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Summary

ENergy gaps are created in chemical and biological systems due to quantum

effects. These energy gaps can be used to absorb and store energy from sun

by means of photons. In photosynthesis, this captured energy is transferred from

absorbing antenna to the reaction centre by an energy transfer process known

as Excitations Energy Transfer(EET). EET in photosynthesis is one of the highly

researched areas in science. The main research attraction for this transfer process

is the fact that it is highly efficient which can be utilized in potential applications

if understood properly.

EET is understood in the incoherent regime where the excitations are local-

ized upon transferring to the acceptor chromophore. In this domain, not only a

quantum model of this system can be used to elucidate and simulate the energy

transfer, but also a semi classical or a pure classical model is capable of explaining

the EET dynamics. When EET falls under the coherent regime, is yet to under-

stand completely where quantum effects are more visible.

Quantum coherence effects in light harvesting systems play an integral role

during the energy transport process. These effects, when they are large enough,

aid to maximize the energy transfer among the chromophores in the energy trans-

ferring paths. In addition, they are also resourceful in redirecting excitons to

alternative paths when they are trapped in energy barriers. In this thesis, our

focus is to use such advantages of coherent resonance energy transfer dynamics

to improve the energy transfer processes in optoelectronics and nano-photonics

systems.

iii



Exploration of current knowledge base of energy transfer processes reveals

the significant role of surrounding quantum environment plays in them. In fact,

current quantum environments are simulated utilizing exponential terms and log

functions are quite accurately describe most environments. But, contemporary

spectral density functions characterizing quantum environments, lack the ability

to delineate environments which are slightly deviated from the standard forms.

This knowledge gap naturally provided us the motivation to look into such sys-

tems. In this study, we impart on energy transferring processes of quantum sys-

tems which are attached to such quantum environments.

We analyse how slight deviations from standard ohmic-like environments

can affect the quantum coherent effects utilizing positive logarithmic perturba-

tions for a donor-acceptor chromophoric system. In addition, we have investi-

gated how donor-acceptor coupling and system-bath coupling influence the ex-

citon transport dynamics of these quantum systems. The energy transfer process

was simulated employing the well established, elegant and highly diverse varia-

tional polaron and full-polaron transformation methods. This analysis has been

extended to multi-site systems which are closer to real world systems. Since log-

arithmic perturbation factors can be both positive and negative, our analysis also

investigates the effect of negative factors along with a comparison of full-polaron

and variational polaron transformation methods.

Findings of these studies are essential in understanding and characterizing the

energy carry over in excited quantum systems. Further, they could open up new

research avenues and also potential applications in enhancing, inducing, control-

ling and reducing quantum coherence in energy transfer process of artificial light

harvesting systems which use optoelectronics.
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Chapter 1

Introduction

1.1 Background and Motivation

Resonance Energy Transfer (RET) process [1–6] is an integral component of quan-

tum optics which is also a core constituent of quantum physics [7–18]. Ow-

ing to its highly efficient nature, RET process has acquired attraction in recent

years with the emerging areas such as solar energy harvesting [19–24], informa-

tion transfer [25, 26], bio sensing [27–29], photosynthetic proteins [30–32], con-

jugated polymers [8, 9, 33–36], spasers [18, 37–39] and solid quantum dots [4]

etc. RET process critically discuss the energy transfer that takes place among

a donor chromophore and a prospective acceptor chromophore. Förster The-

ory [1] which has been around since 1948, is successful in elucidating energy

transfer mechanisms transpire in a quantum or classical or semi-classical system

where bath’s (environment’s) influence is strong compared to the donor-acceptor

interaction [2–6]. In this premise, concomitant energy transfer falls under the

incoherent domain where individual chromophores are excited randomly as de-

lineated through Pauli-type dynamics of probabilities. In the counter domain

where donor-acceptor interaction is strong in comparison to the bath’s influence

on the sites, operates the Redfield master equation [40] which describes the co-

herent energy transfer. Due to the minimized influence from the surrounding

environment, energy transfer transpires in this circumstance demonstrates oscil-

1



2 Introduction

lations which indicates that energy is both pumped into and drained out of the

donor and acceptor chromophores during the transfer process.

When bath’s influence on sites and interactions between sites are comparable

to each other, ensuing energy transfer takes place in between coherent and inco-

herent regimes. Theories based on second-order perturbation such as modified

Redfield theory [41,42], variational polaron transformation-based theory [43,44],

full polaron transformation-based theory [45, 46] and numerically exact methods

such as hierarchical equations of motion [47], density matrix re-normalization

group [48], path integral [49] formalism are popular attempts in literature to

elaborate the energy transfer occurs under these circumstances. Even-though,

numerically exact methods are higher in accuracy, use of second-order pertur-

bation methods are common due to being computationally less expensive spe-

cially in researches focused on the multi-site systems. Among the second-order

perturbation based methods in relation to multi-site systems, multi-site full po-

laron transformation-based theory has performed well in super-Ohmic environ-

ments [50].

Quantum environment’s influence on the considered quantum system is rep-

resented through a frequency dependent entity named Spectral Density Func-

tion (SDF). Most physically relevant and plausible quantum environments are

portrayed by a common Ohmic-like SDF which constitutes an exponential de-

cay. Ohmicity parameter in this SDF primarily governs how it behaves in low

frequency modes and when the SDF scales from super-linearly to linearly to sub-

linearly in low frequencies, corresponding quantum environment changes from

super-Ohmic to Ohmic to sub-Ohmic type environment. Owing to fundamental

differences manifest between power laws and logarithmic decay [51], logarithmic

factors are used in a novel SDF in an effort to deviate the SDF from its current low

frequency response. These logarithmic factors aren’t an arbitrary choice, in fact,

they are innate in low frequency power law expansion of SDF. Moreover, recently
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introduced SDF based purely on logarithmic factors of various orders has exhib-

ited to be more accurate in mimicking experimentally obtained SDFs [52]. In this

thesis, we theoretically study quantum environments which are slightly deviated

from the standard sub-Ohmic, Ohmic and super-Ohmic categorization utilizing a

novel type of spectral density function, first introduced in [51]. We especially ex-

amine the energy transfer dynamics of quantum systems, both two-level systems

and three-level systems (multisite), attached to such disturbed environments by

altering environmental factors as well as system factors. We also critically study

how quantum coherence between a donor and an acceptor pair is changing due

to these factors and what the possible limits to this observed coherent dynamics

are. To simulate the energy transfer process, quantum master equations derived

from full polaron theory and variational polaron theory have been employed.

In essence, this thesis reveals that quantum coherence of the energy transfer

dyanmics of a quantum system attached to a disturbed environment is highly

depended on many factors. We have found that particular values of logarithmic

perturbation factor, are capable of increasing the quantum coherence of the trans-

fer. Besides, we reveal that larger logarithmic factors can reduce the coherent dy-

namics and they are even capable of shifting the energy transfer to the incoherent

regime.

1.2 Research Aims

Analytical characterization of coherent resonance energy transfer dynamics of
a two level system coupled to ohmic-like environments with full polaron trans-
formation approach

Contemporary knowledge related to coherent resonance energy transfer dynam-

ics has studied quantum systems under standard sub-ohmic, ohmic and super-

ohmic categorization of quantum environments utilizing numerically exact meth-
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ods as well as approximation methods based on second order perturbation the-

ory. Full polaron transformation method is one such approximation method

which has shown to be very successful in simulating the transfer dynamics of

quantum systems in ohmic environments.

We plan to study the effect on energy transfer dynamics when the surround-

ing quantum environment is perturbed which deviates the spectral density func-

tion of the environment from above common and standard categorization. This

deviation is aimed to be obtained by introducing logarithmic perturbations to the

standard spectral density function. We aim to analyse a two level donor-acceptor

system utilizing a full polaron transformation based quantum master equation.

We plan to examine the performance of this quantum master equation in different

super-ohmic environments as well as environments with different system-bath

coupling strengths. Further, we intend to analyse the coherent energy transfer

dynamics manifested through full polaron theory in such environments.

Investigating coherent resonance energy transfer using a quantum master equa-
tion in variational polaron frame

In this stage, we aim to extend the work of the previous stage by analysing a two

level system coupled to an ohmic like bath, experiencing logarithmic perturba-

tions incorporating a variational polaron transformation based quantum master

equation. Contemporary literature suggests that variational polaron transforma-

tion is superior to full polaron based transformation in terms of the range of the

validity in diverse system-bath coupling regimes. Therefore, we plan to inves-

tigate not only super-ohmic environments but also ohmic environments which

were not possible to study with full polaron theory.

We intend to explore energy transfer dynamics in super ohmic environments

in which the factor of logarithmic perturbations is positive. In ohmic environ-

ments, impact on the bath coupling strength will be studied under the same log-
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arithmic perturbations. For this analysis logarithmic factors from 0 to 3 will be

considered since most perturbations are slight in nature. Furthermore, we plan

to look into the impact on different values of the ohmicity parameter for various

values of these logarithmic perturbations to observe if there are any correlations

or outliers in simulated dynamics.

Analysing coherent resonance energy transfer of a multichromophoric system
under logarithmic perturbations utilizing full polaron based quantum master
equation

Even though, two-level systems are considered as building blocks of larger quan-

tum systems, it is interesting to explore how inter system parameters such as

inter chromophore interaction and site energy levels impact the energy transfer

dynamics of multichromophoric systems. Contemporary literature has studied

most multisite quantum systems utilizing the standard spectral density functions.

It will be interesting to explore such systems in disturbed quantum environments.

Therefore, our aim in this stage was to analyse a multi-chromophoric system

utilizing a multchromophoric full polaron quantum master equation. We plan to

perturb the attached quantum environment utilizing logarithmic perturbations.

We aim to examine the performance of the quantum master equation in various

super ohmic environments and wish to analyse the effects of infrared divergence

to the overall simulated dynamics.

Performance of variational transformation based quantum master equation in
terms of simulating coherent resonance energy transfer in a multi exciton trans-
port system under logarithmic perturbations

Up to this stage, we have planned to use positive logarithmic factors in order to

deviate the spectral density function from its original form. However, it will be

interesting to seek how negative factors could impact the transfer dynamics of ex-
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cited systems. Further, since variational polaron based quantum master equation

is known to perform better in most scenarios, our goal in this stage is to simu-

late and analyse a multi exciton system using the multi site variant of the said

transformation.

Therefore, a system with multiple chromophores coupled to independent and

identical baths will be considered at this stage which undergo negative logarith-

mic perturbations. For this analysis, both super ohmic baths and versions of

ohmic bath would be considered. Main objective will be to find configurations

and scenarios that can enhance the amount of quantum coherence that system

experience as whole. Further, if there are certain values of the logarithmic pertur-

bation factor are capable of reducing the quantum coherence effect, that will also

be worth investigating.

1.3 Thesis Outline

This thesis entails seven chapters outlined as follows.

Chapter 1 includes an overview into the research background which also presents

an outline of the motivation behind the research. It also includes aims of the re-

search and thesis outline.

Chapter 2 presents a detailed overview of current knowledge base of open

quantum systems and contemporary theories studying energy transfer dynam-

ics, both numerically exact methods and second-order perturbation based ap-

proximation methods. This chapter also includes the role of quantum coherence

in energy transferring paths and its advantages. It also provides an overview

of quantum coherence that has been captured by current quantum master equa-

tions. In addition, it includes the means of representing quantum environments

and how they are vital in understanding overall dynamics of quantum systems.

This chapter also elucidates on the importance of resonance energy transfer and
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its potential and current applications.

Chapter 3 presents the analysis performed on resonance energy transfer in a

two-level system with a full polaron transformation based quantum master equa-

tion. This quantum system dissipates energy to the quantum environment per-

turbed by logarithmic perturbations. The performance of the full polaron based

theory is analysed with respect to different ohmicity values and bath coupling

strengths.

In chapter 4, we investigate the energy transfer of a two-level system utilizing

a variational polaron based quantum master equation. We have incorporated

logarithmic perturbations to disturb ohmic like spectral densities and we discuss

the significance of said perturbations in quantum systems in designing future

applications. Further, this chapter describes on how quantum coherence effects

are impacted in super ohmic and ohmic regimes under the frequency domain

logarithmic perturbation of the spectral density function.

Chapter 5 discusses an extension of the work presented in the chapter 1, with

an analysis of non Markovian dynamics of a multi exciton system. It also dis-

cusses the performance of multisite full polaron transformation based quantum

master equation in ohmic environments when the perturbation factor is positive.

Chapter 6 provides an analysis of quantum coherence present in a multi ex-

citon system experiencing logarithmic power perturbations using a variational

based quantum master equation. Impact on quantum coherence effects of multi-

ple acceptors coupled to independent baths are elucidated in detail. This analysis

is done for both ohmic and super-ohmic environments with negative logarith-

mic perturbation factors in the environment. A comparison between full polaron

based results and variational polaron based results in such environments is also

included.

Finally, chapter 7 concludes the thesis with a summary of important findings

of this research. It will also focus on the current trends and knowledge gaps exist-



8 Introduction

ing in the field of nano-photonics which are vital for exploration, in order for the

future realization of this technology. In addition, this chapter outlines the future

experimental works that are worth exploring which are crucial for solidifying

existing theoretical work developed in this research.



Chapter 2

Theory and background of resonance
energy transfer

This chapter provides a general overview of resonance energy transfer which

includes its background and history. We also discuss the role of quantum co-

herence in relation to the energy transfer of light harvesting systems in addition

to an overview of current theories which are used to describe and simulate en-

ergy transfer in quantum systems in ensuing sections. Furthermore, we discuss

the necessity of polaron transformation and its theoretical background. We also

dive into contemporary quantum environments and their role in energy transfer

dynamics. Before we conclude this chapter, we also look at both existing and

potential FRET-based applications.

Electronic excitations transfer between molecules, is an area that has attracted

prime research interest since the formalization of Förster Resonance Energy Trans-

fer (FRET). Energy transfer from an excited donor to a potential acceptor can be

stemmed by means of with or without a photon emission. Therefore, energy

transfer naturally divides into two sub categories,

• Radiative energy transfer

• Non-radiative energy transfer.

Radiative energy transfer occurs when a donor chromophore spontaneously emit

a photon to an acceptor chromophore in the vicinity and this can be identified as

the simplest form of energy transfer. In terms of non-radiative energy transfer

9
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mechanisms, we can identify Coulomb coupling [1,20] and orbital overlap meth-

ods [53]. These mechanisms are explained more in detail below.

2.1 Non-radiative Energy Transfer Mechanisms

2.1.1 Dexter Resonance Energy Transfer (DRET)

Dexter Resonance Energy Transfer, or also known as exchange of electrons, was

introduced by David L. Dexter [53] in 1953, as a form of near field non-radiative

energy transfer mechanisms. When the donor and acceptor are in the proxim-

ity of each other, typically around 0.1 nm to 1 nm, concomitant energy transfer

typically falls under Dexter resonance energy transfer. In DRET, the donor orbit

and the acceptor orbit overlaps each other, which facilitates the excited electron

transfer from donor to acceptor. In other words, wave functions of donor and

acceptor overlap with each other to facilitate the transfer of energy. While the

excited electron of donor transfers to the acceptor, acceptor’s ground electron is

transferred to the donor as shown in the Figure 2.1. This physical transfer of elec-

trons, is the main difference between the energy transfer transpires via DRET and

Coulomb coupling mechanisms. In fact, ideal dipole-dipole approximation is in-

valid for this region. In other words, while FRET theory emphasis the fact that

energy released from the donor stimulates the acceptor’s ground state electron to

be excited through the Coloumb coupling, Dexter theory states that an exchange

of electrons should occur in order to transfer the donor’s energy to the acceptor.

Figure 2.1 shows the process given by, 1D∗ + 1A → 1D∗ + 1A∗, where * denotes

the exchanging excited electron. Transfer rate of this short range energy trans-

fer mechanism decays exponentially as distance between donor and acceptor is
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Figure 2.1: Dexter Resonance Energy Transfer Mechanism

increased. This can be written as,

TRDRET = JK exp
(
−2RDA

L

)
(2.1)

where J represents the integral of normalized spectral overlap between the donor’s

emission spectra and the acceptor’s absorption spectra. K is a factor unique to the

considered donor and acceptor pair, RDA is the distance between the pair and fi-

nally, L is the sum of van der Waals radius of the pair.

2.1.2 Förster Resonance Energy Transfer (FRET)

Förster Resonance Energy Transfer (FRET), introduced by Theodor Förster in

1948 [1], is one of the most popular energy transfer processes among the research

community. In this method, donor transfers its energy to the acceptor through

the dipole-dipole coupling among them. Fermi’s golden rule has been used to

calculate rate expressions with the assumption of donor and acceptor interaction

is weak (weak coupling limit). Transfer rate of FRET is given by,

TRFRET =
1

1 +
(r0

R

)6 (2.2)

where r0 is the Förster distance (distance between donor and acceptor chromophores

where FRET efficiency is 50%) and R is the actual distance between donor and ac-
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ceptor chromophores. This form of transfer generally transpires within 2-10 nm

from the donor chrmophore. There are several requirements to satisfy for FRET

to occur between a donor and an acceptor chromophore. They are,

1. Coupling between donor and acceptor should be weak compared to their

couplings between the surrounding chromophores,

2. Donor emission spectra and the acceptor absorption spectra should over-

lap (refer Figure 2.3),

3. Orientation between donor and acceptor dipole moment should not be or-

thogonal to each other (refer Figure 2.4).

FRET can be realized classically, semi-classically and quantum mechanically since

its hopping mechanism is incoherent, which means that once the energy has been

transferred to the acceptor chromophore, it will not be returned to the donor chro-

mophore again. Figure 2.2 shows the mechanism of FRET utilizing the virtual

photon concept.

Figure 2.2: Förster resonance energy transfer mechanism

2.2 Quantum Coherence

Extremely efficient light harvesting mechanism in photosynthesis, depends on

ultra-fast energy transfer dynamics in excited states and charge separation where

quantum superposition and quantum coherent dynamics play a prominent role.

In photosynthesis, molecules are congested closely enough to have a significant
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Figure 2.3: Spectral overlap requirement for FRET

coupling among them, in which FRET’s assumption of weak coupling is not typ-

ically valid. In this type of environment, energy transfer appears to be in the

coherent regime where energy bounces back and forth between donor and accep-

tor chromophores.

Now, let’s look at quantum coherence in more detail. To describe coherence

effects, let’s investigate the wave function given by Eq. (2.3), where a and b are

arbitrary constants and, h̄ω1 and h̄ω2 are exciton energies of e1 and e2, which are

the only states of the system.

|ψ(t)〉 = ae−iω1t |e1〉+ be−iω2t |e2〉 (2.3)

Next, using the bra-ket notation we construct the system density matrix which

results in,

|ψ(t)〉 〈ψ(t)| =

 |a|2 a∗be−i(ω1−ω2)t

b∗ae−i(ω2−ω1)t |b|2

 . (2.4)

Diagonal elements of the density matrix are known as population whereas the off

diagonal elements are known as coherences. It’s clear from the matrix, the fact

that population elements are stationary and coherences are dynamic. These co-

herences are wave like dynamics which exponentially decay as the time goes by.

Therefore, quantum coherence are dominating in the initial stages of exciton gen-
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Figure 2.4: Orientation requirement for transition dipoles in FRET. Here, k2 rep-
resents the orientation parameter which provides a measure of the interaction
between dipole moments of the donor-acceptor pair.

erations at a chromophore or an antenna. When coherence is present, eigen states

of the system are said to be de-localized, which can be well described through

the quantum approach. In the ensuing section, we analyse the role of quantum

coherence in light harvesting systems.

2.2.1 Role of coherence in RET and its importance

Quantum coherence in right amount is an advantage to the RET. When there

are large coherences, there exists a large site coupling among the chromophores,

which will restrict the energy oscillations to the excited states. Hence, this may

yield very little to no population transfer. On the other hand when there are small

coherences, which indicates that system-environment coupling is very large and

that will localize the excitons to the initial states without transferring forward.

These excitons could eventually dissipate to the environment. Therefore, for a

maximum energy transfer, coupling should be in between these two extremes.
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Therefore, one role of quantum coherence is to be large enough to maximize the

energy transfer between weak and strong coupling limits.

Secondly, quantum coherence can reduce the amount of excitations trapped

in local minima of energy in the transfer paths. These minima occur when a

chromophore is surrounded by chromophores which have higher energy than

itself. Such energy traps are common in the rugged energy landscape of light

harvesting systems. Oscillatory behaviour will pop these excitations out of local

minima and can redirect into another path. If not for coherence, these trapped

excitations would require a pumping event in order to fly over the energy barrier.

Figure 2.7 shows such an energy trap that presents in an energy transferring path

where BChl 1 site has lower energy than the Baseplate and BChl 2 site. Figure

2.8 demonstrates that when coupling between BChl 1 and BChl 2 sites are large

(refer Figure 2.8(i)), a significant amount of excitations is transferred from BChl

1 site to nearby chromophores. When we decrease the coupling between BChl 1

and BChl 2 sites as shown in Figure 2.8(ii)-(iv), energy transfer has pushed to the

incoherent regime and when observing the donor BChl 1 population, the amount

of excitations transferred to chromophores in the vicinity remain low.

