
Stock-correlation Networks: Extraction
and Optimisation

A thesis submitted for the degree of

Doctor of Philosophy

by

Seyed Soheil Hosseini

Supervisors:
Dr. Tianhai Tian

Prof. Nick Wormald

School of Mathematics
Monash University, Australia

December, 2021

Copyright Notice

© Seyed Soheil Hosseini (2021).

I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copy-
right content to my work without the owner’s permission.

Declaration

This thesis is an original work of my research and contains no material which has
been accepted for the award of any other degree or diploma at any university or
equivalent institution and that, to the best of my knowledge and belief, this thesis
contains no material previously published or written by another person, except
where due reference is made in the text of the thesis.

Signature:

Seyed Soheil Hosseini

2 December 2021

Acknowledgments

The completion of this thesis would not have been possible without the expertise
of my amazing supervisor Dr. Tianhai Tian. I would like to express my thanks to
him for supervising me throughout my Ph.D. projects and being there for me along
the ups and downs of my Ph.D. journey.

I would like to express my profuse gratitude to my co-supervisor Prof. Nick
Wormald. I am thrilled to have had the privilege to be given the opportunity to
do my Ph.D. under his guidance. His dynamism, encouragement and sincerity
inspired me to do my best. I learned so much from him in research methodology,
mathematics and effective writing. Most importantly, I can say from the bottom of
my heart that his patience, humility and goodwill taught me to be a better person.

I also owe a debt of my utmost gratitude to John Chan, our thoughtful, warm-
hearted and caring research coordinator who would go out of his way and do
way beyond his responsibilities to ensure the well-being and success of us, Ph.D.
students.

I am also deeply indebted to Professor Andreas Ernst for giving me the chance
to discuss some of my projects with him and gaining his invaluable input. Besides,
I highly appreciate his favour to give me access to the Max-process cluster.

I would like to extend my sincere thanks to my amazing family who are always
in my heart, and the geographical barriers could not disrupt their support and
never ending love.

Last but not least, I would like to thank all my friends that I got the chance to
meet at the School of Mathematics who made me feel at home and have wonderful
memories while studying for my degree. I cannot describe in words how much I
appreciate the experience of having you Ph.D. peers around.

Abstract

A complex network consists of a large number of vertices with relationships be-
tween them. One type of such a network is a stock-correlation network. To create
such a network, a widely applied procedure is deriving the similarity matrix of
stocks based on their log-returns, calculating the distance matrix based on the sim-
ilarity matrix, and generating a network representing the relationships between
stocks. As for the similarity matrix, the most common applied measure is Pearson
correlation coefficient which can be converted to a Euclidean distance measure by
a simple formula. After getting the distance (or similarity) matrix, we can consider
this matrix as the adjacency matrix of a complete weighted graph Kn. The stock-
correlation network is obtained after filtering the edges of Kn. In other words,
stock-correlation network refers to a subgraph of the complete weighted graph.
These networks have found applications in portfolio optimisation and studying
the behaviour of stocks—especially during financial crises.

A “good” filtration algorithm for generating stock-correlation networks does
not have a clear-cut definition in the literature. Basically, there is no specified stan-
dard to evaluate the output network of a filtration algorithm based on. Despite this,
several criteria such as sparsity, scale-free behaviour, homogeneity of cliques, sur-
vival ratio, good clustering, and robustness have been mentioned in the literature
as desirable aspects of a good stock-correlation generating algorithm. Of all these
criteria, clustering seems to have been given the most importance. The assessment
of this criterion is often based on how well the clusters match the economic sec-
toral classification of stocks. Factoring in the above, we have tried to achieve the
following which is the overall theme of this thesis.

1. Coming up with algorithms of building a stock-correlation network to get a
better clustering output compared to previously proposed algorithms

2. Utilising more information from the complete weighted graph to generate
the stock-correlation network compared to the previous works in this area

3. Avoiding many of the structural limitations that exist in the networks pro-
posed in the literature

The contribution of the thesis to this area is:

We have proposed a new stock-correlation generating algorithm: the propor-
tional degree (PD) algorithm. In this algorithm, the degree of each vertex in the
network is proportional to its total weight in Kn where the total weight of the ver-

vii

tex vi is defined as the total sum of the weights of edges connecting vi to all the
other vertices in Kn. We have compared the resulting network to that of a previ-
ously applied algorithm called PMFG, and we found that it demonstrates a better
homogeneity of cliques, and it has a better clustering performance. Homogeneity
of cliques refers to the proportion of cliques in which all the stocks belong to the
same economic sector. Regarding clustering, we have used the normalised spectral
clustering (NSC) on Kn, the PD network, and the PMFG network. Then we have
made use of the adjusted rand index (ARI) to evaluate how well the clusters in each
of the two networks (PD and PMFG) match those of Kn. Lastly, we have shown that
PD is more robust than PMFG in the absence of some random edges. To be more
precise, we have shown that by removing a set of random edges from both PD and
PMFG, the clustering performance of PD diminishes to a less extent compared to
PMFG.

We have proposed another network generating algorithm called the residual
sum of squares optimal tree (RSSOT). The goal of this work is to improve upon the
already existing widely used MST algorithm. In MST, in order to decide whether
to connect two components through an edge, the only deciding factor is the short-
est possible edge that can connect those two components. We put forward the
RSSOT algorithm to use more information from the distance matrix (that is the
adjacency matrix of Kn) to build the tree. We look for a tree in which the distance
between any two vertices on the tree is as close as possible to their distance in the
distance matrix—or equivalently in Kn. To this end, we have used the residual sum
of squares (RSS) as the optimality criterion. We have demonstrated how to come
up with the equations that find the edge weights for a given tree based on the tree
structure. We have also used two metaheuristics, namely simulated annealing (SA)
and iterated local search (ILS) to explore the search space. We have shown that ILS
has a better performance compared to SA when the dispersion of the distance val-
ues in Kn is small. However, for larger dispersion in the values of distances in Kn,
both SA and ILS demonstrate a similar performance. The resulting tree obtained
by this work did not demonstrate a structure that is useful as a stock-correlation
network.

Lastly, we have proposed an algorithm called the non-negative tree (NNT) to
find an unrooted binary tree in which the edge weights are subject to non-negativity.
MST is associated with the output of a hierarchical clustering method called single
linkage cluster analysis (SLCA). SLCA has the same shortcomings as MST, that is,
the only factor that we take into account in order to connect two components is the
shortest edge that can connect those two components. To address this shortcoming,

viii

as with the previous work above, we want to find an unrooted semi-labelled binary
tree (the leaves are the stocks and the internal vertices are unlabelled with a degree
of three), in which the path length between any two leaves best estimates their dis-
tance in Kn. However, unlike our previous work (work 2 above), the edge weights
cannot be negative. We have proposed a scheme to avoid negative weighted edges.
So we mirror theoretical conclusions we obtain are that we can turn a negative
edge weight into positive using the nearest neighbourhood interchange (NNI),
and that substituting a negative edge weight with zero is better than substituting
that with any other non-negative value. The resulting unrooted binary tree of this
algorithm yields clusters that match the economic sectoral classification of stocks
better compared to SLCA. However, the clustering performance of this work does
not happen to be significantly different from some much simpler previously used
hierarchical clustering algorithms.

ix

Contents

1 Introduction . 1

1.1 Context . 1

1.2 Motivation . 3

1.2.1 Structural Limitations of Previous Works 4
1.2.2 Utilising More Information from the Complete Weighted Graph 4
1.2.3 Better Clustering of Stocks . 5

1.3 Thesis Structure . 5

1.4 Publications from This Research . 7

2 Background . 8

2.1 Introduction . 8

2.2 Graphs . 8

2.2.1 Adjacency Matrix . 9
2.2.2 Subgraph . 9
2.2.3 Connected Component . 9
2.2.4 Clique . 10
2.2.5 Graph Centre . 10
2.2.6 Planar Maximally Filtered Graph (PMFG) 10
2.2.7 Tree . 11

2.3 Metaheuristics . 14

2.3.1 Simulated Annealing (SA) . 16
2.3.2 Iterated Local Search (ILS) . 17

2.4 Clusters . 17

2.4.1 Similarity Measures . 19
2.4.2 Hierarchical Clustering . 21
2.4.3 Louvain Community Detection 23
2.4.4 Normalised Spectral Clustering (NSC) 24

x

CONTENTS

2.4.5 Adjusted Rand Index (ARI) 26
2.5 Positive Definite Matrix . 27

2.6 Cholesky Decomposition . 28

2.7 Stock-correlation Network . 28

2.7.1 MST Stock-correlation Network 30
2.7.2 PMFG Stock-correlation Network 33
2.7.3 The Threshold Method . 36
2.7.4 Asset Graph . 37

2.8 Some More Algorithms and Conclusion 39

3 Proportional Degree Stock-correlation Network 42

3.1 Introduction . 42

3.2 Method . 43

3.2.1 Proportional Degree (PD) Algorithm 46
3.2.2 Cliques . 48
3.2.3 Clusters . 48

3.3 Results . 49

3.3.1 Data Set . 49
3.3.2 Stock-correlation Networks 49
3.3.3 Cliques . 50
3.3.4 Clusters . 52
3.3.5 Robustness . 58

3.4 Summary . 60

4 On Finding the Optimal Tree of a Complete Weighted Graph 61

4.1 Introduction . 61

4.2 Sub-problem: Tree Weight Optimisation 63

4.3 Problem: Tree Structure Optimisation 67

4.3.1 Tree Structure Change for Optimisation 68
4.4 Results . 76

4.4.1 Biased vs Unbiased SA . 76
4.4.2 SA vs ILS . 77
4.4.3 Structure of RSSOT . 78

4.5 Summary . 82

xi

CONTENTS

5 Semi-Labelled Binary Tree Optimisation Subject to Non-Negativity . . 83

5.1 Introduction . 83

5.2 Problem Statement . 85

5.2.1 Normal Equation . 86
5.2.2 Nearest Neighbour Interchange (NNI) 88
5.2.3 Making Negative Edge Weights Positive 88
5.2.4 Finding Tree Edge Weights after NNI 90
5.2.5 Substituting Negative Edge Weights with Zero 90

5.3 Optimisation Scheme . 93

5.3.1 Efficient Path Length Calculation 93
5.3.2 Working around Negative Weighted Edges 94
5.3.3 Substitution with Zero . 95
5.3.4 The ILS Layout . 96

5.4 Results . 97

5.4.1 Tree Structure . 100
5.5 Summary . 101

6 Concluding Remarks . 104

6.1 Overview of the Previous Algorithms 104

6.2 Our Contribution . 106

6.3 Future Topics of Research . 108

Bibliography . 109

xii

List of Figures

2.1 From left to right, surface with genus 0, 1, and 2 (figure taken from
Warne [2013, Figure 2.4]) . 10

2.2 An example of a (not maximally) planar graph where there are four
3-cliques: {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}, and one 4-
clique which is maximal: {v1, v2, v3, v4}. 11

2.3 An example of a binary tree and its adjacency matrix. In this tree,
vertices v1, v3, v5, v6 are leaves. 12

2.4 An example tree for BFS and DFS to be implemented on 14

2.5 Diagram illustrating the relationship between P, NP, NP-complete
and NP-hard set of problems . 15

2.6 An illustration of the two steps of ILS 18

2.7 An example of a distance matrix D and its corresponding HT ob-
tained via SLCA . 23

2.8 An illustration of how SLCA and CLCA determine the distance be-
tween each two clusters Cx and Cy in each step of their procedure . 23

2.9 MST and its corresponding SLCA obtained from the 30 stocks used
to calculate the Dow Jones Industrial Average. We can see certain
stocks in the same sub-sectors clustered together: XON, TX and CHV
are oil companies, AA and IP are raw materials companies, and PG
and KO are consumer non-durables companies (figure taken from
Mantegna [1999, Fig. 1]) . 30

2.10 The MST stock-correlation network represented in Brida and Risso
[2010, Fig. 1]. 31

2.11 An ALMST where the reliability of its edges is denoted by their
thickness (figure taken from Tumminello et al. [2007a, Fig. 1]) 34

2.12 An example of a PMFG stock-correlation network. The vertices with
the same color belong to the same economic sector, and the thickness
of the edges denote their bootstrap reliability as described above for
ALMST (figure taken from Tumminello et al. [2010, Fig. 4]). 36

xiii

LIST OF FIGURES

2.13 Survival ratio of the asset graph versus MST for a stock sample. The
thicker curve corresponds to the asset graph and the thinner one
corresponds to MST. The window width is 1000 days and the period
length is approximately 21 days (figure taken from Onnela et al.
[2003b, Fig. 7]) . 38

2.14 Extraction of hierarchies from a PMFG using DBHT [Song et al., 2012] 40

3.1 Maximal cliques homogeneity comparison of the two networks on
different random subsets of proportions r of all stocks 51

3.2 4-cliques and 3-cliques homogeneity comparison of the two net-
works on different random subsets of proportions r of all stocks . . 52

3.3 Clusters found in the PD (a) and PMFG (b) networks using Louvain
community detection. These networks have been visualised using
the Python library NetworkX [Hagberg et al., 2008] and modified via
the software Gephi [Bastian et al., 2009]. 55

3.4 ARI performance comparison of CPD versus CPMFG 57

3.5 Average ARI performance of the PD and PMFG networks for differ-
ent proportions r of stocks . 58

3.6 Fluctuations in ARI for NSC of the networks for different propor-
tions of edge removal . 59

3.7 Robustness of the networks clusters in presence of edge removal for
each k . 60

4.1 An example of what matrix A and vector d look on this tree 65

4.2 An example of finding the entries of matrix A on a tree 67

4.3 Demonstration of the structure change SC(T, e79, e39, e37) 69

4.4 Tree T(V, E) before the structure change with picked edge eij con-
necting components C1 and C2, and randomly picked vertex vk ∈ C 70

4.5 Demonstration of the structure change SC(T, eij, eik, ejk). Only vj has
a different number of descendants in T′ than it has in T 71

4.6 Dispersion of the sample of size 50 in Tables 4.2 and 4.3 79

4.7 RSSOT of a random sample of 20 stocks 80

4.8 RSSOT of different random stock samples 81

4.9 Structural difference of runs 7 and 9 in ILS∗ of Table 4.4 82

xiv

LIST OF FIGURES

5.1 An example binary Tree T with n leaves. We take one of the leaves
(v1) as the root and take T as a directed tree. Vertex vp is one of the
internal vertices, so p > n, and va, vb and vc are three of the leaf
vertices, so a, b, c ≤ n. Edge ec is a leaf edge, and ei, ej and ek are
three of the internal edges. 87

5.2 A general binary tree with leaf-sets A, B, C , and D corresponding
to the neighbouring edges of the internal edge e1 88

5.3 The two possible tree structures after performing NNI on the tree in
Figure 5.2 based on the edge e1 . 89

5.4 The leaf edge/vertex of a general binary tree 90
5.5 The NNTm of a random sample of 70 stocks. The leaves have been

labelled with the sector of the stocks. 101
5.6 The SLCAm of a random sample of 70 stocks. The leaves have been

labelled with the sector of the stocks. 103

xv

List of Tables

3.1 Cascade rounding algorithm for finding degrees while preserving
the total sum of the calculated degrees 47

3.2 Maximal cliques with size more than 4 in the PD network 51
3.3 Clusters captured in the PD network by Louvain community detection 53
3.4 Clusters captured in the PMFG network by Louvain community

detection . 54
3.5 ARI of CPD/CPMFG/CK and Ce . 57

4.1 Biased vs unbiased SA on a complete weighted graph. For each tree,
the metaheuristic with a better performance has been highlighted. 76

4.2 SA vs ILS on a complete weighted graph with low dispersion of
distances. For each tree, the metaheuristic with a better performance
has been highlighted. 78

4.3 SA vs ILS on a complete weighted graph with high dispersion of
distances. For each tree, the metaheuristic with a better performance
has been highlighted. 78

4.4 ILS vs ILS∗ results of 10 runs on a random sample of 100 stocks. . . 80

5.1 Constrained (C) vs unconstrained (U) ILS optimisation scheme on
binary trees with different number of leaves 99

5.2 SAD of the NNTm and SLCAm in Figures 5.5 and 5.6 respectively . 102
5.3 SAD of the NNTm and CLCAm of a random stock sample of size 40.

The columns are defined the same as those in Table 5.2. 102

xvi

List of Algorithms

1 Kruskal’s algorithm . 13
2 SLCA algorithm . 22
3 k-means algorithm . 25
4 NSC algorithm . 26
5 MST algorithm . 33
6 PMFG algorithm . 35
7 PD algorithm . 48
8 Initial tree . 72
9 SA on tree . 73
10 ILS on tree . 75
11 PLC . 94
12 NNI− . 96
13 Subzero . 97
14 NNT . 97

xvii

CHAPTER 1
Introduction

1.1 Context

‘Complex systems’ is the term referring to the study of systems with a significant
number of components in which we want to find out how the relationships be-
tween those components affect the behaviour of the system. The study of complex
systems includes concepts from various disciplines such as mathematics, statistics,
and computer science. One type of complex system is a complex network which
consists of a large number of vertices and the relationships between them [Albert
and Barabási, 2002]. There are many examples of such networks such as the world-
wide web [Albert et al., 1999; Barabási et al., 2000], citation networks [Redner, 1998;
Small, 1973], social networks [Galaskiewicz and Wasserman, 1993; Wasserman and
Faust, 1994; Watts et al., 2002; Newman et al., 2002], and financial networks [Boss
et al., 2004; Soramäki et al., 2007]. The focus of this thesis is financial networks and
more specifically, the stock-correlation network.

Stock-correlation network refers to a network in which some pairs of stocks
are connected to each other through what is referred to as edge or link. A weight
is often assigned to each edge which specifies how “similar” the two stocks are
that are connected through that edge. In this case, the heavier an edge is, the more
similar the two stocks that are connected by it are. In contrast, the edge weights can
denote dissimilarity—or equivalently distance. In this case, the lighter an edge is,

1

1.1. CONTEXT

the more similar the two stocks on its two ends are. Similarity between two stocks
in the context of stock-correlation networks refers to their similarity in price action,
that is the drop or increase in their price in different time frames over a long period
of time. Often the pairwise similarity values between stocks are stored in a matrix
such that the entry in row i and column j denotes the similarity between the stocks
that they—the row and the column—represent. This is referred to as the similarity
matrix. However, the matrix can store the distance or dissimilarity between stocks,
in which case it is called the distance matrix.

Stock-correlation networks have found applications in different areas includ-
ing portfolio optimisation and studying the dynamics of the stock market—especially
during financial crises. For the remainder of this chapter, we make an overview of
how these networks are generated, and what motivated this thesis. We try to keep
technical terminology in this chapter to a minimum. However, any term used is
going to be defined in the next chapters (most of them in Chapter 2), and the usage
of such terms in this chapter is in a manner that it attempts not to hinder grasping
the theme and motivation of the thesis.

The steps that are often applied in building stock-correlation networks are:

1. generating the similarity matrix (mentioned above) of stocks

2. converting those similarity values to distance (and obtaining the distance
matrix)

3. applying an algorithm to generate a network representing the relationship
between stocks.

Sometimes the second step is skipped and the network is generated from the sim-
ilarity matrix in step one. For this matrix, the most common applied measure to
account for similarity is Pearson correlation coefficient. After getting the distance
(or similarity) matrix, we can consider this matrix as the adjacency matrix of a
complete weighted graph. In this thesis, we denote this complete weighted graph
by Kn with a slight abuse of notation. The stock-correlation network is obtained
after filtering the edges using an algorithm (step 3 above) on Kn. Rephrased, stock-
correlation network refers to a subgraph of Kn. The overall theme of this thesis is
basically trying to come up with algorithms that we want to apply in step 3 above
to extract this subgraph.

The most common algorithms used to generate the stock-correlation network—
or filtration algorithms—are minimum spanning tree (MST), asset graph (AG),
planar maximally filtered graph (PMFG), and the threshold method. (These algo-

2

CHAPTER 1. INTRODUCTION

rithms are explained in detail in Chapter 2.) In all these algorithms. if the edge
weights in the complete weighted graph represent distances, they are sorted from
the lightest to heaviest. In contrast, if the edge weights denote similarity, they are
sorted form the heaviest to the lightest. In the case of MST and PMFG, the network
building procedure from the sorted edge list is straightforward: beginning from an
empty network, from the top of the list, an edge is added to the network as long as
the network remains a tree in MST, or planar in PMFG. In AG, the top N edges are
picked where N can be any number, but usually for the sake of comparing with
MST, it is N = n− 1 where n denotes the number of stocks. Lastly, in the threshold
method, only the top edges with weights above a similarity threshold value—or
below a distance threshold—are filtered to be included in the network.

A question that arises is what constitutes a “good” filtration algorithm? How
should we evaluate the output network of the above-mentioned filtration algo-
rithms? What are the positive aspects of a good stock-correlation network generat-
ing algorithm? There is no definite answer in the literature of the area to these ques-
tions. However, several criteria have been mentioned such as sparsity, scale-free
behaviour, homogeneity of cliques, survival ratio, good clustering, and robustness.
Among these criteria, good clustering seems to have attracted the most attention.
The manner in which the clustering output of the network is commonly assessed
is through its agreement with the economic sectoral classification of stocks.

The main contribution of this thesis is devising new methods and algorithms
for building stock-correlation networks to address two aspects: clustering and
structural limitation. The overall theme of this thesis is coming up with algorithms
of building a stock-correlation network to get a better clustering output compared
to previously proposed algorithms. Besides that, we try to avoid the structural limi-
tations of the networks previously proposed in this area and use more information
from the complete weighted graph of similarity (or distance) between stocks to
build the network.

1.2 Motivation

In the above, we pointed out that the focus of this thesis is proposing stock-correlation
network generating algorithms to address the following:

1. structural limitations of the previously proposed algorithms

2. utilise more information from the complete weighted graph to build the net-
work

3

1.2. MOTIVATION

3. obtain a better clustering of stocks.

Below, we give a brief description of these aspects, and the motivation to devise
some methods and algorithms to address them.

1.2.1 Structural Limitations of Previous Works

The most popular algorithms in the literature are arguably MST and PMFG. One of
the major features of MST is derived from its correspondence with a well-known
hierarchical clustering algorithm (discussed in detail later). However, in this algo-
rithm, a lot of edges from Kn are not included in the network only for the sake of
obtaining a tree structure. Same goes for PMFG in the sense that a lot of edges are
excluded from the network merely to maintain the planar (defined in Section 2.2.6)
structure. One of the appeals of PMFG is that it always contains the MST of its cor-
responding complete weighted graph. Hence, it provides more information than
MST, yet at the same time, contains its underlying structure. However, it appears
that the planar structure of such a network does not serve any purpose in the anal-
ysis of stock-correlation networks. Consequently, it can be a major limitation that
we do not include a lot of edges from Kn in the network just in order to retain its
planar structure. In Chapter 3, we propose the proportional degree (PD) algorithm
to tackle this structural limitation—especially that of PMFG.

1.2.2 Utilising More Information from the Complete Weighted
Graph

MST is apparently the most widely used algorithm for generating stock-correlation
networks. As mentioned above, the structural limitation of MST is part of the
reason it misses some information provided by edges in Kn. However, besides its
tree structure, there is another argument that can be made as to MST not utilising
some information to decide on inclusion of an edge in the network. In short, in the
process of building MST, if two parts of the graph are disconnected, the lightest
possible edge from Kn that can connect them is picked to do so. Once this is done,
all other information on the weights of other edges connecting them is lost. By the
same token, if the weights in Kn denote similarity, the heaviest one is picked. In
Chapter 4, we propose a new algorithm of building a tree in such a manner that
more information from Kn is used as to including edges in the tree and specifying
their corresponding weight. To this end, we aim to find the tree that matches Kn

such that the distance between any two vertices in the tree is close to their distance

4

CHAPTER 1. INTRODUCTION

in Kn. It needs to be emphasised that the theoretical interest of this algorithm is
for approximating any complete weighted graph by a tree. We applied this tree to
generate stock-correlation networks, but the problem that it addresses goes beyond
the scope of stock-correlation networks, and it is aimed at a broader context.

1.2.3 Better Clustering of Stocks

As discussed earlier, MST is associated with a hierarchical clustering of stocks. To
be more precise, MST corresponds in a certain way to a rooted tree that represents
a hierarchical structure which is the output of a specific clustering method called
single linkage cluster analysis (SLCA). A leaf is a vertex in a tree whose degree
is one. The tree which is the output of SLCA has the following features. 1- The
root’s degree is two. 2- Every other internal vertex has degree three except the
leaves. SLCA has the same shortcomings as MST in terms of the extent of using
information from Kn to include edges in its output tree. To address this, we want
to find a tree whose all vertices except the leaves have degree three such that the
distance between any two leaves is close to their distance in Kn. We call this tree
(on which all vertices other than the leaves have degree three) a binary tree with
a slight abuse of notation. (The slight abuse of notation comes from the fact that
this definition is that of an unrooted binary tree. Also, in computer science, the
definition of a binary tree is slightly different.) Having said that, in this work, the
edge weights cannot be negative so that the resulting binary tree can be comparable
with the output of SLCA (explained in Chapter 5). Moreover, since this binary tree
is also applied in the area of phylogenetic trees, and there is no consensus regarding
whether negative edge weights should exist in a phylogenetic tree, our method can
serve a purpose in that area as well. In the end, the clusters in the binary tree have
been compared with those in SLCA based on the economic sectoral classification
of stocks.

1.3 Thesis Structure

Below is the outline of the chapters in the remainder of the thesis.

Chapter 2 - Background This chapter introduces the concepts, terminology, meth-
ods, and algorithms used throughout the thesis alongside the literature review of
stock-correlation networks. This chapter consists of two sections. The first sec-
tion defines the concepts, methods and algorithms used in the later chapters. In

5

1.3. THESIS STRUCTURE

the second section, we provide a comprehensive review of the literature of stock-
correlation networks and the pros and cons of some algorithms proposed to build
such networks—especially MST and PMFG.

Chapter 3 - Proportional Degree Stock-correlation Network In this chapter, we
put forward our algorithm called proportional degree (PD) to generate stock-correlation
networks. We give a formal definition of homogeneity of cliques and show that
PD demonstrates a higher homogeneity of cliques compared to PMFG. We use
Louvain community detection to partition the PD and PMFG networks and see
how well each one of them matches the economic sectoral classification of stocks.
We do so using the adjusted rand index (ARI) which is a measure of similarity be-
tween two partitions. As to clustering, we also use NSC to partition Kn, PMFG, and
PD. Then we evaluate how well the partitions of PD and PMFG match that of Kn

for different number of clusters using ARI, and demonstrate that for a reasonable
number of clusters, PD outperforms PMFG in terms of matching the clusters of
Kn. Lastly, we show that PD is more robust than PMFG, meaning, in the absence
of some vertices (or edges) the extent to which the clustering performance of PD
diminishes is less than that of PMFG.

Chapter 4 - On Finding the Optimal Tree of a Complete Weighted Graph In
this chapter, we come up with a new tree structure called the residual sum of
squares optimal tree (RSSOT) that uses more information from Kn than MST to
generate the tree. One hopes for getting better clusters since this tree uses more
information from Kn. We show how to get the edge weights for a given tree based
on the tree structure and the RSS criterion. We also propose a very efficient neigh-
bourhood search method to investigate new tree structures and see whether they
yield a tree with smaller RSS. Lastly, we propose two metaheuristics: SA and ILS
to find the best tree, and we demonstrate which one has a better performance de-
pending on the distance values distribution of Kn, namely, when the dispersion of
the distance values in Kn is small, ILS exhibits a significantly better performance
than SA. Otherwise, we found no apparent difference between the performances
of these two metaheuristics for this problem. The resulting trees of this work have
a star-like structure which is not a useful structure to be used as a stock-correlation
network.

Chapter 5 - Semi-Labelled Binary Tree Optimisation Subject to Non-Negativity
In this chapter, we propose a scheme to find a binary tree (as defined above) where

6

CHAPTER 1. INTRODUCTION

the path length between any two leaves best estimates their distance in the com-
plete weighted graph Kn. In our running application, the leaves denote stocks, and
the internal vertices are unlabelled—as with SLCA. However, in this tree, the edge
weights are subject to non-negativity—to make the algorithm comparable to SLCA.
As mentioned above, MST is associated with the output tree of SLCA which gives
a hierarchical clustering of stocks. We want to compare the clustering performance
of our tree with SLCA. In this work, we first demonstrate how to come up with
the system of linear equations to find the edge weights—without a non-negativity
constraint—of a given binary tree based on the RSS optimality criterion. We also
show how we can make use of Cholesky decomposition to find these edge weights.
We then demonstrate the nearest neighbourhood interchange (NNI) method which
lets us investigate different tree structures. We prove some results that help guide
an algorithm attempting to make all edge wegihts non-negative. Based on these
proofs, we have devised a scheme based on the ILS framework to find the best tree.
We have demonstrated that our tree has a better clustering performance than the
output of SLCA as to matching the economic sectoral classification of stocks. How-
ever, when we examined other clustering methods, we found that our tree does
not have a significant difference in terms of clustering from some simpler methods
such as the average linkage cluster analysis (ALCA) and complete linkage cluster
analysis (CLCA)—both of which are slightly different to SLCA in terms of their
procedure.

