
Monash University

Efficient Mitigation of Leakage-abuse Attacks

for Searchable Encryption

Author
Viet Quang VO

Supervisors
Dr. Xingliang YUAN

Dr. Shi-Feng SUN

A. Prof. Joseph K. LIU

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy at

Monash University

in the

Faculty of Information Technology

Dec 15, 2021

Copyright notice

c©Viet VO (2021)

I certify that I have made all reasonable efforts to secure copyright permissions
for third-party content included in this thesis and have not knowingly added
copyright content to my work without the owner’s permission.

i

Abstract

The adaptation of cloud storage nowadays by individual, various governments,
and businesses is rapid and inexorable. In such client-server setting, the assump-
tion that the user’s data can be protected from insiders of the cloud storage,
i.e., database administrators, does not hold. Therefore, security researchers aim
to design new practical schemes that allow an untrusted server to search over
encrypted database. The research field is known as searchable encryption.

The history of searchable encryption has come a long way from generic cryp-
tographic tools, such as private information retrieval (PIR) and Oblivious RAM
(ORAM), to more dedicated privacy-preserving query schemes. Although generic
tools provide data confidentiality and can (almost fully) protect the data accesses
of client’s queries, they have been known as expensive due to a high search
latency/computation complexity, or large communication overhead. In contrast,
privacy-preserving schemes such as index-based searchable encryption (SE) are
more efficient in the client-server communication as well as lower query latency,
for which only depends on the query result size, not the database size. However,
as a trade-off between security and efficiency, SE reveals necessary information to
the server during search, known as acceptable leakage. SE has also been extended
to support secure updates of addition and deletion, known as dynamic SE.

The real-world consequences of the acceptable leakage of SE are still being
exploited. Leakage-abuse attacks show that a small information leakage known
by an attacker can be exploited to compromise the client’s query privacy. Un-
fortunately, the leakage-abuse attacks have not been explored in dynamic SE.
Yet, file-injection attacks also exploit the leakage in addition updates of SE
to compromise query privacy. Furthermore, the information during deletion
updates would also be possible revealed to the server. As a result, advanced
security notions of forward and backward privacy are formalised. While forward
privacy can prevent such file-injection attacks, the backward privacy defines
different types of information leakage known by the server during deletion (i.e.,
Types I, II, and III). Current forward and backward-private SE schemes still rely
on expensive cryptographic tools (i.e., ORAM) to achieve strong forward and
backward privacy.

In this thesis, we focus on two aims. First, we improve the security of SE
by exploring the leakage-abuse attacks in dynamic setting. Second, we design

iii

iv

new efficient dynamic SE schemes that can achieve strong forward and backward
privacy.

With regarding the first aim, we conceptualise the leakage-abuse attacks in
dynamic setting by presenting two new threat models of non-persistent and per-
sistent adversaries. We define new constraints to capture the knowledge of these
adversaries and provide new security definitions for dynamic SE. Accordingly,
we design new padding countermeasures to mitigate them. Then, we develop
ShieldDB, an encrypted streaming database with an underlying dynamic SE
scheme, and equip it with the padding countermeasures. We show that our
proposed padding strategy is practical and deployable to real-world streaming
applications/systems that require the privacy preservation on data stream.

Regarding the second one, we carefully analyse the limitations of the prior
forward and backward-private constructions, with and without using trusted
execution support (TEE). We find that non-TEE constructions suffer high com-
munication overhead between the client and the server due to either multiple
round-trip communication or ORAM bandwidth overhead. In addition, existing
TEE-supported constructions have high search latency due to the computation
bottleneck in the SGX enclave. To resolve this research gap, we provide SGX-SE1
and SGX-SE2 for Type-II backward privacy, and Maiden achieving the strongest
backward privacy. We implement prior works and our schemes, and conduct ex-
tensive evaluation on the performance under different schemes. The results show
that our designs are more efficient in the update operation (addition/deletion)
and query latency.

Declaration

This thesis is an original work of my research and contains no material which
has been accepted for the award of any other degree or diploma at any university
or equivalent institution and that, to the best of my knowledge and belief, this
thesis contains no material previously published or written by another person,
except where due reference is made in the text of the thesis.

Signature: .

Print Name: .

Date: .

List of Publications

• Vo, V., Yuan, X., Sun, S., Liu, J.K., Nepal, S., Wang, C.: ShieldDB: An
Encrypted Document Database with Padding Countermeasures. In IEEE
Transactions on Knowledge and Data Engineering. (2021)

• Vo, V., Lai, S., Yuan, X., Sun, S., Nepal, S., Liu, J.K.: Accelerating Forward
and Backward Private Searchable Encryption Using Trusted Execution. In
Proceedings of 2020 Applied Cryptography and Network Security, pages
83-103.

• Vo, V., Lai, S., Yuan, X., Nepal, S., Liu, J.K.: Towards Efficient and
Strong Backward Private Searchable Encryption with Secure Enclaves. In
Proceedings of 2021 Applied Cryptography and Network Security, pages
50-75.

Other publication in the Ph.D. course

• Sun, S., Yuan, X., Liu, J.K., Steinfeld, R., Sakzad, A., Vo, V., Nepal, S.:
Practical Backward-Secure Searchable Encryption from Symmetric Punc-
turable Encryption. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’18), pages 763-780.

vi

Acknowledgments

This thesis would not have been possible without blessings, encouragement and
support of a number of people.

Foremost, I wish to express my most sincere gratitude and appreciation to
my main supervisor, Dr Xingliang Yuan, for his passionate guidance, patience
and encouragement throughout my Ph.D. study at Monash University. All his
valuable advice have helped me perform to the best of my abilities. Without his
endless support, this dissertation would not have existed. He helped in various
aspects even well before the commencement of my Ph.D.

I thank my co-supervisors Joseph K. Liu and Shi-Feng Sun for their help and
support during my Ph.D. journey. They did not hesitate to provide their help
whenever needed. I still remember the time when Joseph K. Liu advised me with
my Ph.D. choices prior the commencement of my Ph.D. Shi-Feng Sun is a great
supervisor and collaborator, who also invited me to join his project which later
paved the way for my Ph.D. study.

I would also like to express my gratitude to my Data 61 mentor, Dr. Surya
Nepal, who closely follows my Ph.D journey. His valueable suggestion always
makes the papers’ writing and presentation more solid.

I owe great thanks to many friends and colleagues at Monash University,
including Shangqi Lai, Cong Zuo, Dimaz Wijaya and Maxime Buser. Shangqi Lai
is a great collaborator who works very hard and always brings useful discussion
during paper writing and experiment analysis. Also, neither my Ph.D. would
have been as enjoyable as it is without their friendship.

I am grateful to Data61, CSIRO for providing me a stipend scholarship
throughout the course of my Ph.D. study, and supporting me to attend con-
ferences and similar events in multiple occasions.

vii

Contents

Copyright Notice i

Abstract iii

Declaration v

List of Publications vi

Acknowledgments vii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 The need for searchable encryption 1
1.2 The history of searchable encryption 2
1.3 Leakage exploits in searchable encryption 4
1.4 Contributions of this Thesis . 6

1.4.1 Efficient mitigation against leakage-abuse attacks in dy-
namic SE [1] . 6

1.4.2 Efficient forward and backward-private SE schemes with
trusted execution environment [2, 3] 7

1.5 Thesis Structure . 9

2 Literature Review 11
2.1 Searchable Encryption . 11
2.2 Leakage-abuse Attacks in Static SSE 14
2.3 Leakage Exploits in DSSE . 15
2.4 Encrypted Search Based on Trusted Execution Environment . . . 17

3 Preliminaries 19
3.1 Notations and Cryptographic Primitives 19

3.1.1 Notations . 19
3.1.2 Basic Cryptographic Primitives 20

3.2 Security Definitions for DSSE . 21
3.2.1 Security notions . 21
3.2.2 An Index-based DSSE scheme 23

3.3 Leakage-abuse Attacks - The count attacks 26
3.4 Forward-secure DSSE . 27
3.5 Backward-secure DSSE . 28

i

ii

4 Leakage-abused Attacks in Dynamic SSE and Efficient Mitiga-
tion 31
4.1 System Overview . 31
4.2 Attack Models and Assumptions 36
4.3 Design of ShieldDB . 38

4.3.1 Setup . 38
4.3.2 Padding Strategies . 39
4.3.3 Optimisation Features . 45

4.4 Security of ShieldDB . 46
4.4.1 Leakage Functions . 46
4.4.2 Extended Constrained Security in ShieldDB 48
4.4.3 Security IND Game against Non-persistent adversary . . . 50
4.4.4 Security IND Game against Persistent adversary 53

4.5 Implementation and Evaluation 58
4.5.1 System Implementation 59
4.5.2 Experimental Setup . 60
4.5.3 Evaluation . 62
4.5.4 Discussion on the deployment of ShieldDB 69

4.6 Discussion . 69

5 Accelerating Forward and Backward SSE schemes 73
5.1 Existing SGX-supported Backward-private Constructions 73

5.1.1 Type-II Backward privacy with Bunker-B 75
5.1.2 Type-I Backward privacy with Orion∗ and Fort 77

5.2 System Overview . 78
5.3 Assumptions and Threat Models 79
5.4 Design for SGX-supported Type-II 80

5.4.1 SGX-SE1 . 81
5.4.2 SGX-SE2 . 85
5.4.3 Security Analysis . 87

5.5 Evaluation of Type-II Backward privacy 89
5.5.1 Experiment Setup and Implementation 89
5.5.2 Performance evaluation on synthesis dataset 90
5.5.3 Performance evaluation on Enron dataset 94
5.5.4 Discussion . 95

5.6 Maiden: SGX-supported Type-I scheme 95
5.6.1 Design Intuition . 95
5.6.2 The Detailed Protocol . 96
5.6.3 Security Analysis . 100

5.7 Evaluation of Type-I Backward privacy 102
5.7.1 The performance on the Synthesis Datasets 104
5.7.2 The performance on the Enron Dataset 107

5.8 SGX-Related Attacks and Defence 108
5.8.1 Cache Side-channel Attacks and Defence 108
5.8.2 Page-Table Side-Channel Attacks and Defence 110

iii

5.8.3 Transient Execution Attacks and Defence 111
5.8.4 Other Attacks and Defence 111
5.8.5 Discussion . 112

6 Conclusion 113
6.1 Summary of the Results . 113
6.2 Future Research Directions . 114

6.2.1 More theoritical directions 114
6.2.2 More application-oriented directions 114

References 116

List of Figures

4.1 High-level design of ShieldDB . 32
4.2 Strawman padding against non-persistent adversary 37
4.3 Strawman padding against persistent adversary 37
4.4 High mode padding against non-persistent adversary 43
4.5 High mode padding against persistent adversary 43
4.6 Implementation of ShieldDB . 59
4.7 Cache capacities for α = 256 . 60
4.8 Cache capacities for α = 512 . 61
4.9 Accumulated throughput . 62
4.10 Local cache size . 63
4.11 Bogus entries . 63
4.12 EDB Size . 64
4.13 EDB Size . 64
4.14 Flushing operation with α = 256 66
4.15 The difference in streaming distribution 67

5.1 High level design . 79
5.2 The query delay of querying the i-th most frequent keyword in

the synthesis dataset under different schemes (insert 2.5 × 105

documents and delete a portion of them). 91
5.3 The query delay of querying the i-th most frequent keyword in the

synthesis dataset under different schemes (insert 1×106 documents
and delete a portion of them). 92

5.4 The enclave’s memory after inserting 1×106 documents and delet-
ing a portion of them). 93

5.5 The query delay of querying the i-th most frequent keyword in the
Enron dataset under different schemes (insert all documents and
delete 25% of them). 95

5.6 High-level illustration of Maiden 96
5.7 The query delay of querying the i-th most frequent keyword in the

DS1 and DS2 datasets after deleting a portion of documents . . . 105
5.8 The permanent memory in the Enclave in Type-I evaluation. . . . 107

iv

v

5.9 Query latency and memory storage between schemes in Type-I
evaluation . 107

List of Tables

4.1 Time complexity of Padding Service and Server 44
4.2 Batch processing results . 63
4.3 Result length with α = 256 . 65
4.4 Result length with α = 512 . 65
4.5 Re-encryption on the largest cluster 66
4.6 Overall performance of ShieldDB throughout a 175-second stream-

ing period . 66
4.7 Overall performance of the insecure streaming system and the

forward-private SE streaming system 67

5.1 Comparison with previous SGX-supported Type-II backward-private
schemes. N , D, andW denote the total number of keyword/document
pairs, total number of documents, and total number of keywords,
respectively. d presents the number of deleted documents. nw
is the number of (current, non-deleted) documents containing w,
aw is the total number of entries (including addition and deletion
updates) performed on w, dw denotes the number of deletions
performed on w. r is the predefined number of necessary dummy
entries to be inserted in oblivious operations. 74

5.2 Comparison with previous SGX-supported Type-I backward-private
schemes . 77

5.3 Statistics of the datasets used in the evaluation. 89
5.4 Average time (µs) for adding a keyword-doc pair under different

schemes. 90
5.5 Number of ecall/ocall for adding 1 × 106 documents for different

schemes. 90
5.6 Number of ecall/ocall for deleting a portion of documents after

adding 1× 106 documents. 92
5.7 Number of ecall/ocall when querying the most frequent keyword

after adding 1× 106 documents and deleting a portion of them. . 92
5.8 Average time (µs) for adding a keyword-doc pair from Enron dataset

and removing 25% documents under different schemes. 94
5.9 Statistics of the datasets used in the evaluation of Type-I. 103

vi

vii

5.10 Avg. (µs) for adding/deleting a (w, id) pair when adding/deleting
a portion of DS1 and DS2. 103

5.11 Number of ocalls for data communication between Enclave and
Server in adding/deleting a portion of documents 103

Chapter 1

Introduction

Searchable encryption (SE) investigates the problem of outsourcing encrypted
data to an untrusted server and enabling the server to search against the en-
crypted data. As the server searches on its storage, it is clear that SE generates
some unavoidable leakage information for which the server can learn. This
information include the query tokens sent by the client and the list of encrypted
documents as the search result. If the search is repeated, the repetition of the
search results is also revealed. Note that, the leakage does not include the content
of the documents in the search results as the client decrypts them locally. The
security of a SE scheme is guaranteed by not allowing the server to perform
any inference relating to client’s query and the underlying database, beyond the
acceptable leakage during search operations. A SE scheme is dynamic if it allows
the server to dynamically update the encrypted database. Naturally, we also want
the dynamic SE reveals at least as possible the leakage during search and update
operations to the server. As SE addresses the practical problem of encrypted
database, it is desired that new dynamic SE schemes with minimal leakage should
be efficient so as to deployable in practice.

In this chapter, we will more precisely describe the motivation behind efficient
mitigation of leakage-abuse attacks in dynamic SE and formalise research gaps
that define this thesis.

1.1 The need for searchable encryption

The adaptation of cloud storage by various governments and businesses is rapid
and inexorable. From small businesses to large interprises, they find that out-
sourcing the storage and management of their data to the third party is more
convenient and cost effective. As a result, such adaptation has brought many
benefits to the global economy and the productivity improvement for the busi-
nesses. Yet, storing ever daily growing amount of data in the cloud also has
caused a huge upheaval in the cloud infrastructure development.

1

2

Unfortunately, only protecting the communication between users to the cloud
servers, by using network security measures, e.g., TLS [4], does not fully protect
the confidentiality of sensitive data stored in the storage. The servers still see
outsourced plaintext data and certainly are able to trace what data the users
have queried and updated over the time, such as query keywords, and keywords
in newly added/deleted documents. It has been showing that data breaches in
cloud servers are happening quite frequently in recent time, affecting millions of
individuals [5, 6, 7, 8, 9]. This phenomenon calls for increased control and security
for private and sensitive data stored in the untrusted servers [10, 11, 12, 13].

To combat against “breach fatigue” at untrusted cloud servers and enhance
user’s privacy, comprehensive efforts have been made by both law and regula-
tion makers, and security researchers. Digital data protection law enforcement,
such as the Gramm-Leach-Bliley Act, the Health Insurance Portability and Ac-
countability Act [14], the European Union General Data Protection Regulation
(GDPR) [15], and Australian Privacy Act [16], mandate involving institutions
and businesses to protect customer information by implementing proper security
measures. From security perspective, it is clear that using private-key encryption
to encrypt the customer’s sensitive data at the client side before outsourcing to
the cloud can guarantee the security of outsourced data against compromised
storage servers and data breaches. However, such simple scheme design is not
practical at both the client and server sides. Indeed, considering a health care
center as a client of a cloud service provider, the client with its master secret
key, is able to upload encrypted documents of health records of its patients,
employee contracts, and confidential business contracts to the cloud. In order
to make queries or updates, the client has to download and decrypt the entire
database, then retrieve or update appropriate documents, before re-encrypting
and outsourcing the encrypted data again to the server. Clearly, the client
performs queries and updates, not the server. This solution is impractical as it
requires the client’s storage and computation power comparable to the hardware
configuration of the cloud server, and large communication bandwidth overhead
(i.e., database size) between the client and the server. Hence, the shift to
computational and high-capacity cloud servers motivates security researchers to
design new practical schemes that allow the server to search over encrypted data,
i.e., searchable encryption.

1.2 The history of searchable encryption

As for preserving encrypted search, encrypted database systems can be designed
by using generic cryptographic tools or specific schemes supporting different query
functionalities. In this section, we briefly overview these constructions in terms
of security and efficiency, either of computation or communication overhead.

The first tool is private information retrieval (PIR) [17] and its variants of

3

information theoretic (IT-PIR) [18] and computationally-PIR (cPIR) [19]. At
a high level, the protocol enables the client to privately retrieve a data record
from a server, without the server learns which result selected. With IT-PIR,
it is necessary to duplicate the database to non-colluding servers so as to the
servers collectively retrieve the query result. It is known that the client does not
have to download the whole database for every query. Such protocol does not
rely on any hardness security assumption. However, the secrecy of the query is
guaranteed when the servers are maintained by competitive service providers in
practice. With cPIR, single-database computational PIR schemes [20, 21] trade
a low communication bandwidth for a high computational complexity, i.e., Ω(N)
public key operations to answer an query in the database of size N . This prevents
cPIR from being practical to support a very large database as shown in [22].

Another privacy-preserving tool is Oblivious RAM (ORAM), which was first
introduced by Goldreich and Ostrovsky et. al. [23]. At a high level, the scheme
enables data re-encryption and shuffling after every data access. Traditional
ORAM-based constructions [24, 23, 25, 26] only require a single server, which
is considered as untrusted. The scheme protects the data confidentiality and
data access pattern on the server. The server is implemented as a regular search
engine to manage its storage, and the storage can be layouted by a hierarchi-
cal/square root [24, 23] or a tree-based design [25, 26]. In those constructions,
only symmetric encryption is used since the client decrypts and re-encrypts data.
Since the noticeable Path ORAM construction proposed by Stefanov et. al. [26],
ORAM design has been optimised in various directions to improve efficiency (e.g.,
server’s computation [27, 24, 28], bandwidth blowup between the server and its
storage [29, 30], query throughput between the client and the server [31, 32]).
The running time of ORAM-based constructions only depends on the number
of results, unlike the dependence of database size of cPIR schemes. However,
ORAM-based constructions (e.g., Path ORAM) subject to a lower bound of
client-server bandwidth overhead as mentioned in the seminal works [26, 23].
That is, an encrypted data block requires the server to return O(logN) blocks
to the client, in the case of the server does not do any computation. The client
can perform data updates on the fetched data before evicting them back to the
server side. It is clear that ORAM-based constructions reveal the number of data
accesses to the untrusted server, for which the server can infer the search result
length.

We have seen that above generic tools, i.e., PIR-based and ORAM-based
constructions, suffer inefficiency of either computation depending on the database
size (i.e., N) or the communication overhead depending on O(logN). Thus,
another generation of encrypted database systems had found to overcome such
lower bounds, and it received a wide attention [33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45]. In this generation, many works [33, 46, 34, 47, 48, 49, 50, 36, 51,
52] implement property-preserving encryption (PPE) in a way that a ciphertext
inherits equality and/or order properties of the underlying plaintext. However,

4

inference attacks can compromise these encryption schemes by exploiting the
above properties preserved in the ciphertexts [53, 54].

In parallel, dedicated privacy-preserving query schemes are investigated in-
tensively in the past decade for encrypted databases [38, 48, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64]. Among others, searchable encryption (SE) [65, 66, 67,
68] is well known for its applications to ubiquitous keyword based search. In
general, SE schemes utilise an encrypted index to enable the server to search
over encrypted documents. The server is restricted such that only if a query
token (keyword ciphertext) is given, the search operation against the index will be
triggered to output the matched yet encrypted documents. This ensures that an
adversary with a full image of the encrypted database learns no useful information
about the documents. In that sense, SE outperforms PPE in terms of security.
We call a database is static if the state of the database remains unchanged
over the time. In 2006, Curtmola et al. [66] provided the first index-based SE
scheme to achieve a sublinear search time in a static database. The study also
provided necessary acceptable leakage of SE (a.k.a access to the database during
search) and fundamental security definitions for SE. We note that the leakage
contains access and search patterns if the database is static. Informally, the
access pattern of a query token reveals the identifiers of documents containing
the query keyword and the number of documents (i.e., query result length). The
search pattern reveals the repetition of query tokens and results if the client
queries matching documents for the same query keywords. The security of a SE
scheme is guaranteed by not allowing the server to learn any information relating
to client’s query and the underlying database, for that beyond the acceptable
leakage during search operations.

In 2012, SE had been extended to support secure updates (addition/deletion)
on dynamic databases. Kamara et al. [69] proposed the first dynamic SE scheme
with sublinear search time. However, the scheme leaked the hashes of keywords
contained in the updated documents. Then, Cash et al. [70], conducted another
work to optimise searching operations for very large databases.

1.3 Leakage exploits in searchable encryption

Although SE provides an efficient solution compared to traditional encrypted
databases using generic tools (e.g., PIR [19], homomorphic encryption [33, 34]
and oblivious RAMs [71, 72]), it has a trade off between security and efficiency,
which is necessary acceptable leakage as defined by Curtmola et al. [66]. The
real-world consequences of the leakage of SE are still being exploited. Since 2012,
more works tend to explore the adversarial capability of knowing SE’s leakage to
break its claimed security.

Islam et al. [73] and Cash et al. [74] were the first studies show that a
small information leakage known by an attacker can be exploited to compromise

5

the client’s query privacy. In details, Cash et al. [74] proposed a practical
attack that exploits the leakage in the search operation of static SSE. It is
assumed that an adversary with full or partial prior knowledge of DB can uncover
keywords from query tokens via search results. Namely, the adversary identifies
the matching between the search results to known documents to infer the query
keywords. This assumption is not impractical if we think the adversary can
obtain the plaintext data in previous data breaches. Recent works [74, 75] show
that using padding countermeasure is simple but effective to make adversaries
harder when uncovering query keywords. However, the leakage-abuse attacks and
current padding efforts were only investigated in static databases, and have not
been investigated in real-world dynamic database applications. In this dynamic
setting, the state of database changes over the time. Specifically, the updates of
documents change the access pattern for a given keyword, and new keywords can
be introduced randomly at any time.

Not just the leakage-abuse attacks that can break the claimed security of SE,
the claimed secure update of dynamic SE is also overlooked. In 2016, Zhang
et al. [76] proposed the first instantiation of active attacks called file-injection
attacks through the exploitation of the leakage in data addition. At a high level,
if an adversary can reuse a known query token to find out her injected documents,
it is clear that the keyword used to generated that token must be in those added
documents. The attacks are successful due to the fact that the query token of the
keyword does not reflect the change of newly matching documents. Yet, if data
deletion on the encrypted database is allowed, a dynamic SE scheme should not
reveal the subsequent query keywords in previous updates. Otherwise, it reveals
the history of document deletion of the client.

Since 2016, many dynamic SE schemes focus on the forward and backward
privacy introduced by Stefanov et al. [77] and later formalised by Bost et al. [78,
75]. The reason is because forward privacy can mitigate adaptive file injec-
tion attacks [76] as it guarantees the updates cannot be associated with prior
queries [78, 75, 79]. On the other hand, backward privacy ensures that the queries
do not link to deleted documents.

Although forward and backward privacy are desirable, recent works [75, 80]
demonstrate that forward and strong backward-private (Type-I and Type-II)
schemes are difficult to achieve in an efficient way in practice. Namely, new
efficient SE schemes have to hide the access pattern on updated data while only
revealing the currently matching documents to the server. One can think of
re-using expensive cryptographic primitives, e.g., ORAM, to achieve that security
goal. However, this design introduces formidable computation and communica-
tion costs, which bring stupendous obstacle in deploying SE in practice.

6

1.4 Contributions of this Thesis

The history of SE has come a long way to formalise secure data updates on
encrypted databases. However, it has raised doubt whether dynamic SE is
secure to protect the privacy of queries and the confidentiality of the underlying
database against existing leakage-abuse attacks [74, 76].Yet, although the security
notions of forward and backward privacy are formalised [75], existing dynamic
SE schemes still rely on generic tools, e.g., ORAM or trapdoor permutations, to
achieve these notions [75, 80]. Thus, it is desired to answer whether dynamic
SE with these advance notions are applicable in practice if ones care about the
efficiency of client-server bandwidth, client’s storage, server’s computation, and
search latency. Otherwise, dynamic SE is provably secure, but not practical.
Therefore, this thesis aims to firmly answer the following research question.

How to design efficient dynamic SE schemes with less leakage to
mitigate existing and even prevent prospective active attacks?

In this thesis, we study and investigate the practical security and efficiency
of dynamic SE against attacks that exploit the inherent leakage of update and
search operations. It brings in at once new constructions without using generic
expensive tools (e.g., ORAMs [23, 26], PIR [17]), new security considerations,
new theoritical results and practical efficiency analysis of dynamic SE against
the attacks. These results come from three papers, that we quickly summarise
into following sections.

1.4.1 Efficient mitigation against leakage-abuse attacks in
dynamic SE [1]

As explained above, SE leaks some necessary information about data accesses
to the server in static database. Leakage-abuse attacks [74] had been developed,
exploiting this leakage to compromise the claimed security of SE. Indeed, these at-
tacks helped to understand the importance of considering leakage when analysing
the security of SE as well as when deploying SE in practice. In 2017, Bost
et al. [75] raised the necessity of using constraints to formalise the background
knowledge of adversary in the security definition of SE. Unfortunately, the work
was still theoritical, without further investigating empirical results of how to
mitigate the attacks. More importantly, SE research community only investigated
the security and countermeasures of SE against the attacks in static database
setting, but did not formalise the security of SE against the attacks and how
efficiently mitigate them in dynamic database setting.

Our paper [1] addressed these questions by proposing new attack models of
leakage abuse attacks and formalising them in new security definitions. By using
these security definitions, we devised new efficient countermeasure approaches
and applied them in a real streaming encrypted database system, called as
ShieldDB, in order to hide the query results even the adversary has the back-

7

ground knowledge of database over the time. We provided the provable security
of two new schemes with specific leakage profiles in that setting. We also provided
the experiment results to demonstrate the efficiency of our countermeasures and
showed that the design can be easily adapted to any SE scheme. The contribution
summary of ShieldDB is as follows.

• ShieldDB is the first encrypted database that supports encrypted keyword
search, while equipping with padding countermeasures against inference
attacks launched by adversaries with database background knowledge.

• We define two new types of attack models, i.e., non-persistent and persistent
adversaries, which faithfully reflect different real-world threats in a continu-
ously updated database. Accordingly, we propose padding countermeasures
to address these two adversaries.

• ShieldDB is designed with a dedicated system architecture to achieve the
functionality and security goals. Apart from the client and server modules
for encrypted keyword search, a Padding Service is developed. This service
leverages two controllers, i.e., Cache Controller and Padding Controller, to
enable efficient and effective database padding.

• ShieldDB implements advanced features to further improve the security
and performance. These features include: 1) forward privacy that protects
the newly inserted document, 2) flushing that can reduce the load of the
padding service, and 3) re-encryption that refreshes the ciphertexts while
realising deletion and reducing padding overhead.

• We thoroughly investigate the security of ShieldDB against the proposed
non-persistent and persistent adversaries.

• We present the implementation and optimization of ShieldDB, and deploy
it in Azure Cloud. We build a streaming scenario for evaluation. In
particular, we implement an aggressive padding mode (high mode) and
a conservative padding mode (low mode), and compare them with padding
strategies against non-persistent and persistent adversaries, respectively.
We perform a comprehensive set of evaluations on the load of the cache,
system throughput, padding overhead, and search time to demonstrate its
practical deployment.

1.4.2 Efficient forward and backward-private SE schemes
with trusted execution environment [2, 3]

With our previous paper [1], we saw why it is desirable that update (i.e., addition)
in dynamic SE should not reveal any information about updated keywords even

8

though the adversary has the background knowledge of the dynamic database.
Otherwise, the data addition updates and query keywords are revealed to the
server over the time. Noting that dynamic SE also supports secure deletion,
not just addition update [69], and the security notions of forward and backward
privacy were formalised by Bost et al. [75]. The backward privacy notion contains
different types of information leakage for which a semi-honest server can learn
about historial data deletion from Type-I to Type-III. This leakage is inherently
generated from SE if it supports secure deletion before search operations. More
precisely, the server can distinguish at what time which document identifiers of
the query keywords added and then deleted before the keyword is searched. Thus,
it is important to design new schemes such that deleted results remained hidden
to the server.

There have been many SE schemes supporting the advance security notion of
backward privacy (e.g., Type-I with Moneta and Orion [75], Type-II with Fides
and Mitra[75], Type-III with Janus [75], Horus [80], and Janus++ [81]). However,
Type-I schemes Moneta and Orion rely on ORAM-based constructions, and cur-
rent Type-II schemes Fides [82] and Mitra [80] require multiple roundtrips and high
communication cost, while Horus [80] relies on Path-ORAM [26]. Until recently,
Amjad et al. [83] proposed the first forward and backward private schemes using
trusted execution environment (TEE) (i.e., Intel SGX [84]). As generic ORAM
or ORAM-like data structures can natively be adapted to achieve the strongest
forward and backward privacy (i.e., Type-I backward privacy [82]), one of their
schemes is built from ORAM, where data addition and deletion are completely
oblivious to the server [83]. It is noteworthy that such an approach could still
be inefficient due to the high I/O complexity between the SGX and server. Like
prior forward and backward private SE studies, Amjad et al. [83] also proposed
Type-I and Type-II schemes, Fort and Bunker-B, respectively. Unfortunately, only
the theoretical constructions of the scheme are given in [83], and we observe that
they are not scalable, especially when handling large datasets to support very
large document updates. Therefore, we aim to explore how to use TEE to design
new strong forward and backward-private SE.

• We design and implement two forward and backward private SE schemes,
named SGX-SE1 and SGX-SE2. By using SGX, the communication cost
between the client and server of achieving forward and backward privacy
in SE is significantly reduced.

• Both SGX-SE1 and SGX-SE2 leverage the SGX enclave to carefully track
keyword states and document deletions, in order to minimise the commu-
nication overhead between the SGX and untrusted memory. In particular,
SGX-SE2 is an optimised version of SGX-SE1 by employing Bloom filter to
compress the information of deletions, which speeds up the search opera-
tions and boosts the capacity of batch processing in addition and deletion.

9

• We formalise the security model of our schemes and perform security anal-
ysis accordingly.

• We conduct comprehensive evaluations on both synthetic and real-world
datasets. Our experiments show that the latest art Bunker-B takes 10×
more ecall/ocalls than our schemes SGX-SE1 and SGX-SE2 when inserting
106 documents. Even more, Bunker-B needs 30× ecall/ocalls when deleting
25% of the above documents. W.r.t. search latency, SGX-SE1 and SGX-SE2
are 30% and 2× faster than Bunker-B, respectively.

• Regarding Type-I backward privacy, we thoroughly analyse a basic scheme
named Orion?, i.e., direct migration of the latest strong backward-private
DSSE scheme Orion [80] to TEE, and the latest art of TEE-based scheme
Fort [83]. We identify their limitations both theoretically and empirically.
As the implementation of Fort and Orion? is not available, we implement
them from scratch for evaluations and comparisons.

• We propose Maiden, the first Type-I backward-private scheme without rely-
ing on ORAM. Maiden is designed to keep the states of updates, the deletion
information, and a sketch of insertions inside TEE, so as to eliminate the
leakage in updates and allow minimally necessary leakage during the search.
We formalise the security model of the scheme and perform security analysis
accordingly.

• We conduct comprehensive evaluations on our proposed scheme Maiden,
Fort, and Orion?. Our experiment shows that the addition throughput of
Maiden is 13 ∼ 36× higher than Orion?. Maiden takes a negligible time
to perform document deletion. The search latency in Maiden is 70 ∼ 90×
faster than Fort and Orion? when using a large synthesis dataset. With a
real-world dataset, Maiden is 575× and 291× faster than those schemes,
respectively.

1.5 Thesis Structure

In this thesis, chapter 2 highlights the most related works of this Ph.D project.
The chapter first covers the fundamental background of searchable encryption
(SE) and summarises research directions in practical SE deployment. Then, we
highlight leakage-abuse attacks in static SE and leakage exploits in the dynamic
SE. After that, we present significant works that leverages the trusted execution
environment (TEE) to enable encrypted search. Chapter 3 revisits formal defini-
tion of security notions relevant to this study, then highlight related schemes.

In Chapter 4, we explore the leakage-abuse attacks in dynamic (streaming)
setting and how to mitigate them effectively. In section 4.1 we first overview the

10

design of ShieldDB. Then, we demonstrate new proposed threat models that in-
cludes non-persistent and persistent adversaries in section 4.2. Section 4.3 demon-
strates padding countermeasures and other optimisation features supported in the
system. Section 4.4 analyses the security of the system. In section 4.5, we present
the system deployment and perform intensive evaluation to investigate the per-
formance of the proposed padding strategies. Then, we discuss the performance
and assumption of the system in section 4.6.

In chapter 5, we explore how to improve the efficiency of dynamic SE schemes
that supports advanced security notions of forward and backward privacy. First,
we discuss related SGX-supported schemes in section 5.1. Then, in section 5.2,
we present our implemented system that supports our new schemes. In details,
in section 5.4, we detail our design for SGX-SE1 and SGX-SE2 that efficiently
achieve Type-II backward privacy. The evaluation of these schemes are presented
in section 5.5. In section 5.6, we present our design for Maiden, which achieves
Type-I backward privacy. Then, in section 5.7, we evaluate Maiden and compare
it with other related works. Then, in section 5.8 discusses SGX side-channels and
how existing countermeasures can be applied to our design.

Chapter 6 concludes the contributions of this thesis and opens future research
directions.

Chapter 2

Literature Review

This chapter summarises the state of the art in the research area relevant to
our contribution further as of the time of writing (June 2021). We start with
searchable symmetric encryption (SSE), which forms the basis of many schemes
described in the thesis. SSE enables an untrusted server to search over encrypted
documents upon client’s request with acceptable information leakage. Then, we
discuss leakage-abuse attacks in SSE and other information leakage revealing to
the server during updates in dynamic SSE (DSSE). Finally, we highlight some
significant works that leverage trusted execution environment (TEE) to enable
encrypted search. The discussion in this chapter is kept informal, and relevant
formal definitions are given in the following and subsequent chapters1.

2.1 Searchable Encryption

We consider an immediate application of SSE is cloud storage system, which
contains a trusted client and an untrusted server. In setup, the client would like
to encrypt its document collection and then to outsource the encrypted database
to the server for storage purpose. Then, in search operation, the client would
like to retrieve currently matching documents of query keyword w. To do so, the
client generates and sends a query token for w which the server uses to run the
search operation and returns appropriate (encrypted) documents. We call such
setting, which only contains setup and search operations, as static SSE. Clearly,
in that setting, we note that multiple search operations can repeatedly happen
against the static encrypted database maintained by the server. In contrast, we
call a SE scheme as dynamic SSE (DSSE) if it additionally supports update
operations, which dynamically enables the server to perform secure updates
(addition/deletion) on the encrypted database.

At the beginning, the problem of SSE can be resolved by using oblivious RAM
that offers the strongest privacy guarantee [23, 25, 26, 85]. More precisely, the

1This chapter is partly based on [1, 2, 3]

11

12

technique does not reveal any information to the server, including the update or
search operations, and even the “access pattern” (i.e., which documents contain
w). Unfortunately, the approach requires a logarithmic (in the database size) the
number of rounds of interaction between the client and the server and has a high
overhead at each side.

In the year 2000, SSE was first considered explicitly by Song et al. [65]. The
work provided a non-interactive scheme that achieves a linear search time in the
length of the database by weakening the privacy guarantee. Informally, according
to [65, 69, 66], a SSE scheme is secure if: (1) the encrypted database alone
(without query tokens) reveals no information about the underlying data; (2) the
database together with the query token reveals at most the result of the search
to the serverl; (3) query tokens can only be generated using the client’s secret
key. Note that, during search, the server learns the “access pattern” and the
“search pattern” of the query upon receiving the query tokens, where the “access
pattern” reveals the list of documents containing the query keyword, and the
“search pattern” reveals the repetition of queries.

