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Abstract

Sepsis is a life-threatening condition which causes millions of deaths every year. Since

earlier detection and treatment can reduce mortality, developing an accurate and efficient

computer-aided mechanism to predict the onset of sepsis demands urgent action. However,

prediction of sepsis is not easy to implement since it is a highly variable disease process,

making the work challenging. Previous researchers have mainly focused on investigating

indicative biomarkers from a medical point of view or developing a scoring system based

on logistic functions to help doctors with their diagnosis. As information technology re-

searchers, we pay more attention to exploring the potential of machine learning (ML) meth-

ods, especially deep learning, in predicting impending sepsis before the clinicians’ suspi-

cion. This thesis makes three main contributions to the domain of sepsis detection. We

first present a systematic literature review (SLR) that gives a comprehensive overview of

the current progress of computer-aided sepsis detection. We proposed and implemented a

unified sepsis detection framework to achieve the task. The framework defines a complete

workflow of performing early detection of sepsis for both adults and infants, and provides

a guidance for researchers from data collection to reflective evaluation. Finally, directed by

action research methodology, we explore and verify the feasibility of multiple models and al-

gorithms, including classic machine learning models, advanced deep learning models, and

multi-instance learning approaches in three iterative research cycles.

Using the proposed unified sepsis detection framework, we have investigated several

intelligent models and examined the feasibility of incorporating them into the sepsis di-

agnosis process. Despite the limitations of current data collection systems in the hospital,

with proper preprocessing steps, collected data can still be used to develop machine learn-

ing models. Two additional public datasets are included to expand the training samples.

Multiple models have been demonstrated to produce acceptable results, of which the Long

Short-Term Memory (LSTM) model with a fully-connected encoder has improved detection

time for sepsis by up to six hours and achieved a promising AUC of 0.95. With its superior

performance compared to many of the methods reviewed in the SLR, it could be used as a

decision support tool for clinicians.
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Chapter 1

Introduction

1.1 Background of the Clinical Problem

Sepsis is an extreme response in our body to an infection, which is likely to be fatal in

some cases, according to the CDC of the United States, and it can affect patients of all ages

[1]. We explore both conditions in this thesis, and examine how the proposed methods

perform in each. Sepsis is a highly prevalent condition that accounts for 10% of adults ad-

missions to an intensive care unit (ICU). Sepsis, along with severe sepsis and septic shock is

associated with a 10% to 20% in-hospital mortality rate [2, 3]. The World Health Organiza-

tion estimates that more than six million people die of sepsis annually, and many of these

deaths are preventable. Various definitions of sepsis have been made to guide clinicians’

diagnosis, for example, the Third International Consensus Definitions for Sepsis and Septic

Shock (Sepsis-3) [4] created in 2016 replaced the systemic inflammatory response syndrome

(SIRS) due to its poor sensitivity and specificity. Other tools like Sepsis-related Organ Fail-

ure Assessment (SOFA)[5] score and quick SOFA (qSOFA) [4] were designed to describe

quantitatively and objectively the degree of dysfunction over time for sepsis patients.

Neonatal sepsis (NS) refers to bloodstream infections that occur during the neonatal pe-

riod, i.e. the first 28 days for termed babies and up to 4 weeks after the expected delivery

date for preterms. The prevalence of NS has a major impact on the mortality and morbid-

ity of newborn babies [6]. Recently it was reported that in developing countries, NS causes

about 1.6 million neonatal deaths every year [7]. Preterm infants, especially very low birth

weight (VLBW; <1500g birthweight) infants can more easily infected because of their im-

mature immune system and prolonged hospitalisation, contributing to the higher mortality

[8]. The total incidence of neonatal sepsis is one to eight per 1000 live births, and up to 20%

of neonatal intensive care unit (NICU) admission [9, 10]. Neonatal sepsis can be generally

classified into early- or late-onset, depending on whether it occurs within 48 hours [9], some

other reports define it as 24 or 72 [11]. Early-onset sepsis (EOS) has an incidence of 0.9/1000

live birth and 9/1000 NICU admission [6], and it is predominantly due to microorganisms

from the birth canal, and over 80% of these related microorganisms are group B strepto-
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coccus (GBS) and Gram negative bacteria [11]. However, late-onset sepsis (LOS) is caused

mainly by nosocomial bacteria, and approximately 50% of late-onset cases are associated

with coagulase-negative staphylococci (CoNS). The incidence of late-onset sepsis is around

8/1000 live births and 70/1000 NICU admission [6], though it varies between 11% and 53%

worldwide [12]. The risk is inversely correlated with birth weight and gestational age [13–

16], preterm babies that are less than 2500g or delivered before 37 weeks have the greatest

risk [6]. Mortality of late-onset sepsis ranges from 5 to 50% worldwide [17] and in Australia

it is about 6% [18].

The absence of a genuine gold standard in the diagnosis of sepsis is one of the most im-

portant concerns and it leads to inconsistency among clinicians and researchers [19]. The

most widely used gold standard at the moment is the blood culture test [8, 20, 21], and

based on the result sepsis is defined as either culture-proven sepsis, in which case the result

of blood culture test is positive, or clinical sepsis where other laboratory parameters make

the clinicians believe the presence of sepsis but the blood culture test output is negative [8].

Apart from blood culture tests, there are other standards for diagnosing sepsis. It is reason-

able to suspect sepsis when an adult patient meets at least two of the following clinical crite-

ria: a respiratory rate of 22/min or higher, altered mentation, and a systolic blood pressure

of 100 mm Hg [4]. According to the paediatric consensus definition for sepsis [22], estab-

lished in 2005, evidence of SIRS must exist as a prerequisite to meeting sepsis criteria. The

SIRS requires either an abnormal WBC count (an increased or decreased total WBC for an

individual’s age or a concentration of more than 10% immature neutrophils) or an abnormal

core temperature (> 38.5◦C or < 36◦C). Although blood culture is considered as the gold

standard, it has several disadvantages. First, it is a tedious and cumbersome process which

significantly influence the management of patients. Blood culture test requires 24-48 hours

before results are generated, and it will delay the treatment if clinicians wait until the test re-

sults come out [21]. Second, the specificity of blood culture remains debatable, and it has too

many false negative outcomes [23, 24]. For clinical sepsis diagnosis, it also mainly depends

on the experience of the doctor. No specific signs will indicate the presence of neonatal sep-

sis and sometimes many non-specific symptoms could possibly occur due to sepsis [9]. For

each hour treatment initiation is delayed after diagnosis, sepsis-related mortality increases

by approximately 8% [25]. Third, for newborns, especially very-low-birth-weight preterm

infants, blood collection is restricted to a single sample with a minimal volume (1 ml), hence

the limitation of the blood volume could further hinder the pathogen capture which usually
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leads to false negative results [26, 27].

Currently, the commonly used approach to neonatal sepsis is the administration of em-

pirical antibiotic therapy [8, 9]. To prevent deterioration, clinicians are encouraged to use

antibiotics before the result of the blood culture test comes out. The excessive use of an-

tibiotics can result in antibiotic resistance, predisposing to fungal infection, necrotising en-

terocolitis (NEC) and even death [28]. The dilemma is that if clinicians wait for the blood

culture results, the patients may deteriorate during that time, and lose the best opportunity

for treatment. Under this circumstance, an early detection system is urgently need. One

of the motivations of our research is to solve this dilemma, make antibiotic administration

targeted at the right patients, and avoid the overuse of antibiotics. Furthermore, staff fatigue

due to current practice workload is one of the common situation that need to deal with, and

monitoring all kinds of vital signs from tens of cots are demanding on staff time and makes

the process vulnerable to human errors. To facilitate the diagnosis process of sepsis for

clinicians, many groups have developed early detection methods. However, most of them

were score-based or rule-based, focusing on some key parameters from a medical viewpoint

or merely exploiting a simple logistic regression model to establish a correlation between

certain measurements and potential future sepsis onset. Recent advances in computation

technology and expansion of data capacity caused by an increasing number of computa-

tional devices, popularisation of Internet and better network conditions allowed Artificial

Intelligence (AI) to be explosively developed since the beginning of the twenty first century.

Multidisciplinary research drew more attention in academic society, where AI technology

has been widely used in many cross-subject fields, providing novel and unprecedented so-

lutions. As a rule of thumb, AI-based models are built on top of large datasets, in order to

exploit the full potential of AI technology to uncover useful, though hidden, information

that was previously unknown within the datasets. In this regard, another issue we have to

properly address is to collect sufficient amounts of relevant data, and make sure it covers as

many variables as possible. In this thesis, we aimed to explore the robust capability of more

advanced machine learning and deep learning models and verify the feasibility of applica-

tion in the medical field, and, to be more specific, the early detection of sepsis. Incorporating

intelligent models into the current clinical workflow could potentially make the diagnosis

of sepsis more efficient and effective for clinicians.
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1.2 Research Objective and Questions

The overall research project’s aim have been divided into sections, based on the following

research objectives (RO) and questions (RQ).

1. RO-1: Design an efficient data acquisition scheme.

Different data is stored in multiple sub-systems in the hospital, however, due to the

initial design purpose, these systems often face a number of challenges in meeting

research and confidentiality requirements, sustainable storage requirements and an

inability to export data automatically.

• RQ-1: How should the vital signs be collected from bedside monitors in NICU?

As the most important type of clinical data, vital signs are ideally suited to ma-

chine learning algorithms since they are continuously accumulated and thus com-

prise a substantial proportion of the dataset. Normally, vital signs are surveilled

by bedside monitors linked to patients by attached sensors, but the raw data col-

lected are not processed or stored. Depending on the different standards in each

hospital, vital signs are reserved only for a reasonably short time, e.g. 10 hours

or 24 hours. Therefore, it is essential to effectively collect and store each patient’s

vital signs in the NICU for further use.

2. RO-2: Investigate the relations between physiological parameters and sepsis, and find

critical ones that are most related to sepsis.

• RQ-2: How many physiological parameters are available to researchers?

Due to the need to protect the privacy of patients’ medical data, we are restricted

in our access to them all. Additionally, numerous types of laboratory test results

are maintained in distinct subsystems, complicating our collection efforts when

we attempt to extend the dimension of the data. The first issue we must address

is coordinating with the hospital in order to collect as much data as possible while

obtaining all relevant permits. It is also vital to investigate the available properties

for publicly accessible online datasets in order to maintain synchronisation.

• RQ-3: Which critical physiological parameters can predict sepsis before it occurs?

Data is the fundamental basis of the early detection system. Considering previous

studies and pathology knowledge, we need to analyse all the variables we can
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obtain and determine which ones are associated with sepsis. By selecting relevant

parameters and excluding those that have little relation to sepsis, we can develop

effective feature sets.

3. RO-3: Design, develop and implement suitable algorithms for the clinical data, and

apply adjustments to improve the performance.

• RQ-4: Can existing methods in literatures fulfil the current requirement of early

detection?

Many studies have proposed different methods for detecting and diagnosing neona-

tal sepsis, including traditional biomarkers, statistical techniques, and some ma-

chine learning methods. It is necessary to review and evaluate existing work to

determine whether it meets the current demand for early detection.

• RQ-5: Is it possible to adjust existing methods to improve their performance?

As in some of the research, some preliminary machine learning models have al-

ready been applied to sepsis prediction, we should examine those results and

determine whether appropriate adjustments could improve their performance be-

fore incorporating new methods and algorithms that have never been tried before.

If they are promising, we will add new features, add new techniques, or merge

multiple methods, to make the process more effective.

• RQ-6: Is it possible for any new approach to have a better performance for this

early detection task?

The analysis of algorithms forms a major part of this research. Our approach to

achieving this goal relies primarily on cutting-edge machine learning techniques,

particularly deep learning. Different types of algorithms are examined, such as

classic machine learning models, convolutional neural networks, and recurrent

neural networks.

1.3 Research Contributions

This research explored a significant depth of knowledge by first systematically review-

ing the existing state of the field, then designing and developing the data collection schema

both from hospital and public medical databases. We worked closely with medical domain

experts and users using an action research framework embedded in the research methodol-

ogy. As a result, we were able to ensure that the work being done in this thesis was both
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valid and useful to the medical domain of research, and contributed to further development

of the methodology. We conceptualised factors for sepsis in both infants and adults by re-

viewing and identifying data collected by existing studies and constructed multiple models

for early detection of sepsis. These models were developed and refined in conjunction with

medical domain experts, and represent the application of multi-discipline technologies. We

began this thesis by narrowing down a specific area of research to focus on, and then drilling

down into its depths. The results and findings that we have arrived at are rich and have al-

lowed us to identify further issues and areas for future research. Specific contributions to

this thesis are described in the following subsections.

Significant parts of this thesis have been published in:

• Y. Hu, V. C. S. Lee, and K. Tan, An Application of Convolutional Neural Networks

for the Early Detection of Late-onset Neonatal Sepsis, in 2019 International Joint Con-

ference on Neural Networks (IJCNN), Budapest, Hungary, Jul. 2019, pp. 1-8, doi:

10.1109/IJCNN.2019.8851683. (Core Rank A)

• Y. Hu, V. C. S. Lee, and K. Tan, Prediction of clinicians treatment in preterm infants

with suspected late-onset sepsis An ML approach, in 2018 13th IEEE Conference on

Industrial Electronics and Applications (ICIEA), May 2018, pp. 1177-1182,

doi: 10.1109/ICIEA.2018.8397888.

1.3.1 Contribution to Knowledge

A systematic literature review (SLR) on existing status of sepsis detection. During the

course of this thesis, a systematic review of existing research related to sepsis detection is

presented, providing insight into the methods that have been utilised and are currently be-

ing utilised. There is a comprehensive description of the entire review process, and the re-

sults are analysed and discussed in depth. In addition to presenting a guide for anyone who

aspires to enter this field, it summarises what predecessors have achieved, and provides

directions for future research including the scope of this thesis.

A unified sepsis detection framework for both adults and infants. We proposed the ar-

chitecture of a unified sepsis detection framework covering all the steps from pre-data col-

lection practice to the analysis and evaluation of the results. Following the proposed frame-

work, one can run through the procedure step by step until having an output of sepsis
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prediction, regardless of whether the target subjects are adults or infants. Meanwhile, this

framework summarises many unique processes that other machine learning projects might

not necessarily need to include.

1.3.2 Contribution to practice

Verifying the feasibility of incorporating raw data from ICU to facilitate sepsis predic-

tion. Live data collected from bedside monitors is discarded after 24 hours when rule-

based sepsis diagnosis methods are applied. Clinicians and nurses mainly focus on whether

any value goes beyond the threshold. Yet with machine learning algorithms involved, infor-

mation hidden among historical data is revealed by feeding them to a well-trained model

after several steps of pre-processing.

Application of multiple types of machine learning based models in predicting sepsis on-

set. On different datasets, we have examined a variety of classic machine learning models

and deep learning models in the detection of sepsis. Furthermore, we have improved the

multi-instance learning algorithm by trading the amount of time a prediction can be made

in advance, with higher accuracy, and obtained an acceptable outcome.

The novel method of converting multi-variate time series data to image in classification

task. The transformation of univariate time series into images can be accomplished in a

variety of ways. Two approaches were presented that can be used to produce colour images

with multivariate time series, providing further inspiration on how to deal with time series

data. In addition, it makes it possible to utilise the remarkable performance of convolutional

neural networks on time series data rather than images.

1.4 Thesis Structure

This thesis has seven chapters in total, and is structured as follows: Chapter 1 is the

introduction of our research, illustrating the background, motivation of the project, our re-

search objectives and research questions derived from those objectives, and the contribution

we have made throughout our research. The next chapter presents a systematic literature

review of related works published in the past decade. We examine different sepsis detection

approaches, assess the PhysioNet Challenge that is aiming to predict sepsis based on clini-
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cal data, summarise the current state of research in this area, and identify research gaps. A

description of the research methods used in this thesis is provided in Chapter 3. A unified

sepsis detection framework was designed to fill one of the gaps that we identified during

the literature review in the context of the action research framework we follow. We analyse

datasets from various sources in Chapter 4 before implementing the proposed framework

in order to gain insight into the problem. Our chapter 5 and 6 discuss the use of the cyclic

research methods of action research, examine the performance of multiple models and al-

gorithms including classical machine learning, deep learning and multi-instance learning

methods, respectively, to predict neonatal and general sepsis, and evaluate the results. As

directed by the principles of action research, reflection has also been conducted in these

chapters. Finally in Chapter 7, we summarise the thesis by concluding our contributions,

answering the research questions posed in Chapter 1, and discussing the potential direc-

tions for future research.
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Chapter 2

Systematic Literature Review

This chapter systematically summarises the literature relevant to this thesis on the topic

of sepsis prediction, especially neonatal sepsis. The whole review process is fully described

and the results are analysed and discussed in depth.

2.1 Review Definition

In this systematic literature review , our focus is on research into sepsis prediction, espe-

cially neonatal sepsis prediction achieved by using artificial intelligence (AI)-based method-

ologies, such as machine learning and deep learning in the past decade. The related tech-

niques include conventional machine learning models, deep learning models, and other

statistical models. Medical approaches like diagnostic models based on clinical rules or

workflow on certain types of biomedical metrics are excluded, since they are not within the

scope of our research. This systematic literature review has three aims: (1) to identify the

current trends of AI-based sepsis prediction, (2) to highlight key challenges researchers have

to deal with to increase the credibility of their work and (3) most importantly to introduce a

classification framework of existing methods. To achieve these goals, we set the time scope

of screening criteria from 2010 to 2020, and all papers are indexed in the following four

well-known online databases: IEEE, ACM, ELSEVIER and PUBMED.

2.2 Review Methodology

We adopted Booth et al.’s [29] systematic approach to literature review and followed the

three-phase methodology employed by Pourhabibi et al. [30], as depicted in Figure 2.1.

The first phase is ”research definition” which is identifying the research area, formulating

review goals, and defining the research scope, and these are already illustrated in section 2.1.

The second phase is ”research methodology”. The literature search process began with

the creation of criteria to determine the articles to include in, or exclude from our analysis.

We set up five rules that the article must (1) be published in a peer-reviewed academic jour-

nal or conference, (2) be written in English, (3) be published between 2010 and 2020, (4) have
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Figure 2.1: Systematic literature review process [29, 30].

its full text available and (5) use AI-related methods to solve the sepsis detection problem.

The keywords we input to conduct the search are ”neonatal sepsis”, ”sepsis prediction” and

”sepsis detection” in plain text connected with boolean operator ”OR”, and after the filtering

process and the ”Abstract Reading and Skimming”, 102 papers are left in the search results

for the final analysis. Note that 41 out of them are from the PhysioNet 2019 challenge, and

we will analyse them separately in another section later.

For the final ”classification and analysis” phase, we have posed six guided questions to

facilitate the sorting and classification process, which are:

1. What were the study trends and focus?

2. What were the features used to predict sepsis?

3. What were the research datasets?

4. What were the models used to predict sepsis?

5. What were the measures used to evaluate the model performance?

6. What were the contributions and limitations that researchers faced, and possible future

directions?
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These six questions provide six distinct different levels based on which we can systemati-

cally categorise all the available papers under a classification framework. The next section

explains the classification framework proposed. Because this is a PhD thesis, all the screen-

ing and data extraction process were conducted by me only, not by two or more authors as

recommended, but the results have been audited by my supervisors.

2.2.1 Classification Framework

To align with the six guided questions listed in the previous section, the proposed classi-

fication framework begins with identifying study trends and focuses. We describe some of

the components of the framework individually below.

Prediction Features

The commonly used features in sepsis prediction models can be categorised into three

classes: (1) demographic data, (2) vital signs, and (3) laboratory test results. Table 2.1 demon-

strates the meaning of three types of features. Actually, in each class, multiple different

factors will be chosen to build the input feature vector depending on what kind of dataset

and model are used. Besides the features used, we also considered the process the features

underwent before being fed to the model, a step called feature preprocessing. Feature pre-

processing is an effective way to improve model performance and a variety of measurements

may be taken to build up more meaningful and powerful features, depending on the nature

of the data being used.

Table 2.1: Comparison of features used in AI models for sepsis prediction tasks.

demographic data vital signs lab test
definition population based fac-

tors
measurements of the
body’s most basic
functions

results of related bio-
chemical test mostly
based on blood

selected
examples

age, birth weight heart rate, respiratory
rate

C-reactive protein,
white blood cell

Research Datasets

Among all the research we have reviewed, most datasets come from either hospitals or

public medical databases. Normally, hospital store clinical data of patients admitted in a

period of ten years or longer (or longer in infants for 25 years) , depending on jurisdiction

and different requirements in each country. The clinical data may be stored as paper docu-

ments, scanned electronic copies of original paper documents, or in recent years in electronic
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medical records (EMR) databases. These records can be the source of retrospective data for

developing and validating a prediction system. Physiological data from bedside monitors

may not always be stored by hospitals as they require large storage memory capacity. Never-

theless, these types of high-frequency data can be accessed in real-time if appropriate equip-

ment is available or if there is a regulatory requirement to store the data. For public medical

database, MIMIC [31] and PhysioNet [32] are two typical ones that have been referenced

most.

Prediction Models

As the predictive models will be considered from a technical perspective, only three

types of models will be focused on:

• conventional machine learning models To distinguish from deep learning models,

we call models with less complex structures as conventional machine learning mod-

els, including classic ones like logistic regression, support vector machine, and more

advanced ones like ensembles and hidden Markov chain.

• deep learning models Deep learning models, refer to those with highly complicated

structures, normally neural network related. Different from normal shallow neural

networks, deep learning models have more layers along with some specially designed

structures to capture latent features and patterns. Typical models include convolu-

tional neural networks and recurrent neural networks.

• other statistical models Some other models beyond ML and DL.

2.3 Review Classification and Analysis

2.3.1 Overview of Surveys on Sepsis detection

There are several surveys or systematic reviews on sepsis detection [33–36] over the past

decade. Since our focus is to review existing work on predicting or early detecting the onset

of sepsis with AI-based methods, a paper such as [37] which reviews sepsis mortality pre-

diction with medical biomarkers and [38] which compares the performance of two medical

criteria qSOFA and SIRS in the diagnosis of sepsis will not be in the scope of our review.

Laurel [33] has reviewed thirteen studies between January 2005 and January 2015, de-

scribing automated detection approaches with potential to detect sepsis or sepsis-related
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deterioration in real or near-real time, focused on emergency departments and hospitalized

neonatal, paediatric, or adult patients. This review primarily reported the data used in the

reviewed articles and the comparison on their performance. The most commonly used vari-

ables in the sepsis detection algorithm include vital signs and laboratory value criteria and

they occurred in all thirteen papers. Another typical feature widely used in the thirteen re-

viewed papers is sepsis alert which is mentioned in seven out of thirteen papers, although

some of them claimed no significant effect of sepsis alerts on patient outcomes [39, 40]. The

usage of sepsis alerts was intuitively driven by clinical knowledge, but somehow did not

increase the accuracy of the detection algorithm. The limitation of this review is that it did

not introduce and compare the method each paper used, making it difficult to evaluate the

detection approaches.

In another work [34] presented by Mehanas and Pushpalatha, ten different machine

learning based techniques used to predict and detect sepsis were analysed. The authors

described each paper in detail, but no comparison was provided. Five techniques used were

listed, which included Bayesian Network, Conditional Independent Maps, Kernel Extreme

Learning Machine, Chaotic Fruit Fly Optimisation, and Hierarchical Analysis, and most of

them are not commonly used machine learning algorithms with certain limitations. Besides,

the lack of in-depth analysis makes this review superficial.

Another systematic review was conducted by Alejandro et al [35],targeted at finding pa-

pers where computational intelligence is used to predict infections in patients using physi-

ological data as features, which are exactly aligned with our interests. The only bias is that

this paper considers the general concept of infection, but our focus is on sepsis only, which

is one type of infectious disease. However, the underlying theory behind infection or sepsis

prediction is similar, so this review is still worthy of referring to. Most works use well-

known machine learning models such as logistic regression, SVM, random forest and naive

Bayes, etc. The authors have posed one major review question along with nine specific sub-

questions, and analysed existing works to answer them. The major and sub questions are

listed below:

RQ1. Does the literature document methods to predict infections given physiological

data?

RQ1.1. Which are the infections or types of infections that are susceptible of prediction

according to the literature?

RQ1.2. Do some of these documented methods involve machine learning?
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RQ1.2.1. According to the literature, which are the machine learning techniques suitable

for infection prediction?

RQ1.2.2. According to the literature, which is the impact of few training samples in

infection prediction performance?

RQ1.2.3. According to the literature, which is the impact of a largely imbalanced dataset

in infection prediction performance?

RQ1.3. Do some of these documented methods involve expert systems?

RQ1.3.1. According to the literature, which are relevant reasoning rules for infection

prediction?

RQ1.4. Which are the available data sources for infections prediction?

RQ1.5. Which are the most frequently reported performance metrics for infection pre-

diction?

Some of the questions are interesting and valuable for our study as well, e.g., RQ1.2.1.

which are the machine learning techniques suitable for infection prediction, and RQ1.2.2.

which are the impact of few training samples in infection prediction performance. Accord-

ing to this review, for all infections problems, Logistic Regression (LR) is the most com-

mon algorithm and is followed by Support Vector Machine (SVM) and Random Forest (RF),

but for sepsis, LR and SVM have approximately the same number of usage, and both are

more than others. As to the small data problems, three particular impacts were explicitly

revealed: (1) low accuracy, (2) limited generalisation, and (3) unfair assessment. Some app-

roaches were proposed to deal with the small data problem, for example, Stanculescu et

al. [41] used a symmetric Dirichlet prior with optimised parameters in their autoregressive

Hidden Markov Model to prevent the bias caused by the small datasets they have, Wiens et

al. [42] applied a novel feature extraction scheme that fits better for small datasets. Imbal-

anced data samples were another common issue reported in 26 out of the 101 papers under

review. Generally, this issue brings two impacts: (1) unfair assessment and (2) low accuracy,

which are quite similar to those brought by small datasets. Normally, to alleviate the impact,

higher misclassification cost could be assigned to the minority class, like what Monsalve et

al. did in their work [43] when they trained the SVM model to predict infection. The other

approach is to apply an under- or over-sampling scheme during the preprocess phase, try-

ing to rebalance the data of the majority and the minority. Most of the papers reviewed (61

out of 101) explicitly or implicitly considered the impact brought by imbalance data, even
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if no measure is taken explicitly, an AUROC-based methodology which is less sensitive to

imbalance data is used to evaluate their model performance.

Islam et al. have also presented a meta-analysis [36] on the topic of predicting sepsis pa-

tients using machine learning approaches. The paper filtered 7 out of 135 studies, met all of

their inclusion criteria, and led to the conclusion that machine learning based approaches

can achieve better performance than existing sepsis scoring systems such as Systematic

Inflammatory Response Syndrome (SIRS), Modified Early Warning Systems (MEWS), Se-

quential Organ Failure Assessment (SOFA) and quick Sequential Organ Failure Assessment

(qSOFA) in the task of sepsis prediction. The comparison was quite thorough, but the limi-

tation was that only seven papers were reviewed and analysed, and the small number may

not be representative.

However, the previous four reviews only covered the applications of some basic ma-

chine learning techniques in sepsis detection, but did not include deep learning or some

other more advanced machine learning approaches such as XGBoost. This is the gap we

are working on to fill in this systematic literature review . In the rest of this chapter, we

will review the state-of-the-art machine learning based methods in sepsis detection, espe-

cially for neonates. Our contribution will lie in the following three areas: (1) We propose

a classification framework to categorise existing works based on different aspects, offering

a systematic analysis for researchers and providing an in-depth understanding of how ma-

chine learning based methods can be used to predict the onset of sepsis. (2) This literature

highlights the current trends in the related research field, suggesting an optimal direction

of future research to avoid the negative impact of the highlighted issues. (3) We review the

work in the sepsis prediction field in a more technical manner, focusing more on advanced

AI-based techniques, including deep learning algorithms.

2.3.2 Review Findings and Discussions

In total, we reviewed 56 papers which satisfied our inclusion requirements, except for

the 41 PhysioNet challenge papers. With the proposed classification framework, we cata-

loged these 56 papers into four areas: prediction features, preprocessing methods, datasets,

prediction models (see Table 2.2).
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Table 2.2: Cataloging of sepsis prediction research

Reference Features Preprocessing Datasets Models Evaluation

Calvert

2016[44]

DC, VS,

LT

SW, DIS MIMIC2 LR, SCORE AUC, SEN,

SPE, ACC
Gur 2014[45] DC, VS DIS HSPT - SEN, SPE, OR,

TP, FP
Ford 2016[46] DC, VS - HSPT LR, SCORE AUC

Nemati

2018[47]

VS - HSPT Others AUC, SEN,

SPE
Tekin 2019[48] DC, VS DIS HSPT KNN, BN ACC, TP, FP,

PRE, REC, F1
Raben

2018[49]

- - HSPT Others -

Navarro

2015[50]

RRV SW, TFM HSPT LR SEN, SPE, TP,

FP
Stanculescu

2014[41]

VS SW HSPT HMM AUC, TP, FP,

EE, AP, F1
Li 2019[51] - TFM, FF MIMIC3 LSTM ACC, F1, AUC

Gómez

2019[52]

HRC SW, TFM HSPT AB, BCT, RF,

LR, SVM, BN,

DT, KNN

SEN, SPE, TP,

FP, AUC

Zhang

2017[53]

DC, VS,

LT

TFM, RM MIMIC3 LR, SCORE AUC

Nachimuthu

2012[54]

DC, VS,

LT

DIS HSPT DBN SEN, SPE,

PRE, F1, AUC
Lauritsen

2020[55]

VS DR, OS HSPT CNN, LSTM AUC, AP,

SEN, SPE, PRE
Lin 2018[56] DC, VS US HSPT CNN, LSTM AUC, ACC,

F1, PRE, REC
Demirer

2019[57]

VS - PN Others -

Saqib 2018[58] DC, VS,

LT

SW, FF MIMIC3 LSTM, RF, LR AUC, F1, PRE,

REC
Shashikumar

2017[59]

DC, VS DIS SW HSPT Others AUC, SPE,

ACC
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Reference Features Preprocessing Datasets Models Evaluation

Fu 2019[60] DC, VS,

LT

RM MIMIC3 Others AUC, SEN,

SPE, ACC
Shimabukuro

2017[61]

DC, VS,

LT

- HSPT LR AUC, SEN,

SPE
Barton

2019[62]

VS - MIMIC3 LR AUC, SEN,

SPE
Fairchild

2010[63]

HRC - - - -

Honoré

2010[64]

VS RM HSPT HMM ACC

Wyk 2019[65] VS, LT SW HSPT RF ACC, SEN,

SPE, PRE, F2
Kam 2017[66] DC, VS,

LT

SW, DIS,

US, NF

MIMIC2 DNN, LSTM ACC, SEN,

SPE, AUC
Schamoni

2019[67]

DC, VS,

LT

DF, TFM HSPT LR AUC

Zhang

2017[68]

DC, VS,

LT

FF HSPT LSTM SEN, SPE,

PRE, AUC, F1
Darwiche

2018[69]

VS, LT SW, FF MIMIC3 RF ACC, SEN,

SPE
Bloch 2019[70] VS US, DR HSPT LR, SVM,

ANN

AUC, TP, FP,

SEN, SPE,

ACC
Vieira 2012[71] - DR HSPT ANN, SVM,

FM

ACC, SEN,

SPE
Marshall

2012[72]

- - HSPT DT -

Lin 2019[73] VS, LT US, FF HSPT CNN, LSTM F1, AUC, PRE,

REC, ACC
Mao 2018[74] VS FF HSPT,

MIMIC3

GBDT, TL SEN, SPE,

AUC, ACC
Liu 2019[75] VS, LT OS, FF MIMIC3 XGB AUC, SEN,

SPE, PRE
Thakur

2018[76]

VS, LT SW, RM MIMIC3 LR SEN, SPE,

AUC
Ribas 2011[77] - - HSPT DT -
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Reference Features Preprocessing Datasets Models Evaluation

Garcia-Gallo

2019[78]

DC, VS,

LT

RM MIMIC3 LR AUC

Raknim

2019[79]

HRC TFM HSPT Others TP, FP, REC,

PRE, SPE,

ACC
Joshi 2020[80] DC, VS - HSPT BN, LR AUC

Stojkovic

2017[81]

LT - - Others RMSE

Schlapbach

2017[82]

- DF HSPT LR AUC, OR

Desautels

2016[83]

DC, VS SW, FF MIMIC3 LR AUC, SEN,

SPE, F1, ACC
Khoshnevisan

2018[84]

VS, LT - HSPT SVM F1, AUC,

ACC, REC,

PRE
Mccoy

2017[85]

VS, LT FF HSPT LR -

Mellhammar

2020[86]

DC, VS,

LT

MF HSPT SCORE AUC, SEN,

SPE, OR
Shuker

2018[87]

DC, VS - HSPT SCORE AUC, SEN,

SPE, PRE
Jiang 2016[88] VS, LT - HSPT BN -

Baghaei

2019[89]

DC, VS,

LT

DIS, FF MIMIC3 GRU AUC, ACC

Ho 2014[90] DC, VS,

LT

MF, NF MIMIC2 LR, SVM, DT,

KNN

AUC, F1, F2

Nizami

2011[91]

HRC - - - -

Ribas 2012[92] DC, VS,

LT

DR HSPT LR AUC, SEN,

SPE, ACC
Ribas 2011[93] DC, VS,

LT

- HSPT SVM AUC, SEN,

SPE, ACC
Sheetrit

2019[94]

VS, LT DIS MIMIC3 RF, RNN TP, FP

Godoy

2014[95]

HRC TFM HSPT - -
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Reference Features Preprocessing Datasets Models Evaluation

Luo 2019[96] VS, LT - HSPT - AUC, SEN,

SPE, PRE
Haug 2016[97] DC, VS,

LT

DR HSPT RF, BN AUC, SEN,

PRE
Mcgregor

2012[98]

HRC,

RRV

- HSPT Others -

Legend:

AB, adaptive boosting; ACC, accuracy; ANN, artificial neural network;

AP, average precision; AUC, area under the curve; BCT, bagged classification trees;

BN, bayesian network; CNN, convolutional neural network;

DBN, dynamic bayesian network; DC, demographical characteristics;

DF, set missing value to default; DIS, discretisation; DNN, deep neural network;

DR, dimension reduction; DT, decision tree; EE, equal error rate; F1, F1-score; F2, F2-score;

FF, forward filling; FM, fuzzy modelling; FP, false positive rate;

GBDT, gradient boosting decision tree; GRU, gated recurrent unit;

HMM, hidden Markov model; HRC, heart rate characteristics;

HSPT, collected from hospital; KNN, k-nearest neighbour; LR, logistic regression;

LSTM, long short-term memory; LT, lab test; MF, mean value filling;

MIMIC2: Multiparameter Intelligent Monitoring in Intensive Care Version 2;

MIMIC3: Multiparameter Intelligent Monitoring in Intensive Care Version 3;

NF, nearest filling; OR, odds ratio; OS, over-sampling;

PN: PhysioNet Challenge Dataset 2019; PRE, precision, REC, recall; RF, random forest;

RM, remove data with missing values; RMSE, root mean squared error;

RNN: Recurrent Neural Network; RRV, respiratory rate variability;

SCORE, scoring system; SEN, sensitivity; SPE, specificity; SVM, support vector machine;

SW, sliding window; TFM, transformation; TL, transfer learning; TP, true positive rate;

US, under-sampling; VS, vital signs; XGB: XGBoost;

In table 2.3, we summarise the aim, main contributions, challenges, and future directions

of the reviewed papers. This table offers a quick guide to relevant work for researchers

using artificial intelligent methods to detect sepsis. In preparing table 2.3, we classified the

main contribution in terms of three aspects: feature, model, and performance and further

identified key limitations and possible future research directions which serve as a scaffold
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to overcome these challenges.