Chapter 6 - Concluding Remarks In this chapter, we provide a summary of the
research we have done in this area and our key results. We also propose some
potential topics for prospective researchers in this area.

1.4 Publications from This Research

Most results from Chapters 3, 4 and 5 of this thesis are included in Hosseini et al.
[2021b], Hosseini et al. [2020] and Hosseini and Wormald [2021] respectively. Also,
a more detailed version of Hosseini et al. [2020] will appear in Hosseini et al.
[2021a].

7

CHAPTER 2
Background

2.1 Introduction

In order to understand the stock-correlation networks better, we define some re-
lated concepts and terminology, and then we review the previous research done in
this area.

2.2 Graphs

Graphs are structures that are made up of objects called vertices or nodes where
some pairs of these objects are connected through what are called edges or links. A
common way to denote graphs is by G(V, E) where V denotes the set of vertices
and E the set of edges connecting those vertices. The size of a graph refers to the
number of vertices in that graph. Hence, the vertices of a graph of size n can be
denoted by V = {v1, . . . , vn}. In such a graph, if every pair of vertices is connected
by an edge, this graph is called a complete graph of size n that is usually denoted
by Kn. Accordingly, there are (n

2) = n(n−1)
2 edges in this graph. The degree of a

vertex vi in a graph is the number of vertices that are connected to vi by exactly one
edge. In other words, the number of vertices adjacent to vi determines the degree
of vi. For example, in a complete graph with n vertices, the degree of every vertex
is n− 1.

8

CHAPTER 2. BACKGROUND

If a graph is weighted, it means a value is associated with each of its edges.
Wherever in this thesis we mention graph, we mean an unweighted graph unless
specified otherwise. What this value—edge weight—denotes depends on the con-
text. For example, if the vertices denote cities, the weight of the edges connecting
those cities can be the length of the roads connecting them. In another example, if
the graph is modelling a social network, the edge weights can denote the number of
emails exchanged between members of that social network. We denote a weighted
graph by G(V, E, w) where w denotes a function assigning the weights correspond-
ing to the edges. We need to point out that with a slight abuse of notation, we
denote the complete weighted graph by Kn in this thesis.

Lastly, a graph can be directed or undirected. When it is not mentioned, it
means that it is undirected. In a directed graph, a direction is associated with each
edge. Thus, in such a graph, eij 6= eji where eij denotes the edge connecting vertices
vi and vj. For example, in the context of a social network, a weighted directed
graph can be defined such that wij denotes the number of emails sent from member
denoted by vi to member vj.

2.2.1 Adjacency Matrix

The adjacency matrix M =
(
mij
)

n×n of a graph G(V, E, w) of size n is a matrix that
corresponds to the structure of G such that mij is the weight of the edge joining
vi and vj. In an unweighted graph, each edge weight is 1 by default. We have the
following properties of an adjacency matrix.

1. M is a binary matrix if G is unweighted.

2. mij = 0 if there is no edge joining vi and vj.

3. M is symmetric unless G is directed.

2.2.2 Subgraph

A subgraph is a subset of the vertices of a graph and the edges joining those vertices.
Thus, for the graph G(V, E), the graph G′(V′, E′) is considered a subgraph of G iff
V′ ⊆ V and E′ ⊆ E. As such, ∀eij ∈ E′, vi ∈ V′ and vj ∈ V′.

2.2.3 Connected Component

In graph theory, a walk is a sequence of consecutive vertices and edges. That is,
if we traverse a graph, we get a walk. If no vertex is repeated on a walk, such a

9

2.2. GRAPHS

walk is called a path. (In the context of directed graphs, paths are also directed.) A
connected component C of the graph G(V, E) is a maximal subgraph of G where
there is at least one path between any two vertices belonging to it.

2.2.4 Clique

A clique C of size m—or an m-clique—in the graph G(V, E) is a subset of ver-
tices such that there is an edge between any two of those vertices. In other words,
∀vi, vj ∈ C =⇒ eij ∈ E. Such a clique is maximal if it is not part of a clique with a
larger size.

2.2.5 Graph Centre

In the context of graph theory, the distance between two vertices d(vi, vj) is the
length of the shortest path between them. For an unweighted graph, the length of
a path is the number of edges that it contains, and for a weighted graph, it is the
total sum of the weights of these edges. The centre of a graph G(V, E) is the set of
vertices U = argmin

vi

max
vj∈V

d(vi, vj) In other words, a vertex vi is a graph centre if its

maximum distance from all other vertices is minimal.

2.2.6 Planar Maximally Filtered Graph (PMFG)

A planar graph is one that can be drawn on a plane without any two edges
crossing—other than meeting at their end points. In other words, a planar graph
can be embedded onto a surface with genus g = 0 (a sphere) without any two
edges crossing where the genus of a space is the number of “holes” that it has. That
is why a sphere has genus g = 0.

Figure 2.1: From left to right, surface with genus 0, 1, and 2 (figure taken from Warne [2013, Figure
2.4])

A planar maximally filtered graph (PMFG) is a planar graph where it would
not be planar if we added more edges to the graph. For n vertices, if n ≥ 3, this

10

CHAPTER 2. BACKGROUND

graph has the following properties.

1. It has exactly 3n− 6 edges (see Nishizeki and Chiba [1988, Theorem 1.2]) and
Corollary 1.1 that follows from it).

2. It has at most 3n− 8 3-cliques and at most n− 3 4-cliques (see Wood [2007,
Theorem 5] for an upper bound on the number of cliques in any graph and
then Corollary 2 and Proposition 5 in the same paper).

3. It cannot have cliques with size larger than 4 since such a clique cannot be
embedded on a plane.

The third property above is based on Kuratowski’s Theorem (refer to Even [2011,
Section 7.1]).

Figure 2.2: An example of a (not maximally) planar graph where there are four 3-cliques:
{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}, and one 4-clique which is maximal: {v1, v2, v3, v4}.

2.2.7 Tree

A tree is an undirected graph which has exactly one path between any two vertices.
In a tree, the vertices which have degree 1 are called leaves or the leaf vertices. All
the other vertices which have degree at least 2 are called internal vertices. A subtree
is a tree that is a subgraph of another tree. In a tree, if the degree of every internal
vertex is 3, such a tree is an unrooted binary tree. With a slight abuse of notation, in
this thesis, we call the unrooted binary tree, binary tree. If there is only one internal
vertex in a tree, such a tree is called a star. Before we mention the properties of a
tree, we need to define a cycle.

If we traverse a graph such that no vertex is repeated other than the first vertex,

11

2.2. GRAPHS

meaning only the end vertex and the start vertex are the same, we get a cycle. Some
properties of a tree T(V, E) of size n are as follows.

1. A tree of size n has exactly n− 1 edges.

2. A tree is acyclic—does not have any cycle.

3. Adding an edge to a tree creates a cycle.

4. Removing a single edge from a tree creates two connected components.

5. A tree has exactly one or two centres. If it has one centre, it is called a centred
tree. Otherwise, the two centres are connected by an edge.

(a) Binary tree (b) Adjacency matrix

Figure 2.3: An example of a binary tree and its adjacency matrix. In this tree, vertices v1, v3, v5, v6
are leaves.

Sometimes, one of the vertices of a tree is considered the root. Such a tree is
a rooted tree. Let the vertex v0 be the root of the rooted tree T, and let the vertex
vi be on the path from v0 to vj. Then vi is an ancestor of vj and vj is a descendent of
vi. Also, if vi and vj are adjacent, vi is the parent of vj, and vj is a child of vi. The
edges of a rooted tree can be assigned a direction towards the root or from the root
towards the leaves. In such cases, the tree is a directed rooted tree. A directed tree
is a directed graph that would be a tree if its edges were undirected.

Minimum Spanning Tree (MST)

A minimum spanning tree (MST) of the connected weighted graph G(V, E, w) is
a subgraph T(V, E′, w′) which is a tree whose total sum of weights is minimum
among all the trees that are subgraphs of G. Thus, it is a tree with the minimum
total weight that can span G. There are multiple algorithms to find MST. Two
classic and extensively used ones are Kruskal’s [Kruskal, 1956] and Prim’s [Prim,
1957] algorithms.

12

CHAPTER 2. BACKGROUND

Algorithm 1 Kruskal’s algorithm
1: Input:
2: G(V, E, w)
3: Output:
4: T : the MST
5:
6: E′ ← ∅
7: w′ ← weights corresponding to edges in E′

8: Esorted ← list of sorted eij ∈ E in order of their corresponding weights w
9: for eij in Esorted do

10: E′ ← E′ ∪ {eij}
11: if G(V, E′, w′) has a cycle then
12: E′ ← E′ \ {eij}
13: if |E′| = n− 1 then
14: break
15: T ← G(V, E′, w′)

Kruskal’s algorithm is laid out in Algorithm 1. In this algorithm, to find an
MST of the connected edge weighted graph G(V, E, w), we sort its edges by their
weights in a list from the lightest to the heaviest. Starting from the top of the list,
we add the first two edges in the list to an empty graph. We add the next edge on
the list to this graph if it does not create a cycle. Otherwise, we skip it and go to the
next edge on the list. We continue this process until there are n− 1 edges in this
graph.

Breadth-first Search (BFS)

Breadth-first search (BFS) is an algorithm for traversing a graph G(V, E). It can be
used for traversing a connected or disconnected graph. However, here, we outline
how this algorithm traverses a connected graph.

We start from a vertex in the graph which we call the start vertex vs. In a rooted
tree, the start vertex is the root. We define the sequence A such that it includes only
vs. We also define exploring a vertex vi ∈ V as follows. We take the neighbours
of vi and add one of them that is not in the sequence A to the end of A. We call a
vertex whose all neighbours are in A fully explored. At each step, we explore the
first not fully explored vertex in A until all vertices in G are in A. The sequence of
vertices in A represents the sequence of vertices traversed.

13

2.3. METAHEURISTICS

Depth-first Search (DFS)

As with BFS, depth-first search (DFS) is an algorithm for traversing a graph G(V, E).
We outline here how this algorithm traverses a connected graph.

The explanation of this algorithm goes the same as that of BFS above. The only
difference is the definition of exploring a vertex vi. In this algorithm, to explore vi,
we take its neighbours and add one of them that is not in the sequence A to the
beginning of A rather than the end of A as in BFS.

To make the procedures of BFS and DFS more clear, we apply these two
algorithms to traverse the tree in Figure 2.4. We take v1 as the root. One of
the possible sequences of vertices that this tree can be traversed via BFS is
v1, v2, v3, v4, v5, v6, v7, v8, v9, v10. Similarly, one of the possible sequences this tree
can be traversed via DFS is v1, v2, v5, v9, v6, v3, v7, v10, v4, v8.

Figure 2.4: An example tree for BFS and DFS to be implemented on

2.3 Metaheuristics

For computable problems, there are procedures that give us the answer in finite
time. We call such procedures algorithm [Chopard and Tomassini, 2018]. In this
context, an instance is a special case of the problem. For example, the set {1, 3} is
an instance of the set of integer numbers whose summation is 4. In the literature
of computer science, computable problems have been classified into the following
classes:

1. The time required to find the correct answer to the problem is at most as large

14

CHAPTER 2. BACKGROUND

as a polynomial of the size of the problem instances.

2. The time required to verify the validity of a correct answer is bounded by a
polynomial of the size of the problem instances.

The former and the latter classes are called polynomial (P), and non-deterministic
polynomial (NP) respectively. It can be seen that a P problem is also an NP problem,
that is, P ⊆ NP since if the correct solution can be found in polynomial time, it can
also be verified in polynomial time.

P problems are usually regarded as “easy” to solve. This is because there are
algorithms that can find the correct solution to them such that the time these al-
gorithms require is a polynomial (often of low degree) of the size of the problem.
Problems such as finding the largest number in a set, finding the minimum span-
ning tree of a graph, and finding the row-echelon form of a matrix belong to this
class.

However, for NP problems, it is totally different. The time required by the algo-
rithm that looks for the correct solution to these problems can grow exponentially
with respect to the size of the problem. This quickly renders exploring all instances
of the problem infeasible as the size of the problem becomes larger. There are many
problems in this class. One well-known classic example is the knapsack problem.
See Garey and Johnson [1979] for a list of some of these problems.

P

NP-complete

NP-hard

NP

Figure 2.5: Diagram illustrating the relationship between P, NP, NP-complete and NP-hard set of
problems

There are also problems that are at least as hard as NP. It means that the
time that it takes to find their correct solution grows at least as rapidly that of NP,
however, a correct solution to them cannot necessarily be verified in a polynomial

15

2.3. METAHEURISTICS

time of the problem size. These problems are called NP-hard, and those NP-hard
problems which are also in NP are called NP-complete. As such, NP-complete is the
intersection of NP and NP-hard. Figure 2.5 illustrates the relationship between P,
NP, NP-complete and NP-hard problems as explained above.

Now we come to the definition of metaheuristics. Based on the above, it can
be seen that exploring the whole search space of an NP-hard problem with a quite
large size is most probably infeasible. According to Chopard and Tomassini [2018],
metaheuristics are approximation frameworks that achieve acceptable solutions
within an acceptable computation time but with no guarantee on the quality of
the solution. These frameworks explore the search space using intensification and
diversification. The former and latter refer to exploring the neighbourhood of the
current solution and regions in the search space that we hope have not already been
explored, respectively. Below, we are going to outline two of these metaheuristics
used in this thesis.

2.3.1 Simulated Annealing (SA)

Let S be the search space of a particular problem. For any admissible solution
x ∈ S to this problem, let us denote the neighbourhood of x by N(x). Also, let
f be the objective function of this problem. We want to find x∗ ∈ S such that
f (x∗) ≤ f (x), ∀x ∈ S. If we investigate f (x) and then f (x′) such that x′ ∈ N(x),
we call this a move from solution x to x′.

Based on the above, we know that it is most probably wishful thinking to
expect to find x∗ if the problem discussed is NP-hard. However, we are maybe
willing to just find an acceptable solution that we deem “close” enough to the
global minimum in this problem. SA tries to achieve this as below.

In simulated annealing (SA), the idea is to allow moves to solutions with
objective function values that are worse than the current objective function value
to escape from local minima (see Blum and Raidl [2016, Section 1.2.4]). Below, t
denotes time steps t = 0, 1, 2, . . ., and P(., .) specifies a probability that is a function
of two variables: t and the difference between the objective function value of the
solution x and that of its neighbour x′. Defining xt as the solution at time t, and
starting from t = 0, we make the transition from xt ← x to xt+1 ← x′ where
x′ ∈ N(x) in two cases:

1. f (x′) < f (x)

2. P(f (x′)− f (x), t) > random(0, 1) if f (x′) > f (x) .

16

CHAPTER 2. BACKGROUND

Otherwise xt+1 ← x. In the above, random(0, 1) denotes a number picked
uniformly at random in the interval (0, 1). Case 2 specifies that we accept a solution
with a higher objective function value than that of its neighbour with a certain
probability. In other words, the larger the value of f (x′)− f (x) or that of t, the less
probable the transition from xt ← x to xt+1 ← x′ is. It should be noted that case 2
ensures the method does not get stuck in a local minimum—something that would
happen if we had only case 1, which is equivalent to a descent-only algorithm. We
continue this procedure for a specific amount of time and pick the solution with
the lowest objective function value that we have found.

2.3.2 Iterated Local Search (ILS)

“A heuristic is a method of exploration that exploits some specific aspects of the
problem at hand and only applies to it” [Chopard and Tomassini, 2018]. According
to Lourenço et al. [2019, p. 580–583], the essence of iterated local search (ILS) is
iteratively building a sequence of solutions generated by a heuristic, leading to far
better solutions than if one were to use repeated random trials of that heuristic .

As with SA in the above (Section 2.3.1), we want to minimise f , but this time,
we make the transition from xt ← x to xt+1 ← x′ only if f (x′) < f (x)—so far, it is
a descent-only algorithm. However, in contrast to a descent-only algorithm, when
we get stuck in a local minimum, we restart the algorithm—by modification of the
current local minimum—to a new initial system state. Basically, ILS consists of the
following two steps:

1. Modification of the current local minimum in an attempt to kick it far enough
from its current basin

2. Descent to get to a new local minimum.

As a final point, we need to point out that it can be perceived from the context
of SA and ILS that they can also be applied to maximisation problems.

2.4 Clusters

One of the most extensively investigated features of complex networks is commu-
nity structure or clustering. Intuitively, clustering can be defined as grouping objects
such that objects in the same group are more similar to one another than to those
in other groups. However, Fortunato [2010] mentions that quantitatively, there is
no universal consensus on the definition of community in graph clustering. In

17

2.4. CLUSTERS

Descent

Modification of the local minimum

Figure 2.6: An illustration of the two steps of ILS

this context (graphs), clusters may be groups of vertices in which the density of
edges inside those groups is considerably larger than the average edge density
of the graph (see [Fortunato, 2010, Section 3.2.1]). If each vertex of a graph only
belongs to one cluster (no overlapping clusters), such a group of clusters of the
graph determines a partition of the vertices.

Researchers have proposed different ways for categorising clustering ap-
proaches. Fraley and Raftery [1998] divided clustering approaches into hierarchical
and partitioning techniques. In the hierarchical approaches, as the term suggests,
vertices are clustered in hierarchies: a sequence of partitions each corresponding to
a different number of clusters. On the contrary, in partitioning approaches, there
is no hierarchical structure—also no overlapping clusters as the name suggests. In
hierarchical clustering, if at the beginning all vertices belong to their own unique
clusters, and they are merged until a cluster made up of all vertices is formed, such
a method of hierarchical clustering is referred to as agglomerative clustering. In con-
trast, if we start from a cluster consisting of all vertices and finish with all vertices
belonging to their own unique cluster, this method of hierarchical clustering is
called divisive hierarchical clustering (See Fraley and Raftery [1998, Section 2.1]).
For the remainder of the thesis, wherever we mention hierarchical clustering, we
refer to the agglomerative hierarchical clustering .

18

CHAPTER 2. BACKGROUND

Saxena et al. [2017] categorise clustering approaches into the following vari-
ants: graph theoretic, spectral, model-based, mixed density-based, grid-based, evo-
lutionary approaches based, search-based, collaborative fuzzy, multi-objective, and
overlapping community detection. Below, we are going to elaborate on those clus-
tering approaches that we utilised in our works. However, before that, we define
some measures that quantify similarity.

2.4.1 Similarity Measures

Similarity is one of the most important concepts in studying clustering. If we want
similar objects—or vertices in the context of graphs and networks—to be in the
same cluster, we first have to define some measure of similarity. Similarity can also
be quantified as distance such that the smaller the distance between two objects—
the closer they are—the more similar they are. In some papers and resources, dis-
tance is referred to as dissimilarity. Let us denote the distance between two vertices
vi and vj by dij. The distance measure is metric if it satisfies the three axioms of a
metric space:

1. dii = 0 ∀i

2. dij = dji ∀i, j

3. dij + djk ≥ dik ∀i, j, k.

A commonly used family of distance measures is the Minkowski metric (see
Sneath et al. [1973, p. 125]). Here, the distance between two objects xi and xj is
defined as

dij = ‖xi − xj‖p =

(
q

∑
k=1

∣∣xik − xjk
∣∣p) 1

p

(2.1)

in which xik is the value of the k-th variable for object xi. We call ‖x‖p the p-norm
of vector x. The most common value for p in equation (2.1) is 2 which gives the
2-norm distance—or equivalently the Euclidean distance.

Pearson Correlation Coefficient

The Pearson correlation coefficient is a measure of linear correlation between two
random variables X and Y. This measure is in the interval [−1, 1] where -1, 0 and
1 show respectively perfect anti-correlation, no correlation and perfect correlation.

19

2.4. CLUSTERS

This measure for the two random variables X and Y is defined as

ρXY =
E [(X− E [X]) (Y− E [Y])]√

E
[
(X− E [X])2

]
E
[
(Y− E [Y])2

] =
σXY

σXσY
(2.2)

where σXY is the covariance of the variables X and Y, and σX and σY are the stan-
dard deviations of X and Y respectively. We will demonstrate in the next chapters
that if needed, this measure can be converted into a metric distance. For the rest
of the thesis, wherever we mention correlation coefficient we mean the Pearson
correlation coefficient.

Mutual Information

Mutual information measures the level of independence between two random vari-
ables [Cover and Thomas, 2012] such that a value of 0 shows statistical indepen-
dence of the random variables. This measure is derived from Shannon’s informa-
tion entropy [Shannon, 2001], a measure that quantifies the uncertainty of a random
variable. To define mutual information, first we need to define the entropy and joint
entropy of two discrete random variables X and Y by

H(X) = −∑
i

p(xi) log2 p(xi) (2.3)

H(X, Y) = −∑
i

∑
j

p(xi, yj) log2 p(xi, yj) (2.4)

where p(xi) and p(xi, yj) are the probability distribution and joint probability dis-
tribution of X and (X, Y) respectively. Then the mutual information between X
and Y can be formulated as

I (X, Y) = H(X) + H(Y)− H(X, Y). (2.5)

Unlike correlation coefficient, mutual information is not bounded up by 1.
Since large values of mutual information could be hard to interpret without skew-
ing the results, it is useful to use the normalised mutual information (NMI) which
brings the values down to the bounded interval [0, 1]. One way to normalise mu-
tual information proposed by Kvalseth [1987] is the formula

NMI(X, Y) =
2I(X, Y)

H(X) + H(Y)
. (2.6)

20

CHAPTER 2. BACKGROUND

It should be said that as done by Kraskov et al. [2005, equation (9)] the mutual
information can be converted into a metric by

dXY = 1− I(X, Y)
H(X, Y)

(2.7)

which gives a value in the interval [0, 1]. See Li et al. [2001] for a proof that this
measure is a metric. Below, we are going to elaborate on the clustering techniques
used throughout this thesis—all of which utilise distance or similarity measures.

2.4.2 Hierarchical Clustering

As mentioned before, hierarchical clustering methods group objects into clusters
in a hierarchy. We are going to explain three of these methods: single linkage cluster
analysis (SLCA), average linkage cluster analysis (ALCA), and complete linkage cluster
analysis (CLCA). These three methods apply the same procedure except that they
differ in how they determine the distance between clusters in each step of their
procedure. We will define SLCA first and show how to perform the other two
clustering methods by a simple modification to SLCA.

Let the distance matrix D =
(
dij
)

n×n denote the distances between all pairs
of n objects. This distance matrix can also be thought as the edge weights of a
complete weighted graph Kn in which case the objects can be deemed to be the
vertices of that graph. Then the pseudocode of SLCA can be outlined as follows.
The output of this algorithm is a hierarchical tree (HT), that is a dendrogram: it
illustrates the hierarchy as defined in paragraph 2 of Section 2.4.

21

2.4. CLUSTERS

Algorithm 2 SLCA algorithm
1: Input:
2: D =

(
dij
)

n×n : the distance matrix
3: Output:
4: Hierarchical tree
5:
6: ci ← {vi} : every vertex belongs to their own cluster
7: while number of clusters > 1 do
8: Find the closest clusters cx and cy such that dcx,cy = min dij where vi ∈

cx, vj ∈ cy

9: cxy ←
(
cx, cy

)
: Merge clusters cx and cy into one cluster cxy

10: Delete the rows and columns corresponding to cx and cy from D
11: dcxy,ck ← min{dcx,ck , dcy,ck} : Distance between the new cluster and the other

clusters ck
12: Add a new row and column dcxy,ck in D corresponding to cxy

As can be seen in Algorithm 2 (see Everitt et al. [2011, Section 4.2.1] for an
illustrative example of this algorithm), at first every vertex belongs to their own
cluster. Then the two closest clusters join together to form a bigger cluster. Thus,
at each step of this algorithm, we have one less cluster compared to the previous
step, and accordingly, for n vertices, we have n − 1 steps. In order to determine
the closest pair of clusters, we first have to specify the distance between clusters at
each step. As shown in line 8 of the algorithm, the distance between two clusters
cx and cy is the minimum distance between all pairs of vertices vi and vj such that
vi ∈ cx and vj ∈ cy. We continue this procedure until the last two clusters join
together at step n− 1. Figure 2.7 is an example of a distance matrix D and its HT
obtained via SLCA.

We need to point out that as mentioned by Carlsson and Mémoli [2010], one
of the drawbacks of SLCA is what is known as the chaining phenomenon. Basically,
this means that two clusters are forced to join together because of a single pair of
vertices in them being close to one another although all the other pairs of vertices
are distant from each other. It can cause a long chain of clusters that are possibly
resulting from noise in data. It can be seen that this drawback is related to the point
that we made in Section 1.2.2 about how we want to use more information from
Kn compared to MST to build a stock-correlation network.

Now we can elaborate on ALCA and CLCA. The only difference between these
two algorithms and SLCA is how to determine the distance between clusters in
each step—line 11 of Algorithm 2. In the former, the distance between two clusters

22

CHAPTER 2. BACKGROUND

(a) Distance matrix (b) HT by SLCA

Figure 2.7: An example of a distance matrix D and its corresponding HT obtained via SLCA

cx and cy is the average distance between all pairs of vertices vi and vj such that
vi ∈ cx and vj ∈ cy. In the latter, the distance between cx and cy is the opposite
of SLCA, that is, dcx,cy = max dij where vi ∈ cx, vj ∈ cy. In this way, these two
algorithms can address the chaining phenomenon of SLCA.

(a) SCLA (b) CLCA

Figure 2.8: An illustration of how SLCA and CLCA determine the distance between each two
clusters Cx and Cy in each step of their procedure

2.4.3 Louvain Community Detection

Louvain community detection was first proposed by Blondel et al. [2008] as a parti-
tioning algorithm for networks. This greedy algorithm tries to optimise a function
called modularity which was first put forward by Newman [2006]. This function
assigns a value between -1 and 1 to a partition of a graph as a measure of the
density of links inside communities as compared to links between communities.
To define this function, let the edge weight sij in the graph denote the similarity

23

2.4. CLUSTERS

between vertices vi and vj (note that edge weights are not distance). Also, let S be
the sum of all similarities (edge weights). We define ci as the community of vertex
vi, and δ as a simple delta function. Lastly, SWi and SWj denote the total sum of
the weights of edges adjacent to vi and vj respectively. The modularity function is
given as below.

Q =
1

2S ∑
ij

[
sij −

SWiSWj

2S

]
δ(ci, cj) (2.8)

In this algorithm, in the first step, each vertex is in its own community, that
is, all the ci’s are distinct. The effect on modularity caused by changing the com-
munity of a vertex vi to that of each of its neighbours in turn is checked. Then the
community of vertex vi is reassigned to the community of the neighbour vertex
that leads to the largest increase in modularity. In the case of no increase in mod-
ularity, vi keeps its own community label. This process is applied to all vertices
and repeated until the community reassignment of none of the vertices leads to an
increase in Q. In the second step, all the vertices belonging to the same community
are considered as a single vertex, and the edges between them are denoted by self
loops on the new vertex. Also, all edges from vertices of the same community in the
previous step to vertices in another community are denoted by a single weighted
edge between those communities. These two steps are repeated iteratively until
there is no change in the community assignment of the vertices in step one.

That being said, depending on the order of vertices evaluated by this algo-
rithm, we can get different resulting partitions corresponding to different modu-
larity function values. Accordingly, this algorithm does not necessarily yield the
global maximum modularity. It is also worth mentioning that finding the exact
maximum modularity is an NP-hard problem (see Brandes et al. [2007] and in par-
ticular Theorems 4.4 and 4.8 for proof), and one does not hope for an algorithm to
solve it.

2.4.4 Normalised Spectral Clustering (NSC)

Dimensionality reduction refers to techniques that find applications in different
areas including clustering. Spectral clustering refers to some clustering techniques
that make use of the eigenvalues and eigenvectors of the similarity matrix to per-
form dimensionality reduction and then clustering. See Von Luxburg [2007] for
an overview of these techniques. Normalised spectral clustering (NSC) is a group
of spectral clustering techniques. Here, we describe an NSC algorithm proposed
by Shi and Malik [2000]. For the remainder of the thesis wherever we mention

24

CHAPTER 2. BACKGROUND

NSC, we are referring to this algorithm. Before outlining this algorithm, we have
to define a classic and popular clustering technique called k-means.

