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Abstract

The large-scale, parallel numerical simulation of partial differential equations (PDEs) is

ubiquitous across the sciences. Developing efficient methods for these simulations is a

core goal of the field of computational mathematics. A key class of such problems is

those describing time-dependent phenomena. Traditional algorithms for simulating time-

dependent PDEs do so sequentially in time; however, it is also possible to simulate these

in a parallel-in-time fashion. The field of parallel-in-time integration has seen growing

interest over the past two decades, motivated, in part, by an emergence of massively

parallel supercomputers. Many successful parallel-in-time strategies have been developed,

particularly for diffusion-dominated problems. On the other hand, there has been limited

success for hyperbolic problems, and for advection-dominated problems more broadly. The

overarching goal of this thesis is to investigate these apparent shortcomings, and to present

new methods for the parallel-in-time solution of advection-dominated problems.

The parallel-in-time solvers we focus on in this work are those of Parareal and multigrid

reduction-in-time, both of which use multilevel or multigrid techniques in time. We begin

by identifying two principal reasons for the divergence these solvers typically experience on

constant-coefficient linear advection problems. From these findings, we develop a heuristic-

based optimization strategy for defining coarse-grid operators, which leads to fast parallel-

in-time integration, even for high-order-accurate discretizations. We develop a general,

closed-form convergence theory of these solvers using the tools of local Fourier analysis.

We apply this theory to reveal that poor performance for advection problems is closely

linked to that experienced by spatial multigrid solvers when applied to time-independent

advection problems. Following this, we develop a novel coarse-grid operator for the solution

of advection problems using semi-Lagrangian discretizations. The coarse-grid operator

leads to fast convergence for variable-wave-speed problems.

In the final component of the thesis, we shift from parallel-in-time techniques to consider

sequential time integration. We consider the numerical solution of fully implicit Runge-

Kutta (FIRK) methods when applied in the method-of-lines solution of time-dependent

PDEs. FIRK methods can have excellent accuracy and stability properties, but do not

see wide-spread use in practice due to the difficulty of numerically solving the underlying

algebraic stage equations. We present new algorithms for solving the stage equations,

including for both linear and nonlinear problems. Numerical analysis is used to optimize

and prove robustness of the linear preconditioning strategy of the proposed algorithms.

Numerical tests demonstrate the efficacy of the proposed approach compared to existing

widely used implicit time integration methods.
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Chapter 1

Introduction and background

The goal of this opening chapter is to provide some high-level discussion on, and motivation

for, the core topics studied throughout this thesis. Some of the simple partial differential

equations (PDEs) we study and our motivations for doing so are described in Section 1.1.

A short discussion on the types of discretizations we consider for advection-dominated

problems is given in Section 1.2. A brief introduction to parallel-in-time methods is given

in Section 1.3. A detailed description of the particular parallel-in-time methods that are

studied throughout this work (Parareal and MGRIT) is given in Section 1.4. The chapter

concludes with Section 1.5 providing an outline for the remainder of the thesis.

1.1 Model PDEs and their motivations

This body of work revolves around the numerical solution of time-dependent PDEs, and

thus we begin with a high-level discussion of the PDEs that are of interest to us. Broadly

speaking, time-dependent PDEs may be categorized into two classes: hyperbolic and

parabolic. The prototypical example of a hyperbolic equation is that of the constant-

coefficient or constant-wave-speed advection equation in one spatial dimension,

∂u

∂t
+ α

∂u

∂x
= 0. (1.1)

The prototypical example of a parabolic equation is the constant-coefficient diffusion equa-

tion in one spatial dimension,

∂u

∂t
= β

∂2u

∂x2
, β > 0. (1.2)

1
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Chapter 1: Introduction and background 2

Figure 1.1: Contours of qualitatively representative PDE solutions on
(x, t) ∈ [−1, 1]× [0, 1], subject to periodic boundary conditions in space, and the
initial condition u(x, 0) = sin4(πx). Left: Linear advection equation (1.1) with α = 1.
Right: Diffusion equation (1.2) with β = 0.05.

Qualitatively representative solutions of these two PDEs are shown in Figure 1.1. The

two problems clearly permit solutions with very different behaviours. In the case of the

advection equation (1.1), the initial data prescribed at t = 0 propagates through space-time

along the characteristics of the PDE, (x, t) = (αt+ c, t) for constant c. The solution does

not decay or dissipate as it propagates along characteristics. In the case of the diffusion

equation (1.2), the initial data prescribed at t = 0 propagates forward through time, but

diffuses as it does so. Moreover, Fourier components of initial data diffuse in proportion to

their frequency, with high-frequency components diffusing more quickly than those with

low frequency. Globally, this results in the solution becoming smoother as time increases.

This work is primarily focused on hyperbolic equations. However, it will often be useful

to think of these equations as arising in the advection-dominated limit or hyperbolic limit

of certain parabolic PDEs. The prototypical example of such a problem is the advection-

diffusion equation,

∂u

∂t
+ α

∂u

∂x
= β

∂2u

∂x2
, β ≥ 0. (1.3)

This PDE is technically parabolic for any β > 0, but its behaviour is close to that of a

hyperbolic equation in the advection-dominated regime, |α| � β.

The numerical solution of hyperbolic PDEs is a rich and complex subject for a variety of

reasons. Most famously, it is often the case for nonlinear hyperbolic PDEs that discontin-

uous solutions may form in finite time from smooth initial data. As one might anticipate,

discontinuous solutions present enormous difficulty for numerical methods, creating non-

trivial stability and accuracy issues. Despite much of the literature on numerical methods
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Chapter 1: Introduction and background 3

for hyperbolic PDEs over the past half century concentrating on problems with discontin-

uous solutions, this thesis considers only smooth solutions of hyperbolic PDEs. In fact,

a large part of the work here will be based on the constant-coefficient advection problem

(1.1).

Undoubtedly, (1.1) is amongst the simplest of all PDEs, yet, since the inception of nu-

merical methods for hyperbolic PDEs, considering it as a model problem for numerical

method development has proven invaluable. The linear advection equation and/or the

closely related two-way wave equation ∂2u
∂t2
− α2 ∂2u

∂x2
= 0 has appeared in many pioneer-

ing papers in the field, such as the famous 1928 paper [21] of Courant, Friedrichs, and

Lewy that described the conditional stability of finite-difference schemes for hyperbolic

problems, now dubbed the CFL condition.1 Other examples include the papers [65, 60]

on the now widely used weighted essentially non-oscillatory discretizations for hyperbolic

problems with discontinuities. Moreover, one would struggle to find a textbook on the

subject of numerical methods for hyperbolic PDEs that does not use at least one of these

PDEs as a fundamental example [62, 63, 29, 31, 52].

All of the above brings us to the relevance of (1.1) being a primary focus of this work. For

the most part, this thesis focuses on the parallel-in-time solution of hyperbolic problems,

and, as we will come to learn, the efficient parallel-in-time solution of even the simple

advection problem (1.1) is by no means simple. Developing an appreciation and under-

standing of why this is the case is a key step towards developing parallel-in-time methods

for more complex problems. Moreover, it does not seem unreasonable to assume that

one cannot develop truly efficient parallel-in-time methods for general nonlinear hyper-

bolic problems with discontinuous solutions if one cannot even efficiently solve (1.1) in a

parallel-in-time manner. Finally, it is worth noting that while much of the literature for

numerical methods for hyperbolic PDEs does focus on nonlinear problems, there remain

many important applications that require the solution of linear hyperbolic problems, with

common examples including passive tracer flow, acoustics, elasticity, and electromagnetics

(see, e.g., [62]).

1.2 Discretizations of advection problems

There are two levels at which one can consider the numerical approximation of PDEs. The

first is the discretization itself of the PDE, which is the approximation of the continuous

problem with a discrete linear or nonlinear algebraic system. The second is the numerical

solution of the approximate, discrete problem. We will focus on the latter part. However,

1See [22] for an English translation of [21].
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developing efficient solvers for the discrete algebraic system will require us to utilize PDE-

and discretization-specific knowledge.

We consider two classes or strategies of discretization for time-dependent, advection-

dominated PDEs. The first is the method-of-lines technique. It works by first discretizing

the spatial components of a PDE, resulting in a system of time-dependent ordinary differ-

ential equations (ODEs) that may be solved via a standard ODE solver. In the context of

advection problems, method-of-lines discretizations are examples of Eulerian discretiza-

tions. For hyperbolic PDEs, Eulerian discretizations are the most widely used (see, e.g.,

[84, 62, 63, 29, 52]). This is in spite of many Eulerian methods suffering from a CFL limit,

in particular, those that are explicit, which places a hard upper limit on the time-step

size they may use. The principle underlying the CFL limit is that numerical stability

requires the physical domain of dependence (i.e., the continuous one of the PDE) lie inside

the numerical domain of dependence. In certain situations, this limit leads to inefficiency

in the sense that it necessitates the use of restrictively small time-step sizes, which are

otherwise smaller than one would like to use for accuracy reasons. As we will see, the CFL

limit of explicit Eulerian methods presents somewhat of a barrier to their parallel-in-time

solution.

Remaining in the context of advection problems, a contrast to Eulerian methods are meth-

ods in Lagrangian form. Lagrangian methods do not use a fixed mesh as Eulerian methods

do. Instead, they consider how particles (or fluid elements) are advected by the PDE. We

will consider what are known as semi-Lagrangian methods, which may be seen as a hybrid

of Eulerian and Lagrangian methods. They too work by advecting particles, but they do

so on a fixed Eulerian-like mesh. Semi-Lagrangian methods are less widely used that Eu-

lerian methods; however, since they effectively track the flow of the PDE, they remain free

of a CFL limit (for the most part). This is one of the reasons why these methods will be of

great interest in the parallel-in-time solution of advection problems. For this reason also,

semi-Lagrangian methods see widespread use in areas where the CFL limits of Eulerian

methods impose the use of overly restrictive time-step sizes. One popular example is the

area of numerical weather prediction [68, 95, 106]. They have also been used to simulate

non-smooth particle transport [17, 74, 16], for example.

1.3 Parallel-in-time methods

The majority of this thesis focuses on the development of parallel-in-time methods for

PDEs. We now provide an introduction to and overview of the area. The defining principle

of a parallel-in-time method is that it computes the solution to a time-dependent problem

at multiple points in time simultaneously and in parallel. For our purposes, this problem
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will be a discretized time-dependent ODE or PDE. Parallel-in-time methods contrast with

the traditional approach of time-stepping for solving time-dependent problems, in which

the solution is advanced forwards in time sequentially, one point after another.

At first, the notion of parallel-in-time methods can be counter-intuitive due to the causal

nature of time itself: The solution at any future time is determined only by the solution

prior to it, so if the prior solution is not yet known, then how can a future solution be

computed? Does the causality of time actually make this problem difficult? For example,

consider a time-dependent ODE with a time-periodic condition rather than an initial

value. There is no longer any causality in time (at least in a global sense) since the

solution at any point in time depends on the solution at all other points in time. Would

the parallel solution of this problem present more or less difficultly than its causal initial-

value counterpart? In this sense, parallel-in-time methods are not so different conceptually

from existing parallel solution strategies for time-independent problems. For example, for

a steady-state boundary-value problem (e.g., a Poisson problem), the solution at any point

in space depends on the solution at all other points in space, yet techniques have existed

for many decades to compute solutions to such problems in parallel.

Parallel-in-time research dates back to at least 1964, with the work of Nievergelt [70],

remarkably before the advent of parallel computers. Since Nievergelt’s pioneering work,

there has been significant progress made in the field, particularly within the past two

decades. A history and broad survey of the field is given in the review [41], with the later

review of [72] providing a summary of more recent developments. Architectural changes in

large-scale parallel computing over the past two decades have led to an increased relevance

for parallel-in-time methods. Specifically, speeds of computer processors have stagnated

due to physical limitations, and in response, gains in the compute power of large-scale

parallel machines has instead come from rapid increases in processor counts (see, e.g.,

[79, 72]). Therefore, decreases in wall-clock time of large-scale simulations can be made

by the adoption of algorithms with increased parallelism or concurrency. This is precisely

what parallel-in-time methods set out to do: They add parallelism into the time direction

where the traditional or standard approach of time-stepping is inherently sequential in

time.

Parallel-in-time methods developed thus far fall into four classes [41, 72]: multiple shooting;

waveform relaxation and domain decomposition; multigrid; and, direct methods. These

classifications are loose, however, in the sense that some methods fall into multiple cate-

gories. Considering the numerical solution of a PDE in both space and time, there are two

different approaches offering temporal parallelism. There are solvers that treat the whole

of space and time simultaneously, or there are solvers that focus only on parallelising in

the time direction. Some examples of methods that treat space and time simultaneously
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are [101, 102, 54, 55, 30, 45, 96, 85]. Many of these methods couple waveform relaxation

techniques in time with multigrid techniques in space, or use multigrid techniques in both

space and time. A detailed comparison of several methods using multigrid-style techniques

is given in [33].

In contrast to the above methods, Parareal [64] and multigrid reduction-in-time (MGRIT)

[32], in their most basic form, are agnostic to the spatial components of a problem and focus

on parallelizing in the time direction. Parareal was introduced in 2001 by Lions, Maday,

and Turinici [64], and is perhaps the most well-known parallel-in-time method. Parareal

was originally motivated as a multiple shooting method, but also can be interpreted as

a two-level, iterative multigrid method [46]. MGRIT was introduced in 2014 by Falgout

et al. [32] and is a truly multilevel method that uses reduction-based strategies to define

a sequence of coarser-in-time problems. In fact, MGRIT can be seen as a multilevel

generalization of Parareal [32] (see also [44] for more information on this connection).

For this reason, throughout this thesis, we will make no significant differentiation between

MGRIT and Parareal, and will typically refer collectively to these algorithms as ‘MGRIT.’

When discussing literature, however, we will adopt the nomenclature used by the authors.

The parallel-in-time work in this thesis focuses exclusively on the MGRIT algorithm, and,

as such, a detailed algorithmic description of it is now provided in Section 1.4. Further

discussion of Parareal and MGRIT literature will be made in individual chapters where it

is most relevant.

1.4 Algorithmic description of MGRIT

Consider an initial-value, time-dependent PDE problem posed on the finite time interval

t ∈ [0, T ]. Let the interval be discretized with nt + 1 equidistant points (tn)ntn=0, where

tn := nδt. Suppose the PDE has been discretized in both space and time, with the only

restriction being that the resulting method is of one-step form in time. The fully discrete

problem can then be expressed as

un+1 = Φun + gn+1, n = 0, . . . , nt − 1, (1.4)

where un is used to denote the approximation of the PDE solution at time t = tn, which

is a vector since the discretization presumably approximates the PDE solution on some

spatial mesh. Here, Φ is dubbed the time-stepping operator, since it steps the discrete

solution from one time point to the next. For example, Φ could arise through a method-of-

lines discretization, or a semi-Lagrangian discretization. In general, Φ could be a nonlinear

function, and it could also explicitly depend on time. However, to simplify our presenta-

tion, let us assume that Φ is linear (i.e., it is a matrix), and time-independent. We direct
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the reader to one of [32, 35, 58] for descriptions of MGRIT for nonlinear problems. In

(1.4), the g term contains any solution-independent terms such as boundary conditions or

source terms.

Consider writing the equations (1.4), supplemented with their initial condition, as a block

system

Au :=




I

−Φ I
. . .

. . .

−Φ I







u0

u1

...

unt




=




u0

g1

...

gnt




=: b. (1.5)

The solution of this system is trivially obtained through (block) forward substitution, but

this is an inherently sequential procedure, offering no possibility for parallelization. In

fact, a block forward solve of (1.5) is equivalent to sequential time-stepping. In contrast, a

parallel-in-time method solves this system in parallel, or for all values of u concurrently. A

block forward solve of this system is optimal in the sense that it requires onlyO(nt) floating

point operations (FLOPs). Often, parallel-in-time methods introduce parallelism at the

expense of additional computation. The parallel-in-time solution of (1.5) will therefore

typically require substantially more FLOPs than a forward solve, although this would

ideally still only be O(nt), just with a larger constant than forward substitution. For

certain problems, MGRIT has been shown to be an O(nt) solver [32].

One way in which parallel-in-time algorithms, such as MGRIT, conceptually differ from

traditional parallel solvers is that they introduce a lot of additional computation. For this

reason, they typically have low parallel efficiencies. In essence, this is because parallel-in-

time algorithms do not simply parallelize an existing sequential algorithm, as many parallel

solvers do. Instead, they replace a sequential algorithm (time-stepping), that is already

optimal in terms of the amount of work it does, with an algorithm that does significantly

more work, with the goal of reducing wall-clock time.

MGRIT is an iterative multigrid method for solving (1.5) in a parallel manner. For a

large class of problems, multigrid methods are among the most efficient solvers, being able

solve a problem with n unknowns in approximately O(n) FLOPs. Furthermore, multigrid

methods are typically highly parallelizable, and, so, are ubiquitous throughout scientific

computing. See the textbooks [13, 99] for introductions to the subject area. The methods

were originally developed to solve structured discretizations of elliptic boundary value

problems, of which the Poisson equation is the prototypical example, and have since been

developed for a larger class of problems. While there has undoubtedly been much progress

in extending their applicability, most of their success has been for symmetric, or near-

symmetric problems, with the efficient multigrid solution of many highly non-symmetric
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t

δt

t

mδt
F-point

C-point

Figure 1.2: A fine grid with time-step δt (top), and coarse grid with time-step mδt, with
m = 4 (bottom). F-points appear exclusively on the fine grid, while C-points appear on
both the fine and coarse grids.

problems, such as (1.5), or implicit time discretizations of (1.1), remaining an active area

of research.

Returning to the MGRIT solution of (1.5), suppose that the time points (nδt)ntn=0 consti-

tute a ‘fine grid,’ and let a coarsening factor m ∈ N induce a ‘coarse grid’ that consists of

every mth fine-grid point, (mnδt)
nt/m
n=0 (assuming for simplicity that nt is divisible by m).

The set of points appearing exclusively on the fine grid are called F-points, while those

appearing on both fine and coarse grids are C-points. See Figure 1.2 for an example.

As is standard for a multigrid method, an MGRIT iteration carries out pre-relaxation, a

coarse-grid correction, and then post-relaxation. Suppose that we have an approximation

to the solution of (1.5) given by v ≈ u, with the algebraic residual defined by r = b−Av.

Then, there are two fundamental types of relaxation carried out on the system Av ≈ b: F-

relaxation, which uses v at C-points to solve for the solution at the intervening F-points;

and, C-relaxation, which uses v at the F-points that precede C-points to solve for the

solution at C-points. See Figure 1.3 for a schematic example. Therefore, F-relaxation sets

the residual r to zero at F-points, and C-relaxation sets the residual r to zero at C-points.

Equivalently, as pictured in Figure 1.3, F-relaxation can be thought of as time-stepping v

from each C-point across the interval of m−1 F-points that follow it, and C-relaxation can

be thought of as time-stepping v from the last F-point in each interval to its neighbouring

C-point. F- and C-relaxations are completely local operations and are therefore highly

parallelizable.

t

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

t

Φ Φ Φ Φ

F-point

C-point

Figure 1.3: The two fundamental types of relaxation used in MGRIT. Top: F-
relaxation. Bottom: C-relaxation.
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The standard pre-relaxation sweep performed in MGRIT is either: F-relaxation, or the

stronger FCF-relaxation, which is an F-, followed by a C-, then by an F-relaxation.

Throughout this thesis, we exclusively use FCF-relaxation since we typically find that

it gives more robust convergence (see also [32]). Note that in the Parareal literature, an

F-relaxation rather than an FCF-relation is most commonly used. After the coarse-grid

correction, post-relaxation is performed, which is simply an F-relaxation. Note that one

FCF relaxation is already almost a factor of two times as expensive as solving (1.5) by

sequential time-stepping (the exact factor is 2 − 1
m , m > 1). Therefore, even if MGRIT

converges in a small number of iterations, say O(10), for example, this means that solving

(1.5) with MGRIT will always be much more expensive in terms of FLOPs than sequen-

tial time-stepping. However, the crucial advantage of MGRIT is that its iterations can be

parallelized efficiently, whereas time-stepping is inherently sequential.

In MGRIT, the coarse-grid correction problem is derived from the Schur complement of

the fine-grid residual equation with respect to the C-points, or equivalently, by eliminating

the F-point variables from the residual equation (the process of algebraically eliminating a

subset of the variables is known as reduction, and hence the name multigrid reduction-in-

time). Recall for an approximation of (1.5) given by v ≈ u, the residual equation relates

the algebraic error and the residual by Ae = r, where e = u − v, and r = b − Av.

Now, suppose pre-relaxation is carried out using v, then a new approximation, error, and

residual will be generated, all of which we will still denote by v, e, and r, respectively.

After pre-relaxation (which always ends with an F-relaxation), the residual will be zero at

F-points, and therefore the residual equation is




I

−Φ I
. . .

. . .

−Φ I

−Φ I

−Φ I
. . .

. . .

. . .
. . .

−Φ I

−Φ I







e0

e1

...

em−1

em

em+1

...

...

ent−1

ent




=




r0

0
...

0

rm

0
...
...

0

rnt




. (1.6)

Simple algebra reveals that the error at the kth C-point can be expressed in terms of the

error at the k− 1st C-point according to ekm = rkm + Φme(k−1)m. Therefore, the error at
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C-points satisfies the global system

Aideal coarseeideal coarse :=




I

−Φm I
. . .

. . .

−Φm I







e0

em
...

ent




=




r0

rm
...

rnt




=: rcoarse (1.7)

In other words, (1.7) is the Schur complement of the fine-grid residual equation Ae = r

that results after pre-relaxation. Rather than solving the Schur complement system (1.7),

MGRIT instead solves the system

Acoarseecoarse :=




I

−Ψ I
. . .

. . .

−Ψ I







ê0

êm
...

ênt




=




r0

rm
...

rnt




= rcoarse, (1.8)

in which Ψ ≈ Φm is the coarse-grid time-stepping operator, and gives rise to the approx-

imate coarse-grid error ecoarse ≈ eideal coarse. After solving (1.8), the coarse-grid error

ecoarse is simply injected to the fine grid (i.e., added to C-point values of v), and then

post-relaxation propagates the correction on to F-points with an F-relaxation.

The coarse-grid problem (1.8) can either be solved sequentially with a forward solve,

resulting in a two-level method, or the algorithm can be applied recursively since (1.8) has

the same block lower-bidiagonal structure as the original fine-grid problem (1.5), resulting

in a multilevel method. Recall that Parareal is a two-level method, and thus it solves (1.8)

via sequential forward substitution. Parallelism is limited in the two-level case because the

coarse-grid problem size of nt/m may still be large enough to present a serial bottleneck.

Taking Ψ = Φm =: Ψideal in (1.8) defines an ideal coarse-grid time-stepping operator in

the sense that the exact solution of (1.5) is reached in a single MGRIT iteration, since

then (1.8) really is the Schur complement system (1.7). However, no speed-up in parallel

can be achieved with Ψ = Φm since computations on the coarse grid are as expensive as

on the fine grid. For example, if a two-level method used Ψ = Φm, then the sequential

coarse-grid solve requires as much work as time-stepping across the whole fine grid with Φ.

One should therefore choose Ψ to be some approximation of Φm—or equivalently, it should

approximate taking m steps with Φ on the fine grid—under the constraint that its action

is significantly cheaper to compute so that speed-up can be achieved. Most commonly

in the literature, Ψ is chosen through the process of rediscretizing Φ on the coarse grid.

That is, if Φ represents a specific time discretization, for example, implicit Euler, with a

time-step size of δt, then Ψ is also chosen as implicit Euler, with the enlarged coarse-grid

time step mδt [26, 28, 32]. However, other techniques have also been considered, such as
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coarsening in the order of accuracy of the discretization, akin to a p-multigrid method,

rather than coarsening the time-step which is the classical h-multigrid approach [34, 69].

To summarise, the pseudo code for two-level MGRIT is given in Algorithm 1. Note that

the algorithm is easily extended to multiple levels by replacing Line 4 with a recursive call

to the next coarsest level, if not already on the coarsest level.

Algorithm 1 Two-level MGRIT for Au = b, with initial iterate v ≈ u.

1: while residual norm larger than tolerance do
2: F(CF) relax on Av = b . Pre-relaxation using Φ
3: Compute C-point residual rcoarse

4: Solve Acoarseecoarse = rcoarse . Sequential forward solve using Ψ
5: Correct C-point approximation with ecoarse . Injection interpolation
6: F-relax on Av = b . Post-relaxation using Φ

MGRIT is an iterative algorithm. Its convergence behaviour is governed by the properties

of the coarse-grid operator Ψ, and how accurately this approximates the ideal coarse-grid

operator, Φm. While MGRIT has been shown to be efficient for many diffusion-dominated

problems, it has had markedly less success for advection-dominated problems. The key

to obtaining an efficient MGRIT solver is identifying a good coarse-grid operator, which

is what the majority of this thesis is dedicated to, in the context of advection-dominated

problems (see Chapters 2 to 4).

Somewhat atypical of iterative solvers, MGRIT converges to the exact solution (of the

discrete problem) after a finite number of iterations, due to sequential propagation of the

initial condition across the temporal domain by the fine-grid relaxation scheme [32]. It

is easy to see in Figure 1.3 that, starting from the initial condition (i.e., the left-most C-

point), a single iteration of an MGRIT algorithm using F-relaxation will obtain the exact

solution at all points upto and including the second C-point. After another iteration, the

exact solution will be obtained at all points upto and including the third C-point, and so

on. However, should MGRIT converge only in the regime where the initial solution has

been propagated across much of the (fine-grid) domain, then it is of no practical interest

since no speed-up in parallel can possibly be obtained. As such, throughout this thesis,

we use the term ‘divergence’ to describe this type of convergence behaviour.

Definition 1.1 (Divergence of MGRIT). If MGRIT converges only in a number of itera-

tions which is close to that for which it propagates the initial condition exactly across the

entire fine-grid interval, that is, O(nt/(2m)) iterations for FCF pre-relaxation (see [32]),

then we say that it diverges.

Note that our word choice of ‘divergence’ to describe the above scenario is motivated

by the observation that often, but not always, the residual grows initially in such cases,
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and sometimes very strongly, before eventually decaying to zero. In the literature, this

behaviour is also commonly referred to as instability of the solver [83, 80].

Finally, let us conclude with a numerical example that serves to contextualize results

throughout the remainder of the thesis. We will solve the diffusion equation ∂u
∂t = 0.05∂

2u
∂x2

,

(x, t) ∈ (−1, 1) × (0, 1] subject to periodic boundary conditions in space, and the initial

condition in time u(x, 0) = sin4(πx). The exact solution of this PDE is plotted in the

right panel of Figure 1.1. The PDE is discretized in space using 2nd-order central finite

differences, and in time with a 2nd-order L-stable singly diagonally implicit Runge-Kutta

(SDIRK) method (see Appendix A.1). A time-step of δt = h is used, for spatial mesh

width h. We consider two different MGRIT solvers: One using only two levels and a

coarsening factor of m = 16, and a second using a multilevel V-cycle with a coarsening

factor of m = 4 on each level, with coarsening performed until there are just two points on

the coarsest level. On coarse levels, the time-stepping operator is given by rediscretizing

the fine-grid problem (that is, reapplying the same discretization as on the fine grid, just

with the enlarged time-step of mδt). The initial guess of the space-time solution is chosen

to be uniformly random.

Let us focus on the convergence speed of MGRIT rather than its parallel performance (con-

vergence speed of the MGRIT algorithm in terms of the number of iterations is identical

whether it is run serially or in parallel). To do so, we consider the two-norm of the residual

of the space-time system (1.5) as a function of the number of MGRIT iterations, which

is shown in Figure 1.4. Observe from the plots that convergence is very fast, reaching a

Figure 1.4: Two-norm of the space-time residual (relative to its initial value) for the
MGRIT solution of the diffusion equation problem from Figure 1.1 discretized with nx×nt
points in space-time. Left: Two-level solver using coarsening factor m = 16. Right:
Multilevel V-cycles using m = 4 on every level.
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machine zero residual norm in ∼ 7 iterations.2 The convergence is scalable in the sense

that the asymptotic convergence rate is effectively constant as the problem size grows. In

other words, the problems are solved with O(nt) work, and, so, we say that the solver

scales optimally for this problem. Another important observation is that the convergence

appears robust with respect to parameters of the algorithm, since there is no significant

change in going from two levels to multiple levels, or in changing the coarsening factor.

In summary, MGRIT convergence is fast, scalable, and robust on this diffusion equation,

and would likely result in large speed-ups over sequential time-stepping if the solves were

run on a parallel machine with a sufficient number of processors.

For hyperbolic equations, and advection-dominated equations more broadly, this approach

of rediscretizing the fine-grid problem does not give a usable solver, even for simple prob-

lems such as the one-dimensional, constant-coefficient equation (1.1). Obtaining scalable

MGRIT convergence as in Figure 1.4 for these equations is an open problem that this

thesis will solve.

1.5 Thesis outline

We now provide an outline for the remaining chapters of the thesis.

In Chapter 2, Optimizing MGRIT coarse-grid operators for linear advection, we explore

the application of MGRIT to the constant-coefficient linear advection equation. It is

demonstrated that efficiently solving this problem is very difficult. We derive a heuristic

optimization strategy to produce coarse-grid operators that are approximately optimal

in some sense. Detailed numerical examples show the coarse-grid operators yield highly

efficient MGRIT convergence.

In Chapter 3, Closed-form Fourier analysis of MGRIT with applications to advection-

dominated problems, we analyse the convergence behaviour of MGRIT through the lens of

Fourier analysis. Analytical expressions are derived that approximately describe MGRIT

convergence behaviour for certain initial-value problems. We then apply the Fourier theory

to develop a better understanding of what it is about advection-dominated problems that

makes them difficult to efficiently solve with MGRIT.

In Chapter 4, Fast MGRIT for advection via dissipatively corrected coarse-grid operators,

based, in part, on findings from previous chapters, we develop a novel coarse-grid operator

2There are some residual curves that vanish from the plots after some number of iterations; for example,
the nt = 32 and nt = 128 curves in the left panel are not shown after the 0th and 3rd iterations, respectively.
This is because the residual is exactly zero after 1 and 4 iterations for these values of nt when m = 16 (see
the discussion before Definition 1.1).
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for advection-dominated problems discretized with semi-Lagrangian methods. The oper-

ator generalizes the one presented in Chapter 2, with it being applicable to a much wider

set of problems. Numerical tests demonstrate the efficacy of the operator in a wide variety

of settings, including for high-order discretizations and variable-coefficient problems.

Chapter 5, Fully implicit Runge-Kutta methods for method of lines, considers sequential

time-stepping rather than parallel-in-time integration. Here, we study the numerical so-

lution of fully implicit Runge-Kutta methods for method-of-lines discretizations. New

algorithms for the solution of this problem are presented. In-depth theoretical analyses

are conducted to assess the efficacy of the linear preconditioners that lie at the center

of the proposed algorithms. Detailed numerical experiments are given which confirm the

theoretical analyses. While this chapter does not consider parallel-in-time integration, our

theoretical analysis is motivated by the time integration of advection-dominated prob-

lems. In particular, we analyse the proposed algorithms for cases in which the spatial

discretization is non-symmetric and/or non-normal, which is common for hyperbolic prob-

lems. Moreover, our numerical tests focus on linear and nonlinear advection-diffusion

problems.

Finally, the main findings of the thesis are summarized in Chapter 6, and avenues of future

research are discussed.
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Chapter 2

Optimizing MGRIT coarse-grid

operators for linear advection

2.1 Literature survey and outline

For a wide variety of diffusion-dominated problems, MGRIT and Parareal can achieve a sig-

nificant reduction in wall clock time over sequential time-stepping methods, given enough

parallel resources [64, 2, 32, 33, 34, 35, 72]. However, despite this success for diffusion-

dominated problems, MGRIT and Parareal (along with most other parallel-in-time meth-

ods) tend to perform quite poorly on hyperbolic PDEs. Specifically, they typically exhibit

extremely slow convergence or even divergence when applied to advection-dominated PDEs

[19, 23, 28, 46, 40, 50, 58, 57, 69, 81, 80, 83, 97] (recall our definition of divergence given

in Definition 1.1.) Moreover, many of these examples demonstrate a clear deterioration in

convergence as the amount of dissipation in the underlying PDE and/or its discretization

is decreased [57, 83, 97].

To date, attempts to address this problem have been largely unsuccessful. Several so-

called ‘stabilized’ variants of Parareal have been developed which overcome the typically

divergent behaviour of standard Parareal, but are significantly more expensive, and so

their practicability is limited [19, 23, 81]. The coupling of semi-Lagrangian coarse-grid

operators with Eulerian fine-grid operators was considered in [83] for the viscous Burgers

equation. Unfortunately, though, their numerical tests showed that convergence deterio-

rates significantly in the zero-viscosity/hyperbolic limit [83]. Coarsening also in space was

considered in [58] when applying MGRIT to the linear advection and Burgers’ equations

to provide both cheaper multigrid cycles and overcome CFL stability issues arising from

coarsening only in time. Parallel speed-up was demonstrated for linear advection only, but

convergence was, ultimately, slow and not scalable, and the approach did not work when

15
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applied to higher than first-order discretizations. In [69], modest speed-ups were achieved

for the shallow water equations, in part, by reducing the order of the discretizations in

time and space, rather than coarsening the mesh. Small to moderate speed-ups for linear

hyperbolic PDEs have been obtained with ParaExp [42], but this algorithm falls outside

of the class of MGRIT-like algorithms that we study in this thesis. In all of these works,

speed-ups over sequential time-stepping for hyperbolic PDEs are typically quite small (on

the order of two to six), with slow convergence of the iteration ultimately inhibiting faster

runtimes due to increased parallelism. For comparison, a speed-up on the order of 20 times

was achieved for a diffusion-dominated parabolic problem in [35].

A number of theoretical convergence analyses have been developed for Parareal and MGRIT,

which have helped to explain numerical convergence results, and will likely play an impor-

tant role in the design of new solvers [26, 28, 46, 40, 51, 80, 88, 44, 38]. Furthermore, some

theoretical studies have identified potential roadblocks for fast parallel-in-time convergence

of hyperbolic PDEs [46]. Nevertheless, there does not yet exist a general understanding of

why the parallel-in-time solution of advection-dominated problems seems to be so much

more difficult than for their diffusion-dominated counterparts.

The aim of this chapter is to demonstrate that, in fact, Parareal and MGRIT, with the right

choice of coarse-grid operator, can efficiently integrate hyperbolic PDEs. To do so, we work

in an idealized environment, in which the constant-coefficient linear advection problem

in one spatial dimension is subject to periodic spatial boundary conditions, such that

existing sharp MGRIT convergence theory can be appealed to. Informed by convergence

theory and the PDE, heuristics are developed that coarse-grid operators should satisfy and

optimization problems based on these are formulated to find ‘near-optimal’ coarse-grid

operators. For example, one such heuristic we develop here is that coarse-grid operators

should track information along characteristics, similar to the semi-Lagrangian schemes

considered in [83]. However, our optimization-based coarse-grid operators lead to robust

solvers in the hyperbolic limit, unlike the semi-Lagrangian coarse-grid operators in [83]. It

is demonstrated that these coarse-grid operators lead to scalable convergence, in the sense

that the computational work is almost linear asymptotically as a function of the problem

size (i.e., the solvers converge in approximately a constant number of multigrid iterations

asymptotically). Moreover, convergence is achieved in just a handful of iterations, for

both implicit and explicit discretizations, resulting in significant speed-ups in parallel over

sequential time-stepping, comparable to what has been achieved for diffusion-dominated

parabolic PDEs. Notably, our results include the use of high-order accurate discretizations

(up to fifth order), which is important because many results reported in the literature for

hyperbolic PDEs have used diffusive, low-order discretizations that have likely aided the

convergence of the given parallel-in-time method. Additionally, our approach works for
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large coarsening factors, and fine-grid CFL numbers are used that reflect what would

realistically be used with sequential time-stepping.

The remainder of this chapter is organized as follows. In Section 2.2, the model problem

and its discretizations are introduced. Section 2.3 provides some motivating numerical

examples that highlight the difficulty of solving the seemingly simple model problem. A

discussion on convergence theory and what it reveals about the difficulty of hyperbolic

problems is given in Section 2.4. Section 2.5 develops an optimization-based approach

for finding effective coarse-grid time-stepping operators. Parallel results are given in Sec-

tion 2.6 for some of the newly developed coarse-grid operators. Concluding remarks and

a discussion of future work is the subject of Section 2.7.

2.2 Preliminaries

In this section, the model problem and its discretizations are outlined.

2.2.1 Model problem and discretizations

For the model problem, consider the one-dimensional linear advection equation,

∂u

∂t
+ α

∂u

∂x
= 0, (x, t) ∈ [−1, 1]× (0, T ], u(x, 0) = sin4(πx), (2.1)

with constant wave speed α > 0. While the exact solution of this canonical hyperbolic

PDE is just the shifted initial condition, and its numerical approximation is easily obtained

in the sequential time-stepping setting, it presents enormous difficulty for parallel-in-time

solvers. In what follows, as throughout most of this thesis, periodic boundary conditions in

space will be considered, but inflow/outflow boundaries will be considered in Section 2.5.5.

To numerically approximate the solution of (2.1), finite-difference spatial discretizations

are used with Runge-Kutta time integrators. As such, the spatial domain x ∈ [−1, 1]

is discretized with nx + 1 equidistant points with spacing ∆x, and the temporal domain

t ∈ [0, T ] is discretized with nt+1 equidistant points having a spacing of ∆t. The method of

lines is employed to generate a semi-discretized representation. First, a pth-order upwind

finite-difference spatial discretization is applied to (2.1), resulting in the system ODEs

u′(t) = Lu(t), t ∈ (0, T ], u(0) = u(x, 0), (2.2)

in which L : Rnx → Rnx represents the discretization of −α ∂
∂x on the spatial mesh. Since

α is constant and periodic boundaries are applied, L is a circulant matrix and is, thus,
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unitarily diagonalized by the discrete Fourier transform (DFT). Specifically, upwind-finite-

difference spatial discretizations of orders 1–5 are used, which will be denoted as U1–U5.

Letting v′i denote the derivative of the single variable function v(x) at point xi, these are

given by

v′i =
1

∆x

[
vi − vi−1

]
+O(∆x), (U1)

v′i =
1

2∆x

[
3vi − 4vi−1 + vi−2

]
+O(∆x2), (U2)

v′i =
1

6∆x

[
2vi+1 + 3vi − 6vi−1 + vi−2

]
+O(∆x3), (U3)

v′i =
1

12∆x

[
3vi+1 + 10vi − 18vi−1 + 6vi−2 − vi−3

]
+O(∆x4), (U4)

v′i =
1

60∆x

[
− 3vi+2 + 30vi+1 + 20vi − 60vi−1 + 15vi−2 − 2vi−3

]
+O(∆x5). (U5)

These discretizations may be constructed using standard polynomial interpolation tech-

niques, as described in [84], for example.

The ODE system (2.2) is then discretized using either a pth-order explicit Runge-Kutta

(ERK) method, or a pth-order, L-stable singly diagonally implicit Runge-Kutta (SDIRK)

method, with the resulting scheme denoted as either ERKp+Up, or SDIRKp+Up. Specif-

ically, the following ERK schemes of orders 1–5 are considered: The 1st-order scheme

is Euler’s method; the 2nd- and 3rd-order methods are the ‘optimal’ strong-stability-

preserving schemes [52, (9.7), (9.8)]; the 4th-order scheme is the ‘classical Runge-Kutta

method’ [14, p. 180]; and finally, see [14, (236a)] for the 5th-order scheme. The following

SDIRK schemes of orders 1–4 are considered: The 1st-order scheme is Euler’s method; the

2nd- and 3rd-order methods can be found in [14, pp. 261–262]; and the 4th-order scheme is

given by [48, (6.16)]. For completeness, Butcher tableaux for these Runge-Kutta schemes

can be found in Appendix A.1.

Upon application of a Runge-Kutta scheme to ODEs (2.2), their numerical solution may

be written in the one-step form

un+1 = Φun, u0 = u(0), n = 0, . . . , nt − 1, (2.3)

where Φ: Rnx → Rnx is the (fine-grid) time-stepping operator. Note that equations (2.3)

are equivalent to the block lower bidiagonal linear system given in (1.5). As will be prove

important shortly, the eigenvalues of Φ can be computed as a function of those of L
[28, 51]. In fact, it can be shown that Φ is a rational function (in a matrix sense) of L, as

in Lemma 2.1.

Lemma 2.1 (Rational form of Φ). Let R(z) = P (z)/Q(z) denote the stability function

[14, Lemma 351A] of a Runge-Kutta scheme applied to (2.2), in which P and Q are



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 2: Optimizing MGRIT coarse-grid operators for linear advection 19

polynomials derived from the Butcher tableau of the scheme. Then, for diagonalizable

matrices L ∈ Rnx×nx, the time-stepping operator in (2.3) is

Φ(∆tL) = P (∆tL)[Q(∆tL)]−1. (2.4)

Proof. Let X denote the matrix having eigenvectors of L as its columns. Substituting

u = Xv into (2.2) and left multiplying by X−1 yields a system of nx decoupled ODEs of the

form dvk/ dt = ξkvk, k = 1, . . . , nx, in which ξk is the kth eigenvalue of L. Using the Runge-

Kutta stability function, the one-step numerical solution of the kth component of the de-

coupled ODEs is vn+1
k = R(∆tξk)v

n
k ≡ P (∆tξk)/Q(∆tξk)v

n
k . The one-step solution of the

system of decoupled ODEs can then be written as vn+1 = P (∆t diag(ξ))[Q(∆t diag(ξ))]−1vn.

Making the substitution v = X−1u, left multiplying by X , and noting

XG (∆t diag(ξ))X−1 = G
(
∆tX diag(ξ)X−1

)
= G (∆tL) for any rational function G yields

the result. �

For an ERK scheme, Q(z) = 1 and so the Runge-Kutta stability function used in Lemma 2.1

is simply a polynomial, R(z) = P (z).

Corollary 2.2. For periodic boundary conditions applied to (2.1), the time-stepping oper-

ator Φ in (2.3) can be written as the product of a sparse circulant matrix and the inverse

of a sparse circulant matrix. In the case of an ERK scheme, Φ is simply a sparse circulant

matrix.

Proof. For periodic boundaries, the finite-difference spatial discretizations L are sparse and

circulant, and noting that circulant matrices are closed under addition and multiplication,

the result follows immediately from the rational form of Φ in (2.4). �

The CFL number for Runge-Kutta finite-difference discretizations of (2.1) is defined as

c := α
∆t

∆x
. (2.5)

The explicit discretizations considered here suffer from a CFL limit, for which a necessary

(and sufficient) condition for numerical stability is c ≤ cmax. Values of cmax can be

computed from the Runge-Kutta stability function and the eigenvalues of ∆tL, and are

Table 2.1: CFL limits cmax for ERK+U discretizations of constant-coefficient advection
problem (2.1) with periodic boundary conditions.

Scheme ERK1+U1 ERK2+U2 ERK3+U3 ERK4+U4 ERK5+U5

cmax 1 1/2 1.62589. . . 1.04449. . . 1.96583. . .
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Figure 2.1: Space-time discretization errors for (2.1) measured in the discrete `2-norm.
Left: ERK+U. Right: SDIRK+U. Plotted underneath each scheme’s errors is a dashed
line showing the theoretical convergence rate (order p for ERKp/SDIRKp+Up). Note the
use of different scalings of the vertical axes in the plots.

given in Table 2.1. Throughout this chapter, experiments using ERK discretizations will

employ a CFL fraction—ratio of CFL number to CFL limit—of 85%, c = 0.85cmax, since

it is realistic of what would be used for regular time-stepping. In all SDIRK experiments,

a CFL number of c = 4 is used. All of the SDIRK+U schemes considered here are

unconditionally stable, since it can be shown that the eigenvalues of the circulant matrices

L ∈ Rnx×nx lie in the closed left half plane, which means that the eigenvalues of ∆tL are

contained in the stability region of any L-stable Runge-Kutta method. A wave speed of

α = 1 is used in all experiments.

To demonstrate the accuracy of the discretizations used here and to emphasize that the

high-order methods faithfully represent the non-dissipative nature of (2.1), computed dis-

cretization errors are shown in Figure 2.1. The high-order methods stand in stark contrast

with the first-order SDIRK1+U1 (right-hand panel), which has yet to reach its asymptotic

convergence rate of one, because it possesses significant numerical diffusivity.

2.2.2 Numerical set-up

For completeness, all of the settings used in the numerical tests in this chapter are now

described. The initial iterate for the space-time solution is uniformly random except at

t = 0, where it matches the prescribed initial condition. Unless otherwise noted, the metric

used to report solver convergence is the number of iterations needed to achieve a space-time

residual below 10−10 in the discrete `2-norm. This stopping criterion exceeds the accuracy

of the underlying discretizations in almost all cases, and so its use typically leads to a

dramatic ‘over solving’ of the space-time system with respect to the discretization error.

Nonetheless, we use such a small halting tolerance to highlight asymptotic convergence

behaviour. For all ERKp+Up tests, a spatial resolution is selected, and a number of points



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 2: Optimizing MGRIT coarse-grid operators for linear advection 21

nt in time is chosen to be the largest power of two such that T = ∆tnt does not exceed

8 (note that requiring nt to be a power of two simplifies the implementation because only

coarsening by a power of two is considered here). For p = (1, 2, 3, 4, 5) and a CFL fraction

of 85%, this results in final integration times T ≈ (6.8, 6.8, 5.5, 7.1, 6.7). For all SDIRK+U

tests, T = 8 and nt = nx such that a CFL number (2.5) of c = 4 results. Where scaling

tests are presented, the mesh is refined uniformly in both space and time such that the

CFL number of the fine-grid discretization remains constant.

2.3 Failure of MGRIT for the model problem

To provide a baseline for the numerical results shown later in this chapter, we now present

numerical results for model problem (2.1) using MGRIT with rediscretized coarse-grid

operators (i.e., Ψ is chosen as Φ with an enlarged time step of m∆t). For all ERK+U

discretizations of (2.1), such a coarse-grid operator leads to divergent solvers for all m.

This behaviour is driven primarily by CFL instability: For coarsening factors m > 1, the

coarse-grid CFL limit is violated (recalling fine-grid CFL numbers are set to 85% of their

respective limits), and so the resulting (unstable) coarse-grid solution cannot accelerate

convergence to the (stable) fine-grid solution. See the left panel of Figure 2.2 for a specific

example.

To overcome the instability of rediscretizing an explicit method on the coarse grid, a

possible strategy is to couple the explicit fine-level discretization with a stable, implicit

coarse-grid discretization. In such cases, a large coarsening factor is required to amortize

the increased cost of solving an implicit coarse-grid problem. However, in our numerical

Figure 2.2: Two-norm of space-time residual (relative to its initial value) as a function of
MGRIT iteration for the fine-grid operator Φ = ERK1+U1. Left: Coarse-grid operator is
the unstable rediscretization Ψ = ERK1+U1 with coarsening factor m = 2. The problem
size is nx×nt = 28×210. Right: Coarse-grid operator is the stable implicit discretization
Ψ = SDIRK1+U1 for coarsening factors m = 2, 4, 8, 16. The problem size is nx × nt =
210 × 212.



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 2: Optimizing MGRIT coarse-grid operators for linear advection 22

tests, this technique seldom results in a good solver because the approximation it provides

to Ψideal := Φm is not good enough, even for small m. See the examples in the right

panel of Figure 2.2. Furthermore, we are unaware of any results in the literature that have

used this technique (either successfully or unsuccessfully) for hyperbolic problems. In the

few instances where speed-up has been achieved for explicit discretizations of hyperbolic

problems, alternative techniques, such as incorporating spatial coarsening [58], or reducing

the order of the discretization in time [69] have been used. While such techniques certainly

avoid coarse-grid CFL instabilities, it is not clear that they result in efficient algorithms,

since only small speed-ups have been observed in practice [58, 69]. Thus, we do not

present numerical results for ERK discretizations here because the standard choice of

rediscretization is divergent for our time-only coarsening algorithm and, to the best of

our knowledge, no other technique exists for developing efficient coarse-grid operators for

explicit discretizations.

In contrast to explicit discretizations, unconditionally stable, implicit fine-grid discretiza-

tions can be rediscretized on coarse grids to provide stable coarse-grid operators. Two-level

MGRIT iteration counts for SDIRK+U discretizations of (2.1) using such coarse-grid oper-

ators are given in the left side of Table 2.2. All solvers, with the exception of SDIRK1+U1,

are divergent since they converge in approximately the number of iterations for which the

initial condition is sequentially propagated across the entire domain (if one uses exact

arithmetic), as is done in sequential time-stepping. The relatively better performance of

SDIRK1+U1 is attributable to the fact that it is highly diffusive (see Figure 2.1), but it

still requires a number of iterations that is much higher than what we will achieve with

the new approach introduced in this chapter.

Table 2.2: Two-level iteration counts for SDIRK+U discretizations using a rediscretized
coarse-grid operator. Left: Measured iteration counts. Right: Iteration counts at which
the exact solution is achieved using exact arithmetic, nt/(2m). The ‘7’ denotes a solve
which suffered an overflow error at the 358th iteration where the residual norm was
approximately 10303.

Scheme nx × nt Iteration count nt/(2m)
m = 2 m = 4 m = 2 m = 4

SDIRK1+U1
210 × 210 18 38 256 128
212 × 212 18 40 1024 512

SDIRK2+U2
210 × 210 241 128 256 128
212 × 212 1008 514 1024 512

SDIRK3+U3
210 × 210 183 128 256 128
212 × 212 891 507 1024 512

SDIRK4+U4
210 × 210 256 130 256 128
212 × 212 7 520 1024 512
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When using rediscretization, MGRIT convergence rates for implicit discretizations of hy-

perbolic problems strongly depend on the CFL number, with smaller CFL numbers typ-

ically resulting in faster convergence, even though there is no CFL limit to violate. This

can be seen by contrasting the types of convergence rates reported in [28] for linear advec-

tion with those shown in Table 2.2 for larger, more realistic CFL numbers. This behaviour

stands in stark contrast with that for diffusion-dominated problems where convergence is

typically achieved within 10 or so iterations, even for high-order discretizations and large

coarsening factors [28, 32]; see also our example in Figure 1.4 for the diffusion equation.

2.4 Convergence theory applied to hyperbolic problems

To better understand the reason for poor convergence of MGRIT applied to the model

problem (as shown in the previous section), and hyperbolic PDEs more generally, let us

now recall the two-level MGRIT convergence theory of [28, 51] and discuss some of its

implications.

2.4.1 Two-level convergence theory

The convergence behaviour of MGRIT can be understood by analyzing its error prop-

agation matrix, E . That is, if e(0) is the initial space-time error, then after q MGRIT

iterations, the error obeys
∥∥e(q)

∥∥ ≤ ‖E‖q
∥∥e(0)

∥∥. To analyze ‖E‖, let us assume that the

fine-grid time-stepping operator Φ and coarse-grid time-stepping operator Ψ are simulta-

neously diagonalizable by a unitary transform, and denote their eigenvalues by (λk)
nx
k=1,

and (µk)
nx
k=1, respectively. These assumptions are satisfied by the Φ and Ψ considered

here, since all circulant matrices are unitarily diagonalized by the DFT. Furthermore, the

eigenvalues should satisfy |λk|, |µk| < 1 ∀k, so that the time-stepping methods are stable;

note that |λk| = |µk| = 1 is also sufficient for stability, but the following theoretical result

does not apply to such cases.

The assumption of diagonalizability allows error reduction for each spatial mode to be

considered individually. That is, if Ek is the error propagator associated with the kth

spatial mode, then we can consider ‖Ek‖ for each k. Moreover, ‖E‖2 = maxk ‖Ek‖2. For

the case of FCF-relaxation used here, the 2-norm of Ek can be bounded as [51, Lemma

4.1, Theorem 4.3], [28, Theorem 3.3]:

‖Ek‖2 ≤
√
m |λk|m

|λmk − µk|
1− |µk|

(
1− |µk|nt/m−1

)
. (2.6)

In [88], it was shown that this bound is equal to ‖Ek‖2 up to O(m/nt), and, so, it is sharp.
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Given bound (2.6), the question is now: What is required of Ψ, by way of its eigenvalues

(µk)
nx
k=1, for fast MGRIT convergence? Note that under the assumption |µk| < 1, the last

factor 1−|µk|nt/m−1 → 1 as nt →∞, meaning convergence is primarily determined by the

preceding factors. Firstly, convergence of the kth mode is related to how closely µk ≈ λmk .

So, in general, the spectrum of Ψ should approximate that of Φm (but recall Ψ = Φm

is not practically feasible). Secondly, from the denominator, error modes associated with

|µk| ≈ 1 are potentially damped much slower than those having |µk| � 1. This slow

convergence must be rectified by ensuring the approximation µk ≈ λmk is more accurate

for these modes. Thus, Ψ must most accurately approximate the largest (in magnitude)

eigenvalues of Φm. As noted in [88], the largest (in magnitude) eigenvalues of Φ typically

correspond to the smoothest spatial modes, and, so, equivalently, the action of Ψ must

most accurately approximate that of Φm for spatially smooth modes. Moreover, the leading

|λk|m factor provides an additional damping mechanism for modes having |λk| � 1; note

this factor arises as a consequence of using FCF- rather than F-relaxation [28, 51]. In

summary, fast convergence necessitates the approximation µk ≈ λmk to hold ∀k, and with

increasing accuracy for |λk|, |µk| → 1.

2.4.2 Implications of convergence theory

Let us now provide some insight as to why MGRIT convergence is typically much worse

for advection-dominated problems compared with their diffusion-dominated counterparts.

Discretizations of advection-dominated PDEs are (usually) much less dissipative than dis-

cretizations of diffusion-dominated PDEs since the PDEs themselves have little dissipation

(or none in the hyperbolic limit). The amount of dissipation of the kth spatial mode for a

given discretization Φ is directly related to the value of |λk|. Typically, for a discretization

of a diffusion-dominated problem, there are very few |λk| ≈ 1, and many |λk| � 1, while

for an accurate discretization of an advection-dominated problem, there are many more

|λk| ≈ 1. In either case, |λk| ≈ 1 typically correspond to smooth spatial modes. This

behaviour is seen in the top row of Figure 2.3, where the (square of the) eigenvalues of Φ

for a purely diffusive and a purely advective PDE are shown.

Since diffusion-dominated problems have so few |λk| ≈ 1, Ψ only has to accurately approx-

imate very few eigenvalues of Φm to yield fast convergence. Conversely, since advection-

dominated problems have many |λk| ≈ 1, and very few |λk| � 1, Ψ has to accurately

approximate a much greater proportion of the eigenvalues of Φm. In general, this makes

the task of identifying a good Ψ more difficult since it should have a simpler structure

than Φm so that its action is less expensive to compute.
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Figure 2.3: Left column: Diffusion equation ∂u
∂t = ∂2u

∂x2 discretized with SDIRK2
in time and 2nd-order central finite-differences in space. Right column: Advection
equation ∂u

∂t + ∂u
∂x = 0 discretized with SDIRK3+U3. Top row: Eigenvalues λ2k of Φ2,

and µk of Ψ, with Ψ defined by rediscretizing Φ with m = 2. Bottom row: Error bound
(2.6) for each problem as a function of Fourier frequency, ωk. Both problems are subject to
periodic boundary conditions in space, and are discretized on a space-time mesh covering
(x, t) ∈ (−1, 1)× [0, 8] having ∆t = ∆x = 1/64, so that Φ,Ψ ∈ R128×128.

The properties just discussed, in conjunction with the plots in Figure 2.3, help to illuminate

why rediscretization of Φ with time step m∆t typically leads to a good Ψ for diffusion-

dominated problems, but is often a poor choice for advection-dominated problems. In

Figure 2.3, notice the largest eigenvalues of Φ2 are clustered around spatial frequency

ωk = 0, noting that the ωk = 0 eigenvalue is at position (1,0) in the top right panel.

In each instance, we see that µk provides a good approximation to λ2
k for the smoothest

modes, ωk ≈ 0. For the diffusion problem, this approximation is adequate to obtain fast

convergence as the decay of |λk|2 away from ωk = 0 is very rapid. However, for the

advection problem, the approximation is inadequate since the decay of |λk|2 away from

ωk = 0 is more gradual and, so, the mismatch between λ2
k and µk is of much greater

detriment for convergence. Error bounds (2.6) are shown in Figure 2.3 underneath the

eigenvalue plots for each problem. In the diffusion case, the bound is very small and, so,

convergence is fast, while in the advection case, the bound exceeds one indicating that the

solver will be divergent. It is the smooth modes that are not accurately captured by Ψ

that cause the most issue.

In summary, rediscretization essentially fails for advection-dominated problems since it
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does not provide an adequate approximation to Φm for smooth spatial modes, which

tend to decay more slowly in time than for diffusion-dominated problems. Similar ideas

were identified [108] as being responsible for the breakdown of geometric multigrid for

advection-dominated, steady-state PDEs. There, Fourier analysis showed that an inade-

quate coarse-grid correction of some asymptotically smooth error modes, so-called ‘charac-

teristic components,’ is responsible for poor multigrid performance. It is conceivable that

the problematic modes identified above actually correspond to space-time characteristic

components, and this will be investigated further in Chapter 3. In any event, it is likely

that some of the ideas proposed in [108] for improving spatial multigrid solvers will be

useful for developing improved MGRIT solvers.

2.5 Coarse-grid operators based on a linear approximation

of Ψideal

From the discussion surrounding error estimates (2.6), the coarse-grid operator Ψ should

approximately minimize the difference between its spectrum and that of Φm, in general,

and particularly for larger |λk|. To this end, let us consider Ψ as the solution of the

minimization problem

Ψ := arg min
Ψ̂∈Rnx×nx

∥∥∥W 1/2
λ

[
λm − µ

(
Ψ̂
)]∥∥∥

2

2
, (2.7)

where λ =
(
λ1, . . . , λnx

)>
, µ =

(
µ1, . . . , µnx

)> ∈ Cnx , and (λm)k ≡ λmk . Here,

Wλ := diag(w) ∈ Rnx×nx is a diagonal weighting matrix, whose kth entry is wk := w(|λk|),
in which w : R+ → R+ is a weighting function reflecting the heuristic that it is most

important to minimize λmk − µk for |λk|, |µk| → 1, and less important for |λk|, |µk| � 1.

One choice of weighting function found to yield good results is

w(z) =
1

(1− z + ε)2
,

with 0 < ε � 1 a constant to avoid division by zero; in the numerical results shown

here, ε = 10−6. Note that allowing a free choice for Ψ̂ would naturally result in the choice

Ψ = Φm and, so, the optimization in (2.7) is constrained by a pre-specified sparsity pattern

of Ψ.

In general the eigenvalues of a matrix Ψ depend nonlinearly on its entries and thus (2.7)

constitutes a nonlinear minimization problem. However, for the special case of circulant

Ψ, (2.7) reduces to a linear least squares problem because the eigenvalues of a circulant
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matrix depend only linearly on its entries (they are given by the DFT—a linear operator—

applied to its first column). For explicit temporal discretizations of model problem (2.1)

with periodic boundaries, it is reasonable to impose that Ψ is a sparse circulant matrix

because Φ is and, hence, so too is Φm (see Corollary 2.2). In Section 2.5.6, we will also

show that a sparse Ψ may be used with implicit temporal discretizations of (2.1), for

which Φ and Φm are dense matrices. Thus, for the remainder of this chapter, let us focus

exclusively on the case in which Ψ is a sparse circulant matrix such that (2.7) reduces to

a linear least squares problem.

We have also formulated and solved a nonlinear least squares problem that is based on a

more direct minimization of error estimates (2.6) than the heuristic-based (2.7). This more

elaborate approach, however, gives similar results for the simple model problem considered

here. For completeness, this approach is given in Appendix A.2.

2.5.1 Linear least squares formulation

Let φ̃m, ψ̃ ∈ Rnx denote the first columns of the circulant matrices Φm and Ψ, respectively,

and recall that a circulant matrix can be fully specified by its first column. Assuming the

sparsity pattern of Ψ is given, let R ∈ Rν×nx be the restriction operator that selects these

ν non-zero entries from ψ̃, where ν � nx since the column is sparse. Further details on

the choice of R (or equivalently, the sparsity pattern of Ψ) will be given in the following

sections. The unknowns are thus the non-zero components of ψ̃, which are denoted as

ψ := Rψ̃ ∈ Rν . Finally, let F ∈ Cnx×nx be the DFT matrix, then by the properties

of circulant matrices, λm = Fφ̃m, and µ = Fψ̃ = FR>ψ since R>R has ones on the

diagonal in rows where ψ̃ has non-zeros and zeros everywhere else. Thus, (2.7) can be

written as a linear least squares problem for the non-zero entries in the first column of Ψ:

ψ := arg min
ψ̂∈Rν

∥∥∥W 1/2
λ F

(
φ̃m −R>ψ̂

)∥∥∥
2

2
. (2.8)

Remark 2.3 (The coarse-grid operator Ψ = arg min
Ψ̂∈Rnx×nx

‖Φm − Ψ̂‖22 does not result in a

good solver). For weighting function w = 1, or Wλ = I, (2.8) corresponds to minimizing

the difference between the spectra of Φm and Ψ in the two-norm. This is equivalent to

minimizing the difference between Φm and Ψ in the two-norm since they are both diag-

onalized by the same unitary transform. In this instance, the solution of (2.8) can be

computed explicitly as ψ = Rφ̃m, which means that Ψ is given by truncating Φm in the

sparsity pattern of Ψ. We have found that this choice of Ψ typically does not lead to a

fast or scalable solver for model problem (2.1) because it does not adequately capture the

dominant eigenvalues of Φm (see Section 2.4).
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Lemma 2.4. The solution of (2.8) is real valued.

