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Abstract

Research on time series analysis has seen enormous progress over the last few decades.

One reason for that is the exponential growth of time series data and the wide range

of their applications. These include the analysis of medical data, stock market data,

audio data, activity and gesture recognition data, data from sensor networks used to

monitor biological, chemical or industrial processes, and time series generated from

satellite images and many more. The time dimension can be added to virtually any type

of data. As the global market for machine learning research grows to billions of dollars,

time series analysis is a critical component of this research.

My PhD research particularly focuses on Time Series Classification (TSC). It addresses

two main challenges: 1) lack of scalability of prior state-of-the-art TSC classifiers, 2) a

paucity of TSC techniques for multivariate time series.

To address the first challenge, I contributed to the development of two novel TSC al-

gorithms. The first is the Proximity Forest, which is an algorithm that leverages 30

years of research to develop time series specific similarity measures by utilizing them

as splitters at the nodes of purpose-built decision trees. Proximity Forest can train 1

million time series from Earth observation data in 17 hours, while the prior state of

the art, FLAT-COTE, was estimated to require more than 200 years. This is a 100,000

times speedup while delivering state-of-the-art accuracy. The second algorithm, called

TS-CHIEF, augmented Proximity Forest by adding splitters using dictionary and inter-

val techniques. This integration significantly raised the accuracy of TS-CHIEF making

it highly competitive with the then state-of-the-art HIVE-COTE (successor to FLAT-

COTE). TS-CHIEF can be trained on 130k time series in 2 days, a data quantity that

was beyond the reach of any TSC algorithm of the time with comparable accuracy.

Comparatively, on the same dataset, HIVE-COTE takes 8 days to train 1,500 time

series.

The second focus of my research is to develop methods for multivariate TSC. I developed

multivariate versions of seven commonly used elastic similarity measures for time series

data analytics. Elastic similarity measures are a class of similarity measures that can

compensate for misalignments in the time axis of time series data. I adapted these

seven measures by employing two existing strategies used in a multivariate version of

the well-known Dynamic Time Warping (DTW), namely, Independent and Dependent

DTW. These measures can be applied to various time series data mining tasks such

as classification, clustering, regression, forecasting, anomaly detection, indexing and

segmentation. Detailed analysis indicates that there are some multivariate TSC tasks

that are inherently best tackled as either independent or dependent across dimensions.
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I also researched ways to ensemble these multivariate measures for classification and

explored ways of selecting subsets of dimensions to improve the speed and effectiveness

of such classifiers.
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capital, Malé City, in search of a better life and education for their children. I cannot

express how thankful I am for the sacrifices they made and for continuously supporting

me and encouraging me to excel at everything I do.

Next, I would like to express my gratitude to all my supervisors, Prof. Geoffrey I.

Webb, Dr. François Petitjean, Dr. Charlotte Pelletier, and Dr. Matthieu Herrmann for

their continuous support, guidance and friendship throughout the PhD. I am extremely

happy to have been given this opportunity to work with such a brilliant, inspiring and

encouraging team. They have always pushed me to achieve the best while lifting me up

every time I make a mistake and felt discouraged. They taught many valuable lessons

and helped me to learn and grow as a researcher.

I also would like to thank my PhD progress review panel members Dr.Mahsa Salehi, Dr.

Christoph Bergmeir, Dr. Mario Boley and Prof. Wray Buntine, for their suggestions

and feedback during the progress reviews. I am especially grateful to Prof. Anthony

Bagnall and Assoc. Prof. Jessica Lin for accepting the invitation to be examiners

of my PhD thesis. I also thank many other academics I met throughout my tertiary

education, including my undergraduate honors supervisors Dr. Peter Tischer and Dr.

David Albrecht who encouraged and supported me to be a machine learning researcher.

I thank the Australian Government and its people for supporting financially challenged

students such as myself in their pursuit of higher education. I am extremely blessed

to have studied both my undergraduate degree and PhD under fully funded Australian

Government scholarships. This research was supported by an Australian Government

Research Training Program (RTP) Scholarship.

In addition, I thank all my friends, both in Australia and Maldives, who supported

me during the candidature, especially my housemates. And finally my loving partner,

Hafeeza Ibrahim, who has been the most wonderful person in my life, continuously

supporting me despite being separated in two countries and time zones for so long.

vi



Contents

Copyright notice i

Abstract ii

Declaration iv

Publications during enrolment v

Acknowledgements vi

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Research Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Time Series Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Univariate TSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Similarity-based Methods . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Interval-based Methods . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Shapelet-based Methods . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.4 Dictionary-based Methods . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5 Deep Learning-based Methods . . . . . . . . . . . . . . . . . . . . 18

2.4.6 Random Convolution-based Methods . . . . . . . . . . . . . . . . . 19

2.4.7 Combination Methods . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.8 Univariate Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Multivariate TSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Similarity-based methods . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Interval-based methods . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3 Shapelet-based methods . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.4 Dictionary-based methods . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.5 Deep Learning-based methods . . . . . . . . . . . . . . . . . . . . . 24

2.5.6 Random Convolution-based methods . . . . . . . . . . . . . . . . . 25

2.5.7 Combination Methods . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



Contents viii

2.5.8 Multivariate Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Comparing Univariate Classifiers . . . . . . . . . . . . . . . . . . . 27

2.6.2 Comparing Multivariate Classifiers . . . . . . . . . . . . . . . . . . 27

3 Proximity Forest 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Proximity Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Design of Proximity Forest . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Training Proximity Forest . . . . . . . . . . . . . . . . . . . . . . . 31

Evaluating multiple candidate splits (My Contribution): . . 33

Selection of similarity measures and their parameterization 34

3.3.3 Classifying Using Proximity Forest . . . . . . . . . . . . . . . . . . 34

3.3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Training time . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Classification Time . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Experiments Using the SITS dataset . . . . . . . . . . . . . . . . . 36

Training Scalability . . . . . . . . . . . . . . . . . . . . . . . 36

Testing Scalability . . . . . . . . . . . . . . . . . . . . . . . 36

Accuracy Scalability . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Experiments Using UCR Archive . . . . . . . . . . . . . . . . . . . 38

3.4.2.1 Proximity Forest vs Elastic Ensemble . . . . . . . . . . . 38

3.4.2.2 Proximity Forest vs State-of-the-art TSC algorithms . . . 40

3.4.2.3 Comparing ensemble sizes . . . . . . . . . . . . . . . . . . 41

3.4.2.4 Comparing the number of candidates splits . . . . . . . . 43

3.4.2.5 What if the number of candidates are selected differently
for each dataset? . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2.6 Trade-off between ensemble size and the number of can-
didate splits . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 TS-CHIEF 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Multivariate Elastic Similarity Measures 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Multivariate Elastic Ensembles 126

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Similarity-based Multivariate TSC Ensembles . . . . . . . . . . . . . . . . 128

6.3.1 Multivariate Elastic Ensemble . . . . . . . . . . . . . . . . . . . . . 128

6.3.2 Multivariate Proximity Forest . . . . . . . . . . . . . . . . . . . . . 129



Contents ix

6.3.3 On the choice of Beta Distribution . . . . . . . . . . . . . . . . . . 130

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.1 Multivariate Measures vs MEE . . . . . . . . . . . . . . . . . . . . 131

6.4.2 Comparing the Variations of MPF . . . . . . . . . . . . . . . . . . 133

6.4.2.1 Comparing the Three Ensembles . . . . . . . . . . . . . . 133

6.4.2.2 Comparing the Strategies to Select Dimensions . . . . . . 133

6.4.3 MEE and MPF vs SOTA Multivariate TSC Algorithms . . . . . . 134

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Conclusions 140

7.1 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Contributions to Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Proximity Forest 145

Bibliography 175



List of Figures

1.1 This diagram shows the mean rankings (on error rate) of five well known
TSC algorithms over 85 benchmark datasets [1]. Algorithms to the right
are more accurate. In this case, FLAT-COTE is the most accurate algo-
rithm. Mean ranking diagrams will be explained in Section 2.6. . . . . . . 2

2.1 Example of two time series from the ECG200 dataset in the UCR archive
representing a normal heart beat on the left, and an abnormal heart beat
on the right. This image is taken from [2]. . . . . . . . . . . . . . . . . . . 8

2.2 An illustration showing how land cover maps are produced. Time series
are extracted from multiple multi-spectral satellite images. This image is
taken from Tan et al. [3] with author’s permission. . . . . . . . . . . . . . 9

2.3 An example showing how two time series are aligned using Euclidean and
DTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 An example showing how two time series are aligned using Euclidean and
DTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 An example showing interval-based features in time series. Intervals are
phase-dependent features, which means that their location in the series is
useful for discrimination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 An example showing shapelet-based features in time series. Shapelets are
phase-independent features, which means that location of the subseries is
not important when selecting a shapelet. Shapelets are selected based on
their ability discriminate between classes. . . . . . . . . . . . . . . . . . . 15

2.7 Dictionary-based methods convert a set of windows over the series (either
sliding windows or disjoint windows) to a set of symbols. These symbols
are then counted to form a histogram of word frequencies to represent the
original time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 An example of a deep learning architecture (TempCNN) used for TSC.
This image is taken from [4] . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Independent DTW (DTWI , on the left) and dependent DTW (DTWD,
on the right). Dimension 1 in series Q and C is shown in blue color, and
the dimension 2 is shown in green color. . . . . . . . . . . . . . . . . . . . 23

2.10 Mean error ranks of common TSC classifiers on 30 resamples of 109
datasets of the UCR 2008 archive. Data for this diagram is obtained
from www.timeseriesclassification.com. . . . . . . . . . . . . . . . . . 27

2.11 Mean error ranks of common multivariate TSC classifiers on 26 datasets
of the UEA multivariate time series archive [5]. Data for this diagram is
obtained from Ruiz et al. [6] and Middlehurst et al. [7] . . . . . . . . . . . 28

x

www.timeseriesclassification.com


List of Figures xi

3.1 Training time (a) and testing time per query (b) as a function of training
set size for Proximity Forest, EE, WEASEL and BOSS-VS. This image
is taken from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Accuracy as a function of training set size for Proximity Forest, EE,
WEASEL and BOSS-VS. This image is taken from [8]. . . . . . . . . . . . 37

3.3 Comparison of Accuracy between Proximity Forest and Elastic Ensemble.
Each point represents a dataset from the UCR Archive. Points above the
diagonal indicates datasets where Proximity Forest is more accurate (61
datasets) and points below the diagonal line indicates datasets where
Elastic Ensemble is more accurate (22 datasets). . . . . . . . . . . . . . . 39

3.4 Comparison of training and testing times in log scale of Proximity Forest
and Elastic Ensemble on 85 UCR datasets. This image is taken from [8]. . 39

3.5 Average accuracy rank of Proximity Forest compared with other leading
TSC algorithms circa 2017 as identified in [9]. . . . . . . . . . . . . . . . . 40

3.6 Average accuracy rank of Proximity Forest with various number of trees k
in the ensemble (with number of candidate splits kept constant at Ce = 5). 41

3.7 Scatter plots showing comparisons between different ensemble sizes (with
Ce = 5) a) k = 100 vs k = 200 b) k = 200 vs k = 500. . . . . . . . . . . . 42

3.8 Accuracy comparison of three configurations of PF using ratio of accuracy
between: k = 200 / k = 100 vs k = 500 / k = 100, with Ce = 5. . . . . . . 42

3.9 Training time of the slowest 10 datasets with increasing ensemble size. . . 43

3.10 A scatter plot showing accuracy comparison of Proximity Forest before
and after my contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 Average accuracy rank of Proximity Forest with various number of can-
didate splits per node Ce. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.12 Scatter plots showing comparisons between different number of candidate
splits, while ensemble size is kept constant at k = 100 a) Ce = 5 vs
Ce = 10 b) Ce = 10 vs Ce = 20 . . . . . . . . . . . . . . . . . . . . . . . . 45

3.13 Accuracy comparison of three configurations of PF using ratio of accuracy
between: Ce = 5 / Ce = 1 vs Ce = 10 / Ce = 1, with k = 100.) . . . . . . 46

3.14 Training time of the slowest 10 datasets to train with increasing number
of candidate splits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.15 Test time of the slowest 10 datasets to train with increasing number of
candidate splits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.16 Mean depth of the slowest 10 datasets to train with increasing number of
candidate splits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.17 Number of times each configuration of Ce attains the highest accuracy
for 85 UCR datasets. If there is a tie, the lowest Ce is counted as it has
the fastest training time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.18 Average accuracy rankings of 5 different number of candidates run on 85
UCR datasets and “k = 50, Ce = best” configuration which selects the
best performing setting out of the 5 settings for each dataset. . . . . . . 50

3.19 Average accuracy rank of Proximity Forest with at least a total of 500
candidate splits evaluated at the root nodes using different configurations
of Ce and k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.20 Scatter plots showing the accuracy of Proximity Forest with a) PF (k100, Ce5)
vs PF (k50, Ce10) b) PF (k100, Ce5) vs PF (k250, Ce2) c) PF (k100, Ce5)
vs PF (k500, Ce1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



List of Figures xii

3.21 Accuracy comparison of three configurations of PF using ratio of accuracy
between: k = 250, Ce = 2 / k = 500, Ce = 1 vs k = 100, Ce = 5 /
k = 500, Ce = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Distribution of the dimensions of the 30 datasets available in UEA Mul-
tivariate TS Archive [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Shape of beta distribution as its parameter β increases. . . . . . . . . . . 130

6.3 Average accuracy ranking diagram showing the ranks on the error rate of
the independent similarity measures and MEEI . . . . . . . . . . . . . . . 132

6.4 Average accuracy ranking diagram showing the ranks on the error rate of
the dependent similarity measures and MEED. . . . . . . . . . . . . . . . 132

6.5 Average accuracy ranking diagram showing the ranks on the error rate of
the top seven similarity measures and three variants of MEE. . . . . . . . 133

6.6 Scatter plots showing the accuracy of Multivariate Proximity Forest (k =
500, Ce = 5) with three variations that combine different types of mea-
sures and two strategies to select dimensions. a) MPFI , dims = all vs
MPFI , dims = beta13sqrt b) MPFD, dims = all vs MPFD, dims =
beta13sqrt c) MPFID, dims = all vs MPFID, dims = beta13sqrt. . . . . 135

6.7 Average accuracy ranking diagram showing the ranks on the error rate
of 8 classifiers from Ruiz et al. [6] and Middlehurst et al. [7] and the our
best performing ensembles, MEEID and MPFID. . . . . . . . . . . . . . 136

6.8 Scatters plots showing the accuracy of a) HIVE-COTEv1 vs MPFID b)
HIVE-COTEv2 vs MPFID, on 23 datasets from UEA multivariate TS
Archive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Tables

3.1 Training time and test time of of Proximity Forest on 85 UCR datasets
with increasing ensemble size. This experiment was done on a cluster
with 16-threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Training time, test time and mean depth of Proximity Forest on 85 UCR
datasets with increasing number of candidates. This experiment was done
on a cluster with 16-threads. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Training time, test time, total time and mean depth of Proximity Forest
on 85 UCR datasets with 4 configurations of Proximity Forest. This
experiment was done on a cluster with 16-threads. . . . . . . . . . . . . . 54

6.1 A comparison of accuracy and total training and test time of variants of
MPF on 23 UEA multivariate datasets. In this table, for win/draw/loss,
wins are counted for Setting(X) vs Setting(Y). . . . . . . . . . . . . . . . 134

6.2 Accuracy of our most accurate ensembles MEEID and MPFID compared
against top multivariate TSC algorithms on 23 datasets from UEA Multi-
variate TS Archive. Column names are shortened as follows: HC1 for for
HIVE-COTEv1, IT for InceptionTime, RT for ROCKET, HC2 for HIVE-
COTEv2. Wins indicate the number of time each classifier achieved the
highest accuracy for each dataset. . . . . . . . . . . . . . . . . . . . . . . . 138

xiii



Chapter 1

Introduction

A time series is a sequence of observations of either one variable (i.e. univariate) or mul-

tiple variables (i.e. multivariate) made over time. Examples of time series data sources

include audio data [10], stock market data [11, 12], human activity data (e.g. tracking

movement from a device like Microsoft Kinect) [13], medical data such as Electrocar-

diogram (ECG), Electroencephalogram (EEG) and Electromyography (EMG) [14], data

from sensors networks used to monitor biological, chemical or industrial processes, and

satellite images taken over time [3].

The ubiquitous nature of time series data has made time series data analytics an im-

portant and growing area of machine learning research. Data mining from time series

includes tasks such as time series classification [9, 15], clustering [16–18], regression [19],

forecasting [20, 21], anomaly detection [22, 23], indexing [24], subsequence search [25]

and segmentation [26].

My research focuses on Time Series Classification (TSC). However, the fundamental

contributions are directly applicable to many other time series analysis tasks.

TSC is a fast developing field, especially in the last few years. My research began in

2018. At that time the recently developed FLAT-COTE1 algorithm defined the state

of the art in terms of accuracy, attaining significantly better average rank on accuracy

relative to other leading algorithms of the time [9], as reflected in Figure 1.1.

However, while setting new standards in accuracy, FLAT-COTE had several limitations

including that its time complexity made it impractical to apply to quantities of data

beyond a few hundred series and that it only supports univariate time series. FLAT-

COTE’s design goal was to achieve high accuracy by ensembling a large number of TSC

algorithms, and scalability was not a major consideration.

1Flat Collective of Transformation-Based Ensemble. It is also abbreviated as COTE.

1
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Figure 1.1: This diagram shows the mean rankings (on error rate) of five well known
TSC algorithms over 85 benchmark datasets [1]. Algorithms to the right are more
accurate. In this case, FLAT-COTE is the most accurate algorithm. Mean ranking

diagrams will be explained in Section 2.6.

In addition to the limitations of the state-of-the-art algorithm FLAT-COTE, in general,

the following challenges were present in the TSC field when I commenced my PhD in

2018:

• The majority of the research on TSC was evaluated on the University of California

Riverside (UCR) Time Series Data Mining Archive (abbreviated hereafter as the

UCR Archive) with relatively small datasets [1]. Until 2018, the largest dataset

in the repository (ElectricDevices) only had 8,926 time series. 63 out of 85 of the

datasets in the repository had fewer than 500 time series. This does not reflect

the quantity of time series data available in many “real world” applications. For

example, the Phoneme dataset [27] has 370,000 time series, and the Satellite Image

Time Series (SITS) dataset [3] has 1,000,000 time series. Growth of time series

data analytics show that the size of time series datasets can be in orders of several

millions. Many of the TSC algorithms developed in the past two decades have

been tuned by using UCR datasets, so there is concern of potential over-fitting of

the algorithms’ hyperparameters to the small datasets in the UCR Archive.

• One of most extensive reviews of TSC field to that date — dubbed “the great TSC

bakeoff” — was published in 2017 [9]. It identified four algorithms as state of the

art: Flat Collective of Transformation-based Ensembles (FLAT-COTE) [28], Elas-

tic Ensemble (EE) [15], Shapelet Transform (ST) [29], and Bag of SFA Symbols

(BOSS) [30]. As mentioned before, FLAT-COTE was identified as the most ac-

curate algorithm, with significantly higher accuracy than EE, ST, and BOSS (see

Figure 1.1). Since FLAT-COTE is an ensemble, its time complexity is bounded

by the slowest of it components: EE, ST, and BOSS. ST is extremely slow with its

shapelet search with a training time complexity of O(n2·L4), where n is the number

of series in the training set and L is the length of the series. Since EE uses several

similarity measures with parameters selected using leave-one-out cross-validation,

its training time complexity is O(n2 · L2). Furthermore, since EE and BOSS are



Introduction 3

nearest neighbor based algorithms, they require a scan of the whole dataset during

testing as well. These factors limit the scalability of FLAT-COTE to very few and

short time series in any reasonable time frame.

• There were many studies conducted on how to speed up time series nearest neigh-

bor search with elastic similarity measures such as Dynamic Time Warping (DTW)

[31, 32] to large quantities of data [33]. A highly optimized 1-nearest neighbor (1-

NN) using DTW with lower bounding and early abandoning can be used to classify

millions of time series data relatively quickly [3, 34]. However, comparisons show

that 1-NN accuracy is significantly lower than state-of-the-art TSC algorithms [9].

• Variants of dictionary algorithms (see Section 2.4.4), such as BOSS, had been

developed for scalability. These include BOSS-VS and WEASEL (explained in

Section 2.4.4). However they also compromise accuracy for scalability, or do not

scale well in terms of other factors such as memory usage.

• The majority of TSC algorithms had been developed for univariate time series

classification [6]. For example, leading classifiers prior to 2018 such as EE, ST,

BOSS, FLAT-COTE do not support classification from multivariate time series.

Multivariate time series data are very common in many application domains [6], so

this limitation forced either multivariate data to be converted to a univariate form

using some feature extraction technique or for these methods to be applied sepa-

rately in each dimension. This hindered capturing potentially valuable information

in the dependencies between multiple dimensions.

These challenges highlight important shortcomings in the TSC field that motivated us

to explore and investigate new scalable and accurate TSC algorithms. A short summary

of the contributions made in this thesis include (a detailed list is given in the conclusion

of this thesis in Section 7.2):

• Contribution to the development of a novel TSC algorithm called Proximity For-

est [8]. Proximity Forest uses the divide and conquer strategy of decision trees,

employing a novel similarity-based splitting mechanism. It was the first scalable

algorithm with accuracy competitive with state-of-the-art TSC classifiers of the

time, such as EE, ST, BOSS or FLAT-COTE. For example, using an Earth ob-

servation dataset with one million series, we showed that Proximity Forest can

be trained in 17 hours, while then state-of-the-art FLAT-COTE is estimated to

require 200 years. My contribution, a Gini-based evaluation criteria to select be-

tween multiple candidate splits at the nodes of the trees boosted its accuracy

significantly.
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• Development of the novel TSC algorithm TS-CHIEF2 [35]. TS-CHIEF extends

Proximity Forest by adding dictionary-based (see Section 2.4.4) and interval-

based (see Section 2.4.2) splitters. While rapid progress has been made in the

last three years (recent advances are presented in Chapter 2), TS-CHIEF main-

tained a consistent competitive edge with newer state-of-the-art classifiers such as

HIVE-COTE3 [36, 37] (FLAT-COTE’s successor, see Section 2.4.7). We empiri-

cally showed that it is scalable to more than 150k time series within a time frame

that was far beyond the reach of any other competitor of the time. Since publica-

tion, the main results of TS-CHIEF have been independently replicated [38], and

TS-CHIEF has been independently recognized as one of four TSC algorithms that

define the state of the art [7, 39].

• Development of multivariate versions of seven commonly used univariate elastic

similarity measures. This was achieved by adopting two strategies — using mul-

tiple dimensions independently and dependently [40]. Univariate versions of these

seven measures have been widely used in time series analysis tasks such as clas-

sification, clustering, indexing, segmentation, anomaly detection and subsequence

search. Therefore, this work is expected to be of great benefit to the time series

analysis community.

• Further comparative studies using multivariate similarity measures that give in-

sight into important distinctions between the two strategies of using dimensions

independently or dependently.

• Development of multivariate versions of Elastic Ensemble and Proximity Forest

and exploring the effectiveness of using random subsets of dimensions from multi-

variate time series.

1.1 Research Aims and Objectives

The primary aim of my research has been to develop both scalable and accurate time

series classification algorithms. A secondary aim has been to extend similarity-based

TSC to multivariate time series.

I identified the following Research Objectives (RO) to achieve these aims.

• RO-1 : To develop a scalable, similarity-based time series classification

algorithm that is scalable to relatively large datasets, while being com-

petitive in accuracy with existing similarity-based methods. When I

2Time Series Combination of Heterogeneous and Integrated Embeddings Forest
3Hierarchical Collective of Transformation-Based Ensemble
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started, Proximity Forest was being developed and its accuracy was still not com-

petitive with FLAT-COTE. The project was handed over to me to further improve

its accuracy while maintaining its scalability. In order to do this, my initial objec-

tive was to re-implement Proximity Forest with a Gini-based split selection criteria

at the nodes of purpose built decision trees, giving them the ability to evaluate

more than one candidate split at each node.

• RO-2 : To integrate dictionary-based time series classification techniques

to Proximity Forest. Dictionary-based techniques convert time series into a bag-

of-word model. This splitter would be based on BOSS [41]. BOSS converts the

time series into the frequency domain, and discretize them to build a database

of histograms, which is then compared via a special distance measure with an

ensemble of 1-nearest neighbors. The goal was to use ideas from BOSS and built

our own dictionary-based splitter.

• RO-3 : To integrate interval-based time series classification techniques

to TS-CHIEF. The goal would be to implement a technique similar to the Ran-

dom Interval Spectral Ensemble (RISE) [36], which was the leading interval-based

classifier of the time. The original RISE algorithm extracts random intervals of

subseries and applies a set of transform functions (e.g. autocorrelation, power

spectrum) on the intervals. It then trains an ensemble of binary decision trees on

each interval. The goal was to use ideas from RISE to built our own interval-based

splitter.

• RO-4 : To extend the similarity measures used in Proximity Forest to

multivariate time series. Techniques for multivariate time series classification

were largely neglected at the time. For the similarity measure DTW, there were

two strategies to combine the dimensions, either independently or dependently

[42]. Our goal is to adapt these strategies to other similarity measures to develop

multivariate versions of commonly used similarity measures. Another goal is to

study how these two strategies work for different datasets, for different similarity

measures.

• RO-5 : To investigate ways of ensembling multivariate similarity mea-

sures and exploring ways to select which dimensions to use The goal is

to use multivariate measures to implement a Multivariate Elastic Ensemble and a

Multivariate Proximity Forest in order to evaluate how ensembles of multivariate

similarity measures perform. In addition, another goal is to investigate strategies

to select which dimensions to use since, in most cases, using all dimensions together

is unlikely to result in the optimal performance.
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1.2 Thesis Overview

I have organized this thesis into seven chapters. The remaining chapters are organized

as follows:

Chapter 2 presents a detailed literature review of the field of time series classification.

After basic notations and introductory concepts, I present a detailed literature review

of the univariate time series classification research followed by research on multivariate

time series classification. In this chapter, I present different techniques used in TSC such

as similarity, dictionary, and interval-based approaches, which was briefly mentioned in

the research objectives. I conclude the chapter by presenting a common methodology for

benchmarking, followed by a benchmark of univariate classifiers and then multivariate

classifiers.

Chapter 3 focuses on a novel, highly accurate and scalable forest algorithm for time series

classification called Proximity Forest. This chapter is based on the co-authored paper

Lucas et al. [8] with a focus on my specific contributions. It also includes additional

research that I carried out post-publication.

Chapter 4 extends the similarity-based Proximity Forest algorithm by adding dictionary

and interval-based TSC techniques to the algorithm. It achieves state-of-the-art accuracy

while maintaining a similar level of scalability with Proximity Forest. This chapter adds

an introduction, then embeds the journal paper for TS-CHIEF as it was published [35],

and finally adds a list of contributions.

Chapter 5 extends the set of similarity measures used in Proximity Forest to multi-

variate time series and investigates two strategies used to extend these measures to the

multivariate case. This chapter also adds an introduction, then embeds a journal paper

currently under review [40], and finally adds a list of contributions.

Chapter 6 ensembles the multivariate similarity measures presented in Chapter 5 to form

two classifiers Multivariate Elastic Ensemble and Multivariate Proximity Forest.

Chapter 7 concludes this thesis with a summary of research, a list of overall contributions

to knowledge, followed by a discussion of limitations and future work.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, I present a literature review of important methods used in time series

classification (TSC). I start by presenting key definitions. I then introduce time series

classification. Next, I summarize the main methods developed for univariate TSC and

then multivariate TSC. Then I describe the benchmarking methodology used through-

out the thesis. Finally, I conclude by presenting a benchmark of univariate classifiers,

followed by a benchmark of multivariate classifiers.

2.2 Definitions

Definition 2.1. Time Series

A time series T of length L is an ordered sequence of L time-value pairs T =

〈(t1,x1), · · · , (tL,xL)〉, where ti is the timestamp at sequence index i, i ∈ {1, · · · , L},
and xi is a D-dimensional point representing observations of D real-valued variables or

features at timestamp ti. Note that for the sake of this thesis we assume that all datasets

have the same length. Each time point xi ∈ RD is defined by {x1i , · · · , xdi , · · · , xDi }. Usu-

ally, timestamps ti are assumed to be equidistant, and thus omitted, which results in a

simpler representation where T = 〈x1, · · · ,xL〉.

A univariate (or single-dimensional) time series is a special case where a single variable

is observed (D = 1). Therefore, xi is a scalar, and consequently, T = 〈x1, · · · , xL〉.

Definition 2.2. Labeled Time Series Dataset

7
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A labeled time series dataset S consists of N labeled time series indexed by n, where

n ∈ {1, · · · , N}. Each time series Tn in S is associated with a label yn ∈ {1, · · · , c},
where c is the number of classes.

Definition 2.3. Time Series Classification

In a Time Series Classification (TSC) task, a time series classifier is trained on a labeled

time series dataset, and then used to predict labels of unlabeled time series. The classifier

is a predictive mapping function that maps from the space of input variables to discrete

class labels.

2.3 Time Series Classification

To understand time series classification more intuitively, let us consider two examples

of applications.

As a first example, consider using classification to tell apart a normal Electrocardiogram

(EGG) from an abnormal one (Figure 2.1). The depicted series come from the ECG200

dataset obtained from a commonly used time series dataset repository called the UCR

time series archive [2, 43]. This dataset contains 100 time series (i.e. size n = 100) in

the training set, half of them labeled as “normal”, and the other half as “Myocardial

Infarction”. Each time series consists of 96 measurements (i.e. length L = 96) of

electrical activity (measuring one variable, hence a univariate time series) during one

heart beat. A time series classification algorithm is trained using such labeled data, and

the goal is to predict the label of an unlabeled time series, in this case, either a “normal”

or “Myocardial Infarction” class of heart beat.

Figure 2.1: Example of two time series from the ECG200 dataset in the UCR archive
representing a normal heart beat on the left, and an abnormal heart beat on the right.

This image is taken from [2].
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Another example application of time series classification is remote sensing from earth

observation satellites. Consider the problem of producing land cover maps from satellite

images (see Figure 2.2). Earth observation satellite Sentinel-2 takes 10 m to 60 m res-

olution of images of Earth’s surface every 5 days in multiple-spectral bands (13 bands

specifically) [44]. In such images, every pixel consists of a sequence of multivariate values

representing the evolution of the reflection from the land use features of a particular ge-

ographic location. These land use features may be labeled to classes such as wheat, corn,

deciduous forest or urban. Because each pixel forms a time series, research has shown

that using time series classification techniques produce accurate land cover maps [45].

Since such satellite images can be gigabytes or terabytes of data with millions of time

series, existing TSC algorithms were not able to handle this amount of data with high

accuracy.

Figure 2.2: An illustration showing how land cover maps are produced. Time series
are extracted from multiple multi-spectral satellite images. This image is taken from

Tan et al. [3] with author’s permission.

In time series classification we aim to develop specialized classification techniques for

time series data. Research indicates that most general purpose classification algorithms

- such as Random Forests, SVMs - applied on raw time series data are not as accurate

as the state of the art. This is because such algorithms are not developed to specifically

extract information from the sequential nature of time series data [9]. In a time series,

often the previous time points are highly correlated with the current time point (this is

called autocorrelation). Ideally, we want techniques that can extract information from

these sequential dependencies. Due to this, a variety of time series specific techniques

has been developed [9, 46], which will be summarized in this Chapter.

2.4 Univariate TSC

Most of the existing work on TSC has been conducted on univariate time series [5, 47].

These methods have been categorized in many different ways in the literature. In this
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thesis, I follow a traditional method of categorizing them [9], with some modifications

to accommodate recent algorithms in the field. Since some methods combine more than

one technique for TSC (such as using time domain information from the original time

series or using the frequency domain after a transformation), there is no definitive way

to categorize them. The presented taxonomy of TSC techniques is a pragmatic choice,

as it eases the explanation of the TS-CHIEF algorithm, which will be presented later in

Chapter 4.

As mentioned before, general purpose classifiers applied on raw time series do not per-

form well [9]. Generally, two kind of approaches are used to address this issue. The first

kind is to develop techniques able to accommodate the dependencies in the temporal

dimension of time series. Examples of such techniques include classifiers that use time

series specific similarity measures. Section 2.4.1 presents an overview of similarity-based

methods in the univariate context. In Chapter 5, I will present more details of similarity

measures when presenting my contributions to multivariate similarity measures for time

series classification. The second kind of approach is to transform the series into a new

feature space before applying general purpose classifiers. Once it has been transformed

into another space, the data is no longer sequential in the original space, hence, any

technique that works on tabular data can be applied. Many of the methods described

below (Section 2.4.2 to 2.4.6), such as interval-based, shapelet-based, dictionary-based

methods use some type of transformation either on the full series or a subseries.

2.4.1 Similarity-based Methods

A similarity measure computes a real value that quantifies the degree of similarity be-

tween two series. For the measures we consider, a smaller value means that the two

series are more similar, or “closer” to each other. Similarity-based TSC methods use

similarity measures for classification.

Many traditional TSC algorithms use 1-Nearest Neighbor (1-NN) with a class of similar-

ity measures specifically developed for time series data called elastic similarity measures.

Elastic measures are designed to compensate for local distortions, miss-alignments or

warpings in time series that might exist due to stretched or shrunken subsections within

the time series. For example, consider two time series of heart beats. The systolic pres-

sure - maximum pressure as heart contracts - and diastolic pressure - minimum pressure

as heart relaxes - may not be aligned in the time-axis between two time series for various

reasons such as the data is collected separately, they are from different patients, etc... A

non-elastic similarity measure such as the Euclidean distance cannot compensate for this
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misalignment. Whereas, an elastic similarity measure can accommodate the misaligned

two systolic maximums and two diastolic minimums from the two series.

The most well known elastic similarity measure used in TSC is Dynamic Time Warping

(DTW) [31, 32]. Figure 2.3 shows an example of Euclidean distance and DTW aligning

the points between two time series.

Euclidean DTW

Figure 2.3: An example showing how a non-elastic similarity measure Euclidean
distance and an elastic similarity measure DTW aligns the points between two time
series. Euclidean distance use one-to-one alignments only. By contrast, DTW supports

one-to-many alignments.

DTW is efficiently solved using a dynamic programming technique. Let Q = 〈q1, · · · , qL〉
and C = 〈c1, · · · , cL〉 be two univariate series of length L, and let ∆DTW be an L-by-L

cumulative cost matrix in which the element (i, j) is defined as the squared Euclidean

distance between the two corresponding points qi and cj , plus the minimum cost of the

previous points. Equations 2.1 to 2.3 defines the initial conditions of the cost matrix

(matrix indexing starts at 0). Equation 2.4 defines the elements ∆DTW (i, j) of the

cumulative cost matrix.

∆DTW (0, 0) = 0 (2.1)

∆DTW (i, 0) = +∞ (2.2)

∆DTW (0, j) = +∞ (2.3)

∆DTW (i, j) = (qi − cj)2 +min





∆DTW (i− 1, j − 1) if i, j ≥ 1

∆DTW (i, j − 1) if j ≥ 1

∆DTW (i− 1, j) if i ≥ 1.

(2.4)

Two series Q and C can be aligned using the warping paths that traverse through this

cost matrix (within the constraints defined by DTW - i.e. all paths must be monoton-

ically increasing, within the warping window (explained shortly), starts at ∆DTW (0, 0)

and ends at ∆DTW (L,L)). DTW represents the accumulated cost of the optimal warp-

ing path. Therefore, in the dynamic programming case, DTW between two series Q and

C is the cost accumulated in the last element of the cost matrix (i.e. i, j = L ) as
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defined in Equation 2.5. Figure 2.4 shows how DTW alignment is solved using the cost

matrix1.

DTW (Q,C) = ∆DTW (L,L). (2.5)
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Figure 2.4: DTW is efficiently solved using a dynamic programming technique. The
shaded region shows the maximum deviations the warping path of DTW can follow
when constrained using a window. Cells are shaded based on the cumulative cost and

the cells with blue outline mark the minimum cost path (i.e. DTW path).

DTW has a parameter called “window size”, w, which helps to prevent pathological

warpings by constraining the maximum allowed warping distance. For example, when

w = 0, DTW produces a one-to-one alignment, which is equivalent to the Euclidean

distance. A larger warping window allows one-to-many alignments where points from

one series can match points from the other series over longer time frames. Therefore, w

controls the elasticity of the similarity measure. For many decades, 1-NN with DTW [31]

and cross validated warping window size [34] was the standard benchmark for TSC.

Parameter w also improves the computational efficiency, since in most cases, the ideal

w is much less than the length of the series [49]. When w is small, DTW runs relatively

fast, especially with lower bounding, and early abandoning techniques [3, 49–54]. The

time complexity to calculate DTW with a warping window is O(L ·w), instead of O(L2)

for the full DTW. Where there is a need to distinguish the two variants we use DTWF

for the full DTW with no window and DTW to mean DTW with windowing.

1Figures 2.3 and 2.4 are generated using the dtw-python package available at https://

dynamictimewarping.github.io [48].

https://dynamictimewarping.github.io
https://dynamictimewarping.github.io
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Commonly used similarity measures include variations of DTW such as Derivative DTW

(DDTW) [55, 56], Weighted DTW (WDTW) [57], Weighted DDTW (WDDTW) [57],

and measures based on edit distance such as Longest Common Subsequence (LCSS) [58],

Move-Split-Merge (MSM) [59], Edit Distance with Real Penalty (ERP) [60], and Time

Warp Edit distance TWE [61]. Most of these measures have additional parameters that

can be tuned. Details of these measures can be found in [9, 15], and in Chapter 5.

Ensembles formed using multiple 1-NN classifiers with a diversity of similarity measures

have proved to be significantly more accurate than 1-NN with any single measure [15].

Such ensembles help to reduce the variance of the model and thus help to improve

the overall classification accuracy. For example, Elastic Ensemble (EE) combines 11

1-NN algorithms, each using one of the 11 elastic measures [15]. For each measure, the

parameters are optimized with respect to accuracy using leave-one-out cross-validation

[9, 15]. Although EE is a relatively accurate classifier [9], it is slow to train due to the high

computational cost of the leave-one-out cross-validation used to tune its parameters –

O(n2 ·L2). Furthermore, since EE is an ensemble of 1-NN models, the classification time

for each time series is also high – O(n ·L2). EE was the overall most accurate similarity-

based classifier on the UCR benchmark until our contribution Proximity Forest [9]. It

was used as a component of FLAT-COTE and early versions of HIVE-COTE as well.

Our Proximity Forest [8] (PF) is currently the most accurate and the fastest similarity-

based time series classifier available. PF is a tree-based ensemble that uses the set of

similarity measures used in EE. By contrast to the 1-NN method used in EE, PF takes

advantage of the divide-and-conquer strategies of trees to train in O(n · log(n)). In addi-

tion, unlike EE which uses slow leave-one-out cross-validation to select the parameters,

PF uses a randomization strategy, which helps to speed up the algorithm considerably.

For a dataset that EE is estimated to require 200 years to train, PF can train in just 17

hours as we will see in Chapter 3.

2.4.2 Interval-based Methods

These algorithms select a set of intervals from the whole series and apply transformations

to these intervals to generate a new feature vector. For a series of length L, there are

L(L−1)/2 possible intervals. Therefore, many of these methods generate a large number

of intervals (often random), hoping that the subset of generated intervals will produce an

accurate representation of interval-based features available (see Figure 2.5). Transformed

feature vectors are finally used to train a classifier such as decision trees. Many methods

rely on ensembling and use randomization to increase the diversity among individual

classifiers, in order to reduce the overall error.
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Figure 2.5: An example showing interval-based features in time series. Intervals are
phase-dependent features, which means that their location in the series is useful for

discrimination.

For instance, Time Series Forest (TSF) samples random intervals and applies three time

domain transformations – mean, standard deviation and slope – at the nodes of the trees

and trains an ensemble of a customized decision tree called Time Series Tree [62]. Other

notable interval-based algorithms are Time Series Bag of Features (TSBF) [63], Learned

Pattern Similarity (LPS) [64], and the HIVE-COTE’s interval-based component called

Random Interval Spectral Ensemble (RISE) [37]. Note that RISE selects a single interval

for each base whereas TSF and TSBF select multiple intervals for each base classifier.

RISE computes four different transformations for each random interval selected: Au-

tocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and Autore-

gressive model (AR) which extracts features in time domain, and Power Spectrum (PS)

which extracts features in the frequency domain [37, 64]. Coefficients of these functions

are used to form a new transformed feature vector. After these transformations have

been computed for each interval, a Random Tree (similar to trees used in the Ran-

dom Forest algorithm [65]) is trained on each of the transformed intervals. The average

training complexity of RISE is O(k · n · log(n) · L2) [37], and the test complexity is

O(k · log(n) · L2), where k is the number of trees.

More recently introduced interval-based classifiers include Supervised Time Series For-

est (STSF) [66], Randomized STSF (r-STSF) [67], Canonical Interval Forest (CIF) [68],

and HIVE-COTEv2’s new interval-based component Diverse Representation CIF (Dr-

CIF) [7]. r-STSF (an improved version of STSF) explores a supervised method of sam-

pling the intervals, and then uses simple summary statistic features, spectral features

and features from first derivative of the series over those intervals. It also compares

Random Trees with Extremely Randomized Trees [69] to design a more stochastic but

more accurate ensemble. DrCIF (an improved version of CIF) uses 29 features: mean,

standard deviation, slope, median, inter-quartile range, min, max and 22 features from
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the “catch-22” [70] features for time series analysis. The “catch-22” features were de-

rived from a clustering and filtering of the 7658 hctsa features used in the time series

analysis hctsa toolbox [71]. At the time of its publication, DrCIF was benchmarked

as the overall most accurate interval-based algorithm [7][Figure 4]. However, there has

been no comparison of DrCIF relative to r-STSF, which was released after DrCIF.