The k-means clustering problem was first proposed by MacQueen et al. [1967].
Let us say we want to partition N objects x1, . . . , xN into k clusters C1, . . . , Ck. The
objective of k-means is to find the cluster centres m(C1), . . . , m(Ck) such that the
sum of 2-norm or Euclidean distances (as defined in Section 2.4.1) squared between
each object xi and its closest cluster centre m(Cj) is minimised. That is, we want to
find the cluster centres as

argmin
m(C1),...,m(Ck)

N

∑
i=1

min
j∈{1,...,k}

(
1
2

∥∥xi −m(Cj)
∥∥2

2

)
. (2.9)

This is an NP-hard problem as proved in Aloise et al. [2009]. Lloyd [1982] proposed
an algorithm for this problem for the first time, and it is widely known as “the
k-means algorithm” or Lloyd’s algorithm, and the k-means clustering technique
usually refers to clustering using this algorithm. To explain this algorithm, let
mt(C1), . . . , mt(Ck) denote the cluster centres at iteration t. The pseudocode of this
algorithm is as follows.

Algorithm 3 k-means algorithm
1: Input:
2: (x1, . . . , xN): N data points
3: k: number of clusters
4: Output:
5: C1, . . . , Ck: clusters
6:
7: t = 0
8: mt(C1), . . . , mt(Ck): initial cluster centres
9: while True do

10: Step 1: Assign each xi for i = 1, . . . , N to cluster Cj such that mt(Cj) is
nearest to xi using the Euclidean distance

11: Step 2: Compute mt+1(Cj) for j = 1, . . . , k as the mean of all points assigned
to the cluster Cj

12: if mt(Cj) = mt+1(Cj) ∀j = 1, . . . , k then
13: break
14: else
15: t← t + 1

Now we come to the description of NSC. This algorithm takes the similarity
matrix and the number of clusters k as its inputs and partitions the data set as

25

2.4. CLUSTERS

below.

Algorithm 4 NSC algorithm
1: Input:
2: W = (wij)i,j=1,2,...,n : similarity matrix
3: k: number of clusters
4: Output:
5: {C1, . . . , Ck}: clusters
6:

7: D : digonal matrix with di =
n
∑

j=1
wij , i = 1, 2, . . . , n

8: L = D−W : Laplacian matrix
9: ν1, ν2, . . . , νk ← eigenvectors of the k smallest eigenvalues of the eigenproblem Lν = λDν

10: V ∈ Rn×k ← matrix with ν1, ν2, . . . , νk as columns
11: yi ∈ Rk ← corresponding vector to the i-th row of V for i = 1, 2, . . . , n
12: C1, C2, . . . , Ck ← clusters of yi ∈ Rk , i = 1, 2, . . . , n by k-means algorithm

But what is a good choice of k? One tool to answer this question is the eigengap
heuristic [Von Luxburg, 2007]. Denoting sorted (from small to large) eigenvalues
of Laplacian L of the similarity matrix as λ1, λ2, . . . , λn, eigengap heuristic states
that the network should be divided into k clusters such that λk+1 is significantly
larger than λ1, . . . , λk. In other words, if the largest gap is between λk and λk+1

for k = 1, 2, . . . , n− 1 in the sorted eigenvalues of the Laplacian of the similarity
matrix, we divide the network into k clusters.

2.4.5 Adjusted Rand Index (ARI)

The Rand index [Rand, 1971] is a measure in statistics that quantifies the similarity
between two partitions of a data set. The adjusted rand index (ARI) is another version
of the Rand index that is corrected for chance. Given two partitions A and B of a set
S containing n elements, the ARI of A = {A1, A2, . . . , Ar} and B = {B1, B2, . . . , Bs}
is as given by

ARI =
∑
ij
(

nij
2)−

[
∑
i
(ai

2)∑
j
(

bj
2)

]
(n

2)

1
2

[
∑
i
(ai

2) + ∑
i
(ai

2)

]
−

[
∑
i
(ai

2)∑
j
(

bj
2)

]
(n

2)

(2.10)

26

CHAPTER 2. BACKGROUND

where nij = |Ai ∩ Bj|, ai =
s
∑

j=1
nij, and bj =

r
∑

i=1
nij. An ARI of 1 shows identi-

cal clusters, 0 shows random assignment to clusters, and negative values show
that the similarity between the two partitions is less than expected from random
assignment.

2.5 Positive Definite Matrix

A positive definite matrix is a special type of symmetric matrix all of whose eigenval-
ues are positive. If all eigenvalues are non-negative, it is positive semi-definite. There
are other ways to prove that a matrix is positive definite other than showing all its
eigenvalues are positive. Before that, we need to prove the lemmas below.

Lemma 2.5.1. The eigenvectors of the symmetric matrix An×n are mutually orthogonal.

Proof. Let v1 and v2 be two eigenvectors of A respectively corresponding to distinct
eigenvalues λ1 and λ2.

λ1〈v1, v2〉 = 〈λ1v1, v2〉 = 〈Av1, v2〉 = 〈v1, Aᵀv2〉
= 〈v1, Av2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉

Thus, (λ1 − λ2)〈v1, v2〉 = 0. Since λ1 and λ2 are distinct, λ1 − λ2 6= 0 =⇒
〈v1, v2〉 = 0 =⇒ v1 ⊥ v2.

Lemma 2.5.2. If A is positive definite, and v is an eigenvector of A, vᵀAv > 0 .

Proof. Let λ be the eigenvalue corresponding to v. Since A is positive definite,
λ > 0. Then we have Av = λv =⇒ vᵀAv = λvᵀv > 0.

Every real symmetric n× n matrix has n eigenvectors, and based on Lemma
2.5.1, we can infer that the eigenvectors of a real symmetric matrix span Rn. Ac-
cordingly, the eigenvector v in Lemma 2.5.2 can be substituted by any other vector
x ∈ Rn, and the ineqaulity xᵀAx > 0 still holds. This is another definition of a posi-
tive definite matrix, that is, the symmetric matrix A is positive definite if xᵀAx > 0
for all x 6= 0.

Finally, we can use the following lemma to show a matrix is positive definite.

Lemma 2.5.3. A is positive definite if A = BᵀB where B is a matrix whose columns are
independent.

27

2.6. CHOLESKY DECOMPOSITION

Proof. Since the columns of B are independent, Bx = 0 implies that x = 0. So
xᵀAx = (Bx)ᵀ (Bx) > 0 for any x 6= 0.

2.6 Cholesky Decomposition

Cholesky decomposition is a decomposition of a positive definite matrix. This decom-
position has several applications, one of the most important of which is solving
systems of linear equations. In this context, it is more efficient than the well-known
LU decomposition (see the last paragraph of Press et al. [2007, p. 100]) for a brief
explanation on why). The Cholesky decomposition of a positive definite matrix
A is in the form A = LLᵀ where L is a unique lower triangular matrix whose en-
tries are calculated by equations (2.11) and (2.12). As such, to solve the equation
Aw = d, we can solve Ly = d, and then Lᵀw = y to find w.

Lii =

√√√√Aii −
i−1

∑
k=1

L2
ik (2.11)

Lij =
1

Ljj

(
Aij −

j−1

∑
k=1

LikLjk

)
(2.12)

2.7 Stock-correlation Network

One kind of financial network is a stock-correlation network. In such a network,
vertices denote stocks and the weight of an edge between two stocks shows the
similarity between them. Similarity could be, for example, the influence the stocks
have over the price of each other. Correlation coefficient is one of the most com-
monly used measures to account for similarity in stock networks. (We will explain
in the next chapters what random variables we use in order to apply different simi-
larity measures in this area: stock-correlation networks.) That being said, including
all the cross correlations between stocks would create a complete weighted graph
that reflects the complexity through a densely interwoven structure. Because of
this, several algorithms have been proposed to filter the complete weighted graph
into a simple subgraph to use as a representation of the original network. Some
of these algorithms are minimum spanning tree (MST) [Mantegna, 1999; Bonanno
et al., 2003; Tabak et al., 2010; Fiedor, 2014; Guo et al., 2018b], asset graph [Onnela
et al., 2003b], planar maximally filtered graph (PMFG) [Tumminello et al., 2005,

28

CHAPTER 2. BACKGROUND

2007b; Song et al., 2011a; Fiedor, 2014; Wang and Xie, 2015; Wang et al., 2017], and
correlation threshold method [Boginski et al., 2005; Huang et al., 2009; Chi et al.,
2010; Namaki et al., 2011]. See Birch et al. [2016] for an advantages-and-limitations
comparison of MST, AG, and PMFG on a dataset. The question is, what exactly
makes a filtering algorithm better than the others? There is no unique answer, but
to get a perspective, let us take a quick look at the reported positive aspects of the
above-mentioned methods.

Mantegna [1999] attributed the advantage of MST to the fact that it provided a
hierarchical clustering of stocks. Onnela et al. [2003b] demonstrated the advantage
of AG by observing that it had a higher survival ratio (ratio of common edges exist-
ing in two consecutive time periods) compared with MST. Yet they also mentioned
that unlike MST, there was not an evident scale-free behaviour indicating that the
degree distribution is power law for AG. (The power law distribution of the de-
grees of vertices is discussed since this property has been previously demonstrated
in a lot of complex networks [Albert and Barabási, 2002; Dorogovtsev and Mendes,
2002, 2001; Szabó et al., 2003; Marsili, 2002; Yang et al., 2003]). Overall, they found
AG better in terms of being less fragile in the presence of a market crisis, and that
it incorporated more information from the original complete weighted graph com-
pared to MST, for it did not have the structural limitations of MST. Tumminello et al.
[2005] attributed the usefulness of PMFG to the fact that the network produced
always contains the one produced by MST, and that it contains cliques in it with
stocks in those cliques mostly belonging to the same economic sectors. Boginski
et al. [2005] mentioned that the correlation threshold method was useful since for
a large enough minimum threshold on the value of correlation coefficient, their
network had a scale-free behaviour, and they could classify financial instruments
through the analysis of cliques and independent sets (discussed later).

Others have also discussed advantages of the above algorithms. Huang et al.
[2009] argued that the correlation threshold method displayed robustness against
random vertex failures and a high average clustering coefficient. One of the points
that Wang et al. [2017] made is that PMFG is useful because it provided a good
clustering of the stocks according to the economic sectoral benchmark clustering.

In summary, the positive aspects of filtering algorithms considered so far in
the literature are sparsity, scale-free behaviour, homogeneity of cliques, survival
ratio, good clustering, and robustness. Of these, the clustering behaviour seems
to attract the most attention. We next review the above mentioned methods and
explore their properties especially in terms of clustering.

29

2.7. STOCK-CORRELATION NETWORK

2.7.1 MST Stock-correlation Network

The first paper in the stock-correlation networks area was published by Mantegna
[1999]. In their work, they took the pairwise correlation coefficients of the log-
returns of stocks (explained in the next chapter) and converted those values to
distances. Then they built an MST network based on the distance matrix D derived
from the distances between stocks. In the area of stock-correlation networks, this is
referred to as the MST algorithm—although in graph theory MST is not the name
of an algorithm. They showed that the hierarchical clustering (SLCA) of stocks as-
sociated with MST agrees reasonably well with the economic sectoral classification
of stocks.

The question that comes to mind is how is SLCA associated with MST? Let
T(V, E) be the MST corresponding to D. Also, let d<ij be the length of the longest
edge on the path in T with the start vertex of vi and the end vertex of vj. The
value d<ij is the ultrametric distance between vi and vj. The ultrametric space
has the same three properties of a metric space plus the ultrametric inequality:
d<ik ≤ max{d<ij , d<jk}. If we get the SLCA of D< =

(
d<ij
)

n×n
, it is going to be the

same as that of D. Thus, we can get the SLCA of D from the MST of D without
knowing D, and this is how SLCA is associated with MST. For the remainder of
the thesis, wherever we mention the hierarchical structure in an MST, we mean
the hierarchical structure that is associated with the SLCA of that MST. See Man-
tegna and Stanley [2000] for a detailed discussion of ultrametricity and analysing
complexity in finance.

Figure 2.9: MST and its corresponding SLCA obtained from the 30 stocks used to calculate the
Dow Jones Industrial Average. We can see certain stocks in the same sub-sectors clustered together:
XON, TX and CHV are oil companies, AA and IP are raw materials companies, and PG and KO are
consumer non-durables companies (figure taken from Mantegna [1999, Fig. 1])

30

CHAPTER 2. BACKGROUND

The hierarchical structure of stocks in MST have been the focus of a lot of past
research in the stock-correlation networks area [Bonanno et al., 2003; Brida and
Risso, 2010; Coletti, 2016; Garas and Argyrakis, 2007; Nobi et al., 2015; Tabak et al.,
2010; Wang and Xie, 2015]. Brida and Risso [2010] discussed that in their MST—as
it can be seen in Figure 2.10—stocks of companies with strong interrelationships
or similar production activities cluster together which can be seen in the leaves of
the HT (described in Section 2.4.2) that corresponds to their MST. Coletti [2016]
discussed how well the clusters they identified in MST (and equivalently SLCA)
match the economic sectors of the stocks in them. They proposed using extra in-
formation such as the volume traded to obtain the correlation between stocks and
a better clustering of them in MST. Tabak et al. [2010] pointed out that stocks be-
longing to the same sector tend to cluster together in MST. They further discussed
the relative importance of different sectors in the stock-correlation network. Lastly,
Wang and Xie [2015] used MST to analyse international real-estate securities. They
demonstrated that in the HT corresponding to MST, securities are clustered based
their region.

Figure 2.10: The MST stock-correlation network represented in Brida and Risso [2010, Fig. 1].

Besides the above, researchers have also utilised MST to evaluate risk and
optimise portfolio allocation [Kaya, 2013; Onnela et al., 2002, 2003c]. Kaya [2013]
showed that stocks that are located towards the centre of the MST network tend
to have higher returns. They also offered an investment strategy that utilises net-
work centrality information for portfolio allocation. Markowitz [1952] proposed
a portfolio optimisation approach (see Rubinstein [2002] for a brief introduction
to this approach). Onnela et al. [2002, 2003c] demonstrated that the assets of the

31

2.7. STOCK-CORRELATION NETWORK

optimal Markowitz portfolio lie practically at all times on the outskirts of the MST
stock-correlation network.

The other application of MST stock-correlation networks has been studying
the market’s dynamics, especially during financial crises [Han et al., 2019; Ma-
japa and Gossel, 2016; Onnela et al., 2003a, 2002, 2003c; Song et al., 2011a; Nobi
et al., 2015; Zhang et al., 2011]. For example, Nobi et al. [2015] mentioned that the
hierarchical structure of stocks increases during financial crises, and Zhang et al.
[2011] claimed that a chain-like MST structure is associated with a high-volatility
economic crisis.

Overall, the use of the MST algorithm in this area has been extensive. In addi-
tion to the above, researchers have studied the power law distribution of degrees in
the MST stock-correlation network [Bonanno et al., 2003; Onnela et al., 2003c; Wang
and Xie, 2015]. (As mentioned in the second paragraph of Section 2.7, the power
law distribution of degrees is one of the properties of many complex networks).
They have also used variants of the MST network such as the forest (not the same
forest as the term forest in graph theory) of all possible MSTs [Gan and Djauhari,
2015], and a combination of spectral analysis and maximal spanning tree [Heimo
et al., 2007] to study the stock market. It should be said that the maximal spanning
tree is based on the same idea as MST where edge weights denote similarity in-
stead of distance. The procedure to build such trees is the same as the minimum
spanning tree, but instead of sorting edge weights from small to large, they are
sorted in reverse since similarity is essentially the inverse of distance.

Another type of spanning tree called the average linkage minimum spanning
tree (ALMST) has been proposed by Tumminello et al. [2007a] to build a stock-
correlation network. ALMST is associated with ALCA (described in the last para-
graph of Section 2.4.2). In order to explain ALMST, let us first outline another
algorithm to build MST. Let D be the distance matrix of n stocks. We start with the
empty graph G—which means it has no edges—consisting of n vertices denoting
the stocks. The algorithm for generating MST goes as follows.

32

CHAPTER 2. BACKGROUND

Algorithm 5 MST algorithm

1: Set Q as the matrix of elements qij such that Q = D.
2: Select the minimum distance qhk between elements belonging to different con-

nected components Sh and Sk in G.
3: Find elements u, p such that dup = min{dij, ∀vi ∈ Sh and ∀vj ∈ Sk}.
4: Add to G the edge between vertices vu and vp with weight dup. Once the edge

is added to G, vu and vp will belong to the same connected component S =
Sh
⋃

Sk.

5: qij =

qhk if vi ∈ Sh and vj ∈ Sk

min{qpt : vp ∈ S, vt ∈ Sj, and Sj 6= S} if vi ∈ S and vj ∈ Sj

qij otherwise
6: If G is still disconnected, go to step 2; otherwise, stop.

This algorithm gives MST—that is G—which is also as discussed in the be-

ginning of this section associated with SLCA, and d<ij =
√

2(1− qij) gives the
ultrametric distance between vi and vj in this MST. If we substitute the entries of
Q in line 5 in the algorithm above by

qij =

qhk if vi ∈ Sh and vj ∈ Sk

mean{qpt : vp ∈ S, vt ∈ Sj, and Sj 6= S} if vi ∈ S and vj ∈ Sj

qij otherwise

, then we are performing ALCA, and the graph G we obtain is ALMST.

Tumminello et al. [2007a] also used a resampling technique called bootstrap in
the following manner. Let Mt×n denote the matrix with columns denoting stocks,
rows denoting time steps, and entries denoting the stock prices. We randomly
sample t rows from M with repetition, form the distance matrix D, and based on
that, we build MST and ALMST. We repeat this procedure a large number of times.
The fraction of times that the edge eij appears in MST and ALMST denotes its
reliability in each one of them. They show that the reliability of edges in ALMST is
lower than that of MST. However, ALMST gives a better clustering of stocks with
respect to economic sectors and sub-sectors compared to MST.

2.7.2 PMFG Stock-correlation Network

The PMFG stock-correlation network was first proposed by Tumminello et al.
[2005]. They showed that a significant proportion of the 4-cliques and 3-cliques
of the network consist of stocks all belonging to the same economic sector. They re-

33

2.7. STOCK-CORRELATION NETWORK

Figure 2.11: An ALMST where the reliability of its edges is denoted by their thickness (figure taken
from Tumminello et al. [2007a, Fig. 1])

ferred to it as high homogeneity of cliques in PMFG. As mentioned in Sections 2.2.6
and 2.2.7, for n ≥ 3 vertices (stocks in this context), PMFG and MST have 3n− 6
and n− 1 edges respectively. Since PMFG has more edges than MST, it contains
more details than MST and ALMST regarding the sample correlation matrix [Tum-
minello et al., 2010]. Yet it has been argued in other papers [Birch et al., 2016] that
a downside of PMFG is not directly yielding the hierarchical clustering of stocks
like MST. The PMFG construction algorithm used by Tumminello et al. [2005] and
others in the area of stock-correlation network is a straight forward algorithm as
below.

34

CHAPTER 2. BACKGROUND

Algorithm 6 PMFG algorithm
1: Input:
2: V : set of stocks
3: D : distance matrix
4: Output:
5: G(V, E) : PMFG network
6:
7: E← ∅
8: G(V, E)← network of stocks V with no edges
9: dsorted ← list of (i, j, dij) (i, j ∈ V , i 6= j), sorted in ascending order

10: for (i, j, sij) in dsorted do
11: E← E ∪ {eij}
12: if G is not planar then
13: E← E− {eij}
14: if |E| ≥ 3|V| − 6 then
15: Break

Tumminello et al. [2005] also proved that MST is a subgraph of PMFG, and
they referred to it as one of the positive aspects of PMFG. Their proof is as follows.
Let dsorted denote the list of pairwise distances between vertices sorted from small
to large. We also have to define bridge: An edge is a bridge if and only if there is
no path between two vertices in the graph in the absence of that edge. Tumminello
et al. [2005] used the proposition that adding a bridge to a graph does not change
its genus which they inferred from Miller [1987]. This is the basis of the proof. Let
Gm and Tm denote the PMFG and MST at step m of their construction, that is, we are
on the m-th element on the list dsorted in Kruskal’s algorithm (Algorithm 1) for MST
and Algorithm 6 for PMFG. We say Gm ≡ Tm in the following case: If two vertices
are connected in one of the graphs by at least one path, they are also connected in
the other one by at least one path. We know that G2 ≡ T2. If Gm ≡ Tm, we have the
following four cases for Gm+1 and Tm+1:

1. The new edge eij is a bridge in Tm+1. This implies that eij is a bridge in Gm+1

also. So eij is added to both graphs.

2. The new edge eij is a bridge in Gm+1. This implies that eij is a bridge in Tm+1

also. So eij is added to both graphs.

3. The new edge eij is not a bridge in either Tm+1 or Gm+1, and Gm+1 is not
planar. So eij is not added to either of the graphs.

4. The new edge eij is not a bridge in either Tm+1 or Gm+1, and Gm+1 is planar.
So eij is added to Gm+1 but not to Tm+1.

35

2.7. STOCK-CORRELATION NETWORK

Hence, Gm+1 ≡ Tm+1. We can see by induction that if a new edge is added to MST
in its construction, it is also added to PMFG. Otherwise, the new edge is either not
added to any of them or only to PMFG.

Figure 2.12: An example of a PMFG stock-correlation network. The vertices with the same color
belong to the same economic sector, and the thickness of the edges denote their bootstrap reliability
as described above for ALMST (figure taken from Tumminello et al. [2010, Fig. 4]).

PMFG has been used extensively in the literature to study the dynamics of
the stock market [Buccheri et al., 2013; Song et al., 2011a; Wen et al., 2019], study
markets during financial crises [Wang and Xie, 2015] and investigate clusters and
their associated economic sectors [Wang et al., 2017]. Almost all these studies in-
vestigate the structure of the network with respect to the economic sectors and
sub-sectors. Thus, we can perceive the importance of clustering in this area once
again. There are also studies that have used PMFG to generate stock-correlation
networks [Wang et al., 2018; You et al., 2015; Kenett et al., 2015] but using measures
of correlation other than correlation coefficient. The focus of these studies has been
comparing the difference that different similarity measures make rather than the
stock-correlation network generating algorithms.

2.7.3 The Threshold Method

The threshold method was first proposed by Boginski et al. [2005]. Let the distance
or similarity matrix be the adjacency matrix of a complete weighted graph Kn. In
this method, the stock-correlation network is a subgraph of Kn such that the weight
of every edge in this subgraph is below a specific threshold if the edge weights
denote distance, and over a specific threshold if the edge weights denote similarity.
Boginski et al. [2005] put a strong emphasis on the power law distribution of

36

CHAPTER 2. BACKGROUND

degrees, cliques and independent sets (explained below).

Boginski et al. [2005] observed that for a subgraph of Kn whose edge weights
are above a certain threshold for values of correlation coefficient, the stock-
correlation network demonstrates a scale-free behaviour (vertex degrees follow
a power law distribution as explained in Section 2.7). Without diving into much
details, clustering coefficient denotes the probability that two neighbours of a ver-
tex are connected through an edge. Boginski et al. [2005] also observed that such a
network has a high clustering coefficient, a property that is evident in many other
complex networks.

Lastly, they studied the stock-correlation network with respect to its cliques
and largest independent sets—defined as follows. An independent set is a set of
vertices such that no two of them are adjacent. They used independent sets to
find stocks that are less correlated, to diversify a portfolio. By the same token, they
studied cliques to find stocks that are highly correlated which means that they have
a similar price action. They saw that often the size of the independent sets were
small, which translates to finding a “completely diversified” portfolio not being an
easy task.

The threshold method has been applied by several other researchers to gen-
erate stock-correlation networks. Huang et al. [2009] studied the same aspects of
network as those of Boginski et al. [2005] besides the topological stability of the
network. They pointed out that the threshold method generated stock-correlation
network is robust against random vertex failure. From this, they inferred that it
is useful for portfolio management. Chi et al. [2010] used the threshold method
to study the stock market dynamics. We can notice in these studies that as with
PMFG, there has been a focus on the study of cliques although apparently mostly
for portfolio management.

2.7.4 Asset Graph

The asset graph was proposed by Onnela et al. [2003b]. Let us specify the most
important edges as the heaviest in terms of weight if the weight denotes similarity,
and the lightest if it denotes distance. In the asset graph, we include the top k most
important edges in the network. We do so regardless of the structure of the graph in
contrast to MST and PMFG. The fact that this graph lacks any structural constraint
is considered a desirable aspect of this method by Onnela et al. [2003b]. They set
the value of k equal to n − 1 (where n is the number of stocks) to compare the
asset graph with MST. They argued that MST is forced to “accept” edge weights—

37

2.7. STOCK-CORRELATION NETWORK

weights denote distance—that are quite long only for the sake of retaining the
tree structure. In light of that, the asset graph contains more relevant information
compared to its MST counterpart.

Onnela et al. [2003b] also argued that the asset graph has a higher survival
ratio than MST where survival ratio is defined as follows. If we build the stock-
correlation network for different periods in a time window and denote the network
at time periods m and m+ 1 by Gm(V, Em) and Gm+1(V, Em+1) respectively, the sur-
vival ratio is defined as |Em

⋂
Em+1|

N where |Em| = |Em+1| = N. Basically, it denotes
the fraction of edges that survive from one time period to the other. As discussed
before, for MST, N = |V| − 1. Onnela et al. [2003b] argued that considering this
measure, the asset graph is more robust than MST. Lastly, Onnela et al. [2003b]
pointed out that unlike MST, the power law distribution of degrees is not evident
in the asset graph.

Figure 2.13: Survival ratio of the asset graph versus MST for a stock sample. The thicker curve
corresponds to the asset graph and the thinner one corresponds to MST. The window width is 1000
days and the period length is approximately 21 days (figure taken from Onnela et al. [2003b, Fig.
7])

It is worth mentioning that it seems like the asset graph algorithm is the least
used among the previously mentioned algorithms—MST, PMFG and the thresh-
old method. Birch et al. [2016] also applied the asset graph algorithm to build a
stock-correlation network using |V| − 1 edges as with MST. They argued that this

38

CHAPTER 2. BACKGROUND

method recognises any misleading edge selections made by MST. As a downside,
they mentioned that this method does not give a complete image due to discon-
nected vertices, and little information is known about these disconnected vertices.
In another work, Heimo et al. [2007] used spectral analysis, MST and asset graph
to analyse stocks. They argued that asset graph seems to provide more coherent
results regarding clusters of stocks compared to spectral analysis.

2.8 Some More Algorithms and Conclusion

We have discussed the most extensively used algorithms for building stock-
correlation networks. Other algorithms proposed in this area include, but are not
limited to, the directed bubble hierarchical tree (DBHT) [Musmeci et al., 2015; Song
et al., 2012, 2011b], p-media problem [Kocheturov et al., 2014], maximum likelihood
[Giada and Marsili, 2001, 2002; Guo et al., 2018a], and random matrix theory (RMT)
related algorithms [Arai et al., 2015; Chen et al., 2014; Garas and Argyrakis, 2007].
Below, we are going to discuss these algorithms briefly before finishing this chap-
ter. We refer to Marti et al. [2017] and Tsankov [2021] for an overview of papers on
methods, algorithms and their applications in financial markets.

DBHT is a method first proposed by Song et al. [2011b] which extracts hierar-
chies from a PMFG. They showed that PMFG can be viewed as a set of “bubbles”
that are themselves maximal planar graphs. The hierarchy comes in form of a tree
structure in which adjacent bubbles are joined through 3-cliques. Musmeci et al.
[2015] used this algorithm to derive hierarchies from stock markets. They took the
industrial sector classification of stocks as a benchmark partition and showed that
DBHT can outperform other methods—SLCA, ALCA, CLCA and k-medoids—in
retrieving more information with fewer clusters.

