
Towards Enhanced Decoding of
Polar Codes and PAC Codes

Mohammad Rowshan
B.Eng. (Hons), M.Sc.

Supervisor

Prof. Emanuele Viterbo

A thesis submitted for the degree of

Doctor of Philosophy

to

Department of Electrical and Computer Systems Engineering

Monash University, Clayton, Victoria, Australia

July 2021

Copyright Notice

© Mohammad Rowshan 2021. All Rights Reserved.

I certify that I have made all reasonable efforts to secure copyright permissions for third-
party content included in this thesis and have not knowingly added copyright content to my
work without the owner’s permission.

I

“The more I know, the more I realize I know nothing.”
— Socrates

II

Abstract

Error control coding refers to the techniques that enable the reliable delivery of digital data
over unreliable communication channels and storage media. Among various codes available for
channel coding, polar codes are the first capacity-achieving codes with explicit construction.
Due to various advantages, the 3rd Generation Partnership Project (3GPP) adopted polar codes
for the control channel of the enhanced mobile broadband (eMBB) in the 5th generation (5G) of
the mobile communications standard. Due to the demapping (or channel splitting) stage in the
decoding process, which is performed by the successive cancellation (SC) algorithm, the time
and computational complexity of decoding polar codes are higher than their competitors in
which the received signals from the physical channel are directly used in the decoding process.
Moreover, the error correction performance of long polar codes is not competitive against low-
density parity-check (LDPC) codes.

This thesis focuses on improving list decoding of polar codes in terms of error correction
performance and the computational/time complexity. Towards these goals, we follow various
paths to achieve them: For improvement of error correction performance, 1) we propose an
approach to characterize the sub-blocks of a code in terms of the possibility of elimination of
the correct path. Then we modify the code to reduce this possibility within the sub-blocks
during list decoding. 2) For the cases when the list decoding fails, we suggest shifting the
pruning window at certain bit positions to recover the correct path or, in other words, to avoid
the elimination of the correct path. On the other hand, for the complexity reduction, 1) we
propose to use local list sizes for different segments of a code depending on the characteristics
of the segments instead of employing a constant list size. 2) an efficient partial rewinding
scheme is suggested to reduce the complexity of the re-decoding process based on the available
intermediate information from the first run of the SC algorithm. The partial rewinding scheme
can be used for the SC-flip algorithm, the shifted-pruning scheme, and the Fano algorithm.

Furthermore, we focus on different aspects of the recently introduced polarization-adjusted
convolutional (PAC) codes: 1) we analyze the properties of PAC codes and the impact of con-
volutional precoding on the weight distribution of polar codes, as well as an approach to slightly
improve the weight distribution of PAC codes by a modified precoding stage, 2) we adapt the
list decoding and the list Viterbi decoding algorithms to PAC codes and analyze the error cor-
rection performance, the computational/time complexity as well as the path sorting complexity
of these decoders, and 3) we propose an adaptive metric for Fano and stack decoding of PAC
codes along with various tree search strategies to reduce the complexity of these decoders.

III

Declaration

I hereby declare that this thesis contains no material which has been accepted for the award
of any other degree or diploma in any university or equivalent institution, and that, to the best
of my knowledge and belief, this thesis contains no material previously published or written by
another person, except where due reference is made in the text of the thesis.

Mohammad Rowshan
July 15, 2021

IV

Acknowledgements

This doctoral research project would not have been possible without the support of many
people. First of all, I would like to express my sincere gratitude to my main supervisor, Prof.
Emanuele Viterbo, for his support, guidance, insights, and the freedom he gave me. I came
to Monash University without having any background in coding theory. I owe him whatever
I have learned. Moreover, I learned from his outstanding character and patience. His skills
in motivating people are incredible. My respect also goes to Dr. Shuiyin Liu, who taught
me how to take the initial steps in conducting a research in my first year, and Dr. Yi Hong
for her general guidance and support. I would like to thank Dr. Rino Micheloni and Ms.
Alessia Marelli from Microsemi for the partial support of this project. The opportunity to visit
École Polytechnique Fédérale de Lausanne (EPFL) became possible by the generous financial
support of the Faculty of Engineering at Monash University, through the graduate research
international travel award (GRITA), the help of Dr. Alexios Balatsoukas-Stimming, and Ms.
Paniara Ioanna for doing the paper works of my travel and permit in Switzerland. Many
thanks to Prof. Andreas P. Burg, my primary advisor at EPFL for hosting me in his lab and
his insights on my works. Also, I would like to appreciate Dr. Son Hoang Dau, Dr. Anindya
Gupta, Dr. Lakshmi Natarajan for their group lessons on the coding theory. The friendly staff
of the department of Electrical and Computer Systems Engineering (ECSE) and the Faculty of
Engineering at Monash University, in particular Dr. Lilian Khaw, who helped me in editing my
first few papers, were quite helpful in this journey. I also made some good friends for which I
am deeply grateful. Thank you, Fariba Abbasi, for the valuable discussions we had, Viduranga
Wijekoon, Tharaj Taj, and Raviteja Patchava, for being such good friends in the lab. Finally,
I would like to thank my parents and siblings for their continuous support and love. I am so
happy to have you in my life. Although doing my Ph.D. took a lot of hard work and effort, I
am glad to have gone through this experience.

V

Table of Contents

Abstract . III

Table of Contents . VI

Publications During Enrolment . IX

List of Figures . X

List of Tables . XIV

List of Algorithms . XIV

Notations . XVII

1 Introduction 1

1.1 Key Contributions . 7

1.2 Thesis Organisation . 9

2 Polar Codes: A Review 11

2.1 Notations and Preliminaries . 11

2.2 Channel Polarization . 12

2.3 Code Construction (Channel Selection) . 13

2.4 Encoding . 15

2.5 Decoding . 15

2.5.1 SC Decoding . 15

2.5.2 SC List (SCL) Decoding . 17

2.6 Polarization-adjusted Convolutional Codes . 19

3 Adjusted List Decoding 21

3.1 Path Metric Range, PMR . 22

3.2 Stepped List Decoding . 25

3.2.1 Computational Complexity and Memory Requirement 26

3.2.1.1 Computational Complexity . 27

3.2.1.2 Memory Requirement for Candidate Paths 27

3.2.1.3 Memory Requirement for LLRs and Partial Sums 28

3.2.2 Numerical Results . 29

3.2.3 An Alternative Algorithm . 30

3.3 Error Occurrence in List Decoding . 32

3.3.1 Error Occurrence in SC and SCL Decoding 32

3.3.2 Path Metric Range as a Tool . 34

VI

TABLE OF CONTENTS

3.3.3 Position Recovery of Correct Path . 35

3.3.4 Elimination of Correct Path . 38

3.3.4.1 Penalty in segment(s) with small PMR 38

3.3.4.2 Incorrect paths versus correct path 39

3.3.4.3 Combination of event A and B 40

3.4 Goal-oriented Code Modification . 40

3.4.1 How to reduce probability of elimination? 41

3.4.2 Code Modification . 41

3.4.3 Bit-Swapping Algorithm . 42

3.5 Numerical Results . 45

3.5.1 Summary . 45

4 Shifted-pruning Scheme for Path Recovery 49

4.1 Elimination of the Correct Path . 49

4.1.1 Numerical Analysis . 49

4.1.2 An Effective Metric . 52

4.2 Shifted-pruning Scheme for Path Recovery . 54

4.3 Toward Nested Shifted-pruning Scheme . 55

4.3.1 Segmented Shifted-pruning . 58

4.3.2 Double-shifting: Ordered-pairs . 60

4.4 Numerical results . 62

4.5 Summary . 63

5 Efficient Partial Rewind of SC Algorithm 66

5.1 Efficient Updating of Intermediate Information 67

5.1.1 Intermediate LLRs . 67

5.1.2 Partial Sums . 68

5.2 Properties of SC Process . 70

5.3 Efficient Partial Rewinding . 73

5.4 Numerical Results . 77

5.5 Summary . 83

6 Convolutional Pre-coding and List decoding of PAC Codes 85

6.1 Polarization-adjusted Convolutional Codes . 85

6.2 Minimum-weight Codewords in PAC Codes . 86

VII

TABLE OF CONTENTS

6.2.1 PAC List Decoding . 92

6.3 Numerical Results . 94

6.3.1 Rate Profiling . 94

6.3.2 Distance Spectrum . 95

6.3.3 Performance of List Decoding . 96

6.4 Limits of Convolutional Precoding . 96

6.5 Summary . 99

7 Sequential Decoding of PAC Codes 103

7.1 Convolutional Codes and Fano Decoding . 103

7.2 Fano Decoding of PAC Codes . 106

7.2.1 Partial Rewind of SC Algorithm . 107

7.2.2 Heuristic Path Metric . 110

7.3 Low-complexity Fano Decoding . 111

7.3.1 Adaptive Path Metric . 111

7.3.2 Constrained Tree Search . 113

7.3.3 Direction of Backtracking Traversal . 116

7.3.4 Threshold Update Strategy . 116

7.3.5 Updating Expected Metrics of Explored Paths 117

7.4 Numerical Results . 118

7.5 Summary . 120

8 List Viterbi Decoding of PAC Codes 126

8.1 Trellis and Path Metric in (List) Viterbi Algorithm 126

8.2 Generalization of List Viterbi Algorithm . 131

8.3 Sorting Complexity . 133

8.4 Numerical Results . 135

8.5 Summary . 138

9 Conclusion and Future Work 140

9.1 Suggestions for Future Work . 141

Bibliography 143

VIII

Publications During Enrolment

Journal Papers

J1 M. Rowshan, E. Viterbo, R. Micheloni, and A. Marelli, “Repetition-assisted Decoding of
Polar Codes,” IET Electronics Letters, vol. 55, no. 5, pp. 270-272, 2019.1

J2 M. Rowshan, A. Burg and E. Viterbo, “Polarization-adjusted (PAC) Codes: Fano Decod-
ing vs List Decoding,” Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1434-1447,
2021.

J3 M. Rowshan and E. Viterbo, “List Viterbi Decoding of PAC Codes,” in Transactions on
Vehicular Technology, vol. 70, no. 3, pp. 2428-2435, March 2021.

J4 M. Rowshan and E. Viterbo, “Generalized Shifted-pruning for Path Recovery in List
Decoding of Polar Codes,” submitted to IEEE Transactions, 2021.

J5 M. Rowshan and E. Viterbo, “Efficient Partial Rewinding of Successive Cancellation-
based Decoders,” submitted to IEEE Transactions, 2021.

Conference Papers

C1 M. Rowshan and E. Viterbo, “Stepped List Decoding for Polar Codes,” IEEE Int. Symp.
on Turbo Codes & Iter. Sig. Proc. (ISTC), Hong Kong, Dec, 2018, pp1-5.

C2 M. Rowshan and E. Viterbo, “How to Modify Polar Codes for List Decoding,” 2019
IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019, pp.
1772-1776.

C3 M. Rowshan and E. Viterbo, “Improved List Decoding of Polar Codes by Shifted-pruning,”
2019 IEEE Information Theory Workshop (ITW), Visby, Sweden, 2019, pp. 1-5.

C4 M. Rowshan, A. Burg and E. Viterbo, “Complexity-efficient Fano Decoding of Polarization-
adjusted Convolutional (PAC) Codes,” 2020 International Symposium on Information
Theory and Its Applications (ISITA), Kapolei, HI, USA, 2020, pp. 200-204.

C5 M. Rowshan and E. Viterbo, R. Micheloni, and A. Marelli, “Logarithmic Non-uniform
Quantization for List Decoding of Polar Codes,” 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference (CCWC), NV, USA, 2021, pp. 1161-1166. 1

C6 M. Rowshan and E. Viterbo, “Shifted-pruning for Path Recovery in List Decoding of
Polar Codes,” 2021 IEEE 11th Annual Computing and Communication Workshop and
Conference (CCWC), NV, USA, 2021, pp.

C7 M. Rowshan and E. Viterbo, “On Convolutional Precoding in PAC Codes,” IEEE GLOBE-
COM, Madrid, Spain, Dec 2021.

1The material of these papers (J1 and C5) is not included in this thesis.

IX

List of Figures

2.1 ECC in Communication and Storage systems with polar codes 11

2.2 Internal/intermediate information in SC Decoding of 4 bits 16

2.3 Internal LLR (λ) calculations . 17

2.4 PAC Encoding and Decoding Scheme . 20

2.5 An example of convolution using a shift-register 20

3.1 The probability of bit error in the segments, Pseg 21

3.2 Absolute values (average in 100 iterations) of bit-channel LLRs |λi0| and path
metric range (LRi), in natural decoding order for PC(1024,820) 23

3.3 Some sampled movements of correct path in the list, representing different sce-
narios, for PC(1024,820) and L = 16 . 25

3.4 Stepped list decoding tree for PC(1024,820) . 26

3.5 Sketch of path memory in stepped list decoding of PC(1024,820) 27

3.6 Performance of the Stepped CA-SCL vs CA-SCL Decoding 29

3.7 Performance comparison of the alternative algorithm for allocation of the local
list sizes . 32

3.8 Error occurrence in SC (or SCL when L=1) and SCL decoding 33

3.9 Absolute values of bit-channel LLRs |λi0| and path metric range (PMR), averaged,
in decoding order for P(1024, 820) and L=32 . 34

3.10 Examples for movement of the correct path within the sorted list of paths for
P(1024, 820) with L=16 . 36

3.11 A numerical example of growing of path metrics (PMs) of incorrect path resulted
in pushing the correct path (green boxes) downward 37

3.12 Movement of correct path during decoding of 320,000 random codewords of
P(256,128) with L=32. The arrows show the recovery 38

3.13 Relation between PMR and the event of elimination of correct path 39

3.14 Performance of the Modified Construction via Bit-swapping and Conventional
Construction . 46

3.15 Effect of Bit-swapping on PMR curve . 47

3.16 Improved performance of the code constructed by DE/GA method 47

3.17 Improved performance of the code constructed by DE/GA method 48

4.1 Relative frequency of number of penalties leading to elimination of the correct
path at different list sizes for P (256, 128 + 8) under SCL decoding 50

4.2 Relative frequency of elimination caused by more than one penalty over bit-
channels for N = 256, R = 0.5 and L = 8 . 51

X

LIST OF FIGURES

4.3 Comparison of PMR and the relative frequency of elimination caused by more
than one penalty over bit-channels for N = 256, R = 0.5 and L = 8 51

4.4 Shifting the pruning window by L paths during list pruning operation at bit v ∈ V 54

4.5 Shifting the pruning window by κ paths during list pruning operation at bit v ∈ V 55

4.6 L/2-shift (κ = L/2) vs L-shift during pruning operation. 57

4.7 Relative frequency of the number of oracle-assisted recoveries of correct path
throughout decoding by one or multiple shifting of the pruning window (SPx,x=1,2,...)
in 30000 codewords of P(512,256+12) under CRC12-aided list decoding with list
size L = 8. 58

4.8 Performance oracle-assisted list decoding with multiple shifts 59

4.9 Nested shifting by k paths at bit v1, v2 ∈ V during pruning operation 60

4.10 Relative frequency of the number of 2 shifts at positions in vicinity (v2−v1 ≤ 10)
and at positions in farther distance (v2 − v1 > 10). 61

4.11 The procedure of double-shifting when the single shift at T positions fails. 61

4.12 Position pairing scheme for double shifting. Positions A,B,C,D,E belong to one
segment where A<B<C<D<E. The pairing starts from E: (E,D), (E,C), (E,B),
then D: (D,C), (D,B), and son on. 62

4.13 FER performance for P(512,256+12) and P(1024,512+16) 63

4.14 Error correction performance under segmented CA-SCL decoding with shifted
pruning (SP) and CA-SCL decoding with constrained shifted pruning (SP) . . . 64

4.15 Average complexity under segmented CA-SCL decoding with shifted pruning
(SP) and CA-SCL decoding with constrained shifted pruning (SP) 65

4.16 Comparison of FER performance and the computational complexity (equivalent
to average list size considering additional attempts) of double-shifting and single
shifting . 65

5.1 An illustrative example for updating LLRs for decoding bit u3. λ3
0 = λ0 is

computed based on λ1, λ2 and β2
0 = β0 = û2 (see Fig. 5.2). 68

5.2 An illustrative example for updating partial sums of stage s = 2 after decoding u3. 69

5.3 An illustrative example comparing the target position j and update position jp . 76

5.4 Comparison of FER and average time complexity of P(512,256+12) under CA-
SCL decoding without and with (w/) shifted-pruning scheme (SP), and with
partial rewinding (PR). ’all’ and ’add’ indicate average over all the decoding
iterations and average only over additional iterations for shifted-pruning, respec-
tively. 78

5.5 Comparison of FER and average time complexity of P(512,128+12) under CA-
SCL decoding without and with (w/) shifted-pruning scheme (SP), and with
partial rewinding (PR). ’all’ and ’add’ indicate average over all the decoding
iterations and average only over additional iterations for shifted-pruning, respec-
tively. 79

XI

LIST OF FIGURES

5.6 Comparison of FER and average node visits of P(512,128+12) under SC decoding
without and with (w/) bit-flipping, and with partial rewinding (PR). ’all’ and
’add’ indicate average over all the decoding iterations and average only over
additional iterations for bit-flipping, respectively. 80

5.7 Comparison of FER and average node visits of P(512,256+12) under SC decoding
without and with (w/) bit-flipping, and with partial rewinding (PR). ’all’ and
’add’ indicate average over all the decoding iterations and average only over
additional iterations for bit-flipping, respectively. 81

5.8 Comparison of FER and average node visits of P(512,388+12) under SC decoding
without and with (w/) bit-flipping, and with partial rewinding (PR). ’all’ and
’add’ indicate average over all the decoding iterations and average only over
additional iterations for bit-flipping, respectively. 82

5.9 Comparison of the average time-steps of codes with length N = 512 with differ-
ent code rates under SC-flip decoding with (w/) partial rewinding (PR). ’add’
indicate average only over additional iterations for bit-flipping. 83

6.1 PAC coding scheme . 86

6.2 Mapping of min-weight codewords in the codebook of polar codes to PAC codes’.
The cases (1), (2), and (3) discussed in Section III are shown in the figure. 91

6.3 Rate-profile Schemes . 94

6.4 Performance of PAC codes under list decoding 97

6.5 RM-polar rate-profiles for block-length N = 64 and code rates R = 1/4, 1/2, 3/4.
Green cells are in set A. 97

6.6 An example of convolution in the presence of a zero sub-sequence in v. 98

6.7 A different scheme to mitigate the effect of unequal error protection with two
generator polynomial c(a) = [1, 0, 1, 1, 0, 1, 1] and c(b) = [0, 0, 0, 1]. 99

6.8 Performance of polar codes and PAC codes with different precoding polynomials
under list decoding with L=32. In the legends, g is equivalent to c. 100

7.1 Decoding tree: µjs are the path metrics of the current best path (solid thick
line) from the root to a node at level j and the µ′js are the path metrics of the
branches (solid thin line) diverging from the current best path. 112

7.2 Bottom-up backtracking . 114

7.3 Top-down backtracking . 114

7.4 Distribution (in %) of the number of error occurrence, extracted from 4000 de-
coding failures of PAC(128,64) with RM-profile at Eb/N0 = 2.5 dB 115

7.5 Updating the Metric of Explored Branches . 117

XII

LIST OF FIGURES

7.6 Performance of PAC codes with RM rate-profile under Fano decoding with con-
strained search (CS), adaptive metric (AD), top-down tree traversal (TD), and a
limited number of diversions (Div.) in comparison with other decoding schemes
SC, SCL, stack, and Viterbi. Also showing performance of polar codes under
Fano decoding ”Fano (Polar)”. 119

7.7 Time and computational Complexity. 120

8.1 The truncated trellis for PAC codes. Since vt = 0 for t ∈ Ac, the path does
not split. The dashed-line arrows represent the input 0 and the solid-line arrows
represent the input 1 to the convolutional transform. 127

8.2 The irregularity of the trellis where vt = 0 for t ∈ Ac or t = [i+ 1, ..., j] for j > i.
The paths from t = i+ 1 to t = j are not pruned. 127

8.3 Merging two paths at state s . 129

8.4 The reduced bitonic sorting network for LVA with L = 4. The order of L smallest
path metrics is not needed. 134

8.5 FER Comparison under LVA with various parameters while the total number of
paths is 32. 135

8.6 FER Comparison of PAC(128,64) under LVA when convolutional generator poly-
nomial (c) changes. 136

8.7 BER Comparison of PAC codes and CRC-polar codes under LVA, VA and LD,
the total number of paths is 32. 137

8.8 FER Comparison of PAC codes under LD for LG = 1, ..., 16, 32 with PAC codes
under LVA with 32 surviving paths (|S|×L = 32) while c = [1, 1, 1] is fixed for all.138

8.9 FER Comparison under LVA with various parameters while the total number
of paths are 256, 32, and 16. The coefficients of the generator polynomial used
with |S| = 256 is c = [1, 1, 0, 1, 1, 0, 0, 1, 1] and for PAC codes unde LD is c =
[1, 0, 1, 1, 0, 1, 1]. For the rest, c is the same as the ones in Fig. 8.5. 139

XIII

List of Tables

6.1 The number of min-weight codewords, Admin
, with RM-polar rate profile 88

6.2 The number of min-weight codewords, Admin
, with RM rate profile for PAC

code (128,64,16) under various precoding schemes. The polynomial c = [1] is
equivalent to no precoding, hence the output of encoder is a polar code. 102

