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Abstract

Wholesale electricity price forecasting has been a subject of interest, particularly in response

to deregulation of electricity markets around the world. This thesis examines some economic

quantities in the German wholesale electricity market and the econometric techniques involved

in their analysis.

Various innovative econometric methods have been adopted and adapted for the electricity price

setting. However, limited attention has been given to developing models which accommodate

changes in the structure of price trajectories over time. The first study in this thesis proposes a

model which accounts for mean shifts through the use of smooth time-varying parameter models,

which are estimated using semiparametric kernel estimation methods. The findings in this study

show that for daily price forecasts, the semiparametric models outperform a constant-parameter

benchmark.

Trades in wholesale electricity markets are locked in at hourly intervals. Complete supply and

demand curves can be constructed for each hour. These curves may be treated as functional

data, which can be modelled and forecasted. The intersection of the forecasted curves then

gives a forecast of prices. Research into the use of functional data analysis tools for forecasting

wholesale electricity price in this manner is new and extremely limited. This thesis proposes

the application of a simpler and less time-consuming approach of producing forecasts of these

functional data for this application than that which has been explored in the literature. The

findings suggest that this approach is able to outperform a benchmark model based on existing

electricity price forecasting literature which uses price data instead of market curves.

Besides prices, price elasticity of demand has been of interest. Estimates from existing regression

approaches are typically a single value representing an average over the sample. This method

relies on some implicit assumptions which are called into question in this thesis. An alternative

way of calculating intra-day electricity demand response in wholesale markets is presented.

ii



This method permits estimation of price elasticity for every hour using fundamental economic

principles by exploiting the observed supply and demand curves. Seasonal and intra-day patterns

in price elasticity are revealed. The value of price elasticity of demand which is computed using

this method is also compared against the estimate from a relevant regression-based model, with

a discussion of the relative accuracies.

The studies in this thesis all use relatively simple techniques, but are able to provide improve-

ments on existing methods in the literature. These findings suggest that there is room for

improvement from a modelling perspective, and that these innovations do not need to be com-

plicated. Finally, some other research ideas which have not made it into the thesis are discussed

briefly, with some scope for future research.
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Chapter 1

Introduction

Electricity is a necessity for modern human life. We rely on it for various uses including light-

ing, temperature regulation, entertainment, communication, transportation, medical equipment,

manufacturing, delivery of water supply, and national security. As such, any improvements to

the efficiency of electricity supply can be expected to have potential benefits to the population

at large. This thesis focuses on efficiency from an economic perspective, namely, gaining a better

understanding of electricity prices.

Wholesale market data is rich with possibilities. Raw data include transacted volumes and prices

for intra-day periods. These series can be modelled or forecasted at the highest granularity, or

aggregated to lower frequencies. For example, wholesale prices are forecasted both as volume-

weighted daily prices (see, for example, Bierbrauer et al. (2007)) or as daily collections of intra-

day prices1. Some data include purchase and sale bids made by wholesale market participants

for each intra-day bidding period. The intersection of the sale and purchase curves constructed

from these bids is determined to be the price in that period. The shape, location, and slope

of each of these curves also contain information which may be useful for comprehending and

predicting wholesale electricity markets.

The aim of this thesis, just like in any other empirical work, is to propose improved methods

of analysing the data. For all of the analysis conducted in this thesis, the emphasis is always

to ensure that the data and underlying research questions are adequately addressed by any

methods which are employed, without allowing the technical details to overshadow or sideline

1For example, in one of their empirical applications, Weron and Misiorek (2008) forecast electricity prices in
California for all 24 hours in the following day.
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the problem at hand. While other works do a laudable job of introducing more complex or

modern methods to better understand electricity markets, the place in the literature which

this thesis aims to occupy is to ensure that existing methodologies are appropriate for their

applications. In saying that, the following chapters do not criticise any other work. Instead, the

projects contained in this thesis identify certain areas which may benefit from some adjustments,

and then show that those adjustments provide good empirical performance. Justification of the

proposed methods are always made in reference either to economic, regulatory, and market

conditions, or to theoretical concerns which are relevant to the data. In this instance, the data

is from wholesale markets, therefore the all explanations and interpretations are restricted to

the setting of wholesale electricity markets, not the universe of consumers.

To introduce the work contained within this thesis, it is necessary to first discuss wholesale

electricity prices and the relevant interesting or distinctive features.

1.1 Wholesale electricity prices
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Figure 1.1: Daily volume-weighted German electricity spot prices and first differences from 8
February 2005 to 28 April 2017.

Electricity as a commodity is almost unique in that it is widely used, but cannot be stored on

any meaningful scale. While it is true that the source of electricity generation can be accumu-

lated and inventoried2, there are financial or physical restrictions which lead to bottlenecking

in various stages from generation to delivery. Renewable energy constitutes a large proportion

2For instance, hydroelectric dams can collect water, and the resulting potential energy can then be converted
into electrical energy (as well as by-products such as heat and noise). Similarly, coal, biomass fuels, and nuclear
cores can also be accumulated.
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of energy generated in certain markets. In Germany3, wind is a prominent source of electric-

ity; in South Australia, wind and solar together have contributed close to half of the energy in

2018, a proportion which has been increasingly yearly4. Energy generated by these methods, in

particular, is entirely dependent on weather and cannot be stored as inventory.

The fact that electricity is non-storable, at least for now, manifests in prices in two ways.

The most obvious consequence is that current supply and demand must match; prices cannot be

smoothed by holding inventory. As such, wholesale electricity prices may be more volatile around

certain periods, for example, when generators go into forced production (Simonsen, 2005). The

plot of first differences in Figure 1.1(b) gives some indication of clustering. Large changes in

prices tend to be followed by large changes, and vice versa. In addition, generation plants,

especially those for renewables, incur a cost to be shut down during periods of low demand.

Consequently, occasionally it is preferable for prices to fall into the negative region to allow

for the generated power to be consumed, instead of shutting down generators altogether. These

negative prices are seen clearly in Figure 1.1(a), with the largest of them occurring on Christmas

day 2012. Perhaps the most striking feature of electricity prices is the presence of spikes. While

many other asset prices have jumps in them, the spikes in electricity prices are typically short-

lived, and can be much larger in magnitude. Although several explanations for the occurrence of

spikes have been offered, there is still no obvious or accurate way to empirically identify spikes.

However, upon inspection of Figure 1.1(a) it is tempting to declare that prices on 27th July 2006

and 7th November 2006 are examples of upward spikes, and that the negative price on Christmas

day of 2012 was a downward spike. These three events are merely some of the most prominent,

but other spikes are likely to have occurred also. Finally, the close connection between weather

changes and electricity demand and prices is obvious; the population will demand cooling when

it is too hot, and heating when it is too cold.

Electricity spot prices share certain characteristics with other commodities. They exhibit sea-

sonality corresponding to, among others, yearly seasons, days of the week, and hour of the day

(Koopman et al., 2007).

3To be precise, the data used here is for the joint bidding zone between Germany and Austria before the split in
electricity price zones which occurred in 2018. However, the literature typically refers to it simply as “Germany”.
To be consistent with the literature and for simplicity, the data will also be referred to as German data in this
thesis.

4See https://opennem.org.au/energy/sa1/?range=all&interval=1y
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Volatility clustering

The presence of volatility clustering in electricity spot prices has been widely acknowledged.

Unsurprisingly, spot price volatility is the key focus of a number of studies. Clustering is

often placed under the umbrella of conditional heteroskedasticity, for which the autoregressive

conditional heteroskedastic (ARCH) model of Engle (1982) and generalised ARCH (GARCH)

model of Bollerslev (1986) offer typical estimation approaches. ARCH- or GARCH-type models

were employed by Knittel and Roberts (2005), Goto and Karolyi (2004), and Escribano et al.

(2011), among others.

It is worth noting that although Knittel and Roberts (2005), who evaluate an AR-EGARCH

specification, conclude that volatility clustering (along with higher order autocorrelation) is a

key feature in electricity pricing, their results show some variation when assessed over different

periods in time. Similarly, Garcia et al. (2005) conclude that the improved performance derived

from introducing GARCH residuals to an autoregressive integrated moving average (ARIMA)

model is contingent on the choice of sample period.

Spikes

Spikes are characterised by one or more extreme upward (downward) jumps followed immediately

by a sharp downward (upward) corrective move. These spikes are typically due to physical

anomalies in either the supply side (e.g. generator shutdowns) or demand side (e.g. heatwaves).

The presence of spikes has the capacity to bias the estimation of the conditional mean of prices

due to their large magnitudes. There are three different treatments of spikes which are common

in the literature. Lucia and Schwartz (2002) conduct their estimations by ignoring the issue

altogether, treating all prices as if spikes were not present. Others transform the data so as to

remove, or at least minimise, the effect of spikes. Examples include winsorising to remove spikes

beforehand (see, inter alia, Cartea and Figueroa (2005), Gianfreda (2010), and Ketterer (2014)),

or “stabilising” the variance of the dataset before applying the model of choice (Uniejewski et

al., 2018). The third approach is to construct models which account for the presence of spikes.

Of course, there are also those whose modelling focuses on the spikes themselves, largely ignoring

base prices (Becker et al., 2007; Christensen et al., 2009, 2012).

Electricity price spikes are commonly modelled using jumps or jump-diffusion models (see, inter

4



alia, Barone-Adesi and Gigli (2003), Escribano et al. (2011), Knittel and Roberts (2005), Weron

and Misiorek (2005), and Weron et al. (2004)). Popular alternatives to jump-diffusion models are

regime-switching models. This class of models is, perhaps, better-suited for spikes as they allow

for the near-instantaneous mean-reversion which follows. Furthermore, there is persistence to

the occurrence of spikes (Christensen et al., 2009) which tends to be better-captured by regime-

switching models (Weron,2014). On this note, a number of different specifications have been

proposed for regime-switching models. Two-state models typically contain one regime for the

base trend, and another for spikes. For example, Huisman and De Jong (2003) approximate the

spikes by a Gaussian distribution, whereas Weron et al. (2004) use a lognormal distribution,

and Bierbrauer et al. (2004) specify a Pareto distribution. Huisman and Mahieu (2003) propose

a model with three states, namely, the base, initial jump, and reversing jump regimes. In the

three-regime model, the initial jump is followed immediately by a reversing jump. As a result,

the states are not independent. Furthermore, the forced return to the base regime does not

permit consecutive spikes.

Negative prices

It is common practice to transform the data from levels to logarithms when modelling prices of

many other assets. This treatment has also been applied to electricity prices in many studies

(see, inter alia, Bierbrauer et al. (2007), Janczura and Weron (2010), Knittel and Roberts

(2005), Koopman et al. (2007), and Weron et al. (2004)). One of the benefits of doing so is

that the effect of spikes will be reduced, allowing for more conventional modelling (Uniejewski

et al., 2018). However, since late 2009 a number of negative prices have been observed, thereby

making the log-transformation infeasible.

Erni (2012) argues that the motivations behind taking logarithms of prices of other assets do

not apply to electricity prices. Working with logarithms guarantees models which produce

positive price predictions. In this scenario, however, the imposition of positive prices would be

inappropriate. In fact, the raw data itself contains negative prices, and it would be pertinent for

a good model to be able to predict such instances. Furthermore, the fact that log-transforms

smooth out high volatility potentially works against such treatment of the data. Doing so would

significantly dampen the effects of spikes, which are a key feature in electricity prices.
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Sensitivity to weather

The impact of weather on the demand for electricity has long been established. In essence,

there is a non-linear relationship between temperature and electricity consumption (and hence

prices) since the need for cooling would be greater on hot days and vice versa, and there is

a comfortable range of temperatures in between which neither cooling nor heating would be

particularly essential. Depending on the electricity-generation methods in a particular country,

there may also be a causal link between climate and energy supply. For a recent review of some

empirical literature related to this subject, see Auffhammer and Mansur (2014).

Some early studies used heating degree days (HDD) and cooling degree days (CDD) to capture

the non-linearity (for examples, see Amato et al. (2005) and Sailor and Munõz (1997)). However,

certain limitations of the HDD-CDD approach have been put forward. In determining HDDs

and CDDs, threshold temperatures must first be chosen. There is no universally-accepted rule

for determining these thresholds, and they vary by location567. Additionally, this method does

not truly explore the extent of the non-linear relationship since temperature values are now

transformed into a dummy or count variable.

An alternative to the HDD-CDD approach is to estimate the effects of temperature using semi-

parametric or nonparametric models (Engle et al., 1986; Henley and Peirson, 1997). Naturally,

the nonparametric (or nonparametric portion of the semiparametric) specification is flexible to

the non-linear relationship between temperature and electricity consumption. However Bessec

and Fouquau (2008) suggest that such models are not adequate for the purpose of analysing the

link between the two.

A third option is in the form of logistic smooth threshold regression (LSTR) models (Moral-

Carcedo and Vicéns-Otero, 2005) and panel smooth transition regression (PSTR) models (Bessec

and Fouquau, 2008).

Mean-reversion

Mean-reversion is a phenomenon which applies to many time series, and is not new to econo-

metrics. In the context of electricity pricing, a common way of modelling mean-reverting prices

5European Union: https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-2
6Australia: http://www.bom.gov.au/climate/map/heating-cooling-degree-days/documentation.shtml
7United States: https://w1.weather.gov/glossary/index.php
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is by means Ornstein-Uhlenbeck processes and estimating the discrete data using autoregressive

models (Bierbrauer et al., 2007; Benth et al., 2007; Knittel and Roberts, 2005).

Note, however, a cursory glance at Figure 1.1(a) suggests that the mean may be changing over

time. Furthermore, some empirical studies, for example, Al-Faris (2002) and Dergiades and

Tsoulfidis (2008, 2011), find their respective samples of annual average real residential electricity

prices to be integrated of order 1. As such, care must be taken in ensuring that an appropriate

time series model is used for the data which is being analysed.

Seasonality

The impact of weather on prices was discussed earlier in this section. There, the implication

was that extreme temperatures would lead to changes in prices. However, the usual annual

temperature changes also influence prices, particularly in subtropical and temperate countries,

where the seasons may be vastly different from one another.

In addition, it is also common to find seasonal components in shorter frequencies. For instance,

inspection of Figure 1.2(a) shows that prices are lower on weekends than weekdays, on average.

One explanation for this pattern is simply that the demand for electricity is lower on weekends

due to many workplaces being relatively unused on weekends, and also potentially families being

out of their homes more on weekends. An interesting point to note is that when the sample is

arbitrarily split into two sub-samples, as in Figure 1.2(b)–(c), weekend prices are still lower than

on weekdays, but the mean prices are different between the two sub-samples. Once again, this

finding supports the need for time-varying parameters in modelling electricity prices. For data

at the hourly level, diurnal patterns have been observed (Karakatsani and Bunn, 2008b; Li and

Flynn, 2004, 2006). The simple and obvious explanation for this pattern is that the population

engages in more energy-consuming activities at certain times of the day.

7



Mon TueWed Thu Fri Sat Sun
20

30

40

50

60

(a) 8th Feb 2005 – 28th Apr 2017

Mon TueWed Thu Fri Sat Sun
20

30

40

50

60

(b) 8th Feb 2005 – 31st Dec 2010

Mon TueWed Thu Fri Sat Sun
20

30

40

50

60

(c) 1st Jan 2011 – 28th Apr 2017

Figure 1.2: Mean spot electricity prices in Germany for each day of the week.

1.2 Sale and purchase curves
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Figure 1.3: Sale and purchase curves within the price range -EUR 50 and EUR 100 on the first
hour of 1 January 2016 in Germany.

Where data permits, individual bids from wholesale market participants can be combined to form

sale (supply) and purchase (demand) curves, also referred to as “merit order curves”. Take, for

example, Figure 1.3, which shows a part of the curves for the first hour of 1 January 2016 in the

German wholesale market. The price of wholesale electricity in that hour of EUR24.70/MWh

corresponds to the intersection between the two curves. While the series in Figure 1.1(a))

provides some insight into the trajectory of prices over time, it can be argued that the sale and

purchase curves contain more information within a single intra-day period. For example, if the

intersection occurs at a point where both curves are relatively flat, then a small shift in either

curve would not result in a big price change. Conversely, an intersection at a steep portion of

either curve means that prices are very sensitive to small changes in volume. In other words,

it is possible to use supply and demand curves to investigate or predict prices, volumes, and

8



elasticities.

The literature on forecasting these curves is relatively new. Ziel and Steinert (2016) and Shah

and Lisi (2020) use different approaches to forecast the sale and purchase curves, and use the

intersection of the curves as forecasted prices. On the other hand, Mestre et al. (2020) propose

a new model, and show that it produces good forecasts of the sale curves. While the curves

themselves may exhibit some seasonality, using them to forecast prices leads to different con-

siderations over the use of prices themselves. For example, a price spike in Figure 1.1 may be

the result of a sudden and short-lived change in either the shape or location of one of the two

curves, in which case an appropriate model would need to accommodate some sort of instanta-

neous shock to the system. On the other hand, a spike might simply be the result of a small,

explainable shift in one of the curves when the intersection lies on a particularly steep part of

either curve, which might already be accounted for in a relatively simple model.

1.3 Thesis structure

As with many other financial and economic time series, it is reasonable to expect the evolution

of wholesale electricity prices to change over time. These changes may be due to regulatory

adjustments, technological advancements, or other shifts in supply or demand. Without delving

into the cause of any such variation over time, Chapter 2 introduces semiparametric models

which can capture time-variation in regression model parameters.

Forecasts of supply and demand curves have been used to predict electricity prices. The first to

do so was Ziel and Steinert (2016), who use forecasts of volume (y-axis in Figure 1.3) at a set of

predetermined prices (x-axis in Figure 1.3), and construct sale and purchase curves by essentially

joining the dots. Shah and Lisi (2020) use a nonparametric kernel-type approach to forecasts

the curves. The former method is simple, since it is akin to estimating the same time series

forecasting model multiple times, each with a different set of volume data. however, it implicitly

assumes that the bid volumes at each price level are independent of those at other prices. On

the other hand, the latter allows volumes of bids at each price to influence levels at other prices,

but is requires somewhat-tedious numerical estimation. Chapter 3 uses a functional principal

components analysis approach to forecast sale and purchase curves. This approach treats each

curve as a datum point instead of as a collection of data points like Ziel and Steinert (2016).

However, it is equally simple, while being quicker to implement than the method proposed by
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Shah and Lisi (2020).

As indicated earlier in this introduction, the sale and purchase curves contain more information

than just price at the intersection. Since these curves can be constructed for each intra-day

interval, it becomes possible to analyse the behaviour of price elasticity of demand in wholesale

electricity markets over time. This particular aspect of wholesale electricity markets has not

been considered before, but provides further insight which may benefit market participants.

Chapter 4 shows how intra-day price elasticity of demand can be computed, and also illustrates

certain patterns in these quantities. The chapter also contains discussions on various ways in

which existing regression-based estimates of price elasticity of demand may not be appropriate.

The discussion does not seek to discredit or dismiss the usefulness of regression in this context,

but highlights the importance of taking great care when interpreting estimates.

Chapter 5 briefly introduces some other research ideas which were hatched and explored at a

very preliminary level. These ideas may form the basis of future research. Finally Chapter 6

summarises and concludes the thesis.
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Chapter 2

Semiparametric point forecast of

prices

The electricity market in the European Union underwent deregulation in 1996 as a direct result

of the EU Directive 96/92/EC. One of the main objectives of this directive was to establish

a competitive electricity market. As a consequence of the deregulation, the electricity spot

market went from one which was extremely technical to one which is largely similar to other

commodities. Today, spot prices are determined by matching supply and demand curves in daily

auctions.

The measures adopted by Germany in response were “well beyond the requirements of the

... directives” (OECD, 2004). The Erneuerbare-Energien-Gesetz (EEG), or Renewable Energy

Sources Act, which was introduced in 2000 and revised in 2014 and 2017, has proven to be

effective in promoting production of electricity from renewable sources (Bode and Groscurth,

2006). Furthermore, the passing of legislation pertaining to Energiewende, or energy transition,

in 2010 lay the groundwork for a shift towards more environmentally friendly, reliable, and

affordable energy generation. In addition to the transition towards more sustainable generation,

there was also a significant shift away from nuclear energy. In 2010 the Federal Government

adopted energy concepts which outlined several targets for the German energy industry until

2050 (BMU and BMWi, 2010). These targets surpassed those of any other EU directives, and

included reducing greenhouse gas emissions by 40% by 2020, and at least 80% by 2050, taking

1990 levels as the basis of comparison. Goals were also determined for the amount of renewable

energy as a percentage of gross final energy consumption, share of heat consumption, et cetera
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(BMWi, 2015). In 2011, in response to the nuclear disaster in Fukushima, the 2010 energy

concepts were amended to accelerate the phasing out of nuclear energy (Grossi et al., 2017). A

reasonable supposition to make is that each of these regulatory changes, in altering the structure

of the energy market, will, in turn, affect the evolution of prices. Of course, there may also be

other factors which could likewise lead to variations in the structure of prices.

2.1 Introduction

The dynamics of electricity prices in wholesale spot markets contain many characteristic features.

As one may expect, prices exhibit strong seasonality. For example, demand for electricity in

temperate countries tends to rise in winter when heating is required, driving prices up. In

addition to this annual pattern, it is common to observe higher-frequency seasonal trends in

the form of day-of-the-week effects; prices are typically lower on Saturdays, and even more so

on Sundays, than they are on weekdays. Besides the annual seasonality in temperature and

weather which is generally attributed to well-known patterns in climate, other weather-related

shocks are also expected to influence prices. For example, on abnormally-hot summer days, the

demand for cooling—and therefore electricity—increases significantly in countries like Australia.