Trends and Focus

We analysed the number of works published in the recent decade on the topic of sepsis

prediction, Fig 2.2 depicts the trend of number of research. From the figure, we can see that

Figure 2.2: Number of publications in the recent decade.

the topic has drawn increasing interest recently and reached its peak in 2019 with 30 articles.

The reason the number dropped in 2020 is because only six months had passed at the time

this thesis was composed and the numbers may continue to increase in the remaining half

of the year. Note that the calculation excluded the papers published for the PhysioNet 2019

Challenge, which we will cover later in a separated section. Since sepsis has been a global

health concern recently due to its mortality and morbidity, and artificial intelligence tech-

niques have advanced rapidly, more and more researchers have recognised that machine

learning can be applied to the medical field, especially time series analysis such as sepsis

prediction. This, we believe, is the cause of the increasing amount of work.

Among all the research related to sepsis detection, except for 42 on normal sepsis, there

are 14 targeted at neonatal sepsis specifically, since neonatal sepsis has threatened the lives
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of newborn infants, especially preterm newborns, under care in neonatal intensive care units

(NICU). Based on what kind of target is predicted, we can also divide the research into three

categories, in which the majority is to predict the onset of sepsis (36 papers), and we have 10

papers for sepsis mortality prediction and 7 papers for septic shock prediction. The ratios

are illustrated in Figures 2.3 and 2.4.

Figure 2.3: Ratio of publication on adult
sepsis to neonatal sepsis.

Figure 2.4: Ratio of publications on pre-
diction of sepsis onset, mortality and
shock.

Features Selection

For machine learning models, feature selection and organisation are two critical pre-

processing steps before they are fed into the model. Features used in sepsis detection can

be classified into two categories: raw features and derived features. Raw features are those

variables we can directly use after we collect them from the monitors, systems or any other

records, while derived features are calculated from raw features based on certain rules. Let

us first check the usage of three types of basic raw features that are most commonly used.

There are 47 papers using at least one of the three raw features, among which 24 using

demographical data, 40 using vital signs, and 24 using lab tests. Since vital signs are vari-

ables that can best represent the physiological status of patients, it is necessary for almost

every work to incorporate them as the primary components of feature sets. Demographic

data and laboratory tests are not used as much as vital signs because demographical data,

like gestational age and gender, is usually static and will not form a time series such as vital

signs, while in general, lab tests require quite a long time before the result can be acquired.

Another reason for not using lab tests is that they often come with a blood test or other in-

vasive operation which could bring potential side effects for the patient, especially for new

born infants. Some researchers aiming at developing non-intrusive early detection of sepsis
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detection will choose not to include lab test data to overcome these issues [52, 83]

Except for the three raw types of features mentioned in chapter 2.2.1, which are used by

almost every piece of work, we have reviewed some other types that are calculated by the

raw features. Measure of acute illness severity are believed to be significantly associated

with mortality in severe sepsis [46], for example, for respiratory failure, the authors con-

structed a variable termed ’early mechanical ventilation’ which is constructed by using the

date and time of admission combined with the date for a procedure code corresponding to

mechanical ventilation. Any patients receiving mechanical ventilation within 0-2 days of

the admission date and time will be identified as early mechanical ventilation cases, and

for those that initiated mechanical ventilation after two days as late mechanical ventilation

cases. Meanwhile, in the same paper, pre-existing chronic disease is also treated as one of

the associating factors to the mortality in sepsis. Lauritsen et al. [55] proposed to detect

sepsis by utilising deep learning on electronic health record event sequences. Various EHR

events were monitored and calculated first before being passed to deep learning models,

and then along with other vital signs, from which patterns were learned to make the pre-

diction. Sometimes statistical data such as maximum values, mean values and standard

deviations are more useful than the raw data itself. Multiscale blood pressure and heart rate

(HR) time series dynamics are emphasised in another work [59]. Multiple types of blood

pressure were extracted, like mean arterial pressure (MAP), systolic blood pressure (SBP)

and diastolic blood pressure (DBP). The authors also calculated the following features from

HR and MAP time series (2s resolution) derived from the bedside monitor’s proprietary

software from the ECG and BP waveforms: standard deviation of HR, standard deviation

of MAP, multiscale entropy and conditional multiscale entropy of both HR and MAP within

a 6-hour time window. Some other works that also used statistical data include [60, 65]

were discovered. Continuous monitoring of neonatal heart rate characteristics (HRC), had

been developed for earlier diagnosis and treatment of Late-onset neonatal sepsis in NICU

patients [99–104] last decade by Griffin et al. They found that special heart rate character-

istics will occur right before the onset of neonatal sepsis, including two parts: depressed

heart rate variability and transient heart rate decelerations. This finding has a profound in-

fluence for the later researchers, and HRC was treated as features in some of their works

[52, 63, 79, 85, 91]. An electronic questionnaire was created with attending physician’s daily

judgements of patients’ status by Schamoni et al. [67], to exploit the implicit knowledge of

practitioners. Except for data extracted from the EHR, it is interesting that comments from
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doctors were also included. Another work that utilised clinical notes was proposed by Liu

et al. [75] in which a Natural Language Processing (NLP) technique was applied to generate

NLP features as complementary to physiological data. Lin et al. [56] creatively researched

how facial expression of patients can represent their status of sepsis. A general framework

was presented for the extraction of temporal relationships and local patterns of evolving

emotional expression in a unified and systematic way based on a patient’s health condi-

tion. Furthermore, three types of patient similarities were calculated, which are Cosine

Similarity (CS), Equally Contribution Similarity (ECS) and Weighted Contribution Similar-

ity (WCS), and they were further extracted and input into a Linear Regression model to

produce a predictive outcome [78]. In Joshi et al.’s work [80], along with demographic data

and vital signs that are commonly used in diagnosis, another innovative feature, infant mo-

tion, was calculated. To estimate it, they introduced a new integrated measurement - Signal

Instability Index (SII), which is derived from the ECG waveform by capturing both the ex-

tent and duration of movements. Briefly, the SII is a non-parametric measure based on the

kernel density estimate that can be applied to a band-pass filtered ECG waveform to obtain

an estimate of motion every second using the ECG-data for the past 10s. Lower values of SII

indicate the absence of movement, while higher values are a quantitative estimate of body

movement. In some cases, features were extracted from existing models. Kam and Kim

[66] picked nine basic variables from 460 available ones in MIMIC II database, covering de-

mographic data, vital signs and lab test result. Besides, features used in InSight [44] was also

taken into calculation. SOFA and qSOFA are two commonly accepted assessment scores for

patients with incipient sepsis, and they were incorporated as part of the feature set fed to

the machine learning models [92, 96].

Data Preprocessing

In most cases, selected features can not be fed into machine learning models for training

before they have been preprocessed, since outliers and missing values are inevitable, espe-

cially in medical records, due to human errors or unexpected activities after admission. In

this phase, if appropriate measures are taken, issues like imbalanced data could be allevi-

ated.

dimensionality reduction Sometimes not all of the available features are used in the model

training, part of them might be not related to the disease as closely as the others, and we

need to filter them out. The purpose of features filtering includes 1) Too many features
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will make the model complicated, which could possibly increase the chance of overfitting.

2) Incorporating non-related or less-related features might lead to the introduction of extra

noise to the dataset, and consequently affect the final performance of the model. Haug

and Ferraro [97] run a variable ranking according to the strength of their relationship to

the target by chi-square test and then select the N strongest predictors, where N was set to

two different values of 15 and 40. In the work of Ribas et al. [92], factor analysis (FA) was

taken to select the features following a criterion based on the correlation between features

of the observation vector. Bloch et al. [70] proposed to select the most important features in

two phases. During the first phase, they have trained 5 different models and estimated the

features’ model-dependent importance. In the second phase, the top two most important

features were selected for each model. Then a combined set of all model-specific features is

used as a final feature set.

sliding window vs. stream Sliding window is a widely used technique that is able to

convert streaming data into data blocks. Since many traditional models do not have the

capability of handling data streams, data segmenting with certain length of time window

has become one of the common steps in feature engineering. Desautels et al., Darwiche and

Mukherjee [69, 83] segmented their extracted data within a one-hour window and calculated

the average for further use. In this work [66] the authors summarised the continuous data

in a 1h and 5h time window respectively by extracting the min, average, max values of mea-

sured variables. Three moving time windows were used to extract features from patients’

physiological data collected at different granularities [65].

Sliding window has another function that can enrich the dataset of limited scale, which

is used in [52]. A 15 minutes time window was used to segment the data records due to

the low number of new-borns, especially with sepsis. Other publications that were involved

in using sliding windows include [50] and [44] to which thirty-second and 5-hour sliding

windows were applied.

under-sample vs. over-sample Data records of patients are always extremely imbalanced

due to the morbidity of sepsis and modern medical administration. The number of patients

who avoid the disease is 10 times or even greater than the number of patients who end

up with at least one onset of sepsis. Normally, researchers have two ways to alleviate this

problem, which are under- and over-sample. Under-sample means to randomly sample

from the healthy patients, reducing the number of normal cases and consequently lead to a
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re-balance with sepsis cases. On the contrary, Over-sample is to create more data records for

the class that is much less than others. In [66, 70, 73], it is an under-sample that is applied

to the imbalanced data to equalise two types of data, while Liu et al. [75] chose the over-

sample approach. Note that when undertaking an under-sample, we need to maintain the

underlying distribution of age, gender or any other attributes as in the original datasets.

transformation To enrich the feature set, raw features are transformed to produce new

ones. One typical application is to transform signals in the time domain and in the fre-

quency domain. Navarro et al. [50] does this on respiratory signals while Godoy et al. [95]

chose Heart Rate signals. Variables that could be achieved in the time domain include the

absolute difference between the maximum and minimum value, standard deviation in the

time domain, the root mean squared value, the kurtosis etc, and the kurtosis of the power

spectral density (KPSD) and main frequency over a period T can be derived in the frequency

domain, in which the main frequency could be expressed as:

MF =
1

T

T!

k=1

|resp(k)− resp(k − 1)| (2.1)

The Shannon entropy is another useful variable could be calculated[79] as:

E = −
T!

k=1

resp2 log(resp2) (2.2)

For scale-sensitive models, standardisation is an effective way to improve the performance

in preprocessing step. A typical way is z-transformation which transform all features x

around zero with uniform variant z = x−µ
σ

, where µ is the mean and σ is the standard

deviation of the feature value [67].

discretisation Putting data into bins is a common way to aggregate continuous data into

discrete values. After setting up a normal value as reference, data are discretised into bins of

lower, normal and higher [89]. In Kam and Kim’s work [66], an extra variable was calculated

to indicate whether it is increasing, decreasing or roughly constant within a 5h window. [48]

bin.

missing data handling Normally, the dataset used in the sepsis detection task is collected

from a hospital during the normal course of care, even for those from a publicly accessible
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database, missing values are common. Multiple strategies could be applied to fill in the

missing data, of which forward filling is an effective one. This imputation method applied

the patient’s last measured value to the following missing entries, in case that the first value

was missing, the imputation followed a backward direction. It has been widely used in

[51, 68, 69, 73–75, 83, 85, 89]. Mean filling as a complementary if all previous recored values

are missing [51, 73]. Directly removing the data entries with missing value [53, 76, 78],

setting the value to default defined by an experienced clinician [67] or imputed with the

nearest measured value [66] are all acceptable measurements dealing with missing values.

Ho et al. [90] proposed a three-step missing data imputation approach in a specific

”global to local” order to estimate the missing observations in the medical records. Mean

imputation is the most global approach available where a patient’s missing observation is in-

fluenced by measurements from all of the other patients in the population. Neighbourhood-

based imputation is on the opposite end of the spectrum, using local information (small

subset of the patient population) to determine the missing value. Matrix factorisation meth-

ods can be viewed as a combination of the two approaches, imposing a global structure

where the individual matrix values are then influenced by a smaller dimensional space.

Some research proposed the theory that missingness of specific data element, in itself,

could be treated as a source of diagnostic information. Patterns of missing data was used as

a useful proxy variable in the training data [97].

Others A peak detection algorithm was used to detect the R-peaks in the ECG-recordings,

followed by calculating the R-R intervals, in order to get the Heart Rate Variability features

[80]. For Natural Language Processing related approaches, clinical notes need to be pro-

cessed, for instance, the notes are converted to lowercase and stripped of non-alphanumeric

characters, to get ready for further steps [75].

Research Datasets

Research which studied the sepsis detection problem were usually collaborated with hos-

pitals or other health institutes, so most of their dataset was collected from patients. Mean-

while, several public databases providing open access to clinical datasets of high quality are

also popular among researchers, like MIMIC and PhysioNet. MIMIC is an openly available

dataset developed by the MIT Lab for Computational Physiology, comprising of deiden-

tified health data associated with approximately 60,000 intensive care unit admissions. It

includes demographics, vital signs, laboratory tests, medications, and more [31]. Similarly,
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PhysioNet is another platform created for biomedical research and education by offering

free access to large collections of physiological and clinical data and related open-source

software [32]. There are 35 papers (62.5%) among all the reviewed papers using datasets

from hospitals, institutes or their own projects, while 12 (21.4%) of them using MIMIC III,

and 3 (5.4%) using MIMIC II, see Fig. 2.5. From the figure we can identify more than half

of the research chose to collect their own data instead of using public datasets, due to the

nature of MIMIC database that only focus on admissions in intensive care unit.

Figure 2.5: The distribution of datasets used in reviewed work.

Prediction Models

conventional machine learning models For the first type, conventional models, we have

28 papers (50%) which utilise normal machine learning algorithms. Logistic Regression (LR)

was widely used due to its simplicity, 8 out of 56 (14.3%) papers among all the reviewed

works have more or less utilised this method. Binary LR was used to develop and compare

two prediction models using invasive and non-invasive parameters in [76]. This model

calculated a probability of sepsis in an Android application, and predicted neonatal sepsis.

An LR classifier could also be trained to identify body movement, as the first step of the

sepsis detection method described in [50]. There are multiple publications proposing to
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facilitate sepsis prediction with scoring systems that calculated by LR models. Ford et al.

[46] generated a sepsis severity score for use with administrative data with the multivariable

logistic regression model, while in the work of Shukeri et al. [87], LR was used to derive

a sepsis mortality score (SMS), a prediction equation describing the relationship between

biomarkers and 30-day mortality. Other works incorporated with LR include [58, 82, 92].

Tekin et al.[48] tried two models, one was K-Nearest Neighbour (KNN) and the other,

Naive Bayesian (NB) and compared the performance of the selected methods. Results showed

that the basic ML model KNN slightly outperformed the probabilistic model NB.

We also found that the Support Vector Machine (SVM) algorithm was used to build mod-

els for early diagnosis of septic shock[84]. Six classic machine learning classifiers were com-

pared and analysed, and SVM with Recent Temporal Patterns (RTPs) outperformed among

all the candidates. SVM could be modified to be robust and interpretable in real-time deci-

sion making in the ICU. Ribas et al. [92] developed such a system based on SVM model and

provided an automated ranking of relevance of the mortality predictors. The performance

of SVM models very much depends on the kernel functions applied, a good example would

be the work of Bloch et al. [70], in which SVM with radial basis function evidently has the

highest AUS of 88.38% in the task of sepsis prediction.

The family of hidden Markov models (HMMs) is a flexible tool for generative proba-

bilistic modelling of sequential data such as vital signs time series, commonly available in

sepsis prediction, and it was applied in the work of Stanculescu et al. [41] with a slight

enhancement by introducing a direct stochastic dependence between observations.

Ensemble learning is another popular technique that many researchers would like to

use due to its outstanding performance. Random forest (RF) is one of the typical Ensem-

ble learning algorithms, and van et al. [65] employed a two-layer stacked RF structure in

their work because of its minimal hyper-parameterisation, faster training, and improved

interpretability. Mao et al. [74] chose another subtype of ensemble learning which is Gra-

dient Tree Boosting, and Liu et al. [75] used XGBoost which becomes increasingly popular

recently.

deep learning models Deep learning has been explored extensively and applied in many

research domains including healthcare for decades. In terms of deep learning models, we

mainly discuss deep neural networks with special layers, such as Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), and their variants. Long Short-
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Term Memory (LSTM) is a specially designed neural unit for RNN, empowering RNN to

record both recent and distant features, and to avoid gradient vanishing, a catastrophic con-

sequence caused by the large number of layers. Kam and Kim [66] proposed the LSTM-

based method of sepsis detection. The model consists of two components, a deep forward

neural network that learns unknown high-level features without domain knowledge, and an

LSTM network working on temporal features. When multiple layers of traditional LSTM are

stacked, they are able to learn the discriminative patterns at different levels, hence increas-

ing the comprehensive performance of prediction [68]. The other possible enhancement to

the original LSTM is to train the model through both forward and backward directions so

that the temporal dependency is captured bidirectionally [51]. However, we do not think

the backward direction should be taken into consideration, because in reality, the status of

the patient in the future is unknown and can not be input into the model.

Sometimes, CNN and RNN are combined to make the best use of each model. Lin et al.

[73] presented a septic shock prediction framework based on the facial representation of pa-

tients, in which RNN extracted the temporal dependency among facial images at different

times, whereas CNN summarised the local patterns, and finally generated the prediction

result via another RNN. We can improve the performance of LSTM by adding extra com-

ponents to it. In [55, 56], a CNN was concatenated to LSTM to obtain local characteristics

of EHRs, and a fully connected (FC) neural network was followed, introducing static infor-

mation to LSTM as a complementary. This type of conjunction between CNN and RNN is

called Convolutional-LSTM or ConvLSTM, which has been widely applied to solve prob-

lems involving both spatial and temporal data simultaneously.

Despite their complex structure and advanced capability, deep learning models can not

guarantee better results than others. The examples that LSTM underperform other models

include [58, 84] in which LSTM didn’t achieve a better performance than random forest and

SVM respectively. We assume that the reason is probably the small size of the dataset, since

deep learning models have more complicated structures and require a large amount of data

during training to prevent overfitting.

other statistical models Besides the most focused conventional machine learning models

and some more complex deep learning models, a variety of scoring systems were designed

to be an indicator of the early signal of sepsis onset. Insight [44] was probably one of the

most commonly used scoring systems proposed by Calvert et al back in 2016. The formula
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of the score is showed in Eq. 2.3, where observation of the i-th measurement with the 5-hour

window is averaged and stored in Mi, the change of the observation will be classified as

increasing, roughly constant or decreasing and indicated as D̂i. Similarly, trends of doublet

and triplet measurements are denoted as D̂ij and D̂ijk.

Insight Score = a
!

i∈A

p(Mi) + b
!

i∈B

p(D̂i) + c
!

(i,j)∈C

p(D̂ij) + d
!

(i,j,k)∈D

p(D̂ijk) (2.3)

The least absolute shrinkage and selection operator (LASSO) was proposed to mitigate the

limitation that covariates of high correlation can be included in conventional scoring meth-

ods [53], and LASSO method was able to retain important variables by penalising the coef-

ficients of trivial variables to zero. Two LASSO regression were used to generate a new risk

stratification score - Sepsis Early Warning Score (SEWS) proportion to the coefficients with

the cut-off value of 7 points [86]. Logistic Regression was used to derive the Sepsis Mortality

Score (SMS) which is a prediction equation describing the relationship between biomarkers

and 30-day mortality of the sepsis patient, see Eq. 2.4 and 2.5.

SMS = [elogit(p)/(1 + elogit(p))]× 100 (2.4)

Logit(p) = 0.74 + (0.004× PCT ) + (0.001× IL− 6)− (0.025× ARE)− (0.059× LC) (2.5)

PCT stands for Procalcitonin, IL-6 is Interleukin-6, and LC indicates leukocyte count. There

are more works developing the scoring system for sepsis prediction among our review but

no specific formulas provided [46].

In addition to various scoring systems, some other methods are worth mentioning. RALIS,

which is a computerised mathematical algorithm for continuous monitoring of patients was

specifically developed to detect the potential onset of late-onset sepsis among premature in-

fants [45]. Raben et al. proved that the systematic method of Functional Resonance Analysis

Method (FRAM) offers a novel, alternative way of investigating the process of healthcare, in

the case study of early detection of sepsis [49]. The method emphasised the six subsets of

FRAM, through which it helps researchers to investigate the process in a systematic way and

gain an understanding of how the process is adapted to everyday variability. Furthermore,

fuzzy models were mentioned and compared, due to their better interpretability than tradi-
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tional machine learning and deep learning models [71]. Fuzzy models are ”grey-box” rather

than ”black-box” since its rule based nature allows for a linguistic description of knowledge.

Finally, a probabilistic graphical framework - Gaussian Conditional Random Fields (GCRF)

was examined in the task of vital biomarkers progression prediction, in particular cytokines

which is important for sepsis[81]. This work was done upon the approach investigated in

[105], extended the original work by replacing independent linear chains with a more gen-

eral graph dense graph, and achieved better accuracy.

Network Structure

Specifically, we compare the network structures of models incorporating neural net-

works in our reviewed papers in this section, to highlight potential performance differences

brought by changes in network structures.

In [66], a vanilla LSTM network was used as the model for prediction, comparing to a

fully-connected feedforward network, although the authors applied LSTM network without

any modification, just the vanilla structure of one hidden layer with 64 one cell memory

blocks can outperform the feedforward model due to its ability to learn time dependent

behaviour. There was another paper [68] incorporating vanilla LSTM network, in which the

probability of getting septic shock was directly calculated by applying a sigmoid function to

the hidden states ht output from each LSTM cell, see figure 2.6, where yt is the probability

of getting a shock at time t.

Figure 2.6: The vanilla LSTM structure used in [68].
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Besides the basic form of LSTM network, li et al. [51] proposed a much more complicated

and improved version of LSTM-based model. Figure 2.7 shows the layers and structure in

detail. Basically, this complex model combines four major modules including Pretraining,

Self Attention, Bidirectional LSTM network, and Attention. In pretraining, MT-DNN [106]

was employed for encoding the data. These outputs were then passed to calculate a self-

attention representation vectors to capture the meaning of time-series data, considering the

human organ systems which may not be learned well due to the long-term dependency

problems. Multi-head attention formulation was used in this module. The following LSTM

module was not vanilla in this case, and it was modified to be a bidirectional LSTM network

that consisted of forward and backward sub-LSTM networks. The LSTM from two different

directions can capture not only relations to the past, but also relations from the future events.

Finally, dot-product attention mechanism was applied to select important features and direct

short-cuts were connected between the target and the source.

CNN is sometimes paired with LSTM and this usually gives a better result. An extremely

complex model was presented to facilitate an innovative idea that was to predict septic shock

from facial representations [73]. The network structure basically comprises of two parts: an

image generator and a prediction module. For the image generator, static information was

used to generate an identity which is a one hot encoding of 57 dimensions by the K-medoids

clustering algorithm, grouping patients based on the attributes. As a result, patients with

similar static information form a cluster and have the same identity vector. Another one hot

encoding of 8 dimensions emotion vectors were learned by an LSTM model from patient

data. More specifically, emotion vectors were calculated as the final hidden state of LSTM.

The two one hot vectors will together generate a facial expression, which maps to the sta-

tus of the patient, such as infection, organ failure or even septic shock. Both vectors are

first independently passed to two fully connected layers (FC) with 512 neurons. The output

is concatenated and passed to two FC layers with 1024 neurons and the third dense layer

with 2560 neurons. Next, the output vector h with 2560 dimensions is reshaped to a 5 × 4

image of 128 channels. It is fed through 6 upsampling + deconvolution layers with 2 × 2

upsampling and each layer is followed by a convolutional layer. The upsampling + decon-

volution operation can be seen as the opposite of the convolution + pooling steps performed

in standard CNN. The upsampling step upsamples the feature maps to increase their space

span, thus the width and height are both doubled after this operation is applied. The final

convolutional layer produces an image of 640 × 512 with 3 channels. Note that each layer
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Figure 2.7: The complex LSTM-based network used in [51].
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of the network is followed by a ReLU operation to introduce nonlinearity. The network

is trained by minimising the reconstruction error, or Mean Squared Log Error (MSLE) be-

tween the original images and the generated images. For the prediction module, 2D CNNs

were used to extract local features from the facial expression generated by the image gen-

erator in the previous step, and an LSTM based model will produce the final prediction.

Static information was also considered to be involved in the classification in another work

[56]. They proposed two different ways to incorporate static information, one is static-repeat

mode and another is static-last mode, see figure 2.8 and 2.9. The only difference is how the

model deals with the static information: it is concatenated to the output of each LSTM unit

in static-repeat mode, while only in the last or final time step of the LSTM network the static

information is involved in static-last mode. Experiments showed that the latter method has

not only the simpler calculation but also the better performance.

Figure 2.8: Static-repeat: the output of FC
is concatenated with the hidden state of
LSTM at every time step. [56]

Figure 2.9: Static-last: the output of FC is
concatenated with the output of LSTM at
last step. [56]

There is a well-developed model which combines CNN and LSTM, also known as CNN-

LSTM or Conv-LSTM which has shown to learn robust temporal feature representation in

the convolutional layers, making it easier for LSTM layer to capture temporal dependencies

compared to using the raw input [55]. The model first projected the sparse inputs into dense

1000-dimensional vectors, reducing the dimensionality for the following convolutional layer

by a factor of five. Short-term temporal developments for a patient were then captured in

the model by a stack of ”convolutional blocks” which consisted of two one-dimensional

ReLU-activated convolutional layers followed by a max-pooling layer. All convolutional

layers have kernels of size 3, a stride of 1, and zero-padding was used. All max-pooling

layers have a kernel size of 2 and a stride of 2, halving the temporal width of the input.

To ensure that information across the convolutional blocks obeys the ordering of the input

information, without contaminating the output with information from the future, all kernels
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were causal in the sense that they only filtered input from the current time and the past.

There were five convolutional blocks in the model. The initial block had a depth of 128 for

both of the convolutional layers in the block, whereas the convolutional layers in the last four

blocks all had a depth of 64. After the input filtered through the five convolutional blocks,

the output vectors contained partly overlapping temporal information, where each vector

spans 15 hours and 30 minutes of the original input, and the temporal distance between two

succeeding vectors was 2 hours and 40 minutes. Finally, the model captured the long-term

temporal development of a patient by allowing the output from the convolutional blocks

to feed into an LSTM layer that incrementally builds up a representation of the temporal

dependencies and continually predicts an output. The LSTM layer has 64 units and was

initialised with a random initial state, see figure 2.10.

Figure 2.10: The CNN-LSTM model used in [55].

Performance Evaluation

As presented in Table 2.2, research studies have used different mathematical measures

to evaluate the outcome of their proposed algorithms. For those with sufficiently available

labeled data, the classical criteria based on receiver operating characteristic (ROC) e.g. AUC

or precisionrecall (PR) curves e.g. APs have been used to analyse the performance of the pro-

posed algorithms. ROC curves are commonly used to present the results for binary decision

problems in machine learning, and among our reviewed publications, 36 out of 56 (64.3%)

have used area under the ROC (AUC) as one of performance metrics. However, with highly

skewed datasets, ROC does not provide much insight into the data, and PR curves tend to

provide a more informative picture of an algorithm’s performance [41]. In the task of sepsis

detection, the number of negative samples considerably exceeds that of positive examples.

42



Consequently, a substantial change in the number of false positives (FP) can lead to a small

change in the FP rate used in the ROC analysis [94].

Furthermore, sensitivity and specificity would be another pair of popular performance

metrics which are widely applied in medical research with binary decision problems. From

our review, they appeared in 27 out of 56 (48.2%) papers which is nearly a half. The defini-

tion of both of them is listed as follows.

sensitivity =
true positive

true positive+ false negative
(2.6)

specificity =
true negative

true negative+ false positive
(2.7)

Sensitivity represents the portion of correctly predicted patients out of all the positive

patients, and it focuses more on the coverage of positive samples, while specificity is in the

opposite direction, focusing on negatives. Due to the nature of the disease, we always try to

cover as many positive cases as possible, so higher sensitivity stands for wider coverage of

positive cases. Meanwhile, higher specificity means less mis-diagnosis of sepsis for healthy

samples, see [59, 65, 71, 75, 83, 87].

In machine learning prediction problems, the performance of models is usually evalu-

ated by a set of metrics comprising accuracy, precision, recall and F-measure. We observed

a huge portion (53.6%) of reviewed works implementing this set of metrics for outcome

evaluation. Precision and recall ofter comes in pair, see the follow definitions.

precision =
true positive

true positive+ false positive
(2.8)

recall =
true positive

true positive+ false negative
(2.9)

According to above equations, precision captures the effect of many negative examples

on the algorithm’s performance by comparing false positives to true positives rather than

true negatives, and recall is actually the same as sensitivity [56, 73, 79]. Comparing to the

next measurement, i.e. accuracy, both of them focus on positive cases, but accuracy cal-

culates all the correct predictions, combining positive and negative cases, which is incon-

sequential in sepsis detection tasks [48]. Considering the extremely imbalanced dataset of

sepsis patients, the measurement weighs higher on true positives and false positives is more
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effective. In such case, F-measure is preferred as it balances precision and recall, resulting in

a better evaluation of a sepsis prediction model.

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall
(2.10)

Equation 2.10 denotes the general formula for F-score, and F1[41, 54, 58, 68, 73, 83] and

F2[65, 90] are two most commonly used F-measurements as setting β to 1 and 2 respectively.

Note that the intuition behind F2 score is that it weights recall higher than precision. The

distribution of evaluation metrics is shown in Fig 2.11.

Figure 2.11: Distribution of evaluation metrics.

Limitations and Future Directions

As illustrated in Table 2.3, we have concluded limitations and possible future research

directions that can address these limitations. In general, we identified three major limita-

tions that commonly existed among related research. First, it is the limitation that comes

from dataset. For those works involving data collected from local hospital wards, emer-

gency department or other medical institutes, most of them will face the problem of that

the size of dataset is small, and the models run on top of the small dataset may not be able
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to lead to a solid conclusion [44, 45, 60]. Another shortcoming of the dataset is that sepsis

samples always go with a very small portion, and the ratio of negative and positive data

is extremely imbalanced [54, 65]. Skewed data lead to models that are prone to predict the

majority class as the result and this consequently reduces accuracy. Limited by the experi-

ment conditions, researchers were not able to collect data from patients of different races at

different locations around the world. Experiments were reported to use single-centred data

samples which were a non-representative population, and the generated results might not

be able to generalise to the rest of the world [52, 60, 75, 83, 87, 96]. There were some other

generalisation related limitations reported [85]. Some research used administrative data that

might not be available in every hospital [45], some designed the model specifically suitable

for certain databases [51], and some used the original raw data sampled at a certain rate

which may not be applicable in other places [94].