Third role of quantum coherence is to work as an energy transfer rectifier in

energy transferring paths. This could be best explained using Figure 2.7. It is

notable that Baseplate, BChl 1 and BChl 2 sites have much higher site energy

than BChl 3. In fact, the energy gradient is very high between BChl 2 and BChl

3 sites compared to any other pair of sites. If these two sites are weakly coupled

compared to their bath coupling strengths, the energy transfer between the pair

would occur in the incoherent regime. Such a configuration would restrict the

energy backflow from BChl 3 to BChl 2 site, making this transfer irreversible.

These energy transfer rectifiers could be used to create high energy barriers in

order to facilitate energy flow into certain directions.

Further, as energy is transferred from molecule to molecule along the trans-
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fer path, quantum coherence is repeatedly created, destroyed and recreated as

shown in Figure 2.5 and Figure 2.6 [54]. However, observed coherence is decay-

ing under two methods when experiments are conducted. Ensemble dephasing

occurs where coherence been transferred to the near entangled molecules and mi-

croscopic dephasing where decoherence happens which destroys the coherence

between entangled states due to the environment effects. In ensemble dephas-

ing coherence is not destroyed as such, but it helps to distribute coherence along

the transfer path. This in return reduces the amount of coherence at the system

under consideration. Microscopic dephasing suggests that, population transfer

dynamics should occur in a short time period before decoherence completely de-

stroys the excitations. These quantum coherences appear in photosynthesis are

Figure 2.5: Figure shows the structure of the sites. Initial excitation is at site 1.
(Adapted from ”Quantum effects in biology” Graham R. Fleming, Gregory D.
Scholes, Yuan-Chung Cheng. Copyright © 2011 Published by Elsevier B.V.. Used
with permission under licence 5156420935296)
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Figure 2.6: Figure shows the coherences between most entangled sites given in
Figure 2.5. (Adapted from ”Quantum effects in biology” Graham R. Fleming,
Gregory D. Scholes, Yuan-Chung Cheng. Copyright © 2011 Published by Elsevier
B.V.. Used with permission under licence 5156420935296)

often thought to decay rapidly and therefore commonly neglected during theory

formulations. But recent developments in two-dimensional spectroscopy suggest

that there are coherences lasting for a time period that can be comparable to RET

dynamics. Therefore, these quantum coherences can no longer be neglected in

describing photosynthetic process in light harvesting systems.

2.3 Open Quantum Systems

Most studies have modelled quantum systems as a closed system which con-

sists a system of interest (open system) and a surrounding environment (which is

also referred to as the bath or heat reservoir). The energy contained in this open
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Figure 2.7: Structure of the considered energy transferring path for Figure 2.8.
(Adapted from ”Quantum effects in biology” Graham R. Fleming, Gregory D.
Scholes, Yuan-Chung Cheng. Copyright © 2011 Published by Elsevier B.V.. Used
with permission under licence 5156420935296)

system is being dissipated to the surrounding environment through system-bath

coupling. For simplicity, the environment is considered to be in thermal equilib-

rium and large enough to absorb small fluctuations forced by the system. Since,

such a closed quantum system has an infinite amount of degrees of freedom,

we cannot use unitary transformation methods to identify time evolution of the

quantum states. Such non-unitary dynamics could be explored using a quantum

master equation derived utilizing the motion of the density matrix of the closed

quantum system. Liouville’s super operators are used to model this type of time

evolution in quantum systems. System density matrix (ρ̂(t)) and corresponding

quantum Liouville operator (L̂) are related by,

dρ̂(t)
dt

= −iL̂ρ̂(t) = −i
[
ρ̂(t), Ĥ

]
(2.5)
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Figure 2.8: Population of each site for different coupling (J12) values. (Adapted
from ”Quantum effects in biology” Graham R. Fleming, Gregory D. Scholes,
Yuan-Chung Cheng. Copyright © 2011 Published by Elsevier B.V.. Used with
permission under licence 5156420935296)

where Ĥ is the Hamiltonian of the quantum system.

Further, since our interest lies on the open quantum system, we could reduce

the density matrix to only include open system states in order to derive the quan-

tum master equation [55]. Incorporating this quantum master equation, one can

look into the state dynamics and states’ evolution with time.
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2.3.1 Spin boson model

The two state quantum system is the build block of all quantum systems. There-

fore, it is naturally to build theories around these two state systems and spin

boson model is the common way of modelling such systems in literature. In this

model, the two quantum states are modelled using spins and the environment is

represented as a set of bosons or a set of harmonic oscillators.

2.3.2 Markovian assumption

The type of equation we derive to simulate states’ evolution, depends on the

importance of Markovian dynamics considered for the system. Initially, even

though the energy we are interested is confined to the open system (particularly

at the donor chromophore), this energy dissipates to other chromophores in the

open system as well as to the environment. Such energy flow is influenced by

inter-chromophore coupling as well as the coupling of chromophores towards

the bath modes of the environment. If this environment is very large and bath

correlations among the bath modes are high, the energy transferred to the envi-

ronment is lost after a time period. When this irreversible dissipation takes place,

such an arrangement is considered as a Markovian environment. When the en-

ergy backflow from environment to the system is negligible, such an environment

is memoryless and one can derive a first-order linear differential equation with

the systems states of the density matrix, known as the Lindblad equation [40] to

explore the dynamics of the system.

On the contrary, if the environment is comparatively small and there are strong

system-bath correlations (governed by the spectral density function of the bath)

compared to the bath correlations, such an environment is considered as non-

Markovian. Non-Markovian environments support energy backflow from the

environment to the system of interest where energy is not destroyed once the dis-
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sipation occurs to the bath. Such environments retain memory and dynamics of

open systems attached to such environments are extremely complex owing to the

degrees of freedom in the bath. By tracing out environmental degrees of freedom

from the density matrix, we can derive a quantum master equation to study its

dynamics. Furthermore, we can opt to derive a higher order equation but it has

been shown that second order quantum master equations can simulate the energy

transfer to an acceptable accuracy whereby the accuracy gain of having a higher

order equation is minimal, compared to its computational complexity and time

complexity [56]. In this study, we are interested in a quantum master equation

which could explain non-Markovian dynamics.

Such quantum master equations could be divided into three major categories

depending on the relative strength of system bath coupling. If the influence of

the environment is strong compared to the interaction between system sites, ex-

citations generated with the energy are localized and the resultant transfer is in-

coherent, the dynamics of which can be fully analysed by Förster Theory [1, 2, 6].

On the other hand, a weak system-bath coupling parameter leads to a Redfield

type quantum master equation [40] and ensuing energy transfer falls under the

coherent regime. When bath influence is comparable to other system parame-

ters, resulting energy transfer characteristics interpolate between coherent and

incoherent regimes. For this situation, multiple formalisms based on second-

order perturbation theory have been introduced: namely, modified Redfield the-

ory [41, 42], full polaron [45, 46] transformation-based theory and variational po-

laron transformation [43, 44] based theory. Besides, numerically exact results can

also be obtained using non-perturbed methods such as hierarchical equations of

motion [47], density matrix re-normalization group [48] and the path integral [49]

formalism. However, the latter theories are complex and computationally expen-

sive compared to second-order perturbation theory based formalisms. Further,

when we study multisite systems using such numerically exact methods, time
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complexity of such calculations usually increases exponentially due to the in-

creased number of degrees of freedom in the open system.

2.4 Polaron Transformation

The polaron theory in condense matter physics describes how a polaron, a quan-

tum (quasi-) particle which is a fundamental building-block, interacts with the

deformed lattices through electromagnetic interactions [57]. On the other hand,

the polaron transformation method transforms the original frame of a Hamilto-

nian into polaron frame where the quantum master equation generated through

the density matrix, is in the acceptable regime so that second-order perturbation

theory can be applied to it. The same way a polaron particle can deform the

lattice and alter the strength of chemical bonds, by using this unitary transforma-

tion technique we change the coupling of the sites(donor and acceptor) and the

environment. Because of this similarity in changing coupling strengths, this uni-

tary transformation is named polaron transformation, but these two are separate

concepts. It is important to make it clear that the role of polaron transformation

is not to impose actual physical formation of polarons. Rather, it is merely used

as a unitary transformation that helps to identify a term of Hamiltonian that re-

mains small beyond conventional weak-system bath coupling regime. Then, a

QME truncated at finite orders of this term can serve as an approximation that

works well even in the intermediate or strong system-bath coupling limit [46]. In

other words, this is essentially a unitary transformation method which alters the

interactions between donor and acceptor and between donor/acceptor and the

environment.

This transformation can be used to solve spin boson models, since it holds

true for a range of coupling strengths, it is clear in physical pictures and can be

easily extended to multi state systems [57]. The concept behind polaron trans-
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formation method is to convert all quantum system related parameters into the

polaron frame such that open quantum system is dressed by the environmental

factors. Such conversion changes the site energies into polaron shifted site ener-

gies and site interaction strengths to renormalized site coupling strengths. To fur-

ther discuss this transformation consider the following Hamiltonian of a closed

quantum two-state system [45] consists of an excited donor state (|D〉) and an

excited acceptor state (|A〉),

HT = Hp
s + Hc

s + Hsb + Hb (2.6)

where,

HT - Total Hamiltonian

Hp
s - Hamiltonian of the system populations

Hc
s - Hamiltonian of the system coherences

Hsb - Hamiltonian of system and bath coupling

Hb - Hamiltonian of the bath

Each of these Hamiltonians can be expanded as follows using the bra-ket nota-

tion.

Hp
s = ED |D〉 〈D|+ EA |A〉 〈A| (2.7)

Hc
s = J(|A〉 〈D|+ |D〉 〈A|) (2.8)

Hsb = BD |D〉 〈D|+ BA |A〉 〈A| (2.9)

where,

ED (EA) - site energy at |D〉 (|A〉)

J - resonance coupling between |A〉 and |D〉

BD (BA) - bath operator coupled to |D〉 (|A〉)
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Now consider the following polaron generator function,

G = ∑ fn(b†
n − bn)(gnD |D〉 〈D|+ gnA |A〉 〈A|) (2.10)

which used as the unitary transformation function. Here, gnA(gnD) is defined as

the coupling strength of bath’s n mode to |A〉 (|D〉) state of the TLS, fn is the vari-

ational parameter and b†
n(bn) is the nth mode creation (annihilation) operator with

frequency ωn. Now we can perform the polaron transformation by calculating,

H̃T = eGHTe−G (2.11)

which transforms the original frame of reference to an alternative frame known

as the polaron frame. The polaron generator function (G) displaces the bath os-

cillators in positive or negative direction depending on the system states. The

variational parameter fn determines the magnitude of this displacement for each

bath mode. Therefore, note that the value of fn is very important which could be

in the range of 0 ≤ fn ≤ gn and depending on its value we can alter the type of

polaron transformation applied to the system. There are essentially three types of

polaron transformation available in the literature depending on the value of fn,

1. No polaron transformation ( fn = 0)

2. Full polaron transformation ( fn = gn)

3. Variational polaron transformation (0 ≤ fn ≤ gn).

When we eliminate the variational parameter ( fn = 0), this configuration is

known as no polaron transformation and in this case quantum master equations

are derived using the original frame of reference of the Hamiltonians.
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2.4.1 Full polaron transformation

In full polaron transformation method, we displace the bath oscillators attached

to a quantum state from the same magnitude that this quantum state is coupled

with that bath mode. This form of polaron transformation leads to full polaron

based quantum master equations which perform well in super-ohmic environ-

ments for fast baths [58]. When it comes to ohmic environments, this quantum

master equation undergoes severe distortions due to the infrared divergence ef-

fect of bath correlation functions. The bath correlation functions (K(t)) in full

polaron transformation based quantum master equations is in the form of,

K(t) = ∑
n
(gnD − gnA)

2{coth(βh̄ωn/2) cos(ωnt)− i sin(ωnt)} (2.12)

2.4.2 Variational polaron transformation

When we let the variational parameter ( fk) float between 0 and the system bath

coupling strength, that configuration is known as variational polaron transforma-

tion method. Unlike in full polaron transformation, we allow the displacement

of bath modes coupled to the interested site to achieve a value in the above spec-

ified region. Once this transformation takes place, the total system Hamiltonian

could be divided into two categories, zeroth order Hamiltonian and the first or-

der Hamiltonian. Calculation of the exact fk value is achieved by minimizing the

contribution of the first order Hamiltonian to the free energy. To minimize the

free energy, we use Feynman-Bogoliuobov upper bound on the free energy [59]

as been shown in [43,44]. Feynman-Bogoliuobov upper bound on the free energy

is given by,

AFB = − 1
β

ln
[
Tr
{

e−βĤ0
}]

+
〈

Ĥ1
〉

Ĥ0
+ O

(〈
Ĥ2

1

〉
Ĥ0

)
. (2.13)
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An improved version of free energy minimization equation has been introduced

in [60] where higher order terms have been also considered. True free energy A is

related to AFB through the inequality AFB ≥ A and the second term of the above

equation is zero by construction. Therefore, the above equation now stands at,

A ≤ AFB = − 1
β

ln
[
Tr
{

e−βĤ0
}]

. (2.14)

when higher order terms are neglected. Following this we could take the deriva-

tive of AFB with respect to fk in order to minimize the free energy which results

in two equation which should be solved self consistently. We will demonstrate

this process in chapter 4.

According to literature, as a consistent theory valid in all system-bath cou-

pling regimes, which is also relatively simple and computationally inexpensive,

variational polaron transformed master equation has performed well in ohmic,

sub-ohmic and super-ohmic environments for both fast and slow baths [58]. While

full polaron transformation works well in fast super-ohmic baths, it suffers from

infrared divergence effect as a consequence of the full polaron approximation.

2.5 Spectral Density Functions

As elucidated earlier, spectral density functions (SDFs) govern how bath modes

are attached to the consider quantum system sites. Unsurprisingly, the choice

of SDF for modelling a specific EET system is an important component of the

model as it essentially dictates the energy exchange dynamics of the donor and

the acceptor with the environment (bath). Specifically, SDFs model the energy

relaxation dynamics of the donor and the acceptor. In this section, we look at

three main categories of spectral density functions,

1. Standard spectral density function
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2. Log-normal spectral density function

3. Combined spectral density function with logarithmic perturbations.

2.5.1 Standard spectral density function

Generally, to define the spectral density function (SDF) of a bath attached to a

quantum system, we use the well known Ohmic-like spectral density function

[43, 44, 46] given by,

J(ω) = qω1−α
c ωαe−ω/ωc , (2.15)

where q is the dimensionless bath coupling strength, ωc is the cut-off frequency

and α is the Ohmicity parameter. Ohmicity parameter α governs how SDF scales

linearly for low frequency bath modes. When α < 1, SDF scales sub-linearly and

therefore, such an environment is identified as sub-Ohmic. On the other hand,

when α > 1, SDF scales super-linearly and such an environment is identified

as super-Ohmic. In Ohmic environments, SDF scales linearly at low frequencies

where α = 1 [61].

2.5.2 Log-normal spectral density function

Despite the fact that most quantum environments can be illustrated through above

standard spectral density function, recently introduced log-normal type spectral

density function given in Eq. (2.16) has shown to be more accurate in replicating

spectral density functions obtained through experimental works [52].

J(ω) = q exp

{
− 1

2σ2
SD

[
ln
(

ω

ωc

)]2
}

(2.16)

This is owing to the presence of two tunable parameters (ωc and σSD) which aids

in fitting a shape more precisely to an experimental data set. This log-normal
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spectral density function also entails logarithmic factors of various powers which

are not uncommon in decay dynamics. In fact, it has been shown both experi-

mentally and quantum mechanically that long term relaxation of a quantum sys-

tem could include inverse power law factors combined with logarithmic correc-

tions [62]. These logarithmic factors are also innate in low frequency power series

expansions of spectral density functions.

2.5.3 Combined spectral density function with logarithmic per-
turbations

In many unstable (excited) physical systems, energy relaxation follows exponen-

tial behaviour over time to a very good approximation. However, it has been

shown both theoretically and experimentally, that many of the physical systems

that are known to exhibit exponential relaxation actually deviates from this be-

haviour at long time scales [63–68]. In the specific case of energy decay in ex-

cited electronic systems, quantum mechanical treatments of unstable atoms have

shown that the long term behaviour actually contains both inverse power law

(1/t2) as well as logarithmic (1/tlog2(t)) corrections to the exponential decay dy-

namics [62]. This implies the existence of a component that relaxes much slower

at longer time scales than expected. The most widely used types of SDFs for mod-

elling EET systems are the sub-Ohmic, Ohmic and the super-Ohmic spectral den-

sities, and they are widely used to effectively model many real systems [69, 70].

However, these ohmic-like SDFs only exhibit inverse power law behaviour for

long-time relaxation rates and hence cannot be expected to faithfully produce

physical results for long time scales. In [51, 71], a general class of functions with

logarithmic corrections to ohmic-like SDFs have been shown to be able to repli-

cate the inverse logarithmic behaviour at long times, in addition to the inverse

power law behaviour. Almost all quantum mechanical investigations of EET per-

formed until now have focused on ohmic-like SDFs and hence have not been sen-
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sitive to these logarithmic deviations expected at long time scales. These effects

will be significant in any excitation transfer system that relies on exact estimates

of long term behaviour of such systems. For example, excitation transfer system

designed for energy harvesting, information transfer and a multitude of other

applications will need to consider these effects due to the need for accurate esti-

mates of the system on long time scales. Logarithmic relaxation is by no means a

new physical phenomenon and similar logarithmic relaxations are also found in

wave propagation in solid materials [72], molecular liquids [73], proteins [74,75],

visco-elasticity [76] and glass-forming systems [77, 78]. In addition to this, in [52]

it was shown that SDFs in log-normal form that is similar to the SDFs we use,

replicate the experimentally observed results better than the conventional Ohmic,

super-Ohmic and sub-Ohmic SDFs.

Incorporating these logarithmic factors an Ohmic-like spectral density func-

tion has been introduced and can be expressed as [51],

J(ω) = qωc

(
ω

ωc

)α

exp
(
−lω
ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (2.17)

Above version of Ohmic-like spectral density function has been utilized to ex-

emplify quantum environments which are slightly deviated from the original

form. This deviation is obtained through the logarithmic perturbation factor (n)

in above equation. Furthermore, this form of spectral density functions are ca-

pable of characterizing a large range of relaxations which are slower than the

exponential decay and faster or slower than the inverse power laws in quantum

systems [51]. Our goal in this thesis is to examine the coherent energy trans-

fer dynamics of quantum systems through polaron transformation based quan-

tum master equations where the attached quantum environments are slightly

disturbed/perturbed in the frequency domain which are described through this

novel type of spectral density function. In an effort to visualize Eq. (2.17) in the

frequency domain, we have plotted Figure. 2.9 where ωc = 3 THz, l=1.1, q=0.005
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Figure 2.9: Spectral density functions of J(ω) for the values of (a) α=2.25, (b)
α=2.5, (c) α=3, (d) α=3.25. Values of n are shown on the graphs. For each case we
take ωc = 3 THz, l=1.1 and q=0.005.

and (a) α=2.25, (b) α=2.5, (c) α=3, (d) α=3.25. We can delineate the fact that for

all α and n values, Jα,n graphs intersect at ω = ωc/e and at ω = ωce. Thus, we

observe three distinct frequency regions for each Ohmicity value (α).

• The low-frequency range(0, ωc/e), in which Jα,n1 < Jα,n2 for all n1 < n2.

• The intermediate range(ωc/e, ωce), in which Jα,n1 < Jα,n2 for all n1 > n2.

• The high-frequency range(ωce, ∞), in which Jα,n1 < Jα,n2 for all n1 < n2.

It can be clearly observed the fact that logarithmic perturbation factors have al-

ter the low-frequency dynamics in each graph. As we increment the α value,

the contribution from low-frequency range frequency modes to the overall cou-

pling strength is apparently reduced. In the intermediate frequency range, we

see that smaller logarithmic perturbation factors correspond to the larger cou-

pling strengths. It is also important to note that, when these logarithmic fac-

tors are present, bath coupling strength near the cut-off frequency becomes neg-
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ligible with a removable logarithmic singularity. Finally, in the high-frequency

range, we see that larger n values correspond to larger total system-bath coupling

strengths when comparing the area under the curves.

2.6 RET Based Applications

Applications based on RET are broad which include artificial light harvesting

devices, molecular biology, spasers, quantum computation etc. As previously

elucidated, the highly efficient nature of the RET inspired many novel applica-

tions such as two-dimensional spectroscopy and imaging microscopy. Therefore,

in this section, an overview of RET based applications will be discussed.

2.6.1 Solar cells

Photosynthesis phenomena has influenced researchers and scientist to use a sim-

ilar mechanism to convert solar energy to electricity, which has become a prime

area of research over last few decades. Artificial light harvesting devices such as

organic solar cells have become popular due to their flexibility, miniature struc-

ture and being lightweight compared to other options [79,80]. Current organic so-

lar cells could reach beyond ten percent power conversion efficiency. This bench-

mark will be increased over the next decade especially with the technological

advancements of the manufacturing industry.

The procedure of solar energy conversion could be divided into 5 main stages:

solar light absorption, transportation of generated excitons, exciton dissociation,

charge transportation, and charge separation. While the latter two stages are not

directly involved with RET mechanism, the first three stages are highly relevant.