Conversely, extremely cold winter days in northern Europe and North America may drive prices

up as a result of increased heating requirements. Although weather and temperature have been

cited as being demand-side drivers, it is important to note that they can also influence supply

in certain markets. For instance, countries which generate a large share of their energy from

hydroelectric sources such as Norway, Paraguay, and Malaysia may experience increased (ability

to) supply in months with more rainfall8, and regions with significant amounts of solar energy,

such as South Australia, may see higher supply on hotter days.

Prices are also generally regarded as mean-reverting, as alluded to in numerous studies including

Bierbrauer et al. (2004), Bierbrauer et al. (2007), Weron et al. (2004), Knittel and Roberts

(2005), and Eichler and Türk (2013), although Bosco et al. (2007), Bosco et al. (2010), and Lisi

and Nan (2014) model electricity prices as nonstationary time series. Depending on the dataset

and the sample period, electricity prices may also be censored from above or below. For instance,

the Australian National Electricity Market (NEM) has an annually-reviewed market price cap

8Extended periods of greater rainfall does not automatically lead to larger quantities of generated electricity.
Instead, more water can be collected in hydroelectric dams, thereby increasing a plant’s capacity for electricity
generation.
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which was set at AUD14,700/MWh for the period 1 July 2019 to 30 June 20209. In Germany,

wholesale electricity prices in the day-ahead spot market were restricted to being non-negative

until this condition was relaxed in 2008. Evidence of volatility clustering has been found in

electricity prices, and treated using (generalised) autoregressive conditional heteroskedasticity

models (Goto and Karolyi, 2004; Knittel and Roberts, 2005; Escribano et al., 2011). However,

Knittel and Roberts (2005) and Garcia and Contreras (2005) report that the improvement in

performance using these models is contingent on the choice of sample period. Perhaps the most

pronounced feature of electricity prices is the presence of spikes. Although a definitive way of

identifying price spikes has yet to be developed, they are typically described as being short-

lived, unanticipated, extreme changes in the spot price. Here, the term “short-lived” refers not

only to the fact that the large change occurs in very few (typically one, at the daily frequency)

consecutive periods, but also that the extreme movement will be immediately followed by a

sharp and near-equal reversal. In other words, the mean of prices before and after a spike are

not significantly different, otherwise the phenomenon would be better referred to as a jump10.

In essence, there is a mean-reverting base component containing the aforementioned annual sea-

sonality, weekly trend, and reaction to weather changes, as well as a spike component. It is the

existence of the latter which introduces most of the complexity to electricity price forecasting

(EPF). The occurrence of spikes is uncontested and taken as matter of fact; the real question

relates to when exactly they happen, and what the magnitude of these spikes may be. Further-

more, it is often useful to have some proxy of what the base price would have been at times

when spikes occur. These values, too, are not known. The literature has explored a few ways in

which to approach the concurrent existence of the two components. The simplest method would

be to ignore spikes altogether (Lucia and Schwartz, 2002). However, a number of works argue

that spikes are particularly hazardous and non-negligible (Cartea and Figueroa, 2005; Huisman,

2008; Clements et al., 2013). Most works on EPF acknowledge these spikes. After separating

the two components, some research only models the base component (Cartea and Figueroa,

2005; Gianfreda, 2010; Ketterer, 2014) by replacing spikes with a proxy of base prices, or only

models spikes (Becker et al., 2007; Christensen et al., 2009, 2012). Alternatively, both parts

are modelled concurrently (Bierbrauer et al., 2007; Cartea and Figueroa, 2005; Huisman, 2008;

9This price cap was announced on 20 June 2019 on the Australian Energy Market Operator (AEMO) website
as Market Notice number 68807 (Change Number: CHG0054651).

10Of course, in the absence of an undisputed method for identifying spikes, there is really no way to confirm or
refute this claim or, indeed, any competing ones.
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Karakatsani and Bunn, 2008a; Janczura and Weron, 2010, 2012; Janczura et al., 2013). Even

when modelling both components, the norm when using regime-switching models, for example,

is still to isolate the components before fitting models (Bierbrauer et al., 2007; Janczura et al.,

2013). Of course, any method which separates the two components will likely be subject to

some spike-identification algorithm. An examination and comparison of such techniques was

conducted by Janczura et al. (2013).

With regards to the actual modelling of the components, a number of different, often complemen-

tary, approaches have been proposed. Surveys of relevant literature can be found in Aggarwal

et al. (2009a,b), which have since been superseded by Weron (2014), Jiang and Hu (2018), and

Nowotarski and Weron (2018). All of the three more recent survey papers group different EPF

approaches into a few classes, namely, multi-agent models, fundamental models, reduced-form

models, statistical models, and computational intelligence models. The methods used in this

chapter fall under the categories of reduced-form and statistical models, as defined by the survey

papers.

A number of techniques for modelling the trend in the first component, i.e. the base component,

was studied in Lisi and Nan (2014). They further decompose the base component into long-term

component and a “periodic and calendar” component. For the long-term trend, Lisi and Nan

(2014) consider the use of polynomial and sinusoidal regression, local polynomial kernel regres-

sion, splines, spectrum analysis, various decomposition methods, and a number of filters such as

the Hodrick-Prescott filter and Kolmogorov-Zurbenko filter. Sinusoidal functions and wavelet

decomposition, in particular, are popular in the literature (Cartea and Figueroa, 2005; Geman

and Roncoroni, 2006; Bierbrauer et al., 2004; Weron and Misiorek, 2008; Conejo et al., 2005;

Janczura and Weron, 2010). Regardless of the specific method used, it is apparent from the

results in Lisi and Nan (2014) that the trend in prices varies over time. They also investigate

a few methods of modelling the shorter-term periodic and calendar component. Ultimately, the

simple practice of using appropriate dummy variables seems to have gained some traction (Knit-

tel and Roberts, 2005; Bierbrauer et al., 2007; Huisman, 2008; Lisi and Nan, 2014; Nowotarski

and Weron, 2016).

The effect of exogenous variables such as weather has long been included in electricity modelling.

Temperature, in particular, is often used in the literature. Although the manner in which this

variable is introduced varies, the general consensus, dating back to Engle et al. (1986), is that its
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effect on electricity demand is nonlinear. Knittel and Roberts (2005) include the first, second,

and third powers of this explanatory variable to capture the nonlinearity. In literature related

to electricity demand or load modelling, Sailor and Munõz (1997) and Amato et al. (2005)

include heating degree days and cooling degree days instead of temperature measurements. On

the other hand, Henley and Peirson (1997) uses kernel smoothing techniques to estimate a

nonparametric specification for the effect of temperature on demand. Finally, the persistence

and mean-reversion in prices is often modelled by autoregressive-type specifications (Cuaresma

et al., 2004; Bierbrauer et al., 2007; Misiorek et al., 2006).

Instead of attempting to filter out spikes before modelling either of the components separately,

an alternative to isolation is to estimate the base and spike components concurrently. Bierbrauer

et al. (2007), Huisman (2008), Karakatsani and Bunn (2008a,b), Janczura and Weron (2012), and

Eichler and Türk (2013), among others, attempt this by means of regime-switching models with

various specifications, which are now generally preferred over the jump-diffusion alternatives

employed by Escribano et al. (2011), Cartea and Figueroa (2005), Knittel and Roberts (2005),

Geman and Roncoroni (2006), et cetera. Another type of model which has been used, although

seemingly less so, is the threshold autoregressive model (see, for example, Robinson (2000),

Rambharat et al. (2005), Weron and Misiorek (2006), and Gaillard et al. (2016)).

At this point it is worth noting the differences in the implementation of modelling and fore-

casting. In both cases, the data used to estimate model parameters is available only up to the

present day. However, when those estimates are used to forecast the variable of interest out

of sample, only the deterministic variables are known in the future. Any random variables will

need to be predicted with reasonable accuracy. In some cases, forecasts of such random variables

are generally accepted to be quite good, depending on the intended forecast horizon. In other

cases, the availability of such predictions is a considerable restriction, and those variables, in-

formative as they may be, simply cannot be included. Additionally, reliable prediction of spikes

in the future is questionable. While certain models have been shown to produce a reasonable

interpretation of the probability and magnitude of spikes in-sample, works which forecast spikes

are typically performed on high frequencies such as on intra-day (Christensen et al., 2009, 2012)

or, at most daily (Mount et al., 2006; Huisman, 2008) data.

Finally, limited consideration has been given to the idea of time-varying parameters in electricity

pricing models. This aspect of forecasting models is of particular importance due to the various
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regulatory changes discussed at the beginning of this chapter. For the purpose of this thesis,

random coefficients-type models are excluded from this particular discussion. This is because

their parameters vary in the sense that they are functions of other explanatory variables, those

functions themselves having constant parameters. In this sense, “true” time-varying parameters

are either those of state-space models (Karakatsani and Bunn, 2008a; Bordignon et al., 2013)

in which the trend takes the form of a random walk, or nonparametric and semiparametric

techniques in which one or more coefficients are smooth functions in time. The latter group is

focused on in this report, noting that expanding the time-varying coefficients to include more

than just the trend requires no more than a simple extension. In parallel literatures, Gao and

Hawthorne (2006) fit a semiparametric model to estimate the trend of a global temperature series

and Chen et al. (2018) use a nonparametric version of a heterogeneous autoregressive (HAR)

model to forecast realised volatility. Both works find improvements in forecasting performance

when coefficients are time-varying.

Note that the terms “nonparametric” and “semiparametric” have also been used in contexts

other than that of time-varying coefficients, for instance, when a parametric form for the error

distribution (Weron and Misiorek, 2008) or spike distribution (Eichler and Türk, 2013) is not as-

sumed. A different semiparametric approach using kernel smoothing was employed by Clements

et al. (2013), who model the probability of spikes with weights which are state-dependent, and

obtained using multivariate kernel smoothing.

The time series models here are used to forecast daily electricity prices in the German wholesale

market at different horizons, namely, 1, 7, and 30 day-ahead.

2.2 Models

The model developed here is, essentially, a reduced-form model. Whereas a structural model

would simultaneously estimate a supply and a demand equation, the reduced form is more parsi-

monious and is simpler to estimate. Even so, it is imperative to include variables which represent

supply-side or demand-side drivers, where available. To this end, seasonality and temperature

are included as variables which influence demand. On the other hand, the variable which can

be expected to have a significant influence on the demand side, particularly in Germany, is not

suitable for our forecasting exercise. Recent years have seen a marked increase in the amount of

wind energy generated in Germany, which serves as a substitute for the electricity source in our
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data set. It is known that on days when wind-generated energy is in excess, the price of electric-

ity can drop drastically, sometimes even becoming negative. Unfortunately, this variable cannot

be used for forecasting as predicted volumes of wind energy are not available early enough even

for the 1 day-ahead forecast horizon, and are also generally very inaccurate.

As outlined in Section 2.1, a large number of different techniques have been considered for

electricity price modelling and forecasting. In the time series modelling framework, the log

transformation of prices is often used as a means of obtaining a more stable variance (Aggarwal

et al., 2009a). Indeed, a large number of works analyse the logarithm of prices—deseasonalised

or raw—including Lucia and Schwartz (2002), Bierbrauer et al. (2004, 2007), Weron et al. (2004),

Cartea and Figueroa (2005), Bosco et al. (2010), Janczura and Weron (2012), Bordignon et al.

(2013), and Ketterer (2014), to name a few. In more recent years, negative electricity prices

are observed, which makes the practice of taking logarithms infeasible. Although models which

were originally designed for log-prices can still be drawn upon for inspiration, an unfortunate

consequence is that they cannot be used for direct comparison of the performance of any newly-

proposed models.

2.2.1 Building blocks: Base regime

Methods used to account for the characteristics of base (non-spike) prices which were identified

in Section 2.1, regardless of whether spikes are featured in the models, are presented here.

Seasonality

The long-term seasonal component of prices is sometimes represented using dummies for months

or quarters (Knittel and Roberts, 2005). In the case of electricity prices, this seasonality is largely

a proxy for changes in demand due to the change in seasons, therefore the change in average

temperature. As such, it seems more realistic to model the annual seasonality as a smooth

function instead of discrete steps. This can be achieved using a combination of sine and cosine

functions (Bierbrauer et al., 2007). On the other hand, the shorter-term “seasonal” components

may not have the same kind of wave form. Furthermore, the short-term seasonal effects typically

manifest for the length of a day, which is exactly the frequency of our data. Therefore, there is

no need to model them as functions, and using dummy variables for these effects such as day of

the week or public holiday dummy variables (Bierbrauer et al., 2007; Escribano et al., 2011) is
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acceptable.

Temperature

Temperature clearly has a causal relationship with electricity price movements. Specifically,

while seasonal average temperatures can be accounted for by other means, temperature anoma-

lies should be included in a model for electricity prices. By this reasoning, it is clear that

raw temperatures need to be preprocessed before entering into the model. A common treat-

ment for temperature is to replace them with heating-degree days (HDD) and cooling-degree

days (CDD). However, this practice can be expected to result in large overlaps and collinearity

between long-term seasonality and the HDD and CDD variables. Using a treatment for temper-

ature which has some similarities with Becker et al. (2007), this study calculates the deviation

of daily temperature from its seasonal pattern. Furthermore, the impact of deviations from

seasonal temperatures is permitted to be different in colder months and in hotter months.

First, the annual seasonality in temperature is removed, giving τ∗t as the residuals from the

ordinary least squares model

τ∗t = rt − âr − b̂rt− γ̂cos,r cos

(
2π

365
t

)
− γ̂sin,r sin

(
2π

365
t

)
, (2.1)

where rt is the recorded average temperature on day t, and âr, b̂r, γ̂cos,r, and γ̂sin,r are estimated

least-squares coefficients. Even after detrending, it can be expected that temperature anomalies

of different directions will have different effects, depending on the season. In winter, a negative

shock in temperature should increase electricity demand whereas a positive shock should decrease

it. The converse should hold true for summer months. On the other hand, seasonal mean

temperatures in spring and autumn are commonly known to fall within a comfortable range for

humans, and a deviation from these temperatures, unless very extreme, would not necessitate

heating or cooling. Assuming that abnormal temperatures play a less significant role in spring

and autumn, τ∗t is rescaled by a cosine function to give
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where 1(·) is an indicator function which takes the value 1 if its argument is true and 0 otherwise,

tyr(t) is how far into the year the date on t is, and Tyr(t) is the total number of days in

the year which t falls into. For example, on 4th January 2015, tyr(t)/Tyr(t) = 4/365 and on

5th March 2016, tyr(t)/Tyr(t) = 64/366. In other words, the cosine function takes a value

close to -1 on 1st January and close to 1 on 1st July. This transformation inverts the sign of

temperature anomalies in the colder months and gradually dampens the magnitude of anomalies

the further away a date is from the peak of summer or winter. The two indicator functions

further separate the transformed series into one for the colder months, τ̂t,w, and one for warmer

months, τ̂t,s. The reason for splitting the series in two is that winter in Germany is generally

cold enough to necessitate heating, while summer temperatures are often comfortably in the low

20◦Cs. Increases in temperature during summer will not have as large an impact on demand for

electricity as would a decrease in temperature during sub-zero temperatures in winter.

A benefit of including temperature in this manner over the use of, say, heating degree days and

cooling degree days (Sailor and Munõz, 1997; Amato et al., 2005) is that it permits estimation

the non-linear impact of the magnitude of temperature difference on prices instead of considering

the extent of price changes as being conditional on the persistence in abnormal weather.

Meanwhile, the usual annual seasonality in temperature is not introduced as a variable in its

own right, as it is captured in whichever method of accounting for long-term seasonality in prices

is employed.

2.2.2 Building blocks: Spikes

Spikes are particularly tricky to model as little is known about them. Even so, it is important

to properly acknowledge and account for them, either through an appropriate filtering method

or a suitable model.

Filtering spikes

One of the aspects of the modelling which translates well between logs and levels is that of

identifying spikes. Janczura et al. (2013) considered a variety of methods by which this exercise

has been conducted. A number of these methods select spikes based on some fixed threshold.

Some authors compare price levels against the predetermined threshold, others compare returns

or first differences. While thresholding itself is a useful tool, there are several issues associated
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with the manner in which it is conducted, particularly when applied to electricity prices. The

method proposed here addresses some of them, and has not been considered in the literature.

In devising the approach proposed here, the main objective is to strike a balance between ag-

gressive and conservative identification. Overly-aggressive identification would result in filtering

out prices which belong to the base regime, thereby excluding informative data which should

be preserved. For example, even though Janczura et al. (2013) conclude that there is no single

best method for outlier detection, the two methods which which result in identification of the

most spikes in the German and New South Wales markets often led to parameter estimates of

their simulated seasonal pattern which are less accurate compared to other approaches. On the

other hand, incorrectly retaining spikes in the filtered series is also likely to lead to incorrect

estimation of the model parameters, given the large magnitude of spikes.

(a) Threshold for levels (b) Threshold for differences

Figure 2.1: A sample of filtered deseasonalised daily electricity prices in the German market
using two different approaches. The red crosses indicate the deseasonalised levels which were

identified as spikes using the respective methods. These figures are copied exactly from Fig. 2
in Janczura et al. (2013).

Similar to most existing methods, the proposed filtering process involves thresholds which are

data-driven and are updated at each point in time. Another feature of spikes is that they occur

for a brief period of time. Although the literature is still to come to a consensus on the length of

the time interval over which spikes occur, it is noted that spikes may happen close to each other

but typically do not occur on consecutive days11. This statement is easily justified by comparing

the outcome from two of the “best” identification methods in Janczura et al. (2013)—one uses

thresholds for levels and the other uses thresholds for first differences. For ease of comparison,

two plots from Fig. 2 of Janczura et al. (2013) are copied exactly and included in Figure 2.1.

These two plots illustrate two of the spike-identification methods considered by Janczura et al.

11This observation is based solely on daily-level frequencies. Intra-day electricity prices have different dynamics.
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(2013) on wholesale electricity prices in Germany. Since the two methods are different, the

outcomes will not be identical. However, upon closer inspection it can be seen the points that

are identified as spikes in panel (a) which are also identified in panel (b) are accompanied by

another “spike” in panel (b), which is around the mean of the series. This accompanying red

cross is certainly not in concordance with the idea of spikes being abnormally large deviations

from base prices. These accompanying “spikes” which are identified in Panel (b) are clearly the

result of prices returning back to base prices after a spike has occurred.

On the other hand, a small number of red crosses which occur in panel (b) which do not turn

up in panel (a) are strangely close to 0. These points are not accompanied by a second red

cross since they are quite small anyway and do not require a large shift to return to base prices.

Finally, focusing on panel (a), it can be seen that a small number of the red crosses, such as

the one around approximately the 240th observation, may be outside some threshold level, but

do not stray far from their respective neighbouring points. It is possible that instead of being

spikes, these levels simply fall into a period where some variable exogenous to the seasonal trend

has a prolonged effect on price levels. If so, it may be more appropriate to include the relevant

variables in the model for base prices instead of treating those elevated prices as spikes.

The following is a proposed technique for filtering electricity prices at daily frequencies which

addresses the issues highlighted above. Identification of spikes is based on three criteria. For

each point in time, t, let N (t) be some neighbourhood around t. Then a spike is said to have

occurred at t if

|∆pt| > 2σ∆
N (t),

|∆pt+1| > 2σ∆
N (t+1),

and

sgn (∆pt+1) = −sgn (∆pt) ,

where pt is the observed spot price at time t, ∆ is the first difference operator, sgn(·) is the

sign of its argument, and σ∆
N (t) is the standard deviation of first differences of prices which

fall within some neighbourhood of t, N (t). The first condition relies on the fact that a spike

is an abnormally large movement in prices, the second exploits the nature of spikes to return
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to base prices the following day, and the third condition ensures that the large movement on

the following day is, indeed, a reversal. Since this research lies in the context of forecasting,

the neighbourhood N (t) will be backward-looking; it will include past observations up to, and

including, t.

A drawback of this approach to filtering is its reliance on a future value to compute ∆pt+1. In

the applications which follow, when the most current observation is pt, then its state (spike or

base) will depend only on the first condition |∆pt| > 2σ∆
N (t). On the following day, the data is re-

examined to check whether or not the large shift is followed by a correction, and the assessment

of the state at time t is amended if necessary. Prices which are identified as spikes are replaced

with some proxy of their base values. In the study, the proxy is the base price from the most

recent same weekday. In other words, the series of filtered prices, p̃t, is

p̃t =


p̃t−7 , if a spike is present at t

pt , otherwise

. (2.4)

Note that the series p̃t must be populated recursively, since p̃t−7 must be known at time t.

Although the norm is to conduct filtering on deseasonalised prices instead of raw prices because

“the seasonal patterns substantially complicate the identification of price spikes and drops in

raw data” (Janczura et al., 2013), this method, applied to the data set used in this report,

identifies exactly the same points as being spikes regardless of whether deseasonalisation was

conducted beforehand12.

Including spikes

Regime-switching models are increasingly popular, and they have the added benefit of being

able to provide an estimate of the probability of spikes as a function of some exogenous variable

(Huisman, 2008). However, this thesis places emphasis on the definition of Janczura and Weron

(2010), who label spikes as being “generally unanticipated”. Accordingly, prediction of spikes in

the future is not addressed here. Even so, the author recognises the possibility that there may

be gains to be had from modelling base prices and spikes concurrently instead of filtering spikes

out and modelling a proxy of the base regime.

