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Abstract

This thesis aims at analyzing the solvability of the multidimensional deterministic coef-
ficients forward backward stochastic differential equations (FBSDEs) with the following
form

dXt = b(t,Xt, Yt, Zt)dt+ σ(t,Xt)dWt; X0 = x

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt; YT = h(XT ).
(1)

Particularly, we allow all the coefficients to be discontinuous in x. By developing a pure
probabilistic method, we provide many sets of sufficient conditions to prove the existence
and uniqueness results for FBSDE (1).

Meanwhile, when the coefficients are smooth enough, the deterministic coefficients FB-
SDEs have a strong connection with the quasilinear parabolic partial differential equations
(PDEs) of the form

Lu(t, x) + ∂xu(t, x) · b(t, x, u, ∂xu · σ) + f(t, x, u, ∂xu · σ) = 0 u(T, x) = h(x), (2)

where L := ∂t + 1
2

∑m
i,j=1(σσᵀ)ij · ∂2

xixj
. We are also interested in the solvability of above

PDEs with discontinuous coefficients. However, when the coefficients are discontinuous
in x, additional requirements are needed to obtain sufficient regularity of u.

In this thesis we will introduce a probabilistic approach related to Girsanov trans-
form such that we could apply results from stochastic differential equations (SDEs) and
backward stochastic differential equations (BSDEs) to help us provide the existence and
uniqueness results for FBSDE (1). The core idea of our approach is to interplay between
decoupled FBSDEs and coupled FBSDEs. Instead of solving FBSDE (1) directly, we
start with solving a decoupled FBSDE. After that, we apply the Girsanov theorem to
transform the decoupled FBSDE into a new FBSDE with the same form as FBSDE (1)
but under a different filtration. At last, we verify that the new FBSDE has a (unique)
strong solution such that the same result holds to FBSDE (1).

Furthermore, we will show that, under certain conditions, the solvability of FBSDE
(1) would imply the existence of a solution for PDE (2). Since our coefficients may be
discontinuous, one can not expect the solutions for PDE (2) are in the Sobolev space as
usual. One can view our thesis as a study of parabolic PDEs with measurable coefficients
with a slightly weaker class of solutions than the Sobolev solutions.
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Frequently Used Notation and
Definition

Probability space

Let I be an index set with a total order. We denote (Ω,F,F,P) a filtered probability space
on which is defined an Rd-dimensional Brownian motion W , such that its augmented
filtration F := (Ft)t∈I is generated by W . For a stochastic process X, we let FX be
the augmented filtration generated by X, and without specific explanation, we always
consider F = FW . We identify random variables that are equal P-almost surely, so as the
equality and inequality in the P-almost sure sense.

Vectors and Matrices

For a matrix X ∈ Rn×d, we denote X i the ith row of X and X ij to be the component
at row i and column j. We consider a vector as a column matrix and denote Xᵀ the
transpose of X.

Banach spaces

We denote |X| :=
√

Tr(XXᵀ) as the Euclidean norm for a matrix X.
We define the Lp space for the random variable X with

‖X‖p := (E|X|p)
1
p <∞; for p <∞

‖X‖∞ := ess sup
ω
|X(ω)| <∞; for p =∞.

As usual, we assume Borel σ-algebra on Euclidean spaces, and we let Sp(E) and Hp(E)
be the spaces of the adapted E-valued process X with

‖X‖Sp :=

∥∥∥∥∥ sup
t∈[0,T ]

E|Xt|

∥∥∥∥∥
p

<∞,

and

‖X‖Hp := E
[∫ T

0

|Xt|2dt
] p

2

<∞; for p <∞

‖X‖H∞ := ess sup
(t,ω)

|Xt(ω)| <∞; for p =∞.

Borel algebra

For a Banach space E, we let B(E) be the Borel algebra on E.
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Chapter 1

Introduction

1.1 Introduction to Stochastic Differential Equations

and Backward Stochastic Differential Equations

To better understand our main topic forward backward stochastic differential equations
(FBSDEs), it is inevitable to know some backgrounds about forward stochastic differential
equations (SDEs) and backward stochastic differential equations (BSDEs). So the first
section is a brief introduction about SDEs and BSDEs with related topics. After that we
will introduce the background for FBSDEs such as the usual setups, their applications,
previous results, etc. In the later part, we will show that the solvability of FBSDEs
is equivalent to the solvability of parabolic partial differential equations (PDEs) under
smooth enough conditions. That would lead our interests from FBSDEs to quasilinear
PDEs.

1.1.1 What are SDEs and BSDEs?

Forward SDEs, which arise when a random noise is introduced into ordinary differential
equations (ODEs), usually recognize as the following form

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (1.1)

where W is a d-dimensional Brownian motion; x ∈ Rn stands for the initial state; b :
[0, T ] × Rn → Rn is often called as the drift coefficient of the state process X; and
σ : [0, T ] × Rn → Rn×d is known as the diffusion coefficient. We call X the solution of
SDE (1.1) if Xt is adapted to the filtration Ft,

∫ t
0

(|b(s,Xs)|+ |σ(s,Xs)|2) ds <∞ for all
0 ≤ t <∞, and equation (1.1) holds.

Generally speaking, SDEs are applied to describe the evolution of a system that con-
tains randomness. They are useful for explaining many phenomenons arise in finance,
physics, biology, etc. For instance, Black–Scholes model, a well-known financial model
governing the price evolution of European-style options, has an inseparable relation with
SDEs. For more applications about SDEs, we refer the book Klebaner (2012) for an
extensive list of references.

A classical form of a BSDE is

Yt = ξ −
∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

ZsdWs, (1.2)

1



1.1. INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS AND
BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

where the terminal condition ξ is a Rn-valued FT -measurable random variable; the driver
f : Ω× [0, T ]×Rn ×Rn×d → Rn is a P

⊗
B(Rn)

⊗
B(Rn×d)-measurable function, where

P denotes the σ-algebra of Ft progressively measurable subsets of Ω × [0, T ]. Similar to
SDEs, we call a pair (Y, Z) taking value in Rn×Rn×d, a solution of the BSDE (1.2) if the
predictable processes Y and Z satisfy

∫ t
0

(|f(s, Ys, Zs)|+ |Zs|2) ds <∞ for all 0 ≤ t ≤ T ,
and equation (1.2) holds.

Usually we call a BSDE is n-dimensional if n ≥ 2 and one-dimensional if n = 1; a
Markovian BSDE if the driver of the BSDE is deterministic; and a quadratic BSDE if the
driver has at most quadratic growth in z.

The classical BSDE was first introduced by Pardoux and Peng (1990) and further
discussed in El Karoui et al. (1997). The first paper provided the general well-posedness
result for BSDEs that is when ξ ∈ L2(Rn), f(·, 0, 0) ∈ H2(Rn), and f is uniformly Lips-
chitz. In the second paper the authors introduced the theory of contingent claim valuation
and its relation to BSDEs. They pointed out that the well-known models such as Merton
model, Black–Scholes model, etc., can be expressed in terms of BSDEs. Also the second
paper collected and generalized many previous results done by the authors. For instance,
Pardoux and Peng (1992), in which they introduced a solution Y of one Markovian BSDE
becomes a viscosity solution of a quasilinear parabolic PDE and provided a set of suffi-
cient conditions that guarantees the solution obtained by one BSDE to be a solution of
the corresponding PDE; Peng (1992), in which the author firstly introduced the compar-
ison theorem for one-dimensional BSDEs; etc. So we would highly recommend El Karoui
et al. (1997) for ones who are interested in BSDEs and related topics. Meanwhile, BSDEs
are also useful for the theory of stochastic optimal control. Bismut (1973) was the first
paper introduced BSDE and applied it to analyze the optimal control problem for the
linear case. Later, Hamadene and Lepeltier (1995) applied BSDE results to obtain the
existence of optimal strategy for stochastic zero-sum differential games, and El-Karoui
and Hamadène (2003) applied BSDE to study risk-sensitive control problem.

One should notice that there are numerous generalizations of the classical SDEs and
BSDEs, for instance, the coefficients may depend on the path of the stochastic processes
which leads to path-dependent SDEs and BSDEs; also, the coefficients may depend on the
distribution of the processes, in this sense, the generalization including McKean-Vlasov
and mean-field SDEs and BSDEs.

1.1.2 Well-posedness Theory for Classical SDEs

Since our project aims at analyzing the solvability of deterministic coefficients FBSDEs,
in this subsection we would only focus on the well-posedness results for deterministic
coefficients SDEs.

As one may expect, when the coefficients are locally Lipschitz and under linear growth
condition, SDE (1.1) is uniquely solvable. The existence is carried out by the Picard
iterations, which is a successive approximations technique, and for one-dimensional case,
the uniqueness can be easily obtained via Gronwall’s lemma, which we will introduce
in chapter 2. However, the Lipschitz continuity condition is not always satisfied for
applications in practice. The study of SDEs with non-Lipschitz coefficients has received
a lot of attention in recent years. Generally speaking, there are mainly two branches for
well-posedness results for SDEs (1.1). One is when σ is a constant, and another is when
σ is a deterministic function.

When σ is a constant, Zvonkin (1974) provided the existence of a unique solution
for one-dimensional (1.1) where the drift coefficient is bounded and measurable. Later,
Veretennikov (1980) generalized Zvonkin’s work to the multidimensional case. In these

2



1.1. INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS AND
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papers, the authors applied the similar idea that they firstly employ the estimates of
solutions of parabolic partial differential equations to construct weak solutions. Then a
pathwise uniqueness argument is applied to ensure a unique strong solution. In recent
times, Meyer-Brandis and Proske (2010) developed a new technique for the construction
of strong solutions for such bounded drift SDEs under a certain symmetry condition. This
method is based on Malliavin calculus and white noise analysis. Menoukeu-Pamen et al.
(2013) developed that approach and derived more general results by relaxing the sym-
metry condition on the drift term. Recently Menoukeu-Pamen and Mohammed (2019)
generalized their previous work by proving the well-posedness of SDE with the drift co-
efficient is time dependent and has spatial linear growth.

When σ is a deterministic function, Zvonkin (1974) and Veretennikov (1980) also
provided well-posedness results under such case when the drift coefficient b is bounded
and the diffusion coefficient σ is a non-degenerate Lipschitz function. In Le Gall (1984),
the author obtained existence and uniqueness result for one-dimensional SDE (1.1) with
a bounded drift term and a measurable diffusion term. When b is a unbounded function,
Gyongy and Martinez (2001) provided that if σ is a non-degenerate Lipschitz function and
there exist a non-negative constant C and a positive valued function F ∈ Ln+1(R+×Rn)
such that |b(t, x)| ≤ C + F (t, x), then there exists of a unique solution for SDE (1.1).
Roughly speaking, their method is to construct a solution via approximation and then
prove the path-wise uniqueness of the solution. Therefore, by the well-known result of
Yamada and Watanabe, which we will share in chapter 2, they obtain the existence of a
unique strong solution. Later, Zhang (2005) studied the similar SDEs with a non-Lipschitz
diffusion coefficient.

1.1.3 Well-posedness Theory for Markovian BSDEs

As our interest lies in deterministic coefficients cases, in this subsection we will introduce
the well-posedness theory related to Markovian BSDEs.

El Karoui et al. (1997) showed the existence of a unique solution (Y, Z) ∈ Sp(Rn) ×
Hp(Rn×d) for p > 1 when the driver f is uniformly Lipschitz. They obtained the re-
sult by applying Banach fixed point theorem and a priori estimates technique. Pardoux
(1999) relaxed the Lipszhitz condition to allow the driver is non-Lipschitz in y. Later,
Hamadène (2003) further relaxed the Lipschitz condition of the driver to uniform conti-
nuity condition with linear growth. An interesting result was introduced by Kobylanski
(2000). In this paper the author introduced the first well-posedness result for quadratic
BSDEs. Her method is based on exponential change of variable and a priori estimates
to deduce the existence of a solution for quadratic BSDEs. After that she applied com-
parison theorem introduced by El Karoui et al. (1997) and then obtained the uniqueness
result for the one-dimensional quadratic BSDEs. A particular type of quadratic BSDEs,
called the diagonally quadratic BSDEs, it stands for the BSDEs with the driver f such
that |f i(t, y, z)| ≤ C(1 + |y| + |zi|2) for some constant C. In such case, Hu and Tang
(2016) provided the sufficient conditions for the well-posedness result, and notice that it
is the first result on the general solvability for multidimensional quadratic BSDEs. They
borrowed the idea from Cheridito and Nam (2015) to construct a global solution from
local solutions and uniform a priori estimates.

3



1.2. INTRODUCTION TO FORWARD BACKWARD STOCHASTIC
DIFFERENTIAL EQUATIONS

1.2 Introduction to Forward Backward Stochastic Dif-

ferential Equations

In this section we will introduce the FBSDEs with their applications and development
history, and in the later part we will show that the solutions of FBSDEs are somehow
equivalent to the solutions of parabolic PDEs.

1.2.1 FBSDEs and Their Applications

FBSDEs have received strong attention in recent years because of their interesting struc-
ture and usefulness in various practical applications. The most common fully coupled
FBSDEs are of the following form

Xt = x+

∫ t

0

b(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dWs

Yt = h(XT )−
∫ T

t

g(s,Xs, Ys, Zs)ds+

∫ T

t

ZsdWs,

(1.3)

where W is a d-dimensional Brownian motion; (b, σ, g) : Ω× [0, T ]× Rm × Rn × Rn×d →
Rm × Rm×d × Rn are P

⊗
B(Rm)

⊗
B(Rn)

⊗
B(Rn×d)-measurable functions; x ∈ Rm,

and h : Ω × Rm → Rn such that ω 7→ h(ω, x) is FT -measurable for all x ∈ Rm, are
initial condition and terminal condition, respectively. We call the adapted processes
(X, Y, Z) ∈ H2(Rm)×H2(Rn)×H2(Rn×d) a solution if FBSDE (1.3) holds for any t ∈ [0, T ].

As the second equation of (1.3) is a BSDE, FBSDEs share similar applications with
BSDEs. For instance, FBSDEs are also useful for contingent claim valuation such as
option pricing. Consider a security market contains only one stock and one risk-free
bond. We assume they are subject to the following equations

dP 0
t = rtP

0
t dt, (bond);

dPt = btPtdt+ σtPtdWt, (stock),

where r is the risk-free rate; b, σ are the appreciation rate and volatility rate of the stock,
respectively. Now we assume an agent sells one option at price y and then invest it in
such market. At time t, we denote his total wealth is Yt, and πt as his portion of wealth
into the stock. For simplicity, we do not consider his consumption during the time. In
this sense, we could obtain the following

dYt = (rtYt + θtZt)dt+ ZtdWt; Y0 = y

where Zt = πtσt, and the risk premium process θt = bt−rt
σt

. Our objective as the agent is
to hedge the payoff ξ = h(PT ) at time T . In other words, we are looking for y∗ = inf{y =
Y0; ∃π such that YT = ξ}. Therefore, our problem can be translated into an FBSDE
problem

dPt = btPtdt+ σtPtdWt, P0 = p;

dYt = (rtYt + θtZt)dt+ ZtdWt, YT = h(PT ).
(1.4)

Usually we call such FBSDE a decoupled FBSDE, as the coefficients of the forward equa-
tion do not depend on Y and Z. If FBSDE (1.4) is solvable, we can obtain π = σ−1Z as
the optimal portfolio, and Y0 = y∗ as the option price.

4



1.2. INTRODUCTION TO FORWARD BACKWARD STOCHASTIC
DIFFERENTIAL EQUATIONS

Decoupled FBSDEs, came along with BSDEs, was fisrtly introduced by Bismut (1973)
as a dual problem of stochastic control which corresponds to the Pontryagin principle.
The coupled FBSDEs were firstly introduced by Antonelli (1993) as an extension of the
earlier theory of BSDEs. The fully coupled FBSDEs were discussed in the book Ma
et al. (1999). This book not only contains many important results and approaches about
fully coupled FBSDEs, but also provides tremendous applications arising in mathematical
finance or in stochastic control problems.