After that, in 2006, Curtmola et al. [66] provided the first two index -based
static SSE schemes, namely SSE-1 and SSE-2, against non-adaptive and adap-
tive adversarial models, respectively. They both only require one communica-
tion round between the client and the server. Informally, the terms of index,
non-adaptive, and adaptive adversarial models are explained as follows. The
data structure index stores the identifiers of documents (ids) in the database
while supporting efficient keyword search. That is, given the query keyword w,
the index returns pointers pointing to the documents containing w. The security
definition of non-adaptive security model refers to adversaries that only make
search queries independently from query tokens and search results of previous
queries. In contrast to non-adaptive security model, the adaptive adversaries can
choose their queries as a function of previously obtained query tokens and search
results. Although Curtmola et al. [66] showed that SSE-1 achieves sublinear
search time, which the asymptotic complexity is proportional to the number of
documents currently matching the query keyword w (not the whole database size
like [65]), the scheme only provides security against non-adaptive adversarial
model. In contrast, SSE-2 achieves the stronger notion of adaptive security, but
the scheme’s search time costs an asymptotical search time depending on the
total number of documents in the database. During the period from 2005 to
2012, supporting DSSE was not considered explicitly. One cannot add or remove
files without either treating the newly added data as a completely new databaset
or requiring re-indexing approaches. For instance, Chang et al. [86] considered
the new set of encrypted documents to be added as a separate document col-
lection. Therefore, the client needs a different query token to query that newly
added database since it is indexed using different secrets. Yet, Chase et al. [87]
requires re-indexing the entire database to support the updates. Alternatively,
Curtmola et al. [66] considered a technique that asks the server to return the

13

data duplication of the previously and newly added databases so that the client
can do re-indexing.

Until 2012, Kamara et al. [69] formalised the security definition for DSSE that
supports secure updates and proposed the first practical DSSE scheme satisfying
all the following properties: sublinear search time, security against the adaptive
adversarial model, compact indexes and supporting document addition/deletion.
In a high level, the scheme requires the server to store two physical arrays which
have the same size, including a search array and a delete array. While the search
array stores the linked list of each keyword’s matching document list, the delete
array forms the link lists between keywords in the same documents. Then,
document addition/deletion require homomorphically updates on the pointers
in those two arrays.

Since DSSE formalised, the research area has attracted a long line of studies
to propose many diffrent schemes that improve different levels of query efficiency,
support search functionalities. Some highlighted works in these directions are
briefly described as follows.

Improving query efficiency: Most SSE schemes have optimal search times
that scale with the number of documents matching the query. Practical factors
of I/O latency, storage utilisation, and database distribution downgrade the
performance of in-memory SSE in practice. However, when scaling SSE to big
data using external memory, Cash et al. [70] showed that non-contiguous reads to
memory create a throughput-bottleneck on very large databases. Hence, previous
works [70, 88, 89, 90] achieved optimal locality by increasing read efficiency—the
number of additional memory allocation (false positives) that the server reads
per result item. Later, Demertzis et al. [91] provided new SE schemes with
tunable locality to enable the tradeoffs between space, read efficiency, locality,
and communication overhead. Soon after, Asharov et al. [92] and Demertzis et
al. [93] provided new SSE schemes with built-in memory allocation algorithms
to adapt keywords for different document size ranges. These works helped SSE
to achieve linear space, constant locality, and sublogarithmic read efficiency. In
another direction, Demertzis et al. [94] improved the efficiency of SSE schemes
by compressing the list of document identifiers matching to keywords before
encryption. As a result, it reduces the accessed result identifier list without
compromising security. The proposed solution is compatible with any existing
SSE scheme as a black-box. Another approach to improve search efficiency in
large-scale database is using distributed SSE [45].

Supporting search functionalities: SSE also has been extended to enable
range and boolean queries [95, 70, 69, 60, 96, 97, 98]. Hence, improving the
efficiency of SSE schemes supporting those expressive queries has been advanced
in recent years [99, 100, 101, 102, 103]. For instance, Li et al. [57] proposed the
first range query processing scheme by organising indexing elements in a complete
binary tree and with traversal depth and width minimisation algorithms. The
query processing efficiency was achieved at the worst complexity of O(|R|logn),

14

where n is the total number of data items and R is the set of data items in
the query result. Until recently, Wu et al. [41] proposed a secure verifiable
and efficient framework to support encrypted multi-dimensional range query by
developing a new hierarchical cube based method to pre-process dataset and
query range, respectively. Then, an encrypted index based on tree structure is
built to achieve O(R) query time complexity. The efficiency of SSE schemes
supporting conjunctive search and boolean queries also have been investigated
to support very large databases. Cash et al. [95] provided the first interactive
sublinear SSE scheme to achieve conjunctive keyword search with the complexity
is independent of the number of documents in the database. Instead, it scales with
the number of documents matching the least frequent keyword in the conjunction.
After that, Sun et al. [104] proposed an efficient non-interactive multi-client SSE
scheme with support for boolean queries by enabling the client to obtain the
search-authorised private key from data owner on permitted search keywords.
Other significant range-supporting SSE works are highlighted in [105, 41, 97, 106].

2.2 Leakage-abuse Attacks in Static SSE

Typically, efficient SSE schemes like [95, 70, 69] often expose some information,
called leakage, to the server. This information can be statistically obtained via the
“access pattern” (i.e., which documents contain query keywords) and “search pat-
tern” that reveals repeated queries. In 2012, Islam, Kuzu, and Kantarcioglu [73]
(IKK) provided the first leakage-abuse attacks that study the emperical security
of SE in practical deployment. The study shows that a client’s query keywords can
be guessed when the underlying plaintext database DB is known to the untrusted
(honest-but-curious) server. In a high level, the IKK attacks leverage simulated
annealing technique to probabilistically match queries’ results with the keywords
in the database based on the access patterns revealed during search operations.

In 2015, Cash et al. [74] proposed a significantly simpler, faster, and more
accurate attack called as the count attack. The attack exploits the leakage in the
search operation of SSE. It is assumed that an adversary with full or partial prior
knowledge of DB can uncover keywords from query tokens via access pattern.
Specifically, the prior knowledge allows the adversary to learn the documents
matching a given keyword before queries.

In the meanwhile, padding countermeasures [73, 107, 75] are considered as
an effective approach to obfuscate the leakage during search operations of SE.
In particular, Islam et al. [73] propose the first padding countermeasure for SE;
keywords are grouped into different clusters, where each keyword in a cluster
matches a set of identical document ids. This requires another data structure to
help the client to differentiate real and bogus document ids after search, since all
bogus ids are selected from the real ones. After that, Cash et al. [107] propose
another approach; the number of ids in each keyword matching list is padded up to

15

the nearest multiple of an integer, aka padding factor. To guarantee effectiveness,
this factor needs to be increased until no unique result size exists. However,
this padding factor is a system-wide parameter, and incrementing it introduces
redundant padding for all other padded matching lists. To reduce padding
overhead, Bost and Fouque [75] propose to pad the keyword matching lists
based on clusters of keywords with similar frequency. Their proposed clustering
algorithm achieves minimised padding overhead while thwarting the count attack
in the static setting. Very recently, Xu et al. [108] investigate the formal method
to quantify the padding security strength, and propose a padding generation
algorithm which makes the bogus and documents similar. Again, all the above
padding countermeasures focus on the static setting, where the dataset remains
unchanged after the setup. We note that the assumption in this setting is not
always true in practice due to the dynamic changes of keywords.

We also note that there is another research direction that focuses on recovering
the client’s search queries using volumetric leakage (i.e., query result lengths) [109,
110]. As a result, volume-hiding schemes like [111, 112] are proposed recently.
However, we note that those schemes are focused on the static setting, as they
resort to specialised data structures and constructions. First, they are not dy-
namic friendly. In [111, 112], multi-hashing and cuckoo hashing techniques are
adopted as the underlying data structures. It is not easy to insert new data into
those data structures, and we are not aware any existing volume-hiding schemes
support efficient updates. Second, volume hiding schemes may hide the size of the
query result, but it is not clear whether they can protect the relationships between
different query keywords when applying them into the context of keyword search.
Also, there is no clear evidence in the literature that volume hiding schemes can
defeat leakage-abuse attacks (i.e., the generalised count attacks) against SSE.

2.3 Leakage Exploits in DSSE

Since the leakage-abuse attacks proposed in 2015, Zhang et al. [76] continously
investigated the new consequences of leakage in SE schemes via file-injection
attacks in 2016. In this active attacks, the adversary (or the untrusted server)
sends her crafted (known) documents to the client as the input for the update
(addition) operation. Then, the client follows the protocol to encrypt and upload
them to the server as defined by a DSSE scheme. After that, if the client issues
the same (known) query tokens to the server and the corresponding query results
additionally contain the injected documents, the adversary can learn the keywords
searched in those injected documents. Compared to prior IKK attacks [73] or
leakage-abuse attacks [74], Zhang et al. [76] showed that the file-injection attacks
are very effective when recovering a high fraction of query keywords by just
injecting a small number of documents. In addition, the attacks do not require
the auxiliary knowledge of the database.

16

Forward privacy is an advanced security notion of DSSE to mitigate the pow-
erful file-injection attacks. Informally, forward privacy prevents the server from
using the previous query tokens to retrieve newly added documents. Although
Stefanov et al. [77] investigated the security for the first time in an Oblivious
RAM-based scheme, but it was not efficient due to the large communication band-
width and the server’s storage blowup. Then, in 2016, Bost et al. [78] formally
defined forward privacy, and designed the first insertion-only forward-private
scheme (i.e., Sophos). In Sophos, the client locally keeps the keyword’s latest
state and uses that state as an input when generating the new encrypted entry
for the newly updated (w, id) pair in update. In search, the client generates
the query token based on the latest state. Note that, the state is continously
re-generated for every (w, id) pair of the query keyword by using the inverse of
one-way trapdoor permutation based on public key cryptography. Then, upon
receiving the token, the server can recover all previous states from the given
public key. Since the server does not know the private key, it cannot guess future
states. Unfortunately, Bost et al. [78] showed that the public key operation is the
performance bottleneck in the scheme. In 2018, Song et al. [113] provided Fast and
FastIO that only use symmetric-key based trapdoor permutation. In a high level
idea, the ephermeral key of the permutation is embedded inside the encrypted
database so that the server can use it to recover the state of previously added
entries. We refer readers to [113] for the detailed protocols and formal security
analysis. Other recent forward-private SSE shemes also include [114, 115, 79].

Another important notion of privacy in DSSE is backward privacy. Infor-
mally, deleted documents cannot be revealed to the server in any subsequent
search queries. At the beginning, the idea of hiding deleted documents was
experimentally evaluated in oblivious RAM by Stefanov et al. [77] in 2014.
Then, in 2017, Bost et al. [82] formally defined the security notion of back-
ward privacy that categories different leakage information on the updates of
the query keyword that the server can learn upon receiving the search token
of the keyword. There are three types of backward privacy from Type-I to
Type-III in the descending order of security. Informally, Type-I only leaks the
timestamps when the currently matching documents added into the database, and
the total number of updates on that query keyword. Then, Type-II additionally
reveals the timestamps when all the updates on the query keyword happened.
Type-III is the least secure, it additionally leaks the confliction pattern that
reveals when documents matching the keyword added and then deleted before the
search operation. Since 2017, many different backward-private schemes have been
proposed [82, 81, 80, 98], which target different leakage types. However, strong
backward-private (Type-I and Type-II) schemes are known to be inefficient in
the computation and communication overhead between the client and the server.
For example, Type-I backward-private schemes all rely on ORAM, including
Moneta [82] and Orion [80]. Some significant works for Type-II schemes include
Fides [82] and Mitra [80]. However, both of them require multiple roundtrips

17

and high communication cost, while Horus [80] still relies on ORAM [26]. In a
less secure manner, Type-III schemes include Janus [82] and Janus++ [81]. They
only require one roundtrip as a tradeoff between communication cost and security
guarantees.

2.4 Encrypted Search Based on Trusted Execu-

tion Environment

Trusted execution environment (TEE) like Intel SGX is a set of x86 instructions
designed for improving the security of application code and data executed on the
untrusted server. On SGX-enabled platforms, ones need to partition the applica-
tion into both trusted part and untrusted part. The trusted part, dubbed enclave,
is located in a dedicated memory portion of physical RAM with strong protection
enforced by SGX. The untrusted part is executed as an ordinary process and can
invoke the enclave only through the well-defined interface, named ecall, while
the enclave can encrypt clear data and send to untrusted code via the interface
named ocall. Furthermore, decryption and integrity checks are performed when
the data is loaded inside the enclave. All other software, including OS, privileged
software, hypervisor, and firmware cannot access the enclave’s memory. The
actual memory for storing data in the enclave is only up to 96 MB. Above that,
SGX will automatically apply page swapping. SGX also has a remote attestation
feature that allows to verify the creation of enclaves on a remote server and to
create a secure communication channel to the enclaves.

Since TEE commercialised [116], there has been an active line of research [83,
117, 118, 119] that leverage the hardware support to enable search over encrypted
data. In general, TEE such as Intel SGX can reduce the network roundtrips
between the client and server and enrich the database functions in the encrypted
domain. Fuhry et al. [119] proposed HardIDX that organises database index in a
B+-tree structure and utilises enclave to traverse a subset of the tree nodes to do
searches. The scheme achieves search time complexity at the logarithm in the size
of index, but it does not support dynamic update operations. Later, Mishra et
al. [118] designed a doubly-oblivious SE scheme that supports inserts and deletes,
named Oblix. In this scheme, one oblivious data index resides in the enclave to
map the search index of each keyword to a location in another oblivious structure
located in untrusted memory. However, the performance of their implementation
on large databases is less efficient due to the fact of using ORAM. To support
boolean queries, Borges et al. [102] migrated secure computation to the enclave to
improve the search efficiency. When two or more keywords are queried, the result
set can be unionised or intersected within the enclave. Note that this work focuses
on a different problem with ours. However, none of the previous works leverage
the TEE to efficiently support the advanced security notions (i.e., forward and

18

backward privacy of dynamic SSE. Until recently, Amjad et al. [83] proposed
three schemes to enable single-keyword query with different search leakage (i.e.,
information that the server can learn about the query and data). They are,
the TEE-supported Type-I scheme Fort, Type-II scheme Bunker-B, and Type-III
scheme Bunker-A.

However, the work only provided theoritical schemes without investigating
their practical efficiency to support very large document addition/deletion. Fort
requires an oblivious map (OMAP) similar to the one in Orion [80] to do the
update, causing high computation overhead. Bunker-A [83] improves the up-
date computation, but it downgrades the security guarantees. Bunker-B also
suffers practical limitations of intensive communication between the trusted ex-
ecution environment (i.e., enclave) and the server, and search latency due to
re-encryption. Also, the computation/communication of these three TEE-supported
schemes have not been investigated in the work [83]. Hence, strong backward
private (Type-I and Type-II) schemes are known to be inefficient in both com-
putation and communication overhead. Therefore, we are motivated to explore
how to design efficient schemes using TEE to achieve strong backward privacy.

Chapter 3

Preliminaries

This chapter covers the preliminary made use of in the next chapters. First, we
highlight commonly used notations and crytographic primitives in DSSE. Then,
we cover the security background of DSSE by presenting key security notions
and fundamental security definition. After that, we detail the leakage-abuse
attacks in static SSE, which serves as the stepstone for our investigation regarding
the attacks in the DSSE. Then, we present the fundamental an Index-based
DSSE scheme, which serves as the basic scheme for many shemes later supporting
advanced notions of forward and backward privacy. After that, we detail the
formal security of forward and backward privacy.

3.1 Notations and Cryptographic Primitives

3.1.1 Notations

We follow the formalisation of Curtmola et al. [66], Kamara et al. [69], and Cash
et al. [70] to restate the key notations used in (dynamic) SSE as follows.

Security parameter
We write {0, 1}n to denote the set of all binary strings of length n, and the set of
all finite binary strings as {0, 1}∗. We denote by Func[n,m] the set of all functions
from {0, 1}n to {0, 1}m. We write [n] to represent the set of integers in the range

{1, . . . , n}. For a finite set X, we write x
$←− X to represent an element x being

sampled uniformly from X. We also write x||y to denote the concatenation of
two strings x and y.

A symmetric key K is a string of λ bits, and a key generation algorithm
uniformly samples K in {0, 1}λ. In (dynamic) SE, we only consider probabilistic
algorithms and protocols executing within the time polynomial in the security
paramater λ. Thus, adveraries are considered as probabilistic polynomial time
algorithms. We can write x ← A to denote the output x of a probabilistic
algorithmA. Throughout, λ ∈ N refers to the security parameter and we consider

19

20

that all algorithms take λ as input. Thus, a function ν : N 7→ N is negligible in
λ if for every positive polynomial p(·) and a large λ, ν(λ) < 1/p(λ). We write
f(λ) = negl(λ) to mean that there exists a negligible function ν(·) such that
f(λ) ≤ ν(λ) for all sufficiently large λ. Thus, two distribution ensembles X and
X ′ are computationally indistinguishable if for all probabilistic polynomial-time
(PPT) distinguisher D, we have:

|Pr [D(X) = 1]− Pr [D(X ′) = 1]| ≤ negl(λ)

In (dynamic) SSE, a trusted user is modelled as probabilistic polynomial-time
Turing machines, while the adversaryA and the simulator S are modeled as deter-
ministic polynomial-size circuits. Since every probabilistic polynomial-time algo-
rithm can be simulated by a deterministic polynomial-size circuit [66], (dynamic)
SSE schemes guarantee the security against any probabilistic polynomial-time
adversary.

Data Structures
A database DB = (idi,Wi)

d
i=1 is a tuple of d-tuple of identifier/keyword-set pairs

where idi ∈ {0, 1}λ and Wi ⊆ {0, 1}∗. The set of keywords of the database is
W = ∪Di=1Wi, where D is the number of documents in DB. We write W = |W| to
represent the total number of keywords, and N = ΣD

i=1|Wi| to denote the number
of document/keyword pairs in DB. We denote by DB(w) the set of the identifiers of
the documents containing the keyword w, i.e., DB(w) = {idi|w ∈ Wi}. Then, an
inverted index can be presented as MI = {DB(wi)}, where i ∈ [1,W]. Typically,
the index is encrypted and then outsourced to the untrusted server to enable
encrypted search functionality. We refer readers to seminal works [66, 69] for
more details regarding how static SE schemes are constructed.

Throughout this report, we also mention other data structures of linked list
and arrays, and dictionaries. Thus, we also present relevant notations of these
data strutures as follows. If A is an array (or a linked list) then we denote by
|A| the total number of elements in A, and A[i] is the value stored at the index
i ∈ |A|. We also write A[i]← v to denote the assignment operation that assigns
v at that index. A dictionary M (aka. a key-value map) is a data struture that
stores key-value pairs (k, v). If (k, v) in M , then M [k] is the value v associated
with k.

3.1.2 Basic Cryptographic Primitives

Symmetric encryption scheme
A symmetric encryption scheme contains three polynomial-time algorithms SKE =
(Gen,Enc,Dec), where Gen is a probabilistic algorithm that takes the security
parameter λ and outputs a secret key K, Enc is a probabilistic algorithm that
takes the inputs of K and a message m and outputs a ciphertext c, and Dec takes
the inputs of c and the key K and returns m if c was the encrypted message of m

21

by using the same key. Informally, SKE is chosen-plaintext attacks (CPA)-secure
if the ciphertext does not reveal any useful information about the underlying
plaintext even to an adversary that can query to an encryption oracle.

Pseudo-random functions
In addition to encryption schemes, SE also commonly uses pseudo-random func-
tions (PRF or F), which are polynomial-time computable functions that cannot
be distinguished from random functions by any probabilistic polynomial-time
adversary. We restate the formal definition from [66] as follows.

Definition 1. A function f :{0, 1}λ × {0, 1}n → {0, 1}m is pseudo-random if it
is computable in polynomial time (in λ) and if for all polynomial-size A,∣∣∣Pr

[
AfK(·) = 1 : K

$←− {0, 1}k
]
− Pr

[
Ag(·) = 1 : g

$←− Func[n,m]
]∣∣∣ ≤ negl(k)

where the probabilities are taken over the choice of K and g.

We note that in practice these primitives may be built out based on off-the-shelf
primitives. For example, we may build a symmetric encryption using AES in
counter mode and a pseudorandom function using the CBC-MAC.

3.2 Security Definitions for DSSE

In this section, we first introduce common security notions in a generic DSSE
scheme that supports Search and Update to demonstrate the interaction between
a client and a server. After that, we present an existing dynamic add-only
index-based SSE scheme that efficiently supports very large database [70].

3.2.1 Security notions

A DSSE scheme Σ = (Setup, Search,Update) consists of one algorithm and two
protocols between a client and a server:

• Setup(λ,DB) is an algorithm that takes a security paramater λ and a
database DB as input. Then, it outputs a pair (EDB, K, ST) where K is a
secret key, EDB is the encrypted database, and ST is the state of keywords.
The server maintains EDB, while the client keeps locally K and ST .

• Search(K,w, ST ; EDB) = (SearchC(K,w, ST), SearchS(q,EDB)) is the pro-
tocol, where the client runs SearchC(K,w, ST) to outputs the query token
q for the query keyword w. Then, the server executes SearchS(q,EDB) to
returns matching documents containing w to the client. In the scope of this
report, a search query is restricted to a unique keyword w.

22

• Update(K,ST, op, in; EDB) = (UpdateC(K,ST, op, in),UpdateS(EDB)), where
the client takes the input of the key K, the state ST , and an operation
op = {add, del} meaning adding or deleting a document with an input in
parsed as that document identifier id and a set of keywords W in that
document. The client generates add/del tokens q and then the server
executes UpdateS(q,EDB) with the input of EDB upon receiving q.

We now borrow common notions from Bost et al. [78] to formulate the inter-
action between the client and the server in the scheme Σ.

Definition 2. (Access pattern). Let Q be the list of all queries issued by the
client, w be a query keyword in W , DB be a database of identifier/keyword-set
pairs. The access pattern induced by a search query q ∈ Q on w at timestamp
i: ap(w) = (i,DB(w)), is the entry containing DB(w), a collection of document
identifiers whose documents containing w.

We also note that schemes leaking [70] the repetition of query token q to the
server also reveal the repetition of thw queried keyword w. More formally, this
leakage is named as search pattern.

Definition 3. (Search pattern). Let Q be the list of all queries issued by the
client, and whose entries are (i, w) for a search query on the keyword w at
timestamp i. The search pattern induced by the repetition of the search query
on w : sp(w) = {i : (i, w) ∈ Q}, is the collection of different timestamps when
the client uses the same search query for (i, w).

Another important notation is query pattern, formally defined by Bost et
al. [78]. The notation formalises the repetition of updated keywords in Updates .

Definition 4. (Query pattern). Let Q be the list of all queries issued by the client,
and whose entries are (i, w) for a search query on the keyword w at timestamp
i, or (i,op, in) for an op update query with input in. The query pattern is
formulated as:

qp(w) = {i : (i, w) ∈ Q or (i,op, in) and w appears in in}

DSSE schemes often leak more or less the above information to the server,
in order to gain the efficiency. Thus, the security of DSSE schemes often guar-
antee no more information can be revealed to the server beyond the accept-
able leakage [66, 69]. To capture the stateful leakage information, DSSE works
often define leakage function L = (LStp,LUpdt,LSrch) and provide L to the
simulator S. Here, we provide the security definition for the generic scheme
Σ = (Setup, Search,Update) as follows.

Definition 5. (Adaptive Security). Let Σ =(Setup,Search,Update) be a DSSE
scheme, A be an adversary, S be a simulator, and L = (LStp,LUpdt,LSrch) be the
stateful leakage function. We define two following probabilistic games as follows.

23

• RealΣA(λ): A choose a database DB. The game then runs Setup(λ,DB)
and returns EDB to A. Then, A adaptively choose queries qi in Q. If qi
is a search query for keyword w, the game executes the query by running
Search(K,w, ST ; EDB) and returns the transcript to A. If qi is an update
query, the game answers the query by running Update(K,ST, op, in; EDB).
Finally, A outputs the bit of the game b ∈ {0, 1}.

• IdealΣA,S(λ): A choose a database DB. Given the leakage LStp in Setup, the
simulator S generates an encrypted EDB ← S(LStp(DB)) and gives it to
A. Then, A adaptively runs the query set Q. If qi in Q is a search query,
the simulator returns the transcript to A by running S(LSrch(qi)). If qi is
an update query, the simulator answers the query by running S(LUpdt(qi)).
Finally, A returns a bit b ∈ {0, 1} that the game uses as its own input.

We say Σ is an L−adaptively-secure scheme if for any
probabilistic polynominal-time (PPT) adversary A, there exists a PPT simulator
S such that: ∣∣Pr

[
RealΣA(λ) = 1

]
− Pr

[
IdealΣA,S(λ) = 1

]∣∣ ≤ negl(λ)

3.2.2 An Index-based DSSE scheme

In this section, we first represent the a basic dynamic construction Π+
bas [70] as an

example to demonstrate how to support changes (i.e., additions) to the database.
We then investigate the security analysis of the scheme. Note that the scheme
serves as a stepstone to highlight the need for advanced notions of forward and
backward privacy in following chapters.

High level design:
We note that Π+

bas extends the basic static SSE scheme Πbas presented by Cash
et al. [70]. However, to support dunamic updates (i.e., additions), Π+

bas requires
the client to keep the keyword’s state in a local map ST [w] such that the latest
state is used to generate a new update token when there is a new document
(identified by id) containing w to be added. Then, in search, the client generates
query tokens for the keyword w and the server will leverage the tokens to identify
whether there is any entry in the encrypted database matching to a possibly
generated state and the tokens. The scheme is formulated in Algorithm 1. We
describe the scheme as follows.

In Setup, Π+
bas requires the client to create K,K+ that are used to generate

tokens for the existing DB in Setup and later for dynamic Updates. The client
also generates a list L as a collection for encrypted entries to be outsourced to
the server in Setup. In addition, the state map ST is to track the latest states of
keywords. Then, given DB, the client generates encrypted entries using K and
(w, id) pairs in DB(w).

24

Algorithm 1 Scheme Π+
bas [70]

Setup (1λ,DB)
Client

1: K,K+ $←− {0, 1}λ, allocate a list L, and init a map ST ← ∅
2: for each w ∈ W do
3: K1||K2 ← F (K,w)
4: Initialise counter c← 0
5: for each id ∈ DB(w) do
6: l← F (K1, c); d← Enc(K2, id); c+ +
7: Add (l, d) to the list L (in lex order)
8: end for
9: end for

10: Send L to Server

Server

1: Set EDB = L

Update (op = add, in)
Client

1: Init a list L′ ← ∅
2: for (w, id) ∈ in do
3: K+

1 ||K+
2 ← F (K+, w)

4: c′ ← ST [w]; if c′ =⊥ then c′ ← 0
5: l′ ← F (K+

1 , c
′); d′ ← Enc(K+

2 , id);ST [w] + +
6: add (l′, d′) to L′

7: end for
8: Send L to Server

Server

1: Add entries in L′ to EDB

Search (w)
Client

1: Compute K1||K2 ← F (K,w) and K+
1 ||K+

2 ← F (K+, w)
2: Send (K1, K2, K

+
1 , K

+
2) to Server

Server

1: for c = 0, c′ = 0 do
2: d← (EDB[F (K1, c)]); id← Dec(K2, d); c+ +
3: d′ ← (EDB[F (K+

1 , c
′)]); id′ ← Dec(K+

2 , d
′); c′ + +

4: Output id and id′

5: Continue until no entry found by both labels d and d′

6: end for

25

In Update, for new (w, id′) to be added, the client leverages K+ to generate
new entries like the ones in Setup.

Intuitively, during Search, the server repeats the search process twice for
different states c and c′key using tokens (K1, K2) and (K+

1 , K
+
2), respectively.

Security Analysis
The security of Π+

bas can be quantified via a stateful leakage function
L = (LStp,LAdd,LSrch). It defines the information exposed in Setup, Update (i.e.,
addition), and Search, respectively. We restate the leakage functions of Π+

bas and
its proof sketch as presented in [70].

In Setup, upon an initial input database DB, LStp = Σw∈W |DB(w)|, presenting
the size of the database.

Next, we investigate the leakage information in Search and Update. Let Q be
the list of all queries issued by the client to the server so far, where an entry of
Q is of the form (i, op, . . .), and ID be the set of all document identifiers in DB.
The search pattern is defined as sp(w,Q) = {i : (i, w) ∈ Q} of a keyword w with
respect to Q to be the timestamps of the queries searching for w. The access
pattern ap(w) = (i,DB(w) as defined in Def. 2.

For a document with identifier id and its keyword set Wid, let the addition
pattern of (w, id) with respect to Q be the timestamp i when the pair is added:

ap′(id, w,Q) = {i : (i, add, id,Wid) ∈ Q,w ∈ Wid}

We note that the Π+
bas is a deterministic SSE. The reason is because the search

protocol is deterministic with respect to query tokens of keywords regardless
Updates operations over timestamps (see Algorithm 1). In search query for w,
let the addition pattern AP(w,Q,ID) with respect to Q be the set of all document
identifiers to which w was added. We see that the server can also learn the
ap′(id, w,Q), which indicates when documents in {id} were added. The reason
for that is because the serve can rewind the Updates and re-run the Searches in the
timestamp order using the deterministic query tokens. Therefore, the addition
pattern of keyword w with respect to both Q and ID be the set of all document
identifiers to which w was added along with the timestamps when they were
added. Formally,

AP(w,Q, ID) = {(id, ap′(id, w,Q)) : id ∈ ID, ap(id, w,Q) 6= ∅}

For a Search(w), Π+
bas reveals the search pattern, access pattern, and the addi-

tion pattern to the server. Formally, LSrch(w) = {sp(w,Q), ap(w),AP(w,Q, ID)}
We now investigate LUpdt. For an update query (i, op=add, id,Wid) inQ, LUpdt

outputs |Wid|, (i.e., the number of keyword/document pairs in the document), and
the set of following search patterns. It denotes the repetition of id in non-empty
search patterns.

{sp(w,Q) : w ∈ Wid}

26

Algorithm 2 The count attack algorithm [74]

Input: Unencrypted index Index, query tokens t and results

1: Initialise known query map K with queries (q, k) having unique result lengths
2: Compute the co-occurance counts Cq for observed queries and CI for Index
3: while size of K is increasing do
4: for each unknown query q in (t−K) do
5: Set candidate keywords S ⊆ K = {s : count(s) = count(q)}
6: for s ∈ S do
7: for known queries (q′, k) ∈ K do
8: if Cq[q, q

′] 6= CI [s, k] then
9: remove s from S

10: end if
11: end for
12: end for
13: if one word s remains in S then
14: add (q, s) to K
15: end if
16: end for
17: end while

We note that Π+
bas is only secure against non-adaptive attacks. In particular,

the adversary cannot repeat/choose a query for the keywords that were not
previously searched for. For the formal security analysis of Π+

bas, we refer readers
to [70]. However, with regarding to adaptive attacks, if the adversary chooses the
keyword that has been searched before, the server can learn the presence of the
keyword in newly added documents. The reason is because the server can reuse its
collected query tokens before to query against the newly added documents. This
leakage is inherent when the query tokens used for searching the same keyword
are deterministically generated and the same all the time.

3.3 Leakage-abuse Attacks - The count attacks

The count attack algorithm [74] is given in Algorithm 2. Based on the prior
knowledge DB of the adversary, she can construct a keyword co-occurrence matrix
indicating keyword coexisting frequencies in known documents. As a result, if the
result length |DB(w)| for a query token tk is unique and matches with the prior
knowledge, the adversary directly recovers w. For tokens with the same result
length, the co-occurrence matrix can be leveraged to narrow down the candidates.
Experimentally, for the used Enron email dataset, the count attack achieves a
perfect reconstruction for recovering the 500 most frequent query keywords since
63% of them have a unique result count. In addition, the attack only takes few
seconds to run, compared with hours for the IKK attack. Clearly, the count

27

attack primarily relies on the unique occurrence of some queries’ result lengths
to infer the remaining queries. Therefore, padding countermeasure can reduce
some of the number of uniqueness.

To overcome the limitation of the count attack, Cast et al. [74] generalised
it by introducing two modifications. First, the generalised attack makes initial
guesses that allow a candidate keyword sets could map to a query tokens and
then run the count attack’s remaining algorithm. For a given candidate keyword,
if there is an inconsistency found later in the co-occurrence counting, eliminate
it and move on. Second, the attack marks candidate keyword sets to a query
token for which their counts matches within a given maximum number of false
co-occurrences, rather than exact match (i.e., window size) as used in the original
count attack. The generalised count attack also demonstrated a perfect query
construction rate when a padding countermeasure is applied with the padding
overhead of 1.2. Note that the padding overhead is the ratio between the total
number of real and padding pairs over the real number of pairs.

Prior to the work of this thesis, there was not a study investigating the
leakage-abuse attacks (i.e., the generalised count attacks) in dynamic setting
where the DB’s state changes over the time. In particular, investigating to what
extends the attacks can exploit in DSSE and how to efficiently mitigate them
have not been studied.

3.4 Forward-secure DSSE

Forward privacy is an advanced security notion in DSSE. Informally, it prevents
the Updates from revealing any information about the updated keywords. In
particular, the server should not learn that newly updated documents matches
keywords that had been searched previously. The informal definition of forward
privacy was first presented by Stefanov et al. [120], then it was formalised by
Bost et al. [78] in 2016. Intuitively, if a scheme is not forward-private, the search
token is deterministic and can be re-used by the server to retrieve documents
added after the token being issued. This is exactly the leakage exploited by the
file-injection attacks proposed by Zhang et al. [76] in 2016. If the adversary
has partial knowledge of the database, the attacks can reveal previously query
keywords by just tricking the client into encrypt log2T new documents containing
chosen keywords. If the adversary does not have such knowledge, the number
of required documents is about W/T + logT , where W is the total number of
keywords and T is a threshold parameter (e.g., T = 200 as used in [76]). With
forward privacy, the attacks can be prevented since the previous query tokens do
not relate to subsequent document addition.

Here, we restate the formal definition of forward privacy from [78] as the
following:

28

Definition 6. (Forward privacy). A L-adaptively-secure DSSE scheme Σ is
forward private if the update leakage LUpdt can be written as

LUpdt(op,in) = L′(op, {(idi, µi)})

where {(idi, µi)} is the set of modified documents paired with the number µi of
modified keywords for the updated document idi.

The definition shows the restricted LUpdt revealed to the server during Updates.
In particular, the document addition does not reveal any information about their
modified keywords. Therefore, we can see that the dynamic add-only scheme
Π+

bas [70], presented in section 3.2.2, fails to achieve forward privacy. The reason
is because that the search tokens in Π+

bas are deterministic, and LUpdt of the
scheme reveals the search patterns of keywords in the newly added documents.

3.5 Backward-secure DSSE

Backward privacy limits the information of the deleted documents containing the
keyword w that the server can learn upon subsequent search queries on w. The
idea of this security notion was first proposed by Stefanov et al. [120], then it
was formalised by Bost et al. [82] in 2017. There are three types of backward
privacy based on the amount of information that the server can learn regarding
the historial deletion upon the search queries. Considering the following sequence
of updates and search, in the timestamp order:
(t = 1, add, id1, {w1, w2}), (t = 2, add, id2, {w1}), (t = 3, del, id1, {w1}),
(t = 4, search, w1)

We demonstrate the differences between these leakage types from the above
example as following:

Type-I backward privacy : is the most secure. It only leaks the insertion
pattern. That is, the identifiers of documents currently matching the query
keyword w (i.e., id2). In addition, the server knows that there are 3 updates
on w, but it does not know the corresponding timestamps.

Type-II backward privacy : is less secure. It inherits the leakage from Type-I
backward privacy, and it additionally leaks the update pattern. That is, the
timestamps when the updates on w happended (but not their content). In
particulate, the server knows w was updated at timestamps t = 1, t = 2, and
t = 3.

Type-III backward privacy : is the weak secure. It inherits the leakage from
Type-I backward privacy, and it additionally leaks the cancellation between dele-
tion update and insertion update. In this example, it additionally reveals w was
added at t = 1 and then deleted at t = 3.

We now introduce leakage functions that help to formulate these different
types of backward privacy. Giving a list of queries Q sent by the client, the server

29

records the timestamps u for every query with Q = {q : q = (u,w) or (u, op, in)}.
Following the verbatim from [78, 82], we let TimeDB(w) be the access pattern
which consists of the non-deleted documents currently matching w and the times-
tamps of inserting them to the database. Formally,

TimeDB(w) = {(u, id) :(u, add, (w, id)) ∈ Q
and ∀u′, (u′, del, (w, id)) /∈ Q}

and let Updates(w) be the list of timestamps of updates:

Updates(w) = {u : (u, op, (w, id)) ∈ Q}

To capture the weakest notion of backward privacy, Bost et al. [82] defined
DelHist that reveals the cancellation between deletion update and insertion up-
date the can. Intuitively, DelHist(w) contains the list of timestamps of all deletion
operations and inserted entries containing wit removes. Formally, DelHist(w) is
constructed as:

DelHist(w) = {(uadd,udel) : ∃id s.t.(udel, del, (w, id)) ∈ Q
and (uadd, add, (w, id)) ∈ Q}

With these functions, the three notions of backward privacy proposed in [82]
can be defined as follows.