12Janczura et al. (2013) deseasonalise the data using a wavelet approximation and subtracting the mean of
deseasonalised prices corresponding to each day of the week. Instead, this study used local constant kernel
smoothing.
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2.2.3 Constructed models

With the building blocks established, the models are assembled additively. Once the basic

model is constructed, it is further enhanced by modelling some of the coefficients as time-varying

parameters instead of restricting them to be constant throughout each estimation window.

Constant-parameter model for base prices

The model for base (filtered) prices is given as

Model 1: p̃t = w′tφ+ εt, (2.5)

where

φ =
(
µ0, β1, β2, β3, β4,γ

′)′
wt =

(
1, p̃t−1, p̃t−2, p̃t−3, p̃t−7,x

′
t

)′
,

εt ∼ N
(
0, σ2

)
.

The xt = (xt,1, xt,2, . . . )
′ variables on the right-hand side of (2.5) explain some of the movement

in the levels of p̃t. First, trigonometric functions of time are introduced to account for the

long-term seasonality in prices,

xt,1 = cos

(
2π

365
t

)
and xt,2 = sin

(
2π

365
t

)
.

Lower prices on public holidays are accounted for by using dummy variables, xt,3, xt,4. Since

these holidays only occur once a year, those days with somewhat similar effects on prices are

arbitrarily grouped together into one variable, where possible, to reduce sparsity. Accordingly,

xt,3 takes the value 1 on New Year’s day, Easter Sunday, May day, and Christmas day13. xt,4

represents Unity day. The possibility that prices on different days of the week may vary is

accommodated by means of day-of-the-week dummy variables, xt,5, . . . , xt,10, for Sunday to

13Other holidays including Corpus Christi, Good Friday, Easter Monday, Ascension Day, Whit Monday, and
Boxing Day were also considered. They were excluded from the model due to statistical insignificance of their
respective coefficients. Boxing Day on 2012 was the only instance in which the price of electricity was, upon visual
inspection (see Figure 2.2), obviously different from the general trajectory of prices. However it appears to be a
singular episode as the prices of electricity on Boxing Day of other years do not stand out.
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Saturday, with Wednesday as the base day. Finally, variables for temperature anomalies,

(xt,11, xt,12, xt,13, xt,14) =
(
τ̂t,w, τ̂

2
t,w, τ̂t,s, τ̂

2
t,s

)
, which are defined in Section 2.2.1, are also in-

cluded.

Much of the literature which uses time series modelling assumes an additive form pt = St +Xt,

where pt is the price, St represents a seasonal component, and Xt is a stochastic component. In

the absence of spikes, the stochastic component is usually modelled as a time series, Xt = ρ0 +∑k
i=1 ρiXt−i+ηt, and the additive model can be rearranged and represented by an autoregressive

distributed lag (ARDL) model. However, the proposed model (2.5) leads to marginally lower

mean squared forecast errors, even if the difference in accuracy is not statistically significant.

More important, however, is the fact that (2.5) involves considerably fewer right-hand side

variables than an ARDL model would, and is simply more compact and parsimonious without

compromising forecasting ability.

Time-varying models for base prices

Given the changing conditions in the German electricity market, whether they be from the

regulatory side or innovations in supply of renewable energy, there is almost surely a gradual

change in the structure of electricity market and the impact of various inputs. Karakatsani and

Bunn (2008a) and Bordignon et al. (2013) propose models which are time-varying in the sense

that the trends are modelled as random walks. On the other hand, Troncoso et al. (2007) use

weighted nearest neighbours for price prediction in electricity markets at the intra-day frequency.

Their approach uses only historical prices as inputs for the smoothing, and does not incorporate

any additional structure to the forecasting model. The proposed models in this chapter take

a different route and use kernel smoothing techniques for selected parameters in (2.5) thereby

imposing some structure while still permitting flexibility in coefficients across time14.

First, consider the case where only the trend changes across time, and the effect of other pa-

rameters on prices is constant. Model TV-trend takes the form

Model TV-trend: p̃t = ga(t) +wa′
t φ

a + εt, (2.6)

14An interesting point to note is that the proposed semiparametric models (TV-coef, and TV-double) meet the
definitions for locally-stationary models (Dahlhaus, 2012).
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where

φa =
(
β1, β2, β3, β4,γ

′)′
wa′
t =

(
p̃t−1, p̃t−2, p̃t−3, p̃t−7,x

′
t

)′
,

and ga(t) is an unknown continuous smooth function in t.

In addition, it may also be useful to permit other coefficients to vary if the changing conditions

around electricity pricing affect the manner in which prices are influenced by external factors.

In the second version of a time-varying model, all the parameters except for holidays and day-

of-week dummy variables are permitted to change with time. This model, Model TV-coef, is

Model TV-coef: p̃t = vbtθ
b(t) + z′tζ + εt, (2.7)

where

vbt = (1, p̃t−1, p̃t−2, p̃t−3, p̃t−7, xt,1, xt,2, xt,11, xt,12, xt,13, xt,14) (2.8)

z′t = (xt,3, xt,4, . . . , xt,10) .

All the elements in θb(t) are assumed to have the same degree of smoothness as one another, a

concept which will become clearer when the estimation procedures are discussed. Occasionally

there may be reason to expect different parameters to vary at different rates. For example, the

coefficient for the vector of ones in (2.8) represents the overall price level, which may reasonably

be expected to shift at a different rate to, say, the response of prices to the other variables such

as temperature anomalies or lagged prices. In the next model, the trend, gc(t), is allowed to

change with a different rate than the other time-varying parameters. The model, which has two

different levels of smoothing, is

Model TV-double: p̃t = gc(t) + vc
′
t θ

c(t) + z′tζ + εt, (2.9)

where

vc
′
t = (p̃t−1, p̃t−2, p̃t−3, p̃t−7, xt,1, xt,2, xt,11, xt,12, xt,13, xt,14) .
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Although (2.7) and (2.9) may appear to be very similar, it will be convenient to have the two

models distinguished in this manner when describing the estimation process.

2.3 Estimation

Each of the four models for base prices and the model which incorporates spikes described

in Section 2.2.3 requires a different estimation procedure. The methods are described below,

followed by a description of the method used to forecast prices q days ahead.

Model 1

Model 1 is the simplest as coefficient estimates can be obtained by simple linear regression under

simple assumptions. The ordinary least squares estimator for φ is given as

φ̂ =

(
T∑
t=8

wtw
′
t

)−1 T∑
t=8

wtp̃t.

Model TV-Trend

For the semiparametric models, the unknown time-varying parameters are estimated using kernel

smoothing methods. First, define a probability weight function of the form

Ws(t) = WT,s(t;h) =
K
(
t−s
Th

)∑T
u=8K

(
t−u
Th

) ,
where K(·) is a kernel probability function and h = hT is some bandwidth depending on T

which satisfies limT→∞ Th
2 = ∞ and limT→∞ h = 0. It is commonly known that the choice of

h has a significant impact on estimates, whereas the choice of the kernel function K(·) is less

important as long as it is a bounded function that is symmetric around 0 and integrates to 1.

The standard normal probability density function is used K(x) = 1√
2π

exp
(
−x2

2

)
throughout

this chapter.

For Model TV-trend, the trend, ga(t), is estimated as a smooth function in time. The estimates

φ̂ and ĝa(t) are obtained by the following three-step procedure, as outlined in Härdle et al.

(2000) and Gao and Hawthorne (2006).

1. Step one: Nonparametric estimation. For every given φa, the estimator of the time-varying
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trend is

g̃a(t) = g̃aT (t;h,φa)

=
T∑
s=8

Ws(t)
(
p̃s −wa′

t φ
a
)

(2.10)

=

T∑
s=8

Ws(t)p̃s −
T∑
s=8

Ws(t)w
a′
t φ

a.

2. Step two: Parametric estimation. Replace ga(t) by g̃a(t). Then approximate (2.6) by

p̃at = w̃a′
t φ

a + εt,

where

p̃at = p̃t −
T∑
s=8

WT,s(t)p̃s and w̃a′
t = wa′

t −
T∑
s=8

WT,s(t)w
a′
s .

The least-squares estimator of φ̃ is then

φ̂a =

(
T∑
t=8

w̃a
t w̃

a′
t

)−1 T∑
t=8

w̃a
t p̃
a
t .

3. Step three: Semiparametric estimation. Finally, substitute φ̂a into (2.10) to obtain an

estimate of the nonparametric component,

ĝa(t) =

T∑
s=8

Ws(t)
(
p̃s −wa′

t φ̂
a
)
.

Model TV-coef

In Model TV-coef, the variables corresponding to the nonparametric components are random

variables instead of constants as in Model TV-trend. Consequently, Model TV-coef is estimated

using a similar, albeit slightly more involved, three-step procedure.

1. Step one: Nonparametric estimation. For every given ζ, the estimator of the nonparamet-
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ric parameters is

θ̃b(t) =

(
T∑
s=8

vbsv
b′
s Ws(t)

)−1 T∑
s=8

vbs
(
p̃s − z′tζ

)
Ws(t) (2.11)

=

(
T∑
s=8

vbsv
b′
s Ws(t)

)−1 T∑
s=8

vbsp̃sWs(t)−

(
T∑
s=8

vbsv
b′
s Ws(t)

)−1 T∑
s=8

vbsz
′
tζWs(t)

2. Step two: Parametric estimation. Replace θb(t) in (2.7) with θ̃b(t), giving the approxima-

tion

p̃bt = zb
′
t ζ + εt,

where

p̃bt = p̃t −

(
T∑
s=8

vbsv
b′
s Ws(t)

)−1 T∑
s=8

vbsp̃sWs(t)

zb
′
t = z′t −

(
T∑
s=8

vbsv
b′
s Ws(t)

)−1 T∑
s=8

z′tWs(t).

Then the least squares estimator of ζ is

ζ̂ =

(
T∑
s=8

zbtz
b′
t

)−1 T∑
s=8

zbt p̃
b
t .

3. Step three: Semiparametric estimation. Finally, replace ζ with ζ̂ in (2.11) to obtain the

estimate

θ̂b(t) =

(
T∑
s=8

vbsv
b′
s Ws(t)

)−1 T∑
s=8

vbs

(
p̃s − z′tζ̂

)
Ws(t).

Model TV-double

Now allow the same parameters as those in Model TV-coef to vary with time, but additionally

permit the trend to have a different level of smoothness from the other coefficients. In prac-

tical terms, what this means is that different bandwidths, h1 and h2, will be used to estimate

gc(t) and θc(t), respectively. A larger bandwidth parameter places more equal weights on the

observations in the estimation sample, whereas a smaller bandwidth attaches heavier weights to

values which are closer in time to the observations of interest than those which are further away.

The parameters in this model are estimated using a process adapted from Park et al. (2015) by
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adding an additional step to the TV-coef method.

1. Steps one to three: Three-step estimation. Let

θ(t) =
(
gc(t),θc(t)′

)′
,

and vbt be defined as in (2.8). Then let θ̃(t) =
(
ĝc(t;h1), θ̃c (t;h1)′

)′
and ζ̂ be the estimates

of θ(t) and ζ, respectively, using bandwidth h = h1 in the three-step method for Model

TV-coef.

2. Step four: Semiparametric estimation (b). In the final step, define

ẽt = p̃t − ĝc (t;h1)− z′tζ̂.

Then the estimator for θc(t) is

θ̂c(t) = θ̂c(t;h2)

=

(
T∑
s=8

vcsv
c′
s WT,s (t;h2)

)−1 T∑
s=8

vcsẽtWT,s (t;h2) .

Note that the estimates for all four models have closed-form solutions, and are simpler and

quicker to obtain than other models and approaches which use numerical optimisation.

Forecasting

Let C(t) and X t represent the coefficients and right-hand side variables, respectively, at time

t for any of the above models. Then the q-day-ahead forecast on day t, p̂t+q|t is calculated as

follows.

1. Estimate Ĉ(t) using the past observations up to time t.

2. For the one-day-ahead forecast at time t, use Ĉ(t) and X t to predict p̂t+1|t.

3. For the two-day-ahead forecast at time t, note that since X t+1 includes p̃t+1, all the

predictor variables are not observed. Instead, use Ĉ(t) and X̂ t+1|t, in which p̃t+1 is replaced

with p̂t+1|t and calculate p̂t+2|t.
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4. For the q-day-ahead forecast, recursively replace p̃t+1, . . . , p̃t+q−1 with the predicted values,

p̂t+1|t, . . . , p̂t+q−1|t, until p̂t+q|t is obtained15.

2.4 Data

Prices
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Figure 2.2: Plot of volume-weighted daily German electricity spot prices from 1 September
2010–28 April 2017. The red line represents observed prices, whereas the blue line corresponds

to prices which have been preprocessed as described in Section 2.2.2.

Hourly electricity spot prices and volumes are obtained from the European Electricity Exchange

(EEX). Daily prices are then calculated as the volume-weighted average price for each day. The

time series of daily German electricity spot prices are presented in Figure 2.2, with summary

statistics shown in Table 2.1.

Table 2.1: Summary statistics of daily German electricity spot prices and volumes from 1
September 2010–28 April 2017. There are 2432 observations in the sample.

Min. Max. Mean Std. dev. Skew. Kurt.

Bids (e/MWh) [raw] -53.63 103.40 38.45 13.29 -0.20 4.96
Bids (e/MWh) [preprocessed] 2.82 74.88 38.61 12.15 0.03 2.51
Volume (MWh) 482657 1066710 669043 84151 0.73 4.13

German electricity spot prices have been investigated in numerous modelling and forecasting

studies, using a variety of methods. Evidently, this particular electricity market has been of

interest to researchers for many reasons including the regulatory background and natural features

15This method of forecasting produces what is referred to in Terasvirta et al. (2010) as a näıve forecasts.
The errors will be cumulative as forecast horizon increases. However, this aspect of the näıve forecast does not
affect this Chapter; the only instance in which forecast errors are used is in the tests for predictive accuracy or
superiority. The Diebold-Mariano test Diebold and Mariano (1995) accounts for forecast horizon in its own way,
and the model confidence set procedure uses empirical distributions obtained by a stationary bootstrap.
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in Germany. More recently, however, the characteristics of spot price movements seem to be

different from those in the 2000’s. This sample differs from those considered in the vast majority

of the literature in that it seems to exhibit a large number of negative spikes relative to the fairly

small number of positive spikes. Of the papers surveyed for this chapter, only Grossi and Nan

(2019) consider a data set (Italian market from 1 January 2013 to 1 January 2014) which has

this feature.

Sudden and large price movements, or spikes, are a salient feature of electricity prices. Interest-

ingly, the point in Figure 2.2 which seems to best fit this description falls on Christmas 2012,

but is not retrospectively identified as a spike by the filtering method proposed in this chapter.

This is because prices remained low on Boxing Day 2012, only returning to normal levels on

27 December 2012. Although this particular non-identification is almost certainly incorrect, it

appears from the plots that, overall, the filtering method seems to work quite well. It is worth

noting, however, that besides Christmas 2012, spikes that have occurred since 2010, although

more frequent, may not be as hazardous as the ones which occurred before. The structure of

prices in the German electricity market has clearly undergone some changes. As such, it would

appear that a re-examination of German electricity spot prices and related modelling approaches

is warranted. Note that all of the prices alluded to in the remainder of this chapter are filtered,

since enough price data prior to this sample is available for the filtering process.
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(b) Sample without weekends

Figure 2.3: Autocorrelation function of preprocessed prices

An interesting feature in the structure of electricity prices can be seen in Figure 2.3. From

Panel (a), there are peaks in the sample autocorrelation function every increment of seven

lags. However, when weekends are removed from the sample entirely, Panel (b) shows that the

persistence is almost monotonically-decreasing in lags. The lots in Figure 2.3 suggest that prices

on weekdays may be quite significantly different to those on weekends. This fact provides some

justification for the specific inclusion of the seventh lag of prices, p̃t−7, in specification (2.5).
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Temperature

Figure 2.4: Average daily temperature (rt), fitted seasonality, and deviation from seasonal
component (τ∗t ) for the period 1st September 2010 to 28th April 2017. Several periods of

persistent, larger-than-average negative temperature anomalies are highlighted.
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Figure 2.5: Plots of daily German electricity spot prices and transformed temperature
anomalies. The black lines indicate where the cosine function in (2.2) meets zero.

Daily mean temperature data for 504 stations across Germany were obtained from DWD Climate

Data Center (2018). The average daily German temperature used in this analysis is the mean of

those temperatures recorded at all stations with available readings across the entire estimation

period. It is plain to see from the plot in Figure 2.4 that there is a distinct annual cycle, as

expected in a temperate country. The cyclical trend according to (2.1) fits the data quite well,
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revealing several large deviations. For instance, it is clear that dramatic reductions of up to

13.6◦C from the seasonal average occurred during particularly cold winters in 2010–2011, early

2012, March 2013, and January 2017. Comparison between Figures 2.2 and 2.4 does not suggest a

strong relationship between temperature anomalies and spiky behaviour. Note, however, that the

transformed temperature series for colder months, τ̂t,w, appears to have some relationship with

pt, particularly during some periods with higher prices, as seen in Figure 2.5(a). On the other

hand, temperature anomalies in the warmer months, τ̂t,s, shown in Figure 2.5(b) show a much

weaker co-movement with prices. This is expected since a departure from average temperatures

in summers, which are generally still comfortable, will have a much smaller impact than going

from approximately 0◦C to either -8◦C or 8◦C in winter. Data on actual temperatures are more

easily obtained than a historical record of predicted temperatures. For example, 30-day-ahead

temperature forecast are available each day, but historical records of these temperatures are

not available. Observed temperatures have been used for retrospective forecasting under the

assumption that temperature forecasts are reasonably accurate, and the discrepancy between

using observed and predicted temperatures will be minimal.

2.5 Empirical results

A number of different ways in which to forecast electricity prices have been proposed here. First,

it is prudent justify the proposed extensions to Model 1, that is, the decision to introduce Models

TV-trend, TV-coef, and TV-double.

As a first point of comparison all the forecasts on the series of observed prices are superimposed

to get some basic intuition of how the methods perform relative to one another. Then plots

of the cumulative mean-square forecast errors (MSFE) of each method are shown. Finally,

Diebold-Mariano statistics for relative prediction accuracy are presented.

All the coefficients are estimated using moving subsamples (rolling windows) of 1337 observa-

tions, or just over three and a half years.

2.5.1 Justification of time-varying extensions

Before delving into comparisons between the models, it is useful to first motivate the use of

time-varying parameters. Figure 2.6 shows some of the estimated coefficients using Model 1 and
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Figure 2.6: Selected plots of estimated coefficients (blue) and 95% confidence intervals (red)
using Model 1.

rolling windows with 1337 observations over time. Even with the minor changes in the sample

observations (excluding the oldest observation and including one new value) there is clearly some

movement in the coefficient of p̃t−3 and the intercept (panels (a) and (b)). The estimates of

coefficients on some days lie outside the confidence band on other days. On the other hand, the

coefficients on dummy variables for Unity day and Mondays in Panels (c) and (d) do not change

much throughout the period. These plots clearly illustrate variation in coefficient estimates over

time, as well as the relevance of restricting some other coefficients to be constant.

2.5.2 Price levels

Forecast accuracies are presented in a few different ways. First, plots of forecasts from each of

the four models and the original observed prices are plotted in Figure 2.7. Days on which prices

were filtered are also indicated with a red cross. On those days, errors are measured as the

discrepancy between forecast and observed values, and are expected to be relatively large since

those extreme values do not form part of the estimation sample.

There is little to distinguish between the four models when forecasting a single day into the

future. When making 7-day-ahead forecasts, Model 1, which uses constant parameters, tends to

perform rather poorly for most of the out-of-sample period. forecasts from Model 1 are greater

than the observed prices as well as the forecasts from the other models until around October

2016. Similar comparisons can be made between the models with the 30-day-ahead forecast

horizon in Figure 2.7(c).
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Figure 2.7: Comparison between observed prices and prices forecasted using the four models
from 29th October 2015 to 28th April 2017. The red crosses indicate the prices which have

been filtered out for the estimation process.

One thing which is quite clear from these plots, and is more obvious the longer the forecast

horizon, is that the constant parameter model produces forecasts which track the average. Take,

for example, the forecasts in Figure 2.7(b). Between April 2016 and October 2016, Model 1

forecasts are higher than all others. They are, in fact, closer to the average levels of prices

in the period prior to February 2016, which forms a considerable part of the sample on which

coefficients are estimated. Either by a turn of luck or by design, observed prices after March 2017

return to levels which are ever-so-slightly higher than those of the April–October 2016 period,

and are closer to those of the pre-February 2016 portion of the sample, so Model 1 becomes
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reasonably accurate again. On the other hand, even though the forecast errors of Models TV-

trend, TV-coef, and TV-double are generally in the same direction as those of Model 1, the

magnitude of the error is smaller most of the time. To show this, two ratios are calculated for

each of the models represented in Figure 2.7. The first is

∑t
s=1 ê

2
s|1:s−q∑t

s=1 ĕ
2
s|1:s−q

, (2.12)

where ês|1:s−q is the difference between the price forecasted at time s for horizon q using one of

the three semiparametric models and the observed price. ĕs|1:s−q is the corresponding forecast

error from Model 1. Ratios smaller than 1 imply that, on average, Model 1 produces larger

(squared) errors than the semiparametric competitors. The second ratio is

∑t
s=1 1

(
ê2
s|1:s−q < ĕ2

s|1:s−q

)
∑t

s=1 1

(
ê2
s|1:s−q > ĕ2

s|1:s−q

) , (2.13)

where 1(·) is a function which takes the value 1 when its argument is true and 0 otherwise. In

other words, (2.13) presents the ratio of the number of times a candidate semiparametric model

has smaller squared error than Model 1 over the number of times the converse is true. A value

larger than 1 implies that forecasts from the semiparametric approach in consideration are closer

to true values more often than Model 1 forecasts. Calculated values from (2.12) and (2.13) are

presented in Table 2.2. All ratios from (2.12) are less than 1, and all ratios from (2.13) are

greater than 1.

