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Abstract 

Two-dimensional topological insulators (2D TIs) are insulating in the bulk, while having 

conducting edge states. As a result of the bulk-edge correspondence, the ballistic electron 

transport for the edge states is dissipationless and can be used to fabricate future low-energy 

electronics. Large bandgap materials such as bismuth are promising candidates to host edge 

states at room temperature. Using first-principles calculations and Wannier tight-binding 

models, the thesis is mainly focused on studying the electronic structure and topological 

features of different bismuth-related materials.  

The challenge in the field of topological material is how to achieve the topological behaviour 

in a practical device setup. The nontrivial topological states need to be stable against local 

perturbations while allowed to be tuned via external environmental factors such as an applied 

field. In this work, we study the robustness of edge states in a two-dimensional topological 

crystalline insulator (2D TCI) and approaches of modifying them based on a planar bismuthene 

model. We have found that the mirror symmetry-protected non-trivial topological phase can be 

maintained when the thin film has a weak interaction with the substrate, or when a sandwich 

stacking is applied. We observe that spin-filtered edge currents of 2D TCIs can survive strong 

mirror symmetry breaking fields when they have zigzag edge terminations. Finally, we have 

demonstrated by modulating the interfacial distance or applying rotation on sandwich 

structures, bismuthene armchair edge bandgap can be opened, which effectively switches off 

the nontrivial topological states. This research can provide guidelines for the methodology to 

tune or maintain those edge states in the design of TCI-based electronic devices. 

We have also studied the electronic properties of β’ phase In2Se3, a material that has been 

newly proved to be stable under room temperature. Consistent with recent experimental 

observations our results have shown that the material possesses a large bandgap, which makes 

it a good candidate as a substrate for 2D materials. The large piezo-resistivity of the material 

is also confirmed through both experimental and our computational results. The large-scale 
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band structure tuning of the material demonstrates a good example of how pressure controls 

electronic structures. 

Overall, the choosing of substrates, pressure, strain, and electric fields are effective tools to 

tune the electronic and topological properties of materials. This research can be used to 

facilitate the design of new generation electronics. 
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Chapter 1 Overview of the thesis 

This chapter provides an overview of the thesis. The related details will be covered in the 

following chapters.  

Dissipationless electron transport can be realised through the edge current of two-dimensional 

topological insulators. Such electron transport mechanisms can be used to build new generation 

transistors to extend Moore’s law and reduce the energy consumption of future electronics. The 

edge conduction of two-dimensional topological insulators (2D TIs) is protected by the time-

reversal symmetry, as well as the topological order of the material’s bulk band structure. The 

concept has been further extended to 2D topological crystalline insulators (TCIs) [1] as their 

edge states are protected by mirror symmetry.  

Despite the significant theoretical progress that had been made through the years [2], the 

experimental progress of 2D TI research still underperforms. One challenge is that there is a 

lack of study that bridges that gap between the theory and experiments [3]. For example, many 

materials theoretically predicted have the band gap at meV or μeV level [4]. If the band gap is 

not large enough, the topological features cannot be maintained at room temperature due to 

band closure. Also, though the 2D TIs may have theoretically predicted edge states in its pure 

form, they are sensitive to the environment that affects their bulk band structure or symmetry. 

The substrate will play a significant role as they can tune both the bulk band structure and 

symmetry. There had been lack of experimental progress in 2D TCIs due to its vulnerability 

against mirror-symmetry breaking field. 
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To address those challenges, this thesis focuses on the first-principles calculation of electronic 

properties of topological materials. The experimental factors such as substrates and pressure 

are used to tune the electronic and topological properties. The main material in our study is 

bismuth, as its large band gap makes it a favourable material in experimental fabrication. The 

methods have been investigated to maintain and tune the edge states, especially with substrates.  

This research aims to provide guidelines for two-dimensional topological materials design and 

bridge the gap between the theoretical calculation and experimental realisation of 2D TIs. The 

research includes discovering new large-band gap two-dimensional quantum spin Hall (QSH) 

systems that are stable under room temperature. When constructing such systems, we also need 

to consider how to implement such systems with experiments.  Experimental factors such as 

substrate, edge termination, and strain etc. should be taken into consideration. More extensive 

research can be carried out focusing on the electronic properties of TCI. This may include edge-

state robustness analysis, and substrate studies that facilitates the realisation of the states in 

experiments. After the optimum experimental conditions are confirmed to maintain the 

topological edge states, the next step is to find a way to effectively tune the electronic 

structures. This can facilitate the design of new generation of electronics with switchable 

topological current. 

Through this thesis, we demonstrated a practical approach to maintain and tune the edge states 

of topological materials, using experimental factors of strain, electrical field, edge terminations, 

and substrates. The designing ideas and the map of parameters will be beneficial for future 

experimental research.  
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Chapter 3 includes a literature review starting with the basic theory of topological insulators 

and designing strategies, the current research status for TCIs, and current research status for 

the studies of bismuth as topological insulators. Chapter 4 reviews the methodology used in 

topological materials. Chapter 5 includes our results in the calculation on different bismuth 

allotropes, where the Bi (110) results are compared with experimental results. Those studies 

provide us with understanding of bismuth allotropes’ electronic properties, how they can be 

tuned, and foundations for the specific studies on bismuthene in Chapter 6 and Chapter 7.  

Chapter 6 and Chapter 7 are the main body parts of this thesis. Using bismuthene as the 

material, we have demonstrated the tuning of TCI edge states via restoring and breaking mirror 

symmetry. In Chapter 6, we mainly focus on how to maintain those 2D TCIs edge states. In 

Chapter 7, we focus on the ways to tune the band gap of 2D TCIs. In Chapter 8, we studied 

the electronic properties of In2Se3, which has unique properties such as large band gap and 

large piezo-resistance. Chapter 9 gives the conclusions and outlook of this research. 
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Chapter 2 Introduction 

2.1 Development of Future Electronic Technologies: A Low-

Energy Approach  

The rapid development in the transistor industry in recent decades has been predicted by 

Moore’s law[5, 6], which stated that the number of transistors in an integrated circuit doubles 

every two years. However, recently there have been more statements that Moore’s Law is 

coming to an end [7-9]. The trend is shown in Figure 2.1 as transistors per chip. There are 

some limitations that may prevent the trend from increasing, including the slowdown of 

progress in silicon manufacturing technology [10], the quantum uncertainties limit [11], and 

the CPU clock speed [12]. The clock speed is saturated between 2010 and 2015 as shown in 

Figure 2.1 because of its heat dissipation. This brings the fundamental limits is the thermal 

limits [13]. Having a denser transistor design, or increasing the clock speed, increases the 

difficulty in cooling, and therefore limits the density of transistors in a circuit. The current 

transistors industry is strongly dependent on silicon, which is incorporated with the problems 

of Joule heating [14], which contributes to the heat generation during computation. In addition 

to that, models have predicted that the total global electricity demand for Information and 

Communication Technology (ICT) is about to increase to 8~21% of the total global electricity 

usage [15]. Therefore, finding a low-energy computational approach not only will enhance the 

computational efficiency but will also contribute to solving the energy crisis. The key issue is 

to find a dissipationless material that can replace silicon in the design of transistors. 
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Figure 2.1 A Graph showing Moore’s law. While the number of transistors per chip keeps increasing, 

the clock speed and the thermal design power becomes stable between 2010 and 2015. Graph taken 

from Ref [16]. Reused under license from © The Economist Group Limited, London (Mar 10 2016). 

 

The recent development of topological insulators material provides a potential solution as the 

conducting process in this material is dissipationless. Like original (i.e. trivial) insulators, 

topological insulators have a band gap near the Fermi level. However, due to the non-trivial 

topological features in its bulk band structure, gapless interface states exist at the interface 

between the topological insulators and the ordinary insulators. The vacuum can be considered 

a trivial insulator. Therefore, the conductive interface can be the surface of 3D materials [17], 

and the edge of 2D materials [18]. The concept has also been extended to the concept of higher-
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order topological insulators (HOTI) [19],  which has the hinge state on 3D material [20], or 

corner states of and 3D [21] and 2D [22] materials. The two-dimensional insulators (2D TIs) 

can be characterised by their bulk-edge correspondence. The edge states in 2D TIs, also known 

as the QSH state, are robust against disorders and backscattering due to the topological property 

of the material’s bulk band structure. Besides the application in transistors, TIs are also 

considered as promising materials to be applied in  spintronics [23] and future quantum 

computers design [24].  

2.2 Topological Materials: Basic Concepts 

Topology is concerned with the properties of spaces that are invariant when space is 

continuously deformed. Shapes that can be continuously deformed into each other are 

topologically equivalent and share the same integer topological invariant. For example, in 

Figure 2.2 the ball and the polygon can be distinguished by topological invariant g = 0, while 
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the donut and the tube share the topological invariant g=1, where g is the topological invariant 

named “genus” that corresponds to the number of holes. [25] 

 

Figure 2.2 The orange shapes are classified with the topological invariant g=0, while the red shapes are 

classified by the topological invariant g=1. 

The concept of topological equivalence in insulators can be defined by the adiabatic continuity 

of Hamiltonians [26, 27]. Two insulating states are considered topological equivalent if tuning 

from one Hamiltonian to another can be realised without closing the bandgap. In contrast, 

tuning the Hamiltonian between two topological non-equivalent insulators cannot be realised 

without closing the bandgap. Therefore, when connecting two topological non-equivalent 

insulators together, there will be gapless edge states at the interface protected by bulk 

topological properties. 

The gapless edge states are free from backscattering. This can be understood by a classical 

illustration of quantum Hall states as shown in Figure 2.3 (a). The electrons, defined by 

cyclotron orbits, propagate in a chiral manner along a single direction at the interface between 

two topological non-equivalent materials. Figure 2.3 (b) shows QSH interface state in 

momentum space. The valence band and the conduction band are contributed by the bulk band 

structure, while the band crossing Fermi level is contributed by the interface state. Vacuum can 
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be considered as a material with both the topological invariant Chern number n and Z2 number 

equal to zero. Therefore, one-dimensional edge states are usually analysed in 2D topological 

material studies. 

 

Figure 2.3 (a) Electron motion for Quantum Hall state (b) Edge state in bandstructure. Graph taken 

from  Ref [25].  

2.3 A Brief History of Discovery of Topological materials 

The classical Hall effect was observed experimentally in 1879 [28]. The physicist Edwin Hall 

discovered that when applying a current and a perpendicular magnetic field to a conductor, a 

voltage (Hall voltage) forms in the conductor deflecting the current due to the Lorentz Force.  

In 1880, Hall found that Hall effect can also be realised at systems without magnetic field, 

when the magnetization in a ferromagnetic or paramagnetic metal contributes to the Hall 

resistance [29]. Such an effect was named as Anomalous Hall effect (AHE). Later theoretical 

studies suggested that instead of being equivalent to an external magnetic field, the main 

contribution of AHE comes from anomalous velocity [30], which is an intrinsic contribution 

[31] dependent on perfect crystal Hamiltonian. Integer Quantum hall effect (IQHE) observed 
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in 1980’s showed that in a two-dimensional electron system under a strong magnetic field and 

low temperature, the longitudinal conductance turns to zero at a certain range of magnetic field, 

while the Hall conductance shows a step like 𝜎 = n
𝑒2

ℎ
, where n = 1,2,… [32] is an integer. 

Later theoretical studies [33] suggest that the filling factor n is actually a topological invariant 

in momentum space and is related to the topological properties of bulk material. n is named as 

TKNN invariant [33] (named after Thouless, Kohomoto, Nightingale and den Nijs), which is 

equivalent to the mathematical concept Chern number [34]. This invariant can be expressed by 

the integral over the Berry curvature [34]. This number can be presented by   

  

𝑛 =
1

2𝜋
∫ 𝑑2𝑘𝐹 

where F is the berry Curvature 𝐹 = ∇ × 𝐴, 

A is the berry connection 𝐴 = 𝑖 ∑ < 𝑢𝑚 (𝑘)|∇𝑘|𝑢𝑚 (𝑘) >𝑀
𝑚=1 , 

M is the number of occupied states. When a material that has non-zero Chern-number is put 

together with a zero Chern number material (such as a vacuum), there will be metallic states 

on the boundary. Such states are topologically protected.  

In 1988, F.D.M. Haldane presented a model for spinless fermions suggesting that Quantum 

Hall Effect (QHE) may also be realised in a 2D honeycomb graphite (later known as graphene) 

system by introducing a periodic magnetic field without zero total magnetic flux [35]. The 

discovery of graphene [36] in 2004 initiated a lot of research in 2D materials. In 2005, Kane & 

Mele extended the concept of Haldane model to electrons with spin 
1

2
. Spin-orbit coupling 
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(SOC) was applied to replace the effect of magnetic flux [37] in the Haldane model. They 

predicted the QSH effect QSH in the graphene system, which can be considered as combining 

two quantum Hall systems with spin up and spin down electrons. Whenever time-reversal 

symmetry is preserved, the helical interface states at the boundary are protected. Therefore, 

they are robust against impurities and disorders. QSH states are illustrated in Figure 2.4 (a) for 

real space and Figure 2.4 (b) for momentum space.  

 

Figure 2.4 (a) Quantum Hall states along the interface between 2D TI and normal insulator (usually 

vacuum). (b) Quantum spin Hall state in momentum space. Graph taken from Ref. [25]. 

Soon after the theoretical prediction [38], 2D TI was experimentally observed in HgTe 

quantum-well systems [18].  Later 3D TI was also predicted [39] and experimentally realised 

[40]. The research of topological insulators has also led to the discovery of various types of 

novel materials including Dirac semimetal [41], Weyl Semimetal [42], and novel quantum 

phenomena such as quantum anonymous Hall effect [43]. In 2019, a high throughput 

calculation was done and found 3307 TIs, and shows that more than 27% of material in nature 

are topological [44]. 
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Chapter 3 Literature review 

3.1 Theories of topological Insulators 

3.1.1 Symmetry and Topology 

In momentum space, time reversal symmetry (TRS) can be expressed in the following formula: 

𝛩𝐻(𝒌)𝛩−1 = 𝐻(−𝒌) 

where 𝛩 is the time-reversal operator. This formula tells that the Hamiltonian of a k state 

degenerates with its time-reversed pair. Therefore, Bloch state pairs degenerate at all time 

reversal invariant momenta (TRIMs) [45], the high symmetry points in the Brillouin Zone that 

are invariant under time reversal operation. Those TRIMs fulfil  𝝀 + 𝑮 = −𝝀, where 𝝀 are the 

TRIMs and 𝑮  is the reciprocal lattice vector. Such degeneracy is shown in Figure 3.1 (a), 

while an example in sampling of TRIMs in the 2D Brillouin Zone for a square lattice is shown 

in Figure 3.1(b). The Brillouin Zone for a 2D square lattice is also a 2D square lattice. 𝜞11, 

𝜞12, 𝜞21 and 𝜞22 are the four TRIMs for a 2D square lattice with periodic boundaries. When a 

nanoribbon is constructed, one direction of nanoribbon becomes infinite and the other remains 

periodic, the Brillouin Zone will be contracted into a line. The TRIMs for 2D nanoribbon can 

be presented as 𝜦1 and 𝜦2, which can be projected 𝜞11, 𝜞12, 𝜞21, and 𝜞22. 
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Figure 3.1 (a) Band structure for TRS system along 1D direction in momentum space. Graph taken 

from Ref. [46] (b) TRIMs in two-dimensional square Brillouin zone. Graph taken from Ref. [39]. 

 

In time-reversal symmetric systems, the TKNN invariant is zero because the spin up and spin 

down states directly cancel each other when added up. Therefore, Kane and Mele introduced a 

Z2 topological classification to describe the topological property of time-reversal symmetric 

systems [47]. 

The Z2 topological order can be explained in Figure 3.2. Both graphs in Figure 3.2 show the 

dispersion of surface states in between two TRIMs. However, in Figure 3.2(b) there is a single 

Fermi level crossing, while in Figure 3.2(a) there is an odd Fermi level crossing. Therefore, in 

Figure 3.2(a) the surface states can be easily removed by perturbations pushing surface states 

away from the Fermi level. In this case the material is considered a trivial insulator with Z2 

topological invariant 𝑣 = 0. In contrast, in Figure 3.2(b) if the perturbation does not close the 

bulk band gap, the edge states are always protected by time-reversal symmetry. Such system 

is considered a Z2 non-trivial with Z2 topological invariant 𝑣 = 1.  
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Figure 3.2 Edge states for (a) v=0 and (b) v=1 topological systems.  Graph taken from Ref. [25]. 