Definition 7. (Backward privacy). Let aw be the number of documents cur-
rently matching w, and TimeDB(w) be the access pattern which consists of the
non-deleted documents currently matching w, Updates(w) be the list of timestamps
of updates, and DelHist(w) be the list of timestamps of all deletion operations and
inserted entries containing wit removes. A L-adaptively-secure SE scheme Σ
is insertion pattern revealing backward-private iff the search and update leakage
LSrch,LUpdt can be written as:

LUpdt(op, w, id) = L′(op)

LSrch(w) = L′′(TimeDB(w), aw)

where L′ and L′′ are stateless.
A L-adaptively-secure SE scheme Σ is update pattern revealing backward-private

iff the search and update leakage LSrch,LUpdt can be written as:

LUpdt(op, w, id) = L′(op, w)

LSrch(w) = L′′(TimeDB(w),Updates(w))

where L′ and L′′ are stateless.

30

A L-adaptively-secure SE scheme Σ is weakly backward-private revealing backward-private
iff the search and update leakage LSrch,LUpdt can be written as:

LUpdt(op, w, id) = L′(op, w)

LSrch(w) = L′′(TimeDB(w),DelHist(w))

where L′ and L′′ are stateless.

Chapter 4

Leakage-abused Attacks in
Dynamic SSE and Efficient
Mitigation

As a noteworthy threat in the static SSE, the leakage-abuse attacks [74] show
that an adversary with full or partial knowledge of database can uncover keywords
from query tokens via the query results. The attacks directly exploits the leakages
of SSE to break the protection on data confidentiality. Using oblivious-RAM
(ORAM) is an quintessential approach to enable encrypted search without ex-
posing access pattern [71, 72], but it is shown as an expensive tool [73, 74, 118].
Alternatively, using padding (bogus documents) for inverted index solution [66]
is proven as a conceptually simple but effective countermeasure to obfuscate the
access pattern against the aforementioned attacks [73, 74, 75]. Unfortunately, ex-
isting padding countermeasures only consider a static database, where padding is
only added at the setup [75, 74]. They are not sufficient for real-world applications
using DSSE. That is a stream setting where the states of database change over
time, and the updates of documents also change continously. Therefore, in this
chapter, we first explore to what extend adversaries can exploit the leakage in
the streaming setting to compromise the privacy of data. Then, we explore how
padding countermeasures can be applied in that dynamic environment. These
questions are essential to make DSSE deployable in practice1.

4.1 System Overview

We first design the system that supports a dynamic (addition) SSE scheme to
further investigate the capability of the leakage-abuse attacks in that. ShieldDB is
a document-oriented database, where semi-structured records are modeled and
stored as documents, and can be queried via keywords or associated attributes.

1This chapter is based on [1]

31

32

EDB

Padding
Dataset

Streaming

Search

Cluster

Cache
Controller

Cluster
EDB

Controller

Batch
Upload

Token

…

Setup

Padding Service Cloud Server

App
Controller

Token
Generator

Padding
Controller

Keyword

Sample Dataset

Client

Add docs

Figure 4.1: High-level design of ShieldDB

Algorithm 3 The setup protocol in ShieldDB

setup (1λ,∆stp)
Client

1: Transfer dataset ∆stp to P

Padding Service

1: {k1, k2}
$←− {0, 1}λ

2: Initialise a map ST ′ and a tuple T
3: Run Setup(∆stp) (see Section 4.3.1)

Server

1: Initialise an index map EDB

Participants and scenarios: As illustrated in Figure 4.1, ShieldDB consists
of a query client C, a trusted padding service P and an untrusted storage server
S. In our targeted scenario, new documents are continuously inserted to S, and
required to be encrypted. Meanwhile, C expects S to retain search functionality
over the encrypted documents. To enhance the security, P adapts padding
countermeasures during encryption. In this paper, we consider an enterprise that
utilises outsourced storage. P is deployed at the enterprise gateway and in the
same network with C, and P encrypts and uploads the documents created by its
employees, while C is deployed for employees to search the encrypted documents
at S. Note that the deployment of P is flexible. It can be separated from or
co-located with C.

Overview: ShieldDB supports three main operations, i.e., setup (see Algo-
rithm 3), streaming (see Algorithm 4), and search (see Algorithm 5). Apart from
the main functions, ShieldDB also supports optimisation features deletion and
re-encryption, and flushing operations (Section 4.3.3).

During setup (see Algorithm 3), P receives a sample training dataset ∆stp

from C, and then it groups keywords into clusters L = {L1, · · · , Lm}. After that,

33

Algorithm 4 The streaming protocol in ShieldDB with forward privacy

streaming (in = {(doc, id)})
Client

1: Transfer in to P

Padding Service

1: Parse in to M = {(w, id)}
2: //cache and check padding constraints
3: V ← PaddingCheck(M) (see Algorithm 6)
4: //if there is no real/bogus pairs returned by Padding Controller
5: if V = {∅} then
6: return; //not sending to Server
7: else
8: for each w in V do
9: ke

$←− {0, 1}λ; kw ← F (k1, w); kid ← F (k2, w)
10: //let b is the current batch
11: if ST ′[w] 6= ⊥ then
12: (stw(b−1)

, cw(b−1)
)← ST ′[w]

13: else
14: stw0

$←− {0, 1}λ, cw0 ← 0
15: end if
16: stwb

← F (ke, stw(b−1)
);

17: i← 0
18: for each id matches w do
19: u← H1(F (stwb

, i) ‖ kw); v ← H2(F (stwb
, i) ‖ kid)⊕ id

20: T ← T ∪ (u, v)
21: i← i+ 1;
22: end for
23: cwb

← i;
24: ST ′[w]← (stwb

, cwb
)

25: uwb
← H1(F (stwb

, cwb
) ‖ kw)

26: vwb
← H2(F (stwb

, cwb
) ‖ kid)⊕ (ke ‖ cw(b−1)

)
27: T ← T ∪ (uwb

, vwb
)

28: end for
29: Send T to Server
30: end if

Server

1: for each (u, v) in T do
2: EDB[u] = v
3: end for

34

Algorithm 5 The search protocol in ShieldDB with forward privacy

search (w)
Client

1: Receive ST ′[w] from Padding Service
2: if ST ′[w] 6= ⊥ then
3: kw ← F (k1, w); kid ← F (k2, w)
4: (stwb

, cwb
)← ST ′[w]

5: Send (kw, kid, stwb
, cwb

) to Server
6: else
7: Search w in P, return R
8: end if

Server

1: R← ∅, sti ← stwb
, ci ← cwb

2: while ci 6= 0 do
3: for j = 0 to (ci − 1) do
4: u← H1(F (sti, j) ‖ kw)
5: v ← EDB[u]
6: id← v ⊕H2(F (sti, j) ‖ kid);
7: R← R ∪ (u, v)
8: end for
9: uk ← H1(F (sti, ci) ‖ kw)

10: vk ← EDB[uk]
11: (ki ‖ ci−1)← vk ⊕H2(F (sti, ci) ‖ kid)
12: sti−1 ← F−1(ki, sti)
13: sti ← sti−1, ci ← ci−1;
14: end while
15: send R to Client

App Controller in P notifies L to the module Cache Controller to initialise a
cache capacity Li for each keyword cluster. App Controller also notifies L to the
module Padding Controller to generate a padding dataset B.

During streaming (see Algorithm 4), P receives an input, in = {(doc, id)}
containing a collection of documents, each element is a document doc with
identifier id, sent from C. Then, P parses them into a set of keyword and
document identifier (w, id) pairs, i.e., index entries for search. Then, Cache
Controller stores these pairs to the caches of the corresponding keyword clusters.
Based on the targeted attack model, Cache Controller applies certain constraints
in PaddingCheck to flush the cache (Algorithm 6). Once the constraints on
a cluster are met, Cache Controller notifies the satisfied cluster to Padding
Controller for padding. In particular, Padding Controller adds bogus (w, id)
pairs extracted from the padding dataset to make the keywords in this cluster

35

have equal frequency. Then, P encrypts and inserts all those real and bogus index
entries as a data collection in a batch to EDB with forward privacy support.

In Algorithm 4, we note that ke is an ephemeral key generated for batch
insertion. P maintains the master state ST ′[w] = (stwb

, cwb
) for each keyword w,

where stwb
is the master key to derive entries for (w, id) pairs in the same latest

batch b, and cwb
presents the result length w (i.e., the number of real and bogus

ids containing w) in that batch b. The result length of w in the previous batch
cw(b−1)

is embedded in vwb
(see streaming protocol line 26). In search, sti and ci

present the state key and the result length of w in batch i. H1 and H2 are hash
functions, and F is AES cipher.

During search (see Algorithm 5), for a given single query keyword w, C wants
to retrieve documents matching that keyword from S and P. First, C retrieves
the local results from Cache Controller in P, since some index entries might have
not been sent to EDB yet. After that, C sends a query token generated from
this keyword to S to retrieve the rest of the encrypted results. After decryption,
C filters padding and combines the result set with the local one. For security, C
will not generate query tokens against the data collection which is currently in
streaming; this constraint enforces S to query only over data collections which
are already inserted to EDB. Following the setting of SE [66, 69], search is
performed over the encrypted index entries in EDB, and document identifiers
are pseudo-random strings. In response to query, S will return the encrypted
documents via recovered identifiers in the result set after search.

Apart from padding countermeasures, ShieldDB provides several other salient
features. First, it realises forward privacy [78] (an advanced notion of SE) for the
streaming operation. Our realisation is customised for efficient batch insertion
and can prevent S from searching the data collection in streaming. Second,
ShieldDB integrates the functionality of re-encryption. Within this operation,
index entries in a targeted cluster are fetched back to P and the redundant
padding is removed. At the same time, deletion can be triggered, where the
deleted index entries issued and maintained at P are removed and will not
be re-inserted. After that, real entries combing with new bogus entries are
re-encrypted and inserted to EDB. Third, Cache Controller can issue a secure
flushing operation before meeting the constraints for padding. This reduces the
overhead of P while preserving the security of padding.

Remark: ShieldDB assigns P for key generation and management, and P issues
the key for C to query. In addition, C also gets the latest state of the query
keyword from P, and together with the key, to generate query tokens and send
them to S. In our current implementation, P and C use the same key for index
encryption, just as most SSE schemes do. This is practical because SSE index only
stores pseudorandom identifies of documents, and documents can separately be
encrypted via other encryption algorithms. Advanced key management schemes
of SE [104, 121] can readily be adapted; yet, this is not relevant to our problem.

36

Like many other SE works [75, 82, 81, 2] that focus on search document
index, we only present that streaming in ShieldDB updates real/bogus document
identifiers via (w, id) pairs to the index map EDB. Real and padding documents
containing these pairs can be uploaded separately by P to S via other encryption
algorithms. In search, once the identifiers of real/bogus documents matching
the query keyword are uncovered, S retrieves the corresponding documents and
returns them to C. Note that, we omit presenting the physical document man-
agement in S in the rest of the paper since it does not affect the security of
ShieldDB against the non-persistent and persistent adversaries as proposed in
Section 4.2.

4.2 Attack Models and Assumptions

ShieldDB mainly considers a passive adversary who monitors the server S ’s mem-
ory access and the communication between the Server and other participants.
Following the assumption of the count attack [74], the adversary has access to
the background knowledge of the dataset and aims to exploit this information
with the access pattern in search operations to recover query keywords. In this
paper, we extend this attack model to the dynamic (streaming) setting.

Before elaborating the attack models, we define the streaming setting. In
our system, streaming performs batch insertion on a collection of encrypted
(w, id) pairs to S. Giving a number of continuous streaming operations, encrypted
collections are added to a sequence over time. Accordingly, S orders the sequence
of data collections by the timestamp. We define the gap between any two
consecutive timestamps is a time interval t, and C is allowed to search at any time
interval. Note that at a given t, S can only perform search operations against the
collections that have been completely inserted to EDB.

In the dynamic setting, we observe two new attack models, which we refer to
as non-persistent and persistent adversaries, respectively.
Non-persistent adversary: This adversary controls S within one single arbi-
trary time interval ti, where i is a system parameter that monotonically increases
and i ≥ 0. During ti, she observes query tokens that C issued to S, and the access
patterns returned by S. She knows the accumulated (not separate) knowledge of
the document sets inserted from t0 to ti.
Persistent adversary: This adversary controls S across multiple arbitrary time
intervals, for example, from t0 to ti. She persistently observes query tokens
and access patterns at those intervals, and knows the separate knowledge of the
document sets inserted from t0 to ti.

For both attack models, S cannot obtain the query tokens against the en-
crypted data collections streamed in the current time interval. It is enforced by
our streaming operation with forward privacy (see Section 4.3.3).

Strawman padding service against the adversaries: We note that a basic

37

Padding Service ServerClient

t=1

t=2

EDB1

ST[w1].c = 2

ST[w2].c = 2

EDB2

ST[w1].c = 3

ST[w2].c = 2

ST[w3].c = 1

streaming

search

streaming

search

(w1) (w2)

(w1) (w2) (w3)

({w1}, id1), ({w1, w2}, id2)

({w1, w3}, id3)

{(w1, id1),(w1, id2), (w2, id2), (w2, id’1)}

{(w1, id3), (w3, id3)}

(w1) (w2)

(w1) (w2) (w3)

add
(w2, id’1)

Figure 4.2: Strawman padding against non-persistent adversary

Padding Service ServerClient

t=1

t=2

EDB1

ST[w1].c = 2

ST[w2].c = 2

EDB2

ST[w1].c = 2

ST[w2].c = 2

ST[w3].c = 2

streaming

search

streaming

search

(w1) (w2)

(w1) (w2) (w3)

({w1,w2}, id1), ({w1, w2}, id2) {(w1, id1),(w1, id2), (w2, id1), (w2, id2)}

{(w3, id3), (w3, id4)}

(w1) (w2)

(w1) (w2) (w3)

({w3}, id3), ({w3}, id4)

Figure 4.3: Strawman padding against persistent adversary

Padding Service P that only maintains one single cache for batch streaming cannot
mitigate the proposed adversaries as presented in Figures 4.2 and 4.3.

In Figure 4.2, we show that the non-persistent adversary, capturing query
tokens of w1, w2, and w3, and their corresponding access patterns (i.e., result
lengths ST [w1].c, ST [w2].c, and ST [w3].c) at time t = 2, can uncover which
tokens used for what keywords if she has the corresponding background knowledge
of DB at time t = 2 (i.e., DB2). The reason is due to the unique result lengths
introduced in EDB at time t = 2 (i.e., EDB2) when P adds bogus pairs to equalise
the number of pairs for keywords sent to EDB during every streaming operation.

In Figure 4.3, we demonstrate that the persistent adversary can detect when
new keywords are inserted in EDB. For example, she might know the states of
the database DB at time t = 1 and t = 2 as her background knowledge, and
the query results of w3 in EDB1 and EDB2 are different. Then, she knows the
occurrence of a new keyword w3 is introduced in EDB2 at t = 2. Then, she is
able to identify the query token of w3 during search at t = 2.

Real-world implication of the adversaries: We note that the proposed
attack models are new for leakage-abuse attacks, which have not been investi-
gated and formalised in any of the prior works [73, 74, 110]. We stress that
non-persistent adversary could be any external attackers, e.g., hackers or or-
ganised cyber criminals. They might compromise the server at a certain time
window. We also assume that this adversary could obtain a snapshot of the
database via public channels, e.g., a prior data breach [53]. Because the database
is changed dynamically, the snapshot might only reflect some historical state of

38

the database. On the contrary, the persistent adversary is more powerful and
could be database administrators or insiders of an enterprise. They might have
long term access to the server and could obtain multiple snapshots of the database
via internal channels.

Other threats: Apart from the above adversaries, ShieldDB considers another
specific rational adversary [76] who can inject documents to compromise query
privacy. As mentioned, this threat can be mitigated via forward privacy SE. Note
that ShieldDB currently does not address an active adversary who sabotages the
search results.

4.3 Design of ShieldDB

In this section, we present the detailed design of ShieldDB in Setup, Stream,
and Search. Then, we present some advanced features of ShieldDB to further
improve the security and efficiency.

4.3.1 Setup

We consider ∆stp = {w1, w2, ..., wl} is the training dataset for the system. Dur-
ing Setup(∆stp), P invokes Cache Controller to initialise the cache for batch
insertion, and Padding Controller to generate bogus documents for padding.

To reduce padding overhead, ShieldDB implements cache management in
a way that it groups keywords with similar frequencies together and performs
padding at each individual keyword cluster. We denote L = {L1, · · · , Lm} as
caching clusters managed by Cache Controller, where m is the number of cache
clusters. This approach is inspired from existing padding countermeasures in the
static setting [74, 75]. The idea of doing this in a static database is intuitive; the
variance between the result lengths of keywords with similar frequencies is small,
which can minimize the number of bogus entries added to the database. We note
that it is also reasonable in the dynamic setting, where the keyword frequencies
in specific applications can be stable in the long run. If a keyword is popular,
it is likely to appear frequently during streaming, and vice versa. Therefore, we
assume that the existence of the training dataset, where the keyword frequencies
are close to the real ones during streaming is reasonble (see Section 4.5.3 for that
distribution evaluation). We further suggest alternative training data collection
approaches in Section 4.5.4.

Given ∆stp, Cache Controller partitions keywords based on their frequencies
by using a heuristic algorithm. The objective function in Eq. 4.1, such that the
clustering can be formed as [(w1, . . . , wi) , (wi+1, . . . , wj) , . . . , (wk, . . . , wl)]. We
note that the minimum size of each group α is subjected to α ≥ 2. For security,
the keyword frequency in each cluster after padding should be the same, i.e., the
maximum one, and thus Cache Controller computes the padding overhead γ as

39

follows:

γ =

(
i ∗ fwi

−
i∑
t=1

fwt

)
+

(
(j − i) ∗ fwj

−
j∑

t=i+1

fwt

)
+

. . .+

(
(l − k − 1) ∗ fwl

−
l∑

t=k

fwt

) (4.1)

This algorithm iterates evaluating γ for every combination of the partition. We
denote by m the number of clusters. After that, the Cache Controller allocates
the capacity of the cache based on the aggregated keyword frequencies of each

cluster, i.e., |L|
i∑
t=1

fwt , |L|
j∑

t=i+1

fwt , . . ., |L|
l∑

t=k

fwt , where |L| is the total capacity

assigned for the local cache. We denote by Li.threshold() the function that
outputs the caching capacity of cluster Li.

After that, Padding Controller initialises a bogus dataset B with size |B|,
where the number of bogus keyword/id pairs for each keyword wi is determined
via the frequency, i.e., |B|(fw − fwi

), where fw is the maximum frequency in the
cluster of wi. The reason of doing so is that it still follows the assumption in cache
allocation. If the keyword is less frequent in a cluster, it needs more bogus pairs
to achieve the maximum result length after padding, comparing other keywords
with higher frequency, and vice versa. Then the controller generates bogus index
pairs. Once the bogus pairs for a certain keyword wi is run out, the controller is
invoked again to generate padding for it through the same way.
Remark: We assume that the distribution of the sample dataset is close to
the one of the streaming data in a running period. We acknowledge that it is
non-trivial to obtain an optimal padding overhead in the dynamic setting due to
the variation of streaming documents in different time intervals. Nevertheless,
if the distribution of the database varies during the runtime, the setup can be
re-invoked. Namely, keyword clustering algorithm can be re-activated based on
the up-to-date streaming data (e.g., in a sliding window), and the cache can
be re-allocated. Additionally, our proposed re-encryption operation can further
reduce the padding overhead (see Section 4.3.3) if the streaming distribution
only differs on particular keyword clusters. We discuss the distribution difference
detection in Sections 4.5.3 and 4.5.4. We also note that there are applications
and scenarios where the distribution does not vary much, like IoT streaming data
for environment sensors. In such applications, the range of numbers/indicators
are already specified by the vendors.

4.3.2 Padding Strategies

During streaming, documents are continuously collected and parsed as M =
{(w, id)} in P. Then, P executes PaddingCheck(M) to cache and check padding

40

Algorithm 6 Padding strategies

function PaddingCheck()
Input: M = {(w, id)}: entries for streaming

{L1, · · · , Lm}: cache clusters, and B: bogus document set
ST : a map that tracks keyword states
mode: padding mode (high or low);

Output: V is a set of real and bogus entries

1: push entries in M to {L1, · · · , Lm}
2: V ← {∅}
3: if padding against non-persistent adversary then
4: for cluster Li ∈ {L1, · · · , Lm} do
5: if Li.capacity() ≥ Li.threshold() then
6: for w ∈ Li do
7: if ST [w].f lag = false then
8: skip padding for w when executing PaddingByMode()
9: end if

10: end for
11: Mi ← PaddingByMode(Li, ST,B,mode);
12: add Mi to V ;
13: end if
14: end for
15: else if padding against persistent adversary then
16: for cluster Li ∈ {L1, · · · , Lm} do
17: if Li.firstBatch=true & ST [w].f lag = true for ∀w ∈ Li then
18: Mi ← PaddingByMode(Li, ST,B,mode)
19: add Mi to V
20: else if Li.capacity() ≥ Li.threshold() then
21: Mi ← PaddingByMode(Li, ST,B,mode);
22: add Mi to V ;
23: end if
24: end for
25: end if
26: return V ;

constraints. In details, these (w, id) pairs are cached at their corresponding
clusters by Cache Controller. Once a cluster Li is full, Padding Controller
adapts the corresponding padding strategy to the targeted adversary, encrypts
and inserts all real and bogus pairs to EDB in a batch manner. We elaborate
on the padding strategies against the non-persistent and persistent adversaries,
respectively. The details are given in Algorithms 6 and 7.

41

Padding strategy against the non-persistent adversary: Recall that this
adversary controls S within a certain time interval t. From the high level point
of view, an effective padding strategy should ensure that all keywords occurred
in EDB at t do not have unique result lengths. There are two challenges to
achieve this goal. First, t can be an arbitrary time interval. Therefore, the
above guarantee needs to be held at any certain time interval. Second, not all
the keywords in the keyword space would appear at each time interval. It is
non-trivial to deal with this situation to preserve the security of padding.

To address the above challenges, ShieldDB programs Padding Controller to
track the states of keywords over the time intervals from the beginning. Specifi-
cally, each keyword state ST [w] includes two components, a flag ST [w].f lag that
indicates whether the keyword has existed before in the streamed documents,
and a counter ST [w].c that presents the number of total real and bogus (w, id)
pairs already uploaded in EDB of the keyword w. Note that ST [w].f lag = true
is kept permanently once w has existed in the documents streamed to the server.
Padding Controller only pads the keywords in a cluster Li if the number of cached
real (w, id) pairs of the cluster, denoted by Li.capacity(), exceeds Li.threshold()
defined in setup (see Algorithm 6 line 6).

Based on the states of keywords, Padding Controller performs the following
actions. If the keyword has not existed yet, the controller will not pad it even its
cluster is full (see Algorithm 6 line 8). The reason is that the adversary might
also know the information of keyword existence. If C queries a keyword which
does not exist, S should return an empty set. Otherwise, the adversary can
identify the token of this keyword if padded. Accordingly, only when a keyword
w appears at the first time (i.e., ST [w].f lag = true), padding over this keyword
will be invoked (see Algorithm 7 lines 8 and 17).

Once ST [w].f lag = true, this keyword will always get padded later, as long
as the cache of its cluster Li.capacity() ≥ Li.threshold(), no matter it exists in
a certain time interval or not. The padding ensures that all existing keywords in
the cluster always have the same result length at any following time interval.

Padding strategy against the persistent adversary: Recall that this adver-
sary can monitor the database continuously and obtain multiple references of the
database across multiple time intervals. Likewise, the padding strategy against
the persistent adversary should ensure that all keywords have no unique access
pattern in all time intervals from the very beginning. However, directly using the
strategy against the non-persistent adversary here does not address the leakage
of keyword existence.

To address this issue, Padding Controller is programmed to enforce another
necessary constraint to invoke padding. That is, all keywords in the cluster at
the first batch have to exist before streaming. Formally, we let Li.f irstBatch
be the constraint that evaluates the existence of all predefined keywords in Li.
Then, Li.f irstBatch = true implies ST [w].f lag = true for ∀w ∈ Li. The

42

Algorithm 7 Padding modes

function PaddingByMode(Li, ST, P,mode)
Input: Li: cluster for padding

ST : a map that tracks keyword states, and B: bogus document set
ST : a map that tracks keyword states
mode: padding mode (high or low);

Output: Mi: a set of real and bogus entries

1: Mi ← ∅
2: stmax ← max{ST [w].c} for ∀w ∈ Li
3: Let cw is the length of the currently matching list of w cached in Li
4: if mode = high then
5: Let cmax is max{cw,∀w ∈ Li}
6: C ← stmax + cmax
7: for w ∈ Li with ST [w].f lag = true do
8: add (C − cw) bogus entries from B[w] to Mi

9: add all cw cached entries of w in Li to Mi

10: ST [w].c← C
11: end for
12: else if mode is low then
13: Let cmin is min{cw > 0,∀w ∈ Li}
14: C ← stmax + cmin
15: for w ∈ Li with ST [w].f lag = true do
16: m← C − ST [w].c;
17: if m > cw then
18: add (m− cw) bogus entries from B[w] to Mi

19: add all cw cached entries of w in Li to Mi

20: else
21: //do not add bogus entries for w
22: put (m) cached entries of w in Li to Mi

23: //the remaining (cw −m) entries of w are still cached in Li
24: end if
25: ST [w].c← C
26: end for
27: end if
28: return Mi;

constraint remains false if there is ∃wj ∈ Li, ST [wj] = false. As a trade-off,
Cache Controller has to hold all the pairs in the cluster even the cache is full, if
there are still keywords yet to appear (see Algorithm 6 line 18). For subsequent
batches of the cluster, the padding constraint follows the same strategy for the
non-persistent adversary (see Algorithm 6 line 21).

43

Padding Service ServerClient

t=1

t=2

EDB1

ST[w1].c = 2

ST[w2].c = 2

EDB2

ST[w1].c = 3

ST[w2].c = 3

ST[w3].c = 3

streaming

search

streaming

search

(w1) (w2)

(w1) (w2) (w3)

({w1}, id1), ({w1, w2}, id2)

({w1, w3}, id3)

{(w1, id1),(w1, id2), (w2, id2), (w2, id’1)}

{(w1, id3), (w2, id’3), (w3, id3),
(w3, id’2), (w3, id’3)}

(w1) (w2)

(w1) (w2) (w3)

add
(w2, id’1)

add
(w2, id’3)
(w3, id’2)
(w3, id’3)

Figure 4.4: High mode padding against non-persistent adversary

Padding Service ServerClient

t=2

EDB2

ST[w1].c = 3

ST[w2].c = 3

ST[w3].c = 3

streaming

search

streaming

search

(w1) (w2)

(w1) (w2) (w3)

({w1,w2}, id1), ({w1, w2}, id2)

{(w1, id1),(w2, id1),
(w1, id2), (w2, id2), (w3, id’2),

(w3, id3), (w2, id’3),
(w1, id4), (w3, id4)}

(w1) (w2) (w3)

({w3}, id3), ({w1 ,w3}, id4)

cache
real
pairs

add
(w2, id’3)
(w3, id’2)

t=1

Figure 4.5: High mode padding against persistent adversary

Padding modes: ShieldDB implements two modes for padding, i.e., high and
low modes. These two modes both are applicable to the above two padding
strategies (see mode in Algorithm 6). The padding mechanism of these modes
are described in Algorithm 7. In the high mode, once the constraint for the cache
of a cluster is met, the keywords to be padded have the maximum result length of
keywords in this cluster (see Algorithm 7 lines 9-11). Accordingly, the cache can
be emptied since all entries are sent to Padding Controller for streaming. On the
contrary, the low mode is invoked in a way that the keywords to be padded have
the minimum result length of keywords in this cluster. Therefore, some entries of
keywords might still be remained in the cache (see Algorithm 7 lines 24-25). Yet,
this mode only introduces necessarily minimum padding for keywords which do
not occur in random time intervals. The two modes have their own merits. The
high mode consumes a larger amount of padding and execution time for padding
and encryption, but it reduces the load of cache in P. In contrast, the low mode
introduces relatively less padding overhead but heavier load of P.

Figure 4.4 demonstrates the padding strategy against the non-persistent ad-
versary by using high padding mode. Given a cluster Lj containing three key-
words wi,∀i ∈ [1, 3], P tracks their keyword state ST [wi].c and ST [wi].f lag and
applies padding when real cached pairs exceed the capacity of the cluster. Then,
P adds bogus pairs to ensure they have the same result length in EDB at t = 1
and t = 2. Note that, there is no padding applied for w3 at time t = 1 due to
ST [w3].f lag = false at that time. At t = 2, P pads all the keywords to the
maximum result length among them in the cluster (i.e., ST [wi] = 3, ∀i ∈ [1, 3]).

44

Table 4.1: Time complexity of Padding Service and Server

Padding Service Server

padding encryption
update/search

(streaming) (streaming)

|B|(fw − fwi) O(nr + nb) O(nr + nb)

In Figure 4.5, we demonstrate the padding strategy against the persistent
adversary by using high padding mode for a cluster Lj = {wi},∀i ∈ [1, 3]. P
only performs padding and inserts encrypted real/bogus entries to EDB when all
keywords in Lj have appeared (i.e., waiting for w3 occurs at t = 1). Querying any
wi of the cluster prior this time does not make the client C send query tokens
to S. The reason is because C only receives ST ′[wi] =⊥ sent by P to do search.
We note that P only updates ST ′[wi], (i.e., keyword state of wi for encryption)
when wi in the cluster is ready for encryption after padding applied. We note
that Lj.f irstBatch = true once all keywords in Lj have been appeared. Then,
subsequent batches at t > 1 of Lj does not need to check keyword occurrence.
Instead, it follows the padding strategy addressing the non-persistent adversary.
The reason is because wi is always padded in the following batches once it had
appeared at the first time. The strategy aims to ensure there is no new keyword
introduced at any random time interval to address the persistent adversary.

Complexity analysis of padding: We note that during setup, the Padding
Service initialises a padding (bogus) dataset B with size of |B|. Then, the total
number of bogus pairs used for the keyword wi during the streaming phase is
|B|(fw − fwi

), where fw is the maximum frequency in the cluster of wi found
in the setup. The asymptotic complexity to encrypt real/bogus pairs of wi in
the streaming is O(nr + nb), where nr and nb present the total number of real
and bogus pairs of wi, respectively. In streaming (resp. search), upon receiving
the update (resp. query) token(s) of wi, the Server inserts (resp. retrieves) the
entries (resp. search result) based on encrypted labels of wi from the map EDB
(i.e., O(nr + nb)). The performance is summarised in Table 4.1.

Security guarantees: Our padding countermeasures ensure that no unique
access pattern exists for keywords which have occurred in EDB. For the per-
sistent adversary, the padding countermeasure also ensures that the keyword
occurrence is hidden across multiple time intervals. Note that padding not only
protects the result lengths of queries, but also introduces false counts in keyword
co-occurrence matrix, which further increases the efforts of the count attack.
Regarding the formal security definition, we follow a notion recently proposed
by Bost et al. [75] for SSE schemes with padding countermeasures. This notion
captures the background knowledge of the adversary and formalises the security
strength of padding. That is, given any sequence of query tokens, it is efficient

45

to find another same-sized sequence of query tokens with identical leakage. We
extend this notion to make the above condition hold in the dynamic setting in
Section 4.4.

Remark: Our padding strategies are different from the approach proposed by
Bost et al. [75], which merely groups keywords into clusters and pads them to
the same result length for a static database. Directly adapting their approach
for different batches of incoming documents will fail to address persistent or even
non-persistent adversaries. The underlying reason is that the above approach
treats each batch individually, while the states of database are accumulated.
Effective padding strategies in the dynamic setting must consider the accumulated
states of the database so that the adversaries can be addressed in arbitrary time
intervals.

4.3.3 Optimisation Features

ShieldDB provides several other salient features to enhance its security, efficiency,
and functionality.

Forward privacy: In streaming and search, ShieldDB realises the notion of
forward privacy [78, 113] to protect the newly added documents and mitigate
the injection attacks [76]. In particular, our system customises an efficient DSSE
scheme with forward privacy [113] to our context of batch insertion. The detailed
algorithm for encryption and search can be found in Algorithms 4 and 5 . Our
forward-private scheme is built on symmetric-key based trapdoor permutation
and is faster than the public-key based solution [78]. The ephemeral key ke of per-
mutation is embedded inside the index entry to recover the state (stw(b−1)

, cw(b−1)
)

of the previous entries in batch (b− 1), lines 16-27 in streaming, and lines 17-21
in search protocol). To reduce the computation and storage overhead, we link a
master state ST ′[w] = (stwb

, cwb
) to a set of entries with the same keyword in the

batch b (see streaming at lines 19-20).
Upon receiving ST ′[w] of the query keyword w sent from P, C generates

a query token and sends to S. We note that ST ′[w] is different from the state
ST [w] used for padding in Padding Controller. The benefit of our forward-private
design is that S can be enforced to perform search operations over the completed
batches. The batches which are still transmitted on the fly cannot be queried
without the latest keyword state ST ′[w] from C.

Re-encryption and deletion: ShieldDB also implements the re-encryption op-
eration. This operation is periodically conducted over a certain keyword cluster.
Padding Service P first fetches all entries in this cluster stored in EDB from
S. After that, P removes all bogus entries and re-performs the padding over
this cluster of keywords. All the real and bogus entires are then encrypted
via a fresh key, and inserted back to EDB. The benefits of re-encryption are
two-fold: (1) redundant bogus entries in this cluster can be eliminated; and (2)

46

the leakage function can be reset to protect the search and access patterns. During
re-encryption, ShieldDB can also execute deletion. A list of deleted document ids
is maintained at P, and the deleted entries are physically removed from the cluster
before padding.

Cache flushing: During streaming, the keywords in some clusters might not
show up frequently. Even the cache capacity of such clusters is set relatively
small, the constraint might still not be triggered very often. To reduce the load
of the cache at P and improve the streaming throughput, ShieldDB develops an
operation called flushing to deal with the above “cold” clusters. In particular,
Cache Controller monitors all the caches of clusters, and sets a time limit to
trigger flushing. If a cluster is not full after a period of this time limit, all entries
in this cluster will be sent to Padding Controller. Note that the padding strategies
still need to be followed for security and the high mode of padding is applied to
empty the cache.

4.4 Security of ShieldDB

4.4.1 Leakage Functions

ShieldDB implements a dynamic searchable symmetric encryption scheme (DSSE)
Σ = (Setup, Streaming, Search), consisting of three protocols between a padding
service P , a storage server S, and an querying client C. A database DBt =
(wi, idi)

|DBt|
i=1 is defined as a tuple of keyword and document id pairs with wi ⊆

{0, 1}∗ and idi ∈ {0, 1}l at the time interval t ≥ 0. We first formalise the
DSSE-based leakage functions of ShieldDB as follows.

Setup(DB0) is a protocol that takes as input a database DB0, and outputs
a tuple of (k1, k2, {L1, . . . , Lm}, st, B,EDB0), where k1, k2 are secret keys to en-
crypt keywords and document ids, a set {L1, . . . , Lm} contains cache clusters, st
maintains keyword states, and B is a bogus dataset to be used for padding, and
EDB0 is the encrypted database at t = 0.

Streaming(k1, k2, Lu, st, B, {(wi, idi)}; EDBt−1, {(ui, vi)}) is a protocol between
P with inputs k1,k2, and Lu (1 ≤ u ≤ m) the cache cluster to be updated, the
states st, the bogus dataset B, and the set of keyword and document id pairs
{(wi, idi)} to be streamed, and S with input EDBt−1 the encrypted database at
time t − 1 (t ≥ 1), and {(ui, vi)} the set of encrypted keyword and document
identifier pairs for batch insertion. Once P uploads {(ui, vi)} to S, st and B gets
updated, Lu is reset. At S, once EDBt−1 gets updated by {(ui, vi)}, it changes
to EDBt.

Search(k1, k2, q, st; EDBt) is a protocol between C with the keys k1, k2, the
query q querying the matching documents of a single keyword wi, and the state
st, and S with EDBt. Meanwhile, C queries P for retrieving cached documents
of the query keyword.

47

The security of ShieldDB can be quantified via a leakage function
L = (LStp,LStream,LSrch). It defines the information exposed in Setup, Streaming,
and Search, respectively. The function ensures that ShieldDB does not reveal any
information beyond the one that can be inferred from LStp, LStream, and LSrch.

In Setup, LStp = |EDB0| presenting the size of EDB0, i.e., the number of
encrypted keyword and document id pairs.

In Streaming, ShieldDB is forward private as presented in Streaming protocol.
Hence LStream can be written as

LStream({(w, id)}) = L′({id})

where {(w, id)} denotes a batch of keyword and id pairs w, and L′ is a stateless
function. Hence, LStream only reveals the number of pairs to be added to EDB.
ShieldDB does not leak any information about the updated keywords. In partic-
ular, S cannot learn that the newly inserted documents match a keyword that
being previously queried.

In Search, LSrch reveals common leakage functions [66]: the access pattern ap
and the search pattern sp as follows.

The ap reveals the encrypted matching document identifiers associated with
search tokens. For instance, if an adversary controls EDBt, she monitors the
search query list Qt = {q1, . . . , qn−1} by the time order. Then, ap(qi) (with
1 ≤ i ≤ n− 1) for a query keyword wi is presented as

ap(qi) = EDB(wi) = {(uwi
, vwi

)}

where uwi
and vwi

are an encrypted keyword and document id entry associated
with wi in EDBt.