Table 2.2: Ratio between the sum of squared forecast errors of the proposed semiparametric
models and Model 1. Bandwidths for the semiparametric models are those represented in

Figure 2.7.

Ratio from equation (2.12) (2.13)

Forecast horizon, h = 1 7 30 1 7 30

TV-trend 0.9768 0.8851 0.8531 1.1490 1.0679 1.1158

TV-coef 0.9918 0.9221 0.8984 1.4356 1.4685 1.4356

TV-double 0.9709 0.8789 0.8627 1.4248 1.5607 1.6863

Overall, these results suggest that the semiparametric models do indeed adapt to changes better

than the constant-parameter model.
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Interestingly, even though actual temperatures were used instead of predicted values, the 7-day-

ahead and 30-day-ahead forecasts do not seem to be able to accurately predict the increase in

prices in early-2017. This suggests two things. First, there is possibly at least one omitted

exogenous variable which may capture the unusual prices in January–February 2017, whose

effect was transmitted through lagged prices in the 1-day-ahead forecast. Perhaps the duration

of abnormal cold days in a similar vein to the cooling degree days (CDD) variable (Sailor

and Munõz, 1997; Amato et al., 2005) might provide more explanatory power. Second, the

persistence in prices, captured by the inclusion of lagged values, plays an important role in

forecasting prices in that period. Note that the main difference between a 1-day-ahead forecast

and a 7-day-ahead forecast in our analysis is simply that actual prices are used to forecast prices

one day into the future, whereas we use six days’ worth of forecasts based on our model estimates

in order to forecast prices on the seventh day into the future.
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Figure 2.8: Comparison between observed prices and 1-day-ahead prices forecasts using Model
1 (constant parameters) from 29th October 2015 to 28th April 2017. The red crosses indicate

the prices which have been filtered out for the estimation. Preprocessing in this series was
conducted using a levels instead of first differences.

As a brief aside, an additional benefit of the proposed spike-filtering algorithm is highlighted.

Figure 2.8 shows 1-day-ahead forecasts using Model 1 with the same inputs. The only difference

is that instead of the algorithm described in Section 2.2.2, these prices are filtered based on their

levels compared to a threshold, which is defined as three standard deviations from the mean of

a neighbourhood around each point. In other words, the only criteria for spike identification is

∣∣∣∣∣pt −
∑

s∈N (t) ps

# (N (t))

∣∣∣∣∣ > 3σN (t),

where #(·) is the cardinality of its argument and σN (t) is the standard deviation of all prices in

N (t). Note that a large number of prices in January 2017 were identified as spikes.
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When data has been filtered, forecasts are expected to be muted or less volatile compared to

the actual observation, as is the intention of the filtering process; we only want to model and

forecast the predictable base prices, after all. However, since the 1-day-ahead forecasts in Figure

2.7(a) are able to track the prices in January 2017 with reasonable accuracy except for on the

two days with the largest increases, those observed prices should not be identified as spikes,

and therefore should not be excluded from the data set as in Figure 2.8. This example clearly

illustrates the importance of a good filtering method; it is imperative that essential information

in the data be preserved.

2.5.3 Cumulative mean-square forecast errors

Figure 2.9 plots the cumulative mean squared forecast error (MSFE) of each of the four models.

Lower lines indicate smaller (cumulative) MSFE, and higher forecasting accuracy. For each

t ∈ [1, 2, . . . , 548] and each forecast horizon q, the cumulative MSFE is defined as

cumMSFE(t) = cumMSFE(t; q) =

∑t
s=1 ê

2
s|1:s−q

548
.

As noted when comparing the plots in Figure 2.7, the performance of the four base price models

in Figure 2.9(a) is virtually indistinguishable when forecasting a single day into the future.

However, the longer the forecast horizon, the larger the overall improvement in forecasting

accuracy achieved by time-varying models relative to the constant-parameter model, particularly

in the lead-up to October 2016. Note how the distance between cumMSFE for Model 1 and the

other models increases between April 2016 to October 2016 in Figure 8(c), suggesting that in

this period, the time-varying forecasts are consistently more accurate than those of Model 1.

One way to interpret the results of these comparisons is to consider the MSFE or cumulative

MSFE to be a loss function. This loss function is symmetric in the sense that over-prediction

and under-prediction are weighted equally. With this, the comparison is simply that the one

with the lowest MSFE is best, and the bigger the difference between the MSFE between two

methods, the greater the magnitude of improvement which stands to be gained. In this case,

these results show that time-varying models can produce the largest gains when the forecasting

horizon is longer, and are no less accurate than Model 1 even at the 1-day-ahead horizon.
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Figure 2.9: Cumulative MSFEs for all six models for the period 29th October 2015 to 28th
April 2017.

2.5.4 Comparing predictive accuracy

The forecasting performance of each semiparametric model is compared against the parametric

benchmark using Diebold-Mariano tests Diebold and Mariano (1995). Further, a model con-

fidence set (MCS) as defined by Hansen et al. (2011) is constructed for each forecast horizon,

identifying the set of “best” models. In this case, the candidate models are Model 1 (the para-

metric benchmark) and semiparametric models (TV-trend, TV-coef, and TV-double), each with

a range of bandwidths.

While Figures 2.7 and 2.9 give some insight into the relative performance of the four models, it
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Table 2.3: Diebold-Mariano test statistics (DM -stat) for comparing forecast accuracy between Models
TV-trend and TV-coef to that of Model 1. For different forecast horizons and for each model, different

ranges of bandwidths, h = kT̃−1/5, are selected.

Horizon: 1-day-ahead 7-day-ahead 30-day-ahead

Model: TV-trend TV-coef TV-trend TV-coef TV-trend TV-coef

k DM k DM k DM k DM k DM k DM

0.12 1.30 0.50 0.37 0.09 1.46 0.38 0.92 0.19 1.26 0.30 0.48
0.14 1.35 0.52 0.40 0.11 1.64 0.40 1.04 0.21 1.31 0.32 0.59
0.16 1.37 0.54 0.42 0.13 1.75 0.42 1.14 0.23 1.34 0.34 0.68
0.18 1.37 0.56 0.42 0.15 1.80 0.44 1.22 0.25 1.36 0.36 0.74
0.20 1.34 0.58 0.41 0.17 1.82 0.46 1.27 0.27 1.37 0.38 0.79
0.22 1.31 0.60 0.40 0.19 1.82 0.48 1.29 0.29 1.37 0.40 0.72
0.24 1.27 0.62 0.40 0.21 1.90 0.50 1.30 0.31 1.36 0.42 0.73
0.26 1.23 0.64 0.39 0.23 1.77 0.52 1.29 0.33 1.34 0.44 0.72
0.28 1.19 0.66 0.37 0.25 1.74 0.54 1.27 0.35 1.32 0.46 0.81
0.30 1.15 0.68 0.36 0.27 1.70 0.56 1.24 0.37 1.30 0.48 0.79
0.32 1.11 0.70 0.34 0.29 1.66 0.58 1.21 0.39 1.27 0.50 0.76

DM -stats greater than critical values indicate that the semiparametric forecast is significantly better.
DM -stat∼ N(0, 1). The 10%, 5%, and 1% right-tailed critical values are 1.2816, 1.6449, and 2.3263,

respectively. Statistical significance is indicated using cells shaded in magenta (10% level), yellow (5%
level), and cyan (1% level).

Table 2.4: Diebold-Mariano test statistics (DM -stat) for comparing forecast accuracy between Models
TV-double to that of Model 1.

For each forecast horizon, different ranges of bandwidths multipliers, k1 and k2, are selected for
hi = kiT̃

−1/5, i = 1, 2.

Panel A: 1-day-ahead Panel B: 7-day-ahead

k2 k2

0.40 0.50 0.60 0.70 0.80 0.20 0.40 0.60 0.80 1.00

k
1

0.50 0.59 1.07 0.98 0.78 0.65

k
1

0.30 -1.13 0.89 -0.37 -1.27 -1.54
0.60 0.70 1.32 1.39 1.31 1.26 0.40 -1.14 1.50 1.42 0.72 0.48
0.70 0.73 1.39 1.53 1.51 1.48 0.50 -1.15 1.74 2.08 1.71 1.60
0.80 0.73 1.39 1.53 1.52 1.49 0.60 -1.15 1.82 2.44 2.25 2.19
0.90 0.71 1.35 1.48 1.45 1.40 0.70 -1.15 1.83 2.59 2.46 2.39

Panel C: 30-day-ahead

k2

0.30 0.45 0.60 0.75 0.90

k
1

0.40 0.60 0.85 0.76 0.68 0.71
0.50 0.71 1.00 0.91 0.86 0.91
0.60 0.73 1.11 1.07 1.05 1.11
0.70 0.71 1.13 1.12 1.10 1.15
0.80 0.66 1.11 1.08 1.03 1.05

DM -stats greater than critical values indicate that the semiparametric forecast is significantly better.
DM -stat∼ N(0, 1). The 10%, 5%, and 1% right-tailed critical values are 1.2816, 1.6449, and 2.3263,

respectively. Statistical significance is indicated using cells shaded in magenta (10% level), yellow (5%
level), and cyan (1% level).

is important to also conduct statistical tests of the relative accuracies of Model 1 and each of

the semiparametric alternatives. This comparison can be performed using the Diebold-Mariano
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test (Diebold and Mariano, 1995).

From Table 2.3, Model TV-trend outperforms Model 1 at the 10% level of significance for all

three forecast horizons for a number of bandwidths, and at the 5% level of significance at the

7-day-ahead horizon. On the other hand, Model TV-coef does not appear to provide forecasts

which are any different in accuracy from Model 1, in a statistically-significant sense. Another

way to conceptualise Models TV-trend and TV-coef is to think of them both as Model TV-

double, but in one case h2 =∞, and in the other h2 = h1. DM -stats in Table 2.4 are for cases

where the restrictions on h2 are relaxed. Remarkably, there appears to be some improvement

in forecasting accuracy, in that the largest DM -stat is greater than those of Models TV-trend

and TV-coef in Table 2.3 at the 1-day-ahead and 7-day-ahead forecast horizons. If one were to

make a choice between the four model specifications in this paper based solely on the Diebold-

Mariano test, then Models TV-trend and TV-double would be preferred. They are able to

produce statistically-significant improvements in forecast accuracy at the 1-day-ahead and 7-

day-ahead horizons, and Model TV-trend forecasts are also statistically more accurate at the

30-day-horizon.

In addition to the Diebold-Mariano tests for comparative predictive accuracy in Section 2.5.4,

the model confidence set for each forecast horizon was also constructed16. Table 2.5 contains

the models which are excluded from the MCS. The set of all candidate models (both included

and excluded from the MCS) are those represented in Tables 2.3–2.4. These results suggest that

Model 1 is always outperformed by some of the semiparametric models at the 1-day and 7-day

forecast horizons. At the 30-day horizon, the MCS procedure is unable to exclude any model.

However, it is clear that within the range of bandwidths selected for this study, some choice of k

and (k1, k2) will lead to the TV-trend and TV-double approach being in the set of best models.

This conclusion is in line with that of the Diebold-Mariano tests. On the other hand, when

there is any significant difference in predictive ability, according to the MCS procedure, Model

1 is always excluded from the set of best models.

16The MCS procedure was executed using the MFE Toolbox in MATLAB by Kevin Sheppard, which is available
at https://www.kevinsheppard.com/code/matlab/mfe-toolbox/.
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Table 2.5: Models which are excluded from the confidence sets for each of the three forecast
horizons. The confidence level is 0.9. The resulting MCS is robust to the stationary bootstrap

with average window lengths indicated in the table. B = 999 bootstrap replications are
performed.

Forecast horizon, h = 1 7 30

Model 1 Yes Yes No

TV-trend: None None None

TV-coef All None None

TV-double k1 = 0.50, k2 = 0.40 k1 = 0.30, k2 = 0.20 None

k1 = 0.60, k2 = 0.40 k1 = 0.40 ,k2 = 0.20

k1 = 0.50, k2 = 0.50 k1 = 0.50 ,k2 = 0.20

k1 = 0.50, k2 = 0.60 k1 = 0.60 ,k2 = 0.20

k1 = 0.50, k2 = 0.70 k1 = 0.70 ,k2 = 0.20

k1 = 0.50, k2 = 0.80 k1 = 0.30 ,k2 = 0.40

k1 = 0.30 ,k2 = 0.60

k1 = 0.40 ,k2 = 0.60

k1 = 0.30 ,k2 = 0.80

k1 = 0.40 ,k2 = 0.80

k1 = 0.30 ,k2 = 1.00

k1 = 0.40 ,k2 = 1.00

Window lengths 52–58 30–40 10–59

An important point to discuss is the range of bandwidths reported in Tables 2.3–2.4. While

there is some overlap in the bandwidths, it is clear that the suitable values of k for Models

TV-trend and TV-coef are generally smaller than those of k1 and k2 Model TV-double. More

interestingly, the ranges of values of k1 and k2 in Table 2.4 for which DM -stats are similar

or better than the statistics in Table 2.3 are noticeably greater than the ranges of k in Table

2.3. This suggests that Model TV-double is more robust to deviations in bandwidths from the

optimal value.

Note that despite the fact that the Diebold-Mariano test does not seem to recommend the use

of Model TV-double at the 30-day horizon, these results do not necessarily contradict those of

Section 2.5.3. The variance of the null distribution of the DM test statistic grows with the

forecast horizon. Therefore even with larger magnitudes of improvement in prediction accuracy,

the Diebold-Mariano test may have lower statistical significance, as seen here.
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2.5.5 A note on bandwidth selection

Many other studies which use kernel estimation methods will employ some form of bandwidth

selection process, be it the rule-of-thumb formula or cross-validation. These methods are less

useful for dependent data. Since the purpose of this study is forecasting, a target function for

optimisation can be based on some measure of in-sample forecasting inaccuracy. To that end, the

sample is split in two. The final date in the earlier subsample is defined as the “current” date.

Each of the semiparametric models is used to produce in-sample forecasts until the “current”

day. The best bandwidth from this in-sample forecasting exercise is chosen as that which

gives the smallest in-sample MSFE. Then, for robustness, some other bandwidths around the

selected “best” value are also chosen. Out-of-sample forecasts are performed using this range

of bandwidths. Naturally, the best bandwidth for the out-of-sample period may not necessarily

coincide with that of the earlier period.

In this bandwidth-selection exercise, a general relationship between bandwidth and MSFE was

noticed. As k (or h) approaches zero, the MSFE increases sharply. This result is to be expected,

since an infinitesimal bandwidth would mean that very little information from the sample is in-

corporated in the estimation. On the other hand, as k approaches infinity, the MSFE approaches

that of Model 1. This, too, is expected since an infinitely-large bandwidth means that equal

weights are placed on all observations in the sample, which is no different from ordinary least

squares estimation. Somewhere in between k = 0 and k = ∞ lies at least one local minimum

for MSFE. For the wide range of bandwidths we considered, not all of which are reported in

this paper, we find that the smallest local minimum is the first local minimum as k moves away

from zero. Thus, should a search algorithm be applied in order to find the optimal bandwidth, a

reasonable starting point would be to initialise the algorithm at a small bandwidth value. How-

ever, the definition of “small” is, of course, subjective. Ultimately, the choice of bandwidth and

the frequency at which to update the chosen bandwidth are dependent on the econometrician

and data set.

2.6 Discussion

The literature on electricity price forecasting has a long history. In light of changes to electricity

markets, regulatory or otherwise, certain innovations to forecasting methods may be in order.
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In this chapter, two contributions are made to the literature. First, a different treatment for the

temperature variable is presented, which aims to capture the effect of deviations from seasonal

temperature patterns, and also permits the effects of these deviations to depend on the season.

The second and main contribution is in presenting a relatively simple model for forecasting daily

electricity spot prices with some extensions, namely, allowing for time-varying parameters. The

relative forecasting performance between the base model and its extensions was examined in

Section 2.5. Throughout these comparisons, a few points of discussion spring to mind.

First, from visual inspection of Figures 2.7 and 2.9, it would seem that there may be economic

gains to be had from using the semiparametric models over the constant-parameter base model,

particularly at longer forecasting horizons. However the DM-test reveals that the forecast hori-

zon most suited to the semiparametric models is, in fact, the shortest one Ultimately, the choice

of modelling approach for some forecast horizon would depend on the econometrician’s objective.

What is empirically true from the work in this paper, however, is that for each semiparametric

model at each of the three forecast horizons, there exists a range of bandwidth parameters such

that the use of Models TV-trend, TV-coef, or TV-double will not lead to statistically poorer

forecasts than those of Model 1.

It is also worth stating the fact that findings may differ for different sample periods. For instance,

if the sample were to end on 1st October 2016 instead of 28th April 2017, large and clear gains

would be found, both economically and statistically, from using any of the three semiparametric

models over the constant-parameter version.
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Chapter 3

Point forecast of prices using

functional data analysis

In theory, the price of an item is determined as the intersection of supply and demand curves.

This relationship is not always directly observable17. Wholesale electricity market data is almost

unique in that prices are, in actuality, determined by the intersection of the two curves. German

market data from the EEX contains disaggregated information about the sale and purchase

bids made by all market participants. Using this data, the sale and purchase curves can be

constructed. The plots in Figure 1.3 are of sale and purchase curves in the German wholesale

market at the first hour of 1 January 2016. Every hourly auction in the wholesale market will

have its own corresponding sale and purchase curves arising from the bids of market partici-

pants. The traded volume (MWh) and price (e/MWh) occurs at the intersection of the two

curves. Instead of forecasting just the series of prices, functional data analysis techniques permit

forecasting of supply curves and demand curves. Then, forecasts of prices can be obtained as the

intersection of the two curves at any point in time. The extant literature using this approach is

new and small, but promising.

17For example, the price of a tin of tuna in shops is subject to marketing decisions based on some market
research into the availability of supply and the willingness of consumers to purchase at various prices. However,
the exact supply and demand curves themselves cannot be drawn up.
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3.1 Introduction

Ziel and Steinert (2016) were the first use sale and purchase curves to forecast wholesale electric-

ity prices, although they did not employ functional data analysis methods. They create forecasts

of volume bids at a selection of discrete points along each curve, then interpolate the values to

construct forecasts of entire curves. Following that, Shah and Lisi (2020) treats each curve as

a datum in itself, and forecasts entire curves using functional data analysis tools instead of as

reconstructions from several points. In brief, functional data analysis (FDA) is the practice

of analysing and modelling functional data, where each observation in the sample is viewed as

a function over some set, as opposed to being a single point of datum. Comprehensive texts

on functional data and its analysis include Ramsay and Silverman (2002, 2005), Horváth and

Kokoszka (2012), and Kokoszka and Reimherr (2017). Section 3.2 outlines some of the FDA

modelling approaches which have been widely used in practice.

FDA can be employed when there is sufficient reason to believe that the underlying data are

continuous curves or can be approximated by such curves. Functional data can be found in

various disciplines. A number of illustrative examples, ranging from handwriting samples to

human growth, can be found in Ramsay and Silverman (2002). More recently, FDA has also

been used to model or predict mortality rates (Hyndman and Ullah, 2007), biomechanics related

to joint injuries (Hébert-Losier et al., 2015), disease characteristics (Kendrick et al., 2017),

financial returns (Shang, 2017), electricity prices (Chen and Li, 2017; Gonzalez et al., 2018)

and load (Goia et al., 2010), supply and demand curves (Lisi and Shah, 2020; Mestre et al.,

2020), and many other types of data. Reviews and surveys related to functional data analysis

in practice can be found in Rice (2004), Ullah and Finch (2013), Cuevas (2014), Shang (2014),

and Wang et al. (2016).

The monograph by Bosq (2000) addresses the functional autoregressive (FAR) model, including

relevant theory and estimation methods. At the risk of oversimplification, the FAR model

may be viewed as a Hilbertian-space analogue to the scalar autoregressive (AR) model. While

coefficients in the AR model are scalars, the FAR equivalents are continuous linear operators

(or functionals). When certain conditions are met, the linear operators can be estimated by

least squares (Bosq, 2000; Kokoszka and Reimherr, 2012). Functional time series models are

also estimated by means of basis expansions (Hyndman and Ullah, 2007; Chiou, 2012; Wang

et al., 2016; Shang, 2017).
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The literature pertaining to functional time series estimation and forecasting of supply and

demand curves is extremely small. In fact, only two papers to date use functional methods to

forecast wholesale electricity market curves are Shah and Lisi (2020) and Mestre et al. (2020).

Furthermore, of these two articles, only Shah and Lisi (2020) forecast both supply and demand

curves in order to obtain the price at the intersection; Mestre et al. (2020) forecast only the sale

curves. Despite the scarcity of immediately-relevant works, the theory, intuition, and techniques

which are employed in functional forecasting of sale and purchase curves is the similar to that

of any other application, for which there is a wealth of literature.

3.2 Functional time series in wholesale electricity markets

Functional models can be estimated using a variety of methods. Thus far, two approaches

have been applied to modelling sale and purchase curves in wholesale electricity markets. Both

methods are collectively referred to in this chapter using the term “kernel-type estimation”. An

alternative way of conducting FDA is through basis function decomposition, which has been

widely used in other disciplines.