However, the Z2 number is not the only symmetry that results in the non-trivial edge states. 

Figure 3.3 gives a tree graph summary to describe the classification of the two-dimensional 

insulators. The green column denotes the where the trivial states can occur. In the top layer, a 

non-zero Chern number denotes the circumstances of the topological features when the time-

reversal symmetry is broken. This corresponds to the circumstance that the material is exposed 

to a magnetic field [48], or magnetic doping [49]. The doping approach uses the intrinsic 

properties of the material to generate spontaneous breaking of time-reversal symmetry without 

introducing a magnetic field. Realising Quantum Hall effect with doping approach is also 

known as quantum anomalous Hall effect (QAHE) [50] . The QAHE has recently achieved 

tuning the Chern number up to 5 without a magnetic field [51]. With broken time-reversal 

symmetry, n=0 means the edge states are trivial. When the Chern number n is 0, and the time-

reversal symmetry is preserved, the non-trivial edge states exist when the material has a non-

zero Z2 number ν. This corresponds to the Z2 topological insulators. A zero Z2 number ν, in 

this case, indicates that the edge states are Z2 trivial as they are not protected by TRS. When ν 

=0, but the mirror-Chern number (Cm) is non-zero, the edge states of the material are protected 
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by mirror symmetry. This corresponds to the TCI case. With both non-zero Z2 number and 

mirror Chern number, a dual topological insulator [52] material can also be realised with both 

TI and TCI characters. 

 

Figure 3.3 Topological family tree of two-dimensional insulators. The green column denotes the 

topological invariant where trivial states can occur, while the other columns the topological number that 

associated different types of non-trivial insulators. Graph modified from Ref. [53].  

3.1.2 Basic Strategies in Materials Design 

There are two basic mechanisms to create a topological insulator. Figure 3.4(a) shows the 

Type I mechanism. The material without SOC has a Dirac point at the Fermi level, connecting 

the valence band with the conduction band. After the SOC is applied, the bandgap opens at 

Dirac point. A good example is the band gap opening of graphene predicted by Kane and Mele 

[37] Figure 3.4(b) shows the Type II mechanism introduced by Bernevig, Hughes, and Zhang 

[38] on the HgTe Quantum Well system. The material without SOC has a trivial band gap. The 

SOC closes the trivial bandgap and opens a non-trivial band gap, causing the parity to exchange 

between bands around Fermi level. To realise this band inversion, researchers have developed 
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various strategies such as doping heavy atoms to induce large SOC [54] , strain tuning the band 

structures [55], and electrical field tuning of band structures [56]. 

The phase that appears in the transition between a topological insulator and a trivial insulator 

is topological semimetal [42, 57], which has a Dirac cone with SOC. The material can be tuned 

to topological insulator when a band gap is opened via quantum confinement [58] , strain [59] 

or electric field [60]. 

 

Figure 3.4 Two mechanisms to create an TI. (a) Band gap opened by SOC. (b) Band inversion around 

the Fermi level introduced by SOC. Graph taken from Ref. [61]. 

 

3.1.3 The Significance of Substrates in 2D Topological Materials 

The techniques used in the synthesis of 2D materials include the top-down approaches and 

bottom-up synthesis [62]. For the top-down approach, the 2D nanosheets can be exfoliated 

through the micromechanical cleavage process or the solution-based exfoliation process. 

However, mechanical exfoliation (such as the exfoliation of graphene [36]) are labour intensive, 

while liquid exfoliation is limited in terms of flake size and film quality [63].  
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The more superior techniques used are the bottom-up approaches. Among them are the 

chemical vapour deposition (CVD) and physical vapour deposition (PVD). Both approaches 

require the thin film to grow on the substrates, where the interactions such as strain [64] and 

chemical conditions [65] may affect the structures and properties of the grown material. When 

the interaction between substrate and the thin film is strong, the substrate tends to match with 

the substrate [66]. In many cases, the lattice mismatch will distort the thin film deposited and 

defects are created [67]. When the interaction is weak, the van-der Waals epitaxy exists and 

the defect-free interface can be achieved [68].  

In the synthesis of topological insulator materials, a more precise bottom-up approach 

Molecular Beam Epitaxy (MBE) [69] is generally used.  The substrate condition plays an 

important role not only in providing structural support to the topological insulator thin film but 

also in improving the electronic and topological properties of the materials. The contrast 

between two milestones in synthesizing graphene-like V-group thin film is a good example 

demonstrating the substrate role. Those two milestones are the synthesis of the planar 

bismuthene on SiC-(0001) [70] and planar antimonene on Ag (111) [71]. Structurally both 

substrates can support the flat structure as they have a lattice constant close to the relaxed flat 

thin film rather than relaxed buckled thin film. However, the key difference between the two 

substrates is their influence on electronic properties. The strong interaction between 

bismuthene and the substrate SiC-(0001)  has caused changes in electronic band structures in 

bismuthene through the orbital filtering effect [72]. In contrast, the weak interaction between 

Sb and Ag (111) is expected to maintain the electronic features of the freestanding flat-

antimonene.  
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3.2 Current Research on Topological Crystalline Insulators  

In 2011, Liang Fu extended the concept of TRS protected topological insulator to topological 

crystalline insulators, a class of material with non-trivial band topology protected by crystalline 

symmetry. [73] The first model is based on a 3D tetragonal lattice with the non-trivial surface 

states protected by tetragonal C4 symmetry. Unlike TRS-protected surface states in 3D TIs, the 

non-trivial edge states in 3D TCIs are surface dependent and can only be preserved when the 

surface has certain crystalline symmetries.  

A similar topological invariant, mirror Chern number [74], can be defined to classify the TCI, 

similar to the Z2 invariant used in TRS-protected topological insulators. In 2012, TCI phases 

were predicted on SnTe rocksalt structure [1] protected by crystalline mirror symmetry. Later 

the TCI concept has been extended to two-dimensional systems such as Pb1-xSnxSe (Te) thin 

films [75] and PbSe monolayer [76]. The ‘weak’ protection of crystalline symmetries means 

that TCI topological states are sensitive to various perturbations such as electrical field [75], 

substrate [77] and strain [78], as those distortions break crystalline symmetry. This can be 

turned into an advantage because it is possible to design devices that are easy to turn on and 

off [75]. Time reversal symmetry can be a feature protecting the edge states. However, it is not 

an essential feature that those non-trivial edge states exist. Several designs have been proposed 

in previous studies [75, 78]to realise TCI/TI/trivial insulator transition through strain 

engineering.  

Using four-band k.p theory, Liu et al. have identified two types of surface state [79] that may 

exist in 3D TCI systems in SnTe material. Type I surface states can be found in (111) surface 
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in the SnTe material, the distinctive feature is that the degeneracy points are located at the 

TRIMs, and therefore they are simultaneously protected by time reversal symmetry and (110) 

mirror symmetry.  In contrast, Type II surface states, which can be found at (001) and (110) 

surfaces, have degeneracy points at those non-TRIMs protected only by mirror symmetry. This 

surface dependent behaviour of 3D TCI inspires us to look for the 2D TCIs that will behave 

differently on different edges. 

The evidence of TCI has been observed on 3D systems including SnTe [80] and Pb1-xSnxSe 

[81] through angle-resolved photoelectron spectroscopy (ARPES) measurement of the surface 

band structure. Ref. [81] also presented a temperature-driven phase transition between TCI and 

trivial insulator phase. However, there is still a lack of experimental evidence of the presence 

of two-dimensional TCIs. 

3.3 Theoretical Model Development for Topological Materials 

3.3.1  Haldane Model 

The Haldane model [35] was the first to predict that the quantum hall effect can be realised 

without an external magnetic field. 

The Hamiltonian for Haldane model can be presented as 

 



   

20 

 

The t1 term denotes the nearest neighbour simple tight-binding model for graphene (“2D 

graphite” in 1988), where 𝒂𝒊 is the nearest neighbour vector. σ1 and σ2 are effectively σx and 

σy for the Pauli Matrix. The Dirac cone at the K and K’ point of graphene is protected by both 

sublattice symmetry and timer reversal symmetry. This nearest neighbour term is similar to 

the model built by Semenoff in 1984[82], where the onsite energy M was also introduced 

to break the sublattice symmetry and create a bandgap. However, such a gap can only lead 

to a normal insulator. The creative part is Haldane’s t2 term, which is contributed by second 

nearest neighbour terms within both the A and B sublattice. The imaginary hopping 

between sublattice and sublattice b follows the same chirality and induces an opposite 

magnetic flux in the a and b region in Figure 3.5. The total magnetic field though the whole 

region is zero. However, the term t2 breaks the time-reversal symmetry and can tune the 

material from a trivial insulator to a non-trivial Chern insulator.  

 

Figure 3.5 Haldane model. Graph taken from Ref. [35]. 

3.3.2 Kane & Mele Model 

The magnetic flux in Haldane’s model has not been realised in the experiment. However, in 

2005 the Kane & Mele model generalises the Haldane model by using the SOC as a 
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replacement of the magnetic flux in Haldane’s model. The difference is that the SOC does not 

break time-reversal symmetry. It can be considered as two Haldane models (with spin-up 

electrons and spin-down electrons) that are time-reversal symmetric added up. The spin-up 

states and spin-down states have opposite Chern numbers. The net Chern number is 0 and 

cannot be used to describe the topological features. Therefore, it becomes a Z2 topological 

insulator. 

The tight binding Hamiltonian for graphene in Kane and Mele model can be presented as 

𝐻 = 𝑡 ∑ 𝑐𝑖
†𝑐𝑗 + 𝑖𝜆𝑆𝑂 ∑ 𝑣𝑖𝑗𝑐𝑖

†𝑠𝑧𝑐𝑗 + 𝑖𝜆𝑅 ∑ 𝑐𝑖
†

<𝑖𝑗>≪𝑖𝑗≫≪𝑖𝑗≫

(𝒔 × �̂�𝑖𝑗)𝑧𝑐𝑗 + 𝜆𝑣 ∑ 𝜉𝑖𝑐𝑖
†𝑐𝑖

𝑖

 

The four terms of the model are the nearest neighbour hopping term, a SOC term and the nearest 

neighbour Rashba term, and a staggering sublattice potential term. 𝑡 is the hopping parameter. 

𝑐𝑖
†

and 𝑐𝑗  are the annihilation operator at 𝑖  site and creation operator at 𝑗  site. 𝜆𝑆𝑂  is the 

intrinsic SOC strength. 𝑣𝑖𝑗 = ±1 and the sign notes the direction of the election transport. 

𝑠𝑧 is the 𝜎𝑧 is the Pauli Matrix. �̂�𝑖𝑗 is the nearest-neighbor vectors from site 𝑖 to site 𝑗. 𝒔 

is the vector of Pauli matrices for the spin degree of freedom. 𝜆𝑣  is the staggered 

sublattice potential. 𝜉𝑖 = ±1 represents the two sublattices of the graphene system. 

3.4 Bismuth as a Topological Insulator Material 

Since the bandgap of TI is opened by strong SOC, TI usually involves heavy elements that 

induce strong SOC. Bismuth is a material with strong SOC and it has been one of the most 

frequent elements contained in predicted 2D and 3D topological materials [26]. In its natural 
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form, the three-demensional bulk bismuth has rhombohedral crystal structure [83]. As shown 

in Figure 3.6, in its three-dimensional bulk form, bismuth (111) has the structure formed with 

bilayers (BLs). Within one bilayer the Bi atoms are bonded through a covalent bond, while 

between bilayers the material is combined through van der Waals interaction. Therefore, 

bilayers are usually considered units in thin-film bismuth studies. Bi (111) mono bilayers 

(1BLs) are also referred to by some literature as “buckled single layer bismuthene” [84]. 

However, in this thesis “bismuthene” only refers to the planar honeycomb graphene-like 

structure replacing the carbon atoms with bismuth atoms. Figure 3.7 shows the transition 

between two structures under strain. 
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Figure 3.6 Truncated bulk structure of Bi (111). Graph taken from Ref. [85]. 

 

Figure 3.7 Bi (111) 1BL stretched to freestanding planar bismuthene. Graph taken from Ref. [77]. 

3.4.1 Bismuth (111) Bilayer 

Bi (111) 1BL is one of the earliest predicted 2D TIs. In 2006, Murakami et al. demonstrated 

that the spin Hall conductivity is directly associated with strong diamagnetism, which is a 

measure for SOC strength [86].  Therefore, bismuth was chosen as the candidate material. The 

study demonstrated that Bi (111) 1BL is a TI through calculation of Pfaffian. The non-trivial 

properties were further confirmed in later studies through parity analysis and first-principle 

calculation of nanoribbon edge states [87]. As shown in Figure 3.8, the non-trivial topology 

can be maintained between 1-bilayer and 4-bilayer in its pure form, and up until 8-bilayer with 

surface adsorption of hydrogen [88]. Such robustness makes the realisation in experiments 

more promising, as it is difficult to synthesize single layer bismuth.  Research has also shown 

that Bi (111) 1BL TI states are robust against up to 6% strain or 0.8eV/Å of external electric 
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field [89]. Through first-principles calculation, Huang et al. demonstrated that the non-trivial 

topology can be maintained when Bi (111) 1BL is placed on various substrates, identifying 

hexagonal boron nitride (h-BN) to be the best substrate to support the non-trivial property [90]. 

Wang et al. calculated that the edge adsorption of hydrogen atoms can tune the topological 

edge state and increase the Fermi velocity to 0.9 × 106m/s [91], which is comparable to the 

record-breaking fermi velocity in suspended graphene  (3 × 106m/s) [92]. 

 

Figure 3.8 The calculation found that non-trivial topology is robust within the range between 1BL- 

4BL of Bi (111). As shown in (a) and (b), at 5 or more BLs, the indirect bandgap closes, turning the 

material into metals. However, as shown in (c) and (d), the indirect bandgap opens after hydrogen 

termination. Graph taken from Ref. [88]. 

 

Experimentally, the edge states of Bi (111) BLs were first observed and resolved on both clean 

and Bi covered Bi2Te3 substrates [93]. Later  𝐺0 = 2𝑒2/ℎ  step-wise conductance was 
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measured on Bi (111) substrate via mechanical exfoliation of a Bi (111) 1BL at room 

temperature using a scanning tunnelling microscope (STM) [94]. 

 

3.4.2 Bulk Bismuth Crystals 

In 2014, Drozdov et al. claimed topological 1D edge states of Bi (111) 1BL was observed 

through STM measurement on bulk Bi crystals [95], as a result of the decoupling of a Bi BL 

from Bi substrate. However, the surface state found in bulk bismuth was claimed to be trivial 

in later research [96, 97], as the band structure calculation suggests that the surface states are 

trivial since it has even times of Fermi level crossing. However, in 2018, it has been proved 

that this 1D state in bulk bismuth is actually a non-trivial hinge state of a HOTI [20]. The 

second-order hinge states here are protected together by time-reversal symmetry, inversion 

symmetry, as well as three-fold rotational symmetry around the z-axis. Later in 2019, bulk 

bismuth has also been reported to be a first-order 3D TCI, as the (11̅0) surface exhibit non-

trivial surface states [98]. The same study also found 1D hinge states protected by twofold 

rotational symmetry. 