As we mentioned before, fully coupled FBSDE is a strong tool for studying the op-
timization problem of a stochastic control system. For instance, we consider a control
system is

dXt = b(t,Xt, vt)dt+ σ(t,Xt, vt)dWt, X0 = x,

where v is an admissible control process, i.e. an Ft-adapted square integrable process
taking values in a given subset A of R. For simplicity, we consider everything is one-
dimensional. A common control problem is to minimize some cost functional

J(v) = E
∫ T

0

f(t,Xt, vt)dt+ g(XT )

over the set of admissible controls. This optimization problem is the so-called stochastic
maximum principle which may be considered as a natural generalization of the well-
known Pontryagin’s maximum principle to situations with uncertainty. This principle
tells us that, under certain reasonable assumptions imposed on the coefficients, then,
necessarily, there exists a pair of square integrable adapted processes (Y, Z), such that
the triple of processes (X, Y, Z) satisfies the stochastic Hamiltonian system, which is an
FBSDE, where the Hamiltonian H is defined by

H(t, x, y, z) = inf
v∈A

b(t, x, v)y + σ(t, x, v)z + f(t, x, v).

In this sense, we obtain the following FBSDE (the stochastic Hamiltonian system)

dXt = Hy(t,Xt, Yt, Zt)dt+Hz(t,Xt, Yt, Zt)dWt, X0 = x

dYt = −Hx(t,Xt, Yt, Zt)dt+ ZtdWt, YT = gx(XT ).

For details about fully coupled FBSDEs and the Hamiltonian, we will discuss them in
Appendix D.

Just like SDEs and BSDEs, we call an FBSDE a Markovian FBSDE if the coefficients
are deterministic functions, and based on the different dependency of the coefficients, we
also have path-dependent, McKean-Vlasov, and mean-field FBSDEs.

At last of this subsection we want to mention that, unlike SDEs and BSDEs, we do not
expect the general existence and uniqueness results for an FBSDE, even the coefficients are
under really good conditions e.g. uniformly Lipschitz conditions. A simple example can
be constructed from a two-point boundary value problem for a system of one-dimensional
linear ODEs which is not solvable:

Ẋ(t) = AX(t), X(0) = x,

Ẏ (t) = BY (t), Y (T ) = CX(T ),

where A, B and C are constants. Then for any properly defined σ and σ′, the following
FBSDE

dXt = AXtdt+ σ(t,Xt, Yt, Zt)dWt, X0 = x

dYt = BYtdt+ σ′(t,Xt, Yt, Zt)dWt, YT = CXT ,

5
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does not admit any solutions. It can be easily proved by the contradiction that if the
above FBSDE is solvable, then (EX,EY ) should be a solution of the ODE system.

1.2.2 Brief History of Development for FBSDEs

The first result for coupled FBSDE was introduced in Antonelli (1993). In this paper the
author obtained the well-posedness result for uniformly Lipschitz coefficients FBSDEs
over a “small” duration by the fixed point theorem, and constructed a counterexample
showing that for coupled FBSDEs, large time duration might lead to non-solvability.

Later, two methods were established to study the fully coupled FBSDEs on an arbi-
trarily given time interval. The first method, named “Four-Step Scheme”, which combines
PDE methods and methods of probability, was introduced in Ma et al. (1994). The method
is inspired from an observation that the solvability of a Markovian FBSDE is equivalent
to a “solution” of some parabolic system. In this paper they proved the existence and
the uniqueness for fully coupled FBSDEs on an arbitrarily given time interval, but they
required the diffusion coefficients are non-degenerate. Meanwhile, since in general, the
PDE approach can not be used to deal with the case when the coefficients themselves are
randomly disturbed, this method should only work for Markovian FBSDEs. But recently,
Ma et al. (2015) proved the well-posedness for random coefficients FBSDEs. Following
the main point of the Four-Step Scheme, they found a function u, which is the so-called
decoupling field, such that Yt = u(t,Xt), but with u is a random field.

Another important method, named “Method of Continuation”, was first introduced
in Hu and Peng (1995) for Markovian FBSDEs and generalized by Yong (1997) to allow
the coefficients are random. Later Peng and Wu (1999), and Pardoux and Tang (1999)
borrowed the spirit of the method of continuation to study the well-posedness property
for fully coupled FBSDEs. Recently in Yong (2010), the author applied the method of
continuation to study another type of fully coupled FBSDEs. Such FBSDEs are with
mixed initial-terminal conditions, that means FBSDEs are of the form (1.3) but with
different boundary conditions X0 = h′(XT , Y0) and YT = h(XT , Y0). The main assumption
of this method is the so-called “monotonicity conditions” on the coefficients, which is
usually not easy to verify. Generally speaking, by denoting (Xt, Yt, Zt) = θt, the method
of continuation considers the following FBSDE

dXt = (b0(t) + (1− α)b1(t, θt) + αb2(t, θt))dt+ (σ0(t) + (1− α)σ1(t, θt) + ασ2(t, θt))dWt,

dYt = (g0(t) + (1− α)g1(t, θt) + αg2(t, θt))dt+ ZtdWt,

X0 = x, YT = h0(T ) + (1− α)h1(XT ) + αh2(XT ),

where (b1, σ1, g1, h1) and (b2, σ2, g2, h2) are linked by a direct bridge. For any well defined
square integrable functions (b0, σ0, g0, h0) and x ∈ Rm, the essence of the method of
continuation is to prove that there exists a fixed step-length ε0 > 0, such that for some
α ∈ [0, 1) above FBSDE is uniquely solvable. Then the same conclusion holds for α being
replaced by α + ε ≤ 1 with ε ∈ [0, ε0].

Since FBSDEs are helpful for the research of stochastic control problems, recently
the McKean-Vlasov, and mean-field FBSDEs attracted a lot of attention. Such FBSDEs
aim at studying optimal control of McKean–Vlasov dynamics or mean-field games. By
denoting L(X), the law (also called the distribution) of X, a common McKean–Vlasov
type stochastic optimal control would be like:

Assume the stochastic dynamics satisfying a stochastic differential equation of the
form

dXt = b(t,Xt,L(Xt), vt)dt+ σ(t,Xt,L(Xt), vt)dWt, X0 = x,
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1.2. INTRODUCTION TO FORWARD BACKWARD STOCHASTIC
DIFFERENTIAL EQUATIONS

and our goal is to minimize the following cost functional

J(v) = E
∫ T

0

f(t,Xt,L(Xt), vt)dt+ g(L(XT ), XT )

over the set of admissible controls.
As for mean-field game, the terminology mean-field is borrowed from statistical physics,

and the goal of the theory is to derive effective equations for the optimal behavior of
any single player when the size of the population grows unboundedly. In this sense, for
an N -players game (with N to be very large), one can expect the empirical measure
µNt = 1

N

∑N
i=1 δXi

t
will not be much affected by the deviation of one single player, and

for all practical purposes, one should be able to assume that the empirical measure µNt
is approximately equal to its limit µt. Therefore, one goal of mean-field game would re-
duce to search for a deterministic flow of measures µt such that the law of the optimally
controlled process is in fact µt. Namely the dynamic constraint and the cost functional
are

dXt = b(t,Xt, µt, vt)dt+ σ(t,Xt, µt, vt)dWt, X0 = x,

and

J(v) = E
∫ T

0

f(t,Xt, µt, vt)dt+ g(µT , XT ),

with L(Xt) = µt,∀t ∈ [0, T ].
In this direction, Carmona and Delarue (2015) studied optimal control problem of

McKean–Vlasov dynamics and mean-field game with corresponding FBSDEs. For more
details about the related topics, we refer book Carmona (2016) and references therein.

Back to our topic, the FBSDEs with discontinuous coefficients have been studied
before. When FBSDE (1.3) is decoupled, which means b and σ does not depend on y and
z, El Karoui et al. (1997) provided the well-posedness for such FBSDEs when g(t, x, y, z) is
Lipschitz with respect to (y, z); Meanwhile, Hamadene et al. (1997) provided the existence
of a solution when g(t, x, y, z) is continuous with respect to (y, z). For coupled cases,
Carmona et al. (2013) studied the FBSDEs with discontinuous terminal condition h for
carbon allowance pricing. Luo et al. (2020), which has similar results to ours, provided
existence results for FBSDE (1.3) when σ is a constant, and h is bounded. Chen et al.
(2018) provided well-posedness results for the coupled FBSDEs with b is a step function
in y.

1.2.3 FBSDEs and Parabolic PDEs

At last of this section, we want to point out that, for Markovian FBSDEs, they have a
strong connection with quasilinear parabolic PDEs. We consider a parabolic PDE is of
the form

Lu(t, x) + ∂xu(t, x) · g̃(t, x, u, ∂xu · σ(t, x)) + f(t, x, u, ∂xu · σ) = 0

u(T, x) = h(x),
(1.5)

where L := ∂t + 1
2

∑m
i,j=1(σσᵀ)ij · ∂2

xixj
. Particularly, we assume all the coefficients are

under good enough conditions, such that PDE (1.5) and the following SDE are uniquely
solvable

dXt = g̃(t,Xt, u(t,Xt), ∂xu(t,Xt) · σ(t,Xt))dt+ σ(t,Xt)dWt, X0 = x.
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1.3. THESIS STRUCTURE

Then we apply Itô’s formula on u(t,Xt) and we could obtain

du(t,Xt) = ∂tu(t,Xt)dt+ ∂xu(t,Xt)dXt +
1

2
∂2
xxu(t,Xt)d[Xt],

where [X] denotes the quadratic variation of process X.
Based on PDE (1.5) and above equation, we can deduce that

du(t,Xt) =− f(t,Xt, u(t,Xt), σ(t,Xt) · ∂xu(t,Xt))dt

+ σ(t,Xt) · ∂xu(t,Xt)dWt; u(T,XT ) = h(XT ).

Therefore, (X, Y, Z) with Yt = u(t,Xt) and Zt = σ(t,Xt) · ∂xu(t,Xt) is the solution of an
FBSDE which is of the form to our interest throughout the thesis,

dXt = g̃(t,Xt, Yt, Zt)dt+ σ(t,Xt)dWt; X0 = x

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt; YT = h(XT ).
(1.6)

Also, above observation motivates the development of “Four-Step Scheme” and again we
want to mention that usually we call function u the decoupling field of the FBSDE.

Parabolic PDEs with measurable coefficients have been studied broadly in PDE lit-
erature; see Maugeri et al. (2000), Kim and Krylov (2007) and references therein. Most
of the previous literature on PDE with discontinuous coefficients focused on the viscosity
solution or the class of solutions in the Sobolev space. The viscosity solution cannot be
applied if n > 1, because the comparison principle does not hold in general. On the other
hand, the decoupling field u does not have to be in the Sobolev space W 1,2

p ([0, T ]× Rm);
we only require u(t,Xt) to be an Itô process. Under certain conditions, Chitashvili and
Mania (1996), and Mania and Tevzadae (2001) proved that u ∈ Dom(L) for an operator
L defined by the closure of ∂t + 1

2
σσᵀ∂2

xx, is the necessary and sufficient condition for
Yt = u(t,Xt) to be an Itô process.

1.3 Thesis Structure

In this thesis we will start with some important theory related to our topic. Since our goal
is to provide well-posedness for FBSDE (1.6), in chapter 2 we start with providing the
definition of unique solution. When one differential equation has a unique solution, we
would sometimes call it uniquely solvable or well-posed. Later, as we introduced before,
our method is inspired from Girsanov transform, the related topics are also discussed.
Notice that (F)BSDEs have a close relationship with Feynman-Kac formula, and from
Feynman-Kac formula, we introduce Kolmogorov’s backward equation and Fokker-Planck
equation, which are useful for presenting our results. Moreover, since our coefficients are
allowed to be irregular, to make the solutions of PDEs be well-defined, we introduce the
generalized derivatives and the suitable spaces. At last of the chapter, we will introduce
a few SDEs and BSDEs’ results in details, which are very helpful to us.

The chapter 3 aims at presenting our results. We provide sufficient conditions for
the existence and uniqueness of a strong solution for (1.6) with deterministic measurable
coefficients, which can be discontinuous, when σ(t, x) is uniformly non-degenerate. Our
results generalize Luo et al. (2020) in terms of the growth of coefficients and non-constant
σ using the simpler technique. In particular, we prove the existence of measurable function
u that satisfies (1.5) in a weak sense. The main technique is the decoupling of the FBSDE
(1.6) with the Girsanov transform, and then verified that it is actually a strong solution
using the existence of the Markovian representation (Yt, Zt) = (u(t,Xt), d(t,Xt)). While
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1.3. THESIS STRUCTURE

the Markovian representation resembles the decoupling field in the four step scheme,
which is defined through PDE, the existence of u and d stems from a purely probabilistic
argument based on Çinlar et al. (1980). In this sense, our method can be seen as a
probabilistic generalization of the four step scheme for measurable coefficients. On the
other hand, we can also view our thesis as a study of parabolic PDEs with measurable
coefficients with a slightly weaker class of solutions than the Sobolev solutions. At last,
two applications are shared. One is about optimal control of the spread of the infectious
disease. Since the medical resources are usually limited, it is common that the running
cost of one patient is not smooth. In this sense, FBSDEs with discontinuous coefficients
would be helpful to deal with such optimal control problem. Another application is about
the carbon allowance pricing. The natural property of such derivative is its terminal
condition is discontinuous. Particularly, we construct an FBSDE model and by solving the
FBSDE, one can obtain the allowance price when the firms apply their optimal production
strategies.
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Chapter 2

Elements of the General Theory

In this chapter we will introduce the general theory related to our topic.

2.1 Definition of Unique Solution and Related Topics

In this section we aims at introducing the definitions of weak and strong solutions, and
pathwise uniqueness and uniqueness in law. Important results and examples are also
shared. Arguments in this section are borrowed from Karatzas and Shreve (1991).

2.1.1 Strong and Weak Solution

We consider a classical SDE of the following form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (2.1)

or written componentwise as

dX i
t = bi(t,Xt)dt+

r∑
j=1

σij(t,Xt)dW
j
t ; 1 ≤ i ≤ d

where bi and σij are Borel measurable functions and 1 ≤ i ≤ d, 1 ≤ j ≤ r, from [0,∞)×Rd

into R; W is an r-dimensional Brownian motion while X is a suitable stochastic process
with continuous sample path valued in Rd.

Definition 2.1.1. We call X a strong solution of SDE (2.1) on the given filtered proba-
bility space (Ω,F,F,P) with initial condition ξ if the following conditions are satisfied

• Xt is Ft-adapted,

• P(X0 = ξ) = 1,

• P
(∫ t

0
|bi(s,Xs)|+ |σij(s,Xs)|2ds <∞

)
= 1, and

• the integral version of (2.1)

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

holds a.s.
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2.1. DEFINITION OF UNIQUE SOLUTION AND RELATED TOPICS

Definition 2.1.2. A weak solution of (2.1) is a triple (X,W ), (Ω,F,P), F = (Ft)t∈[0,∞),
where

• (Ω,F,P) is a probability space and for each t ∈ [0,∞), Ft is a sub-σ-algebra of F,

• Xt is Ft-adapted,

• P
(∫ t

0
|bi(s,Xs)|+ |σij(s,Xs)|2ds <∞

)
= 1, and

• the integral version of (2.1)

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

holds a.s.

Remark 2.1.3. As one can see, the biggest difference between strong solutions and weak
solutions is that weak solutions are allowed to be adapted with other filtrations. Intuitively
speaking, a strong solution X as an “output” of a stochastic system is described by the
coefficients (b, σ), while the “input” is W and initial condition ξ. In other words, when
both W and ξ are given, their specification should determine X in an unambiguous way.
However, for weak solution, the filtration F does not necessarily to be the augmentation
of the filtration σ(ξ) ∨ FWt , 0 ≤ t <∞. In other words, the value of Xt is not necessarily
given by a measurable function of the path of W and the initial condition ξ.

Remark 2.1.4. It can be easily seen that the existence of a strong solution does imply
the existence of a weak solution but the existence of a weak solution does not imply the
existence of a strong solution.