Kernel-type estimation

Shah and Lisi (2020) adopt the kernel-type estimator described in Ferraty et al. (2012), relaxing

the linearity assumption on the operators. In essence, the procedure in Shah and Lisi (2020)

applies larger weights to more recent data. Let ξt,h represent the functional object at hour h on

day t (for t = 1, . . . , T and h = 1, . . . , 24) which, in this case, is either a supply or demand curve.

Then the assumption underpinning this approach is that it follows the autoregressive process

ξt,h = m (ξh) + ut,h, (3.1)

wherem (ξh) ≡ m (ξt−1,h, . . . , ξt−d,h) = E [ξt,h|It−1] is a mean function, with ξh and It−1 referring

to a vector of lagged functional variables and the available information up to and including time

t− 1, respectively. The maximum number of lags, d, is user-defined, and the term ut,h denotes

a functional error. Out of the four econometric methods which were compared in Shah and

Lisi (2020), the one which led to the best predictive performance most of the time was the

nonparametric functional autoregressive (NPFAR) model. If information is available up to (and
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including) time t − d − 1, the kernel regression estimator for NPFAR for the function m(·)

evaluated at ξ̃ is given as

m̂
(
ξ̃
)

=

∑T
t=d+1 ξt,hKh

[
λ
(
ξt−d,h, ξ̃

)]
∑T

t=d+1Kh

[
λ
(
ξt−d,h, ξ̃

)] , (3.2)

where ξt,h(·) is a functional random variable in some semimetric space (E, λ), ξ̃ is a given element

of E, K(·) is a kernel function, h is the pre-determined bandwidth, and Kh(a) = K(a/h). The

lag, d, must be suitably chosen. The expression in (3.2) is, essentially, a functional version of

the univariate local-constant Nadaraya-Watson estimator. In other words, m̂(ξ̃) is the weighted

sum of all observations in the sample, where data points closest (with distance measured in the

time domain) to ξ̃ are given highest weighting.

Although Gonzalez et al. (2018) also use the “kernel” in referring to their operators, the term

has a different meaning. Their kernel is a three-dimensional surface which permits every point

in each functional explanatory variable (including lags of the dependent variable, lags of errors,

and other exogenous variables) to influence the level at any point on the current curve. Instead

of using a probability density kernel function, the bivariate “kernel” is represented by the sum

of trigonometric functions, with parameters which are estimated. Mestre et al. (2020) further

propose using a simpler version of the kernel surface, where the volume in a supply curve for

some given price, say p0, at time t is affected by the volumes of curves at other points in time, but

only at the same price level, p0. As a consequence, the kernel surface becomes two-dimensional

or flat. A key difference between the methods proposed by Gonzalez et al. (2018) and Mestre

et al. (2020) and the NPFAR approach of Shah and Lisi (2020) is that the former two also

include other exogenous explanatory variables such as weather and temperature. Each of these

exogenous variables, whether functional or scalar, will have a functional operator (kernel surface)

associated with them, which can be viewed as functional versions of regression coefficients.

These methods were shown to lead to more accurate price forecasts that standard scalar (as

opposed to functional) models. However, they are complex and somewhat complicated to im-

plement18.

18At time of writing, one of the authors of Gonzalez et al. (2018) had been contacted. An R program for
estimating their model was under development but not published.
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Basis function decomposition

The approach adopted in this chapter uses basis expansions to estimate a functional autore-

gressive model. The procedure will be discussed in order of the steps outlined in Hyndman and

Ullah (2007). The discussion will include reasons that some steps are performed, how they are

adopted in this chapter, and, where applicable, reasons why certain steps are not adopted for

the analysis in this chapter.

Consider a data set with observations {pi, vt(pi)}, t = 1, . . . , T , i = 1, . . . , N , where

vt(pi) = ft(pi) + σt(pi)εt,i, (3.3)

where εi,t is an iid standard normal random variable and σt(pi) allows the amount of noise to

vary with p. The general algorithm used by Hyndman and Ullah (2007) is as follows, with

specific details provided in Section 3.3.

1. Smooth the data for each t using a nonparametric smoothing method to estimate ft(p) for

p ∈ [p1, pN ] from {pi, vt(pi)}, i = 1, 2, . . . , N .

2. Decompose the fitted curves via a basis function expansion using the following model:

ft(p) = µ(p) +

K∑
k=1

βt,kφk(p) + et(p), (3.4)

where µ(p) is a measure of location of ft(p), {φk(p)} is a set of orthonormal basis functions

and et(p) ∼ N(0, ψ(p)).

3. Fit univariate time series models to each of the coefficients {βt,k}, k = 1, . . . ,K.

4. Forecast the coefficients {βt,k}, k = 1, . . . ,K, for t = T + 1, . . . , T +h using the fitted time

series models.

5. Use the forecast coefficients with (3.4) to obtain forecasts of ft(p), t = T + 1, . . . , T + h.

From (3.3), forecasts of ft(p) are also forecasts of vt(p).

First, the data is smoothed. Rice and Silverman (1991) show that under the assumption that

the mean function is smooth, estimates are more accurate when the raw data first undergoes a
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smoothing process. It is worth noting, however, that Cuevas (2014) and Gao et al. (2020) moti-

vate this step as a method by which noise in data measurements is reduced. Furthermore, Bosq

(2000) describes interpolation and smoothing as techniques which are “for converting discrete

data into functional data”. In the case of hourly electricity auction curves, sale and purchase

curves are typically piece-wise constant, so are not naturally smooth. However, although the

data is unevenly spaced on account of different bidding prices, these data points completely and

exactly define the continuous curve over the entire domain of possible prices. As such, neither of

these two reasons is applicable to the context of auction curves as functional data. Additionally,

smoothing is not performed in recent works which use similar methods, such as Shang (2019).

The second step is to decompose the (fitted or smoothed) curves by basis function expansion.

Here, the condition is that the set of basis functions are orthonormal. Functional principal

components are often used as the basis functions as they capture the largest amount of variation

in the data, by design. However, Ramsay and Silverman (2005) point out that there is no single

prescribed basis which works well in all situations. Even so, functional principal components

analysis (FPCA) has its charms. For example, the use of FPCA significantly reduces the number

of arbitrary decisions which need to be made. The principal components are derived from

observed data, and the order of the basis is a data-driven choice. It is worth noting, additionally,

that in defining the basis functions for functional data, Ramsay and Silverman (2005, Chapter

8.2) and Horváth and Kokoszka (2012) do not require the mean or location, µ(p), to be isolated

from the basis functions.

All subsequent steps in the algorithm are uncomplicated. In the third step, since the basis

functions are orthogonal, the coefficients for each k are independent of each other and can

therefore be modelled as univariate time series. However it may be useful to model the {βt,k},

k = 1, . . . ,K, using AR models with exogenous regressors (ARX) if relevant regressors exist.

Forecasting in the fourth and fifth steps are straightforward.

Beyond the algorithm

The algorithm above provides a method of producing forecasts for the functional data. However,

it is important to then relate those forecasts with the data and setting at hand. Two additional

considerations must be made, regardless of the chosen functional forecasting approach. The first

is that sale and purchase curves are monotonic by construction. As such, the forecasted market
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curves are monotonically-constrained versions of the forecasts produced by the algorithm.

A predicted sale curve, {v̂(pi)}, is the result of minimising

1

N

N∑
i=1

(ṽ(pi)− v̂(pi))
2

with respect to {v̂(pi)}, subject to constraints

0 ≤ v̂(pj) ≤ v̂(pj+1) for j = 1, . . . , N − 1, (3.5)

where ṽs(p) denotes the prediction obtained from the forecasting algorithm. For a forecast of a

(monotonically increasing) purchase curve, the inequality constraints in (3.5) are inverted.

The second additional step which is required relates to the fact that the quantity of interest

in this study is prices. Forecasts of prices are obtained from the intersection of forecasted

curves. however, the predicted sale and purchase curves are defined on a discrete grid. The

approximation of the intersection price, p̃ is simply determined to be the price which minimises

the distance between the forecasted supply and demand curves,

p̃ = arg min
∣∣∣v̂s(p)− v̂d(P )

∣∣∣ ,
where the superscript indicates a supply (s) or demand/purchase (d) curve.

Functional principal components analysis

The idea behind principal components (PC) in functional data is the same as in the multivariate

case. The theory differs mainly in that in the functional case, the data, and therefore the PCs,

are continuous. Following Ramsay and Silverman (2005, Chapter 8.4), a simple way to compute

functional PCs is by discretising the continuous functions to a grid of equally-spaced values.

Then, the PCs are computed using the discretised data exactly as they would have been in the

multivariate setting. In brief, let V be the N×T matrix consisting of the T functions discretised

with N equally-spaced values, with sample variance-covariance matrix Σ̂ = N−1V ′V . Then the

(discretised) functional PCs are the eigenvectors of Σ̂ or, equivalently, the U matrix in the

singular value decomposition UDW ′ of V . If continuous functional PCs were required, the

discretised PCs could simply be interpolated. Of the four approaches to selecting the number of
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PCs mentioned by Shang (2017), the easiest is by comparing the ratio of the eigenvalues (Chiou,

2012). The other three methods alluded to were through pseudo AIC or BIC (Yao et al., 2005),

cross-validation (Rice and Silverman, 1991), and bootstrapping (Hall and Vial, 2006).

An alternative to using eigendecomposition or singular value decomposition is by basis function

expansion of the functions. This can be viewed as a more general version of FPCA, since PCs

satisfy the requirements to be basis functions. As mentioned in the previous section in reference

to Ramsay and Silverman (2005), there is no rule stating that FPCA yields the best basis, but

finding a specific set of basis functions which yield better performance is not always an easy

task.

3.3 Empirical application

3.3.1 Data
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Figure 3.1: Representation of sale and purchase curves in Germany.

German wholesale electricity market data for the period 1 February 2015–30 April 2016 (455
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days) are obtained from the European Electricity Exchange (EEX). For this study, the various

purchase and sale bids are aggregated to produce 10,920 (24 × 455) hourly sale and purchase

curves. Observed sale and purchase curves from 1 February 2015 are shown in Figure 3.1. Panel

(a) contains plots of the curves for the first hour, with Panel (b) focusing on the portion between

the prices -e50/MWh and e100/MWh. To see what a small collection of these curves would look

like, hourly purchase and sale curves for 1st February 2015 and 1st August 2015 are presented

in Panels (c) and (d), respectively. As discussed, purchase (sale) curves are monotonically

decreasing (increasing), The price at which the curves cross is the equilibrium price. For the

first hour of 1 Feb 2015, this price is e27.04/MWh.

In the empirical application which follows, only the portion of the curves between the prices

of -e100/MWh and e150/MWh are considered. The reason for this restriction is that all the

prices in the sample lie between these bounds, and a smaller range of prices means that the

characteristics of the curves within this region will be better captured in the modelling stage.

3.3.2 Forecasting

The basis function decomposition approach outlined in Section 3.2 was adopted with the de-

scribed changes, namely, smoothing was not performed and the locality measure term, µ(p), in

(3.4) is omitted from the model. Functional principal components, as described in Section 3.2,

were used as the basis functions. For the purpose of forecasting, an in-sample period of 28 days

(672 hours) was used for fitting model coefficients. This also means that the principal compo-

nents were updated every day using the most current 28 days’ worth of hourly data. Based on

scree plots each day, the number of principal components included was consistently chosen to be

K = 2 throughout the sample. Examples of principal components used in this analysis and the

associate coefficient estimates are shown in Figure 3.2. The plots in Figures 3.2(c)–(d) clearly

demonstrate a diurnal pattern in coefficients of the basis function decomposition.

Forecasts are performed in daily (24-hourly) blocks. In other words, fitting a forecasting model

for any hour of a given day must be performed with data up to and including the 24-th hour of the

preceding day only. Consequently, a two-step ahead (second hour of the day) forecast involves

re-estimating the univariate model from Step 2 on page 49 using the forecasted coefficients in

the basis function decomposition from the one-step ahead forecast. The process is then iterated

until the forecast for the 24th hour. Naturally, any other random explanatory variables used
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Figure 3.2: First four principle components used to decompose the demand curves on
subsamples of 28 days or 672 hours (Panels (a)–(b)). Only the first two principle components

were used. Time series of coefficient estimates are shown in Panels (c)–(d).

in Step 3 should also be forecasted. In this chapter, the univariate model in Step 3 is an ARX

model

β̂ak,t = αk + δkβ̂
a
k,t−1 + z′tγ + ηk,t, (3.6)

for a ∈ {s, p} to indicate whether the model is for a sale (s) or purchase (p) curve. The control

variables on the right-hand side, z′t, consist of hour-of-day dummies, day-of-week dummies,

daily mean temperature, and volume of renewable energy generated at time t. Only the first

lag, β̂k,t−1, was chosen as it led to the lowest forecast error for each β̂ak,t.

For the sake of comparison, a univariate model is also used to forecast hourly prices. The

benchmark model is

pt = αk +
∑
b∈B

δbpt−b + z′tγ + εt, (3.7)
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where pt is the price at time t, the lags are B = {1, 2, 3, 4, 24}, and exogenous variables z′t are

the same as in (3.6). The lags in B represent prices in the four preceding hours, as well as the

price at the same hour on the previous day. The benchmark model (3.7) is based on existing

established forecasting models, adapted to best suit the data at hand.

In both (3.6) and (3.7), lags are calibrated based on a training sample. Forecasts of prices were

made using a range of different lag combinations for the sub-sample from 1 March 2015–31 July

201519. The set of lags which minimised the sum of squared forecast errors
∑

(pt − p̃t)2 in this

training sample is then chosen for the entire pseudo out-of-sample period of 1 August 2015–30

April 2016.

Once price forecasts from each method are obtained, their accuracy can be compared using the

Diebold-Mariano test (Diebold and Mariano, 1995).

3.3.3 Results
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Figure 3.3: Hourly wholesale electricity price forecasts and forecast errors from 1st August
2015 to 30th April 2016. Forecasts are performed using either functional data analysis or an

ARX model.

19Recall that model coefficients are fitted for subsamples of 28 days, so the first day with a forecast is 1 March
2015.
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Figure 3.4: Diebold-Mariano test statistics for comparing predictive accuracy between the
FDA and ARX approaches. The 99% critical value for a one-tailed test is 2.32.

Forecasts from the FDA approach and the ARX method are shown in Figure 3.3(a). In Figure

3.3(b), it is clear that FDA forecasts are closer to observed values, with errors that generally

have smaller and more constant variance than the ARX forecast errors. The corresponding

Diebold-Mariano test statistics for predictive accuracy are shown in Figure 3.4. Note that there

are 24 statistics, each corresponding to a different hour of the day. The reason for the 24

Diebold-Mariano tests is that forecasts are conducted in blocks of 24 hours (one day), and there

are therefore 24 forecasts horizons. Despite some erroneous spike predictions produced by the

FDA approach (see Figure 3.3(a)), all of the Diebold-Mariano statistics are greater than the

one-tailed 99% critical value, indicating that the FDA forecasts are statistically more accurate

than the ARX forecasts at the 1% level of significance.

Note that although (3.7) is a very simple model, it is largely similar to the benchmark model

used in Shah and Lisi (2020). While it is certainly possible that a more complex specification for

an ARX—or some other univariate forecasting approach—may yield better results than (3.7),

the fact is that even this simple specification for the basis function FDA method, (3.6), performs

well.

3.4 Discussion and conclusion

Forecasting sale and purchase curves in order to obtain price forecasts is relatively new, the

application of functional data analysis for this purpose even less explored. From the limited

literature, this approach appears to have great potential for increasing the accuracy of wholesale
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price forecasts. The only other study to use FDA for this purpose is set in Italy, whereas the

data studied in this chapter is from Germany. The findings suggest that improvements gained

from adopting an FDA forecasting method is not particular to a single data set. Potential

extensions and future research in this area could be from a methodological perspective, where

different FDA techniques might be considered. Although not the focus of this chapter, it is

worth noting that supply and demand curves contain other information which may be useful in

making energy markets more efficient. Investigation into other uses of market curves may be an

avenue for research as well. Other explanatory variables which may reasonably be assumed to

contribute to changes in levels of shapes of supply and demand curves could also be explored.

Certain limitations and benefits of the model employed in this study warrant a discussion. The

basis function decomposition method advocated for in this chapter is described as being easier

to estimate than the kernel estimation alternatives. Although the kernel approach was not

conducted here, Shah and Lisi (2020) emphasise that it takes only 0.5 seconds to conduct a

one-step ahead prediction with their NPFAR model. In contrast, the basis function approach

here takes, on average, under 0.1 seconds to forecast all 24 hours’ prices for one day20.

In addition to savings in computing complexity and time requirements, a benefit of the basis

decomposition approach over the NPFAR method of Shah and Lisi (2020) is that it easily

admits other explanatory variables which explain movements in wholesale market curves and

prices. However, it must be noted that the variables used for forecasting in this study are

observed, not forecasted. For some variables such as temperature, this practice is not likely to

significantly affect the outcome since hourly day-ahead temperature forecasts are very accurate.

However, this study also uses the volume of renewable energy to predict sale and purchase

curves. Using observed values of this variable instead of forecasts may artificially inflate the

predictive accuracy since forecasts of renewable energy in Germany are typically inaccurate21.

At least, the comparison between FDA and the benchmark is made on equal grounds since the

benchmark also uses observed as opposed to forecasted values.

In conclusion, using functional data analysis tools to forecasts supply and demand curves has

been shown to be effective at producing more accurate forecasts of their intersections than merely

forecasting the intersections themselves. However, this avenue is still very new to the literature.

20Shah and Lisi (2020) use an Intel Core i7-4510U CPU at 2.60GHz, whereas the computer used in this chapter
contains an AMD Ryzen 7 4800H CPU at 2.90GHz.

21The forecasts from this chapter were repeated without renewables as explanatory variables. Diebold-Mariano
statistics in Appendix A show that the FDA approach still outperforms the benchmark.
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As such, there are various other research opportunities in related areas.
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Chapter 4

Real-time price elasticity of

wholesale electricity demand

Price elasticity of electricity demand is a topic which has received increasing attention over the

years. A large and growing number of studies use econometric techniques to estimate the value

of price elasticity, typically by regressing quantity on price and other variables, and using the

coefficient of price. This chapter explores a number of ways in which such an approach might

lead to inaccurate inference, and proposes a novel way of computing intra-day price elasticity

of wholesale demand. The discussion and empirical results serve as a reminder that regression-

based estimates must be used with care.

4.1 Introduction

Since the deregulation of electricity markets across the world, the study of various electricity-

related quantities has become increasingly relevant and important. The fact that prices in many

countries are no longer determined exogenously by a regulatory body but are a product of market

forces means that a better understanding of the various quantities, be it price, load, usage, or

elasticities, has the potential to lead to more efficient electricity markets. Any savings in the

wholesale market could be passed on to end-users, resulting in higher welfare for the general

public. Efficient bidding by wholesale market participants is one of the ways in which prices

can be optimised. To this end, a growing body of literature focuses on empirically estimating

the price elasticity of electricity demand (PEDE) in various energy markets around the world,
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although price elasticity of supply in electricity (PESE) seems to be less-studied.

Two of the key factors which drive advancements in empirical research are methodological in-

novations and data availability. Thus far, articles on price elasticities in electricity markets

contribute to methodology. Broadly speaking, the accuracy of predictions or estimates pro-

duced by new estimation methods can be evaluated by comparing fitted values against their

observed counterparts. Occasionally, such comparison is not possible because the quantity of

interest is inferred but not observed. Until now, the empirical literature on price elasticity of

demand in electricity has fallen under the latter category. Consequently, studies have introduced

various ways in which price elasticity can be estimated from the available data without being

able to truly verify the accuracy of the results.

Through access to highly-detailed data, this chapter is the first to measure true, real-time price

elasticities in the wholesale market. The two key words here are “real-time”, reflecting the

fact that elasticities are measured for every traded time interval22, and “true”, indicating that

these elasticities are computed from actual market supply and demand curves instead of being

reverse-engineered from transaction price, quantity, and other data over a period of time. In

other words, it is the first to provide a verifiably-good measure of observed price elasticities

based on the most fundamental definition.

The focus on price elasticity of electricity demand, while relatively recent compared to studies on

prices and loads, is certainly gaining momentum in recent years. Selected works in the growing

body of related literature can be found tabulated in Lijesen (2007), Fan and Hyndman (2011),

and Inglesi-Lotz (2011), often together with the geographic region, the reported values of price

elasticities, as well as the methodology employed. Since then, of course, more studies have

contributed to the literature on estimating price elasticity, including, but not limited to, Feehan

(2018), Tiwari and Menegaki (2019), Dong et al. (2020), and Yu and Xin (2020). Each of these

empirical studies computes price elasticities using some estimated quantity which represents

some average over the entire sample. Typically, a single value for the coefficient of price in a

regression model is estimated over the sample, and is then used to compute price elasticities.

Two notable exceptions to this practice are Inglesi-Lotz (2011) and Tiwari and Menegaki (2019),

who employ a state-space approach in their models, thereby allowing the relevant coefficient to

be time-varying.