Kocheturov et al. [2014] put forward the idea of finding a set S of stocks or
medians—which are the centres of stars—of a predefined size p that maximise the
total “similarity” over all stocks and this set. Thus, their network is a set of con-
nected components that are stars. They denoted this similarity between stock i
and set S by the maximum correlation between the log-return (explained in the
next chapter) of i and all stocks in the set: ρ(i, S) = max

j∈S
ρij. Then they solve the

following problem

max
S

n

∑
i=1

ρ(i, S) = max
S⊂X,|S|=p

(
n

∑
i=1

max
j∈S

ρij

)
(2.13)

39

2.8. SOME MORE ALGORITHMS AND CONCLUSION

Figure 2.14: Extraction of hierarchies from a PMFG using DBHT [Song et al., 2012]

in which X, n, and p respectively denote the set of all stocks in the market, number
of stocks, and the number of clusters (or medians). They argued that the medians
are more stable during the market crisis compared to non-crisis periods, and that
an increasing stability of the stars could be an indicator of an upcoming crisis.

Lastly, we can see the use of methods using aspects of RMT and maximum
likelihood algorithms for stock market analysis. Methods that utilise RMT (some-
times combined with other methods) have been used to detect clusters of stocks
[Arai et al., 2015] and investigate the stock market dynamics [Chen et al., 2014].
Take for example, Namaki et al. [2011] who used the threshold method for asset
allocation by applying aspects of RMT. Regarding the maximum likelihood algo-
rithm, as with previous algorithms, it has been utilised to detect clusters of stocks
Giada and Marsili [2002, 2001], track the behaviour of stock market and study the
degree distribution of stocks to see how well it matches power law [Guo et al.,
2018a].

We can see that a good clustering has been emphasised in many stock-
correlation network studies, and it seems to be the most important aspect that
researchers investigate. In light of this, we decided to come up with new algo-

40

CHAPTER 2. BACKGROUND

rithms of building stock-correlation networks with the hope of obtaining a better
clustering of stocks compared to the previous studies.

41

CHAPTER 3
Proportional Degree

Stock-correlation Network

3.1 Introduction

In this chapter, we propose an algorithm called proportional degree (PD) to build a
stock-correlation network based on the normalised mutual information (NMI) sim-
ilarity matrix. In contrast to the other widely used methods—MST and PMFG—PD
uses the relatively (with regards to the total sum of edge weights which denote sim-
ilarity in the complete weighted graph), rather than the absolutely most important
edges (importance as specified in the first paragraph of Section 2.7.4). We show that
the PD network with the same size as its PMFG counterpart has a better homogene-
ity of cliques (homogeneity as mentioned in Section 2.7.2) according to the stock
economic sectors. We show that this result still holds even if we use correlation
coefficient (defined in Section 2.4.1) rather than NMI—defined in equation (2.6).
We also show that the PD network has an overall better clustering compared to
the PMFG network in terms of agreement with the normalised spectral clustering
(NSC as outlined in Algorithm 4) of the similarity matrix.

In Section 3.2, we show how to extract the pairwise mutual information and
NMI between stocks and explain why we use NMI to account for the correlation be-
tween stocks. Then we describe the PD algorithm in conjunction with the methods

42

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

that we use in order to compare PD and PMFG. In Section 3.3, we present the re-
sults of the comparison of the two networks built by the PD and PMFG algorithms.
Finally, Section 3.4 provides a recap of this chapter.

3.2 Method

In order to determine the similarity of stocks, we study their similarity in their
price action. For n stocks traded in m business days, let Pit be the closing price of

stock i on day t. The return of stock i on day t is defined by
Pit−Pi(t−1)

Pi(t−1)
. We know

that x ≈ ln(1 + x) holds if x is small. Since we can assume that the daily return on
a stock is small, we can approximate it as follows—which is called log-return. The
log-return of stock i on day t for t = 2, 3, . . . , m and i = 1, 2, . . . , n is defined by

Rit = ln
Pit

Pi(t−1)
. (3.1)

(Calculating the log-return rather than return is a common practice in finance.) The
correlation coefficient of log-returns of stocks has been the most commonly used
measure to quantify stocks’ similarity. However, a few other measures have also
been used.

For the rest of the thesis, wherever we mention similarity between stocks, we
mean the similarity in their log-returns. The correlation coefficient of log-returns of
two stocks i and j for a sample of m days can be approximated as

ρij =
∑m

t=2(Rit − Ri)(Rjt − Rj)√
∑m

t=2(Rit − Ri)2
√

∑m
t=2(Rjt − Rj)2

(3.2)

where Ri is the average of the log-return of stock i over the studied time period.
Another measure that has been used in the literature to account for similarity is
a variant of the correlation coefficient called the partial correlation coefficient (see
Kenett et al. [2015] for applications of this measure in financial markets and [Kenett
et al., 2010, 2015; Wang et al., 2018; Zhang et al., 2010] for stock-correlation networks
generated based on this measure). A partial (or residual) correlation measures the
extent to which a given variable Z affects the correlation between another pair
of variables X and Y. Thus, the partial correlation value indicates the correlation
remaining between X and Y after the correlation between X and Z and between
Y and Z have been subtracted. Therefore, the difference between the correlations

43

3.2. METHOD

and the partial correlations provides a measure of the influence of variable Z on
the correlation of X and Y. The partial correlation coefficient between variables X
and Y subject to the influence of Z is defined as

ρX,Y:Z =
ρX,Y − ρX,ZρY,Z√(
1− ρ2

XZ
) (

1− ρ2
YZ
) . (3.3)

Kenett et al. [2010] used this measure to build two stock-correlation networks: par-
tial correlation threshold network (PCTN) and partial correlation planar maximally
filtered graph (PCPG) network. They showed that by using partial correlation, their
approach was able to detect the prominent role of financial stocks in controlling the
correlation structure of the market. This role was not evident using only the corre-
lation coefficient. Kenett et al. [2015] used this measure to determine the stability
of markets and show the influence of stocks on other stocks belonging to differ-
ent sectors. Lastly, Wang et al. [2018] formed two MST stock-correlation networks
based on correlation coefficient and the partial correlation coefficient: MST-Pearson
and MST-partial. They showed that correlation between stocks is greatly affected
by other markets, and that the outcomes from the MST-partial network are more
reasonable and useful than those from MST-Pearson.

The downside of using correlation coefficient is that it only accounts for the
linear correlation between variables. In other words, we have:

1. Correlation coefficient ρXY = 1 implies that a linear equation describes the
relationship between X and Y perfectly, with all data points lying on a line
for which Y increases as X increases.

2. Correlation coefficient ρXY = −1 implies that all data points lie on a line for
which Y decreases as X increases.

3. Correlation coefficient ρXY = 0 implies that there is no linear relationship
between the variables.

(See Holmes et al. [2017, Section 13.1] for more detail.) For example, if X ∼ N (0, σ2),
and Y = X2, ρXY = 0 even though they are obviously not independent.

However, stock returns demonstrate a nonlinear behavior [Hsieh, 1991; Oh
and Kim, 2002; McMillan, 2001]. Oh and Kim [2002] used a piecewise nonlinear
model to predict the stock price index. McMillan [2001] found a nonlinear relation-
ship between stock returns and interest rates, and showed that their model is more
accurate than some previously proposed linear model. Fiedor [2014] argued that
it is perplexing to consider only the linear dependency between stock returns to

44

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

come up with a corresponding hierarchical clustering of them.

In light of the above, we use the normalised mutual information (NMI) as
defined by equation (2.6) to measure the correlation between stocks. We prefer
mutual information over correlation coefficient because as argued by Fiedor [2014]
and da Silva et al. [1989], the former can detect the relationship between variables
that cannot be detected by a linear correlation measure such as the latter. Guo
et al. [2018b] argues that this feature of mutual information—detecting nonlinear
relationships—is more evident when the stock market exhibits violent fluctuations.
Still, we also use correlation coefficient to compare its resulting network with that
of NMI in Section 3.3 to make a comparison of PD and PMFG irrespective of the
similarity measure used.

Mutual information and its variants have been used in the literature before
[Fiedor, 2014, 2015; You et al., 2015; Han et al., 2019; Barbi and Prataviera, 2019; Goh
et al., 2018]. You et al. [2015] used the partial mutual information (PMI)—we refer
to equation (6) in their paper for definition—to build the Shanghai Stock Exchange
network. They argued that PMI is better than correlation coefficient in reconstruct-
ing the sector structure of the market more precisely, while retaining the (almost)
scale-free property of the networks. It is worth mentioning that they investigated
both MST and PMFG and found that the degree distribution is closer to power law
in the latter compared to the former. Han et al. [2019] used mutual information
along with MST to study the market dynamics of the Chinese stock market. Fiedor
[2014] used the mutual information rate (MIR)—see Blanc et al. [2011] for a defi-
nition and Gray and Kieffer [1980] for a more rigorous definition of this measure.
They used MIR with MST and PMFG to build a stock-correlation network, and they
showed that the resulting network based on MIR is significantly different from one
based on correlation coefficient. In the following, we demonstrate how to calculate
NMI between stocks based on their log-returns.

One question we must face is how to construct the probability and joint prob-
ability distributions of the stocks in order to find the mutual information between
them. We use the same numerical method as proposed by Guo et al. [2018b]. In
order to find the probability distribution of the log-return of stock i—as given by
equation (3.1)—we sort Rit values for t = 2, 3, . . . , m in ascending order and divide
the sorted values into q bins. Then we count the number of log-returns of stock i
for i = 1, 2, . . . , n in each bin a for a = 1, 2, . . . , q denoted by fia and get the approx-
imate probability by pia ≈ fia

m . Similarly, we find the joint probability distribution
of the log-returns of stocks i and j for i, j = 1, 2, . . . , n by dividing their sorted

45

3.2. METHOD

log-returns into q× q bins. In such case, We denote the number of log-returns of i
and those of j in bin (a, b) by fijab, and the approximate joint probability is given

by pijab ≈
fijab
m . As a result, we can approximate the entropy of stock i and joint

entropy of stocks i and j—see equations (2.3) and (2.4)—by

H(Si) = −
q

∑
a=1

pia log2 pia (3.4)

H(Si, Sj) = −
q

∑
a=1

q

∑
b=1

pijab log2 pijab. (3.5)

Therefore, the mutual information of stocks i and j can be given by substituting
equations (3.4) and (3.5) in equation (2.5), and the NMI is given by

NMI(Si, Sj) =
2I(Si, Sj)

H(Si) + H(Sj)
, i 6= j (3.6)

as defined in equation (2.6) which produces a symmetric n× n matrix with diag-
onal elements of zero. We consider this matrix to be the similarity matrix of the
stocks unless specified otherwise. Now that we have determined how to specify
the pairwise NMI between stocks, we can elaborate on our algorithm (PD) for
building the stock-correlation network. Below, we are going to explain PD and
mention the aspects based on which we compare PD with PMFG.

3.2.1 Proportional Degree (PD) Algorithm

We first determine the degree of each vertex in our output network in a manner
such that it is proportional to its weight, where the weight of a vertex (or stock
weight) is the sum of its similarity values across all the other vertices. The weight
of stock i is defined by

SWi = ∑
j 6=i

sij (3.7)

where SWi and sij respectively denote the weight of stock i and the similarity
between stocks i and j.

Consequently, the calculated degree of a vertex d′i should be more or less given
by

d′i =
SWi

n
∑

j=1
SWj

× (2M) (3.8)

46

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

in which M is the total number of edges, so 2M is the total sum of the degrees of all
vertices. However, the degree of a vertex, being the number of adjacent vertices, is
required to be integer. In order to round the calculated degrees d′i while preserving
their total sum, we apply the cascade rounding algorithm as follows.

Table 3.1: Cascade rounding algorithm for finding degrees while preserving the total sum of the
calculated degrees

Vertex Calculated degree Degree

1 d′1 d1 = bd′1e

2 d′2 d2 = bd′1 + d′2e − d1

3 d′3 d3 = bd′1 + d′2 + d′3e − (d1 + d2)
...

...
...

i d′i di = b
i

∑
j=1

d′je −
i−1
∑

j=1
dj

i + 1 d′i+1 di+1 = b
i+1
∑

j=1
d′je −

i
∑

j=1
dj

...
...

...

n d′n dn = b
n
∑

j=1
d′je −

n−1
∑

j=1
dj

To use cascade rounding, we first relabel the vertices as 1 to n, from the largest
stock weight to smallest. Then we determine the degree of vertex i recursively
by subtracting the cumulative sum of the degrees of the i − 1 vertices before it,
from the rounded cumulative sum of the calculated degrees of vertices 1 to i. Thus,
d1 = bd′1e and

di = b
i

∑
j=1

d′je −
i−1

∑
j=1

dj, 2 ≤ i ≤ n (3.9)

where di is the degree of vertex i and bxe denotes the nearest integer to x (see Table
3.1 for a demonstration of this algorithm). For the rest of the chapter, wherever
we mention degree in association with the PD algorithm, it means the integer or
rounded calculated degree. After determining degrees, the PD algorithm builds a
network as follows.

47

3.2. METHOD

Algorithm 7 PD algorithm
1: Input:
2: V : set of stocks
3: sij : similarity between stock i and j given by the NMI (3.6) or correlation coefficient (2.2)
4: Output:
5: G(V, E) : proportional degree network
6:
7: E← ∅
8: G(V, E)← network of stocks V with no edges
9: S← list of (i, j, sij) (i, j ∈ V , i 6= j), sorted in descending order of sij

10: deg(i) : number of vertices adjacent to vertex i in network G
11: for (i, j, sij) in S do
12: if (deg(i) < di) and

(
deg(j) < dj

)
and

(
eij /∈ E

)
then

13: E← E ∪ {eij}

For the purpose of comparing with the PMFG network, we set the total number
of edges in this algorithm to M = 3n− 6 to equal the value in PMFG.

3.2.2 Cliques

As mentioned in Section 2.7.2, one of the advantages of PMFG over MST is the
additional information linked with the inclusion of 3 and 4-cliques. Also, as pointed
out in the same section, one way of analysing the cliques is to investigate how often
the stocks in them belong to the same economic sector; in other words, what is the
degree of cliques homogeneity with respect to the economic sectors. In the next
sections, we compare the cliques homogeneity of PMFG and PD to evaluate which
network is better in finding cliques of stocks belonging to the same economic sector.

3.2.3 Clusters

As mentioned in the first paragraph of Section 2.4, if each vertex of a graph only
belongs to one cluster (no overlapping clusters), such a division of the graph de-
termines a partition. Partitions of the PMFG stock-correlation networks have been
widely studied [Buccheri et al., 2013; Song et al., 2011a; Wang and Xie, 2015; Wang
et al., 2017]. As with the analysis of cliques, one of the ways of analysing the clus-
ters is investigating how well they match the economic sector classification of the
stocks since we would hope that stocks belonging to the same economic sector are
more likely to be in the same cluster. (Chen et al. [2014] showed in their paper that
stocks in the same economic sector are more likely to be in the same cluster.)

48

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

We evaluate the clusters found by Louvain community detection (defined in
Section 2.4.3) in PD and PMFG networks through their similarity to the stocks’
economic sectors partition. We also use Louvain community detection and NSC
on the similarity matrix of the stocks (complete weighted graph of NMI between
stocks as mentioned in the last paragraph of Section 3.2) and compare the resulting
partitions with the partitions of the PD and PMFG networks achieved through the
same methods. Lastly, to compare any two partitions, we use the adjusted rand
index (ARI) as described in Section 2.4.5.

3.3 Results

In this section, we present the results we got on cliques and clusters evaluation of
the PD and PMFG networks. First, we briefly outline the data set based on which
we have built the networks. Then we do the cliques and clusters analysis, and lastly,
we assess the robustness of both networks.

3.3.1 Data Set

We have selected 125 out of 200 stocks in S&P/ASX 200. This index is based on
the 200 largest stocks in the Australian Securities Exchange (ASX) which account
for around 82% (as at March 2017) of Australia’s sharemarket capitalisation (see
http://www.asx200list.com). The criterion used for selection was that these 125
stocks are the ones that were traded throughout the whole period of the years 2013-
2016. Our data set comprises the following: 21 stocks in Consumer Discretionary
(CD) sector, 6 in Consumer Staples (CS), 8 in Energy (E), 19 in Financials (F), 10
in Health Care (HC), 16 in Industrials (I), 2 in Information Technology (IT), 26 in
Materials (M), 12 in Real Estate (RE), 2 in Telecommunication Services (TS), and 3
in Utilities (U).

We should point out that as you will see, in the analysis that we have done
in the rest of the chapter, in parts, we have taken different random samples of the
stocks to input into the algorithms. The reason for this is testing the algorithms on
more than one input and assessing the consistency of their results.

3.3.2 Stock-correlation Networks

In order to get the NMI between all the stocks to generate the similarity matrix, we
chose the bin size of q = 20 (referring to equations (3.4) and (3.5)) for the 1013 trad-

49

http://www.asx200list.com

3.3. RESULTS

ing days in our data since as Guo et al. [2018b] mention, for a large enough q, there
is not much difference in the values of mutual information, and they considered a
bin size of q = 10 for the 734 trading days in their data.

We generated the PD and PMFG networks for the above-mentioned data, the
analysis of which is provided below. In the PD network, we have vertices with
degrees ranging from 1 to 9 whereas in the PMFG network the degrees range from
3 to 29. Visualisations of both networks are in the forthcoming Figure 3.3.

3.3.3 Cliques

The analysis of networks generated in the above (Section 3.3.2) indicates that there
are 87 maximal cliques of size 3 and larger, including 52 maximal cliques of size
3, 23 of size 4, 9 of size 5, and 3 of size 6 in PD. Similarly, there are 122 maximal
cliques of size 4 in the PMFG network. To quantify homogeneity, 47/87 = 0.54 of
the maximal cliques in the PD network consist of stocks all belonging to the same
economic sector whereas this ratio is 43/122 = 0.35 for the PMFG network. We also
compared the homogeneity of the maximal cliques with minimum size of 3 in the
two networks on different random subsets of the stocks. To this end, we considered
different proportions r = 4/5, 3/4, 2/3, 1/2 of all the 125 stocks, and for each r, we
took 10 random samples of size brne (bxe denotes rounding x to the nearest integer)
from the stocks. We plotted the results of all samples for each r and each network
as shown in Figure 3.1, and we can see that for every r, the PD network has an
overall larger homogeneity of maximal cliques compared with PMFG.

In the PD network, there are 12 maximal cliques of size more than 4 as shown
in Table 3.2. In this table, the columns show respectively the stocks in the clique,
their corresponding sectors, and the clique size.

Contrasting with this, in a PMFG network—as in any other planar graph—we
cannot have a maximal clique with size larger than 4 since as mentioned in Section
2.2.6, such a clique cannot be embedded onto a surface with genus g = 0 without
any two edges crossing. Also, as discussed in the same section, we can have at most
n− 3 maximal 4-cliques and 3n− 8 3-cliques in any planar graph. Accordingly, in
another analysis, we compared the homogeneity of the 3-cliques and 4-cliques in
the PD network, which are not necessarily maximal, with their counterparts in the
PMFG network. There are 236 3-cliques and 101 4-cliques in the PD network, and
we observe a homogeneity of 178/236 = 0.75 in 3-cliques and 91/101 = 0.90 in its 4-
cliques. The corresponding ratios are 152/367 = 0.41 and 43/122 = 0.35 in the PMFG
network. So we can also see that all the maximal cliques in the PMFG network are

50

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

Figure 3.1: Maximal cliques homogeneity comparison of the two networks on different random
subsets of proportions r of all stocks

Table 3.2: Maximal cliques with size more than 4 in the PD network

Clique Sector Size

OSH, WPL, WOR, BPT, STO, ORG E, E, E, E, E, E 6

MGR, CHC, GPT, GMG, SGP RE, RE, RE, RE, RE 5

MGR, CHC, GPT, GMG, IOF RE, RE, RE, RE, RE 5

MGR, CHC, GPT, CQR, SGP RE, RE, RE, RE, RE 5

ILU, RIO, SFR, OZL, WSA M, M, M, M, M 5

ILU, RIO, SFR, OZL, FMG M, M, M, M, M 5

ORG, WPL, WOR, BHP, STO E, E, E, M, E 5

ANZ, NAB, CBA, WBC, MQG F, F, F, F, F 5

ANZ, NAB, CBA, WBC, BEN, BOQ F, F, F, F, F, F 6

ANZ, NAB, CBA, WBC, BEN, SUN F, F, F, F, F, F 6

ANZ, NAB, CBA, WBC, AMP F, F, F, F, F 5

ANZ, NAB, ASX, BEN, SUN F, F, F, F, F 5

4-cliques here. As with the previous analysis, we compared the homogeneity of 3-
cliques and 4-cliques of the two networks on different random subsets of the stocks,
and the result is plotted on Figure 3.2. We can see based on this figure and the
cliques analysis so far that the comparison of 3-cliques and 4-cliques homogeneity
between the two networks is even more striking than for maximal cliques.

We also evaluated the cliques homogeneity of PD and PMFG built based on

51

3.3. RESULTS

correlation coefficient. Building the correlation-coefficient-based PD network on
our stocks, we find the network to have 83 maximal cliques of size 3 and larger with
a corresponding homogeneity of 48/83 = 0.58. Also, in this network, there are 120
4-cliques and 243 3-cliques whose corresponding homogeneities are 107/120 = 0.89
and 184/243 = 0.76 respectively. Regarding the correlation-coefficient-based PMFG
network built upon our stocks, it has 122 maximal cliques—all of which are of size
4—whose corresponding homogeneity is 44/122 = 0.36. This result agrees with the
cliques homogeneity obtained by Tumminello et al. [2005]. The PMFG correlation-
coefficient based network has also 367 3-cliques with a corresponding homogeneity
of 153/367 = 0.42. It can thus be seen that both the correlation-coefficient-based PD
and correlation-coefficient-based PMFG have almost the same homogeneity as
their NMI-based counterparts. Moreover, interestingly, these two networks share
almost 60% of their edges with their NMI-based counterparts. Thus, it appears
that PD gives better information in terms of the cliques homogeneity than PMFG
regardless of the similarity measure used. We should note that for the remainder of
the chapter wherever we mention the PD or PMFG network, the network is built
based on NMI.

(a) 4-cliques (b) 3-cliques

Figure 3.2: 4-cliques and 3-cliques homogeneity comparison of the two networks on different
random subsets of proportions r of all stocks

3.3.4 Clusters

Using the Louvain community detection approach, following Wang and Xie [2015]
and Wang et al. [2017], we identified clusters as shown in Tables 3.3 and 3.4. We
found seven clusters in PD and six in PMFG. In both tables, “Stocks” refers to the
stocks in each cluster. “Sectors” refers to the number of stocks belonging to each
economic sector in the corresponding cluster. For example, 17F denotes 17 stocks

52

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

belonging to the Financials sector. “Size” refers to the cluster size, “Dominant”
refers to the economic sector repeated the most in the cluster, and “Percentage”
refers to the proportion of the stocks belonging to the dominant sector in the cluster.

Table 3.3: Clusters captured in the PD network by Louvain community detection

Cluster Stocks Sectors Size Dominant Percentage

1 CBA, WBC, ANZ,
NAB, AMP, SUN,
MQG, IAG, ASX, LLC,
BEN, BOQ, PTM, CGF,
IFL, HGG, PPT, MFG

17F, 1RE 18 F 94%

2 BHP, WPL, RIO, ORG,
FMG, STO, OSH,
ORI, WOR, ILU, ALQ,
AWC, SVW, BSL,
WHC, DOW, MND,
SGM, MIN, BPT, OZL,
SFR, IGO, WSA

13M, 7E, 4I 24 M 54%

3 TLS, TCL, GMG, SGP,
GPT, SYD, MGR, APA,
IOF, CQR, BWP, CHC,
ABP, SCP, MQA

10RE, 3I, 1U, 1TS 15 RE 67%

4 WOW, WES, CSL, BXB,
RHC, SHL, COH, PRY,
IVC

5HC, 2CS, 1CD, 1I 9 HC 56%

5 NWS, NCM, RMD,
DXS, QAN, DUE,
TPM, SKI, ANN, NVT,
RRL, MSB, TME, FXJ,
MMS, EVN, SIP, GWA,
SAI, SRX, GUD, NST

5CD, 5HC, 4I, 4M, 2U,
1RE, 1TS

22 CD 23%

6 QBE, AMC, CCL, AZJ,
CTX, CPU, AIO, IPL,
FBU, JHX, BLD, TWE,
MTS, GNC, ABC,
SWM, MYR, SXL, CSR,
NUF, PBG, AAD

8M, 5CD, 4CS, 2I, 1E,
1F, 1IT

22 M 36%

7 CWN, TTS, SEK, FLT,
HVN, SUL, TAH, ALL,
DLX, QUB, JBH, PMV,
FXL, IRE, BRG

10CD, 2I, 1F, 1IT, 1M 15 CD 67%

Nonetheless, as pointed out in Section 2.4.3, Louvain community detection
yields different partitions depending on the order of vertex evaluation. To mitigate
the effect of different partitions corresponding to different orders of vertices on
ARI, we applied the Louvain method on 100 random orders of vertices in both
networks and took the average of those 100 ARIs for each network in terms of
resemblance to the economic sectors’ partition of stocks. This produced average
ARIs of 0.31 and 0.26 for PD and PMFG networks respectively.

However, the economic sector classification is not the be-all and end-all parti-
tion of stocks. For example, every stock labelled as Real Estate in the ASX/S&P 200

53

3.3. RESULTS

Table 3.4: Clusters captured in the PMFG network by Louvain community detection

Cluster Cluster Sectors Size Dominant Percentage

1 CBA, ANZ, NAB, TLS,
WOW, WES, QBE,
SUN, IAG, CCL, AZJ,
TTS, BEN, MTS, BOQ,
GNC, TPM, TAH,
CGF, MSB, DLX, QUB,
FXL, GWA, AAD

10F, 5CS, 3CD, 3I, 2TS,
1HC, 1M

25 F 40%

2 BHP, WPL, RIO, NCM,
ORG, FMG, STO,
OSH, ORI, WOR,
CTX, AIO, IPL, ILU,
ALQ, AWC, SVW, BSL,
WHC, DOW, MND,
SGM, RRL, MIN, BPT,
OZL, FXJ, NUF, EVN,
SFR, IGO, WSA, NST

19M, 8E, 5I, 1CD 33 M 58%

3 WBC, LLC, FBU, JHX,
QAN, BLD, HVN,
SUL, ABC, SWM,
MYR, JBH, PMV, SXL,
CSR, PBG, GUD

9CD, 5M, 1F, 1I, 1RE 17 CD 53%

4 CSL, RMD, RHC, SHL,
DXS, COH, TWE, PRY,
ANN, SIP, SRX

9HC, 1CS, 1RE 11 HC 82%

5 NWS, AMP, BXB,
MQG, AMC, CWN,
ASX, CPU, SEK, FLT,
PTM, ALL, NVT, IFL,
HGG, PPT, TME, IVC,
MMS, MFG, IRE, BRG,
MQA, SAI

8CD, 8F, 5I, 2IT, 1M 24 CD 33%

6 TCL, GMG, SGP, GPT,
SYD, MGR, APA,
DUE, SKI, IOF, CQR,
BWP, CHC, ABP, SCP

10RE, 3U, 2I 15 RE 67%

data of 01/10/2018 had been put in the Financials category in the ASX/S&P 200
data of 21/03/2016, which means that the economic sector classification is subject
to change, reducing the likelihood that it represents the unique correct partition. In-
deed, it could also be argued that there are some significant sub-categories in other
economic sectors, which would create more clusters than the number of economic
sectors. To create another partition benchmark other than the economic sector
classification, we used Louvain community detection on the complete weighted
graph of NMI between stocks (similarity matrix of the stocks). This computation
produced only four clusters of stocks. Comparing clusters achieved by Louvain
community detection in PD and PMFG networks as shown in Tables 3.3 and 3.4
with the new partition benchmark, we got ARIs of 0.40 and 0.36 respectively. Yet
not much can be concluded from this comparison since the number of clusters in
the benchmark partition is so different from the numbers of clusters in the two

54

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

networks.

(a) Different colors referring to different clusters of Table 3.3

(b) Different colors referring to different clusters of Table 3.4

Figure 3.3: Clusters found in the PD (a) and PMFG (b) networks using Louvain community detec-
tion. These networks have been visualised using the Python library NetworkX [Hagberg et al., 2008]
and modified via the software Gephi [Bastian et al., 2009].