2.4.3 Shapelet-based Methods

Rather than extracting intervals, where the location of sub-sequences are important,

shapelet-based algorithms seek to identify sub-sequences that allow discrimination be-

tween classes irrespective of where they occur in a sequence [72]. Ideally, a good shapelet

candidate should be a sub-sequence that is common to time series from the same class,

and not found in time series from other classes (see Figure 2.6). The similarity mea-

sure derived from a shapelet is the minimum Euclidean distance between it and any

sub-sequence of the same length from the target series.

Figure 2.6: An example showing shapelet-based features in time series. Shapelets are
phase-independent features, which means that location of the subseries is not important
when selecting a shapelet. Shapelets are selected based on their ability discriminate

between classes.

The original version of the shapelet algorithm [72, 73] enumerates all possible sub-

sequences among the training set to find the “best” possible shapelets. It uses the

Information Gain criterion to assess how well a given shapelet candidate can split the

data. The selected shapelet candidate and a distance threshold is used as a decision

criterion at the node of a binary decision tree. The search for the “best” shapelet is then

recursively repeated until obtaining pure leaves. Despite some optimizations proposed

in the paper, it is still a very slow algorithm with training complexity of O(n2 · L4).

Much of the research about shapelets has focused on ways of speeding up the shapelet

discovery phase. Instead of enumerating all possible shapelet candidates, researchers

have tried to come up with ways of quickly identifying possible “good” shapelets. These

include Fast Shapelets (FS) [74] and Learned Shapelets (LS) [75]. Fast Shapelet proposed
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to use an approximation technique called Symbolic Aggregate Approximation (SAX) [76]

to discretize the time series before the shapelet discovery process in order to speed up

by reducing the number of shapelet candidates. LS attempted to “learn” the shapelets

rather than enumerate all possible candidates. FS is faster than LS, but it is less

accurate [9].

One algorithm that speeds up the shapelet-based techniques is Generalized Random

Shapelet Forest (GRSF) [77]. GRSF selects a set of random shapelets at each node of a

decision tree and performs the shapelet transformation at the node level of the decision

tree. GRSF is fast because it is tree-based and uses random selection of shapelets instead

of enumerating all shapelets. However, results available in [77] was carried out on a

subset of the 85 UCR datasets making it difficult to compare against other classifiers.

Another notable shapelet algorithm is Shapelet Transform (ST) [29]. In ST, the ‘best’

k shapelets are first extracted based on their ability to separate classes using a qual-

ity measure such as Information Gain, and then the distance of each of the “best” k

shapelets to each of the samples in the training set is computed [29, 78, 79]. The dis-

tance from k shapelets to each time series forms a matrix of distances which defines a

new transformation of the dataset. This transformed dataset is finally used to train an

ensemble of eight traditional classification algorithms including 1-Nearest Neighbor with

Euclidean distance and DTW, C45 Decision Trees, BayesNet, NaiveBayes, SVM, Rota-

tion Forest and Random Forest. Although accurate, ST also has a high training-time

complexity of O(n2 · L4) [29, 37].

More recent advances to shapelet-based algorithms were introduced in HIVE-COTEv1

which uses a time contracted version of ST called Shapelet Transform Classifier

(STC) [39]. Research indicates that exhaustively searching all shapelets can lead to

overfitting [80], and does not necessarily perform better than random search. Contracted

version takes a time limit as an input to the algorithm and optimizes a random shapelet

search within the time frame. It also replaces the heterogeneous ensemble of classifiers

used in ST with a Rotation Forest [81]. Currently, HIVE-COTEv2 also uses this new

version of the shapelet-transform to speed up its shapelet-based TSC component.

2.4.4 Dictionary-based Methods

Dictionary-based algorithms transform time series data into bag of words [41, 82, 83].

Dictionary based algorithms are good at handling noisy data and finding discriminatory

information in data with recurring patterns [41]. Usually, an approximation method

is first applied to reduce the length of the series [76, 84, 85], and then a quantization

method is used to discretize the values, and thus to form words [41, 83]. Each time series
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Figure 2.7: Dictionary-based methods convert a set of windows over the series (either
sliding windows or disjoint windows) to a set of symbols. These symbols are then
counted to form a histogram of word frequencies to represent the original time series.

is then represented by a histogram that counts the word frequencies (see Figure 2.7).

1-NN with a similarity measure, that compares the similarity between histograms, can

then be used to train a classification model. Notable dictionary based algorithms are Bag

of Patterns (BoP) [86], Symbolic Aggregate Approximation-Vector Space Model (SAX-

VSM) [82], Bag-of-SFA-Symbols (BOSS) [41], BOSS in Vector Space (BOSS-VS) [87]

and Word eXtrAction for time SEries cLassification (WEASEL) [88].

To compute an approximation of a series, BOP and SAX-VSM use a method called

Symbolic Aggregate Approximation (SAX) [76]. SAX uses Piecewise Aggregate Approx-

imation (PAA) [84] which concatenates the means of consecutive segments of the series

and uses quantiles of the normal distribution as breakpoints to discretize or quantize the

series to form a word representation. By contrast, BOSS, BOSS-VS, and WEASEL use

a method called Symbolic Fourier Approximation (SFA) [85] to compute the approxi-

mated series. SFA applies Discrete Fourier Transformation (DFT) on the series and uses

the coefficients of DFT to form a short approximation, representing the frequencies in

the series. This approximation is then discretized using a data-adaptive quantization

method called Multiple Coefficient Binning (MCB) [41, 85].

The most commonly used algorithm in this category is Bag-of-SFA-Symbols (BOSS),

which is an ensemble of dictionary-based 1-NN models [41]. BOSS is a component of

HIVE-COTE and our algorithm TS-CHIEF also has a component inspired by BOSS.

BOSS has a training time complexity of O(n2 · L2) and a testing time complexity of

O(n · L) [41]. A variant of BOSS called BOSS-VS [87] has a much faster train and test

time while being less accurate. The more recent variant WEASEL [88] is more accurate

but has a slower training time than BOSS and BOSS-VS, in addition to high space

complexity [8, 88, 89].

More recent advances in dictionary-based splitters include time contractable BOSS
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(cBOSS) [89], BOSS with Spatial Pyramids (S-BOSS) [90], Temporal Dictionary En-

semble (TDE) [91]. cBOSS introduces time contracting to BOSS and combines various

research progress made on dictionary-based classifiers since 2015. It is much faster and

improves the accuracy. S-BOSS adds a form of location information to the extracted

words by extracting words at multiple levels. At the first level all words are extracted

from the whole series, at the second level words are extracted separately from each of

the halves, and at the third level words are extracted from 1/4th of the series, and so

on. S-BOSS is ranked more accurate than cBOSS and similar to WEASEL. But simi-

lar to WEASEL, S-BOSS also has high memory requirements. TDE combines features

from both cBOSS and S-BOSS, and adds additional improvements to make it the most

accurate dictionary-based classifier available at the moment [7][Figure 3]. It is also a

component of the HIVE-COTEv2.

2.4.5 Deep Learning-based Methods

Deep learning is interesting for time series both because of the structuring dimension

offered by time (deep learning has been particularly good for images and videos) and for

its linear scalability with training size. Most related research has focused on developing

specific architectures based mainly on Convolutional Neural Networks (CNNs) [46, 92],

coupled with data augmentation, which is required to make it possible for them to reach

high accuracy on the relatively small training set sizes present in the UCR archive [46,

93]. The most comprehensive empirical study of deep learning architectures used for

TSC was conducted by Fawaz et al. in 2019 [46]. They reviewed nine architectures and

benchmarked them on the UCR Archive. While the approaches are computationally

efficient, the two leading algorithms in the review, Fully Connected Network (FCN) [92]

and Residual Neural Network (ResNet) [92], was found to be less accurate than FLAT-

COTE and HIVE-COTE (alpha) [46].

Inspired by the success of Convolution Neural Networks (CNN) for two dimensional

image recognition, one dimensional CNNs have been studied for time series classification

in Temporal CNN (tempCNN) [4] (see Figure 2.8). They have been successfully applied

in the area of remote sensing for TSC.

InceptionTime is a deep learning algorithm that was developed later by Fawaz et al. [94],

which incorporates features from Inception modules [95] and ResNets [96]. Inception-

Time is an ensemble of deep learning models where each model is initialized with a

random set of weights. This is done to reduce variance by averaging the errors. Each

model consists of three blocks of Inception modules which are connected by residual

connections, followed by global average pooling and softmax layers. InceptionTime is
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currently the most accurate deep learning architecture available [94]. Since Inception-

Time runs on GPUs, the available runtime information is not directly comparable to

benchmarks run on CPUs, however, as according to recent benchmarks it is the second

fastest state-of-the-art TSC classifier after ROCKET [7][Table 4].

2.4.6 Random Convolution-based Methods

One of the most important recent advances in TSC was made by a method called Random

Convolution Kernel Transform (ROCKET) [97]. Rocket transforms time series using a

large number of random convolutional kernels. These kernels are parameterized with

random lengths, weights, biases, dilations, and paddings. By contrast to regular CNN

architectures where convolutional kernels are learned, random kernels provides a way to

transform a series into a high dimensional feature vector very quickly. A large number

of random kernels are convolved with the input series, resulting in a transformed output

series for each filter. Two summary statistics are extracted from each of these output

series — the maximum value and the proportion of positive values (PPV) (the number

of values that are positive as a proportion of all values). These extracted features are

then used to train a linear classifier. For small datasets, it uses a ridge classifier with

built in cross-validation for the regularization. And for large datasets, it uses a logistic

regression trained using stochastic gradient descent.

ROCKET provides state-of-the-art accuracy using a fraction of time required by other

scalable TSC classifiers. A recent benchmark shows that ROCKET can train 112

datasets from the UCR Archive 2018 version in under 3 hours on a single thread [7][Table

4]. By Comparison, HIVE-COTEv2 took 341 hours, HIVE-COTEv1 took 428 hours,

InceptionTime (run on GPUs) took 67 hours and TS-CHIEF took 1000+ hours (see

Section 2.4.7 for details on HIVE-COTE and TS-CHIEF)2. ROCKET is also scalable

for large datasets, with training complexity linear in both time series length and the

2TS-CHIEF was published earlier than these algorithms hence is not as optimized as HIVE-COTE
1.0 and HIVE-COTE 2.0. Most of the total time taken to train TS-CHIEF is taken by only a few
datasets.

Figure 2.8: An example of a deep learning architecture (TempCNN) used for TSC.
This image is taken from [4]



Literature Review 20

number of training examples. ROCKET can learn from 1 million time series of SITS

dataset [3] in 1 hr 3 min, to a similar accuracy as Proximity Forest, which requires more

than 16 hrs to train on the same quantity of data.

Two recently introduced improvements to this algorithm are MiniROCKET [98] and

MultiROCKET [99]. MiniROCKET maintains similar accuracy to ROCKET while

making the algorithm 75 times faster for large datasets. This optimization exploits

various properties of the kernels and summary feature PPV. The algorithm is made al-

most deterministic by using a small set of fixed kernels and proving that it can produce

essentially similar performance as using a large number of random kernels. According to

the authors, using MiniROCKET, 109 of the UCR Archive 2018 datasets can be trained

in less than 10 minutes [98]. MultiROCKET improves the accuracy even more with a

small increase in the computation overhead. MultiROCKET uses 26 summary features

including the features from “catch-22” [70] as well.

2.4.7 Combination Methods

This is a class of algorithms that ensemble other TSC algorithms to form “meta-

ensembles”. They have been mostly used as a target for benchmarking rather than

optimizing for speed.

Two most important algorithms in this category are Flat Collective of Transformation-

Based Ensembles (FLAT-COTE, also known as COTE) [28] and Hierarchical Vote

COTE (HIVE-COTE, also known as HIVE-COTE alpha) [36, 37]. FLAT-COTE is

a meta-ensemble of 35 different classifiers that use different time series classification

methods such as similarity-based, shapelet-based, and interval-based techniques. In

particular, it includes other ensembles such as EE and ST. The label of a query time

series is determined by applying weighted majority voting, where the weighting of each

constituent depends on the training leave-one-out cross-validation (LOO CV) accuracy.

HIVE-COTE works similarly, and it includes EE, ST, TSF, BOSS and RISE. The other

main change was grouping the constituent classifiers into modules that use different

data representations and then applying the weightings at module level to provide more

balance between data representations. These modifications result in a major gain in

accuracy, and it is currently considered as one of the state-of-the-art algorithm in TSC

for accuracy. Both variants of COTE have high training complexity, lower bounded by

the slow cross-validation used by EE – O(n2 ·L2) – and exhaustive shapelet enumeration

used by ST – O(n2 · L4).
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The two most recent updates are HIVE-COTEv1 (HC1) [39] and HIVE-COTEv2

(HC2) [7]. HC1 dropped EE from the ensemble due to its slow speed. It then re-

placed ST and BOSS with contractable versions of the algorithms. HC1 gives similar

accuracy to HIVE-COTE while being magnitudes faster. HC2 improves the accuracy of

HIVE-COTE significantly more than any other algorithm making it currently the most

accurate TSC classifier. While HC2 uses most of the features from HC1, it replaces con-

tract BOSS with the new dictionary-based classifier TDE and integrates an ensemble of

ROCKETS called Arsenal.

One of my main contribution TS-CHIEF also combines similarity, interval and

dictionary-based techniques. But unlike the COTE algorithms, TS-CHIEF combines

them in a uniquely different way at the node level of purpose built decision trees. It

achieves state-of-the-art accuracy with quasi-linear training time with respect to the

number of series. I present its details in Chapter 4.

2.4.8 Univariate Datasets

The majority of the work in TSC field has been conducted on a collection of datasets

called the University of California Riverside (UCR) Time Series Data Mining Archive

(shortly called the UCR Archive). The initial version of this repository was published

in 2002 [100]. Two important versions of the archive are: the 2015 version with 85

fixed-length datasets [1] and the most recent 2018 version with 128 datasets [43] (112 of

which are fixed-length). Since the publications contained in this thesis was evaluated on

the 85 datasets from the 2015 version, unless explicitly stated, in this thesis I use UCR

Archive to refer to the 2015 version.

Using a common archive for benchmarking solves many problems that existed in the

TSC community. An early survey conducted in 2003 [47] showed that the majority of

the papers at the time used artificial data created by authors to evaluate their own

algorithms. This creates biased algorithms that may not generalize well to real-world

data. This survey also highlighted the difficulties in reproducing the results of some

experiments due to inability to obtain the data used in published papers. Introduction

of UCR Archive to the TSC community helped to minimize some of these problems.

More than a thousand papers have used these datasets to evaluate their algorithms

using a standard benchmark set [43].

The UCR Archive contains datasets from a very diverse range of real-world applica-

tions. These include time series data obtained from images, motion sensors, mass

spectrometry, synthetic examples, electrocardiograms. For both the 2015 and 2018

versions, a standard train/test split - obtained with stratified sampling while making
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sure that all classes are represented in both train and test split - is provided in the

https://www.timeseriesclassification.com. While 2018 version has few datasets

with missing data and variable length, all datasets in the 2015 version has fixed-length

and no missing data. All datasets in the 2015 archive are z-normalized with zero mean

and unit standard deviation, while 2018 version have some unnormalized datasets as

well [43].

Even though the archive has many benefits, it is not without criticism [43]. Some of them

include: 1) z-normalizing will have a negative impact on algorithms that use the shape

of the time series as discriminatory features, 2) most of the datasets are small to medium

size, with most of them being less than few hundred time series, 3) some datasets have

labeling issues (for example ElectricDevice dataset contains multiple time series with

exactly the same numeric values that are labeled as different classes), 4) datasets are

obtained from domains that the contributors of the archive have previously worked with,

creating a bias in representation of real-world data.

2.5 Multivariate TSC

One of the biggest challenges in TSC is that most of the research focuses on univariate

time series. However, it is common to encounter datasets with multivariate time series [6,

101]. Some of the reasons for a lack of work in this area could be the assumption that

extending the existing methods to multivariate case is a trivial problem [42] and lack of a

standard set of benchmark datasets for multivariate problems. However, recently there

has been much more emphasis on adapting algorithms for multivariate datasets. Two

important recent advances include the release of multivariate UEA benchmark datasets

in 2018 [5] and the recent review of multivariate TSC methods by Ruiz et al. in 2020 [6].

Using the same taxonomy I used before, next I will present different techniques used for

multivariate TSC.

2.5.1 Similarity-based methods

The most commonly used similarity measure for time series, DTW, was extended to

the multivariate case in [42]. They identified two key strategies for such extension.

The first strategy uses dimensions independently (independent DTW ) and applies the

univariate DTW to each dimension and then sums the resulting distances. Therefore,

warping across time points is allowed in each dimension separately. The second strategy

https://www.timeseriesclassification.com
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Figure 2.9: Independent DTW (DTWI , on the left) and dependent DTW (DTWD,
on the right). Dimension 1 in series Q and C is shown in blue color, and the dimension

2 is shown in green color.

uses dimensions dependently (dependent DTW ) and treats each time step as a multi-

dimensional point. DTW is then applied on the Euclidean distances between these mul-

tidimensional points. In this case, DTW can warp across multiple dimensions together,

capturing possible dependencies across dimensions. Figure 2.9 shows an illustration of

independent DTW (DTWI) and dependent DTW (DTWD).

Shokoohi et al. showed that for DTW these two strategies are theoretically as well as

empirically different [42]. One of the main contributions of this thesis is that we extend

this idea from DTW to seven other measures and show that this hypothesis holds across

several other common measures as well. We present formal definitions of these two

strategies and other multivariate measures in Chapter 5.

2.5.2 Interval-based methods

Interval-based methods that extract location dependent subseries include RISE [36] and

TSF [62]. Multivariate versions of RISE and TSF introduced in HIVE-COTEv1 supports

multivariate TSC by ensembling over models built on each dimension independently [39].

Accuracy of these two methods are below DTWD [6][Figure 7c]. Recently introduced

classifier CIF [68] has shown promising results for multivariate classification. CIF selects

a random dimension at each node of the trees to sample the random intervals. Even more

recently, CIF has been further improved as DrCIF to be included in HIVE-COTEv2 [7].

Currently it is one of the top multivariate classifiers [6][Figure 7a], performing better

than more complex HIVE-COTEv1.
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2.5.3 Shapelet-based methods

Shapelet-based methods include Learned Pattern Similarity (LPS) [64], Ultra-fast

Shapelets (UFS) [102], gRSF [77], and STC [39]. Since gRSF is a tree-based algorithm,

it selects a random dimension at each node from which random shapelets are extracted.

STC ensembles over models built on each dimension independently [39]. According to a

recent review, STC is the current most accurate multivariate method that uses shapelets

(and it is ranked below ResNet) [6][Figure 7a].

2.5.4 Dictionary-based methods

Dictionary-based methods include WEASEL with a Multivariate Unsupervised Symbols

and dErivatives (MUSE) (a.k.a WEASEL+MUSE, or simply MUSE) [88], cBOSS [89],

MrSEQL [103] and TDE [89]. WEASEL+MUSE is the multivariate version of WEASEL,

which builds its dictionary of word frequencies using all series and dimensions together.

To a degree, it is able to capture the dependencies between dimensions by adding dimen-

sion identifiers to the words, and reduce the effects of less relevant dimensions by using

feature selection with a Chi-squared test to remove the least relevant words. cBOSS sim-

ply forms an ensemble over models built on each dimension independently [39]. Many

dictionary-based classifiers are memory intensive due the storage of large amount of

transformed data. For instance, WEASEL+MUSE use over 500 GB of memory required

on some datasets [6]. Recent classifier TDE made improvements to its memory usage.

While I was not able to obtain its memory usage on the UEA multivariate archive, it

was reported to use a maximum of 6.5 GB to run 112 datasets of UCR 2018 univariate

datasets [7][Table 4]. Since extracting words from all dimensions are memory intensive,

using leave-one-out cross validation on bags of words created from disjoint windows per

dimension, TDE samples a subset of dimensions to use. Dimensions with accuracy es-

timate less than 85% of the highest accuracy are not retained in the classifier (with a

maximum limit of 20 dimensions).

2.5.5 Deep Learning-based methods

Nine deep learning methods for TSC that supports multivariate time series were evalu-

ated in the review by Fawaz et al. in 2018 [46]. This review used 12 datasets published

by Baydogan in [101]. The statistical test did not find any significant difference between

the nine classifiers which could be due the small number of datasets. In the study, a

Fully Connected Network was ranked highest, just above ResNet [46][Figure 9].
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It is also possible to extend InceptionTime to the multivariate case [94]. According to

more recent benchmarking results for multivariate classifiers, InceptionTime outperforms

ResNet, as reported in Ruiz et al. [6][Figure 12a].

2.5.6 Random Convolution-based methods

Multivariate versions of ROCKET and MiniROCKET is also available in the github

repository of sktime package for time series analysis3. In the multivariate versions, each

kernel is assigned a random subset of dimensions (up to the length of the kernel, so

one kernel of length 9 might be assigned between 1, 2, ..., 9 dimensions). That kernel

is therefore a 2-d convolutional kernel, with its length (e.g., 9) in the time dimension,

and its ’depth’ equal to the size of the subset of dimensions. For ROCKET, all the

weights are random. For MiniROCKET, each dimension gets the same set of weights

(whatever the weights are for that kernel). The max value and PPV is then calculated

across all dimensions for each kernel, producing a 20,000 attribute instance. Note that

unlike DTWD which uses all dimensions, multivariate ROCKET is able to capture the

dependencies between random subsets of dimensions.

2.5.7 Combination Methods

HIVE-COTEv1 and its subsequent extensions all support multivariate TSC. Essentially

they combines multivariate versions of STC, TSF, cBOSS and RISE (or TDE and DrCIF

for HC2). These classifiers build a separate model for each dimension and ensembles

them.

2.5.8 Multivariate Datasets

One of the reasons for slow progress of multivariate TSC research is due to small

size and number of benchmark datasets available [5]. Mustafa Baydogan maintained

a useful archive 4 for multivariate datasets. The review of deep learning methods by

Fawaz et al. [46] also used this archive to compare multivariate deep learning meth-

ods. However, it had many limitations, as described by Bagnall et al. “The datasets

are all very small, are not independent and are not representative of many important

multivariate time series classification (MTSC) domains” [5].

3https://github.com/alan-turing-institute/sktime/blob/master/sktime/transformers/

series_as_features/rocket.py
4http://www.mustafabaydogan.com/multivariate-time-series-discretization-for-classification.

html

https://github.com/alan-turing-institute/sktime/blob/master/sktime/transformers/series_as_features/rocket.py
https://github.com/alan-turing-institute/sktime/blob/master/sktime/transformers/series_as_features/rocket.py
http://www.mustafabaydogan.com/multivariate-time-series-discretization-for-classification.html
http://www.mustafabaydogan.com/multivariate-time-series-discretization-for-classification.html
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In 2018, in collaboration of many TSC researchers, a benchmark repository for mul-

tivariate time series was released by University of East Anglia (UEA) TSC research

team [5]. This archive has 30 multivariate datasets (26 of them are fixed length), with

standard train/test splits provided on their website: timeseriesclassification.com.

In Chapter 5 where multivariate similarity measures are presented, I provide additional

information about these datasets.

2.6 Benchmarking

Both the univariate UCR Archive and the multivariate UEA Archive are important

drivers of progress in the field of TSC (see Section 2.4.8 and 2.5.8). It has become

the norm to benchmark algorithms against one another by their performance on these

archives [6, 9, 46, 47].

For benchmarking, I use a common technique used by many TSC researchers to com-

pare multiple algorithms over the multiple datasets [104, 105]. First a null hypothesis

is assumed which states that there is no significant difference in the mean accuracy

ranks of the multiple algorithms (at a statistical significance level α = 0.05). Then,

a Friedman test is performed to reject or accept the null hypothesis. In cases where

the null-hypothesis is rejected, a Wilcoxon signed rank test (as advised in [105]) is used

to compare the pair-wise difference in ranks between algorithms, and then the Holm–

Bonferroni method is used to adjust for family-wise errors [104–107].

Results of these tests can be visualized using mean ranking diagrams as in Figure 1.1 (on

page 2). Traditionally, they are drawn based on mean error ranks, hence the algorithms

to the left most with lowest ranks are the most accurate. Algorithms that do not differ

to a level of statistical significance are grouped using thick horizontal bars (see the

horizontal bars connecting EE and BOSS, and BOSS and ST in Figure 1.1). When

many classifiers are compared, it may become difficult to read these groupings. In such

cases, we report the pairs that are statistically different in the text based on the adjusted

p-value tables. In order to perform these statistical tests and generate the diagrams, I

used the source code freely available at https://github.com/hfawaz/cd-diagram [46].

Note that, these diagrams are based on the widely used Critical Difference (CD) dia-

grams [104]. I use the term mean ranking diagrams because the diagrams used in this

thesis differ from the diagrams used in the original CD paper [104]. The difference is

that in CD diagrams, a constant “critical difference” value is used to test for statisti-

cal difference between groups of algorithms. This is usually depicted using a reference

horizontal bar on the diagram. However, since we use the Holm–Bonferroni method to

timeseriesclassification.com
https://github.com/hfawaz/cd-diagram
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adjust for the family-wise errors, a constant “critical difference” value is no longer used.

A number of recent papers also follow this notation [97, 98].

2.6.1 Comparing Univariate Classifiers

In addition to the UCR datasets, detailed results of several benchmarks of TSC algo-

rithms can also be obtained from https://www.timeseriesclassification.com. The

results available in this website are trained on 30 re-samples 109 of the new UCR 2018

datasets. The implementations are based on two packages for time series analysis: Java

based tsml package5 and Python based sktime package6.

Figure 2.10 displays the mean ranks (in this case, on error) between a set of TSC

classifiers (selected as best of class exemplars of each category). We observe that while

the most recently released algorithm HIVE-COTEv2 is significantly more accurate than

all other algorithms, other leading algorithms such as versions of ROCKET, HIVE-

COTEv1, InceptionTime and TS-CHIEF are highly competitive and not statistically

different to each other.

12345678910111213

WEASEL
ProximityForest

STC
ResNet

DrCIF
Arsenal

InceptionTime
Rocket
HIVE-COTEv1
MiniRocket
TS-CHIEF
MultiRocket
HIVE-COTEv2

Figure 2.10: Mean error ranks of common TSC classifiers on 30 resamples of
109 datasets of the UCR 2008 archive. Data for this diagram is obtained from

www.timeseriesclassification.com.

2.6.2 Comparing Multivariate Classifiers

Figure 2.11 displays the mean ranks (on error rate) of the leading multivariate TSC

methods as identified by Ruiz et al. [6] and Middlehurst et al. [7]. In addition, DTWI

and DTWD are added for historical reasons. The most accurate algorithm is HIVE-

COTEv2 followed by ROCKET. Possibly due to the small number of datasets, most

algorithms are difficult to distinguish statistically (grouped by the two thick horizontal

lines).

5https://github.com/uea-machine-learning/tsml
6https://github.com/alan-turing-institute/sktime

https://www.timeseriesclassification.com
www.timeseriesclassification.com
https://github.com/uea-machine-learning/tsml
https://github.com/alan-turing-institute/sktime
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Figure 2.11: Mean error ranks of common multivariate TSC classifiers on 26 datasets
of the UEA multivariate time series archive [5]. Data for this diagram is obtained from

Ruiz et al. [6] and Middlehurst et al. [7]

.



Chapter 3

Proximity Forest

3.1 Introduction

In this Chapter I present a novel tree-based TSC algorithm called Proximity Forest.

Proximity Forest is designed to address the scalability issue of TSC algorithms while

maintaining high accuracy. It is the first TSC algorithm that was able to scale to

millions of time series while maintaining accuracy comparable to the state of the art.

This chapter is based on Lucas et al. [8] that I co-authored during my PhD. When I

started my PhD in 2018, Proximity Forest was being developed by a team of researchers

at Monash University. Their goal was to develop an alternative algorithm to Elastic

Ensemble that can be scaled to large quantities of data while also making the most out

of decades of research on similarity-measures. On the commencement of my PhD, I took

over the project as its main developer and re-implemented the system1. I also further

developed the algorithm. Since I did not develop the core of Proximity Forest, I have

written this chapter to highlight my contributions to the research, and added research

that was done since the publication of the Proximity Forest paper [8]. As my research

was included in the paper, some of this chapter uses the paper’s content directly. I

explicitly specify my contributions to this work in Section 3.5.1. I have also add a copy

of the original publication to Appendix A of this thesis.

• This chapter is based on the published paper: Lucas, B., Shifaz, A., Pel-

letier, C., O’Neill, L., Zaidi, N., Goethals, B., Petitjean, F. and Webb, G.I., 2019.

Proximity Forest: an effective and scalable distance-based classifier for time series.

Data Mining and Knowledge Discovery, 33(3), pp.607-635.

1It is now maintained in the TS-CHIEF Github repository at https://github.com/dotnet54/

TS-CHIEF
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3.2 Background

One of the most important challenges in TSC is scaling existing algorithms to large

quantities of data. Most of the algorithms published prior to 2018 had significant short

comings with respect to scalability and high accuracy. An extensive review conducted in

2017 [9] revealed that none of the state-of-the-art TSC algorithms are scalable beyond

a few hundred time series.

In Chapter 1, I highlighted several challenges in TSC field, especially prior to 2018, with

respect to accuracy and scalability. To reiterate briefly here, they include:

• The majority of the research was conducted on the UCR Archive with small to

medium size datasets, while real-world problems may have hundreds of thousands

of series or more.

• In the 2017 review [9], four algorithms were identified as state-of-the-art algo-

rithms for TSC: FLAT-COTE [28], EE [15], ST [29], and BOSS [30]. Neither the

then most accurate classifier, FLAT-COTE, nor the then most accurate similarity-

based classifier, EE, scales to large quantities of data due to their prohibitive time

complexities of O(n2 · L4) and O(n2 · L2) respectively 2.

• There were TSC algorithms that can be scaled to large quantities of data. How-

ever they compromise accuracy in order to achieve that goal. These include classic

methods such as DTW with lower bounding and early abandoning, and later meth-

ods such as BOSS-VS and WEASEL which are further limited by high memory

usage.

3.3 Proximity Forest

In this section, we present our novel algorithm for TSC: Proximity Forest. We present our

design decisions and the rationales behind them, then present how to train a Proximity

Forest and how to classify using a Proximity Forest. We conclude this section with a

description of its complexity.

2When we submitted the Proximity Forest for peer revision, HIVE-COTE’s results were not publicly
available, so we were not able to compare PF with HIVE-COTE.
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3.3.1 Design of Proximity Forest

Proximity Forest is a TSC algorithm that was intended to provide a scalable similarity-

based alternative to EE. To this end it employs the divide and conquer approach of

classical decision trees, together with a novel similarity-based split mechanism.

Proximity Forest uses several important design choices to make the algorithm efficient:

• Proximity Forest uses 11 existing similarity measures. This leverages 30 years of

research into designing similarity measures for time series.

• Proximity Forest makes several stochastic choices during the training process. This

makes the algorithm fast and introduces high variance between individual classi-

fiers in the ensemble. In ensembling theory, averaging the predictions of mul-

tiple high variance and low bias models is expected to produce lower error in

total than any of the individual classifiers [65]. This has been demonstrated in

many well known ensembles, including Random Forest [65] and Extremely Ran-

dom Forests [69]. Each tree in Random Forest learns from a subset of the data and

a subset of the features. This makes each tree have low bias and high variance,

but the error rate of the overall Random Forest is low.

• Using simple and fast random choices helps to improve speed immensely. This also

contrasts with the slow leave-one-out cross validation used by Elastic Ensemble to

find the “optimal parameters” for similarity measures. Essentially, using a large

amount of compute resources to find the “best” parameters does not necessarily

lead to the best solution overall since such models overfit more easily.

• Proximity Forest is designed to leverage the benefits of the divide and conquer

strategy of tree algorithms. This makes it extremely scalable with an average-

case training complexity of O(n log (n) · L2) and a classification complexity of

O(log (n) ·L2) per tree for n training time series of length L. This contrasts with

the state of the art, which learns in O(n2 · L2) (EE) or O(n2 · L4) (ST, FLAT-

COTE). Ensembles such as EE and BOSS uses 1-nearest neighbors as their base

classifiers which have high classification time compared to tree algorithms.

3.3.2 Training Proximity Forest

Proximity Forest is an ensemble of k Proximity trees. Algorithms 1 and 2 describe the

process of training a single Proximity Tree. Algorithm 1 takes a time series dataset D,

number of candidate splits to be tried at each node Ce, and outputs a Proximity Tree
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T . To train each Proximity Tree T , we start at the root node and partition the input

data into multiple branches and then pass this data recursively down the tree hierarchy.

At each node, one branch is created for each class of data reaching the node. Recursion

is stopped to create a leaf node when data reaching a node is pure i.e. all series belongs

to the same class (or Gini(D) = 0, see Equation 3.1). Leaf nodes are labeled with the

class of data at the node to be used for classification later. In Equation 3.1, pi is the

proportion of data from class c indexed by i.

Gini(D) = 1−
c∑

i=1

(pi)
2 (3.1)

Algorithm 1: build proximity tree (D,Ce)

Input: D: a time series dataset
Input: Ce: no. of similarity-based candidates
Output: T : a Proximity Tree

1 if is pure(D) then
2 return create leaf(D)
3 T ← create node() // Create tree represented by its root node

4 Se ← generate similarity splitters(D,Ce) // set of candidate splitters

5

6 δ? ← arg max
δ∈Se

WeightedGini (δ) // select the best splitter using Gini

7

8 Tδ ← δ? // store the best splitter in the new node T
9 TB ← ∅ // store the set of branch nodes in T

10 // Partition the data using δ? and recurse

11 // δ?E is the set exemplars of the best similarity-based splitter δ?

selected by Gini

12 foreach e ∈ δ?E do
13 // δ?M is the distance measure of the best similarity-based

splitter δ? selected by Gini

14 D+ ← {d ∈ D | δ?M (d, e) = minx∈δ?E (δ?M (d, x))

15 te ← build tree(D+, Ce)
16 Add new branch te to TB
17 end
18 return T

At each internal node, Proximity Tree generates a set of splitting functions Se (line 4

in Algorithm 1) and selects the best splitting function δ? that partitions the data into

multiple branches at the node (line 6). Each splitting function δ consists of one time

series exemplar δE randomly selected from each class reaching the node and a randomly

parameterized similarity measure δM selected at random from the same set of eleven

similarity measures used in Elastic Ensemble. Each splitting function partitions the

data into branches based on the similarity or “proximity” of each time series at the node



Proximity Forest 33

Algorithm 2: generate similarity splitters(D,Ce)

Input: D: a time series dataset.
Input: Ce: no. of similarity-based candidates
Output: Se: a set of similarity-based splitting functions

1 Se ← ∅ // set of candidate similarity splitters

2 for i = 1 to Ce do
3 // sample a parameterized measure M uniformly at random from ∆

4 M
∼←− ∆ // ∆ is the set of 11 similarity measures used in [15]

5

6 // Select one exemplar per class to constitute the set E
7 E ← ∅
8 foreach class c present in D do
9 Dc ← {d ∈ D | class(d) = c} // Dc is the data for class c

10 e
∼←− Dc // sample an exemplar e uniformly at random from Dc

11 Add e to E

12 end
13 // Store measure M and exemplars E in the new splitter δ
14 (δM , δE)← (M,E)
15 Add splitter δ to Se
16 end
17 return Se

to the set of exemplars using the parameterized similarity measure (lines 12-15). Ties

in similarity computation are broken uniformly at random. We refer each possible way

to split the data into branches as one candidate split.

Note that this way of splitting data at the node contrasts with classic decision trees

(such as C4.5 or CART [108, 109]) which split data into two branches based on an

attribute and a value (for example, if weight is < 50 kg follow the left branch, or else

follow the right branch). Since time points may not be aligned in time series data (as

in the columns of regular tabular data), attribute-value based splitting cannot be used

in a meaningful way when using raw time series data.

Evaluating multiple candidate splits (My Contribution): Since we test multi-

ple splitting functions at each node, we calculate the weighted sum of Gini index of each

candidate split, and select the splitting function that produces the minimum weighted

sum of Gini as the best splitting function to be retained at the node. The weighting

is applied based on the partition size by using Equation 3.2 to make sure that splits

with more pure and larger partitions are favored. In Equation 3.2, Di is the data sent

to the ith branch out of B branches, n∗ is the number of series at the node, and nc is

the number of series in the partition for class c. Algorithm 2 describes the procedure
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to generate multiple candidate splits. By default, we test Ce = 5 candidate splits per

node.

WeightedGini(D1, · · · , DB) = (nc/n
∗) ·

B∑

i=1

(Ginii(Di)) (3.2)

Selection of similarity measures and their parameterization Similarity mea-

sures are also selected uniformly at random from the set of eleven elastic similarity

measures used in Elastic Ensemble. They are also parameterized randomly using the

same parameter space used in Elastic Ensemble. Random choices improve the speed

and diversity of the ensemble. This helps to reduce the overall error rate by reducing

the variance of the ensemble.

The set of similarity measures we use are: Euclidean Distance (ED); Dynamic Time

Warping using the full window (DTWF) [31, 32]; Dynamic Time Warping with a re-

stricted warping window (DTW); Weighted Dynamic Time Warping (WDTW) [57];

Derivative Dynamic Time Warping using the full window (DDTWF) [55, 56]; Derivative

Dynamic Time Warping with a restricted warping window (DDTW); Weighted Deriva-

tive Dynamic Time Warping (WDDTW); Longest Common Subsequence (LCSS) [58];

Edit Distance with Real Penalty (ERP) [60]; Time Warp Edit Distance (TWE) [61];

and Move-Split-Merge (MSM) [59]. Details of their parameterization can be found in

Section 3.2 of Proximity Forest paper (a copy is included in Appendix A).

3.3.3 Classifying Using Proximity Forest

Algorithm 3 describes the procedure to classify a query time series using a single Prox-

imity Tree. Classification begins at the root node and the similarity of query series is

compared against each of the exemplars at the node using the selected similarity mea-

sure at the node. Measure uses the parameters selected at training time. The query is

Algorithm 3: classification(Q,T )

Input: Q: Query Time Series
Input: T : Proximity Tree
Output: a class label c

1 if is leaf(T ) then
2 return majority class of T
3 (e, T ?)← arg min

(e′,T ′)∈TB
δM (Q, e′)

4 // recursive call on subtree T ?

5 return classification(Q,T ?)
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then sent down the hierarchy of exemplar of the branch to which it is closest to. This

process stops when the query reaches a node labeled as leaf. The query is then labeled

with the label of the associated with the leaf node. Majority voting among trees is used

within the ensemble to decide the final prediction of the query.

3.3.4 Complexity Analysis

A detailed complexity analysis of Proximity Forest can be found in Section 3.4 of the

paper [8] (see Appendix A). For brevity, I summarize the analysis here.

Training time Proximity Forest is a tree-based algorithm, so in the worst case the

tree depth will be O(n), while on average it is expected to be O(log(n)). During training,

n series have to traverse the depth of the tree until it reaches a leaf. At each internal

node, Ce candidate splits are evaluated and for each candidate split, each series is com-

pared with at most c exemplars from each class and the slowest similarity measure (e.g.

WDTW) takes at most O(L2) time. Therefore, at worst each tree has a training time of

O(n2 ·Ce · c ·L2). However, this is rare case in practice for tree algorithms. Due to shal-

lower average depths, on average they can be trained using O(n · log(n) ·Ce · c ·L2) time.

Since there are k trees in the ensemble, average training time complexity for Proximity

Forest is O(k · nlog(n) · Ce · c · L2).

Classification Time During classification, each query will traverse a depth of

O(log(n)) on average. Each query is compared against at most c exemplars using a

similarity measure that takes at most O(L2) time to compute the similarity between

exemplar and query. Majority voting is performed for across k trees in the ensemble for

final classification. So the average classification time complexity for Proximity Forest is

O(k · log n · c · L2).

3.4 Experiments

This section presents experiments conducted to evaluate the performance of Proximity

Forest. First I present the scalability of Proximity Forest with respect to the size of

training dataset using experiments conducted using a satellite image time series dataset.

This is followed by experiments conducted using 85 datasets from 2015 version of the

UCR archive. Results for scalability tests are obtained from Lucas et al. [8], while I

reproduced the Proximity Forest results on UCR Archive with more experiments for

this thesis.
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3.4.1 Experiments Using the SITS dataset

To demonstrate the scalability of Proximity Forest algorithm we used a satellite image

time series dataset called SITS [3] with 1 million time series of length 46. It has a

train-test split ratio of 90%-10%. The dataset is labeled with 24 classes (e.g. “wheat”,

“corn”) and has been converted to a univariate time series dataset using Normalized

Difference Vegetation Index (NDVI) (see Figure 2.2).

The following experiments were performed on this dataset, comparing the performance

of Proximity Forest against three competitors: BOSS-VS (a dictionary-based classifier

designed for scalability), WEASEL (a dictionary-based classifier designed for speed and

accuracy), and EE (a similarity-based classifier designed for accuracy). We used BOSS-

VS and WEASEL in our comparisons because they are designed to be more scalable

than BOSS (one of the four state-of-the-art classifiers as identified by [9]). We repeated

each experiment of Proximity Forest 5 times and each of the competitors once. This is

because Proximity Forest is a stochastic algorithm while others are deterministic. This

section focuses on demonstrating scalability while showing that its accuracy is better

than its competitors. We used 100 trees and one candidate split per node. We study

parameter selection in Section 3.4.2.

Training Scalability Figure 3.1(a) shows the scalability of Proximity Forest and

three other competitors with respect to the training set size. Vertical axes shows the

training time in hours while horizontal axis shows increasing training size. We observe

that Proximity Forest can be trained on one million time series from SITS dataset in

approximately 17 hours. In comparison we estimated that EE will take approximately

200 years to train this amount of data. Even for a small training set of about 2000

time series, EE took 10 hours to train compared to just 79 seconds for Proximity Forest.

