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Abstract

Direct numerical simulations are performed for three incompressible turbulent boundary

layer (TBL) cases with di�erent streamwise pressure gradients, namely a zero pressure

gradient (ZPG), a mild adverse pressure gradient (mild APG), and a strong adverse

pressure gradient (strong APG) TBLs. The strong APG TBL can be characterized as

being at the verge of separation and its domain of interest is the self-similar region in the

�ow. In the present study, the various factors and structures in�uencing the skin friction

in TBLs are studied.

The contribution of the viscous e�ects and Reynolds shear stress to the skin friction

and their variation with the pressure gradient are computed using the RD identity, which

is based on the mean streamwise kinetic energy budget (Renard and Deck, 2016). With

increasing pressure gradient, the viscous term in the RD identity plays a smaller role, while

the contribution of the Reynolds shear stress increases. The Reynolds shear stress is the

dominant positive contributor to the skin friction for all the pressure gradient cases. As

the pressure gradient increases, the Reynolds shear stress contribution develops an outer

peak, which is dominant in the strong APG case and is located around the displacement

thickness height (y/δ1 = 1 or y/δΩ = 0.2), where δ1 is the displacement thickness and δΩ is

the boundary layer thickness. The dominant outer peak contribution from the Reynolds

shear stress around the displacement thickness height has also been captured by the FIK

identity (Fukagata et al., 2002), which, unlike the RD identity, is based on the mean

streamwise momentum budget.

The contribution of the velocity-vorticity correlations to the skin friction are computed

based on the YAHS identity presented by Yoon et al. (2016), which is based on the

mean vorticity equation. For all the pressure gradient cases, the contribution of the

advective vorticity transport term is negative, whereas the vortex stretching term provides

a positive contribution to the skin friction. The combined contribution of the advective

vorticity transport and the vortex stretching terms can be considered as the contribution

from the Reynolds shear stress with a constant wall-normal weight for all the pressure

gradient cases. When the �ow reaches the verge of separation in the strong APG TBL,

the combined contribution of these two terms also exhibits a dominant peak in the outer
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region around the height of 20% of boundary layer thickness (y/δΩ = 0.2).

The turbulent contribution of the intense topological structures (dissipative and vorti-

cal) and the intense Reynolds stress quadrant structures to the skin friction are computed

based on the Reynolds stress term in the RD identity. The intense structures of all the

types in the strong APG TBL are smaller in scale than the intense structures in the ZPG

TBL, which is evident from the reduction in their volume relative to the mean boundary

layer volume (VBL) and increase in their numbers. In the strong APG TBL, there is a

greater propensity for detached intense structures than in the ZPG TBL. In the strong

APG TBL, the intense structures are less streamwise elongated than the structures in the

ZPG TBL. With increasing pressure gradient, the fractional contribution of the intense

structures to the skin friction decreases, which is consistent with the reduction in their

volume relative to VBL. The contribution of all the intense structures to the skin friction

in the ZPG TBL is from a broader part of the boundary layer, whereas, in the strong

APG TBL, their contribution is from a dominant outer peak. The outer peak in the

contribution of the intense structures in the strong APG TBL is also located around the

displacement thickness height (y/δ1 = 1 or y/δΩ = 0.2). This shows that the vortical

motions and turbulent mixing in the outer layer become more important with increasing

pressure gradient, as it pertains to the contribution of the Reynolds shear stress and its

negative wall-normal gradient to the skin friction.
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The task is, not so much to see what no one has yet seen;

but to think what nobody has yet thought, about that

which everybody sees.

�Erwin Schrödinger

Chapter 1

Introduction and Background

The time-line of evolution of the subject �uid mechanics starts from liquid statics, followed

by �uid kinematics and moves to modern �uid dynamics. The problem of turbulence

has intrigued mankind for several centuries. In the 15th century, Leonardo da Vinci

(1452-1519), a great experimentalist who pioneered �ow visualization and is known for

his famous sketches of turbulent �ows, described turbulence decomposition as (Lumley,

1992): �Observe the motion of the surface of the water, which resembles that of hair,

which has two motions, of which one is caused by the weight of the hair, the other by the

direction of the curls; thus the water has eddying motions, one part of which is due to the

principal current, the other to the random and reverse motion.�

It was not until the 19th century that this verbal description of �uid motions was

transformed to the language of mathematics. Claude-Louis Navier (1785-1836) and Lord

George Gabriel Stokes (1819-1903) successfully formulated the governing equations for

real �uid motions by considering the �uid as a continuous media. These equations are fa-

mously called as the Navier-Stokes (N-S) equations. Although the N-S equations describe

the �uid �ows well, due to its non-linear nature, solving turbulence problems remains dif-

�cult. Richard Feynman, a famous theoretical physicist and a Nobel Laureate, once said

�Turbulence is the most important unsolved problem of classical physics�, which remains

true until this day.

In the late 19th century, one of the seminal contributions of Osborne Reynolds (1842�1912)

was the study of the �ow transition from the laminar state to the turbulent state in pipe

�ow experiments (Reynolds, 1883; Anderson Jr, 2010). This led to the formulation of the

famous non-dimensional quantity called the Reynolds number. He also made a break-

through in calculating the distribution of the �ow variables throughout a turbulent �ow

�eld in detail. Even though a turbulent �ow is unsteady at any given point, Reynolds

postulated that if a �ow variable is taken a time average for a su�cient interval of time,

that time average would be a steady value. This theory is commonly referred to as the

1



Reynolds decomposition, which states that each variable in a turbulent �ow is locally

composed of its time mean and its time wise �uctuating component (Reynolds, 1895).

Introducing the Reynolds decomposition into the N-S equations and taking the time av-

erage transformed them into the well-known Reynolds-averaged Navier-Stokes (RANS)

equations for turbulent �ows.

However, the RANS equations are not without problems. In the process of Reynolds

averaging, new unknown variables, namely the Reynolds stresses, are introduced in the

RANS equations and this leads to the turbulence �closure problem� as there are more

unknowns than the equations. This problem gave rise to the development of di�erent

statistical turbulence models. Despite the formulation of the RANS equations a century

ago, it is a hard fact that the researchers are still trying to �nd the best and most

appropriate closure model for turbulent �ows (Marusic and Monty, 2019).

Complexity involved in �nding a solution to the turbulent �ows is due to the multi-

scale nature of turbulence, where a range of spatial and temporal scales coexist in the

�ow, all interacting with one another. The idea of energy cascade from the largest eddies

to the smaller scales was introduced by Richardson (1922), who is known for his rhyming

verse �Big whorls have little whorls, Which feed on their velocity; And little whorls have

lesser whorls, And so on to viscosity�. In 1941, one of the signi�cant achievements in the

study of turbulence came from Kolmogorov (1941), who quanti�ed the self-similar energy

cascade for isotropic turbulence, based on the energy conservation arguments. Kolmogorov

(1941) showed that the energy cascades from the inertial scale of the �ow to the viscous

length scale (Kolmogorov scale η) at which the kinetic energy is �nally dissipated into

internal energy (Pope, 2000; Jiménez, 2012). He showed that the characteristic length

(η), time (τη) and velocity scales (uη) of the smallest turbulent motions are η = (ν3/ε)1/4,

τη = (ν/ε)1/2 and uη = (νε)1/4, respectively, where ν is the kinematic viscosity and ε is

the rate of energy transfer. A detailed history and listing of some of the key developments

in turbulence research are available in Davidson et al. (2011).

The study of turbulence becomes even more complex when the �ow is con�ned by walls

as it introduces new length scales and essentially changes the nature of turbulence itself

(Smits and Marusic, 2013). This change takes place predominantly in a thin layer near the

wall called the boundary layer. Boundary layer study has tremendous importance in many

practical industrial applications. For instance, the energy loss in transporting oil through

pipelines, and the drag force acting on automobiles, planes and ships depend on the

behaviour of the turbulent eddies in the near-wall region. The turbulent boundary layer

(TBL) accounts for the majority of the drag produced in these engineering applications.

In order to overcome the drag and move things around, engines and pumps are employed,

which results in burning of fuel and emission of carbon dioxide in the process. Therefore,
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an in-depth understanding of the mechanisms associated with the transport of mass,

momentum and heat in wall-bounded turbulent �ows is essential to predict and control

drag, mixing rates and heat transfer experienced in the engineering applications.

In many engineering devices, TBLs are subjected to adverse streamwise pressure gra-

dients. The e�ciency of these devices is dependent on the TBL remaining attached to the

curved surfaces. Adverse pressure gradient turbulent boundary layers (APG TBLs) are

found in many aerodynamic devices such as internal expanding duct �ows, and external

�ows over the diverging part of curved surfaces like turbine blades, the leeward side of

aerofoil sections and di�users. The separation of the TBLs in these practical �ows reduces

the e�ciency and increases the operational cost of these engineering systems. The study

of TBLs under the in�uence of adverse pressure gradient (APG) began as early as the

1950s, with the wind tunnel experiments by Clauser (1954). It still remains a challenging

problem to understand the �uid physics of the onset of separation and subsequent reat-

tachment of TBLs. A large mean velocity defect develops in a TBL when it is subjected

to the in�uence of APG. In APG TBLs, the mean shear rates in the outer region are

not insigni�cant when compared to those in the near-wall region. With increasing pres-

sure gradient, the importance of the viscous forces in the near-wall region decreases. In

contrast to the canonical zero pressure gradient turbulent �ows, the turbulence activity

reduces in the near-wall region and the outer layer plays a more important role as the ad-

verse pressure gradient increases (Skåre and Krogstad, 1994; Na and Moin, 1998). Skåre

and Krogstad (1994) observed that the peak of the turbulent stresses in the outer region

scales linearly with the non-dimensional pressure gradient. However, our understanding

of the in�uence of the adverse pressure gradient on the coherent structures in the TBLs

is still limited.

When information-limited two-dimensional planar data, like particle image velocime-

try (PIV) measurements, are used to study the spatial extent and orientation of coherent

structures, the results and deductions obtained may be adversely a�ected by the lack of

information from the third dimension (Soria et al., 2016). Direct numerical simulations

(DNSs) overcome this information-limit and play a vital role in improving our understand-

ing of wall-bounded �ows by providing volumetric information of the full three-dimensional

�ow �elds. In DNSs, all the important turbulent scales are resolved and quanti�ed with a

spatial and temporal resolution that cannot be matched by experiments. In the pioneering

DNS of a turbulent channel �ow by Kim et al. (1987), the turbulent statistical proper-

ties were studied without using any subgrid model at a Reynolds number of 3300, which

was de�ned based on the channel half-width and mean centreline velocity. Since then,

the advancement in computational power has enabled us to investigate the structures in

wall-bounded �ows at higher Reynolds numbers (Jiménez and Moser, 2007). These high
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�delity simulations are being used to study the geometrical characteristics, arrangement

and evolution of the spatially and temporally coherent structures. DNSs help in the de-

velopment of computationally less demanding lower order models and test the stability of

these structures to perturbations and control mechanisms.

Turbulent �ows are usually studied from a statistical perspective like using the one-

point and two-point statistics. The other approach is by investigating the properties of

the structures in the turbulent �ows. There are di�erent types of coherent structures and

eddying motions coexisting in a range of scales in turbulent �ows and these structures

are reviewed extensively in Robinson (1991); Adrian (2007); Jiménez (2012). Some of the

brilliant and noteworthy contributions in the identi�cation of the coherent structures are

the experimental �ow visualisations of �uid sweeps and ejections by Corino and Brodkey

(1969), hairpin vortices by Head and Bandyopadhyay (1981), and uniform momentum

zones (UMZs) by Meinhart and Adrian (1995); Adrian et al. (2000). Many of the past

studies, as early as the investigation by Kline et al. (1967) in the 1960s, have focused on

the analysis of the statistical properties of the Reynolds stresses. Kline et al. (1967) per-

formed �ow-visualisation and quantitative studies of turbulent boundary layers in a water

channel and they found the presence of low-speed streaks in the regions close to the wall.

They also showed that these streaks interacted with the outer part of the �ow through

a process comprising of a lift-up, then a sudden oscillation followed by a bursting and

an ejection. Then, Kim et al. (1971) showed that the process of most of the turbulence

production in the near-wall region occurs during the bursting events. In order to iden-

tify the structures involved in these phenomena, various conditional-sampling techniques

were developed like the u′-level detection technique (Lu and Willmarth, 1973), the VITA

(variable-interval time-averaged) technique (Blackwelder and Kaplan, 1976) and the VISA

(variable-interval space-averaged) technique (Kim, 1985). One of the popular methods to

classify the �ow �eld is the quadrant analysis of Wallace et al. (1972); Willmarth and

Lu (1972), which is based on the streamwise and wall-normal velocity �uctuations. After

studying di�erent techniques, Bogard and Tiederman (1986) concluded that the quadrant

analysis of the velocity �uctuations gave the best balance between detection probability

and false positives of these events. One of the types of coherent structures identi�ed in

turbulent �ows is the intense structures. The intense structures can be generally de�ned

as spatially coherent regions in the �ow whose constituent points carry a higher magnitude

of certain quantities than a threshold value. The intense Reynolds stress structures are

of particular interest because they contribute to the majority of wall-normal momentum

�ux (Lozano-Durán et al., 2012). The detailed reviews and discussions of the quadrant

analysis to investigate the sweep and ejection events in canonical wall-bounded turbulent

�ows are available in Robinson (1991); Lozano-Durán et al. (2012); Jiménez (2013).
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Another way of classifying the �ow to identify the structures is the topological method-

ology introduced by Chong et al. (1990); Soria and Cantwell (1994); Chong et al. (1998),

which is based on the invariants of the velocity gradient tensor Aij (VGT). For incom-

pressible turbulent �ows, as PA = 0 from continuity, the (PA,QA,RA)-space reduces to the

two-dimensional (RA,QA)-plane, where PA, QA, RA are the �rst, second and third invari-

ants of Aij, respectively, and DA is the discriminant of Aij. According to the terminology

of Chong et al. (1990), the four possible local topologies in the (RA,QA)-plane are unstable

focus/contracting (UF/C), stable focus/stretching (SF/S), unstable node/saddle/saddle

(USN/S/S), and stable node/saddle/saddle (SN/S/S). In the (RA,QA)-plane, regions in

the �ow �eld dominated by strain-rate are the local topologies with negative DA values

(DA < 0), while vortex-like structures in the �ow �eld have the local topologies with

positive DA values (DA > 0). The topological methodology have been used in many of

the past studies to investigate turbulent �ows like the study of the dissipating motions in

incompressible mixing layer by Soria et al. (1994), turbulent channel �ow by Blackburn

et al. (1996), homogeneous isotropic turbulence by Mart�n et al. (1998); Ooi et al. (1999),

and low Reynolds number turbulent boundary layer by Chacin and Cantwell (2000).

To quantify the various factors contributing to the skin friction, Fukagata et al. (2002)

introduced a theoretical decomposition based on the mean streamwise momentum equa-

tion. Following it, various decompositions based on di�erent forms of the N-S equations

were presented to investigate the mechanism of mean skin friction generation in turbulent

�ows (Mehdi and White, 2011; Mehdi et al., 2014; Renard and Deck, 2016; Yoon et al.,

2016). An in-depth understanding of the factors and structures in�uencing the wall shear

in TBLs is essential for the development of better �ow control techniques and the design of

e�cient drag reduction devices, which will improve the performance of many engineering

applications. Hence, in the present study, the contribution of the viscous e�ects, Reynolds

stress, vortical motions and coherent structures to the wall shear are investigated using

the skin friction decompositions presented by Renard and Deck (2016); Fukagata et al.

(2002); Yoon et al. (2016). More details of these decompositions and their components

are discussed in chapter 3. Direct numerical simulations are performed to address the

following research questions.

� What is the contribution of the Reynolds stress and viscous e�ects to the skin friction

and the role of pressure gradient in it?

� What is the contribution of the velocity-vorticity correlations to the skin friction

and their variation with the pressure gradient?

� What is the turbulent contribution of the intense structures to the skin friction?
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1.1 Organisation of the thesis

The present thesis is organized as follows. In chapter 2, brief details of the direct numeri-

cal simulations, various boundary conditions used in the simulations and the comparison

of the characteristics of the turbulent boundary layer �ows used in the current study are

presented. In chapter 3, brief details of the basis of the skin friction decompositions and

their components are presented. In chapter 4, the contribution of the Reynolds shear

stress and viscous e�ects to the skin friction in incompressible turbulent boundary layers

and the role of pressure gradient in it are analysed. Their contributions to the skin friction

are computed based on the decomposition presented by Renard and Deck (2016), which

is referred to as the RD identity. Chapter 5 reports on the contribution of the velocity-

vorticity correlations to the skin friction and their variation with the streamwise pressure

gradient. The contribution of the velocity-vorticity correlations to the skin friction coe�-

cient are computed based on the decomposition presented by Yoon et al. (2016), which is

referred to as the YAHS identity. In chapter 6, the contribution of the intense structures

to the skin friction are analysed. The intense structures considered in the present study

are intense topological structures (dissipative and vortical) and intense Reynolds stress

structures. These intense structures are extracted from statistically independent velocity

�elds and their geometric properties are also investigated. The contribution from these

coherent structures to the skin friction is quanti�ed by using the Reynolds stress term in

the RD identity. Finally, conclusions are presented.
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Be the change that you want to see in the world.

�Mahatma Gandhi

Chapter 2

Numerical details

2.1 The numerical method

Direct numerical simulations are performed for three turbulent boundary layer cases with

di�erent pressure gradients, namely a zero pressure gradient (ZPG), a mild adverse pres-

sure gradient (mild APG), and a strong adverse pressure gradient (strong APG) TBLs.

An in-house DNS code solves the incompressible Navier-Stokes equation for pressure and

velocity �elds in Cartesian coordinates with the �ow directions as streamwise (x), wall-

normal (y) and spanwise (z). The instantaneous velocity components in these directions

are denoted by (u, v, w). The mean velocity components are denoted by (〈u〉, 〈v〉, 〈w〉)
and the corresponding �uctuating components are denoted by (u′, v′, w′). The instanta-

neous vorticity components are represented by (Ωx,Ωy,Ωz) with the corresponding mean

and �uctuating components given by (〈Ωx〉, 〈Ωy〉, 〈Ωz〉) and (ω′x, ω
′
y, ω

′
z), respectively.

〈(·)〉 represents quantities averaged in time and the homogeneous spanwise direction and

(·)′ denotes �uctuating quantities.

The �rst version of the code developed by Simens et al. (2009); Simens (2008) used

only Message Passing Interface (MPI) as a parallelisation technique and had one compu-

tational box. It was subsequently optimized by Borrell et al. (2013) by adding OpenMP

(Open Multi-Processing) in addition to the MPI Parallelisation. It used two boundary

layer boxes to achieve a higher Reynolds number and considered boundary layer �ow

with zero pressure gradient (ZPG). The current version of the code, which uses Hybrid

OpenMP/MPI parallelisation, has one computational box and adverse pressure gradient

is applied in the domain (Kitsios et al., 2016, 2017). The governing equations are solved

by using the fractional step method as suggested in Harlow and Welch (1965) and in Perot

(1993). The grid is staggered in x and y directions but not in the z direction. Compact

�nite di�erence is used for spatial discretization in x and y directions (Lele, 1992). Fourier

decomposition is used in the spanwise direction. Time stepping is achieved using a 3-step
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Runge Kutta method (Simens, 2008). The density (ρ = 1) and kinematic viscosity (ν)

are taken as constants.

The computational domain is decomposed into yz planes and each node contains a

number of these cross-�ow planes. The OpenMP threads in these nodes further split the

planes into sub-domains. In the cross-�ow plane con�guration, the operations in the y

and z directions are performed. The derivatives and interpolations in the x direction are

computed by applying a global transpose to the variables. After the transpose, each node

contains pencils extending in the streamwise direction. Once the streamwise operations

are �nished, the results are transposed back to the cross-�ow plane con�guration. Full

detail of the DNS code, plane to pencil domain decomposition and the parallelisation

techniques used can be found in Sillero (2014); Borrell (2015); Borrell et al. (2013).

2.2 Boundary conditions used in the simulations

The current computational domain is a three-dimensional rectangular box with a no slip

boundary condition on the bottom surface. The required pressure gradient is applied in

the domain by specifying the wall-normal far-�eld velocity (v∞) as shown in �gure 2.1

for the three TBL cases. The domain of interest (DoI) for each TBL is highlighted with

the markers. The spanwise vorticity (Ωz) is zero in the far-�eld. Further details of the

far-�eld boundary condition are presented in Kitsios et al. (2017, 2016).

The in�ow boundary condition is obtained by recycling and mapping a yz plane (cross-

plane) from a downstream position to the in�ow (Kitsios et al., 2016, 2017). Mapping

is essential because of the growth of the TBL in the wall-normal direction as it develops

in the streamwise direction. For the mild APG and strong APG TBLs, the wall-normal

far-�eld velocity is changed from suction (v∞ > 0, �uid leaving the domain) to blowing

(v∞ < 0, �uid entering the domain) close to the outlet. Blowing is required to reduce

the number of instantaneous reverse �ow events at the out�ow and to ensure numerical

stability of the out�ow boundary condition. Triangles on the left side of the �gure 2.1

represent the position of the recycling plane for the respective TBL cases. Similarly, the

triangles on the right side of the �gure represent the position from which blowing starts

for the respective TBL cases. Periodic boundary conditions are applied in the spanwise

direction. The out�ow is a convective boundary condition (Sillero, 2014; Simens, 2008)

given by
∂u

∂t
+ 〈u〉∞ .

∂u

∂x
= 0, (2.1)

where u is the instantaneous velocity and t is the time. The schematic of the streamwise

wall-normal domain of the strong APG TBL with an illustration of the far�eld boundary

condition is given in �gure 2.2.
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Figure 2.1: Far�eld wall-normal velocity (v∞) boundary condition for the three pressure

gradient cases. xI is the position of the inlet plane. β (non-dimensional streamwise pres-

sure gradient), δ1 (displacement thickness), Reδ1 (Reynolds number based on displacement

thickness), and Ue (reference velocity) are de�ned in the section 2.3. Triangles in the left

side of the �gure represent the position of the recycling plane for the respective TBL cases,

while the triangles in the right side represent the position from which blowing starts.
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Figure 2.2: Schematic of the strong APG TBL.
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2.3 Classi�cation of the �ows and the de�nition of the

reference scales

The three turbulent boundary layer �ows with di�erent streamwise pressure gradients

are classi�ed based on the non-dimensional pressure gradient (β) as follows: ZPG - zero

pressure gradient (β=0), mild APG (β=1) and strong APG (β=39). The non-dimensional

pressure gradient is de�ned as

β =
δ1

uτ 2

Pe,x
ρ

= δ1
Pe,x
τw

, (2.2)

where uτ =
√
τw/ρ is the friction velocity, δ1 is the displacement thickness, Pe,x is the

far-�eld streamwise pressure gradient, ρ is the density, and τw is the mean wall shear

stress.

For the mild APG and strong APG TBLs, as the wall-normal velocity is speci�ed

in the far-�eld boundary condition, ∂v∞/∂x has a negative value. In order to have zero

spanwise vorticity (Ωz) in the far-�eld boundary, ∂u∞/∂y must also have a negative value.

This means that the pro�le of mean streamwise velocity (〈u〉) has a maximum in the y

direction and it does not approach a constant value. Therefore, the following de�nitions

of reference velocity (Ue), displacement thickness (δ1) and momentum thickness (δ2) are

used.

Based on the de�nition of Lighthill (1963), the reference velocity (Ue) used in the

simulations is given as

Ue(x) = UΩ(x, δΩ), (2.3)

where

UΩ(x, y) = −
∫ y

0

〈Ωz〉(x, ỹ) dỹ, (2.4)

〈Ωz〉 is the mean spanwise vorticity, and δΩ is the wall-normal position where 〈Ωz〉 is
0.2% of the mean vorticity at the wall (Kitsios et al., 2017).

Based on the de�nition of Spalart and Watmu� (1993), the displacement thickness

(δ1) and the momentum thickness (δ2) are given as

δ1(x) =
−1

Ue

∫ δΩ

0

y〈Ωz〉(x, y)dy, (2.5)

and

δ2(x) =
−2

U2
e

∫ δΩ

0

yUΩ〈Ωz〉(x, y)dy − δ1(x). (2.6)

The �ow dynamics of APG TBLs depend on the local environment and also on the �ow

history. The pressure forces and the shear stresses acting on a boundary layer are minute
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ZPG Mild APG Strong APG

Nominal β 0 1 39

Nx 8193 8193 8193

Ny 315 500 1000

Nz 1362 1362 1362

Lx/δ1(x?) 480 345 303

Ly/δ1(x?) 22.7 29.8 73.4

Lz/δ1(x?) 80.1 57.6 50.7

∆x/δ1(x?) 0.0585 0.0421 0.0370

∆ywall/δ1(x?) 1.53 ×10−3 1.10 ×10−3 9.71 ×10−4

∆y∞/δ1(x?) 0.0992 0.0714 0.254

∆z/δ1(x?) 0.0585 0.0421 0.0370

Reδ1 range in DoI 4800→5280 4800→5280 22200→28800

Lx,DoI/δ1(x?) 82.0 20.0 37.0

Table 2.1: Numerical details of the DNS of the three pressure gradient cases: number of

collocated grid points in the streamwise (Nx) and wall-normal (Ny) directions; number of

spanwise Fourier modes after de-aliasing (Nz); domain size Lx, Ly and Lz in x, y and z

directions respectively; uniform streamwise (∆x) and spanwise grid spacing (∆z); wall-

normal grid spacing at the wall (∆ywall) and at the far-�eld boundary (∆y∞); Reynolds

number based on displacement thickness (Reδ1) in the domain of interest (DoI); and

streamwise extent of the DoI (Lx,DoI). δ1 is the displacement thickness and x? is the

streamwise position where Reδ1 = 4800. Full details of the DNS of the three TBL cases

are presented in Kitsios et al. (2016, 2017).
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in nature and because of this, the boundary layer cannot react quickly to the changing

environment (Clauser, 1954). This makes the dynamical properties of the boundary layer

dependent on the �ow history and on the speci�c pressure gradient distribution. In order

to minimise the in�uence of these history e�ects, a self-similar APG TBL is studied. A

TBL is considered self-similar if each of the terms in the governing equations has the

same proportionality with the streamwise position (Mellor and Gibson, 1966; George and

Castillo, 1993). Based on the de�nition in Mellor and Gibson (1966), the non-dimensional

pressure gradient β must be independent of the streamwise position in a self-similar TBL.