As mentioned above, since the economic sectoral classification can be mislead-
ing, and we do not get the same number of clusters in the two networks—PD and
PMFG—using Louvain community detection, we did as follows to draw a more

55

3.3. RESULTS

significant comparison between the clustering behaviour of the two networks. We
used NSC on the similarity matrix of the stocks and called the resulting partition
CK. (Here, K refers to the complete weighted graph and should not be mistaken by
k which denotes the number of clusters in the NSC algorithm.) Then we applied
NSC to the PD and PMFG networks where the corresponding partitions are de-
noted by CPD and CPMFG respectively. For the similarity matrix to input into NSC,
we used the binary adjacency matrix of the networks. In Figure 3.4, the Y-axis de-
notes the ARI of CK and CPD versus that of CK and CPMFG, and the X-axis denotes
k. Here, we regard a network to have a good ARI performance if its ARI against CK

is large. It can be seen that for small values of k, there is not much difference in the
ARI performance of the networks, for k = 7, 8, PMFG has a better ARI performance,
and for k > 8, PD consistently has a better ARI performance than PMFG. As shown
in Figure 3.4, we restrict the number of clusters to being at least 4 because this is
the least number of clusters in the application of Louvain to any of the networks
or graphs under discussion, and is much smaller than the number of economic
sectors.

We implement the heuristic described in the last paragraph of Section 2.4.4
and ignore the gaps between the first, second, and third largest eigenvalues since
we ignore 1 and 2 as the number of clusters. We find the largest gaps between
the sorted eigenvalues for the similarity matrix are g(λ4, λ5) = 0.74, g(λ10, λ11) =

0.35, and g(λ11, λ12) = 0.16. We then note that the PD network has a better ARI
performance than the PMFG network for k = 4, 10, 11. From another perspective,
one of the points we made is that there could be some subsectors lurking in the
classification of stocks by the economic sector. As we have 11 economic sectors,
from this point of view, the number of clusters would be expected to be k > 11, and
for these values of k, PD consistently displays a better ARI performance than PMFG.
It should be said that although spectral clustering does not perform well on sparse
networks all the time (see Krzakala et al. [2013], Amini et al. [2013] and Le et al.
[2015] for discussions on this matter), NSC gives a sensible result in our networks
as the partitions agree fairly well with the economic sector classification Ce of the
stocks as shown in Table 3.5. Also, the result of this table is another indicator that
small values of k are not valid, for the ARI of CPD and Ce is smaller than that of CK

and Ce. Besides this, the ARI of CPD and Ce and that of CPMFG and Ce is small for
small values of k compared to larger values of k.

As with our analysis of the homogeneity of cliques, to test the validity of our
result, we also compared the ARI performance of the two networks on different
random subsets of the stocks. To this end, again, we considered different possible

56

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

Table 3.5: ARI of CPD/CPMFG/CK and Ce

k PD PMFG Complete weighted
graph

5 0.195 0.0585 0.121

6 0.197 0.0921 0.124

7 0.195 0.069 0.229

8 0.236 0.1665 0.27

9 0.339 0.1557 0.352

10 0.242 0.1015 0.376

11 0.274 0.0833 0.29

12 0.279 0.0799 0.33

Figure 3.4: ARI performance comparison of CPD versus CPMFG

proportions r = 4/5, 3/4, 2/3, 1/2, and for each r, we took 10 random samples of size
brne from the stocks. Then we implemented the PD and PMFG algorithms on the
samples to generate the two networks and applied NSC on both networks for each
sample. Denoting the partitions of PD, PMFG, and the complete similarity matrix
of sample i by CPDi , CPMFGi , and CKi respectively, we considered the average ARI
of CKi and CPDi versus that of CKi and CPMFGi for i = 1, . . . , 10 and plotted the
results as shown in Figure 3.5. We can see the same pattern for every r; that for a
large enough k, PD has consistently a better average ARI performance than PMFG
whereas for small values of k, there is virtually no difference in the average ARI
performance of the networks. In addition, we can see in Figure 3.5 that as the size
of the network shrinks (for smaller values of r), the difference between the average
ARI performance of the networks becomes smaller. In other words, forcing into a
planar network has less effect on clustering of the stocks in smaller networks. One
reason could be that there is less use of larger cliques in smaller networks; thus,

57

3.3. RESULTS

the restriction of PMFG to maximal clique size of 4 becomes less important.

(a) r = 4/5 (b) r = 3/4

(c) r = 2/3 (d) r = 1/2

Figure 3.5: Average ARI performance of the PD and PMFG networks for different proportions r of
stocks

3.3.5 Robustness

As done by Huang et al. [2009], one method to investigate the robustness or stability
of network is removing a subset of its vertices or edges at a certain rate. On both
networks, we removed 100 different random samples of 20%, 30%, and 40% of
the edges and applied NSC on them. Then we plotted the average ARI of CK and
CPD and that of CK and CPMFG as shown in Figure 3.6. As expected, there is an
overall decrease in the ARI performance of both networks as the percentages of
edge removal increases. That being said, there is an increase in the average ARI for
small k’s (k ≤ 8 and k ≤ 6 for the PD and PMFG networks respectively), which
could be another indicator that small values of k are not valid. Hence, PD has a

58

CHAPTER 3. PROPORTIONAL DEGREE STOCK-CORRELATION NETWORK

better clustering behaviour than PMFG since for larger values of k, it displays a
better ARI performance.

(a) PD

(b) PMFG

Figure 3.6: Fluctuations in ARI for NSC of the networks for different proportions of edge removal

In order to see which network has more change of clusters by edge removal, we
took the variance of ARIs of both networks for each k in four states, being firstly the
networks with no change, and then the networks with 20%,30%, and 40% random
edge removal respectively. The results are plotted on Figure 3.7, and we can see
that for every k, there is either not a significant difference in the variance of the
ARIs or PD has a significantly smaller variance than PMFG; thus, more robust with
respect to change in clusters.

59

3.4. SUMMARY

Figure 3.7: Robustness of the networks clusters in presence of edge removal for each k

3.4 Summary

We proposed the PD algorithm to build a stock-correlation network in this work.
We used the NMI measure to build a cross-correlation similarity matrix across
stocks and applied the PD and PMFG algorithms to generate the correspond-
ing stock-correlation networks. We showed that maximal cliques, 3-cliques, and
4-cliques had a higher homogeneity in the PD network than the PMFG network
as to the financial sectoral classification of stocks. We made the same comparison
between these two networks—PD and PMFG—built based on correlation coef-
ficient and showed that still PD demonstrates a significantly higher homogene-
ity of cliques compared to PMFG. We also showed that the NMI-based PD and
PMFG demonstrate roughly the same homogeneity of cliques compared to their
correlation-coefficient-based counterparts. Moreover, we showed that for a realistic
number of clusters in the NSC algorithm, the NMI-based PD network has a better
ARI performance than the NMI-based PMFG network in terms of matching the
clusters achieved through applying the NSC algorithm on the similarity matrix of
stocks.

60

CHAPTER 4
On Finding the Optimal Tree of a

Complete Weighted Graph

4.1 Introduction

In this chapter, we propose an algorithm for building a tree-based stock-correlation
network. We begin with a quick reminder of MST and its appealing features and
then expand on the motivation behind the algorithm proposed in this chapter.

As mentioned in the previous chapters, of all the stock-correlation generating
algorithms, MST is probably the most popular one. Beginning with the seminal
work of Mantegna [1999], and as discussed by them and Birch et al. [2016], one
of the most attractive features of MST is that it is associated with a hierarchical
clustering (explained in Section 2.4.2) of stocks in the following manner. Let D be
a distance matrix and T its corresponding MST. The SLCA (Algorithm 2) of D is
the same as that of the ultrametric distance matrix D< (explained in the second
paragraph of Section 2.7.1) of T. Precisely, the hierarchical tree (HT) obtained from
SLCA on D is exactly the same as that obtained from SLCA on the ultrametric
distance matrix of MST.

It has been pointed out in the literature—as in Garas and Argyrakis [2007];
Tumminello et al. [2010]; Coronnello et al. [2005]; Mantegna [1999]—that the afore-
mentioned HT, namely the output of SLCA, performs reasonably well in identi-

61

4.1. INTRODUCTION

fying groups of stocks belonging to the same economic sector. Economic sectoral
classification has been quite often used as a benchmark against which hierarchical
clustering or any other clustering method of stocks is evaluated qualitatively and
quantitatively (see Wang et al. [2017]; Musmeci et al. [2014]; Tabak et al. [2010];
Tumminello et al. [2007b] for examples).

To get the MST of a complete weighted graph Kn in which weights are ob-
tained from the distance matrix D in this context, we apply Kruskal’s algorithm
(Algorithm 1). Suppose that vertices vi and vj are connected in MST. Also suppose
that by removing the edge eij from this MST, the two connected components are Ci

and Cj such that vi ∈ Ci and vj ∈ Cj. No information is incorporated from D to join
vi and vj other than the fact that dij is the shortest edge from D—or equivalently
Kn—that can join connect Ci and Cj. Hypothetically, a tree whose edges and their
corresponding weights are determined such that we incorporate all the distances
between vertices in Kn (not just the ones that can connect Ci and Cj) would be a
better representation of Kn. Such a tree might yield a better clustering of stocks in
accordance with the economic sectoral classification of them.

To obtain the output (HT) of SLCA from D, the distance between two clusters
is decided solely based on the shortest edge between them connecting their vertices
in Kn. In other words, SLCA essentially performs MST as follows. Suppose that
the shortest distance between two clusters Ci and Cj corresponds to the edge eij

connecting vertices vi and vj where vi ∈ Ci and vj ∈ Cj. Once again, we do not
incorporate any information from the distance matrix D to join clusters Ci and Cj

other than the length of edges that can join these two clusters. Notice that this issue
is closely related to the chaining phenomenon of SLCA which is a shortcoming of
this clustering method as explained in paragraph 4 of Section 2.4.2.

Accordingly, this brings up the question of how to incorporate the information
from all distances between vertices in Kn to build a tree that represents Kn. We
address this question as follows. We look for a tree that estimates the complete
weighted graph Kn of distances between vertices in an attempt to minimise the
discrepancy between the path length between any two vertices in the tree, and
their distance in Kn. We use the residual sum of squares (RSS)—explained in the
context of this problem in the next sections—since it is a typical optimality criterion
for these types of problems. We call the resulting tree the residual sum of squares
optimal tree (RSSOT), and compare its structure in terms of identifying groups
of stocks belonging to the same economic sectors with that of MST. We apply
two metaheuristics—Simulated Annealing (SA) and Iterated Local Search (ILS) as

62

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

described in Sections 2.3.1 and 2.3.2 respectively—to find this tree.

We should point out that the underlying idea for this problem originates from
three areas:

1. stock-correlation networks (as described above)

2. phylogenetic trees which represent the relationship in the evolution of differ-
ent species (see Felsenstein [2004] for an introduction to various methods in
this area)

3. t-spanners, an area in graph theory which discusses the spanning trees of
a graph with certain properties regarding the distances between vertices in
those trees (see Narasimhan and Smid [2007] for an introduction to this area).

We take an approach similar to some investigations in phylogenetic trees, namely
least squares methods (see Felsenstein [2004, p. 148–153] for a description of least
squares methods in inferring phylogenetic trees), but we have a different treatment
of a basic improvement step used in local search heuristics. Also, in contrast to
phylogenetic trees, we consider distances between all vertices of the tree, not just
leaves.

In Section 4.2, we discuss how to optimise edge weights of a given tree based
on the distance matrix or equivalently based on the edge weights of Kn. In Section
4.3, we use the aforementioned metaheuristics to optimise the tree structure—find
RSSOT. Section 4.4 discusses our results, and ultimately Section 4.5 is a quick recap
of the findings in this chapter.

4.2 Sub-problem: Tree Weight Optimisation

For the complete weighted graph Kn = (V, E, d), we want to come up with a
weighted spanning tree T = (V, E, w) where E ⊂ E so that the path length between
any two vertices on the tree best estimates the distance between them in Kn. To
be precise, we want to minimise the RSS between path lengths in T and their
corresponding edge distances in Kn such that

RSS (T, Kn) = ∑
m,k

m<k

(S (Pm,k)− dmk)
2 . (4.1)

In the equation above, Pm,k is the path with the start vertex vm and the end vertex
vk, and S(Pm,k) denotes the sum of edge weights on this path. For example, for
the path Pm,k = (ema, eab, ebc, . . . , edk), S(Pm,k) = wma + wab + wbc + . . . + wdk. Thus,

63

4.2. SUB-PROBLEM: TREE WEIGHT OPTIMISATION

equation (4.1) can be reformulated as

RSS(T, Kn) = ∑
m,k

m<k

 ∑
i,j

eij∈Pm,k

wij − dmk

2

. (4.2)

In order to find the edge weights for a given spanning tree, we take the derivative
of RSS with respect to the wij’s, so that ∂RSS

∂wij
= 0. It gives us

∂RSS
∂wij

= 2

 ∑
m,k: eij∈Pm,k

m<k

wij + ∑
ers∈Pm,k
ers 6=eij

wrs

− ∑
m,k: eij∈Pm,k

m<k

dmk

 = 0 ∀eij ∈ E.

(4.3)
The equation above can be written as

∂RSS
∂wij

= 2

αijwij + ∑
ers 6=eij

βrsijwrs − ∑
m,k: eij∈Pm,k

m<k

dmk

 = 0 ∀eij ∈ E (4.4)

where αij denotes the number of paths that edge eij is on, and βrsij denotes the
number of paths on which both edges eij and ers are. The reason being each term (.)2

in RSS denotes the square error between a path length in T and its corresponding
edge distance in Kn. We have (n

2), equal to the number of paths between each
two vertices in T, of these terms. Taking the derivative with respect to wij, we
are considering only the terms (.)2 that include the edge eij which correspond to
the paths that include edge eij. From equation (4.3), we have the following n− 1
equations

∑
m,k: eij∈Pm,k

m<k

wij + ∑
ers∈Pm,k
ers 6=eij

wrs

 = ∑
m,k: eij∈Pm,k

m<k

dmk ∀eij ∈ E (4.5)

or as with equation (4.4) the above can be written as

αijwij + ∑
ers 6=eij

βrsijwrs = ∑
m,k: eij∈Pm,k

m<k

dmk ∀eij ∈ E. (4.6)

64

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

The above linear system can be expressed in matrix form as Aw = d, and the
entries of matrix A are

aij =

of paths including the edge corresponding to the i-th entry of vector w i = j

of paths including the edges corresponding to the i-th and the j-th entries of vector w i 6= j
.

(4.7)
Let us go through the following example to make it more clear.

0

1
2

3

4

Figure 4.1: An example of what matrix A and vector d look on this tree

For the tree above, the system of linear equations is as below.

4 1 2 1
1 4 2 1
2 2 6 3
1 1 3 4

︸ ︷︷ ︸

A

w01

w02

w03

w34

︸ ︷︷ ︸

w

=

d01 + d12 + d13 + d14

d02 + d12 + d23 + d24

d03 + d04 + d23 + d13 + d14 + d24

d34 + d04 + d24 + d14

︸ ︷︷ ︸

d

(4.8)

In the linear system above, the diagonal entries of A—a11, a22, a33 and a44—
are the number of paths passing respectively through the edges e01, e02, e03 and
e34. Also, for example, a12 is the number of paths passing through both edges e01

and e02, and a34 is the number of paths passing through both edges e03 and e34. In
vector d, in the first entry—d01 + d12 + d13 + d14—the indices correspond to the
beginning vertex and end vertex of the paths that the edge e01 is on, and dij is the
distance between the vertices in Kn.

The question is how do we count the number of paths passing through one

65

4.2. SUB-PROBLEM: TREE WEIGHT OPTIMISATION

specific edge or two specific edges in a tree effectively? To answer the first part of
the question, let us say the edge is eij. We remove this edge from the tree. Then
we have two connected components. Let us denote them by S and T. Then the
number of edges passing through the edge eij is |S||T|. Also, the indices of d in the
vector d are {(s, t) : vs ∈ S, vt ∈ T}. For example, the number of paths passing
through the edge e03 in Figure 4.2 is |S||T| = 25 in which S = {v0, v1, v2, v4, v5}
and T = {v3, v6, v7, v8, v9}. From another perspective, let us set one of the vertices
as the root and denote the set of descendants (defined in Section 2.2.7) of the vertex
vi by Di. We can say the number of paths passing through edge eij in a tree is equal
to (|Dj|+ 1)(n− (|Dj|+ 1)). It should be noted that vj is the vertex that is further
from the root than vi, that is, it is a child (defined in Section 2.2.7) of vi.

To answer the second part of the question—to count the number of edges
passing through two edges—say eij and ers where vj ∈ Di and vs ∈ Dr—we do
as follows. If Dj ∩ Ds = ∅, the number of paths passing through the two edges
is (|Dj| + 1)(|Ds| + 1). For example, the number of paths passing through the
edges e02 and e37 is 9 since the descendants of vertices v2 and v7 are respectively
D2 = {v4, v5} and D7 = {v8, v9}. If Dj ∩ Ds 6= ∅, then either Dj ⊂ Ds or Ds ⊂
Dj. For the former, the number of paths passing through both edges is (|Dj| +
1) (n− (|Ds|+ 1)), and for the latter this value is (|Ds|+ 1)

(
n− (|Dj|+ 1)

)
. For

example, the number of paths passing through both edges e03 and e37 is (|D7| +
1)(n− (|D3|+ 1)) = (2 + 1)(10− (4 + 1)) = 15.

After finding all entries of A, we can find the edge weights using w = A−1d.
Yet, is the matrix A necessarily invertible? In the following, we prove that not only
is A invertible, but positive definite (defined in Section 2.5).

Lemma 4.2.1. A is a positive definite matrix.

Proof. We define the function Z on a spanning tree T as follows. For each edge eij,

we assign a variable vij. Then we define Z = ∑
m,k

m<k

 ∑
i,j

eij∈Pm,k

vij

2

. We can see that the

terms (.)2 in Z are the same as those in RSS (equation (4.2)). The only difference
being the variables wij are replaced by vij and the constants dij are replaced by 0.
Z can be written as Z = vᵀBv > 0 where v is the vector of variables vij and B is a
matrix whose entries are as follows: bpq is the number of terms (.)2 in Z including
the variable vij assigned to the p-th entry of vector v for p = q, and for p 6= q, bpq

is the number of terms (.)2 including both variables vij and vrs assigned to the p-th

66

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

0

1

2

4 5

3

6
7

8 9

Figure 4.2: An example of finding the entries of matrix A on a tree

and q-th entries of vector v. Since each term (.)2 denotes a path in T, we can say
that bpq is the number of paths including the edge eij assigned to the p-th entry of
vector v for p = q, and for p 6= q, bpq is the number of paths including both edges
eij and ers assigned to the p-th and q-th entries of vector v. Thus, B = A, and since
B is positive definite, so is A.

Since A is positive definite, we can use Cholesky decomposition—as defined
in Section 2.6—of A in the form A = LLᵀ. From there, we can solve Ly = d, and
then Lᵀw = y to find the weights. In the following, we discuss how we find the
optimal tree.

4.3 Problem: Tree Structure Optimisation

So far, we discussed how we can find the edge weights for a given tree based on the
edge weights in the complete weighted graph. The question is: how can we find the
tree with the minimum RSS? We can build nn−2 spanning trees on any n number
of labelled vertices. That means for as few as 50 labelled vertices, we can have
roughly as many spanning trees as the number of atoms in the known universe.

67

4.3. PROBLEM: TREE STRUCTURE OPTIMISATION

Due to the large scale of the problem, we make use of two metaheuristics—in this
case, Simulated Annealing (SA) and Iterated Local Search (ILS)—to approximate
the optimal tree.

4.3.1 Tree Structure Change for Optimisation

Before discussing SA and ILS on a tree, let us explain how we make a change
in the structure of a given tree in order to accept or reject the transition between
two tree structures. Let Tt be the tree at time t and let us denote its corresponding
structure by T(V, E). Let us also denote the structure after change by T′(V, E′)—
the structure that we want to accept or reject. For vi ∈ V, we denote the neighbours
of vi by N(vi). We pick one edge eij ∈ E (we are going to discuss how we pick this
edge in the rest). Then we define set C as C = N(vi) ∪ N(vj) \ {vi, vj}. We pick
vk ∈ C uniformly at random. If vk ∈ N(i), then E′ = E ∪ {ejk} \ {eik}; otherwise, if
vk ∈ N(j), then E′ = E ∪ {eik} \ {ejk}. We denote the former structure change by
SC(T, eij, ejk, eik) and the latter by SC(T, eij, eik, ejk). In SC(T, ., ., .), the second, third,
and forth terms are respectively the picked edge, the edge that is added to, and the
edge that is removed from the tree.

How do we pick the edge eij to make the structure change in the tree? We can
either pick it uniformly at random, or we can be biased towards the smaller edges.
We explain the latter in the context of the following example. In the tree in figure
4.3a, suppose that after finding the edge weights, e79 has a weight significantly
smaller than the rest of the edges. This means that the distance between the vertices
in N(v7) \ v9 = {v3, v8} and those in N(v9) \ v7 = {v10, v11, v12} is approximately
the sum of the edge weights between them without counting w79. In other words,
for i ∈ {v3, v8} and j ∈ {v10, v11, v12}, S(Pi,j) ≈ ∑

ers∈Pij\e79

wrs. Thus, for the next

tree structure (the next state), we take one of the vertices—picked uniformly at
random—in N(v7) \ v9 or N(v9) \ v7 and connect it respectively to v9 or v7. That
is to say, in the former, one structure change can be SC(T, e79, e9k, e7k) such that
k ∈ {3, 8}, and in the latter, it can be SC(T, e79, e7k, e9k) such that k ∈ {10, 11, 12}.
For example, the resulting tree of SC(T, e79, e93, e73) will look like Figure 4.3b.

If we prefer edges with smaller weights—whose effect we are going to inves-
tigate in the rest—to make the structure change, we want the smaller an edge, the
more probable to be selected. To this end, for T(V, E, w) over n vertices, we sort
the edges according to their weights in ascending order. Let es denote the column
vector of the edges E in the order of their weights. We take a number r uniformly

68

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

0

1

2

4 5

3

6

7

8
9

10
11

12

(a) Tree before structure change

0

1

2

4 5

3

6

8

9

10 11
12

7

(b) Tree after structure change

Figure 4.3: Demonstration of the structure change SC(T, e79, e39, e37)

at random from the interval (0, 1). Let us define dxe as the smallest integer that
is larger than or equal to x. Then the edge that we pick for the structure change
is the entry drlne of es, which is es

drlne where l ∈ {z : z ∈ Z+, z ≥ 1}. The larger
we choose the value of l, the more biased we are towards smaller edges, and l = 1
picks an edge uniformly at random.

The other thing we investigate before discussing the SA and ILS algorithms
on a tree is the change in matrix A and vector d following the structure change in
T(V, E). Should we recompute every entry of A and d after every structure change?
Let us define A′ and d′ as the matrix and vector corresponding to T′(V, E′).

Lemma 4.3.1. Suppose we have the structure change SC(T, eij, ., .) resulting in tree
T′(V, E′). All the entries of A and A′ are the same except the rows and columns cor-
responding to eij. So are all the entries in d and d′ except the entry corresponding to eij.
Thus, we only need to recompute the entry in d and the rows and columns in A correspond-
ing to eij to obtain A′ and d′.

Proof. Consider the tree T(V, E) in Figure 4.4 on which we want to make the struc-
ture change based on the picked edge eij and vk ∈ C (C as defined above in the first

69

4.3. PROBLEM: TREE STRUCTURE OPTIMISATION

paragraph of Section 4.3.1). Here, α and β are as defined as in equation (4.4) for
T(V, E), and the equivalents of them are α′ and β′ for T′(V, E′). If vk ∈ N(vj) \ {vi},
the structure change is SC

(
T, eij, eik, ejk

)
.

.....

.....

.....

.....

.....

.....
..........

Figure 4.4: Tree T(V, E) before the structure change with picked edge eij connecting components
C1 and C2, and randomly picked vertex vk ∈ C

Let us look at T(V, E) as a directed tree with the root vertex vi. This tree before
and after the structure change is illustrated in Figure 4.5. Consider the subgraph
S = G(V, E′′) in T′(V, E′) where E′′ = E′ \ {eij, eik} . It can be seen that every
vertex but vj in this subgraph has the exact same descendants in T′ as they have
in T. Thus, since E′′ ⊂ E′ and E′′ ⊂ E, we can say that the number of paths that
pass through any edge or any two edges in E′′ is the same in T and T′. Similarly,
regarding eik ∈ E′ and ejk ∈ E, α′ik = αjk and β′ikrs = β jkrs for all ers ∈ E′′. Hence,
in all the three cases above, we see that eij is the only edge for which α′ij 6= αij and
β′ijrs 6= βijrs where ers ∈ E ∩ E′ \ eij.

As an example, let us see how A changes when we make the structure change
SC(T, e79, e93, e73) in T(V, E) in Figure 4.3a to get T′(V, E′) in Figure 4.3b. In equa-
tion (4.9), we see the rows and columns corresponding to the picked edge e79

change from A to A′. On the other hand, we see that the rows and columns corre-
sponding to the removed edge e37 in A remain the same in A′ (other than entries
that belong to the rows and columns corresponding to e79 as well) where those
rows and columns correspond to e39.

70

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

.....

.....

.....

.....

.....

.....

.....

.....

(a) Tree before structure change

.....

.....

.....

.....

.....

.....

.....

.....

(b) Tree after structure change

Figure 4.5: Demonstration of the structure change SC(T, eij, eik, ejk). Only vj has a different number
of descendants in T′ than it has in T

e01 e02 e03 e24 e25 e36 e37 e78 e79 e9,10 e9,11 e9,12

e01 12 3 8 1 1 1 6 1 4 1 1 1
e02 3 30 24 10 10 3 18 3 12 3 3 3
e03 8 24 40 8 8 5 30 5 20 5 5 5
e24 1 10 8 12 1 1 6 1 4 1 1 1
e25 1 10 8 1 12 1 6 1 4 1 1 1
e36 1 3 5 1 1 12 6 1 4 1 1 1

e37 6 18 30 6 6 6 42 7 28 7 7 7
e78 1 3 5 1 1 1 7 12 4 1 1 1

e79 4 12 20 4 4 4 28 4 36 9 9 9
e9,10 1 3 5 1 1 1 7 1 9 12 1 1
e9,11 1 3 5 1 1 1 7 1 9 1 12 1
e9,12 1 3 5 1 1 1 7 1 9 1 1 12

︸ ︷︷ ︸
A

→

e01 e02 e03 e24 e25 e36 e39 e78 e79 e9,10 e9,11 e9,12

e01 12 3 8 1 1 1 6 1 2 1 1 1
e02 3 30 24 10 10 3 18 3 6 3 3 3
e03 8 24 40 8 8 5 30 5 10 5 5 5
e24 1 10 8 12 1 1 6 1 2 1 1 1
e25 1 10 8 1 12 1 6 1 2 1 1 1
e36 1 3 5 1 1 12 6 1 2 1 1 1

e39 6 18 30 6 6 6 42 7 14 7 7 7
e78 1 3 5 1 1 1 7 12 11 1 1 1

e79 2 6 10 2 2 2 14 11 22 2 2 2
e9,10 1 3 5 1 1 1 7 1 2 12 1 1
e9,11 1 3 5 1 1 1 7 1 2 1 12 1
e9,12 1 3 5 1 1 1 7 1 2 1 1 12

︸ ︷︷ ︸
A′

(4.9)

Lastly, we want the initial tree (the input tree of the optimisation scheme) to
be a random one since we want to make sure that we obtain a reasonable optimal
tree regardless of the initial tree. For this purpose, we do as follows.

71

4.3. PROBLEM: TREE STRUCTURE OPTIMISATION

Algorithm 8 Initial tree
1: Input:
2: MST (Kn(V, E, d)) : MST of the complete weighted graph
3: Output:
4: T0 : the initial tree
5:
6: T(V, E)← MST(Kn(V, E, d))
7: for i = 1 to M do
8: eij ← Picked from E uniformly at random
9: C ← N(vi) ∪ N(vj) \ {vi, vj}

10: vk ← uniformly picked from C
11: if vk ∈ N(i) then
12: T′(V, E′)← SC(T, eij, ejk, eik)
13: else
14: T′(V, E′)← SC(T, eij, eik, ejk)

15: T ← T′

16: T0 ← T

In the above, we make a large number M of random structure changes to
the MST of the complete weighted graph. The resulting tree is the initial tree that
we implement the optimisation algorithms on. Let us define the for loop of the
above algorithm as RT(T, M) which denotes the random tree that is obtained by
M random structure changes on the tree T. We use it in the ILS optimisation scheme
in the rest.

SA on Tree

Below is the SA algorithm on a tree with the picked edge eij for making a structure
change. As mentioned above in Section 4.3.1, the larger the value of l (line 15 of
Algorithm 9), the more biased towards smaller edges we are. The edge can also
be picked uniformly at random. Also, end_time denotes the amount of time that
we want to run the algorithm, and time is the amount of time already passed. The
function that specifies the probability of accepting a worse tree in terms of RSS (see

Section 2.3.1) is P(RSS′, RSS, t) = a1e−a2(ln t)a3 RSS′−RSS
RSS′ where the parameters a1, a2

and a3 are tuned according to how often we are willing to accept a transition with
a larger objective function value RSS′ compared to the current RSS value.