2.1.2 Two Notions of Uniqueness

Definition 2.1.5. We call pathwise uniqueness holds for SDE (2.1) if whenever two weak
solutions (X,W ), (Ω,F,P), F and (X̃,W ), (Ω,F,P), F̃ with same Brownian motion on the
same probability space and with the same initial condition, X and X̃ are indistinguishable,
i.e.,

P
(
Xt = X̃t;∀0 ≤ t <∞

)
= 1.

Definition 2.1.6. We call uniqueness in law holds for SDE (2.1) if for any two weak
solutions (X,W ), (Ω,F,P), F and (X̃, W̃ ), (Ω̃, F̃, P̃), F̃ with the same initial distribution,
the two processes X and X̃ have the same distribution.

Example 2.1.7. In the book Cherny and Engelbert (2004), the authors collected ten
examples in section 1.3. They provided examples about non-solvable SDEs, no strong
solution SDEs, solvable but not uniquely solvable SDEs, etc. Moreover, some of the
examples are classical in the SDEs’ field such as Tanaka equation, Tsirelson equation,
(both equations are classical examples about SDEs with weak solutions but no strong
solutions) etc. We highly recommend the readers to have a look at that section and
references therein to have a better view in the definitions we introduced above.
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2.1.3 Results of Yamada and Watanabe

The following results are introduced in Yamada and Watanabe (1971). Generally speak-
ing, there are two important results.

Proposition 2.1.8. Pathwise uniqueness implies uniqueness in law.

From above proposition, a remarkable corollary can be obtained.

Corollary 2.1.9. Weak existence and pathwise uniqueness imply strong existence.

Since the results are too classical in the SDEs’ field, the proofs can be found in many
places, and we omit them here.

2.1.4 Summary of the Section

With all the definitions and results introduced, we can have the following relations, which
are widely applied and important.

• Strong existence ⇒ weak existence

• Pathwise uniqueness ⇒ uniqueness in law

• Weak existence + pathwise uniqueness ⇐⇒ strong existence + uniqueness in law
= so called “unique solution”

2.2 Girsanov Theorem

Girsanov theorem was introduced by Girsanov (1960) and Cameron and Martin (1944).
We let (Ω,F,F,P) be an augmented filtered probability space and a d-dimensional Brown-
ian motion W is defined on it. In particular, we do not require the filtration F is generated
from the Brownian motion W . Let X be a Rd valued square integrable adapted process
and we define

Et(X) := exp

(
d∑
i=1

∫ t

0

X i
sdW

i
s −

1

2

∫ t

0

|X|2ds

)
.

Remark 2.2.1. Sometimes we write M· :=
∫ ·

0
XsdWs as a continuous local martingale,

and we denote

Et(M) := exp

(
Mt −

1

2
[M ]t

)
.

Theorem 2.2.2. Assume E(X) is a martingale. Then a process B,

Bi
t := W i

t −
∫ t

0

X i
sds,

for each fixed T ∈ [0,∞), the process (Bt)t∈[0,T ] is a d-dimensional Brownian motion in
(Ω,F, (Ft)t∈[0,T ],PT ).

As one can see, the only condition required is E(X) is a martingale. Here we introduce
three common sufficient conditions that the theorem holds.
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2.2. GIRSANOV THEOREM

• Beneš Condition (Beneš (1971)). Consider a progressively measurable process X

Xt(ω) = b(t,W·(ω)); 0 ≤ t <∞,

where b is a progressively measurable function on C[0,∞)d, which is a space of
continuous mappings from [0,∞) to Rd. If for each 0 ≤ T <∞ and some constant
KT depending on T , such that

|b(t, x)| ≤ KT (1 + x∗t ), 0 ≤ t ≤ T,

where x∗t := max0≤s≤t |xs|, then E(X) is a martingale.

• Novikov Condition (Novikov (1972)). Let X be a square integrable measurable
adapted process satisfying

E exp

(
1

2

∫ t

0

|Xs|2ds
)
<∞, ∀t ∈ [0,∞).

Then E(X) is a martingale. One can easily obtain that Beneš condition would imply
Novikov condition; see corollary 5.16, chapter 3, Karatzas and Shreve (1991).

• Kazamaki’s Condition (Kazamaki (1977)). One should realize that above condition
also implies

∫ ·
0
XsdWs is a local martingale. In fact,

∫ ·
0
XsdWs is a local martingale

is enough to guarantee E(X) is a martingale.

If we denote M· =
∫ ·

0
XsdWs a continuous local martingale, applying Itô formula with

M = M − 1
2
[M ] and f(m) = em we obtain

Et(M) = 1 +

∫ t

0

Es(M)dMs.

In fact, E(M) is a martingale if and only if E(Et(M)) = 1. The related discussion can be
found in Section 3.5.D, Karatzas and Shreve (1991).

One need to notice that we would like to have a single measure Q defined on F∞ such
that when Q is restricted to FT , it is equivalent to PT for all T . However, such a measure
does not exist in general. So we introduce the corollary below which is a “more common
version” of Girsanov theorem.

Corollary 2.2.3. We consider the filtration F = FW is the augmented filtration generated
by the Brownian motion W . If X is a square integrable predictable process, and any one
of above conditions holds, then for each fixed T ∈ [0,∞) with

Bt := Wt −
∫ t

0

Xsds

the process (Bt)t∈[0,T ] is a Brownian motion on (Ω,F, (FWt )t∈[0,T ],Q) with

dQ(A)

dP(A)
= exp

(∫ T

0

XtdWt −
1

2

∫ T

0

X2
t dt

)
,

where A ∈ FWT .

Remark 2.2.4. For Theorem 2.2, X is not necessarily adapted to the augmented filtration
generated by the Brownian W , which would imply Bt is not necessarily adapted to FWt ;
e.g. Tsirelson’s example (Rogers and Williams (2000) page 155).
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2.3 BMO Martingales

Another important topic closely related to Girsanov theorem is bounded mean oscillation
(BMO) martingales. We call a continuous, uniformly integrable martingale (Mt,Ft) with
M0 = 0 is in the class BMO if

‖M‖BMO = sup
τ
‖E ([M ]T − [M ]τ |Fτ )

1
2 ‖∞ <∞

where the supremum is taken over all stopping times τ ∈ [0, T ].
A useful theorem about BMO martingales is as follows

Theorem 2.3.1. (Theorem 2.3, 2.4, Kazamaki (2006)) If M ∈ BMO, then E(M) is a
uniformly integrable martingale. Meanwhile,

sup
τ

∥∥∥∥∥E
(
Eτ (M)

E∞(M)

) 1
p−1

∣∣∣∣∣Fτ
∥∥∥∥∥
∞

<∞,

for all 1 < p <∞, and all stopping times τ .

Of course, BMO martingales share many other important properties, for instance,
BMO martingales can be characterized as the dual of hardy space of p = 1; the John-
Nirenberg inequality is of fundamental importance for many BMO martingales studies.
For more information about BMO martingales, we refer the book Kazamaki (2006).

2.4 Feynman-Kac Formula and Related Topics

In this section we assume all the coefficients are under good enough conditions and deter-
ministic.

Let’s have a look at the following parabolic PDE

∂tu(t, x) + Ltu+ f(t, x) = 0, u(T, x) = h(x), (2.2)

where L is the second order Dynkin operator

Ltu := b(t, x)∂xu+
1

2
Tr(σσᵀ(t, x)∂xxu).

Thus, there exists a unique solution u to PDE (2.2), which can be represented by the
Feynman-Kac formula

u(t, x) = E
(∫ T

t

f
(
s,X(t,x)

s

)
ds+ h

(
X

(t,x)
T

))
, (t, x) ∈ [0, T ]× Rm, (2.3)

where X
(t,x)
s is the solution to the following SDE

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, Xt = x, s ≥ t. (2.4)

Notice that when u is smooth enough, then the Feynman-Kac formula (2.3) can be derived
from Itô formula. Moreover, if we define

Yt := u(t,Xt), Zt := σᵀ(t,Xt)∂xu(t,Xt), 0 ≤ t ≤ T, (2.5)

then by applying Itô formula to u(s,Xs) between t and T , with u satisfying PDE (2.2),
we have the Markovian BSDE

Yt = h(XT ) +

∫ T

t

f(s,Xs)ds−
∫ T

t

ZsdWs.
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Remark 2.4.1. We consider a SDE

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, (2.6)

with the coefficients are under good enough condition and deterministic. Then based on
Itô formula, for any C2 function (i.e., twice continuously differentiable) we have

φ(Xt) = φ(X0) +

∫ t

0

Lsφ(Xs)ds+

∫ t

0

∂xφ(Xs)σ(s,Xs)dWs.

Taking expectations on both sides and denoting by µt the distribution of Xt, we can
obtain that

〈φ, µt〉 = 〈φ, µ0 +

∫ t

0

L∗sµsds〉

where 〈φ, µt〉 :=
∫
Rd φ(x)µ(dx) and L∗s is the adjoint operate of Ls that is 〈Ltφ, µt〉 =

〈φ,L∗tµt〉. Since above equation holds for all φ, we can deduce that µt is a solution of the
following equation

d

dt
µt = L∗tµt

with initial condition µ0. Notice that above equation is often known as Fokker–Planck
equation. Moreover, if µt has a density, that is µt(dx) = p(t, x)dx. Then by Itô formula
it can be shown that

−∂tp(t, x) +
1

2
∂xx(σ

2(t, x)p)− ∂x(b(t, x)p) = 0.

In this sense, we could borrow arguments from Aronson (1967) and results thereafter that
provided certain boundedness results, which are known as Aronson-like bounds, for the
probability density function p.

Remark 2.4.2. When (2.2) with f = 0, it is often known as Kolmogorov’s backward
equation. In particular, we write u(t, x) =

∫
Rm h(y)p(y, s, x, t)dy. Notice that we replace

T with s here for better looking and one can consider s as a time variable. It can be shown
that µ(A, s, x, t) =

∫
A
p(y, s, x, t)dy i.e. µ(A, s, x, t) = P(Xs ∈ A|Xt = x) as a transition

function defines a Markov process X such that it satisfies SDE (2.6). Moreover, for any
bounded function φ(t, x) ∈ C1,2, the following holds∫

Rm

φ(s, y)µ(dy, s, x, t)− φ(t, x) =

∫ s

t

∫
Rm

(∂u + Lu)φ(u, y)µ(dy, u, x, t)du

for all t ∈ [0, s], x ∈ Rm. Detailed discussion can be found in section 5.8, Klebaner (2012).

Remark 2.4.3. Notice that PDE (2.2) can be generalized to

∂tu+ Ltu+ f(t, x, u, σ∂xu) = 0, u(T, x) = h(x). (2.7)

In this case, the corresponding BSDE would be like

Yt = h(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs, (2.8)

with the solution (Y, Z) of the same form to (2.5). An issue arises from the fact that in
general, the function u obtained from BSDE does not smooth, and usually, people deal
with this problem by the notion of viscosity solution. For instance, Pardoux and Peng
(1992) proved that the function u obtained from the globally Lipschitz BSDE (2.8) is a
unique viscosity solution to the PDE (2.7). However, as one can see from chapter 3, our
thesis demonstrates the relation between the solutions of (F)BSDEs and PDEs in another
perspective.
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2.5. GENERALIZED DERIVATIVES AND RELATED TOPICS

2.5 Generalized Derivatives and Related Topics

For a function u ∈ C1,2, we denote L := ∂t + 1
2

∑m
i,j=1(σσᵀ)ij · ∂2

xixj
and its gradient

∇ := (∂x1 , · · · , ∂xm). When u (2.5) is a solution of PDE (2.2), it not necessarily belongs
to C1,2, especially when the coefficients are not smooth enough. Thus, when u /∈ C1,2,
we need the following definitions such that generalized derivatives can be well defined.
This section’s arguments are based on the results from Krylov (1980) and Chitashvili and
Mania (1996).

Definition 2.5.1. Let µ(ds, dy) := p(s, y)dsdy, where p is the transition density corre-
sponding to SDE dXt = σ(t,Xt)dWt with X0 = x ∈ Rm. We say u belongs to V L

µ (loc),
if there exists a sequence of functions (un)n≥1 ⊂ C1,2, a sequence of bounded measurable
domains D1 ⊂ D2 ⊂ · · · with (0, x) ∈ D1 and ∪n∈NDn = [0, T ] × Rm, and a measurable
locally µ-integrable function Lu such that

• τk := {t > 0 : (t,Xt) /∈ Dk} are stopping times with τn ↗ T .

• For each k ≥ 1,

sup
s≤τk
|un(s,Xs)− u(s,Xs)|

n→∞−−−→ 0 a.s.∫∫
Dk

|Lun(s,Xs)− Lu(s,Xs)|µ(ds, dx)
n→∞−−−→ 0.

Then, we define the L-derivative of u by Lu. Moreover, if u ∈ V L
µ (loc), then there exists

∇u(t, x) such that ∫∫
Dk

|∇un(s,Xs)−∇u(s,Xs)|2µ(ds, dx)
n→∞−−−→ 0.

We define ∇u to be the generalized gradient of u.

Definition 2.5.2. Similarly, we define W 1,2
p (D). We let D an open set D ⊂ R1+m and

we call C1,2(D) the set of functions u(t, x) such that u is continuously differentiable with
respect to t and twice continuously differentiable with respect to x in D, and u(t, x) as
well as all these derivatives of u(t, x) have extensions continuous in D.

We call a function u ∈ W 1,2
p (D) if there exists a sequence of functions un ∈ C1,2(D),

such that ∀(t, x) ∈ D

sup
(t,x)∈D

|un(t, x)− u(t, x)| n→∞−−−→ 0

‖un(t, x)− um(t, x)‖ n,m→∞−−−−→ 0

where ‖u‖ := sup(t,x)∈D |u(t, x)| + ‖∂tu‖Lp + ‖∂xu‖Lp + ‖∂2
xxu‖Lp . Notice that the second

inequality implies the existence of measurable functions ut, ui, uij to which unt , u
n
xi
, unxixj

(partial derivatives) converge in Lp(D). Namely assuming φ ∈ C∞0 (D), (a smooth function
with compact support), integration by parts, and by denoting D = Dt ×Dx, where Dt is
the domain of variable t, and Dx is the domain of variable x, we have∫

Dx

φunxidx = −
∫
Dx

φxiu
ndx.
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Let n→∞, ∫
Dx

φuidx = −
∫
Dx

φxiudx.

While the others can be obtained similarly. In particular, we denote W 1,2
p (loc) the class

of functions defined on [0, T ] × Rm which belongs to W 1,2
p (D) for every bounded open

domain D ∈ [0, T ]× Rm.

The following theorem is crucial for our result.

Theorem 2.5.3. (Theorem 1, Chitashvili and Mania (1996)) Consider SDE (2.6), with b
is bounded, and σ is non-degenerate and σσᵀ is continuous. Then the process (f(t,Xt))t∈[0,T ]

is an Itô process if and only if f ∈ V L
µ (loc) and it admits the decomposition

f(t,Xt) = f(0, X0) +

∫ t

0

∇f(s,Xs)dXs +

∫ t

0

Lf(s,Xs)ds.

Our results could prove the well-posedness of BSDE (2.8) and provide the existence
of the decoupling field u such that Yt = u(t,Xt). Since Y is an Itô process, then we can
deduce that u is a unique solution of PDE (2.7) directly from above theorem.

Particularly, in the last chapter, we provided that under a set of stricter conditions,
the unique solution u is in the space W 1,2

p (D). Here we want to share some important
properties about space W 1,2

p (D).

Remark 2.5.4. W 1,2
p (D) is not only a completion of space C1,2(D) but also equivalent

to the usual Sobolev space for continuous functions with a sufficient regular domain. (See
Krylov (1980).)

Corollary 2.5.5. Given b is bounded, and σ is non-degenerate and σσᵀ is continuous.
For all p ≥ m+ 1,

W 1,2
p (D) ⊂ V L

µ (D), W 1,2
p (loc) ⊂ V L

µ (loc)

for every bounded domain D ∈ B(R1+m).