   

3.4.3  Bismuthene 

Huang et al. (2013) performed a theoretical structural analysis on ultra-thin film. The analysis 

shows that although Bi (111) 1BL is a stable structure at the optimised lattice constant 4.33 Å, 

the metastable planar honeycomb structure (planar bismuthene) is more energy favourable 
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when the lattice constant is larger than 5.2 Å [90]. The planar bismuthene is proved to be Z2 

trivial, but it can be tuned to Z2 non-trivial phase by putting onto substrate such as Si (111)-

√3 × √3-X (Cl, Br, I) surface [99] or SiC (0001) surface [70, 100]. The dangling bonds from 

Si substrate forms bonds with planar bismuthene to provide structural stability. In the 

meantime, the pz orbitals are pushed apart from the Fermi level so the topology is changed 

[99]. Similar effects can also be seen in BiX/SbX (X=H, F, Cl, Br) [101], where a 2D TI with 

a record-breaking band gap 1.08eV 2D TI is predicted for monolayer BiF structure. However, 

experimental studies have shown that the high reaction rate of plasma fluorination and 

hydrogenation [102] may bring disorders and defects to the structure. Therefore, researchers 

tended to look at functionalised groups such as methyl, cyanide,, amidogen and oxide which 

has predicted to open the bandgap of thin-film bismuth to 0.934 eV [103], 1eV [104], 0.83 eV 

[105] and 0.28eV [106] while maintaining the TI phase.  In 2017, the orbital filtered planar 

bismuthene as a Z2 topological insulator was realised on SiC (0001) substrate [70]. The 

experimental band gap has been detected as 0.8 eV and the 1D conductive edge states are 

measured via scanning tunnelling spectroscopy (STS). 

Besides its Z2 topological behaviour, bismuthene is also distinguished by its non-trivial 

property as a 2D TCI in its freestanding form [77].  In contrast to Huang et al.’s conclusion in 

Ref [90] that the planar bismuthene has trivial edge states, Hsu et al. [77] suggested that the 

edge states are protected by mirror symmetry and its topological properties can be defined with 

the topological invariant mirror-Chern number Cm =2. Antimonene is another 2D TCI predicted 

in Hsu et al.’s work [77], which has similar structures and topological properties as bismuthene. 

While planar bismuthene has not been synthesized on the substrate with weak interaction, the 
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synthesized planar antimonene on Ag (111) substrate [71] is a promising result, suggesting the 

flat graphene-like Group V elemental structure can be fabricated on weak substrates.  

3.4.4 Bi (110) Thin Films 

Bi (110) thin films refer to the pure bismuth thin film in black phosphorus (BP) structure. The 

material was first discovered in 2004 [107] and named as Bi {012} phase when Nagao et al. 

found that on Si(111)-7×7 puckered layers form below a certain thickness (<4ML) at room 

temperature.  After the film has been grown to a larger thickness, the material regains Bi (111) 

buckled phase. Later studies found that edge reconstructions open a band gap of 0.4eV for the 

4 monolayer (ML) Bi (110) layer [108]. In 2014, the 2ML and 4ML layers of Bi (110) film 

were identified as TIs [109]. 6ML Bi (110) also has a non-trivial Z2 number but turns metallic 

due to the bulk band closure. Also, the band topology has been proved sensitive to the atomic 

atomic corrugation. As shown in Figure 3.9, simulation results have shown that the topological 

feature of 2ML thin film with perfect BP structure transitions from non-trivial to trivial when 

it is distorted. The critical height for the transition is 0.1 Å. The atomic corrugation can be 

strongly determined by the substrate. For example, BP is more stable with Si (111)-7×7 

substrate [107], while distorted black phosphorus (DBP) structure is more stable with highly 

oriented pyrolytic graphite (HOPG) substrate [109].  
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Figure 3.9 The atomic corrugation in 2ML Bi (110) DBP structure and its effect on the 

triviality. The height h measures the level of atomic corrugation. Graphs taken from Ref [109]. 

3.5 Comments 

The experimental progress in the fields of  2D topological insulators is much slower than the 

advance in theoretical prediction [2]. One of the main reasons is that most materials do not 

have a large band gap opened by SOC. Therefore, the band gap may close when the temperature 

is a lot higher than 0K. For example, as the first predicted topological insulator, graphene has 

a band gap in the order of 10−3 eV [110], which makes it hard to observe topological protected 

edge states through experiments. Another reason is the difficulty to synthesize 2D materials 

with perfect crystal structure [111]. In addition, the substrate effect sometimes can be 

detrimental to experimental realisation. Substrates act as periodic potential exerted on the thin 

film material and effectively alters the band structure. The freestanding thin film TI may change 

its property when placed on a substrate. Planar bismuthene on SiC (0001) surface is a good 

example for this because the TI feature is induced by the substrates. However, that is only 

limited to Z2 Topological Insulator phases. The recent studies of topological non-trivial phases 
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have been extended from time-reversal symmetry protected systems to crystal symmetry 

protected systems. Compared to 2D TIs, 2D TCIs still have a lot of potential to uncover. For 

example, although the bismuth-related material has been extensively studied for its TI phase, 

fewer works have focused on its TCI feature formed by freestanding planar bismuthene. 
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Chapter 4 Methodology 

4.1 Density Functional Theory Calculation 

Density functional theory (DFT) is an effective method to study the electronic property of the 

many-body system. A detailed description of DFT can be found in some textbooks [112, 113]. 

A recent review listed some most recent applications of the method [114].  This section briefly 

introduces the fundamentals of DFT. 

The many-body system can be described by many-body Schrödinger equation,  

 

The terms in the right-hand side equation represents the kinetic energy of the electrons, 

interactions between electrons, the kinetic energy of nuclei, the interaction between atoms, and 

interaction between electron and atoms. In the formula, i and j represents the ith and jth electron, 

while I and J represents the Ith and Jth nuclei. r and R stand for the coordinates of electrons and 

nuclei, respectively. ∇ is the Laplacian operator. 𝑚𝑒 and 𝑀𝐼  are the electron mass and nuclei 

mass. 𝑍 is the charge of nuclei. After Born-Oppenheimer approximation [115] is applied, the 

electronic motion and the nuclei motion are assumed separated. Since the motion of electrons 

is a lot faster than the motion of nuclei, the nuclei are considered frozen. Therefore, the equation 

is reduced to  
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. 

Since the many-body system is still challenging to solve, researchers developed different 

strategies for single-electron approximation. The simplest approach is the free electron model 

with the approximation that drops the electron-electron and electron-ion interaction [116]. 

Although this approach fails in most cases as it cannot distinguish between metal and insulator, 

it helps to introduce the concept of Fermi energy. Later Hartree approximation was developed 

considering the many-body wavefunction as a product of each individual electron 

wavefunction [117]. This theory was further developed by Fock and Slater to include the 

exchange term to derive the Hartree-Fock equation [118, 119]. However, the shortage for 

Hartree-Fork equation correlation energy was not considered.  

DFT added the exchange-correlation energy part to the one-electron approximation. DFT is 

under two fundamental theorems [120]. Firstly, the ground-state electron density determines 

the Hamiltonian, and therefore the properties of the system. The second theorem suggests that 

the electron density that minimises the energy functional is the exact ground-state electron 

density.  DFT uses Kohn-Sham equation [121] to approximate Schrodinger’s equation. The 

Kohn-Sham equation can be written as 

 

where the first three terms in the bracket can be determined exactly. 𝑉(𝒓) represents the 

potential between an electron and overall nuclei. 𝑉𝐻(𝒓) is the Hartree potential which defines 
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the Coulomb interaction between one electron and the total electron density. 𝜓𝑖(𝒓)  is an 

individual electron wavefunction with eigenvalue 휀𝑖 . The  𝑉𝑥𝑐(𝑟)  part is the exchange-

correlation functional, which cannot be calculated directly. However, it can be approximated 

with different approaches. The general approaches include Local Density Approximation 

(LDA) [122] and Generalised Gradient Approximation (GGA) [123]. Various softwares have 

been developed to perform DFT calculation, including Vienna Ab-Initio Simulation Package 

(VASP) [124, 125]， WIEN2K [126], QUANTUM ESPRESSO [127], and ABINIT [128]. 

One of the challenges for DFT is the modelling of van der Waals (vdW) interaction, which 

plays a crucial role in multi-layer two-dimensional material systems. Since vdW is a result of 

long-range electron correlation [112], where standard DFT may not provide an accurate 

description. To model the van der Waals interaction, researchers developed different methods 

as add-ons to DFT. Those methods include DFT-D2 [129] and DFT-D3 [130] developed by S. 

Grimme, and DFT-TS [131] developed by A. Tkatchenko and M. Scheffler. The general 

calculation steps for DFT are shown in Figure 4.1. 
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Figure 4.1 General steps for DFT calculation. 

 

4.2 Wannier Functions 

4.2.1 Tight Binding Method Based on Wannier Functions 

Tight binding (TB) model is an effective method to study electronic structures of solid state 

systems. The logic behind the TB model is to consider the wavefunction of a single electron as 

the linear combination of isolated atomic orbitals. Methods to construct TB model includes 

Slater-Koster Method [132],  and  maximally localised Wannier functions (MLWF) [133] 

method. MLWF TB model Hamiltonian can be constructed through DFT calculation associated 

with the software Wannier90 [134].  
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Figure 4.2 Illustration of Bloch wavefunction and Wannier functions. Graph taken from Ref. 

[135] 

 

The Wannier function is the Fourier transform of the Bloch function in real space. As shown 

in Figure 4.2, in contrast to Bloch functions that spread through the momentum space, the 

Wannier functions are localised at each individual atom.  

The relation between Bloch function and Wannier function [136] can be written as 

|𝑹𝑛 >=
𝑉

(2𝜋)3
∫ 𝑑𝒌

𝐵𝑍

𝑒−𝑖𝒌∙𝑹|𝜓𝑛𝒌 > 

|𝜓𝑛𝒌 >= ∑ 𝑒𝑖𝑘∙𝑹|𝑹𝑛 >

𝑅

 

|𝑹𝑛 > is the Wannier function in the Rth cell for the nth band. 𝑉 is the real-space primitive cell 

volume. |𝜓𝑛𝒌 > is the eigenstates of the Hamiltonian, where 𝒌 is the wavevector. However, 
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Wannier functions are not uniquely determined by the Bloch function because of the choice of 

phases in the Bloch orbital. Therefore, the shape and spread of Wannier function can have large 

variations. To solve this issue, MLWF method [133] was developed. A review of the theory 

and application of MLWF can be found at Ref. [135]. The basic idea behind this is to define a 

localization criterion that measures and minimizes the spread of Wannier function around their 

centres. The matrix element from MLWF TB Hamiltonian be expressed as  

𝐻𝒌,𝑛𝑚
𝑊 =< 𝜓𝒌𝑛

𝑊 |𝐻|𝜓𝒌𝑚
𝑊 >= ∑ 𝑒𝑖𝒌∙𝑹 < 𝟎𝑛|𝐻|𝑹𝑚 >𝑹 . 

Where 𝟎 and R stands for the home cell and the Rth cell, with the band index n and m. 

4.3 Our Computational Workflow 

4.3.1 Methodology 

The general step for 2D TI calculation involves band structure calculation, calculating 

topological invariants and plotting edge states. In the calculation of bandstructures, SOC is 

applied since it is essential for the existence of topological insulators. The orbital resolved band 

structure plot is a projection of orbital composition on the band structure. Early signs of band 

inversion can sometimes be found by analysing the orbitals. Calculation of topological 

invariants is the determining step that confirms the topology of the material. When the material 

is confirmed to be TI or TCI, helical edge states that are protected by symmetry will be present 

on the edge of the material. Those edge states can be further analysed by plotting the edge state 

either through constructing nanoribbon, or through TB model. 
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DFT calculations are carried out with VASP software. The pseudopotential used is generated 

through the projector augmented wave (PAW) method [137]. Perdew-Burke-Ernzerhof (PBE) 

[138] exchange-correlation functional was applied. A convergence test was performed before 

carrying out the calculation. Zero damping DFT-D3 Grimme Method [139] was applied to 

approximate vdW Interaction. 

The input and output for each calculation steps are listed in Table 4-1. 

Table 4-1 General steps for topological materials calculation 

Step  Input Software Output 

Geometry Relaxation Unrelaxed atomic 

structure 

VASP Optimised atomic 

structure 

Self-consistent 

calculation 

Atomic structure 

information 

VASP Charge Density file 

Density of states  

Wavefunction 

information 

Band structure 

calculation 

Band structure 

calculation 

VASP Band structure, atomic 

orbital information 

Write Wannier90 

Input 

Wavefunction 

information 

VASP/Wannier90 

Interface 

Wannier90 Input files 

Wannier 90 

calculation 

Wannier90 Input 

files 

Wannier90 Wannier TB 

Hamiltonian 

Wannier TB 

Hamiltonian Post- 

processing 

Wannier TB 

Hamiltonian 

Wanniertool TB bandstructure 

Wannier Charge 

Centre plot 
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Surface states 

4.3.2 The “Band Downfolding” Technique 

The “band downfolding technique” is useful in providing tight-binding Hamiltonian for the 

circumstances that a thin film material is placed on a substrate. Here the term “downfold” is to 

extract the effective Hamiltonian of the thin film out of the bulk band information which 

consists of the thin film and the substrate. The DFT band structure contains both substrate and 

thin film information. Extracting the thin film information out of the bulk Hamiltonian not only 

saves time and computational resources in post-processing the Hamiltonian, but also is more 

relevant to the practical circumstances. The reason can be demonstrated in Figure 4.3, which 

has shown an example of plots comparing the corresponding edge configurations downfolded 

and un-downfolded edge states. We can identify the distinctive difference between the plots. 

In Figure 4.3 (a) shows that the edge of the thin film material deposited in the bulk substrate, 

which is a situation that is common in experimental deposition of 2D thin films [140]. The 

influence from the bulk substrate will be projected into the orbitals of the thin film. Figure 4.3 

(b) shows that the edge of the thin film perfectly matched the substrate edge. If we use a 

undownfolded Wannier tight-binding Hamiltonian and calculate the edge state with the same 

method, we will have to assume the substrate edge matches the thin film edge, which is a model 

that exist only in theoretical calculation and unlikely to be created experimentally.  Therefore, 

using a downfolded Hamiltonian is important in our calculation of Wannier edge states. 
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Figure 4.3 (a) Atomic structure with thin film edge bismuthene deposited on the substrate, which is 

more likely to appear in experimental circumstances (b) Atomic structure with thin film edge deposited 

exactly on substrate edge, which is only hypothetical. When calculating the edge states through Wannier 

function, (a) edge corresponds to the “downfolded” Armchair structure edge that only bismuth orbital 

is used in the edge calculation, while (b) edge correspond to the “undownfolded” edge band structure 

that both Bi and h-BN orbitals are used to calculate the edge states. The purple atom is the bismuthene 

thin film. h-BN substrate is under the thin film. The red line indicates the edge of the bismuthene thin 

film. More details on Bi/h-BN model setup can be found at Chapter 6.2. 

 

The general principle of the technique is to write a Hamiltonian that contains selectively 

projected orbital information relevant to the material’s topological properties. We have 

summaries the following procedures to achieve the best quality downfolded Hamiltonian for 

topological insulator materials on a substrate. The first procedure is to plot the orbital projected 

bulk band structure for both thin film and the substrate using DFT. Secondly, we need to 

identify the orbitals of the thin film that are close to Fermi level and record the range of the 

energy window that contains all those orbitals. This energy window is used as an “outer 

window” in writing the Wannier90 input file. The other important input “inner window” is 

determined by the maximum window near the Fermi level that contains only the selected orbital 
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information. Figure 4.4 (b) demonstrates an example of downfolded structure, which can be 

compared with the bismuth bands in DFT calculation highlighted the in red circles 

demonstrated in Figure 4.4 (a). The similar shape between the two band structures shows that 

the downfolding process has been completed in high quality. Only high-quality effective 

Hamiltonians provide consistent edge band structures. 

 

Figure 4.4 (a) The DFT band structure for Bi/SiCH-(0001) with highlighted bands contributed by 

bismuth atoms. (b) The Wannier tight-binding band structure constructed based on a projection on p 

orbitals extracted from Bi/SiCH-(0001) DFT calculations. 

4.4 Calculation of Topological Invariants 

The Z2 topological invariant is defined in Ref. [45] as  

(−1)𝑣 = ∏
√det (𝑤(𝛾𝑖))

𝑃𝑓(𝑤(𝛾𝑖))
𝑖
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where 𝛾𝑖 is time reversal invariant momenta. 𝑣 is the Z2 topological invariant that may have 

the values of either 0 or 1. 

However, solving this equation requires complex mathematics. Researchers developed 

different methods to calculate topological invariants. In 2007, Fu & Kane [39] derived a new 

equation to calculate the topological invariant for materials that are inversion symmetric in 

their atomic structures. The calculation is based on parity analysis.  

