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Thesis Abstract 

 Drug-induced liver injury (DILI) is a significant clinical burden that can affect up 

to 2 million people annually with a mortality rate of up to 10%. It is prevalent across 

nearly all drug classes including antimicrobial, neurological, anti-neoplastic, and non-

steroidal anti-inflammatory drugs. An analysis of 1,036 Food and Drug Administration 

(FDA)-approved drugs revealed that 45% demonstrated some degree of DILI concern. 

The burden of DILI is further complicated because it can occur as one or a combination 

of 12 different liver injury phenotypes, with cholestasis and steatosis being two of the 

most common. Understanding the mechanism(s) responsible for DILI is imperative in 

order to improve the clinical management of this condition, and to minimize the 

occurrence of this major safety concern during the development of new drugs. In vitro 

liver models, including primary human hepatocytes (PHH), HuH-7, and HepaRG™ 

cells, offer an accessible platform through which various plate-based assays and 

omics techniques can be applied to achieve a deeper and broader understanding of 

the mechanism(s) of DILI. The primary aim of this thesis is to use such in vitro models 

to investigate the biological perturbations induced in the proteome, metabolome, and 

lipidome of liver cells treated with DILI-associated drugs. 

 PHH are the gold-standard for in vitro liver models, although HepaRG™ cells 

offer a potential cost-efficient, human-derived, hepatic-like alternative. Proteomics 

analysis of PHH and HepaRG™ cells demonstrated that there was a degree of 

similarity in the proteomes of the two cell types. However, while the whole cell 

proteomes had Pearson’s r coefficients of up to 0.86, comparison of the major 

metabolic pathway proteomes showed poorer correlation, with r values ranging from 

0.75 to 0.78. Furthermore, multi-omics analysis of metabolically competent PHH in 
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vitro models treated with DILI-associated drugs identified drug-induced biological 

perturbations to proteins and metabolites from the TCA cycle, and from glucose, 

nicotinamide, phase I, glucuronidation, and glutathione metabolism. These changes 

indicated that impairment of mitochondrial respiration had occurred, and that there 

was increased activity of pathways that are protective against oxidative stress. This 

analysis gave insight into the potential mechanism(s) through which drug-induced 

hepatoxicity could occur by identifying perturbations to vital metabolic pathways. 

 The impact of DILI-associated drugs on bile acid homeostasis is critical to 

assess because such biological perturbations may be mechanistically linked to 

cholestatic DILI. Cell viability assays indicated that diclofenac, ethinyl estradiol, 

ritonavir, and troglitazone had significant potential to induce cholestatic hepatoxicity, 

with ethinyl estradiol, ritonavir, and troglitazone also capable of significantly impairing 

biliary transport. PHH and HepaRG™ cells were treated with diclofenac, ethinyl 

estradiol, ritonavir, and troglitazone as well as pioglitazone which, while it did not 

appear to induce cholestatic hepatoxicity, significantly impaired biliary transport. The 

drug-treated cells underwent metabolomic and proteomic analysis, which showed 

significant decreases in the cellular abundance of taurocholate, glycocholate, and 

glycochenodeoxycholate for PHH and HepaRG™ cells. Additionally, while proteomics 

analysis did not reveal significant changes in the abundance of bile acid transporters, 

there was a significant increase in the abundance of various CYP enzymes and 

cytochrome P450 oxidoreductase, which may have resulted in increased phase I 

metabolism of bile acids leading to reduced cellular abundance of bile acids. 

 Steatotic liver injury, which can result from a variety of stimuli, can cause severe 

liver damage and even liver failure. In patients experiencing steatotic liver injury from 

non-alcoholic steatohepatitis (NASH), lipidomics analysis demonstrated that there was 
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a unique increase in total phospholipid abundance in NASH PHH, in addition to an 

anticipated accumulation of neutral lipids. Lipidomic analysis of the hepatocellular lipid 

profiles of in vitro PHH treated with drugs associated with steatotic DILI was 

performed. The analysis of these lipid profiles revealed that phospholipids were 

significantly altered under steatotic conditions and, using receiver operating 

characteristic (ROC) curve analysis, lipids, such as linoleic acid or phosphoserine 

(32:1), could act as predictive biomarkers for steatotic DILI.  

 The research presented in this thesis demonstrates the value of multi-omics 

and metabolically competent in vitro liver models in expanding the current 

understanding of the biological effects and mechanisms of DILI. This thesis 

demonstrated the utility of multi-omics in toxicology to elucidate potential 

mechanism(s) of DILI that involve impairment of major metabolic pathways or the 

induction of specific liver injury phenotypes such as cholestasis. Furthermore, data 

generated demonstrate the translational potential of multi-omics studies, which can be 

used to assess the metabolic competency of liver models to allow for the selection of 

the most metabolically relevant in vitro model or the identification of predictive 

biomarkers of liver injury.   
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Abstract 

Drug-induced liver injury (DILI) is a significant clinical issue, affecting 1-1.5 million 

patients annually, and remains a major challenge during drug development, with toxicity 

and safety concerns being the second highest reason for drug candidate failure. By 

developing a greater understanding of the biological mechanisms behind DILI, its future 

prevalence can be minimised. However, representative models and analytical techniques 

are needed to study DILI. In vitro, ex vivo, and in vivo models using hepatocytes and 

hepatic-like cells offer accessible systems capable of effectively reproducing various 

characteristic features of liver cells suitable for investigating DILI. In addition to an 

appropriate model, accurate and analytical techniques are also vital to characterising 

DILI. In vitro assays are capable of characterising specific aspects of a drug’s hepatotoxic 

nature; however, many of these techniques are restricted in the breadth of information 

that they can offer. Multiplexed assays are capable of characterising and scoring a drug’s 

association with DILI. A holistic approach to provide global insight into the mechanisms 

of DILI can be achieved using omics-based analytical techniques: genomics, 

transcriptomics, proteomics, and metabolomics. These omics analytical techniques can 

offer qualitative and quantitative insight into genetic susceptibilities to DILI, the impact 

that a drug treatment may have on gene expression, and the effect it may have on 

proteins and metabolite abundance.  This review will discuss the various in vitro liver 

models and analytical techniques that can be applied to characterise the biological 

mechanisms of DILI. 
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Drug-Induced Liver Injury 

Drug-induced liver injury (DILI) is a form of adverse drug reaction (ADR) that refers 

to a variety of related conditions that have resulted from exposure to hepatotoxic 

pharmaceuticals. DILI is a globally prevalent issue and various population studies have 

identified DILI occurring at rates of 3 to 24 cases per 100,000 people annually (1-5). DILI 

is also a significant issue in drug development, with a large portion of drug attrition being 

due to toxicity and safety concerns (6). However, it is likely that rates of DILI occurring 

during clinical development are higher as a result of under-reporting, since identification 

of DILI as the primary cause of liver injury is often complicated by other factors such as 

co-morbidity and co-infections, including hepatic infections and fatty liver disease arising 

from lifestyle factors.  

DILI is a prevalent medical issue affecting a significant number of patients who 

receive prescription medications with some of these DILI cases leading to organ failure 

and/or death. A study of a Finnish cohort found that 1.4% of all medical in-patients will 

experience DILI (7). While relatively low, this incidence is still concerning as up to 10.1% 

of cases may be fatal or require a liver transplant (3, 8-11). A study of 1,089 DILI cases, 

where recovery outcomes were assessed, found that 9.8% of patients died or underwent 

a liver transplant (12). Of these severe cases, DILI was reported as the primary cause of 

death or liver transplant in 64% of patients and contributed to an additional 14% of deaths 

or liver transplants. 

DILI is not just a condition of clinical concern but is also a prevalent problem faced 

during drug development, with toxicity and safety concerns being the second highest 

reason for drug failure (6).  Hepatotoxicity issues with drug safety should ideally be 
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detected during the preclinical stages of testing using in vitro methods and animal models. 

In the preclinical phase of drug development, the attrition rate of drug candidates due to 

safety concerns is 40% (6). Furthermore, toxicity issues are still detected during phase I, 

II, and III clinical trials, and even during post market surveillance. There is a failure rate 

due to safety and toxicological concerns of 38% for phase I, the trial phase that is intended 

to address safety concerns in humans. However, it is clear that this phase does not 

comprehensively identify all safety and toxicity issues, as phase II and phase III clinical 

trials have a 33% and 17% failure rate, respectively, due to safety and toxicological 

concerns (6, 13). The proportion of these toxicity concerns that are specifically related to 

hepatotoxicity is not always clear. Incidents such as the 1994 fialuridine trials, that 

resulted in 5 fatalities, and the 2018 phase IIb/III atabecestat trials, which were 

discontinued due to indications of liver injury, provide additional evidence that issues with 

drug hepatotoxicity are occurring in later stages of clinical trials and can be life threatening 

(14, 15). 

DILI is problematic for clinicians and other medical professionals for several 

reasons; probably the most notable is a lack of active medical intervention options to treat 

DILI upon diagnosis. This is largely because treatment options are very limited and 

primarily involve discontinuing the medication followed by observation by a medical 

professional (16).  Treatment is mainly supportive unless liver failure occurs, in which 

case a liver transplant is the only possible option to prevent death (17). Exceptions to this 

are injury caused by paracetamol (acetaminophen; APAP) and poisoning as a result of 

ingesting mushrooms from the Amanita family. Prevention of hepatotoxicity due to APAP 

overdose is treated by an intravenous infusion of N-acetyl cysteine within 24 hours of 
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ingestion. This prevents depletion of glutathione (GSH) reserves in the liver and allows 

the toxic APAP metabolite, N-acetyl-p-benzoquinone (NAPQI), to be safely quenched by 

glutathione instead of forming protein and nucleic acid conjugates that can result in liver 

damage (18). Amanita mushroom poisoning results from interactions of amatoxins with 

RNA polymerase II, thus impairing protein synthesis and leading to centrilobular liver 

necrosis. While not strictly characterised as DILI, two treatment options are available: 

activated charcoal, to prevent reabsorption of toxins by enterohepatic circulation, and 

silibinin, which competes with amatoxins for hepatic uptake (19). With limited options 

available for treating DILI, an emphasis is placed on reducing DILI prevalence and 

improving the monitoring of DILI-associated drugs by: (1) reducing the number of new 

DILI-associated drugs being released, and (2) improving pharmacovigilance for DILI-

associated drugs already on the market to prevent future occurrences of severe and 

potentially lethal cases of DILI. 

Prevalence of Drug-Induced Liver Injury in Pharmaceuticals 

DILI is not restricted to a limited number of drug classes, rather, it can be found 

ubiquitously across a wide range of drug classes, and even in herbal and dietary 

supplements (HDS). Drug classes affected by DILI include antimicrobials (antibiotics, 

antifungals, antivirals, and antiparasitic drugs), HDS, cardiovascular drugs, central 

nervous system (CNS) drugs, anti-neoplastic drugs, analgesics [particularly non-steroidal 

anti-inflammatory drugs (NSAIDs)], and immunomodulatory and endocrine drugs (8, 20-

22). A study of 899 DILI cases across the United States (US) found that antimicrobials 

were responsible for the greatest number of DILI cases (45%), with amoxicillin-

clavulanate solely responsible for the highest number of individual cases (10%). Nine of 
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the top ten DILI-inducing drugs were antibiotics while other classes responsible for a 

significant number of DILI cases were HDS (16%), cardiovascular agents (10%), and 

CNS drugs (9%) (20). These DILI cases are not resulting from a small pool of prescription 

drugs; 189 different prescription drugs were identified as the primary agents in 84% of the 

identified DILI cases. These findings were supported by another US DILI study conducted 

between 2003 to 2007, which also found that antimicrobials and CNS drugs were the two 

most represented drug classes responsible for the greatest number of cases (46% and 

15%, respectively) (8). This study also highlighted the importance of considering an 

individual drug’s hepatotoxic nature, as most (73%) cases were a result of the use of a 

single prescription drug and not the cumulative effect of several prescription drugs. 

Similar to the previous two studies, an assessment of 461 Spanish DILI cases recorded 

between 1994 and 2004 also reported antimicrobials as the leading cause of DILI cases 

(37%), followed by CNS drugs and NSAIDs (17% of cases each) (21). 

An analysis of 1,036 Food and Drug Administration (FDA)-approved drugs found 

that 192 drugs (19%) have strong DILI concerns and only 62 (6%) of these drugs were 

discontinued. For the remaining drugs assessed, 278 (27%) have minor DILI concerns, 

254 (25%) have ambiguous DILI concerns, and 312 (30%) have no DILI concerns (22). 

An additional assessment of 671 currently marketed drugs found only 318 (47%) had no 

DILI implications, while 220 (32%) had more than 3 published reports of DILI incidents, 

with 48 (7%) having been reported in more than 50 DILI incidents (23). While these data 

show that there is already a significant presence of DILI-associated drugs on the market, 

the true prevalence of DILI cases and their severity is likely to be much higher due to 

underreporting by clinicians and complications contributed by other diseases. 
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Pharmacovigilance is vital to identifying a drug’s capacity to cause DILI after it has 

reached the market. This involves the identification and assessment of ADRs by market 

surveillance and adverse event reporting by health professionals. With proper 

pharmacovigilance, on-market drugs that possess undetected hepatotoxic properties can 

be identified as hazardous and appropriate action can be taken to prevent further harm. 

Effective pharmacovigilance requires a collaborative effort between health professionals, 

patients, and regulatory bodies such as the FDA, Therapeutic Goods Administration 

(TGA), or European Medicines Agency (EMA).  

As alluded to previously, underreporting contributes largely to underestimated 

case rates of DILI diagnosis in the clinical setting. Indeed, studies have highlighted 

significant underreporting of ADRs, with reporting occurring as low as one in every 1144 

cases (24). Similarly, several European studies have found that the median clinical 

underreporting rate for serious cases of ADRs is 94%, with a range of 47-95% (24-28). 

While this does cover all forms of ADR and not specifically DILI, one particular study that 

separated ADRs into different injury categories found that liver dysfunction due to ADRs 

was underreported at a rate of 94% (29). Furthermore, underreporting may not be the 

only reason for inaccurate estimations of DILI occurrence, as DILI and other ADRs, are 

not always properly identified by clinicians. For hospital in-patients, 20 to 24% of ADRs 

were not identified either upon admission or during the patient’s stay (30, 31). It should 

also be noted that it is not predominantly mild cases of ADR that are overlooked; 16.5% 

of severe or fatal reactions, and 23.2% of mild or moderate reactions, were not recognised 

(30). Clinically, ADRs, including DILI, are a prevalent issue that may be occurring at higher 

rates than currently estimated. 



8 

 

Severity and Clinical Impact of Drug-Induced Liver Injury 

One of the most significant examples of drug failure due to DILI is the 1993 

fialuridine clinical trial (14). During a phase II clinical trial of patients with chronic hepatitis 

B infections, 7 of the 15 participants who received fialuridine experienced severe DILI-

associated liver failure that resulted in two participants requiring a liver transplant and five 

fatalities. Testing in rats, dogs, and monkeys with doses ranging from 3 to 510 mg/kg/day 

over a range of 30 to 90 days indicated a high tolerance to fialuridine; however, a dose of 

0.25 mg/kg/day for 2 months in humans resulted in hepatic failure in seven participants 

(32). Suspected differences in fialuridine tolerance have been attributed to the presence 

of the human equilibrative nucleoside transporter 1 found in the mitochondria of human 

cells. This transporter is involved in increased uptake of fialuridine into the hepatocyte 

mitochondria that results in toxicity (33). The fialuridine tragedy nevertheless illustrates 

the limitations of translating drug safety profiles between preclinical animal models and 

testing in humans.  

Fialuridine is not the only example of a hepatotoxic drug that has progressed 

through preclinical safety assessment into human patients. Several hepatotoxic drugs 

have reached the market and caused severe liver damage and, in some cases, fatalities 

(20, 21, 34). Troglitazone was released to the market in March 1997 for treatment of type 

2 diabetes and was one of the most prominent DILI-associated drugs to have reached 

the market. However, by 1998 several reports of liver failure induced by troglitazone had 

been filed (35-41). After 83 cases of troglitazone-associated liver failure, this drug was 

removed from the market in March 2000. Troglitazone was found to cause liver failure in 

patients at a rate of 2.7 to 8.3 per 100,000 person-years, which is between 3- and 9.5-



9 

 

fold greater than the baseline liver failure rate of patients with type 2 diabetes (0.88 per 

100,000 person-years) (42, 43). Furthermore, as alluded to previously, this number is 

likely to be a misrepresentation, and cases are likely to be greatly underestimated as 

reporting of adverse events by physicians occurred in only 3% to 13% of cases (44, 45). 

Similarly, the drugs lumiracoxib, sitaxentan, alatrofloxacin, and trovafloxacin have all 

been withdrawn from the market in certain countries or worldwide since 2000 due to 

concerns about their hepatotoxicity and fatal incidences of DILI (46-49). Trovafloxacin 

and alatrofloxacin were associated with 14 cases of acute liver failure in the US with 6 of 

the cases resulting in death; although trovafloxacin was released in 1998, it was not until 

2006 that the two drugs were withdrawn from the market (50). Lumiracoxib was 

responsible for eight reports of serious liver damage in Australia, resulting in 2 patients 

requiring liver transplants and 2 deaths during its use from 2003 to 2007. Furthermore, 

lumiracoxib has been withdrawn from markets in Australia and other countries including 

New Zealand, Canada, Germany, Austria, Belgium, Cyprus, and Brazil, and was refused 

approval by the FDA due to DILI concerns (51). In 2010, sitaxentan was withdrawn from 

the market in the European Union, Australia, and Canada due to association with two 

cases of fatal liver failure (47). 

While several drugs have been removed from the market due to their ability to 

cause DILI, there are still numerous commonly prescribed drugs on the market that are 

associated with high rates of DILI. Amoxicillin/clavulanate, a commonly prescribed 

antibiotic combination, induced DILI in 43 patients per 100,000; diclofenac, an over-the-

counter NSAID induced DILI in 11 patients per 100,000; nitrofurantoin, an antibiotic used 

to treat urinary tract infections, induced DILI in 73 patients per 100,000; and azathioprine, 
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an immunosuppressant, induced DILI in 752 patients per 100,000 (1, 52). With the 

inherent potential for many drugs to cause DILI, it is important to strongly monitor and 

regulate drugs that pose a significant risk of DILI-associated mortality, with current overall 

estimates as high as 11.7%. In some specific cases, such as halothanes, mortality rates 

are as high as 40% if DILI occurs (1-3, 7, 10, 20, 21, 34). Additionally, larger drug dosages 

correlate with a greater risk of developing DILI. Dosages >50 mg were found to cause 72-

77% of DILI cases. Severe cases, which are those that result in a fatal outcome or require 

a liver transplant, were found to increase with dosage; for dosages of <10 mg, 11-49 mg 

and >50mg, severe DILI occurred at a rate of 2%, 9.4%, and 13.2%, respectively (53, 54). 

Overall, DILI is a pervasive issue affecting 1 to 1.5 million people annually, with 

approximately 10,000 to 16,000 cases resulting in death or the need for a liver transplant. 

There is also a risk of DILI progressing undetected through clinical trials of new drugs to 

clinical treatment of patients. Analysis of 1,036 FDA-approved drugs on the market 

identified that 45% are associated with DILI concerns, with the remaining 55% of drugs 

having ambiguous or no DILI interactions (22). DILI remains a complicated issue with no 

specific, non-invasive diagnostics, minimal understanding of the exact mechanisms 

responsible for hepatotoxic behaviour, and limited ability to predict the DILI liability of new 

drugs in development. 

Pathology and Biochemical Pathways of Drug-Induced Liver Injury 

Effectively identifying DILI as the primary cause of a patient’s liver disease remains 

a challenge due to a lack of uniform pathological features and delayed onset across 

various DILI phenotypes, in addition to a lack of specific diagnostic tests. Currently, DILI 

is diagnosed by excluding other reasonable disease states, or environmental and lifestyle 
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factors that may have led to a patient’s symptoms. Diagnosis is achieved using detailed 

medical histories, blood tests, hepatobiliary imaging, and liver biopsy (55-57). DILI can 

occur as one or more combinations of 12 phenotypic disease states:  

• Acute hepatic necrosis (58-61) 

• Acute hepatitis (62, 63) 

• Cholestatic hepatitis (64-67) 

• Mixed hepatocellular-cholestatic hepatitis (68-70) 

• Enzyme elevations without jaundice (69, 71, 72) 

• Bland cholestasis (73-76) 

• Hepatic steatosis with lactic acidosis (77-81) 

• Non-alcoholic fatty liver (82, 83) 

• Chronic hepatitis (84) 

• Sinusoidal obstruction syndrome (85, 86)  

• Nodular regenerative hyperplasia (73, 87)  

• Hepatic tumours (88-90) 

Each phenotype possesses different latencies to onset, symptoms, serum enzyme 

elevation patterns, and causative drugs (55). Across all DILI phenotypes, there is a large 

variation in latency to onset, ranging from 1 day to 7 years following drug administration. 

However, it is more common for the latency to onset to be in the range of 4 weeks to 6 

months (60, 67, 68, 74, 78-80, 89). This leads to DILI being a diverse and variable 

condition that is difficult to diagnose.  
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In a clinical setting, DILI has been simplified into three general classes 

(hepatocellular, mixed, and cholestatic liver injury), which are defined in a clinical setting 

by serum enzyme ratios based on the upper limit of normal (ULN) (Table 1). 

Table 1: Aetiology and Clinical Characterisation of DILI (91-94). 

Clinical Classification R*-Value Range Prevalence Range 

Hepatocellular R ≥ 5 52 – 59% 

Mixed 2 < R < 5 6 – 23% 

Cholestatic R ≤ 2 18 – 29% 

*𝑅 =
𝐴𝐿𝑇

𝑈𝐿𝑁𝐴𝐿𝑇
÷

𝐴𝐿𝑃

𝑈𝐿𝑁𝐴𝐿𝑃
, ALT = Alanine aminotransferase, ALP = Alkaline phosphatase 

While this classification system allows clinicians to categorise a patient’s liver injury 

based on a less invasive blood test (compared to a liver biopsy for histological 

assessment), it oversimplifies the different phenotypes of DILI and can even lead to 

misclassification of a patient’s DILI phenotype. A histological evaluation of 249 DILI 

patient liver biopsies revealed that while R values were somewhat effective in identifying 

hepatocellular injury, it showed a much poorer capacity to distinguish cholestatic liver 

injury from mixed liver injury (93). Furthermore, hepatocellular liver injury is quite a 

general class of liver injury, occurring in 52 – 59% of cases (91-94). Hepatocellular liver 

injury acts as a catch-all class containing any form of DILI that is not cholestatic in nature, 

including acute hepatic necrosis, acute hepatitis, chronic hepatitis, hepatic steatosis with 

lactic acidosis, and non-alcoholic fatty liver disease (NAFLD) (58, 62, 77, 82, 84, 95). 

These classes all possess different histological presentations and mechanisms of cellular 

dysfunction. 
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Cholestatic Drug-Induced Liver Injury 

Cholestatic liver injury is the other common classification for DILI and is a much 

more uniform classification than its hepatocellular counterpart. Cholestatic liver injury 

results from the reduction or impairment of bile acid transport, occurring as hepatocellular 

or canalicular bile stasis, or significant duct loss, which then leads to cholestasis (95). 

Cholestatic liver injury occurs in up to 52% of cases as either the sole DILI phenotype or 

as a comorbidity with hepatocellular DILI phenotypes (91-93). Such DILI phenotypes are 

classified as either acute or chronic cholestatic liver injury, and the specific form of 

cholestasis is determined by the alkaline phosphatase (ALP), aspartate aminotransferase 

(AST), and alanine aminotransferase (ALT) levels. Acute cholestatic liver injury can 

present as cholestasis with hepatitis, cholestasis without hepatitis, and cholestasis with 

bile duct injury. Acute cholestatic liver injury with hepatitis may present with inflammation 

and hepatocellular necrosis. Additionally, the biochemical features of cholestasis with 

hepatitis as a comorbidity is hyperbilirubinemia with a <3-fold ALP elevation and a 1- to 

8-fold increase of the AST/ALT ratio. When cholestatic liver injury presents without 

hepatitis, there is minimal or no inflammation or necrosis. However, the liver histology 

may show dilated canaliculi filled with bile. Cholestasis without hepatitis also features 

hyperbilirubinemia and has a 2- to 10-fold increase in the AST/ALT ratio, with a >3-fold 

increase of ALP. Acute hepatic cholestasis can also present as cholestasis with bile duct 

injury where biliary ductules are filled with numerous bile aggregates and vesicular lipid 

accumulation within hepatocytes but with little to no inflammation or necrosis. The 

biochemical features of acute hepatic cholestasis are similar to that of cholestasis without 

hepatitis but with the addition of elevated γ-glutamyl transpeptidase (GGT) (96, 97). 
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Chronic cholestatic liver injury may occur as mild, non-specific bile duct injury, vanishing 

bile duct syndrome (VBDS), or primary sclerosing cholangitis-like liver injury. Mild non-

specific bile duct injury is an asymptomatic form of chronic cholestatic DILI that presents 

with minimal bile duct epithelial disarray and occasional inflammation with mild elevation 

of ALP or GGT. VBDS involves the loss of more than 50% of bile ducts. VBDS has the 

same biochemical features as acute cholestasis with bile duct injury, but with the addition 

of hypercholesterolemia and an absence of antimitochondrial antibodies (96, 98). Primary 

sclerosing cholangitis-like cholestatic liver injury presents with a pathology similar to that 

of primary sclerosing cholangitis (PSC) with bile duct destruction and hepatocellular 

necrosis showing biochemical features similar to that of acute cholestasis without 

hepatitis with the addition of hypercholesterolemia (96). 
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Figure 1: Common mechanisms by which a cholestatic drug may cause impaired bile acid transport. 

A) direct inhibition of the transporter, B) inhibition of transporter gene expression, and C) internalisation of 

transporters. Transporters are depicted in green, the nucleus in blue, and bile acids (B) in yellow. 

The causative drugs for cholestasis are diverse and include antimicrobials, anti-

cancer drugs, antidepressants, antipsychotics, immune suppressants, antiepileptic drugs, 

contraceptive drugs, anabolic steroids, diabetes medication, opioid analgesics, and non-

steroidal anti-inflammatory drugs (NSAID) (57, 96-99). While specific mechanistic and 

causal links of drug-induced cholestasis remain poorly characterised for many of these 

A 

B 

C 
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drugs, it has been shown that impact on the bile acid transporters is the primary cause 

(15, 100-103). Cholestasis-associated drugs have been shown to directly inhibit bile acid 

transporters, alter gene expression, and the localisation of bile acid transporters (Fig. 1). 

The bile salt export pump (BSEP) is the primary bile acid exporter and is directly inhibited 

by a wide variety of cholestasis-associated drugs including ethinyl estradiol, pioglitazone, 

ritonavir, rosiglitazone, and troglitazone (100). Additionally, many of the compounds that 

inhibit BSEP also inhibit other bile acid exporters, such as multidrug resistance-

associated proteins 2, 3, and 4 (MRP2, MRP3 and MRP4, respectively), although 

commonly with reduced potency (101). Furthermore, some cholestasis-associated drugs 

may affect gene expression of bile acid transporters. In an investigation of 30 drugs, 15 

caused downregulation of BSEP messenger RNA (mRNA) and decreased BSEP protein 

levels (15). Bosentan, ethinyl estradiol, ritonavir, and troglitazone were among the 15 

drugs that decreased BSEP expression and are all known to be cholestasis-associated 

drugs (76, 104-106). Finally, while not as common as direct inhibition of bile acid 

transporters or downregulation of bile acid transporter expression, cholestasis also may 

be induced by a drug causing internalisation and intracellular retention of bile acid 

transporters.  Estradiol-17β-D-glucuronide, a glucuronide metabolite of estradiol that 

occurs endogenously and that is also generated from drugs such as ethinyl estradiol, has 

been found to prevent the canalicular localisation of BSEP and MRP2 in in vivo rat studies 

at 15 µmol/kg (102, 103).  This internalisation and intracellular retention is due to 

activation of classical protein kinase C (cPKC) and phosphoinositide 3-kinase (PI3K) 

pathways (107). Similarly, cyclosporine A causes internalisation and intracellular 

retention of BSEP in rat hepatocytes, which may be due to its capacity to activate cPKC 
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and PI3K pathways (108-110). Cholestasis, while occurring through several mechanisms, 

is primarily caused by drugs interfering with the normal function of bile acid transporters 

in hepatocytes leading the accumulation of bile acids within the liver. 

Steatotic Drug-Induced Liver Injury 

Steatosis, the accumulation of lipids within hepatocytes, is another commonly 

occurring DILI phenotype, especially as a comorbidity, which has been reported to occur 

in 64% of DILI cases (93). Drug-induced steatosis is a form of NAFLD caused by drugs 

such as amiodarone, methotrexate, NSAIDs, and tetracycline (111-114). Steatosis is a 

concerning occurrence as a DILI phenotype because it has been reported that 73% of 

patients who required a liver transplant or had a fatal outcome exhibited steatosis as a 

histological feature (93). Steatosis has a histological presentation that occurs as 

microvesicular, macrovesicular, or mixed steatosis, which presents with both 

microvesicular and macrovesicular histologies (115). Microvesicular steatosis is 

characterised by lipid accumulation within hepatocytes that occurs as clusters of minute 

lipid vacuoles within hepatocytes that gives the cells a foamy appearance, but does not 

displace the cell’s nucleus (116). In contrast, the histology of macrovesicular steatosis 

occurs as large vacuoles of lipids, classically a single large droplet, but also may occur 

as clusters of small or medium droplets that displace the nucleus. Both forms of steatosis 

may occur with or without lobular inflammation, however liver injury severity often 

correlates with the degree of inflammation (117). Clinically, macrovesicular steatosis is 

the more common of the two forms, occurring in 72% of cases solely, or 14% of cases as 

mixed steatosis (93). A more severe form of steatotic liver injury is steatohepatitis, 

distinguished from steatosis by the occurrence of hepatocyte “ballooning”. Hepatocyte 
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ballooning presents as a 1.5 to 2 times enlargement of hepatocytes with rarefied 

cytoplasm and injury to the cytoskeleton including (1) loss of intact cytokeratin 8 and 18, 

(2) increased presence of Mallory-Denk bodies, and (3) increased presence of cytokeratin 

18 fragments (118-120). Steatohepatitis is a concerning occurrence with DILI as 

compared to other NAFLD injury phenotypes that have a liver-related mortality rate of 

1.7% while non-alcoholic steatohepatitis (NASH) has a liver-related mortality rate of 11% 

(121). The damage to hepatocytes related to the cellular ballooning results in more severe 

hepatocellular damage compared to lipid accumulation or steatosis-induced 

inflammation. Phospholipidosis involves the lysosomal accumulation of phospholipids. 

Clinically, it is not usually well distinguished from glycerolipids-based steatosis as its main 

feature is lamellar bodies that requires techniques such as electron microscopy to identify 

(122-124). Drug-induced hepatic phospholipidosis is characterised by the accumulation 

of phospholipids within hepatocytes and lamellar inclusions, both commonly of lysosomal 

origin (125).  

Drugs induce hepatic lipid accumulation by multiple, diverse mechanisms (Fig. 2). 

Microvesicular steatosis is associated with drugs such as amiodarone, tetracycline, and 

valproic acid (126-129), and is likely to result primarily from impairment in the capacity of 

mitochondria to perform fatty acid oxidation (FAO). The non-esterified fatty acids are not 

significantly oxidized by the mitochondria and, therefore, undergo esterification into 

glycerolipids that accumulate in microvesicles in the liver (130). Macrovesicular steatosis 

is associated with drugs such as amiodarone, diclofenac, and estrogens (131-133). While 

macrovesicular steatosis also may be induced by impairment of FAO, it also can be 

caused by impaired microsomal triglyceride transfer proteins (MTTP), a drug-induced 
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increase in uptake of fatty acids, and/or direct stimulation of lipid synthesis within the liver 

through activation of lipogenic transcription factors (134-137). Phospholipidosis is 

strongly associated with cationic amphiphilic drugs (CAD) such as amiodarone and 

perhexiline (131, 138). There are two predominant hypotheses for the mechanism of 

drug-induced phospholipidosis: 1) drugs directly bind to the phospholipids producing 

drug-phospholipid complexes that accumulate within lysosomes and cannot be digested 

by phospholipases, and 2) direct or indirect inhibition of phospholipases by the 

phospholipid-associated drugs (125, 139).  

 

 

 

 

 

 

 

 

 

  

Figure 2: Mechanisms by which drugs may disrupt lipid transport and metabolism leading to 

steatosis in hepatocytes. Drug-induced steatosis may result from increased uptake of free fatty acids 

(FFA) and chylomicrons (CM), impaired fatty acid oxidation (β-oxidation) and resulting esterification of 

excess FFA to glycerolipids (AG), and impaired exported of very low-density lipoproteins (VLDL) by 

inhibition of microsomal triglyceride transfer proteins (MTTP). 
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Models for Drug-Induced Liver Injury 

One of the most effective methods to combat DILI is to identify causative agents 

before they are released to market, and to understand the mechanisms that cause the 

hepatotoxicity of current DILI-associated compounds. To achieve these objectives, 

effective and translatable liver models are needed.  A number of in vitro, in vivo and ex 

vivo liver models have demonstrated utility for experimental studies of DILI.  The greatest 

strength of in vivo and ex vivo models is that they offer a holistic view that can account 

for the interactions of various cell types and tissue structures, more complex transport 

and biosynthesis pathways, more robust cellular protection mechanisms, and, for in vivo 

models, interorgan interactions (140-142). While in vivo and ex vivo animal models might 

seem ideal for studying DILI, they are usually more costly, less accessible and require 

significant ethical considerations to prevent any unnecessary suffering of animal subjects, 

especially considering the toxicological nature of DILI research. Most importantly, 

hepatotoxicity data generated in animal models may not translate to humans due to 

species-specific differences in DILI mechanisms. Alternatively, in vitro models using 

human hepatocytes and hepatic-like cells are more practical for many researchers to 

investigate DILI. The in vitro liver models include the use of various cell types such as 

primary hepatocytes, which offer the most similar genomic expression to liver tissue, and 

immortalised hepatic-like cells that are capable of proliferation and, therefore, offer an 

affordable and practical means to generate a large volume of hepatic-like cells for 

experimental studies (143). Additionally, immortalised hepatic-like cells have the added 

benefit that genetic modifications can be applied, such as knocking out specific 
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transporters; these cell lines offer an affordable alternative to primary hepatocytes with 

similar genomic and proteomic profiles (143-145). 