The nature of machine learning brings the second type of limitation related to the mod-

els which is the weak interpretability [55, 66]. Some of the machine learning models are

relatively easy to understand, but they are usually simple models with fewer layers and

parameters and less complex structures, like linear regression and decision tree. However,

for more complicated models i.e. CNN or LSTM, even though they may have a better ac-

curacy in the task of sepsis prediction, their training processes are more like a black box

which is opaque to clinicians, so that they tend not to be confident about the result without

appropriate explanation.

The gold standard of sepsis remains debatable among researchers and there are multiple

versions like Sepsis-3 and SOFA, but none of them are perfect characterisations of sepsis [62].

Until now, there is no agreement on which version is the most accurate, which resulted in

some issues during the diagnosis. Physicians determine sepsis onset as the moment at which

antibiotics are administered. However, the onset might have happened several hours before

that, this will bring negative influence to models and datasets that rely on the accurate onset

time [70]. This is a limitation of the medical process which could not be improved easily.

During the data collection phase, it is inevitable to involve some manual labour, i.e.,

nurses manually entering the temperature, which will introduce information bias and hu-

man errors [47, 76]. Some necessary operations during the training process will also worsen

the performance, for example, the over-sampling [55]. In some cases, poor adjustment of the

parameters will lead to a remarkable drop in model performance [71].

Potential future research directions aiming at addressing the aforementioned challenges
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and expanding the research area are summarised. Multiple potential work extensions were

proposed, but all of them were to solve the generalisation issue. The one that was mentioned

the most is to upgrade the experiment to multiple-centre one with heterogeneous datasets

[53, 56, 58, 68, 69]. Shimabukuro et al. [61], Kam and Kim [66] planned to validate the ma-

chine learning algorithm in non-critical care units and emergency department, respectively,

both of which serve the purpose of widening the application scenario of proposed meth-

ods. To improve performance, new criteria responsible for the development of sepsis need

to be discovered [67]. More prediction models based on more features would be created and

the results would be combined through a voting mechanism to generate the final prediction

[69, 95]. Improvement needs to be taken into consideration to increase the workflow effi-

ciency and avoid manual labour along with the unexpected errors and bias [76]. In the work

of Lauritsen et al. [55], they posed an interesting direction for future work which is to add

supporting explanation methods into predictions to improve clinical acceptance.

2.4 PhysioNet Challenge 2019

In this section, we will summarise the work of a competition held by PhysioNet in 2019,

targeted at predicting sepsis onset with clinical data. From all the 79 participating teams,

we have retrieved 41 papers presenting their works. Through our analysis and compari-

son, current trends and patterns of AI-based approaches applied in sepsis prediction were

identified.

2.4.1 Dataset

The datasets provided by the competition have data from 40,336 patients aged from 14 to

100 from two separate hospital systems. There was a third dataset for testing purposes, but

unfortunately since the competition had finished, we were not able to assess it. Each data

entry is a sequence of multivariable values consisting of 40 different features plus one label

which indicates whether this patient will have an onset in the next six hours. Each row of

the record contains a single hour’s observation.

The feature set consists of three basic types as we mentioned in section 2.3.2: vital signs

such as heart rate and oxygen saturation, 8 columns in total; laboratory values such as blood

urea nitrogen and platelets, 26 columns in total; and demographics such as age and gender,

6 columns in total, see Table 2.4.
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Table 2.4: Features of dataset provided by PhysioNet Challenge 2019

Type Name Description

V
it

al
si

gn
s

HR Heart rate (beats per minute)
O2Sat Pulse oximetry (%)
Temp Temperature (Deg C)
SBP Systolic BP (mm Hg)
MAP Mean arterial pressure (mm Hg)
DBP Diastolic BP (mm Hg)
Resp Respiration rate (breaths per minute)
EtCO2 End tidal carbon dioxide (mm Hg)

La
bo

ra
to

ry
va

lu
es

BaseExcess Measure of excess bicarbonate (mmol/L)
HCO3 Bicarbonate (mmol/L)
FiO2 Fraction of inspired oxygen (%)
pH N/A
PaCO2 Partial pressure of carbon dioxide from arterial blood (mm Hg)
SaO2 Oxygen saturation from arterial blood (%)
AST Aspartate transaminase (IU/L)
BUN Blood urea nitrogen (mg/dL)
Alkalinephos Alkaline phosphatase (IU/L)
Calcium (mg/dL)
Chloride (mmol/L)
Creatinine (mg/dL)
Bilirubin direct Bilirubin direct (mg/dL)
Glucose Serum glucose (mg/dL)
Lactate Lactic acid (mg/dL)
Magnesium (mmol/dL)
Phosphate (mg/dL)
Potassium (mmol/L)
Bilirubin total Total bilirubin (mg/dL)
TroponinI Troponin I (ng/mL)
Hct Hematocrit (%)
Hgb Hemoglobin (g/dL)
PTT partial thromboplastin time (seconds)
WBC Leukocyte count (count*103/µL)
Fibrinogen (mg/dL)
Platelets (count*103/µL)

D
em

og
ra

ph
ic

s Age Years (100 for patients 90 or above)
Gender Female (0) or Male (1)
Unit1 Administrative identifier for ICU unit (MICU)
Unit2 Administrative identifier for ICU unit (SICU)
HospAdmTime Hours between hospital admit and ICU admit
ICULOS ICU length-of-stay (hours since ICU admit)
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Figure 2.12: Available ratio of each feature in the dataset

However, not every feature is available in the raw dataset, due to the way this data is

collected and due to human errors. In fact, we found that total non-missing ratio for all

features is as high as 31.63%, which means more than half of data is not available. The non-

missing ratio in terms of each feature can be seen in Figure 2.12, and it’s easy to see that for

26 features, they have actual values less than 10%. There are only 9 features with missing

values less than 20%, and only 3 features have full data.

On the other hand, the provided dataset is extremely imbalanced. From the point of view

of patients, out of 40,336 patients, only 2,932 had sepsis which accounts for 7.27% of the total

cohort. If we analyse the data row-wise, the imbalance is even worse. The entire dataset

contains 1,552,210 rows of records, of which only 27,916 rows were marked as sepsis, taking

a percentage of 1.8%, see Figure 2.13 and 2.14. The ratio of healthy against sepsis patient is

12.76:1 while that of sepsis records to healthy ones even reaches 54.6:1.

Another characteristic of the given dataset is that the length of the data sequence from

each patient is different. They vary from 8 to 336 which requires the prediction model to

have the capability to deal with variable-length sequence data. As shown in Figure 2.15,

the distribution of data lengths is not balanced or uniformed, and most patients have a data

length of less than 60 hours.
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The above three characteristics are not only of the provided dataset of this competition,

but also common to all the different patient datasets. They make the dataset sophisticated

and increase the difficulty of the implementation of a high-accuracy prediction model on it.

Figure 2.13: Ratio of sepsis patients to
healthy ones.

Figure 2.14: Ratio of sepsis records to
healthy ones.

Figure 2.15: The distribution of data lengths for each patient.
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2.4.2 Feature Extraction

Since all participants were using the same dataset, how they ”engineered” the features

and how they chose and tuned their models would be the crucial factors of their final per-

formance. In the following section, we will discuss several issues raised previously and how

they were addressed.

Part of the feature engineering work is to build up an appropriate feature set by select-

ing and expanding the raw features. One of the feature selection ideas is to select features

according to their importance calculated by certain methods. For every feature, t-test was

conducted to compare the difference between sepsis and non-sepsis data, and finally 17

features with p-value less than 0.1 were selected [107]. Tree-based models were trained as

feature selectors due to their inherent ability to evaluate feature importance, which is cal-

culated by summing up the gain of the loss function when splitting on a particular feature.

With a Random Forest model, 11 features of high importance were picked from the 40 vari-

ables [108, 108]; Similarly, LGBM and XGBoost models were built to generate the feature

importance, in order to select the most valuable features [109, 110]. lyra et al. [111] created a

new measure ”Normalised Observed Utility” (NOU) to calculate the feature importance as

the performance loss when removing a feature during the training. Feature importance was

represented by Joint Mutual Information (JMI) [112] which is the information between the

target class and a random variable [113].

In addition to selecting valuable features from the given feature set, various types of de-

rived features were created. The most common way to generate extra features is to incorpo-

rate statistical characteristics such as mean, variance, max, and min [111, 114, 115]. Except

for these basic variables, a lot of other creative features were constructed, summarised in

table 2.5.

Table 2.5: Novel Features Constructed in Reviewed Challenge Works

Reference Novel Features Constructed

Noorzadeh

2019[107]

Sliding window based features i.e. skewness, kurtosis and

quantile information were extracted to capture local and global

information.
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Reference Novel Features Constructed

Pawar 2019[116] Two simple change indices were created to investigate temporal

relationships: first derivative and changes from baseline which

the first observations after admission as the reference.
Schellenberger

2019[117]

1. Last reliable: Count how many hours have passed since last

reliable value was observed, indicating the missing patterns, also

seen in [114, 118, 119]. 2. Differences: changes compared to the

previous measured value is included as a feature, to emphasise

the difference over time, also used in [114, 120]. In [121],

difference was slightly adjusted to 6 hours before rather than one

hour before, focusing more on long term difference. 3. qSOFA

and SOFA score which were used in [121, 122] as well.
Sarafrazi

2019[123]

To capture the clinician’s suspicion, a new indicator was designed

by checking the lab test time. Value 2 is for a newly reported test,

1 for a non-expired test, and 0 for either an expired or

never-ordered test.
Sarafrazi

2019[123]

The authors employed the idea of anomaly detection, treating

non-sepsis data as normal and identifying sepsis data as anomaly.

Experiments showed that the reconstruction error is generally

higher for sepsis data than non-sepsis data. The reconstruction

error was incorporated as one feature for the further

classification.
Patidar

2019[124]

By applying a genetic algorithm based optimisation algorithm, a

set of clinically significant features are selected based on the

normalised utility score. They also proposed a novel ratio and

power-based feature up to the order of three, see following

equation.

R =
xk

ymzn
: x, y, z ∈ P ;−3 ≤ k,m, n ≤ 3 (2.11)
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Reference Novel Features Constructed

Biglarbeigi

2019[113]

Three screening tools - Prehospital Early Sepsis Detection

(PRESEP), SOFA and Systemic Inflammatory Response

Syndrome (SIRS) are all well accepted as decision support

systems so variables examined in the three clinical screening tools

are selected.
Wang 2019[121] The author trained a LSTM network with a subset of raw data,

then removed the output layer, used the hidden layer as features

extractor.
Liu 2019[125] Heterogeneous consecutive clinical events in a short period were

aggregated, and temporal interactions among them were mined

then.
Narayanaswamy

2019[126]

Defined a synthetic risk feature, where if the lab values for

Lactate, pH and/or WBC exceeds a threshold for the selected

time step.

Zabihi

2019[110]

Two types of features were extracted - first one is some common

features from data whose availability ratio is higher than 70%,

and another type focuses on the missing patterns, specifically

mean and variance of the lengths of the missing value sequences

and non-missing value sequences along each covariate.

Morrill

2019[127]

Two new features ”ShockIndex” which is defined by heart rate

divided by the systolic blood pressure and ”BUN/CR” which is

the ratio of levels of bilirubin to creatinine were introduced. In

addition, there is another auxiliary index called ”PartialSOFA”,

literally it is the score calculated according to SOFA rule, but only

by the variable available in our dataset. To cooperate with

”PartialSOFA”, the author created the fourth new feature

”SOFA Deterioration” indicating whether ”PartialSOFA” has

increased in the past 24 hours.

The above table lists some of the extra features derived from the raw data, but there are

other works which highlight the way these new features were discovered, and these are

also worth discussion. As we presented in Section 2.3.2, using a sliding window of different

sizes is an effective way to extract local patterns from time series data [109, 118, 125, 128–

132]. Data binning was found useful in improving the result slightly by aggregating vari-
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ables with a continuous value into ranges and intervals. It could reduce some variance in

the signal, and the generated discrete values could be further converted to one-hot features

[125, 129, 132]. Du et al. [120] examined the histogram of each feature, then applied log

transformation to the data with exponential or long tail distribution, to make them more

close to a Gaussian distribution. However, it is based on the underlying theory that the

observed signals of patients obey the Gaussian distribution, which is not necessarily true.

The autoencoder is a type is type of neural network that can learn the core features from

the input and perform dimensionality reduction by reconstructing the feature set. It is em-

ployed to extract key factors from the raw dataset, whilist shrinking the size and complexity

of the potential model [123, 130, 131]. Yao et al. [133] made an improvement upon the basic

autoencoder, replacing the multi-layer neural network with LSTM units to make it a Tem-

poral Autoencoder. While combining it with the vanilla version, they developed a hybrid

spatio-temporal model that can learn from both spatial and temporal domains.

Before feature extraction, some researchers applied outlier detection techniques to filter

out those abnormal values that could potentially affect the prediction results. The boxplot

is a popular statistical graph that can reveal basic statistical characteristics of a dataset, and

one of its functions is to identify the outliers, so it was used to clean up the outliers in the

raw dataset before feature extraction [134]. Another way is called the ”plausibility filter”,

invented by Firoozabadi and Babaeizadeh [135], and it identifies a range of valid values for

each feature based on its actual distribution and the knowledge in the literature. Any value

outside this range was treated as an outlier and marked missing for further imputation.

Normalisation is another necessary operation for those scale sensitive models. Option one

is the min-max operation which is defined as Eq. 2.12.

xnorm =
x− xmin

xmax − xmin

(2.12)

It is easy to implement but it has a significant downside that it cannot handle outliers very

well [108, 126, 128]. Option two is the widely accepted z-score normalisation defined in Eq.

2.13, where µ is the sample mean and s is the sample standard deviation.

xnorm =
x− µ

s
(2.13)

This method is slightly more complex than the previous one, but outliers can barely impact

the result, making it a more robust way to scale data into the same range [109, 110, 116, 120,

53



125, 135, 136]. There were other feasible normalisation approaches but not as common as

the aforementioned two, such as a special normalisation method to fit all the features in the

range of 1 to 5 [137], see Eq. 2.14

y =

"
#$

#%

0, if x is missing

4(x−xmin)
xmax−xmin

+ 1, otherwise
(2.14)

2.4.3 Missing Value Handling

One of the biggest limitations is that there is a great portion of missing values in the

raw dataset and a variety of missing value handling methods were applied to address this

issue. First, let’s examine some standard techniques. Forward-filling, which replaces the

missing value with the last known value, was mostly used among all the works we have

reviewed [109, 113, 115, 116, 118, 120–123, 127, 129, 135, 138–140] due to its easy implemen-

tation and explicit interpretability. Mean-filling is another straightforward method to fill the

NaN values. This method simply calculated the average of each feature for every patient

and substituted for non-available values [115, 116, 120, 129–131, 134, 135, 137, 141]. How-

ever, the main weakness of mean-filling is that if all items are not available, there will be

no way to calculate the average. Except for filling with mean values, we also can consider

constant values like -1 [108, 128, 138] and 0 [108, 121, 136, 142], since the specific constant

values are unlikely to be part of the normal collected data of patients, thus indicating the

missing status.

Among our reviewed papers, there were other complicated methods that have been ex-

plored to handle the missing value issue. Linear interpolation is to construct a linear model

based on at least three available values, and then use this model to predict the missing ones

[110, 124, 143, 144]. The linear model could be something even more complicated, for exam-

ple a Markov Chain [113], which can simulate the columns that have not one single available

value based on the assumption of multivariate normal distribution. Unlike existing imputa-

tion methods with certain assumptions of data distribution, Recurrent Imputation of Time

series (RITS) treats the missing data as variables in a Recurrent Neural Network, and it is

able to be updated through the back-propagation process[145, 146]. Another practical way

to deal with the missing data is missing-mask, which contains 0 if a feature is missing and

1 if the value is monitored, see Eq 2.15. We believe that the presence and presence rate play
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a significant role in determining whether a patient is susceptible or not of developing a sep-

sis, since the measurement of a given lab value is highly informative of the patient’s health

deterioration.

md
t =

"
#$

#%

1, if xd
t is observed

0, otherwise
(2.15)

The approach like missing-mask is more like a utilisation of missing values rather than an

elimination, which brought a new angle to deal with missing values. However some re-

searchers raised their concerns about the usage of certain standard interpolation methods,

because future values of patients is unknown in the real case in the hospital. As a conse-

quence, some of the standard interpolation becomes infeasible as unknown features in the

future should not be involved in the missing value processing [137].

2.4.4 Countermeasures to Imbalanced Data

The second major limitation is that the data distribution is extremely imbalanced in terms

of sepsis and non-sepsis data. To address this problem, generally we have three possible

ways: 1. under-sampling, 2. over-sampling, 3. customised weighted loss function. The

ordinary under-sampling method is to randomly select data samples from the majority class,

so that the minority class could reach the same level [107, 113, 115, 117, 122, 131]. Mutual

Information (MI) is a measurement of uncertainty of one random variable given another

one, and it can be used to enhance the original random sampling approach. Assigning a

score which is the sum of MI to all other patients, to each patient, grouping patients with

similar scores together because they are considered highly dependent on each other, and

finally, proportionally sampling from each group to generate the representative dataset are

steps comprising MI based under-sampling [141].

An opposite approach for under-sampling from the majority class, is to over-sample from

the minority class [108, 119]. A very classical over-sampling method - Synthetic Minority

Over-sampling Technique (SMOTE) was used to rebalance the sepsis-normal ratio in the

raw dataset [141]. A more complex over-sampling scheme, the Adaptive synthetic sampling

algorithm, was employed in [142]. It was first proposed by Haibo et al. in 2008 [147]. Dif-

ferent from the SMOTE method, the key idea of ADASYN is to use a density distribution

as a criterion to automatically determine the number of synthetic samples that need to be

generated for each minority class sample, rather than equally generating the same number

of synthetic data for every sample. This algorithm will also bring a benefit that forces the
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learning algorithm to be biased towards those data samples that are hard to learn. Unfor-

tunately, despite experiments confirming this, they did not show better results compared to

random under-sampling. Extending the prediction time from six hours up to twelve hours

will result in the enrichment of sepsis data and the imbalanced situation could be slightly

mitigated [111]. This tiny adjustment could be somehow treated as a special type of ”over-

sampling” whose purpose is to increase the number of data samples of minority class.

The third way to alleviate the impact of an imbalanced dataset focuses on the algorithm.

When designing the loss function, higher weights are assigned to the minority class, so mis-

classification of this class will cause more penalty consequently, and we call this weighted

loss function [117, 121, 137]. With a weighted loss function, the designed model biases to-

wards the class with fewer data samples, which neutralises the impact caused by the imbal-

ance in datasets. Adding a small number to the predicted probability of sepsis can lead to

more positive cases, and the number was chosen as 0.0002 in [121].

2.4.5 Predictive Models

With the same given dataset, choosing an appropriate model will be another key to

achieving a high performance in the competition. According to our review, participants

mainly chose to use two types of models: gradient boosting machine (GBM) and deep neu-

ral networks (DNN), see Fig. 2.16 and 2.17.

Figure 2.16: Distribution of models used
in PhysioNet Challenge.

Figure 2.17: Distribution of models (cate-
gories) used in PhysioNet Challenge.

The idea of GBM is simple: it is basically an ensemble model that strategically integrates

a set of weak classifiers to get an enhanced outcome. Each weak classifier learns the resid-

ual of the last one iteratively to minimise the final error. Gradient Boosting Decision Tree

(GBDT) was one of the typical GBM models known for its great performance in most cases,
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four teams (9.8%) used it as the main classifier in the competition [118, 120, 122, 141]. Around

16.39% of the studies used XGBoost [114, 121, 122, 132, 148] which is getting more and more

popular in recent years due to its effectiveness in a wide range of task especially prediction

problems. Another 8.2% of the works chose Light-GBM, a more efficient and faster model,

inspired with the novel histogram algorithm [109, 115, 127, 129, 140]. Combining under-

sampling with the boosting technique is the major difference between the Random Under-

sample Boost (RusBoost) and others. It is a modified version of Adaptive Boost (AdaBoost)

with an extra step of under-sampling before the actual training, in which way, the disadvan-

tage of under-sampling - loss of information could be overcome greatly [124, 139, 143].

Since the size of the dataset is relatively large, considering the total number of more than

40,000 records, complex neural networks were utilised, especially the RNN, which is good

at extracting temporal relations. Among all the variations of RNN, LSTM stands out and

was employed in many works in this competition [121, 122, 126, 130]. What’s more, Liu et

al. [125] used the LSTM bidirectionally to learn the latent patterns hidden in aggregated

homogeneous clinical events; residual connection was added to the LSTM where the input

of every block was a concatenation of the output of the previous block [119, 137]. Dur-

ing the training of the LSTM network, hyper-parameters were tuned through a differential

evolution genetic algorithm, so that the potential of LSTM could be fully explored [138].

Although it has been developed for a long time, RNN with Gated Recurrent Unit (GRU)

was still worth trying. Nonaka and Seita improved the original GRU in order to consider

the static information available. The initial hidden states of GRU were learned from a fully

connected neural network fed with the demographic information of patients [136]. Further

examples of exploiting deep neural networks include a completely fully connected neural

network, cooperating with a GBDT and a RF model, under the strategy that any classifier

that predicts a positive outcome leads to an overall positive [131], and an echo-state network

which is a subset of RNN that leverages Reservoir Computing properties [144].

Model ensemble was one of the many other interesting ideas we found during the review.

Basically it is a strategy that integrates results from multiple models, like the very typical

random forest model [111]. A CNN and a LSTM were combined under a bagging ensemble

strategy [108] similar to the Conv-LSTM we discussed in the previous session, whereas a

stacked ensemble of RNN and LGBM was explored in [109]. Two specific models were

developed and pipelined in the work of Pimentel et al., the first one was to predict sepsis

for each patient using common features like statistical variables, and the second one was to
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estimate the uncertainty of prediction generated from the first model with special features

related to ”missingness”.[114]. TASP is a novel time-phased model, comprising two models

according to the length of stay in the ICU. For the first 49 hours after admission into the ICU,

LGBM models were applied, but for the time after the 50th hour, it is the RNN working to

capture the long-term temporal relations [140].

2.4.6 Performance Evaluation

This competition has defined an official performance measurement instead of accuracy:

the normalised utility score, which is a weighted sum of correct prediction plus penalty to

the misclassification. The highest score is rewarded if the sepsis is detected at the optimal

time which is six hours before the onset. Once the correct prediction is made but a bit earlier

or later than optimal time, scores are also rewarded but not as much as the optimal one.

On the other hand, if a non-sepsis patient was misclassified as sepsis at any time point, a

small penalty will be inflicted. Please refer to Eq 2.16 - 2.21 for the exact rule of utility score

calculation, where for each patient s at each time point t, an individual score is calculated

according to the predicted outcome and its correctness, and finally summing them up. To

improve the interpretability, the final score is normalised as Eq. 2.21 so that the optimal clas-

sifier (highest possible score) receives a normalised score of 1 and that a completely inactive

classifier (no positive predictions) receives a normalised score of 0. In these equations, tsepsis

is the time sepsis onset occurs, toptimal is exact six hours before the onset, tearly is 12 hours be-

fore the onset which is the earliest time the prediction is expected at, and tlate is three hours

after the onset after which the prediction will not be rewarded.

UTP (s, t) =

"
########$

########%

−0.05, if t < tearly

t−tearly
6

, if tearly ≤ t ≤ toptimal

tlate−t
9

, if toptimal < t < tlate

0, if t ≥ tlate

(2.16)

UFN(s, t) =

"
#####$

#####%

0, if t ≤ toptimal

−2(t−toptimal)

9
, if toptimal < t < tlate

−2, if t ≥ tlate

(2.17)
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UFP (s, t) = 0.05 (2.18)

UTN(s, t) = 0 (2.19)

Utotal =
!

s∈S

!

t∈T (s)

U(s, t) (2.20)

Unormalisation =
Utotal − Uno prediction

Uoptimal − Uno prediction

(2.21)

We have summarised the utility score for all the work we have reviewed in the following

Table 2.6. The individual utility score is extracted from the official final results and is aver-

Table 2.6: Performance evaluation of models in PhysioNet Challenge.

Category Overall Utility Score Model Utility Score

GBM 0.301

GBDT 0.339
XGBoost 0.250
LGBM 0.36
RusBoost 0.256

DNN 0.275

LSTM 0.274
TCN 0.342
CNN 0.236
RNN 0.279
FCNN 0.284
GRU 0.323
ESN 0.188

Others 0.234

CRF 0.190
LR 0.249
RF 0.228
KNN 0.270

Legend:
GBM: Gradient Boosting Machine; GBDT: Gradient Boosting Decision Tree;
XGBoost: Extreme Gradient Boosting; LGBM:Light Gradient Boosting Machine;
RusBoost: Random Undersampling Boost; DNN: Deep Neural Network;
LSTM: Long Short-Term Memory; TCN: Temporal Convolutional Network;
CNN: Convolutional Neural Network; RNN: Recurrent Neural Network;
FCNN: Fully-Connected Neural Network; GRU: Gated Recurrent Unit;
ESN: Echo State Network; CRF: Conditional Random Field;
LR: Logistic Regression; RF: Random Forest; KNN: K-Nearest Neighbour;

aged with every work that uses the same model if necessary. We further calculate the overall

utility score for every model category by simply using the mean value of all the models be-

longing to it. From the table we find that the GBM models have the overall best performance

in the competition, followed by DNN and others, which aligns with the popularity of mod-
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els we discussed in section 2.4.5. GBM and DNN models are mostly applied among all the

reviewed work, since they have better than average performance. The reason why GBM can

outperform models with a deep neural network architecture probably relates to the small

number of sepsis data records and the complex nature of this disease.

We also verified the effect of ensemble strategy by comparing the utility score of indi-

vidual models and that of them combined, see Table 2.7. By applying the ensemble strategy

of multiple models, it is evident that the performance could be improved significantly. One

of the ensemble model integrating XGBoost and GBDT [122] achieved the highest score of

0.406 and the only one above 0.4 among all reviewed works.

Table 2.7: Comparison of performance of individual models and ensembles.

Model Utility Score Improvement
CNN 0.236

22%RNN 0.279
CNN+RNN 0.288
XGBoost 0.250

62.4%GBDT 0.339
XGBoost + GBDT 0.406
XGBoost 0.250 35.6%Ensemble of 5 XGBoost 0.339
GBDT 0.339

38.7%RNN 0.279
GBDT + RNN 0.387
Legend:
CNN: Convolutional Neural Network; RNN: Recurrent Neural Network;
GBDT: Gradient Boosting Decision Tree; XGBoost: Extreme Gradient Boosting;

2.5 Conclusion

Our task in this review chapter is to address the RQ-4 by systematically reviewing rele-

vant works in the area of sepsis detection published in the recent decade and determining

whether they can satisfy current requirements with regard to sepsis detection. We devel-

oped a classification framework that analysed 102 academic papers by answering ten review

questions and sub-questions. Our study found that AI based techniques have been widely

applied in healthcare, more specifically in sepsis related detection, and have promising per-

formance.

The proposed classification framework provides an insightful analysis for current works

of sepsis detection showing a clear roadmap to the researchers who are new in this research
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field. In-depth analysis and comparison of pre-processing techniques, learning models and

performance evaluation were manifested to prove that predicting sepsis related symptoms

with AI based technologies has an earlier warning, and significantly increased accuracy, re-

ducing waste of valuable medical resources and mortality rate. Our review also summarised

efforts put into the PhysioNet Challenge 2019 separately, elucidating various innovative

ideas for solving the challenge problem, which is to predict sepsis with clinical data. The

normalised utility score was defined as a customised performance metric to measure how

the models performed on the given datasets. The proposed utility score is calculated based

on prediction time and accuracy, so a correct prediction made six hours prior to the onset

will have the highest score.

Meanwhile, our review identified several challenges and gaps researchers are facing

in their work, such as imbalanced data and missing values issues that are not completely

solved, weak interpretability of complex deep learning models, and the lack of a unified

gold standard for sepsis diagnosis around the world. One salient gap existing in the re-

viewed works is that there is no universal framework to process and predict sepsis with

heterogeneous data from different sources, hence a complete workflow of AI boosted sepsis

detection methodology is needed as a decision support system for clinicians and researchers

who have to deal with complex data to standardise their working procedures.
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Chapter 3

Research Methods

In this chapter, we describe the Action Research methodology that we used in this thesis,

as well as how we adapted the theory to our project. Further, we propose a unified frame-

work for sepsis detection under which multiple algorithms and models can be developed to

predict sepsis in both neonates and adults.

3.1 Action Research

3.1.1 The Origin of the Research Method

World War II brought massive damage to research society of social science, and at that

time a new research methodology was needed. Kurt Lewin was developing the method in

order to study social psychology within the framework of field theory [149], however an-

other group at Tavistock Clinic developed a similar method which studied the psychological

and social disorders caused by battlefields and prisoner-of-war-camps. At that time, scien-

tists were not able to understand the complex causes of social illness and make universal

treatment, because each case seemed different in some ways. Hence, scientists intervened in

the experiments, being involved with the subjects and changing some aspects of the subjects’

being or surroundings to get a deeper understanding.

Originally, the essence of Action Research was just a simple two-stage process [150], i.e.

a diagnostic stage in which the problem is analysed and hypotheses are formulated, and a

therapeutic stage in which hypotheses are tested by collaboratively changing conditions of

experiments. However, as the method developed, more and more detailed steps were added

to the original model. Lewin’s original model [149] has six stages, i.e. (1) analysis, (2) fact-

finding, (3) conceptualisation, (4) planning, (5) implementation of action, and (6) evaluation.

Although it was not completely the same as the action research we are discussing nowadays,

it was very similar though. The most prevalent description proposed by Susman and Evered

[151] elucidated Action Research as a five-step cyclical process, required the client system to

have an infrastructure to maintain and regulate some or all of these five phases together with
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researchers. The five steps include: (1) diagnosing, (2) action planning, (3) action taking, (4)

evaluating and (5) specifying learning, and they are iterated during the experiment as a

research cycle, see Fig. 3.1. It is noticed that, the five phases here have already been what

Action Research is defined today.

Figure 3.1: The cyclical process of action research [151].

Action Research requires a client-system infrastructure, which in other words, is the

norm and the protocol that will comprise the research environment. This infrastructure must

define the responsibilities, boundaries, entries and exits of both researchers and clients. One

of the key aspects of the infrastructure is the immersive role of researchers during the ex-

periments. Research scientists work closely with the practitioners within the client system

in order to get a better and deeper understanding, identifying the anomalies being studied.

Forms of Action Research

Action Research refers to not only a specific research method, but more of a set of research

approaches sharing some similar characteristics which distinguish Action Research from

other social science research methods. Four major characteristics of Action Research from

Hult and Lennungs definition [152] are:

1. It aims at increasing understanding of an immediate problem within a certain social

situation.
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2. It facilitates practical problem solving and theoretical scientific knowledge expansion.

Furthermore, two derived characteristics from this are:

(a) Highly interpretive assumptions are made about observations.

(b) There exists researchers’ intervention in the problem setting.

3. Action Research is performed collaboratively and enhances the competencies of re-

spective actors involved.

4. Action Research primarily applicable for the understanding of change process in social

systems.

Another survey by Peters and Robinson [153] summarised four characteristics the method-

ologies within the class of Action Research have in common:

1. action and change oriented

2. problem focusing

3. systematic and iterative

4. collaborative

Lau [154] categorised them into four subtypes: action research, participatory action re-

search, action science and action learning. Action Research has been described as a research

method that is characterised by the intervention experiments on problems or questions

extracted from the social context by practitioners. Participatory action research is distin-

guished by extra features which is the composite role as practitioners of both subjects and

researchers. What makes action science different is the characteristic of a central emphasis

on the spontaneous theories that participants bring to practice and research [155]. Action

learning advocates group participation, programmed instructions, real actions and experi-

ential learning within the social and organisational context.

Five phases of Action Research

The five cyclical phases in the research method are symbolic of Action Research, and they

define a standard workflow when Action Research is applied in research.

The diagnosing phase, as the first step in the method, corresponds to the identification of

problems and the proposal of hypotheses. In this phase, the context of research is collabora-

tively analysed to reveal the underlying cause, based on which, reasonable hypotheses are
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developed to be verified in the following phases. When AR is applied in social research, di-

agnosing often involves with systematic interpretation of the complex organisational prob-

lem in a holistic way [156].

The second phase is action planning, where plans for the actions that should be under-

taken are made. Those actions should be able to answer the hypotheses brought up in the

previous step. To make the plan, researchers and practitioners are supposed to collabo-

rate like in the first phase. The action plan is guided by the theoretical framework, which

indicates both some desired future states and the changes that would achieve such states.

Besides, the plan set up the target of the change and the approach to change.

The plan is then implemented in the next stage, action-taking. Changes are realised

in the client organisation by the intervention of researchers and practitioners. There are

several different intervention strategies that are possible to apply. Directive intervention

means it guides the changes directly, but on the contrary, changes will not be directed by the

intervention in non-directive approach. Some other intervention tactics could be introduced

to help the actions and changes be implemented correctly and smoothly. In other words, the

action-taking phase is to select a course of action towards the target defined in the previous

steps.