Fitting a quadratic curve through EE and Proximity Forests gives a quadratic component

of 6.3 for EE and −8.10 × 10−6 for Proximity Forest showing that observed results

matches to theoretical quadratic training complexity of EE, and quasi-linear training

complexity of Proximity Forest.

WEASEL was found to be very fast but we were not able to scale it beyond 8000 time

series due to its memory complexity even with 64 GB of RAM. As for BOSS-VS, it

trains faster than Proximity Forest but shows much lower accuracy as we can see from

Figure 3.2.

Testing Scalability Figure 3.1(b) shows the test time per query of Proximity Forest

and three other competitors with respect to the training set size. Proximity Forest scales
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Figure 3.1: Training time (a) and testing time per query (b) as a function of training
set size for Proximity Forest, EE, WEASEL and BOSS-VS. This image is taken from [8].

logarithmically with training set size, while EE must scan the full database many times.

WEASEL is infeasible to train even with relatively small quantities of training data.

Proximity Forest and BOSS-VS require respectively 0.0679 ms and 0.0077 ms to classify

a time series with a model trained on 1M time series.

Accuracy Scalability Figure 3.2 shows the accuracy as a function of training set for

the four algorithms we compared. Proximity Forest performs better than its competitors,

especially when data quantity grows higher. EE and WEASEL does not scale to large

quantities of data, while BOSS-VS do not perform very well on this dataset.
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Figure 3.2: Accuracy as a function of training set size for Proximity Forest, EE,
WEASEL and BOSS-VS. This image is taken from [8].
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3.4.2 Experiments Using UCR Archive

Experiments in this section are performed on the 85 datasets from UCR Archive 2015

version [1]. They compare Proximity Forest to the state of the art circa 2017 as

identified by [9]. These experiments use the standard train/test splits available at

www.timeseriesclassification.com. Accuracy results reported for of all TSC al-

gorithms except Proximity Forest are obtained from the same website. For Proximity

Forest, experiments were run on a cluster of mixed hardware with Intel Xeon-E5-2680-v3

and Intel Xeon-E5-2680-v4 CPUs. Each dataset was run using 16 threads with at least

64GB of memory. Since Proximity Forest is a stochastic algorithm, each experiment was

repeated 5 times and the mean of each performance metric is reported (e.g. accuracy,

train time, test time, depth).

3.4.2.1 Proximity Forest vs Elastic Ensemble

We first compare the accuracy of Proximity Forest with its closest relative Elastic En-

semble, since they are both based on the same set of similarity measures. Figure 3.3

shows a scatter plot comparing the accuracy of Proximity Forest to Elastic Ensemble.

Here, each point represents one dataset from the UCR 2005 Archive. For Proximity

Forest, we used 100 trees (k = 100) and set the number of candidate splits to 5 (Ce = 5)

(hyperparameters selection is discussed later). The similarity measures used in Prox-

imity Forest select the parameters randomly from the same parameter space used in

the Elastic Ensemble. Elastic Ensemble is used with the default parameters. Points

above the diagonal line indicate when Proximity Forest is more accurate than Elastic

Ensemble. Out of the 85 datasets, Proximity Forest is more accurate or wins 61 times,

ties 2 times and loses 22 times when compared to Elastic Ensemble. When Proximity

Forest wins, most of the points are well above the diagonal line, indicating that Prox-

imity Forest has a larger margin when winning on average. Datasets with more than

10% difference in accuracy are labeled (dataset names have been truncated for visual

aesthetics). For Proximity Forest, 4 datasets have more than 10% wins, compared to

only one dataset, ShapeletSim, for Elastic Ensemble.

Figure 3.4 shows training and test time of Proximity Forest and Elastic Ensemble in log

scale. Proximity Forest trains several magnitudes faster than Elastic Ensemble. As for

test time, Proximity Forest has greater test time per query than EE for 12 datasets, the

majority of which are small datasets (i.e. less than 50 training instances). The largest

such difference is observed for the Phonemes dataset for which Proximity Forest takes

about 17 sec per query compared to 13 sec per query for EE. In contrast, the test time for

Proximity Forest is much smaller than EE for the biggest datasets (i.e. more than 800

www.timeseriesclassification.com
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Figure 3.3: Comparison of Accuracy between Proximity Forest and Elastic Ensemble.
Each point represents a dataset from the UCR Archive. Points above the diagonal
indicates datasets where Proximity Forest is more accurate (61 datasets) and points
below the diagonal line indicates datasets where Elastic Ensemble is more accurate (22
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Figure 3.4: Comparison of training and testing times in log scale of Proximity Forest
and Elastic Ensemble on 85 UCR datasets. This image is taken from [8].
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training instances). For example, the biggest test time difference is for the HandOutlines

dataset for which Proximity Forest takes about 19 sec per query compared to 286 sec

per query for EE.

3.4.2.2 Proximity Forest vs State-of-the-art TSC algorithms

Figure 3.5 depicts an accuracy ranking diagram (explained in Section 2.6) showing a

comparison of two configurations of Proximity Forest and 5 other classifiers. The first

configuration, PF (initial, k = 100), is the version of Proximity Forest before I started

working on the project. It does not use Gini index to evaluate between multiple can-

didate splits. The second configuration, PF (with Gini, Ce = 5, k = 100), is after my

improvements. This version evaluates multiple candidate splits at the nodes (5 in this

case) using Gini index. We choose EE, BOSS, ST and FLAT-COTE because they were

found to be the leading classifiers by the review in Bagnall et al. 2017 [9]. We also

added DTW (with a leave-one-out cross validated window size) to the comparison as

it has been the traditional benchmark TSC classifier. We used Holm-Bonferroni cor-

rection with (alpha = 0.05) in this test. The average ranks in order are: 6.0059 for

DTW, 4.5000 for EE, 4.3118 for PF (initial), 4.1647 for BOSS, 3.4235 for ST, 3.1824

for PF (with Gini), and 2.4118 for FLAT-COTE. Pairs that cannot be statistically sig-

nificantly differentiated are grouped using the thick horizontal line on the diagram. We

observe that the improvements I made is statistically different from the initial version

- significantly boosting its accuracy compared to before. Proximity Forest ranks higher

than leading classifiers of the time in each category (i.e. EE, ST and BOSS). Proxim-

ity Forest is also significantly different than Elastic Ensemble. When compared with

FLAT-COTE, this results shows that there is a significant difference between them, but

the adjusted p-value is very small 0.0001 3.

1234567

DTW
EE

PF (initial)
BOSS

ST
PF (with Gini, Ce = 5)
FLAT-COTE

Figure 3.5: Average accuracy rank of Proximity Forest compared with other leading
TSC algorithms circa 2017 as identified in [9].

3Note that the results reported in [8] shows that FLAT-COTE and PF are significantly not different.
This minor difference can be explained by the variance of the results.
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3.4.2.3 Comparing ensemble sizes

Figure 3.6 depicts an accuracy ranking diagram showing a comparison of 8 ensemble sizes

(where k is the number of trees). The number of candidate splits is kept constant at 5

(Ce = 5) throughout the experiments. Ensembling theory tells us that larger ensembles

will have lower variance and lower error rates. In addition, as the ensemble size grows,

reduction in error should be a diminishing return. From Figure 3.6, we observe that

all configurations are statistically different from each other except the largest three

ensembles - k = 100, k = 200 and k = 500. While we expect k = 500 to be ranked

higher than k = 200, this small difference may be due to the variance arising from small

datasets or possible overfitting on small datasets. We showed that the variance of our

ensemble decreases overall as the number of trees increase in Figure 9 of [8] (see also

Appendix A).

12345678

k1, Ce5
k5, Ce5

k10, Ce5
k20, Ce5 k50, Ce5

k100, Ce5
k500, Ce5
k200, Ce5

Figure 3.6: Average accuracy rank of Proximity Forest with various number of trees
k in the ensemble (with number of candidate splits kept constant at Ce = 5).

To better understand the comparison between k = 100 vs k = 200, and k = 200 vs

k = 500, these two configurations are shown in the scatter plots in Figure 3.7. When

observing the scatter plot for k = 100 vs k = 200 we see that there are 47 wins for

k = 200 and 29 losses. Most of the datasets are still very close to the diagonal line. In

the case of k = 200 vs k = 500 we see that k = 500 wins on 34 datasets and losses on

39 datasets. In this case, most of the datasets are even more closer to the diagonal line.

Figure 3.8 shows accuracy comparison of three configurations using the ratios of the

accuracy between configurations k = 200 / k = 100 and k = 500 / k = 100 on the

horizontal and vertical axis, respectively. It shows that points in the shaded region are

much further away from the diagonal line than the points above the line in the white

region, indicating that k = 200 trees will give a good level of accuracy if there is a good

amount of computing resources available. However, as most of the points are scattered

close around the location (1.0, 1.0) the benefits we get from increasing ensemble size is

not substantially large (this is supported from Figure 3.7 as well).

Table 3.1 indicates the training time and test time of 85 UCR datasets with increasing

ensemble size. This experiment was done on a cluster with 16-threads. Figure 3.9 shows
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Figure 3.7: Scatter plots showing comparisons between different ensemble sizes (with
Ce = 5) a) k = 100 vs k = 200 b) k = 200 vs k = 500.
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Figure 3.8: Accuracy comparison of three configurations of PF using ratio of accuracy
between: k = 200 / k = 100 vs k = 500 / k = 100, with Ce = 5.

the training time of the slowest 10 datasets with increasing ensemble size. Using k = 100

trees is approx. 1.7 times faster than k = 200 trees and approx. 2.3 faster than k = 500

trees. It also shows that when increasing from k = 100 to k = 500, training time

increases by roughly 4.2 times (theoretically we would expect about a 5 fold increase).

We choose k = 100 as the default configuration for most of the experiments as it is a

good trade off between accuracy and training time.
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Settings Train Time (hr) Test Time (hr) Total Time (hr)
k1, Ce5 3.09 0.80 3.52
k5, Ce5 1.49 0.52 1.85
k10, Ce5 2.00 0.70 2.46
k20, Ce5 2.40 0.70 2.84
k50, Ce5 4.59 1.26 5.33
k100, Ce5 9.56 3.73 12.29
k200, Ce5 17.52 4.83 20.49
k500, Ce5 41.30 9.74 46.43

Table 3.1: Training time and test time of of Proximity Forest on 85 UCR datasets
with increasing ensemble size. This experiment was done on a cluster with 16-threads.
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Figure 3.9: Training time of the slowest 10 datasets with increasing ensemble size.

3.4.2.4 Comparing the number of candidates splits

Adding the feature to evaluate and select between multiple candidates is my main algo-

rithmic contribution to the Proximity Forest. We saw in Figure 3.5 that my contributions

improved the accuracy of Proximity Forest significantly. In this section, to further com-

pare the improvements I made to Proximity Forest, first of all I start with Figure 3.10

which shows a scatter plot showing accuracy comparison of Proximity Forest before and

after my contributions. We can observe that Proximity Forest with best candidate split

selection (k = 100, Ce = 5) wins on 67 datasets, and ties on 6 datasets, while losing only
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Figure 3.10: A scatter plot showing accuracy comparison of Proximity Forest before
and after my contributions

on 12 datasets to the initial Proximity Forest without best candidate split selection(i.e.

k = 100, Ce = 1). Most of the points above the diagonal line are well above the line,

while the points below the diagonal line are close to it, indicating that the margin of

wins are much higher on average compared to the margin of losses.

The experiments published in Proximity Forest paper [8] (see Appendix A), did not

explore beyond Ce = 5. After the publication of Proximity Forest, I conducted further

experiments and I include following new experimental data and observations in this

thesis.

Figure 3.11 shows the accuracy rankings of five configurations of Proximity Forest with

various number of candidate splits at the node, while maintaining the ensemble size

constant at k = 100. All configurations are significantly different in accuracy, with

rankings in order as follows: Ce = 1 = 4.3000, Ce = 2 = 3.5824, Ce = 5 = 2.7294,

Ce = 10 = 2.3176, and Ce = 20 = 2.0706.

Figure 3.12 shows two comparisons between Ce = 5 vs Ce = 10 and Ce = 10 vs Ce = 20.

Once again, each point represents a single dataset. Ce = 10 is a significant improvement

over Ce = 5, with 53 wins, 6 ties and 26 losses. Ce = 20 also wins on 52 datasets, ties on

5 and loses on 28 datasets when compared to Ce = 10. However, in this case the points

are much closer to the diagonal line than Figure 3.12(a).
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Figure 3.11: Average accuracy rank of Proximity Forest with various number of
candidate splits per node Ce.
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Figure 3.12: Scatter plots showing comparisons between different number of candidate
splits, while ensemble size is kept constant at k = 100 a) Ce = 5 vs Ce = 10 b) Ce = 10

vs Ce = 20 .

Figure 3.13 shows a scatter plot showing the accuracy of Ce = 5 / Ce = 1 vs Ce = 10

/ Ce = 1. Most of the points are above the diagonal line, indicating that Ce = 10 is

better than Ce = 5. Also, the majority of the points are well above the y = 1 line and

right of the x = 1 line, showing that there is a clear improvement to the accuracy when

multiple candidates are evaluated using the Gini ( when i.e. Ce > 1).

Table 3.2 indicates the training time and test time on 85 UCR datasets with increasing

increasing number of candidate splits. This experiment was done on a cluster with 16-

threads. The results show that when increasing from Ce = 1 to Ce = 5 (with k = 100),

training times increases by roughly 4.3 times (total time increases by 2 times, while test

time decreases slightly). Interestingly, when increasing from Ce = 5 to Ce = 10 training

time increases by 2 times and from Ce = 10 to Ce = 20 it increases roughly 2 times as

well. In Proximity Forest paper [8] we did not explore beyond Ce = 5. Given these new

results (Ce = 10 and Ce = 20), for a researcher using Proximity Forest, who is interested

in boosting the accuracy of a particular dataset, it would be worth while to increase Ce
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Figure 3.13: Accuracy comparison of three configurations of PF using ratio of accu-
racy between: Ce = 5 / Ce = 1 vs Ce = 10 / Ce = 1, with k = 100.)

Settings Train Time (hr) Test Time (hr) Total Time (hr) Mean Depth

k100, Ce1 2.22 4.63 6.85 8.64

k100, Ce2 3.76 3.57 7.32 8.24

k100, Ce5 9.56 4.48 14.04 7.56

k100, Ce10 18.88 3.55 22.44 7.07

k100, Ce20 32.99 2.82 35.81 6.64

Table 3.2: Training time, test time and mean depth of Proximity Forest on 85 UCR
datasets with increasing number of candidates. This experiment was done on a cluster

with 16-threads.

higher than its “default” 5 candidates if computational time is available.

Figures 3.14, 3.15 and 3.16 shows the training time, test time and mean tree depth of the

slowest 10 datasets to train with increasing number of candidate splits. First observation

is that out of the 32 training hours for Ce = 20, the slowest dataset Handoutline takes

12 hours to train. We also observe that testing time and mean depth decreases as Ce

increases. This is because when Ce is large, Gini can select the best candidate split from

a larger pool of candidate splits. Thus, the chance of selecting a function that partitions

the data well is increased, reducing the depth of the trees. However, we do observe a

very distinct exception in test time for Phoneme dataset in Figure 3.15. This is because
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Figure 3.14: Training time of the slowest 10 datasets to train with increasing number
of candidate splits.

it has 39 classes and the number of classes affect the test time of Proximity Forest. Note

that the mean depth for Phoneme follows the general trend in Figure 3.16 as expected.
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Figure 3.15: Test time of the slowest 10 datasets to train with increasing number of
candidate splits.
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Figure 3.16: Mean depth of the slowest 10 datasets to train with increasing number
of candidate splits.
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3.4.2.5 What if the number of candidates are selected differently for each

dataset?

The results we observed suggests that the best number of candidate will be different for

each dataset based on its characteristics such as the series length. One reason that fewer

candidates might result in better accuracy is overfitting. The more candidates that are

considered, the greater the chance that a candidate is selected whose accuracy on the

training data is substantially higher than its accuracy on subsequent holdout data.

Figure 3.17 is a bar chart showing the number of datasets for which each configuration

of Ce attains the highest accuracy out of the 85 UCR datasets. If there is a tie, the

lowest Ce is counted as it has the fastest training time. We observe that out of 85

datasets, the most accurate configuration, k = 100, Ce = 20, has the highest accuracy

on 39 datasets. The next configuration, k = 100, Ce = 10, wins on 18 datasets. The

“default configuration”, k = 100, Ce = 5, wins on 14 datasets. Finally, k = 100, Ce = 1,

wins on 8 datasets and k = 100, Ce = 2, on 6 datasets. k = 100, Ce = 1 wins more

because we the lowest Ce when there is a tie.

Figure 3.18 shows average accuracy rankings of 5 different number of candidates with

one additional configuration, labeled as PF (k = 50, Ce = best), which selects the most
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Figure 3.17: Number of times each configuration of Ce attains the highest accuracy
for 85 UCR datasets. If there is a tie, the lowest Ce is counted as it has the fastest

training time.
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Figure 3.18: Average accuracy rankings of 5 different number of candidates run on 85
UCR datasets and “k = 50, Ce = best” configuration which selects the best performing

setting out of the 5 settings for each dataset.

accurate Ce for each datasets from the 5 choices. This suggests that if a cross-validation

strategy is used to select the best hyperparameter Ce for each particular dataset, the

accuracy of the Proximity Forest can be improved even further. To improve the overall

accuracy, an initialization step can be added to Proximity Forest to train a smaller

number of trees on various Ce to find the best performing configuration before training

the final ensemble with more trees. I note that this observation was not explicitly stated

in the original publication [8], and thus is an additional contribution in this thesis.

3.4.2.6 Trade-off between ensemble size and the number of candidate splits

There is a trade off between selecting the number of candidate splits Ce and the ensem-

ble size k. Increasing both of these hyperparameters together will improve the accuracy

while increasing the training time. It is difficult to have a direct comparison between

these parameters because the number of trees, k, influences the algorithm at the en-

semble level and Ce influences at the node level. To compare these parameters, I kept

the total number of candidate splits at the root nodes at 500 using the following four

configurations: k = 50, Ce = 10, k = 100, Ce = 5, k = 250, Ce = 2 and k = 500, Ce = 1.

Figure 3.19 shows the average accuracy ranking of Proximity Forest with these four

different configurations. We observe that the least accurate configuration is k =

500, Ce = 1, followed by k = 250, Ce = 2. The highest ranked configuration is

k = 100, Ce = 5, even though there is no significant difference between the last two

configurations k = 100, Ce = 5 and k = 50, Ce = 10.

Figure 3.20 shows three scatter plots comparing the difference between these four con-

figurations. Between k = 100, Ce = 5 vs k = 50, Ce = 10 in Figure 3.20(a) we observe

that most of the datasets are evenly dispersed on two sides of the diagonal line (41 wins

and 39 loss). Magnitude of wins and losses also relatively small on two sides. Before,

in Figure 3.19 we observed that there is no significant difference between them. Note

that the smaller ensemble k50 is also expected to have a higher variance than k = 100.

In Figure 3.20(b) when comparing k = 100, Ce = 5 vs k = 250, Ce = 2, we observe
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Figure 3.19: Average accuracy rank of Proximity Forest with at least a total of 500
candidate splits evaluated at the root nodes using different configurations of Ce and k.

that k = 100, Ce = 5 has 57 wins and 20 losses. More points below diagonal are now

further away from the line indicating that the magnitude of wins for k = 100, Ce = 5

is higher than the wins observed in Figure 3.20(a). From Figure 3.20(c) we see that

k = 100, Ce = 5 has most of the points well below the diagonal line (69 wins/12 loss)

when compared with k = 500, Ce = 1.

Figure 3.21 shows the ratio between accuracy of PF with three significantly different

configurations (without k = 50, Ce = 10). We observe that most points are above

the line y = 1 and are above the diagonal line (white region) indicating that the best

trade-off among the choices is k = 100, Ce = 5.
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Figure 3.20: Scatter plots showing the accuracy of Proximity Forest with a) PF
(k100, Ce5) vs PF (k50, Ce10) b) PF (k100, Ce5) vs PF (k250, Ce2) c) PF (k100, Ce5)

vs PF (k500, Ce1).
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Figure 3.21: Accuracy comparison of three configurations of PF using ratio of accu-
racy between: k = 250, Ce = 2 / k = 500, Ce = 1 vs k = 100, Ce = 5 / k = 500, Ce = 1.
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Table 3.3 shows the training time, test time, total time and mean depth of Proximity

Forest on 85 UCR datasets with 4 configurations of Proximity Forest. We observe that

increasing k, while decreasing Ce, is not ideal as it increases training time in three cases –

except when k = 500, Ce = 1. Increasing Ce, does reduce test times (because mean depth

decreases), however, accuracy is lower as we observed from Figure 3.19 and Figure 3.21.

Therefore, these results suggest that k = 100, Ce = 5 as default configuration is an

overall good choice to make.

Settings Train Time (hr) Test Time (hr) Total Time (hr) Mean Depth
k50, Ce10 7.90 1.22 9.12 10.96
k100, Ce5 8.56 3.73 12.29 11.58
k250, Ce2 9.03 6.13 15.16 12.34
k500, Ce1 7.35 10.34 17.69 12.70

Table 3.3: Training time, test time, total time and mean depth of Proximity Forest
on 85 UCR datasets with 4 configurations of Proximity Forest. This experiment was

done on a cluster with 16-threads.

3.5 Conclusion

This chapter introduced Proximity Forest: a novel, scalable algorithm for accurate time

series classification. Motivated by a need for an accurate algorithm that could learn from

millions of time series, it addresses the scalability issues of then state-of-the-art classifiers

including FLAT-COTE and its nearest neighbor-based component Elastic Ensemble.

Proximity Forest uses divide and conquer strategy of trees and randomization to create

a fast and a diverse ensemble. It also leverages decades of work to develop similarity

measures for time series and delivers a novel similarity-based splitting criterion for trees.

In our case study, we demonstrated that Proximity Forest scales quasi-linearly with the

quantity of training data, whereas most state-of-the-art algorithms scale quadratically.

Our experiments on the UCR datasets show that Proximity Forest is not only very fast.

It also has highly competitive accuracy relative to the current state of the art, and is

significantly more accurate than EE.

There are many more strategies that can be explored to improve Proximity Forest while

maintaining its quasi-linear complexity. This includes improving the randomized selec-

tion of parameters for the similarity measures – which is currently designed to be similar

to EE. In addition, since EE, research on similarity measures have also progressed. This

includes new measures and progress in developing speed up techniques such as early

abandoning. A set of new measures that are less correlated with such speed up tech-

niques could improve Proximity Forest much further.
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3.5.1 Contributions

Contributions I made in this chapter include:

1. Co-authoring Proximity Forest, which is the first algorithm with accuracy that

competes with state-of-the-art TSC classifiers of the time such as EE, ST, BOSS or

FLAT-COTE, while impressively more scalable than any of its other competitors.

It is the first TSC classifier that was able to learn from millions of time series

within a reasonable time period with such competitive accuracy.

2. Adding the capability to evaluate multiple candidate splits using Gini Index to

Proximity Forest. Before that, first version of Proximity Forest selects a random

set of exemplars, a similarity measure and its parameters at each node. Evaluating

multiple candidates and selecting the best splitting function using the weighted

Gini Index boosted its accuracy significantly more than the first version. It is also

a fundamental contribution that helped us to develop the state-of-the-art classifier

TS-CHIEF (see Chapter 4).

3. Re-implementing the Proximity Forest project in Java with support for multi-

threading, with bug fixes and optimization of similarity measures, many features

to export a large number of run-time statistics, support for multiple input file

formats, and better command-line handling of user input.

4. Helping to prepare a new revision of the paper by conducting a new set of ex-

periments using the implementation of Proximity Forest that evaluates multiple

candidate splits, analysis of the new results, generating new figures from the data,

proof reading and assisting the authorship of the new versions of the manuscript.

5. Conducting further experiments after the publication of the paper (original copy

of the publication is in Appendix A). I have redone the experiments from Sec-

tion 3.4.2 (except for experiments in Figure 3.2 and 3.4). This is because since

the publication, I have fixed some implementation bugs in similarity measures

and some of the research conducted in the published paper includes a limited set

of experiments (for example, k = 5, 10, 50 and 100 to study ensemble sizes, and

Ce = 1, 2 and 5 to study the number of candidates). I have added more configu-

rations to explore up to k = 500 and Ce = 20 as well. New research in this thesis

that was not included in the published paper include Sections 3.4.2.6 and 3.4.2.5.



Chapter 4

TS-CHIEF

4.1 Introduction

In this chapter I present one the main contributions of my thesis, the TS-CHIEF algo-

rithm, which has been independently assessed as one of the four current state-of-the-art

time series classifiers [7, 39]. TS-CHIEF extends Proximity Forest, presented in Chap-

ter 3, by adding dictionary-based and interval-based splitting mechanisms to the nodes

of the Proximity Trees.

I include the published journal paper as it is without any modifications. I present a

summary of contributions made in this paper at the end of this chapter in Section 4.2.

• Based on the publication: Shifaz, A., Pelletier, C., Petitjean, F. and Webb,

G.I., 2020. TS-CHIEF: a scalable and accurate forest algorithm for time series

classification. Data Mining and Knowledge Discovery, 34(3), pp.742-775.
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Abstract
TimeSeriesClassification (TSC)has seen enormousprogress over the last twodecades.
HIVE-COTE (Hierarchical Vote Collective of Transformation-based Ensembles) is
the current state of the art in terms of classification accuracy. HIVE-COTE recognizes
that time series data are a specific data type for which the traditional attribute-value
representation, used predominantly in machine learning, fails to provide a relevant
representation. HIVE-COTE combines multiple types of classifiers: each extracting
information about a specific aspect of a time series, be it in the time domain, frequency
domain or summarization of intervalswithin the series.However,HIVE-COTE (and its
predecessor, FLAT-COTE) is often infeasible to run on even modest amounts of data.
For instance, training HIVE-COTE on a dataset with only 1500 time series can require
8 days of CPU time. It has polynomial runtime with respect to the training set size, so
this problemcompounds as data quantity increases.Wepropose anovelTSCalgorithm,
TS-CHIEF (Time Series Combination of Heterogeneous and Integrated Embedding
Forest), which rivals HIVE-COTE in accuracy but requires only a fraction of the
runtime. TS-CHIEF constructs an ensemble classifier that integrates themost effective
embeddings of time series that research has developed in the last decade. It uses tree-
structured classifiers to do so efficiently. We assess TS-CHIEF on 85 datasets of the
University of California Riverside (UCR) archive, where it achieves state-of-the-art
accuracywith scalability and efficiency.Wedemonstrate that TS-CHIEF can be trained
on 130k time series in 2 days, a data quantity that is beyond the reach of any TSC
algorithm with comparable accuracy.

Keywords Time series · Classification · Metrics · Bag of words · Transformation ·
Forest · Scalable
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1 Introduction

TimeSeriesClassification (TSC) is an important area ofmachine learning research that
has been growing rapidly in the past few decades (Keogh and Kasetty 2003; Dau et al.
2018b; Bagnall et al. 2017; Fawaz et al. 2019; Yang and Wu 2006; Esling and Agon
2012; Silva et al. 2018). Numerous problems require classification of large quantities
of time series data. These include land cover classification from temporal satellite
images (Pelletier et al. 2019), human activity recognition (Nweke et al. 2018; Wang
et al. 2019), classification of medical data from Electrocardiograms (ECG) (Wang
et al. 2013), electric device identification from power consumption patterns (Lines
and Bagnall 2015), and many more (Rajkomar et al. 2018; Nwe et al. 2017; Susto
et al. 2018). The diversity of such applications are evident from the commonly used
University of California Riverside (UCR) archive of TSC datasets (Dau et al. 2018a;
Chen et al. 2015).

A number of recent TSC algorithms (Lucas et al. 2019; Schäfer and Leser 2017;
Schäfer 2016) have tackled the issue of ever increasing data volumes, achieving greater
efficiency and scalability than typical TSC algorithms. However, none has been com-
petitive in accuracy to the state-of-the-art HIVE-COTE (Hierarchical Vote Collective
of Transformation-based Ensembles) (Lines et al. 2018).

Our novel method, TS-CHIEF (Time Series Combination of Heterogeneous and
Integrated Embedding Forest), is a stochastic, tree-based ensemble that is specifically
designed for speed and high accuracy.When buildingTS-CHIEF trees, at each nodewe
select froma randomselection ofTSCmethods one that best classifies the data reaching
the node. Some of these classification methods work with different representations of
time series data (Schäfer 2015;Bagnall et al. 2017). Therefore, our technique combines
decades of work in developing different classification methods for time series data
(Lucas et al. 2019; Lines and Bagnall 2015; Schäfer 2015; Bagnall et al. 2015; Lines
et al. 2018; Bagnall et al. 2017) and representations of time series data (Bagnall et al.
2012, 2015; Schäfer 2015), into a hetereogenous tree-based ensemble, that is able to
capture a wide variety of discriminatory information from the dataset.

TS-CHIEF achieves scalability without sacrificing accuracy. It is orders of mag-
nitude faster than HIVE-COTE (and its predecessor, FLAT-COTE) while attaining a
rank on accuracy on the benchmark UCR archive that is almost indistinguishable, as
illustrated in Fig. 1.

Fig. 1 Critical difference diagram showing the average ranks on error of leading TSC algorithms (described
in Sect. 2) across 85 datasets from the benchmarkUCRarchive (Dau et al. 2018a). The lower the rank (further
to the right) the lower the error of an algorithm relative to the others on average
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In addition, Fig. 3 shows an experiment that demonstrates the scalability of TS-
CHIEF using the Satellite Image Time Series (SITS) dataset (Tan et al. 2017). It is
900x faster than HIVE-COTE for 1500 time series (13 min versus 8 days).

Moreover, the relative speedup grows with data quantity: at 132k instances TS-
CHIEF is 46,000x faster. For a training size that took TS-CHIEF 2 days, we estimated
234 years for HIVE-COTE.

Overall, the following strategies are the key to attaining this exceptional efficiency
without compromising accuracy: (1) using stochastic decisions during ensemble con-
struction, (2) using stochastic selection instead of cross-validation for parameter
selection, (3) using a tree-based approach to speed up training and testing, and (4)
including improved variants ofHIVE-COTEcomponents Elastic Ensemble (EE) (Bag-
nall et al. 2015), Bag-of-SFA-Symbols (BOSS) (Schäfer 2015) and Random Interval
Spectral Ensemble (RISE) (Lines et al. 2018), but excluding its computationally expen-
sive component Shapelet Transform (ST) (Rakthanmanon et al. 2013) (see Sect. 2.3).

The rest of the paper is organized as follows: Sect. 2 discusses related work. Sec-
tion 3 presents our algorithm TS-CHIEF, and its time and space complexity. In Sect. 4,
we compare the accuracy of TS-CHIEF against state-of-the-art TSC classifiers and
investigate its scalability. In Sect. 4, we also study the variance of the ensemble, and
the relative contributions of the ensemble’s components. Finally, in Sect. 5 we draw
conclusions.

2 Related work

Time Series Classification (TSC) aims to predict a discrete label y ∈ {1, . . . , c} for
an unlabeled time series, where c is the number of classes in the TSC task. Although
our work could be extended to time series with varying lengths and multi-variate time
series, we focus here on univariate time series of fixed lengths. A univariate time series
T of length � is an ordered sequence of � observations of a variable over time, where
T = 〈x1, . . . , x�〉, with xi ∈ R. We use D to represent a training time series dataset
and n to represent the number of time series in D.

We now present the main techniques used in TSC research. We also include a
summary of training and test complexities of the methods present in this Section in
Table 3.

2.1 Similarity-based techniques

These algorithms usually use 1-Nearest Neighbour (1-NN) with elastic similarity
measures. Elastic measures are designed to compensate for local distortions, miss-
alignments or warpings in time series that might be due to stretched or shrunken
subsections within the time series.

The classic benchmark for TSC has been 1-NN using Dynamic Time Warping
(DTW),with cross validatedwarpingwindowsize (Ding et al. 2008). Thewarpingwin-
dow is a parameter that controls the elasticity of the similaritymeasure. A zerowindow
size is equivalent to the Euclidean distance, while a larger warping window size allows
points from one series to match points from the other series over longer time frames.
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Commonly used similarity measures include variations of DTW such as Deriva-
tive DTW (DDTW) (Keogh and Pazzani 2001; Górecki and Łuczak 2013), Weighted
DTW (WDTW) (Jeong et al. 2011), Weighted DDTW (WDDTW) (Jeong et al. 2011),
and measures based on edit distance such as Longest Common Subsequence (LCSS)
(Hirschberg 1977), Move-Split-Merge (MSM) (Stefan et al. 2013), Edit Distance with
Real Penalty (ERP)(Chen and Ng 2004) and Time Warp Edit distance TWE (Marteau
2009). Most of these measures have additional parameters that can be tuned. Details
of these measures can be found in (Lines and Bagnall 2015; Bagnall et al. 2017).

Ensembles formed using multiple 1-NN classifiers with a diversity of similarity
measures have proved to be significantly more accurate than 1-NN with any single
measure (Lines and Bagnall 2015). Such ensembles help to reduce the variance of
the model and thus help to improve the overall classification accuracy. For example,
Elastic Ensemble (EE) combines 11 1-NN algorithms, each using one of the 11 elastic
measures (Lines and Bagnall 2015). For each measure, the parameters are optimized
with respect to accuracy using cross-validation (Lines and Bagnall 2015; Bagnall et al.
2017). Though EE is a relatively accurate classifier (Bagnall et al. 2017), it is slow to
train due to high computational cost of the leave-one-out cross-validation used to tune
its parameters—O(n2 · �2). Furthermore, since EE is an ensemble of 1-NN models,
the classification time for each time series is also high—O(n · �2).

Our recent contribution, Proximity Forest (PF), is more scalable and accurate than
EE (Lucas et al. 2019). It builds an ensemble of classification trees, where data at each
node are split based on similarity to a representative time series from each class. This
contrasts with the standard attribute-value splitting methods used in decision trees.
Degree of similarity is computed by selecting at random one measure among the 11
used in EE. The parameters of themeasures are also selected at random. Proximity For-
est is highly scalable owing to the use of a divide and conquer strategy, and stochastic
parameter selection in place of computationally expensive parameter tuning.

2.2 Interval-based techniques

These algorithms select a set of intervals from the whole series and apply transfor-
mations to these intervals to generate a new feature vector. The new feature vector is
then used to train a traditional machine learning algorithm, usually a forest of Ran-
dom Trees, similar to Random Trees used in Random Forest (but without bagging).
For instance, Time Series Forest (TSF) (Deng et al. 2013) applies three time domain
transformations—mean, standard deviation and slope—to each of a set of randomly
chosen intervals, and then trains a decision tree using this new data representation. The
operation is repeated to learn an ensemble of decision trees, similar to Random Trees,
on different randomly chosen intervals. Other notable interval-based algorithms are
Time Series Bag of Features (TSBF) (Baydogan et al. 2013), Learned Pattern Similar-
ity (LPS) (Baydogan and Runger 2016), and the recently introduced Random Interval
Spectral Ensemble (RISE) (Lines et al. 2018).

RISE computes four different transformations for each random interval selected:
Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and
Autoregressive model (AR) which extracts features in time domain, and Power Spec-
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trum (PS) which extracts features in the frequency domain (Lines et al. 2018; Bagnall
et al. 2015). Coefficients of these functions are used to form a new transformed feature
vector. After these transformations have been computed for each interval, a Random
Tree is trained on each of the transformed intervals. The training complexity of RISE
is O(k · n · �2) (Lines et al. 2018), and the test complexity is O(k · log(n) · �2).

The algorithm presented in this paper has components inspired by RISE, therefore,
further details are presented later (see Sect. 3.2.3).

2.3 Shapelet-based techniques

Rather than extracting intervals, where the location of sub-sequences are important,
shapelet-based algorithms seek to identify sub-sequences that allow discrimination
between classes irrespective of where they occur in a sequence (Ye and Keogh 2009).
Ideally, a good shapelet candidate should be a sub-sequence similar to time series from
the same class, and dissimilar to time series from other classes. Similarity is usually
computed using the minimum Euclidean distance of a shapelet to all sub-sequences
of the same length from another series.

The original version of the shapelet algorithm (Ye and Keogh 2009; Mueen et al.
2011), enumerates all possible sub-sequences among the training set to find the “best”
possible shapelets. It uses Information Gain criteria to asses how well a given shapelet
candidate can split the data. The “best” shapelet candidate and a distance threshold
is used as a decision criterion at the node of a binary decision tree. The search for
the “best” shapelet is then recursively repeated until obtaining pure leaves. Despite
some optimizations proposed in the paper, it is still a very slow algorithmwith training
complexity of O(n2 · �4).

Much of the research about shapelets has focused on ways of speeding up the
shapelet discovery phase. Instead of enumerating all possible shapelet candidates,
researchers have tried to come up with ways of quickly identifying possible “good”
shapelets. These include Fast Shapelets (FS) (Rakthanmanon and Keogh 2013) and
Learned Shapelets (LS) (Grabocka et al. 2014). Fast Shapelet proposed to use an
approximation technique called Symbolic Aggregate Approximation (SAX) (Lin et al.
2007) to shorten the time series during the shapelet discovery process in order to speed
up by reducing the number of shapelet candidates. Learned Shapelets (LS) attempted
to “learn” the shapelets rather than enumerate all possible candidates. Fast Shapelets
algorithm is faster than LS, but it is less accurate (Bagnall et al. 2017).

Another notable shapelet algorithm is Shapelet Transform (ST) (Hills et al. 2014).
In ST, the ‘best’ k shapelets are first extracted based on their ability to separate classes
using a quality measure such as Information Gain, and then the distance of each of the
“best” k shapelets to each of the samples in the training set is computed (Hills et al.
2014; Bostrom and Bagnall 2015; Large et al. 2017). The distance from k shapelets to
each time series forms a matrix of distances which defines a new transformation of the
dataset. This transformed dataset is finally used to train an ensemble of eight traditional
classification algorithms including 1-Nearest Neighbour with Euclidean distance and
DTW,C45DecisionTrees,BayesNet,NaiveBayes, SVM,RotationForest andRandom
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Forest. Although very accurate, ST also has a high training-time complexity of O(n2 ·
�4) (Hills et al. 2014; Lines et al. 2018).

One algorithm that speeds up the shapelet-based techniques is Generalized Random
Shapelet Forest (GRSF) (Karlsson et al. 2016). GRSF selects a set of random shapelets
at each node of a decision tree and performs the shapelet transformation at the node
level of the decision tree. GRSF is fast because it is tree-based and uses random selec-
tion of shapelets instead of enumerating all shapelets. GRSF experiments were carried
out on a subset of the 85 UCR datasets where the values of the hyperparameters—
the number of randomly selected shapelets as well as the lower and upper shapelet
lengths—are optimized by using a grid search.

2.4 Dictionary-based techniques

Dictionary-based algorithms transform time series data into bag of words (Senin and
Malinchik 2013; Schäfer 2015; Large et al. 2018). Dictionary based algorithms are
good at handling noisy data and finding discriminatory information in data with recur-
ring patterns (Schäfer 2015). Usually, an approximation method is first applied to
reduce the length of the series (Keogh et al. 2001; Lin et al. 2007; Schäfer andHögqvist
2012), and then a quantization method is used to discretize the values, and thus to
form words (Schäfer 2015; Large et al. 2018). Each time series is then represented by
a histogram that counts the word frequencies. 1-NN with a similarity measure, that
compares the similarity between histograms, can then be used to train a classifica-
tion model. Notable dictionary based algorithms are Bag of Patterns (BoP) (Lin et al.
2012), Symbolic Aggregate Approximation-Vector Space Model (SAX-VSM) (Senin
and Malinchik 2013), Bag-of-SFA-Symbols (BOSS) (Schäfer 2015), BOSS in Vector
Space (BOSS-VS) (Schäfer 2016) andWord eXtrAction for time SEries cLassification
(WEASEL) (Schäfer and Leser 2017).

To compute an approximation of a series, BOP and SAX-VSM use a method called
Symbolic Aggregate Approximation (SAX) (Lin et al. 2007). SAX uses Piecewise
Aggregate Approximation (PAA) (Keogh et al. 2001) which concatenates the means
of consecutive segments of the series and uses quantiles of the normal distribution as
breakpoints to discretize or quantize the series to form a word representation. By con-
trast, BOSS, BOSS-VS, andWEASEL use amethod called Symbolic Fourier Approx-
imation (SFA) (Schäfer and Högqvist 2012) to compute the approximated series. SFA
applies Discrete Fourier Transformation (DFT) on the series and uses the coefficients
of DFT to form a short approximation, representing the frequencies in the series. This
approximation is then discretized using a data-adaptive quantization method called
Multiple Coefficient Binning (MCB) (Schäfer and Högqvist 2012; Schäfer 2015).

The most commonly used algorithm in this category is Bag-of-SFA-Symbols
(BOSS), which is an ensemble of dictionary-based 1-NN models (Schäfer 2015).
BOSS is a component ofHIVE-COTEandour algorithmalso has a component inspired
by BOSS. Further details of the BOSS algorithm will be presented in Sect. 3. BOSS
has a training time complexity of O(n2 · �2) and a testing time complexity of O(n · �)
(Schäfer 2015). A variant of BOSS called BOSS-VS (Schäfer 2016) has a much
faster train and test time while being less accurate. The more recent variant WEASEL
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(Schäfer and Leser 2017) is more accurate but has a slower training time than BOSS
and BOSS-VS, in addition to high space complexity (Schäfer and Leser 2017; Lucas
et al. 2019; Middlehurst et al. 2019).