Particularly in exciton transport stage, diffusion processes take control and trans-

port excitons from regions where the exciton concentration is high. Since, inter
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molecular interactions are low compared to other environmental interactions, in

most organic solar cells this transport occurs as a hopping mechanism. If pa-

rameters related to this hopping mechanism discourage the exciton transport,

electron-hole pairs will recombine and the absorbed energy will be lost after this

event.

Further, exciton dissociation which separates the generated electron form the

electron-hole pair plays a major role in this mechanism. As electrons are mov-

ing from donor to the acceptor, holes are moving from acceptor to the donor.

During this exciton dissociation influenced by chemical potential difference, im-

purities also tends to involve in the process which leads to trapped excitons in

energy barriers. Such events are counter-productive where we focus on the de-

vice performance. In terms of solar energy harvesting stage, solar concentrators

are utilized to generate a higher quantum yield which uses FRET mechanism.

It has been shown that polymer solar cells which are based on FEET theory,

gained a 38 percent increase in power conversion efficiency when mixed with a

squaraine dye. The reason for this increased efficiency is due to the additional

energy migration occurred from one molecule to another over long spatial dis-

tances. The squaraine dye is extremely absorbent in the infrared region which

expands the spectral absorption of these solar cells while enhancing the trans-

mission of generated electricity [81].

2.6.2 Distance measurements

Being a high distance dependent energy transfer scheme, FRET has been used

to measure nanometre distances [82]. Most common distant measurement based

on FRET theory is to measure distances between two molecules. FRET based

applications are more sensitive than other methods that has been utilized for

this purpose. In addition, high temporal resolution and low spatial resolution
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of FRET has made it possible to do measurements in complex systems such as

plasma membrane of intact cells [83]. Fluorochromes are placed at several points

in system under measurement with the help of flexible linkers. Using FRET the-

ory, angstrom level of accuracy and precision could be measured based on the

efficiency received at acceptor molecules [84].

2.6.3 Biosensors

Another FRET based application which is commonly used in cellular molecu-

lar dynamics, cell-cell interactions and cellular physiology is biosensors. Such

biosensors based on FRET mechanism are made of a donor, an acceptor, a sen-

sor domain, a ligand and linkers. Biosensors could be largely divided into two

categories namely intermolecular biosensors (bimolecular) and intramolecular

biosensors (unimolecular) where intramolecular biosensors could be further cat-

egorized into distance change-based and fluorescence property change-based bio

sensors.

This categorization is based on how FRET ratio is changed when detected by

a chemical signal. The distance change-based FRET biosensors can be further di-

vided into 3 types: cleavage-based, mechanical force-based and conformational

change-based. Contemporary experiments that utilized FRET based biosensors

include determining potency of cancer drugs [85], necroptosis [86], autophagy

[87], dynamic Lck activation in T cells [88], Visualizing Cell-Environment Inter-

action [89], breast cancer cells [90, 91].

Furthermore, FRET based biosensors are successfully applied in intracellu-

lar mechanotransduction which studies the mechanotransduction process occurs

due to cellular responses stem from the conversion of biomechanical signals into

biochemical signals.
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2.6.4 Optical Microscopy

To investigate a certain system such as a protein through microscopy, a donor

and acceptor are attached to these systems. These pairs should have character-

istics of a donor acceptor pair that can involve with FRET mechanism such as,

Alexa488–Cy3, BFP–GFP, BFP–Red Fluorescent Protein RFP, Cyan Fluorescent

Protein CFP–YFP, Cy3–Cy5, CFP–RFP, FITC–Rhodamine and BFP–YFP [92, 93].

There are multiple ways of measuring the FRET in microscopy namely; Acceptor

photobleaching, Sensitized emission, Fluorescence-lifetime imaging microscopy

(FLIM)-FRET and Polarized anisotropy. There are advantages and disadvantages

of using these measuring schemes, for example, a few major advantages of us-

ing FLIM based measurements is that it requires only a donor FP to get mea-

surements, it is less bothered by photobleaching and it does not get affected if

the protein concentration is low in general. But there are disadvantages such

as being a slow measurement process, being very expensive which requires spe-

cialized equipment to measure time and frequency domain data and may need

complex analysis of data gathered, during quantitation. In general, the lifetime

of the fluorescence is dependent on environmental factors such as the refractive

index of the medium, pH level and ion concentration of the sample.

2.7 Summary

In summary, there are two major categories in energy transfer mechanisms be-

tween molecules, radiative and non-radiative energy transfer. Non-radiative en-

ergy transfer is possible in two forms, Dexter Resonance Energy Transfer (DRET)

and Förster Resonance Energy Transfer (FRET). Being a core constituent of quan-

tum physics and nano-photonics, the resonance energy transfer process takes

place in photosynthesis has brought forth prime research interest owing to its

highly efficient nature. Parameters in both the quantum system and the sur-



2.7 Summary 35

rounding environment (bath) strictly regulate this crucial energy transfer process.

While spectral density function (SDF) governs the environmental influence, mul-

tiple theories have been instituted to delineate diverse aspects of the said transfer.

Förster Theory introduced in 1948, assumes that coupling between quantum

sites and environment is significant compared to other parameters of the quan-

tum system. Thus, it exemplifies an energy transfer transpires in the incoher-

ent regime. On the contrary, Redfield or Lindblad theory elucidates an energy

transfer in a quantum system where the coupling between the environment and

quantum sites is negligible. Whereas, when the environmental influence to the

quantum sites can be comparable to other parameters, we identify that the quan-

tum system is in the intermediate coupling regime. Recent developments in two-

dimensional spectroscopy have discovered some light harvesting systems such

as Fenna Matthews Olson complex, works in the intermediate coupling regime

where inter-molecule coupling is comparable to the system bath coupling. The-

ories applicable in this regime can be divided into two major categories: nu-

merically exact methods such as hierarchical equations of motion, density matrix

renormalization group, path integral formalism, and second-order perturbation

methods such as modified Redfield theory, variational polaron transformation

based theory and full polaron transformation-based theory. Even though numer-

ically exact methods determine the energy transfer more accurately, second-order

based methods are computationally less expensive with an acceptable accuracy.

In most instances found in literature, the energy transfer process is studied

against the most common type of Ohmic-like SDFs consisting of n exponential

decay term, where the type of the environment (whether it is sub-Ohmic, Ohmic,

or super-Ohmic) is determined by the Ohmicity parameter [43–45, 69, 70]. Even

though, majority of relevant quantum systems can be portrayed through these

common types of SDFs, recently introduced log-normal type SDF [52] is capa-

ble of mimicking experimental data more precisely. This log-normal type SDF
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uses logarithmic factors of various power magnitudes to construct an accurate

SDF, and these logarithmic factors are not used in an arbitrary context. They

are present in the low frequency power series expansion of the SDF [51]. Ac-

counting for these logarithmic factors, a SDF has been developed recently to in-

corporate the slow relaxation term over a long time scale, which occur in many

systems [62–68]. By influencing slight perturbations in the frequency domain

through these logarithmic factors, this SDF attempts to formulate an environment

that is slightly different from the common Ohmic-like SDFs.



Chapter 3

Energy transport in a disturbed
environment utilizing two-level full

polaron transformation approach

3.1 Introduction

In this chapter, we intend to analyse energy transfer dynamics of a pair of inter-

acting chromophores immersed in a disrupted quantum environment as shown

in Figure 3.1. Evolution of energy of a two-level donor-acceptor pair has gained

traction in recent years as elucidated in chapter 2. While contemporary research

has studied this evolution in various quantum environments, we analyse the en-

ergy transfer dynamics when the attached quantum environment is disturbed

from the standard sub-ohmic, ohmic and super-ohmic categorization. As de-

scribed in chapter 2, we utilize a general SDF which could be used to simulate

these disturbances for the study.

The donor-acceptor pair considered in this chapter, is assumed to have a sig-

nificance coupling among them compared to their coupling with the environ-

ment. Since, Förster theory is not suitable for such systems, we incorporated the

full-polaron transformation method to formalize the quantum master equation.

Full-polaron based quantum master equation is popular when studying super-

ohmic environments due to the accuracy of the generated results, specially in fast

37
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Figure 3.1: Donor chromophore (X1) and an acceptor chromophore (X2) are con-
nected to identical and independent baths. V represents the inter-chromophore
coupling whereas gk,X1 (gk,X2) represents the coupling between kth bath mode and
X1 (X2) site.

baths. Our purpose in this chapter would be to gauge the performance of this

quantum master equation in disturbed quantum super-ohmic environments. In

addition, we are also interested in the simulated dynamics in such environments.

This chapter is outlined as below. Following the introduction, in section 3.2,

the formalism including the model and the analytical approach deployed for our

analysis is outlined. In section 3.3, the results obtained for super-Ohmic SDFs

with logarithmic perturbations are discussed. Finally, section 3.4 summarizes

and concludes the chapter.

3.2 Formalism

Let’s consider a spin boson model [43–45, 60] that consists of a donor (X1) chro-

mophore, an acceptor (X2) chromophore and an encompassing boson environ-

ment. At the start of the study (at t=0), total system including the environment

and all other degrees of freedom are in thermal equilibrium in ground state de-

noted by |G〉. Let’s model
∣∣Xj
〉

as the state where Xj site is excited and the re-
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maining site to be in ground state (j = 1, 2). As this study is interested only in

the single excitation state space, the three states which entirely elucidate the sys-

tem are |X1〉,|X2〉 and |G〉.

To start with the study, let’s excite the donor molecule to state |X1〉 using a laser

pulse. Laser pulse has a duration of τlaser and this quantity should be much

smaller than the spontaneous decay time τsd(τlaser << τsd) to the ground. Under

these circumstances, initial condition of the complete system can be written as,

ρ̂(0) = ρ̂S(0)⊗
e−βĤ′b

Z
, (3.1)

where the partition function is denoted by Z = Trb{e−βĤ′b} which is the trace

over the bath degrees of freedom. Here, system Hamiltonian can be written as

ρ̂S(0) = |X1〉 〈X1| since the entire population is at |X1〉 initially and β = 1/kBT

where kB is the Boltzmann’s constant and T is the temperature of the system in

Kelvins.

3.2.1 Hamiltonian of the total system

First we define the Pauli operators,

σ̂z = |X1〉 〈X1| − |X2〉 〈X2|

σ̂y = i (|X2〉 〈X1| − |X1〉 〈X2|)

σ̂x = |X1〉 〈X2|+ |X2〉 〈X1|.

The total Hamiltonian of the complete system can be written as,

Ĥ′ = Ĥ′p + Ĥ′c + Ĥ′sb + Ĥ′b , (3.2)

where, Ĥ′p = (ε/2)σ̂z is the population Hamiltonian that represents the energy

localized at each chromophore. Here, ε = ε1− ε2 represents the energy difference
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between the states |X1〉 and |X2〉. The energy de-localized between the two chro-

mophores are given by the Hamiltonian of the coherences denoted by Ĥ′c = Vσ̂x,

where V is the electronic coupling strength between the donor-acceptor pair.

Hamiltonian of the system-bath coupling is given by,

Ĥ′sb = ∑
j=1,2

∣∣Xj
〉 〈

Xj
∣∣∑

k
h̄ωk,jgk,j(b̂†

k,j + b̂k,j) (3.3)

where b†
k,j(bk,j) is the kth bath mode creation (annihilation) operator with fre-

quency ωk,j attached to the site Xj (j = 1, 2) and the system-bath coupling be-

tween kth mode and Xth
j site is denoted by gk,j. The system-bath coupling denoted

by gk,j is for kth bath attached to jth site, which is fully described through the bath

SDF J(ω) for a spin boson model [43–45,60] which we elucidate later in Sec. 3.2.4.

Bath Hamiltonian is given by Ĥ′b = ∑j=1,2 ∑k h̄ωk,jb†
k,jbk,j. Now we can write the

expanded form of the total system Hamiltonian as,

Ĥ′ = (ε/2)σ̂z + Vσ̂x + ∑
j=1,2

∣∣Xj
〉 〈

Xj
∣∣∑

k
h̄ωk,jgk,j(b̂†

k,j + b̂k,j) + ∑
j=1,2

∑
k

h̄ωk,jb†
k,jbk,j .

(3.4)

Now, let’s assume that baths attached to both chromophores are identical and

independent. Then the above expression for total system Hamiltonian simplifies

to,

Ĥ′ = (ε/2)σ̂z + Vσ̂x + ∑
j=1,2

∣∣Xj
〉 〈

Xj
∣∣∑

k
h̄ωkgk(b̂†

k + b̂k) + 2 ∑
k

h̄ωkb†
k bk . (3.5)

Next we define the density matrix for the complete system described above as,

dρ̂′

dt
= −iL̂′ρ(t) = − i

h̄
{ρ̂′, Ĥ′} , (3.6)

where L̂′ is the quantum Liouville operator corresponding to the total system

Hamiltonian Ĥ′. Quantum Liouville operators corresponding to above Hamilto-
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nians Ĥ′p, Ĥ′c, Ĥ′sb, Ĥ′b can be written as L̂′p, L̂′c, L̂′sb and L̂′b. Now we can expand

above equation as follows,

dρ̂′

dt
= −i(L̂′p + L̂′c + L̂′sb + L̂′b)ρ̂′(t). (3.7)

3.2.2 Full polaron transformation

Now, we use polaron transformation method to convert system Hamiltonians,

density matrices and quantum Liouville operators into the polaron frame as shown

in [43–45, 55, 58]. Consider the following polaron generator function,

G = ∑
j=1,2

∣∣Xj
〉 〈

Xj
∣∣∑

k

gk
h̄ωk

(b̂†
k − b̂k). (3.8)

We now follow Ĥ = eGĤ′e−G to apply full polaron transformation to each Hamil-

tonian using the polaron generator function given in above. After applying into

population Hamiltonian using Ĥp = eGĤ′pe−G we obtain,

Ĥp = Ĥ′p =
ε

2
σ̂z , (3.9)

since Ĥ′p is independent of b̂k,j and b̂†
k,j. Next we apply the transformation to co-

herence Hamiltonian given by Ĥc = eGĤ′ce−G. After using Baker–Campbell–Hausdorff

formula to simplify the expression we obtain,

Ĥc = V |X1〉 〈X2| exp
(

gk
h̄ωk

(b̂†
k − b̂k)

)
+ V |X2〉 〈X1| exp

(
gk

h̄ωk
(b̂†

k − b̂k)

)
(3.10)

This can be rewritten using bath displacement operators as,

Ĥc =VB(|X1〉 〈X2|+ |X2〉 〈X1|) + V |X1〉 〈X2| B̂+ + V |X2〉 〈X1| B̂−

−VB(|X1〉 〈X2|+ |X2〉 〈X1|)
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and simplifying it further we reach,

Ĥc = VRσ̂x +
V
2
[
σ̂x
(

B̂− + B̂+ − 2B
)
+ ˆiσy

(
B̂+ − B̂−

)]
. (3.11)

Next we transform the bath Hamiltonian using Ĥb = eGĤ′be−G where we reach,

Ĥb = Ĥ′b + 2 ∑
k

g2
k

h̄ωk
− |X1〉 〈X1|∑

k
h̄ωkgk(b̂†

k + b̂k)

− |X2〉 〈X2|∑
k

h̄ωkgk(b̂†
k + b̂k)

(3.12)

after simplifying using the Baker–Campbell–Hausdorff formula. Finally, we trans-

form the system-bath Hamiltonian using Ĥsb = eGĤ′sbe−G,

Ĥsb = ∑
j=X1,X2

|j〉 〈j|∑
k

h̄ωkgk(b̂†
k + b̂k)− 2 |X1〉 〈X1|∑

k

g2
k

h̄ωk

−2 |X2〉 〈X2|∑
k

g2
k

h̄ωk
.

(3.13)

Since the total transformed Hamiltonian is given by Ĥ = Ĥp + Ĥc + Ĥb + Ĥsb, it

can be expressed as,

Ĥ =
ε

2
σ̂z + VRσ̂x + Ĥ′b + R1 +

V
2
[
σ̂x
(

B̂− + B̂+ − 2B
)
+ ˆiσy

(
B̂+ − B̂−

)]
, (3.14)

using above simplifications. Now, we can rewrite the above equation in the form

of Ĥ = Ĥ0 + Ĥ1. The zeroth order Hamiltonian is given by,

Ĥ0 =
ε

2
σ̂z + VRσ̂x + Ĥ′b + R1 , (3.15)
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where the term VR is the renormalized system bath interaction strength which is

given by VR = VB where,

B = exp

[
−∑

k

g2
k

h̄2ω2
k

coth
(

h̄βωk
2

)]
. (3.16)

Polaron shifted site energy is given by R = −∑k g2
k(h̄ωk)

−1 and 1 represents the

2x2 identity matrix. First order Hamiltonian is given by

Ĥ1 =
V
2
[
σ̂x
(

B̂− + B̂+ − 2B
)
+ ˆiσy

(
B̂+ − B̂−

)]
, (3.17)

where B̂± = B̂′±B̂′∓ are the bath displacement operators are given by

B̂′± = exp

[
±∑

k

gk
h̄ωk

(
b̂†

k − b̂k

)]
. (3.18)

First order Hamiltonian is necessary to be small in both weak and strong cou-

pling regimes to construct a QME that can be suitable for both regimes. When

exploring Eq. (3.17), it is evident that Ĥ1 remains small when gk is small in weak

system bath coupling limit and when V remains small in weak site coupling limit.

Therefore, we can assure the smallness of Ĥ1 unless V is very large compared to

other parameters, which is generally not the case.

3.2.3 Derivation of full polaron QME

Now we transform the system density matrix into the polaron transformed frame

as ρ̂(t) = eGρ̂′(t)e−G which yields,

dρ̂

dt
= −i

(
L̂p

s + L̂c
s + Lb

)
ρ̂(t) , (3.19)
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in the expanded form. Further, initial condition of the complete system needs to

be transformed as,

ρ̂(0) = σ(0)⊗
(

B̂′+e−βĤb B̂′−
Z

)
. (3.20)

Until now, all equations are in Schrödinger picture and it is useful to change into

the interaction (Dirac) picture of Ĥ0 to apply the perturbation theory. In the in-

teraction picture of Ĥ0 we find,

ρ̂I(t) = eiL̂0(t)tρ̂(t) , (3.21)

where the density matrix in the interaction picture is given by ρ̂I(t) and the quan-

tum Liouville operator associated to zeroth order Hamiltonian Ĥ0 L̂0 is given by

Ĥ0. By differentiating above equation we find,

dρ̂I(t)
dt

= −i
[
ρ̂I(t), Ĥ1,I(t)

]
= −iL̂1,I(t)ρ̂I(t) . (3.22)

Let’s define L̂1,I as the Liouville operator related to Ĥ1,I(t) where,

Ĥ1,I(t) = eiĤ0tĤ1e−iĤ0t , (3.23)

is the interaction picture first order interaction Hamiltonian. We extract the sys-

tem component using standard projection operator method [55] defined byP(.) ≡

ρ̂b Trb{.} and the complimentary projection Q(.) = (I − P)(.) extracts the irrel-

evant part of the density matrix. We apply projection operator to Eq. (3.22) and

we get,
dρ̂I(t)

dt
= −iPL̂1,I(t)

(
ρ̂I(0)− i

∫ t

0
L̂1,I(τ)ρ̂I(τ)dτ

)
. (3.24)

Here, we take PL̂1,I(t)P ρ̂I(0) = 0 since Ĥ0 and Ĥb commutes with each other.