Evaluating phase assesses and analyses the outcome of changes, determine how the ac-

tions and changes are implemented and whether they are effective to solve the problem.

If the changes were successful, it further evaluates whether the undertaking actions are

the sole cause among all complex factors from both inside and outside the environment;

otherwise, it figures out the reason of failure, reflects the initial hypotheses, adjust them if

necessary, and designs an improved plan for the actions should be undertaken in the next

iteration.

The focus of evaluating phase is on the outcome of changes, however, in the last phase -

specifying learning, it is on the knowledge gained during the process. What gained knowl-

edge could provide includes three aspects:

• It could be fed to ”double-loop learning” process [157] which reflects not only the

action that has been done, but also the initial hypotheses. Unlike single-loop learning

which is concerned with how to ”do things right”, double-loop aims at ”doing the

right thing”. Through the process of double-loop learning, the organisation is able to

reconstruct the norms with the help of gained knowledge.
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• For the places where changes were not successful, the additional knowledge may pro-

vide sufficient and helpful information for diagnosing problems so that they could be

fixed by improved intervention in the future iteration.

• The outcome itself, no matter success or failure, is important for the theoretical frame-

work. It provides informative knowledge for the scientific community for future re-

search.

The cycle of action research phases can continue regardless of whether the changes are

successful or not, to investigate more knowledge of the organisation and verify the relevant

theoretical framework. As a result, the organisation learns more about the nature of itself

and is improved, while the research community can benefit from the continuous process

and evolve.

Participatory Action Research

The traditional action research approach has been extended into a form known as ”Par-

ticipatory Action Research”, and one of the changes is the realignment of the roles of re-

searchers from observers to more of participants. It emphasises more on understanding

and solving the problem rather than theory building. Researchers are not supposed to stay

outside of the experiment observing, but to proactively engage in it with the subjects.

It is not necessary for the researchers to come out with the expected theoretical solution

in the action plan, because solving the immediate problem requires in-depth and sufficient

domain knowledge, of which the client professionals live in the context possess much more,

than the researchers. Problem solving and action improvement could be achieved through

full and extensive cooperation among researchers and client subjects in an organisation.

Their mutual support is a significant benefit of the Action Research method, and could push

the research toward the right direction.

3.1.2 Comparison with Design Science

Design Science is a research methodology conceptualised by Herbert Simon in 1996 [158].

It supports a pragmatic research paradigm that encourages the creation of IT artefacts to

solve real-world problems. Back to the advent of Design Science, it is thought to be used

in technical disciplines, but in early 1990s, the Information System community realised that

Design Science could also be adopted to improve the effectiveness and utility.
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There are many similarities when comparing the cyclical process of Action Research to

the general workflow (see Fig. 3.2) of Design Science. For example, both of them have a five-

step process with almost identical meanings, yet with different names. If we dig deeper, we

can further compare their characteristics in a more detailed manner. Jarvinen [159] extracted

six pairs of characteristics of both research methods from the literature review, and we will

contrast them with each other.

Figure 3.2: Design science research cycles [160].

AR1: Action research emphasises the utility aspect of the future system from peoples’

point of view [151]

DS1: DS4: Design sciences products are assessed against criteria of value or utility [161].

One of Action Research’s properties Susman and Evered [151] summarised is that it is fu-

ture oriented, and should be designed to create a desirable future state. March and Smith re-

ferred to Simon’s work [158], and gave a more specific research target: ”It should be judged

based on value or utility to a community of users”

AR2: Action research means both action taking and evaluating [162].

DS2: Building and evaluation are the two main activities of design science [161].

From the definition of the cyclical process, it is obvious that AR3 is correct. For Design

Science, March and Smith thought evaluation is to develop criteria to assess the performance

of artefacts (i.e. construction, model, method or instantiation) that have been made, so de-

sign science involves both building and evaluating, just like Action Research.

AR3: Action research modify a given reality or develops a new system [163].
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DS3: Design science produces technical artefacts. [161].

Both Action Research and Design Science generate outputs, but the former produces a

new system, while the latter produces four types of artefacts proposed by March and Smith

[161].

AR4: Action research is carried out in collaboration between action researcher and the

client system [151], and it requires action researchers to intervene [152].

DS4: Design science research is initiated by researchers interested in developing techno-

logical rules for a certain type of issue. Each individual case is primarily oriented at solving

the local problem in close collaboration with the local people [164].

Literature has reached an agreement that a researcher’s intervention is the symbolic fea-

ture of Action Research. Similarly, researchers and practitioners participate in experiments

to solve problems in collaboration with local people. Both methods emphasise collaboration

in research, and it has been reported that a lack of collaboration could be one of the reasons

that leads to failure.

AR5: Knowledge is generated, used, tested and modied in the course of the action re-

search project [165].

DS5: Knowledge is generated, used and evaluated through the building action [166].

Another output of both methods is knowledge, although in different forms.

AR6: Action research produces knowledge to guide practice in modication [163].

DS6: Design science produces design knowledge (constructs, models, methods and in-

stantiations). [161].

Action Research produces knowledge concerning action guidance, while the reality is

being modified by the action simultaneously. All the four types of products produced by

Design Science could be treated as knowledge connected to design.

Why Action Research not Design Science

Design science is one of the major research paradigm that dominate Information Sys-

tem research. The target of Design Science is to create relevant artefacts that can extend the

boundaries of human and organisational capabilities. According to Coughlan and Coghlan

[167], Action Research is an appropriate approach when the research relates to understand-

ing of the process of change or its improvement to learn about it. Although both Action Re-

search and Design Science have been applied in Information System for decades, we choose
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use Action Research as our research method rather than Design Science. The main reason is

that the symbolic five-step process fits our research workflow to a great extent, and it will

be explicated in detail in section 3.1.3. Besides, there exist a series of challenges that Design

Science is facing in IS community [168]. We summarise a few here:

1. The engineering discipline is a young field that Design Science has been applied in,

and not very much cumulative theory basis has been built [169]. It is important to

demonstrate the feasibility and utility of the technological oriented adoption of the

social oriented research framework.

2. Design Science is not completely able to represent the technological environment due

to insufficient sets of artefacts (constructs, models, methods and tools). It is criticised

that the descriptive IS models do not have strong underlying theory base, which is to

say finding an appropriate trade-off and balance between abstract theory and practical

technology is difficult.

3. Artefacts created embody the understanding of the problem by researchers, but the

artefacts themselves are sometimes not perfect and need upgrading and improving,

because the existing knowledge base of Design Science is often insufficient, and not

able to satisfy the increasing demand of the constantly changing situation of the envi-

ronment as well as the technological discipline [170].

4. Design Science research is perishable due to the rapid development of technology.

Emerging new tech could possibly invalidate existing artefacts before they are actu-

ally implemented or put into practice.

5. It is difficult to apply rigorous evaluation standards in Design Science research, for

instance, a specially designed artefact may not generalise to different scenarios [171].

3.1.3 The Adoption of the Research Method

Application in Technical Research

Action Research was initially designed for social science research, but there has been a

gradual transition since the 1970s to socio-technical disciplines or even purely technological

projects. The area that adopts Action Research first and is most prevalent is Information

Systems. According to [154], all the four types of Action Research, i.e. Action Research,
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Participatory Action Research, Action Science, and Action Learning, were applied in IS re-

search. However, note that some of the papers did not clarify which one was used but only

cited Action Research, and some other papers defined Action Research in ways which seem

to deviate from our understanding. To illustrate, we take some cases as examples as fol-

lows. Fox [172] explored and discussed the development of the principles of designing a

sociotechnical system, which blended two different aspects: social and technical. These two

aspects must be considered independently due to the discrepancies in each system. Action

Research was applied to conduct the system scan, technical analysis, social analysis, and

finally summarised the reflection that staff seek more meaningful empowerment, greater

productivity and viability in the organisation. In the work by Timpka et al. [173], five years

of Participatory Action Research have been performed in the development of a medical hy-

permedia system. This is a typical case that discusses the collaboration between users and

developers through Participatory Action Research. ”Action Science” was one of the main-

stream research methods that was able to learn from individual actions and practice into a

model, helping the organisation to understand how and why individuals behave as they do

during organisational IT implementation [174]. Finally, action learning has also been men-

tioned in [175], but action learning was only cited as the basis for the training and no clear

definition was provided. The review [154] was conducted in 1997 which means that the

Action Research methodology has been widely used in the area of Information System as

early as the last century, however with the increasingly blurring border between social and

technical research, Action Research has been adopted in more domains and reported lately.

Staron published a book [176] to elucidate the application of Action Research in software

engineering (SE). He claimed that the results of traditional SE experiment are difficult to be

transferred to real industry, but its another story with Action Research due to its focus on the

intervention, the context and learning. Ochodek et al. [177] conducted an Action Research

project aiming to develop a machine learning method to detect lines of codes that violate

coding guidelines which is another example of application in SE. This work follows a classic

workflow of exploring a machine learning based solution with an Action Research method-

ology like ours: 1) understanding the problem, 2) experimenting with machine learning

models, 3) evaluating the tools and outcomes, 4) reflecting. Academic research in applied

disciplines such as construction engineering and management has the dual mission of simul-

taneously contributing to the solution of practical problems and establishing theoretical and

conceptual knowledge [178], and Action Research happens to be the appropriate method to

fulfil this particular demand. Also in the work by Coughlan [167], it was proven that Ac-
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tion Research is relevant and valid for the discipline of operation management (OM), and

operation managers and researchers can learn from the applied activities that characterise

the practice of OM by Action Research.

Application in Our Project

In this section, we will discuss how we adopt the Action Research method throughout

our project in terms of the unique five-step pattern.

Diagnosing Diagnosing is the first step in which the problem is pinpointed and hypothe-

ses are proposed. We identified the neonatal sepsis issue according to the demands from

clinicians work in the frontline of newborn care. The commonly used approach to neonatal

sepsis is the administration of empirical antibiotic therapy [9, 19]. To prevent deterioration,

clinicians are encouraged to use antibiotics before the result of a blood culture comes out.

The excessive use of antibiotics can result in antibiotic resistance, predispose to fungal infec-

tion, necrotising enterocolitis (NEC) and even death [179]. The dilemma is that if clinicians

wait for blood culture result, the sepsis may deteriorate during the time, and miss the best

opportunity of treatment. Under these circumstances, an early detection system is in urgent

need. One of the motivations of our research is to solve this dilemma, make antibiotic ad-

ministration targeted at the right patients, and avoid the overuse of antibiotics. Besides, staff

fatigue due to current practice is one of the common situations that needs to be dealt with,

and monitoring all kinds of vital signs from tens of cots are time consuming and vulnera-

ble to human errors. Hence we want to introduce early detection systems into the current

clinical workflow to make the diagnosis of late-onset sepsis more efficient and effective, and

further extend it to general sepsis infections in adults.

We hypothesised that the pattern of clinical presentations in patients with neonatal sep-

sis can be summarised in data models using Machine Learning techniques and development

of early detection algorithms is feasible. This theory should also work for adults with sepsis,

since they are the similar cases in many ways. Clinical experience indicates that sepsis on-

set comes along with particular symptoms like many other diseases, so with continuously

collected data with various types of sensors from patients, we could monitor the status and

analyse the pattern in normal and infected cases.

Action Planning Based on the problems and hypotheses we had made, macro and micro

plans were drawn up in detail. First, we proposed six research questions and three research
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objectives as guidance in the general direction, clarifying what we expected to get at the end

of the research.

Research Objectives (RO):

RO-1: Design an efficient data collection scheme.

RO-2: Investigate the relations between physiological parameters and sepsis, and find

the critical ones that are most related to sepsis.

RO-3: Design, develop and implement suitable algorithms for clinical data, and make

some adjustments to improve the performance.

Research Questions (RQ):

RQ-1: How should the vital signs be collected from bedside monitors in NICU?

RQ-2: How many physiological parameters are available to researchers?

RQ-3: Which critical physiological parameters can predict sepsis before it occurs?

RQ-4: Can existing methods in literatures fulfil the the current requirement of early de-

tection?

RQ-5: Is it possible to adjust existing methods to improve their performance?

RQ-6: Are there any new approaches more suitable for this early detection task?

Then a three-cycle experiment was delicately designed, by which we could verify and

adjust our hypothesis, and help us finally achieve our pre-set goals.

Three cycles:

As the Action Research method is an iterative process, we designed a three-cycle iterative

experiment to approach our goal step by step, aligning with our three research objectives. In

cycle one, the primary task we need to handle is to set up an effective and efficient data col-

lection scheme for patients in hospital, as multiple data sources and various formats of data

are required in the experiment. There must be a unified and automated workflow to collect

and process all the necessary data we need to conduct further analysis. The second cycle

mainly focuses on figuring out the most related parameters to our task from all the avail-

able data. Analysis was made to distinguish important factors that are closely connected to

the onset of sepsis, or the symptoms indicating the potential of infection. With filtered and

refined datasets, models are supposed to have greater performance and efficiency. Finally,

with data gathered in the previous two cycles, we explored the possibility of predicting sep-

sis with existing models in the last cycle. Cycle three is a self-iteration one which means
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it repeats, and the exploration upgrades during the iteration. We start by verifying exist-

ing models, then applyimprovements, try techniques that have never been used in sepsis

detection.

Action Taking This phase corresponds to the implementation of the research plan. We

chose the directive intervention tactic since clear goals have been set so we, as the researchers,

can proactively make changes and guide the development of the experiment. To find the

relevant parameters, we did some relevance analysis from the mathematical and Machine

Learning algorithm aspects. A data collection workflow was implemented to gather data

from multiple databases in the hospital. The most important part is the model training,

which includes conventional machine learning algorithms, deep learning algorithms and

multi-instance learning algorithms and necessary work like preprocessing data and param-

eter tuning were done to optimise the performance in this phase as well. The self-iteration

nature of our three-cycle experiments requires us to make improvements, specify adjust-

ments and repeat them in order to get an ideal outcome.

Evaluating What should be done in this phase basically is the outcome evaluation. Models

have different results depending on the dataset, technique used, various combinations of

parameters and model structures. Evaluation is essential to acquire the insights of different

models, so we can make changes and improvements accordingly in the next iteration to

progress. Multiple evaluation metrics were applied such as accuracy, training time, and

false positive rate to get a full picture of performance as possible. The feedback from the

evaluation will be analysed and then reflected in the following iteration.

Specifying Learning This is the step where summary and reflection happen. By analysing

different methods, datasets used, and corresponding results, we could possibly draw some

conclusions which are also part of our research outcome. Another important task is to sort

out the relations between the raw data and sepsis onset, it is achieved by a complex analysis

process, multi-dimensional data visualisation and other tools and methods. The output of

specifying learning will be fed to a new iteration of experiments, as part of the guidance to

direct further model-building.
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3.2 Unified Sepsis Detection Framework

One of our contributions is developing a unified sepsis detection framework for sepsis

in both adults and infants. The framework consists of three cycles and four tasks: data col-

lection, data pre-processing, model training and performance evaluation, which covers the

entire workflow of a sepsis detection task from collecting data at the beginning to evaluating

and analysing in the end, see Fig. 3.3. Aligning with the Action Research framework, we

designed the three-cycle experiment workflow to accomplish the pre-set goal, which is the

early detection of sepsis. Each cycle contains one or more of the aforementioned tasks, and

includes action taking, evaluating and specifying learning phases of the AR framework.

Following the proposed framework, one can run through the procedure step by step un-

til having an output of sepsis prediction, no matter whether the target subjects are adults

or infants. Meanwhile, this framework summarises many unique processes that other ma-

chine learning projects might not necessarily need to consider. With minor adjustments in

one or more phases, this framework could be adopted to many other clinical problems that

prediction time is crucial.

Figure 3.3: The unified sepsis detection framework.
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3.2.1 Three Cycles

Cycle One

Objectives Because of the nature of clinical data, it comes from different sources in differ-

ent formats, and the heterogeneity makes it difficult to efficiently collect large amounts of

data for model training tasks. It is necessary to design and implement an effective workflow

to facilitate the process of data collection as the quality and quantity of the data is the basic

foundation of a satisfactory model.

Experimental Design In our research, we plan to use two parts of data. One is collected

from the hospital, the other one is public medical dataset, such as MIMIC III. For the data

from the hospital, it is relatively complex in terms of collection, since different data is dis-

tributed in different systems and databases. What we need to do includes 1) contact Dräger

which is the manufacturer of the bedside monitors in NICU and get their help to extract

real-time vital signs of babies under surveillance. 2) coordinate with hospital staff to get

access to multiple databases such as the one that stores doctors notes, the one we can search

for demographical data from, and the one that records biochemical laboratory test results.

3) Try to automate the procedure of exporting useful information from the databases in the

format we want. For the public dataset, it is easier to retrieve because they have been al-

ready pre-processed for training in a standard format. Doing some research to select the

most related datasets and applying them for research purposes are the only things we need

to do.

Cycle Two

Objectives In the previous cycle, we focus on collecting data, but in this cycle, we shift

the focus to data itself. The objectives of the second cycle lied on the relevance analysis of

data, including the data that was already stored in the hospital and the data that were about

to be collected. The purpose is to select the part of the data that most closely connected to

sepsis, and get rid of those irrelevant ones. Although some of the advanced models could be

modified to perform feature selection, but we believe that refining data in terms of features

at an earlier stage is still beneficial to model training efficacy and efficiency.

Experimental Design In general, there are three types of feature selection methods i.e.

filter, wrapper and embedded.
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Filter method runs features selection based on certain metrics like importance or rele-

vance before training any model, and the procedure of feature selection has nothing to do

with the model itself [180]. In other words, it filters the raw feature set prior to the train-

ing. Typical filter methods include variance threshold test, Pearson correlation coefficient,

distance correlation coefficient and Chi-Square correlation. The simplest way is Variance

Threshold which could remove features that have variance lower than the specified thresh-

old. The underlying theory is that low variance means less difference for data belonging

to different classes, so it becomes less informative for the task of distinguishing multiple

classes. Take an extreme case as an example, if one feature has the same value for all data, it

is meaningless in terms of prediction. Pearson correlation coefficient is another metric that

is simple but widely used to measure the relevance between features and corresponding

variable. It is easy to calculate but it has a non-negligible disadvantage in that it measures

only the linear correlation. If two variables are non-linear related, the Pearson correlation

coefficient would also be around zero. To fix this issue, one could try Distance Correlation

which is created to overcome the weakness of the Pearson method. Another technique to

examine the feature relations is Chi-Square test. It tests the relevance of two variables, but

only suitable for categorical variables is its weak point.

Unlike filter method, wrapper considers the performance of the prepared model as the

evaluation metric, all selected features are specially desinged specifically for that model.

Because of this, wrapper methods can select more suitable features than the filter methods,

but the cost is much higher due to multiple training during the process. Recursive feature

elimination is one of the wrapper methods, and it is implemented by recursively picking up

the most/least significant features based on the coefficient or feature importance calculated

by the candidate model.

The third category is embedded methods of which the representatives are regularisation-

based method and tree-based method. The name embedded comes from the fact that in this

method, feature selection is embedded in the process of training. L1 regularisation is able to

suppress the weight of unimportant features inherently as well as L2 regularisation, but the

L1 can only keep one of two highly related variables (make the weight 1 and 0 in extreme

cases) while the L2 tends to average the weight of each variable and keep both making it

a more stable method compared to L1 regularisation. Tree-based models have the nature

of determining feature importance by counting samples falling into each leaf, for instance,

random forest and XGBoost. Feature importance is available as long as they finish training,
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and the tree-based structure is robust to non-linear relations, these are two advantages of

tree-based feature selection method.

Our plan is to utilise all the three types of methods we listed above, and then combine the

generated results to achieve an appropriate feature selection outcome. For the filter method,

variance threshold test and Chi-Square test were taken, distance correlation coefficient was

calculated; For wrapper method, we did recursive feature elimination and for the embedded

method, both L1 and L2 regularisation were tried, and xgboost was taken as the tree-based

model to extract feature importance.

Cycle Three

Objectives The general objective of cycle three is to develop algorithms and models that

are able to predict sepsis onset with limited data. As described above, this cycle is self-

iterative which means it will repeat several times and upgrade some of the experiment set-

tings each time. We aim to achieve multiple sub-objectives during the iteration, and the

sub-objectives are: 1) Design and implement a unified sepsis detection framework for both

adults and infants. 2) Embed classical machine learning models into the proposed frame-

work to verify the performance of models and feasibility of the framework. 3) Bring in

complex deep learning models with accumulated datasets. 4) Explore and adopt other tech-

niques that could potentially improve prediction task performance.

Experimental Design Even though sepsis in infants and adults may have different clinical

characteristics and symptoms, if we intend to detect sepsis by training a machine learn-

ing model, their workflows are similar. Therefore, we can unify the processes and develop

a common framework for both cases. Many aspects need to be considered to design the

framework, such as data collection, data pre-processing, model training, and finally the per-

formance evaluation. Each part in the framework should be explored and researched to

make sure it serves our goal and fits into the sepsis detection tasks for both adults and in-

fants. Data collection has already been covered in previous cycle, and it should deal with

gathering all kinds of available data including demographic characteristics, vital signs, and

laboratory test results. Raw datasets can not be used directly unless they are being wrangled,

so pre-processing is necessary before the actual model training and algorithm development.

There are several issues that must be handled like outlier detection and elimination, missing

value handling, and data re-balance, and we will develop an entire workflow to cover them.

Sub-objectives two to four will be achieved in the model training section which involves

77



model selection, algorithm design and reform, model tuning and evaluation. Performance

evaluation is also important as other steps because it is where reflection and analysis hap-

pens. It corresponds to the evaluation and specifying learning sections of the Action Re-

search methodology. Evaluation metrics will be delicately selected and thorough analysis

will be performed in this cycle. A detailed description will be given in the next section.

3.2.2 Four Tasks

Data Collection

The first part of our framework is data collection. Normally, hospitals keep records of

heterogeneous data from many dimensions, but we might not need all of them. The most

useful variables are demographic characteristics, vital signs and laboratory test results. Ac-

cording to clinicians diagnosing routine and experience, these three types of data are the

information they refer to determine antibiotic administration. Apart from the historical data

that will be used for training collected from patients, we also need clinicians notes which

record their diagnosis and corresponding treatments.

In the neonatal dataset collected from the NICU, it is difficult to set an exact time point

after which the patient develops sepsis, but before which is perfectly healthy. Besides, even

blood culture is not 100% accurate as we stated in chapter 1, i.e. quite a lot of the blood

culture will be negative, hence we chose antibiotic administration as the sign of infection,

as this is the level at which the medical staff is concerned about the possibility of sepsis to

act, and make this the label for the data. In other words, if a patient accepts antibiotics on

a particular day, he will be classified as a sepsis case from that day on. In the NICU, only

systemic IV antibiotics is considered, and no other forms of antibiotic administration will

be given to patients who are suspicious to neonatal sepsis. Patients that were treated with

antibiotics for other reasons except for neonatal sepsis were excluded from ”sepsis” class.

Note that the labels have been set for public datasets, so it is not necessary to define them

once again.

Automating the process of data collection is another necessary component in this sec-

tion, since it is impossible to collect the large amount of required patient data from multiple

sources manually, not to mention other complex and time-consuming tasks to process this

data. There has to be some kind of automated workflow, covering all the data-related work

listed as follows:
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1. Collecting vital signs in batches instead of patient by patient. Every time a new patient

gets admitted, his data should be monitored and collected, and the system should

be able to identify the data belonging to a new patient, but not the one who stayed

in the same cot before. It could be implemented automatically by an algorithm and

supported by the hardware manufacturer, or manually by the nurses records.

2. Collecting demographic data from databases. Unlike vital signs which are continuous

time series data, demographic data such as gender and gestational age is static and it

will not change, and they should be aligned to the vital signs of the same patient and

left for further process.

3. Collecting lab tests result. Lab tests include many different types of biochemical tests,

some of which are quite relevant to sepsis diagnosis, e.g. blood culture tests. Clinicians

will request a lab test either because it is a routine examination or there is a suspicious

symptom, therefore, only several test results might exist in the database during the

stay. Similar to demographic data, it must be aligned with the vital signs of the same

patient to form a full set of training data.

4. Decompressing data files if necessary. When some of the vital signs are collected by

proprietary tools, they are possibly compressed or in a special format which can not be

used directly without decryption. In this case, automatic decompression has become

significant for generating useable content effectively and continuously.

5. Extracting clinicians notes. Clinicians notes are extremely meaningful because they

contain large amount of information, for example, the treatment has been given to the

patient, the judgement from clinicians and the one we care about most - the antibiotics

usage.

6. Securely store the data. The data collection is a long lasting and accumulating process,

and the patient’s data itself is very sensitive, so how to securely persist the data is a

serious question that needs to be handled properly.

The six points above are only for real-time data collection from patients in hospitals. For

public available dataset, it will be much easier because in most cases public datasets have

a wide variety of variables and are ready to use. Nevertheless, no matter in which way the

data is collected, the output will be identical, which is in a tabular form of rows representing

data records and columns indicating features respectively.
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Data Preprocessing

Most of unprocessed raw data is unable to be used directly due to many reasons. We list

four main reasons specifically for the sepsis task and explain why we need pre-processing

and how we perform it in order to improve the outcome. The input of pre-processing is the

raw data collected in the previous section, and it produces a ready-to-use dataset which is

exactly the material to train models.

Vital Signs Synchronisation If the training data is collected from patients in real-time, vi-

tal signs synchronisation is an issue that must be handled properly. This issue is caused

by the different sample rates of each monitored variable. Usually, vital signs like heart rate

have a higher sample rate up to 200Hz, blood pressure at 100Hz, and respiratory rate at

50Hz [181]. For those manually monitored like body temperature, they will be recorded

only a couple of times in one day. Forcibly merging data at different frequencies will result

in a large number of blank values in low-frequency features, which potentially reduces the

performance of the upcoming model training. To mitigate this issue, a pivot sample rate

should be set. In a specific sepsis prediction case, a super high sample rate does no good

for the model training because of two reasons: 1) Higher sample rate means larger size of

dataset which consumes more space in the computer. 2) Vital signs at two time points ex-

tremely close to each other barely change. 3) Higher sample rate brings unnecessary blank

values for those of lower sample rate. In shorter words, we do not need a large dataset in

which most records are almost identical, it is way less effective and informative given the

size of the dataset. To capture sufficient information from the patients data and meanwhile

keep it concise and practical, our suggestion for an appropriate pivot sampling rate is be-

tween once per second to once every ten minutes. In our experiment, we set the number to

once per minute which is adequate to capture the trend of all types of vital signs without ex-

panding the dataset size to a Gigabyte degree. For features like heart rate that have a higher

sample rate than the pivot, under-sampling was applied to align it with others so that the

tabular dataset could be created.

Outlier Detection Errors are inevitable during data monitoring, transmission and process-

ing, and one of the problems it brings is outliers. Outliers are values that deviate far from

the original distribution, and they have side effects on the final performance depending on

which model is being trained. Therefore, they should be taken care of at the pre-processing
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stage, and make sure no outlier data is included or at least reduce its effect to the lowest

level possible. There are a range of ways to detect and eliminate outliers, from the simplest

z-score or boxplot methods, to more complex density based spatial clustering and isolation

forests methods, one or more of which should be implemented in the framework.

Missing Value Handling Another issue caused by human and machine errors is missing

values. The term ”missing value” in our context generally refers to any irregular values in

the dataset, such as blanks, ”***”, ”NA” and so on. Missing values can be categorised into

three types, which are Missing at Random (MAR), Missing Completely at Random (MCAR)

and Missing Not at Random (MNAR). MAR means the missing values are not related to

themselves but are related to part of those that have been observed, while in MNAR cases,

they are related to the anticipated values of themselves or values of other features. MCAR

indicates that missing values are completely irrelevant to any data so they do not affect the

distribution.

Interpolation is the most widely used method to deal with missing values and there is a

variety of different interpolation strategies available, but before applying interpolation, we

should observe the ratio of missing values first. If the ratio is low, the most effective way

is to directly delete those records with missing values; If the ratio of one feature is beyond

the threshold, the entire set of this feature should be abandoned. Note that the deletion

methods should be used with caution only in MAR and MCAR, for MNAR datasets, simply

removing records with missing values will affect the original distribution and increase bias

in the training results. To implement interpolation, there are multiple available options to

choose, for example, for features that do not have explicit patterns, we can fill the missings

with average values, mode values, or randomly select values in Gaussian distribution; If

certain trends can be observed, linear interpolation would be a great choice; Treating missing

values as a new category of data is another way when dealing with discrete categorical

features; Even logistic regression algorithm can be applied to predict the missing values

with other complete feature sets.

Data Rebalance Extreme imbalance is another typical property of clinical data for almost

every type of disease, because positive cases are always way less than negative cases. How-

ever, imbalanced data hinders the model from making the right prediction, because in order

to achieve higher accuracy, models tend to predict all results to the dominant negative cases.

Data should be rebalanced before training, by either shrinking the size of the overwhelming
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class (under-sampling) or increasing the minor class (over-sampling). Under-sampling can

not be done simply by randomly sampling from the original dataset, because vital signs are

time series and they contain temporal information, unless sliding window technique is ap-

plied and datasets are divided into chunks. Under-sampling is easy to implement but its dis-

advantage is obvious though, which is that only small portion of the dataset is utilised and

there could be latent information neglected by not using the entire dataset. Over-sampling

is the approach to enrich the minor class with synthetic data. A simple implementation of

over-sampling is to duplicate the minor class several times to produce more data, but the

dummy repeating emphasise the minor training samples and raises the tendency of overfit-

ting. Another typical and practical algorithm for over-sampling is called Synthetic Minority

Oversampling Technique (SMOTE) proposed by Chawla et al. [182] which facilitates the

generation of synthetic instances of the minor class by working on the feature space. The

problem is that SMOTE was not designed for continuous time series data, so it can not be

applied to our patient data directly.

Model Training

With a processed dataset, we can train machine learning models to predict sepsis patients

now. There exists a wide range of models that can accomplish the prediction task, the target

of model training section is to find out the best models among them with optimum param-

eters. Training procedure is quite similar to common machine learning projects except for

two considerations: the data scheme and the alignment scheme.

Data Schemes To select a proper model for the sepsis prediction task, first we need to

determine how each training data instance is formed, which we call data scheme. One way

to feed the training data to the models is to divide it into chunks of a certain size by sliding

windows. Sliding window is a popular technique used to convert continuous data stream to

independent data chunks by filtering the original dataset with a fixed-sized window moving

along the direction that the data extends. Since the training data has multiple dimensions,

these data chunks are then fed into many of the classic models after a flattening operation

which changes the shape from (n, m) to (n*m, 1) where n is the size of sliding window

and m is the number of features (dimensions). Data chunks are suitable for classic models

that deal with individual inputs separately, since the time info has been filtered out during

the conversion. Another data scheme is to consider the data stream of every patient as one

instance, in which way time info is kept, so more advanced models such as RNN can capture
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and utilise the time info to make predictions.

Alignment Schemes Another choice that has to be made before actual training is the se-

lection of an alignment scheme. In left-aligned scheme, the first n hours of the patients data

are made available to the models. The goal is to predict whether the patient will develop

sepsis at any subsequent point. Data sequences are left aligned to carry out this task, i.e.

only records within the first n hours are used for training and testing. This n-hour window

is denoted as an observation window and is represented as a shaded area in Fig. 3.4.

Figure 3.4: Left-aligned scheme.

For the right-aligned scheme, data sequences are aligned to the right which is the point

where sepsis onset happens for positive cases, and the end of the sequence for normal cases.

Our goal is to predict whether the patient will develop sepsis exactly m hours later, and the

m-hour window is called the hold-off window. Only the data before the last m hours will be

kept and all that within are omitted, see Fig. 3.5.

Performance Evaluation

Last but not least, evaluation is the final section in our framework. Only in the cycle

”train - evaluate - improve” can we push our models to the optimum. We are going to

evaluate our models in the following four aspects: accuracy, training time, interpretability

and time ahead of onset.

Accuracy ”Accuracy” is a general term here referring to a set of evaluation metrics that

measure how well the models predict in terms of accuracy. AUC, F1 score, accuracy, re-
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Figure 3.5: Right-aligned scheme.

call and precision are the most commonly used evaluation metrics. Accuracy describes the

fraction of patients whose labels were correctly identified. Recall indicates the proportion

of patients that actually had sepsis were correctly diagnosed. Precision equals the propor-

tion of patients who were diagnosed as having sepsis actually had sepsis. Finally, AUC

calculates the tradeoff between recall and specificity and F1 score is the tradeoff between

precision and recall, so AUC and F1 score are two metrics that we prefer to use in terms of

accuracy. Furthermore, we also focus on the false positive rate and the false negative rate,

because the former increases the risk of antibiotic overdose and the latter misses the best

curing windows.

Training Time Training time is closely connected to the model complexity. We do not want

a complex model that tends to overfit while the performance does not have a significant

increase. Shorter training time is preferred if performance remains at the same or similar

level to save training time, especially when real-time learning is introduced in the future.