7.1 Comparison of hardware resources for Fano, stack, and list decoders 125

XIV

List of Algorithms

1 Stepped List Decoding: Allocation of local list sizes to the segments 31

2 Goal-oriented Code Modification: Bit-Swapping Process 44

3 List Decoder with Shifted-pruning . 56

4 Encoding of PAC Codes . 87

5 List Decoding of PAC codes . 101

6 Partial Rewinding: updateLLRsPSs - Updating intermediate LLRs & partial sums 109

7 Fano Decoding of PAC Codes . 122

8 Fano Decoding (2): Lines 46-67 in Algorithm 7 . 123

9 Fano Decoding (3): moveBack - Checking the examined nodes to move backward . 124

10 List Viterbi Decoding of PAC codes . 132

XV

Abbreviations
3GPP 3rd Generation Partnership Project
5G 5th Generation of Wireless Communications Standard
AWGN Additive White Gaussian Noise
BEC Binary Erasure Channel
BER Bit Error Rate
BI-AWGN Binary-Input Additive White Gaussian Noise
BI-DMS Binary-Input Discrete Memoryless and Symmetric Channel
BLER Block Error Rate
BMS Binary Memoryless Symmetric
BP Belief Propagation
BF Bit-flipping
BPSK Binary Phase Shift Keying
BSC Binary Symmetric Channel
CA-SCLD Cyclic Redundancy Check Aided Successive Cancellation List Decoding/Decoder
CC Convolutional Codes
CRC Cyclic Redundancy Check
CS Critical/Crucial Set
Div Diversion
DE Density Evolution
DEGA Density Evolution with Gaussian Approximation
DMC Discrete Memoryless Channel
eMBB Enhanced Mobile Broadband
FER Frame Error Rate (a.k.a BLER, block error rate)
GA Gaussian Approximation
I.I.D. Independent and Identically Distributed
LD List Decoding
LDPC Low-Density Party-Check
LLR Log-Likelihood Ratio
LP Linear Program
LR Likelihood Ratio
LVA List Viterbi Algorithm
MAP Maximum Aposteriori Probability
MLD Maximum Likelihood Decoder
ML Maximum Likelihood
PAC Polarization-adjusted Convolutional
PM Path Metric
RM Reed-Muller
SC Successive-Cancellation
SCD Successive Cancellation Decoding/Decoder
SCL Successive Cancellation List
SCLD Successive Cancellation List Decoding/Decoder
SP Shifted-pruning
SNR Signal-to-Noise Ratio
VA Viterbi Algorithm
WAVA Wrap-around Viterbi Algorithm

XVI

Notations
A The set of indices of the non-frozen sub-channels
Ac The compliment of set A
|A| The cardinality of set A
α The scaling factor for the adaptive metric in sequential decoding
[a : b] A sequence of integer numbers from a to b (also [a..b])
ayx A sequence of ax, ax+1, ..., ay−1, ay
ayx[l] A sequence of ax, ax+1, ..., ay−1, ay for the l-th path
bin(i) Binary representation of the decimal number i; bin(i) = in−1...i1i0
dmin The minimum Hamming distance of a code
∆ The increment value for the metric threshold T in Fano decoding
δi The metric for coordinate i used for prioritizing the shift
c The coefficient vector of the generator polynomial in convolutional codes (also g)
gj The j-th row of the polar transform’s matrix GN
GN The matrix N ×N used for polar transformation
κ The number of shifts in terms of paths in the shifted-pruning scheme
L List size in the list decoding and list Viterbi decoding.
λim LLR at stage m and and row i of the polar transform’s factor graph
mi The branch metric at coordinate i of a codeword in sequential decoding
Mt(s) The metric of the path originating from state s at coordinate t in VA
Mt(s, l) The metric of l-th path originating from state s at coordinate t in LVA
µi The path metric at coordinate i of a codeword in sequential decoding
µt(s, s

′) The metric of the branch between state s and s′ at coordinate t of a codeword
N Code length, N = 2n

pe,i Error probability of sub-channel i
Pn The matrix 2n × 2n used for polar transformation

PM
(i)
l The metric of l-th path at coordinate i of a codeword

Ψx The total number of stages in the sorting network of decoder ’x’
R Code rate; R = K/N
r CRC length
S The set of all the states on the trellis
T Maximum number of re-decoding attempts, a.k.a the metric threshold for backtracking
wmin the minimum weight of a code
W A binary memoryless symmetric (BMS) channel
WN N independent uses of channel W
WN A vector channel resulting from polar transformation

W
(i)
N An i-th sub-channel of vector channel WN

XVII

Chapter 1

Introduction

“A journey of a thousand miles begins with a single step.
— Lao Tzu

Error control coding (a.k.a channel coding) is a way of presenting data in a communication

channel that adds redundancy to facilitate the detection and correction of errors. Such methods

are widely used in wireless communications and storage systems (memories). Several high-

performance channel codes were developed in recent decades, allowing information to be reliably

transmitted at rates that closely approach the theoretical limit imposed by the channel capacity.

More specifically, turbo codes were used in the 3rd Generation (3G) and 4th Generation (4G)

of mobile communication standards, while the low-density parity-check (LDPC) codes were

adopted to WiFi and satellite standards.

Polar codes [1] have explicit construction and low complexity encoding and decoding algo-

rithms. They support variable code rates and code lengths (i.e., effortless methods are available

for puncturing and shortening, respectively). In particular, polar codes offer a strong error cor-

rection performance for short block-lengths and low code rates compared to LDPC codes and

turbo codes. The various advantages of polar codes convinced the 3rd Generation Partnership

Project (3GPP) to adopt polar codes for physical layer control channel of enhanced mobile

broadband (eMBB) for the 5th Generation (5G) of mobile communications standard [2], a.k.a

new radio (NR).

However, polar codes are less mature than LDPC and turbo codes. During the past decade,

the efforts were focused on improving the error correction performance of polar codes through

developing practical decoding algorithms and improving the code construction of polar codes.

The improvement obtained through code construction has not been significant. However, the

various proposed algorithms for decoding have provided a competitive error correction perfor-

mance for short block-lengths compared with counterparts.

Polar codes are founded on the polarization effect resulting from the channel synthesis in a

particular fashion. The idea of building synthetic channels originated from the concatenated

schemes [3] employed in the sequential decoding of convolutional codes by Massey [4], and

Pinsker [5] in order to boost the cutoff rate. The cutoff rate is said to be ”boosted” when

1

Chapter 1: Introduction

the sum of the cutoff rates of the synthesized channels is greater than the sum of the cut-

off rates of the raw channels. The key idea in boosting the cutoff rate is to build a vector

channel where the independent copies of the raw channels are transformed into multiple cor-

related channels. In Pinsker’s scheme, the inner block code (with length N) is suggested to

be chosen at random. This scheme requires maximum likelihood (ML) decoding with pro-

hibitive complexity. Polar codes allow using a more practical decoder with the complexity of

O(N logN). Unlike Pinsker’s scheme, where the outer convolutional transforms are identical,

in multi-level coding and multi-stage decoding (MLC/MSD), originally proposed in [6] as an

efficient coded-modulation technique, N convolutional codes at different rates {Ri} are used,

which consequently require a chain of N outer convolutional decoders. On the other hand, polar

coding was originally designed as a low-complexity recursive channel combining and splitting

operation, where the polarization effect constrains the rates Ri to either 0 or 1. They turned

out to be so effective that no outer code was employed to achieve the original aim of boosting

the cutoff rate to channel capacity.

The result of synthesis is a polarized vector channel with N sub-channels. Throughout

this thesis, we may use bit-channel and sub-channel interchangeably. We transmit information

over a subset of the sub-channels called good sub-channels. Good sub-channels are selected

explicitly based on the reliability of the channels. This process is called code construction.

Since the rest of the sub-channels carry a known symbol as added redundancy, this process is

sometimes called rate profiling. In [1], the Bhattacharyya parameter was used as a reliability

metric for binary erasure channels (BEC). Density evolution (DE) was proposed in [7] for a more

accurate reliability evaluation. However, it suffers from excessive complexity. To reduce the

complexity of DE, a method based on the upper bound and lower bound on the error probability

of the bit-channel was proposed in [8]. To further reduce the computational complexity of DE,

Gaussian approximation (GA) to evolve the mean of log-likelihood ratios (LRRs) throughout

the decoding was proposed in [9]. Recently, an SNR-independent low complexity method was

proposed [10,11], which gives the reliability ordering as a function of bit indices. Additionally,

modified constructions of polar codes have also been considered. In [12], the evolution of LLRs

of non-frozen bits (a.k.a free bits) during iterative Belief propagation (BP) decoding of polar

codes was used to identify weak bit-channels and then to modify the conventional polar code

construction by swapping these weak bit-channels with strong frozen bits-channels.

From the decoding point of view, the error correction performance of finite-length polar

codes under successive cancellation (SC) decoding is not competitive due to partially polarized

2

Chapter 1: Introduction

sub-channels. To address this issue, the SC list (SCL) decoding (SCLD) was proposed in [13].

This yields an error correction performance comparable to maximum-likelihood (ML) decoding.

Also, it was observed that further improvement could be obtained by concatenating cyclic

redundancy check (CRC) bits to polar codes. The weak side of list decoding is that it suffers

from high computational complexity and large memory requirements.

Although the CRC-aided SCL decoder provides a competitive performance, its main draw-

backs are high computational complexity and large memory requirement. To reduce the size

of storage and processing elements in the hardware implementation, the internal soft messages

were changed from log-likelihood (LL) to LLR in [14]. However, the total memory area still

accounts for 40%-45% of the total silicon area. In [15], it was shown that a logarithmic non-

uniform quantization of channel and intermediate LLRs can reduce the number of bits required

for intermediate LLRs while we can improve the block error rate due to higher precision in

particular for long codes. In another attempt, the tree/list pruning method was proposed to

reduce the complexity. In this method, the path list is pruned using a threshold obtained either

online or offline [16,17]. Although this method introduces a computational overhead in the list

pruning procedure, it can substantially reduce overall computational complexity. In [18], the

computational complexity was reduced by dropping the frequently split paths from the list.

Additionally, a counter was used to recognize the correct path, and then it was switched to

an SC decoder for decoding the rest of the bits. Nevertheless, this method cannot provide the

performance of a CRC-aided decoder. Also, similar to the tree pruning method, it requires

the conventional (memory-intensive) SCL decoding. Furthermore, a bound for list size and

information-theoretic aspects of list decoding were studied in [19,20].

A simplified SC (SSC) polar decoder was introduced in [21] to reduce the complexity and

latency. This decoder was further developed and used for list decoder [22]. In the SSC polar

decoder, several types of nodes associated with pattern-specific constituent codes is recognized

in the binary tree of decoding. Relying on those nodes, the recursion in the decoding process

is greatly simplified. Segmenting or partitioning based on multi-CRC schemes proposed in

[23, 24] is another method in which the memory requirement reduces. In this method, every

partition estimates a sub-block of the code by performing CRC-aided SCL decoding, and then

the estimated bits are passed to the next partition. However, this method saves the memory

significantly and contributes slightly to the complexity reduction, it requires employing several

short CRCs at the cost of an increase in the effective code rate, consequently affecting the error

correction performance. The effective code rate is defined from the polar coding point of view

3

Chapter 1: Introduction

as the number of non-frozen bits (including information bits and CRC bits) divided by the

total number of bits. For instance, 4× 8 = 32 bits are used for CRCs in a 4-partition scheme,

compared with 16 bits in conventional CRC-aided SCL decoding. Needless to mention that the

probability of undetected error (false detection of the correct path) by employing short CRCs

increases.

When SC or SCL decoding fails, we may be able to correct the error(s) in additional decoding

attempts. Bit-flipping [25] is a popular method to improve the error correction performance of

the SC decoder by a single or multiple flipping of the low-reliability bit(s) in each re-decoding

attempt. The numerical experiments in [25] showed a predominant portion of the decoding

failures occurs by a single error in bit estimation due to channel noise. Thus, by finding the

first erroneous bit and flipping the estimated value, error propagation can be prevented. This

idea was further improved by using an improved metric for single and multiple flipping in [26]

which was later computational simplified [27]. An offline-obtained error distribution in [28] and

a static set of critical coordinates [18] were employed to find the potential coordinates of single

or multiple errors. The performance of these methods can approach the performance of SCL

decoding with a moderate list size L = 2 or, in the case of employing multiple flipping, it can

reach the performance of L = 4 or 8. However, in terms of complexity, nested/multiple bit-

flipping may require many attempts (tens or hundreds of attempts), making multiple flipping

impractical. Note that the receiving messages from the physical channel cannot wait for such a

considerable number of iterations, and we cannot afford to have a vast input buffer and output

buffer to regulate the input and out streams bits.

The attempt to re-decode the failed SCL decoding was first started in [29] by gradually

increasing the list size (L) by a factor of two until reaching the predefined maximum list size or

succeeding in decoding. However, increasing the list size contributes to a larger computational

and time complexity and requires enough hardware resources to support that. Also, as the

results showed, the performance gain beyond list size L > 32 is less than 0.1 dB obtained at

a very high cost of doubling the resources. The work in [30] showed that we can improve the

performance by repeating the bits transmitted over low-reliability bit-channels in the code and

exploiting them in re-decoding. In [31], a bit-flipping scheme based on a modified critical set

was employed in CRC-aided SCL decoding. Later, we proposed the shifted-pruning scheme

in [32]1 where the pruning window was shifted by κ = L (i.e., selecting the worst L paths in

1The work in [32] was submitted to ITW2019 on Apr. 10, 2019, presented on Aug. 26 in Visby, Sweden, and
published on IEEE Xplore on Feb. 10, 2020

4

Chapter 1: Introduction

the sorted list instead of the best ones) at the critical bit coordinates. Later, This scheme was

improved in [33] by employing a computationally simple LLR-based metric and a variable κ

(e.g., κ = L/2) where an approximate coordinate of elimination of the correct path was able to

correct the error. Moreover, the original shifted-pruning scheme in [32] was improved in [34] by

an ordered critical set in an adaptive list size scheme. Independently of us, similar work was

proposed in [35]. In this work, inspired by [26], a probabilistic metric was employed that had a

poor performance on medium and long codes. A different metric based on a probability ratio

was suggested in [36]. The approximation of this metric in the log domain is similar to the path

metric range (PMR) suggested in [33, 37, 38]. Nevertheless, this metric also suffers from poor

performance for relatively long codes.

Besides SC and SCL decoders, other well-known decoders were also adapted to polar codes.

However, they could not provide good performance at a low computational cost. A belief

propagation (BP) decoder was used in [39] to compare the performance of polar codes with that

of Reed-Muller (RM) codes over BEC. The results showed a distinct performance advantage

for polar codes over RM codes as the code length increased at the cost of high computational

complexity. Since then, many researchers have focused on reducing the complexity of parallel

processing in BP decoding. In [40], a belief propagation list (BPL) decoder was proposed with

comparable performance to the SCL decoder. The proposed decoder is composed of multiple

parallel independent BP decoders based on differently permuted polar code factor graphs. A

list of possible transmitted codewords is generated, and the one closest to the received vector,

in terms of Euclidean distance, is picked. The Viterbi and BCJR decoding algorithms were

considered in [3] to improve the bit error rate (BER) and block error rate (BLER) of polar

codes. However, these decoders are only applicable to short polar codes because for decoding

long codes, too many states are required. The ML decoding (optimization) problem was relaxed

to linear programming (LP) decoding problem in [41]. The original LP decoder had high time

complexity and performed very poorly over the AWGN channel. Then, an adaptive version was

provided in [42] which significantly improved the FER performance. A sphere decoding (SD)

was adapted in [43] which can achieve ML performance by traversing all the possible codewords.

Later on, researchers focused on reducing the complexity of this method. In [44], a sphere list

decoding was proposed to make the FER performance comparable with small list-size SCL

decoding for short codes. The SC stack decoding was adapted in [45] to store a number of

candidate partial paths in a stack and try to find the best path in it. SC stack decoding with

enough stack depth has a dynamic time complexity while maintaining the same performance

5

Chapter 1: Introduction

as the SC list. However, only the top path in the stack is concerned in SC stack, and it takes

high time complexity to traverse the whole stack when inserting a new path. Eventually, the

ordered statistic decoding (OSD) was considered in [46] to decode short polar codes. Since the

complexity of OSD is high for codes with lengths larger than 64 bits, [46] proposed a threshold-

based OSD decoder to decrease the number of tested codewords and consequently to reduce

the complexity.

Recently in [47], Arıkan proposed a concatenation of a convolutional transform with the

polarization transform [1] in which a message is first encoded using a convolutional transform

and then transmitted over polarized synthetic channels as shown in Fig. 6.1. These codes are

called “polarization-adjusted convolutional (PAC) codes”. It was shown that PAC codes could

outperform short polar codes without CRC concatenation [48, 49]s, and medium-length CRC-

PAC codes can outperform CRC-polar [48]. In general, a properly designed upper-triangular

pre-transformation [50] such as convolutional transform could improve the distance properties

of polar codes. Later, the reason behind the performance improvement of PAC codes was re-

vealed in [51]. It turned out that the inclusion of frozen rows in the polar transform could

increase the Hamming weight of the resulting codewords. In [48,52], we also studied the imple-

mentation of tree search algorithms, including the conventional list decoding, stack decoding,

and complexity-efficient Fano decoding for PAC codes. Furthermore, PAC codes were compared

with convolutional codes in terms of performance and complexity in [53] and systematic PAC

codes were discussed in [54, 55] and shown that they can improve the bit error rate (BER) of

PAC codes, just like polar codes. Due to the convolutional pre-transformation, PAC codes can

also be easily encoded and decoded based on the trellis by employing the Viterbi algorithm

(VA) [56, 57] and the list-type VA [58]. The basic Viterbi algorithm was employed in [59] as a

maximum likelihood (ML) decoder for short polar codes in comparison with Reed-Muller (RM)

codes. Additionally, a performance comparison of convolutional codes under M-algorithm and

LVA was provided in [60]. We adapted LVA to PAC codes in [61] and analyzed the significant

reduction in the sorting complexity of LVA.

It has been shown that employing large kernels for constructing polar codes improves the

error exponents and consequently provides a better error correction performance. However, the

large kernel polar codes suffer from high complexity decoding processes [62]. Furthermore, a

new concatenation scheme was introduced recently that concatenates outer polar codes with

inner repetition codes known as polar coded repetition [63,64].

6

Chapter 1: Introduction

1.1 Key Contributions

The major contributions of this thesis are briefly listed below.

Stepped List Decoding

In the successive cancellation list (SCL) decoding of polar codes, as the list size increases,

the error correction performance improves. However, a large list size results in high compu-

tational complexity and large memory requirement. We investigated the list decoding process

by introducing a new instrumental notion named path metric range (PMR) to elucidate the

properties of the evolution of the path metrics (PMs) within the list throughout the decoding

process. Then, we advocate that the list size can change step-wise depending on PMR. Alterna-

tively, the local list size for the sub-blocks of the code can be determined based on the bit error

probability of the sub-blocks. In the proposed stepped list decoding scheme, the error correction

performance of the conventional list decoding is preserved while the computational complexity

reduces significantly. The reduction in complexity is SNR-independent and achieved without

introducing any computational overhead.

Modified Polar codes for List Decoding

Polar codes are constructed based on the reliability of the individual bit-channels by exact

calculation of this metric or by approximation methods. This construction is consistent with

the successive cancellation (SC) decoding, where one error in the successive estimation of the

bit-values results in the decoding failure. However, in SCL decoding, the correct candidate may

remain on the list by tolerating multiple penalties due to distance from the received signals.

This characteristic of list decoding demands a different approach in code design. In this work,

we propose a general approach to modify the polar codes constructed by conventional methods.

In this approach, a bit-swapping technique is employed to re-distribute the low-reliability bits

in the sub-blocks. This redistribution reduces the overall probability of the elimination of the

correct path. The numerical results for polar codes of various lengths, rates, and list sizes con-

structed with the Bhattacharyya parameter and density evolution with Gaussian approximation

show improvements which vary from 0.1 dB to 0.4 dB.

7

Chapter 1: Introduction

Shifted-pruning Scheme For Path Recovery in List Decoding

In SCL decoding, the tree pruning operation retains the L best paths with respect to a

metric at every decoding step. However, the correct path might be among the L worst paths

due to imposed penalties. In this case, the correct path is pruned, and the decoding process

fails. Shifted-pruning (SP) scheme can recover the correct path by additional decoding attempts

when decoding fails, in which the pruning window is shifted by κ ≤ L paths over certain bit

positions. A special case of shifted-pruning scheme where κ = L is known as SCL-flip decoding,

which was independently proposed in 2019. For this scheme, a metric that performs well on

any code length and rate was proposed, and a nested shift-pruning scheme was suggested for

improving the FER performance.

Efficient Partial Rewinding of SC Algorithm

It is known that for calculation of every decision log-likelihood ratio (LLR) in SC algorithm,

we need at most N − 1 values for intermediate LLRs (excluding channel LLRs) and partial

sums, instead of N · log2N values (N is the code length). In the SC-flip decoding and shifted-

pruning scheme, we need to re-decode the codeword when the decoding fails in the first run.

The common practice is re-decoding from the first bit. Starting the decoding from scratch

contributes to the computational complexity significantly. An efficient re-decoding scheme

based on the partial rewinding of successive cancellation algorithm is proposed to reduce the

additional decoding attempts’ complexity significantly. Then, this scheme is evaluated on the

shifted-pruning scheme.

Convolutional Pre-coding and List Decoding of PAC Codes

We explicitly show why the convolutional precoding reduces the number of minimum-weight

codewords. Furthermore, we show where the precoding stage is not effective based on the rate

profile. Then, we adapt the list decoding algorithm to PAC codes. Additionally, we recognize

the potential weakness of the convolutional precoding, unequal error protection (UEP) of the

information bits. Finally, we assess the possibility of mitigating this weakness by irregular

convolutional precoding.

8

Chapter 1: Introduction

Complexity-efficient Sequential Decoding of PAC Codes

The sequential decoding (including Fano decoding and stack decoding) is first adapted to

decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes,

we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid

exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern

of error occurrence in polar codes. These contribute to the reduction of the average decoding

time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction

performance within FER=10−3 range, respectively, relative to not applying the corresponding

search strategies. Additionally, as an essential ingredient in memory-efficient Fano decoding

of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial

sums is provided. This algorithmic method, which is different from the aforementioned partial

rewinding scheme, effectively backtracks and avoids storing all the intermediate information or

restarting the decoding process. Eventually, the sequential and list decoding algorithms are

compared in terms of performance, complexity, and resource requirements.