Also according to Eq. (3.21) we find Qρ̂I(0) = Qρ̂(0). Then Eq. (3.24) simplifies
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to,

P dρ̂I(t)
dt

=− iPL̂1,I(t)Qρ̂I(0)−
∫ t

0
PL̂1,I(t)L̂1,I(τ) (P ρ̂I(τ) +Qρ̂(0)) dτ .

(3.25)

For L̂1,I(t) we have made second-order approximation without substituting fur-

ther for ρ̂I(τ) in Eq. (3.24). The reduced density matrix is defined as, σ̂I(t) =

Trb{ρ̂I(t)} = P ρ̂I(t) which turns Eq. (3.25) into,

dσ̂I(t)
dt

= Î(t)− R̂(t)σ̂I(t) , (3.26)

where,

R̂(t) =
∫ t

0
Trb L̂1,I(t)L̂1,I(τ)ρ̂bdτ , (3.27)

is the system component (homogeneous term) and,

Î(t) =− i Trb L̂1,I(t)Qρ̂(0)−
∫ t

0
Trb L̂1,I(t)QL̂1,I(τ)ρ̂(0)dτ , (3.28)

is the initial state dependent inhomogeneous term. Since this term is dependent

on Qρ̂(0) (state of the irrelevant part at t=0 ps), if we carefully select an initial

time when,
B̂′+e−βHb B̂′−

Z
≈ e−βHb

Z
, (3.29)

we can ignore the contribution of the inhomogeneous term, which we have as-

sumed in this analysis. Next, we decompose the first order Hamiltonian using

both system operators and bath operators as,

Ĥ1 = σ̂x ⊗V
(

B̂− + B̂+ − 2B
)
+ σ̂y ⊗V

(
B̂+ − B̂−

)
. (3.30)

Using the definition of quantum Liouville operators we can simplify Eq. (3.26)

and obtain the following form for the homogeneous system component of the
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QME in the Schrödinger picture,

R̂(t)σ̂(t) = i
[
ĤS, σ̂(t)

]
+

1
2 ∑

i,j
∑
ω

Yij(ω, t)
[

Âi, ∆̂j,ωσ̂(t)− σ̂(t)∆̂†
j,ω

]
+i ∑

i,j
∑
ω

Sij(ω, t)
[

Âi, ∆̂j,ωσ̂(t) + σ̂(t)∆̂†
j,ω

]
,

(3.31)

where we define, Yij = 2Re[Kij(ω, t)] and Sij =Im[Kij(ω, t)] with

Kij(ω, t) =
∫ t

0
dτΛij(τ)eih̄ωτ . (3.32)

Here Λij(τ) are the bath correlation functions which can be calculated using

Λij(τ) = TrB{B̂i,I(τ)B̂j,I(0)ρ̂R}. Terms B̂i,I and B̂j,I are bath operators in the in-

teraction picture. Bath correlation functions other than Λ11(τ) and Λ22(τ) vanish

due to the full polaron limit. We find,

Λ11(τ) =
V2

R
2

(
eΦ(τ) + e−Φ(τ) − 2

)
, (3.33)

and,

Λ22(τ) =
V2

R
2

(
eΦ(τ) − e−Φ(τ)

)
, (3.34)

where,

Φ(τ) = 2
∫ ∞

0
dω

J(ω)

ω2

(
cos(h̄ωτ) coth

(
h̄βω

2

)
− i sin(h̄ωτ)

)
. (3.35)

Furthermore, in Eq. (3.31) ĤS represents the Hamiltonian of the reduced den-

sity matrix in the Schrödinger picture. The eigenvectors and eigenoperators of

ĤS can be found as ĤS |±〉 = (1/2)(2R± η) |±〉 where η =
√

ε2 + 4V2
R. Terms

∆̂j,ω in Eq. (3.31) can be found by decomposing system operators Âi as follows,

∆̂i,ω = ∑
E′−E=ω

|E〉 〈E| Âi
∣∣E′〉 〈E′

∣∣ , (3.36)



3.2 Formalism 47

where Âi = ∑ω ∆̂i,ω identity is true. Here ω = 0,±η where terms ∆̂i,ω takes the

summation of all eigenvalues of ĤS with a fixed energy difference of ω. Eigenop-

erators of the decomposed system operators in Eq. (3.36) are given by,

∆̂1,η = cos 2θ |−〉 〈+| , (3.37)

∆̂1,0 = sin 2θ (|+〉 〈+| − |−〉 〈−|) , (3.38)

∆̂2,η = i |−〉 〈+| , (3.39)

∆̂2,0 = 0 , (3.40)

where θ = (1/2) arctan(2VR/ε). Also for all cases ∆̂i,−η = ∆̂†
i,η identity is true.

3.2.4 Ohmic-like logarithmic spectral density function

Our objective in this chapter is to study the dynamics of an energy transfer where

the donor-acceptor pair is attached to a slightly disturbed super-Ohmic environ-

ment. To model this disturbance or slight perturbations, we use the logarithmic

terms present in the low frequency power series expansion to perturb the most

common type of SDF present in the literature. The reason for using these loga-

rithmic terms to perturb the SDF is due to the physical differences between the

exponential decay and the logarithmic decay. To incorporate these logarithmic

terms, following form of the SDF has been introduced recently (see figure de-

scription of Fig. 1 [51]),

J(ω) = qωc

(
ω

ωc

)α

exp
(
−lω
ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n , (3.41)

where l represents the scale of the exponential decay, n is the order of logarithmic

perturbation in the SDF, ωc is the cut-off frequency and q is the dimensionless

bath coupling strength [43–46, 58] (refer Figure 3.2). Ohmicity parameter α gov-



48
Energy transport in a disturbed environment utilizing two-level full polaron

transformation approach

J(
ω
)
[T
H
z]

0 10 20 30 40

0.000

0.002

0.004

0.006

0.008

0.010

0 10 20 30 40

0.000

0.005

0.010

0.015

0 10 20 30 40

0.000

0.005

0.010

0.015

0.020

0.025

0.030 n=0
n=1
n=2
n=3

0 10 20 30 40

0.00

0.01

0.02

0.03

0.04

0.05

Frequency ω [THz]

(d)

(b)

(c)

(a)

Figure 3.2: Spectral density functions of J(ω) for the values of (a) α=2.25, (b)
α=2.5, (c) α=3, (d) α=3.25. Values of n are shown on the graphs. For each case we
take ωc = 3 THz, l=1.1 and q=0.005.

erns how SDF scales linearly for low frequency bath modes. In fact, this form of

SDFs can be used to construe a variety of relaxations which are slower than the

exponential decay and faster or slower than the inverse power laws in quantum

systems [51]. In Figure 3.2, we plot the SDFs of super-Ohmic environments for

our analysis in this chapter.

3.3 Results and Discussion

Now, let’s analyse the effect of these logarithmic perturbations in super-Ohmic

environments to coherent resonance energy transfer and measure the performance

of the formalized QME in Eq. (3.26). In order to do that, we plot the popu-

lation at the donor site (|X1〉) with respect to time (in ps). Donor population

is extracted from the reduced density matrix using P(t) = 〈X1| σ̂(t) |X1〉. It is
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important to note that, the reduced density matrix utilized here is in the po-

laron frame and there is no requisite of that to be in the original frame, since

donor population is unconstrained from bath’s creation and annihilation opera-

tors, eGσ̂ze−G = σ̂z [43–45, 58].

3.3.1 Performance on system-bath coupling strengths

To begin our analysis, let’s consider a donor-acceptor pair which is associated

with super-Ohmic environments with various system bath coupling strengths.

Let’s take α = 3 for these super-Ohmic environments and SDF can be written as,

J1(ω) = qωc

(
ω

ωc

)3

exp
(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n , (3.42)

where we change the value of q from (a)0.005 to (b)0.01 to (c)0.03 to (d)0.05. Re-

sults obtained for this case is given in Figure 3.3. In plot (a) where q = 0.005, we

observe coherent dynamics for each value of the logarithmic perturbations where

the system-bath coupling is very weak. It is evident that, as logarithmic pertur-

bations are increasing the damping effect is also increasing. Full polaron based

QME has performed well here as there are no distortions in the graphs.

In plot (b) when the system bath coupling is elevated to 0.01, we can observe

a reduction in the magnitude of the oscillations and damping effect on n = 0, 1

and 2 is noticeable. Interesting fact to note here that, n = 3 graph is distorted and

the infrared divergence effect has occurred. Hence, full polaron QME has failed

to simulate the coherent transfer when the system-bath coupling is 0.01 and the

logarithmic perturbation factor is 3.

When the system-bath coupling strength is further raised to 0.03 in plot (c),

we can perceive that this distortion now occurs from n = 2 onwards. In addition,

even if n = 0 and n = 1 graphs show coherent transfer dynamics, we observe a

very strong damping effect for them. We discern in plot (d) that, all the graphs



50
Energy transport in a disturbed environment utilizing two-level full polaron

transformation approach

Figure 3.3: Population at donor for J1(ω) super-Ohmic environment SDF with (a)
q=0.005 (b) q=0.01 (c) q=0.03 and (d) q=0.05. For all cases, we consider α = 3,
l = 1.1, ωc = 3 THz, ε = 3 THz, V = 3 THz, h̄ = 1 and T = 300.

except for n = 0, express infrared divergence effect where full polaron based

QME is unable to manifest the coherent dynamics when the system-bath coupling

strength is comparatively substantial. By observing the n = 0 graph for all the

plots, we can corroborate that full polaron transformation-based is capable of pre-

dicting the coherent energy transfer dynamics for the considered range of system-

bath coupling strength when there are no logarithmic perturbations. When ob-

serving plots (a) and (b) closely, it is evident that for weak system-bath coupling

strengths, full polaron transformation-based QME is competent in showing co-

herent dynamics. But when system-bath coupling is stronger (in plots (c) and (d)),

graphs show significant distortions when logarithmic perturbations are present.
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Therefore, we can conclude that for environments with higher logarithmic pertur-

bations cannot be utilized in conjunction with full polaron transformation-based

QME to accurately describe the coherent energy transfer.

3.3.2 Performance on the Ohmicity parameter

Next we analyse how energy transfer transpires in different super-Ohmic envi-

ronments (different values of the Ohmicity parameter) get affected due to loga-

rithmic perturbations. The related SDF can be written as,

J2(ω) = 0.005ωc

(
ω

ωc

)α

exp
(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (3.43)

In Figure 3.4, we examine Ohmicity values from α = 2.25 to α = 3.25 where

experienced logarithmic perturbations alter from (a)n = 0, (b)n = 1, (c)n = 2

to (d)n = 3. For all the graphs in plot (a), we observe higher oscillatory dynam-

ics in environments with higher Ohmic value. Now we introduce logarithmic

perturbations in the first order in plot (b). When comparing plot (a) and plot

(b), it is evident that graphs of lower Ohmicity values (α = 2.25 and α = 2.5)

have undergone considerable changes whereas graphs of higher Ohmicity val-

ues (α = 3 and α = 3.25) remain relatively unchanged. Therefore, we can identify

that higher Ohmicity values show more resistance to logarithmic perturbations

than the lower values. Furthermore, α = 2.25 graph shows severe distortion due

to infrared divergence effect.

When we raise the logarithmic perturbations to n=2 in plot (c), both α = 2.25

and α = 2.5 graphs have encountered severe distortions. Even-though, α = 3

and α = 3.25 graphs still show the coherent dynamics, the damping effect is

very noticeable where latter shows less damping. In plot (d), besides the raised

n value, overall behaviour remains the same. Nonetheless, the damping effect is

significant for both α = 3 and α = 3.25 graphs.



52
Energy transport in a disturbed environment utilizing two-level full polaron

transformation approach

Therefore, by observing all four plots we can deduce that, in a super-Ohmic

environment with logarithmic perturbations, full polaron transformation-based

QME is vulnerable and undergoes severe distortions when the Ohmicity param-

eter is a smaller value, whereas larger Ohmicity values manifest more immunity.

Moreover, we discern significant damping effect for larger logarithmic factors.

Figure 3.4: Population at donor for J2(ω) super-Ohmic environment SDF where
α = 2.25, α = 2.5, α = 3 and α = 3.25 for (a)n = 0, (b)n = 1, (c)n = 2 and
(d)n = 3. For all cases, we consider q=0.005, l = 1.1, ωc = 3 THz, ε = 3 THz,
V = 3 THz, h̄ = 1 and T = 300.
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3.4 Summary and Conclusions

In summary, we have investigated the role of logarithmic perturbations in super-

Ohmic environments using a full polaron transformation-based time-local second-

order quantum master equation. First, we have analysed the coherent resonance

energy transfer dynamics through aforementioned QME in a variety of super-

Ohmic environments by altering the system-bath coupling strengths. We have

found that, in the weak system-bath coupling regime, results generated through

the QME is acceptable. Nevertheless, when the system-bath coupling is large, for

higher order logarithmic perturbations, QME is unable to predict the coherent

oscillatory dynamics where it suffers significant distortions.

Subsequently, we have studied the performance of the full polaron transformation-

based QME in different super-Ohmic environments experiencing logarithmic per-

turbations by varying the Ohmicity parameter. It has been observed that smaller

Ohmicity values can suffer severe distortions even for a small logarithmic pertur-

bation. On the other hand, larger Ohmicity values exhibit immunity even for a

large logarithmic perturbation. Furthermore, as we increase the logarithmic per-

turbation factor, we observe a reduction in the magnitude of the oscillations for

all the Ohmicity values considered in this study.

In conclusion, we have shown that full polaron transformation-based QME

suffers infrared divergence when the Ohmicity value is smaller and when system-

bath coupling strength is weaker in super-Ohmic environments with logarithmic

perturbations. This study shows that, even though full polaron QME is shown

to be capable of predicting coherent energy transfer dynamics in super-Ohmic

environments, it is not consistently valid for an environment which experience

logarithmic perturbations.
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Chapter 4

Significance of logarithmic
perturbations in spectral density

functions using variational polaron
approach

4.1 Introduction

In the previous chapter, we studied a two-level donor-acceptor quantum system

utilizing the full-polaron based quantum master equation. While we found that

full-polaron based quantum master equation suffers from infrared divergence ef-

fect due to logarithmic perturbations, it could only be used in super-ohmic en-

vironments in the absence of these perturbations, due to the divergence of bath

correlation functions owing to the full polaron approximation. In order to study

the energy transfer dynamics accurately in perturbed ohmic and super-ohmic

environments, we utilize the variational-polaron transformation based quantum

master equation in this chapter for the quantum system shown in Figure 4.1. Con-

temporary research suggests that variational polaron transformation is far supe-

rior to full polaron transformation [58] and this chapter analyzes if the above

fact holds true in disturbed quantum environments. In doing so, we attempt to

understand the energy transfer dynamics manifest in such environments partic-

ularly their quantum coherence effects.

55
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Figure 4.1: Donor chromophore(D) and an acceptor chromophore(A) are con-
nected to identical and independent baths. V represents the inter-chromophore
coupling whereas gk,D (gk,A) represents the coupling between kth bath mode and
D (A) site.

This chapter is organized as follows. Following the introduction, in section

4.2, the formalism including the model and the analytical approach deployed for

our analysis is outlined. In section 4.3, the results obtained for Ohmic like SDFs

with logarithmic perturbations are discussed. Finally, section 4.4 summarizes and

concludes this chapter.

4.2 Formalism

A two-level system consisting a donor (D) chromophore, an acceptor (A) chro-

mophore and a bath of harmonic oscillators is considered. System and the en-

vironment are of the form of a spin boson model [43–45, 60]. Initially the entire

system including the bath and other degrees of freedom are in thermal equilib-

rium in the ground state denoted by |g〉. Let’s define |D〉 as the state where donor

is excited and acceptor is in the ground state. |A〉 represents the same expression

with respect to the acceptor. |D〉, |A〉 and |g〉 are the three states which com-
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pletely describe the system.

A laser pulse [94] excites donor chromophore to |D〉 at t=0. Laser pulse has a

duration of τlaser and we assume τlaser << τsd where τsd is the spontaneous decay

time to the ground. Under these circumstances, assuming separable states, the

initial condition of the complete system can be written as,

ρ̂(0) = ρ̂S(0)⊗
e−βĤ′b

Z
. (4.1)

We assume the system to be a canonical ensemble and for a such an ensemble, the

partition function can be written as Z = Trb{e−βĤ′b} by taking the trace over the

bath degrees of freedom. Also, β = 1/kBT where kB is the Boltzmann’s constant

and T is the temperature of the system in Kelvins. Also, Ĥ′b defines the bath

Hamiltonian. Since initially the system population is at |D〉, we write ρ̂S(0) =

|D〉 〈D|.

4.2.1 System Hamiltonian

In order to write the system Hamiltonian, we first define Pauli operators σ̂x =

|D〉 〈A|+ |A〉 〈D|, σ̂y = i (|D〉 〈A| − |A〉 〈D|) and σ̂z = |D〉 〈D| − |A〉 〈A| [37, 95].

After the application of the laser pulse, total Hamiltonian of the complete system

can be written as,

Ĥ′ = Ĥ′p + Ĥ′c + Ĥ′b + Ĥ′sb (4.2)

where Ĥ′p = (ε/2)σ̂z is the population Hamiltonian which represents the com-

bine energy localized to each site of the quantum system. Here, the energy dif-

ference between |D〉 state and |A〉 state is given by ε = εD − εA. Second term is

the Hamiltonian of the coherences given by Ĥ′c = Vσ̂x where, V is the electronic

coupling term between the two sites. This Hamiltonian captures the energy de-
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localized between the two states. Third term is the bath Hamiltonian represented

by Ĥ′b = ∑j=D,A ∑k h̄ωk,jb̂†
k,jb̂k,j where the frequency of the kth boson mode cou-

pled to jth site is denoted by ωk,j. The creation(annihilation) operator coupled to

jth site of kth boson mode is written as b̂†
k,j (b̂k,j). Final term is the system-bath

interaction Hamiltonian given by Ĥ′sb = ∑j=D,A |j〉 〈j|∑k h̄ωk,jgk,j(b̂†
k,j + b̂k,j). The

system-bath coupling denoted by gk,j is for kth bath attached to jth site, which is

fully described through the bath SDF J(ω) for a spin boson model [43–45, 60].

More details on SDF will be discussed later in Sec. 4.2.5. Now we can write the

total Hamiltonian in the expanded form as,

Ĥ′ =
ε

2
σ̂z + Vσ̂x + ∑

j=D,A
∑
k

h̄ωk,jb̂†
k,jb̂k,j + ∑

j=D,A
|j〉 〈j|∑

k
h̄ωk,jgk,j(b̂†

k,j + b̂k,j). (4.3)

4.2.2 Polaron transformation

Consider the polaron generator function given by [43, 44, 58],

G = ∑
j=D,A

|j〉 〈j|∑
k

fk,j

h̄ωk,j
(b̂†

k,j − b̂k,j) (4.4)

where fk,j is the variational parameter in the range of 0 ≤ fk ≤ gk. Now, we

transform the free system Hamiltonian following Ĥ = eGĤ′e−G.

We now apply the variational polaron transformation to each Hamiltonian

using the polaron generator function given in Eq. 4.4. First, let’s apply the trans-

formation into population Hamiltonian given by Ĥp = eGĤ′pe−G. Since Ĥ′p is

independent of b̂k,j and b̂†
k,j, we obtain,

Ĥp = Ĥ′p =
ε

2
σ̂z (4.5)

Then let’s apply the transformation to coherence Hamiltonian given by Ĥc =

eGĤ′ce−G. Simplifying the equation using Baker–Campbell–Hausdorff formula,
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we obtain,

Ĥc = V |D〉 〈A| exp
(

fk,D

h̄ωk,D
(b̂†

k,D − b̂k,D)

)
+ V |A〉 〈D| exp

(
fk,A

h̄ωk,A
(b̂†

k,A − b̂k,A)

)
(4.6)

This can be rewritten using bath displacement operators as,

Ĥc = VB(|D〉 〈A|+ |A〉 〈D|) + V |D〉 〈A| B̂+ + V |A〉 〈D| B̂− −VB(|D〉 〈A|+ |A〉 〈D|)

(4.7)

Simplifying further we reach,

Ĥc = VRσ̂x + ĤDisplaced (4.8)

Now we transform the bath Hamiltonian using Ĥb = eGĤ′be−G where we reach,

Ĥb = Ĥ′b + ∑
k

f 2
k,A

h̄ωk,A
+ ∑

k

f 2
k,D

h̄ωk,D
− |D〉 〈D|∑

k
h̄ωk,j fk,D(b̂†

k,D + b̂k,D)

− |A〉 〈A|∑
k

h̄ωk,j fk,A(b̂†
k,A + b̂k,A)

(4.9)

after simplifying using the Baker–Campbell–Hausdorff formula. Finally, we trans-

form the system-bath Hamiltonian using Ĥsb = eGĤ′sbe−G,

Ĥsb = ∑
j=D,A

|j〉 〈j|∑
k

h̄ωk,jgk,j(b̂†
k,j + b̂k,j)− 2 |D〉 〈D|∑

k

fk,Dgk,D

h̄ωk,D

−2 |A〉 〈A|∑
k

fk,Agk,A

h̄ωk,A

(4.10)

Total transformed Hamiltonian is given by,

Ĥ = Ĥp + Ĥc + Ĥb + Ĥsb (4.11)
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which can be expressed as,

Ĥ =
1
2
(ε + RD − RA)σ̂z + VRσ̂x + Ĥ′b +

1
2
(RD + RA)1 + ĤLinear + ĤDisplaced

(4.12)

Subsequently, above equation can be written as Ĥ = Ĥ0 + Ĥ1 where the zeroth

order Hamiltonian is given by,

Ĥ0 =
1
2
(ε + RD − RA)σ̂z + VRσ̂x + Ĥ′b +

1
2
(RD + RA)1 (4.13)

where,

Rj = ∑
k

fk,j

h̄ωk,j
( fk,j − 2gk,j) (4.14)

is the polaron shifted site energy (a scalar) of the jth site and 1 represents the 2x2

identity matrix. First order interaction Hamiltonian is given by Ĥ1 = ĤLinear +

ĤDisplaced. Linear portion of the interaction Hamiltonian is of the form,

ĤLinear = ∑
j=D,A

|j〉 〈j|∑
k

h̄ωk,j
(

gk,j − fk,j
) (

b̂†
k,j + b̂k,j

)
. (4.15)

Notice by changing fk in the range of 0 ≤ fk ≤ gk, one can change the pertur-

bation arising from ĤLinear. Displaced Hamiltonian ĤDisplaced derived in terms

of bath displacement operators through B̂x = (1/2)(B̂− + B̂+ − 2B) and B̂y =

(i/2)(B̂+ − B̂−) is of the form,

ĤDisplaced = V
(
σ̂xB̂x + σ̂yB̂y

)
(4.16)

The terms B̂x and B̂y are written in terms of B̂± = B̂±,DB̂∓,A where,

B̂±,j = exp

[
±∑

k

fk,j

h̄ωk,j

(
b̂†

k,j − b̂k,j

)]
(4.17)
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with j=D,A and B is the expectation value of B̂± given by,

B = exp

[
−1

2 ∑
j

∑
k

f 2
k,j

h̄2ω2
k,j

coth
( h̄βωk,j

2

)]
. (4.18)

Notice that, in the original frame, contribution of the system-bath interaction

Hamiltonian is much greater to the total system Hamiltonian, compared to the

variational polaron transformed interaction Hamiltonian due to the introduction

of the variational parameter fk,j. We have reduced the contribution of the in-

teraction Hamiltonian in the polaron transformed frame in order to treat it as a

perturbation. The main reason for variational theory performing better than the

full polaron transformation is due to the term ĤLinear. In the full polaron transfor-

mation we take gk,j = fk,j by definition and thereby making ĤLinear = 0. For a rel-

atively large system-bath coupling, full polaron transformation cannot effectively

represent the interaction term by just ĤDisplaced term because it lacks the contri-

bution of ĤLinear. This is the reason why full polaron transformation suffers from

infra-red divergence in Ohmic environments [61]. In addition, ĤDisplaced term

captures the energy of bath displacement operators after the polaron transforma-

tion. Further, the electronic coupling term V appearing in the free Hamiltonian

in Eq. (4.3) is now renormalized after performing the polaron transformation. It

is now defined as VR = VB.