22The term “real-time price elasticity” has recently been used by Lijesen (2007). However, a term which might
better-represent where their approach lies in relation to the rest of the literature is “very short term elasticity”.
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As indicated earlier in this section, the key factor differentiating this chapter from others is the

data which is used. The existing literature examines various types of data, mainly focusing on

residential, industrial, or other non-wholesale data. Additionally, most of the existing work uses

lower frequencies such as daily- or annually-aggregated prices and volumes. On the other hand,

this chapter focuses solely on the wholesale electricity market at the intra-day frequency. Most

important, however, is that all bids in the intra-day market are examined here in their most

raw, disaggregated form, which permits construction of exact supply and demand curves in each

intra-day period. This is in stark contrast to other studies, which consider only the traded price

and volumes, and are therefore unable to take into account the collective nature of all the bids

made in intra-day electricity auctions. Access to raw data permits exact measurement of price

elasticity of demand. The study in this chapter is the first to compute price elasticity of demand

directly from raw hourly supply and demand curves.

There are a few studies which are close in spirit to this present work, albeit in different ways.

Lijesen (2007) was the first to use intra-day data from the wholesale market to compute price

elasticity of demand. However, the data used in that paper is the time series of prices and

loads rather than sale and purchase curves. Consequently, the regression model in that study

produces only a single value for elasticity over a period of one year, representing an average

measure of intra-day real-time elasticities. Knaut and Paulus (2016) adopt a similar framework

on hourly data, but use dummy variables to obtain twenty four coefficients on price, one for

each hour of the day. They are therefore able to show an intra-day pattern for price-elasticity of

electricity demand. However, these hourly price elasticities still represent average values—one

for each intra-day interval—over the sample period.

To date, the only study to investigate price elasticity at the hourly frequency, as opposed to

using hourly data to estimate price elasticity, is Kulakov and Ziel (2019). The method employed

by Kulakov and Ziel (2019) is similar to the approach here in that demand elasticity is computed

using slopes and values along the demand curve. However, they use supply and demand curves

constructed from a decomposition of observed wholesale curves. Rather than studying price

elasticity of demand of the wholesale market, their model, which they refer to as the “Funda-

mental Model”, is designed with the intention of estimating the response in overall consumption

to prices of an aggregation of all generators. In contrast, the study in this chapter has a simple,

singular goal: To compute the wholesale demand response to a change in the price of wholesale

61



electricity, that is, to compute the price elasticity of demand in the wholesale electricity market.

A justification for the focus of this chapter is that consumers are only very indirectly affected

by wholesale prices. In fact, the prices which consumers are charged by their retailers are very

stable, unlike the prices observed in wholesale markets. As such, it is unintuitive to investigate

their response to changes in wholesale prices, especially at high frequencies. Therefore, attempt-

ing to evaluate consumers’ demand response to a volatile price to which they are not directly

exposed, and of which they often have no current knowledge, is unrealistic. However, in the same

way that wholesale electricity prices indirectly, but surely, affect end-users, any increased clar-

ity about the behaviour of wholesale market participants is almost certain to indirectly benefit

consumers.

Most existing empirical works, with the exception of Kulakov and Ziel (2019), compute price

elasticity using an estimated coefficient in a regression model. Under certain model specifications,

the same economic reasoning which underlies this estimation also permits the construction of a

time series of price elasticities of demand. Such time series of PEDEs are constructed as functions

of an estimated regression coefficient and the time series of prices and quantities23. The fact

that the coefficient is usually constant over the sample, save for a few studies which permit time-

varying parameters (Inglesi-Lotz, 2011; Tiwari and Menegaki, 2019), imposes certain unrealistic

implicit assumptions on the shape of the demand curve. The degree to which such assumptions

will affect the quality of the PEDE estimates can be assessed by comparing those estimates

against true values, which are approximated with a high degree of accuracy here. In this regard,

the present study finds that a regression-based method is unable to provide estimates which

would accurately represent average PEDE over a sample.

Section 4.2 provides a brief overview of the existing literature on econometric estimation of price

elasticities. The implicit assumptions about demand curves which are imposed by regression

estimates will also be discussed in the same section. Following that, Section 4.3 describes the

novel approach for measuring real-time, true price elasticity of supply and demand for electricity,

as well as an existing regression based approach which is to be evaluated. Section 4.4 introduces

the data used in this chapter. In this section real-time price elasticities are shown, and some of

their characteristics are discussed. Furthermore, the accuracy of elasticities estimated using a

23Admittedly, since the coefficient estimate represents an average effect over the whole sample, using it to
construct a time series of price elasticities may not be ideal. However, the average of these elasticities, which is
equivalent to computing the average elasticity using mean price and volume, should still coincide with the average
of elasticities computed using the proposed approach.
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regression approach is evaluated. Finally, Section 4.5 concludes with a discussion of modelling

considerations and empirical performance of the regression-based method, as well as some closing

remarks.

4.2 Existing works

4.2.1 Literature overview

Price elasticity of demand (supply) is the percentage change in the quantity demanded (supplied)

of a commodity in response to a percentage change in its price, and can be represented by the

formula

PE =
dQ/Q

dP/P
=
dQ

dP
× P

Q
, (4.1)

where PE is price elasticity, and Q and P are the quantity and price of the good.

The formula in (4.1) is applied in a few ways in empirical studies which use econometric methods.

For example, Lijesen (2007) fits a linear regression model of the form

Qt = cPPt + z′tβ + εt, (4.2)

in which quantity (Qt) is the dependent variable and price (Pt) is one of the explanatory variables.

The vector of variables zt controls for any other external factors which influence the quantity

of electricity demanded so that the estimated coefficient cP captures only the effect of price.

The estimated coefficient on price, cP , represents dQ/dP in (4.1), and (average) elasticity is

computed by multiplying the cP by (the mean of) prices divided by (the mean of) quantities.

Other models use log-transformations of both quantity and price, often referred to as log-log

models, and can be expressed as

qt = cppt + z′tβ + εt, (4.3)

where qt = logQt and pt = logPt. This model is used by Lijesen (2007), Fan and Hyndman

(2011), and many others. Elasticity in log-log models is simply the coefficient on the log of price,
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cp. On the other hand, for log-linear models such as

qt = cPPt + z′tβ + εt, (4.4)

in which quantity is log-transformed but price is not, elasticity is given by

PE = [exp (cP )− 1]P,

where cP is the coefficient of price, and P is the price level (Fan and Hyndman, 2011). These

three approaches are among the most popular methods which have been employed.

This general idea is used, albeit with different model specifications, in the existing empirical

literature. Selected recent works are summarised in Table 4.1. References to less-recent, but

no-less-important, related studies can be found within the works contained in Table 4.1 and in

the meta-analysis by Labandeira et al. (2017).

Note that since electricity prices are allowed be negative, the sign for the estimated elasticities

may occasionally be different from those which would traditionally be expected. Furthermore,

a log-log model would no longer be feasible in general since the logarithm of a negative number

is not defined.

4.2.2 Implicit assumptions in regression-based methods

For decades, various established econometric models have been used to provide best estimates

of PEDE based on the available data. The results may then be used to inform policy or adjust

consumer and supplier behaviour. However, the accuracy of the estimates and the validity of

the methods have never been clearly evaluated. Furthermore, this approach assumes or imposes

certain restrictions on the shape of demand curves. Using the three examples presented in

(4.2)–(4.4), demand curves are implicitly assumed to be of the forms expressed in Table 4.2. If

the true demand curves are vastly different from these forms, then price elasticity, which is a

function of the slope of the curve at a given point, will be inaccurately estimated.

In truth, there is no reason to believe that demand or supply curves adhere to any of these three

forms. In fact, upon inspecting the superimposition of the implied linear, log-linear, and log-log

24Although Ziramba (2008) claims to use a cointegration approach, the method is more accurately described as
one which exploits a level relationship. The study in question invokes the test for level relationships by Pesaran
et al. (2001), but avoids any unit root tests. Cointegration is merely an element in the set of level relationships.
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Table 4.1: Summary of recent literature on price elasticity for electricity demand.

Researcher Year Type of model Account for Elasticity
endogeneity

(LR: Long run;
SR:Short run)

Alberini and Filippini 2011 Dynamic panel Yes LR: -0.43 to -0.73
SR: -0.08 to -0.15

Al-Faris 2002 ECM | Cointegration - LR: -0.82 to -3.39
SR: -0.04 to -0.18

Boogen et al. 2017 Dynamic panel Yes LR: -0.6
SR: -0.3

Burke and Abayasekara 2018 Panel data Yes LR: -0.95 to -1.01
SR: -0.06 to -0.24

Dergiades and Tsoulfidis 2008 ARDL | Cointegration Yes LR: -1.07
SR: -0.39

Dergiades and Tsoulfidis 2011 ARDL | Cointegration Yes LR: -0.61 to -0.67
SR: -0.09

Dilaver and Hunt 2011a STSM - LR: -0.38
SR: -0.09

Dilaver and Hunt 2011b STSM - -0.11
Dong et al. 2020 TSLS Yes LR: -0.51

SR: -0.68
Filippini and Pachauri 2004 OLS - -0.29 to -0.51
Inglesi-Lotz 2011 State-space - -1.08 to -0.05
Lijesen 2007 TSLS Yes -0.001 to -0.004
Nakajima 2010 Panel cointegration - -1.127
Nakajima and Hamori 2010 Panel cointegration - -0.12 to -0.33
Narayan and Smyth 2005 ARDL | Cointegration Yes -0.47 to -0.54
Silva et al. 2018 (Pseudo-)Panel - -0.59 to -0.84
Tiwari and Menegaki 2019 State-space - -0.21
Yu and Xin 2020 Panel data - -0.47 to -0.80
Zhou and Teng 2013 OLS - -0.35 to -0.50
Ziramba24 2008 ARDL Yes LR: -0.04

SR: -0.02

∗ARDL: Autoregressive distributive lag, ECM: Error-correction model, OLS: Ordinary least squares,
STSM: Structural time series model, TSLS: Two-stage least squares.

†All the papers in this list use log-log models. Lijesen (2007) also uses a linear model.
‡Note that different papers use different terminology for variable transformations. In particular, the

term “loglinear” is sometimes used to refer to log-log transformations, and should not be confused with
the term “log-linear”, which describes (4.4).

Table 4.2: Regression model specifications, functional form of the demand curve, and equation
for price elasticity. In each of the following, c represents a coefficient estimated from the

relevant regression equation in each case, and α is an intercept which is some function of all
other explanatory variables included in the regression.

Model Demand curve Elasticity at time t

Linear Q = α+ cP PE = c (Pt/Qt)
Log-linear Q = exp (α+ cP ) PE = [exp(c)− 1]Pt
Log-log Q = αP c PE = c
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curves on the actual demand curve (see Figure 4.1), it is quite clear that none of the functional

forms match reality. In Figure 4.1(a), it is plain to see that the shapes of the implied curves

are only similar to the actual demand curve in some small neighbourhood around the point at

which they are designed to meet. It is important to emphasise that c and α were chosen so that

the tangents of the implied curves are all equal to the calculated slope of the smoothed demand

curve at the intersection. In Panel (b), α and c are calibrated to match the intersection quantity

and price at 12:00 on 18 January 2015 (the next day).
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(a) Implied curves
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(b) Implied curves for next day’s equilibrium

Figure 4.1: Actual and smoothed supply and demand curves at 12:00 17 January 2015.
Also shown are the demand curves implied by a linear, log-linear, or log-log (only for positive
prices) model. In Panel (a), the values of c and α are computed purely from smoothed curves,
and are chosen to exactly match their intersection. Panel (b) assumes the correct value of c is
implied by a regression model, but chooses α, where applicable, to match the equilibrium price

and quantity for the same hour of the next day.

Each of these plots illustrates a possible situation with regards to a regression-based approach.

Recall that regression estimates are based on an entire sample instead of data from just a single

intra-day market period. As a result, the coefficient may coincidentally be exactly the value

which corresponds to the slope of the demand curve at the equilibrium point for a specific time

of a specific day. More often than not, the coefficient estimate will differ from the the required

value. Panel (a) shows that even in a rare and unlikely event when regression estimates yield the

correct estimate of price elasticity for a particular point in time, they would still be unable to

provide any accurate information pertaining to the rest of the demand curve. In Panel (b), the

estimated coefficients are correct for a different day, but do not provide any information about

the market at 12:00 on 17 January 2015. Clearly, attempting to accurately measure real-time

price elasticities requires that certain parameters be allowed to vary.
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Figure 4.2: Mean smoothed supply and demand curves for the entire sample and the curves
implied by coefficients from a simple linear regression of volume on price.

One way in which the discussion around Figure 4.1 might be rebutted is the claim that regression

estimates give an idea of the average price elasticity of demand over the entire sample, therefore

considerations relating to a single observation are invalid. To address this view, Figure 4.2

contains the mean of the smoothed supply and demand curves over the entire sample. These

curves represent average bidding behaviour of all wholesale market participants throughout

the sample. Superimposed upon these plots are the implied demand curves from fitting a

simple linear regression of equilibrium quantity on price (in either the linear or the log-linear

specifications) and, where necessary, using the sample means of price and volume. Even in this

mean case, the implied demand curves do not match the true curve. Furthermore, the slope

of the implied curves in the vicinity of the equilibrium point are different from the true slope,

which would lead to an inaccurate estimate of price elasticity of demand.

In addition to the incongruity between implied and observed demand curves, many studies also

ignore the possibility of endogeneity in the model. In particular, prices can be expected to be

correlated with the error term due to simultaneity between price and quantity, leading to biased

coefficient estimates and, therefore, biased estimates of price elasticity. Just under half of the

references in Table 4.1 account for endogeneity in the model.

Attention must also be paid to the meaning of the expression dQ/dP . In regression equation

(4.2), the quantity cP = dQ/dP captures the expected difference in quantity, Qt, to various price

levels, Pt, in a given set of time series data. On the other hand, dQ/dP in the classical expression

for price elasticity in (4.1) represents the change in quantity demanded or supplied for a change
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in price in the same market for the same period. Indeed, many introductory econometrics texts

refer the the quantity (dy/dx)× (x/y) as elasticity. However, electricity price and volume data

are recorded at different points in time. In order to use the same logic to estimate price elasticity

as some interpretation of regression coefficients, an assumption must be made that all market

participants behave similarly across the time domain. This assumption simply does not hold

true for the wholesale electricity market since we can see from observed supply and demand

curves that market participants behave differently in each hour. In summary, even though both

quantities have the same expression, dQ/dP , they represent different things.

An additional comment about regression-based estimation of price elasticity must be made.

This observation depends on the data which analysed. A number of studies use some variation

of the regression methods in Section 4.2.1 to investigate the response of consumers (residential,

industrial, etc.) to wholesale electricity prices. This practice posits a direct relationship between

wholesale markets and consumers which may not exist. Wholesale market prices are highly

volatile, whereas consumers typically pay rates which are considerably more stable. In other

words, consumers are not directly financially exposed to wholesale market prices. As such,

any statistically-estimated relationship between the two may be spurious. Of course, empirical

methods are not just limited to the three approaches highlighted in this section. However, other

techniques, such as those used by the studies in Table 4.1, can mostly be viewed as extensions

of these. Any shortcomings of these models will likely also affect their extensions.

Since Kulakov and Ziel (2019) propose an approach which can be viewed as a more complex

extension of the method proposed here, some remarks on their paper are warranted. Although

the technique is similar, it would appear that the central focus of Kulakov and Ziel (2019) is

different. The “fundamental model” they propose seems to perform some transformations so

as to estimate the demand response of market participants, recognising that some participants

place bids to both buy and sell electricity in the market. On the other hand, this present study

is not concerned with the activities of each market participant. The only quantity of interest

here is what percentage change in quantity can be expected for a percentage change in bidding

price. More crucially, there appears to be a flaw in the motivation for their fundamental model.

Specifically, their explanation of how a “utility” in the market would arbitrage from placing sale

and purchase bids at the same time would, in fact, lead to utilities being in a situation where

they may be contractually obligated to generate a quantity which exceeds their capacity instead
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of making an easy profit.25

4.3 Real-time price elasticity of demand and supply

4.3.1 Description

Price elasticity in wholesale electricity markets can be computed at every intra-day trading

interval (hourly, in Germany) using information contained within that interval alone. All the

bids, consisting of price (e/MWh) and quantity (GWh) pairs, in a certain hour can be used to

construct a demand or a supply curve. Consider, for example, Figure 4.1. The dashed blue line

represents the demand curve at noon on 1st January 2016 in the German wholesale electricity

market. The full range of permissible prices is between -e500e/MWh and e3,000/MWh. How-

ever, the plot in Figure 4.1 focuses on a subset of prices so as to better display the curvature

of the market curves around the intersection. By construction, the curve is piecewise-constant.

Price elasticity can be computed at any point, (P,Q) on the smoothed demand curve, repre-

sented by the solid blue line in Figure 4.1. The inverse of the gradient at the chosen point is

dQ/dP which is then substituted into (4.1). The same procedure can be carried out for the

curves observed at 1pm, 2pm, 3pm, and so forth. If elasticity is computed at equilibrium prices

and quantities for each hour, a time series of real-time realised price elasticities of demand for

electricity, say (PE1,PE2, . . . ,PET ), is produced. The same process, when applied to smoothed

supply curves, produces a time series of price elasticities of electricity supply.

4.3.2 Estimating price elasticities

In the empirical component of this chapter, realised price elasticity of supply and demand are

estimated by first smoothing the supply and demand curves using cubic B-splines, constructed

using the Cox-de Boor recursion outlined in Hastie et al. (2009). Choose a grid of N prices, Pi,

i = 1, . . . , N . Let Qst (Pi) and Qdt (Pi), i = 1, . . . , N , represent the smoothed supply and demand

curves at time t, respectively. Realised price elasticity of demand (supply) is then estimated

using (4.1), with equilibrium price and quantity (P ∗t and Q∗t ) as well as an approximation of

25An email sent to the corresponding author of Kulakov and Ziel (2019) requesting clarification did not receive
a response.
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dQ/dP for the demand (supply) curve at that point, ĝd∗t (ĝs∗t ). These values are computed as

P ∗t = arg min
Pi

∣∣∣Qst (Pi)−Qdt (Pi)∣∣∣ (4.5)

Q∗t =
Qst (P

∗
t ) +Qdt (P

∗
t )

2
(4.6)

ĝd∗t =
Qdt (P

∗
t + δ)−Qdt (P ∗t − δ)

2δ
(4.7)

ĝs∗t =
Qst (P

∗
t + δ)−Qst (P ∗t − δ)

2δ
, (4.8)

where δ is some small interval. In this chapter, smooth supply and demand curves are defined

at e1/MWh intervals, so δ = 1.

4.3.3 Comparing results

This study is able to compute price elasticity of demand in wholesale electricity from fundamental

concepts on an hour-by-hour basis instead of using some aggregate or average value estimated

over a period of time. Furthermore, the only error that exists in this approach arises from

the choice of smoothing algorithm of demand curves, and not from any other assumptions or

misspecification that could be present in econometric models. This means that the intra-day

wholesale PEDE values produced by this approach are arguably the most accurate. It may be

enlightening to compare these values to those empirically estimated using other methods.

In selecting an existing approach for comparison, the main consideration was that the method be

used here with minimal modification, and is therefore as close to the original proposed method as

possible. The models in Lijesen (2007) were chosen for a number of reasons. First, one of the two

specifications used in Lijesen (2007) does not take the logarithm of prices as a variable. This is

important because wholesale electricity prices around the world are now permitted to drop below

zero. Second, the study in Lijesen (2007) investigates intra-day data, which is the frequency of

the data used here. Third, the models in Lijesen (2007) were proposed with wholesale electricity

prices in mind, whereas others are tailored to disaggregated data such as residential or industrial

usage only. Finally, the two-stage least squares approach addresses the endogeneity in prices,

correcting for biased coefficient estimates. It is simple enough to replace hourly electricity load

(the dependent variable of choice in Lijesen (2007)) with wholesale quantity traded as the variable
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representing quantity demanded, with some justification for doing so provided in Section 4.1.

In short, the linear model from Lijesen (2007) which is evaluated here takes the form

Qt = cPt + αTrendt +

10∑
r=1

βH,rxH,r +

2∑
s=1

βD,sxD,s +

6∑
u=1

βM,uxM,u

+
5∑
v=1

βW,vxW,v +
2∑
`=1

βB,`xB,r + εt,

(4.9)

with twenty seven explanatory variables. Since the data is at the hourly frequency, the subscript

t represents the hour in the sample. For example, observation at t = 23 occurs at 11pm on the

first day, and t = 25 refers to 1am on the second day. The two key variables of interest are Qt

and Pt, which are demand and price, respectively. The ten dummy variables (xH,1, . . . , xH,10)

indicate readings which occur at each of the ten hours between 9am and 6pm, inclusive. Dummy

variables (xD,1, xD,2) indicate observations on Thursdays and Fridays, respectively. Month-of-

year dummies, (xM,1, . . . , xM,6), indicate observations occurring in January, February, April,

July, September, and October, respectively. Variables (xW,1, . . . , xW,5) are weather variables:

xW,1 is the maximum temperature on a given day, xW,2 is the interaction term between maximum

temperature and the time falling between 12pm and 4pm, inclusive; (xW,3, xW,4, xW,5) are the

daylight variable times a 9am dummy, a 5pm dummy, and a 6pm dummy, respectively. The

holiday (break) dummy variable xB,1 indicates when most of the country is on summer holidays,

and xB,2 indicates observations falling in the week from Christmas Day to New Year’s day.