The sp leaks the repetition of search tokens sent by C to S, and hence, the
repetition of queried keywords in those search tokens.

sp(qi) = {∀j 6= i, qj ∈ Qt, wj = wi}

Next, we detail the leakage during the interaction between C and S over
Qt on a given DBt. We call an instantiation of the interaction as a history
Ht = (DBt, q1, . . . , qn−1). We note that the states of keywords in DBt do not
change during these queries. The leakage function of Ht is presented as

L(Ht) = (|EDB(wi)|, . . . , |EDB(wn−1)|, α(Ht), σ(Ht))

where |EDB(wi)| (1 ≤ i ≤ n−1) is the number of matching documents associated
with the keyword wi mapping to the query qi, α(Ht) = {ap(q1), . . . , ap(qn−1)} is
the access pattern induced by Qt, and σ(Ht) is a symmetric binary matrix such
that for 1 ≤ i, j ≤ n − 1, the element at ith row and jth column is 1 if wi = wj,
and 0 otherwise.

48

4.4.2 Extended Constrained Security in ShieldDB

We note that the database knowledge of non-persistent and persistent adversaries
falls outside the traditional SE formalisation [75]. The reason is because the
notion is limited by the fact that knowing the DB, the query list is uniquely
defined by the acceptable leakage of SE. Namely, there is already the uniqueness
of a history given the knowledge of the adversary. Therefore, we want to define
new constrained security that can formalise the adversary’s knowledge in Ht.
But, given the constraint, there are multiple histories at time t satisfying the
leakage function (i.e., making Ht no longer unique). In this way, one needs to
find two different lists of queries generating the exact same leakage with the same
DBt. As a starting point, we extend the Definition 3.1 in [75] to formalise Ht

satisfying the constraint C iff C(Ht) = true as in Definition. 8.

Definition 8. A constraint C = (C0, C1, . . . , Cn−1) over a database set DBt and
a query set Qt = {q1, . . . , qn−1}, is a sequence of algorithms such that, for DBt ∈
DBt, C0(DBt) = (flag0, st0), where flag0 is true or false and st0 captures
C0’s state, and for q ∈ Qt, Ci(q, flagi−1) = (flagi), (i ≥ 1). The constraint is
consistent if Ci(., false, .) = (false, .) (the constraint remains false if it once
evaluates to false).

For a history Ht = (DBt, q1, . . . , qn−1), we note C(Ht) the evaluation of

C(Ht) := Cn−1(qn−1, Cn−2(. . . , C0(DBt))).

If C(Ht) = true, we say that Ht satisfies C. A constraint C is valid if there
exists two different efficiently constructable histories Ht and H ′t satisfying C.

After defining the knowledge in Ht known by the adversary, we also formalise
some elements (i.e., queries) in Ht that are unknown to the adversary. Namely,
they are left free from the constraint C. We note that Bost et al. [75] already
defined free components in static database setting (i.e., not time interval t) for
constraint security. Therefore, we extend the Definition 3.2 in [75] to formalise
free component in C regarding Ht in below Def. 9.

Definition 9. (Free history component) We say that C lets the i-th query free
if for history Ht = (DBt, q1, . . . , qn−1) satisfying C, for every search (resp. update)
query q if qi is a search (resp. update) query, H ′t = (DB′t, q1, . . . , qi−1, q, qi+1, . . . , qn−1)
also satisfies C, where DB′t ∈ DBt.

The idea behind of letting i-th query free is that there exists some other
queries in the history H ′t such that H ′t still satisfies C (and both L(Ht) = L(H ′t))
without modifying the leakage L(H ′t).

Now, we also define the acceptable constraint notion, so that, given a con-
straint C, and a leakage function L, for every history Ht, we are able to find
another history satisfying C with the same leakage.

49

Definition 10. A constraint C is L-acceptable for some leakage L if, for every ef-
ficiently computable history Ht satisfying C, there exists an efficiently computable
H ′t 6= Ht satisfying C, for H ′t = (DB′t, q1, . . . , qn−1), such that L(Ht) = L(H ′t).

A set of constraints C is said to be L-acceptable if all its elements are L-acceptable.

Now, after giving background definitions, we start to investigate the query at
time t. We recall that the Client only triggers the search on completely outsourced
data in EDBt, where (t > 0) is a random interval upon receiving search query
tokens. Therefore, we consider that the leakage function only depends on the
query itself, and on the state of DBt: L(q) can be presented as a stateless function
of fL(q,DBt). We make an observation on EDBt that: let C be a constraint,
Ht = (DBt, q1, . . . , qn−1) an history satisfying C, and q, q′ be two queries such

that H̃t = Ht||q = (DBt, q1, . . . , qn−1, q) and H̃ ′t = Ht||q′ = (DBt, q1, . . . , qn−1, q
′).

Then, if fL(q,DBt) = fL(q′,DBt), then both H̃t and H̃ ′t with the same leakage
satisfying C. This observation can be iterated to create multiple (i.e., more than
2) histories using the same DBt and they are both satisfying C with the same
leakage. Therefore, we can define a clustering Γt = {G1, . . . , Gm} of queries
induced by the leakage L after history Ht is a partition of a query set Qt, for
which, in every cluster, queries share the same leakage after running the history
Ht as below.

m⋃
i=1

Gi = Qt

∀i 6= j Gi ∩Gj = ∅

and ∀q, q′ ∈ Gi,L(q,Ht) = L(q′, Ht)

where L(Ht, q) is the output of L(q) after having been run on each element of Ht.
Note that, we omit the subscript t in Γt in the clear context of Ht; otherwise, we
state it separately. We denote ΓL(Ht) the clustering induced by L after Ht. We
can see that it is impossible to merge different clusters in ΓL(Ht) with the same
leakage. Therefore, formally, for ΓL(Ht) = {G1, . . . , Gm}, where m is the total
number of clusters, we have:

∀i 6= j,∀q ∈ Gi,∀q′ ∈ Gj,L(Ht, q) 6= L(Ht, q
′)

We present ΓL,C(Ht) the L-induced clustering applied on history Ht satisfying C
such that a subset of queries Qt in queries q gives C(Ht||q) = true. We can see
that, in the singular query q earlier, L(q) only depends on q and DBt. Therefore,
more generally, when q is a set of queries with C(Ht||q) = true, ΓL,C(Ht) only
depends on DBt. Indeed, the clustering ΓL,C(Ht) acquires at least two elements in
every cluster. Otherwise, an history Ht can be constructed without any different
history H ′t. Namely, we need at least |Gi| > 2 for ∀i ∈ [1,m], to make sure that
there are at least 2 constrained histories can be found. Therefore, we can extend
Def. 10 to have an acceptable constraint C with α histories, where |Gi| > α. We

50

note that the notation α here is inline with the clustering algorithm in setup in
ShieldDB (Section 4.1).

Definition 11. (Extended acceptable constraint) A constraint C is (L, α)-acceptable
for some leakage L and integer α > 1 if, for every efficiently computable history
H0
t satisfying C (i.e., C(H0

t) = true), there exists (α − 1) efficiently computable
{H i

t}1≤i≤α−1 such that H i
t 6= Hj

t for i 6= j, that are all satisfying C, and L(H0
t) =

· · · = L(Hα−1).

Now, we can see that when |Gi| ≥ α, for ∀i ∈ [1,m], i.e., strictly more than
one element in each cluster of ΓL,C(Ht), C is (L, α)-acceptable, as formalised in
below Proposition 1.

Proposition 1. Let C be a constraint, and L a leakage function. If for every
history Ht satisfying C, the clustering ΓL,C(Ht) = {G1, . . . , Gm} is such that
|Gi| ≥ α for all i, C is (L, α)− acceptable.

4.4.3 Security IND Game against Non-persistent adver-
sary

Prior knowledge of the database: Considering the adversary’s knowledge
of the database is DBt when she captures L(Ht), we use the predicate CDBt to
formalise this knowledge, by adapting the notion of server’s knowledge in [75].
Formally, we have CDBt(Ht) = true if the database of the input history is DBt.
As used in Definition 10, CDBt ensures that all challenge histories’ database is
the same, i.e., DBt. That also leave all queries in DBt are left free, as defined in
Definition 9. More generally, we can model the fact that the adversary know the
database by considering the constraint set CDBt = {CDBt ,DBt ∈ DBt}.

Now, we recall that the non-persistent adversary only captures an interval
t, and search only triggers on encrypted entries inserted in EDBt. Therefore,
we consider the scheme ΣNP = (Setup, Search) at time t for the non-persistent
adversary. We start adding a padding mechanism presented in Algorithm 1 (i.e.,
Padding Strategies) to Σ such that, for every keyword in DBt, there are at least
different (α− 1) keywords with the same number of matching documents. Then,
with the knowledge of DBt, the leakage function of ΣNP is formally defined as
LNP = (LStp,LSrch,Lα−pad), where LStp and LSrch reveals the leakage in Setup at
at t and Search against EDBt, and the new leakage Lα−pad reveals the minimum
size of clusters induced by Lα−pad.

By using Proposition 1, we can show that CDBt is an (LNP , α)-acceptable
set of constraints, where α is the minimum cluster size (over all constructable
databases). The reason is that, since constraints in CDBt leave all queries free
for every history Ht = (DBt, q1, . . . , qn−1), we can generate a different history H ′t
with the same leakage by choosing another query q 6= q1 that are both matching
the same number of documents, and changing all queries qi = q1 in Ht to q. Also,

51

if there is queries qj = q in Ht, we can switch queries in qj to q1. This can give us
a history H ′t 6= Ht with the same leakage of Ht. We note that there are at least
α choices of q to create ΓLNP

(Ht) we can derive CDBt(LNP , α)-acceptable.
Now, we are ready to define the notion of constrained adaptive indistinguisha-

bility for ΣNP given CDBt and the leakage (LNP).

Definition 12. Let ΣNP = (Setup,Search) be the SE scheme of ShieldDB, λ be
the security parameter, and A be a non-persistent adversary. Let CDBt be a set
of (LNP , α)-acceptable constraints. Let IndSE,A,LNP ,CDBt ,α be the following game:

IndSE,A,LNP ,CDBt ,α(λ) Game:

b
$←− {0, . . . , α− 1}

(CDBt
0 ,DB0

t , . . . ,DBα−1
t)← A(1λ)

(K,EDBb
t)← Setup(DBb

t)
(CDBt

1 , q0
1, . . . , q

α−1
1)← A(EDBb

t)
τ b1 ← Search(qb1)
for i = 2 to n do

(CDBt
i , q0

i , . . . , q
α−1
i)← A(qbi−1)

τ bi ← Search(qbi)
end for
b′ ← A(τ bn)
if b = b′ return 1, otherwise return 0

where τ bi ← Search(qbi) presents the transcript of the query qbi , and with the
restriction that, for all the H i

t = (DBi
t, q

0
i , . . . , q

n−1
i),

• CDBt ∈ CDBt , and ∀0 ≤ i ≤ (α− 1), CDBt(H i
t) = true

• L(H0
t) = · · · = L(Hα−1

t)

We say that Σ is (LNP ,CDBt , α)-constrained-adaptively-indistinguishable if for all
probabilistic polynomial time adversary A,

AdvInd
A,LNP ,CDBt ,α

(λ) =∣∣P[IndSE,A,LNP ,CDBt ,α(λ) = 1]− 1

α

∣∣ ≤ negl(λ).
(4.2)

We can see that ΣNP offers at least log(α) bits of security. Given CDBt

(LNP , α)-acceptable, we can analysing the transcripts τ bi under the choice of α.
First, we make an observation on the keyword choice in (DB0

t , . . . ,DBα−1
t) as

follows. We denote by ∆i
t = {wi1, . . . , win−1} the keyword space of DBi

t, where
i ∈ {0, α − 1}. Then, CDBt(H i

t) = true and all L(H0
t) = · · · = L(Hα−1

t) imply
∆0
t = · · · = ∆α−1

t . Let f(w) be a function returning the frequency of the keyword
w, we can see that, for all w0

j ∈ ∆0
t , where j ∈ |∆0

t |, there are at least one another
wij in ∆i

t (i.e., ∀i 6= 0) such that fw0
i

= fwi
i
. This turns out that the Setup needs

to groups at least α keywords and pad them to be the same length such that, for

52

a given qbi in Search, under the chosen b, the transcript τ bi can be hardened by at
least (α− 1) choices.

Now, we adapt the Theorem 2 in [75] to prove the extended constrained indis-
tinguishability (i.e., Definition 12) by using regular leakage indistinguishability
and extended acceptability of constraint set CDBt as follows.

Theorem 1. Let ΣNP = (Setup,Search) be our SE scheme, and CDBt a set of
knowledge constraints. If ΣNP is LNP -constrained-adaptively-indistinguishable
secure, and CDBt is (LNP , α)-acceptable, then ΣNP is
(LNP ,CDBt , α)-constrained-adaptively-indistinguishability secure.

Proof. Let A be an adversary in the IndSE,A,LNP ,CDBt ,α game. We construct an
adversary B against the game. B first randomly picks two integer α0, α1 ∈ {0, α−
1}. Then, B starts A and receives α databases (DB0

t , . . . ,DBα−1
t). Upon giving

the pair (DBα0
t ,DBα1

t) to the challenger, where the challenger holds a random
secret bit b, B receives the challenge encrypted database EDB∗t which she forwards
to A. Then, A repeatedly outputs α queries (q0

i , . . . , q
α−1
i) and gives to B. To

respond, B outputs (qα0
i , q

α1
i) to the game, and receives back the transcript τ ∗i

and forwards it to A. Then, A outputs the integer α′. If α′ = α0, B outputs
b′ = 0, else if α′ = α1, B outputs b′ = 1, and otherwise outputs the probability
1/2 for the output 0 and the probability 1/2 for the output 1.

We first make an observation: for the pair (Hα0
t , Hα1

t), the views of the
adversary B are indistinguishable due to LNP (Hα0

t) = LNP (Hα1
t), presenting

both satisfying CDBt . Then we can formalise B as follows:

AdvInd
B,LNP ,CDBt

(λ) =
∣∣P[b = b′]− 1

2

∣∣ ≤ negl(λ) (4.3)

Now, we evaluate P[b = b′] as follows.

P[b = b′] =

P[b = b′|α′ ∈ {α0, α1}] · P[α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[b = b′ ∩ α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[A wins the IndSE,A,LNP ,CDBt ,α game]

+
1

2
(1− P[α′ ∈ {α0, α1}])

(4.4)

Now, we evaluate P[α′ ∈ {α0, α1}] as follows.

P[α′ ∈ {α0, α1}] = P[α′ = α0] + P[α′ = α1]

53

Since we have

P[α′ = α0]+P[α′ = α1] =

P[α′ = αb|b = 0] + P[α′ = αb|b = 1]

then,

P[α′ ∈ {α0, α1}] =
1

2
(P[α′ = αb|b = 0] + P[α′ = α0])

+
1

2
(P[α′ = αb|b = 1] + P[α′ = α1])

We note that P[α′ = αb] is the probability A wins the 1-out-of-α indistinguisha-
bility game, and α0 and α1 are uniformly selected from {0, α− 1}, then we have

P[α′ ∈ {α0, α1}] =

P[A wins the IndSE,A,LNP ,CDBt ,α game] +
1

α

(4.5)

Applying Eq. 4.5 to Eq. 4.4, we have

P[b = b′] =

1

2
· P[A wins the IndSE,A,LNP ,CDBt ,α game]

+
1

2
− 1

2α

Then, from Equation 4.3, we can derive

AdvInd
B,LNP ,CDBt

(λ) =

1

2

(
P[A wins the IndSE,A,LNP ,CDBt ,α game]− 1

α

)
(4.6)

Applying Equation 4.6 to Equation 4.2, finally, we can have

AdvInd
B,LNP ,CDBt

(λ) =
1

2
AdvInd

A,LNP ,CDBt ,α
(λ) (4.7)

4.4.4 Security IND Game against Persistent adversary

Prior knowledge of the databases We start to generalise the knowledge of
the non-persistent adversary over the time to be the persistent adversary’s knowl-
edge of databases. Namely, we denote by (DBt=0, . . . ,DBt=T) such knowledge,

54

where T denotes the streaming period. We also make use of the constraint set
CDBt = {CDBt ,DBt ∈ DBt}, defined in Section 4.4.3, to formulate C[1,...,T] =
{CDB0 , . . . ,CDBT } the generalisation of constraint sets over the period such that
we know every CDBt(LNP , α)-acceptable, ∀t ∈ [0, T].

Let δ be a stateless function that outputs the keyword set difference in a
pairwise different inputs. Then, δ(DBt,DBt′) = W t,t′ , where W t,t′ = {wi|wi ∈
DBt, wi /∈ DBt′}. We consider the leakage function only depends on the query
itself (i.e., q(.)) and on the state of database at the querying time: LNP (q)t and
LNP (q)t′ be presented as stateless functions of fLNP

(q,DBt), and fLNP
(q,DBt′),

respectively.
Let Q = {q1, . . . , qn−1} be a query set, and CDBt and CDBt′ be constraints

applied on the Ht = (DBt, Q) and Ht′ = (DBt′ , Q), respectively. From Propo-
sition 1, we denote by ΓLNP ,CDBt (Ht) = {G1,t, . . . , Gm,t} the clustering Γt =
{G1,t, . . . , Gm,t} of queries induced by the leakage LNP after history Ht is a parti-
tion of Q, for which, in every cluster, queries share the same leakage after running
the history Ht. Similarly, we also derive the clustering Γt′ = {G1,t′ , . . . , Gm′,t′} of
queries Qt induced by the leakage LNP after history H ′t. We make an observation
on EDBt and EDBt′ that: let q(w) (resp. q(w′)) be the query of w (resp. w′),
where w /∈ W t,t′ , w′ ∈ W t,t′ , and q(w), q(w′) ∈ Gv,t, (∃v ∈ [1,m]), such that:

(H̃w
t = Ht||q(w), H̃w′

t = Ht||q(w′))

and
(H̃w

t′ = Ht′ ||q(w), H̃w′

t′ = Ht′||q(w′))

We can see that fLNP
(q(w),DBt) = fLNP

(q(w′),DBt), but fLNP
(q(w),DBt′) 6=

fLNP
(q(w′),DBt′) due to w ∈ DBt′ while w′ /∈ DBt′ , causing EDBt′(w) 6= EDBt′(w

′).
We can see that: if both q(w), q(w′) ∈ Gv,t′ , then fLNP

(q(w),DBt′) = fLNP
(q(w′),DBt′).

This observation can be iterated for all other pairwise different queries in Gvt

and Gvt′
. More generally, we need to have |Gv,t| = |Gv,t′ |, ∀t, t ∈ [0, T] such that

∀q(w), q(w′) ∈ Gv,t, they always have the same leakage at different t′ ∈ [1, T].
Formally, given m the number of clusters, we define

∀Gv,t, Gv,t′ 6= ∅, Ft,t′,v(Gv,t, Gv,t′) = (|Gv,t|
?
= |Gv,t′|)

Now, we also use constrained security to formalise that leakage over EDBt and
EDBt−1, ∀t ≥ 1 as in.

Definition 13. A constraint Ft = (Ft,t−1,1, . . . , Ft,t−1,m) over two clusters Γt =
{G1,t, . . . , Gm,t} and Γ′t = {G1,t′ , . . . , Gm,t′} induced by the leakage LNP after
histories Ht (resp. Ht−1) over Qt (resp. Qt−1), is a sequence of algorithms such
that F (t, t − 1, i) = flagi, where flagi is true or false. The constraint is
consistent if (., false, .) = (false, .), then Ft = false (the constraint remains
false if it once evaluates to false).

55

Let a constraint set F = (F1, . . . ,FT) is a sequence of algorithms evaluated at
every t ∈ [1, T]. The set is consistent if (., false, .) = (false, .), then F = false

(the constraint remains false if it once evaluates to false). In a short form, we
write FT to present the condition F = true.

The security of a scheme ΣP = (Setup, Stream, Search) against the persistent
adversary over a streaming period T . We start adding a padding mechanism
against the persistent adversary in Algorithm 1 (i.e., Padding Strategies) to ΣP

such that, ∀Gi,t in Γt = {G1,t, . . . , Gm,t} induced by Searcht (i.e., searching at
time t) against EDBt, Gi,t always has the same size |Gi,t| = |Gi,t′ |, where Gi,t′

in Γt′ = {G1,t′ , . . . , Gm,t′}, ∀t′ 6= t. Let LStream[1,...,T] = {LStream1 , . . . , LStreamT }, and

LSearch[1,...,T] = {LSrchNP,i}, for i ∈ [1, . . . , T], where LSrchNP,i = (LSrchi ,Lα−padi) is the search

leakage at time i, where Lα−padi) reveals the sizes of clusters induced by Lα−padi .
Then, the leakage function of ΣP can be quantified via the leakage function
LP = (LStp,LStream[1,...,T] ,LSearch[1,...,T]).

By using Definition 13, we can show that C[1,...,T] = {CDB0 , . . . ,CDBT } is
an (LP , α,F)-acceptable set of constraint sets, where α denotes the minimum
cluster size (over all constructable databases) and FT denotes the condition F =
true. The reason is that, for every time t ∈ [0, T], CDBt is (LNP , α)-acceptable,
and ∀Gi,t in Γt = {G1,t, . . . , Gm,t} induced by Searcht (i.e., searching at time
t) against EDBt, Gi,t always has the same size |Gi,t| = |Gi,t′ |, where Gi,t′ in
Γt′ = {G1,t′ , . . . , Gm,t′}, ∀t′ 6= t

Now, we are ready to define the notion of constraned adaptive indistinguisha-
bility for ΣP given C[1,...,T]. This security game is formalised in Definition 14.

Definition 14. Let Σ = (Setup,Streaming,Search) be the DSSE scheme of ShieldDB,
λ be the security parameter, and A be a persistent adversary. Let C[1,...,T] be a set
of (LP , α,F)-acceptable constraint sets. Let ut (streaming) (resp. Qt (search)) be
an update (resp. query set, i.e., Qt = {qt,1, . . . , qt,n}) at time t, and LStream (resp.
LSrch) be the leakage after the query u(resp. q), respectively. Let IndDSSE,A,LP ,C[1,...,T],α,F
be the following game:

IndDSSE,A,LP ,C[1,...,T],α,F(λ) Game:

b
$←− {0, . . . , α− 1}

(CDB0 ,DB0
t , . . . ,DBα−1

t)← A(1λ)
(K,EDBb

0)← Setup(DBb
0)

for t = 1 to T do
EDBb

t ← Streaming(ut)
(CDBt , Qt)← A(EDBb

t)
{τ bt,1, . . . , τ bt,n} ← Search(Qt,EDBb

t)
end for
b′ ← A(τ bT,1, . . . , τ

b
T,n)

if b = b′ return 1, otherwise return 0

56

where τ bt,i presents the transcript of the query qt,i, and with the restriction that,

given C[1,...,T] = {CDB0 , . . . ,CDBT }, for CDBt = {CDBt ,DBt ∈ DBt}, for all the
H i
t = (DBi

t, qt,1, . . . , qt,n),

• CDBt ∈ CDBt , and ∀0 ≤ i ≤ (α− 1), CDBt(H i
t) = true

• L(H0
t) = · · · = L(Hα−1

t)

• F = (F1, . . . ,FT) = true

We say that Σ is (LP ,C[1,...,T], α,F)-constrained-adaptively-indistinguishable if
for all probabilistic polynomial time adversary A,

AdvInd
A,LP ,C[1,...,T],α,F(λ) =∣∣P[IndDSSE,A,LP ,C[1,...,T],α,F(λ) = 1]− 1

α

∣∣ ≤ negl(λ).
(4.8)

We can see that ΣP offers at least log(α) bits of security. Given C[1,...,T] is
an (LP , α,F)-acceptable set of constraint sets, we can analysing every transcript
in the set {τ bt,1, . . . , τ bt,n} under the choice of α. Let ut simply contains a pair of
(wi, id), we can make an observation in ShieldDB as follows.

If ST [wi].c = 0, presenting that wi appears in the first time, then Padding
Controller checks the cache cluster that expects to have wi against the first batch
condition. We recall that the condition ensures the existence of all keywords in
the cluster before padding. If the condition is fail, we see that both EDB0

i and

EDB1
i are indistinguishable under the choice of b

$←− {0, . . . , α − 1}. The reason
is because the challenger does not send any batch to the server. In contrast, if
the condition is passed, Padding Controller pads all the keywords in the cluster
to be the same length and encrypt them before sending a batch to the server.
Meanwhile, ST [wi].c gets updated. Accordingly, EDBb

t is indistinguishable under
the choice of because these databases receive the batch of keywords that have the
same length. The first batch condition is crucial when ShieldDB is against the
persistent adversary. It ensures there is no new keyword in the cluster appears
in subsequent batches. Hence, the adversary cannot distinguish when a new
keyword is added in EDBb

i .
If ST [wi].c > 0 and first batch condition has been met, Padding Controller

performs padding similarly with the padding strategy against the non-persistent
adversary, presented in Algorithm 1. We can also see that EDBb

t is indistinguish-
able because Padding Controller guarantees all the keywords in a cluster have
the same length.

Now, we start analysing the query qt, i that queries the keyword wi, with
ST [wi].c = 0 or ST [wi].c > 0.

If ST [wi].c = 0, the adversary cannot guess the picked database because τ bt,i
return nothing.

If ST [wi].c > 0, τ bt,i is indistinguishable to all other query keywords in the
same cluster at time t.

57

Theorem 2. Let ΣP = (Setup,Streaming,Search) be our DSSE scheme, and C[1,...,T] =
{CDB0 , . . . ,CDBT } is a set of constraint sets. If Σ is
LP -constrained-adaptively-indistinguishable secure, and C[1,...,T] is (LP , α,F)-acceptable,
then Σ is
(LP ,C[1,...,T], α,F)-constrained-adaptively-indistinguishability secure.

Proof. Let A be an adversary in the IndDSSE,A,LP ,C[1,...,T],α,F game. We construct
an adversary B against the game. B first randomly picks two integer α0, α1 ∈
{0, α− 1}. Then, B starts A and receives α databases (DB0

0, . . . ,DBα−1
0). Upon

giving the pair (DBα0
0 ,DBα1

0) to the challenger, where the challenger holds a
random secret bit b, B receives the challenge encrypted database EDB∗0 which
she forwards to A. Then, for every t ∈ [1, . . . , T], we have:

• A sends ut (stream queries) to challenger and receives EDB∗t .

• A outputs ((q0
t,1, . . . , q

α−1
t,1), . . . , (q0

t,n, . . . , q
α−1
t,n)) and gives to B.

• To respond, B outputs ((qα0
t,1, q

α1
t,1), . . . , (qα0

t,n, q
α1
t,n)) to the game and receives

back the transcripts (τ ∗t,1, . . . , τ
∗
t,n), and forwards them to A.

After executing all t ∈ [1, . . . , T], A outputs the integer α′. If α′ = α0, B
outputs b′ = 0, else if α′ = α1, B outputs b′ = 1, and otherwise outputs the
probability 1/2 for the output 0 and the probability 1/2 for the output 1.

We first make an observation: for the pair (Hα0
t , Hα1

t) at ∀t ∈ [1, T], the views
of the adversary B are indistinguishable due to LP (Hα0

t) = LP (Hα1
t), presenting

both satisfying C[1,...,T]. Then we can formalise B as follows:

AdvInd
B,LP ,C[1,...,T],F(λ) =

∣∣P[b = b′]− 1

2

∣∣ ≤ negl(λ) (4.9)

Now, we evaluate P[b = b′] as follows.

P[b = b′] =

P[b = b′|α′ ∈ {α0, α1}] · P[α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[b = b′ ∩ α′ ∈ {α0, α1}]
+ P[b = b′|α′ /∈ {α0, α1}] · P[α′ /∈ {α0, α1}]
= P[A wins the IndDSSE,A,LP ,C[1,...,T],α,F game]

+
1

2
(1− P[α′ ∈ {α0, α1}])

(4.10)

Now, we evaluate P[α′ ∈ {α0, α1}] as follows.

P[α′ ∈ {α0, α1}] = P[α′ = α0] + P[α′ = α1]

58

Since we have

P[α′ = α0]+P[α′ = α1] =

P[α′ = αb|b = 0] + P[α′ = αb|b = 1]

then,

P[α′ ∈ {α0, α1}] =
1

2
(P[α′ = αb|b = 0] + P[α′ = α0])

+
1

2
(P[α′ = αb|b = 1] + P[α′ = α1])

We note that P[α′ = αb] is the probability A wins the 1-out-of-α indistinguisha-
bility game, and α0 and α1 are uniformly selected from {0, α− 1}, then we have

P[α′ ∈ {α0, α1}] =

P[A wins the IndDSSE,A,LP ,C[1,...,T],α,F game] +
1

α

(4.11)

Applying Eq. 4.11 to Eq. 4.10, we have

P[b = b′] =

1

2
· P[A wins the IndSE,A,LP ,C[1,...,T],α,F game]

+
1

2
− 1

2α

Then, from Equation 4.9, we can derive

AdvInd
B,LP ,C[1,...,T],F(λ) =

1

2

(
P[A wins the IndSE,A,LP ,C[1,...,T],α,F game]− 1

α

)
(4.12)

Applying Equation 4.12 to Equation 4.8, finally, we can conclude

AdvInd
B,LP ,C[1,...,T],F(λ) =

1

2
AdvInd

A,LP ,C[1,...,T],α,F(λ) (4.13)

4.5 Implementation and Evaluation

A simple way to implement the padding service P of ShieldDB is that Cache
Controller and Padding Controller are maintained synchronously in a single

59

Cache
Controller

Padding
Controller

Orchestrator

Cluster1 Cluster2 ... Clusterm

process-safe
access

Streaming Daemon

SE Client

Padding Daemon

shared memory

socket notification

checksum request

response
HTTP

EDB
Controller

EDB
Wrapper

EDB

API Provider

Figure 4.6: Implementation of ShieldDB

process. That is, Cache Controller is idle while Padding Controller performs
padding and encryption, and vice versa. Then, encrypted batches are uploaded
to the server S. We observe that this single process becomes extremely slow in
the long run because Cache Controller and Padding Controller cannot make use
of CPU cores in parallel. As a result, there are a very few batches uploaded to S.

To address the above bottleneck, we propose Orchestrator, a component
bridging data flow between Cache Controller and Padding Controller. The design
of Orchestrator is as follows.

4.5.1 System Implementation

Orchestrator enables ShieldDB to maximise the usage of CPU cores by splitting
two controllers to process in parallel. Figure 4.6 depicts the implementation of
the system. In details, Cache Controller and Padding Controller are spawned
as separate system processes during setup. Orchestrator acts as an independent
proxy manager managing the cache clusters in P ’s shared memory. It provides
process-safe access methods of collecting, clearing, and updating data in a given
cluster.

The communication between Cache Controller and Padding Controller is
performed by sockets during the streaming operations. Cache Controller acts
as a client socket, and notifies Padding Controller in the order of clusters that
are ready for padding as per padding strategy. Then, Cache Controller awaits
a checksum notified by Padding Controller. The checksum reports the number
of keyword and document id pairs in the cached cluster. Note that Padding
Controller only collects necessarily cached data for padding upon the high or low
padding mode.

Apart from these components, ShieldDB contains Padding Daemon, Stream-
ing Daemon, and SE Client. They are activated by App Controller during setup.
Padding Daemon provides Padding Controller with the access to a bogus dataset,
and maintains the track of remaining bogus entries for each keyword. It will
generate a new bogus dataset if it is run out. Streaming Daemon allows App

60

Cluster8000
10000
12000
14000
16000
18000
20000
22000

Ca
pa

cit
y

Figure 4.7: Cache capacities for α = 256

Controller to setup HTTP request/response methods to S ’s address. SE Client
deploys our encryption protocols at C. This service is separated so that later
protocol updates are compatible to other components in the system.

At S, API Provider provides RESTful APIs to serve C ’s HTTP requests. By
calling streaming API requests, API Provider then passes collected batches in
streaming to the EDB Controller. This component executes the insertion protocol
as presented in Algorithm 4. ShieldDB introduces a component called EDB
Wrapper, which separates EDB Controller ’s protocols from any database storage
technology.

4.5.2 Experimental Setup

We evaluated ShieldDB to understand the applicability of the padding strategies
by investigating (1) the streaming throughput, padding overhead, and local cache
load of the Padding Service when using different padding strategies against the
non-persistent and persistent adversaries, (2) the corresponding EDB size and
search latency relating to the padding overhead, and (3) the efficiency of flushing
in reducing the cache load and the padding overhead reduction when re-encryption
is applied.

ShieldDB is developed using Python and the code is published online2. We
use standard packages of Pycrypto (2.6.1) to implement cryptographic primitives
(SHA256 for cryptographic hash functions and AES-128 cipher for pseudo-random
functions) and NLTK (3.3) for textual processing. We deploy ShieldDB in Azure
Cloud and run on an isolated DS15 v2 instance (Intel Xeon E5-2673 2.4GHz CPU
with 20 cores and 140G RAM), where Ubuntu Server 17.1 is installed. The con-
trollers of the padding service are implemented by using Python multiprocessing
package. For simplicity, we co-locate the Client and Padding Service at the same
instance. At the server side. API Controller works on top of the Flask-a micro
web framework, while EDB is realised by RocksDB, a key-value storage.

We select the Enron data set3, and extract 2,418,270 keyword/document id

2https://github.com/MonashCybersecurityLab/ShieldDB
3Enron email dataset: https://www.cs.cmu.edu/~./enron/

https://github.com/MonashCybersecurityLab/ShieldDB
https://www.cs.cmu.edu/~./enron/

61

Cluster28000
30000
32000
34000
36000
38000
40000

Ca
pa

cit
y

Figure 4.8: Cache capacities for α = 512

pairs from the top 5,000 most frequent keywords in the dataset as the keyword
space in our experiment. We group them and allocate the cache capacity for
each keyword cluster based on their frequencies, as introduced in Section 4.3.1.
Figures 4.7 and 4.8 presents the normalised cache capacities of these clusters at
different values of α. Recalled that α indicates the minimum number of keywords
in each cluster (see Section 4.3.1). During the setup, ShieldDB generates a
padding dataset for the keyword set. In our experiments, the dataset is estimated
empirically enough to be used in streaming data up to 175 seconds for both
α = 256 and α = 512. In details, the dataset contains 1,859,877 bogus pairs (≈
389 Kb).

To create the streaming scenario, the Client groups every 10 documents
in the Enron data set as a batch (approx. 560 stemmed keyword/id pairs)
and continuously inputs batches to the system. Note that we do not limit the
processing capability of the Padding Service P and we let it continuously handle
batches in a queue sent by the Client. In every batch, P performs the padding and
encryption, and then continuously streams encrypted batches to the Server. To
faithfully understand the performance of padding, we deploy the client and server
to the same dedicated instance so that the impact of network I/O is minimised.
Note that we begin to record the performance of ShieldDB after the cold start
period of 75 seconds.

We experiment ShieldDB with different combinatorial settings of padding
strategies and modes. They are denoted as NH (strategy against non-persistent
adversary via high mode), NL (non-persistent padding strategy via low mode),
PH (strategy against persistent adversary via high mode, and PL (strategy
against persistent adversary via low mode). The performance of ShieldDB is
evaluated via a set of measurements such as system throughput, local cache size,
used bogus pairs, EDB size, and search time. Here, the system throughput
represents the total accumulated number of real (w, id) pairs that have been
encrypted and inserted to EDB.

Remark: Our focus is to analyse the system performance with different set-
tings of padding strategies and modes related to the security as mentioned in
Section 4.3.2. The empirical settings of 175 second streaming period and 10 doc-

62

t=75 t=100 t=125 t=150 t=175
130k

200k

300k

400k
450k
500k

Ac
cu

m
ul

at
ed

 th
ro

ug
hp

ut

NH NL PH PL

(a) α = 256

t=75 t=100 t=125 t=150 t=175
0

40k

120k

160k

180k
220k

240k

Ac
cu

m
ul

at
ed

 th
ro

ug
hp

ut

NH NL PH PL

(b) α = 512

Figure 4.9: Accumulated throughput

uments per batch are used for the evaluation under a stable workload, not causing
performance bottleneck, when the Client and Padding Service are co-located at
the same Azure instance. Other parameters of a streaming period expects to
result in the same observation as we obtained. The batch size can be adjusted
empirically based on the application and client’s resources.

4.5.3 Evaluation

We measure the performance of ShieldDB at both Padding Service and the
untrusted server S over a 175-second streaming period. In details, we evaluate the
performance of Padding Service with the three different metrics of accumulated
throughput, local cache size, and padding overhead when setting α = 256 and
α = 512. Then, we study the performance of S by observing EDB size, search
time, and the average result length of query keywords.

System throughput: We first measure the accumulated throughput over time
when ShieldDB is deployed with different padding modes of NH (non-persistent
using high padding mode), NL (non-persistent using low padding mode), PH
(persistent using high padding mode), and PL (persistent using low padding
mode) (see Figure 4.9). We also monitor the number of batch insertions and the
average batch processing time of Padding Controller to evaluate the throughput
difference between these padding strategies (see Table 4.2).

Fig. 4.9(a) shows that these padding modes have similar throughput at a
lower α = 256. However, the overall throughput reduces nearly a half when
setting α = 512 (see Fig 4.9(b)). It is explained that padding overhead and
encryption cost are higher when more keywords are allocated in each cluster.
Consequently, the throughput will be decreased.