2.5 Combinations of transformations

Two leading algorithms that combine multiple transformations are Flat Collective of
Transformation-Based Ensembles (FLAT-COTE) (Bagnall et al. 2015) and the more
recent variant Hierarchical Vote COTE (HIVE-COTE) (Lines et al. 2018). FLAT-
COTE is a meta-ensemble of 35 different classifiers that use different time series
classification methods such as similarity-based, shapelet-based, and interval-based
techniques. In particular, it includes other ensembles such as EE and ST. The label of
a time series is determined by applying weightedmajority voting, where the weighting
of each constituent depends on the training leave-one-out cross-validation (LOO CV)
accuracy. HIVE-COTE works similarly, but it includes new algorithms, BOSS and
RISE, and changes the weighted majority voting to make it balance between each
type of constituent module. These modifications result in a major gain in accuracy,
and it is currently considered as the state of the art in TSC for accuracy. However,
both variants of COTE have high training complexity, lower bounded by the slow
cross-validation used by EE—O(n2 · �2)—and exhaustive shapelet enumeration used
by ST—O(n2 · �4).

2.6 Deep learning

Deep learning is interesting for time series both because of the structuring dimension
offered by time (deep learning has been particularly good for images and videos)
and for its linear scalability with training size. Most related research has focused
on developing specific architectures based mainly on Convolutional Neural Networks
(CNNs) (Wang et al. 2017; Fawaz et al. 2019), coupled with data augmentation, which
is required to make it possible for them to reach high accuracy on the relatively
small training set sizes present in the UCR archive (Le Guennec et al. 2016; Fawaz
et al. 2019). While these approaches are computationally efficient, the two leading
algorithms, Fully Connected Network (FCN) (Wang et al. 2017) and Residual Neural
Network (ResNet) (Wang et al. 2017), are still less accurate than FLAT-COTE and
HIVE-COTE (Fawaz et al. 2019).

3 TS-CHIEF

This section introduces our novel algorithm TS-CHIEF, which stands for Time Series
Combination of Heterogeneous and Integrated Embeddings Forest. TS-CHIEF is an
ensemble algorithm that makes the most of the scalability of tree classifiers coupled
with the accuracy brought by decades of research into specialized techniques for time
series classification.Traditional attribute-valuedecision trees forma tree by recursively
splitting the data with respect to the value of a selected attribute. These techniques (and
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ensembles thereof) do not in general perform well when applied directly to time series
data (Bagnall et al. 2017). As they treat the value at each time step as a distinct attribute,
they are unable to exploit the information in the series order. In contrast, TS-CHIEF
utilizes splitting criteria that are specifically developed for time series classification.

Our starting point for TS-CHIEF is the Proximity Forest (PF) algorithm (Lucas
et al. 2019), which builds an ensemble of classification trees with ‘splits’ using the
proximity of a given time series T to a set of reference time series: if T is closer
to the first reference time series, then it goes to the first branch, if it is closer to the
second reference time series, then it goes to the second branch, and so on. Proximity
Forest integrates 11 time series measures for evaluating similarity. At each node a set
of reference series is selected, one per class, together with a similarity measure and its
parameterization. These selections are made stochastically. Proximity Forest attains
accuracies that are comparable to BOSS and ST (see Fig. 1). TS-CHIEF complements
Proximity Forest’s splitters with dictionary-based and interval-based splitters, which
we describe below. Our algorithmic contributions are three-fold:

1. We take the ideas that underlie the best dictionary-based method, BOSS, and
develop a tree splitter based thereon.

2. We take the ideas behind the best interval-based method, RISE, and develop a tree
splitter based thereon.

3. We develop techniques to integrate these two novel splitters together with those
introduced by Proximity Forest, such that any of the 3 types might be used at any
node of the tree.

TS-CHIEF is an ensemblemethod: we thus paid particular attention tomaximizing the
diversity between the learners in its design. We do this by creating a very large space
of possible splitting criteria. This diversity for diversity sake would be unreasonable if
the objective was to create a single standalone classifier. By contrast, by ensembling,
this diversity can be expected to reduce the covariance term of ensemble theory (Ueda
and Nakano 1996). If ensemble member classifiers are too similar to one another, their
collective decision will differ little from that of a single member.

3.1 General principles

During the training phase, TS-CHIEF builds a forest of k trees. The general principles
of decision trees remain: tree construction starts from the root node and recursively
builds the sub-trees, and at each node, the data is split into branches using a split-
ting function. Where TS-CHIEF differs is in the use of time-series-specific splitting
functions. The details of these splitting functions will be discussed in Sect. 3.2. In
short, we use different types of splitters either using time series similarity measures,
dictionary-based or interval-based representations. At each node, we generate a set of
candidate splits and select the best one using the weighted Gini index, i.e. the split
that maximizes the purity of the created branches (similar to a classic decision tree).
We describe the top-level algorithm in Algorithm 1; note that this algorithm is very
typical of decision trees and that all the time-series-specific features are in the way we
generate candidate splits, as shown in Algorithms 2, 3 and 4.
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Algorithm 1: build_tree(D,Ce,Cb,Cr )
Input: D: a time series dataset
Input: Ce : no. of similarity-based candidates
Input: Cb : no. of dictionary-based candidates
Input: Cr : no. of interval-based candidates
Output: T : a TS-CHIEF Tree

1 if is_pure(D) then
2 return create_leaf(D)
3 T ← create_node() // Create tree represented by its root node
4 S ← ∅ // set of candidate splitters

5 Se ← generate_similarity_splitters(D,Ce)
6 Add all similarity-based splitters in Se to S
7 Sb ← generate_dictionary_splitters(D,Cb)

8 Add all dictionary-based splitters in Sb to S

9 Sr ← generate_interval_splitters(D,Cr )
10 Add all interval-based splitters in Sr to S

11 δ� ← arg max
δ∈S

Gini (δ) // select the best splitter using Gini

12

13 Tδ ← δ� // store the best splitter in the new node T
14 TB ← ∅ // store the set of branch nodes in T
15 // Partition the data using δ� and recurse

16 if δ� is similarity-based then
17 foreach e ∈ δ�E do

18 // δ�M is the distance measure of the best similarity-based splitter δ� selected by Gini

19 D+ ← {d ∈ D | δ�M (d, e) = minx∈δ�E
(δ�M (d, x))

20 te ← build_tree(D+,Ce ,Cb ,Cr )

21 Add new branch te to TB
22 end

23 else if δ� is dictionary-based then
24 foreach e ∈ δ�E do
25 // For definition of BOSS_dist, see (Schäfer 2015, Definition 4)

26 // δ�T (d) is the BOSS transformation of d using the BOSS transform function δ�T of the best

dictionary-based splitter δ� selected by Gini

27 D+ ← {d ∈ D | BOSS_dist(δ�T (d), e) = minx∈δ�E
(BOSS_dist(δ�T (d), x))

28 te ← build_tree(D+,Ce ,Cb ,Cr )

29 Add new branch te to TB
30 end

31 else if δ� is interval-based then
32 // (δ�a,δ

�
v) is the best attribute-threshold tuple to split on when δ�

λ
function is applied to the

interval

33 D≤ ← {d ∈ D | get_att_val(δ�
λ
(〈d

δ�s
, . . . , d

δ�s+δ�m−1〉), δ�a
) ≤ δ�v }

34 tleft ← build_tree(D≤,Ce ,Cb ,Cr )

35 Add branch tleft to TB
36 D> ← {d ∈ D | get_att_val(δ�

λ
(〈d

δ�s
, . . . , d

δ�s+δ�m−1〉), δ�a
)

> δ�v }
37 tright ← build_tree(D>,Ce ,Cb ,Cr )

38 Add branch tright to TB
39 return T

3.2 Splitting functions

As mentioned earlier, we choose splitting functions based on similarity measures,
dictionary representations and interval-based transformations. This is motivated by
the components of HIVE-COTE, namely EE (similarity-based), BOSS (dictionary-
based) and RISE (interval-based). The number of candidate splits generated per node
for each type of splitter type is denoted by C with a subscript as follows: Ce for the
number of similarity-based splitters, Cb for the number of dictionary-based splitters
and Cr for the number of interval-based splitters. We do not include ST (shapelets)
because of its high training time computational complexity.We also omit TSF because
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Algorithm 2: generate_similarity_splitters(D,Ce)

Input: D: a time series dataset.
Input: Ce: no. of similarity-based candidates
Output: Se: a set of similarity-based splitting functions

1 // Note that this algorithm is reproduced from (Lucas et al. 2019,
Algorithm 2)

2

3 Se ← ∅ // set of candidate similarity splitters
4 for i = 1 to Ce do
5 // sample a parameterized measure M uniformly at random from Δ

6 M
∼←− Δ // Δ is the set of 11 similarity measures used in (Lucas

et al. 2019)
7

8 // Select one exemplar per class to constitute the set E
9 E ← ∅

10 foreach class c present in D do
11 Dc ← {d ∈ D | class(d) = c} // Dc is the data for class c

12 e
∼←− Dc // sample an exemplar e uniformly at random from Dc

13 Add e to E
14 end
15 // Store measure M and exemplars E in the new splitter δ

16 (δM , δE ) ← (M, E)

17 Add splitter δ to Se
18 end
19 return Se

Algorithm 3: generate_dictionary_splitters(D,Cb)

Input: D: a time series dataset
Input: Cb: no. of dictionary-based candidates
Output: Sb: a set of dictionary-based splitting functions

1 Sb ← ∅ // set of candidate dictionary splitters
2 for i = 1 to Cb do
3 // See Section 3.2.2 for details of BOSS parameters
4 T ← select_random_BOSS_transformation()

5 // Select one BOSS histogram per class to constitute the set E
6 E ← ∅
7 foreach class c present in D do
8 Dc ← {d ∈ D | class(d) = c} // Dc is the data for class c

9 e
∼←− Dc // sample an exemplar e uniformly at random from Dc

10 // Recall that we precomputed T (D) during initialization
11 Add T (e) to E // T (e) is the BOSS histogram of e
12 end
13 // Store BOSS transform T and exemplar histograms E in the new

splitter δ

14 (δT , δE ) ← (T , E)

15 Add splitter δ to Sb
16 end
17 return Sb

123

TS-CHIEF 66



752 A. Shifaz et al.

Algorithm 4: generate_interval_splitters(D,Cr )

Input: D: a time series dataset
Input: Cr : no. of interval-based candidates
Output: Sr : a set of interval-based splitting functions

1 Sr ← ∅ // set of candidate interval splitters
2 mmin ← 16 // minimum length of random intervals
3 C∗

r ← 
Cr /4� // no. of attributes per transform
4 R ← �C∗

r /mmin // no. of random intervals to compute

5 for i = 1 to R do
6 // Get random interval - length m (m ∈ [mmin, �]), starting at

index s
7 (δs , δm ) ← get_random_interval(mmin, �)
8 // Add splitters for each transformation
9 foreach δλ in {ACF,PACF,AR,PS } do

10 // Apply λ to each time series
11 DT ← ∅
12 foreach d in D do
13 // Create dT , a vector of m attribute-values obtained by

applying δλ to the interval
14 dT ← δλ(〈dδs , . . . dδs+m−1 〉)
15 Add dT to DT
16 end
17 // Calculate no. of attributes to select from ith random

interval and transform function δλ
18 A ← 
C∗

r /R�
19 // Select at random A attributes in DT

20 P̃ ← get_random_attributes(DT , A)

21 foreach attribute δa in P̃ do
22 δv ← find_best_threshold(δa )
23 Add

(
(δs , δm ), δλ, (δa , δv)

)
to Sr

24 end
25 end
26 end
27 return Sr

its accuracy is ranked lower than EE, ST and BOSS (Bagnall et al. 2017). We next
describe how we generate each of these types of splitting function.

3.2.1 Similarity-based

This splitting function uses the method of Proximity Forest (Lucas et al. 2019), which
splits the data based on the similarity of each time series to a set of reference time
series (Lines 16 to 22 in Algorithm 1). At training time, for each candidate splitter,
a random measure δM , that is randomly parameterized, is selected, as well as a set
δE of random reference time series, one from each class (Algorithm 2). We use the
same 11 similarity measures used in Proximity Forest (Lucas et al. 2019), and the
parameters for these measures are also selected randomly from the same distributions
used in Proximity Forest (Lucas et al. 2019). If TS-CHIEF is trained with only the
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similarity-based splitter enabled (i.e. Cb = Cr = 0), then it is exactly Proximity
Forest.

When designing our earlier work Proximity Forest (Lucas et al. 2019) we chose
to select a single random reference per class instead of an aggregate representation
because it is very fast and it introduces diversity to the ensemble. We found that using
a single random reference per class was working very well in Proximity Forest, and so
we used it in the equivalent similarity-based splitter, and also in the dictionary-based
splitter presented in Sect. 3.2.2.

When splitting the data at training time and at classification time, the similarity of
a query instance Q to each reference time series e in δE is evaluated using the selected
measure δM . Q is passed down the branch corresponding to the e to which Q is closest.

3.2.2 Dictionary-based

This type of split functions also uses a similarity-based splitting mechanism, except
that it works on a set of time series that have been transformed using the BOSS
transformation (Schäfer 2015, Algorithm 1), and that it uses a variant of the Euclidean
distance (Schäfer 2015, Definition 4) to measure similarity between transformed time
series.

The BOSS transformation is used to convert the time series dataset into a bag-of-
word model. We start by describing the BOSS transformation. To compute a BOSS
transformation of a single time series, first, a window of fixed length w is slid over
the time series, while converting each window to a Symbolic Fourier Approximation
(SFA) word of length f (Schäfer and Högqvist 2012; Schäfer 2015). SFA is a two-step
procedure: (1) it applies a low pass filter—using only the low frequency coefficients of
the Discrete Fourier Transformation (DFT) –, (2) it converts each window (subseries)
into a word using a data adaptive quantization method called Multiple Coefficient
Binning (MCB). MCB defines a matrix of discretization levels for an alphabet size α

(default is α = 4) and a word length f . This leads to α f possible words. There is also a
parameter called norm. If it is equal to true, the first Fourier coefficient of thewindow is
removed, which is equal to mean-centering the time series (i.e., subtracting the mean).
SFAwords are then counted to formaword frequencyhistogram that is used to compare
two time series. BOSS uses a bespoke Euclidean distance, namely BOSS_dist, which
measures the distance between sparse vectors (which here represent histograms) in a
non-symmetric way, such that the distance is computed only on elements present in
the first vector (Schäfer 2015).

We now turn to explaining how we use BOSS transformations to build our forest.
Since BOSS has four different hyperparameters, many possible BOSS transforma-
tions of a time series can be generated. Before we start training the trees, t BOSS
transformations (histograms for all time series) of the dataset are pre-computed based
on t randomly selected sets of BOSS parameters. Similar to the values used in BOSS,
the four parameters are selected uniformly at random from the following ranges: the
window length w ∈ {10 . . . �}, SFA word length f ∈ {6, 8, 10, 12, 14, 16}, the nor-
malization parameter norm ∈ {true, f alse}, and α = 4.

At training time (Algorithm 3), for each candidate splitter δ, a random BOSS
transformation δT , with replacement, is chosen, as well as a set δE of random reference
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time series from each class for which the transformation δT has been applied. Each
training time series is then passed down the branch of the reference series for which
the BOSS distance between histogram of the series and the reference time series is
lowest. We then generate several such splitters and choose the best one according to
the Gini index.

At classification time,when a query time series Q arrives at a nodewith a dictionary-
based splitter, we start by calculating its transformation into a word histogram (the
transformation δT selected at training). We then compare this histogram to each refer-
ence time series in δE , and Q is passed down the branch corresponding to the reference
time series to which Q is closest.

3.2.3 Interval-based

This type of splitting function is designed towork in a similar fashion to the RISE com-
ponent used in the HIVE-COTE. Recall that RISE is an interval-based algorithm that
uses four transformations (ACF, PACF, AR—in time domain and PS—in frequency
domain) to convert a set of random intervals to a feature vector.Once the feature vectors
have been generated, RISE uses a classic attribute-value splitting mechanism to train
a forest of binary decision trees (similar to Random Forest—but without bagging).

A notable difference between RISE, and our interval-based splitter is that the ran-
dom intervals are selected per tree in RISE, whereas our interval-based splitter selects
random intervals per candidate split at the node level. This choice is for two main
reasons. Firstly, choosing intervals per candidate split at node level helps to explore a
larger number of random intervals. Secondly, this also separates the hyperparameter
k (number of trees) from the number of random intervals used by the interval-based
splitters which depends on the hyperparameterCr (number of interval-based splits per
node). Separating these hyperparameters helps to change the effects of interval-based
splitter on the overall ensemble, without changing the size of the whole ensemble.
Consequently, this design decision also helps to increase the diversity of the ensem-
ble.

Algorithm 4 describes the process of generating features using random intervals
and the four transform functions to generate Cr interval-based candidates splits. Each
candidate splitter δ is defined by a pair (δs, δm) that represent the interval start and its
length respectively, a function δλ (one of ACF, PACF, AR or PS) which is applied to
the interval and a pair (δa, δv) that indicates the attribute δa and threshold value δv on
which to split. The values of (δs, δm) are randomly selected to get a random interval
of length between minimum length mmin = 16 and � the length of the time series. We
set mmin, and other parameters required by the four transform functions to be exactly
same as it was in RISE. The values of the pair (δa, δv) are optimized such that the Gini
index is maximized when the data are split on the attribute δa for a threshold value δv .

When splitting the data at training time and at classification time, δλ is applied to the
interval of query instance Q defined by δs and δm , obtaining the attribute vector Qλ.
If get_att_val(Qλ, δa) ≤ δv (the value of attribute δa of Qλ is less than the threshold
value),Q is passeddown the left branch.Otherwise it is passeddown the right.Contrary
to the similarity—and dictionary-based splitting functions, which used a distance
based mechanism to partition the data (to produce a variable number of branches
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depending on the number of classes present at the node), the “attribute-value” based
splitting mechanism used by the interval-based splitting functions produce binary
splits (Lines 32 to 38 in Algorithm 1).

3.3 Classification

For each tree, a query time series Q is passed down the hierarchy from the root to the
leaves. The branch taken at each node depends on the splitting function selected at
the node. Once Q reaches the leaf, it is labelled with the class with which the training
instances that reached that leaf were classified. Recall that the tree is repeatedly split
until pure, so all training instances that reach a leaf will have the same class. This
process is presented in the Algorithm 5. Finally, a majority vote by the k trees is used
to label Q.

Algorithm 5: classification(Q, T )

Input: Q: Query Time Series
Input: T : TS-CHIEF Tree
Output: a class label c

1 if is_leaf(T ) then
2 return majority class of T
3

4 if Tδ is similarity-based then
5 (e, T �) ← arg min

(e′,T ′)∈TB
δM (Q, e′)

6 else if Tδ is dictionary-based then
7 (e, T �) ← arg min

(e′,T ′)∈TB
BOSS_dist(δT (Q), e′)

8 else if Tδ is interval-based then
9 Qλ ← δλ(〈Qδs , . . . , Qδs+δm−1〉)

10 // compare the δtha attribute value from Qλ to the split value
11 if get_att_val(Qλ, δa) ≤ δv then
12 T ∗ ← Tle f t
13 else
14 T ∗ ← Tright
15

16

17 // recursive call on subtree T �

18 return classification
(
Q, T �

)

3.4 Complexity

Training time complexity Proximity Forest, on which TS-CHIEF builds, has average
training time complexity that is quasi-linear with the quantity of training data, O(k ·
n log(n) ·Ce · c · �2) for k trees, n training time series of length �, Ce similarity-based
candidate splits, and c classes (Lucas et al. 2019). The term k comes from the number
of trees to train and log(n) from the average depth of the trees. In the worst case, tree
depth may be n, however, on average, tree depth can be expected to be log(n). The
term n ·Ce ·c ·�2 represents the order of time required to select the best ofCe candidate
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splits and partition the data thereon, based on the similarity of n training instances to
c reference time series at the node using a random similarity measure. The slowest of
the similarity measures used (WDTW) is bounded by O(�2).

The addition of the dictionary-based splitter adds a new initialization step and a new
selection step to the Proximity Forest algorithm. The initialization part pre-computes
t BOSS transformations for n time series. Since the cost of BOSS transforming one
time series is O(�) (Schäfer 2015, Section 6), the complexity of the initialization part
is O(t ·n · �). The Euclidean-based BOSS distance has a complexity of O(�) (Schäfer
2015, Definition 4) and must be applied to every example at the node for each of the
Cb (dictionary-based candidate splits), resulting in order O(Cb · c · n · �) complexity
for generating and evaluating dictionary splitters at each node of each tree.

The interval-based splitting functions are attribute-value splitters; we detail the
complexity for training a node receiving n′ time series. Each interval is transformed
using 4 different functions (ACF, PACF, AR and PS), which takes at most O(�2)

time (Lines et al. 2018, Table 4), leading to O(r · n′ · �2) for r intervals taken where
r is proportional to Cr . For each of the Cr candidate splits the data is then sorted
and scanned through to find the best split—O(Cr · n log(n)). Put together, this adds
O(Cr · n · �2 + Cr · n log(n)) complexity to the split selection stage. Note that � in
this term represents an upper bound on the length of random intervals selected. The
expected length of random interval is 1/3 of �.

Overall, TS-CHIEF has quasi-linear average complexity with respect to the training
size :

O
(

t · n · �︸ ︷︷ ︸
initialization

+ k · log(n)
︸ ︷︷ ︸
avg.depth
for k trees

· [Ce · c · n · �2︸ ︷︷ ︸
similarity

+Cb · c · n · �︸ ︷︷ ︸
dictionary

+ Cr · n · �2 + Cr · n log(n)
︸ ︷︷ ︸

interval

])
.

In Sect. 4.4, we have included an experiment tomeasure the fraction of training time
taken by each splitter type over 85 UCR datasets (Chen et al. 2015). As expected, the
dominant term in the training complexity is the term representing the similarity-based
splitter. In practice, our experiments show that the similarity-based splitter takes about
80% of the training time (See Fig. 9, on page 21).

Classification time complexity Each time series is simply passed down k trees, travers-
ing an average of log(n) nodes. Moreover, the complexity at each node is dominated
by the similarity-based splitters. Overall, this is thus a O(k · log(n) · c · �2) average
case classification time complexity.

Memory complexity The memory complexity is linear with the quantity of data. We
would need to store one copy of n time series of length �—this is O(n · �). In the
worst case there are as many nodes in each of the k trees as there are time series
and at each node, and we store one exemplar time series for each of the c classes,
O(k · n · c). We pre-store all t dictionary-based transformations, O(t · n · �). Overall,
this is O(n · � + k · n · c + t · n · �).
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4 Experiments

We start by evaluating the accuracy of TS-CHIEF on the UCR archive, and then assess
its scalability on a large time series dataset. In essence, we show that TS-CHIEF can
reach the same level of accuracy asHIVE-COTEbutwithmuchgreater speed, thanks to
TS-CHIEF’s quasi-linear complexity with respect to the number of training instances.
We then present a study on the variation of training accuracy against the ensemble size,
followed by an assessment of the contribution of each type of splitter in TS-CHIEF.
Finally, we finish this section by presenting a study of the memory requirements for
TS-CHIEF.

We implemented a multi-threaded version of TS-CHIEF in Java, and have made it
available via the Github repository https://github.com/dotnet54/TS-CHIEF. In these
experiments, we used multiple threads when measuring the accuracy of TS-CHIEF
under various configurations (Sects. 4.1, 4.3 and 4.4). For experimentswithTS-CHIEF,
we report the mean accuracy for 10 runs unless explicitly stated. However, we used
a single thread (1 CPU) for both TS-CHIEF and HIVE-COTE when measuring the
timings for scalability experiments in Sect. 4.2.

Throughout the experiments, unless mentioned otherwise, we use the following
parameter values for TS-CHIEF: t = 1000 dictionary-based (BOSS) transformations,
k = 500 trees in the forest. When training each node, we concurrently assess the
following number of candidates: 5 similarity-based splitters, 100 dictionary-based
splitters and 100 interval-based splitters. Ideally, we would also want to raise the
number of candidates for the similarity-based splitter, but this has a significant impact
on training time (since passing the instances down the branches measures in O(�2))
withmarginal improvement in accuracy (Lucas et al. 2019). Note thatwe have not done
any tuning of these numbers of candidates of each type. For hyperparameters of the
similarity-based splitters (e.g. parameters for distance measures), we used exactly the
same values used in Proximity Forest (Lucas et al. 2019). Similarly, for dictionary—
and interval-based splitters, we used the same hyperparameters used in BOSS and
RISE components of HIVE-COTE (Lines et al. 2018).

4.1 Accuracy on the UCR Archive

We evaluate TS-CHIEF on the UCR archive (Chen et al. 2015), as is the de facto stan-
dard in TSC research (Bagnall et al. 2017). We use the 2015 version with 85 datasets,
because the very recent update adding further datasets is still in beta (Dau et al. 2018a).
All 85 datasets are fixed length univariate time series that have been z-normalized. We
use the standard train/test split available at http://www.timeseriesclassification.com.

To compare multiple algorithms over the 85 datasets, we use critical difference dia-
grams, as it is the standard in machine learning research (Demšar 2006; Benavoli et al.
2016). We use the Friedman test to compare the ranks of multiple classifiers (Demšar
2006). In these statistical tests, the null hypothesis corresponds to no significant dif-
ference in the mean rankings of the multiple classifiers (at a statistical significant level
α = 0.05). In cases where null-hypothesis was rejected, we use the Wilcoxon signed
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Table 1 p-Values for the pairwise comparison of classifiers

BOSS ST PF RN FCT HCT TS-CHIEF

DTW <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

BOSS 0.035 0.042 0.022 <0.001 <0.001 <0.001

ST 0.684 0.112 <0.001 <0.001 <0.001

PF 0.127 0.002 <0.001 <0.001

RN 0.330 0.005 0.017

FCT <0.001 0.045

HCT 0.687

Bold values indicate pairs of classifiers that are statistically different at the 0.05 level after applying a Holm
correction. The algorithms are abbreviated as follows. RN: ResNet, DTW: 1-NNDTW, FCT: FLAT-COTE,
and HCT: HIVE-COTE

rank test to compare the pair-wise difference in ranks between classifiers, while using
Holm’s correction to adjust for family-wise errors (Benavoli et al. 2016).

We compare TS-CHIEF to the 3 time series classifiers identified by (Bagnall et al.
2017) as the most accurate on the UCR archive (FLAT-COTE, ST and BOSS), as
well as the de facto standard 1-NN DTW, deep learning method ResNet and the more
recent HIVE-COTE (the current most accurate on the URC archive) and Proxim-
ity Forest (the inspiration for TS-CHIEF). We use results reported at the http://www.
timeseriesclassification.comwebsite for these algorithms, except for TS-CHIEF, Prox-
imity Forest (our result (Lucas et al. 2019)) and the deep learning ResNet method for
which we obtained the results from Fawaz et. al’s (2019) review of Deep Learning
methods for TSC.

Figure 1 displays mean ranks (on error) between the 8 algorithms; which is also
the main result of this paper in terms of accuracy. TS-CHIEF obtains an average rank
of 2.941, which rivals HIVE-COTE at 2.935 (statistically not different). FLAT-COTE
comes next with an average rank of 3.818. Next, Residual Neural Network (ResNet)
is ranked at 4.300.

Table 1 presents the results of a comparison between each pair of algorithms.We use
Wilcoxon’s signed rank test and judge significance at the 0.05 significance level using
a Holm correction for multiple testing. The comparisons that are judged significant at
the 0.05 level are displayed in bold type. TS-CHIEF, HIVE-COTE, FLAT-COTE and
ResNet are all statistically indistinguishable fromone another except thatHIVE-COTE
is significantly more accurate than FLAT-COTE. TS-CHIEF and the two COTEs are
all significantly more accurate than all the other algorithms except ResNet.

To further examine the accuracy ofTS-CHIEF against bothCOTEalgorithms, Fig. 2
presents a scatter plot of pairwise accuracy. Each point represents a UCR dataset. TS-
CHIEF wins above the diagonal line. TS-CHIEF wins 40 times against HIVE-COTE
(green squares), loses 38 times and ties on 7 datasets. Compared to FLAT-COTE (red
circles), TS-CHIEF wins 47 times, and loses 33 times, with 5 ties. It is interesting
to see that TS-CHIEF gives results that are quite different to both COTE algorithms,
with a few datasets for which the difference in accuracy is quite large.

Table 4 presents the accuracy of all 8 classifiers for the 85 datasets. TS-CHIEF is
most accurate of all classifiers (rank 1) on 31 datasets, while HIVE-COTE is most
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Fig. 2 Comparison of accuracy for TS-CHIEF versus HIVE-COTE (left) and TS-CHIEF versus FLAT-
COTE (right) on 85 UCR datasets. TS-CHIEF’s win/draw/loss against HIVE-COTE is 40/7/38 and against
FLAT-COTE is 47/5/33

Table 2 Mean accuracy of TSC algorithms grouped by dataset types identified in the UCR archive (Chen
et al. 2015)

Dataset type DTW BOSS ST PF RN FCT HCT CHIEF

DEVICE 59.54 66.81 70.58 64.40 72.94 69.47 73.24 69.26

ECG 87.14 91.69 94.43 92.34 92.87 95.56 95.20 94.88

IMAGE 74.87 81.27 79.71 82.30 79.79 82.67 84.05 84.35

MOTION 70.54 75.60 77.87 78.55 76.83 79.13 79.66 81.40

SENSOR 77.50 79.89 84.05 83.66 85.77 86.01 84.81 84.67

SIMULATED 87.25 92.61 92.20 89.26 93.13 93.96 94.49 94.79

SPECTRO 80.34 85.00 86.55 81.67 86.19 84.72 88.31 86.49

FCT and HCT indicates FLAT-COTE and HIVE-COTE respectively, and RN indicates ResNet
Bold values indicate classifiers with the highest mean accuracy for each dataset type

accurate on 23, despite their mean ranks being equal at 2.94. With respect to the
benchmark UCR archive, TS-CHIEF rivals HIVE-COTE in accuracy (without being
statistically different).

We also looked at the accuracy of TS-CHIEF and other TSC methods on different
data domains as identified in the UCR achive (Chen et al. 2015). The results, in
Table 2, shows that TS-CHIEF performed best in three data domains, although the
mean accuracy in these cases are similar to HIVE-COTE.

Although we were not able to compare running time with either of the COTE
algorithms because of their very high running time, even on the UCR archive, we give
here a few indications of runtime for TS-CHIEF. The experiment was carried out using
an AMD Opteron CPU (1.8 GHz) with 64 GB RAM, with 16 CPU threads. Note that
this is the only timing experiment we ran with multiple threads, timing experiments
in Sect. 4.2 were run using a single thread.
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Average training and testing times were respectively of about 3h and 27 min per
dataset, but with quite a large difference between datasets. TS-CHIEF was trained on
69 datasets in less than 1 h each and less than one day was sufficient to train TS-
CHIEF on all but 10 datasets. It however took about 10 days to complete training on
all the datasets, mostly due to the HandOutlines dataset which took more than
4 days to complete. Our experiments confirmed our theoretical developments about
complexity: TS-CHIEF was largely unaffected by dataset size with the largest dataset
ElectricDevices trained in 2 h 24 min and tested in 9 min. HandOutlines is
the dataset with the longest series and in the top-10 in terms of training size, which
shows that the quadratic complexity with the length has still a non-negligible influence
on training time. The next section details scalability with respect to length and size.

4.2 Scalability

TS-CHIEF is designed to be both accurate and highly scalable. Section 3.4 showed
that the complexity of TS-CHIEF scales quasi-linearly with respect to number of
training instances n and quadratically with respect to length of the time series �. To
assess how this plays out in practice, we carried out two experiments to evaluate the
runtime of TS-CHIEF when (1) the number of training instances increases, and (2) the
time series length increases. We compare TS-CHIEF to the HIVE-COTE algorithm
which previously held the title of most accurate on the UCR archive. We performed
these experiments with 100 trees (1 run). As the accuracy on the UCR archive has
been evaluated for 500 trees (Sect. 4.1), we also estimated the timing for 500 trees
(5 times slower). The experiments used a single run of each algorithm using 1 CPU
(single thread) on a machine with an Intel(R) Xeon(R) CPU E5-2680 v3@2.50GHz
processor with 200 GB of RAM.

4.2.1 Increasing training set size

First, we assessed the scalability of TS-CHIEF with respect to the training set size.
We used a Satellite Image Time Series (SITS) dataset (Tan et al. 2017) composed of 1
million time series of length 46, with 24 classes. The training set was sampled using
stratified randomsamplingmethodwhilemaking sure at least one time series fromeach
class in the training data is present in the stratified samples. We also used a stratified
random sample of 1000 test instances for evaluation. We evaluated the accuracy and
the total runtime as a function of the number of training time series, starting from a
subsample of 58, and logarithmically increasing up to 131,879 (a sufficient quantity
to clearly define the trend).

Figures 3 and 4 show the training time and the accuracy, respectively, as a function
of the training set size for TS-CHIEF (in olive) and HIVE-COTE (in red). Figure 3
shows that TS-CHIEF trains in time that is quasi-linear with respect to the number
of training examples, rather than the quadratic time for HIVE-COTE. For about 1500
training time series, HIVE-COTE requires about 8 days to train, while TS-CHIEF was
able to train in about 13min. This is thus an 900x speed-up.
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Fig. 3 Training time in logarithmic-scale for TS-CHIEF versus HIVE-COTE with increasing training size
using the Satellite Image Time Series dataset (Tan et al. 2017). Even for 1500 time series, TS-CHIEF is
more than 900 times faster than the current state of the art HIVE-COTE

Fig. 4 Accuracy as a function of training set size for SITS dataset

Figure 4 shows that TS-CHIEF has similar accuracy to HIVE-COTE for any given
number of training time series. However, TS-CHIEF achieves 67% accuracy within
2 days by learning from about 132k time series. By fitting a quadratic curve through
HIVE-COTE training time, we estimate that it will require 234 years for HIVE-COTE
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Fig. 5 Training time as a function of the series length � for a one UCR dataset

to learn from 132k time series. This is a speed-up of 46,000 times over HIVE-COTE.
Furthermore, to train all one million time series in the SITS dataset, we estimated that
it would take 13,550 years to train HIVE-COTE, while TS-CHIEF is estimated to take
44 days. This is a speed-up of 90,000 times over HIVE-COTE for 1M time series.

Moreover, Fig. 4 indicates that HIVE-COTE can only achieve 60% after 2 days of
training, i.e. a decrease of 7.9%compared toTS-CHIEF. In practice, the execution time
of TS-CHIEF thus scales very close to its theoretical average complexity (Sect. 3.4)
by scaling quasi-linearly with the training set size.

4.2.2 Increasing length

Second, we assessed the scalability of TS-CHIEF with respect to the length � of the
time series. We use here InlineSkate, a UCR dataset composed of 100 time series
and 550 test time series of original length 1882. We resampled the length from 32 to
2048 by using an exponential scale with base 2.

Figure 5 displays the training time for both TS-CHIEF (in olive) and HIVE-COTE
(in red) as a function of the length of the time series. TS-CHIEF can learn from 100
time series of length 2048 in about 4h, while HIVE-COTE requires more than 3 days.
This is a 24x speed up. It alsomirrors the theoretical training complexity of TS-CHIEF
in O(�2), and HIVE-COTE in O(�4) (Lines et al. 2018) with respect to the length of
the time series.

4.3 Ensemble size and variance of the results

Wealso conducted an experiment to study the accuracy (and variance) versus ensemble
size k (see Fig. 6). It shows that the accuracy increases with k up to a point where it
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Fig. 6 Mean accuracy (and variance) versus ensemble size (top) and a critical difference diagram showing
the mean rankings of different ensemble sizes (bottom). Mean accuracy is calculated over 85 datasets for
10 runs

plateaus. This follows ensemble theory which shows that increasing the size of the
ensemble reduces the variance, but that at some point this variance is compensated by
the covariance of the elements of the ensemble: when they all start resembling each
other, no additional reduction of the variance of the error is obtained (Ueda andNakano
1996; Breiman 2001). Our experiments show that using k = 500 is significantly
better than using k = 100 (p-value is <0.001 in a pairwise comparison after Holm’s
correction) but that themagnitude of the difference is very small. Importantly, however,
it shows that, when going from 100 to 500, there is a substantial reduction in the
variance in the accuracy between runs. In consequence, we make 500 trees the default,
as it provides a good trade-off between accuracy and running times.

4.4 Contribution of splitting functions

We also conducted ablation experiments to assess the contribution of each type of
splitting function: similarity-based, dictionary-based and interval-based. For this pur-
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Fig. 7 Pairwise comparison of accuracy with one (bottom row) or two (top row) types of split functions
versusTS-CHIEF (where all three types of split functions were used). Similarity versusTS-CHIEF (bottom-
left) shows the pairwise comparison of Proximity Forest against TS-CHIEF

pose, we assess each variant of TS-CHIEF created by disabling one of the functions
or a pair of the functions. We performed these experiments with 100 trees, and report
the mean accuracy of 10 repetitions.

Figure 7 displays six scatter-plots comparing the accuracy of TS-CHIEF using all
splitting functions to that of the six ablation configurations. The vertical axes indicate
the accuracy of TS-CHIEFwith all split functions enabled. The first row compares TS-
CHIEF to variants with a single splitting function disabled (i.e with two types of split
functions only). The second row compares TS-CHIEF to variants with only a single
splitting function enabled. Please note that the use of only the similarity-based splitting
function (first column, second row) corresponds to the Proximity Forest algorithm
(Lucas et al. 2019). Each point indicates one of the 85 UCR datasets. Points above
the diagonal dashed line indicate that TS-CHIEF with all three splitting functions has
higher accuracy than the alternative.

The scatter plots on the bottom row indicate that, individually, the dictionary-based
splitter contributes most to the accuracy with 18 wins, 59 losses and 8 ties relative to
TS-CHIEF. We can also observe that the magnitudes of its losses tend to be smaller.
Conversely, the interval-based splitter contributes least to the accuracy, with losses of
the greatest magnitude relative to TS-CHIEF. However, it still achieves lower error on
17 datasets, demonstrating that there are some datasets for which the interval-based
approach performs well.

When comparing similarity-based splitter (Proximity Forest) against TS-CHIEF
(k = 100), the win/draw/loss is 67/2/16 in favor of TS-CHIEF. There are 5 datasets
for which the wins are larger than 10%: Wine (31%), ShapeletSim (22%), OSULeaf
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Fig. 8 Critical difference diagram showing the mean ranks of different combinations of split functions

(15%), ECGFiveDays (15%) and FordB (11%). When TS-CHIEF lost, the biggest
three losses were for Lighting2 (10%) Lightning7 (6%) and FaceAll (5%).

In addition, the similarity-based splitter in conjunction with the dictionary-based
splitter (that is, the variant with interval-based disabled) is closest to the accuracy of
TS-CHIEF, with 26 wins against TS-CHIEF, 42 losses and 8 ties.

Figure 8 shows a critical difference diagram summarizing the the relative accuracy
of all combinations of the splitting functions. This confirms our observations from the
graphs in Fig. 7. The combination of all three types of splitters has the highest average
rank. Next come the pairs of splitters, with all pairs outranking the single splitters,
albeit marginally for the pair that excludes the dictionary splitter.

The contribution to accuracy from the interval-based splitter is small, and the
sim+dict combination is not statistically different from TS-CHIEF (p-value is 0.777 in
a pairwise comparison afterHolm’s correction)which uses the three splitters. There are
three main reasons why we decided to keep the interval-based splitter in our method.
(1) It ranks slightly higher than using only two. (2) It provides a different type of
representation which we believe could be useful in real-world applications; in other
words, we are conscious that there is a bias in the datasets of the UCR archive and
want to prepare our method for unseen datasets as well. (3) Fig. 9, which displays the
fraction of time used by each splitting function, shows that the interval-based splitter
takes only a small fraction of the time in TS-CHIEF, so that the downsides of including
it are small.

To analyze further, Fig. 10 displays the percentage of times each splitter type was
selected at a node.We observe that the dictionary-based splitter (Cb = 100) is selected
more often than the other two types of splitters, with an average of 60% of the time,
across the 85 datasets. We used Ce = 5 for similarity-based splitters, but we also
observe that similarity-based splitters were selected 30% of the time, whereas, an
interval-based splitter (Cr = 100) was selected only 10% of the time. It is interesting
that, despite that a dictionary-splitter was selected more often, it uses less time (15%)
than the similarity-based splitter (80%)—this can be seen from Fig. 9.

4.5 Memory usage

In Sect. 3.4 we saw that the memory complexity of TS-CHIEF is O(n · � + k · n ·
c + t · n · �). Recall that t is the number of BOSS transformations precomputed at
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Fig. 9 Fraction of training time taken for each splitter type for 85 UCR datasets (Chen et al. 2015). In
this experiment, we selected the hyperparameters as follows: number of similarity-based splitters Ce = 5,
number of dictionary-based splitters Cb = 100, and the number of interval-based splitters Cr = 100. We
ran this experinment with k = 10 trees to evaluate the fraction of training time used by each splitter type
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Fig. 10 Percentage of times each splitter type was selected at the nodes
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the beginning of training. There is a memory vs computational time tradeoff between
precomputing t BOSS transformations at the forest level and computing a random
BOSS transformation at the tree or node level. Tomeasure the actualmemory usage due
to the storage of BOSS transformations, we conducted an experiment using k = 1 on
the longest UCR dataset HandOutlines (n = 1000, � = 2700) and on 131k instances
(same amount used in Fig. 3) of SITS dataset (see Sect. 4.2). We found that the
HandOutlines uses 36.9 GB and SITS uses 49.8 GB of memory. Thus, our decision to
precompute BOSS transformations at forest level is due to the following reasons: (1)
memory usage is reasonable compared to the computational overhead of transforming
at tree or node level, (2) a pool of transformations at the forest level will allow any
tree to select any of the t transformations, which helps to improve diversity of the
ensemble, whereas, if using, for example, one random BOSS transformation per tree,
each tree is restricted to learn from one (or a less diverse pool, if using more than one)
transformation.

5 Conclusions

We have introduced TS-CHIEF, which is a scalable and highly accurate algorithm for
TSC. We have shown that TS-CHIEF makes the most of the quasi-linear scalability of
trees relative to quantity of data, together with the last decade of research into deriving
accurate representations of time series. Our experiments carried out on 85 datasets
show that our algorithm reaches state-of-the-art accuracy that rivals HIVE-COTE, an
algorithm which cannot be used in many applications because of its computational
complexity.