We now assume that the baths attached to each site are identical, which yields

RD = RA = R = ∑k fk(h̄ωk)
−1( fk − 2gk), fk,j = fk, gk,j = gk and ωk,j = ωk.

Zeroth Hamiltonian then becomes,

Ĥ0 =
ε

2
σ̂z + VRσ̂x + Ĥ′b + R1 (4.19)
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and the expectation value of B̂± becomes,

B = exp

[
−∑

k

f 2
k

h̄2ω2
k

coth
(

h̄βωk
2

)]
(4.20)

4.2.3 Free energy minimization

As mentioned earlier, term fk appearing in above equations can be in the range

of 0 ≤ fk ≤ gk. We choose an exact value for fk in order to minimize the contribu-

tion of Ĥ1 to free energy, so that second-order perturbation theory can be applied.

In order to find the variational parameters fk appearing in the interaction Hamil-

tonian (Ĥ1) defined above, we use Feynman-Bogoliuobov upper bound on the

free energy [59] as been shown in [43, 44]. Feynman-Bogoliuobov upper bound

on the free energy is given by,

AFB = − 1
β

ln
[
Tr
{

e−βĤ0
}]

+
〈

Ĥ1
〉

Ĥ0
+ O

(〈
Ĥ2

1

〉
Ĥ0

)
. (4.21)

A much improved version of free energy minimization argument has been intro-

duced and can be found in [60]. True free energy A is related to AFB through the

inequality AFB ≥ A and the second term of Eq. (4.21) is zero by construction.

AFB = R− 1
β

ln
[

2 cosh
(

βη

2

)]
(4.22)

Here, η =
√

ε2 + 4V2
R. By taking the derivative of AFB with respect to fk in order

to minimize the free energy,

∂AFB

∂ fk
=

∂AFB

∂R
∂R
∂ fk

+
∂AFB

∂B
∂B
∂ fk

= 0 (4.23)
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we arrive at,

F(ωk) =

[
1 +

2V2
R

ηh̄ωk
tanh

(
βη

2

)
coth

(
h̄βωk

2

)]
(4.24)

and fk = gkF(ωk). We introduce the form of SDF as J(ω) = ∑k g2
kδ(ω − ωk).

Then the expectation value of B̂± becomes,

B = exp
[
−
∫ ∞

0
dω

J(ω)

ω2 F2(ω) coth
(

h̄βω

2

)]
(4.25)

assuming a continuous bath. Since renormalized coupling term VR = VB and

B is a function of VR itself, through F(ωk), to find VR these equations should be

solved self consistently.

4.2.4 Quantum Master Equation (QME)

To develop the quantum master equation (QME), we consider quantum Liouville

operators which define the state evolution of a quantum system over time [40].

System density matrix (ρ̂(t)) and corresponding quantum Liouville operator(L̂)

are related by,
dρ̂(t)

dt
= −iL̂ρ̂(t) = −i

[
ρ̂(t), Ĥ

]
(4.26)

Up to this point all equations are in Schrödinger picture where only states of the

system carried time dependence not the operators. But it is useful to change into

the interaction (Dirac) picture of Ĥ0 in order to apply the perturbation theory. In

the interaction picture of Ĥ0 we obtain,

ρ̂I(t) = eiL̂0(t)tρ̂(t) (4.27)

where L̂0 is the quantum Liouville operator related to zeroth order Hamiltonian

Ĥ0 and ρ̂I(t) is the density matrix in the interaction picture. By differentiating
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with respect to time we then find,

dρ̂I(t)
dt

= −i
[
ρ̂I(t), Ĥ1,I(t)

]
= −iL̂1,I(t)ρ̂I(t) (4.28)

We define L̂1,I as the Liouville operator for Ĥ1,I(t) where,

Ĥ1,I(t) = eiĤ0tĤ1e−iĤ0t (4.29)

which is the first order interaction Hamiltonian in the interaction picture. We now

extract the system (or the relevant) component using standard projection opera-

tor method [55] defined by P(.) ≡ ρ̂b Trb{.} and the complimentary projection

Q(.) = (I − P)(.) extracts the irrelevant part of the density matrix which is the

bath. We apply projection operator mechanism to Eq. (4.28) and by simplifying

we arrive at,

dρ̂I(t)
dt

= −iPL̂1,I(t)
(

ρ̂I(0)− i
∫ t

0
L̂1,I(τ)ρ̂I(τ)dτ

)
(4.30)

Here, PL̂1,I(t)P ρ̂I(0) = 0 since Ĥ0 and Ĥb commutes with each other. Also,

Qρ̂I(0) = Qρ̂(0) according to Eq. (4.27). Then Eq. (4.30) becomes,

P dρ̂I(t)
dt

=− iPL̂1,I(t)Qρ̂I(0)−
∫ t

0
PL̂1,I(t)L̂1,I(τ) (P ρ̂I(τ) +Qρ̂(0)) dτ

(4.31)

Regarding L̂1,I(t) we have made second-order approximation without substi-

tuting further for ρ̂I(τ) in Eq. (4.30). We define the reduced density matrix as

σ̂I(t) = Trb{ρ̂I(t)} = P ρ̂I(t) which leads to,

dσ̂I(t)
dt

= Î(t)− R̂(t)σ̂I(t) (4.32)
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where,

R̂(t) =
∫ t

0
Trb L̂1,I(t)L̂1,I(τ)ρ̂bdτ (4.33)

is the homogeneous term which relates to the system component and

Î(t) =− i Trb L̂1,I(t)Qρ̂(0)−
∫ t

0
Trb L̂1,I(t)QL̂1,I(τ)ρ̂(0)dτ (4.34)

is the initial state dependent inhomogeneous term. As the interaction Hamilto-

nian Ĥ1 consists of two terms, second-order QME has two time correlation func-

tions. We decompose Ĥ1 = ∑4
1 Âi ⊗ B̂i with Â1 = |D〉 〈D|, Â2 = |A〉 〈A|, Â3 = σ̂x

and Â4 = σ̂y which are system operators where as B̂i = ∑k(gk− fk)(b̂†
k,i + b̂k,i) for

i=1,2 , B̂3 = VB̂x and B̂4 = VB̂y are bath operators.

We simplify the Eq. (4.32) using the definition of quantum Liouville operators to

obtain the following form for the homogeneous part of the QME in the Schrödinger

picture,

R̂(t)σ̂(t) = i
[
ĤS, σ̂(t)

]
+

1
2 ∑

i,j
∑
ω

Yij(ω, t)
[

Âi, ∆̂j,ωσ̂(t)− σ̂(t)∆̂†
j,ω

]
+i ∑

i,j
∑
ω

Sij(ω, t)
[

Âi, ∆̂j,ωσ̂(t) + σ̂(t)∆̂†
j,ω

] (4.35)

where Yij = 2Re[Kij(ω, t)] and Sij =Im[Kij(ω, t)] with,

Kij(ω, t) =
∫ t

0
dτΛij(τ)eih̄ωτ (4.36)

where Λij(τ) are the bath correlation functions which can be calculated using

Λij(τ) = TrB{B̂i,I(τ)B̂j,I(0)ρ̂R}. Terms B̂i,I and B̂j,I are bath operators in the in-

teraction picture. Simplified final versions of Λij(τ) are given below. When i=1,2
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we find,

Λ11(τ) = Λ22(τ) =
∫ ∞

0
dω J(ω)(1− F(ω))2

(
cos(h̄ωτ) coth

(
h̄βω

2

)
− i sin(h̄ωτ)

)
(4.37)

and Λ12(τ) = Λ21 = 0 which prompt us of the bath correlation functions of

Redfield theory. For i=3 we obtain,

Λ33(τ) =
V2

R
2

(
eΦ(τ) + e−Φ(τ) − 2

)
(4.38)

and Λ34(τ) = Λ43(τ) = 0. For i=4 we get,

Λ44(τ) =
V2

R
2

(
eΦ(τ) − e−Φ(τ)

)
(4.39)

where,

Φ(τ) = 2
∫ ∞

0
dω

J(ω)

ω2 F2(ω)

(
cos(h̄ωτ) coth

(
h̄βω

2

)
− i sin(h̄ωτ)

)
(4.40)

which are similar to the bath correlation function form of full polaron transforma-

tion [45]. Further, Λ14(τ) = Λ42(τ) = iΛc(τ) and Λ24(τ) = Λ41(τ) = −iΛc(τ)

where,

ΛC(τ) = VR

∫ ∞

0
dω

J(ω)

ω
(F(ω) (1− F(ω))

(
sin(h̄ωτ) coth

(
h̄βω

2

)
+ i cos(h̄ωτ)

)
(4.41)

are unique to variational polaron transformation and stems from the product of

ĤLinear and ĤDisplaced. Further, terms Λ13(τ) = Λ31(τ) = Λ32(τ) = Λ23(τ) = 0.

Further, ĤS present in Eq. (4.35) is the Hamiltonian of the reduced density matrix

in the Schrödinger picture. We find the eigenvectors and eigenoperators of ĤS
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as ĤS |±〉 = (1/2)(2R ± η) |±〉. To obtain ∆̂j,ω terms present in Eq. (4.35) we

decompose system operators Âi to obtain,

∆̂i,ω = ∑
E′−E=ω

|E〉 〈E| Âi
∣∣E′〉 〈E′

∣∣ (4.42)

which satisfy the identity Âi = ∑ω ∆̂i,ω. The terms ∆̂i,ω takes the summation

of all eigenvalues of ĤS with a fixed energy difference of ω. Here ω = 0,±η.

Eigenoperators of the decomposed system operators are given by,

∆̂1,η = − cos θ sin θ |−〉 〈+| (4.43)

∆̂1,0 = sin2 θ |−〉 〈−|+ cos2 |+〉 〈+| (4.44)

∆̂2,η = cos θ sin θ |−〉 〈+| (4.45)

∆̂2,0 = cos2 θ |−〉 〈−|+ sin2 |+〉 〈+| (4.46)

∆̂3,η = cos 2θ |−〉 〈+| (4.47)

∆̂3,0 = sin 2θ(|+〉 〈+| − |−〉 〈−|) (4.48)

∆̂4,η = i |−〉 〈+| (4.49)

∆̂4,0 = 0 (4.50)

where θ = (1/2) arctan(2VR/ε). Also, for all cases ∆̂i,−η = ∆̂†
i,η identity is true.

The inhomogeneous term in Eq. (4.32) depends on the initial state of the irrel-

evant component Qρ̂(0) which is given by,

Qρ̂(0) = (1−P)
(

eG |1〉 〈1| ⊗ ρ̂B(0)e−G
)

= |1〉 〈1| ⊗ ( ˆ̃ρb − ρ̂R)

(4.51)
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where ρ̂B(0) is the initial bath density matrix and ˆ̃ρb provides the variationally

transformed initial bath density matrix. If we were to select a reference bath den-

sity matrix ρ̂R = ˆ̃ρb, it vanishes the inhomogeneous term which has been the

assumption for our analysis.

4.2.5 Spectral density function

As elucidated earlier, the SDF governs how strong each site is attached to each

mode in the bath of harmonic oscillators. Therefore, in general, SDF decides if

an energy transfer is coherent or incoherent in nature through the bath relax-

ation times. Most previous studies [43, 44, 58] of variationally polaron trans-

formed master equation were of the standard form of spectral densities given

by J(ω) = qω1−α
c ωαe−ω/ωc , where q is the bath coupling strength and ωc is the

cut-off frequency. The parameter α decides the frequency response of the spectral

density and values α < 1, α > 1, α = 1 corresponds to sub-Ohmic, super-Ohmic

and Ohmic environments [61], respectively.

Few alternative SDFs have also been studied such as in [96] and [97]. It has

been shown that log-normal type spectral density presented in [52] can replicate

the shape of the spectral densities obtained through experimental efforts more

precisely than other types. This form has two adjustable parameters (cut-off fre-

quency ωc and standard deviation σSD) that can be used in order to fit to a given

shape. The form of log-normal SDF can be written as,

J(ω) = q exp

{
− 1

2σ2
SD

[
ln
(

ω

ωc

)]2
}

. (4.52)

The exponential term present in the above equation can be written as a sum of

logarithmic terms of various orders. Fundamentally, logarithmic decay present

in the log-normal format is physically different from exponential cut-off present
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in Ohmic like SDFs. In light of these developments, logarithmic decays can be

used to perturb Ohmic like SDFs in order to represent systems which are slightly

deviated from the original form. Our purpose of this chapter is to analyse such a

SDF given in [51] (see figure description of Figure. 1) of the form,

J(ω) = qωc

(
ω

ωc

)α

exp
(
−lω
ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n (4.53)

where terms α, l and n govern how strong each decay form affects the spectral

density. The Ohmicity parameter is given by α and it decides the type of the en-

vironment defined by the SDF. Further, long-time decoherence or re-coherence

process and the information backflow are uniquely governed by this parame-

ter [51]. Parameter l governs how rapid and steep the exponential decay is and n

is the factor of the power law profile for logarithmic perturbations.

An experiment conducted in [98], shows that a trapped impurity in a double-

well potential, surrounded by a cold gas, can replicate a qubit interacting with

an Ohmic-like environment under certain conditions whereby the corresponding

SDF changes from sub-Ohmic to Ohmic to super-Ohmic when scattering length

of the bosons in the environment is been changed. These type of changing envi-

ronments do not necessarily follow the exact shape of the SDF produced by con-

ventional sub-Ohmic, Ohmic and super-Ohmic functions. In such scenarios, SDF

given in Eq. 4.53 can capture the irregularities and defections in the frequency do-

main when the environment of a quantum system is constantly changing. Also,

this feasible form of logarithmic and Ohmic-like SDF subsumes low frequency

power-law profiles obtained by removable logarithmic singularities. Therefore,

this form of SDFs can be used to interpret a large range of relaxations which are

slower than the exponential decay and faster or slower than the inverse power

laws in quantum systems [51]. In Figure.4.2, the SDFs in the form of Eq. (4.53) is

plotted for different values of the Ohmicity parameter that we used to generate
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Figure 4.2: Spectral density functions of J(ω) for the values of (a) α=1, (b) α=1.5,
(c) α=2, (d) α=2.5. Values of n are shown on the graphs. For each case we take
ωc = 3 THz, l=1.1 and q=0.2.

results.

We plot several of the logarithmic SDF functions for various α and n values

in Figure 4.2. We observe that for each value of α, all of the Jα,n functions inter-

sect at ω = ωc/e and at ω = ωce. This naturally suggests the division of the

frequency space into three regions:

• The low-frequency range (0, ωc/e), in which Jα,n1 < Jα,n2 for all n1 < n2.

• The intermediate range (ωc/e, ωce), in which Jα,n1 < Jα,n2 for all n1 > n2.

• The high-frequency range (ωce, ∞), in which Jα,n1 < Jα,n2 for all n1 < n2.

We also note here that the total damping of the oscillatory system due to the bath

can be quantified as the total energy exchange between the system and the bath,

which is equal to the total coupling of the system with the continuum of bath
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states. This in turn can be quantified by the area under the Jα,n curves. For Ohmic

environments, the area under the curves for J0,0 is more than J0,1 and J0,2, but

is less than J0,3 and J0,4. This suggests a unique relationship between the relative

damping effected by these SDFs on the system. For much larger α values, the area

under the curve for Jα,0 is much less than that for Jα,n for n > 0. As we shall see

later, these factors become significant in determining whether the donor-acceptor

system experiences coherent interactions or incoherent decays. As an example,

for systems described by SDFs with larger comparable areas, the energy transfer

dynamics between the donor and acceptor takes the form of a highly damped

oscillator. In addition to this, it is important to note that due to the presence of

logarithmic factors, the coupling around the cut-off frequency of the environment

is less significant. When there are no logarithmic perturbations, we see a larger

coupling around the area of the cut-off frequency of the environment.

4.3 Results and Discussion

Let’s investigate how different versions of Ohmic like spectral densities with log-

arithmic perturbations can affect the energy transfer dynamics of quantum sys-

tems. To this purpose, we use Eq. (4.35) with different SDFs as elucidated in the

following sections. Note that Eq. (4.35) is in the polaron frame. Since the pop-

ulation Hamiltonian is independent of bath creation and annihilation operators,

eGσ̂ze−G = σ̂z, the donor population extracted using the reduced density matrix,

PD(t) = 〈D| σ̂(t) |D〉 (4.54)

has no requirement of converting into the original frame [43–45,58]. For our anal-

ysis below, values for q and l are chosen in order to show the range of variations in

energy transfer dynamics due to these logarithmic perturbations. We take l=1.1,
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ωc = 3 THz, ε = 3 THz, V = 3 THz and T = 300 K for the analysis.

4.3.1 Super-Ohmic environments

To begin our analysis, we first consider a donor and acceptor system where each

site is coupled to identical and independent super-Ohmic baths as previously

studied using the polaron frame in [43–45, 55, 58]. Consider the SDF of the form,

J2(ω) = qωc

(
ω

ωc

)1.5

exp
(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (4.55)

We obtain Figure 4.3 by changing the factor of bath coupling strength q for n=0,

n=1, n=2 and n=3 cases of the above SDF. Our objective is to investigate how the

effects of logarithmic perturbations introduced by n vary for different factors of

bath coupling strengths.

In plot (a), the bath coupling factor q has a relatively large value of q=0.3.

When n=0, we see that coherent dynamics are present and the amount of coher-

ence is less than that of when n=1 and n=2. This is due to latter two cases having

a weaker overall coupling compared to n=0 case (black and red plots have lower

area compared to the green plot of Figure 4.2(b)). In the cases of n=0,1 and 2,

observed coherence behaviour is much a like due to the similarities in the areas

under the respective curves according to the Figure 4.2 (comparing green, black

and red plots of Figure 4.2(b)). The fact that both n=1 and n=2 graphs show sim-

ilar peaks in the dynamics is an interesting observation. But the logarithmic per-

turbations have reduced the oscillatory behaviour in the latter due to the larger

area under the curve for n=2 graph (refer to the red plot of Figure 4.2(b)). In

the case of n=3, quantum coherence (or tunnelling) effects are no longer visible

where higher order of logarithmic perturbations have completely damped the os-

cillatory dynamics due to the largest area out of all SDFs (The blue plot has the

largest area compared to green, black and red plots of Figure 4.2(b)). For all cases
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Figure 4.3: Population at donor for J2(ω) super-Ohmic environment SDF with (a)
q=0.3 (b) q=0.2 (c) q=0.05 and (d) q=0.02. For all cases α = 1.5, l = 1.1, ωc = 3
THz, ε = 3 THz, V = 3 THz and T = 300 K has been considered.

in plot (a), steady state donor population remains the same. Plot (b) of Figure 4.3

is for q=0.2. Interestingly, we see an increase of coherence behaviour across all

plots due to the smaller bath coupling strength compared to the previous case.

In the graph for n=0, compared to n=1 and n=2 graphs, oscillatory effect is less

due to the weaker overall damping of the latter two environments. The most os-

cillatory behaviour is shown by the graph for n=1 out of all four graphs. This is

due to having a weaker overall coupling compared to other cases. Unlike before,

n=2 graph neither share the same peaks nor the quantum coherence effects with

graph for n=1 due to the variations occurred to both high frequency response and

low frequency response by reducing the system bath coupling (q). In addition, for
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the case of n=3, a small oscillation can be observed. As for the steady state donor

population value, all four graphs are comparable.

We decrease the bath coupling strength even further to q=0.05 for plot (c).

Owing to the smaller q value, all four graphs shows quantum coherence effects.

Interestingly for the cases of n=0 and n=1, we see that the donor population un-

dergoes considerably large oscillations, while sharing relatively the same maxima

and minima due to the similarities in the SDFs. For n=2, coherence effects are rel-

atively damped compared to n=0 or n=1 due to larger overall coupling of n=2

compared to the latter two. In the case of n=3, oscillatory dynamics vanishes

after 0.7 ps where it exhibits the most damping effect out of the four graphs.

Plot (d) corresponds to the case of q=0.02 where the bath coupling factor is rel-

atively very small. For n=0 and n=1, considerable oscillations are present. In fact

the minima and maxima for those two cases agrees with each other for the con-

sidered time period due to the similarities in the SDFs. The case of n=2 exhibits

an increase of damped oscillations over time and for n=3, the level of damping

effect is very noticeable.