Proof. The normal equations of (2.8) are

(
RF∗WλFR>

)
ψ =

(
RF∗WλF

)
φ̃m. (2.9)

Since R and φ̃m are real, ψ is real if the circulant matrix A := F∗WλF = F∗ diag(w)F is

real. Letting ã denote the 1st column of A, then, because A is circulant, ã = F∗w; that

is, ã is the inverse DFT of w. Appealing to properties of the inverse DFT (see Figure 2.4),

since w is real, ã will be real if w has even symmetry, meaning that wk = wnx−k. Using

the explicit formula for the eigenvalues of circulant matrices, it is easy to verify that

eigenvalues λk of any real-valued circulant matrix Φ must satisfy |λk|2 = λkλ
∗
k = λkλ−k =

λkλnx−k = |λnx−k|2. It follows that w is even since wk = w(|λk|) = w(|λnx−k|) = wnx−k

and, thus, A is real. �

In practice, the numerical solution of (2.8) is found to have some small imaginary compo-

nents since F is complex and the problem is ill-conditioned. These are simply truncated

from the solution, as is justified by Lemma 2.4. In some cases, the imaginary components

can become large and simply truncating them from the solution has never been found to

result in a good solver; see Table 2.3. This is also observed for some other choices of the

weight matrix W leading to particularly ill-conditioned matrices in (2.8). In practice, if an

imaginary component larger than 10−8 is detected, the result is flagged and the resulting

Ψ is not accepted as a coarse-grid operator. Note, however, that such large imaginary

components do not occur for the sparsity patterns of Ψ that we advocate in the following

sections.

ã = ãeven
real + iãeven

imag + ãodd
real + iãodd

imag

w = weven
real + iweven

imag + wodd
real + iwodd

imag

F F∗

Figure 2.4: How the even, odd, real, and imaginary components of the vectors a and
w are related through the discrete Fourier transform F (solid, cyan lines) and its inverse
F∗ (dashed, magenta lines) when F ã = w or F∗w = ã.
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2.5.2 Explicit schemes: Selection of Ψ’s non-zero pattern

Before solving (2.8), it must first be decided how to constrain the non-zero pattern of Ψ.

Our goal is to develop coarse-grid operators Ψ that result in convergence in a small number

of multigrid iterations, but that are sufficiently sparse to obtain a low cost per iteration. In

multigrid, the cost per iteration is quantified by the so-called operator complexity, which

is defined in the case of MGRIT as the total amount of work done in time-stepping on

all levels, relative to the time-stepping work on the finest level. The operator complexity

depends on the sparsity of the coarse-grid operators Ψ. Clearly, it is required that Ψ be

significantly sparser than the ideal coarse-grid operator Φm, so that time-stepping on the

coarse grid is substantially less expensive than on the fine grid. Ideally, one would like

the coarse operator Ψ not to be denser than the fine-level operator Φ, as would result

from rediscretizing the PDE on the coarse grid (note that the ideal coarse operator Φm

is typically much denser than Φ), but the forthcoming numerical results will show that

constraining Ψ to have as few non-zeros as Φ does not yield good solvers in general. Still, it

is useful to consider the case where nnz(Ψ) = nnz(Φ), with nnz(A) denoting the number of

non-zeros of matrix A, as a reference case to compare the per-iteration cost of our operators

Ψ with. To compute the operator complexity, let Φ` denote the time-stepping operator

on level 1 ≤ ` ≤ L of a multilevel hierarchy with L > 1 levels, meaning that Φ ≡ Φ1 and

Ψ ≡ Φ2 in the two-level notation used thus far in this chapter. Now, assuming Φ` is a

sparse operator, the work required to time-step with it is proportional to nnz(Φ`)ntm
1−`,

assuming a constant coarsening factor of m on all levels. Thus, the operator complexity

is given by

operator complexity :=
1

nnz(Φ1)

L∑

`=1

m1−`nnz(Φ`). (2.10)

An efficient multigrid cycle should have an operator complexity that is bounded indepen-

dently of L (so that the cost of the work on the coarse levels relative to the fine-level work

is bounded by a constant independent of the problem size and the number of levels). In

fact, if one uses ideal coarse-grid operators, Φ`+1 = Φm
` ∀`, the solver will have an opera-

tor complexity equal to L. In contrast, in our reference case where nnz(Ψ) = nnz(Φ), a

two-level solver has an operator complexity bounded by 1 + 1/m, and a multilevel solver

obeying this condition on all levels has a complexity bound of 1 + 1/(m − 1). Operator

complexities of the operators derived in the following sections will be compared with these

reference complexities.

Next, let us discuss how to choose the locations of the non-zeros in Ψ. Note that simply

rediscretizing Φ on a temporally coarsened mesh leads to Ψ having the same non-zero

pattern as Φ. To motivate a better choice of sparsity pattern, consider the effects of
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temporal coarsening on the exact solution of (2.1) when it is sampled on a space-time mesh;

a schematic diagram of this example is shown in Figure 2.5. The solution of a hyperbolic

PDE is propagated through space-time along its characteristics, x(t). Advection problem

(2.1) simply has characteristics that are straight lines with slope dx/ dt = α. Now, say

one has an exact fine-grid time-stepping operator, Φexact, that advects the PDE solution

along characteristics from one time level to the next. From the diagram, it is clear that

Φexact propagates the solution not only a distance of ∆t in time, but also a distance of

∆x in space. Considering semi-coarsening in time, by a factor of m = 4, for example, the

resulting exact coarse-grid time-stepping operator is Ψexact = Φ4
exact. By definition, Ψexact

propagates the solution forward in time by a distance of 4∆t; however, observe also that it

propagates the solution a distance of 4∆x in space. Thus, coarsening in the time direction,

but not in space, has shifted the spatial stencil of Ψexact (which reaches back four points

in space) with respect to that of Φexact (which reaches back one point in space).

From an algebraic perspective, it seems reasonable to consider Ψ ≈ Φm having its sparsity

pattern based on the largest non-zeros of Φm. To assess this, let us compute Φm and

examine its non-zeros as a function of their diagonal index i (recall entries of Φm are

constant along its diagonals since it is circulant). Define diagonal index i to be 0 on the

main diagonal, negative below the main diagonal, and positive above the main diagonal.

For m ∈ {16, 64}, these are shown in Figure 2.6. There is clearly a well-defined distribution

in the magnitude of these non-zeros for each scheme. The distributions peak at different i

essentially because the time step is chosen differently for each scheme, since c = 0.85cmax

and cmax is different for each scheme (see Table 2.1). In the plots, dashed lines represent

mc∆x, which is the spatial distance travelled along a characteristic departing from tn and

arriving at the space-time point (x, t) = (xi, t
n+m). This illustrates, not unexpectedly,

xi−4 xi−3 xi−2 xi−1 xi
tn

tn+1

tn+2

tn+3

tn+4

Φexact

Φexact

Φexact

Φexact

Ψexact

x

t

Figure 2.5: Exact fine- and coarse-grid time-stepping operators, Φexact and Ψexact,
propagate the solution of ∂u

∂t + α∂u∂x = 0 along one of its characteristics (thick, dashed
line) on a fine and coarse grid, respectively. The fine grid has a temporal mesh spacing
of ∆t = ∆x/α, and the coarse grid of 4∆t, with coarse-grid points at tn and tn+4.
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Figure 2.6: Magnitude of diagonal entries of Ψideal := Φm, m = 16 (left), and m = 64
(right), that are larger than 10−3, as a function of their diagonal index, i. Fine-level dis-
cretizations, Φ, are ERKp+Up, p ∈ {1, 2, 3, 4, 5}. Dashed vertical lines for each discretiza-
tion are included to represent a distance of −mc∆x from i = 0. Note that c = 0.85cmax

is different for each scheme.

that the discretizations provide an approximation to the advection of the solution along

characteristics that occurs at the PDE level.

From our previous intuitive arguments involving Figure 2.5, it is clear that the non-zero

pattern of Ψ should reflect the characteristic nature of the PDE; this is also the conclusion

reached from an algebraic perspective of approximating Φm (Figure 2.6). Note that in

[40] it was also argued that making use of characteristic information may be important

for parallel-in-time methods. The specific sparsity patterns used for the ERK+U schemes

will be discussed further in Section 2.5.3.

2.5.3 Explicit schemes: Two-level results

In this section, two-level MGRIT results with Ψ as the solution of least squares problem

(2.8) for ERK discretizations are considered. To demonstrate the validity of the ideas

outlined in the previous section, the least squares problem is solved for Ψ having a sparsity

pattern equal to that of the fine-level operator Φ, and for it having a sparsity pattern

based on the largest nonzeros of Φm. Numerical results will first be compared for these

two approaches, and then details will be given about how the sparsity pattern based on

the largest nonzeros of Φm is chosen.

Solver iteration counts for Ψ having the same sparsity pattern as Φ are shown in the

left side of Table 2.3. A convergent solver was not obtained for any m for the 1st-order

scheme, convergent solvers were obtained only for m = 2 for the 2nd- and 3rd-order

schemes, and convergent solvers with m ∈ {2, 4, 8} were obtained for the 4th- and 5th-

order schemes. In all cases where convergent solvers were found, the iteration counts
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Table 2.3: Two-level iteration counts for ERK+U discretizations with Ψ as linear least
squares solution (2.8). Left: Sparsity pattern of Ψ is equal to that of Φ. Right: Sparsity
pattern of Ψ is based on that of Φm. An ‘7’ denotes a solve that did not converge to
the required tolerance in significantly fewer than nt/(2m) iterations (i.e., the number of
iterations at which the exact solution is reached). An ‘7*’ denotes a solve in which the
least squares solution had imaginary components larger than 10−8, as another indication of
divergence, and an indication that the least squares problem was severely ill-conditioned.

Scheme nx × nt m (Φ-based sparsity) m (Φm-based sparsity)
2 4 8 16 32 64 2 4 8 16 32 64

ERK1+U1
28 × 210 7 7 7 7 7 7 11 6 6 7 6 5
210 × 212 7 7 7 7 7 7 11 6 6 7 6 5
212 × 214 7 7 7 7 7 7 11 6 6 7 6 5

ERK2+U2
28 × 211 10 7 7 7 7 7 10 7 9 8 7 7
210 × 213 10 7 7 7 7 7 10 7 9 8 7 7
212 × 215 10 7 7 7 7 7 10 7 9 8 7 7

ERK3+U3
28 × 29 9 7 7* 7* 7* 7* 7 6 5 6 5 3

210 × 211 9 7 7* 7* 7* 7* 7 6 5 6 5 4

212 × 213 9 7 7* 7* 7* 7* 7 6 5 6 5 4

ERK4+U4
28 × 210 6 4 8 7 7* 7* 5 4 4 4 5 5

210 × 212 6 4 8 7 7* 7* 5 4 4 4 5 6

212 × 214 6 4 8 7 7* 7* 5 4 4 4 5 6

ERK5+U5
28 × 29 3 3 7 7* 7* 7* 3 3 3 4 4 3

210 × 211 3 3 7 7* 7* 7* 3 3 3 4 5 4

212 × 213 3 3 7 7* 7* 7* 3 3 3 4 5 4

remain constant as the mesh is refined. For the cases where the solvers converge, these

results are certainly an improvement on those using rediscretization, which are divergent

in this setting due to coarse-level CFL instability (see Section 2.3), attesting to the power

of the optimization approach. However, for many coarsening factors and discretizations,

the results are significantly worse than those obtained when using a sparsity pattern based

on Φm, as shown in the right side of Table 2.3. When considering the magnitude of entries

in Φ and Φm for m = 2, 4, 8 (plots not shown here for brevity), the locations of non-zeros in

Φ correspond primarily to the largest non-zeros in Φm for the cases in which the Φ-based

sparsity patterns yield convergent solvers. Furthermore, least squares problem (2.8) was

severely ill-conditioned for many instances in which Ψ and Φ shared a sparsity pattern (see

Table 2.3), but never when Ψ and Φm shared a similar sparsity pattern, further supporting

our argument that using a characteristic-based sparsity pattern is the better choice.

Let us now explain in detail how the sparsity patterns were chosen that lead to the results

in the right-hand side of Table 2.3, and then give a general discussion about the solvers.

To select this sparsity pattern for a given discretization and coarsening factor, we first

look at the locations of the largest non-zeros in Ψideal (as in Figure 2.6, for example). As
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a first approximation, we choose a contiguous subset of the locations of the largest nnz(Φ)

non-zeros of Φm (even if the locations of the largest non-zeros are not contiguous). The

solver is then tested at multiple grid resolutions to determine if it is scalable. If the solver

is not scalable, then an extra non-zero is included in a contiguous fashion and it is retested;

this process is repeated until a scalable solver is obtained.

Additionally, once a scalable solver has been found, if it is determined that the convergence

is significantly improved by including a relatively small number of additional non-zeros

(e.g., two or three), then that is done also. Note, however, that the convergence rate has not

been rigorously optimized as a function of the number of non-zeros. As an example, the left

panel of Figure 2.7 shows the non-zero patterns of Ψ selected for ERK3+U3 as a function

of coarsening factor, m. Also plotted is the coarse-grid characteristic departure point of

−mc, demonstrating how the sparsity patterns are correlated with the departure points.

Figure 2.7 also shows (right panel), for each discretization, the operator complexities (2.10)

of the resulting solvers along with the operator complexity of 1 + 1/m that results when

nnz(Ψ) = nnz(Φ) in a two-level method (see Section 2.5.2).

We find that, in general, to obtain convergent and scalable solvers there has to be a slight

increase in the number of non-zeros in Ψ as the coarsening factor is increased, as can

be seen for ERK3+U3 in Figure 2.7 (left panel), for example. This behaviour appears

consistent with that seen in [108] for the geometric multigrid solution of steady-state

advection-dominated PDEs, in which it was shown that coarse-grid operators may require

a wider stencil than fine-grid operators. The number of additional non-zeros required

is smaller for higher-order discretizations, as seen in the right panel of Figure 2.7, where

operator complexities tend to be smaller for higher-order methods. Notice that ERK4+U4

Figure 2.7: Two-level solvers for m ∈ {2, 4, 8, 16, 32, 64} with Ψ as linear least squares
solution (2.8). Left: Sparsity patterns chosen for Ψ for ERK3+U3, as represented by the
non-zero diagonal indices i for each value of m. Also plotted is −mc, which represents
the characteristic departure point on a grid using a time-step of m∆t. Right: Operator
complexities (2.10) for all discretizations; shown also is the reference operator complexity
of 1 + 1/m.
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and ERK5+U5 essentially have operator complexities of 1 + 1/m since very few (if any)

additional non-zeros were needed.

The results at the right of Table 2.3 show that it is possible to overcome the CFL instability

that arises from rediscretizing the fine-grid discretization on a temporally coarsened mesh

and to obtain very fast two-level convergence and, therefore, show the significance of using

a characteristic-based sparsity pattern for Ψ. Notably, the convergence rates of the solvers

shown in Table 2.3 are comparable to those for model diffusion problems using rediscretized

coarse-grid operators [28, 32]. To the best of our knowledge, these are the first scalable

results obtained with a two-level time-coarsening algorithm for the explicit discretization of

any hyperbolic PDE using realistic CFL numbers, and also for moderately-large coarsening

factors. Interestingly, convergence rates tend to be faster for higher-order discretizations

compared with those of lower order. When combined with the trend in Figure 2.7 (right

panel) that operator complexities are smaller for higher-order discretizations, this suggests

that higher-order discretizations of model problem (2.1) likely benefit more from parallel-

in-time integration.

Finally, an example of the eigenvalues and entries of Ψ for ERK3+U3 with m = 8 is shown

in Figure 2.8. In this example, the eigenvalues of Φ8 are clearly very well approximated

by the eigenvalues of Ψ when they are of order one (in magnitude), and not so well

approximated when they are smaller. Given this behaviour, it is unsurprising that the

solver converges quickly, and that the associated error bounds are small (bottom right

Figure 2.8: Linear least squares solution (2.8) for ERK3+U3 with nx × nt = 28 × 29,
coarsening factor m = 8, and the sparsity pattern of the least-squares determined Ψ based
on that of Ψideal = Φ8. Left: Eigenvalues λ8 of Φ8, and µ of Ψ. Top right: Entries of Φ8

with magnitude larger than 10−3 as a function of their diagonal index, i, and all entries
of Ψ. Bottom right: Error bound (2.6) as a function of spatial Fourier frequency.
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panel of Figure 2.8). The entries of the least squares Ψ (upper right panel of Figure 2.8)

are clearly correlated with those of the ideal operator.

Remark 2.5 (Relation between Ψ and semi-Lagrangian discretizations). It is clear that

the optimized coarse operators Ψ with Φm-based sparsity have a non-local stencil structure

that has a very different support than standard Eulerian discretizations like the ERK+U

schemes. However, the stencil support of these coarse operators Ψ is similar to the stencil

support of semi-Lagrangian schemes, since it tracks the characteristic curves of the PDE.

This begs the question whether the optimized operators Ψ we obtain with Φm-based sparsity

imposed may be close to semi-Lagrangian discretizations. It would indeed be useful for the

sake of developing more practical approaches if our optimized operators Ψ could be replaced

by semi-Lagrangian discretizations, without substantially degrading the convergence speed.

However, since the stencil of Ψ has to be increased with coarsening factor m to get a scalable

solver (see Figure 2.7), Ψ clearly does not just represent a particular semi-Lagrangian

discretization of the PDE on coarse grids. Semi-Lagrangian coarse-grid operators will be

given further consideration in Chapters 3 and 4.

2.5.4 Explicit schemes: Multilevel results

In this section, we extend the results from above to define an effective hierarchy of coarse-

grid operators for multilevel solvers. The scalability of the two-level solvers considered in

the previous section is limited because they require the sequential solve of a large coarse-

grid problem. Conversely, multilevel solvers are more scalable because the temporal grid

can be coarsened gradually over many levels until the coarsest level contains sufficiently few

degrees of freedom that a sequential solve there does not present a significant bottleneck.

Convergence theory of multilevel MGRIT is significantly more complicated than in the two-

level setting [51] and, so, rather than approximately minimizing a multilevel convergence

estimate akin to what we did in the two-level case, we simply consider applying our previous

two-level strategy in a recursive fashion. That is, if level ` uses a time-stepping operator

Φ`, and coarsens by a factor of m, then the ideal time-stepping operator on level ` + 1,

Ψideal,`+1 := Φm
` , is approximated with linear least squares problem (2.8). As previously,

sparsity patterns of coarse-grid operators are selected by roughly choosing some subset

of the locations of the largest non-zeros in the corresponding ideal coarse-grid operator.

Again, we try to strike some balance between the overall convergence rate of the solver

and the amount of fill-in of the coarse-grid operators.

For the sake of brevity, only results for ERKp+Up, p ∈ {1, 3, 5} are shown. We have

considered both V- and F-cycles using coarsening factors of both m = 2 and m = 4.

However, only results for V-cycles using m = 4 coarsening are shown here because we found
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that this combination typically resulted in the fastest parallel solvers (see Section 2.6). For

the case of ERK1+U1, we coarsen down to a minimum of just four points on the coarsest

grid in time, and for ERK3+U3 and ERK5+U5, we coarsen down to a minimum of eight

points.

The iteration counts for the resulting solvers are shown in Table 2.4 as a function of

mesh resolution and number of grid levels. For all three discretizations, the solvers appear

scalable with respect to the number of levels in the grid hierarchy and the mesh size, and

they are very fast. We find that to obtain scalable solvers, the number of non-zeros in

coarse-grid operators has to increase relative to that of the operator on the previous level.

Similarly to the two-level case (see Figure 2.7), the amount of fill-in required decreases

with increasing discretization order, as seen by the operator complexities also shown in

the table. Importantly, the operator complexities converge to a constant as the number

of levels is increased, which, when taken with the scalable iteration counts, indicates that

the amount of work to solve a given problem is independent of the number of grid levels.

To the best of our knowledge, this is the first time that scalable multilevel results have

been obtained for the explicit discretization of any hyperbolic PDE using a realistic CFL

fraction. For example, [58] is the only other work to show multilevel MGRIT results (with

spatial coarsening) for explicit discretizations of hyperbolic problems, yet results presented

there were limited to first-order accuracy, used a smaller CFL fraction, and even with the

use of F-cycles, were not scalable with respect to mesh size. Furthermore, convergence

Table 2.4: Multilevel iteration counts as a function of number of grid levels for V-cycles
with m = 4 coarsening on each level. Operator complexities (OC) (2.10) are also given
for each discretization. Note the reference operator complexity for a multilevel method is
bounded above by 1 + 1/(m − 1) = 1.33 . . . for m = 4 (see Section 2.5.2). A ‘–’ denotes
a hierarchy that would have coarsened to fewer than the prescribed minimum number of
allowable points (four for ERK1+U1, and eight for ERK3+U3 and ERK5+U5).

Scheme nx × nt Number of levels
2 3 4 5 6 7

ERK1+U1

28 × 210 6 6 6 6 – –
210 × 212 6 7 7 7 7 –
212 × 214 6 7 7 7 7 7

OC 1.38 1.56 1.65 1.69 1.71 1.71

ERK3+U3

28 × 29 6 7 7 – – –
210 × 211 6 7 7 7 – –
212 × 213 6 7 7 8 8 –

OC 1.28 1.35 1.38 1.38 1.39 –

ERK5+U5

28 × 29 3 4 4 – – –
210 × 211 3 4 5 5 – –
212 × 213 3 4 5 5 5 –

OC 1.25 1.31 1.33 1.33 1.33 –
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was slow, with on the order of 40 iterations required to reach convergence for the mesh

sizes considered here.

2.5.5 Explicit schemes: Application to inflow/outflow boundaries

Discretizations of (2.1) subject to inflow/outflow spatial boundary conditions result in

non-circulant Φ. Therefore, the optimization techniques discussed in previous sections

cannot be rigorously applied since they rely on Φ and Ψ being circulant. Moreover, such

Φ are non-normal and likely not even diagonalizable, and, so, the rigorous optimization of

the corresponding Ψ would require more sophisticated convergence theory than in [28, 51]

such as that in [88], for example, and would certainly be highly nonlinear.

In the spirit of local Fourier analysis of multigrid methods (see, e.g., [99]) we hypothesize

that the Ψ we have previously designed for the periodic problem may work well for the

inflow/outflow problem since the fine-grid operators Φ share the same Toeplitz structure

away from the boundaries. To test this, we apply MGRIT to inflow/outflow problems using

coarse-grid operators as described in the previous sections that were designed for analogous

periodic problems (i.e., same discretizations, CFL numbers, nx, and m), and we truncate

these at the boundaries such that they are no longer circulant but remain Toeplitz. Note

that not truncating the operators leads to similar, but slightly less satisfactory results.

Given their non-zero pattern, truncating these operators at boundaries results in strictly

lower triangular matrices in almost all cases.

In our tests, an inflow boundary condition u(−1, t) = sin4(πt) is prescribed at x = −1. At

the outflow boundary x = 1, no boundary condition is specified since the solution simply

propagates out of the domain along characteristics. While the inflow condition leads to

a solution that mimics the periodic solution (they converge to the same solution as the

mesh is refined), this does not influence the convergence of MGRIT, which is independent

of the solution for linear problems [88]. For the numerical implementation of boundary

conditions, sufficiently accurate extrapolation is used at the outflow boundary; at the

inflow boundary, sufficiently accurate ERK stage values are computed using ideas similar

to those in [18], except we elect to use the same spatial discretization right up to the

boundary rather than switching to a compact one. To approximate solution and ERK

stage values at ghost points, we employ truncated Taylor series about the boundary and

use the PDE with the ‘inverse Lax–Wendroff’ procedure (see [52, p. 364]). For each

scheme, numerical tests (not shown here) verify that convergence at the theoretically

predicted rates is achieved. Tests also indicate that CFL limits are very similar to their

analogues with periodic boundaries (see Table 2.1).
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Table 2.5: Iteration counts for ERK+U discretizations of (2.1) with inflow/outflow
boundaries; Ψ is given by truncating the circulant matrix resulting from linear least
squares solution (2.8), with its sparsity pattern based on that of Ψideal. Left: Two-level
solves as a function of coarsening factor m. Right: `-level V-cycle solves using m = 4
coarsening on each level. A ‘–’ denotes a hierarchy that would have coarsened to fewer
than the prescribed minimum number of allowable points (four for ERK1+U1, and eight
for ERK3+U3 and ERK5+U5).

Scheme nx × nt Two level, m Multilevel, `
2 4 8 16 32 64 2 3 4 5 6 7

ERK1+U1
28 × 210 10 6 6 6 5 3 6 6 6 6 – –
210 × 212 11 6 6 7 6 5 6 6 6 6 6 –
212 × 214 11 6 6 7 6 5 6 7 7 7 7 7

ERK3+U3
28 × 29 7 6 5 5 4 2 6 6 6 – – –
210 × 211 7 6 5 6 5 4 6 7 7 7 – –
212 × 213 7 6 5 6 5 4 6 7 7 7 7 –

ERK5+U5
28 × 29 8 5 4 4 4 2 5 5 5 – – –
210 × 211 7 5 3 4 4 4 5 5 5 5 – –
212 × 213 7 5 3 4 4 4 5 5 5 5 5 –

Iteration counts for the inflow/outflow problem discretized with ERKp+Up, p ∈ {1, 3, 5},
are given in Table 2.5. Two-level solvers using different coarsening factorsm, and multilevel

V-cycles using m = 4 on each level are considered. On average, the results are very similar

to those for the analogous periodic problems (right side of Table 2.3 for two level, and

Table 2.4 for multilevel). The optimized coarse-grid operators for the periodic problem

therefore also make excellent coarse-grid operators for the inflow/outflow problem despite

them not being designed to do so in any rigorous sense. These results indicate that

the issues hindering convergence for hyperbolic problems in the simpler periodic setting,

where Φ and Ψ are normal matrices, are also responsible for poor convergence in this more

complicated setting.

2.5.6 Implicit schemes

We now consider linear least squares problem (2.8) for the computation of suitable coarse-

grid operators Ψ for SDIRK+U discretizations of (2.1). For such discretizations, Φ is a

rational function of sparse matrices and so, too, is Ψideal := Φm. Naturally, one might seek

a Ψ that is also of this form. However, it is not obvious how this should be done, with

one complication being the choice of sparsity patterns for the numerator and denominator.

Consequently, we take a different approach here.

Since Φ is a rational function of sparse matrices, it can also be written as a dense matrix.

To assess to what extent Φ and Φm do globally couple the solution, we consider the
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magnitude of their entries as a function of their diagonal index, as pictured in Figure 2.9

for m ∈ {16, 64}. These plots show that, despite Φ and Φm being dense, they effectively

act as sparse matrices, with their largest non-zeros having a sharp peak that is correlated

with the characteristic departure point (shown as the dashed vertical line). The one

exception here is SDIRK1+U1, whose entries are significantly less peaked than the other

discretizations. As in previous examples, this is consistent with this discretization being

very dissipative and not capturing the non-dissipative nature of (2.1) well. Indeed, the

plots in Figure 2.9 are qualitatively similar to their analogues for the ERK schemes in

Figure 2.6 (noting the curves sit over the top of one another in the SDIRK case because

the same CFL number of c = 4 is used for every implicit discretization).

The effectively sparse structure of Ψideal—as shown in Figure 2.9—begs the question: Can

a sparse (or equivalently, explicit) coarse-grid operator Ψ be used to approximate it? The

use of an explicit coarse-grid operator with an implicit fine-grid discretization is certainly

not standard, and in fact, the reverse case has been used elsewhere in the literature: An

implicit coarse-grid operator has been coupled with an explicit fine-grid discretization since

it is a natural way of ensuring that the coarse-grid operator is stable, as in the example

shown in the right panel of Figure 2.2 in Section 2.3. However, quasi-tracking the solution

of the PDE along characteristics—as done in the previous sections—is another way of

ensuring the coarse-grid operator is stable, since the physical domain of dependence is

included in the numerical domain of dependence.

Let us now test the idea of using a sparse Ψ to approximate a dense Φm. As for the

ERK discretizations, we place a restriction on the number of non-zeros in Ψ. To do so,

we compute the entries in the 1st column of Φm (this can be done using the FFT and its

inverse), and then we select a non-zero pattern using thresholding. That is, recalling φ̃m

Figure 2.9: Magnitude of diagonal entries of the dense matrices Ψideal := Φm, m = 16
(left), and m = 64 (right), that are larger than 10−3, as a function of their diagonal index,
i. Fine-level discretizations, Φ, are SDIRKp+Up, p ∈ {1, 2, 3, 4}. A value of nx = 210 has
been used here. In each plot, a dashed vertical line is included to represent a distance of
−4m∆x from i = 0 (these schemes use CFL number of c = 4).
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Figure 2.10: Number of non-zeros per row of Ψ for SDIRK+U discretizations as a
function of coarsening factor, m.

is the (dense) first column of Φm, we take the non-zero pattern to be that of the entries

with magnitude at least equal to ηtol×maxk |φ̃mk |, in which ηtol < 1. We find that smaller

values of ηtol lead to more quickly converging MGRIT solvers. As for the ERK schemes,

we have loosely tried to achieve some balance between the rate of convergence and the

number of non-zeros in Ψ, but this has not been fully optimized. For each discretization

and coarsening factor, m, we allow for a different value of ηtol. For m = (2, 4, 8, 16, 32, 64)

the values for the pth-order SDIRK+U scheme are: p = 1, ηtol = (.1, .125, .25, .5, .5, .6);

p = 2, ηtol = (.05, .1, .1, .2, .2, .2); p = 3, ηtol = (.005, .01, .02, .02, .02, .04); and p = 4,

ηtol = (.005, .01, .01, .01, .02, .02). These choices of ηtol result in coarse-grid operators

that have on the order of the same number of entries shown in the plots in Figure 2.9.

Figure 2.10 shows the number of non-zeros per row of Ψ as a function of the coarsening

factor and how there is, in general, some growth in this number with m, just as there is

in the number of non-zeros in Φm whose magnitude is significant (Figure 2.9).

The iteration counts for the solvers are shown in Table 2.6. Convergence is fast for all

coarsening factors, and the solvers appear scalable as the mesh is refined. This is in stark

contrast to the results in Table 2.2 where rediscretizing Φ on the coarse grid resulted in

a divergent solver for all discretizations except for SDIRK1+U1, reinforcing the idea that

there exist significantly better coarse-grid operators for advection problem (2.1) than those

offered by rediscretizing the PDE on the coarse grid. Furthermore, these results confirm

that despite Φm being a dense operator for the implicit temporal discretizations considered

here, it can be well approximated by a sparse one.



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 2: Optimizing MGRIT coarse-grid operators for linear advection 41

Table 2.6: Two-level iteration counts for SDIRK+U discretizations with Ψ given as
linear least squares solution (2.8).

Scheme nx × nt m
2 4 8 16 32 64

SDIRK1+U1
210 × 210 10 7 8 10 8 7
212 × 212 10 7 8 11 9 9

SDIRK2+U2
210 × 210 10 8 7 8 8 7
212 × 212 11 8 7 8 8 8

SDIRK3+U3
210 × 210 5 5 5 4 4 4
212 × 212 5 5 5 4 4 4

SDIRK4+U4
210 × 210 6 6 5 5 5 5
212 × 212 6 6 5 5 5 5

2.6 Parallel results

In this section, strong parallel scaling results for the ERKp+Up, with p ∈ {1, 3, 5}, are

given for the solvers developed in the previous sections. Specifically, multilevel results

are given in Section 2.6.1, and, for completeness, two-level results have can be found in

Appendix A.3.

The implementations use the open-source package XBraid [107]. The results were gener-

ated on Quartz, a Linux cluster at Lawrence Livermore National Laboratory consisting

of 2,688 compute nodes, with dual 18-core 2.1 GHz Intel Xeon processors per node. For

each discretization, we consider the strong scaling of a single problem whose space-time

grid is the largest from Table 2.3 in the two level case, and in the multilevel case it is the

largest problem show in Table 2.4 and the number of levels in the solver is taken as the

maximum shown in the table. Since we want to demonstrate the benefits of parallelization

in time, we only consider parallelization in the time direction. As throughout the rest of

this chapter, a stopping criterion based on achieving a space-time residual below 10−10

in the discrete `2-norm is used, but a stopping criterion based on achieving discretization

error accuracy is also considered.

2.6.1 Parallel results: Multilevel solvers

In our parallel tests, we have considered both V- and F-cycles with coarsening factors of

m = 2 and m = 4. We find that F-cycles require fewer iterations to converge than V-cycles,

but this of course comes at the cost of added work and communication. Accordingly, we

typically find that the best results arise from the use of V-cycles with m = 4 coarsening

and, thus, results for this configuration are shown here, in Figure 2.11. The plots show good
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Figure 2.11: Strong parallel scaling: Runtimes of MGRIT V-cycles with m = 4 coarsen-
ing and using time-only parallelism for ERKp+Up discretizations on space-time grids of
size nx×nt = 212×(214, 213, 213) for p = (1, 3, 5). Left: Fixed residual stopping tolerance
of 10−10. Right: Residual stopping tolerance based on the discretization error. Dashed
lines represent runtimes of time-stepping on one processor for reference purposes. Solid
red markers represent crossover points.

parallel scaling with benefit over sequential time-stepping when using at least 32 processors

in almost all cases, which is on par with what has been achieved for model diffusion-

dominated problems using time-only parallelism [33]. The largest speed-up achieved over

sequential time-stepping is at 1024 processors, where MGRIT is faster by a factor of about

3.8, 8.4, and 18.1 when solving up to 10−10 residual tolerance, and of about 10.0, 12.6,

and 13.7 when solving up to discretization error (for the discretizations in the order of

increasing accuracy).

The relative speed-ups shown here further demonstrate the improvements given by this

work over existing parallel-in-time strategies for hyperbolic PDEs. For example, achieving

MGRIT speed-up with high-order discretizations of any hyperbolic problem is unheard of

in the literature, and so the fact that we have been able to achieve a speed-up on the order

of 15 times for a highly accurate explicit 5th-order discretization run at a realistic CFL

fraction is significant.

2.7 Conclusions

In this chapter, we have considered the parallel-in-time integration of the one-dimensional,

constant-coefficient linear advection problem using the MGRIT algorithm. This PDE

represents the simplest of all hyperbolic problems, yet, to the best of our knowledge,

no parallel-in-time solvers have been successfully applied to accurate discretizations of

this problem, yielding inexpensive solvers that achieve fast and scalable convergence for

realistic CFL fractions close to one.
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In Section 2.3, we showed several motivating examples that demonstrate the difficulty

this problem poses for these parallel-in-time solvers when using a rediscretized coarse-

grid operator. In Section 2.4, we used existing convergence theory to explain why this

problem is so difficult, and what is required of coarse-grid operators for its efficient solu-

tion. In particular, convergence hinges on the coarse-grid operator accurately propagating

spatial modes that decay slowly in time very similarly to that of the ideal coarse-grid

operator. The larger number of such modes for advection-dominated problems compared

with diffusion-dominated problems means that even small differences between fine- and

coarse-grid operators typically result in extremely poor convergence.

In Section 2.5 we develop ‘near-optimal’ coarse-grid operators for this PDE through the

approximate minimization of two-level error estimates. We use these coarse-grid operators

for both explicit and implicit discretizations of low- and high-order accuracy and demon-

strate that they lead to solvers with fast and scalable convergence that is on par with

performance typically seen from MGRIT when applied to diffusion-dominated problems.

For explicit discretizations, we show that it is possible to overcome the CFL-driven diver-

gence that arises from naively applying a conditionally stable discretization on the coarse

grid. Primarily, this is achieved through tracking information along characteristic curves

of the PDE on the coarse grid. Moreover, we show that observing this characteristic nature

is also important for unconditionally stable implicit discretizations.

Finally, parallel results were given in Section 2.6, which showed that significant speed-

ups over sequential time integration are possible when using our optimized coarse-grid

operators.

The optimization approaches presented in this chapter rely on calculations that are feasible

only for the case of one-dimensional, constant-coefficient linear advection. This precludes

direct application of these approaches to more complicated hyperbolic PDEs. Crucially,

though, they provide powerful tools to demonstrate that, for this canonical hyperbolic

PDE, it is possible to obtain highly efficient MGRIT and Parareal solvers. However, the

heuristics developed here regarding effective coarse-grid operators apply more generally

than just to the constant-coefficient problem, and these principles will be made use of in

future chapters of this thesis.
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Closed-form Fourier analysis of

MGRIT with applications to

advection-dominated problems

3.1 Introduction and outline

The previous chapter demonstrated that MGRIT diverges when applied to constant-

coefficient linear advection when the coarse-grid operator is based on the standard ap-

proach of rediscretization. More broadly, poor convergence on a wide variety of advection-

dominated problems has been reported throughout the MGRIT and Parareal literature

[19, 23, 28, 46, 40, 50, 58, 57, 69, 81, 80, 83, 97]. There has been a large number of conver-

gence theories produced for MGRIT and Parareal [26, 28, 46, 40, 51, 80, 88, 44, 38], with

several paying particular attention to advection-related problems [26, 80, 40, 46]. Despite

this, there is not yet a widely accepted explanation for what fundamentally makes the

parallel-in-time solution of these problems so difficult.

Recall from Section 2.4 that we considered the MGRIT convergence theory from [28]

in the context of advection-dominated problems. For fast convergence, we argued that

not only should the coarse-grid operator propagate spatial modes similarly to the ideal

coarse-grid operator in general, but it should do so with increased accuracy for modes

which decay slowly in time. We further argued that an increase in the presence of slowly

decaying spatial modes, coupled with the fact that rediscretization does not provide a

particularly accurate approximation to such modes, is the reason why convergence for

advection-dominated problems is poor compared to diffusion-dominated problems. While

our arguments ultimately led to an optimization-based strategy for designing coarse-grid

44
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operators that yielded very fast convergence, our arguments were not fully rigorous. More-

over, it is not clear to what extent they generalize to more difficult problems. One outcome

of this chapter is to provide a complementary explanation for these convergence issues that

is more general, and, in doing so, make connections to similar issues that plague spatial

multigrid solvers when applied to steady state advection-dominated problems.

More broadly, this chapter analyses the convergence of two-level MGRIT through the

lens of local Fourier analysis (LFA). LFA is the most widely used and successful tool for

investigating the convergence behaviour of multigrid methods (see, e.g., [9, 10, 98, 100,

108, 13, 99, 105]). While LFA has previously been used to investigate MGRIT convergence

[38, 26], and for multigrid-in-time methods more broadly [100, 39, 45], what makes our

application of it to MGRIT novel is that our theory is presented completely in closed

form. That is, we derive analytical, and easy to interpret, expressions for the quantities of

interest in LFA, such as the spectral radius and norm of the error propagation operator,

rather than arriving at them through numerical computation, which offers significantly

less insight.

While LFA yields convergence information that is only approximate for initial-value prob-

lems, we show that our theory yields results that are exact in the asymptotic limit nt →∞.

Furthermore, our analysis does yield exact convergence information for a certain class of

time-periodic MGRIT/Parareal solvers for finite nt. For this reason, our analysis shares

some similarities with that presented in [43, Sec. 3.1] for a time-periodic Parareal algo-

rithm. We note that many interesting physical problems possess time-periodic structure,

such as the rotation of wind turbines, for example, and for this reason there have been

many time-periodic, parallel-in-time algorithms developed (see, e.g., [100, 43, 87, 20, 49]).

The remainder of this chapter is organised as follows. Some key assumptions and notation

are presented in Section 3.2. Section 3.3 derives the error propagation operator for the

MGRIT algorithm. The convergence behaviour of MGRIT is theoretically analysed in

Section 3.4 using LFA. A brief discussion on time-periodic problems is the subject of

Section 3.5. Commentary on the theory and comparisons to related literature are the

subject of Section 3.6. In Section 3.7, the LFA theory is applied to advection-dominated

problems. Finally, concluding remarks are given in Section 3.8.

3.2 Notation and assumptions

The analysis in this chapter relies on the following assumptions on the time-stepping

operators.
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Assumption 3.1 (Simultaneous diagonalizability). The fine- and coarse-grid time-stepping

operators Φ and Ψ are time independent, and simultaneously diagonalizable by a unitary

matrix U , with

Φ = U diag(λ)U∗ ∈ Rnx×nx , (3.1)

Ψ = U diag(µ)U∗ ∈ Rnx×nx , (3.2)

where λ and µ denote the vectors containing their eigenvalues,

λ :=
(
λ1, . . . , λnx

)> ∈ Cnx , (3.3)

µ :=
(
µ1, . . . , µnx

)> ∈ Cnx . (3.4)

The assumption of simultaneous diagonalizability allows us to decouple the spatial and

temporal components of the problem, and it has also appeared in previous analyses for

this reason [38, 28, 88, 51, 26].

We also place an assumption on the stability of the operators, as follows.

Assumption 3.2 (Stability). The fine- and coarse-grid time-stepping operators Φ and

Ψ are `2-stable, with ‖Φ‖2, ‖Ψ‖2 < 1. Or equivalently, since the operators are unitarily

diagonalizable, |λi|, |µi| < 1, ∀i ∈ {1, . . . , nx}.

Remark 3.1 (The constant mode). While Assumption 3.2 states that |λi|, |µi| < 1 for all

i ∈ {1, . . . , nx}, we will, however, also discuss the case that there exists an i∗ ∈ {1, . . . , nx}
for which λi∗ = µi∗ = 1. This case often arises for periodic boundary conditions in space,

where the constant vector is propagated through time unchanged by Φ and Ψ. In general

the reader should assume that Assumption 3.2 holds, and we will give specific commentary

where relevant to the λi∗ = µi∗ = 1 case.

Suppose that the time interval t ∈ [0, T ] is discretized with nt equidistant points

0 = t0 < t1 < . . . < tnt−1 = T , where tn = nδt. Further, suppose that the first time point

t0 is a C-point, and that the total number of points nt is divisible by m.1

1This is a slightly different convention than we have used elsewhere in the thesis, such as in Section 1.4,
for example, where there were nt + 1 points in time, and the final time point was a C-point as shown in
Figure 1.2. The motivation for our new convention is that it simplifies the notation and analysis if there
is always a group of m− 1 F-points following a C-point.
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The fine- and coarse-grid space-time operators are then given by

A0 =




I

−Φ I
. . .

. . .

−Φ I




= Int ⊗ Inx − Lnt ⊗ Φ ∈ Rntnx×ntnx , (3.5)

A1 =




I

−Ψ I
. . .

. . .

−Ψ I




= Int/m ⊗ Inx − Lnt/m ⊗Ψ ∈ R
nt
m
nx×ntm nx , (3.6)

where Ln is the lower shift matrix,

Ln =




0

1 0
. . .

. . .

1 0



∈ Rn×n. (3.7)

The symbol ‘⊗’ used here denotes the Kronecker product, which, for two matricesA ∈ Cp×q

and B ∈ Cr×s is defined as the block matrix

A⊗B =




a11B · · · a1qB
...

...

ap1B · · · apqB


 ∈ Cpr×qs. (3.8)

(See, e.g., [66] for the definition and basic properties of this operator.)

Finally, based on our description in the following section of operators in MGRIT acting

in a block fashion, it will be convenient to represent solution vectors in block format.

Specifically, we define a CF-interval as a C-point and the m − 1 F-points that follow it,

and we denote the kth CF-block of a space-time vector u =
(
u0,u1, . . . ,unt−1

)> ∈ Rntnx

by

ûk =
(
ukm,ukm+1, . . .ukm+m−1

)> ∈ Rmnx , k ∈ {0, . . . , nt/m− 1}. (3.9)

Furthermore, the jth vector in the kth CF-block is denoted as ûk,j = ukm+j ,

j ∈ {0, . . . ,m− 1}.
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3.3 Error propagation

The purpose of this section is to derive the error propagation operator for the MGRIT

algorithm. Background discussion is first given in Section 3.3.1, and then key operators

are derived in Section 3.3.2. A simplified representation for the error propagator is then

derived in Section 3.3.3.

3.3.1 Background

The error propagation operator (or error propagator, or iteration operator) of a linear and

stationary iterative algorithm describes the transformation of an error vector under the

action of the algorithm. Specifically, suppose e(k) is the algebraic error after k iterations

of such an algorithm, then its error propagator E transforms the initial error e(0) as

e(k) = Eke(0), k ∈ N. (3.10)

The properties of Ek therefore completely characterize the convergence of the iteration.

For example, the spectral radius ρ(E)—the largest absolute eigenvalue of E—gives the

asymptotic convergence rate of the method. Furthermore, the norm of E may be used to

bound the norm of the error,
∥∥e(k)

∥∥ =
∥∥Eke(0)

∥∥ ≤
∥∥Ek

∥∥∥∥e(0)
∥∥ ≤ ‖E‖k

∥∥e(0)
∥∥.

The error propagator for a classical two-grid multigrid method takes the form (see, e.g.,

[99, Sec. 2.2.3])

E = SpostKSpre, where K := I − PA−1
1 RA0, (3.11)

where Spre and Spost denote iteration matrices for pre- and post relaxation, respectively.

The error propagator K is that of the coarse-grid correction, in which R and P denote the

restriction and interpolation operators, respectively.

There are several ways to express the MGRIT error propagator. In the literature, most

approaches have done so using the reduction inherent in MGRIT to analyse error propa-

gation on the coarse grid only [28, 88, 26, 51]. We will instead analyse error propagation

on the fine grid, and in this sense, our approach is more closely related to those presented

in [38] and [26, Sec. 4.1.3]. In addition to the above, MGRIT is not typically considered as

a standard multigrid algorithm, in the sense of combining pre- and post-relaxation with a

coarse-grid correction, and so its error propagator is not typically presented in a form akin

to (3.11). Instead, MGRIT is most often described in terms of combining pre-relaxation

with a coarse-grid correction that uses a non-standard interpolation, known as ideal inter-

polation [32, 38, 44, 58, 88, 51]. However, ideal interpolation is equivalent to the injection
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of coarse-grid error at C-points, followed by an F-relaxation to update F-point values on

the fine grid (see, e.g., [58]). Therefore, MGRIT can be interpreted as a standard multigrid

algorithm with injection used for interpolation, and F-relaxation used for post-relaxation.

We choose to adopt this description since it results in an error propagator which is closer

to being symmetric (albeit in appearance only), and one that is more reminiscent of the

error propagator (3.11). Note that our MGRIT description given in Algorithm 1 also does

not use the terminology of ideal interpolation.

Therefore, we may write the MGRIT error propagator as

E = SFK
(
SCF

)ν
SF, where K = I − PA−1

1 P>A0, ν ∈ N0. (3.12)

Here, A0 and A1, given in (3.5) and (3.6), are the space-time operators on levels zero and

one, respectively. The operator P is simply injection interpolation, and its transpose P>

is injection restriction. The operator SF is the error propagator for F-relaxation. Finally,

SCF is the error propagator for CF-relaxation, which is defined as a C-relaxation followed

by an F-relaxation. The variable ν ∈ N0 represents the number of CF-relaxation sweeps,

so that pre-relaxation consists of an F-relaxation followed by ν sweeps of CF-relaxation.

For example, ν = 0 corresponds to F-relaxation, and ν = 1 to FCF-relaxation. As

discussed in Section 1.4, numerical experiments throughout this thesis use FCF-relaxation,

since we typically find it yields the most robust convergence. However, it is interesting

to theoretically quantify the effect of the number of CF-relaxations. This ν-generalized

relaxation has also been considered in [44, 51, 88].

3.3.2 Interpolation matrices and error propagators of relaxation

The purpose of this section is to derive convenient representations for the interpolation

and relaxation components of the MGRIT error propagator E in (3.12). Recall that the

interpolation operator P in (3.12) is based on injection. That is, P maps the kth C-point

variable ukm ∈ Rnx as

ukm 7→




ukm

0
...

0




=
(
e1 ⊗ Inx

)
ukm ∈ Rmnx , (3.13)

in which e1 ∈ Rm is the canonical (column-oriented) basis vector in the first direction, and

is unrelated to the algebraic error e(k) in the following. Therefore, the global space-time

interpolation operator that acts on all nt/m C-point variables simultaneously is the block
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diagonal matrix

P = Int/m ⊗
(
e1 ⊗ Inx

)
. (3.14)

Note that the transpose of injection, which acts as the restriction operator in (3.12), is

simply

P> = Int/m ⊗
(
e>1 ⊗ Inx

)
. (3.15)

Next we consider the more complicated cases of the iteration operators for F- and C-

relaxation in (3.12). To this end, suppose we have some approximation to the true solution

of the system A0u = b denoted by w(0) ≈ u. Then, by definition, F-relaxation generates

a new approximation w(0) 7→ w(1) such that C-point values of w(1) are unchanged from

those of w(0), and F-point values of w(1) have zero residual. In other words, F-relaxation

represents an exact solve for the F-point variables of the system A0w
(1) = b, where

C-point variables in w(1) are equal to those in w(0). Therefore, on the kth CF-block,

k ∈ {0, 1, . . . , nt/m− 1}, F-relaxation can be expressed as the update (recalling the block

notation from (3.9))

ŵ
(1)
k,0 = ŵ

(0)
k,0,

ŵ
(1)
k,j = Φjŵ

(0)
k,0 + b̂k,j , j ∈ {1, . . . ,m− 1}.

(3.16)

Replacing the approximations w(q) via the error equations w(q) = u− e(q) leads to

ûk,0 − ê(1)
k,0 = ûk,0 − ê(0)

k,0,

ûk,j − ê(1)
k,j = Φj

(
ûk,0 − ê(0)

k,0

)
+ b̂k,j =

(
Φjûk,0 + b̂k,j

)
− Φj ê

(0)
k,0, j ∈ {1, . . . ,m− 1},

(3.17)

with the last equality following from the linearity of Φ. Note that the exact solution u is

a fixed-point of the update (3.16), ûk,j = Φjûk,0 + b̂k,j , j ∈ {1, . . . ,m − 1}. Therefore,

update (3.17) can be recast in terms of the error as

ê
(1)
k,0 = ê

(0)
k,0,

ê
(1)
k,j = Φj ê

(0)
k,0, j ∈ {1, . . . ,m− 1}.

(3.18)

Expressed in CF-block form, update (3.18) is

ê
(1)
k =




I 0 · · · 0

Φ 0 · · · 0
...

... · · · ...

Φm−1 0 · · · 0



ê

(0)
k =

[
e>1 ⊗ v(Φ)

]
ê

(0)
k , (3.19)
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where the Vandermonde-style function v : Cn×n → Cmn×n is defined as the block column

vector

v(X) =




I

X
...

Xm−1



. (3.20)

Thus, based on (3.19), the error propagator for F-relaxation that acts on all CF-blocks

k = 0, . . . , nt/m− 1 simultaneously is the block diagonal matrix

SF = Int/m ⊗
[
e>1 ⊗ v(Φ)

]
. (3.21)

Now consider C-relaxation. Recall that C-relaxation leaves F-point values unchanged

and updates C-points such that they have zero residuals. In other words, C-relaxation

represents an exact solve for the C-point variables of the system A0w
(1) = b, where F-

point variables in w(1) are equal to those in w(0). Therefore, the C-point update on

variables in the kth CF-interval, k ∈ {1, . . . , nt/m− 1}, may be written

ŵ
(1)
k,0 = Φŵ

(0)
k−1,m−1 + b̂k,0,

ŵ
(1)
k,j = ŵ

(0)
k,j , j ∈ {1, . . . ,m− 1}.

(3.22)

Using the same logic as for F-relaxation above, (3.22) can be rewritten as the following

update on the error,

ê
(1)
k =




0 0 · · · Φ

0 0 · · · 0
...

... · · · ...

0 0 · · · 0



ê

(0)
k−1 +




0

In
. . .

In



ê

(0)
k . (3.23)

Recall that in our formulation of E given by (3.12), a C-relaxation is always followed by

an F-relaxation to create a CF-relaxation. Combining (3.19) and (3.23), it is easy to show

that the error update for a CF-relaxation is simply

ê
(1)
k =




0 · · · 0 Φ

0 · · · 0 Φ2

... · · · ...
...

0 · · · 0 Φm



ê

(0)
k−1 =

[
e>m ⊗ v(Φ)Φ

]
ê

(0)
k−1, (3.24)
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Therefore, the error propagator for CF-relaxation that acts on all CF-blocks k = 0, . . . , nt/m−
1 simultaneously is the block lower bidiagonal matrix

SCF = Lnt/m ⊗
[
e>m ⊗ v(Φ)Φ

]
. (3.25)

3.3.3 Time-only MGRIT error propagation

Now that we have expressions for all of the components of the MGRIT error propagator E
in (3.12), we exploit the diagonalizability of the time-stepping operators Φ and Ψ to block

diagonalize it. In particular, the block diagonalization is accomplished via the similarity

transform,

[
P>
(
Int ⊗ U∗

)]
E
[(
Int ⊗ U

)
P
]

=: qE = diag
1≤i≤nx

(Ei) ∈ Cnxnt×nxnt , (3.26)

where P is a permutation matrix to be defined shortly, and recall from Assumption 3.1 that

U is the unitary matrix with eigenvectors of Φ and Ψ as its columns. Before describing

in more detail this similarity transform, note that the diagonal blocks of qE and their

components are given by

Ei = SF
i

(
Int − PiA−1

1,iP
>
i A0,i

) (
SCF
i

)ν
SF
i ∈ Cnt×nt , (3.27)

A0,i = Int − λiLnt ∈ Cnt×nt , (3.28)

A1,i = Int/m − µiLnt/m ∈ Cnt/m×nt/m, (3.29)

Pi = Int/m ⊗ e1 ∈ Cnt×nt/m, (3.30)

SF
i = Int/m ⊗

[
v(λi)e

>
1

]
∈ Cnt×nt , (3.31)

SCF
i = Lnt/m ⊗

[
λiv(λi)e

>
m

]
∈ Cnt×nt . (3.32)

Notice that the interpolation operators Pi are independent of i. Since similar matrices

have the same eigenvalues, the eigenvalues of qE are equal to those of E . Furthermore, since

the similarity transform (3.26) uses only unitary matrices, it preserves the `2-norm,

‖E‖2 =
∥∥qE
∥∥

2
= max

1≤i≤nx
‖Ei‖2. (3.33)

Therefore, the task of characterizing the convergence of MGRIT has been reduced to

characterizing the properties of the nt-dimensional error propagators Ei. The analysis of

these operators via LFA is the subject of the following section.

Remark 3.2 (Non-unitary U). If one removes the assumption that the matrix of eigen-

vectors U is unitary, then much of the forthcoming analysis in this chapter is still valid.

However, rather than holding in the `2-norm, it does so in a modified norm related to the
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eigenvectors. From a practical perspective, it suffices to know that the results derived here

can still provide an upper bound on the `2-norm on E; more specifically, rather than (3.33),

in the case of non-unitary U , one has

‖E‖2 ≤ κ(U) max
1≤i≤nx

‖Ei‖2, (3.34)

in which κ(U) = ‖U‖2‖U−1‖2, and Ei is still as in (3.27). See [88, 26, 51] for further

details. Note also that in the event that computing eigenvalues is difficult, or that the

theory cannot be applied rigorously since the operators are not diagonalizable, for example,

one may derive an approximate convergence results by replacing the true eigenvalues of Φ

and Ψ with their Fourier symbols (see [26, Rem. 1]).2

We now briefly explain how the similarity transform in (3.26) works. The transformation

matrix is (Int ⊗ U)P, a product of two matrices; the first one is Int ⊗ U , and its role is to

diagonalize the occurrences of Φ and Ψ in (3.12), replacing them with diagonal matrices

populated with their eigenvalues. The second matrix P is a permutation that reorders

space-time vectors from the original ordering where all spatial degrees of freedom (DOFs)

at a single time point are blocked together, to one in which all temporal DOFs belonging

at a single spatial point are blocked together.

Note that the Kronecker product and outer product of two column vectors a, b ∈ Cn

are related by a> ⊗ b = ba>. For example, the ith component/diagonal block of the CF-

relaxation propagator given in (3.32) can also be written as SCF
i = Lnt/m⊗

[
e>m ⊗ λiv(λi)

]
.

Contrasting with the full CF-relaxation operator SCF = Lnt/m⊗
[
e>m⊗v(Φ)Φ

]
from (3.25),

we see that the similarity transform has block diagonalized SCF by replacing occurrences

of the time-stepping operator with its eigenvalues, Φ 7→ λi. Considering more broadly

the components given by (3.27)–(3.32), we see that the effect of the similarity transform

in (3.26) has been to block diagonalize the full space-time error propagator by replacing

occurrences of the time-stepping operators with their eigenvalues Φ 7→ λi, Ψ 7→ µi. In

other words, the global space-time problem has been decoupled into nx scalar, time-only

problems, with the ith such problem representing the error propagation of the ith spatial

eigenvector.

Having made this realisation, let us briefly return to the content of Remark 3.1 in which

we stated that a pair of fine- and coarse-grid eigenvalues equal to unity was permissible,

but otherwise, under Assumption 3.2, the magnitude of all eigenvalues should be less than

unity.

2In fact, we already did this in Section 2.5.5, where we applied our periodic coarse-grid optimization
approach to an inflow problem. Specifically, the convergence theory from [28] that we used for the approach
did not rigorously apply for inflow boundaries because the resulting Ψ was not diagonalizable, so we applied
the theory from [28] using instead the Fourier symbols of Ψ (i.e., the eigenvalues of the circulant extension
of Ψ).
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Lemma 3.3. Suppose there exists an index i∗ ∈ {1, . . . , nx} such that λi∗ = µi∗ = 1.

Then, the associated error propagator (3.27) is

Ei∗ = 0. (3.35)

Proof. Observe that the error propagator Ei∗ in (3.27) corresponds to a scalar initial-value

problem with fine-grid time-stepping operator λi∗ = 1, and coarse-grid time-stepping

operator µi∗ = 1 (see, e.g., the expressions for A0,i and A1,i in (3.28) and (3.29)). Notice

that µi∗ = 1 =
(
λi∗
)m

, and therefore that the problem uses an ideal coarse-grid operator.

The result (3.35) follows immediately by recalling that MGRIT converges to the exact

solution in a single iteration when using the ideal coarse-grid operator (see Section 1.4). �

In other words, if there exists an eigenvector for which λi∗ = µi∗ = 1, then MGRIT exactly

eliminates error in the direction of this eigenvector in a single iteration. Thus, in our

forthcoming investigations of Ei, we assume that |λi|, |µi| < 1, ∀i as per Assumption 3.2.

3.4 Local Fourier analysis

In this section, we use LFA to analyse the scalar or time-only MGRIT error propagators

Ei given by (3.27). The LFA framework for analysing the error propagators Ei is described

in Section 3.4.1. The initial theoretical work of computing the eigenmatrices is the subject

of Section 3.4.2. Finally, the main theoretical results are given in Section 3.4.3.

3.4.1 Introduction and preliminaries

Originally proposed in [9], LFA is a predictive tool for approximately determining the

asymptotic convergence behaviour of multigrid methods, or that of their components,

such as relaxation, for example. To analyse the problem with LFA, one reconsiders the

two-grid problem posed on a pair of infinite grids, in which the influence and effects of

boundary conditions are ignored. On these grids, one makes use of the fact that Fourier

modes are formal eigenfunctions of the infinite-dimensional Toeplitz operators that are

present in the multigrid error propagator (i.e., those arising from the discretization of a

constant-coefficient PDE). It is then possible to show that the error propagator leaves

invariant certain low-dimensional spaces of these Fourier modes. As such, the properties

of the iteration operator can be characterized by the properties of certain low-dimensional

operators which are feasible to compute numerically.
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To this end, with ` the level in our multigrid hierarchy, we associate the semi-infinite

temporal grid

G` :=
{
tk = km`δt : k ∈ N0

}
, ` ∈ {0, 1}. (3.36)

On the grids G`, ` ∈ {0, 1}, we consider the infinite-dimensional extension of matrix Ei
in (3.27) and the infinite-dimensional extensions of the matrices that define it given in

(3.28)–(3.32).

In addition to considering the multigrid components on the grids (3.36), we also consider

the following Fourier modes

ϕ`(θ, t) := exp

(
iθt

m`δt

)
, t ∈ G`, θ ∈ Θ`, (3.37)

where

Θ` =





[
− π
m
, 2π − π

m

)
, ` = 0,

[−π, π) ` = 1,
(3.38)

and θ varying continuously in Θ`. Note that any intervals of length 2π could be used for

Θ`, but these choices provide some notational simplifications (see also [26]). We adopt the

shorthand ϕ`(θ) for denoting the Fourier mode (3.37) sampled at all time points t ∈ G`.

The modes ϕ`(θ) lie at the heart of LFA because they are formally eigenfunctions of any

infinite-dimensional Toeplitz operator that acts on the grid G` [99, 105].

On G` we introduce the following scaled Hermitian inner product of two grid functions

a`, b` : G` → C as

〈a`, b`〉 := lim
nt→∞

1

nt

nt−1∑

k=0

ā`(tk)b`(tk), (3.39)

in which ā(tk) denotes the complex conjugate of the complex number a(tk). Note that the

Fourier modes (3.37) are orthonormal with respect to this inner product.