In vitro primary human hepatocytes (PHH) are the ideal choice of cells to achieve 

the greatest similarity in genomic expression to human liver tissue (143). Furthermore, 

PHH offer a metabolically competent and physiologically relevant in vitro model for 

translation to human liver tissue (146). A study comparing the genomic expression 

profiles of human liver tissue to PHH obtained a Pearson product-moment correlation 

coefficient (r) of 0.920, indicating a strong correlation in expression profiles. However, 

22% of genes had a greater than 2-fold differential expression when comparing human 

liver tissue to PHH. This was attributed to the fact that human liver tissue is comprised of 

70-80% hepatocytes with the remainder consisting of epithelial cells, cholangiocytes, 

stellate macrophages, and other hepatic cell types that possess different gene expression 

profiles (143). While there are options to utilise primary hepatocytes from other species, 

such as rats or dogs, this can introduce unwanted variability due to species-based 

differences; the fialuridine trial is a prime example of this. A significant issue in the use of 

primary hepatocytes from other species as an in vitro model for the human liver is the 

difference in protein abundance and function. While there are many conserved proteins, 

such as the cytochrome P450 (CYP) enzymes or transporters, these occur in different 

abundances and isoforms between species that alter their behaviour, which is especially 

problematic when investigating drug interactions with these proteins (147-151). Although 

the use of PHHs may provide the closest representation to human liver in response to 

drug exposure, the same experiment performed using hepatocytes from another species 

may give vastly different results. Variations between primary human and non-human 
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hepatocytes have been observed in numerous studies. A significant limitation to using 

animal models in place of humans, especially in the context of investigating DILI where a 

bile acid dependence may be present, is the species-based variation in bile acid 

composition. The variations in plasma bile acid composition and abundance are 

substantial between humans and other animals (Fig. 3). For example, Sprague-Dawley 

rats have 3-times higher concentrations of total plasma bile acids compared to humans 

(12 µM vs 3.9 µM, respectively) with cholic acid comprising 30% of the rat’s total plasma 

bile acid pool but only 11% of human’s total plasma bile acid pool (152). 

 

Furthermore, drug treatment of primary hepatocytes with rifampicin, a potent 

CYP3A4 inducer in humans, had no effect on CYP3A4 induction in primary rat 

Figure 3: Concentrations of plasma bile acids in different mammalian species. Murideoxycholic 

acid (MDCA), muricholic acid (MCA), hyodeoxycholic acid (HDCA), hyocholic acid (HCA), 

murideoxycholic acid (MDCA), ursodeoxycholic acid (UDCA), cholic acid (CA), lithocholic acid (LCA), 

deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) were quantified among a variety of different 

mammalian species (152). 
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hepatocytes (PRH) (126). Rates of drug metabolism can also vary among species. For 

instance, diazepam metabolism occurs 3.6 times faster in primary pig hepatocytes and 

1.5 times slower in PRH compared to PHH (153). There are examples in which the 

experimental outcome was completely different between human and animal-derived 

primary hepatocytes. This was evident in the treatment of PHH and PRH with 

chenodeoxycholic acid CDCA, which caused an increase in intracellular abundance of 

CDCA, taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid 

(GCDCA) in PRH over a 24-hour treatment while PHH showed a depletion of these 

compounds (154). Additionally, treatment with lithocholic acid (LCA) showed significantly 

different degrees of toxicity and a vast difference in the abundance of intracellular 

lithocholic acid conjugates between PRH and PHH (154). Another facet of inter-species 

variation that is vital to recognise is the variation in hepatic transporters, both in 

abundance and isoforms. The variation in transporter expression between species is vast, 

with the relative abundance of transporters such as BSEP, Na+-taurocholate co-

transporting polypeptide (NTCP), MRP2, and organic-anion-transporting polypeptides 

(OATP) varying markedly (Table 2) (151, 155). 
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Table 2: Relative Abundance (%) of Quantifiable Transporters in Liver Tissue of Humans, Monkeys, Rats, 

and Dogs (151) 

Relative Abundance (%) 

Origin of Liver Tissue BSEP NTCP OATP MRP2 OCT1 

Human 13% 13% 29% 9% 27% 

Monkey 7.5% 3% 46.5% 9% 32% 

Sprague-Dawley Rat 6% 22% 43% 20% 6% 

Wistar Rat 5% 18% 48% 20% 6% 

Dog 8% N/A 69% 9% 2% 

 

Such discrepancies in transporter abundance and species-related isoforms can 

lead to variations that may impair the ability of an animal-derived hepatocyte to sufficiently 

model human liver function. Species-related isoforms may cause certain transporters to 

exhibit different Km and Vmax values, resulting in different transport capacity of certain 

substrates. Accurate modelling of BSEP transporter function is vital when studying DILI 

because it is linked to several mechanisms for cholestasis (15, 76, 104-106). Using non-

human Bsep proteins can be problematic. For example, even though rat BSEP (rBSEP) 

or dog BSEP (dBSEP) transporters share 82% and 89.4% of their amino acid sequence 

with human BSEP (hBSEP), respectively, variations are still present (150, 156). The 

transport of taurocholate by BSEP is known to differ between species:  dBSEP (Km: 33.7 

µM, Vmax: 219 pmol/min/mg protein), rBSEP (Km: 22.2 µM, Vmax: 237 pmol/min/mg 

protein), and hBSEP (Km: 19.9 µM, Vmax: 98.5 pmol/min/mg protein) (150). Furthermore, 

proteins from different species respond with difference sensitivities to drug treatment, with 

Bsep inhibition by drug treatment varying up to 25-fold when comparing rBSEP to hBSEP 
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(150). It is critical to take these species differences into consideration when selecting a 

model to study human diseases, such as DILI, since using a model with different drug 

sensitivities, affinities, protein abundance, and other variations in metabolic behaviour, 

can reduce the ability for the results to translate from the non-clinical to the clinical setting. 

Although PHH offer an in vitro gold standard in recreating in vivo metabolic activity in 

humans, there are still a significant number of conserved metabolic characteristics 

between species that do allow for animal-derived primary hepatocytes to be applicable 

for research when selected appropriately (143, 148). 

A common alternative to PHHs is immortalised hepatic-like cells such as HepaRG, 

HepG2, and HuH-7 cell lines. Immortalised hepatic-like cells derived from patients with 

liver carcinomas are capable of indefinite proliferation and possess various hepatocyte-

specific characteristics (157-159). By far the most commonly used immortalised 

hepatocyte cell line is the HepG2 cell line, which was established in 1979 from a liver 

tumour biopsy of a 15-year-old Caucasian male with hepatocellular carcinomas (157). 

The prevalence of HepG2 as a model for human hepatocytes can be attributed to the fact 

that it is a highly accessible and affordable cell line with some metabolic similarity to PHHs 

(143-145, 160, 161). HepG2 cells, as with many carcinoma-derived cell lines, rapidly 

proliferate with a doubling time of 48 hours and require only a simple culture media of 

Modified Eagle Media, fetal bovine serum, and glutamine (157). While this allows ready 

access to HepG2 cells for many researchers, the similarity of HepG2 cells to PHHs and 

human liver tissue is limited. When assessing its genomic expression profile, the similarity 

to liver tissue gene expression was only moderate (r= 0.791) (143). While a moderate 

correlation may still be adequate for some studies, it was less than PHH (r=0.920) (143). 
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There are a large number of differentially expressed genes in the HepG2 cell line when 

compared to PHH (37%) and liver tissue (39%) (143). While this indicates some overlap 

in metabolic behaviour between HepG2 cells, PHH and liver tissue, there are limitations 

in the ability of HepG2 cells to act as a holistic model for in vivo hepatocyte behaviour. 

This is further illustrated when comparing the protein expression from major metabolic 

pathways between HepG2 cells and PHH such as fatty acid β-oxidation (8.4% of PHH), 

the TCA cycle (9.5% of PHH), and bile acid biosynthesis (5.1% of PHH). Expression of 

phase I and phase II enzymes is substantially decreased, as low as 0.6% and 0.7% of 

PHH, respectively, with major enzymes such as CYP3A4 expressed at 0.5 to 1.5% of 

PHH (144, 145). Transport proteins, which are vital to hepatocyte behaviour, are also 

significantly altered with all major transporters showing decreased expression, including 

BSEP, NTCP, and OATPs with the exception of multidrug resistance protein 1 (MDR1) 

(221% of PHH), MRP2 (114% of PHH), and OCT3 (186% of PHH) (Table 3) (144). 

However, while HepG2 cells may show some limitations, they are capable of forming bile 

canalicular structures and sufficiently express MDR1, MRP2, OCT3, and several phase I 

and II enzymes (144, 145, 162). For studies focussing on these well-expressed proteins, 

HepG2 cells offer a sufficient model that is accessible and affordable. 

  



27 

 

Table 3: Relative Abundance (%) of Various Hepatic Excretion and Uptake Transporters in HepG2 Cells 

Compared to PHH (144) 

HepG2 vs PHH (%) 

Excretion Transporters Uptake Transporters 

BSEP 1% OAT2/7 1.3% 

MDR1 221% OAT7 1% 

MRP2 114% OCT1 0.6% 

MRP3 11% OCT3 186% 

MRP6 5% OATP1B1 0.6% 

MATE1 405% OATP1B3 0.5% 

  NTCP 4% 

 

A recent alternative to HepG2 cells is differentiable HepaRG cells. HepaRG cells 

were established from the liver tumour of a female patient with an Edmondson grade I 

differentiated liver tumour associated with chronic hepatitis C (158). HepaRG cells are 

capable of proliferation, allowing for large cell volumes to be generated from an initial 

stock. In addition, they also can be differentiated by the inclusion of DMSO in the media, 

producing a culture with closer similarities to PHH (143, 145, 160). The similarity of 

genomic expression in HepaRG cells to human liver tissue was better than HepG2 cells 

(r=0.881 vs 0.791, respectively), but still less than PHH (r=0.920). Additionally, only 26% 

of genes were differentially expressed in HepaRG cells compared to human liver tissue, 

and 28% when compared to PHH (143). HepaRG cells demonstrate metabolic 

competency in relation to PHH by having comparable levels of protein expression in major 

metabolic pathways such as the TCA cycle (59% of PHH), bile acid synthesis (42% of 
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PHH), and fatty acid β-oxidation (34% of PHH). Although these values are lower, they are 

still within the same order of magnitude of PHH expression levels, unlike HepG2 cells 

(145). The value of HepaRG cells as an alternative model for PHH is further illustrated 

when assessing the activity and abundance of CYP enzymes. The predominant phase I 

liver enzyme, CYP3A4, is highly expressed in HepaRG cells within an order of magnitude 

of PHH (236% of PHH) and shows similar levels of activity, especially when compared to 

HepG2 cells (Table 4) (145, 163). 

Table 4: Comparison of Metabolic Rates of CYP3A4 from PHH, HepaRG, and HepG2 Cells Using 

Midazolam as a Probe Substrate (163) 

Cell Type CYP3A4 Activity (pmol/h/50,000 cells) 

2D-cultured PHH 27.4 ± 1.5 

2D-cultured HepaRG 85.6 ± 4.5 

2D-cultured HepG2 0.64 ± 0.04 

 

Expression of other Phase I and II enzymes in HepaRG cells is comparable to 

PHH, including CYP3A5, CYP4FB, CYP20A, glutathione S-transferase A1, glutathione 

S-transferase K1, glutathione S-transferase T1, UDP-glucuronosyltransferase 1A9, and 

UDP-glucuronosyltransferase 2A3 (145). However, there are still a number of enzymes 

that have significantly decreased expression in HepaRG cells, such as UDP-

glucuronosyltransferase 2B7 (1.5% of PHH), UDP-glucuronosyltransferase 2B10 (2% of 

PHH), CYP1A2 (2.4% of PHH), and CYP2D6 (1.6% of PHH) (145). HepaRG cells also 

offer a suitable surrogate to PHH across a variety of important liver transporters including 

MRP2, MRP3, NTCP, OAT2, OCT3, and OATPs; although BSEP is present at only 8% 
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of expression in PHH, this still represents an 8-fold increase over HepG2 cells (Table 

5)(145, 164). In addition to improved expression of important liver enzymes, HepaRG 

cells can form distinct and well-polarised biliary canaliculi (165). While HepaRG cells may 

still show some differential gene expression and metabolic behaviour when compared to 

PHH, they offer an accessible alternative to PHH. Their ability to proliferate allows for 

generation of a large number of cells that can be differentiated into non-proliferating 

hepatic-like cells with improved metabolic competency compared to HepG2 cells. 

Table 5: Relative Abundance (%) of Various Hepatic Excretion and Uptake Transporters in HepaRG Cells 

Compared to PHH (145, 164) 

HepaRG vs PHH (%) 

Excretion Transporters Uptake Transporters 

BSEP 8% OAT2 44% 

MDR1 174% OCT3 60% 

MRP2 78% OATP1B1 22-38% 

MRP3 167% OATP1B3 2-15% 

MRP6 32% NTCP 191-247% 

 

Another hepatocyte cell line of note are HuH-7 cells, which were established in 

1982 and derived from a surgically removed hepatoma tissue of a 57-year-old Japanese 

male (159). While this cell line possesses similar metabolic and genomic expression to 

HepG2 cells, it has been shown to be a useful surrogate to PHH for specific transport 

studies (166-168). HuH-7 cells, when cultured for 4 weeks with dexamethasone, form 

distinct canalicular structures with BSEP, MDR1, and MRP2 expressed and localised to 

the canalicular membrane. This expression of bile acid transporters and formation of 
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biliary canaliculi led to the use of HuH-7 cells for hepatocyte transporter studies (167). 

Furthermore, HuH-7 cells express OATPs and OSTα/β transporters on the basolateral 

membrane, offering a useful alternative to PHH for studies related to these transporters 

(168). With such a wide variety of different hepatocyte and hepatic-like options for use as 

in vitro models to study DILI, it is important that selection of a hepatocyte model is made 

carefully to best represent the desired in vivo conditions. 

Analytical Techniques for Investigation of Drug-Induced Liver Injury  

Identifying the potential for drugs to cause DILI and the mechanisms by which this 

occurs is possible using in vitro models. These studies can range from simple plate-based 

methods such as the B-CLEAR® transporter assay, or microscope imaging-based assays, 

to more complex studies analysing variations in biomolecules such as genomics, 

transcriptomics, proteomics, and metabolomics. These studies offer a wide variety of 

different outputs that can help describe the capacity for a drug to cause DILI and potential 

mechanisms by which toxicity occurs (Table 6). 
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Table 6: Non-omics Based Analytical Techniques Applicable for DILI Studies 

Assay Method Outcome Advantages/Limitations 

Cell 
viability 

assay 

A spectroscopic change is 
made to a chemical 

indicator based on the 
function of a cell’s 

mitochondria. Viability is 
commonly measured by 

the cellular ATP content or 
the presence of viable 
mitochondrial enzymes 

Quantifies the relative 
number of functional 

mitochondria present in a 
culture 

Accessible measurement of 
cytotoxicity that can be 
conducted in a high-
throughput manner . 

Measurements are non-
specific and are based on 

biomarkers of viability which 
may be impacted without 

permanent cell death 

C-DILITM 
assay 

Comparison of viability of 
drug-treated control 

hepatocytes and 
cholestatic-sensitised 

hepatocytes 

Determines a drug’s 
potential to cause bile 

acid-mediated 
hepatotoxicity and its risk 
of causing cholestatic DILI 

Specific assay for high-
throughput determination of 

cholestatic potential of 
chemicals. Requires use of 

Transporter Certified primary 
human hepatocytes 

Membrane 
integrity 

assay 

A spectroscopic change is 
made to a chemical 

indicator based on the 
amount of lactate 

dehydrogenase (LDH) 
released from cells due to 
the loss of cell membrane 

integrity  

Quantifies the amount of 
LDH released from cells 

due to loss of cell 
membrane integrity. In 

many cases, it is 
assumed that the loss of 

integrity is due to cell 
death 

Accessible measurement of 
cytotoxicity that can be 
conducted in a high-
throughput manner. 

Measurements are non-
specific and rely on the 

presence of LDH, which has a 
6- to 8-hour half-life potentially 
leading to inaccurate results 

Apoptosis 
assay 

A spectroscopic change is 
made to a chemical 

indicator based on the 
caspase-3 and/or -7 

abundance within a cell 
culture 

Gives an indication of the 
relative amount of 

apoptosis that a cell 
population is experiencing 

Accessible measurement of 
apoptosis that can be 
conducted in a high-

throughput manner . Cell 
death occurring through non-
apoptotic pathways may be 

poorly assessed 

Western 
blot 

Gel electrophoresis 
followed by attachment of 

a primary antibody to a 
target protein followed by 

the attachment of a 
secondary antibody  

Determines if a specific 
protein is present in a 

biological protein extract, 
and provides a semi-

quantitative indication of 
relative abundance 

Antibodies are specific and 
sensitive to target proteins; 

data are only semi-
quantitative. Primary 

antibodies are expensive and 
may not be available for all 

target proteins 

B-CLEAR® 
assay 

Comparison of cellular 
accumulation vs cellular 

and biliary accumulation of 
transporter substrates by 
comparing cells with and 

without sealed tight 

Quantifies functional 
changes in hepatocyte 

basolateral (uptake) and 
canalicular (biliary 

excretion) transporters 

Offers quantitative 
measurement of changes in 

transport and cellular 
concentrations of bile acids 

and/or xenobiotics. Requires 
use of Transporter Certified 
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The B-CLEAR® transport assay is a plate-based assay that can be used to quantify 

the impairment of hepatic transporters (169, 170). Functional transporters are an 

important factor for hepatocyte homeostasis and the prevention of toxic accumulation of 

xenobiotics or endogenous molecules, and dysfunction of transporters commonly leads 

to cholestasis or other harmful forms of liver injury (15, 66, 100-104). By assessing 

changes in the biliary excretion index (BEI) of hepatocytes or hepatic-like cells, the B-

CLEAR® assay can provide insights regarding the drug accumulation in hepatocytes and 

the impact that cholestatic-associated compounds, such as bosentan or troglitazone, can 

have on biliary transport (170, 171). Troglitazone and bosentan, well-known cholestasis-

associated drugs, were shown by the B-CLEAR® assay to decrease uptake of 

taurocholate, an NTCP substrate, by 3- and 12-fold, respectively. Uptake of estradiol-

junctions forming bile 
canaliculi 

primary human hepatocytes 
for greatest accuracy  

Transporter 
localisation 

Immunofluorescence 
microscopy of target 

transport proteins via the 
use of primary and 
fluorescent-labelled 

secondary antibodies 

Assesses the localisation 
of hepatic transporters 

Offers semi-quantitative 
spatial information about 
transporter location within 

cells; cannot be applied to live 
cells and antibodies 

Neutral 
lipid 

staining 

Staining of hepatocytes 
with lipophilic dyes (e.g., 
BODIPY, Oil Red O) for 
fluorescence microscopy 

Identifies the intracellular 
accumulation of neutral 
lipids caused by drug 
treatment resulting in 

steatosis 

Allows for the accessible and 
potentially high-throughput 
visualisation of neutral lipid 
accumulation. Degree of 
accumulation can only be 

assessed semi-quantitatively 
and does not stain 

phospholipids 

Lysosomal 
staining 

Staining of acidic 
lysosomal environment 

with dyes (e.g., NBD-PE, 
HCS LipidTOX™, 
LysoTracker™) for 

fluorescence microscopy 

Determines whether 
lysosomes have 

increased in size or 
abundance and may be 

used to identify 
phospholipidosis 

Allows for the accessible and 
potentially high-throughput 
visualisation of changes in 

lysosomes. Lysosomal 
changes are semi-quantitative 
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17β-D-glucuronide, an OATP substrate, was reduced by 4-fold in response to troglitazone 

treatment and 7-fold by bosentan treatment. Furthermore, troglitazone and bosentan 

decreased the biliary excretion index of taurocholate from 55% to 27% and 10%, 

respectively (170). Thus, the B-CLEAR® assay can: 1) assess the capacity of a drug to 

impact hepatic transporters and, therefore, its potential to disrupt hepatocyte 

homeostasis, and 2) identify possible mechanisms that may lead to the onset of DILI. 

The capacity of a compound to inhibit the hBSEP transporter is not sufficient to 

determine a drug’s cholestatic-inducing potential due to the involvement of other 

transporters and compensatory mechanisms in hepatocytes (101, 172). Therefore, the C-

DILITM plate-based assay was developed to assess more accurately the potential for a 

drug to specifically induce cholestasis. Using this system, free fatty acids (FFA) and 

exogenous bile acids are added to appropriately challenge hepatocytes so that any drugs 

capable of inducing cholestasis will have a distinct hepatotoxic impact under these 

conditions. This was illustrated in a C-DILITM study comparing cyclosporin A (CysA) and 

troglitazone, both potent BSEP inhibitors (CysA, IC50=0.5 µM; troglitazone, IC50=3 µM)  

(101, 173). While both drugs are capable of inhibiting BSEP, there is a much greater 

potential for fatal cholestatic liver injury caused by troglitazone compared to CysA 

observed in the C-DILITM assay, which has been reflected in clinical studies (35-41, 173-

178). 

Image-based assays can provide information about the effects of drugs on 

transporter localisation or their potential for inducing the liver injury phenotypes 

associated with steatosis and phospholipidosis. A common and powerful imaging tool for 

assessing transporter localisation and abundance are immunofluorescence microscopy 
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assays (IFAs). IFAs utilise affinity-based biology (antibodies) coupled with fluorescent 

reporters and can be performed in two ways: direct, where the fluorophore is conjugated 

directly to the antibody targeting a specific transporter; or indirect, which involves a 

secondary antibody/fluorophore conjugate that targets the anti-transporter 

immunoglobulin class (such as anti-IgG) (103, 108, 167, 168). The added benefit of these 

techniques is the variety of fluorophores available for multiplexing assays, allowing the 

investigation of multiple transporters in a single assay. IFAs have been used to assess 

and optimise the expression and localisation of organic anion transporters as well as 

MDR1 and BSEP in HuH-7 cells under different in vitro conditions (167, 168). Additionally, 

IFAs have been used to demonstrate the capacity for estradiol 17β-D-glucuronide and 

CysA to cause the internalisation of the BSEP transporter in PRH (103, 108). Lipid 

staining dyes, such as the green, fluorescent dye, BODIPY, or the red colourimetric dye, 

Oil Red O, are commonly used to assess the accumulation of neutral lipid droplets and 

can be used to detect drug-induced steatosis  (179-182). Identifying the ability of a drug 

to increase the presence of neutral lipids as droplet accumulations in vitro can be used to 

assess the potential for causing drug-induced steatosis in vivo. Clinical data for 

steatogenic drugs correlate well with their ability to cause in vitro steatosis; drugs such as 

amiodarone, methotrexate, tamoxifen, and tetracycline have steatogenic properties both 

in clinical and in vitro studies (22, 183). However, these lipid dyes mentioned above 

primarily detect glycerolipids-based lipid accumulation but poorly identify 

phospholipidosis and, therefore, modified dyes or techniques are needed to detect 

accumulation of multiple lipid species (124). The detection of phospholipidosis is 

performed most commonly by using electron microscopy to identify lamellar inclusions in 
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hepatocytes; however, this is a tedious technique that does not allow for high-throughput 

screening and requires expert training. Phospholipidosis may be identified with lysosomal 

dyes including 2-(4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-

hexadecanoyl-sn-glycero-3-phosphocholine (β-BODIPY C12-HPC), N-(7-nitrobenz-2-

oxa-1,3-diazol-4-yl)-dipalmitoylphosphati-dylethanolamine (NBD-PE), HCS LipidTOX™, 

or LysoTracker™, which would be used to detect an increased volume and abundance 

of lysosomal vesicles, the accumulation site of phospholipids when phospholipidosis is 

induced (124, 184). The use of image-based detection assays for glycerolipids and 

phospholipids allows for high-throughput screening of drugs to identify their potential to 

cause steatosis or phospholipidosis (184, 185).  

 Recently, high-content plate-based assays were developed in which various 

assays using fluorescent probes, antibodies, and reactive dyes were combined to 

characterise the nature of a drug’s hepatotoxicity behaviour across several parameters 

(186). These parameters can assess the production of reactive oxygen species and 

changes in glutathione abundance, changes to membrane permeability, formation of 

biliary canaliculi, lipid accumulation, bile-acid dependant toxicity, and impairment of 

mitochondrial membrane potential and mitochondrial toxicity (186, 187). Furthermore, 

using receiver operating characteristic analysis can allow for the outcomes of these 

assays to grade the hepatotoxic potential of the drugs tested (186). 

Application of Omics to Investigate Drug-Induced Liver Injury 

Omics is a broad term that encompasses the four fields of genomics, 

transcriptomics, proteomics, and metabolomics. Each of these fields offers powerful 

tools that can be used to investigate and dissect DILI from susceptibilities and changes 
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in gene expression after drug treatment to biological perturbations of proteins and 

metabolites, which may offer mechanistic insight into the causes of DILI.  

Genomics 

Genomics was one of the first omics fields to be developed. Genomics is the 

science of characterising an organism’s genetic code, focussing on evolutionary 

relationships, genome structure and correlating gene sequences with biological functions 

of the organism (188). Genomics is a powerful tool in the DILI field; research has 

concentrated on identifying single nucleotide polymorphisms (SNPs) – gene variants that 

may lead to increased susceptibility to DILI (189). A common cause of susceptibility 

comes from SNPs within immune-related genes, such as the human leukocyte antigen 

(HLA) gene or genes related to cytokines (190-195). Amoxicillin-clavulanate, lapatinib, 

and lumiracoxib have all been associated with specific HLA gene variants that have 

resulted in a greater susceptibility of patients to DILI. Amoxicillin-clavulanate was 

associated with three haplotypes for susceptibility to DILI; HLA class II DRB1*15:01-

DQB1*06:02, which is known to indicate susceptibility to other drugs as well, and HLA 

class I A*02:01 (191, 196). Lapatinib and lumiracoxib also were found to increase 

susceptibility to DILI in patients with the HLA-DQA1*02:01 and HLA-DQA1*01:02 

genotypes, respectively. These variants were associated with a significantly increased 

occurrence of DILI versus control populations after treatment with lapatinib (71% vs 21%) 

and lumiracoxib (77% vs 46%) (194, 195). Furthermore, gene variants related to 

cytokines such as interleukin (IL)-4, IL-10, and Tumour Necrosis Factor (TNF)-α are 

associated with increased incidence of idiosyncratic DILI. IL-4 and IL-10 phenotypic 

susceptibilities were identified after treatment with diclofenac. The SNPs responsible for 
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these susceptibilities, IL-10-A627C (Odds ratio (OR): 2.84), and IL-4-T590C (OR: 2.6), 

demonstrated a significant association with diclofenac-induced liver injury, with the 

greatest effect occurring when both SNPs were present (OR: 5.3) (190). A similar trend 

also was observed with a gene variant of TNF-α, in which the TNF-α-G308A variant was 

identified to correlate as a risk factor for hepatitis induced by anti-tuberculosis drugs 

including isoniazid, rifampicin, and pyrazinamide (197). Genetic variants of phase II liver 

enzymes also introduce susceptibility to DILI, primarily because many of these gene 

variants exhibit reduced activity. N-acetyltransferase 2 (NAT2) is a phase II N-acetylation 

enzyme known to have several alleles in the human population. Patients with the NAT2*5, 

NAT2*6, and NAT2*7 alleles are referred to as “slow acetylators”, in which the rate at 

which these alleles acetylate their substrates is reduced in comparison to other NAT2 

alleles (198). These slow acetylation variants increase susceptibility to isoniazid and 

rifampicin-induced liver injury from 4- to 28-fold in Japanese patients (199). Additionally, 

for a population of 24 Singaporean patients treated with isoniazid, there was a significant 

correlation between DILI and slow NAT2 variants (OR: 13.9) (200). Isoniazid and 

rifampicin are both substrates of NAT2, and the DILI observed among those with the slow 

acetylation variant is likely due to prolonged exposure to higher plasma concentrations of 

the anti-tuberculosis drug (201, 202). Furthermore, double null genotypes of the 

glutathione S-transferase genes (GSTT1-GSTM1) have been identified as risk factors for 

DILI induced by tacrine, troglitazone, NSAIDs, and amoxicillin-clavulanate (OR: 3.7, 2.8, 

5.61, and 2.8, respectively) (203-205).   
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Transcriptomics 

Transcriptomics is the next layer down from genomics and, instead of assessing 

variations in gene sequences and their association with DILI susceptibilities, it can be 

used to identify changes to genetic expression profiles that occur in response to treatment 

with DILI-associated drugs. Transcriptomics involves the use of microarrays or, more 

recently, RNA sequencing (RNA-seq), which allows for the characterisation of a biological 

system’s transcriptome and changes to this transcriptome in response to stimuli. RNA-

seq is commonly used in the pharmaceutical industry to investigate the potential for DILI.  

Recent animal studies showed that the larger dynamic range of RNA-seq can capture a 

greater number of differentially expressed genes with improved coverage of pathways 

that are relevant to hepatotoxicity compared to microarrays (206). 

There is significant application of transcriptomics in drug development through the 

use of toxicogenomics for safety screening of new chemical entities (207). It is important 

to understand how the transcriptome of hepatocytes changes with exposure to a drug 

with DILI potential because this information can provide predictive and mechanistic insight 

into DILI. Transcriptomics has been used to generate predictive in vitro models for 

detecting DILI, with a predictive accuracy of 73% when comparing drugs strongly 

associated with severe and no incidence of DILI (208, 209). These models primarily focus 

on analysing variations in the expression of genes related to general cell injury such as 

apoptosis, necrosis, and inflammation (208, 210).  

Transcriptomics also has been used to identify mechanistic perturbations that may 

result in hepatotoxicity associated with a specific drug. For example, several DILI-

associated drugs, including ethinyl estradiol and ritonavir, impair BSEP gene expression 
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in an farnesoid X receptor (FXR)-dependant manner, which may be mechanistically linked 

to their cholestatic liver injury phenotype (15). In another example, CysA down-regulates 

OATP1B1, NTCP, Cytochrome P450 (CYP)3A4, and bile acid-CoA:amino acid N-

acyltransferase (BAAT) (211). Valproic acid suppresses the expression of several ATP-

synthases, fatty acid transporters, and other mitochondrial genes leading to mitochondrial 

dysfunction, steatosis and hepatotoxicity (212). Transcriptomics can be applied to 

determine the hepatocellular responses that may protect from fatal hepatotoxicity and 

allow for recovery from DILI. In a study of mouse models using APAP to induce both non-

lethal DILI and DILI resulting in fatal liver failure, the non-lethal dose increased expression 

of Myc, Bag3, and Btc, which did not occur at a lethal dose. These genes are related to 

cell survival, as well as protective, repair, and stress responses; Bag3 has anti-apoptotic 

activities and Btc induces cell survival and may explain how fatal liver failure is mitigated 

at lower doses (213). Additionally, betacellulin, the protein encoded by Btc, is present in 

serum and could potentially be used as a biomarker to predict a patient’s likelihood of 

recovery from DILI. 

A recent development in transcriptomics is single cell RNA-seq, which allows for 

individual cells to be sequenced. This can be invaluable when there is heterogeneity 

between cells, a known characteristic of hepatocytes (214, 215). The impact this 

heterogeneity could have on a hepatocyte’s response to injury was shown in cholestatic 

mice in which several heterogenous groups of cholestatic hepatocytes were identified and 

shown to differentially regulate genes that affected their lipid metabolism and localisation, 

cholesterol esterification, and inflammatory-related gene expression (216). Single cell 
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RNA-seq is, therefore, a vital tool for investigating and characterising how cell 

heterogeneity can affect and alter a biological system’s response to toxic stimuli.  

Proteomics 

It could be said that proteomics has long been used for detecting DILI in patients 

because the primary clinical assay for identification of DILI is detection of elevated AST 

and ALT liver enzymes in the blood. This concept of using serum proteins to detect liver 

injury has been further developed, improving the accuracy and sensitivity for detecting 

DILI. The accuracy that can be achieved by detecting elevations of apolipoprotein E 

(89%) is a notable improvement on the current clinical standard method of detecting 

changes in AST, ALT, and bilirubin (81%); however, further improvement to the detection 

accuracy for DILI is achieved when detecting changes in apolipoprotein E, inter-alpha-

trypsin inhibitor, gelsolin, complement component C7, and serum amyloid P-component 

proteins (95%) in mice (217). Furthermore, detection assays for a specific DILI-associated 

drug have been proposed. APAP-induced liver injury is detectable by quantification of 

urinary levels of calmodulin in humans, which correlate with plasma APAP concentrations 

(r= 0.97) and were detectable before any ALT elevations in blood occurred (217). An 

assay for the detection of diclofenac-induced liver injury was developed in vitro and 

validated in patients with diclofenac-mediated DILI. A patient would be considered 

positive for diclofenac-mediated DILI if the serum expression levels of integrin beta 3 

(ITGB3)-positive cells decreased below 60%, a decrease not observed in other DILI 

patients or other forms of liver injury not associated with a drug treatment (218). These 

new proteomic-based detection methods could prove to be important tools in reducing 

the large number of DILI cases that are not clinically identified, and potentially allow for 
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clinicians to intervene earlier before severe DILI occurs (30, 31). An even greater strength 

of proteomics is its ability to investigate biological perturbations of hepatotoxic 

compounds to identify mechanisms of toxicity. For example, HepaRG cells dosed with 

the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) exhibited a change in the 

abundance of up to 96 proteins, depending on dosing format and duration of exposure. 