In the limiting case of zero mean wall shear stress, β → ∞ and the TBL is at a point

immediately prior to separation (Stratford, 1959; Townsend, 1960). In the self-similar

region of the �ow, statistical pro�les at various streamwise positions collapse on to a

single set of pro�les under the appropriate length and velocity scaling (Stratford, 1959;

Mellor, 1966; Mellor and Gibson, 1966; George and Castillo, 1993; Skåre and Krogstad,

1994; Kitsios et al., 2016, 2017). In the present strong APG �ow, this self-similar �ow is

only possible in the domain of interest (DoI), where β has an average value of 39 (Kitsios

et al., 2017). The β = 39 case can be characterized as being at the verge of separation as

the wall shear stress approaches zero. The conditions of self-similarity and the magnitude

of the similarity coe�cients within the DoI of the TBLs are explained comprehensively in

Kitsios et al. (2017, 2016). As shown in �gure 2.3a, within the DoI, the Reynolds number

based on displacement thickness (Reδ1) varies from 22,200 to 28,800 for the strong APG

case, where Reδ1 = Ueδ1/ν. Within DoI of the ZPG TBL, Reδ1 varies from 4,800 to 5,280.

The self-similar region of the mild APG TBL spans over a larger range of Reδ1 (Kitsios

et al., 2016). But, it is chosen to span over the same range of Reδ1 as that of the ZPG

TBL. This is done to reduce the e�ects of the Reynolds number and isolate the in�uence

of the pressure gradient (Kitsios et al., 2017).

The numerical details of the simulations are given in Table 2.1. Figure 2.4a shows the

displacement thickness, Figure 2.4b shows the shape factor (H = δ1/δ2), and Figure 2.4c

shows δΩ, where δΩ is the boundary-layer thickness or the wall-normal position at which

the mean spanwise vorticity (〈Ωz〉) is 0.2% of the mean vorticity at the wall. x? is the

streamwise position where Reδ1 = 4800, δ1(x?) is the displacement thickness at x?, and xI
is the location of the inlet plane. Figures 2.3a to 2.3c refer to the Reynolds number based

on displacement thickness, momentum thickness (Reδ2 = Ueδ2/ν), and δΩ based Reynolds

number (ReδΩ = UeδΩ/ν), respectively. The streamwise variation of the reference velocity

(Ue), wall shear stress (τw), and skin friction coe�cient (Cf = 2τw/ρU
2
e ) are given in

�gures 2.5a to 2.5c, respectively. For all the three cases, the respective DoIs are highlighted

with the markers in �gures 2.3 to 2.5. To compare the three TBL cases in these �gures,

the independent variable is taken as (x− x?)/δ1(x?). The independent axis is shifted by
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Figure 2.3: (a) Displacement thickness based Reynolds number (Reδ1); (b) momentum

thickness based Reynolds number (Reδ2); (c) δΩ based Reynolds number (ReδΩ); for each

case of β and their respective DoI is highlighted with the markers. x? is the streamwise

position where Reδ1 = 4800.
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Figure 2.4: (a) Displacement thickness (δ1); (b) shape factor (H = δ1/δ2), where δ2 is the

momentum thickness; (c) δΩ, where δΩ is the boundary-layer thickness or the wall-normal

position at which the mean spanwise vorticity (〈Ωz〉) is 0.2% of the mean vorticity at

the wall; (d) momentum thickness (δ2); for each case of β and their respective DoI is

highlighted with the markers. x? is the streamwise position where Reδ1 = 4800.
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Figure 2.5: (a) Reference velocity (Ue); (b) wall shear stress (τw); (c) skin friction coe�-

cient (Cf ); for each case of β and their respective DoI is highlighted with the markers. x?
is the streamwise position where Reδ1 = 4800.
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x? to make sure that Reδ1 = 4800 at the origin for all the TBL cases. Full details of the

DNS of the three TBL cases are presented in Kitsios et al. (2016, 2017) with the data

of the statistical properties and turbulent kinetic energy budgets available in Soria et al.

(2019).

2.4 Comparison of the TBL �ow characteristics

As illustrated in �gure 2.4, with increasing pressure gradient, the boundary layer expands

more rapidly and the skin friction coe�cient reduces and approaches zero in the strong

APG TBL. This is also consistent with the reducing values of the wall shear stress and

∂〈u〉/∂y at the wall illustrated in �gures 2.5b and 2.6b, respectively. The pro�les of the

mean streamwise velocity (〈u〉), ∂〈u〉/∂y and ∂2〈u〉/∂y are illustrated in �gure 2.6. The

pro�les are non-dimensionalised by the local values of the reference velocity (Ue) and

the boundary layer thickness (δΩ). The pro�les are streamwise averaged in the scaled

coordinates within the DoI for each TBL case. The strong APG TBL has two in�ection

points in the pro�le of 〈u〉, one in the inner region and another at the approximate height

of the displacement thickness (y = δ1 or y = 0.2δΩ). The inner region is de�ned as

y/δ1 < 10−1 or y/δΩ < 10−2 (Pope, 2000) and the outer region is de�ned as y/δ1 > 10−1

or y/δΩ > 10−2.

The pro�les of the Reynolds stresses and the wall-normal gradient of 〈u′v′〉 are shown
in �gures 2.7a to 2.7e, respectively. For the ZPG and mild APG TBLs, the Reynolds

stresses 〈u′u′〉 and 〈w′w′〉 exhibit an inner peak. For all the TBL cases, no inner peak

is seen in the pro�les of 〈u′v′〉 and 〈v′v′〉. For the mild APG and strong APG TBLs,

an outer peak is present for all the Reynolds stresses which becomes more dominant as

the pressure gradient increases. For the strong APG TBL, the outer peak of all of the

Reynolds stresses is present around the height of y = δ1 (y = 0.2δΩ), which coincides with

the location of the outer in�ection point in the mean streamwise velocity pro�le as shown

in �gure 2.6a. Similarly, for the mild APG TBL, the outer peaks of the Reynolds stresses

located at the approximate height of y = 1.3δ1 (y = 0.35δΩ) also coincides with the outer

in�ection point in the mean streamwise velocity (〈u〉).
In incompressible TBL �ows, turbulent mixing and momentum transfer are related to

∂〈u′v′〉/∂y. All the three TBLs have an inner peak in the pro�le of −∂〈u′v′〉/∂y as illus-

trated in �gure 2.7e, which decreases with the increasing pressure gradient. When adverse

pressure gradient is applied in the mild APG TBL, an outer peak grows in −∂〈u′v′〉/∂y
and it continues to grow in the strong APG TBL as illustrated in �gure 2.7e. This is

consistent with the narrowing of the outer peak of the Reynolds shear stress (〈u′v′〉) in
the strong APG TBL as shown in �gure 2.7d.
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Figure 2.6: Variation of the (a) mean streamwise velocity 〈u〉, (b) wall-normal gradient of

〈u〉, and (c) ∂2〈u〉/∂y2 with β. The pro�les are averaged in streamwise direction within

DoI and are non-dimensionalised by δΩ and Ue.

17



Figure 2.8 shows the instantaneous visualisation of regions of intense Reynolds stress

in the entire �ow domain of the TBLs. The isosurfaces correspond to the values of

±u′v′/Ue2 = 0.006, 0.0084 and 0.016 for the ZPG, mild APG and strong APG TBLs,

respectively. The magnitude of each of these values is 4 times the respective peak of the

Reynolds shear stress 〈u′v′〉 shown in �gure 2.7d. The �ow is from bottom-left to top-

right as denoted by the arrow. The structures are coloured based on the distance from

the wall (y/δΩ(xI)). Figure 2.8 gives a qualitative indication of the di�erences in the size

and complexity of the structures in the three TBLs. This �gure clearly shows that more

structures are found farther from the wall with increasing pressure gradient. This is also

consistent with the rapid expansion of the boundary layer in the wall-normal direction

with increasing pressure gradient as shown in �gure 2.4c.

The turbulent kinetic energy budget of the TBLs is given by

M+ Z + T + P + V +D = 0, (2.7)

whereM is the mean convection, Z is the pressure transport, T is the turbulent transport,

P is the production, V is the viscous di�usion, and D is the pseudo-dissipation. As the

TBL �ows are statistically steady, the time derivatives are zero. Each of these budget

terms are de�ned as

M = −∂〈uj〉
∂E

∂xj
, (2.8)

Z = −∂〈p
′u′i〉

∂xi
, (2.9)

T = −0.5
∂〈u′iu′iu′j〉
∂xj

, (2.10)

P = −〈u′iu′j〉
∂〈ui〉
∂xj

, (2.11)

D = −ν
〈∂u′i
∂xj

∂u′i
∂xj

〉
, (2.12)

and

V = ν
∂2E

∂xj2
. (2.13)

E is the turbulent kinetic energy given by

E =
1

2
〈u′ku′k〉. (2.14)

The kinetic energy budget pro�les are streamwise averaged in the scaled coordinated

within the DoI for each TBL as shown in �gure 2.9. In the strong APG TBL, the inner
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and outer peaks of the turbulent production (P) coincide with the respective in�ection

point in the pro�le of the mean streamwise velocity shown in �gure 2.6a. For the strong

APG TBL in �gure 2.9c, the production (P) and pseudo-dissipation (D) has an outer

peak around the height of y = δ1 (y = 0.2δΩ), which shows that the turbulent kinetic

energy produced in the outer region is also locally dissipated. In the case of the ZPG TBL,

the turbulent production has an inner peak without an outer peak. For the mild APG

and strong APG TBL, both inner and outer peaks are present in the production and the

outer peak becomes more evident with increasing pressure gradient. For the strong APG

TBL, the outer in�ection point in the mean streamwise velocity, the outer peaks of the

Reynolds stresses, and the outer peaks of production and pseudo-dissipation coincide in

the outer region around the height of y = δ1 (y = 0.2δΩ). Comparison of the momentum

terms, two-point correlations, and streamwise velocity spectra for the three TBL cases are

presented in Kitsios et al. (2017, 2016).
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Figure 2.7: Variation of the Reynolds stress (a) 〈u′u′〉, (b) 〈v′v′〉, (c) 〈w′w′〉, (d) 〈u′v′〉,
and (e) wall-normal gradient of 〈u′v′〉 with β. The pro�les are averaged in streamwise

direction within DoI and are non-dimensionalised by δΩ and Ue.
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Figure 2.8: Instantaneous visualisation of regions of intense Reynolds stress in the entire

�ow domain of the TBLs. The isosurfaces correspond to the values of ±u′v′/Ue2 = 0.006,

0.0084 and 0.016 for the ZPG, mild APG and strong APG TBLs, respectively. The

magnitude of these values is 4 times the respective peak of the Reynolds shear stress

〈u′v′〉 shown in �gure 2.7d. The �ow is from bottom-left to top-right as denoted by the

arrow. The structures are coloured based on the distance from the wall.
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Figure 2.9: The kinetic energy budget pro�les for (a) ZPG, (b) mild APG and (c) strong

APG TBLs. The pro�les are averaged in streamwise direction within DoI and are non-

dimensionalised by δΩ and Ue. The kinetic energy budget terms are de�ned in Equa-

tions (2.8) to (2.13).
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Not only is the Universe stranger than we think, it is

stranger than we can think.

�Werner Heisenberg

Chapter 3

Decomposition of the skin friction

coe�cient

In the present study, the contribution of the viscous e�ects, Reynolds stress, vortical

motions and coherent structures to the wall shear are investigated using the skin friction

decompositions presented by Renard and Deck (2016); Fukagata et al. (2002); Yoon et al.

(2016). The basis of these decompositions and the details of their components are brie�y

discussed in this chapter.

3.1 The RD identity

Renard and Deck (2016) proposed a theoretical decomposition for the mean skin friction

coe�cient in turbulent boundary layer �ows. In the present study, this decomposition is

referred to as �the RD identity� after the authors. The RD identity is based on the mean

kinetic energy budget in the streamwise direction and is given by

CfRD
=

2

U3
e

∫ ∞

0

ν
(∂〈u〉
∂y
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∂

∂y

(τ
ρ

)
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︸ ︷︷ ︸
Cfc

, (3.1)

where
τ

ρ
= ν

(∂〈u〉
∂y

)
− 〈u′v′〉. (3.2)

The RD identity is compatible with spatially developing �ows as it decomposes the

mean skin friction coe�cient into physical phenomena at every local streamwise position
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and corresponding wall-normal positions. Renard and Deck (2016) performed their anal-

ysis from an absolute reference frame, which travels with the undisturbed far-�eld �uid

at the speed 〈u〉∞ in the streamwise direction when seen from the wall. The undisturbed

�uid will appear to be stationary in this absolute reference frame. Renard and Deck (2016)

derived the decomposition by integrating the mean streamwise kinetic energy budget once

in the absolute reference frame. Full detail of the derivation of the RD identity is available

in Renard and Deck (2016).

When seen from the stationary reference frame �xed to the wall, the term Cfa repre-

sents the contribution of the viscous e�ects to the skin friction coe�cient. The term Cfb
refers to the contribution of the Reynolds shear stress −〈u′v′〉. The term Cfc signi�es the

spatial growth in the �ow. The variation of the components of the RD identity with the

pressure gradient is discussed in chapter 4.

3.2 The FIK identity

The decomposition of the skin friction coe�cient proposed by Fukagata et al. (2002),

known as �the FIK identity�, was derived by integrating the mean streamwise momentum

budget three times in the wall-normal direction. For turbulent boundary layer �ows, the

FIK identity is given by

CfFIK
=

4(1− δ1/δΩ)

Reδ1︸ ︷︷ ︸
CfI

+ 4

∫ 1

0

〈 − u′v′〉
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δΩ

)
d
( y
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CfII

+
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∫ 1

0

−
(

1− y

δΩ

)2 (1

ρ

∂〈P 〉
∂x

+ 〈Ix〉+
∂〈u〉
∂t

) δΩ

U2
e

d
( y
δΩ

)

︸ ︷︷ ︸
CfIII

, (3.3)

where

〈Ix〉 =
∂〈u〉2
∂x

+
∂(〈u〉〈v〉)

∂y
− ν ∂

2〈u〉
∂x2

+
∂〈u′u′〉
∂x

. (3.4)

The term CfI represents the laminar contribution to the skin friction coe�cient. The

term CfII refers to the contribution of the Reynolds shear stress −〈u′v′〉. The term

CfIII represents the inhomogeneous and transient contribution, where ∂〈u〉/∂t is zero for
statistically steady TBL �ows. Full detail of the derivation of the FIK identity is available

in Fukagata et al. (2002). The comparison of the FIK identity with the RD identity and

the variation of its components with the pressure gradient are presented in chapter 4.
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3.3 The YAHS identity

The decomposition of the skin friction coe�cient presented by Yoon et al. (2016), referred

to as �the YAHS identity� after the authors, was derived from the mean vorticity equation.

Using the continuity equation and the divergence of the vorticity, the spanwise component

of the mean vorticity equations was simpli�ed. Further triple integration of the equation

in wall-normal direction yielded the YAHS identity as

CfY AHS
=

∫ 1

0

2
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where

〈Ix,Y AHS〉 =
∂

∂x

(
〈u〉〈Ωz〉+ 〈u′ω′z〉 − 〈w′ω′x〉

)
+

∂

∂y

(
〈v〉〈Ωz〉

)
− ν

∂2〈Ωz〉
∂x2

. (3.6)

The term Cf1 refers to the contribution of the body forces resulting from the advective

vorticity transport. The term Cf2 refers to the contribution of the body forces resulting

from the vortex stretching. The term Cf3 refers to the contribution from the molecular

di�usion at the wall, whereas the term Cf4 represents the contribution of the molecular

transfer due to the mean vorticity. The �fth term Cf5 corresponds to the contribution

of the inhomogeneous e�ects arising from the spatial development of the �ow in the

streamwise direction. Full detail of the derivation of the YAHS identity is available in

Yoon et al. (2016). The variation of the components of the YAHS identity with the

pressure gradient is discussed in chapter 5.
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Excellence is a continuous process and not an accident.

�A. P. J. Abdul Kalam

Chapter 4

Analysis of the contribution of the

Reynolds stress and viscous e�ects to

the skin friction

In this chapter, the contribution of the Reynolds shear stress and the viscous e�ects to the

skin friction and their variation with the pressure gradient are analysed from the perspec-

tive of the mean streamwise kinetic energy budget using the skin friction decomposition

given by Renard and Deck (2016) (RD identity). This chapter is presented in the form of

a journal paper published in the International Journal of Heat and Fluid Flow (Senthil

et al., 2020b).
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A B S T R A C T

This paper reports on a study of the various factors contributing to the skin friction in incompressible adverse pressure
gradient turbulent boundary layer (APG-TBL) flows. Specifically, it deals with the contributions to the skin friction
coefficient from the Reynolds stresses and the viscous effects and the role of the pressure gradient. The skin friction
coefficient is calculated based on the theoretical decomposition for mean skin friction generation introduced by
Renard and Deck (2016). This decomposition is compatible with spatially developing flows as it is applicable to every
local streamwise position. The turbulent flows are generated through the direct numerical simulation of a TBL on a
smooth flat plate with the desired farfield pressure gradient. It is observed that the Reynolds shear stress provides the
dominant positive contribution to the skin friction coefficient for all the pressure gradient cases. However, with
increasing adverse pressure gradient, the skin friction coefficient continues to decrease and approaches zero as the
positive contribution from the Reynolds shear stress is diminished by the negative contribution of the pressure
gradient. When the flow reaches the verge of separation, the predominant Reynolds shear stress contribution to the
skin friction coefficient is from a spatially localized outer peak at an approximate height of the displacement thickness
( =y δ1) which coincides with the inflection point of the mean streamwise velocity. Even though, the decompositions
in Renard and Deck (2016) and Fukagata et al. (2002) give a different distribution for the skin friction coefficient in
the zero pressure gradient (ZPG) and the mild APG cases, both of the identities capture the dominant outer peak of
the Reynolds shear stress contribution when the flow reaches the verge of separation. This emphasizes the growing
importance of the outer layer dynamics with increasing pressure gradient as it pertains to skin friction generation.

1. Introduction

Adverse pressure gradient turbulent boundary layers (APG-TBLs)
are found in internal expanding duct flows, and external flows like
those over the diverging part of curved surfaces such as turbine blades
and the leeward side of aerofoil sections. Separation of the TBL in many
of these practical flows results in reduced efficiency and increases the
operational cost of these engineering systems. It is a challenging pro-
blem to understand the fluid physics of the detachment of the TBLs and
our understanding of the influence of the adverse pressure gradient on
the TBLs is still limited (Clauser, 1954). Wall shear stress (τw) plays a
fundamental role in the flow as it is related to the characteristic friction
velocity (uτ) which is used for scaling wall-bounded turbulent flows.
Orlandi and Jiménez (1994) showed that the formation of the near-wall

streaks results in higher wall friction in the turbulent boundary layers.
But the contribution of turbulent fluctuations to the mean skin friction
was not quantified as a function of wall distance. It has also been shown
by Skåre and Krogstad (1994) that the outer layer plays a more im-
portant role in wall-bounded flows as the adverse pressure gradient
increases. Skåre and Krogstad (1994) observed that the peak of the
turbulent stresses in the outer region scales linearly with the non-di-
mensional pressure gradient (β is defined in Section 2.3).

Fukagata et al. (2002) came up with a decomposition, known as the
FIK identity, to relate the wall-normal distribution of the Reynolds
shear stress to the skin friction coefficient in incompressible channel,
pipe and ZPG boundary layer flows. It is based on the mean streamwise
momentum equation and has explicit streamwise gradient terms. They
decomposed the skin friction coefficient into different dynamical
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contributions. However, the terms in the decomposition did not have a
simple and direct physical interpretation.

Mehdi and White (2011) presented a direct integral method to com-
pute the wall shear stress similar to that of Fukagata et al. (2002). The
mean momentum equation was integrated to the boundary layer edge and
the streamwise gradients were replaced with the wall-normal gradients of
the total shear stress. This decomposition was found to be useful when the
flow statistics at different streamwise positions are not available especially
in experimental data. Following it, Mehdi et al. (2014) presented a direct
method to compute the wall shear stress based on a full momentum in-
tegral approach. Their decomposition did not have direct streamwise
gradient terms. Their expression depends only on the inner wall boundary
conditions as they integrated up to an arbitrary height in the wall-normal
direction. This method is useful when it is not feasible to measure the
outer boundary condition or when it is not clearly defined. They tested the
effect of changing the integration limits on the wall shear stress. Still, their
upper integration bound was restricted within the boundary layer edge.
More recently, Renard and Deck (2016) formulated a theoretical decom-
position for the skin friction coefficient based on a mean streamwise ki-
netic energy budget across the entire boundary layer. This decompositon
is hereafter referred as the “RD identity” (named after its authors
Renard and Deck (2016)). This formulation decomposes the skin friction
coefficient at every streamwise position into a physical phenomena.

The present study focuses on analysing the contributions to the skin
friction coefficient from the Reynolds shear stress and the viscous effects
in an incompressible turbulent boundary layer flow using the RD iden-
tity. The contribution to skin friction coefficient from different regions of
the boundary layer and the role of the pressure gradient in it is also
investigated. Brief details of the direct numerical simulation and the
characteristics of the flows considered for this study are presented in
Section 2. In Section 3, the details and interpretation of the components
of the RD decomposition introduced by Renard and Deck (2016) are
discussed. The variation of the components of the RD identity with the
pressure gradient is presented in Section 4. The wall-normal distribution
of the RD components are analyzed in Section 5. Then, the explicit re-
lationship between the RD identity and the pressure gradient is estab-
lished in Section 6. In Section 7, the effects of varying one of the limits of
integration in the RD identity to an arbitrary limit while keeping the
other limit fixed are discussed. Components of the RD identity is quali-
tatively compared with the corresponding components of the FIK identity
in Section 8. Finally, concluding remarks are presented in Section 9.

2. Details of the direct numerical simulation

2.1. The numerical method

The in-house direct numerical simulation (DNS) code solves the
incompressible Navier-Stokes equation for pressure and velocity fields
in Cartesian coordinates with the flow directions as streamwise (x),

wall-normal (y) and spanwise (z). In this paper, the mean velocity
components are denoted by (〈u〉, 〈v〉, 〈w〉) and the corresponding
fluctuating components are denoted by (u′, v′, w′). The first version of
the code was developed by Simens et al. (2009); Simens (2008) and
subsequently improved by Borrell et al. (2013). The fractional step
method is used to solve the governing equations as suggested in
Harlow and Welch (1965) and in Perot (1993). The grid is staggered in
x and y directions but not in the z direction. Compact finite difference is
used for spatial discretization in x and y directions (Lele, 1992), while
Fourier decomposition is used in the spanwise direction. Time stepping
is achieved using a 3-step Runge Kutta method (Simens, 2008). The
density ( = 1) and kinematic viscosity (ν) are taken as constants. Full
detail of the DNS code and the parallelisation techniques used can be
found in Sillero (2014); Borrell et al. (2013).

2.2. Boundary conditions used in the simulations

The current computational domain is a three dimensional rectan-
gular box with a no slip boundary condition on the bottom surface. It
uses a modified far-field boundary condition to apply the required ad-
verse pressure gradient in the domain. This is achieved by specifying
the wall-normal suction velocity (〈v〉∞) in the far-field as shown in
Fig. 1. The spanwise vorticity (Ωz) is zero in the far-field. Details of the
far-field boundary condition are presented in Kitsios et al. (2017).

The inflow boundary condition is obtained by recycling and map-
ping a yz plane (cross-plane) from a downstream position to the inflow
(Kitsios et al., 2016; 2017). Mapping is essential because of the growth
of the TBL in the wall-normal direction as it develops in the streamwise
direction. Periodic boundary conditions are applied in the spanwise
direction. The outflow is a convective boundary condition given as
(Sillero, 2014; Simens, 2008)

+ =u u
t

u
x

· 0, (1)

where u is the instantaneous velocity and t is the time.

2.3. Classification of the flows and the definition of the reference scales

Boundary layer flows with three different streamwise pressure gra-
dients are considered in this study and are classified based on β as fol-
lows: ZPG - zero pressure gradient (β=0), mild APG (β=1) and strong
APG (β=39). The non-dimensional pressure gradient (β) is defined as

= =
u

P P
,e x e x

w

1
2

,
1

,

(2)

where =u /w is the friction velocity, δ1 is the displacement thick-
ness, Pe,x is the far-field streamwise pressure gradient, ρ is the density,
and τw is the mean wall shear stress.

Based on the definition of Lighthill (1963), the reference velocity
(Ue) used in the simulations is given as

Fig. 1. Farfield wall-normal velocity boundary condition
for the three pressure gradient cases. x⋆ is the streamwise
position where Reδ1 = 4800 and 〈u〉∞ is the far-field mean
streamwise velocity. β (the non-dimensional streamwise
pressure gradient), δ1 (displacement thickness) and Reδ1

(Reynolds number based on displacement thickness) are
defined in the Section 2.3.
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=U x U x( ) ( , ),e (3)

where

=U x y x y dy( , ) ( , ˜) ˜,
y

z0 (4)

〈Ωz〉 is the mean spanwise vorticity, and is the wall-normal position
where 〈Ωz〉 is 0.2% of the mean vorticity at the wall.