𝛿𝑖 = ∏ 𝜉2𝑚

𝑁

𝑚=1

(Γ𝑖) 

(−1)𝑣 = ∏ 𝛿𝑖

𝑖

 

where 𝜉2𝑚(Γ𝑖) = ±1 is the parity eigenvalue of the occupied energy band at TRIMs. 

This method is only applicable in inversion symmetry systems. It helped successfully predict 

some important TIs, such as three dimensional Bi2Se3 [17]. 

4.4.1 Z2 Invariant and Wannier Charge Centre Method 

Calculation Z2 number for all systems can be realised with tracking of Wannnier charge centre 

(WCC). The derivation of this method was discussed in detail in Ref.  [141] and Ref.  [142]. 

Wannier centre can be defined as centre of Wannier function 𝒓𝑛̅̅ ̅ = 〈𝟎𝑛|𝒓|𝟎𝑛〉 . It also 

corresponds to the integral Berry connection in the Brillouin Zone  𝒓𝑛̅̅ ̅ =
𝑉𝑐𝑒𝑙𝑙

(2𝜋)3 ∫
𝐵𝑍

<
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𝑢𝑛𝒌|𝑖∇𝒌|𝑢𝑛𝒌 > 𝑑3𝑘. , where 𝑉𝑐𝑒𝑙𝑙 is the volume of unit cell. |𝑢𝑛𝒌 > is the cell-periodic form 

of the Bloch function. 𝒌 is the wavevector. 

In a 2D system, when only y direction is taken to the Fourier transform, a hybrid Wannier 

function can be defined as 

|𝑛𝑘𝑥𝑙𝑦 >=
𝑎

2𝜋
∫ 𝑑

2𝜋/𝑎

0

𝑘𝑦𝑒−𝑖𝑘𝑦𝑙𝑦|�̃�𝑛𝒌> 

Then WCC becomes 𝑦𝑛̅̅ ̅(𝑘𝑥) = < n𝑘𝑥0|𝑦|𝑛𝑘𝑥0 > = 
𝑎

2𝜋
∫ 𝑖 <

2𝜋/𝑎

0
𝑢𝑛𝒌|𝜕𝑘𝑦

|𝑢𝑛𝒌 > 𝑑𝑘𝑦 

𝑦𝑛̅̅ ̅(𝑘𝑥) also corresponds to the Berry phase at a given 𝑘𝑥. 

Topological invariants can be calculated via tracking 𝑦𝑛̅̅ ̅ at different 𝑘𝑥. An example can be 

found at Figure 4.5, where 𝜃 is a phase factor directly proportional to 𝑦𝑛̅̅ ̅. A reference line can 

be drawn through 𝑘𝑥. In a time-reversal symmetric system, an even number of crossing points 

indicates a trivial insulator, while an odd number of crossing points indicates a topological 

insulator. 

The WCC method has been applied in open-source software such as Z2Pack [143] and 

Wanniertools [144] to calculate the Z2 invariant. 
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Figure 4.5 Example of Wannier Charge Centre plot taken from Ref. [142]. (a) shows the WCC plot for 

1QL Bi2Te3 slab which is trivial insulator with Z2 topological invariant 0. (b) shows the WCC plot 

2QL Bi2Te3 which is a topological insulator with Z2 topological invariant 1. The red line is a reference 

line crossing the WCC plot. An even number indicates Z2 topological invariant 0, while an odd number 

indicates Z2 topological invariant 1. 

4.4.2 Edge States Calculation 

The most general method in calculating surface states is to construct a one-dimensional 

nanoribbon and use DFT to plot the whole band structure. This method is very useful to account 

for the influence of structural deformation [145], and the effect of edge adsorption [91]. 

However, the large number of atoms in nanoribbon also means time-consuming and memory-

intensive calculations.  Also, since topologically protected surface states are robust against 

many perturbations, such high accuracy simulation of the real system may not be required in 

most circumstances.  To simplify the calculation, the software Wanniertools uses iterative 

Green function methods associated with the input single unit-cell Wannier tight binding 

Hamiltonian to perform edge states calculation [144]. 
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4.5 Tight Binding Model and Effective Hamiltonian 

The tight binding model for the thin film bulk bismuthene can be written as 

𝐻 = 𝑡 ∑ 𝑐𝑖
†𝑐𝑗 +⟨𝑖𝑗⟩ λ𝑆𝑂�̂� ⋅ �̂� + 𝑖λ𝑅 ∑ 𝑐𝑖

†(𝒔 × �̂�𝒊𝒋)
𝑧⟨𝑖𝑗⟩ 𝑐𝑗 + 𝐻.c. 

The first term and the third term are the same as described in Chapter 3.3.2, in the second 

term,λ𝑆𝑂 , �̂�  and �̂�  stands for SOC strength, orbital angular momentum, and spin angular 

momentum. The detailed construction for the first part of the Hamiltonian 𝐻 =

𝑡 ∑ 𝑐𝑖
†𝑐𝑗 +⟨𝑖𝑗⟩ λ𝑆𝑂�̂� ⋅ �̂�  follows the principle from Ref [146]. Using previously obtained 

Wannier tight-binding Hamiltoninan, the hopping parameters can be obtained. For bismuth p 

orbital is chosen as the basis for the model. Hopping has been limited to the second nearest 

neighbour. The spin-orbital term λ𝑆𝑂 can be determined by DFT calculation of the structure. 

The model can be used to study multiple bismuth allotropes. In our case, the Rashba term 

𝑖λ𝑅 ∑ 𝑐𝑖
†(𝒔 × 𝒅𝒊𝒋)

𝑧⟨𝑖𝑗⟩ 𝑐𝑗 from Kane-Mele model [47]. is added to model the mirror symmetry 

breaking effect. This can either be a perpendicular electric field or the substrate effect.  
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Chapter 5 Electronic Structure of Bismuth 

Allotropes 

5.1 Introduction 

As introduced in Chapter 3.4, bismuth allotropes provide us with a platform to study various 

types of topological features. To provide the benchmark for our calculation, this chapter begins 

with the part verifying the results from previous studies. This includes calculation of electronic 

band structures and topological features for Bi (111) thin films, planar bismuthene, and the 

orbital filtered bismuthene on SiC thin film which leads to the experimental realisation of a 

room temperature 2D TI [70]. Those results have been consistent with previous findings.  

We have also included a TCI/TI edge interface states study that shows how the TI edge states 

dominate over the TCI edge states in planar bismuthene nanoribbon structure. The new 

interface states have demonstrated the resemblance to the edge states of both materials. 

We focused on the electronic structures of Bi (110) in Chapter 5.4. The electronic structures 

have been compared with the experimental results from our experimental collaborator.  
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5.2 Electronic Structure of Bismuth Allotropes  

5.2.1 Bi (111) Electronic Structures and Topological Properties. 

 

Figure 5.1 Bi (111) BL bandstructure (a) DFT bandstructure without SOC (b) DFT bandstructure with 

SOC printed in black lines. Wannier TB band structure with SOC printed in red dots (c) Band structure 

with SOC taken from Ref [87] . 

The band structure for Bi (111) 1BL without and with SOC is shown in Figure 5.1 (a) and 5.1 

(b) respectively. The black lines are DFT band structure, while the red dashed line in Figure 

5.1(b) is the Wannier TB band structure. The DFT and Wannier bandstructure in Figure 5.1(b) 

matches well with each other. The Wannier TB band structure is based on the projection on p 

orbitals of Bi atoms. The overlap of band structure calculated with the two methods around the 

Fermi level indicates the reliability of the Wannier TB Hamiltonian. The band structure shape 

Figure 5.1 (b) is consistent with Figure 5.1 (c) obtained from Ref [87], despite our calculation 

indicates a larger indirect band gap 0.48eV instead of 0.2eV. As Ref [88] has calculated 0.58eV 

indirect band gap for the same structure, we believe our band gap is consistent with the range 

of previous calculated magnitudes. By comparing Figure 5.1 (a) and Figure 5.1 (b), we can 
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see that after SOC is applied, the initially entangled band structure becomes separated. At Γ 

point near the Fermi level, the shape of the occupied band indicates an early sign for band 

inversion.  

As suggested in literatures [141, 142], the topological invariants can be calculated via drawing 

a horizontal line through the Wannier charge centre plot. An odd number of crossings indicates 

a non-trivial topological phase with 𝜈 = 1, while an even number of crossings indicates trivial 

phase with  𝜈 = 0 .  Therefore, the Wannier charge centre shown in Figure 5.2 (b) plot 

confirmed that Bi (111) 1 BL is a Z2 topological insulator induced by SOC. 

Figure 5.2 The Wannier charge centre plot under (a) no SOC and (b) with SOC circumstances. 
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5.2.2 Electronic Structures and Topological Properties for Planar 

Bismuthene 

 

Figure 5.3 Bandstructure for planar Bismuthene (a) DFT band structure without SOC (b) DFT band 

structure in blacklines and Wannier TB band structure in red dotted lines (c) Bandstructure taken from 

Ref. [90]. 

The band structure for freestanding planar bismuthene without and with SOC is shown in 

Figure 5.3 (a) and 5.3 (b) respectively. The Wannier TB band structure (red line) matches 

well with the DFT band structure (black line), as well as the band structure plotted in literature 

[90] shown in Figure 5.3 (c). The band structure without SOC has Dirac cones at Fermi level. 

After SOC was applied, the degeneracy was lifted.  
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Figure 5.4 Wannier charge centre plot for freestanding bismuthene with SOC. 

 

As shown in Figure 5.4, the WCC plot has two crossing points with a horizontal line, which 

indicates that the material is Z2 trivial. Therefore, the material is not protected by time-reversal 

symmetry. However, the pattern of this WCC plot is different from the usual non-trivial WCC 

plot. It can be explained with the condition of the WCC loop with WCC winding the cylinder 

twice. As described in Ref [142], the degeneracy is usually lifted by perturbation (indicated 

with point P in Figure 5.5).  However, as shown in Figure 5.4, the degeneracy is maintained. 

The WCC plot indicates there might be symmetry other than TRS that protects the degeneracy. 

This is consistent with previous studies that the material is a TCI [77].  
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Figure 5.5 Illustration of WCC windling the cylinder twice. Usually, the degeneracy is lifted at point 

P. Graph taken from Ref. [142]. 

The edge states of freestanding bismuthene will be discussed in detail in Chapter 6.3.1. 

5.2.3 TCI/TI Interface States 

The TI model constructed here we used here is BiF. It has been reported BiF is a 2D TI with a 

large bandgap [101]. The TCI applied here is freestanding planar bismuthene. The nanoribbon 

constructed here for BiF is 8 × 1 × 1  and for freestanding bismuthene monolayer is 

10 × 1 × 1. The edges for both nanoribbons separated with 40 Å vacuum to make sure there 

are no interactions between each edge. The single unit-cells are fully relaxed without SOC 

while the nanoribbons are frozen to simplify the calculation. BiF and freestanding bismuthene 

have the relaxed lattice constant of 5.26 Å and 5.27 Å respectively. Then the TCI and TI 

nanoribbons are connected to construct a TCI/TI interface. Constructed nanoribbons are shown 

in Figure 5.6. 
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Figure 5.6 Construction of nanoribbons. (a) 8 × 1 × 1 BiF nanoribbon (b) 10 × 1 × 1 freestanding 

bismuthene (c) BiF/Bismuthene interface. 

Figure 5.7 (a) Freestanding planar bismuthene armchair band structure (b) BiF edge band structure (c) 

BiF/Bi Interface band structure.  

(a) 
(b) (c) 
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Figure 5.8 (a) Freestanding planar bismuthene bandstructrue showing the weights of the edge bismuth 

atom. (b) BiF/Bismuthene interface bandstructure showing the weights of edge bismuth atom on 

bismuthene side. 

The BiF nanoribbon edge states, freestanding planar Bismuthene edge states, and the BiF/ 

Bismuthene interface states are plotted in Figure 5.7. BiF is a TI with an odd number of Fermi 

level crossing, while freestanding planar Bismuthene is a TCI with an even number of Fermi 

level crossing. The TCI/TI interface maintains a single number of Fermi level crossings, which 

may suggest that the topological insulator edge states protected by TRS are maintained. The 

reason that the TCI edge state feature is not seen in the interface could be the breaking of 

crystalline symmetry at the interface. Interestingly, the projected orbital in Figure 5.8(b) shows 

that the edge states near the Fermi level are contributed by the edge atoms of the freestanding 

bismuthene instead of the edge atoms of BiF. As shown in Figure 5.8(a) without the influence 

from the topological insulator BiF, the edge states of freestanding bismuthene originally 
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contribute edge states with two Fermi-level crossings between TRIMs. In addition, although 

the Bi/BiF interface states have a shape similar to the BiF TI edge states, the states sit well 

within the Bismuthene TCI bulk band gap. The interface states cross the M point at an energy 

level at about -0.6eV and 0.25eV, which is similar to the bismuthene TCI states. BiF TI edge 

states cross the M point at about -1.0eV and 0.6eV, which is a lot wider than the interface states. 

Therefore, we conclude that the TCI/TI edge states in Bi/BiF have obtained the feature of the 

edge band number and shape from the TI, while incorporating the energy range feature of TCI. 

5.3 Bismuthene on SiC (0001) 

5.3.1 Material Structure 

 

Figure 5.9 Bi on SiC (0001) a structure constructed for DFT calculations. 

The structure of planar Bismuthene on SiC (0001) is presented in Figure 5.9. The structure 

was relaxed with the lattice constant of bismuthene fixed at the lattice constant of SiC (0001). 

Each two of the three silicon atoms are bonded with two bismuth atoms. The other is passivated 

with a hydrogen atom.  
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5.3.2 Band Structures 

 

Figure 5.10 Band structure for planar bismuthene on SiC (0001) surface under circumstances (a) 

without SOC and (b) with SOC compared with (c) calculations and ARPES experiments from Ref. [70]. 

The band structure of planar bismuthene on SiC (0001) is plotted in Figure 5.10. The result is 

consistent with both the calculation and the ARPES result from the literature [70]. There is a 

Dirac cone at K point when SOC is not applied. When SOC is applied, a band gap opens at the 

K point. Strong Rashba splitting of bands is also observed near the Fermi level. 

(a) (b) (c) 
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5.3.3 Orbital Filtering Effect 

 

Figure 5.11 Freestanding planar bismuthene showing orbital weight from (a) bismuth px+py orbitals 

(b) bismuth pz orbitals. Planar bismuthene on SiC(0001) showing orbital weights from (c) px+py orbital 

and (d) pz orbital.  

The orbital projected bandstructure for freestanding planar bismuthene and planar bismuthene 

on SiC (0001) is plotted in Figure 5.11. In the freestanding planar bismuthene film with SOC, 

px, py and pz orbitals are all located around the fermi level. When deposited on substrates, the 

px and py orbitals are still located near the Fermi level, while the pz orbital is removed from 

the Fermi level. This is consistent with the prediction of literature [70] that the pz orbtial is 

filtered by the substrate as the dangling bonds on Si surface interact with bismuth atoms.  

5.4  Comparison of Bismuth (110) Electronic Structures with 

Experiments. 

5.4.1 Material and Atomic Structures 

Bismuth (110) is the material with a phosphorene structure. Unlike other bismuth-based 

materials, the material is defined by a rectangular lattice.  The BP and DBP structures are varied 

by a height difference Δh within one monolayer. For 2ML structure Δh is 0.495 Å is our 

(a) (b) (c) (d) 
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calculation, which is at a similar level with the 0.45 Å in Ref [109]. Our calculation also shows 

that in freestanding form, The DBP structure (see Figure 5.12(b)) is more stable than the BP 

(see Figure 5.12(a)) structure, with the energy difference of only 0.002eV/ Bi atom. 

 

Figure 5.12 Bi (110) thin film (a) BP structure (b) DBP structure. 

Due to different use of functionals and our choice to apply SOC during relaxation, the 

simulation results are slightly different against previous simulations. The previous simulations 

and the experimental results lattice parameters are shown in Table 5-1. 
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Table 5-1 Lattice parameters of Bi (110) from various sources comparing with our results. 

Bold font indicates my results, while simple font indicates the results from current literatures. 

The “features” column refers to the substrate used in the experiments, or the thin film 

structure used in the simulations. All the simulations here are without substrate. 