Proof. Without loss of generality, we consider the initial condition x = 0. Since the
probability density of X satisfies a parabolic equation introduced in Remark 2.4.1, then
from Aronson (1967) we know that

p(s, y) ≤ C1s
−m
2 exp

(
−C2

y2

s

)
where C1, C2 are two positive constants depending on the bounded value of b, σ and
terminal time T . Thus by Hölder’s inequality, for each p ≥ m+ 1, we have∫ ∫

D

|u(s, x)|p(s, x)dsdx < C

(∫ ∫
D

|u(s, x)|pdsdx
) 1

p

, (2.9)

for some constant C. For a generic u ∈ W 1,2
p (D), by Definition 2.5.1, Definition 2.5.2,

and denoting D = Dt ×Dx, where Dt is the domain of variable t, and Dx is the domain
of variable x, we have that there exists a sequence of functions un ∈ C1,2(D) such that

sup
(t,x)∈D

|un(t, x)− u(t, x)| n→∞−−−→ 0 =⇒ sup
t∈Dt

|un(t,Xt)− u(t,Xt)|
n→∞−−−→ 0
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2.6. PREVIOUS RESULTS ABOUT SDES AND BSDES

where Xt ∈ Dx. Moreover, according to (2.9), Definition 2.5.1, and Definition 2.5.2, we
have for each Xt ∈ Dx, there exists a constant C, such that∫∫

D

|Lun(t,Xt)− Lum(t,Xt)|µ(dt, dx) ≤ C‖un(t,Xt)− um(t,Xt)‖
n,m→∞−−−−→ 0,

where norm ‖‖ was defined in Definition 2.5.2. While above formula also implies the
existence of Lu. Therefore, we have u ∈ V L

µ (D). Similar arguments can be made for the
localized case.

2.6 Previous Results about SDEs and BSDEs

Since our results heavily depend on the previous results of SDEs and BSDEs’, for the
readers convenience, in the last section we will present some detailed results that we
applied. As usual, we consider the coefficients are deterministic and the probability space
(Ω,F,F,P) is a filtered probability space on which is defined an Rd-dimensional Brownian
motion W , such that its augmented filtration F := (Ft)t∈[0,T ] is generated by W . For a
terminal time T ∈ [0,∞), we consider SDEs in this section with the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt X0 = x ∈ Rm, (2.10)

where (b, σ) : [0, T ]× Rm → Rm × Rm×d, and BSDEs

Yt = ξ −
∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

ZsdWs, (2.11)

where ξ is a square integrable FT -adapted random variable and f : [0, T ]×Rn×Rn×d → Rn.
Notice that sometimes we would assume ξ := h(XT ) with h : Rm → Rn and f depends on
x. In this sense, equations (2.10) and (2.11) would form a so-called decoupled FBSDE.
Please notice that for the decoupled FBSDEs, since in most cases X can be obtained
from the SDEs, usually the BSDEs’ results can be easily generalized to the decoupled
FBSDEs’. Particularly, since we are considering the Markovian cases, we are interested in
the existence of decoupling field that is a deterministic measurable function u such that
Yt = u(t,Xt).

2.6.1 SDEs’ Results

In Veretennikov (1980), the author provided if b is bounded, and σ is Lipschitz and
uniformly non-degenerate that is, there exists a constant ε > 0 such that

ε−1|x′|2 ≤ (x′)ᵀ(σσᵀ)(t, x)x′ ≤ ε|x′|2

for all x′ ∈ Rm and (t, x) ∈ [0, T ]× Rm, then (2.10) is uniquely solvable.
Gyongy and Martinez (2001) provided the following conditions:

• b ∈ L2m+2
loc ([0, T ]× Rm), where subscript loc stands for locally integrable, and there

exist a non-negative function F ∈ Lm+1([0, T ]× Rm) and K ≥ 0 such that

|b(t, x)| ≤ K + F (t, x).

• σ is uniformly non-degenerate and locally Lipschitz, which is for every R > 0 there
is a constant LR such that

|σ(t, x)− σ(t, y)| ≤ LR|x− y|

for all t ∈ [0, T ], x, y ∈ Rm with |x| ≤ R and |y| ≤ R.
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2.6. PREVIOUS RESULTS ABOUT SDES AND BSDES

If above conditions are satisfied, then SDE (2.10) is uniquely solvable.
When m = d = 1, Le Gall (1984) proved the unique solvability of SDE (2.10). They

introduced the following two conditions:

• There exists a strictly increasing function θ : R+ → R+ such that
∫
R+

du
θ(u)

=∞ and

(σ(t, x)− σ(t, y))2 ≤ θ(|x− y|) for all t, x, y.

• σ is strictly positive and there exists a strictly increasing function θ′ : R→ R such
that (σ(t, x)− σ(t, y))2 ≤ |θ′(x)− θ′(y)| for all t, x, y.

When σ, b are bounded functions, σ is non-degenerate and satisfies one of above conditions,
then SDE (2.10) has a unique solution.

The last result about SDEs’ was introduced by Menoukeu-Pamen and Mohammed
(2019). They provided a well-posedness result for SDE (2.10) when σ is a constant.
(2.10) under such case is uniquely solvable if there exists a constant C, such that |b(t, x)| ≤
C(1 + |x|) for all (t, x) ∈ [0, T ]× Rm.

2.6.2 BSDEs’ Results

El Karoui et al. (1997) introduced the first general result for BSDEs. It proved that
BSDE (2.11) is uniquely solvable if ξ is square integrable and FT -measurable, and f is
uniformly Lipschitz. Sometimes people would call the (ξ, f) standard parameter if they
satisfy these conditions. In particular, the authors provided the well-known comparison
theorem for one-dimensional BSDEs with standard parameters. Let (ξ1, f 1) and (ξ2, f 2)
be two standard parameters of BSDEs, and (Y 1, Z1), (Y 2, Z2) be the associated solutions.
If

ξ1 ≥ ξ2, and f 1(t, Y 2
t , Z

2
t )− f 2(t, Y 2

t , Z
2
t ) ≥ 0,

then we have for any t ∈ [0, T ], Y 1
t ≥ Y 2

t .
Hamadene et al. (1997) considered decoupled FBSDEs and assume b and σ are uni-

formly Lipschitz and under linear growth. (The conditions imply the well-posedness of
SDE (2.10).) Particularly, for p ∈ [1,∞), (x, y, z) ∈ Rm × Rn × Rn×d, and some con-
stant C, they assume |g(x)| ≤ C(1 + |x|p), |f(t, x, y, z)| ≤ C(1 + |x|p + |y| + |z|), and
∀(s, x) ∈ [0, T ] × Rm, f(s, x, ·, ·) is continuous. If all these assumptions are satisfied,
then the decoupled FBSDE has a solution. Particularly, inspired from the Feynman-
Kac formula we introduced in Section 2.3, they showed that there exist measurable and
deterministic functions u, d such that Yt = u(t,Xt) and Zt = d(t,Xt).

As we mentioned in the introduction, Kobylanski (2000) was the first paper proved the
well-posedness of quadratic BSDE (2.11). She considered the BSDE is one-dimensional
and f(t, y, z) = a0(t, y, z)y + f0(t, y, z). Let a, b, c ∈ R and α be a continuous increasing
function. If for all (t, y, z) ∈ [0, T ]× R× Rd,

a ≤ a0(t, y, z) ≤ b, and |f0(t, y, z)| ≤ c+ α(|y|)|z|2

then BSDE (2.11) has a solution. Since the BSDE is one-dimensional, the classical com-
parison theorem introduced in El Karoui et al. (1997) helps the author to obtain the
boundedness of solution Y , where the boundary depends on a, b, c, and the uniqueness of
BSDE (2.11) under a stricter set of conditions. Particularly, due to her novel approach,
the way of obtaining the decoupling field is slightly different from the usual ones. Since
Y is bounded, then one can assume |f0(t, y, z)| ≤ C(1 + |z|2) for some C ∈ R+. An
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2.6. PREVIOUS RESULTS ABOUT SDES AND BSDES

exponential change is given by y = e2CY . By showing y is a solution of another set of
parameters’ decoupled FBSDE with a decoupling field u, one can obtain Yt = lnu(t,Xt)

2C
.

(The decoupled FBSDE was discussed in section 3 of the paper.)
Recently, another paper provided results for multidimensional quadratic BSDEs. Hu

and Tang (2016) studied BSDE (2.11) of the following form

Y i
t = ξi −

∫ T

t

f i(s, Zi
s) + hi(s, Ys, Zs)ds+

∫ T

t

Zi
sdWs, i = 1, · · · , n.

They provided the following conditions:

• For all f i : [0, T ] × Rd → R, i = 1, · · · , n, z, z1, z2 ∈ Rd, and some constant C,
they have the following quadratic growth and locally Lipschitz continuity in the last
variable

|f i(s, z)| ≤ C|z|2

|f i(s, z1)− f i(s, z2)| ≤ C(1 + |z1|+ |z2|)|z1 − z2|.

• ξ = (ξ1, · · · , ξn)ᵀ is uniformly bounded.

• Denote h = (h1, · · · , hn)ᵀ. For (s, y, z) ∈ [0, T ]×Rn×Rn×d and (y′, z′) ∈ Rn×Rn×d,
h satisfies

|h(s, y, z)| ≤ C(1 + |y|), |h(s, y, z)− h(s, y′, z′)| ≤ C(|y − y′|+ |z − z′|).

If all above conditions are satisfied, then BSDE (2.11) would have a unique solution.
Particularly, they proved that if (Y, Z) is a solution, then Y is bounded and Z ·W is a
BMO martingale.

The last result we want to share was introduced by Mu and Wu (2015). They focus
on the BSDE of the form

Y i
t = hi(X0,a

T )−
∫ T

t

f i(s,X0,a
s , Y 1

s , · · · , Y n
s , Z

1
s , · · · , Zn

s )ds+

∫ T

t

Zi
sdWs,

with the forward process satisfies

X t,x
s = x+

∫ s

t

σ(u,X t,x
u )dWu s ∈ [t, T ],

X t,x
s = x s ∈ [0, t].

Particularly, they assume for each (t, x, y1, · · · , yn, z1, · · · , zn) ∈ [0, T ]×Rm×Rn×Rn×m

there exist a constant C and r ≥ 0 such that for each i = 1, · · · , n

|f i(t, x, y1, · · · , yn, z1, · · · , zn)| ≤ C(1 + |x|)|zi|+ C(1 + |x|r + |yi|),

and for each (t, x) ∈ [0, T ] × Rm, f i(t, x, y1, · · · , yn, z1, · · · , zn) is continuous. Moreover,
they assume terminal condition h is under polynomial growth with respect to x that is
|hi(t, x)| ≤ C(1 + |x|r), with r ≥ 0. Meanwhile, they assume σ is non-degenerate and
Lipschitz. If all these assumptions are satisfied, they proved the existence of a solution
for the decoupled FBSDE along with the existence of the decoupling field.
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Chapter 3

Discontinuous Coefficients FBSDEs
with Their Applications and
Semilinear PDEs

In the last chapter we will present our main results of the thesis. As we introduced in
chapter 1, we are interested in the solvability of FBSDE (1.6) with all the coefficients are
discontinuous with respect to the forward process. Particularly, we let g̃ be of the form
g̃(t, x, y, z) = b(t, x) + σ(t, x)g(t, x, y, z) and thus we have

dXt = (b(t,Xt) + σ(t,Xt)g(t,Xt, Yt, Zt))dt+ σ(t,Xt)dWt; X0 = x

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt; YT = h(XT ).

This chapter is organized as follows: in the first section we will introduce our main results
about above FBSDEs (Theorem 3.1.3) and their corresponding PDEs’ (Corollary 3.1.6).
Followed by the next section we will demonstrate our approach and prove the results. At
last we will provide two applications that are closely related to discontinuous coefficients
FBSDEs.

3.1 Existence and Uniqueness Results

Let (Ω,F,F,P) be a filtered probability space with an n-dimensional Brownian motion
W and its augmented filtration F generated by W . For a function u ∈ C0,1, we denote
∇ := (∂x1 , · · · , ∂xm). Let

(b, σ) : [0, T ]× Rm → Rm × Rm×n

(f, g) : [0, T ]× Rm × Rd × Rd×n → Rd × Rn

h : Rm → Rd.

be (jointly) measurable functions. Unless otherwise stated, we assume the following con-
ditions:

• σ is uniformly nondegenerate, that is, there exists a constant ε > 0 such that

ε−1|x′|2 ≤ (x′)ᵀ(σσᵀ)(t, x)x′ ≤ ε|x′|2

for all x′ ∈ Rm and (t, x) ∈ [0, T ]× Rm.
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• There exists a positive constant κ such that,

|b(t, 0)|+ sup
|x−x′|≤1

|b(t, x)− b(t, x′)| ≤ κ

for all t ∈ [0, T ], x, x′ ∈ Rm.

Remark 3.1.1. Under the non-degeneracy assumption on σ, we have

b(t, x) + σ(t, x)g(t, x, y, z) = b̃(t, x) + σ(t, x)g̃(t, x, y, z),

where b̃ = b− k and g̃ = σᵀ(σσᵀ)−1k+ g. This adds flexibility to the conditions described
below.

Remark 3.1.2. Note that b(t, x) can exhibit linear growth in x. For example, let b(t, x) =
b0(t, x) + b1(t, x) where supt∈[0,T ] |b0(t, 0) + b1(t, 0)| = 1, b0(t, x) is Hölder continuous in x,
and b1(t, x) is bounded.

We use the following short-hand notations for different conditions on the coefficients,
where f(t, x, y, z) := f(t, x, y, z) + zg(t, x, y, z), C and r are nonnegative constants, θ :
R → R+ is a strictly increasing function, and ρr : R+ → R+ is a nondecreasing function
with ρr ≡ 0 for r > 0:

(F1) |b(t, x)| ≤ C and σ(t, x) is locally Lipschitz with respect to x.

(F2) |b(t, x)| ≤ C, m = n = 1, and either

(i)
∫

du
θ(u)

=∞ and |σ(t, x)− σ(t, y)|2 ≤ θ(|x− y|), or

(ii) θ is bounded and |σ(t, x)− σ(t, y)|2 ≤ |θ(x)− θ(y)|.

(F3) σ(t, x) is a constant matrix.

(B1) |h(x)| ≤ C(1 + |x|r), f(t, x, y, z) is continuous in (y, z), and

|f(t, x, y, z)| ≤ C(1 + |x|r + |y|+ |z|)
|g(t, x, y, z)| ≤ C(1 + ρr(|y|)).

(B2) |h(x)| ≤ C, f
i
(t, x, y, z) = f̃ i(t, x, zi) + f̂ i(t, x, y, z) such that

|f̂(t, x, y, z)| ≤ C(1 + |y|)
|f̃(t, x, z)| ≤ C|z|2

|g(t, x, y, z)| ≤ C(1 + ρr(|y|))
|f̂(s, x, y, z)− f̂(s, x, y′, z′)| ≤ C(|y − y′|+ |z − z′|),∀y, y′ ∈ Rd, z, z′ ∈ Rd×n

|f̃(s, x, z1)− f̃(s, x, z2)| ≤ C(1 + |z1|+ |z2|)|z1 − z2|,∀z1, z2 ∈ Rd×n.

(B3) d = 1, |h(x)| ≤ C, f(t, x, y, z) is continuous with respect to (y, z), and

|f(t, x, y, z)| ≤ C(1 + |y|+ |z|2)

|g(t, x, y, z)| ≤ C(1 + ρr(|y|)).

(B4) |h(x)| ≤ C(1 + |x|r), f(t, x, y, z) is continuous in (y, z), and

|f i(t, x, y, z)| ≤ C(1 + |x|r + |yi|) for all i = 1, 2, ..., d

|g(t, x, y, z)| ≤ C(1 + |x|+ ρr(|y|)).
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(U1) f(t, x, y, z) is globally Lipschitz continuous with respect to (y, z), or

(U2) d = 1, |h(x)| ≤ C, f(t, x, y, z) is differentiable with respect to (y, z), and for any
M, ε > 0, there exist lM , lε ∈ L1([0, T ];R+), kM ∈ L2([0, T ];R+), and CM > 0 such
that f satisfies

|f(t, x, y, z)| ≤ lM(t) + CM |z|2

|∂zf(t, x, y, z)| ≤ kM(t) + CM |z|
|∂yf(t, x, y, z)| ≤ lε(t) + ε|z|2

for all (t, x, y, z) ∈ [0, T ]× Rm × [−M,M ]× R1×n.