Table 4.2 also supports that finding when fewer batches are inserted to S and
the average processing time per batch takes a longer time when setting α = 512.
Furthermore, when setting α = 512, Fig. 4.9(b) shows that low mode promotes
more real keyword/id pairs to be inserted to EDB than high mode. In details,

63

Table 4.2: Batch processing results

Setting
Batch Insertions Avg. time/batch (ms)
α = 256 α = 512 α = 256 α = 512

NH 30 5 7047.2 51384.41

NL 1919 497 113.94 456.87

PH 45 6 5280.58 45734.16

PL 1916 549 138.34 465.09

t=75 t=100 t=125 t=150 t=175
60k

100k
120k
140k

180k

220k
240k

To
ta

l l
oc

al
 c

ac
he

 si
ze

NH NL PH PL

(a) α = 256

t=75 t=100 t=125 t=150 t=175
60k

120k

180k

240k

280k

To
ta

l l
oc

al
 c

ac
he

 si
ze

NH NL PH PL

(b) α = 512

Figure 4.10: Local cache size

the throughput of NL is 1.23 times higher than the throughput of NH, and PL’s
is about 1.51 timer higher than PH ’s. Table 4.2 also supports this finding when
it reports that low mode creates more batch insertions than high mode, while
its average batch processing time is completely negligible compared to that value
of the latter. This observation shows the efficiency of low mode since it only
performs necessarily minimum padding for keywords in every batch. In contrast,
Padding Controller takes longer time under high padding mode due to higher
padding overhead and the longer encryption time taken by the large number of
bogus pairs.

Local cache size: To investigate the overhead at the Padding Service, we
monitor the local cache as shown in Fig. 4.10. In general, low mode results

t=75 t=100 t=125 t=150
12k

50k

120k

500k
1000k
2000k

Bo
gu

s e
nt

rie
s

NH NL PH PL

(a) α = 256

t=75 t=100 t=125 t=150 t=175
2k

50k

200k
400k
800k

1200k

Bo
gu

s e
nt

rie
s

NH NL PH PL

(b) α = 512

Figure 4.11: Bogus entries

64

t=75 t=100 t=125 t=150 t=175
180k
250k

500k

1000k
1500k
2000k
2400k

ED
B

siz
e

NH NL PH PL

(a) α = 256

t=75 t=100 t=125 t=150 t=175
70k

100k

500k
800k

1200k

ED
B

siz
e

NH NL PH PL

(b) α = 512

Figure 4.12: EDB Size

t=75 t=100 t=125 t=150 t=175
0

10
20
30
40
50
60
70

Se
ar

ch
 ti

m
e

(m
s)

NH NL PH PL

(a) α = 256

t=75 t=100 t=125 t=150 t=175

10

20

30

40

50

Se
ar

ch
 ti

m
e

(m
s)

NH NL PH PL

(b) α = 512

Figure 4.13: EDB Size

in a larger number of cached pairs in cache clusters than high mode, regardless of
padding constraints. The cache in NL consumes 150%∼197% larger space than
the cache in NH. The load of cache in PL is 1.8∼2.5× higher than the load of
the cache in PH.

Padding Overhead: We rely on the number of used bogus entries reported in
Fig. 4.11 to compute the padding overhead of different combinatorial settings
of padding strategies and modes. The padding overhead is estimated as the
ratio between the bogus and real (throughput) pairs. We see that although high
padding mode achieves a lower load of cache than low mode, it utilises more bogus
pairs from the generated padding dataset than the latter. In details, the padding
overhead of NH ranges from 3.8∼4.1 and from 5.6∼5.8 for α = 256 and 512,
respectively. In contrast, the padding overhead of NL ranges is marginal, varying
from 0.07∼0.13 and 0.06∼0.16 for α = 256 and 512, respectively. The reason
is that a portion of streamed keyword/id pairs are still cached at the padding
service. It also demonstrates that when α is large, PH generates a larger padding
overhead than NH does. Specifically, the padding overhead of PH is in the range
of 6.4∼8.9 for α = 512. The reason is that PH will add bogus pairs for keywords
that do not appear in the current time interval, while NH will not if the keywords
have not existed.

65

Table 4.3: Result length with α = 256

Setting
Time intervals

t = 75 t = 100 t = 125 t = 150 t = 175

NH 593.78 669.94 778.45 811.25 903.53

NL 109.856 144.66 164.40 171.56 186.04

PH 562.86 660.22 593.18 579.30 714.12

PL 89.25 82.38 107.92 110.57 126.43

Table 4.4: Result length with α = 512

Setting
Time intervals

t = 75 t = 100 t = 125 t = 150 t = 175

NH 668.02 843.22 837.01 840.85 861.44

NL 81.64 140.95 147.73 168.17 174.40

PH 577.06 610.02 614.34 857.73 879.63

PL 51.66 85.33 89.21 93.82 112.32

EDB size: We report the number of real and bogus pairs in EDB over the time
in Fig. 4.12. It demonstrates that high mode generates more data in EDB than
low mode due to the selection of all cached pairs in clusters for padding and the
large number of used bogus pairs.

Search time: To demonstrate the search performance, we configure the client
to query 10% randomly selected keywords in EDB at timestamps, i.e, t = 75, 100
, 125, 150, and 175. Fig. 4.13 shows that high mode makes querying a keyword
take a longer time, because S decrypts more bogus pairs. In contrast, the search
time in low mode is shorter due to the fewer used bogus pairs. The search time
in NH and PH is fluctuated due to the change of the result lengths of keywords
in EDB as given in Table 4.3 and Table 4.4.

Flushing: We select two largest cache clusters to simulate the flushing operation.
In particular, we set a small time window, 20 seconds, to trigger flushing. If
these clusters do not exceed up to 75% of their original capacities, then the
flushing operation is invoked. Figure 4.14 reports EDB size and cache size over
the time with a scanning window of 20 seconds. The operation occurs at t = 73,
45, 80, 121, 144, 189, 222, 272, and 331 seconds. We observe that the cache
size drops significantly at these timestamps since Cache Controller flushes the
cached pairs to Padding Controller. Note that the EDB and cache sizes are
flat while Padding Controller performs padding and encryption. Empirically, we
observe that flushing operation averagely reduced the cache load efficiently up to

66

t=50 t=100 t=150 t=200 t=250 t=300
time (s)

200k
400k
600k
800k

1000k
1200k
1400k
1600k
1800k
2000k
2200k
2400k

ED
B

siz
e

40k
50k
60k
70k
80k
90k
100k
110k
120k
130k

Ca
ch

e
siz

e

EDB size
Cache size

Figure 4.14: Flushing operation with α = 256

Table 4.5: Re-encryption on the largest cluster

Before During After

Bogus entries used 643, 131 230, 715 230, 715

Search time (ms) 379.37 0.03 210.18

Table 4.6: Overall performance of ShieldDB throughout a 175-second streaming
period

Setting
Throughput per second Avg. cache load Padding overhead
α = 256 α = 512 α = 256 α = 512 α = 256 α = 512

NH 2, 634.27 1, 459.62 99, 347.8 82, 267.8 3.8 ∼ 4.12 5.6 ∼ 5.8
NL 2, 779.77 1, 515.74 168, 681.4 164, 960 0.07 ∼ 0.13 0.06 ∼ 0.16
PH 2, 702.05 1, 289.64 97, 351.6 97, 557.6 4.8 ∼ 6.3 6.4 ∼ 8.9
PL 2, 833.46 1, 590.46 195, 702.2 196, 413.6 0.08 ∼ 0.14 0.08 ∼ 0.23

1.9 ∼ 2.8× across the padding strategies in the same streaming period.

Re-encryption: To investigate the performance of re-encryption, we experiment
ShieldDB after 175 seconds operated with NH at α = 256. We select the keyword
cluster that has the most entries stored in EDB for the re-encryption. This
keyword set is also re-used as the query set to benchmark the query performance
before, during, and after re-encryption. There are 180,677 real entries associating
with 256 keywords of this cluster. Table 4.5 demonstrates the performance of the
re-encryption. This operation takes 131.3 seconds for fetching process, and 103.11
seconds for padding and re-insertion. During the operation, the average query
time per keyword is the smallest due to the deletion of all entries in the selected
cluster. Note that this query time takes into account the search over local cache
clusters if the keyword is not available in EDB. After re-encryption, the number
of bogus entries used for the cluster is nearly reduced by 64.1%, making the
average search time shorter.

Overall performance: Table 4.6 summarises the performance of Padding Ser-
vice regarding three critical measurements of throughput per second, average
cache size at every second, and the overall padding overhead. As seen, there are

67

Table 4.7: Overall performance of the insecure streaming system and the
forward-private SE streaming system

insecure system
Forward-private system

t = 75 t = 100 t = 125 t = 150 t = 162
Throughput 4.3× 104 1.73× 104 1.71× 104 1.71× 104 1.73× 104 1.74× 104

Avg. result length 483.66 281.5 384.8 476.53 513.61 483.61
Search latency 5.12 20.9 24.62 33.75 40.95 43.59

Storage overhead 2.41× 106 1.3× 106 1.7× 106 2.14× 106 2.17× 106 2.41× 106

t = 75 t = 100 t = 125 t = 150 t = 175

NH

NL

PH

PL

= 256

t = 75 t = 100 t = 125 t = 150 t = 175

NH

NL

PH

PL

= 512

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ku
llb

ac
k

Le
ib

le
rD

is
ta

nc
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ku
llb

ac
k

Le
ib

le
rD

is
ta

nc
e

Figure 4.15: The difference in streaming distribution

no perfect padding strategies that can achieve a great balance. Low padding
mode makes a higher throughput value and lightens padding overhead, but it
incurs a significant cache load. In contrast, high padding mode makes the cache
load lightweight, but it introduces a higher overhead.

Note that the padding strategies against the persistent adversary are also
applicable to the non-persistent adversary. The firstBatch condition can theoret-
ically make some clusters might be not achieved in a long time if some keywords
never appear. However, this is not the case in our current experiments. Therefore,
the throughput for PH and NH, and PL and NL is close, respectively.

The value α relates to the number of keywords in clusters. A higher value
indicates that more keywords are co-located in the same cluster. Hence, they all
will have the same result length after padded. From the results, ShieldDB shows
the tradeoff when selecting a higher value of α. That is, the throughput is declined
nearly double while padding overhead increases almost twice (see Table 4.6).
Comparison with baselines: We further investigate the security and perfor-
mance trade-off between ShieldDB and two baselines. The first baseline (aka
Baseline-I) is an insecure system for which batches of un-encrypted keyword/id
pairs without padding are streamed to the server’s storage. We define the batch
size as 256 pairs. The second one (aka Baseline-II) is also the streaming system
without padding, but it realises our searchable encryption scheme with forward
privacy, to encrypt the pairs of every batch insertion.

We measure the overall performance of these baselines by using the same
streaming database and the measurement metrics as evaluated for ShieldDB. It

68

is clear that Baseline-II brings 2.5× overhead in addition throughput compared
to Baseline-I. The reason is because that the encrypted entries of keywords
in the same batch indeed are generated from the ephemeral key of the batch
and keyword’s extracted state. We note that Baseline-I maintained a constant
throughput and completed streaming within 55 seconds, while Baseline-II finished
in 162 seconds (Table 4.7). The throughput overhead ShieldDB brought forward
is about 6.04 ∼ 6.5× (resp. 10.7 ∼ 11.74×) lower than performance of Baseline-II
when setting α = 256 (resp. 512). We note that overhead is caused by the
encryption of additional bogus pairs introduced in every batch insertion. The
average result length for keywords streamed to the EDB of ShieldDB is about
1.8 ∼ 2.3× (high padding mode used) greater than that value if Baseline-II
is deployed. The search latency of ShieldDB is almost double (1.7 ∼ 2.1×),
slower than Baseline-II. We observe that the security enhanced by the padding
and forward privacy would overall bring the streaming throughput per second
∼ 16.3× (resp. ∼ 27×) slower than Baseline-I when setting α = 256 (resp. 512).
Empirical analysis of streaming distribution: Next, we investigate how the
streaming distribution of real data outsourced by ShieldDB to EDB changes
over the time. To do this, we consider the training distribution used to generate
the padding dataset and cluster’s caches extracted from the training dataset in
the Setup as the baseline distribution. Note that the training distribution was
different with respecting to α (i.e., the minimal number of keywords in every cache
cluster) (see Equation 1). Then, we monitor the streaming distribution of real
data at different times t when ShieldDB employs different combinatorial settings
of padding strategies and modes. In particular, we use the Kullback–Leibler (KL)
distance [122] to measure the difference between such streaming distributions and
the baseline distribution (Figure 4.15).

Our observation shows that the streaming distribution was different compared
to the baseline at the early streaming time (i.e., t = 75 − 150). Then, it tended
to converge to the baseline when the streaming dataset was almost outsourced
completely (t ≥ 175). At this time, the padding dataset was also almost used.
The reason for that is because the completed streaming dataset shares the same
distribution with the training dataset. However, at the earlier time, the difference
was large because there was some keywords in the training distribution that did
not appear yet in these early streaming batches. We note that, with α = 256,
the persistent padding settings (i.e., PH and PL) have the largest distribution
difference since it requires the existence of all keywords in the cluster at the
firstBatch (in Algorithm 6). With α = 512 (i.e., more keywords required in
clusters), the distribution difference was double (i.e., 0.8 ∼ 1.0 KL unit) since
the setting causes a longer waiting period before the padding strategies meet,
under the same streaming rate.

69

4.5.4 Discussion on the deployment of ShieldDB

We note that the above experiments consider the keyword frequency distribution
in setup is similar to the one in a period of streaming operation. We deem that
the assumption and the corresponding setting of ShieldDB for deployment can
be practically held in practice.

First, this setting is applicable to streaming applications for which the under-
lying distribution does not change much over time or it is known in advance, like
the known data range of the IoT sensors [123, 124]. Second, in our observation
(Figure 4.15), we show that the streaming distribution changes towards the
training distribution over a streaming period, not requiring the exact matching
between them for any particular interval. Therefore, the assumption can at least
be hold for that duration, and better than assuming that the streaming and
training distribution are close for any particular time interval. In addition, we
note that the setup operation can be re-invoked again to re-cluster keywords
based on up-to-date streaming data if the streaming distribution is different from
the training distribution. In that way, the re-clustering can use that up-to-date
streaming distribution as the training distribution.

We are aware that the keyword distribution difference can cause a long tail
effect when applying the proposed padding strategies to low frequent keywords.
For instance, if a keyword only occurs in the first batch of that keyword’s cluster
and disappears for all subsequent batches, Padding Controller still pads that
keyword during subsequent batches when padding strategies NH and NL are
used. As seen in the above experiments, such different distribution can happen
at the early streaming stages. We also note that, when the streaming distribution
differs from the training distributions, it may cause some “cold” clusters and/or
the intensive usage of the padding datasets in some “hot” clusters. As a results,
the overall streaming throughput can be slowed down.

To mitigate the above issues, ShieldDB offers flushing and re-encryption
operations regarding the highly varied frequency of streaming keywords. As
experimented, flushing could quickly reduce 1.9 ∼ 2.8× the cache load to boost
the “cold” clusters. In addition, re-encryption could lowered 64% the amount of
bogus pairs used by re-padding all keywords in the “hot” cluster. The above
result is obtained when we checked and applied the operations for every fixed
time window. Nevertheless, it is non-trivial to optimise the padding overhead in
the streaming setting and we leave it as future work.

4.6 Discussion

ShieldDB employs SSE [65] as an underlying building block to enable single-keyword
encrypted search. Curtmola et al. [66] and Kamara et al. [69] formalise the
security of SE for static and dynamic databases respectively, and devise concrete

70

constructions with sublinear search time. A line of schemes [87, 95, 121, 70, 2, 3]
(just to list a few) are proposed to improve performance and expressiveness of
SE [91, 93]. Driven by leakage-abuse attacks [74, 76, 125], new schemes [78, 82, 81]
with less leakage in search and update are proposed to achieve forward and
backward security. Note that, although oblivious RAM [25, 26] provides the
highest protection for the Server ’s memory access pattern, we do not consider it
for ShieldDB due its inefficient capability in the streaming setting. In details,
the approach requires more computation and storage at the Client, and the
communication between the Client and the Server. Also, ORAM does not hide
the size of the query results, unless there is non-trivial padding.

The investigation of the practical streaming ShieldDB in this chapter helps us
to understand the capability of leakage-abuse attacks in the dynamic (addition)
SE. For example, the non-persistent adversary can guess the query keyword at
any time interval if naive padding approach is applied. Even more importantly,
the persistent adversary who monitors the change of the EDB can easily guess
newly added keywords into the DB over the time. Using our application scenario
as an example, we note that the Padding Service P in ShieldDB is deployed at the
enterprise gateway of a private network, and it aggregates plaintext documents
uploaded by employees of the enterprise company (represented as the Client C).
We stress that the service adapts padding countermeasures during encryption
and then streams encrypted batches to the encrypted database hosted by the
server S. Note that, the global knowledge of the adversary reflects the plaintext
documents received by P, which is the data before padding and encryption. Our
attack’s assumption is in line with the leakage-abuse attacks. We do not consider
that the server can distinguish query tokens from different clients. In our scenario,
all query tokens from clients are sent from the enterprise gateway.

We also note that all prior leakage-abuse attacks are focused on the sin-
gle keyword search. We are not aware of any of the literature that has pro-
posed leakage-abuse attacks based on boolean queries. Therefore, we still focus
on mitigating the leakage-abuse attacks on the single keyword query model.
But note that the padding countermeasure has been demonstrated to protect
the co-relations between keywords and documents; namely, the leakage across
multi-keyword search can also be protected.

Another important aspect of the chapter is how to design effective padding
strategies, in particular, to mitigate the non-persistent and persistent adversaries.
Our approach relies on the dynamic clustering solutions that carefully track
dynamic keyword states over the time. In our design, we always ensure that there
are at least (α − 1) other keywords such that all of them have the same query
result length because of padding, where α is the size of the cluster. We note that
our approach is completely different from k-anonymity since k-anonymity would
not address the leakage-abuse attacks in our scenarios. First, it might not be
possible to directly find k keywords with the same query lengths for all keywords.
In the count attack, a portion of keywords have unique result lengths. Second,

71

leakage-abuse attacks also exploits the relationships between keywords for query
recovery, and this has been shown very powerful when queries have the same
query lengths. Therefore, only group keywords with same result lengths together
without padding still suffers from leakage-abuse attacks, not to mention the more
powerful adversaries that can monitor the database over the time intervals.

It is not too hard to see the limitation in this chapter: the system requires
the training dataset in the setup of ShieldDB. That is the existence of a sample
dataset in which the keyword frequencies are close to the real ones. We deem
that the assumption can be practically held because of the following reasons:

• The assumption is feasible in practical streaming applications for which the
underlying distribution does not change much over time, or it is already
known in advance, like the known data range and frequencies of the IoT
environment.

• In our observation, we show that the streaming distribution changes towards
the training distribution in the long run over a streaming period, not
requiring the exact matching between them for any particular interval.
Therefore, the assumption can at least be held for that duration, and even
the assumption is more practical than assuming that the streaming and
training distribution are close for any particular time interval.

• We note that the setup operation can be re-invoked again to re-cluster
keywords based on up-to-date streaming data if the streaming distribution
is heavily different from the training distribution after a certain period of
system deployment. In that way, the re-clustering can use that up-to-date
streaming distribution as the training distribution. With the above mecha-
nism, we believe that our assumption regarding the streaming distribution
can be held for a certain foreseen period of the upcoming streaming events.

Notwithstanding the training data set requirement, if the distribution of the
training and real datasets is not similar, the keyword distribution difference can
cause a long tail effect when applying the proposed padding strategies to low
frequent keywords. For instance, if a keyword only occurs in the first batch of
that keyword’s cluster and disappears for all subsequent batches, the Padding
Controller still pads that keyword during subsequent batches when padding
strategies NH and NL are used. As seen in the above experiments, such different
distribution can happen at the early streaming stages. We also note that, when
the streaming distribution differs from the training distributions, it may cause
some cold clusters and/or the intensive usage of the padding datasets in some
hot clusters. As a result, the overall streaming throughput can be slowed down.

We note that recent works [111, 112] proposed volume-hiding encryption
schemes to mitigate the leakage-abuse attacks. We note that those schemes are
focused on the static setting, as they resort to specialised data structures and

72

constructions. First, they are not dynamic friendly. Specifically, multi-hashing
and cuckoo hashing techniques are adopted as the underlying data structures. It
is not easy to insert new data into those data structures, and we are not aware any
existing volume-hiding schemes support efficient updates. Second, volume hiding
schemes may hide the size of the query result, but it is not clear whether they can
protect the relationships between different query keywords when applying them
into the context of keyword search.

ShieldDB can also be fit into a line of research on designing encrypted database
systems. Most of existing encrypted databases [33, 35, 37, 38, 36, 126] focus on
supporting rich queries over encrypted data in SQL and NoSQL databases. They
mainly target on query functionality and normally integrate different primitives
together to achieve the goal. Like the issues in SE, inference attacks against en-
crypted databases [53, 127] are designed to compromise their claimed protection.
To address this issue, one approach is to use advanced cryptographic tools such as
secure multi-party computation [35, 37]. Note that padding can also be adapted
to mitigate inference attacks. A system called Seabed [36] proposes a schema for
RDBMS that introduces redundant data values in each attribute of data records
to hide the frequency of the underlying data values. Compared with the above
systems, ShieldDB focuses on the document-oriented data model and supports
keyword search over encrypted documents.

Chapter 5

Accelerating Forward and
Backward SSE schemes

In [107], Cash et al. introduced the concept of active attacks against SSE; the
leakage in data update operations can be exploited to compromise the claimed
security of SSE. After that, Zhang et al. [76] proposed the first instantiation of
active attacks called file-injection attacks through the exploitation of the leakage
in data addition. This work raises a natural question: whether a DSSE scheme
with less leakage can be designed to mitigate existing and even prevent prospec-
tive active attacks. To address this question, forward and backward-private DSSE
schemes [78, 82, 81, 80] have drawn much attention recently.

In DSSE, the notion of forward privacy means that the linkability between
newly added data and previously issued search queries should be hidden against
the server, and the notion of backward privacy means that the linkability between
deleted data and search queries after deletion should be hidden. To achieve higher
security for DSSE, the efficiency of DSSE is compromised. Existing forward and
backward private DSSE schemes [82, 81, 80] introduce large overhead in storage
and computation at both client and server, and/or increase the client-server
interaction. Therefore, in this chapter, we investigate how to design forward and
backward-private DSSE schemes that efficiently support large addition/deletion.
This research question is important to make DSSE more practical deployment1.

5.1 Existing SGX-supported Backward-private

Constructions

Recently, hardware assistance, like Intel SGX, has demonstrated as an effective
solution to maintain the efficiency of DSSE, where native code and data can be
executed in a trusted and isolated execution environment. For example, recent

1This chapter is partly based on [2, 3]

73

74

T
ab

le
5.1:

C
om

p
arison

w
ith

previou
s

S
G

X
-su

p
p

orted
T

yp
e-II

b
ackw

ard
-private

sch
em

es.
N

,
D

,
an

d
W

d
en

ote
th

e
total

n
u

m
b

er
of

keyw
ord

/d
o

cu
m

en
t

p
airs,

total
n

u
m

b
er

of
d

o
cu

m
en

ts,
an

d
total

n
u

m
b

er
of

keyw
ord

s,
resp

ectively.
d

presen
ts

th
e

n
u

m
b

er
of

d
eleted

d
o

cu
m

en
ts.

n
w

is
th

e
n

u
m

b
er

of
(cu

rren
t,

n
on

-d
eleted

)
d

o
cu

m
en

ts
con

tain
in

g
w

,
a
w

is
th

e
total

n
u

m
b

er
of

en
tries

(in
clu

d
in

g
ad

d
ition

an
d

d
eletion

u
p

d
ates)

p
erform

ed
on

w
,
d
w

d
en

otes
th

e
n

u
m

b
er

of
d

eletion
s

p
erform

ed
on

w
.
r

is
th

e
pred

efi
n

ed
n

u
m

b
er

of
n

ecessary
d

u
m

m
y

en
tries

to
b

e
in

serted
in

ob
liviou

s
op

eration
s.

S
G

X
S

ch
em

es
C

om
m

u
n

ication
b

etw
een

en
clav

e
an

d
server

E
n

clave
C

om
p

u
tation

C
lien

t
E

n
clave

B
P

#
S

earch
rou

n
d

s
S

ea
rch

#
U

p
d

ate
U

p
d

ate
S

earch
U

p
d

ate
(eca

ll
+

oca
ll)

oca
lls

S
torage

S
torage

T
y
p

e

B
u

n
ker-B

[8
3
]

a
w

O
(n
w

)
a
w

O
(1)

O
(a
w

)
O

(1)
O

(W
log

D
)

–
II

S
G

X
-S

E
1

(d
+
d
w

)?
O

(n
w

)
n
w †

O
(1)

O
(n
w

+
d
)‡

O
(1)

–
O

(W
log

D
+
d
)

II

S
G

X
-S

E
2

(d
w

)
?

O
(n
w

)
n
w †

O
(1)

O
(n
w

)
O

(1)
–

O
(W

log
D

)+
II

O
(a
w
W

)

B
u

n
ker-A

[8
3
]

a
w

O
(n
w

)
a
w

O
(1)

O
(a
w

)
O

(1)
O

(W
log

D
)

–
III

?
:

T
h

e
com

p
lex

ity
a
lso

req
u

ires
n
w
oca

lls
(on

e-w
ay

trip
)

w
h

en
sen

d
in

g
q
u

ery
token

s
to

th
e

serv
er.

†:
W

e
n

ote
th

a
t

th
e

n
u

m
b

er
of

u
p

d
ate

oca
lls

is
n
w

if
th

e
u

p
d

ate
is

ad
d

ition
.

O
th

erw
ise,

d
eletion

u
p

d
ates

d
o

n
ot

ta
ke

a
n
y
oca

lls.
‡:

If
th

ere
is

n
o

d
eletion

u
p

d
a
tes

b
etw

een
tw

o
search

es
on

d
iff

eren
t
w

,
d

is
can

celled
.

T
h

en
,

th
e

com
p

lex
ity

is
on

ly
O

(n
w

).

75

work in ORAM powered by SGX [118] demonstrates that SGX can be treated as a
delegate of clients, so as to ease the overhead of client storage and computation,
and reduce the communication cost between the client and server. Therefore,
we first start to investigate the limitations of the existing SGX-supported DSSE
schemes that support forward and backward privacy. Then, we propose new
efficient schemes that support these advanced security notions.

5.1.1 Type-II Backward privacy with Bunker-B

We note that Amjad et al. [83] recently proposed three backward private SGX-supported
schemes: the Type-I scheme Fort, Type-II scheme Bunker-B, and Type-III scheme
Bunker-A. The performance and security overview of these schemes can be found
in Table 5.1. The table demonstrates the computation and communication cost
for update and search among SGX-supported backward-private schemes. As
shown, Bunker-B has O(1) update computation complexity and aw update ocalls.
However, it causes high computation complexity O(aw) and involves a large
number of roundtrips (i.e., aw) during the search. Bunker-A does not perform
re-encryption and re-insertion after search and thus only achieves Type-III back-
ward privacy. However, it still treats deletion as insertion, just like Bunker-B.
Therefore, we only analyse the limitations of Bunker-B as follows.

The Update and Search protocols of Bunker-B are summarily presented in
Algorithm 8. As shown, Bunker-B only requires O(1) update computation com-
plexity and aw update ocalls. For each (w, id), Bunker-B lets the enclave follow the
same routine to generate tokens for addition and deletion and uses the generated
tokens to update MI on the server (line 5 in Algorithm 8). However, it causes
high computation complexity O(aw) and involves a large number of roundtrips
(i.e., aw) during the search. In the Search protocol, the core idea of Bunker-B is to
let the enclave read all records (associated with add or del) in MI corresponding
to the keyword. Then, the enclave decrypts them and filters deleted ids based on
the operation. After query, the enclave re-encrypts non-deleted ids and sends the
newly generated tokens to the server for updates. These steps are summarised in
lines 21-26 in Algorithm 8. We have implemented Bunker-B (see Section 5.5.2)
and found that the scheme also has other limitations in practice as follows:

Intensive Ecall/Ocall Usage: Giving a document doc with an identifier id
and M unique keywords to the server, Bunker-B repeatedly performs the Update
protocol by using M ecalls and then the same number of ocalls to insert tokens
to the index map MI . It indicates that the number of ecall/ocall for Bunker-B
is linear to the keyword-document pairs for updates. In practice, a dataset
can include a large number of keyword-document pairs (> 107). As a result,
Bunker-B takes 12µs to insert one (w, id) pair, and 2.36 × 107 ecall/ocalls to
insert 106 documents to the database. Similarly, deleting a doc in Bunker-B
is the same as the addition, with the exception that the tokens contain op =
del. Experimentally, Bunker-B takes 1.98 × 108 ecall/ocalls to delete 2.5 × 105

76

Algorithm 8 Bunker-B [83]: Update and Search protocols

Update(op, in) : // op ∈ {add, del}, in = (w, id)

1: Client retrieves stw = (version, count) from st;
2: Send (w, version, count, op, id) to enclave;
3: Client updates stw = (version, count+ 1) to st;
4: Enclave generates an update token utk = (u, v):
5: u := FK1(w||version||count+ 1)
6: v := Enc(K2, id||op)
7: Enclave sends utk to the server;
8: Server receives utk = (u, v) from the enclave;
9: Server updates the map MI [u] = v

Search(w) :

1: Client retrieves stw = (version, count) from st;
2: Client outputs (w, version, count) to enclave st;
3: Client updates stw = (version+ 1, count) to st;
4: Enclave receives (w, version, count) from client;
5: Enclave generates query tokens qtk = (u1, . . . , ui, . . . , ucount), where :
6: ui := FK1(w||version||i)
7: Enclave sends qtk to the server;
8: Server returns to the enclave with the list L = {(u1, v1), . . . , (uc, vc)};
9: Server deletes all pairs in the L from MI ;

10: Enclave filters non-deleted ids with R = {id : @(id, op = del) ∈ L};
11: Enclave returns R to the client;
12: Enclave resets count = 1 and re-encrypts R with
13: for each id ∈ R do:
14: Generate a new token with
15: u := FK1(w||version+ 1||count)
16: v := Enc(K2, id||op = add)
17: Send (u, v) to the server to update MI ;
18: Enclave increase count+ = 1;
19: end for

documents. The practical performance of Bunker-B can be found in Section 5.5.2.
We also note that Bunker-B only supports deletion updates on the index map MI

without considering deleting real documents [83].
Search Latency : The re-encryption on non-deleted ids per search makes Bunker-B

inefficient. In particular, when the number of those ids is large and the deleted
ones is a small portion (adding 106 documents and deleting 25% documents),
Bunker-B takes 3.2s to query a keyword (see Section 5.5.2).

77

Table 5.2: Comparison with previous SGX-supported Type-I backward-private schemes

Type-I
Communication Enclave-Server Enclave Computation

Enclave
Add Del Search Add Del Search

Scheme Storage

Orion? O(log2N)O(log2N)O(nwlog
2N)O(log2N)O(log2N)O(nwlog

2N) O(1)

Fort[83] O(1) O(1) O(nw) O(log2N) O(1)
O(nw)+

Σ∀wdwO(Σ∀wdw)

Maiden O(1) O(1) O(nw) O(1) O(1) O(nw)
O(WlogD)
+O(awW)

+O(N)

In this table, N denotes the total number of keyword/document pairs. aw presents
the total number of entries of addition updates performed on w. nw is the number of
(current, non-deleted) documents containing w. Let dw denote the number of deletions
performed on w. D andW denote the total number of documents, and the total number
of keywords, respectively. Orion? presents the scheme of porting the Client in Orion [80]
to TEE.

5.1.2 Type-I Backward privacy with Orion∗ and Fort

In this section, we firstly review the existing attempts on designing a TEE-based
Type-I backward-private scheme and indicate why they still fall short under the
TEE setting (see Table 5.2).
Orion∗: A basic attempt to build a Type-I backward-private scheme is to utilise
ORAM. In particular, the latest construction (Orion [80]) leverages two oblivious
map OMAPs to store the database index and states. These two OMAPs ensure
the update and query operations are oblivious, and thus Orion can achieve Type-I
backward privacy. Since the existing work demonstrates how to use TEE (Intel
SGX) to accelerate the oblivious data structure [118], one can directly employ
SGX to fulfil the Client ’s role in non-TEE supported scheme. Then, the Server
in the scheme (Orion [80]) can be executed in untrusted memory area outside
the Enclave. We name this ported scheme as Orion∗. However, this solution
still maintains the high communication overhead between the Enclave and the
Server during Update addition/deletion and Search due to the use of multiple
oblivious maps at the Server (see Table I for porting the Client of Orion [80] to
the Enclave).
Fort: The second approach (Fort) was proposed by Amjad et al. [83]. Fort is
also the most secure while still relying on ORAM and thus we exclude it in this
work due to its overhead. Fort reduces the communication overhead between
the Enclave and the Server via two solutions. First, it asks the Server to only
maintain one oblivious map OMAP. The map stores the pair (F (w, id), label)
during Update, where label is the token used to insert (w, id) pair into the index
map MI . Secondly, the Enclave in Fort stores a Stashdel = Σ∀wdw that maintains
the deleted labels dw of every keyword w. The Client in Fort holds keyword state

78

stw = (version, count) where version increases after every Search, and count
gets updated for every Update op ∈ {add, del} on w. During Update, the Enclave
generates an update token (label, value), where label := FK1(w||version||count)
and value := Enc(K2, id||op), to insert into MI . Whenever the label is inserted
into MI , the newly generated pair (F (w, id), label) is obliviously added to the
OMAP. If the op of Update is deletion, the Enclave obliviously retrieves the
corresponding label from the OMAP and then appends it to Stashdel. The Enclave
will execute dummy operations on OMAP to hide whether the Update is for
addition or deletion. The Search operation of Fort is Type-I backward-private
because the Enclave only sends (reveals) nw currently matching labels to the
Server after locally discarding deleted labels found in Stashdel. The complexity
of Fort can be found in Table 5.2.

In update, Fort requires (aw+r) ocalls and O(log2N) computation complexity.
The search operation of Fort requires aw roundtrips between the enclave and the
server since the enclave needs to retrieve all the labels associated with w before
discarding deleted labels retrieved previously in deletion updates.

Amjad et al. [83] acknowledged that the cost of identifying and discard-
ing the deleted labels of the query keyword w in Stashdel of Fort could slow
down the search latency. However, that cost was not investigated thoroughly
in their work [83]; only a theoretical scheme was proposed. Therefore, we had
re-implemented the Enclave’s computation of Fort and found that the scanning
could take up to 8.02×106 ms just to scan 104 tokens when Stashdel = 107. That
insufficient cost is added to the search latency upon Search operation of Fort.
Remarks on Fort’s optimisation. Amjad et al. [83] note that Fort can be
optimised by replacing the usage of Stashdel in the Enclave by an OMAP to
be stored in the untrusted Server. In this way, the Enclave does not need to
perform the linear scanning of identifying and discarding deleted labels of the
query keywords. Instead, the Enclave obliviously retrieves them from the OMAP
during Search. However, this access will downgrade the security of the scheme.
The reason is that it additionally leaks the number of deletions of the query
keyword during Search, i.e., the number of ORAM accesses can be exposed.

5.2 System Overview

We present the high-level overview of our proposed schemes, as shown in Fig 5.1.
The design involves three entities: the client (who is the data owner and therefore
trusted), the untrusted server, and the trusted SGX enclave within the server.
The system flow involves 9 steps.

At step 1, the client uses the SGX attestation feature to authenticate the
enclave and establish a secure channel with the enclave. The client then provisions
a secret key K to the enclave through this channel. This completes the Setup
protocol of our proposed protocol. Note that this operation does not deploy any

79

CloudClient

Enclave

SGX enabled Server

State	
Manager

Server
Manager

EDB

Setup Attestation
and provision

Update

Search

Add doc2 Client
Manager

5
Update tokens

6
Del doc

Secure channel

8

10
Query tokens

Result	list11

7

3

4 9

1

Figure 5.1: High level design

EDB to the server as in DSSE schemes [82]. Instead, we consider that the client
outsources documents to the server via Update operations later.

At step 2, giving a document with a unique identifier id, the Client Manager
encrypts the document with the key K and sends the encrypted version of the
document to the Server Manager (see step 3). The encrypted version with its
id is then inserted to EDB. After that, the Client Manager sends the original
document to the State Manager located in the enclave via the secure channel
(see step 4). At this step, the State Manager performs cryptographic operations
to generate update tokens that will be sent to Server Manager (see step 5). The
tokens are used to update the encrypted index of dynamic SE located in the
Server Manager. Note that traditional DSSE schemes [70, 82, 81] often consider
EDB as the underlying encrypted index of DSSE, and omit the data structure
storing encrypted documents. Here, we locate them separately to avoid that
ambiguity, i.e., the index of DSSEMI is located in Server Manager, and encrypted
documents reside in EDB as an encrypted document repository, respectively. To
delete a document with a given id (step 6), the Client Manager directly sends
the document id to the State Manager (see step 7).

At step 8, the client wants to search documents matching a given query
keyword w. The Client Manager will send the keyword w to the State Manager
(see step 9). Then, the State Manager computes query tokens and excludes the
tokens for deleted documents according to the deletion information from step
6. Later, the State Manager sends them to the Server Manager (in step 10).
The Server Manager will search over the received tokens and return the list of
encrypted matching documents back to the Client Manager. At that stage, the
encrypted documents are decrypted with K.