As is standard in the Fourier analysis of multigrid methods, we partition the continuous

frequency space Θ0 into two disjoint sets by

Θlow :=
[
− π
m
,
π

m

)
, Θhigh :=

[ π
m
, 2π − π

m

)
. (3.40)

Observe for any θ ∈ Θlow that ϕ0

(
θ + 2πα

m , t
)

= 1√
m
ϕ1 (mθ, t) for t ∈ G1, α ∈ {0, . . . ,m− 1}.

These m fine-grid functions ϕ0

(
θ + 2πα

m , t
)

are known as harmonics of one another. The

fact that the harmonics are indistinguishable from one another when sampled on the
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coarse-grid points is the motivation for the partitioning in (3.40). See also [26, Sec. 4.1.2]

for related discussion.

Since the harmonics are indistinguishable from one another when sampled on the coarse

grid, they become coupled or mixed when acted on by the restriction and interpolation

operators. Based on this, we define the following m-dimensional spaces of harmonics.

Definition 3.4 (mδt-harmonics). For a given θ ∈ Θlow, the associated m-dimensional

space of harmonics is

Hθδt := span
0≤α<m

{
ϕ0

(
θ +

2πα

m

)}
. (3.41)

Not only does interpolation intermix Fourier harmonics, but so does relaxation, as we shall

show. In other words, the Fourier modes (3.37) are neither eigenfunctions of interpolation

nor relaxation. More generally, for a given θ ∈ Θlow, the action of the various MGRIT

components (3.28)–(3.32) on Fourier modes (3.37) may be characterized as

A0,i : Hθδt → Hθδt, (3.42)

A1,i : span{ϕ1(mθ)} → span{ϕ1(mθ)}, (3.43)

Pi : span{ϕ1(mθ)} → Hθδt, (3.44)

SF
i : Hθδt → Hθδt, (3.45)

SCF
i : Hθδt → Hθδt. (3.46)

Note that the spans in (3.43) and (3.44) are over a one-dimensional set.

Since the MGRIT error propagator Ei is composed of the above operators (see (3.27)), it

is invariant on the space of mδt-harmonics:

Ei : Hθδt → Hθδt for all θ ∈ Θlow. (3.47)

Therefore, by grouping together harmonic Fourier modes, the infinite-dimensional error

propagator Ei can be block diagonalized. Specifically, the transformed operator has one

diagonal block Êi(θ) ∈ Cm×m associated with each θ ∈ Θlow, where, for a given θ ∈ Θlow,

Êi(θ) is the representation of Ei on the harmonic space Hθδt. That is,

Ei 7→
similarity transform

diag
θ∈Θlow

(
Êi(θ)

)
. (3.48)
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Following the notation of [78], we call Êi(θ) the eigenmatrix of Ei associated with the

harmonic space Hθδt (or just the eigenmatrix of Ei for short).3 More specifically, let V (θ)

be the matrix whose m columns are the Fourier modes defining the harmonic space Hθδt
given in (3.41),

V (θ) :=
[
ϕ0(θ) ϕ0

(
θ + 2π

m

)
. . . ϕ0

(
θ + 2π(m−1)

m

)]
. (3.49)

Then, the eigenmatrix arising in the similarity transform (3.48) associated with Hθδt can

be expressed as

EiV (θ) = V (θ)Êi(θ) =⇒ Êi(θ) = V ∗(θ)EiV (θ) ∈ Cm×m. (3.50)

Similar matrix operators have the same eigenvalues, and therefore, from (3.48), the spectral

radius of the error propagator is

ρ(Ei) = ρ

(
diag
θ∈Θlow

(
Êi(θ)

)
)

= sup
θ∈Θlow

ρ
(
Êi(θ)

)
. (3.51)

Moreover, since the similarity transform in (3.48) is unitary, it preserves the `2-norm of

Ei,

‖Ei‖2 =

∥∥∥∥∥ diag
θ∈Θlow

(
Êi(θ)

)
∥∥∥∥∥

2

= sup
θ∈Θlow

∥∥Êi(θ)
∥∥

2
. (3.52)

Thus, the computation of the spectral radius and norm of the infinite-dimensional Ei has

been reduced to the computation of these quantities on an infinite number of matrices

Êi(θ) ∈ Cm×m, θ ∈ Θlow.

From the definition of Ei in (3.27), the m-dimensional error propagator Êi(θ) from (3.50)

can be written as

Êi(θ) = ŜF
i (θ) K̂i(θ)

(
ŜCF
i (θ)

)ν
ŜF
i (θ) ∈ Cm×m, (3.53)

where K̂i(θ) is the eigenmatrix of the coarse-grid correction,

K̂i(θ) = Im − P̂i(θ)
(
Â1,i(mθ)

)−1
P̂>i (θ) Â0,i(θ) ∈ Cm×m. (3.54)

3Note that in the LFA literature this is most commonly referred to as the Fourier symbol of Ei, but we
reserve this terminology for eigenvalues, as is discussed shortly. The term eigenmatrix is intended to express
that this is a generalization of the standard eigenvector-eigenvalue relationship in which an operator maps
a vector to a constant multiple of itself; now an operator maps a space of vectors to a matrix multiple of
that space, or a subspace of it (see (3.50)).
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The component matrices used in these expressions are the eigenmatrices of the infinite-

dimensional extensions of the multigrid components defined in (3.28)–(3.32). From (3.42)–

(3.46), these eigenmatrices may be expressed as

Â0,i(θ) = V ∗(θ)A0,iV (θ) ∈ Cm×m, (3.55)

Â1,i(mθ) = ϕ∗1(mθ)A1,iϕ1(mθ) ∈ C, (3.56)

P̂i(θ) = V ∗(θ)Piϕ1(mθ) ∈ Cm, (3.57)

ŜF
i (θ) = V ∗(θ)SF

i V (θ) ∈ Cm×m, (3.58)

ŜCF
i (θ) = V ∗(θ)SCF

i V (θ) ∈ Cm×m. (3.59)

The outstanding task is computing these eigenmatrices.

3.4.2 Derivations of eigenmatrices

The subject of this section is deriving all of the eigenmatrices (3.53)–(3.59). Specifi-

cally, those for the fine- and coarse-grid operators, and interpolation are presented in

Section 3.4.2.1. Those for relaxation are derived in Section 3.4.2.2, and finally, that of the

error propagator itself is considered in Section 3.4.2.3.

3.4.2.1 Eigenmatrices of fine- and coarse-grid operators, and interpolation

Let us begin with the simplest components, which are the fine- and coarse-grid operators

(3.55) and (3.56). The Fourier modes ϕ`(θ) are eigenfunctions of the fine- and coarse-

grid operators, A0,i and A1,i since they are infinite-dimensional Toeplitz operators, and,

therefore, their eigenmatrices are diagonal, and are simply given by

Âi,0(θ) = diag
0≤α<m

(
Ã0,i

(
θ +

2πα

m

))
∈ Cm×m, (3.60)

Â1,i(mθ) = Ã1,i(mθ) ∈ C. (3.61)

Here, Ã`,i(θ) denotes the eigenvalue or Fourier symbol of A`,i associated with the eigen-

function ϕ`(θ). The lower bidiagonal operators A0,i and A1,i, given by (3.28) and (3.29),

respectively, have Fourier symbols

Ã0,i(θ) = 1− λie−iθ ∈ C, Ã1,i(mθ) = 1− µie−imθ ∈ C. (3.62)

Remark 3.5 (Invertability of space-time operators). Thus far, we have implicitly assumed

that the infinite-dimensional operators
(
A0,i

)−1
and

(
A1,i

)−1
exist. This is equivalent to

their Fourier symbols vanishing nowhere with respect to θ. Recall from Assumption 3.2,
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that |λi|, |µi| < 1 ∀i. Therefore, from (3.62), it is clear that their the Fourier symbols are

bounded away from zero.

Now we consider the case of injection interpolation (3.57). This is perhaps easiest by

considering its transpose, which is injection restriction. Recall that part of our motivation

for defining the spaces of harmonics (3.41) was that for any θ ∈ Θlow, ϕ0

(
θ + 2πα

m , t
)

=
1√
m
ϕ1 (mθ, t) for coarse time points t ∈ G1, where α ∈ {0, . . . ,m − 1}. Notice then that

injection restriction, which takes the values of ϕ0

(
θ + 2πα

m , t
)

at coarse time points t ∈ G1,

maps a fine-grid harmonic to the associated coarse-grid Fourier mode ϕ1 (mθ, t), but with

its amplitude scaled by 1√
m

. In other words, the eigenmatrix of injection restriction is
1√
m

1>, where 1 ∈ Rm denotes a column vector of ones. Therefore the eigenmatrix of

injection interpolation—its transpose—is simply4

P̂i(θ) =
1√
m

1. (3.63)

3.4.2.2 Eigenmatrices of relaxation

Let us now move to the more difficult task of computing the eigenmatrices of the relaxation

operators (3.58) and (3.59). These calculations are more difficult because the relaxation

operators intermix harmonics in a non-trivial way.

Lemma 3.6 (Eigenmatrix of F-relaxation). The eigenmatrix (3.58) of F-relaxation may

be written as the following rank-1 matrix

ŜF
i (θ) = c(θ)

(
Â0,i(θ)

)−1
11>, (3.64)

in which Â0,i(θ) given in (3.60) is the diagonal eigenmatrix of the fine-grid operator A0,i,

and c(θ) is the function

c(θ) :=
1

m

[
1−

(
λie
−iθ
)m]

. (3.65)

Proof. From the representation of ŜF
i (θ) given by (3.58), its (p, q)th element,

p, q ∈ {0, . . . ,m− 1}, is equal to

[
ŜF
i (θ)

]
p,q

=
〈
ϕ0

(
θ + 2πp

m

)
, SF

i ϕ0

(
θ + 2πq

m

)〉
. (3.66)

4Note that in general when interpolation is the transpose of restriction, its eigenmatrix is equal to the
transpose of that of interpolation only up to some constant scaling (see, e.g., [99, Rem. 4.4.3]). However,
injection represents a special case in which the constant scaling is one.
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We begin by considering the vector in the right-hand side of this inner product. Using the

definition of SF
i given in (3.31), the jth element of the vector SF

i ϕ0

(
θ + 2πq

m

)
is

[
SF
i ϕ0

(
θ + 2πq

m

)]
j

= λj mod m
i exp

[
i
δt

(
θ + 2πq

m

)(
j − j mod m

)
δt
]
, (3.67)

=
[
λi exp

(
− i
(
θ + 2πq

m

))]j mod m[
ϕ0

(
θ + 2πq

m

)]
j
, (3.68)

≡
[
ζi(θ, q)

]j mod m
[
ϕ0

(
θ + 2πq

m

)]
j

(3.69)

where, in the final equation, we have introduced the shorthand function ζi(θ, q).

Now, considering the inner product (3.66) and some algebra gives

[
ŜF
i (θ)

]
p,q

= lim
nt→∞

1

nt

nt−1∑

k=0

[
ζi(θ, q)

]k mod m
exp

[
−i
δt

(
θ + 2πp

m

)
kδt
]

exp
[

i
δt

(
θ + 2πq

m

)
kδt
]
,

(3.70)

= lim
nt→∞

1

nt

nt−1∑

k=0

[
ζi(θ, q)

]k mod m
exp

(
2πik
m (q − p)

)
, (3.71)

= lim
nt→∞

1

nt

m−1∑

r=0

(
[
ζi(θ, q)

]r
[ nt

m
−1∑

k=0

exp
(

2πi(km+r)
m (q − p)

)])
, (3.72)

= lim
nt→∞

1

nt

m−1∑

r=0

(
[
ζi(θ, q)

]r
[

exp
(

2πir
m (q − p)

) nt
m
−1∑

k=0

exp
(

2πik(q − p)
)])

,

(3.73)

= lim
nt→∞

1

nt

m−1∑

r=0

(
[
ζi(θ, q)

]r
[
nt
m

exp
(

2πir
m (q − p)

)])
, (3.74)

=
1

m

m−1∑

r=0

[
ζi(θ, q) exp

(
2πi
m (q − p)

)]r
, (3.75)

Substituting the value of ζi(θ, q) from (3.69) into the equation above and simplifying the

resulting geometric sum gives

[
ŜF
i (θ)

]
p,q

=
1

m

m−1∑

r=0

[
λi exp

(
− i
(
θ + 2πp

m

))]r
, (3.76)

=
1

m

1−
(
λie
−iθ
)m

1− exp
(
− i
(
θ + 2πp

m

)) . (3.77)

Observe from (3.77) that
[
ŜF
i (θ)

]
p,q

does not depend on the column index q, but only

the row index p. This means that ŜF
i (θ) can be expressed as an outer product of two

vectors in the form ŜF
i (θ) = 1

m

[
1 −

(
λie
−iθ
)m]

a1>, for some vector a whose pth element

is one divided by the function 1− exp
(
− i
(
θ + 2πp

m

))
. Notice that this function is simply
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Ã0,i

(
θ + 2πp

m

)
, where Ã0,i(θ) is the Fourier symbol of A0,i given in (3.62). Therefore, the

vector a is equal to
(
Â0,i(θ)

)−1
1, in which Â0,i(θ) is the diagonal matrix given in (3.60)

that contains the Fourier symbols of A0,i for the harmonic modes. This immediately gives

the result (3.64) for ŜF
i (θ). �

That fact that the F-relaxation eigenmatrix ŜF
i (θ) = c(θ)

(
Â0,i(θ)

)−1
11>, as given in

(3.64), is dense reflects that F-relaxation couples together the m harmonics in the space

Hθδt (see (3.41)). This is in contrast to some simple relaxation methods, such as those

typically used in the multigrid solution of Poisson problems, for example, for which the

eigenmatrix is diagonal (or block diagonal), representing that harmonics are not intermixed

(or partially intermixed) by relaxation [99].

Having identified the eigenmatrix for F-relaxation, we move to consider the eigenmatrix

of CF-relaxation, with our result described in the following lemma.

Lemma 3.7 (Eigenmatrix of pre-relaxation). The eigenmatrix (3.59) of CF-relaxation

may be expressed as

ŜCF
i (θ) = ŜF

i (θ)
[
I − Â0,i(θ)

]
, (3.78)

where the eigenmatrix of F-relaxation ŜF
i (θ) is given by (3.64), and Â0,i(θ) is given in

(3.60). Furthermore, the eigenmatrix for the entire pre-relaxation operator in (3.53) may

be written as

(
ŜCF
i (θ)

)ν
ŜF
i (θ) =

(
λie
−iθ
)mν

ŜF
i (θ), ν ∈ N0. (3.79)

Proof. We begin by computing the eigenmatrix for CF-relaxation. From (3.59), the (p, q)th

element of ŜCF
i (θ) is equal to

[
ŜCF
i (θ)

]
p,q

=
〈
ϕ0

(
θ + 2πp

m

)
, SCF

i ϕ0

(
θ + 2πq

m

)〉
. (3.80)

Using the expression for SCF
i given in (3.32), the jth element of the vector SCF

i ϕ0

(
θ+ 2πq

m

)

can be written as

[
SCF
i ϕ0

(
θ + 2πq

m

)]
j

= λiλ
j mod m
i exp

[
i
δt

(
θ + 2πq

m

)(
j − 1− j mod m

)
δt
]
, (3.81)

= ζi(θ, q)
[
ζi(θ, q)

]j mod m
[
ϕ0

(
θ + 2πq

m

)]
j
, (3.82)

= ζi(θ, q)
[
SF
i ϕ0

(
θ + 2πq

m

)]
j
, (3.83)
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where the function ζi(θ, q) is as in (3.69), and
[
ζi(θ, q)

]j mod m
[
ϕ0

(
θ + 2πq

m

)]
j

has been

replaced with
[
SF
i ϕ0

(
θ + 2πq

m

)]
j

by using (3.69).

Therefore, from (3.80) and (3.83), the following simple relationship holds between the

(p, q)th element of the eigenmatrices of CF- and F-relaxation:

[
ŜCF
i (θ)

]
p,q

= ζi(θ, q)
[
ŜF
i (θ)

]
p,q
. (3.84)

From its definition (see (3.69)), ζi(θ, q) = 1−Ã0,i

(
θ+ 2πq

m

)
, where Ã0,i(θ) defined in (3.62) is

the Fourier symbol of A0,i. Thus, from (3.84) and (3.64), the eigenmatrix of CF-relaxation

may be expressed as

ŜCF
i (θ) = ŜF

i (θ)
[
I − Â0,i(θ)

]
= c(θ)

(
Â0,i(θ)

)−1
11>

[
I − Â0,i(θ)

]
, (3.85)

in which Â0,i(θ) is the diagonal matrix holding the Fourier symbols of the harmonics (see

(3.60)). This proves (3.78), the first claim of the lemma.

Now let us consider the effect of taking powers of the eigenmatrix. Exploiting the rank-1

structure of ŜCF
i (θ) in (3.85), any power ν ∈ N of the matrix can be computed as

[
ŜCF
i (θ)

]ν
=

(
c(θ)

(
Â0,i(θ)

)−1
11>

[
I − Â0,i(θ)

])ν
, (3.86)

= c(θ)
(
Â0,i(θ)

)−1
1

(
1>
[
I − Â0,i(θ)

]
c(θ)

(
Â0,i(θ)

)−1
1

)ν−1

1>
[
I − Â0,i(θ)

]
,

(3.87)

=

(
1>
[
I − Â0,i(θ)

]
c(θ)

(
Â0,i(θ)

)−1
1

)ν−1

c(θ)
(
Â0,i(θ)

)−1
11>

[
I − Â0,i(θ)

]
,

(3.88)

=
(
1>c(θ)

(
Â0,i(θ)

)−1
1− c(θ)1>1

)ν−1
ŜCF
i (θ), ν ∈ N. (3.89)

The outstanding problem then is to compute the two functions in (3.89) that occur as

inner products, 1>c(θ)
(
Â0,i(θ)

)−1
1 and c(θ)1>1. The latter is simply c(θ)1>1 = mc(θ),

however, the former requires more careful consideration. Using the expression for the

eigenmatrix Â0,i(θ) given in (3.60), and the definition of c(θ) in (3.65), note that the pth

element, p ∈ {0, . . . ,m − 1}, of the column vector c(θ)
(
Â0,i(θ)

)−1
1 can be rewritten as a
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geometric sum as follows

[
c(θ)

(
Â0,i(θ)

)−1
1
]
p

=
1

m

1−
(
λie
−iθ
)m

1− exp
(
− i
(
θ + 2πp

m

)) , (3.90)

=
1

m

m−1∑

r=0

[
λi exp

(
− i
(
θ + 2πp

m

))]r
. (3.91)

Using (3.91), the aforementioned inner product can be written as

1>c(θ)
(
Â0,i(θ)

)−1
1 =

1

m

m−1∑

p=0

(m−1∑

r=0

[
λi exp

(
− i
(
θ + 2πp

m

))]r
)
, (3.92)

=
1

m

m−1∑

r=0

[
λie
−iθ
]r m−1∑

p=0

[
exp

(−2πir
m

)]p
, (3.93)

=
1

m

m−1∑

r=0

[
λie
−iθ
]r
mδr,0, (3.94)

= 1. (3.95)

In (3.94), δr,0 denotes the Kronecker delta function, and it has arisen from simplifying the

geometric sum over p in the previous line.

From the definition of c(θ) in (3.65), the result (3.95), and the fact that c(θ)1>1 = mc(θ),

it follows immediately that the function appearing in (3.89) is

1>c(θ)
(
Â0,i(θ)

)−1
1− c(θ)1>1 = 1−mc(θ) =

(
λie
−iθ
)m
. (3.96)

Substituting this result into (3.89) leads to powers of the CF-relaxation eigenmatrix being

given by

[
ŜCF
i (θ)

]ν
=
(
λie
−iθ
)(ν−1)m

ŜCF
i (θ), ν ∈ N. (3.97)

Finally, let us complete the proof by considering the product of the CF- and F-relaxation

eigenmatrices. Using the same rank-1 exploit as used above to compute powers and using

(3.96) gives

ŜCF
i (θ)ŜF

i (θ) =
(
c(θ)

(
Â0,i(θ)

)−1
11>

[
I − Â0,i(θ)

])(
c(θ)

(
Â0,i(θ)

)−1
11>

)
, (3.98)

= c(θ)
(
Â0,i(θ)

)−1
1
(
1>
[
I − Â0,i(θ)

]
c(θ)

(
Â0,i(θ)

)−1
1
)
1>, (3.99)

=
(
1>
[
I − Â0,i(θ)

]
c(θ)

(
Â0,i(θ)

)−1
1
)
c(θ)

(
Â0,i(θ)

)−1
11>, (3.100)

=
(
λie
−iθ
)m

ŜF
i (θ). (3.101)
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Combining this result with (3.97) leads immediately to the claimed result of (3.79) that
[
ŜCF
i (θ)

]ν
ŜF
i (θ) =

(
λie
−iθ
)mν

ŜF
i (θ) for ν ∈ N0. �

Recall that F-relaxation updates F-point values so that they have zero residuals, and leaves

C-point values unchanged. Therefore, any successive applications of F-relaxation do not

alter the solution since F-point residuals are already zero (see also “Updating the solution

at the F-points with Φ” [28, Sec. 2]). Therefore, the error propagator SF of F-relaxation

(see (3.21)), and that of SF
i , which is the error propagator of F-relaxation on the ith

spatial mode (see (3.31)), are idempotent. We now prove the same property holds for the

eigenmatrix ŜF
i (θ) of F-relaxation.

Corollary 3.8. The eigenmatrix ŜF
i (θ) for F-relaxation, as given by (3.64), is idempotent,

ŜF
i (θ)ŜF

i (θ) = ŜF
i (θ). (3.102)

Furthermore, ŜF
i (θ) has a single eigenvalue of unity, and m− 1 eigenvalues that are zero;

that is, the spectrum of ŜF
i (θ) is the multiset

σ
(
ŜF
i

)
= {0, . . . , 0, 1}. (3.103)

Proof. Using the expression for ŜF
i (θ) given by (3.64), its square can be expressed as

ŜF
i (θ) ŜF

i (θ) =
(
c(θ)

(
Â0,i(θ)

)−1
11>

)(
c(θ)

(
Â0,i(θ)

)−1
11>

)
, (3.104)

= c(θ)
(
Â0,i(θ)

)−1
1
(
1>c(θ)

(
Â0,i(θ)

)−1
1
)
1>, (3.105)

=
(
1>c(θ)

(
Â0,i(θ)

)−1
1
)
ŜF
i (θ). (3.106)

From (3.95), the bracketed term in (3.106) is one.

Now consider the spectrum of the eigenmatrix. Since ŜF
i (θ) ∈ Cm×m has a rank equal

to one (see (3.64)), it has m − 1 eigenvalues that are zero, and one eigenvalue equal to

the inner product of the two vectors whose outer product define it. That is, the single

non-zero eigenvalue of ŜF
i (θ) is equal to the inner product

(
1>
)(
c(θ)

(
Â0,i(θ)

)−1
1
)

= 1, (3.107)

with the equality being due to (3.95). �
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3.4.2.3 Eigenmatrix of error propagation

Having explicitly computed the eigenmatrices that compose the error propagator eigenma-

trix Êi(θ) from (3.53), we now take the next step of explicitly computing the eigenmatrix

itself.

Theorem 3.9 (Error propagator eigenmatrix). The error propagator eigenmatrix Êi(θ)
given by (3.53) may be written as

Êi(θ) = f(θ)ŜF
i (θ), (3.108)

where the function f(θ) is defined as

f(θ) :=
(
λie
−iθ
)mν λmi − µi

eimθ − µi
, (3.109)

and ŜF
i (θ) is the eigenmatrix for F-relaxation given in (3.64).

Proof. We begin with the coarse-grid correction component of Êi(θ). Invoking the eigenma-

trix of interpolation given by (3.63), and exploiting that the eigenmatrix of the coarse-grid

operator is simply a scalar (see (3.61)), the eigenmatrix (3.54) of the coarse-grid correction

operator is

K̂i(θ) = Im − P̂i(θ)
(
Â1,i(mθ)

)−1
P̂>i (θ) Â0,i(θ), (3.110)

= Im −
1

m

(
Â1,i(mθ)

)−1
11> Â0,i(θ). (3.111)

Substituting this into (3.53), and using the result from (3.79) that
[
ŜCF
i (θ)

]ν
ŜF
i (θ) =

(
λie
−iθ
)mν

ŜF
i (θ) gives the error propagator eigenmatrix as

Êi(θ) = ŜF
i (θ)

(
Im −

1

m

(
Â1,i(mθ)

)−1
11> Â0,i(θ)

)[
ŜCF
i (θ)

]ν
ŜF
i (θ), (3.112)

=
(
λie
−iθ
)mν([

ŜF
i (θ)

]2
− 1

m

(
Â1,i(mθ)

)−1
[
ŜF
i (θ)11> Â0,i(θ)Ŝ

F
i (θ)

])
. (3.113)
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From (3.64), recall that ŜF
i (θ) = c(θ)

(
Â0,i(θ)

)−1
11>. Using this, and the fact that 1>1 =

m, the second term in closed parentheses in (3.113) can be rewritten as

ŜF
i (θ)

(
11> Â0,i(θ)Ŝ

F
i (θ)

)
= ŜF

i (θ)
(
11> Â0,i(θ)c(θ)

(
Â0,i(θ)

)−1
11>

)
, (3.114)

= ŜF
i (θ)

(
c(θ)11>11>

)
, (3.115)

= mc(θ)ŜF
i (θ)11>, (3.116)

= mc(θ)
(
c(θ)

(
Â0,i(θ)

)−1
11>11>

)
, (3.117)

= m2c(θ)ŜF
i (θ). (3.118)

Substituting this result into (3.113) gives the error propagator eigenmatrix as

Êi(θ) =
(
λie
−iθ
)mν([

ŜF
i (θ)

]2
−mc(θ)

(
Â1,i(mθ)

)−1
ŜF
i (θ)

)
, (3.119)

=
(
λie
−iθ
)mν(

1−mc(θ)
(
Â1,i(mθ)

)−1
)
ŜF
i (θ), (3.120)

where the second equality follows by replacing the square of ŜF
i (θ) with itself, since it is

idempotent (see (3.102)), and then pulling out the common factor of ŜF
i (θ).

Finally, using the definition of c(θ) given in (3.65), and the expression for Â1,i(mθ) given

by (3.61), simple algebra reveals that

1−mc(θ)
(
Â1,i(mθ)

)−1
=
Â1,i(mθ)−mc(θ)

Â1,i(mθ)
=
λmi e

−imθ − µie−imθ

1− µie−imθ
=

λmi − µi
eimθ − µi

.

(3.121)

Substituting this into (3.120) yields the claimed form of Êi(θ) given by (3.108). �

3.4.3 LFA estimates for error propagation

In this section, we present our main theoretical results on the LFA estimates for error

propagation, which are based on the simple representation of the error propagator eigen-

matrix given in Theorem 3.9. We begin with the norm of this matrix, which is the subject

of the following theorem.

Theorem 3.10 (Error propagator eigenmatrix norm). The `2-norm of the error propaga-

tor eigenmatrix Êi(θ) given in (3.108) is

∥∥Êi(θ)
∥∥

2
= |λi|mν

|λmi − µi|
|eimθ − µi|

√
1− |λi|2m
1− |λi|2

. (3.122)



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 3: Closed-form Fourier analysis of MGRIT 67

Proof. Using the expression for Êi(θ) given in (3.108), its squared norm can be expressed

as

∥∥Êi(θ)
∥∥2

2
= ρ
(
Ê∗i (θ)Êi(θ)

)
, (3.123)

= ρ
(
f(θ)f̄(θ)

((
ŜF
i (θ)

)∗
ŜF
i (θ)

))
, (3.124)

= |f(θ)|2ρ
((
ŜF
i (θ)

)∗
ŜF
i (θ)

)
. (3.125)

Using that ŜF
i (θ) = c(θ)

(
Â0,i(θ)

)−1
11> (see (3.64)), the above can be written as

∥∥Êi(θ)
∥∥2

2
= |f(θ)|2ρ

([
11>c̄(θ)

(
Â∗0,i(θ)

)−1
][
c(θ)

(
Â0,i(θ)

)−1
11>

])
, (3.126)

= |f(θ)|2ρ
([

1>c̄(θ)
(
Â∗0,i(θ)

)−1
c(θ)

(
Â0,i(θ)

)−1
1
]
11>

)
, (3.127)

= m|f(θ)|2
∣∣∣1>c̄(θ)

(
Â∗0,i(θ)

)−1
c(θ)

(
Â0,i(θ)

)−1
1
∣∣∣. (3.128)

To arrive at (3.128), we have used the fact that all of the terms appearing before 11> in

(3.127) are scalars, and then that ρ(11>) = 1>1 = m (see the proof of Corollary 3.8).

The key outstanding issue in evaluating the norm of the eigenmatrix using (3.128) is

evaluating the inner product that appears inside the absolute value. To begin, recall the

identity given in (3.91) for the pth element in the column vector c(θ)
(
Â0,i(θ)

)−1
1,

[
c(θ)

(
Â0,i(θ)

)−1
1
]
p

=
1

m

m−1∑

r=0

[
λi exp

(
− i
(
θ + 2πp

m

))]r
. (3.129)

Therefore, it must also be the case that its conjugate transpose satisfies

[
1>c̄(θ)

(
Â∗0,i(θ)

)−1
]
p

=
1

m

m−1∑

s=0

[
λ̄i exp

(
i
(
θ + 2πp

m

))]s
. (3.130)
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Using (3.129) and (3.130), and then reordering the resulting sums gives the inner product

as

1>c̄(θ)
(
Â∗0,i(θ)

)−1
c(θ)

(
Â0,i(θ)

)−1
1

=
m−1∑

p=0

([
1>c̄(θ)

(
Â∗0,i(θ)

)−1
]
p

[
c(θ)

(
Â0,i(θ)

)−1
1
]
p

)
, (3.131)

=
1

m2

m−1∑

p=0

(
m−1∑

r=0

[
λi exp

(
− i
(
θ + 2πp

m

))]r m−1∑

s=0

[
λ̄i exp

(
i
(
θ + 2πp

m

))]s
)
, (3.132)

=
1

m2

m−1∑

p=0

m−1∑

r=0

m−1∑

s=0

λri λ̄
s
i e

iθ(s−r) exp
(

2πip(s−r)
m

)
, (3.133)

=
1

m2

m−1∑

r=0

m−1∑

s=0

λri λ̄
s
i e

iθ(s−r)
(m−1∑

p=0

exp
(

2πip(s−r)
m

))
. (3.134)

Considering the geometric sum in the open parentheses in (3.134) gives

m−1∑

p=0

[
exp

(
2πi(s−r)

m

)]p
=




m, if (s− r) mod m = 0,

0, else.
(3.135)

Notice in (3.134), that r, s ∈ {0, . . . ,m−1}, and thus, s−r ∈ {1−m, . . . ,m−1}. Therefore,

the only time that s− r can be an integer multiple of m is when s− r = 0, or r = s. As

such, the geometric sum of (3.135) is simply equal to mδr,s, where δ is the Kronecker delta

function. Substituting this result into (3.134) gives

1>c̄(θ)
(
Â∗0,i(θ)

)−1
c(θ)

(
Â0,i(θ)

)−1
1 =

1

m2

m−1∑

r=0

m−1∑

s=0

λri λ̄
s
i e

iθ(s−r)mδr,s, (3.136)

=
1

m

m−1∑

r=0

λri λ̄
r
i , (3.137)

=
1

m

1− |λi|2m
1− |λi|2

. (3.138)

The final equality follows here by noting that the expression above is a geometric sum in

|λi|2.

The claimed result of (3.122) follows by substituting into (3.128) the value of |f(θ)|2 using

the definition of f(θ) given in (3.109), and substituting the quantity given in (3.138), and

then finally taking the square root of the result. �

Recall from (3.52) that ‖Ei‖2 = sup
θ∈Θlow

∥∥Êi(θ)
∥∥

2
. That is, the maximization of the norm

over θ ∈ Θlow provides information about the worst-case convergence possible in practice,

where, typically, all Fourier modes of all frequencies are present in the data.
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Theorem 3.11 (Error propagator norm). The `2-norm of the MGRIT error propagator

Ei defined in (3.27), and associated with the ith eigenvector of the time-stepping operators

Φ and Ψ, is

‖Ei‖2 = sup
θ∈Θlow

∥∥Êi(θ)
∥∥

2
= |λi|mν

|λmi − µi|
1− |µi|

√
1− |λi|2m
1− |λi|2

. (3.139)

Furthermore, under the action of Ei, the harmonic space Hθδt := span
0≤α<m

{ϕ0

(
θ + 2πα

m

)
} (see

(3.41)) whose error is reduced the least, as measured in the `2-norm, is the one associated

with frequency θ = θ†i , where

θ†i := arg max
θ∈Θlow

∥∥Êi(θ)
∥∥

2
=

1

m
argµi, (3.140)

in which argµi denotes the argument of the complex number µi.

Proof. The first equality in (3.139) was already given as (3.52) and follows from the fact

that under unitary similarity transform Ei 7→ diag
θ∈Θlow

(
Êi(θ)

)
. Let us first consider the slowest

converging harmonic space, and then return to the second equality in (3.139). From the

expression for
∥∥Êi(θ)

∥∥
2

given in (3.122), the only dependence on frequency θ is via the

term 1
|eimθ−µi|

. Therefore, we have

θ†i := arg max
θ∈Θlow

∥∥Êi(θ)
∥∥

2
= arg max

θ∈Θlow

1∣∣eimθ − µi
∣∣ = arg min

θ∈Θlow

∣∣eimθ − µi
∣∣. (3.141)

Furthermore, since Θlow is the continuous frequency space spanning
[
− π
m ,

π
m

)
(see (3.40)),

introducing the new variable ϑ = mθ gives

min
θ∈Θlow

∣∣eimθ − µi
∣∣ = min

ϑ∈[−π,π)

∣∣eiϑ − µi
∣∣. (3.142)

Notice that this quantity is simply the shortest distance from the unit circle to the complex

number µi that lies inside it (recall that |µi| < 1 under Assumption 3.2). By a simple

geometric argument, this distance is minimized by the point on the boundary of the unit

circle that has the same argument or phase as µi; that is, the minimum over ϑ ∈ [−π, π) is

achieved at ϑ = argµi. Since θ = ϑ/m, the minimizing frequency over θ ∈ Θlow is simply

θ†i = 1
m argµi, as stated in (3.140).
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To evaluate the minimum distance, write the eigenvalue in polar form as µi = |µi|ei arg µi

and substitute it into the above equation to yield

min
θ∈Θlow

∣∣eimθ − µi
∣∣ =

∣∣ei arg µi − |µi|ei arg µi
∣∣ = |1− |µi||

∣∣ei arg µi
∣∣ = |1− |µi|| = 1− |µi|,

(3.143)

with the last equality following since |µi| < 1. Finally, the result (3.139) follows by

evaluating
∥∥Êi(θ†i )

∥∥
2

from (3.122) using the fact that
∣∣eimθ†i − µi

∣∣ = 1− |µi|. �

In Section 3.7, we will return to further analyse the results of Theorem 3.11 in the context

of advection-dominated problems. For symmetric coarse-grid operators Ψ, which typically

arise in the context of diffusion problems, among others, the following corollary specifies

the slowest converging space of harmonics.

Corollary 3.12. Suppose that the coarse-grid time-stepping operator Ψ is symmetric.

Then, for the ith eigenmode of Ψ, the harmonic space Hθ
†
i
δt that experiences the slowest

error reduction over all harmonic spaces has a frequency θ†i given by

θ†i := arg max
θ∈Θlow

∥∥Êi(θ)
∥∥

2
=





0, µi ≥ 0,

− π
m
, µi < 0.

(3.144)

Proof. When Ψ is symmetric, its eigenvalues (µi)
nx
i=1 are real and the result follows imme-

diately from (3.140) by noting that argµi = 0 if µi ≥ 0, and argµi = −π if µi < 0. �

Given the structure of the eigenmatrix Êi(θ) in Theorem 3.9, and the result from Theo-

rem 3.11 on ‖Ei‖2, it is straightforward to compute the spectral radius of Ei, which we now

present.

Corollary 3.13 (Spectral radius of error propagation). The spectral radius of the error

propagator eigenmatrix Êi(θ) given in (3.108) is

ρ
(
Êi(θ)

)
= |λi|mν

|λmi − µi|
|eimθ − µi|

. (3.145)

Furthermore, the spectral radius of the error propagator Ei given in (3.27) is

ρ(Ei) = sup
θ∈Θlow

ρ
(
Êi(θ)

)
= |λi|mν

|λmi − µi|
1− |µi|

. (3.146)
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Proof. From the expression for Êi(θ) given in (3.108), we have its spectral radius simply

given as

ρ
(
Êi(θ)

)
= ρ
(
f(θ)ŜF

i (θ)
)

= |f(θ)|ρ
(
ŜF
i (θ)

)
= |f(θ)|, (3.147)

with the final equality following from the fact that the only non-zero eigenvalue of ŜF
i (θ) is

one, as per (3.103) of Corollary 3.8. Substituting f(θ) from its definition given in (3.109)

gives the claimed result of (3.145).

Now consider the spectral radius of the error propagator in (3.146). The first equality

in (3.146) was already given as (3.51). From (3.145), observe that the eigenmatrix Êi(θ)
with the largest spectral radius is that associated with the frequency θ = θ†i = 1

m argµi,

since this is the frequency that minimizes |eimθ − µi| (see the proof of Theorem 3.11).

Furthermore, from the proof of Theorem 3.11, we have that the minimum value of |eimθ−µi|
is 1− |µi|. Substituting this into (3.145) gives (3.146). �

We now present our final result of this section, which considers the convergence across

multiple iterations.

Theorem 3.14 (Norm of powers of error propagator). The `2-norm of the pth power of

the error propagator eigenmatrix Êi(θ) given in (3.108) is

∥∥[Êi(θ)
]p∥∥

2
=

(
|λi|mν

|λmi − µi|
|eimθ − µi|

)p√1− |λi|2m
1− |λi|2

, p ∈ N. (3.148)

Furthermore, the `2-norm of the pth power of the error propagator Ei given in (3.27) is

∥∥Epi
∥∥

2
= sup

θ∈Θlow

∥∥[Êi(θ)
]p∥∥

2
=

(
|λi|mν

|λmi − µi|
1− |µi|

)p√1− |λi|2m
1− |λi|2

, p ∈ N. (3.149)

Proof. Recall from (3.108) that Êi(θ) = f(θ)ŜF
i (θ), and therefore, one has for p ∈ N

[
Êi(θ)

]p
=
[
f(θ)ŜF

i (θ)
]p

=
[
f(θ)

]p[
ŜF
i (θ)

]p
=
[
f(θ)

]p
ŜF
i (θ), (3.150)

with the last equality following from the idempotence of ŜF
i (θ), as per (3.102) of Corol-

lary 3.8. Therefore, it follows that

[
Ê∗i (θ)

]p[Êi(θ)
]p

=
([
f̄(θ)

]p(
ŜF
i (θ)

)∗)([
f(θ)

]p
ŜF
i (θ)

)
, (3.151)

= |f(θ)|2p−2
(
f̄(θ)

(
ŜF
i (θ)

)∗)(
f(θ)ŜF

i (θ)
)
, (3.152)

= |f(θ)|2p−2
[
Ê∗i (θ) Êi(θ)

]
. (3.153)
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Now, considering the norm of p powers of the eigenmatrix and using (3.153) gives

∥∥[Êi(θ)
]p∥∥2

2
= ρ
([
Ê∗i (θ)

]p[Êi(θ)
]p)

, (3.154)

= |f(θ)|2p−2ρ
(
Ê∗i (θ)Êi(θ)

)
, (3.155)

= |f(θ)|2p−2
∥∥Êi(θ)

∥∥2

2
. (3.156)

The claimed result for
∥∥[Êi(θ)

]p∥∥
2

given in (3.148) follows from substituting f(θ) into

(3.156) using (3.109), substituting
∥∥Êi(θ)

∥∥
2

into (3.156) using (3.122), and then taking the

square root of the result.

Now consider the result for the error propagator given by (3.149). The first equality here

follows from the unitary similarity transform in (3.48) (see also (3.52)). Now observe

from (3.148) that the eigenmatrix
[
Êi(θ)

]p
with the largest norm is that with frequency

θ = θ†i = 1
m argµi. This is because θ†i maximizes the quantity 1

|eimθ−µi|p
, which is the

only dependence that
∥∥[Êi(θ)

]p∥∥
2

has on θ (see the proof of Theorem 3.11 for related

discussion). Furthermore, from the proof of Theorem 3.11, it follows that the maximum

value of 1
|eimθ−µi|p

is 1
(1−|µi|)p . Substituting this into (3.148) leads to the claimed result in

(3.149). �

3.5 Rigorous Fourier analysis for time-periodic problems

One can define a time-periodic MGRIT solver that uses either a time-periodic coarse-grid

problem or an initial-value coarse-grid problem (see, e.g., [43, 49]). Our LFA theory applies

rigorously or exactly for two-level MGRIT solvers that employ a time-periodic coarse-grid

problem.

In essence, such a time-periodic MGRIT algorithm and its error propagator can be con-

structed in exactly the same way we constructed those for the initial-value problem pre-

viously in Sections 3.2 and 3.3. However, this is done with the key distinction that all

occurrences of the lower shift matrix Ln given in (3.7) are replaced with its circulant

analogue:

Lperiodic
n =




0 1

1 0
. . .

. . .

1 0



∈ Rn×n. (3.157)

This has the effect of replacing initial-value boundary conditions present in the space-

time and CF-relaxation operators with time-periodic boundary conditions instead. For
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example, rather than the initial-value space-time operators A0 = Int ⊗ Inx − Lnt ⊗ Φ and

A1 = Int/m ⊗ Inx − Lnt/m ⊗Ψ as defined, respectively, in (3.5) and (3.6), one should use

the time-periodic space-time operators Aperiodic
0 = Int ⊗ Inx − Lperiodic

nt ⊗ Φ and

Aperiodic
1 = Int/m ⊗ Inx − L

periodic
nt/m

⊗Ψ.

Then, our LFA theory of Section 3.4 yields exact convergence results for time-periodic

problems solved with the above-described algorithm, provided two key changes are made.

First, we no longer need to work with the infinite-grid assumption that nt →∞. However,

none of our results explicitly depend on nt, and, so, this change does not affect any of the

resulting formulae. Second, the Fourier modes ϕ`(θ) given in (3.37) should sample the

frequency θ discretely rather than continuously. More specifically, define Θlow,discrete to be

the set of nt/m equidistant frequencies spanning the interval [−π/m, π/m) , that is, the

discrete analogue of the continuous set Θlow from (3.40). Then, for any θ ∈ Θlow,discrete,

the spectral radius ρ
(
Êi(θ)

)
(see (3.145)), norm

∥∥Êi(θ)
∥∥

2
(see (3.122)), and the norm of

powers
∥∥[Êi(θ)

]p∥∥
2

(see (3.148)) hold. Moreover, the maximum of these quantities over

θ ∈ Θlow,discrete yields exact results for Ei for any finite nt:

ρ(Ei) = max
θ∈Θlow,discrete

ρ
(
Êi(θ)

)
, (3.158)

‖Ei‖2 = max
θ∈Θlow,discrete

∥∥Êi(θ)
∥∥

2
, (3.159)

∥∥[Ei]p
∥∥

2
= max

θ∈Θlow,discrete

∥∥[Êi(θ)
]p∥∥

2
. (3.160)

That is, the previous values of ρ(Ei), ‖Ei‖2, and
∥∥[Ei]p

∥∥
2

given in (3.146), (3.139), and

(3.149), respectively, do not hold for finite nt because they were maximized over continuous

θ, which corresponds to nt →∞ in our above formulation. Note, however, that the results

for ρ
(
Ei
)
,
∥∥Ei
∥∥

2
, and

∥∥[Ei
]p∥∥

2
given in (3.146), (3.139), and (3.149) yield upper bounds

on the finite nt expressions in (3.158), (3.159), and (3.160), respectively.

The reason that the theory is exact for time-periodic problems is because the operators

appearing in the error propagator are not just Toeplitz as they were for the initial-value

problem, but they are also circulant. Therefore, the periodic Fourier modes ϕ`(θ)—with θ

discretely sampled at nt equidistant frequencies—are eigenfunctions for any finite nt, and

not only formally in the limit as nt → ∞. See also [100] for another example of an LFA

theory for initial-value problems that holds rigorously for time-periodic problems. More

broadly, see [99, Sec. 3.4.4] for a discussion on the link between rigorous and local Fourier

analysis.

As a demonstration of the above discussion, and to verify the correctness of the LFA

theory, we now show a numerical experiment. Specifically, we consider the eigenvalues and

singular values for the error propagator Eperiodic
i corresponding to a scalar, time-periodic
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Figure 3.1: Quantities of interest of Eperiodici for a scalar, time-periodic problem. Direct
numerical calculations are compared with LFA predictions. The fine- and coarse-grid
eigenvalues are λi = 0.749 + 0.045i and µi = 0.510 + 0.404i, respectively. The other
problem parameters are nt = 256, m = 8, and ν = 1. Left: Eigenvalues. Right:
Non-zero singular values sorted in descending order.

problem with arbitrarily chosen fine- and coarse-grid eigenvalues of λi = 0.749 + 0.045i

and µi = 0.510 + 0.404i, respectively. That is, this test problem does not correspond to

the discretization of any ODE in particular, but has just been chosen to demonstrate the

accuracy of the theory.

From the discussion above, the time-periodic error propagator is the block diagonal matrix

Eperiodic
i = diag

θ∈Θlow,discrete

(
Êi(θ)

)
∈ Cnt×nt . Therefore, the nt eigenvalues and singular values

of Eperiodic
i are given by the union of the m eigenvalues and m singular values, respectively,

of the nt/m diagonal blocks Êi(θ) ∈ Cm×m for θ ∈ Θlow,discrete. Recall from (3.108) of

Theorem 3.9 that Êi(θ) = f(θ)ŜF
i (θ). From Corollary 3.8, ŜF

i (θ) has m − 1 eigenvalues

equal to zero and a single eigenvalue of one; therefore, it follows that Êi(θ) has m − 1

eigenvalues equal to zero and a single eigenvalue equal to f(θ). For our test problem,

this set of m eigenvalues is plotted in the left panel of Figure 3.1 for the nt/m values of

θ ∈ Θlow,discrete. Also plotted are the eigenvalues determined by direct numerical calcula-

tion (i.e., constructing numerically Eperiodic
i and computing its eigenvalues). We find exact

agreement between the two.

In terms of singular values, recall that Êi(θ) has a rank equal to one (since ŜF
i (θ) has a

rank of one), it follows that Êi(θ) has one non-zero singular value. This singular value is

therefore equal to the norm of the matrix, which is given by (3.122) of Theorem 3.10. The

right panel of Figure 3.1 shows this norm for the nt/m values of θ ∈ Θlow,discrete. Plotted

also are the non-zero singular values of Ei that have been determined numerically. Again,

there is exact agreement between the two.
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3.6 Discussion of theory

We now provide some discussion on the LFA theory derived in Section 3.4. Specifically,

some important implications of the theory are described in Section 3.6.1. Section 3.6.2

presents connections to existing literature. Finally, the suitability of LFA for initial-value

problems in discussed in Section 3.6.3.

3.6.1 Closed-form determination of quantities of interest

LFA convergence results for multigrid methods are typically presented in one of three ways.

Commonly, numerical values are presented for quantities such as convergence factors,

norms, and so on (see, e.g., [99, 39, 38, 26, 100]). Perhaps less common, approximate,

asymptotic results are presented to make conclusions about the solver, such as when

the mesh size goes to zero, for example (see, e.g., [108, 103, 3]). These typically offer

significantly more insight than purely numerical calculations. Rarer still, convergence

results are presented in closed form as they were in Section 3.4 (see, e.g., [98, Sec. 8.1]

and [77]). Closed-form results are rare because most often the underlying calculations

are either too complicated to carry out analytically, or the resulting expressions are so

complicated that doing so would provide little insight.

Our derivation of simple, closed-form expressions for the convergence properties of MGRIT

is novel for several reasons. First, we gain significant insight into the underlying conver-

gence behaviour of the algorithm that is not possible from purely numerical computation.

This is a benefit of our MGRIT LFA theory over the semi algebraic approach of [38] and

the LFA theory described in [26], since they are purely numerical. A second reason is that,

if one wants to estimate convergence rates, then evaluating our formulae is significantly

less computationally intensive than a fully numerical approach. For example, the typical

process is one of discretely sampling θ ∈ Θlow, then numerically forming the eigenmatrices

Êi(θ) ∈ Cm×m for these discrete θ, computing their quantities of interest, such as their

spectral radii or norms, and then selecting the maximum over the discrete sample. In con-

trast, we have simple, closed-from expressions for the maxima of the norm and spectral

radii of Êi(θ) over continuous frequency space θ ∈ Θlow. Thus, it is clearly significantly

less computationally expensive to estimate convergence rates using our expressions rather

than the standard numerical approach. Another potential benefit of our closed-form max-

imization is that sometimes it may be difficult to numerically maximize a quantity of

interest over θ ∈ Θlow if it is non-smooth with respect to θ. For example, we will see such

examples of non-smoothness in Section 3.7, and it has been observed in the LFA study of

other time-parallel multigrid solvers [100, Sec. 3.3.2].
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3.6.2 Comparison to existing literature

The expressions we obtain through LFA for norms of the MGRIT error propagators bear

a close resemblance to results in [28, 88, 51] that were obtained by other means. There

are, however, some differences. First, [28, 88, 51] analysed error propagation on the coarse

grid rather than the fine grid as we have. Second, [28, 88, 51] give equalities and/or

bounds for the norm of the error propagator for finite nt. In contrast, our results provide

neither equalities nor bounds for finite nt, but only approximations because they have

been developed through the framework of LFA in the limit that nt → ∞. Thus, our

results do not take into account the number of time points since they are derived under

the infinite-grid assumption of LFA. Our results are exact, however, for the time-periodic

case, while those of [28, 88, 51] are not.

This close resemblance is perhaps best seen by looking at [92], which serves as a com-

panion article to [88], because it provides several results for fine-grid error propagation.

Specifically, adopting our notation, and imposing Assumption 3.1 (that the eigenvectors of

Φ and Ψ are unitary), [92, Cor. 3] states that the `2-norm of the MGRIT error propagator

E from (3.12) for finite nt is equal to5

F-relaxation: ‖E‖2 = max
1≤i≤nx

|λmi − µi|
1− |µi|+O(1/Nc)

√
1− |λi|2m
1− |λi|2

, (3.161)

FCF-relaxation: ‖E‖2 = max
1≤i≤nx

|λi|m
|λmi − µi|

1− |µi|+O(1/Nc)

√
1− |λi|2m
1− |λi|2

, (3.162)

where Nc is the number of time points on the coarse grid, which is slightly different from the

quantity nt/m that we have used. It is important to stress that the expressions (3.161)

and (3.162) represent genuine equalities for finite nt, up to the O(1/Nc) terms, unlike

the LFA approximations considered in Section 3.4 which hold in the limit of infinite nt.

The equalities (3.161) and (3.162) were derived through the application of block Toeplitz

theory. Closely related bounds for coarse-grid error propagation were derived in [28, 51]

by exploiting the Toeplitz structure of the coarse-grid error propagator and applying a

Hölder inequality for the `2-norm.

Recalling our LFA approximation of ‖Ei‖2 given by (3.139), and its relation to ‖E‖2 given

in (3.33), our LFA analysis gives the following approximation for finite nt (for clarity, we

5The formulation of E in [92] appears differently to our E given by (3.12). However, they both represent
the error propagator of the MGRIT algorithm, and are therefore equivalent (after taking account of the
fact that we use different conventions for the sizes of the fine and coarse grids, that is).
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write the LFA approximation explicitly here),

‖E‖2 = max
1≤i≤nx

‖Ei‖2 ≈ max
1≤i≤nx

sup
θ∈Θlow

∥∥Êi(θ)
∥∥

2
= max

1≤i≤nx
|λi|mν

|λmi − µi|
1− |µi|

√
1− |λi|2m
1− |λi|2

.

(3.163)

Recall from Section 3.3.1 that ν ∈ N0 represents the number of CF-relaxations included

in the pre-relaxation, so that ν = 0 and ν = 1 correspond to F- and FCF-relaxation,

respectively. Comparing our LFA approximation (3.163) with the expressions (3.161) and

(3.162), it differs only by the small perturbation of O(1/Nc) that appear in the latter

equations. As nt →∞, and thus Nc = O(nt/m)→∞, the expressions are equivalent. In

other words, since, (3.161) and (3.162) are valid for any value of nt, they are consistent

with our LFA approximation (3.163) holding exactly for ‖E‖2 as nt →∞.

This consistency provides independent verification that our LFA theory of Section 3.4

is correct. It is also interesting to consider that our theory, which, in a sense, is much

less technical than the block Toeplitz analysis of [88, 92], yields effectively equivalent

results for the type of Φ and Ψ we have considered here (see Assumptions 3.1 and 3.2).

That is, the results (3.161)–(3.162) arguably offer little more insight than our theory,

particularly since one is only interested in large values of nt in practice. In particular,

consider the subject of the poor convergence of advection-dominated problems, which is

arguably the longest-standing issue in the MGRIT/Parareal community. While there are

possibly additional reasons for this poor convergence that our theory cannot explain, our

simpler LFA theory can offer as much insight into the fundamental difficulties for advection-

dominated problems (see Section 3.7) as the more complicated theory of [88, 92]. Moreover,

our theory is able to draw connections to related issues for spatial multigrid solvers, and

it is not immediately clear whether that of [88, 92] can. On the other hand, the theory of

[88, 92] is more practical for estimating convergence rates for finite nt (tight bounds for

the O(1/Nc) constants are given in [88, 92]), and furthermore, it leads to results for much

more general Φ and Ψ than considered here, such as when they are not diagonalizable.

3.6.3 On the effects of non-normality and the suitability of LFA

Time-stepping is used as the relaxation scheme in MGRIT, and thus the algorithm is

nilpotent for initial-value problems: In exactly k = O(nt/m) iterations, the algorithm

sequentially time-steps the initial condition across the time domain and thus converges

to the exact solution.6 Equivalently, the error propagator Ei is nilpotent, which means

Eki = 0, and that the only eigenvalue of Ei is zero. The nilpotency of Ei has also been

6The exact number is k = 1
ν+1

nt
m

, for a pre-relaxation consisting of an F-relaxation followed by ν ∈ N0

sweeps of CF-relaxation.
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referred to as the non-normality of the iteration [38, 26], since the nilpotency arises as a

consequence of the non-normality of the space-time discretization A0.

Recalling that LFA ignores the effects of boundary conditions, it is not immediately obvious

that it should offer robust or relevant predictions for problems in which ignoring boundary

effects has a dramatic effect on the problem/solver. In particular, our LFA theory clearly

does not recover the fact that Ei is nilpotent. Theorem 3.14 states that ‖Epi ‖2 > 0, ∀p ∈ N,

and Corollary 3.13 states that ρ
(
Ei
)
> 0. These discrepancies arise due to LFA disregarding

the effects of boundary conditions. In fact, not only have we disregarded the effects of

boundary conditions, we have analysed the time-periodic problem in place of the initial-

value problem, recalling from Section 3.5 that the analysis holds exactly for time-periodic

problems. The fact that LFA does not recover the nilpotency of Ei is a reflection that time-

stepping from an initial approximation at t = 0 is not an exact solver for time-periodic

problems, as it is for initial-value problems. However, this result is completely consistent

with the mission statement of LFA, which is describing asymptotic convergence behaviour

under the assumption that boundary behaviour is not significant.

The inability of LFA to capture nilpotency and/or the effects of non-normality has been

discussed several times in the literature, and often critically so. Moreover, this observation

has been used, at least in part, to justify more rigorous convergence theories that can

capture such effects [38, 26, 71]. Here, however, we make a contrary argument about the

applicability of LFA: The fact that LFA cannot capture the nilpotency of MGRIT for initial-

value problems is of no practical significance. The non-normality of MGRIT for initial-

value problems is a direct consequence of the relaxation scheme being an exact solver in k

iterations. Therefore, if one is in a regime where non-normality effects strongly influence

convergence of the algorithm, the mechanism driving convergence is time-stepping itself.

Given this, it is important to recall that the underlying context of MGRIT for initial-value

problems is to find the solution in a faster wall-clock time than the exact solver that is

time-stepping. Therefore, if a sufficient level of convergence is reached only when the

number of iterations is ∼ k = 1
ν+1

nt
m , then MGRIT cannot possibly achieve speed-up over

sequential time-stepping. Moreover, in practice, it is most often the case that parallel

speed-up requires very few iterations due to the low parallel efficiency of MGRIT. Thus, a

practically useful convergence theory need not capture non-normality effects. In summary,

for a theory to be practically useful, it need not recover that near-exact convergence is

reached in ∼ k iterations because this is trivially known, and such a regime is of no

practical interest.

We conclude our discussion by noting that not only does our LFA theory provide accurate

and relevant convergence information (see Section 3.6.2), but more broadly Fourier analysis

has been demonstrated to yield accurate and practically useful information about the
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convergence behaviour of multigrid-in-time methods for initial-value problems [100, 45,

37, 26].

3.7 Characteristic components

In this section, we apply the LFA theory of Section 3.4 to shed further light on the poor

convergence of MGRIT for advection-dominated problems. Specifically, we present theo-

retical arguments in Section 3.7.1, with supporting numerical results given in Section 3.7.2.

Finally, a discussion on the implications of our results is given in Section 3.7.3.

3.7.1 Theoretical arguments

In this section, we concern ourselves with the solution of the constant-coefficient, one-

dimensional advection-diffusion problem

Au :=
∂u

∂t
+ α

∂u

∂x
− β∂

2u

∂x2
= 0, β ≥ 0. (3.164)

Specifically, we provide arguments regarding the convergence of MGRIT for discretizations

of this problem via making a Fourier ansatz in space and employing our LFA theory in

time. To this end, suppose that the space-time discretizations A0 and A1 given by (3.5)

and (3.6), respectively, correspond to discretizations of A on space-time meshes with a

mesh spacing of h in the x-direction.

Now consider the space-time discretizations A0 and A1 on the infinite space-time meshes

M0 and M1, respectively, which are defined by

M` :=
{

(x, t) = (jh, km`δt) : j ∈ Z, k ∈ N0

}
, ` ∈ {0, 1}. (3.165)

On M` we also consider the space-time Fourier modes

%`(ω, θ) := exp

(
iωx

h

)
exp

(
iθt

m`δt

)
, (x, t) ∈M`, (θ, ω) ∈ [−π, π)×Θ`, (3.166)

with continuous frequencies θ and ω, and Θ` defined as previously (see (3.38)). The space-

time Fourier symbol Ã`(ω, θ) of A` is defined implicitly via A`%`(ω, θ) = Ã`(ω, θ)%`(ω, θ).

Let λ(ω) and µ(ω) be the Fourier symbols of the fine- and coarse-grid time-stepping

operators Φ and Ψ, respectively. Then, the space-time Fourier symbols of the fine- and

coarse-grid discretizations are

Ã0(ω, θ) = 1− λ(ω)e−iθ, Ã1(ω,mθ) = 1− µ(ω)e−imθ. (3.167)
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Now, by grouping together space-time Fourier modes, the MGRIT error propagator E
may be block diagonalized, analogously to how it was first block diagonalized in space in

Section 3.3.3, and then in time in Section 3.4. Specifically, under a similarity transform

we have

E 7→ diag
(ω,θ)∈[−π,π)×Θlow

(
Ê(ω, θ)

)
, (3.168)

where Ê(ω, θ) ∈ Cm×m is the error propagation eigenmatrix associated with the m har-

monic space-time modes having frequencies
(
ω, θ + 2πp

m

)
, p ∈ {0, . . . ,m − 1} (see Defini-

tion 3.4). The space of low frequencies Θlow in (3.168) is as in (3.40).

Using our LFA theory from Section 3.4, we may compute the spectral radius of the diagonal

blocks Ê(ω, θ) as follows. Note that alternatively we could develop an analogous expression

for the norm, but considering the spectral radius is sufficient for our purposes.

Lemma 3.15 (Spectral radius of space-time error propagator). The spectral radius of the

diagonal blocks in the space-time error propagation matrix (3.168) may be written as

ρ
(
Ê(ω, θ)

)
=
∣∣λ(ω)

∣∣mν
∣∣∣∣∣
Ã1(ω,mθ)− Ãideal

1 (ω,mθ)

Ã1(ω,mθ)

∣∣∣∣∣ , (ω, θ) ∈ [−π, π)×Θlow, (3.169)

in which Ãideal
1 (ω, θ) = 1−

[
λ(ω)

]m
e−iθ is the Fourier symbol of the coarse-grid space-time

discretization that uses the ideal coarse-grid operator Ψideal = Φm.