Structure  Features a (Å) b (Å) Source 

2-4ML (experimental) on Si (111) 4.5±0.2 4.9±0.2 Ref [107] 

2ML (experimental)  on HOPG 

on MoS2 

4.40 

4.53 

4.78 

4.87 

Ref [109] 

Ref [147] 

2ML (Simulation) BP 

DBP 

4.43  

4.38 

4.74  

4.54 

Ref [109] 

4ML (Simulation)  BP 4.43 4.93 Ref [148] 

2ML (Simulation) BP 

DBP 

4.60 

4.57 

4.87 

4.78 

DFT calculation 

4ML (Simulation) BP 4.60 4.84 

6ML (Simulation) BP 4.60 4.87 

 

As shown in Figure 5.13, despite the fact all the relaxed structures adopt a DBP structure with 

Δh approximately 0. There is a tendency of increase from 0.0002 Å - 0.0008 Å in 2ML structure 

to 0.005 Å - 0.023 Å in 6ML structure. At 6ML the height differences within the outer 2-layer 

atoms are higher than the inner 2 layers. However, all the height differences we studied here 

are significantly below the Δh (~0.5 Å) in a typical BP structure. 
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Figure 5.13 The position of atoms for Bi (110) structure for (a) 2ML, (b) 4ML and (c) 6ML thin films. 

The numbers indicate the absolute height (with arbitrary 0 point). The height difference between each 

layer of bismuth atoms is recorded in bold letters and numbers. H measures the atomic corrugation for 

each atomic layer. The oblique lines represent the axis of the unit cell, while the atoms height are 

measured vertically comparing the position of the atoms within one monolayer. 

5.4.2 Electronic Structure 

 

Figure 5.14  The bulk band structure calculated in 2ML, 4ML and 6ML Bi (110) thin films. 
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The electronic structure for 2ML, 4ML and 6ML Bi (110) is shown in Figure 5.14. Both 2ML 

and 4ML band structure shows a direct band gap between X2 and Γ. The bulk band gap for 

both 2ML and 4ML in our calculation is 70meV. The band structure calculated has a similar 

shape with previous studies, despite the slight variation in band gap calculation. (100meV for 

2ML and 59meV for 4ML in previous studies [109]). For 6ML Bi (110), the valence band at Γ 

point are pushed up, resulting in the closure of the indirect band gap, which is consistent with 

previous results in [109]. 

5.4.3 The Nontriviality of Bi (110) Edge States 

The Wannier projected edge states plot for 2ML 4ML, and 6ML Bi (110) thin film along 

different edge orientations is presented in Figure 5.15. The corresponding orientation is also 

illustrated. For all configurations, the edge states exist and continuously connect valence band 

with conduction band, which is consistent with the conclusion the material is topologically 

protected. The edge states for 2ML and 4ML sit within the 70 meV bulk band gap, while as a 

semimetal, the 6ML thin film hosts the edge states within its indirect band gap. 
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Figure 5.15 Wannier edge states plot along various edges for 2ML, 4ML and 6ML Bi (110) thin films. 

 

The 2ML, 4ML, and 6ML Wannier Charge Centre plots are plotted in Figure 5.16. The 

continuous evolution of WCC proves the nontriviality of the 2ML, 4ML, and 6ML edge states. 
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The red line has an odd number of crossing points throughout all three samples, indicating the 

Z2 number ν = 1 for 2ML, 4ML and 6 ML Bi (110) thin films. This is consistent with previous 

studies calculated the Z2 number using parity method [109]. 

 

Figure 5.16 Wannier Charge centre plot for 2ML, 4ML and 6ML Bi (110) structures. The red line crosses all 

three plots an odd number of times. This indicates the Z2 non-triviality for all three structures. 

5.4.4  Features of Bi (110) Edge States Comparing with Experimental 

Results 

In this study, 2ML and 6ML nanoribbon models have been constructed. The edge atoms are 

numbered according to the distance from the edge.  In our density of states calculations, the 
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contribution from both sides of the edge will be added up. For all of the samples, we have 

relaxed the outmost atom in the edge following the strategy from previous DFT studies on 2ML 

samples in Ref [109].  

Our experimental collaborators have mapped out the density of states of various configurations 

of Bi (110) edges. To compare with their configurations, we have built five models. The 2ML, 

4ML and 6ML nanoribbon, 2ML island + 2ML substrate, and 2ML island + 4ML substrate 

structure are constructed and used to model the various features that exist in experiments.  The 

2ML nanoribbon is similar but longer than the 2ML model built-in [109], where only the 

outmost layer of the edge atom is relaxed. The 4ML and 6ML nanoribbons are relaxed 

following the same strategy. However, for the 4ML and 6ML nanoribbon, the edge 

reconstruction took place, making the dangling atom sit between the top 2ML and the bottom 

substrates. Our models used to conduct the nanoribbon calculation is shown in Figure 5.17. 

Using first-principles calculation, we have plotted the contribution to density of states (DOS) 

for each atom from the outmost atom to the atoms inside. The atoms are numbered according 

to the distance from the edge. The innermost atom is atom 16, which is about 2nm inside the 

edge. The 2ML sample DOS calculation compared with experimental results is shown on 

Figure 5.18. We have identified 5 peaks in the experimental results that correspond to the 

peaks identified in our first-principles calculation. Three peaks are marked green, which 

corresponds to the peaks throughout all atoms. Two peaks away from the Fermi level are 

marked yellow, which corresponds to the peaks away from the edge. The edge-specific features 

are not observed. Therefore, we conclude that the experimental measurement for 2ML 

nanoribbon has been reflecting the bulk features instead of edge features.  
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Figure 5.17 Configurations used for Bi (110) nanoribbon calculation. The three configurations are a 2ML 

nanoribbon b 4ML nanoribbon and c 6ML nanoribbon d 2ML island on 2ML substrate e 2ML island on 4ML 

substrate. In b and c both the dangling up and dangling down edges are studied. In d and e both odd and even 

edges were studied. 
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Figure 5.18 a Density of States plot for 2ML nanoribbons for selected atoms (numbered according to 

5.17(a)). b Experimental density of states plot for 2ML nanoribbon. 

 

The noise level for both the 4ML nanoribbon and 4ML island configurations have a high edge 

density of states and is hard to identify. However, the blue region in the experimental figure 

shows there is a difference between the edge DOS and bulk DOS, which corresponds to the 

peaks decaying from atom 1 to atom 5. Both the up and down configurations show similar 

features. With a lack of peaks, it is hard to identify which edge configuration contributed the 

most to the DOS. For the bulk states (atom 16) in all 4ML nanoribbon configurations as shown 

in Figure 5.19a and Figure 5.20a, the position of three peaks (covered in green colour) below 

Fermi level corresponds well to the three peaks tested in the experimental figures. 
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Figure 5.19 a Density of states plot for 4ML nanoribbons for selected atoms (numbered according to 

5.17(b). b Experimental density of states plot for 4ML nanoribbon.  

 

Figure 5.20 a Density of States plot for 2ML nanoribbon + 2ML substrates for selected atoms 

(numbered according to 5.17(d)). b Experimental density of states plot for 2ML nanoribbon + 2ML 

substrates. 
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Figure 5.21 a Density of States plot for 6ML nanoribbons for selected atoms (numbered according to 

5.17(c). b Experimental density of states plot for 6ML nanoribbon.  

The experimental DOS plot is shown in Figure 5.21 (b) demonstrates the difference between 

the edge and bulk states around Fermi level. Two peaks can be identified near Fermi level.  The 

shape and level resemble the calculated DOS of 6ML dangling up the structure (see Figure 

5.21(a)).  This suggests the structure is contributed by the dangling up structure shown on the 

left edge of Figure 5.17(c). Two peaks below in the experimental bulk states are identified and 

can be contributed by the three peaks in the calculated DOS. 
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Figure 5.22 a Density of States plot for 2ML island + 4ML substrate nanoribbons for selected atoms 

(numbered according to 5.17(e). b Experimental density of states plot for 2ML island + 4ML substrate 

nanoribbon. 

The 2ML island + 4ML substrate experimental structure (see Figure 5.22 (b)) has shown a 

difference of DOS peaks compared with bulk DOS. However, the peaks are not significant 

enough to be observed. That could be explained by the non-significant peak distribution from 

Atom #2 to atoms inside the bulk. The experimental DOS failed to capture the peaks in atom 
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#1 as shown in blue columns below Fermi level in Figure 5.22 (a). The results here give an 

indication of how deep the measurements are inside the edge. 

5.4.5 The Depth of Measurement into the Edge 

Multiple peaks have been calculated for all configurations in Chapter 5.4.4. However, the 

experimental setup has only picked up a few of the peaks. One reason is that the measurement 

was taken at a certain depth into the edge and while the edge states can spread through a range 

of depth. To determine the range of edge peaks that can be reflected in the measurement, we 

compared the DOS as a function of depth into the edge at the energy level -0.2eV, 0, 0.1eV, 

and 0.356eV. At all those four energy levels, the 2ML peaks have the most significant DOS 

contribution near the end of the edge (see Figure 5.23(a)). However, this feature is missed in 

the experimental DOS data because at the energy 0 to 0.1 the experimental results show low 

DOS (see Figure 5.23(b)(c)). Thus, we can conclude that the experimental setup did not 

capture the features near the end of the edge. At around 4Å, the 2ML configurations host peaks 

at energy level -0.2 and 0.356(see Figure 5.23(a)(d)), which are captured by the experimental 

results. The peak of the 2ML+4ML substrate at 0.1eV (see Figure 5.23(c)) is also captured by 

the experimental measurement. Therefore, from the overall results, the region of DOS that is 

most likely to be captured by the experiment is the depth into the edge around 4Å. 
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Figure 5.23 DOS vs distance from edge for 2ML, 2ML in 6ML, and 2ML on 4ML island nanoribbon 

structures at the energy level (a) -0.2eV, (b)0eV, (c)0.1eV and (d) 0.356eV 

5.5 Conclusions 

In this chapter, we have confirmed the electronic structure and topological structure for Bi BL 

(111) film, Bi/SiC(0001) film, and Bi (110) thin films. Those properties have been proved 

consistent with previous studies. The Bi/BiF interface study on nanoribbon has demonstrated 

that the interface state retains features from both TI and TCI edge states. While most current 

studies focused TI, or TCI edges along, combining the edge features can be a useful strategy 

in future electronics design to tune the edge transport. The Bi (110) experimental results have 
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been compared with our calculation. The peaks from experimental and computational results 

have been matching with each other at 4 Å into the edge. This can be used as a future reference 

for the experimental detection for the materials’ topological edge states. 
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Chapter 6 Robustness of Bismuthene Edge States 

on Substrates 

6.1 Introduction 

The recent progress in the field of two-dimensional Quantum Spin Hall Insulators (2D QSHI) 

points to a promising direction for developing future electronic and spintronic devices with low 

energy consumption [23]. 2D QSHI is a material defined by its bulk-edge correspondence, 

which means that the bulk band topology can lead to the existence of topologically nontrivial 

edge states.  The edge states are protected against non-magnetic perturbations such as disorder 

and backscattering [149] as long as certain symmetries are preserved. Although theories have 

indicated that nontrivial band topology can exist in a wide range of materials [44], realizing the 

fabrication of topological electronic devices still meets many practical challenges. A desirable 

topological material should have strong spin-orbit interactions with a large band gap near the 

Fermi level, and should be stable when interacting with substrates. These requirements pose 

critical challenges for searching for a ‘real’ topological material used in low-energy electronic 

devices.  

Bismuth and its compounds have demonstrated their potential to have record-high band gaps 

[70, 150]. Planar bismuthene is a TCI with edge states protected by mirror symmetry [151]. 

However, the edge states are generally considered not robust and are sensitive to mirror 

symmetry-breaking substrates [152].  Here we have tested the stability of these edge states 
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under the influence of different substrate setups using first-principles calculations and Wannier 

function-based tight-binding models. We have found that choosing a substrate that has a weak 

interaction with bismuthene or using a sandwich stacking of substrates, could result in 

stabilized edge states in 2D TCIs. We have also identified that with certain edge terminations, 

the spin filtered edge states of 2D TCI survive the mirror symmetry breaking field, making it 

possible to achieve TI-like phases on a strong mirror symmetry breaking substrate. These 

results have reaffirmed that TCI can be a potential candidate for achieving a convenient switch 

of electronic states in nanodevices.  
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Figure 6.1 (a) Scheme for edges studied for thin film bismuth. And illustration for substrate, thin film, 

with the edge exposed on the right for (b) bismuthene on h-BN structure (c) bismuthene/SiCH-(0001) 

structure (d) h-BN/bismuthene/h-BN structure. These models will be used in Chapter 6 and Chapter 

7. 

6.2 Computational Setup and Model Construction 

We used first-principles calculations as implemented in the software VASP [124, 125]. The 

PBE [138] form of the GGA [123] is used to describe electron exchange and correlation. The 

energy cut-off was set to at least 500eV. All structures are fully relaxed until the ionic forces 
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on atoms are less than 0.01 eV/Å. The vacuum is set to be at least 30 Å to avoid the interaction 

between layers. A dense 21×21×1 kpoint grid was applied to sample the Brillouin Zone for 

accurate calculations of electronic structures. Wannier 90 [134] was used to generate Wannier 

tight-binding Hamiltonians, which are extracted for the calculation of topological edge states. 

The Hamiltonians are constructed with bismuth px, py and pz orbitals, with the effect of 

substrate incorporated into the model via the downfolding method [153, 154]. The software 

WANNIERTOOLS [155] was applied to perform edge states calculations based on iterative 

Green function methods. 

In this research, we study the edge states for both freestanding bismuthene and bismuthene 

supported on different substrates. In terms of edge state calculations, we test on four different 

edge terminations,  namely Zigzag (ZZ), Armchair (AC),  Zigzag edge with Klein defect (ZZ-

k) [156] and Armchair edge with Klein defect (AC-k) [156, 157]. The four types of edge are 

shown in Figure 6.1(a). The last two modes are directly modified from conventional ZZ and 

AC edges by adding another atom per unit cell. Because the Klein edges contain additional 

dangling bonds compared to ZZ and AC, they are useful to investigate whether edge states can 

be protected in the presence of defects. The two types of substrates examined are hexagonal 

boron nitride (h-BN) and hydrogen passivated silicon carbide (SiCH-(0001)), which are shown 

in Figure 6.1(b) and Figure 6.1(c) respectively. Those substrates are both considered highly 

inert  [158] to support two-dimensional Group V structures. SiCH - (0001) is modelled by four 

layers of SiC (0001) with both the top and bottom layer passivated by hydrogen atoms. For h-

BN, we have compared the effect of bismuthene on a single layer of h-BN and three layers of 

h-BN and found they give qualitatively similar results. Hence in the following calculations, we 
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use a monolayer of h-BN as a simplified model to represent the bulk h-BN substrate. For the 

stacking between bismuthene and h-BN, we further consider sandwich stackings of h-

BN/bismuthene/h-BN sandwich. The stacking order of two h-BN layers can be either AA and 

AB (Figure 6.1(d)and 6.1(e)). AA stacking is related to AB stacking by a rotation of 60 degrees 

around the vertical axes. 

Lattice mismatch is an important factor when we consider the modelling of heterostructures. 

The relaxed lattice parameter for the freestanding bismuthene unit cell is 5.27Å. The 2×2 h-

BN substrate lattice is 5.02 Å (4.7% lattice mismatch). The SiCH-(0001) substrate lattice is 

√3 × √3 5.34 Å (1.3% lattice mismatch). For the bismuthene/substrate models, we fixed the 

bismuthene lattice constant to that of the substrates. Both lattice mismatches are less than 5%. 

For both substrates, bismuthene maintains planar after the relaxation of the structures, 

indicating that the planar form of two-dimensional bismuth layers can be stabilized. This agrees 

with previous theoretical results suggesting planar bismuth should be energetically favourable 

than a buckled layer if the lattice constant of two-dimensional bismuth is stretched above 5.3 

Å .[90] The experimental fabrication of the planar bismuthene on SiC(0001) in [70] also  

suggested that it is possible for the planar bismuthene to survive the lattice mismatch.  