Interpretability Interpretability is also related to the model complexity, usually a model

with more complex structure has lower interpretability. This has been a challenge for a long

time since most of machine learning models are black boxes which can not earn clinicians

trust even if they have considerably high performance. Visualisation will be a great tool for

doctors to understand the machine learning models.

Time ahead of onset How long ahead the model can predict onset before it is happening is

one of the key metrics if the scheme is right aligned. We surely want to predict the outcome
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as soon as possible, but if the size of the hold-off window is too big, it will certainly affect the

accuracy of the model. We need to combine the performance evaluation of all four aspects

and make the best tradeoff.

3.3 Ethical Considerations

Our research cooperation with Monash Childrens Hospital has been approved by the

Monash Health Research Ethics Committee (#RES-17-0000-144Q, #RES-18-0000-24L). All the

data used in our project has been de-identified, i.e. all sensitive personal information is

omitted. Vital signs were collected within the hospital network and stored in a password

protected Google drive under the Monash account.

3.4 Chapter Summary

Herein, the main purpose of the chapter is to describe the research methodology and

approach used for the study and to explain how Action Research has been incorporated into

our project. Fig. 3.6 summarised the proposed research activities and outputs.

We first explained and discussed what Action Research is and compared it with another

popular research method in IS - Design Science, and illustrated its application with respect

to IS research and to our project, followed by a description of our three-cycle experiment

design. We then proposed a unified sepsis detection framework that works for both adult

and infant cases of sepsis. Lastly, we discussed the ethical considerations in our research so

that we were certain everything was legitimate.

The next chapter will analyse deeply both the dataset collected from NICU and publicly

available, providing an insight into the data we used in our research.
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Figure 3.6: Summary of proposed research activities and outputs.
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Chapter 4

Dataset Analysis

The quantity and quality of data are crucial to the success of a data science project. We

examine all the data collected from three different sources in this chapter: data collected

from the NICU at Monash Children’s Hospital, MIMIC III public data, and the PhysioNet

Challenge 2019 dataset. As these datasets consist of heterogeneous variables of different

lengths, they must be analysed and processed prior to use, and only a small portion of them

were selected based on clinical experience and the requirements of specific models we were

using. With the incorporation of multiple datasets, we were able to extend our models and

algorithms to both adults and infants, as well as being able to validate the intermediate mod-

els and generalise them. Samples extracted from all three datasets are provided in Appendix

A.

4.1 Collection from NICU

The first dataset was collected in real-time from the NICU of Monash Children’s Hos-

pital and the subjects were all the 147 preterm infants admitted to the NICU between 23rd

October 2017 and 26th February 2018. This dataset comprises of demographic data, vital

signs, blood culture test results, and clinicians’ notes. The gestation ages of the patients

range from 166 days to 290 days with an average value of 221 days (Q1-Q3: 193-252), and

the birth weights lie between 422 grams and 4,240 grams with an average value of 1,731

grams (Q1-Q3: 986-2549), 48.2% patients are female. All the vital signs used in our model

training were from 32 cots in the NICU, and the demographic data, blood culture test out-

come and clinician treatment details were extracted from the EMR system in the hospital.

Available features are listed in Table 4.1 in detail. We could not capture all the patient data

during that time due to a variety of issues such as unexpected laptop shutdowns, network

issues, NICU duty nurses intervention and so on, and some features like NBP-S, NBP-D and

NBP-M were recorded only once every several hours, presumably done by nurses manually.

These features which are far less than normal will be discarded because the rare occurrence

makes the dataset sparse.

Descriptive statistics were calculated before and after the preliminary cleaning of dataset,
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Table 4.1: Raw features in collected dataset from NICU

Type Name Description

V
it

al
si

gn
s

HR Heart rate (beats per minute)
ART-S Arterial Blood Pressure (Systolic)
ART-D Arterial Blood Pressure (Diastolic)
ART-M Arterial Blood Pressure (Mean)
NBP-S Non-invasive Blood Pressure (Systolic)
NBP-D Non-invasive Blood Pressure (Diastolic)
NBP-M Non-invasive Blood Pressure (Mean)
RESP Respiration rate (breaths per minute)
SpO2 Blood Oxygen Saturation
PLS Pulse
25255 Readings from PS25255 sensors

Laboratory values Blood Culture Test Result Outcome of blood culture test

D
em

og
ra

ph
ic

s Date of Birth DAY/MONTH/YEAR
Date of Admission DAY/MONTH/YEAR
Gender Female (0) or Male (1)
Gestation Age Measured in weeks
GA Days Measured in days
Birthweight Measured in grams

Clinicians’ notes Antibiotic treatment If antibiotic was used: yes(1), no(0)

see Table 4.2. The statistics between the raw dataset and the cleaned data are slightly differ-

Table 4.2: Descriptive statistics of NICU dataset

Variable Mean Max Min Median Std

R
aw

D
at

a

HR 155.95 297.0 0.0 158.0 18.70
SpO2 95.26 100.0 0.0 97.0 5.34
RESP 55.88 154.0 0.0 54.0 20.91

PLS 156.32 238.0 0.0 158.0 19.44
25255 1.49 20.0 0.0 1.27 1.10

ART-D 3.92 314.0 -98.0 0.0 12.13
ART-M 5.21 314.0 -13.0 0.0 15.69
ART-S 6.92 314.0 -12.0 0.0 20.53

Pr
el

im
in

ar
ily

C
le

an
ed HR 156.01 297.0 8.0 158.0 18.22

SpO2 95.32 100.0 5.0 97.0 4.77
RESP 55.95 154.0 1.0 54.0 20.83

PLS 156.41 238.0 1.0 158.0 19.04
25255 1.49 20.0 0.02 1.27 1.10

ART-D 35.96 314.0 1.0 34.0 13.98
ART-M 47.74 314.0 1.0 46.0 15.00
ART-S 63.44 314.0 1.0 62.0 16.68

ent despite the cleaning being preliminary. Features like Arterial Blood Pressure are unlikely

to be a negative number, so we simply remove all negative and zero values from the dataset.

Major differences could be found in attributes ART-D, ART-M and ART-S, revealing the fact
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that there were large numbers of zeros and negative values which are treated as noise in

these three. Mean values increased significantly from around 5 to around 50 when noise is

removed, and medians surged from zero to 34.0, 46.0 and 62 respectively. Compared to the

three ART attributes, others have no obvious changes between the statistics before and after

the removal of zeros and negatives.

We define one patient-day as the data of one person within one day, and at the end of

the data collection task, totally we had successfully retrieved 1204 patient-days of physio-

logical data. As to the labels for training, antibiotic usage extracted from clinicians’ daily

notes was used as the reference that determines whether a patient should be classified as

having potential sepsis or not. Clinicians record the problems list of the patients and their

management plan in plain text according to their daily routing examination.

4.2 PhysioNet Challenge

The topic of the PhysioNet Challenge 2019 is Early Detection of Sepsis from Clinical

Data which is exactly the same as our project. Data used in the competition was from three

separate hospital systems, two of which are publicly available for training, but another one

for testing is not, due to the fact that the competition has ended. The provided datasets have

data from all 40336 patients aged from 14 to 100 (mean: 62, Q1-Q3: 51-74) in two separate

hospital systems and 56% of them are male. Each data entry is a sequence of multi-variable

values from one patient consisting of 40 different features plus one label which indicates

whether this patient will have an onset in the next six hours. Each row of record contains

a single hour’s observation. Since every record has a corresponding label, this dataset is

suitable for a right-aligned experiment, in which we predict the sepsis onset right before a

fixed period of time, e.g. six hours. No overall collection time scope was specified, but the

length of each data entry from individual patient varies from 8 hours minimum to 336 hours

maximum, and the average duration is 38.48 hours which requires the prediction model to

have the capability to deal with variable-length sequence data, see Fig. 4.1.

As shown in this figure, the distribution of data length is not balanced or uniformed, and

most patients have a data with length less than 60 hours. The variation of the length could be

caused by many reasons, and the variation itself contains information as well, indicating the

how long the patient stayed in hospital. The 40 features provided by PhysioNet dataset can

be categorised into three classes: vital signs such as heart rate (HR) and oxygen saturation
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Figure 4.1: The distribution of data lengths for all patients in PhysioNet dataset.

(O2Sat), 8 columns in total; laboratory values such as blood urea nitrogen and platelets, 26

columns in total; and demographics such as age and gender, 6 columns in total, see details

in Table 4.3.

Descriptive statistics were also examined for each variable in the PhysioNet Challenge

datasets. The preliminary statistics showed that outliers were much less frequent than

the NICU dataset, since most variables have a normal distribution, except for ”FiO2” and

”HospAdmTime” which have explicitly negative outliers, see Table 4.4.

According to the official document, the dataset defines the following time points.

tsuspicion: (1) Clinical suspicion of infection identified as the earlier timestamp of IV an-

tibiotics and blood cultures within a specified duration. (2) If antibiotics were given first,

then the cultures must have been obtained within 24 hours. If cultures were obtained first,

then antibiotic must have been subsequently ordered within 72 hours.

tSOFA: The occurrence of end organ damage as identified by a two-point deterioration in

SOFA score within a 24-hour period.

tsepsis: The onset time of sepsis is the earlier of tsuspicion and tSOFA as long as tSOFA occurs

no more than 24 hours before or 12 hours after tsuspicion; otherwise, the patient is not marked
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Table 4.3: Raw features in PhysioNet challenge dataset

Type Name Description

V
it

al
si

gn
s

HR Heart rate (beats per minute)
O2Sat Pulse oximetry (%)
Temp Temperature (Deg C)
SBP Systolic BP (mm Hg)
MAP Mean arterial pressure (mm Hg)
DBP Diastolic BP (mm Hg)
Resp Respiration rate (breaths per minute)
EtCO2 End tidal carbon dioxide (mm Hg)

La
bo

ra
to

ry
va

lu
es

BaseExcess Measure of excess bicarbonate (mmol/L)
HCO3 Bicarbonate (mmol/L)
FiO2 Fraction of inspired oxygen (%)
pH N/A
PaCO2 Partial pressure of carbon dioxide from arterial blood (mm Hg)
SaO2 Oxygen saturation from arterial blood (%)
AST Aspartate transaminase (IU/L)
BUN Blood urea nitrogen (mg/dL)
Alkalinephos Alkaline phosphatase (IU/L)
Calcium (mg/dL)
Chloride (mmol/L)
Creatinine (mg/dL)
Bilirubin direct Bilirubin direct (mg/dL)
Glucose Serum glucose (mg/dL)
Lactate Lactic acid (mg/dL)
Magnesium (mmol/dL)
Phosphate (mg/dL)
Potassium (mmol/L)
Bilirubin total Total bilirubin (mg/dL)
TroponinI Troponin I (ng/mL)
Hct Hematocrit (%)
Hgb Hemoglobin (g/dL)
PTT partial thromboplastin time (seconds)
WBC Leukocyte count (count*103/µL)
Fibrinogen (mg/dL)
Platelets (count*103/µL)

D
em

og
ra

ph
ic

s Age Years (100 for patients 90 or above)
Gender Female (0) or Male (1)
Unit1 Administrative identifier for ICU unit (MICU)
Unit2 Administrative identifier for ICU unit (SICU)
HospAdmTime Hours between hospital admit and ICU admit
ICULOS ICU length-of-stay (hours since ICU admit)
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as a sepsis patient.

Table 4.4: Descriptive statistics of PhysioNet Challenge dataset

Variable Mean Max Min Median Std
HR 84.58 280.0 20.0 83.5 17.33

O2Sat 97.19 100.0 20.0 98.0 2.94
Temp 36.98 50.0 20.9 37.0 0.77

SBP 123.75 300.0 20.0 121.0 23.23
MAP 82.4 300.0 20.0 80.0 16.34
DBP 63.83 300.0 20.0 62.0 13.96
Resp 18.73 100.0 1.0 18.0 5.1

EtCO2 32.96 100.0 10.0 33.0 7.95
BaseExcess -0.69 100.0 -32.0 0.0 4.29

HCO3 24.08 55.0 0.0 24.0 4.38
FiO2 0.55 4000.0 -50.0 0.5 11.12

pH 7.38 7.93 6.62 7.38 0.07
PaCO2 41.02 100.0 10.0 40.0 9.27

SaO2 92.65 100.0 23.0 97.0 10.89
AST 260.22 9961.0 3.0 41.0 855.75

BUN 23.92 268.0 1.0 17.0 19.99
Alkalinephos 102.48 3833.0 7.0 74.0 120.12

Calcium 7.56 27.9 1.0 8.3 2.43
Chloride 105.83 145.0 26.0 106.0 5.88

Creatinine 1.51 46.6 0.1 0.94 1.81
Bilirubin direct 1.84 37.5 0.01 0.44 3.69

Glucose 136.93 988.0 10.0 127.0 51.31
Lactate 2.65 31.0 0.2 1.8 2.53

Magnesium 2.05 9.8 0.2 2.0 0.4
Phosphate 3.54 18.8 0.2 3.3 1.42
Potassium 4.14 27.5 1.0 4.1 0.64

Bilirubin total 2.11 49.6 0.1 0.9 4.31
TroponinI 8.29 440.0 0.01 0.3 24.81

Hct 30.79 71.7 5.5 30.3 5.49
Hgb 10.43 32.0 2.2 10.3 1.97
PTT 41.23 250.0 12.5 32.4 26.22

WBC 11.45 440.0 0.1 10.3 7.73
Fibrinogen 287.39 1760.0 34.0 250.0 153.0

Platelets 196.0 2322.0 1.0 181.0 103.62
Age 62.01 100.0 14.0 64.0 16.39

Gender 0.56 1.0 0.0 1.0 0.5
Unit1 0.5 1.0 0.0 0.0 0.5
Unit2 0.5 1.0 0.0 1.0 0.5

HospAdmTime -56.09 23.99 -5366.86 -6.03 162.14
ICULOS 27.0 336.0 1.0 21.0 29.01
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4.3 MIMIC III

MIMIC III (Medical Information Mart for Intensive Care III) [31] is a large and free med-

ical database built by MIT Laboratory for Computational Physiology and collaborating re-

search groups. It comprises de-identified clinical data from 38,657 distinct adult patients

aged 16 years or above and associated 49,785 hospital admission, plus 7,863 neonates and

their 9,191 admission. For patients older than 89 years, the age information was removed

to protect the patient confidentiality, so we can not know the exact ages. Apart from those

patients older than 89 years, the median age of the rest patients is 64, the mean value is 62,

Q1 and Q3 are 51 and 76 respectively. Out of the entire cohort, male patients make up about

56%. These patients have accepted critical care in Beth Israel Deaconess Medical Centre be-

tween 2001 and 2012 [183]. Unlike the PhysioNet dataset, the diagnosis of a patient exists

only once per admission, right at the time of discharge, which means the label indicating

sepsis is admission-wise not record-wise. Left-aligned scheme is hence the right way to do

the prediction.

MIMIC III could be seen as a complex database of multiple tables, each of which contains

different information relating to patients. Not every single attribute in the tables is required

by our research, so selection has to be made by joint query prior to any pre-processing

steps. We select a subset of attributes from the provided tables based on clinicians’ re-

commendation, trying to extract the same feature set as the PhysioNet datasets have. A list

of 26 tables available in MIMIC III is presented below in Table 4.5, and another list of chosen

attributes is depicted in Table 4.6. As a result, the selection of features is quite similar to the

PhysioNet dataset, so we are able to compare the results retrieved from the two datasets and

verify the generalisation of the proposed models. Only two attributes - ”AST” and ”BUN”

were not included in the MIMIC III database, and since all the data in the database was col-

lected from the ICU, there is no need to calculate the hours between hospital admission and

ICU admission. Besides, ICU length-of-stay and age could be calculated from the date of

birth and the subtraction of admission time and discharge time.The sepsis labels in MIMIC

III dataset are retrieved from hospital database based on clinicians’ diagnosis in ICD-9 code,

however the criteria remains unexposed.
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Table 4.5: Available tables provided MIMIC III database

Type Name Description

Tr
ac

k
pa

ti
en

ts

ADMISSIONS Every unique hospitalisation for each patient

CALLOUT Information regarding when a patient was cleared for
ICU discharge

ICUSTAYS Every unique ICU stay in the database
PATIENTS Every unique patient in the database
SERVICES The clinical service under which a patient is registered

TRANSFERS Patient movement from bed to bed within the hospital,
including ICU admission and discharge

C
ri

ti
ca

lc
ar

e
un

it

CAREGIVERS Every caregiver who has recorded data in the database
CHARTEVENTS All charted observations for patients
DATETIMEEVENTS All recorded observations which are dates

INPUTEVENTS CV Intake for patients monitored using the Philips Care-
Vue system while in the ICU

INPUTEVENTS MV Intake for patients monitored using the iMDSoft
Metavision system while in the ICU

NOTEEVENTS
Deidentified notes, including nursing and physician
notes, ECG reports, imaging reports, and discharge
summaries.

OUTPUTEVENTS Output information for patients while in the ICU

PROCEDUREEVENTS MV Patient procedures for the subset of patients who were
monitored in the ICU

H
os

pi
ta

lr
ec

or
ds

CPTEVENTS Procedures recorded as Current Procedural Terminol-
ogy (CPT) codes

DIAGNOSES ICD
Hospital assigned diagnoses, coded using the Interna-
tional Statistical Classification of Diseases and Related
Health Problems (ICD) system

DRGCODES Diagnosis Related Groups (DRG), which are used by
the hospital for billing purposes.

LABEVENTS Laboratory measurements for patients both within the
hospital and in out patient clinics

MICROBIOLOGYEVENTS Microbiology measurements and sensitivities from the
hospital database

PRESCRIPTIONS Medications ordered, and not necessarily adminis-
tered, for a given patient

PROCEDURES ICD Patient procedures, coded using ICD system

D
ic

ti
on

ar
ie

s

D CPT High-level dictionary of CPT codes
D ICD DIAGNOSES Dictionary of ICD codes relating to diagnoses
D ICD PROCEDURES Dictionary of ICD codes relating to procedures

D ITEMS Dictionary of ITEMIDs appearing in the MIMIC
database, except those that relate to laboratory tests

D LABITEMS Dictionary of ITEMIDs in the laboratory database that
relate to laboratory tests
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Table 4.6: Raw features in MIMIC III dataset

Type Name Description

V
it

al
si

gn
s

HR Heart rate (beats per minute)
O2Sat Pulse oximetry (%)
Temp Temperature (Deg C)
SBP Systolic BP (mm Hg)
MAP Mean arterial pressure (mm Hg)
DBP Diastolic BP (mm Hg)
Resp Respiration rate (breaths per minute)
EtCO2 End tidal carbon dioxide (mm Hg)

La
bo

ra
to

ry
va

lu
es

BaseExcess Measure of excess bicarbonate (mmol/L)
HCO3 Bicarbonate (mmol/L)
FiO2 Fraction of inspired oxygen (%)
pH N/A
PaCO2 Partial pressure of carbon dioxide from arterial blood (mm Hg)
SaO2 Oxygen saturation from arterial blood (%)
Alkalinephos Alkaline phosphatase (IU/L)
Calcium (mg/dL)
Chloride (mmol/L)
Creatinine (mg/dL)
Bilirubin direct Bilirubin direct (mg/dL)
Glucose Serum glucose (mg/dL)
Lactate Lactic acid (mg/dL)
Magnesium (mmol/dL)
Phosphate (mg/dL)
Potassium (mmol/L)
Bilirubin total Total bilirubin (mg/dL)
TroponinI Troponin I (ng/mL)
Hct Hematocrit (%)
Hgb Hemoglobin (g/dL)
PTT partial thromboplastin time (seconds)
WBC Leukocyte count (count*103/µL)
Fibrinogen (mg/dL)
Platelets (count*103/µL)

D
em

og
ra

ph
ic

s DOB Date of Birth
Gender Female (0) or Male (1)
Weight Body weight at admission
Admittime Admission time
Dischtime Discharge time
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4.4 Special Characteristics

4.4.1 Missing values

For many reasons such as human intervention or machine failure, and also asynchro-

nized sampling rates, there could be missing data in the datasets from all three sources.

For NICU data, there are 1,419,731 lines with one or more missing values out of total

1,465,781 lines at the ratio of 96.86%, and the total missing ratio in terms of individual values

is 4,350,597 out of 11,726,248 (37.10%). Presence ratio for each attributes is shown in Fig. 4.2.

The figure showed the same conclusion as we drew from the preliminary data cleaning -

the ART series has a large proportion of missing values, actually less than 10% as seen in

the figure. With respect to blood pressure, there are another series of variables: NBP S,

NBP M and NBP D which have a slightly larger number of occurrences than the ART series.

According to our calculations, 90.22% of all records do not contain ART readings, 99.66%

do not contain NBP readings, and at least one of the two blood pressure series is absent in

99.97% of total records.

Figure 4.2: Presence ratio of each feature in the NICU dataset
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For PhysioNet dataset, we found that total presence ratio for all features is as high as

31.63%, which means more than half of data is not available. Detailed presence ratio for each

feature could be seen in Fig. 4.3, and it’s easy to see that for 26 features, they have actual

values less than 10%. There are only nine features with missing values less than 20%, and

only three features have full data. Such characteristics also exist in MIMIC III dataset, see

Figure 4.3: Presence ratio of each feature in the PhysioNet dataset.

Fig. 4.4. Apart from the labels we manually attached, only four features have 100% presence

rate, while almost 20 features have less than 10% data available. However, if we examine

them closely, we can find that for both the PhysioNet and MIMIC III datasets, most features

with large numbers of missing values are lab test results which are not typically taken for

every patient every minute. By excluding these variables from the analysis, additional noise

will be introduced into the dataset. What we did was to convert these sparse variables into

categorical data, and we will elaborate on this in detail in Chapters 6.

4.4.2 Imbalance

Another major problem in our datasets was data imbalance, which is quite prevalent in

most medical datasets. Taking the dataset from Monash Children’s Hospital as an example,
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Figure 4.4: Presence ratio of each feature in the MIMIC III dataset.

the total number of sepsis patients is 49 while the number of normal cases is 98. If finer

granularity is considered, total number of sepsis records is 163,074, but number of normal

records is 1,008,969 which is 6.19 times as sepsis ones, see Fig. 4.5. Considering that the

data had been preliminarily filtered prior to being analysed, the ratio would be even more

polarised if all the raw data were considered. In addition, it should be clarified that, as

we mentioned earlier, the sepsis label is based on the clinicians’ treatment with antibiotics.

Clinicians will consider not only the results of blood tests, but also a number of other fac-

tors, such as the clinical manifestations of the patient that are based on their professional

experience.

Situation of data from PhysioNet was even worse. From the point of view of patients,

out of 40336, only 2932 had sepsis which accounts for 7.27% of the total cohort. If we analyse

the data row-wise, the imbalance is even worse. The entire dataset contains 1552210 rows of

records, of which only 27916 rows were marked as sepsis, taking a percentage of 1.8%, see

Fig. 4.6. The ratio of normal against sepsis patients is 12.76:1 while that of sepsis records to

normal ones even reaches 54.6:1.

In 56884 hospital admission of MIMIC III dataset, only 4099 end up with the diagnosis

of sepsis, accounting for 7.21%, while the proportion for non-sepsis cases is 92.79%, and the

ratio between is 12.87:1 which is quite close to that of PhysioNet dataset. Since the label is
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Figure 4.5: Ratio of sepsis patients to normal ones (left), and ratio of sepsis records (rows) to
normal ones (right) in NICU dataset.

Figure 4.6: Ratio of sepsis patients to normal ones (left), and ratio of sepsis records (rows) to
normal ones (right) in PhysioNet Challenge dataset.
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assigned for each hospital admission, record-wise analysis is not applicable in MIMIC III

datasets, see Fig. 4.7.

Figure 4.7: Ratio of sepsis admission to normal ones in MIMIC III dataset.

4.5 Chapter Summary

In this chapter, we examined datasets from a variety of sources, summarised their basic

statistics, and determined some common characteristics, such as missing data and extreme

imbalance. The way we deal with these issues will directly affect the model’s subsequent

performance, so getting an understanding of the available dataset is very helpful, particu-

larly during the pre-processing process. Additionally, we used three datasets with hetero-

geneous structures to validate the generalisation of our unified sepsis detection framework.

By examining the datasets, The second research question, how many physiological pa-

rameters are available, has been answered. In the following chapters, we are going to dis-

cuss the implementation of proposed framework on both neonatal sepsis and adult sepsis

prediction.
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Chapter 5

Framework Implementation - Neonatal Sepsis Prediction

We presented a unified sepsis detection framework based on Action Research theory in

Chapter 3. In this and the next chapters, we will discuss the specific implementation of

the designed three-cycle process. Action research, as stated previously, is a cyclical process

that repeats several times, identifying new problems and resolving them after reflection.

Our research plan consists of three research cycles, aimed at different stages throughout the

entire project. In cycle one, data is collected from various sources, while in cycle two, it

is the task of identifying useful and informative variables from the collected information,

making them accessible for the various models that will be learned in cycle three.The action

research specification was followed to implement the last three phases of the process - action,

evaluation, and reflection - in each cycle.

In this chapter, we focus on the prediction specifically of pre-term neonates. The dataset

we used was collected from NICU of Monash Children’s Hospital.

5.1 Experiment Environment

Our experiments were finished in a MacBook Pro with 32GB memory when the task is

non-deep-learning related, while Google Colab was used when GPU accelerated computa-

tion was utilised in deep learning tasks. Python is the programming language to facilitate

the building and training of all the models involved in our project, along with several useful

packages designed for machine learning tasks like scikit-learn [184], and PyTorch [185] to

handle classic machine learning models and deep learning models. Furthermore, We used

PyTorch Lighting [186] as the framework to boost the development process, and wandb

[187] as the experiments management tool to store and manage all the parameters, figures,

metrics and other importance statistics of each experiemnt setups.

5.2 Cycle One

We began our research by collecting the necessary data from NICU of Monash Children’s

Hospital. Note that the NICU only provides data for newborn infants, so all the models
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were designed only for newborn infants and are not universally applicable for patients in

the Emergency Department. However, the workflow was still completely under the unified

sepsis detection framework we proposed.

The collaboration with Monash Children’s Hospital makes it possible for us to collect

real-time first-hand data from infants under intensive care. As no digital physiological data

of infants was stored in the NICU, we have to collect real-time vital signs from beside mon-

itors, extract demographic characteristics and lab test results from separate systems, and

locate antibiotic usage and diagnosis among clinicians’ notes. Lack of automatic design

makes the workflow labour-intensive and time-consuming.

5.2.1 Vital Signs

The bedside monitoring machines attached to each cot are manufactured by Dräger Med-

ical (Draëger Australia Pty. Ltd, Melbourne, AUS), and they broadcast all the parameters it

is monitoring to the local area network within the same VLAN which makes it possible to

capture some basic vital signs of newborns under intensive care. We use eDataGrabber (de-

veloped by Dräger), which is the client-side software working on the bedside monitors. It

is able to capture real-time signals including multiple vital signs, alarm events and it also

generates waveforms based on data it has retrieved from the network. In fact, different vital

signs are not generated uniformly and every single one has its own sampling rate, for exam-

ple, displayed ECG waveforms are sent every 200 ms and alarm events go on every second.

There are two areas in the NICU of Monash Childrens Hospital with 16 NICU cots and 16

Special Care cots, and we set up two laptops as data collectors running eDataGrabber, each

of which covered one area of 32 cots and kept them working 24/7 in order to get as much

data as possible. A routine workflow (Fig. 5.1) is described as the following:

Figure 5.1: Data collection workflow in the NICU.

1. Start eDataGrabber to capture the vital signs of patients of every cot in the area.
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Due to the nature of this software, every single process can only connect to one cot, so

32 separated sessions are created.

2. Restart all the sessions every day and save the previous records in the hard drive.

We name the data files after the patient’s ID so that we can check the corresponding

treatment records and clinicians comments in other systems. This data recording task

restarts every day to prevent data loss caused by unexpected restarts or crashes of

the collector laptops and cutting data into pieces for one day makes the following

labelling work easier. Captured compressed data (raw data) for the previous day will

be categorised based on date and cot number.

3. Uncompress the raw data, extract the vital signs trends and save them as csv files.

4. Check the patient movement status and the treatment records.

The eDataGrabber software is associated with fixed cots (fixed IP address), so it does

not recognise the patient in that cot or whether the patient in that cot has changed. The

fact is that nurses often move babies around for staffing and patient acuity reasons. We

have to check whether one baby was moved on the previous day to make sure the data

we collected belongs to him. If he/she was moved, then we separate the data to several

parts based on whom they belong to. Since the sensors are removed from the surface

of the babies once they are moving to another cot, we infer the movement if there are

big gap longer than ten minutes in time stamps, although it may not be 100% accurate.

Some other actions such as feeding or treatment will cause transient interruptions in

the data stream as well, but there is no precise record of the movement information

and inference from gaps in time stamps is considered the best way at present.

5.2.2 Other Systems in the Hospital

Apart from vital signs, we also collect other auxiliary data to facilitate the sepsis detection

task from other systems in the hospital. BadgeNet is the main source of EMR information

from which we extract demographic characteristics and laboratory test results, see Fig. 5.2.

Demographic information of each patient is displayed in the bottom window and also in the

table upper side as long as we specify the person we are looking into by typing the name or

ID in the search box at the top. A more detailed information page will be displayed when

double clicking the entry in the table, showing clinicians’ notes, care summary and medical
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management plan, shown in Fig. 5.3, where we collect the information about the diagnosis

made by clinicians and set them as labels indicating the outcome of the patient - ”sepsis” or

”normal” respectively. The laboratory test results could be accessed via BadgeNet system as

well under the charts tab. Here we can get biochemistry results like C-reactive protein Fig.

5.4 and haematology results like full blood count Fig. 5.5.

Figure 5.2: The interface of BadgeNet EMR system in Monash Children’s Hospital.

5.3 Cycle Two

The major objective of the second cycle is to investigate the collected datasets and select

the best variables for our task. To achieve this, we tried to comprehend information from

multiple viewpoints and methods including incorporating clinicians’ domain knowledge,

statistical relation analysis and feature importance retrieved by pre-trained models.

5.3.1 Domain Knowledge

Limited by the functionality of bedside monitors, the number of physiological variables

that could be recorded continuously was restrained to only eleven, out of which six blood-

pressure-related metrics were manually recorded at a much lower frequency than that of

machine records. Hence, clinicians do not have many choices in terms of real-time vital signs
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Figure 5.3: The interface of Clinicians’ notes in BadgeNet EMR system.

Figure 5.4: Biochemistry lab test result.
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Figure 5.5: Haematology lab test result.

for diagnosis. As a consequence, they often tend to make diagnostic decisions based on not

only available vital signs, but extra information, such as laboratory test results. In many

cases, some crucial tests even have a higher priority than vital signs during the process.

From a medical viewpoint, all the five vital signs are fundamental indexes that indicate

patient status and could be used as references to support clinicians’ decisions.

5.3.2 Feature Selection

In addition to seeking suggestions from professional medical staff, the selection of fea-

tures could also be achieved by technical approaches. The purpose of feature selection is to

find the optimal subset from the whole feature sets, and remove irrelevant and redundant

ones to increase the accuracy ultimately reduce the training time. Feature selection meth-

ods can be roughly put into three categories, the filter, the wrapper and the embedded, but

as preliminary processing we only used some simple methods to remove those features that

are not significantly related to sepsis onset. Note that this feature selection process applies to

only vital signs, but not to demographics since they are static. More complex pre-processing

will be done in cycle three.
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Variance-based selection

Variance-based method is one of the feature selection methods that do not rely on the

feature vectors and the target labels. Basically variance of each feature is calculated, and

compared to a certain threshold. Any feature that has a larger variance than the threshold

will be kept, while those with a smaller variance will be abandoned. The underlying idea

of this method is that features with small variance are stable but not discriminative with

respect to the target classification. Min-Max scaling has been done on each feature before

the calculation of variance to make sure they are at the same level. The variance of each

feature in the NICU datasets is depicted in Fig. 5.6.

Figure 5.6: The variances of features in NICU datasets. Abbreviations: HR - heart rate,
RESP - respiratory rate, SpO2 - blood oxygen saturation, PLS - pulse, 25255 - readings from
PS25255 sensors

The scaled variances of five variables in NICU datasets lie between 0.0025 and 0.0175 and

from the diagram we can see that respiratory rate has the highest values, aside from it the

rest of the four variables are close to each other. Since nither one is significantly smaller than

others, considering only five valid vital signs in NICU datasets, we keep all the five features.

Meanwhile, the variance-based method has its underlying limitation as it suits the scenario

when features have a similar distribution. However, if features are discrete and clustered

around only a couple of values, this method has little value in terms of identifying informa-
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tive features. Also, the selection of the threshold requires large amount of calculation and

cross-validation to make sure the chosen features could produce the optimal performance.

Correlation Analysis

To achieve feature selection via correlation analysis has been very common. A well-

known metric - Pearson Correlation Coefficient (PCC) was calculated for each pair of fea-

tures in the datasets. The Pearson Correlation Coefficient is a measure of the linear correla-

tion of two sets of continuous data in statistics. It is derived by dividing the covariance of

two variables by the product of their standard deviations, see Formula 5.1.