Proof. The diagonal block of (3.168) for a fixed spatial frequency ω = ωi is Ê(ωi, θ), and

is associated with fine- and coarse-grid time-stepping eigenvalues λi = λ(ωi) and µi =

µ(ωi), respectively. Therefore, Ê(ωi, θ) is simply equal to Êi(θ), which is the eigenmatrix

associated with the ith spatial eigenmode that we analysed previously in Sections 3.3

and 3.4. Recall from (3.145), that the spectral radius of Êi(θ) is simply

ρ
(
Êi(θ)

)
= |λi|mν

∣∣∣∣
λmi − µi
eimθ − µi

∣∣∣∣ . (3.170)

The fraction inside the absolute value may be re-written in the form

λmi − µi
eimθ − µi

=

(
1− µie−imθ

)
−
(
1− λmi e−imθ

)

1− µie−imθ
=
Ã1(ωi,mθ)− Ãideal

1 (ωi,mθ)

Ã1(ωi,mθ)
. (3.171)

Substituting (3.171) into (3.170) yields the claimed expression of (3.169). �

Ignore, for the moment, the damping factor of
∣∣λ(ω)

∣∣mν in (3.169) due to ν sweeps of CF-

relaxation, which has little effect on the MGRIT convergence of spatial modes that decay

slowly under time-stepping,
∣∣λ(ω)

∣∣ ≈ 1. Observe from (3.169) that MGRIT convergence
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is determined by the relative difference between the space-time Fourier symbols of the

coarse-grid discretization and the coarse-grid discretization using the ideal coarse-grid

operator. This observation will provide us with significant insight into the convergence of

MGRIT for (3.164), as we now discuss. A quantity closely related to (3.169) has long been

known in the spatial multigrid community, particularly to those working on the solution

of advection-dominated problems. More specifically, consider the steady state advection-

diffusion PDE Lu := α · ∇u − β∆u = 0, with fine- and coarse-grid discretizations given

by Lh and LH , respectively. Here, α is a multidimensional wave-speed, and β ≥ 0 is

still the diffusivity as in (3.164). Then, under some assumptions regarding the effects of

relaxation and the intergrid transfer operators, a key quantity governing the convergence

of the two-grid spatial method is

ζ(ω) =

∣∣∣∣∣
L̃H(ω)− L̃h(ω)

L̃H(ω)

∣∣∣∣∣ , (3.172)

where ω is a multi-component spatial frequency. This quantity may be derived using

asymptotic two-grid Fourier analysis [108], and via a more simplistic mode analysis known

as ‘first differential approximation analysis’ [12]. Notice that (3.172) is the relative differ-

ence of the Fourier symbols of the fine- and coarse-grid discretizations, and is therefore

closely related to the relative difference of Fourier symbols in (3.169).

The significance of (3.172) is that it can be used to explain the poor convergence ex-

perienced by spatial multigrid solvers on advection-dominated problems. Specifically, it

can be shown that when β � h, so that the operators Lh and LH are close to elliptic,

ζ(ω) is small for all Fourier components [10, 108]. However, in the non-elliptic, singularly

perturbed case where β → 0+, it can be shown that ζ(ω) is small for almost all Fourier

components ω, except for so-called characteristic components, for which ζ(ω)→ a mesh-

independent constant. The exact value of this constant depends on the problem at hand,

but often it is not much smaller than one, thus resulting in slow convergence of the two-grid

method. The conclusion is: Two-grid performance suffers because characteristic compo-

nents do not receive an adequate coarse-grid correction; under certain assumptions, one

can argue that of all characteristic components, it is the smoothest ones that convergence

is slowest for [10, 108].

Characteristic components/modes are Fourier modes that vary extremely slowly—relative

to the grid spacing—along the direction of characteristics, but that are free to vary in

the direction normal to characteristics. The smooth characteristic components described

above are those which vary slowly—relative to the grid spacing—in the direction normal

to characteristics. The particular significance of characteristic components with respect to

(3.172), is that in the β → 0+ limit, the coarse-grid symbol L̃H ≈ L̃ vanishes up to some
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mesh-dependent terms, since L̃ vanishes for characteristic components. For elliptic prob-

lems, where multigrid convergence is significantly more robust than advection-dominated

problems, there do not exist any directions for which the symbol vanishes [108], and, so,

this is not a problem. The poor convergence of characteristic modes for the spatial multi-

grid solution of advection-related problems was first described in [10, Sec. 5.1], and has

since been described in many other contexts [12, 108, 99, 103, 3].

Our PDE problem (3.164) has the same form as the above steady state problem, provided

one interprets time as another spatial coordinate and considers anisotropic diffusion for

the steady state problem. However, the MGRIT algorithm for solving our problem is

very different to that of the spatial multigrid algorithm for the steady state problem. For

example, MGRIT is based on reduction principles, applies multigrid methodology in one

coordinate direction only, uses coarsening factors significantly larger than two, and uses a

one-step discretization in one of the coordinate directions. Nonetheless, our analysis has

shown that convergence of the two algorithms is, in large part, governed by closely related

quantities. Therefore, it is reasonable to expect that deterioration in MGRIT convergence

for (3.164) as β → 0+ is due to a poor coarse-grid correction of space-time characteristic

components. That is, A1 is a consistent space-time discretization of the PDE (3.164), and,

thus, in the advection-dominated limit β → 0+, we expect that its space-time Fourier

symbol will vanish along characteristic directions. More specifically, the Fourier symbol of

A1 can be expanded in Taylor series about that of the continuous operator:

Ã1(ω,mθ) = Ã(ω,mθ) + higher order terms, (3.173)

= i

(
α
ω

h
+
θ

δt

)
+ β

ω2

h2
+ higher order terms. (3.174)

For space-time characteristic components—modes with frequency θ ≈ −α δth ω—we thus

have

Ã1(ω,mθ) ≈ βω
2

h2
+ higher order terms. (3.175)

Therefore, as β → 0+, along characteristic directions the symbol Ã1 vanishes up to some

mesh-dependent constant, analogously to the spatial case described above. We leave more

rigorous study to future work, including whether we can determine asymptotically what

the fraction in the spectral radius (3.169) limits to for some specific discretizations, as

has been done for the spatial case described above. For now, however, we present in the

following section numerical evidence to support our claim that overall MGRIT convergence

for advection-dominated problems is hampered by its lack of convergence on characteristic

components.
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3.7.2 Numerical results

In this section, we consider plots of the spectral radius (3.169) discretely sampled over

(ω, θ)-space for several discretizations of the constant-coefficient linear advection problem

∂u

∂t
+ α

∂u

∂x
= 0, α > 0, (3.176)

subject to periodic boundary conditions in space. Recall from Section 3.6.3 that the spec-

tral radius derived via our LFA theory is inconsistent with the initial-value problem in

the sense that it is not zero, despite MGRIT being nilpotent for the initial-value problem.

However, as per our discussion in Section 3.6.3, the spectral radius does provide a reason-

able measure of medium-term convergence for the initial-value problem before the effects

of nilpotency begin to set in.

Recall from Section 2.3 that MGRIT convergence for SDIRK+U discretizations of (3.176)

was poor when using rediscretization. Specifically, the solver converged very slowly for

SDIRK1+U1, and diverged for all of the higher-order discretizations we considered. Here,

we show in Figure 3.2 the spectral radius associated with two of these tests from Table 2.2.

From the maximum spectral radius listed in the titles of the plots, we see that analysis

Figure 3.2: Spectral radius from (3.169) for the advection problem (3.176) shown over
discretely sampled (ω, θ)-space using 210 × 1

m210 equidistant points. The value of the
function is indicated by the colour map. The maximum over the space is listed in the title,
and the two locations at which this occurs are marked on the plot with magenta diamonds.
Note that the spectral radius is non-smooth in certain regions where |µ(ω)| ≈ 1, and, so,
the contouring algorithm fails to show in which regions the spectral radius is the largest,
particularly in the right panel. A dashed blue line represents for each ω, the value of θ
at which the maximum spectral radius is obtained; that is, the curve ω(θ†) = 1

m argµ(ω)
(see (3.140)). The solid green line represents the frequency relationship of characteristic
components θ = −αδt/hω for |θ| < π/m. Left: SDIRK1+U1. Right: SDIRK2+U2.
Both schemes use m = 4 and a fine-grid CFL number of c = αδt/h = 4.
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is consistent with the numerical results in that the maximum spectral radius is not much

less than one for SDIRK1+U1, and it is much larger than one for SDIRK2+U2.

Observe that the specific modes that diverge the fastest—the magenta diamonds—are

indeed characteristic components since the green lines represent (a subset of all) charac-

teristic components. Moreover, for any fixed frequency |ω| ≈ 0, of all modes, it is the

characteristic component that converges most slowly, since for |ω| ≈ 0 the green line over-

lays the dashed blue line, which represents the slowest converging mode θ† for a given ω.

We also see that, for the most part, non-characteristic components converge quickly, in the

sense that their spectral radii are much smaller than unity. This reinforces our theoretical

arguments made in the previous section, and is consistent with what has been described

in the spatial multigrid case regarding characteristic components [10, 108, 99].

We now consider a second class of discretization, namely those of Semi-Lagrangian type.

We briefly introduced semi-Lagrangian discretizations in Chapter 1, and they were dis-

cussed in Remark 2.5, where we stated that they were closely related to the optimized

coarse-grid operators that we presented in Chapter 2. Semi-Lagrangian discretizations are

fundamentally different from method-of-lines discretizations, such as those of ERK+U and

SDIRK+U that we considered in Chapter 2. Semi-Lagrangian methods are uncondition-

ally stable with respect to the time-step size because they explicitly track characteristics.

For this reason, they are appealing to us in the MGRIT context when considering time-only

coarsening, as we do in this thesis.

Consider now the MGRIT solution of semi-Lagrangian discretizations of the advection

problem (3.176). Note that we will consider semi-Lagrangian discretizations in much

Figure 3.3: Two-norm of space-time residual (relative to its initial value) as a function
of MGRIT iteration for solving advection problem (3.176) discretized with a pth-order
semi-Lagrangian method. A two-level MGRIT solver with coarsening factor m is used,
and the coarse-grid operator is given by rediscretization. The fine-grid CFL number is
c = αδt/h = 0.85, and the problem is discretized on an nx × nt = 28 × 211 space-time
mesh. Left: Odd p. Right: Even p.
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greater detail in Chapter 4, and, so, we leave further discussion about the mechanics of

the discretization until then. The MGRIT residual histories for our tests are shown in

Figure 3.3. Perhaps unsurprisingly given our arguments in this section and our findings in

Chapter 2, MGRIT convergence is poor despite the coarse-grid semi-Lagrangian discretiza-

tion being stable. This is yet another example that stable coarse-grid time integration is

not sufficient for MGRIT to converge, let alone converge quickly.

We now test whether this poor MGRIT convergence for the semi-Lagrangian methods

is the result of poor convergence of characteristic modes, as for the SDIRK+U schemes

we considered previously. In Figure 3.4 we show analogous plots as in Figure 3.2, but

now for the 1st-order semi-Lagrangian problem (left panel); we also contrast this with

SDIRK1+U1 (right panel) using the same CFL as the semi-Lagrangian method, c = 0.85.

Considering the spectral radius for the semi-Lagrangian method, the slowest converging

modes are indeed characteristic components with frequency |ω| ≈ 0. However, in contrast

to SDIRK1+U1, we see that there now exist other components—the additional green lines

in the plot—with larger |ω| for which convergence is also slow. Note that the additional

green lines in the left plot are also characteristic components, they have just simply had

their temporal frequency θ periodically wrapped into the interval [−π/m, π/m). That is,

characteristic components have frequency θ = −α δth ω, and, since ω ∈ [−π, π), it will cer-

tainly be the case that there are characteristic modes with |θ| > π/m, despite the spectral

radius (3.169) holding for θ ∈ Θlow = [−π/m, π/m). Since the spectral radius is periodic

in θ with period 2π/m (this is easiest seen by looking at (3.171)), any components with

frequency |θ| > π/m can be periodically wrapped into the interval [−π/m, π/m). So, in

contrast to SDIRK1+U1, for any fixed ω, the slowest converging mode is (approximately)

the characteristic component, even for |ω| ≈ π.

Figure 3.4: Analogous plots as in Figure 3.2, except (ω, θ)-space is sampled using
28 × 1

m211 equidistant points, and the fine-grid CFL number is c = 0.85. Left: 1st-
order semi-Lagrangian, p = 1, with m = 4. The additional green lines are the periodically
wrapped characteristic components. Right: SDIRK1+U1 with m = 4.
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Figure 3.5: Identical plots as in Figure 3.4. Left: 2nd-order semi-Lagrangian, p = 2,
with m = 8. Right: 3rd-order semi-Lagrangian m = 8.

Nonetheless, the semi-Lagrangian method still has in common with SDIRK1+U1 that

most non-characteristic components are damped quickly by MGRIT. In Figure 3.5 we

show analogous plots, except for 2nd- and 3rd-order semi-Lagrangian methods using a

coarsening factor of m = 8. Again, we see the same trends as for the 1st-order semi-

Lagrangian method in the left panel of Figure 3.2; however, in this case, the subset of modes

for which convergence is slowest is much more tightly clustered around the characteristic

components.

3.7.3 Discussion

Our numerical results support our theoretical-based arguments that poor MGRIT con-

vergence for advection-dominated problems is due to poor convergence on characteristic

components. Since poor convergence on characteristic components has been so widely

studied in the spatial multigrid case, it is instructive to consider the solutions that have

been proposed to remedy the issue, to see if they can be used to remedy the problem for

MGRIT. While several potential fixes have been proposed in the spatial case, it should be

noted that none of them appear to lead to multigrid convergence that is as fast and robust

as it is for elliptic problems in general.

An idea often proposed for improving the robustness of spatial multigrid solvers on advection-

dominated problems is to use so-called downstream relaxation [11, 108, 109, 99]. This es-

sentially amounts to carrying out the relaxation in an order that propagates errors/resid-

uals along characteristics. This is typically done in a global fashion by beginning at an

inflow boundary and concluding at an outflow boundary; therefore, this represents an exact

solver in the limit that only advection is present in the discrete problem. Furthermore, the

process is inherently sequential. In the time-dependent context, downstream relaxation is
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equivalent to time-stepping, which is exactly the sequential procedure that we are trying

to move away from.

Another approach, which proved fairly successful in [108] and [3], is to use a Petrov–

Galerkin coarse-grid operator, in which careful attention is paid to the properties of the

intergrid transfer operators for smooth modes. Note that Galerkin coarse-grid operators

are formed by the triple product of a restriction operator, fine-grid operator, and an in-

terpolation operator, respectively. However, such an approach is again unfortunately not

applicable in the MGRIT setting, recalling that reduction underpinnings of the algorithm

mean that one has no control over restriction and interpolation (they are fixed as injec-

tion), and, while one has the freedom to choose the coarse-grid time-stepping operator as

Ψ ≈ Φm, such an approximation does not allow for the use of Galerkin principles.

Thus, because we desire a highly parallel solver, and because the reduction nature of

MGRIT fixes all but the coarse-grid time-stepping operator, there are fewer options avail-

able to us for addressing the poor coarse-grid correction of characteristic components. So,

in this sense, the only feasible choice we have is to use a coarse-grid time-stepping opera-

tor that better approximates the action of the ideal coarse-grid time-stepping operator on

characteristic components than basic rediscretization does. One possibility for achieving

this is to design a coarse-grid operator whose truncation error matches, at least to lowest

order, that of the ideal coarse-grid operator. In [108], this idea was proposed for the spatial

multigrid case, where a coarse-grid operator whose truncation error better approximates

that of the fine-grid operator was proposed (compare (3.172) to (3.169)). This idea forms

the basis for the next chapter of the thesis.

3.8 Conclusions

In this chapter we have analysed the convergence behaviour of two-level MGRIT using

the tool of LFA. Our analysis relied on assumptions of the time-stepping operators be-

ing time-independent and simultaneously diagonalizable with unitary eigenvectors, which

are common assumptions among related analyses in the literature. The majority of the

theoretical analysis was conducted in Section 3.4. In particular, we derived closed-form

expressions for the predictions offered by LFA, meaning that we developed simple and

easy to interpret formulae for quantities such as the norm and spectral radius of the error

propagator.

Our LFA theory is not rigorous for initial-value problems due to it neglecting boundary

effects; however, it does apply rigorously to a class of time-periodic MGRIT solvers, as

described in Section 3.5. Moreover, by comparison with existing literature, we showed
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that the approximations offered by our theory are accurate for initial-value problems, and

we verified that they are exact in the asymptotic limit nt → ∞ (see Section 3.6.2). Due

to our closed-form derivations, our theory offers significantly more insight compared to

existing LFA theories for MGRIT, which have been based on numerical computation, as

described in Section 3.6.1.

In Section 3.7, we applied our LFA theory to describe the poor convergence of MGRIT

for advection-dominated problems. We showed that these convergence issues are closely

related to the well-known convergence issues that plague spatial multigrid solvers when

applied to steady state advection-dominated problems. In particular, we showed that the

slowest converging Fourier modes are the so-called characteristic components, which are

the modes that oscillate in the direction orthogonal to characteristics. The insight gained

for the convergence of advection-dominated problems in this chapter is significant, as is

the direct link to well-documented issues for spatial multigrid solvers. This knowledge will

undoubtedly be instrumental in developing improved parallel-in-time solvers for advection-

dominated problems.
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Fast MGRIT for advection via

dissipatively corrected coarse-grid

operators

4.1 Previous work and outline

In Chapter 2 we developed fast solvers for advection problems, however, our approach

for doing so was limited only to constant-coefficient problems. Nonetheless, we developed

important heuristics for coarse-grid operators, including that they should track character-

istics if they are to be consistent with the underlying hyperbolic PDE. A natural choice

of coarse-grid operator is therefore a semi-Lagrangian discretization, since, by design, it

tracks characteristics, independent of the size of the time step. However, in Section 3.7

we showed that coarse-grid semi-Lagrangian operators are ineffective in general, since

they provide an insufficient coarse-grid correction to characteristic components. To over-

come this, here we develop a semi-Lagrangian-like coarse-grid operator whose truncation

error better approximates that of the ideal coarse-grid operator than a standalone semi-

Lagrangian operator’s does. This idea is based loosely on [108, Sec. 5.1], in which a

coarse-grid operator was developed to address related issues that occur for the spatial

multigrid solution of steady state advection-dominated PDEs.

The remainder of this chapter is organized as follows. Section 4.2 develops the coarse-grid

operator for the constant-wave-speed (or constant-coefficient) advection problem. Sec-

tion 4.3 extends the coarse-grid operator to variable-wave-speed problems. Section 4.4

extends the coarse-grid operator to the multilevel setting, and shows how it may be used

to solve advection-diffusion problems. Section 4.5 generalizes the coarse-grid operator to

problems in two spatial dimensions. Finally, concluding remarks are given in Section 4.6.

89
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4.2 Constant-wave-speed advection

We begin this chapter by considering the constant-wave-speed advection problem

∂u

∂t
+ α

∂u

∂x
= 0, (x, t) ∈ Ω× (0, T ], u(x, 0) = u0(x), α > 0 a constant, (4.1)

for spatial domain Ω ⊂ R, and solution u subject to periodic boundary conditions on ∂Ω.

Our goal is the efficient parallel-in-time solution of semi-Lagrangian discretizations of this

problem.

In Section 3.7 we saw that simply employing a semi-Lagrangian operator on the coarse

grid (i.e., rediscretizing) generally leads to a divergent MGRIT solver for this problem,

despite the operator being stable. To help recall the behaviour of the solver, some of these

tests have been reproduced in Figure 4.1. Convergence of MGRIT is poor in all of the

cases shown; the residual increases in all cases except when m = 4 and p ∈ {1, 3}, and even

then, it stagnates after the first few iterations. In all other cases, the residual increases as

the solver iterates. By Definition 1.1, MGRIT diverges in all of these tests. Note for the

MGRIT solves shown in Figure 4.1, the initial guess at the space-time solution is taken to

be uniformly random, as it is for all MGRIT runs throughout this thesis.

4.2.1 Semi-Lagrangian discretization

The coarse-grid operators we will propose as an alternative to rediscretization are inti-

mately linked to the structure of the semi-Lagrangian discretizations we consider. So,

Figure 4.1: Two-norm of space-time residual (relative to its initial value) as a function
of MGRIT iteration for solving ∂u

∂t + ∂u
∂x = 0, x ∈ (−1, 1) discretized with a pth-order

semi-Lagrangian method. A two-level MGRIT solver with coarsening factor m is used.
The fine-grid CFL number is δt/h = 0.85, and the problem is discretized on an nx×nt =
256× 2048 space-time mesh. Left: Odd p. Right: Even p.
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while we have previously used semi-Lagrangian discretization in Chapter 3, we now pro-

vide a more detailed description of how they work. The semi-Lagrangian discretization of

(4.1) is based on its Lagrangian formulation, which reads

d

dt
ξ(t) = α. (4.2)

d

dt
u(ξ(t), t) = 0, (ξ(t), t) ∈ Ω× (0, T ], u(x, 0) = u0(x). (4.3)

Equation (4.2) is the trajectory equation. Its solution describes the characteristic curves

(x, t) = (ξ(t), t) of the PDE. Since α is constant, the characteristics are straight lines.

Equation (4.3) is the evolution equation, and it describes how the PDE solution changes

along a given characteristic curve. In this case, it states that the solution is constant along

characteristics.

Semi-Lagrangian discretizations use a grid- or mesh-based discretization of (4.2) and (4.3),

as opposed to pure Lagrangian methods, which use particles. Since the problem is linear

(i.e., the characteristics are not coupled to the PDE solution), the coupled equations may

be solved by first solving (4.2) followed by that of (4.3). To this end, we discretize the

spatial domain Ω ⊂ R with a set of nx nodes x = (x1, x2, . . . , xnx)> that are equally

separated by a distance h, xi+1 = xi + h. We discretize the time interval t ∈ [0, T ] with

an equidistant mesh of points, 0 = t0 < t1 < · · · < tnt = T with tn+1 = tn + δt. Given

the vector un ≈ u(x, tn), which represents the approximate solution of (4.1) at time tn

at all the spatial mesh points x, the semi-Lagrangian method will advance this to a new

approximation un+1 as we now describe.

On some characteristic ξi(t), the evolution equation (4.3) states that the PDE solution

at (x, t) = (ξi(tn+1), tn+1) is equal to the solution at (x, t) = (ξi(tn), tn). Since we desire

the solution at the mesh point (x, t) = (xi, tn+1), if we force the characteristic ξi(t) to

pass through this point, then the solution there is simply the solution at the foot of the

characteristic (see Figure 4.2 for an example). To this end, define the local characteristic

ξ
(tn,δt)
i (t) to be that which passes through the arrival point (x, t) = (xi, tn + δt). Then,

we locate the associated departure point (x, t) =
(
ξ

(tn,δt)
i (tn), tn

)
by solving the final-value

problem

d

dt
ξ

(tn,δt)
i (t) = α, t ∈ [tn, tn + δt), ξ

(tn,δt)
i (tn + δt) = xi. (4.4)

Since α is constant, we can exactly calculate the departure point to be

ξ
(tn,δt)
i (tn) = xi − αδt. (4.5)
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ξ
(δt)
i (t̂) x

(δt)
i

xi

t̂

t̂+ δt

ξ
(δt)
i (t)hε(δt)

αδt

x

t

Figure 4.2: The characteristic ξ
(δt)
i (t) for t ∈ [t̂, t̂ + δt] for the constant-wave-speed

problem (4.1). The characteristic passes through the arrival point (x, t) = (xi, t̂ + δt).
The departure point is the location on the x-axis of the characteristic at t = t̂. The
departure point is decomposed into the sum of its east-neighbouring mesh point and its
distance from this point, as in (4.6).

For this special case of constant α, the departure point (4.5) clearly does not depend on

tn, and the distance the characteristic travels in the x-direction (i.e., xi − ξ(tn,δt)
i (tn)) is

independent of the spatial location i. Therefore, we first simplify our notation and note

that the more general notation of (4.4) will reappear later when considering variable-wave-

speed problems.

Let ξ
(δt)
i (t) be a local characteristic that passes though an arrival point (x, t) = (xi, t̂+δt),

where t̂ is some time on the mesh. Then, ξ
(δt)
i (t̂) is the departure point of this characteristic

and is given by

ξ
(δt)
i (t̂) = xi − αδt ≡ x(δt)

i − hε(δt), ε(δt) ∈ [0, 1). (4.6)

In the second expression, the departure point is decomposed into the sum of the mesh point

to its east, x
(δt)
i , and its mesh-normalized distance from this point, ε(δt). See Figure 4.2

for a schematic example.

Upon locating the departure point (4.6), we are faced with the problem that it does not,

in general, coincide with a mesh point, yet the PDE approximation un is only available

at mesh points. To resolve this problem, a degree (at most) p interpolating polynomial

is fit through the entries of un at the contiguous p + 1 mesh nodes
{
x

(δt)
i + hj

}r(p)
j=−`(p).

1

The left and right extents of the stencil, `(p) and r(p), respectively, are chosen so that the

1For interpolation polynomials of degree p ≥ 1, both the west and east neighbouring mesh points
appear in the interpolation stencil of the departure point. Therefore, the choice made in (4.6) to write the

departure point in terms of its east neighbour x
(δt)
i , and hence the nodes x

(δt)
i + hj in the interpolation

stencil, is arbitrary in the sense that it could also have been written in terms of its west neighbour (or any
other mesh point that is in the interpolation stencil, for that matter).
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set of interpolation nodes represent the p + 1 nearest neighbours of the departure point.

When p is odd, which is what we primarily focus on in this chapter, the stencil uses a

symmetric number of nodes on either side of the departure point. Equivalently, the stencil

includes one additional node to the left of x
(δt)
i (i.e., the root node of the stencil) than to

its right, and, thus, `(p) = p+1
2 and r(p) = p−1

2 = `(p)− 1. When p is even, the stencil has

a one-point bias, such that `(p) and r(p) depend on whether ε(δt) is larger than one half,

but for simplicity we ignore this dependence in our notation.

Locating the departure points for all arrival points x at time t = tn+ δt and then carrying

out this piecewise polynomial interpolation constitutes a single time-step of the semi-

Lagrangian discretization. We denote the time-stepping operator for this discretization

by S(δt)
p ∈ Rnx×nx . Note that in this special case of a constant wave-speed and periodic

boundaries in space, S(δt)
p is a circulant matrix.

4.2.2 The coarse-grid operators

From the results in Section 3.7, and those repeated in Figure 4.1, it is clear that, in general,

coarse-grid semi-Lagrangian operators do not adequately approximate the ideal coarse-grid

operator. Despite this, the idea of applying a coarse-grid semi-Lagrangian discretization

remains appealing because the discretization is stable for all time-step sizes, unlike its

explicit Eulerian counterparts. For this reason, we seek a coarse-grid operator that is based

on a semi-Lagrangian discretization, but that provides a better approximation to the ideal

coarse-grid operator. There are many different metrics one could use to characterize the

difference between a coarse-grid operator and the ideal coarse-grid operator. Here we use

the concept of local truncation error, which we define as the amount by which the exact

PDE solution fails to satisfy the discrete scheme after one time step. We now present our

first result, which is on the truncation error of the semi-Lagrangian method; note that

error estimates closely related to the following exist elsewhere in the literature (see, e.g.,

[31, p. 170]).

Lemma 4.1 (Constant-wave-speed semi-Lagrangian truncation error). Suppose that at

any time t, the solution u(x, t) of (4.1) is at least p + 1 times continuously differentiable

with respect to x. Then, the local truncation error of the semi-Lagrangian scheme S(δt)
p

can be expressed by

u(x, tn+1)− S(δt)
p u(x, tn) = (−h)p+1fp+1

(
ε(δt)

) ∂p+1

∂xp+1
u(x, tn+1) +O(hp+2), (4.7)
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where u(x, t) ∈ Rnx denotes the vector composed of the PDE solution sampled at the mesh

points x at time t. In (4.7), fp+1 is the degree p+ 1 polynomial defined by

fp+1(z) :=
1

(p+ 1)!

r(p)∏

q=−`(p)

(q + z). (4.8)

Furthermore, the associated ideal coarse-grid operator defined by stepping m times with

S(δt)
p across the interval t ∈ [tn, tn +mδt] has a local truncation error expressible as

u(x, tn+m)−
[
m−1∏

k=0

S(δt)
p

]
u(x, tn) = (−h)p+1mfp+1

(
ε(δt)

) ∂p+1

∂xp+1
u(x, tn+m) +O(hp+2).

(4.9)

Proof. Since S(δt)
p exactly locates departure points of (4.1), the only truncation error

resulting from applying the ith row of S(δt)
p to u(x, t) is the error from the polynomial

interpolation at the departure point ξ
(δt)
i (tn) = x

(δt)
i − hε(δt). Since u(x, t) is assumed

p+ 1 times continuously differentiable with respect to x, the standard error estimate from

polynomial interpolation theory can be applied (see, e.g., [24, Th. 3.1.1]). Applying the

fact that the interpolation nodes are equally separated by distance h, this results in an

interpolation error at the departure point of

u
(
ξ

(δt)
i (tn), tn

)
−
(
S(δt)
p u(x, tn)

)
i

=
1

(p+ 1)!

r(p)∏

q=−`(p)

[(
x

(δt)
i − hε(δt)

)
−
(
x

(δt)
i + hq

)] ∂p+1u

∂xp+1

∣∣∣∣
(ζi,tn)

,
(4.10)

= (−h)p+1fp+1

(
ε(δt)

) ∂p+1u

∂xp+1

∣∣∣∣
(ζi,tn)

, (4.11)

for some unknown point ζi ∈
(
x

(δt)
i − h`(p), x(δt)

i + hr(p)
)
. Since ζi and ξ

(δt)
i (tn) are a

distance of O(h) apart (they are both in the interval containing all the interpolation

nodes), write ζi = ξ
(δt)
i (tn) + hζ̂i for some other unknown point ζ̂i. Then, by Taylor

expansion, the derivative in (4.11) can be written as

∂p+1u

∂xp+1

∣∣∣∣
(ζi,tn)

=
∂p+1u

∂xp+1

∣∣∣∣
(ξ

(δt)
i (tn)+hζ̂i,tn)

=
∂p+1u

∂xp+1

∣∣∣∣
(ξ

(δt)
i (tn),tn)

+O(h). (4.12)

The truncation error result (4.7) follows from substituting (4.12) into (4.11), and then

applying that the solution u of (4.1) at any arrival point is equal to the solution at the

associated departure point, u(xi, tn+1) = u
(
ξ

(δt)
i (tn), tn

)
.
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Now consider the truncation error (4.9) for the ideal coarse-grid operator. Applying S(δt)
p

to both sides of (4.7) gives

S(δt)
p u(x, tn+1)− S(δt)

p S(δt)
p u(x, tn) = (−h)p+1fp+1

(
ε(δt)

) ∂p+1

∂xp+1
S(δt)
p u(x, tn+1) +O(hp+2).

(4.13)

However, from the truncation error of S(δt)
p given by (4.7) we have

S(δt)
p u(x, tn+1) = u(x, tn+2)− (−h)p+1fp+1

(
ε(δt)

) ∂p+1

∂xp+1
u(x, tn+2) +O(hp+2). (4.14)

Substituting this result into both sides of (4.13), keeping only terms up to size O(hp+1),

and rearranging gives

u(x, tn+2)− S(δt)
p S(δt)

p u(x, tn) = 2(−h)p+1fp+1

(
ε(δt)

) ∂p+1

∂xp+1
u(x, tn+2) +O(hp+2). (4.15)

By an inductive argument, repeating these steps a further m− 1 times gives (4.9). �

Having now developed an asymptotic expansion for the ideal coarse-grid operator, we

relate this to the coarse-grid semi-Lagrangian operator in the following lemma.

Lemma 4.2 (Perturbed coarse-grid semi-Lagrangian operators). Let S(mδt)
p be a coarse-

grid semi-Lagrangian discretization of (4.1). Then, this operator can be expressed as an

O(hp+1) perturbation of the ideal coarse-grid operator
m−1∏
k=0

S(δt)
p in the following three ways:

[
m−1∏

k=0

S(δt)
p

]
u(x, tn)

= S(mδt)
p u(x, tn) + φp+1

(
ε(δt), ε(mδt)

)
hp+1 ∂

p+1

∂xp+1
u(x, tn+m) +O(hp+2),

(4.16)

=

(
1 + φp+1

(
ε(δt), ε(mδt)

)
hp+1 ∂

p+1

∂xp+1

)
S(mδt)
p u(x, tn) +O(hp+2), (4.17)

=

(
1− φp+1

(
ε(δt), ε(mδt)

)
hp+1 ∂

p+1

∂xp+1

)−1

S(mδt)
p u(x, tn) +O(hp+2), (4.18)

where we have defined the constant

φp+1

(
ε(δt), ε(mδt)

)
:= (−1)p+1

(
fp+1

(
ε(mδt)

)
−mfp+1

(
ε(δt)

))
. (4.19)

The operator defined by the inverse in (4.18) is to be interpreted in the geometric series

sense.
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Proof. From the truncation error of S(δt)
p in (4.7), it can immediately be seen that the

truncation of S(mδt)
p is

u(x, tn+m)− S(mδt)
p u(x, tn) = (−h)p+1fp+1

(
ε(mδt)

) ∂p+1

∂xp+1
u(x, tn+m) +O(hp+2). (4.20)

The first equality (4.16) follows by subtracting the truncation error of the coarse-grid

operator (4.20) from (4.9) and rearranging the resulting equation. The second equality

(4.17) follows by substituting u(x, tn+m) = S(mδt)
p u(x, tn)+O(hp+1), as is given by (4.20),

into (4.16). Finally, the third equality (4.18) follows from the fact that the coefficient

in (4.17) is equal to the geometric expansion of the coefficient in (4.18) up to terms of

O
(
h2(p+1)

)
. �

The significance of Lemma 4.2 is that we now have several asymptotic relationships be-

tween the ideal coarse-grid operator, and the coarse-grid semi-Lagrangian operator. Specif-

ically, using (4.17) and (4.18) we can devise coarse-grid operators that serve as O(hp+2) ap-

proximations to the ideal coarse-grid operator, which is an improvement over the O(hp+1)

approximation offered by the coarse-grid semi-Lagrangian operator S(mδt)
p . Based on the

relationship (4.17), we propose the following explicit coarse-grid operator with matrix

Dp+1 ∈ Rnx×nx to be defined later

Φ(mδt) = Fp+1S(mδt)
p , where Fp+1 := I + φp+1

(
ε(δt), ε(mδt)

)
Dp+1. (4.21)

Furthermore, based on relationship (4.18) we propose the following implicit-explicit coarse-

grid operator

Φ(mδt) = Bp+1S(mδt)
p , where Bp+1 :=

[
I − φp+1

(
ε(δt), ε(mδt)

)
Dp+1

]−1
. (4.22)

The Fp+1 and Bp+1 notation is used to represent forward and backward Euler steps,

respectively, for which the reasoning will become clear in Section 4.2.3. Moving forward,

we will typically refer to (4.21) and (4.22) as the ‘forward Euler’ and ‘backward Euler’

coarse-grid operators, respectively. In (4.21) and (4.22), the matrix Dp+1 ∈ Rnx×nx is an

approximation of the p + 1st-degree differential operator hp+1 diag
(
∂p+1

∂xp+1

)
. In all of our

numerical and theoretical results, Dp+1 will be a periodic, finite-difference approximation.

So long as Dp+1 is a consistent discretization, its order of accuracy does not matter in

the sense that the truncation errors of (4.21) and (4.22) will be equal to those in (4.17)

and (4.18), respectively, up to terms of O(hp+2). While we will not specify the order of

approximation provided by Dp+1 in much of our theoretical analysis, in our numerical

experiments (which use odd p, as discussed below) we will always take it to be a 2nd-order

accurate discretization since this leads to the best conditioned operator (further details are
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given in Section 4.2.4). Finally, note that since entries in finite-difference approximations

of diag
(
∂p+1

∂xp+1

)
are proportional to h−(p+1), the entries in Dp+1 are independent of h.

We now present some preliminary numerical results to help motivate the direction of

the remainder of this chapter. For the odd polynomial degrees p ∈ {1, 3}, Figure 4.3

shows MGRIT convergence plots for several coarsening factors m for the forward Euler

and backward Euler coarse-grid operators (4.21) and (4.22), respectively. Notice that in

almost all cases, convergence is very fast, standing in stark contrast to the left panel of

Figure 4.1, where simply using S(mδt)
p led to MGRIT diverging. Notice that both the

m = 64 residual curves in the left panel have blown up initially, and are only converging

as the iteration number approaches ∼ nt/(2m). That is, MGRIT has diverged for these

two problems. However, the m = 64 solves for the backward Euler operator (right panel)

have converged very quickly.

We do not present here any numerical results for the case of even polynomial degrees p.

In many of our numerical tests, we have found that MGRIT diverges for even p when

using either coarse-grid operator (4.21) or (4.22). Currently, we do not have a proper

understanding of why the coarse-grid operators seem ineffective for even p. Note the

leading-order truncation error of the ideal coarse-grid operator is dispersive when p is

even versus dissipative when p is odd (see Lemma 4.1). As such, we suspect the worse

solver convergence for even p could be due to MGRIT being able to correct dissipative

errors more easily than dispersive errors (see the analysis of [80]). We also remark that for

even p the correction in some sense destabilises the coarse-grid semi-Lagrangian scheme

by making it more dispersive (contrary to dissipation, increased dispersion tends to be

Figure 4.3: Two-norm of space-time residual (relative to its initial value) as a function of
MGRIT iteration for solving ∂u

∂t + ∂u
∂x = 0, x ∈ (−1, 1) discretized with the semi-Lagrangian

method S(δt)p . A two-level MGRIT method is used with coarsening factor m. The fine-grid
CFL number is δt/h = 0.85, and the problem is discretized on an nx × nt = 256 × 2048
space-time mesh. Left: Coarse-grid operator is the explicit, Forward Euler operator
(4.21). Right: Coarse-grid operator is implicit-explicit, Backward Euler operator (4.22).
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a destabilising phenomenon). Nonetheless, since we are unable to get a robust MGRIT

solver for even polynomial degrees p, throughout the rest of the chapter we consider only

odd p. Developing a better understanding of the inadequacies of (4.21) and (4.22) for

dispersive semi-Lagrangian discretizations remains a topic for future research.

While the proposed backward Euler coarse-grid operator (4.22) appears to yield fast

MGRIT convergence in our initial tests (for odd p), one over-arching concern is that

of its cost. Specifically, the fine-grid operator is explicit, requiring no linear solves, yet

applying the coarse-grid operator (4.22) requires a linear solve. However, we will show

later in the chapter that this linear solve can be carried out approximately, with very low

cost.

Remark 4.3 (An alternative coarse-grid operator). The above strategy for approximat-

ing the truncation error of the ideal coarse-grid is not the only one possible. We have

also developed another coarse-grid operator which is more closely based on the coarse-

grid operator proposed in [108, Sec. 5.1] for the spatial multigrid solution of steady state

advection-dominated problems. Our alternative coarse-grid operator is a linear combina-

tion of order p and order q > p semi-Lagrangian discretizations. The linear weights are

chosen so that the resulting operator has a truncation error that matches to lowest order

the ideal coarse-grid operator, and thus better approximates it than the standalone order

p operator does. While this operator leads to fast MGRIT convergence in certain situ-

ations, it has two fundamental flaws which mean it cannot be used in practice. Firstly,

it has poor stability properties in the sense that it becomes unstable for sufficiently large

coarsening factors m. Secondly, it fails to provide an adequate approximation in the event

that fine-grid characteristics are not mesh aligned, but coarse-grid characteristics are. For

completeness, a more detailed discussion of this operator is provided in Appendix B.1.

4.2.3 Interpretations of the proposed coarse-grid operators

We now provide interpretations of the proposed coarse-grid operators (4.21) and (4.22).

These interpretations do not necessarily generalize to the variable-coefficient problems

considered later in the chapter, but nonetheless they provide an interesting point of view,

and potentially offer insight for designing coarse-grid operators for more difficult problems.
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4.2.3.1 Interpretation one: Solving an augmented coarse-grid equation

The forward and backward Euler-based coarse-grid operators (4.21) and (4.22) correspond

to particular coarse-grid discretizations of the PDE

∂u

∂t
+ α

∂u

∂x
=

1

mδt
φp+1

(
ε(δt), ε(mδt)

)
hp+1 ∂

p+1u

∂xp+1
. (4.23)

Specifically, they use a mixed discretization, in which the coarse-grid semi-Lagrangian

method S(mδt)
p deals with the advection term, and then the method of lines is applied to

solve the rest of the equation. In doing so, the right-hand side of (4.23) discretized in

space using the matrix Dp+1, and the time derivative on the left-hand side is discretized

using forward and backward Euler steps in (4.21) and (4.22), respectively.

To understand why this is the case, consider the Lagrangian formulation of (4.23),

d

dt
ξ(t) = α, (4.24)

d

dt
u(ξ(t), t) =

1

mδt
φp+1

(
ε(δt), ε(mδt)

)
hp+1 ∂

p+1

∂xp+1
u(ξ(t), t). (4.25)

Now, suppose the evolution equation (4.25) holds on the characteristic ξ
(mδt)
i (t), and is dis-

cretized on this characteristic over t ∈ [tn, tn+m] using a single forward Euler step resulting

in the approximation v(x, t) ≈ u(x, t), with v satisfying

v
(
ξ

(mδt)
i (tn+m), tn+m

)
− v
(
ξ

(mδt)
i (tn), tn

)

mδt
=

1

mδt
φp+1

(
ε(δt), ε(mδt)

)
hp+1 ∂

p+1

∂xp+1
v
(
ξ

(mδt)
i (tn), tn

)
.

(4.26)

Rearranging and substituting the value of the characteristic at the arrival point gives

v(xi, tn+m) =

(
1 + φp+1

(
ε(δt), ε(mδt)

)
hp+1 ∂

p+1

∂xp+1

)
v
(
ξ

(mδt)
i (tn), tn

)
. (4.27)

Now, further suppose that the derivative on the right-hand side at the departure point is

estimated using the finite-difference rule of Dp+1 applied to the values of v at neighbouring

departure points,

∂p+1

∂xp+1
v
(
ξ

(mδt)
i (tn), tn

)
≈ h−(p+1)

∑

j∈J

(
Dp+1

)
ij
v
(
ξ

(mδt)
i+j (tn), tn

)
, (4.28)

in which J is the index set of the non-zero weights in the finite-difference rule of Dp+1.

Finally, suppose that in the resulting formula values of v at departure points are interpo-

lated using degree (at most) p polynomials. Using the fact that Dp+1 and S(mδt)
p commute
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(they are both circulant), we arrive at the fully discrete update

un+m = S(mδt)
p un + φp+1

(
ε(δt), ε(mδt)

)
Dp+1S(mδt)

p un = Fp+1S(mδt)
p un, (4.29)

where un = (v(x1, tn), . . . , v(xnx , tn))>. This is precisely the forward Euler coarse-grid

operator defined in (4.21). Carrying out an analogous set of approximations but starting

with a backward Euler step instead of the forward Euler step in (4.26) results in the update

given in (4.22).

Formulating the coarse-grid operators as discretizations of the PDE (4.23) allows us to

interpret them in the following way. The coarse-grid operators first treat the advective

component of (4.23) with S(mδt)
p , that is, they interpolate the solution from the mesh to

departure points. Then they apply an Euler step to approximately evolve the interpolated

solution along the characteristic according to (4.25), which has the effect of post-processing

(or correcting) the solution by removing the leading-order truncation error introduced from

S(mδt)
p and replacing it with the leading-order truncation error of the ideal coarse-grid

operator
∏m−1
k=0 S

(δt)
p .

4.2.3.2 Interpretation two: A dissipative correction to rediscretization

For the case of odd polynomial degrees p, we now consider a second interpretation of

the proposed coarse-grid operators. Since both the ideal coarse-grid operator and the

Figure 4.4: Stencil weights as a function of their index for three coarse-grid operators
associated with p = 1 semi-Lagrangian using m = 64 (left), and p = 3 semi-Lagrangian
using m = 128 (right) of (4.1). In both cases, the fine-grid CFL number is 0.85, δt =

0.85×h. Weights are shown for ideal coarse-grid operators
∏m−1
k=0 S

(δt)
p , coarse-grid semi-

Lagrangian operators S(mδt)p , and the proposed backward Euler coarse-grid operators

Bp+1S(mδt)p = (I − φp+1Dp+1)−1S(mδt)p of (4.22). For
∏m−1
k=0 S

(δt)
p and Bp+1S(mδt)p , only

weights having a magnitude larger than that of 10−3 times the largest weight in their
respective stencils are shown. The faint, dashed vertical line in each panel represents the
location of the coarse-grid departure point.
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coarse-grid semi-Lagrangian operator mimic the underlying behaviour of the advection

problem, which is to transport data along characteristics, their stencils should reflect this

(see Section 2.5.2 for more detailed arguments). Indeed, looking at the examples shown

in Figure 4.4, it can be seen that this is the case, since weights are peaked around the

departure point. The examples in Figure 4.4 also illustrate why S(mδt)
p often serves as a

poor approximation to the ideal operator
∏m−1
k=0 S

(δt)
p , as it does here. The stencil of S(mδt)

p

has only p+ 1 non-zero weights, which are centred about the departure point. In contrast,

the stencil of
∏m−1
k=0 S

(δt)
p has many more non-zero weights and they appear as a much

smoother distribution about the departure point. This difference is a manifestation of the

fact that the ideal operator is more dissipative than the semi-Lagrangian operator. Con-

sider the proposed coarse-grid operators (4.21) and (4.22), which are (I+φp+1Dp+1)S(mδt)
p

and (I−φp+1Dp+1)−1S(mδt)
p , respectively. Recall that Dp+1 ≈ hp+1 diag

(
∂p+1

∂xp+1

)
, such that

when p is odd, the operators (I + φp+1Dp+1) and (I − φp+1Dp+1)−1 act in a dissipative

fashion.2 Therefore, one interpretation of the role of these operators in (4.21) and (4.22)

is that they dissipate (i.e., loosely speaking, spread and smooth out) the weights in the

stencil of the semi-Lagrangian operator S(mδt)
p . This effect can be seen most clearly in

Figure 4.4 for the backward Euler operator (I − φp+1Dp+1)−1S(mδt)
p , where it has spread

and smoothed the stencil of S(mδt)
p so that it is a small perturbation of the ideal coarse

grid operator’s stencil.

4.2.4 Stability analysis

The purpose of this section is to assess the stability of the proposed forward and backward

Euler coarse-grid operators (4.21) and (4.22). As we have seen, stability of a coarse-grid

operator is by no means a sufficient condition for fast MGRIT convergence, but it is

effectively a necessary one. Our analysis will show that for odd p the forward Euler oper-

ator is conditionally stable, with its stability limit characterized by the coarsening factor.

Furthermore, for odd p, we show the backward Euler coarse-grid operator is uncondition-

ally stable with respect to all problem parameters. We will also gain further insight into

the structure of the operator that is to be inverted during the backward Euler step, and

how this matrix depends on key parameters such as the coarsening factor and polynomial

degree.

Our analysis relies on several assumptions, which we state here once at the beginning of the

section for brevity. Given the divergence of MGRIT for even polynomial degrees p when

using either of the forward or backward Euler coarse-grid operators (see Section 4.2.2),

the analysis here considers only the case of odd p.

2At this stage, this statement should be interpreted loosely, since whether the operators act dissipately
or anti-dissipatively (i.e., they exponentially blow up vectors rather than smooth them), depends on many
problem parameters. This will be stated more rigorously in Section 4.2.4.
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Assumption 4.1 (Coarse-grid semi-Lagrangian). Suppose that the circulant, coarse-grid

semi-Lagrangian operator S(mδt)
p uses interpolating polynomials of odd degree p. Further-

more, suppose that S(mδt)
p is unconditionally stable in the `2-norm with

∥∥S(mδt)
p

∥∥
2

= 1.

See [7] for a proof of this stability, and also the discussion in [31, Sec. 6.1.3] for further

details.3

We will also fix the form of the approximation Dp+1 as follows.

Assumption 4.2 (Spectrum of Dp+1). Given that p+ 1 is even, assume that the approxi-

mation Dp+1 is a circulant and symmetric finite-difference discretization of hp+1 diag
(
∂p+1

∂xp+1

)
.

Furthermore, assume that Dp+1 is semi negative definite when p+1
2 is odd, and Dp+1 is

semi positive definite when p+1
2 is even. In other words, the spectrum σ of Dp+1 satisfies

σ(Dp+1) ⊆





[
− ‖Dp+1‖2, 0

]
, p+1

2 is odd,

[
0, ‖Dp+1‖2

]
, p+1

2 is even.
(4.30)

We do not know of a proof for the definiteness assumptions on Dp+1. However, it is

important to note that these assumptions hold numerically for all of the operators we

have tested, and they certainly hold for the operators used in the numerical experiments

we present in this chapter. It should also be noted that the differential operator that Dp+1

approximates satisfies the continuous analogue of this assumption, as can be confirmed

by Fourier analysis. That is, given the Fourier mode eiβx with frequency β ∈ R, one has
∂p+1

∂xp+1 e
iβx = −βp+1eiβx if p+1

2 is odd, and ∂p+1

∂xp+1 e
iβx = βp+1eiβx if p+1

2 is even; note that

βp+1 ≥ 0 since p+ 1 is even.

Having presented our assumptions, let us begin the analysis by simplifying our previous

expressions for the coarse-grid operators at hand. Recall from (4.6) that the fine-grid

departure point for the constant-wave-speed advection problem (4.1) is

ξ
(tn,δt)
i (tn) = xi − αδt ≡ x(δt)

i − hε(δt), (4.31)

where ε(δt) ∈ [0, 1) represents the mesh-normalized distance from the departure point

ξ
(tn,δt)
i (tn) to its east neighbouring mesh point x

(δt)
i . From this, notice that xi−ξ(tn,δt)

i (tn) =

α δth h =

(
xi−x

(δt)
i

h + ε(δt)

)
h, and therefore α δth =

xi−x
(δt)
i

h +ε(δt). Since
xi−x

(δt)
i

h is an integer

(the mesh points in the numerator are separated by an integer multiple of h), and x
(δt)
i is

3To see that the norm is equal to unity (as opposed to being bounded above by it, which would be
sufficient for stability), note that the operator maps the constant vector to itself; in other words, the
constant vector is an eigenvector and is associated with an eigenvalue of unity. This is because polynomial
interpolation of any degree is exact on the constant function.
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chosen so that ε(δt) ∈ [0, 1), it follows that ε(δt) is the fractional part of the CFL number,

ε(δt) = α
δt

h
−
⌊
α
δt

h

⌋
∈ [0, 1). (4.32)

Using this relationship, ε(mδt), which is the analogous quantity on the coarse grid, can be

expressed in terms of ε(δt) as follows

ε(mδt) = mα
δt

h
−
⌊
mα

δt

h

⌋
, (4.33)

= mε(δt) +m

⌊
α
δt

h

⌋
−
⌊
mε(δt) +m

⌊
α
δt

h

⌋⌋
, (4.34)

= mε(δt) −
⌊
mε(δt)

⌋
∈ [0, 1). (4.35)

Thus, the constant φp+1

(
ε(δt), ε(mδt)

)
from (4.19) appearing in the coarse-grid operators

depends only on the fine-grid quantity ε(δt). To simplify our notation, we define a new

function that depends only on the fine-grid parameter as follows4

γp+1

(
ε(δt)

)
:= φp+1

(
ε(δt), ε(mδt)

)
= fp+1

(
mε(δt) −

⌊
mε(δt)

⌋)
−mfp+1

(
ε(δt)

)
, ε(δt) ∈ [0, 1).

(4.36)

Note that we have dropped the (−1)p+1 factor from (4.19) since p is assumed to be odd

under Assumption 4.1. The forward and backward Euler coarse-grid operators (4.21) and

(4.22) can therefore be written respectively as

Φ(mδt) = Fp+1S(mδt)
p , where Fp+1 = I − γp+1

(
ε(δt)

)
Dp+1, (4.37)

Φ(mδt) = Bp+1S(mδt)
p , where Bp+1 =

[
I − γp+1

(
ε(δt)

)
Dp+1

]−1
. (4.38)

Now the stability analysis proceeds via a sequence of lemmas, beginning with the following

which characterizes the stability of the operators in terms of γp+1 and the spectrum of

Dp+1.

Lemma 4.4 (Conditions for stability). Suppose that Assumptions 4.1 and 4.2 hold. Then,

the forward Euler coarse-grid operator (4.37) is `2-stable if

γp+1

(
ε(δt)

)
σ(Dp+1) ⊆ [−2, 0]. (4.39)

Furthermore, the backward Euler coarse-grid operator (4.38) is `2-stable if

γp+1

(
ε(δt)

)
σ(Dp+1) ⊆ (−∞, 0] ∪ [2,∞). (4.40)

4We choose not to redefine φp+1 as depending on a single parameter because for variable-wave-speed
problems it depends on multiple parameters.
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Proof. The 2-norms of both coarse-grid operators may be written as

∥∥(I + γp+1

(
ε(δt)

)
Dp+1

)
S(mδt)
p

∥∥
2

= max
λ∈σ(Dp+1)

∣∣1 + γp+1

(
ε(δt)

)
λ
∣∣, (4.41)

∥∥(I − γp+1

(
ε(δt)

)
Dp+1

)−1S(mδt)
p

∥∥
2

=
1

min
λ∈σ(Dp+1)

∣∣1− γp+1

(
ε(δt)

)
λ
∣∣ . (4.42)

These expressions hold because S(mδt)
p and Dp+1 are simultaneously unitarily diagonalized

by the discrete Fourier transform (they are both circulant), and because
∥∥S(mδt)

p

∥∥
2

= 1

under Assumption 4.1. Since Dp+1 is symmetric (under Assumption 4.2), its eigenvalues

are real. Using this result while enforcing that (4.41) and (4.42) are not greater than one,

the results (4.39) and (4.40) respectively follow. �

To understand the stability of the operators, it is therefore important to understand the

behaviour of the constant γp+1

(
ε(δt)

)
given by (4.36). The polynomial fp+1 appearing in

(4.36) is defined by (4.8), and for odd p, which uses symmetric interpolation nodes (see

Section 4.2.1), it takes the form

fp+1(z) =
1

(p+ 1)!

p−1
2∏

q=− p+1
2

(q + z). (4.43)

Key to understanding γp+1

(
ε(δt)

)
is first understanding fp+1(z). Several important proper-

ties of this function are summarized in Lemma B.1, which has been placed in Appendix B.2.

Relying on Lemma B.1, the following lemma describes several important properties of γp+1.

Lemma 4.5 (Important properties of γp+1). Suppose that Assumption 4.1 holds, that is,

that p is odd, and let the constant γp+1

(
ε(δt)

)
be as in (4.36). Then, γp+1(0) = 0, and

otherwise, the sign of this constant is

sign
(
γp+1

(
ε(δt)

))
=





1, ε(δt) ∈ (0, 1), p+1
2 is odd,

−1, ε(δt) ∈ (0, 1), p+1
2 is even.

(4.44)

Furthermore, suppose that the coarsening factor m is even, then the magnitude of γp+1

(
ε(δt)

)

may be bounded as5

∣∣γp+1

(
ε(δt)

)∣∣ ≤
∣∣γp+1

(
1
2

)∣∣ = m
∣∣fp+1

(
1
2

)∣∣ ≤ m
√

3

p+ 2

(
1

2

)p+2

, ∀ε(δt) ∈ [0, 1), ∀m
2
∈ N.

(4.45)
5Bounds for odd m are not presented because the calculations are more complicated than for even m,

and even coarsening factors are of greater interest to us since we typically coarsen by powers of two.
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Proof. See Appendix B.3. �

Using the previous lemmas, we are now able to make definitive statements on the stability

of the coarse-grid operators, which we do in the following lemma.

Lemma 4.6 (Stability revisited). Suppose Assumptions 4.1 and 4.2 hold, then, the forward

Euler coarse-grid operator Fp+1S(mδt)
p = I − γp+1

(
ε(δt)

)
Dp+1S(mδt)

p is conditionally `2-

stable. When the coarsening factor m is even, a sufficient condition for stability of the

operator that holds for any value of ε(δt) ∈ [0, 1) is

m ≤
⌊√

p+ 2

3

2p+3

‖Dp+1‖2

⌋
. (4.46)

The backward Euler coarse-grid operator Bp+1S(mδt)
p =

[
I − γp+1

(
ε(δt)

)
Dp+1

]−1
S(mδt)
p is

unconditionally `2-stable with respect to all problem parameters (i.e., ε(δt), m, p, and

Dp+1).

Proof. Let us begin with the backward Euler claim. Combining (4.30) on the spectrum

of Dp+1 with the sign result on γp+1

(
ε(δt)

)
of (4.44), we see that elements in the set

γp+1

(
ε(δt)

)
σ(Dp+1) always lie on the non-positive real line,

γp+1

(
ε(δt)

)
σ(Dp+1) ⊆ (−∞, 0], ∀ε(δt) ∈ [0, 1). (4.47)

From (4.40), this is a sufficient condition for the `2-stability of the backward Euler coarse-

grid operator, and thus the operator is unconditionally stable.

For the forward Euler operator, the situation is more complicated. From (4.39), it is

necessary for stability that the elements of γp+1

(
ε(δt)

)
σ(Dp+1) are non-positive, which is

clearly the case given (4.47). However, it is also necessary that the minimum element of

γp+1

(
ε(δt)

)
σ(Dp+1) be larger than −2. When m is even, we can use the bound of (4.45)

to tighten the interval that these elements are in from (4.47) to

γp+1

(
ε(δt)

)
σ(Dp+1) ⊆

[
−m

√
3

p+ 2

(
1

2

)p+2

‖Dp+1‖2, 0
]
, ∀ε(δt) ∈ [0, 1), ∀m

2
∈ N.

(4.48)

Ensuring that that the minimum element in this interval is larger than or equal to −2

therefore provides a sufficient condition for stability for the forward Euler operator. Im-

posing this inequality are rearranging for m yields

m ≤
√
p+ 2

3

2p+3

‖Dp+1‖2
, ∀ ε(δt) ∈ [0, 1), ∀m

2
∈ N. (4.49)
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Finally, recognising that m is an integer, and therefore that the right-hand side of this

bound only makes sense when it is an integer, leads to result (4.46). �

Corollary 4.7 (Conditioning of backward Euler matrix). Suppose that Assumptions 4.1

and 4.2 hold, and that the coarsening factor m is even. Then, the matrix B−1
p+1

(
ε(δt)

)
=[

I − γp+1

(
ε(δt)

)
Dp+1

]
to be inverted within the backward Euler coarse-grid operator (4.38)

is symmetric positive definite, and its `2 condition number may be bounded as

κ
(
B−1
p+1

(
ε(δt)

))
≤ 1 +m

√
3

p+ 2

(
1

2

)p+2

‖Dp+1‖2, ∀ε(δt) ∈ [0, 1), ∀m
2
∈ N. (4.50)

Proof. From the proof of Lemma 4.6, we saw that γp+1

(
ε(δt)

)
Dp+1 is semi negative def-

inite (see (4.47)), and since Dp+1 is symmetric (under Assumption 4.2), it follows that

I − γp+1

(
ε(δt)

)
Dp+1 is symmetric positive definite.

Since the matrix is symmetric positive definite, its `2-condition number can be expressed

as

κ
(
B−1
p+1

(
ε(δt)

))
=

max
λ∈σ(Dp+1)

1− γp+1

(
ε(δt)

)
λ

min
λ∈σ(Dp+1)

1− γp+1

(
ε(δt)

)
λ

= 1 +
∣∣γp+1

(
ε(δt)

)∣∣‖Dp+1‖2. (4.51)

The second equality occurs here because the denominator is equal to unity given that

zero is the smallest eigenvalue of −γp+1

(
ε(δt)

)
Dp+1. The bound (4.50) then follows from

bounding
∣∣γp+1

(
ε(δt)

)∣∣ using (4.45). �

4.2.4.1 Discussion

The conditional stability of the forward Euler coarse-grid operator, as laid out by Lemma 4.6,

is consistent with our earlier numerical results shown in Figure 4.3. Specifically, MGRIT

convergence was fast for m ∈ {4, 16}, but then the solver diverged for m = 64. Indeed,

considering numerically the eigenvalues in those cases (not shown here for brevity) shows

that the coarse-grid operator is stable when m ∈ {4, 16}, and unstable for m = 64. This

behaviour is perhaps unsurprising in a qualitative sense, given the interpretation in Sec-

tion 4.2.3.1 of this operator as discretizing explicitly in time a high-order PDE.6

6The classical example of this phenomenon is that a forward Euler time discretization of the diffusion

equation ∂u
∂t

= ∂2u
∂x2

is stable only under the CFL constraint δt . O(h2) when using finite-differences in
space.



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 4: Dissipatively corrected coarse-grid operators for advection 107

Unfortunately, the conditional stability of this operator renders it effectively useless in

practice.7 Using a 2nd-order finite-difference approximation for Dp+1, bound (4.46) re-

duces to (to two decimal places) the forward Euler operator being stable for even coars-

ening factors m ≤ (b4.00c, b5.16c, b6.11c) = (4, 4, 6) for p = (1, 3, 5). Being restricted to

such small coarsening factors is impractical, because the resulting coarse-grid problem is

not significantly smaller than the fine-grid problem, and therefore could not lead to any

speed-up in a parallel MGRIT solve, no matter how fast the convergence.

An interesting question then is whether employing an analogous operator in a multilevel

context with slow coarsening (i.e., with sufficiently small m between each level) would be

stable. Unfortunately, this is not the case. For the special case of constant-wave-speed

advection, the multilevel operator to be introduced in Section 4.4.1 is closely related to the

two-level operator presented thus far, and in fact, a generalized stability condition based on

(4.46) applies. More specifically, a sufficient condition for stability of a level ` ∈ N forward

Euler coarse-grid operator (arising from generalizing our current two-level operator) using

a time-step m`δt is (4.46) with m 7→ m`. Introducing any kind of slow multilevel coarsening

therefore does not improve the poor stability properties of the operator. Thus, the operator

is as impractical in the multilevel setting as it is in the two-level setting.