List Viterbi Decoding of PAC Codes

Motivated by the fact that the list Viterbi algorithm (LVA) sorts the candidate paths locally

at each trellis node, we adapt the trellis, path metric, and the local sorter of LVA to PAC codes.

Then, we show how the error correction performance moves from the poor performance of the

Viterbi algorithm (VA) to the superior performance of list decoding by changing the constraint

length, list size, and the sorting strategy (local sorting and global sorting) in the LVA. We also

analyze the complexity of the local sorting of the paths in LVA relative to the global sorting in

the list decoding, and we observe that LVA has a significantly lower sorting complexity than

list decoding.

1.2 Thesis Organisation

The remainder of this thesis is organized as follows. Chapter 2 reviews the concept of chan-

nel polarization, the construction of polar codes, concatenated polar codes, the encoding and

decoding algorithms. Chapter 3 covers the notion of adjusted list decoding by two approaches:

1) Allocating local list sizes to the segments of a code instead of fixed list size, and 2) balancing

9

Chapter 1: Introduction

the probability of error in different segments of a code while employing a constant list size

throughout the decoding. In Chapter 4, the concept of shifted pruning is introduced. Then, a

metric for prioritizing the bit position for shifting the pruning window is suggested. Addition-

ally, a double shifting scheme is proposed. Chapter 5 studies the basic properties of updating

the order of intermediate information in successive cancellation algorithms. Then, an efficient

scheme for partial rewinding of the SC algorithm is suggested. Chapters 6-8 are focused on PAC

codes. In Chapter 6, the properties of PAC codes are studied, and the list decoding algorithm

is adapted to PAC codes. In Chapter 7, an adaptive metric for the Fano decoding algorithm

is proposed. Additionally, several tree search strategies to reduce the complexity of Fano de-

coding are suggested. Chapter 8 adapts the list Viterbi algorithm to PAC codes and analyzes

the sorting complexity of this algorithm in comparison with the tree-based list decoding along

with the error correction performance.

10

Chapter 2

Polar Codes: A Review

“If I have seen further than others, it is by standing upon the shoulders of giants.”
— Isaac Newton

In this chapter, we review polar codes, PAC codes, and their decoding algorithms. We

mainly revise the schemes and techniques used to efficiently decode polar codes in terms of

computational or time complexity, memory requirements, and other factors. Hence, this chapter

introduces the notations and concepts we will use throughout this thesis.

2.1 Notations and Preliminaries

Let us consider the system given in Fig. 2.1, in which polar code as an error correction code

(ECC) is used in communications and storage systems. We introduce all the parameters and

the components of this system in this chapter. The block length of the polar codes is denoted

by N = 2n, where n is an integer (n > 0). The signals shown by boldface lowercase letters are

vectors. The uncoded bit vector u ∈ FN2 or uN1 ∈ {0, 1}N is input to the polar encoder. The

channel in the system is an arbitrary memoryless channel W : X −→ Y with input alphabet

X = {0, 1}, output alphabet Y, and transition probabilities {W (y|x) : x ∈ X , y ∈ Y}. The

Channel

Information Encoder
Adding

Redundantsk bits

Code
Construction

by
Polarization

Ac

N bits

Storage

Tx Rx

Write Read

Decoder

Ac

N bits

u x y
û

Interference

Interference

Fig. 2.1: ECC in Communication and Storage systems with polar codes

11

Chapter 2: Polar Codes: A Review

channel mutual information with equiprobable inputs, or symmetric capacity, is defined by

I(W) =
∑
y∈Y

∑
x∈X

1

2
W (y|x) log

W (y|x)
1
2W (y|0) + 1

2W (y|1)
, (2.1)

and the corresponding Bhattacharyya parameter by

Z(W) =
∑
y∈Y

√
W (y|0)W (y|1). (2.2)

We denote the channel input and output sequences by xN1 and yN1 , respectively, with corre-

sponding vector channel WN (yN1 |xN1).

In each use of the system, a codeword is transmitted, and a channel output vector y ∈ YN

is received. The receiver first calculates the log-likelihood ratio (LLR) vector λ = (λ1, ..., λN)

with

λi = ln
W (yi|xi = 0)

W (yi|xi = 1)
, (2.3)

for each element of the channel output vector and feeds it into a decoder for polar codes.

Throughout this thesis, all symbols and vector operations are over the binary field F2. The

logarithms are performed in base-2 unless stated otherwise.

2.2 Channel Polarization

The key idea of polar codes lies in using a polarization transformation that converts N

identical and independent copies of a physical channel W , {W (i)
N : 1 ≤ i ≤ N}, into N vir-

tual/synthetic channels which are either better or worse than the original channel W .

Consider the matrix G2
∆
=

1 0

1 1

, and let GN = G⊗n2 be the n-th Kronecker power of G2,

where n = log2N . We define WN (yN1 |uN1) = WN (yN1 |uN1 GN) as the polarized vector channel

from the input bits. From WN (yN1 |uN1) , the bit-channel (a.k.a sub-channel) i ∈ [N] is implicitly

defined as

W
(i)
N

(
yN1 , u

i−1
1 |ui

)
=
∑
uNi+1

1

2N−i
WN

(
yN1 |uN1

)
. (2.4)

12

Chapter 2: Polar Codes: A Review

The channel polarization theorem [1] states that I(W
(i)
N) converges to either 0 or 1 as N ap-

proaches infinity. It can also be shown that the fraction of the channels that become perfect

converges to the mutual information of the original channel W , i.e., I(W), meaning that po-

lar codes are capacity achieving while the fraction of extremely bad channels approaches to

(I(W)− 1).

Polar codes with rate R = K/N are constructed by selecting K indices with the highest

I(W
(i)
N) or the lowest Z(W

(i)
N) for i ∈ [N]. These are dedicated to information bits and called

the non-frozen set, A. The input bits corresponding to frozen set Ac are usually set to zero.

We further discuss the construction of polar codes in the next section.

2.3 Code Construction (Channel Selection)

The aim in constructing polar codes is to determine A set. Arıkan proposed a recursive

calculation algorithm based on the Bhattacharyya parameters for channel-reliability evaluation

in his seminal paper [1]. If the original binary discrete memoryless channel (B-DMC) is a binary

erasure channel (BEC), the erasure probabilities of the polarized channels can be tracked with

low complexity of O(N logN) by using this recursive algorithm. Equivalently, the corresponding

capacities can also be recursively calculated for the case of BEC. The complexity can be further

reduced to O(N) if the intermediate Bhattacharyya parameters are used instead [7]. However,

for channels other than BEC, the computational complexity grows exponentially with the code

length and input alphabet size.

To construct a polar code over an arbitrary symmetric B-DMC, Mori, and Tanaka in [7]

proposed the use of density evolution (DE), which are widely used in designing the LDPC

codes, for tracing the probability density function (PDF) of LLRs at variable (f) and check

(g) nodes in the factor graph shown in Fig. 2.2. The convolutions of the PDFs are performed

at the variable and check nodes. Based on the PDF of LLRs at the first stage of the variable

nodes, the error probabilities of all the polarized channels can be obtained. Similar to the

Bhattacharyya parameters, the order of magnitude of convolutions is O(N). In practice, to

keep the complexity to an acceptable level, the PDF of LLRs should be quantified into q levels.

Thus, the computational complexity of the quantized density evolution is O(q2N). However, a

typical value of q is 105, implying a substantial computational burden in practical application.

The difficulty is further aggravated by the quantization errors, which are accumulated over

13

Chapter 2: Polar Codes: A Review

multiple polarization stages. Indeed, as noted in [7] it is challenging to find an optimal tradeoff

between the implementation complexity and calculation precision.

Tal and Vardy [8] proposed an effective method to solve this problem by controlling the

quantization errors and through appropriate approximation. They wisely introduced two ap-

proximation methods called upgrading and degrading quantization to get a lower and upper

bound on the error probability of each channel. Both methods transform the relevant channel

into a new one with a smaller output alphabet in terms of µ. Then the construction complexity

with their algorithm can be evaluated as O(Nµ2 logµ). A typical value of µ is 256, so it is

much less complex than DE.

Although the increase in the output alphabet size can improve the precision of density

functions in this algorithm, it increases the algorithm complexity. For binary input additive

white Gaussian noise (AWGN) channels, the most commonly used channel model by coding

theorists, an alternative method [9] called Gaussian approximation (GA) can be applied in the

construction of polar codes. The GA has lower complexity than Tal and Vardy’s method when

applied to binary input AWGN channels but yield almost the same precision. From a practical

point of view, GA is a more attractive choice than other methods.

In the previously introduced construction methods, polar codes are constructed as a func-

tion of the channel parameters, such as designed signal-to-noise ratio (SNR). Also, their com-

putational complexity scales linearly with the code block-length, and therefore unacceptable

for practical systems with varying parameters such as block-length and code rate. They are

even infeasible to be used for an on-the-fly implementation of a low-latency encoder/decoder.

Recently, the polarization weight (PW) method was introduced in [65] which is a channel-

independent approximation method for estimating the sub-channel reliability as a function of

its index. This method relies on the β−expansion notion borrowed from number theory. The

polar codes can be recursively constructed by continuously solving several polynomial equations

at each recursive step. From these polynomial equations, we can extract an interval for β, such

that ranking the synthetic channels through a closed-form β−expansion preserves the property

of nested frozen sets is a desired feature for low-complex construction.

14

Chapter 2: Polar Codes: A Review

2.4 Encoding

In the original polar coding, the non-systematic form was used. In non-systematic form,

the input to the polar encoder is the full word of dimension N consisting of the information

bits placed at the positions in the reliable set A together with the foreknown bit placed at the

positions in the frozen set Ac, which leads to the following description of the encoding process

x = uGN = BNG⊗n2 (2.5)

where u and x are the input and output vectors, respectively, GN is the generator matrix

acting as the combining transform, kernel matrix G2
∆
=

1 0

1 1

, BN is an N × N bit-reversal

permutation matrix, and (·)⊗n denotes the n-th Kronecker power. The systematic coding [47]

can improve the bit error rate (BER) performance of polar codes whose frame error rate (FER)

performance remains unchanged.

2.5 Decoding

Polar codes were introduced along with a successive cancellation (SC) decoding algorithm

in [1]. Due to the poor performance of SC in the finite block lengths, several decoders based on

SC decoding have been introduced. We reviewed most of them in Chapter 1, in the following

sections, we focus on the most popular one.

2.5.1 SC Decoding

The channel combining in the encoding process introduces a correlation between the source

bits. As a result, each coded bit with a given index relies on all of its preceding source bits

with smaller indices. This kind of correlation can be conceptually treated as interference in the

source-bit domain, which leads to a significantly better decoding performance when exploited.

Therefore, the bits are decoded one at a time in a specified order. The bit decision ûi is made

before the calculations to find the next bit ûi+1 starts, and already decided bits influence the

decision of the following bit decisions. Successive cancellation of the ”interference” caused by

the previous bits improves the reliability of retrieving the source bits.

15

Chapter 2: Polar Codes: A Review

+

+

+

+

=

= =

=

j=1 j=2j=0

Final

LLRs

Channel

LLRs

Least

Reliable

bit

Most

Reliable

bit

�2
0

�2
1

�2
2

�2
3

�1
0

�1
1

�1
2

�1
3

�0
0

�0
1

�0
2

�0
3

β1
0

β1
1

β0
0

β0
1

β0
2

û0

û1

û2

û3

Fig. 2.2: Internal/intermediate information in SC Decoding of 4 bits

In SC decoding, the information bits are estimated by hard decision based on the final

evolved LLRs λ0
i as shown in Fig. 2.2. When decoding the i-th bit, if i /∈ A, regardless of final

LLR value λ0
i , ûi is set as a frozen bit, i.e., ûi = 0. Otherwise, ui is decided by a maximum

likelihood (ML) rule as equation (2.6) based on the previously estimated vector (û1, ..., ûi−1).

ûi = h(λi0) =


0 λi0 = ln

P (Y,ûi−1
0 |ûi=0)

P (Y,ûi−1
0 |ûi=1)

> 0,

1 otherwise
(2.6)

The decoder estimates the transmitted bits successively by computing LLRs of the indexed

edges. The LLR of edge (i, j) is computed by

λij =

f(λij+1, λ
i+2j

j+1) if B(i, j) = 0

g(λi−2j

j+1 , λ
i
j+1, β̂

i−2j

j) if B(i, j) = 1
(2.7)

where 0 ≤ i < N , 0 ≤ j ≤ n, B(i, j) = b i
2j
c mod 2 and β̂ij denotes the partial sum, which

corresponds to the propagation of estimated bits ûi backward into the factor graph shown in

Fig. 2.2. Note that i and j denote the bit index and stage index, respectively.

The f and g functions in (2.7), which are illustrated in Fig. 2.3, can be well approximated

by:

f(λa, λb) ≈ sgn(λa) · sgn(λb) ·min(|λa|, |λb|) (2.8)

16

Chapter 2: Polar Codes: A Review

+

=

��

��

�� = �(�� , ��)

β ��

���
 = �(�� , �� , β)

+

=

Fig. 2.3: Internal LLR (λ) calculations

g(λa, λb, β̂) = (−1)β̂λa + λb (2.9)

where λa and λb are the incoming LLRs to a node and β̂ is the partial sum of previously decided

bits.

2.5.2 SC List (SCL) Decoding

The polar codes under successive cancellation (SC) decoding suffer from poor error correction

performance for short and medium block lengths. To address this issue, the SCL decoding

and CRC-aided SCL decoding were adapted to polar codes in [13]. Unlike SC decoding, which

selects/follows a particular path at each decision step, the SCL decoding considers both possible

values ui = 0 and ui = 1 and finds a path through the decoding tree which has the highest

probability to be the transmitted sequence uN−1
0 . For optimal decoding, the probability to be

maximized is

P (ûN−1
0 |yN−1

0) =
N−1∏
t=0

P (ût|ûi−1
0 , yN−1

0) (2.10)

However, we cannot traverse the entire decoding tree, i.e., considering all the paths by SC and

SCL decoding. Therefore, the solution obtained from the decoding can be sub-optimal. In SCL

decoding, the probability of partial path l representing the sequence ûi−1
0 = (û0, û1, . . . , ûi−1)

is computed by

P (ûi0[l]|yN−1
0) =

i∏
t=0

P (ûi[l]|ûi−1
0 [l], yN−1

0) (2.11)

In practice, it is more convenient and practical to deal with the logarithm of (2.10). Hence,

17

Chapter 2: Polar Codes: A Review

we take the logarithm of (2.11). Since log(x) < 0 for x < 1, we multiply the resulting logarithm

by −1 to have a positive metric. Therefore, we get the following logarithmic path metric

PM
(i−1)
l = − logP (ûi−1

0 [l]|yN−1
0)

= −
i−1∑
j=0

logP (ûj [l]|ûj−1
0 [l], yN−1

0)
(2.12)

for the sequence ûi−1
0 at position l.

Now let the sequence ûi0 be obtained by appending ûi to ûi−1
0 on path l and suppose ûi. The

path metric for this longer sequence is

PM
(i)
l = −

i∑
j=0

logP (ûj [l]|ûj−1
0 [l], yN−1

0) (2.13)

= PM
(i−1)
l + µ

(i)
l (2.14)

where µ
(i)
l = − logP (ûi[l]|ûi−1

0 [l], yN−1
0) denotes the branch metric, and PM

(−1)
i = 0. Hence,

the path metric along a path ending at bit i is obtained by adding the path metric ending at

bit i − 1 to the branch metric at bit i. Throughout this paper, we assume that the index l

indicates the position of a sorted path list, i.e., PM
(i)
1 ≤ PM

(i)
2 ≤ ... ≤ PM

(i)
L and lc denotes

the index of the correct path.

To simplify the arithmetic operation, we can define µi as

µil = − logP (ûi[l]|ûi−1
0 [l], yN−1

0)

= − log

(
e(1−ûi[l])λi0[l]

eλ
i
0[l] + 1

)
= log

(
1 + e−(1−2ûi[l])λ

i
0[l]
) (2.15)

where the last equality holds only for ûi[l] = 0 and 1. For the value of ûi[l] that equals h(λi0[l]),

the term e−(1−2ûi)λ
i
0 = e−|λ

i
0| is small and hence log(1 + e−|λ

i
0|) ≈ 0. Otherwise, we can

approximate log(1 + e|λ
i
0|) ≈ |λi0|. Thus

µil = µil(λ
i
0[l], ûi[l])≈

0 if ût[l] = h(λi0[l])

|λi0[l]| otherwise
(2.16)

As (2.16) shows, the path of the less likely bit value is penalized by |λi0[l]|. This value is

18

Chapter 2: Polar Codes: A Review

called penalty throughout this thesis. At each decoding step, the L paths with smallest metrics

are chosen among 2L paths and stored in ascending order from PM
(i)
1 to PM

(i)
L . After decoding

the last bit, the path with the smallest path metric, i.e., PM
(N−1)
1 , or the path that passes the

CRC is selected as the estimated sequence.

Additionally, when the SCL decoding fails, the correct path might still be in the list but

not in the position of the most likely path. Adding an r-bit CRC as an outer code to the

information bits can assist the decoder in error detection and finding the correct path among

the L paths. However, this concatenation increases the polar code rate to (K + r)/N . In this

paper, P (N,K + r) denotes a polar code of length N with K information bits concatenated

with r-bit CRC.

2.6 Polarization-adjusted Convolutional Codes

Polarization-adjusted convolutional (PAC) codes are denoted by PAC(N,K,A, c), where

N = 2n is the length of the PAC code. A rate profiler first maps the K information bits to

N bits. Then, the convolutional transform (with polynomial coefficients vector c) scrambles

the resulting N bits before feeding them to the classical polar transform as shown in Fig. 2.4.

The information bits d = [d0, d1, ..., dK−1] are interspersed with N −K zeros and mapped to

the vector v = [v0, v1, ..., vN−1] using a rate-profile which defines the code construction. The

rate-profile is defined by the index set A ⊆ {0, . . . , N − 1}, where the information bits appear

in v. This set can be defined as the indices of sub-channels in the polarized vector channel with

high reliability. These sub-channels are called good channels. The bit values in the remaining

positions, Ac, in v are set to 0.

The input vector v is transformed to vector u = [u0, . . . , uN−1] as ui =
∑m

j=0 cjvi−j using the

binary generator polynomial of degree m, with coefficients c = [c0, . . . , cm]. This convolutional

transformation combines m previous input bits stored in a shift register with the current input

bit vi as shown in Fig. 2.5 to calculate ui. The parameter m is known as the memory of the

shift register and by including the current input bit we have the constraint length m+ 1 of the

convolutional code.

Equivalently, the convolution operation can be represented in the form of Toeplitz matrix

where the rows of a generator matrix G are formed by shifting the vector c = (c0, c1, . . . cm) one

element at a row. Note that c0 by convention is always c0 = 1, hence it is an upper-triangular

19

Chapter 2: Polar Codes: A Review

������

�����	

����
���

����	

���
�����

�������������	

���������

���	������
�������	

����������

�������

��������

����������	

������������

�

���

��

�	

�	

���

�

�

0��������	

���1������2		

������3��	4�����	�������

Fig. 2.4: PAC Encoding and Decoding Scheme

matrix. Then, we can obtain u by matrix multiplication as u = vG. As a result of this

pre-transformation, ui for i ∈ Ac are no longer frozen as in polar codes.

�� ��� ��� ��� ��� ���

� � � ���

��
�����
����
������ �"�!

��"���������"�

��"���"�

��

��"� ��"� ��"�

�
�

Fig. 2.5: An example of convolution using a shift-register

Since this convolutional transformation is one-to-one, it is not equivalent to a classical gen-

erator matrix of convolutional codes. The rate-profiling process performed before the convolu-

tional transformation creates the redundancy by inserting N −K zeros in the length-K input

sequence d.

Finally, as shown in Fig. 1 of [61], vector u is mapped to vector x (x = uPn) by the

polar transform Pn = P⊗n defined as the n-th Kronecker power of P =

[
1 0

1 1

]
. Note that the

notations G2 and GN in polar codes have changed to P and Pn in PAC codes, respectively,

due to the use of G for the convolutional transform. We also use diffident notations, depending

on the context, in this thesis.

20

Chapter 3

Adjusted List Decoding

“It’s so much easier to suggest solutions when you don’t know too much about the
problem.”

— Malcolm Forbes

List decoding is the most popular decoding algorithm used for polar codes. From Chapter 2,

we know that in the list decoding process, a number of candidates (usually a power of two)

with the highest likelihood (or at the closest distance) to be the transmitted message are

retained, and the rest are discarded after decoding each non-frozen bit. The maximum number

of candidates is determined by a parameter named list size denoted by L. This parameter is

fixed throughout the decoding process. However, if we divide a code block into equal-length

segments, a.k.a partitions, with sufficient number of frozen bits to take advantage of position

recovery explained in Section 3.3.3, usually 4 segments, we realize that the probability of the

bit errors in the segments, P
(i)
seg =

∑Nseg ·(i+1)−1
j=Nseg ·i pe,j where i = 0, ..., N/Nseg − 1, j ∈ A and

Nseg is the segment size in bits, varies significantly, in particular in the first and last segments.

Note that since we have a number of candidates in the list decoding, the block errors, i.e.,

the elimination of the correct path, may occur after more than one-bit error. A model will

be presented in Chapter 4 for block errors in the segments. The imbalance of the bit error

probability in the segments implies that we have overcapacity in terms of list size in some

segments. As Fig. 3.1 shows the sketch of an example, while Pseg varies in the segments, the

list size L remains constant. On the other hand, balancing P
(i)
seg for i = 0, 1, ..., Nseg − 1 by

employing a goal-oriented code design, may improve the block error rate.

