNMT are presented

based on the language families in Tables 5.16, 5.17, 5.18, and 5.19.

Random clustering vs Actual clustering: We conducted an ablation study by using clus-

ters with randomly chosen languages for two translation tasks (el→en and gl→en). We

kept the number of languages per cluster the same as the actual clustering to make a fair

comparison. According to the result represented in Table 5.11, for both translation tasks,

random clusters underperform the actual clusters in all clustering types. However, notably,

the average BLEU score’s difference between the random and actual clusters for gl→en is

considerably higher than el→en (gl→en, ∆ = -8.14 vs el→en, ∆ = -1.9). This observation

is inline with the previous observation that Greek (el) is an isolated language categorised

in IE/Hellenic family and clustering approaches have less impact on this language due to

its lower similarity to most languages. In comparison, Galician (gl) is highly similar to the

languages in IE/Italic family and clustering improves the translation of gl→en remarkably.

5.6.2 Studies of HKD

According to the results in Tables of 5.12 and 5.13, the HKD approach outperforms massive

and cluster-based MNMT models in average by 1.11 BLEU score. We discuss the HKD’s

results in the following observations:

Ranking based on data size: We ranked all approaches, including HKD, based on the
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Model Contributed Languages BLEU Contributed Languages BLEU

Individual gl 13.50 el 26.82

Multi.
(uniform) All langs. 22.04 All langs. 26.07

Multi.
(SKD) All langs. 22.44 All langs. 28.51

Clus.
type1 gl, bg, ro, es, it, pt 25.53 el, ar, he 30.05

Clus.
type2

gl, bg, sv, da, nb, de,
nl, ro, el, es, it, fr, pt 26.81

el, bg, sv, da, nb, de,
nl, es, it, gl, fr, pt, ro 31.35

Clus.
type3 gl, fr, it, es, pt 26.93 el, mk, bg 29.13

Clus.
type4

gl, fa, ku, eu, hu, et, fi,
hy, ka, ar, he, fr, cs, lt,
de, nl, it, sv, da, nb, ru,
be, pl, bg, sl, pt sr, uk,
hr, mk, sk, ro, sq, el, es 25.90

el, fa, ku, eu, hu, et, fi,
hy, ka, ar, he, fr, cs, lt,
de, nl, it, sv, da, nb, ru,
be, pl, bg, sl, pt, sr, uk,
hr, mk, sk, ro, sq, es, gl 29.66

Avg. - 26.29 - 30.04

Clus.
Rand.1 gl, nb, uk, hr, se, ja 16.53 el, id, be 28.01

Clus.
Rand.2

gl, ta, mk, be, id, sq, pt,
fr, ur, az, ku, bs, fa 20.27

el, cs, lt, id, sk, th, it,
hy, ms, hu, mk, my, bn 27.78

Clus.
Rand.3 gl, az, ja, nb, kk 13.61 el, sq, th 27.97

Clus.
Rand.4

gl, zh, pt, fa, ar, kk, sr,
bg, nl, cs, th, ko, vi, hu,
mk, fi, ru, mn, de, sl, el,
ka, pl, et, ta, fr, ur, ro,

sv, mr, be, bs, uk, sq, az 22.20

el, zh, pt, fa, ar, kk, sr,
bg, nl, cs,th, ko, vi, hu,
mk, fi, ru, mn, de, sl, gl,
ka, pl, et, ta, fr, ur, ro,

sv, mr, be, bs, uk, sq, az 28.82

Avg. - 18.15∆−8.14 - 28.14∆−1.9

Table 5.11: Ablation study on using random clusters. Comparison of the (gl→en) and (el→en)
translation tasks between individual, massive multilingual, and clustering-based multilingual (for
actual and random clusters) baselines.

number of times they got the first or second-best score (shown in Table 5.14). According to

this result, the HKD approach in three different situations, i.e., extremely low-resource, low-

resource, and enough resource, has the best rank among other approaches. This observation

proves that the HKD approach is robust in different data-size situations by leveraging the

best of both multilingual NMT and language-relatedness guidance in a systematic HKD

setting.

Clustering consistency impact on HKD: Based on the result in Table 5.12, the HKD
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R
es
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MT task
[lang]-en

size
# sent.