For the above reasons, we do not consider the forward Euler coarse-grid operator through-

out the rest of this chapter. Before moving on, however, it is interesting to think about

the underlying reasons for this instability. Recall that the operator explicitly discretizes

the lowest-order difference between the truncation error of the ideal coarse-grid opera-

tor and the coarse-grid semi-Lagrangian operator. Given that both operators are stable

and explicit-in-time (i.e., they are sparse), it seems somewhat counter-intuitive that an

explicit-in-time discretization of the (lowest-order) difference between them would be un-

stable. In Chapter 2, we identified sparse coarse-grid operators through an optimization

process. While these coarse-grid operators were for Eulerian discretizations of advection

rather than semi-Lagrangian ones, we identified empirically the heuristic that if one is

to obtain a convergent MGRIT solver, the width of the coarse-grid stencil needs to in-

crease with the coarsening factor. Notice, however, that the stencil of the forward Euler

coarse-grid operator (4.37) is constant with respect to m. Our findings here therefore are

consistent with the results of Chapter 2.

We now move on to the backward Euler coarse-grid operator. This operator is clearly

more suitable as a coarse-grid operator than the forward Euler operator, in the sense that

it is unconditionally stable. As discussed previously, this is not a sufficient condition for

7This statement presupposes that the statement (4.46) is close to being a necessary and sufficient
condition rather than just a sufficient one; that is, the bound is tight. However, this is essentially the case
since (4.46) becomes necessary and sufficient when both ε(δt) = 0.5 and p = 1.
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fast MGRIT convergence, but it is effectively a necessary one. It is difficult to analyti-

cally understand more about how the convergence of MGRIT depends on our coarse-grid

operator. Nonetheless, our previous numerical results (see Figure 4.3) seem to indicate

the operator leads to fast MGRIT convergence. Furthermore, we find that the operator

satisfies several empirical rules that we identified for effective coarse-grid operators in our

previous work of Chapter 2.

The condition number bound of Corollary 4.7 on B−1
p+1 = I − γp+1

(
ε(δt)

)
Dp+1 provides us

with some insight into the difficulty of inverting this matrix, which is required to compute

the action of the coarse-grid operator. In particular, the matrix is fairly well-conditioned,

with a condition number scaling only as ∼ O(m). For m = 128, Figure 4.5 shows a plot

of the condition number B−1
p+1 as a function of ε(δt) for several p, along with the associated

bound from Corollary 4.7. There are a few points to note. Firstly, the bound is tight

in that it achieves equality for p = 1 when ε(δt) = 0.5. For p > 1 the bound provides

only a small overestimation of the true condition number at ε(δt) = 0.5 (from the proof of

Lemma 4.5 on the bound of
∣∣γp+1

(
ε(δt)

)∣∣, the careful reader may have realised that this

would be the case). Secondly, when using a 2nd-order accurate finite-difference operator

for Dp+1, conditioning improves with polynomial order p. This is driven by the fact that

|γp+1| decreases with increasing p, as per the bound (4.45) of Lemma 4.5.

At first, it seems somewhat counter-intuitive that the ideal coarse-grid operator is a sparse

matrix, yet our backward Euler coarse-grid operator is dense, since it involves the dense

Figure 4.5: The `2-condition number κ of the backward Euler matrix
B−1p+1(ε) = I − γp+1(ε)Dp+1 that corresponds to a coarsening factor of m = 128 is shown
for polynomial degrees p ∈ {1, 3, 5}. Exact condition numbers (markers) are shown for
several values of ε ∈ [0, 1), as is the upper bound (dashed lines) of (4.50) from Corollary 4.7
which holds ∀ε ∈ [0, 1). In these examples, Dp+1 is a 2nd-order accurate finite-difference
operator.
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matrix Bp+1 =
[
I − γp+1

(
ε(δt)

)
Dp+1

]−1
. However, as we now discuss, this operator ef-

fectively acts as though it is sparse, and can be well-approximated by a sparse operator.

Aside from describing the difficulty of inverting B−1
p+1 with an iterative method, the condi-

tion number bound (4.50) provides us with important information about the structure of

the inverse Bp+1 itself. It is well known that under certain conditions, entries in the inverse

of a banded matrix decay exponentially (in magnitude) away from the main diagonal. In

particular, suppose that a matrix A is symmetric positive definite and k-banded, then the

entries in its inverse may be bounded as [27, Th. 2.4]

∣∣A−1
ij

∣∣ ≤ c
[
%(A)

]|i−j|
, %(A) =

(√
κ(A)− 1√
κ(A) + 1

)2/k

, (4.52)

in which c is a constant depending on κ(A) and ‖A−1‖2. In (4.52), the bandwidth k of

the symmetric matrix A is defined such that Aij = 0 if |i− j| > k/2. The matrix B−1
p+1 is

symmetric positive definite (see Corollary 4.7), and is banded, since Dp+1 is banded. Thus,

the entries in its inverse decay exponentially, with a rate at least as fast as
[
%(B−1

p+1)
]|i−j|

.

If this decay is fast enough, the matrix should be well-approximated by a sparse one. Our

numerical tests in Section 4.4.1, in which we approximate the action of this inverse through

GMRES, do indeed indicate that this matrix can be well-approximated by a sparse matrix.

Notice that % in (4.52) is an increasing function of κ, and thus generally speaking, larger

condition numbers yield slower decay rates. Furthermore, since %(B−1
p+1) is an increasing

function of κ(B−1
p+1), it can be bounded for all ε(δt) ∈ [0, 1) by using the bound (4.50)

that holds for all ε(δt) ∈ [0, 1). Recalling that κ(B−1
p+1) . O(m), and supposing that

(4.52) is tight with respect to κ(B−1
p+1), we can argue that the rate of exponential decay of

entries in Bp+1 is slower for larger coarsening factors. Numerically computing entries in

the dense matrix Bp+1 (see Figure 4.6 for a specific example), we find that they do indeed

exponentially decay with a fast rate, and that the decay is slower for increasing m. This

justifies our claim that while the operator is dense, it effectively acts as if it is sparse.

Furthermore, this behaviour is consistent with the findings in Chapter 2 and our previous

discussion on the forward Euler operator, regarding the need for the number of non-zeros

in the stencil to increase with m. In other words, if we were to approximate Bp+1 with a

sparse matrix, the sparsity of the approximation would need to decrease as m increases.

Interestingly, when numerically computing entries in Bp+1, the decay rate upper bound

of (4.52) generally only seems to be tight in the p = 1 case. As shown in Figure 4.6, for

example, when p = 5 the entries decay much faster than the upper bound predicts. In

fact, for a given m, we typically find that the rate of decay rate increases with polynomial
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Figure 4.6: The absolute value of weights in the stencil of the dense matrix Bp+1 =[
I − γp+1

(
ε(δt)

)
Dp+1

]−1 ∈ R1024×1024 with ε(δt) = 0.85, and p ∈ {1, 5}. Note that only
weights with magnitude greater than 10−10 are shown, and that only those associated with
indices in the interval [−70, 70] are shown. The markers represent the weights themselves,
and the dashed lines represent the upper bound of them given by (4.52). Note that the
weights and their bounds have been normalized to have a maximum value of one. Note
that Dp+1 is taken to be a 2nd-order accurate finite-difference operator. Left: m = 32.
Right: m = 256.

degree p, yet the bound (4.52) predicts the opposite.8 There is a large amount of literature

on decay rates for banded matrices, so it is likely that tighter bounds than those of (4.52)

exist for our problems, however, we leave this to future investigation. Finally, note that

the trend we observe numerically of the decay rate increasing with p is consistent with yet

another empirical finding we made about the coarse-grid stencil in Chapter 2, which was

that the required increase in its width was smaller for higher-order discretizations.

4.3 Variable-wave-speed advection

In this section, we move to consider variable-wave-speed problems of the form

∂u

∂t
+ α(x, t)

∂u

∂x
= 0, (x, t) ∈ Ω× (0, T ], u(x, 0) = u0(x), (4.53)

for spatial domain Ω ⊂ R, and solution u subject to periodic boundary conditions on ∂Ω.

The semi-Lagrangian discretization of (4.53) shares many similarities with that described

in Section 4.2.1 for the case of constant α. However, there are now more possibilities

for generalization, and, so, there are many different types of semi-Lagrangian methods.

We will consider, in a sense, the simplest possible class of semi-Lagrangian discretizations

that assume a high-degree of smoothness of the solution of (4.53), and that the wave-speed

8To understand why (4.52) predicts an increase with p, note that while κ(B−1
p+1) does indeed decrease

with increasing p (see Figure 4.5), the bandwidth k of B−1
p+1 is p+ 1 for 2nd-order accurate approximations

Dp+1, since the finite-difference stencil of Dp+1 uses p+ 2 points for such cases.
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α(x, t) is readily available for any x and t. The reader is directed to [31] and [29, Sec. 7]

(and references therein) for discussions on more sophisticated semi-Lagrangian methods.

We now briefly highlight the differences of the semi-Lagrangian discretization of (4.53)

from that described in Section 4.2.1 for constant α. The Lagrangian formulation of (4.53)

is

d

dt
ξ(t) = α(ξ(t), t). (4.54)

d

dt
u(ξ(t), t) = 0, t ∈ (0, T ], u(x, 0) = u0(x). (4.55)

From (4.54), the characteristics are now curved in general rather than straight lines. From

(4.55), the PDE solution still remains constant along a given characteristic.

Recall that we define the local characteristic ξ
(tn,δt)
i (t) to be that which passes through

the arrival point (x, t) = (xi, tn + δt). Then, we locate the associated departure point

(x, t) =
(
ξ

(tn,δt)
i (tn), tn

)
by solving the final-value problem

d

dt
ξ

(tn,δt)
i (t) = α

(
ξ

(tn,δt)
i (t), t

)
, t ∈ [tn, tn + δt), ξ

(tn,δt)
i (tn + δt) = xi. (4.56)

This solution of this problem can no longer be found exactly, and instead needs to be

approximated with a numerical integration method. We will do so by integrating back-

wards along the characteristic using a single explicit Runge-Kutta (ERK) step of size δt,

although there are many other possible ways to do this.9 The Butcher tableaux for the

ERK schemes we use are given as ERK1, ERK3, and ERK5 in Appendix A.1. Further-

more, suppose that the ERK method has a global accuracy of order r, such that each

departure point is located with an accuracy of O(δtr+1) (e.g., forward Euler has r = 1).

Upon (approximately) locating a departure point, we again fit a degree (at most) p poly-

nomial through its nearest neighbouring mesh points. To perform this interpolation at a

given departure point, we decompose it as

ξ
(tn,δt)
i (tn) ≡ x(tn,δt)

i − hε(tn,δt)
i , ε

(tn,δt)
i ∈ [0, 1), (4.57)

in which x
(tn,δt)
i is the mesh node immediately east of ξ

(tn,δt)
i (tn), and ε

(tn,δt)
i is its (mesh-

normalized) distance from this point. See Figure 4.7 for a schematic example. Notice that

the quantities x
(tn,δt)
i and ε

(tn,δt)
i now depend on the departure time tn and the location i

in space.

9On coarse levels in our multigrid hierarchy, we will explore several alternative possibilities rather than
simply rediscretizing the ERK scheme.



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 4: Dissipatively corrected coarse-grid operators for advection 112

x
(tn,δt)
i

xi

tn

tn+1

ξ
(tn,δt)
i (t)

hε
(tn,δt)
i

x

t

Figure 4.7: A characteristic ξ
(tn,δt)
i (t) for t ∈ [tn, tn + δt] of (4.53). By definition, the

characteristic passes through the arrival point (x, t) = (xi, tn+1). The departure point
is the location on the x-axis of the characteristic at t = tn. The departure point is
decomposed into the sum of its east-neighbouring mesh point and its distance from this
point, as in (4.57).

We denote the time-stepping operator corresponding to the above described semi-Lagrangian

method as S(tn,δt)
p,r ∈ Rnx×nx . By tracking characteristics (with a sufficient level of accu-

racy), this discretization ensures the physical domain of dependence lies within the numeri-

cal domain of dependence. Generally speaking, this is why semi-Lagrangian discretizations

are typically free of a CFL constraint. However, ensuring that characteristics are tracked

with sufficient accuracy can lead to the imposition of a CFL-like constraint, although it is

typically looser than that imposed by Eulerian schemes [59, 86]. For sufficiently smooth

solutions of (4.53), it can be argued that S(tn,δt)
p,r has a convergence rate of the form

O
(
δtr + hp+1

δt

)
, where the first term is associated with the locating of departure points,

and the second with the polynomial interpolation at them [31, Sec. 6.1.2]. Thus, while

one can certainly maintain stability with large time steps, there can be a trade-off with

accuracy in doing so. In many applications, this accuracy trade-off is not realized until

the time-step is much larger than what would be allowed by a CFL-constrained Eulerian

scheme, which is why semi-Lagrangian methods are often preferable for such applications

(see Chapter 1). Nonetheless, we attempt to balance temporal and spatial errors by using

δt ∼ h and r = p, which is common in the literature when developing semi-Lagrangian

discretizations [74, 59, 17, 16].
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Before moving to discuss our coarse-grid operator for this problem, we describe our test

problems. We will consider the advection equation (4.53) with wave-speeds given by

α(x, t) = cos(2πx) cos(2πt), (4.58)

α(x, t) =

[
1 +

1

4
cos(2πx)

]2

cos

(
πt

8

)
. (4.59)

We will use the initial condition u0(x) = sin4(πx), spatial domain Ω = (−1, 1), a (fine-

grid) time-step of δt = 0.85h, and a final integration time T ≈ 13.6. These problems are

challenging from a discretization point of view because the wave-speeds are highly variable

over the space-time domain, resulting in highly variable characteristics. Moreover, the time

domain is of significant length, so that accurate discretizations will be needed to achieve

even modest errors at time T . For the above reasons, we also believe these will serve as

difficult problems for MGRIT. In particular, note that a wave-speed passing through zero

somewhere in the domain was shown to slow MGRIT convergence considerably in [58],

albeit in the context of employing coarsening in space as well as time.

Figure 4.8 shows the PDE solution for wave-speed (4.58) and the associated semi-Lagrangian

discretization errors. The discretization error has been computed using the exact solution

of the PDE, which is easily obtained from the class of exact solutions derived in Ap-

pendix B.4. Figure 4.9 shows the PDE solution for wave-speed (4.59), as well as some

characteristics and the velocity field over the space-time domain.

Figure 4.8: Solution of advection problem (4.53) with wave-speed (4.58). Left: So-
lution over the space-time domain. Right: Discretization error of the semi-Lagrangian

discretization S(tn,δt)p,r in the discrete `2-norm measured at the final time. The spatial
mesh size is h = 2/nx. Dashed lines indicate the expected asymptotic convergence rate
of O(hp).
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Figure 4.9: Solution of advection problem (4.53) with wave-speed (4.59). Left: Solution
over the space-time domain. Right: Some characteristics (solid gold lines), and the space-
time velocity field (blue arrows) of (4.53), which is (α(x, t), 1). The length and direction
of a given arrow represents the magnitude and direction of the velocity field at that point
in space-time.

4.3.1 Exact departure points

The question now is how should we generalize the coarse-grid operator from Section 4.2

for constant wave-speeds to variable wave-speeds. There are two complicating factors

that make this difficult. The first is the fact that a spatially varying wave-speed leads

to non-equidistant departure points, which gives rise to a more complicated truncation

error associated with the polynomial interpolation aspect of the method. The second issue

is that departure points are no longer located exactly, but only approximately via some

numerical integrator. Let us deal first with the non-equidistant departure points here,

then in Sections 4.3.2 and 4.3.3 we will deal with the inexact locating of departure points.

We begin with the following description of the truncation error for an idealized semi-

Lagrangian discretization that locates departure points exactly.

Lemma 4.8 (Semi-Lagrangian truncation error for r = ∞). Suppose that the solution

u(x, t) of (4.53) is at least p + 1 times continuously differentiable with respect to x. Let

S(tn,δt)
p,∞ be the previously described semi-Lagrangian discretization of (4.53) that locates

departure points exactly at time tn. Then, this operator has a local truncation error given

by

u(x, tn+1)− S(tn,δt)
p,∞ u(x, tn)

= (−h)p+1 diag
(
fp+1

(
ε(tn,δt)

)) ∂p+1

∂xp+1
u(x, tn+1) +O(hp+2),

(4.60)

in which ε(tn,δt) =
(
ε

(tn,δt)
1 , . . . , ε

(tn,δt)
nx

)> ∈ Rnx is the vector whose ith entry is the mesh-

normalized distance from the ith departure point to its east-neighbouring mesh point at
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time tn, ξ
(tn,δt)
i (tn) = x

(tn,δt)
i − hε

(tn,δt)
i . The polynomial fp+1 (as defined in (4.8)) is

applied to ε(tn,δt) in the element-wise sense.

Furthermore, the associated ideal coarse-grid operator defined by time-stepping m times

across the interval t ∈ [tn, tn +mδt] using the above operator has a local truncation error

that may be approximated by

u(x, tn+m)−
[
m−1∏

k=0

S(tn+kδt,δt)
p,∞

]
u(x, tn)

≈ (−h)p+1 diag

(
m−1∑

k=0

fp+1

(
ε(tn+kδt,δt)

)
)
∂p+1

∂xp+1
u(x, tn+m) +O(hp+2),

(4.61)

with the approximation becoming an equality for spatially independent wave-speeds α(x, t) ≡ α(t).

Proof. Since there is no truncation error component associated with locating departure

points, the proof of the first result (4.60) essentially follows along the same lines as that

for the constant-coefficient result in Lemma 4.1. The only modification now is that vector

ε(tn,δt) is not constant. The effect of this is that the standard error estimate for polynomial

interpolation (see [24, Th. 3.1.1]) at the ith departure point at time tn gives

u
(
ξ

(tn,δt)
i (tn), tn

)
−
(
S(tn,δt)
p,∞ u(x, tn)

)
i

=
1

(p+ 1)!

r(p)∏

q=−`(p)

[(
x

(tn,δt)
i − hε(tn,δt)

i

)
−
(
x

(tn,δt)
i + hq

)] ∂p+1u

∂xp+1

∣∣∣∣
(ζi,tn)

,
(4.62)

= (−h)p+1fp+1

(
ε

(tn,δt)
i

) ∂p+1u

∂xp+1

∣∣∣∣
(ζi,tn)

, (4.63)

for some unknown point ζi in the interval containing all the interpolation nodes,
(
x

(tn,δt)
i − h`(p), x(tn,δt)

i + hr(p)
)
. The rest of the proof for (4.60) follows the same steps

as in first part of the proof in Lemma 4.1.

Now let us move on to proving (4.61). Applying S(tn+1,δt)
p,∞ to both sides of (4.60) gives

S(tn+1,δt)
p,∞ u(x, tn+1)− S(tn+1,δt)

p,∞ S(tn,δt)
p,∞ u(x, tn)

= (−h)p+1S(tn+1,δt)
p,∞ diag

(
fp+1

(
ε(tn,δt)

)) ∂p+1

∂xp+1
u(x, tn+1) +O(hp+2),

(4.64)

≈ (−h)p+1 diag
(
fp+1

(
ε(tn,δt)

)) ∂p+1

∂xp+1

(
S(tn+1,δt)
p,∞ u(x, tn+1)

)
+O(hp+2). (4.65)

The approximation introduced in arriving at (4.65) is that the matrices S(tn+1,δt)
p,∞ and

diag
(
fp+1

(
ε(tn,δt)

))
commute. The latter is a diagonal matrix, while the former is not,

and thus they will only commute in the case that the vector ε(tn,δt) is constant. For

spatially independent wave-speeds α(x, t) ≡ α(t), all characteristics have the same slope
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as one another at a given time t, and thus neighbouring departure points are equispaced

by a distance h, meaning that ε(tn,δt) will be constant. For spatially variable wave-speeds,

however, departure points are offset by a non-constant amount, and thus ε(tn,δt) is not

constant. We can expect this commutation error not to be too large for a problem that is

sufficiently resolved in space and whose wave-speed does not vary too quickly with respect

to x, since such a situation would result in a slowly varying ε(tn,δt).

Now substitute into (4.65) the expression for S(tn+1,δt)
p,∞ u(x, tn+1) from (4.60) to give

u(x, tn+2)−
[
S(tn+1,δt)
p,∞ S(tn,δt)

p,∞

]
u(x, tn)

≈ (−h)p+1 diag
(
fp+1

(
ε(tn,δt)

)
+ fp+1

(
ε(tn+1,δt)

)) ∂p+1

∂xp+1
u(x, tn+2) +O(hp+2).

(4.66)

Inductively repeating the above process on (4.66) with the remaining m − 1 fine-grid

operators S(tn+j ,δt)
p,∞ , j ∈ {2, . . . ,m− 1}, one arrives at the result (4.61). �

Having now developed an approximate expression for the truncation error of the ideal

coarse-grid operator, we propose a coarse-grid operator that generalizes what we did pre-

viously for the constant-wave-speed problem in Section 4.2. That is, we create a coarse-

grid operator expressed as a perturbed semi-Lagrangian operator, with the perturbation

capturing approximately the lowest-order difference between the truncation error of the

semi-Lagrangian operator and the ideal coarse-grid operator. Recall that in the constant-

wave-speed case, the explicit Euler coarse-grid operator (4.21) was of no practical use

because of its poor stability properties (see Section 4.2.4). Conversely, the implicit Euler

operator (4.22) was shown to be unconditionally stable (see Section 4.2.4), and it led to

fast MGRIT convergence in the numerical tests. For these reasons, we propose to use the

following backward Euler coarse-grid operator for semi-Lagrangian discretizations S(tn,δt)
p,∞

of advection problem (4.53)

Φ(tn,mδt) = B(tn,mδt)
p+1 S(tn,mδt)

p,∞ , (4.67)

where B(tn,mδt)
p+1 is the following matrix

B(tn,mδt)
p+1 :=

[
I − diag

(
ϕp+1

(
ε(tn,δt), . . . , ε(tn+m−1,δt), ε(tn,mδt)

))
Dp+1

]−1
, (4.68)

=

[
I − diag

(
fp+1

(
ε(tn,mδt)

)
−
m−1∑

k=0

fp+1

(
ε(tn+k,δt)

)
)
Dp+1

]−1

, (4.69)

where, as previously, Dp+1 ≈ hp+1 diag
(
∂p+1

∂xp+1

)
∈ Rnx×nx is a finite-difference approxima-

tion. The function ϕp+1 is defined in terms of the degree p+ 1 polynomial fp+1 (see (4.8))
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as follows

ϕp+1(y0, . . . , ym−1, ym) := fp+1(ym)−
m−1∑

j=0

fp+1(yj). (4.70)

In (4.68), ϕp+1 is applied element-wise to the vectors ε(tn,δt), . . . , ε(tn+m−1,δt), ε(tn,mδt).

Notice that ϕp+1 generalizes the function φp+1 in (4.19); that is, for constant wave-speed,

and assuming p+ 1 is even, (4.70) reduces to

ϕp+1(y0, . . . , y0, ym) = fp+1(ym)−mfp+1(y0) = φp+1(y0, ym). (4.71)

Through the use of highly accurate numerical integration to locate departure points (e.g.,

MATLAB’s adaptive step-size ode45), we have run numerical experiments using coarse-

grid operator (4.67) for the variable-wave-speed problems (4.58) and (4.59). Generally

speaking, the resulting MGRIT convergence has been fast for all our test problems. Since

we are ultimately interested in the more practical use case of inexactly locating departure

points, for the sake of brevity, we do not show the results of these intermediate numerical

tests.

Remark 4.9 (Obtaining fp+1(ε) for free). The proposed coarse-grid operators in this work

require evaluating the p+ 1st-degree polynomial fp+1 from (4.8) at the points ε (recall that

for each departure point, ε is the mesh-normalized distance to its east-neighbouring mesh

point). Recall that we approximate the value of u(x) at some departure point of the form

x = ξ = xk − hε by interpolating u with a degree (at most) p polynomial at the p+ 1 mesh

points that are nearest to the departure point. Denote such a polynomial by ûp(x), and for

simplicity of notation, let the departure point be ξ = −hε. Then, ûp(x) will interpolate

u(x) at the p+1 values {u−`(p), . . . ur(p)} at the equidistant nodes {x−`(p), . . . xr(p)}. In the

current context, where the interpolation is associated with a stencil/mesh-based discretiza-

tion, it is most natural to consider this interpolation in the Lagrange basis. In doing so,

the interpolating polynomial can be written as

ûp(x) =

r(p)∑

j=−`(p)

(
r(p)∏

q=−`(p)
q 6=j

x− xq
xj − xq

)
uj , (4.72)

=

[
r(p)∏

s=−`(p)

(x− xs)
][

r(p)∑

j=−`(p)

(
1

x− xj

r(p)∏

q=−`(p)
q 6=j

1

xj − xq

)
uj

]
, (4.73)
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with the second expression holding so long as x is not an interpolation node. Evaluating

this second expression at x = −hε gives the approximation

ûp(−hε) =

[
r(p)∏

s=−`(p)

(ε+ s)

]

︸ ︷︷ ︸
= (p+ 1)!fp+1(ε)

[
r(p)∑

j=−`(p)

(
1

ε+ j

r(p)∏

q=−`(p)
q 6=j

1

q − j

)
uj

]
. (4.74)

That is, if we compute the Lagrange interpolation weights using (4.74), then we need to

calculate fp+1(ε). It should be noted that computing the interpolation weights using (4.74)

is more efficient than the naive way resulting from evaluating (4.72) at x = −hε; see [6,

Sec. 3] for further details and related discussion.

4.3.2 Inexact departure points: An expensive strategy

We now move to the more practical use case in which the semi-Lagrangian methods do

not exactly locate departure points. Incorporating this into the truncation estimates from

Lemma 4.8 is not straightforward, so we consider a heuristic strategy instead.

It is instructive to think about the mechanics of the semi-Lagrangian discretization, re-

calling that it performs two operations in sequence. The first is to approximately locate

departure points, and the second is to estimate the solution at the approximate depar-

ture points via polynomial interpolation. While the ideal coarse-grid operator is not a

semi-Lagrangian discretization, it does represent a discretization of the PDE, and we can

interpret it in a similar way to a semi-Lagrangian discretization. Considering the non-

zeros in the stencil of the ideal coarse-grid operator for the constant-wave-speed problem

in Figure 4.4, they are clearly centred about the departure point. See also Section 2.5.2

for similar arguments, albeit in the context of Eulerian discretizations. Numerical tests

(not shown here for brevity) also confirm analogous behaviour occurs for variable-wave-

speed problems. Therefore, we can interpret the ideal coarse-grid operator as roughly

locating departure points and then carrying out an interpolation-like procedure at them.

The coarse-grid operator (4.67) for r = ∞ mimics, to lowest order, the interpolation-like

procedure of the ideal operator at coarse-grid departure points, but what can we say about

how the ideal operator approximates departure points?

Suppose now that the fine-grid semi-Lagrangian operator locates departure points with a
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numerical integration scheme having local accuracy O(δtr+1), and that it exactly interpo-

lates to them. Then,

u(xi, tn + (k + 1)δt)−
(
S(tn+kδt,δt)
∞,r u(x, tn + kδt)

)
i

= O(δtr+1), k ∈ {0, 1, . . . ,m− 1}.
(4.75)

Along the lines of reasoning used in the proof of Lemma 4.8 (i.e., repeatedly applying this

approximation in sequence for k = 0, . . . ,m− 1), it follows that

u(xi, tn +mδt)−
(
m−1∏

k=0

S(tn+kδt,δt)
∞,r u(x, tn)

)

i

= O(mδtr+1). (4.76)

That is, the ideal coarse-grid operator effectively locates departure points with an accuracy

similar to that with which the fine-grid operator S(tn+kδt,δt)
∞,r does, since it is only O(m)

times larger. In contrast, a coarse-grid semi-Lagrangian operator using the same numerical

integration scheme gives

u(xi, tn +mδt)−
(
S(tn,mδt)
∞,r u(x, tn)

)
i

= O((mδt)r+1). (4.77)

The potential issue now is that it may be the case that mδtr+1 � (mδt)r+1 = O(1),

particularly for m � 1. In other words, a coarse-grid semi-Lagrangian operator using

the same numerical integrator as the fine-level operator may be wildly incorrect in its

estimation of departure points, particularly for coarsening factors m of practical interest,

where mδt = O(1). Schematic examples of this issue are shown in Figure 4.10, for a

modest coarsening factor of m = 8.

The examples show that departure points are located accurately when integrating along

characteristics with fine-grid-scale accuracy, but they are located highly inaccurately when

the integration is performed with coarse-grid-scale accuracy. For the 1st-order method (left

panel), some of the departure point approximations are wildly far away from their true

values. For the 3rd-order method (right panel), the departure points are estimated much

more accurately, but some characteristics have crossed as they approach the departure

point, which clearly cannot happen. In fact, the time-step size of the numerical integrator

should be limited by the condition that the characteristics do not cross [86].

For variable-wave-speed problems (4.58) and (4.59), we have conducted numerical experi-

ments using the backward Euler coarse-grid operator (4.68), where rather than using exact

numerical integration to locate departure points, they have been approximated. In general,

we find that if the coarse-grid departure points are approximated using coarse-grid-scale

accuracy (i.e., the red dashed lines in Figure 4.10), then MGRIT does not perform ro-

bustly, in the sense that it performs well for some problems, but very poorly on others.
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Figure 4.10: Every 4th coarse-grid characteristic on the left half of the discretized spatial
domain Ω over a particular coarse-grid time interval for advection problem (4.53) with
wave-speed given by (4.58). The fine-grid time step-size is δt = 0.85× 2/(25) ≈ 0.0531,
and the coarsening factor is m = 8. Solid black lines are exact characteristics. Blue circles
represent integration backwards along characteristics using m = 8 ERK steps of size δt.
Red crosses represent integration backwards along characteristics using a single ERK step
of size mδt. Left: ERK method has accuracy r = 1. Right: ERK method has accuracy
r = 3.

Two examples for which the solver performs poorly are shown in Figure 4.11.

In practice, our interpolation is of finite accuracy, of course, and therefore there is interac-

tion between the interpolation and the numerical integration that takes place during each

of the m fine-grid time steps that define the ideal coarse-grid operator. For this reason,

we do not necessarily expect that an effective coarse-grid operator has to locate departure

Figure 4.11: Two-norm of the space-time residual (relative to its initial value) as a
function of MGRIT iteration. The residual is shown for several mesh resolutions nx×nt,
as indicated in the legend. The PDE is (4.53) with wave-speed given by (4.58). The

fine-grid operator is S(tn,δt)p,r , and the coarse-grid operator is the backward Euler operator

B(tn,mδt)p+1 S(tn,mδt)p,r . Departure points on the coarse grid are located by using a single ERK
step of size mδt. Left: The coarsening factor is m = 16, and the discretization orders
are p = r = 1. Right: The coarsening factor is m = 32, and the discretization orders are
p = r = 3.
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points with an accuracy of O(mδtr+1), but given the results in Figure 4.11 it stands to

reason that it needs to approximate them more accurately than rediscretization does, at

least in general. Thus, for the inexact, semi-Lagrangian discretization S(tn,δt)
p,r of advection

problem (4.53) we propose the following backward Euler coarse-grid operator

Φ(tn,mδt) = B(tn,mδt)
p+1 S(tn,mδt)

p,r∗ , (4.78)

in which the r∗ is used to signify that the coarse-grid semi-Lagrangian operator S(tn,mδt)
p,r∗

should locate departure points with an accuracy that is in some sense roughly comparable

to that of the fine-grid operator S(tn,δt)
p,r . The matrix B(tn,mδt)

p+1 is still defined as it was in

(4.68).

The question now is how should S(tn,mδt)
p,r∗ approximate coarse-grid departure points. One

option is that it use the same numerical integrator as the fine-grid operator, but rather

than taking a single large step of mδt, it should m smaller steps of size δt (i.e., the blue

curves in Figure 4.10). This of course would make S(tn,mδt)
p,r∗ much more expensive than

S(tn,mδt)
p,r , because it is doing work at the fine-grid scale. However, S(tn,mδt)

p,r∗ would still be

significantly less expensive than the ideal coarse-grid operator because it only does one set

of interpolations per time step rather than m of them.

MGRIT iteration counts for numerical tests using this expensive coarse-grid operator are

shown in Table 4.1. We test the solver on both variable wave-speeds (4.58) and (4.59),

and we also test the α = 1 case for comparison. In all tests, MGRIT converges in a num-

ber of iterations much less than nt/(2m), and the residuals monotonically decrease with

the iteration (not shown for the sake of brevity). For a given problem and discretization,

iteration counts seem roughly constant as the mesh is refined. There is small growth for

some problems, but this is perhaps due to the solver not yet settling into an asymptotic

convergence rate with respect to the mesh size. Interestingly, convergence seems to de-

teriorate as the discretization order is increased, which is the opposite of the trend for

the optimized coarse-grid operators developed in Chapter 2 for Eulerian discretizations of

the constant-wave-speed problem. This perhaps suggests that better coarse-grid opera-

tors exist than the one we propose here, particularly for the higher-order discretizations.

Furthermore, for the 3rd- and 5th-order discretizations, the constant-wave-speed problem

typically results in the highest iteration counts. In any event, the convergence reported in

Table 4.1 is fast for the multigrid solution of hyperbolic problems.

4.3.3 Inexact departure points: A scalable strategy

Given that the backward Euler coarse-grid operator (4.78) leads to fast MGRIT conver-

gence when using fine-grid-scale integration to approximate coarse-grid departure points
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α = 1 α(x, t) = (4.58) α(x, t) = (4.59)

m m m

p, r nx × nt 4 8 16 32 4 8 16 32 4 8 16 32

1, 1

32× 256 12 9 7 4 8 9 8 4 10 9 7 4

128× 1024 12 10 9 9 10 10 9 10 10 9 8 8

512× 4096 12 10 9 9 11 10 10 10 12 10 9 8

3, 3

32× 256 18 12 8 4 11 12 8 4 11 9 7 4

128× 1024 20 15 13 10 12 14 12 12 13 11 10 9

512× 4096 20 15 13 12 14 13 14 14 17 14 12 10

5, 5

32× 256 21 13 8 4 12 13 8 4 12 10 8 4

128× 1024 28 20 16 12 15 17 14 13 15 13 11 9

512× 4096 29 20 18 16 15 16 17 18 21 16 14 11

Table 4.1: Number of iterations for two-level MGRIT to reduce the space-time residual
2-norm by 10 orders of magnitude. The PDE is (4.53) with wave-speed α(x, t) indicated

in the top row of the table. The fine-grid operator is S(tn,δt)p,r , and the coarse-grid operator

is the backward Euler operator (4.78). The coarse-grid semi-Lagrangian operators S(tn,δt)p,r∗

estimate departure points by integrating with m steps of size δt along characteristics. For
nt = 4096, the number of MGRIT iterations nt/(2m) needed to reach the exact solution
for m = (4, 8, 16, 32) is (512, 256, 128, 64).

(see Table 4.1), we now develop a less expensive way to approximate them.

Recall that in applying the coarse-grid semi-Lagrangian operator S(tn,mδt)
p,r∗ , we need to

compute the departure point at time t = tn of the coarse-grid characteristics ξ
(tn,mδt)
i (t)

that arrive at (x, t) = (xi, tn + mδt). When time-stepping across this interval on the fine

grid with the operators S(tn+kδt,δt)
p,r , k ∈ {0, 1, . . . ,m− 1}, we map out the trajectories of

the fine-grid characteristics ξ
(tn+kδt,δt)
i (t) over the intervals t ∈ [tn+kδt, tn+(k+1)δt] (see

the gold lines in Figure 4.12). In computing these fine-grid characteristics, we in effect map

out the vector field that dictates the flow of any characteristic across the coarse space-time

slab (x, t) ∈ Ω × [tn, tn + mδt] with fine-grid-scale accuracy. The idea we propose now is

to approximately propagate a coarse-grid characteristic through this space-time slab by

recycling the fine-grid characteristics to guide its path, following the schematic shown in

Figure 4.12.

For simplicity of notation, let us only consider the first coarse time interval t ∈ [0,mδt]. For

shorthand, we denote fine-grid departure points on this interval by f
(k)
i ≡ ξ

(kδt,δt)
i (kδt),

k ∈ {0, 1, . . . ,m− 1}. Furthermore, let c
(k)
i , k ∈ {0, 1, . . . ,m − 1}, denote the x loca-

tion at which the coarse-grid characteristic ξ
(0,mδt)
i (t) lands at time t = kδt. That is,

c
(k)
i = ξ

(0,mδt)
i (kδt). Over the last fine-grid time-step interval t ∈ [(m − 1)δt,mδt], the

coarse-grid characteristic is the same as the fine-grid characteristic, since they both arrive
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Figure 4.12: Evolution of a coarse-grid characteristic of advection problem (4.53) with
wave-speed given by (4.58) using piecewise linear interpolation of fine-grid characteristics.
Note that only a subset of the spatial domain x ∈ Ω = (−1, 1) is shown to better highlight
the detail of the characteristic. The black curve is the exact coarse-grid characteristic.
The green curve is the coarse-grid characteristic approximated with the interpolation

strategy (i.e., the triangle marker at time t = kδt is c
(k)
i from (4.80)). The gold lines are

the fine-grid characteristics that are the nearest neighbours of the approximate coarse-grid

characteristic (i.e., the left and right circle markers at time t = kδt are, respectively, f
(k)
j−1

and f
(k)
j from (4.80)). These fine-grid characteristics were determined by a single ERK

step of size δt. The red dashed line is the coarse-grid characteristic approximated by a
single ERK step of size mδt. The fine-grid time step size is δt = 0.85 × 2/(25), and the
coarsening factor is m = 8. The ERK method used to generate the fine- and coarse-grid
characteristics has accuracy r = 1.

at (x, t) = (xi,mδt), and therefore they intersect the x axis at the same location,

c
(m−1)
i = f

(m−1)
i . (4.79)

Using this as a final-time condition of sorts, the remaining intersection points of the coarse-

grid characteristic can be estimated by carrying out the following update in sequence

c
(k)
i ≈

f
(k)
j − f (k)

j−1

h

(
c

(k+1)
i − xj

)
+ f

(k)
j , for k = m− 2, . . . , 1, 0, (4.80)

where j is such that xj is the mesh point to the right of c
(k+1)
i . A schematic of this pro-

cedure is shown in Figure 4.12. Upon terminating the update (4.80), we have an approxi-

mation for c
(0)
i , which is the departure point of the coarse-grid characteristic ξ

(0,mδt)
i (t).

The update formula (4.80) is based on nearest neighbour, piecewise linear interpolation to

estimate c
(k)
i . Specifically, at some time t = (k+ 1)δt, we know the trajectories of the two
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fine-grid characteristics over t ∈ [kδt, (k+1)δt] that lie on either side of the take-off point of

the characteristic whose trajectory we desire on this time interval (in Figure 4.12, the two

gold characteristics on either side of the green characteristic). Therefore, to estimate the

trajectory of the characteristic in the middle, we may fit a linear function to the process

of mapping take-off points at t = (k + 1)δt into departure points at time t = kδt. That

is, the x location of a characteristic at time t = kδt that passes through the take-off point

(x, t) = (x∗, (k + 1)δt) can be estimated as

f
(k)
j − f (k)

j−1

h
(x∗ − xj) + f

(k)
j , x∗ ∈ [xj−1, xj ]. (4.81)

This is equivalent to the formula (4.80), in which x∗ is c
(k+1)
i , the take-off point of the

coarse-grid characteristic at time t = (k + 1)δt.

The illustration in Figure 4.12 shows how this strategy has the potential to approximate

coarse-grid departure points much more accurately than a single coarse-grid step of the

ERK scheme used to integrate fine-grid characteristics.

To test the effectiveness of this strategy, we run the same set of tests as were used to

generate the results of Table 4.1, where m ERK steps of size δt were used. We do not

report the iteration counts here, however, because we find that they are identical to those

in Table 4.1, with the exception of four entries, which differed only by one iteration. These

results suggest that the linear interpolation strategy is just as effective for locating coarse-

grid departure points as taking m ERK steps of size δt. It should also be noted that if

the wave-speed is spatially independent, α(x, t) ≡ α(t), then it is possible to show that

the linear interpolation strategy yields the same estimates for departure point as taking

m steps of size δt with the fine-grid ERK scheme.

Recall that the motivation for this section was to estimate coarse-grid departure points

in a way that is less expensive than taking m ERK steps of size δt. However, since the

linear interpolation strategy we have proposed requires taking m − 1 steps, it cannot

be significantly cheaper than using m steps of an ERK scheme.10 Supposing the linear

interpolation strategy yields sufficiently accurate departure points, in the sense that it does

not strongly deteriorate MGRIT convergence, then it does have the significant advantage

over stepping at the fine-grid-scale with an ERK scheme that it is scalable to multiple

levels. That is, say, for example, we have a three-level method in which we coarsen by m

on each level. The linear interpolation strategy takes O(m) work to estimate a departure

points on the first coarse level, but if it is then applied recursively on the coarsest level, it

10Whether it is cheaper or not depends on the number of stages of the ERK scheme and the cost of
evaluating the wave-speed. Recall that an s-stage ERK scheme requires s evaluations of the wave-speed
per time-step. The linear interpolation strategy requires no evaluations of the wave-speed. In any event,
the number of FLOPs for either strategy scales as O(m).



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 4: Dissipatively corrected coarse-grid operators for advection 125

requires only O(m) work there to estimate departure points. In general, if the strategy is

applied recursively throughout a multilevel solver, it requires only O(m) work to estimate

departure points, independent of the level they occur on.

In stark contrast, if an ERK method is to be used to estimate departure points on coarse

levels, by our previous arguments regarding the inaccuracy of taking large time-steps, it

must do so by taking many small time-steps on the size of the fine-grid δt. That is, using

an ERK method to estimate coarse-grid departure points on a coarse level ` > 0 requires

O(m`) work. This is clearly not a scalable strategy, recalling that in a multigrid algorithm

we typically want to coarsen down to a constant number of points, independent of the fine-

grid problem size. In Section 4.4.1 we extend our coarse-grid operator to the multilevel

setting, and we compare these two approaches of locating coarse-grid departure points.

Finally, it is worth remarking that the linear interpolation characteristic tracking strategy

proposed here is expensive from a memory perspective. Estimating departure points on

a coarse level requires storing all departure points on the level above it. Future research

will involve developing strategies that are less memory intensive.

4.4 Extensions in one spatial dimension

This section considers two extensions of the coarse-grid operator: Section 4.4.1 extends it

to the multilevel setting, and Section 4.4.2 shows how it may be applied to solve advection-

diffusion problems.

4.4.1 The multilevel setting

In this section, we generalize the two-level, backward Euler coarse-grid operator (4.78)

from the previous section so that it can be applied within a multilevel algorithm. Let

` ∈ N0 be the level index, and assume that the time-step size on level ` is m`δt. For

notational simplicity, it is useful to introduce the following shorthand for the function in

(4.70),

ϕ
(tn,m`δt)
p+1 ≡ ϕp+1

(
ε(tn,m`−1δt), . . . , ε(tn+(m−1)m`−1δt,m`−1δt), ε(tn,m`δt)

)
. (4.82)

That is, ϕ
(tn,m`δt)
p+1 approximates the coefficient vector appearing in the leading-order term

of the difference S(tn,m`δt)
p,∞ − ∏m−1

k=0 S
(tn+km`−1δt,m`−1δt)
p,∞ . Or, in other words, given the

level ` − 1 semi-Lagrangian operators S(tn+km`−1δt,m`−1δt)
p,∞ , k ∈ {0, . . . ,m − 1}, (4.82)

approximates the coefficient vector of the leading-order term in the difference between
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the ideal level ` operator
∏m−1
k=0 S

(tn+km`−1δt,m`−1δt)
p,∞ and the rediscretized level ` operator

S(tn,m`δt)
p,∞ .

To develop a truly multilevel operator based on the backward Euler operator (4.78), it is

first instructive to consider a three-level algorithm. Given the level ` = 1 backward Euler

operators B(tn+kmδt,mδt)
p+1 S(tn+kmδt,mδt)

p,∞ for k ∈ {0, . . . ,m−1}, consider the associated ideal

level ` = 2 operator and the following sequence of approximations to it,

Φ
(tn,m2δt)
ideal =

m−1∏

k=0

Φ(tn+kmδt,mδt), (4.83)

=

m−1∏

k=0

(
B(tn+kmδt,mδt)
p+1 S(tn+kmδt,mδt)

p,r∗

)
, (4.84)

≈
(
m−1∏

k=0

B(tn+kmδt,mδt)
p+1

)(
m−1∏

k=0

S(tn+kmδt,mδt)
p,r∗

)
, (4.85)

≈
(
m−1∏

k=0

B(tn+kmδt,mδt)
p+1

)(
B(tn,m2δt)
p+1 S(tn,m2δt)

p,r∗

)
, (4.86)

=

(
m−1∏

k=0

[
I − diag

(
ϕ

(tn+kmδt,mδt)
p+1

)
Dp+1

]−1)[
I − diag

(
ϕ

(tn,m2δt)
p+1

)
Dp+1

]−1
S(tn,m2δt)
p,r∗ ,

(4.87)

≈
[
I − diag

(
m−1∑

k=0

ϕ
(tn+kmδt,mδt)
p+1

)
Dp+1

]−1[
I − diag

(
ϕ

(tn,m2δt)
p+1 Dp+1

)]−1
S(tn,m2δt)
p,r∗ ,

(4.88)

≈
[
I − diag

(
m−1∑

k=0

ϕ
(tn+kmδt,mδt)
p+1 +ϕ

(tn,m2δt)
p+1

)
Dp+1

]−1

S(tn,m2δt)
p,r∗ . (4.89)

The approximation in (4.85) is that the backward Euler and semi-Lagrangian operators

commute. For general wave-speeds these operators do not commute, but note that when

the wave-speed is independent of space they do commute (the diagonal matrices built from

the ϕp+1 vectors are constant, and Dp+1 and the semi-Lagrangian operators are circulant).

The approximation in (4.86) is that the m successive semi-Lagrangian steps of size mδt

have been approximated using our existing two-level approximation. That is, the m steps

are replaced by a single semi-Lagrangian step of m2δt followed by a backward Euler step

that approximately corrects for the lowest-order difference between their truncation errors.

The approximation in (4.88) arises from placing the m backward Euler factors inside

the inverse, and then keeping only the lowest-order terms in their product, recalling

Dp+1 = hp+1 diag
(
∂p+1

∂xp+1

)
+higher-order terms. This approximation can be understood
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as a Taylor series interpretation of the standard rediscretization approach typically em-

ployed for backward Euler operators, in which they are rediscretized/reapplied on the

coarse level with a time-step size that is m times larger.

The final approximation of (4.89) arises from placing both backward Euler matrices under

the inverse, and truncating the highest-order term from their product, which is propor-

tional to Dp+1Dp+1 = h2(p+1) diag
(
∂2(p+1)

∂x2(p+1)

)
+higher-order terms.

Notice that the final approximation (4.89) has the same structure as the level ` = 1 oper-

ator (4.78) proposed for the two-level algorithm, in that it is a semi-Lagrangian operator

followed by a backward Euler correction. Based on this, we propose the following level

` > 0 time-stepping operators for evolving solutions from tn → tn +m`δt

Φ(tn,m`δt) =
[
I − diag

(
ν

(tn,m`δt)
p+1

)
Dp+1

]−1
S(tn,m`δt)
p,r∗ , ` ∈ N, (4.90)

in which the vector of dissipation coefficients is defined recursively by

ν
(tn,m`δt)
p+1 =





ϕ
(tn,m`δt)
p+1 , ` = 1,

m−1∑

k=0

ν
(tn+km`−1δt,m`−1δt)
p+1 +ϕ

(tn,m`δt)
p+1 , ` > 1.

(4.91)

An interesting question is how one should interpret the coarse-grid operator (4.90). For-

tunately, some insight may be gained by examining it in the event that the wave-speed is

constant.

Lemma 4.10 (Constant-coefficient multilevel operator). Suppose that the wave-speed α

is constant, such that the mesh-normalized distance from departure points on level ` to

their east neighbouring mesh points is the constant ε(m`δt). Then, the coarse-grid operator

(4.90) is

Φ(m`δt) =
[
I −

(
fp+1

(
ε(m`δt)

)
−m`fp+1

(
ε(δt)

))
Dp+1

]−1
S(m`δt)
p , ` ∈ N. (4.92)

In other words, the coarse-grid operator (4.92) on level ` ∈ N is the same as the two-

level backward Euler operator for the constant-coefficient problem defined by (4.22) if a

coarsening factor of m` is used to coarsen from the fine level to the coarse level rather

than m.

Proof. See Appendix B.5. �

An immediate corollary of this result and Lemma 4.6—which stated the backward Euler

coarse-grid operator is unconditionally stable with respect to all problem parameters,
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including the coarsening factor—is that for the constant-wave-speed advection problem,

the coarse-grid operator (4.90) is unconditionally stable on any level ` ∈ N.

We now present results of our numerical tests using a multilevel solver that employs the

coarse-grid operator (4.90). In these tests, we use a constant coarsening factor of m on

all levels, and continue to coarsen until doing so would result in fewer than two points

in time. To locate departure points on coarse levels, the linear interpolation strategy

of Section 4.3.3 is employed recursively. MGRIT V-cycle iteration counts are given in

Table 4.2. The iteration counts are very close to those in Table 4.1 for the two-level

solvers that used m steps of the fine-grid ERK scheme to locate coarse-grid departure

points. In fact, almost all iteration counts are identical, with several problems requiring

just two more iterations in the multilevel case, and a single problem requiring three more

iterations. That iteration counts are effectively the same in the two-level and multilevel

cases means that the multilevel operator (4.90) performs well, and indicates that the

coarse-grid operator leads to a scalable multilevel solver. Note that it is not uncommon to

see multigrid iterations strongly increase for hyperbolic problems when transitioning from

two to many levels (see, e.g., [58, 108, 109, 50]). These promising results also indicate that

our linear interpolation strategy for approximating coarse-grid departure points does so

with sufficient accuracy, even on much coarser levels. Recall that it approximates departure

α = 1 α(x, t) = (4.58) α(x, t) = (4.59)

m m m

p, r nx × nt 4 8 16 32 4 8 16 32 4 8 16 32

1, 1

32× 256 12 9 7 4 9 9 8 4 10 9 7 4

128× 1024 13 10 9 9 10 10 9 10 10 9 8 8

512× 4096 13 10 9 9 11 10 10 10 12 10 9 8

3, 3

32× 256 18 12 8 4 11 12 8 4 12 10 7 4

128× 1024 21 15 13 10 14 14 12 12 14 12 10 9

512× 4096 21 15 13 12 14 13 14 14 17 14 12 10

5, 5

32× 256 21 13 8 4 12 13 8 4 13 10 8 4

128× 1024 29 20 16 12 16 17 14 13 16 13 11 9

512× 4096 32 21 18 16 16 16 17 18 21 17 14 11

Table 4.2: Number of MGRIT V-cycles to reduce the space-time residual 2-norm by
10 orders of magnitude. The PDE is (4.53) with wave-speed α(x, t) indicated in the top

row of the table. The fine-grid operator is S(tn,δt)p,r , and the coarse-grid operator is the
dissipatively corrected operator (4.90). Departure points on coarse levels are located by
recursively applying the linear interpolation strategy of Section 4.3.3. A coarsening factor
of m is used on all levels, and the mesh is coarsened until doing so would result in fewer
than two points in time. At the largest resolution of nt = 4096, this yields solvers with
6, 4, 3, and 3 levels for m = 4, 8, 16, and 32, respectively.
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points with O(m) work, independent of level. This justifies our previous assertion from

Section 4.3.2 that an effective coarse-grid operator likely does not need to highly accurately

locate departure points.

We now also take this opportunity to explore approximating the action of the matrix

inverse that appears in the coarse-grid operator (4.90). Up until this point in our numerical

tests, we have been exactly applying this inverse by using a direct linear solver. Recall

that in Section 4.2.4, for the constant-wave-speed problem, we bounded the condition

number of this matrix, and showed that it scales as O(m) (see Corollary 4.7). We also

argued that it should be well-approximated by a sparse matrix. Here we test these ideas

by using an iterative solver rather than a direct solver for the linear systems that arise

when applying the operator. The test problems are taken to be those of largest mesh

resolution shown in Table 4.2. In terms of iterative solvers, we have tested stationary

linear iterations such as Jacobi, and Gauss–Seidel. We have also considered polynomial

approximation methods such as Chebyshev iteration, and GMRES. Out of all of these,

GMRES seems to be by far the most efficient. Iteration counts are shown in Table 4.3 when

α = 1 α(x, t) = (4.58) α(x, t) = (4.59)

m m m

p, r k 4 8 16 32 4 8 16 32 4 8 16 32

1, 1

0 7 7 82 47 7 7 82 47 7 7 72 41

2 16 16 10 20 20 17 18 23 20 19 21 22

4 13 10 9 9 11 11 10 10 12 10 9 9

∞ 13 10 9 9 11 10 10 10 12 10 9 8

3, 3

0 7 7 84 48 7 7 80 46 7 7 66 37

2 21 17 14 18 19 17 15 18 19 17 18 19

4 21 15 13 12 14 13 14 14 17 14 12 10

∞ 21 15 13 12 14 13 14 14 17 14 12 10

5, 5

0 7 7 86 49 7 7 76 44 7 7 63 36

2 31 22 19 18 21 20 19 20 22 18 17 18

4 32 21 18 16 16 16 17 18 21 17 14 11

∞ 32 21 18 16 16 16 17 18 21 17 14 11

Table 4.3: Number of MGRIT V-cycles to reduce the space-time residual 2-norm by
10 orders of magnitude. The problem sizes are all nx × nt = 512 × 4096. The linear
solve within the coarse-grid operator (4.90) is approximated with k iterations of GMRES;
k = ∞ is used to denote a direct solve. Otherwise, the problem set up is the same as it
was in Table 4.2. An ‘7’ denotes a solve that did not converge within 100 iterations.
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a fixed number of GMRES iterations is used on each linear system.11 Remarkably, on all

of the test problems, only ∼ 4 GMRES iterations are needed before the number of MGRIT

iterations is the same as if a direct solver is used (the k =∞ row). Better understanding

the rapid convergence of GMRES for this problem will be a subject of future research.

In summary, we have demonstrated that our coarse-grid operator yields fast convergence

on high-order discretizations for complicated advection problems, and that the expensive

components of the operator such as inverting the backward Euler matrix and tracking

coarse-grid characteristics may be approximated effectively with very little cost.

4.4.2 Application to an advection-diffusion problem

In this section, we demonstrate with a simple example how our coarse-grid operator is

applicable to a broader class of problems than simply pure advection equations.

As a specific example, let us consider the following one-dimensional advection-diffusion

equation

∂u

∂t
+ α(t)

∂u

∂x
= β

∂2u

∂x2
, (4.93)

subject to periodic boundary conditions in space, and with constant diffusivity β ≥ 0. On

the finest level, we will discretize this problem in a mixed fashion, with a semi-Lagrangian

method to treat the advection term, and a standard one-step method-of-lines approach for

the diffusion term.

The Lagrangian formulation of (4.93) is

d

dt
ξ(t) = α(t), (4.94)

d

dt
u(ξ(t), t) = β

∂2

∂x2
u(ξ(t), t). (4.95)

Since the wave-speed α(t) is independent of x, characteristics are equispaced at any given

time t, which essentially means that our discretization of (4.94) and (4.95) can be written

in the split form

un+1 =M(tn,δt)S(tn,δt)
p,r un ≡ Φ(tn,δt)un, (4.96)

11For k = 0 (i.e., no GMRES iterations), the dissipative correction from the coarse-grid operator (4.90)
is not applied, so that the coarse-grid operator consists of just a semi-Lagrangian operator. That is, this
represents rediscretization on coarse levels. In all the k = 0 cases, the solver is divergent (it does not
converge in significantly fewer than nt/(2m) iterations), and the space-time residual grows exponentially
before it begins to decay as the iteration count gets closer to nt/(2m).
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in whichM(tn,δt) is the one-step operator associated with a method-of-lines discretization

of the diffusion equation ∂u
∂t = β ∂

2u
∂x2

, and the semi-Lagrangian method S(tnδt)
p,r is used to

interpolate the solution at departure points at time tn. For definiteness, in our numerical

examples, the method-of-lines operator will consist of a finite-difference discretization for

the diffusion term and an SDIRK method in time (see Appendix A.1 for Butcher tableaux).

The ideal coarse-grid operator stepping from tn → tn +mδt based on (4.96) is then

Φ
(tn,mδt)
ideal =

m−1∏

k=0

(
M(tn+k,δt)S(tn+k,δt)

p,r

)
≈
(
m−1∏

k=0

M(tn+k,δt)

)(
m−1∏

k=0

S(tn+k,δt)
p,r

)
. (4.97)

The approximation introduced here is that the semi-Lagrangian and method-of-lines dis-

cretizations commute; note that in the special case of periodic boundary conditions, and

spatially independent wave-speed, these two operators do commute since all of the underly-

ing operators involved are circulant. Therefore, the ideal coarse-grid operator (4.97) is the

product of the ideal coarse-grid operators associated with the individual discretizations.

Based on this, we propose the following coarse-grid operator to approximate (4.97)

Φ(tn,mδt) =M(tn,mδt)B(tn,mδt)
p+1 S(tn,mδt)

p,r∗ . (4.98)

That is, for the method-of-lines discretization, we simply rediscretize the problem with

the larger time step, since this typically works very well for such problems [28, 32, 33, 35].

To approximate the ideal semi-Lagrangian operator, we employ the dissipatively corrected

backward Euler coarse-grid operator (4.78). In a multilevel method, the same form of

coarse-grid operator should be applied but with the two-level operator (4.78) replaced

with its multilevel generalization (4.90).

Figure 4.13: Numerical solution of advection-diffusion problem (4.93) for parameters

given in (4.99), and when discretized with Φ(tn,δt) = M(tn,δt)
2,2 S(tn,δt)3,3 . Left: β = 10−1.

Right: β = 10−5. The plots shown here correspond to the nx×nt = 256× 1024 MGRIT
solves shown in Table 4.4.
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Now we present numerical test results using this coarse-grid operator. As a specific exam-

ple, we consider the numerical solution of (4.93) with

α(t) =
1

2
+ cos(2πt), (x, t) ∈ (−1, 1)× (0, T ), u(x, 0) = sin4(πx), (4.99)

for several values of diffusivity β ≥ 0. Plots of the numerical solution are shown in

Figure 4.13, and MGRIT iteration counts are given in Table 4.4. We use multilevel V-cycles

with a coarsening factor of m = 8 on each level. Ensuring that we do not coarsen to fewer

than two points in time, the two smaller resolution solves (nx × nt = 64× 256, 128× 512)

use three levels, and the largest uses four levels (nx × nt = 256× 1024). On coarse levels,

departure points are estimated via the linear interpolation strategy from Section 4.3.3.

Iteration counts are shown for both the rediscretized operator, and the dissipatively cor-

rected backward Euler operator (4.98). Iteration counts are also shown for two different

discretizations, one with lower order and one with higher order. In all cases, the dissipa-

tively corrected coarse-grid operator is at least as fast as rediscretization. As β decreases

(i.e., the problem becomes more advective), there is only a small increase in the number

of iterations for the dissipatively corrected operator, while those for rediscretization in-

crease substantially, and they are not bounded significantly below nt/(2m). Furthermore,

M(tn,mδt)
2,1 S(tn,mδt)

1,1∗
M(tn,mδt)

2,1 B(tn,mδt)
2 S(tn,mδt)

1,1∗

nx × nt 64× 256 128× 512 256× 1024 64× 256 128× 512 256× 1024

β

10−1 9 8 8 8 8 8

10−3 14 18 19 8 7 7

10−5 15 23 37 9 9 9

0 15 23 37 9 9 9

M(tn,mδt)
2,2 S(tn,mδt)

3,3∗
M(tn,mδt)

2,2 B(tn,mδt)
4 S(tn,mδt)

3,3∗

nx × nt 64× 256 128× 512 256× 1024 64× 256 128× 512 256× 1024

β

10−1 5 5 5 5 5 5

10−3 12 9 6 7 6 5

10−5 15 23 37 10 11 11

0 15 23 38 10 11 11

Table 4.4: Number of MGRIT V-cycles to reduce the two-norm of the space-time resid-
ual by 10 orders of magnitude for advection-diffusion problem (4.93) with parameters
given in (4.99). A coarsening factor of m = 8 is used on each level, and coarsening is
performed until fewer than two points in time would remain. The fine-grid time step is
δt = 2

3h. The left-side of the table uses rediscretization on coarse levels, and the right
uses the dissipatively corrected backward Euler coarse-grid operator (4.98). The top half
of the table uses 2nd-order finite differences and SDIRK1 for the diffusion discretization,
and a 1st-order semi-Lagrangian method for the advection discretization. The bottom
half of the table uses 2nd-order finite differences and SDIRK2 for the diffusion discretiza-
tion, and a 3rd-order semi-Lagrangian method for the advection discretization. Note that
for nt = (256, 512, 1024), nt/(2m) = (16, 32, 64).
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iteration counts for the dissipatively corrected operator are scalable with respect to mesh

size for all values of β, while those for rediscretization are scalable with respect to mesh

size only for the smallest values of β, the most diffusive problems. These results show

that the potential applications for our coarse-grid operator extend beyond pure advection

problems.