Theorem 3.1.3. Assume that there exist nonnegative constants C, r > 0, a strictly
increasing function θ : R→ R+, and a nondecreasing function ρr : R+ → R+ with ρr ≡ 0
for r > 0 that satisfies either of the following conditions:

• one of (F1), (F2), (F3) and one of (B1), (B2), (B3) hold for any (t, x, y, z) ∈ [0, T ]×
Rm × Rd × Rd×n.

• (F3) and (B4) hold for any (t, x, y, z) ∈ [0, T ]× Rm × Rd × Rd×n.

Then, FBSDE

dXt = (b(t,Xt) + σ(t,Xt)g(t,Xt, Yt, Zt))dt+ σ(t,Xt)dWt; X0 = x

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt; YT = h(XT )
(3.1)

has a strong solution in H2(Rm) × H2(Rd) × H2(Rd×n). In particular, if r = 0, then the
FBSDE has a strong solution (X, Y, Z) such that ess supω∈Ω supt∈[0,T ] |Yt(ω)| < ∞. In
addition, if either (U1), (U2), or (B2) holds, then the solution is unique.

Proof. The proof is given in Section 3.2.

Under the assumption of Theorem 3.1.3, we have measurable functions u : [0, T ] ×
Rm → Rd and d : [0, T ] × Rm → Rd×n such that Yt = u(t,Xt), Zt = d(t,Xt) for almost
every (t, ω) ∈ [0, T ] × Ω. To state that u is a solution of a parabolic PDE, let us define
V L
µ (loc), the class of L-differentiable functions.

Definition 3.1.4 (Chitashvili and Mania (1996)). Let µ(ds, dy) := p(0, x, s, y)dsdy,
where p is the transition density corresponding to SDE dXt = σ(t,Xt)dWt. Further,
for a function f ∈ C1,2, we define

Lf := ∂tf +
1

2

m∑
i,j=1

(σσᵀ)ij(t, x)∂2
xixj

f.

We say u belongs to V L
µ (loc), if there exists a sequence of functions (un)n≥1 ⊂ C1,2, a

sequence of bounded measurable domains D1 ⊂ D2 ⊂ · · · with (0, x) ∈ D1 and ∪n∈NDn =
[0, T ]× Rm, and a measurable locally µ-integrable function Lu such that

• τk := {t > 0 : (t,Xt) /∈ Dk} are stopping times with τn ↗ T .

• For each k ≥ 1,

sup
s≤τk
|un(s,Xs)− u(s,Xs)|

n→∞−−−→ 0 a.s.∫∫
Dk

|Lun(s,Xs)− Lu(s,Xs)|µ(ds, dx)
n→∞−−−→ 0.
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Then, we define the L-derivative of u by Lu. Moreover, if u ∈ V L
µ (loc), then there exists

∇u(t, x) such that ∫∫
Dk

|∇un(s,Xs)−∇u(s,Xs)|2µ(ds, dx)
n→∞−−−→ 0.

We define ∇u to be the generalized gradient of u.

For an open set D ⊂ R1+m, let W 1,2
p (D) be the completion of C1,2(D) with respect to

the norm
‖u‖ := sup

(t,x)∈D
|u(t, x)|+ ‖∂tu‖Lp + ‖∂xu‖Lp + ‖∂2

xxu‖Lp .

We define W 2
p (D) similarly. Note that W 1,2

p (D) is equivalent to the usual Sobolev space
for continuous u if D has smooth boundary and p ≥ m+ 1: see p47 of Krylov (1980).

Proposition 3.1.5. For p ≥ m+ 1,

W 1,2
p (D) ⊂ V L

µ (loc)

for any bounded measurable domain D ⊂ Rm.

Proof. See Corollary 2.5.5.

We have the following corollary.

Corollary 3.1.6. Assume the existence conditions in Theorem 3.1.3. In addition, we
assume that σσᵀ is continuous. Then, there exists u ∈ V L

µ (loc) that satisfies

Lu(t, x) +∇u(t, x)(b(t, x) + σ(t, x)g(t, x, u,∇uσ)) + f(t, x, u,∇uσ) = 0; u(T, x) = h(x).
(3.2)

If the uniqueness condition in Theorem 3.1.3 holds, then there is a unique u ∈ V L
µ (loc)

satisfying (3.2). In addition, assume the following conditions:

(σσᵀ)(t, x) is uniformly continuous with respect to x for each t ∈ [0, T ]

b(t, x) is unifomly bounded in (t, x)∫
[0,T ]×Rm

sup
z∈Rd×n

(|f(t, x, y, z)|p) dtdx ≤ C(1 + ρr(|y|)) and |g(t, x, y, z)| ≤ C(1 + ρr(|y|))

h ∈ W 2
p (Rm)

(3.3)
then u ∈ W 1,2

p ([0, T )× Rm).

Proof. The existence of u ∈ V L
µ (loc) satisfying (3.2) is an immediate consequence of

Theorem 1 in Chitashvili and Mania (1996).
Assume conditions (3.3). When r = 0, conditions (B1)–(B4) implies the boundedness

of u according to the same argument in the proof of Proposition 3.2.7. On the other
hand, if r > 0, then ρr ≡ 0. Therefore, without losing generality, we can assume that
|g(t, x, y, z)| ≤ C and

‖f(·, ·, u,∇uσ)‖Lp ≤

(∫
[0,T ]×Rm

sup
y,z∈Rd×Rd×n

(|f(t, x, y, z)|p)dtdx

)1/p

<∞.
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As we have a measurable function u and ∇u, let us define

L := L +
m∑
i=1

(b+ σg)i∂xi

F (t, x) := f(t, x, u(t, x), (∇uσ)(t, x))− Lh(x).

Then, ũ(t, x) := u(t, x)− h(x) solves the following PDE

Lũ = F ; ũ(T, x) = 0.

Note that the above PDE is linear parabolic with measurable F ∈ Lp([0, T ]×Rm), b+σg
is bounded, and (σσᵀ)(t, ·) ∈ VMO(Rm). (One can find the definition of VMO space
at the beginning of section 2 in Krylov (2007).) Therefore, it satisfies the condition of
Theorem 2.1 of Krylov (2007), and ũ ∈ W 1,2

p ([0, T ) × Rm) is a unique solution. As a
result, u = ũ+ h is the unique solution of (3.2) and u ∈ W 1,2

p ([0, T )× Rm).

3.2 Proof of Theorem 3.1.3

3.2.1 Measure Change of FBSDE

In this subsection, we provide sufficient conditions that guarantee the existence of a strong
solution under the Girsanov transform. We neither assume the non-degeneracy of σ nor
the boundedness of |b(t, 0)|+sup|x−x′|≤1 |b(t, x)−b(t, x′)|. Instead, we assume the following
conditions:

(H1) The SDE

dFt = b(t, Ft)dt+ σ(t, Ft)dWt (3.4)

has a unique strong solution.

(H2) For the strong solution F obtained in (H1), there exist Borel measurable functions
(u, d) : [0, T ]×Rm → Rd×Rd×n such that Ut = u(t, Ft) and Vt = d(t, Ft) is a strong
solution of BSDE

dUt = −f(t, Ft, Ut, Vt)− Vtg(t, Ft, Ut, Vt)dt+ VtdWt; UT = h(FT ). (3.5)

(H3) For (F,U, V ) in (H1) and (H2), the process

E

(∫ ·
0

g(s, Fs, Us, Vs)
ᵀdWs

)
is a martingale on [0, T ].

(H4) For u, d in (H3), the forward SDE

dF̃t =
(
b(t, F̃t) + σ(t, F̃t)g(t, F̃t, u(t, F̃t), d(t, F̃t))

)
dt+ σ(t, F̃t)dWt; F̃0 = x

has a (pathwise) unique strong solution F̃ .
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Lemma 3.2.1. Assume (H1)–(H4). Then, the FBSDE

dXt = (b(t,Xt) + σ(t,Xt)g(t,Xt, Yt, Zt)) dt+ σ(t,Xt)dWt; X0 = x (3.6)

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt; YT = h(XT ) (3.7)

has a strong solution (X, Y, Z) that satisfies (H3) and (Y, Z) = (u(t,Xt), d(t,Xt)). In
addition, if BSDE (3.5) has a unique strong solution, then (3.6)–(3.7) has a unique strong
solution (X, Y, Z) such that E

(
−
∫ ·

0
g(s,Xs, Ys, Zs)

ᵀdWs

)
is a martingale on [0, T ] .

Proof. By (H3), if we define

Bt = Wt −
∫ t

0

g(s, Fs, Us, Vs)ds,

then B is a P̃-Brownian motion, where dP̃
dP

∣∣∣
t

= Et
(∫ ·

0
g(s, Fs, Us, Vs)

ᵀdWs

)
and the FBSDE

(3.4)–(3.5) becomes

dFt = (b(t, Ft) + σ(t, Ft)g(t, Ft, u(t, Ft), d(t, Ft))) dt+ σ(t, Ft)dBt; F0 = x

dUt = −f(t, Ft, Ut, Vt)dt+ VtdBt; YT = h(FT )

by (H1) and (H2). Note that F is a strong solution by the pathwise uniqueness assumption
on (H4). Therefore, F is adapted to the augmented filtration generated by B, and so
do (Ut = u(t, Ft) : t ∈ [0, T ]) and (Vt = d(t, Ft) : t ∈ [0, T ]). As a result, (F,U, V )
solves the FBSDE and is adapted to the filtration generated by the underlying Brownian
motion B. This implies that, for the unique strong solution X of the SDE in (H4),
(X, u(·, X.), d(·, X.)) is a strong solution of (3.6)–(3.7).

On the other hand, let (X, Y, Z) and (X̃, Ỹ , Z̃) be strong solutions of (3.6)–(3.7) such
that

E

(
−
∫ ·

0

g(s,Xs, Ys, Zs)
ᵀdWs

)
and E

(
−
∫ ·

0

g(s, X̃s, Ỹs, Z̃s)
ᵀdWs

)
are martingales on [0, T ]. Then, by the Girsanov transform, for

Bt = Wt +

∫ t

0

g(s,Xs, Ys, Zs)ds and B̃t = Wt +

∫ t

0

g(s, X̃s, Ỹs, Z̃s)ds,

both (X, Y, Z,B) and (X̃, Ỹ , Z̃, B̃) are weak solutions of (3.4)–(3.5). As the (3.4) enjoys
the pathwise uniqueness, X = X̃ almost surely for a given Brownian motion W . As the
BSDE (3.5) has a unique solution, we obtain (Y, Z) = (Ỹ , Z̃) almost surely for a given
Brownian motion W .

Remark 3.2.2. It is also possible to construct a solution of the decoupled FBSDE using
a solution of coupled FBSDE. This technique can be used to study multidimensional
quadratic BSDE (see Section 2 of Cheridito and Nam (2015)).

Remark 3.2.3. Lemma 3.2.1 can be extended to the case where σ also depends on Y, Z
as well. In this case, the transformed FBSDE

dXt = b(t,Xt)dt+ σ(t,Xt, Yt, Zt)dWt; X0 = x

dYt = − (f(t,Xt, Yt, Zt) + Ztg(t,Xt, Yt, Zt)) dt+ ZtdWt; YT = h(XT )

still has coupling through σ; therefore, it does not simplify the problem. As a result, we
cannot obtain the existence results such as Theorem 3.1.3.
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3.2.2 Verification of (H1)

In this subsection, we prove that (H1) is satisfied under either (F1), (F2), or (F3). In addi-
tion, we analyze the solution F of (3.4), which will be used in the subsequent subsections.
Let us use the following definition introduced by Hamadene et al. (1997).

Definition 3.2.4. Consider a class of SDEs

dX(t,x)
s = b(s,X(t,x)

s )ds+ σ(s,X(t,x)
s )dWs; X

(t,x)
t = x ∈ Rm (3.8)

defined on [t, T ]. We say that the coefficients (b, σ) satisfy the L2-domination condition
if the following conditions are satisfied:

• For each (t, x) ∈ [0, T ]×Rm, the SDE (3.8) has a unique strong solution X(t,x). We

denote µ
(t,x)
s as the law of X

(t,x)
s , that is, µ

(t,x)
s := P ◦ (X

(t,x)
s )−1.

• For any t ∈ [0, T ], a ∈ Rm, µ
(0,a)
t -almost every x ∈ Rm, and δ ∈ (0, T − t], there

exists a function φt : [t, T ]× Rm → R+ such that

– for all k ≥ 1, φt ∈ L2([t+ δ, T ]× [−k, k]m;µ
(0,a)
s (dξ)ds)

– µ
(t,x)
s (dξ)ds = φt(s, ξ)µ

(0,a)
s (dξ)ds

Proposition 3.2.5. If (H1) holds, (b, σ) satisfies the L2-domination condition and E|Ft|2
is bounded uniformly for t ∈ [0, T ].

Proof. First, let us assume b is bounded as in (F1) or (F2). Since σσᵀ is bounded, by
Theorem 1 of Aronson (1967), there are constants K and λ which only depend on m,T, ε
and C that satisfies

K−1(s− t0)−m/2 exp

(
−λ

−1|ξ − x0|2

s− t0

)
≤ dµ

(t0,x0)
s

dξ
≤ K(s− t0)−m/2 exp

(
−λ|ξ − x0|2

s− t0

)
for any (t0, x0), (s, ξ) ∈ (0, T ) × Rm with s > t0. Note that µ

(t,x)
s (dξ) = φt(s, ξ)µ

(0,a)
s (dξ)

where

φt(s, ξ) :=
dµ

(t,x)
s

dξ

(
dµ

(0,a)
s

dξ

)−1

≤ K2

(
s

s− t

)m/2
exp

(
−λ|ξ − x|

2

s− t
+
λ−1|ξ − a|2

s

)
,

φt ∈ L2([t + δ, T ] × [−k, k]m;µ
(0,a)
s (dξ)ds) for all k ≥ 1. Therefore, the L2-domination

condition holds. For the case of (F3), we can use similar argument based on Theorem 1.2
of Menozzi et al. (2021).

On the other hand, note that there exists a constant K such that |b(t, x)| ≤ K(1+ |x|).
Then, there exist non-negative constants K1 and K2 that satisfy

E|Ft|2 ≤ K1

(
|F0|2 + E

∫ t

0

|b(s, Fs)|2ds+ E
∫ T

0

|σ(s, Fs)|2ds
)
≤ K2

(
1 +

∫ t

0

E|Fs|2ds
)

By Grönwall’s inequality, we have supt∈[0,T ] E|Ft|2 <∞.

Proposition 3.2.6. If either (F1), (F2), or (F3) holds, then (3.4) has a unique strong so-
lution F , E|Ft|2 is bounded uniformly for t ∈ [0, T ], and (b, σ) satisfies the L2-domination
condition.
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Proof. It is easy to verify that (3.4) has a unique strong solution if either (F1) or (F2)
holds (see Gyongy and Martinez (2001) and Le Gall (1984)).

On the other hand, assume that (F3) holds. As a symmetric matrix A := σσᵀ has a
nonzero determinant, A has orthonormal eigenvectors {ξ1, · · · , ξm} with the corresponding
strictly positive eigenvalues {λ1, · · · , λm}. Let

E :=

(
1√
λj
ξj : j = 1, 2, . . . ,m

)
.

Then, EᵀAE becomes an identity matrix. Therefore, by Lévy characterization, we know
that B := EᵀσW is a P-Brownian motion. Note that Menoukeu-Pamen and Mohammed
(2019) shows that the forward SDE

dPt = Eᵀb(t, (Eᵀ)−1 Pt)dt+ dBt; P0 = Eᵀx

has a unique strong solution because b(t, x) has a linear growth in x, as pointed out in
Remark 3.1.2. Therefore, X̃ := (Eᵀ)−1 P is a unique solution of (3.4).