0 1 2 3

Fig. 3.1: The probability of bit error in the segments, Pseg

21

Chapter 3: Adjusted List Decoding

In this chapter, we follow two paths to balance the available resources with the probability

of elimination of the correct candidate in the segments:

• First, we adjust the list size of each segment to the possibility of elimination of the correct

candidate. Hence, the list size will not remain constant throughout the decoding process.

This can reduce the computational complexity significantly with negligible degradation

in the error correction performance. This path was studied in [37].

• Then, we keep the list size constant, but we balance the possibility of elimination of the

correct candidate in the segments by modifying the polar code. This path was studied

in [38].

In practice, the use of probability may not be convenient. Hence we introduce a parameter

called path metric range or PMR to simplify the computations. Nevertheless, we employ the

error probability of the segments later as an alternative and more accurate method. Let us

begin by introducing the path metric range.

3.1 Path Metric Range, PMR

In this section, we investigate the behavior of the list decoder with respect to the evolution

of the path metrics within the list throughout decoding a codeword. The relation between this

evolution and the probability of an error occurrence is empirically analyzed [37]. Then, we

will advocate that a fixed list size is not essential, and it can change throughout the decoding

process, from one partition to another, depending on the properties of such partitions.

Definition 3.1 Partitions [24] are defined as the sub-trees of the decoding tree, associated with

code’s sub-blocks of length 2m, m < n, that divides the codewords into 2n−m equal-length sub-

blocks. The j-th partition and its associated sub-block are denoted by Pj, for 0 ≤ j ≤ 2n−m− 1.

In order to characterize the partitions with respect to likelihood of an error occurrence in the

list decoding, we introduce a new parameter that helps us to understand the evolution of path

metrics throughout the decoding process:

Definition 3.2 Path metric range for the i-th decoding step is defined as PMRi = PM
(i)
L −

PM
(i)
1 , where 0 ≤ i ≤ N −1, assuming that the path metrics are sorted in ascending order, i.e.,

PM
(i)
1 <PM

(i)
2 < · · · <PM (i)

L .

22

Chapter 3: Adjusted List Decoding

Fig. 3.2 shows the changes of PMR throughout the decoding process for PC(1024, 820)

(orange curve), along with final LLRs (blue bars) and the frozen bits (red bars). As can be

seen, the PMR curve elucidates the evolution of the path metrics within the list. Note that the

path metric range scales with L; thus, PMR reduces if a smaller list size is used.

Now, to analyze the changes in PMR value with respect to LLRs, the following lemma is

introduced.

Lemma 3.1 If ui is an unfrozen bit, i.e., i∈A, and |λi0[l]| < PMRi−1 for all l then PMRi <

PMRi−1.

Proof: Assuming PM
(i−1)
1 < ... < PM

(i−1)
L . After splitting the paths at step/bit i, the

2L path metrics are PM
(i−1)
1 , PM

(i−1)
1 +|λi0[1]|, ... , PM

(i−1)
L , PM

(i−1)
L +|λi0[L]|. The relation

PM
(i−1)
l <PM

(i−1)
l +|λi0[l]| holds for l = 1, 2, ..., L. Thus, considering |λi0[l]| < PMRi−1, then

PM
(i−1)
1 +|λi0[1]| < PM

(i−1)
L . Therefore all the paths greater or equal to PM

(i−1)
L are pruned in

order to make room for at least the new path PM
(i−1)
1 +|λi0[1]|. As a result, PM

(i)
L <PM

(i−1)
L ,

then PMRi < PMRi−1.

As a result of Lemma 3.1, a subsequence of k bits such that |λm0 [l]| < PMRm−1, for all l and

m = i . . . i+ k leads to a sharp drop of the PM range i.e.,PMRi+k � PMRi.

Here, let us distinguish the bit-channels causing the PMR drop by the following definition:

Definition 3.3 Crucial bits are defined as the unfrozen bits with |λi0[l]| < PMRi−1. Sj denotes

the set of indices of crucial bits in the j-th partition.

100 200 300 400 500 600 700 800 900 1000

Bit index in decoding order

0

200

400

600

800

1000

1200

F
in

a
l
L

L
R

,
|

i0
|

0

2

4

6

8

L
is

t
R

a
n

g
e

,
L

R
i

P1 P4P3P2

Fig. 3.2: Absolute values (average in 100 iterations) of bit-channel LLRs |λi0| and path metric
range (LRi), in natural decoding order for PC(1024,820)

The local minima on the PMR curve (orange) in Fig. 3.2 appear after a series of crucial bits

(see circled sections in Fig. 3.2) where most of the errors are observed.

23

Chapter 3: Adjusted List Decoding

From Lemma 3.1 and its following discussion, one can infer that if ui and uj are crucial bits

(possibly in different partitions) and PMRi�PMRj , there exists a list size L′, L′<L, so that

|λj0[l]|<PMR′j still holds for all l. Note that since PMR scales with L, then PMR′j <PMRj .

Here, L is the initial list size and PMR′ is the new path metric range obtained after reducing

the list size to L′. This leads us to the conclusion that reducing the list size in the partition

with higher minimum PMR does not affect the error correction performance, if the new list size

for that partition is chosen optimally.

As a practical method, the inverse of the average PMR over the crucial bits in j-th partition

PMR
(j)
avg can be employed to determine the local list size Lj , i.e.,

log2(Lj) ∝
1

PMR
(j)
avg

=
|Sj |∑
Sj PMRi

.

For instance, the 4-tuple of average PMR (rounded) over crucial bits in the four partitions of

the example shown in Fig. 3.2 is (PMR
(j)
avg)1≤j≤4 = (2, 3, 4, 4). Thus, the list size for the four

partitions are obtained by the mapping (2, 3, 4, 4)→ (2t, 2t−1, 2t−2, 2t−2), where the maximum

list size (L = 2t) is assigned to the partition with the smallest PMRavg. Alternatively, if we

use the PMR curve as a graphical tool, the maximum list size is assigned to the partition in

which the global minimum of PMR curve is located. The list size for the rest of the partitions

are assigned with respect to the local minima of PMR. Note that the PMR curve changes for

different code lengths and code rates.

Now, we describe the impact of PMR on the possibility of error occurrence. Assuming lc

denotes the index of the correct path. In the list decoding process, the correct path may not

always correspond to the smallest path metric PM
(i)
1 . Due to the penalties, it may have a

larger path metric PM
(i)
lc
>PM

(i)
1 .

Fig. 3.3 shows different scenarios for the movement of the correct path (with index lc)

within the list throughout list decoding. The frequent penalty scenario mainly occurs in the

partition(s) in which the local PMRavg is smaller. The olive and orange curves in Fig. 3.3

show the changes in lc in the indices below 300 which are located in P1 and P2. In the scenario

shown by olive curve, the correct path is pruned after several penalties, while the orange curve

shows the scenario where the correct path remains in the list.These scenarios show that the list

size in P1 should be large enough to retain the correct path within the list in case of bearing

frequent penalties while in the subsequent partitions P2 and P3 where PMRavgs corresponding

24

Chapter 3: Adjusted List Decoding

to crucial bits gradually increases, the list size can be reduced without any significant effects

on the error correction performance.

In the last partition, since PMR
(4)
avg is relatively large, if the correct path is penalized over

some crucial bits, the path will remain in the list due to low number of crucial bits in that par-

tition and consequently low probability of frequent penalties. Note that the index of penalized

path does not increase significantly when L is large. The blue curve in Fig. 3.3 illustrates this

scenario.

100 200 300 400 500 600 700 800 900 1000

Index of unfrozen bits in natural decoding order

2

4

6

8

10

12

14

16

In
d

e
x
 o

f
c
o

rr
e

c
t

p
a

th
,

l
c

Detected by CRC

Remained in the list after 3+2 penalties

Failure: Pruned after 4 penalties

1

Pruned
Failure

Fig. 3.3: Some sampled movements of correct path in the list, representing different scenarios,
for PC(1024,820) and L = 16

3.2 Stepped List Decoding

Since the average path metric range (PMRavg) varies from one partition to another, the

fixed list size (L) in conventional list decoding is mainly effective on the partition(s) with the

relatively small PMRavg. In the partition(s) with significantly larger PMRavg, the potential of

the L is not fully used. Hence, we can allocate different list sizes to different partitions based

on PMRavg. In this scheme, the list size changes stepwise from one partition to another and

that is the reason for calling it stepped list decoding. The effective list size for partitions are

allocated based on PMRavg. The computed PMRavg for all the partitions are clustered with

respect to a significant difference among them. For instance, the 4-tuple of rounded PMRavg

for four partitions of PC(1024,256) at 1dB is (-,38,23,24), where 23 and 24 will be in one cluster

and therefore an identical list size will be assigned to both P3 and P4. Thus, the list size

25

Chapter 3: Adjusted List Decoding

mapping could be (−, 38, 23, 24) → (2, 2t−1, 2t, 2t). As another example, since the 4-tuple of

rounded PMRavg for four partitions of PC(1024,512) at 1.4dB is (8,6,6,9), the list sizes could

be allocated as (2t−1, 2t, 2t, 2t−2). It will be seen in section 3.2.2 that by proper allocation of

list sizes to the partitions, the error correction performance will not degrade.

Note that in this chapter, although the examples are based on four partitions, the number

of partitions could be larger.

Although the memory requirement differs from one code rate to another in stepped list

decoding, the largest memory requirement can be used in multi-mode scheme, where different

settings are employed by changing the code parameters.

��
0→�−1

�
�−1

0→
�
2
−1

	
�−2

�
4
→
�
2
−1
[1 →

�

4
]

	
�−2

0→
�
4
−1
[1 →

�

2
]

�
�−2

0→
�
4
−1

�
�−2

�
4
→
�
2
−1
[1 →

�

2
]

	
�−1

0→
�
2
−1
[1 →

�

4
]

	
�−1

�
2
→�−1

[1 →
�

4
]

�
�−1

�
2
→�−1

[1 →
�

4
]

SCL(
�

2
)

SCL(
�

4
)

SCL(�)

L

Stagesnn-1n-2

Fig. 3.4: Stepped list decoding tree for PC(1024,820)

3.2.1 Computational Complexity and Memory Requirement

The proposed stepped list decoding requires significantly less memory space and less compu-

tations than conventional (CRC-aided) SC List decoding process. In this section, we investigate

the impact of the stepped list decoding on computational complexity and memory requirement

for two examples discussed in the previous section, PC(1024,820) and PC(1024,512), where the

4-tuples of the list sizes for four partitions are (L,L/2, L/4, L/4) and (L/2, L, L, L/4), respec-

tively, instead of fixed list size L for all the partitions.

26

Chapter 3: Adjusted List Decoding

LL/2L/4
1

b
it
 in

d
ex

List size

N

N/2

N/4

Fig. 3.5: Sketch of path memory in stepped list decoding of PC(1024,820)

3.2.1.1 Computational Complexity

Consider the computational complexity of the conventional list decoding, L ·N log2N . Since

the list size in the stepped list decoding changes, the computational complexity changes to (3.1),

showing that the complexity reduces 50% in 3-step scheme (Fig. 3.4).

L
N

4
log2N︸ ︷︷ ︸

1st partition

+
L

2

N

4
log2N︸ ︷︷ ︸

2nd partition

+
L

4

N

2
log2N︸ ︷︷ ︸

3rd/4th partition

=
1

2
LN log2N (3.1)

Similarly, the computational complexity for PC(1024,512) with the 4-tuple of list sizes

(L/2, L, L, L/4) can be derived as 21
32LN log2N , which is 34% less than conventional list decod-

ing process.

Note that the reduction in complexity is SNR-independent unlike the tree/list pruning tech-

niques.

3.2.1.2 Memory Requirement for Candidate Paths

Similar to computational complexity, the memory required for storing the estimated bits of

the candidate paths is directly proportional to L. The partitioning helps to allocate the path

memory efficiently. As the decoding proceeds from the last bit of one partition to the first bit

of the next partition, since L is halved, half of the allocated memory is freed, as shown in Fig.

27

Chapter 3: Adjusted List Decoding

3.5. This freed space can be used for the next partition.

As a result, the memory reduction for the proposed 3-step scheme for PC(1024,820) is

L ·N−L/4 ·N bits or 75%.

Similarly, the path memory requirement for PC(1024,512) with the 4-tuple of list sizes

(L/2, L, L, L/4) can be derived as 3
4LN , which is 33% less than conventional list decoding.

3.2.1.3 Memory Requirement for LLRs and Partial Sums

The memories required for internal LLRs and partial sums are proportional to the list size,

similar to the path memory. In the conventional list decoding, the internal LLRs, λ0→N−1
0→n−1 ,

need (N − 1) · L ·Q bits and the partial sums, β0→N−1
0→n−1 , require (N − 1) · L bits [66]. We know

that N/2 · L and N/4 · L out of (N − 1) · L memory elements are allocated to stage n− 1 and

stage n− 2, respectively. However, in the stepped list decoding for PC(1024,820), since the list

size in every subsequent partition is halved, only half of the partial sums of preceding stage

are sent backward. The aforementioned process is depicted in Fig. 3.4 by an index range in

the bracket. Note that no bracketed index ranges have been added to λn−1 of bit-channels 0

to N
2 − 1 and λn−2 of bit-channels 0 to N

4 − 1 because they are not dependent on partial sums;

therefore, they are the same for all paths in the list.

According to the above discussion for PC(1024,820), the memory requirement for LLRs and

partial sums can reduce from (3.2) in the conventional list decoding, to (3.3) in the stepped list

decoding.

MSCL= L(N−1)Qi︸ ︷︷ ︸
Internal LLRs

+ L(N−1)︸ ︷︷ ︸
Partial sums

(3.2)

MSCL−Stepped=
(
L(
N

4
−1) +

L

2
(
N

4
) +

L

4
(
N

2
)
)
Qi︸ ︷︷ ︸

Internal LLRs

+
(
L(
N

4
−1) +

L

2
(
N

4
) +

L

4
(
N

2
)
)

︸ ︷︷ ︸
Partial sums

= L(
1

2
N−1)Qi︸ ︷︷ ︸

Internal LLRs

+L(
1

2
N−1)︸ ︷︷ ︸

Partial sums

(3.3)

where Qi is the number of bits used in quantization of internal LLRs. Note that in all cases,

channel LLRs require an additional memory of NQch bits, where Qch is the number of quanti-

zation bits for channel LLRs. This is omitted from the above equations for simplicity.

28

Chapter 3: Adjusted List Decoding

By comparing (3.3) with (3.2), it is concluded that the memory reduction using stepped list

decoding is 50% in the proposed 3-step scheme for PC(1024,820).

Similarly, the memory required for internal LLRs and partial sums of PC(1024,512) with

the 4-tuple of list sizes (L/2, L, L, L/4) can be derived as L(21
32N−1)Qi + L(21

32N−1), which is

34% less than the conventional list decoding.

3.2.2 Numerical Results

The LLR-based stepped CA-SCL decoder is implemented for polar code of N=210 and the

code rates R = K/N = 0.8 and 0.5 over AWGN channel. The polar codes are constructed

using Bhattacharyya parameter (heuristic) method and optimized for high SNRs. The 16-bit

CRC generator polynomial g(x) = x16 +x12 +x5 +1 is used for correct path detection. For

stepped list decoding of PC(1024,820) and PC(1024,512), the list size 4-tuples (32, 16, 8, 8) and

(16, 32, 32, 8), respectively, are used for the partitions. Fig. 3.6 compares the performance

of conventional CRC-aided SCL decoder with the proposed one. The proposed stepped list

decoding preserves the performance of conventional list decoding with fixed list size in various

code rates.

3.2 3.4 3.6 3.8 4 4.2 4.4

E
b
/N

0
 [dB]

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

PC(1024,820), R
eff

=0.816

CA-SCL, L=32

Stepped CA-SCL, L={32,16,8,8}

1.4 1.6 1.8 2 2.2 2.4 2.6

E
b
/N

0
 [dB]

10-6

10-5

10-4

10-3

10-2

10-1

PC(1024,512), R
eff

=0.516

CA-SCL, L=32

Stepped CA-SCL, L={16,32,32,8}

Fig. 3.6: Performance of the Stepped CA-SCL vs CA-SCL Decoding

29

Chapter 3: Adjusted List Decoding

3.2.3 An Alternative Algorithm

As finding average PMRi is costly and requires running tens of iterations, an alternative

method is proposed in this section. This method is based on the probability of bit error in each

segment, P
(i)
seg

P (i)
seg =

Nseg ·(i+1)−1∑
j=Nseg ·i

pe,j (3.4)

where i = 0, ..., N/Nseg − 1, j ∈ A, pe,j ≈ Q(
√
|λi0|/2) is the error probability of bit j and Nseg

is the segment size in bits. Let us denote denote nseg = N/Nseg Pseg = [P
(0)
seg , P

(1)
seg , ..., P

(nseg−1)
seg]

By discarding the segments with P
(i)
seg = 0, i.e., the segments fully covered by frozen bits, we

find the standard deviation σseg of P
(i)
seg’s. The standard deviation helps us in classification of the

segments, to distinguish a meaningful difference between the segments in terms of distribution

of low-reliability bits. Then, Algorithm 1 allocates local list sizes to the segments. Observe

that we have three options for the list sizes of the segments; L,L/2, L/4. The segments with

σseg and 2σseg less than Pmaxseg will get list size L/2 and L/4, respectively. Note that in line 7,

we have a constant for the number of frozen bits in the segments. This constraint guarantees to

some extent the backward movement of the correct path as shown in Fig. 3.3. This downward

movement is called position recovery and will be discussed further in section 3.3.3.

In this method, we trade off FER performance with complexity and memory requirement.

Note that the FER performance in some cases based on the method in the previous section

will degrade significantly, however, in the alternative method, the FER performance will be

preserved almost for any codes. In fact, the reason for FER degradation with the main method

for Stepped decoding is not taking advantage of frozen bits in the beginning of each segment

for position recovery.

Fig. 3.7 shows numerical results for FER performance using the alternative algorithm,

Algorithm 1 based on four segments for various codes. The generator polynomial used for CRC

and for precoding in PAC codes are 0xA5 and 0o133, respectively. The polar codes for N = 256

and 512 are designed by DE/GA method [9] with design-SNRs 2 dB and 4 dB, respectively.

As can be observed, the performance of the codes is preserved with this method, however

there is a negligible degradation when we use CRC-polar codes. The main reason is a smaller

number of choices for detecting the correct path at the end of decoding (due to elimination of

the correct path in the last segment) while in non-CRC-aided decoding, the path with highest

30

Chapter 3: Adjusted List Decoding

Algorithm 1: Stepped List Decoding: Allocation of local list sizes to the segments

input : A, L, Pseg, σseg, nseg
output: L = [L0, L1, ..., Lnseg−1]

1 // Initialization;
2 Pmaxseg = max(Pseg);

3 Nfz
seg ← Find the number of frozen bits in each segment

4 for i← 0 to nseg − 1 do

5 if P
(i)
seg = 0 then

6 Li = 1;

7 else if P
(i)
seg < Pmaxseg − σseg and Nfz

seg[i] > 3 then

8 if P
(i)
seg < Pmaxseg − σseg then

9 if Li−1 ≤ L/2 and i 6= 0 then
10 Li = L/4;

11 else
12 Li = L/2;

13 else
14 Li = L/2;

15 else if P
(i)
seg < Pmaxseg − σseg then

16 Li = Li−1;

17 else
18 Li = L;

31

Chapter 3: Adjusted List Decoding

likelihood is selected as a solution.

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R
N=512, R=1/2, SCLD, L=32

Polar [L,L,L,L]

Polar [L/2,L,L,L/4]

PAC [L,L,L,L]

PAC [L/2,L,L,L/4]

CRC-Polar [L,L,L,L]

CRC-Polar [L/2,L,L,L/2]

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
v
e

ra
g

e
 T

im
e

-s
te

p
s

N=256, R=1/2, SCLD, L=32

Polar [L,L,L,L]

Polar [L/2,L,L,L/2]

CRC-Polar [L,L,L,L]

CRC-Polar [L/2,L,L,L/2]

Fig. 3.7: Performance comparison of the alternative algorithm for allocation of the local list
sizes

3.3 Error Occurrence in List Decoding

Toward balancing the error probability in the segments and improving the performance of

the code, as discussed earlier in this chapter, the properties of list decoding is first investigated

in this section. This analysis is instrumental in understanding the behavior of list decoding and

will be used to devise an approach for code modification in Section 3.4.

3.3.1 Error Occurrence in SC and SCL Decoding

In the SC decoding, the error occurs by the first wrong estimation of a bit-value and then

this error successively propagated. However, in SCL decoding, the correct candidate might

remain in the list until end of the process despite one wrong error in estimation of a bit-value

based on ML rule in (8.5) and accepting a penalty based on (8.6).

32

Chapter 3: Adjusted List Decoding

Location of error occurrence, N=256, R=0.5, L=1, DE/GA

64 96 128 160 192
0

0.02

0.04

0.06

0.08

0.1

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

Location of elimination of correct path, N=256, R=0.5, L=2, DE/GA

64 96 128 160 192

Bit index in decoding order

0

0.02

0.04

0.06

0.08

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

due to 1 penalty

due to 2 penalties

Fig. 3.8: Error occurrence in SC (or SCL when L=1) and SCL decoding

As Fig. 3.8 illustrates, on the bit indices where the peak of errors in SC decoding, the SCL

decoding can retain the correct path in the list and thus the error (i.e., the elimination of the

correct path due to one penalty) on those bits reduces. The orange bars shows the location of

correct path elimination due to two penalties which are located on the indices larger than the

indices of peak of errors on the SC graph. That means SCL decoding is tolerating a penalty

(in case of L=2) and retaining the correct path until the second penalty occurs. This is the

reason why the peaks of elimination due to 2 penalties in segments 64-128 and 128-192 in the

bottom graph appear after the peaks in the corresponding segments in the top graph. Note

that among the data collected in SCL decoding with L=2 in Fig. 3.8, only 17 eliminations

out of 2000 eliminations occurred due to 3 or 4 penalties which can be explained by recovery

phenomenon in section 3.3.3.