We showed that on an application for land-cover mapping, TS-CHIEF is able to
learn a model from 130,000 time series in 2 days, whereas it takes HIVE-COTE 8
days to learn from only 1500 time series—a quantity of data from which TS-CHIEF
learns in 13min. TS-CHIEF offers a general framework for time series classification.
We believe that researchers will find it easy to integrate novel transformations and
similarity measures and apply them at scale.

We conclude by highlighting possible improvements. This includes improving the
tradeoff between computation time and memory footprint, incorporating information
fromdifferent types of potential splitters, aswell as finding an automaticway to balance
the number of candidate splitters considered for each type (possibly in a manner that
is adaptive to the dataset). Furthermore, future research on TS-CHIEF could extend it
to multivariate time series and datasets with variable-length time series.

Supplementarymaterial

To ensure reproducibility, a multi-threaded version of this algorithm implemented in
Java and the experimental results have been made available in the github repository
https://github.com/dotnet54/TS-CHIEF.
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Appendix

See Tables 3 and 4.

Table 3 Complexities of the methods mentioned in Sect. 2

Method Train complexity Test complexity Comments

2.1 Similarity-based

1-NN DTW (CV) O(n2 · �3) O(n · � · w) Bagnall et al. (2017), CV:
cross-validating all window
sizes without using lower
bounds

EE O(n2 · �2) O(n · �2) Lines and Bagnall (2015) and
Bagnall et al. (2017,
Table 1) (EE cross-validates
100 parameters)

PF O(k · n · log(n) · Ce · c · �2) O(k · log(n) · c · �2) Lucas et al. (2019)

2.2 Interval-based

RISE O(k · n · log(n) · �2) O(k · log(n) · �2)# Lines et al. (2018)

TSF O(k · n · log(n) · �) O(k · log(n) · �2)# Bagnall et al. (2017, Table 1)

TSBF O(k · n · log(n) · � · R) * Bagnall et al. (2017, Table 1)

LPS O(k · n · log(n) · � · R) * Bagnall et al. (2017, Table 1)

2.3 Shapelet-based

ST O(n2 · �4) * Hills et al. (2014). Uses a
combination of 8 general
purpose classifiers to
classify

LS O(n2 · �2 · e · φ) * Bagnall et al. (2017, Table 1)

FS O(n · �2) * Rakthanmanon et al. (2013)

GRSF O(n2 · �2 · log(n�2)) * Karlsson et al. (2016),
amortized training time
complexity
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Table 3 continued

Method Train complexity Test complexity Comments

2.4 Dictionary-based

BOSS O(n2 · �2) O(n · �) Schäfer (2015, Section 6)

BoP O(n · �(n − w)) * Bagnall et al. (2017, Table 1)

SAX-VSM O(n · �(n − w)) * Bagnall et al. (2017, Table 1)

BOSS-VS O(n · �
3
2 ) O(n) Schäfer (2016, Table 1)

WEASEL O(min(n�2, c(2 f ) · n)) * Schäfer and Leser (2017),
high space complexity

2.5 Combinations of Ensembles

FLAT-COTE Bounded by ST Bounded by EE Bounded by the slowest
algorithm

HIVE-COTE Bounded by ST Bounded by EE Bounded by the slowest
algorithm

2.6 Deep Learning

FCN * *

ResNet * *

For tree-basedmethods, we present the average case complexity. Parameters used in this table are: n training
size, � series length, c no. classes, w window size, k number of trees, Ce no. candidate splits, e max. no.
iterations, φ shapelet scale, f SFA word length, R no. of subseries
# Indicates that the information is not explicitly stated in the associated paper, but we derived the complexity
based on our knowledge of the algorithm
*Indicates that the information is not explicitly stated in the associated paper

Table 4 Accuracy of leading TSC classifiers on 85 UCR datasets

Dataset DTW BOSS ST PF RN FCT HCT CHIEF

Adiac 60.87 76.47 78.26 73.40 82.89 79.03 81.07 79.80

ArrHead 80.00 83.43 73.71 87.54 84.46 81.14 86.29 83.27

Beef 66.67 80.00 90.00 72.00 75.33 86.67 93.33 70.61

BeetleFly 65.00 90.00 90.00 87.50 85.00 80.00 95.00 91.36

BirdChi 70.00 95.00 80.00 86.50 88.50 90.00 85.00 90.91

CBF 99.44 99.78 97.44 99.33 99.50 99.56 99.89 99.79

Car 76.67 83.33 91.67 84.67 92.50 90.00 86.67 85.45

ChConc 65.00 66.09 69.97 63.39 84.36 72.71 71.20 71.67

CinCECGT 93.04 88.70 95.43 93.43 82.61 99.49 99.64 98.32

Coffee 100.0 100.0 96.43 100.0 100.0 100.0 100.0 100.0

Comp 62.40 75.60 73.60 64.44 81.48 74.00 76.00 70.51

CricketX 77.95 73.59 77.18 80.21 79.13 80.77 82.31 81.38

CricketY 75.64 75.38 77.95 79.38 80.33 82.56 84.87 80.19
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Table 4 continued

Dataset DTW BOSS ST PF RN FCT HCT CHIEF

CricketZ 73.59 74.62 78.72 80.10 81.15 81.54 83.08 83.40

DiaSzRed 93.46 93.14 92.48 96.57 30.13 92.81 94.12 97.30

DiPhOAG 62.59 74.82 76.98 73.09 71.65 74.82 76.26 74.62

DiPhOC 72.46 72.83 77.54 79.28 77.10 76.09 77.17 78.23

DiPhTW 63.31 67.63 66.19 65.97 66.47 69.78 68.35 67.04

ECG200 88.00 87.00 83.00 90.90 87.40 88.00 85.00 86.18

ECG5000 92.51 94.13 94.38 93.65 93.42 94.60 94.62 94.54

ECG5D 79.67 100.0 98.37 84.92 97.48 99.88 100.0 100.0

Earthqua 72.66 74.82 74.10 75.40 71.15 74.82 74.82 74.82

ElectDev 63.08 79.92 74.70 70.60 72.91 71.33 77.03 75.53

FaceAll 80.77 78.17 77.87 89.38 83.88 91.78 80.30 84.14

FaceFour 89.77 100.0 85.23 97.39 95.45 89.77 95.45 100.0

FacesUCR 90.78 95.71 90.59 94.59 95.47 94.24 96.29 96.63

50Words 76.48 70.55 70.55 83.14 73.96 79.78 80.88 84.50

Fish 83.43 98.86 98.86 93.49 97.94 98.29 98.86 99.43

FordA 66.52 92.95 97.12 85.46 92.05 95.68 96.44 94.10

FordB 59.88 71.11 80.74 71.49 91.31 80.37 82.35 82.96

GunPoint 91.33 100.0 100.0 99.73 99.07 100.0 100.0 100.0

Ham 60.00 66.67 68.57 66.00 75.71 64.76 66.67 71.52

HandOut 87.84 90.27 93.24 92.14 91.11 91.89 93.24 93.22

Haptics 41.56 46.10 52.27 44.45 51.88 52.27 51.95 51.68

Herring 53.12 54.69 67.19 57.97 61.88 62.50 68.75 58.81

InlSkate 38.73 51.64 37.27 54.18 37.31 49.45 50.00 52.69

InWSnd 57.37 52.32 62.68 61.87 50.65 65.25 65.51 64.29

ItPwDem 95.53 90.86 94.75 96.71 96.30 96.11 96.31 97.06

LKitApp 79.47 76.53 85.87 78.19 89.97 84.53 86.40 80.68

Light2 86.89 83.61 73.77 86.56 77.05 86.89 81.97 74.81

Light7 71.23 68.49 72.60 82.19 84.52 80.82 73.97 76.34

Mallat 91.43 93.82 96.42 95.76 97.16 95.39 96.20 97.50

Meat 93.33 90.00 85.00 93.33 96.83 91.67 93.33 88.79

MdImg 74.74 71.84 66.97 75.82 77.03 75.79 77.76 79.58

MdPhOAG 51.95 54.55 64.29 56.23 56.88 63.64 59.74 58.32

MdPhOC 76.63 78.01 79.38 83.64 80.89 80.41 83.16 85.35

MdPhTW 50.65 54.55 51.95 52.92 48.44 57.14 57.14 55.02

MtStrain 86.58 87.86 89.70 90.24 92.76 93.69 93.29 94.75

NoECGT1 82.90 83.82 94.96 90.66 94.54 93.13 93.03 91.13

NoECGT2 87.02 90.08 95.11 93.99 94.61 94.55 94.45 94.50
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Table 4 continued

Dataset DTW BOSS ST PF RN FCT HCT CHIEF

OSULeaf 59.92 95.45 96.69 82.73 97.85 96.69 97.93 99.14

OliveOil 86.67 86.67 90.00 86.67 83.00 90.00 90.00 88.79

PhalanOC 76.11 77.16 76.34 82.35 83.90 77.04 80.65 84.50

Phoneme 22.68 26.48 32.07 32.01 33.43 34.92 38.24 36.91

Plane 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PrxPhOAG 78.54 83.41 84.39 84.63 85.32 85.37 85.85 84.97

PrxPhOC 79.04 84.88 88.32 87.32 92.13 86.94 87.97 88.82

PrxPhTW 76.10 80.00 80.49 77.90 78.05 78.05 81.46 81.86

RefDev 44.00 49.87 58.13 53.23 52.53 54.67 55.73 55.83

ScrType 41.07 46.40 52.00 45.52 62.16 54.67 58.93 50.81

ShpSim 69.44 100.0 95.56 77.61 77.94 96.11 100.0 100.0

ShpAll 80.17 90.83 84.17 88.58 92.13 89.17 90.50 93.00

SKitApp 67.20 72.53 79.20 74.43 78.61 77.60 85.33 82.21

SonyRS1 69.55 63.23 84.36 84.58 95.81 84.53 76.54 82.64

SonyRS2 85.94 85.94 93.39 89.63 97.78 95.17 92.76 92.48

StarCurv 89.83 97.78 97.85 98.13 97.18 97.96 98.15 98.24

Strwbe 94.59 97.57 96.22 96.84 98.05 95.14 97.03 96.63

SwdLeaf 84.64 92.16 92.80 94.66 95.63 95.52 95.36 96.55

Symbols 93.77 96.68 88.24 96.16 90.64 96.38 97.39 97.66

SynCtl 98.33 96.67 98.33 99.53 99.83 100.0 99.67 99.79

ToeSeg1 75.00 93.86 96.49 92.46 96.27 97.37 98.25 96.53

ToeSeg2 90.77 96.15 90.77 86.23 90.62 91.54 95.38 95.38

Trace 99.00 100.0 100.00 100.0 100.00 100.0 100.0 100.0

2LeadECG 86.83 98.07 99.74 98.86 100.0 99.30 99.65 99.46

2Pttrns 99.85 99.30 95.50 99.96 99.99 100.0 100.0 100.0

UWaAll 96.23 93.89 94.22 97.23 85.95 96.43 96.85 96.89

UWaX 77.44 76.21 80.29 82.86 78.05 82.19 83.98 84.11

UWaY 70.18 68.51 73.03 76.15 67.01 75.85 76.55 77.23

UWaZ 67.50 69.49 74.85 76.40 75.01 75.04 78.31 78.44

Wafer 99.59 99.48 100.0 99.55 99.86 99.98 99.94 99.91

Wine 61.11 74.07 79.63 56.85 74.44 64.81 77.78 89.06

WordSyn 74.92 63.79 57.05 77.87 62.24 75.71 73.82 78.74

Worms 53.25 55.84 74.03 71.82 79.09 62.34 55.84 80.17

Worms2C 58.44 83.12 83.12 78.44 74.68 80.52 77.92 81.58

Yoga 84.30 91.83 81.77 87.86 87.02 87.67 91.77 83.47

Avg.Rank 6.982 5.400 4.806 4.818 4.300 3.818 2.941 2.935

No. of times ranked 1 3 12 14 9 18 12 23 31

The classifiers are 1-Nearest Neighbour with DTW (labelled DTW), BOSS, PF (Proximity Forest), ST
(Shapelet Transform), Residual Neural Network (RN), FLAT-COTE (FCT), HIVE-COTE (HCT), and TS-
CHIEF (CHIEF). The last two rows show the number of wins (no. of times ranked at 1) and average ranking
of accuracy (Refer to Fig. 1)
Bold values indicate classifiers with the highest mean accuracy for each dataset over 10 runs
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4.2 Contributions

Contributions made in this chapter are:

1. TS-CHIEF: a novel forest algorithm for time series classification that leverages

decades of research on developing various techniques for time series classification,

and combines them in a unique way inside nodes of purpose built decision trees.

2. TS-CHIEF achieves state-of-the-art accuracy that rivals HIVE-COTE (alpha)

within a fraction of its runtime. At the time of publication, TS-CHIEF and

HIVE-COTE were considered as the two most accurate TSC algorithms in the

field. Since publication, the main results of TS-CHIEF have been independently

replicated [38], and TS-CHIEF is still independently assessed as one of the four

state-of-the-art TSC algorithms [7, 94].

3. TS-CHIEF was the first algorithm that is able to learn a model from 130,000 SITS

time series in 2 days with the demonstrated level of accuracy, whereas it takes

HIVE-COTE (alpha) 8 days to learn from only 1500 SITS time series—a quantity

of data from which TS-CHIEF learns in 13 minutes.

4. TS-CHIEF offers a general framework to combine multiple TSC techniques into

one tree-based algorithm. It uses a simple, yet flexible, method to evaluate mul-

tiple candidate splits using Gini Index that was introduced in Proximity Forest

in chapter 3. TS-CHIEF demonstrates that this technique can be used effectively

to combine various transformations or representations of data at the node level of

trees to select appropriate partitioning functions. As new techniques are developed

for TSC, new types of splitters can be added to this general framework to extend

TS-CHIEF further. This strategy to combine various data representation at the

node level is very different and unique compared to the combination method used

in HIVE-COTE, which simply combines independent algorithms using a voting

technique.



Chapter 5

Multivariate Elastic Similarity

Measures

5.1 Introduction

In this chapter I explore multivariate time series classification using elastic similarity

measures. I present a paper that extends to multivariate time series the univariate

similarity measures used in Elastic Ensemble and Proximity Forest. The presented

paper is currently under review for a journal publication.

I include the submitted version of the paper without textual modifications except the

addition of Section 4.3.2 and 4.3.5 for some further clarifications. I reiterate the contri-

butions of this paper at the end of the chapter in Section 5.2.

• Based on a submitted journal paper: Shifaz, A., Pelletier, C., Petitjean, F.

and Webb, G.I., 2021. Elastic Similarity Measures for Multivariate Time Series

Classification. arXiv preprint arXiv:2102.10231.
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1 Introduction

Elastic similarity measures such as the well known Dynamic Time Warping
(DTW) [1] are a key tool in many forms of time series analytics. Elastic sim-
ilarity measures can align temporal misalignments between two series while
computing the similarity between them. Examples of their application include
clustering [2, 3, 4], classification [5, 6], anomaly detection [7, 8], indexing [9],
subsequence search [10] and segmentation [11].

While numerous elastic similarity measures have been developed [6, 12, 13],
most of these measures have been defined only for univariate time series. Since
many time series analysis tasks involve multivariate time series, it is crucial to
extend these elastic measures to the multivariate case.

This paper extends seven univariate elastic similarity measures to the mul-
tivariate case. This extension is sometimes non-trivial. We demonstrate that
each measure provides more accurate nearest neighbor classification than any
alternative for at least one dataset. This demonstrates the importance of hav-
ing a range of different elastic measures available for multivariate time series.

One elastic measure that has previously been extended to the multivariate
case is DTW [14]. That work identified two key strategies for such extension.
The independent strategy applies the univariate measure to each dimension
and then sums the resulting distances. The dependent strategy treats the mul-
tivariate series as a single series in which each time step has a single multi-
dimensional point. DTW is then applied using Euclidean distances between
the multidimensional points of the two series. It was shown that each of these
strategies outperformed the other on some tasks.

We develop methods for applying these two strategies to seven further
key univariate similarity measures. One of the significant outcomes is that we
demonstrate that there are some tasks for which the independent strategy is
superior across all measures and others for which the dependent strategy is
better. This establishes a fundamental relationship between the two strategies
and different tasks, countering the possibility that differing performance for
the two strategies when applied to DTW might have been coincidental.

To give an example of when these two strategies could be useful, con-
sider two real-world example datasets from the UEA multivariate time se-
ries archive [15]: Handwriting records movements of a hand writing letters by
recording X, Y and Z coordinates from an accelerometer. PEMS-SF records
traffic congestion for highways using multiple sensors at different locations. In
the first task it is necessary to consider movement in each dimension simul-
taneously. For example, letter ‘N’ is indicated by negligible X coupled with
positive Y , followed by positive X coupled with negative Y , followed by negli-
gible X coupled with positive Y . In the second dataset, each sensor might be
expected to contribute to the global assessment of congestion without strong
interdependencies. This is exactly what we observe in our empirical study
presented in Section 5.

We choose these seven specific measures in this study because our previous
research is mainly focused on the classification task and these measures have
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been used in many well known univariate similarity-based classifiers such as
Elastic Ensemble [5], Proximity Forest [16], and two state-of-the-art univariate
time series classifier HIVE-COTEv1 [17] and TS-CHIEF [18].

The major contributions of this paper can be summarized as follows:

– We extend seven commonly used univariate elastic similarity measures to
the multivariate case by adopting two strategies — using multiple dimen-
sions independently and dependently. Univariate versions of these seven
measures have been widely used in time series analysis tasks such as clas-
sification, clustering, indexing, segmentation, anomaly detection and sub-
sequence search. Therefore, we hope that our multivariate versions would
be of great benefit to the time series analysis community. This extension
is straightforward in several cases, but non-trivial for some cases.

– We demonstrate the utility of these measures by focusing on the multivari-
ate nearest neighbor classification problem. We compare the classification
performance of these measures on 23 datasets from the University of East
Anglia (UEA) multivariate archive. We show that each measure outper-
forms all others on at least one task (or ties with the highest performing
measures in two cases), demonstrating the value of having a suite of alter-
natives multivariate elastic measures.

– We demonstrate that there are some classification tasks for which the in-
dependent strategy is superior across all measures and others for which the
dependent strategy is better. It was previously demonstrated for DTW that
each approach sometimes substantially outperformed the other [14]. How-
ever, it has not previously been established whether this is a fundamental
property of the tasks per se. In this paper we provide evidence that in at
least some cases there is a fundamental connection between classification
tasks and whether they are best addressed by considering all variables at
each time step in conjunction or by considering each variable independently
of the others.

We organize the rest of the paper as follows. Section 2 presents key defini-
tions. Section 3 provides a brief review of existing methods. Section 4 describes
our new multivariate similarity measures. Section 5 presents multivariate time
series classification experiments on the UEA multivariate time series archive,
and includes discussion of the implications of the results. Finally, we draw
conclusions in Section 6, with suggestions for future work.

2 Definitions

We here present key notation and definitions.
A time series T of length L is an ordered sequence of L time-value pairs

T = 〈(t1,x1), · · · , (tL,xL)〉, where ti is the timestamp at sequence index i,
i ∈ {1, · · · , L}, and xi is a D-dimensional point representing observations of
D real-valued variables or features at timestamp ti. Each time point xi ∈ RD
is defined by {x1i , · · · , xdi , · · · , xDi }. Usually, timestamps ti are assumed to
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be equidistant, and thus omitted, which results in a simpler representation
where T = 〈x1, · · · ,xL〉.

A univariate (or single-dimensional) time series is a special case where a
single variable is observed (D = 1). Therefore, xi is a scalar, and consequently,
T = 〈x1, · · · , xL〉.

A labeled time series dataset S consists of N labeled time series indexed
by n, where n ∈ {1, · · · , N}. Each time series Tn in S is associated with a
label yn ∈ {1, · · · , c}, where c is the number of classes.

A similarity measure computes a real value that quantifies similarity be-
tween two sets of values. For time series Q and C, similarity measure M is
defined as

M(Q,C)→ R (1)

A similarity measure M is a metric if it has the following properties:

1. Non-negativity: M(Q,C) ≥ 0,
2. Identity: M(Q,C) = 0, if and only if Q = C,
3. Symmetry: D(Q,C) = D(C,Q),
4. Triangle Inequality: D(Q,C) ≤ D(Q,T )+D(T,C) for any time series Q,C

and T .

All similarity measures considered in this work satisfy 1, 2 and 3.
In a Time Series Classification (TSC) task, a time series classifier is trained

on a labeled time series dataset, and then used to predict labels of unlabeled
time series. The classifier is a predictive mapping function that maps from the
space of input variables to discrete class labels.

In this paper, to perform TSC tasks, we use 1-nearest neighbor (1-NN)
classifiers, which use time series specific similarity measures to compute the
nearest neighbors between each time series.

3 Time Series Classification

3.1 Univariate TSC

A comprehensive review of the most common univariate TSC methods devel-
oped prior to 2017 can be found in [6]. Here we summarize key univariate TSC
methods using a traditionally used method of categorization as follows:

– Similarity-based methods compare whole time series using similarity mea-
sures, usually in conjunction with 1-NN classifiers. Particularly, 1-NN with
DTW [1, 19] was long considered as the de facto standard for univariate
TSC. More accurate similarity-based methods combine multiple measures,
including 1-NN-based ensemble Elastic Ensemble (EE) [5], and tree-based
ensemble Proximity Forest (PF) [16]. In Section 4 we will explore more
details of several similarity measures used in TSC.
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– Interval-based methods use summary statistics relating to subseries in con-
junction with location information as discriminatory features. Examples in-
clude Time Series Forest (TSF) [20], Random Interval Spectral Ensemble
(RISE) [17], and Canonical Interval Forest (CIF) [21].

– Shapelet-based methods extract or learn a set of discriminative subseries
for each class which are then used as search keys for the particular classes.
The presence, absence or distance of a shapelet is used as discriminative
information for classification. Examples include Shapelet Transform (ST)
[22] and Generalized Random Shapelet Forest (gRSF) [23].

– Dictionary-based methods transform time series into a bag-of-word model.
The series is either discretized in time domain such as in Bag of Pat-
terns (BoP) [24] or it is transformed into the frequency domain such as in
Bag-of-SFA-Symbols (BOSS) [25], and Word eXtrAction for time SEries
cLassification (WEASEL) [26]. Multiple Representation Sequence Learner
(MrSEQL) [27] is another recent dictionary-based classifier, which is more
accurate than WEASEL but uses less computational resources.

– Other Transformation-based methods transform the time series using a
transformation function and then use a general purpose classifier. A no-
table example is RandOm Convolutional KErnel Transform (ROCKET)
[28] which uses random convolutions to transform the data, and then uses
logistic regression for classification.

– Deep-learning methods can be divided into two main types of architec-
tures: (1) based on recurrent neural networks [29], or (2) based on tem-
poral convolutions, such as Residual Neural Network (ResNet) [30] and
InceptionTime [31]. A recent review of deep learning methods shows that
architectures that use temporal convolutions show higher accuracy [32].

– Combinations of Methods combine multiple methods to form ensem-
bles. Examples include HIVE-COTE (Hierarchical Vote Collective of
Transformation-based Ensembles) [17], which ensembles EE, ST, RISE and
BOSS, and TS-CHIEF (Time Series Combination of Heterogeneous and In-
tegrated Embeddings Forest) [18], which is a tree-based ensemble where the
tree nodes use similarity, dictionary or interval-based splitters.

Currently, HIVE-COTE, TS-CHIEF and ROCKET are considered to be
state-of-the-art classifiers for TSC [33]. While all three methods are competi-
tive in accuracy (i.e. statistically indistinguishable), TS-CHIEF leads in terms
of accuracy and ROCKET leads in terms of speed.

We also note that the latest version of HIVE-COTE, which does not include
EE, called HIVE-COTE 1.0, has significantly improved its speed, but is still
behind on accuracy with respect to ROCKET and TS-CHIEF [33].

3.2 Multivariate TSC

Research into multivariate TSC has lagged behind univariate research. A re-
cent paper [34] reviews several methods used for multivariate TSC and com-
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pares their performance on the UEA multivariate time series archive [15]. Here,
we present a short summary of multivariate methods:

– Similarity-based Multivariate similarity measures can be used with 1-
nearest neighbor for classification. DTW has previously been extended
to the multivariate case using two key strategies [14]. The independent
strategy applies the univariate measure to each dimension and then sums
the resulting distances. The dependent strategy treats each time step as
a multi-dimensional point. DTW is then applied on the Euclidean dis-
tances between these multidimensional points. Figure 1 illustrates these

Q1

C1

Q2

C2

DTWI  DTWD  

Q1

Q2

C1

C2

q1

q10

C10
C1

multivariate point q 
at index 10

Fig. 1 Independent DTW (DTWI , left) and dependent DTW (DTWD, right). Dimension
1 in series Q and C is shown in blue, and the dimension 2 is shown in green.

approaches and we present definitions in Section 4.
– Interval-based methods include RISE [17], TSF [20], and the recently in-

troduced CIF [21]. They extract intervals from each dimension separately.
CIF has shown promising results for multivariate classification [34].

– Shapelet-based methods include gRSF [23] and time contracted Shapelet
Transform (STC) [33]. According to a the review [34], STC is the current
most accurate multivariate method that uses shapelets (which is ranked
below ResNet) [34].

– Dictionary-based methods include WEASEL with a Multivariate Unsuper-
vised Symbols and dErivatives (MUSE) (a.k.a WEASEL+MUSE, or sim-
ply MUSE) [35] and time contracted Bag-of-SFA-Symbols (CBOSS) [36].

– Other Transformation-based methods include an extension of ROCKET to
the multivariate case, implemented in the sktime library [37]. It combines
information from multiple dimensions using small subsets of dimensions.

– Combinations of Methods include a multivariate version of HIVE-COTE
(v1.0) which combines STC, TSF, CBOSS, and RISE [33], applying each
constituent algorithm to each dimension separately.

– Deep-learning-based methods that directly support multivariate series in-
clude Time Series Attentional Prototype Network (TapNet) [38], ResNet
and InceptionTime.
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To give an overview of the review, Ruiz et. al. compared 12 classifiers on 20
UEA multivariate datasets with equal length that completed in a reasonable
time. They found that the most accurate multivariate TSC algorithms are
ROCKET, InceptionTime, MUSE, CIF, HIVE-COTE and MrSEQL in that
order [34, Figure 12a].

4 Similarity Measures

In this section we present the proposed similarity measures. For this study, we
extend to the multivariate case the set of univariate similarity measures used
in EE and PF (and thus TS-CHIEF and some versions of HIVE-COTE).

The independent strategy proposed by [14] simply sums over the results of
applying DTW separately to each dimension. For completeness we propose to
extend this idea to allowing any p-norm. In this case, the previous approach
extends directly to any univariate measure as follows.

Definition 1 Independent Measures
For any univariate measure φ(Q1, C1)→ R and multivariate series Q and

C, an independent multivariate extension of φ is defined by,

Ind(φ,Q,C, p) =

(
D∑

d=1

∣∣φ(Qd, Cd)
∣∣p
)1/p

(2)

We compute the distance between Q and C separately for each dimension,
and then take the p-norm of the results. Here, Qd (or Cd) represents the
univariate time series of dimension d such that Qd =< qd1 , · · · , qdL > (or Cd =<
cd1, · · · , cdL >). The parameter p is set to 1 in [14].

For consistency with previous work, we assume a 1-norm unless otherwise
specified. For ease of comprehension, we indicate an independent extension
of a univariate measure by adding the subscript I. Hence, DTWI(Q,C) =
Ind(DTW,Q,C, 1), WDTWI(Q,C) = Ind(WDTW,Q,C, 1) and so forth.

However, in most cases it requires more than such a simple formulation
to derive a dependent extension, and hence we below introduce each of the
univariate measures together with our proposed dependent variant.

4.1 Lp Distance (Lp)

4.1.1 Univariate Lp Distance

The simplest way to calculate similarity between two time series is to use Lp
distance, also known as the Minkowski distance.

Let us denote by Q and C two univariate (D = 1) time series of length
L where qi and ci are scalar values at time point i from the two time series.
Equation 3 formulates the Lp distance between Q and C.
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Lp(Q,C) =

(
L∑

i

|qi − ci|p
)1/p

(3)

The parameter p is the order of the distance. The L1 (Manhattan distance)
and L2 (Euclidean distance) distances are widely used.

In the context of TSC, Lp distances are of limited use because they cannot
align two series that are misaligned in the time dimension, since they compute
one-to-one differences between corresponding points only.

For example, in an electrocardiogram (ECG) signal, two measurements
from a patient at different times may produce slightly different time series
which belong to the same class (e.g certain heart condition). Ideally, if they
belong to the same class, an effective similarity measure should account for
such “misalignments” in the time axis, while capturing the similarity.

Elastic similarity measures such as DTW tackle this issue. Elastic similarity
measures are designed to compensate for temporal misalignments in time series
that might be due to stretched, shrunken or misaligned subsequences. From
Section 4.2 to 4.6 we will present various elastic similarity measures.

4.1.2 Multivariate Lp Distance

We here show that Independent Lp distance (LpI) and Dependent Lp distance
(LpD) are identical.

Definition 2 Independent Lp Distance (LpI)
In this case, we simply compute the Lp distance between Q and C sepa-

rately for each dimension, and then take the p-norm of the results.

LpI(Q,C) =

(
D∑

d=1

∣∣Lp(Qd, Cd)
∣∣p
)1/p

=

(
D∑

d=1

L∑

i=1

∣∣qdi − cdi
∣∣p
)1/p

(4)

Definition 3 Dependent Lp Distance (LpD)
In this case, we compute the Lp distance between each multidimensional

point (qi ∈ RD and ci ∈ RD, and take the p-norm of the results.

LpD(Q,C) =

(
L∑

i=1

|Lp(qi − ci)|p
)1/p

=

(
L∑

i=1

D∑

d=1

∣∣qdi − cdi
∣∣p
)1/p

(5)
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Consequently both the independent and the dependent versions of the non-
elastic Lp distance will produce the same result. However, as we shall see in
the following sections, for elastic similarity measures the two strategies are
substantially different.

4.2 Dynamic Time Warping (DTW) and Related Measures

4.2.1 Univariate DTW

The most widely used elastic similarity measure is DTW [1]. By contrast to
measures such as the Lp distance, DTW is an elastic similarity measure, which
allows one-to-many alignment (“warping”) of points between two time series.
For many years, 1-NN with DTW was considered as the traditional benchmark
algorithm for TSC [39].

DTW is efficiently solved using a dynamic programming technique. Let
∆DTW be an L-by-L dynamic programming cost matrix in which the element
(i, j) of the matrix is defined as the squared Euclidean distance between two
corresponding points qi and cj – i.e. ∆DTW (i, j) = (qi−cj)2 and the minimum
of the cumulative distances of the previous points. Equation 6 defines element
(i, j) of the cost matrix as follows:

∆DTW (i, j) = (qi − cj)
2 + min




∆DTW (i− 1, j − 1) if i, j > 1
∆DTW (i, j − 1) if j > 1
∆DTW (i− 1, j) if i > 1.

(6)

The cost matrix represents the alignment of the two series as according to
the DTW algorithm. DTW between two seriesQ and C is the accumulated cost
in the last element of the cost matrix (i.e. i, j = L ) as defined in Equation 7:

DTW (Q,C) = ∆DTW (L,L). (7)

DTW has a parameter called “window size” (w), which helps to prevent
pathological warpings by constraining the maximum allowed warping distance.
For example, when w = 0, DTW produces a one-to-one alignment, which is
equivalent to the Euclidean distance. A larger warping window allows one-
to-many alignments where points from one series can match points from the
other series over longer time frames. Therefore, w controls the elasticity of
the similarity measure. In this paper, we use DTW to refer to DTW a cross-
validated window parameter and DTWF to refer to DTW with full window.

Different methods have been used to select the parameter w. In some meth-
ods, such as EE, and HIVE-COTE, w is selected using leave-one-out cross-
validation. Some algorithms select the window size randomly (e.g. PF and
TS-CHIEF select window sizes from the uniform distribution U(0, L/4)).

Parameter w also improves the computational efficiency, since in most
cases, the ideal w is much less than the length of the series [40]. When w
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is small, DTW runs relatively fast, especially with lower bounding, and early
abandoning techniques [41, 42, 43, 44]. Time complexity to calculate DTW
with a warping window is O(L · w), instead of O(L2) for the full DTW.

4.2.2 Dependent Multivariate DTW

Definition 4 Dependent DTW (DTWD)
Dependent DTW (DTWD) uses all dimensions together when computing

the point-wise distance between each point in the two time series. In this
method, for each point in the series, DTW is allowed to warp across the di-
mensions.

In this case, the squared Euclidean distance between two univariate points
– (qi − cj)2 – in Equation 6 is replaced with the L2-norm computed between
the two multivariate points qi and cj as in Equation 8.

L2(qi, cj)
2 =

D∑

d=1

(qdi − cdj )2 (8)

4.2.3 Derivative DTW (DDTW)

Derivative DTW (DDTW) is a variation of DTW, which computes DTW on
the first derivatives of time series. Keogh et. al. [45] developed this version to
mitigate some pathological warpings, particularly, cases where DTW tries to
explain variability in the time series values by warping the time-axis, and cases
where DTW misaligns features in one series which are higher or lower than its
corresponding features in the other series. The derivative transformation of a
univariate time point q′i is defined as:

q′i =
(qi − qi−1 + (qi+1 − qi−1)/2)

2
(9)

Note that q′i is not defined for the first and last element of the time series.
Once the two series have been transformed, DTW is computed as in Equa-
tion 7.

Multivariate versions of DDTW are very straightforward to implement. We
calculate the derivatives separately for each dimension, and then use Equations
2 and 8 to compute from the derivatives independent DDTW (DDTWI) and
dependent DDTW (DDTWD), respectively.

4.2.4 Weighted DTW (WDTW)

Weighted DTW (WDTW) is another variation of DTW, proposed by [46],
which uses a “soft warping window” in contrast to the fixed warping window
sized used in classic DTW. WDTW penalises large warpings by assigning a
non-linear multiplicative weight w to the warpings using the modified logistic
function in Equation 10:
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weight|i−j| =
weightmax

1 + e−g·((|i−j|−L)/2)
, (10)

where weightmax is the upper bound on the weight (set to 1), L is the series
length and g is the parameter that controls the penalty level for large warpings.
Larger values of g increases the penalty for warping.

When creating the dynamic programming distance matrix ∆WDTW , the
weight penalty weight|i−j| for a warping distance of |i−j| is applied, so that
the (i, j)-th entry in the matrix is ∆WDTW (i, j) = weight|i−j| · (qi − ci)

2.
Therefore, the new equation for WDTW is defined as

∆WDTW (i, j) = weight|i−j| · (qi − cj)2

+min




∆WDTW (i− 1, j − 1) if i, j > 1
∆WDTW (i, j − 1) if j > 1
∆WDTW (i− 1, j) if i > 1.

(11)

WDTW (Q,C) = ∆WDTW (L,L). (12)

Parameter g may be selected using leave-one-out cross-validation as in EE
and HIVE-COTE, or selected randomly as in PF and TS-CHIEF (g ∼ U(0, 1)).

Since WDTW does not use a constrained warping window (i.e. the max-
imum warping distance |i−j| may be as large as L), its time complexity is
O(L2), which is higher than DTW.

4.2.5 Dependent Multivariate WDTW

Definition 5 Dependent WDTW
The dependent version of WDTW simply inserts the weight into DTWD.

We define Dependent WDTW (WDTWD) as,

∆WDTWD
(i, j) = weight|i−j| · L2(qi, cj)

2

+ min




∆WDTWD

(i− 1, j − 1) if i, j > 1
∆WDTWD

(i− 1, j) if j > 1
∆WDTWD

(i, j − 1) if i > 1,

(13)

WDTWD(Q,C) = ∆WDTWD
(L,L). (14)

4.2.6 Weighted Derivative DTW (WDDTW)

The ideas behind DDTW and WDTW may be combined to implement another
measure called Weighted Derivative DTW (WDDTW). This method has also
been traditionally used in some ensemble algorithms [6].

Multivariate versions of WDDTW are also straightforward to implement.
We calculate the derivatives separately for each dimension, and then use Equa-
tions 2 and 14 with them to compute independent WDDTW (WDTW I) and
dependent WDDTW (WDTWD), respectively.
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4.3 Longest Common Subsequence (LCSS)

4.3.1 Univariate LCSS

Longest Common Subsequence (LCSS) distance is based on the edit distance
algorithm, which is used for string matching [47]. In TSC, the LCSS algorithm
is modified to work with real-valued data by adding a threshold ε for real-value
comparisons. Two real-values are considered a match if the difference between
them is less than the threshold ε. A warping window can also be used in
conjunction with the threshold to constrain the degree of local warping.

The unnormalized LCSS distance (LCSSUN ) between Q and C is

∆LCSS(i, j) =





(qi − cj)2 if i = 1, j = 1
1 +∆LCSS(i− 1, j − 1) if |qi − cj | ≤ ε
max

{
∆LCSS(i− 1, j)
∆LCSS(i, j − 1)

otherwise,
(15)

LCSSUN (Q,C) = ∆LCSS(L,L), (16)

In practice, LCSSUN is then normalized based on the series length L.

LCSS(Q,C) = 1− LCSSUN (Q,C)

L
, (17)

LCSS can be used with a window parameter w similar to DTW. With a
window parameter, LCSS has a time complexity of O(L · w). In EE and PF,
the parameter ε is selected from [σ5 , σ], where σ being the standard deviation
of the whole dataset.

4.3.2 Independent Multivariate LCSS

Independent multivariate LCSS uses the Equation 2 and computes the LCSS
for dimensions separately. However, in this case we use a separate ε parameter
for each dimension. We computer the standard deviation σ per dimension
when sampling ε. Sampling e for each dimension can be useful if the data is
not normalized.

4.3.3 Dependent Multivariate LCSS

Definition 6 Dependent LCSS

Dependent LCSS (LCSSD) is similar to Equation 15, except that to com-
pute distance between two multivariate points we use Equation 8 and an ad-
justment is made to the parameter ε (see Section 4.3.4). In this case, parameter
ε is selected using the standard deviation of the whole dataset. This is similar
to the way it was selected in the univariate LCSS, in EE.
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∆LCSSD
(i, j) =





L2(qi, cj)
2 if i = 1, j = 1

1 +∆LCSSD
(i−1, j−1) if L2(qi, cj)

2 ≤ 2 ·D · ε
max

{
∆LCSSD

(i−1, j)
∆LCSSD

(i, j−1)
otherwise,

(18)

LCSSUND(Q,C) = ∆LCSSD
(L,L), (19)

Similar to the univariate case, LCSSUND is then normalized based on the
series length L.

LCSSD(Q,C) = 1− LCSSUND(Q,C)

L
. (20)

4.3.4 Adjusting ε parameter in LCSS

In Equation 18 we multiply ε by 2 times the number of dimensions D, because
the term L2(qi, cj)

2 increases with the number of dimensions and the param-
eter ε (floating point comparison threshold) is independent of the number of
dimensions (compare with the univariate definition in Equation 15).

The adjustment factor 2 · D can be used with a number of assumptions.
First, data should follow a normal distribution. Second, the squared Euclidean
distance (L2(qi, cj)

2) is required rather than the Manhattan distance (L1).
To compensate for the increase in the magnitude of squared Euclidean

distance with respect to the increasing number of dimensions, the adjustment
factor needs to normalize this value to make Equation 18 work similarly to
Equation 15.

Consider two vectors X and Y in D dimension Xi, Yi ∼ N(0, 1) where
∀i ∈ [1, D]. Assume that X and Y are independent and each dimension is
independent as well.

Let another random variable Z = X − Y . By property of the normal
distribution, we have Z ∼ N(0, 2) (as X and Y are independent we can add
both mean and variance, hence N(0 + 0, 1 + 1)).

We are interested in E[Z2]. This follows chi-square distribution, which is
the sum of square of independent normally distributed variables.

However, the chi-square distribution is only if the variance is 1 and here
we have variance of 2 for Z. Let V be another random variable of variance
1. To do so, we divide Z2 by squared standard deviation (i.e. variance 2), so
V = (Z2/2) ∼ χ2(D). Then we have

E[Z2/2] = E[V ] and we know E[V ] = D by property of the chi square
distribution

E[Z2]/2 = D
E[Z2] = 2 ·D
Therefore, if data are normally distributed, (L2)2 distance between points,

with any number of dimensions may be scaled by a factor of 2 · D to make
the values comparable to average magnitude of values in one dimension. For
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this reason we multiply the right hand side (ε) by this factor. Once the left
hand side has been adjusted, it may be compared with ε similarly as in the
univariate LCSS definition.

We found that this adjustment works for the datasets we tested. In prac-
tice, if the data distribution differs substantially from the normal distribution,
this adjustment factor may need to be revised, hence further investigation of
methods to adjust the parameter ε is a potential direction for future work.

4.3.5 Other LCSSD Formulations

An early work by Vlachos et al. [48, 49] also presented a way to extend mea-
sures to the multivariate case. They proposed a dependent DTW and LCSS
with the claim that their method can be extended to work with any measure
and any number of dimensions. However our work shows that such extensions
can be non-trivial in some cases, e.g. LCSS and MSM.

Their proposed dependent DTW is similar to Shokoohi et al.’s DTWD

formulation in Equation 8, but their LCSS’s formulation is slightly different
to our LCSS formulation present in Equation 18. Equation 21 defines this
version of LCSS named V lachos LCSSD.

∆V lachos LCSSD
(i, j) =





L2(qi, cj)
2 if i = 1, j = 1

1 +∆LCSSD
(i−1, j−1) if ∀ d ∈ D, |qdi − cdj | < ε

and |i− j| ≤ δ
max

{
∆LCSSD

(i−1, j)
∆LCSSD

(i, j−1)
otherwise,

(21)

Our method treats qi and ci as each being multi-dimensional points, plac-
ing a single constraint on the distance between them, whereas Vlachos et al.
treat the dimensions independently, with separate constraints on each. We
believe that this is more consistent with the spirit of dependent measures.