Therefore, (H1) is satisfied under one of the assumptions (F1), (F2), or (F3). The
remainder of our claim is proved by Proposition 3.2.5.

3.2.3 Verification of (H2) and (H3)

In this subsection, we will always assume (H1).

Proposition 3.2.7. (B1) implies (H2) and (H3).

Proof. First, let us assume r > 0, which implies ρr ≡ 0. Then, (H3) holds automatically
because g is bounded. Note that X̃ obtained by (3.4) is a Markov process because the
corresponding Martingale problem is well posed. By Propositions 3.2.5 and B.0.1, all of
the conditions in Remark 27.3 of Hamadene et al. (1997) are satisfied. As f exhibits linear
growth in (y, z), Theorem 27.2 of Hamadene et al. (1997) proves (H2).

On the other hand, if r = 0, then h and f(t, x, 0, 0) are bounded by C. Then, we will

show that Ut = u(t, Ft) is uniformly bounded by e
1
2
aT
√
C2 + T . If so, (H3) is automatically

satisfied. Moreover, because f exhibits linear growth in (y, z), (H2) holds by the previous
argument again.

For a positive constant N , let

PN : [0, T ]×Rm×Rd×Rd×n 3 (t, x, y, z) 7→
(
t, x,

Ny

|y| ∨N
, z

)
∈ [0, T ]×Rm×Rd×Rd×n

and fN := f ◦PN , gN := g ◦PN , and HN(t, x, y, z) := fN(t, x, y, z) + zgN(t, x, y, z). Then,
by (B1), there exists a constant C̃ > 0 such that

|HN(t, x, y, z)| ≤ C̃(1 + |z|).

Then, by the same argument for r > 0, the FBSDE

dFt = b(t, Ft)dt+ σdWt; F0 = x

dUt = −HN(t, Ft, Ut, Vt)dt+ VtdWt; UT = h(FT )
(3.9)

has a strong solution (F,U, V ) such that there exist Borel measurable functions (u, d) :
[0, T ] × Rm → Rd × Rd×n such that Ut = u(t, Ft) and Vt = d(t, Ft) dt ⊗ dP-almost

28



3.2. PROOF OF THEOREM 3.1.3

everywhere. By Itô formula, we have

eat|Ut|2 = eaT |h(FT )|2 +

∫ T

t

eas
(
2Uᵀ

s fN(s, Fs, Us, Vs)− |Vs|2 − a|Us|2
)
ds−

∫ T

t

2easUᵀ
s VsdW̃s

where a = 2C(C + 1) and

W̃t = Wt −
∫ t

0

gN(s, Fs, Us, Vs)ds.

Note that W̃ is a Brownian motion under some measure P̃ because gN is bounded. In
addition, by using the inequality 2Cxy ≤ C2x2 + y2, we have

2Uᵀ
t fN(t, Ft, Ut, Vt)− |Vt|2 − a|Ut|2

≤ 2C|Ut|(1 + |Ut|+ |Vt|)− |Vt|2 − a|Ut|2 ≤ (2C2 + 2C − a)|Ut|2 + 1 ≤ 1.

Therefore, if we denote Ẽ as the expectation with respect to P̃, we obtain

|Ut|2 = e−atẼ
[
eaT |h(FT )|2 +

∫ T

t

eas
(
2Uᵀ

s fN(s, Fs, Us, Vs)− |Vs|2 − a|Us|2
)
ds

]
≤ ea(T−t) (C2 + T − t

)
.

Therefore, U is uniformly bounded, independent of the choice of N . If we set

N ≥ e
1
2
aT
√
C2 + T ,

the solution of (3.9) is the solution of (3.5) and |Ut| ≤ N . This proves the claim.

Proposition 3.2.8. (B2) implies (H2) and (H3).

Proof. Note that by Hu and Tang (2016), BSDE (3.5) has a unique solution (U, V ) such
that U is bounded. In this case, V ·W is a BMO martingale. Therefore, without loss of
generality, we can assume that f̂ is a bounded Lipschitz function and |g(t, x, y, z)| ≤ C.
Then, (H3) is satisfied.

Now, we only need to prove the existence of measurable functions u and d such that
(Ut, Vt) = (u(t, Ft), d(t, Ft)). Let U

(0)
t = u0(t, Ft) = 0 for all t ∈ [0, T ] and V

(0)
t =

d0(t, Ft) = 0, and we define

U
(k+1),i
t = hi(FT ) +

∫ T

t

f̂ i(s, Fs, U
(k)
s , V (k)

s ) + f̃ i(s, Fs, V
(k+1),i
s )ds−

∫ T

t

V (k+1),idWt.

Then, as shown in the proof of Proposition 3.2.9, there exist measurable functions uk :
[0, T ] × Rm → Rd and dk : [0, T ] × Rm → Rd×n such that U

(k)
t = uk(t, Ft) and V

(k)
t =

dk(t, Ft). As U (k) → U in S∞ and V (k) ·W → V ·W in BMO by Hu and Tang (2016), if we
let ui(t, x) := lim supk→∞ u

i
k(t, x) and dij(t, x) := lim supk→∞ d

ij
k (t, x), where u = (ui)1≤i≤d

and d = (dij)1≤i≤d,1≤j≤n, we have

ui(t, Ft) = (lim sup
k→∞

uik)(t, Ft) = lim sup
k→∞

(uik(t, Ft)) = lim
k→∞

U
(k),i
t = U i

t

dij(t, Ft) = (lim sup
k→∞

dijk )(t, Ft) = lim sup
k→∞

(dijk (t, Ft)) = lim
k→∞

V
(k),ij
t = V ij

t

in dt⊗ dP-everywhere sense. Therefore, (H2) holds.
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Proposition 3.2.9. (B3) implies (H2) and (H3).

Proof. The existence of solution (F,U, V ) for BSDE (3.5) can be seen in Kobylanski
(2000). In particular, U is bounded and V ·W is a BMO martingale (see Briand and Elie
(2013)). Therefore, without loss of generality, we assume that

|f(t, x, y, z)| ≤ C(1 + |z|2) and |g(t, x, y, z)| ≤ C,

and therefore, (H3) holds.
On the other hand, by Kobylanski (2000), there is a sequence of measurable functions

θk(t, x, y, z) such that

• θk(t, x, y, z) is uniformly Lipschitz in (y, z).

• For the solution (Y (k), Z(k)) of BSDE

Y
(k)
t = exp(Lh(Ft)) +

∫ T

t

θk(s, Fs, Y
(k)
s , Z(k)

s )−
∫ T

t

Z(k)
s dWs,

we have

lim
k→∞

log(Y
(k)
t )

2L
= Ut uniformly in t

lim
k→∞

Z(k)

2LY (k)
= V in H2.

Here, L is a constant determined by coefficients h and f .
From Proposition B.0.1, there are measurable functions ũk : [0, T ] × Rm → R and

d̃k : [0, T ]× Rm → R1×n such that Y
(k)
t = ũk(t, Ft) and Z

(k)
t = d̃k(t, Ft). Therefore, if we

let ũ(t, x) := lim supk→∞ ũk(t, x) and d̃i(t, x) := lim supk→∞ d̃
i
k(t, x), where d̃ = (d̃i)1≤i≤n,

then Ut = u(t, Ft) := log(ũ(t,Ft))
2L

and Vt = d(t, Ft) := d̃(t,Ft)
2Lũ(t,Ft)

. This proves (H2).

Proposition 3.2.10. (F3) and (B4) imply (H2) and (H3).

Proof. For (H2), the proof is identical to that for Theorem 3.1 of Mu and Wu (2015). Let
E be the matrix defined in the proof of Proposition 3.2.6. Then,

dPt = Eᵀb(t, (Eᵀ)−1 Pt)dt+ EᵀσdWt; P0 = Eᵀx

for P = EᵀF . Note that there exists C ′ > 0 such that

|Pt| ≤ |Eᵀx|+
∫ t

0

|Eᵀb(s, (Eᵀ)−1 Ps)|ds+ |EᵀσWt|

≤ C ′ + |EᵀσWt|+ C ′
∫ t

0

|Ps|ds.

By Gronwall’s inequality, there exists a constant C ′′ > 0 such that

|Pt| ≤ C ′′
(

1 + max
s∈[0,t]

|EᵀσWs|
)
.

This implies

|Ft| = |(Eᵀ)−1Pt| ≤ C ′′′
(

1 + max
s∈[0,t]

|Ws|
)

for a constant C ′′′ > 0. Therefore, by the Beneš condition, (H3) holds.
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3.2.4 Verification of (H4)

Let us prove (H4) under the assumptions made in Theorem 3.1.3.

Proof. Note that if (H1) and either one of (B1), (B2) or (B3) hold, g(t, Ft, Ut, Vt) is
bounded because Ut is bounded. Therefore, we only need to prove that (H4) holds for
gN(t, x, y, z) := g(t, x,Ny/ (|y| ∨N) , z). If either (F1) or (F2) holds, then b̃(t, x) :=
b(t, x) + σ(t, x)gN(t, x, u(t, x), d(t, x)) is bounded because σ and gN are bounded. There-
fore, conditions (F1) or (F2) hold with b̃ instead of b. Likewise, if (F3) holds, then there
exists a positive constant κ such that,

|b̃(t, 0)|+ sup
|x−x′|≤1

|b̃(t, x)− b̃(t, x′)| ≤ κ

for all t ∈ [0, T ], x, x′ ∈ Rm. By Proposition 3.2.6, (H4) holds.
On the other hand, assume (F3) and (B4) hold. Note that, if r = 0 in (B4), then |U |

is bounded; therefore, |g(t, x, y, z)| ≤ K(1 + |x|) for some K. If r > 0, |g(t, x, y, z)| ≤
K(1 + |x|) for K = C. Therefore, we have

|b̃(t, x)| ≤ |b(t, x)|+ |σ(t, x)||g(t, x, y, z)| ≤ C ′(1 + |x|)

for a non-negative constant C ′. Again, by Proposition 3.2.6, (H4) holds.

3.2.5 Uniqueness

Assume the conditions in Theorem 3.1.3. Let us prove that either (B2), (U1), or (U2)
implies the uniqueness of the solution for (3.6)–(3.7).

Proof. When f(t, x, y, z) + zg(t, x, y, z) is Lipschitz, the solution for (3.5) is unique by
Pardoux and Peng (1990). If r = 0 and d = 1, Kobylanski (2000) proved the uniqueness
of the solution for (3.5). The uniqueness of the solution under the condition (B2) was
proved by Hu and Tang (2016). By applying Lemma 3.2.1, the uniqueness of the solution
for (3.6)–(3.7) is proved.

3.3 Applications of Discontinuous Coefficients FBS-

DEs

In this section, we provide simple applications of our main result to the optimal control
of the spread of an infectious disease and the carbon market allowance pricing.

3.3.1 Controlling the Spread of an Infectious Disease

Let W be a one-dimensional Brownian motion, P be the number of infections, and α be
the measures imposed by the policymaker to stop the spread. The admissible set for α is
the set of non-negative adapted processes in H2(R). For measurable functions θ : R→ R
and positive constant σ, assume that P follows the dynamics

dPt
Pt

=

(
θ(logPt) +

1

2
|σ|2 − αt

)
dt+ σdWt; P0 = ex. (3.10)

The interpretation of the dynamics is straightforward. Assuming there is no random-
ness in the spread (σ = 0), θ(logP ) represents the exponent of the infection growth when
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there is no intervention (α = 0). In summary, if policy α is introduced, the growth
exponent will be reduced to θ(logP )− α.

Let us define X = logP . By Itô formula, (3.10) transforms to

dXt = (θ(Xt)− αt) dt+ σdWt; X0 = x.

Our objective as the policymaker is to minimize

J(α) := E
[∫ T

0

|αt|2 + q(Xt)dt

]
.

Here, |αt|2 represents the running cost of the policy α, and q : R → [0,∞) is the cost
incurred by the number of infections.

Remark 3.3.1. It is realistic to assume that q is a non-differentiable function, as it is the
cost of infection. For example, consider that there is a capacity for medical services. If
the infected patient number P exceeds a certain level, there will be a shortage of medical
services, which will cost a lot more per additional patient.

Let the corresponding Hamiltonian and its minimizer be

H(t, x, y, z, π) := (θ(x)− π)y + |π|2 + q(x)

arg min
π
H(t, x, y, z, π) =

(y ∨ 0)

2
.

The following proposition is a version of Theorem 4.25 Carmona (2016) for convex, pos-
sibly not continuously differentiable θ and q. Here, ∂+ denotes the right derivative. We
introduce related topics in Appendix D.

Proposition 3.3.2. Assume that θ and q are convex Lipschitz functions, q is non-
decreasing, and σ > 0. Let (X, Y, Z) ∈ H2(R)×H2(R)×H2(R) be the unique solution of
FBSDE

dXt =

(
θ(Xt)−

(Yt ∨ 0)

2

)
dt+ σdWt; X0 = x

dYt = − (∂+q(Xt) + ∂+θ(Xt)Yt) dt+ ZtdWt; YT = 0

(3.11)

such that Y is bounded. Then, for α∗t := (Yt ∨ 0)/2, we have J(α∗) ≤ J(α) for any
non-negative process α ∈ H2(R).

Before we prove the proposition, we need the following lemma.

Lemma 3.3.3. The following holds:

(i) (3.11) has a unique solution (X, Y, Z) ∈ H2(R) × H2(R) × H2(R) such that Y is
bounded almost surely.

(ii) There exists a constant C such that Yt ∈ [0, C] for all t almost surely.

(iii) E
∫ T

0
(Xt −Xα

t )ZtdWt = 0 for any α ∈ H2(R), where

dXα
t = (θ(Xα

t )− αt) dt+ σdWt; X0 = x.
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Proof. First, we prove (ii) under the assumption that (3.11) has a solution (X, Y, Z) ∈
H2(R)×H2(R)×H2(R). Note that there exists a constant C such that ∂+q ∈ [0, C] and
∂+θ ∈ [−C,C]. By the comparison principle, Y d

t ≤ Yt ≤ Y u
t for all t ∈ [0, T ] almost

surely, where

dY u
t = − (C + C|Y u

t |) dt+ Zu
t dWt; Y u

T = 0

dY d
t = C|Y d

t |dt+ Zd
t dWt; Y d

T = 0.

As Y u
t = eC(T−t) − 1 ≤ eCT and Y d ≡ 0 almost surely, the claim is proved.

Next, we prove (i) by using the localization argument. For Cy, the bound of Y we
obtained in (ii), we define ϕ be a smooth function on R satisfying

ϕ(y) =

{
y, if y ∈ [0, Cy]

0, if y ∈ (−∞,−1] ∪ [Cy + 1,∞)

and |ϕ(y)| ≤ |y|. Consider the FBSDE

dX̃t =

(
θ(X̃t)−

ϕ(Ỹt)

2

)
dt+ σdWt; X0 = x

dỸt = −
(
∂+q(X̃t) + ∂+θ(X̃t)ϕ(Ỹt)

)
dt+ Z̃tdWt; YT = 0.

(3.12)

Let b(t, x) ≡ θ(x), σ(t, x) :≡ σ, g(t, x, y, z) := −ϕ(y)
2
, f(t, x, y, z) := ∂+q(x) + ∂+θ(x)ϕ(ỹ),

and h ≡ 0. As θ and q are Lipschitz, ∂+θ and ∂+q are bounded. Then, one can verify
that the coefficients satisfy (F3), (B4), and (U2) with r = 0. Therefore, there exists
a unique (X̃, Ỹ , Z̃) ∈ H2(R) × H2(R) × H2(R) such that Ỹ is bounded. In particular,
by the same comparison arguement we used in the proof of (ii), we obtain Ỹ ∈ [0, Cy].
Therefore, (X̃, Ỹ , Z̃) also solves (3.11). Therefore, we proved the existence of a solution.
On the other hand, let (X ′, Y ′, Z ′) ∈ H2(R) × H2(R) × H2(R) be another solution to
(3.11). Then, by part (ii), Y ′t ∈ [0, C] for all t. As (X ′, Y ′, Z ′) also solves (3.12), we have
(X ′, Y ′, Z ′) = (X̃, Ỹ , Z̃) = (X, Y, Z). This proves the uniqueness of a solution.
Now, let us prove (iii). As θ grows linearly, there exists C > 0 such that |θ(x)| ≤ C(1+|x|).
Therefore,

|Xα
t | ≤ |x|+

∫ t

0

C(1 + |Xα
s |) + |αs|ds+ |σWt|

≤ |x|+ CT +

∫ T

0

|αs|ds+ C

∫ t

0

|Xα
s |ds+ |σWt|.