The proteins that were significantly altered by DON and ZEA exposure included proteins 

related to cellular metabolic processes, stress response pathways, and cellular 

development and proliferation (219). Most notable was the significant decrease in 

abundance of DNA topoisomerase 1 and DNA topoisomerase 2-alpha, both shown 

previously to be affected as part of the broader mycotoxin mechanism of toxicity (219-

221). Nevirapine (NVP), a non-nucleoside reverse-transcriptase inhibitor, has been 

associated with a high rate of DILI; with 5-12% of treated patients experiencing NVP-

associated liver injury (222, 223). Dosing of HepG2 cells with NVP led to mitochondrial 

dysfunction, as indicated by altered abundance of 13 mitochondrial proteins (224). 

Important mitochondrial enzymes such as glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) and phosphoenolpyruvate carboxykinase (PEPCK) showed a 2.2- and 12.2-

fold decrease in abundance following exposure to NVP, resulting in inhibition of DNA 

polymerase gamma leading to mitochondrial dysfunction and mitochondrial-mediated 

apoptosis (224-226).  

Metabolomics 

The final omics technique, metabolomics, is capable of characterising and 

determining changes to the metabolome of a biological system, which allows for 

identification of small molecular biomarkers and mechanistic insight into DILI. There has 
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been a variety of studies performed using metabolomics to identify serum biomarkers of 

DILI for use in pathology, and for discovery of in vitro biomarkers that predict DILI, as well 

as for characterisation of the injury phenotype. Several serum biomarkers have been 

identified and proposed for use in DILI diagnosis based on metabolites from primary and 

secondary bile acid biosynthesis, α-linolenic acid metabolism, and glycerophospholipid 

metabolism (227, 228). A significant increase in serum levels of palmitic acid, TCDCA, 

glycocholate (GCA), and tauroursodexycholate (TUDCA), in addition to a significant 

decrease in serum lysophosphatidylethanolamine levels was observed in DILI patients vs 

healthy controls. Additionally, the severity of DILI corresponded with increased serum 

levels of glycine and taurine conjugates [GCA, taurocholate, TUDCA, GCDCA, and 

taurodeoxycholate (TDCA)], with decreased serum levels of CDCA, deoxycholic acid 

(DCA), and LCA also corresponding to more severe DILI pathology (227, 228). The serum 

bile acids that increased in response to DILI were sensitive and specific differentiators of 

DILI compared to healthy controls, while the decreased serum bile acids were poor serum 

biomarkers of DILI (227). One limitation of the serum biomarkers is that their capacity to 

differentiate between DILI and other forms of liver injury is yet to been shown. MetaMap®-

Tox is an excellent example of the application of metabolomics to identify the toxicological 

mode of action of compounds. MetaMap®-Tox is a database of serum metabolites from 

Wistar rats treated with compounds that have known toxicological modes of action; these 

metabolites are analysed and categorised to produce a database of biomarkers that can 

be used to determine a novel compound’s toxicological mode of action (229-231). This 

toxicological biomarker database has been applied to identify the potential toxicological 

mode of action of drugs such as phenytoin, lamivudine, zidovudine, and phenobarbital 
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(232, 233).  In vitro metabolomic studies can be used to classify the DILI-associated drugs 

into general classes of hepatotoxic mechanisms through the combined use of 

metabolomics analysis and Principal Component Analysis (PCA)-based clustering (234, 

235). PCA comparisons of metabolomic data can be used to identify metabolite 

biomarkers of the DILI phenotypes such as oxidative stress, steatosis, and 

phospholipidosis. Metabolite biomarkers can be used to predict the likely general 

mechanism of hepatotoxicity based on metabolite fingerprints generated from DILI-

associated drugs with known mechanisms of hepatotoxicity (235). A notable example of 

this was the use of lipidomics, a form of metabolomics that focuses on the analysis of 

hydrophobic metabolites commonly known as lipids, for the classification of steatogenic 

drugs by the increase in total triglycerides, diglycerides and phospholipids, and a 

metabolite profile indicating oxidative stress distinguishing between well-known 

mechanisms involving impaired β-oxidation and mitochondrial dysfunction (235-238). 

Additionally, lipidomic analysis of drug-treated 3D human microtissues allowed for a lipid 

fingerprint to be generated that showed that alterations to triacylglycerides and 

lysophosphatidylcholines abundance was indicative of a higher DILI risk. The lipidomics 

profile of the drugs tested in this study correlated with the DILIrank classification for their 

potential to cause DILI with drugs of higher risk showing similar changes to their lipid 

profiles (239). APAP is a drug that has been repeatedly studied for toxicity- and 

mechanism-related biomarkers. From mouse hepatic extracts, metabolomic studies have 

shown that APAP treatment results in glutathione depletion. The depletion of glutathione 

can lead to depletion of glutathione precursor metabolites such as hypotaurine and 

methionine, reflecting a cellular response to protect against APAP-induced oxidative 
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stress. In addition, mitochondrial dysfunction was observed due to impaired ATP 

synthesis and up-regulation of energy-related pathways indicated by the depletion of 

glucose and glycogen and the elevation of D-3-hydroxybutyrate (240). Urinary biomarkers 

for APAP toxicity assessed in rats revealed that the urine concentration of S-

adenosylmethionine, a glutathione precursor, inversely correlated with APAP 

metabolites. Furthermore, urinary creatine, a general toxin-induced biomarker of 

oxidative stress, strongly correlated with APAP metabolites (241-243). Both of these 

metabolomic studies identified potential urinary biomarkers that are metabolically linked 

to APAP-induced oxidative stress. While the use of metabolomics to identify the 

mechanisms of specific DILI-associated drugs is limited, it has already been applied for 

toxicological examination of other compounds. The toxicological mechanisms of a variety 

of traditional Chinese medicines have been studied (244-248). Triptolide, an active 

constituent of Tripterygium wilfordii used to treat auto-immune disease, exhibited a 

mechanism of hepatotoxicity that involved perturbations to several pathways including 

glutathione metabolism, purine metabolism, taurine and hypotaurine metabolism, 

glycerophospholipid metabolism, and pyrimidine metabolism. These alterations to 

hepatocyte homeostasis resulted in increased reactive oxygen species (ROS), and 

subsequent oxidative stress to hepatocytes, dysfunction of the TCA cycle, and a decrease 

in anti-apoptosis metabolites such as cyclic guanosine monophosphate (cGMP) and 

taurine (244, 245). Metabolomics also has been applied to in vitro models studying the 

mechanisms of known toxins. For example, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

is a well-known hepatotoxic carcinogen with anti-proliferative effects that causes a 

decrease in nucleotide and polyamine levels associated with TCDD’s inhibition of DNA 
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synthesis and down regulation of ornithine decarboxylase, the main enzyme of polyamine 

biosynthesis. Furthermore, TCDD treatment of HepG2 cells decreased amino acids and 

metabolites in the fatty acid, sterol and energy metabolism pathways resulting from TCDD 

down-regulation or inhibition of important enzymes (249, 250). These perturbations are 

consistent with previous documentation of TCDD’s toxic effects (251, 252). Previous 

investigations utilizing metabolomics, and omics techniques in general, have 

demonstrated how these powerful analytical tools could be applied to investigate DILI.  

DILI is an important safety concern for numerous drugs prescribed to patients as 

well as for drugs in development. For decades, animal models and in vitro plate-based 

assays have served as the primary tools to detect potentially toxic drugs prior to first-in-

human trials. With advancing technologies including sophisticated, human-relevant in 

vitro models, in silico tools, and even artificial intelligence (AI), there is an abundance of 

new approaches that can identify safety concerns earlier in drug development. However, 

for these models to achieve the greatest benefit, they need to be coupled with powerful 

analytical techniques that offer both a profound breadth and depth of information about 

biochemical changes due to toxic stimuli. Genomics, transcriptomics, proteomics, and 

metabolomics provide the technology to allow this to be achieved. For sophisticated, 

human-relevant models, the greatest benefit in using these models is achieved when an 

equally sophisticated analytical technique can determine the mechanism responsible for 

DILI for each drug. Furthermore, for the development of accurate in silico or AI models, 

which could predict DILI based on a chemical structure, extensive information will be 

required about DILI-associated mechanisms of existing compounds. This “big data” can 

be obtained through robust omics analysis. Previous investigations using omics 
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techniques have shown that these are immensely powerful analytical tools that can 

provide highly relevant mechanistic and predictive insight into DILI. It is imperative that 

an interdisciplinary and intersectoral approach is taken toward expanding the 

implementation of omics in pharmacology and toxicology to achieve the incredible 

potential that this analytical approach offers to revolutionize drug safety. 

Thesis Aims 

 The core hypothesis of this thesis is that multi-omics, utilising proteomics, 

metabolomics, and lipidomics, can achieve broad and in-depth characterisation of in vitro 

models and biochemical perturbations that occur as a result of DILI. DILI is fundamentally 

the result of drugs having “off target” effects which cause changes to metabolic pathways 

leading to harmful perturbations to hepatocellular homeostasis and function. These 

changes can impact the proteome, metabolome, and lipidome of hepatocytes resulting in 

oxidative stress, mitochondrial dysfunction, and liver injury phenotypes such as 

cholestasis and steatosis (237, 253, 254). Additionally, for multi-omics to achieve the 

greatest insight into the toxicological perturbations to a biological system, the selection of 

metabolically competent in vitro models is paramount. The need for metabolically 

competent in vitro models is especially important when studying cholestasis and 

steatosis, liver injury phenotypes strongly associated with significant metabolic 

perturbations. It is vital to gain a better understanding of DILI as it is potentially fatal, with 

insidious onset and it often goes undiagnosed until severe liver damage has occurred (4, 

24-28). 

 The first aim of this thesis was to utilise proteomics and metabolomics to 

characterise the differences between in vitro liver models and changes to an in vitro liver 
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model after treatment with DILI-associated drugs. Proteomics characterisation of the 

proteome of PHH and comparison with the proteome of HepaRG™ cells, an alternative 

in vitro liver model, was performed using multivariate analysis to determine if HepaRG™ 

cells would offer a similar level of metabolic competency as PHH. HepaRG™ cells are 

known to have a similar gene expression profile as that of human liver tissue and also 

form well-polarised biliary canaliculi (143, 165). However, it is imperative to assess 

whether the similarity in gene expression profiles translates to a proteome that is 

comparable to that of PHH. Furthermore, metabolomics and proteomics have a 

substantial capacity to characterise changes to metabolic behaviour. There would be 

immense value in applying a multi-omics approach, which utilises proteomics and 

metabolomics, to analyse the metabolic perturbations that are a result of exposure to 

DILI-associated drugs. Drugs such as ritonavir and troglitazone have a wide variety of 

detrimental effects on several important metabolic pathways, including glucose 

metabolism and mitochondrial respiration (255-257). Proteomics and metabolomics can 

be applied to characterise the proteome of an in vitro model, to assess its metabolic 

competency, and offer analytical and mechanistic insight into the perturbations of 

metabolites and proteins from vital metabolic pathways induced by treatment with a DILI-

associated drug (Chapter 2).  

The second aim of this thesis was to investigate the impact that cholestasis-

associated drugs can have on bile acid-associated metabolites and proteins by applying 

a multi-faceted approach using relevant in vitro liver models. Drugs including troglitazone 

and estradiol have been shown to induce cholestasis, and it is imperative to understand 

the biochemical mechanisms through which these drugs can induce cholestatic liver injury 
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(104, 258). Cholestasis occurs due to the dysregulation of bile acid homeostasis and is 

known to be induced through at least one of three mechanisms; impairment of 

hepatocellular transport of bile acids, disruption of hepatocellular structure, and altered 

bile canalicular dynamics (254). A holistic multi-faceted approach towards characterising 

the cholestatic potential of DILI-associated drugs can be achieved by the application of 

functional plate-based assays, to determine bile acid-dependent hepatotoxicity and 

impairment of biliary transport, in combination with targeted bile acid metabolomics and 

proteomics, to determine alterations to the abundance of bile acid associated metabolites 

and proteins in response to drug treatment. Developing a greater understanding of the 

mechanism(s) of cholestatic DILI and the techniques through which it can be identified 

will allow for greater accessibility to the knowledge and tools required to prevent future 

cholestatic drugs from reaching the market (Chapter 3). 

The final aim of this thesis was to utilise lipidomics to identify characteristic lipid 

changes that are specific to NASH and drug-induced steatotic liver injury. A wide variety 

of lipids are altered in patients experiencing NASH and steatotic DILI, with a number of 

changes to the serum lipid profile known to occur (259-261). The change in extracellular 

lipid profiles should be associated with similar changes in the intracellular lipid profiles of 

hepatocytes, which should be characteristic to NASH or drug-induced steatotic liver 

injury. Lipidomics and multivariate analysis would, therefore, be capable of characterising 

the changes in the lipid profiles and determining which changes are characteristic of 

NASH or drug-induced steatotic liver injury. Identifying characteristic lipid profiles for 

NASH and steatotic DILI would present an invaluable addition to toxicological screenings 
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during drug development for determining the steatogenic potential of a drug or identifying 

potential serum biomarkers (Chapter 4). 

The research presented in this thesis was focused on using multi-omics to gain a 

greater depth of knowledge of the metabolic nature of in vitro liver models and the 

biochemical perturbations through which drugs can cause DILI. Understanding the 

pathways and mechanisms by which a drug may cause liver injury in metabolically 

competent liver models allows for a greater breadth and depth of knowledge in the field 

of DILI and liver toxicology, which can lead to the development of safer drugs and more 

powerful diagnostic techniques for liver injury. While the impact of DILI may be relatively 

small compared to other medical challenges, the insidious nature of DILI, the presence 

of DILI in nearly all drug classes, and the additional layer of risk that DILI adds to many 

pharmaceutical interventions clearly demonstrates the critical need to advance 

knowledge regarding the diagnosis and prevention of DILI. 
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Abstract 

In vitro liver models offer an invaluable research platform for studying drug-induced liver 

injury (DILI). Utilising metabolically competent in vitro liver models is important for 

obtaining translational and mechanistic insights into DILI. Data-independent acquisition 

(DIA) proteomics allowed for the comparison of primary human hepatocytes (PHH) to 

HepaRG™ cells. This analysis revealed that while there were moderate similarities 

between the whole cell proteomes of PHH and HepaRG™ cells, these similarities 

significantly decreased when comparing proteins associated with major metabolic 

pathways. Therefore, while HepaRG™ cells could act as a surrogate for PHH, there are 

likely limitations to the translational capacity due to differences in levels of proteins 

associated with major metabolic pathways. Further omics-based analysis utilising 

untargeted metabolomics and DIA proteomics to study DILI-associated perturbations to 

the major metabolic pathways of PHH demonstrated that there were significant 

perturbations to metabolites associated with the TCA cycle, as well as glucose, 

nicotinamide, phase I, glucuronidation, and glutathione metabolism. Multi-omics analysis 

indicated these perturbations may have resulted from drug-induced impairment of 

mitochondrial respiration via the inhibition of complex I, increases in oxidative stress, and 

alterations to nucleotide metabolism.  

Introduction 

The liver is a vital, metabolically active organ that performs a significant number of 

key metabolic processes including heme degradation, bilirubin synthesis, glycogenesis, 

fatty acid oxidation, detoxification, and the production of primary bile acids and albumin 
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(1). In order to maintain biological homeostasis, these critical functions are performed by 

a number of metabolism and transport proteins within the liver, including cytochrome 

P450 (CYP) enzymes, phase II transferase enzymes, uptake and efflux transporters, and 

metabolite synthesis enzymes. These metabolic functions are primarily performed by 

hepatocytes, which make up 80% of the liver’s cell composition, with the remainder 

consisting of cholangiocytes, Kupffer cells, stellate cells and sinusoidal endothelial cells 

(2). With its specialised metabolic and transport proteins driving the unique and vital 

functions of the liver, it is imperative that any liver model possess relevant metabolic and 

transport properties that are comparable to liver function in vivo.  

There are a number of different options for modelling in vivo liver behaviour, each 

with their own benefits and limitations. In vivo and in vitro animal models are widely used 

to model the human liver as they are more accessible and practical than using human 

subjects or primary human hepatocytes (PHH). However, animal-derived primary 

hepatocytes, as an in vitro model, may be limited due to species variations that can result 

in significant differences to overall hepatocellular transport and metabolism (3). The 

differences in hepatocellular transport and metabolism are due to interspecies differences 

in the abundance and activities of liver transporters and metabolic enzymes (3-5). For in 

vitro modelling of in vivo human liver behaviour, PHH are considered the “gold standard” 

model. The genomic expression profiles of isolated PHH have shown significant 

similarities to the gene expression of human liver tissue (r=0.92) (6). The two primary 

limitations of PHH are their limited availability and interdonor variability. Interdonor 

variability can result in the differential expression of up to 2099 genes, with those related 

to metabolism exhibiting the greatest differential expression between donors (7). A 
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common alternative to PHH is immortalised hepatic-like cell lines that offer an accessible 

and phenotypically uniform in vitro cell model. HepaRG™ cells are a differentiable 

hepatocyte-derived cell line with an organotypic phenotype similar to that of PHH (8, 9). 

When compared to PHH, HepaRG™ cells have similar genomic expression profiles 

(r=0.881) with comparable protein expression for major liver metabolic pathways 

including bile acid synthesis, and phase I and II metabolism (6, 10).  

Using in vitro models that possess comparable protein expression and metabolic 

competence to the liver is imperative for accurately assessing metabolic perturbations 

that may result in altered hepatocellular homeostasis or hepatocellular injury. Both PHH 

and HepaRG™ cells are useful as in vitro models for investigating changes resulting from 

drug-induced liver injury (DILI) and other hepatotoxic compounds (11-14). However, a 

majority of these DILI studies focused on gene expression, which may not be able to 

characterise biological perturbations as a result of alterations to translational and post-

translational modifications, or altered degradation, localisation or function of proteins and 

metabolites (15). Significant value can be obtained by using a multi-omics approach to 

assess changes in both the proteome and metabolome as it gives a direct representation 

of the metabolic and transport behaviour of cells and can identify mechanistic and 

predictive biomarkers of DILI and other harmful stimuli (12, 16, 17). A multi-omics 

approach is invaluable for identifying the mechanism(s) of DILI for drugs such as ritonavir 

and troglitazone, which are known to impact the behaviour of major energy metabolism 

pathways including glucose metabolism (18, 19) and the tricarboxylic acid (TCA) cycle, 

and cause significant liver injury (20, 21). Understanding the mechanism(s) of DILI can 

allow for improved identification of hepatotoxic compounds, reducing the likelihood of 
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harmful drugs reaching the market in the future. Identifying predictive biomarkers is 

urgently needed to improve the accuracy of diagnosing DILI, which may go undetected in 

up to 95% of patients (22-29).  

This study aimed to characterise the metabolic capacity of two in vitro liver models, 

PHH and HepaRG™ cells, and elucidate the impact of DILI-associated drugs on major 

metabolic pathways using a metabolically competent liver model. In order to characterise 

the metabolic capacity of the in vitro liver models, whole cell proteomes were generated 

for PHH and HepaRG™ cells using data-independent acquisition (DIA) proteomics. This 

approach identified considerable variation between the proteomes of PHH and 

HepaRG™ cells, with notable differences for proteins of major metabolic pathways. 

Furthermore, in vitro PHH cultures were treated with drugs associated with DILI and 

perturbations to biological pathways were investigated using metabolomics and 

proteomics. Drug treatments resulted in significant alterations to the abundance of 

metabolites and proteins associated with the TCA cycle, as well as glucose, nicotinamide, 

phase I, glucuronidation, and glutathione metabolism. 
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Material and methods 

Materials 

Undifferentiated HepaRG™ cells were acquired from Biopredic International under 

a material transfer agreement and HepaRG™ Maintenance/Metabolism Media was 

purchased from Biopredic International. Cryoplateable human hepatocytes were acquired 

from BioIVT along with all QualGro™ Media. Hepatocytes from the BXW donor were 

Transporter Certified™ and acquired from a female aged 73. Hepatocytes from the JHY 

donor were cryoplateable and acquired from a male aged 51 (Appendix 2). Pioglitazone 

and ritonavir were acquired from Merck as pharmaceutical secondary standards. 

Troglitazone was acquired from Cayman Chemicals. Dimethyl sulfoxide (DMSO), HPLC 

grade chloroform, LC-MS grade methanol (MeOH), sodium dodecyl sulphate (SDS), and 

trifluoroacetic acid were also purchased from Merck. LC-MS grade acetonitrile (ACN), 

0.25% trypsin-EDTA phenol red, Percoll, Dulbecco’s phosphate buffer saline (PBS), and 

chenodeoxycholic acid (CDCA) were purchased from ThermoFisher Scientific. 

Ammonium carbonate was purchased from Rowe Scientific. Matrigel® was purchased 

from Bio-Strategy. 

Cell Culture 

HepaRG™ cells were cultured in a T75 culture flask and differentiated per the 

supplier’s protocol. On day 0, differentiated HepaRG™ cells were passaged using 0.25% 

w/v trypsin-EDTA. The cells were plated on either 24- or 96-well BioCoat™ Collagen I-

coated plates with 4x105 and 0.8x105 cells seeded per well, respectively. Media was 

changed every 2-3 days with the cells overlaid on day 3 using HepaRG™ 



76 

 

Maintenance/Metabolism Media supplemented with 0.25 mg/mL of Matrigel® and used 

for experimentation on day 7. 

Transporter Certified™ cryoplateable human hepatocytes were thawed and 

transferred to a 50 mL conical centrifuge tube containing 45 mL of QualGro™ Thawing 

Media that included 30% v/v Percoll®. This was centrifuged at 100 g for 8 min. The 

QualGro™ Thawing Media was aspirated and the cell pellet was resuspended in 

QUALGRO™ Seeding Media at 0.8 x106 cells/ml. The human hepatocytes were plated 

onto either 24- or 96-well collagen I-coated plates with 4x105 and 0.56 x105 cells seeded 

per well, respectively. Media was changed daily with hepatocytes overlaid on day 1 using 

QUALGRO™ Overlay Media supplemented with 0.25 mg/mL of Matrigel®. Sandwich-

cultured hepatocytes were used for experimentation on day 4. 

Treatment with drugs associated with drug-induced liver injury and 

metabolomics extraction 

HepaRG™ cells and PHH from the BXW donor cultured on a 24-well plate were 

treated with the following drugs at the specified concentrations: ritonavir (25 µM), 

pioglitazone (100 µM), or troglitazone (12.5 µM). The drug treatment concentrations used 

in subsequent studies were the highest concentrations that were determined to be sub-

toxic based on an in vitro C-DILI™ hepatotoxicity study (Appendix 3). Controls were 

treated with 0.1% v/v DMSO and all drug treatments contained 0.1% v/v DMSO. Drug 

concentrations were sub-toxic, as determined by a previous cytotoxicity study (Appendix 

3). Following the 24-hour incubation, the media was aspirated and cells were washed 

three times with 1 mL PBS. The cells were collected from the well by the addition of 350 

µL MeOH:ddH2O (6:1) and scrapping with a pipette tip. The cells were then transferred 
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to a Safe-Lock microcentrifuge tube (Eppendorf®) containing 100 µL of chloroform to 

produce a monophasic 2:6:1 chloroform:MeOH:water (C:M:W) extraction mixture. To 

collect any residual metabolites or cell debris, the wells of the plate were washed with 1 

mL of BuOH:MeOH (3:1), transferred to another microcentrifuge tube and dried to 

completion using a CentriVap Benchtop Centrifugal Vacuum Concentrator (Labconco). 

The dried BuOH:MeOH extraction was reconstituted using the C:M:W extraction mixture 

to consolidate the extracted lipids. This pooled extraction mix was centrifuged at 21,600 

g for 10 min to pellet insoluble components and transferred to LC-MS vials for analysis. 

Controls were treated with 0.1% v/v DMSO. Extraction of media samples was performed 

as above; however, the 450 µL C:M:W extraction solution used 50 µL of the culture media 

from drug-treated cells instead of water. 

Liquid chromatography-mass spectrometry metabolomic analysis 

Drug-treated samples were analysed using hydrophilic interaction liquid 

chromatography (HILIC) with high resolution mass spectrometry as described previously 

(30). The samples were injected using an Ultimate U3000 liquid chromatography (LC) 

system (Dionex) fitted with a ZIC-pHILIC column (5 μm, 4.6 by 150 mm; Merck®) at 

ambient temperature with an injection volume of 10 μL. Chromatography was performed 

using 20 mM aqueous ammonium carbonate (A) and ACN (B) as the mobile phases. A 

30-min gradient at a flow rate of 0.300 mL/min was run starting at 80% B decreasing to 

5% B over 21 min followed by a 3-min wash at 5% B and an 8-min re-equilibration at 80% 

B. The samples were detected by a Q-Exactive Orbitrap mass spectrometer 

(ThermoFisher Scientific) using a heated electrospray ionisation (HESI) source at 3.5 kV 

operating in both positive and negative ion mode with rapid switching. A mass range of 
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85 to 1,275 m/z was used over the full 32-min run with an additional mass range of 65 to 

975 m/z from the 13.5-min to the 17-min time point for detection of glycine, with a mass 

resolution of 35,000 used for both ranges. LC-MS data were processed in an untargeted 

manner using the IDEOM workflow: (31) The LC-MS raw file conversion was performed 

using ProteoWizard and XCMS (32, 33). Mzmatch.R was then used for alignment and 

filtering of peaks with an intensity cut-off of 100,000, relative standard deviation of less 

than 0.8, and peak shape noise filter set to of greater than 0.8 using a context-oriented 

directed associations-Durbin-Watson (CoDA-DW) noise filtering approach (34). 

Metabolites were identified in IDEOM based on accurate mass and retention time (where 

standards were available), or accurate mass, using a 3-ppm mass window and predicted 

retention time for other putative metabolites (31). Metabolites were excluded if they were 

not associated with known metabolic pathways in KEGG or BioCyc, or if they were 

identified as glycerolipids or phospholipids, as the LC analysis used was not optimised 

for glycerolipids or phospholipids. LC-MS peak heights were used for downstream semi-

quantitative analysis. 

Proteomic data-independent analysis  

PHH cultured on a 24-well plate were treated with the following drugs at the 

specified concentrations: ritonavir (25 µM), pioglitazone (100 µM), or troglitazone (12.5 

µM). Protein was collected from hepatocytes by addition of 200 µL of 5% w/v SDS and 

denatured by heating to 95° C for 10 min. Hepatocyte lysates were processed and 

digested using S-Trap™ mini columns (ProtiFi) following the manufacturer’s protocol. The 

final samples were solubilised in 2% aqueous ACN with 0.1% trifluoroacetic acid. 
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A pooled lysate from drug-treated samples (Sample A) and a pooled lysate from 

untreated PHH and 100 µM CDCA (Sample B) were used to generate a treatment-specific 

(Library A) and OSTα/β up-regulated (Library B) protein spectral library (35). Both sample 

A and B were digested and processed as described above; however, once the samples 

had been eluted from the S-Trap™ column, the samples were fractionated. High-pH 

reversed phase fractionation was performed as described by Batth T.S, et al 2014 to 

generate 12 fractions for sample A and sample B (36). 

LC-MS/MS analysis of the pooled library and drug-treated samples was performed 

as described by Birrell G.W et al 2020 (37). The pooled library samples were analysed 

with a data-dependent acquisition (DDA) method, and the drug-treated samples were 

analysed with a DIA acquisition method. Analysis was performed using an Ultimate 

U3000 Nano LC system (Dionex) coupled to a Q-Exactive Orbitrap mass spectrometer. 

Samples were loaded onto a reversed-phase Acclaim™ PepMap™ trap column (100 µM 

x 2 cm; Dionex) at a flow rate of 15 µL/min. Analytes were eluted from the trap column 

into a reversed-phase LC Packings capillary column (75 µM x 50 cm; Dionex). DDA 

MS/MS analysis was performed in data-dependent mode at a resolution of 70,000 over 

the m/z range of 375-1575 in positive ion mode. Fragmentation was performed for the top 

20 most abundant precursors with a normalised collision energy of 27.0 with a 15 ms 

activation time and dynamic enabled exclusion. DIA MS/MS analysis was performed in 

data-independent mode using previously mentioned settings for the mass spectrometer 

with a 25-fixed window setup of 24 m/z precursor isolation over a m/z range of 375-975. 

Sample A and sample B were analysed using MaxQuant version 16.0.5 as 

previously described (38). The samples were searched against Homo sapiens 
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(UP000005640, release version June 29, 2020) Uniprot FASTA database to generate two 

proteome libraries, library A and B, respectively. The output from MaxQuant for library A 

and B were combined in Spectronaut™ 13.0 to generate a single library (PHH spectral 

library) to be used for DIA analysis. The combined library contained 82,361 peptides, 

which allowed for 6,944 proteins to be identified.  

The LC-MS/MS data from the drug-treated samples were processed with 

Spectronaut™ 13.0 using the PHH spectral library. Processing of the drug-treated spectra 

was performed using default Spectronaut™ settings (Manual for Spectronaut™ 13.0, 

available on Biognosis website). Quantification in Spectronaut used default settings 

except for minor group quantity set to sum precursor quantity. The data filtering setting 

was q-value sparse and global normalisation was performed using median values. 

Multivariate and statistical analysis  

LC-MS metabolomics and proteomics data were analysed by principal component 

analysis (PCA) using MetaboAnalyst 5.0 (39). Proteomics network maps were generated 

using g:Profiler assessing only annotated genes with a g:SCS threshold of 0.05 and a 

data source for GO biological process using Reactome biological pathways (40). 

Cytoscape 3.8.2 using the EnrichmentMap application was used to convert the g:Profiler 

output into a network map figure (41, 42). Significance of the change in abundance of 

metabolites and proteins was determined by one-way analysis of variance (ANOVA) with 

post hoc Dunnett’s test with statistical significance at a p-value ≤ 0.05. All one-way 

ANOVA and correlation studies were performed using GraphPad Prism 7. Metabolite 

enrichment analysis was performed using MetaboAnalyst 5.0 using SMPDB Homo 

sapiens pathway database (39).  
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Results 

Multivariate analysis of differences in primary human hepatocyte and 

HepaRG proteomes 

 Multivariate analysis of the proteomes of PHH and HepaRG™ cells, generated by 

DIA proteomics, was performed to assess the similarities between the proteomes of the 

two cell types and to identify which metabolic pathways showed the most significant 

variations. The DIA proteomics analysis detected 4627 proteins that were detected in 

both the PHH and HepaRG™ cells. Comparisons of the whole cell proteomes from two 

PHH donors (BXW and JHY) and HepaRG™ cells showed a significant variation between 

the proteomes of each cell type. The strong separation between PHH and HepaRG™ 

cells across principal component 1 (PC1) indicated that there are significant differences 

in the abundance of proteins in PHH and HepaRG™ cells (Fig. 1A). In contrast, replicate 

samples from the two PHH donors are grouped closely with one another, showing strong 

similarities in their proteomes. To further investigate the major metabolic proteins, a list 

of proteins from major metabolic pathways was generated from the UniProt 

Knowledgebase to assess differences in protein abundance that may result in altered 

metabolic behaviour or competence in HepaRG™ cells compared to PHH (43). These 

pathways included energy metabolism, metabolite and drug transport, phase I/II 

metabolism, and bile acid and plasma protein synthesis. The PCA scores plot of major 

metabolic pathways indicated a marked difference between the proteomes for major 

metabolic pathways of PHH and HepaRG™ cells (Fig. 1B), with clustering similar to that 

observed for the whole cell proteome. A network map of the whole cell proteome for the 

top 100 proteins from PC1 showed a significant number of metabolic proteins had 
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different abundances between PHH and HepaRG™ cells. These proteins were 

associated with biological oxidation, phase I, amino acid metabolism, and glucose 

metabolism pathways based on the Reactome database (Fig. 2A). Additionally, a network 

map of the top 50 proteins of PC1 from major metabolic pathways showed that the 

variations in the proteomes between PHH and HepaRG™ cells were associated with 28 

major metabolic pathways based on the Reactome database (Fig 2B). The proteins with 

different abundance were associated with major metabolic processes of the liver involved 

with bile acid synthesis and metabolism, drug metabolism, plasma protein metabolism, 

nutrient transport, and several energy metabolism pathways. 