6.3 Freestanding Bismuthene 

6.3.1 Orbital Analysis for Freestanding Bismuthene 

We firstly revisit the electronic structure of freestanding planar bismuthene. Bismuthene has 

been confirmed to be a Z2 topological insulator when placed on silicon carbide substrate both 
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theoretically [100] and experimentally [70]. In its freestanding form, bismuthene was predicted 

as a topological crystalline insulator with edge states protected by mirror symmetry [77]. We 

have calculated the electronic band structure of bismuthene and bismuthene nanoribbons as 

shown in Figure 6.2. The bulk (Figure 6.2(a)) , ZZ(Figure 6.2(b)), and AC(Figure 6.2(c)) 

edge band structures are consistent with previously published DFT [77] and TB [72] results. In 

the band structure of nanoribbons, we can clearly see edge states continuously connecting the 

top of the valence band and the bottom of the conduction band. We have verified that 

bismuthene has a mirror Chern number of 2 via Wannier tight-binding methods, confirming 

that freestanding bismuthene is a topological crystalline insulator. 
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Figure 6.2 | DFT Orbital analysis for freestanding bismuthene at (a) bulk bismuthene, (b) ZZ, (c) AC, 

and (d) ZZ-k edge configurations. 

We also calculate the orbital characters of bands as shown in coloured circles in Figure 6.2 

Orbital characters will be useful later to demonstrate the change in electronic and topological 

properties due to substrate effects. For freestanding bismuthene, we can observe the features 
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of band inversion at TRIM point K, between px+py (red) and pz (green) orbitals. As a result of 

band inversion, edge states in bismuthene nanoribbons form inside the gap region connecting 

the valence band with the conduction band. We have also found that different edge terminations 

lead to different edge band degeneracy features and orbital characters. Zigzag nanoribbons 

(Figure 6.2(b)) show edge band degeneracy point at Γ contributed by px+py orbitals, while the 

degeneracy at M is dominated by pz orbital. However, for armchair (Figure 6.2(c)) and ZZ-k 

(Figure 6.2(d)) edge terminations, the edge band crossings are located at generic kpoints, with 

combined px+py and pz orbital characters. 

6.3.2 Wannier Edge States for Freestanding Bismuthene 

Using DFT and Wannier functions, we have constructed the edge states plot for freestanding 

bismuthene on the four different edges. (See Figure 6.3(a)(b)(c)(d)). Consistent with our result 

on nanoribbon calculation and previous literature. All edges hold continuous edge states from 

the valence band to the conduction band. When compared the DFT edge states (Figure 6.2 

(b)(c)(d)) with the Wannier edge states (Figure 6.3 (a)(b)(c)), we can find that the edge states 

from the two methods are qualitatively very similar near the Fermi level, but has some variation 

in detail. The detailed variation includes the risen band at Γ point in ZZ structure, and the 

different numbers of distortions at the higher energy region near the conduction band 

minimum. Despite the slight distortions, the tight-binding model can demonstrate well the band 

shape of the edge states. The AC band structure for both models fit well with each other.  
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Figure 6.3 Freestanding bismuthene edge states for (a) ZZ, (b) AC, (c) ZZ-k and (d) AC-k edge states. 

Both GGA-PBE and HSE are plotted. 

6.4 Bismuthene on substrate 

6.4.1 Substrate Type that Maintains the Edge States 

We first examine the effect of SiC, a popular choice as the supporting substrate for bismuthene. 

Previous reports have shown that bismuthene can bind covalently on SOC. However, the 

formation of covalent bonds between bismuthene and the substrate turns the bismuthene into a 

Z2 topological insulator [70]. Therefore, to preserve the topological nature of bismuthene as a 

TCI when placed on a substrate, we have passivated both surfaces of SiC with hydrogen atoms 

to form an inert substrate denoted as SiC-H (0001). The interaction between SiC-H (0001) is 



   

79 

 

now mainly governed by weak van der Waals forces. Hence the electronic structure of 

bismuthene would be expected to be less affected by substrates compared to the covalent-

bonded system. 

We can confirm the interaction strength by assessing the energy feasibility of the system via 

calculating the cohesive energy of the bimsuthene-substrate system. The cohesive energy is 

defined as: Ecohesive = 𝐸𝑠𝑢𝑏 + 𝑁 × 𝐸𝐵𝑖 − 𝐸𝑡𝑜𝑡, where 𝐸𝑡𝑜𝑡 is the energy of the bismuthene-

substrate system, 𝐸𝑠𝑢𝑏  is the energy of the relaxed isolated substrate, N is the number of 

bismuth atoms in the bismuthene cell and 𝐸𝐵𝑖 is the energy of a single bismuth atom. A positive 

𝐸𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒value means that formation of the structure is energetically favourable. The cohesive 

energy of bismuthene-SiCH-(0001) is 2.01 eV/atom, which is much lower compared to 4.00 

eV/atom on covalently-bonded planar bismuthene SiC-(0001) substrate, indicating that 

bismthene does not form strong chemical bonds with the underlying SiCH-(0001) susbstrate. 

We calculate the edge band structure of bismuthene nanoribbons on SiC(0001)-H using 

Wannier-based tight-binding models as shown in Figure 6.4 (a)(b)(c)(d). Similar to the 

freestanding bismuthene, we can observe two branches of edge bands around the Fermi level. 

Upon support on SiCH-(0001), we see a strong edge-dependent response of edge states affected 

by the substrate. For AC and AC-k edges, the edge band generalise along Γ − 𝑀 are broken 

(highlighted by circles in Figure 6.4 (b)(d)). Since the band degeneracy along Γ − 𝑋  is 

protected by mirror symmetry, suggesting the substrate effect has switched off the TCI phase 

in bismuthene. However, the edge band degeneracies for ZZ (Figure 6.4(a)) and ZZ-k (Figure 

6.4(c)) edges are not broken. For the ZZ edge, this is mainly due to the fact that band 
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degeneracies are located at TRIMs, thus stabilized by the presence of time-reversal symmetry. 

For ZZ-k edge, the mirror symmetry-protected degeneracies along Γ − 𝑀 are not broken in 

contrast to the response in AC edge nanoribbons. This indicates that the band topology of TCI 

under the influence of the substrate is dependent on the edge configuration. 

Next, we investigate the interaction of bismuthene with another planar two-dimensional 

material, h-BN. The cohesive energy of bismuthene on h-BN is 1.86 eV/atom, slightly less than 

SiCH-(0001). The edge band structure of bismutene nanoribbons on h-BN is shown in Figure 

6.4 (e)(f)(g)(h). We find that the edge band dispersion is nearly unaffected for all edge 

configurations compared to freestanding bismuthene. The edge states are still gapless, 

suggesting that TCI states are still protected.  Therefore, we can conclude that if the interaction 

between the bismuthene and the substrate is weak enough, the TCI states of bismuthene can 

still be maintained and stabilized.  

We have noticed that some reports have shown that h-BN can lead to broken edge band 

degeneracies in bismuthene [77]. This can be explained by the narrow width (~3 nm) used in 

their calculations. Band gap opening can happen in a nanoribbon structure contributed by 

quantum tunnelling coupling between different edges, and this effect becomes more evident as 

the width of the nanoribbon decreases [159].  
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Figure 6.4 Wannier edge band structures for bismuthene/ SiCH-(0001) with (a) ZZ (b) AC (c) ZZ-k 

edge configuration and (d) AC-k edge and bismuthene/ h-BN structures with (e) ZZ, (f) AC, (g) ZZ-k, 

(h) AC-k edge configuration.  Black circles denote the breaking points. 

We have done a similar DFT analysis using nanoribbon of sub 3nm width. We find edge band 

degeneracies are broken even for a freestanding bismuthene. These results can in turn indicate 

that the edge states can be fragile against size effects but should be robust against weak 

substrate perturbations.  

6.4.2 Substrate Configurations that Maintain the Edge States 

We have shown that the weak van der Waals interaction imposed by weak substrates such as 

h-BN can preserve the TCI states of planar bismuthene. However, we can see that the one-side 

stacking approach is not a convenient way to protect the TCI phase of planar bismuthene as the 
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in-plane mirror symmetry can be easily broken if the perturbation from the substrate is strong 

enough.  Although we have shown that one-side supporting h-BN can stabilize the TCI edge 

states, it would still require a delicate control of substrate-bismuthene interaction when using 

in practice. The detailed study about the substrate-induced band gap opening can be found in 

Chapter 7.  Alternatively, we can take the advantage of using this van der Waals system by 

efficient and flexible controlling of interfacial contact. We can further modify the electronic 

response of planar bismuthene by varying interfacial conditions such as tuning the stacking 

order or placing additional supporting layers.   

Therefore, we propose a stacking scenario by placing the bismuthene in between two h-BN 

layers, forming a sandwich stacking structure. This sandwich stacking configuration of h-BN 

layers is designed not to disrupt the mirror symmetry of bismuthene, thereby the edge states of 

bismuthene can survive the interactions with substrates. The edge states in sandwich stacking 

are plotted on Figure 7.3(i)(j)(k)(l) to compare with the edge configurations where the band 

gap is opened. We can see that the degeneracy points in the edge band structure are preserved 

under the sandwich stacking. These results have shown that it is possible to protect the edge 

states of TCI on a substrate via appropriate stacking of the substrates.  

6.5 TI-like Zigzag Edge Termination 

6.5.1 Uniqueness of Zigzag Edge Configuration 

Now we have shown the TCI phase of bismuthene can be conveniently switched on/off on 

substrate by tuning stacking configurations and the interfacial distance. During the 
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investigation, we have also observed that the electronic structure of bismuthene nanoribbons 

can be affected by the configuration of edge terminations. The interplay between the substrate 

potential and the edge structure can lead to different electronic responses in the edge states (see 

Figure 6.4(a)-(d)). For ZZ-k, AC, and AC-k nanoribbons, the edge state degeneracies only 

break at k-points on the high symmetry line when the mirror symmetry is disrupted by the 

substrate, while the degeneracies at high symmetry points are retained. However, for ZZ 

nanoribbon, the edge state degeneracies only occur in the high symmetry point Γ and M, 

therefore we do not see any edge states broken even when strong pressure/rotation effects are 

applied. These results can be explained by that degeneracy at TRIMs (Γ and M) are protected 

by time-reversal symmetry, while the degeneracy at other kpoints is not.  Since ZZ nanoribbons 

only have edge states connecting at TRIMs near the Fermi level, the edge states can then 

survive strong substrate effects that do not break time- reversal symmetry.  

The robustness of the edge states exhibited by the bismuthene zigzag nanoribbon could also be 

explained by the separation of p orbital characters in the edge bands. Previous studies have 

suggested that the electronic bands of planar bismuthene near the Fermi level are composed of 

two branches of topologically nontrivial bands with px+py and pz character, respectively. 

However, the combination of these bands leads to a Z2 trivial band topology. If we apply these 

conclusions and analyze the band character of edge bands, we find that zigzag nanoribbon has 

completely separated the px+py and pz bands unlike armchair terminations.  As shown in 

Figure 6.2(b), the orbital character near Γ is dominated by px+py, while the pz orbital is 

concentrated near M for ZZ nanoribbons. The px+py and pz edge band branches are completely 

separated. While for AC and ZZ-k terminations, the px+py and pz orbitals are all mixed on the 
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edge bands (Figure 6.2(c) and 6.2(d)). Therefore, if the mirror symmetry of the nanoribbon is 

broken by substrates or external factors, the edge degeneracies at non-TRIM positions (Γ or M) 

with all p orbitals mixed will not be protected for AC and ZZ-k nanoribbons. The edge 

degeneracies in ZZ nanoribbon only occur at TRIMs and they should be robust against mirror 

symmetry perturbations which cannot be broken as long as the time-reversal symmetry is 

conserved.  

The two separated branches at Γ and M in the zigzag nanoribbon can be bridged if we can 

induce structural defects such as forming the Klein defects at edges, i.e. ZZ-k edge terminations. 

The edge bands in ZZ-k nanoribbons still consist of two separated band approaches centring at 

Γ and M. However, with the change of edge band energy alignment, the two branches now 

have an additional degeneracy along Γ − M, The p orbital characters become mixed near this 

band degeneracy, as in the case of AC and AC-k nanoribbons. When the mirror symmetry is 

lifted, the edge degeneracies are broken and a band gap appears. The results above have 

indicated that the stability of edge states in TCI does not only depend on whether the mirror 

symmetry of the lattice is broken, but also be affected by the position of the edge band 

degeneracies and the band orbital characters. We can utilize this effect in practice either to 

maintain, or selectively tune the edge current with different edge terminations.  
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Figure 6.5 Spin texture along Sz direction for edge states in (a) freestanding bismuthene ZZ edge band 

structure, and (b) Bi/h-BN ROT at 2.76 Å ZZ structure (c) freestanding bismuthene AC edge band 

structure (d) Bi/h-BN ROT at 2.76 Å AC band structure. Red colour indicates spin up, while blue colour 

indicates spin down. 

6.5.2 Spin Texture Analysis 

TCI has spin filtered edge states protected by the mirror symmetry. We can see this behaviour 

in the edge spin texture of freestanding bismuthene (see Figure 6.5 (a)(c)). The spin 

polarizations around TRIM degeneracies always have opposite signs like topological insulators, 

while the spin polarization around non-TRIM degeneracies has the same sign. These non-

TRIM edge degeneracies are exclusively protected by mirror symmetry and are known as spin-
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filtered states. The TRIM edge degeneracies are also protected by TR symmetry.  If we apply 

an external pressure to break the mirror symmetry, we can find that the spin texture around 

TRIMs is maintained. The non-TRIM edge degeneracies become gapped, but the spin 

polarizations around the broken point are retained (see Figure 6.5 (b)(d)). We can conclude 

that the spin filtered feature of the edge degeneracy of bismuthene is not affected by the mirror 

symmetry-breaking potential. 

6.6 Conclusions 

While 2D TCI is generally considered vulnerable against the environment, we have found 

several effective approaches to maintain the edge states. Using a graphene-like bismuthene 

honeycomb as a 2D TCI model, we have demonstrated that the edge states can be tuned in the 

following manner. Although it is well understood that mirror symmetry breaking substrate 

would create band gap, choosing a weaker substrate would be helpful to maintain the edge 

state. Therefore, weaker substrates are recommended for the synthesize of 2D TCIs. Another 

approach to maintain the edge states is to maintain a certain edge with an edge band structure 

that does not have band crossing at generic k-point. We have verified that when the zigzag edge 

is maintained, both changing interfacial distance and substrate effect leads to the change in a 

band shape, but does not lead to the opening of a bandgap.  This can be an effective approach 

to tune the edge electron transport while maintaining conduction. We have verified that those 

edge states are spin filtered edge states similar to topological insulators, which makes the 

material an excellent candidate as a spin current injector in spintronic devices. We have also 

demonstrated that when the bismuthene is in a substrate/2D material/substrate structure, all 
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edge states can survive despite changing interfacial distance. Such stacking is recommended in 

future electronics design if stable TCI edge states are desired.  
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Chapter 7 Tuning the Edge State of Bismuthene on 

Substrates 

7.1 Introduction 

Specifically for usages in electronic transistors, it is ideal that the conduction current can be 

conveniently switchable [56]. Recently it has been experimentally realised that the topological 

states of topological Dirac semimetal Na3Bi can be turned on and off through an external 

electrical field. The electric field changes the band ordering in the Na3Bi thin film, and 

eliminates the original topological band inversion, thus turning the topological nontrivial phase 

into a conventional insulator  [60]. However, for many topological systems, the level of the 

bulk band tuning upon application of electric field is relatively small. This has been the case 

for the topological materials such as bismuth, the electrical field does not have a strong impact 

on its bulk band structure in terms of band gap tuning [89]. Moreover, the bulk band re-ordering 

approach becomes much more difficult to implement for materials with a large band gap, which 

are desired candidates for room-temperature applications.   

We then turn to our interests in another approach: directly tuning the edge states of two-

dimensional topological materials via symmetry breaking. We choose topological crystalline 

insulators (TCIs) [160] to investigate since the edge states of TCIs are protected by crystalline 

symmetries. With certain edges, the TCI states are assumed to be turned off if crystalline 

symmetries are broken. Therefore, the high on/off operation speed should be expected, which 
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makes TCI a viable choice for making semiconducting electronic devices [75]. Despite this 

advantage, making electronic devices based on 2D TCIs is still challenging in experiments 

since the conducting edge states (“on” state) is hard to be stabilized when interacting with 

underlying substrates [152]. 