Note that if we let X∗t := sup0≤u≤t |Xα
u |, there exists another constant C ′ such that

E|X∗t |2 ≤ C ′
(

1 +

∫ t

0

E|X∗s |2ds
)

as E sup0≤u≤T |Wu|2 < ∞ and E
∫ T

0
|αs|2ds < ∞. By Grönwall’s inequality, E|X∗T |2 =

E sup0≤u≤T |Xα
u |2 <∞. We obtain E sup0≤u≤T |Xu|2 <∞ by the same argument.
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As

E

√〈∫ ·
0

(Xt −Xα
t )ZtdWt

〉
T

= E

√∫ T

0

|Xt −Xα
t |2|Zt|2dt

≤ E sup
0≤u≤T

|Xu −Xα
u |

√∫ T

0

|Zt|2dt

≤ 1

2
E sup

0≤u≤T
|Xu −Xα

u |2 +
1

2
E
∫ T

0

|Zt|2dt <∞,

we prove the claim by the Burkholder-Davis-Gundy inequality.

Proof of Proposition 3.3.2. For a given control α, let us denote the corresponding dynam-
ics of the log of infection number as X ′, that is,

dX ′t = (θ(X ′t)− αt) dt+ σdWt; X0 = x.

Note that, for α∗ := (Y ∨ 0)/2,

J(α∗)− J(α) = E
∫ T

0

[
|α∗t |2 − |αt|2 + q(Xt)− q(X ′t)

]
dt

= E
∫ T

0

[H(t,Xt, Yt, Zt, α
∗
t )−H(t,X ′t, Yt, Zt, αt)] dt− E

∫ T

0

[θ(Xt)− θ(X ′t)− α∗t + αt]Ytdt.

Note that, by integration by parts, we have

E
∫ T

0

[θ(Xt)− θ(X ′t)− α∗t + αt]Ytdt = E
∫ T

0

(Xt −X ′t) (∂+q(Xt) + ∂+θ(Xt)Yt) dt.

Therefore,

J(α∗)− J(α)

= E
∫ T

0

[H(t,Xt, Yt, Zt, α
∗
t )−H(t,X ′t, Yt, Zt, αt)]− (Xt −X ′t) (∂+q(Xt) + ∂+θ(Xt)Yt) dt

≤ E
∫ T

0

[H(t,Xt, Yt, Zt, αt)−H(t,X ′t, Yt, Zt, αt)]− (Xt −X ′t) (∂+q(Xt) + ∂+θ(Xt)Yt) dt.

Here, we used the fact that

H(t,Xt, Yt, Zt, α
∗
t ) ≤ H(t,Xt, Yt, Zt, αt)

for any non-negative process α ∈ H2(R). As Yt ≥ 0, q(x) − q(x′) ≤ (x − x′)∂+q(x) and
θ(x)− θ(x′) ≤ (x− x′)∂+θ(x), we have

H(t,Xt, Yt, Zt, αt)−H(t,X ′t, Yt, Zt, αt) = (θ(Xt)− θ(X ′t))Yt + q(Xt)− q(X ′t)
≤ (Xt −X ′t) (∂+q(Xt) + ∂+θ(Xt)Yt) .

Therefore, J(α∗) ≤ J(α).
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3.3.2 Electricity Market with Carbon Emission Allowance

Let us provide an example of an FBSDE with measurable coefficients in the pricing of
carbon emission allowance in the electricity market. We follow the example in Carmona
et al. (2013) except that we assume there exists a cost ci depending on the carbon emission
abatement and the total cumulative carbon emission, whereas Carmona et al. (2013)
assumes only the cost’s dependency on the carbon emission abatement. Heuristically, if
total cumulative carbon emission increases, the government will try to reduce the marginal
cost of carbon emission abatement (e.g. Emission Reduction Fund) and the society will
be urge to develop cost efficient green technologies.

For simplicity, let P be a risk-neutral measure and let the cumulative emission of the
ith firm (i = 1, 2, ..., N) up to time t be Ei

t . Assume that Eis follow the dynamics

Ei
t = Ei

0 +

∫ t

0

(
bi
(
s, Es

)
− ξis

)
ds+

∫ t

0

σi(s, Es)dWs,

where Es :=
∑N

j=1E
j
s . Here, bi denotes the so-called business-as-usual, the rate of emis-

sion without carbon regulation. The process ξi is the instantaneous rate of abatement
chosen by the firm. The firm controls its own abatement schedule ξi and the carbon
emission allowance quantity θi, which is traded in the allowance market. Both control
processes need to be dt⊗ dP-square-integrable adapted processes, which is denote by A.
The firm’s wealth is given by

X i
T

(
ξi, θi

)
= xi +

∫ T

0

θisdYs −
∫ T

0

ci(ξis, Es)ds− Ei
TYT

where xi is the initial wealth, Y is the allowance price, ci : R2 → R is the cost occurred by
the abatement ξi. We assume that ci(e, y) is jointly measurable and convex in x. Then,
one can define

gi(e, y) = arg min
x

(
ci(x, e)− yx

)
.

We assume that the utility of each firm is given by an increasing, strictly concave function
U : R→ R, which satisfies the Inada conditions: U ′(−∞) = +∞ and U ′(+∞) = 0.

The corresponding optimization problem is to find a pair of (ξi, θi) ∈ A that maximizes
EU(X i

T (ξi, θi)).
By the same argument in Proposition 1 of Carmona et al. (2013), we can deduce

that ξit = gi(Et, Yt) is the optimal control. Therefore, (E, Y ) should solve the following
FBSDE: for b =

∑N
i=1 b

i, σ =
∑N

i=1 σ
i, and g =

∑N
i=1 g

i,

dEt =
[
b(t, Et)− g(Et, Yt)

]
dt+ σ(t, Et)dWt; E0 ∈ R

dYt = ZtdWt; YT = λ1[Λ,∞)(ET ).
(3.13)

Here, the terminal condition of allowance is assumed to be an indicator function based
on Carmona et al. (2010). As one can see from the following example, our main theorem
3.1.3 generalizes Theorem 1 of Carmona et al. (2013) as we allow all the coefficients to be
discontinuous.

Example 3.3.4. Assume that there exists constants C,K and αi ∈ (0, 1), i = 1, 2, ..., N
such that, for all (t, e, y) ∈ [0, T ]× R× R,

|b(t, e)| ≤ C and C−1 ≤ (σσᵀ)(t, e) ≤ C

ci(x, e) =
1

2
x2
(
1− αi1e≥K

)
.
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3.3. APPLICATIONS OF DISCONTINUOUS COEFFICIENTS FBSDES

Furthermore, assume that σ(t, x) is locally Lipschitz with respect to x. Then, (3.13) has
a unique strong solution such that Y is bounded.

Proof. Note that

g(e, y) =
N∑
i=1

y

1− αi1e≥K
.

Then it is easy to check (F1) and (B1) are satisfied with r = 0. Therefore, there exists a
strong solution of (3.13) such that Y is bounded. Moreover, (U2) holds. The uniqueness
result of Theorem 3.1.3 implies the uniqueness of a solution.

In the Appendix C we provide some background about the carbon market and show
how we achieve FBSDE (3.13) in details.
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2, Itô calculus, volume 2. Cambridge university press, 2000.

A. Y. Veretennikov. On the strong solutions of stochastic differential equations. Theory
of Probability & Its Applications, 24(2):354–366, 1980.

T. Yamada and S. Watanabe. On the uniqueness of solutions of stochastic differential
equations. Journal of Mathematics of Kyoto University, 11(1):155–167, 1971.

J. Yong. Finding adapted solutions of forward–backward stochastic differential equations:
method of continuation. Probability Theory and Related Fields, 107(4):537–572, 1997.

J. Yong. Forward-backward stochastic differential equations with mixed initial-terminal
conditions. Transactions of the American Mathematical Society, 362(2):1047–1096,
2010.

X. Zhang. Strong solutions of SDES with singular drift and Sobolev diffusion coefficients.
Stochastic Processes and their Applications, 115(11):1805–1818, 2005.

A. K. Zvonkin. A transformation of the phase space of a diffusion process that removes
the drift. Mathematics of the USSR-Sbornik, 22(1):129, 1974.

40



Appendix A

Frequently Used Inequalities

• Doob’s (Martingale) Maximal Inequality. For a martingale M , p > 1, and T > 0,
if E(|MT |p) ≤ ∞, then we denote M∗

t := supt∈[0,T ] |Mt| and have the following two
inequalities: for a constant C > 0

P(|M∗
t | > C) ≤ E(|MT |p)

Cp
,

and

E(|M∗
t |p) ≤

(
p

p− 1

)p
E(|MT |p).

• Burkholder–Davis–Gundy Inequality. For a local martingale M with M0 = 0, any
p ≥ 1, and a stopping time τ , there exist two constant Cp, cp such that

cpE
(

[M ]
p
2
τ

)
≤ E(|M∗

τ |p) ≤ CpE
(

[M ]
p
2
τ

)
,

where M∗
t := sups≤t |Ms| and [ ] stands for quadratic variation.

• Gronwall Inequality. Let u : [t0, t1] → R+ be continuous and non-negative, and
suppose u obeys the inequality

u(t) ≤ A+

∫ t

t0

B(s)u(s)ds,

for all t ∈ [t0, t1], where A ≥ 0 and B : [t0, t1]→ R+ is continuous. Then we have

u(t) ≤ A exp

(∫ t

t0

B(s)ds

)
for all t ∈ [t0, t1].
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Appendix B

Markovian Solution of Decoupled
FBSDE

In this appendix, we provide sufficient conditions for (H1) and (H3) under the assumption
that the forward SDE (3.4) has a unique strong solution.

It is well known that a decoupled FBSDE with a Lipschitz BSDE driver has a unique
solution if the forward SDE has a unique strong solution. The Markovian property of the
solution has been proved in Theorem 4.1 of El Karoui et al. (1997) and Theorem 14.5 of
Barles and Lesigne (1997) under the assumption that the forward SDE has Lipschitz co-
efficients. The following theorem slightly generalizes the existence and uniqueness results
in the sense that we do not require b(t, x) and σ(t, x) to be Lipschitz with respect to x
and we allow linear growth of f(t, x, y, z) with respect to (y, z).

Proposition B.0.1. Let f(t, x, y, z) := f(t, x, y, z)+zg(t, x, y, z) for jointly B-measurable
functions (f, g) : [0, T ]× Rm × Rd × Rd×n → Rd × Rn. Assume the following conditions:
there exist C > 0, p ≥ 2, and r ≥ 1

2
such that

• The forward SDE (3.4) has a unique strong solution F and E supt∈[0,T ] |Ft|pr ≤ C

• |h(x)| ≤ C(1 + |x|r) for all x ∈ Rm

•
∣∣f(t, x, y, z)

∣∣ ≤ C(1 + |x|r + |y|+ |z|) for all (t, x, y, z) ∈ [0, T ]× Rm × Rd × Rd×n

•
∣∣f(t, x, y, z)− f(t, x, y′, z′)

∣∣ ≤ C (|y − y′|+ |z − z′|) for all (t, x, y, z), (t, x, y′, z′) ∈
[0, T ]× Rm × Rd × Rd×n

Then, (H2) holds. Moreover, the solution (F,U, V ) ∈ Spr(Rm) × Sp(Rd) × Hp(Rd×n) is
unique.

Remark B.0.2. We do not need the nondegeneracy of σ in this proposition.

Proof. Note that, E|g(FT )|p ≤ CpE(1 + |FT |r)p ≤ 2p−1Cp (1 + E|FT |pr) <∞ and

E

[(∫ T

0

|f(t, Ft, 0, 0)|2dt
)p/2]

≤ CpE

[(∫ T

0

2
(
1 + |Ft|2r

)
dt

)p/2]

≤ 2p/2CpT p/2

(
1 + E sup

t∈[0,T ]

|Ft|pr
)
<∞.

Therefore, from the classical result of Pardoux and Peng (1990), the BSDE (3.5) has a
unique solution (Y, Z) ∈ Sp(Rd)×Hp(Rd×n).
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For k = 0, 1, 2, ..., let us define Borel measurable functions (uk, dk) : [0, T ] × Rm 3
(t, x) 7→ (uk(t, x), dk(t, x)) ∈ Rd×Rd×n as follows: let u0 ≡ 0, d0 ≡ 0, Y

(k)
t = uk(t, Ft) and

Z
(k)
t = dk(t, Ft) dt ⊗ dP-almost everywhere for (Y (k), Z(k)), which is the unique solution

of

dY
(k)
t := −f(t, Ft, uk−1(t, Ft), dk−1(t, Ft))dt+ Z

(k)
t dBt; Y

(k)
T = g(FT ).

The well-definedness of (uk, dk)k=0,1,2,... is proved in Lemma B.0.3.It is well known that
Y (k) → Y in Sp and Z(k) → Z in Hp. If we let ui(t, x) := lim supk→∞ u

i
k(t, x) and

dij(t, x) := lim supk→∞ d
ij
k (t, x), where u = (ui)1≤i≤d and d = (dij)1≤i≤d,1≤j≤n, we have

ui(t, Pt) = (lim sup
k→∞

uik)(t, Pt) = lim sup
k→∞

(uik(t, Pt)) = lim
k→∞

Y
(k),i
t = Y i

t

dij(t, Pt) = (lim sup
k→∞

dijk )(t, Pt) = lim sup
k→∞

(dijk (t, Pt)) = lim
k→∞

Z
(k),ij
t = Zij

t .

Therefore, the claim is proved.

Now, let us prove that (uk, dk)k=0,1,2,... are well defined.

Lemma B.0.3. For all k = 0, 1, 2..., we have that (uk, dk) are well-defined. Moreover,
uk(·, F.) ∈ Sp(Rd) and dk(·, F.) ∈ Hp(Rd×n).

Proof. We prove this by mathematical induction. First, note that the claim holds true for
k = 0. Assume that the claim holds for k − 1 ≥ 0. It should be noted that E|g(FT )|p ≤
CpE(1 + |FT |r)p ≤ 2p−1Cp (1 + E|FT |pr) <∞ and

E

[(∫ T

0

|f(t, Ft, uk−1(s, Fs), dk−1(s, Fs))|2dt
)p/2]

≤ CpE

[(∫ T

0

4
(
1 + |Ft|2r + |uk−1(s, Fs)|2 + |dk−1(s, Fs)|2

)
dt

)p/2]

≤ 2pCpT p/2

(
1 + E sup

t∈[0,T ]

|Ft|pr + E sup
t∈[0,T ]

|uk−1(t, Ft)|p + E

[(∫ T

0

|dk−1(t, Ft)|2dt
)p/2])

<∞.

Therefore, the BSDE

Y
(k)
t = g(FT ) +

∫ T

t

f(s, Fs, uk−1(s, Fs), dk−1(s, Fs))ds−
∫ T

t

Z(k)
s dBs

has a unique solution such that Y (k) ∈ Sp(Rd) and Z(k) ∈ Hp(Rd×n). Note that, because
(t, Ft)t≥0 is a Markov process, we know

Y
(k)
t = E

[
g(FT ) +

∫ T

t

f(s, Fs, uk−1(s, Fs), dk−1(s, Fs))ds

∣∣∣∣Ft]
= E

[
g(FT ) +

∫ T

t

f(s, Fs, uk−1(s, Fs), dk−1(s, Fs))ds

∣∣∣∣Ft] .
Moreover, by Proposition II.4.6 of Çinlar (2011), there exists a Borel measurable function

uk : [0, T ]× Rm → Rd such that Y
(k)
t = uk(t, Ft). On the other hand, note that

Y
(k)
t +

∫ t

0

f(s, Fs, uk−1(s, Fs), dk−1(s, Fs))ds
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is an additive martingale. By Theorem 6.27 of Çinlar et al. (1980), there exists a B-
measurable function dk : [0, T ]× Rm → Rd×n such that

Y
(k)
t +

∫ t

0

f(s, Fs, uk−1(s, Fs), dk−1(s, Fs))ds = Y
(k)

0 +

∫ t

0

dk(s, Fs)dBs.