 

Figure 1: Multivariate analysis of primary human hepatocyte (PHH) and HepaRG whole cell 

proteome and major metabolic pathways proteome. (A) Principal component analysis (PCA) scores plot 

of the whole cell proteome of two PHH donors, BXW (red; n=4) and JHY (blue; n=5), and HepaRG cells 

(green; n=4). (B) Principal component analysis (PCA) scores plot of the major metabolic pathway proteome 

of two PHH donors and HepaRG cells. 
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Figure 2: Reactome network map for comparison of primary human hepatocyte (PHH) and HepaRG 

whole cell proteome and major metabolic pathways proteome. (A) Reactome network map for the top 

100 proteins from the whole cell proteome that differed most between PHH and HepaRG cells. (B) Network 

map for the top 50 proteins from the major metabolic proteome that differed most between PHH and 

HepaRG cells. Size of circle indicates the number of proteins that are a part of the pathways gene with line 

showing interconnection between pathways. Red indicates a higher number of proteins are present in 

different abundance, while blue indicates a lower number of proteins are present in different abundance, 

between PHH and HepaRG. The top 100 and top 50 proteins for each map were determined from principal 

component 1 of the PCA. 
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An analysis of the correlation of protein abundance between HepaRG™ cells and 

each PHH donor was performed, in addition to a comparison between PHH donors, and 

correlation plots (Fig. 3). PHH and HepaRG™ cells were compared using the log(total ion 

current (TIC)) of proteins of the whole cell proteomes (Figs. 3A and B) and for proteins 

from the major metabolic pathways (Figs. 3C and D). A Pearson product-moment 

correlation coefficient (r) was generated to show the strength of the linear relationship 

between the abundance of proteins for PHH and HepaRG™ cells and, thus, the 

similarities between their respective proteomes. For the whole cell proteomes, HepaRG™ 

cells had an r value of 0.8602 and 0.8435 for PHH donors BXW and JHY, respectively 

(Fig. 3A). The correlation, however, decreased when only assessing the proteins from the 

major metabolic pathways. For the major metabolic pathways, HepaRG™ cells had an r 

value of to 0.7786 and 0.7476 for PHH donors BXW and JHY, respectively, demonstrating 

a decrease in correlation (Fig. 3C). In contrast, when the two PHH donors were compared 

to each other, they had an r value of 0.9598 for the whole cell proteome (Fig. 3B) which 

increased to 0.9739 for the proteins from the major metabolic pathways (Fig. 3D). 
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Figure 3: Correlation of protein abundance between HepaRG cells and primary human hepatocytes. 

Correlation of log10(Protein total ion current (TIC)) between (A) HepaRG (n=4) and PHH donors JHY (blue; 

n=5) and BXW (green; n=4), and (B) between PHH donors, BXW and JHY (grey) for the whole cell 

proteome. (C) Correlation between HepaRG and PHH donors JHY (blue) and BXW (green), and (D) 

between PHH donor BXW and JHY (grey) for major metabolic pathways. Pearson’s r coefficients were 

determined for each comparison (n=4). 
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Comparison of proteins from major metabolic pathways in primary human 

hepatocytes and HepaRG cells 

Further comparison of proteins from major metabolic pathways was performed to 

characterise the nature of the variation between PHH and HepaRG™ cells. Comparison 

of PHH donor BXW and HepaRG™ cells revealed that 181 proteins from major metabolic 

pathways were present at a significantly different abundance, with 99 proteins exhibiting 

increased abundance (Fig. 4). PHH donor JHY, in comparison to HepaRG™ cells, had 

108 proteins that were present in significantly different abundance, with 61 proteins 

exhibiting increased abundance. A majority of the more abundant proteins in PHH were 

associated with drug transport and metabolism, and bile acid synthesis. Proteins that 

were present at lower abundance in PHH compared to HepaRG™ cells were associated 

with bilirubin synthesis and plasma proteins, in addition to the pentose phosphate 

pathway, and nutrient and metabolite transport (Fig. 4).  
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Figure 4: Heatmap of the fold change in protein abundance of major metabolic pathways between 

HepaRG cells and primary human hepatocytes (PHH). Heatmap shows the fold-difference of PHH, 

donors BXW (n=4) and JHY (n=5), to HepaRG (n=4) mean protein abundance for each protein. Red, 

increased abundance; yellow, unchanged abundance; blue, decreased abundance. * fold-difference in 

protein abundance was normalised with respect to HepaRG protein abundance. 
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Figure 5: Heatmap of the fold change in protein abundance of major metabolic pathways between 

primary human hepatocyte (PHH) donors. Heatmap shows the fold-difference of PHH, donors BXW 

(n=4) and JHY (n=5), ) mean protein abundance for each protein. Red, increased abundance; yellow, 

unchanged abundance; blue, decreased abundance. * fold-difference in protein abundance was normalised 

with respect to PHH donor JHY protein abundance. 
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In a comparison between the two PHH donors, there were only 27 proteins that 

had significantly different abundance between the two donors; 14 of these proteins were 

associated with energy metabolism, six with drug metabolism, and six with bile acid, 

bilirubin, and plasma protein synthesis (Fig. 5). 

Multivariate analysis of metabolome changes in response to DILI-

associated drugs  

DILI-associated drugs can have a profound effect on a variety of different 

metabolic pathways that can result in liver injury. A multi-omics approach utilising 

metabolomics and proteomics can identify mechanism(s) of DILI by characterising 

changes in the abundance of metabolites and proteins of important metabolic pathways, 

such as energy metabolism and detoxification pathways. PHH from the BXW donor were 

treated with ritonavir (25 µM), pioglitazone (100 µM), and troglitazone (12.5 µM), drugs 

clinically associated with DILI, for 24 h. After a 24-h drug treatment, metabolite and protein 

extraction was performed, and extracts were analysed using LC-MS untargeted 

metabolomic and DIA proteomic analysis. Initially, 537 putative metabolites were 

identified, which were then filtered to 239 metabolites of interest, based on associations 

with known metabolic pathways. A heatmap comparison of the 239 putatively identified 

metabolites that were involved in amino acid, secondary metabolite, energy, lipid, sterol, 

vitamin and cofactor, nucleotide, and peptide metabolism, shows the mean fold-change 

of metabolites compared to control after drug treatment (Fig. 6). For ritonavir, 50 

metabolites showed a significant change compared to control, with 24 metabolites 

showing ≥1.5-fold increase in abundance, and 26 showing a ≥ 1.5-fold decrease. For 

pioglitazone and troglitazone, 60 and 49 metabolites showed a significant change in 
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abundance, respectively. PHH treated with pioglitazone had 31 metabolites that showed 

a ≥ 1.5-fold increase in abundance and 29 showed a ≥ 1.5-fold decrease. PHH treated 

with troglitazone had  21 metabolites that showed a ≥ 1.5-fold increase in abundance and 

28 that showed a ≥ 1.5-fold decrease.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Metabolomics multivariate analysis and heatmap of drug-treated primary human 

hepatocytes (PHH). Sandwich-cultured PHH were treated with ritonavir 25 µM (RTNR), pioglitazone 100 

µM (PGLZ), and troglitazone 12.5 µM (TGLZ) for 24h and compared to untreated control (CTRL) PHH. 

Metabolites were extracted and analysed using LC-MS metabolomics (n=4). Heatmap of PHH (donor BXW) 

metabolites from major metabolic pathways following drug treatment comparing the mean fold-change of 

each metabolite to control PHH. Red, increased abundance; yellow, unchanged abundance; blue, 

decreased abundance.   



91 

 

Figure 7: Multivariate analysis of metabolite changes in primary human hepatocytes (PHH) after 

treatment with drug-induced liver injury (DILI)-associated drugs. (A) A principal component analysis 

(PCA) of metabolites from control (red), pioglitazone-treated (green), and ritonavir-treated (dark blue), and 

troglitazone-treated (light blue) PHH. (B) PCA loading plot showing metabolites with a significant 

contribution to the variation between the drug-treated and control PHH. Metabolites highlighted are those 

associated with glucose metabolism (green), TCA cycle (grey), nicotinamide metabolism (purple), 

glucuronidation (yellow), and glutathione metabolism (orange). PCA and loading plot were generated with 

Metaboanalyst 5.0 with n=4 for each condition. 

The metabolomics data of the drug-treated PHH were analysed using PCA of 239 

putatively identified metabolites. A PCA plot of the data revealed that the control PHH 

samples were clearly distinct from the ritonavir-, pioglitazone-, and troglitazone -treated 

PHH based on principal component 1 (Fig. 7A). This indicated that the drug treatment led 

to significant metabolite perturbations in PHH at sub-toxic treatment concentrations. 

However, the three drug treatments clustered strongly together, which indicated that the 

metabolic perturbations in the PHH were similar for these three drugs. A loading plot, 

which used the loadings from principal component 1 and 2 from the PCA, identified a 

number of metabolites associated with glucose metabolism, the TCA cycle, nicotinamide, 
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glucuronidation, and glutathione metabolism that contributed significantly to the 

differences observed between the control and drug-treated PHH (Fig. 7B).  

 

Figure 8: Multivariate analysis of protein changes in primary human hepatocytes (PHH) after 

treatment with drug-induced liver injury (DILI)-associated drugs. A principal component analysis 

(PCA) of the DIA proteome from control (red), pioglitazone-treated (green), ritonavir-treated (dark blue), 

and troglitazone-treated (light blue) PHH. The PCA plot was generated with Metaboanalyst 5.0 with n=4 for 

each condition. 

While a PCA of the whole cell proteome from the DIA proteomics analysis did not 

identify significant separation between the treatment conditions (Fig. 8), an enrichment 

analysis identified a number of metabolic pathways that were significantly affected by 

drug treatment. An enrichment analysis of the top 50 metabolites from principal 

component 1 demonstrated that pathways associated with glucose metabolism, the TCA 
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cycle, nicotinamide metabolism, glucuronidation, and glutathione metabolism were 

significantly affected by drug treatment (Fig. 9). 

 

 

 

Figure 9: Enrichment analysis of top 50 most altered metabolites from primary human hepatocytes 

treated with DILI-associated drugs. Enrichment analysis shows the -log10(p-values) of the top 50 most 

altered metabolites identified by PCA analysis from principal component 1. Diameter of point shows 

enrichment ratio for each metabolism pathway. Enrichment analysis was performed using MetaboAnalyst 

5.0 using SMPDB homo sapiens pathway database.  
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Perturbation of metabolites and protein abundance in major metabolic 

pathways 

Multivariate analysis of the metabolic perturbations induced by ritonavir, 

pioglitazone, and troglitazone demonstrated that these drugs significantly affected major 

liver metabolism pathways (glucose metabolism, TCA cycle, nicotinamide metabolism, 

glucuronidation, and glutathione metabolism). Multi-omics analysis utilising metabolomics 

and proteomics was applied to holistically study the impact of ritonavir, pioglitazone, and 

troglitazone treatment of PHH on these metabolic pathways. Analysis of phase I 

metabolism enzymes from the DIA proteomic analysis was performed due to its significant 

contribution to xenobiotic metabolism.  

Drug treatment had a significant impact on the glucose metabolism pathway, with 

all drug treatments demonstrating an overall trend towards decreased abundance of 

glucose metabolism enzymes (Table 1). The abundance of the glucose uptake 

transporter 10 (GLUT10) showed increased abundance after treatment with ritonavir 

(Table 1). This transporter showed some degree of increased abundance after treatment 

with pioglitazone and troglitazone, although these changes were not statistically 

significant. While a statistically significant change in the abundance of glucokinase (GCK) 

was not observed, the GCK synthesis product metabolite, D-glucose-6-phosphate, 

significantly decreased in abundance after all drug treatments (Figs. 10 and 11). The 

abundance of D-ribose, a product of the pentose phosphate pathway, also was decreased 

after all drug treatments (Fig. 10 and 11). Phosphoenolpyruvate carboxykinase 1 (PCK1), 

which synthesises phosphoenolpyruvate, was significantly increased in abundance after 

treatment with ritonavir, pioglitazone, and troglitazone (Table 1; Fig. 10).  
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Table 1: Glucose metabolism pathway proteins significantly altered by treatment of primary human 

hepatocytes (PHH) with ritonavir (25 µM), pioglitazone (100 µM), or troglitazone (12.5 µM). Statistically 

significant differences are shown in bold and were determined with a one-way ANOVA with significance at 

a p-value ≤ 0.05 with an n=4 for each condition. 

 Ritonavir Pioglitazone Troglitazone 

Proteins Fold-change p-value Fold-change p-value Fold-change p-value 

GLUT10 1.35 0.0015 1.13 0.2347 1.13 0.2763 

GPI 0.76 <0.0001 0.82 0.0002 0.85 0.0007 

ALDOA 0.76 0.0050 0.74 0.0065 0.78 0.0090 

TPI1 0.80 0.0099 0.89 0.1774 0.93 0.5013 

PGAM1 0.88 0.0614 0.85 0.0228 0.81 0.0043 

ENO1 0.88 0.0872 0.84 0.0166 0.91 0.2222 

ENO3 0.75 0.0035 0.86 0.1047 0.93 0.5122 

LDHA 0.79 <0.0001 0.89 0.0178 0.87 0.0055 

PCK1 1.33 0.0045 1.25 0.0272 1.29 0.0107 

GOT1 0.84 0.0002 0.84 0.0002 0.83 0.0001 

G6PD 0.80 0.0145 0.86 0.0920 0.79 0.0183 

RPE 0.81 0.0277 0.79 0.0154 0.81 0.0309 

TKT 0.84 0.0318 0.85 0.0419 0.95 0.7066 

TALDO1 0.78 0.0017 0.85 0.0209 0.92 0.2626 
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Figure 10: Glucose metabolism pathway of metabolite and protein perturbations in drug-treated 

primary human hepatocytes (PHH). Glucose metabolic pathway with alterations in metabolite and protein 

abundance shown by the heatmap for each drug treatment compared to untreated control. Heatmap ranges 

were from a 2-fold increase in abundance (red) to a 2-fold decrease in abundance (blue), with yellow 

depicting no change in abundance. ‡ denotes a significant change in metabolite abundance determined 

with a p-value ≤ 0.05 when compared to untreated control with an n=4 for each condition. 
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Furthermore, phosphoenolpyruvate itself was significantly increased in abundance 

after treatment with ritonavir, with a trend towards an increased abundance after 

treatment with pioglitazone and troglitazone (Fig. 11). All drug treatments resulted in a 

decreased abundance of glutamic-oxaloacetic transaminase 1 (GOT1; Table 1 and Fig. 

10), which synthesises aspartate. The abundance of aspartate was significantly increased 

following treatment with pioglitazone and troglitazone, with a trend towards an increased 

abundance after treatment with ritonavir (Fig. 11). Lactate dehydrogenase A (LDHA) 

abundance was significantly decreased after all drug treatments (Fig. 10), but the only 

significant change in lactate abundance was an increase after treatment with pioglitazone 

(Fig. 11).  
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Figure 11: Metabolites with significantly altered abundance from the glucose metabolism pathway 

in drug-treated primary human hepatocytes (PHH). LCMS untargeted metabolomics was used to identify 

alterations in metabolite abundance after a 24-h treatment with ritonavir, pioglitazone, or troglitazone (mean 

± SD in quadruplicate).  * Statistically significant differences were determined with a one-way ANOVA with 

significance at a p-value ≤ 0.05 with an n=4 for each condition. 

  



99 

 

Multi-omics characterisation of perturbations in the TCA cycle identified five 

significantly altered metabolites and three significantly altered proteins as a result of drug 

treatment. The changes to protein abundance observed were minor increases (< 25%) in 

the abundance of enzymes in the section of the TCA cycle that converts isocitrate to 

fumarate (Table 2).  

Table 2: TCA cycle pathway proteins significantly altered by treatment of primary human hepatocytes 

(PHH) with ritonavir (25 µM), pioglitazone (100 µM), or troglitazone (12.5 µM). Statistically significant 

differences are shown in bold and were determined with a one-way ANOVA with significance at a p-value 

≤ 0.05 with an n=4 for each condition. 

 Ritonavir Pioglitazone Troglitazone 

Proteins Fold-change p-value Fold-change p-value Fold-change p-value 

IDH2 1.15 0.2006 1.08 0.6911 1.26 0.0210 

OGDH 1.17 0.0182 1.09 0.2424 1.12 0.1279 

SDHB 1.20 0.0362 1.12 0.0853 1.19 0.0064 

 

However, the metabolite changes that were observed included large increases and 

decreases in the abundance of several TCA cycle metabolites (Fig 12). Succinate was 

significantly decreased in abundance by all three drug treatments (Fig. 12) while there 

was no change to succinate-CoA ligases, enzymes that catalyse the interconversion of 

succinate and succinate-CoA (Table 2). Although fumarate was not detected, malate, 

which is synthesised from fumarate, was significantly increased in abundance after all 

drug treatments (Fig. 12). Oxaloacetate was significantly decreased in abundance after 

all drug treatments. Finally, adenosine diphosphate (ADP) was significantly increased in 

abundance after all three drug treatments.  
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Figure 12: Metabolites with significantly altered abundance from the TCA cycle metabolism pathway 

in drug-treated primary human hepatocytes (PHH). LCMS untargeted metabolomics was used to identify 

alterations in metabolite abundance after a 24-h treatment with ritonavir, pioglitazone, or troglitazone (mean 

± SD in quadruplicate). * Statistically significant differences were determined with a one-way ANOVA with 

significance at a p-value ≤ 0.05 with an n=4 for each condition. 
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Drug treatment with ritonavir, pioglitazone, and troglitazone all impacted the 

nicotinamide metabolism pathway. The nicotinamide metabolism pathway demonstrated 

an overall trend towards increased synthesis of nicotinamide and 1-methylnicotinamide 

following drug exposure across all drug treatments (Fig. 13). 

Figure 13: Nicotinamide metabolism pathway of metabolite and protein perturbations in drug-

treated primary human hepatocytes (PHH). Nicotinamide metabolism pathway with alterations in 

metabolite and protein abundance shown by the heatmap for each drug treatment compared to untreated 

control (mean ± SD in quadruplicate). Heatmap ranges were from a 2-fold increase in abundance (red) to 

a 2-fold decrease in abundance (blue), with yellow depicting no change in abundance. ‡ denotes a 

significant change in metabolite abundance determined with a p-value ≤ 0.05 when compared to untreated 

control with an n=4 for each condition. 

NAD-dependent deacetylase sirtuin-3 (SIRT3) and -5 (SIRT5), which synthesises 

nicotinamide, were not significantly altered in abundance, however, ritonavir did induce a 

significant increase in the abundance of nicotinamide as well as an increase in 1-

methylnicotinamide abundance (Fig. 14). Pioglitazone and troglitazone also significantly 

increased the abundance of 1-methylnicotinamide. Additionally, pioglitazone and 

troglitazone also appeared to increase nicotinamide abundance as well, however, not to 
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a statistically significant degree. Nicotinamide phosphoribosyltransferase (NAMPT), 

which converts nicotinamide to nicotinamide-D-ribonucleoside, showed a trend towards 

a decreased abundance for all drug treatments, with ritonavir and troglitazone inducing a 

statistically significant decrease as determined by a one-way ANOVA. Finally, all three 

drug treatments caused a significant decrease in nicotinate, a precursor of nicotinamide 

and 1-methylnicotinamide synthesis (Fig. 14). 

Figure 14: Metabolites with significantly altered abundance from the nicotinamide metabolism 

pathway in drug-treated primary human hepatocytes (PHH). LCMS untargeted metabolomics was used 

to identify alterations in metabolite abundance after a 24-h treatment with ritonavir, pioglitazone, or 

troglitazone (mean ± SD in quadruplicate). * Statistically significant differences were determined with a one-

way ANOVA with significance at a p-value ≤ 0.05 with an n=4 for each condition. 

All three drug treatments had a significant effect on the abundance of phase I 

metabolism enzymes with eight CYP and four aldehyde dehydrogenase (ALDH) enzymes 

significantly increased in abundance (Fig. 15). Additionally, while not all phase I enzymes 

showed a statistically significant increase in abundance, there was a pathway-wide trend 

towards an increased abundance; only six of the 34 enzymes demonstrated any decrease 
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in abundance by the drug treatments. CYP2B6 was the only phase I enzyme that was 

significantly increased in abundance for all three drug treatments. However, each drug 

treatment induced an increase in at least five phase I enzymes. Ritonavir caused seven 

phase I enzymes to be significantly increased in abundance, while pioglitazone and 

troglitazone caused an increase in the abundance of five and nine phase I enzymes, 

respectively. 

 

Figure 15: Heatmap of changes to phase I enzyme abundance in drug-treated primary human 

hepatocytes (PHH). Heatmap depicts the changes in abundance of CYP enzymes, aldehyde 

dehydrogenases, and flavin-containing monooxygenases after a 24-h treatment with ritonavir (25 µM), 

pioglitazone (100 µM), or troglitazone (12.5 µM). Statistically significant changes in each enzyme are shown 

by p-values of ≤0.05 (dark green) or >0.05 (grey) determined by one-way ANOVA (n=4). 
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Figure 16: Phase II glucuronidation metabolism pathway of metabolite and protein perturbations in 

drug-treated primary human hepatocytes (PHH). Phase II glucuronidation metabolism pathway with 

alterations in metabolite and protein abundance shown by the heatmap for each drug treatment compared 

to untreated control. Heatmap ranges were from a 2-fold increase in abundance (red) to a 2-fold decrease 

in abundance (blue), with yellow depicting no change in abundance. ‡ denotes a significant change in 

metabolite abundance determined with a p-value ≤ 0.05 when compared to untreated control with an n=4 

for each condition.  

For glucuronidation metabolism, the three metabolites of this pathway showed 

significant changes in their abundance after all drug treatments, with a shift towards an 

increased abundance of uridine diphosphate (UDP) conjugated metabolites (Fig. 16). D-

glucose-6-phosphate was reduced by over 4-fold for all drug treatments, while UDP-

glucose and UDP-glucuronate increased by up to 11-fold, with the greatest increase 

associated with pioglitazone (Fig. 16). In contrast, while 12 of the 13 uridine 5'-diphospho-
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glucuronosyltransferase (UGT) enzymes showed a trend towards increased abundance 

after all drug treatments, only UGT2A1 showed a statistically significant increase after 

treatment with ritonavir (Fig. 16). 

Figure 17: Metabolites with significantly altered abundance from glucuronidation metabolism 

pathway in drug-treated primary human hepatocytes (PHH). LCMS untargeted metabolomics was used 

to identify alterations in metabolite abundance after a 24-h treatment with ritonavir, pioglitazone, or 

troglitazone (mean ± SD in quadruplicate). * Statistically significant differences were determined with a one-

way ANOVA with significance at a p-value ≤ 0.05 with an n=4 for each condition. 

Glutathione metabolism, an oxidative stress and conjugation pathway, had six 

proteins and one metabolite that demonstrated significantly altered abundance by the 

drug treatments. The abundance of gamma-glutamylcyclotransferase (GGCT), an 

enzyme that converts L-γ-glutamyl-containing peptides to 5-oxoproline, was significantly 

lower (2-fold) in ritonavir-treated PHH (Table 3). However, 5-oxoproline showed the 

opposite trend, and was significantly increased in abundance after drug treatment with 

ritonavir (Figs. 18). Additionally, the ritonavir drug treatment induced a significant increase 

in the abundance of glutathione peroxidase 4 (GPX4) and glutathione S-transferase 

kappa 1 (GSTK1), and a significant decrease in the abundance of glutathione S-
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transferase omega 1 (GSTO1). All drug treatments induced a significant decrease in 

glutathione synthetase (GSS) and alanine aminopeptidase (ANPEP) (Table 3). 

Table 3: Glutathione metabolism pathway proteins significantly altered by treatment of primary human 

hepatocytes (PHH) with ritonavir (25 µM), pioglitazone (100 µM), or troglitazone (12.5 µM). Statistically 

significant differences are shown in bold and were determined with a one-way ANOVA with significance at 

a p-value ≤ 0.05 with an n=4 for each condition. 

 Ritonavir Pioglitazone Troglitazone 

 Fold-change p-value Fold-change p-value Fold-change p-value 

GGCT 0.51 0.0132 0.63 0.0569 0.60 0.0599 

GSS 0.73 <0.0001 0.80 0.0012 0.75 0.0002 

ANPEP 0.89 0.0127 0.86 0.0025 0.83 0.0007 

GPX4 1.28 0.0057 1.10 0.4194 1.04 0.8777 

GSTK1 1.25 0.0060 1.08 0.4688 1.11 0.2532 

GSTO1 0.86 0.0404 0.4844 0.2823 1.01 0.9895 

 

 

 

 

 

 

 

 

 

Figure 18: Important metabolites with altered abundance from the glutathione metabolism pathway 

in drug-treated primary human hepatocytes (PHH). LCMS untargeted metabolomics was used to identify 

alterations in metabolite abundance after a 24-h treatment with ritonavir, pioglitazone, or troglitazone (mean 

± SD in quadruplicate). * Statistically significant differences were determined with a one-way ANOVA with 

significance at a p-value ≤ 0.05 with an n=4 for each condition.  
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Discussion 

The research presented used DIA proteomics to compare the proteomic profiles 

of differentiated HepaRG™ cells to two PHH donors (BXW and JHY). The proteomic 

profiles were compared for the whole cell proteome and the major metabolic pathways of 

PHH and HepaRG™ cells. In addition, multi-omics techniques were utilised to 

characterise and compare changes to the proteome and metabolome of PHH after 

treatment with drugs associated with DILI. This study demonstrated that while PHH and 

HepaRG™ cells show some similarities in their proteomes, there are significant variations 

in protein abundance, especially proteins from the major metabolic pathways. 

Furthermore, this study demonstrated that the combination of metabolomics and 

proteomics allowed for characterisation of perturbations to major metabolic pathways 

after treatment with drugs associated with DILI. 

Comparison between the proteomes from the two PHH donors and HepaRG™ 

cells indicated that there was a strong similarity in the abundance of proteins in the whole 

cell proteome and major metabolic pathways for both PHH donors. However, for the major 

metabolic pathways, 82% of the proteins detected showed a difference in abundance in 

HepaRG™ cells compared to PHH, which is 6.7-fold greater than the number of 

differences between donors (Figs. 4 and 5). Donors were expected to demonstrate 

relatively similar metabolic behaviour, but a small amount of variation due to interdonor 

variability is known to lead to variations in protein expression between individual donors 

(44). The difference in protein abundance of major metabolic pathways between 

HepaRG™ cells and PHH suggests that HepaRG™ cells may have some limitations in 

their capacity to replicate the metabolic behaviour of PHH. However, the degree to which 
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these differences in abundance may impact the functional metabolic behaviour of 

HepaRG cells, in comparison to PHH, is also dependent on the phenotypic nature of the 

proteins. Different protein variants may have inherently different metabolic properties, as 

exemplified by the N-acetyltransferase 2 slow and fast acetylator, or glucokinase 

regulatory protein variants (45, 46). The proteomics methodology utilised in this study 

would not detect such protein variants, and only provides a measure of protein 

abundance, not function. Therefore, in order to comprehensively understand how the 

metabolic functionality of HepaRG cells differ from PHH, additional functional assays 

would be necessary. 

 Liver injury has been demonstrated previously to have a significant effect on 

several major metabolic pathways including glucose metabolism, the TCA cycle, 

nicotinamide, phase I, glucuronidation, and glutathione metabolism (18-21, 47-51). 

Multivariate and enrichment analysis demonstrated that the changes to the metabolome 

after drug treatment significantly affected several of these pathways (Figs. 7 and 8). From 

these pathways, a total of 37 proteins and 16 metabolites were found to be significantly 

altered in abundance after drug treatment compared to control (Tables 1-3; Figs. 9-18). 

The changes in abundance of metabolites and proteins from these pathways are likely 

intrinsically linked to the mechanism(s) of hepatotoxicity for these DILI-associated drugs. 

The drug treatments were shown to have a significant effect on the energy metabolism 

pathways of PHH, affecting the homeostasis of glucose metabolism, the TCA cycle, and 

nicotinamide metabolism. D-glucose-6-phosphate, utilised by the glucose metabolism 

and glucuronidation pathways, and malate and oxaloacetate, utilised in the TCA cycle, 

showed significant changes in abundance (Figs. 11, 12, and 17). Three notable glucose 
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metabolism proteins that were affected included LHDA, glucose-6-phosphate isomerase 

(GPI), and GLUT10. While the increased abundance of GLUT10 would likely drive 

increased glucose uptake and D-glucose-6-phosphate synthesis, it is unlikely to be 

beneficial in the presence of ritonavir. Ritonavir is a known inhibitor of glucose uptake 

transporters with 50% inhibition occurring at 8.2 µM for glucose transporters (52). 

However, since troglitazone and pioglitazone caused a similar decrease in D-glucose-6-

phosphate abundance, it is unlikely that inhibition of glucose transporters is the sole 

cause behind the decreased abundance of D-glucose-6-phosphate.The significantly 

increased synthesis of UDP-glucose and UDP-glucuronate to supply the cofactor for 

glucuronidation is a likely explanation for the decrease in D-glucose-6-phosphate 

abundance (Figs. 16 and 17). In addition, ritonavir, pioglitazone, and troglitazone also 

caused a 24%, 18%, and 15% decrease in GPI, the enzyme that converts D-glucose-6-

phosphate to D-fructose-6-phosphate. While the decrease in abundance of GPI may 

further impact the cells capacity to maintain glycolytic homeostasis, the direction of the 

interconversion between D-glucose-6-phosphate and D-fructose-6-phosphate mediated 

by GP1, and how the decreased abundance of GP1 would affect the abundance of D-

fructose-6-phosphate, is unclear.  

Ritonavir, pioglitazone, and troglitazone demonstrated uniform impact on the 

abundance of ADP, malate, and succinate, which indicates significant perturbations to 

mitochondrial respiration. The high abundance of ADP and malate could potentially have 

resulted from the inhibition or suppression of state 3 respiration, which relies on complex 

I (53). Complex I consumes malate as a substrate and is known to be inhibited by 

thiazolidinediones through disassembly of this complex (54, 55). It was, therefore, 
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expected that both troglitazone and pioglitazone would cause dysregulation of 

mitochondrial respiration through complex I inhibition, which could lead to the 

accumulation of malate and ADP. Additionally, a significant decrease in D-ribose 

abundance was observed after ritonavir, pioglitazone, and troglitazone treatments (Fig. 

11). D-ribose is readily phosphorylated by ribokinase (RBKS), which transfers a 

phosphate from ATP to D-ribose and produces ADP and ribose-5-phosphate. The 

significant decrease observed in the abundance of D-ribose and increase in ADP may be 

a result of this pathway. For the thiazolidinediones, this shift may be due to increased 

expression of phosphoribosyl pyrophosphate synthetase, an essential enzyme of the 

nucleotide metabolism pathways (56). As both thiazolidinediones are known to induce the 

expression of a number of proteins, it was expected that an increase in nucleotide 

metabolism would occur to supply gene expression pathways (57-60). Furthermore, 

ritonavir is known to induce the expression of a number of proteins and, therefore, the 

decrease observed in the abundance of D-ribose in ritonavir-treated PHH could also be 

explained by phosphorylation of D-ribose to ribose-5-phosphate, which is subsequently 

converted to phosphoribosyl pyrophosphate to supply nucleotide metabolism pathways 

(61, 62). The decreased abundance of succinate may be attributable to thiazolidinediones 

not inhibiting complex II, which utilises succinate for respiration and as such, is depleted 

as a means of compensation for the inhibition of complex I (55, 63). Less is known, 

however, about the impact of ritonavir on mitochondrial processes. While ritonavir is 

known to cause mitochondrial damage and has off-target inhibitory effects, there is no 

clear evidence that ritonavir affects specific mitochondrial complexes or specific 

respiration pathways (64, 65). Additionally, the decrease in succinate and increase in 
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malate abundance also may be attributed to the drug treatments causing an increased 

abundance of succinate dehydrogenase B (SDHB), which may have led to a greater 

conversion of succinate to fumarate and then, subsequently to malate (Fig. 12).  

The alterations in the nicotinamide metabolism pathways reflect an increase in 

synthesis of protective metabolites and their precursors. The significant increase in 1-

methylnicotinamide abundance by up to 16-fold, which occurred for all treatments, is likely 

a response to the oxidative stress induced by the drug treatments (Fig. 14). 1-

Methylnicotinamide is associated with a reduction in reactive oxygen species (ROS) and 

protection against oxidative stress, particularly in reducing the generation of mitochondrial 

ROS and glycoxidative stress (50, 51). This is reinforced by the decreased abundance of 

nicotinic acid, which is known to support protection against oxidative stress through 

conversion to subsequent metabolites of the nicotinamide pathway (66). Perturbations in 

the major metabolic pathways make it clear that these three drugs have significant 

potential to cause hepatocellular injury by impairing glucose metabolism, mitochondrial 

respiration, and increasing oxidative stress. 

The abundance of metabolites and, potentially, proteins of the phase I and phase 

II metabolic pathways was expected to be significantly altered in order to metabolise and 

inactivate the drugs tested. An increase in phase II metabolism may have occurred due 

to the observed increase in abundance of glucuronide metabolites (Figs. 16 and 17) and 

glutathione S-transferase enzymes (Table 3). Increases in phase I enzymes were 

expected; all three drugs are known inducers of CYP enzyme expression and are also 

substrates for several CYP enzymes (67, 68). Interestingly, ritonavir and pioglitazone, 

well-known inducers of CYP3A4, caused only a 1.13-fold increase in CYP3A4 protein 
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abundance (p-value =0.088 and 0.103, respectively), with only troglitazone causing a 

statistically significant increase. Furthermore, pioglitazone and troglitazone, as PPARγ 

agonists, are known to activate pathways that protect against oxidative stress. 

Troglitazone is known to induce ALDH2 expression, which explains the increased 

abundance seen for this enzyme (59). Treatment with ritonavir had the most prominent 

effect on the glutathione metabolism pathway out of the three drug treatments. Ritonavir 

in known to induce the endoplasmic reticulum (ER) and oxidative stress, which may 

explain the increased abundance of GSTK1 and GPX4 (Table 3) (64, 69). GSTK1 and 

GPX4 are protective against ER and oxidative stress and may increase the expression of 

these enzymes, which may be a protective response against ritonavir treatment (70, 71). 

In addition, GGCT, an enzyme involved in the degradation of glutathione, was decreased 

in abundance after treatment with ritonavir (Table 3). This may have occurred as a 

response mechanism in order to conserve glutathione for antioxidative and phase II 

metabolism pathways. However, since there was no significant change in the abundance 

of glutathione, it is unclear whether GGCT decreased for this reason. 