The daylight variable used in (xW,3, . . . , xW,5) is defined in Lijesen (2007) as the quadratic

difference, measured in days, from the longest day of the year, or the summer solstice. The

interaction terms are designed to accommodate differences in electricity usage around changes

in sunrise and sunset times. xB,2, which is called “Week 53” in Lijesen (2007), accounts for the

fact that the week between Christmas and New Year’s is typically a holiday26. Additionally,

where Lijesen (2007) has two variables for summer holidays, the adapted model which is used

in this chapter has only one. This is because the data used here is from Germany instead of

the Netherlands. Whereas summer breaks in the Netherlands are determined separately in the

north and south regions (hence two variables), Germany has sixteen regions which may all have

slightly different summer breaks. Instead of including a dummy variable for each region, the

26Note that this is in contrast with the study in Chapter 2, where only Christmas and New Year’s days are
holidays instead of the whole week. The choice in Chapter 2 was motivated by observations in the data (see
Figure 1.1), whereas the use of “Week 53” in this study is intended to match the variable defined in Lijesen (2007)
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variable xB,1 consists of the two months in which most regions are on summer holidays. In order

to account for endogeneity in Pt, lagged prices, Pt−1 are used as instruments for Pt in two-stage

least squares regressions.

Additionally, it is worth noting that Lijesen (2007) limit their study to peak usage periods,

which is defined as working days from 9am to 6pm. They further restrict their analysis to one

calendar year. Therefore, part of the comparison in this chapter will also be restricted to peak

hours in one calendar year. However, a second round of comparison will extend the data to

every single hour in a year, as well as permitting the sample to be longer than one calendar

year.

In the event that the sample does not contain negative prices, then the log-log specification may

still be used. It turns out that prices at peak hours in this data do not fall below zero. In this

case, the model is adapted from (4.9) as

qt = cpt + αTrendt +
10∑
r=1

βH,rxH,r +
2∑
s=1

βD,sxD,s +
6∑

u=1

βM,uxM,u

+

5∑
v=1

βW,vxW,v +

2∑
`=1

βB,`xB,r + εt,

(4.10)

where qt and pt are the natural logs of Qt and Pt, respectively. For two-stage least squares,

instruments for pt are pt−1.

Where applicable, additional dummy variables are added to capture more hours of the day as

well as Saturdays and Sundays.

Minor deviation from the original model

The construction of the “daylight” variable specified in Lijesen (2007) is not completely repre-

sentative of daylight hours since it does not consider that certain days in the year may be closer

to the summer solstice in an adjacent year than in the current year, and may under-represent the

daylight hours on those days. This issue becomes obvious when trying to construct a daylight

variable using the given definition for samples which span more than one year. Instead of taking

quadratic differences, an alternative is to fit an interpolating cubic spline to points which take

the value 1 on winter solstice and 0 on the summer solstice of each year. The reason that splines

are chosen here instead of some parametric curve, e.g. a sinusoidal function, is simply because
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summer and winter solstices may occur on different days each year, leading to slightly different

spacing between the peaks and troughs.27

4.4 Results and discussion

4.4.1 Data

Hourly sale and purchase curves are constructed using intra-day bid and offer data in the German

wholesale electricity market, obtained from the European Power Exchange (EPEX). The data

spans from 00:00 on 1st April 2015 to 23:00 on 31st March 2017, encompassing two years’ (731

days’) worth of hourly bids. Daily maximum temperatures are from DWD Climate Data Center

2018. The summer solstice in 2015, 2016, and 2017, used in computing the variable “daylight”,

occurred on 21st, 20th, and 21st of June, respectively. Winter solstices for the same years

occurred on 22nd, 21st, and 21st of December, respectively. Summer holidays for the variable

xB,1 in (4.9) and (4.10) were the entire months of July and August.

4.4.2 Real-time price elasticity in the German spot market

The series of hourly realised price elasticity of supply and demand from 00:00 1st April 2015 to

23:00 31st March 2017 are presented in Figure 4.328. The real-time (very short-term) PEDEs

are larger than the averages reported by Knaut and Paulus (2016), who estimate the response

of consumer demand to wholesale prices in Germany, albeit for a different sample period. This

outcome is not surprising as changes in wholesale prices do not affect consumers as directly as

they do participants in the wholesale market. Therefore it is only to be expected that consumer

usage, represented by load in Knaut and Paulus (2016), is less responsive to such changes. At

a relatively small number of hours, the signs of price elasticity of supply and demand are the

opposite of what might traditionally be expected. These are due to the fact that the equilibrium

electricity price at those times was negative. There do not appear to be any obvious changes

in the unconditional mean level of price elasticity of supply or demand across these two years.

Summary statistics for these prices, demand, and price elasticities are reported in Table 4.3.

27One set of results which uses the original quadratic difference definition for “daylight” is included in Appendix
B, and are similar to those estimated using the spline definition in Section 4.4.

28Smoothing of the supply and demand curves was conducted using cubic B-splines with 24 equally-spaced
interior knots, giving 28 orthonormal spline functions.
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(b) Price elasticity of demand

Figure 4.3: Hourly price elasticity of supply and demand from 00:00 on 1st April 2015 to 23:00
on 31st March 2017.

Table 4.3: Summary statistics of hourly prices, demand, and real-time price elasticities.

Panel A: 01:00 1st January 2016–23:00 31st December 2016

Whole sample Peak hours only

Mean Std. dev. Min Max Mean Std. dev. Min Max

Price (e/MWh) 29.31 12.44 -135.00 107.00 35.32 11.23 3.00 107.00
Demand (GWh) 26.75 5.06 17.21 47.97 30.22 4.66 18.19 46.05
Real-time PEDE -0.27 0.13 -0.69 0.14 -0.30 0.11 -0.62 -0.00
Real-time PESE 0.28 0.14 -0.64 0.75 0.22 0.07 0.01 0.66

Panel B: 00:00 1st April 2015–23:00 31st March 2017

Whole sample Peak hours only

Mean Std. dev. Min Max Mean Std. dev. Min Max

Price (e/MWh) 31.59 14.05 -135.00 164.00 38.41 14.06 3.00 158.00
Demand (GWh) 27.86 5.59 17.21 51.47 31.79 5.44 17.88 51.47
Real-time PEDE -0.25 0.13 -0.70 0.14 -0.28 0.11 -0.62 -0.00
Real-time PESE 0.25 0.13 -0.64 0.75 0.20 0.08 0.01 0.66

Patterns in price elasticities

A different visualisation of realised PEDE and PESE for the sample is shown in Figure 4.4. These

two plots are constructed using exactly the same information as Figure 4.3, but presented such

that any daily or annual patterns are more shown. In both plots of Figure 4.4, the bottom left

point represents price elasticity at 01:00 on 1st April 2015. Going horizontally across corresponds

to different times on the same day. On the other hand, moving vertically from any given point

means viewing the price elasticity on a different day in the sample, but at the same time of the
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(a) Price elasticity of supply (b) Price elasticity of demand

Figure 4.4: Hourly price elasticities from 1st April 2015 to 31st March 2017. The y-axis
indicates the date, and each point on the x axis corresponds to an hour of the day, from 1–24.

day. It seems that both price elasticity of demand and supply are typically close to zero around

midday, and furthest from zero when it is dark. This diurnal pattern is in accordance with the

patterns found by Knaut and Paulus (2016) and Kulakov and Ziel (2019) in the German market,

even though the market participants represented in their studies are different from those in this

study. A simple explanation for this pattern is that during waking and working hours, a certain

minimum amount of electricity is required to power factories, machinery, infrastructure in office

buildings, and lights and air-conditioning all over. This required energy must be delivered

regardless of the price, so buyers do not have much flexibility to reduce the quantities bid

when prices rise. Consequently, elasticity is lower during these hours. In the evenings and early

mornings, particularly after midnight at which point most of the population is resting, electricity

usage is more flexible and variable, granting more flexibility with regards to wholesale bids.

In addition to the diurnal pattern, the plots in Figure 4.4 also reveal that there is an annual

seasonality associated with those hours with higher price elasticity, i.e. between approximately

7pm and 9am. For instance, it is quite clear from Panel (b) that price elasticity of demand of

electricity at 8pm is lowe (closest from zero) in the coldest months (October–February) than in

warmer months (June–September). A likely cause of this pattern is similar in spirit to that of

the diurnal pattern. In general, locations with cold winters which have long nights will require

more heating and lighting during the winter months. The increased need for electricity will lead

to lower bargaining power of buyers in the wholesale market, so to speak, making demand less

elastic to price.
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4.4.3 Regression-based estimates of price elasticity

Different subsamples of the data are investigated. In order to compare results from the method

proposed by Lijesen (2007), albeit on a different dataset to that on which it was originally

used, the first set of estimates is restricted to a single year from 00:00 1st January 2016–23:00

31st December 2016, and only for peak hours as determined by Lijesen (2007), that is, weekdays

between 9am and 6pm, inclusive. In this subsample, all prices are positive. Hence, the two-stage

least squares linear and log-log models from (4.9) and (4.10), respectively, are both feasible, and

will be estimated29.

Market behaviour in peak hours may be expected to be more homogeneous than if every hour

in the year was included. To examine the possibility of this potential phenomenon artificially

inflating the accuracy of the regression-based estimates, the linear model was estimated on the

sample consisting of every single hour in 2016. Since this sample contains negative prices, only

the linear model was estimated.

While the span of one year seems to be an obvious choice of sample length, it is also interesting

to investigate the effect of a longer period. In particular, if the coefficient on the price variable

is unstable (is different for different sample periods), then estimates of price elasticity will also

change with sample choice. To this end, estimation of all the models and specifications was

repeated for the full sample of two years from 00:00 1st April 2015–23:00 31st March 2017.

Coefficient estimates and t-statistics for the ordinary least squares and two-stage least squares

linear regression model may be viewed in Appendix C. The 99% confidence intervals of the key

coefficients, that is, the coefficients on price (or the log of price) estimated by two-stage least

squares, are shown in Table 4.4. Also included are the values of the coefficients which would be

necessary to produce the corresponding mean price elasticity of demand values in Table 4.3. For

the linear model, this value is calculated as PE × Q̄/P̄ , where a bar, ·̄, denotes the mean of its

argument over the sample and PE is price elasticity approximated using the proposed method

in Section 4.3.2. In the log-log model, the required coefficient is simply the mean of price

elasticities, PE . Of the six confidence intervals, only one contains the required value for correct

estimation of the average price elasticity for the sample. Considering that these models were

originally designed with only peak hours in mind, it is also interesting to find that none of the

29Augmented Dickey-Fuller (ADF) tests (Dickey and Fuller, 1979; Said and Dickey, 1984) find that the series
of prices and volumes are both stationary, so any estimated relationship between the two is not spurious.
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peak-hour-only samples give accurate estimates. Furthermore, the regression-based estimates

do not appear to over- or underestimate the coefficient in a consistent manner, since the “true”

coefficient lies on either side of the confidence interval, depending on which sample is chosen.

Table 4.4: 99% confidence intervals of coefficients on the price variable from estimated models
and the value of the coefficient which would yield the true sample average price elasticity of

electricity demand.

00:00 1st Jan 2016–23:00 31st Dec 2016

Confidence interval Implied true coefficient

Linear (Whole) (-0.2597,-0.2411) -0.2479
Linear (Peak) (-0.2897,-0.2695) -0.2631
Log-log(Peak) (-0.3662,-0.3443) -0.3045

00:00 1st Apr 2015–23:00 31st Mar 2017

Confidence interval Implied true coefficient

Linear (Whole) (-0.1828,-0.1704) -0.2216
Linear (Peak) (-0.1736,-0.1623) -0.2284
Log-log(Peak) (-0.2675,-0.2532) -0.2752

Instead of an average price elasticity of demand over the entire year, it is possible to construct

real-time estimates as a function of price, quantities, and the estimated coefficient on price at

each hour using the formula for elasticity with the linear model in Table 4.2.30 The differences

between regression-based real-time estimates using this approach and the true values in Figure

4.3 are represented by the blue lines in Figure 4.5. Panels (a) and (b) correspond to the

subsample of one year, whereas Panels (c) and (d) are for the full sample consisting of two years.

Unsurprisingly, the shape of the plots in Figures 4.5(a) and (c) are similar to their counterparts

in Figures 4.5(a) and (d), respectively, since they are essentially just scaled differently.

Overall, it appears that regression-based estimates of real-time PEDE from the one-year sample

in Panels (a) and (b) are reasonably accurate in spring and summer, but deviate from true

values by a significant amount in the colder months. When the sample is increased to two

years in Panels (c) and (d), more incidents of estimated PEDE being further than two standard

deviations from true values occur, even in the warmer months of 2016 which were reasonably

accurate in Panels (a) and (b). This suggests that although sample selection may not impact the

estimated average PEDE, the real-time PEDEs estimated from this regression-based approach

are sensitive to the choice of sample period.

30It is acknowledged, at this point, that the original model in Lijesen (2007) was never intended for this purpose.
Nevertheless, it is simple to execute and interesting for the sake of comparison.
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(a) Peak hours in 2016.
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(b) All hours in 2016.
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(c) Peak hours for the two years from 1st April 2015 to 31st March 2017.
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(d) All hours in the two years from 1st April 2015 to 31st March 2017.

Figure 4.5: Estimation error of regression-based real-time price elasticity of demand for peak
hours from the linear model estimated by two-stage least squares. The red lines demarcate 2

standard deviations of true PEDE from Table 4.3 from zero.

Of course, the regression-based approaches in Lijesen (2007) were not intended to be used for

estimating real-time price elasticities (in the sense of this chapter as opposed to the definition

in Lijesen (2007)). However this comparison serves to illustrate the benefits of being able to

investigate price elasticity of electricity demand at a higher granularity instead of just as a
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sample average. Even the hourly-averages presented by Knaut and Paulus (2016) are unable to

capture and display other forms of seasonality beyond the intra-day pattern.

4.5 Discussion

This study presents a novel method of measuring price elasticity of supply and demand for

wholesale electricity based on a highly-detailed data set. These real-time true elasticities are

computed by making full use of intra-day auction market data, and are not subject to exogenous

variables. Price elasticities computed in this manner are more-or-less exact, as they use a

fundamental approach, namely, computing price elasticities from supply and demand curves.

The only error in measurement arises from the choice and calibration of a smoothing algorithm

for these curves. The series of real-time price elasticities of supply and demand were shown,

and some properties were discussed. It was observed that price elasticities in electricity markets

exhibit some diurnal pattern in which they are most inelastic during daylight hours, as well as

annual seasonality.

Before conducting any empirical analysis, a few potential drawbacks of regression-based estima-

tion were suggested. These drawbacks include the imposition of an unrealistic functional form

on the demand curve and the presence of endogeneity. Furthermore, an argument is also made

against the use of regression-based estimation of elasticities with time series data. The empiri-

cal section of this chapter investigates the accuracy of a relevant regression-based model. The

regression model in question was adapted from Lijesen (2007), and was largely unmodified in

this study. Estimates from the regression methods over different sample periods were compared

to the values which would have been necessary in order to produce accurate measures of average

price elasticities, and were mostly found to be significantly different from the required values.

Ultimately, this chapter does not seek to discourage the use of regression models to estimate

price elasticity of electricity demand. In fact, depending on data limitations for specific research

questions, regressions may still be the best available technique. However, results from such

approaches should always be used with caution, since their accuracy is generally unverified.

Accordingly, any policy recommendations related to price elasticity of demand in electricity

markets must allow for the likely event that estimates from regression models are inaccurate.

In addition to the analysis presented in this study, it may be of interest for future research to
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consider price elasticity of supply and demand at prices and quantities other than the equilibria.

Such analysis may help prepare market participants for situations which may shift one or both

curves such that a different price is traded.

In summary, this study introduces a new way of accurately measuring intra-day price elasticity

of demand, and opens up new avenues for examining various electricity market quantities in real-

time for very-short-term analysis. The same method can also be used to compute price elasticity

of electricity supply, although that quantity seems to be of less interest in the literature at the

moment.
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Chapter 5

Other ideas and future research

In addition to the completed projects in Chapters 2–4, some other research ideas were conceived,

with varying levels of results and completion. The first was a planned exploration of counterfac-

tuals about the operation of grid-scale battery storage systems in South Australia. The second

is an investigation into the whether the tools used in some studies on probabilistic modelling

and forecasting of electricity prices are appropriate.

5.1 Battery storage and wholesale price

Historically, energy has not been economically storable. As a consequence, changes in the

demand of electricity across every single second must be met perfectly by adjusting supply

accordingly. As with any other commodity, periods of high demand are expected to be associated

with higher prices, all else being constant. However, even if all generators are functioning

properly, there may be instances when demand is so high that currently-operating generators

are unable to deliver enough energy, and more electricity sources need to be commissioned. This

type of occurrence leads to an even sharper price increase due to the extra cost of activating

additional—typically less-efficient—generators, sometimes resulting in positive spikes. Since the

widespread adoption of renewable energy sources, a new situation has arisen in which energy

needs to be balanced out. Instead of having to increase supply to meet demand, an excess of

generated energy may lead to the need for increased demand. For example, wind and solar

energy are intermittent, highly-dependent on environmental factors outside of human control,

and, more importantly, not biddable in response to price (Giulietti et al., 2018). Wind turbines
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and solar farms remain active in periods of prolonged strong winds31 or intense sunlight so large

quantities of renewable energy are generated. Any excess energy must have an outlet, leading to

prices dropping quite drastically in order to boost quantity demanded.32 The apparent consensus

in the literature on electricity pricing is that non-storability of energy has led to prices being

more volatile and more prone to large spikes than most other commodity markets (see, inter

alia, Higgs and Worthington (2008) and Weron (2014)).

If this explanation for large and frequent electricity price movements holds, the solution for

smoothing prices is to introduce batteries capable of storing sufficient energy. Such facilities

could help by taking on excess energy, and releasing it in periods of high demand. The necessary

technology has recently become available, with a number of grid batteries having been installed

around the world. In particular, the Hornsdale Power Reserve (HPR) in South Australia ranks

among the biggest in the world in terms of energy storage capacity, and is second in terms of

power (rate of delivery of energy). Furthermore, it has been operational since December 2018,

giving at least two full years’ worth of data. The South Australian electricity market is therefore

an ideal setting in which to study the effects of having a large battery. A growing number of

studies (Giulietti et al., 2018; Davies et al., 2019) study the economic benefits, or revenue, which

could be enjoyed by the battery operator. This situation is exemplified by the HPR, which is

owned by a foreign private company, and therefore operates in a manner which maximises the

profits of its parent company and its shareholders. On the other hand, it would be of academic

and public interest to investigate the possibilities associated with a hypothetical similar battery

which was state-owned, and would therefore aim to improve the utility of the general public by

smoothing or lowering wholesale prices.

Installing grid batteries can be expected to reduce volatility and the occurrence spikes. On the

other hand, in 2018, Matt Canavan, the Australian Minister for Resources at the time, remarked

of the HPR that “this big battery is the Kim Kardashian of the energy world—it’s famous for

being famous. It really doesn’t deliver much”. Ultimately, it seems that the impact of such

technology on energy prices boils down to two things, namely, whether the battery is capable of

contributing to lower prices, and whether it is utilised with such a goal in mind. To illustrate

this point, the battery in South Australia is able to supply up to 129MWh at 100MW (currently

31Wind turbines are shut down only under extreme conditions when wind speeds exceed the furling speed, or
the maximum speed at which a turbine can safely operate.

32The technical aspects of electricity generation, modulation, and safety requirements are beyond the scope
of this thesis, but basic information is available on the website of the Australian Energy Market Commission
(AEMC) and Australian Energy Market Operator (AEMO).
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undergoing expansion to 194MWh at 150MW) to a market in which half-hourly demand is

around 1,290MWh, on average. However, the contribution from batteries is 0.4% on average,

instead of the maximum of approximately 2% average contribution33.

The fact that the maximum capacity of the HPR is able to account for only a small proportion

of demand may be discouraging, but it is worth considering that the battery may not need to

be pushed to its limits in order to smooth out prices, depending on the circumstances. The

wholesale electricity demand curve in South Australia is perfectly inelastic. If the intersection

occurs within a region in which the supply curve is relatively flat, then a small change in the

shape of the curve induced by different bidding behaviour by the HPR would not significantly

affect prices. On the other hand, when the intersection of supply and demand curves occur at

steep points in the two curves, then a small shift in part of the supply curve could potentially

lead to a large change in equilibrium price.

The HPR is operated by NEOEN (the operator of the neighbouring Hornsdale Wind Farm),

under certain agreements with the South Australian government. Of the battery’s capacity,

119MWh of energy storage capacity and 30MW of the discharge capacity are permitted to be

used for energy arbitrage (AEMO, 2018). This means that most of the storage capacity is used

to buy and store energy at low prices and sell it to the market when prices are high. Clearly, this

procedure does not help smooth or lower electricity prices. The remaining capacity is reserved for

power system reliability purposes, and participates in the Frequency Control Ancillary Services

(FCAS) markets34.

So far, it seems that the HPR could conceivably be capable of contributing to smoother electricity

prices, although this point is not certain, given the small energy storage capacity relative to

demand in South Australia. It is clear, though, that the HPR is not currently being utilised

with price smoothing as a goal.

The proposed study would attempt to answer two questions. First, a counterfactual analysis

can be conducted to find out exactly how much of an impact the HPR could have had since

beginning operations in 2018 if the 119MWh storage and 30MW discharge capacity was used

solely for the purpose of smoothing prices instead of energy arbitrage. The second question

33This value is calculated under some very naive and simplistic assumptions: (a) the full discharging capacity
of 100MW and charging capacity of 80MW are utilised, (b) the battery is in operation 24 hours a day, with no
breaks, (c) the battery always fully charges and discharges, and (d) there is no energy loss.

34HPR is reported to have reduced FCAS costs by AUD116 million in 2019, but there is no evidence of these
savings being passed on in any form to consumers. FCAS is not a vital part of this proposed study, but the reader
is referred to AEMO (2015) for a brief explanation of the process.
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considers a similar situation as the first, but from the alternative perspective: For a given target

reduction in either price volatility or spike frequency, how large would the capacity of a battery

in South Australia need to be? Answers to questions such as these may serve as a guide to the

optimal usage of grid batteries.