V lachos LCSSD allows matching values within both data dimensions and
the time dimension, while our LCSSD matches values only in data dimen-
sions. They have an additional parameter δ that controls matching in the time
dimension.

Our method also requires an adjustment to LCSS’s ε parameter as de-
scribed in Section 4.3.4. This may help to cater for unnormalized data, since
V lachos LCSSD use the one ε across all dimensions.

In addition, Vlachos et al. [48, 49] tested their algorithm on 8 trajectory
datasets with only 2 dimensions. Whereas, our work is evaluated on 23 datasets
from the UEA Multivariate Time Series Archive [15] which has a diverse range
of domains and dimensionality.
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4.4 Move-Split-Merge (MSM)

4.4.1 Univariate MSM

Move-Split-Merge (MSM) is introduced by [50]. The goal is to propose a simi-
larity measure that is a metric invariant to translations and robust to temporal
misalignments. Measures such as DTW and LCSS are not metrics because they
fail to satisfy the triangle inequality.

MSM is an edit distance-based similarity measure. Similarity between two
series is computed based on the number and type of edit operations required
to transform one series to the other.

MSM defines three types of edit operations: move, merge and split. The
move operation substitutes one value into another value. The split operation
inserts a copy of the value immediately after itself, and the merge operation
is used to delete a value if it directly follows an identical value.

The cost for a move operation is the pairwise distance between two points,
and the cost of split or merge operation depends on the parameter c.

Formally, MSM is defined as,

∆MSM (i, j) = min




∆MSM (i−1, j−1) + |qi − cj |
∆MSM (i−1, j) + cost(qi, qi−1, cj)
∆MSM (i, j−1) + cost(cj , qi, ci−1),

(22)

MSM(Q,C) = ∆MSM (L,L). (23)

The costs of split and merge operations are defined by Equation 24. In the
univariate case, the algorithm either merges two values or splits a value if the
the value of a point qi is between two adjacent values (qi−1 and cj).

cost(qi−1, qi, cj) = min





c if qi−1 ≤ qi ≤ cj
c if qi−1 ≥ qi ≥ cj
c+min

{
|qi − qi−1|
|qi − cj | otherwise.

(24)

In most algorithms (e.g. EE, PF, HIVE-COTE and TS-CHIEF), the cost
parameter c for MSM is selected from an exponential sequence {10−5, 10−4, 5 ·
10−4, 10−3, 5 · 10−3, · · · , 1} as proposed in [50].

4.4.2 Dependent Multivariate MSM

Definition 7 Dependent MSM
Here we combine Equation 22 and Equation 8. The cost multiv function is

explained in Section 4.4.3, and presented in Algorithm 1.

∆MSMD
(i, j) = min




∆MSMD

(i− 1, j − 1) + L2(qi, cj)
2

∆MSMD
(i− 1, j) + cost multiv(qi,qi−1, cj)

∆MSMD
(i, j − 1) + cost multiv(cj,qi, cj−1)

(25)
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MSMD(Q,C) = ∆MSMD
(L,L) (26)

4.4.3 Cost function for dependent MSM

A nontrivial issue when deriving a dependent variant of MSM is how to trans-
late the concept of one point being between two others.

A naive approach would test whether a point x is between points y and z
in multidimensional space by projecting x onto the hyperplane defined by y
and z. However, this has serious limitations. For an intuitive example, let us
use cities to represent points on a 2-D plane. Assume that we have two query
cities Chicago and Santiago wish to determine which is between New York
and San Francisco. If we use vector projections, and project the position of
Santiago on to the line between New York and San Francisco we will find that
it is between them. Similarly, we will also find that Chicago is between New
York and San Francisco using this method. However, orthogonally Santiago is
extremely far away from both New York and San Francisco, so it would seem
more intuitive to define this function in a way that Chicago is in between New
York and San Francisco, but Santiago is not. Using this intuition we define
the cost function in such a way that a point is considered to be in between
two points only if the point is “inside the hypersphere” defined by the other
two points. Figure 2 illustrates this concept using three points.

We implement this idea in Algorithm 1. First we find the diameter of the
hypersphere in line 1 by computing ||qi−1 − cj||. In line 2 we find the mid
point mid along the line qi−1 and cj. Then we calculate distance to the mid
point using ||mid− qi|| (line 3). Once we have the distance to mid, we check
if this distance is larger than half the diameter. If its larger, then the point qi

is outside the hypersphere, and so we return c (line 5). If distance to mid is
less than half the diameter, then qi is inside the hypersphere, so we check to
which point (either qi−1 or cj it is closest). Then we return c plus the distance
to the closest point as the cost of the edit operation (line 9 to 12).

4.5 Edit Distance with Real Penalty (ERP)

4.5.1 Univariate ERP

Edit Distance with Real Penalty (ERP) [51, 52] is also based on string match-
ing algorithms. In a typical string matching algorithm, two strings, possibly of
different lengths, may be aligned by doing the least number of add, delete or
change operations on the symbols. When aligning two series of symbols, the
authors proposed that the delete operations in one series can be thought of
as adding a special symbol to the other series. Chen et. al. [51] refers to these
added symbols as a “gap” element.
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Fig. 2 Example of checking whether a point is between two other points in 2 dimensions
using a circle. In the first case (left side), the yellow point is considered “in between” blue
and green points. In the second case (right side), the red point is considered to be “not in
between” the green and blue points even though its projection falls between red and blue
points because orthogonally it is outside the circle defined by theses points. This is one way
to adapt the idea of checking if a point is between two other points in the univariate case
(1-dimension) as defined in Equation 24. In Algorithm 1 we use a generalization of this idea
and check if a point is inside a hypersphere in D-dimensions.

Algorithm 1: Cost of checking if a mid point is inside the hypersphere
defined by the other two points

Input: cost multiv(qi,qi−1, cj, c) : three points, and cost parameter c for MSM
Output: cost of operation

1 diameter = ||qi−1 − cj||;
2 mid = (qi−1 + cj)/2;
3 distance to mid = ||mid− qi||;
4 if distance to mid ≤ (diameter/2) then
5 return c;
6 else
7 dist to q prev = ||qi−1 − qi||;
8 dist to c = ||cj − qi||;
9 if dist to q prev < dist to c then

10 return c+ dist to q prev;
11 else
12 return c+ dist to c ;

ERP uses the Euclidean distance between elements when there is no gap,
and a constant penalty when there is a gap. This penalty parameter for a gap
is denoted as g (see Equation 27).

For time series, with real values, similar to the parameter ε in LCSS, a
floating point comparison threshold may be used to determine a match be-
tween two values. This idea was used in a measure called Edit Distance on
Real sequences (EDR) [51]. However, using a threshold breaks the triangle in-
equality. Therefore, the same authors proposed a variant, namely ERP, which
is a measure that follows the triangle inequality.

ERP can also be used with a window parameter w similar to DTW. With
the window parameter, ERP has the same time complexity as DTW. The
parameter g is selected from [σ5 , σ], with σ being the standard deviation of the
training data. Formally, ERP is defined as,
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∆ERP (i, j) = min




∆ERP (i− 1, j − 1) + (qi − cj)2
∆ERP (i− 1, j) + (qi − g)2

∆ERP (i, j − 1) + (cj − g)2
(27)

ERP (Q,C) = ∆ERP (L,L). (28)

4.5.2 Dependent ERP

Definition 8 Dependent ERP
We define Dependent ERP (ERPD) as,

∆ERPD
(i, j) = min




∆ERPD

(i− 1, j − 1) + L2(qi, cj)
2

∆ERPD
(i− 1, j) + L2(qi,g)

∆ERPD
(i, j − 1) + L2(cj,g),

(29)

ERPD(Q,C) = ∆ERPD
(L,L). (30)

In Equation 29, note that the parameter g is a vector which represents
the standard deviation of each dimension separately. This is in contrast to the
univariate case in Equation 27 which uses the standard deviation of the whole
training dataset (parameter g).

In this case, all terms increases proportionally with respect to the increase
in the number of dimensions. So we do not need to adjust for the parameter
g as we adjusted for ε in LCSS in Section 4.3.4.

4.6 Time Warp Edit (TWE)

4.6.1 Univariate TWE

Time Warp Edit (TWE) [53] is a further edit-distance based algorithm adapted
to the time series domain. The goal is to combine an Lp distance based tech-
nique with an edit-distance based algorithm that supports warping in the time
axis, i.e. has some sort of elasticity like DTW, while also being a distance met-
ric (i.e. it respects the triangle inequality). Being a metric helps in time series
indexing, since it speeds up time series retrieval process.

TWE uses three operations named match, deleteA, and deleteB . If there is
a match, Lp distance is used, and if not, a constant penalty λ is added. deleteA
(or deleteB) is used to remove an element from the first (or second) series to
match the second (or first) series. Equations 31, 32 and 33 define TWE and
these three operations, respectively.

∆TWE(i, j) = min




∆TWE(i− 1, j − 1) + γM match
∆TWE(i− 1, j) + γA deleteA
∆TWE(i, j − 1) + γB deleteB

(31)

TWE(Q,C) = ∆TWE(L,L) (32)
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γM = (qi − cj)2 + (qi−1 − cj−1)2 + 2 · ν match
γA = (qi − qi−1)2 + ν + λ deleteA
γB = (cj − cj−1)2 + ν + λ deleteB

(33)

The multiplicative penalty ν1 is called the stiffness parameter. When ν = 0,
TWE becomes more stiff like the Lp distance, and when ν =∞, TWE becomes
less stiff and more elastic like DTW. The second parameter λ is the cost of
performing either a deleteA or deleteB operation.

Following [5, 16, 53], λ is selected from ∪9i=0
i
9 and ν from the exponentially

growing sequence {10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, · · · , 1}, resulting in 100
possible parameterizations.

4.6.2 Dependent TWE

Definition 9 Dependent TWE
Dependent version of TWE follows a similar pattern. We define Dependent

TWE (TWED) as,

∆TWED
(i, j) = min




∆TWED

(i− 1, j − 1) + γM match
∆TWED

(i− 1, j) + γA deleteA
∆TWED

(i, j − 1) + γB deleteB

(34)

TWED(Q,C) = ∆TWED
(L,L). (35)

γM = L2(qi, cj)
2 + L2(qi−1, cj−1)2

+ (2 · ν) · 2 ·D match
γA = L2(qi,qi−1)2 + (ν + λ) · 2 ·D deleteA
γB = L2(cj, cj−1)2 + (ν + λ) · 2 ·D deleteB

(36)

Similar to LCSS, in Dependent TWE, we need to make an adjustment to
the parameters. Once again, we multiply the terms that do not grow with 2·D.

5 Experiments

We conduct experiments to investigate two hypotheses. The first is that there
are different datasets to which each of the new multivariate distance measures
is best suited. The second arises from the observation that there are datasets
for which either the independent or dependent version of DTW are consistently
more accurate than the alternative [14]. However, it is not clear whether this is

1 In the published definition of TWE [53], ν is multiplied with the time difference in
the timestamps of two consecutive time points. We simplified this equation, for clarity, by
assuming that this time difference is always 1 (UEA datasets do not contain the actual
timestamps).
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a result of there being an advantage in treating multivariate series as either a
single series of multivariate points or multiple independent series of univariate
points; or rather due to some other property of the measures.

It is credible that there should be some time series data for which it is
beneficial to treat multiple variables as multivariate points in a single series.
Suppose, for example, that the variables each represent the throughput of
independent parts of a process and the quantity relevant to classification is
aggregate throughput. In this case, the sum of the values at each point is the
relevant quantity. In contrast, if classification relates to a failure in any of
those parts, it seems clear that independent consideration of each is the better
approach.

We seek to assess whether there are multivariate datasets for which each of
dependent and independent analysis are best suited, or whether there are other
reasons, such as their mathematical properties, that underlie the systematic
advantage on specific datasets of either DTWI or DTWD.

We start by describing our experimental setup and the datasets we used.
We then conduct an analysis of similarity measures in the context of TSC
by comparing accuracy measures of independent and dependent versions. We
then conduct a statistical test to determine if there is a difference between
independent and dependent versions of the measures.

5.1 Experimental Setup

We implemented a multi-threaded version of the multivariate similarity mea-
sures in Java. We also release the full source code in the github repository:
https://github.com/dotnet54/multivariate-measures.

In these experiments, for parameterization of the measures, we use leave-
one-out cross-validation of 100 parameters for each similarity measure. We
follow the same setting proposed in [5]. This parameterization is also used in
HIVE-COTE, PF, and TS-CHIEF.

In this study, we use multivariate datasets obtained from https://www.

timeseriesclassification.com. We also use the standard train/test splits
provided in the repository. Out of the available 30 datasets, we use 23 datasets
in this study. Since we focus only on fixed-length datasets, the four variable
length datasets (CharacterTrajectories, InsectWingbeat, JapaneseVowels, and
SpokenArabicDigits) are excluded from this study. We also we omit Eigen-
Worms, MotorImagery and, FaceDetection, which take too long to run the
leave-one-out cross-validation for 100 parameters in a practical time frame.
Table 2 (on page 30) summarizes the characteristics of the 23 fixed length
datasets. Further descriptions of each dataset can be found in [15].

We ran experiments for all measures for both z-normalized and unnormal-
ized datasets. We z-normalized each dataset on a per series, per dimension
basis. We found that the accuracy is higher without further normalization
(note that 4 datasets - ArticularyWordRecognition, Cricket, HandMovement-
Direction, and UWaveGestureLibrary - are already normalized). This agrees
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with a recent paper which conducted a similar experiment using DTWI and
DTWD [34].

However, we note that this does not indicate that not normalizing is always
the optimal solution for all datasets. Sometimes normalization can be useful
when using similarity measures. For example, consider a scenario with two
dimensions temperature (e.g a scale from 0 to 100 degree Celsius) and relative
humidity as a proportion (between 0 and 1). In such a case, temperature will
dominate the result of the similarity calculation, and normalization will help
to compute the similarity with similar scales across the dimensions.

We ran the experiments on a cluster of Intel(R) Xeon(R) CPU E5-2680 v3
@ 2.50 GHz CPUs, using 32-threads. Total time to train 23 datasets with leave-
one-out-cross-validation was about 1648 hours. The two slowest datasets were
PEMS-SF (291 hours) and PhonemeSpectra (1153 hours). The slowest measure
to train was MSMD, which took a total of 801 hours across all datasets.

5.2 Accuracy of Independent Vs Dependent Measures

First we look at the accuracy of each measure used with a 1-NN classifier.
Tables 3 and 4 (on page 31) present the accuracy for independent measures
and dependent measures, respectively. For each dataset, the highest accuracy
is typeset in bold. Of the values reported in Tables 3 and 4, accuracy for
measures other than Euclidean distance (labeled “L2” in the table) and DTW
are newly published results in this paper.

Our first observation is that for every similarity measure there is at least
one dataset for which that measure obtains the highest accuracy. This supports
our first hypothesis, that each measure will have datasets for which it is well
suited.

To compare multiple algorithms over the multiple datasets, first a Fried-
man test is performed to reject the null hypothesis. The null hypothesis is that
there is no significant difference in the mean ranks of the multiple algorithms
(at a statistical significance level α = 0.05). In cases where the null-hypothesis
is rejected, we use the Wilcoxon signed rank test to compare the pair-wise dif-
ference in ranks between algorithms, and then use Holm–Bonferroni’s method
to adjust for family-wise errors [54, 55].

Figure 3 displays mean ranks (on error) between the 20 similarity measures.
Measures on the right side indicate higher rank in accuracy (lower error). We
do not include L2 distance here because the accuracy for independent and
dependent L2 is the same. Since we use Holm–Bonferroni’s correction, there is
not a single “critical difference value” that applies to all pairwise comparisons.
Hence, we refer to these visualisations as “average accuracy ranking diagrams”.

In Figure 3, DTWI , which is to the further right, is the most accurate
measure on the evaluated datasets. DTWI obtained a ranking of 7.326 from
the Wilcoxon test. By contrast, DDTWFD (ranked 14.783) is the least accu-
rate measure on these datasets (suffix “F” is added to the measure name to
denote the use of full window). After Holm–Bonferroni’s correction, computed
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p-values indicate that only the pairs DDTWFD and DTWI , and DDTWFD
and WDTWD, are statistically different from each other. We referred to the
table of p-values because this is difficult to see from the figure since lines for
DTWD, DTWI and WDTWD are very close together. This small number of
significant differences could be because the number of datasets in the study is
small relative to the number of measures compared.
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Fig. 3 Average accuracy ranking diagram showing the ranks of measures on the error rates
(thus more accurate measures are to the right side).

5.3 Are Independent and Dependent Measures Significantly Different?

In this section, we test if there are datasets for which independent or de-
pendent version is always more accurate. We also test if there is a statistically
significant difference between independent and dependent similarity measures.
Answering these questions will help us determine the usefulness of developing
these two variations of the multivariate similarity measures. It will also help
us to construct ensembles of similarity measures with more diversity, that is
expected to perform well in terms of accuracy over a wide variety of datasets.

Figure 4 shows the difference in accuracy between independent and de-
pendent versions of the measures - deeper reddish colours indicate cases where
independent is more accurate (positive on the scale), and deeper bluish colours
indicate cases where dependent is more accurate (negative on the scale). The
datasets are sorted based on average colour values to show contrasting colours
on the two ends. (Dimensions D / length L / number of classes c are given in
the bracket after the dataset name.)

From Figure 4 we observe that there are datasets for which either inde-
pendent or dependent is always more accurate. For example, the independent
versions of all measures are consistently more accurate for datasets PEMS-SF
and Basic Motions (indicated by red colour rows in the heatmap). On the
other hand, we see that Handwriting always wins for the dependent versions
(indicated by the blue colour row).

Recall the example of two datasets described in Section 1: Handwriting
dataset records “X”, “Y” and “Z” coordinates of hand writing letters, and
PEMS-SF dataset records traffic congestion rate of highways using multiple
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dtwf dtw ddtwf ddtw wdtw wddtw lcss msm erp twe

PEMS-SF (963/144/7)
ArticularyWordRecognition (9/144/25)

DuckDuckGeese (1345/270/5)
BasicMotions (6/100/4)

HandMovementDirection (10/400/4)
Cricket (6/1197/12)

StandWalkJump (4/2500/3)
LSST (6/36/14)
Libras (2/45/15)

SelfRegulationSCP1 (6/896/2)
Epilepsy (3/206/4)

FingerMovements (28/50/2)
SelfRegulationSCP2 (7/1152/2)

ERing (4/65/6)
RacketSports (6/30/4)

EthanolConcentration (3/1751/4)
PhonemeSpectra (11/217/39)

NATOPS (24/51/6)
Heartbeat (61/405/2)

UWaveGestureLibrary (3/315/8)
PenDigits (2/8/10)

AtrialFibrillation (2/640/3)
Handwriting (3/152/26) 0.20
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Fig. 4 Heatmap showing the difference in accuracy between independent and dependent
versions of the measures - deeper reddish colours indicate cases where independent is more
accurate (positive on the scale), and deeper bluish colours indicate cases where dependent
is more accurate (negative on the scale). The datasets are sorted based on average colour
values to show contrasting colours on the two ends. (Dimensions / length / number of classes
are shown in the bracket after the dataset name.)

sensors at different locations. From Figure 4 we observe that the dimensions in
Handwriting are highly coupled and works best when all dimensions are con-
sidered together and PEMS-SF works best when all dimensions are considered
independently. Since each sensor is a dimension in this dataset, there are 963
dimensions. It is highly unlikely that all of them will be coupled together.

In general, We observe that the dependent strategy tends to perform poorly
when there are a large number of dependent dimensions in the dataset.

It is interesting to note that there appears to be considerable correlation
between the relative desirability of the independent and dependent approaches
across all the measures that are applied to the derivative of the original se-
ries, DDTWF , DDTW and WDDTW . It particularly stands out that there
seems to be a strong advantage to independent variants of these measures with
respect to ArticularyWordRecognition, DuckDuckGeese and Cricket. Possible
connections between transformations and the relative efficacy of independent
or dependent approaches may be a productive topic for future research.

Next we investigate the hypothesis that there are some multivariate TSC
tasks that are inherently best suited to either treating the multivariate series
as a single series of multvariate points or as multiple independent series of uni-
variate points. To this end we present the results of a Wilcoxon signed-rank test
on each of the 10 pairs of measures (without L2), to test whether the difference
between accuracy of independent and dependent versions across 23 datasets
are statistically significant. We conduct this test with the null hypothesis that
the mean of the difference between the accuracy of the independent and de-
pendent versions will be zero. We reject the null hypothesis with statistical
significance value α = 0.05, and accept that there is a significant statistical
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difference in accuracy if the p ≤ α. Table 1 shows the p-value for each dataset
and the bold values mark the p-values for which there is a significant difference.
We also report the adjusted α value after Holm–Bonferroni corrections, αHB .
Before Holm–Bonferroni correction, out of the 23 datasets, we observe that
for 7 datasets there is a statistically significant difference in accuracy between
independent and dependent measures. After Holm–Bonferroni correction, we
still find 3 statistically significant differences (where p ≤ αHB) and so conclude
there are indeed datasets that are inherently best suited to either independent
or dependent treatment.

Table 1 p-values for two-sided Signed Rank Wilcoxon test with α = 0.05 (significant values
are in bold face) and α values adjusted for multiple testing using the Holm-Bonferonni
correction.

dataset p-value αHB

BasicMotions 0.0020 0.0021
PEMS-SF 0.0020 0.0022
Handwriting 0.0020 0.0023
HandMovementDirection 0.0059 0.0024
LSST 0.0059 0.0025
Epilepsy 0.0103 0.0026
ArticularyWordRecognition 0.0282 0.0028
PhonemeSpectra 0.1794 0.0029
PenDigits 0.1934 0.0031
StandWalkJump 0.1988 0.0033
DuckDuckGeese 0.2324 0.0036
AtrialFibrillation 0.2820 0.0038
FingerMovements 0.3071 0.0042
Heartbeat 0.4316 0.0045
Cricket 0.5043 0.0050
SelfRegulationSCP2 0.5566 0.0056
SelfRegulationSCP1 0.5748 0.0063
RacketSports 0.6094 0.0071
ERing 0.6101 0.0083
NATOPS 0.7695 0.0100
UWaveGestureLibrary 0.7695 0.0125
Libras 0.8457 0.0167
EthanolConcentration 1.0000 0.0250

6 Conclusion

In this paper, we present multivariate versions of seven commonly used elastic
similarity measures. Our approach is inspired by independent and dependent
DTW measures, which have proven very successful as strategies for extending
univariate DTW to the multivariate case.

These measures can be used in a wide range of time series analysis tasks
including classification, clustering, anomaly detection, indexing, subsequence
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search and segmentation. This study demonstrates their utility for time se-
ries classification. Our experiments show that each of the univariate similarity
measures excels at nearest neighbor classification on different datasets, high-
lighting the importance of having a range of such measures in our analytic
toolkits.

It has been shown that there are datasets for which the independent version
of DTW is more accurate than the dependent version and vice versa. Until
now there was no way to determine whether this is a result of a fundamental
difference between treating each dimension independently or not, or whether
it arises from other properties of the algorithms. Our results showing that
there are some datasets for which dependent or independent treatments are
consistently superior across all distance measures provides strong support for
the conclusion that it is a fundamental property of the datasets, that either
the variables are best considered as a single multivariate point at each time
step or are not.

We observe that the dependent strategy tends to perform poorly when
there are a large number of dependent dimensions in the dataset. Addressing
this limitation may be a productive direction for future research.

Another potential direction for future research is to ensemble these mea-
sures in a nearest-neighbor based classifier such as EE [5] or a tree-based
classifier (similar to Proximity Forest [16]) or TS-CHIEF [18]).
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54. J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data
Sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

55. A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc
tests based on mean-ranks?” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 152–161, 2016.

Multivariate Elastic Similarity Measures 121



30 Shifaz et al.

A Summary of the Datasets

Table 2 Summary of the 23 fixed-length multivariate datasets we used from the UAE
repository.

# dataset code trainsize testsize dims length classes

1 ArticularyWordRecognition AWR 275 300 9 144 25
2 AtrialFibrillation AF 15 15 2 640 3
3 BasicMotions BM 40 40 6 100 4
4 Cricket CR 108 72 6 1197 12
5 DuckDuckGeese DDG 50 50 1345 270 5
6 Epilepsy EP 137 138 3 206 4
7 EthanolConcentration EC 261 263 3 1751 4
8 ERing ER 30 270 4 65 6
9 FingerMovements FM 316 100 28 50 2
10 HandMovementDirection HMD 160 74 10 400 4
11 Handwriting HW 150 850 3 152 26
12 Heartbeat HB 204 205 61 405 2
13 Libras LIB 180 180 2 45 15
14 LSST LSST 2459 2466 6 36 14
15 NATOPS NATO 180 180 24 51 6
16 PenDigits PD 7494 3498 2 8 10
17 PEMS-SF PEMS 267 173 963 144 7
18 Phoneme PS 3315 3353 11 217 39
19 RacketSports RS 151 152 6 30 4
20 SelfRegulationSCP1 SRS1 268 293 6 896 2
21 SelfRegulationSCP2 SRS2 200 180 7 1152 2
22 StandWalkJump SWJ 12 15 4 2500 3
23 UWaveGestureLibrary UW 120 320 3 315 8
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B Accuracy of Dependent and Independent Measures

Table 3 Accuracy of independent similarity measures. Note that dtwf and ddtwf refers to
measures that use full window.

dataset L2 dtwf dtw ddtwf ddtw wdtw wddtw lcss msm erp twe

AWR 0.97 0.98 0.98 0.60 0.69 0.99 0.70 0.99 0.99 0.99 0.98
AF 0.27 0.27 0.27 0.07 0.07 0.13 0.27 0.20 0.20 0.27 0.33
BM 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.85 1.00
CR 0.92 0.99 1.00 0.96 0.96 0.99 0.96 0.97 0.99 0.96 0.99
DDG 0.34 0.48 0.48 0.54 0.54 0.48 0.54 0.34 0.60 0.34 0.60
EP 0.67 0.98 0.95 0.96 0.96 0.96 0.96 0.99 0.99 0.90 0.98
ER 0.95 0.92 0.92 0.81 0.91 0.93 0.84 0.95 0.89 0.94 0.91
EC 0.32 0.30 0.31 0.29 0.27 0.29 0.27 0.27 0.33 0.33 0.30
FM 0.56 0.52 0.54 0.62 0.54 0.51 0.59 0.52 0.51 0.51 0.52
HMD 0.28 0.30 0.23 0.34 0.34 0.26 0.34 0.26 0.32 0.23 0.42
HW 0.34 0.51 0.48 0.31 0.34 0.51 0.33 0.46 0.49 0.41 0.37
HB 0.66 0.66 0.69 0.69 0.69 0.69 0.69 0.75 0.75 0.65 0.72
LIB 0.82 0.89 0.89 0.90 0.90 0.89 0.92 0.84 0.86 0.82 0.89
LSST 0.45 0.58 0.58 0.49 0.48 0.58 0.49 0.34 0.55 0.46 0.53
NATO 0.82 0.85 0.87 0.82 0.83 0.86 0.82 0.81 0.83 0.82 0.83
PEMS 0.77 0.73 0.77 0.62 0.61 0.76 0.64 0.83 0.77 0.73 0.79
PD 0.98 0.94 0.98 0.95 0.97 0.96 0.96 0.96 0.96 0.97 0.94
PS 0.10 0.15 0.15 0.16 0.17 0.16 0.17 0.15 0.18 0.10 0.17
RS 0.80 0.84 0.84 0.77 0.76 0.86 0.78 0.89 0.82 0.83 0.79
SRS1 0.78 0.76 0.78 0.63 0.58 0.78 0.56 0.75 0.77 0.78 0.78
SRS2 0.48 0.53 0.54 0.49 0.51 0.53 0.56 0.51 0.51 0.50 0.57
SWJ 0.27 0.33 0.33 0.40 0.33 0.53 0.20 0.27 0.27 0.33 0.20
UW 0.88 0.87 0.91 0.72 0.84 0.88 0.80 0.91 0.88 0.90 0.88

Wins 3 3 7 2 1 6 2 7 7 3 6
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Table 4 Accuracy of dependent similarity measures. Note that dtwf and ddtwf refers to
measures that use full window.

dataset L2 dtwf dtw ddtwf ddtw wdtw wddtw lcss msm erp twe

AWR 0.97 0.99 0.98 0.35 0.34 0.99 0.36 0.98 0.98 0.98 0.97
AF 0.27 0.20 0.27 0.13 0.33 0.20 0.27 0.33 0.27 0.27 0.13
BM 0.60 0.97 0.97 0.95 0.95 0.97 0.95 0.80 0.68 0.75 0.95
CR 0.94 1.00 1.00 0.75 0.78 1.00 0.75 0.99 1.00 0.97 0.97
DDG 0.50 0.58 0.58 0.32 0.32 0.58 0.32 0.42 0.26 0.36 0.26
EP 0.63 0.96 0.96 0.93 0.93 0.96 0.93 0.92 0.94 0.87 0.94
ER 0.94 0.91 0.94 0.79 0.84 0.93 0.83 0.93 0.90 0.94 0.95
EC 0.32 0.32 0.32 0.24 0.27 0.30 0.25 0.32 0.35 0.31 0.25
FM 0.55 0.53 0.53 0.51 0.51 0.54 0.51 0.50 0.51 0.56 0.50
HMD 0.26 0.19 0.24 0.27 0.24 0.23 0.27 0.23 0.16 0.22 0.35
HW 0.33 0.61 0.61 0.42 0.42 0.61 0.41 0.54 0.57 0.47 0.45
HB 0.62 0.72 0.70 0.71 0.71 0.68 0.71 0.62 0.68 0.74 0.75
LIB 0.83 0.87 0.87 0.98 0.98 0.88 0.98 0.33 0.85 0.83 0.86
LSST 0.45 0.55 0.55 0.43 0.43 0.55 0.43 0.36 0.36 0.45 0.45
NATO 0.84 0.88 0.88 0.85 0.85 0.88 0.79 0.72 0.81 0.84 0.82
PEMS 0.73 0.71 0.73 0.57 0.57 0.73 0.57 0.12 0.71 0.72 0.71
PD 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.95 0.94 0.98 0.98
PS 0.10 0.15 0.15 0.16 0.17 0.16 0.17 0.15 0.16 0.10 0.17
RS 0.82 0.80 0.82 0.78 0.80 0.85 0.78 0.89 0.89 0.74 0.78
SRS1 0.78 0.77 0.78 0.58 0.57 0.76 0.57 0.80 0.78 0.78 0.42
SRS2 0.48 0.54 0.54 0.48 0.52 0.54 0.49 0.47 0.52 0.49 0.54
SWJ 0.20 0.20 0.20 0.20 0.33 0.33 0.20 0.33 0.33 0.27 0.27
UW 0.88 0.90 0.90 0.79 0.80 0.90 0.83 0.89 0.88 0.89 0.88

Wins 2 11 11 1 4 13 2 4 4 2 6
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5.2 Contributions

Contributions made in this chapter are:

• We extend seven commonly used univariate elastic similarity measures to the mul-

tivariate case by adopting two strategies — using multiple dimensions indepen-

dently and dependently. Univariate versions of these seven measures have been

widely used in time series analysis tasks such as classification, clustering, index-

ing, segmentation, anomaly detection and subsequence search. Therefore, we hope

that our multivariate versions would be of great benefit to the time series analysis

community. This extension is straightforward in several cases, but non-trivial for

others.

• We demonstrate the utility of these measures by focusing on the multivariate near-

est neighbor classification problem. We compare the classification performance of

these measures on 23 datasets from the University of East Anglia (UEA) multi-

variate archive. We show that each measure outperforms all others on at least one

task (or ties with the highest performing measures in two cases), demonstrating

the value of having a suite of alternatives multivariate elastic measures.

• We demonstrate that there are some classification tasks for which the independent

strategy is superior across all measures and others for which the dependent strategy

is better. It was previously demonstrated for DTW that each approach sometimes

substantially outperformed the other [42]. However, it has not previously been

established whether this is a fundamental property of the tasks per se. In this

paper we provide evidence that in at least some cases there is a fundamental

connection between classification tasks and whether they are best addressed by

considering all variables at each time step in conjunction or by considering each

variable independently of the others.



Chapter 6

Multivariate Elastic Ensembles

6.1 Introduction

In Chapter 5, I presented seven similarity measures for multivariate time series analy-

sis. They use two strategies to combine the dimensions when computing the similarity

between multivariate time series (i.e. independent and dependent measures). In this

chapter, I present ensembles formed from these measures using strategies similar to

univariate Elastic Ensemble and Proximity Forest.

This chapter addresses the following objectives:

• Develop and evaluate three versions of a multivariate Elastic Ensemble employing,

independent, dependent and both types of multivariate similarity measures. Since

Elastic Ensemble is not a scalable classifier, my goal of presenting a multivariate

Elastic Ensemble is to establish a baseline for comparison for similarity-based

multivariate methods in terms of accuracy.

• Create three similar versions of multivariate Proximity Forest and compare their

performance against each other and state-of-the-art multivariate classifiers.

• Investigate the impact on performance of using all dimensions or a subset of dimen-

sions when training. Investigate and compare three strategies to select between

these subsets.

Unlike the previous three chapters, the works presented in this chapter have not yet

been submitted for publication. I plan to submit this work for publication post thesis

submission.

126
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6.2 Background

From Section 2.5, recall that a variety of methods have been developed for multivariate

TSC. When learning, some of these methods only use independent or dependent strategy,

and some consider all dimensions or select a random subset of dimensions. For example,

both DTWI and DTWD use all dimensions together [42], meanwhile, ROCKET and

HIVE-COTEv2 can select a subset of dimensions to use. HIVE-COTEv2 components

such as STC and DrCIF, which selects a random dimension at each node of a tree, only

supports the independent strategy. Meanwhile, some methods such as ROCKET, only

use a dependent strategy (Note that ROCKET’s dependent strategy is different from

the strategy used in DTWD – see Section 2.5.6).

When using the dependent strategy (see Section 2.5.1) it is important to choose how

many dimensions to combine together. Particularly when the dimensionality is large,

there are various issues we must consider. These include, 1) it is unlikely that all

dimensions are coupled together, 2) or contain useful information for discrimination,

3) and theoretical limitations due to the “curse of dimensionality” problem [110, 111].

Intuitively, it makes sense to think that the optimal set of dimensions will be a subset

of dimensions. For example, consider a dataset with 6 dimensions of accelerometer data

from left hand and right hand. Each subsets of 3 dimensions correspond to X,Y, and Z

axis of either left or right hand. It is likely that there could be some coupling between

X,Y, and Z of left or right hand. There could also be another coupling between X of left

hand and X of right hand, and Y of left hand and Y of right hand, and so on. Therefore,

we could hypothesize that a strategy that selects a subset size and then samples a set

of dimensions to be included in this subset could be expected to perform better than

using all dimensions together. In practice, exploring all such combinations of subsets is

computationally infeasible because it grows factorially large. Therefore, in this study,

we explore selecting random subsets of dimensions as described in Section 6.3.3.

If the dimensionality is reasonably small, which might be the case for many datasets, it

could be worth while to explore systematic strategies for selection of dimensions, such as

forward sequential selection or backward sequential elimination [112].However, we leave

such an endeavor to future work.

Its also important to highlight that studying multivariate TSC classifiers that use all

dimensions using the UEA Multivariate TS Archive [5] is a particularly problematic

issue because some of the datasets have extremely high dimensionality. Eight out of the

30 datasets have 50 or more dimensions. One dataset, PEMS-SF, has 963 dimensions,

while another dataset, DuckDuckGeese, has 1,345 dimensions. Its very likely that many
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Figure 6.1: Distribution of the dimensions of the 30 datasets available in UEA Mul-
tivariate TS Archive [5].

of these dimensions contain little or redundant information. Figure 6.1 shows a plot of

the distribution of dimensions of the datasets.

6.3 Similarity-based Multivariate TSC Ensembles

In this section I present the two ensembles created using the multivariate similarity

measures presented in Chapter 5.

6.3.1 Multivariate Elastic Ensemble

The first ensemble is constructed to be similar to the Elastic Ensemble [15]. We call

this classifier Multivariate Elastic Ensemble (MEE). From Section 2.4.1, recall that

EE is a 1-NN based ensemble of 11 similarity measures. We keep the design of the

ensemble similar to the univariate EE, except that MEE uses our multivariate similarity

measures. Similar to EE, MEE also uses leave-one-out cross validation of 100 parameters

when choosing the parameters for similarity measures. Both EE and MEE predict the

final label by using majority voting. The voting is weighted by the leave-one-out cross

validation accuracy of each measure on the training set. Any ties are broken using a

uniform random choice. All measures used in MEE use all dimensions in the dataset,

similarly to DTWI and DTWD [42].

As we discussed in Chapter 1, EE is not designed for scalability. Similarly, the goal of

MEE is not to tackle the scalability issue but to create a multivariate similarity based-

classifier as a baseline for accuracy comparison with other similarity-based multivariate

classifiers. I also note that measures such as DTW can be scaled to millions of time
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series when used in conjunction with lower bounding and early abandoning [3, 33, 34].

Therefore, if various research on lower bounding and early abandoning of other similarity

measures [51–54] are combined and extended to multivariate measures, then it might be

possible to create a more scalable version of MEE.

We explore three variations of MEE, which are constructed as follows.

• MEEI : An ensemble of 1-NN classifiers formed using 10 independent multivariate

similarity measures and multivariate Euclidean distance1.

• MEED : An ensemble of 1-NN classifiers formed using 10 dependent multivariate

similarity measures and multivariate Euclidean distance1.

• MEEID : An ensemble of 1-NN classifiers formed using 10 independent measures,

10 dependent measures and multivariate Euclidean distance.

6.3.2 Multivariate Proximity Forest

The second ensemble is constructed to be similar to Proximity Forest (Chapter 3, hence

named Multivariate Proximity Forest (MPF). Everything is kept similar to Proximity

Forest, except the following changes:

• Univariate similarity measures are replaced with multivariate versions presented

in Chapter 5.

• Similar to MEE, three variations MPFI , MPFD and MPFID are implemented

as follows:

– MPFI : which selects a measure uniformly at random, out of 11 measures

(10 independent measures and Euclidean) per candidate split at the node .

– MPFD : which selects a measure uniformly at random, out of 11 (10 depen-

dent measures and Euclidean) measures per candidate split at the node.

– MPFID : which selects a measure uniformly at random, out of 21 measures

(10 independent, 10 dependent and Euclidean) per candidate split at the

node.

• An additional parameter, dims, is added to choose a strategy to select the size

of subsets of dimensions to use at a node. Once the size of subset is selected,

dimensions to be included in the subset are sampled uniformly at random (without

1Recall that Euclidean distance does not vary between dependent and independent forms (see Sec-
tion 5.4.1.2).
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replacement) from all available dimensions. For example, in a dataset with 9

dimensions, and if the selected subset size is 3, then three dimensions from 1 to 9

are selected uniformly at random. The three strategies we explored are:

– dims = all: Uses all dimensions.

– dims = uniform: Selects the subset of dimensions based on the random value

from a uniform distribution, i.e. number of dimensions, dims ∼ U(1, D),

where D is the total number of dimensions.

– dims = beta13sqrt: Selects the subset size randomly using a modified version

of beta distribution as explained in Section 6.3.3.

6.3.3 On the choice of Beta Distribution

The beta distribution is chosen because random values sampled from the beta distribu-

tion are bounded to the interval [0, 1]. This allows its upper bound to be easily adjusted

by multiplying with D to [0, D]. The beta distribution has two parameters, α and β,

which controls the shape of the curve. By setting α = 1 and β = 1, we can obtain a flat

distribution. By increasing β, we can obtain a distribution with lower probabilities of

obtaining a larger value as shown in Figure 6.2. This is very useful because we want the

probability of selecting a very high subset size to be extremely low. By default we choose

β = 3 because it gives the desired shape without making large subsets too improbable.

This parameter is worthy of further investigation, but there was no opportunity to do

so within the scope of this thesis.
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Figure 6.2: Shape of beta distribution as its parameter β increases.
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However, direct implementation of this scheme would mean that the highest probability

subset size was one. To avoid this we modify the distribution to make the left side of it

flat. We introduced a threshold such that if the sampled value from beta distribution is

less than
√
D then we fall back to sampling from the uniform distribution, as described

in Algorithm 4.

Algorithm 4: Modified Beta(α, β,D)

Input: α: parameter of Beta distribution
Input: β: parameter of Beta distribution
Input: D: Number of dimensions
Output: dims: Random subset size

1 // Sample from beta distribution

2 dims ∼ Beta(α, β) · D
3 if dims <

√
D then

4 // Sample from uniform distribution

5 return dims ∼ U(1,
√
D)

6 return dims

6.4 Experiments

Experimental results for MEE are obtained by synthesis from the results of the sin-

gle multivariate measure experiments described in Section 5.1. While conducting those

experiments, for all of the measures, I saved the classification output of every time se-

ries in each dataset for both train and test sets. Similar to the methodology used in

EE, I calculated the predictions for test instances by majority voting and then weight-

ing the vote by the training accuracy of each measure. Experiments were conducted

on the standard train/test splits of UEA Multivariate TS Archive [5], provided in

timeseriesclassification.com. Note that in Section 5 we reported the results of

23 datasets that completed the training within the time limits we had.

MPF experiments were run on a cluster of mixed hardware with Intel Xeon-E5-2680-

v3 and Intel Xeon-E5-2680-v4 CPUs using 32-threads. Once again, I use the standard

train/test splits available in UEA Multivariate TS Archive [5].

For benchmarking of classifiers I follow the methodology described in Section 2.6.