An interesting point here is that unlike SC decoding, most of the the eliminations are not

occurring on the least reliable bits in segments 64-128 and 128-192 although most of the penalties

33

Chapter 3: Adjusted List Decoding

occurring there.

In order to devise a model for probability of elimination of the correct path, in the next

section, we propose a parameter that expands our understanding of list decoding behavior.

3.3.2 Path Metric Range as a Tool

Evolution of the PMs of the paths remaining in the list throughout the decoding process

indicates when the correct path might be eliminated from the list, i.e., block error occurrence.

To characterize the sub-blocks of polar codes with high likelihood of error occurrence, we use

the parameter PMR and the notion of crucial bits introduced Section 3.1.

(a) PMR vs Mean LLR for P(1024,820) with L=32

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

200

400

600

800

1000

D
e
c
is

io
n
 L

L
R

,
|

i0
|

0

2

4

6

8

P
a
th

 M
e
tr

ic
 R

a
n
g
e

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Bit index in decoding order

0

0.02

0.04

0.06

0.08

0.1

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y
\
o
f
E

lim
in

a
ti
o
n

0

2

4

6

8

P
a
th

 M
e
tr

ic
 R

a
n
g
e

(b) PMR vs Probability of Elimination for P(1024,820) with L=32

Fig. 3.9: Absolute values of bit-channel LLRs |λi0| and path metric range (PMR), averaged, in
decoding order for P(1024, 820) and L=32

The local minima on the PMR curve (orange) in Fig. 3.9 (a) appear after a series of crucial

bit. Most of the eliminations of the correct path are observed in the sub-block that includes

the global minimum given that there are enough number of low-reliability bit-channels. The

reason is that the bit-channels with low-reliability and relatively small LLR could be penalized

34

Chapter 3: Adjusted List Decoding

and due to small or narrow PMR, this results in PM
(i−1)
lc

+ |λi[lc]| > PM
(i−1)
L , which is led to

elimination of the correct path in the pruning process. We can write this inequality in terms of

PMR as follows: (PM
(i−1)
lc

− PM (i−1)
1) + |λi[lc]| > PMRi−1. In [17], (PMlc − PM1) was called

relative path metric (RPM). Thus, the narrower, the PMR is, the higher the possibility of

elimination of correct path will be. If PMR is large or wide, a large penalty |λi[lc]| is required

for elimination of correct path which is less likely to happen due to higher reliability of the

bit-channels with large LLR magnitude.

The following lemma indicates the bit-channels with relatively higher reliability in the sub-

block where PMR stays steady.

Lemma 3.2 If i∈A, i.e., ui is a free bit, and |λi0[l]| > PMRi−1 for all l then PMRi = PMRi−1.

Proof: Since |λi0[l]| > PMRi−1 for all l, then PM of penalized paths at decoding step i

will be PM
(i−1)
l + |λi0[l]| > PM

(i−1)
L , causing these paths to be pruned. Thus, since PM

(i)
l =

PM
(i−1)
l , the path metric range remains unchanged, i.e., PMRi = PMRi−1.

Note that increase in PMR is caused by the frozen bits where the penalty (mainly due to error

propagation, refer to the discussion in Section 3.3.3) increases PM value of most of the paths

in the list except the correct path. This consequently widens PMR over frozen bit-channels as

shown by jumps on PMR curve in Fig. 3.9 (a).

More reliable sub-blocks are the ones in which there is a smaller number of crucial bits and

the local minimum of PMR curve is significantly larger than global minimum. Note that the

number of sub-blocks has to be power of 2 to be matched with the distribution of row-weights

in GN .

3.3.3 Position Recovery of Correct Path

When the correct path (with index lc) is penalized during list decoding, i.e., PM
(i)
lc

+ |λi0[lc]|

in (8.6), it moves from a position with a higher likelihood of being the correct path to a position

with the lower likelihood (e.g. from position 2 to 4 in the ascending ordered list based on PM -

value). However, under certain circumstances which will be explained in this section, the correct

path moves in the opposite direction and gradually recovers the position 1 as shown in Fig.

3.10.

It is known that there are two sources of error in estimating the bit-values: 1) channel

35

Chapter 3: Adjusted List Decoding

100 200 300 400 500 600 700 800 900 1000

Bit index of free bits in natural decoding order

2

4

6

8

10

12

14

16

P
o

s
it
io

n
 o

f
c
o

rr
e

c
t

p
a

th
 i
n

 l
is

t Remained in the list after frequent penalties

Pruned after frequent penalties (Decoding Failure)

New position after penalty

Pruned Path

Recovery

Fig. 3.10: Examples for movement of the correct path within the sorted list of paths for
P(1024, 820) with L=16

noise that affects low reliability bit-channels (event N), 2) error propagation (event G) due to

dependency to the previously estimated bits. Let us first consider the scenario that estimation

error occurs due to event G only. In decoding of frozen bits, since the bit-values are known,

the bits are estimated correctly; however, due to error propagation, inequality (3.5) holds for

the probability of estimating ui caused by event G, PG, which may lead to imposing penalty

on the incorrect paths.

PG(ûi = 0|Ui−1
0 = ûi−1

0 [lc]) > PG(ûi = 0|Ui−1
0 6= ûi−1

0 [l]) (3.5)

where l = {1, 2, · · · , L}\lc.

Inequality (3.5) says that when all the previous bits U i−1
0 are estimated correctly (i.e., Ui−1

0 =

ûi−1
0 [lc]), the probability of estimating bit i correctly (without penalty) is higher than the cases

that some of the previous bits are estimated incorrectly, which is true about incorrect paths.

As a result, the incorrect paths over the frozen bits with relatively high reliability are penalized

in most cases. This might end in the following movement of PMlc , for instance: (PM
(i−1)
1 , . . . ,

PM
(i−1)
lc−1 , PM

(i−1)
lc

, . . . , PM
(i−1)
L)→(PM

(i−1)
1 + |λi0[1]|, . . . , PM

(i−1)
lc

, PM
(i−1)
lc−1 + |λi0[lc − 1]|,

. . . , PM
(i−1)
L + |λi0[L]|). By accumulation of these penalties after a sub-sequence of frozen bits

(e.g. k bits), the path metrics of incorrect paths grow larger, and this eventually results in

PM
(i+k)
l > PM

(i+k)
lc

for l = {1, 2, · · · , L}\lc, which means lc = 1.

Now, let us involve the estimation error caused by event N in the process, particularly

over low reliability bits where PN is relatively high. In this scenario, the correct path may

also be penalized. Therefore, the correct path does not move to a more likelihood position.

36

Chapter 3: Adjusted List Decoding

PM8 = 9.0

PM7 = 8.9

PM6 = 8.8

PM5 = 8.7

PM4 = 8.6

PM3 = 8.3

PM2 = 7.9

PM1 = 6.8

Frozen Bit i

PM8 = 9.5

PM7 = 9.2

PM6 = 9.0

PM5 = 8.9

PM4 = 8.8

PM3 = 8.7

PM2 = 8.1

PM1 = 7.1

Frozen Bit i+1

PM8 = 10.5

PM7 = 10.3

PM6 = 9.5

PM5 = 9.2

PM4 = 8.9

PM3 = 8.8

PM2 = 8.5

PM1 = 7.1

Frozen Bit i+2

Fig. 3.11: A numerical example of growing of path metrics (PMs) of incorrect path resulted in
pushing the correct path (green boxes) downward

Nevertheless, as our observation shows, at a sub-sequence of frozen bits which includes high

reliability bits, the absence of event N in the decoding of a few bits is enough for a partial

recovery to happen.

The heatmap in Fig. 3.12 shows the accumulated movements of correct path throughput

the decoding process. As can be seen, there is a downward movement over a subsequence of

bit-channels which are all or predominantly frozen bits. Note that the recovery might be partial

or full. The full recovery mean the correct path can move down to position 1.

In [9], this recovery occurs by introducing dynamic frozen symbols of type II where ui, i ∈ Ā,

is set to some linear function of non-frozen bits ui−1
0 . As a result, the incorrect paths are most

likely penalized and their path metrics grow resulting in the correct path moving downward.

The experiments show that employing dynamic frozen symbols results in obtaining a code with

higher minimum distance. note that in the scheme proposed in [9], there is no CRC to detect

the correct path at the end of the decoding process. Thus dynamic frozen bits of type I and

II help to move the correct path downward and keep it on the most likely position in the list.

However, finding the effective linear combination of some random non-frozen bits to perform a

full recovery is a difficult job.

37

Chapter 3: Adjusted List Decoding

96 128 160 192 224 256

Bit index in decoding order

8

16

24

32

P
o
s
it
io

n
 i
n
 t
h
e
 l
is

t

0

2

4

6

8

10

12

Fig. 3.12: Movement of correct path during decoding of 320,000 random codewords of
P(256,128) with L=32. The arrows show the recovery

3.3.4 Elimination of Correct Path

The correct path is pruned from the list, predominately, due to multiple penalties. The

larger the list size is, a larger number of penalties can be tolerated. Experimental results show

that the events resulting in the elimination of the correct path can be classified into three

categories for which the probability of elimination are estimated as follows:

3.3.4.1 Penalty in segment(s) with small PMR

When the correct path is penalized and the penalty value is large enough, the updated path

metric becomes larger than the largest path metric in the list from the previous decoding step.

i.e., PM
(i−1)
lc

+ |λi[lc]| > PM
(i−1)
L , then the correct path is pruned from the list. The correct

path could be on the position 1, lc = 1, in this case, PMR should be locally small such that

the updated PM
(i)
lc

could surpass PM
(i−1)
L . However, if the correct path has been penalized in

the previous decoding steps and lc > 1, the pruning might also occur over the bits with locally

large PMR. Fig. 3.13 shows that most of the eliminations are happening where PMR is at low

level, where the reliability of the bit-channels is relatively low. The elimination at bits with

relatively high PMR occurs due to lc > 1. This event is denoted event A and the probability

of elimination in this case is estimated as below:

PrAi ≈ Pr(Pi| ∩
i−1
v=1 Ev) · Pr(PM

(i−1)
lc

+ |λi[lc]| > PM
(i−1)
L) (3.6)

38

Chapter 3: Adjusted List Decoding

PMR (avg) vs Pr(E
i
) for P(256,128) with L=8, CRC8 @ E

b
/N

0
=2 dB

64 128 192 256
0

0.02

0.04

0.06

0.08

0.1

E
s
ti
m

a
ti
o

n
 o

f
 P

r(
E

i)

0

2

4

6

8

P
a

th
 M

e
tr

ic
 R

a
n

g
e

 (
P

M
R

)

Fig. 3.13: Relation between PMR and the event of elimination of correct path

where Pi and Ei denote the events that the correct path being penalized and being eliminated,

respectively, at bit i.

3.3.4.2 Incorrect paths versus correct path

The correct path is not penalized but the position of the correct path in the list is such that

the path metric(s) of penalized branches of incorrect paths become smaller than path metric of

the correct path. This event happens when there are incorrect paths with index l < lc which

have path metric PM
(i−1)
l < PM

(i−1)
lc

and quite small |λi[l]| such that the penalized split paths

will have path metric PM
(i)
l + |λi[l]| < PMlc . This results in pushing out the correct path from

the list in the pruning process in order to make room for the incorrect path with smaller path

metric. This event only happens on the bit-channels with least reliability scores given that the

aforementioned condition satisfies. Thus, the share of this event in total number of elimination

is not significant. The probability of this event which is denoted by B is estimated as follows:

PrBi ≈
(

1− Pr(Pi| ∩i−1
v=1 Ev)

)
·∏

L−lc≤|{l|l<lc}|, lc≥L/2

Pr(PM
(i−1)
l + |λi[l]| < PM

(i−1)
lc

)
(3.7)

39

Chapter 3: Adjusted List Decoding

3.3.4.3 Combination of event A and B

When the correct path is penalized but the condition for event A is not satisfied, if the

condition of even B satisfies for lc < L/2, the correct path is eliminated. In the other words, if

the amount of penalty is not enough to make the correct path pruned, the incorrect paths with

l < lc satisfy the condition of event B , the correct path is pruned. The experimental results

show that this event which we denote by C rarely happens.

In summary, the probability of elimination of the correct path at bit i is upper bounded by:

Pr(Ei) ≤ PrAi + PrBi + PrCi (3.8)

However, since event B and C do not contribute significantly in total number of eliminations

of the correct paths, for the sake of simplicity, we approximate the probability of elimination

by Pr(Ei) ≈ PrAi

Now Let us analyze the effect of change of parameters involved in (3.6). As discussed

in [37], throughout the decoding process, by increasing the bit index within a block-segment,

PMR and consequently PML decrease over low-reliability bits while |λ| increases. That means

the term Pr(PM
(i−1)
lc

+ |λi[lc]| > PM
(i−1)
L) increases. In this situation, if the correct path is

penalized over bit i (the event Pi) given that the correct path is still in the list, the probability

of elimination, Pr(Ei), also increases. Now, the position of the correct path in the list, l,

depends on the history of penalties tolerated by the correct path over the previous bits. If the

correct path has been penalized at least once over the previous bits, then lc > 1 and PMlc is

closer to PML; therefore, Pr(|λi[lc]| > PM
(i−1)
L − PM (i−1)

lc
) increases. On the other hand, as

|λi0| increases, Pr(Pi) ≈ Q(
√
|λi0|/2) [9] reduces. As a result, Pr(Ei) for vulnerable bits [30]

increases and reaches a peak and then gradually reduces as the blue bars in Fig. 3.13 show

for sub-blocks covering bits 64-128 and bits 128-192. The set of vulnerable bits Vj are the

low-reliability non-frozen bits usually with minimum row weight (in GN) located in the j-th

sub-block.

3.4 Goal-oriented Code Modification

In this section, we show how to modify the construction of polar codes based on what

we learned from the analysis in Section 3.3. This modification adapts polar codes to the list

40

Chapter 3: Adjusted List Decoding

decoding process and results in an improvement in the error correction performance.

3.4.1 How to reduce probability of elimination?

Before proposing a method for code modification, we look at the factors involved in the

elimination of the correct path. As (3.6) shows, low-reliability bits can contribute in the elim-

ination in two ways: (1) If PMR is large, they may penalize and move the correct path to a

location in the list with index lc > 1. If the penalty |λi[lc]| is large, the correct path might

be eliminated directly despite large PMR. (2) If PMR is small, they may cause pruning of the

correct path regardless of the value of index lc. Note that PML in (3.6) is proportional to

PMR; PMRi = PM
(i)
L − PM

(i)
1 . Thus, if we can shift the PMR curve upward in the segments

where the probability of elimination is high, we can improve the error correction performance.

In section 3.3.3, it was explained how frozen bits cause growing the path metrics in the list and

consequently increasing PMR. The gradual increase of PMR in Fig. 3.13 is due to the frozen

bits. Now, if we freeze a low-reliability bit which may cause the elimination immediately (i.e.,

over that specific bit) or later (i.e., over next bits by increasing lc > 1), not only it will con-

tribute in reducing the eliminations due to that specific bit, but also affect the PML or PMR

over the next bits and consequently reduces P (Ei) according to (3.6). Consider a segment of

bit-channels, e.g. segment 64-128 in Fig. 3.13, the question is which bit to freeze? Shall we

freeze the bit that the largest number of eliminations is occurring there (the tallest blue bar)

or the least reliable bit? Note that these two bits are not the same. Freezing the least reliable

bit will have more impact because that bit is also indirectly contributing in the eliminations

over the next bits. In order to retain the code rate unchanged, we need to unfreeze a strong

frozen bit, i.e., frozen bit with relatively high reliability, in a segment that the least number of

elimination is happening there. In Fig. 3.13, this segment is bit-segment 192-256. Although

this unfrozen bit has a low reliability but since PMR and PML are relatively large, according

to (3.6), it does not cause a significant number of elimination. The process of unfreezing and

freezing bit-channels in pairs is called bit-swapping.

3.4.2 Code Modification

Based on the divide-and-conquer principle, we divide the block code into sub-blocks (indexed

by j = 0, 1, ...). By choosing the right length for sub-blocks, M = N/2m = 2n−m where 2m = sb

is the number of sub-blocks, based on the recovery phenomenon and the redistribution of some

41

Chapter 3: Adjusted List Decoding

of the vulnerable bits among the sub-blocks, we can reduce the probability of elimination in

the sub-blocks upper bounded by
∑

i∈{j.2m,...,(j+1).2m−1} P (Ei). The limited redistribution of

bits among sub-blocks by bit-swapping results in balancing the probability of elimination in

different sub-blocks.

Since bit-swapping (i.e., unfreezing a strong frozen bit in response to freezing a vulnerable

bit) affects the properties of sub-blocks, this process is performed one pair at a time, then the

properties of sub-blocks are extracted again and the next pair for swapping is chosen accordingly.

Here, for the sake of simplicity and also due to effectiveness of freezing least reliable non-frozen

bits (see section 3.4.1), we can find a certain number of low-reliability non-frozen bits in the

whole code block and then list them in each sub-block and count them to find {|Vj |. These

numbers along with minimum local PMRs (averaged over enough number of iterations) could

be used for characterizing the sub-blocks. For measuring the reliability of bits, one cane use the

evolved mean of LLRs extracted from density evolution with Gaussian approximation (DE/GA)

method [9]. Note that the sub-blocks with larger {|Vj | usually have smaller min PMR because

there are more crucial bits that cause dropping the PMR value gradually in the sub-block.

The objective is to minimize the maximum element of the set {|V1|, |V2|, . . . , |Vsb|}, subjected

to three constraints: 1) the number of the bits frozen is equal to the number of the bits freed

(to retain the code rate), 2) the number of the vulnerable bits frozen in each sub-block is

proportional to the number of vulnerable bits in that sub-block, 3) the number of the frozen

bits freed in each sub-block is inversely proportional to the total number of crucial bits in that

sub-block.

3.4.3 Bit-Swapping Algorithm

To modify the construction, assuming b pairs of free/frozen bits are required to swap. Since

we cannot determine the optimal value of b, if b is chosen larger than optimal in Algorithm 2,

after an optimal number of pairs was swapped, the swapping will alternate between a specific

pair of free and frozen bits back and forth; for instance, between indices 142 � 91, which

does not affect the performance. Thus, choosing the right value for b is not crucial. These b

bits are selected one at a time from a fixed number of candidates (assuming there are c + c

candidates among frozen and free bits). The number of combinations for bit-swapping appears

to be huge. For instance, if c = 15 bits and b = 10 bits, the total number of combinations will

be
(

15
10

)
·
(

15
10

)
= 3003 × 3003. Fortunately, the constraints for swapping the bits in sub-blocks

42

Chapter 3: Adjusted List Decoding

reduce the number of potential combinations significantly.

Algorithm 2 illustrates a greedy search that implements the bit-swapping process. In this

algorithm, a pair of one free bit and one frozen bit are swapped at each cycle of the main loop

in line 1. For the bit-swapping process, the properties of bit-channels and sub-blocks such as

reliability of bit-channels, the number of low reliable bits in each sub-block, are required. Thus,

at the beginning of every cycle of the main loop, the average of LLRs and PMRs are extracted

from the decoding of some random codewords (line 3). LLR is used as a reliability measure in

the algorithm, and it helps in finding the best pairs for swapping at each cycle. The LLR are

sorted and then in lines 4 and 5, the indices of c most reliable frozen bits and c least reliable

free bits are stored in the first row of the 2-dimensional vectors W and Z, respectively, along

with their associated sub-blocks in the second row. The first inner loop in line 12 to 19 is

used for finding the best candidate bit to freeze. This bit is searched among the least reliable

bits in the sub-blocks with the largest number of low reliable bits because according to Section

3.3.4, the probability of elimination in these sub-blocks is higher. The number of free potential

candidates (top c indices in W) in the sub-blocks is counted in line 6 and the sorted indices of

sub-blocks are stored in vector Bw.

The second inner loop in line 22 to 29 is used for finding a strong frozen bit to make it free.

This bit is searched among the most reliable frozen bits in the sub-blocks with the small number

of crucial bits, |Sj |. The values of D[j] = |Sj | are computed based on PMR, then sorted and

stored in vector D in line 8. This algorithm requires to recognize the end of tree expansion

(i.e., the index of log2 L-th free bit named logL bit) in order to avoid freezing any bit before

that (line 9).

Note that for obtaining a better results, the process of bit-swapping could be performed

by considering more than one choice for freezing, in particular, at each swapping step and

studying the its effect on the next swapping step. For good codes constructed using DE/GA

or Tal-Vardy method, a fewer number of swapping is required and the bits for freezing should

be chosen carefully. This approach may not improve significantly the short codes because the

number of choices for swapping is limited.

As we suggested for the stepped list decoding in Section 3.2.3, since finding LLR and PMR

is costly, alternatively, one can use pe,j and P
(i)
seg in (3.4), as measures for reliability of bit j and

segment i, respectively. Note that similar to Algorithm 2 where we update PMR after swapping

each pair of bits (freezing and unfreezing), we need to update P
(i)
seg as well.