Therefore, in the case of super-Ohmic environment, as the factor of logarith-

mic perturbation increases from 0 to 3, quantum coherence effects reduces con-

siderably over time for smaller q values as shown in plot (c) and plot (d) in Figure

4.3. An interesting case to note that, this pattern is consistent for the case of larger

q values for n=1,2 and 3 as exhibited in plot (a) and plot (b). The case of n=0 for

a relatively large q value deviates from this pattern where it also shows consid-

erably less transient dynamics compared to other n values except for n=3. There-

fore, in the case of larger q values, we identify smaller logarithmic perturbations

(n=1,2) can improve transient oscillations of the donor population considerably.
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4.3.2 Ohmic environments

Next we consider a donor and an acceptor pair coupled to an identical and inde-

pendent Ohmic environment where the SDF is given by,

J3(ω) = qωc

(
ω

ωc

)
exp

(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n (4.56)

We have obtained graphs for logarithmic power factors (n) 0 to 3 for system-

bath coupling factors of (a) q =0.3 (b) q =0.2 (c) q =0.05 and (d) q =0.02. In

plot (a) of Figure 4.4 where q =0.3, in the case of n=0 and n=1, slight transient

oscillations can be observed. For n=1, slightly less donor population transfer is

exhibited due to the presence of low frequency modes with stronger coupling

compared to the n=0 case as shown in Figure 4.2(b). For the higher order of

logarithmic perturbations produced by n=2 and n=3, energy transfer is in the

incoherent regime owing to large overall system bath couplings and large high

frequency response of the corresponding SDFs. This result is significant which

shows, higher order of logarithmic perturbation can cause a transfer to occur in

a different regime due to its influence. Notice that for n=2, the steady state is

achieved rapidly than for n=3. This is due to the relatively small low frequency

response of n=2 makes the bath correlation function to decay rapidly compared

to the n=3.

For plot (b) we decrease the bath coupling factor to q =0.2 where n=0 and n=1

graphs appear same as in plot (a) with a slight increase of the coherent behaviour.

The fact that n=2 and n=3 graphs exhibit the similar incoherent behaviour as in

plot (a) is significant. In fact, n=3 graph in plot (b) has decayed rapidly than in

plot (a), which shows the decreasing system bath coupling value has assisted the

incoherent energy transfer.

In plot (c), when n=0, we observe the most quantum coherence effect out of

all four graphs. Due to the decrease in the system bath coupling value, graph
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for n=2 shows oscillatory dynamics and thus has been drawn into the coherent

regime. Even though the initial oscillation appears very similar for n=0,1 and 2,

as n increases the transient oscillation reaches the steady state rapidly. Notice

that even a relatively small value of q =0.05, is not capable of showing quantum

coherence for a larger logarithmic perturbation such as for n=3 due to a larger

overall coupling occurred in its SDF. In the case of plot (d), all four exhibits the

oscillations while for larger n values, those effects decay very promptly.
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Figure 4.4: Population at donor for J3(ω) Ohmic environment SDF with (a) q=0.3
(b) q=0.2 (c) q=0.05 and (d) q=0.02. For all cases α = 1, l = 1.1, ωc = 3 THz, ε = 3
THz, V = 3 THz and T = 300 K has been considered.
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4.3.3 Effect of logarithmic perturbation on the Ohmicity param-
eter

In Figure 4.5 we investigate how Ohmicity parameter α effects from logarithmic

perturbations. Corresponding SDF is of the form,

J4(ω) = 0.2ωc

(
ω

ωc

)α

exp
(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (4.57)

We consider α in the range of 1 (Ohmic) to 2.5 (super-Ohmic) for this experi-

ment. In plot (a) when n=0, we observe coherent dynamics for all the considered

environments. In plot (b) which is for the case of n=1, Ohmic case exhibits tran-

sient oscillatory dynamics. As for the steady state donor population, Ohmic case

has a slightly higher donor population (less efficient transfer) than super-Ohmic

environments for n=1 at 1 ps. This is due to the larger low frequency response

compared to the high frequency response introduces long time correlations in

the bath correlation functions. As α increases from 1 to 2, coherent dynamics are

also increased where α = 2 graph shows significant oscillations. This is due to

the reduction of the overall bath coupling when α increases from 1 to 2 for n=1

(refer n=1 graphs for Figure 4.2(a), Figure 4.2(b) and Figure 4.2(c)). A gradual

reduction in quantum coherence is observed as α increases from 2 to 2.5 due to

increased overall bath coupling (refer n=1 graphs for Figure 4.2(c) and Figure

4.2(d)). When n=2, in plot (c), we find an incoherent transfer for the Ohmic bath

where increased logarithmic perturbation factor has decreased the coupling of

high frequency modes which governs the initial bath correlations. Graphs for

α =1.5,2 and 2.5 show similar oscillations to n=1 case with slight increase in the

amplitude, but α =1.5 graph reaches a higher donor population (less efficient

transfer) than super-Ohmic environments at 1 ps due to the presence of larger

low frequency component out of the three.

This behaviour is consistent for α =1.5 graph in plot (d) even though the value
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Figure 4.5: Population at donor for J4(ω) SDF with (a) n=0 (b) n=1 (c) n=2 and
(d) n=3. For all cases q = 0.2, l = 1.1, ωc = 3 THz, ε = 3 THz, V = 3 THz and
T = 300 K has been considered.

of n is increased to 3. Interesting fact to note is that, α = 1.5 suffers from severe

damping due to the increased logarithmic factor. As in plot (c), an increase in

amplitude of the oscillatory behaviour can also be seen for α =2 and 2.5. No-

tice that for Ohmic bath, incoherent transfer takes much longer time to arrive at

the steady state compared to plot (c) due to the increase of the coupling strength

of the low frequency modes. When comparing all four plots, we see oscillatory

effects in Ohmic environments (α = 1) are present only in the cases of n=1 and

n=2. Graphs for α =2 and 2.5 show the most immunity to logarithmic perturba-

tions across all the plots present in the figure which have a substantial amount of

transient oscillations in each plot. Also, it is observed that larger Ohmicity val-
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ues (α=2 and 2.5) are capable of increasing coherent dynamics when logarithmic

perturbations are increased.

4.4 Summary and Conclusions

In summary, we have investigated the effect of logarithmic perturbations effect on

Ohmic like spectral densities using a second-order time local variational master

equation. For the extensive analysis, logarithmic perturbations on the factor of

bath coupling strength and the Ohmicity parameter have been considered. When

the SDF defines a bath in the super-Ohmic regime, we observed that a smaller

logarithmic perturbation (order of 1 and 2) can increase the quantum coherence

present in the system in the region of relatively large bath coupling strengths.

In regard to the effect on Ohmicity parameter by logarithmic perturbations,

we found Ohmicity values of 2 and 2.5, display the most immunity to logarith-

mic perturbations. Also, it takes a longer time period to achieve the steady state

donor population for an energy transfer operates in the Förster regime for Ohmic

environments as these perturbations are increased. Further, an increase in co-

herent dynamics also been observed for Ohmicity values greater than 2 as loga-

rithmic perturbations are increased. In addition, Ohmicity value of 1.5 reached a

higher donor population than super-Ohmic environments at 1 ps when logarith-

mic perturbations are increased.

In Ohmic environments with increasing levels of logarithmic perturbations,

energy transfer tends towards the incoherent regime where most of the oscil-

lations appear with considerable damping through the range of bath coupling

strengths discussed in this chapter. Furthermore, when the transfer occurs in the

Förster regime, time it takes to reach the steady state donor population also gets

increased with the power of logarithmic perturbations. It is also been found that

for a bath having logarithmic perturbations of the order of 1 in an Ohmic environ-
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ment, can result in a less efficient energy transfer for larger system bath coupling

strengths.

Aforementioned coherent transient oscillations show quantum behaviour of

the excitations where excitations move back and forth (de-localized) between the

donor and the acceptor (quantum coherence). Quantum coherence effects are

shown to improve the efficiency of the energy transfer as shown in [13, 99, 100].

When the oscillations are strong, it takes a longer time to reach the steady state

which is not ideal (less damping), whereas if the oscillations are weak to none,

system looses its quantumness making the energy transfer incoherent. Therefore,

quantum coherence in the right amount not only preserve the quantumness of

the system but also facilitate the energy transfer. One other major advantage of

quantum coherence is that it can reduce the trapped excitations in energy minima

of the energy transferring paths [54].

In conclusion, the work presented here is substantial in designing realistic

quantum systems in future where the SDF can be altered to facilitate more quan-

tum coherence. In addition, avoiding such logarithmic perturbations can also

be considered to preserve the available transient dynamics of such systems. In

fact, increased logarithmic perturbations can be used to reduce the quantum co-

herence and shift the transfer into the incoherent regime for applications having

such a requirement. Future research on ways that these logarithmic perturbations

can be enhanced, controlled and rectified in a quantum environment will also be

interesting.



Chapter 5

Performance of multi-site full polaron
quantum master equation in a

perturbed environment

5.1 Introduction

As the foundational piece in studying quantum systems, two-level donor-acceptor

system has been utilized in a plethora of studies. Owing to the simplicity of this

system, equations and calculations in such systems are easy to work with. When

we extend the quantum system of interest into multiple sites, this macroscopic

view introduces new challenges to the study such as complex inter site coupling

and complex system bath relations. These complex equations and calculations

demand a higher computational power in our hardware and they take a longer

time to solve in general. Therefore, such multi-site systems are best to study using

approximation methods like second-order perturbation based theories than nu-

merically exact methods. Multi-site full polaron based quantum master equation

is one such approximation method which has been used to study energy transfer

dynamics of multi-site systems particularly in super-ohmic environments.

Our objective in this chapter is to analyse an interacting multi-site system at-

tached to a perturbed super-Ohmic environment (which we simulate using loga-

rithmic perturbations) using a multi-site full polaron transformation-based quan-

81
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tum master equation as shown in Figure 5.1. Ensuing the introduction, in section

5.2 we outline our theory and formulate a quantum master equation. In section

5.3, we discuss the results obtained using the quantum master equation derived

in the earlier section. Finally, section 5.4, summarize and concludes the chapter.

Figure 5.1: Donor chromophore (D) and two acceptor chromophores (A1,A2)
are connected to identical and independent baths. V12, V13, V23 represents the
inter-chromophore couplings whereas gk,D, gk,A1, gk,A2 represents the coupling
between kth bath mode of each bath and the attached chromophore.

5.2 Multisite Quantum System

For our model of this analysis, we consider a system consisting three spatially-

localised interacting two-level chromophores attached to individual boson en-

vironments. At t=0, we carefully excite the Donor chromophore (D) using an

instantaneous laser pulse. Donor chromophore (D) interacts with two acceptor

chromophores, A1 and A2. Initial condition of the combined quantum system

can be expressed as,

ρ̂(0) = ρ̂S(0)⊗
e−βĤ′b

Z
(5.1)
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assuming separable states. The partition function of the bath can be written by

taking the trace over bath degrees of freedom as Z = Trb{e−βĤ′b} with the as-

sumption that bath being a canonical ensemble. Here, Ĥ′b term represents the

bath Hamiltonian and β = 1/kBT where kB is the Boltzmann’s constant and T

is the temperature in Kelvins. In addition, initial total system sites condition is

denoted by ρ̂S(0).

5.2.1 Combined Hamiltonian

Combined Hamiltonian of the system and environment can be expressed as

Ĥ′ = ∑
n

εn |n〉 〈n|+ ∑
n 6=m

Vnm |n〉 〈m|+ ∑
n
|n〉 〈n|∑

k
h̄ωk,ngk,n(b̂†

k,n + b̂k,n)

+∑
n,k

h̄ωk,nb̂†
k,nb̂k,n

(5.2)

in the expanded form where n = D, A1, A2 throughout the chapter. First term is

the population Hamiltonian where εn being the site energy of site n. Second term

expresses the coherence Hamiltonian where Vnm denotes the site-site coupling

between site n and site m. Next term denotes the system-bath Hamiltonian where

gk,n represents the coupling strength between nth site and kth frequency mode

in the bath which is fully characterized by the bath’s spectral density function.

Mode frequency of the kth mode attached to nth site is expressed as ωk,n with

corresponding creation (b̂†
k,n) and annihilation (b̂k,n) bath operators. Final term

represents the summation of bath Hamiltonians attached to each site.

5.2.2 Transformation into full polaron frame

When analysing the magnitudes of above Hamiltonians in various system-bath

coupling regimes, we can identify that inclusion of second-order perturbation
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theory in an effort to derive a consistent quantum master equation valid in all

system-bath coupling regimes is not possible in the current reference frame of the

Hamiltonians. This is mainly due to the fact that contribution of all Hamiltonians

are significant in at least one coupling regime leaving no Hamiltonian to apply

the second-order perturbation. In order to alter the current reference frame, we

follow the full-polaron unitary transamination method which transforms the ref-

erence frame into the polaron frame [45,46,50]. In this polaron frame, it has been

shown that contribution of system-bath Hamiltonian to the total system Hamilto-

nian is low at all times making it the perfect candidate to apply the second-order

perturbation theory. This unitary transformation, dresses the system with bath ef-

fects which results in polaron shifted site energies and renormalized site coupling

strengths. It is also important to note that application of the unitary transforma-

tion doesn’t alter the physical quantum system. Now, let’s consider the polaron

generator function given by [43, 44, 58],

G = ∑
n
|n〉 〈n|∑

k

gk,n

h̄ωk,n
(b̂†

k,n − b̂k,n). (5.3)

Utilizing above function, we transform the combined system Hamiltonian through

Ĥ = eGĤ′e−G where we can rewrite the polaron frame combined system Hamil-

tonian as Ĥ = Ĥ0 + Ĥ1. Here, Ĥ0 is the zeroth order Hamiltonian given by,

Ĥ0 = ∑
n

εn |n〉 〈n|+ ∑
n 6=m

BnBmVnm |n〉 〈m|+ Ĥ′b + ∑
n

Rn1 (5.4)

where,

Bn = exp

[
−1

2 ∑
k

g2
k,n

h̄2ω2
k,n

coth
(

h̄βωk,n

2

)]
(5.5)

and

Rn = −∑
k

g2
k,n

h̄ωk,n
. (5.6)



5.2 Multisite Quantum System 85

Here, 1 represents the n by n identity matrix. First order interaction Hamiltonian

Ĥ1 is given by,

Ĥ1 = ∑
n 6=m

VnmB̂nm |n〉 〈m| (5.7)

where,

B̂nm = exp

[
∑
k

gk,n

h̄ωk,n

(
b̂†

k,n − b̂k,n

)
−∑

k

gk,m

h̄ωk,m

(
b̂†

k,m − b̂k,m

)]
− BnBm. (5.8)

We can notice that in the Redfield limit, even if the magnitude of Vnm is large,

value of B̂nm is so small that resultant magnitude of Ĥ1 is negligible compared

to the zeroth order Hamiltonian. This behaviour is also holds in the Förster limit

where B̂nm is larger and Vnm is smaller. Therefore, using the full polaron trans-

formation method we have identified a Hamiltonian in Ĥ1, which can be used

to apply second-order perturbation theory in an effort to formulate a consistent

quantum master equation.

5.2.3 Full polaron QME derivation

Next, we define the density matrix of the combined system (ρ̂) and quantum

Liouville operator (L) related to it through,

dρ̂

dt
= −iL̂ρ̂(t) . (5.9)

It is important to mention that all these parameters are now in the full-polaron

frame. At this point, we transform the initial system condition to the same refer-

ence frame following,

ρ̂(0) = ρ̂S(0)⊗
[

B̂+ exp
(
−βĤb

)
B̂−

Z

]
, (5.10)
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where,

B̂± = exp

[
∑
k
± gk,n

h̄ωk,n

(
b̂†

k,n − b̂k,n

)]
. (5.11)

Subsequently, we alter all the Hamiltonians to the interaction picture and ap-

ply the second-order perturbation theory. Next step of deriving the full-polaron

quantum master equation entails introducing standard projection operators to

extract relevant system component from the density matrix. Thus, we define the

standard projection operator method [55] denoted by P(.) ≡ ρ̂b Trb{.}, which

extracts the relevant part (reduced system density matrix) and the complimen-

tary projection Q(.) = (I −P)(.) extracts irrelevant part from the density matrix

(bath). After applying the above method, resultant time-local quantum master

equation can be written in the form of,

dσ̂I(t)
dt

= Î(t)− R̂(t)σ̂I(t) , (5.12)

where σ̂I(t) denotes the time varying reduced density matrix and Î(t) indicates

the time varying inhomogeneous term accounts for non-Markovian bath dynam-

ics in the interaction picture. Since the contribution of the inhomogeneous term

is negligible in most cases, we ignore that term from our analysis. Now, the re-

maining part of the quantum master equation can be written as,

R̂(t)σ̂I(t) = −
∫ t

0
dτ Trb{[Ĥ1,I(t), [Ĥ1,I(τ), σ̂I(t)]]} , (5.13)

in the expanded form. By decomposing interaction Hamiltonian in the form of

Ĥ1,I(t) = ∑6
i=1 Ŷi,I(t) ⊗ B̂i,I(t), we can simplify and write the quantum master

equation in the Schrödinger picture as,

dσ̂(t)
dt

= −i
[
ĤS, σ̂(t)

]
−∑

i,j

∫ t

0
dτ
(
Λij(τ){ŶiŶj(τ)σ̂(t)− Ŷj(τ)σ̂(t)Ŷi}+ h.c.

)
(5.14)
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where Ŷi denotes the system operators, B̂i describes bath operators and Λij(τ) ex-

presses the bath correlation functions. System operators of the interaction Hamil-

tonian are given by Y xx
i = |n〉 〈n| when 1 ≤ i ≤ 3 and Yyy

i = |n〉 〈m|+ |m〉 〈n|

when 3 < i ≤ 6. Corresponding bath correlation functions in those regimes can

be written as,

Λxx
nmpq(t) =

1
2

VnmVpqBnBmBpBq{exp
[
δnpφ

xy
n (t) + δmqφ

xy
m (t)

]
+ exp

[
−δnpφ

xy
n (t)− δmqφ

xy
m (t)

]
− 2}

and

Λyy
nmpq(t) =

1
2

VnmVpqBnBmBpBq{exp
[
δnpφ

xy
n (t) + (δmq − δmp)φ

xy
m (t)

]
− exp

[
−δnpφ

xy
n (t)− (δmq − δmp)φ

xy
m (t)

]
}

where

φ
xy
n (t) =

∫ ∞

0
dω

Jn(ω)

ω2 [cos(ωt) coth(βω/2)− i sin(ωt)] . (5.15)

Here, δnm are Kronecker delta operators and Jn(ω) is the spectral density function

of the bath attached to nth site.

5.2.4 Disturbed super ohmic environments

Our goal in this chapter is to examine the coherent energy transfer dynamics

of a multisite quantum system through full-polaron transformation based quan-

tum master equation where the attached quantum super ohmic environments are

slightly disturbed/perturbed in the frequency domain. This disturbance can be

simulated using a novel type of spectral density function given by,

J(ω) = qωc

(
ω

ωc

)α

exp
(
−lω
ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (5.16)
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as shown in previous chapters. Figure 5.2 shows the behaviour of the function

against the frequency measured in THz.
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Figure 5.2: Spectral density functions of J(ω) for the values of (a) α=2.25, (b)
α=2.5, (c) α=3, (d) α=3.25. Values of n are shown on the graphs. For each case we
take ωc = 3 THz, l=1.1 and q=0.005.

5.3 Results and Discussion

Utilizing derived Eq. (5.14), we can extract the population of sites (where n =

D, A1,A2) using,

Pn(t) = 〈n| σ̂(t) |n〉 . (5.17)

Despite the fact that σ̂(t) term is in the full-polaron frame, the extracted popula-

tions are of the same magnitude in the original frame. This is due to the fact that

population Hamiltonian doesn’t rely on bath creation and annihilation operators,

eG |n〉 〈n| e−G = |n〉 〈n| [43–45,58,101]. Ensuing sections illustrate the population
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dynamics we obtained for different super-Ohmic environments.

5.3.1 Performance in different system-bath coupling regimes

In this section, we examine the performance of full polaron transformation-based

multi-site quantum master equation in various system-bath coupling regimes.

For our analysis, we have selected α = 3, l = 1.1, ωc = 3 THz, V13 = 0, ε1 = ε2 =

1.5 THz, ε3 = 0 and T = 300 K. We have considered the population dynamics

in the intermediate coupling regime ((a) q = 0.1, V12 = V23 = 0.6 THz), in the

Redfield limit ((b) q = 0.01, V12 = 6 THz, V23 = 3 THz) and near the Förster limit

((c) q = 0.2, V12 = 9 THz, V23 = 3 THz) as shown in Figure 5.3. Corresponding

spectral density function is given by,

J2(ω) = qωc

(
ω

ωc

)3

exp
(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (5.18)

In the intermediate coupling regime as shown in Figure 5.3(a), We observe

that n=0 graph shows the most coherent dynamics out of all four graphs. When

we increment the logarithmic perturbation factor(n), we see that oscillatory dy-

namics get reduced where n=3 graph shows an incoherent transfer compared to

other graphs. Here, it is important to note that, higher order of logarithmic per-

turbations are capable of forcing the population dynamics to occur in the incoher-

ent regime. When observing A1 and A2 populations, it is evident that coherent

dynamics have transferred from one site to the other.