5.3 Assumptions and Threat Models

Our Assumptions with Intel SGX: We assume that SGX behaves correctly,
(i.e., there are no hardware bugs or backdoors), and the preset code and data

80

inside the enclave are protected. Also, the communication between the client
and the enclave relies on the secure channel created during SGX attestation.
Like many other SGX applications [128, 118], side-channel attacks [129, 130, 131]
against SGX are out of our scope. Denial-of-service (DoS) attacks are also out
of our focus, i.e., the enclave is always available whenever the client invokes
or queries. Finally, we assume that all the used cryptographic primitives and
libraries of SGX are trusted.

Threat Models: Like existing work [119, 83], we consider a semi-honest but
powerful attacker at the server-side. Although the attacker will not deviate from
the protocol, he/she can gain full access over software stack outside of the enclave,
OS and hypervisor, as well as hardware components in the server except for the
processor package. In particular, the attacker can observe memory addresses and
(encrypted) data on the memory bus, in memory, or in EDB to generate data
access patterns. Additionally, the attacker can log the time when these memory
manipulations happen. The goal of the attacker is to learn extra information
about the encrypted database from the leakage both revealed by hardware and
the leakage function defined in sections 5.4.3 and 5.6.3.

5.4 Design for SGX-supported Type-II

Technical Highlights: Motivated by the limitations of Bunker-B, we design
SGX-SE1 and SGX-SE2 that are Type-II backward private schemes with: (1)
reduced number of ecall/ocall when the client wants to add/delete a document, (2)
reduced search roundtrips, and (3) accelerated enclave’s computation in search.

We achieve (1) by allowing the client to transfer the document to the enclave
for document addition, instead of transferring (w, id) pairs. This design reduces
the number of ecalls to 1. We then use the enclave to store the latest states ST
of all keywords, where the state of a keyword w is ST [w] = count. As a result,
the enclave is able to generate addition tokens based on ST . Our experiments
(see Sections 5.5.2 and 5.5.3) show that this design improves 2× the addition
throughput compared to Bunker-B. We note that it is negligible to store ST in
the enclave since it costs less than 6 MB to store the states of all keywords in the
American dictionary of English2 (assuming each keyword state item can take up
18 bytes in a dictionary map). Additionally, our scheme only requires 1 ecall if
the client deletes a document, by transferring that document id to the enclave.

W.r.t. (2), the SGX-SE1 scheme reduces the search roundtrips between the
enclave and the server to (d + dw). The basic idea behind SGX-SE1 is to let
the enclave cache the mapping between w and the deleted document ids. In
particular, the enclave loads and decrypts d deleted documents to extract the
mapping (w, id). It cleans the memory after loading each deleted document to

2The dictionary contains about 300,000 common and obsolete keywords

81

Algorithm 9 The setup protocol in SGX-SE1

Setup(1λ)
Client

1: kΣ, kf
$←− {0, 1}λ

2: Launch a remote attestation and establish a secure channel
3: Send K = (kΣ, kf) to Enclave

Enclave

1: Initialise maps ST and D, and a list d
2: Initialise tuples T1 and T2

3: Receive K = (kΣ, kf)

Server

1: Initialise maps MI and Mc and a repository R

avoid the memory bottleneck. After that, the enclave needs dw roundtrips to
retrieve the counters when the enclave filters those deleted ids. SGX-SE2 is more
optimal by requiring only dw roundtrips without the need for loading d deleted
documents. To do this, SGX-SE2 uses a Bloom filter BF to store the mapping
(w, id) within the enclave. Note that the BF can track 1.18×107 (w, id) pairs with
the storage cost of 34 MB enclave memory3 with the false positive probability
Pe = 10−4. Our experiments (see Sections 5.5.2 and 5.5.3) show that the search
latency of SGX-SE1 is 30% faster than Bunker-B after inserting 106 documents
and caching 2.5× 105 deleted documents. Moreover, SGX-SE2 is 2× faster than
Bunker-B for the query after deleting 25% documents.

W.r.t. (3), the proposed SGX-SE1 scheme improves the search computation
complexity to O(nw + d). We note that the complexity is even amortised if
there is no deletion updates between a sequence of queries. The reason is that
the enclave only loads d document for the first query to update the mapping
of all keywords in ST with the deleted documents. Furthermore, the search
computation complexity of SGX-SE2 is only O(nw). We note that testing the
membership of d documents in the BF is vd where v is the vector of BF. Our
experiments (see Sections 5.5.2 and 5.5.3) show that Bunker-B takes 3.2s for
queries after inserting 106 documents and deleting 25% documents while SGX-SE1
only takes 2.4s after caching those deleted documents. In addition, SGX-SE2
spends the least time 1.4s, i.e., 2× faster than Bunker-B.

5.4.1 SGX-SE1

The basic idea behind SGX-SE1 is to let the enclave store the latest states ST
of keywords and keeps the list d of deleted document ids, in order to facilitate
searches. Then, the enclave only loads the deleted documents for the first search

31.18× 107 pairs ≈ 386× Hamlet tragedy written by William Shakespeare

82

Algorithm 10 The update protocol in SGX-SE1

Update(op,in)
Client

1: if op = add then
2: f ← Enc(kf ,doc)
3: send send (id, f) to Server
4: end if
5: send (op,id) to Enclave

Enclave

1: if op = add then
2: f ← R[id]
3: {(w, id)} ← Parse(Dec(kf , f))
4: for each (w, id) do kw ‖ kc ← F (kΣ, w) c← ST [w]
5: if c =⊥ then
6: c = −1
7: end ifc← c+ 1
8: kid ← H1(kw, c)
9: (u, v)← (H2(kw, c),Enc(kid, id)

10: add (u, v) to T1

11: (u′, v′)← (H3(kw, id),Enc(kc, c)
12: add (u′, v′) to T2

13: ST [w]← c
14: end for
15: send (T1, T2) to Server
16: reset T1 and T2

17: else
18: add id to d
19: end if

Server

1: // if op = add
2: receive (id, f) from Client
3: R[id]← f
4: receive (T1,T2) from Enclave
5: for each (u, v) in T1 do
6: MI [u]← v
7: end for
8: for each (u′, v′) in T2 do
9: Mc[u

′]← v′

10: end for
11: // if op = del then do nothing

83

Algorithm 11 The search protocol in SGX-SE1

Search(w)
Client

1: send w to Enclave

Enclave

1: stwc ← {∅}, Qw ← {∅};
2: kw ‖ kc ← F (kΣ, w)
3: for each idi in d do
4: fi ← R[idi]; doci ← Dec(kf , fi)
5: if w in doci then
6: D[w]← idi ∪D[w]
7: delete R[idi]
8: end if
9: end for

10: for each id in D[w] do
11: u′ ← H3(kw, id)
12: v′ ←Mc[u

′]
13: c← Dec(kc, v

′)
14: stwc ← {c} ∪ stwc

15: delete Mc[u
′]

16: end for
17: stwc ← {0, . . . , ST [w]} \ stwc

18: for each c in stwc do
19: u← H2(kw, c)
20: kid ← H1(kw, c)
21: Qw ← {(u, kid)} ∪Qw

22: end for
23: send Qw to Server
24: delete D[w]

Server

1: receive Qw from Enclave
2: Res← ∅
3: for each (ui, kidi) in Qw do
4: idi ← Dec(kidi ,MI [ui])
5: doci ← R[idi]
6: add doci to Res
7: end for
8: send Res to Client

between two deletion updates to update the mapping between deleted ids and
tracked keywords. Subsequent searches between the two deletion updates do not

84

require loading the deleted documents again. We note that the enclave clearly
needs to remove d after retrieving them in the first query to save the enclave’s
storage. Once the enclave knows the mapping between the query keyword and
deleted documents, it infers the mapping of the query keyword with the rest
non-deleted documents, in order to generate query tokens. After that, the server
retrieves documents based on the received tokens and returns the document result
list to the client. We explain the protocols further as follows:

In setup (see Algorithm 9, client communicates with enclave upon an es-
tablished secure channel to provision K = (kΣ, kf) where kΣ enables enclave
to generate update/query tokens and kf is the symmetric key for document
encryption/decryption. The enclave maintains the maps ST and D, and the
list d, where ST stores the states of keywords, D presents the mapping between
keywords and deleted documents, and d is the array of deleted ids. The server
holds an encrypted index MI , the map of encrypted state Mc, and the repository
R with R[id] stores the encrypted document of document identifier id.

In update (see Algorithm 10), the client receives a tuple (op, in), where it could
be (op = add, in = (doc, id)) or (op = del, in = id). If the update is addition,
the client encrypts doc by using kf and sends that encrypted document to server.
After that, the client sends (op, in) to the enclave. The enclave will then parse
doc to retrieve the list L of {(w, id)}. For each w, the enclave generates kw and kc
from kΣ, and retrieves the latest state c← ST [w]. The enclave will then generate
kid from c by using H1(kw, c) with H1 is a hash function. After that, the enclave
uses kw, kc, and kid to generate encrypted entries (u, v) and (u′, v′) for w. In
particular, the first encrypted entry, with (u, v)← (H2(kw, c),Enc(kid, id)), holds
the mapping between c and id to allows the server retrieves id based on given
u and kid. The second encrypted entry, with (u′, v′) ← (H3(kw, id),Enc(kc, c)),
hides the state c of documents. In this way, the client can retrieve the state
c of deleted documents upon sending u′ in search operation. In our protocols,
H1 and H2 are hash functions, and Enc is a symmetric encryption cipher. We
note that enclave only sends a batch of (T1, T2) to the server within one ocall
per a document addition, where T1 = {(uw1 , vw1), . . . , (uw|L| , vw|L|)} and T2 =
{(u′w1

, v′w1
), . . . , (u′w|L| , v

′
w|L|

)}}. Then, the server will update T1 and T2 to MI and

Mc, respectively. If the update is deletion, the enclave simply updates d by the
deleted id without further computation or communication to the server.

In search (see Algorithm 11), the client sends a query q containing w to the
enclave via the secure channel and expects to receive all the current (non-deleted)
documents matching w from the server. The enclave begins loading deleted
encrypted documents in d from the server in a sequential manner. By using kf , the
enclave decrypts those documents for checking the existence of w, and updating
D[w] if applicable. By leveraging D[w], the enclave can retrieve the state list
stwc = {cdelid }, where cdelid is the state used when the enclave added the deleted
document id for w. After that, the enclave simply infers the states of non-deleted

85

documents by excluding stwc from the set of {0, . . . , ST [w]}. Finally, the enclave
will compute the query token u and kid for these non-deleted documents, and
send the list Qw = {(u, kid)} to the server. At the server, upon receiving Qw, it
can retrieve idi when decrypting MI [ui] with kidi . Finally, the server returns the
encrypted documents Res = {R[idi]} to the client.

Efficiency of SGX-SE1: In update, SGX-SE1 only takes nw ocalls to add all
n documents containing w to the server, and no ocall for deletion due to the
caching of deleted documents within the enclave. That efficiency outperforms
Bunker-B since the latter requires an additional ocall per a deletion. However,
we note that the asymptotic performance of SGX-SE1 is affected by (d + dw)
search roundtrips. In particular, the enclave needs to load and decrypt deleted
documents within the enclave. Thus, the search performance really depends on
how large the number of deleted documents is at the query time. We will later
compare our search latency with Bunker-B in Sections 5.5.2 and 5.5.3.

5.4.2 SGX-SE2

We see that SGX-SE1 has (d + dw) search roundtrips and non-trivial O(nw + d)
computation. One downside is that the enclave needs to spend time on decrypting
deleted documents. Here, we present SGX-SE2, an advanced version of SGX-SE1,
that reduces search roundtrips to dw and achieves better asymptotic and concrete
search time O(nw + vd). The main solution we make to SGX-SE2 is that we use a
Bloom filter BF within the enclave to verify the mapping between query keyword
w and deleted document ids. In this way, SGX-SE2 avoids loading them from the
server. Since BF is a probabilistic data structure, we can configure it to achieve
a negligible false positive rate Pe (see Section 5.5.3). We summarily introduce
SGX-SE2 in Algorithm 12 as follows:

In setup, SGX-SE2 is almost the same with that one in SGX-SE1 with the
exception that the client also requires to initialise the parameters of BF. They
are, kBF , b and h, where kBF is the key for computing the hashed value of (w||id),
and b is the number of bits in the BF vector (i.e, vector size), and h is the number
of hash functions. Upon receiving the BF setting, the enclave initialises the BF
vector and the set of hash functions {H ′j}j∈[h]. In SGX-SE2, the mapping D
between keywords and deleted ids is no longer needed within the enclave like
that one in SGX-SE1.

In update, SGX-SE2 is also similar with SGX-SE1. However, if the update is
addition, the enclave computes a new member H ′j(kBF , w ‖ id) to update BF.

In search, SGX-SE2 verifies the mapping between query keyword w and deleted
ids by checking the membership of (w||id) with BF. If the mapping is valid,
SGX-SE2 performs the same as SGX-SE1 to retrieve the state list stwc = {cdelid },
where cdelid is the state used for deleted ids. After that, the enclave infers the states
of non-deleted documents and computes query tokens to send to the server.
Efficiency of SGX-SE2: The scheme clearly outperforms SGX-SE1 in terms of

86

Algorithm 12 The protocols in SGX-SE2

Setup(1λ)

1: Performs the same Setup in SGX-SE1

2: Client inits kBF
$←− {0, 1}λ

3: Client sets integers b, h and provisions (kBF , b, h) to Enclave
4: Enclave selects {H ′j}j∈[h] for BF
5: Enclave does not maintain D

Update(op,in)

1: Performs the same Update in SGX-SE1
2: if op = add then
3: for each(w, id) do
4: for j = 1 : h do

5: h′j(w, id)
∆
= H ′j(kBF , w ‖ id)

6: BF [h′j(w, id)]← 1
7: end for
8: end for
9: end if

Search(w)

1: Replacing lines 3-16 in Search in SGX-SE1 with:
2: for idind do
3: if BF [H ′j(kBF , w ‖ id)]j∈[h] = 1 then
4: u′ ← H3(kw, id)
5: v′ ←Mc[u

′]
6: cdelid ← Dec(kc, v

′)
7: stwc ← {cdelid } ∪ stwc

8: delete Mc[u
′] and delete R[id]

9: end if
10: end for

search computation and communication roundtrips due to the usage of the Bloom
filter. It avoids loading d deleted documents into the enclave, making the search
roundtrip only dw. The scheme is even more efficient when |d| is large. The reason
is that the cost of verifying a membership (w||id) is always O(1) under the fixed
BF setting. We note that checking d members in the BF is still more efficient
than loading/decrypting their real documents. BF is also memory-efficiently;
therefore, one can configure its size to balance the enclave memory with the
demand of large datasets.
Remark: Note that deleting a document doc with identifier id in Bunker-B
requires deletion entries of all keywords in that doc with (wi, id, op = del) have
been inserted in the encrypted index MI beforehand. That would require M

87

ocalls for the doc of M keywords. Then, Bunker-B takes extra one ocall to
physically delete the doc. This physical deletion cost is the same with SGX-SE1
and SGX-SE2 (i.e., one ocall) except that these two schemes do not require any
deletion entries to be inserted in MI . Clearly, Bunker-B, SGX-SE1, and SGX-SE2
can do batch processing to delete d documents in one ocall. With SGX-SE1,
deleting a doc can be done right after all keywords in the deleted document have
been cached in D[w]. With SGX-SE2, a doc can be deleted at the earliest time
when any keyword in the doc is being searched.

5.4.3 Security Analysis

The only difference between SGX-SE1 and SGX-SE2 in term of security is that
SGX-SE1 requires to load encrypted deleted documents to the enclave during the
search. Therefore, our following analysis is almost identical to both schemes. We
will state the difference between them wherever is necessary.

We denote D as our general scheme that could be SGX-SE1 or SGX-SE2. The
security of D can be quantified via a stateful leakage function
L = (LStp,LUpdt,LSrch,Lhw). The first three components define the information
exposed in Setup, Update, and Search, respectively. The latter one, Lhw, defines
the inherent leakage of the used SGX enclave with the outputs from the enclave
to the server. We now define L and then formalise our security with analysis.

In Setup, D leaks nothing to the server except the data structure of MI (i.e.,
the encrypted index), Mc (i.e., the encrypted map of keyword states), R (i.e., the
empty repository of encrypted documents).

In Update(op = add, in), D leaks the data access pattern of encrypted entries
to be inserted in MI , Mc, and R. Otherwise, if op = del, D leaks nothing under
the secure channel established in Setup. Hence,

LUpdt({(op, in)}) = {(T1, T2, R[idi])}

where T1 = {(u, v)} and T2 = {(u′, v′)} present the collections of entries to be
inserted in MI and Mc respectively, and R[idi] denotes an encrypted document
to be inserted in R with label idi.

In Search(w), D leaks 1) the access pattern on Mc when the enclave queries
the deleted states of w, named apMc

(w), 2) the access pattern on Mc when the
enclave queries non-deleted ids, named apMI

(w), if D is SGX-SE1, and 3) the
pattern on deleted documents dw, named apR(dw). Then, formally

LSrch(w) = apMc
(w) + apMI

(w) + [apR(dw)]

We define Lhw(MI ,Mc, R) as the hardware leakage during Update and Search.
That includes memory access and location, the time log, and the size of the

88

manipulated memory area.

Lhw(MI ,Mc, R) = (MI ,Mc, R)Updt + (MI ,Mc, R)Srch

This function outputs the trace τ of (l, T, v, t), where l is the label input, T is a
map data structure that could be MI , Mc, and R, v is the value at T [l], and t is
the time access of op. W.r.t. SGX-SE1, if l is an id, the function will output the
encrypted document e and the document size |e|.

Definition 15. Let D denote our scheme that consists of three protocols Setup,
Update, and Search. Consider the probabilistic experiments RealA(λ) and IdealA,S(λ),
whereas A is a stateful adversary, and S is a stateful simulator that gets the
leakage function L.

RealA(λ): The challenger runs Setup(1λ) that involves the client, the enclave,
and the server to initialise necessary data structures. A chooses a database DB =
{doci}i∈Z and makes a polynomial number of updates (addition/deletion) with
(op, in), where Z is a natural number of documents, and (op = add, in = doci)
or (op = del, in = idi). Accordingly, the challenger runs those updates with
Update(op, in) and eventually returns the tuple (MI ,Mc, R)Updt to A. After that,
A adaptively chooses the keyword w (resp., (op, in)) to search (resp., update). In
response, the challenger runs Search(w) (resp., Update(op,in)) and returns the
transcript of each operation. The challenger also returns (MI ,Mc, R)Srch to A.
Finally, A outputs a bit b.

IdealA,S(λ): A chooses a DB = {doci}i∈Z. By using LUpdt and (MI ,Mc, R)Updt,
S creates a tuple of (MI ,Mc, R) and passes it to A. Then, A adaptively chooses
the keyword w (resp., (op, in)) to search (resp., update). The challenger returns
the transcript simulated by S(LSrch(w)) (resp., S(LUpdt(op, in))) with (MI ,Mc, R)Srch.
Finally, A returns a bit b.

We say D is L-secure against adaptive chosen-keyword attacks if for all prob-
abilistic polynomial-time algorithms A, there exist a PPT simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ negl(λ)

Theorem 3. The scheme D presented above is L-secure according to Def 16.

We now prove Theorem 4 by describing a PPT simulator S for which a
PPT adversary A can distinguish RealA(λ) and IdealA,S(λ) with negligible
probability.

Proof. S first generates a random key K̃ = (k̃Σ, k̃f) to simulate the key compo-
nents that the enclave contains. Then, A executes Search(w) with w, which is a
random keyword, in order to obtain a query token q sent by the enclave. Then,
A simulates addition tokens a for w based on K̃ and Lhw(MI ,Mc, R), and sends
them to the enclave to receive the new update of (MI ,Mc, R). However, A cannot
map which update token in a relates to q. The reason is that the enclave keeps

89

Table 5.3: Statistics of the datasets used in the evaluation.

Name # of keywords # of docs # of keyword-doc pairs
Synthesis 1, 000 1, 000, 000 11, 879, 100

Enron 29, 627 517, 401 37, 219, 800

increasing the state ST [w]. Hence, A cannot distinguish between the output of
RealA(λ) and the simulated output in Update and Search (forward privacy).

During Search, if there were delete updates made in the past on deleted
documents d with identifier list {idi}, A cannot know which keywords are inside
the encrypted doc R[idi]. Also, A does not know when delete updates made
since the enclave only requests d during Search. The apMc

(w) does not reveal
idi (see Search. However, A knows the time when the entry relating idi added
to apMc

via Lhw, and how many idi in d. Clearly, at the end of the protocol A
knows how many current (non-deleted) id accessed. Hence, D is type-II backward
privacy.

5.5 Evaluation of Type-II Backward privacy

In this section, we summarise the implementation of SGX-SE1 and SGX-SE2 as
well as the theoritically proposed Bunker-B. Then, we investigate the performance
of those schemes.

5.5.1 Experiment Setup and Implementation

We build the prototype of SGX-SE1 and SGX-SE2 using C++ and the Intel SGX
SDK. In addition, we implement the prototype of Bunker-B as the baseline for
comparisons, since its implementation is not publicly available. The prototype
leverages the built-in cryptographic primitives in the SGX SDK to support the
required cryptographic operations. It also uses the settings and APIs from the
SDK to create, manage and access the application (enclave) designed for SGX.
Recall that the SGX can only handle 96 MB memory within the enclave. Access
to the extra memory space triggers the paging mechanism of the SGX, which
brings an extra cost to the system (average 5× as reported in [132]). To avoid
paging in our prototype, our prototypes are implemented with batch processing to
tackle with the keyword-document pairs, which splits a huge memory demand into
multiple batches with smaller resource requests. The batch processing enables our
prototypes to handle queries with large memory demands. On the other hand, the
prototype should avoid too many ecalls/ocalls as it incurs the I/O communication
cost between the untrusted and the trusted application (enclave).

For evaluation, we choose two datasets: One is a synthesis dataset (3.2 GB)
generated from the English keyword frequency data based on the Zipf’s law

90

Table 5.4: Average time (µs) for adding a keyword-doc pair under different schemes.

of docs # of keyword-doc pairs BunkerB SGX-SE1 SGX-SE2
2.5× 105 2.5× 105 21 23 26
5× 105 6.5× 105 19 19 21

7.5× 105 1.9× 106 15 12 14
1× 106 1.18× 107 12 7 8

Table 5.5: Number of ecall/ocall for adding 1× 106 documents for different schemes.

of calls BunkerB SGX1 SGX2
ecall 1.18× 107 1× 106 1× 106

ocall 1.18× 107 1× 106 1× 106

distribution, and the other one is the Enron email dataset (1.4 GB). A summary
of the statistical features of the datasets is given in Table 5.3.

The prototypes are deployed in a workstation equipped with SGX-enabled
CPU (Intel Core i7-8850H 2.6 GHz) and 32 GB RAM.

5.5.2 Performance evaluation on synthesis dataset

Insertion and deletion: First, we evaluate the time for insertion and deletion
under three different schemes. In this evaluation, we follow a reversed Zipf’s law
distribution to generate the encrypted database of our synthesis dataset, and we
measure the runtime for adding one keyword-document pair into the encrypted
database of different schemes. As shown in Table 5.4, Bunker-B takes 21 µs to
insert one pair, which is faster than our schemes (23 µs and 26 µs) when the
number of keyword-document pairs equals the number of documents. The reason
is that the insertion time of the above three schemes is bounded by the I/O
(ecall/ocall) between the untrusted application and the enclave. For Bunker-B,
the I/O cost is linear to the number of keyword-document pairs, while the one
for our schemes is linear to the number of documents. Also, our schemes involve
more computations (PRF, Hash) and maintain more data structures (Bloom
filter), which require more time to be processed. Nonetheless, when inserting
1 × 106 documents, our schemes only require 7 µs and 8 µs respectively to
insert one keyword-document pair, which is 2× faster than Bunker-B (12 µs).
In the above case, the number of keyword-document pairs is 10× larger than
the number of documents, which implies that Bunker-B needs 10× more I/O
operations (ecall/ocall) to insert the whole dataset comparing to our schemes
(see Table 5.5 for details). Note that the real-world document typically consists
of more than one keyword. Hence, our schemes are more efficient than Bunker-B
when dealing with a real-world dataset (see Section 5.5.3).

For deletion, the performance of Bunker-B is identical to that for insertion

91

0 5 10 15 20 25 30

The i-th most frequent keyword

0

2000

4000

T
im

e
 (

m
s
)

Bunker-B

SGX-SE1

SGX-SE2

(a) 25% deletion

0 5 10 15 20 25 30

The i-th most frequent keyword

0

2000

4000

6000

T
im

e
 (

m
s
)

Bunker-B

SGX-SE1

SGX-SE2

(b) 50% deletion

0 5 10 15 20 25 30

The i-th most frequent keyword

0

2000

4000

6000

T
im

e
 (

m
s
)

Bunker-B

SGX-SE1

SGX-SE2

(c) 75% deletion

Figure 5.2: The query delay of querying the i-th most frequent keyword in the synthesis
dataset under different schemes (insert 2.5 × 105 documents and delete a

portion of them).

(12 µs), because deletion runs the same algorithm with different operations. For
our schemes, the deletion process only inserts the document id into a list, and
the deletion operation is executed by excluding the deleted id during the query
phase. Thus, our schemes only need 4 µs to process one document in the deletion
phase.
Query delay: Next, we report the query delay comparison between Bunker-B and
our schemes to show the advantage of using SGX-SE1 and SGX-SE2. To measure
the query delay introduced by keyword frequency and the deletion operation, we
choose to query the top-25 keywords after deleting a portion of documents. In
our first evaluation, we insert 2.5×105 documents and delete 25%, 50% and 75%
of the documents, respectively. Fig. 5.2 illustrates the query delays when deleting
25% of documents: For the most frequent keyword, Bunker-B needs 1.3 s to query
while SGX-SE2 only needs 654 ms. Although SGX-SE1 takes 5 s to perform the
first search, it also caches the deleted keyword-document pairs inside the enclave
and performs deletion on documents during the first query. As a result, the rest of
the queries are much faster, as the number of ocalls is significantly reduced (900 µs
if we query the most frequent keyword again). Even for the 25-th most frequent
keyword, SGX-SE1 (159 ms) and SGX-SE2 (155 ms) are still 40% faster than
Bunker-B (221 ms). Bunker-B is always slower than SGX-SE1 and SGX-SE2 in the
above case as it requires to re-encrypt the remaining 75% documents after each
query. Compared to Bunker-B, SGX-SE1 and SGX-SE2 only access the deleted
25% files and exclude the corresponding token of deleted files before sending the
token list. With the increase of the deletion portion, the difference of the query
delay between our schemes and Bunker-B becomes smaller as Bunker-B has fewer
documents to be re-encrypted after queries. When 75% of the documents are
deleted, our schemes still outperform Bunker-B when querying the keywords with
a higher occurrence rate (see Fig. 5.2(c)). However, their performances are almost
the same when querying the 25-th most frequent keyword, i.e., about 400 ms for
three schemes, because Bunker-B only re-encrypts a tiny amount of document id
(almost 0).

The second evaluation shows the query delay when inserting all 1 × 106

92

0 5 10 15 20 25 30

The i-th most frequent keyword

0

5000

10000
T

im
e

 (
m

s
)

Bunker-B

SGX-SE1

SGX-SE2

(a) 25% deletion

0 5 10 15 20 25 30

The i-th most frequent keyword

0

5000

10000

T
im

e
 (

m
s
)

Bunker-B

SGX-SE1

SGX-SE2

(b) 50% deletion

0 5 10 15 20 25 30

The i-th most frequent keyword

0

5000

10000

15000

T
im

e
 (

m
s
)

Bunker-B

SGX-SE1

SGX-SE2

(c) 75% deletion

Figure 5.3: The query delay of querying the i-th most frequent keyword in the synthesis
dataset under different schemes (insert 1×106 documents and delete a portion

of them).

Table 5.6: Number of ecall/ocall for deleting a portion of documents after adding
1× 106 documents.

Deletion %
BunkerB SGX1 SGX2

ecall ocall ecall ocall ecall ocall
25% 9.9× 106 9.9× 106 2.5× 105 0 2.5× 105 0
50% 1.12× 107 1.1× 107 5× 105 0 5× 105 0
75% 1.16× 107 1.16× 107 7.5× 105 0 7.5× 105 0

Table 5.7: Number of ecall/ocall when querying the most frequent keyword after
adding 1× 106 documents and deleting a portion of them.

Deletion %
BunkerB SGX1 SGX2

ecall ocall ecall ocall ecall ocall
25% 1 21 1 250, 011?/11 1 11
50% 1 20 1 500, 010?/10 1 10
75% 1 21 1 750, 011?/11 1 11

?: It includes the ocall for caching and deleting the encrypted
documents.

documents into the encrypted database. The major difference between this
experiment and the previous one is that the SGX-SE1 scheme requires more than
128 MB to cache the deleted documents, which triggers paging. As shown in
Fig. 5.4, SGX-SE1 needs 10 s to cache the deleted documents. When processing
the query that contains a large number of documents (e.g., the second most
frequent keyword), SGX-SE1 (2.4 s) is almost 2× slower than SGX-SE2 (1.4 s).
Nonetheless, their query performance is still better than Bunker-B, which takes
3.2 s to answer the above query. When our schemes delete a larger portion
of documents (see Fig 5.3(b) and Fig.5.3(c)), the query delay of SGX-SE1 and
SGX-SE2 is very close, since SGX-SE1 only refers to the small deletion information
cached in the enclave while SGX-SE2 requires to check the Bloom filter for each
deleted document.

93

1464

0

1150

304

1150

34

Bunker-B SGX-SE1 SGX-SE2

DSSE scheme

0

500

1000

1500

2000

2500

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

M
B

)

server

enclave

(a) 25% deletion

1539

0

1150

342

1150

34

Bunker-B SGX-SE1 SGX-SE2

DSSE scheme

0

500

1000

1500

2000

2500

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

M
B

)

server

enclave

(b) 50% deletion

1573

0

1150

355

1150

34

Bunker-B SGX-SE1 SGX-SE2

DSSE scheme

0

500

1000

1500

2000

2500

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

M
B

)

server

enclave

(c) 75% deletion

Figure 5.4: The enclave’s memory after inserting 1 × 106 documents and deleting a
portion of them).

Communication cost: The next evaluation demonstrates the impact of I/O
operation (ecall/ocall) on the performance of different schemes. As shown in
Table 5.5, Bunker-B needs 10× more ecall/ocall operations than our schemes.
Consequently, although both Bunker-B and our schemes generate and store the
encrypted keyword-document pairs at the end, our schemes can achieve a better
performance for insertion, because our schemes rely on less I/O operations. This
result is consistent with the average insertion time reported in the insertion and
deletion part.

In terms of the deletion operation, Bunker-B needs almost 30× more I/O
operation than ours (see Table 5.6). Moreover, the deletion in our schemes
only requires to insert the deleted id, which does not involve any cryptographic
operation, whereas Bunker-B executes the same procedure as insertion. This
indicates that our schemes also have less communication cost than Bunker-B.

We further present the number of ecall/ocall involved during the query process
in Table 5.7. Note that we implement batch processing for all schemes, so each
ocall can process 105 query tokens at the same time. The result shows that
Bunker-B has more ocall during the query process because it needs to issue tokens
to query all document id as well as the deleted document. After that, it should
issue additional tokens to re-encrypt the undeleted documents. On the other
hand, our schemes keep the state map within the enclave, which indicates that
our schemes do not require to retrieve all the document id via ocall. In most
of the case, Bunker-B has 2× more I/O operations than our schemes except for
the cache stage of SGX-SE1. Despite the fact that SGX-SE1 takes more than 105

ocalls to perform caching, we stress that this is a one-time cost; it also enables
our scheme to remove the document physically, whereas Bunker-B only can delete
the document from the encrypted index.
Memory consumption: Finally, we present the memory consumption of three
different schemes. Since the memory consumption on the client is negligible
comparing to that for the server and enclave (i.e., less than 1 MB). As shown
in Fig. 5.4, the encrypted database on the server always keeps unchanged for
SGX-SE1 and SGX-SE2 because they keep the same keyword-document pairs after
adding 1 × 106 documents. On the other hand, the memory usage of Bunker-B

94

Table 5.8: Average time (µs) for adding a keyword-doc pair from Enron dataset and
removing 25% documents under different schemes.

Operation BunkerB SGX-SE1 SGX-SE2
Insertion 12 7 8

Deletion (25%, 129,305 documents) 12 4 4

keeps increasing when we delete more documents as it should maintain the deleted
keyword-document pairs on the server. Within the enclave, Bunker-B does not
maintain any persistent data structure while SGX-SE1 and SGX-SE2 need to store
the necessary information for deletion. For SGX-SE1, it caches all the document
id in the enclave, which leads to notably high memory usage (e.g., 304 MB when
deleting 25% documents, and 355 MB when deleting 75%). The memory resource
requests in SGX-SE1 triggers the paging mechanism of the SGX, resulting in a
larger query delay as presented above. SGX-SE2 successfully prevents the paging
by using the Bloom filter. After applying a Bloom filter with the false positive rate
10−4, SGX-SE2 only needs 34 MB to store all keyword-document pairs (1.18×107

pairs) and maintains a low query delay over the large dataset.

5.5.3 Performance evaluation on Enron dataset

We use a real world dataset to illustrate the practicality of the proposed scheme.
Since the bulk deletion (e.g. delete 50%) is rare in the real world, we only
focus on the setting with a small deletion portion. Therefore, in the following
experiments, we insert the whole Enron dataset and test the average runtime for
insertion/deletion as well as the query delay with a small deletion portion (25%).
Insertion and deletion: As described in Section 5.5.2, our schemes are more
efficient for the insertion and deletion if the number of keyword-document pairs is
larger than the number of documents. The evaluation result on the Enron dataset
further verifies our observation: as shown in Table 5.8, our schemes only need
7 µs and 8 µs respectively to insert one keyword-document pair while Bunker-B
needs 12 µs to do that. Besides, both of SGX-SE1 and SGX-SE2 only takes 4 µs
to delete one document, but Bunker-B still requires 12 µs to execute the same
algorithm as the insertion.
Query delay: Finally, we present the query delay when using the Enron dataset.
As the Enron dataset has more keyword-document pairs than our synthesis
dataset, deleting 25% documents still triggers paging, as it includes more
keyword-document pairs than the whole synthesis dataset. In Fig. 5.5, we present
the query delay when querying the top-25 frequent keywords in the Enron dataset.
The result shows that SGX-SE2 maintains a relative low query delay (530 ms to
900 ms) while SGX-SE1 needs 580 ms to 2.6 s and Bunker-B requires 645 ms to
1.5 s. This above result further illustrates that SGX-SE2 can both prevent the
paging within the SGX enclave and eliminate the cost of re-encryption.

95

0 5 10 15 20 25 30

The i-th most frequent keyword

0

1000

2000

3000

T
im

e
 (

m
s
)

Bunker-B

SGX-SE1

SGX-SE2

Figure 5.5: The query delay of querying the i-th most frequent keyword in the Enron
dataset under different schemes (insert all documents and delete 25% of

them).

5.5.4 Discussion

Our key idea to design SGX-supported Type-II backward private schemes is to
leverage SGX to take over the most tasks of the client, i.e., tracking keyword
states along with data addition and caching deleted data. However, handling large
datasets is non-trivial due to the I/O and memory constraints of the SGX enclave.
Thus, we further develop batch data processing and state compression technique
to reduce the communication overhead between the SGX and untrusted server,
and minimise the memory footprint in the enclave. We conduct a comprehensive
set of evaluations on both synthetic and real-world datasets, which confirm that
our designs outperform the prior art-Bunker-B. We also note that our experi-
mental evaluation (including Bunker-B) is independent of the SGX side-channel
attacks since we only focus on the leakage mitigation of dynamic SSE. We further
discuss how to independently mitigate those side-channel attacks in Section 5.8.

5.6 Maiden: SGX-supported Type-I scheme

In this section, we first highlight our design and detail the protocol of Maiden,
which achieves Type-I backward privacy and the scheme achieve optimal search’s
computation and communication (i.e., O(nw)) between the client and the server.
After that, we analyse the security of the proposed scheme in section 5.6.3. In
section 5.7, we evaluate Maiden and compare it with the baseline schemes Orion∗

and Fort.

5.6.1 Design Intuition

As analysed, Fort relies on TEE (a hardware Enclave) to protect the supporting
information for Search, which is the deletion information in Stashdel. The deleted
labels in Stashdel need to be retrieved via ORAM accesses to the Server during
Update deletion before Search happens. But, this causes the intensive linear

96

TEE

Client

Untrusted Server

Update/Query
Deletion Info

Index Map
DB StateResult

Secret Keys

Count State

BF

Figure 5.6: High-level illustration of Maiden

scaning operation during Search if the Stashdel or the number of generated
undeleted/deleted tokens of query keywords is large.

Similar to Fort, we also rely on TEE to protect the supporting information
for Search. But, we let the Enclave store a normal state map Mc of all (w, id)
pairs received during Update addition. Based on our assumption, the Enclave
can protect code and data inside the Enclave, migrating Mc to the Enclave does
not affect the security of our protocol while it fully eliminates ORAM operations
for Type-I DSSE schemes. By doing so, our design neither does require the
Server to store any OMAP data structure in Setup, nor access to that in Update
deletion. Instead, we simply track the deleted id within the Enclave. In addition,
Maiden also employs a sketch addition BF , i.e., a Bloom filter, to compress
all (w, id) pairs added during Update addition. With the latest states of tracked
keywords, BF , and deleted id list, the Enclave is able to generate the query tokens
for currently matching documents. This helps the scheme to achieve Type-I
backward-privacy (i.e., leaking only TimeDB(w)), without exposing historical
deletion information to the Server. Yet, storing Mc in the Enclave may cause the
paging overhead in SGX Enclave Page Cache (EPC). Nonetheless, we observe
that the access with the EPC paging is still one to two orders of magnitude faster
than the linear scan in Fort and the ORAM accesses from the Enclave to the
Server in Orion∗ (see Section 5.7).