Based on the definition of Spalart and Watmuff (1993), the dis-
placement thickness (δ1) and the momentum thickness (δ2) are given as

=x
U

y x y dy( ) 1 ( , ) ,
e

z1 0 (5)

and

=x
U

yU x y dy x( ) 2 ( , ) ( ).
e

z2 2 0 1
(6)

The flow dynamics of APG TBLs depend on the local environment and
also on the flow history. The pressure forces and the shear stresses acting
on a boundary layer are minute in nature and because of this, the
boundary layer cannot react quickly to the changing environment
(Clauser, 1954). This makes the dynamical properties of the boundary
layer dependent on the flow history and on the specific pressure gradient
distribution. In order to minimise the influence of these history effects, a
self-similar APG TBL is studied. Moreover, this self-similar flow is only
possible in the domain of interest (DoI) of the strong APG flow, where β
has an average value of 39. The conditions of self-similarity are explained
comprehensively in Kitsios et al. (2017, 2016). The = 39 case can be
characterized as being at the verge of separation. Within the DoI, the
Reynolds number based on displacement thickness (Reδ1) varies from
22,200 to 28,800 for the strong APG case where =Re U /e1 1 .

The numerical details of the simulations are given in Table 1. Fig. 2a
shows the displacement thickness, Fig. 2b shows the shape factor
( =H /1 2), and Fig. 2c shows , where is the boundary-layer
thickness or the wall-normal position at which the mean spanwise
vorticity (〈Ωz〉) is 0.2% of the mean vorticity at the wall. x⋆ is the
streamwise position where Reδ1 = 4800 and δ1(x⋆) is the displacement
thickness at x⋆. Fig. 3a and b refer to the Reynolds number based on
displacement thickness and momentum thickness ( =Re U /e2 2 ) re-
spectively. For all the three cases, the respective DoIs are highlighted
with the markers. Full details of the DNS of the three TBL cases are
presented in Kitsios et al. (2016, 2017) with the data of the statistical
properties available in Soria et al. (2019).

3. Decomposition of the skin friction coefficient

Friction drag and shear are the major cause of energy dissipation in
a TBL flow. Thus, it is of great importance to understand the mechanism
of generation of mean skin friction in wall bounded turbulent flows.
Renard and Deck (2016) proposed a theoretical decomposition for the
mean skin friction in boundary layer flows. The RD decomposition
(named after its authors Renard and Deck (2016)) is based on mean
kinetic energy budget in the streamwise direction and gives the mean
skin friction coefficient as

= + +C
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u
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3 0
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where

= u
y

u v .
(8)

This decomposition is local in the streamwise position and is com-
patible with spatially developing flows. Renard and Deck (2016) pre-
sented the skin friction generated in both laminar and turbulent flows.
Their analysis is considered from an absolute reference frame which
travels with the undisturbed far-field fluid at the speed 〈u〉∞ in the x-
direction when seen from the wall. The undisturbed fluid will appear to
be stationary in this absolute reference frame. Only the instantaneous
streamwise velocity at the wall is considered as zero. There are no re-
strictions on the velocity in wall-normal and spanwise directions which
allows blowing or suction at the wall, though neither is present in the
current TBL cases. As the absolute reference frame moves at a constant
speed, it is an inertial reference frame and so the pressure coincides in
both the wall and the absolute reference frames. The RD identity de-
composes the mean skin friction coefficient into physical phenomena at
every local streamwise position and corresponding wall normal positions
for a spatially developing flow. The Reynolds shear stress is weighted by
the wall normal gradient of the mean streamwise velocity. This weight
increases as we move closer to the wall for ZPG TBL flows as the velocity
gradient increases towards the wall. Renard and Deck (2016) showed
that in high Reynolds number ZPG TBL flows, the excess friction induced
by turbulence is mostly located in the logarithmic layer.

When seen from the absolute reference frame, CfRD is represented as
the mean power supplied to the fluid by the wall and Cfa refers to direct
viscous dissipation. Similarly, Cfc can be interpreted as the mean
streamwise kinetic energy gained by the fluid in the absolute reference
frame or the fraction of the mean skin friction power that is not dis-
sipated into turbulent kinetic energy and heat. In the absolute reference
frame, Renard and Deck (2016) referred to Cfb as the “dissipation”
because of production of turbulent kinetic energy. The RD identity
considers the contribution to CfRD from the whole boundary layer.

4. Variation of skin friction coefficient and its components with
adverse pressure gradient

The dependence of the skin friction coefficient (CfRD) on the pressure
gradient and the friction Reynolds number (Reτ) is illustrated in Fig. 4.
The friction Reynolds number is defined as =Re u / where uτ is the
friction velocity, and ν is the kinematic viscosity. Table 2 shows the
streamwise and spanwise averaged values of CfRD within the DoI for the
three pressure gradient cases. The skin friction coefficient based on the

Table 1
Numerical details of the DNS of the three pressure gradient cases: number of
collocated grid points in the streamwise (Nx) and wall-normal (Ny) directions;
number of spanwise Fourier modes after de-aliasing (Nz); domain size Lx, Ly and
Lz in x, y and z directions respectively; uniform streamwise (Δx) and spanwise
grid spacing (Δz); wall-normal grid spacing at the wall (Δywall) and at the far-
field boundary (Δy∞); Reynolds number based on displacement thickness (Reδ1)
in the domain of interest (DoI); and the time taken to accumulate the statistics
(T). δ1 is the displacement thickness and x⋆ is the streamwise position where
Reδ1 = 4800. The eddy-turnover time (δ1(x⋆)/Ue(x⋆)) is defined at x⋆. Full
details of the DNS of the three TBL cases are presented in Kitsios et al. (2016),
Kitsios et al. (2017).

ZPG Mild APG Strong APG

Nominal β 0 1 39
Nx 8193 8193 8193
Ny 315 500 1000
Nz 1362 1362 1362
Lx/δ1(x⋆) 480 345 303
Ly/δ1(x⋆) 22.7 29.8 73.4
Lz/δ1(x⋆) 80.1 57.6 50.7
Δx/δ1(x⋆) 0.0585 0.0421 0.0370
Δywall/δ1(x⋆) 1.53 × 10 3 1.10 × 10 3 9.71 × 10 4

Δy∞/δ1(x⋆) 0.0992 0.0714 0.254
Δz/δ1(x⋆) 0.0585 0.0421 0.0370
Reδ1 range in DoI 3800 → 5280 3800 → 5280 22200 → 28800
TUe(x⋆)/δ1(x⋆) 621 720 1160
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wall shear stress (Cfw) is given by

=C
U

,f
w

e
1
2

2w
(9)

where

= =µ d u
dy

| .w y 0 (10)

Fig. 4 shows that CfRD and Cfw are in close agreement with each other
as expected. With increasing pressure gradient, CfRD keeps reducing and
approaches zero as shown in Fig. 4 and Table 2. As illustrated in Fig. 3a,
Reδ1 increases with the pressure gradient. This is due to the fact that the
displacement thickness (δ1) increases with the pressure gradient as shown
in Fig. 2a. The displacement thickness has a larger value for the strong
APG TBL when compared to the mild APG TBL, which in turn has a larger
value than that of the ZPG TBL. This shows that the boundary layer ex-
pands more in the wall-normal direction with increasing adverse pressure
gradient. The expansion of the boundary layer also coincides with the
reduction of the skin friction coefficient (Cfw and CfRD) with increasing
pressure gradient as shown in Fig. 4. The reduction in skin friction
coefficient is because of the reduction of the mean wall shear stress with
increasing pressure gradient. This in turn coincides with the reduction of
mean velocity gradient at the wall with increasing pressure gradient as
shown in Fig. 8e. As the adverse pressure gradient is increased, the flow
becomes more like a free shear layer with the wall shear stress tending to

zero. The skin friction coefficient is given as a function of Reynolds
number based on momentum thickness (Reδ2) in Appendix A.

When seen from the usual wall reference frame, Cfa signifies the
contribution of viscous effects, Cfb refers to the contribution from the

Fig. 2. (a) Displacement thickness (δ1); (b) shape factor ( =H /1 2), where δ2 is the momentum thickness; (c) , where is the boundary-layer thickness or the
wall-normal position at which the mean spanwise vorticity (〈Ωz〉) is 0.2% of the mean vorticity at the wall; for each case of β and their respective DoI is highlighted
with the markers. x⋆ is the streamwise position where Reδ1 = 4800.

Fig. 3. (a) Reynolds number based on displacement thickness (Reδ1); (b) mo-
mentum thickness (Reδ2); for each case of β and their respective DoI is high-
lighted with the markers. x⋆ is the streamwise position where Reδ1 = 4800.
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Reynolds shear stress and Cfc signifies the spatial growth in the flow or
the contribution from the pressure gradient. But in the absolute re-
ference frame, Cfc/Cf is seen as the efficiency at which the wall supplies
energy to the fluid. For all the pressure gradient cases, Cfa and Cfb are
positive. Note that Cfc is positive only for the ZPG case while it is ne-
gative for the other two adverse pressure gradient cases.

Fig. 5 shows the dependence of the components of the CfRD on the
friction Reynolds number (Reτ) and their variation with the pressure
gradient. Table 3 shows the variation of the streamwise and spanwise
averaged values of the components of the CfRD with β in the respective
DoIs. As β increases, the contribution of the viscous effects (Cfa) reduces
and approaches zero in Fig. 5 and Table 3. With increase of β, the ab-
solute values of Cfb and Cfc increases. It is also apparent that the absolute
values of Cfb and Cfc develops with a sharp gradient as Reτ increases for
the β = 39 case when compared to the other two pressure gradient cases
in Fig. 5. The positive contribution to Cf from the Reynolds shear stress
(through Cfb) is diminished by the negative contribution from Cfc.
However, the dominant contribution to the skin friction coefficient for all
the pressure gradient cases is from the Reynolds shear stress (Cfb).

The variation of the proportion of each component in CfRD with β and

its dependence on the friction Reynolds number (Reτ) is seen in Fig. 6.
These ratios refer to the relative contribution of each of the terms for the
various pressure gradient cases. The variation of the streamwise and
spanwise averaged values of the ratios of the components of CfRD with β in
the respective DoIs is given in Table 4. On average, the proportion of the
Reynolds shear stress (Cfb/CfRD) increases by around 21.6 times when β
varies from 0 to 39 as seen in Table 4. The proportion of Cfb and Cfc in-
creases drastically with Reτ for β = 39 whereas they do not have steep
gradients for β = 0 and β = 1 in Fig. 6. But, Cfc acts to cancel out the effect
of Cfb. As shown in Table 4, the proportion of Cfa in Cf reduces with the
pressure gradient. The ratio Cfa/CfRD is approximately 0.5 times smaller for
β = 39 compared to β = 0. On average, the viscous contribution accounts
for 35.5% of CfRD for β = 0 and it drops to 16.9% for β = 39.

5. Wall-normal distribution of the components ofCfRD and the role
of the adverse pressure gradient

The streamwise averaged profiles of the premultiplied integrands in
Figs. 7, 8 a and 9 show the distribution of each of the terms of CfRD in
the wall-normal direction within the DoI. The wall normal position is

Fig. 4. Dependence of C fRD and C fw on β and the friction Reynolds number (Reτ) in the respective DoI.

Table 2
Variation of the streamwise and spanwise averaged values of C fRD with β in the
respective DoI.

β 0 1 39

C fRD × 103 3.127 2.520 0.377

Fig. 5. Dependence of the three components of C fRD on β and the friction Reynolds number (Reτ) in the respective DoI.

Table 3
Variation of the streamwise and spanwise averaged values of the three com-
ponents of C fRD with β in the respective DoI.

β 0 1 39

Cfa × 103 1.111 0.795 0.064
Cfb × 103 1.705 2.289 4.370
-Cfc × 103 0.311 0.563 4.057
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non-dimensionalised by the outer scale δ1. Deck et al. (2014) and
Renard and Deck (2016) also studied the wall-normal distribution of
the skin friction coefficient for a ZPG boundary layer flow. The pre-
multiplied integrand of each term of C ,fRD given by

= ×c y
U

u
y*

2 ,f a
e1

1
3

2

(11)

= ×c y u v
U

u
y*

2 ,f b
e1

1
3 (12)

and

= ×c y u U
U y*

2( )
f c

e

e1

1
3 (13)

is denoted in lowercase and by the subscript of *.
The premultiplied integrand cfa* refers to the contribution from the

viscous effects to the skin friction coefficient and its profiles are given in
Fig. 7. There is an inner peak for the ZPG case around =+y 6.6 with
negligible contribution in the outer region. The inner region is defined
as y/δ1 < 0.1 (Pope, 2000) while the outer region as y/δ1 > 0.1. As the

pressure gradient increases, for the mild APG case, the inner peak di-
minishes while a small outer peak develops. When the pressure gradient
increases to the point of the flow being at the verge of separation as in
the β = 39 case, the contribution from cfa* is almost negligible
throughout the boundary layer with two tiny inner and outer peaks.

The premultiplied integrand cfb* describes the contribution to the
skin friction coefficient from the Reynolds shear stress which represents
turbulent momentum transport and its profile occupies a broader region
for the ZPG case as shown in Fig. 8a. It has an inner and an outer peak.
When the pressure gradient increases to the β = 1 case, the inner peak
reduces while the outer peak grows. For the β = 39 case, the value of
cfb* is almost negligible in the inner region while it is concentrated in
the outer region with a dominant peak. For the strong APG case, cfb* has
the outer peak at approximately the displacement thickness height
( =y 1). The Cfb integrand in Eq. 7 is composed of the Reynolds shear
stress and the wall-normal gradient of the mean streamwise velocity
and their profiles are given in Fig. 8b and 8 e respectively. Similar to the
profile of cfb* for the ZPG case, the profile of Reynolds shear stress is
widely spread over the domain. For the β = 39, the Reynolds shear
stress develops a dominant outer peak like that of cfb* at an approximate
height of displacement thickness ( =y 1). The profile of the mean
streamwise velocity in Fig. 8d develops an inflection point as the
pressure gradient reaches β = 39 and this inflection point is also around
the displacement thickness height ( =y 1) as shown in Fig. 8e. In in-
compressible turbulent boundary layer flows, turbulent momentum
transport is represented by u v y/ (Fig. 8c). This gradient accel-
erates the mean flow near the wall but decelerates the mean flow in the
wake of the boundary layer (Renard and Deck, 2016). The integral of
the gradient of the Reynolds shear stress in the wall-normal direction
vanishes when integrated over all y ≥ 0. The peak of this gradient is
almost the same for all the pressure gradient cases and it shifts down in
the inner region for the β= 39 case.

The premultiplied integrand cfc* refers to the contribution from the
pressure gradient or the effect of the spatial growth of the flow. In
Fig. 9, for the ZPG case, the cfc* contribution is virtually negligible
throughout the boundary layer as expected. For β = 1, a negative and a
positive peak start to develop in the outer region. These peaks become
more pronounced for the flow at the verge of separation (β = 39 case)
and it changes sign close to the displacement thickness height ( =y δ1).

The peak of the premultiplied integrand cfb*, the peak of the
Reynolds shear stress, the inflection point of the mean streamwise ve-
locity as well as the point where the premultiplied integrand cfc*
changes sign coincide at the approximate height of the displacement
thickness ( =y δ1) for β = 39 case. Fig. 10 shows the comparison of the
three premultiplied integrands of CfRD for β = 39 case.

The total premultiplied integrand c fRD*
in Fig. 11 shows the cumu-

lative effect of the three components. For the ZPG case, the contribution

Fig. 6. Dependence of the proportion of the components of C fRD on β and the friction Reynolds number (Reτ) in the respective DoI.

Table 4
Variation of the streamwise and spanwise averaged values of the proportion of
the components of C fRD with β in the respective DoI.

β 0 1 39

Cfa/C fRD 0.355 0.300 0.169
Cfb/C fRD 0.545 0.908 11.760
-Cfc/C fRD 0.100 0.223 10.930

Fig. 7. Variation of the premultiplied integrand cfa* with β. The profiles are
averaged in streamwise direction within DoI and are non-dimensionalised by δ1.
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to the skin friction coefficient has a positive inner and outer peak. For
the β = 1 case, the inner peak decreases and the outer peak increases.
The behaviour of c fRD*

is same as cfb* for the ZPG and the β = 1 cases.
For the β = 39 case, it has negative peak in the inner region similar to
cfc* and it is because of the contribution from the pressure gradient. The
major contribution to the total CfRD is from the dominant positive outer
peak in the strong APG case. However, the net effect of the negative and
the positive peaks of c fRD*

makes the total CfRD almost insignificant for
the β = 39 case and so CfRD approaches zero. For all the three pressure
gradient cases, the premultiplied integrands cfa*, cfb*, cfc*, and c fRD*

in
viscous units are given in Appendix B.

6. Relationship between Cfc and the pressure gradient

The Cfc term in Eq. 7, given by

=C
U

u U
y

dy2 ( ) ,f c
e

e3 0 (14)

Fig. 8. Variation of the (a) premultiplied integrand cfb*, (b) reynolds shear stress (〈u′v′〉), (c) wall-normal gradient of u v , (d) mean streamwise velocity (〈u〉),
and (e) wall-normal gradient of 〈u〉 with β. The profiles are averaged in streamwise direction within DoI and are non-dimensionalised by δ1.

Fig. 9. Variation of the premultiplied integrand cfc* with β. The profiles are
averaged in streamwise direction within DoI and are non-dimensionalised by
δ1.
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can be related to the streamwise pressure gradient (∂〈P〉/∂x) using the
mean streamwise momentum equation as follows. The wall-normal
gradient of the total shear stress in Eq. 14 is related to the streamwise
pressure gradient and the inhomogeneous terms (Ix ) via

= +
y

P
x

I1 ,x
(15)

where

= + +I u
x

u v
y

u
x

u u
x

( ) .x
2 2

2 (16)

The term Cfc can therefore be decomposed into five components
which are defined as

=C
U

u U P
x

dy2 ( ) 1 ,f c
e

e1 3 0 (17)

=C
U

u U u
x

dy2 ( ) ,f c
e

e2 3 0

2

(18)

=C
U

u U u v
y

dy2 ( ) ( ) ,f c
e

e3 3 0 (19)

=C
U

u U u
x

dy2 ( ) ,f c
e

e4 3 0

2

2 (20)

and

=C
U

u U u u
x

dy2 ( ) .f c
e

e5 3 0 (21)

Cf1c is the pressure gradient term. Cf2c and Cf3c are the convective
terms. Cf4c is the viscous diffusion term and Cf5c is the Reynolds stress

term.
Variation of the premultiplied integrands of the five components of

Cfc with β for the three cases is given in Fig. 12. cf4c* and cf5c* are
negligible for the three pressure gradient cases and in line with the
boundary layer hypothesis. The convective terms (cf2c* and cf3c*) have
peaks of opposite signs in the outer region for all the three cases, which
grow in magnitude with increasing pressure gradient. When compared
to the contribution of cf1c*, the cumulative contribution of these peaks
becomes less significant as they almost cancel each other out with in-
creasing pressure gradient. As the pressure gradient increases, Cf1c be-
comes the major contributor and hence, Cfc can be seen as the re-
presentation of the pressure gradient contribution in CfRD. The
magnitude of cf1c* increases by around two orders of magnitude from
the ZPG case (Fig. 12a) to the strong APG case (Fig. 12c). For the strong
APG case, the peak of the pressure gradient term (cf1c*), and the peaks
of the convective terms are located around the displacement thickness

Fig. 10. Comparison of the premultiplied integrands cfa*, cfb*, and cfc* for
= 39 case. The profiles are averaged in streamwise direction within DoI and

are non-dimensionalised by δ1.

Fig. 11. Variation of the total premultiplied integrand c fRD*
with β. The profiles

are averaged in streamwise direction within DoI and are non-dimensionalised
by δ1.

Fig. 12. The premultiplied integrands of the components of Cfc for (a) ZPG, (b)
mild APG, and (c) strong APG. The profiles are averaged in streamwise direc-
tion within DoI and are non-dimensionalised by δ1.
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height ( =y 1). The wall-normal distribution of the five premultiplied
integrands cf1c*, cf2c*, cf3c*, cf4c*, and cf5c* in viscous units are shown in
Appendix B for the three pressure gradient cases.

7. Effects of varying the limits of integration

In boundary layer flows, the extent of the flow domain in the wall-
normal direction is 0 < y < ∞. However, in most practical cases, it is
difficult to get data points close to the wall in the viscous sublayer
( <+y 5) and the outer boundary conditions are not clearly defined.
Hence, it is important to consider the error associated with the com-
puted skin friction coefficient due to lack of reliable data either close to
the wall or far from the wall by varying one of the integration limits of
the RD identity to an arbitrary value while keeping the other fixed.

ζ(yu) is defined as

= + +dy dy

dy

(y ) 2
U

u
y

2
U

u v u
y

2
U

( u U )
y

,

u
e
3 0

y 2

(y )

e
3 0

y

(y )

e
3 0

y
e

(y )

u

a u

u

b u

u

c u (22)

which represents the sum of the three terms of the RD identity in-
tegrated from the wall to an arbitrary upper limit (yu). Fig. 13 shows the
percentage error of the computed skin friction coefficient (ζ(yu)), re-
lative to C ,fw for the three pressure gradient cases. For the ZPG case, it is
observed that the error approaches zero around the height of =y 6u 1
while, for the β = 39 case, it is close to =y 3u 1. Therefore, with the
increase of the pressure gradient, c fRD*

converges quicker for smaller yu
and the skin friction coefficient is recovered at a lower height in the
wall-normal direction.

Analogous to ζ(yu), ζ(yl) is defined as

= + +dy dy

dy

(y ) 2
U

u
y

2
U

u v u
y

2
U

( u U )
y

,

l
e
3 y

2

(y )

e
3 y

(y )

e
3 y e

(y )

l

a l

l

b l

l

c l (23)

which represents the sum of the terms of the RD identity integrated
from an arbitrary lower limit (yl) to infinity. Fig. 14 shows the

percentage error of the computed skin friction coefficient (ζ(yl)), re-
lative to C ,fw for the three cases of β. For the ZPG case, when

+y [0, 3],l the percentage error varies from 0 to 10%. As the pressure
gradient increases, specifically for the strong APG case, the error di-
verges much quicker in the viscous sublayer and the 10% error occurs
around a lower height of =+y 1l or = ×y / 3 10l 1

3.
Fig. 15 shows the percentage of the components of ζ(yu), relative to

C ,fw for all the pressure gradient cases. Fig. 15a shows that, for the ZPG
case, the predominant contribution to Cfw is from ζa(yu) (viscous con-
tribution) in the viscous sublayer while the contribution from ζb(yu) and
ζc(yu) are negligible. ζa(yu) accounts for around 10% contribution to Cfw
when =+y 3u . However, for the strong APG case in Fig. 15c, the pri-
mary contribution to Cfw is from ζc(yu) (pressure gradient contribution)
in the viscous sublayer. ζc(yu) accounts for around 10% contribution to
Cfw when =+y 1u . For the strong APG case, the effect of pressure gra-
dient is felt till the wall.

This analysis shows that if the viscous sublayer is not included to
compute the integrals of the RD identity, the percentage error of the
computed skin friction coefficient (ζ(yl)) is over 10% for all the cases.
Hence, it is important to get data points in the viscous sublayer for all
the pressure gradient cases when employing the RD identity to compute
the skin friction coefficient. For the ZPG case, the predominant con-
tribution in the viscous sublayer is from the viscous term while for the
flow at the verge of separation, it is from the pressure gradient term.

8. Comparison with the FIK identity

Fukagata et al. (2002) also proposed a decomposition for the skin
friction coefficient (CfFIK ), known as the FIK identity, given by

= + +

+ +

C
Re

u v
U

y d y

y P
x

I u
t U

d y

4(1 / ) 4 1

2 1 1 ,

f

C
e

C

x
e

C

1

1 0

1
2

0

1 2

2

FIK

f f

f

1 2

3 (24)

where is the boundary-layer thickness at which the mean spanwise
vorticity (〈Ωz〉) is 0.2% of the mean vorticity at the wall, with Ix de-
fined by Eq. 16.

It is important to compare the RD identity with the FIK identity as
the latter has been used extensively in the previous studies and various

Fig. 13. Variation of the percentage error of ζ(yu), relative to C ,fw with β. The
terms are integrated from the wall to an arbitrary height (yu). The profiles are
averaged in streamwise direction within DoI and are non-dimensionalised by
δ1.

Fig. 14. Variation of the percentage error of ζ(yl), relative to C ,fw with β. The
terms are integrated from an arbitrary height (yl) to infinity. The profiles are
averaged in streamwise direction within DoI and are non-dimensionalised by
δ1.
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flow control techniques have also been suggested based on it. The main
differences between the FIK identity and the RD formulation are as
follows. The FIK identity is based on mean streamwise momentum
budget while the RD identity is based on the mean streamwise kinetic
energy budget. The FIK analysis is performed from the wall reference
frame while the RD decomposition is based on the absolute reference
frame. When seen from the absolute reference frame, the moving wall
develops non-zero power in the RD identity whereas in the FIK identity,
the wall is stationary and doesnâ;;t produce any power. The FIK identity
involves three integrations by parts while the RD formulation has only
one integration in the wall normal direction.

Moreover, the Reynolds shear stress is weighted by a linear function
in the wall normal direction in the FIK identity while the RD identity
uses the wall normal gradient of mean streamwise velocity as the
weight. The FIK identity considers the turbulent fluctuations only
within the conventional boundary layer edge while the RD formulation
takes into account the entire boundary layer profile. Even though the
values of the Reynolds shear stress 〈u′v′〉 located above the conven-
tional boundary layer edge are small, it is not logically satisfying to

simply disregard their direct contribution as the definition of the
boundary layer thickness is arbitrary. It was shown by Renard and
Deck (2016) that the suggested flow control techniques for ZPG TBL
flows by the FIK identity focuses on the wake region while the RD
decomposition emphasis control on the logarithmic layer.