PHH have significant similarities in gene expression to liver tissue and offer an 

excellent in vitro model for metabolic studies, which may provide insight into in vivo 

behaviour (6, 72). However, the translational capacity of this study may be limited due to 

the relatively short exposure period compared to the duration of treatment used clinically. 

The onset of DILI occurs over longer time periods, in the range of several days to 6 

months and, with the exception of acute poisoning, is not usually seen within the 24-h 

exposure time used for this study (73, 74). The 24-h time period was a limitation of the 

sandwich-cultured PHH system, which shows diminishing functionality over days in 
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culture and, therefore, weeks or months of exposure would not be possible (75). 

Additionally, while the concentration of ritonavir used in this study was similar to standard 

total serum concentrations of 15 µM used clinically, pioglitazone was used at almost a 

30-fold higher concentration than what is clinically observed after a 45 mg dose (76, 77). 

While the specific liver concentration of pioglitazone is unknown, drug concentrations can 

be up to 98-fold higher in liver tissue than in serum and, therefore, the high concentration 

used in this in vitro study could occur clinically (78). Troglitazone, has a Cmax of up to 4.5 

µM after a single oral dose. The 12.5 µM concentration of troglitazone used in this study 

is only 3-fold greater and, therefore, would be a reasonable treatment concentration in 

regard to liver studies (79). 

In conclusion, by using proteomics and metabolomics, the differences in the 

proteomes of PHH and HepaRG were compared, in addition to identifying metabolic 

perturbations to PHH after treatment with DILI-associated drugs. The data revealed that 

while there is some degree of similarity in the proteomes of PHH and HepaRG™ cells, 

there is still a large portion of the HepaRG™ proteome that significantly differs in 

abundance, and this difference is prominent among proteins associated with major 

metabolic pathways of the liver. While this is not an absolute indicator that HepaRG™ 

cells are inadequate models for liver behaviour, it does imply that they may possess some 

limitations as an in vitro liver model, especially regarding metabolic studies. Furthermore, 

the use of multi-omics has allowed extensive characterisation of the metabolic 

perturbations that could lead to DILI. Ritonavir, pioglitazone, and troglitazone caused 

dysregulation of energy metabolism, induced protective oxidative stress responses, and 

increased the abundance of several phase I and II metabolites and proteins. These data 
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demonstrate the value presented by omics, which offers a platform through which in vitro 

models can be assessed for their similarities to in vivo conditions. In addition, omics 

provides insight into the mechanism(s) by which drugs associated with severe liver injury 

may exert hepatotoxic effects. By obtaining a greater depth of knowledge, more 

appropriate and translational in vitro models can be selected that will facilitate the 

development of safer drugs by avoiding the characteristic metabolomics and proteomics 

signatures associated with DILI. 
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Abstract 

Cholestasis is one of the most common forms of drug-induced liver injury (DILI) and can 

occur as the sole DILI phenotype or as a comorbidity with other DILI phenotypes. 

Cholestasis is characterised by impaired bile flow from the liver and may be induced 

through a number of different mechanisms. The C-DILI™ and B-CLEAR® assays were 

used to evaluate a panel of DILI-associated drugs to determine which drugs possessed 

cholestatic hepatotoxic potential and could impair bile acid transport, respectively. 

Primary human hepatocytes (PHH) and HepaRG™ cells were treated with the drugs that 

showed cholestatic hepatotoxic potential and impaired bile acid transport. These cells 

were then analysed using targeted metabolomics and proteomics to identify changes to 

the abundance of bile acid-associated metabolites and proteins. Metabolomics identified 

that the treatment with cholestatic drugs induced a cellular depletion of several bile acids, 

including taurocholate and glycocholate, in both PHH and HepaRG™ cells. In addition, 

increased abundance of several phase I metabolism enzymes was observed, with a 

prominent increase in the cellular abundance of CYP3A4, CYP3A5 and cytochrome P450 

oxidoreductase. It is likely that the decreased cellular abundance of bile acids is due to 

increased phase I metabolism as part of a protective cellular mechanism against 

cholestatic liver injury. 

Introduction 

Population-based studies across a variety of demographics have identified annual 

rates of drug-induced liver injury (DILI) occurring in the range of 3 to 24 cases per 100,000 

patients (1-5). Of the various DILI phenotypes, one of the most common is cholestatic 
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liver injury, which is characterised by impaired bile flow from the liver. Cholestasis 

accounts for 42% of DILI cases, occurring as either a comorbidity with other injury 

phenotypes, or as the sole liver injury phenotype (6). Cholestatic liver injury can be further 

categorised into several sub-phenotypes including acute cholestasis, which can present 

with or without hepatitis, or chronic cholestasis in the forms of vanishing bile duct 

syndrome, primary sclerosing cholangitis, or mild non-specific bile duct injury (7, 8). 

Cholestatic liver injury can be induced by a variety of different causative agents 

such as antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), immune 

suppressants, diabetes medications, and herbal dietary supplements (1, 4, 8, 9). The 

three broad mechanisms by which a drug may induce cholestasis are impaired 

hepatocellular transport of bile acids, disrupted hepatocellular structure, and altered bile 

canalicular dynamics (10). Impaired bile acid transport has been implicated as a key 

mechanism through which a variety of well-known cholestatic drugs induce cholestasis. 

Troglitazone, a potent inhibitor of several bile acid transporters including the bile salt 

export pump (BSEP), Na+-taurocholate co-transporting polypeptide (NTCP), and 

multidrug resistance-associated proteins 2, 3, and 4 (MRP2, MRP3, MRP4, respectively), 

is a prominent example of a cholestatic DILI drug. Troglitazone induced severe 

cholestasis with a liver failure rate of up to 8.3 cases per 100,000 patients (11, 12). 

Additionally, ethinyl estradiol, a synthetic estrogen, not only has the capacity to impair bile 

acid transport, but also impacts hepatocellular structure by decreasing sinusoidal 

membrane fluidity (11, 13). Furthermore, estradiol-17β-D-glucuronide, a cholestatic 

glucuronide derivative of estradiol, has been shown to disrupt the tight junctions between 

hepatocytes, further compromising hepatocellular structure (14). Collectively, these 
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examples illustrate the toxicological impact that drug treatments can have on healthy liver 

structure and biliary transport.  

It is vital to understand the impact that cholestatic drugs have on intracellular 

metabolite and protein abundance, particularly bile acids and their associated enzymes 

and transporters, in order to elucidate the toxicological mechanism(s) of cholestatic DILI. 

While there has been a significant body of work investigating cholestasis-associated 

changes in metabolites, the majority of this research has used animal models or focused 

on extracellular metabolites, such as those in serum or urine, rather than assessing 

intracellular metabolites (15-17). While animal models allow for controlled induction of 

cholestasis and collection of a variety of biological samples, species variations can be a 

significant limitation in understanding cholestasis in humans. The impact of such variation 

is best illustrated by the differences in bile acid composition in Sprague-Dawley (SD) rats 

compared to humans. SD rats have a three times greater total plasma bile acid 

concentration than humans, with cholate and muricholic acid comprising 30% and 22% 

of the rat plasma bile acid pool compared to 11% and 0.7% in humans, respectively (18). 

The transport capacity of BSEP is also subject to species variation with rat BSEP 

exhibiting a two-fold greater Vmax in transporting taurocholate compared to humans (19). 

Furthermore, while serum and urinary metabolites can be used for the development of 

diagnostic biomarkers of liver injury, analysis of the cellular metabolite alterations in 

hepatocytes can provide a more comprehensive insight into the biological perturbations 

that are intrinsically linked to cholestatic DILI, and the cellular mechanism(s) that lead to 

cholestasis (17, 20). 
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Proteomics and metabolomics are invaluable analytical techniques that can 

characterise metabolic changes and mechanisms that can lead to cholestatic DILI. 

Proteomics analysis has been used to describe the impact of treatment with DILI-

associated drugs, such as nevirapine and bosentan, on the proteome of a cell (21-23). 

LC-MS proteomics of nevirapine-treated HepG2 cells identified impaired mitochondrial 

function, with altered abundance of 13 mitochondrial proteins after drug treatment. The 

abundance of vital mitochondrial enzymes such as glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and phosphoenolpyruvate carboxykinase (PEPCK) were 

significantly decreased after nevirapine treatment (21). Using metabolomic and proteomic 

techniques, bosentan was shown to impair mitochondrial function, alter the 

phosphorylation state, increase ceramide synthesis, cause endoplasmic reticulum stress, 

and alter the homeostasis of glucose, lipids, and cholesterol (22, 23). There is an 

imperative need to elucidate the toxicological mechanisms that result in cholestatic DILI 

to allow for the identification of biological changes that could be utilised clinically or during 

drug development as a biomarker for early detection and prevention of cholestatic DILI. 

This study utilises a multi-faceted approach of multi-omics and plate-based assays 

to determine the hepatotoxic characteristics and mechanisms of several DILI-associated 

drugs using in vitro liver models. The C-DILI™ and B-CLEAR® plate-based assays 

allowed for determination of which DILI-associated drugs had the potential to cause 

cholestatic DILI and affect bile acid transport. Additionally, targeted bile acid 

metabolomics revealed reduced cellular bile acid abundance, and proteomics identified 

several enzymes which had altered cellular abundance, including increases to the 
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abundance of CYP3A4 and cytochrome P450 oxidoreductase (POR), which may be 

responsible for the decreased cellular abundance of bile acid. 
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Material and methods 

Materials 

Undifferentiated HepaRG™ cells were acquired from Biopredic International under 

a material transfer agreement and HepaRG™ Maintenance/Metabolism Media was 

purchased from Biopredic international. Cryoplateable human hepatocytes were acquired 

from BioIVT along with all QualGro™ Media and additives. Hepatocytes from the BXW, 

WID, WWQ, and XVN donors were Transporter Certified™ and hepatocytes from the 

YNM donor were cryoplateable. PHH were acquired from both female and male donors 

with an age range of 22 to 73. The HuH-7 human hepatoma cell line (JCRB0403) were 

acquired from the National Institute of Environmental Health Sciences, which originally 

sourced the cells from Sekisui Xenotech. Acetaminophen, amiodarone, diclofenac, 

ethinyl estradiol, pioglitazone, and ritonavir were acquired from Merck with all except 

acetaminophen being acquired as pharmaceutical secondary standards. Fialuridine, 

troglitazone, stavudine, and zidovudine were acquired from Cayman Chemicals. Dimethyl 

sulfoxide (DMSO), HPLC grade chloroform, LC-MS grade methanol (MeOH), sodium 

dodecyl sulphate (SDS), fetal bovine serum (FBS), and trifluoroacetic acid were also 

purchased from Merck. LC-MS grade acetonitrile (ACN), 0.25% trypsin-EDTA phenol red, 

Percoll, Dulbecco’s phosphate buffer saline (PBS), Dulbecco’s modified Eagle’s medium 

(DMEM), streptomycin, Hanks’ Balanced Salt Solution (HBSS), and chenodeoxycholic 

acid (CDCA) were purchased from ThermoFisher Scientific. Ammonium carbonate was 

purchased from Rowe Scientific. Matrigel® was purchased from Bio-Strategy. 
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Cell Culture 

Undifferentiated HepaRG™ cells were cultured in a T75 culture flask and 

differentiated per the supplier’s protocol. On day 0, differentiated HepaRG™ cells were 

passaged using 0.25% w/v trypsin-EDTA. The cells were plated on either 24- or 96-well 

BioCoat™ Collagen I-coated plates (Corning®) with 4x105 and 0.8x105 cells seeded per 

well, respectively. Media was changed every 2-3 days with the cells overlaid on day 3 

using HepaRG™ Maintenance/Metabolism Media supplemented with 0.25 mg/mL of 

Matrigel® and used for experimentation on day 7. 

Transporter Certified™ cryoplateable human hepatocytes were thawed and 

transferred to a 50 mL Falcon Conical Centrifuge tube containing 45 mL of QualGro™ 

Thawing Media that included 30% v/v Percoll®. This was centrifuged at 100 g for 8 min. 

The QualGro™ Thawing Media was aspirated and the cell pellet was resuspended in 

QualGro™ Seeding Media at 0.8 x106 cells/ml. The human hepatocytes were plated onto 

either 24- or 96-well collagen I-coated plates with 4x105 and 0.56 x105 cells seeded per 

well, respectively. Media was changed daily with hepatocytes overlaid on day 1 using 

QualGro™ Overlay Media supplemented with 0.25 mg/mL of Matrigel®, and sandwich-

cultured hepatocytes were used for experimentation on day 4. 

HuH-7 cells were cultured in a T75 culture flask in a culture media of Dulbecco’s 

modified Eagle’s medium (DMEM, ThermoFisher Scientific) containing 10% fetal bovine 

serum, 100 U/ml penicillin, and 100 µg/ml streptomycin (ThermoFisher Scientific). The 

T75 culture flask of HuH-7 cells was passaged in the same manner as HepaRG™ cells. 

The long-term culturing of HuH-7 cells for use in the B-CLEAR® transport assay was 

described previously by Kang et al., 2019 (24).  
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C-DILI™ hepatotoxicity assay 

Day 7 differentiated HepaRG™ cells and day 4 primary human hepatocytes (PHH) 

cultured on 96-well plates were used to perform the C-DILI™ hepatotoxicity assay. The 

PHH were treated using the C-DILI™ Culture Media and C-DILI™ Sensitisation Media as 

described in the supplier’s protocol. HepaRG™ cells were cultured in HepaRG™ 

Maintenance/Metabolism Media with the cells in the sensitised condition supplemented 

with the proprietary C-DILI™ sensitization additives to mimic the conditions of the PHH 

media. The HepaRG™ cells and PHH were treated with drugs at five different 

concentrations prepared by a 1:1 serial dilution four times for each drug (highest and 

lowest concentrations are listed in Table 1). The highest concentrations were based on 

the maximal solubility of the drugs in a DMSO stock solution. Control groups in both media 

conditions were treated with 0.1% v/v DMSO with all drug treatments containing 0.1% v/v 

DMSO. 

  



131 

 

Table 1: Maximum and minimum drug treatment concentrations for C-DILI™ assay for primary human 

hepatocytes (PHH) and HepaRG™ cells 

 

 

 After a 24 h incubation, cholestatic hepatotoxicity of the drug-treated cells was 

determined by comparison of ATP and lactate dehydrogenase (LDH) levels to the control. 

ATP abundance was quantified using a CellTiter-Glo® (Promega - G7572) luminescent 

cell viability assay and the hepatotoxicity that occurred was quantified as % of control 

determined by: 

% 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 =  
𝐷𝑟𝑢𝑔 𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡 𝐴𝑇𝑃 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝐷𝑀𝑆𝑂 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐴𝑇𝑃 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
× 100% 

 Drug Concentration (µM) 

 PHH HepaRG™ 

 Initial Lowest Initial Lowest 

Acetaminophen 5000 312.5 5000 312.5 

Amiodarone 125           7.8125 125          7.8125 

Diclofenac 500     31.25 500     31.25 

Ethinyl Estradiol 100       6.25 200   12.5 

Fialuridine 250       15.625 250       15.625 

Pioglitazone 500     31.25 500     31.25 

Ritonavir 250       15.625 250       15.625 

Stavudine 500     31.25 500     31.25 

Troglitazone 100       6.25 200           12.5 

Zidovudine 500     31.25 500     31.25 
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Similarly, LDH abundance was determined by CytoTox-ONE™ (Promega - G7891) 

homogeneous membrane integrity assay and the hepatotoxicity that occurred was, again, 

quantified as % of control determined by: 

% 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 =  
𝐷𝑟𝑢𝑔 𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡 𝐿𝐷𝐻 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝐷𝑀𝑆𝑂 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐿𝐷𝐻 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
× 100% 

A comparison of the drug-treated culture media and the sensitisation media 

samples was used to identify which drugs had the capacity to cause cholestatic DILI. 

Drugs that showed a statistically greater hepatotoxicity for the sensitisation media 

condition were determined to cause cholestatic hepatotoxicity. Statistically significant 

differences between culture and sensitization media conditions were determined for a p-

value ≤ 0.05 using a Student’s t-test calculated using GraphPad Prism 7. The drug 

treatment concentrations used in subsequent studies were the highest concentrations 

that were determined to be sub-toxic based on an in vitro C-DILI™ hepatotoxicity study 

(Appendix 3). 

B-CLEAR® transport assay 

The B-CLEAR® transport assay (BioIVT) was performed as described previously 

using [3H]-taurocholate (24). HuH-7 cells were treated for 24 h with several DILI-

associated drugs [acetaminophen (1 mM), amiodarone (12.5 µM and 25 µM), diclofenac 

(100 µM), ethinyl estradiol (50 µM), fialuridine (100 µM), pioglitazone (100 µM), ritonavir 

(25 µM), and troglitazone (25 µM and 75 µM)] in 0.1% v/v DMSO with a 0.1% DMSO 

control. A total of six wells were treated with each drug. Of the six drug treatment replicate 

wells, three wells were washed with Ca2+-containing Hanks’ Balanced Salt Solution 

(HBSS) (Ca2+ +), and the remaining three wells were washed with Ca2+-free HBSS (Ca2+ 
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-). The cells washed with Ca2+-containing HBSS maintained canalicular tight junctions 

and the contents of the canaliculi were retained. In contrast, the cells washed with Ca2+-

free HBSS did not retain the canalicular contents due to the absence of Ca2+, which 

disrupted the tight junctions. The biliary excretion index (BEI), a measure of biliary 

transport, was calculated using the following equation: 

Statistical significance was calculated using a two-way analysis of variance (ANOVA) with 

post hoc Dunnett’s test with significance at a p-value ≤ 0.05.  

Drug treatment with drugs associated with DILI and metabolomics 

extraction 

PHH cultured on a 24-well plate were treated with drugs in 0.1% v/v DMSO at 

concentrations described in Table 2. Following the 24 h incubation, the media was 

aspirated and cells were washed three times with 1 mL PBS. The cells were collected 

from the well by the addition of 350 µL MeOH:ddH2O (6:1) and scraping with a pipette tip. 

The cells were then transferred to a Safe-Lock microcentrifuge tube (Eppendorf®) 

containing 100 µL of chloroform to produce a monophasic 2:6:1 chloroform:MeOH:water 

(C:M:W) extraction mixture. To collect any residual metabolites or cell debris, the wells of 

the plate were washed with 1 mL of BuOH:MeOH (3:1), transferred to another 

microcentrifuge tube and dried to completion using a CentriVap Benchtop Centrifugal 

Vacuum Concentrator (Labconco). The dried BuOH:MeOH extraction was reconstituted 

using the C:M:W extraction mixture to consolidate the extracted lipids. This pooled 

extraction mix was centrifuged at 21,600 g for 10 min to pellet insoluble components and 

𝐵𝐸𝐼 (%) =  
𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝐶𝑎2++) − 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐶𝑎2+−)

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝐶𝑎2++)
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transferred to LC-MS vials for analysis. Controls were treated with 0.1% v/v DMSO. 

Extraction of media samples was performed as above; however, the 450 µL C:M:W 

extraction solution used 50 µL of the culture media from drug-treated cells instead of 

water. A statistically significant difference between control and drug-treated cells was 

determined for a p-value ≤ 0.05 using a one-way ANOVA with post hoc Dunnett’s test. 

Table 2: Drug treatment concentrations of primary human hepatocytes (PHH) and HepaRG™ cells for 

metabolomics and proteomics studies of DILI 

 

 

 

 

 

 

 

 

 

 

*Free fatty acid mixture contained oleic acid and palmitic acid at a ratio of 2:1 

24-hour time course drug treatment 

HepaRG™ cells cultured in a 24-well plate format were treated with HepaRG™ 

Maintenance/Metabolism Media containing drugs at concentrations described in Table 2. 

At t=0 h, day 7 HepaRG™ cells had their media aspirated and replaced with drug-treated 

 Drug Concentration (µM) 

 PHH HepaRG™ 

Type of study Metabolomics Proteomics Bile acid metabolite 
time course 

Amiodarone        12.5 - - 

Diclofenac     50   50 250 

Ethinyl Estradiol     25   25 100 

Free fatty acid* 1000 - - 

Fialuridine   100 - - 

Pioglitazone   100 100 250 

Ritonavir     25   25   50 

Troglitazone        12.5      12.5 100 
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media. The HepaRG cells were treated with diclofenac, ethinyl estradiol, pioglitazone, 

ritonavir, and troglitazone. Controls were treated with 0.1% v/v DMSO with all drug 

treatments containing 0.1% v/v DMSO. A higher concentration was selected in 

comparison to PHH as the HepaRG™ cells appeared to be less sensitive to drug treatment 

based on the C-DILI data. Cell and media extracts were collected at time t=1 h, 4 h, 8 h, 

16 h, and 24 h with untreated t=1 h extracts used as a baseline for intracellular and 

extracellular metabolite abundance. Metabolite extraction from both the cell and media 

was performed using the C:M:W methodology described previously. A statistically 

significant difference between control and drug-treated cells was determined for a p-value 

≤ 0.05 using a two-way ANOVA with post hoc Dunnett’s test for each metabolite. 

Liquid chromatography-mass spectrometry metabolomic analysis 

Drug-treated PHH and HepaRG™ cells were analysed using hydrophilic interaction 

liquid chromatography (HILIC) with high resolution mass spectrometry as described 

previously to detect glycine, taurine, taurochenodeoxycholate (TCDCA), and 

glycochenodeoxycholate (GCDCA) (25). The samples were injected using an Ultimate 

U3000 liquid chromatography (LC) system (Dionex) fitted with a ZIC-pHILIC column (5 

μm, 4.6 by 150 mm; Merck®) at ambient temperature with an injection volume of 10 μL. 

Chromatography was performed using 20 mM aqueous ammonium carbonate (A) and 

acetonitrile (ACN) (B) as the mobile phases. A 30 min gradient at a flow rate of 0.300 

mL/min was run starting at 80% B decreasing to 5% B over 21 min followed by a 3 min 

wash at 5% B and an 8 min re-equilibration phase at 80% B. The samples were detected 

by a Q-Exactive Orbitrap mass spectrometer (ThermoFisher Scientific) using a heated 

electrospray ionisation (HESI) source at 3.5 kV operating in both positive and negative 
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ion mode with rapid switching. A mass range of 85 to 1,275 m/z was used over the full 32 

min run with an additional mass range of 65 to 975 m/z from the 13.5 min to the 17 min 

time point for detection of glycine with a mass resolution of 35,000 used for both ranges.  

A second LC-MS method using reverse phase chromatography was used to detect 

glycocholate (GCA), taurocholate, cholate (CA), and chenodeoxycholate (CDCA). Using 

the LC-MS system mentioned above, 10 µL of sample was injected in an Express C8 

column (2.7 µm, 2.1 x 100 mm; Avantis). Chromatography was performed using 20 mM 

ammonium formate (A) and ACN (B) as the mobile phases. An 8-min gradient at a flow 

rate of 0.250 mL/min was run starting at 30% B increasing to 98% B over 3.5 min and 

remaining at 98% B for 1 min followed by a 0.5-min transition to 30% for a 3-min wash 

and re-equilibration. The samples were detected by a Q-Exactive Orbitrap mass 

spectrometer (ThermoFisher Scientific) using a heated electrospray ionisation (HESI) 

source at 3.5 kV operating in negative ion mode. A mass range of 100 to 1,250 m/z was 

used over the full 8-min run with a mass resolution of 70,000 used.  

LC-MS data were processed in a targeted manner using Quan Browser and 

XCalibur™ 4.0 software. Peaks for all metabolites except glycine were detected using the 

negative ion mode output from their respective runs with peak identification performed 

using exact mass and retention times as follows: glycine (m/z=76.0399, Retention time 

(RT)=15.50 min), taurine (m/z=124.0068, RT=15 min), GCDCA (m/z=448.3063, RT=4.20 

min), TCDCA (m/z=498.2889, RT=3.80), GCA (m/z=464.3012, RT=4.40), taurocholate 

(m/z=514.2839, RT=4.21), CDCA (m/z=391.2848, RT=4.00), and CA (m/z=407.2798, 

RT=2.90) with a 60s RT window. 
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Proteomic data-independent analysis  

PHH cultured on a 24-well plate were treated at drug concentrations described in 

Table 2. Protein was collected from hepatocytes by addition of 200 µL of 5% w/v SDS 

and denatured by heating to 95° C for 10 min. Hepatocyte lysates were processed and 

digested using S-Trap™ mini columns (ProtiFi) following the manufacturer’s protocol. The 

final samples were solubilised in 2% aqueous acetonitrile (ACN) with 0.1% trifluoroacetic 

acid. 

A pooled lysate of drug-treated samples (Sample A) and a pooled lysate of 

untreated PHH and 100 µM CDCA-treated PHH (Sample B) were used to generate a 

treatment-specific (Library A) and OSTα/β up-regulated (Library B) protein spectral library 

(26). Both sample A and B were digested and processed as described above; however, 

once the samples had been eluted from the S-Trap™ column, the samples were 

fractionated. High-pH reversed phase fractionation was performed as described by Batth 

T.S, et al 2014 to generate 12 fractions for sample A and sample B (27). 

LC-MS/MS analysis of the pooled library and drug-treated samples were 

performed as described by Birrell G.W et al 2020 (28). The pooled library samples were 

analysed with a data-dependent acquisition method, and the drug-treated samples were 

analysed with a DIA acquisition method. Analysis was performed using an Ultimate 

U3000 Nano LC system (Dionex) coupled to a Q-Exactive Orbitrap mass spectrometer. 

Samples were loaded on to a reversed-phase Acclaim™ PepMap™ trap column (100 µM 

x 2 cm; Dionex) at a flow rate of 15 µL/min. Analytes were eluted from the trap column 

into a reversed-phase LC Packings capillary column (75 µM x 50 cm; Dionex). MS/MS 

was operated in data-dependent mode at a resolution of 70,000 over the m/z range of 
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375-1575 in positive ion mode. Fragmentation was performed for the top 20 most 

abundant precursors with a normalised collision energy of 27.0 with a 15 ms activation 

time and dynamic enabled exclusion. DIA MS/MS analysis was performed in data-

independent mode using previously mentioned settings for the mass spectrometer with a 

25-fixed window setup of 24 m/z precursor isolation over a m/z range of 375-975. 

Sample A and sample B were analysed using MaxQuant version 16.0.5 as 

previously described (29). The samples were searched against Homo sapiens 

(UP000005640, release version June 29, 2020) Uniprot FASTA database to generate two 

proteome libraries, library A and B, respectively. The output from MaxQuant for library A 

and B were combined in Spectronaut™ 13.0 to generate a single library (PHH spectral 

library) to be used for DIA analysis. The combined library contained 82,361, which 

allowed for 6,944 proteins to be identified.  

The drug-treated samples using the PHH spectral library were processed with 

Spectronaut™ 13.0. Processing of the drug-treated spectra was performed using default 

Spectronaut™ settings (Manual for Spectronaut™ 13.0, available on Biognosis website). 

Quantification in Spectronaut used default settings except for minor group quantity set to 

sum precursor quantity. The data filtering setting was q-value sparse and global 

normalisation was performed using median values. The output was then filtered to a 

targeted list of 80 proteins related to transport, phase I and II metabolism, and bile acid 

metabolism. Of the 80 proteins in the targeted list, 56 were detected by DIA analysis 

(Appendix 4). A statistically significant difference in protein abundance between control 

and drug-treated cells was determined for a p-value ≤ 0.05 using a one-way ANOVA with 

post hoc Dunnett’s test. 
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Statistical analysis  

All Student’s t-tests, as well as one-way and two-way ANOVAs with post hoc Dunnett’s 

test were performed using GraphPad Prism 7. 
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Results 

Cholestatic potential of DILI-associated drugs 

The potential for cholestatic hepatotoxicity was determined using the C-DILI™ 

assay for ten DILI-associated drugs by assessing the difference in hepatotoxicity 

observed over a concentration range for the two different media conditions (Appendix 3). 

Cholestatic hepatotoxicity was determined to have occurred when there was a 

significantly greater decrease in intracellular ATP and a greater increase in extracellular 

LDH for PHH or HepaRG™ cells cultured in the sensitisation media compared to those 

cultured in the standard media.  

HepaRG™ cells exposed to ethinyl estradiol (200 µM), ritonavir (250 µM), or 

troglitazone (100 µM) exhibited cholestatic hepatotoxicity (Fig. 1A). Cholestatic 

hepatotoxicity was observed in PHH treated with diclofenac (500 µM), ethinyl estradiol 

(100 µM), ritonavir (125 µM), or troglitazone (50 µM) (Fig. 1B and 1C). Compared to PHH, 

HepaRG™ cells required higher concentrations of ethinyl estradiol, ritonavir, or 

troglitazone to cause a significant decrease in cell viability, and diclofenac did not cause 

any significant change in cell viability for HepaRG™ cells. 
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Figure 1: C-DILI™ assay for characterisation of bile acid-dependent toxicity of drug-treated 

HepaRG™ cells and primary human hepatocytes (PHH). (A) HepaRG™ cells and PHH, donor (B) WID 

and (C) WWQ, were treated with 10 DILI-associated drugs (acetaminophen, amiodarone, diclofenac, 

ethinyl estradiol, fialuridine, pioglitazone, ritonavir, stavudine, troglitazone, and zidovudine). Treatment 

concentrations started at approximately the maximum solubility for a 1000x DMSO stock, with the exception 

of diclofenac, and concentrations were halved in each subsequent treatment. Bile acid-dependent toxicity 

was determined to be present when a significantly greater toxic response was observed in the C-DILI™ 

sensitisation media (grey) compared to the C-DILI standard media (black). A decrease in ATP (% of control) 

and an increase in LDH (% of control) indicated toxicity and the lowest concentration that demonstrated 

significant toxicity, if any, is shown. * p-value ≤ 0.05 as determined with a Student’s t-test (n = 3 for PHH; 

n=4 for HepaRG™ cells). ■ PHH donor BXW was used instead of WID and ● donor XVN was used in place 

of WWQ. 
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Effect of drug treatment on bile acid transport in HuH-7 cells 

The B-CLEAR® assay was used to determine if bile acid transport was impaired 

by drug treatment of HuH-7 cells with the DILI-associated drugs (11, 30). The assay 

measured the uptake of [3H]-taurocholate from media and its accumulation within the cell 

and efflux into the canaliculi. The B-CLEAR® assay was performed using HuH-7 cells as 

they were a more accessible model and were demonstrated to be an adequate model of 

ABC transporter function by Kang et al (2019)(24). Ethinyl estradiol (50 µM), pioglitazone 

(100 µM), and ritonavir (25 µM) significantly altered taurocholate transport (Fig. 2A). 

Ethinyl estradiol and pioglitazone reduced the BEI from 43% to 34% and 6%, respectively. 

Neither drug affected total cell and canaliculi accumulation of [3H]-taurocholate, however, 

both drugs caused a greater fraction to be retained within the cell due to impaired efflux 

into the canaliculi (Fig. 2B). Ritonavir, which caused the BEI to decrease to 10%, showed 

a larger fraction of the [3H]-taurocholate accumulated within the cell after treatment. In 

addition, the total amount of [3H]-taurocholate accumulated within both the cell and 

canaliculi decreased from 31 pmol/mg protein in the control to 24 pmol/mg protein after 

treatment with ritonavir. This indicated that ritonavir impaired uptake of [3H]-taurocholate 

in addition to impairing its biliary efflux. 

Troglitazone, a known NTCP and BSEP inhibitor, did not initially appear to affect 

bile acid transport at 25 µM (Fig. 2A)(31). However, when the concentration of 

troglitazone was increased to 75 µM, it had a profound effect on bile acid transport (Fig. 

2C). At 75 µM, troglitazone reduced the BEI to 24% and total [3H]-taurocholate 

accumulation in the cell and the canaliculi was decreased from 58 pmol/mg protein in the 

control to 7.5 pmol/mg protein, demonstrating significantly impaired uptake and efflux.  
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Figure 2: 3[H]-taurocholate B-CLEAR® transport assay using long-term cultured HuH-7 cells after 

24-h drug treatment. Total (cell plus canaliculi) 3[H]-taurocholate accumulation (Ca2+-containing HBSS) 

compared to cellular 3[H]-taurocholate accumulation (Ca2+-free HBSS) after 24-h exposure to (A) 

acetaminophen (1 mM), amiodarone (12.5 µM), diclofenac (100 µM), ethinyl estradiol (50 µM), fialuridine 

(100 µM), pioglitazone (100 µM), ritonavir (25 µM), or troglitazone (25 µM) with a 0.1%v/v DMSO control. 

(B) Mean proportion of 3[H]-taurocholate localisation in the cells and canalicular compartment. (C) Repeated 

B-CLEAR® transport assay using increased concentrations for amiodarone (25 µM) and troglitazone (75 

µM), ethinyl estradiol (50 µM) treatment was repeated at previous concentrations. The biliary excretion 

index (BEI %) is included above each condition. *p ≤ 0.05 as determined with a two-way ANOVA (n = 3). 
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Liquid chromatography-mass spectrometry analysis of cellular bile acids 

after drug treatment of PHH 

After a 24-h drug treatment with free fatty acid (FFA) (1 mM), fialuridine (100 µM), 

amiodarone (12.5 µM), diclofenac (50 µM), ethinyl estradiol (25 µM), pioglitazone (100 

µM), ritonavir (25 µM), or troglitazone (12.5 µM), cellular bile acids and related 

metabolites from PHH were analysed by targeted LC-MS metabolomics (Fig. 3). A 0.1% 

v/v DMSO treatment was used as a control with FFA, fialuridine, and amiodarone as 

negative treatment controls for cholestatic hepatotoxicity based on the outcomes of the 

C-DILI™ and B-CLEAR® assays (Figs. 1 and 2). 