6.4.1 Multivariate Measures vs MEE

EE showed that 1-NN ensembles formed using a diverse set of similarity measures are

more accurate than any of the single measures on the 85 univariate UCR datasets [9, 15].

timeseriesclassification.com
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In this experiment we replicate this evaluation in the multivariate context. We compare

single independent and dependent measures with MEE ensembles to assess whether each

of the three versions of MEE are significantly different to the individual measures.

Figures 6.3 and 6.4 shows accuracy ranking of independent measures and MEEI ; and

dependent measures and MEED, respectively. Comparison in Figure 6.3 indicates

that the following pairs are significantly different: DDTWI and MEEI , ERPI and

MEEI , DTWFI and MEEI , DTWI and ERPI , DDTWFI and MEEI . Figure 6.4

indicates that the following pairs are significantly different: DDTWFD and WDTWD,

DDTWFD and MEED, MEED and WDDTWD, DDTWFD and DTWD, DDTWFD

and DTWFD. Both comparisons indicate that MEEI and MEED are more accurate

than individual measures with 1-NN.

1234567891011
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DDTWI
WDDTWI

LCSSI
DTWFI

WDTWI
MSMI

TWEI

DTWI

MEEI

Figure 6.3: Average accuracy ranking diagram showing the ranks on the error rate
of the independent similarity measures and MEEI .
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DTWFD

DTWD
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Figure 6.4: Average accuracy ranking diagram showing the ranks on the error rate
of the dependent similarity measures and MEED.

Figure 6.5 shows accuracy ranking of our three ensembles vs the top seven (out of twenty-

one) individual similarity measures with 1-NN (selected based the rankings shown in

Figure 5.3). We can observe that all ensembles are more accurate than the classifiers

using a single measure. We found that the EEID (avg. rank 3.2609) performs bet-

ter than both EEI (avg. rank 3.9565) and EED (avg. rank 5.5435). Based on the

p-values, we found that all pairs of classifiers are statistically indistinguishable except

the following pairs: DTWFD and MEEID (p-value=0.0003), DTWFI and MEEID

(p-value=0.0005), DTWFI and MEEI (p-value=0.0006), MEED and MEEID (p-

value=0.0006) and MEEID and WDTWD (p-value=0.0007). All other pairs had a
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Figure 6.5: Average accuracy ranking diagram showing the ranks on the error rate
of the top seven similarity measures and three variants of MEE.

p-value above 0.0012 (after the Holm-Bonferroni correction) indicating that they are

not significantly different. One reason why so few of the pairs are assessed as signifi-

cantly different could be because we are limited to just 23 datasets.

6.4.2 Comparing the Variations of MPF

Experiments for Multivariate Proximity Forest were conducted with ensemble size k =

500 and number of candidate splits Ce = 5. As explained in Section 6.3.2, we developed

three variants of MPF, namely, MPFI , MPFD and MPFID. We also use an additional

parameter called dims, which defines the number of dimensions to use for each candidate

split. In this section I present comparisons of accuracy and total training and test times

between different variations of MPF and its settings.

6.4.2.1 Comparing the Three Ensembles

When comparing the three ensembles without changing the dims parameter, generally

MPFID performs better than MPFI and MPFD. The magnitude of these wins and

losses are usually marginal, especially between MPFI and MPFD, so for brevity, I

have omitted including the scatter plots of all combinations. Instead, these results are

summarized in Table 6.1.

6.4.2.2 Comparing the Strategies to Select Dimensions

We then compared the three settings dim = all, dim = uniform and dim = beta13sqrt

for each of the three MPF ensembles. For example, MPFI (dim = all) vs MPFI

(dim = uniform). Comparisons between dim = all vs dim = uniform is very similar

across the three ensembles, while total training time is approximately reduced to half

(see the timings in Table 6.1).
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Setting(X) Setting(Y) Win/Draw/Loss Total Time (hr)

MPFI (all) MPFD (all) 7/6/10 42.4vs 39.8

MPFI (all) MPFID (all) 7/2/14 42.4 vs 46.6

MPFD (all) MPFID (all) 6/3/14 39.8 vs 46.6

MPFI (uniform) MPFD (uniform) 13/4/6 21.9 vs 25.3

MPFI (uniform) MPFID (uniform) 9/3/11 21.9 vs 26.6

MPFD (uniform) MPFID (uniform) 9/3/11 25.3 vs 26.6

MPFI (beta13sqrt) MPFD (beta13sqrt) 8/5/10 13.0 vs 13.3

MPFI (beta13sqrt) MPFID (beta13sqrt) 10/3/10 13.0 vs 16.9

MPFD (beta13sqrt) MPFID (beta13sqrt) 10/2/11 13.3 vs 16.9

Table 6.1: A comparison of accuracy and total training and test time of variants
of MPF on 23 UEA multivariate datasets. In this table, for win/draw/loss, wins are

counted for Setting(X) vs Setting(Y).

Comparison between using all dimensions dim = all and selecting a subset using a

modified beta distribution dim = beta13sqrt is shown in Figure 6.6. It shows that total

time is reduced approximately 2 to 3 times with similar accuracy when using a subset of

dimensions (see also Table 6.1). The fastest configuration took approximately 13 hours

in total. Recall from Chapter 5.5.1 that training all measures used in MEE took 1648

hours on 32 CPU threads.

We did not observe a substantive difference in accuracy when comparing dim = all and

dim = beta13sqrt across the three ensembles. While this was somewhat unexpected,

maintaining a competitive accuracy with much lower training and test time makes dim =

beta13sqrt the preferred configuration. Based on our intuition, we had expected that

using all dimensions would reduce the accuracy in most cases. The reason for this

counter-intuitive observation could be due to the characteristics of the datasets we used.

It would be an important future work to investigate this further to understand if these

difference arise in other multivariate classifiers that use all dimensions vs a subset of the

dimensions.

Overall, we conclude that MPFID with dim = beta13sqrt, k = 500 and Ce = 5 pro-

duced the best performance results for tested 23 datasets from the UEA Multivariate

TS Archive.

6.4.3 MEE and MPF vs SOTA Multivariate TSC Algorithms

Next, we compare the most accurate versions of MEE and MPF with state-of-the-art

multivariate TSC algorithms [6, 7] (see Chapter 2.5). Figure 6.7 shows the accuracy
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Figure 6.6: Scatter plots showing the accuracy of Multivariate Proximity Forest (k =
500, Ce = 5) with three variations that combine different types of measures and two
strategies to select dimensions. a) MPFI , dims = all vs MPFI , dims = beta13sqrt b)
MPFD, dims = all vs MPFD, dims = beta13sqrt c) MPFID, dims = all vs MPFID,

dims = beta13sqrt.

ranking of our ensembles vs 8 of these algorithms. I have kept the two classic measures

DTWI and DTWD
2 to show the relative performance of more complex SOTA methods.

The most accurate algorithm, HIVE-COTEv2, obtained an average rank of 3.3043. It is

followed by ROCKET (ranked 3.9565), DrCIF (ranked 4.3478), InceptionTime (4.6957)

and then our two ensembles MEEID (5.4565) and MPFID (5.6957), which are in turn

ahead of the remaining single strategy learners.

2This result for DTWI and DTWD obtained from Ruiz et al. [6], which use 20% of series length as
window size. Note that its slightly different than the results reported in Chapter 5 which uses leave-one-
out-cross validation from 1 to 25% of length of the series to select the window size.
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Figure 6.7: Average accuracy ranking diagram showing the ranks on the error rate of
8 classifiers from Ruiz et al. [6] and Middlehurst et al. [7] and the our best performing

ensembles, MEEID and MPFID.

Based on the p-values, 9 pairs of classifiers are significantly different. They are: DTWI

vs HIVE-COTEv2, ROCKET, DrCIF, TDE, STC, InceptionTime, MEEID; and then

DTWD vs HIVE-COTEv2 and ROCKET. Therefore, our two ensembles, MEEID and

MPFID, are statistically not different from the leading algorithm HIVE-COTEv2. Note

that there are limitations of this method of comparison. Since the number of datasets is

only 23, and some classifiers have correlation to others (i.e. STC, TDE, DrCIF are all

components of HIVE-COTEv2), it might affect the groupings of statistically different

pairs.

To understand the differences more clearly, Figure 6.8 compares the accuracy of MPFID

and HIVE-COTEv1 (which was benchmarked with highest accuracy circa 2020) and

HIVE-COTEv2 (which is currently highest rank on accuracy across the UEA multi-

variate archive). Figure 6.8(a) with MPFID vs HIVE-COTEv1, indicates a 11/1/11

win/draw/loss for MPFID. In this figure, datasets for which the two algorithms differ

in accuracy by more than 5% are labeled. We observe that there are 5 datasets where

the accuracy is larger than 5% for HIVE-COTE, 4 datasets where it is larger than 5% for

MPFID. The magnitude of wins for HIVE-COTEv1 is larger on average. Figure 6.8(b)

with MPFID vs HIVE-COTEv2, shows that HIVE-COTEv2 is much more accurate

than MPFID with a large difference in win/draw/loss.

The two HIVE-COTEs are much more complex algorithms than MPFID that use the

best interval, shapelet and dictionary-based classifiers. Our ensemble, MPFID, achieves

similar accuracy to HIVE-COTEv1 while using only similarity-based methods. Recall

that HOVE-COTEv1 removed EE from the ensemble because of its slow speed. However,

it did not replace EE with the much more scalable Proximity Forest. Perhaps the other

reason for that could be that EE and PF lacked support for multivariate time series.

While further work can be done to improve MPFID in terms of both accuracy and

speed, these contributions may assist in incorporating a similarity-based classifier to a

future version of HIVE-COTE while supporting multivariate time series.
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Figure 6.8: Scatters plots showing the accuracy of a) HIVE-COTEv1 vs MPFID b)
HIVE-COTEv2 vs MPFID, on 23 datasets from UEA multivariate TS Archive.

Finally, Table 6.2 shows the accuracy of leading algorithms (selected from Figure 6.7) and

our most accurate ensembles MEEID and MPFID. Across the 8 algorithms, MEEID

achieves the highest accuracy for 2 datasets, and MPFID for 3 datasets. By compar-

ison, shapelet-based STC wins on 1 dataset and dictionary-based TDE on 2 datasets.

Interestingly interval-based DrCIF wins 8 times which is more than the HIVE-COTEv2

and InceptionTime.
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Table 6.2: Accuracy of our most accurate ensembles MEEID and MPFID compared
against top multivariate TSC algorithms on 23 datasets from UEA Multivariate TS
Archive. Column names are shortened as follows: HC1 for for HIVE-COTEv1, IT for
InceptionTime, RT for ROCKET, HC2 for HIVE-COTEv2. Wins indicate the number

of time each classifier achieved the highest accuracy for each dataset.

dataset MEE MPF STC TDE IT DrCIF RT HC2

ArticularyWordRecognition 0.99 0.99 0.98 0.99 0.99 0.98 1.00 0.99
AtrialFibrillation 0.27 0.12 0.32 0.27 0.22 0.33 0.25 0.27
BasicMotions 0.97 1.00 0.98 1.00 1.00 1.00 0.99 1.00
Cricket 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00
DuckDuckGeese 0.60 0.52 0.43 0.34 0.63 0.54 0.46 0.56
Epilepsy 0.98 0.97 0.99 0.99 0.99 0.98 0.99 1.00
EthanolConcentration 0.35 0.37 0.82 0.56 0.28 0.69 0.45 0.77
ERing 0.97 0.96 0.84 0.96 0.92 0.99 0.98 0.99
FingerMovements 0.57 0.52 0.53 0.56 0.56 0.60 0.55 0.53
HandMovementDirection 0.28 0.44 0.35 0.38 0.42 0.53 0.45 0.47
Handwriting 0.58 0.62 0.29 0.56 0.66 0.35 0.57 0.55
Heartbeat 0.75 0.75 0.72 0.75 0.73 0.79 0.72 0.73
Libras 0.91 0.88 0.84 0.85 0.89 0.89 0.91 0.93
LSST 0.60 0.65 0.58 0.57 0.34 0.56 0.63 0.64
NATOPS 0.88 0.88 0.84 0.84 0.97 0.84 0.89 0.89
PenDigits 0.98 0.98 0.98 0.94 1.00 0.98 1.00 0.98
PEMS-SF 0.73 0.84 0.98 1.00 0.83 1.00 0.86 1.00
PhonemeSpectra 0.20 0.19 0.31 0.25 0.37 0.31 0.28 0.29
RacketSports 0.87 0.86 0.88 0.84 0.92 0.90 0.93 0.91
SelfRegulationSCP1 0.77 0.85 0.85 0.81 0.85 0.88 0.87 0.89
SelfRegulationSCP2 0.54 0.49 0.52 0.50 0.52 0.49 0.51 0.50
StandWalkJump 0.33 0.25 0.44 0.33 0.42 0.53 0.46 0.47
UWaveGestureLibrary 0.92 0.92 0.87 0.93 0.91 0.91 0.94 0.93

Wins 2 3 1 2 6 8 4 6
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6.5 Conclusions

This chapter introduced two similarity-based multivariate TSC algorithms: Multivariate

Elastic Ensemble and Multivariate Proximity Forest.

MEE is designed to be similar to EE while using a combination of both independent

and dependent multivariate similarity measures introduced in Chapter 5. Rather than

focusing on scalability, the goal of MEE is to present a baseline for accuracy comparison

using similarity-based classifiers. However, by using recent advances in lower bounding

and early abandoning there is potential to improve its scalability.

MPF is designed to be similar to Proximity Forest and uses a combination of independent

and dependent multivariate similarity measures. Unlike DTWI and DTWD, which use

all dimensions, MPF uses a random subset of dimensions. When compared with using

all dimensions, we showed that by using a subset of dimensions, similar accuracy can be

achieved 2 to 3 times faster.

Our classifiers MEE and MPF are both single domain (similarity) classifiers. While they

do not achieve the same level of accuracy as the multi-domain ensemble HIVE-COTEv2,

they are competitive with the current state of the art in single domain classifiers STC

(shapelet-based), TDE (dictionary-based) and DrCIF (interval-based).

6.6 Contributions

Contributions made in this chapter include:

1. Multivariate Elastic Ensemble: A similarity-based baseline for accuracy compari-

son against other multivariate TSC classifiers.

2. Multivariate Proximity Forest: A scalable, tree-based, and similarity-based multi-

variate TS classifier.

3. A comparative study that examine the use of all dimensions against using random

subsets of dimensions for multivariate similarity measures. I note that this thread

of research is less studied in the literature but is an important topic to explore when

studying multivariate TS classifiers. I hope that this contribution will stimulate

further research on this topic.

4. Two similarity-based, multivariate TS classifiers that is competitive with the

current state-of-the-art single domain classifiers STC (shapelet-based), TDE

(dictionary-based) and DrCIF (interval-based).



Chapter 7

Conclusions

7.1 Summary of Research

Time series classification is an important area of machine learning research that has been

receiving increasing attention in recent years. Nonetheless, at the beginning of my PhD

in 2018, many algorithms faced important challenges as I outlined in Chapter 1. These

challenges included lack of algorithms that were both highly accurate and scalable, as

well as limited support for multivariate time series.

In this research, I addressed these challenges by contributing to the development of

several novel TSC algorithms. In Chapter 3 I presented Proximity Forest which was

the first algorithm to demonstrate state-of-the-art accuracy while being able to scale to

large quantities of data. In Chapter 4 I presented an improved classifier, TS-CHIEF,

that is still among one of the four main state-of-the-art TSC methods.

TS-CHIEF demonstrated that it was possible to attain state-of-the-art TSC accuracy

while only requiring relatively modest computation. It is credible that my demonstration

of this possibility has been a significant driver of recent research in the field. There have

been dramatic gains in computational efficiency in recent state-of-the-art TSCs [7, 98].

The report that Elastic Ensemble was not included in recent iterations of HIVE-COTE

due to its excessive compute despite its improving accuracy illustrates how computa-

tional efficiency has become front of mind in recent work [7].

While newer algorithms such as ROCKET and HIVE-COTEv2 have surpassed the speed

of TS-CHIEF, there is considerable potential to benefit from recent developments in

order to speed-up TS-CHIEF while maintaining or even improving its high accuracy.

Some types of time series data, such as the Earth observation satellite data, are in-

herently short but have large numbers of series. For example 1 year of satellite time
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series data has only series with length 52 if data is collected once a week. But there can

be very large numbers of series (1.5 trillion if one considers the entire land area of the

planet at 10 meter scale as provided by the Sentinel II satellites). Proximity Forest and

TS-CHIEF are very useful for such data because of their quasi-linear time complexity

with respect to the number of series.

My research on multivariate time series extended the independent and dependent meth-

ods originally developed for DTW to ten further distance measures. It helped to under-

stand the differences between these two strategies for combining multiple dimensions and

whether differences in their performance arose from fundamental properties of different

multivariate time series data. It also showed that simple strategies to select subsets of

dimensions can provide effective results and opened new doors for further exploration.

7.2 Contributions to Knowledge

At the end of Chapters 3 to 6, I highlighted my contributions in general and specifically

to the work presented in the chapters. Here, I distill the most important contributions

made I to the advancement knowledge during my PhD work.

1. Proximity Forest (co-author): I contributed to the development of the novel TSC

algorithm Proximity Forest [8]. Proximity Forest is the first algorithm with accu-

racy that competes with state-of-the-art TSC classifiers of the time such as EE,

ST, BOSS or FLAT-COTE, while impressively more scalable than any of its other

competitors. My contribution, a Gini-based evaluation criteria to select between

multiple candidate splits at the nodes of the trees, boosted its accuracy signifi-

cantly.

2. TS-CHIEF (primary author): One of the most important contributions of this

thesis is the novel TSC algorithm TS-CHIEF [35]. We demonstrated that TS-

CHIEF achieves state-of-the-art accuracy that rivals HIVE-COTE (alpha) within a

fraction of its runtime. At the time, TS-CHIEF and HIVE-COTE were considered

as the two most accurate TSC algorithms in the field. We showed that TS-CHIEF’s

theoretical train time complexity is quasi-linear with respect to the quantity of

data. While most TSC algorithms of the time do not scale beyond a few thousand

series, on one dataset, we empirically showed TS-CHIEF is scalable to more than

150k time series within a time frame that is far beyond the reach of any other

competitor of the time. Since publication, the main results of TS-CHIEF have

been independently replicated [38], and TS-CHIEF is still accepted as one of the

four state-of-the-art TSC algorithms in the field [7, 94, 99].
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3. The contribution from TS-CHIEF is not only an advancement of the state-of-

the-art accuracy and scalability. It is also a contribution to tree-based algorithm

design. TS-CHIEF provides a flexible, yet simple, framework to embed various

TSC techniques inside the nodes of decision trees and then use the Gini index to

evaluate and select the best splitting function among them. It builds a heteroge-

neous tree with different splitting techniques (e.g. nearest exemplar based method

using similarity measures and an attribute-value based method similar to classical

decision trees). Such a framework leverages the benefits of the divide-and-conquer

strategy of trees with time complexity for tree building that is quasi-linear with

respect to training set size. This is extremely useful, since many of the prior al-

gorithms are limited by the use of slow 1-nearest neighbor as base classifiers in

the ensembles, or use of simple decision trees such as Random Trees that work

on only one such transformation of data at a time. The flexible framework in

TS-CHIEF allows new “splitters” to be developed and integrated into nodes of

trees. This strategy is very different and unique compared to the method used in

HIVE-COTE, which ensembles independent algorithms using a voting technique.

4. Multivariate Similarity Measures (primary author) [40]: This work extended seven

commonly used univariate elastic similarity measures to the multivariate case by

adopting two strategies — using multiple dimensions independently and depen-

dently. Univariate versions of these seven measures have been widely used in

time series analysis tasks such as classification, clustering, indexing, segmentation,

anomaly detection and subsequence search. Therefore, this work is expected to be

of great benefit to the time series analysis community.

5. Chapter 5 demonstrates the utility of these measures by focusing on the multivari-

ate nearest neighbor classification problem. We show that each measure outper-

forms all others on at least one task (or ties with the highest performing measures

in two cases), demonstrating the value of having a suite of alternative multivariate

elastic measures.

6. Chapter 5 demonstrates that there are some classification tasks for which the

independent strategy is superior across all measures and others for which the

dependent strategy is better. It was previously demonstrated for DTW that each

approach sometimes substantially outperformed the other [42]. However, it has not

previously been established whether this is a fundamental property of the tasks per

se. Chapter 5 provides evidence that in at least some cases there is a fundamental

connection between classification tasks and whether they are best addressed by

considering all variables at each time step in conjunction or by considering each

variable independently of the others.
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7. Multivariate Elastic Ensemble: A multivariate TS classifier that has accuracy com-

petitive with the current state-of-the-art single domain classifiers STC (shapelet-

based), TDE (dictionary-based) and DrCIF (interval-based). This provides a

similarity-based baseline for comparison against other multivariate TSC classifiers.

8. Multivariate Proximity Forest: A scalable, tree-based, and similarity-based multi-

variate TS classifier that has accuracy competitive with the current state-of-the-art

single domain classifiers STC (shapelet-based), TDE (dictionary-based) and Dr-

CIF (interval-based).

9. A comparative study that examines the use of all dimensions against using random

subsets of dimensions for multivariate similarity measures. I note that this thread

of research is less studied in the literature but is an important topic to explore when

studying multivariate TS classifiers. I hope that this contribution will stimulate

further research on this topic.

7.3 Limitations

Some of the limitations of my works include:

1. Experiments carried out in this thesis used the SITS dataset [3], univariate UCR

2015 datasets [1], and multivariate UCR 2018 datasets [5]. Therefore, all exper-

imental techniques have the limitations associated with these datasets. These

include, limitations arising from normalization techniques, distribution of data,

any issues with data labeling, and limitations of the provided train/test splits.

Due to time constraints and resource constraints, my experiments did not use a

large number of resamples or do cross-validation to reduce variance of the models.

2. One of the ways we can improve TS-CHIEF is by improving its memory usage.

Currently most of the memory is being used by dictionary-based splitters so if

we could improve the current implementation or perhaps replace it with a variant

more similar to TDE than BOSS, we may be able to improve its memory footprint

as well as accuracy.

3. Multivariate similarity measures presented in Chapter 5 can be improved fur-

ther. For example, the method to adjust the parameter of multivariate LCSS (and

TWE) explained in Chapter 5, Section 3.3.3, assumes that the data are normally

distributed. If this assumption doesn’t hold, the accuracy of these measures may

be affected. Also, when using multivariate MSM with 1-NN, out of all measures
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MSMD, used almost 50% of the runtime. This slows down Multivariate Proximity

Forest.

7.4 Future Work

1. Both Proximity Forest and TS-CHIEF have quadratic worst-case runtime O(L2)

with respect to the length of the series. This is due to the O(L2) complexity

of similarity measures such as WDTW, which does not use a warping window.

For example, on UCR datasets, most of the training time is used by a handful

of datasets such as Handoutline which has long time series. Strategies that can

be explored further to reduce the average runtime complexity include 1) replacing

slower measures such as WDTW with faster measures with similar or better accu-

racy, 2) investigating the effect of limiting the maximum warping window size to

smaller values for measures such as DTW (currently it is 25% of the series length),

3) using early abandoning techniques [54] to “shortcut” similarity calculations.

2. One of the ways that HIVE-COTEv2 improved its accuracy is by replacing slow

and older algorithms with newer components. Since TS-CHIEF’s first version,

many new algorithms have been introduced which can be used to create new

splitters at the node level. For example, the current interval-based splitter inspired

by RISE could be replaced with a new splitter that works on the “catch-22” features

used by the DrCIF component of HIVE-COTEv2 Similarly, the latest dictionary-

based splitter TDE which is more accurate and memory efficient can be used

to create a new splitter to replace the current BOSS inspired dictionary-based

splitter. Furthermore, splitters that use other techniques, such as deep-learning

based methods, could be integrated into the TS-CHIEF framework.

3. One of the current goals I have for TS-CHIEF is to extend it to support multivari-

ate TSC. Multivariate Proximity Forest is one step of the process. Adding two new

DrCIF and TDE based splitters can also transform TS-CHIEF to support multi-

variate classification. This is becoming increasingly important since multivariate

versions of ROCKET, InceptionTime and HIVE-COTE have been introduced in

recent years.

4. Multivariate Proximity Forest currently explores simple random strategies to select

subsets of dimensions. There is potential future work to investigate more complex

strategies to select subsets of dimensions.
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Proximity Forest

In this Appendix, I have included a copy of the Proximity Forest paper [8] as it was

published in Data Mining and Knowledge Discovery journal.
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Abstract
Research into the classification of time series has made enormous progress in the last
decade. The UCR time series archive has played a significant role in challenging and
guiding the development of new learners for time series classification. The largest
dataset in the UCR archive holds 10,000 time series only; which may explain why the
primary research focus has been on creating algorithms that have high accuracy on rel-
atively small datasets. This paper introduces Proximity Forest, an algorithm that learns
accurate models from datasets with millions of time series, and classifies a time series
in milliseconds. The models are ensembles of highly randomized Proximity Trees.
Whereas conventional decision trees branch on attribute values (and usually perform
poorly on time series), Proximity Trees branch on the proximity of time series to one
exemplar time series or another; allowing us to leverage the decades of work into
developing relevant measures for time series. Proximity Forest gains both efficiency
and accuracy by stochastic selection of both exemplars and similarity measures. Our
work is motivated by recent time series applications that provide orders of magni-
tude more time series than the UCR benchmarks. Our experiments demonstrate that
Proximity Forest is highly competitive on the UCR archive: it ranks among the most
accurate classifiers while being significantly faster. We demonstrate on a 1M time
series Earth observation dataset that Proximity Forest retains this accuracy on datasets
that are many orders of magnitude greater than those in the UCR repository, while
learning its models at least 100,000 times faster than current state-of-the-art models
Elastic Ensemble and COTE.
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1 Introduction

A growing number of time series applications address training from orders of magni-
tude more series than the largest in the benchmark UCR repository—the 8926 training
series ElectricDevices data set. In contrast, the phoneme dataset (Hamooni andMueen
2014) contains 370,000 series. The satellite dataset (Tan et al. 2017) contains 1,000,000
series. The prior state-of-the-art in time series classification does not scale to such
quantities. In 2017, a meticulous study was conducted to compare the behaviour of
the state of the art (Bagnall et al. 2017). The authors draw the following conclusions:

1. The state of the art is led by four classifiers that are: Collective of transformation-
based ensembles (COTE) (Bagnall et al. 2015), Elastic ensemble (EE) (Lines and
Bagnall 2015), Shapelet transform (ST) (Hills et al. 2014) andBag of SFA symbols
(BOSS) (Schäfer 2015).

2. COTE is a special case in that it subsumes two of the other classifiers: it is a large
ensemble classifier that includes EE and ST as sub-classifiers; COTE is on average,
“clearly superior to other published techniques.”

3. COTE’s runtime complexity is bounded by (a) Shapelet transform, which is O(n2 ·
l4) (Bagnall et al. 2015) for n time series of length l, and (b) the parameter searches
for EE, some of which are O(n2 · l3). The authors conclude “An algorithm that is
faster than COTE but not significantly less accurate would be a genuine advance
in the field.”

This is the challengewe tackle in this paper: developing an algorithm that is competitive
with the accuracy of the state of the art, but can learn fromdatasetswithmillions of time
series. We call our algorithm Proximity Forest. It is a tree-based ensemble that makes
the most of the decades of research into developing consistent similarity measures for
time series.

Typical decision trees branch on the value of an attribute. Treating the values at each
time stamp as belonging to a single attribute does not work well on time series because
the relevant signals are not necessarily alignedby time stamp. Instead, ProximityForest
branches on the proximity of a query time series to a set of reference series. ‘Proximity’
is defined by a given (time series) similarity measure and a set of parameters (most
time series measures have parameters that are critical to their proper function). Our
trees define separating hyperplanes for which the position is supported by time series
themselves (whereas a traditional tree would split using a threshold on the value of
an attribute). Proximity Forest, as opposed to nearest neighbour approaches, truly
abstracts a model from data, which makes it possible to classify with time that is
logarithmicwith respect to training set size, as opposed to linear time forEEandCOTE.
Moreover, we will show that we specifically designed its training to scale linearly with
the quantity of data, as opposed to at least quadratically for EE, COTE and ST.

Figure 1 shows the accuracy and the training time required by Proximity Forest and
EE on our satellite dataset with increasing training set size. Two important elements
are illustrated: (1) Proximity Forest scales linearly with training set size while EE
scales quadratically; and, (2) Proximity Forest’s classification accuracy on this dataset
is substantially better than EE, even when they train on the same quantity of data. For
our application, Proximity Forest can learn from 1M time series in 17 h (on 1 CPU)
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Fig. 1 Comparison of Proximity Forest (in blue) with Elastic Ensemble (in red). a Classification accuracy
as a function of the size of the training data. b Training time as a function of the size of the training data.
Note that we take Elastic Ensemble because it is the classifier that prevents scalability of the state-of-the-art
COTE ensemble, which includes EE as one of its classifiers (Color figure online)

while it would take over 200 years for EE—a 103,000x speedup. Furthermore, ST and
COTE learn slower than EE and thus will have even larger training times. Note that
EE is a component of COTE and hence sets a lower bound on COTE’s training time.
Our discussion will often focus on EE because EE is very similar to our algorithm in
that it is trying to leverage existing time series similarity measures.

The virtues of Proximity Forest are not limited to large datasets, however. Our
experiments show that it also outperforms EE in classification accuracy on themajority
of the datasets of the UCR Archive.

The remainder of this paper is structured as follows: in Sect. 2, we review the state
of the art in time series classification, with a particular focus on scalability. We then
introduce Proximity Forest in Sect. 3. Our experiments (Sect. 4) show that Proximity
Forest (1) outperforms all other scalable algorithms on our case study in both accuracy
and training time; and (2) is competitive with the state of the art on UCR data in terms
of accuracy. The section ends with a study of Proximity Forest’s parameters and a
discussion of how their values vary the results.

2 Time series classification: related work

We present here a non-exhaustive review of the state of the art in time series classifi-
cation and similar decision tree-based algorithms. We focus on our particular interest
in this paper: scalable training and classification.

2.1 Distance-based classification

2.1.1 Distances

Time series have particular properties that have led to the development of specific
similarity measures: they are often auto-correlated (the value of the time series at a
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timestamp is likely to be close to the ones just before and after), and often include non-
linear distortions in the time axis (for example, because the start of the phenomenon
of interest is delayed, or because sections of the phenomena are faster or slower). This
has rendered typical similarity measures severely flawed and led to the development
of specific similarities, of which most have an ability to re-align the series along
a common intrinsic time-line. Important measures include Dynamic time warping
(DTW) (Sakoe and Chiba 1971, 1978), Derivative DTW (DDTW) (Keogh et al. 2001;
Górecki and Łuczak 2013), Weighted DTW (WDTW) (Jeong et al. 2011), Longest
common subsequence (LCSS) (Vlachos et al. 2006), Edit distance with real penalty
(ERP) (Chen andNg 2004; Chen et al. 2005), Timewarp edit distance (TWE) (Marteau
2009) andMove-Split-Merge (MSM) (Stefan et al. 2013).Amore complete description
and comparison of these distancemeasures can be found in Bagnall et al. (2017); Lines
and Bagnall (2015); Wang et al. (2013). Note also that most of these distances have
parameters of which tuning is critical to their functioning.

2.1.2 Nearest-neighbor approaches

It is most common to classify time series data using Nearest Neighbour classification
based on a relative distance (such as those returned from the measures above) (Haghiri
et al. 2017). In fact, for more than a decade, the NN algorithm combinedwith the DTW
measure was extremely difficult to beat (Wang et al. 2013).

It is important to note here that when researchers mention the use of NNwith a time
series measure, the measure is not directly applied with a default parameterization,
but rather its parameters are first learned on the data, usually by cross-validation.

There are two main issues with NN approaches: (1) the tuning of the measures’
parameters is usually quadratic with the size of the training data, and (2) the classi-
fication is at least linear with the size of the training data. Both of these issues are
further compounded by the fact that most measures have a computational complexity
that sits between linear and quadratic with the length of the series.

To alleviate the second issue of scalable classification, targeted techniques have
been developed. Data reduction techniques aim at simplifying the training database
without penalizing the classification quality; either by directly removing objects from
the original database (Pękalska et al. 2006; Ueno et al. 2006) or by summarizing the
database and replacing sets of time serieswith representatives using average time series
(Petitjean and Gançarski 2012; Petitjean et al. 2014, 2016; Marteau 2016). Indexing
is more difficult on time series than it is on traditional data, mostly because time series
measures do not obey the triangular equality (at most obeying a relaxed p-triangular
inequality Lemire 2009), which makes exact pruning very inefficient (however, a
general approach to improving the efficiency of NN searches in non-Euclidean space
is available in Lifshits 2010). To perform exact indexing, the main research effort has
been put onto developing lower bounds (and mostly for DTW) (Keogh et al. 2006;
Lemire 2009). Recently, impelled by the motivating application of Earth observation
data analytics, we have developed an algorithm for approximate and efficient NN
search under DTW (Tan et al. 2017), an algorithm using the idea of a hierarchical
k-means clustering.
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As mentioned previously, Elastic ensemble (EE) (Lines and Bagnall 2015) is a
recent state-of-the-art time series classifier. It is an ensemble of 11 NN classifiers, each
learned with a different time series measure (with their parameters tuned accordingly).
The EE algorithm has played a significant role in the design of Proximity Forest and
will be discussed at greater depth in Sects. 3.1 and 3.2.

2.2 Approaches that learn features

The following approaches construct an abstraction of the training dataset by learning
features that represent the classes in the time series.

2.2.1 Shapelets

The aim of shapelet algorithms is to find subseries (or consecutive subsets of time
series) that can help discriminate between the different classes. To classify a time
series, the learned shapelet is placed at the best position in the time series (usually under
Euclidean distance), and the ‘matching’ of the shapelet to the time series correspond
to its distance at this best position. The original shapelet-classifier (Ye and Keogh
2011) inserted this algorithm at the node of a decision tree as a splitting criterion.
This algorithm has a high training complexity (O(n4)) due to the large number of
candidate shapelets and the repeated scanning of the data. Subsequent research has
focused on optimising the original algorithm to address both classification accuracy
and scalability, notably Fast Shapelets (Rakthanmanon and Keogh 2013), Learning
Time Series Shapelets (Grabocka et al. 2016) and Shapelet Transforms (Hills et al.
2014).

Shapelet transforms (ST) is a current state-of-the-art classifier that identifies the
best k shapelets in a single scan of the data (the number of shapelets can be reduced
afterwards). The data is then transformed by defining an attribute to represent each
shapelet with the value being the (usually Euclidean) distance between the shapelet
and the best position in the time series. The transformed dataset can now be used with
any classifier or ensemble of classifiers (such as in Bagnall et al. 2015). While ST is
considered a state-of-the-art classifier, it has little potential to scale to large datasets
given its training complexity of O(n2 · l4).

2.2.2 Bag of words approaches

Bagofwords are similar to shapelets in that they start by identifying exemplar subseries
in the data to discriminate between classes. However rather than finding the similarity
to the relative best positions in a time series, bag of words approaches differentiate
classes by the relative frequency of the subseries. To calculate these frequencies,
the algorithms discretise the values into a series of symbols, assigning letters to each
subseries, and thus representing the original time series as ‘words’.Notable approaches
are the Bag of patterns (Lin et al. 2012); the Symbolic aggregate approximation vector
space model (SAX-VSM) (Senin and Malinchik 2013); and the Bag of SFA symbols
(BOSS) (Schäfer 2015), which is currently considered state of the art.
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TheBOSSalgorithm transforms the time series into aword using a symbolic Fourier
approximation (SFA) (Schäfer and Högqvist 2012) thus making it robust to noise and
delivering a high classification accuracy. It is however of limited use on large datasets
as it has a high training complexity O(n2) (Bagnall et al. 2017). The authors identified
this as a weakness and subsequently produced similar approaches with improved
scalability, the Bag of SFA symbols in Vector space (BOSS-VS) (Schäfer 2015). The
same authors recently proposed WEASEL (Schäfer and Leser 2017), which improves
on the computation time ofBOSS and on the accuracy ofBOSS-VS, but has a very high
memory complexity (our experiments will show that it doesn’t scale beyond 10,000
time series). In this way, WEASEL is more optimised for speed on small datasets than
for scalability.

2.3 Ensemble approaches

Ensemble approaches are combinations ofmultiple classifiers. Each contributing algo-
rithm can be weighted to maximize classification accuracy, while the time complexity
is that of the slowest constituent. Some of these approaches have been discussed above
as they are based around one main type of classifier, for example EE and ST.

The Collective of transformation-based ensembles (COTE) (Bagnall et al. 2015)
is an ensemble comprising 35 classifiers across four time series domains: time, fre-
quency, change and shapelet transformation. For the time domain, COTE uses the 11
distance measures of EE, while in the other three domains, classifiers are recruited
from outside time series classification—k-nearest neighbours, naive Bayes, decision
trees, random forest, rotation forest, support vector machines (two models) and a
Bayesian network approach. On the benchmark UCR datasets, COTE has the highest
average classification accuracy of all current approaches. However, its time complex-
ity is bound by that of the Shapelet transform, which is O(n2 · l4) and the parameter
searches for the elastic distance measures (EE), some of which are O(n2 · l3).

2.4 Decision tree approaches

A number of decision tree approaches have been developed for time series classifica-
tion.

Time series forest (TSF) (Deng et al. 2013) first derives summary features for all
time series by dividing them into intervals and summarising each interval by its mean,
standard deviation and gradient. Then a Random Forest-like strategy is employed to
select between a random subset of these features at each node in each of an ensemble
of trees. A novel selection criterion is used that considers both entropy gain and the
margin by which a feature separates the classes. This continues until the entropy gain
ceases to improve, atwhich stage the node is defined as a leaf. TSFhas been shown to be
a reasonably accurate classifier: its accuracy ranks behind EE and DTWwithout being
significantly worse (Bagnall et al. 2017). However, its main virtue is computational
efficiency. TSF learns in O(n log(n) · l · k) for a forest of k trees built from n series of
length l, which is a much lower complexity than the current state of the art.
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Generalized randomshapelet forest (gRSF) (Karlsson et al. 2016) extracts a shapelet
from a randomly chosen time series and finds the distance between this time series
and each other time series. The data is then split according to whether it is above or
below a threshold distance to the representative shapelet. This is applied recursively
until the node is either pure on the number of instances remaining at a node is less
than 3. As mentioned in Sect. 2.2.1, the main pitfall of shapelet-based methods is the
high computational cost of finding candidate shapelets and comparing shapelets to
other time series. The gRSF minimises this issue by randomising many of the model
choices—a candidate shapelet is generated from a randomly chosen time series by
choosing a random starting point and random length, this is repeated r times and
the best candidate is chosen for a given split. The resulting algorithm has accuracy
competitive with Learning Time Series Shapelets and better than DTW.

A number of approaches have been developed that form decision trees where splits
are based on similarity to chosen exemplars (Balakrishnan andMadigan 2006;Douzal-
Chouakria and Amblard 2012; Yamada et al. 2003). One strategy is to select a single
exemplar and then choose a cut point on a similarity measure with respect to that
exemplar. Series with similarity scores lower than the cut point follow one branch
and the remaining examples follow the other. The other strategy is to select multiple
exemplars, one associated with each branch. Series follow the branch with whose
exemplar they are most similar. These approaches are hampered by the high computa-
tional complexity of their search for exemplars at each node. Similarity Forests (Sathe
and Aggarwal 2017) and Comparison-based Random Forests (Haghiri et al. 2018)
generalise this idea to attribute-value data with random selection of exemplars and
developed forests of such trees. Similarity Forests add a cutoff value on the difference
in the distance between the two exemplars, and optimizes that cutoff value based on
weighted Gini. The idea of using similarity as the splitting criterion in tree structures
has also been successfully used for indexing of regular tabular data (www.cs.ubc.ca/
research/flann/, Bernhardsson 2013; Sathe and Aggarwal 2017) and of time series
with DTW (Tan et al. 2017).

3 Proximity forest

In this section, we present our novel algorithm for time series classification: Proximity
Forest. We start by highlighting why there is a need for a new time series classifier.
We then present our model and the two key algorithms (1) how to learn a Proximity
Forest and (2) classifying with a Proximity Forest.We conclude this section with some
comments about its complexity.

3.1 Why do we need a novel time series classifier?

The previous section highlighted that the last decade has seen numerous classifiers
and distance measures specifically designed for time series classification. Based on
this, one could wonder why there is a need for a novel algorithm; the answer is simple:
most state-of-the-art algorithms do not scale to large time series datasets. We have
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seen that some do not scale in the learning phase (ST, EE, COTE). Others require a
scan of the training database to perform each classification (EE, COTE). Those that
do scale to medium-size datasets, such as BOSS-VS, compromise accuracy in order
to do so (as we will show for both our case study and for UCR datasets). Throughout
the development and advancement of much of the current state of the art, scalability
has usually been secondary to accuracy. This is because time is not a significant
issue when considering data with only few time series. However, a growing number of
modern applications consist of hundreds of thousands to millions of time series. These
applications require a classifier that is both accurate and scalable in both learning and
classification.

BOSS-VS is a classifier that appears to have developed with a focus on scalability.
However, as we will see in Sect. 4, its accuracy ranks some 30% points lower in our
case study, and therefore is not competitive with the accuracy of the state of the art.

While COTE is currently the state of the art in terms of accuracy, its learning phase
is bound by the runtime complexity of both ST and EE. On our 1M dataset—and as
depicted in Fig. 1—the sole learning phase of COTE associated to training EE would
require 73,000 days, or 200 years. This is even more startling knowing that the series
in this dataset are very short with only 46 timestamps.

The large runtime complexity of COTE is largely due to the fact that EE does not
abstract much information during the learning phase, and therefore has a significantly
greater number of processes to complete during testing. A corollary of this is that
a distance-based classifier that learns faster than EE for the same level of accuracy
would also present an improvement to COTE. It is for this reason that our design
of algorithm incorporates many elements of EE—11 distance measures and similar
parametrisation—and why our experiments provide a direct comparison of Proximity
Forest against EE.