4.5 Two spatial dimensions

In this section, we demonstrate how our coarse-grid operator developed for one-dimensional

problems can be extended to two dimensions. The two-dimensional semi-Lagrangian dis-

cretization is described in Section 4.5.1. The coarse-grid operator is developed in Sec-

tion 4.5.2, and numerical tests are presented in Section 4.5.3.

4.5.1 The semi-Lagrangian discretization

Consider the two-dimensional, variable-wave-speed advection problem

∂u

∂t
+ α(x, y, t)

∂u

∂x
+ β(x, y, t)

∂u

∂y
= 0, (x, y) ∈ Ω, (4.100)

again subject to periodic boundary conditions in space. We define a discrete mesh on Ω

as the tensor product of one-dimensional meshes in the x- and y-directions, respectively.

For simplicity, we assume the mesh is composed of nx points with spacing of h in both

directions, for a total of n2
x points.

Let us define a characteristic of (4.100) as a curve in x-y-t space parameterized by (x, y, t) =

(ξ(t), η(t), t). Then, the Lagrangian formulation of (4.100) is

d

dt
ξ(t) = α(ξ(t), η(t), t), (4.101)

d

dt
η(t) = β(ξ(t), η(t), t), (4.102)

d

dt
u(ξ(t), η(t), t) = 0. (4.103)

The coupled equations (4.101) and (4.102) describe the time evolution of the x- and y-

components of a characteristic curve, respectively. Equation (4.103) describes the time

evolution of the solution of (4.100) along the characteristic (x, y) = (ξ(t), η(t)).

The semi-Lagrangian discretization of the Lagrangian equations (4.101), (4.102), and

(4.103) works much the same as the discretization for their one-dimensional analogues.

That is, departure points are first located by integrating backwards along characteristics,
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and the solution is then approximated at each departure point by an interpolating poly-

nomial fit through the nearest neighbouring mesh points. The approximation at the new

time is then simply equal to the interpolated value, since by the evolution equation (4.103)

the PDE solution remains constant along any given characteristic.

Let
(
ξ

(tn,δt)
ij (t), η

(tn,δt)
ij (t)

)
be the characteristic that passes through the arrival point (x, y, t) =

(xi, yj , tn + δt), which is a point on the mesh. Then, we seek the departure point/foot

of this characteristic at time t = tn, which is (x, y, t) =
(
ξ

(tn,δt)
ij (tn), η

(tn,δt)
ij (tn), tn

)
. This

departure point is located by solving the following final-time problem over t ∈ [tn, tn + δt)

d

dt
ξ

(tn,δt)
ij (t) = α

(
ξ

(tn,δt)
ij (t), η

(tn,δt)
ij (t), t

)
, ξ

(tn,δt)
ij (tn + δt) = xi, (4.104)

d

dt
η

(tn,δt)
ij (t) = β

(
ξ

(tn,δt)
ij (t), η

(tn,δt)
ij (t), t

)
, η

(tn,δt)
ij (tn + δt) = yj . (4.105)

Upon locating the departure point by solving this two-dimensional system of ODEs, the

solution is estimated at it by evaluating a two-dimensional interpolating polynomial fit

through the nearest mesh points. Combining these two steps results in a fully discrete

scheme of the form

un+1 = S(tn,δt)
p,r un. (4.106)

Now let us consider the details of the interpolation, since they will be integral for developing

our proposed coarse-grid operator, just as they were in the one-dimensional case. As for the

one-dimensional case, we decompose the departure point into a neighbouring mesh point

and its distance to this point. Specifically, let (x, y) =
(
x

(tn,δt)
ij , y

(tn,δt)
ij

)
be the mesh point

immediately to the north-east of the departure point (x, y) =
(
ξ

(tn,δt)
ij (tn), η

(tn,δt)
ij (tn)

)
.

Then, we decompose, the x- and y-components of the departure point as, respectively,

ξ
(tn,δt)
ij (tn) ≡ x(tn,δt)

ij − hε(tn,δt)
ij , ε

(tn,δt)
ij ∈ [0, 1), (4.107)

η
(tn,δt)
ij (tn) ≡ y(tn,δt)

ij − hν(tn,δt)
ij , ν

(tn,δt)
ij ∈ [0, 1), (4.108)

where ε
(tn,δt)
ij is the (mesh-normalized) distance in the x-direction from the departure point

to x
(tn,δt)
ij . Analogously, ν

(tn,δt)
ij is the (mesh-normalized) distance in the y-direction from

the departure point to y
(tn,δt)
ij ; see Figure 4.14 for a schematic example.

The two-dimensional interpolation polynomial is constructed through a tensor product of

a one-dimensional interpolation in the x-direction and a one-dimensional interpolation in

the y-direction; see [31, pp. 61–62] for further details. Each one-dimensional interpolation

uses p+ 1 points, such that the two-dimensional interpolation uses (p+ 1)2 points.
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x
(tn,δt)
ijξ

(tn,δt)
ij (tn)

y
(tn,δt)
ij

η
(tn,δt)
ij (tn)

hε
(tn,δt)
ij

hν
(tn,δt)
ij

x

y

Figure 4.14: Decomposition of the departure point
(
ξ
(tn,δt)
ij (tn), η

(tn,δt)
ij (tn)

)
into the

sum of the mesh-point
(
x
(tn,δt)
ij , y

(tn,δt)
ij

)
to its north-east and its distance from this mesh

point
(
hε

(tn,δt)
ij , hν

(tn,δt)
ij

)
. All of the mesh points pictured are in the bi-cubic interpolation

stencil of the departure point.

4.5.2 The coarse-grid operator

With an understanding of the two-dimensional semi-Lagrangian discretization, we now

develop a coarse-grid operator to accompany it. As in the one-dimensional case of Sec-

tions 4.2 and 4.3, the key to establishing the truncation error of the two-dimensional

semi-Lagrangian method is understanding the error associated with interpolation. Error

estimates for multidimensional polynomial interpolation are less well known than in the

one-dimensional setting, and are less general, so we provide the estimate required for our

purposes in the following lemma. See [47, Sec. 3] and references therein for closely related

estimates.

Lemma 4.11 (Polynomial interpolation error in two dimensions). Let v(x, y) be a function

at least p + 1 times continuously differentiable with respect to both x and y. Let Xp(x; y)

and Yp(y;x) be the degree (at most) p polynomials in x and y respectively, interpolating

v(x, y) at the p + 1 nodes x = {xi}r(p)i=−`(p) and p + 1 nodes y = {yj}r(p)j=−`(p), respectively.

Both sets of interpolation nodes are equispaced by distance h and have `(p), r(p) ≥ 0. Let

vp(x, y) be the two-dimensional interpolating polynomial defined as the tensor product of

Xp(x; y) and Yp(y;x). Then, vp satisfies the following error estimate for any ε, η ∈ [0, 1):

v(x0 − hε, y0 − hη)− vp(x0 − hε, y0 − hη)

= (−h)p+1

(
fp+1(ε)

∂p+1

∂xp+1
+ fp+1(η)

∂p+1

∂yp+1

)
v(x0 − hε, y0 − hη) +O(hp+2),

(4.109)

Proof. See Appendix B.6. �
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We are now ready to develop an estimate for the truncation error of the semi-Lagrangian

method.

Lemma 4.12 (Semi-Lagrangian error for r = ∞). Suppose the solution of (4.100) is

at least p+ 1 times continuously differentiable with respect to x and y. Let S(tn,δt)
p,∞ be the

semi-Lagrangian discretization of (4.100), as described in Section 4.5.1, that exactly locates

departure points at time tn. Finally, let U(t) ∈ Rn2
x denote the continuous PDE solution

sampled on the discrete spatial mesh at time t. Then, this semi-Lagrangian operator has

a local truncation error given by

U(tn+1)− S(tn,δt)
p,∞ U(tn)

= (−h)p+1

[
diag

(
fp+1

(
ε(tn,δt)

)) ∂p+1

∂xp+1
+ diag

(
fp+1

(
ν(tn,δt)

)) ∂p+1

∂yp+1

]
U(tn+1) +O(hp+2),

(4.110)

in which ε(tn,δt),ν(tn,δt) ∈ Rn2
x are vectors whose ijth entries—that is, those associated

with mesh point (xi, yj)—is equal to the mesh-normalized distances ε
(tn,δt)
ij , and ν

(tn,δt)
ij ,

respectively.

Furthermore, the associated ideal coarse-grid operator defined by time-stepping m times

across the interval t ∈ [tn, tn +mδt] using the above operator has a local truncation error

that may be approximated by

U(tn+m)−
[
m−1∏

k=0

S(tn+kδt,δt)
p,∞

]
U(tn)

≈ (−h)p+1 diag

(
m−1∑

k=0

fp+1

(
ε(tn+kδt,δt)

)
)
∂p+1

∂xp+1
U(tn+m)

+ (−h)p+1 diag

(
m−1∑

k=0

fp+1

(
ν(tn+kδt,δt)

)
)
∂p+1

∂yp+1
U(tn+m) +O(hp+2),

(4.111)

Proof. We omit details of the proof since it follows analogously to the result for the trun-

cation error in one spatial dimension given in Lemma 4.8, with the caveat that one has

to invoke the error estimate (4.109) for two-dimensional polynomial interpolation rather

than the one-dimensional estimate used previously. �

Based on our earlier work for the one-dimensional problem (see Section 4.3.1), we can

now define a coarse-grid operator with a truncation error which approximately matches—

to lowest order—that of the ideal coarse-grid operator. Specifically, supposing that the

spatial DOFs are ordered row-wise lexicographically, we propose the following coarse-grid



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 4: Dissipatively corrected coarse-grid operators for advection 137

operator

Φ(tn,δt)
p,r∗ = Bp+1S(tn,mδt)

p,r∗ , (4.112)

with backward Euler matrix given by

Bp+1 =

[
In2

x
− diag

(
fp+1

(
ε(tn,mδt)

)
−
m−1∑

k=0

fp+1

(
ε(tn+kδt,δt)

)
)

(Inx ⊗Dp+1)

− diag

(
fp+1

(
ν(tn,mδt)

)
−
m−1∑

k=0

fp+1

(
ν(tn+kδt,δt)

)
)

(Dp+1 ⊗ Inx)

]−1

.

(4.113)

Here Dp+1 ∈ Rnx×nx is the same one-dimensional finite-difference discretization used pre-

viously.

4.5.3 Numerical results

We now report on numerical results that use our coarse-grid operator (4.112). To begin,

we consider the simple constant-coefficient problem

∂u

∂t
+
∂u

∂x
+
∂u

∂y
= 0, (x, y, t) ∈ (−1, 1)2 × (0, T ], (4.114)

with initial condition u(x, y, 0) = sin2
[
π
2 (x− 1)

]
sin2

[
π
2 (y − 1)

]
, and T ≈ 13.6. The fine-

grid time-step size is taken to be δt = 0.85h. As for the one-dimensional problems studied

previously, we consider semi-Lagrangian discretizations using interpolating polynomials of

degree (at most) p = 1, 3, 5.

The MGRIT iteration counts for our experiments are shown in Table 4.5. We consider

two-level solvers using rediscretization (left column) and our proposed coarse-grid operator

(4.112) (middle column). Unsurprisingly, rediscretization performs poorly on this prob-

lem, diverging in most cases, and where it does not diverge, it is slow and not scalable with

respect to mesh resolution. In contrast, our dissipatively corrected operator performs ex-

cellently, leading to fast convergence on all problems. Moreover, the convergence appears

to be scalable with respect to the mesh resolution for most problems. Interestingly, the

convergence deteriorates as the discretization order p is increased, which also occurred in

our tests of one-dimensional advection problems (see, e.g., Table 4.1). Moreover, the iter-

ation counts are quite close to those reported for the one-dimensional constant-coefficient

problem (left column, Table 4.1). In the right column of Table 4.5, we show iteration

counts for a multilevel solver that employs a multilevel generalization of the dissipatively

corrected operator (4.112). This multilevel extension is based on our multilevel general-

ization for the one-dimensional problem, as described in Section 4.4.1, but we omit further



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 4: Dissipatively corrected coarse-grid operators for advection 138

Bp+1S(mδt)
p

S(mδt)
p two level multilevel

m m m

p n2
x × nt 4 8 16 4 8 16 4 8 16

1

322 × 256 19 15 8 12 9 7 12 9 7

642 × 512 28 25 15 12 10 8 12 10 8

1282 × 1024 40 43 25 12 10 9 12 10 9

3

322 × 256 22 15 8 18 12 8 18 12 8

642 × 512 33 26 15 19 14 11 20 14 11

1282 × 1024 50 45 26 20 15 12 20 15 12

5

322 × 256 24 15 8 21 13 8 21 13 8

642 × 512 37 26 15 26 17 12 26 17 12

1282 × 1024 58 47 26 28 19 16 29 20 16

Table 4.5: Number of MGRIT iterations to reduce the space-time residual 2-norm by
10 orders of magnitude for the two-dimensional constant-coefficient problem (4.114). The

fine-grid operator is S(δt)p . The left column uses two-level cycles with a rediscretized
coarse-grid operator. The middle column uses two-level cycles with a the backward
Euler operator (4.112). Six iterations of GMRES are used to approximately solve the
linear systems involving the (inverse of) the matrix (4.113) that arise in applying the
backward Euler operator. The right column uses multilevel cycles with the multilevel
extension of the backward Euler operator; coarsening is carried out until fewer than two
points in time on the coarsest grid would arise. For nt = 1024, the number of MGRIT
iterations nt/(2m) needed to reach the exact solution for m = (4, 8, 16) is (128, 64, 32).

details here for the sake of brevity. The iteration counts for the multilevel solver are essen-

tially identical to the two-level counts, indicating that the multilevel coarse-grid operator

performs excellently.

We now move to consider the following, more challenging, variable-wave-speed problem

∂u

∂t
+

[
5

4
− cos2(2πy)

]
∂u

∂x
+

[
5

4
+ sin2

(πx
2

)] ∂u
∂y

= 0. (4.115)

The problem setup here is taken to be the same as for the previous problem. The iteration

counts of the solves are given in Table 4.6.

In large part, the results in Table 4.6 are qualitatively similar to those for the constant-

coefficient problem in Table 4.5. That is, rediscretization yields poor MGRIT convergence,

while our coarse-grid operator yields rapid convergence that is scalable with respect to

problem size, for both two-levels and many levels. To emphasize the significant improve-

ment our coarse-grid operator provides over rediscretization, we show in Figure 4.15 the

residual histories for the m = 4 solves of the first-order discretization. Interestingly, the
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Bp+1S(mδt)
p,r∗

S(mδt)
p,r two level multilevel

m m m

p, r n2
x × nt 4 8 16 4 8 16 4 8 16

1, 1

322 × 256 29 16 8 10 9 7 10 9 7

642 × 512 47 32 16 10 10 9 10 10 9

1282 × 1024 93 60 32 10 10 9 10 10 9

3, 3

322 × 256 24 16 8 12 11 8 12 11 8

642 × 512 38 27 16 12 12 11 13 12 11

1282 × 1024 65 44 30 12 12 12 13 12 12

5, 5

322 × 256 23 16 8 15 12 7 15 12 8

642 × 512 38 26 16 14 15 12 15 15 12

1282 × 1024 65 44 26 14 15 14 16 15 14

Table 4.6: Identical experiments to those shown in Table 4.5, except for the variable-
wave-speed advection problem (4.115). On the finest level, departure points are located
with a single ERK step of size δt. The departure points in the backward Euler coarse-grid
operators on grid level ` ∈ N are located by taking m` ERK steps of size δt.

iteration counts in Table 4.6 tend to be smaller than for the constant-coefficient problem

in Table 4.5, particularly for the p = 3 and p = 5 discretizations. This same trend also

arose for one-dimensional problems (see Table 4.1).

Figure 4.15: Two-norm of the space-time residual (relative to its initial value) as a func-
tion of two-level MGRIT iteration for the m = 4 and p = r = 1 solves given in Table 4.6.

Solid lines represent solves using a rediscretized coarse-grid operator S(4δt)1,1 . Broken lines

represent solves using the proposed dissipatively corrected coarse-grid operator B2S(4δt)1,1∗
.
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Overall, these numerical results show the potential that our proposed coarse-grid operator

(4.112) has for parallel-in-time simulations, especially when compared with the standard

approach of rediscretization.

4.6 Conclusions

In this chapter we have developed a novel coarse-grid operator for the parallel-in-time

solution of semi-Lagrangian discretizations of linear advection or transport problems. This

is motivated by the fact that rediscretizing semi-Lagrangian operators on coarse grids leads

to divergent MGRIT solvers. Our operator consists of a rediscretized coarse-grid semi-

Lagrangian operator followed by a correction, which maps the truncation error of the

resulting operator closer to that of the ideal coarse-grid operator. In Section 4.2, both

explicit- and implicit-in-time versions of this operator are presented. We argued how

these operators can be interpreted as forward and backward Euler time discretizations,

respectively, of an advection equation augmented with a high-degree derivative on the

right-hand side (Section 4.2.3). Rigorous theory is developed in Section 4.2.4 for constant-

wave-speed advection problems, to show that the forward Euler operator has poor stability

properties, in the sense that it becomes unstable for larger coarsening factors. However,

the same theory is used to prove that the backward Euler operator is unconditionally stable

with respect to all problem parameters. Initially developed for the two-level solution of

constant-wave-speed problems, the operator is generalized to variable-wave-speed problems

in Section 4.3, which includes a novel, and scalable strategy for estimating departure points

on coarse levels.

In Section 4.4.1, the operator is extended to the multilevel setting. In all of our numerical

tests, it led to fast MGRIT convergence, including for challenging variable-wave-speed

problems discretized with 1st-, 3rd-, and 5th-order methods. Furthermore, a proof-of-

principle example was shown in Section 4.4.2 for how the operator can be incorporated

into the solution of advection-diffusion problems; in the example, convergence was robust

with respect to the amount of diffusion in the problem.

Finally, Section 4.5 showed how the operator can be applied to problems in two spatial

dimensions, where we obtained fast MGRIT convergence for variable-wave-speed problems

using high-order discretizations. Overall, this coarse-grid operator presents a significant

advancement in the field of parallel-in-time integration for advection-dominated problems.
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Fully implicit Runge-Kutta

methods for method of lines

Runge-Kutta methods have been used repeatedly throughout this thesis in the context

of parallel-in-time integration. This chapter changes focus to sequential time integration,

considering the numerical solution of fully implicit Runge-Kutta (FIRK) methods that

arise in the method-of-lines solution of PDEs. FIRK methods possess many desirable

properties compared to their diagonally implicit Runge-Kutta (DIRK) counterparts, yet,

unlike DIRK schemes, they do not see widespread use in practice. FIRK methods are

challenging to implement efficiently due to the difficulty of computing the stage vectors,

which requires solving a large, non-symmetric, block-coupled system of nonlinear algebraic

equations. In this chapter, we propose new algorithms for solving this system of nonlin-

ear algebraic equations. Particular emphasis is given to the theoretical analysis of these

algorithms, and extensive numerical tests demonstrate the efficacy of our new algorithms.

5.1 Fully implicit Runge-Kutta methods

Let us begin by recalling some key facts about the method of lines, and Runge-Kutta

methods. Consider a PDE initial-value problem of the form

∂u

∂t
= L(u, t), t ∈ (0, T ], u(0, ·) = u0, (5.1)

with u subject to appropriate boundary conditions in space, and L a (potentially) nonlinear

spatial differential operator. Applying the method of lines to this PDE involves first

discretizing it in space to arrive at a system of ordinary differential equations (ODEs) in

141



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 5: Fully implicit Runge-Kutta methods for method of lines 142

time of the form

du(t)

dt
= N (u, t), t ∈ (0, T ], u(0) = u0, (5.2)

withN : RN×[0, T ]→ RN a (potentially) nonlinear, time-dependent spatial discretization.

Any ODE solver may now be used to solve (5.2) to generate a fully discrete approximation

to PDE (5.1), but here the focus will be on FIRK methods. To this end, consider time

discretization of (5.2) using a classical s-stage Runge-Kutta scheme, characterized by the

Butcher tableau

c0 A0

b>0

=

c1 a11 · · · a1s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs

, (5.3)

with Runge-Kutta matrix A0 = (aij) ∈ Rs×s, weight vector b0 = (b1, . . . , bs)
> ∈ Rs, and

abscissa c0 = (c1, . . . , cs)
> ∈ Rs. An explicit Runge-Kutta (ERK) method corresponds to

a strictly lower triangular A0, a DIRK method corresponds to a lower triangular A0, and a

FIRK method corresponds to a general matrix A0 not possessing any triangular structure.

Let un ≈ u(tn) denote the discrete approximate solution of (5.2) at time t = tn. A

Runge-Kutta scheme advances the solution from the current time t = tn to the new time

t = tn+1 := tn + δt via a linear combination of stage vectors,

un+1 = un + δt
s∑

i=1

biki, where (5.4)

ki = N
(
un + δt

s∑

j=1

aijkj , tn + δtci

)
, i = 1, . . . , s. (5.5)

Equations (5.5) constitute a system of Ns block-coupled, (nonlinear) algebraic equations

in the Ns unknowns (ki)
s
i=1 to be solved at each time step. The block sparsity structure

of this system is characterized by the structure of the matrix A0 in (5.3). Specifically, for

ERK, the right-hand side of equation i in (5.5) only contains stage vectors kj preceding

ki. For DIRK, in addition the preceding kj , the right-hand side of equation i contains

ki itself. Finally, for FIRK, the right-hand side of equation i in (5.5) contains all kj

including ki. The nonlinear system is thus significantly more tightly coupled for FIRK

schemes than for ERK and DIRK schemes, where there is a natural order for solving for

the s stages (ki)
s
i=1 via solving s successive systems of N equations. Furthermore, ERK

methods clearly present significantly less of a challenge to compute stage vectors than
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implicit Runge-Kutta methods, but for this they pay the penalty that they cannot be A-

stable [14, Sec. 23.8], and therefore they are not suitable for the numerical solution of stiff

PDEs, for which A-stability is a must. This is why essentially all implicit Runge-Kutta

schemes used in practice are A- or L-stable.

Given that FIRK schemes are more difficult to apply than DIRK schemes, two relevant

questions are: What advantages do FIRK methods offer over DIRK methods, and are

they enough to warrant the extra effort of solving the block coupled equations? FIRK

schemes do possess several properties that often make them more desirable than DIRK

schemes, with the first such property being their accuracy. An s-stage DIRK scheme has

an accuracy limited to order s or s + 1 [61], while an s-stage FIRK scheme can achieve

accuracy up to order 2s. For example, numerical results will be presented later in this

chapter using s-stage Gauss, Radau IIA, and Lobatto IIIC FIRK methods, which have

accuracies of order p = 2s, p = 2s− 1, and p = 2s− 2, respectively [48, Tab. 5.13].

A second property is related to the problem-dependent phenomenon of order reduction.

Order reduction refers to the situation in which the order of accuracy observed in practice

is less than p, and can be as low as the so-called stage order q, which is related to the

accuracy that the stage vectors satisfy [61, Sec. 2.2]. Order reduction often arises for

stiff problems, such as differential algebraic equations, for example.1 DIRK schemes have

stage order q = 1 independent of p, which can be increased to q = 2 if an explicit stage

is included in the method [61, Sec. 2.2], [48, Ex. 1, Sec. IV.15]. Conversely, FIRK

methods can have any stage order; for example, s-stage Gauss, Radau IIA, and Lobatto

IIIC methods have stage order equal to s, s, and s − 1, respectively [48, Tab. 5.13, and

15.1]. For this reason, if one desires higher than 2nd-order accuracy for stiff problems that

suffer from order reduction, then FIRK methods are needed.

Having described some of the important properties of FIRK methods, let us now investigate

the underlying structure of the algebraic stage equations (5.5).

5.1.1 Linear ODEs

Let us assume that ODEs (5.2) are linear such that

N (u, t) = L(t)u+ g(t), (5.6)

1In fact, we have already encountered the phenomenon of order reduction earlier in this thesis in
Section 2.5.5 in the context of time-dependent boundary conditions for an advection problem discretized
in time using an ERK method. To overcome the order reduction, we adopted a carefully considered
strategy for computing the values of stage vectors in the vicinity of the inflow boundary, since if we had
computed them naively then the global accuracy of the scheme would have degraded to first or second
order, independent of p.
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with L(t) ∈ RN×N a matrix with time-dependent entries, and g a time-dependent forcing

term. In this case, system (5.5) can be written as the block linear system







I 0
. . .

0 I


− δt




a11L1 ... a1sL1

...
. . .

...

as1Ls ... assLs










k1

...

ks


 =




f1

...

fs


 , (5.7)

where Li := L(tn + δtci) and fi := g(tn + δtci) +L(tn + δtci)un. Observe that the second

block matrix can be written as diag(L1, . . . ,Ls) (A0 ⊗ IN ), which motivates the change of

variables (which was also applied in [73])

w ≡




w1

...

ws


 = (A0 ⊗ IN )




k1

...

ks


 ≡ (A0 ⊗ IN )k. (5.8)

This implicitly assumes that the matrix A0 is invertible, which is indeed the case for the

implicit Runge-Kutta schemes considered here.2 Let us briefly turn our attention to the

Runge-Kutta update (5.4), and make the observation that the required linear combination

of stage vectors can be written as a Kronecker product over the scaled stage vectors w

using (5.8):

y :=
s∑

i=1

biki = (b>0 ⊗ IN )k = (d>0 ⊗ IN )w, where d>0 := b>0 A
−1
0 . (5.9)

The update then takes the simple form

un+1 = un + δty. (5.10)

Under the change of variables (5.8), system (5.7) becomes


A

−1
0 ⊗ IN − δt




L1

. . .

Ls










w1

...

ws


 =




f1

...

fs


 . (5.11)

Notice this system is sparser than (5.7) since I is sparser than Li. Furthermore, this

change of variables will simplify the analysis appearing later in the chapter.

2In fact, the forthcoming Assumption 5.1 states that the eigenvalues of A0 must have positive real part,
of which an immediate implication is that A0 is invertible.
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5.1.2 Nonlinear ODEs

In the case that ODEs (5.2) are nonlinear, it is also advantageous to apply the change of

variables (5.8) used in the linear case. Using this change of variables, system (5.5) becomes

G(w) := (A−1
0 ⊗ IN )




w1

...

ws


−




N (un + δtw1, tn + δtc1)
...

N (un + δtws, tn + δtcs)


 = 0. (5.12)

Notice now that the components of w are only linearly coupled to one another.

Nonlinear system (5.12) is solved via, for example, a Newton-like method, with each

Newton iteration requiring the solution of a linearized system of equations. The linearized

system matrix is designed to approximate (or equal) the Jacobian of G.

Differentiating system (5.12) leads to a Jacobian given by

G′(w) = A−1
0 ⊗ IN − δt




L1

. . .

Ls


 , (5.13)

where Li ∈ RN×N denotes a linearization of the nonlinear function corresponding to the

ith stage vector N i := N (un + δtwi, tn + δtci) with respect to wi. Notice this Jacobian

matrix is of the same form as the system matrix in (5.11) (excusing the abuse of notation

that Li previously denoted a genuinely linear operator, but now represents a linearized

operator). A Newton-like method applied to nonlinear system (5.12) takes the form

w(k+1) ≈ w(k) − J −1G
(
w(k)

)
, J ≈ G′

(
w(k)

)
, k = 0, 1, . . . (5.14)

with nonlinear iteration index k, meaning that w(k) ≈ w. Taking J = G′(w(k)) and

exactly solving the linear system w(k+1) = w(k) − J −1G
(
w(k)

)
corresponds to an exact

Newton method. Alternatively, forming J by approximating G′(w) such that Li = L∀i
yields a so-called simple Newton method (see, e.g., [15, 8]).

5.1.3 Existing work, assumptions and outline

Moving forward, let L refer to a spatially linearized (or genuinely linear when appropriate)

operator when the stage index is not relevant.

It is now clear that applying FIRK methods to both linear and nonlinear ODEs (5.2)

hinges on one’s ability to solve Ns×Ns block linear systems in the form of (5.7)/(5.11).
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The fast and efficient solution of this system is typically very difficult for several reasons.

The first reason is that typically the dimension N is very large in the context of the method

of lines, so direct methods are simply too expensive and, so, iterative methods must be

considered instead. Notice also that even in the event that L is symmetric, the block

coupling through A0/A
−1
0 is non-symmetric and thus the overall system is non-symmetric.

The iterative solution of large, non-symmetric, block-coupled linear systems is a difficult

task, and it is for this reason that FIRK methods are seldom used in practice for the

numerical simulation of PDEs, despite their excellent stability and accuracy properties.

Nonetheless, there has been considerable research on the topic of how to solve systems of

the form (5.7)/(5.11).

The earliest work on this topic was in the context of solving ODEs rather than PDEs, and

involved making the simplifying assumption that Li = L ∀i, as happens in a simple Newton

method, for example [15, 8]. The motivation for such a simplification is that the system

matrix becomes the sum of two Kronecker products, which can then be decomposed by way

of a similarity transform into a sequence of smaller N ×N problems. Related approaches

that triangularize the system matrix through triangular approximations to A0 have also

been proposed [56, 53].

Most of the more recent work in the context of PDEs has continued to use a simple New-

ton assumption (or has limited consideration to linear problems with time-independent

L). There have been many block preconditioning approaches proposed, such as those of

[94, 67], which are based on ideas of Jacobi and Gauss-Seidel splittings of A0, and have

been shown to be effective on parabolic PDEs. A closely-related block preconditioner was

proposed in [75] that was based on an approximate factorization of A0. Like the FIRK

algorithms introduced in this chapter, these block-preconditioning approaches allow for

the utilization of efficient PDE preconditioners developed for sparse linear operators of

the form ξI − ζ L, for some constants ξ, ζ, which arise in the solution of implicit Euler

time integration. Also closely related to the algorithms proposed in this chapter is the

algorithm of [4], in which a preconditioning strategy for discontinuous Galerkin time dis-

cretizations is introduced. Robustness of the preconditioner in [4] was proven when the

spatial discretization is symmetric definite, and a numerical test on a linear advection

problem seemed to indicate that it also works well for non-symmetric problems.

The drawback of the simple Newton approximation of course is that if the nonlinear

problem at hand is particularly challenging, then the linear convergence rate offered by

a simple Newton method may be too slow. Full Newton strategies have been proposed,

however, such as that of [73], where system (5.11) is solved by GMRES preconditioned

with block ILU techniques, which was shown to be effective on high-order discretizations

of the Navier-Stokes equations.
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Therefore, while there has been much research on the application of FIRK methods to

PDEs, most has been in the context of parabolic and/or symmetric problems, with there

being little development for advection-dominated and/or non-symmetric problems, partic-

ularly from an analysis point of view. Among other points, this chapter aims to address

this apparent void in the literature by providing theoretical analysis of our new FIRK

algorithms, with particular emphasis on cases in which L is highly non-symmetric, and

even non-normal.

The algorithms and their analysis presented in this chapter rely on the following assump-

tion regarding eigenvalues of the Butcher matrix A0 in (5.3) and its inverse A−1
0 .

Assumption 5.1. Assume that all eigenvalues of A0 (and equivalently A−1
0 ) have positive

real part.

If an implicit Runge-Kutta method is A-stable, irreducible, and A0 is invertible (which

includes DIRK, Gauss, Radau IIA, and Lobatto IIIC methods, among others), then As-

sumption 5.1 holds [48].

We now describe a second assumption pertaining to the stable time integration of ODEs

(5.2). Specifically, it is important to consider the stability of the associated (linearized)

Dalhquist test problem du(t)
dt = Lu. Supposing the solution to the Dalhquist problem

itself is stable, a necessary condition for the stable numerical integration of this problem

is that the eigenvalues of δtL lie inside the stability region of the Runge-Kutta method

[76]. If L is normal, that is, it has a full set of orthonormal eigenvectors, then this is both

a necessary and sufficient condition for stability. However, if L is non-normal, or even

non-diagonalizable, which can happen for certain discretizations of hyperbolic equations

(see [76, Sec. 10.2]), for example, then the situation becomes more complicated. To this

end, we introduce the following assumption with respect to L. Let W (L) denote the field

of values of L, which is the subset of the complex plane given by (see, e.g., [5])

W (L) := {〈Lx,x〉 : ‖x‖ = 1} . (5.15)

Then,

Assumption 5.2. Assume that W (L) ≤ 0; that is, W (L) is a subset of the left half plane

(including the imaginary axis).

This assumption can be seen as a sufficient condition for the stable time integration of the

Dalhquist test problem with A-stable methods—whose stability region is the closed left

half plane—regardless of the normality of L.3 Finally, note that for a normal matrix L,

3See our articles [91, 90] for further details.
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W (L) is equal to the convex hull of its eigenvalues [5, Prop. 10]. Therefore, for normal

L, Assumption 5.2 reduces to aforementioned necessary and sufficient condition that the

eigenvalues of L lie in the closed left half plane for the numerically stable integration with

an A-stable method. In particular, we will provide theoretical analysis for cases in which

L is either symmetric negative semi-definite or skew symmetric, which are examples of

normal matrices with their eigenvalues in the closed left half plane.

The remainder of this chapter is organised as follows. Section 5.2 introduces an algorithm

for linear ODEs. It then examines the efficacy of the underlying preconditioner, first under

the assumption that the spatial discretization is symmetric definite and then that it is skew

symmetric. Following this, Section 5.3 briefly introduces a simple Newton algorithm for

the solution of nonlinear FIRK problems. It then examines the efficacy of the underlying

linear preconditioner under the assumption that the spatial discretization is symmetric

definite. Section 5.4 generalizes the linear preconditioning theories of Sections 5.2 and 5.3

by removing the assumption of symmetry or skew symmetry on the spatial discretization.

Finally, Section 5.5 discusses further some aspects of our C++ package [89] that implements

these algorithms, and presents numerical results for both linear and nonlinear PDEs that

confirm the linear preconditioning theory of the earlier sections.

5.2 The linear setting

This section considers the solution of the block linear system (5.11) that results from the

application of FIRK methods to linear ODEs (5.6). First Section 5.2.1 proposes a new

algorithm for solving this problem, along with some details of its software implementa-

tion. An outline and discussion of the sections to follow is then given in Section 5.2.2,

and eigenvalue analyses of the proposed preconditioner are the subject of Sections 5.2.3

and 5.2.4.

5.2.1 The algorithm: Preconditioning complex-conjugate pairs

It is first necessary to make the simplifying assumption that the spatial discretization L
is time independent: Li ≡ L. Now, let us define the system matrix in (5.11) as

Ms := A−1
0 ⊗ IN − Is ⊗ L̂, where L̂ := δtL . (5.16)

Throughout the rest of the chapter, we will interchangeably use the operator δtL and its

shorthand L̂ defined here.
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As described earlier, applying a FIRK scheme to a linear ODE requires inverting (5.16),

and the following Lemma (cited here without proof) provides us a powerful way of ex-

pressing its inverse.

Lemma 5.1 (A condensed, slightly modified version of [91, Lemma 5]). Let Ms be as in

(5.16), let adj(Ms) be the adjugate of Ms, and let Ps(x) be the characteristic polynomial

of A−1
0 . Then,

M−1
s =

(
Is ⊗ [Ps(L̂)]−1

)
adj(Ms). (5.17)

Now consider applying the closed-form inverse (5.17) to solve the block systemMsw = f

from (5.11) for the stage vectors w ∈ RNs. Ultimately, only the Runge-Kutta update

y = (d>0 ⊗ IN )w ∈ RN is needed to step to the new time level, and this may be conve-

niently expressed as

y =
(
d>0 ⊗ IN

)
M−1

s f , (5.18)

=
(
d>0 ⊗ IN

)(
Is ⊗ [Ps(L̂)]−1

)
adj(Ms)f , (5.19)

= [Ps(L̂)]−1
(
d>0 ⊗ IN

)
adj(Ms)f , (5.20)

where f = (f1, . . . ,fs)
>. Or equivalently, y solves the N ×N linear system

Ps(L̂)y = z :=
(
d>0 ⊗ IN

)
adj(Ms)f . (5.21)

Upon solving (5.21), for y, the solution at the new time level can simply be evaluated by

un+1 = un + δty, as in (5.10).

The numerical solution of system (5.21) will be discussed shortly, but first, let us turn our

attention to forming the right hand side vector z. Due to the structure of Ms in (5.16)

(more specifically, that its elements may be defined over the commutative ring of linear

combinations of I and L̂; see [91] and references therein), its adjugate may be defined over

matrix-valued elements. SinceMs = A−1
0 ⊗IN −Is⊗L̂, let us consider the adjugate of the

matrix A−1
0 − xIs, which will be denoted as Q(x). The elements in Q(x) are polynomials.

More specifically, these can be written in the general form

Q(x) := adj
(
A−1

0 − xIs
)
∈ Rs×s, where Qij(x) =

s−1∑

k=0

q
(ij)
k xk, (5.22)
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with the sets of coefficients {q(ij)} depending on the elements of A−1
0 . The adjugate of

Ms can then be defined by evaluating Q at x = L̂:

adj(Ms) =




Q11(L̂) · · · Q1s(L̂)
...

...

Qs1(L̂) · · · Qss(L̂)


 ∈ RNs×Ns. (5.23)

Next, observe that the factor appearing in front of this matrix in (5.21) takes inner products

with d0 over its columns to form a N×Ns matrix. There is then an inner product between

this matrix and the vector f ∈ RNs. In conclusion, this means that the right hand side of

(5.21) can be expressed as

z =
s∑

j=1

Rj(L̂)fj , where Rj(x) :=
s−1∑

k=0

(
s∑

i=1

di q
(ij)
k

)
xk. (5.24)

Here Rj is the polynomial arising from taking the inner product of d0 with the jth column

of adj(Ms) in (5.23).

In evaluating (5.24), the polynomial Rj(L̂) should not be explicitly formed to compute

its action. In our C++ package [89], this action is computed via a Horner-like scheme (as

in the well-known scheme for efficiently evaluating scalar polynomials). Such a scheme is

optimal because it only requires the action of L̂ s− 1 times.

In our software [89], symbolic expressions for the polynomial coefficients of Rj defined in

(5.24) are hard-coded in terms of the entries of arbitrary A−1
0 and d0 for various s ≈ O(1)

(e.g., currently s = 1 → 5 are supported). Once the user specifies their desired FIRK

scheme at run time, the polynomial coefficients are evaluated numerically by substituting

into the symbolic expressions numerical values for the entries of A−1
0 and d0. The motiva-

tion for using hard-coded symbolic expressions written in terms of arbitrary A−1
0 is that if

a user provides Butcher tableau information (i.e., they specify an A−1
0 ), they do not need

access to software to compute the adjugate of A−1
0 − xIs for symbolic x. To generate the

symbolic expressions used in [89], the adjugate in (5.22) has been computed in MATLAB

using its adjoint function on a symbolic A−1
0 − xIs matrix (i.e., with both A−1

0 and x

being symbolic variables). Symbolic expressions for each of the coefficients in (5.24) are

then constructed using a symbolic d0 vector. Since the resulting symbolic expressions are

very lengthy (e.g., the longest formulas for the s = 5 coefficients each contain hundreds of

appearances of the entries of A−1
0 ), the symbolic MATLAB expressions are translated in

an automated fashion into C++ friendly expressions so that they may be easily hard coded.

With the knowledge of how to form the right hand side of system (5.21), let us turn our

attention to its numerical solution. Remarkably, the original block Ns×Ns system (5.11)
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has been transformed into the single N × N system (5.21) by exploiting its Kronecker-

product structure and the fact that only a linear combination of the s stage vectors is

needed for the Runge-Kutta update (5.10). Our lunch is not completely free, however,

because the characteristic polynomial of A−1
0 appearing in (5.21) is of degree s. Letting

{λi} denote the s eigenvalues of A−1
0 , the characteristic polynomial in (5.21) may be

expressed in factored form as

Ps(L̂) =
s∏

i=1

(λiI − L̂), (5.25)

and hence its inverse may be computed by successively inverting the matrices (λiI−L̂) for

i = 1, ..., s. Unfortunately, however, the eigenvalues of A−1
0 for FIRK schemes are complex

in general (since A0 is neither triangular nor symmetric), and, so, inverting factors (λiI−L̂)

for real-valued matrices L̂ is likely not very practical using standard PDE preconditioners

and existing software because they typically are not applicable to complex systems.

Instead, the key idea proposed here is to combine complex-conjugate pairs in (5.25) and

then invert the resulting real, quadratic operator. To this end, let λi := ηi + iβi denote

a complex eigenvalue of A−1
0 , for ηi, βi ∈ R, with ηi > 0 under Assumption 5.1, and

without loss of generality βi ≥ 0. The real quadratic associated with the eigenvalue pair

(λi, λ̄i) = (ηi + iβi, ηi − iβi) is then

Qi :=
[
(ηi + iβi)I − L̂

][
(ηi − iβi)I − L̂

]
= (ηiI − L̂)2 + β2

i I. (5.26)

Thus, inverting operator (5.25) (or rather solving the associated linear system (5.21)) can

be achieved through inverting sequentially s
2 quadratic factors of the form (5.26) for the

s
2 pairs (ηi, βi)

s/2
i=1 if s is even, or s−1

2 factors of the form (5.26) and a single, real, linear

factor of the form ζiI − L̂, with ζi being a real eigenvalue of A−1
0 , if s is odd (recalling

A−1
0 will have s−1

2 complex-conjugate pairs of eigenvalues and a single real eigenvalue if s

is odd).

In practice, it is not desirable to directly form or precondition (5.26), due to the overhead

cost of large parallel matrix multiplication (if the matrix is even explicitly available, that

is), and because many fast parallel methods are not designed for solving a polynomial in

L̂. To get around this, it is proposed to solve (5.26) using a Krylov subspace method

because this only requires the action of the quadratic operator. Based on the structure of

(5.26) when βi ≈ 0, a preconditioner of the form (γiI − L̂)−2 with γi ∈ (0,∞) being a free

parameter is proposed.4 In fact, a naive choice would be to simply use γi = ηi, but as the

4In Section 5.4, a more general preconditoner with two free constants δi, γi ∈ (0,∞) of the form

(δiI − L̂)−1(γiI − L̂)−1 is considered. It is shown in Corollary 5.15 of Section 5.4, however, that in some
sense the optimal form of this preconditioner is with δi = γi, which is why we consider such a preconditioner
here.
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forthcoming analysis will show one can do significantly better than this choice.

The preconditioned operator corresponding to an arbitrary complex-conjugate pair of

eigenvalues η ± iβ, denoted Pγ , is

Pγ :=
[
(ηI − L̂)2 + β2I

]
(γI − L̂)−2, γ ∈ (0,∞). (5.27)

While the preconditioner (γI − L̂)−2 is a quadratic operator, it appears in factored

form, and so its action can be applied by two successive applications of the linear fac-

tor (γI − L̂)−1. Notice that if L̂ is symmetric negative semi-definite, then Pγ (5.27) is

symmetric positive definite for γ > 0 and therefore the linear system may be solved us-

ing a Krylov method that exploits this, such as the conjugate gradient method (CG), for

example.5 Otherwise, for non-symmetric L̂, GMRES is typically applied to solve (5.26).

In practice it is undesirable to exactly apply the action of the preconditioner (γI − δtL)−2

at every Krylov iteration since the overall cost of the solve is typically less if it is approx-

imated instead. Therefore, instead of exactly applying the preconditioner, it is approxi-

mated by twice applying the action of an inexpensive preconditioner for (γI−δtL)−1. For

example, the numerical tests in Section 5.5 use a single iteration of AMG to approximate

(γI − δtL)−1. Note, however, that all of the analysis in this chapter is done under the

assumption that the preconditioner is exactly applied. This is typical of preconditioning

analyses in the literature where one proves robustness of a preconditioner under the as-

sumption that it is exactly applied, but then goes on to approximately apply it in practice.

Furthermore, for the preconditioning analysis to be indicative of what is observed in prac-

tice, it will likely be necessary that the inexpensive preconditioner used to approximate

(γI − δtL)−1 does so relatively well.

5.2.2 Outline and assumptions for linear eigenvalue analysis

The remainder of Section 5.2 is devoted to analysing the two-norm condition number of the

preconditioned operator (5.27). In particular, Section 5.2.3 does so under the assumption

that the spatial discretization L is symmetric negative semi-definite, and Section 5.2.4

does so under the assumption that L is skew symmetric. In each of these cases, the value

of γ in (5.27) is identified that leads to the minimization of a tight upper bound on the

condition number of (5.27), and therefore hopefully the most robust preconditioner for

the Krylov inversion of the quadratic operator (5.26). It is found that that optimal value

of γ = γ∗ is the same for both classes of L. In the symmetric definite case, the condition

number of Pγ∗ is bounded by two, independent of the order of FIRK integration. In the

5Note (5.27) is symmetric because one of the trailing (γI − L̂)−1 factors can be pulled to the front of

the operator since rational functions of L̂ commute.
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skew-symmetric case, the condition number is found to grow weakly with the number of

FIRK stages/FIRK order, but it remains O(1) for a moderate number of stages/order of

accuracy. For example, it is less than 2.5 for some common 5-stage FIRK methods having

8th-, 9th- and 10th-order accuracy.

It should be noted that the conditioning theory of Section 5.2.3 (for the symmetric negative

semi-definite case) essentially arrives at the same results as that of [4, Proposition 3.3] (the

preconditioned operator proposed there is related to the one discussed here); however, the

analysis here was done independently and it contains interesting additional elements that

were not considered in [4]. Moreover, it helps to contextualize Sections 5.2.4 and 5.3.3

where a similar style of analysis is applied to more challenging problems.

Only in the case of CG does the condition number of (5.27) translate directly into con-

vergence bounds of the solver (related bounds do apply to GMRES in the case that the

preconditioned system is SPD, but this is of minimal interest here). However, generally

speaking, the condition number of (5.27) provides an excellent measure of the robustness

of any Krylov method’s ability to solve the preconditioned linear system. In particular,

understanding the dependencies of the condition number on algorithmic parameters (e.g.,

properties of L, δt, integration order) is necessary to assess its robustness and optimality.

In any event, conditioning of O(1) indicates that Krylov convergence is likely to be fast in

practice.

The practical motivation for analysing the preconditioner when L is symmetric definite is

that spatial discretizations for parabolic PDEs often fall into this category. A secondary

and theoretical motivation is that such matrices usually simplify significantly the analysis

because of their simple properties; for example, some other FIRK algorithms for PDEs

have been analysed under similar assumptions [4, 94]. The motivation for considering

skew-symmetric L is not as clear-cut as the symmetric definite case since such an op-

erator would not typically result from the spatial discretization of a real-world problem.

Nonetheless, closely related matrices arise from non-dissipative discretizations (e.g., cen-

tral finite-difference discretizations) of advection-dominated PDEs, and it is often the case

that good discretizations of advection operators will have eigenvalues with large imagi-

nary components, since the eigenvalues of the continuous advection operator are purely

imaginary. So, while the skew-symmetric case is unlikely to arise exactly in practice,

its analysis undoubtedly provides insight for advection-dominated problems. Recall also

that since symmetric negative semi-definite and skew-symmetric matrices are normal with

eigenvalues contained in the closed left half plane, they fulfil Assumption 5.2.

To simplify the forthcoming analysis, it will be useful to make the following change of

variables from those appearing in (5.27): Assuming without loss of generality that β > 0,
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let us define6

x :=
η

β
, y :=

γ

β
, A :=

1

β
L̂ . (5.28)

Notice that x, y > 0 since η, β, γ > 0, and also that A inherits any symmetry or definiteness

properties from L̂. Applying these new variables to (5.27) results in the slightly simpler

preconditioned operator

Py :=
[
(xI −A)2 + I

]
(yI −A)−2, (5.29)

which depends on only two parameters rather than three. Further note that the condition

number of operators (5.27) and (5.29) is the same.

Since A is normal, (5.29) is too, and, as such, its two-norm condition number can be

expressed it terms of its absolute maximum and minimum eigenvalues:

κ(Py) :=
∥∥Py

∥∥
2

∥∥P−1
y

∥∥
2

=

max
λ∈σ(−A)

| Fy(λ)|

min
λ∈σ(−A)

| Fy(λ)| , (5.30)

where σ(−A) denotes the spectrum of −A, and the function Fy(λ) is the eigenvalue of

Py associated with eigenvalue λ of −A,

Fy(λ) :=
(x+ λ)2 + 1

(y + λ)2
. (5.31)

Rather than working with the exact condition number (5.30), the following more tractable

upper bound is considered instead:

κ̃(Py) :=
max
λ∈I
| Fy(λ)|

min
λ∈I
| Fy(λ)| ≥ κ(Py), (5.32)

where I is the interval defined as

I :=





[0,∞), if A is symmetric negative semi-definite,

(−i∞, i∞), if A is skew symmetric.
(5.33)

The bound (5.32) corresponds to what would be the condition number of Py if the spectra

of A densely filled their allowable interval (the entirety of the non-positive real line and the

entirety of the imaginary line in the symmetric and skew-symmetric cases, respectively).

In this sense κ̃(Py) can be interpreted as the maximum condition number of Py over

6Excluding the case β = 0 is not of any real significance since it can be seen immediately from (5.27)
that if β = 0, one obtains the identity preconditioned operator by taking γ = η.
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the space of either (i) all symmetric negative semi-definite matrices A, or (ii) all skew-

symmetric matrices A. It should also be noted that bound (5.32) is tight because it will

achieve equality for any matrix A satisfying both max
λ∈σ(−A)

| Fy(λ)| = max
λ∈I
| Fy(λ)| and

min
λ∈σ(−A)

| Fy(λ)| = min
λ∈I
| Fy(λ)|.

While the assumption that the spectra of A are dense in the interval given in (5.33) is to

make the analysis tractable, such an assumption in the symmetric case is not too unrealistic

because (loosely speaking) the largest eigenvalue of −A arising from a diffusion-dominated

problem would typically scale as O
(
δt/h2

)
for spatial mesh size h, and the smallest would

be zero in the case of periodic boundary conditions, or would scale as O(δt) for Dirichlet

boundary conditions. Conversely, the assumption is not as realistic in the skew-symmetric

case because the extremal eigenvalues of A arising from an advection-dominated problem

would typically scale like O
(
± iδt/h

)
. Nonetheless, these assumptions are ultimately

justified in the end since the condition number κ̃(Py) in (5.32) is found to be of size O(1)

for what is considered to be quite high-order FIRK integration (recalling the condition

number of any matrix is bounded below by unity).

5.2.3 Eigenvalue analysis in the linear setting: The symmetric definite

case

Lemma 5.2 (Conditioning for symmetric negative semi-definite A). Suppose that A
is symmetric negative semi-definite, then condition number κ̃(Py) in (5.32) that tightly

bounds the condition number of the preconditioned operator Py in (5.29) is equal to

κ̃(Py) =





x2 + 1

y2
, y ∈ (0, x],

(x2 + 1)
[
1 + (y − x)2

]

y2
, y ∈

[
x,
√
x2 + 1

]
,

1 + (y − x)2, y ∈
[√

x2 + 1, x
2+1
x

]
,

y2

x2 + 1
, y ∈

[
x2+1
x ,∞

)
.

(5.34)

Proof. To compute κ̃(Py) in (5.32) the global extrema of |Fy(λ)| need to be identified

for λ ∈ I := [0,∞) (see (5.33)). However, observe from (5.31) that Fy(λ) is positive for

any such λ since x, y > 0; therefore, it is simply the extrema of Fy(λ) that need to be

identified. Global extrema may occur at the boundaries of I, or at stationary points in

λ (that is, where the derivative of Fy vanishes). Consider first the behaviour of Fy(λ) at

the boundaries of I:

Fy(0) =
1 + x2

y2
, lim

λ→∞
Fy(λ) = 1. (5.35)



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 5: Fully implicit Runge-Kutta methods for method of lines 156

Now consider the derivative. Computing this, one obtains

dFy
dλ

= 2
(y − x)λ− (x2 + 1− xy)

(y + λ)3
. (5.36)

The derivative can only vanish at the single point λ = λ∗ defined by

λ∗ :=
x2 + 1− xy

y − x =
1

x

1

y − x

(
x2 + 1

x
− y
)
, y 6= x. (5.37)

Recall that for λ∗ to be a stationary point of interest, it must lie in I = [0,∞). Based on

its factorized form above, it is easy to see that the sign of λ∗ is

sign(λ∗) =





−1, y ∈ (0, x),

1, y ∈
(
x, x

2+1
x

)
,

0, y = x2+1
x ,

−1, y ∈
(
x2+1
x ,∞

)
.

(5.38)

Therefore λ∗ is only a stationary point of interest when y ∈
(
x, x

2+1
x

]
. Evaluating Fy(λ)

(5.31) at λ = λ∗ gives the local extremum

Fy(λ∗) =
1

1 + (y − x)2
< 1, y ∈

(
x,
x2 + 1

x

]
. (5.39)

Since Fy(λ∗) < 1, considering that one of Fy(0) and Fy(∞) is always at least unity

(5.35), Fy(λ∗) can never be a contender for the global maximum of Fy. Simple algebra

then reveals the global maximum is

max
λ∈I
F(λ) =





1 + x2

y2
, y ∈

(
0,
√
x2 + 1

]
,

1, y ∈
[√

x2 + 1,∞
)
.

(5.40)

The global minimum is less straightforward to compute. It is useful first to note the

inequalities x <
√
x2 + 1 < x2+1

x . Since Fy(∞) = 1, it is clearly going to be the global

minimum for y ∈ (0, x]. Then, since Fy(λ∗) < 1, it must be the global minimum on

at least the interval (x,
√
x2 + 1] where Fy(0) ≥ 1. The minimum of Fy(0) and Fy(λ∗)

over y ∈
(√

x2 + 1, x
2+1
x

)
is less clear. Notice though that both these functions are

strictly decreasing on this interval and that they are in fact equal at the right end-point:

F (x2+1)/x(0) = F (x2+1)/x(λ∗) = x2

x2+1
. It must be therefore that Fy(λ∗) is the smaller of
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the two. Summarizing this discussion, the global minimum of Fy is given by

min
λ∈[0,∞)

F(λ) =





1, y ∈ (0, x],

1

1 + (y − x)2
, y ∈

[
x, x

2+1
x

]
,

x2 + 1

y2
, y ∈

[
x2+1
x ,∞

)
.

(5.41)

Taking the ratio of (5.40) to (5.41) gives the condition number of (5.34). �

Lemma 5.3 (Optimal preconditioning for symmetric negative semi-definite A). The tight

condition number bound κ̃(Py) from (5.34) in Lemma 5.2 is minimized over y ∈ (0,∞) at

y = y∗, where

y∗ =
√
x2 + 1. (5.42)

Moreover, the minimum value of κ̃(Py) in (5.34) is

κ̃(Py∗) = 2
(
x2 − x

√
x2 + 1 + 1

)
. (5.43)

Proof. First observe from (5.34) that κ̃(Py) is strictly decreasing on the interval y ∈ (0, x)

where it is equal to x2+1
y2

, while it is strictly increasing on the interval y ∈
(
x2+1
x ,∞

)
where

it is equal to y2

x2+1
. Furthermore, κ̃(Py) is strictly increasing over y ∈

(√
x2 + 1, x

2+1
x

)

where it is equal to 1 + (y − x)2.

By the continuity of κ̃(Py) with respect to y, the global minimum of the function must

lie in the interval y ∈
[
x,
√

1 + x2
]
. To this end, consider the derivative of κ̃(Py) in this

interval, which may be expressed as

d

dy
κ̃(Py) = −2(x2 + 1)

xy3

(
x2 + 1

x
− y
)
, y ∈

(
x,
√
x2 + 1

)
. (5.44)

Clearly this function is negative for any y ∈
(

0, x
2+1
x

)
, and as noted in the previous proof,

x2+1
x >

√
x2 + 1. Therefore, d

dy κ̃(Py) < 0 when y ∈
(
x,
√
x2 + 1

)
, and, so, κ̃(Py) is strictly

decreasing. The global minimum of κ̃(Py) must occur at the right hand boundary of this

interval, y = y∗ =
√
x2 + 1. Finally, evaluating (5.34) at y = y∗ results in (5.43). �

Remark 5.4 (Original variables η, β, γ, and L̂). Restated in the original variables used

to define x, y, and A in (5.28), Lemma 5.3 states that when L̂ is symmetric negative

semi-definite, κ̃(Pγ) is minimized over γ ∈ (0,∞) at γ = γ∗, where

γ∗ =
√
η2 + β2, (5.45)
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and its associated minimum value is

κ̃(Pγ∗) = 2

(
η2

β2
− η

β

√
1 +

η2

β2
+ 1

)
. (5.46)

Furthermore, it is interesting to consider preconditioning with the naive choice of γ = η,

for which the condition number may be evaluated using (5.34) to give

κ̃(Pη) = κ̃(Px) = 1 +
1

x2
= 1 +

β2

η2
. (5.47)

As discussed previously, the result of Lemma 5.2 and Lemma 5.3 is essentially the same

as that of [4, Proposition 3.3]. Using the notation that η 7→ α and γ 7→ µ, one can see

that (5.46) is equivalent to [4, (3.24)].

From Remark 5.4 it is apparent that the condition number bounds for a fixed γ do not

depend on η and β independently but on their ratio; indeed, this trend will continue

throughout the rest of this chapter, where bounds will typically depend on β2/η2. It is

therefore pertinent to consider the size of this ratio for FIRK methods of interest. Table 5.1

provides values for some Gauss, Radau IIA, and Lobatto IIIC schemes that will be used

in the numerical results of Section 5.5. Clearly maxi β
2
i /η

2
i for a given family of FIRK

schemes tends to increase with the number of stages/order, but importantly, it seems not

to grow rapidly, and remains O(1) for a moderate number of stages. Nonetheless, there is

likely to be a degradation in Krylov convergence as the number of stages/order of the FIRK

method is increased due to there being an increase in values of maxi β
2
i /η

2
i . Furthermore,

for FIRK schemes with multiple complex-conjugate pairs of eigenvalues (e.g., the 4- and

5-stage methods in Table 5.1), it can be anticipated that the preconditioned Krylov solver

will not perform equally well on all of the different pairs, since those associated with larger

ratios of β2
i /η

2
i will converge more slowly.

A plot of the condition number bound κ̃(Pγ) as a function of β2

η2
is shown in the left-hand

side of Figure 5.1 for the optimal choice of γ = γ∗ and the naive choice of γ = η. Clearly

Table 5.1: Approximate values of β2
i /η

2
i , where {ηi ± iβi} are the complex-conjugate

eigenvalue pairs of A−10 ∈ Rs×s, for s-stage Gauss, Radau IIA, and Lobatto IIIC methods
with s ∈ {2, 3, 4, 5}. Gauss methods have an order of accuracy equal to 2s, Radau IIA
methods 2s−1, and Lobatto IIIC methods 2s−2. A−10 has s

2 complex-conjugate eigenvalue
pairs when s is even, and s−1

2 when s is odd.

s 2 3 4 5

β2
1/η

2
1 β2

1/η
2
1 β2

1/η
2
1 β2

2/η
2
2 β2

1/η
2
1 β2

2/η
2
2

Gauss 0.33 0.91 0.09 1.60 0.27 2.36

Radau IIA 0.50 1.29 0.11 2.21 0.32 3.20

Lobatto IIIC 1.00 2.21 0.13 3.51 0.38 4.88
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Figure 5.1: Linear FIRK: Eigenvalue-based analysis when L̂ is symmetric negative
semi-definite. Left: Condition number κ̃(Pγ) (5.32) for the optimal choice of γ = γ∗
(see (5.46)), and the naive choice of γ = η (see (5.47)). Right: Associated upper bounds
on the CG convergence factor ρ (5.48).

the optimal choice leads to a much smaller condition number that is bounded with respect

to β2

η2
. In fact, in [4] it was shown that κ̃(Pγ∗) ≤ 2.

As mentioned at the end of Section 5.2.1, the preconditioned operator Pγ (5.27) is sym-

metric positive definite when L̂ is symmetric negative semi-definite, and, so, the associated

linear system may be solved with CG which is more efficient for such problems than GM-

RES, for example. It is therefore of interest to develop CG convergence bounds based on

the above condition number bound. To this end, if ek denotes the algebraic error after k

preconditioned CG iterations, then it may be bounded by [82, (6.128)]

‖ek‖Pγ ≤ 2
[
ρ(κ(Pγ))

]k‖e0‖Pγ ≤ 2
[
ρ(κ̃(Pγ))

]k‖e0‖Pγ , ρ(z) :=

√
z − 1√
z + 1

, (5.48)

where ‖ · ‖Pγ =
√
〈Pγ ·, ·〉 denotes the norm defined by the SPD operator Pγ . The con-

vergence factor ρ(κ̃(Pγ)) is plotted in the right panel of Figure 5.1 for the specific cases of

γ = γ∗ (5.46) and γ = η (5.47). For the optimal choice of γ convergence is very fast and

remains so with increasing β2

η2
, while for the naive choice convergence is much slower and

deteriorates with increasing β2

η2
. This really highlights the importance of using γ∗ over η.

Moreover, since κ̃(Pγ∗) ≤ 2, it follows from (5.48) that ρ(κ̃(Pγ∗)) ≤ 1− 2√
2+1
. 0.172. Such

a small convergence factor independent of spatial discretization parameters and time-step

size confirm the robustness of the proposed preconditioner.