43

Chapter 3: Adjusted List Decoding

Algorithm 2: Goal-oriented Code Modification: Bit-Swapping Process

input : A, L, b, c, sb
output: modified A

1 for i← 1 to b do
2 // Initialization;

3 Extract LLR and PMR vectors from decoder(A, L);
4 [W [1], W [2]] ← 1: indices of top c low-reliability free bit-channels in ascending

order of their LLRs, and 2: indices of their associated sub-blocks;
5 [Z[1], Z[2]] ← 1: indices of top c high-reliability frozen bit-channels in descending

order of LLRs, and 2: indices of their associated sub-blocks;
6 [Bw, Bz] ← count number of bits in W and Z vectors existing in sub-block 1 to

sub-block sb;
7 Bs

w ← indices of sorted Bw in descending order;
8 D ← count crucial bits existing in each sub-block, then sort the non-zero ones in

ascending order;
9 logL bit ← index of (log2 L)-th free bit;

10 // Freezing a vulnerable bit:
11 j ← 0;
12 do
13 j ← j + 1;
14 for k ← 1 to sb do
15 if W [2][j] = Bs

w[k]
16 and Bw[W [2][j]] > Bz[W [2][j]] then
17 exclude bit W [1][j] from set A;
18 break;

19 while k = sb+1 ;
20 // Unfreezing a strong frozen bit:
21 j ← 0;
22 do
23 j ← j + 1;
24 for k ← 1 to sb do
25 if Z[2][j] = D[k]
26 and Z[1][j] > logL bit then
27 include bit Z[1][j] into set A;
28 break;

29 while k = sb+1 ;

44

Chapter 3: Adjusted List Decoding

3.5 Numerical Results

The LLR-based CRC-aided (CA) SCL decoder is used for evaluation of bit-swapping on polar

codes of length N=210 and the code rates R = K/N = 0.8 and 0.5 over AWGN channel. The

16-bit CRC generator polynomial g(x) = x16+x12+x5+1 is used in CA-SCL decoding. Polar codes

are first constructed using Bhattacharyya parameter method and optimized for high SNRs. The

design-SNRs for R = 0.5 and 0.8 are 5 and 7 dB, respectively. The bit-swapping process is

performed at Eb/N0 = 2 and 4 dB for R = 0.5 and 0.8, respectively. Fig. 3.14 compares

the performance of polar codes constructed using the Bhattacharyya parameter method and

modified code via bit-swapping under CA-SCL decoding. The proposed code modification for

list decoding improves the performance of polar codes constructed by Bhattacharyya parameter

method in almost the entire Eb/N0 range by 0.2 dB and 0.4 dB for R = 0.5 and 0.8, respectively.

Since there are significantly more low reliable bit-channels in high-rate codes for redistribution

in the modification process, the amount of improvement is more than that in medium-rate codes.

Fig. 3.15 illustrates the changes reflected on the PMR curves after bit-swapping, corresponding

to the results in Fig. 3.14. As another example, Fig. 3.16 shows the improvement of P(512,

256) constructed using DE/GA method. This code was not modified using the Alg. 2 but

manually 3 bits from sub-blocks covering bits 64-128 and 128-192 were chosen based on the

reliability to be swapped with the frozen bits in the two last sub-blocks. Similarly, Fig. 3.17

shows the performance gain of 0.1-0.2 dB for P(256,128) designed by DE/GA method under

CA-SCL decoding.

3.5.1 Summary

In this chapter, we considered an imbalance in the fixed resources (computations and mem-

ory, which are reflected in the list size) used for list decoding in each segment of the block

and the need for these resources based on the probability of elimination of the correct path in

various segments. To adjust the resources to the need, we followed two tracks: 1) allocation of

the list size locally based on the characteristics of the segments, 2) changing the characteristics

of the segments to be adjusted with the available resources. To this end, we first analyzed the

list decoding process by introducing a new parameter named path metric range and tracking

the correct path within the list concerning the value of this parameter. Then, as the first track,

we proposed a complexity-reduced memory-efficient list decoder in which the list size changes

45

Chapter 3: Adjusted List Decoding

3.2 3.4 3.6 3.8 4 4.2 4.4

E
b
/N

0
 [dB]

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

PC(1024,820), R=0.8, CA-SCL, L=32

Conventional Construction

Modified Construction via

Bit-swapping, sb=16, b=15, c=50

1.4 1.6 1.8 2 2.2 2.4 2.6

E
b
/N

0
 [dB]

10-6

10-5

10-4

10-3

10-2

10-1

F
E

R

PC(1024,512), R=0.5, CA-SCL, L=32

Conventional Construction

Modified Construction via

Bit-swapping, sb=16, b=15, c=50

Fig. 3.14: Performance of the Modified Construction via Bit-swapping and Conventional
Construction

in the subsequent partitions of the decoding tree. The results of simulations for polar codes

of length 1Kb and R = 0.5 and 0.8 showed that the performance of the conventional list de-

coder in the stepped list decoding scheme is preserved. However, the stepped SCL decoding

maximally can reduce the path memory by 75% and LLRs memory and partial sums memory

and computational complexity by 50%. The stepped list decoding can reduce the complexity

in the partitioned SCL decoding and lower the memory requirement in tree-pruning schemes.

Alternatively, it was suggested to use the segments’ bit error probability for allocating the local

list sizes for the segments. The latter method was more effective in preserving the FER perfor-

mance on almost any code, while the former can degrade the performance though it requires

less memory space.

For the second track, we analyzed the recovery of the correct path and the probability

of elimination of the correct path. Then, an approach to modify the code construction to

adapt it to list decoding was proposed. Based on this approach, a greedy algorithm for bit-

swapping was introduced to modify the construction. The numerical results showed a significant

improvement in error correction performance. The improvement in high-rate codes and long

codes was more significant than the other codes. This method for bit-swapping also can improve

the performance of polar codes which are not optimized.

46

Chapter 3: Adjusted List Decoding

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Bit index in decoding order

0

5

10

15

20

P
a

th
 M

e
tr

ic
 R

a
n

g
e

PMR curves for P(1024,512) with L=32

Before Bit-swapping

After Bit-swapping

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Bit index in decoding order

0

2

4

6

P
a

th
 M

e
tr

ic
 R

a
n

g
e

PMR curves for P(1024,820) with L=32

Before Bit-swapping

After Bit-swapping

Bits to be frozen

Bits to be freed

Bits to be frozen

Bits to be freed

62

222

End of tree expansion

(upto log
2
L branches)

Fig. 3.15: Effect of Bit-swapping on PMR curve

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
b
/N

0
 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,256), R=0.5, CRC16=0x1021, L=8

DE/GA

Polar-RM

DE/GA with 4 bits swapped

Fig. 3.16: Improved performance of the code constructed by DE/GA method

47

Chapter 3: Adjusted List Decoding

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

E
b
/N

0
 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(256,128), R=0.5, CRC8=0xA5, L=8

DE/GA

DE/GA with 2 bits swapped

DE/GA with 3 bits swapped

Fig. 3.17: Improved performance of the code constructed by DE/GA method

48

Chapter 4

Shifted-pruning Scheme for Path Recovery

“Each problem that I solved became a rule which served afterwards to solve other
problems.”

— René Descartes

It is known that the correct path in the SCL decoding may remain in the list after the

error occurrence in the estimation of the bit values, unlike SC decoding. However, it may

no longer be the most likely path at position l = 1 in the sorted list. In this chapter, we

analyze the elimination of the correct path based on some numerical findings. Then, we look

at the movement of the correct path in the sorted list and propose a metric that indicates the

possibility of the elimination. This elimination can be avoided by changing the list-pruning

rule. Where the probability of the elimination of the correct path is high, we shift the pruning

window to keep the correct path in the list. This scheme is called shifted-pruning scheme and

can avoid multiple errors in bit estimation (represented by accumulated penalties). Note that

the shifted-pruning scheme is also known as bit-flip for SCLD [35]1 or SCL flip decoding.

4.1 Elimination of the Correct Path

4.1.1 Numerical Analysis

As we observed in (2.14), the path metric is calculated recursively by accumulating the

penalties when ût[l] 6= h(λi0[l]). Fig. 4.1 illustrates the number of penalties (ρ = 1, 2, ..., 6)

causing the elimination of the correct path for P (256, 128 + 8) under CRC-aided SCL decoding

with 8-bit CRC generator polynomial g(x) = x8 +x7 +x6 +x4 +x2 +1 at different list sizes.

These data are collected over 2000 block errors at FER=10−3. This figure shows that as the list

size increases, a larger number of penalties is required to eliminate the correct path. In simple

words, as the list becomes wider, the correct path has more space to move within the sorted

list and therefore it can tolerate more penalties. We will show the probability of progressive

accumulation of penalties in the next section.

1The work in [32], independently and before [35], was submitted to ITW2019 on Apr. 10, 2019, presented on
Aug. 26 in Visby, Sweden, and published on IEEE Xplore on Feb. 10, 2020

49

Chapter 4: Shifted-pruning Scheme for Path Recovery

2 4 8 16 32

List Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

1 penalty

2 penalties

3 penalties

4 penalties

5 penalties

6 penalties

Fig. 4.1: Relative frequency of number of penalties leading to elimination of the correct path
at different list sizes for P (256, 128 + 8) under SCL decoding

Another interesting observation in Fig. 4.1 is that a single penalty is the cause of less

than 20% of the block errors at a relatively large list size (e.g. L = 16, 32). Our observation

shows that these single penalties occur over the bit-channels with relatively large |λi0| where

PMi of the correct path because the penalty becomes larger than the path metric range [37],

PMRi = PM
(i)
L − PM

(i)
1 , and consequently the correct path is pruned. It was shown in [37]

that PMR value is near or at local minimum over these bit-channels.

Fig. 4.2 shows relative frequency of the elimination of the correct path at different bit

positions and Fig. 4.3 compares it with PMR for every bit position. As can be seen, the

relative frequencies of eliminations in two middle 64-bit segments of N = 256 are shown by

different colors. Segments are equilength ordered set of bits which are obtained by dividing a

block code xN−1
0 into M sub-blocks of size 2m bits where M = N/2m = 2n−m. One can observe

a trend of increasing the frequency of elimination from the beginning of a sub-block, reaching a

peak and then decreasing the frequency. Later in this section, we will explain the reason behind

this trend based on the error probability of bit-channels, and then we will define a set of bits

that contribute the most in the penalties.

50

Chapter 4: Shifted-pruning Scheme for Path Recovery

64 96 128 160 192

Bit index (in decoding order)

0

0.02

0.04

0.06

0.08

0.1

0.12

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

Fig. 4.2: Relative frequency of elimination caused by more than one penalty over bit-channels
for N = 256, R = 0.5 and L = 8

PMR (avg) vs Frequency of Elimination for P(256,128+8) with L=8 @ E
b
/N

0
=2 dB

64 128 192 256
0

20

40

60

80

100

120

140

160

180

F
re

q
u
e
n
c
y
 o

f
E

lim
in

a
ti
o
n
 (

o
u
t
o
f
2
0
0
0
)

0

1

2

3

4

5

6

7

8

P
a
th

 M
e
tr

ic
 R

a
n
g
e
 (

P
M

R
)

Fig. 4.3: Comparison of PMR and the relative frequency of elimination caused by more than
one penalty over bit-channels for N = 256, R = 0.5 and L = 8

51

Chapter 4: Shifted-pruning Scheme for Path Recovery

4.1.2 An Effective Metric

We are interested in a metric for the list decoding that resembles the reliability of bit-

channels in a single path SC decoding. That is, a metric that indicates where the possibility

of the elimination of the correct path is relatively higher than other bit coordinates. When the

difference between P (ûi[l] = 0|ûi−1
0 [l], yN−1

0) and P (ûi[l] = 1|ûi−1
0 [l], yN−1

0) is small for every

l ∈ [1, L] due to small |λi0[l]| (c.f. (2.15)), the possibility of bit error at i for every l ∈ [1, L]

is relatively high. Given that we are not aware of the location of the correct path among the

L paths before path splitting at each decoding step i, this could be the coordinate that the

correct path can be eliminated. To indicate these coordinates, we use the probability ratio

∆i =
P (ûi0[2L])

P (ûi0[1])
(4.1)

Clearly, P (ûi0[2L]) < P (ûi0[1]). The large value of this ratio indicates that P (ûi0[2L]) and

P (ûi0[1]) are close. This implies that the correct path could be among L worst path in terms

of path metric due to high possibility of bit error for all the paths.

In practice, we prefer addition over division. Hence, we take the logarithm of (4.1) and as

P (ûi0[2L]|yN−1
0) < P (ûi0[1]|yN−1

0), we multiply it by -1 to have a positive metric.

δi = − log(∆i) = − log
(P (ûi0[2L]|yN−1

0)

P (ûi0[1]|yN−1
0)

)
= logP (ûi0[1]|yN−1

0)− logP (ûi0[2L]|yN−1
0)

= −
(
− logP (ûi0[1]|yN−1

0)
)

+
(
− logP (ûi0[2L]|yN−1

0)
)

(2.12)
= PM

(i)
2L − PM

(i)
1

(4.2)

The metric δi is denoted also by PMR2 as δi is an expanded path metric range (PMR)

covering path 1 to path 2L.

Algorithm 3 illustrates a modified list decoder to implement the shifted-pruning scheme. In

this algorithm, the length of the shift is equal to κ = L/2 as assigned in line 1. In the modified

SC list decoding, if the decoding fails (line 10), the shifted-pruning scheme is performed on one

of the bits in the 1st column of σ at every decoding attempt. The 2nd column of σ includes

σi of those bits in the first run. The maximum number of attempts equals T , as shown in line

12. The shifted-pruning operation is performed in line 27 over only one bit at each decoding

52

Chapter 4: Shifted-pruning Scheme for Path Recovery

attempt. Note that in this algorithm, L can be considered as a path list and a path is an object

with properties such as the data vector, the intermediate LLR vector, partial sums vector, etc.

Now, we present a simple model for error occurrence in the list decoding. To explain the trend

observed in Fig. 4.2, first we consider the elimination due to two penalties only which follows

the same trend. Assuming the first non-frozen bit in a segment is indexed i, the possibility of

occurring the second penalty increases by factor of
(
b
1

)
as we proceed with the decoding from

bit i + b onward where b = 1, 2, In this analysis, we just consider the low-reliability bits

of the segment. Note that here we are assuming the second penalty occurs on the current bit

and the first penalty on one of the previous bits. For example, if the second penalty occurs

on bit i + 1 where j = 1, the first penalty could have only occurred on bit i, while in case of

the occurrence of the second penalty on bit i + 4 where j = 4, the first penalty could have

occurred on bit i, i+ 1, i+ 2, or i+ 3. Now, let j and ν denote the index of current bit and the

number of penalties occurred up to and including bit j in a segment, respectively. In general,

the probability that the ν-th penalty occurs at bit j = 0, 1, ... is

Pj(ν) ≈ pe,j
∑

B⊂{0,...,j−1}
|B|=ν−1

∏
r∈B

pe,r
∏
s∈Bc

(1− pe,s) (4.3)

where pe,j , pe,r, and pe,s are the bit error probability due to channel noise for bit j. The

sum in (4.3) represent the probability of occurring ν − 1 penalties out of j bits which are

located before j-th bit. This probability follows the Poisson binomial distribution in which

we consider all the combinations of ν − 1 independent penalties with unequal probabilities.

Although the error probability of the bit-channels are not generally independent, this model

gives a good approximation. Sizing the segments properly results in the preservation of the

shape of binomial distribution shown in Fig. 4.2.

Note that the probability of elimination of the correct path differs from the probability of

ν accumulated penalties though they look proportional. The penalties imposed on the correct

path move it within the sorted list towards l = L and beyond (i.e., elimination event). The

more penalties are imposed, the larger the movement within the list will be.

53

Chapter 4: Shifted-pruning Scheme for Path Recovery

Fig. 4.4: Shifting the pruning window by L paths during list pruning operation at bit v ∈ V

4.2 Shifted-pruning Scheme for Path Recovery

The correct path is pruned from the list when it has a relatively large PM due to the

accumulated penalties and falls among the paths with indices L + 1 to 2L in the sorted list.

Thus, one can think of changing the rule for tree pruning to avoid the elimination of the correct

path.

When the decoding fails in the first attempt in the list decoding of polar codes, an effective

way to recover the correct path is to retain the L paths with the largest PMs (instead of L

paths with the smallest PM values) over a bit (or bits in multiple decoding attempts) where

there is a high probability of elimination of the correct path. This operation shown in Fig. 4.4

is named shifted-pruning because in the process of selection of the paths to remain in the list,

the reference for the first path in the pruning window is shifted by κ = L, i.e. we select the

path κ+ 1 to path L+ κ (instead of path 1 to path L) in the PM -based sorted list of paths.

Although κ = L seems to be a natural value to recover the correct path where it is pruned,

it turns out that it suffers from a drawback. The bit index that the correct path is pruned

should be identified accurately, otherwise the correct path is missed. This exact identification

may require many full decoding attempts which contributes in the time complexity. However,

when κ < L, e.g. κ = L/2, depending on the position of the correct path in the sorted list, it

54

Chapter 4: Shifted-pruning Scheme for Path Recovery

Fig. 4.5: Shifting the pruning window by κ paths during list pruning operation at bit v ∈ V

can still avoid the elimination of the correct path. Fig. 4.6 illustrates an example of elimination

due to three penalties at bit i + 1, i + 2, and i + 4 recovered by κ = L (right) and κ = L/2

(left). As Fig. 4.6 shows, the positions L+1 to 2L−L/2 cover nearly 90% of the pruned paths.

These statistics were collected from the same experiment as the one discussed in Section 4.1.

On the other hand, if instead of the exact position of the elimination, the pruning window is

shifted over a bit near that, by choosing κ = L/2 the correct paths located at positions L/2 + 1

to L may still remain in the list. Hence, the problem of exact identification of the elimination

position can be relaxed by κ = L/2.

As a general scheme for shifting the pruning window, κ can vary in interval 0 ≤ κi ≤ L on

different bit indices, 0 ≤ i ≤ N − 1. Fig. 4.5 shows shifting the pruning window by κ paths

in general over bit v. Obviously, κi = 0 for i ∈ Ac and high-reliability bit indices. Finding a

practical method to determine κi is an open problem. Studying the movement of the correct

path using Monte Carlo method may provide a set of patterns for {ki}. A good pattern is the

one that can reduce the complexity substantially at low degradation cost. In section 4.4, we

will show the results of a simple pattern for the variable shifting scheme.

4.3 Toward Nested Shifted-pruning Scheme

Elimination of the correct path may not be prevented by just one-time shifting throughout

decoding a codeword. Let us first look at some statistics, and then we refine our scope of the

55

Chapter 4: Shifted-pruning Scheme for Path Recovery

Algorithm 3: List Decoder with Shifted-pruning

input : the received vector yN1 , non-frozen set A, L
output: the recovered message bits ûN1

1 [T, t, κ, crcPass]← [20, 0, L/2, false]
2 δ[1 : K + r, 1 : 2]← {0}
3 do
4 if t=0 then
5 ûN1 [1..L], δ ← SCLD(yN1 ,A, L, t, κ)
6 Sort δ with respect to 2nd column

7 else
8 ûN1 [1..L] ← SCLD(yN1 ,A, L, t, κ)

9 for l← 1 to L do
10 if CRC(ûN1 [l]) = success then
11 ûN1 ← ûN1 [l]
12 crcPass = true

13 if crcPass = false then
14 t← t+ 1

15 while t ≤ T and crcPass = false
16 return ûN1
17 subroutine SCLD(yN1 ,A, L, t, κ):
18 j ← 1; L ← {1} // a single path in the list

19 for i← 1 to N do
20 Perform step i of SCL Decoding:
21 - Prune paths when i ∈ A AND |L| > L:
22 if t 6> 0 then
23 L ← {1, ..., L}
24 δ[j, 1 : 2]← [i, PM

(i)
2L − PM

(i)
1]

25 j ← j + 1

26 else
27 if δ[t, 1] 6= i then
28 L ← {1, ..., L}
29 else
30 L ← {κ+ 1, ..., L+ κ}

31 return ûN1 [1..L], δ

56

Chapter 4: Shifted-pruning Scheme for Path Recovery

Fig. 4.6: L/2-shift (κ = L/2) vs L-shift during pruning operation.

investigation and propose a scheme. Suppose there is an oracle in the list decoder that can

avoid the elimination at any bit indices by shifting the pruning window. Fig. 4.7 shows a

relative frequency of need to one shift comparing with multiple shifts of the pruning window to

recover the correct path throughout the decoding process of one codeword. As this figure shows,

at high SNR regimes, the number of multiple shifting is relatively small. Now, let us observe

the performance improvement due to multiple shifts. Fig. 4.8 shows the error correction gain

obtained from multiple shifts is significantly higher than one-time shifting. The notation “SP”

in the figure is used for oracle-assisted shifted-pruning and x in “SPx” indicates the number of

shifts applied throughout one decoding iteration to avoid the elimination of the correct path.

Observe that SP3 achieves the performance of maximum likelihood (ML) decoding. As can

be seen in Fig. 4.8, if we use the full critical set in additional decoding attempts for the case

SP1, the FER performance is expected to be as good as the oracle-assisted performance. Note

that we use 16-bit CRC to reduce the probability of the false detection of the correct path in

this example significantly. As the other dashed curves show, employment of nested shifts could

improve the performance further. However, finding the right combination of the bit indices for

shifting requires a massive search.

Given that the error prevention by more than two shifts occurs rarely at the high SNR

57

Chapter 4: Shifted-pruning Scheme for Path Recovery

1 1.5 2

E
b
/N

0
 [dB]

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 [
%

]

SP1: 1 shift

SP2: 2 shifts

SP3: 3 shifts

SP4-: >3 shifts

Fig. 4.7: Relative frequency of the number of oracle-assisted recoveries of correct path through-
out decoding by one or multiple shifting of the pruning window (SPx,x=1,2,...) in 30000
codewords of P(512,256+12) under CRC12-aided list decoding with list size L = 8.

regimes, due to difficulty and need to a computationally-expensive search for finding the right

combination of positions for more than two shifts, we only focus on double shifting in this

section. Fig. 4.9 illustrates a sketch of double shifting.

Two shifts can occur in the vicinity, i.e., v2−v1 ≤ d (d is the vicinity parameter) or far from

each other in two different segments. Fig. 4.10 shows the proportion of occurrence of these two

cases at different SNR regimes.

We cover multiple shifting occurring in different segments in Section 4.3.1 and the pair-

shifting in the vicinity in Section 4.3.2.