Cf1 can be expressed in the integral form as given by

=C
U

u d y4 .f
e

2 0

1
1 (25)

In order to compare with the components of C ,fRD the wall-normal
direction in CfFIK can be non-dimensionalized using the displacement
thickness (δ1) which results in Eq. 26. Note that the upper integration
limit has become as / 1.
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Fig. 16 a shows that the contribution from cf1* is almost zero in the
wall-normal direction for all the pressure gradient cases. cf2* (Fig. 16b),
which is the Reynolds shear stress contribution, has a peak in the wake
region (y/δ1 > 1) for the ZPG case. As the pressure gradient increases to
β = 1, the peak continues to grow in the wake region. Whereas, cfb* in
the RD identity, has an inner and a outer peak for the ZPG and the mild
APG cases. The linear weight of the Reynolds shear stress in the FIK
identity has shifted the peaks to the wake region for the above two
cases. As the pressure gradient increases so that the flow is at the verge
of separation, the peak of cf2* increases and moves to a point around the
height of the displacement thickness ( =y 1) which is similar to the
behaviour observed in cfb* of the RD identity.

The overall behaviour of cf3* is similar to that of cfc* in Fig. 16c. cf3*

has negligible contribution for the ZPG case. For the β = 1 case, a
negative peak develops around =y 1 and a positive peak in the wake
region. For the strong APG case, these peaks grow stronger and cf3*

changes sign around the displacement thickness height ( =y 1).
When the flow reaches the verge of separation, it is observed that

the behaviour of cf2* and cf3* in the FIK identity matches with the
corresponding components of the RD identity. Fig. 17 shows the var-
iation of the total premultiplied integrand c

*fFIK with the pressure
gradient. Similar to the observation made by Renard and Deck (2016),
the peak of c

*fFIK is in the wake region for the ZPG case whereas c fRD*has contribution from almost the entire boundary layer with an inner
and a outer peak. For the β = 1 case, the peak of c

*fFIK still grows in the
wake region. But, for the β = 39 case, c

*fFIK develops a negative and a
positive peak and it changes its sign around an approximate height of
displacement thickness ( =y 1). This behaviour of c

*fFIK is similar to
that of c fRD*

for the flow at the verge of separation. But, it is also ob-
served that the positive and the negative peak of the skin friction
coefficient (c

*fFIK ) in the FIK identity has roughly increased by two
orders of magnitude when compared to the corresponding ones in the
RD identity (c fRD*

).
Even though, the FIK identity and the RD identity suggest different

distribution for the Reynolds shear stress contribution in the ZPG and
the mild APG cases, both of the decompositions have captured the
dominant outer peak contribution around the height of =y 1 in the
strong APG case.

Fig. 15. The percentage of the components of ζ(yu), relative to C ,fw for (a) ZPG,
(b) mild APG, and (c) strong APG. The terms are integrated from the wall to an
arbitrary height (yu). The profiles are averaged in streamwise direction within
DoI and are non-dimensionalised by δ1.
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9. Conclusion

As the adverse pressure gradient increases such that the turbulent
boundary layer is at the point of verge of separation, the skin friction
coefficient (CfRD) reduces and approaches zero. This is the result of the
more rapid expansion of the boundary layer in the wall-normal direc-
tion with increasing pressure gradient. At the verge of separation, the
dominant positive contribution to the total skin friction (c fRD*

) is from
the outer peak while its contribution is diminished by the negative peak
and hence, the total skin friction becomes negligible.

All the components of the RD identity are positive for the ZPG case
while Cfc is negative for the mild and the strong APG cases. As β in-
creases from 0 to 39, the percentage of viscous contribution (Cfa/CfRD)
drops by half and its absolute value (Cfa) becomes negligible for the
strong APG case. With increasing β, the wall-normal distribution of the
viscous contribution becomes more uniform and negligible. Hence, with
increasing pressure gradient, the viscous term plays a smaller role.

When β changes from 0 to 39, the relative contribution of the
Reynolds shear stress (Cfb/CfRD) increases by around 21.6 times while its
positive contribution is reduced by the negative contribution from Cfc for
the mild and the strong APG cases. However, the Reynolds shear stress
(Cfb), remains as the dominant positive contributor to skin friction for all
the pressure gradient cases. As the pressure gradient increases, the
Reynolds shear stress contribution develops an outer peak which is
dominant in the strong APG case and is located around the displacement
thickness height ( =y 1). For the strong APG case, it is observed that the
peak of the Reynolds shear stress, the peak of the premultiplied integrand
cfb* (Reynolds shear stress contribution), the negative peak of the pressure
gradient premultiplied integrand (cf1c*), the inflection point of the mean
streamwise velocity and the point where the premultiplied integrand cfc*
changes sign coincide around the displacement thickness height (y = δ1).
This shows that the outer layer has a more important role to play in the
skin friction contribution with increasing pressure gradient.

The relative significance of the turbulent fluctuations depends on
whether its contribution to the mean momentum (FIK identity) is
considered or its contribution to the mean kinetic energy (RD identity)
is considered. The FIK identity suggests that, for the ZPG and the mild
APG cases, the peak contribution of the Reynolds shear stress (cf2*) is in
the wake region, while its contribution is negligible in the inner region.
This observation is in contrast to the inner peak identified by the RD
identity for the ZPG and the mild APG cases. However, when the flow
reaches the verge of separation, in the strong APG case, the outer peak
of the Reynolds shear stress contribution in the FIK and the RD iden-
tities (cf2* and cfb* respectively) coincide at the approximate height of
the displacement thickness ( =y 1). Both the decompositions manage
to capture the outer peak of the Reynolds shear stress contribution
which again emphasizes the importance of outer layer dynamics with
increasing pressure gradient.
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Appendix A. Skin friction coefficient as a function of Reynolds number based on momentum thickness

The skin friction coefficient is given as a function of Reynolds number based on momentum thickness (Reδ2) in Fig. A.18. CfRD and Cfw are in close
agreement with each other as expected. The skin friction coefficient keeps decreasing with the increase of the pressure gradient.

Appendix B. Premultiplied integrands of the components of CfRD in viscous units

The premultiplied integrand of each of the components of CfRD and the total premultiplied integrand c fRD*
in viscous units are shown in Fig. B.19 for

all the three pressure gradient cases. Similarly, the premultiplied integrand of the five components of Cfc in viscous units are illustrated in Fig. B.20.

Fig. A.18. Dependence of C fRD and C fw on β and the Reynolds number based on momentum thickness (Reδ2) in the respective DoI. De Graaff and Eaton (2000) and
Osaka et al. (1998) - black triangles.

Fig. B.19. Variation of (a) cfa*, (b) cfb*, (c) cfc*, and (d) the total premultiplied integrand c fRD*
with β in viscous units. The profiles are averaged in streamwise

direction within DoI.
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I learned that courage was not the absence of fear, but the

triumph over it. The brave man is not he who does not

feel afraid, but he who conquers that fear.

�Nelson Mandela

Chapter 5

Analysis of the contribution of the

velocity-vorticity correlations to the

skin friction

5.1 Introduction

In wall-bounded �ows, it is important to detect and characterise the vortical structures

to understand their complex three-dimensional motions and their ability to transport mo-

mentum across the mean �ow (Robinson, 1991; Klewicki, 1989; Klewicki et al., 1994).

Quasi-streamwise vortices cause the low momentum �uid to lift up from the wall result-

ing in the formation of the near-wall low-speed streaks (Kline et al., 1967; Adrian et al.,

2000). Kim (2011) showed that the near-wall streamwise vortical structures, which are

regenerated autonomously by a self-sustaining process, are primarily related to the skin

friction drag in the wall-bounded �ows. It is observed in recent experiments and numerical

studies that numerous hairpin vortical structures travel at a similar convective velocity.

These vortical structures align in the streamwise direction into packets resulting in the

formation of large-scale motions (Adrian, 2007; Smits et al., 2011). Therefore, it is impor-

tant to quantify the contributions of the vortical motions to the wall shear in turbulent

�ows.

As discussed in chapter 4, the contribution of the Reynolds shear stress to the skin

friction increases with the pressure gradient and its contribution remains as the dominant

positive contributor for all the pressure gradient cases. In this chapter, the contribution of

the velocity-vorticity correlations to the skin friction and their variation with the pressure

gradient are analysed using the skin friction decomposition given by Yoon et al. (2016)

(YAHS identity). In incompressible TBL �ows, turbulent mixing and momentum transfer

are related to the gradient of the Reynolds shear stress 〈u′v′〉. Therefore, it is important
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to investigate the contribution of the velocity-vorticity correlations as they can be related

to the gradients of the Reynolds stresses (Hinze, 1975; Klewicki, 1989). This chapter

is organised as follows. In section 5.2, the variation of the components of the YAHS

identity with the pressure gradient is discussed. In section 5.3, the relationship between

the velocity-vorticity correlations and the Reynolds stress gradients are investigated with

regards to the variation with the pressure gradient. In section 5.4, the wall-normal dis-

tribution of the terms in the YAHS identity is analysed. In section 5.5, a new method

(based on the decomposition of Renard and Deck (2016)) to compute the contribution of

the velocity-vorticity correlations to the skin friction coe�cient is discussed.

5.2 Variation of the components of the YAHS identity

with pressure gradient

The YAHS identity given in Equation 3.5 has �ve components. The terms Cf1 and Cf2

refer to the contribution of the body forces resulting from the advective vorticity transport

and the vortex stretching, respectively. The term Cf3 refers to the contribution from the

molecular di�usion at the wall, whereas the term Cf4 represents the contribution of the

molecular transfer due to the mean vorticity. The �fth term Cf5 corresponds to the

contribution of the inhomogeneous e�ects arising from the spatial development of the

�ow in the streamwise direction.

The variation of the components of the YAHS identity in Equation 3.5 with the pres-

sure gradient is shown in �gure 5.1. The contribution of the molecular transfer due to

the mean vorticity (Cf4) is negligible when compared to the other components for all the

pressure gradient cases. The advective vorticity transport term (Cf1) reduces the skin

friction coe�cient by giving a negative contribution irrespective of the pressure gradient

in the �ow. Whereas, the vortex stretching term (Cf2) gives a positive contribution for

all the TBL cases. Similar in�uence in the contributions of Cf1 and Cf2 is also observed

in channel and pipe �ows (Yoon et al., 2016). The term Cf1 gives negative contribution

for all the pressure gradients because of the negative contribution from the quadrant mo-

tions (+v′,−ω′z) and (−v′,+ω′z), where (+v′, −ω′z) represents the lifting motion of hairpin

vortices in the outward direction (Klewicki et al., 1994).

The term Cf3 is related to the wall-normal gradient of the spanwise vorticity at the

wall as shown in Equation 3.5. With increasing pressure gradient, the magnitude of the

mean spanwise vorticity at the wall (〈Ωz〉(y = 0)) decreases, while the magnitude of the

wall-normal gradient of the spanwise vorticity increases as shown in �gures 5.2a and 5.2b

respectively. The molecular di�usion at the wall (Cf3) provides a positive contribution
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Figure 5.1: Variation of the components of the YAHS identity with β in the respective

DoI. xI is the position of the inlet plane.

to the skin friction coe�cient in the case of the ZPG TBL, similar to what is observed

in channel and pipe �ows (Yoon et al., 2016). However, Cf3 reduces the skin friction

coe�cient for both of the APG TBLs. The wall-normal gradient of the spanwise vorticity

is related to −∂2〈u〉/∂y2 and its value is negative at the wall for both the APG TBLs

because of the in�ection point in the pro�le of 〈u〉 in the near wall region as illustrated in

�gure 2.6a. The pro�les of ∂2〈u〉/∂y2 for the three TBL cases are shown in �gure 2.6c. For

the strong APG TBL, as the wall-normal gradient of the spanwise vorticity is signi�cantly

higher, the molecular di�usion at the wall (Cf3) becomes a dominant negative contributor

in reducing the skin friction coe�cient.

The contribution from the streamwise inhomogeneous term (Cf5) increases with the

pressure gradient. The terms Cf1 and Cf2 are dominant contributors in the ZPG and

mild APG TBL. However, when the �ow reaches the verge of separation in the strong

APG TBL, the dominant contributors are the terms Cf3 and Cf5 . The variation of the

proportion of each component in the YAHS identity is shown in �gure 5.3. For the strong

APG TBL, the proportion of the components are higher than the other two TBLs as

the skin friction coe�cient decreases with increasing pressure gradient and tends to zero

in the strong APG case. Within the DoI, the proportion of the molecular di�usion term

(Cf3/Cf ) is 0.44 in the ZPG TBL and its magnitude increases by almost 115 times to 50.45

in the strong APG TBL which reduces the overall skin friction when the �ow reaches the
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in the respective DoI. xI is the position of the inlet plane.

verge of separation.

5.3 Relationship between the velocity-vorticity correla-

tions and Reynolds stresses

There are four velocity-vorticity correlations in the YAHS identity given in Equation 3.5.

The pro�les of the velocity-vorticity correlations are shown in �gure 5.4 and they are non-

dimensionalised by the local values of Ue and δΩ. The pro�les are streamwise averaged

in the scaled coordinates within the DoI. Even though the contribution of the advective

vorticity term (Cf1) is negative, the velocity-vorticity correlation 〈v′ω′z〉 has a positive

peak for all the pressure gradient cases in the inner region. The inner region is de�ned

as y/δ1 < 10−1 or y/δΩ < 10−2. The positive values of 〈v′ω′z〉 in near wall region are

physically understood as the motion of the sublayer streaks in the outward direction

(Klewicki et al., 1994). For the strong APG TBL, the positive peak of 〈v′ω′z〉 moves closer

to the wall when compared to the ZPG TBL. In the case of the ZPG TBL, the dominant

negative peak is in the outer layer and the peak reduces with increasing pressure gradient.

The mild APG TBL develops a second negative peak in the outer region which becomes

more pronounced in the strong APG TBL. The outer region is de�ned as y/δ1 > 10−1 or

y/δΩ > 10−2. As shown in �gure 5.4a, the third zero crossing of 〈v′ω′z〉 occurs around the
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Figure 5.4: Variation of the velocity-vorticity correlations (a) 〈v′ω′z〉, (b) 〈w′ω′y〉, (c) 〈u′ω′z〉,
and (d) 〈w′ω′x〉 with β. The pro�les are averaged in streamwise direction within DoI and

are non-dimensionalised by δΩ and Ue.

height of y/δΩ = 0.2 in the outer region, which matches with the position of the outer

peak of 〈u′v′〉 illustrated in �gure 2.7d. The second negative peak of 〈v′ω′z〉, which comes

after the third zero crossing, is located at the height of y/δΩ = 0.3 and it coincides with

the location of the negative outer peak in −∂〈u′v′〉/∂y as shown in �gure 2.7e. The growth
of the outer negative peak in −∂〈u′v′〉/∂y with the pressure gradient shows that the outer

peak of the Reynolds stress −〈u′v′〉 becomes narrower and steeper with increasing pressure

gradient as shown in �gures 2.7d and 2.7e.

The velocity-vorticity correlation 〈w′ω′y〉 has one dominant negative peak for the ZPG

TBL and it has reduced in the strong APG TBL as illustrated in �gure 5.4b. The velocity-

vorticity correlation 〈u′ω′z〉 has a dominant negative peak and a small outer peak for all

the pressure gradient cases as illustrated in �gure 5.4c. For the strong APG TBL, both

the peaks in 〈u′ω′z〉 have reduced in magnitude when compared to that of the ZPG TBL as

shown in �gure 5.4c. The velocity-vorticity correlation 〈w′ω′x〉 has one dominant positive

peak in the inner region for all the TBLs and in the case of the strong APG TBL, it is

located around the height of y/δΩ = 10−3 as illustrated in �gure 5.4d.

46



10-3 10-2 10-1 100

y/δΩ

1.0

0.5

0.0

0.5

1.0

1e 1 β= 0

(
〈
v ′ω ′z

〉
−
〈
w ′ω ′y

〉
)× (δΩ/Ue

2)

R× (δΩ/Ue
2)〈

u ′v ′
〉
/ y× (δΩ/Ue

2)〈
v ′ω ′z

〉
× (δΩ/Ue

2)〈
−w ′ω ′y

〉
× (δΩ/Ue

2)

(a)

10-3 10-2 10-1 100

y/δΩ

5

0

5

1e 2 β= 1

(
〈
v ′ω ′z

〉
−
〈
w ′ω ′y

〉
)× (δΩ/Ue

2)

R× (δΩ/Ue
2)〈

u ′v ′
〉
/ y× (δΩ/Ue

2)〈
v ′ω ′z

〉
× (δΩ/Ue

2)〈
−w ′ω ′y

〉
× (δΩ/Ue

2)

(b)

10-4 10-3 10-2 10-1 100

y/δΩ

5

0

5

1e 2 β= 39

(
〈
v ′ω ′z

〉
−
〈
w ′ω ′y

〉
)× (δΩ/Ue

2)

R× (δΩ/Ue
2)〈

u ′v ′
〉
/ y× (δΩ/Ue

2)〈
v ′ω ′z

〉
× (δΩ/Ue

2)〈
−w ′ω ′y

〉
× (δΩ/Ue

2)

(c)

Figure 5.5: Pro�les of the velocity-vorticity correlations (〈v′ω′z〉 and −〈w′ω′y〉) and gradi-

ents of the corresponding Reynolds stresses in Equation 5.2 for (a) ZPG, (b) mild APG,

and (c) strong APG. The pro�les are averaged in streamwise direction within DoI and are

non-dimensionalised by δΩ and Ue.

47



10-3 10-2 10-1 100

y/δΩ

1.0

0.5

0.0

0.5

1.0

β= 0

(
〈
u ′ω ′z

〉
−
〈
w ′ω ′x

〉
)× (δΩ/Ue

2)

( E/ y)× (δΩ/Ue
2)〈

u ′v ′
〉
/ x× (δΩ/Ue

2)〈
v ′v ′

〉
/ y× (δΩ/Ue

2)〈
u ′ω ′z

〉
× (δΩ/Ue

2)〈
−w ′ω ′x

〉
× (δΩ/Ue

2)

(a)

10-3 10-2 10-1 100

y/δΩ

7.5

5.0

2.5

0.0

2.5

5.0

7.5
1e 1 β= 1

(
〈
u ′ω ′z

〉
−
〈
w ′ω ′x

〉
)× (δΩ/Ue

2)

( E/ y)× (δΩ/Ue
2)〈

u ′v ′
〉
/ x× (δΩ/Ue

2)〈
v ′v ′

〉
/ y× (δΩ/Ue

2)〈
u ′ω ′z

〉
× (δΩ/Ue

2)〈
−w ′ω ′x

〉
× (δΩ/Ue

2)

(b)

10-4 10-3 10-2 10-1 100

y/δΩ

1.0

0.5

0.0

0.5

1.0

β= 39

(
〈
u ′ω ′z

〉
−
〈
w ′ω ′x

〉
)× (δΩ/Ue

2)

( E/ y)× (δΩ/Ue
2)〈

u ′v ′
〉
/ x× (δΩ/Ue

2)〈
v ′v ′

〉
/ y× (δΩ/Ue

2)〈
u ′ω ′z

〉
× (δΩ/Ue

2)〈
−w ′ω ′x

〉
× (δΩ/Ue

2)

(c)

Figure 5.6: Pro�les of the velocity-vorticity correlations (〈u′ω′z〉 and −〈w′ω′x〉) and gradi-

ents of the corresponding Reynolds stresses in Equation 5.3 for (a) ZPG, (b) mild APG,

and (c) strong APG. The pro�les are averaged in streamwise direction within DoI and are

non-dimensionalised by δΩ and Ue.
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It can be shown that the velocity-vorticity correlations can be related to the gradients

of the Reynolds stresses (Hinze, 1975; Klewicki, 1989) as given by

∂〈u′ju′i〉
∂xj

= −εijk〈u′jω′k〉 +
1

2

∂〈u′ju′j〉
∂xi

. (5.1)

By setting i = 1 and i = 2 in Equation 5.1, the velocity-vorticity correlations 〈v′ω′z〉−〈w′ω′y〉
and 〈u′ω′z〉−〈w′ω′x〉 are expressed as

〈v′ω′z〉 − 〈w′ω′y〉 = R− ∂〈u′v′〉
∂y

(5.2)

and

〈u′ω′z〉 − 〈w′ω′x〉 = −∂E
∂y

+
∂〈u′v′〉
∂x

+
∂〈v′v′〉
∂y

, (5.3)

where R refers to the streamwise gradient terms given by

R =
∂

∂x

(
(−〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉)

2

)
(5.4)

and E is the turbulent kinetic energy given by

E =
1

2
〈u′ju′j〉 =

1

2
(〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉). (5.5)

The pro�les of the terms in Equations 5.2 and 5.3 are illustrated in �gures 5.5 and 5.6

respectively. Across the boundary layer, for all the pressure gradient cases illustrated in

�gure 5.5, the correlation 〈v′ω′z〉−〈w′ω′y〉 can be considered as the dominant contributor to

the term −∂〈u′v′〉/∂y as the streamwise gradient terms (R) in Equation 5.2 are negligible

when compared to the other terms. The streamwise gradient terms are usually referred

to as the inactive component contributions Townsend (1961); Klewicki et al. (1994). As

illustrated in �gures 2.7e and 5.5, the wall-normal gradient of 〈u′v′〉 has an inner peak for

all the TBL cases and also an outer peak develops when APG is applied in the domain.

The outer peak of ∂〈u′v′〉/∂y becomes more signi�cant for the strong APG TBL case and

is located at the height of y/δΩ = 0.3. For all the TBLs, the signi�cant contribution to the

inner peak of −∂〈u′v′〉/∂y is from the velocity-vorticity correlation −〈w′ω′y〉, whereas the
outer peak contribution is primarily from the correlation 〈v′ω′z〉. This is also consistent

with the value of 〈v′ω′z〉−〈w′ω′y〉 matching with the value of 〈v′ω′z〉 at the height of y/δΩ =

0.3 for the strong APG TBL as shown in �gure 5.5c.

In all the TBL cases, the combined e�ect of 〈u′ω′z〉 and 〈w′ω′x〉 in Equation 5.3 can

be considered as the contribution from the wall-normal gradient of the turbulent kinetic

energy (E) as illustrated in �gure 5.6. The dominant peak of 〈u′ω′z〉−〈w′ω′x〉 in the inner

region coincides with the inner peak of ∂E/∂y for all the pressure gradient cases. When

the velocity-vorticity correlations 〈u′ω′z〉 and −〈w′ω′x〉 are compared, it is observed that

〈u′ω′z〉 is more signi�cant than −〈w′ω′x〉 in all the TBLs. However, the peak of 〈u′ω′z〉 has
reduced for the strong APG TBL when compared to the ZPG TBL as shown in �gure 5.4c.
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5.4 Variation of the premultiplied integrands with pres-

sure gradient

The variation of the contribution of the advective vorticity transport and vortex stretching

terms are further analysed by investigating the wall-normal distribution of their integrands

for the three TBL cases. The integrands of the terms Cf1 and Cf2 are denoted by I1

and I2 respectively. In the present study, the premultiplied integrands are denoted by

the subscript of ∗. The y coordinate is non-dimensionalised by the outer scale δΩ and

the premultiplied integrands are streamwise averaged within the DoI. The pro�les of the

premultiplied integrands of Cf1 and Cf2 (I1∗ and I2∗) are shown in �gure 5.7.

It is shown in section 5.2 that the term Cf1 gives a negative contribution to the

skin friction coe�cient for all the pressure gradient cases. As illustrated in �gure 5.7a,

the premultiplied integrand I1∗ has two negative peaks in the outer region for the ZPG

TBL. The �rst outer peak decreases with increasing pressure gradient, whereas the second

negative peak continues to grow. When the �ow reaches the verge of separation in the

strong APG TBL, the dominant negative contribution is from the second peak which is

located around the height of y/δΩ = 0.3. The location of the dominant outer peak in I1∗

coincides with the outer peak in −∂〈u′v′〉/∂y as illustrated in �gures 2.7e and 5.5c.
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Figure 5.7: Variation of the premultiplied integrand (a) I1∗, and (b) I2∗ of the YAHS

identity (Equation 3.5) with β. The pro�les are averaged in streamwise direction within

DoI.

The vortex stretching term (Cf2) provides a positive contribution in all the three TBL

cases as shown in �gure 5.1. In the ZPG TBL, the dominant positive contribution is from

the outer peak located at the height of y/δΩ = 1.5 × 10−2 as illustrated in �gure 5.7b.

As the pressure gradient increases, a second positive outer peak develops, while the �rst

peak reduces. The second outer peak becomes the dominant positive contributor in the

strong APG TBL and its location coincides with the position of the outer peak in 〈u′v′〉
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around the height of y/δΩ = 0.2 as shown in �gure 2.7d. It is also to be noted that there

is a negative peak present around the height of y/δΩ = 0.35 in the strong APG TBL.

As shown in Equation 5.2, 〈v′ω′z〉−〈w′ω′y〉 can be expressed in terms of the Reynolds

stress gradients. Therefore, the sum of the terms Cf1 and Cf2 is given by

∫ 1

0

2δΩ

Ue
2

(
1− y

δΩ

)(
〈v′ω′z〉+ 〈−w′ω′y〉

)
d
( y
δΩ

)

︸ ︷︷ ︸
Cf1

+Cf2

=

∫ 1

0

2δΩ

Ue
2

(
1− y

δΩ

) ∂
∂x

(
(−〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉)

2

)
d
( y
δΩ

)

︸ ︷︷ ︸
Cf12a

+

∫ 1

0

2δΩ

Ue
2

(
1− y

δΩ

)−∂〈u′v′〉
∂y

d
( y
δΩ

)

︸ ︷︷ ︸
Cf12b

. (5.6)

The contribution from the term Cf12a is insigni�cant for all the TBL cases as the Reynolds

stress gradients (R) in the term Cf12a are negligible, which is illustrated in �gure 5.5.

The pro�les of the premultiplied integrands of the terms Cf12b
and Cf1+Cf2 are shown

in �gure 5.8. The pro�le of the premultiplied integrand I1∗+I2∗ match closely with the

pro�le of I12b∗ for all the pressure gradient cases. This shows that the combined e�ect of

the advective vorticity transport and vortex stretching terms (Cf1+Cf2) can be considered

as the contribution from the negative wall-normal gradient of the Reynolds shear stress

(Cf12b
). This is also consistent with the pro�le of 〈v′ω′z〉−〈w′ω′y〉 matching with the pro�le

of −∂〈u′v′〉/∂y in all the TBLs, as observed in �gure 5.5.