5.2.4 Eigenvalue analysis in the linear setting: The skew-symmetric case

Lemma 5.5 (Conditioning for skew-symmetric A). Suppose that A is skew symmetric,

then the square of the condition number κ̃(Py) in (5.32) that tightly bounds the condition
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number of the preconditioned operator Py in (5.29) is equal to

• x ∈ (0, 1] :

κ̃2(Py) =





F̂y(0)

F̂y(±µ∗)
, y ∈

(
0,
√
x2 + 1

]
,

1

F̂y(±µ∗)
, y ∈

[√
x2 + 1,∞

)
,

(5.49)

• x ∈ (1,∞) :

κ̃2(Py) =





F̂y(0), y ∈
(

0,
√
x2 − 1

]
,

F̂y(0)

F̂y(±µ∗)
, y ∈

[√
x2 − 1,

√
x2 + 1

]
,

1

F̂y(±µ∗)
, y ∈

[√
x2 + 1, x2+1√

x2−1

]
,

1

F̂y(0)
, y ∈

[
x2+1√
x2−1

,∞
)
,

(5.50)

where

F̂y(0) =

(
x2 + 1

y2

)2

, F̂y(±µ∗) =
4x2

y4 + 2(1− x2)y2 + (x2 + 1)2
. (5.51)

Proof. In this instance the eigenvalues Fy(λ) of Py are complex because the eigenvalues

λ of −A are imaginary. For this reason, it becomes simpler to consider the extrema of

| Fy(λ)|2 rather than | Fy(λ)| and hence the square of condition number (5.32) rather than

the condition number itself. To this end, let us define the squared magnitude of Fy as the

function

F̂y(µ) := |Fy(iµ)|2 =
µ4 + 2(x2 − 1)µ2 + (x2 + 1)2

(y2 + µ2)2
, µ ∈ (−∞,∞), (5.52)

where the eigenvalues of −A have been parametrized as λ = iµ with µ ∈ R. This function

is symmetric about µ = 0, so it is sufficient to analyze its behaviour on µ ∈ [0,∞).

Global extrema of F̂y with respect to µ may either occur at domain boundaries or where

its derivative vanishes. Considering first the boundary, one has

lim
µ→∞

F̂y(µ) = lim
µ→∞

1 + 2x
2−1
µ2

+ (x2+1)2

µ4

1 + 2 y
2

µ2
+ y4

µ4

=





1+, a ≤ 0,

1−, a > 0,
where a := 1− x2 + y2.

(5.53)
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This means that the derivative of F̂y(µ) satisfies the following bounds: limµ→∞
dF̂y
dµ > 0

if a > 0, and limµ→∞
dF̂y
dµ < 0 if a ≤ 0. The reason for also considering here the sign

of the derivative will become clear shortly. Next consider stationary points of F̂y. The

derivative of (5.52) can be expressed as

d F̂y
dµ

= 4µ
aµ2 − c

(µ2 + y2)3
, where c := (1 + x2)2 + (1− x2)y2. (5.54)

Clearly there are at most two points where the derivative vanishes on [0,∞):

µ = 0, µ = µ∗ :=

√
c

a
. (5.55)

The stationary point µ∗ is not defined when a = 0, and is to be discarded when sign(a) 6=
sign(c) since it would no longer be real.

Let us further examine the stationary point µ = 0. To this end, applying a Taylor series

expansion to (5.54) about µ = 0 gives

d F̂y
dµ

=
4µ

y6

[
−c+

(
a+

3c

y2

)
µ2 +O

(
µ4
)]
. (5.56)

Clearly when c > 0,
d F̂y
dµ < 0 at µ = 0+ and thus µ = 0 is a local maximum (F̂y is

decreasing at µ = 0+ if its derivative is negative there). Conversely, when c < 0,
d F̂y
dµ > 0

at µ = 0+ and thus µ = 0 is a local minimum. Calculations below will show that a > 0

whenever c = 0, and thus µ = 0 is also a local minimum when c = 0. This information

combined with the fact that there is at most one stationary point (i.e., µ∗) on (0,∞), and

that the sign of the derivative of F̂y is known as µ→∞ from (5.53) allows us to classify

the global extrema of F̂y as follows.

1. If c ≤ 0 then µ = 0 is a local minimum so that F̂y is increasing at µ = 0+

• If a > 0 then F̂y is increasing as µ → ∞, so there cannot be a turning point

on (0,∞). It must be the case that µ∗ is imaginary (or possibly a point of

inflection), F̂y(0) is the global minimum, and F̂y(∞) is the global maximum.

• If a ≤ 0 then F̂y is decreasing as µ → ∞, so there has to be a local (and

global) maximum on (0,∞). It must be the case that the global minimum is

the min(F̂y(0), F̂y(∞)), and the global maximum is F̂y(µ∗).
2. If c > 0 then µ = 0 is a local maximum so that F̂y is decreasing at µ = 0+

• If a ≤ 0 then F̂y is decreasing as µ → ∞, so there cannot be a turning point

on (0,∞). It must be the case that µ∗ is imaginary (or possibly a point of

inflection), F̂y(∞) is the global minimum, and F̂y(0) is the global maximum.
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• If a > 0 then F̂y is increasing as µ → ∞, there has to be a local (and global)

minimum on (0,∞). The global minimum is F̂y(µ∗), and the global maximum

is max(F̂y(0), F̂y(∞)).

This information is conveniently summarized in Table 5.2.

Table 5.2: Classification of global extrema of F̂y with respect to signs of coefficients a
and c.

global minimum global maximum

c ≤ 0, a > 0 F̂y(0) F̂y(∞)

c ≤ 0, a ≤ 0 min(F̂y(0), F̂y(∞)) F̂y(µ∗)
c > 0, a ≤ 0 F̂y(∞) F̂y(0)

c > 0, a > 0 F̂y(µ∗) max(F̂y(0), F̂y(∞))

In order to further classify the extrema with respect to the parameters x and y, it is

necessary to calculate the signs of the constants a (5.53) and c (5.54). To this end,

consider the following factorisations of c

c =





(1− x2)

(
y2 +

(x2 + 1)2

1− x2

)
, x ∈ (0,∞) \ 1, (5.57)

(x2 − 1)

(
x2 + 1√
x2 − 1

+ y

)(
x2 + 1√
x2 − 1

− y
)
, x ∈ (1,∞). (5.58)

From (5.54) and (5.57), c > 0 for x ∈ (0, 1]; it is also clear that a > 0 whenever x ∈ (0, 1].

Using the information from Table 5.2 when a and c are positive yields for x ∈ (0, 1]

max
µ∈(−∞,∞)

F̂y(µ) =





F̂y(0), y ∈
(

0,
√
x2 + 1

]
,

F̂y(±∞), y ∈
[√

x2 + 1,∞
)
,

(5.59)

min
µ∈(−∞,∞)

F̂y(µ) = F̂y(±µ∗). (5.60)

Taking the ratio of the maximum to the minimum and substituting F̂y(±∞) = 1 gives

the condition number (5.49).

Now consider the case of x ∈ (1,∞) which requires more careful attention. From (5.58),

the sign of c is equal to that of
(

x2+1√
x2−1

− y
)

since the first two factors are positive. The

constant a is non-positive for y ∈ (0,
√
x2 − 1], and positive for y ∈ (

√
x2 − 1,∞). Since√

x2 − 1 <
√
x2 + 1 < x2+1√

x2−1
, the single sign change of a occurs on the interval where c is
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positive. Piecing this together, the signs of the constants when x ∈ (1,∞) are

a ≤ 0, c > 0, y ∈
(

0,
√
x2 − 1

]
, (5.61)

a > 0, c > 0, y ∈
(√

x2 − 1,
x2 + 1√
x2 − 1

]
, (5.62)

a > 0, c ≤ 0, y ∈
(
x2 + 1√
x2 − 1

,∞
)
. (5.63)

Appealing to Table 5.2, the extrema of (5.52) when x ∈ (1,∞) can be calculated to be

max
µ∈(−∞,∞)

F̂y(µ) =





F̂y(0), y ∈
(

0,
√
x2 + 1

]
,

F̂y(±∞), y ∈
[√

x2 + 1,∞
)
,

(5.64)

min
µ∈(−∞,∞)

F̂y(µ) =





F̂y(±∞), y ∈
(

0,
√
x2 − 1

]
,

F̂y(±µ∗), y ∈
(√

x2 − 1, x2+1√
x2−1

]
,

F̂y(0), y ∈
(

x2+1√
x2−1

,∞
)
.

(5.65)

Taking the ratio of the maximum to the minimum and substituting F̂y(±∞) = 1 yields

(5.50). �

Lemma 5.6 (Optimal preconditioning for skew-symmetricA). The tight condition number

bound κ̃(Py) for which the square is given by (5.49) and (5.50) in Lemma 5.5 is minimized

over y ∈ (0,∞) at y = y∗, where

y∗ =
√
x2 + 1. (5.66)

Moreover, the minimum value of κ̃(Py) is

κ̃(Py∗) =

√
1 +

1

x2
. (5.67)

Proof. Let us first consider the bound (5.49) which applies for x ∈ (0, 1]. To this end,

consider the derivatives of the functions that piecewise define it, which can be conveniently

expressed as

d

dy

(
F̂y(0)

F̂y(±µ∗)

)
= − 1

y5

(
x2 + 1

x

)2

c(x, y), (5.68)

d

dy

(
1

F̂y(±µ∗)

)
=

y

x2
a(x, y), (5.69)
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where the (now) functions a and c are defined in (5.53) and (5.54), respectively. Recall from

the proof of Lemma 5.5 that a and c are always positive when x ∈ (0, 1]. Derivative (5.68)

is therefore always negative when y > 0, and thus κ̃2(Py) in (5.49) is strictly decreasing

on y ∈
(

0,
√
x2 + 1

)
where it is equal to

F̂y(0)

F̂y(±µ∗)
. Conversely, derivative (5.69) is always

positive for y > 0, which means that κ̃2(Py) is strictly increasing for y ∈
(√

x2 + 1,∞
)

where it is equal to 1

F̂y(±µ∗)
. By the continuity of κ̃2(Py), it must be the case that its

global minimum occurs at the interface y =
√
x2 + 1.

Now consider the bound κ̃2(Py) in (5.50) that applies for x ∈ (1,∞). From (5.62),

c > 0 when y ∈
(√

x2 − 1, x2+1√
x2−1

)
, so κ̃2(Py) must be strictly decreasing for y ∈

(√
x2 − 1,

√
x2 + 1

)
because its derivative is negative (5.68) (κ̃2(Py) =

F̂y(0)

F̂y(±µ∗)
on this

interval). Conversely, from (5.62) and (5.63) a > 0 for any y >
√
x2 − 1, so κ̃2(Py) must

be strictly increasing for y ∈
(√

x2 + 1, x2+1√
x2−1

)
because its derivative is negative (5.69)

(κ̃2(Py) = 1

F̂y(±µ∗)
on this interval). By continuity of the function, κ̃2(Py) must have a

local minimum at the interface y =
√
x2 + 1. To see that this local minimum is indeed a

global minimum, observe that F̂y(0) =
(
x2+1
y

)2
(5.51) is a strictly decreasing function for

y > 0, and therefore κ̃2(Py) is strictly decreasing on y ∈
(

0,
√
x2 − 1

)
where it is equal to

F̂y(0). Conversely, κ̃2(Py) is strictly increasing on y ∈
(

x2+1√
x2−1

,∞
)

where it is equal to
1

F̂y(0)
.

Thus, the minimum value of κ̃2(Py) for both x ∈ (0, 1] (5.49) and x ∈ (1,∞) (5.50) is

reached when y =
√
x2 + 1. Note that y =

√
x2 + 1 is also the minimizer of κ̃(Py) itself

since the function is non-negative.

Finally, the minimum value of κ̃(Py) given by (5.67) follows from evaluating either (5.49)

or (5.50) at y = y∗ and then taking the square root. �

Remark 5.7 (Original variables η, β, γ, and L̂). Restated in the original variables used

to define x, y, and A in (5.28), Lemma 5.6 states that when L̂ is skew symmetric, κ̃(Pγ)

is minimized over γ ∈ (0,∞) at γ = γ∗, where

γ∗ =
√
η2 + β2, (5.70)

and the associated minimum value is

κ̃(Pγ∗) =

√
1 +

β2

η2
. (5.71)
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Furthermore, it is interesting to consider preconditioning with the naive choice of γ = η,

for which the condition number may be evaluated using (5.49) or (5.50) to give

κ̃(Pη) = κ̃(Px) =

√
F̂x(0)

F̂x(±µ∗)
=

1

2

√
4 +

β2

η2

(
1 +

β2

η2

)
. (5.72)

Figure 5.2: Linear FIRK: Eigenvalue-based analysis when L̂ is skew symmetric. The
condition number bound κ̃(Pγ) is shown for the optimal choice of γ = γ∗ (see (5.71)),
and the naive choice of γ = η (see (5.72)).

The condition number bound κ̃(Pγ) is shown in Figure 5.2 for the optimal choice of

γ = γ∗ and the naive choice of γ = η. Clearly the optimal choice leads to a much

smaller condition number. Notice, however, that even for the optimal choice of γ∗ there

is slow growth in the condition number with β2

η2
; this is qualitatively different to when

L̂ is symmetric negative semi-definite, where the condition number is bounded by two

(see Figure 5.1). This is yet another manifestation of the well-known fact that iteratively

solving highly non-symmetric linear systems is often much more challenging than their

symmetric counterparts. Nonetheless, the condition number for γ∗ shown in Figure 5.2

remains O(1) for values of β2

η2
that are associated with very high-order FIRK methods (for

example, 8th, 9th, and 10th order; see Table 5.1), which shows the efficacy of the proposed

preconditioner, even for highly non-symmetric L̂.

Finally, notice that the optimal value of γ∗ (5.70) when L̂ is skew symmetric is the same

optimal value of γ∗ as when L̂ is symmetric negative semi-definite (5.45). This suggests

that perhaps the value of
√
η2 + β2 is optimal for more general L̂. This is indeed shown

to be the case in Section 5.4 where the condition number of the preconditioned operator

is re-examined without assumptions on the symmetry or normality of L̂.
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5.3 The nonlinear setting

This section considers the solution of the nonlinear stage equations (5.12) that result from

the application of FIRK methods to nonlinear ODEs (5.2). First, Section 5.3.1 proposes a

simple Newton algorithm for the solution of these nonlinear equations. A brief outline and

discussion of the remainder of the section is then given in Section 5.3.2, and an eigenvalue-

based analysis of the linear preconditioner in the simple Newton method is the subject of

Section 5.3.3.7

5.3.1 The algorithm: Simple Newton with real Schur decomposition

As discussed in Section 5.1.2, the nonlinear system of algebraic equations G(w) = 0 given

by (5.12) that define the FIRK stage vectors w is solved using a Newton-like method.

More specifically, recall that at each Newton-like iteration a linear system of the form

J
(
w(k)

)
∆(k+1) = −G

(
w(k)

)
, ∆(k+1) := w(k+1) −w(k), (5.73)

is (approximately) solved to produce a new nonlinear iterate w(k+1) ≈ w based on the

previous nonlinear iteratew(k), where J
(
w(k)

)
is some approximation to the true Jacobian

of G
(
w(k)

)
. Traditionally in the FIRK literature, the approximate Jacobian J taken to

have a Kronecker-product structure, resulting in a so-called simple Newton method [15, 8].

This is the approach we consider here also. Specifically, recalling in the nonlinear context

that (Li)si=1 are linearizations of the nonlinear operators (Ni)si=1, we define J as the

approximation to G
(
w(k)

)
in which (Li)si=1 are replaced by a constant L:

G′(w) = A−1
0 ⊗ IN − δt




L1

. . .

Ls


 ≈ J := A−1

0 ⊗ IN − δtIs ⊗ L . (5.74)

A primary motivation for considering a simple Newton algorithm is that solving a linear

system with matrix J in (5.74) can be decomposed into smaller problems by means of

a similarity transform of A−1
0 . The algorithm has several drawbacks, however, with one

being that only linear convergence can be achieved rather than the quadratic rate of an

exact Newton method.

So, let us now discuss the numerical solution of linear system (5.73) when J is given as in

(5.74). As for the linear FIRK algorithm (see Section 5.2.1), we introduce the shorthand

7The interested reader is directed to our article [90] for a discussion on closely related, but more
sophisticated Newton-like methods than the simple Newton method presented here.
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L̂ := δtL. Next, let Q0R0Q
>
0 = A−1

0 be the real Schur decomposition of A−1
0 , where

Q0 ∈ Rs×s is orthogonal (i.e., Q0Q
>
0 = I), and R0 ∈ Rs×s is block upper triangular.

Specifically, each block of R0 either (i) is equal to a real eigenvalue ζi of A−1
0 , or (ii)

corresponds to a complex-conjugate eigenvalue pair ηi± iβi of A−1
0 and takes the form of a

2× 2 block

[
ηi φi

−β2
i /φi ηi

]
, for some constant φi ∈ R. The approximate linearized system

(5.73) may then be transformed as

(
Q0R0Q

>
0 ⊗ IN − Is ⊗ L̂

)
∆(k+1) = −G

(
w(k)

)
, (5.75)

(
Q0 ⊗ IN

)(
R0 ⊗ IN − Is ⊗ L̂

)(
Q>0 ⊗ IN

)
∆(k+1) = −G

(
w(k)

)
, (5.76)

(
R0 ⊗ IN − Is ⊗ L̂

)[(
Q>0 ⊗ IN

)
∆(k+1)

]
= −

(
Q>0 ⊗ IN

)
G
(
w(k)

)
. (5.77)

Due to the block upper triangular structure of R0, the system matrix in (5.77) is block

upper triangular. This system can therefore be solved by block backward substitution,

which requires inverting each of the diagonal blocks. Diagonal blocks corresponding to real-

valued eigenvalues ζi of A−1
0 take the form (ζiI − L̂), and may be solved using standard

preconditioning techniques (note this is equivalent to the linear operator that arises in

an implicit Euler discretization). Conversely, blocks corresponding to complex-conjugate

eigenvalue pairs ηi ± iβi of A−1
0 are 2× 2 block matrices of the form

[
ηiI − L̂ φiI

−β2
i
φi
I ηiI − L̂

]
. (5.78)

We propose to invert blocks (5.78) using Krylov methods (e.g., GMRES) with block lower-

triangular preconditioners of the form

[
ηiI − L̂ 0

−β2
i
φi
I Ŝγi

]−1

, (5.79)

where Ŝγi is some approximation to the Schur complement Si of (5.78),

Si = ηiI − L̂+β2
i (ηiI − L̂)−1. (5.80)

Based on the structure of (5.80) when βi ≈ 0, preconditioners of the following form are

considered:

Ŝγi = γiI − L̂, γi ∈ (0,∞) (5.81)

with γi a free parameter. Notice that if βi ≈ 0, then γi = ηi is likely a good choice, but

as the forthcoming analysis will demonstrate, one can make a significantly better choice
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than γi = ηi for general βi 6≈ 0.

Moving forward, let us drop the subscript i, and instead refer to an arbitrary complex-

conjugate eigenvalue pair η± iβ. When applying GMRES to block 2×2 operators precon-

ditioned with lower triangular preconditioners of the form (5.79), convergence is exactly

defined by convergence of GMRES applied to the preconditioned Schur complement [93],

which in this instance is

Sγ := SŜ−1
γ =

[
(ηI − L̂) + β2(ηI − L̂)−1

]
(γI − L̂)−1. (5.82)

Notice that in applying the triangular preconditioner of (5.79), we must carry out linear

solves for the matrices ηiI − L̂ and Ŝγi . In practice, we do not perform these solves

exactly, but instead approximate them using an inexpensive preconditioner, such as a

single iteration of AMG, for example. However, the forthcoming analysis assumes that

these solves are carried out exactly. This situation is analogous to that for the analysis we

conducted previously for the linear problem (see Section 5.2.1).

5.3.2 Outline and assumptions for nonlinear eigenvalue analysis

The remainder of Section 5.3 is devoted to analysing the two-norm condition number of

the preconditioned Schur complement (5.82), and thus the robustness of a preconditioned

Krylov method applied to the larger 2×2 block system (5.78). In particular, Section 5.3.3

does so under the assumption that the spatial discretization L is symmetric negative semi-

definite. A value of γ = γ∗ in the preconditioned Schur complement (5.82) is identified

that minimizes a tight upper bound on its condition number. The associated condition

number of Sγ∗ is small but grows weakly with FIRK integration order; for example, it

is less than two for Gauss, Radau IIA, and Lobatto IIIC schemes with up to five stages

(see also 5.1). Note that no preconditioning analysis is presented for the case where L
is skew symmetric. This is because eigenvalue analysis of the nonlinear algorithm for

skew-symmetric L is significantly more complicated than it was in the linear setting (see

Section 5.2.4), and because the theory in Section 5.4 covers general non-symmetric L (i.e.,

not only those that are skew symmetric).

The forthcoming analysis is similar in spirit to those of Sections 5.2.3 and 5.2.4 for the linear

FIRK algorithm which is perhaps not surprising given that the preconditioned operator

Pγ (5.27) in the linear setting has a closely related structure to that of the preconditioned

Schur complement Sγ (5.82) (this connection will be discussed further in Section 5.4). In

fact, the same scaled variables and style of condition number bound are now reintroduced

here, so the reader is referred back to the discussion in Section 5.2.2 where they were
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originally presented for further details. Recall the scaled variables

x :=
η

β
, y :=

γ

β
, A :=

1

β
L̂ . (5.83)

Applying this change of variables to (5.82) yields the simpler preconditioned Schur com-

plement

Sy :=
[
(xI −A) + (xI −A)−1

]
(yI −A)−1, (5.84)

which has the same condition number as Sγ . When A is symmetric negative semi-definite,

the two-norm condition number κ(Sy) of (5.84) is given and tightly bounded by

κ(Sy) =

max
λ∈σ(−A)

| Fy(λ)|

min
λ∈σ(−A)

| Fy(λ)| ≤
max
λ∈[0,∞)

| Fy(λ)|

min
λ∈[0,∞)

| Fy(λ)| =: κ̃(Sy), (5.85)

where σ(−A) denotes the spectrum of −A, and the function Fy(λ) is the eigenvalue of

Sy associated with an eigenvalue λ of −A,

Fy(λ) =
(x+ λ)2 + 1

(x+ λ)(y + λ)
. (5.86)

5.3.3 Eigenvalue analysis in the nonlinear setting: The symmetric defi-

nite case

Lemma 5.8 (Conditioning for symmetric negative semi-definite A). Suppose that A is

symmetric negative semi-definite, then the condition number κ̃(Sy) in (5.85) that tightly

bounds the condition number of the preconditioned Schur complement Sy is equal to

• x ∈ (0, 1] :

κ̃(Sy) =





Fy(0), y ∈ (0, x],

Fy(0)

Fy(λ+)
, y ∈

[
x, x+ 1

x

]
,

1

Fy(λ+)
, y ∈

[
x+ 1

x ,∞
]
,

(5.87)
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• x ∈ (1,∞) :

κ̃(Sy) =





Fy(0), y ∈ (0, x],

Fy(0)

Fy(λ+)
, y ∈

[
x, x+ 1

x

]
,

1

Fy(λ+)
, y ∈

[
x+ 1

x , x
x2+1
x2−1

]
,

1

Fy(0)
, y ∈

[
xx

2+1
x2−1

,∞
)
,

(5.88)

where

Fy(0) =
1

y

(
x+

1

x

)
, Fy(λ+) =

2

1 +
√

1 + (y − x)2
. (5.89)

Proof. The bound κ̃(Sy) is calculated by identifying the global extrema of | Fy(λ)| over

λ ∈ [0,∞) =: I. Notice first from (5.86) that Fy(λ) > 0 for any λ ∈ I since x, y > 0, and

therefore | Fy(λ)| = Fy(λ) (in other words, Sy is positive definite when A is symmetric

negative semi-definite).

Global extrema may occur at the boundaries of I, or at stationary points (where the

derivative of Fy vanishes). Considering first the boundaries of I, one has

Fy(0) =
1

y

(
x+

1

x

)
, lim

λ→∞
Fy(λ) = lim

λ→∞

1 + 2x
λ + 1+x2

λ2

1 + x+y
λ + xy

λ2

=





1+, y ∈ (0, x],

1−, y ∈ (x,∞).
(5.90)

The latter result means that the derivative of Fy(λ) can be bounded as: limλ→∞
dFy
dλ < 0

if y ∈ (0, x], and limλ→∞
dFy
dλ > 0 if y ∈ (x,∞). The reason for considering the sign of the

derivative here will become clear shortly.

Now let us consider the derivative of Fy, which may be expressed as

dFy
dλ

=
(y − x)λ2 − 2(x2 − xy + 1)λ−

[
x(x2 + 1) + y(1− x2)

]

(x+ λ)2(y + λ)2
. (5.91)

Stationary points occur when the numerator of this function vanishes; solving this quadratic

equation reveals the pair of solutions λ = λ±,

λ± =
x2 + 1− xy ±

√
1 + (y − x)2

y − x , y ∈ (0,∞) \ x, (5.92)

and the single solution λ = −x 6∈ I when y = x. Clearly the latter solution is not a

stationary point of interest. It now needs to be determined when exactly λ± ∈ I. To this
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end, consider evaluating the function at these stationary points, which yields

Fy(λ±) =
2

1±
√

1 + (y − x)2
, y ∈ (0,∞) \ x. (5.93)

Clearly Fy(λ−) < 0, and thus it must be the case that λ− 6∈ I for y ∈ (0,∞) \ x since

Fy(λ) > 0 ∀λ ∈ I. Therefore, λ− is to be discarded as stationary point of interest. Con-

versely, however, Fy(λ+) > 0 for y ∈ (0,∞) \ x, but this is not a sufficient condition that

λ+ ∈ I since it can be the case that Fy (5.86) is positive for λ < 0. Indeed, further analysis

reveals that λ+ has sign changes on y ∈ (0,∞) \ x, but this quickly becomes complicated,

so let us pursue another path forward.

Keeping in mind that the sign of the derivative of Fy as λ → ∞ is known from (5.90),

and that there is at most one stationary point λ = λ+ on I, let us consider the slope of

Fy as λ→ 0+. From (5.91), the sign of the derivative can be determined as

• x ∈ (0, 1] :

sign

(
lim
λ→0+

dFy
dλ

)
= −1, (5.94)

• x ∈ (1,∞) :

sign

(
lim
λ→0+

dFy
dλ

)
=





−1, y ∈ (0, ŷ(x)),

0, y = ŷ(x),

1, y ∈ (ŷ(x),∞),

(5.95)

where,

ŷ(x) := x
x2 + 1

x2 − 1
> x+

1

x
> x, when x > 1. (5.96)

Combined with the information above, this can now be used to classify the extrema

of Fy as follows.

1. x ∈ (0, 1] : Fy is increasing as λ→ 0+.

(a) y ∈ (0, x] : Fy is decreasing as λ→∞, so there cannot be a turning point

on (0,∞). It must be that λ+ 6∈ I (or it is possibly a point of inflection),

Fy(∞) is the global minimum, and Fy(0) is the global maximum.

(b) y ∈ (x,∞) : Fy is increasing as λ → ∞, so there has to be a local (and

global) minimum on (0,∞). It must be that Fy(λ+) is the global minimum,

and the global maximum is max(Fy(0),Fy(∞)).

2. x ∈ (1,∞) :
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(a) y ∈ (0, x] : Fy is increasing as λ → 0+, and is decreasing as λ → ∞, so

there cannot be a turning point on (0,∞). It must be that λ+ 6∈ I (or it is

possibly a point of inflection), Fy(∞) is the global minimum, and Fy(0) is

the global maximum.

(b) y ∈ (x, ŷ(x)) : Fy is increasing as λ→ 0+, and is increasing as λ→∞, so

there has to be a local (and global) minimum on (0,∞). It must be that

Fy(λ+) is the global minimum, and the global maximum is max(Fy(0),Fy(∞)).

(c) y = ŷ(x) : Fy is constant as λ → 0+, and is increasing as λ → ∞, so

there cannot be a turning point on (0,∞). It must be that λ+ 6∈ I (or it is

possibly a point of inflection), Fy(0) is the global minimum, and Fy(∞) is

the global maximum.

(d) y ∈ (ŷ(x),∞) : Fy is increasing as λ→ 0+, and is increasing as λ→∞, so

there cannot be a turning point on (0,∞). It must be that λ+ 6∈ I (or it is

possibly a point of inflection), Fy(0) is the global minimum, and Fy(∞) is

the global maximum.

Combining all of this allows for the global maximum of Fy to be computed as

max
λ∈I
Fy(λ) =




Fy(0), y ∈

(
0, x+ 1

x

]
,

Fy(∞), y ∈
[
x+ 1

x ,∞
)
,

(5.97)

and the global minimum as

• x ∈ (0, 1] :

min
λ∈I
Fy(λ) =




Fy(∞), y ∈ (0, x],

Fy(µ+), y ∈ [x,∞),
(5.98)

• x ∈ (1,∞) :

min
λ∈I
Fy(λ) =





Fy(∞), y ∈ (0, x],

Fy(µ+), y ∈ [x, ŷ(x)],

Fy(0), y ∈ [ŷ(x),∞).

(5.99)

Finally, the condition numbers (5.87) and (5.88) follow from taking the ratio of (5.97) to

(5.98) and (5.99) and substituting Fy(∞) = 1. �

Lemma 5.9 (Optimal preconditioning for symmetric negative semi-definite A). The tight

condition number bound κ̃(Sy) in (5.87)/ (5.88) from Lemma 5.8 is minimized over y ∈
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(0,∞) at y = y∗, where

y∗ = x+
1

x
. (5.100)

Moreover, the minimum value of κ̃(Sy) is

κ̃(Py∗) =
1

2

(
1 +

√
1 +

1

x2

)
. (5.101)

Proof. The function Fy(0) = 1
y

(
x+ 1

x

)
is strictly decreasing for y > 0, and thus κ̃(Sy)

is strictly decreasing on (0, x) where it is equal to Fy(0). Conversely, when x ∈ (1,∞),

κ̃(Sy) is strictly increasing on
(
xx

2+1
x2−1

,∞
)

where it is equal to 1
Fy(0) .

The function 1
Fy(λ+) =

1+
√

1+(y−x)2

2 is clearly increasing whenever y > x, and thus κ̃(Sy)
is strictly increasing for y ∈

(
x+ 1

x ,∞
)

when x ∈ (0, 1], and for y ∈
(
x+ 1

x , x
x2+1
x2−1

)
when

x ∈ (1,∞) where it is equal to 1
Fy(λ+) .

In summary, κ̃(Sy) is strictly decreasing on y ∈ (0, x), and is it strictly increasing on

y ∈
(
x+ 1

x ,∞
)

(except possibly at the point y = xx
2+1
x2−1

when x ∈ (1,∞) where it may

only be increasing). Therefore the global minimum of κ̃(Sy) must occur on y ∈
[
x, x+ 1

x

]
,

where it is equal to
Fy(0)
Fy(λ+) . The behaviour of this function is not immediately obvious, so

let us consider its derivative, which may be expressed as

d

dy

( Fy(0)

Fy(λ+)

)
= − x2 + 1

2xy2
√

1 + (y − x)2

(
x2 + 1− xy +

√
1 + (y − x)2

)
. (5.102)

Note that since x > 0, it is the case that x2 + 1− xy > 0 whenever y < x+ 1
x . Therefore

the second term in the above product is positive whenever y < x+ 1
x , and clearly the first

is always negative so that d
dy

(
Fy(0)
Fy(λ+)

)
< 0 whenever y < x+ 1

x , and thus κ̃(Sy) is strictly

decreasing for y ∈
(
x, x+ 1

x

)
.

By the continuity of κ̃(Sy) in y, it must be the case that it is minimized at the interface

y = y∗ = x+ 1
x . Evaluating (5.87)/(5.88) at y = x+ 1

x yields (5.101). �

Remark 5.10 (Original variables η, β, γ, and L̂). Restated in the original variables used

to define x, y, and A in (5.83), Lemma 5.9 states that when L̂ is symmetric negative

semi-definite, κ̃(Sγ) is minimized over γ ∈ (0,∞) at γ = γ∗, where

γ∗ = η +
β2

η
, (5.103)
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Figure 5.3: Nonlinear FIRK: Eigenvalue-based analysis when L̂ is symmetric negative
semi-definite. The condition number bound κ̃(Sγ) is shown for the optimal choice of
γ = γ∗ (see (5.104)), and the naive choice of γ = η (see (5.105)).

and the associated minimum value is

κ̃(Sγ∗) =
1

2

(
1 +

√
1 +

β2

η2

)
. (5.104)

Furthermore, it is interesting to consider preconditioning with the naive choice of γ = η,

for which the condition number may be evaluated using (5.87)/ (5.88) to give

κ(Sη) = κ(Sx) = 1 +
1

x2
= 1 +

β2

η2
. (5.105)

The condition number upper bound κ̃(Sγ) is shown in Figure 5.3 for the optimal choice of

γ = γ∗ and for the naive choice of γ = η. The optimal choice clearly yields a much smaller

condition number than γ = η. While κ̃(Sγ∗) is unbounded with respect to β2

η2
(see (5.104)),

it grows only very slowly and remains O(1) for moderate values of β2

η2
that correspond to

high-order FIRK integration. For example, for 5-stage Gauss, Radau IIA, and Lobatto

IIIC, β2

η2
does not exceed five (see Table 5.1), so the condition number (5.104) is always

less than 1.725. This indicates that Krylov convergence will be fast in practice, even for

high-order FIRK integration.

5.4 Field-of-values-based linear preconditioning theory

In this section, the condition number of the preconditioned operator arising in the linear

FIRK algorithm (see Section 5.2.1) is analyzed again, and so too is the condition number



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 5: Fully implicit Runge-Kutta methods for method of lines 175

of the preconditioned Schur complement that arises in the nonlinear FIRK algorithm (see

Section 5.3.1). The previous eigenvalue-based condition number analyses of Sections 5.2.3,

5.2.4 and 5.3.3 assumed that the spatial discretization L was symmetric or skew symmetric.

The analysis in this section removes these assumptions of symmetry or skew symmetry.

Here, we instead works with the much more general Assumption 5.2: The field of values

of L lies in the closed left half plane. That is, we make no assumption on the symmetry

of L, let alone its normality.8

The analysis in this section provides upper bounds on condition numbers of preconditioned

operators over the space of all operators L satisfying Assumption 5.2, and perhaps not

surprisingly, such bounds are pessimistic in cases when L is symmetric definite. Therefore if

one is genuinely interested in solving PDEs with symmetric definite L, then the eigenvalue

analyses of Sections 5.2.3 and 5.3.3 should be considered instead. On the other hand,

it turns out that the upper bounds derived here over the space of operators L satisfying

Assumption 5.2 achieve equality for skew-symmetric L. In fact, much of the general theory

derived in this section was motivated by results learned in the skew-symmetric eigenvalue

analysis of Section 5.2.4, as the careful reader may notice.

Let us begin by observing that the preconditioned operator Pγ (5.27) in the linear algo-

rithm and the preconditioned Schur complement Sγ (5.82) in the nonlinear algorithm are

closely related. Specifically, they may be written as

Pγ =
[
(ηI − L̂)2 + β2I

]
(γI − L̂)−1(γI − L̂)−1, (5.106)

Sγ =
[
(ηI − L̂)2 + β2I

]
(ηI − L̂)−1(γI − L̂)−1. (5.107)

Given the structure of these operators, it becomes of interest to consider a more general

preconditioned operator that depends on two separate constants δ, γ:

Gδ,γ :=
[
(ηI − L̂)2 + β2I

]
(δI − L̂)−1(γI − L̂)−1, δ, γ ∈ (0,∞). (5.108)

Operators (5.106) and (5.107) are then special cases of this general preconditioned opera-

tor:

Pγ ≡ Gγ,γ , Sγ ≡ Gη,γ . (5.109)

The remainder of this section is structured as follows. First, Theorem 5.11 derives tight

bounds on the 2-norm condition number of Gδ,γ (5.108) over all L̂ that satisfy Assump-

tion 5.2, and further derives the value of γ = γ∗ = γ∗(δ) that minimizes this upper bound

8Note that symmetric and skew symmetric matrices are examples of normal matrices, since a real matrix
A is normal if A>A = AA>.
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for any δ ∈ (0,∞). Corollary 5.15 then shows that the optimal preconditioned operator

of the form (5.108) is Gγ∗,γ∗ , in the sense that it has the minimum maximum condition

number over all L̂ satisfying Assumption 5.2:

κ(Gγ∗,γ∗) = min
δ,γ∈(0,∞)

max
L̂

κ(Gδ,γ), with γ∗ =
√
η2 + β2. (5.110)

Since Gγ∗,γ∗ = Pγ∗ , an immediate consequence of this is that the preconditioner (γ∗I−L̂)−2

used in Pγ∗ is optimal (in the above sense) over the space of general preconditioners

(δI −L̂)−1(γI −L̂)−1 for δ, γ ∈ (0,∞). This is the justification for having restricted Pγ in

Section 5.2 to use preconditioners of the form (γI−L̂)−2 rather than the more general form

(δI − L̂)−1(γI − L̂)−1. Corollary 5.15 also provides tight bounds on the condition number

of Pγ∗ = Gγ∗,γ∗ , where the optimal constant in this case is γ∗ =
√
η2 + β2. Notice the

optimal constant is the same as that identified in Sections 5.2.3 and 5.2.4 where eigenvalue

analysis was used under the assumption that L was symmetric definite or skew symmetric,

respectively.

Finally, Corollary 5.16 uses the results of Theorem 5.11 to identify the value of γ = γ∗(η)

that leads to the minimization of the maximum condition number of Sγ in (5.107) over all

L̂ satisfying Assumption 5.2. Corollary 5.16 also provides tight bounds on the condition

number of Sγ∗ , where the optimal constant in this case is γ∗ = η + β2

η . Notice that the

optimal constant is the same as that identified in Section 5.3.3 using eigenvalue analysis

under the assumption that L was symmetric definite.

Theorem 5.11 (Optimal preconditioning with (5.108)). Suppose Assumptions 5.1 and 5.2

hold, that is, η > 0 and W (L̂) ≤ 0, and suppose L̂ ∈ RN×N . Let Gδ,γ denote the precon-

ditioned operator in (5.108), and κ(Gδ,γ) denote its two-norm condition number. Finally,

define γ∗ by

γ∗ :=
η2 + β2

δ
. (5.111)

Then

κ(Gδ,γ∗) ≤
1

2η

(
δ +

η2 + β2

δ

)
=

1

2η
(δ + γ∗). (5.112)

Moreover, (i) bound (5.112) is tight when considered over all L̂ ∈ RN×N satisfying As-

sumption 5.2 in the sense that ∃ L̂ such that (5.112) holds with equality, and (ii) γ = γ∗

is optimal in the sense that, without further assumptions on L̂, γ∗ minimizes a tight upper
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bound on κ(Gδ,γ):

γ∗(δ) = arg min
γ∈(0,∞)

max
L̂

κ(Gδ,γ), or κ(Gδ,γ∗(δ)) = min
γ∈(0,∞)

max
L̂

κ(Gδ,γ). (5.113)

Proof. To aid in the readability of the proof of this Theorem, it is proved by the following

sequence of three lemmas, which successively prove: the upper bound (5.112); tightness

of this upper bound; and, the optimality of γ∗. Together, the three lemmas complete the

proof. �

Lemma 5.12 (Upper bound). Under the assumptions of Theorem 5.11, the upper bound

κ(Gδ,γ∗) ≤ 1
2η

(
δ + η2+β2

δ

)
in (5.112) holds.

Proof. The square of the condition number of Gδ,γ is given by

κ2(Gδ,γ) = ‖ Gδ,γ ‖2‖ G−1
δ,γ ‖2 = max

v 6=0

‖ Gδ,γ v‖2
‖v‖2

1

min
v 6=0

‖ Gδ,γ v‖2
‖v‖2

, (5.114)

where, for real-valued L̂, the max and min can be obtained by restricting v to be real

valued. The key step in establishing the upper bound (5.112) is bounding ‖ Gδ,γ ‖2 and

‖ G−1
δ,γ ‖2 from above, which will be done by bounding ‖ Gδ,γ v‖2/‖v‖2 from above and

below, respectively. Considering the form of the preconditioned operator Gδ,γ in (5.108),

it is advantageous to make the substitution v 7→ (γI−L̂)(δI−L̂)w. The quantity ‖ Gδ,γ v‖2

can then be expanded for real-valued v (and, thus, real-valued w) as

‖ Gδ,γ v‖2 =
∥∥[(ηI − L̂)2 + β2]w

∥∥2
,

=
∥∥[(η2 + β2)w − 2η L̂w + L̂2

w
∥∥2

=
∥∥(η2 + β2)w + L̂2

w
∥∥2−4η(η2 + β2)〈L̂w,w〉 − 4η〈L̂(L̂w), L̂w〉+ 4η2

∥∥ L̂w
∥∥2
.

(5.115)

Similarly, expanding ‖v‖2 yields

‖v‖2 =
∥∥(γI − L̂)(δI − L̂)w

∥∥2
,

=
∥∥ δγw − (δ + γ) L̂w + L̂2

w
∥∥2
,

=
∥∥ δγw + L̂2

w
∥∥2−2δγ(δ + γ)〈L̂w,w〉 − 2(δ + γ)〈L̂(L̂w), L̂w〉+ (δ + γ)2

∥∥ L̂w
∥∥2
.

(5.116)
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The key ratio in (5.114) can be written in the form

‖ Gδ,γ v‖2
‖v‖2 =

c0(w)f0(w) + c1f1(w) + c2f2(w) + c3f3(w)

f0(w) + f1(w) + f2(w) + f3(w)
, (5.117)

where for δ, γ > 0, the following functions and constants have been defined

f0 :=
∥∥ δγw + L̂2

w
∥∥2 ≥ 0, c0 :=

∥∥(η2 + β2)w + L̂2
w
∥∥2

∥∥ δγw + L̂2
w
∥∥2

≥ 0,

f1 := −2δγ(δ + γ)〈L̂w,w〉 ≥ 0, c1 :=
η2 + β2

δγ

2η

δ + γ
> 0,

f2 := −2(δ + γ)〈L̂(L̂w), L̂w〉 ≥ 0, c2 :=
2η

δ + γ
> 0,

f3 := (δ + γ)2
∥∥ L̂w

∥∥2 ≥ 0, c3 :=

(
2η

δ + γ

)2

> 0.

(5.118)

Note that functions f1 and f2 are non-negative by assumption of W (L̂) ≤ 0, while for all

w 6= 0, it must hold that either c0f0 > 0 or c3f3 > 0 (or both, because c3f3 = 0 i.f.f.

L̂w = 0, which implies c0f0 > 0 for w 6= 0).

Since all of the addends in the numerator and denominator of (5.117) are non-negative,

and at least one addend in each is positive, (5.117) can simply be bounded as

min{c0, c1, c2, c3} =: cmin ≤
‖Gδ,γ v‖2
‖v‖2 ≤ cmax := max{c0, c1, c2, c3}.

Applying these bounds to the norms in (5.114) yields

‖ Gδ,γ ‖ ≤
√
cmax, ‖ G−1

δ,γ ‖ ≤
1√
cmin

. (5.119)

Bounding cmin and cmax for general γ ∈ (0,∞) is difficult due to the difficulty of bounding

c0 (5.118). Specifically, the sign of 〈L̂2
w,w〉 (which appears in expanding the squared

norms in both the numerator and denominator of c0) is not known for general L̂, noting

that the sign of W (L̂) does not determine that of W (L̂2
). However, observe from (5.118)

that the judicious choice of γ = γ∗ := (η2 + β2)/δ yields c0(w) = 1. Moreover, in the final

part of this proof (i.e., in the proof of Lemma 5.14) it will be shown that γ = γ∗ is optimal,

and, as such, moving forward let us limit our consideration to γ = γ∗ when bounding cmin

and cmax.

Letting γ = γ∗ := (η2 + β2)/δ, from (5.118) one has c0 = 1 ≥ c1 = c2 =
√
c3 =

2η/(δ + γ∗), where the inequality 1 ≥ 2η/(δ + γ∗) follows by noting the equivalent re-

lation (δ2 − 2ηδ + η2) + β2 ≥ 0 for all η, δ > 0. Thus, for γ = γ∗, the bounds in (5.119)
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are given by

‖ Gδ,γ∗ ‖ ≤ 1, ‖ G−1
δ,γ∗
‖ ≤ δ + γ∗

2η
=

1

2η

(
δ +

η2 + β2

δ

)
(5.120)

Applying these bounds to the condition number (5.114) yields the upper bound in (5.112).

�

Let us now show that bound (5.112) is tight. We do so by construction, showing that

equality is achieved for certain matrices that satisfy Assumption 5.2.

Lemma 5.13 (Tightness). Under the assumptions of Theorem 5.11, ∃ L̂ such that the

upper bound κ(Gδ,γ∗) ≤ 1
2η

(
δ + η2+β2

δ

)
in (5.112) holds with equality.

Proof. Note that the min/max of ‖ Gδ,γ v‖2/‖v‖2 over v for real-valued Gδ,γ is equivalent

when minimizing over real or complex v; let us now consider complex v for theoretical

purposes. To that end, let v = (γI−L̂)(δI−L̂)w, but suppose that (iξ,w) is an eigenpair

of L̂, with ξ a real number and w a complex eigenvector. Plugging into the expression

for ‖ Gδ,γ v‖2 in (5.115) and ‖v‖2 in (5.116), and taking the ratio as in (5.117), define the

following function of ξ:

Hδ,γ(ξ) :=
‖ Gδ,γ v‖2
‖v‖2

∣∣∣∣
L̂w=iξw

=
|(η − iξ)2 + β2|2

|(δγ − ξ2 − i(δ + γ)ξ|2 =
(δγ∗ − ξ2)2 + (2ηξ)2

(δγ − ξ2)2 + [ξ(δ + γ)]2
,

(5.121)

where the fact that δγ∗ = η2 + β2 has been made use of. By virtue of restricting that w

be an eigenvector (rather than any vector in RN ), from (5.114) one has

1

‖ G−1
δ,γ ‖2

= min
v 6=0

‖ Gδ,γ v‖2
‖v‖2 ≤ Hδ,γ(ξ) ≤ max

v 6=0

‖ Gδ,γ v‖2
‖v‖2 = ‖ Gδ,γ ‖2. (5.122)

In other words, any value of 1/Hδ,γ(ξ) serves as a lower bound on ‖ G−1
δ,γ ‖2, while any value

of Hδ,γ(ξ) serves as a lower bound on ‖ Gδ,γ ‖2. Therefore, the ratio of any two values of

Hδ,γ(ξ) provides a lower bound on ‖ Gδ,γ ‖2/‖ G−1
δ,γ ‖2 = κ2(Gδ,γ).

Let us now show that bound (5.112) on κ(Gδ,γ∗) is tight. Considering (5.121) at the

judiciously chosen eigenvalues of iξ = {0,±i
√
δγ∗}, one has

Hδ,γ(0) =
γ2
∗
γ2
, Hδ,γ(±

√
δγ∗) =

(2η)2γ∗
δ(γ − γ∗)2 + γ∗(δ + γ)2

. (5.123)

First observe from (5.122) and (5.123) that ‖ Gδ,γ∗ ‖2 ≥ Hδ,γ∗(0) = 1, and thus the upper

bound on ‖ Gδ,γ∗ ‖ given by (5.120) achieves equality for a matrix L̂ having an eigenvalue

of ξ = 0. Secondly, observe from (5.122) and (5.123) that ‖ G−1
δ,γ∗
‖2 ≥ 1/Hδ,γ∗(±

√
δγ∗) =
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[(δ + γ∗)/(2η)]2, and thus the upper bound on ‖ G−1
δ,γ∗
‖ given by (5.120) achieves equality

for a matrix L̂ having eigenvalues iξ = ±i
√
δγ∗. Therefore, bound (5.112) on κ(Gδ,γ∗)

achieves equality for any matrix L̂ having eigenvalues {0,±i
√
δγ∗}. �

Lastly, having shown that (5.112) is tight, let us now show that γ = γ∗ is optimal in terms of

minimizing the maximum condition number over all L̂ ∈ RN×N satisfying Assumption 5.2,

by showing that ∃ matrices L̂ for which κ(Gδ,γ) > κ(Gδ,γ∗) for any γ ∈ (0,∞) \ γ∗.

Lemma 5.14 (Optimality of γ∗). Under the assumptions of Theorem 5.11, γ = γ∗ is

optimal in the sense that it minimizes a tight upper bound on κ(Gδ,γ) over γ ∈ (0,∞):

γ∗ = arg min
γ∈(0,∞)

max
L̂

κ(Gδ,γ), as in (5.113).

Proof. As in the proof of Lemma 5.13, consider a matrix L̂ with eigenvalues {0,±i
√
δγ∗},

such that κ(Gδ,γ∗) = (δ + γ∗)/(2η). Also from the proof of Lemma 5.13, let us consider

the lower bound Hδ,γ(ξ1)/Hδ,γ(ξ2) ≤ κ2(Gδ,γ) with judiciously chosen values of ξ1 and ξ2.

Specifically, from (5.122), and (5.123), one has for 0 < γ < γ∗,

κ2(Gδ,γ∗) =
(δ + γ∗)

2

(2η)2
<
γ∗[δ(γ − γ∗)2 + γ∗(δ + γ)2]

(2ηγ)2
=

Hδ,γ(0)

Hδ,γ(±√δγ∗)
≤ κ2(Gδ,γ). (5.124)

To see why the first inequality in (5.124) holds, note that η, γ > 0 and multiply both sides

by (2ηγ)2 and then subtract the term on the left hand side to get the equivalent inequality

γ∗δ(γ − γ∗)2 +
[(
γ∗(δ + γ)

)2 −
(
γ(δ + γ∗)

)2]
= γ∗δ(γ − γ∗)2 +

[
δ(γ∗ − γ)[2γ∗γ + δ(γ∗ + γ)

]
> 0.

(5.125)

Clearly the latter form of the inequality is satisfied when γ ∈ (0, γ∗) because because both

terms in the sum are positive since γ∗, δ > 0.

Now let us reconsider the lower bound Hδ,γ(ξ1)/Hδ,γ(ξ2) ≤ κ2(Gδ,γ) with a different choice

of ξ1 than above. Specifically, suppose that L̂ has eigenvalues iξ → ±i∞, which, when

substituted into (5.121), yields limξ→±∞Hδ,γ(ξ) = 1. Combining with (5.122) and (5.123),

one has for γ∗ < γ <∞,

κ2(Gδ,γ∗) =
(δ + γ∗)

2

(2η)2
<
δ(γ − γ∗)2 + γ∗(δ + γ)2

(2η)2γ∗
=
Hδ,γ(±∞)

Hδ,γ(±√δγ∗)
≤ κ2(Gδ,γ). (5.126)

To see why the first inequality in (5.126) holds, note that η, γ∗ > 0 and multiply both sides

by (2η)2γ∗ then subtract the term on the left hand side to get the equivalent inequality

δ(γ − γ∗)2 + γ∗

[
(δ + γ)2 − (δ + γ∗)

2
]

= δ(γ − γ∗)2 + γ∗

[
(γ − γ∗)(2δ + γ + γ∗)

]
> 0.

(5.127)
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Clearly the latter form of this inequality is satisfied when γ ∈ (γ∗,∞) because both terms

in the sum are positive since δ, γ∗ > 0.

By construction in (5.124) and (5.126), it has been shown that ∃ L̂ satisfying the assump-

tions of Theorem 5.11 (namely those with eigenvalues {0,±i
√
η2 + β2,±i∞}) for which

κ(Gδ,γ) > κ(Gδ,γ∗) = (δ + γ∗)/(2η) for all γ ∈ (0,∞) \ γ∗. Since κ(Gδ,γ∗) ≤ (δ + γ∗)/(2η)

for general L̂ satisfying the assumptions of Theorem 5.11, it holds that γ = γ∗ is the

minimizer over γ ∈ (0,∞) of a tight upper bound on κ(Gδ,γ), γ∗ = arg min
γ∈(0,∞)

max
L̂

κ(Gδ,γ) as

in (5.113). �

Having proved Theorem 5.11, let us now utilize this result to identify the optimal value

of δ ∈ (0,∞) that leads to the minimization of the maximum condition number of Gδ,γ∗(δ)
when considered over all L̂ satisfying Assumption 5.2.

Corollary 5.15 (Optimal preconditioning of Gδ,γ with δ = γ = γ∗). Suppose that the

assumptions of Theorem 5.11 hold, then Gγ∗,γ∗ has the minimum condition number of all

Gδ,γ for δ, γ ∈ (0,∞) when considered over all L̂ ∈ RN×N satisfying Assumption 5.2,

κ(Gγ∗,γ∗) = min
δ,γ∈(0,∞)

max
L̂

κ(Gδ,γ), (5.128)

where

γ∗ =
√
η2 + β2. (5.129)

Moreover, the minimum condition number is tightly bounded by

κ(Gγ∗,γ∗) ≤
√

1 +
β2

η2
. (5.130)

Proof. In Theorem 5.11 it was shown that for any δ ∈ (0,∞) a tight upper bound on

the condition number of κ(Gδ,γ) over all L̂ is minimized with respect to γ ∈ (0,∞) when

γ = γ∗(δ), with its minimum value given by (5.112). Now our task is to minimize this

tight upper bound with respect to δ ∈ (0,∞), and thus minimize the the maximum of

κ(Gδ,γ) for δ, γ ∈ (0,∞) when considered over all L̂. To this end, consider the derivative

of the bound (5.112) on κ(Gδ,γ∗(δ)) with respect to δ:

d

dδ

[
1

2η

(
δ +

η2 + β2

δ

)]
=

1

2η

(
1− η2 + β2

δ2

)
. (5.131)

For δ > 0 there is only one stationary point, which occurs at δ =
√
η2 + β2. Since the

bound (5.112) is increasing as δ → 0+ and δ → ∞, the stationary point δ =
√
η2 + β2
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must be a local minimum. The associated optimal value of γ∗(δ) is calculated from (5.111)

by substituting δ =
√
η2 + β2, which gives γ∗(δ) =

√
η2 + β2.

Finally, the associated upper bound of (5.130) follows from (5.112) after substituting

δ =
√
η2 + β2. �

Finally, let us utilize the results of Theorem 5.11 to determine the optimal value of γ for

use in the preconditioned Schur complement operator (5.107) that arises in the nonlinear

FIRK algorithm.

Corollary 5.16 (Optimal preconditioning with Sγ of (5.107)). Suppose that the assump-

tions of Theorem 5.11 hold. Then the preconditioned Schur complement Sγ∗ has the min-

imum condition number of all Sγ for γ ∈ (0,∞) when considered over all L̂ ∈ RN×N

satisfying Assumption 5.2,

κ(Sγ∗) = min
γ∈(0,∞)

max
L̂

κ(Sγ), (5.132)

where

γ∗ = η +
β2

η
. (5.133)

Moreover, the minimum condition number is tightly bounded by

κ(Sγ∗) ≤ 1 +
β2

2η2
. (5.134)

Proof. The preconditioned Schur complement Sγ (5.107) is equivalent to the more general

preconditioned operator Gδ,γ (5.108) analyzed in Theorem 5.11 when δ = η: Sγ ≡ Gη,γ .

The value of γ = γ∗(δ) that minimizes a tight upper bound on κ(Gδ,γ) over γ ∈ (0,∞) is

given by (5.133), and the associated upper bound on κ(Gδ,γ∗(δ)) is given by (5.112). Upon

substituting δ = η into these expressions, results (5.133) and (5.134) follow immediately.

�

5.5 Numerical results

In this section, numerical tests are conducted for the linear and nonlinear FIRK algorithms

that were presented and analyzed in Sections 5.2 and 5.3, respectively. Experiments are

conducted on PDEs with known solutions so that the accuracy of the software implemen-

tation and the FIRK methods can be verified. Numerical tests are also conducted to verify

the linear preconditioning theory of the previous sections. Tests for linear problems are

given in Section 5.5.1, and then nonlinear problems in Section 5.5.2.
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It should be noted that the test problems considered here are not particularly challenging in

the sense that they are not highly non-symmetric, nor do they suffer from order reduction,

for example. This section is meant to serve more as a testing ground to complement the

linear preconditioning theory, and to confirm that our implementation of the methods

provided in [89] functions as expected (these test problems were used in the development

of package [89]).9

The numerical results shown here have used our implementation of the FIRK algorithms

provided in the software package [89]. Package [89] is a C++ code developed for this

work that derives several classes from the MFEM library [1], with the primary ones being

TimeDependentOperator and ODESolver. It also uses explicitly several of MFEM’s classes

such as its Krylov and Newton solvers, for example. It is straightforward to use [89] if one

uses a spatial discretization from the MFEM library (it provides numerous finite-element

discretizations), or if one has a discretization that is already interfaced or coupled with

MFEM. Specifically, the user has to provide several key computational kernels associated

with the ODEs du
dt = N (u, t) from (5.2). These are: the action of N ; the action of Li,

which is a linearization of N ; and preconditioners for linear operators of the form αI−δtLi
for some constant α.

Roughly speaking, provided with these basic computational kernels, [89] is able to ap-

ply arbitrarily high-order FIRK methods to the ODEs du
dt = N (u, t) using the algorithms

described in this chapter, including more sophisticated Newton methods than the simple

Newton method described in Section 5.3.1. In order to apply the algorithms for a specific

FIRK scheme, information associated with its Butcher tableau (5.3) is required, as de-

scribed earlier in the chapter. For both the linear and nonlinear algorithms, the Butcher

tableau itself does not provide enough information since additional quantities are needed

such as the eigenvalues of A−1
0 , the adjugate of the matrix A−1

0 − xIs, or the real Schur

decomposition of A−1
0 , for example. The required Butcher tableau data is implemented

in [89] for a collection of DIRK and FIRK schemes, including 1–5 stage Gauss, Radau

IIA, and Lobatto IIIC methods. In principle, the code can be used to apply other FIRK

schemes provided the user specifies the necessary quantities associated with the Butcher

tableau.

5.5.1 The linear setting

This section considers numerical tests for the linear FIRK algorithm from Section 5.2. The

test problem is chosen as the following constant-coefficient advection-diffusion equation in

9Additional test problems may be found in our articles [91, 90], some of which are more challenging
than those presented here.
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two spatial dimensions:

ut + 0.85ux + uy = 0.3uxx + 0.25uyy + s(x, y, t), (x, y, t) ∈ (−1, 1)2 × (0, 2]. (5.135)

The PDE is posed on a periodic spatial domain, and the source term s(x, y, t) is chosen

such that the solution of the PDE is u(x, y, t) = sin4(π/2[x − 1 − 0.85t]) sin4(π/2[y −
1− t]) exp(−[0.3 + 0.25]t). Numerical tests consider FIRK time integration methods with

orders of accuracy equal to three and four, which are paired with 4th-order central finite

differences in space, and FIRK methods with orders of accuracy equal to seven and eight,

which are paired with 8th-order central finite differences in space. The spatial mesh is

discretized with nx × ny nodes using a constant mesh spacing of h, and a time-step of

δt = 2h is used to balance discretization errors in space and time. Specifically, problems

will be considered for nx×ny = (23×23, 24×24, 25×25, 26×26, 27×27) corresponding to δt =

(2−1, 2−2, 2−3, 2−4, 2−5). Note that a central-finite-difference discretization of −(0.85ux +

uy) is skew symmetric, while that of 0.3uxx + 0.25uyy is symmetric negative semi-definite.

Therefore, L which is the sum of these two discretizations is neither symmetric definite

nor skew symmetric, but it most certainly fulfils Assumption 5.2, since it is normal and

its eigenvalues lie in the closed left half plane.10 Note that ERK integration, for example,

is unsuitable for this problem because it leads to a highly restrictive CFL condition of the

form δt . O(h2) in order to contain the largest eigenvalues of the diffusion discretization—

which grow as O(−δth−2)—inside its finite-sized stability region. Furthermore, stability

regions of ERK schemes typically provide very little (if any) coverage of the imaginary axis,

and, so, it is likely that under no time-step size restriction would the stability region of an

ERK scheme be capable of containing the purely imaginary eigenvalues of the high-order

central advection discretization.

To make interfacing with the MFEM-based implementation [89] of the linear FIRK algo-

rithm as straightforward as possible, the finite-difference spatial discretizations have been

implemented in a C++ class that is derived from MFEM’s Operator class. The discretiza-

tions are assembled as HypreParMatrix objects, such that all parallel communication

that takes place during matrix-vector products is handled by the hypre library [36]. All

numerical tests use four cores in space.

The specific FIRK schemes considered are: Gauss(4) and Gauss(8), which are of 4th- and

8th-order, and have 2 and 4 stages, respectively; Lobatto IIIC(4) and Lobatto IIIC(8),

which are of 4th- and 8th-order, and have 3 and 5 stages, respectively; and, Radau IIA(3)

10L is easily seen to be negative semi-definite since it is the sum of two negative semi-definite operators
that are simultaneously diagonalized (they are block circulant with circulant blocks, and, thus, are diag-
onalized by the two-dimensional DFT). Moreover, since the individual discretizations are simultaneously
diagonalized, they commute, and it is trivial to show that their sum L satisfies L> L = LL>, and is
therefore normal.
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and Radau IIA(7), which are of 3rd- and 7th-order, and have 2 and 4 stages, respectively.

Also considered for reference purposes are: L–SDIRK(4), a 5-stage, 4th-order L-stable

SDIRK method (see [48, Tab. 6.5]); and, A–SDIRK(4), a 3-stage, 4th-order, A-stable

SDIRK method (see [48, (6.18)]). Recall from earlier chapters of this thesis that an SDIRK

(or singly DIRK) method is a DIRK method in which the entries along the diagonal of A0

are constant.