 

Figure 7.1 Illustrations showing the Bi/h-BN under pressure with (a) single-sided stacking and (b) 

rotated sandwich stacking. 

We found that these states can be tuned on/off by applying external factors such as pressure, 

electric fields, and controlling substrate stacking. The illustrations demonstrating how the 

pressure applied for single-sided stack and rotated sandwich structure stacking is shown in 

Figure 7.1(a) and Figure 7.1(b) respectively. The mirror-symmetry breaking effect can be 

demonstrated with our effective Hamiltonian model. These results provided guidelines for 

tuning the edge states of topological materials.  
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7.2 Tuning the Armchair Edge Band Gap 

7.2.1 Interfacial Distance Control 

 

 

Figure 7.2 Bulk band gap and edge gap in AC structure for (a) Bi/SiCH-(0001) and (b) Bi on h-BN 

Substrates. The dashed line corresponds with the distance used in Figure 7.3. Bulk bandgaps are 

calculated through DFT, while the edge band gap is calculated through Wannier functions projected on 

Bi p-orbitals. 

 

We can also modify the interfacial contract between bismuthene and substrates by reducing the 

interfacial distance from the substrate. We calculate the evolution of the armchair edge band 

gap in bismuthene nanoribbons supported on substrates as a function of the interfacial distance 

in Figure 7.2. We have also calculated the band gap between the highest valence band and the 

lowest conduction band for 2D bismuthene on substrates.  In the case of SiCH-(0001) (Figure 

7.2(a)), when the interfacial distance is reduced from the relaxed distance of 4.8 Å, the band 

gap in the 2D band structure of bismuthene gradually decreases. In the corresponding edge 
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band structure for the armchair bismuthenne nanoribbons on SiCH-(0001), we can see that the 

edge gap is opened and becomes larger as the interfacial distance decreases. We demonstrate 

the edge band dispersion of pressed bismuthene on SiCH-(0001) (interfacial distance at 3.8 Å) 

in Figure 7.3(a)(b)(c)(d). The edge band degeneracies are broken at non-TRIM points along 

Γ − 𝑀 for AC, AC-k and ZZ-k edge configurations. These observations imply that reduced 

interfacial distance induces strong mirror symmetry-breaking potential.  
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Figure 7.3 (a)(b)(c)(d) Bi/SiCH-(0001) at 3.8 Å ZZ, AC, ZZ-k and AC-k edge band structures. 

(e)(f)(g)(h) Bi/h-BN at 2.9 Å ZZ, AC, ZZ-k and AC-k edge band structures. (i)(j)(k)(l) Bi/h-BN SAN 

at 2.9 Å ZZ, AC, ZZ-k and AC-k edge band structures. (m)(n)(o)(p) Bi/h-BN ROT at 2.9 Å ZZ , AC, 

ZZ-k and AC-k edge band structures.  
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We can see a similar trend if we change the supporting substrate to h-BN, as shown in Figure 

7.2(b).  We have shown that the TCI phase of bismuthene is preserved at a relaxed distance. 

When the interfacial distance (3.8 Å) is reduced, the influence of the substrate on the electronic 

structure of bismuthene becomes more significant and breaks the edge degeneracies protected 

by the mirror symmetry for armchair structure. This can be reflected in the armchair edge band 

structure of bismuthene on h-BN with an interfacial distance of 2.9 Å as shown in Figure 

7.3(e)(f)(g)(h). When we further decrease the distance between bismuthene and h-BN to below 

2.55 Å, we find that the edge band gap reaches a maximum of 210 meV and then begins to 

decrease again, approaching nearly zero at 2.34 Å. This fluctuation trend of an edge band gap 

in bismuthene on h-BN is a result of the competing mechanism between the mirror-breaking 

potential from the band gap opening the 2D. The band gap closure is a consequence of the 

reduced interfacial distance (see Figure 7.4).  

In summary, we can see that tuning the interfacial distance between bismuthene and the 

substrate is effective in switching the topological structure of bismuthene.  In experiments, this 

can be achieved by applying external pressure on the system to enforce closer interfacial 

contact. We can estimate the relation between the interfacial distance d and the interfacial 

pressure P can be estimated as P =
∂ E

∂ d
/A  for our calculations, where E is the energy of the 

bismuthene-substrate system for a unit-cell, with surface area A. We have plotted the evolution 

of band gaps as a function of the estimated interfacial pressure in Figure 7.5. For different 

substrates, the strength of interfacial pressure can be drastically different (around 7 GPa for 

SiCH-(0001), 30 GPa for h-BN) to achieve a similar maximum edge band gap.  
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Figure 7.4 Orbital projected band structure near the Fermi level for single sided Bi on h-BN at the 

interfacial distance 2.55Å to 2.34 Å (pressure increased from 44Gpa to 66GPa). 

7.2.2 Substrate Configuration Control 

The sandwich configuration could potentially shield the TCI phase of bismuthene from external 

modification. We have tested the sandwich configuration of h-BN/bismuthene/h-BN, with both 
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interfacial distances between h-BN compressed to 2.9 Å (1 Å from the relaxed distance). The 

edge band structure (Figure 7.3(i)(j)(k)(l)) shows that the edge band degeneracies are 

preserved, meaning that although applying external pressure can induce significant influences 

on bismuthene, the electronic and topological properties of bismuthene can still be preserved 

if it is placed in a symmetrical environment.  

We can tune the electronic structure of sandwich configurations by changing the stacking 

configuration of the two h-BN substrates. Previously we have made the two h-BN substrates 

mirror-symmetric. We can change the stacking configuration of the two substrates to 

antisymmetric by rotating the top h-BN substrate by 60° (denoted as ROT configuration). The 

antisymmetric stacking configuration will break the edge band degeneracies in bismuthene 

nanoribbons and result in a large gap opening if applying an interfacial pressure (Figure 7.2(b) 

and 7.3(n)).  Figure 7.4 demonstrates the band closure process of band pressure as the 

interfacial distance is reduced from 2.55 Å to 2.34 Å. Finally, the valence band at K rises and 
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merges with the conduction band minima at about 2.41 Å (58 GPa). This demonstrates the band 

closure and the end of this adiabatic band transformation process. 

 

Figure 7.5 Band gap evolution near the Fermi level against pressure (GPa) between thin film and 

substrates for a Bi/SiCH-(0001), b Bi/h-BN configurations. 

7.3 Effective Tight-Binding Hamiltonian Model of Bismuthene 

on Substrates 

To better understand the physical origin of the effect of weak perturbations on the electronic 

structure of bismuthene nanoribbons, we  have built a second-nearest neighbour tight-binding 

model for freestanding bismuthene nanoribbon based on Wannier projection from DFT 

calculations [161]. The tight-binding Hamiltonian can be expressed as 𝐻 = 𝑡 ∑ 𝑐𝑖
†𝑐𝑗⟨𝑖𝑗⟩ +

λ𝑆𝑂�̂� ⋅ �̂� where the first term is the neighboring hopping between bismuth atoms with hooping 

strength t and the second term is the intrinsic SOC of bismuth with a SOC strength of  λ𝑆𝑂. We 



   

97 

 

have shown good agreement between our band structure from the TB model and DFT results 

(see Figure 7.6) for ZZ and AC nanoribbons. Following the examples in Ref. [37] to model 

the effect of a perpendicular electric field or substrate interaction, we have used the following 

Rashba [162] term  to our Tight Binding Hamiltonian. 𝐻𝑅 = 𝑖λ𝑅 ∑ 𝑐𝑖
†(𝒔 × �̂�𝒊𝒋)

𝑧⟨𝑖𝑗⟩ 𝑐𝑗.  The 

results with increasing mirror symmetry breaking parameters for ZZ and AC edge are presented 

in Figure 7.6. The model is consistent with our results, showing that the substrate effect can 

be energised to any mirror symmetry-breaking factors. 

 

Figure 7.6 Evolution of band structure for AC (top) and ZZ (bottom) freestanding bismuthene 

nanoribbon when the Rashba parameter is increased from 0 to the level until the indirect band gap is 

closed. 𝝀𝑅 is in an arbitrary energy unit. 

Using the model 𝜆𝑅 =
𝑒𝐸𝑧0

3(𝑠𝑝𝜎)
휀 describing electrical field interaction on Graphene taken from 

Ref. [163], the Slater-Koster matrix element 𝑠𝑝𝜎 = 1.3 for bismuth [164], and the spin-orbit 
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strength 휀 =  1.158  for planar bismuthene from our first-principles calculations, we can 

estimate the perpendicular electrical fields corresponding to the change of Rashba parameter. 

Figure 7.7 shows the Armchair edge band gap evolution with increasing Electric field.  The 

maximum edge bandgap, in this case, is about 118meV and is reached at about 1.75 V/nm. 

Considering the thermal energy 0.025eV at Room temperature, the “off” state can be reached 

at 0.35 V/nm, which is significantly lower than the electric field required for reaching “off” 

state through band ordering inversion approach [60]. A smaller electric field means improved 

power efficiency at high on/off speed. These results have shown that manipulating substrate 

effects in combination with other external factors such as pressure and field can be an effective 

approach to achieve realistic device switching on/off in semiconducting electronic devices. 
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Figure 7.7 Band Gap evolution against Rashba parameter and corresponding electric field. 

7.4 Wannier Charge Centre Analysis 

We have confirmed the triviality of the bismuth-substrate system by calculating the Wannier 

charge centre (WCC) evolution. We can infer from the WCC plot in Figure 7.8 that the 𝑍2 

number of bismuthene on substrates is 0. For bismuthene/h-BN and bismuthene under 

sandwich substrates configuration, the WCC evolution graph shows two branches of WCC 

lines connecting along 𝑘 = 0  to 𝑘 = 𝜋, consistent with the mirror Chern number of 2. The 

connections along the [0, 𝜋] corresponds to the location of the mirror-symmetry protected 

degeneracies. For other scenarios involving mirror symmetry-breaking perturbation such as 

bismuthene/SiCH-0001, and bismuthene under pressure, we observe a disconnection of WCC 

lines on [0, 𝜋], indicating that the TCI phase is broken [142]. These results have proven that 

both weak substrates and sandwich substrate structures can be used as a good platform to 

achieve protected edge states in TCIs, and tuning interfacial contact can effectively switch 

on/off the TCI phase for its applications in transistor devices.   
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Figure 7.8 Wannier Charge Centre plot for (a) Bi/h-BN relaxed, (b) Bi/SiCH(0001) relaxed, 

(c) Bi/h-BN on one-side at 2.90 Å. (d) Bi/h-BN SAN 2.90 Å. (e) Bi/h-BN ROT 2.90 Å. The 

red circles mark the crossing point opened by mirror symmetry breaking perturbations. 
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7.5 Nanoribbon Width Studies 

The 2D TI states are protected only when the nanoribbon is wide enough to reflect the bulk 

band structure. Using a slab model based on DFT Wannier tight-binding Hamiltonians, we 

have plotted the edge band structure against the number of slabs n. Figure 7.9 demonstrates 

the nanoribbons in different configurations. The symmetry of the nanoribbon is also dependent 

on the number of slabs. For AC nanoribbons, an odd slab number n leads to the Pmma space 

group, while an even n leads to the Pmmm space group. This can be demonstrated via n = 17 

(see Figure 7.9(a)) and n = 16 (see Figure 7.9(b)) examples. On the contrary, for ZZ 

nanoribbons, an even slab number n leads to the Pmma space group, while an odd n leads to 

the Pmmm space group. This is demonstrated in n = 8 (see Figure 7.9(c)) and n = 7 (see Figure 

7.9(d)) examples. The difference is that Pmmm is symmorphic, while Pmma is non-

symmorphic. The detailed symmetry analysis on graphene nanoribbon can be found in Ref. 

[165]. As shown in Figure 7.10, for AC bismuthene, the edge band gap is not closed until n is 

larger than 13 (corresponding width 3.2 nm). The band closure takes place at the generic kpoint 

between high symmetry points Γ and M. We can also observe the degeneracy opening at high 

symmetry points. which is prohibited when the nanoribbon is wide as we have analysed in 

Chapter 6.5.1. The breaking of degeneracy at M takes place at n= 3, 5, 7, 9 and 11, which 

clearly indicates that the degeneracy has an even/odd slab number dependency. The 

degeneracies at Γ point did not show an even/odd slab number dependency, but have shown a 

decreasing trend of energy gap from n=3 to n=12. As shown in Figure 7.11 For ZZ bismuthene, 

the overall bandgap closes at n=11 (corresponding width 4.3 nm) when the edge states are bulk 

states are merged together. The degeneracy at M point closes at n=5. The degeneracy at Γ point 
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closes at about n=12, which does not affect the overall band closure since it sits between two 

other bands. 

 

Figure 7.9 AC edge nanoribbon structure with the slab number (a) n = 17 (b) n =16, and 

nanoribbon for ZZ edge nanoribbon structure with the slab number (c) n = 8 (d) n = 7. 
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Figure 7.10 AC nanoribbon band structure as the slab number n grows from 2 to 17.  
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Figure 7.11 ZZ nanoribbon band structure as the slab number n grows from 2 to 17.  
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7.6 Conclusions 

Bandgap can be opened by controlling the interfacial distance between the substrate and the 

thin film, in that case, the interfacial distance acts as a switch to turn on and off the conduction 

channels, making it helpful for a switchable topological device. The fact that TCI edge states 

are so vulnerable to the one-sided substrate also encourages further studies in tuning the edge 

state structure with the electrical field, and antisymmetric stacking configuration. Those factors 

have also proved effective to tune the edge states. We have generalised the interaction using 

the mirror symmetry breaking Rashba term and have replicated the effect resulting in 118meV 

band gap, indicating the effect can be generalised to mirror symmetry breaking terms for 

similar systems. The Rashba term also corresponds to the electric field. The overall edge band 

gap and the degeneracies at TRIMs can also be tuned when the nanoribbon is narrow (less than 

about 4nm). 

 

 

 



   

106 

 

Chapter 8 Tuning The Electronic Structure of 

In2Se3 

8.1 Introduction 

Layered van der Waals’ chalcogenide materials are known for their wide range of promising 

properties that can be applied for various applications in electronics [166].  Out of all those 

materials, In2Se3 is characterised by room temperature ferroelectricity that can be used as a 

field-effect transistor [167].  However, due to the complication in its structure the materials so 

many possible phases [108] are discovered, which include α-In2Se3 phase(2H), α phase(3R), 

β phase(3R) γ-In2Se3(3R), etc. The variation in the structures also leads to various band gaps, 

including the experimental band gap ranging from 1.26eV to 2eV [168, 169], and the calculated 

band gap ranging from 0.7eV to 2.95eV [170]. The theoretical band gap is strongly dependent 

on potentials. 

As early as 1966, there have been reports on the two main types of In2Se3 structures α phase 

and β phase [171]. Although they are both 3R structures, there is a difference in the stacking 

order between those two phases. Multiple phases may exist depending on the temperature and 

heating/cooling process. One example path is demonstrated in Figure 8.1 At room temperature, 

the most stable phase is the α phase. After being heated to 200℃, it can be transformed into the 

β phase. If the materials are cooled to the temperature between 60℃ and 200℃. The material 

will transform into an intermediate the β’ phase before transforming back to the α phase. 
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Previously the experimental results have identified that the β’ phase cannot be maintained 

under 60℃  [172]. However, using high-quality crystals, our experimental collaborators have 

demonstrated that the β’- In2Se3 phase can be stably maintained at room temperature [173]. 

Because of the polarization, the material has demonstrated in-plane ferroelectricity [174]. 

 

Figure 8.1 The transformation between different In2Se3 phases depending on temperature, and 

heating/cooling process. The horizontal line indicates the heating process, while the slashed line 

indicates the cooling process. Graph taken from [175]. 

Our collaborators have also demonstrated the moderate band gap (0.97eV indirect band gap 

and 1.46eV direct bandgap) through ARPES measurement [176].  In another study, our 

collaborators have demonstrated large piezo-resistance. 

In this work, the electronic band structures of In2Se3 are studied and compared with the 

experimental results. The good matching between those two provides us with insights on the 

electronic property of β’- In2Se3 material. The piezo-resistance of the material’s orbital is 

further studied by using DFT. The orbital projected band structure also helps to explain the 

mechanism of the large piezo-resistance. 
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8.2 Electronic Structure of In2Se3 and its Special Properties. 