72

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

Algorithm 9 SA on tree
1: Input:
2: Kn : the complete weighted graph
3: T0 : initial tree structure
4: Output:
5: Toptimal : the optimal tree
6:
7: t← 0
8: T(V, E)← T0
9: w← Solve Aw = d via Cholesky decomposition

10: RSS← RSS(T, Kn)
11: RSSbest ← RSS(T, Kn)
12: while time < end_time do
13: t← t + 1
14: es ← column vector of edges in E sorted based on weight
15: eij ← es

drlne
16: C ← N(vi) ∪ N(vj) \ {vi, vj}
17: vk ← uniformly picked from C
18: if vk ∈ N(i) then
19: T′(V, E′)← SC(T, eij, ejk, eik)
20: w′ ← Solve A′w′ = d′ via Cholesky decomposition
21: else
22: T′(V, E′)← SC(T, eij, eik, ejk)
23: w′ ← Solve A′w′ = d′ via Cholesky decomposition
24: RSS′ ← RSS(T′, Kn)
25: if RSS′ < RSSbest then
26: RSSbest ← RSS′

27: Toptimal ← T′

28: if RSS′ < RSS then
29: A← A′

30: d← d′

31: RSS← RSS′

32: T ← T′

33: else if P(RSS′, RSS, t) > random(0, 1) then
34: A← A′

35: d← d′

36: RSS← RSS′

37: T ← T′

ILS on Tree

In contrast to SA, as shown below, the picked edge eij in ILS is picked uniformly at
random. The reason being we hope to try every possible structure change to “make

73

4.3. PROBLEM: TREE STRUCTURE OPTIMISATION

sure” the function RSS is stuck at a local minimum. The variable count controls
whether we have got stuck at a local minimum as we explain in the following. For
any picked edge eij, the number of structure changes that we can make depends
on |Ci| = |N(vi) \ {vj}| and |Cj| = |N(vj) \ {vi}|. If we remove the edge eij from
T, the resulting graph G(V, E \ {eij}) consists of two trees Ti and Tj where vi ∈ Ti

and vj ∈ Tj. We assume the average degree of a tree to be 2; thus, we assume
the degree of both vi and vj to be 2. With this assumption, the number of possible
structure changes based the edge eij is four, so for the whole tree we estimate it
at 4n. Let us define the k-th harmonic number as Hk = ∑k

i=1
1
i . If we try structure

changes on a tree uniformly at random, the average number of times that we need
to try all possible structure changes is 4nH4n—based on the well-known coupon
collector’s problem. That is why we set 4nH4n as the threshold of count; after which,
we modify the current local minimum by RT(T, n).

74

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

Algorithm 10 ILS on tree
1: Input:
2: Kn : the complete weighted graph
3: T0 : initial tree structure
4: Output:
5: Toptimal : the optimal tree
6:
7: T(V, E)← T0
8: w← Solve Aw = d via Cholesky decomposition
9: RSS← RSS(T, Kn)

10: RSSbest ← RSS(T, Kn)
11: while time < end_time do
12: eij ← Picked from E uniformly at random
13: C ← N(vi) ∪ N(vj) \ {vi, vj}
14: vk ← uniformly picked from C
15: if vk ∈ N(i) then
16: T′(V, E′)← SC(T, eij, ejk, eik)
17: w′ ← Solve A′w′ = d′ via Cholesky decomposition
18: else
19: T′(V, E′)← SC(T, eij, eik, ejk)
20: w′ ← Solve A′w′ = d′ via Cholesky decomposition
21: RSS′ ← RSS(T′, Kn)
22: if RSS′ < RSSbest then
23: RSSbest ← RSS′

24: Toptimal ← T′

25: if RSS′ < RSS then
26: count← 0
27: A← A′

28: d← d′

29: RSS← RSS′

30: T ← T′

31: else
32: count← count + 1
33: if count > 4nH4n then
34: T ← RT(T, n)
35: count← 0
36: w← Solve Aw = d via Cholesky decomposition
37: RSS← RSS(T, Kn)
38: if RSS < RSSbest then
39: RSSbest ← RSS
40: Toptimal ← T

75

4.4. RESULTS

4.4 Results

Our data set comprises stocks in S&P 500 from the 5-year period of 2013 to 2018. We

used the formula dij =
√

2
(
1− ρij

)
—taken from Mantegna [1999]—to convert the

correlation between stocks to distance. We applied SA and ILS (as in Algorithms
9 and 10 respectively) on this data set to evaluate the performance of these two
metaheuristics in different scenarios. We evaluated whether bias towards smaller
edges has any advantage in SA over no bias in SA. Then we compared the perfor-
mance of SA and ILS—factoring in the underlying distribution of edge distances
in different samples of stocks.

4.4.1 Biased vs Unbiased SA

As discussed before, if we set the value of l to 1 in SA, the algorithm picks an edge
uniformly at random at each stage. In other words, the algorithm is not biased to-
wards smaller edges. Otherwise, the larger the value of l, the more biased towards
smaller edges the algorithm is. Below, we outline the result of the biased and unbi-
ased runs of SA for samples of different sizes. For each sample, we do the biased
SA by setting l = 6. Also, we ran the biased and unbiased SA on each sample 10
times; each starting from a random tree as per the initial tree algorithm (Algorithm
8).

Table 4.1: Biased vs unbiased SA on a complete weighted graph. For each tree, the metaheuristic
with a better performance has been highlighted.

Sample size
20 30 50

Run Unbiased Biased Unbiased Biased Unbiased Biased

1 4.26687812 4.26687812 12.7055242 12.7055242 32.3461206 32.1886367

2 4.26687812 4.26687812 12.7798981 12.7055242 32.4564873 31.7803389

3 4.26687812 5.0111434 12.7207733 12.7464911 32.60437806 31.6861588

4 4.26687812 4.26687812 12.7055242 12.7055242 31.85676394 32.0511834

5 4.26687812 4.26687812 12.7055242 12.7055242 32.39138879 31.6578321

6 4.26687812 4.26687812 12.7343806 12.7055242 32.28023281 32.0794777

7 4.26687812 4.26687812 12.7361441 12.7615612 32.08112489 31.9106985

8 4.26687812 4.37441678 12.7615612 12.7055242 31.92894628 32.0031474

9 4.27373433 4.26687812 12.7207733 12.7055242 32.36184357 31.9668845

10 4.26687812 4.26687812 12.7055242 12.7207733 32.26931596 31.9372013

Average 4.26756374 4.35205851 12.7275627 12.7167495 32.25766022 31.9261559

In Table 4.1, we ran the algorithm on random samples of size 20, 30, and 50

76

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

respectively for ten minutes, two hours, and 18 hours. The values in this table are
for the RSS function defined in equation (4.1)—according to which we evaluate
the performance of the algorithm. The better performance—smaller RSS—for each
sample in each run is highlighted. We can see that other than the random sample of
size 20, in the other samples, the biased SA has an overall better performance. For
the random sample with size 20, possibly since there are only 19 edges, the effect
of biased or unbiased edge selection is less. Also, judging by how many times all
the runs yield the same RSS value—if that value is the minimum compared to the
other runs—there is not a considerable difference between biased and unbiased SA
for the random sample of size 20. The reason being, there are 9 minimum values
for unbiased and 8 for biased whereas, for the sample of size 30, 4 of the runs
in unbiased SA and 7 in biased SA yield the minimum value of RSS. When the
sample size is 50, the performance gap between unbiased and biased SA becomes
wider—apparently because the importance of biased edge selection increases as
the number of edges in the network goes up. It should be noted that we ran the
unbiased and biased SA on other random samples, and we got similar results. Thus,
apparently, biased edge selection indeed makes a difference. For the remainder,
wherever we mention SA, we mean the biased SA.

4.4.2 SA vs ILS

As with the comparison between unbiased and biased SA, we compared the per-
formance of SA and ILS based on ten runs of them over the same random samples.
Look at Tables 4.2 and 4.3 for a performance comparison of SA and ILS. It can be
seen in Table 4.2 that the performance of ILS is much better than that of SA. How-
ever, in Table 4.3, we can see that there is no apparent difference between the SA
and ILS performances.

The reason for performance inconsistency of SA in Tables 4.2 and 4.3 seems to
be the distance dispersion of samples used in each of them. For example, for the
random sample of size 50 in each table, the dispersion of distance matrix entries is
illustrated in Figure 4.6. It can be seen that for samples with high dispersion, SA
and ILS have a similar performance while for samples with low dispersion, ILS
maintains a solid performance while the performance of SA sharply decreases. It is
noteworthy that for distance values with low dispersion, both biased and unbiased
SA have a discouraging performance. The reason is probably that when distance
values are close to each other, smaller distance values are not considerably smaller
than the large distance values. Next, we discuss the structures of the resulting trees

77

4.4. RESULTS

Table 4.2: SA vs ILS on a complete weighted graph with low dispersion of distances. For each tree,
the metaheuristic with a better performance has been highlighted.

Tree size

20 30 50

Run SA ILS SA ILS SA ILS

1 5.291951597 4.84414153 9.501749529 8.4082242 24.8579367 16.8823573

2 8.21566953 4.84414153 11.66835384 8.4082242 26.7081655 16.8823573

3 7.797470793 4.84414153 11.16650355 7.97443788 19.6536142 16.8823573

4 6.875995126 4.84414153 11.66835384 7.97443788 25.5941918 16.8823573

5 6.875995126 4.84414153 8.408224203 7.97443788 26.284257 16.8823573

6 6.019906558 4.84414153 12.98953771 7.97443788 30.2829294 16.8823573

7 7.016393465 4.84414153 10.3933439 7.97443788 34.8261135 16.8823573

8 7.016393465 4.84414153 11.80185307 7.97443788 31.0322914 16.8823573

9 4.844141529 5.2919516 13.02265027 7.97443788 31.1982311 16.8823573

10 7.016393465 4.84414153 10.58531443 7.97443788 26.265805 16.8823573

Average 6.697031065 4.88892254 11.12058844 8.06119515 27.6703536 16.8823573

Table 4.3: SA vs ILS on a complete weighted graph with high dispersion of distances. For each tree,
the metaheuristic with a better performance has been highlighted.

Tree size

20 30 50

Run SA ILS SA ILS SA ILS

1 5.75665216 5.75665216 12.7055242 12.8162316 32.18863674 31.8890846

2 5.75665216 5.75665216 12.7055242 12.7495148 31.78033885 31.8140415

3 5.75665216 5.75665216 12.7464911 12.8550396 31.68615883 31.8986455

4 5.75665216 5.75665216 12.7055242 12.8345686 32.0511834 31.9636283

5 5.75665216 5.75665216 12.7055242 13.0379292 31.65783212 31.6641679

6 5.75665216 5.75665216 12.7055242 12.832506 32.07947769 31.7900896

7 5.75665216 5.75665216 12.7615612 12.8750193 31.91069847 32.0325964

8 5.75665216 5.75665216 12.7055242 12.8785592 32.00314739 32.2380063

9 5.75665216 5.75665216 12.7055242 12.7207733 31.96688445 31.9796543

10 5.93707406 5.75665216 12.7207733 12.8472376 31.93720134 31.792651

Average 5.77469435 5.75665216 12.7167495 12.8447379 31.92615593 31.9062565

of RSSOT.

4.4.3 Structure of RSSOT

The tree in Figure 4.7 is the RSSOT of a random sample of 20 stocks. It can be seen
that it is a star (defined in Section 2.2.7). In Figure 4.8, we see different examples of
RSSOT with different sizes, and all of them are a star or star-like. It appears that if
you find the best star—the star with the smallest RSS value—for a set of stocks, that

78

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

Figure 4.6: Dispersion of the sample of size 50 in Tables 4.2 and 4.3

star is either the RSSOT or a tree with an RSS value very close to RSSOT. Rephrased,
it seems like the best star is never that far from RSSOT in terms of structure for
these data sets. Even a random star for a set of stocks has a much smaller RSS value
than a random tree that is not star-like for the same set of stocks.

In light of the above, we made a modification in the ILS procedure such that
when the algorithm gets stuck in a local minimum, it starts from a random star—
not just a random tree. We call this procedure ILS∗. ILS∗ turned out dramatically
faster than ILS. To provide a perspective, Table 4.4 illustrates the output of 10 runs
of the typical ILS algorithm over a random sample of 100 stocks, each run for one
week (10080 minutes) versus 10 6-hour runs of ILS∗ over the same sample. In can be
seen in this table how ILS∗ far surpasses the typical ILS. The average RSS value is
smaller in ILS∗, and the RSS values are closer to each other although the algorithm
is run only for six hours instead of one week.

Now we investigate the structural differences of resulting trees of Table 4.4.
First, although the RSS value of the first and second runs in ILS∗ are the same
(48.05502034), they do not yield the same star-like tree structure unless we consider
the vertices unlabelled. Thus, the same RSS values do not necessarily reflect the

79

4.4. RESULTS

Figure 4.7: RSSOT of a random sample of 20 stocks

Table 4.4: ILS vs ILS∗ results of 10 runs on a random sample of 100 stocks.

Run ILS ILS∗

1 48.35469924 48.05502034

2 48.35469924 48.05502034

3 49.65978964 48.05502034

4 50.62349774 47.7269775

5 51.38174674 47.7269775

6 49.76388906 48.05502034

7 50.14204721 47.66891197

8 48.61622866 48.05502034

9 47.66891197 47.95537877

10 50.66033224 48.05502034

Average 49.52258417 47.94083678

same labelled tree structures. Second, although the RSS values are different in the
10 runs, they have very little structural differences. For example, Figure 4.9 shows
the tree structure of runs 7 and 9 of the ILS∗ of Table 4.4.

The clustering feature of RSSOT in the context of stock-correlation networks is
poor. In other words, the star-like structure of these trees does not have a meaning-

80

CHAPTER 4. ON FINDING THE OPTIMAL TREE OF A COMPLETE
WEIGHTED GRAPH

(a) 20 stocks (b) 30 stocks

(c) 50 stocks (d) 100 stocks

Figure 4.8: RSSOT of different random stock samples

ful interpretation in terms of clusters for stock-correlation networks. The underly-
ing reason for the star-like structure seems to be that in stock-correlation networks,
the distance values in the distance matrix are fairly similar. Also, the HT from the
SLCA associated with these trees does not give us clusters that match the economic
sectoral classification of stocks fairly well.

81

4.5. SUMMARY

(a) Run 7 (b) Run 9

Figure 4.9: Structural difference of runs 7 and 9 in ILS∗ of Table 4.4

4.5 Summary

We presented a scheme to optimise the edge weights and structure of a tree to
approximate a complete weighted graph using a measure involving the path dis-
tances in the tree. We have proposed a very efficient way of computing modifi-
cations to the tree that assist with local search metaheuristics, and evaluated the
performance of two of these: SA and ILS. We showed that when the dispersion
in distance values of the distance matrix—or equivalently Kn—is small, ILS has a
solid performance while that of SA is inconsistent. However, if the dispersion in
distance values is large, there is no apparent difference in the performance of SA
and ILS. We also demonstrated that when the dispersion of distance values in the
distance matrix is large, being biased in picking the smaller edges in each step of
SA to make a structure change in the tree seems to have a slight advantage over
unbiased picking of edges.

We applied this tree approximation problem on finding a network represen-
tation of stock sets. We found that the structure of this network is star-like, from
which we cannot infer a meaningful interpretation of the clusters of stocks.

82

CHAPTER 5
Semi-Labelled Binary Tree

Optimisation Subject to
Non-Negativity

5.1 Introduction

We know from the previous chapters that the most common procedure to build a
stock-correlation network is the minimum spanning tree (MST). We also explained
in Sections 2.7.1 and 4.1 how MST is associated with the SLCA of stocks. The
output of SLCA is a hierarchical tree (HT)—explained in Section 2.4.2—whose
clusters agree reasonably well with the economic sectoral classification of stocks.
If we join the two neighbours of the root in this HT and remove the two edges
that join them to the root, we get a binary tree (defined in Section 2.2.7). So the tree
structure of the output of SLCA is very similar to a binary tree as per our definition.
(Actually, in accordance with the definition of binary tree in computer science, the
output of SLCA is a complete binary tree.)

As mentioned in Chapter 4, in the HT that is the output of SLCA, the only
factor that decides whether to join two vertices—or clusters—is the shortest dis-
tance between them taken from a distance matrix D. Since this HT can be easily
modified into a binary tree as explained above, this brings up the question of how

83

5.1. INTRODUCTION

to incorporate more of the information from all distances between vertices to build
a binary tree and obtain the clusters based on this tree. We address this question
as follows. We look for a binary tree where the path lengths between the leaves
are as close as possible to their distance in D. Here the length of a path is de-
fined as the total sum of edge weights on that path. To this end, we try to find an
edge-weighted binary tree where the residual sum of squares (RSS) between the
path lengths between leaves, and their corresponding distance in D, is minimised,
subject to a non-negativity constraint on edge weights. The reason we opt for the
non-negativity constraint is to make our approach comparable with the output HT
of SLCA.

This problem is closely related to some variants of distance methods for phylo-
genetic tree inference (see Felsenstein [2004, Chapter 11] for an introduction to dis-
tance methods in this area)—in particular, ordinary least squares (OLS), weighted
least squares (WLS), generalised least squares (GLS) and minimum evolution (ME).
OLS solves the same problem as considered in this work but with no constraint
on edge weights. OLS has been considered in the literature of phylogenetic tree in-
ference, however, the other three methods above—WLS, GLS and ME—have been
preferred in the context of this area (phylogenetic tree inference) as follows. Bulmer
[1991] discusses that GLS is more efficient than OLS and WLS. Rzhetsky and Nei
[1992] argues that unlike OLS and GLS, ME is statistically unbiased. Bryant and
Waddell [1997] mention that WLS and GLS are more accurate methods of tree edge
estimation. We need to mention that ME uses the same criteria as OLS for finding
edge weights, yet the optimal tree is one with the least total sum of edge weights
(see Rzhetsky and Nei [1993] and Desper and Gascuel [2004] for more details of
this method).

To the best of our knowledge, there is still no satisfactory optimisation method
for the OLS tree inference problem in which the edge weights are forced to be
non-negative. In this work, we put forward a heuristic algorithm to search for such
a weighted tree.

We want to apply our method which we have proposed for the aforementioned
optimisation problem to stock data sets in order to obtain a good clustering of
stocks with respect to their economic sectoral classification. However, this problem
can be defined in general for any n objects as long as the distance matrix satisfies
the triangle inequality—that is for any three objects i, j and k, dik ≤ dij + djk.

In Section 5.2, we outline the problem and discuss how to address the negative
edge weights. Section 5.3 contains our optimisation scheme which is iterated local

84

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

search (ILS) as described in Section 2.3.2. Section 5.4 discusses our results, and
Section 5.5 is a summary of our findings.

5.2 Problem Statement

Let Dn×n = (dmk) be the distance matrix of n objects. We consider the binary tree
T(V, E, ω) where the leaves correspond to those n objects. In this tree, V denotes
the set of vertices, E denotes the set of edges, and ω denotes the vector of weights
of those edges where the entry ωi is the weight of edge ei. (We need to mention
that unlike previous chapters, in this chapter, we denote each edge with one index
instead of two.) This is a semi-labelled tree since only the leaf vertices are labelled.
Such a tree has K = 2n− 3 edges—in which n is the number of leaves—with a total
of N = (n

2) paths connecting its leaves. In this tree, we index the leaf vertices from
v1 to vn. We want to find the edge weights ωi that minimise

RSS(T, D) = ∑
m,k

1≤m<k≤n

(
dmk − d̂mk

)2
(5.1)

where d̂mk denotes the length of the path connecting the leaf vertices vm and vk.
We define qimk = 1 if ei lies on the path between the leaf vertices vm and vk, and
qimk = 0 otherwise. Then we can rewrite the equation above as

RSS(T, D) = ∑
m,k∈L
m<k

(
dmk − ∑

ei∈E
qimkωi

)2

. (5.2)

In order to find the path lengths d̂mk that estimate the distance matrix entries,
we need to find the optimal edge weights ω∗i , and to do so, we define the following.
First, dN×1 is a column vector corresponding to all the distances derived from the
distance matrix Dn×n. Second, ωK×1 is a column vector corresponding to all the
edge weights. Lastly, we define the binary matrix QN×K where the rows correspond
to the entries of dN×1, the columns correspond to the entries of ω, and the entries
correspond to the q values defined above. Then RSS(T, D) can be re-formulated as

RSS(T, D) = (d−Qω)ᵀ (d−Qω) . (5.3)

To optimise the edge weights with respect to ω, after getting the gradient vector of

85

5.2. PROBLEM STATEMENT

RSS with respect to ω, we have

∇ωRSS = −2Qᵀd + 2QᵀQω = 0 (5.4)

from which we get the optimised edge weights ω∗ as

ω∗ = (QᵀQ)−1 Qᵀd. (5.5)

This is the standard solution for the ordinary least squares (OLS) method. This also
means that QᵀQ requires to be invertible, but is it? The answer is, it is, and to prove
it, we do as follows.

First, we prove that Q is full rank.

Lemma 5.2.1. Q is full rank.

Proof. The proof is taken from Mihaescu and Pachter [2008, Lemma 1]. Let us
define the row vector vᵀ

r = (0, . . . , 1, . . . , 0) of length |E| for the binary tree T(V, E)
such that the entry that corresponds to the edge er is 1, and all the other entries are
zero. Also, let Pab be the edge sequence that corresponds to the path that connects
the leaves va and vb. We define pᵀ

ab as the row vector in Q that corresponds to Pab.
We choose leaves va, vb, vc and vd such that Pab

⋂
Pcd = ∅ and Pad

⋂
Pbc = {er}.

Then vᵀ
r = 1

2

(
pᵀ

ad + pᵀ
bc − pᵀ

ab − pᵀ
cd

)
. So vᵀ

r is in the row space of Q, and Q is full
rank.

Remember the definition of p-norm from Section 2.4.1. Let QᵀQx = 0. Then
xᵀQᵀQx = (Qx)ᵀ (Qx) = ‖Qx‖2

2 = 0 =⇒ Qx = 0. Since Q is full rank, this
means that the only solution to QᵀQx = 0 is x = 0. So QᵀQ is also full rank.
Then det (QᵀQ) 6= 0 (see Lipschutz and Lipson [2001, Theorem 8.5] as to why the
determinant should be non-zero). Thus, our assumption that QᵀQ is invertible was
correct, and using equation (5.5), we have d̂ = Qω∗.

5.2.1 Normal Equation

Since Q is full rank, ∀x 6= 0, (Qx)ᵀ (Qx) = xᵀQᵀQx > 0. Hence, A = QᵀQ is
positive-definite (defined in Section 2.5). Let b = Qᵀd. Then we have the normal
equation Aω = b, and we can get the optimal edge weights ω∗, as in equation
(5.5) using Cholesky decomposition (2.6). This is going to be an integral part of our
optimisation scheme in the rest of this work.

Since A = QᵀQ, and b = Qᵀd, the entries of A and b are as follows. The

86

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

diagonal entry aii is the number of paths passing through the edge ei corresponding
to ωi in ω. The entry bi in b is the sum of distances corresponding to these paths
taken from the distance matrix D. Lastly, aij is the number of paths passing through
edges ei and ej. The question is, how do we get those paths? In other words, how
can we efficiently get the entries of A and b from the tree structure and the distance
matrix?

Figure 5.1: An example binary Tree T with n leaves. We take one of the leaves (v1) as the root and
take T as a directed tree. Vertex vp is one of the internal vertices, so p > n, and va, vb and vc are
three of the leaf vertices, so a, b, c ≤ n. Edge ec is a leaf edge, and ei, ej and ek are three of the internal
edges.

Consider the edges ei and ej in the tree T with n leaves. Let us assume that
T is directed and take the leaf vertex v1 as its root. Remember that we index the
leaf vertices from v1 to vn, that is L = {v1, . . . , vn}. We define Li for the internal
edge ei as the set consisting of the descendants of the bottom vertex of ei that are
leaf vertices. Here, the bottom vertex of ei refers to the one further from the root
vertex v1. For a leaf edge ei other than that with one end being the root vertex v1,
Li denotes the set containing only the bottom vertex of ei. For example, for the leaf
edge ec, as in Figure 5.1, Lc is the set consisting of only the bottom vertex—which
is a leaf vertex—of ec. So Lc = {vc}.

Then the following formulas give us the entries of A and b.

aii =
∣∣∣Li
∣∣∣ ∣∣∣L \ Li

∣∣∣ (5.6)

87

5.2. PROBLEM STATEMENT

bi = ∑
i,j

dij vi ∈ Li, vj ∈ L \ Li (5.7)

aij =

∣∣Li
∣∣ ∣∣Lj

∣∣ Li ∩ Lj = ∅∣∣Li
∣∣ ∣∣L \ Lj

∣∣ Li ⊂ Lj∣∣Lj
∣∣ ∣∣L \ Li

∣∣ Lj ⊂ Li

(5.8)

For example, for the tree T in Figure 5.1, in matrix A associated with this tree,
aik =

∣∣Li
∣∣ ∣∣Lk

∣∣, and aij =
∣∣Lj
∣∣ ∣∣(L \ Li)∣∣.

5.2.2 Nearest Neighbour Interchange (NNI)

NNI is an operation used in neighbourhood search of tree structures based on
swapping two subtrees (defined in Section 2.2.7) on two ends of an internal edge.
We use this operation to obtain neighbouring tree structures of a binary tree in our
optimisation scheme.

2

5

0 1
4

3

A

B

C

D

Figure 5.2: A general binary tree with leaf-sets A, B, C , and D corresponding to the neighbouring
edges of the internal edge e1

Consider the tree in Figure 5.2 in which A, B, C and D denote the leaves in the
four subtrees containing the neighbouring edges of e1. If we perform NNI based
on e1, the possible resulting trees are T1 and T2 in Figure 5.3a and 5.3b respectively.
We define NNI1(T, e1) and NNI2(T, e1) to denote these two trees.

5.2.3 Making Negative Edge Weights Positive

If an optimal edge weight is negative, we would like to be able to make it positive
with minimum alteration to the structure of the binary tree and such that all edges

88

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

2

5

0 1
4

3

A

C

B

D

(a) T1

2

5

0 1
4

3

A

D

B

C

(b) T2

Figure 5.3: The two possible tree structures after performing NNI on the tree in Figure 5.2 based on
the edge e1

still have optimal weight. Here, we want to show that for any binary tree, if an
internal edge weight is negative, in at least one of the resulting trees after an NNI
structure change based on that edge, that edge weight is going to be positive after
optimising the edge weights. (We should point out that by fixing one negative edge
weight, we may as well make neighbouring edge weights negative.) It suggests a
possible step in our algorithm to avoid negative-weighted edges. Let us denote the
optimal weight of e1 in Figure (5.2) by ω1. Let us also denote the optimal weight
of this edge in Figure (5.3a) and (5.3b) by ω′1 and ω′′1 . We want to show that if
ω1 < 0, at least one of ω′1 and ω′′1 is positive. To this end, we use equations (2)–(4)
in Rzhetsky and Nei [1993] to calculate the edge weights as follows.

For the tree in Figure 5.2, let us denote the leaf sets corresponding to the four
neighbouring subtrees of e1 by A, B, C and D. Let us also denote the average
distance based on the distance matrix between the leaf vertices in two leaf sets
such as A and B by δAB = 1

|A||B| ∑
vi∈A,vj∈B

dij. Then the optimal weight of e1 is given

by
ω1 = 1/2 [α1 (δAC + δBD) + (1− α1) (δAD + δBC)− (δAB + δCD)] (5.9)

where α1 = |A||D|+|B||C|
(|A|+|B|)(|C|+|D|) . Also, the optimal weight of a leaf edge as shown in

Figure 5.4 is calculated as

ωi = 1/2 [δCi + δDi − δCD] . (5.10)

Lemma 5.2.2. In a general binary tree, let ω1, ω′1 and ω′′1 denote the optimal weight of the
internal edge e1 for the three possible tree structures based on NNI around e1. If ω1 < 0,
at least one of ω′1 and ω′′1 is strictly positive.

Proof. We use equation (5.9) to calculate ω′1 in Figure 5.3a by swapping B and C.