We therefore argue that the need for a scalable and accurate classifier has not yet
beenmet.We incorporate three critical elements into the design of our novel approach:

1. We make the most of over 30 years of research into designing consistent measures
for time series.

2. We specifically design our ensemble to have a high variability between the different
individual classifiers. This results in an improved overall classification accuracy
over a single classifier, based on the principle of ensemble methods. In general,
averaging the predictions of multiple models each having high variance and low
bias results in an ensemble classifier with a lower total error than any single clas-
sifier. This is analogous to how a Random Forest model, another ensemble of
decision trees, will only learn from a fraction of the available features for each
individual node in order to introduce variability between the trees (Breiman 2001;
Ho 1995). This observation is important, because we did not design the learning of
an individual tree tomaximize its accuracy; if we hadwanted to design a single tree
model, we would have made different design choices. We designed the learning
of individual trees so that the overall classification performance is maximised.

3. We design Proximity Forest to be extremely scalable with an average-case learning
complexity of O(n log (n) · l2) and a classification complexity of O(log (n) · l2)
per tree for n training time series of length l. This contrasts with the state-of-the-art
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learning in O(n2 ·l3) (Elastic ensemble) or O(n2 ·l4) (Shapelet transform, COTE).
Again here, we might have made different choices if scalability wasn’t a design
objective.

To achieve scalability we employ tree-based classifiers. These are scalable due to their
use of a divide-and-conquer strategy. At each level the data are divided into multiple
subsets, as result of which the trees are on average of depth O(log n), hence increasing
sublinearly in depth relative to training set size.

Our use of decision trees for time series classification is not novel in itself. Trees
are attractive due to their divide and conquer methodology and resulting potential for
efficient learning and classification. Previous implementations, however, have lacked
competitiveness in accuracy (Deng et al. 2013; Douzal-Chouakria and Amblard 2012;
Yamada et al. 2003) or time (Balakrishnan and Madigan 2006; Douzal-Chouakria and
Amblard 2012; Yamada et al. 2003).

To achieve scalability we merge the strategy of learning decision trees where splits
are based on similarity to chosen time series exemplars (Balakrishnan and Madigan
2006; Douzal-Chouakria and Amblard 2012; Yamada et al. 2003) with the strategy of
forming forests of such trees in which the exemplars are chosen at random (Sathe and
Aggarwal 2017). To this amalgamwe add the critical ingredient of stochastic selection
between a large range of similarity measures, which both reduces bias and provides a
beneficial increase in variance between ensemble members.

3.2 How to learn a Proximity Forest?

We seek to learn a Proximity Forest from a training set comprising n labeled time
series, each of which is of length l, where the labels are integers from 1 to c.

A Proximity Forest is an ensemble of k Proximity Trees. A Proximity Tree is similar
to a regular decision tree, but differs in the tests applied at internal nodes. Whereas
a regular decision tree applies a test based on the value of an attribute (e.g. if height
> 160 cm, follow the left branch, otherwise follow the right branch), each branch
of an internal node of a Proximity Tree has an associated exemplar and an object
follows the branch corresponding to the exemplar to which it is closest according to a
parameterized similarity measure. We will see later how the exemplars and measures
are chosen. A tree is either a leaf or an internal node.

An internal node has two fields, measure, a function object × object → R,
and branches, a vector of branches. Each branch has two fields, a time series
(exemplar) and a tree to which an object is passed if it is nearer to the branch’s
exemplar than any other (subtree).

If all data reaching a node has the same class, i.e. is pure, the create_lea f function
creates a new leaf node and assigns this class label to its field class. This label is
then assigned to any query time series reaching this leaf during the testing phase.

How do we choose the splitting criteria? A Proximity Tree creates, at each node,
one branch for each class that exists in the data it receives from its parent. These
exemplars are chosen uniformly at random among each class. The parameterized
similarity measures are also chosen uniformly at random among a pool that will be
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described below after we have given the main overview of the algorithm. We will
detail, after the main algorithm, how it is possible to learn with randomized trees.

Algorithm 1 presents the algorithm for learning a single tree. Each node is con-
structed recursively from the root node down to the leaves. If the data at the node is
pure—i.e., all data belongs to the same class—then the node becomes a leaf and the
recursion finishes.

At each node, a pool of r candidate splits are evaluated (Algorithm 2). For each
candidate, a parameterised measure is chosen uniformly at random among a pool of
such measures. We then select an exemplar for each class represented at the node and
pass the data down the branches by finding the closest exemplar (one per class) for
each time series in the data using the split’s distance measure.

Once each candidate split has been created, we then select the candidate that max-
imizes the difference between the Gini impurity of the parent node and the weighted
sum of Gini impurity of the child nodes. We then call the construction of the tree
recursively on each branch for the successful candidate; this constructs all subtrees.
When this is done, the tree is constructed.

Increasing the number of candidate splits per node will lead to an improvement of
the quality of each split. However, it will also lead to an increase of the training time.
The choice for the value of r will be discussed later in Sect. 4.3.2.

The case of R = 1: is selecting at random still ‘learning’?Onemight wonder what the
tree is actually learning when one only considers a single candidate (R = 1). In that
case, no selection of ‘the best possible split’ is performed. It is interesting to note that
choosing splitting criteria independently of the output value has been studied before,
a key example being Extremely randomized trees (Geurts et al. 2006). In that work,
they showed that splitting completely at random still ensures consistency (tending to
Bayes optimal error as the data tends to infinity). Themain reason is that the exemplars
are not random points in the input space. They are sampled from the data distribution
of each class. In consequence, the trees are still learning an abstraction of the data,
using the trees as a density estimator (Ting et al. 2016).

We depict in Fig. 2 a graphical representation of a simple split obtained on the
Trace dataset. It is interesting to see that in Euclidean space, the splitting criterion
is actually forming a hyperplane that is equidistant to the exemplars. Note that this
intuition is more complex for time series measures, because most of them do not have
properties of a metric (Lemire 2009). The scatter plot depicts each time series as a dot
in this space, with the x-axis representing distance to the first exemplar and the y-axis
distance to the second.

How to choose the parametrised measure on which to split? The parametrised dis-
tance measure gives a measure of the similarity between the exemplar time series. For
each candidate split at each node, the algorithm chooses a distance measure at random
from the following 11 distancemeasures used by the Elastic ensemble (EE) learner that
we described above: Euclidean distance (ED); Dynamic time warping using the full
window (DTW); Dynamic time warping with a restricted warping window (DTW-R);
Weighted dynamic time warping (WDTW); Derivative dynamic time warping using
the full window (DDTW); Derivative dynamic time warping with a restricted warping
window (DDTW-R);Weighted derivative dynamic time warping (WDDTW); Longest
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Algorithm 1: build_tree(D,�, R)

Input: D: a time series dataset
Input: �: a set of parameterized distance measures
Input: R: number of candidate splits to consider at each node
Output: T : a Proximity Tree

if is_pure(D) then
return create_leaf(D)

// create tree, to be returned, represented as its root node

T ← create_node()

// Creating R candidate splitters
R ← ∅
for i = 1 to R do

r ← gen_candidate_spli t ter (D, �) // generate random splitter
Add splitter r to R

// select best splitter using measure δ� and exemplars E�

(δ�, E�) ← argmaxr∈R Gini (r)

Tδ ← δ� // retain measure for root node of T
TB ← ∅ // TB will store the branches under root node of T
foreach exemplar e ∈ E� do

// D�
e is the subset of D that are the closest to e based on δ�

D�
e ←

⎧
⎨

⎩
d ∈ D | argmine′∈E∗ δ�(d, e′) = e

⎫
⎬

⎭

t ← build_tree(D�
e , �, R) // build subtree for that branch

Add branch (e, t) to TB // a branch is a pair (exemplar,sub-tree)

return T

Algorithm 2: gen_candidate_splitter(D,�)

Input: D: a time series dataset
Input: �: a set of parameterized distance measures to sample from
Output: (δ, E): a parameterized distance measure and a set of exemplars

// sample a parameterized measure δ uniformly at random from �

δ
∼←− �

// select one exemplar per class to constitute the set E
E ← ∅
foreach class c present in D do

Dc ← {d ∈ D | class(d) = c} // Dc is the data for class c

e
∼←− Dc // sample an exemplar e uniformly at random from Dc

Add e to E

return (δ, E)
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Fig. 2 Visual depiction of the root node for the ‘Trace’ dataset (simplified to 2 classes). The top chart
represents the data at the root node (one colour per class) while the data at the bottom left and right
represent the data once split by the tree. The two time series in the middle left and right are the exemplars
on which the tree is splitting. The scatter plot at the center represents the distance of each time series at the
root node with respect to the left and right exemplars (resp. x- and y-axes) (Color figure online)

common subsequence (LCSS); Edit distance with real penalty (ERP); Time warp edit
distance (TWE); and, Move-Split-Merge (MSM). Randomising the choice of distance
measure is a deliberate decision to introduce variability between each tree, for the
reasons stated earlier.

Once a distancemeasure is chosen at random, it is then parametrised. The parametri-
sations are addressed in turn. They are deliberately chosen to mimic as closely as
possible the EE algorithm. Even though better values might be chosen here, we mimic
EE’s parameterization to allow direct comparison. Euclidean distance, full DTW, and
full DDTWdistances have no parameters to select. DTW-R andDDTW-R only require
a warping window parameter that is chosen uniformly at random in [[0, 	 l+1

4 
]] (thus
allowing a warping of elements at most l

2 apart). WDTW and WDDTW requires
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also one parameter to select that it is used into the weighted value g to control the
level of penalization between two different time stamps—we use g ∼ U (0, 1). The
parametrisation of ERP is a distance threshold that controls for how close elements
have to be to be considered similar; we sample it uniformly at random in [σ

5 , σ ],
with σ being the standard deviation of the data. LCSS has as first parameter the
same distance threshold value (which is sampled in the same way), and has a second
parameter—the warping window size—which is chosen in the same way as for DTW-
R. TWE has two parameters γ and λ which respectively control for the stiffness and
penalty value in the alignment. Following (Marteau 2009), λ is sampled at random
from ∪9

i=0
i
9 and γ following at random from the exponentially growing sequence

{10−5, 10−4, 5× 10−4, 10−3, 5× 10−3, · · · , 1}, resulting in 100 possible parameter-
izations. The final measure, MSM, has a single parameter which is sampled from an
exponential sequence similar to the one for γ in TWE with 100 values ranging from
10−2 to 102, as recommended in Stefan et al. (2013).

Choosing the parameter at random has a twofold effect: (1) it skips the cross-
validation step which has a quadratic complexity; and (2) it introduces variability
between trees,which provides superior learning through lower-biased trees and ensem-
bling. In the following experiments we will show that Proximity Forest is not only
orders of magnitude faster than EE, but that its accuracy also ranks higher than EE.

3.3 Classifying with a Proximity Forest

The process of classification for a single Proximity Tree is detailed in Algorithm 3: a
query time series begins at the root node and the distance from the query to each of the
exemplar time series is calculated, by using the node’s distancemeasure and exemplars
selected when constructing the tree. The query time series is then passed down the
branch of the exemplar to which it is nearest. The query time series then traverses
down the tree by repeating this process until it reaches a leaf, where it is assigned the
class represented by that leaf. This process is repeated for each tree constructed as part
of the forest. A Proximity Forest then uses majority voting between its constituent
Proximity Trees.

Algorithm 3: classification(Q, T )

Input: Q: Query Time Series
Input: T : Proximity Tree

if is_leaf(T ) then
return majority class of T

// find the branch with exemplar closest to Q using measure Tδ

(e, T �) ← argmin(e′,T ′)∈TB Tδ(Q, e′)

return classification
(
Q, T �

)
// recursive call on subtree T �
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3.4 Comparative complexity analysis

During the training phase, at each node, let us assume that n′ data points are present
at the node. We first scan it once taking O(n′) time to split the data into c groups, one
for each class c present at the node.

We then generate r candidate splits, i.e., r sets of exemplar time series. For each
such candidate set, we sample c′ � c exemplar time series, i.e., one time series for class
represented among the n′ time series available at the node—this is done in O(1) given
that the data is already organised by class. For the candidate split to be operational, we
also require a parameterized measure to use to compare against these c′ exemplars.
Most of the parametrized measures can be chosen in O(1), except for LCSS and ERP
which calculate the standard deviation in O(n′ · l) for data at the node while selecting
the parameter.1

We now have r candidate splits that are ready to be evaluated. We now wash the
n′ time series down the branches for all candidate splits. This is done by comparing
each time series to the c′ exemplars, each comparison taking from O(c · l) to O(c · l2).
Overall, this takes O(n′ · c′ · l2). If r = 1, the training process at this node is finished
and we call the training function recursively for each of the c′ children nodes. If r > 1,
we calculate the Gini coefficient for each of the r candidate splits in O(c2), keep the
best one, and delete other candidate splits.

As the total number of examples that reach any of the nodes at a single given level
cannot be greater than the total number of examples, n, the total computation per
level of the tree is thus O(n · r · c · l2). In the worst case, the majority of the training
data at each level will pass down a single branch and the depth of the tree will be
O(n), resulting in a worst training time complexity of O(n2 · r · c · l2). However, as
the exemplars are following the class distribution, unless the data are in some way
degenerate (for example if one class comprises only outliers), the average tree depth
can be expected to be O(log n). In practice it will often be much smaller, because,
unlike typical divide-and-conquer approaches, the tree terminates as soon as a node is
pure rather than having to separate each individual object. Thus, for non-degenerate
data we can expect average case training time complexity ofO

(
n log (n) · r · c · l2) for

a single tree and thusO
(
k · n log (n) · r · c · l2) for a full Proximity Forest comprising

k Proximity Trees.
The experiments presented in the next sectionwill include runtimes and comparison

to current state-of-the-art algorithms. These confirm that this expected average case
quasi-linear complexity with respect to data quantity is borne out in practice.

During classification, a time series of length l will pass through an average of log n
nodes on each of the k trees. At each node, the distance to at most c exemplars must be
computed. For each of these distance computations, the complexity will again depend
upon the chosen distance measure; the fastest being O(l) and the slowest O(l2). Thus,
the resulting average case complexity is O(k · log n · c · l2).

1 Note that these parametrisations can be performed in constant time also if the data are z-normalized,
which is the case for all UCR datasets.
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4 Experiments

This section describes the experiments that evaluate our Proximity Forest. We start
with the satellite image time series (SITS) dataset, a (very) large time series dataset
describing the evolution of the Earth as pictured every five days by a high-resolution
satellite. This dataset is an example of the large time series datasets that motivate
the need for a new time series classification algorithm, as no current state-of-the-art
approach scales to this magnitude. Conversely, there are classifiers designed for scal-
ability, namely BOSS-VS, that compromise classification accuracy to do so. The first
experiments presented in this section use the SITS dataset to demonstrate the ability
of Proximity Forest to be both scalable and accurate. The second section assesses
the Proximity Forest on the datasets of the UCR time series classification repository
(Chen et al. 2015), the benchmark in the field. It demonstrates that the classification
accuracy of Proximity Forest is competitive with the current state of the art. The final
section discusses other considerations surrounding Proximity Forest, such as the effect
of varying the number of trees, and the standard deviation of the results.

It should be mentioned that throughout the following experiments we have empha-
sized a comparison with EE. This is because it is viewed as the closest relative to
Proximity Forest amongst the current state of the art, given that neithermethod includes
data transforms or shapelets. It is also the constituent of COTE that bounds its learning
time and therefore any improvement over the runtime of EE, for the same classification
accuracy, would also equate to an improvement on COTE, the current leader in the
field.

To facilitate others to build on our work, as well as to ensure reproducibility, we
have made our code and the full raw results available at https://github.com/fpetitjean/
ProximityForest/.

4.1 Case study: satellite image time series dataset

The SITS dataset contains approximately 1 million time series with a train-test split
of approximately 90–10%.2 Each time series has a length of 46 and is labeled as one
of 24 possible land-use classes (e.g. ‘wheat’, ‘corn’, ‘plantation’, ‘urban’). Here the
labeled data has been extracted from three sources: (1) ground field campaigns for
most of the vegetation classes, (2) farmer’s declaration to complete the data for some
crop classes, and (3) existing map for the urban areas.

The experiments presented in this sectionwere performedon this dataset, comparing
the performance of Proximity Forest against three competitors: BOSS-VS (designed
for scalability), WEASEL (designed for speed and quality), and EE (designed for
quality). We use 5 runs for each experiment of Proximity Forest and 1 run of each of
the competitors—as their results are deterministic. Throughout this experiment, we
use 100 trees; we will see in Sect. 4.3 that this gives a good tradeoff between accuracy
and computational time/memory. Although we are mainly assessing the scalability,
we will also have a quick look to the accuracy.

2 The split ensures that no 2 times series come from the same plot of land.
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Fig. 3 Training time (a) and testing time per query (b) as a function of training set size for Proximity Forest,
EE, WEASEL and BOSS-VS

4.1.1 Training scalability

To assess scalability, we train and test each algorithm on subsample data with increas-
ing training set size, allowing training time, testing time and accuracy to be measured
as a function of training size. Figure 3a shows training time against training size for
each of the 4 algorithms.

Versus EE. First, it is evident that Proximity Forest presents a notable saving in
training time over EE, confirming that it trains in linear time rather than the quadratic
time for EE. Even for a small training set of about 2000 time series, learning an
EE model took about 10 h, compared to Proximity Forest’s 79 sec. Fitting a quadratic
curve throughbothEEandProximityForest is quite informative:EE returns a quadratic
component of 6.3 while Proximity Forest only − 8.10 × 10−6, clearly highlighting
both the quadratic complexity of EE, and also that Proximity Forest is in practice very
close to its theoretical average complexity and scales quasi-linearly with n.

Versus WEASEL. WEASEL is very fast but its memory footprint did not allow it
to scale beyond 8000 time series even when given 64 GB of RAM. This clearly
highlights the difference with BOSS-VS: we can see thatWEASELwas not developed
for scalability, but rather for speed on small datasets.

Versus BOSS-VS Proximity Forest trains slower than BOSS-VS for a given training
size, however this is counteracted by the low accuracy of BOSS-VS discussed below.

4.1.2 Testing scalability

Figure 3b shows testing time against training size for each of the 4 algorithms. The
story here is very similar to that of training: it confirms the way Proximity Forest
scales logarithmically with training set size, while EE must scan the full database
many times. Here again, WEASEL becomes infeasible to apply with relatively small
quantities of training data. Proximity Forest andBOSS-VS require respectively 0.0679
ms and 0.0077 ms to classify a time series with a model trained on 1M time series.
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Fig. 4 Accuracy as a function of training set size for Proximity Forest, EE, WEASEL and BOSS-VS

4.1.3 Is proximity forest accurate and scalable?

We have now seen that Proximity Forest is highly scalable and only beaten by BOSS-
VS in terms of training time. We will now study how its accuracy scales with training
set size. The main results are presented in Fig. 4 which plots the accuracy as a function
of training set size for Proximity Forest, EE, WEASEL and BOSS-VS.

The first element to observe is that Proximity Forest obtains greater accuracy than
the competitors for large training sets. WEASEL and EE become infeasible to apply
at relatively small data quantities and BOSS-VS—which is faster than Proximity
Forest—does not learn effective classifiers on this dataset. With 63.8% accuracy at
3400 training set size, this is 26.3 percentage points more accurate than BOSS-VS,
and 4.6 and 4.7 percentage points more accurate than WEASEL and EE, respectively.
Such differences are substantial in a problem comprising 24 classes.

Moreover, Proximity Forest is more accurate than the other algorithms from 500
training instances upwards. This is not surprising, as trees usually have a better con-
trol over variance than NN algorithms, because of their higher bias and abstraction
capabilities. Proximity Forest thus appears to be both accurate and highly scalable.
We will show in the next subsection that this result holds also on the benchmark UCR
archive.

4.2 Experiments on the UCR archive

In this section, we study the behavior of Proximity Forest on the 85 datasets of the
traditional UCR archive (Chen et al. 2015). It is useful to remember here that our aim
is not to show that Proximity Forest is more accurate than the state of the art, but only
that it is competitive while being highly scalable. We compare the mean error-rate of
Proximity Forest to the error-rates on the standard train/test split for the state of the
art, as tested in Bagnall et al. (2017). We average Proximity Forest results over 10
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(a) (b)

Fig. 5 Comparison of Proximity Forest and Elastic Ensemble classifiers on UCR datasets in terms of a
accuracy and b training and testing times in log scale

runs for each experiment. We compare Proximity Forest to five classifiers currently
representing the state-of-the-art—DTW-R, COTE, EE, ST andBOSS3. The Proximity
Forest results are obtained for 100 trees with selection between 5 candidates per node.
A detailed discussion about the Proximity Forest parameters will be performed in Sect.
4.3.

We first show the comparison with Proximity Forest’s closest relative, EE. Figure 5
provides scatter plots of the relative accuracy, total training time and total testing time
of each of these classifiers. Each point represents a different UCR dataset. Figure 5a
shows that Proximity Forest is more accurate on 60 datasets and less accurate on only
11 datasets, with 14 ties.Moreover, for many datasets Proximity Forest is substantially
more accurate than EE.

Figure 5b demonstrates that Proximity Forest has several orders of magnitude
advantage in training time.Whenconsidering testing time, ProximityForest has greater
test time per query than EE for 12 datasets, the majority of which are small datasets
(i.e. less than 50 training instances). The largest such difference is observed for the
Phonemes dataset for which Proximity Forest takes about 17 sec per query compared
to 13 sec per query for EE. In contrast, the test time for Proximity Forest is much
smaller than EE for the biggest datasets (i.e. more than 800 training instances). For
example, the biggest test time difference is for the HandOutlines dataset for which
Proximity Forest takes about 19 sec per query compared to 286 sec per query for EE.

The commonly accepted method to compare multiple classifiers over multiple
datasets is by average ranks. For each dataset, we rank the classifiers and then calculate
the average of each classifier’s ranks across all datasets.When comparing 6 algorithms
over 85 datasets, Demšar (2006) shows that for the rankings to be significantly differ-

3 It should be highlighted that the results presented here are for the original BOSS algorithm, and not
the BOSS-VS discussed above in the SITS experiments. BOSS-VS is a scalable variation of BOSS, where
concessions aremade to accuracy in favor of training time. The original BOSS is thereforemore competitive
in this section.
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Fig. 6 Critical difference diagram for five state-of-the-art classifiers and Proximity Forest (PF) with 5
candidates

ent at level α = 0.05, the critical difference (CD) between the average ranks has to be
greater than:

CD = q0.05(A) ·
√

A(A + 1)

6 · Nd
= 2.850 ·

√
42

510
≈ 0.82 (1)

The average ranks and critical difference are presented in Fig. 6; the critical difference
of 0.82 is displayed by the black line. It can be seen that COTE ranks highest (average
rank of 2.28), which is to be expected considering it incorporates the other state-of-
the-art algorithms. However, COTE is not ranked significantly higher than Proximity
Forest (average rank of 2.88) or ST (average rank of 3.08). Proximity Forest is ranked
second. Its rank is not significantly different to COTE, ST or BOSS, but it is ranked
significantly higher thanbothEEandDTW.This affirmsProximityForest as a classifier
with accuracy competitive with the state of the art.

Proximity Forest is the most accurate classifier for 22 of the 85 datasets. However,
there is no obvious commonality between these datasets to suggest conditions under
which the algorithm is likely to excel. The detailed accuracy results for Proximity
Forest and the five state-of-the-art algorithms are shown in “Appendix A”.

4.3 Parameters of Proximity Forest

Proximity Forest has two main parameters that merit further investigation. We first
explore the sensitivity of accuracy to the number of trees in each ensemble. Then,
we discuss the influence of the number of candidates assessed at each node. A third
design choice, random selection of similarity measure per tree as opposed to per node,
is explored in “Appendix B”.

4.3.1 On the choice of the number of trees

The number of trees is the first parameter of the Proximity Forest algorithm with the
optimal value being large enough to provide competitive accuracy, yet small enough
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Fig. 7 Critical difference diagram for Proximity Forest with 5, 10, 50 or 100 trees

not to create excessive computational expense. TheUCRdatasets experiments outlined
above were repeated with values of 5, 10, 50, and 100 trees to analyse how many trees
were required to meet our needs. Here, the number of candidates r has been fixed to 1.
The Proximity Forest results are averaged over 50 runs. Figure 7 presents the critical
difference diagram for accuracy and different number of trees. As expected, the more
trees the higher the average accuracy: models with 100 trees had an average rank of
1.19 compared to 1.93, 2.98 and 3.89 for models with 50, 10, and 5 trees respectively.
The difference between the highest ranked models are large enough to say that models
with 100 trees are significantly better than models with 50 trees at the level of alpha
equals 0.05.

Figure 8 compares the classification accuracy for 100 trees against 10 and 50 trees
by representing them as a ratio of their error rates. Each point represents a single
dataset. This shows that having 100 trees is better on most datasets. Moreover, the fact
that the data is gathered close to the line with equation x = 1 shows that it is unlikely
that more trees would provide a very significant improvement, because the ratio of
error-rates between 100 and 50 is already close to 1 (i.e., the errors are only slightly
reduced). We have not experimented with forests comprising more than 100 trees as
we felt the computational demands outweighed the expected benefits for our large
set of experiments. Memory, training time and testing time all scale linearly with the
number of trees, which means that doubling the number of trees doubles the required
memory and time. However, where computational resources are not an issue, the take
home message is that the more trees the better.

As a randomized algorithm, it is finally interesting to study the standard deviation of
the errors for Proximity Forest and how it varies with the number of trees. This is what
we present in Fig. 9 where the y-axis represents the standard deviation on error-rate for
100 trees as a function of the standard deviation on k equals to 5, 10, and 50 trees. Each
point represents a single dataset. One can see that the standard deviation reduces as we
increase the number of trees, and that themagnitude of this improvement reduceswhen
increasing k. Results for 50 trees are starting to be relatively close to the y = x line,
showing that only marginal improvements could be expected when going to k > 100.

4.3.2 Split selection using the Gini index

This section explores the influence of the number of candidates r that are ran-
domly selected at each node. As a reminder, a set of r candidates—exemplars and
parametrized distance measures—is evaluated at each node based on the Gini index.
The one maximizing the Gini index is retained. To evaluate the influence of r , the
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Fig. 8 Ratio of the error rates of
Proximity Forest models: 100
trees over 10 trees (x-axis)
against 100 trees over 50 trees
(y-axis). A value of less than 1
on either axis indicates that the
model with 100 trees has higher
accuracy
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Fig. 9 Standard deviations σ of error rates on the 85 datasets of the UCR archive for Proximity Forest
models: 100 trees against 50, 10 and 5 trees

UCR experiments were repeated for 1, 2, and 5 candidates on 100 trees. The results
are averaged over 10 runs.

Figure 10 compares the classification accuracy for 5 candidates against 1 and 2
candidates. Each point represents the ratio of the error for 5 candidates to that for
the alternative on an UCR dataset. Choosing between 5 candidates results in higher
accuracy for most datasets. More precisely, selecting between 5 candidates results in
greater accuracy than either 1 or 2 candidates on 61 datasets. Increasing the number
of candidates lead to a reduction of the randomness on each node by discarding the
worse splitters. Accordingly, the overall Proximity Forest accuracies are improved.
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Fig. 10 Ratio of the error rates
of Proximity Forest models: 5
candidates over 1 candidate
(x-axis) against 5 candidates
over 2 candidates (y-axis). A
value of less than 1 on either
axis suggests that the model with
5 candidates has superior
accuracy

Increasing the number of candidates tomore than 5may further improve the classifi-
cation accuracy.However, increasing the number of candidates per node has substantial
impact on training time. Indeed, the analysis of the Proximity Forest’s computational
complexity in Sect. 3.4 shows that the training time scales linearly with the number
of candidates. To verify this analysis, we compare both training and testing time of
Proximity Forest for 1 and 5 candidates in Fig. 11. The testing time is displayed per
query. Each point represents a dataset. The results show a mean increase of 4.6 times
in training time between 1 and 5 candidates, and a mean decrease of 0.93 times in
testing time.

It is notable that selection between multiple alternatives both reduces testing time
and increases the training time by slightly less than the expected multiple of 5 times.
This is because it results in slightly shallower trees. Selection of better splits better
separates the classes, requiring fewer splits to obtain pure nodes that are made into
leaves.

The tuning of the number of candidates is therefore driven by a trade-off between
accuracy and time.

5 Conclusion

We introduced Proximity Forest: a novel, scalable algorithm for accurate time series
classification. Motivated by a need for an algorithm that could learn from millions of
time series, Proximity Forest is an ensemble of trees with a novel splitting criterion
that makes it possible to make the most of decades of work in designing time series
measures. In our case study, we demonstrated that Proximity Forest scales quasi-
linearly with the quantity of training data, whereas most state of the art algorithms
scale quadratically. Our experiments on the UCR datasets show that Proximity Forest
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Fig. 11 Training and testing time of Proximity Forest for 1 and 5 candidates on UCR datasets

is not only very fast. It also has highly competitive accuracy relative to the current
state-of-the-art, and is significantly more accurate than EE.

We believe that there are a number of improvements that can be explored to increase
the accuracy of Proximity Forest while maintaining its quasi-linear complexity, such
as improving the randomized selection of parameters for the distance measures—the
current strategy was designed primarily to emulate EE as directly as possible. We
would also like to investigate to what extent this novel algorithm might shed new light
on the task of time series indexing.

Supplementarymaterial

To ensure reproducibility, we make available the results of the experiments as well as
our source code at https://github.com/fpetitjean/ProximityForest/.
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Appendix A: Detailed UCR results

See Table 1.
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Table 1 Detailed UCR results for five state-of-the-art algorithms and Proximity Forest

Train T est l c DTW BOSS ST EE COTE PF

Adiac 390 391 176 37 60.87 76.47 78.26 66.5 79.03 73.4

ArrHead 36 175 251 3 80.0 83.43 73.71 81.14 81.14 87.54

Beef 30 30 470 5 66.67 80.0 90.0 63.33 86.67 72.0

BeetFly 20 20 512 2 65.0 90.0 90.0 75.0 80.0 87.5

BirdChi 20 20 512 2 70.0 95.0 80.0 80.0 90.0 86.5

Car 60 60 577 4 76.67 83.33 91.67 83.33 90.0 84.67

CBF 30 900 128 3 99.44 99.78 97.44 99.78 99.56 99.33

ChloCon 467 3840 166 3 65.0 66.09 69.97 65.62 72.71 63.39

CinCECG 40 1380 1639 4 93.04 88.7 95.43 94.2 99.49 93.43

Coffee 28 28 286 2 100.0 100.0 96.43 100.0 100.0 100.0

Comput 250 250 720 2 62.4 75.6 73.6 70.8 74.0 64.44

CricketX 390 390 300 12 77.95 73.59 77.18 81.28 80.77 80.21

CricketY 390 390 300 12 75.64 75.38 77.95 80.51 82.56 79.38

CricketZ 390 390 300 12 73.59 74.62 78.72 78.21 81.54 80.1

DiaSizRed 16 306 345 4 93.46 93.14 92.48 94.44 92.81 96.57

DisPhAG 400 139 80 3 62.59 74.82 76.98 69.06 74.82 73.09

DisPhOC 600 276 80 2 72.46 72.83 77.54 72.83 76.09 79.28

DisPhTW 400 139 80 6 63.31 67.63 66.19 64.75 69.78 65.97

Earthqua 322 139 512 2 72.66 74.82 74.1 74.1 74.82 75.4

ECG200 100 100 96 2 88.0 87.0 83.0 88.0 88.0 90.9

ECG5000 500 4500 140 5 92.51 94.13 94.38 93.87 94.6 93.65

ECG5days 23 861 136 2 79.67 100.0 98.37 82.0 99.88 84.92

ElecDev 8926 7711 96 7 63.08 79.92 74.7 66.29 71.33 70.6

FaceAll 560 1690 131 14 80.77 78.17 77.87 84.85 91.78 89.38

FaceFour 24 88 350 4 89.77 100.0 85.23 90.91 89.77 97.39

FacesUCR 200 2050 131 14 90.78 95.71 90.59 94.49 94.24 94.59

50Words 450 455 270 50 76.48 70.55 70.55 81.98 79.78 83.14

Fish 175 175 463 7 83.43 98.86 98.86 96.57 98.29 93.49

FordA 3601 1320 500 2 66.52 92.95 97.12 73.79 95.68 85.46

FordB 3636 810 500 2 59.88 71.11 80.74 66.17 80.37 71.49

GunPoint 50 150 150 2 91.33 100.0 100.0 99.33 100.0 99.73

Ham 109 105 431 2 60.0 66.67 68.57 57.14 64.76 66.0

HandOut 1000 370 2709 2 87.84 90.27 93.24 88.92 91.89 92.14

Haptics 155 308 1092 5 41.56 46.1 52.27 39.29 52.27 44.45

Herring 64 64 512 2 53.12 54.69 67.19 57.81 62.5 57.97

InlSkate 100 550 1882 7 38.73 51.64 37.27 46.0 49.45 54.18

InsWinSou 220 1980 256 11 57.37 52.32 62.68 59.49 65.25 61.87

ItPowDem 67 1029 24 2 95.53 90.86 94.75 96.21 96.11 96.71

LaKitAp 375 375 720 3 79.47 76.53 85.87 81.07 84.53 78.19
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Table 1 continued

Train T est l c DTW BOSS ST EE COTE PF

Light2 60 61 637 2 86.89 83.61 73.77 88.52 86.89 86.56

Light7 70 73 319 7 71.23 68.49 72.6 76.71 80.82 82.19

Mallat 55 2345 1024 8 91.43 93.82 96.42 93.99 95.39 95.76

Meat 60 60 448 3 93.33 90.0 85.0 93.33 91.67 93.33

MedImg 381 760 99 10 74.74 71.84 66.97 74.21 75.79 75.82

MidPhAG 400 154 80 3 51.95 54.55 64.29 55.84 63.64 56.23

MidPhOC 600 291 80 2 76.63 78.01 79.38 78.35 80.41 83.64

MidPhTW 399 154 80 6 50.65 54.55 51.95 51.3 57.14 52.92

MotStr 20 1252 84 2 86.58 87.86 89.7 88.26 93.69 90.24

NoECGT1 1800 1965 750 42 82.9 83.82 94.96 84.58 93.13 90.66

NoECGT2 1800 1965 750 42 87.02 90.08 95.11 91.35 94.55 93.99

OliveOil 30 30 570 4 86.67 86.67 90.0 86.67 90.0 86.67

OSULeaf 200 242 427 6 59.92 95.45 96.69 80.58 96.69 82.73

PhalOC 1800 858 80 2 76.11 77.16 76.34 77.27 77.04 82.35

Phoneme 214 1896 1024 39 22.68 26.48 32.07 30.49 34.92 32.01

Plane 105 105 144 7 100.0 100.0 100.0 100.0 100.0 100.0

ProPhAG 400 205 80 3 78.54 83.41 84.39 80.49 85.37 84.63

ProPhOC 600 291 80 2 79.04 84.88 88.32 80.76 86.94 87.32

ProPhTW 400 205 80 6 76.1 80.0 80.49 76.59 78.05 77.9

RefrigDev 375 375 720 3 44.0 49.87 58.13 43.73 54.67 53.23

ScrType 375 375 720 3 41.07 46.4 52.0 44.53 54.67 45.52

ShapSim 20 180 500 2 69.44 100.0 95.56 81.67 96.11 77.61

ShapAll 600 600 512 60 80.17 90.83 84.17 86.67 89.17 88.58

SmKitAp 375 375 720 3 67.2 72.53 79.2 69.6 77.6 74.43

SonyAIR1 20 601 70 2 69.55 63.23 84.36 70.38 84.53 84.58

SonyAIR2 27 953 65 2 85.94 85.94 93.39 87.83 95.17 89.63

StarCur 1000 8236 1024 3 89.83 97.78 97.85 92.61 97.96 98.13

Strawber 613 370 235 2 94.59 97.57 96.22 94.59 95.14 96.84

SwedLeaf 500 625 128 15 84.64 92.16 92.8 91.52 95.52 94.66

Symbols 25 995 398 6 93.77 96.68 88.24 95.98 96.38 96.16

SynCon 300 300 60 6 98.33 96.67 98.33 99.0 100.0 99.53

ToeSeg1 40 228 277 2 75.0 93.86 96.49 82.89 97.37 92.46

ToeSeg2 36 130 343 2 90.77 96.15 90.77 89.23 91.54 86.23

Trace 100 100 275 4 99.0 100.0 100.0 99.0 100.0 100.0

2LeECG 23 1139 82 2 86.83 98.07 99.74 97.1 99.3 98.86

2Patterns 1000 4000 128 4 99.85 99.3 95.5 100.0 100.0 99.96

UWaAll 1000 6164 152 8 96.23 93.89 94.22 96.85 96.43 97.23

UWaX 896 3582 315 8 77.44 76.21 80.29 80.54 82.19 82.86

UWaY 896 3582 315 8 70.18 68.51 73.03 72.56 75.85 76.15
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Table 1 continued

Train T est l c DTW BOSS ST EE COTE PF

UWaZ 896 3582 945 8 67.5 69.49 74.85 72.36 75.04 76.4

Wafer 896 3582 315 2 99.59 99.48 100.0 99.74 99.98 99.55

Wine 57 54 234 2 61.11 74.07 79.63 57.41 64.81 56.85

WordSyn 267 638 270 25 74.92 63.79 57.05 77.9 75.71 77.87

Worms 181 77 900 5 53.25 55.84 74.03 66.23 62.34 71.82

Worms2 181 77 900 2 58.44 83.12 83.12 68.83 80.52 78.44

Yoga 300 3000 426 2 84.3 91.83 81.77 87.9 87.67 87.86

Av. rank 5.18 3.65 3.08 3.95 2.28 2.88

Wins 3 20 30 8 26 22

Bold values indicate the best accuracy scores. Proximity Forest results are obtained for 100 trees and 5
candidates, and averaged over 10 runs

Appendix B: On a variation of the proximity forest

We decided to explore another variant of the Proximity Forest algorithm by randomly
selecting a distancemeasure for each tree, rather than for each node. In this newvariant,
only the exemplars and the parameters of the distance-metric are randomly chosen at
each node. The UCR experiments were repeated for 100 trees and 1 candidate for this
new ‘on tree’ variant. Each Proximity Forest result is averaged over 50 runs.

Figure 12 compares classification accuracy for the original version ‘on node’, pre-
sented in Sect. 3.2, and the proposed variant ‘on tree’. Each point represents a single
dataset of the UCR dataset. The number of trees has been fixed to 100.

Fig. 12 Accuracy of Proximity
Forest when randomly selecting
the distance measure ‘on node’
and ‘on tree’
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The results show a slight advantage for the ‘on node’ approach with 44 wins, 39
losses and 2 ties. Where the ‘on tree’ variant uses a single distance measure per tree,
the ‘on node’ variant allows multiple combinations of measures in a single tree, thus
making it more robust to inefficient metrics.
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[41] Patrick Schäfer. The BOSS is concerned with time series classification in the

presence of noise. Data Mining and Knowledge Discovery, 29(6):1505–1530, 2015.

[42] Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn

Keogh. Generalizing DTW to the multi-dimensional case requires an adaptive

approach. Data Mining and Knowledge Discovery, 31(1):1–31, 2017.

[43] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan

Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh.

The UCR Time Series Archive. IEEE/CAA Journal of Automatica Sinica, 6(6):

1293–1305, 2019.

[44] Charlotte Pelletier, Zehui Ji, Olivier Hagolle, Elizabeth Morse-McNabb, Kathryn

Sheffield, Geoffrey I Webb, and François Petitjean. Using sentinel-2 image time

series to map the state of victoria, australia. In 2019 10th International Workshop

on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), pages 1–4.

IEEE, 2019.

[45] Jordi Inglada, Arthur Vincent, Marcela Arias, Benjamin Tardy, David Morin,

and Isabel Rodes. Operational high resolution land cover map production at the

country scale using satellite image time series. Remote Sensing, 9(1):95, 2017.

[46] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. Deep learning for time series classification: a review.

Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

[47] Eamonn Keogh and Shruti Kasetty. On the need for time series data mining

benchmarks: a survey and empirical demonstration. Data Mining and Knowledge

Discovery, 7(4):349–371, 2003.

[48] Toni Giorgino. Computing and visualizing Dynamic Time Warping alignments in

r: the dtw package. Journal of Statistical Software, 31(1):1–24, 2009.

[49] Chang Wei Tan, Matthieu Herrmann, Germain Forestier, Geoffrey I Webb, and

Francois Petitjean. Efficient search of the best warping window for Dynamic Time

Warping. In Proceedings of the 2018 SIAM International Conference on Data

Mining, pages 225–233. SIAM, 2018.

[50] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of Dynamic

Time Warping. Knowledge and Information Systems, 7(3):358–386, 2005.



Bibliography 180

[51] Eamonn Keogh, Li Wei, Xiaopeng Xi, Michail Vlachos, Sang-Hee Lee, and Pavlos

Protopapas. Supporting exact indexing of arbitrarily rotated shapes and periodic

time series under Euclidean and warping distance measures. The VLDB journal,

18(3):611–630, 2009.

[52] Daniel Lemire. Faster retrieval with a two-pass dynamic-time-warping lower

bound. Pattern Recognition, 42(9):2169–2180, 2009.

[53] Chang Wei Tan, François Petitjean, and Geoffrey I Webb. Elastic bands across

the path: A new framework and method to lower bound dtw. In Proceedings of

the 2019 SIAM International Conference on Data Mining, pages 522–530. SIAM,

2019.

[54] Matthieu Herrmann and Geoffrey I Webb. Early abandoning PrunedDTW and its

application to similarity search. arXiv preprint arXiv:2010.05371, 2020.

[55] Eamonn J Keogh and Michael J Pazzani. Derivative Dynamic Time Warping. In

Proceedings of the 2001 SIAM International Conference on Data Mining, pages

1–11. SIAM, 2001.
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