Ritonavir significantly depleted cellular taurocholate (4.8% and 8.8% of control), 

GCA (1.25% and 5.3% of control), TCDCA (9.8% and 14.1% of control), and GCDCA 

(5.3% and 13.2% of control) compared to control for donors BXW and XVN, respectively 

(Fig. 3). Pioglitazone demonstrated a similar capacity to significantly reduce taurocholate 

(5.6% and 2.3% of control), GCA (3.9% and 3.6% of control), TCDCA (3.5% and 3.9% of 

control), and GCDCA (4.5% and 6% of control) for donors BXW and XVN, respectively. 

However, no significant changes in taurine, glycine, or CDCA were observed in either 

donor after treatment with ritonavir or pioglitazone. Ethinyl estradiol, diclofenac, and 

troglitazone induced less depletion of the four bile acids in comparison to pioglitazone 

and ritonavir drug treatments. In addition, for the PHH donor XVN, ethinyl estradiol, 

diclofenac, and troglitazone did not cause a statistically significant decrease in the 

abundance of bile acids. Amiodarone, which was expected to be a negative control across 

both donors, also significantly reduced taurocholate (38%) and glycocholate (26.3%) for 

donor BXW compared to control. Interestingly, fialuridine caused a significant increase in 
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cellular taurocholate (160.7% and 401.8%) in donor BXW and XVN, respectively, 

compared to control, and significantly increased TCDCA (209.1%) and CDCA (287.8%) 

compared to control in donor BXW. CA was not altered significantly in any of the PHH 

extracts. 

Figure 3: Levels of primary bile acid metabolites in drug-treated primary human hepatocytes (PPH). 

LC-MS analysis of cellular primary bile acid metabolites; taurine, glycine, taurocholate, glycocholate, 

taurochenodeoxycholate, glycochenodeoxycholate, and chenodeoxycholate in drug-treated PHH donors 

BXW and XVN. PHH were treated with 0.1% v/v DMSO control (black), 1 mM free fatty acid (FFA) (navy), 

100 µM fialuridine (blue), 12.5 µM amiodarone (pale blue), 50 µM diclofenac (red), 25 µM ethinyl estradiol 

(orange), 100 µM pioglitazone (yellow), 25 µM ritonavir (green), and 12.5 µM troglitazone (purple) over 24 

h (mean ± SD in quadruplicate). * p-value ≤ 0.05 vs control as determined with a one-way ANOVA. 
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Time course of bile acid abundance in HepaRG™ cells after drug treatment 

The change in abundance of bile acids and related metabolites in HepaRG™ cells 

was characterised over several time points for a 24-h period using targeted LC-MS 

metabolomics (Fig. 4). No significant changes in abundance were observed for cellular or 

extracellular glycine or TCDCA for any of the drug treatments across any time point. At 

24 h, cellular taurocholate was significantly decreased in abundance by all drug 

treatments. Extracellular taurocholate was only significantly increased at the 24-h time 

point by ritonavir and pioglitazone. Additionally, all drugs decreased cellular GCA, CDCA, 

and CA at 24 h. However, beginning at 16 h, only extracellular CDCA was decreased by 

the ritonavir and troglitazone drug treatments. The cellular abundance of GCDCA was 

decreased by all drug treatments at 24 h except for diclofenac. Cellular taurine was 

significantly decreased at 8 h for pioglitazone, ritonavir, and troglitazone. Ethinyl estradiol 

caused a significant decrease in cellular taurine at 16 h. Extracellular taurine was 

significantly increased in abundance by troglitazone after 8 h. 
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Figure 4: Bile acid kinetics in drug-treated HepaRG™ cells over a 24-h time course. LC-MS analysis 

of cellular and extracellular primary bile acid metabolites; taurine, glycine, taurocholate, glycocholate, 

taurochenodeoxycholate, glycochenodeoxycholate, and chenodeoxycholate in drug-treated HepaRG™ 

cells. Cells were treated with 0.1% v/v DMSO control (black), 250 µM diclofenac (red), 100 µM ethinyl 

estradiol (orange), 250 µM pioglitazone (yellow), 50 µM ritonavir (green), and 100 µM troglitazone (purple) 

over 24 h. Intensity represents the mean (n = 4) LC-MS peak area relative to control at the first time point 

(1 h). * p-value ≤ 0.05 vs control as determined with a one-way ANOVA where the black line indicates 

subsequent time points in which the p-value remained ≤ 0.05. 

Drug-induced changes in drug metabolism and the bile acid-associated 

proteome in PHH 

The proteome of drug-treated PHH was analysed using DIA LC-MS proteomics, 

from which the changes to a selection of 56 drug metabolism and bile acid-associated 

proteins was analysed (Appendix 4). Protein levels from all drug treatments were 

compared, with data normalised to the YNM donor 0.1%v/v DMSO control (Fig. 5). A 

significant donor-dependent difference in the abundance of proteins was evident from 
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comparison of the BXW and YNM controls. Therefore, a second comparison was 

performed for the BXW donor drug treatments and the BXW donor 0.1%v/v DMSO control 

(Fig. 6).  

Figure 5: Heatmap of protein levels involved in drug and bile acid transport, detoxification and 

primary bile acid synthesis in drug-treated primary human hepatocytes (PHH). Heatmap of target 

proteins after 24-h treatment with 0.1% v/v DMSO control, 50 µM diclofenac, 25 µM ethinyl estradiol, 100 

µM pioglitazone, 25 µM ritonavir, or 12.5 µM troglitazone. Red, increased abundance; yellow, unchanged 

abundance; blue, decreased abundance. * Heatmap shows the fold-change compared to control of donor 

YNM for each protein. 
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When comparing drug treatments to their matched donor controls (Figs. 5 and 6), 

there was a trend for drug metabolism and bile acid-associated proteins to be significantly 

increased in response to drug treatment. Across all drug treatments, 68-75% of 

significantly altered proteins were drug metabolism and bile acid-associated proteins with 

a majority of these proteins increasing in abundance.  

 

Figure 6: Heatmap of protein levels involved in drug and bile acid transporters, detoxification and 

primary bile acid synthesis in drug-treated primary human hepatocytes (PHH) from donor BXW. 

Heatmap of target proteins after 24-h treatment with 0.1% v/v DMSO control, 50 µM diclofenac, 25 µM 

ethinyl estradiol, 100 µM pioglitazone, 25 µM ritonavir, or 12.5 µM troglitazone. Red, increased abundance; 

yellow, unchanged abundance; blue, decreased abundance. * Heatmap shows the fold-change compared 

to control of donor BXW for each protein. 
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Diclofenac, pioglitazone, ritonavir, and troglitazone induced an increase in the 

abundance of phase I metabolism enzymes with significant increases in the abundance 

of POR for both donors with the exception of diclofenac (Fig. 7). All drug treatments 

demonstrated a significant increase in some phase I CYP metabolism enzymes with 

CYP2A6, CYP2B6, CYP3A4, and CYP3A5 being most prominently affected. 

Furthermore, pioglitazone, ritonavir, and troglitazone increased the abundance of 

CYP3A4 and CYP3A5 for at least one donor, by up to 3.1- and 2.7-fold, respectively. 

Treatment with pioglitazone, ritonavir, and troglitazone did affect transporters proteins, 

and bile acid synthesis enzymes, however; these changes were not as consistent 

between donors nor as prominent (Fig. 7). 
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Figure 7: Changes in abundance of drug and bile acid transporters, detoxification, and primary bile 

acid synthesis-related proteins in drug-treated primary human hepatocytes (PHH) with cholestasis-

associated drugs. Data are presented as the log2(fold change) of transporter and protein abundance 

relative to 0.1% DMSO control of the respective PHH donor, BXW (black) or YNM (grey)(mean ± SD in 

quadruplicate). Proteins that had a significant alteration in abundance included transporters (orange), 

phase I metabolism enzymes (blue), phase II metabolism enzymes (green), and bile acid synthesis proteins 

(pink). * p-value ≤ 0.05 and ^ p-value ≤ 0.1 vs control for at least one donor determined by a one-way 

ANOVA (n = 4).  
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Discussion 

This chapter identified several drugs that were shown to have a capacity to induce 

cholestatic liver injury and offered insight into the perturbations to the bile acid-associated 

metabolome and proteome of PHH as a result of treatment with DILI-associated drugs. 

C-DILI™ and B-CLEAR® assays were used to identify which drugs had the potential to 

induce cholestatic hepatotoxicity as well as impair bile acid transport. Metabolite and 

protein extracts from PHH treated with these drugs were analysed to characterise the 

biological perturbations to bile acid homeostasis that may result in cholestatic DILI. 

 The C-DILI™ assay was used to determine which drugs could induce cholestatic 

hepatotoxicity in a bile acid-dependent. The C-DILI™ assay used cells cultured in 

sensitisation media, which causes them to be more susceptible to cholestatic 

hepatotoxicity and demonstrate a lower cell viability at a given drug concentration when 

exposed to drugs with cholestatic potential (32). The assay identified diclofenac, ethinyl 

estradiol, ritonavir, and troglitazone as capable of causing cholestatic hepatotoxicity, 

which is consistent with previous literature (Figs. 1B and C)(13, 33-35). The other drugs 

that showed no cholestatic hepatotoxic potential (acetaminophen, amiodarone, and 

fialuridine) are more commonly associated with hepatotoxicity pathways involving 

oxidative stress, mitochondrial dysfunction, and dysregulation of lipid metabolism and, 

therefore, are unlikely to give a positive result for the C-DILI™ assay (36-38). It is worth 

noting that pioglitazone, a thiazolidinedione, demonstrated no bile acid-dependant toxicity 

at 10x the dose of troglitazone, with which it shares structural similarities. However, the 

difference in toxicity in consistent with previous observations and clinical data indicating 

that only troglitazone causes significant hepatotoxicity (39, 40). This technique is primarily 
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designed to be used with PHH, however, it is clear that the hepatic-like cell line, 

HepaRG™, was also capable of determining cholestatic hepatotoxicity using the C-DILI™ 

methodology (Fig. 1A)(41). This could allow for the use of a more affordable and 

accessible in vitro cell model for performing the C-DILI™ assay, in comparison to 

transporter certified PHH. However, it must be noted that HepaRG™ cells did 

demonstrate a reduced sensitivity to the drug treatments, requiring a higher dose for the 

cholestatic hepatotoxicity to be evident. The HepaRG™ cells may be more resilient 

because they are a cancer-derived cell line, which is known to possess de-regulated cell 

death signalling pathways (42, 43). In addition, it was previously shown that the proteome 

of HepaRG™ cells has a significant number of proteins present in different abundances 

from the drug metabolism, bile acid synthesis, and transport pathways when compared 

to PHH, which may also be a contributing factor (Chapter 2). 

 One of the main mechanisms through which cholestasis can be induced is the 

impairment of bile acid transporters (10). The B-CLEAR® assay was performed to 

determine whether any of the drugs associated with cholestatic hepatotoxicity in the C-

DILI™ assay impaired bile acid transport as part of their mechanism of hepatotoxicity. 

Ethinyl estradiol, pioglitazone, ritonavir, and troglitazone all demonstrated significant 

capacity to impair bile acid transport, however, the initial treatment concentration for 

troglitazone, 25 µM, was insufficient to alter BEI (Fig. 2A). Inhibition of bile acid transport 

by troglitazone was achieved at a treatment concentration of 75 µM (Fig. 2B). While 

several of the other drugs  reduced the BEI, only ritonavir and 75 µM troglitazone 

decreased both BEI and total accumulation of [3H]-taurocholate (Ca2+-containing HBSS 

buffer), which indicated that both bile acid uptake and efflux were inhibited. The increased 
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concentration needed for troglitazone to impair bile acid transport shows that there is a 

concentration dependence. Ritonavir, pioglitazone, and troglitazone are all well-known 

inhibitors of BSEP, the major efflux transporter of taurocholate, and NTCP, the major 

uptake transporter of taurocholate, and were expected to affect bile acid transport (9, 44, 

45). However, it is unclear why pioglitazone, a known NTCP inhibitor, only affected efflux, 

while troglitazone affected both although this may explain why troglitazone exhibited 

cholestatic hepatotoxicity in the C-DILI™ assay whereas pioglitazone did not. Ethinyl 

estradiol is also a known inhibitor of BSEP; although it does affect NTCP expression, it is 

not known to directly inhibit NTCP (46). Diclofenac showed cholestatic hepatotoxicity in 

PHH, but it did not exhibit transport inhibition. However, this may be due to an insufficient 

treatment concentration, similar to troglitazone, because  diclofenac did not cause toxicity 

in HepaRG™ cells at 500 µM which, like HuH-7 cells used in the B-CLEAR®  assay, are 

a cancer derived cell line that may be less sensitive to drug treatment., Diclofenac may 

affect bile acid transport at a higher dose, or if transporter certified PHH were used as it 

has been shown previously to inhibit bile acid transport, though at concentrations up to 

100x greater than ritonavir, pioglitazone, or troglitazone (47). 

 Metabolomics and proteomics analysis of bile acids demonstrated that there were 

significant alterations in the abundance of bile acids and bile acid-related proteins after 

treatment with cholestatic drugs. The common trend seen for both the bile acids of PHH 

and HepaRG™ cells was a consistent decrease in abundance of cellular bile acids. All 

drug treatments that were considered to be cholestatic (diclofenac, ethinyl estradiol, 

pioglitazone, ritonavir, and troglitazone) either caused no change in bile acid abundance 

or a significant decrease (Figs. 3 and 4). As these changes to bile acids were not 
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observed for amiodarone or fialuridine, it is unlikely that this decrease in bile acids is the 

result of general hepatocellular injury (Fig. 3). From the time course study with HepaRG™ 

cells, it appeared that after the media change, the HepaRG™ cells undergo a time-

dependent change in the cellular abundance of bile acids that likely occurs to re-establish 

bile acid homeostasis between the cellular, canaliculi, and extracellular compartments. 

The drug-treated cells were unable to restore bile acids to homeostatic levels as seen in 

the untreated control (Fig. 4). Over the 24-h treatment period, the control cells 

demonstrated an increase in several bile acids whereas the drug-treated cells did not 

produce the same increase in bile acids over time. Cholate, a bile acid that is metabolized 

to various conjugated forms, did not increase in abundance over the 24-h period in the 

drug-treated samples, while it increased to 63% of initial abundance for the control (Fig. 

4). This may indicate that after a media change with drug-treated media, bile acid 

homeostatic mechanisms are significantly affected. This could be due to impaired bile 

acid synthesis. Ritonavir has been associated with impaired bile acid synthesis and 

increased cholesterol abundance, a precursor to bile acids (48). Furthermore, 

thiazolidinediones are known to activate peroxisome proliferator-activated receptor alpha 

(PPARα), which is associated with impaired expression of bile acid synthesis enzymes 

(49, 50). However, from the proteomics analysis it is unlikely that the suppression of the 

gene expression of bile synthesis enzymes is the cause of the decrease seen in bile acids 

as only pioglitazone and ritonavir affected the abundance of one bile acid synthesis 

enzymes each (Fig. 7). Based on the data from the B-CLEAR® assay, it is unlikely that 

altered transport is the primary mechanism responsible for the cellular depletion of bile 
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acids. While ethinyl estradiol, pioglitazone, ritonavir, and troglitazone decreased the BEI, 

only ritonavir and troglitazone demonstrated impaired bile acid uptake. 

A common trend that occurred for all drug treatments that may have resulted in the 

decrease in abundance of bile acids is the increased abundance of several CYP enzymes 

including CYP3A4 and CYP3A5. CYP3A4 and CYP3A5, which metabolise bile acids, 

were significantly increased in abundance in PHH after ethinyl estradiol, pioglitazone, 

ritonavir, and troglitazone treatment for at least one PHH donor, if not both (51-53). While 

the abundance of CYP3A4 and CYP3A5 increased in both donors, it did not increase to 

the same extent. The less significant increase in the abundance of CYP3A4 and CYP3A5 

observed for BXW compared to YNM may be due to the higher baseline abundance of 

these enzymes in the BXW control (Fig. 5). The increased abundance of CYP3A4 and 

CYP3A5 is likely to have resulted in the increased abundance of POR observed with 

pioglitazone, ritonavir, and troglitazone. POR is an oxidoreductase enzyme that is 

essential for CYP3A4 and CYP3A5 metabolism because POR supplies the electrons 

required for CYP3A4 metabolic activity (54, 55). CYP3A4 and CYP3A5 rapidly metabolise 

bile acids, including cholate, and the increased expression after drug treatment may have 

resulted in significant increased metabolism of bile acids (56). Furthermore, CYP2B6 is 

also associated with bile acid metabolism, however, CYP3A4 and, to a lesser extent, 

CYP3A5, are considered the primary metabolisers of bile acids (52). The increased 

expression of phase I metabolism enzymes has been strongly associated with a 

protective mechanism against cholestasis (51). The inhibition of efflux of bile acids into 

the canaliculi that was observed in the B-CLEAR® assay after treatment with some drugs 

may have led to cellular accumulation of bile acids (Fig. 2). Either in response to the 
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presence of xenobiotics or accumulation of bile acids, the expression of CYP3A4 and 

CYP3A5 was increased. Several of the drug treatments are known to induce the 

expression of CYP3A4 and CYP3A5 and these CYPs also may be induced by bile acids 

via FXR- and PXR-mediated pathways (51, 57). CYP3A4 and CYP3A5 would be capable 

of metabolising the bile acids to prevent cellular accumulation of bile acids and cholestatic 

liver injury. 

 A limitation of the multi-omics methods used is that they only offer information 

about metabolite and protein abundance. The abundance and presence of a protein does 

not directly correlate to a given level of metabolic activity as it may be inactivated by the 

drug treatments. The activity of proteins may be impaired by inhibition and, for 

transporters, translocation from the membrane or impairment of translocation to the 

membrane. This is well illustrated by BSEP, for which only 40% of total hepatocellular 

BSEP is present on the canalicular membrane (58). As such, if a drug treatment were to 

inhibit BSEP localisation or directly inhibit the transporter without altering protein 

abundance, bile acid transport would be affected in a manner that could not be identified 

by proteomics. The importance of considering this limitation is illustrated by estradiol-17β-

D-glucuronide, an estradiol conjugate, which can internalise MRP2 (59). This would 

cause a decrease in MRP2-mediated efflux without altering the cellular abundance of 

MRP2. The inhibition of bile acid transporters through altered localisation or direct 

inhibition of transporters by ethinyl estradiol, pioglitazone, ritonavir, and troglitazone may 

be the reason that significant impairment of bile acid transport was observed (Fig. 2) 

without significant impact on the abundance of bile acid transporters (Fig. 7). In order to 

overcome such limitations, proteomics was coupled with the B-CLEAR® assay to account 
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for inhibition of biliary transport that is not the result of altered bile acid transporter 

abundance. However, further assays that could determine the inhibition of specific bile 

acid transporters, or the use of immunofluorescence microscopy to characterise changes 

in the localisation of bile acid transporters, would be valuable in ascertaining the specific 

mechanisms involved. The use of PHH also introduced the common issue inherent to 

primary cells of interdonor variability, which can be seen in the difference between donors 

in Figs. 3, 5, and 7. Such variability is a well-known confounding factor, especially among 

cells as metabolically active as PHH (60, 61). While the use of HepaRG™ and HuH-7 

cells allows for reproducible in vitro models without such variability, the potential trade-off 

is the metabolic competency of these models (Chapter 2). Therefore, future studies would 

benefit from a greater number of PHH donors to compensate for interdonor variability, 

however, this may not be feasible due to the costs involved with using PHH. 
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Figure 8: Proposed mechanism of the progression of cholestatic DILI in hepatocytes and hepatic-

derived cells after treatment with DILI associated drugs. The proposed progression of cholestatic DILI 

involved an inhibition of bile acid transport with the abundance of phase I metabolism enzymes increased 

as a protective mechanism against cellular bile acid accumulation and cholestatic liver injury. 

 This study applied a combination of plate-based assays, proteomics, and 

metabolomics to obtain in-depth insight into the perturbations that drugs associated with 

cholestatic DILI may induce in PHH and hepatic-like cell lines. The C-DILI™ and B-

CLEAR® assays allowed for determination of drugs that could cause cholestatic 

hepatotoxicity and impair bile acid transport. From the C-DILI™ assay, it was determined 

that diclofenac, ethinyl estradiol, ritonavir, and troglitazone had significant potential to 

cause cholestatic DILI. Additionally, ethinyl estradiol, pioglitazone, ritonavir, and 

troglitazone significantly impaired bile acid transport using the B-CLEAR® assay with 

HuH-7 cells. Targeted metabolomics of PHH and HepaRG cells treated with cholestatic 

drugs demonstrated a common behaviour of decreasing the cellular abundance of several 
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bile acids. Proteomics analysis of drug-treated PHH revealed that the abundance of 

CYP3A4, CYP3A5, and POR was significantly increased for pioglitazone, ritonavir, and 

troglitazone, the drugs which caused the greatest decrease in bile acids. The B-CLEAR® 

assay demonstrated impairment in the bile acid transport capacity of cells treated with 

ethinyl estradiol, pioglitazone, ritonavir, and troglitazone, which could have resulted in 

cellular bile acid accumulation and cholestatic liver injury. Therefore, the depletion of bile 

acids observed in the metabolomic analysis of PHH and HepaRG™ cells may be the 

result of increased expression of CYP3A4 and CYP3A5 as a protective mechanism 

against xenobiotics and cholestatic liver injury (Fig. 8). Using a multi-faceted approach to 

study cholestatic DILI has enabled characterisation of the potential for several DILI-

associated drugs to induce cholestatic hepatotoxicity, alter bile acid transport, and impact 

the abundance of bile acid metabolites and associated proteins. This approach revealed 

that the cholestatic liver injury induced by the cholestatic drugs studied was likely driven 

by impaired bile acid transport. Based on the metabolomics and proteomics results, 

cellular bile acids were depleted, which may have been due to increased phase I 

metabolism of bile acids as a protective mechanism against cholestatic liver injury. 

Knowledge of the mechanisms that cause cholestatic DILI, and the mechanisms that 

hepatocytes employ to protect against cholestasis, can be utilised to develop safer drugs 

with minimal cholestatic potential. 
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Abstract 

Steatotic liver injury can present as numerous different injury phenotypes and may 

result from a variety of causative stimuli. Non-alcoholic steatohepatitis (NASH) is a severe 

form of liver injury with significant mortality rate that can be induced by a variety of stimuli 

including prescription medications. Identifying changes in the cellular lipid profiles of 

hepatocytes from patients with NASH or hepatocytes treated with drugs that cause 

steatotic drug-induced liver injury (DILI) may allow for the identification of characteristic 

lipid signatures. This study aimed to identify lipid signatures that are characteristic of 

steatotic liver injury by combining LC-MS-based lipidomics and multivariate analysis. 

Lipidomics analysis of hepatocytes obtained from patients with NASH identified increases 

in the total cellular abundance of phosphatidylcholine, phosphatidylethanolamine, 

phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine lipids. Furthermore, 

lipidomics and multivariate analysis of in vitro primary human hepatocytes treated with 

steatogenic drugs identified several lipids that may be predictive of steatotic liver injury, 

a majority of which were phospholipids. Phospholipids were demonstrated to be 

characteristically altered in steatotic hepatocytes and may a unique and characteristic 

lipid signature for steatotic liver injury. 

Introduction 

Non-alcoholic fatty liver disease (NAFLD), commonly defined as the vesicular 

accumulation of neutral lipids within hepatocytes, is a prevalent issue that affects an 

estimated 25% of the global population (1). The primary risk factors for NAFLD include 

obesity, type II diabetes, and the metabolic syndrome. In addition, hepatitis infections and 



168 

 

certain medications also may be contributing factors (2, 3). Certain prescription drugs also 

have the potential to be a causative factor of NALFD (4-7). NAFLD can progress to non-

alcoholic steatohepatitis (NASH), which is a more severe sub-type of NAFLD with a 

mortality rate 6.5-times higher than NAFLD. Although the risk of disease progression and 

the development of advanced fibrosis is unclear, one study demonstrated that 

progression to NASH occurred in as many as 59% of biopsy-confirmed NAFLD patients 

(1). The prevalence and severity of NAFLD and NASH makes it of vital importance to 

identify characteristic, specific, and sensitive biomarkers for these disease states. 

Drug-induced liver injury (DILI) is a potential, non-obesity related cause of NAFLD 

and NASH (8). DILI has an annual global prevalence ranging from 13.9 to 19.1 of cases 

per 100,000 individuals, with 64% of DILI cases presenting with liver steatosis (9-12). The 

presentation of steatosis in DILI patients is troubling as 73% of patients who presented 

with steatotic histological features required a liver transplant or had a fatal outcome (12). 

A variety of drugs including amiodarone, methotrexate, nonsteroidal anti-inflammatory 

drugs (NSAIDs), and valproate have all been associated with NAFLD and NASH (5, 13-

15). Additionally, cationic amphiphilic drugs, including amiodarone, have been linked to 

phospholipidosis, defined as the accumulation of excess phospholipids in the lysosomes 

of hepatocytes (4, 16). Various in vitro models have been used to study DILI and 

NAFLD/NASH including primary human hepatocytes (PHH) and immortalised hepatic-like 

cell lines such as HepaRG™ and HepG2 (17-20). To develop an accurate and deeper 

understanding of the pathology of NAFLD/NASH and DILI with altered lipid abundance, it 

is imperative to utilise in vitro models that have sufficient metabolic competency and can 

offer translational insight into in vivo steatotic conditions. 



169 

 

In vitro modelling has provided valuable insight into the biochemical changes that 

occur during the development of NAFLD and NASH. These have included studies 

demonstrating that increased dietary lipids can lead to lipid accumulation and increased 

hepatic free fatty acids (FFA). This increase in FFA can induce oxidative stress within 

cells and enhance inflammatory responses resulting in NASH or liver cirrhosis (17, 21, 

22). The most common method to induce steatosis in in vitro cultures is by the addition 

of FFA, such as oleic and palmitic acid, to the culture media (17, 18, 23). However, this 

method primarily simulates steatosis induced by a high-fat diet and does not adequately 

emulate other potential causes of NAFLD or NASH. The prevalence and severity of 

NAFLD and NASH illustrates the need for in vitro models that accurately reproduce the 

relevant histological and metabolic changes that occur in both NAFLD and NASH. To 

obtain the greatest value from a metabolically competent in vitro liver model, sufficiently 

quantitative and descriptive analytical techniques are required. Metabolomics and 

lipidomics, which is a subset of metabolomics, have been implemented in classifying 

several DILI phenotypes and their potential mechanism(s) of injury (24, 25). Characteristic 

metabolite and lipid profiles can be generated from drug-treated in vitro cultures, which 

can then be used to categorise various drugs by their liver injury phenotype(s) (24, 26). 

In addition to general phenotypic classifications, metabolomics and lipidomics have been 

successfully applied to generate lipid fingerprints for different drugs identifying potential 

diagnostic biomarkers of DILI (27).  

In this study, lipid profiles from PHH in vitro liver models and hepatocytes from 

patients diagnosed with NASH were characterised using untargeted liquid 

chromatography-mass spectrometry (LC-MS) lipidomics. Using these techniques and 
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multivariate analysis, this study investigated the perturbations to the lipid profile of NASH 

PHH and compared them to the profiles of healthy control PHH and in vitro-induced 

steatotic (IVIS) PHH. Analysis of the changes to these profiles revealed that the increased 

total abundance of certain phospholipid classes is characteristic of NASH. Furthermore, 

untargeted lipidomics and multivariate analysis were used to characterise changes to the 

lipid profiles of in vitro PHH treated with drugs associated with DILI. The changes to the 

drug-treated lipidomes were assessed using sparse partial least-squares discriminant 

analysis (sPLS-DA) and receiver operating characteristic (ROC) curve analysis to identify 

and evaluate potentially predictive lipids for steatotic DILI. 
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Materials and methods 

Materials 

Undifferentiated HepaRG™ cells were acquired from Biopredic International under a 

material transfer agreement and HepaRG™ Maintenance/Metabolism Media was 

purchased from Biopredic International. Cryoplateable human hepatocytes were acquired 

from BioIVT along with all QualGro™  Media. Hepatocytes from female donors (BXW, 

JPR, OSI, and YNM) ranged in age from 48-76 years, while hepatocytes from male 

donors (GWD, IWM, JHY, and XVN) ranged in age from 46-74 years (Appendix 2). 

Acetaminophen, amiodarone, diclofenac, ethinyl estradiol, pioglitazone, and ritonavir 

were acquired from Merck with all except acetaminophen being acquired as 

pharmaceutical secondary standards. Fialuridine, troglitazone, stavudine, and zidovudine 

were acquired from Cayman Chemicals. Dimethyl sulfoxide (DMSO), HPLC grade 

chloroform, HPLC grade butanol (ButOH), LC-MS grade methanol (MeOH), LC-MS grade 

isopropanol, oleic acid, palmitic acid, and trifluoroacetic acid were also purchased from 

Merck. LC-MS grade acetonitrile (ACN), 0.25% trypsin-EDTA phenol red, Percoll, 

Dulbecco’s phosphate buffer saline (PBS), chenodeoxycholic acid (CDCA), formic acid, 

Hoechst 33342, Alexa Fluor™ 488, BODIPY 493/503, and saponin were purchased from 

ThermoFisher Scientific. Ammonium carbonate was purchased from Rowe Scientific. 

Matrigel® was purchased from Bio-Strategy. 

Cell Culture 

Undifferentiated HepaRG™ cells were acquired from Biopredic International under 

a material transfer agreement. HepaRG™ cells were cultured in a T75 Culture Flask 

(Corning®) and differentiated per the supplier’s protocol. On day 0, differentiated 
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HepaRG™ cells were passaged using 0.25% w/v trypsin-EDTA (Gibco™). The cells were 

plated on either 24- or 96-well BioCoat™ Collagen I-coated plates (Corning®) with 4x105 

and 0.8x105 cells seeded per well, respectively. Media was changed every 2-3 days with 

the cells overlaid on day 3 using HepaRG™ Maintenance/Metabolism Media 

supplemented with 0.25 mg/mL of Matrigel® (Corning® – 356234) and used for 

experimentation on day 7. 

Transporter Certified™ cryoplateable human hepatocytes (BioIVT) were thawed 

and transferred to a 50 mL Falcon Conical Centrifuge tube containing 45 mL of QualGro™ 

Thawing Media (BioIVT) that included 30% v/v Percoll® (ThermoFisher Scientific). This 

was centrifuged at 100 g for 8 min. The QualGro™ Thawing Media was aspirated and the 

cell pellet was resuspended in QualGro™ Seeding Media (BioIVT) at 0.8 x106 cells/ml. 

The human hepatocytes were plated onto either 24- or 96-well collagen I-coated plates 

with 4x105 and 0.56 x105 cells seeded per well, respectively. Media was changed daily 

with hepatocytes overlaid on day 1 using QualGro™ Overlay Media (BioIVT) 

supplemented with 0.25 mg/mL of Matrigel®; sandwich-cultured hepatocytes were used 

for experimentation on day 4. 

Fluorescent imaging of steatosis and phospholipidosis 

Day 7 differentiated HepaRG™ cells and day 4 primary human hepatocytes (PHH) 

cultured on 96-well plates were incubated in compound-containing media for 24 hours 

(Table 1). The drug treatment concentrations used were the highest concentrations that 

were determined to be sub-toxic based on an in vitro C-DILI™ hepatotoxicity study 

(Appendix 3). Controls were treated with 0.1% v/v DMSO. 
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Table 1: Treatment Concentrations for HepaRG and Primary Human Hepatocytes (PHH) 

Treatment Compound Treatment Concentration (µM) 
 

HepaRG PHH 

Acetaminophen 1000 1000  

Amiodarone     25        12.5  

Diclofenac    250      50  

Ethinyl Estradiol    100      25  

Fialuridine    100     100  

Pioglitazone    250     100  

Ritonavir     50       25  

Stavudine    125     125  

Troglitazone    100       10  

Zidovudine    125      125  

Free fatty acids * 1000  1000  

*Free fatty acid mixture contained oleic acid and palmitic acid at a ratio of 2:1 

 After incubation, cells were fixed with 4% w/v paraformaldehyde in PBS for 15 min 

and then stained for 30 min with 2 µg/mL BODIPY 493/503 (Invitrogen™), 1 µg/ml 

Hoechst 33342 (ThermoFisher Scientific), and 4 µg/ml Alexa Fluor™ 488 (ThermoFisher 

Scientific) in 0.05% w/v saponin (ThermoFisher Scientific) to stain the vesicular neutral 

lipids, nuclei, and actin filaments, respectively. Intracellular vesicular lipid abundance was 

determined with an Operetta® high-content imaging system (PerkinElmer®) and Harmony 

high-content imaging and analysis software 4.8 using total lipid area per total cell area 

determined based on the BODIPY 493/503 lipid staining and Alexa Fluor™ 488 cell 
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staining. A significant increase in intracellular vesicular lipid abundance was determined 

by comparing treatment conditions to control with a one-way analysis of variance 

(ANOVA). 

DILI drug treatment and lipid extraction 

PHH cultured on a 24-well plate were treated with compounds at the 

concentrations listed above in Table 1. Drug treatments used concentrations that were 

the highest concentrations that were determined to be sub-toxic based on an in vitro C-

DILI™ hepatotoxicity study (Appendix 3). Controls were treated with 0.1% v/v DMSO. 