4.3.1 Segmented Shifted-pruning

In segmented/partitioned list decoding [23,24], we have to use multiple short CRCs to detect

the correct path in each segment. Unfortunately, this may cost us a code rate when the sum

of these short CRCs is larger than a single CRC for the whole codeword and consequently this

brings a slight performance degradation. Note that the probability of undetected error (false

detection of the correct path) by a short CRC is high [30]. Considering that we need to run

additional decoding in the shifted-pruning scheme, the probability that an incorrect path is

58

Chapter 4: Shifted-pruning Scheme for Path Recovery

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

E
b
/N

0
 [dB]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

P(512,256+16), R=1/2, L=2, CRC16, Shifted-pruning (SP)

SC

CA-SCL(2)

CA-SCL(2) w/ SP1 (CS-based)

CRC-polar (ML)

CA-SCL(2) w/ SP1 (Oracle-assisted)

CA-SCL(2) w/ SP2 (Oracle-assisted)

CA-SCL(2) w/ SP3 (Oracle-assisted)

CA-SCL(2) w/ SP4 (Oracle-assisted)

Fig. 4.8: Performance oracle-assisted list decoding with multiple shifts

detected by CRC as the correct path increases significantly due to increase in the number of

iterations. Thus, the bad news is that we cannot expect to obtain the performance of nested

shifts as shown in Fig. 4.8. However, there is a good news which is a significant reduction in

the computational complexity by using segmented list decoding. The reduction in complexity

comes from the fact that we do not need to apply shifting on the whole code-block. For

example, in decoding P(512,256+2×8) with two segments for which 8-bit CRCs are used, if the

elimination occurs in the first segment only, we just apply the additional decoding iterations

on that segment and once the correct path was recovered, the second segment may not require

additional decoding attempts. Therefore, the additional computational complexity introduced

by additional attempts halves for this codeword. Note that the failures through detecting

incorrect paths due to employing short CRCs are traded off by successes due to multiple shifts,

one shift in each segment, and overall, the performance improvement remains almost the same

at small list size.

For computational complexity comparisons, since the block-length N is fixed, we drop N ·

logN from the computational complexity O(LN logN), hence, we use the average list size L as

a measure of complexity of the shifted-pruning scheme. Now, let denote the total iterations and

total decoded messages during decoding, and number of segments by t, c, and s, respectively,

the computational complexity of non-segmented and segmented decoding schemes are computed

by O((t−cc + 1) · L) = O(tc · L) and O((t−cs·c + 1) · L). Note that in the segmented decoding, t

59

Chapter 4: Shifted-pruning Scheme for Path Recovery

Fig. 4.9: Nested shifting by k paths at bit v1, v2 ∈ V during pruning operation

refers to the iteration in each segment; hence the total iterations are sum of iterations at all

segments. Furthermore, t− c indicates the additional iterations performed for shifted-pruning

to correct the error.

4.3.2 Double-shifting: Ordered-pairs

As the numerical analysis showed, in the presence of severe noise, when the correct path is

recovered by shifting the pruning window, it might be eliminated at the next consecutive low-

reliability bit or a bit in the vicinity due to bit-channels correlation. Here, we propose a scheme

to avoid the elimination by shifting at two close positions within a segment. Obviously, first we

try to recover the correct path by a single shift. As Fig. 4.11 shows, if the initial T attempts

fail, multiple shifting may recover the correct path. We do not always try the pair-shifting

but we perform it when the chance of recovery by pair-shifting is high. We use the following

criteria: If among top 5 out of T sorted positions with respect to the metric, the majority of

them belong to a specific segment. This could be a sign that we are facing a low-reliability

segment. Otherwise, it is not suggested to try multiple shifting as it is quite costly in terms of

time and computational complexity.

After detecting a low-reliability segment, we sort the bit indices belong to this segment

60

Chapter 4: Shifted-pruning Scheme for Path Recovery

1 1.5 2

E
b
/N

0
 [dB]

0

20

40

60

80

100

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y
 [

%
]

In-vicinity

Far

Fig. 4.10: Relative frequency of the number of 2 shifts at positions in vicinity (v2 − v1 ≤ 10)
and at positions in farther distance (v2 − v1 > 10).

Fig. 4.11: The procedure of double-shifting when the single shift at T positions fails.

appeared among the T positions in descending order. Let us call these bit indices as critical

bits of the segment. The pairs are selected as shown in Fig. 4.12. That is, the first sorted

position is paired with the second position. If the decoding fails, the first position is paired

with the third position. After trying all the combinations of the first position with with the

three positions in the vicinity, we try all the combinations of the second position paired with

each of the three positions before that. Let us denote the number of positions in the vicinity for

pairing as π. This parameter should not be large as the possibility of elimination for the second

time is higher in the close vicinity due to a stronger correlation between the bit-channels in the

vicinity. Needless to mention that a large π may not increase the chance of recovery but it adds

a significant number of failed iterations. One can choose π = 2 instead of 3 in the vicinity to

reduce the complexity because the second time elimination is predominantly occurs at a close

position. Note that the vicinity parameter d is different with π because in between v1 and v2,

there might be frozen bit-channels or non-frozen reliable bit-channels.

61

Chapter 4: Shifted-pruning Scheme for Path Recovery

Fig. 4.12: Position pairing scheme for double shifting. Positions A,B,C,D,E belong to one
segment where A<B<C<D<E. The pairing starts from E: (E,D), (E,C), (E,B), then D: (D,C),
(D,B), and son on.

4.4 Numerical results

To evaluate the performance of the proposed metric δi, a.k.a PMR2, polar codes of length

N = 29 and 210 with the code rate of R = K/N = 0.5 are constructed using density evolution

under Gaussian approximation [9] while optimized for high SNRs with design-SNRs of 2 dB

and 3 dB, respectively. The LLR-based CRC-aided (CA) SCL decoder is used with 12-bit and

16-bit CRC generator polynomial of 0xC06 and 0x1012. Note that we use the same polynomials

for the rest of the simulations as well. Fig. 4.13 compares the FER performance of PMR2 with

the performance of the conventional CRC-aided (CA) SCL decoding. The gain is about 0.2 dB

at FER range of 10−3 for both. As it was discussed in section 4.1.2, the metric in [35] does not

provide a good performance for medium code lengths.

Fig. 4.14 and 4.15 show the FER performance and the relative complexity of the segmented

shifted pruning using two segments protected by two 8-bit CRCs with the generator polyno-

mial 0xA5. The code P(512,256+16) was constructed by DE/GA method and design-SNR=4.

According to this figure, a significant reduction in the complexity is obtained at the cost of o.1

dB degradation in the performance. Furthermore, the performance for list size L = 2 overlaps

with the non-segmented decoding except at high SNRs, while there is a gap of about 0.1 dB

62

Chapter 4: Shifted-pruning Scheme for Path Recovery

1 1.5 2 2.5

E
b
/N

0
 [dB]

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,256+12), CA-SCL, L=8, T=20

CA-SCL

CA-SCL, =L,[9]

CA-SCL w/ SP, =L/2,PMR2

CA-SCL w/ SP,Oracle-aided

1 1.5 2

E
b
/N

0
 [dB]

10
-3

10
-2

10
-1

10
0

A
v
e
ra

g
e
 T

im
e
-s

te
p
s

PAC(1024,512+16), CA-SCL, L=8, T=20

CA-SCL

CA-SCL, =L,[9]

CA-SCL w/ SP, =L/2,PMR2

Fig. 4.13: FER performance for P(512,256+12) and P(1024,512+16)

for L = 8. This gap appears due to the high probability of undetected error when using short

CRCs, particularly when the number of candidates to check at large list size is significantly

more than L = 2. On the other hand, this slight degradation can be traded with a significant

reduction in the computational complexity as shown in Fig. 4.15.

Fig. 4.16 illustrates the FER performance gain and the complexity growth of double-shifting

under the ordered-pair scheme in comparison with single shifting. It seems that double shifting

is approaching the performance of the oracle-assisted with a single shift. We observe in [32]

that the oracle-assisted gain can be obtained by T equal to the size of the critical set [18]

which is large and imposes a huge complexity (see [32]) while double shifting can approach that

performance with less complexity.

4.5 Summary

In this chapter, we analyzed the elimination of the correct path in the list decoding process.

Then, the shifted-pruning scheme was proposed to significantly reduce the probability of elim-

ination of the correct path in additional decoding attempts when the decoding fails. Then, we

suggested a new metric for shifted pruning scheme that significantly improves the performance

63

Chapter 4: Shifted-pruning Scheme for Path Recovery

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

E
b
/N

0
 [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,256+16), R=1/2, L=2,8, CRC16/CRC8x2, Shifted-pruning (SP)

CA-SCL, L=2

CA-SCL w/ SP, L=2, Shifts=L, T=74, Segments=2

CA-SCL w/ SP, L=2, Shifts=L, T=74

CA-SCL, L=8

CA-SCL w/ SP, L=8, Shifts=L, T=74, Segments=2

CA-SCL w/ SP, L=8, Shifts=L/2, T=19

CA-SCL w/ SP, L=8, Shifts=L, T=74

L=8

L=2

Fig. 4.14: Error correction performance under segmented CA-SCL decoding with shifted prun-
ing (SP) and CA-SCL decoding with constrained shifted pruning (SP)

of the shifted pruning scheme compared with the available metrics. In contrast, this metric

is computationally simple and works with LLR-based SCL decoding. Then, a double-shifting

scheme is suggested to prevent a portion of errors that require two shifts by an oracle. This

scheme improves the FER performance at a reasonable complexity cost.

64

Chapter 4: Shifted-pruning Scheme for Path Recovery

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

E
b
/N

0
 [dB]

0
2
4

8

16

32

64

A
v
e

ra
g

e
 C

o
m

p
le

x
it
y

P(512,256+16), R=1/2, L=2,8, CRC16/CRC8x2, Shifted-pruning (SP)

CA-SCL L=2

CA-SCL w/ SP, L=2, Shifts=L, T=74, Segments=2

CA-SCL w/ SP, L=2, Shifts=L, T=74

CA-SCL L=8

CA-SCL w/ SP, L=8, Shifts=L, T=74, Segments=2

CA-SCL w/ SP, L=2, Shifts=L/2, T=19

CA-SCL w/ SP, L=8, Shifts=L, T=74

Fig. 4.15: Average complexity under segmented CA-SCL decoding with shifted pruning (SP)
and CA-SCL decoding with constrained shifted pruning (SP)

1 1.5 2 2.5

E
b
/N

0
 [dB]

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(256,128+12), CA-SCL, L=8, T=20 =L/2, T=20, PMR2

CA-SCL

CA-SCL w/ SP1

CA-SCL w/ SP2

CA-SCL BF [9]

CA-SCL w/ SP1-Oracle

1 1.5 2 2.5

E
b
/N

0
 [dB]

10

15

20

25

30

35

40

45

A
v
e
ra

g
e
 L

is
t-

s
iz

e

CA-SCL

CA-SCL w/ SP1

CA-SCL w/ SP2

CA-SCL BF [9]

Fig. 4.16: Comparison of FER performance and the computational complexity (equivalent to
average list size considering additional attempts) of double-shifting and single shifting

65

Chapter 5

Efficient Partial Rewind of SC Algorithm

“If I had an hour to solve a problem I’d spend 55 minutes thinking about the problem
and 5 minutes thinking about solutions.”

— Albert Einstein

Decoding of polar codes and their variants requires passing the channel log-likelihood ratios

(LLRs) through the factor graph shown in 2.2. The evolved information at the output of the

factor graph is used to make a hard decision or to calculate a metric in the SC-based decoders.

The evolved LLR, a.k.a decision LLR, is obtained for each bit-channel successively. To calculate

each decision LLR, we need to access the intermediate information on the factor graph. There

are two ways to access them:

• Naive approach: We can store all the N · log2N intermediate values, including LLRs

and partial sums on the factor graph. This approach is acceptable for short codes under

SC decoding or Fano decoding. However, as the code gets longer, in particular under

list decoding or stack decoding, this approach will be expensive in terms of memory

requirement.

• Efficient approach: It was observed in [66] that for calculating every decision LLR, we

need at most N − 1 intermediate LLRs (excluding channel LLRs) and partial sums. We

will discuss this approach in detail in Section 5.1.

Some decoding schemes require additional decoding attempts when the decoding fails in the

first attempt. These schemes are as follows:

• SC-flip decoding: In this scheme, when SC decoding fails, the decoding is repeated from

scratch, while in the additional attempts, a single or multiple bits are flipped throughout

the SC decoding process [25].

• Shifted-pruning: This scheme was discussed in Chapter 4. Note that a special case of

this scheme is also called SCL flip scheme or path-flipping for SCL decoding.

• Fano decoding: In this scheme, the decoder may have a back-tracking or backward

movement to explore the other paths on the decoding tree. Unlike the first two schemes

66

Chapter 5: Efficient Partial Rewind of SC Algorithm

where the decoding of a codeword is completed, and then the additional decoding is

repeated from the first bit, in the Fano algorithm, the backward movement occurs some-

where between the first bit and the last bit. This scheme is discussed in Chapter 7.

In this chapter, we propose an approach to efficiently rewind the SC algorithm from the

last bit to the position that we need to flip the value of a bit in SC-flip decoding or to shift

the pruning window in the shifted-pruning scheme [67]. We will discuss this method for Fano

decoding in Chapter 7.

5.1 Efficient Updating of Intermediate Information

5.1.1 Intermediate LLRs

The factor graph shown in Fig. 5.1 has N log2N nodes however, as it was shown in [66], it

is sufficient to update/access at most N −1 intermediate LLRs (including decision LLR) out of

N log2N LLRs for decoding any bit ui, 0 ≤ i ≤ N − 1. Fig. 5.1 illustrates the LLRs associated

with decoding bit u3 in a tree form on the factor graph. As can be seen, there are 2s LLRs in

stage s for s = 0, ..., n. Hence, according to the geometric series, we need a total memory space

of
n∑
s=0

2s = 2n+1 − 1 = 2N − 1 (5.1)

Suppose ui is the bit that was just decoded and bin(i) = in−1...i0 is the binary representation

of index i where the least significant bit is indexed 0 and most significant bit is indexed n− 1.

. The stages are updated from right to left (where s = 0). The first stage to be updated is

obtained by finding the first one, ffo, or the position of the least significant bit set to one as

η(i) = ffo(in−1...i0) =


min
it=1

(t) i > 0

n− 1 i = 0

. (5.2)

Note that in the semi-parallel hardware architecture, since the LLRs are stored in blocks,

memory usage is inefficient such that there will be some unused memory space. In fact, the

reduction in the number of processing elements is traded with slightly higher clock cycles and

larger memory space (for more information, see [66]).

67

Chapter 5: Efficient Partial Rewind of SC Algorithm

u0

u1

u2

u3

u4

u5

u6

u7

Fig. 5.1: An illustrative example for updating LLRs for decoding bit u3. λ3
0 = λ0 is computed

based on λ1, λ2 and β2
0 = β0 = û2 (see Fig. 5.2).

5.1.2 Partial Sums

The Partial sums are the other set of intermediate information needed for the SC process.

It turns out that we need the same memory space for the partial sums as well, i.e., at most

N − 1 memory elements. It was observed in [66] that we need to store 2s bits corresponding

to 2s nodes of type g at stage s, which are waiting to be summed with the next decoded bit.

Here, let us define an operator that indicates the last stage to be updated. The last stage that

its partial sums to be updated is obtained by finding the first zero, ffz, or the position of the

least significant bit set to zero as

ψ(i) = ffz(in−1...i0) = min
it=0

(t). (5.3)

It turns out that this is the only stage that consists of g nodes in the process of updating LLRs

from stage s = ffo(bin(i)) up to s = 0. Clearly, after decoding the last bit where there is no

68

Chapter 5: Efficient Partial Rewind of SC Algorithm

u0

u1

u2

u3

u4

u5

u6

u7

Fig. 5.2: An illustrative example for updating partial sums of stage s = 2 after decoding u3.

zero in the binary representation of the index, bin(N − 1) = 11...1, there is no need to update

partial sums.

Fig. 5.2 shows N − 1 = 8 − 1 = 7 partial sums (β0 to β6) associated to u3. The β values

in orange are updated after decoding bit u3 as β6 = u3, β5 = u3 ⊕ β0, β4 = u3 ⊕ β2, and

β3 = u3 ⊕ β1 ⊕ β3.

There are methods proposed in [68, 69] for hardware implementation that require slightly

less memory space for updating partial sums.

You may notice that for i ∈ [0, N − 2], we have

ψ(i) = η(i+ 1) (5.4)

That is the reason why at any bit i ∈ [1, N − 1], the stage η(i) where its LLRs needs to be

updated consists of only g nodes. Therefore, after decoding bit i − 1, the partial sums of this

stage are updated to be used for the g nodes at stage η(i).

69

Chapter 5: Efficient Partial Rewind of SC Algorithm

5.2 Properties of SC Process

We discover some properties of the SC algorithm that can help us to rewind the process

efficiently. The goal is not storing all the N log2N values for LLRs and partial sums or restarting

the SC process from bit 0 in the SC-based decoding when a re-decoding attempt is required.

First, let us define an operator that helps us in the upcoming analysis.

Definition 5.1 The operator φ(j) finds the last zero, flz, or the position of the most significant

bit set to zero in the binary representation of j = (jn−1...j0)2 indexed in reverse order as

φ(j) = flz(jn−1...j0) =


n− 1−max

jt=0
(t) j < 2n − 1,

n− 1 j = 2n − 1

(5.5)

for every t ∈ [0, n− 1]. We denote the output of the operator φ(j) by parameter p.

Note that since the indexing is in the opposite direction when the most significant bit is set

to zero, i.e., jn−1 = 0, then we get p = 0, and when the only zero bit is j0 = 0 or there is no

0-value bit, then p = n− 1.

Definition 5.2 (Set Zp) We group the bit indices j ∈ [0, 1, ..., 2n − 1] based on the identical

p = φ(j) into n sets denoted by set Zp with order p = 0, 1, ..., n− 1, or

Zp = {j ∈ [0, 2n − 1] : φ(j) = p} (5.6)

Example 5.1 For n = 3, we can group the indices 0 to 7 into the following sets: Z0 =

{0, 1, 2, 3}, Z1 = {4, 5}, and Z2 = {6, 7}.

Remark 5.1 The distribution of non-frozen indices in set A among sets Zp, p ∈ [0, n − 1]

depends on the code rate. Observe that as the code rate reduces, a fewer non-frozen indices will

exist in low order Zp, i.e., Zp with small p.

Lemma 5.1 (Properties of Zp) For any n > 0 and p ∈ [0, n − 1], set Zp has the following

properties:

70

Chapter 5: Efficient Partial Rewind of SC Algorithm

a. The boundaries of set Zp are

Zp =

[2n − 2n−p, 2n − 2n−(p+1) − 1] 0 ≤ p < n− 1,

[2n − 2n−p, 2n − 1] p = n− 1
(5.7)

b. The size of set Zp is

|Zp| =

2n−p−1 0 ≤ p < n− 1,

2 p = n− 1
(5.8)

c. The smallest element in set Zp is

zp = min(Zp) =
n−1∑

x=n−p
2x = 2n − 2n−p (5.9)

Proof:

a. Let us introduce a special notation for the binary representation of a positive integer with

length n first. Given {0, 1}x indicates a mixed string of 0 and 1, and {b}x, b ∈ {0, 1}

denotes a uniform string of either 0 or 1, both with length x. In set Zp, p < n−1, observe

that the elements are in the form of {1}p + {0} + {0, 1}n−(p+1) where the operator ’+’

is used for concatenation and {1}p is/are the most significant bits. Then, the smallest

element of set Zp in binary is

{1}p + {0}+ {0}n−(p+1) = {1}p + {0}n−p

which is equivalent to
n−1∑

x=n−p
2x = 2n − 2n−p

in decimal. Similarly, one can see that the largest element in set Zp, p < n− 1 is

{1}p + {0}+ {1}n−(p+2) =
(
{1}n

)
2
−
(
{1}+ {0}n−(p+2)

)
2

which is equivalent to (2n − 1)− 2n−(p+1) in decimal.

Note that the largest element in set Zp, p = n − 1 is
(
{1}n

)
2

= 2n−1 while the smallest

element follows the relationship discussed above.

71

Chapter 5: Efficient Partial Rewind of SC Algorithm

b. Given the interval [min(Zp),max(Zp)] in part a of this lemma, we can find the size of set

Zp by max(Zp)−min(Zp) + 1.

c. It follows from part a of this lemma that the lower bound of the values in set Zp in binary

is {1}p + {0}n−p which is equivalent to
∑n−1

x=n−p 2x = 2n − 2n−p in decimal.

Example 5.2 For n = 4, we have zp for p = 0, 1, ..., n− 1 as

z0 = (0000)2 = 0, z1 = (1000)2 = 8, z2 = (1100)2 = 12, and z3 = (1110)2 = 14

or based on the lower bound of Zp in Lemma 5.1 as

z0 = 2n − 2n−0 = 16− 24 = 0, z1 = 16− 23 = 8, z2 = 16− 22 = 12, and z3 = 16− 2 = 14

Let us find the deepest updated stage while decoding any bit i within set Zp in the following

lemma.

Lemma 5.2 For any i ∈ Zp, p ∈ [0, n− 1], and zp = min(Zp) we have

max
i∈Zp

(η(i)) = η(zp) (5.10)

Proof: Let us recall the notation {1}p + {0} + {0, 1}n−(p+1) for i ∈ Zp, p < n − 1 where

the operator ’+’ is used for concatenation and {1}p is/are the most significant bits. According

to (5.2), the maximum value for η(i), i.e., the largest index for the least significant bit set to

one for i ∈ Zp, is obtained when we have

bin(i) = {1}p + {0}+ {0}n−(p+1) = {1}p + {0}n−p

which is the smallest element in set i ∈ Zp, p < n− 1, i.e., zp = min(Zp).

For p = n− 1, although the notation is in the form of {1}n−1 + {0, 1}1, the largest index for

the least significant bit set to one is similarly obtained from {1}n−1 + {0} which is the smallest

in set Zn−1

Clearly, when p = 0, we have max(η(i)) = η(0) = n− 1 for any i ∈ Z0.