Baseline Multilingual Selective KD Multilingual
HKD

Individ. Multi.
All

languages
Clus.
type1

Clus.
type2

Clus.
type3

Clus.
type4

E
xt

re
m

el
y

lo
w

-r
es

ou
rc

e

kk 3314 3.42 5.05 4.66 7.00 3.51 3.10 8.13 6.61
be 4508 5.13 12.51 12.36 12.78 10.81 8.46 15.18 14.88
bn 4647 5.06 12.50 12.58 9.13 10.11 12.16 10.13 12.81
eu 5180 4.4 13.12 12.00 9.08 9.70 8.14 11.03 12.90
ms 5219 3.78 13.88 14.61 12.93 12.94 7.63 12.98 14.11
bs 5661 7.92 14.82 15.46 18.05 16.89 9.03 19.02 17.51
az 5944 5.79 10.32 9.91 9.59 9.17 8.64 9.23 10.40
ur 5965 8.98 12.76 16.50 13.35 13.17 12.02 13.39 15.95
ta 6223 4.57 5.86 6.19 4.02 5.76 3.96 3.49 5.63

mn 7604 3.54 6.11 5.82 5.75 6.60 5.39 6.20 6.81
mr 9837 6.92 10.53 10.72 8.70 9.00 8.39 9.04 10.98
gl 10009 13.5 22.04 22.44 25.53 26.81 26.93 25.90 27.11
ku 10308 6.3 10.32 12.12 9.43 6.98 9.22 12.93 13.03
et 10738 8.24 12.21 13.19 13.47 13.21 10.44 13.94 14.10

L
ow

-r
es

ou
rc

e

ka 13177 8.64 8.18 8.66 9.28 10.85 9.14 8.88 11.15
nb 15819 26.36 28.49 29.08 33.55 34.31 28.79 30.87 33.89
hi 18789 10.66 16.03 17.93 13.27 12.09 12.16 12.80 16.11
sl 19824 11.45 15.12 15.39 16.48 16.54 17.75 18.31 18.43

E
no

ug
h

re
so

ur
ce

hy 21337 11.14 14.07 15.12 13.76 12.77 10.81 17.17 16.72
my 21495 4.91 10.70 11.11 9.65 6.35 8.48 9.54 8.81
fi 24219 8.16 11.69 12.23 11.36 12.57 10.59 12.76 12.90

mk 25326 18.32 20.63 21.09 21.48 20.06 24.65 23.8 25.05
lt 41910 14.78 15.44 16.76 16.98 16.9 17.96 18.24 18.11
sq 44489 22.62 24.44 25.22 24.74 23.22 26.89 26.42 26.93
da 44925 31.85 30.39 30.61 35.02 39.76 30.58 32.04 36.00
sv 56629 27.2 27.18 26.84 31.36 34.52 26.81 28.65 33.14
sk 61454 19.36 22.04 22.58 22.49 21.18 24.08 23.77 24.33
id 87401 20.51 20.89 20.69 21.11 21.13 22.56 21.12 22.76
th 96954 20.46 21.34 21.72 22.94 22.94 23.09 22.87 23.30
cs 103062 20.13 22.01 22.07 21.72 22.49 23.12 22.86 23.62
uk 108478 21.32 22.11 23.07 23.06 22.91 23.58 23.66 24.09
hr 122074 25.89 26.51 27.17 27.56 25.62 28.66 28.34 28.91
el 134311 26.82 26.07 28.51 30.05 31.35 29.13 29.66 30.10
sr 136891 26.94 25.43 25.88 27.48 25.75 27.69 27.12 27.97
hu 147190 18.46 17.61 18.55 19.08 18.41 20.16 19.82 20.10
fa 150813 23.60 21.7 21.29 21.31 22.44 23.51 22.24 23.19
de 167864 15.23 14.83 16.69 16.88 17.79 15.44 16.67 18.04
ja 168289 10.11 8.61 8.93 10.14 10.14 10.17 8.69 10.30
vi 171971 18.97 19.19 20.58 21.60 21.60 21.30 20.33 21.82
bg 174428 28.85 27.66 29.14 31.67 32.18 29.86 30.48 32.33
pl 176134 17.23 18.62 19.45 19.45 18.37 19.93 20.26 20.71
ro 180460 25.21 25.97 26.53 28.03 28.43 28.90 27.35 29.00
tr 182387 17.72 10.2 10.01 18.66 18.19 19.85 18.27 16.91
nl 183737 27.65 26.91 26.82 28.05 29.07 29.17 28.03 29.58
zh 184821 20.44 22.10 22.71 22.19 22.11 23.91 22.84 23.85
es 195993 30.17 29.55 30.00 29.06 33.45 31.46 31.82 32.76
it 204438 26.84 25.13 27.99 30.57 30.85 30.36 29.45 30.93
ko 205436 15.98 15.71 16.41 15.17 15.18 17.45 16.00 17.70
ru 208413 19.76 19.83 20.86 20.85 20.80 21.25 21.49 21.77
he 211761 29.35 28.03 28.27 32.82 32.18 31.32 30.02 32.05
fr 212078 30.08 30.55 30.28 32.25 32.19 31.14 31.34 32.65
ar 213880 25.36 23.89 24.48 28.53 28.03 27.46 25.85 28.94
pt 236498 30.99 31.12 30.85 33.36 33.84 33.25 32.56 33.90