Following the 24-hour incubation, the media was aspirated, and the cells were washed 

three times with 1 mL PBS. The cells were collected from the well by the addition of 350 

µL MeOH:ddH2O (6:1) and scraping with a pipette tip. The cells were then transferred to 

a Safe-Lock microcentrifuge tube (Eppendorf®) containing 100 µL of chloroform to 

produce a monophasic 2:6:1 chloroform:methanol:water (C:M:W) extraction mixture. To 

collect any residual metabolites or cell debris, the wells of the plate were washed with 1 

mL of BuOH:MeOH (3:1), transferred to another microcentrifuge tube and dried to 

completion using a CentriVap Benchtop Centrifugal Vacuum Concentrator (Labconco). 

The dried BuOH:MeOH extraction was reconstituted using the C:M:W extraction mixture 

to consolidate the extracted lipids. This pooled extraction mix was centrifuged at 21,600 

g for 10 min to pellet any insoluble components and then the supernatant was dried and 

reconstituted in 100 µL of BuOH:MeOH:ddH2O (9:9:2) and centrifuged at 21,600 g for 10 

min at 4 °C.  
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Lipid extraction of clinical and in vitro-induced steatotic PHH samples 

 IVIS PHH were generated by supplementing the culture media with a proprietary 

mixture of lipids (QualGro-FTL) from BioIVT on day 1 and cultured as previously 

described using supplemented media until day 5. On day 5, lipids were extracted by the 

addition of 320 µL MeOH and scraping with a pipette tip. The PHH were then transferred 

to a microcentrifuge tube containing 640 µL of chloroform to produce a 960 µL solution of 

MeOH:CCl4 (1:2). Preparation of the sample continued as previously described. 

PHH that were collected from healthy controls and patients presenting with NASH 

were supplied by BioIVT. The PHH were thawed and made into a cell suspension of 

0.8x106 cells/mL. From this suspension, 625 µL (0.5x106 cells) was transferred into 

microcentrifuge tubes. The PHH were pelleted at 21,600 g for 10 min, the media was 

aspirated, and the cells were washed with 1 mL of PBS three times. Lipids were extracted 

by the addition of 960 µL of methanol:chloroform (1:2). After addition of the extraction 

solution, the NASH PHH were treated the same as the IVIS PHH. 

Liquid chromatography-mass spectrometry lipidomics analysis 

Lipidomic samples were analysed in an untargeted manner using reverse phase 

chromatography with high resolution mass spectrometry as described previously (28). 

The samples were injected using an Ultimate U3000 LC system fitted with a C8 Ascentis 

Express® column (2.7 μm, 2.1 by 100 mm; Merck®) at 40° C with an injection volume of 

10 μL. Chromatography was performed using 40% aqueous isopropanol with 8 mM 

ammonium carbonate and 2 mM formic acid (A) and 98% aqueous isopropanol with 8 

mM ammonium carbonate and 2 mM formic acid (B) as the mobile phases. A 30-min 
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gradient at a flow rate of 0.2 mL/min was run starting at 0% B increasing stepwise to 

100% B over 25 min followed by a 2-min wash at 100% B and a 3-min re-equilibration 

phase at 0% B. The samples were detected by Q-Exactive Orbitrap MS (ThermoFisher 

Scientific). A mass range of 140 to 1,300 m/z was used over the full 30 min with a mass 

resolution of 70,000 used for both ranges.  

LC-MS data were processed in a targeted manner using IDEOM software to 

perform targeted identification of glycerolipids, fatty acids, and phospholipids based on 

accurate mass and retention time from the IDEOM database (29). The LC-MS raw file 

conversion was performed using ProteoWizard and XCMS (30, 31). Mzmatch.R was then 

used for alignment and filtering of peaks with an intensity cut-off of 100,000, relative 

standard deviation of less than 0.8, and peak shape noise filter of greater than 0.8 (32). 

Relative quantification of LC-MS peaks was based on peak height, and total ion current 

(TIC) for each lipid class was calculated by the sum of peak heights for all detected 

putative lipids in that class.  

Statistical analysis 

One-way ANOVA with post hoc Dunnett’s test was performed using GraphPad 

Prism 7. Principal component analysis (PCA), partial least squares discrimination analysis 

(PLS-DA), sparse PLS-DA (sPLS-DA) and receiver operating characteristic (ROC) curve 

analysis was performed using MetaboAnalyst 5.0 (33). 
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Results 

Comparative analysis of lipid profiles in hepatocytes from patients with 

NASH and IVIS PHH 

The comparison of NASH to healthy control and IVIS PHH was performed to 

identify differences in the lipid profiles that were markers of NASH. IVIS PHH were 

included to identify differences that may have resulted primarily from exposure to a high-

fat environment. Untargeted lipidomics using reverse-phase exact mass LC-MS analysis 

identified 374 lipids including 20 fatty acids, 150 glycerolipids, and 224 phospholipids. For 

the NASH PHH, the mean abundance of 149 lipids exhibited a >2-fold increase compared 

to control, and 42 lipids exhibited a >2-fold decrease. In comparison, the IVIS samples 

exhibited 58 lipids that had a >2-fold increase and 47 that had a >2-fold decrease in 

abundance (Fig. 1A). For NASH PHH, 49 neutral lipids (FFA and glycerolipids) were 

increased in abundance and 31 were decreased in abundance. For IVIS PHH, 52 neutral 

lipids increased and 4 decreased in abundance (Fig. 1B). There was a significant increase 

in phospholipids in the lipidome of NASH PHH; 100 phospholipids were increased in 

abundance and only 11 phospholipids were decreased in abundance (Fig. 1B). 
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Figure 1: Comparison of untargeted lipidomic profiles in primary human hepatocytes (PHH) from 

patients with non-alcoholic steatohepatitis (NASH), healthy controls, and control PHH with in vitro-

induced steatosis (IVIS). (A) Heatmap of all identified lipids across the fatty acid, glycerolipid, and 

phospholipid classes with rows grouped by lipid class and then by increasing molecular mass of lipids. The 

heatmap shows the fold-change in abundance compared to mean abundance in control donors for each 

lipid species. Red, increased abundance; yellow, unchanged abundance; blue, decreased abundance. (B) 

Total number of lipids for each donor that shows a >2-fold increase or decrease in lipid abundance 

compared to the mean abundance in control donors for each lipid species. 
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Figure 2: Fold change in total ion current (TIC) of lipid classes in primary human hepatocytes (PHH) 

from patients with non-alcoholic steatohepatitis (NASH) and PHH with in vitro-induced steatosis 

(IVIS) compared to control. The fold change in TIC of the fatty acid (FA), monoglyceride (MAG), 

diglyceride (DAG), triglyceride (TAG), Phosphatidic acid (PA), Phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and 

phosphatidylserine (PS) lipid classes was generated by the summation of the peak intensities for each lipid 

species in a given lipid class for NASH PHH and IVIS SCHH compared to control SCHH. One-way ANOVA 

was used to determine statistically significance differences, * p-value ≤ 0.05. 

 In contrast, in IVIS PHH, 6 phospholipids were increased in abundance and 43 

phospholipids were decreased. The total change to lipid class abundance was 

determined by the change observed in TIC for a given lipid class (Fig. 2). Diglycerides 

(DAG) and triglycerides (TAG) were significantly increased in total abundance compared 

to control for both NASH (DAG: 3.3-fold, TAG: 2.2-fold increase) and IVIS PHH (DAG: 

3.6-fold, TAG: 1.8-fold increase). However, several classes of phospholipids only showed 

an increase in abundance for NASH PHH. Phosphatidic acid (PA), Phosphatidylcholine 

(PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol 

(PI), and phosphatidylserine (PS) all exhibited significant increases in their total class 

abundance in NASH PHH ranging from a 1.4-fold to a 5.9-fold increase in lipid class TIC.  
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Multivariate analysis of NASH-related lipids 

The lipidomics data generated were processed into two separate lipid datasets, 

which were grouped as fatty acids and glycerolipids in one dataset and phospholipids in 

the other. The ‘Fatty acids and glycerolipids’ dataset contained 150 lipids and the 

‘Phospholipids’ dataset contained 224 lipids. PCA plots of the two datasets showed that 

the in vivo NASH PHH strongly separated from both the control and IVIS samples over 

principal component 1 for both datasets (Fig. 3A). This suggests that there are significant 

differences in the lipid profile of NASH PHH compared to healthy PHH that was not 

reproduced by culturing PHH in a high-fat environment. While the presence of NASH 

appeared to be the primary factor for separation across the ‘Fatty acids and glycerolipids’ 

dataset for principal component 1, it should be noted that there was a donor-dependent 

effect. NASH PHH donors YNM and IWM demonstrated a noticeable separation from 

donors BXW and GWD (Fig. 3A). PLS-DA (Fig. 3B) was performed to generate a set of 

important feature lipids from component 1 for both datasets (Fig. 3C). These lipids 

strongly contributed to the differences observed in the lipid profiles of NASH PHH 

compared to control and IVIS PHH lipid profiles. While the PLS-DA scores plot for both 

datasets demonstrated separation of NASH PHH from control and IVIS PHH across 

component 1, the phospholipid dataset demonstrated a much stronger separation 

between NASH and IVIS PHH. For component 1 of the ‘Fatty acids and glycerolipids’ 

dataset, 66% (31/47) and 21% (9/47) of lipids with a variable importance in projection 

(VIP) score ≥ 1 were TAGs and DAGs, respectively. For component 1 of the 

‘Phospholipids’ dataset, the PG, PE, and PC lipid classes had the most significant 

contribution to the variance in lipid profiles between NASH PHH, and control and IVIS 



181 

 

PHH. For the ‘Phospholipids’ dataset, 31% (17/55), 31% (17/55) and 20% (11/55) of 

phospholipids with a VIP score ≥ 1were PC, PG and PE, respectively (Appendix 6).  
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Figure 3: Multivariate analysis of LC-MS lipidomics profiles of non-alcoholic steatohepatitis (NASH), healthy controls, and control primary 

human hepatocytes (PHH) with in vitro-induced steatosis (IVIS). (A) Principal component analysis (PCA) plot of PHH lipids was separated into 

two datasets of ‘Fatty acids and glycerolipids’, and ‘Phospholipids’. PHH samples were grouped by condition and donor: NASH (BXW, GWD, IWM, 

YNM), control (JHY, JPR, OSI, XVN), and IVIS (JHY, JPR, OSI, XVN). (B) Partial least squares-discriminant analysis (PLS-DA) scores plot of PHH 

lipids was separated into two datasets: fatty acids and glycerolipids, and phospholipids. PHH samples were grouped by condition. (C) List of top 20 

important lipids by variable’s importance in projection (VIP) scores and heatmap of relative abundance of component 1 from both datasets. Heatmap 

shows maximum change at 2-fold increase (red) or decrease (blue). PCA and PLS-DA analysis were performed using MetaboAnalyst 5.0.  
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BODIPY plate assay of DILI drug panel for identification of in vitro 

steatotic-DILI  

In order to determine whether a combination of lipidomics and multivariate 

analysis could generate a set of lipids that could discriminate between healthy 

hepatocytes, steatotic DILI, and steatosis induced by culturing in a high-fat 

environment, a panel of DILI-associated drugs were selected from clinical reports and 

previous literature. Acetaminophen, amiodarone, diclofenac, ethinyl estradiol, 

fialuridine, pioglitazone, ritonavir, stavudine, troglitazone, and zidovudine were 

selected due to their reported association with DILI (34-41). A 1 mM FFA treatment 

was used as a positive control, which simulates a high-fat environment. BODIPY 

staining of neutral lipids was performed after HepaRG™ and PHH were treated with 

the DILI-associated drugs to determine their steatogenic potential (Fig. 4). Method 

validation was conducted with HepaRG™ cells, which showed tolerance to relatively 

high drug concentrations before loss of cell viability (Appendix 3). Lower treatment 

concentrations were used for PHH than HepaRG™ cells due to cell viability concerns. 
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Figure 4: BODIPY staining of HepaRG cells and primary human hepatocytes (PHH) for in vitro 

drug-induced intracellular lipid accumulation. Cellular staining was performed using BODIPY 

493/503, Hoechst 33342, and Alexa Fluor™ 488 to stain vesicular neutral lipids, nuclei, and actin 

filaments, respectively. The cells were imaged using an Operetta® high-content imaging system with 

image analysis performed using Harmony high-content imaging and analysis software 4.8. (A) 

Screening of DILI-associated drugs in both HepaRG cells and PHH. Donor BXW was used for initial 

PHH analysis. (B) Effect of concentration on drug-induced intracellular lipid accumulation. Donor IWN 

was used for concentration-dependent analysis. Dotted line indicates level of untreated control. 

Significant changes from control were determined by one-way ANOVA, * p- value ≤ 0.05.  



185 

 

Amiodarone (25 µM), diclofenac (250 µM), ethinyl estradiol (100 µM) and 

ritonavir (50 µM) demonstrated a significant increase in lipid accumulation in 

HepaRG™ cells (Fig. 4A). However, the PHH donor BXW only demonstrated a 

significant increase in lipid accumulation for the amiodarone (12.5 µM) and ritonavir 

(25 µM) treatments. To assess the concentration dependence and whether the initial 

treatment concentrations of diclofenac and ethinyl estradiol were insufficient, the study 

was repeated in PHH using donor IWM at multiple concentrations (1x, 2x, and 4x the 

initial treatment concentrations) for amiodarone, diclofenac, ethinyl estradiol, 

pioglitazone, and stavudine (Fig. 4B). However, only 1x and 2x the initial ritonavir 

concentration was used due to solubility limitations. Pioglitazone and stavudine were 

included as negative controls. Compared to control, amiodarone and ritonavir 

increased lipid accumulation by up to 6.2- and 6.4-fold, respectively, with an apparent 

concentration dependence. Ethinyl estradiol showed a concentration-dependent trend 

of lipid accumulation, with a 2.3-fold increase in lipid accumulation when comparing 

the lowest and highest treatment concentrations, although lipid accumulation failed to 

reach statistical significance compared to control. Interestingly, no significant lipid 

accumulation across the three treatment concentrations was observed for diclofenac. 

Identification of intracellular lipids predictive of steatotic-based liver 

injury 

Based on the BODIPY data, amiodarone and ritonavir were considered 

steatogenic. Untargeted MS lipidomics was used to analyse the lipid profiles of PHH 

treated with amiodarone and ritonavir. Lipidomics analysis identified noticeable 

changes in the lipidome of PHH (BXW and XVN donors) following treatment with 

amiodarone and ritonavir (Fig. 5A). While both drugs caused similar increases in lipid 

accumulation in the BODIPY study, the overall changes in the lipid profiles between 
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amiodarone and ritonavir were noticeably different. Ritonavir decreased the 

abundance of a large portion of lipids relative to control with increases occurring 

primarily in long-chain TAG and lysophospholipids. Amiodarone showed similar 

increases in long-chain TAG and lysophospholipids. In addition, amiodarone 

increased the abundance of medium-chain TAG, DAG, and phosphatidic acid. The 

changes observed after amiodarone treatment showed greater similarity to the lipid 

profiles of the diclofenac and ethinyl estradiol drug treatments. Additionally, there were 

indications of interdonor variability in the changes to the lipidome in response to drug 

treatment. A larger number of lipids decreased to a greater degree in donor BXW, and 

a larger number of lipids increased to a greater degree in donor XVN across the 

amiodarone and ritonavir drug treatments (Fig. 5A). 

An sPLS-DA plot, using the lipidomics data from both PHH donors, was 

generated using ten metabolites per component. This analysis was conducted to 

identify the lipid species that showed the greatest variance between control, FFA-

treated, and steatotic DILI PHH (amiodarone- and ritonavir-treated PHH) (Fig. 5B). 

Based on the sPLS-DA plot, component 1 had a strong capacity to differentiate FFA-

treated PHH from control and DILI PHH. In contrast, component 2 showed some 

capacity to differentiate DILI and control PHH, but minimal capacity to differentiate 

FFA-treated PHH from either. A ROC curve analysis was performed using the ten 

lipids from component 1 and 2 to generate a set of predictive lipids for distinguishing 

steatotic DILI (DILI PHH) from healthy controls (control PHH) and high-fat-induced 

steatosis (FFA-treated PHH). Using the combined donor dataset, an area under the 

curve (AUC) of 0.993 was achieved (95% CI: 0.893-1) when differentiating DILI from 

control PHH, indicating that these 20 lipids were strongly predictive of steatotic DILI 

(Fig. 5C). The lipidomics data of PHH treated with diclofenac, ethinyl estradiol, 
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fialuridine, and FFA were then used to further test the predictive capacity of this model. 

The model was able to correctly identify FFA-treated PHH as negative for steatotic 

DILI in 100% of replicates with a mean probability of 0.9978 for the BXW donor and 

0.9995 for the XVN donor (Table 1). The diclofenac and ethinyl estradiol treatments 

were determined to be positive for inducing steatotic DILI in 75% of the BXW donor 

replicates with a mean probability of 0.7769 and 0.8696, respectively (Table 1). 

However, for the XVN donor, the model only determined diclofenac to be capable of 

inducing steatotic DILI in 50% of replicates with a mean probability of 0.5682. For the 

XVN donor, ethinyl estradiol was not determined to be steatogenic. Fialuridine was 

predicted to be negative for steatotic DILI in 100% of replicates for both donors with a 

mean probability of 0.9962 for the BXW donors and 0.8689 for the XVN donor. Using 

ROC curve analysis, the capacity for each lipid from component 1 and 2 to distinguish 

DILI from control and FFA-treatment was assessed for each drug treatment (Table 2). 

In addition, the NASH PHH lipidome also was assessed using these lipids and ROC 

curve analysis with comparisons to control PHH and IVIS PHH lipid profiles.  

  



188 

 

Figure 5: Lipidomics heatmap and multivariate analysis of drug-treated PHH. PHH were treated 

with amiodarone, diclofenac, ethinyl estradiol, FFA, fialuridine and ritonavir for a 24-hour period. Lipids 

were extracted and analysed using untargeted LC-MS lipidomics. (A) Heatmap of PHH donor BXW and 

XVN lipid profiles following drug treatment. Red, increased abundance; yellow, unchanged abundance; 

blue, decreased abundance. (B) Using combined PHH dataset (donors BXW and XVN), a sparse partial 

least squares-discriminant analysis (sPLS-DA) of lipids from control PHH (red), DILI PHH (grey) 

(amiodarone- and ritonavir-treated PHH), and FFA-treated PHH (blue). sPLS-DA components 

contained ten lipids for each component. (C) Receiver-operating characteristic (ROC) curve analysis of 

classification performance using component 1 and 2 lipids from the sPLS-DA to generate a predictive 

model, which was assessed for the ability to separate DILI PHH samples from control PHH samples. 

Lipidomics data were normalised with the mean control of the respective donor for each lipid species. 

sPLS-DA and ROC curve analysis was performed using MetaboAnalyst 5.0. 
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Table 1: ROC curve analysis predictive classification of drug-treated PHH using lipids selected 

from sPLS-DA. The sPLS-DA component 1 and 2 lipids were used to generate a predictive model for 

identifying steatotic DILI using the amiodarone- and ritonavir-treated PHH lipid profiles as a training 

data set. Diclofenac, ethinyl estradiol, and fialuridine drug treatments, with FFA as a negative control, 

were used as the test data set and classified using this model. The correct prediction is given as the 

fraction of total replicates to which the designation matches the expected classification. The mean 

probability was calculated from the individual replicates’ classification probabilities for correctly 

classified replicates. ROC curve predictive modelling was performed using MetaboAnalyst 5.0. 

 Correct 

Prediction 

Mean Probability 

Treatment 

Condition 

Expected 

classification 

BXW XVN BXW XVN 

Diclofenac DILI (Steatotic) 3/4 2/4 0.7769 0.5682 

Ethinyl Estradiol DILI (Steatotic) 3/4 0/4 0.8696 -* 

FFA Non-DILI (Steatotic) 4/4 4/4 0.9978 0.9995 

Fialuridine Non-DILI (Steatotic) 4/4 4/4 0.9962 0.8689 

* Mean probability for ethinyl estradiol treatment of XVN PHH could not be calculated as no replicates 

gave the expected classification based on lipidomics data and published literature. 

When using component 1 lipids to compare drug-treated PHH to FFA-treated 

PHH, all drug treatments, except fialuridine, were able to achieve a ROC curve AUC 

of 1.00 with the ROC curve AUC of fialuridine ranging from 0.75 to 1.00 depending on 

the lipid. The log2(fold change) of all drug treatments showed a consistent trend across 

all ten lipids. However, the lipids showed a poorer performance for NASH PHH with 

only five of the ten lipids detected and ROC curve AUC values ranging from 0.56 to 

0.95. In addition, two of the five lipids showed the opposite trend in log2(fold change) 

compared to the drug treatments. When using component 2 lipids to compare drug-
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treated PHH to healthy control PHH, the ROC curve AUC values for the lipids showed 

greater variability across all treatments with amiodarone, ritonavir, diclofenac, ethinyl 

estradiol, and fialuridine having AUCs ranging from 0.70-0.92, 0.72-1.00, 0.55-0.97, 

0.67-1.00, and 0.58-1.00, respectively. The trend in the log2(fold change) for four of 

the ten lipids was consistent across all drug treatments. For amiodarone and ritonavir, 

the positive steatotic DILI controls, nine of the ten lipids showed a consistent trend. 

LysoPG(24:0), however, showed an opposing trend in its log2(fold change) for 

amiodarone and ritonavir. LysoPG(24:0) increased for the amiodarone treatment and 

decreased for the ritonavir and other drug treatments. Diclofenac had the same trend 

in log2(fold change) as amiodarone and ritonavir for the other nine lipids. Ethinyl 

estradiol shared a trend in log2(fold change) with amiodarone and ritonavir for seven 

of the other nine lipids. Finally, fialuridine demonstrated the fewest similarities to the 

changes observed in amiodarone and ritonavir with only five of the other nine lipids 

showing consistent trends. Ethinyl estradiol and fialuridine showed a decrease in 

PG(36:1), which deviated from the increase observed for amiodarone and ritonavir. 

Additionally, PS(32:1) deviated from the changes observed with amiodarone and 

ritonavir for the ethinyl estradiol treatment and LysoPE(P-24:1), PA(P-36:5) and 

TAG(46:0) deviated for the fialuridine treatment. Component 2 demonstrated 

marginally better performance than component 1 for NASH PHH with eight of the ten 

lipids from component 2 detected in the lipidome of NASH PHH. Additionally, five of 

the eight detected lipids in the lipidome of NASH PHH demonstrated the same trends 

as those in PHH after treatment with amiodarone and ritonavir. 
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Table 2: Combined PHH (donors BXW and XVN) ROC curve AUC values and Log2(fold change) of sPLS-DA component 1 and 2 lipids for drug-treated 

PHH and combined NASH PHH. The ROC curve AUC value for the 20 lipids from the sPLS-DA component 1 and 2 are shown when comparing drug treatments 

to free fatty acids (FFA; component 1) and to control (component 2). Log2 (fold change) values show the mean change in abundance after drug treatment 

compared to FFA and control for component 1 and 2, respectively. The NASH PHH lipidome also was assessed using these lipids and ROC curve analysis 

with comparisons to control PHH and IVIS PHH lipid profiles. Positive log2 (fold change) values describe an increase in lipid abundance while negative values 

describe a decrease in lipid abundance. The lipid of components 1 and 2 were from the fatty acid, monoglyceride (MAG), triglyceride (TAG), phosphatidic acid 

(PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) lipid classes. 

Lipidomics data were normalised with the mean control of the respective donor for each lipid species, and ROC curve analysis was performed using 

MetaboAnalyst 5.0 with the steatotic DILI training data set shown in bold. N/D: not detected. 

 

ROC curve AUC Log2 (fold change) 
 

Amiodarone Ritonavir Diclofenac Ethinyl  

estradiol 

Fialuridine NASH Amiodarone Ritonavir Diclofenac Ethinyl  

estradiol 

Fialuridine NASH 

Component 1 Drug treatment vs FFA 

TAG(64:7) 1.00 1.00 1.00 1.00 0.94 N/D 3.6 4.1 3.6 3.2 2.3 N/D 

TAG(62:9) 1.00 1.00 1.00 1.00 1.00 N/D 4.1 4.1 3.9 3.9 2.7 N/D 

TAG(64:8) 1.00 1.00 1.00 1.00 0.75 N/D 3.7 4.0 3.5 3.2 1.3 N/D 

TAG(64:6) 1.00 1.00 1.00 1.00 0.94 N/D 0.9 4.0 3.8 3.5 2.5 N/D 

TAG(62:11) 1.00 1.00 1.00 1.00 0.81 N/D 3.6 3.3 3.6 3.7 1.7 N/D 

MAG(16:1) 1.00 1.00 1.00 1.00 1.00 0.78 -1.7 -2.5 -2.0 -2.2 -2.1 -0.7 

Oleic acid 1.00 1.00 1.00 1.00 1.00 0.74 -1.9 -2.7 -2.2 -2.4 -2.3 -0.7 

TAG(62:10) 1.00 1.00 1.00 1.00 0.88 0.58 3.6 3.5 3.7 3.6 2.0 -0.4 

TAG(54:3) 1.00 1.00 1.00 1.00 1.00 0.56 -1.5 -1.7 -1.5 -1.5 -1.8 -0.2 

TAG(62:8) 1.00 1.00 1.00 1.00 0.95 0.95 4.0 4.2 4.0 3.9 2.7 -2.6 
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Component 2 Drug treatment vs Control 

LysoPG(24:0) 0.84 1.00 0.94 0.95 0.91 N/D 0.3 -1.1 -0.5 -0.7 -0.5 N/D 

LysoPI(P-20:0) 0.81 1.00 0.97 1.00 0.92 0.64 -0.4 -0.9 -0.5 -0.6 -0.4 -0.7 

PS(32:1) 0.92 1.00 0.70 0.83 1.00 1.00 0.3 0.9 0.1 -0.5 0.7 3.2 

LysoPI(P-20:1) 0.73 1.00 0.94 0.98 0.94 N/D -0.4 -1.0 -0.5 -0.7 -0.5 N/D 

Linoleic acid 0.78 0.94 0.83 0.89 0.84 0.62 -0.4 -0.9 -0.4 -0.6 -0.5 -0.6 

LysoPE(P-24:1) 0.91 0.91 0.58 0.67 0.80 0.77 0.3 0.3 0.1 0.2 -0.2 0.9 

PG(36:1) 0.84 0.80 0.55 0.73 0.58 0.56 0.6 0.4 0.1 -0.2 -0.1 -1.1 

PA(P-36:5) 0.78 0.94 0.77 0.83 0.95 0.92 -0.1 -0.3 -0.1 -0.2 0.3 0.5 

TAG(46:0) 0.81 0.72 0.61 0.75 0.59 0.90 -0.2 -0.1 -0.1 -0.2 0.0 2.7 

PC(P-38:6) 0.70 0.95 0.67 0.88 0.80 0.88 -0.2 -0.4 -0.1 -0.4 -0.3 -0.8 
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Discussion 

This study demonstrated that there are significant changes in the lipidome of PHH 

that occur in patients with NASH compared to healthy controls, and that these changes 

cannot be replicated by exposure to culture conditions that simulate a high-fat 

environment, as with IVIS PHH. Furthermore, changes in the hepatocellular lipidome in 

PHH from patients with NASH demonstrate some similarity to changes in PHH in 

response to treatment with several of the steatogenic drugs tested in this study. However, 

the significance of such similarities is unclear as the in vivo NASH PHH were obtained 

without a known causative factor. For both conditions, while the abundance and 

distribution of neutral lipids was impacted, lipidomics and multivariate analysis identified 

that the most specific and significant lipid changes involved phospholipids. 

PHH from patients with NASH have a significantly increased abundance of total 

PA, PC, PE, PG, PI, and PS compared to IVIS and healthy control PHH, showing up to a 

5.9-fold increase compared to healthy control PHH. Additionally, unlike neutral lipids such 

as DAG and TAG, where a significant increase was observed for the NASH and IVIS 

PHH, the changes in the abundance of these phospholipid classes were not replicated in 

the IVIS PHH. These unique, NASH-associated alterations in phospholipids indicate that 

they may be useful biomarkers for NASH. The impact to the phospholipidome has been 

reported previously with increased levels of phospholipids occurring in patients with 

NAFLD and NASH compared to healthy patients (42-44). The total abundance (TIC) of 

PE and PS increased by up to 2.5- and 2-fold, respectively, compared to control, showing 

the greatest increase of all the phospholipid classes. A comparable change was detected 

in the plasma lipidome of NAFLD and NASH patients (42). Healthy subjects had a mean 
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PE plasma concentration of 170 µg/ml while patients with NAFLD or NASH had mean 

plasma concentrations of 210 and 250 µg/ml, respectively. For PS, a similar increase was 

observed with healthy subjects having a mean PS plasma concentration of 95 µg/ml, and 

NAFLD or NASH patients had a mean plasma concentration of 170 µg/ml (42). These 

data suggest that the intracellular changes in the lipidome that were observed in patients 

with NASH may also affect the abundance of plasma phospholipids. These phospholipids 

may be useful as serum biomarkers for NASH because they are related to intracellular 

perturbations of the hepatocellular lipidome. However, a limitation of this data is that it 

does not offer insight into the causative factors of NASH. The NASH samples were 

supplied with a NASH score and patient characteristics. While this information is valuable, 

a suspected cause of NASH was not supplied, only that it was not alcohol related. 

Therefore, there is no known association between the observed NASH and a drug, or any 

other factor that might be the causative stimuli. Thus, while the increase in phospholipids 

could be diagnostic of NASH (Fig. 3C), this increase may only represent a general NASH 

diagnosis and may not be predictive of a specific causative factor. 

Untargeted lipidomics and multivariate analysis of in vitro lipidomes were used to 

identify lipids that may be predictive of steatotic DILI. As with the NASH PHH, 

phospholipids showed a significant capacity to discriminate between healthy PHH and 

PHH with injury-induced steatosis. Of the lipids identified as discriminatory based on 

sPLS-DA, eight of the ten lipids identified were phospholipids or lysophopholipids. There 

was a significant similarity in the changes to the abundance of these phospholipids for 

amiodarone, ritonavir, diclofenac, and ethinyl estradiol. Most notable based on Fig. 5A 

was the decrease in abundance of a number of PC and PE phospholipids for PHH donor 
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BXW. A similar change in plasma PC and PE has been observed after treatment with 

valproate, a drug reported to induce steatosis in rats and epileptic children (45, 46). 

Multivariate analysis of the lipidome of rat plasma identified a decrease in certain PC 

phospholipids that may act as a predictive biomarker for valproate-induced steatotic liver 

injury (45). Furthermore, linoleic acid, which was identified by the sPLS-DA study to be a 

potentially discriminatory biomarker for steatotic DILI, was decreased by 24-47% across 

all drug treatments with a 35% decrease in NASH PHH (Table 2). Linoleic acid has been 

shown previously to decrease in abundance in liver tissue from NASH patients due to 

oxidation (47). While linoleic acid may not be solely predictive of steatotic DILI, it may still 

offer a biomarker for steatosis or NASH induced by increased oxidative stress. However, 

the other lipids from component 2 showed a poorer performance for NASH PHH with only 

eight of the ten lipids detected, and five of the eight lipids showed consistent trends in 

their abundance compared to the drug treatments. This indicates that these ten lipids are 

unlikely to show the same capacity to identify hepatocytes with NASH. 

The sPLS-DA and ROC curve analysis showed that there is a strong potential for 

lipidomics to identify lipids which are characteristic of steatotic DILI. However, this current 

study is limited by the small number of PHH donors and drugs determined to be 

steatogenic. This limits the robustness and confidence in the predictive capacity of the 20 

selected lipids. The use of BODIPY to determine a drug’s steatogenic capacity was likely 

a factor that reduced the number of drugs deemed to be steatogenic. From the BODIPY 

study, only amiodarone and ritonavir appeared to be steatogenic at the selected 

concentrations over a 24-hour drug treatment. Therefore, only these two drugs were used 

as positive treatments for steatotic DILI. Yet, upon lipidomics analysis of several drug 
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treatments, it appeared that diclofenac and ethinyl estradiol also had steatogenic 

properties (Fig. 5A). This is consistent with observations from animal studies in rats and 

canines (48-50). Furthermore, for at least the BXW donor, three out of the four diclofenac 

and ethinyl estradiol replicates were considered positive for steatotic DILI. BODIPY only 

stains neutral lipids that have accumulated into vesicles. Therefore, it has a limited 

capacity to characterise more complex forms of altered lipid metabolism, especially 

regarding phospholipid metabolism. It is likely that the use of BODIPY to screen for 

steatogenic drugs lacked sensitivity and may have led to false negatives. Additionally, 

interdonor variability also needs to be addressed. There was notable variation in lipid 

profiles between donors for both the NASH and the steatotic DILI studies. The fatty acids 

and glycerolipids PCA plot (Fig. 3A) showed distinct separation of PHH donors YNM and 

IWM from the GWD and BXW donors. With NASH scores and genders varying in a similar 

manner between each pairing, the only identified common factor was age. The YNM and 

IWM donors were in their 40s, while the GWD and BXW donors were in their 70s 

(Appendix 2). Differences also were seen in the lipidomics heatmaps for the steatotic DILI 

study (Fig 5A) and the ROC curve analysis predictions (Table 1). This variance is likely 

due to the well-known phenotypic variations that occur between the proteomes of donors 

and impacts the metabolic behaviour of hepatocytes (51, 52). While the sPLS-DA study 

did identify a number of potentially characteristic lipids, a larger number of donors will be 

required for future studies to overcome the impact of interdonor variability and identify 

robust and specific lipids that are characteristic of steatotic liver injury. 