We notice that when the combined system operates in the Redfield limit, the

presence of strong oscillations compared to other regimes. This is mainly ow-

ing to the fact that system sites are coupled strongly compared to the system-

bath coupling strength which reduces the bath’s influence on the sites. As in the

case of Figure 5.3(a), in Figure 5.3(b) we identify that n=0 graph reveals quan-

tum coherent effects more than other graphs. In addition, as in the previous case
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Figure 5.3: Population at donor (D), acceptor 1 (A1) and acceptor 2 (A2) for J2(ω)
SDF with (a) q = 0.1, V12 = V23 = 0.6 THz (b) q = 0.01, V12 = 6 THz, V23 = 3
THz and (c) q = 0.2, V12 = 9 THz, V23 = 3 THz. For all cases α = 3, l = 1.1,
ωc = 3 THz, ε1 = ε2 = 1.5 THz, ε3 = 0, V13 = 0, h̄ = 1 and T = 300 K has been
considered.

we observe a similar behaviour of larger logarithmic perturbation factors having

larger implications on the oscillatory dynamics of the site populations. In fact,

even-though both n=0 and n=1 graphs reveal similarities in their dynamics, we

identify that n=2 graph entails a rapid decay in the coherent behaviour. When the

logarithmic factor is increased to 4, full polaron based multi-site quantum master

equation has suffered infrared divergence effect. Therefore, we can corroborate

the fact that larger logarithmic factors in Redfield limit can restrict the use of this

quantum master equation to simulate population dynamics. In the Förster limit

as shown in Figure 5.3(c), we observe severe distortions in the graphs of n=1,

n=2 and n=3. This is due to the fact that when system-bath coupling is larger
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compared to coupling among the sites, bath influence plays a major role in the

population dynamics. According to Figure 5.2, we can observe that larger log-

arithmic perturbations entail smaller low frequency responses which affect both

short term and long term dynamics. This smaller low frequency response has

resulted in revealing infrared divergence effect in population dynamics in donor

and both acceptors due to divergence transpires in the bath correlation function.

When there are no logarithmic perturbations, n=0 graph has indicated an inco-

herent transfer.

Therefore, we can corroborate the fact that full polaron transformation based

multi-site quantum master equation reveals coherent resonance energy transfer

dynamics in both Redfield limit and intermediate coupling regime. It is evident

that higher logarithmic perturbations have a larger influence on the oscillatory

dynamics where we observe either smaller or no oscillations when the n value

is larger. In addition, in Redfield limit and Förster limit, we illustrated the oc-

currence of infrared divergence effect when these perturbations are present. It

is also important to mention that, coupling between sites plays a major role in

observed coherent oscillations. This is evident when examining Figure 5.3(a) and

Figure 5.3(b), where the coupling between donor (D) chromophore and acceptor

1 (A1) chromophore is large compared to coupling between acceptor 1 (A1) chro-

mophore and acceptor 2 (A2) chromophore. Here, we identify acceptor 1 (A1)

chromophore indicates large oscillations which can be compared to donor (D)

chromophore whereas acceptor 2 (A2) chromophore has minor oscillations.

5.3.2 Performance in various Ohmicity values

We analyse the performance of the derived quantum master equation in various

super-Ohmic environments in this section. Figure 5.4 is obtained for the values

of q = 0.05, l = 1.1, ωc = 3 THz, ε1 = ε2 = 1.5 THz, ε3 = 0, q = 0.2, V12 = 6
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THz, V23 = 3 THz, V13 = 0 and T = 300 K where scenario (a) n=1, (b) n=2 and (c)

n=3. We examine the super-Ohmic environments with Ohmicity values α = 2.5,

α = 3, α = 3.5 and α = 4. Considered spectral density function can be written as,

J3(ω) = 0.05ωc

(
ω

ωc

)α

exp
(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (5.19)

When n=1 as illustrated in Figure 5.4(a), we identify that while α = 3, α = 3.5,

α = 4 graphs indicate coherent energy transfer dynamics, α = 2.5 graph has

shown infrared divergence effect. This is due to the fact that smaller Ohmicity

value has a smaller overall coupling value compared to larger Ohmicity values.

This makes them vulnerable even for smaller logarithmic perturbations where

the reduction in the coupling strength of low frequency bath modes affects the

bath correlation function. It is also noticeable the fact that higher Ohmicity values

simulate higher oscillatory dynamics.

As we increment the value of n to n=2 in Figure 5.4(b), we observe that both

α = 2.5 graph and α = 3 graph indicate infrared divergence effects. This conveys

the fact that even a higher Ohmicity value such as α = 3 is not sufficient to over

come the turbulence introduced by these logarithmic factors. Neither α = 3.5

graph nor α = 4 graph have affected where they display coherent dynamics in

all three site populations. In Figure 5.4(c), we observe not only α = 2.5 and α = 3

graphs but also α = 3.5 graph is now indicating severe distortions. In fact, α = 4

graph is the only scenario capable of withstanding distortions when logarithmic

perturbation factor is 3.

Therefore, the utilization of multi-site full polaron transformation-based quan-

tum master equation in simulating population dynamics has to be approached

with caution. As delineated earlier, the infrared divergence effect manifested in

different super-Ohmic environments under various logarithmic perturbation fac-

tors make this theory to be unreliable in certain instances. In such scenarios, ap-

plication of this theory will lead to inaccurate results. On a separate note, when
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Figure 5.4: Population at donor (D), acceptor 1 (A1) and acceptor 2 (A2) for J3(ω)
SDF with (a) n=1, (b) n=2 and (c) n=3. For all cases q = 0.05, l = 1.1, ωc = 3 THz,
ε1 = ε2 = 1.5 THz, ε3 = 0, V12 = 6 THz, V23 = 3 THz, V13 = 0, h̄ = 1 and T = 300
K has been considered.

we compare all three graphs, we can identify the fact that larger logarithmic fac-

tors can reduce the frequency of coherent oscillations.

5.4 Summary and Conclusions

In summary, we have formulated a full polaron transformation-based quantum

master equation that can be applied to multi-site systems. Subsequently, we ex-

amined the population transfer dynamics of a three site quantum system attached

to a few super-Ohmic environments which undergo logarithmic perturbations.

This is achieved using a novel spectral density function, which utilizes logarith-
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mic factors entail in low frequency power series expansion of the spectral density.

We have not only simulated the coherent energy transfer dynamics of this site

populations but also have gauge the performance of the multi-site full polaron

quantum master equation.

While we discovered this equation reveals quantum oscillatory dynamics well

in Redfield limit when logarithmic perturbations are small, the performance near

Förster limit was suboptimal due to the presence of infrared divergence effects

even for small logarithmic perturbations. When we compare the results, we can

identify that this quantum master equation performs sufficiently well in the in-

termediate coupling regime with logarithmic perturbations in the environment.

Our results indicate that higher logarithmic perturbation factors manifest larger

damping to these coherent dynamics.

Next, we examined the impact on the Ohmicity parameter when these loga-

rithmic factors are present. Here, we corroborated the fact that higher logarithmic

perturbations have decreased the frequency of quantum oscillations in the energy

transfer dynamics irrespective of the magnitude of Ohmicity parameter. We also

discovered the fact that larger Ohmicity values are immune to logarithmic per-

turbations when predicted through full polaron transformation-based multi-site

quantum master equation. In addition, smaller Ohmicity values have shown in-

frared divergence effect even for small perturbations.

In conclusion, through this study we have identified that multi-site full po-

laron transformation-based quantum master equation is vulnerable for logarith-

mic perturbations in quantum environments. Despite the fact that, full-polaron

based quantum master equations perform well in super-Ohmic environments,

simulated results manifest severe distortions when super-Ohmic environments

are perturbed with logarithmic factors. This study aids in deciding when to use

this quantum master equation and when it is not reliable.



Chapter 6

Coherent Resonance Energy Transfer
in a multi exciton transport system

under logarithmic perturbations using
variational polaron approach

6.1 Introduction

Most second-order perturbation formalisms based on polaron transformation tech-

niques have a multichromophoric counterpart to two-level based theories [44,50].

These multichromophoric theories provide an insight into the experimental data

gathered, such as the analysis performed on Fenna–Matthews–Olsen complex

(FMO) illustrated in [44]. These theories are fundamental in understanding how

energy is transferred from site to site in the energy transferring paths of the light

harvesting complexes. In an effort to analyse the energy transfer of multichro-

mophoric systems in this chapter, we have chosen variational polaron transfor-

mation based multi-exciton theory which has performed considerably in sub-

Ohmic, Ohmic and super-Ohmic environments for both fast and slow baths as

corroborated in [58].

In most instances found in literature, the energy transfer process is studied

against the most common type of Ohmic-like SDFs consisting of n exponential

decay term, where the type of the environment (whether it is sub-Ohmic, Ohmic,

95
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or super-Ohmic) is determined by the Ohmicity parameter [43–45, 69, 70].

Our objectives in this chapter, are to investigate the energy transfer of a mul-

tichromophoric system in an Ohmic-like environment undergoing negative loga-

rithmic perturbations and to compare the full polaron theory and the variational

polaron theory to determine which theory is more suitable in characterizing and

simulating quantum coherence behaviour of the energy transfer in these types of

environments using the quantum system given in Figure 6.1.

This chapter is outlined as follows. Ensuing the introduction, in section 6.2,

the formalism which includes the analytical approach deployed for our analysis

is outlined. The results are discussed in section 6.3 and section 6.4 summarizes

and concludes the chapter.

Figure 6.1: Donor chromophore (D) and two acceptor chromophores (A1,A2)
are connected to identical and independent baths. V12, V13, V23 represents the
inter-chromophore couplings whereas gk,D, gk,A1, gk,A2 represents the coupling
between kth bath mode of each bath and the attached chromophore.
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6.2 Formalism

Suppose a system with three spatially-localised interacting two-level systems sur-

rounded by a bosonic environment. Initially, the combined density matrix of the

system and the environment can be written as [102],

ρ̂(0) = ρ̂S(0)⊗
e−βĤ′b

Z
(6.1)

assuming separable states. Let’s assume the bath to be a canonical ensemble and

therefore, the partition function can be written as Z = Trb{e−βĤ′b} by taking the

trace over bath degrees of freedom where Ĥ′b defines the bath Hamiltonian. Here,

the term β = 1/kBT where kB is the Boltzmann’s constant and T is the tempera-

ture of the combined system in Kelvins.

6.2.1 Combined Hamiltonian

Let’s write the combined Hamiltonian of the system and environment as,

Ĥ′ = Ĥ′p + Ĥ′c + Ĥ′sb + Ĥ′b. (6.2)

The population Hamiltonian is given by Ĥ′p = ∑n εn |n〉 〈n| where n represents

sites: Donor (D), Acceptor 1 (A1) and Acceptor 2 (A2) throughout the chapter.

Term εn represents the localized site energy at nth site. Hamiltonian of the coher-

ences of the system is given by Ĥ′c = ∑n 6=m Vnm |n〉 〈m| where Vnm represents the

electronic coupling strength between site n and site m. System-bath Hamiltonian

is given by Ĥsb = ∑n |n〉 〈n|∑k h̄ωk,ngk,n(b̂†
k,n + b̂k,n) assuming there are no bath

correlations and all system-bath coupling terms gk,n are real quantities which are

characterized by the spectral density function. Term b̂k,n(b̂†
k,n) defined here, is the

annihilation (creation) bath operator coupled to nth site of kth bath mode where
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ωk,n denotes the frequency of kth bath mode linked to nth site. Final term is the

bath Hamiltonian given by Ĥ′b = ∑n ∑k h̄ωk,nb̂†
k,nb̂k,n. Hence, combined Hamilto-

nian can be written as,

Ĥ′ = ∑
n

εn |n〉 〈n|+ ∑
n 6=m

Vnm |n〉 〈m|+ ∑
n
|n〉 〈n|∑

k
h̄ωk,ngk,n(b̂†

k,n + b̂k,n)

+∑
n,k

h̄ωk,nb̂†
k,nb̂k,n.

(6.3)

in the expanded form.

6.2.2 Variational Polaron Transformation

Now, let us consider the polaron generator function given by [43, 44, 58],

G = ∑
n
|n〉 〈n|∑

k

fk,n

h̄ωk,n
(b̂†

k,n − b̂k,n) (6.4)

where the variational parameter fk,n is in the range of 0 ≤ fk,n ≤ gk,n and

is a real value. Now, we transform the combined system Hamiltonian using

Ĥ = eGĤ′e−G. Transformed Hamiltonian Ĥ can be written as a summation of

the zeroth order Hamiltonian Ĥ0 and first order interaction Hamiltonian Ĥ1. Ze-

roth order Hamiltonian is given by,

Ĥ0 = ∑
n

εn |n〉 〈n|+ ∑
n 6=m

BnBmVnm |n〉 〈m|+ Ĥ′b + ∑
n

Rn1 (6.5)

where,

Bn = exp

[
−1

2 ∑
k

f 2
k,n

h̄2ω2
k,n

coth
(

h̄βωk,n

2

)]
(6.6)

is the expected value of the bath displacement operator of the nth site and 1 rep-

resents the n x n identity matrix. Polaron shift in the site energy can be written
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as,

Rn = ∑
k

fk,n

h̄ωk,n
( fk,n − 2gk,n) . (6.7)

First order interaction Hamiltonian is given by,

Ĥ1 = ∑
n
|n〉 〈n|∑

k
(gk,n − fk,n)

(
b̂†

k,n + b̂k,n

)
+ ∑

n 6=m
VnmBnm |n〉 〈m| (6.8)

where,

B̂nm = exp

[
∑
k

fk,n

h̄ωk,n

(
b̂†

k,n − b̂k,n

)
−∑

k

fk,m

h̄ωk,m

(
b̂†

k,m − b̂k,m

)]
− BnBm (6.9)

is the off-diagonal bath displacement operator between nth site and the mth site.

6.2.3 Determining the variational parameter

As elucidated before, the variational parameter fk,n appears in above equations, is

in the range of 0 ≤ fk,n ≤ gk,n. In order to solve the quantum master equation we

need to find an exact value for this parameter within the range of 0 ≤ fk,n ≤ gk,n.

To do that, we use the Feynman-Bogoliuobov upper bound on the free energy [59]

as shown in [43, 44]. This bound is given by,

AFB = − 1
β

ln
[
Tr
{

e−βĤ0
}]

+
〈

Ĥ1
〉

Ĥ0
+ O

(〈
Ĥ2

1

〉
Ĥ0

)
. (6.10)

Recently an improved expression for the free energy minimization argument has

been introduced in [60]. Since this is the upper bound of the free energy (A),

we can write AFB ≥ A. Notice that the second term in Eq. (6.10) is zero by

construction and the final term can be negligible when we neglect the higher

order terms of the interaction Hamiltonian. To minimize the upper bound on the
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free energy consider the derivative,

∂AFB

∂ fn,k
=

∂AFB

∂Rn

∂Rn

∂ fn,k
+

∂AFB

∂Bn

∂Bn

∂ fn,k
= 0. (6.11)

Next, we find the solution to the above equation as,

Fn(ωn,k) =

[
1 +

2V2
nmB2

nm
ηh̄ωn,k

tanh
(

βη

2

)
coth

(
h̄βωn,k

2

)]
(6.12)

when fn,k = gn,kFn(ωn,k). For the purpose of formulating the quantum master

equation we assume a continuous bath and therefore we write,

Bn = exp
[
−1

2

∫ ∞

0
dω

Fn(ωn)2 Jn(ω)

ω2 coth
(

h̄βω

2

)]
(6.13)

and

Rn =
∫ ∞

0
dω

Jn(ω)

ω
(Fn(ωn)− 2) Fn(ωn) (6.14)

where Jn(ω) is the spectral density function attached to the nth site.

6.2.4 Formulating the quantum master equation

As the first step in formulating the quantum master equation, we define the

standard projection operator method [55] defined by P(.) ≡ ρ̂b Trb{.} which ex-

tracts the system part of the density matrix and the complimentary projection

Q(.) = (I − P)(.) extracts the irrelevant part of the density matrix which is the

bath. Next, we define the quantum Liouville operators which governs the time

evolution of the density matrix as shown in Eq. (6.15) in an effort to develop a

time-local second-order quantum master equation for our analysis,

dρ̂

dt
= −iL̂ρ̂(t) . (6.15)
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Next, we transform the initial condition given in Eq. (6.1) of the combined system

into the variational polaron frame through,

ρ̂(0) = ρ̂S(0)⊗
[

B̂+ exp
(
−βĤb

)
B̂−

Z

]
, (6.16)

where,

B̂± = exp

[
∑
k
± fk,n

h̄ωk,n

(
b̂†

k,n − b̂k,n

)]
. (6.17)

Subsequently, we transform the Hamiltonians into the interaction picture and ap-

ply the second-order perturbation theory to the variational polaron transformed

system-bath Hamiltonian. The resultant quantum master equation can be ex-

pressed in the form of,

dσ̂I(t)
dt

= Î(t)− R̂(t)σ̂I(t) , (6.18)

where,

R̂(t)σ̂I(t) = −
∫ t

0
dτ Trb{[Ĥ1,I(t), [Ĥ1,I(τ), σ̂I(t)]]} . (6.19)

Here, Ĥ1,I(t) is the interaction picture zero-order Hamiltonian and σ̂I(t) is the

interaction picture reduced system density matrix. At this point we ignore the

contribution of time varying inhomogeneous term Î(t) which accounts for non-

Markovian bath dynamics in the interaction picture since it is negligible com-

pared to the homogeneous term R̂(t). Also, note that we can decompose Ĥ1,I(t)

as, Ĥ1,I(t) = ∑9
i=1 Ŷi,I(t)⊗ B̂i,I(t) where Ŷi expresses the interaction picture sys-

tem operators and B̂i,I describes interaction picture bath operators. Applying this

decomposition we derive a quantum master equation in the Schrödinger picture
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which is given by,

dσ̂(t)
dt

= −i
[
ĤS, σ̂(t)

]
−∑

i,j

∫ t

0
dτ
(
Λij(τ){YiYj(τ)σ̂(t)−Yj(τ)σ̂(t)Yi}+ h.c.

)
(6.20)

where Λij(τ) denotes the bath correlation functions. System operators of the

interaction Hamiltonian are given by Y xx
i = |n〉 〈n| when 1 ≤ i ≤ 3, Yyy

i =

|n〉 〈m|+ |m〉 〈n| when 3 < i ≤ 6 and Y zz
i = i |n〉 〈m| − i |m〉 〈n| when 6 < i ≤ 9.

Corresponding bath correlation functions in those regimes can be written as,

Λzz
n (t) =

∫ ∞

0
dω Jn(ω) [1− Fn(ω)]2 [cos(ωt) coth(βω/2)− i sin(ωt)] ,

Λxx
nmpq(t) =

1
2

VnmVpqBnBmBpBq{exp
[
δnpφ

xy
n (t) + δmqφ

xy
m (t)

]
+

exp
[
−δnpφ

xy
n (t)− δmqφ

xy
m (t)

]
− 2}

and

Λyy
nmpq(t) =

1
2

VnmVpqBnBmBpBq{exp
[
δnpφ

xy
n (t) + (δmq − δmp)φ

xy
m (t)

]
− exp

[
−δnpφ

xy
n (t)− (δmq − δmp)φ

xy
m (t)

]
}

where

φ
xy
n (t) =

∫ ∞

0
dω

Jn(ω)

ω2 F2
n(ω) [cos(ωt) coth(βω/2)− i sin(ωt)] . (6.21)

We define δnm to be Kronecker delta operators between site n and m and Jn(ω) is

the spectral density function of the bath attached to nth site. Final bath correlation

function is the cross interaction term given by,

Λyz
nmpq(t) = δnpVnmBnBmφ

yz
n (t) (6.22)
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where

φ
yz
n (t) =

∫ ∞

0
dω

Jn(ω)

ω
[1− Fn(ω)] Fn(ω) [sin(ωt) coth(βω/2) + i cos(ωt)] .

(6.23)

6.2.5 Perturbed environments

Our objective is to study the multi-exciton energy transport in an environment

where the spectral density function is slightly deviated from original form. In

order to deviate the spectral density function from its original form, we need to

perturb it by combining it with another factor which its nature is different from

the exponential decay. For that purpose, logarithmic factors are used to perturb

the most common type of spectral density functions. In doing so, we can come

up with an Ohmic-like spectral density function which experience logarithmic

perturbations as [51, 101],

J(ω) = qωc

(
ω

ωc

)α

exp
(
−lω
ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n (6.24)

where l is the factor of the exponential decay and n is the power of the logarithmic

factor as elucidated before in previous chapters. In fact, this form of Ohmic-like

SDF experiencing logarithmic perturbations subsumes low frequency power-law

profiles obtained by removable logarithmic singularities. Besides, it has been

shown that this form of SDFs can be used to interpret a large range of relaxations

which are slower than the exponential decay and faster or slower than the inverse

power laws in quantum systems [51].

In an effort to visualize the shape of the spectral density functions we have

plotted Figure 6.2. When observing the graphs, we can identify for each value of

α, all the Jα,n functions intersect at ω = ωc/e and at ω = ωce. These intersections
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Figure 6.2: Spectral density functions of J(ω) for the values of (a) α=1,q=0.01 and
(b) α=3, q=0.5. Values of n are shown on the graphs. For each case we take ωc = 3
THz and l=1.1.

divide the frequency space into three regions.