Table 5.12: BLEU scores of all the translation tasks for 53 Languages→ English.
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MT task
[lang]-en

Baseline Multilingual Selective KD Multilingual
HKD

Individ. Multi.
All

languages
Clus.
type1

Clus.
type2

Clus.
type3

Clus.
type4

Avg. 18.50 18.64 19.24 19.84 19.87 19.35 20.05 21.16

Table 5.13: The average BLEU scores of all the translation tasks for (53 Languages→ English).

Resource-size size (# sent.)
Baseline Multilingual Selective KD HKD

Individ. Multi. All langs Clus. type1 Clus. type2 Clus. type3 Clus. type4

Extremely low-resource <= 10k 0% 13.79% 17.24% 6.90% 3.45% 3.45% 17.24% 37.93%

Low-resource > 10k and < 20k 0% 0% 12.50% 0% 25.00% 0% 12.50% 50.00%

Enough resource >20k 1.43% 1.43% 1.43% 5.71% 12.86% 24.28% 8.57% 44.29%

Table 5.14: The ranking of all approaches including the HKD approach based on the per-
centage of the times they got the 1st or 2nd best results.

approach underperforms other multilingual approaches when the clusters are inconsistent,

causing a high variance in teacher-assistants’ results. For example for kk→en, bs→en, the

variance of the BLEU scores of the teacher-assistant models is 6.92 and 20.81 respectively

and HKD underachieved a good result. This observation shows that, although in the sec-

ond phase of the HKD approach, the cluster-based teacher-assistants adaptively contribute

to training the ultimate students, still a weak teacher-assistant deteriorates the collabora-

tive teaching process. One possible solution is excluding the worst teacher-assistant in such

heterogeneous situations.

5.6.3 Comparison with other approaches

Following the previous discussions, to highlight the pros and cons of the related baselines

(with and without KD), we draw a comparison shown in Table 5.15. Accordingly, our HKD

approach is comparable with other approaches based on the following properties:

Multilingual translation: Our approach works in a multilingual setting by sharing re-

sources between high-resource and low-resource languages. This property not only im-

proves the regularisation of the model by avoiding over-fitting to the limited data of the

low-resource languages but also decreases the deployment footprint by leveraging the whole

training in a single model instead of having individual models per language (Dabre et al.,
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Individual
NMT

Uniform
MNMT

Selective KD
MNMT

Adaptive KD
NMT

HKD
MNMT

Multilingual ✗ ✔ ✔ ✗ ✔

Maximum transfer ● ✔ ✗ ✗ ✔

KD from
multiple languages ● ● ✗ ✔ ✔

Reduced risk of
negative transfer ● ✗ ✔ ✔ ✔

Table 5.15: Comparing different properties of HKD with: transformer-based individual and multilin-
gual NMT (Vaswani et al., 2017a), multilingual selective KD (Tan, Ren, et al., 2019), and adaptive
KD (Saleh et al., 2020).

2020).

Optimal transfer: In the HKD approach, we have an optimal transfer by transferring knowl-

edge from all possible languages related to a student in the hierarchical structure which

leads to the best average BLEU score (21.16) comparing to the other baselines (shown in

Table 5.12). In the universal multilingual NMT without KD, the language transfer stream

is maximized when all languages shared their knowledge in a single model during training;

however, it is not an optimal transfer due to the lack of any condition on the the relatedness

of languages contributing in the multilingual training. The related experiments are shown in

the second column under the baseline experiments in Table 5.12. The average BLEU score

of this approach is 18.46. In multilingual selective KD (Tan, Ren, et al., 2019), knowledge

is distilled from one selected teacher with the same language when training the student mul-

tilingually. So, although there is a condition on language relatedness, knowledge transfer is

not maximized as the similar languages from the same language family are ignored in the

distillation process. The related results are shown in the first column under multilingual se-

lective KD of Table 5.12. Accordingly, this approach got the average BLEU score of 19.24

in our experiments. Adaptive KD (Saleh et al., 2020) is a bilingual approach and also uses a

random set of teachers which does not essentially have all the related languages to the stu-

dent and does not lead to optimal transfer. We did not perform any experiment on adaptive

KD (Saleh et al., 2020) since this is a bilingual approach.