Here B is the σ-algebra of universally measurable sets. Let G(t, ω) := (t, Ft(ω)) and
consider µ := (λ⊗P)◦G−1, where λ is the Lebesgue measure on [0, T ]. Then, µ is a finite
measure on [0, T ]×Rm; therefore, there exists a B-measurable function dk : [0, T ]×Rm →
Rd×n such that

µ
({

(t, x) ∈ [0, T ]× Rm : dk(t, x) 6= dk(t, x)
})

= 0.

This implies that dk(t, Ft) = dk(t, Ft) in dt⊗ dP-almost everywhere sense. Therefore, the
claim is proved.

44



Appendix C

Single Period Carbon Allowance
Pricing

C.0.1 Problem Background

This problem arises from Climate Change, which is mainly caused by Green House Gases
(GHGs), and one of the most well-known GHGs is carbon dioxide (CO2). Due to the
emissions of GHGs, the average surface temperature is much warmer than what it should
be. To reduce the emissions of GHGs, one of the most efficient ways is to implement
emissions trading markets globally.

The idea of building up emissions trading markets was triggered by the theory in-
troduced by Coase (1960). The idea suggests that to reduce the emissions of GHGs in
one economy, the governors should implement an emissions trading market, with setting
a collective target on total emissions, or cap. Meanwhile, each emitter is given a part
of total in the form of emission rights, which later are called the “allowance”. If that
target is set lower than what the total emissions would have been without the cap, then
the system yields emission reductions. Notice that any participants in the market can
trade their allowances, which means those who can reduce at low cost will do so, and
therefore have an excess of allowances that they will be willing to sell. However, such
market settings give us a critical question: what is the appropriate price for the emission
allowance?

Before we discuss the question, one should realize that, the theoretical idea we intro-
duced has been widely applied in reality. A popular type of emissions trading markets is
carbon market, which is aiming at deducing the emissions of CO2. From the signing of
the Kyoto Protocol in 1996 (the first international carbon market system), the European
Union (EU) started running a carbon market in 2005. Until now, tens of carbon markets
have been or will be implemented worldwide, for instance, the world’s biggest GHGs emit-
ter, China, will start a national carbon market in the near future. For more information
about emissions trading markets and related topic, we refer the book Chassagneux et al.
(2017).

C.0.2 Mathematical Model for Carbon Market

To answer that question, we plan to apply FBSDEs to model a carbon market. We will
consider a carbon market with N firms, and each of them will produce based on their
own judgement. By solving an irregular coefficients FBSDE, we can obtain the total
emissions of the market when the firms apply their optimal production strategies, and
the allowance price in such equilibrium. Such FBSDE comes from a forward SDE for the
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aggregate emissions in the economy, and a BSDE for the allowance price. The following
model is borrowed from Carmona et al. (2013).

The Model of Single Firm’s Emission Dynamics

We firstly introduce an optimization problem of a single producer whose production gen-
erates emission of CO2. We assume all firms in the market are small players such that
their actions are negligible. Moreover, we assume that the price of the allowance (Yt)0≤t≤T
is a martingale under the risk-neutral environment. Notice the notations may vary from
section 3.3.2 and without loss of generality, we assume P to be a risk-neutral measure.

We denote the firm’s total emissions up to time t is Et, and

Et = E0 +

∫ t

0

(bs − ξs)ds+

∫ t

0

σsdWs, (C.1)

where b stands for so-called business-as-usual, the rate of emission without carbon regu-
lation, and ξ is the instantaneous rate of abatement chosen by the firm. Notice that each
extra ton of abatement is more costly: changing the components is cheap, but chang-
ing the production machines is expensive. Therefore, we assume the cost of abatement
C(x, e) = c(x)g(e) is described by a strictly convex, continuously differentiable function
c(x) : R→ R, which satisfies Inada-like conditions

c′(−∞) = −∞ and c′(+∞) = +∞,

and an impact factor function g(e) : R→ R+/{0}.

Remark C.0.1. One should notice that unlike Carmona et al. (2013), in which they as-
sume the abatement cost C(x, e) = c(x), we assume the abatement cost can be influenced
from outside, for instance, Australian Emission Reduction Fund, which aims at reducing
the firms’ abatement costs under certain situations.

The firm controls its own abatement schedule ξ, and the quantity θ of the emission
rights by trading in the allowance market. For those controls to be admissible, ξ and θ
need only be progressively measurable processes and satisfy

E
∫ T

0

[ξ2
t + θ2

t ]dt <∞.

We denote A to be the set of admissible controls (ξ, θ). Given the initial wealth x and an
impact factor e, we obtain the terminal value XT of the firm

XT = Xξ,θ
T = x+

∫ T

0

θtdYt −
∫ T

0

C(ξt, e)dt− ETYT .

Each of the terms on the right-hand side can be interpreted as: amount of trading in
allowance market, abatement cost, and cost of the emission regulation.

We assume such firm’s utility is given by an increasing, strictly concave function
U : R→ R, which satisfys the Inada conditions

U ′(−∞) = +∞ and U ′(+∞) = 0.

Therefore, the corresponding optimization problem appears: find a pair of (ξ∗, θ∗) ∈ A,
such that

V (x) = sup
(ξ,θ)∈A

EU(Xξ,θ
T ).
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Proposition C.0.2. For a given e ∈ R, the optimal abatement strategy of the firm is

ξ∗t = (c′)−1

(
Yt
g(e)

)
.

Proof. Firstly, from integration by parts we can see that

ETYT = YT

(
E0 +

∫ T

0

btdt+

∫ T

0

σtdWt

)
− YT

∫ T

0

ξtdt

= YT

(
E0 +

∫ T

0

btdt+

∫ T

0

σtdWt

)
−
∫ T

0

Ytξtdt−
∫ T

0

(∫ t

0

ξsds

)
dYt.

Therefore, we can denote XT = Aθ̃T +Bξ
T with

Aθ̃T =

∫ T

0

θ̃tdYt − YT
(
E0 +

∫ T

0

btdt+

∫ T

0

σtdWt

)
,

where θ̃t = θt +
∫ t

0
ξsds, and

Bξ
T = x−

∫ T

0

[C(ξt, e)− Ytξt]dt.

Notice that Bξ and Aθ̃ depend only on ξ and θ̃ respectively, moreover, the set A of admis-
sible controls is equivalently described by varying the couples (ξ, θ) or (ξ, θ̃). Therefore,

sup
(ξ,θ)∈A

EU(Xξ,θ
T ) = sup

(ξ,θ̃)∈A
EU(Aθ̃T +Bξ

T ).

In this sense, one can perform the optimizations over θ̃ and ξ separately. Since U is an

increasing function, the quantity of Bξ
T is maximized by choosing ξ∗t = (c′)−1

(
Yt
g(e)

)
.

Remark C.0.3. In the Remark 2 of Carmona et al. (2013), the authors proved that in a
complete market, for a given ξ∗, there exists a unique optimal investment strategy θ∗.

The Model of Carbon Market with N Firms

We now consider a risk-neutral carbon market with N firms. Particularly, we use a
superscript i to emphasize the dependence upon the ith firm. In equilibrium, which
means each firms in the market can apply their best production strategy, for the ith firm,
we have

Ei
t = Ei

0 +

∫ t

0

(
bis − (ci

′
)−1

(
Ys
gi(e)

))
ds+

∫ t

0

σisdWs.

We denote the following

Et =
N∑
i=1

Ei
t , bt =

N∑
i=1

bit, σt =
N∑
i=1

σit.

Moreover, we let the impact factor e = Et and denote

f(Et, Yt) =
N∑
i=1

(ci
′
)−1

(
Yt

gi(Et)

)
.
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To consist with our results, we further assume there exist deterministic functions
bt = b(t, Et) and σt = σ(t, Et), which are mappings (b, σ) : [0, T ]× R→ R× R.

Moreover, based on martingale representation theorem, we know that there exists a
progressively measurable process Z such that

dYt = ZtdWt, and E
∫ T

0

|Zt|2dt <∞.

Therefore, we could obtain a discontinuous coefficients FBSDE

dEt = (b(t, Et)− f(Et, Yt))dt+ σ(t, Et)dWt, E0 = x,

dYt = ZtdWt, YT = λ1[Y cap,∞)(ET ),

where the terminal condition states that any emissions excess the global emission target
Y cap ∈ R+ should be penalized by the fine λ.

As one can see, above FBSDE falls nicely into our framework. Our Theorem 3.1.3 can
be applied for discontinuous b, σ, and f .

48



Appendix D

The Optimization Problem and the
Hamiltonian System

Arguments in this appendix are borrowed from Carmona (2016).
To start with, we assume the actions or strategies are chosen from a measurable space

(A,A). Usually one can consider A as a subspace of Euclidean space Rn. Particularly,
we denote A the set of all the admissible actions or controls. In this sense, A will be
the set of processes taking values in A which satisfy a set of admissibility conditions.
We consider a augmented filtered probability space (Ω,F,F,P) with F := (Ft)t∈[0,T ] and
a m-dimensional Brownian motion is defined on it. We also denote by P the σ-field of
F-progressively measurable subsets of Ω× [0, T ].

We assume that the state of the system at time t ∈ [0, T ] is given by a d-dimensional
Itô process satisfying

dXt = b(t,Xt, αt)dt+ σ(t,Xt, αt)dWt, X0 = x′ ∈ Rd (D.1)

where (b, σ) : Ω× [0, T ]×Rd×A→ Rd×Rd×m. Also, we need b and σ are P×B(Rd)×A-
measurable, and assume SDE (D.1) can be uniquely solve for any given α ∈ A. (b and σ
are Lipschitz and under linear growth with respect to x for all t ∈ [0, T ].)

An optimization problem aims at finding an admissible control α ∈ A which minimizes
a cost functional J(α). Usually the cost functional consists two parts: terminal cost and
running cost. Terminal cost is often of the form g(XT ), where g : Ω × Rd → R is
FT ×B(Rd)-measurable. Meanwhile, running cost is often of the form f(t,Xt, αt), where
f : Ω× [0, T ]×Rd ×A→ R is P×B(Rd)×A-measurable. Therefore, we define the cost
functional J by

J(α) = E
(∫ T

0

f(t,Xt, αt)dt+ g(XT )

)
.

The Hamiltonian of the system is a function of time t, possibly the random scenario
ω, the state variable x, an action α ∈ A, and two new variables y and z (often called
dual variables or covariables). Specifically, the corresponding Hamiltonian is the function
H : Ω× [0, T ]× Rd × Rd × Rd×m × A→ R defined by

H(t, x, y, z, α) = b(t, x, α) · y + σ(t, x, α) · z + f(t, x, α),

where · denotes for the scalar product, that means σ(t, x, α) · z = Tr(σ(t, x, α)ᵀz).
For an admissible process α, we denote X be its corresponding controlled state process.

We call adjoint processes associated with α for any solution (Y, Z) of the BSDE

dYt = −∂xH(t,Xt, Yt, Zt, αt)dt+ ZtdWt, YT = ∂xg(XT ). (D.2)
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This equation is called the adjoint equation associated with the admissible control α.
Notice that when α and X are given, BSDE (D.2) is uniquely solvable since it is linear.

The related topics are introduced in chapter 4, Carmona (2016). Since the arguments
and proofs are technical and tedious, here we only introduce the most important result.

Theorem D.0.1. (Necessary condition) Given the function α 7→ J(α) is Gâteaux differ-
entiable, from BSDE (D.2) we could deduce

d

dε
J(α + εβ)

∣∣∣∣
ε=0

:= lim
ε→0

J(α + εβ)− J(α)

ε

=E
∫ T

0

∂αH(t,Xt, Yt, Zt, αt)βtdt,

where β as the direction that can be thought of β = α′ − α for some other admissible
control α′. And that could give us: if α∗ is the optimal control, then for each t ∈ [0, T ]
and ∀α ∈ A,

H(t,Xt, Yt, Zt, α
∗
t ) ≤ H(t,Xt, Yt, Zt, α).

However, in most cases, we do not have the optimal strategy. So generally speaking,
we are more interested in the following result. We assume:

• the terminal condition g is convex;

• for each t ∈ [0, T ], H(t, x, y, z, α) is convex with respect to (x, α).

In this sense, we would have

Theorem D.0.2. (Sufficient condition) If H(t,Xt, Yt, Zt, α
∗
t ) = infα∈AH(t,Xt, Yt, Zt, α)

a.s., then α∗ is an optimal control, i.e., J(α∗) = infα∈A J(α). Here (Xt, Yt, Zt) ∈ Rd ×
Rd × Rd×m.

Proof. Let α′ ∈ A be a generic admissible control, and we denote X ′ the associated
controlled process. By integration by parts and the convexity of the functions, we have

Eg(XT )− g(X ′T )

≤E∂xg(XT )(XT −X ′T )

=EYT (XT −X ′T )

=E
∫ T

0

(Xt −X ′t)dYt +

∫ T

0

Ytd[Xt −X ′t] +

∫ T

0

((σ(t,Xt, α
∗
t )− σ(t,X ′t, α

′
t))Ztdt

=E
∫ T

0

Yt(b(t,Xt, α
∗
t )− b(t,X ′t, α′t)) + Zt(σ(t,Xt, α

∗
t )− σ(t,X ′t, α

′
t))

− (Xt −X ′t)∂xH(t,Xt, Yt, Zt, α
∗
t )dt.

Similarly, we can deduce that

E
∫ T

0

f(t,Xt, α
∗
t )− f(t,X ′t, α

′
t)dt

=E
∫ T

0

(H(t,Xt, Yt, Zt, α
∗
t )−H(t,X ′t, Y

′
t , Z

′
t, α
′
t))

− (Yt(b(t,Xt, α
∗
t )− b(t,X ′t, α′t)) + Zt(σ(t,Xt, α

∗
t )− σ(t,X ′t, α

′
t)))dt.
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Therefore, we can obtain

J(α∗)− J(α′) = Eg(XT )− g(X ′T ) + E
∫ T

0

f(t,Xt, α
∗
t )− f(t,X ′t, α

′
t)dt

≤ E
∫ T

0

(H(t,Xt, Yt, Zt, α
∗
t )−H(t,X ′t, Y

′
t , Z

′
t, α
′
t))− (Xt −X ′t)∂xH(t,Xt, Yt, Zt, α

∗
t )dt

≤ 0.

Remark D.0.3. By the convexity ofH, usually we could obtain α∗ := arg minα∈AH(t,Xt, Yt, Zt, α)
by solving

∂αH(t,Xt, Yt, Zt, α) = 0.

Here (Xt, Yt, Zt) ∈ Rd×Rd×Rd×m. Particularly, under the Markovian settings, we would
have a deterministic function u such that α∗t = u(t,Xt, Yt, Zt).

Therefore, under the case of Remark D.0.3, by SDE (D.1) and BSDE (D.2), we can
obtain a fully-coupled FBSDE

dXt = ∂yH(t,Xt, Yt, Zt, u(t,Xt, Yt, Zt))dt+ ∂zH(t,Xt, Yt, Zt, u(t,Xt, Yt, Zt))dWt, X0 = x′

dYt = −∂xH(t,Xt, Yt, Zt, u(t,Xt, Yt, Zt)) + ZtdWt, YT = ∂xg(XT ).

If above FBSDE is uniquely solvable, then we can obtain α∗ = u(t,Xt, Yt, Zt) as the
unique optimal control to the optimization problem.
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