ρX,Y =
cov(X, Y )

σXσY

(5.1)

The value of PCC falls between [-1,1], reflecting the degree that two sets of variables are

linearly correlated. Closer to 1 means a stronger positive linear relation, while a trend to-

ward the other direction indicates a negative linear relation. Since the target we aimed at

is the future prediction of sepsis onset which is categorical data, the Pearson Correlation

Coefficient could not be directly applied to calculate the relations between features and the

target. In our feature selection task, we cross compared the PCC for each pair of features in

the datasets, and listed the results including PCCs and their corresponding p-value below

in Table. 5.1 and 5.2.

Table 5.1: Pearson correlation coefficient of each feature in NICU dataset. Abbreviations:
HR - heart rate, RESP - respiratory rate, SpO2 - blood oxygen saturation, PLS - pulse, 25255
- readings from PS25255 sensors

HR RESP SpO2 PLS 25255
HR 1.0 0.1103 -0.1436 0.9344 -0.0901
RESP 0.1103 1.0 0.0024 0.1049 0.0472
SpO2 -0.1436 0.0024 1.0 -0.1147 -0.0741
PLS 0.9344 0.1049 -0.1147 1.0 -0.144
25255 -0.0901 0.0472 -0.0741 -0.144 1.0

The values of PCC showed that all five features in the NICU dataset have little linear

correlation to each other, supported by the extremely small p-value, except for the pair of

’heart rate’ and ’pulse’ which showed a very high linear correlation due to their biologically

close connection. So as a result the attribute f pulse will be removed out of the final feature

set.

The Pearson correlation coefficient can only be used to measure linear relations between
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Table 5.2: p-value of PCC of each feature in NICU datasets. Abbreviations: HR - heart rate,
RESP - respiratory rate, SpO2 - blood oxygen saturation, PLS - pulse, 25255 - readings from
PS25255 sensors

HR RESP SpO2 PLS 25255
HR 0.0 0.0 0.0 0.0 0.0
RESP 0.0 0.0 0.0044 0.0 0.0
SpO2 0.0 0.0044 0.0 0.0 0.0
PLS 0.0 0.0 0.0 0.0 0.0
25255 0.0 0.0 0.0 0.0 0.0

variables. To overcome this limitation, the distance correlation coefficient (DCC) was used

to improve the quality of the feature analysis. DCC of two variable u and v is denoted as

dcor(u, v), and defined by the Formula 5.2

d̂cor(u, v) =
d̂cov(u, v)&

d̂cov(u, u)d̂cov(v, v)
(5.2)

where

d̂cov2(u, v) = Ŝ1 + Ŝ2 − 2Ŝ3 (5.3)

and Ŝ1, Ŝ2 and Ŝ3 are calculated by the following formulas

"
#####$

#####%

Ŝ1 = 1
n2

'n
i=1

'n
j=1 ||ui − uj||du ||vi − vj||dv

Ŝ2 = 1
n2

'n
i=1

'n
j=1 ||ui − uj||du 1

n2

'n
i=1

'n
j=1 ||vi − vj||dv

Ŝ3 = 1
n3

'n
i=1

'n
j=1

'n
l=1 ||ui − ul||du ||vj − vl||dv

(5.4)

In fact, the distance covariance is calculated by forming a double centred matrix from each

variable vector, from which we know that the distance covariance (and correlation) is not

the covariance (or correlation) between the distances themselves. It is the covariance (corre-

lation) between the special scalar products. That is the reason that it can capture non-linear

relation better than the PCC. Let us observe the DCC between feature pairs in our NICU

dataset in Table 5.3 below. The DCC showed that most pairs of features are not very closely

related, just like what the PCC values indicated, except for the pair of heart rate and pulse

because they are biologically connected.

Tree-based methods

Using tree-based methods to filter useful features is actually one of the implementations

of the embedded feature selection approaches. Some machine learning models have the
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Table 5.3: Distance correlation coefficient of feature pairs in NICU dataset. Abbreviations:
HR - heart rate, RESP - respiratory rate, SpO2 - blood oxygen saturation, PLS - pulse, 25255
- readings from PS25255 sensors

HR RESP SpO2 PLS 25255
HR 1.0 0.1051 0.1602 0.9508 0.1401
RESP 0.1051 1.0 0.0371 0.1019 0.0577
SpO2 0.1602 0.0371 1.0 0.154 0.0627
PLS 0.9508 0.1019 0.154 1.0 0.1566
25255 0.1401 0.0577 0.0627 0.1566 1.0

ability to assess the importance of features inherently, such as Random Forest and Gradient

Boosting Decision Tree. These models are friendly to non-linear relations between variables

and target, and are easy to apply to them. We analysed the feature’s importance by applying

xgboost and random forest models and generated figures to illustrate the importance of each

feature, see Fig. 5.7 and 5.8. As limited by the space, labels in x axis are impossible to be

fully displayed. We noticed that the importance distribution derived from two ensemble

methods is quite similar in that there is no significant difference between features except for

a few of them on the left most side. Generally, the random forest model tends to lean on

a small proportion of the entire feature set more than the xgboost. To compare the result

from two methods, we also listed the top 15 feature from each side in Table. 5.4. The names

of features are specified in the format of X Y, where X is the real name of the feature, and

Y is the suffix indicating the order within the 60-minute sliding window if Y is a numeric

value, or the descriptive statistics if Y is a string like ”MAX”. Both methods indicate that the

variance of respiratory rate is the most decisive feature. Besides, out of the 15 features, seven

of them occurred twice, which showed the similarity as well. The scores from two methods

Figure 5.7: The importance of features in data chunks consisting 60-min data extracted from
NICU dataset with xgboost.

were at difference scales since they are calculated in different approaches. For xgboost, the
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Figure 5.8: The importance of features in data chunks consisting 60-min data extracted from
NICU dataset with RF.

Table 5.4: Top 15 important features derived from two methods. Abbreviations: HR - heart
rate, RESP - respiratory rate, SpO2 - blood oxygen saturation, PLS - pulse, 25255 - readings
from PS25255 sensors, VAR - variance, PTP - peak to peak, MAX - maximum

xgboost random forest
No. Feature Importance No. Feature Importance
1 RESP VAR 0.016613 1 RESP VAR 91
2 RESP PTP 0.013988 2 SpO2 VAR 72
3 PLS VAR 0.013513 3 PLS VAR 62
4 HR VAR 0.013053 4 SpO2 MEAN 54
5 PLS PTP 0.012171 5 HR VAR 53
6 RESP MAX 0.009408 6 RESP MIN 49
7 PLS MAX 0.008826 7 25255 29 48
8 HR PTP 0.008185 8 25255 VAR 48
9 25255 VAR 0.007060 9 RESP 3 46
10 PLS MEAN 0.007012 10 RESP 42 45
11 HR MEAN 0.006626 11 PLS MAX 44
12 HR MAX 0.006593 12 RESP 2 43
13 SpO2 MEAN 0.006154 13 RESP 41 43
14 25255 PTP 0.006110 14 RESP MAX 42
15 SpO2 MEDIAN 0.005963 15 RESP 14 42
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value of importance denotes the number of the feature that was used to split data across all

trees, while in random forest, it is called Gini importance measuring the average purity gain

by splitting certain features.

5.4 Cycle Three

With the preliminary processed dataset produced in cycle two, we can explore how var-

ious machine learning models could learn from them and make predictions of sepsis to

facilitate clinicians’ diagnosis. In the third cycle we developed different types of models and

algorithms, and trained them on the NICU dataset to achieve early detection of neonatal

sepsis. After that, outcomes were evaluated iteratively to adjust and improve our models.

5.4.1 Classic Machine Learning

Many classic machine learning models have been shown to be effective in classification

problems with less complex structures and parameters, like SVM, Random Forest. We de-

signed a scheme to check how conventional ML models work with our sepsis data. Al-

though some of these models were reported in previous research, with some changes in

data processing and training, they still demonstrated a promising result. Fig. 5.9 shows the

process of model building, training and evaluation.

Preprocessing

The bedside monitoring machine has a sampling rate of 200Hz and is able to output one

record in CSV format every second. Data is accumulated at a very high speed and will bring

excessive pressure on data storage, and such frequent data is not necessary for ML tasks.

Thus, we scale down the data to one record per minute by sampling, which reduces the size

of the dataset to 1/60. The variables used are chosen according to experienced paediatri-

cians and our feature selection procedures, and given the limitations of the information the

bedside monitoring machine broadcasts, we only use heart rate (HR), respiratory rate (RR)

and blood oxygen saturation (SpO2) as input vital signs.

In most cases, clinicians would start using antibiotics while they found an infant showing

suspicious symptoms and ordered blood culture test, so we define two types of patients

which are ”sepsis” and ”normal” based on whether antibiotics treatment is taken. Any

one conducted a blood culture test or accepted an antibiotic treatment should be labelled
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Figure 5.9: Global process of model building, training and evaluation with classic machine
learning algorithms.

”sepsis” and the label ”normal” belongs to the rest. If one baby never did blood culture

test or accepted antibiotics, he is absolutely classified into normal group, however if there

existed suspected sepsis in this baby, the situation becomes subtle. Let the time of blood

culture test or antibiotic therapy be denoted as t0 , and the time of ceasing antibiotic as t′.

Since we want to detect the sepsis 6 hours ahead, suspicious data should be expanded from

t0 to t0 − 6. Note that usually the last 24 hours in the antibiotic treatment patients are almost

fully recovered, so we set the end point of suspicious data at t′ − 24, and all data fall into

t0 − 6 to t′ − 24 is labelled ”sepsis” while the rest is labelled ”normal”.

Since the infants in the NICU may have moved to other locations and sensors may de-

tach from the infants’ bodies, there could be missing or error values in the dataset we have

collected. Prior to importing data to the ML models, we have to filter out these invalid data.

Two different strategies of data cleaning were tested, one is to delete the data block with

missing or error data directly, the other is to replace them with the mean value. It turned

out both strategies led to hardly any differences between the final results, so we decided to

choose the simpler one which was to just delete the data block with invalid values. With all

the pre-processing procedures done, finally we have got 4412 data samples in total, of which

3451 are with ”normal” label and 961 are with ”sepsis”.
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Sliding Windows

The collected data stream is represented as a temporal sequence of a variety of parame-

ters. To feed them into normal ML models, we performed some data transformation steps

before training. We introduced a sliding window method to convert temporal data flow to

data blocks. Specifically, raw data is cut into data blocks by sliding windows according to

time stamps. The width of the sliding windows is set to 60 minutes, which means that in

every data block we have 60 records of each variable since the sampling rate is once per

minute. For each variable, not only do the 60 data points account for input features, we

also calculate extra statistical parameters for 60 minutes. The statistical parameters are max-

imum and minimum value, mean and variance, medium value, and peak-to-peak value.

Finally, each variable contributes 60 data points within the sample hour plus another 6 extra

statistical parameters which totally 66 input features. Then the features from five variables

(HR, RR, SpO2, Pulse and 25255) are concatenated and combined with static variable age

and birthweight to form the final input feature vectors including 332 features, see Table 5.5.

Table 5.5: Structure of feature vectors. Abbreviations: HR - heart rate, RESP - respiratory
rate, SpO2 - blood oxygen saturation, PLS - pulse, 25255 - readings from PS25255 sensors,
BW - birthweight.

HR Stats of HR RR Stats SpO2 Stats Pulse Stats 25255 Stats Age BW
60 6 60 6 60 6 60 6 60 6 1 1

Data Rebalance

When sliding the window, different step sizes are applied based on labels. The step

size is 60 minutes when the label is ”normal” and reduced to 10 minutes when the label is

”sepsis”. The reason we do this is that the number of normal cases and suspicious cases are

extremely imbalanced - the former one is much more than the latter one. As we discussed in

previous chapter, if we train ML models directly using these imbalanced data, they tend to

classify all the data as ”normal” because in this way a better accuracy can be achieved. We

set the step size smaller than window size in suspicious cases, so that there will be certain

parts overlapping between two neighbouring windows, and in this case, with the same size

of data stream we are able to create more data blocks, in other words training samples with

”sepsis” label. Note that the overlapping in our data samples will not increase the chance of

overfitting because the relative positions of overlapping data in each data block are different.

However, even expanding the suspicious data by overlapping the window, there is still a
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huge gap in terms of the amount between ”normal” and ”sepsis” data. We down-sampled

”normal” data to make sure the size difference between the two classes was acceptable.

Training on Existing Models

A representative series of ML classification models were chosen for this suspicious pa-

tient prediction task. We chose Logistic Regression (LR), Support Vector Machine with

Gaussian kernel (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and

Multi-layer Perceptron Neural Network (NN) as target models, and trained them with pre-

processed feature vectors with comparison.

1. K-fold cross validation

In this scheme, all 4421 data samples were input to the algorithm without them be-

ing divided into a training set and a testing set. We set k to 4 which means the data

was going to be divided into four segments after a random shuffle, and each segment

would be taken as testing set for the model trained by the rest of the three segments.

Given the random shuffle before the segmentation, data samples from different pa-

tients will be mixed. Our target is to test the prediction performance of chosen models

under this scheme, because they could possibly learn from some patients part of whose

data belongs to the training set while the other parts are included in the test set. In such

a case we could examine whether our model could learn from what we have seen and

predict the label correctly.

2. Patient-wise validation

Unlike K-fold Cross Validation, we did not mix data from different patients. We shuffle

patients instead of data samples, in order to keep the normal-sepsis ratios of training

and testing data at the same level. ”Normal” and ”Sepsis” patients are shuffled sepa-

rately but split into training set or testing set at the same ratio of 7:3 so we have 2416

”normal” data samples and 673 ”sepsis” data samples in the training set, and for the

testing set, the numbers are 1035 and 288 respectively. Once a patient is chosen to be

in training or testing set, all data samples from him will be included in and only in

that set, in other words, data from one patient will not be in training and testing set

simultaneously.

The purpose of designing this scheme is to verify the generalisability of our models.

The models predict the condition of a group of patients by learning from another group

of patients, which we believe is closer to the real circumstances in the NICU.
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We trained the five models mentioned above with scikit-learn. For fine-tuning purposes,

grid search method is employed. We have to cross check a variety of values in order to find

the optimal one in each model. If a candidate value list of one parameter is provided, the

GridSearchCV module is able to train the model with all the values in the list respectively

and give a score defined by users, picking up the parameter makes the model have the best

performance. For example, we tried different numbers of trees in RF in {10, 20, 50, 100, 150},

and the max depth of each tree is set in {1, 3, 5, 10, 15}. Another point worth mentioning

is that although some measurements have been taken in the pre-processing stage, there are

still many more normal data samples than suspicious ones, so we use the Cost-Sensitive

Learning method during the training process, applying a higher weight to ”sepsis” samples

so that the error is enhanced when they are wrongly classified. In this way, the classifier

care more about ”sepsis” samples of small amount, and prevent the tendency of the bias to

”normal” label which is the majority of the entire dataset.

Performance Evaluation

In this section, we report the result of the five models in two training schemes.

1. K-fold Cross Validation

Table 5.6 shows the performance of five classification models trained by the dataset

collected from 23 rd Oct to 23rd Nov with 5-fold cross validation. Note that for LR,

SVM and NN, we normalised the data samples before training, scaling them down

with a mean of 0 and a variance of 1, just to make sure the model would not be biased

to the features with larger values. RF and GBDT do not need the normalisation though

because they are both tree-based model.

Table 5.6: Performance of five models in 5-fold CV. Abbreviations: LR - logistic regression,
SVM - support vector machine, RF - random forest, GBDT - gradient boosting decision tree,
NN - neural network

Model Name Accuracy Precision Recall Weighted F1 AUC
LR 0.66 0.66 0.65 0.65 0.71

SVM 0.72 0.74 0.67 0.71 0.79
RF 0.74 0.77 0.68 0.72 0.81

GBDT 0.73 0.76 0.68 0.72 0.81
NN 0.67 0.68 0.66 0.67 0.73

We can see that in general, the difference among five models is trivial, but LR, and NN

did not perform very well compared to other models. Since the dataset has a complex
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structure with multiple variables, it must not be linearly separable. The linear model

LR had a poor average performance of about 0.6+ on the existing data, while others

could reach 0.8+. NN is capable of learning from a non-linear dataset, but it may need

extra techniques or a more complex network structure to achieve better performance.

The f1 value in the table is weighted according to the proportion of the data given the

certain label, so it may be larger than precision and recall. The SVM and two tree-based

ensemble learning models had a good performance with AUC of around 0.8, which we

believe that it is possible to separate infants with suspected sepsis and healthy ones.

2. Patient-wise Validation

We also conducted some tests in this more realistic situation in which models are

trained with data from some patients and predictions are made on others. The parame-

ters of each model are taken from the best model in a 5-fold cross validation scheme. To

reduce possible errors, we run each test four times and calculate the mean value as the

final result. Table 5.7 provides the final performance measurements. In this training

scheme, the difference between the five models became larger, but still, RF achieved

the best performance in terms of almost every evaluation metric and it performed way

better than the other models, which we can tell from the ROC curve. Except precision,

recall and f1 score, AUC was used as the general measurement because it provides an

efficient measurement regardless of the size of data and is almost not sensitive to the

imbalanced data samples[188]. Fig. 5.10, 5.11 shows the ROC curves of all the five

models under two training schemes.

Table 5.7: Performance of five models in patient CV scheme. Abbreviations: LR - logistic
regression, SVM - support vector machine, RF - random forest, GBDT - gradient boosting
decision tree, NN - neural network

Model Name Accuracy Precision Recall Weighted F1 AUC
LR 0.50 0.50 0.44 0.47 0.50

SVM 0.54 0.61 0.20 0.30 0.53
RF 0.77 0.75 0.81 0.78 0.77

GBDT 0.64 0.66 0.56 0.60 0.64
NN 0.50 0.50 0.85 0.63 0.50

In the 5-fold cross validation scenario, the ensemble models, especially the random for-

est performed much better than the other three models, and this should be attributed to

their innovative strategies. RF is an enhanced version of decision tree with a bagging strat-

egy. The two-step random sampling ensures the model will not easily overfit even without
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Figure 5.10: ROC curves in 5-fold CV
schemes.

Figure 5.11: ROC curves in patient-wise
validation schemes.

pruning. Every single tree in GBDT tries to fit the residual of its former ones result. When

summing them up, the final result will be much better. Ensemble learning strategies make

these two algorithms more capable of learning from large numbers of data with complex

feature combinations.

In comparison to the first scheme, the AUC of RF and GBDT is lower in the patient-

based validation scheme. We believe it is because of the nature of the data. Under this

training scheme, training data and testing data are from different patients, the patterns that

the models have learned from one patient may not be applicable to others. Every individual

patient may have a unique reaction to the infection and produce a special pattern in physi-

ological data streams due to different body conditions. Therefore, our models can not learn

the pattern of a particular patient from others, unless we have a larger enough cohort of pa-

tients which can cover most infected cases. However, since the hospital had not previously

kept backups of vital signs data of patients who were cared for in the NICU, and the data

collection task was performed for just one month, all the data we have was from less than

180 individual infants, which obviously can not represent all the neonatal sepsis patients.

From the interpretability point of view, two tree-based models, RF and GBDT have an

inherent advantage that conditions based on which branches were split help the interpreta-

tion of the model. Although ensemble strategies like bagging and boosting were employed,

it did not hinder the models from being easily understood. LR is also a simple model that

has high interpretability simply because of the linear relation between the input features.

However, SVM and NN are less interpretable than the other three due to their non-linearity

and mapping in different feature spaces.
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5.4.2 Deep Learning 1 - Conversion to Images

As more complex models can fit better into datasets, especially larger ones, we have also

proposed two deep learning based approaches. The first one converts time series data into

colour images, utilising the advantages of 2d Convolutional Neural Networks in terms of

image processing.

Simple Transformation

The raw data captured by eDataGrabber software is a compressed file with a cpz suffix

in the file name and a text file recording the vitals signs trend can be retrieved once the file is

uncompressed. This trend file is stored in CSV format with timestamps on each line so that

we can separate the file easily according to the date. The bedside monitor can sample HR at

a rate of 200Hz and output one record per second, but considering comparison experiments,

we also made another version of data by sampling it at one record per minute. Another step

of preprocessing is data cleaning. For many reasons, such as human intervention or machine

failure, there could be invalid data. To deal with them, we first removed all the data files in

which invalid records ratio is more than 10%, then performed linear interpolation to replace

the invalid record with a linear model of the particular features. If linear interpolation can

not be done in cases where there are only two available samples, the nearest value will be

filled in.

The novelty of this method lies in the transformation from vital signs streams to images.

The continuously recorded vital signs from bedside monitors in the NICU could be consid-

ered as data sequences, but CNNs with 2-D filters do not work well with sequential data,

so we cut the data sequence to a certain length, reshape it into a 2D matrix which is called a

data chunk, and treat the stream data as flat images. The process is depicted in Fig. 5.12.

Since the maximum size of continuous data records from one patient is around 1,400,

see Fig. 5.13, the number of data points within a single image have to be less than that.

Considering the size of the data chunks we have we choose to map the clinical data to 16×16

and 32×32 images. If the image size is too large, as the data amount is fixed, we will get a

smaller number of images, and for a deep learning model, less training samples usually

leads to overfitting. On the contrary, if the image size is small, CNNs will not be able to

extract enough features from the image which is also not good for training. As a coloured

image contains red, green and blue (RGB) channels, and values in each channel are between

0 and 255. We scaled the time series data into the range of [0, 255] by the Formula 5.5, making
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Figure 5.12: Process of simple transformation.

Figure 5.13: Length distribution of features in NICU dataset.
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sure that every data point can be mapped to a valid colour. Sample images could be seen in

Fig. 5.14. As the figure shows, different data segments can be mapped to different images

with unique colours and textures. Since all the variables we handle stay in a certain range,

the mapped images will not be very distinct especially in terms of the overall colour which

is different shades of green. However, texture makes them unique from each other due to

the random distribution of events and newborns different health conditions. Under this

circumstance, our task becomes classifying normal images and sepsis images.

xnew =
(xorigin − xmin)

xmax

× 255 (5.5)

Figure 5.14: Colour image samples transformed from clinical data stream, HR, SpO2 and
25255 are mapped to RGB channels.

Images need to be labelled before fed into the CNN model in our task. As limited by the

number of patients and infection ratio, we do not have enough number of proven sepsis data

samples. Therefore, any episode suspected by clinicians will be considered as a sepsis case.

We define two types of patients before we label them, normal and sepsis. For those who were

suspected by clinicians at a certain period, no matter whether blood culture has a growth or

not, they will be classified as sepsis. Mostly, clinicians will order antibiotics while they call

a blood culture test just in case, and the time point when antibiotic treatment is ordered is
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noted as t0 , all the data chunks from t0−6 will be labelled as sepsis until antibiotic treatment

stopped. Because some subtle changes may occur to babies before doctors or nurses notice

that, data before t0 may still contain sepsis information as well. On the other hand, it makes

the prediction six hours ahead, which allows doctors more time to stop the disease.

Gramian Angular Field Based Transformation

Inspired by the work of Wang and Oates [189], we mapped univariate time series from

traditional cartesian coordinates to polar coordinate, and generated two types of images:

the Gramian Angular Summation Field (GASF) and Gramian Angular Difference Fields

(GADF). Each element in these images is actually the summation or difference of the angles

respectively. Rather than simply mapping time series values to RGB channels, the Gramian

Angular Field (GAF) has the advantage that is able to keep the temporal information of the

time series.

Gramian Matrix Gram matrix is a useful tool when calculating the relations among a set

of vectors. It is basically a matrix consisting of the dot product of each pair of vectors, see

Formula 5.6

G =

"
######$

######%

< u1, v1 > < u1, v2 > · · · < u1, vn >

< u2, v1 > < u2, v2 > · · · < u2, vn >
...

... . . . ...

< un, v1 > < un, v2 > · · · < un, vn >

(
######)

######*

(5.6)

Encoding To project time series data to polar coordinate, we need to consider two vari-

ables: the value and timestamp which are mapped to angle and radius. Since the angle falls

in the range of [-1,1] in radian system, we must scale the values into the same range first.

Given a time series X = {x1, x2, . . . , xn} of n real-value observations, a min-max scaler was

applied to achieve the rescale as follows:

x̂i =
(xi −max(x)) + (xi −min(x))

max(x)−min(x)
(5.7)

Then we can represent the rescaled time series +X in polar coordinates by encoding the value

as the angular cosine and timestamp as the radius with the formula below:

"
#$

#%

φ = arccos(+xi),−1 ≤ +xi ≤ 1, +xi ∈ +X

r = ti
N
, ti ∈ N

(5.8)
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when ti is timestamps and N is a constant factor to regularise the span of the polar coordinate

system. After the rescaling and transformation, we can easily exploit the angular perspective

by defining GASF and GADF as:

GASF = [cos(φi + φj)] (5.9)

GADF = [sin(φi − φj)] (5.10)

where φi and φj are the angles of i-th and j-th vectors in the time series. The encoding process

is also demonstrated in Fig. 5.15. We use pyts library [190] to implement the GASF image

transformation, and sample images are shown in Fig. 5.16

Figure 5.15: Encoding of GASF.

Convolutional Neural Network

Convolutional Neural Network is one branch of feedforward neural networks which

performs well when dealing with data of grid-like structures, such as time series, voices and

images. See Fig. 5.17 for a typical structure of CNN. It only depicts the key components but

omits some other auxiliary layers such as pooling and dropout. What makes CNN special

from other deep neural networks is the convolutional layers. To implement the convolution

operations, a matrix of smaller size called the filter/kernel/weights is introduced, and by

moving the filter throughout the input feature map, summing up all the products of the

numbers from the input features and the filter at the corresponding positions, it produces

the output feature map. Fig. 5.18 illustrates how the convolution is calculated. Because of

the nature of the convolution operation, it is able to extract local features from the original

input feature map, depending on the parameters in the filter.

The ordinary fully connected neural network requires a very high number of weights to
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Figure 5.16: Sample images generated by GAF. (Top two lines are GASF, and bottom two
lines are GADF.)

Figure 5.17: A simplified structure of convolutional neural network.
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Figure 5.18: The convolution operation.

be tuned if the input size is large even in a shallow architecture. For instance, a 100×100

image has 10000 weights for each layer. The convolution operation mitigates this problem

allowing the network to be deeper with fewer parameters. If the filter size is 5×5, only 25

learnable parameters are needed, regardless of the size of the input data size, because all the

data points in this layer share the 25 parameters.

Network Structure

In this particular case of sepsis prediction, by folding the 1-D time series data into a 2-

D image data, some data points which were not originally adjacent become neighbouring,

so that it is possible for the moving filter to identify some latent relations between discrete

data points. Besides, when sliding the same filter across the entire image, which is actually

the data series, it means the feature that may determine the occurrence of sepsis can be

learned no matter where it is. This property is called spatial invariance. In our thesis, we

designed a 14-layer deep convolutional neural network for our sepsis image classification

task. For all the training tasks, unless otherwise stated, this structure is used. Fig. 5.19

shows the structure in detail, and here is a brief explanation of the components in CNNs.

The input layer is a r×r×3 matrix of three independent variables, which CNN treats like a

coloured image. The convolutional layer uses a 3×3 filter to extract features from the so-

called image which is actually transformed from clinical data chunks. Batch normalisation

layer normalises data samples in every dimension of the input features, and ReLU layer

adds non-linear parts in the model to make it different from the Multilayer Perceptron (MLP)

125



model. Max pooling is a common approach used in deep learning models to reduce the

dimension of the feature vector, and it helps avoid overfitting. The other way to avoid

overfitting is to add a dropout layer before the fully connected (FC) layer. It randomly sets

some neurons in the network to zero, applying a bagging-like strategy to the network, which

has a great effect on the model optimisation. Finally, the fully connected layer and SoftMax

layer, calculate the possibilities that the image belongs to each class. Considering the size

of data samples, the CNN models should not be designed to be too complex, because a

complex model with a small data size is prone to overfitting. Our model has only 14 layers,

which is much shallower than the famous GoogleNet [191] and ResNet [192] which have 22

layers and 152 layers respectively.

Figure 5.19: Detailed structure of CNN used in our method.

Performance Evaluation

To find a better solution in the simple transformation, we evaluated the model with sev-

eral different setups.

1. Train a CNN model on 16×16 simple-transformed images.

2. Train a CNN model on 32×32 simple-transformed images.

3. Train a CNN model on 32×32 GASF-transformed images.

4. Train a CNN model on 128×128 GASF-transformed images.

5. Fine-tune a pre-trained AlexNet model on 227×227 GASF-transformed images.

In the first setting, we had transformed 27477 normal images and 5041 sepsis images while

in the second setting, as the size of the image increased, the number of images dropped to

7670 and 1486 respectively. From the numbers, we can see that sepsis samples are much less

than normal samples. To deal with this imbalance situation, we sample the normal images
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in the same number as the sepsis images and make sure the model performance will not

be influenced by the significant difference in the numbers of both classes. Thirty percent of

both normal and sepsis images were extracted from the validation set before training. Fig.

5.21 shows the learning curve under this setting.

Figure 5.20: Training curve of 1st and 2nd settings on NICU dataset.

Figure 5.21: Accuracy and AUC of proposed model with setting 1 & 2.

As shown in the training curve, both experiments were converging and no overfitting

was observed before epoch 300. Although the validation loss of setting 2 fluctuated during

the course, it eventually reached the lowest point after all. To verify how image size would

affect the model’s performance, we found that larger size (32) images performed better than
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small ones. Other performance measures in Table. 5.8 could also prove that. When image

size was scaled twice as the original, it actually contains four times more data points which

means more information and features could be used to identify the imminent sepsis onset.

Note that we adjusted sample rate of the raw data from one record per second to one record

per minute before transforming to images because all the variables we monitored would not

have a significant change within a few seconds. If we keep the data sample rate at once per

second, all the data points within one image will be very likely the same.

As a comparison, GASF transformed images were tested as well in setting 3 and 4 with

CNN models of the same structure. The only difference is the size of the transformed im-

ages. In GASF scheme, an image of size r×r could be generated from only r continuous

time series data, so given the same dataset, it can generate more images than the simple

transformation method, or images with larger size when keeping the amount at the same

level. Besides, Since AlexNet has an outstanding performance in image classification tasks,

we also tried to fine-tune a pre-trained AlexNet [193]. AlexNet is a deep convolutional neu-

ral network model proposed in the ILSVRC10 competition, and it won the first place that

year. In our case, features learned by AlexNet were kept, but we replaced the last fully

connected layer and retrained it to fit into our data. However, AlexNet requires the input

images to be of size 227×227 and that is the reason we did not apply it on simple transfor-

mation images sets since we have only a few of patients who has more than 51529 (227 ×

227) consecutive records. Also, AlexNet is designed to accept 3-channel input, thus Principle

Component Analysis (PCA) was applied to reduce the dimension of input to three. There

are many other successful models that have won the image classification competitions and

have extraordinary performance, but compared to AlexNet, they have a much more complex

structure. The training process of pre-trained AlexNet is shown in Fig. 5.22 and 5.23. From

these figures we can clearly see that overfitting happens at around step 300 when validation

loss started to increase while both acc and auc dropped from the peak.

To verify the feasibility of predicting sepsis with a machine learning approach, we ap-

plied conventional ML models like SVM and Random Forest (RF) in the previous section.

Raw data is fed into five different models without any transformation in format. The result

is shown in Table. 5.7. Two ensemble learning models, RF and Gradient Boosting Decision

Tree (GBDT), have better results than others with an AUC of 0.77 and 0.64 respectively and

there is no big difference regarding accuracy and AUC among the three models, both accu-

racy and AUC are about 0.50. Compared to previous models, our CNN-based model has a
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Figure 5.22: Training curve of the pre-trained AlexNet on NICU dataset.

Figure 5.23: Accuracy and AUC of the pre-trained AlexNet on NICU dataset.
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Table 5.8: Performance comparison between five settings. Abbreviations: CNN - Convolu-
tional Neural Network, GASF - Gramian Angular Summation Field

No. Setting Accuracy AUC
1 16×16 + CNN 0.74 0.82
2 32×32 + CNN 0.80 0.89
3 32×32 + GASF 0.54 0.64
4 128×128 + GASF 0.61 0.66
5 227×227 + AlexNet 0.59 0.65

better performance, and stands out in comparison to others’ work as well. Griffin et al. [101]

studied the relation between heart rate characteristics and neonatal sepsis, the AUC of their

method was 0.77 originally, after two years another paper [104] from them improved this to

0.82. Two scoring systems [194, 195] managed to achieve an AUC of 0.85 and a sensitivity

0.83 (only 0.32 specificity) respectively, but due to the nature of rule based methods, rules

of scoring varies from one cohort to another, and will be subjectively influenced by the ex-

perts who design the rules, which makes the evaluation metrics not consistent and unstable.

Another machine learning method [196] proposed by Mani et al. has a 0.88 sensitivity and

a 0.78 AUC, but a specificity of only 0.36. Some of previous models can outperform ours

because our study population contains infants with only clinicians suspicion but not blood

culture test ordered, and it is more difficult to predict definite and suspicious sepsis than

definite sepsis alone. A comparison of the results of six models including ours is provided

in Table. 5.9.