Before discussing further the numerical results, it is useful to recall some details of the

linear FIRK algorithm from Section 5.2.1. Specifically, recall that a sequence of linear

systems needs to be solved to find the FIRK stage vectors at every time step, and that these

linear systems come in two different varieties. The first type is of the form (ζiI−δtL)xi =

bi, where ζi is a real eigenvalue of the inverse Butcher matrix A−1
0 ∈ Rs×s. The second type

is of the form [(ηiI− δtL)2 +β2
i I]xi = bi, where ηi± iβi is a complex-conjugate eigenvalue

pair of A−1
0 . An s-stage FIRK method will have s

2 complex-conjugate eigenvalue pairs

of eigenvalues if s is even, and s−1
2 complex-conjugate eigenvalue pairs and a single real

eigenvalue if s is odd. Furthermore, an s-stage DIRK scheme simply has s real eigenvalues

since its A0 is triangular. Both varieties of linear system are solved with a preconditioned

Krylov method. The preconditioner for systems of the first type is simply an inexpensive

preconditioner for (ζiI − δtL), for example, a single algebraic multigrid (AMG) iteration.

The preconditioner for the second type is chosen as two applications of an inexpensive

preconditioner for (γiI − δtL), where γi is some constant (e.g., the optimal constant

γi = γi∗, or the naive choice γi = ηi).

Due to the diffusive, but non-symmetric nature of the spatial discretization L of (5.135),

GMRES(30) is chosen as the Krylov method to solve the aforementioned linear systems.

The solver uses an absolute and relative stopping tolerance of 10−13 with a zero initial

guess. The inexpensive preconditioner for operators of the form (αI − δtL) is taken

as a single iteration of a classical AMG method from the hypre library [36], as interfaced

through MFEM [1]. Specifically, classical interpolation (type 0) is used, Falgout coarsening

(type 6) with a strength tolerance θC = 0.25, zero levels of aggressive coarsening, and L1-

Gauss–Seidel relaxation (type 8).

In the top row of Figure 5.4, discretization errors are shown for different FIRK methods.

Expected asymptotic convergence rates (black dashed lines in the top row) are observed for

all discretizations, except for A–SDIRK(4). A–SDIRK(4) appears to be converging with

a rate closer to three than four; however, further decreasing δt (not shown here) confirms

4th-order convergence is achieved eventually. This verifies that our implementation as

provided in [89] is indeed accurately solving the underlying FIRK stage equations at each

time step. These results also demonstrate the very high accuracy that may be achieved

with FIRK methods, which again, is a key motivation for their use in practice.
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Figure 5.4: Advection-diffusion problem (5.135) for discretizations of 3rd and 4th order
(left column), and 7th and 8th order (right column). Top row: L∞-discretization
errors at t = 2 as a function of time-step δt. Black, dashed lines with slopes of three
and four are shown (left), as are those with slopes of seven and eight (right) indicating
expected asymptotic convergence rates. Middle/bottom rows: Total number of pre-
conditioner applications (i.e., number of AMG iterations) per time step to solve the FIRK
stage equations averaged across all time steps. Results using the optimal preconditioning
constants γi = γi∗ =

√
η2i + β2

i are shown in the middle row, and the naive choice of
preconditioning with γi = ηi is shown on the bottom row.

Shown also in Figure 5.4 is the average number of total preconditioner applications needed



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Chapter 5: Fully implicit Runge-Kutta methods for method of lines 187

Table 5.3: Average number of GMRES iterations per time step for the linear system
corresponding to the single complex-conjugate eigenvalue pair η± iβ for Gauss(4), Radau
IIA(3), and Lobatto IIIC(4). The number of iterations is shown for the naive precondi-

tioning constant γ = η and the optimal choice γ = γ∗ =
√
η2 + β2. This data is associated

with the δt = 2−5 test problem shown in Figure 5.4. Recall each GMRES iteration for a
complex-conjugate pair system requires two applications of the AMG preconditoner.

Gauss(4) Radau IIA(3) Lobatto IIIC(4)

β2/η2 0.33 0.50 2.21

γ = η 16 18 29

γ = γ∗ 14 15 16

per time step to solve the FIRK stage equations (i.e., the total number of AMG itera-

tions). Overall, the solver appears robust with respect to mesh and problem size, since

the average number of preconditioner applications per time step remains more-or-less con-

stant as the the mesh is refined in most cases. The optimal preconditioning coefficient of

γ = γ∗ =
√
η2 + β2 (middle row) typically results in less total preconditioner applications

per time step than the naive choice of γ = η (bottom row). The difference in precondi-

tioner applications is more pronounced for the higher-order schemes in the right column.

This behaviour is not surprising, however, since the theory of Sections 5.2 and 5.4 showed

that the condition number of the preconditioned operator grows with higher-order FIRK

methods due to their having increased values of the ratio βi/ηi (see also Table 5.1). There

is no difference in the number of preconditioner applications between γ∗ and η for the

SDIRK schemes which is to be expected because all of the eigenvalues of A−1
0 are real (i.e.,

they do not occur in complex-conjugate pairs).

Considering the methods in the middle panel of the left column of Figure 5.4, the L–

SDIRK(4) method requires the most preconditioner applications of all methods. A–

SDIRK(4) requires far fewer preconditioner applications than L–SDIRK(4), but has a

significantly larger discretization error than the other 4th-order schemes, and takes much

longer to reach its asymptotic convergence rate. Thus, in terms of work done per accuracy,

the 4th-order Gauss FIRK method is the clear winner for this particular test problem.

Table 5.4: Similar to Table 5.3, except data is shown for the high-order methods of
Gauss(8), Radau IIA(7), and Lobatto IIIC(8), of which each have two complex-conjugate
linear systems corresponding to η1±iβ1 and η2±iβ2. For each method, GMRES iterations
are shown for both systems using the naive choices of γ1 = η1, γ2 = η2 and the optimal
choices of γ1 = γ1∗ =

√
η21 + β2

1 , γ2 = γ2∗ =
√
η22 + β2

2 .

Gauss(8) Radau IIA(7) Lobatto IIIC(8)

β2
1/η

2
1 β2

2/η
2
2 0.09 1.60 0.13 3.51 0.38 4.88

γ1 = η1 γ2 = η2 14 25 15 28 17 41

γ1 = γ1∗ γ2 = γ2∗ 14 16 14 16 15 17
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To better illuminate the advantages of using γ∗ vs. η, the number of GMRES iterations for

only complex-conjugate pair linear systems is shown in Tables 5.3 and 5.4 for the largest

problem size of δt = 2−5. In all cases using γ∗ over η results in fewer iterations (except

for Gauss(8) when β2/η2 = 0.09 for which iterations remain constant). The most extreme

example is Lobatto IIIC(8) with β2/η2 = 4.88 which results in ≈ 2.5 × fewer iterations.

In general it seems as though systems with larger ratios of β2/η2 require more iterations

to converge, but also yield larger savings when using γ∗ vs. η. Both of these results

are consistent with the theoretical analyses, which predicted that the condition numbers

increase as a function of β2/η2. In particular, the eigenvalue analyses showed that when

using γ∗ over η, the reduction one sees in the condition number increases with β2/η2 (e.g.,

see Figures 5.1 and 5.2).

Recall that the preconditioning theory of Section 5.4 showed that over the space of all

spatial discretizations satisfying Assumption 5.2, it is skew-symmetric matrices that yield

the poorest conditioning (in the worst case sense). Furthermore, the eigenvalue analysis

in Section 5.2 showed that using γ∗ over η leads to greater reductions in condition number

for skew-symmetric matrices than it does for symmetric definite ones. Therefore the

test problem here is not particularly challenging in the sense that the linear systems

become SPD in the limit that h→ 0 because the symmetric negative semi-definite diffusion

discretization scales as O(h−2) and therefore dominates the skew-symmetric advection

discretization that scales as O(h−1).11

5.5.2 The nonlinear setting

This section considers numerical tests for the nonlinear FIRK algorithm from Section 5.3.

Much of the discussion from the previous section on numerical results in the linear setting

carries over to the current one. The nonlinear test problem is chosen as the following

viscous Burgers equation in two spatial dimensions:

ut + (0.85u2)x + (u2)y = 0.3uxx + 0.25uyy + s(x, y, t), (x, y, t) ∈ (−1, 1)2 × (0, 2].

(5.136)

The PDE is posed on a periodic spatial domain, and the source term s(x, y, t) is chosen

such that the solution of the PDE is u(x, y, t) = sin4(π/2[x − 1 − 0.85t]) sin4(π/2[y −
1− t]) exp(−[0.3 + 0.25]t). Numerical tests will consider the same combinations of FIRK

methods and finite-difference spatial discretizations as were used in the previous linear test

problems. Again, the time-step is taken to be δt = 2h. The same problem sizes of nx×ny
11In fact, an example in our article [91, Tab. 3] for a highly non-symmetric problem arising from the

discretization of a pure advection problem showed an almost 6 × reduction in iteration count for the
hardest Lobatto IIIC(8) system (i.e., the one with β2/η2 = 4.88 in Table 5.4).
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will be considered as in Section 5.5.1, with the exception of the smallest 23 × 23 problems

being omitted. The finite-difference spatial discretizations are again implemented in a C++

class that is derived from MFEM’s Operator class. The implementation used for the diffu-

sion terms in the linear PDE (5.135) is again used for those in the nonlinear PDE (5.136).

However, the implementation for the advection terms is different from the linear setting

since they are now nonlinear. Specifically, when the action of the nonlinear advection

discretization needs to be computed (which is required to compute the nonlinear residual

in Newton’s method), or it needs to be linearized, the communication of data at processor

boundaries is done using additional MPI send and receive calls. Once the operator has

been linearized, it is again stored as a HypreParMatrix, such that any MPI communica-

tion done during matrix-vector products is handled by hypre [36]. As previously, all tests

use four cores in space.

The simple Newton method from Section 5.3.1 is applied to solve the nonlinear FIRK stage

equations that arise at each time step. The Newton method is iterated until the norm of

the relative residual of the nonlinear system falls below 10−10, and a zero initial guess is

used for the stage vectors. Recall that at every Newton iteration, a block upper triangular

Jacobian system is solved via block backward substitution, which requires inversion of its

diagonal blocks. The individual diagonal blocks are of the form ζiI−δtL if they correspond

to a real eigenvalue ζi of A−1
0 , or of the form

[
ηiI − δtL φiI

−β2
i /φiI ηiI − δtL

]
if they correspond

to a complex-conjugate eigenvalue pair ηi ± iβi of A−1
0 . In both cases, a preconditioned

Krylov method is used to solve the 1× 1 or 2× 2 block system. Here GMRES(30) is used

with a relative-residual stopping tolerance of 10−4 and a zero initial guess. Such a loose

stopping tolerance is applied to avoid drastically over-solving the Jacobian systems since

this typically does not accelerate convergence of the (outer) Newton iteration.

The preconditioner for systems of the first kind is again a single iteration of a classi-

cal AMG method from hypre [36] applied to the operator (ζiI − δtL). The precondi-

tioner for the second type is the lower-triangular, Schur complement-based approxima-

tion

[
ηiI − δtL 0

−β2
i /φiI γiI − δtL

]−1

, where γi is some constant (e.g., the optimal constant

γi = γi∗ = ηi + β2
i /ηi, or the naive constant γi = ηi). Furthermore, when the action of

this preconditioner is applied, a single iteration of a classical AMG method from hypre

is used to approximate the inverses of the diagonal blocks. The same parameters used to

construct the AMG preconditioners in Section 5.5.1 are also used here.

Numerical results are shown in Figure 5.5. The left panel shows the discretization errors

for the 3rd- and 4th-order methods, while the right shows the discretization errors for

the 7th- and 8th-order methods. All of the FIRK methods appear to be converging with

the correct orders of accuracy. The 4th-order SDIRK methods appear to be converging
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Table 5.5: Average number of GMRES iterations per time step (i.e., per Newton solve)
for linearized systems corresponding to the complex-conjugate pair η ± iβ for Gauss(4),
Radau IIA(3), and Lobatto IIIC(4). The number of iterations is shown for the naive
preconditioning constant γ = η and the optimal choice γ = γ∗ = η + β2/η. This data is
associated with the δt = 2−5 nonlinear Burgers test problem shown in Figure 5.5.

Gauss(4) Radau IIA(3) Lobatto IIIC(4)

β2/η2 0.33 0.50 2.21

γ = η 20 25 41

γ = γ∗ 20 21 29

not quite with order four, with A–SDIRK(4) converging with a rate much closer to three

(recall A–SDIRK(4) behaved similarly in the linear tests; see Figure 5.4). This verifies

that our implementation of the nonlinear FIRK algorithm provided in [89] is functioning

as expected, as are the finite-difference spatial discretizations.

Considering the scalability of the solver with respect to problem size is now more compli-

cated than in the linear FIRK setting because it involves both the scalability of the Newton

solver and the scalability of the linear solver used to solve the Jacobian systems. Since no

analysis was done for the Newton method itself, let us just look at the total number of

GMRES iterations for one particular problem size to assess the correctness of the linear

preconditioning theory from Section 5.3.3 and Section 5.4. In particular, let us consider

the total number of 2 × 2 block GMRES iterations per time step or Newton solve (i.e.,

the cumulative number of 2 × 2 GMRES iterations over all iterations of a Newton solve)
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Figure 5.5: L∞-discretization errors at t = 2 as a function of time-step δt for the
nonlinear viscous Burgers problem (5.136). Left: 3rd- and 4th-order methods, with
the black, dashed lines having slopes three and four to indicate expected asymptotic
convergence rates. Right: 7th- and 8th-order methods, with the black, dashed lines
having slopes seven and eight to indicate expected asymptotic convergence rates.
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Table 5.6: Similar to Table 5.3, except data is shown for the high-order methods of
Gauss(8), Radau IIA(7), and Lobatto IIIC(8), of which each have two 2 × 2 complex-
conjugate linear systems corresponding to η1±iβ1 and η2±iβ2. For each method, GMRES
iterations are shown for both systems using the naive choices of γ1 = η1, γ2 = η2 and the
optimal choices of γ1 = γ1∗ = η1 + β2

1/η1, γ2 = γ2∗ = η2 + β2
2/η2.

Gauss(8) Radau IIA(7) Lobatto IIIC(8)

β2
1/η

2
1 β2

2/η
2
2 0.09 1.60 0.13 3.51 0.38 4.88

γ1 = η1 γ2 = η2 18 34 17 38 24 52

γ1 = γ1∗ γ2 = γ2∗ 17 25 17 27 22 31

averaged across all time steps within a given simulation. Tables 5.5 and 5.6 shows this data

for the δt = 2−5 solves used to produce the results in Figure 5.5. Total GMRES iterations

are considered for the optimal choice of constant γ = η + β2/η and the naive choice of

γ = η. Note that this is a fair comparison because when averaged across all time steps,

these simulations each required five iterations per Newton solve. In all cases using the

optimal constant results in the same or fewer iterations than when using γ = η. Moreover,

more iterations are required for increasing β2/η2, which is consistent with the theory of

Section 5.3.3 and Section 5.4 since it showed the condition number of the preconditioned

Schur complement for these 2× 2 systems increasing as a function of β2/η2.

As for the example in the linear setting, this problem is not particularly challenging from

the point of view that the linearized spatial discretization becomes symmetric as h → 0.

It is likely that larger reductions in iteration count would be achieved using γ∗ over η on

a more non-symmetric problem.12

5.6 Conclusions

During each discrete time step, an s-stage implicit Runge-Kutta method requires the solu-

tion of a system of Ns×Ns non-symmetric, block-coupled, nonlinear algebraic equations.

In the context of approximating the solution of a PDE through the method of lines, N

is the number of spatial degrees-of-freedom, which is typically large, and therefore this

system of equations is large. For DIRK methods, this system is only block coupled in a

triangular sense, so that its solution can be obtained through a block backward/forward

substitution requiring only the solution of N ×N systems. Conversely, FIRK methods are

fully block coupled and thus present a much greater challenge in practice, so much so that

they are seldom used compared to DIRK methods.

12For example, a result in our article [90, Tab. 4] shows for a compressible fluid dynamics problem a
total reduction greater than three for the combined iteration counts of the two Lobatto IIIC(8) systems
when using γ∗ over η (for reference, the combined reduction in Table 5.6 is (24 + 52)/(22 + 31) ≈ 1.4).
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Despite their difficulty to implement efficiently, FIRK methods are attractive for the nu-

merical solution of PDEs since they may be of arbitrarily high order (e.g., O(2s)), including

high stage order, which is important for many stiff PDE problems. DIRK methods in con-

trast typically have much lower order for a comparable number of stages (e.g., O(s)),

and are limited to a stage order of one, which means they may only in practice achieve

1st-order accuracy for some stiff problems independent of their number of stages.

This chapter considered in detail the new algorithms for the efficient application of FIRK

methods to both linear and nonlinear PDEs, respectively. Section 5.1 provides relevant

information on Runge-Kutta methods as they are applied in the method of lines, including

the associated systems of linear and nonlinear algebraic equations, and various algorithms

that have been proposed in the literature for solving such equations. The key components

of our linear and nonlinear algorithms proposed in are then given in Sections 5.2.1 and 5.3.1,

respectively.

Detailed theoretical analysis has been conducted to assess the efficacy of the linear pre-

conditioners used by these new algorithms. This analysis first considers using eigenvalues

under the assumption that the (linearized) spatial discretization of the PDE is either sym-

metric definite (Sections 5.2.3 and 5.3.3), or skew symmetric (Section 5.2.4). Tight upper

bounds on the condition numbers are established, and are then minimized through the

optimal choice of a free constant appearing in the preconditioners. Condition numbers as-

sociated with the optimized preconditioners are found (in the worst cases) to grow weakly

with the order/number of stages of the FIRK method at hand. The condition numbers

remain O(1), however, for many high-order FIRK methods, such as the 10th-order Gauss

method.

Following this, Section 5.4 develops more general theory that does not require the (lin-

earized) spatial discretization to be symmetric definite or skew symmetric, but instead

only assumes that its field of values is contained in the closed left half plane. Such an

assumption can be seen as an effectively minimal requirement to ensure that the numeri-

cal integration of the associated (linearized) ODE system remains stable with an A-stable

FIRK method. Optimized preconditioners are determined by minimizing the worst-case

condition number that can occur for (linearized) spatial discretizations satisfying this as-

sumption. The associated optimized condition numbers are again found to grow weakly

with the order/number of stages of the FIRK method at hand. In fact, this theory recov-

ers the optimized constants that were derived using eigenvalue analysis, which shows they

were optimal in a much more general sense. Furthermore, this analysis is used to show that

over the space of (linearized) spatial discretizations whose field of values lie in the closed

left half plane, it is skew-symmetric matrices which result in the poorest conditioning of

the preconditioned operators.
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Finally, Section 5.5 provides detailed numerical examples for both linear and nonlinear

PDEs that confirm the linear preconditioning theory developed earlier in the chapter.

Some details of our C++ software package [89] that implements these algorithms is also

discussed.
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Chapter 6

Conclusions and future work

Parallel-in-time integration has seen a significant increase in both interest and relevance

with the development of massively parallel computers. For many problems, parallel-in-

time methods have been shown capable of significantly reducing the (wall-clock) time to

solution compared to the traditional approach of sequential time-stepping. Most often, this

success has been for problems dominated by diffusive processes. Unfortunately, however,

there has been little success for the parallel-in-time integration of hyperbolic problems,

and advection-dominated problems more broadly. In this thesis, we have focused on the

multigrid reduction-in-time method known as MGRIT, of which the two-grid variant is

equivalent to Parareal. For this solver, coarse-grid operators defined through the standard

approach of rediscretizing the fine-grid problem typically result in rapid convergence for

diffusion-dominated problems, but divergence for those that are advection dominated.

The overarching goal of this thesis has been to develop a better understanding of why this

behaviour occurs for advection-dominated problems, and moreover, to develop new and

efficient coarse-grid operators for their solution.

In Chapter 2, we investigated the convergence of MGRIT for the constant-coefficient linear

advection problem. We identified two primary reasons as to why MGRIT diverges on this

problem when rediscretizing on coarse grids. First, the coarse-grid operator must track

characteristics, which it cannot if it uses a fixed stencil with respect to the time-step size,

as explicit Eulerian discretizations do. Second, for fast convergence, coarse-grid operators

must propagate spatial modes that slowly decay in time in a very similar way as the

ideal coarse-grid operator does; however, rediscretized coarse-grid operators do not. Using

these heuristics, we developed an optimization-based approach for defining coarse-grid

operators for this problem. For explicit and implicit discretizations, of low- and high-orders

of accuracy, we showed numerically that the optimized coarse-grid operators yield fast

MGRIT convergence in just a handful of iterations. Moreover, for explicit discretizations,

194
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parallel tests showed that the optimized coarse-grid operators lead to significant speed-ups

over sequential time-stepping. These results represent the largest speed-ups recorded to

date for a multigrid-in-time method applied to an advection-dominated problem.

In Chapter 3, using the tools of LFA, we derived a closed-form convergence theory for two-

level MGRIT. By comparison with existing literature, we found that the approximations

derived under the convergence theory are tight with respect to the number of time points.

In addition, we applied our convergence theory to provide an alternative explanation for the

poor convergence of MGRIT on advection-dominated problems. Specifically, we identified

that a rediscretized coarse-grid operator provides an inadequate coarse-grid correction to

characteristic components.

The work in Chapter 3 leaves open many possible areas for future research regarding gen-

eralizations of our LFA theory. For example, numerical tests for some diffusive problems

have shown that employing spatial coarsening within MGRIT does not significantly slow

convergence compared to coarsening in time only [35, 57]. However, the same behaviour

does not appear to hold for advection problems, where convergence can significantly dete-

riorate [57, 58]. There does not yet exist an explanation for why this is the case. Therefore,

it would be interesting if our LFA theory could be extended to account for spatial coarsen-

ing within the MGRIT algorithm, since this would undoubtedly shed light on how spatial

coarsening could (or could not) be used effectively for advection problems. Our LFA

theory was derived only for two-level MGRIT methods; in practice, however, one often

wants to use a multilevel method. More broadly in the context of the multigrid solution

of advection-dominated problems, it is common that convergence degrades substantially

in moving from two to multiple levels [10, 108, 109, 58]. For such cases, three-level LFA

can be applied to develop a better understanding of convergence [104]. It remains an

open question whether or not our closed-form LFA can be extended to three levels. Un-

doubtedly, such an extension would provide significant insight into developing multilevel

solvers.

In Chapter 4, based on our findings from the previous chapters, we developed effective

coarse-grid operators for semi-Lagrangian discretizations of advection-dominated prob-

lems. Our coarse-grid operator is designed to ensure that it tracks characteristics, and

that it closely approximates the ideal coarse-grid operator on smooth spatial modes. For

the special case of constant-coefficient advection, we theoretically proved that the coarse-

grid operator is stable for all problem parameters. Moreover, for a wide range of problems,

including those with variable wave-speeds, and those using high-order discretizations, we

showed numerically that the coarse-grid operator yields fast MGRIT convergence. More

broadly, our coarse-grid operator represents a significant advancement in the parallel-in-

time solution of advection-dominated problems.
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The work in Chapter 4 also leaves open many topics for future research. A key next

step involves the implementation of the coarse-grid operators using the XBraid package

[107] so that parallel scaling studies can be run. Further investigation into the efficiency

of iterative solvers for approximately inverting the backward Euler matrix that forms

part of the coarse-grid operator is also warranted. We also found empirically that our

approach did not work for discretizations whose dominant error is dispersive rather than

dissipative. Future studies should attempt to develop a better understanding of why this is

the case and try to rectify it. A key focus of our future work will be extending the coarse-

grid operator so that it can be used in conjunction with fine-grid discretizations that are

Eulerian in nature, rather than semi-Lagrangian. It will also be interesting to investigate

the extension of these ideas to nonlinear PDEs, including those with both smooth and

discontinuous solutions.

Rather than focusing on parallel-in-time integration, Chapter 5 instead studied sequential

time integration. Specifically, we presented new algorithms for the FIRK solution of both

linear and nonlinear ODEs that arise from the method-of-lines solution of PDEs. FIRK

methods may have excellent stability and accuracy properties, and are particularly well

suited to the solution of stiff problems. However, they do not see wide-spread use in the

context of PDEs due to the difficultly of numerically solving the associated fully coupled

algebraic stage equations. We presented new algorithms for solving these algebraic equa-

tions, with our approach centred on strategically preconditioning linear systems associated

with complex-conjugate eigenvalues of the Butcher tableau matrix. We presented detailed

theoretical results showing the optimality of our proposed preconditioning strategy. The

first of such results were based on eigenvalue analysis, under assumptions of symmetry

or skew symmetry on the spatial discretization. The second set of results generalized the

earlier theory to the case of all spatial discretizations with field of values contained in the

closed left-half plane. Numerical results confirmed the accuracy of our theoretical develop-

ments, and showed that our algorithms can outperform other implicit integration methods

that are widely used, such as DIRK schemes, for example. One possible direction for

future research that closely relates to the rest of this thesis is the parallelization-in-time of

our algorithm. That is, computing all FIRK stages, or complex-conjugate pairs of stages,

in parallel.

Our ever expanding desire to solve large-scale problems continues to drive the development

of scalable, fast, and highly parallelizable algorithms. While limited success has been pre-

viously obtained for parallel-in-time solutions of advection-dominated problems, the work

in this thesis has led to significant improvements in our understanding of the shortcomings

of these algorithms. Importantly, these insights provide new and promising directions for

successful parallel-in-time solvers, and provide optimism for the future of this field.
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Additional materials from
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A.1 Runge-Kutta Butcher tableaux

For completeness, here we provide Butcher tableaux for some Runge-Kutta methods that

are commonly used throughout the thesis. Explicit Runge-Kutta (ERK) methods are

given in Tables A.1 and A.2, and L-stable singly diagonally implicit Runge-Kutta (SDIRK)

methods are given in Tables A.2 and A.3.

Table A.1: Butcher tableaux for ERK methods of orders 1–4.

ERK1 ERK2 [52, (9.7)] ERK3 [52, (9.8)] ERK4 [14, p. 180]

0 0

1

0 0 0

1 1 0

1
2

1
2

0 0 0 0

1 1 0 0

1
2

1
4

1
4 0

1
6

1
6

2
3

0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

197
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Table A.2: Butcher tableaux for order 5 ERK (left), and order 4 L-stable SDIRK
(right).

ERK5 [14, (236a)] SDIRK4 [48, (6.16)]

0 0 0 0 0 0 0

1
4

1
4 0 0 0 0 0

1
4

1
8

1
8 0 0 0 0

1
2 0 0 1

2 0 0 0

3
4

3
16 −3

8
3
8

9
16 0 0

1 −3
7

8
7

6
7 −12

7
8
7 0

7
90 0 32

90
12
90

32
90

7
90

1
4

1
4 0 0 0 0

3
4

1
2

1
4 0 0 0

11
20

17
50 − 1

25
1
4 0 0

1
2

371
1360 − 137

2720
15
544

1
4 0

1 25
24 −49

48
125
16 −85

12
1
4

25
24 −49

48
125
16 −85

12
1
4

Table A.3: Butcher tableaux for L-stable SDIRK methods of orders 1–3. Constants
used in SDIRK3 are: ζ = 0.43586652150845899942 . . . , α = 1+ζ

2 , β = 1−ζ
2 , γ = − 3

2ζ
2 +

4ζ − 1
4 , ε = 3

2ζ
2 − 5ζ + 5

4 .

SDIRK1 SDIRK2 [14, p. 261] SDIRK3 [14, p. 262]

1 1

1

1−
√

2
2 1−

√
2

2 0

1
√

2
2 1−

√
2

2
√

2
2 1−

√
2

2

ζ ζ 0 0

α β ζ 0

1 γ ε ζ

γ ε ζ

A.2 A nonlinear approximation of Ψideal

In Section 2.5, coarse-grid time-stepping operators were sought through a linear least

squares procedure that used heuristics based on convergence theory (see Section 2.4.1).

To better understand how accurate this heuristic-driven approach was, in this section, we

formulate and solve a nonlinear optimization problem that approximately minimizes error

estimates (2.6) in a more direct way.

We seek a coarse-grid time-stepping operator Ψ that minimizes estimates (2.6) for the

coarse-grid MGRIT error propagation matrix E :

Ψ := arg min
Ψ̂∈Rnx×nx

∥∥E
(
Ψ̂
)∥∥2

2
= arg min

Ψ̂∈Rnx×nx
max

1≤k≤nx

∥∥Ek
(
Ψ̂
)∥∥2

2
. (A.1)

Such minimax problems are, in general, difficult to solve given their non-smoothness. For

this reason, we approximate (A.1) with a smoother problem, in which the max-norm is
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replaced with the two-norm. This yields the following nonlinear least squares problem

Ψ := arg min
Ψ̂∈Rnx×nx

1

nx

nx∑

k=1

∥∥Ek
(
Ψ̂
)∥∥2

2
. (A.2)

To solve this problem, we use MATLAB’s nonlinear least squares routine, lsqnonlin,

which employs the well-known Levenberg–Marquardt algorithm. Again, we only focus on

discretizations of (2.1) with periodic boundary conditions, such that the underlying conver-

gence theory of [28] applies. As previously, this also means that the time-stepping opera-

tors’ eigenvalues—which are required for evaluation of the objective function in (A.2)—are

inexpensive to compute, and are linearly related to the entries in the underlying circulant

matrices via the DFT.

Here, we consider the solution of (A.2) for ERK discretizations of (2.1). The default

settings are used for MATLAB’s lsqnonlin, except that a maximum of 30 nonlinear

iterations is permitted.1 The sparsity patterns for Ψ used in Section 2.5.3 are also applied

here since they were successful previously. Similarly, since the solution of weighted linear

least squares problem (2.8) was successful in Section 2.5, it is passed to lsqnonlin as

the initial iterate in all instances. MGRIT iteration counts obtained using the resulting

coarse-grid operators are given in Table A.4.

1One exception here is for ERK2+U2 with m = 64 where the solutions generated resulted in an MGRIT
solver whose convergence stalled. Permitting lsqnonlin to use only 10 iterations in this instance appears
to resolve this issue.

Table A.4: Two-level iteration counts for ERK discretizations with Ψ as nonlinear least
squares solution (A.2).

Scheme nx × nt m
2 4 8 16 32 64

ERK1+U1
28 × 210 10 6 6 6 5 5
210 × 212 11 6 6 6 6 5
212 × 214 11 6 6 6 5 5

ERK2+U2
28 × 211 10 7 7 7 5 6
210 × 213 10 7 8 8 6 6
212 × 215 10 7 8 8 7 7

ERK3+U3
28 × 29 7 5 5 4 4 3
210 × 211 7 5 5 5 4 4
212 × 213 6 6 5 6 5 4

ERK4+U4
28 × 210 5 4 4 4 4 4
210 × 212 5 4 4 4 5 5
212 × 214 5 4 4 4 5 5

ERK5+U5
28 × 29 3 3 3 4 4 3
210 × 211 3 3 3 4 4 4
212 × 213 3 3 3 4 4 4
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The iteration counts from Table A.4 are similar to those in Table 2.3, where Ψ was the

solution of the simpler, heuristic-based linear least squares problem (2.8). In most cases,

the iteration counts in the two tables are almost identical. While the iteration counts

for the two optimization formulations result in the same or similar iteration counts, upon

closer inspection (not shown here for brevity) they appear to not be converging to the same

solution, in general. This suggests that MGRIT convergence is perhaps not very sensitive

to the precise optimization problem solved. In any event, that the iteration counts are

similar for the two approaches indicates that the heuristics developed in Section 2.4.1 are

accurate and that they are properly captured by the approach pursued in Section 2.5.

A.3 Parallel results: Two-level solvers

In the setting of two time grids, two effects have to be balanced for optimizing parallel

performance. On the one hand, aggressive coarsening with m� 2 reduces the number of

coarse-grid points and, thus, the cost of the sequential coarse-grid solve. On the other hand,

when using a large coarsening factor, relaxation on the fine grid is performed sequentially

over a larger time interval, that is, for more time points. Typically, the fastest runtimes

on a given number of processors have been obtained when using a coarsening factor such

that the number of coarse-grid points is equal to the number of processors.

Figure A.1 shows compute times of two-level MGRIT for m = 64 coarsening, with dashed

lines representing runtimes of sequential time-stepping for reference purposes. On smaller

numbers of processors, time-stepping is faster, demonstrating the computational overhead

of the MGRIT approach. This extra work, however, can be effectively parallelized at

Figure A.1: Strong parallel scaling: Runtimes of two-level MGRIT with m = 64 coars-
ening and using time-only parallelism for ERKp+Up discretizations on space-time grids
of size nx × nt = 212 × (214, 213, 213) for p = (1, 3, 5). Left: Fixed residual stopping
tolerance of 10−10. Right: Residual stopping tolerance based on the discretization error.
Dashed lines represent runtimes of time-stepping on one processor for reference purposes.
Solid red markers represent crossover points.
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higher processor counts with good parallel scalability. The crossover point at which it

becomes beneficial to use MGRIT over sequential time-stepping is between eight and 64

processors, depending on the discretization and on the stopping criterion. For ERK1+U1,

for example, when solving to high accuracy, the crossover point is at 64 processors, while

using only eight processors results in a faster compute time than sequential time-stepping

for achieving discretization error accuracy. In both settings, the largest speed-up achieved

over sequential time-stepping is at 128 processors, where two-level MGRIT is faster by a

factor of about 1.4, 3.6, and 5.5 when solving to a residual tolerance of 10−10, and speed-

ups of about 4.1, 4.5, and 4.7 when solving up to discretization error (for the discretizations

in the order of increasing accuracy). Note that, considering m = 64 coarsening and 213

time steps on the fine grid as for the discretizations of orders three and five, the coarse

grid consists of 128 time points corresponding to the number of processors for which the

largest speed-up is achieved.



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Appendix B

Some theoretical results from

Chapter 4

B.1 An alternative coarse-grid operator

In Section 3.7, we identified that the culprit for poor MGRIT convergence on advection-

dominated problems is that the coarse-grid correction fails to adequately treat character-

istic error components. This analysis was inspired by [108], in which it was shown that an

analogous problem occurs in the multigrid solution for steady state advection-dominated

problems. The solution to obtaining a better coarse-grid correction for characteristic com-

ponents is to have the truncation error of the coarse-grid operator match more accurately

that of the ideal coarse-grid operator. Indeed, this is the reasoning behind the coarse-grid

operators proposed in Section 4.2.2. An alternative to the coarse-grid operators we pro-

posed earlier is a coarse-grid operator that itself is a linear combination of two coarse-grid

operators, as proposed in [108, Sec. 5.1] for steady state advection problems. We con-

sider this idea here (as briefly discussed in Remark 4.3) in the context of semi Lagrangian

discretizations.

Recall from Lemma 4.1 that, for constant-wave-speed advection, a semi Lagrangian scheme

using degree (at most) p interpolating polynomials has a truncation error given by

u(x, tn+1)− S(δt)
p u(x, tn) = (−h)p+1fp+1

(
ε(δt)

) ∂p+1

∂xp+1
u(x, tn+1) +O(hp+2), (B.1)

where, fp+1 is the degree p+ 1 polynomial defined by

fp+1(z) :=
1

(p+ 1)!

r(p)∏

q=−`(p)

(q + z). (B.2)

202
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Further recall from Lemma 4.1 that the truncation error of the associated ideal coarse-grid

operator is

u(x, tn+m)−
[
m−1∏

k=0

S(δt)
p

]
u(x, tn) = (−h)p+1mfp+1

(
ε(δt)

) ∂p+1

∂xp+1
u(x, tn+m) +O(hp+2).

(B.3)

Now we consider a coarse-grid operator of the form

Φ(mδt) = βpS(mδt)
p + βqS(mδt)

q , q > p. (B.4)

The idea is to choose the linear weights βp and βq so that the truncation error of (B.4)

provides a closer approximation to that in (B.3) than either S(mδt)
p or S(mδt)

q can provide

on their own. Using the truncation error formula (B.1), it is not very difficult to show

that this leads to weights given by

βp = m
fp+1

(
ε(δt)

)

fp+1

(
ε(mδt)

) , βq = 1− βp, (B.5)

providing that fp+1

(
ε(mδt)

)
6= 0. Recall that ε(mδt) ∈ [0, 1) is the distance from the

coarse-grid departure point to its east neighbour, and that fp+1

(
ε(mδt)

)
= 0 only when the

departure point coincides with a mesh point, ε(mδt) = 0 (see Lemma B.1).

We have now encountered the first issue with the operator (B.4): If coarse-grid departure

points coincide with mesh points, then (B.4) has zero truncation error. Therefore, if fine-

grid departure points do not coincide with mesh points, while the coarse-grid departure

points do, then (B.4) cannot possibly capture the non-zero truncation error of
m−1∏
k=0

S(δt)
p .

Note that this situation can certainly arise in practice; recall from (4.35) that ε(mδt) =

mε(δt)−
⌊
mε(δt)

⌋
, and thus ε(mδt) = 0 whenever m is even and ε(δt) = 1

2 , for example. The

fact that the truncation error of a coarse-grid semi Lagrangian scheme can vanish when

that of the ideal coarse-grid operator does not is what motivated the alternative operators

we proposed in Section 4.2.2.

A second problem for the coarse-grid operator (B.4) is that of stability. For example,

consider the following bound on its norm

∥∥Φ(mδt)
∥∥

2
=
∥∥βpS(mδt)

p + (1− βp)S(mδt)
q

∥∥
2
,

≤
∥∥βpS(mδt)

p

∥∥
2

+
∥∥(1− βp)S(mδt)

q

∥∥
2

= |βp|+ |1− βp|,
(B.6)

with the last expression following from the stability of S(mδt)
p and S(mδt)

q (see Assump-

tion 4.1). While the upper bound of |βp|+ |1−βp| is not necessarily tight, it is instructive



D
ra
ft
:
D
ec
em

b
er

1,
20
21

Appendix B: Some theoretical results from Chapter 4 204

to consider. It states that the operator is definitely stable if the weights are convex, that is,

βp ∈ [0, 1], and it hints at the idea that the operator may be unstable if |βp| � 1. Indeed,

numerical tests (not shown here for the sake of brevity) reveal that |βp| � 1 certainly

can occur, and that when it does it often leads to
∥∥Φ(mδt)

∥∥
2
> 1. Considering the form

of βq in (B.5), there are two ways in which |βp| � 1 can occur. First, if ε(δt) is bounded

away from 0 and 1, and ε(mδt) → 0 or → 1, then the weight blows up. However, this

is the same problem we discussed previously, just with coarse-grid departure points now

becoming arbitrarily close to mesh points rather than exactly coinciding with them. A

second and more interesting scenario occurs when both ε(δt) and ε(mδt) are bounded away

from 0 and 1, then, from (B.5), |βp| scales as O(m). In other words, the difference be-

tween the truncation error (B.3) of the ideal operator and the linear combination operator

(B.4) grows as O(m). Given our discussion in Section 4.2.4.1 regarding that the stencil

of the coarse-grid operator needs to grow with m, and the fact that that of (B.4) does

not, it is not surprising that the operator becomes unstable with increasing m. Note that

the stability problem cannot be resolved by either taking a linear combination of more

than two coarse-grid operators, or by using a multilevel solver that employs slow temporal

coarsening.

B.2 Important properties of the polynomial fp+1(z)

The following lemma describes the properties of the polynomial fp+1(z). The results are

used in the proof of Lemma 4.5, which is given in Appendix B.3.

Lemma B.1 (Important properties of fp+1(z)). Suppose that Assumption 4.1 holds, that

is, p is odd, and let fp+1(z) be the degree p+ 1 polynomial as in (4.43):

fp+1(z) =
1

(p+ 1)!

p−1
2∏

q=− p+1
2

(q + z). (B.7)

Then,

1. fp+1(0) = fp+1(1) = 0,

2. fp+1(z) is symmetric on [0, 1] about z = 1
2 ,

3. when p+1
2 is odd, on (0, 1): fp+1(z) is negative, and has only a single critical point,

which is a global minimum at z = 1
2 ,

4. when p+1
2 is even, on (0, 1): fp+1(z) is positive, and has only a single critical point,

which is a global maximum at z = 1
2 .
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Proof. To begin, it is useful to make the change of variables z = 1
2(1 + ∆) or ∆ = 2z − 1

in (B.7) and instead consider the function

fp+1(z) = fp+1

(
1
2(1 + ∆)

)
=

1

(p+ 1)!

(
1

2

)p+1

Mp(∆), ∆ ∈ [−1, 1]. (B.8)

where Mp(∆) is the product of monomials

Mp(∆) :=

p∏

q=−p,−p+2,...

(q + ∆), (B.9)

= (−1)
p+1

2

[
(p−∆)(p− 2−∆)(· · · )(1−∆)

][
(1 + ∆)(· · · )(p− 2 + ∆)(p+ ∆)

]
.

(B.10)

Observe from (B.10) thatMp(∆) has roots at both ∆ = −1 and ∆ = 1, and thatMp(∆)

is symmetric about ∆ = 0. From (B.8), fp+1(z) therefore has roots at z = 0 and z = 1,

and is symmetric on [0, 1] about z = 1
2 .

It is easy to see that the products of p+1
2 monomials contained in the closed parentheses

in (B.10) are strictly positive when ∆ ∈ (−1, 1). Therefore, the sign of Mp(∆) is equal

to that of (−1)
p+1

2 when ∆ ∈ (−1, 1). From (B.8), it follows that the sign of fp+1(z) on

(0, 1) is equal to that of (−1)
p+1

2 .

Since Mp(∆) is symmetric about ∆ = 0, it follows that ∆ = 0 is a local extremum.

The p + 1 roots of Mp(∆) are ∆ = −p,−p + 2, . . . , 0, . . . , p − 2, p, and since Mp(∆) is

not constant, it must have at least one turning point between neighbouring roots. Since

M′p(∆) is a polynomial of degree p, it has at most p roots, and thusMp(∆) can have only

a single turning point between each pair of neighbouring roots. Thus, ∆ = 0 can be the

only local extremum of Mp(∆) in the interval ∆ ∈ (−1, 1). From (B.8), it follows that

z = 1
2 is the location of the only local extrema of fp+1(z) on (0, 1). �

B.3 Proof of Lemma 4.5: Important properties of γp+1

Proof. Throughout this proof, let us write ε ≡ ε(δt) for notational simplicity. For a par-

ticular problem, ε is a constant, but we want to establish properties of (4.36) that hold

for all possible values of ε, and, so, in this analysis we will often treat ε as a continuous

parameter in [0, 1).

First note that the arguments of fp+1 in (4.36) are in the interval [0, 1), and thus we need

only examine the behaviour of fp+1 on this interval (as was done in Lemma B.1). Recall

from Lemma B.1 that fp+1(0) = 0, and thus it follows immediately that
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γp+1(0) = fp+1(0) − mfp+1(0) = 0. Recall from Lemma B.1 that on (0, 1), the only

dependence of fp+1 on the parity of p+1
2 is its sign. Moving forward through this proof,

we assume p+1
2 is odd, since the properties for even p+1

2 follow immediately from the sign

reversal of fp+1, and thus the sign reversal of (4.36).

The argument mε − bmεc in the first term of (4.36) is periodic on ε ∈ [0, 1) with m

periods. Specifically, in each of the m subintervals ε ∈
[ 2j

2m ,
2j+1
2m

]
, j ∈ {0, . . . ,m − 1},

it linearly increases from 0 → 1
2 . Furthermore, in each of the remaining m subintervals

ε ∈
[2j+1

2m , 2j+2
2m

)
, j ∈ {0, . . . ,m − 1}, it linearly increases from 1

2 → 1−. Therefore, since

fp+1 is symmetric over [0, 1) about 1
2 , it follows that fp+1(mε − bmεc) is periodic over

ε ∈ [0, 1), with m periods. Combining this with the fact that fp+1(ε) is symmetric on

ε ∈ [0, 1) about ε = 1
2 , (4.36) must be symmetric about ε = 1

2 . For this reason, we need

only analyze γp+1(ε) for ε ∈
[
0, 1

2

]
. See the examples in Figure B.1.

The periodic function fp+1(mε− bmεc) is non-positive on ε ∈ (0, 1
2). More specifically, in

the interval ε ∈ (0, 1), it has m − 2 roots at ε = j
m , j ∈ {1, . . . ,m − 1}, corresponding to

mε−bmεc = 0. Furthermore, it is strictly decreasing on the m subintervals ε ∈
( 2j

2m ,
2j+1
2m

)
,

j ∈ {0, . . . ,m − 1}, corresponding to where mε − bmεc linearly increases from 0+ → 1
2

−
.

Finally, it is strictly increasing on the m subintervals ε ∈
(2j+1

2m , 2j+2
2m

)
, j ∈ {0, . . . ,m− 1},

corresponding to where mε− bmεc linearly increases from 1
2

+ → 1−. See the examples in

Figure B.1.

Recall from (4.36) that γp+1(ε) = −mfp+1(ε) + fp+1(mε − bmεc), and from Lemma B.1,

that on ε ∈ (0, 1
2), the function −mfp+1(ε) is positive and strictly increasing. Thus, for

ε ∈ (0, 1
2), γp+1(ε) is the sum of the positive, strictly increasing function −mfp+1(ε), and

the non-positive, periodic function fp+1(mε− bmεc). Therefore, it follows that the mini-

mum of γp+1(ε) over ε ∈ (0, 1
2) must occur during the first subinterval in which fp+1(mε−

bmεc) is decreasing, which, as described in the previous paragraph, is ε ∈
(
0, 1

2m

)
.

Figure B.1: Examples of the two functions whose difference is the function in question:
γp+1(ε) = −mfp+1(ε) + fp+1(mε− bmεc).
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We now show that γp+1(ε) is positive for ε ∈
(
0, 1

2m

)
. To begin, it is useful to re-express

fp+1(z) from (4.43) by

fp+1(z) =
−z
(
p+1

2 − z
)

(p+ 1)!

p−1
2∏

q=−p−1
2

q 6=0

(q + z) =
−z
(
p+1

2 − z
)

(p+ 1)!

p−1
2∏

q=1

(z2 − q2). (B.11)

Substituting this into γp+1(ε) = −mfp+1(ε) + fp+1(mε − bmεc), we have the following

expressions and lower bounds when ε ∈
(
0, 1

2m

)

γp+1(ε) = −mfp+1(ε) + fp+1(mε), (B.12)

=
mε

(p+ 1)!



(
p+1

2 − ε
)
p−1

2∏

q=1

(
q2 − ε2

)
−
(
p+1

2 −mε
)
p−1

2∏

q=1

(
q2 − (mε)2

)

 , (B.13)

=
mε

(p+ 1)!

(
p+1

2 − ε
)



p−1
2∏

q=1

(
q2 − ε2

)
−

p−1
2∏

q=1

(
q2 − (mε)2

)



+
mε

(p+ 1)!
(m− 1)ε

p−1
2∏

q=1

(
q2 − (mε)2

)
,

(B.14)

>
mε

(p+ 1)!

(
p+1

2 − ε
)



p−1
2∏

q=1

(
q2 − ε2

)
−

p−1
2∏

q=1

(
q2 − (mε)2

)

 , (B.15)

> 0. (B.16)

To arrive at the inequality (B.15), note that the term dropped from (B.14) is positive

because m > 1, and q > mε ∈ (0, 1
2). To arrive at the inequality (B.16), notice that

r2 − ε2 > r2 − (mε)2 > 0 when ε ∈
(
0, 1

2m

)
for any m > 1.

By our previous arguments that the minimum of γp+1(ε) over ε ∈
(
0, 1

2

)
occurs on the

subinterval ε ∈
(
0, 1

2m

)
, and that γp+1(ε) is symmetric on ε ∈ [0, 1), it therefore follows

from the above result that the minimum of γp+1(ε) on ε ∈ (0, 1) is positive, and thus

γp+1(ε) > 0, ∀ε ∈ (0, 1).

Now let us move on to the second part of the proof, which is the bound (4.45) on the

magnitude of γp+1(ε) over ε ∈ [0, 1) when the coarsening factor m is even. Recall from

our arguments earlier in this proof that −mfp+1(ε) is positive on
(
0, 1), and recall from

Lemma B.1 that this function attains its maximum in this interval at ε = 1
2 . Recall also

that fp+1(mε− bmεc) is non-positive for ε ∈
(
0, 1), and that when m is even it has a zero

at ε = 1
2 . Since γp+1(ε) = −mfp+1(ε) + fp+1(mε − bmεc), it follows that γp+1(ε) attains
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its global maximum on [0, 1) at the point ε = 1
2 :

max
ε∈[0,1)

γp+1(ε) = γp+1

(
1
2

)
= −mfp+1

(
1
2

)
,

m

2
∈ N. (B.17)

To evaluate fp+1

(
1
2

)
, it is perhaps easiest to evaluate the function as it is given in (B.8)

at ∆ = 0. This gives

∣∣fp+1

(
1
2

)∣∣ =
1

(p+ 1)!

∣∣∣∣∣∣

p∏

q=−p,−p+2,...

q

∣∣∣∣∣∣

(
1

2

)p+1

=
p!!p!!

(p+ 1)!

(
1

2

)p+1

=
p!!

(p+ 1)!!

(
1

2

)p+1

,

(B.18)

in which a!! = a · (a − 2) · (a − 4) · · · 3 · 1 for odd a, and a!! = a · (a − 2) · (a − 4) · · · 4 · 2
for even a, is commonly known as the double factorial of a ∈ N. Finally, to bound this

fraction of double factorials as in the claimed bound of (4.45), observe for any j ∈ N the

inequality j
j+1 <

√
j
j+2 that follows from j2(j + 2) < j(j + 1)2. Applying this inequality

to all of the following fractions except the first one gives

p!!

(p+ 1)!!
=

1

2
· 3

4
· 5

6
· · · p− 2

p− 1
· p

p+ 1
≤ 1

2
·
√

3

5
·
√

5

7
· · ·
√
p− 2

p
·
√

p

p+ 2
=

1

2

√
3

p+ 2
,

(B.19)

with equality holding only for the p = 1 case.

This completes the proof. �

B.4 The exact solution of ∂u
∂t + cos(2πx)dτ(t)

dt
∂u
∂x = 0

We now derive the exact solution to a class of variable-wave-speed advection problems,

which is used in Section 4.3 to measure the accuracy of certain semi Lagrangian discretiza-

tions.

Consider the variable-wave-speed advection problem

∂u

∂t
+ cos(2πx)

dτ(t)

dt

∂u

∂x
= 0, u(x, 0) = u0(x), (B.20)

subject to periodic boundary conditions in space, and with τ(t) (or its derivative) some

prescribed function. The Lagrangian formulation of this PDE is simply

d

dt
ξ(t) = cos(2πξ(t))

dτ(t)

dt
, (B.21)

d

dt
u(ξ(t), t) = 0. (B.22)
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ODE (B.21) defines the characteristics x(t) = ξ(t) of the PDE, and (B.22) simply states

that the solution along characteristics is constant. Thus, all that needs to be done to

calculate the solution to (B.20) is to solve (B.21) for the characteristics.

Considering (B.21), observe that the right-hand side vanishes whenever ξ(t) = 1
4 + k

2 for

k ∈ Z, which has the consequence that if ξ0 := ξ(0) ∈
[
−1

4 + k
2 ,

1
4 + k

2

]
, then ξ(t) will

remain in this interval for all remaining time. Furthermore, if ξ0 = 1
4 + k

2 , then ξ(t) = ξ0

(which follows from all other derivatives of ξ(t) also vanishing at ξ0). To this end, for

ξ0 6= 1
4 + k

2 , define the new dependent variable

y(t) := ξ(t)− k0

2
∈
(
−1

4
,
1

4

)
, where k0 =

⌊
2ξ0 +

1

2

⌋
∈ Z. (B.23)

Under this change of variable, ODE (B.21) becomes

dy(t)

dt
= cos(2πy)(−1)k0

dτ(t)

dt
, y(t) ∈

(
−1

4
,
1

4

)
. (B.24)

Integrating both sides of this ODE with respect to t yields

ˆ
1

cos(2πy)

dy

dt
dt =

ˆ
dy

cos(2πy)
= (−1)k0

ˆ
df(t)

dt
dt = (−1)k0f(t) + c, (B.25)

for some arbitrary constant of integration c.

To integrate the left-hand side of (B.25), first invoke the following trigonometric identities

1

cos(2πy)
=

1 + tan2(πy)

1− tan2(πy)
=

sec2(πy)

1− tan2(πy)
. (B.26)

Now let z = tan(πy) ∈ (−1, 1), then since dz
dy = π sec2(πy), the integral in (B.25) simplifies

and can be calculated as follows

ˆ
sec2(πy)

1− tan2(πy)
dy =

1

π

ˆ
dz

1− z2
=

1

π
ln

(
1 + z

1− z

)
=

1

π
tanh−1(z) =

1

π
tanh−1(tan(πy)).

(B.27)

Substituting into (B.25) and rearranging, the general solution of ODE (B.24) is

y(t) =
1

π
tan−1

[
tanh

(
(−1)k0πτ(t) + c

)]
, (B.28)

for c an arbitrary constant. Transforming back to the original variable ξ using (B.23) and

applying the initial condition ξ(0) = ξ0 yields the solution of the ODE in (B.21) as

ξ(t) =
1

π
tan−1

{
tanh

[
(−1)k0π[τ(t)− τ(0)] + tanh−1

(
tan

(
π
[
ξ0 − k0

2

]))]}
+
k0

2
.

(B.29)
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Notice that despite the method for obtaining the solution not holding for ξ0 = 1
4 + k0

2 ,

(B.29) does yield the correct solution of ξ(t) = ξ0 for such ξ0, and is thus a valid solution

of the ODE for any ξ0 ∈ R.

From ODE (B.22), the solution of PDE (B.20) is constant along characteristics given by

(B.29). Thus, the solution of (B.20) at some arbitrary point in space-time (x, t) = (x∗, t∗)

is simply equal to the initial condition of (B.20) at the (t = 0) departure point of the

characteristic passing through the point (x∗, t∗). The departure point is obtained by

evaluating the solution of ODE (B.21) at t = 0 when it has been subject to the final-

time condition ξ(t∗) = x∗. The solution of the final-value problem may be obtained from

solution (B.29) for the initial-value problem by making the substitutions τ(0) 7→ τ(t∗),

k0 7→ k∗, and ξ0 7→ x∗. Locating the departure point by setting t = 0 in the resulting

equation and then substituting it into the initial condition of (B.20) gives the solution of

the PDE at any point (x, t) in space-time as

u(x, t) = u0

(
1

π
tan−1

{
tanh

[
(−1)`π[τ(0)− τ(t)] + tanh−1

(
tan

(
π
[
x− `

2

]))]}
+
`

2

)
,

(B.30)

where

` =

⌊
2x+

1

2

⌋
. (B.31)

B.5 Proof of Lemma 4.10: Constant-coefficient multilevel

operator

Proof. Recall that the coefficients (4.91) are defined in terms of fp+1 applied to the quan-

tities ε(mqδt), q ∈ {0, . . . , `}, which do not depended on the time index tn for constant-

coefficient problems. Therefore, we can immediately define a simplified version of (4.91)

that applies to the constant-coefficient problem:

ν
(m`δt)
p+1 =





ϕ
(m`δt)
p+1 , ` = 1,

mν
(m`−1δt)
p+1 + ϕ

(m`δt)
p+1 , ` > 1.

(B.32)

Furthermore, the coarse-grid operator (4.90) itself may be written in the simplified form,

Φ(m`δt) =
[
I − ν(m`δt)

p+1 Dp+1

]−1
S(m`δt)
p , ` ∈ N. (B.33)
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From the shorthand introduced in (4.82) for ϕ
(tn,m`δt)
p+1 , we have that

ϕ
(m`δt)
p+1 = ϕp+1

(
ε(m`−1δt), . . . , ε(m`−1δt), ε(m`δt)

)
. Further recalling from (4.71) that

ϕp+1(y0, . . . , y0, ym) = fp+1(ym) − mfp+1(y0), the simplified coefficients (B.32) can be

simplified even further as

ν
(m`δt)
p+1 =





[
fp+1

(
ε(m`δt)

)
−mfp+1

(
ε(m`−1δt)

)]
, ` = 1,

mν
(m`−1δt)
p+1 +

[
fp+1

(
ε(m`δt)

)
−mfp+1

(
ε(m`−1δt)

)]
, ` > 1.

(B.34)

Consider the coefficient (B.34) for some general ` ≥ 4, say, and let us drop the p + 1

subscript and use the superscript ` rather than m`δt to improve readability, then,

ν(`) = mν(`−1) +
[
f
(
ε(`)
)
−mf

(
ε(`−1)

)]
, (B.35)

= m2ν(`−2) +m
[
f
(
ε(`−1)

)
−mf

(
ε(`−2)

)]
+
[
f
(
ε(`)
)
−mf

(
ε(`−1)

)]
, (B.36)

= m2ν(`−2) −m2f
(
ε(`−2)

)
+ f

(
ε(`)
)
, (B.37)

= m3ν(`−3) +m2
[
f
(
ε(`−2)

)
−mf

(
ε(`−3)

)]
−m2f

(
ε(`−2)

)
+ f

(
ε(`)
)
, (B.38)

= m3ν(`−3) −m3f
(
ε(`−3)

)
+ f

(
ε(`)
)
. (B.39)

By an inductive argument, it is clear the telescoping nature of ν(`) leads to it satisfying

the following recurrence for general ` ∈ N

ν(`) = mqν(`−q) −mqf
(
ε(`−q))+ f

(
ε(`)
)
, q ∈ {0, . . . , `− 1}. (B.40)

Evaluating this recurrence at q = `− 1 yields

ν(`) = m`−1ν(1) −m`−1f
(
ε(1)
)

+ f
(
ε(`)
)
, (B.41)

= m`−1
[
f
(
ε(1)
)
−mf

(
ε(0)
)]
−m`−1f

(
ε(1)
)

+ f
(
ε(`)
)
, (B.42)

= f
(
ε(`)
)
−m`f

(
ε(0)
)
. (B.43)

Or, without the shorthand, we have

ν
(m`δt)
p+1 = fp+1

(
ε(m`δt)

)
−m`fp+1

(
ε(δt)

)
, ` ∈ N. (B.44)

Substituting this coefficient into the coarse-grid operator (B.33) gives the claimed result

of (4.92). �
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B.6 Proof of Lemma 4.11: Polynomial interpolation error

in two dimensions

Proof. The two-dimensional interpolating polynomial may be written as

vp(x, y) =

r(p)∑

q=−`(p)

Lq(y)

r(p)∑

s=−`(p)

Ls(x)v(xs; yq) =

r(p)∑

q=−`(p)

Lq(y)Xp(x; yq), (B.45)

in which Lq is the qth, degree p Lagrange basis polynomial. Now evaluate vp(x, y) at

(x0−hε, y0−hη), and replace the interpolating polynomials in the x direction, i.e., Xp(x0−
hε; yq), with their error estimate that was used, for example, in the proof of Lemma 4.1,

to give

vp(x0 − hε, y0 − hη)

=

r(p)∑

q=−`(p)

Lq(y0 − hη)Xp(x0 − hε; yq),
(B.46)

=

r(p)∑

q=−`(p)

Lq(y0 − hη)

([
1− (−h)p+1fp+1(ε)

∂p+1

∂xp+1

]
v(x0 − hε; yq) +O(hp+2)

)
, (B.47)

=

[
1− (−h)p+1fp+1(ε)

∂p+1

∂xp+1

] r(p)∑

q=−`(p)

Lq(y0 − hη)v(x0 − hε; yq) +O(hp+2), (B.48)

=

[
1− (−h)p+1fp+1(ε)

∂p+1

∂xp+1

]
Yp(y0 − hη;x0 − hε) +O(hp+2). (B.49)

Now replace the one-dimensional interpolating polynomials in the y-direction, that is,

Yp(y0 − hη;x0 − hε), with the error estimate analogous to what was used in the x-direction

to give

vp(x0 − hε, y0 − hη) =

[
1− (−h)p+1fp+1(ε)

∂p+1

∂xp+1

]

([
1− (−h)p+1fp+1(η)

∂p+1

∂yp+1

]
v(x0 − hε, y0 − hη) +O(hp+2)

)
+O(hp+2),

(B.50)

=

(
1− (−h)p+1

[
fp+1(ε)

∂p+1

∂yp+1
+ fp+1(η)

∂p+1

∂yp+1

])
v(x0 − hε, y0 − hη) +O(hp+2).

(B.51)

Rearranging (B.51) for v(x0 − hε, y0 − hη) gives the result (4.109). �
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[95] A. Staniforth and J. Côté, Semi-lagrangian integration schemes for atmospheric

models—a review, Mon. Wea. Rev., 119 (1991), pp. 2206–2223. [Cited on page 4.]

[96] O. Steinbach and H. Yang, Comparison of algebraic multigrid methods for an

adaptive space-time finite-element discretization of the heat equation in 3d and 4d,

Numer. Linear Algebra Appl., 25 (2018), p. e2143. [Cited on page 6.]

[97] J. Steiner, D. Ruprecht, R. Speck, and R. Krause, Convergence of Parareal

for the Navier-Stokes equations depending on the Reynolds number, in Numerical

Mathematics and Advanced Applications-ENUMATH 2013, Springer, 2015, pp. 195–

202. [Cited on pages 15 and 44.]
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