5.6.2 The Detailed Protocol

Figure 5.6 presents the design overview of Maiden. The design contains three
participants: the trusted Client, the TEE denoted as the Enclave within the
Server and the untrusted Server. Maiden equips with a lightweight Client, which
does not maintain any data structure locally. On the other hand, the untrusted
Server only maintains a normal index map MI to store the mapping between label
and value. The Enclave keeps the deletion information. To accelerate the query
process, the Enclave also has three state maps: The first one is the database
state map ST which stores the update counter for each keyword. It indicates the
number of updates regarding the keyword. We migrate it from the Client to the
Enclave to reduce the workload for generating query/update tokens. The second
one is a count state map Mc maintaining the mapping between (w, id) and the

97

Algorithm 13 The Setup protocol in Maiden with storage-free Client

Setup(1λ)
Client

1: Initialise kΣ, kBF
$←− {0, 1}λ, and integers l, h

2: Attest and establish a secure channel to Enclave
3: Send (kΣ, kBF , l, h) to Enclave

Enclave

1: Initialise Rk
$←− {0, 1}λ

2: Init maps ST,Mc, and a list d
3: Initialise BF ← 0l and {H ′j}j∈[h]

Server

1: Initialise an index map MI

corresponding count. The third one is a compressed state map BF stored as a
Bloom filter. This indicates whether a given keyword is in a given document,
which can be used to facilitate the query process.

To communicate with the Server, the Client leverages the remote attestation
mechanism to establish a secure channel with the Enclave. Then, the Client
can remotely access the database via Setup, Update (add/del documents), and
Search operations. The Enclave receives the above operations and manipulates
the encrypted database stored on the untrusted Server on behalf of the Client.
The detailed procedures of Maiden are provided in Algorithms 13, 14 and 15.

Setup. During Setup (see Algorithm 13), the Client attests the Enclave and then
establishes a secure channel for later communication. The Enclave maintains the
latest keyword state ST , list d of deleted ids, a Bloom filter BF , and importantly
a state map Mc that tracks the state c of (w, id). It also receives necessary keys
(KΣ, KBF) provisioned by the Client. The Server maintains an encrypted map
MI to facilitate the index search.
Update (Algorithm 14): The Client directly provides a tuple (op = add, in =
{doc, id}) to the Enclave via the secure channel. Then, the Enclave generates
update tokens T = {(u, v)} for ∀(w, id) ∈ doc to update the index map MI ,
where (ui, vi) ← (H2(kw, c),Enc(kid, id)) with kid generated from ST [w]. After
that, the Enclave tracks the latest state c of F (kw, id) in the map Mc. This state
tracking later enables retrieving the states of deleted doc with id containing w
in Search. In addition, the Enclave updates the membership of (w||id) to BF. If
the Update is deletion, given a tuple of (doc′, id) sent by the Client, the Enclave
adds id to the list d. It also adds dummy token entries (u′, v′) generated from
doc′ to MI to hide the deletion op.
Search (Algorithm 15). The Client sends a query keyword w to the Enclave
for receiving documents matching the keyword. The Enclave first performs the
membership testing for (w, idi), idi ∈ d. With the help of the internal map Mc,

98

Algorithm 14 The Update protocol in Maiden

Update(op, in
Client

1: if op = add then
2: send (op, in) to Enclave
3: else
4: send (op, in = (doc′, id))
5: end if

Enclave

if op = add then
Parse doc to D = {(w, id)}
T ← {∅}
for (w, id) ∈ D do

kw ← F (kΣ, w)
c← ST [w]; c← c+ 1
kid ← H1(kw, c)
(u, v)← (H2(kw, c),Enc(kid, id))
add (u, v) to T
Mc[F (kw, id)]← c
BF [H ′j(kBF , w ‖ id)]← 1 for j ∈ [1, h]
ST [w]← c

end for
send T to Server in batch

else
add id to d
set dummy entries (u′, v′) in T

end if

Server

MI [u]← v for (u, v) in T

the Enclave can retrieve the state of (w, idi) if idi was deleted. Then, the Enclave
can generate the query tokens {(u, kid}), where (u, kid ← (H2(kw, c), H1(kw, c)),
for undeleted states based on the latest state ST [w] after eliminating deleted
ones. Upon receiving the query tokens, the Server returns the currently matching
document id List to the Enclave.
The efficiency of Maiden. The asymptotic search complexity of Maiden is
O(nw) . The scheme relies on the interval map Mc to compute nw query tokens.
It does not need to communicate to the Server to find the states of deleted
documents. As a trade-off, the scheme maintains a storage of (O(WlogD) +
O(awW)+O(N)), where the significant factor O(N) presents the size of Mc. The
access pattern on Mc during Search is protected by the Enclave. Our experiments

99

Algorithm 15 The Search protocol in Maiden

Search(w)
Enclave

1: Receive w from Client
2: kw ← F (kΣ, w)
3: st(w,c) ← {∅}, Q← [∅];
4: for id in d do
5: if BF [H ′j(kBF , w ‖ id)]j∈[h] = 1 then
6: c←Mc[F (kw, id)]
7: st(w,c) ← {c} ∪ st(w,c)
8: end if
9: end for

10: st(w,c) ← {0, . . . , ST [w]} \ st(w,c)
11: for c in st(w,c) do
12: (u, kid)← (H2(kw, c), H1(kw, c))
13: Q← {(u, kid)} ∪Q
14: end for
15: send Q to Server in batch

Server

1: id List← {∅}
2: for (u, kid) in Q do
3: id← Dec(kid,MI [u])
4: id List← {id} ∪ id List
5: end for
6: send id List to Enclave

show that Maiden is still more than two orders of magnitude faster than the linear
scanning cost in Fort even when Maiden suffers large memory overhead.

Remarks: Maiden employs a BF for keeping track of addition, which facilitates
the search token generation in Search. A false positive can be introduced when
non-member (w, id) pairs map to set bit positions in the BF vector. This turns
out w presumably presented in the deleted document id by the wrong testing.
We note that this false match does not affect the correctness of search. The
state ST [w] only tracks the matching states for truly existing (w, id) pairs (see
Algorithm 14), and no valid state can be found in Mc if w does not exist in the
document id (see line 6 in Algorithm 15). Therefore, an invalid state cannot be
used to generate query tokens.

Like many other SSE works [75, 80, 81, 83, 2] that focus on the search
document index, Search protocol in Maiden only retrieves the document identifiers
ids of currently matching documents docs containing the query keyword. We note
that encrypted data blocks of the documents can be independently outsourced

100

to an oblivious data structure stored in the Server. The idea of using this data
structure is to hide document update patterns for the document access. Once
the Enclave obtains the currently matching ids, it can perform oblivious access
to the Server to retrieve these data blocks and return them to the Client via the
established secure channel.

5.6.3 Security Analysis

Maiden contains the leakage of Update and Search operations. We formulate the
leakage and define RealA(λ) and a IdealA,S(λ) game for an adaptive adversary
A and a polynomial time simulator S with the security parameter λ as follows.

Let L be a stateful leakage function L = (LStp,LUpdt,LSrch,Lhw), where the
first three functions are inherited from DSSE Server. They define the information
exposed to the Server in Setup, Update and Search, respectively. Besides, Lhw
defines the inherent leakage of the used SGX Enclave communicating with the
Server. In Setup, Maiden only leaks the data structure of MI (i.e., the encrypted
index). We note that the state map Mc is protected by SGX Enclave and
it is not exposed to the Server. In Update(op = {add, del}, in), Maiden leaks
the data access pattern TMI

of encrypted entries to be inserted in MI . Hence,
LUpdt(op, in) = {TMI

}. In Search(w), Maiden leaks the access pattern on MI when
the Enclave queries nw, named apMI

(w). Then, formally LSrch(w) = {apMI
(w)}.

We define Lhw(MI) as the hardware leakage during Update and Search. That
includes memory addresses, the time log, and the size of the manipulated memory
area. We write Lhw.Updt(op, in)← (MI)

Updt, which outputs the trace τ of {(v, s, t)}
on MI , where v is the encrypted data inserted into MI , s is the memory size of
v, and t is the accessing timestamp of op. We note Lhw.Srch(w) ← (MI)

Srch(w),
which also leaks the trace τ of entries matching w in MI . We let EDBk be the
state of EDB after updated by the k-th operation (op, in)k.

Definition 16. Consider Maiden scheme that consists of three protocols Setup,
Update, and Search. Consider the probabilistic experiments RealA(λ) and
IdealA,S(λ), whereas A is a stateful adversary, and S is a stateful simulator
that gets the leakage function L.

RealA(λ): The challenger runs Setup(1λ). Then, A chooses a database
DB = {doci}i∈Z and makes a polynomial number of Updates (addition/deletion)
with (op, in), where Z is a natural number of documents, and (op = add, in =
{doci, idi}) or (op = del, in = {doc′, idi}). Accordingly, the challenger runs
those updates with Update(op, in) and eventually returns the tuple (MI)

Updt to A.
After that, A adaptively chooses the keyword w (resp., (op, in)) to search (resp.,
update). In response, the challenger runs Search(w) (resp., Update(op,in)) and
returns the transcript of each operation. The challenger also returns (MI)

Srch to
A. Finally, A outputs a bit b.

101

IdealA,S(λ): The challenger runs S(LStp(1λ)). A chooses a DB = {doci}i∈Z ,
and makes a polynomial number of Updates (addition/deletion) with (op, in) to
the S, where Z is a natural number of documents, and (op = add, in = {doci, idi})
or (op = del, in = {doc′, idi}) By using LUpdt and Lhw.Updt, S creates a tuple of
(MI) and send them to the Server. Then, A adaptively chooses the keyword w
(resp., (op, in)) to search (resp., update). The challenger returns the transcript
simulated by S(LSrch(w),Lhw.Srch(w)) (resp., S(LUpdt(op, in),Lhw.Updt(op, in))).
Finally, A returns a bit b.

We say Maiden is L-secure against adaptive chosen-keyword attacks if for all
probabilistic polynomial-time algorithms A, there exist a PPT simulator S such
that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ negl(λ)

Theorem 4. Assuming the map Mc is secure and protected by SGX Enclave,
and the communication between the Client and the Enclave is secure, Maiden
is an adaptively-secure SSE scheme with (LUpdt(op, in) = op, Lhw.Updt(op, in) =
(MI)

Updt), and (LSrch(w) = TimeDB(w), Lhw.Srch(w) = (MI)
Srch).

Proof. We now prove Theorem 4 by describing a PPT simulator S for which
a PPT adversary A can distinguish RealA(λ) and IdealA,S(λ) with negligible
probability. We now describe S as follows:

• S.Init(1λ). It generates a random key K̃ = (k̃Σ, k̃BF) to simulate the key
components that the enclave contains (see Figure 13). S also creates an
empty MI . It then sets EDB0 ←MI and sends it to the Server, and set stS
to null.

• S.Update(stS ,LUpdt(op, in)k,Lhw.Updt(op, in)k,EDBk−1). Recall that
LUpdt(op, in)k = {TMI

}k, and Lhw.Updt(op, in)k = τk. A selects a doc with id
and send a tuple of (op = add, in = {doc, id}) or (op = del, in = {doc′, id})
to S, where doc′ is a dummy doc. Upon receiving doc, S computes new
entries and sends them to the Server for the insertion to MI . We note
that S computes these new entries by simulating the output of the secure
hardware (i.e., TEE). To do so, the simulator first takes encrypted data
in {TMI

}k and decrypts them using k̃Σ. Based on the timestamps and
data sizes revealed in τk, S tries to locally updates stS , and generates
new tokens for (w, id) pairs in doc. It then sends these new tokens to the
Server.

• S.Search(stS ,LSrch(w)k,Lhw.Srch(w)k,EDBk−1). A choose a keyword w and
sends it to S. Recall that LSrch(w)k = TimeDB(w). Then, with Lhw.Srch(w)
and stS , S simulates the outputs of the secure hardware and sends them to
the Server. Finally, let Rw be the set of document identifiers corresponding
to the queried keyword, as derived from TimeDB(w). S sends Rw to A.

102

Consider the IdealA,S(λ) game with the described simulator S, the produced
transcript is indistinguishable from the one produced during RealA(λ) as the
map MI get entries inserted in the same document addition manner, the state
protected by secure TEE, and the document identifiers of the query keyword are
also the same.

We note that A knows the timestamps when encrypted entries are inserted
into the index map MI in both addition/deletion Updates, but A cannot distin-
guish the Update is addition or deletion. The reason is the map MI always get
entries inserted during the doc addition/deletion under A’s view. During Search,
Maiden only reveals nw during the query on MI . The rest information of dw and
Mc are within the Enclave. Therefore, A cannot match the accessed positions
in Search to any previous document Update on particular w. This ensures that
Maiden only reveals TimeDB(w).

5.7 Evaluation of Type-I Backward privacy

SGX-supported schemes for evaluation. We develop Maiden and two base-
line schemes Orion? and Fort for comparison by using Intel SGX SDK and C++4.

The prototype of Maiden contains three components of Client, the Enclave,
and the Server. We leverage standard ecalls/ocalls interfaces provided by SGX
SDK to implement the communication between these components. In all experi-
ments, we set a batch size to 1× 104 when the Enclave sends query tokens to the
Server during Search via the ocall interface. Note that, we use the same Bloom
filter’s configuration for all the following used datasets, with the false positive
rate 10−4 and it can store up to 1.5× 107 pairs.

For baseline schemes, we first choose Orion [80] since it is publicly known
as the most optimal non-TEE supported Type-I backward-private scheme with
O(nwlog

2N) search latency. We migrate the Client of Orion to the Enclave,
and name this ported version as Orion?. The Enclave in Orion? stores the map
LastInd[w] that maintains the most recently inserted file identifier matching
w, and the map UpdtCnt[w] tracking the total number of currently matched
documents of w. The Server in Orion? maintains two oblivious maps (OMAPs)
to facilitate the Update and Search operations, as presented in the original scheme.
They are OMAPupd and OMAPsrc, respectively. We carefully port the implemen-
tation of Orion to the Enclave and also construct the OMAPupd and OMAPsrc

in the Server by using oblivious data structures initiated by AVL trees [80], as
introduced in the original Orion scheme. We refer readers to the original work [80]
for the detailed protocols of the scheme.

In addition, we also implement the Enclave component of Fort during Search
for comparison since the implementation of Fort is not publicly available. In

4Source code: https://github.com/MonashCybersecurityLab/SGXSSE

https://github.com/MonashCybersecurityLab/SGXSSE

103

Table 5.9: Statistics of the datasets used in the evaluation of Type-I.

Name # of keywords # of docs # of keyword-doc pairs
DS1 500 10, 000 119, 286
DS2 1, 000 1, 000, 000 8, 281, 451

Enron 23, 355 85, 000 8, 895, 865

Table 5.10: Avg. (µs) for adding/deleting a (w, id) pair when adding/deleting a
portion of DS1 and DS2.

Scheme
Add 100% docs Del 25% docs Del 50% docs Del 75% docs
DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

Maiden 19 43 1.24 1.4 2.09 2.4 3.01 3.3
Orion? 361 601 575 5,059 820 8,564.1 1,021.3 11,495.1

Table 5.11: Number of ocalls for data communication between Enclave and Server in
adding/deleting a portion of documents

Scheme
Add 100% docs Del 25% docs Del 50% docs Del 75% docs
DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

Maiden 12 829 1? 1? 1? 1? 1? 1?

Orion? 8.9× 104 6.2× 106 7.86× 105 1.34× 107 9.2× 105 1.7× 107 3.2× 106 3.6× 107

?: Maiden performs 1 ocall per doc in non-batch setting to add dummy entries to MI

details, for a given sampled Stashdel cached in the Enclave, we ask the Enclave
to generate deleted/undeleted query tokens for a query keyword w. Then, the
Enclave linearly scans Stashdel to identify and discard a portion of the deleted
tokens existing in the Stashdel.We only measure the scanning time and consider
it as the search latency for Fort.

For both three schemes, we leverage built-in cryptographic primitives in sgx -

tcrypto library to implement required cryptographic operations. The prototypes
of these schemes are deployed into an Intel SGX-equipped station with Intel core
i7 2.6 GHz and 32 GB RAM.

Experimental datasets: We use two synthesis datasets (a small DS1: 70 MB,
and a large DS2: 4 GB), and a portion of public Enron email dataset5 (895
MB). The synthesis datasets are generated from the American English keyword
frequency data and sampled by using the Zipf’s law distribution. With DS1,
the keyword’s state map Mc of Maiden can fit in the limited memory protected
by SGX Enclave (i.e, 98 MB), while the map causes paging overhead when DS2
is used. The paging overhead is essential to enable Enclave Page Cache (EPC)
perform page swaps of Intel SGX [84]. Table 5.9 summarises these used datasets.

5Enron email dataset: https://www.cs.cmu.edu/~./enron/

https://www.cs.cmu.edu/~./enron/

104

5.7.1 The performance on the Synthesis Datasets

Insertion and Deletion. We first evaluate the time for insertion and deletion
an (w, id) pair under different schemes when using datasets DS1 and DS2. As
shown in Table 5.10, Orion? takes 361 and 601 µs to insert a pair to DS1 and
DS2, respectively. That latency is about (13 ∼ 36)× significantly higher than
Maiden. The reason is because the Enclave in Orion? needs to update/traverse
the AVL tree structures of both OMAPupd and OMAPsrc stored in the Server.
Table 5.11 confirms that the communication (i.e.,ocalls) in Orion? during addition
is about (4.6× 103 ∼ 1.4× 105)× more than Maiden. It is clearly that Maiden is
more efficient because it only updates the local state map Mc within the Enclave.
With Maiden, the number of ocalls contacting to the Server is negligible (12 ocalls
with DS1, 829 ocalls with DS2). This communication is purely made when the
Enclave inserts encrypted entries to the index map MI .

Similar with the addition, Orion? operates on both OMAPupd and OMAPsrc

to retrieve/update new state for every (w, id) pairs with the recently inserted
document identifiers. Therefore, the time to delete a document with Orion? scales
to the number of keywords in that document. Averagely, Orion? takes 6, 325 ms
to delete a document containing 8 ∼ 14 keywords. Table 5.11 reports the latency
when deleting a portion of documents in DS1 and DS2. In contrast, Maiden takes
a negligible time cost to delete a document. The main reason behind it is because
Maiden only tracks the identifiers of those deleted documents within the Enclave.
It only takes 1 ocall per a deleted document to insert dummy entries into the
index map MI to hide the operation.
Query Delay. Next, we monitor the search latency between Fort, Orion?, and
Maiden when using datasets DS1 and DS2. We choose to query the top-10
keywords in the datasets after deleting a portion of documents. With DS1, we
insert 1 × 104 documents, then delete 25%, 50%, and 75% of the documents,
respectively. Similarly, with DS2, we insert 1 × 106 documents, and also delete
these portions of the documents. Figure 5.7 reports the search latency under
different schemes. The result shows that Fort has the downward trend when
querying less-frequent keywords. The reason is because those keywords have
fewer number of undeleted/deleted tokens to be scanned against the map Stashdel
stored in the Enclave. Averagely, scanning a token (w, id) of the most frequent
keyword in DS1 takes 18 µs when Stashdel = 1 × 105. In the larger dataset
DS2, this cost is averagely 284.2 µs to scan just an (w, id) pair for the most
frequent keyword when Stashdel = 6.3 × 106. The more documents deleted, the
longer time Fort takes to scan the tokens of query keywords. Querying the most
frequent keyword in DS2 after deleting 75% documents takes more than 2× 106

ms. With Orion?, the scheme takes 1.4× 103 ms less than Fort to query the most
frequent keyword w (with the frequency of 1×104) in the small dataset DS1 after
deleting 25% documents. The reason is because Orion? only computes the tokens
of currently documents matching the query keyword w. However, the latency to

105

Dataset DS1 Dataset DS2

w1 w5 w10

10

5×101

5×102
1×103
2×103

Ti
m
e
(m

s)

Maiden Orion⋆ Fort

w1 w5 w10
5×103

1×105

5×105
1×106
2×106

Ti
m
e
(m

s)

Maiden Orion⋆ Fort

(a) 25% deletion

w1 w5 w10

10

5×101

5×102
1×103

2.1×103

Ti
m
e
(m

s)

Maiden Orion⋆ Fort

w1 w5 w10
5×103

1×105

5×105
1×106

2.1×106

Ti
m
e
(m

s)

Maiden Orion⋆ Fort

(b) 50% deletion

w1 w5 w10

10

5×101

5×102
1×103

2.1×103

Ti
m
e
(m

s)

Maiden Orion⋆ Fort

w1 w5 w10
5×103

1×105

5×105
1×106

2.1×106

Ti
m
e
(m

s)

Maiden Orion⋆ Fort

(c) 75% deletion

Figure 5.7: The query delay of querying the i-th most frequent keyword in the DS1
and DS2 datasets after deleting a portion of documents

106

query documents matching a keyword in the larger dataset DS2 is non-trivial. It
takes about 9.2× 105 ms to query a keyword in the top-10 frequent keywords in
DS2 after deleting 75% documents. The reason for it is because the Enclave in
Orion? needs to retrieve matching nodes from a large AVL tree (with 223 AVL
nodes in DS2) of OMAPsrc, where the tree’s nodes are stored in the random
positions of the underlying ORAM structure stored in the Server. In addition,
the oblivious accesses in Orion? also include the cost of mapping visited AVL
nodes to new ORAM positions, and encrypting/writing them back to the Server.

Figure 5.7 shows that Maiden completely outperforms Fort and Orion? in both
DS1 and DS2. With the small dataset DS1, querying the most frequency keyword
with Maiden is 10× and 47× faster than Orion? and Fort, respectively, after
deleting 25% documents in DS1. With the large dataset DS2, the difference
is about 35× and 174× faster than Orion? and Fort, respectively. When deleting
75% documents in DS2, Maiden is more efficient than Orion? and Fort about
12× and 95× when querying the most frequent keyword. Even when querying
the 10-th frequent keyword, that difference varies from 45 ∼ 175×. Note that,
the main difference in the search of Maiden compared to others is how it gen-
erates the query tokens of currently matching documents for query keywords.
Unlike Fort, Maiden does not require intensive computation (i.e. linear scanning
undeleted/deleted tokens of query keywords against the large Stashdel), neither
does Maiden perform oblivious accesses to the Server to identify the state of
currently matching identifiers like Orion?. We note that membership testing with
Bloom filter in Search of Maiden is O(1). With tracked deleted identifiers in the
list d, the Enclave in Maiden can directly retrieve the deleted state of deleted
documents matching the query keyword. The difference between DS1 and DS2
is that the size of the state map Mc in Maiden triggers paging overhead in SGX
Enclave. We monitor that Mc in DS1 takes 2.27 MB, while the latter exceeds
157 MB. The paging cost is added to the search latency of Maiden when the EPC
swaps pages to access the states of deleted (w, id) from the map. Nonetheless,
with paging access, we observe that Maiden is averagely 75× and 90× faster
than Orion? and Fort when querying the top-10 frequent keywords in DS2 after
deleting 25% documents of the dataset. With 75% documents deleted in DS2,
the difference is in the range 70 ∼ 72× faster than Orion? and Fort.
Memory Storage. Finally, we present the memory storage in the Enclave of the
three schemes. As shown in Figure 5.8, Maiden takes the largest memory, about
41 MB, among others when using dataset DS1. The main reason is because
the storage of Mc (i.e., 2.27 MB) and the configured Bloom filter 38 MB (i.e,
Pe = 10−4) . When using DS2, the memory storage is about 200 MB due to
the large state map Mc (i.e., 157 MB). We note that, deleting more documents,
i.e., 75% documents in DS1 and DS2 does not affect significantly the memory
consumption in the Enclave of Maiden. The reason is because only the identifiers
of these deleted documents are appended in the list d of the scheme. Note that,
the size of d is only about 30 KB and 3 MB when deleting 75% documents

107

Fort Maiden Orion ⋆

1
2

41

Pe
rm

an
en

t⋆M
em

or
y⋆
(M

B)

(a) DS1

Fort Maiden Orion ⋆2

1×102
2×102

Pe
rm

an
en

t⋆M
em

or
y⋆
(M

B)

(b) DS2

Figure 5.8: The permanent memory in the Enclave in Type-I evaluation.

w1 w5 w10
1×102

5×1021×103

1×1052×1054.5×105

Ti
m
e
(m

s)

Maiden Orion⋆ Fort

(a) Query latency

Fort Maiden Orion ⋆
2

1×102
2×102

Pe
rm

an
en

t⋆M
em

or
y⋆
(M

B)

(b) Memory Storage

Figure 5.9: Query latency and memory storage between schemes in Type-I evaluation

in DS1 and DS2, respectively. With Orion?, the memory consumption in the
Enclave is negligible because the scheme only maintains the number of current
documents and the most recently inserted document identifiers matching every
keyword in the maps UpdtCnt[w] and LastInd[w], respectively. With Fort, the
scheme maintains Stashdel = Σ∀wdw in the Enclave. Hence, with the DS2, deleting
25% documents requires about 121 MB to store 6.4× 106 deleted tokens.

5.7.2 The performance on the Enron Dataset

Query Latency. We use a portion of real world Enron email dataset to demon-
strate the efficient of Maiden when the paging overhead in SGX Enclave occurs.
We insert 85, 000 email documents and test the average query delay with a small
deletion portion 25%. With this deletion portion, there is no paging overhead in
Fort. Figure 5.9(a) reports the query delay when querying the top-10 frequent
keyword in Enron dataset. The result shows that Maiden is averagely 291× and
575× faster than Orion? and Fort, respectively. We obtain that Maiden is more
efficient than Fort and Orion? during Search with the used Enron dataset. The
reason is because Enron actually has more keywords in the same deletion portion

108

compared to the used dataset DS2 (see Table 5.9). With DS2, the rate of cache hit
in Fort is 1.56×10−1, an order of magnitude higher than that rate (i.e., 1.52×10−2)
when Enron dataset is used. We note that reducing the false positive rate Pe of
the Bloom filter used in Maiden does not change much its search performance.
Changing Pe = 10−6 from Pe = 10−4, it only incurs averagely an additional 120ms
latency to search the top-10 frequent keywords.

Memory Storage. Clearly, Maiden needs the largest SGX Enclave memory
to store the state map Mc of the all (w, id) pairs in the dataset (∼ 170 MB).
Fort consumes a minimal storage Stashdel = 44 MB to store 2.3 × 106 deleted
tokens. The limitation of Maiden is the memory bottleneck in the SGX Enclave.
In the future work, we will improve the memory efficient of the scheme. In the
meantime, we expect the new version Intel SGXv2 to increase the size of the
enclave page cache more greatly and support dynamic page allocation [133].

5.8 SGX-Related Attacks and Defence

With Intel SGX’s security guarantee, CPU is the only trustworthy component
where enclave’s code and data are handled in plain-text format, all other com-
ponents including operating system (OS), memory, hypervisor, memory bus,
etc. are treated as untrusted. Whenever the code/data are moved out of the
CPU, i.e., into untrusted DRAM memory space, they are encrypted and integrity
protected. However, there have been many side-channel attacks showing that it
is not impossible to infer/steal the secrets protected by the SGX enclaves. Those
attacks leverage the side information revealed by cache [130, 134, 135], page
table [131, 136, 137], transient execution [30, 138] and others [139, 140, 141]. In
this section, we discuss significant SGX-related attacks and existing defences, and
consider how they can be applied to our proposed scheme.

5.8.1 Cache Side-channel Attacks and Defence

While enclave’s code and data are encrypted and authenticated by the CPU,
they are still stored unencrypted in CPU’s caches and registers to facilitate the
execution. Therefore, by monitoring the cache channels, an adversary can learn
fine-grained data leakage of the enclave. These cache-based attacks have been in-
vestigated at L1/L2 caches (on the same shared CPU core with hyper-threading)
and L3 cache (cross-CPU core attacks). With shared L1/L2 cache channels, an
adversarial process and a victim enclave process interleaved on the same physical
CPU core, sharing both L1 cache that stores code and data, and L2 cache that
unifies code and data at fine granularity level. Therefore, the adversary can infer
the memory content of the victim enclave via the cache data access pattern.
This is also known as time-sliced cache attacks [130, 134, 142]. With L3 cache
channel, i.e., the last level cache (LLC) shared between CPU-cores, Schwartz et

109

al. [135] developed an unprivileged program injected in a malicious enclave to
conceal the secret key of a co-located victim enclave running on the same host
machine. The simplest way to prevent the adversarial hyperthread from accessing
to the shared L1/L2 cache channels of the victim enclave’s process is by disabling
hyper-threading [143]. However, this solution is not highly recommended since it
obstructs other applications’ performance and restricts CPUID instruction access
from the victim enclave. Alternatively, preferred solutions to mitigate these cache
channel attacks are transaction memory randomisation [144, 145] and oblivious
execution approaches [146, 147, 148] to obfuscate the cache data access pattern,
and/or using Varys-protected run-time environment [149].
Transaction memory randomisation: Dr. SGX [144] applies a hardening
randomisation technique to all data locations in enclave’s memory at cache-line
granularity. By randomising every eight data blocks at once, it makes the cache
tracing of enclave’s data is harder. Cloak [145] is also another mitigation solution
using memory transaction technique. It uses Intel Transactional Synchronization
Extension (TSX) to construct atomic memory operations that obliviously hide
the memory access of enclave’s data. The idea is that the enclave is requested to
touch all cache lines before it accesses to the real data. Therefore, an adversary,
monitoring the cache channel, learns nothing about the enclave’s data access.
We note that Dr. SGX is built as a compiler tool and Cloak simply just requires
annotating enclave’s data. Therefore, they can be applied directly to current
SGX-supported (backward-private) SE schemes, (i.e., Maiden, Fort [83], Orion?,
and SGX-SE1 and SGX-SE2 [2]), without changing the schemes’ design. As a
trade-off, they require an increasing overhead of averagely 4.8× for Dr. SGX, and
2.48× for Cloak, respectively. The penalty overhead is added to the complexity
of enclave’s computation in Update and Search operations for all the schemes.
Oblivious memory execution : Oblivious execution is also another approach
to hide all enclave’s code and data access. For example, Raccoon [146] provides
annotation guides to hide the data access regarding different data sizes in the
enclave. For small-size secrets, the data access is hidden by using Path ORAM.
Otherwise, Raccoon uses Advanced Vector Extensions (AVX) intrinsic operations
provided by Intel to stream over large data structures. In addition, Racoon
also obfuscates control flows by using oblivious operation primitives extended
from CMOV x86 instructions. Applying Racoon to current backward-private
SE schemes’ operations will add about 16× penalty overhead. We also note
that this solution can be plugged directly to the current implementation of
the schemes, without changing the design. Alternatively, ZeroTrace [147] also
proposes efficient oblivious memory primitives by using Circuit-ORAM. It runs
on top of a software memory controller. Therefore, applying ZeroTrace to the
implementation of the backward-private schemes requires a minor modification of
using the memory controller interface for all enclave’s accesses, without changing
the (backward-private) SE schemes’ implementation design. Other oblivious
primitives of memory assignments and comparisons, and oblivious array ac-

110

cess [148] can be directly adapted to the schemes’ implementation. Again, using
oblivious data structures like ORAM will reduce the efficiency, and designing an
TEE-based SSE schemes that can address memory access side-channels without
using ORAM is still an open question.

Side-channel protected runtime environment: To mitigate the cache-channel
attacks, Varys [149] provides a trusted core reservation technique that ensures the
CPU-core only shares its caches to Varys’s benign threads, preventing adversarial
threads from using the same caches. In particular, for single-thread application
like Maiden, Fort [83], Orion?, and SGX-SE1 and SGX-SE2 [2], we realise that Varys
would simply pair that application thread with a service thread to reserve the
complete core, and schedule it for runtime monitoring. Varys was reportedly to
incur 15% penalty overhead in previous case studies [149]. Therefore, we assume
that it would not impact much on the performance of these SE schemes. In
addition, Varys is built as a Low Level Virtual Machine (LLVM)-based compiler;
therefore, it also does not affect the schemes’ code structure.

5.8.2 Page-Table Side-Channel Attacks and Defence

Apart from exploiting CPU caches, enclave’s code and data are stored in Enclave
Page Cache (EPC), which is the a subset of a contiguous Processor Reserved
Memory (PRM) of DRAM. Every 4KB enclave page of code and data is allocated
from the EPC (including paging). With SGX design, the page table is managed
by the (untrusted) OS. Therefore, it reveals the page-level access patterns of the
victim enclave. The malicious OS can trigger page faults from requested pages
during the enclave execution to learn the enclave’s control flow and memory
access. That page fault channel is sufficiently informative to extract the rich text
information [137], or secret key bits [131] of victim enclaves. While increasing
high page fault rate, these attacks consequently trigger asynchronous enclave exit
(AEX) to report the accessing address of the faulting page to the (malicious) OS
(i.e., even up to 11000 exits per second [136]). Therefore, a common system-level
solution to thwart page-table side-channel attacks is to monitor and detect AEXs
due to interrupts of page faults, like T-SGX [150] and Déjá Vu [151]. This
solution allows the enclave to stop its execution if the detection occurs. Using
this detection solution is a separated configuration and it also does not affect the
designs of the SE schemes. Alternatively, Varys [149], an LLVM-based compiler,
also introduces a monitoring mechanism for enclave exits so that the application
thread running in the enclave can be terminated, without revealing further faulty
pages’ addresses to the OS. Other studies [152, 153] also provide a self-verification
mechanism to the enclave when page faults occur with an extra 1.2 ∼ 2.4×
overhead. We note that these compiler-based tools do not cause any impact on
the SE scheme’s code structure and implementation.

111

5.8.3 Transient Execution Attacks and Defence

Recent works also exploit the CPU execution design to steal enclave’s secrets. The
execution of a program in Intel CPUs (i.e., Intel’s Skylake microarchitecture)
is facilitated by two parts including a frontend component and an Execution
Engine. While the frontend performs speculative execution predicting branch
instruction to speed up the program’s execution, the Execution Engine can ex-
ecute instructions in out-of-order fashion so that multiple instructions can be
executed in parallel. It has been shown that both these two parts can be exploited.
For instance, Chen et al. [30] demonstrated SgxPectre attack that poisons the
branch prediction of a victim enclave so that malicious injected secret-leaking
instructions can be executed when the victim enclave runs. Unlike SgxPectre
attack, Foreshadow [138] exploits the out-of-order execution to access even pages
where the victim enclave’s memory lies in. It exploits OS’s system calls to trigger
page faults and then uses Meltdown-like technique to access enclave’s data before
the page fault is handled. After that, it uses caching side-channel attack (i.e.,
Flush+Reload [129]) to read enclave’s secrets from CPU’s cache. We note that
these attacks cannot solely mitigated by software solutions. It would include
updates to OS, hypervisors, and CPU microcode. We refer interested readers
to [154, 155] for additional details about these hardware countermeasures.

5.8.4 Other Attacks and Defence

Apart from side-channel and transient execution attacks, recent studies found
that SGX Enclave is also vulnerable to memory-corruption attacks [139, 140].
These attacks often assume that the adversary has knowledge of vulnerabilities
in the enclave’s legacy code (i.e., stack overflow, data type confusion, format
string vulnerability, etc). Therefore, the untrusted code outside the enclave
could pass parameters or invokes specific functions in the enclave, which sub-
sequently perform sensitive computations. Since SGX instructions of ecalls (i.e.,
EENTER) and ocalls (i.e., EEXIT) do not clear CPU registers, thereby they
allow the execution of (vulnerable) trusted code in the enclave to pass sensitive
results/access to untrusted code (i.e., gaining access to CPU registers [139], or
exfiltrating confidential code and data from enclave memory [140]). Mitigation
solutions could be either 1) restricting the enclave’s permission from accessing
pages containing malicious code injection [156], 2) providing memory-safe access
for variables/objects in SGX [157], 3) designing memory randomisation scheme
for SGX enclave [158], or 4) static host-to-enclave code analysis tool [159]. We
note that memory-corruption attacks are out of our focus since we consider that
SE schemes used in our experiment and evaluation are memory-safe implemen-
tation.

Finally, adversaries can rely on power management software [141] to induce
memory errors and cause overflows in the SGX runtime. Particularly, they can

112

change protected values in the EPC region and direct in-enclave pointers to
untrusted memory via this attack. Unlike prior attacks, this attack does not
require any knowledge on code/memory. Fortunately, the issue has been fixed by
recent microcode and BIOS updates offered by Intel [160].

5.8.5 Discussion

In this section, we resort to secure enclaves to design Maiden, the first strong
backward-private DSSE scheme without relying on ORAM. Our key idea is to
keep track of the states of updates and the deletion information inside the secure
enclave to prevent the leakage from the server. To speed up, we further leverage
a compressed data structure to maintain a sketch of addition operations in the
enclave to facilitate the fast generation of search tokens of non-deleted data. We
perform comprehensive evaluations on both synthetic and real-world datasets.
Our results confirm that Maiden outperforms the prior work.