Table 5.9: Best performance of six models

Model author Sensitivity Specificity AUC Precision
Griffin 2003[101] N/A N/A 0.77 N/A
Griffin 2005[104] N/A N/A 0.82 N/A

Okascharoe 2005[194] N/A N/A 0.85 N/A
Singh 2003[195] 0.83 0.32 N/A 0.65
Mani 2014[196] 0.88 0.36 0.78 N/A

Proposed Model 0.88 0.84 0.89 0.74

Due to the nature of the CNN structure, the bigger the image size is, the more informa-

tion it contains, but limited by the size of clinical data we collected, we cannot ensure an

adequate number of images if we set the image size too big. Since the bedside monitors are

not fully automated with intelligence, they are operated by nurses on duty most of the time,

so it is inevitable to bring extra noise due to human errors. Some of these noise including

missing, scrambled, or even incorrect data are impossible to eliminate because not every de-
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tailed record is maintained, making the prediction much more difficult. The other potential

issue may be the transformation procedure from data chunks to images. The transformation

proposed in this paper is a direct map from the HR, RR and SpO2 to RGB channels, because

the differences among pixels are not as significant as in an actual image, CNN may not be

able to extract the appropriate features.

The proposed GASF scheme did not achieve a promising result as expected, which is

believed due to the limitation of data size incorporated by the algorithm. Even use the same

size of 32×32, the GASF-based model was less effective because the images were generated

from only 32 data points compared to 1024 data points in simple transformation case, hence

were less informative.

Furthermore, the synthetic images do not contain common patterns that widely exist in

normal images which may explain why pre-trained AlexNet had an excellent performance

in the ImageNet competition but not as good in our scenario. However, our work has pro-

vided a new idea of transforming the time series data into 2-D images, and this idea of ap-

plying CNN in the task of predicting sepsis and the transformation of data into 2-D images

are still a promising way to research on.

5.5 Reflection

In this section, we run through the entire workflow from data collection to developing

the predictive model, targeting neonatal sepsis. During the process, some problems emerged

nevertheless. The data collection program - eDataGrabber - was the first issue preventing

us from accumulating large amounts of clinical data from the hospital. It was designed to

capture data from a single patient within a short period of time, hence not very effective

when dealing with all the patients from 32 cots in the entire NICU 24/7. Currently, there is

no way to improve it unless Dräger updates the program with a more versatile mechanism.

Almost every step in the workflow requires manual operations despite the eDataGrabber

software. Its limited functions also add extra complexity to the workflow, e.g. every thread

can only connect to one cot so multiple threads must be maintained simultaneously. The

imperfection of the tools and workflow leads to an outcome that the quality and quantity

of the collected NICU data is not as good as we expected, hence it became necessary to

introduce datasets from other sources.

When pre-processing the raw data, we noticed that like most clinical data, it is extremely
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imbalanced with respect to the number of sepsis and normal records/patients. Without

proper handling, the overwhelming normal cases would trick the models into making neg-

ative predictions in order to achieve the highest accuracy. We simply downsampled the

normal records to shrink their size to the same level as sepsis records’ to achieve the rebal-

ance. Upsampling is another option to handle the imbalance problem, but not in our case

since the most common SMOTE-based method is only suitable for time-independent data

while our data is time series. However, downsampling brought the issue of significant loss

of data, especially when the total amount is insufficient. In fact, after downsampling, only

2.5% of the entire dataset was used while leaving the rest 97.5% wasted. We believe that is

one of the reasons that our models do not have outstanding performance.

We also found that the available features are much less than we expected, which makes

all of them valuable, considering the numbers of monitored vital signs. It is necessary to not

discard any of them when they were analysed during the feature selection step to keep our

training samples with sufficient dimensions.

Finally, our proposed GASF-based transformation from time series to images did not

achieve satisfactory performance in practice. Experiment results showed that it did not out-

perform the best baseline model, i.e. Random Forest. We tried to add dilation to the filters so

they can capture patterns across longer intervals and concatenate multiple filters with dif-

ferent sizes of dilation, but it did not contribute much to the improvement. We assume that

it was attributed to the data used to generate images. Even the generated images have the

same size as those transformed by simple transformation methods, the GASF-based method

used much fewer data from the raw dataset, hence less information in the images. Other

CNN methodologies could be tried in the future to explore the potential, and hopefully ex-

ploiting the preserved time relations in the GASF generated image can lead to a more robust

model and a better performance.

5.6 Chapter Summary

In this chapter, we implemented the action taking, evaluating and specifying learning

steps in the Action Research framework to predict neonatal sepsis. Specifically, we divided

the implementation into three cycles. During the first cycle, datasets were collected and pre-

pared. In the second cycle, a more detailed analysis and feature selection were performed.

To clarify the priority of each vital sign during their diagnosis procedures, we consulted
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clinicians to clarify the risk factors identified for sepsis, followed by three other methods.

Fundamentally, we analysed the relationship between the features in order to retain the im-

portant ones and to eliminate the redundant ones. Lastly, in cycle 3, we developed a set of

classical machine learning models as baselines and trained a CNN to perform the prediction

task after we transformed the time series medical records into 2D images using two different

methods. The outcomes were summarised and compared as the evaluation and reflection

specified in the Action Research framework.

We have answered RQ-4 by checking a series of classic machine learning models, and

answered RQ-5 by developing a model based on converting time series data to images. Ad-

ditionally, features selection step identified the features that are most related to the neonatal

sepsis prediction task which answered RQ-2. Similar experiments will be done in the next

chapter on adult patients datasets.
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Chapter 6

Framework Implementation - General Sepsis Prediction

In the absence of a comprehensive dataset from Monash Children’s Hospital, we ex-

plored two public datasets available on the Internet, and widened the scope of the study

from neonatal sepsis to general sepsis, including sepsis occurring in adults. In this chapter,

we will elaborate on our work to predict sepsis using public datasets. We did not embed our-

selves in the hospital since no data collection procedure was required, and Action Research

was therefore not strictly applicable in this instance. The AR framework was, however, still

followed in other areas such as the iterative phases of planning, evaluation and reflection.

The experiment environment was the same as in Chapter 5.

6.1 Cycle One

6.1.1 Data Sources

To enrich our research datasets, we also collect sepsis-related data from two publicly

available sources: one is the PhysioNet Challenge 2019 whose topic happened to be ”Early

Prediction of Sepsis from Clinical Data”, another one is the very popular MIMIC III database

among the research community. Compared to collecting real-time onsite from NICU in the

hospital, it is much easier to download the public datasets. For the PhysioNet dataset, all

the variables of each patient have been packed into a CSV file, we simply downloaded more

than 40,000 files provided by the competition host. However, to obtain access to MIMIC

III dataset, we have to complete a CITI Data or Specimens Only Research online course to

make sure that we know how to deal with the patient data properly. As stated in previous

chapters, the MIMIC III datasets consist of several tables, and we have to select the variables

we were interested in by joint query.

6.1.2 Reflection

The purpose of introducing public datasets is to extend our research from neonatal sepsis

to general sepsis which is broader by definition. Meanwhile, the extended work could sup-
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plement the work in the previous chapter, providing an opportunity to verify our models

and frameworks in various use cases. The open-access datasets have sufficient sizes to train

a more complex model, and they were well formatted. The issue of two public datasets we

have possessed is the difference of available attributes in each of them, so feature synchro-

nisation must be done.

6.2 Cycle Two

In this cycle the datasets were analysed just like Cycle 2 of neonatal sepsis case.

6.2.1 Domain Knowledge

Before the technical methods applied, we resorted to clinicians’ expertise. Unlike NICU

dataset, public datasets provide many variables. From clinicians’ experience, some attributes

have higher priorities to be examined when suspicious symptoms were found. Furthermore,

the literature showed that some variables could be used as a key to indicate infection.

C-reactive protein (CRP) may be one of the most extensively studied and most frequently

used parameters for the diagnosis of neonatal sepsis [197]. Despite known associations with

other non-infectious complications, a CRP level of >10 mg/L does appear to be a highly

accurate marker for infection with specificity values consistently >90% being reported. CRP

is suitable for both EOS and LOS, and the sensitivity improves with serial measurements

[198, 199]. The advantage in diagnosis accuracy is achieved when serial CRP are evaluated

in conjunction with other parameters like haematological indices, cytokines, and cell sur-

face markers [200, 201]. Note that preterm infants have lower CRP baseline values and a

lower rise in response to infection, and some other non-infectious conditions may cause an

elevation of CRP levels as well [21]. Because it takes 10-12 hours to change significantly

after the onset of infection, the sensitivity of CRP is low during the early phase of sepsis.

The specificity and positive predictive value of CRP ranges from 93%-100% [202]. Thus,

CRP can be considered as a ”specific” but ”late” marker of neonatal infection. Due to non-

infectious CRP elevations, the influence of gestational age and birth weight, and the lack of

reliable age-specific reference values, the use of CRP requires further research to evolve as

an ideal marker. Another test that almost every sepsis-like patient will do is the complete

blood count (CBC) test, also called the Full Blood Examination (FBE). A large number of

studies have been conducted to evaluate the use of CBC for the diagnosis of neonatal sepsis.
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Low white blood counts (WBC) and absolute neutrophil counts (ANC), as well as a high

immature-to-total neutrophil ratio (IT ratio) are associated with a high risk of getting in-

fected [16]. In a large retrospective research, culture-proven EOS was proved to be related to

low WBC and ANC, and the authors believed that it is worth postponing the antibiotic ther-

apy until the result of CBC test come out [203]. In the context of LOS, another study showed

the connection between WBC, ANC, IT ratio plus absolute band counts (ABC) and infection

[16]. However, haematological parameters may perform well in the diagnosis of neonatal

sepsis though, the clinical utility would probably lie in their combination with other bio-

chemical markers like neutrophil CD64 (nCD64) [204]. More recently, advanced white blood

cell indices such as mean neutrophil volume (MNV), mean monocyte volume (MMV), con-

ductivity (MNC; MMC), scattering (MNS) (MMS), and distribution width (NDW; MDW)

are emerging as possible additional markers of NS, and they may be useful in the differen-

tial diagnosis of neonatal sepsis [205], but both sensitivity and specificity were noted lower

compared with other parameters such as CRP indicating these markers could only be the

adjunctive measures. On the other side, research showed that haematological components

could also be effective for identifying healthy newborns rather than distinguishing infected

ones [24].

A lot of work has shown that Heart rate variability (HRV) could be a potential method

of early detection of infants with neonatal sepsis and necrotising enterocolitis (NEC) prior

to the onset of the systemic inflammatory response [99–102, 206–210]. Except for HRV, mea-

surement of core-peripheral temperature difference showed promise as a predictor of LOS.

Research demonstrated that a temperature difference 2.3 led to an overall accuracy of 90.9%

in the identification of LOS, and a specificity of 100% if the difference reached ≥3.2◦C [211].

Another recent study has replicated these findings using continuous monitoring of axillary

and sole temperature differences and verified the feasibility of using temperature difference

as another early warning signal of NS [212].

6.2.2 Feature Selection

Variance-based selection

Compared to the NICU dataset, it is another story when it comes to the PhysioNet

dataset, see Fig. 6.1. We can see three features with extremely high variance close to 0.25,

among which unit1 and unit2 are just administrative identifiers for MICU and SICU units,
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Figure 6.1: The variances of features in PhysioNet Challenge datasets.

Figure 6.2: The variances of features in MIMIC III Challenge datasets.
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they do not hold any information related to sepsis itself, and gender is roughly 50/50 dis-

tributed which we can infer from the value of 0.25. We listed the variances of the rest features

in Table 6.1 for further analysis. Most values are between 0.002 and 0.01, so any feature be-

low 0.002 was removed. In Fig. 6.2 we can clearly see that in MIMIC III dataset, approximate

half of the feature set have a very low variance near zero. The same threshold as in Phys-

ioNet Dataset was also applicable here to remove features with extremely small variance.

Table 6.1: Variances of features in PhysioNet datasets apart from the highest three. Abbrevi-
ations: refer to Table. 2.4

Feature Variance Feature Variance
HR 0.0044 Creatinine 0.0015
O2Sat 0.0013 Bilirubin direct 0.0097
Temp 0.0007 Glucose 0.0028
SBP 0.0069 Lactate 0.0067
MAP 0.0034 Magnesium 0.0017
DBP 0.0025 Phosphate 0.0059
Resp 0.0027 Potassium 0.0006
EtCO2 0.0078 Bilirubin total 0.0076
BaseExcess 0.0011 TroponinI 0.0032
HCO3 0.0063 Hct 0.0069
FiO2 0.0 Hgb 0.0044
pH 0.0032 PTT 0.0122
PaCO2 0.0106 WBC 0.0003
SaO2 0.02 Fibrinogen 0.0079
AST 0.0074 Platelets 0.002
BUN 0.0056 Age 0.0363
Alkalinephos 0.001 HospAdmTime 0.0009
Calcium 0.0082 ICULOS 0.0075
Chloride 0.0024

Correlation Analysis

We did Pearson correlation and distance correlation tests in two public datasets, the situ-

ation is quite similar to NICU dataset, see Table. 6.3 to 6.5. In the PhysioNet dataset, features

are linearly independent according to the PCCs and p-values. Only one pair stands out, with

a relatively high PCC of -0.2656, indicating a slight linear relation between diastolic arterial

blood pressure and age. When examining the p-value we found that SaO2 has a 0.5155 p-

value against ICU length of stay so the null hypothesis was supported. Large p-values also

occurred in the features of respiratory rate and SaO2 in MIMIC III dataset.

The DCC showed that most pairs of features are not very closely related, just like what

PCC values indicated. However, we discovered something not covered by PCC that those
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Table 6.2: Pearson correlation coefficient of each feature in PhysioNet Challenge dataset.
Abbreviations: refer to Table. 2.4

Age ICULOS HR Resp SaO2 SBP DBP
Age 1.0 0.0105 -0.1573 0.0326 -0.0949 0.0245 -0.2656
ICULOS 0.0105 1.0 0.0454 0.098 -0.0028 0.0563 0.0125
HR -0.1573 0.0454 1.0 0.226 -0.0107 -0.0337 0.1294
Resp 0.0326 0.098 0.226 1.0 -0.0236 0.0459 0.0619
SaO2 -0.0949 -0.0028 -0.0107 -0.0236 1.0 0.106 0.0647
SBP 0.0245 0.0563 -0.0337 0.0459 0.106 1.0 0.5398
DBP -0.2656 0.0125 0.1294 0.0619 0.0647 0.5398 1.0

Table 6.3: p-value of each feature in PhysioNet Challenge dataset. Abbreviations: refer to
Table. 2.4

Age ICULOS HR Resp SaO2 SBP DBP
Age 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ICULOS 0.0 0.0 0.0 0.0 0.5155 0.0 0.0
HR 0.0 0.0 0.0 0.0 0.0156 0.0 0.0
Resp 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SaO2 0.0 0.5155 0.0156 0.0 0.0 0.0 0.0
SBP 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DBP 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.4: Pearson correlation coefficient of each feature in MIMIC III dataset. Abbreviations:
refer to Table. 2.4

AGE ICULOS Heart Rate RR SaO2 ABP-S ABP-D ABP-M
AGE 1.0 -0.3184 -0.0073 -0.0003 0.0005 -0.0074 -0.0209 -0.0326
ICULOS -0.3184 1.0 0.0031 0.0005 -0.0 -0.0024 -0.0013 -0.0021
Heart Rate -0.0073 0.0031 1.0 0.1021 -0.0002 -0.0192 0.0148 0.0196
RR -0.0003 0.0005 0.1021 1.0 0.0002 0.0167 0.0048 0.0121
SaO2 0.0005 -0.0 -0.0002 0.0002 1.0 0.0015 0.0002 0.0031
ABP-S -0.0074 -0.0024 -0.0192 0.0167 0.0015 1.0 0.0136 0.0528
ABP-D -0.0209 -0.0013 0.0148 0.0048 0.0002 0.0136 1.0 0.0135
ABP-M -0.0326 -0.0021 0.0196 0.0121 0.0031 0.0528 0.0135 1.0

Table 6.5: p-value of PCC of each feature in MIMIC III datasets. Abbreviations: refer to
Table. 2.4

AGE ICULOS Heart Rate RR SaO2 ABP-S ABP-D ABP-M
AGE 0.0 0.0 0.0 0.5041 0.2988 0.0 0.0 0.0
ICULOS 0.0 0.0 0.0 0.226 0.9702 0.0 0.0245 0.0002
Heart Rate 0.0 0.0 0.0 0.0 0.6709 0.0 0.0 0.0
RR 0.5041 0.226 0.0 0.0 0.7206 0.0 0.0 0.0
SaO2 0.2988 0.9702 0.6709 0.7206 0.0 0.1171 0.8305 0.0014
ABP-S 0.0 0.0 0.0 0.0 0.1171 0.0 0.0 0.0
ABP-D 0.0 0.0245 0.0 0.0 0.8305 0.0 0.0 0.0
ABP-M 0.0 0.0002 0.0 0.0 0.0014 0.0 0.0 0.0
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have biologically connected naturally, such as the heart rate and pulse, systolic, diastolic

and mean blood pressure, have mild correlation measured by a DCC of about 0.5.

Table 6.6: Distance correlation coefficient of feature pairs in PhysioNet Challenge dataset.
Abbreviations: refer to Table. 2.4

Age ICULOS HR Resp SaO2 SBP DBP
Age 1.0 0.0243 0.1472 0.0452 0.0957 0.0322 0.2706
ICULOS 0.0243 1.0 0.0455 0.0973 0.0655 0.0629 0.0256
HR 0.1472 0.0455 1.0 0.2096 0.0274 0.0343 0.1209
Resp 0.0452 0.0973 0.2096 1.0 0.0665 0.0493 0.0628
SaO2 0.0957 0.0655 0.0274 0.0665 1.0 0.1 0.065
SBP 0.0322 0.0629 0.0343 0.0493 0.1 1.0 0.5082
DBP 0.2706 0.0256 0.1209 0.0628 0.065 0.5082 1.0

Table 6.7: Distance correlation coefficient of feature pairs in MIMIC III dataset. Abbrevia-
tions: refer to Table. 2.4

AGE ICULOS Heart Rate RR SaO2 ABP-S ABP-D ABP-M
AGE 1.0 0.3261 0.7924 0.0425 0.0167 0.0228 0.2959 0.1564
ICULOS 0.3261 1.0 0.3739 0.1513 0.0226 0.0489 0.0368 0.0351
Heart Rate 0.7924 0.3739 1.0 0.2425 0.0505 0.0668 0.1967 0.0887
RR 0.0425 0.1513 0.2425 1.0 0.06 0.0573 0.0556 0.059
SaO2 0.0167 0.0226 0.0505 0.06 1.0 0.0347 0.0201 0.0379
ABP-S 0.0228 0.0489 0.0668 0.0573 0.0347 1.0 0.5401 0.7856
ABP-D 0.2959 0.0368 0.1967 0.0556 0.0201 0.5401 1.0 0.8712
ABP-M 0.1564 0.0351 0.0887 0.059 0.0379 0.7856 0.8712 1.0

Tree-based methods

Fig. 6.3 and 6.4 demonstrated the feature importance in PhysioNet Challenge dataset and

MIMIC III dataset. Both datasets have a similar distribution in the diagrams. Although the

specific order might be slightly different, we could still identify that the most important ones

are age, length of stay, heart rate and blood saturation in both datasets. Therefore during

the training phase in the next cycle we should focus more on those features with higher

importance and even ignore some of the features having extremely small importance.

6.2.3 Reflection

In cycle two, we performed some analysis on the features to figure out the effectiveness

of each of them. Advice from professionals were referred, accompanied by three types of

feature selection methods during the process. Unfortunately, measurements that clinicians

are most concerned with are mostly lab test results like C-reactive protein, blood count, or
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Figure 6.3: Features importance of features in PhysioNet Challenge dataset.

Figure 6.4: Features importance of features in MIMIC III dataset.
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blood culture test, but they have to wait until the results come out which is not the preferable

case. With the help of three technical approaches we can examine other measurements like

demographic characteristics and vital signs which are easier to get but not paid as much

attention as those lab results.

Setting a threshold of variance for each feature and removing those below it is a simple

way to do a primitive check on the effectiveness. It is not the most accurate method to dis-

tinguish unrelated features, but at least we can have a big picture on them and remove those

with zero variance or extremely small variance since they basically do not change for both

sepsis and normal cases, which means not as discriminative as others. Then we checked the

Pearson Correlation Coefficient - a metric that measures linear relations between variables.

The result showed that there was no significant linear correlation among chosen features.

Note that some of the PCC values like the one between SaO2 and ICULOS in the PhysioNet

Challenge dataset or between AGE and RR in MIMIC III are approximately zero which indi-

cates no linear correlation, but their corresponding calculated probabilities p are as high as

0.5, so their PCCs are not supposed to be accepted. Pearson Correlation Coefficient has such

a limitation that in some cases even the PCC value is zero we can not determine that there

is no linear correlation there. To supplement PCC, we also examined Distance Correlation

Coefficient for corroboration. DCC works based on the distance covariance which is not

limited to a linear relation. As a result, numbers proved that no significant relations exist

among features except for the set of blood pressures (ABP-S, ABP-D and ABP-M) that inher-

ently connected to each other. In addition to various correlation, a typical embedded feature

selection method, the tree-based method, was employed. Figures have clearly depicted the

importance of each feature, and we found that based on xgboost two datasets have a similar

distribution in terms of features importance and same features of top importance.

The purpose of this cycle is to analyse the features in the datasets and select informative

and discriminative ones while removing redundant features. By multiple analysis methods,

we kept eight and seven features in MIMIMC dataset and PhysioNet dataset respectively

due to the fact that mean arterial blood pressure is not available in the latter one, see Table

6.6 and 6.7.
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6.3 Cycle Three

6.3.1 Deep Learning 2 - LSTM

We proposed the second deep learning method which is to combine CNN and LSTM

together to build a hybrid model in this section. This model is established based on the

encoder-decoder structure. Since our training samples (medical records from patients) could

be treated as multi-variate time series data, LSTM is a suitable choice to try as the decoder

due to its great power of dealing with temporal information and variant length input data.

As to the encoder, 1d-Conv layer as well as fully-connected layer could be used as encoders

to extract useful features from multi-variate records.

Preprocessing

Data filtering In order to improve the performance of our model, before training some

preprocessing steps are necessary. First, to mitigate the impact caused by imbalanced data,

we filtered the raw dataset. Since patient records are sequential, consecutive records from

one patient should be treated as one data entry. In other words, the data filtering should be

done patient-wise rather than row-wise. To re-balance data patient-wise, we down-sampled

the patients with high sepsis-healthy records ratio, so after trial and error we set the thresh-

old to 0 which means anyone who has even only one single data entry labelled as sepsis will

be preserved, and for those totally healthy patients, their records are discarded. Setting a

higher threshold will cause a dramatic drop in the number of data samples due to the im-

balanced nature of the given dataset. To ensure data of both healthy and sepsis patients are

trained, we add extra 500 healthy patients into the filtered dataset.

Imputation The next step of preprocessing is to impute the missing data. As mentioned,

nearly 70% of the total data is not available. If normal routines are followed, most features

will be dropped which will shrink the data notably, so we apply multiple strategies to fill

the missing value. For continuous data like vital signs, we applied multiple interpolation

approaches: linear interpolation was used for features that have at least two values, the

nearest values were filled in the blanks if there is only one valid data among all records,

and finally, if the feature has no valid value, the corresponding mean of all the records was

calculated and placed. On the other hand, for sparse data that have a high absence ratio, lab

test results, for instance, we converted them into categorical data based on the normal range.
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Table. 6.8 shows the normal ranges of all the lab test indexes. Category 0 was assigned in

the case of no valid data provided, and categories 1,2 and 3 were assigned when the value

is lower, higher or just within the normal range, respectively.

Table 6.8: Normal ranges for lab test results.

Name Range Unit
Alkalinephos [213] 44 - 147 IU/L
BaseExcess [214] -4 - +2 mmol/L
Bilirubin direct [215] 0.0 - 0.3 mg/dL
Bilirubin total [215] 0.3 - 1.2 mg/dL
Calcium [216] 2.2 - 2.6 mg/dL
Chloride [217] 96 - 106 mmol/L
Creatinine [216] 0.6 - 1.3 mg/dL
Fibrinogen [218] 200 - 400 mg/dL
Glucose [219] 72 - 135 mg/dL
HCO3 [220] 23 - 30 mmol/L
Hct [221] 35.5 - 44.9 %
Hgb [222] 12.0 - 17.5 g/dL
Lactate [223] 4.5 - 19.8 mg/dL
Magnesium [224] 0.85 - 1.10 mmol/L
p/H [214] 7.35 - 7.45 N/A
PaCO2 [214] 35 - 45 mmHg
Phosphate [225] 2.8 - 4.5 mg/dL
Platelets [226] 150 - 400 count*103/µL
Potassium [227] 3.6 - 5.2 mmol/L
PTT [228] 60 - 70 seconds
SaO2 [214] 95 - 100 %
Troponin [229] 0.00 - 0.04 ng/mL
WBC [230] 4.5 - 11 count*103/µL

1-d Convolutional Neural Network

Convolutional Neural Network was first created in 1989 in [231]. Due to its outstand-

ing performance, it has drawn more and more attention and kept being used and improved

in past decades. The key concept in a CNN is the convolution operation between a kernel

(filter) and input data. One kernel will slide throughout the input data while doing convo-

lution and this kind of operation has two advantages: first, unlike normal neural networks,

weights are shared in CNN which makes it much easier to compute; second, the moving

kernel facilitates the extraction of features in the local area.

Normally, when applied to image processing task, kernels of a CNN is 2d, and it slides

from the top-left all the way down to the bottom-right. Since the patient record is just a row

of 40 numerical values at a certain time point, we squeeze the kernel to 1d and slide it from

the start to the end during convolution operation. Suppose the 1d kernel is f = {f1, f2, ...fm}
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where m is the length of the kernel, input data d = {d1, d2, ..., dn}, the convolutional opera-

tion will produce the output as:

Oi = ϕ(
m!

j=1

fjdi+j−1 + bi) (6.1)

where ϕ(.) is one of the nonlinear activation function like ReLu or Sigmoid function. Typ-

ically, a CNN has k kernels, each of which represents one type of feature extracted by the

CNN. k kernels will produce k channels of outputs, and in this way raw features get ex-

panded. Dropout is another technique often used in CNN. It simply drops some of the

output randomly at a given ratio, and set the value to zero. By dropping some of the output

values, it can effectively prevent over-fitting.

Recurrent Neural Network with LSTM units

A Recurrent Neural Network (RNN) is a neural network repeated over time. In particu-

lar, an RNN allows self-loop connections and shared parameters across different time steps.

While a feedforward neural network maps an input vector into an output vector, an RNN

maps a sequence into a sequence. The recurrent connections allow an RNN to memorise

previous inputs and therefore capture longer dependencies. Since it was invented in the

1980s, it has become a powerful tool in time series data analysis, which makes it suitable in

our scenario. In the traditional RNN model, given sequence data x = (x1, x2, ..., xT ), RNN

updates its recurrent hidden state ht by:

ht = ϕ(Wihxt +Whhht−1 + bh) (6.2)

where xt and ht are data values and the recurrent hidden state at time step t, respectively,

and ϕ(.) represents the nonlinear activation function of a hidden layer, such as a sigmoid or

hyperbolic tangent. t = 1 to T, Wih denotes the input-hidden weight vector, Whh represents

the weight matrix of the hidden layer, and bn is the hidden layer bias vector.

Long Short-Term Memory (LSTM) is short for RNN with LSTM hidden units, a modified

version of RNN, to address the problem of longterm dependencies. Unlike traditional RNN

which simply applies a transformation to a weighted linear sum of inputs, LSTM adds a

linear self-loop memory cell which allows gradients to pass through longer sequences. The

memory cell is gated to moderate the amount of information flow into or from the cell, and
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its activation is computed as:

ht = otϕ(ct) (6.3)

where ot is the output gate that determines the portion of the memory cell content in time

step t (ct) to be exposed at the next time step. The recursive equation for updating ot is:

ot = σ(Woixt +Wohht−1 +Wocct−1 + bo) (6.4)

where σ(.) is the logistic sigmoid function, Woh is the hidden layer-output weight matrix,

and Woc is the memory-output weight matrix. The memory cell, ct, is updated by adding

new content, c̄t, and discarding part of the present memory:

ct = it ⊙ c̄t + ft ⊙ ct−1 (6.5)

where ⊙ is an element-wise multiplication and c̄t is calculated as:

c̄t = ϕ(Wcixt +Wctht−1 + bc) (6.6)

In this equation, the W term represents weight matrices; e.g., Wci is the input-memory

weight matrix. Input gate i, and forget gate f determine the degree that new information is

to be added and current information is to be removed, respectively, as follows:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi);

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf )
(6.7)

Proposed Structure

Our proposed model is based on the encoder-decoder architecture which has two parts:

1d-Convolutional layers as the feature extraction (encoder) and LSTM as the sequential pre-

diction (decoder). For each row of data, two stacked 1d Convolutional layers are applied

to extract features at different scales. It is implemented by adding two kernels of different

sizes in a hierarchical structure - kernels in the lower layer find features in smaller granu-

larity while kernels in the higher layer do the larger granularity features. Suppose the size

of the kernel is l, the length of output the kernel could produce is Lo = 40 − l + 1 without

padding, but to ensure the features lies at the beginning and end of a row are not neglected,

we pad (l − 1)/2 zeros at both ends so that the length of output remains the same as the
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input. Following each CNN layer is a dropout layer that randomly drops half of the data to

prevent overfitting to some degree.

Two stacked LSTM layers are used to accept features passed from 1d-CNNs and calculate

a label indicating if the sepsis onset will happen within the next six hours at each time step

for any patients. Meanwhile, because of LSTM’s self-loop structure, it can perfectly handle

the various-length data by adjusting how many times it loops. As will be mentioned in the

data analysis section, the length of records for each patient varies from one to another, mak-

ing other models incapable of handling except for bringing in sliding windows. However,

sliding windows will weaken the relations in the time dimension due to the isolation of time

series data. The schema of the entire model is shown in Fig. 6.5.

Figure 6.5: The scheme of proposed CNN+LSTM model.

Performance Evaluation

We designed a set of experiments to evaluate the performance of LSTM in our datasets,

listed below:

1. A hybrid model including CNN encoder and one LSTM layer decoder.

2. A hybrid model including CNN encoder and two LSTM layers decoder.

3. A hybrid model including FC encoder and two LSTM layers decoder.

4. A CNN model on 32×32 GASF-transformed images.

5. A Simple Multilayer Perceptron Model.

For each of the above settings, we examined their accuracy and AUC and summarised them

in Table. 6.9 and Figure. 6.6. From the comparison of setting 1 and 2, we found that adding

147



an extra layer of LSTM did not significantly improve the predictive performance, as both

accuracy and AUC were at the same level. When replacing the CNN encoder with a fully-

connected one, both measurements got boosted to an optimal value. The better performance

of FC encoder indicates it is able to extract more effective features from our data than the

CNN encoder. Since the filter of CNN lies across feature dimensions, the 1d-Conv layer

tends to capture patterns across neighbouring features, but in fact, the relation between fea-

tures is not tight. Comparing to LSTM models, because the MLP is incapable of processing

temporal information, it showed a poorer score, proving that our LSTM works well deal-

ing with the underlying temporal information in the datasets. Also, we assume the reason

GASF-based model achieved a much better performance than it did in NICU data is about

the data size. The PhysioNet dataset has larger numbers of both samples and features, and

with the abundant training dataset and the capability of preserving the original temporal re-

lations in the synthetic images, GASF-based model also performed well in this experiment.

Table 6.9: Performance comparison between five settings. Abbreviations: LSTM - long short-
term meomory, FC - fully connected, MLP - multi-layer perceptron, GASF - gramian angular
summation field

No. Setting Accuracy AUC
1 Single LSTM 0.79 0.85
2 Stacked LSTM 0.82 0.84
3 FC + LSTM 0.87 0.95
4 MLP baseline 0.52 0.53
5 GASF baseline 0.78 0.86

6.3.2 Multi-Instance Learning

Multiple instance learning (MIL) is a variation of supervised learning where data in-

stances are aggregated randomly or in a certain way as bags, and a single class label is

assigned to a bag instead of individual instances. A bag containing at least one positive

instance will be labelled as sepsis, and a bag without any positive instance is labelled as

normal. In our approach, we consider adjacent data samples from one patient as bags and

every single data sample in it as an instance in multi-instance learning, and automatically

learn a ranking model that predicts sepsis scores for sepsis patients. The idea behind the

model is to sacrifice some time we can predict the onset in advance, in exchange for better

classification accuracy.

To facilitate the ranking, we build a CNN to calculate a sepsis score for each instance, but

for each bag, we only need to consider the instance which has the highest score. The data
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Figure 6.6: Performance comparison between five settings.

sample corresponding to the highest sepsis score in the positive bag is most likely to be the

true positive, while the instance corresponding to the highest sepsis score in the negative

bag is the one that looks most similar to a sepsis sample but actually is a normal instance.