Adaptive KD vs Selective KD vs HKD: All KD-based approaches in our comparison re-
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duce negative transfer in different ways. In multilingual selective KD (Tan, Ren, et al.,

2019), the risk of negative transfer is reduced by distilling knowledge from the selected

teacher per language in a multilingual setting. In bilingual adaptive KD (Saleh et al., 2020),

the contribution weights of different teachers vary based on their effectiveness to improve

the student which prevents the negative transfer in bilingual setting. In HKD, the hierar-

chical grouping based on the language similarity provides a systematic guide to prevent

negative transfer as much as possible. This property leads HKD to get the best results for 32

language pairs out of total 53 language pairs in our multilingual experiments.

5.7 Conclusion

We presented a Hierarchical Knowledge Distillation (HKD) approach to mitigate the neg-

ative transfer effect in MNMT when having a diverse set of languages in training. We put

together all languages which behave similarly in the first phase of distillation process and

generated the expert teacher-assistants for each group of languages. As we clustered lan-

guages based on four different language representations capturing different linguistic fea-

tures, we then adaptively distill knowledge from all related teacher-assistant models to the

ultimate student in each mini-batch of training per language. Experimental results on 53 lan-

guages to English show our approach’s effectiveness to reduce negative transfer in MNMT.

As the future direction, it is interesting to study an end-to-end HKD approach by adding a

backward HKD pass compared to the forward HKD pass described in this chapter.
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6 | Concluding Remarks

The primary contribution of this thesis is improving the resource-constrained Neural Ma-

chine Translation (NMT) and Natural Language Generation (NLG) by transitioning knowl-

edge from high-resource (NMT) models to low-resource NMT or NLG models. In this

thesis, we not only used different knowledge transition schemes, i.e., transfer learning and

knowledge distillation, to address the research gaps in low-resource text generation sce-

narios, but also argued the deficiency of conventional transfer learning and knowledge dis-

tillation approaches and introduced novel techniques to address those shortcomings. This

chapter concludes this thesis via reviewing the contributions and discussing the potential

future directions to the findings of this research.

6.1 Summary of the Thesis

This thesis introduced effective knowledge transition approaches for learning NMT and

NLG tasks when there are constraints on resources. We have explored three knowledge tran-

sition schemes in the low-resource scenario: i) knowledge transition from a high-resource

task (NMT) to a different low-resource task (NLG), ii) knowledge transition from an ensem-

ble of high-resource models to a low-resource model from the same task (MT) in a bilingual

setting disregarding the relatedness/similarity of contributed languages, and iii) knowledge

transition from groups of NMT models to a single multilingual model given the language
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similarity in a hierarchy structure. In particular, this thesis has made three contributions

to the literature of low-resource neural text generation tasks. The first contribution mainly

focused on low-resource NLG, while the second and third contributions focused on low-

resource NMT in bilingual and multilingual settings.

In Chapter 3, we proposed a novel approach by transitioning from document-level

NMT to NLG which improves both coherency and adequacy of the generated text in low-

resource NLG scenario. Inspiring by the similarities between document-level machine trans-

lation and data-to-text generation tasks in generating the same target text (e.g., generating

English stories from either German stories or structured meta-data), we proposed to encode

the structured meta-data as a document-level text sequence. We formulated a compact way

to encode the data available in the original database and enrich it with extra facts that can be

inferred with minimal knowledge of the task. We then fine-tuned a high-resource pre-trained

document-level NMT model with small amounts of document-level NLG meta-data, tran-

sitioning from NMT to NLG. To the best of our knowledge, this is the first research which

argues that separate data selection and data ordering steps are not necessary for data-to-text

generation if the NLG model is transferred from a document-level translation model and is

given all meta-data as a document sequence. This approach outperformed the previous state

of the art on the Rotowire NLG dataset and obtained the best results on each of the six tasks

of Document-level Generation and Translation (DGT) shared task in WNGT 2019. This

work was published in EMNLP 2019.