The AEMO makes public a vast amount of data. Unfortunately, the author of this thesis was

unable to use this data to reconstruct supply curves which corresponded to realised price and

quantities traded, despite reaching out to various experts on the Australian wholesale electric-

ity markets. Nevertheless, these questions are interesting, and alternative approaches may be

devised to examine the potential for large scale batteries to influence electricity prices.

5.2 Methods in probabilistic price forecasting

Following the 2014 edition of the Global Energy Forecasting Competition (GEFCom), the recent

trend in electricity price forecasting is producing probabilistic, instead of point, forecasts. A

review of probabilistic forecasting is presented by Nowotarski and Weron (2018). One of popular

techniques employed in this area is quantile regression (QR). Put simply, QR models allow

the econometrician to model or forecast different expected quantiles of the response variable

(electricity price) as functions of explanatory variables. Two different applications of QR have

been used in probabilistic electricity price forecasting. The first estimates usual models, with

price as the dependent variable and various quantities which can be expected to affect price

levels as explanatory variables on the right-hand side. Hagfors et al. (2016b) and Hagfors et al.

(2016c) fit quantile regression models to wholesale electricity market prices in order to obtain

a better understanding of the effects of various price drivers. The quantiles τ selected in these

studies range from 1% to 99%, covering some of the most extreme cases. The other application

of QR is called Quantile Regression Averaging (QRA), where right-hand side variables are point

forecasts from various other models (Maciejowska et al., 2016; Nowotarski and Weron, 2015).

For both applications of QR, the quantile regression model is estimated in the same way, the

only difference being the choice of right-hand side variables.

Consider a classical linear model

yt = z′tα+ et, (5.1)
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where zt is a vector of regressors and et are i.i.d. mean zero errors independent of z′t. The

conditional τ -th quantile of the distribution of yt is given by

Qτ (yt) = z′tα
(τ), (5.2)

with parameter estimates obtained as

α̂(τ) = arg min
α(τ)

∑
t

(
τ − 1yt<z′tα(τ)

)(
yt − z′tα(τ)

)
,

where 1 is an indicator function taking the value 1 if its subscript argument is true and 0

otherwise.

The first potential problem with a direct application of QR methods to electricity price data

is in the specification of the model in the presence of price spikes. For comparison, consider

Markov regime-switching (MRS) models, in which price spikes are treated as originating from

a different data generating process than that which produces the base prices. This approach is

reasonable since the effect of factors which drive normal prices (such as seasonality and lagged

prices) will have a negligible effect on extreme prices. The classical linear model in (5.1), on the

other hand, makes no such accommodation.

Second, it has been shown that asymptotic approximation for distributions of QR estimates

in extreme quantiles (close to either 0 or 1) is different from those in more central quantiles

(Chernozhukov et al., 2017). There is no clear threshold quantile beyond which this problem is

present, but given that Hagfors et al. (2016a) include 1% and 99% quantiles, it is possible that

inference based on asymptotic approximation are not appropriate.

A potential solution to the second problem is to use an appropriate bootstrap method. Indeed,

Hagfors et al. (2016c) obtain standard errors of their coefficient estimates by bootstrapping.

However, they make no mention of which bootstrapping technique is used. In mean (least

squares) regressions, the choice of bootstrap is relevant as it depends on the type of data. This

is also the case in the quantile regression setting (Koenker, 2005; He, 2017). With electricity

prices in particular, the choice of an appropriate bootstrap procedure may be even more crucial

owing to the presence of extreme values.

The quantile crossing problem, where predicted values resulting from the estimates of a lower

value of τ end up being larger than predictions from a higher τ value is a known issue with QR
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in practice (He, 1997; Chernozhukov et al., 2010; Liu and Wu, 2011; Schmidt and Zhu, 2016).

Of all the papers which use quantile regression for electricity prices, only Haben and Giasemidis

(2016) explicitly acknowledge this problem, addressing it using the rearrangement or bootstrap

method of Chernozhukov et al. (2010). Even so, they do not explore the extent to which this

problem occurs, or the conditions under which it happens.

Preliminary Monte-Carlo simulations have been conducted using two data generating processes

(DGPs). The first one is an autoregressive model with an exogenous variable, without spikes.

The second introduces randomly-occurring spikes represented by a normally-distributed random

variable with a large mean. Results from these simple simulations suggest that parameter

estimates for extreme quantiles under the spike DGP are distorted. Furthermore, quantile

crossing occurs with these simulations, although the problem seems to be reduced when extreme

values are introduced under the second DGP.

There is clearly a need to re-evaluate the manner in which probabilistic electricity price fore-

casting is carried out in order to ensure that the techniques employed are both relevant and

appropriate.
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Chapter 6

Conclusion

Research into energy is so important that it spans multiple disciplines. The technical aspect

will be of interest to engineers and physicists, whereas the impact of generation methods and

emissions are of concern to climate scientists and the public at large. No matter the angle

taken, any advancements in research can better inform policy-makers. The studies in this

thesis contribute to general understanding and clarity of wholesale markets in Germany from a

quantitative perspective.

6.1 Findings and contributions

In the first study in Chapter 2, a semiparametric model for time-varying coefficients was pro-

posed for forecasting daily volume-weighted spot prices in the German wholesale market. The

motivation behind this type of model is that various external factors may lead to one-off changes

in the long-term structure or trajectory of prices. Such effects are posited to affect the value of

model coefficients, but are also expected manifest gradually, as opposed to instantaneously. For

example, a new policy to discontinue the use of nuclear power plants would have to allow enough

time for facilities and equipment of alternative energy sources to be constructed and installed.

However, such a change can be expected to lead to a change in electricity prices due to the

cost associated with alternative generation methods and, potentially, generation capacities at

different times of the day. Results from this study show that the time-varying coefficient models

produce more accurate forecasts than their constant-parameter counterpart. This outcome is

verified using the Diebold-Mariano test.
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The study in Chapter 3 focuses on predicting day-ahead prices at the intra-day frequency by

forecasting sale and purchase curves using functional data analysis (FDA) techniques. This

approach to price forecasting is relatively new. The proposed method differs from the only other

FDA approach in the literature in its estimation method. The functional principal components

technique used here is far simpler, quicker, and less computationally-intensive than the kernel-

type method proposed by Shah and Lisi (2020). Despite the fact that estimation and forecasting

with the FDA method is only slightly more involved—and no more complicated—than a regular

time series benchmark, Diebold-Mariano tests reveal that it clearly outperforms the benchmark

for every hour of the day.

Departing from electricity price forecasting, Chapter 4 proposes a new method of estimating

price elasticity in the wholesale market which is possible because German wholesale electricity

market data is detailed enough to permit construction of supply and demand curves. This

approach is simple, but appeals to the most fundamental concept of price elasticity, which is

percentage change in quantity demanded or supplied for a percentage change in price. The

elasticities approximated here are at the intra-day level, providing an insight into diurnal and

annual seasonality in the behaviour of wholesale market participants. This chapter also includes

an extensive discussion on other ways in which the literature estimates price elasticity of demand

using regression estimates, and highlights a number of ways in which those methods may be

inappropriate. Finally, a relevant approach from the literature is adapted for the wholesale

market, with its estimates compared to those from the proposed technique. Estimated price

elasticity of demand from the adapted model are shown to be different from the values produced

by the proposed method, which is claimed here to be very accurate. Ultimately the message from

this study is not that regression-based estimates of price elasticity should be avoided in favour

of the proposed approach. Instead, regression for this branch of research should be performed

carefully and with certain additional considerations.

6.2 Future direction

The scope for research in energy markets is wide. A few research ideas could not be included in

this thesis due to data or time constraints. In addition to possible extensions to Chapters 2–4

which were included in the conclusion of the relevant chapters, other suggestions were introduced

and discussed in Chapter 5 as possible future research directions.
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The first of these ideas is particularly germane at a time when energy demands have changed due

to lockdowns associated with the Covid-19 pandemic, and while global temperatures and carbon

dioxide levels continue to rise in spite of international agreements. Increased implementation

of grid-scale batteries would facilitate wider adoption of renewable electricity generation, which

is likely to significantly reduce emissions. The proposed study would investigate the potential

impact of large batteries on wholesale prices.

The second direction for future research is to inspect and dissect some econometric approaches

which have been adopted in the probabilistic electricity price forecasting literature. Specifi-

cally, quantile regression is increasingly popular in this area. However, none of the studies to

date appear to account for the fact that electricity prices are not well-behaved, in that certain

assumptions underlying quantile regression techniques may not be satisfied. A valuable contri-

bution to the literature would be to investigate this question by simulations as well as empirical

applications, and to suggest ways in which any shortcomings may be addressed.
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Appendix

A FDA forecasts without renewables

The use of observed—as opposed to forecasted—values of renewable energy volumes in Chapter

3 is not strictly appropriate. Diebold-Mariano statistics shown in Figure A.1 are the analogue to

those in Figure 3.4 when forecasting is performed without the inclusion of wind or solar energy.

The outcome is the same; forecasts using FDA techniques outperform the benchmark.
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Figure A.1: Diebold-Mariano test statistics for comparing predictive accuracy between the
FDA and ARX approaches. The 99% critical value for a one-tailed test is 2.32. All models

estimated for this figure omit renewables as explanatoty variables

B Regression with quadratic daylight term

This section presents regression estimates (Table B.1) and estimation errors of regression-based

real-time PEDE (Figure B.2) for a one-year sample when the “daylight” variable is constructed

using the quadratic distance definition from Lijesen (2007). The results here are almost identical

to those in the main body of the text. These results are included to show that the new definition
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used in this thesis does not materially change the outcome of the models.
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(a) Peak hours in 2016.
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(b) All hours in 2016.

Figure B.2: Estimation error of regression-based real-time price elasticity of demand for peak
hours from the linear model. The red lines demarcate 2 standard deviations of true PEDE

from Table 4.3 from zero.
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Table B.1: Results from estimating model (4.9) with daylight computed as the quadratic
difference from the longest day of the year.

00:00 1st January 2016–00:00 31st December 2016.

Two-stage least squares Ordinary least squares

Peak Whole sample Peak Whole sample

Variable Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

Price (e/MWh) -0.28 -72.04 -0.25 -69.72 -0.26 -67.33 -0.24 -67.29
Trend 0.01 12.82 0.01 15.98 0.01 10.14 0.01 15.02
Time of day dummies, hour starting at:
1am 27.46 94.19 27.23 93.44
2am 28.33 123.29 28.15 122.57
3am 28.20 123.36 28.04 122.68
4am 30.02 122.44 29.90 121.97
5am 29.87 121.64 29.74 121.16
6am 30.14 122.20 30.00 121.70
7am 31.64 126.01 31.46 125.32
8am 34.47 133.48 34.22 132.61
9am 35.02 140.90 34.00 137.29 34.39 138.55 33.71 136.18
10am 37.35 178.26 35.67 144.86 36.80 175.87 35.39 143.77
11am 38.54 188.29 37.08 152.46 38.04 186.06 36.82 151.38
12pm 38.11 186.12 38.33 158.11 37.61 183.92 38.07 157.10
1pm 38.21 190.55 38.61 161.53 37.75 188.51 38.38 160.59
2pm 37.69 189.47 38.01 160.48 37.25 187.50 37.78 159.59
3pm 36.55 184.56 36.83 156.22 36.12 182.62 36.61 155.35
4pm 35.32 155.30 35.53 149.78 34.89 153.64 35.30 148.88
5pm 35.91 179.30 34.52 144.19 35.45 177.21 34.28 143.23
6pm 33.88 145.82 34.05 137.92 33.42 144.00 33.77 136.83
7pm 33.43 133.22 33.12 132.05
8pm 33.07 131.44 32.76 130.27
9pm 31.70 128.83 31.42 127.74
10pm 29.33 97.54 29.04 96.61
11pm 29.98 125.52 29.74 124.57
12am 28.53 96.89 28.28 96.07
Day of week dummies
Thursday -0.05 -0.73 0.07 0.73 -0.04 -0.61 0.06 0.68
Friday -0.16 -2.15 -0.30 -3.18 -0.13 -1.82 -0.30 -3.15
Saturday -2.54 -26.54 -2.50 -26.08
Sunday -3.20 -31.31 -3.10 -30.40
Month-of-year dummies
January 4.24 24.62 3.31 19.00 3.98 23.13 3.25 18.64
February 3.03 20.94 3.57 22.87 3.02 20.93 3.58 22.95
April 0.18 1.52 0.21 1.62 0.23 1.95 0.21 1.65
July 1.07 7.78 1.24 8.19 1.01 7.38 1.22 8.06
September -0.29 -2.27 -0.95 -6.60 -0.22 -1.70 -0.95 -6.66
October -0.88 -7.50 -0.43 -3.42 -0.85 -7.31 -0.44 -3.55
Weather variables
Max. temperature 0.05 7.33 0.03 4.93 0.06 8.43 0.04 5.58
Max. temperature × 12–4pm dummy 0.12 15.42 -0.16 -17.09 0.12 15.53 -0.16 -17.35
Daylight × 9am dummy 0.00 9.39 0.00 6.78 0.00 9.77 0.00 7.00
Daylight × 5pm dummy -0.00 -0.75 0.00 7.02 -0.00 -0.99 0.00 7.26
Daylight × 6pm dummy 0.00 15.72 0.00 4.45 0.00 15.01 0.00 4.72
Holiday dummies
Summer holidays -1.41 -11.36 -1.70 -12.25 -1.33 -10.72 -1.69 -12.22
Week 53(dummy) -2.05 -8.29 -1.05 -4.19 -1.79 -7.26 -0.88 -3.50
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C Regression model estimates for different specifications

Tables C.1–C.2 section presents regression estimates for the models estimated in Section 4.4. In

summary, TSLS and OLS estimates are largely similar. Estimates of the coefficient on price are

largely unaffected by the distinction between samples containing onle peak hours, or those which

include all hours in the period. However, the coefficients vary considerably when estimated over

a one-year period compared to a two-year period which overlaps the shorter sub-sample.

Table C.1: Results from estimating model (4.9) over one year.
00:00 1st January 2016–23:00 31st December 2016.

Two-stage least squares Ordinary least squares

Peak Whole sample Peak Whole sample

Variable Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

Price (e/MWh) -0.28 -71.49 -0.25 -69.47 -0.26 -66.77 -0.24 -67.06
Trend 0.01 13.61 0.01 16.32 0.01 10.88 0.01 15.38
Time of day dummies, hour starting at:
1am 26.87 82.52 26.63 81.82
2am 28.25 122.89 28.07 122.17
3am 28.12 122.96 27.96 122.28
4am 29.98 122.49 29.85 122.01
5am 29.82 121.69 29.69 121.20
6am 30.10 122.23 29.95 121.70
7am 31.59 126.00 31.40 125.31
8am 34.41 133.42 34.18 132.56
9am 34.40 127.87 33.91 136.76 33.76 125.68 33.62 135.66
10am 37.15 177.05 35.57 144.33 36.60 174.68 35.30 143.25
11am 38.35 187.02 36.99 151.89 37.84 184.80 36.83 150.86
12pm 37.94 185.60 38.24 157.59 37.44 183.41 37.99 156.58
1pm 38.05 190.04 38.53 161.03 37.60 188.01 38.29 160.08
2pm 37.53 188.96 37.92 159.99 37.09 186.99 37.70 159.10
3pm 36.39 184.05 36.74 155.74 35.96 182.11 35.52 154.87
4pm 35.36 143.13 35.44 149.30 34.94 141.51 35.22 148.40
5pm 35.72 178.00 34.43 143.69 35.26 175.94 34.19 142.74
6pm 33.57 133.01 33.96 137.40 33.12 131.41 33.68 135.31
7pm 33.33 132.68 33.03 131.53
8pm 32.97 130.91 32.67 129.74
9pm 31.61 128.32 31.33 127.23
10pm 28.89 86.32 28.58 85.44
11pm 29.89 125.05 29.66 124.10
12am 28.06 85.34 27.80 84.57
Day of week dummies
Thursday -0.05 -0.72 0.07 0.72 -0.04 -0.59 0.06 0.68
Friday -0.15 -2.10 -0.30 -3.18 -0.13 -1.77 -0.30 -3.15
Saturday -2.54 -26.52 -2.49 -26.07
Sunday -3.19 -31.27 -3.10 -30.37
Month-of-year dummies
January 4.35 25.36 3.34 19.24 4.08 23.84 3.27 18.89
February 3.05 21.05 3.55 22.79 3.04 21.03 3.56 22.86
April 0.17 1.47 0.20 1.58 0.22 1.90 0.20 1.61
July 1.12 8.09 1.27 8.40 1.06 7.68 1.25 8.28
September -0.39 -3.04 -1.00 -7.05 -0.32 -2.45 -1.01 -7.13
October -0.99 -8.43 -0.48 -3.89 -0.96 -8.22 -0.20 -4.03
Weather variables
Max. temperature 0.06 7.66 0.04 5.42 0.06 8.74 0.04 6.07
Max. temperature × 12–4pm dummy 0.11 14.89 -0.16 -17.33 0.11 15.01 -0.16 -17.60
Daylight × 9am dummy 2.99 10.32 3.42 7.58 3.09 10.66 3.52 7.81
Daylight × 5pm dummy -0.59 -2.07 3.20 7.07 -0.64 -2.25 3.31 7.32
Daylight × 6pm dummy 3.83 13.13 2.38 5.25 3.64 12.47 2.50 5.52
Holiday dummies
Summer holidays -1.45 -11.73 -1.72 -12.48 -1.37 -11.09 -1.72 -12.44
Week 53(dummy) -1.84 -7.48 -0.96 -3.82 -1.59 -6.46 -0.78 -3.13
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Table C.2: Results from estimating model (4.9) over two years.
00:00 1st April 2015–23:00 31st March 2017.

Two-stage least squares Ordinary least squares

Peak Whole sample Peak Whole sample

Variable Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

Price (e/MWh) -0.17 -76.80 -0.18 -73.81 -0.17 -75.69 -0.17 -72.99
Trend -0.01 -64.76 -0.01 -41.74 -0.01 -64.87 -0.01 -41.84
Time of day dummies, hour starting at:
1am 29.59 110.85 29.52 110.58
2am 32.14 176.26 32.08 175.94
3am 32.02 176.72 31.96 176.41
4am 34.38 175.56 34.33 175.32
5am 34.25 174.59 34.20 174.35
6am 34.44 175.42 34.39 174.16
7am 36.00 178.14 35.94 177.84
8am 38.70 185.31 38.60 184.85
9am 36.40 159.61 38.18 191.82 36.27 129.07 38.09 191.48
10am 40.00 230.90 39.76 201.49 39.87 230.23 39.68 201.06
11am 41.36 243.24 41.26 211.63 41.25 242.60 41.17 211.22
12pm 41.00 244.09 4249 218.90 40.89 243.45 42.41 218.49
1pm 41.29 250.69 42.89 224.32 41.19 250.08 42.81 223.93
2pm 40.83 249.83 42.38 223.76 40.73 249.23 42.30 223.38
3pm 39.68 243.48 41.19 218.53 39.58 243.18 41.12 218.15
4pm 37.85 179.23 39.85 210.15 37.85 178.79 39.78 209.76
5pm 38.61 232.07 38.59 201.39 38.51 231.46 38.51 201.00
6pm 35.76 164.36 37.97 191.77 35.66 163.91 37.88 191.33
7pm 37.36 185.30 37.27 184.84
8pm 37.03 183.13 36.93 182.67
9pm 35.36 178.90 35.28 178.47
10pm 31.86 115.80 31.77 115.47
11pm 33.67 176.07 33.60 175.67
12am 30.51 113.20 30.43 112.91
Day of week dummies
Thursday -0.08 -1.30 0.04 0.45 -0.08 -1.25 0.04 0.46
Friday -0.44 -6.66 -0.42 -5.34 -0.43 -6.59 -0.42 -5.32
Saturday -2.44 -30.02 -2.43 -29.86
Sunday -2.75 -32.29 -2.73 -32.01
Month-of-year dummies
January 0.63 5.60 -0.35 -3.06 0.61 5.38 -0.36 -3.15
February 1.60 15.35 1.40 12.92 1.61 15.47 1.41 12.98
April 0.72 7.12 -0.46 -4.45 0.73 7.25 -0.45 -4.41
July 2.56 21.09 2.00 15.81 2.56 21.04 2.00 15.79
September -2.24 -22.19 -1.83 -17.11 -2.25 -22.27 -1.84 -17.20
October -1.08 -11.05 -0.50 -4.97 -1.10 -11.23 -0.52 -5.12
Weather variables
Max. temperature 0.10 14.93 0.01 1.75 0.10 15.17 0.01 1.95
Max. temperature × 12–4pm dummy 0.11 15.68 -0.18 -23.21 0.11 15.70 -0.18 -23.28
Daylight × 9am dummy 4.42 18.50 5.40 15.03 4.43 18.52 5.42 15.09
Daylight × 5pm dummy 0.82 3.47 4.74 13.19 0.81 3.41 4.77 13.25
Daylight × 6pm dummy 4.44 18.45 4.68 13.02 4.41 18.33 4.71 13.08
Holiday dummies
Summer holidays -3.10 -28.36 -2.17 -18.84 -3.11 -28.47 -2.18 -18.93
Week 53(dummy) -1.38 -6.23 0.07 0.38 -1.37 -6.17 0.10 0.49
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