Chapter 6

Conclusion

This thesis presented new efficient design of dynamic searchable encryption against
attacks that exploit the inherent leakage of update (i.e., addition, deletion) and
search operations. This last chapter summarises the results presented previously,
and open new research directions.

6.1 Summary of the Results

In this thesis, we first explored new threat models against dynamic SE based on
leakage-abuse attacks, and new efficient design to mitigate the attacks. Then,
we presented new efficient design to achieve the advanced security notions of
forward and backward privacy to reduce the leakage of addition and deletion
updates during search.

In chapter 3, we saw that leakage-abuse attacks bring the new attack assump-
tion of auxiliary knowledge to enable the adversary break the claimed security of
SE in static setting. Thus, in chapter 4, we conceptualised the attacks in dynamic
setting by presenting two new threat models of non-persistent and persistent
adversaries. We defined new constraints to capture the knowledge of these
adversaries and provided new security definitions for dynamic SE (section 4.4).
Accordingly, we designed new padding countermeasures to mitigate them. Having
not seen any practical encrypted database system able to mitigate leakage-abuse
attacks, we employed the dynamic SE framework and developed ShieldDB, a
streaming encrypted database, which supports keyword search over streaming
encrypted data (section 4.5). We showed that our proposed padding strategy
is practical and deployable to real-world streaming applications/systems that
require the privacy preservation on data stream. Our proposed design can be
easily applied to any existing dynamic SE scheme in the literature.

In chapter 5, we provided new efficient design of dynamic SE to support strong
forward and Type-II and Type-I backward privacy. Namely, strong backward
privacy enhances the security of a dynamic SE by not revealing the historal data

113

114

deletion to the server. We carefully analysed the limitations of the prior forward
and backward-private constructions, with and without using trusted execution
support (TEE). We find that non-TEE constructions suffer high communication
overhead between the client and the server due to either multiple round-trip com-
munication or ORAM bandwidth overhead. In addition, existing TEE-supported
constructions have high search latency due to the computation bottleneck in
the SGX enclave. Therefore, we proposed SGX-SE1 and SGX-SE2 for Type-II
backward privacy (section 5.4). For Type-I, we also proposed Maiden without
relying on ORAM (section 5.6). Our proposed designs reduce the overhead
computation of the SGX enclave and also reduces the communication between
the enclave and server. We implemented prior works and our schemes, and
conducted a detailed evaluation on the performance under different schemes.
The results show that our designs are more efficient in the update operation
(addition/deletion) and query latency.

6.2 Future Research Directions

6.2.1 More theoritical directions

An interesting opening question for leakage-abuse attacks in dynamic SSE in
general is finding efficient padding solution with low computation and storage
overhead. If we recall from section 4.6, the padding dataset used for streaming
operations is essentially generated using heuristic algorithm in setup operation.
Another limitation is the storage overhead of the dataset until it is used com-
pletely via padding strategies. Therefore, future studies may investigate how
to dynamically and adaptively generate the padding dataset upon the data has
been streamed. This leads to the question of efficient design to achieve strong
forward and backward privacy. Indeed, we believe that the asymptotic efficient
of the addition and deletion for new entries in the padding dataset can leverage
the design of Maiden. The reason is that Maiden does not rely on ORAM to do
addition/deletion, and the search latency only depends on the query result. It is
clear that the problem of SGX memory overhead caused by Maiden is no longer
a matter for new generation of TEE.

Although named as “more theoretical questions”, the answers to these ques-
tions would pave the way for various real-world applications. Therefore, they
should not be seen and investigated independently without the real application
scenarios.

6.2.2 More application-oriented directions

Using TEE has been shown as a potential approach to provide and accelerate
the secure computation environment in the untrusted server. On the other

115

hand, oblivious-RAM (ORAM) is an quintessential approach to enable encrypted
search without exposing access pattern but it is shown as an expensive tool.
Many privacy-preserving ORAM-base schemes and primitives have been proposed
to hide the data access patterns in practical applications/settings, such as file
sharing in peer-to-peer network or multi-server ORAM setting. Such applications
often assume the peers/clients are trusted so that the data could be returned back
for background operations, such as data routing or data re-encryption. Relaxing
such security assumption could make the applications/settings more practical.
One straightforward direction is considering the semi-honest peers/clients, where
the data access pattern at those parties should be protected. Therefore, how
could TEE be involved in such applications require further investigation and
experiments. In addition, future studies can investigate how TEE and DSSE
can be involved to accelerate user’s privacy enhancement in existing network
distributed systems [161, 162, 163, 164, 165, 166, 167, 168, 128, 59, 169] and
learning systems [170, 171, 172, 173].

116

References

[1] Vo, V., Yuan, X., Sun, S.F., Liu, J.K., Nepal, S., Wang, C.: Shielddb: An
encrypted document database with padding countermeasures. IEEE TKDE
(2021)

[2] Vo, V., Lai, S., Yuan, X., Sun, S.F., Nepal, S., Liu, J.K.: Accelerating forward
and backward private searchable encryption using trusted execution. In: ACNS.
(2020)

[3] Vo, V., Lai, S., Yuan, X., Nepal, S., Liu, J.K.: Towards efficient and strong
backward private searchable encryption with secure enclaves. In: ACNS’21.
(2021)

[4] Bhargavan, K., Boureanu, I., Fouque, P.A., Onete, C., Richard, B.: Content
delivery over tls: a cryptographic analysis of keyless ssl. In: 2017 IEEE European
Symposium on Security and Privacy (EuroS P). (2017)

[5] Information is Beautiful: World’s Biggest Data Breaches. Online
at http://www.informationisbeautiful.net/visualizations/

worlds-biggest-data-breaches-hacks/ (2016)

[6] IBM: 2017 ponemon cost of data breach study - australia-specific report. Online
at https://www-03.ibm.com/security/au/en/data-breach/ (2019)

[7] Verizon: 2020 data breach investigations report. Online at https://

enterprise.verizon.com/en-au/resources/reports/dbir/ (2020)

[8] Australian Government: Australia’s cyber security strategy. Online at https://
cybersecuritystrategy.pmc.gov.au/assets/img/PMC-Cyber-Strategy.pdf

(2016)

[9] Australian Government: Science and research priorities. Online at
http://www.science.gov.au/scienceGov/ScienceAndResearchPriorities/

Pages/default.aspx (2015)

[10] Liu, C., Chen, J., Yang, L.T., Zhang, X., Yang, C., Ranjan, R., Kotagiri, R.:
Authorized public auditing of dynamic big data storage on cloud with efficient
verifiable fine-grained updates. IEEE TPDS (2014)

[11] Fadolalkarim, D., Bertino, E., Sallam, A.: An anomaly detection system for
the protection of relational database systems against data leakage by application
programs. In: Proc. IEEE ICDE. (2020)

[12] Ji, Y., Xu, C., Xu, J., Hu, H.: vabs: Towards verifiable attribute-based search
over shared cloud data. In: Proc. IEEE ICDE ’19. (2019)

[13] Yi, X., Paulet, R., Bertino, E., Varadharajan, V.: Practical approximate k
nearest neighbor queries with location and query privacy. IEEE TKDE (2016)

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www-03.ibm.com/security/au/en/data-breach/
https://enterprise.verizon.com/en-au/resources/reports/dbir/
https://enterprise.verizon.com/en-au/resources/reports/dbir/
https://cybersecuritystrategy.pmc.gov.au/assets/img/PMC-Cyber-Strategy.pdf
https://cybersecuritystrategy.pmc.gov.au/assets/img/PMC-Cyber-Strategy.pdf
http://www.science.gov.au/scienceGov/ScienceAndResearchPriorities/Pages/default.aspx
http://www.science.gov.au/scienceGov/ScienceAndResearchPriorities/Pages/default.aspx

117

[14] Commission, F.T.: How to Comply with the Privacy of Consumer
Financial Information Rule of the Gramm-Leach-Bliley Act. Online
at https://www.ftc.gov/tips-advice/business-center/guidance/

how-comply-privacy-consumer-financial-information-rule-gramm (2000)

[15] of The European Parliament, R.E., of the Council: Chapter 4 Controller and
processor. Online at https://gdpr-info.eu/chapter-4/ (2006)

[16] of The European Parliament, R.E., of the Council: Australian
Privacy Principles quick reference. Online at https://

www.oaic.gov.au/privacy/australian-privacy-principles/

australian-privacy-principles-quick-reference (1988)

[17] Benny Chor, Oded Goldreich, E.K., Sudan, M.: Private information retrieval.
In: 36th FOCS. IEEE Computer Society Press’95. (1995)

[18] Benny Chor, Oded Goldreich, E.K., Sudan, M.: Private information retrieval.
Journal of the ACM (1998) 965–982

[19] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: 38th FOCS. IEEE Computer
Society Press’97. (1997)

[20] Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: EUROCRYPT’99. (1999)

[21] Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate
private information retrieval from homomorphic encryption. In: PET’15. (2015)

[22] Carlos Aguilar-Melchor, Joris Barrier, L.F.M.O.K.: Xpir: Private information
retrieval for everyone. In: PET’16. (2016)

[23] Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
rams. Journal of the ACM (JACM) 43(3) (1996) 431–473

[24] Zahur, S., Wang, X., Raykova, M., Gascón, A., Doerner, J., Evans, D., Katz, J.:
Revisiting square-root oram: Efficient random access in multi-party computation.
In: 2016 IEEE Symposium on Security and Privacy (SP). (2016)

[25] Stefanov, E., Shi, E., Song, D.: Towards practical oblivious ram. (2012)

[26] Stefanov, E., van Dijk, M., Shi, E., Chan, T.H.H., Fletcher, C., Ren, L., et al.:
Path ORAM: An Extremely Simple Oblivious RAM Protocol. In: ACM CCS’13

[27] Wang, X., Chan, H., Shi, E.: Circuit oram: On tightness of the
goldreich-ostrovsky lower bound. In: ACM CCS’15. (2015)

[28] Doerner, J., Shelat, A.: Scaling oram for secure computation. In: ACM CCS’17.
(2017)

https://www.ftc.gov/tips-advice/business-center/guidance/how-comply-privacy-consumer-financial-information-rule-gramm
https://www.ftc.gov/tips-advice/business-center/guidance/how-comply-privacy-consumer-financial-information-rule-gramm
https://gdpr-info.eu/chapter-4/
https://www.oaic.gov.au/privacy/australian-privacy-principles/australian-privacy-principles-quick-reference
https://www.oaic.gov.au/privacy/australian-privacy-principles/australian-privacy-principles-quick-reference
https://www.oaic.gov.au/privacy/australian-privacy-principles/australian-privacy-principles-quick-reference

118

[29] Ren, L., Fletcher, C., Kwon, A., Stefanov, E., Shi, E., Van Dijk, M., Devadas,
S.: Constants count: Practical improvements to oblivious ram. In: UNSENIX
Security’15. (2015)

[30] Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: Sgxpectre: Stealing
intel secrets from sgx enclaves via speculative execution. In: Euro S&P’19. (2019)

[31] Chakraborti, A., Sion, R.: Concuroram: High-throughput stateless parallel
multi-client oram. In: NDSS’19. (2019)

[32] Chakraborti, A., Aviv, A.J., Choi, S., Mayberry, T., Roche, D.S., Sion, R.:
roram: Efficient range oram with o(log2 n) locality. In: NDSS’19. (2019)

[33] Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: Proc. ACM SOSP. (2011)

[34] microsoft SQL Server 2016: Always Encrypted (Database Engine). Online at
https://msdn.microsoft.com/en-us/library/mt163865.aspx/ (2016)

[35] Pappas, V., Vo, B., Krell, F., Choi, S., Kolesnikov, V., Keromytis, A., Malkin,
T.: Blind Seer: A Scalable Private DBMS. In: Proc. IEEE S&P. (2014)

[36] Papadimitriou, A., Bhagwan, R., Chandran, N., Ramjee, R., Haeberlen, A.,
Singh, H., Modi, A., Badrinarayanan, S.: Big Data Analytics over Encrypted
Datasets with Seabed. In: Proc. USENIX OSDI. (2016)

[37] Poddar, R., Boelter, T., Popa, R.A.: Arx: A strongly encrypted database system.
Cryptology ePrint Archive, Report 2016/591 (2016)

[38] Yuan, X., Guo, Y., Wang, X., Wang, C., Li, B., Jia, X.: Enckv: An encrypted
key-value store with rich queries. In: Proc. ACM AsiaCCS. (2017)

[39] Lewi, K., Wu, D.J.: Order-Revealing Encryption: New Constructions,
Applications, and Lower Bounds. In: Proc. ACM CCS. (2016)

[40] Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical Order-Revealing
Encryption with Limited Leakage. In: Proc. ACM FSE. (2016)

[41] Wu, S., Li, Q., Li, G., Yuan, D., Yuan, X., Wang, C.: ServeDB: Secure, Verifiable,
and Efficient Range Queries on Outsourced Database. In: IEEE ICDE’19

[42] Poddar, R., Boelter, T., Popa, R.A.: Arx: An encrypted database using
semantically secure encryption. Proc. VLDB Endow. 12 (2019) 1664–1678

[43] Dai, C., Yuan, X., Wang, C.: Privacy-preserving ridesharing recommendation
in geosocial networks. In: Proc. of International Conference on Computational
Social Networks, Springer (2016) 193–205

[44] Pattuk, E., Kantarcioglu, M., Khadilkar, V., Ulusoy, H., Mehrotra, S.: BigSecret:
A secure data management framework for key-value stores. In: Proc. IEEE
International Conference on Cloud Computing. (2013)

https://msdn.microsoft.com/en-us/library/mt163865.aspx/

119

[45] Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases
with distributed searchable symmetric encryption. In: Cryptographers’ Track at
the RSA Conference, Springer (2016) 90–107

[46] Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for
order-preserving encoding. In: Proc. IEEE S& P. (2013)

[47] Zhang, H., Liu, X., Andersen, D.G., Kaminsky, M., Keeton, K., Pavlo, A.:
Order-preserving key compression for in-memory search trees. In: SIGMOD.
(2020)

[48] Meng, X., Zhu, H., Kollios, G.: Top-k query processing on encrypted databases
with strong security guarantees. In: ICDE. (2018)

[49] Roche, D.S., Apon, D., Choi, S.G., Yerukhimovich, A.: Pope: Partial order
preserving encoding. Technical report (2015) http://eprint.iacr.org/2015/

1106.

[50] Mavroforakis, C., Chenette, N., O’Neill, A., Kollios, G., Canetti, R.: Modular
order-preserving encryption, revisited. In: Proc. ACM SIGMOD, ACM (2015)
763–777

[51] Sundaram, N., Turmukhametova, A., Satish, N., Mostak, T., Indyk, P., Madden,
S., Dubey, P.: Streaming similarity search over one billion tweets using parallel
locality-sensitive hashing. VLDB Endowment 6(14) (2013) 1930–1941

[52] Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
Queries on Encrypted Data: Beyond Exact Matches. In: European Symposium
on Research in Computer Security, Springer (2015) 123–145

[53] Naveed, M., Kamara, S., Wright, C.V.: Inference Attacks on Property-Preserving
Encrypted Databases. In: ACM CCS’15. (2015)

[54] Bindschaedler, V., Grubbs, P., Cash, D., Ristenpart, T., Shmatikov, V.: The tao
of inference in privacy-protected databases. VLDB Endowment 11(11) (2018)

[55] Kamara, S., Moataz, T.: SQL on Structurally-Encrypted Databases. Cryptology
ePrint Archive, Report 2016/453 (2016) http://eprint.iacr.org/2016/453.

[56] Zhang, Y., Katz, J., Papamanthou, C.: Integridb: Verifiable SQL for Outsourced
Databases. In: Proc. ACM CCS. (2015)

[57] Li, R., Liu, A.X., Wang, A.L., Bruhadeshwar, B.: Fast Range Query Processing
with Strong Privacy Protection for Cloud Computing. Proc. VLDB Endow. 7(14)
(2014) 1953–1964

[58] Ren, K., Wang, C., Wang, Q., et al.: Security challenges for the public cloud.
IEEE Internet Computing 16(1) (2012) 69–73

[59] Tang, X., Wang, C., Yuan, X., Wang, Q.: Non-interactive privacy-preserving
truth discovery in crowd sensing applications. In: Proc. IEEE INFOCOM. (2018)

http://eprint.iacr.org/2015/1106
http://eprint.iacr.org/2015/1106
http://eprint.iacr.org/2016/453

120

[60] Yuan, X.: Private and versatile search over very large encrypted
datasets. Online at https://scholars.cityu.edu.hk/en/theses/

private-and-versatile-search-over-very-large-encrypted-datasets.

html (2016)

[61] Yuan, X., Yuan, X., Wang, C., Li, B.: Secure multi-client data access with
boolean queries in distributed key-value stores. In: Proc. of IEEE CNS. (2017)

[62] Zhu, J., Li, Q., Wang, C., Yuan, X., Wang, Q., Ren, K.: Enabling generic,
verifiable, and secure data search in cloud services. IEEE TPDS (2018)

[63] Yuan, X., Weng, J., Wang, C., Ren, K.: Secure integrated circuit design via
hybrid cloud. IEEE TPDS (2018)

[64] Yuan, X., Wang, X., Wang, C., Squicciarini, A.C., Ren, K.: Towards
privacy-preserving and practical image-centric social discovery. IEEE TDSC
(2016)

[65] Song, D., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. In: IEEE S&P’00

[66] Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric
Eencryption: Improved Definitions and Efficient Constructions. In: ACM CCS’06

[67] Kurosawa, K., Ohtaki, Y.: Uc-secure searchable symmetric encryption. In
Keromytis, A.D., ed.: Financial Cryptography and Data Security. (2012)

[68] Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric
encryption. J. Cryptol. 34(2) (2021) 9

[69] Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric
encryption. In: ACM CCS’12. (2012)

[70] Cash, D., Jaeger, J., Jarecki, S., Jutla, C.: Dynamic Searchable Encryption in
Very Large Databases: Data Structures and Implementation. In: NDSS’14

[71] Eskandarian, S., Zaharia, M.: Oblidb: Oblivious query processing for secure
databases. VLDB Endowment 13(2) (2019)

[72] Liu, Z., Li, B., Huang, Y., Li, J., Xiang, Y., Pedrycz, W.: Newmcos: Towards a
practical multi-cloud oblivious storage scheme. IEEE TKDE 32(4) (2020)

[73] Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: Proc. Network and
Distributed System Security Symposium. (2012)

[74] Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proc. of ACM CCS, ACM (2015) 668–679

https://scholars.cityu.edu.hk/en/theses/private-and-versatile-search-over-very-large-encrypted-datasets.html
https://scholars.cityu.edu.hk/en/theses/private-and-versatile-search-over-very-large-encrypted-datasets.html
https://scholars.cityu.edu.hk/en/theses/private-and-versatile-search-over-very-large-encrypted-datasets.html

121

[75] Bost, R., Fouque, P.A.: Thrawting leakage abuse attacks againts searchable
encryption a formal approach and applications to database padding. Cryptology
ePrint Archive, Report 2017/1060 (2017) https://eprint.iacr.org/2017/

1060.

[76] Zhang, Y., Katz, J., Papamanthou, C.: All Your Queries Are Belong to Us:
The Power of File-Injection Attacks on Searchable Encryption. In: USENIX
Security’16

[77] Stefanov, E., Papamanthou, C., Shi, E.: Practical Dynamic Searchable
Symmetric Encryption with Small Leakage. In: NDSS’14. (2014)

[78] Bost, R.: Sophos - Forward Secure Searchable Encryption. In: ACM CCS’16

[79] Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic
searchable encryption with forward privacy. Privacy Enhancing Technologies
2018(1) (2018) 5–20

[80] Ghareh Chamani, J., Papadopoulos, D., Papamanthou, C., Jalili, R.: New
Constructions for Forward and Backward Private Symmetric Searchable
Encryption. In: ACM CCS’18

[81] Sun, S.F., Yuan, X., Liu, J., Steinfeld, R., Sakzad, A., Vo, V., et al.:
Practical Backward-Secure Searchable Encryption from Symmetric Puncturable
Encryption. In: ACM CCS’18. (2018)

[82] Bost, R., Minaud, B., Ohrimenko, O.: Forward and Backward Private Searchable
Encryption from Constrained Cryptographic Primitives. In: ACM CCS’17.
(2017)

[83] Amjad, G., Kamara, S., Moataz, T.: Forward and Backward Private Searchable
Encryption with SGX. In: EuroSec’19

[84] Costan, V., Devadas, S.: Intel sgx explained. IACR Cryptol. ePrint Arch. (2016)

[85] Garg, S., Mohassel, P., Papamanthou, C.: Tworam: Efficient oblivious ram in
two rounds with applications to searchable encryption. In: CRYPTO’16

[86] Chang, Y.C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. ACNS’05

[87] Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In:
Proc. ASIACRYPT. (2010)

[88] Cash, D., Tessaro, S.: The Locality of Searchable Symmetric Encryption. In:
EUROCRYPT’14. (2014)

[89] Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient
updates. In: Proc. of ACM CCS, ACM (2014) 310–320

https://eprint.iacr.org/2017/1060
https://eprint.iacr.org/2017/1060

122

[90] Ian, M., Payman, M.: Io-dsse: Scaling dynamic searchable encryption to millions
of indexes by improving locality. In: Proc. of NDSS, The Internet Society (2017)

[91] Demertzis, I., Papamanthou, C.: Fast Searchable Encryption with Tunable
Locality. In: ACM SIGMOD’17

[92] Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In:
Proc. ACM SIGACT, ACM (2016) 1101–1114

[93] Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable Encryption with
Optimal Locality: Achieving Sublogarithmic Read Efficiency. In: CRYPTO’18

[94] Demertzis, I., Talapatra, R., Papamanthou, C.: Efficient Searchable Encryption
Through Compression. Proc. VLDB Endow. (2018)

[95] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner, M.:
Highly-Scalable Searchable Symmetric Encryption with Support for Boolean
Queries. In: CRYPTO’13. (2013)

[96] Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with
worst-case sub-linear complexity. In: Proc. EUROCRYPT, Springer (2017)

[97] Zuo, C., Sun, S.F., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable
symmetric encryption schemes supporting range queries with forward (and
backward) security. In: ESORICS’18

[98] Zuo, C., Sun, S.F., Liu, J., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric
encryption with forward and stronger backward privacy. In: ESORICS’19

[99] Yuan, X., Wang, X., Wang, C., Yu, C., Nutanong, S.: Privacy-preserving
similarity joins over encrypted data. IEEE TIFS 12(11) (2017) 2763–2775

[100] Liu, X., Yuan, X., Wang, C.: Encsim: An encrypted similarity search service for
distributed high-dimensional datasets. In: Proc. IEEE/ACM IWQoS. (2017)

[101] Yuan, X., Cui, H., Wang, X., Wang, C.: Enabling privacy-assured similarity
retrieval over millions of encrypted records. In: Proc. ESORICS. (2015)

[102] Borges, G., Domingos, H., Ferreira, B., Leitão, J., Oliveira, T., Portela, B.:
BISEN: Efficient Boolean Searchable Symmetric Encryption with Verifiability
and Minimal Leakage. In: SRDS’19

[103] Patranabis, S., Mukhopadhyay, D.: Forward and backward private conjunctive
searchable symmetric encryption. In: NDSS. (2021)

[104] Sun, S.F., Liu, J.K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient
non-interactive multi-client searchable encryption with support for boolean
queries. In: Proc. ESORICS. (2016)

123

[105] Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis,
M.: Practical Private Range Search Revisited. In: ACM SIGMOD’16. (2016)

[106] Ren, K., Guo, Y., Jiaqi, L., Jia, X., Wang, C., Zhou, Y., Wang, S., Cao, N.,
Li, F.: Hybridx: New hybrid index for volume-hiding range queries in data
outsourcing services. In: ICDCS’20

[107] Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-Abuse Attacks against
Searchable Encryption. In: ACM CCS’15. (2015)

[108] Xu, L., Yuan, X., Wang, C., Wang, Q., Xu, C.: Hardening database padding for
searchable encryption. In: Proc. IEEE INFOCOM. (2019)

[109] Grubbs, P., Lacharite, M.S., Minaud, B., Paterson, K.G.: Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In: CCS
’18. (2018)

[110] Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In:
NDSS. (2020)

[111] Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption.
In: EUROCRYPT19. (2019)

[112] Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure
cloud-hosted data structures: Volume-hiding for multi-maps via hashing. In:
ACM CCS. (2019)

[113] Song, X., Dong, C., Yuan, D., Xu, I., Zhao, M.: Forward private searchable
symmetric encryption with optimized i/o efficiency. IEEE TDSC (2018)

[114] Li, J., Huang, Y., Wei, Y., Lv, S., Liu, Z., Dong, C., Lou, W.: Searchable
symmetric encryption with forward search privacy. IEEE Transactions on
Dependable and Secure Computing (2021)

[115] Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.H.: Forward secure dynamic
searchable symmetric encryption with efficient updates. In: Proc. ACM CCS,
ACM (2017)

[116] Microsoft Azure: Azure confidential computing. Online at https://azure.

microsoft.com/en-us/solutions/confidential-compute/ (2020)

[117] Christian, P., Kapil, V., Manuel, C.: EnclaveDB: A Secure Database using SGX.
In: IEEE S&P’18

[118] Mishra, P., Poddar, R., Chen, J., Chiesa, A., Popa, R.A.: Oblix: An Efficient
Oblivious Search Index. In: IEEE S&P’18

[119] Fuhry, B., Bahmani, R., Brasser, F., Hahn, F., Kerschbaum, F., Sadeghi, A.:
HardIDX: Practical and Secure Index with SGX. In: DBSec’17

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/

124

[120] Stefanov, E., Papamanthou, C., Shi, E.: Practice dynamic searchable encryption
with small leakage. In: Proc. of NDSS, The Internet Society (2014)

[121] Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced
Symmetric Private Information Retrieval. In: Proc. ACM CCS. (2013)

[122] Zhang, Z.: Statistical Implications of Turing’s Formula. Wiley, New Jersey (2017)

[123] Zhang, Y., Tangwongsan, K., Tirthapura, S.: Streaming k-means clustering with
fast queries. ICDE (2017)

[124] Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.a.: Machine learning
for streaming data: State of the art, challenges, and opportunities. SIGKDD
Explor. Newsl. (2019)

[125] Blackstone, L., Kamara, S., Moataz, T.: Revisiting Leakage Abuse Attacks. In:
NDSS. (2020)

[126] Lei, X., Liu, A.X., Li, R., Tu, G.: SecEQP: A Secure and Efficient Scheme for
SkNN Query Problem Over Encrypted Geodata on Cloud. In: IEEE ICDE’19

[127] Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic Attacks on Secure
Outsourced Databases. In: Proc. ACM CCS. (2016)

[128] Duan, H., Wang, C., Yuan, X., Zhou, Y., Wang, Q., Ren, K.: LightBox:
Full-stack Protected Stateful Middlebox at Lightning Speed. In: ACM CCS’19

[129] Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack. In: USENIX Security’14

[130] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi,
A.R.: Software Grand Exposure: SGX Cache Attacks Are Practical. In:
WOOT’17

[131] Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing Page Faults from
Telling Your Secrets. In: ACM AsiaCCS’16

[132] Taassori, M., Shafiee, A., Balasubramonian, R.: VAULT: Reducing Paging
Overheads in SGX with Efficient Integrity Verification Structures. In: ACM
ASPLOS’18

[133] McKeen, F., Alexandrovich, I., Anati, I., Caspi, D., Johnson, S., Leslie-Hurd, R.,
Rozas, C.: Intel R© software guard extensions (intel R© sgx) support for dynamic
memory management inside an enclave. In: HASP’16. (2016)

[134] Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache Attacks on Intel SGX.
In: EuroSec’17

[135] Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: Using sgx to conceal cache attacks. In: Detection of Intrusions and
Malware, and Vulnerability Assessment. (2017)

125

[136] Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V., Tang,
H., Gunter, C.A.: Leaky cauldron on the dark land: Understanding memory
side-channel hazards in sgx. In: CCS ’17. (2017)

[137] Xu, Y., Cui, W., Peinado, M.: Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems. In: IEEE S&P’15

[138] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,
Silberstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting
the keys to the intel sgx kingdom with transient out-of-order execution. In:
USENIX Security’18. (2018)

[139] Biondo, A., Conti, M., Davi, L., Frassetto, T., Sadeghi, A.R.: The guard’s
dilemma: Efficient code-reuse attacks against intel sgx. In: USENIX Security’18.
(2018)

[140] Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M.,
Kang, B.B.: Hacking in darkness: Return-oriented programming against secure
enclaves. In: USENIX Security’17. (2017)

[141] Murdock, K., et al.: Plundervolt: Software-based Fault Injection Attacks against
Intel SGX. In: IEEE S&P’20. (2020)

[142] Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of aes. In: Topics in Cryptology – CT-RSA 2006. (2006)

[143] Marshall, A., Howard, M., Bugher, G., Harden, B.: Security best practices for
developing windows azure applications. Microsoft Corp (2010)

[144] Brasser, F., Capkun, S., Dmitrienko, A., Frassetto, T., Kostiainen, K., Sadeghi,
A.R.: DR.SGX: Automated and Adjustable Side-Channel Protection for SGX
using Data Location Randomization. In: ACSAC’19

[145] Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., Costa, M.: Strong
and Efficient Cache Side-channel Protection Using Hardware Transactional
Memory. In: UNSENIX Security’17

[146] Rane, A., Lin, C., Tiwari, M.: Raccoon: Closing digital side-channels through
obfuscated execution. In: USENIX Security’15. (2015)

[147] Sasy, S., Gorbunov, S., Fletcher, C.W.: Zerotrace : Oblivious memory primitives
from intel sgx. In: (NDSS)’18. (2018)

[148] Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K.,
Costa, M.: Oblivious multi-party machine learning on trusted processors. In:
USENIX Security’16. (2016)

[149] Oleksenko, O., Trach, B., Krahn, R., Martin, A., Fetzer, C., Silberstein, M.:
Varys: Protecting SGX Enclaves from Practical Side-channel Attacks. In:
USENIX ATC’18

126

[150] Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-sgx: Eradicating
controlled-channel attacks against enclave programs. In: NDSS. (2017)

[151] Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with déjà vu. In: ASIA CCS’17. (2017)

[152] Fu, Y., Bauman, E., Quinonez, R., Lin, Z.: Sgx-lapd: Thwarting controlled side
channel attacks via enclave verifiable page faults. In: RAID. (2017)

[153] Sinha, R., Rajamani, S., Seshia, S.A.: A compiler and verifier for page access
oblivious computation. In: ESEC/FSE 2017. (2017)

[154] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: Kaslr
is dead: Long live kaslr. In: ESSoS. (2017)

[155] Cutress, I.: Analyzing Core i9-9900K Performance with Spectre and Meltdown
Hardware Mitigations. Intel Corp (2018) https://www.anandtech.com/.

[156] Zhao, W., Lu, K., Qi, Y., Qi, S.: Mptee: Bringing flexible and efficient memory
protection to intel sgx. In: EuroSys’20. (2020)

[157] Kuvaiskii, D., Oleksenko, O., Arnautov, S., Trach, B., Bhatotia, P., Felber, P.,
Fetzer, C.: Sgxbounds: Memory safety for shielded execution. In: EuroSys’17.
(2017)

[158] Seo, J., Lee, B., Kim, S., Shih, M.W., Shin, I., Han, D., Kim, T.: Sgx-shield:
Enabling address space layout randomization for sgx programs. In: NDSS. (2017)

[159] Cloosters, T., Rodler, M., Davi, L.: Teerex: Discovery and exploitation of
memory corruption vulnerabilities in sgx enclaves. In: USENIX Security’20.
(2020)

[160] Intel: Intel processors voltage settings modification advisory. Online at
https://www.intel.com/content/www/us/en/security-center/advisory/

intel-sa-00289.html (2020)

[161] Cai, C., Yuan, X., Wang, C.: Towards trustworthy and private keyword search
in encrypted decentralized storage. In: Proc. of IEEE ICC. (2017)

[162] Yuan, X., Wang, X., Wang, C., Squicciarini, A., Ren, K.: Enabling
privacy-preserving image-centric social discovery. In: Proc. IEEE ICDCS. (2014)

[163] Cui, H., Yuan, X., Wang, C.: Harnessing encrypted data in cloud for secure and
efficient image sharing from mobile devices. In: Proc. IEEE INFOCOM. (2015)

[164] Cui, H., Yuan, X., Wang, C.: Harnessing encrypted data in cloud for secure and
efficient mobile image sharing. IEEE TMC 16(5) (2017) 1315–1329

[165] Zheng, Y., Cui, H., Wang, C., Zhou, J.: Privacy-preserving image denoising from
external cloud databases. IEEE TIFS 12(6) (2017) 1285–1298

https://www.anandtech.com/
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html

REFERENCES 127

[166] Yuan, X., Wang, C., Ren, K.: Enabling ip protection for outsourced integrated
circuit design. In: Proc. ACM AsiaCCS. (2015)

[167] Yuan, X., Wang, X., Lin, J., Wang, C.: Privacy-preserving deep packet inspection
in outsourced middleboxes. In: Proc. IEEE INFOCOM. (2016)

[168] Wang, C., Yuan, X., Cui, Y., Ren, K.: Towards secure outsourced middlebox
services: Practices, challenges, and beyond. IEEE Network Magazine (2017)

[169] Cai, C., Yuan, X., Wang, C.: Hardening distributed and encrypted keyword
search via blockchain. In: Proc. of IEEE PAC. (2017)

[170] Zheng, W., Deng, R., Chen, W., Popa, R.A., Panda, A., Stoica, I.: Cerebro:
A platform for multi-party cryptographic collaborative learning. In: USENIX
Security’16

[171] Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R.A., Hellerstein, J.: Senate:
A maliciously-secure mpc platform for collaborative analytics. In: USENIX
Security’20

[172] Dauterman, E., Feng, E., Luo, E., Popa, R.A., Stoica, I.: Dory: An encrypted
search system with distributed trust. In: OSDI’20

[173] Zheng, W., Popa, R.A., Gonzalez, J., Stoica, I.: Helen: Maliciously secure
coopetitive learning for linear models. 2019 IEEE Symposium on Security and
Privacy (SP) (2019) 724–738

	 Copyright Notice
	 Abstract
	 Declaration
	 List of Publications
	 Acknowledgments
	 List of Figures
	 List of Tables
	1 Introduction
	1.1 The need for searchable encryption
	1.2 The history of searchable encryption
	1.3 Leakage exploits in searchable encryption
	1.4 Contributions of this Thesis
	1.4.1 Efficient mitigation against leakage-abuse attacks in dynamic SE vo201
	1.4.2 Efficient forward and backward-private SE schemes with trusted execution environment Vo20,Vo21

	1.5 Thesis Structure

	2 Literature Review
	2.1 Searchable Encryption
	2.2 Leakage-abuse Attacks in Static SSE
	2.3 Leakage Exploits in DSSE
	2.4 Encrypted Search Based on Trusted Execution Environment

	3 Preliminaries
	3.1 Notations and Cryptographic Primitives
	3.1.1 Notations
	3.1.2 Basic Cryptographic Primitives

	3.2 Security Definitions for DSSE
	3.2.1 Security notions
	3.2.2 An Index-based DSSE scheme

	3.3 Leakage-abuse Attacks - The count attacks
	3.4 Forward-secure DSSE
	3.5 Backward-secure DSSE

	4 Leakage-abused Attacks in Dynamic SSE and Efficient Mitigation
	4.1 System Overview
	4.2 Attack Models and Assumptions
	4.3 Design of ShieldDB
	4.3.1 Setup
	4.3.2 Padding Strategies
	4.3.3 Optimisation Features

	4.4 Security of ShieldDB
	4.4.1 Leakage Functions
	4.4.2 Extended Constrained Security in ShieldDB
	4.4.3 Security IND Game against Non-persistent adversary
	4.4.4 Security IND Game against Persistent adversary

	4.5 Implementation and Evaluation
	4.5.1 System Implementation
	4.5.2 Experimental Setup
	4.5.3 Evaluation
	4.5.4 Discussion on the deployment of ShieldDB

	4.6 Discussion

	5 Accelerating Forward and Backward SSE schemes
	5.1 Existing SGX-supported Backward-private Constructions
	5.1.1 Type-II Backward privacy with Bunker-B
	5.1.2 Type-I Backward privacy with Orion* and Fort

	5.2 System Overview
	5.3 Assumptions and Threat Models
	5.4 Design for SGX-supported Type-II
	5.4.1 SGX-SE1
	5.4.2 SGX-SE2
	5.4.3 Security Analysis

	5.5 Evaluation of Type-II Backward privacy
	5.5.1 Experiment Setup and Implementation
	5.5.2 Performance evaluation on synthesis dataset
	5.5.3 Performance evaluation on Enron dataset
	5.5.4 Discussion

	5.6 Maiden: SGX-supported Type-I scheme
	5.6.1 Design Intuition
	5.6.2 The Detailed Protocol
	5.6.3 Security Analysis

	5.7 Evaluation of Type-I Backward privacy
	5.7.1 The performance on the Synthesis Datasets
	5.7.2 The performance on the Enron Dataset

	5.8 SGX-Related Attacks and Defence
	5.8.1 Cache Side-channel Attacks and Defence
	5.8.2 Page-Table Side-Channel Attacks and Defence
	5.8.3 Transient Execution Attacks and Defence
	5.8.4 Other Attacks and Defence
	5.8.5 Discussion

	6 Conclusion
	6.1 Summary of the Results
	6.2 Future Research Directions
	6.2.1 More theoritical directions
	6.2.2 More application-oriented directions

	 References