This study, using untargeted lipidomics, reinforced that phospholipids are 

characteristically increased in NASH patients and are also increased in in vitro PHH after 
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treatment with steatogenic drugs. All phospholipid classes showed an increased total 

abundance (TIC) in PHH from NASH patients. This characteristic increase could not be 

replicated by culturing PHH in vitro in a high-fat environment (IVIS PHH). This prominent 

change to the intracellular phospholipidome of NASH PHH is similar to changes 

previously seen in the plasma lipidome of NAFLD and NASH patients (42). Furthermore, 

phospholipids demonstrated the potential to discriminate between steatotic DILI and 

healthy control PHH. In addition, phospholipids also had some capacity to distinguish 

steatotic DILI from steatosis induced by exposure to a high-fat environment. Amiodarone 

and ritonavir were used to identify ten lipids that had some capacity to distinguish healthy 

control PHH from PHH treated with steatogenic drugs. Of these ten lipids, eight were 

phospholipids or lysophospholipids. While this study has shown that the increase in 

cellular phospholipids observed in NASH patients and in vitro PHH culutures treated with 

steatogenic drugs, further investigation is needed. In order to determine if these lipids 

may offer any predictive capacity for a drugs steatotic nature during drug development, a 

much larger sample size of steatogenic drugs and PHH donors is required. Identifying 

lipids with this predictive capacity would be invaluable because it may offer more 

comprehensive options for toxicological screening during drug development. 

Furthermore, as there appears to be an intrinsic link between the lipid profiles of serum 

and hepatocytes, the perturbations to the lipid profiles observed in this study could be 

used to diagnosis NAFLD/NASH, and to determine whether a drug was a causative factor 

for inducing steatotic liver injury.  
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Research Summary 

Drug-induced liver injury (DILI) is a constant challenge during drug development 

and when using medicines for the clinical treatment of patients. DILI has been observed 

to affect anywhere from 200,000 to 1.8 million individuals annually, however, it is difficult 

to identify the true prevalence of DILI with up to 94% of adverse drug reactions going 

unreported (1-6). The avenue with the greatest potential to reduce the development of 

future drugs that induce DILI, and offer early detection of DILI in patients, is to develop a 

comprehensive understanding of the mechanism(s) of injury of current DILI-associated 

drugs. DILI-associated drugs commonly have complicated and multi-faceted 

mechanism(s) of hepatotoxicity, and a holistic approach that assesses functional changes 

as well as changes in the abundance of metabolites and proteins is necessary. Multi-omic 

approaches, especially when using metabolomics, lipidomics, and proteomics, can 

provide multi-faceted, quantitative, and descriptive analysis of toxicological effects and 

already has shown significant potential in elucidating the pathways by which drugs cause 

liver injury (7-11). This thesis has further demonstrated this potential by revealing the 

impact that DILI-associated drugs can have on the proteome and metabolome of major 

liver metabolic pathways induced by DILI-associated drugs, characterising the impact of 

these drugs on bile acid homeostasis, and revealing the perturbations such drugs can 

induce on the lipidome of PHH. 

Characterisation and application of alternative in vitro liver models 

The choice of analytical technique is vital to obtaining the greatest amount of 

information possible, however, the biological model utilised is just as important. In vitro 

models are the most practical, accessible, and ethical platform for performing 
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toxicological studies, however, not all models are equal. While animal primary 

hepatocytes may offer a cost-efficient and accessible option, there are a number of 

limitations that may reduce the translational capacity to in vivo human conditions. These 

limitations can result from variations in metabolic behaviour, bile acid composition, and 

transporter expression (12-15). The in vitro cell type that offers the greatest similarity to 

human liver tissue is primary human hepatocytes (PHH) (16), although PHH suffer from 

some limitations including interdonor variability and high costs (17). Therefore, 

alternatives such as HepaRG™, HuH-7, and HepG2 cells are often used due to the lower 

cost and accessibility. This thesis characterised the similarities in the proteomes of PHH 

and HepaRG™ cells, as well as the similarities between PHH from two different donors. 

While the proteome of HepaRG™ cells did possess similarities to the proteome of PHH, 

the variations between proteomes indicated that HepaRG™ cells may not be suitable as 

a ubiquitous surrogate for PHH. However, in Chapter 3 it was demonstrated that for 

specific studies, alternative cell lines such as HepaRG™ or HuH-7 cells can be 

successfully used as surrogates for PHH in certain assays such as the C-DILI™ and B-

CLEAR® assays. Studies using in vitro liver model alternatives provide qualitative 

information, but precise concentration-response characteristics may vary, as was 

observed when HepaRG™ cells were used in place of PHH for the C-DILI™ and BODIPY-

staining assays. The results of these studies revealed that four drugs demonstrated 

steatogenic potential for HepaRG™ cells but only two drugs appeared to be steatogenic 

for PHH. With a plethora of in vitro liver models available, including organ-on-a-chip, 

organoids, HuH-7, HepaRG™, and pluripotent stem cell-derived hepatocyte-like cells, it 

would be invaluable to compare the proteomes of these models to PHH, and even to liver 
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tissue itself, to determine which would be most suitable as a surrogate for PHH as an 

alternative in vitro liver model for a given metabolism- or transport-based study. A model 

system such as 3D PHH spheroid cultures may offer a better in vivo-like metabolic 

phenotype and improved longevity over 2D sandwich-cultured human hepatocytes, which 

were used as the primary in vitro liver cell model in this thesis (18). However, transporter 

expression, localization and function has not been thoroughly examined in 3D PHH 

spheroid cultures. Furthermore, a significant limitation of 3D PHH spheroid cultures is the 

cell yield. Where a single well of a 2D culture may yield anywhere from 4x104 to 1x106 

cells, a single PHH spheroid may consist of only 1.5x103 cells (19). Performing 

metabolomics with 3D PHH spheroid cultures would require pooling several wells, as 

such analytical techniques usually require upwards of 1x104 cells for analysis (20). Due 

to this requirement, some previous studies have pooled PHH spheroids from over 600 

wells to achieve sufficient cell numbers for metabolomics analysis (21). However, with 

recent advances in single spheroid metabolomics technologies, 3D PHH spheroid 

cultures may soon become a more practical and viable in vitro model for metabolomics-

based studies (22). 

 

Furthermore, while proteomics offers significant insight into the abundance of 

proteins within a proteome, due to biochemical variations that can affect the functional 

behaviour of a protein, the proteomic profile may not be completely representative of the 

functionality of an in vitro liver model. Therefore, it would be ideal to perform functional 

assays for HepaRG™ cells as well as other alternative in vitro liver models to gain holistic 

insight into the metabolic functionality of these alternative models compared to PHH and 
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liver tissue. While PHH serve as an invaluable in vitro model for liver tissue, there are 

more accessible alternatives that, when used appropriately, can act as surrogates for 

PHH in toxicological studies allowing for valuable insights at a lower cost. However, in 

order to make the determination about whether a model is suitable for a given study, it is 

vital that it is well characterised, especially with regard to the metabolic competency of 

the proteome. 

Multi-omics analysis of metabolic perturbations induced by DILI 

The power of multi-omics was demonstrated by its capacity to characterise the biological 

perturbations to the abundance of metabolites and proteins in response to treatment with 

drugs associated with DILI. Perturbations to the abundance of metabolites and proteins 

associated with major metabolic pathways and bile acid metabolism were characterised, 

which offered insight into the potential mechanisms and progression of various DILI 

phenotypes including cholestatic DILI. Through multi-omics analysis, perturbations to 

glucose metabolism, the TCA cycle, and nicotinamide metabolism were identified and 

associated with the known effects of pioglitazone, troglitazone, and ritonavir on impaired 

mitochondrial respiration and induction of significant oxidative stress. By combining both 

metabolomics and proteomics, a greater depth of information was obtained compared to 

more focused approaches, as the entire metabolic mechanism, including reactive 

metabolites, catalytic enzymes, and nutrient transporters, were analysed. These omics 

studies identified perturbations to metabolites such as ADP, malate, and succinate that 

may be a result of inhibition or suppression of state 3 respiration, which relies on complex 

I (23). The thiazolidinedione drug class, which includes pioglitazone and troglitazone, is 

known to inhibit state 3 respiration by disassembly of complex I (24, 25). Whereas 
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previous studies identified the impact of thiazolidinediones on complex I using activity 

assays and western blots, the work in this thesis demonstrated that metabolomics had 

the capacity to identify perturbations in the abundance of metabolites that is consistent 

with inhibition of complex I and state 3 respiration. 

Metabolomics studies demonstrated that diclofenac, ethinyl estradiol, pioglitazone, 

ritonavir, and troglitazone induced a decreased cellular abundance of several bile acids 

in both PHH and HepaRG™ cells after a 24-h exposure. Based on the proteomics 

analysis, this depletion may have been due to increased phase I metabolism of bile acids, 

which is a known protective pathway against cholestasis (26). However, a primary 

limitation of the whole cell proteomics and metabolomics methodologies was that it 

quantifies only the sum change in the abundance of metabolites and proteins. Cellular 

metabolism can be inhibited without alterations in the abundance of proteins or metabolic 

intermediates and, therefore, further studies are needed to assess the functional state of 

hepatocytes after drug treatment. Functional assays such as the B-CLEAR® assay 

provide specific insight into functional changes to the cell, such as altered biliary transport. 

Furthermore, it would be beneficial to expand the number and types of functional assays 

to determine the impact that DILI-associated drugs may have on protein localisation or 

direct inhibition of enzyme or transporter activity. Interestingly, ritonavir, which appeared 

to induce a depletion of cellular bile acids via increased CYP3A4 and CYP3A5 

metabolism, is a known CYP3A4 and CYP3A5 inhibitor and inducer (27, 28). The 

interplay of these properties of ritonavir would be important to characterise to holistically 

understand the impact on bile acid homeostasis. Furthermore, the phosphorylation of the 

proteins could not be determined by the applied methods. Post-translational 
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modifications, such as phosphorylation, is a vital determinant of the functionality of many 

proteins and is known to be affected by some of the drug treatments (29). It would also 

be highly valuable to perform future studies over a variety of time-points because the 

impact of DILI-associated drugs may be time-dependent, as demonstrated for bile acids 

in the HepaRG™ cell time-course study. Finally, the addition of transcriptomics to the 

multi-omics approach would be invaluable as it would allow for a complete and holistic 

characterisation of the impact of DILI-associated drugs from transcription to metabolism. 

Previous work already has described drug-induced changes to gene expression, which 

may result in mitochondrial dysfunction, cholestasis, or steatosis (30, 31). Linking 

changes in gene expression directly to protein and metabolite abundance will offer a 

comprehensive insight into the perturbations to the functional state of hepatocytes when 

exposed to DILI-associated drugs. 

Identification of liver injury-associated lipids 

The changes observed in the proteins and metabolites of pathways associated 

with energy or bile acid metabolism, or changes to the hepatocellular lipidome, may not 

only offer mechanistic insight but potential clinical biomarkers for diagnosis of liver injury, 

including DILI. The potential for this was best demonstrated in Chapter 4, as non-alcoholic 

steatohepatitis (NASH) is a significant clinical issue that is caused by numerous factors 

including DILI-associated drugs and has a significant mortality rate (32-37). Lipidomics 

profiling and multivariate analysis of hepatocytes from NASH patients, and PHH treated 

with steatotic DILI-associated drugs, allowed for the characterisation of changes to 

specific lipid classes that are representative of steatotic liver injury, and determination 

lipid signatures associated with steatotic liver injury. The increase in the abundance of 
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hepatocellular phospholipids in NASH PHH mirrors the previously observed increases in 

serum phosphatidylserine and phosphatidylethanolamine in patients suffering from NASH 

(38). From this, it could be inferred that the change to the lipid profile of serum is 

intrinsically linked to changes in the cellular lipidome of hepatocytes in patients with 

NASH. However, the NASH PHH that were analysed in this thesis had no clear indication 

of a causative agent and so it is unclear whether DILI might have been a factor. Expanding 

upon the concept that changes to hepatocellular metabolites can result in changes to the 

serum metabolome and proteome, there is a significant potential to identify translational 

diagnostic biomarkers for steatogenic DILI. Previous work has shown that metabolites 

such as malate, which was shown to increase in abundance after drug treatment in 

Chapter 2, has the potential to act as a translational markers for liver failure and could be 

predictive of the risk of mortality (39). A limitation towards identifying robust and specific 

metabolites that are indicative of DILI from the research presented in this thesis is the 

limited number of donors and drugs used. To robust and specific metabolites which can 

be associated with DILI, it is imperative that they are validated with a much larger sample 

size including a wide variety of demographics to ensure that such metabolites are 

predictive for the general population. Finally, analysis of hepatocytes or serum obtained 

from patients suffering from clearly documented DILI would be invaluable in ascertaining 

the translational potential of these metabolites and whether they are predictive in serum. 

Concluding Remarks 

 This thesis has offered new insights into the behaviour of DILI-associated drugs 

by utilising multi-omics techniques and multivariate analysis. The research encompassed 

the characterisation of the proteomes of in vitro liver models, determination of 
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perturbations in the metabolites and proteins associated with energy metabolism, 

detoxification, and bile acid homeostasis, and the identification of metabolites with 

predictive potential for drugs that cause steatotic liver injury. It was shown, under in vitro 

conditions, that the DILI-associated drugs pioglitazone, troglitazone, and ritonavir 

impaired mitochondrial respiration and increased the abundance of proteins associated 

with protection against oxidative stress. Furthermore, the research presented also 

investigated the specific liver injury phenotypes of cholestasis and steatosis using omics 

techniques and multivariate analysis. Diclofenac, ethinyl estradiol, pioglitazone, ritonavir, 

and troglitazone were shown to possess cholestatic properties and significantly impacted 

bile acid homeostasis, reducing the abundance of cellular bile acids over a 24-h drug 

treatment. The decrease in the abundance of bile acids was likely due, in part, to 

increased metabolism of cellular bile acids by CYP3A4 and CYP3A5. Finally, lipidomics 

identified hepatocellular increases in phospholipids and, in combination with multivariate 

analysis, identified and evaluated lipid signatures that are associated with drug-induced 

steatotic liver injury. While the robustness of the lipid signatures requires further 

validation, it did demonstrate that there is significant future potential to utilise a lipidomics 

and multivariate-based approach to identify lipid profiles that are indicative of steatotic 

DILI. 

 In the context of understanding DILI, in vitro models, and metabolic perturbations, 

it is evident that a multi-faceted approach is highly beneficial. While technologies such as 

transcriptomics, proteomics, metabolomics, plate-based assays, and various imaging 

techniques are invaluable techniques, alone they offer incomplete insights. 

Transcriptomics can allow for a better understanding of signalling pathways and how cells 
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respond to stimuli through gene expression, however, it is not a reliable indicator of 

protein abundance or activity because degradation and inhibition of proteins, for example, 

also affect protein abundance and activity. Similarly, proteomics, while offering a measure 

of protein abundance, does not account for changes in activity due to inhibition or direct 

interactions between xenobiotics and metabolites. Therefore, it is vital to investigate DILI, 

and any other metabolic system, using the most holistic approach possible to accurately 

characterise actual metabolic function and alterations in the abundance of biomolecules. 

A multifaceted approach that included the analysis of proteins, metabolites, and functional 

assays was utilized in Chapter 3 to demonstrate the value and necessity of such an 

approach. In Chapter 3, proteomics identified an increase in phase I metabolism enzymes 

but, due to their promiscuous nature, metabolomics analysis was necessary to identify 

the impact on the abundance of cellular bile acids. In addition, proteomics analysis did 

not identify any changes in the abundance of transporter proteins, however, the B-

CLEAR® assay demonstrated that hepatocellular transport was severely affected. 

Furthermore, any model utilised must be determined to be fit for purpose. A common in 

vitro technique for simulating steatotic liver injury involves culturing PHH in a high-fat 

environment, however, this has been demonstrated to only reproduce the histological 

features of steatosis and increases in neutral lipids (21). The analysis of the lipidome of 

NASH PHH in Chapter 4, as well as previous clinical data, demonstrated that such an 

approach does not reproduce the significant increases observed in the phospholipidome 

of hepatocytes and serum of patients with NASH (38, 40, 41). As demonstrated through 

the utilisation of HuH-7 cells for the B-CLEAR® assay, the most sophisticated models are 

not always necessary but, whichever in vitro model is used must be metabolically 
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competent for the given purpose. As demonstrated in this dissertation, the application of 

multi-omics, functional assays, and multi-variate analysis has an immense capacity to 

allow researchers to develop a holistic insight into the mechanisms of DILI and the effects 

of DILI on the metabolome, lipidome, and proteome of hepatocytes. Applications of this 

novel work will aid in improving the diagnosis and management of clinical DILI, and the 

development of new drugs with limited DILI liability. 

  



213 

 

References 

1. Bjornsson ES, Bergmann OM, Bjornsson HK, Kvaran RB, Olafsson S. Incidence, 
presentation, and outcomes in patients with drug-induced liver injury in the general 
population of Iceland. Gastroenterology. 2013;144(7):1419-25. 

2. Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, et al. Incidence of 
drug-induced hepatic injuries: a French population-based study. Hepatology. 
2002;36(2):451-55. 

3. Suk KT, Kim DJ, Kim CH, Park SH, Yoon JH, Kim YS, et al. A prospective 
nationwide study of drug-induced liver injury in Korea. Am J Gastroenterol. 
2012;107(9):1380-7. 

4. Shen T, Liu Y, Shang J, Xie Q, Li J, Yan M, et al. Incidence and etiology of drug-
induced liver injury in mainland China. Gastroenterology. 2019;156(8):2230-
41.e11. 

5. Goldberg DS, Forde KA, Carbonari DM, Lewis JD, Leidl KBF, Reddy KR, et al. 
Population-representative incidence of drug-induced acute liver failure based on 
an analysis of an integrated health care system. Gastroenterology. 
2015;148(7):1353-61.e3. 

6. Torello Iserte J, Castillo Ferrando JR, Lainez MM, Garcia Morillas M, Arias 
Gonzalez A. Adverse reactions to drugs reported by the primary care physicians 
of Andalusia. Analysis of underreporting. Aten Primaria. 1994;13(6):307-11. 

7. Xie Z, Chen E, Ouyang X, Xu X, Ma S, Ji F, et al. Metabolomics and cytokine 
analysis for identification of severe drug-induced liver injury. J Proteome Res. 
2019;18(6):2514-24. 

8. Cuykx M, Beirnaert C, Rodrigues RM, Laukens K, Vanhaecke T, Covaci A. 
Untargeted liquid chromatography-mass spectrometry metabolomics to assess 
drug-induced cholestatic features in HepaRG® cells. Toxicol Appl Pharmacol. 
2019;379:114666. 

9. Cuykx M, Claes L, Rodrigues RM, Vanhaecke T, Covaci A. Metabolomics profiling 
of steatosis progression in HepaRG® cells using sodium valproate. Toxicol Lett. 
2018;286:22-30. 

10. Rodrigues RM, Laxmikanth K, Chaudhari U, Sachinidis A, Zahedi RP, Sickmann 
A, et al. Omics-based responses induced by bosentan in human hepatoma 
HepaRG cell cultures. Arch Toxicol. 2018;92(6):1939-52. 

11. García- Cañaveras JC, Castell JV, Donato MT, Lahoz A. A metabolomics cell-
based approach for anticipating and investigating drug-induced liver injury. Sci 
Rep. 2016;6(1):27239. 

12. Vilei MT, Granato A, Ferraresso C, Neri D, Carraro P, Gerunda G, et al. 
Comparison of pig, human and rat hepatocytes as a source of liver specific 
metabolic functions in culture systems--implications for use in bioartificial liver 
devices. Int J Artif Organs. 2001;24(6):392-6. 



214 

 

13. Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences 
in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol. 
2018;38(10):1323-35. 

14. Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CECA, et al. Interspecies 
variability in expression of hepatobiliary transporters across human, dog, monkey, 
and rat as determined by quantitative proteomics. Drug Metab Dispos. 
2015;43(3):367-74. 

15. Li N, Bi YA, Duignan DB, Lai Y. Quantitative expression profile of hepatobiliary 
transporters in sandwich cultured rat and human hepatocytes. Mol Pharm. 
2009;6(4):1180-89. 

16. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. 
Recent advances in 2D and 3D in vitro systems using primary hepatocytes, 
alternative hepatocyte sources and non-parenchymal liver cells and their use in 
investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch 
Toxicol. 2013;87(8):1315-530. 

17. Khatri R, Fallon JK, Rementer RJB, Kulick NT, Lee CR, Smith PC. Targeted 
quantitative proteomic analysis of drug metabolizing enzymes and transporters by 
nano LC-MS/MS in the sandwich cultured human hepatocyte model. J Pharmacol 
Toxicol Methods. 2019;98:106590. 

18. Cox CR, Lynch S, Goldring C, Sharma P. Current Perspective: 3D Spheroid 
Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent 
Drug-Induced Liver Injury. Front Med. 2020;2(14). 

19. Bell CC, Hendriks DFG, Moro SML, Ellis E, Walsh J, Renblom A, et al. 
Characterization of primary human hepatocyte spheroids as a model system for 
drug-induced liver injury, liver function and disease. Sci Rep. 2016;6(1):25187. 

20. Smith L, Villaret-Cazadamont J, Claus SP, Canlet C, Guillou H, Cabaton NJ, et al. 
Important Considerations for Sample Collection in Metabolomics Studies with a 
Special Focus on Applications to Liver Functions. Metabolites. 2020;10(3):104. 

21. Kozyra M, Johansson I, Nordling Å, Ullah S, Lauschke VM, Ingelman-Sundberg 
M. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. 
Sci Rep. 2018;8(1):14297. 

22. Rusz M, Rampler E, Keppler BK, Jakupec MA, Koellensperger G. Single Spheroid 
Metabolomics: Optimizing Sample Preparation of Three-Dimensional Multicellular 
Tumor Spheroids. Metabolites. 2019;9(12):304. 

23. Korzeniewski B. 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in 
skeletal muscle. PLoS One. 2015;10(2):e0117145-e45. 

24. García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Muñoz-Yagüe T, Solís-
Herruzo JA. Pioglitazone leads to an inactivation and disassembly of complex I of 
the mitochondrial respiratory chain. BMC Biol. 2013;11(1):88. 

25. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, et al. 
Thiazolidinediones, like metformin, inhibit respiratory complex I: a common 



215 

 

mechanism contributing to their antidiabetic actions? Diabetes. 2004;53(4):1052-
9. 

26. Chen J, Zhao KN, Chen C. The role of CYP3A4 in the biotransformation of bile 
acids and therapeutic implication for cholestasis. Ann Transl Med. 2014;2(1):7-7. 

27. Luo G, Cunningham M, Kim S, Burn T, Lin J, Sinz M, et al. CYP3A4 induction by 
drugs: correlation between a pregnane X receptor reporter gene assay and 
CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002;30(7):795-
804. 

28. Rock BM, Hengel SM, Rock DA, Wienkers LC, Kunze KL. Characterization of 
ritonavir-mediated inactivation of cytochrome P450 3A4. Mol Pharmacol. 
2014;86(6):665-74. 

29. Sanz MN, Sánchez-Martín C, Detaille D, Vial G, Rigoulet M, El-Mir MY, et al. Acute 
mitochondrial actions of glitazones on the liver: a crucial parameter for their 
antidiabetic properties. Cell Physiol Biochem. 2011;28(5):899-910. 

30. Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H. The role of bile salt 
export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab 
Dispos. 2014;42(3):318-22. 

31. Wolters JEJ, van Breda SGJ, Grossmann J, Fortes C, Caiment F, Kleinjans JCS. 
Integrated ‘omics analysis reveals new drug-induced mitochondrial perturbations 
in human hepatocytes. Toxicol Lett. 2018;289:1-13. 

32. Anthérieu S, Rogue A, Fromenty B, Guillouzo A, Robin MA. Induction of vesicular 
steatosis by amiodarone and tetracycline is associated with up-regulation of 
lipogenic genes in heparg cells. Hepatology. 2011;53(6):1895-905. 

33. Vitins AP, Kienhuis AS, Speksnijder EN, Roodbergen M, Luijten M, van der Ven 
LT. Mechanisms of amiodarone and valproic acid induced liver steatosis in mouse 
in vivo act as a template for other hepatotoxicity models. Arch Toxicol. 
2014;88(8):1573-88. 

34. Ito M, Suzuki J, Sasaki M, Watanabe K, Tsujioka S, Takahashi Y, et al. 
Development of nonalcoholic steatohepatitis model through combination of high-
fat diet and tetracycline with morbid obesity in mice. Hepatol Res. 2006;34(2):92-
8. 

35. Langman G, Hall PM, Todd G. Role of non-alcoholic steatohepatitis in 
methotrexate-induced liver injury. J Gastroenterol Hepatol. 2001;16(12):1395-401. 

36. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global 
epidemiology of nonalcoholic fatty liver disease—meta‐analytic assessment of 
prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. 

37. Rafiq N, Bai C, Fang Y, Srishord M, McCullough A, Gramlich T, et al. Long-term 
follow-up of patients with nonalcoholic fatty liver. Clin Gastroenterol Hepatol. 
2009;7(2):234-38. 

38. Ma DWL, Arendt BM, Hillyer LM, Fung SK, McGilvray I, Guindi M, et al. Plasma 
phospholipids and fatty acid composition differ between liver biopsy-proven 



216 

 

nonalcoholic fatty liver disease and healthy subjects. Nutr Diabetes. 
2016;6(7):e220-e20. 

39. Yoon KC, Kwon HD, Jo H-S, Choi YY, Seok JI, Kang Y, et al. Explorative study of 
serum biomarkers of liver failure after liver resection. Sci Rep. 2020;10(1):9960. 

40. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. A comprehensive 
untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC 
chromatography coupled to mass spectrometry reveals important metabolic 
alterations. J Proteome Res. 2011;10(10):4825-34. 

41. Gorden DL, Myers DS, Ivanova PT, Fahy E, Maurya MR, Gupta S, et al. 
Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid 
Res. 2015;56(3):722-36. 

 



217 

 

 
 
 
 
 
 
 

Appendix 

  



218 

 

Appendix 1 

Accepted Manuscript: Analytical and Omics-based Advances in the Study of Drug-
Induced Liver Injury. DOI: https://doi.org/10.1093/toxsci/kfab069 (Accessed: 14 July 2021 
– Preprint version) 
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Appendix 2 

Primary human hepatocyte (PHH) donor information used in all studies. 

Lot Name Age Gender Product type 

BXW Female 73 Transporter certified 

GWD Male 74 Cryoplateable 

IWM Male 46 Transporter certified 

JHY Male 51 Cryoplateable 

JPR Female 76 Cryoplateable 

OSI Female 48 Cryoplateable 

WID Male 71 Transporter certified 

WWQ Male 22 Transporter certified 

YNM Female 48 Cryoplateable 

XVN Male 57 Transporter certified 
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Appendix 3 

Cell viability of drug-treated primary human hepatocytes (PHH) and HepaRG™ cells 

from the C-DILI™ hepatotoxicity assay for ten drug-induced liver injury (DILI) 

associated drugs over a range of concentrations. Cell viability of drug-treated PHH 

(donors WID, WWQ, BXW, and XVN) and HepaRG™ cells after treatment with DILI-

associated drugs at five different concentrations. (A) Cell viability determined by cellular 

ATP abundance using the CellTiter-Glo® luminescent cell viability assay. (B) Cell viability 

determined by extracellular lactate dehydrogenase (LDH) abundance using the CytoTox-

ONE™ homogeneous membrane integrity assay. Data (mean ± SD in triplicate for PHH 

and quadruplicate for HepaRG™ cells) are expressed as (%)of control.  
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Appendix 4 

Pathway histogram and protein association chart for comparison of primary human hepatocyte (PHH) and HepaRG 

cells for the whole cell and major metabolic pathways proteome. (A) Pathway histogram and protein association chart 

for the top 100 proteins from the whole cell proteome, which differed most between PHH and HepaRG cells. (B) Pathway 

histogram and protein association chart for the top 50 proteins from the major metabolic proteome, which differed most 

between PHH and HepaRG cells. The histogram shows the -log10(p-value) for each pathway that shows different abundance 

of proteins between PHH and HepaRG cells. A black box denotes that the protein is present in the proteome of the 

respective pathway. 
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Appendix 5 

List of 80 proteins related to transport, phase I and II metabolism, and bile acid 
metabolism analysed using data-independent acquisition (DIA) proteomics after 
treatment with cholestatic drugs. Proteins shown in bold were those detected by DIA 
proteomics.  

Transporters 
Phase I CYP 
Enzymes 

Glucuronidation 
Enzymes 

Miscellaneous 
Proteins 

Bile Acid Metabolism 
Enzymes 

BCRP CYP1A2 UGT1A1 AO BAAT 

BSEP CYP2A6 UGT1A3 CES1 SLC27A5 

CNT1 CYP2B6 UGT1A4 CES2 CYP7A1 

CNT3 CYP2C8 UGT1A5 FMO3 CYP7B1 

ENT1 CYP2C9 UGT1A6 FMO5 CYP8B1 

ENT2 CYP2C19 UGT1A7 gamma GTP CYP27A1 

ENT4 CYP2D6 UGT1A8 ATP1A1-α  

MATE1 CYP2E1 UGT1A10 ATP1A1-β  

MRP1 CYP2J2 UGT2A3 ATP1A3-β  

MRP2 CYP3A4 UGT2B10 POR  

MRP3 CYP3A5 UGT2B15 SULT1A1  

MRP4 CYP3A7 UGT2B17 SULT1A3  

MRP5 CYP4F2 UGT2B4 SULT2A1  

MRP6  UGT2B7   

MRP9     

NTCP     

OAT2     

OAT3     

OAT7     

OCT1     

OCT2     

OCT3     

OCTN1     

OST-α     

OST-β     

OATP1A2     

OATP2A1     

OATP1B1     

OATP1B3     
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OATP2B1     

OATP4C1     

P-gp     

MDR3     
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Appendix 6 

Partial least squares-discriminant analysis (PLS-DA) component 1 lipids from the 
‘Fatty acids and glycerolipids’ and ‘Phospholipids’ datasets with variable 
importance in projection (VIP) scores ≥ 1 

Fatty acids and 
Glycerolipids Phospholipids 

Lipid species 
VIP 
Scores Lipid species VIP Scores 

Lipid species VIP 
Scores 

TAG(62:7) 2.629 PI(P-36:1) 3.9483 PG(38:4) 1.1225 

TAG(62:8) 2.4922 PG(38:3) 3.4739 PE(36:2) 1.111 

TAG(42:2) 2.3816 PC(P-32:4) 3.2686 PC(38:7) 1.0892 

TAG(62:12) 2.3815 PS(32:1) 3.2377 PG(40:6) 1.0845 

TAG(42:3) 2.3773 PG(P-36:5) 2.9919 PG(36:5) 1.0584 

TAG(44:4) 2.3448 PG(36:4) 2.6288 PC(38:8) 1.0548 

TAG(62:6) 2.2704 PG(36:3) 2.628 PE(34:1) 1.0328 

TAG(62:10) 2.209 PC(40:1) 2.4126 PE(34:0) 1.0219 

TAG(42:1) 2.1208 PE(34:2) 2.2407 PG(38:4) 1.1225 

TAG(44:3) 2.1163 PC(P-28:0) 2.128 PE(36:2) 1.111 

DAG(42:2) 2.0435 PG(P-36:6) 2.0886 PC(38:7) 1.0892 

DAG(44:2) 1.9586 PG(P-34:4) 2.0311 PG(40:6) 1.0845 

TAG(60:10) 1.5873 PG(38:6) 1.9875 PG(36:5) 1.0584 

DAG(34:2) 1.584 PE(P-36:2) 1.9026 PC(38:8) 1.0548 

TAG(44:2) 1.5544 PS(34:3) 1.888 PE(34:1) 1.0328 

TAG(62:5) 1.4821 PG(40:8) 1.8689 PE(34:0) 1.0219 

TAG(60:8) 1.451 LysoPC(20:0) 1.7521   

TAG(60:9) 1.4231 LysoPE(P-18:1) 1.6807   

DAG(44:1) 1.4082 LysoPC(24:0) 1.6718   

TAG(46:4) 1.4026 PS(40:4) 1.6163   

DAG(52:2) 1.374 PG(P-38:8) 1.6111   

DAG(34:1) 1.3148 PC(32:0) 1.608   

MAG(20:0) 1.3147 LysoPC(20:1) 1.5568   

FA(24:0) 1.3124 PE(36:3) 1.5107   

DAG(36:2) 1.3086 PG(38:5) 1.5022   

MAG(18:0) 1.2959 PI(30:0) 1.5   

TAG(46:3) 1.2573 PS(34:1) 1.4982   
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FA(26:0) 1.2105 PE(34:3) 1.4969   

TAG(48:3) 1.1937 PG(36:2) 1.4902   

MAG(26:4) 1.1871 PG(34:2) 1.4806   

TAG(60:7) 1.1858 PC(P-44:7) 1.4585   

TAG(44:1) 1.181 PC(30:1) 1.3955   

DAG(36:3) 1.1496 PE(P-40:8) 1.388   

TAG(58:7) 1.146 PI(32:0) 1.3631   

TAG(62:13) 1.1251 PC(28:0) 1.2955   

DAG(42:1) 1.0995 PC(32:3) 1.2753   

TAG(46:2) 1.0918 PC(30:3) 1.2602   

TAG(58:6) 1.0827 PG(34:3) 1.2437   

FA(22:0) 1.0747 PI(34:2) 1.242   

TAG(60:6) 1.069 LysoPC(18:0) 1.2321   

TAG(50:3) 1.0551 PG(40:7) 1.2281   

TAG(58:5) 1.0478 PI(P-34:1) 1.1812   

FA(20:0) 1.0367 LysoPC(16:1) 1.1686   

TAG(50:4) 1.0352 PE(38:6) 1.1541   

TAG(48:5) 1.0335 PC(30:0) 1.1531   

TAG(58:8) 1.0321 PE(32:1) 1.153   

TAG(48:4) 1.0162 PS(38:6) 1.1521   
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