The term Cf12b
can be further integrated by parts and applying the no slip condition

〈u′v′〉(y/δΩ = 0) = 0 leads to

Cf12b
=

∫ 1

0

2δΩ

Ue
2

(
1− y

δΩ

)∂〈−u′v′〉
∂y

d
( y
δΩ

)

=

[
2δΩ

Ue
2

(
1− y

δΩ

)〈−u′v′〉
δΩ

]1

0

+

∫ 1

0

2δΩ

Ue
2

〈−u′v′〉
δΩ

d
( y
δΩ

)

=

∫ 1

0

−2

Ue
2 〈u′v′〉 d

( y
δΩ

)

︸ ︷︷ ︸
Cf12c

. (5.7)

The term Cf12c can be considered as the Reynolds stress contribution in the YAHS identity

and the Reynolds shear stress in the term Cf12c is weighted by a constant (2/Ue2) in the

wall-normal direction. The pro�les of the premultiplied integrand of Cf12c is illustrated

in �gure 5.8. The premultiplied integrand I12c∗ has an outer peak in all the TBL cases.

Even though the wall-normal distribution of the integrands of the terms Cf12b
and Cf12c
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look di�erent, their integration in the wall-normal direction is the same as shown in

Equation 5.7.

As discussed in chapters 3 and 4, the RD identity and the FIK identity have three

components each. From these two decompositions, the terms of interest to the current

analysis are Cfb and CfII . The term Cfb in the RD identity and the term CfII in the FIK

identity refer to the contribution from the Reynolds shear stress (〈u′v′〉) in the respective

decompositions. The term Cfb is given by

Cfb =

∫ ∞

0

−2

U3
e

∂〈u〉
∂y
〈u′v′〉 dy (5.8)

and the term CfII is given by

CfII =

∫ 1

0

−4

U2
e

(
1− y

δΩ

)
〈u′v′〉 d

( y
δΩ

)
. (5.9)

The premultiplied integrands of the terms Cfb and CfII are denoted by Ib∗ and III∗,

respectively, and their wall-normal pro�les are given in �gure 5.8.

The Reynolds shear stress contribution from the three decompositions, namely the

YAHS identity, the FIK identity, and the RD identity are compared for the three TBL

cases in �gure 5.8. The notable di�erence between the Reynolds stress components in the

three identities (Cf12c , CfII , Cfb) is the wall-normal weight of the Reynolds shear stress.

The terms Cf12c , CfII and Cfb have a constant weight (2/Ue
2), a linear weight (1−y/δΩ) and

a ∂〈u〉/∂y weight, respectively. For the ZPG TBL, Ib∗ of the RD identity has an inner and

an outer peak whereas, the premultiplied integrands in the other two decompositions (III∗
and I12c∗) have only an outer peak. As the pressure gradient increases, the inner peak of

Ib∗ decreases while the outer peak grows. For the strong APG TBL, the components from

all the three decompositions have a dominant outer peak around the height of y/δΩ = 0.2

as illustrated in �gure 5.8c. The dominant outer peak in the premultiplied integrands I12c∗,

Ib∗ and III∗ coincide with the outer peak of the Reynolds shear stress (〈u′v′〉) and the outer
in�ection point in the mean streamwise velocity (〈u〉) for the strong APG TBL illustrated

in �gure 2.7d and �gure 2.6a, respectively. This emphasizes the increasing in�uence of

the outer layer dynamics on the skin friction with increasing pressure gradient.

The terms Cf1+Cf2 and Cf12b
of the YAHS identity are related as shown in Equa-

tion 5.6. For the strong APG TBL, the zero crossing of the premultiplied integrands

I1∗+I2∗ and I2b∗, illustrated in �gure 5.8c, is also around the height of y/δΩ = 0.2 and

it is also consistent with the zero crossing of −∂〈u′v′〉/∂y, signifying the position of the

outer peak in the Reynold shear stress (〈u′v′〉) as shown in �gures 2.7d and 2.7e. For

the ZPG TBL, the premultiplied integrands I1∗+I2∗ and I2b∗ have a positive peak in the

inner region and a negative peak in the outer region. As the pressure gradient increases,
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Figure 5.8: Pro�les of the premultiplied integrands corresponding to the Reynolds shear

stress components in the three decompositions, namely the YAHS identity (I12c∗), the FIK

identity (III∗), and the RD identity (Ib∗) for (a) ZPG, (b) mild APG, and (c) strong APG.

The pro�les are averaged in streamwise direction within DoI and are non-dimensionalised

by δΩ and Ue.
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the inner peak continues to decrease and disappears in the strong APG TBL case. As

the adverse pressure gradient is applied, a second positive outer peak grows in the mild

APG TBL and it continues to grow in the case of the strong APG TBL. The outer nega-

tive peak in the pro�les of I1∗+I2∗ and I2b∗ continues to grow signi�cantly with increasing

pressure gradient and becomes a dominant negative contributor when the �ow reaches the

verge of separation in the strong APG TBL case. The negative peak of I1∗+I2∗ and I2b∗ is

around the height of y/δΩ = 0.3 in the strong APG case, which coincides with the outer

peak in the pro�le of −∂〈u′v′〉/∂y illustrated in �gure 2.7e. The above observations in the

strong APG TBL imply the increased signi�cance of the vortical motions and turbulent

mixing in the outer layer as it pertains to the contribution of the Reynolds shear stress

and −∂〈u′v′〉/∂y to the skin friction coe�cient.
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Figure 5.9: Variation of the contribution of the Reynolds shear stress components in the

three decompositions, namely the YAHS identity (Cf12c), the FIK identity (CfII ), and the

RD identity (Cfb) with β in the respective DoI.

The variation of the contribution of the Reynolds stress components from the three

decompositions with β is given in �gure 5.9. As the pressure gradient increases, the terms

Cf12c and CfII have a similar trend, while the term Cfb continues to increase. On average,

the term Cfb is about 2.1 times the term Cf12c within the DoI for the strong APG TBL,

which also coincides with the ratio of the outer peaks in Ib∗ and I2c∗ shown in �gure 5.8c.
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5.5 Relationship between the RD identity and velocity-

vorticity correlations

One of the main advantages of the RD identity is that it does not have any inhomogeneous

terms (Renard and Deck, 2016). As the RD identity is local in the streamwise direction,

it can also be used when the data at di�erent streamwise locations are not available.

Therefore, it is useful and important to quantify the contribution of the velocity-vorticity

correlations to the skin friction coe�cient without having to compute any streamwise

gradients that are signi�cant. The original RD identity is given in Equation 3.1.

At y = 0, the no-slip condition gives 〈u′v′〉(y = 0) = 〈u〉(y = 0) = 0. In the far-

�eld, the �ow becomes irrotational leading to 〈u′v′〉(y →∞) = 0. With these conditions,

integrating by parts the term Cfb in the RD identity (Equation 3.1) gives

Cfb =
2

U3
e

∫ ∞

0

−〈u′v′〉∂〈u〉
∂y

dy

=
2

U3
e

([
− 〈u′v′〉〈u〉

]∞
0
−
∫ ∞

0

〈u〉∂(−〈u′v′〉)
∂y

dy

)

=
2

U3
e

∫ ∞

0

〈u〉∂〈u
′v′〉
∂y

dy

︸ ︷︷ ︸
CfbIV

. (5.10)

As shown in Equation 5.2, the Reynolds stress gradients can be related to the velocity-

vorticity correlations 〈v′ω′z〉 and 〈w′ω′y〉. As discussed in Soria (2020), substituting Equa-

tion 5.2 into the term CfbIV in Equation 5.10 gives

Cfb =
2

U3
e

∫ ∞

0

〈 − u′v′〉∂〈u〉
∂y

dy

=
2

U3
e

∫ ∞

0

〈u〉∂〈u
′v′〉
∂y

dy

︸ ︷︷ ︸
CfbIV

=
2

U3
e

∫ ∞

0

〈u〉〈−v′ω′z〉 dy
︸ ︷︷ ︸

CfbI

+
2

U3
e

∫ ∞

0

〈u〉〈w′ω′y〉 dy
︸ ︷︷ ︸

CfbII

+
2

U3
e

∫ ∞

0

〈u〉 ∂
∂x

(
(−〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉)

2

)
dy

︸ ︷︷ ︸
CfbIII

. (5.11)

The contribution from the term CfbIII is insigni�cant for all the TBL cases as the

Reynolds stress gradients (R) in it are negligible, which is illustrated in �gure 5.5. The
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Figure 5.10: Variation of the premultiplied integrand (a) IbI∗, and (b) IbII∗ in Equa-

tion 5.11 of the RD identity with β. The pro�les are averaged in streamwise direction

within DoI and are non-dimensionalised by δΩ and Ue.

term CfbI refers to the contribution of the body force arising from the transport of ω′z by v
′

in the RD identity, whereas the term CfbII is interpreted as the contribution of the vortex

stretching force. The variation of the premultiplied integrand of these two terms (IbI∗ and

IbII∗) with the pressure gradient is illustrated in �gure 5.10. The premultiplied integrand

IbI∗ has two positive outer peaks for the ZPG TBL. As the pressure gradient increases, the

�rst peak decreases and vanishes in the case of the strong APG TBL. The second outer

peak continues to grow with the pressure gradient and becomes a dominant contributor

in the strong APG TBL. The outer peak of IbI∗ in the strong APG TBL is present around

the height of y/δΩ = 0.3 which matches with the location of the outer peak in ∂〈u′v′〉/∂y
as shown in �gure 2.7e. The premultiplied integrand of the vortex stretching term (IbII∗)

has two negative peaks in the outer region. With increasing pressure gradient, the �rst

peak reduces in magnitude, whereas the second peak grows. For the strong APG TBL,

there is a dominant negative peak in IbII∗ around the height of y/δΩ = 0.2. For the ZPG

TBL, the vortex stretching term in the YAHS identity (I2∗) has only one outer peak as

illustrated in �gure 5.7b whereas, a clear second peak is evident in IbII∗ of the RD identity

as shown in �gure 5.10b.

The contribution of the velocity-vorticity correlations 〈v′ω′z〉 and 〈w′ω′y〉 in the RD

identity are in the opposite sense to that of the corresponding terms in the YAHS identity.

This is because the term Cfb of the RD identity is related to the positive wall-normal

gradient of the Reynolds shear stress (∂〈u′v′〉/∂y) in Equation 5.11 whereas, the terms in

the YAHS identity are related to the negative wall-normal gradient of the Reynolds shear

stress (−∂〈u′v′〉/∂y) as shown in Equation 5.6.

The variation of the terms CfbI and CfbII of the RD identity with the pressure gradient

is presented in �gure 5.11. The term CfbI gives a positive contribution for all the cases,
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Figure 5.11: Variation of the contribution of the advective vorticty transport term (CfbI )

and the vortex stretching (CfbII ) term in Equation 5.11 of the RD identity with β in the

respective DoI.

while CfbII gives a negative contribution. The contribution of the term CfbII in the strong

APG TBL is approximately 60% lower than that in the ZPG case. This is consistent

with the negative peak of IbII∗ being narrow for the strong APG case as illustrated in

�gures 5.10 and 5.12c. The comparison of the pro�les of the premultiplied integrand

of the terms in Equation 5.11, which shows the relationship of the term Cfb in the RD

identity with the velocity-vorticity correlations, is shown in �gure 5.12 for each TBL case.

Although the pro�les of the premultiplied integrands Ib∗ and IIV ∗ look di�erent, their

integrated value in the wall-normal direction is the same as shown in Equation 5.11. The

premultiplied integrands are wider for the ZPG TBL and become narrower with increasing

pressure gradient. For the strong APG TBL, their pro�les are concentrated in the outer

region as illustrated in �gure 5.12c. When the �ow reaches the verge of separation in

the strong APG case shown in �gure 5.12c, the dominant outer peak in the premultiplied

integrand IbIV ∗ (contribution of ∂〈u′v′〉/∂y) matches with the peak of IbI∗ (contribution

of −〈v′ω′z〉) around the height of y/δΩ = 0.3, which again indicates that the velocity-

vorticity correlation 〈v′ω′z〉 is the dominant contributor to the outer peak of −∂〈u′v′〉/∂y
in the strong APG TBL as observed in section 5.3.
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Figure 5.12: Pro�les of the premultiplied integrand of the terms in Equation 5.11 of the

RD identity for (a) ZPG, (b) mild APG, and (c) strong APG. The pro�les are averaged

in streamwise direction within DoI and are non-dimensionalised by δΩ and Ue.
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5.6 Conclusion

The contribution of the velocity-vorticity correlations to the skin friction coe�cient and

their variation with the pressure gradient are investigated using the YAHS identity (Yoon

et al., 2016). For both the mild and the strong APG TBLs, the molecular di�usion

term (Cf3) reduces the skin friction coe�cient as ∂〈Ωz〉/∂y = ∂2〈v〉/∂y∂x− ∂2〈u〉/∂y2 is

negative at the wall because of the in�ection point in the mean streamwise velocity pro�le

in the near wall region. The contribution of the molecular di�usion at the wall (Cf3)

increases with the pressure gradient. For the strong APG TBL, the term Cf3 becomes

a dominant negative contributor which is consistent with a larger negative value of the

wall-normal gradient of the mean spanwise vorticity at the wall. The contribution of the

molecular transfer due to the mean vorticity (Cf4) is negligible for all the pressure gradient

cases.

Across the boundary layer in all the three pressure gradient cases, the combined e�ect

of 〈v′ω′z〉 and −〈w′ω′y〉 can be considered as the dominant contributor to −∂〈u′v′〉/∂y. In
the case of the strong APG TBL, the velocity-vorticity correlation 〈v′ω′z〉 is the primary

contributor to the outer peak of the negative wall-normal gradient of 〈u′v′〉 located around
the height of y/δΩ = 0.3. For all the pressure gradient cases, the combined e�ect of the

advective vorticity transport term (Cf1) and the vortex stretching term (Cf2) represents

the contribution from the Reynolds shear stress with a constant weight (Cf12c) as shown

in Equations 5.6 and 5.7. When the �ow reaches the verge of separation in the strong

APG TBL, the integrand of the term Cf12c exhibits an outer peak which coincides with

the outer peak of the Reynolds stress terms in the RD identity (Cfb) and the FIK identity

(CfII ) around the height of 20% of boundary layer thickness (y/δΩ = 0.2). This shows

the signi�cance of the outer layer vortical motions and turbulent mixing in regards to the

contribution from the Reynolds shear stress (〈u′v′〉) and its negative wall-normal gradient

(−∂〈u′v′〉/∂y) to the skin friction coe�cient when the �ow reaches the verge of separation.

The important distinction between the Reynolds stress components in the three identities

is the wall-normal weight of the Reynolds shear stress (−〈u′v′〉). The term Cf12c of the

YAHS identity has a a constant weight (2/Ue2), the term CfII of the FIK identity has a

linear weight (1 − y/δΩ) and the term Cfb of the RD identity has a ∂〈u〉/∂y weight for

the Reynolds shear stress.

A new method, using the RD identity (Renard and Deck, 2016), to quantify the con-

tribution of the advective vorticity transport and the vortex stretching force is introduced.

One of the bene�ts of the RD identity is that it does not have inhomogeneous terms and

therefore, it is helpful to express the contribution of the velocity-vorticity correlations to

the skin friction in a way that does not involve the computation of signi�cant streamwise
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gradients. The premultiplied integrands of the terms in Equation 5.11 are wide for the

ZPG TBL and they continue to shrink with increasing pressure gradient. In the strong

APG TBL, when the �ow reaches the verge of separation, the premultiplied integrand IbIV ∗
(contribution of ∂〈u′v′〉/∂y) has a dominant outer peak around the height of y/δΩ = 0.3

which coincides with the peak of IbI∗ (contribution of −〈v′ω′z〉). This observation again

implies that the velocity-vorticity correlation 〈v′ω′z〉 is the dominant contributor to the

outer peak of −∂〈u′v′〉/∂y.
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The two most important days in your life are the day you

are born and the day you �nd out why.

�Mark Twain

Chapter 6

Analysis of the turbulent contribution

of the intense structures to the skin

friction

6.1 Introduction

One of the types of coherent structures identi�ed in turbulent �ows is the intense structures

or clusters. The intense structures can be generally de�ned as spatially coherent regions

in the �ow whose constituent points carry a higher magnitude of certain quantities than

a threshold value. The optimum threshold to identify the intense structures is chosen

based on the percolation analysis, which gives an equilibrium between detecting only a

few very large structures and detecting only a few small and very intense structures.

The percolation analysis was �rst used by Moisy and Jiménez (2004) to identify intense

vortical and dissipative structures in isotropic turbulence followed by Del Álamo et al.

(2006) to identify vortex clusters in turbulent channel �ows. Subsequently, several studies

used percolation analysis to identify coherent structures like the study of intense Reynolds

stress structures in turbulent channel �ows by Lozano-Durán et al. (2012); Soria et al.

(2016), in TBLs by Maciel et al. (2017b,a) and to identify clusters of streamwise velocity

�uctuations in TBLs by Yoon et al. (2020).

As discussed in chapter 4, the Reynolds shear stress (〈u′v′〉) provides the predomi-

nant positive contribution to the skin friction irrespective of the pressure gradient in the

�ow. The Reynolds shear stress contribution (Cfb) exhibits an outer peak with increasing

adverse pressure gradient. In the case of the strong APG TBL, the major part of the con-

tribution is from a dominant outer peak located around the displacement thickness height

(y/δ1 = 1). In chapter 5, it is shown that the combined contribution of the velocity-

vorticity correlations 〈v′ω′z〉 and −〈w′ω′y〉 represents the contribution from the Reynolds
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shear stress with a constant wall-normal weight, which also develops an outer peak around

the displacement thickness height (y/δ1 = 1) in the strong APG TBL. These results from

the last two chapters emphasize the signi�cance of the Reynolds shear stress contribu-

tion from the outer region to the skin friction with increasing pressure gradient. As the

Reynolds shear stress contribution from the entire �ow is analysed in chapters 4 and 5,

the focus of the present chapter is to investigate the contribution of the Reynolds shear

stress only from the intense structures in the �ow. The types of intense structures consid-

ered in the present study are intense topological structures and intense Reynolds stress

structures. This chapter is organised as follows. In section 6.2, the methodology used to

identify the intense structures (intense dissipative structures, intense vortical structures

and intense Reynolds stress structures) is discussed. In section 6.3, the number and vol-

ume proportions, and geometric characteristics of these intense structures are presented.

In section 6.4, the turbulent contribution of these intense structures to the skin friction

is analysed using the Reynolds stress term (Cfb) in the RD identity (Renard and Deck,

2016).

6.2 Identi�cation methodology of the intense structures

Three types of intense structures, namely intense dissipative structures, intense vortical

structures and intense Reynolds stress structures are investigated in the DoI of the ZPG

and strong APG TBLs. For the detection of these structures in the strong APG TBL, a

bu�er domain of streamwise extent 2.8δ1 is used on both the sides of the self-similar DoI.

This is done to ensure that the full streamwise extent of the intense structures within the

self-similar DoI is captured. δ1 is the mean displacement thickness within the DoI. The

identi�cation methodologies of these structures are outlined below.

6.2.1 Intense dissipative structures

Following Chong et al. (1990); Soria and Cantwell (1994); Chong et al. (1998), the �ow

can be classi�ed into di�erent topologies based on the invariants in the (RA,QA)-plane,

where QA is the second invariant of the velocity gradient tensor Aij = ∂ui/∂xj and RA

is the third invariant of the Aij. The velocity gradient tensor Aij can be split into two

components as given by

Aij = Sij +Wij, (6.1)

where Sij is the symmetric rate of strain tensor and Wij is the skew symmetric rate of

rotation tensor. The symmetric and anti-symmetric parts of Aij are given by
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Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(6.2)

and

Wij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (6.3)

respectively. QA and RA are given by

QA = −1

2
AijAji = Qs +Qw (6.4)

and

RA = −1

3
AijAjkAki, (6.5)

where Qs is the second invariant of the symmetric rate of strain tensor (Sij) and Qw is

the second invariant of the skew symmetric rate of rotation tensor (Wij). Qs is always a

negative quantity, while Qw is always a positive quantity. The discriminant of the velocity

gradient tensor Aij is de�ned as

DA =
27

4
R2
A +Q3

A. (6.6)

As illustrated in �gure 6.1, the tent-like curve in the (RA,QA)-plane corresponds toDA = 0

(Soria and Cantwell, 1994; Chong et al., 1998). For any point in the �ow, QA gives a

measure of the relative intensity of the local strain and vorticity. The two topologies used

to identify the intense dissipative structures are unstable node/saddle/saddle (USN/S/S)

and stable node/saddle/saddle (SN/S/S) and they lie below the tent-like curve in the

(RA,QA)-plane.

The intense dissipative structures, which lie below and farther away from the DA = 0

curve, have large negative values of QA indicating regions of strong local strain. The

negative contribution to QA is from the second invariant of Sij (Qs), which is always a

negative quantity. Qs can be related to the dissipation of kinetic energy into heat per unit

mass (φ) as given by

Qs = −1

2
SijSij =

−1

4ν
φ, (6.7)

where φ = 2νSijSij and ν is the kinematic viscosity. The intense dissipative structures

are de�ned as regions of connected points in the �ow that satisfy two conditions simulta-

neously. The �rst condition is given by

−DA(x, y, z) > αsσDA
(x, y), (6.8)

where αs is a constant threshold and σDA
=

√
(DA

′)2 is the standard deviation of DA.

The threshold αs is chosen based on the percolation analysis as outlined in Lozano-Durán
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Intense vortical structures

(USN/S/S)(SN/S/S)

(UF/C)(SF/S)

Intense dissipative structures

Figure 6.1: Notations of the intense vortical and dissipative structures. The local

non-degenerate topologies in the (RA,QA)-plane are stable focus/stretching (SF/S), un-

stable focus/contracting (UF/C), stable node/saddle/saddle (SN/S/S), and unstable

node/saddle/saddle (USN/S/S). The tent-like curve corresponds to DA = 0 (Soria and

Cantwell, 1994; Chong et al., 1998). Based on the sign of RA, intense dissipative struc-

tures belonging to USN/S/S topology is denoted as sR+ and those in SN/S/S topology as

sR−. Similarly, intense vortical structures belonging to UF/C topology is denoted as ωR+

and those in SF/S topology as ωR−.

et al. (2012); Del Álamo et al. (2006); Moisy and Jiménez (2004). The second condition

is that all the points within a dissipative structure should belong to the same topology in

the (RA,QA)-plane. The two topologies considered here are unstable node/saddle/saddle

(USN/S/S) given by DA < 0, RA > 0 and stable node/saddle/saddle (SN/S/S) given by

DA < 0, RA < 0. Both of these topologies have negative DA values (DA < 0). Therefore,

based on the sign of RA, intense dissipative structures belonging to USN/S/S topology

are denoted as sR+ and those in SN/S/S topology as sR−. The sR+ and sR− structures

are referred to as sR,both. Connectivity of the points is de�ned based on the six orthogonal

neighbours in the Cartesian coordinate system. The structures or clusters or objects are

identi�ed using an e�cient in-house 3D implementation of the Hoshen�Kopelman (HK)
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algorithm (Hoshen and Kopelman, 1976).

A percolation analysis is performed separately for each topological structure to obtain

a separate threshold for each structure type. The percolation diagrams for the identi�-

cation of sR+ and sR− structures in the ZPG and the strong APG TBLs are shown in

�gure 6.2. As illustrated in �gure 6.2a of the ZPG TBL, NsR+
/Nmax,sR+

refers to the

number of identi�ed sR+ structures normalised by its maximum over the range of αs, and

Vlar,sR+
/Vtot,sR+

refers to the ratio of the volume of the largest identi�ed sR+ structure to

the total volume of all identi�ed sR+ structures. For the sR+ structures in the ZPG TBL,

when αs & 4× 10−4, only a few small and intense objects are detected. As αs is reduced,

new objects are introduced, while previously identi�ed objects grow in size. Eventually,

they merge together resulting in a rapid increase of Vlar,sR+
/Vtot,sR+

. For the sR+ struc-

tures, this percolation crisis takes place in the approximate range 8×10−8 . αs . 4×10−4.

For lower values of αs . 8 × 10−8, Vlar,sR+
/Vtot,sR+

≈ 1 as one large object contributes

to most of the total volume. The percolation threshold is de�ned as the value of αs for

which the gradient of Vlar,sR+
/Vtot,sR+

is maximum. For the sR+ structures, the maximum

gradient occurs at a value of 8 × 10−5 and it falls within the range of the percolation

crisis. Therefore, the chosen threshold for the sR+ structures in the present study is

αsR+
= 8× 10−5 and it is denoted by the vertical dotted line in �gure 6.2a.
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Figure 6.2: Percolation diagram for the identi�cation of intense dissipative structures in

(a) the ZPG TBL and (b) the strong APG TBL. The vertical dotted lines indicate the

chosen thresholds (αsR+
, αsR−) for each topological structures, respectively.

Similarly, for the sR− structures, NsR−/Nmax,sR− refers to the number of identi�ed sR−
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Case ZPG strong APG

αsR+
8× 10−5 1.75× 10−4

αsR− 1× 10−5 3.75× 10−4

Table 6.1: The chosen thresholds, within the respective percolation crisis range, for the

intense dissipative structures in the ZPG TBL and the strong APG TBL.

structures normalised by its maximum over the range of αs, and Vlar,sR−/Vtot,sR− refers to

the ratio of the volume of the largest identi�ed sR− structure to the total volume of all

identi�ed sR− structures. For the sR−, the maximum gradient of Vlar,sR−/Vtot,sR− occurs

at a value of 2 × 10−10 as shown in �gure 6.2a. As this threshold value is close to zero,

almost all the points belonging to the particular topology type are selected. Therefore,

for the sR− structures in the ZPG TBL, a threshold value of αsR− = 1 × 10−5 is chosen,

which also lies within the respective percolation crisis range. In the strong APG TBL,

all of the chosen thresholds correspond to the value for which the gradient of Vlar,k/Vtot,k
is maximum, where `k' refers to each dissipative structure type considered in the present

study. The chosen thresholds for all the intense dissipative structures in the ZPG and the

strong APG TBLs are summarised in table 6.1 and are denoted by vertical dotted lines

in their respective percolation diagrams illustrated in �gure 6.2.