89

5.2. PROBLEM STATEMENT

i

C

D

Figure 5.4: The leaf edge/vertex of a general binary tree

We also use this equation to calculate ω′′1 in Figure 5.3b by swapping B and D. We
see that ω1 + ω′1 + ω′′1 = 0. So at least one of the weights ω′1 and ω′′1 is strictly
positive.

Regarding the leaf edges, since the triangle inequality holds for distances be-
tween leaves (as mentioned in the second last paragraph of Section 5.1) this in-
equality also holds for the average distance between sets of leaves. In light of this,
the weight of a leaf edge as calculated in equation (5.10) is always non-negative.

5.2.4 Finding Tree Edge Weights after NNI

Let T′(V, E′, ω′) be the binary tree resulting from performing NNI on T(V, E, ω)

based on the edge ei—basically, T′ is either NNI1(T, ei) or NNI2(T, ei). It can be
seen that according to equation (5.9), the only edge weights that are different in
T′ versus T are the weights of ei and its set of neighbours defined by N(T′, ei)—or
equivalently N(T, ei). This gives us

ω′k = ωk, ∀ek /∈ {ei} ∪ N(T, ei). (5.11)

This is useful since knowing this, evaluating each tree structure to find its corre-
sponding RSS can be done much faster.

5.2.5 Substituting Negative Edge Weights with Zero

It is evident that after optimising the edge weights, if we simply substitute a neg-
ative edge weight with zero, the resulting RSS value is smaller than substituting

90

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

with any other non-negative value. Now we want to show that substituting a nega-
tive edge weight with zero and holding it fixed while re-optimising the other edge
weights is better than substituting that edge weight with any other non-negative
value and similarly re-optimising the other edge weights. This gives us another
technique for trying to avoid negative-weighted edges.

Lemma 5.2.3. Substitution of the optimal edge weight ω∗i < 0 with zero and re-optimising
the other edge weights will lead to a smaller RSS value than substitution of ω∗i with any
strictly positive value and re-optimising the other edge weights.

Proof. Let ω∗ be the vector of optimised edge weights for the binary tree T with n
leaf vertices and K edges, and let ω∗i < 0. We swap the index of ei with that of eK.
So now ω∗K < 0. We then generate the tree topology matrix Q where the order of
the column vectors correspond to the order of edge weights in the vector ω. Also,
let d̂ij denote the length of the path connecting leaf vertices vi and vj in T. Then we
have

Qω =

 Q̃N×(K−1) qK

 [ω̃(K−1)×1

ωK

]
= d̂ (5.12)

where Q̃ is Q with column qk removed. We write this as Q̃ = Q (; qk).

Let eij = dij− d̂ij be the path length error between leaf vertices vi and vj. It can
then be seen that

e = d−Qω (5.13)

where e is the vector of errors for every path and d is a column vector derived from
the distance matrix. Thus, RSS = e ᵀe, and we can say that

RSS =
(

d− Q̃ω̃− qKωK

)ᵀ (
d− Q̃ω̃− qKωK

)
. (5.14)

Now, we want to find the optimal edge weights with the value of ωK fixed. We
have

∇ω̃RSS = 2Q̃ᵀQ̃ω̃ + 2q ᵀ
K Q̃ωK − 2dᵀQ̃ = 0

=⇒ ω̃∗ =
(

Q̃ᵀQ̃
)−1 (

Q̃ᵀd− Q̃ᵀqKωK

) (5.15)

which means that

d− Q̃ω̃∗ − qKωK = d− qKωK + Q̃
(

Q̃ᵀQ̃
)−1

Q̃ᵀ︸ ︷︷ ︸
H

(qKωK − d) . (5.16)

91

5.2. PROBLEM STATEMENT

Notice that H is a symmetric idempotent matrix. Taking that into account, if we
replace the above in equation (5.14), we get

RSS =
(
q ᵀ

KqK − q ᵀ
K HqK

)
ω2

K+

2 (d ᵀHqK − 2d ᵀqK)ωK + d ᵀd− d ᵀHd.
(5.17)

We can see that the RSS value is a simple convex quadratic function of ωK for
which ω∗K < 0. Thus, it is evident that the value of RSS for ωK = 0 is smaller that
that of ωK > 0.

Next, we want to show that if we get a negative edge weight, using NNI to get
that edge weight positive—based on Lemma 5.2.2—will lead to a smaller RSS value
compared to making that weight zero and re-optimising the other edge weights.
This gives us a direction for handling a negative weighted edge depending on the
situation.

Lemma 5.2.4. Suppose ω∗i < 0 in the binary tree T(V,E). Let f be the RSS value of this
tree after setting ωi = 0 and re-optimising the other edge weights. Also, let f1 and f2 be
the RSS values—after optimising edge weights—of the trees generated by performing NNI
on T(V, E) around ei. Then f1 ≤ f , and f2 ≤ f .

Proof. Suppose w∗1 < 0 in T(V, E) with the topology matrix Q in Figure 5.2. We
generate both trees T1(V, E1) and T2(V, E2) in Figure 5.3a and 5.3b respectively by
performing NNI on T. E1 = E ∪ {e′3, e′4} \ {e3, e4} and E2 = E ∪ {e′3, e′5} \ {e3, e5}.
Let Q′ and Q′′ denote the topology matrices of T1 and T2 respectively. It can be
seen that the columns corresponding to the edges in Q′ and Q′′ are the same as
those in Q except the column corresponding to e1. We swap this column with the
last column—qk, q

′
k and q

′′
k —in all the three matrices. Then we have

Q(; qk) = Q′(; q
′
k) = Q′′(; q

′′
k) = Q̃ (5.18)

where Q(; qk) is as defined in the previous lemma. Thus, if wi = 0 in T, d̂ = Q̃ω̃

where ω̃ is as defined in equation (5.12). However, d̂
′
= Q̃ω̃ + q

′
kωK and d̂

′′
=

Q̃ω̃ + q
′′
k ωK in T1 and T2 respectively. It means that if ωK = 0,

d̂ = d̂
′
= d̂

′′
=⇒ f = f1 = f2.

(Another way to see this is by observing that in Figure 5.2, 5.3a and 5.3b, the trees
are essentially the same if the weight of e1 is zero.) Thus, the upper bound of f1

and f2 is f .

92

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

We see using Lemmas 5.2.2 and 5.2.4, that in at least one of the trees resulting
from performing NNI around ei in T(V, E), ωi > 0, and the RSS value is smaller
than or equal to f .

5.3 Optimisation Scheme

As mentioned in the above in Section 5.1, we use an ILS metaheuristic to search for
the best tree. As a quick reminder, the overall ILS procedure consists of the repeated
application of the following two steps: first, we improve the current configuration
until we appear to get stuck in the local minimum, second, we start the search over
by perturbing the current configuration in a major way.

In the context of our work, these two steps are as follows. As to the first step,
for n objects, we start with an initial random binary tree T. We pick a random
edge ei, and perform NNI based on that to get a new tree structure such that T′ ←
NNI1(T, ei) and T′′ ← NNI2(T, ei) as defined in Section 5.2.2. If RSS(T′, D) <

RSS(T, D), we accept T′ as the better tree (as in T ← T′) and repeat the same
procedure as above (picking a random edge and performing NNI based on that).
Otherwise, if RSS(T′′, D) < RSS(T, D), we accept T′′ as the better tree and repeat
the procedure. We continue until we assume we are stuck in a local minimum. At
this point, we work on getting an all-non-negative-edge-weighted tree (explained
in the next section). Regarding the second step, we perturb the local minimum by
performing 2n random NNI’s—roughly equal to the number of edges—without
calculating the edge weights. We may assume it gives a significantly different tree.

To decide how long to do the first step, we use the well-known coupon col-
lector’s problem: there are g(n) = 4n− 6 ways to apply NNI, so we repeat NNI
approximately g(n)Hg(n) times before assuming we are in a local minimum where
Hx denotes the x-th Harmonic number. Since our algorithm is a heuristic, we do
not need to be absolutely certain of this before moving on.

5.3.1 Efficient Path Length Calculation

In each step of ILS, we need to calculate the path length d̂ij between any two leaf
vertices to obtain RSS. To do this efficiently, we do as follows. For a binary tree
T, we take v1 as the root of the tree. Then we use the depth-first search (DFS)
algorithm (explained in Section 2.2.7) to find all the paths between v1 and the other
leaves {v2, . . . , vn}. In other words, we find P1,2, P1,3, . . . , P1,n and accordingly their
lengths d̂12, d̂13, . . . , d̂1n. Next, for any two leaf vertices vi and vj other than the root

93

5.3. OPTIMISATION SCHEME

v1, let P1,i ∩ P1,j = Rij, and let
∣∣Rij

∣∣ = ∑
ek∈Rij

ωk be the length of this path. Then it

can be seen that
d̂ij = d̂1,i + d̂1,j − 2

∣∣∣Rij
∣∣∣ . (5.19)

For example, in Figure 5.1, d̂ab = d̂1a + d̂1b − 2
∣∣Rab

∣∣. We find all the path
lengths between leaves in this manner and call this algorithm Path Length Com-
putation (PLC)—peseudocode as in Algorithm 11.

Algorithm 11 PLC
1: Input:
2: T(V, E, ω) : binary tree
3: Output:
4: D̂ : matrix of path lengths between any two leaves
5:
6: Set v1 as the root of T
7: P1,2, P1,3, . . . , P1,n ← paths from v1 to all the other leaves using DFS
8: d̂12, d̂13, . . . , d̂1n ← respective path lengths of P1,2, P1,3, . . . , P1,n
9: for i ∈ {2, 3, . . . , n− 1} do

10: for j ∈ {i + 1, . . . , n} do
11: Rij = P1,i ∩ P1,j

12: d̂ij = d̂1,i + d̂1,j − 2 ∑
ek∈Rij

ωk

5.3.2 Working around Negative Weighted Edges

The next question is what do we do about the negative weighted edges after land-
ing in a local minimum? As proved in Lemma 5.2.2, if we perform NNI on the tree
corresponding to the local minimum T(V, E, ω) around the edge ei where ωi < 0,
this edge weight is going to be non-negative in at least one of T1 ← NNI1(T, ei)

and T2 ← NNI2(T, ei). Also, as proved in Lemma 5.2.4, T1 and T2 have a smaller
RSS than T′(V, E, ω′) in which the edges are the same as those in T, but wi = 0,
and all the other edge weights have been re-optimised accordingly.

Thus, it seems like we need to repeatedly perform NNI on the negative-weighted
edges of T to get an all-non-negative-edge-weighted tree. Yet there is one challenge.
The four neighbouring edges of ei, after performing NNI based on this edge in T,
might change sign from positive to negative in T1 and T2. We also know based on
equation (5.11) that in these two trees, all the other edge weights do not change
value. In light of this, we do as follows.

94

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

Let us define the total negativity of a set of edges E ⊆ E as the total sum of all
the negative edge weights corresponding to E in T. That is

s−(T, E) = ∑
ei∈E−

ωi (5.20)

in which E− = {ei ∈ E : ωi < 0}. For T(V, E, ω) corresponding to the local
minimum, we try to reduce the total negativity but trying to not disturb the tree
structure too much from the “optimal” one found. Starting from T, we want to get
a tree with less total negativity—that is a larger s−. Let E− = {ei ∈ E : ωi < 0}.
For ei ∈ E−, we accept the new tree structure T1 ← NNI1(T, ei), that is T ← T1, if

s− (T1, {ei} ∪ N(T1, ei)) > s− (T, {ei} ∪ N(T, ei)) .

Otherwise, if

s− (T2, {ei} ∪ N(T2, ei)) > s− (T, {ei} ∪ N(T, ei)) ,

we accept T2. We continue this procedure repeatedly until after going through all
the negative-weighted edges in T, there is no change in its structure. We call this
algorithm NNI−, the overall layout of which is demonstrated in Algorithm 12.

5.3.3 Substitution with Zero

The last question is, what do we do with the tree resulting from Algorithm 12 since
we cannot reduce its total negativity by performing NNI any more? We use the
result of Lemma 5.2.3 and substitute the negative edge weights with zero repeat-
edly in the following manner. Let T(V, E, ω) be the tree corresponding to the local
minimum after applying NNI−, and E− = {ei ∈ E : ωi < 0}. Also, let T(e0

i) be the
tree after setting ωi = 0 in T, and T∗(e0

i) be T(e0
i) after re-optimising all the other

edge weights. For ei ∈ E−, if s−
(
T∗(e0

i), E
)
> s−

(
T(e0

i), E
)
, we accept T∗(e0

i) as the
new tree structure (T ← T∗(e0

i)), otherwise, T ← T(e0
i). This procedure continues

until we get a tree T such that after going through all its negative-weighted edges,
we do not need to re-optimise the other edge weights. We should mention that to
re-optimise the other edge weights, that is edges other than ei where ωi = 0, we
use Cholesky decomposition to solve the normal equation (explained in Section
5.2.1) after removing the column in A and the entries in ω and b corresponding to
ei. We call this the Subzero algorithm whose pseudocode is in Algorithm 13.

95

5.3. OPTIMISATION SCHEME

Algorithm 12 NNI−

1: Input:
2: T(V, E, ω) : binary tree
3: D : distance matrix
4: Output:
5: T(V, E′, ω′) : tree with less total negativity
6:
7: E− ← {ei ∈ E : ωi < 0}
8: f lag← 0
9: while f lag = 0 do

10: f lag← 1
11: for ei ∈ E− do
12: for Ttemp(V, E′, ω′) ∈ {NNI1(T, ei), NNI1(T, ei)} do
13: Find all ω

′
k for ek ∈ {ei} ∪ N(Ttemp, ei) using equations (5.9) and

(5.10)
14: if s−

(
Ttemp, {ei} ∪ N(Ttemp, ei)

)
> s− (T, {ei} ∪ N(T, ei)) then

15: ωk ← ω′k ∀ek ∈ E′ \
(
{ei} ∪ N(Ttemp, ei)

)
16: T ← Ttemp
17: f lag← 0
18: Break
19: if flag=0 then
20: E− ← {ei ∈ E : ωi < 0}
21: Break

5.3.4 The ILS Layout

In a nutshell, we have our whole optimisation scheme as in Algorithm 14. In this al-
gorithm, which we call non-negative tree (NNT), Tbest and fbest denote the best tree
without any constraint on the sign of the edge weights and its corresponding RSS
value respectively. Similarly, T+

best and f+best denote the best tree with non-negativity
constraint on its edge weights and its corresponding RSS value. The algorithm run
time is specified by the user. We should point out that wherever in this pseudocode
we calculate RSS, we are using the PLC algorithm, as explained in Section 5.3.1, as
part of it. In lines 15–31 of NNT, we do the first step of the ILS procedure, that is
improving until stuck in the local minimum. In particular, in lines 17 and 18, it can
be seen that in each NNI operation only five edge weights (as explained above)
need to be calculated. In line 34, we check whether the algorithm is stuck in a local
minimum. In lines 35 and 36, the algorithm gets rid of the negative weighted edges
by using the NNI− (Algorithm 12) and Subzero (Algorithm 13) respectively—as
explained in Sections 5.3.2 and 5.3.3. Then in lines 38–40, it finds the best tree with
all non-negative edge weights and its respective RSS up to that point. Lastly, in

96

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

Algorithm 13 Subzero
1: Input:
2: T(V, E, ω) : binary tree
3: D : distance matrix
4: Output:
5: T(V, E′, ω′) : tree with all non-negative edge weights
6:
7: E− ← {ei ∈ E : ωi < 0}
8: f lag← 0
9: while f lag = 0 do

10: f lag← 1
11: for ei ∈ E− do
12: T ← T(e0

i)

13: Form Ãω̃ = b̃ and solve it using the Cholesky decomposition
14: if s−

(
T∗(e0

i), E
)
> s− (T, E) then

15: T ← T∗(e0
i)

16: f lag← 0
17: E− ← {ei ∈ E : ωi < 0}
18: Break

lines 41 to 43, the algorithm perturbs the current local minimum to start again.

Algorithm 14 NNT
1: Input:
2: Dn×n : distance matrix
3: time : amount of time we want to run the algorithm
4: Output:
5: T+

best(V, E, ω) : Optimal tree with all non-negative edge weights
6:
7: T(V, E)← random binary tree with n leaves
8: Find the edge weights of T using equations (5.9) and (5.10)
9: f ← RSS(T, D)

10: fbest ← f
11: Tbest ← T(V, E, ω)
12: f+best ← a very large number
13: counter ← 0

5.4 Results

We ran our ILS optimisation scheme (NNT) on three binary trees with different
number of leaves. The data is taken from random samples of stocks belonging to

97

5.4. RESULTS

14: while passed_time < time do
15: ei ← one random internal edge of T
16: for Ttemp(V, E′, ω′) ∈ {NNI1(T, ei), NNI2(T, ei)} do
17: Find ω′j ∀ej ∈ {ei} ∪ N(Ttemp, ei) using equations (5.9) and (5.10)
18: ω′j ← ωj ∀ei ∈ E′ \

(
{ei} ∪ N(Ttemp, ei)

)
19: ftemp ← RSS(Ttemp, D)
20: if ftemp < fbest then
21: Tbest ← Ttemp
22: fbest ← ftemp
23: T ← Ttemp
24: f ← ftemp
25: counter ← 0
26: Break
27: else if ftemp < f then
28: T ← Ttemp
29: f ← ftemp
30: counter ← 0
31: Break
32: else
33: counter ← counter + 1
34: if counter > 4nH4n then
35: T+ ← NNI−(T, D)
36: T+ ← subzero(T+, D)
37: f+ ← RSS(T+, D)
38: if f+ < f+best then
39: T+

best ← T+

40: f+best ← f+

41: T ← perform 2n NNI’s on T
42: Find the edge weights of T using equations (5.9) and (5.10)
43: f ← RSS(T, D)
44: counter ← 0
45: Break

98

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

S&P 500, and the distance matrix has been derived from the pairwise correlation
coefficient between those stocks. For each tree, we ran our scheme ten times in
parallel, and we recorded the best RSS values as follows: those corresponding to
the optimisation problem with a non-negativity constraint on the edge weights
and those with no constraint on the edge weights. The former is given by RSS+

best
and the latter by RSSbest in our scheme, respectively.

Table 5.1: Constrained (C) vs unconstrained (U) ILS optimisation scheme on binary trees with
different number of leaves

Number of leaves

20 30 50

Run C U C U C U

1 0.1485 0.1183 0.3912 0.3365 1.4075 1.0625

2 0.1477 0.1164 0.3934 0.3446 1.4169 1.0683

3 0.1482 0.1212 0.3934 0.3378 1.3663 1.0827

4 0.1470 0.1172 0.3960 0.3415 1.4049 1.0649

5 0.1470 0.1168 0.3910 0.3381 1.3514 1.1094

6 0.1495 0.1162 0.3904 0.3444 1.3401 1.0621

7 0.1483 0.1178 0.3931 0.3486 1.3820 1.0731

8 0.1484 0.1185 0.3958 0.3360 1.3585 1.0798

9 0.1491 0.1150 0.3934 0.3421 1.3863 1.0728

10 0.1479 0.1151 0.3927 0.3435 1.3831 1.0534

In Table 5.1, we see the RSS+
best and RSSbest values for each of the trees with 20,

30, and 50 leaves in their respective columns—C and U. In this table, we ran our
scheme for 30 minutes, six hours, and 18 hours for the three trees respectively. The
RSS results in each column are reasonably close to one another which is behavior
one would expect from a reasonably effective heuristic algorithm. Also, as expected,
the RSS results corresponding to the constrained problem are larger than those for
the unconstrained problem in each tree. We should lastly mention that we repeated
this scheme for trees with different corresponding distance matrices, and we got
similar results.

99

5.4. RESULTS

5.4.1 Tree Structure

In order to analyse how well NNT performs compared to the output of SLCA
(which we denote for the rest of the chapter by SLCA with a slight abuse of notation)
we did as follows. We considered both trees—NNT and SLCA—undirected and
unweighted, and we did the comparison based on the average distance, that is
the length of the shortest path, of stocks belonging to the same economic sector
in both trees. We call this the sector average distance (SAD). However, this is still
not a fair comparison since for n leaves, NNT has 2n− 3 edges while SLCA has
2n− 2. To address this, we removed the root of SLCA (the vertex that used to be
the root when the tree was considered directed) and joined its two neighbours
through an edge. Basically, we modified SLCA into a binary tree as explained in
the first paragraph of this chapter. This way, both trees have 2n− 3 edges. For the
remainder of the chapter, we denote these two trees with the above mentioned
modifications by NNTm and SLCAm.

Figures 5.5 and 5.6 are respectively the visualisations of the NNTm and SLCAm

of a random sample of 70 stocks where the leaves have been labelled by the sector
of their corresponding stock. In Table 5.2, we have calculated the SAD of these
two trees. The entries in column “Size” in this table refer to the number of stocks
belonging to their corresponding rows’ sector in both trees. It can be seen that most
SAD values for NNTm are significantly smaller than their counterparts for SLCAm.
Otherwise, there is not a considerable difference in the two values. We investigated
varied random samples of different sizes, and we got similar results. This differ-
ence might be explained by the chain phenomenon—explained in Section 2.4.2—of
SLCA as it can also be seen in Figure 5.6. Thus, our measure suggests that NNTm

outperforms SLCAm in identifying stocks belonging to the same sector. However,
when we use ALCA or CLCA instead of NNT, we do not get the same results.

Let us define ALCAm and CLCAm as trees obtained from ALCA and CLCA in
the same manner SLCAm is obtained from SLCA. It seems like NNTm does not have
any advantage over them based on the SAD criterion. Table 5.3 demonstrates the
SAD values over a random stock sample of size 40 for CLCAm and NNTm. Based
on this example, it can be seen that the advantage of either of these two methods
over the other is not evident. We performed CLCA and ALCA on different random
samples of different sizes, and it is not evident that NNT is better than them based
on the SAD measure.

100

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

Figure 5.5: The NNTm of a random sample of 70 stocks. The leaves have been labelled with the
sector of the stocks.

5.5 Summary

We proposed an iterated local search (ILS) scheme to optimise the edge weights and
structure of a binary tree subject to a non-negativity constraint on edge weights.
We showed how to calculate the edge weights in each step of the ILS procedure
efficiently. We also showed that performing NNI around a negative-weighted edge
can make its optimal weight positive, and doing so is better than substituting its
weight with zero and then re-optimising the other edge weights. Lastly, we showed
that substituting a negative edge weight with zero is better than substituting with

101

5.5. SUMMARY

Table 5.2: SAD of the NNTm and SLCAm in Figures 5.5 and 5.6 respectively

Sector Size SLCAm SAD NNTm SAD

E 5 9.800 4.000

HC 9 18.000 5.111

CD 11 16.982 8.145

F 7 4.857 4.571

U 4 3.167 3.333

CS 7 16.286 5.809

M 4 23.000 11.667

IT 11 17.818 6.982

I 9 18.833 8.944

RE 3 11.333 11.333

Table 5.3: SAD of the NNTm and CLCAm of a random stock sample of size 40. The columns are
defined the same as those in Table 5.2.

Sector Size CLCAm SAD NNTm SAD

CD 6 6.933 7.133

CS 5 7.200 4.800

E 2 7.000 9.000

F 6 4.000 4.000

HC 3 2.667 5.333

I 7 6.952 7.238

IT 5 6.800 5.600

M 2 7.000 14.000

RE 2 2.000 13.000

U 2 2.000 2.000

any other non-negative value—whether we re-optimise the other edge weights or
not. Accordingly, when stuck in a local minimum, we proposed the heuristic algo-
rithms NNI− and subzero to get a tree with all-non-negative edge weights. Based
on ten parallel runs of our scheme on different random samples with different

102

CHAPTER 5. SEMI-LABELLED BINARY TREE OPTIMISATION SUBJECT TO
NON-NEGATIVITY

Figure 5.6: The SLCAm of a random sample of 70 stocks. The leaves have been labelled with the
sector of the stocks.

sizes, we saw that our scheme demonstrates a decent performance.

We applied our scheme on different random samples of stocks to find a bet-
ter clustering of stocks with regards to their economic sectoral classification. Our
method was able to recognise the clusters better than SLCA, but failed to do so
compared to CLCA and ALCA. That means our scheme does not have an evident
edge over CLCA and ALCA. Since these two algorithms—CLCA and SLCA—are
much faster and simpler than our algorithm, our analysis gives no reason to prefer
NNT over them.

103

CHAPTER 6
Concluding Remarks

In this thesis, we investigated the area of stock-correlation networks. In studying
the dynamics of the stock market, it is crucial to find stocks that demonstrate a sim-
ilar behaviour. In the context of stock market, behaviour refers to the increase and
drop in stock prices. To quantify this similarity in behaviour, Pearson correlation
coefficient is often used in this area which gives a value in the interval [−1, 1]. If
the correlation coefficient of the log-returns of two stocks is 1, they have the exact
same price pattern. If this value is -1, their price action is the exact opposite of one
another, and a value of 0 denotes no correlation. In order to extract meaningful
information from the pairwise correlation of stocks, one way is to illustrate the
most important interactions between the stocks in form of a graph, and that is
what a stock-correlation network refers to. That is because the complete weighted
graph of stocks cannot give us a direct insight (at least visually) due to its highly
interwoven structure.

6.1 Overview of the Previous Algorithms

We mentioned that several algorithms have been put forward to build stock-correlation
networks—or equivalently to extract the most important stocks interactions. The
following is a recap of theses algorithms and their pros and cons. Afterwards, we
review how this thesis is related to them, the results we got, and some potential
topics for prospective researchers in this area.

104

CHAPTER 6. CONCLUDING REMARKS

The most widely used and first ever proposed of these algorithms is MST
which also corresponds to a specific hierarchical clustering of stocks—SLCA. It has
been argued in the literature that the output of SLCA matches the economic sectoral
classification of stocks fairly well. It has also been discussed in the literature that
dynamics of the market can be tracked by MST. Take for example when there is
a market crisis, the MST shrinks and it looks more star-like. The downside of this
algorithm mentioned in the literature is the structural limitation imposed on the
network which means that we have to exclude many edges that connect highly
correlated stocks only for the sake of maintaining the tree structure. Also, the chain
phenomenon associated with SLCA is another shortcoming mentioned regarding
the clustering of MST. To address this shortcoming, another algorithm that has
been proposed in the literature is the average linkage MST (ALMST). This tree is
derived from the ALCA of stocks, so it does not have the disadvantage of SLCA.
However, it has been discussed that the edges in MST are more reliable than those
in ALMST based on the bootstrap technique.

The second mostly used algorithm is arguably PMFG. It has been mentioned
in the literature that one of the pros of PMFG is that it always contains MST. Since
it also has more edges than MST, it contains more information. Moreover, having
MST as its subset means that it also demonstrates the hierarchical structure of
stocks to a good extent. Lastly, it has 3 and 4-cliques, the analysis of which can show
highly connected stocks. These cliques have been investigated in the literature, and
it has been found that they demonstrate a high homogeneity: a good proportion
of stocks in them belong to the same economic sector. The downside of PMFG has
been argued to be the same as that of MST. In other words, PMFG cannot include
heavy edges in the network merely in order to maintain its planar structure.

Lastly, the threshold method algorithm has been proposed which only in-
cludes edges with a larger correlation weight than a threshold in the network—or
edges with a distance edge smaller than a particular threshold. The threshold is
usually set such that the degrees of vertices follow a power law distribution. The
advantage of this algorithm is that the clusters can be analysed by investigating
the cliques components. It also includes the anti-correlated stocks which can help
in portfolio optimisation and asset diversification.

The above mentioned algorithms are the most widely used ones in the liter-
ature. However, other algorithms have also been proposed for generating stock-
correlation networks including, but not limited to, the directed bubble hierarchical
tree (DBHT), p-median problem, triangulated maximally filtered graph (TMFG),

105

6.2. OUR CONTRIBUTION

and maximum likelihood. Moreover, correlation coefficient has not been the only
measure used to quantify the similarity in the behaviour of stocks. Its variants such
as partial correlation coefficient has also been utilised. The downside to the corre-
lation coefficient is that it only accounts for the linear correlation between stocks,
and it has been argued in the literature that the relationship between stocks has a
nonlinear component. In light of this, other measures such as mutual information
and its variants have been applied to factor in the nonlinear relationship between
stocks to account for their similarity.

6.2 Our Contribution

All in all, for each algorithm suggested in this area, some pros and cons have been
mentioned. Of all the pros, a good clustering seems to have got the most attention.
Therefore, we set the goal of this thesis in coming up with algorithms for generat-
ing stock-correlation networks such that they provide a better clustering of stocks
compared to the most widely used algorithms—MST and PMFG—in the literature.
In Chapter 3, we came up with an algorithm to generate a stock-correlation net-
work. In Chapter 4, we tried to use a tree that approximates a complete weighted
graph as a stock-correlation network. Lastly, in Chapter 5, we tried to come up
with a better clustering of stocks compared to the previous works in the literature.
Below, we give a summary of these chapters and their corresponding results.