This negative instance is considered as a hard instance that may generate a false alarm in

sepsis detection. The flow diagram of the proposed sepsis detection approach can be seen

in Fig. 6.7.

Figure 6.7: Flow diagram of proposed multi-instance learning approach.

Customised Loss Function

In order to implement the ranking model, we design a set of new ranking loss function.

One can optimise the customised hinge loss function with respect to the maximum scored
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instance in each bag, like Eq. 6.8

min
w

[
1

z

z!

j=1

max(0, 1− YBj
(max
i∈Bj

(w · φ(xi))− b))] + ||w||2, (6.8)

where φ(x) denote the feature extracted by the Convolutional layer, b is bias, w is the classi-

fier to be learned, YBj
denotes bag-level label, z is the total number of bags. In our proposed

approach, we pose sepsis detection as a regression problem. We want the sepsis bags to

have higher sepsis scores than the normal ones, so our ranking loss function is given as Eq.

6.9.

l(Bs, Bn) = max(0, 1−max
i∈Bs

f(Di
s) + max

i∈Bn

f(Di
n)) + λ

n−1!

i

(f(Di
s)− f(Di+1

s ))2 + ||w||2 (6.9)

where Ds and Dn means the sepsis and normal data sample respectively, f() is the sepsis

score, w is the set of model parameters and the squared sum of neighbouring score in the end

is used to control the smoothness of the score, since we assume the fact that the neighbouring

scores should have similar values.

Data Preparation

Data preprocessing procedures similar to our previous experiments were applied in the

PhysioNet dataset, e.g. features-wise normalisation and data re-balance between sepsis and

normal cases. Additionally, an extra step is required to bags aggregation for every patient.

The bag size was carefully chosen which was set to 4, after multiple experiment comparisons

have been made. In fact, we found that bag size has little influence as long as it stays within

a reasonable range. A larger size leads to a smaller number of bag samples and sacrifices a

longer time that we can make a prediction before the onset.

Table 6.10: Comparison of performance between multi-instance learning (MIL) and baseline
(RF) models.

Model Name Accuracy Precision Recall Weighted F1 AUC
RF 0.70 0.71 0.68 0.68 0.77

MIL 0.75 0.76 0.74 0.75 0.80

Performance Evaluation
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Figure 6.8: Predicted score distribution.

Figure 6.9: MIL network struc-
ture.

We set up a multi-layer neural network to calculate the

proposed sepsis score as displayed in Fig. 6.9. Two 1d-

Conv layers were used to extract features from a single

patient record, followed by two fully-connected layers as

the predictor. At last, we used the sigmoid function to

scale the output score to the range of [0, 1]. So scores closer

to 1 means a higher probability that this record belongs to

a patient who is going to have a sepsis onset in the next

six hours.

On the Physionet dataset, our multi-instance learning

model achieved an accuracy of 0.75 and an AUC of 0.80,

and compared to our baseline model RF which was the

best model on the dataset collected from the NICU, they

were 7.1% and 3.9% higher, respectively. Other compari-

son metrics are shown in Table. 6.10 below. We also noted

down the predicted scores along the training course, and

from the histogram (Fig. 6.8) it is clear to see that scores

gathered around the value 0.5 at the beginning and po-

larised as the training course went on.
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6.3.3 Reflection

We explored and evaluated two approaches to achieve sepsis prediction in this section.

In the first method, we incorporated the popular LSTM to deal with the temporal informa-

tion in the medical time series and had two findings. However, our proposed CNN-LSTM

model did not achieve optimal performance. Instead, the FC encoder outperformed all other

candidatures because cross-feature patterns are weak which is not the most suitable case for

1d-CNN. Also, we tested GASF-based model proposed in the last chapter and found it per-

formed much better in PhysioNet dataset than it in NICU dataset due to the larger scale of

training samples and its capability of preserving original temporal relation. Finally, we ap-

plied the multi-instance learning approach based on the trade-off between how long before

the onset we can make predictions and how accurate our predictions are. When four contin-

uous records are packed as a bag, if any record in it is classified as sepsis the label of the bag

is set to sepsis. This could be used to improve the accuracy, but at the cost of four records

every time a prediction is made. The performance of all the models we have explored (in-

cluding those for neonatal sepsis detection in last chapter) are listed below in Table. 6.11.

The optimal value in each measurement is highlighted. The model comprising FC encoder

and LSTM decoder achieved the best performance among all the candidate models.

6.4 Chapter Summary

This chapter followed the workflow proposed in the unified sepsis detection framework

to predict sepsis patient outcome based on two public datasets exploring the answers of

RQ-3, RQ-5 and RQ-6 on adult patients. We implemented three cycles, as we did when pre-

dicting neonatal sepsis, which included collecting data, analysing data, and training data.

We did not collect data in real-time, instead, used two public datasets from the PhysioNet

Challenge 2019 and MIMIC III. Our feature analysis was performed to gain insights into

the data, but we left it up to the model since complicated models such as encoder-decoder

structures can automatically select features by training a series of weights. Finally, in cycle

3, we developed and refined two methods, an encoder-decoder structure and multi-instance

learning, in order to achieve the predetermined goal of predicting sepsis. In accordance with

the Action Research framework, the outcomes were summarised and compared. Analysing

their performance, as well as identifying the underlying reasons for their variance, we were

ultimately able to demonstrate the feasibility of predicting sepsis using AI-based models.
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Table 6.11: Summary of all the models we have explored. Abbreviations: LR - logistic regres-
sion, SVM - support vector machine, RF - random forest, GBDT - gradient boosting decision
tree, NN - neural network, CNN - convolutional neural network, GASF - gramian angular
summation field, LSTM - long short-term memory, FC - fully connected, MLP - multi layer
perceptron, MIL - multi instance learning

Type Model Name Accuracy Precision Recall Weighted F1 AUC

C
la

ss
ic

al
M

od
el

s

LR 0.50 0.51 0.44 0.47 0.50

SVM 0.54 0.61 0.20 0.30 0.53

RF 0.70 0.71 0.68 0.68 0.77

GBDT 0.64 0.66 0.56 0.60 0.64

NN 0.50 0.50 0.85 0.63 0.50

Im
ag

e
Tr

an
sf

or
m

at
io

n 16×16 + CNN 0.74 0.76 0.70 0.73 0.82

32×32 + CNN 0.80 0.74 0.88 0.80 0.89

16×16 + GASF 0.54 0.55 0.52 0.53 0.64

128×128 + GASF 0.61 0.66 0.59 0.63 0.66

227×227 + AlexNet 0.59 0.62 0.65 0.63 0.65

LS
TM

Single LSTM 0.79 0.79 0.79 0.79 0.85

Stacked LSTM 0.82 0.82 0.82 0.82 0.84

FC + LSTM 0.87 0.87 0.87 0.87 0.95

MLP baseline 0.52 0.52 0.52 0.52 0.53

GASF baseline 0.78 0.77 0.79 0.78 0.86

M
IL MIL 0.75 0.76 0.74 0.75 0.80
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Chapter 7

Conclusion and Discussion

Both adults and infants are susceptible to sepsis, particularly those in intensive care

wards. Sepsis contributes to a substantial portion of mortality and morbidity in these pa-

tients. Currently, the diagnosis of sepsis is based upon a blood culture test, which can take

up to two days. Clinicians tend to use antibiotics when they are waiting for test results in

order to treat the patient in time and reduce the probability of disease progression that may

result in patient deterioration. Overuse of antibiotics could lead to side effects for patients,

thereby a mechanism for early detection is urgently needed.

First, we carried out a systematic review of research conducted in these fields throughout

the last decade, revealing that most works including clinical trials were done from a medical

point of view, rather than from a technical perspective. In spite of the fact that machine

learning models were involved, only primitive ones were used. In addition, we noticed that

no complete workflow had been defined for the detection of sepsis using machine learning

methods. Our aim was to fill this gap by proposing a unified sepsis detection framework

that described all aspects of the workflow from data collection to performance evaluation of

machine learning based sepsis detection tasks for both adults and infants.

As part of this thesis, we used the action research methodology to guide and design a

three-cycle process to implement and improve the previously mentioned sepsis detection

framework. During the first cycle, data were collected from different sources, during the

second cycle, the available features were analysed, and in the third cycle, multiple models,

including classical machine learning as well as deep learning, were developed and evaluated

as predictors for imminent sepsis. In this study, we converted the time series into 2D colour

images, allowing us to take full advantage of the extraordinary capabilities of CNN and

construct a deep neural network with higher accuracy than classic models. Our hybrid

model combines CNN and RNN with LSTM units in order to exploit both the local feature

extraction capability of CNN and the long-term memory capacity of LSTMs. Moreover,

we utilised the multi-instance learning algorithm by combining a series of records into one

bag so that any record classified as sepsis will lead to the sepsis label of the entire bag.

The method was designed to balance time granularity and accuracy and, as long as the
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prediction is correct, it does not matter how many hours the onset occurs after the prediction.

7.1 Research Contributions

We have listed our contribution made by this thesis in Chapter 1, and this section will

provide a more detailed description of the contributions of the research.

7.1.1 Contribution to Knowledge

A systematic literature review (SLR) on existing status of sepsis detection

We did a systematic review on the state-of-the-art approaches of sepsis-related detection,

including neonatal sepsis, sepsis onset, septic shock and sepsis mortality in Chapter 2. The

literature review was performed under the classification framework guided by six questions

which gave a concise and clear concept of the current situation of research in this field.

Specifically, we examined the works in PhysioNet Challenge 2019 which held the topic of

”early detection of sepsis from clinical data”. The methods adopted by each team and their

outcomes were investigated and compared to provide information on the latest techniques

and methods that could facilitate AI-aided sepsis detection. We believe our review revealed

the trend of research in the related area, showed the latest cutting-edge techniques of sepsis

detection with clinical data, and provided valuable insights for researchers just entering this

domain.

A unified sepsis detection framework for both adults and infants

Another significant contribution of our research is the proposal of a unified sepsis detec-

tion framework, which defines the entire workflow of predicting sepsis with data-driven AI

models. We discussed what types of data is needed, how medical records should be sam-

pled and some other details in data collection. Then we specified procedures that have to be

followed before the model training. Clinical data has some unique characteristics that might

not exist in other forms of data, so it requires extra preprocessing steps like resampling at a

different frequency compared to normal data projects. Unlike a traditional machine learning

pipeline, this framework pre-defines the major variables fairly related to sepsis onset that re-

searchers should focus on, and the model training step elicited two schemes that need to be

considered when preparing data, one we call a data scheme, and another one is alignment

scheme. Finally, we proposed the four evaluation metrics specifically for sepsis detection.
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Our framework provides guidance for researchers new to the field of clinical data mining

to start their research. Meanwhile, it preserves generalisability to some extent that one can

easily implement a model from scratch just following our framework, and fine-tune the de-

tails according to individual cases which are also time sensitive medical events prediction

problems..

7.1.2 Contribution to practice

Exploiting the feasibility of incorporating raw data from ICU to facilitate sepsis predic-

tion

In chapter 5, raw data collected from NICU was used to predict the onset of neonatal

sepsis. On these datasets, we have tested five classic machine learning models. In hospitals

currently using rule-based sepsis diagnosis methods, live data would be temporarily stored

and discarded after 24 hours. With our proposed methods, real-time monitored vital signs

can be used to predict sepsis before it occurs, supporting clinicians’ decision-making by

incorporating them into their diagnosis workflow.

Application of multiple types of machine learning based models in predicting sepsis on-

set

On the basis of multiple datasets, we investigate the possibility and verify the feasibil-

ity of predicting sepsis with machine learning and deep learning methods. The results of

the experiments presented in Chapters 5 and 6 demonstrated the effectiveness of AI-based

approaches. Additionally, we proposed multiple candidature models, and evaluated their

performance on different medical datasets, illustrating their effectiveness under different

data schemes and alignment schemes. Our best AUC on the PhysioNet dataset was 0.95,

and it corresponded to a prediction six hours before the onset of the disease. AUC of such

a high level qualifies our model as an early warning system for clinicians, and could trigger

an alarm in advance.

The novel method of converting multi-variate time series data to image in classification

task

This thesis also suggested that the 1D time series of clinical data could be transformed

into 2D images prior to feeding them to training models. We can benefit from the pre-

trained models that may be applied directly to the transformed datasets since the simple
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transformation deals with data that has exactly three variables. Another way is based on the

GASF transformation, which allows images of size n × n to be generated from only n data

points while maintaining time relationships. Due to this characteristic, it is appropriate for

datasets of small size. The methods are described in Chapter 5. Results from the experiment

demonstrated the effectiveness of this technique, which can improve accuracy and AUC to

0.8 and 0.89, respectively. Further, the transformation of the raw data into images is only

one of the many ways that raw data can be transformed into other forms prior to training,

and our work is only a preliminary attempt that may lead to more refined ideas for future

study.

Contribution to the application of multi-instance algorithm

In our thesis, we also developed a multi-instance learning model to make the prediction.

Multi-instance learning is a technique that was previously used for the recognition of objects

in images and videos, but we found that it could be used to improve the performance of our

sepsis prediction model. Experiments and outcomes were reported in Chapter 6. Multiple

instances are aggregated into bags with labels assigned to each bag instead of each instance,

according to the algorithm. By doing so, we can benefit from two aspects. Any positive

instance in a particular bag would indicate a positive label for that bag as opposed to the

traditional method that requires an accurate prediction for every instance. Furthermore,

according to their contents, labelling bags relieves the stress of labelling work during data

collection.

7.2 Reviewing Research Objective 1

RO-1: Design an efficient data acquisition scheme. Since the bedside monitors broadcast

all the data in LAN, we collect vital signs from bedside monitors in NICU by setting up

two laptops in the ward, connecting to the local network. With the help of eDataGrabber

software, provided by the same manufacturer of the monitor, data packets in the LAN are

captured and stored in the local hard drive. However, other dimensions of data is much

more difficult to access, lab test results and demographic data are distributed in multiple

sub-systems within the hospital network, and they are not able to search or export. As a

result, for these two types of data, a large amount of manual work is required, and no better

way has been developed yet. PhysioNet Challenge and MIMIC III datasets are much easier

to get, the only thing we need to do is to finish the test about human experiments ethics and
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then download the raw CSV files.

7.2.1 Answering Research Question 1

RQ-1: How should the vital signs be collected from bedside monitors in NICU? Our

neonatal data is primarily obtained from the NICU at Monash Children’s Hospital. In col-

laboration with Dräger, the manufacturer of the bedside monitors in the NICU, we have

collected real-time vital signs data from patients under intensive care. The Dräger company

provided us with the eDataGrabber software which enabled us to record vital signs broad-

cast across the local area network by their devices. These data were then securely stored in

two laptop computers set up at nurse stations of the NICU.

7.3 Reviewing Research Objective 2

RO-2: Investigate the relations between physiological parameters and sepsis, and find

critical ones that most related to sepsis. To fulfil this objective basically, what we need to

do is feature selection. As stated in previous chapters, we have tried three different methods

to filter valuable and informative features. This objective has two small research questions,

and after the completion of our research, they can be answered as follows.

7.3.1 Answering Research Question 2

RQ-2: How many physiological parameters are available to researchers? With the help

of the supervisors, we established very close cooperation with Monash Children’s Hospital,

so that we can have access to data from infants admitted in intensive care units. The acces-

sible variables include heart rate, respiratory rate, oxygen saturation, pulse, readings from

PS25255 sensors and multiple demographic data and laboratory test results, all of which

contribute to our research. For public datasets, PhysioNet provides 40 features from two

hospitals for the purpose of training a sepsis prediction model, as we have listed in Table.

4.3 and discussed in chapter 4.2, and MIMIC III databases contain even more medical mea-

surements, see Table 4.6 but for the alignment of feature sets of others, we tried to select the

same set of features as PhysioNet provides in our research.
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7.3.2 Answering Research Question 3

RQ-3: Which critical physiological parameters can predict sepsis before it occurs? From

our experiments, all physiological parameters contribute to the final prediction to certain

degrees. We can answer this question by making feature selection in three ways. Specifi-

cally, for NICU datasets, out of 40 features in the public dataset from PhysioNet, ICULOS

(ICU length-of-stay), Temperature and Calcium are the three most important variables with

significance larger than 0.04 derived from xgboost model.

7.4 Reviewing Research Objective 3

RO-3: Design, develop and implement suitable algorithms for the clinical data, and

make some adjustment to improve the performance. This objective is the most impor-

tant among the three and includes our major contribution. To achieve this objective, three

questions have to be answered.

7.4.1 Answering Research Question 4

RQ-4: Can existing methods fulfil the current demand of early detection? According

to our review, current work in this field can not satisfy the demand for early detection in

terms of the accuracy of the prediction and how long the prediction can be made before it

actually happens, and that’s the underlying motivation of our research. Another finding

of our literature review is that most work that has been done is from the clinical angle,

examining the relations between single vital sign or other measurements and sepsis onset,

but little machine learning boosted methods were explored.

7.4.2 Answering Research Question 5

RQ-5: Is it possible to adjust existing methods to improve their performance? We have

done some work to adapt existing machine learning models trying to improve their per-

formance and achieve little progress. Most of them are basic machine learning models like

SVM and Random Forest. Two ensemble models i.e. RF and GBDT achieved the best result

out of five candidatures, with AUC of 0.77 and 0.64, but these are still not acceptable when

dealing with serious problems like the diagnosis of diseases for humans. The conclusion
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we have is that limited by the relatively simple structure, and size of the NICU datasets, no

significant improvement was made when experimenting with classic machine models.

7.4.3 Answering Research Question 6

RQ-6: Is it possible for any new approaches to have a better performance for this early

detection task? This question is our major research area. We have examined both CNN

and RNN and tried to combine them to fit them in our sepsis detection case and achieve a

promising result. We also experimented with two different algorithms that convert 1-d time

series data into images, in which way we were able to utilise the extraordinary capability

of CNN in image classification. The multi-instance model is another way to improve the

predictive accuracy by predicting the sepsis label of an aggregation of records rather than

an individual one. The summary of results is listed in Table 6.11. Out of all the models

we have examined, the one consisting of the fully-connected encoder and LSTM decoder

achieved the highest accuracy and AUC, making it the optimal model, and its performance

also showed the potential to be applied in the process of diagnosis to facilitate clinicians

decision making.

7.5 Limitations and Future Research

We encountered a number of difficulties and limitations in the course of our research.

Based on our findings, we were able to identify research directions that may be able to

resolve the problems or address the limitations.

ICU patients are continuously monitored, and variables, particularly vital signs, could

be considered a stream of dynamic data. The models we have tested are all offline, which

means they cannot be incrementally trained with new inputs. One of the major weaknesses

of offline models is that they cannot be automatically updated in real-time without manual

intervention. To keep the offline model up-to-date, retraining the model with newer data

periodically is frequently required. This incurs extra maintenance costs and results in less

stable performance.

Our datasets are also extremely unbalanced in terms of sepsis and normal patients re-

gardless of the data source. Based on our analysis, we can see that downsampling the ma-

jority class alone is an expedient. As a result, data size will be shrunk, important information

will be lost, and the prediction performance will be negatively impacted. Alternatively, to
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rebalance data samples, one can upsample records from the minority class. However, cur-

rently there is no effective method that can synthesise a whole series of data while keeping

its internal patterns.

Additionally, unexpected interruption is another issue during the data collection pro-

cess.. For instance, in the NICU at Monash Children’s Hospital, a nurse usually is respon-

sible for approximately 3-4 infants, and they place the babies in cots within the same room,

or as close as possible, but the sensors are attached to certain cots. Consequently, in the final

collected datasets, it is almost impossible to determine what caused them when interrup-

tions occur. A nurse might have moved the patient, and it may also have been caused by

the sensors being detached by the unconscious movement of the patient. The interruptions

lasting longer than ten minutes are interpreted as the babies transferring from one cot to

another for now, but it is only a rough estimation and not 100% accurate.

Based on the current limitations, we also present some potential topics for future re-

search. First, with access to the real-time data stream, it is perfect for the deployment of

an online incremental learning algorithm, so that the model is always up-to-date, and can

adjust to future data streams without human intervention. Second, develop a proprietary

upsampling algorithm by synthesising time-series data to mitigate the data imbalance issue.

Using a Generative Adversarial Network (GAN) seems to be a promising method to achieve

this goal due to its known capability of data synthesis and generation. If data balance be-

tween two classes can be achieved without information loss, the performance of candidate

models could be potentially increased. Third, understanding the reasons for interruptions

and identifying when sensors are connected to another patient may improve the quality of

data collection and preprocessing workflows. A careful examination of the patterns of data

reading before and after transferring, as well as the interruption interval, will be helpful. By

developing an algorithm that is capable of distinguishing baby transfer events, we are able

to clearly and accurately label all the data segments, rather than discard those ambiguous

records, preventing unnecessary waste.
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Appendix A

Data Samples

This appendix contains data samples from NICU (Table. A.1), PhysioNet (Table. A.2 -

A.4) and MIMIC III (Table. A.5 to A.10) datasets. Given the many features PhysioNet and

MIMIC III datasets have, we split their samples into multiple tables for display convenience.

Table A.1: Data samples from NICU dataset.

RELSEC ABSSEC RELTIME JULIAN DATE TIME RESP %Pace PLS HR 25255 SpO2 NBP D NBP M NBP S
1936 116382 107830560 32:19:42 1510358459 11/11/2017 00:00:59 83 154 154 2.20 100
1937 116442 107830620 32:20:42 1510358519 11/11/2017 00:01:59 65 151 152 2.41 100
1938 116502 107830680 32:21:42 1510358579 11/11/2017 00:02:59 52 173 156 1.60 98
1939 116562 107830740 32:22:42 1510358639 11/11/2017 00:03:59 92 147 147 2.06 96
1940 116622 107830800 32:23:42 1510358699 11/11/2017 00:04:59 73 152 151 2.21 99
1941 116682 107830860 32:24:42 1510358759 11/11/2017 00:05:59 71 151 151 2.25 99
1942 116742 107830920 32:25:42 1510358819 11/11/2017 00:06:59 80 153 151 2.28 100
1943 116802 107830980 32:26:42 1510358880 11/11/2017 00:08:00 71 147 146 2.01 99
1944 116862 107831040 32:27:42 1510358940 11/11/2017 00:09:00 72 150 149 2.04 99

Table A.2: Data samples from PhysioNet dataset - 1.

HR O2Sat Temp SBP MAP DBP Resp EtCO2 BaseExcess HCO3 FiO2 pH PaCO2 SaO2 AST
0 97.0 98.5 35.89 145.0 100.33 19.0
1 96.0 98.0 143.0 91.0 22.0
2 97.0 98.0 137.0 93.67 27.0
3 98.0 98.0 151.0 112.33 30.0 5.0 7.39 53.0
4 104.0 98.0 37.11 135.0 79.67 21.0
5 103.0 97.0 150.0 96.0 27.0
6 98.0 96.0 140.0 95.33 30.0 31.0
7 94.0 94.0 154.0 98.67 18.0
8 93.0 97.0 146.0 90.0 26.0
9

Table A.3: Data samples from PhysioNet dataset - 2.

BUN Alkalinephos Calcium Chloride Creatinine Bilirubin direct Glucose Lactate Magnesium Phosphate Potassium
0
1
2
3
4
5
6 15.0 9.3 93.0 0.6 198.0 2.1 3.1 3.1
7
8
9
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Table A.4: Data samples from PhysioNet dataset - 3.

Bilirubin total TroponinI Hct Hgb PTT WBC Fibrinogen Platelets Age Gender Unit1 Unit2 HospAdmTime ICULOS SepsisLabel
0 81.08 0 1 0 -0.03 2 0
1 81.08 0 1 0 -0.03 3 0
2 81.08 0 1 0 -0.03 4 0
3 81.08 0 1 0 -0.03 5 0
4 81.08 0 1 0 -0.03 6 0
5 81.08 0 1 0 -0.03 7 0
6 38.2 13.2 11.1 262.0 81.08 0 1 0 -0.03 8 0
7 81.08 0 1 0 -0.03 9 0
8 81.08 0 1 0 -0.03 10 0
9 81.08 0 1 0 -0.03 11 0

Table A.5: Samples from ADMISSION table of MIMIC III datasets - 1.

ROW ID SUBJECT ID HADM ID ADMITTIME DISCHTIME DEATHTIME ADMISSION TYPE ADMISSION LOCATION DISCHARGE LOCATION INSURANCE
0 21 22 165315 2196-04-09 12:26:00 2196-04-10 15:54:00 EMERGENCY EMERGENCY ROOM ADMIT DISC-TRAN CANCER/CHLDRN H Private
1 22 23 152223 2153-09-03 07:15:00 2153-09-08 19:10:00 ELECTIVE PHYS REFERRAL/NORMAL DELI HOME HEALTH CARE Medicare
2 23 23 124321 2157-10-18 19:34:00 2157-10-25 14:00:00 EMERGENCY TRANSFER FROM HOSP/EXTRAM HOME HEALTH CARE Medicare
3 24 24 161859 2139-06-06 16:14:00 2139-06-09 12:48:00 EMERGENCY TRANSFER FROM HOSP/EXTRAM HOME Private
4 25 25 129635 2160-11-02 02:06:00 2160-11-05 14:55:00 EMERGENCY EMERGENCY ROOM ADMIT HOME Private
5 26 26 197661 2126-05-06 15:16:00 2126-05-13 15:00:00 EMERGENCY TRANSFER FROM HOSP/EXTRAM HOME Medicare
6 27 27 134931 2191-11-30 22:16:00 2191-12-03 14:45:00 NEWBORN PHYS REFERRAL/NORMAL DELI HOME Private
7 28 28 162569 2177-09-01 07:15:00 2177-09-06 16:00:00 ELECTIVE PHYS REFERRAL/NORMAL DELI HOME HEALTH CARE Medicare
8 29 30 104557 2172-10-14 14:17:00 2172-10-19 14:37:00 URGENT TRANSFER FROM HOSP/EXTRAM HOME HEALTH CARE Medicare
9 30 31 128652 2108-08-22 23:27:00 2108-08-30 15:00:00 2108-08-30 15:00:00 EMERGENCY TRANSFER FROM HOSP/EXTRAM DEAD/EXPIRED Medicare

Table A.6: Samples from ADMISSION table of MIMIC III datasets - 2.
LANGUAGE RELIGION MARITAL STATUS ETHNICITY EDREGTIME EDOUTTIME DIAGNOSIS HOSPITAL EXPIRE FLAG HAS CHARTEVENTS DATA

0 UNOBTAINABLE MARRIED WHITE 2196-04-09 10:06:00 2196-04-09 13:24:00 BENZODIAZEPINE OVERDOSE 0 1
1 CATHOLIC MARRIED WHITE CORONARY ARTERY DIS-

EASE\CORONARY ARTERY BYPASS
GRAFT/SDA

0 1

2 ENGL CATHOLIC MARRIED WHITE BRAIN MASS 0 1
3 PROTESTANT QUAKER SINGLE WHITE INTERIOR MYOCARDIAL INFARCTION 0 1
4 UNOBTAINABLE MARRIED WHITE 2160-11-02 01:01:00 2160-11-02 04:27:00 ACUTE CORONARY SYNDROME 0 1
5 CATHOLIC SINGLE UNKNOWN/NOT SPECIFIED V-TACH 0 1
6 CATHOLIC WHITE NEWBORN 0 1
7 CATHOLIC MARRIED WHITE CORONARY ARTERY DIS-

EASE\CORONARY ARTERY BYPASS
GRAFT/SDA

0 1

8 CATHOLIC MARRIED UNKNOWN/NOT SPECIFIED UNSTABLE ANGINA\CATH 0 1
9 CATHOLIC MARRIED WHITE STATUS EPILEPTICUS 1 1

Table A.7: Samples from D ICD DIAGNOSES table of MIMIC III dataset.

ROW ID ICD9 CODE SHORT TITLE LONG TITLE
0 174 01166 TB pneumonia-oth test Tuberculous pneumonia [any form], tubercle bacilli not found by bac-

teriological or histological examination, but tuberculosis confirmed by
other methods [inoculation of animals]

1 175 01170 TB pneumothorax-unspec Tuberculous pneumothorax, unspecified
2 176 01171 TB pneumothorax-no exam Tuberculous pneumothorax, bacteriological or histological examina-

tion not done
3 177 01172 TB pneumothorx-exam unkn Tuberculous pneumothorax, bacteriological or histological examina-

tion unknown (at present)
4 178 01173 TB pneumothorax-micro dx Tuberculous pneumothorax, tubercle bacilli found (in sputum) by mi-

croscopy
5 179 01174 TB pneumothorax-cult dx Tuberculous pneumothorax, tubercle bacilli not found (in sputum) by

microscopy, but found by bacterial culture
6 180 01175 TB pneumothorax-histo dx Tuberculous pneumothorax, tubercle bacilli not found by bacteriolog-

ical examination, but tuberculosis confirmed histologically
7 181 01176 TB pneumothorax-oth test Tuberculous pneumothorax, tubercle bacilli not found by bacteriolog-

ical or histological examination, but tuberculosis confirmed by other
methods [inoculation of animals]

8 182 01180 Pulmonary TB NEC-unspec Other specified pulmonary tuberculosis, unspecified
9 183 01181 Pulmonary TB NEC-no exam Other specified pulmonary tuberculosis, bacteriological or histological

examination not done

Table A.8: Samples from D ITMES table of MIMIC III dataset.

ROW ID ITEMID LABEL ABBREVIATION DBSOURCE LINKSTO CATEGORY UNITNAME PARAM TYPE CONCEPTID
0 457 497 Patient controlled analgesia (PCA) [Inject] carevue chartevents
1 458 498 PCA Lockout (Min) carevue chartevents
2 459 499 PCA Medication carevue chartevents
3 460 500 PCA Total Dose carevue chartevents
4 461 501 PCV Exh Vt (Obser) carevue chartevents
5 1157 927 Allergy 2 carevue chartevents
6 1158 930 Ext carevue chartevents
7 1159 935 Allergy 3 carevue chartevents
8 1160 938 blood cultures carevue chartevents
9 1161 940 trach care carevue chartevents
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Table A.9: Samples from DIAGNOSES ICD table of MIMIC III dataset.

ROW ID SUBJECT ID HADM ID SEQ NUM ICD9 CODE
0 1297 109 172335 1.0 40301
1 1298 109 172335 2.0 486
2 1299 109 172335 3.0 58281
3 1300 109 172335 4.0 5855
4 1301 109 172335 5.0 4254
5 1302 109 172335 6.0 2762
6 1303 109 172335 7.0 7100
7 1304 109 172335 8.0 2767
8 1305 109 172335 9.0 7243
9 1306 109 172335 10.0 45829

Table A.10: Samples from PATIENTS table of MIMIC III dataset.

ROW ID SUBJECT ID GENDER DOB DOD DOD HOSP DOD SSN EXPIRE FLAG
0 234 249 F 2075-03-13 00:00:00 0
1 235 250 F 2164-12-27 00:00:00 2188-11-22 00:00:00 2188-11-22 00:00:00 1
2 236 251 M 2090-03-15 00:00:00 0
3 237 252 M 2078-03-06 00:00:00 0
4 238 253 F 2089-11-26 00:00:00 0
5 239 255 M 2109-08-05 00:00:00 0
6 240 256 M 2086-07-31 00:00:00 0
7 241 257 F 2031-04-03 00:00:00 2121-07-08 00:00:00 2121-07-08 00:00:00 2121-07-08 00:00:00 1
8 242 258 F 2124-09-19 00:00:00 0
9 243 260 F 2105-03-23 00:00:00 0
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Appendix B

Code Samples

B.1 Pseudo Code for GASF Algorithm

Algorithm 1 GASF

1: Normalise all the data to the range of [-1,1]: x̂i ← ((xi − max(x)) + (xi −
min(x)))/(max(x)−min(x))

2: Convert to polar coordinate: φ ← arccos(x̃i)
3: Create the Gramian Matrix: Mij = cos(φi + φj)

B.2 Pseudo Code for Multi-Instance Learning Procedure

Algorithm 2 Multi-Instance Learning

Require: a ≥ 0, b ≤ 0, and stop condition: c
1: repeat
2: Randomly generate ni, where a ≤ ni ≤ b
3: Pick ni consecutive instances
4: Check the label of each instance
5: if #positive ≥ 1 then
6: Label the bag positive
7: else
8: Label the bag negative
9: end if

10: until All instances have been assigned to one bag
11: repeat
12: Calculate the loss:
13: Take one positive bag Bs and one negative bag Bn

14: Calculate the hinge loss lh ← max(0, 1−maxi∈Bs f(D
i
s) + maxi∈Bn f(D

i
n))

15: Calculate the smoothing factor s ← λ
'n−1

i (f(Di
s)− f(Di+1

s ))2

16: Calculate the l2 normalisation penalty p ← ||w||2
17: Minimise the ranking loss of two bags l(Bs, Bn) ← lh + s+ p
18: until The stop condition c is satisfied.

B.3 Github Repository

This is the Github repository for all the codes used in this thesis.

https://github.com/jsxhhyf/Thesis
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