6.2.2 Intense vortical structures

The intense vortical structures, which lie above and farther away from the DA = 0 curve,

have large positive values of QA indicating regions of strong local vorticity. As given by

Equation 6.4, QA is the sum of Qs and Qw. The positive contribution to QA is from the

second invariant of Wij (Qw), which is always a positive quantity. Qw is proportional to

the enstrophy density (the square of the vorticity), given by

Qw = −1

2
WijWij. (6.9)

Case ZPG strong APG

αωR+
6× 10−5 7.5× 10−6

αωR− 0.002 0.0001

Table 6.2: The chosen thresholds, within the respective percolation crisis range, for the

intense vortical structures in the ZPG TBL and the strong APG TBL.

Based on the relation in Equation 6.9, intense vortical structures are de�ned as regions

of connected points in the �ow that satisfy two conditions simultaneously. The �rst
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Figure 6.3: Percolation diagram for the identi�cation of intense vortical structures in (a)

the ZPG TBL and (b) the strong APG TBL. The vertical dotted lines indicate the chosen

thresholds (αωR+
, αωR−) for each topological structures, respectively.

condition is given by

DA(x, y, z) > αωσDA
(x, y), (6.10)

where αω is a constant threshold and σDA
=

√
(DA

′)2 is the standard deviation of DA.

The second condition is that all the points within a vortical structure should belong to

the same topology in the (QA,RA)-plane. The two topologies (Chong et al., 1998, 1990)

considered here are unstable focus/contracting (UF/C) given by DA > 0, RA > 0 and

stable focus/stretching (SF/S) given by DA > 0, RA < 0. Both of these topologies

have positive DA values (DA > 0). Therefore, based on the sign of RA, intense vortical

structures belonging to UF/C topology are denoted as ωR+ and those in SF/S topology

as ωR−. The ωR+ and ωR− structures are referred to as ωR,both. Similar to the intense

dissipative structures, point connectivity is de�ned based on the six orthogonal neighbours

and αω is obtained from a similar percolation analysis for each vortical structure type.

The percolation diagrams for the identi�cation of ωR+ and ωR− structures in both the

TBLs are shown in �gure 6.3 and the vertical dotted lines refer to the values for which

the gradient of Vlar,k/Vtot,k is maximum in each case. The chosen thresholds for all the

vortical structures (αωR+
, αωR−) are summarised in table 6.2.
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6.2.3 Intense Reynolds stress structures

Intense Reynolds stress quadrant structures are de�ned as regions of connected points in

the �ow that satisfy two conditions simultaneously. The �rst condition (Lozano-Durán

et al., 2012) is given by

|u′v′(x, y, z)| > Hu′rms(x, y)v′rms(x, y), (6.11)

where u′rms and v
′
rms represent the root mean square of the respective velocity �uctuations

u′ and v′, and H is a constant threshold known as the hyperbolic-hole size. The second

condition is that all the points within a Reynolds stress structure should belong to the

same quadrant in the (u′,v′)-space. Following Wallace et al. (1972), the quadrants are

de�ned as follows: Q1 represents u′ > 0, v′ > 0, Q2 represents u′ < 0, v′ > 0, Q3

represents u′ < 0, v′ < 0, and Q4 represents u′ > 0, v′ < 0. All of the intense quadrant

structures (Q1, Q2, Q3, Q4) are referred to as Quv. Based on the sign of the product u′v′,

the Q2 and Q4 structures are denoted as Quv− and, the Q1 and Q3 structures as Quv+.

Point connectivity is de�ned based on the six orthogonal neighbours and the threshold H

is obtained from a similar percolation analysis for each quadrant type.
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Figure 6.4: Percolation diagram for the identi�cation of intense Reynolds stress quadrant

structures in (a) the ZPG TBL and (b) the strong APG TBL. The vertical dotted lines

indicate the chosen thresholds (H1, H2, H3, H4) for each quadrant structures, respectively.

The percolation diagrams for the identi�cation of Quv structures in both the TBLs are

shown in �gure 6.4 and the vertical dotted lines refer to the threshold values for which

the gradient of Vlar,k/Vtot,k is maximum in each quadrant type. The chosen thresholds,

68



Case ZPG strong APG

H1 0.20 0.25

H2 0.80 0.75

H3 0.20 1.25

H4 0.80 1.0

Table 6.3: The chosen thresholds, within the respective percolation crisis range, for the

intense Reynolds stress structures in the ZPG TBL and the strong APG TBL.

which lie within the respective percolation crisis range, for all the quadrant structures

(H1, H2, H3, H4) are summarised in table 6.3.

6.3 Geometric characteristics of the intense structures

In this section, the geometric characteristics of the intense structures identi�ed by the

above procedures are investigated. Each structure is circumscribed by a rectangular box

aligned with the Cartesian axes, whose streamwise, wall-normal and spanwise extents are

denoted by lx, ly and lz, respectively. The minimum and maximum distances of each

structure from the wall are denoted by ymin and ymax, respectively. The position of the

mid-height of the circumscribing box is denoted as yc and ly = ymax − ymin. Following

Maciel et al. (2017b), very small intense structures with a volume Vstruct < (3∆x)3 are

disregarded as their sizes are not well resolved on the grid. The structures that touch the

boundaries of the �ow domain are also rejected as their sizes are indeterminate. In this

study, wall-attached structures are de�ned as those for which ymin < 0.2δ1, where δ1 is

the mean displacement thickness within the DoI. The number of statistically independent

�ow �elds (nf ) used to identify the intense structures in the ZPG TBL and the strong

APG TBL are respectively 50 and 40. The reference volume VBL is de�ned as the volume

from the wall up to the mean boundary layer thickness within the DoI.

6.3.1 Geometric characters of the intense dissipative structures

With the present identi�cation methodology, a total of 3.42 × 106 sR,both structures are

identi�ed in the ZPG TBL and 7.13× 106 sR,both structures in the strong APG TBL.

The relative volume and number of intense dissipative structures (sR+ and sR−) are

summarised in table 6.4, where Vtot,sR,both
is the total volume occupied by the sR+ and

sR− structures, and NsR,both
is the total number of identi�ed sR+ and sR− structures. In

the ZPG TBL, the sR+ structures occupy 83.6% of the total volume occupied by all the
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Case ZPG strong APG

sR+ 83.6% of Vtot,sR,both
89.0% of Vtot,sR,both

69.1% of NsR,both
79.4% of NsR,both

attached sR+ 29.8% of Vtot,sR+
14.1% of Vtot,sR+

15.3% of NsR+
9.4% of NsR+

sR− 16.4% of Vtot,sR,both
11.0% of Vtot,sR,both

30.9% of NsR,both
20.6% of NsR,both

attached sR− 0.3% of Vtot,sR− 8.7% of Vtot,sR−

0.6% of NsR− 12.5% of NsR−

sR,both 6.07% of VBL 1.58% of VBL

Table 6.4: Number and volume proportion of the intense dissipative structures (sR+ and

sR−) in the ZPG TBL and the strong APG TBL, where Vtot,sR,both
is the total volume

occupied by the sR+ and sR− structures.

intense dissipative structures and represent 69.1% of NsR,both
. Similarly, the strong APG

TBL also shows less propensity for the sR− structures, where the relative volume and

number of the sR+ structures have increased to 89.0% and 79.4%, respectively.Figure 6.5

shows instantaneous 3D isosurfaces of the sR+ and sR− structures in the ZPG TBL and

similarly, �gure 6.6 shows the sR,both structures in the strong APG TBL. In all the following

3D visualisations, isosurfaces are for the values above the chosen thresholds from the

respective percolation analysis. The wall-normal extent of the domain shown in all the

3D visualisations are 14.7δ1 and 5.9δ1 for the ZPG and strong APG TBLs, respectively.

The isosurfaces are coloured based on the distance from the wall. The �ow is from top-left

to bottom-right in all the 3D visualisations. The isosurfaces in �gures 6.5 and 6.6 clearly

show that there is a greater propensity for the sR+ structures than the sR− structures in

both the TBLs.

The volume occupied by the sR,both structures relative to the reference volume VBL is

6.07% in the ZPG TBL as shown in table 6.4 and it has reduced to 1.58% in the strong

APG TBL. However, the number of identi�ed sR,both structures (NsR,both
) has increased by

2.1 times in the strong APG TBL when compared to the ZPG TBL. This shows that the

intense dissipative structures have become �ner in the strong APG TBL.

As shown in table 6.4, the wall-attached sR+ structures in the ZPG TBL represent

29.8% of the total volume of sR+ structures and 15.3% of their total number. In the strong

APG TBL, the relative volume and number of wall-attached sR+ structures has decreased
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(a)

(b)

Figure 6.5: Instantaneous isosurfaces of (a) sR+ and (b) sR− structures in the DoI of

the ZPG TBL. The �ow is from top-left to bottom-right as denoted by the arrow. The

structures are coloured based on the distance from the wall. The size of the box in x, y

and z directions are 54.4δ1, 14.7δ1 and 72.0δ1, respectively.
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(a)

(b)

Figure 6.6: Instantaneous isosurfaces of (a) sR+ and (b) sR− structures in the DoI and

bu�er domain of the strong APG TBL. The �ow is from top-left to bottom-right as

denoted by the arrow. The structures are coloured based on the distance from the wall.

The size of the box in x, y and z directions are 11.3δ1, 5.9δ1 and 7.7δ1, respectively.
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Figure 6.7: Geometrical characteristics of sR+ structures in the ZPG TBL. The contour

lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.56lx. Dashed

line represents ly ≈ 0.74lz.
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Figure 6.8: Geometrical characteristics of sR+ structures in the strong APG TBL. The

contour lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.71lx.

Dashed line represents ly ≈ 0.71lz.
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Figure 6.9: Geometrical characteristics of sR− structures in the ZPG TBL. The contour

lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.70lx. Dashed

line represents ly ≈ 0.67lz.
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Figure 6.10: Geometrical characteristics of sR− structures in the strong APG TBL. The

contour lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.45lx.

Dashed line represents ly ≈ 0.46lz.
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to 14.1% and 9.4%, respectively, showing that the volume and number proportion of

detached sR+ structures have increased in the strong APG TBL. Figure 6.7 shows the

joint probability density functions (JPDFs) of ymin and ymax, lx and ly, lz and ly, and

between lx and yc for the sR+ structures in the ZPG TBL. Similarly, �gure 6.8 shows

the JPDFs associated with the sR+ structures in the strong APG TBL. In all the JPDFs

between the streamwise (lx) and wall-normal (ly) extents, the solid line represents the

mean ly at a given lx. Similarly, in all the JPDFs between spanwise (lz) and wall-normal

(ly) extents, the dashed line represents the mean ly at a given lz. The colormap used

for the JPDFs in the ZPG TBL is di�erent from that of the strong APG TBL for easy

identi�cation. When compared to the strong APG TBL, the sR+ structures in the ZPG

TBL are generally bigger in all the directions relative to the mean displacement thickness

(δ1). As illustrated by the JPDFs of the ZPG TBL in �gure 6.7, the sR+ structures

form a self-similar family of streamwise elongated structures with the aspect ratio of their

sizes following the linear law lx ≈ 1.8ly ≈ 1.3lz. However, as shown in �gure 6.8, the

sR+ structures in the strong APG TBL are less streamwise extended than the ZPG TBL

following the ratio lx ≈ 1.4ly, while the relationship between the wall-normal and spanwise

extents remains the same as ly ≈ 0.7lz. As illustrated by the JPDF of lx and yc, it is

less likely to �nd the streamwise elongated sR+ structures closer to the wall in the strong

APG TBL than in the ZPG TBL, which is consistent with the higher relative volume and

number of detached sR+ objects in the strong APG TBL.

In the ZPG TBL, the wall-attached sR− structures represent only 0.3% of the total

volume of sR− structures and 0.6% of their total number as shown in table 6.4. In the

strong APG TBL, these percentages of the wall-attached sR− structures are respectively

8.7% and 12.5%. However, in both the TBLs, the sR− structures represent a lesser relative

volume and number of all the sR,both structures, which is apparent from the instantaneous

isosurfaces of the sR− objects illustrated in �gures 6.5b and 6.6b. As illustrated by the

JPDFs of the ZPG TBL in �gure 6.9, the sizes of the sR− structures follow the law

lx ≈ 1.4ly ≈ 1.0lz. However, the sizes of the sR− structures in the strong APG TBL follow

the ratio lx ≈ 2.2ly ≈ 1.0lz as shown in �gure 6.10. As shown by the narrower JPDF of

ymin and ymax in the strong APG TBL, the sR− structures in the strong APG TBL are

longer objects with a shorter wall-normal extent than those in the ZPG TBL.

6.3.2 Geometric characters of the intense vortical structures

With the present identi�cation methodology, a total of 4.99 × 106 ωR,both structures are

identi�ed in the ZPG TBL and 12.85× 106 ωR,both structures in the strong APG TBL.

The relative volume and number of the intense vortical structures (ωR+ and ωR−) are

summarised in table 6.5, where Vtot,ωR,both
is the total volume occupied by the ωR+ and
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Case ZPG strong APG

ωR+ 51.8% of Vtot,ωR,both
60.9% of Vtot,ωR,both

52.7% of NωR,both
58.7% of NωR,both

attached ωR+ 24.1% of Vtot,ωR+
14.8% of Vtot,ωR+

8.6% of NωR+
10.8% of NωR+

ωR− 48.2% of Vtot,ωR,both
39.1% of Vtot,ωR,both

47.3% of NωR,both
41.3% of NωR,both

attached ωR− 36.2% of Vtot,ωR− 14.4% ofVtot,ωR−

8.9% of NωR− 12.9% of NωR−

ωR,both 11.85% of VBL 3.61% of VBL

Table 6.5: Number and volume proportion of the intense vortical structures (ωR+ and

ωR−) in the ZPG TBL, where Vtot,ωR,both
is the total volume occupied by the ωR+ and ωR−

structures.

ωR− structures, and NωR,both
is the total number of identi�ed ωR+ and ωR− structures.

In the ZPG TBL, the ωR+ structures occupy 51.8% of the total volume occupied by all

the intense vortical structures and represent 52.7% of NωR,both
. Similarly, the strong APG

TBL shows less inclination towards the ωR− structures, where the relative volume and

number of the ωR+ structures have increased to 60.9% and 58.7%, respectively. Figure 6.11

shows instantaneous 3D isosurfaces of the ωR+ and ωR− structures in the ZPG TBL and

similarly, �gure 6.12 shows the ωR,both structures in the strong APG TBL.

The volume occupied by the ωR,both structures relative to the reference volume VBL is

11.85% in the ZPG TBL as shown in table 6.5 and it has reduced to 3.61% in the strong

APG TBL. However, the number of identi�ed ωR,both structures (NωR,both
) has increased

by 2.6 times in the strong APG TBL when compared to the ZPG TBL. This shows that

the intense vortical structures have also become �ner in the strong APG TBL.

As shown in table 6.5, in the ZPG TBL, the wall-attached ωR+ structures represent

24.1% of the total volume of the ωR+ structures. In the strong APG TBL, the relative

volume of the wall-attached structures has decreased to 14.8%, showing that the volume

proportion of the detached ωR+ structures have increased in the strong APG TBL. The

joint probability density functions (JPDFs) associated with the ωR+ structures in the ZPG

TBL and the strong APG TBL are shown in �gures 6.13 and 6.14, respectively. When

compared to the strong APG TBL, the ωR+ structures in the ZPG TBL are generally

bigger in all the directions relative to the mean displacement thickness (δ1). As illustrated
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(a)

(b)

Figure 6.11: Instantaneous isosurfaces of (a) ωR+ and (b) ωR− structures in the DoI of

the ZPG TBL. The �ow is from top-left to bottom-right as denoted by the arrow. The

structures are coloured based on the distance from the wall. The size of the box in x, y

and z directions are 54.4δ1, 14.7δ1 and 72.0δ1, respectively.
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(a)

(b)

Figure 6.12: Instantaneous isosurfaces of (a) ωR+ and (b) ωR− structures in the DoI

and bu�er domain of the strong APG TBL. The �ow is from top-left to bottom-right as

denoted by the arrow. The structures are coloured based on the distance from the wall.

The size of the box in x, y and z directions are 11.3δ1, 5.9δ1 and 7.7δ1, respectively.
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Figure 6.13: Geometrical characteristics of ωR+ structures in the ZPG TBL. The contour

lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.58lx. Dashed

line represents ly ≈ 0.77lz.
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Figure 6.14: Geometrical characteristics of ωR+ structures in the strong APG TBL. The

contour lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.74lx.

Dashed line represents ly ≈ 0.80lz.
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Figure 6.15: Geometrical characteristics of ωR− structures in the ZPG TBL. The contour

lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.44lx. Dashed

line represents ly ≈ 0.61lz.
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Figure 6.16: Geometrical characteristics of ωR− structures in the strong APG TBL. The

contour lines contain 50, 70, 90, 95, and 99% of the data. Solid line represents ly ≈ 0.57lx.

Dashed line represents ly ≈ 0.60lz.
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by the JPDFs of the ZPG TBL in �gure 6.13, the ωR+ structures form a self-similar family

of streamwise elongated structures with the aspect ratio of their sizes following the linear

law lx ≈ 1.7ly ≈ 1.3lz. However, as shown in �gure 6.14, the ωR+ structures in the strong

APG TBL are less streamwise extended than the ZPG TBL following the ratio lx ≈ 1.4ly,

while the relationship between the wall-normal and spanwise extents remains the same as

ly ≈ 0.8lz. As illustrated by the JPDF of lx and yc, it is less likely to �nd the streamwise

elongated ωR+ structures closer to the wall in the strong APG TBL than in the ZPG TBL,

which is consistent with the higher relative volume of the detached sR+ objects (85.2% of

Vtot,ωR+
) in the strong APG TBL.

In the ZPG TBL, the wall-attached ωR− structures represent 36.2% of the total volume

of the ωR− structures as shown in table 6.5. In the strong APG TBL, the relative volume

of the wall-attached ωR− structures has decreased to 14.4%, showing that the volume

proportion of the detached ωR− structures have increased in the strong APG TBL. The

JPDFs associated with the ωR− structures in the ZPG TBL and the strong APG TBL

are shown in �gures 6.15 and 6.16, respectively. Similar to the ωR+ structures, the sizes

of the ωR− structures in the ZPG TBL, relative to the mean displacement thickness (δ1),

are generally bigger in all the directions than the structures in the strong APG TBL.

As illustrated by the JPDFs of the ZPG TBL in �gure 6.15, the ωR− structures follow

the law lx ≈ 2.3ly ≈ 1.4lz. However, as shown in �gure 6.16, the ωR− structures in the

strong APG TBL are less streamwise extended than the ZPG TBL following the ratio

lx ≈ 1.7ly ≈ 1.0lz. Similar to the ωR+ structures, as illustrated by the JPDF of lx and

yc, it is less likely to �nd the streamwise elongated ωR− structures closer to the wall in

the strong APG TBL than in the ZPG TBL, which is consistent with the higher relative

volume of the detached sR− structures (85.6% of Vtot,ωR−) in the strong APG TBL.

6.3.3 Geometric characters of the intense Reynolds stress struc-

tures

With the present identi�cation methodology, a total of 1.24 × 106 Quv structures are

identi�ed in the ZPG TBL and 1.35× 106 Quv structures in the strong APG TBL.

The relative volume and number of the intense Reynolds stress structures are sum-

marised in table 6.6, where Vtot,Quv is the total volume occupied by the Quv structures (Q1,

Q2, Q3, and Q4), and NQuv is the total number of identi�ed intense structures in all the

four quadrants. In the ZPG TBL, the Quv− structures occupy 44.9% of the total volume

occupied by all the intense Reynolds stress structures, while the Quv+ structures represent

55.1% of Vtot,Quv . However, in the strong APG TBL, the Quv− and Quv+ structures rep-

resent almost equal volume proportions (50.3% and 49.7% of Vtot,Quv , respectively). The
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Case ZPG strong APG

Q1 27.0% of Vtot,Quv 25.9% of Vtot,Quv

31.8% of NQuv 36.9% of NQuv

Q2 22.1% of Vtot,Quv 19.5% of Vtot,Quv

16.5% of NQuv 19.9% of NQuv

Q3 28.1% of Vtot,Quv 23.8% of Vtot,Quv

34.4% of NQuv 23.1% of NQuv

Q4 22.8% of Vtot,Quv 30.8% of Vtot,Quv

17.3% of NQuv 20.1% of NQuv

Q2+Q4 (Quv−) 44.9% of Vtot,Quv 50.3% of Vtot,Quv

33.8% of NQuv 40.0% of NQuv

attached Q2+Q4 75.0% of Vtot,Q2+Q4 60.3% of Vtot,Q2+Q4

39.6% of NQ2+Q4 21.0% of NQ2+Q4

Q1+Q3 (Quv+) 55.1% of Vtot,Quv 49.7% of Vtot,Quv

66.2% of NQuv 60.0% of NQuv

attached Q1+Q3 58.7% of Vtot,Q1+Q3 25.5% of Vtot,Q1+Q3

29.3% of NQ1+Q3 16.1% of NQ1+Q3

Quv 15.91% of VBL 2.68% of VBL

Table 6.6: Number and volume proportion of the intense Reynolds stress structures (Q1,

Q2, Q3, and Q4) in the ZPG TBL and the strong APG TBL, where Vtot,Quv is the total

volume occupied by the intense structures in all the quadrants.

relative number of identi�ed Quv+ structures is higher in both the TBLs than the Quv−

structures as shown in table 6.6. Figure 6.17 shows instantaneous 3D isosurfaces of the

Quv− (Q2 and Q4) structures in the ZPG TBL and similarly, �gure 6.18 shows the Quv−

structures in the strong APG TBL.

In the ZPG TBL, the volume occupied by the Quv structures is 15.91% of VBL as

given in table 6.6 and it has reduced to 2.68% of VBL in the strong APG TBL. However,

the number of identi�ed Quv structures (NQuv) in the ZPG TBL is 1.24× 106 and it has

increased to 1.35 × 106 in the strong APG TBL. This shows that the intense Reynolds

stress structures have also become �ner in the strong APG TBL.

As shown in table 6.6, in the ZPG TBL, the wall-attached Quv− structures represent
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(a)

(b)

Figure 6.17: Instantaneous isosurfaces of the (a) Q2 and (b) Q4 Reynolds stress structures

in the DoI of the ZPG TBL. The �ow is from top-left to bottom-right as denoted by the

arrow. The structures are coloured based on the distance from the wall. The size of the

box in x, y and z directions are 54.4δ1, 14.7δ1 and 72.0δ1, respectively.
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(a)

(b)

Figure 6.18: Instantaneous isosurfaces of the (a) Q2 and (b) Q4 structures in the DoI

and bu�er domain of the strong APG TBL. The �ow is from top-left to bottom-right as

denoted by the arrow. The structures are coloured based on the distance from the wall.

The size of the box in x, y and z directions are 11.3δ1, 5.9δ1 and 7.7δ1, respectively.
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75.0% of the total volume of the Quv− structures. In the strong APG TBL, the relative

volume of the wall-attached structures has decreased to 60.3%, showing that the volume

proportion of the detached Quv− structures (Q2 and Q4) have increased in the strong

APG TBL. The JPDFs associated with the Quv− structures in the ZPG TBL and the

strong APG TBL are shown in �gures 6.19 and 6.20, respectively. Similar to the intense

topological structures, the sizes of the Quv− structures, relative to the mean displacement

thickness (δ1), are generally bigger in all the directions when compared to those in the

strong APG TBL. As illustrated by the JPDFs of the ZPG TBL in �gure 6.19, the Quv−

structures form a self-similar family of streamwise elongated structures with the aspect

ratio of their sizes following the linear law lx ≈ 3.4ly ≈ 2.8lz. However, as shown in

�gure 6.20, the Quv− structures in the strong APG TBL are less streamwise extended

than the ZPG TBL following the ratio lx ≈ 1.6ly, while the relationship between the

wall-normal and spanwise extents remains almost the same as ly ≈ 0.8lz. This result

is also similar to that reported by Maciel et al. (2017b), who observed less streamwise

elongation in the attached Quv− structures in their APG TBL when compared to those

in their ZPG TBL. As illustrated by the JPDF of lx and yc, it is likely to �nd the intense

Quv− structures with streamwise extent as long as 5δ1 closer to the wall in the ZPG TBL.

However, it is less likely to �nd the streamwise elongated Quv− structures closer to the

wall in the strong APG TBL than in the ZPG TBL, which is consistent with the higher

volume proportion of detached Quv− objects (39.7% of Vtot,Quv−) in the strong APG TBL.