In Chapter 3, we proposed the proportional degree (PD) algorithm where the
degree of each vertex is proportional to the total sum of its corresponding stock
correlation with all other stocks. We can set the total number of edges in this algo-
rithm to any value, and for the sake of comparing with PMFG, we set it at 3n− 6 in
which n is the number of vertices (or stocks). We also used the normalised mutual
information (NMI) to account for the nonlinear relationship between stocks. PD
does not have the structural limitations of PMFG, and unlike the latter, the size
of cliques is not bound to four. We also showed that the cliques in this algorithm
have a significantly higher homogeneity as to the economic sectoral classification
of stocks compared to PMFG. This higher homogeneity also holds when using cor-
relation coefficient rather than NMI. We also used Louvain community detection
and normalised spectral clustering (NSC) to compare the clustering properties of
PD and PMFG. Louvain did not provide us with a meaningful evaluation. How-
ever, based on NSC, we saw that the clusters of PD match those achieved through
applying NSC on the complete weighted graph of stocks, better than PMFG. Last
but not least, we showed that PD maintains the clustering structure better than

106

CHAPTER 6. CONCLUDING REMARKS

PMFG in the absence of some random vertices. As such, its clusters are more ro-
bust than those in PMFG. We should point out that PD may find applications as
means of analysis other than clustering in the area of stock-correlation networks
(discussed below in Section 6.3).

In Chapter 4, we devised an algorithm to build a tree to approximate a com-
plete weighted graph. We used this tree as a stock-correlation network since it
uses more information from the pairwise correlation between stocks compared to
MST in the following sense. Let Kn represent the complete edge weighted graph
of distances between stocks. (These distance values have been derived from the
pairwise correlation between stocks.) We want to come up with a tree such that
the distances between every two vertices in this tree best estimate the distances
(or the edge weights) between them in Kn. We have used the residual sum of
squares (RSS) as the optimality criterion, because of which we call this algorithm
the RSS optimal tree (RSSOT). We have come up with efficient methods to calcu-
late the edge weights on a given tree and to switch between different structures
to find the optimal tree. We used two metaheuristics for this optimisation prob-
lem: Simulated Annealing (SA) and Iterated Local Search (ILS). It turns out that
when the dispersion of distance values in Kn is large, both metaheuristics have
a favourable performance. In contrast, when the dispersion of distance values is
small, ILS outperforms SA. As mentioned above, we applied RSSOT on pairwise
stock correlations, but it did not give a useful structure and clustering in the end.

Finally, in Chapter 5, we devised another algorithm as with Chapter 4 to es-
timate Kn. However, this time the edge weights have a non-negativity constraint
and the tree is binary such that the leaves represent the stocks, and the internal
vertices are unlabelled. We called this algorithm the non-negative tree (NNT). We
proposed NNT as an improvement over SLCA in the same manner that we pro-
posed RSSOT as an improvement over MST. We came up with methods to avoid
negative weighted edges and efficiently search through different tree structures to
find the optimal structure using an ILS scheme. We compared the resulting tree
with that of the output of SLCA for different random samples of stocks, and we
argued that NNT offers a better clustering of stocks than SLCA. However, the same
is not evident when we compare the clustering performance of NNT with CLCA
and ALCA. As such, since these two algorithms are much simpler and faster than
NNT, we do not see any reason to use NNT over them.

We saw that PD resulted in a stock-correlation network with advantages over
PMFG. However, RSSOT could not be favoured over MST as a stock-correlation

107

6.3. FUTURE TOPICS OF RESEARCH

network. Also NNT could not be preferred over the output of ALCA or CLCA as a
means to clustering stocks. These two algorithms, RSSOT and NNT, were the result
of suggesting a solution to interesting problems, but they failed to outperform
some previously suggested algorithms of generating stock-correlation networks
and clustering.

6.3 Future Topics of Research

Finally, we offer some potential topics for future research before finishing this final
chapter as follows.

• We used 3n − 6 edges to build the PD network for the whole purpose of
comparing its performance with its PMFG counterpart. It is not clear that
this number of edges in the PD network is the optimal one considering the
criteria of a superior stock-correlation network (see Section 2.7). Since our
method is versatile—in terms of the number of edges as input—a potential
topic for research can be varying the sparsity of edges in the PD algorithm
and comparing the resulting networks.

• Other measures of correlation and dependence across stocks such as the
Spearman’s rank correlation coefficient (see Corder and Foreman [2014, Chap-
ter 7] for definition) could be used to build a stock-correlation network and
compare that with other stock-correlation networks according to the criteria
used in the literature.

• As discussed in Chapter 2, stock-correlation networks—especially the MST
and threshold types—have been employed to study the behaviour of stocks
in financial crises [Lee and Nobi, 2018; Nobi et al., 2014; Majapa and Gossel,
2016; Kumar and Deo, 2013; Junior and Franca, 2012]. Our study has been
mostly from a clustering standpoint, and the performance of PD compared to
other methods in studying stock-correlation networks during financial crises
and market crash remains to be seen.

• We did not encounter any study in this area where returns were calculated
taking into account the properties of economic-sector-specific noise. We sug-
gest studying stock-correlation networks with this consideration.

• The two of the most commonly used algorithms for generating stock-correlation
networks, MST and PMFG, have arisen in other areas (in particular, graph
theory) unrelated to the area of stock-correlation networks. Other algorithms
for filtering information in graph theory such as graph sparsification (see

108

CHAPTER 6. CONCLUDING REMARKS

Spielman and Teng [2004, Section 1.3] for a brief introduction) can potentially
be used for building stock-correlation networks and evaluating the results.

• In PD, we determine the degree of each vertex in such a way that it is linearly
proportional to the total sum of correlation between that vertex and all the
other vertices. It would be interesting to see what happens if we set them such
that they are polynomially proportional rather than linear, especially since
the power law distribution of degrees is an integral part of many complex
networks, and it has also been studied in stock-correlation networks. It would
be of interest to study the clustering performance of such a network besides
other aspects considered in the area.

• We used the ordinary least square (OLS) in both Chapters 4 and 5 as the opti-
mality criterion. It would be interesting to see how the results would change
if we used the weighted least squares (WLS) or generalised least squares
(GLS)—as mentioned in Chapter 5—instead, especially in RSSOT. Would it
result in useful tree structures and clusters in RSSOT?

• We applied RSSOT on stock-correlation networks but did not get clusters
that fairly match the economic sectoral classification of stocks. What are other
potential areas in which RSSOT can be applied to solve a problem?

109

Bibliography

Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of modern
physics, 74(1):47.

Albert, R., Jeong, H., and Barabási, A.-L. (1999). Internet: Diameter of the world-wide web. nature,
401(6749):130.

Aloise, D., Deshpande, A., Hansen, P., and Popat, P. (2009). Np-hardness of euclidean sum-of-
squares clustering. Machine learning, 75(2):245–248.

Amini, A. A., Chen, A., Bickel, P. J., Levina, E., et al. (2013). Pseudo-likelihood methods for commu-
nity detection in large sparse networks. The Annals of Statistics, 41(4):2097–2122.

Arai, Y., Yoshikawa, T., and Iyetomi, H. (2015). Dynamic stock correlation network. Procedia Com-
puter Science, 60:1826–1835.

Barabási, A.-L., Albert, R., and Jeong, H. (2000). Scale-free characteristics of random networks: the
topology of the world-wide web. Physica A: statistical mechanics and its applications, 281(1-4):69–77.

Barbi, A. and Prataviera, G. (2019). Nonlinear dependencies on brazilian equity network from
mutual information minimum spanning trees. Physica A: Statistical Mechanics and its Applications,
523:876–885.

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software for exploring
and manipulating networks.

Birch, J., Pantelous, A. A., and Soramäki, K. (2016). Analysis of correlation based networks repre-
senting dax 30 stock price returns. Computational Economics, 47(4):501–525.

Blanc, J.-L., Pezard, L., and Lesne, A. (2011). Delay independence of mutual-information rate of
two symbolic sequences. Physical Review E, 84(3):036214.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communi-
ties in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008.

Blum, C. and Raidl, G. R. (2016). Hybrid Metaheuristics: Powerful Tools for Optimization. Springer.

Boginski, V., Butenko, S., and Pardalos, P. M. (2005). Statistical analysis of financial networks. Com-
putational statistics & data analysis, 48(2):431–443.

Bonanno, G., Caldarelli, G., Lillo, F., and Mantegna, R. N. (2003). Topology of correlation-based
minimal spanning trees in real and model markets. Physical Review E, 68(4):046130.

Boss, M., Elsinger, H., Summer, M., and Thurner 4, S. (2004). Network topology of the interbank
market. Quantitative finance, 4(6):677–684.

110

BIBLIOGRAPHY

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., and Wagner, D. (2007).
On modularity clustering. IEEE transactions on knowledge and data engineering, 20(2):172–188.

Brida, J. G. and Risso, W. A. (2010). Dynamics and structure of the 30 largest north american
companies. Computational Economics, 35(1):85.

Bryant, D. J. and Waddell, P. J. (1997). Rapid evaluation of least squares and minimum evolution
criteria on phylogenetic trees.

Buccheri, G., Marmi, S., and Mantegna, R. N. (2013). Evolution of correlation structure of industrial
indices of us equity markets. Physical Review E, 88(1):012806.

Bulmer, M. (1991). Use of the method of generalized least squares in reconstructing phylogenies
from sequence data.

Carlsson, G. E. and Mémoli, F. (2010). Characterization, stability and convergence of hierarchical
clustering methods. J. Mach. Learn. Res., 11(Apr):1425–1470.

Chen, H., Mai, Y., and Li, S.-P. (2014). Analysis of network clustering behavior of the chinese stock
market. Physica A: Statistical Mechanics and its Applications, 414:360–367.

Chi, K. T., Liu, J., and Lau, F. C. (2010). A network perspective of the stock market. Journal of
Empirical Finance, 17(4):659–667.

Chopard, B. and Tomassini, M. (2018). An introduction to metaheuristics for optimization. Springer.

Coletti, P. (2016). Comparing minimum spanning trees of the italian stock market using returns
and volumes. Physica A: Statistical Mechanics and its Applications, 463:246–261.

Corder, G. W. and Foreman, D. I. (2014). Nonparametric statistics: A step-by-step approach. John Wiley
& Sons.

Coronnello, C., Tumminello, M., Lillo, F., Micciche, S., and Mantegna, R. N. (2005). Sector identi-
fication in a set of stock return time series traded at the london stock exchange. arXiv preprint
cond-mat/0508122.

Cover, T. M. and Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons.

da Silva, F. L., Pijn, J. P., and Boeijinga, P. (1989). Interdependence of eeg signals: linear vs. nonlinear
associations and the significance of time delays and phase shifts. Brain topography, 2(1-2):9–18.

Desper, R. and Gascuel, O. (2004). Theoretical foundation of the balanced minimum evolution
method of phylogenetic inference and its relationship to weighted least-squares tree fitting.
Molecular Biology and Evolution, 21(3):587–598.

Dorogovtsev, S. N. and Mendes, J. F. (2001). Scaling properties of scale-free evolving networks:
Continuous approach. Physical Review E, 63(5):056125.

Dorogovtsev, S. N. and Mendes, J. F. (2002). Evolution of networks. Advances in physics, 51(4):1079–
1187.

Even, S. (2011). Graph algorithms. Cambridge University Press.

Everitt, B. S., Landau, S., Leese, M., and Stahl, D. (2011). Cluster analysis 5th ed.

Felsenstein, J. (2004). Inferring phylogenies, volume 2. Sinauer associates Sunderland, MA.

Fiedor, P. (2014). Networks in financial markets based on the mutual information rate. Physical
Review E, 89(5):052801.

111

BIBLIOGRAPHY

Fiedor, P. (2015). Mutual information-based hierarchies on warsaw stock exchange. Acta Physica
Polonica, A., 127.

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5):75–174.

Fraley, C. and Raftery, A. E. (1998). How many clusters? which clustering method? answers via
model-based cluster analysis. The computer journal, 41(8):578–588.

Galaskiewicz, J. and Wasserman, S. (1993). Social network analysis: Concepts, methodology, and
directions for the 1990s. Sociological Methods & Research, 22(1):3–22.

Gan, S. L. and Djauhari, M. A. (2015). New york stock exchange performance: evidence from the
forest of multidimensional minimum spanning trees. Journal of Statistical Mechanics: Theory and
Experiment, 2015(12):P12005.

Garas, A. and Argyrakis, P. (2007). Correlation study of the athens stock exchange. Physica A:
Statistical Mechanics and its Applications, 380:399–410.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability. w. h.

Giada, L. and Marsili, M. (2001). Data clustering and noise undressing of correlation matrices.
Physical Review E, 63(6):061101.

Giada, L. and Marsili, M. (2002). Algorithms of maximum likelihood data clustering with applica-
tions. Physica A: Statistical Mechanics and its Applications, 315(3-4):650–664.

Goh, Y. K., Hasim, H. M., and Antonopoulos, C. G. (2018). Inference of financial networks using
the normalised mutual information rate. PloS one, 13(2).

Gray, R. and Kieffer, J. (1980). Mutual information rate, distortion, and quantization in metric spaces.
IEEE Transactions on Information Theory, 26(4):412–422.

Guo, X., Zhang, H., Jiang, F., and Tian, T. (2018a). Development of stock correlation network models
using maximum likelihood method and stock big data. In 2018 IEEE International Conference on
Big Data and Smart Computing (BigComp), pages 455–461. IEEE.

Guo, X., Zhang, H., and Tian, T. (2018b). Development of stock correlation networks using mutual
information and financial big data. PloS one, 13(4):e0195941.

Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States).

Han, D. et al. (2019). Network analysis of the chinese stock market during the turbulence of 2015–
2016 using log-returns, volumes and mutual information. Physica A: Statistical Mechanics and its
Applications, 523:1091–1109.

Heimo, T., Saramäki, J., Onnela, J.-P., and Kaski, K. (2007). Spectral and network methods in the
analysis of correlation matrices of stock returns. Physica A: Statistical Mechanics and its Applications,
383(1):147–151.

Holmes, A., Illowsky, B., and Dean, S. (2017). Introductory business statistics. Rice University.

Hosseini, S. S. and Wormald, N. (2021). Semi-labelled binary tree optimisation subject to non-
negativity. Network. Submitted.

Hosseini, S. S., Wormald, N., and Tian, T. (2020). On finding the optimal tree of a complete weighted
graph. In 2020 15th Conference on Computer Science and Information Systems (FedCSIS), pages 271–
275. IEEE.

112

BIBLIOGRAPHY

Hosseini, S. S., Wormald, N., and Tian, T. (2021a). Optimal tree of a complete weighted graph. To
appear.

Hosseini, S. S., Wormald, N., and Tian, T. (2021b). A weight-based information filtration algorithm
for stock-correlation networks. Physica A: Statistical Mechanics and its Applications, 563:125489.

Hsieh, D. A. (1991). Chaos and nonlinear dynamics: application to financial markets. The journal of
finance, 46(5):1839–1877.

Huang, W.-Q., Zhuang, X.-T., and Yao, S. (2009). A network analysis of the chinese stock market.
Physica A: Statistical Mechanics and its Applications, 388(14):2956–2964.

Junior, L. S. and Franca, I. D. P. (2012). Correlation of financial markets in times of crisis. Physica A:
Statistical Mechanics and its Applications, 391(1-2):187–208.

Kaya, H. (2013). Eccentricity in asset management. Available at SSRN 2350429.

Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., and Stanley, H. E. (2015). Partial correlation
analysis: Applications for financial markets. Quantitative Finance, 15(4):569–578.

Kenett, D. Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R. N., and Ben-Jacob, E.
(2010). Dominating clasp of the financial sector revealed by partial correlation analysis of the
stock market. PloS one, 5(12):e15032.

Kocheturov, A., Batsyn, M., and Pardalos, P. M. (2014). Dynamics of cluster structures in a financial
market network. Physica A: Statistical Mechanics and its Applications, 413:523–533.

Kraskov, A., Stögbauer, H., Andrzejak, R. G., and Grassberger, P. (2005). Hierarchical clustering
using mutual information. EPL (Europhysics Letters), 70(2):278.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50.

Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., and Zhang, P. (2013). Spec-
tral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences,
110(52):20935–20940.

Kumar, S. and Deo, N. (2013). Analyzing crisis in global financial indices. In Econophysics of Systemic
Risk and Network Dynamics, pages 261–275. Springer.

Kvalseth, T. O. (1987). Entropy and correlation: Some comments. IEEE Transactions on Systems, Man,
and Cybernetics, 17(3):517–519.

Le, C. M., Levina, E., and Vershynin, R. (2015). Sparse random graphs: regularization and concen-
tration of the laplacian. arXiv preprint arXiv:1502.03049.

Lee, J. W. and Nobi, A. (2018). State and network structures of stock markets around the global
financial crisis. Computational Economics, 51(2):195–210.

Li, M., Badger, J. H., Chen, X., Kwong, S., Kearney, P., and Zhang, H. (2001). An information-based
sequence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics,
17(2):149–154.

Lipschutz, S. and Lipson, M. (2001). Schaum’s outline of theory and problems of linear algebra. Erlangga.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–
137.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2019). Iterated local search: Framework and applica-
tions. In Handbook of metaheuristics, pages 129–168. Springer.

113

BIBLIOGRAPHY

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Majapa, M. and Gossel, S. J. (2016). Topology of the south african stock market network across the
2008 financial crisis. Physica A: Statistical Mechanics and its Applications, 445:35–47.

Mantegna, R. and Stanley, H. (2000). An Introduction to Econophysics: Correlations and Complexity in
Finance, volume 53.

Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal
B-Condensed Matter and Complex Systems, 11(1):193–197.

Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7:77–91.

Marsili, M. (2002). Dissecting financial markets: sectors and states. Quantitative Finance, 2:297–302.

Marti, G., Nielsen, F., Bińkowski, M., and Donnat, P. (2017). A review of two decades of correlations,
hierarchies, networks and clustering in financial markets. arXiv preprint arXiv:1703.00485.

McMillan, D. G. (2001). Nonlinear predictability of stock market returns: Evidence from nonpara-
metric and threshold models. International Review of Economics & Finance, 10(4):353–368.

Mihaescu, R. and Pachter, L. (2008). Combinatorics of least-squares trees. Proceedings of the National
Academy of Sciences, 105(36):13206–13211.

Miller, G. L. (1987). An additivity theorem for the genus of a graph. Journal of Combinatorial Theory,
Series B, 43(1):25–47.

Musmeci, N., Aste, T., and Di Matteo, T. (2015). Relation between financial market structure and
the real economy: comparison between clustering methods. PloS one, 10(3):e0116201.

Musmeci, N., Aste, T., and Matteo, T. (2014). Clustering and hierarchy of financial markets data:
advantages of the dbht. arXiv.

Namaki, A., Shirazi, A., Raei, R., and Jafari, G. (2011). Network analysis of a financial market based
on genuine correlation and threshold method. Physica A: Statistical Mechanics and its Applications,
390(21-22):3835–3841.

Narasimhan, G. and Smid, M. (2007). Geometric spanner networks. Cambridge University Press.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national
academy of sciences, 103(23):8577–8582.

Newman, M. E., Watts, D. J., and Strogatz, S. H. (2002). Random graph models of social networks.
Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572.

Nishizeki, T. and Chiba, N. (1988). Planar graphs: Theory and algorithms. Elsevier.

Nobi, A., Maeng, S. E., Ha, G. G., and Lee, J. W. (2014). Effects of global financial crisis on network
structure in a local stock market. Physica A: Statistical Mechanics and its Applications, 407:135–143.

Nobi, A., Maeng, S. E., Ha, G. G., and Lee, J. W. (2015). Structural changes in the minimal spanning
tree and the hierarchical network in the korean stock market around the global financial crisis.
Journal of the Korean Physical Society, 66(8):1153–1159.

Oh, K. J. and Kim, K.-j. (2002). Analyzing stock market tick data using piecewise nonlinear model.
Expert Systems with Applications, 22(3):249–255.

Onnela, J.-P., Chakraborti, A., Kaski, K., and Kertesz, J. (2003a). Dynamic asset trees and black

114

BIBLIOGRAPHY

monday. Physica A: Statistical Mechanics and its Applications, 324(1-2):247–252.

Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., and Kanto, A. (2003b). Asset trees and asset
graphs in financial markets. Physica Scripta, 2003(T106):48.

Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., and Kanto, A. (2003c). Dynamics of market
correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5):056110.

Onnela, J.-P., Chakraborti, A., Kaski, K., and Kertiész, J. (2002). Dynamic asset trees and portfolio
analysis. The European Physical Journal B-Condensed Matter and Complex Systems, 30(3):285–288.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical Recipes 3rd
Edition: The Art of Scientific Computing. Cambridge University Press, USA, 3 edition.

Prim, R. C. (1957). Shortest connection networks and some generalizations. The Bell System Technical
Journal, 36(6):1389–1401.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, 66(336):846–850.

Redner, S. (1998). How popular is your paper? an empirical study of the citation distribution. The
European Physical Journal B-Condensed Matter and Complex Systems, 4(2):131–134.

Rubinstein, M. (2002). Markowitz’s" portfolio selection": A fifty-year retrospective. The Journal of
finance, 57(3):1041–1045.

Rzhetsky, A. and Nei, M. (1992). Statistical properties of the ordinary least-squares, generalized
least-squares, and minimum-evolution methods of phylogenetic inference. Journal of molecular
evolution, 35(4):367–375.

Rzhetsky, A. and Nei, M. (1993). Theoretical foundation of the minimum-evolution method of
phylogenetic inference. Molecular biology and evolution, 10(5):1073–1095.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding, W., and Lin,
C.-T. (2017). A review of clustering techniques and developments. Neurocomputing, 267:664–681.

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE mobile comput-
ing and communications review, 5(1):3–55.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on pattern
analysis and machine intelligence, 22(8):888–905.

Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between
two documents. Journal of the American Society for information Science, 24(4):265–269.

Sneath, P. H., Sokal, R. R., et al. (1973). Numerical taxonomy. The principles and practice of numerical
classification.

Song, D.-M., Tumminello, M., Zhou, W.-X., and Mantegna, R. N. (2011a). Evolution of world-
wide stock markets, correlation structure, and correlation-based graphs. Physical Review E,
84(2):026108.

Song, W.-M., Di Matteo, T., and Aste, T. (2011b). Nested hierarchies in planar graphs. Discrete
Applied Mathematics, 159(17):2135–2146.

Song, W.-M., Di Matteo, T., and Aste, T. (2012). Hierarchical information clustering by means of
topologically embedded graphs. PloS one, 7(3):e31929.

Soramäki, K., Bech, M. L., Arnold, J., Glass, R. J., and Beyeler, W. E. (2007). The topology of interbank
payment flows. Physica A: Statistical Mechanics and its Applications, 379(1):317–333.

115

BIBLIOGRAPHY

Spielman, D. A. and Teng, S.-H. (2004). Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing, pages 81–90. ACM.

Szabó, G., Alava, M., and Kertész, J. (2003). Structural transitions in scale-free networks. Physical
Review E, 67(5):056102.

Tabak, B. M., Serra, T. R., and Cajueiro, D. O. (2010). Topological properties of stock market networks:
The case of brazil. Physica A: Statistical Mechanics and its Applications, 389(16):3240–3249.

Tsankov, P. (2021). Overview of network-based methods for analyzing financial markets.

Tumminello, M., Aste, T., Di Matteo, T., and Mantegna, R. N. (2005). A tool for filtering information
in complex systems. Proceedings of the National Academy of Sciences, 102(30):10421–10426.

Tumminello, M., Coronnello, C., Lillo, F., Micciche, S., and Mantegna, R. N. (2007a). Spanning
trees and bootstrap reliability estimation in correlation-based networks. International Journal of
Bifurcation and Chaos, 17(07):2319–2329.

Tumminello, M., Di Matteo, T., Aste, T., and Mantegna, R. N. (2007b). Correlation based networks of
equity returns sampled at different time horizons. The European Physical Journal B, 55(2):209–217.

Tumminello, M., Lillo, F., and Mantegna, R. N. (2010). Correlation, hierarchies, and networks in
financial markets. Journal of economic behavior & organization, 75(1):40–58.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4):395–416.

Wang, G.-J. and Xie, C. (2015). Correlation structure and dynamics of international real estate
securities markets: A network perspective. Physica A: Statistical Mechanics and its Applications,
424:176–193.

Wang, G.-J., Xie, C., and Chen, S. (2017). Multiscale correlation networks analysis of the us stock
market: a wavelet analysis. Journal of Economic Interaction and Coordination, 12(3):561–594.

Wang, G.-J., Xie, C., and Stanley, H. E. (2018). Correlation structure and evolution of world stock mar-
kets: Evidence from pearson and partial correlation-based networks. Computational Economics,
51(3):607–635.

Warne, D. (2013). On the effect of topology on cellular automata rule spaces.

Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applications, volume 8.
Cambridge university press.

Watts, D. J., Dodds, P. S., and Newman, M. E. (2002). Identity and search in social networks. science,
296(5571):1302–1305.

Wen, F., Yang, X., and Zhou, W.-X. (2019). Tail dependence networks of global stock markets. Inter-
national Journal of Finance & Economics, 24(1):558–567.

Wood, D. R. (2007). On the maximum number of cliques in a graph. Graphs and Combinatorics,
23(3):337–352.

Yang, I., Jeong, H., Kahng, B., and Barabási, A.-L. (2003). Emerging behavior in electronic bidding.
Physical Review E, 68(1):016102.

You, T., Fiedor, P., and Hołda, A. (2015). Network analysis of the shanghai stock exchange based
on partial mutual information. Journal of Risk and Financial Management, 8(2):266–284.

Zhang, J., Chen, Y., and Zhai, D. (2010). Network analysis of shanghai sector in chinese stock market
based on partial correlation. In 2010 2nd IEEE International Conference on Information Management

116

BIBLIOGRAPHY

and Engineering, pages 321–324. IEEE.

Zhang, Y., Lee, G. H. T., Wong, J. C., Kok, J. L., Prusty, M., and Cheong, S. A. (2011). Will the us
economy recover in 2010? a minimal spanning tree study. Physica A: Statistical Mechanics and its
Applications, 390(11):2020–2050.

117

	Introduction
	Context
	Motivation
	Structural Limitations of Previous Works
	Utilising More Information from the Complete Weighted Graph
	Better Clustering of Stocks

	Thesis Structure
	Publications from This Research

	Background
	Introduction
	Graphs
	Adjacency Matrix
	Subgraph
	Connected Component
	Clique
	Graph Centre
	Planar Maximally Filtered Graph (PMFG)
	Tree

	Metaheuristics
	Simulated Annealing (SA)
	Iterated Local Search (ILS)

	Clusters
	Similarity Measures
	Hierarchical Clustering
	Louvain Community Detection
	Normalised Spectral Clustering (NSC)
	Adjusted Rand Index (ARI)

	Positive Definite Matrix
	Cholesky Decomposition
	Stock-correlation Network
	MST Stock-correlation Network
	PMFG Stock-correlation Network
	The Threshold Method
	Asset Graph

	Some More Algorithms and Conclusion

	Proportional Degree Stock-correlation Network
	Introduction
	Method
	Proportional Degree (PD) Algorithm
	Cliques
	Clusters

	Results
	Data Set
	Stock-correlation Networks
	Cliques
	Clusters
	Robustness

	Summary

	On Finding the Optimal Tree of a Complete Weighted Graph
	Introduction
	Sub-problem: Tree Weight Optimisation
	Problem: Tree Structure Optimisation
	Tree Structure Change for Optimisation

	Results
	Biased vs Unbiased SA
	SA vs ILS
	Structure of RSSOT

	Summary

	Semi-Labelled Binary Tree Optimisation Subject to Non-Negativity
	Introduction
	Problem Statement
	Normal Equation
	Nearest Neighbour Interchange (NNI)
	Making Negative Edge Weights Positive
	Finding Tree Edge Weights after NNI
	Substituting Negative Edge Weights with Zero

	Optimisation Scheme
	Efficient Path Length Calculation
	Working around Negative Weighted Edges
	Substitution with Zero
	The ILS Layout

	Results
	Tree Structure

	Summary

	Concluding Remarks
	Overview of the Previous Algorithms
	Our Contribution
	Future Topics of Research

	Bibliography