8.2.1 Computational Methods 

First-principles calculations are conducted using Vienna Ab-Initio Simulation Package 

(VASP) [124, 125]. All structures are fully relaxed until the force between ions are less than 

0.01 eV/Å. The atomic relaxation and band structure calculation are performed in the PBE level 

[138] with the exchange-correlation potential approximated by GGA [123]. The Brillouin Zone 

of bulk In2Se3 is sampled with 21×21×3 kpoints grid. The energy cut-off was set to 400eV. 

The band structure is further analysed in the HSE scheme [177] to better approximate the 

experimental bandgap.  

8.2.2 From β to β’ of In2Se3 and their Band Structures 

The bulk β (3R) phase In2Se3 can either be presented with rhombohedral unit cells (see Figure 

8.2(a)), or hexagonal unit cells (see Figure 8.2(b)).  It belongs to R3̅M space group. Choosing 

different cells results in different band paths of high symmetry points. (see Figure 8.2(d) and 

Figure 8.2(e)). β phase itself has perfect R3̅M symmetry, with lattice parameter a=b =4.00 Å 

and c=27.79 Å. When distorted to the β’ phase, the ABCAB stacking order remains the same, 

the In layer between two Se layers are distorted slightly. After distortion, the lattice parameter 

became a= 3.99 Å, b=4.11 Å and c=28.27 Å. The β’ phase is presented in a hexagonal unit cell 

to better account for the phase change and compare with the experiments. The β’ phase is 

relaxed from a structure slightly distorted from the β phase. The energy difference E(β)-E(β’) 

is 0.19eV/ unit cell, indicating that the β’ phase is more stable than the β phase. 
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Figure 8.2 In2Se3 β phase is presented with (a) rhombohedral unit cell (b) hexagonal unit cell, and 

In2Se3 β’ phase presented with (c) hexagonal unit cell. (d)Brillouin zone for rhombohedral unit cell. 

(e) Brillouin zone for hexagonal unit cell. (d) and (e) are taken from Ref [178]. 

 

The β phase In2Se3 band structure is presented in Figure 8.3 (a) using PBE-GGA and 8.3 (b) 

using HSE method. For many semiconductors, DFT calculations are expected to underestimate 

the band gap, while the HSE method generally would give a more accurate result among all 

functionals [179]. Since HSE is computational resource-consuming, we use a less dense kpoint. 

Therefore, in our calculation, the HSE results provide more accuracy in the band gap, while 

PBE-GGA results provide more details in the band shape. The difference that this effect causes 

is material specific. In terms of β In2Se3, the functional role becomes significant. In the PBE-

GGA calculation, the indirect band gap is closed between Γ, and L point, making the band 
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structure like metal, while in the HSE calculation the indirect band gap is calculated as 0.45eV 

between the L point, and the point between X and Γ. Both our band shape and bandgap in 

Figure 8.3(b) are consistent with the HSE calculation in previous studies [178]. Our band 

shape of PBE-GGA and HSE calculation are also consistent with each other. This is considered 

a benchmark to conduct further calculations.  Therefore, the HSE band structures will be 

mainly used in the following In2Se3 calculation. However, we should realise that because DFT 

underestimates the band gap, even the HSE band gap may deviate significantly from 

experimental results (1.55eV in Ref. [180]).  

 

Figure 8.3 Band structure of In2Se3 using the primitive unit cell calculated via a PBE-GGA method 

and b HSE method. 

The electronic band structure for β and β’ phases are plotted in Figure 8.4(a) and Figure 8.4(b) 

respectively. Compared to the β phase, the HSE band gap for β’ phase has been increased to 

0.64eV. which is higher than the undistorted phase.  
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Figure 8.4 Band structure for (a) β and (b) β’ phase In2Se3 using hexagonal unit cell. Both phases are 

calculated with HSE functionals. 

The DFT and structures are compared with ARPES results from our experimental collaborators. 

The curve is shown in Figure 8.5 Since the experiments were conducted on the In2Se3 surface, 

the DFT band structure along the Γ-M-K-Γ and A-L-H-A path in the Brillouin zone are 

projected together to Γ-M-K-Γ of the ARPES band structure. The HSE band gap (0.46eV) is 

lower compared to the experimental band gap (0.97eV). The direct band gap at M and Γ point 

is 1.17eV and 0.93eV respectively, which are lower compared to the experimental direct band 

gap 1.46eV and 1.77eV. To better compare the band shape with the experimental results, the 

HSE band gap between the valence band and the conduction band has been manually enlarged 

0.33eV, so the two indirect band gaps can match with each other. As shown in Figure 8.5(a). 

We can find that the shape of HSE valence band top matches well with the experimental results 

through the Γ-M-K-Γ path. The experimental Fermi level crosses through the electron pocket 
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in the conduction band, suggesting this is an n-doped material. The most intensive band from 

the experimental results is located at about 0.8eV below the Fermi level at Γ point, and the 

conduction band bottom at M point.  Both can be matched with the dense HSE bands. Figure 

8.5(b) shows the planar electron pocket near the Fermi level on the kx-ky plane.  The circle-

shaped ARPES band structure around the M point between K and K’ also matches well with 

the DFT band structure. Figure 8.5(c) shows the valence band maxima, which is 1.76eV below 

the Fermi level. The ARPES band density is peaked slightly away from the Γ point, which 

suggests that it is consistent with the HSE band structure. Figure 8.5(d) the purple diamond 

curves are extracted from the Gaussian fits of the ARPES band structure. And the shape of the 

conduction electron pocket DFT structure fits almost exactly with the ARPES band structure. 

The effective mess calculated is about 0.39 m0(ΓM) and 0.27 m0 (KM), which is close to the 

range (0.328 ± 0.01) m0 and (0.208 ± 0.01) m0 (KM).   
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Figure 8.5 Comparison of DFT results with experimental results. (a) DFT electronic structure (lines) 

compared with Energy dispersion curves obtained from ARPES measurements (coloured maps). The 

black, red and blue dash lines indicate the experimental Fermi level, the conduction band minima and 

the valence band maxima separately. Fermi surface and electron pocket mapping comparing DFT 

results (lines) with the ARPES results (coloured maps) taken at (b) Fermi level and (c) Fermi level -

1.76eV. In (a)(b) and (c), the red colour lines indicate follows the band high symmetry path Γ, M, K Γ 

(kz=0) while the turquoise curves follow the path the A, L, H, A (kz=π/c). The colour scale indicates 

the kz range correspondence to hv 56.5 to 90 eV. (d) Electron conduction pocket around M. Purple 
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diamond curves indicate the band location extracted from energy distribution curves, while the block 

lines indicate the DFT results. Graphs taken from Ref. [176].  

8.3 Large Piezo-Resistivity of In2Se3. 

Our experimental collaborators have discovered giant room temperature piezoresistance in 

In2Se3. This can be modelled and explained with our first-principles calculation. Figure 8.6 

shows the evolution of atomic structures as the pressure is growing from (a) 0GPa to (e) 4GPa. 

As the pressure is increased, the Se in the middle of the two In layers moves towards the line 

between two Se layers. As a result, the symmetry of the structure changes from distorted R3m 

phase to undistorted R3m. The new phase as shown in Figure 8.6 (e) restored the nearly perfect 

R3m symmetry, similar to the original β phase.  During the pressure increase, the unit cell 

dimension has become smaller.  This can be inferred from the dimension change from Figure 

8.6 (a) to (e). The exact change in the dimension can be found in Table 8-1. As the pressure 

increases, the difference in length between vectors a and b also decreases from 0.14 Å to 0 Å. 

Figure 8.7 shows the volume reduction as the pressure is increased. We can observe the sudden 

reduction of volume between 3.5GPa and 4GPa, which further proves the phase transformation.  

This can be further proved through the HSE band structure. As shown in Figure 8.8, the 

indirect band gap at high symmetry point L decreases when the pressure increases from 1GPa 

to 4GPa (see Figure 8.8 (a)-(d)). At 4GPa, the indirect band gap closes, and the material 

becomes a semimetal. We believe this is the reason why the material has a large reduction in 

the resistance during the pressure increase. The detailed orbital projected band structure 

evolution under pressure is plotted in Figure 8.9(a)-(d).  We found that the valence band is 
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mainly contributed by the pz orbital of the In atom, while the electron pocket near the 

conduction band minima is mainly contributed by a mixture of In-s and Se-px+py orbitals. As 

the pressure increases, the electron pocket contributed by In-s and Se-px+py orbitals are driven 

closer to the valence band and finally pass through the Fermi level at 3GPa (PBE-GGA), or 

4GPa (HSE). This is consistent with the experimental finding that the electron density is 

increased when added pressure, suggesting the material is n-doped. The giant piezoresistive is 

dominated by the delocalised electron density and mobility contributed by In-5s and Se-4p 

orbitals. 

 

 

Figure 8.6 β’ In2Se3 under a(0GPa), b(1GPa), c(2GPa), d(3GPa), e(4GPa). The upper image shows 

the projected graph along a direction. The lower image shows the projected graph along c direction. A 
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dashed line has been drawn connecting two highlighted In atoms to compare with the position of the Se 

atom. The size of dimension approximately reflects the ratio of size change in response to pressure. 

 

Table 8-2 The dimension of the unit cell under different pressures 

 0GPa 1GPa 2GPa 3GPa 4Gpa 

A 3.98 3.97 3.95 3.95 3.94 

B 4.12 4.08 4.05 4.00 3.94 

C 28.31 27.57 27.09 26.63 26.12 

 

Figure 8.7 Volume (Å3) vs Pressure (GPa) curve. 
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Figure 8.8 HSE Band evolution from under the pressure (a) 1 GPa, (b) 2 GPa, (c) 3 GPa, and (d) 4 

GPa. 
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Figure 8.9 Orbital projected band evolution from under the pressure (a) 1 GPa, (b) 2 GPa, (c) 3 GPa, 

and (d) 4 GPa. 
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8.4 Conclusions  

We have calculated the electronic structures for β’ In2Se3. The computational results are 

consistent with the experimental results, suggesting the material to be a large bandgap (>1eV) 

semiconductor. Our research also uncovered the mechanism that triggers the large piezo-

resistance of the material, which is dominated by the delocalisation of In-5s and Se-4p orbitals. 

The large bandgap character and the sensitive band gap change against the pressure bring us 

the inspirations in electronics design. In terms of topological insulators, the large band gap 

makes it a good substrate for thin film topological insulators. The piezo-resistance character 

brings an example of how the bulk band gap can be tuned for a vdW material, inspiring the 

search for tunable topological materials. 
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Chapter 9 Conclusions and Future Works 

9.1 Concluding Remarks 

The thesis uses the first-principles approach to study the electronic structures of various designs 

in the topological field. As a material with large spin-orbit coupling, two-dimensional bismuth 

has proved the capability to host various types of topological states when controlling the 

variation in allotrope type, number of layers, and especially, the interaction from the substrates.  

• Bismuth is a playground for rich topological phenomena. The materials Bi (111) BL, 

2ML/4ML/6ML Bi (110) and Bi/SiC(0001) are demonstrated as Z2 TIs, while the 

freestanding planar bismuthene is a 2D TCI.  Orbital filtering effect is demonstrated on 

Bi/SiC (0001) and on BiF. Those results are consistent with previous experimental and 

theoretical studies.  

• The Bismuthen/BiF interface states incorporate features from both TI (band 

number/shape) and TCI (bulk band gap).  

• The 2ML/4ML 6ML Bi (110) non-trivial edge states DOS matches well with the 

experimental results. The depth of the states captured by the experiment is around 4Å 

Using planar bismuthene as a model, our interests mainly focus on maintaining and tuning the 

topological edge states of topological crystalline insulators. As crystalline mirror symmetry 

can be easily turned off, 2D TCI edge states are previously expected to break easily. However, 

our studies have shown multiple approaches to maintain the edge states.  
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• When the substrate has only weak interaction against the thin film, the topological 

feature of TCI survives the mirror symmetry breaking effect.  

• A sandwich stacking of substrates helps to preserve the thin film edge states even when 

there is a stronger substrate-thin film interaction.  

• Controlling the edge termination helps the edge states survive from mirror-symmetry 

breaking field. Those edge terminations host edge state degeneracies only at high 

symmetry kpoints. Although the vulnerability against change in edge termination 

means that the edge states are no longer topologically protected against edge defects, 

the spin-filtered nature of the edge states does not change. Therefore, the material is 

still suitable as a spin current generator in spintronic applications.  

For a non-special edge termination, that is, the termination with some edge states degeneracies 

located at generic kpoints, the band gap can be tuned conveniently through adding pressure, 

applying electric field, controlling the substrate configuration, and reducing nanoribbon width. 

Unlike Z2 TI materials, the breaking of those band gaps occurs at degeneracy points where no 

bulk band closure is needed. Therefore, it becomes applicable for electronics that require high-

speed turning on and off operations. We found that both the pressure and the electric field 

needed is within the practical range. Several examples are:  

• The maximum edge bandgap (118meV) is reached at about 1.75V/nm for planar 

bismuthene with armchair edge. 

• About 7GPa and 30 GPa is needed for Bi/SiCH-(0001) and Bi/h-BN respectively to 

reach the maximum band gap. 
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• With Bi/h-BN rotated sandwich structure applied, the effect of opening the edge band 

gap via adding pressure is about doubled. 

 

Besides bismuth, β’ In2Se3 is another material we have studied in this thesis. We mainly 

focused on comparing our computational model with experimental results. The results have 

suggested that β’ In2Se3 is a large band gap semiconductor with strong piezo-resistance. 

Therefore, it can be used as a substrate to support thin film topological insulators. Also, the 

mechanism of band evolution brought inspiration for the design of band gap tunable 

materials, including topological insulators. 

9.2 Future works 

The thesis has demonstrated the robustness and tunability of 2D TCIs. The next step is to 

synthesize them through experiment. According to our current knowledge, there have been no 

reports on confirmed observation of mirror-symmetry protected two-dimensional topological 

crystalline insulators. One reason is that the interaction from substrates breaks the TCI 

symmetry. However,  although not mentioned by the authors, we believe 2D TCIs have already 

been synthesized in Shao et al’s paper [71] for antimonene on Ag (111) systems. After the 

annealing process, they have fabricated planar antimonene on the very inert Ag (111) substrate. 

From the Figure S4 of Shao et al’s paper [71], we can identify a significant difference in both 

the bulk band structure and the nontrivial edge state within the nanoribbon band structure, 

between a planar antimonene and buckled Sb (111) BL. In the meantime, Hsu et al, [77] proved 
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that planar antimonene and planar bismuthene share the same TCI topological nature. Since 

Ag (111) is metallic, the edge state of antimonene is buried in the Ag metallic states. Also, 

antimonene has a small bulk band gap compared to bismuthene. However, Shao et al.’s 

experiment has demonstrated that it is possible to fabricate planar TCI on weak substrates. 

With similar experimental strategies, fabricating bismuthene on a non-metallic inert substrate 

(such as h-BN in our study) is also possible. The other thing to try is the sandwich structure. 

Once fabricated, the band structure can be studied by ARPES measurement, while the edge 

states can be mapped out through STS measurement to verify our theoretical results.  

The next steps are to use the pressure/electrical field approach to turn the material on/off. The 

different responses from ZZ/AC should be demonstrated. In this thesis, we have demonstrated 

the approximate range of parameters such as pressure and electric field. These parameters need 

to be optimised in experiments and combined with alternating substrate configuration to study 

the most efficient way to tune it on and off.  

The materials used in 2D TCI are not limited to bismuthene and Group V materials. Both 

theoretical and experimental studies can be extended to other 2D TCI materials. Unlike 

bismuthene, many other 2D TCIs adopt rectangular unit cells, such as PbSe monolayer [76]. 

Rectangular unit cells apply a different Brillouin zone, and therefore the edge state may act 

differently under mirror symmetry breaking field.  
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Figure 9.1 A switchable TCI transistor. Graph taken from [75].  

With optimised materials, substrate and parameters to maintain and tune the edge states, a TCI 

topological transistor device following Liu et al.’s concept [75] can be created. The edge 

current transport, in this case, will be dissipationless. 
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