In the ZPG TBL, the wall-attached Quv+ structures represent 58.7% of the total

volume of the Quv+ structures as shown in table 6.6. In the strong APG TBL, the

relative volume of the wall-attached Quv+ structures has decreased to 25.5%, showing

that the volume proportion of the detached Quv+ structures (Q1 and Q3) have increased

in the strong APG TBL. The JPDFs associated with the Quv+ structures in the ZPG

TBL and the strong APG TBL are shown in �gures 6.21 and 6.22, respectively. Similar

to the intense Quv− structures, the sizes of the Quv+ structures, relative to the mean

displacement thickness (δ1), are generally bigger in all the directions when compared to

those in the strong APG TBL. As illustrated by the JPDFs of the ZPG TBL in �gure 6.21,

the Quv+ structures follow the law lx ≈ 2.4ly ≈ 1.6lz. However, as shown in �gure 6.22,

the Quv+ structures in the strong APG TBL are less streamwise extended than the ZPG

TBL following the ratio lx ≈ 1.5ly ≈ 0.9lz. Similar to the Quv− structures, as illustrated

by the JPDF of lx and yc, it is likely to �nd the intense Quv+ structures with streamwise

extent as long as 5δ1 closer to the wall in the ZPG TBL. However, it is less likely to �nd

the streamwise elongated Quv+ structures closer to the wall in the strong APG TBL than

in the ZPG TBL, which is consistent with the higher volume proportion of detached Quv+

objects (74.5% of Vtot,Quv+) in the strong APG TBL.
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Figure 6.19: Geometrical characteristics of the intense Quv− structures (Q2 and Q4) in

the ZPG TBL. The contour lines contain 50, 70, 90, 95, and 99% of the data. Solid line

represents ly ≈ 0.29lx. Dashed line represents ly ≈ 0.81lz.
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Figure 6.20: Geometrical characteristics of the intense Quv− structures (Q2 and Q4) in

the strong APG TBL. The contour lines contain 50, 70, 90, 95, and 99% of the data. Solid

line represents ly ≈ 0.63lx. Dashed line represents ly ≈ 0.75lz.
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Figure 6.21: Geometrical characteristics of the intense Quv+ structures (Q1 and Q3) in

the ZPG TBL. The contour lines contain 50, 70, 90, 95, and 99% of the data. Solid line

represents ly ≈ 0.42lx. Dashed line represents ly ≈ 0.68lz.
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Figure 6.22: Geometrical characteristics of the intense Quv+ structures (Q1 and Q3) in

the strong APG TBL. The contour lines contain 50, 70, 90, 95, and 99% of the data. Solid

line represents ly ≈ 0.68lx. Dashed line represents ly ≈ 0.63lz.
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6.3.4 Summary of the geometric characters of the intense struc-

tures

In both the TBLs, there is a propensity for the topological structures with positive RA

values (sR+ and ωR+) when compared to those with negative RA values (sR− and ωR−),

which can be seen from the higher values of their relative volumes and numbers given

in tables 6.4 and 6.5. This propensity towards the intense topological structures with

positive RA values is apparent in the case of the dissipative structures in both the TBLs

as the sR− structures occupy only 16.4% of the total volume occupied by all the dissipative

structures in the ZPG TBL, while its volume has decreased further to 11.0% of Vtot,sR,both

in the strong APG TBL.

Case ZPG (β = 0) strong APG (β = 39)

sR+ lx ≈ 1.8ly ≈ 1.3lz lx ≈ 1.4ly ≈ 1.0lz

ly ≈ 0.7lz ly ≈ 0.7lz

sR− lx ≈ 1.4ly ≈ 1.0lz lx ≈ 2.2ly ≈ 1.0lz

ly ≈ 0.7lz ly ≈ 0.5lz

ωR+ lx ≈ 1.7ly ≈ 1.3lz lx ≈ 1.4ly ≈ 1.1lz

ly ≈ 0.8lz ly ≈ 0.8lz

ωR− lx ≈ 2.3ly ≈ 1.4lz lx ≈ 1.7ly ≈ 1.0lz

ly ≈ 0.6lz ly ≈ 0.6lz

Quv− (Q2 and Q4) lx ≈ 3.4ly ≈ 2.8lz lx ≈ 1.6ly ≈ 1.2lz

ly ≈ 0.8lz ly ≈ 0.75lz

Quv+ (Q1 and Q3) lx ≈ 2.4ly ≈ 1.6lz lx ≈ 1.5ly ≈ 0.9lz

ly ≈ 0.7lz ly ≈ 0.6lz

Table 6.7: Summary of the aspect ratios of the intense structures in the ZPG TBL and

the strong APG TBL.

The intense structures of all the types in the strong APG TBL have become �ner

than the ZPG TBL as shown by the reduction in their volumes and increase in their

numbers. All of the intense structures are wider in the spanwise direction than how tall

they are in the wall-normal direction. In the strong APG TBL, the structures are less

streamwise elongated than the ZPG TBL. The strong APG TBL shows a propensity

for detached intense structures than the ZPG TBL. The aspect ratios of the intense

topological structures and the intense Reynolds stress structures in the ZPG TBL and
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the strong APG TBL are summarised in table 6.7.

As discussed in section 6.2, the topological structures are identi�ed based on the in-

variants of the velocity gradient tensor (Aij) in the (RA,QA)-plane, while the Reynolds

stress structures are identi�ed based on the (u′,v′)-space. As the identi�cation methodolo-

gies for these structure types are di�erent, a point in the �ow can simultaneously belong

to a topological structure as well as a Reynolds stress structure. Therefore, the com-

mon volume or overlapping volume between these structure types can be computed. The

common volume between the intense topological structures (sR+,sR−,ωR+,ωR−) and the

intense Reynolds stress structures (Quv) in the ZPG TBL and the strong APG TBL are

given in table 6.8. Out of the four topological structures in the ZPG TBL, the highest

common volume with the intense Reynolds stress structures is found for the ωR+ and ωR−
structures, whose common volumes are similar (0.97% of VBL) as given in table 6.8. In

the case of the strong APG TBL, the sR+ and ωR+ structures have the highest common

volume with the intense Reynolds stress structures, whose values are also similar (0.11%

of VBL).

Case sR+ ∩ Quv sR− ∩ Quv ωR+ ∩ Quv ωR− ∩ Quv

ZPG 15.4% of Vtot,sR+
15.8% of Vtot,sR− 15.8% of Vtot,ωR+

16.9% of Vtot,ωR−

0.780% of VBL 0.157% of VBL 0.972% of VBL 0.971% of VBL

strong APG 8.1% of Vtot,sR+
9.8% of Vtot,sR− 5.0% of Vtot,ωR+

4.3% of Vtot,ωR−

0.110% of VBL 0.015% of VBL 0.106% of VBL 0.056% of VBL

Table 6.8: The common volume between the intense topological structures and the intense

Reynolds stress structures in the ZPG TBL and the strong APG TBL.

6.4 Contribution of intense structures to the skin fric-

tion

As discussed in chapter 4, the Reynolds shear stress term in the RD identity is the dom-

inant positive contributor to the skin friction in TBL �ows irrespective of the streamwise

pressure gradient in the �ow. Therefore, it is important to quantify the turbulent contri-

bution of the intense structures to the skin friction using the Reynolds shear stress term

(Cfb) in the RD identity. The RD identity proposed by Renard and Deck (2016) is de�ned

in Equation 3.1.
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The Reynolds shear stress carried by any structure of type `k' can be de�ned as

〈u′v′〉|k =
1

nfLz

nf∑

m=1

∫ Lz

0

Wk(x, y, z,m) u′v′(x, y, z,m) dz, (6.12)

where Lz is the extent of the computational domain in the homogeneous spanwise direction

and Wk is the weighting function for any instantaneous �ow �eld `m' de�ned as

Wk(x, y, z,m) =





1 if the point belongs to a structure of type `k',

0 otherwise.
(6.13)

Here, the subscript `k' refers to each of the intense structure type considered in the

present study, namely intense dissipative structures, intense vortical structures and intense

Reynolds stress structures. Substituting the conditional Reynolds stress (〈u′v′〉|k) into the
term Cfb in Equation 3.1 leads to

Cfb|k =
2

U3
e

∫ ∞

0

−〈u′v′〉|k
∂〈u〉
∂y

dy. (6.14)

The term Cfb|k refers to the turbulent contribution to the skin friction from the intense

structures. In the following sections, the premultiplied integrands of Cfb and Cfb|k are

denoted by the subscript of *. The wall-normal position is non-dimensionalised by the local

values of the outer scale δ1. The pro�les of the premultiplied integrands are streamwise

averaged in the scaled coordinates within the DoI. Note that the premultiplied integrand

of the term Cfb (Ib∗) is scaled down by 10 times in all the �gures to compare with the

premultiplied integrands of the term Cfb|k.

6.4.1 Contribution of intense dissipative structures to the skin

friction

The premultiplied integrands of the term Cfb|k corresponding to the intense dissipative

structures (sR+ and sR−) in the ZPG and the strong APG TBLs are illustrated in �g-

ure 6.23. The premultiplied integrand Ib|sR+∗ in the ZPG TBL exhibits an inner peak as

well as an outer peak that are located around the same height of the peaks of Ib∗ as shown

in �gure 6.23a. The inner peak of Ib|sR+∗ in the ZPG TBL is more prominent than its outer

peak. The premultiplied integrand Ib|sR−∗ exhibits a tiny outer peak around the similar

position of Ib∗. However, the overall contribution of the sR− structures is not signi�cant

when compared to the sR+ structures in the ZPG TBL. The premultiplied integrands in

the ZPG TBL span over a wider part of the boundary layer, whereas their contribution is

from a narrow outer peak in the case of the strong APG TBL as illustrated in �gure 6.23b.
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Figure 6.23: Premultiplied integrand of the term Cfb conditioned for the intense dissipative

structures (sR+ and sR−) in (a) the ZPG TBL and (b) the strong APG TBL.

Similar to the ZPG TBL, the contribution from the sR− structures is negligible when com-

pared to the sR+ structures in the strong APG TBL. In the strong APG TBL, there is a

clear outer peak in the pro�le of the premultiplied integrand Ib|sR+∗ , which coincides with

the location of the outer peak of the premultiplied integrand Ib∗ around the height of the

displacement thickness (y = δ1).

Case ZPG strong APG

Cfb|sR+
×104 1.21 1.37

Cfb|sR− ×104 0.077 0.165

Cfb|sR,both
×104 1.29 1.54

Table 6.9: The streamwise averaged values of the turbulent contribution (Cfb|k) from the

intense dissipative structures (sR+ and sR−) within the DoI in the ZPG TBL and the

strong APG TBL.

The streamwise averaged values of the turbulent contribution from the intense dissi-

pative structures within the DoI are given in table 6.9. The streamwise averaged values

of the fractional contribution from the sR+ and sR− structures within the DoI are given

in table 6.10. The turbulent contribution of the sR+ and sR− structures have increased

in the strong APG TBL when compared to the ZPG TBL as shown in table 6.9. How-

ever, the fractional contribution of both of the dissipative structures given in table 6.10

have decreased for the strong APG TBL than the ZPG TBL. This is consistent with the

reduction in their volume, Vtot,sR,both
, relative to VBL as shown in table 6.4.

In the ZPG TBL, the fractional contribution of the sR− structures is 15.8 times smaller

than the sR+ structures, which is consistent with the smaller volume proportion of the sR−
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Case ZPG strong APG

Cfb|sR+
/Cfb 7.09% 3.15%

Cfb|sR−/Cfb 0.45% 0.38%

Cfb|sR,both
/Cfb 7.54% 3.53%

Table 6.10: The streamwise averaged values of the fractional contribution (Cfb|k/Cfb) from

the intense dissipative structures (sR+ and sR−) within the DoI in the ZPG TBL and the

strong APG TBL.

structures (16.4% of Vtot,sR,both
) as given in table 6.4 and also clear from the instantaneous

isosurfaces of the sR− structures in the ZPG TBL as illustrated in �gure 6.5b. Similarly,

in the strong APG TBL, the fractional contribution of the sR− structures is 8.3 times

smaller than the sR+ structures, which is inline with the smaller volume proportion of the

sR− structures in the strong APG TBL (11.0% of Vtot,sR,both
) as given in table 6.4 and also

apparent from the instantaneous isosurfaces of the sR− structures shown in �gure 6.6b.

6.4.2 Contribution of intense vortical structures to the skin fric-

tion
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Figure 6.24: Premultiplied integrand of the term Cfb conditioned for the intense vortical

structures (ωR+ and ωR−) in (a) the ZPG TBL and (b) the strong APG TBL.

The premultiplied integrands of the term Cfb|k corresponding to the intense vortical

structures (ωR+ and ωR−) in the ZPG and strong APG TBLs are illustrated in �gure 6.24.

These premultiplied integrands exhibit two peaks in the ZPG TBL as illustrated in �g-

ure 6.24a. The inner and the outer peaks of the premultiplied integrands Ib|ωR+∗ and

Ib|ωR−∗ are around the same height of the two peaks in the premultiplied integrand Ib∗ in
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the ZPG TBL. As observed in the contribution of the sR+ structures, the inner peak of

the premultiplied integrands Ib|ωR+∗ and Ib|ωR−∗ is more signi�cant than its outer peak.

The pro�les of the premultiplied integrands Ib|ωR+∗ and Ib|ωR−∗ are broader in the ZPG

TBL, whereas their major contributions are from prominent outer peaks in the case of

the strong APG TBL as illustrated in �gure 6.24b. Similar to the intense dissipative

structures in the strong APG TBL, the outer peaks in the pro�les of the intense vortical

structures coincide with the outer peak in Ib∗ around the displacement thickness height

(y = δ1).

Case ZPG strong APG

Cfb|ωR+
×104 1.11 1.58

Cfb|ωR− ×104 1.15 0.91

Cfb|ωR,both
×104 2.26 2.49

Table 6.11: The streamwise averaged values of the turbulent contribution (Cfb|k) from the

intense vortical structures (ωR+ and ωR−) within the DoI in the ZPG TBL and the strong

APG TBL.

Case ZPG strong APG

Cfb|ωR+
/Cfb 6.54% 3.61%

Cfb|ωR−/Cfb 6.73% 2.08%

Cfb|ωR,both
/Cfb 13.27% 5.69%

Table 6.12: The streamwise averaged values of the fractional contribution (Cfb|k/Cfb) from

the intense vortical structures (ωR+ and ωR−) within the DoI in the ZPG TBL and the

strong APG TBL.

The streamwise averaged values of the turbulent contribution from the intense vortical

structures and their fractional contributions within the DoI are given in table 6.11 and

table 6.12, respectively. The turbulent contribution of the ωR+ structures has increased in

the strong APG TBL when compared to the ZPG TBL, while the turbulent contribution

of the sR− structures has slightly decreased in the strong APG TBL as shown in table 6.11.

However, the total fractional contribution of these structures to Cfb has reduced in the

strong APG TBL by 2.3 times. This is consistent with the reduction in their volume,

Vtot,ωR,both
, relative to VBL as shown in table 6.5.
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6.4.3 Contribution of intense Reynolds stress structures to the

skin friction
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Figure 6.25: Premultiplied integrand of the term Cfb conditioned for the intense Reynolds

stress structures in (a) the ZPG TBL and (b) the strong APG TBL.

The premultiplied integrands of the term Cfb|k for the intense Reynolds stress struc-

tures in the ZPG and the strong APG TBLs are illustrated in �gure 6.25. In both the

TBLs, the Quv− (Q2 and Q4) structures provide a positive contribution, while the Quv+

(Q1 and Q3) structures reduce the skin friction by yielding a negative contribution to

Cfb . In the ZPG TBL, the premultiplied integrands of all the four quadrant structures

exhibit an inner peak and an outer peak, which are located around the same height of the

peaks of Ib∗ as illustrated in �gure 6.25a. The inner peak of the Quv− structures are more

prominent than their outer peaks in the ZPG TBL, whereas both the peaks are of similar

magnitude for the Quv+ structures. Similar to the intense topological structures in the

ZPG TBL, the premultiplied integrands of the Quv structures cover a broader part of the

boundary layer. However, the contribution of the Quv structures in the strong APG TBL

are from the prominent peaks in the outer region as illustrated in �gure 6.25b.

The streamwise averaged values of the turbulent contribution from the intense Reynolds

stress structures and their fractional contributions within the DoI are given in table 6.13

and table 6.14, respectively. As given in table 6.6, in the ZPG TBL, the volume occupied

by the Quv− structures (44.9% of Vtot,Quv) is less than that of the Quv+ structures. In the

strong APG TBL, the volume occupied by the Quv− and Quv+ structures are nearly the

same (50.3% and 49.7% of Vtot,Quv , respectively). However, in both the TBLs, the contri-

bution of the Quv− structures to Cfb is higher than the corresponding Quv+ structures as

shown in tables 6.13 and 6.14. This indicates that the Quv− structures are more intense

than the Quv+ structures in both the TBLs. A similar observation was also noted by

Maciel et al. (2017a) in their APG TBL. The contribution of the Quv− structures to the
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Case ZPG strong APG

Cfb|Q1 ×105 −9.16 −10.06

Cfb|Q2 ×105 29.31 14.43

Cfb|Q3 ×105 −10.28 −26.52

Cfb|Q4 ×105 30.09 36.25

Cfb|Quv− ×105 59.40 50.68

Cfb|Quv+ ×105 −19.44 −36.58

Cfb|Quv ×105 39.96 14.10

Table 6.13: The streamwise averaged values of the turbulent contribution (Cfb|k) from the

intense Reynolds stress structures (Q1, Q2, Q3 and Q4) within the DoI in the ZPG TBL

and the strong APG TBL.

Case ZPG strong APG

Cfb|Q1/Cfb −5.37% −2.31%

Cfb|Q2/Cfb 17.18% 3.31%

Cfb|Q3/Cfb −6.03% −6.07%

Cfb|Q4/Cfb 17.64% 8.32%

Cfb|Quv−/Cfb 34.82% 11.63%

Cfb|Quv+/Cfb −11.40% −8.38%

Cfb|Quv/Cfb 23.42% 3.26%

Table 6.14: The streamwise averaged values of the fractional contribution (Cfb|k/Cfb) from

the intense Reynolds stress structures (Q1, Q2, Q3 and Q4) within the DoI in the ZPG

TBL and the strong APG TBL.
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skin friction is 3.05 times the Quv+ structures in the ZPG TBL, whereas the contribution

of the Quv− structures is 1.39 times the Quv+ structures in the strong APG TBL.

In the ZPG TBL, the fractional contribution of the intense ejection (Q2) and sweep

(Q4) structures to Cfb are nearly equal (17.18% and 17.64%, respectively). This is con-

sistent with their volume proportions (22.1% and 22.8% of Vtot,Quv , respectively) being

nearly similar as given in table 6.6. In the strong APG TBL, the fractional contribution

of Q2 structures is lesser than the Q4 structures, which is consistent with the reduced

volume proportion of the Q2 structures when compared to that of the Q4 structures as

shown in table 6.6. The total turbulent contribution of all the four quadrant structures

(Quv) has decreased in the strong APG TBL when compared to the ZPG TBL as shown in

table 6.13. Similarly, the fractional contribution of the Quv structures to Cfb has reduced

in the strong APG TBL by 7.2 times, which is consistent with the reduction in their

volume (Vtot,Quv) relative to VBL as shown in table 6.6.

6.4.4 Summary of the contribution of intense structures to the

skin friction

When comparing the two types of dissipative structures, it is found that the fractional

contribution of the sR+ structures (RA > 0) to Cfb is more dominant than that of the

sR− structures in both the TBLs as shown in table 6.10. When comparing the two types

of vortical structures in the strong APG TBL, the fractional contribution of the ωR+

structures (RA > 0) is greater than that of the ωR− structures, while their contributions

are almost the same in the ZPG TBL as shown in table 6.12.

The sR+ structures have the highest fractional contribution to Cfb (7.1%) when com-

pared to the other topological structures in the ZPG TBL. In the strong APG TBL, the

ωR+ structures have the highest fractional contribution to Cfb (3.6%) when compared to

the other topological structures. In the ZPG TBL, the contribution of the ωR+ and ωR−
are nearly the same (5.7%), which is consistent with the common volumes between these

topological structures and the intense Reynolds stress structures being the same (0.972%

of VBL) as shown in table 6.8. Similarly, in the strong APG TBL, the contribution of the

sR+ and ωR+ are around 3.6% and this result is consistent with their common volumes

with the intense Reynolds stress structures being almost the same (0.110% of VBL) as

shown in table 6.8.

When comparing all the intense structure types in the ZPG TBL (sR+, sR−, ωR+,

ωR−, Quv), the intense Reynolds stress structures have the highest fractional contribu-

tion (23.42%) to the term Cfb as shown in table 6.14. Similarly, the highest fractional

contribution in the strong APG TBL (3.26%) is also from the Quv structures.
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6.5 Conclusion

The turbulent contribution of the intense structures to the skin friction are investigated

in the ZPG TBL (β = 0) and the strong APG TBL (β = 39). The intense structures

investigated in the present study are intense dissipative structures (sR+ and sR−), intense

vortical structures (ωR+ and ωR−), and intense Reynolds stress structures (Q1, Q2, Q3

and Q4). The turbulent contribution of these intense structures to the skin friction are

computed using the term Cfb in the RD identity (Renard and Deck, 2016).

The intense structures of all the types in the strong APG TBL have become �ner

than those in the ZPG TBL as shown by the reduction in their relative volumes and

increase in their numbers. All of the intense structures in both the TBLs are elongated

in the streamwise direction. In the strong APG TBL, all of the intense structures (except

sR−) are less streamwise elongated than those in the ZPG TBL. In general, the strong

APG TBL shows a greater propensity for detached intense structures of all types (except

sR−) than the ZPG TBL. In both the TBL cases, there is more inclination towards the

topological structures with positive RA values (sR+ and ωR+) when compared to those

with negative RA values (sR− and ωR−), which is evident from the higher values of their

relative volumes and numbers.

For all the intense structures in the ZPG TBL, the contribution to the skin friction

(Cfb|k) is from a wider part of the boundary layer, whereas, in the strong APG TBL,

their contribution is from a dominant outer peak. With increasing pressure gradient, the

fractional contribution of the structures to the skin friction (Cfb|k/Cfb) decreases for all

the types of intense structures, which is consistent with the reduction in their volume

relative to the mean boundary layer thickness based volume (VBL). As the premultiplied

integrands Ib∗ as well as Ib|k∗ display a dominant outer peak in the strong APG TBL

for all the intense structure types, this shows that the outer layer dynamics becomes

more important with increasing pressure gradient in regards to the Reynolds shear stress

contribution to the skin friction.
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Experience is what you get when you didn't get what you

wanted. And experience is often the most valuable thing

you have to o�er.

�Randy Pausch

Chapter 7

Conclusions

In this study, direct numerical simulations (DNSs) of three TBL cases with di�erent

streamwise pressure gradients are considered. The TBL cases are classi�ed based on

the non-dimensional pressure gradient β, which is de�ned as β = δ1Pe,x/τw, where δ1

is the displacement thickness, τw is the mean wall shear stress and Pe,x is the far-�eld

streamwise pressure gradient. The three TBL cases are a zero pressure gradient (ZPG),

a mild adverse pressure gradient (mild APG), and a strong adverse pressure gradient

(strong APG) TBLs. The nominal values of β within the domain of interest (DoI) are

0, 1 and 39 for the ZPG, mild APG and strong APG TBLs, respectively. The various

factors and the coherent structures that in�uence the skin friction in the TBL �ows have

been investigated in the present study.

The RD identity (Renard and Deck, 2016) has been used to investigate the contribution

of the viscous e�ects and Reynolds shear stress to the skin friction, and their variation

with the pressure gradient. In the ZPG TBL, all three components of the RD identity

increase the skin friction by providing a positive contribution. However, in the mild

APG and strong APG cases, the third term Cfc decreases the skin friction by providing a

negative contribution. The inner peak of the viscous term (Cfa) diminishes with increasing

pressure gradient and its contribution becomes almost negligible in the strong APG TBL

case. This shows that the role of viscous e�ects becomes less signi�cant with increasing

pressure gradient.

It is found that the Reynolds shear stress plays a crucial role in the mechanism of skin

friction generation in all the TBL cases. The contribution of the Reynolds shear stress

(Cfb) to the skin friction continues to increase with the pressure gradient and it remains

as the dominant positive contributor irrespective of the pressure gradient in the �ow. In

the ZPG TBL, the contribution of the term Cfb is from a broader region of the boundary

layer. Whereas, with increasing pressure gradient, the inner peak of the premultiplied

integrand Ib∗ decreases, while the outer peak grows. Especially, in the strong APG TBL,
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the predominant contribution of Ib∗ is from a clear peak located in the outer region, while

its contribution from the inner region is negligible. It is also found in the strong APG case

that the peak of the Reynolds shear stress (〈u′v′〉), the peak of the premultiplied integrand
Ib∗ (Reynolds shear stress contribution), the outer in�ection point of the mean streamwise

velocity, and the peaks of the turbulent production (P) and dissipation (D) coincide in
the outer region around the displacement thickness height (y/δ1 = 1 or y/δΩ = 0.2). This

emphasizes the signi�cance of the outer layer dynamics with increasing pressure gradient.

It is also supported by the fact that the FIK identity (Fukagata et al., 2002) has also

captured the dominant outer peak contribution from the Reynolds shear stress around

the displacement thickness height (y/δ1 = 1) in the strong APG TBL.

The contribution of the velocity-vorticity correlations to the skin friction has been

investigated using the YAHS identity (Yoon et al., 2016). For all the pressure gradient

cases, advective vorticity transport (contribution of 〈v′ω′z〉) decreases the skin friction,

while vortex stretching (contribution of −〈w′ω′y〉) increases the skin friction by providing

a positive contribution. It is found that across the entire boundary layer in all the three

pressure gradient cases, the combined e�ect of the velocity-vorticity correlations 〈v′ω′z〉
and −〈w′ω′y〉 is the dominant contributor to the gradient −∂〈u′v′〉/∂y. The contribution of
−∂〈u′v′〉/∂y to the skin friction (Cf12b

) has an inner peak which diminishes with increasing

pressure gradient, while its outer peak continues to grow. It is also found that for all the

pressure gradient cases, the combined e�ect of the advective vorticity transport term (Cf1)

and the vortex stretching term (Cf2) represents the contribution from the Reynolds shear

stress with a constant wall-normal weight (Cf12c). The premultiplied integrand of the term

Cf12c also exhibits an outer peak around the height of 20% of boundary layer thickness

(y/δΩ = 0.2 or y/δ1 = 1), which coincides with the outer peak of the Reynolds stress

terms in the RD identity (Cfb) and the FIK identity (CfII ). This again emphasizes that

the impact of the outer layer on the skin friction generation is higher with increasing

pressure gradient, as the majority of the turbulence activity is in the outer layer.