• The low-frequency range (0, ωc/e), in which Jα,n1 < Jα,n2 for all n1 < n2.

• The intermediate range (ωc/e, ωce), in which Jα,n1 < Jα,n2 for all n1 > n2.

• The high-frequency range (ωce, ∞), in which Jα,n1 < Jα,n2 for all n1 < n2.

We can identify the fact that, in the intermediate region, area under the curves are

decreasing as we increase the logarithmic power factor n from -0.75 to 0. In the

remaining low frequency region and the high-frequency region, we see the oppo-

site effect is true where n=0 graph has the largest area. As the area under these

curves represents the total coupling to the attached sites, we can see increased

influences from the bath modes in the intermediate region to the energy trans-

fer. This is due to the lesser contribution from low-frequency bath modes and the

high frequency bath modes to the overall coupling.

6.3 Results and Discussion

Now, let’s analyse how these logarithmic perturbations can alter energy transfer

dynamics in super Ohmic and Ohmic environments. First, we need to find the

donor population, 1st acceptor population and the 2nd acceptor population by
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solving Eq. (6.20) and extracting the site population using,

Pn(t) = 〈n| σ̂(t) |n〉 (6.25)

where n = D, A1, A2. It is also important to mention that, even-though σ̂(t)

term is in the polaron transformed frame, site population extracted using above

formula represents the accurate site population in the original frame. This is due

to population Hamiltonian being independent of bath creation and annihilation

operators, eG |n〉 〈n| e−G = |n〉 〈n| [43–45, 58].

6.3.1 Effect on super-Ohmic environments

For our analysis, let’s first consider a super-Ohmic environment where α = 3,

l = 1.1, ωc = 3 THz, T = 300 K and system with site energies ε1 = ε2 = 1.5 THz

and ε3 = 0. The corresponding spectral density function is given by,

J2(ω) = qωc

(
ω

ωc

)3

exp
(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (6.26)

Figure 6.3 demonstrates the plots we obtained for (a) q=0.1 and V12 = V23 =

0.6 THz, (b) q=0.5 and V12 = V23 = 6 THz, (c) q=0.2 and V12 = V23 = 9 THz while

altering the logarithmic perturbation factor n. By observing the donor popula-

tion in Figure 6.3(a) where variational quantum master equation operates in the

intermediate coupling regime, when system and bath parameters are comparable

to each other, it can be noticed that n=0 graph shows the most coherent energy

transfer dynamics out of all four graphs. Besides, as the value of logarithmic fac-

tor (n) decreases we see coherent oscillations have vanished in a truncated time

period. On the other hand, larger n value indicates that the donor population

takes a longer time to attain the steady state. These behaviours are consistent for

both acceptor populations A1 and A2.
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In Figure 6.3(b), we illustrate the effect from logarithmic perturbations in a

system near the Förster limit in a multisite system where q=0.5 and V12 = V23 = 6

THz. It is interesting to mention that relaxation dynamics occur in a brief time

frame than the previous case, with relatively a low quantum coherence effect.

As in the case for Figure 6.3(a), we observe a reduction in the long term coher-

ent dynamics when we decrement the value of logarithmic perturbation factor

n. Moreover, steady state site populations indicates that when n = −0.65, an

efficient transfer has taken place by comparing to other three logarithmic pertur-

bation factor values. With respect to the short term coherent dynamics, n = 0

and n = −0.25 graphs closely follow each other in all three site populations. De-

spite the fact that both n = −0.5 and n = −0.65 graphs in donor population and

acceptor 1 population illustrates coherent oscillatory dynamics, corresponding

graphs in acceptor 2 population demonstrates purely an incoherent transfer. This

indicates that energy is transferred from site to site, it is possible to lose quantum

coherence if the environment is perturbed with a higher negative perturbation

factor.

Furthermore, Figure 6.3(c) demonstrate coherent energy transfer dynamics

near Redfield limit where q=0.2 and V12 = V23 = 9 THz. Evidently, we observe

that when we reduce the logarithmic perturbation factor, quantum coherence ef-

fects have been decreased where n = −0.65 graph indicates the largest decay out

of all graphs.

Therefore, it is evident that these logarithmic perturbations affect the coher-

ent energy transfer appears in all three coupling regimes. In the intermediate

coupling regime and the Förster limit, we observe that coherent oscillations are

only sustained over a brief time when perturbed by a larger negative logarithmic

factor. Further, in these two coupling regimes, the effect from higher negative

factors is more apparent than the Redfield limit where environmental influence

is inferior compared to the former coupling regimes.
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Figure 6.3: Population at D , A1 and A2 for J2(ω) super-Ohmic environment SDF
with (a) q=0.1 and V12 = V23 = 0.6 THz (b) q=0.5 and V12 = V23 = 6 THz ,
(c) q=0.2 and V12 = V23 = 9 THz. For all cases α = 3, l = 1.1, ωc = 3 THz,
ε12 = ε23 = 1.5 THz and T = 300 K has been considered.

6.3.2 Effect on Ohmic environments

Next, let’s consider an Ohmic environment where l = 1.1, ωc = 3 THz, q =

0.01, T = 300 K and system site energies ε1 = ε2 = 1.5 THz and ε3 = 0. The

corresponding spectral density function is given by,

J3(ω) = 0.01ωc

(
ω

ωc

)
exp

(
−1.1ω

ωc

) ∣∣∣∣ln( ω

ωc

)∣∣∣∣n . (6.27)

Figure 6.4(a) illustrates a system near to the Förster limit where we observe a re-

duction in the oscillations when logarithmic perturbation factor is decreased from
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Figure 6.4: Population at donor for J3(ω) Ohmic environment SDF with (a) V =
0.6 THz (b) V = 2.4 THz and (c) V = 1.5 THz. For all cases α = 1, l = 1.1, ωc = 3
THz, ε1 = ε2 = 1.5 THz, ε3 = 0, q = 0.01 and T = 300 K has been considered.

n=0 to n=-0.75. In fact, when n is reduced frequency of the coherent oscillations

have increased over time.

Futhermore, a system near to the Redfield limit indicates that variations in the

logarithmic factor critically govern the overall dynamics as shown in Figure 6.4(b)

despite the fact that in the Redfield limit system-site coupling strength is mini-

mal. As in the previous case, amount of observed quantum coherent dynamics

have been noticeably reduced in the strong site-site coupling regime, especially

when n=-0.75. We can corroborate that some oscillations have entirely dimin-

ished when comparing n=0 and n=-0.75 graphs. Moreover, we clearly observe

that oscillations are shifted to the right as we decrease the logarithmic factor. In

Figure 6.4(c), when the system operates in the intermediate coupling regime, we
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see a similar behaviour to Figure 6.4(a) where a decrease in logarithmic pertur-

bation factor has resulted in reducing the oscillatory dynamics. The most notable

characteristic of this figure is that each graph has the same oscillatory frequency

except for n=-0.75 graph. Due to the fact that decreased logarithmic factor (n=-

0.75) has reduced the overall system-bath coupling to a point where the quantum

master equation now operates closer to the Förster limit.

Therefore, in all three coupling regimes in Ohmic environments we observe

that in general, not only coherent oscillatory dynamics get reduced but also the

frequency of the oscillations are decreased as we decrease the logarithmic pertur-

bation factor.

This behaviour is clear in the Förster limit and the intermediate coupling

regime whereas in the Redfield limit environmental effects such as logarithmic

perturbations don’t play a significant role. Important fact to note here is the be-

haviour of the energy transfer when logarithmic perturbation factor is negative

in the intermediate coupling regime whereby an efficient transfer has been man-

ifested.

6.3.3 Comparison with full-polaron transformation

Finally, in an effort to compare the performance of full polaron transformation

based QME and the variational polaron transformation based QME, we plot Fig-

ure 6.5 using multisite full polaron transformation based QME where all param-

eters are equivalent to Figure 6.3. It is clearly evident that in the intermediate

coupling regime, all three graphs for case (a) looks identical for both theories.

This is due to the fact that both theories coincide in terms of bath correlation

functions in this regime.

Figure 6.3(b) and Figure 6.5(b) illustrate a configuration near to the Förster

limit and full polaron transformation based QME manifests an energy transfer
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with an absence of coherent oscillatory dynamics. It can be observed that in the

short term dynamics, an increment of the perturbation factor can slightly alter the

time it takes to reach the steady state population. Variational polaron transfor-

mation based QME not only reveals coherent dynamics but also indicates distin-

guishable effects from logarithmic perturbations in the quantum environment. In
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Figure 6.5: Population at D , A1 and A2 for J4(ω) super-Ohmic environment SDF
with (a) q=0.1 and V12 = V23 = 0.6 THz (b) q=0.5 and V12 = V23 = 6 THz ,
(c) q=0.2 and V12 = V23 = 9 THz. For all cases α = 3, l = 1.1, ωc = 3 THz,
ε12 = ε23 = 1.5 THz and T = 300 K has been considered.

the Redfield limit, we observe vastly contrasting results when comparing Figure

6.3(c) and Figure 6.5(c). While variational polaron transformation based QME in-

dicates high frequency oscillations, full polaron transformation based QME sim-

ulates an incoherent energy transfer. This is owing to the fact the bath correla-

tion function φ
xy
n (t) utilizes in full polaron theory diminishes in the variational
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polaron theory in the Redfield limit where it uses only φzz
n (t) bath correlation

function. The counter behaviour corroborates when examining φ
xy
n (t) and φzz

n (t)

functions where φ
xy
n (t) uses the term Fn(ω) and φzz

n (t) uses 1− Fn(ω) term.

Therefore, when comparing both polaron based theories, it is evident that

variational polaron transformation based QME performs substantially well in

capturing quantum coherent dynamics of systems in quantum environments, ex-

periencing logarithmic perturbations in all three coupling regimes when com-

pared to full polaron transformation based QME. While both theories perform

identically in the intermediate coupling regime, the performance of full polaron

theory in both Förster limit and Redfield limit is disappointing in terms of sim-

ulating coherent energy transfer dynamics. Another limitation of full polaron

theory is that in Ohmic environments, it suffers from well known infrared diver-

gence effect. Thus, it can only be utilized in super-Ohmic environments.

6.4 Summary and Conclusions

In summary, we have outlined the coherent energy transfer among three interact-

ing chromophores attached to quantum environments with logarithmic pertur-

bations utilizing a multichromophoric variational polaron transformation based

quantum master equation. We have specifically analysed the energy transfer

when the quantum system suffers from negative logarithmic perturbation fac-

tor, in Förster limit, Redfield limit, and the intermediate coupling regime for

both Ohmic and super-Ohmic environments. In what follows, we have compared

the performance of full polaron theory and variational theory in this multichro-

mophoric system to comprehend the most suitable theory to delineate energy

transport of aforementioned quantum systems.

We discovered that negative logarithmic perturbations could alter the coher-

ent dynamics in all three system-bath coupling regimes in super-Ohmic environ-
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ments. Larger negative perturbation values can reduce the oscillatory dynamics

and force the energy transport to the incoherent regime. Furthermore, an effi-

cient transfer has been manifested for more prominent negative perturbation fac-

tors near the Förster limit. The pattern of larger negative perturbation values

diminishing the coherent oscillatory dynamics was not confined to super-Ohmic

environments, in fact, Ohmic environment manifested the same behaviour. It is

also important to note that the time scale of the energy transfer has shifted right

when these logarithmic perturbations are present in the environment.

When comparing the full polaron theory and the variational theory, it was

evident that variational theory is capable of simulating underlying quantum co-

herence in the multichromophoric system in all three coupling regimes and is

superior to full polaron theory when simulating energy transport when systems

are linked to environments with logarithmic perturbations. In both Förster limit

and Redfield limit, full polaron theory manifested an incoherent energy trans-

fer due to incapabilities of grasping coherent behaviour from the existing bath

correlation function owing to its full polaron approximation.

In conclusion, the results obtained in this study are vital in apprehending en-

ergy transport in quantum environments that are slightly different from its origi-

nal form. We have delineated that it is possible to reduce the quantum coherence

of an energy transfer of a given system by introducing logarithmic perturbations

of negative values to attached quantum environments. Besides, we have mani-

fested the fact that there is a possibility of shifting the energy transport into the

incoherent regime by incrementing the negative logarithmic factor value, which

can be used in future studies given the requirement.



Chapter 7

Contributions and Future work

7.1 Summary of Contributions

This section outlines our research objectives, how the related research was carried

out and a summary of the outcomes of that research objective.

Research objective 1 - Analytical characterization of coherent resonance energy
transfer dynamics of a two level system coupled to ohmic-like environments
with full polaron transformation approach

Under our first research objective, we have analysed a two-level interacting donor-

acceptor pair in a disturbed quantum environment. Utilizing the combined sys-

tem Hamiltonians and the Liouville’s super operators, we proceeded to come

up with a quantum master equation based on second-order perturbation theory.

In order to, allow this quantum master equation to be applicable for both weak

and strong bath coupling regimes, we have employed full polaron transforma-

tion. Since this particular type of polaron transformation is only applicable for

super-ohmic environments without suffering infrared divergence effect, we have

analysed the coherent energy transfer dynamics of the interacting donor-acceptor

pair in such an environment. Furthermore, to divert the spectral density function

of the quantum environment from the standard ohmic function, we have inco-

parated positive powers of logarithmic factors which are innate in low frequency

113
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power series expansion of the spectral density.

Our results demonstrate that for larger system bath coupling strengths, full

polaron based quantum master equation is unable to provide accurate results

whereas for weaker system bath coupling strengths, it performs better. Further,

for a given system bath coupling strength, as logarithmic perturbations are in-

creasing, the damping characteristics of the coherent energy transfer are also in-

creasing. In addition, we show that smaller values of the Ohmicity parameter

can suffer severe distortions even for a small logarithmic perturbation. Doing

so, we show that full polaron transformation-based quantum master equation is

capable of undergoing infrared divergence even for a super Ohmic environment,

when higher orders logarithmic perturbations are present.

Research objective 2 - Investigating coherent resonance energy transfer using
a quantum master equation in variational polaron frame

For the second research objective, we have exploited an interacting pair of chro-

mophores attached to a quantum environment which is different from standard

sub ohmic, ohmic and super ohmic categorization of the spectral density func-

tions. We have considered that chromophores have two energy levels and ini-

tially all the energy is at the donor chromophore which we have pumped through

a laser pulse. Concomitant energy transfer has been studied utilizing a quantum

master equation derived using the variational polaron transformation function.

Coherent energy transfer dynamics were simulated by altering the ohmicity para-

mater, system-bath coupling strengths and the value of positive logarithmic fac-

tor in the environment.

Our results demonstrate that even for a relatively large bath coupling strength,

quantum coherence effects can be increased by introducing logarithmic perturba-

tions of the order of one and two in super-Ohmic environments. Moreover, for

particular values of the Ohmicity parameter, the effect of logarithmic perturba-
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tions is observed to be insignificant for the overall dynamics. In regard to Ohmic

environments, as logarithmic perturbations increase, damping characteristics of

the coherent transient dynamics also increase in general. It is also shown that,

having logarithmic perturbations of the order of one in an Ohmic environment

can result in a less efficient energy transfer for relatively larger system bath cou-

pling strengths.

Research objective 3 - Analysing coherent resonance energy transfer of a multi
site system under logarithmic perturbations utilizing full polaron based quan-
tum master equation

One of the more popular approximation methods in simulating the energy trans-

fer is the multi-site exciton full polaron transformation-based quantum master

equation which has shown the ability to interpolate between weak and strong

system bath coupling regimes. In our third research objective, we analysed the

energy transfer among three interacting chromophores employing above quan-

tum master equation when the quantum system in disturbed environment using

positive logarithmic factors. We also analysed the applicability of this quantum

master equation by gauging its performance by altering system-bath coupling

strengths in addition to the magnitude of the logarithmic factor.

Our results reveal that, when system bath coupling strength is larger the de-

rived multi-exciton full polaron transformation-based quantum master equation

is unable to simulate accurate dynamics where in some scenarios the well-known

phenomena of infrared divergence occur. On the other hand, when the system

bath coupling strength is weak, derived equation conveys better results. In addi-

tion, results show that smaller Ohmicity values can suffer from acute distortions

even for a smaller logarithmic perturbation. Also, we show that when logarith-

mic perturbations are increased, damping characteristics of the energy transfer

are also increased in general.
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Research objective 4 - Performance of variational transformation based quan-
tum master equation in terms of simulating coherent resonance energy transfer
in a multi exciton transport system under logarithmic perturbations

Our final research objective, we have considered a multi exciton system con-

sists of a donor chromophore and two acceptor chromophores, which we anal-

ysed through multisite variational polaron transformation based quantum mas-

ter equation. We once again coupled a disturbed quantum environment which

now undergoes negative logarithmic perturbations to this multi chromophoric

system. We then proceeded to simulate the coherent resonance energy transfer

dynamics in disturbed super ohmic and ohmic environments by varying a range

of system and bath specific parameters to identify the effects they enforce on the

said transfer.

Our results delineate that negative logarithmic perturbations can decrement

the quantum oscillatory dynamics throughout the energy transferring path. More

prominent negative logarithmic factors can force the energy transfer to the inco-

herent regime. We further demonstrated that this behavior is consistent in all

three coupling regimes in Ohmic and super-Ohmic environments. Our results

indicate that an efficient transfer can occur for more prominent negative loga-

rithmic factors near the Forster limit in super-Ohmic environments. Finally, we

compare the multichromophoric variants of full polaron-based quantum master

equation and the variational polaron-based quantum master equation. We find

that variational theory performs seamlessly in all three coupling regimes where

full-polaron theory suffers from its full-polaron approximation.

7.2 Suggestions for Future Work

This section presents feasible proposals for future explorations that can be ex-

tended based on the work presented in this thesis.
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Investigating the impact on various coherent initial conditions

Contemporary literature includes studies into various coherent initial conditions

such as shown in [46]. These studies discuss the initial state of the interested

quantum system to be a mix state where donor and acceptor chromophores share

the excited energy. In this thesis, we have assumed that initially, the donor chro-

mophore would contain all the energy which acts as a boundary condition for our

analysis. But the analysis where energy is shared between the interacting chro-

mophores, is essential since this scenario happens more often in photosynthesis

and RET based applications. Such a study would be interesting to see when the

quantum systems are coupled to environments with logarithmic perturbations of

positive and negative magnitudes.

Modelling the bath correlations in disturbed environments

The analysis we have presented in this thesis has assumed that donor and ac-

ceptor chromophores are attached to identical and independent baths. Such an

assumption is not typically valid when these interacting chromophores are phys-

ically in the proximity of each other. When relaxing this assumption, bath cor-

relations between the bath modes attached to donor and acceptor chromophores

impact the simulating energy transfer. Such bath correlations are studied in vari-

ous studies found in the literature [45, 50] but it would be very insightful to look

at such bath correlations when the bath is disturbed by logarithmic perturba-

tions. It will also be interesting to explore the coherent resonance energy transfer

dynamics when bath correlations are present.

Exploring the effect from the inhomogeneous term to overall dynamics

The quantum master equations based on second order perturbation theory in-

clude a homogeneous term as well as an inhomogeneous term [45]. Homoge-
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neous term mainly carries the larger portion of the dynamics mostly related to

system evolution and the inhomogeneous term consists of non-Markovian dy-

namics relate to energy dissipation and absorption. This thesis has studied dis-

turbed quantum environments and the energy transfer dynamics in such envi-

ronments utilizing only the homogeneous term in the quantum master equation

assuming the contribution of inhomogeneous term is minimal. But for an accu-

rate analysis, this term also should be considered. A future study on the contri-

bution of inhomogeneous term in disturbed environments would be interesting.

Investigating initial bath correlations’ impact on the energy transfer

Another assumption that we have made in this work is the fact that, at t=0, sys-

tem density matrix and the environmental density matrix could be separated.

Such an assumption is vital in deriving the quantum master equation using the

second-order perturbation theory. By relaxing this restriction, one can assess the

energy transfer dynamics of deviated quantum environments with exceptional

accuracy. This process may entail complex mathematical derivations with rea-

sonable assumptions, but such work would be important in full realization of

energy transfer in this area.

Comparison with presented results vs FRET theory

In this thesis, we have investigated logarithmic perturbations of positive and neg-

ative magnitudes and their impact on overall coherent resonance energy transfer

dynamics. Analyses performed were using variational and full polaron trans-

formation based quantum master equations. Another quantum master equation

which can simulate energy transfer dynamics, is FRET theory [1] which is equiv-

alent to when there is no polaron transformation applied. Even though, FRET

theory cannot capture coherent dynamics, such study could explore how devi-
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ated quantum environments can impact FRET rate of quantum, semi-classical

and classical systems.

Modelling logarithmic perturbations to induce them into the bath modes ex-
perimentally

Logarithmic perturbation factors used in this study are utilized to deviate the

spectral density function of quantum environments from the common catego-

rization of sub-ohmic, ohmic and super-ohmic environments. It has been shown

that, low frequency power series expansions of spectral density functions consist

of logarithmic terms of various orders [51]. Means of inducing these logarith-

mic perturbations externally would be a step towards future realization of appli-

cations which could use our theoretical framework. Such experiments can also

pave the way to explore how these perturbations can be enhanced, reduced and

controlled in potential applications.
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