In Chapter 4, we looked at the problem of data scarcity for training a high-quality

NMT model. We first discussed the weaknesses of the existed transfer learning and knowl-

edge distillation approaches proposed to improve the low-resource NMT. Then, we intro-

duced our novel adaptive knowledge distillation algorithm which addresses the inefficiency

of the original transfer learning by using an ensemble of high-resource pre-trained models

in an adaptive collaborative learning manner to train a single low-resource NMT model.

The main contribution in this chapter was derived from the intuition that models transferred

from different high-resource language pairs may have complementary syntactic and/or se-
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mantic strengths on the target low-resource language. Furthermore, it is not generally clear

which high-resource language pair offers the best transfer learning for the target MT setting

in every mini-batch of data. Thus, high-resource language pairs should not have the same

contribution in transfer learning while training the low-resource NMT model. In our Adap-

tive Knowledge Distillation (AKD) approach, the label smoothing coming from different

teachers is combined and regulated based on the loss incurred by the teacher models during

the distillation process, and thus the contribution of each teacher is changed based on its

effectiveness in improving the student. Experiments on transferring from a collection of six

language pairs from IWSLT to five low-resource language pairs from TED Talks demon-

strated the effectiveness of our approach, achieving up to +0.9 BLEU score improvement

compared to solid baselines. This work was published in COLING 2020.

In Chapter 5, we shifted toward NMT in multilingual settings inspired by our previ-

ous findings mentioned above. We presented a Hierarchical Knowledge Distillation (HKD)

approach which capitalises on language groups generated based on typological features and

phylogeny of languages to mitigate the negative transfer effect in MNMT when having a

diverse set of languages in training. We put together all languages which behave similarly

in the first phase of the distillation process and generated the expert teacher-assistants for

each group of languages. As we clustered languages based on four different language repre-

sentations capturing different linguistic features, we then adaptively distill knowledge from

all related teacher-assistant models to the ultimate student in each mini-batch of training

per language. Experimental results on 53 languages to English show our approach’s effec-

tiveness to reduce negative transfer in MNMT. This work was accepted for publication in

EMNLP 2021.

6.2 Future Directions

In this section, we list a few possible future directions to the findings of this thesis.

• In this thesis, we focused on low-resource NMT and NLG tasks. However, most of the

116



Chapter 6. Concluding Remarks

approaches introduced are general and can be applied to other low-resource NLP ap-

plications such as question-answering, grammar and text correction, summarization,

and simplification, to name but a few.

• In this thesis, we explored the classic NLG task, i.e., data-to-text generation using

transfer learning from NMT to NLG when we have only numerical and textual in-

formation as the meta-data. Another possible interesting avenue to explore is transi-

tioning from NMT to NLG when we have joint representations of different modalities

(e.g., image and text) as meta-data and document-level text as the output. The other

appealing extension can be a cycled transfer learning to fill missing modalities given

the observed ones and the generated output to generate more representative meta-data.

• All knowledge distillation approaches used throughout this thesis are based on output

logits. Another possible approach could be distillation on encoder outputs by reducing

the size of the encoder unit, the number of encoder units, or both (Ganesh et al., 2020).

More specifically, if the huge pre-trained models like BERT or mBART are used in

the teacher sides for both ADK and HKD, distillation on encoder outputs may lead to

more compact representations in the student.

• In our KHD approach, we focused on a forward pass in distillation by distilling the

student using teachers’ knowledge. It is also interesting to study an end-to-end HKD

approach by adding a backward HKD pass compared to the forward HKD pass de-

scribed in this thesis.

To conclude, the findings presented in this thesis have shed new light on how transition-

ing knowledge from high-resource NMT models can effectively improve the low-resource

NMT and NLG models in both bilingual and multilingual settings. The previous works

on low-resource NMT and NLG scenarios usually rely on one-to-one transfer learning ap-

proaches on a single task, which cannot effectively exploit models trained with multiple

high-resource language pairs in different tasks for the target language pair of interest. There-

fore, this work is a step towards transfer learning by adaptively transitioning knowledge
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from different high-resource language pairs with complementary syntactic and/or semantic

impact on the low-resource models. We hope this work motivates research in this domain

with a greater propensity towards the most effective knowledge transition schemes in low-

resource NLP domains.
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