The turbulent contribution of the intense structures to the skin friction has been

quanti�ed using the Reynolds stress term Cfb in the RD identity. The types of intense

structures considered in the present study are intense topological structures (dissipative

and vortical) and intense Reynolds stress structures. Intense structures of all the types

in the ZPG TBL as well as in the strong APG TBL are streamwise elongated with their

width being larger than their height. However, in the strong APG TBL, the intense

structures are less streamwise elongated when compared to those structures in the ZPG

TBL. Intense structures of all the types in the strong APG TBL are smaller in scale than

those in the ZPG TBL, which is evident from the reduction in their volume relative to

the mean boundary layer volume (VBL) and increase in their numbers. There is a greater
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propensity for detached intense structures in the strong APG TBL than in the ZPG

TBL. The fractional contribution of the intense structures to the skin friction (Cfb|k/Cfb)

decreases with increasing pressure gradient, which is also consistent with the reduction in

their volume relative to VBL. It is found that the contribution of all the intense structure

types in the ZPG TBL is from a broader part of the boundary layer. However, in the

strong APG TBL, the contribution of the intense structures is from a distinct peak in

the outer region around the displacement thickness height (y/δ1 = 1). In conclusion, the

outer layer dynamics becomes more important with increasing adverse pressure gradient,

as it pertains to the contribution of the Reynolds shear stress (〈u′v′〉) and its negative

wall-normal gradient (−∂〈u′v′〉/∂y) to the mechanism of the mean skin friction generation.
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We cannot solve our problems with the same thinking we

used when we created them.

�Albert Einstein

Appendix A

Analysis of the spanwise extent and

time persistence of uniform momentum

zones

As an additional part of the present research, the characteristics of the uniform momentum

zones (UMZs) and their variation with the pressure gradient are investigated. The UMZs

are one of the types of coherent structures found in wall-bounded turbulent �ows. The

UMZs are irregular regions in the �ow with similar streamwise momentum and the inter-

faces between these zones are similar to shear layers. In the current study, time-resolved

velocity �elds are used to investigate the spanwise extent and the time persistence of the

UMZs in the ZPG TBL and the strong APG TBL. This work is presented in the form

of a journal paper published in the Journal of Physics: Conference Series (Senthil et al.,

2020a). A part of this work was performed during the Fourth Madrid Turbulence Work-

shop during June-July, 2019 at the Universidad Politécnica de Madrid, Madrid, Spain

(https://torroja.dmt.upm.es/summer19/group_foto.jpg).
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Abstract. Time-resolved velocity fields from direct numerical simulations (DNS) are used to
investigate the spanwise extent and the time persistence of uniform momentum zones (UMZs) in
a zero pressure gradient turbulent boundary layer (ZPG-TBL) and a self-similar adverse pressure
gradient turbulent boundary layer (APG-TBL) at the verge of separation. The instantaneous
detection methodology introduced by Adrian et al. [1] is used to detect the UMZs and is extended
to take into account the spanwise domain length and the temporal evolution of the UMZs. The
Reynolds number based on friction velocity (Reτ ) ranges from 1176 to 1277 for the ZPG-TBL
and from 1652 to 1745 for the self-similar APG-TBL within the domain of interest. For both
the TBL cases, probability density functions (PDFs) of the number of UMZs are computed as
a function of the streamwise extent, spanwise extent and time extent. For the ZPG-TBL, when
the streamwise length of the domain is greater than or equal to 3 boundary layer thickness, the
probability of finding 4 UMZs becomes almost negligible. For the APG-TBL, even when the
streamwise domain length is taken as large as 1.3 boundary layer thickness, the probability of
finding 4 UMZs is still significant. The spanwise extent of the UMZs is found to be shorter than
their streamwise extent regardless of the pressure gradient in the flow. In the ZPG-TBL flow,
the majority of the UMZs have a spanwise extent of the order of one-tenth of a boundary layer
thickness while for the APG-TBL, it is found to be on the order of one-hundredth of a boundary
layer thickness. In the ZPG-TBL, the probability of finding 2 UMZs that persist over a time
period of 2 integral time scale is around 50%. Similarly, for the APG-TBL, the probability of
finding 2 UMZs with a time persistence of 0.4 integral time scale is over 50%. In the case of the
ZPG-TBL, it is observed that some of the UMZs with higher persistence in time have higher
streamwise momentum and are found to be closer to the free-stream in general. This result
is consistent with the previous observations by Laskari et al. [2]. In contrast, for the APG-
TBL, UMZs with longer time persistence are found closer to the wall with lower streamwise
momentum.

1. Introduction
Wall-bounded flows have different types of coherent structures like low-speed streaks, sweeps
and ejections, and hairpin vortices [3–5]. One of the many coherent structures in wall-bounded
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flows are uniform momentum zones (UMZs), which are uneven regions in the flow with similar
streamwise momentum and varying shape with time. Meinhart & Adrian [6] were the first to
report the existence of these zones. The UMZs are separated from each other by layers which
have high values of the local wall-normal gradient of the streamwise velocity with spanwise
vorticity clustered along these boundaries [6]. The interfaces between the UMZs are similar to
a shear layer. Adrian et al. [1] proposed a method to identify the instantaneous UMZs based
on the probability density function (PDF) of the instantaneous streamwise velocity. Kwon et
al. [7] identified the presence of a large core with uniform velocity and low turbulence levels in a
turbulent channel flow. Similar experimental studies on turbulent boundary layers using particle
image velocimetry have also revealed regions of relatively uniform streamwise velocity [8, 9].
More recently, Laskari et al. [2] investigated the UMZs in a streamwise wall-normal plane of
a turbulent boundary layer using time-resolved particle image velocimetry. Laskari et al. [2]
found that the presence of higher number of UMZs is linked with the large-scale ejection events,
whereas the lower number of UMZs is related to large-scale sweep events. The focus of the
present study is to investigate the spanwise extent and time persistence of the UMZs in a zero
pressure gradient and an adverse pressure gradient turbulent boundary layer. To the best of the
authors’ knowledge, the present analysis is the first to investigate the time persistence of the
UMZs as well as the spanwise extent using three dimensional (3D) velocity fields to construct
the PDFs.

2. Details of the direct numerical simulation
The turbulent boundary layer (TBL) datasets were computed by solving the incompressible
Navier-Stokes equation for velocity and pressure fields [10, 11]. The TBL flows are solved
in a Cartesian coordinate system with the flow directions as streamwise (x), wall-normal (y)
and spanwise (z). The mean velocity components are represented by (〈u〉, 〈v〉, 〈w〉) while the
corresponding fluctuating components are represented by (u′, v′, w′).

The first version of the code was developed by Simens et al. [10, 11] which was subsequently
optimized by Borrell et al. [12] by adding OpenMP (Open Multi-Processing) to the MPI
Parallelization. The current version of the code is the one presented in Kitsios et al. [13, 14]
modified to enable the simulation of adverse pressure gradient turbulent boundary layer flow.
The governing equations are solved using the fractional step method [15, 16]. The grid is
staggered only in the streamwise and the wall-normal directions. The spanwise direction
is periodic while compact finite difference is used for spatial discretization in the x and y
directions [17]. Time stepping is achieved using a 3-step Runge Kutta method [11]. The fluid
density (ρ = 1) and kinematic viscosity (ν) are taken as constants. Further details on the DNS
code and the parallelisation techniques used in it can be found in Sillero [18] and Borrell et
al. [12]. The desired pressure gradient is applied via the far-field boundary condition using the
methodology developed by Kitsios et al. [13, 14].

The non-dimensional pressure gradient (β) is given by

β =
δ1

uτ 2

Pe,x
ρ

= δ1
Pe,x
τw

, (1)

where uτ =
√
τw/ρ is the friction velocity, τw is the mean wall shear stress, ρ is the fluid density,

Pe,x is the far-field streamwise pressure gradient and δ1 is the displacement thickness.
The displacement thickness (δ1), based on the definition of Spalart & Watmuff [19], is given

by

δ1(x) =
−1

Ue

∫ δΩ

0
y〈Ωz〉(x, y)dy, (2)

where Ue is the outer reference velocity, 〈Ωz〉 is the mean spanwise vorticity, and δΩ is the wall-
normal position or the boundary layer thickness at which 〈Ωz〉 has decayed to 0.2% of the mean
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Table 1: Numerical details of the ZPG and the APG-TBLs in their respective domain of interest
(DoI). δΩ∗ is δΩ at the start of the DoI and 〈u〉∞∗ is the far-field mean streamwise velocity at
the start of the DoI. The integral time scale is defined as δΩ∗/〈u〉∞∗.

ZPG APG

Nominal non-dimensional pressure gradient β 0 39
Streamwise data points nx 1035 1001
Wall-normal data points ny 315 1000
Spanwise data points nz 2048 2048
Streamwise domain size lx/δΩ∗ 9.32 1.28
Wall-normal domain size ly/δΩ∗ 3.49 2.55
Spanwise domain size lz/δΩ∗ 12.34 1.76
Friction velocity based Reynolds number Reτ 1176 → 1277 1652 →1745
Displacement thickness based Reynolds number Reδ1 4678 → 5098 22182 →28789
Momentum thickness based Reynolds number Reδ2 3360 → 3679 9857 →12101
Mean boundary layer thickness δΩ/δΩ∗ 1.05 1.15
Mean friction velocity uτ 0.039 0.007
Total time period for 200 fields t〈u〉∞∗/δΩ∗ 3.2 0.47
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Figure 1: Profiles of (a) mean streamwise velocity (〈u〉), and (b) Reynolds shear stress (〈u′v′〉)
for both the TBL cases. The profiles are averaged in streamwise direction within DoI and are
non-dimensionalised by δ1.

vorticity at the wall. The outer velocity (Ue), based on the definition of Lighthill [20], is given
by

Ue(x) = UΩ(x, δΩ), (3)
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where

UΩ(x, y) = −
∫ y

0
〈Ωz〉(x, ỹ) dỹ. (4)

In the present study of the UMZs, a time-resolved DNS of a zero pressure gradient turbulent
boundary layer (ZPG-TBL) and a self-similar adverse pressure gradient turbulent boundary
layer (APG-TBL) at the verge of separation are considered. For the APG-TBL, a self-similar
domain is considered to minimise the influence of the history effects and β has an average value
of 39 within the domain of interest (DoI). Profiles of the mean streamwise velocity (〈u〉) and the
Reynolds shear stress (〈u′v′〉) for both the TBL cases are compared in Figure 1. For the ZPG-
TBL, the Reynolds shear stress has a broader profile whereas its profile is confined to a much
narrower region in the case of the APG-TBL. For the APG-TBL, the peak of the Reynolds shear
stress in Figure 1b and the inflection point of the mean streamwise velocity in Figure 1a coincide
at an approximate height of the displacement thickness (y/δ1 = 1). Profiles of the kinetic energy
budgets and the momentum balances for both the TBLs can be found in Kitsios et al. [13, 14].
Numerical details of the two TBL cases in their respective DoI are given in Table 1. δΩ∗ is δΩ

at the start of the DoI and 〈u〉∞∗ is the far-field mean streamwise velocity at the start of the
DoI. For the APG-TBL, the available streamwise domain size relative to the boundary layer
thickness (lx/δΩ∗) is shorter because of the higher boundary layer thickness. The profiles of the
boundary layer thickness (δΩ/δΩ(xI)) for both the TBLs are given in Figure 2, where xI is the
position of the inlet plane. 200 time-resolved velocity fields are used in the investigation of the
UMZs for both the TBL cases. The integral time scale is defined as δΩ∗/〈u〉∞∗. The wall-normal
domain size (ly) used in all the analyses is fixed as 1.3δΩ∗ and 0.7δΩ∗ for the ZPG-TBL and
the APG-TBL respectively. All the PDFs related to the ZPG case are in green while the ones
corresponding to the APG-TBL are in red colour.

100 200 300 400 500 600 700
x/ (xI)

0

20

40

60

80

/
(x

I)

= 0
= 39

Figure 2: Profiles of the boundary layer thickness (δΩ) in the streamwise direction for both the
TBL cases, where xI is the position of the inlet plane.

3. UMZ detection methodology
The instantaneous UMZs and the boundaries that demarcate them are identified based on the
method introduced by Adrian et al. [1]. This method is extended to consider the instantaneous
three dimensional velocity fields and the temporal evolution of the UMZs [2]. In this method, the
local maxima (peaks) and the local minima (troughs) in the probability density function (PDF)
of the instantaneous streamwise velocity fields are detected. The modal velocity is defined as the
velocity that corresponds to a local peak in the PDF. Similarly, the edge velocity is defined as
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Figure 3: For the ZPG-TBL with no thresholds (Th = 0, Tp = 0, and Td = 0 ): (a) The PDF
of u/Ue for an instantaneous 2D velocity field in the xy plane. The triangles represent all the
detected peaks while the dashed lines refer to the edge velocities; (b) Corresponding contour
plot of the instantaneous velocity field with the solid lines representing the contour lines of the
edge velocities. δΩ∗ is the boundary layer thickness at the start of the DoI. Non-dominant peaks
with lower streamwise velocity have been detected as no thresholds are used.

the velocity associated with a local minimum in the PDF. The modal velocity can be considered
as the characteristic velocity of each of the UMZs [1, 2, 8] and the contour lines of the edge
velocities refer to the boundaries between the UMZs in physical space.

Laskari et al. [2] used different thresholds in their peak detection algorithm. In a similar
way, three thresholds are defined for the current peak detection method. They are the minimum
height required for a peak to be considered detectable (Th), the minimum prominence of a peak
compared to its troughs (Tp), and the minimum allowed distance between two peaks in terms
of number of bins (Td). These thresholds are used to reject non-dominant peaks. Th is given by

Th =
Pi

PNFSmax
, (5)

where Pi is any given peak in the PDF and PNFSmax is the maximum among the detected non-
freestream (NFS) peaks in the PDF. Pi is normalised by PNFSmax to allow comparison of the
peaks of the UMZs relative to each other and to ensure that the presence of the freestream peak
in the PDF does not influence the detection methodology. Tp is given by

Tp =
Pi − (Ei + Ei+1)/2

Pi
, (6)

where Ei and Ei+1 are the troughs in the PDF (the PDF values corresponding to the edge
velocities) on both the sides of any given peak Pi in the PDF.

The number of bins (Nbins) used to construct the PDF is 50 for both the TBL cases. For
the ZPG-TBL, u/Ue ∈ [0.1, 1.1] with the bin width approximately equal to 0.5uτ . For the
APG-TBL, the size of each bin is approximately equal to 3.1uτ with u/Ue ∈ [0.02, 1.1]. The
range of u/Ue is started slightly above zero to avoid the peak close to zero because of the no
slip boundary condition. Figure 3 shows an example of a PDF and the identified UMZs in the
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Figure 4: For the ZPG-TBL: (a) The PDF of u/Ue for an instantaneous 2D velocity field in the
xy plane. The triangles represent all the detected peaks after applying the thresholds while the
dashed lines refer to the edge velocities; (b) Corresponding contour plot of the instantaneous
velocity field with the solid lines representing the edges between the UMZs. Similarly, for the
APG-TBL: (c) and (d). The thresholds used are Th = 0.2, Tp = 0.2, and Td = 2 bins. δΩ∗ is the
boundary layer thickness at the start of the DoI.

ZPG-TBL when no thresholds are used. Non-dominant peaks with lower streamwise velocity
are detected as all the thresholds are taken as zero.

In this study, for both the TBL cases, the values of the thresholds used to reject the non-
dominant peaks in the PDF are Th = 0.2, Tp = 0.2, and Td = 2 bins. Peaks in the PDF are
considered detectable if they have values above these thresholds. Figure 4 shows a representative
example of a constructed PDF and the corresponding identified UMZs using the described
detection methodology for both the TBL cases. Two dimensional (2D) velocity fields in the xy
planes are used to generate the PDFs in the section 4 while three dimensional (3D) velocity
fields are used to form the PDFs in all the other following sections.
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Figure 5: (a) PDFs of the number of UMZs (NUMZs) as a function of the streamwise extent
upto lx = 6.01δΩ∗ for the ZPG-TBL. The selected length is lx = 2δΩ∗. (b) Similarly, for the
APG-TBL upto lx = 1.28δΩ∗. The selected length is lx = 1.28δΩ∗.

4. Streamwise extent of UMZs
For a given streamwise domain length (lx), the instantaneous PDFs of the streamwise velocity
(u/Ue) are constructed using the various 2D xy planes available in all the fields. Using these
velocity PDFs, the number of UMZs (NUMZs) for each of the 2D xy planes are calculated.
Then, the PDF of NUMZs is computed for that streamwise extent. This process is repeated
for different streamwise lengths. Following this approach, the PDF of NUMZs as a function of
extent in the streamwise direction is obtained, which is illustrated in Figure 5 for both the cases.
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Figure 6: An example of “super-structures” identified in the ZPG-TBL with the streamwise
extent (lx) as long as 6 boundary layer thickness. 3 UMZs are detected in this xy plane. δΩ∗ is
the boundary layer thickness at the start of the DoI

In Figure 5, the number of samples used to construct each of the PDFs is 409,600. The aim of
this approach is to select a domain length which will maximise the probability of finding more
number of zones. The streamwise extent is varied upto 6.01δΩ∗ and 1.28δΩ∗ for the ZPG-TBL
and the APG-TBL respectively. As the streamwise extent is increased, the probability of finding
more number of zones reduces for both the TBLs.

In the case of the ZPG-TBL in Figure 5a, for lx = 0.39δΩ∗, the probability of finding 4 UMZs
is over 20%, while it drops down to less than 10% and becomes insignificant for lx ≥ 3.01δΩ∗.
Hence, an extent of lx = 2δΩ∗ is chosen, which has a probability of over 10% in finding 4 UMZs.
Therefore, for the ZPG-TBL, the streamwise extent is fixed as lx = 2δΩ∗ for all the subsequent
analysis, which is the streamwise length that has also been used in previous studies [8]. It is
also worth mentioning that there are few UMZs which have a streamwise extent as long as 6δΩ∗.
An example of such “super-structures” is shown in Figure 6.

For the APG-TBL in Figure 5b, the probability of finding 4 UMZs is over 30% for
lx = 0.25δΩ∗. When the streamwise extent is increased to lx = 1.28δΩ∗, the probability of
finding 4 UMZs is still significant and over 10%. Therefore, for the APG-TBL, the entire
available streamwise extent lx = 1.28δΩ∗ is chosen to be used in all the analyses.

5. Spanwise extent of UMZs
The spanwise extent of the UMZs are investigated by considering 3D velocity fields with the
streamwise length lx = 2δΩ∗ for the ZPG-TBL and lx = 1.28δΩ∗ for the APG-TBL. For a given
spanwise length (lz), the number of UMZs in different 3D sub-domains is computed by varying
the location of the domain in the spanwise direction of an instantaneous field. In a similar way,
NUMZs can be computed for all the sub-domains in the available 200 fields, which results in the
PDF of NUMZs for that spanwise length. This process is repeated for different spanwise lengths
to obtain the PDF of NUMZs as a function of the spanwise extent. As shown in Figure 7, the
spanwise extent is varied up to 1.6δΩ∗ for both the TBLs. The probability of finding higher
number of UMZs decreases with increasing spanwise length. It is apparent right away that the
spanwise extent of the UMZs are much shorter than their streamwise extent for both the TBL
cases as the results in Figure 7 show.

For the ZPG-TBL, when lz = 0.05δΩ∗, the probability of finding 3 UMZs is over 25% and it
becomes almost negligible for lz ≥ 0.2δΩ∗. This shows that most of the UMZs have a spanwise
extent of the order of one-tenth of a boundary layer thickness. Therefore, for the ZPG-TBL, the
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spanwise extent is chosen as lz = 0.1δΩ∗ for the subsequent analysis. In the case of the APG-
TBL, the probability of finding 3 UMZs is over 25% for lz = 0.01δΩ∗ and it becomes insignificant
for lz ≥ 0.1δΩ∗. The spanwise length of most of the UMZs is around the order of one-hundredth
of a boundary layer thickness. Hence, the spanwise extent is selected as lz = 0.05δΩ∗ for the
APG-TBL. It is important to note that when the pressure gradient increases from the ZPG case
to the point of verge of separation in the APG case, the spanwise extent of the majority of the
UMZs decreases.
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Figure 7: (a) PDFs of the number of UMZs (NUMZs) as a function of the spanwise extent upto
lz = 1.6δΩ∗ for the ZPG-TBL. (b) Similarly, for the APG-TBL upto lz = 1.6δΩ∗.
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6. Time persistence and time evolution of UMZs
For the ZPG-TBL, the time extent (lt) over which the UMZs persist are investigated by using
3D velocity fields with the domain lengths lz = 0.1δΩ∗, ly = 1.3δΩ∗ and lx = 2δΩ∗, chosen based
on the results of sections 4 and 5. Similarly, for the APG-TBL, the selected domain lengths
are lz = 0.05δΩ∗, ly = 0.7δΩ∗ and lx = 1.28δΩ∗. 200 time-resolved velocity fields are used in
this analysis. For a particular time extent (lt), the total time period is divided into different
time subsets. For a particular z sub-domain in a time subset, velocity PDF is constructed to
calculate the number of UMZs (NUMZs) in that sub-domain. In a similar way, NUMZs are
computed for the same z sub-domain in the other time subsets. This process can be repeated
for all the z sub-domains in all the time subsets to get the PDF of NUMZs for that particular
time extent (lt). Following this approach, the PDF of NUMZs are computed for different time
extents as illustrated in Figure 9. The time extent is varied up to 2δΩ∗/〈u〉∞∗ and 0.4δΩ∗/〈u〉∞∗
for the ZPG-TBL and the APG-TBL respectively. In the case of the ZPG-TBL, the probability
of finding 2 UMZs is around 50% for all the time extents. This shows that most of the UMZs
in the ZPG-TBL persist for a time period of 2 integral time scale. Similarly, for the APG-TBL,
the probability of finding 2 UMZs is around 50% for all the time extents considered. This shows
that most of the UMZs in the APG-TBL persist over the entire available time period of 0.4
integral time scale.
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Figure 8: The instantaneous PDFs of u/Ue constructed using 3D fields from the domains of
selected size in section 6 for (a) the ZPG-TBL; (b) the APG-TBL.

The time evolution of the UMZs is investigated for both the TBL cases in a similar manner
to Laskari et al. [2]. This is done by following a particular z sub-domain over consecutive time
steps. Figure 8 shows an example of the instantaneous PDFs generated using 3D fields from
a random domain of the chosen size for both the cases. Figure 10 shows the time evolution of
the UMZs in that domain for both the cases in terms of the integral time scale. The contours
represent the PDF of u/Ue and the squares refer to the modal velocities of each of the detected
UMZs. In case of the ZPG-TBL in Figure 10a, the results indicate that the UMZs having higher
time persistence are closer to the free-stream and have higher streamwise momentum relative to
the other detected UMZs. This behaviour of higher momentum zones having more persistence
in time was also noted by Laskari et al. [2]. For the APG-TBL in Figure 10b, the important
difference to be noted is that the UMZs with higher time persistence are found closer to the
plate. When the flow reaches the point of the verge of separation in the APG-TBL, the results
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Figure 9: (a) PDFs of the number of UMZs (NUMZs) as a function of the time extent up to
lt = 2δΩ∗/〈u〉∞∗ for the ZPG-TBL. (b) Similarly, for the APG-TBL upto lt = 0.4δΩ∗/〈u〉∞∗.

indicate that the UMZs with lower streamwise momentum have more persistence in time relative
to the higher momentum UMZs in the flow.

7. Concluding remarks
The 3D time persistence and evolution of the uniform momentum zones (UMZs) have been
investigated in a ZPG-TBL and a self-similar APG-TBL at the verge of separation. 200 time-
resolved velocity fields from two DNS were used in this study. The instantaneous detection
methodology introduced by Adrian et al. [1], which is based on the PDFs of the streamwise
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Figure 10: (a) Time evolution of the UMZs in the ZPG-TBL for 200 consecutive velocity fields.
The squares refer to the modal velocities of each of the detected UMZs and the contour represents
the PDF of u/u∞. The time (t) is expressed in terms of the integral time scale defined based
on δΩ∗ and 〈u〉∞∗. (b) Similarly, for the APG-TBL. Modal velocities corresponding to the free
stream is not shown here.

velocity is used in the present study and is extended to account for the spanwise extent and the
temporal evolution of the UMZs [2].

For the ZPG-TBL, when the streamwise domain length (lx) is greater than or equal to 3δΩ∗,
the probability of finding 4 UMZs become negligible. In the case of the APG-TBL, even when
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the streamwise domain length is chosen as high as 1.28δΩ∗, the probability of finding 4 UMZs
does not become insignificant. The spanwise extent (lz) of the predominant number of UMZs
are shorter than their streamwise extent irrespective of the pressure gradient in the flow. For
the ZPG case, the majority of the UMZs have a spanwise extent of the order of one-tenth of
a boundary layer thickness (δΩ∗), whereas, for the APG case, the spanwise extent of most of
the UMZs is found to be shorter with values of the order of one-hundredth of a boundary layer
thickness.

In the ZPG-TBL, the probability of finding 2 UMZs of size lz = 0.1δΩ∗, ly = 1.3δΩ∗ and
lx = 2δΩ∗ with a time persistence of 2 integral time scale is around 50%. Similarly, for the APG-
TBL, the probability of finding 2 UMZs of size lz = 0.05δΩ∗, ly = 0.7δΩ∗ and lx = 1.28δΩ∗ with
a time persistence of 0.4 integral time scale is over 50%. For the ZPG-TBL, based on the time
evolution of a single sample, it is observed that some of the UMZs with larger time persistence
are the zones with higher streamwise momentum and are found closer to the free stream. This
result is also consistent with the previous observations made by Laskari et al. [2]. In contrast
to the ZPG-TBL, for the APG-TBL at the verge of separation, the UMZs with higher time
persistence are found to be the lower momentum zones that are closer to the wall.
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