72

Chapter 5: Efficient Partial Rewind of SC Algorithm

Remark 5.2 From Lemma 5.2 we conclude that the deepest stage that the intermediate LLRs

are overwritten/updated is when decoding the smallest bit index in set Zp. Recall that the partial

sums used at stage η(zp) are provided after decoding bit with index zp − 1 according to (5.4).

Now we consider updating intermediate information for i in different sets of Zp.

Lemma 5.3 For any p, p′ ∈ [0, n− 1], p < p′, we have

η(zp) > η(zp′) (5.11)

Proof: It follows directly from (5.2) and part c of Lemma 5.1. Note that zp is in the form

of {1}p + {0}n−p. It can be observed that for the smaller p, the position of the least significant

bit set to one has a larger index. Therefore, η(zp) is larger.

Corollary 5.1 For any p, p′ ∈ [0, n− 1], p < p′, we have

ψ(zp − 1) > ψ(zp′ − 1) (5.12)

Proof: As η(zp) = ψ(zp − 1) according to (5.4), then based on Lemma 5.3, it follows that

ψ(zp − 1) > ψ(zp′ − 1).

Remark 5.3 From Lemma 5.3 and Corollary 5.1, we conclude that intermediate LLRs and

partial sums of stage η(zp) are not overwritten/updated when we are decoding any bit with

index i ∈ Zp′ , p < p′. Hence,

Remark 5.4 As per Remark 5.3 and the fact that updating the intermediate information is

performed from stage η(zp) to stage 0, rewinding the SC algorithm from bit i ∈ Zp′ to bit zp,

p < p′ does not require any additional update of the intermediate LLRs or partial sums.

We will use Remarks 5.3 and 5.4 in the proposed scheme.

5.3 Efficient Partial Rewinding

We learned in Section 5.1 that we could save memory significantly by knowing the required

intermediate LLRs and partial sums needed for decoding each bit. However, there is a drawback

73

Chapter 5: Efficient Partial Rewind of SC Algorithm

to this efficiency. Since we use limited space for intermediate information instead of N log2N

memory elements, we have to overwrite the current values we no longer need to proceed with

decoding. In the normal decoding process, the overwriting operation does not cause any data

corruption. However, if we need to move backward like in SC-flip, shifted-pruning, or Fano

decoding, we may no longer access the intermediate information as it may have been lost due

to overwriting.

In this section, based on the update properties we studied in Section 5.2, a scheme is pro-

posed such that rewinding the SC algorithm is performed efficiently by significantly fewer

computations comparing with restarting the algorithm.

Suppose the SC algorithm is decoding bit i and needs to rewind the SC process to bit j, j < i,

and i, j ∈ A. In SC-flip scheme and shifted-pruning-scheme, we have i = 2n − 1 however, in

Fano decoding, i ≤ 2n − 1, i ∈ A. Since the required intermediate information for decoding

bit j may partially be overwritten, we may need to rewind further to a position denoted by jp.

From jp, the SC algorithm proceeds with the normal decoding up to position j. We shift the

pruning window at this position, or we flip the bit uj and then continue the normal SC-based

decoding.

Now, the question is what the position jp is? Let us assume i ∈ Zp′ and j ∈ Zp. Then,

jp =

zp if zp < zp′

zp′ if zp = zp′
(5.13)

Example 5.3 Suppose N = 25 and we need to rewind the SC algorithm from position i = 31 =

(11111)2 to j = 19 = (10011)2. We know that i ∈ Z4 and j ∈ Z1. Therefore, according to

(5.13), jp = zp = 16 = (10000)2.

Recursion for Case zp = zp′ : For the case zp = zp′ in (5.13), we may choose a position k,

jp < k ≤ j for rewinding, which is more efficient. To this end, let us k ← j and m ← n, then

while φ(k) 6= 0:

• first, truncate the binary representation of k = (kn−1...k1k0)2 by removing the bits from

position m − 1 − φ(k) to the most significant bit (inclusive), i.e. position m − 1. Note

that after truncation, we have a binary number with length m = m− (φ(k) + 1).

• secondly, find the new set Zp′′ such that k ∈ Zp′′ for k =
∑n−1

t=m−(φ(k)+1) jt · 2
t − k.

74

Chapter 5: Efficient Partial Rewind of SC Algorithm

• then, jp =
∑n−1

t=m−(φ(k)+1) jt · 2
t + zp′′ .

We can continue the above procedure recursively to minimize zp′′−j. Note that in this recursion,

k and m are being replaced with new values at each iteration.

Example 5.4 Suppose N = 25 and we need to rewind the SC algorithm from position i = 22 =

(10110)2 to j = 19 = (10011)2. We know that i, j ∈ Z1 and therefore jp = zp = 16 = (10000)2.

We truncate j = (10011)2 as mentioned above. We get k = (011)2, k ∈ Z0, and zp′′ = 0.

Hence, the new jp is jp = zp + zp′′ = 16 which is the same as before.

Example 5.5 Suppose N = 25 and we need to rewind the SC algorithm from position i = 22 =

(10110)2 to j = 20 = (10100)2. We know that i, j ∈ Z1 and therefore jp = zp = 16 = (10000)2.

However, if we truncate j = (10100)2 as mentioned above, we get t = (100)2, t ∈ Z1, and

zp′′ = 4. Hence, the new jp is jp = zp + zp′′ = 16 + 4 = 20.

One can observe that the recursion is not used in the schemes that the rewind is performed

from the last bit index. The reason is that bit index 2n − 1 ∈ Zn and this set has only one

other element which is 2n − 2 = zn−1. On the other hand, if we need to rewind the SC process

to a bit index smaller than zn−1, the target bit index will fall into another set Zp with different

zp. Hence, this may be used for Fano decoding where the case zp = zp′ is possible. Note

that we do not numerically evaluate this approach for Fano decoding as we do not have any

other approach to compare with. We can either use this approach or simply we can store all

N log2N intermediate LLRs and partial sums and trade a significant complexity reduction with

the memory efficiency.

Now, let us revisit the shifted-pruning scheme discussed in Chapter 4. In this scheme (and in

the SC-flip scheme), we may need to repeat the SC rewinding process up to T times. Therefore,

we need to take this into our consideration. Assuming t ∈ [1, T] indicates the current iteration,

and j(t) and jp(t) denotes the j and jp of iteration t, then jp of the current iteration is obtained

by considering jp(t− 1) as follows:

jp =

jp(t− 1) if jp(t) > jp(t− 1)

jp(t) otherwise
(5.14)

As (5.14) shows, if the destination position of the current iteration j(t) is larger than the

destination position of the previous iteration, the intermediate information is not valid. The

75

Chapter 5: Efficient Partial Rewind of SC Algorithm

Fig. 5.3: An illustrative example comparing the target position j and update position jp

reason is that some modification (bit-flipping or shifted-pruning) occurred at position j(t− 1)

that affects not only the intermediate information but also the decoded data. In other words,

we need to go to position j(t − 1) and undo the modification and proceed with the decoding

up to the position j(t) and then perform the modification of the current iteration. Note that

if both j(t) and j(t − 1) are in the same Zp, then jp(t) = jp(t − 1), hence there will be no

difference.

Fig. 5.3 compares j and jp for an example where 5 iterations are occurring.

Furthermore, when rewinding the list decoder from the last bit position, N − 1, to position

jp, some of the paths that existed at position jp in the previous iteration might be eliminated

in between and be replaced with other paths. This potential replacement should be addressed

when we have a list of paths/candidates, such as in the shifted-pruning scheme, not in the

SC-flip scheme. To simplify the problem, we can limit the positions jp to jp = 2n−1. Because

all the computations of the intermediate LLRs from this position, 2n−1, up to the last position,

2n− 1, are performed solely based on the channel LLRs and partial sums of stage ψ(2n−1− 1).

Hence, we need to store the decoded data, u[0 : 2n−1 − 1], and the path metric of all the

paths at position 2n−1 − 1. Partials sums can be stored as well or can be computed simply by

u[0 : 2n−1 − 1]GN/2.

76

Chapter 5: Efficient Partial Rewind of SC Algorithm

5.4 Numerical Results

We show that in the additional decoding attempts in SC list decoding and SC decoding,

the average complexity (in terms of required time-steps and node visits) can be significantly

reduced by partial rewinding instead of full rewinding of SC-based decoder. Note that taking

average over all the decoding attempts including the successful attempts in the first run does

not give a good insight and a fair comparison in particular at medium and high SNR regimes.

The reason is that only a small portion of the total attempts fail requiring additional attempts,

e.g., less than 10 failures in 104 decoding attempts in the FER range of 10−4. Hence, the impact

of this small portion becomes negligible on the average number of total attempts per codeword

at high SNR regimes.

Figures 5.4 and 5.5 compare the average computational complexity of shifted-pruning scheme

with and without partial rewinding for two different codes. In Fig. 5.4, the FER and time com-

plexity of polar code of (512,256+12) constructed with DEGA (2dB) and concatenated with

CRC12 with polynomial 0xC06 under SC list decoding with list size L = 8 with shifted-pruning

(SP) are shown. The FER before and after using the efficient partial rewind (PR) scheme clearly

shows that the proposed efficient partial rewind scheme does not degrade the decoder’s perfor-

mance as we expected. However, it reduces the average time-steps over additional iterations

(when the decoding fails) by over 30% (from 2N − 2 = 1022 time-steps (or clock cycles) [66]

down to about 700 time-steps). The average time steps over all the iterations also reduce, but

at high SNRs, it approaches 1022. The reason is that at high SNR regimes, the number of

errors, FER, is low. Compared with the total number of codewords decoded successfully, just

a small number of codewords are failed to be decoded in the first attempt and need additional

attempts/iterations.

As Fig. 5.5 shows, the reduction in the average time complexity for efficient partial rewind

scheme improves for polar code P(512,128+12) constructed with DEGA (1 dB). The average

time-steps over additional iterations by about 45% (from 2N − 2 = 1022 time-steps down to

about 570 time-steps). The reason is that at a low code rate of R = 1/4, the positions j for

shifting the pruning window are mostly located in the interval [N/2, N − 1] where the partial

rewinding can be effective in reducing the complexity. Recall that if j ∈ [0, N/2 − 1] = Z0,

then jp = zp = 0. That means a full rewind is needed. One can guess that the reduction in the

complexity would be less at high code rates where the position j for shifting are dominantly

77

Chapter 5: Efficient Partial Rewind of SC Algorithm

1 1.5 2 2.5

E
b
/N

0
 [dB]

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,256+12), CA-SCL, L=8, =L/2, T=20, PMR2

CA-SCL

CA-SCL w/ SP

CA-SCL w/ SP & PR

1 1.5 2 2.5

E
b
/N

0
 [dB]

0

1022

2044

3066

4088

5110

A
v
e
ra

g
e
 T

im
e
-s

te
p
s

CA-SCL

CA-SCL w/ SP, all

CA-SCL w/ SP & PR, all

CA-SCL w/ SP, add

CA-SCL w/ SP & PR, add

Fig. 5.4: Comparison of FER and average time complexity of P(512,256+12) under CA-SCL
decoding without and with (w/) shifted-pruning scheme (SP), and with partial rewinding (PR).
’all’ and ’add’ indicate average over all the decoding iterations and average only over additional
iterations for shifted-pruning, respectively.

78

Chapter 5: Efficient Partial Rewind of SC Algorithm

0 0.5 1 1.5 2

E
b
/N

0
 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,128+12), CA-SCL, L=8, =L/2, T=20, PMR2

CA-SCL

CA-SCL w/ SP

CA-SCL w/ SP & PR

0 0.5 1 1.5 2

E
b
/N

0
 [dB]

0

1022

2044

3066

4088

5110

A
v
e

ra
g

e
 T

im
e

-s
te

p
s

CA-SCL

CA-SCL w/ SP, all

CA-SCL w/ SP & PR, all

CA-SCL w/ SP, add

CA-SCL w/ SP & PR, add

Fig. 5.5: Comparison of FER and average time complexity of P(512,128+12) under CA-SCL
decoding without and with (w/) shifted-pruning scheme (SP), and with partial rewinding (PR).
’all’ and ’add’ indicate average over all the decoding iterations and average only over additional
iterations for shifted-pruning, respectively.

located in [0, N/2− 1] = Z0 as the reliability of these bit-positions are less relative to the ones

in [N/2, N − 1].

Similarly, we can show a significant reduction in the complexity of the additional attempts

in the SC-flip decoding algorithm. Fig. 5.6, 5.7, and 5.8 illustrate the reduction in the node

visits on average for CRC-polar codes of length N = 512 at rates R = 1/4, 1/2, 3/4. The metric

used in the SC-flip implementation is similar to the one in [25] as our purpose in this work is

not the performance of SC-flip but to show the reduction in the complexity. Hence, a similar

result can be obtained by applying the partial rewind on any variant of the SC-flip decoder.

As can be seen, the FER remains unchanged by partial rewind, while the additional decoding

attempts are performed with significantly lower node visits on average. This reduction increases

at high SNR regimes as the targeted positions for bit-flipping become more accurate and their

number decreases. The main contribution to this decrease is related to 5.14 where jp = jp(t)

in the fewer additional attempts, mostly one attempt.

Fig. 5.9 compares the time complexity at at rates R = 1/4, 1/2, 3/4. By recalling Remark

79

Chapter 5: Efficient Partial Rewind of SC Algorithm

1.5 2 2.5 3 3.5

E
b
/N

0
 [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,128+12), T=10

SC

SC-flip

SC-flip w/ PR

1.5 2 2.5 3 3.5

E
b
/N

0
 [dB]

0

256

512

768

1024

N
o
d
e
 V

is
it
s
 (

a
v
e
ra

g
e
)

SC

SC-flip, all

SC-flip w/ PR, all

SC-flip, add

SC-flip w/ PR, add

Fig. 5.6: Comparison of FER and average node visits of P(512,128+12) under SC decoding
without and with (w/) bit-flipping, and with partial rewinding (PR). ’all’ and ’add’ indicate
average over all the decoding iterations and average only over additional iterations for bit-
flipping, respectively.

80

Chapter 5: Efficient Partial Rewind of SC Algorithm

2 2.5 3 3.5 4

E
b
/N

0
 [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,256+12), T=10

SC

SC-flip

SC-flip w/ PR

2 2.5 3 3.5 4

E
b
/N

0
 [dB]

0

256

512

768

1024

N
o

d
e

 V
is

it
s
 (

a
v
e

ra
g

e
)

SC

SC-flip, all

SC-flip w/ PR, all

SC-flip, add

SC-flip w/ PR, add

Fig. 5.7: Comparison of FER and average node visits of P(512,256+12) under SC decoding
without and with (w/) bit-flipping, and with partial rewinding (PR). ’all’ and ’add’ indicate
average over all the decoding iterations and average only over additional iterations for bit-
flipping, respectively.

81

Chapter 5: Efficient Partial Rewind of SC Algorithm

3 3.5 4 4.5 5

E
b
/N

0
 [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

P(512,388+12), T=10

SC

SC-flip

SC-flip w/ PR

3 3.5 4 4.5 5

E
b
/N

0
 [dB]

0

256

512

768

1024

1280

N
o

d
e

 V
is

it
s
 (

a
v
e

ra
g

e
)

SC

SC-flip, all

SC-flip w/ PR, all

SC-flip, add

SC-flip w/ PR, add

Fig. 5.8: Comparison of FER and average node visits of P(512,388+12) under SC decoding
without and with (w/) bit-flipping, and with partial rewinding (PR). ’all’ and ’add’ indicate
average over all the decoding iterations and average only over additional iterations for bit-
flipping, respectively.

82

Chapter 5: Efficient Partial Rewind of SC Algorithm

1 1.5 2 2.5 3 3.5 4 4.5 5

E
b
/N

0
 [dB]

0

256

512

768

1022

T
im

e
-s

te
p

s
 (

a
v
e
ra

g
e

)

SC-flip, add

SC-flip w/ PR, add, R=3/4

SC-flip w/ PR, add, R=1/2

SC-flip w/ PR, add, R=1/4

Fig. 5.9: Comparison of the average time-steps of codes with length N = 512 with different
code rates under SC-flip decoding with (w/) partial rewinding (PR). ’add’ indicate average only
over additional iterations for bit-flipping.

5.1, one can observe that at low code rates, (N − 1) − jp on average decreases significantly

comparing with high rates, therefore, we expect to visit a fewer nodes in the additional decoding

attempts and consequently the time complexity reduces more than high code rates. Similar to

node visits, this reduction increases at high SNR regimes as the targeted positions for bit-flipping

become more accurate and their number decreases. Note that the average time complexity over

additional iterations does not depend on the code rate if we don’t use partial rewinding as we

start re-decoding from bit 0 for any code rate.

5.5 Summary

When decoding fails in the first decoding attempt, a partial rewind of the SC process for

additional attempts is needed in the memory-efficient SC-based decoders. In this chapter, an

efficient partial rewinding approach based on the properties of the SC algorithm was proposed.

This approach relies on the properties of the SC process and its updating schedule. Then, this

scheme was adapted to multiple rewinds, and to SC list decoding, where there exists more than

one path comparing with SC decoding. The numerical results showed a significant reduction in

83

Chapter 5: Efficient Partial Rewind of SC Algorithm

the average time and computational complexity of additional decoding attempts in the SC-flip

decoding and SC list decoding under the shifted-pruning scheme while the performance remains

the same.

84

Chapter 6

Convolutional Pre-coding and List decoding

of PAC Codes

“I just wondered how things were put together.”
— Claude Shannon

This chapter covers the recently introduced Polarization-adjusted convolutional (PAC) codes.

PAC codes are concatenated codes in which a convolutional transform is employed before the po-

lar transform. In this scheme, the polar transform (as a mapper) and the successive cancellation

process (as a demapper) present a synthetic vector channel to the convolutional transformation.

It was shown numerically that the reason for the superiority of error correction performance

of PAC codes relative to polar codes is the improvement of polar codes’ weight distribution

due to this concatenation. In this chapter, we explicitly show why the convolutional precoding

reduces the number of minimum-weight codewords. Furthermore, we show wherein the precod-

ing stage is not effective with respect to the underlying rate-profile. In other words, we answer

why PAC codes have a significantly smaller number of minimum-weight codewords compared to

polar codes. Then, we recognize the potential weakness of the convolutional precoding, which

is unequal error protection (UEP) of the information bits. Finally, we assess the possibility of

mitigating this weakness by irregular convolutional precoding.

6.1 Polarization-adjusted Convolutional Codes

Polarization-adjusted convolutional codes, denoted by PAC(N,K,B, c), are based on the

outer convolutional transform and inner polar transform. One may consider PAC coding as

a polar coding scheme in which the inputs to the frozen bit-channels are linear combinations

of previous bits obtained by convolutional transforms. Thus, given that the previous bits

have been estimated correctly, the decoder can still determine the value transmitted by the

corresponding “bad channels”. In the following Sections, the encoding and decoding of PAC

codes are described in detail.

The information bits d = (d0, d1, ..., dK−1) are first mapped to a vector v = (v0, v1, ..., vN−1)

85

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

Fig. 6.1: PAC coding scheme

using a rate-profile. The rate-profile (a.k.a. code construction) is formed based on the index set

B such that vB = d, and vBc = 0. Note that the constraint vBc = 0 simply leads to an irregular

tree code.

After rate-profiling, the vector v is transformed using a convolutional generator polynomial

c = [c0, ..., cm] to ui =
∑m

j=0 cjvi−j , where gi ∈ {0, 1} as discussed in Section 7.1 (see sub-

routine convTransform in Algorithm 4). Equivalently, the convolutional transform (CT) can

be represented in matrix form where the rows of an upper-triangular generator matrix G are

formed by shifting the vector c = [g0, . . .gm]. The number of rows equals the block-length.

Given the generator matrix G, we can encode the message block v as u = vG. As a result of

this pre-transformation, ui for i ∈ Bc are no longer fixed or known a priori (as 0’s in u) - unlike

in conventional. In fact, these formerly frozen bits are acting as parity check (PC) bits [18] or

dynamic frozen bits [9].

Then, as Fig. 6.1 shows, vector u is mapped to x by employing the conventional polar

transform Pn defined in Section 2.6. Hence, the the N -bit rate-profiled data (or block-length)

should be a power of 2, i.e., N = 2n. In summary, the polar transformation is performed

by x = uPn. Algorithm 4 summarizes the encoding process. In this algorithm, cState and

currState represent the current state of the m-bit memory.

6.2 Minimum-weight Codewords in PAC Codes

The minimum Hamming weight or in short min-weight defines the error correction capability

of a code. The linear block codes can correct up to b(dmin − 1)/2c errors. Note that the min-

86

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

Algorithm 4: Encoding of PAC Codes

input : profiled information bits v, c
output: the codeword x

1 u← convTrans(v, c)
2 x← polarTrans(u) // Like polar encoder

3 return x;
4 subroutine convTrans(v, c):
5 cState[1,...,|c| − 1] ← [0,...,0] // currState

6 for i← 0 to |v| − 1 do
7 (ui, cState)← conv1bTrans(vi, cState, c)

8 return u;

9 subroutine conv1bTrans(v, currState, c):
10 u← v · g0

11 for j ← 1 to |c| do
12 if gj = 1 then
13 u← u ⊕ currState[j − 1]

14 nextState ← [vi] + currState[1,...,|c| − 2]
15 return (u, nextState);

weight (wmin) is also minimum Hamming distance (dmin) (see 3.17 in [70]). Besides min-weight,

the number of min-weight codewords is also important. It was shown in [70] that at high Eb/N0,

the upper bound for block error probability under soft-decision maximum likelihood decoding

(MLD) can be approximated by

PML
e ≈ Admin

Q(
√

2dmin ·R · Eb/N0) (6.1)

where Admin
is the number of min-weight codewords, a.k.a error coefficient, Q(·) is the tail

probability of the normal distribution N (0, 1), and R is the code rate. As Admin
is directly

proportional with the upper bound for the error correction performance of a code, it can be

used as a measure to anticipate the direction of change in the block error rate when Admin

changes.

Enumeration of minimum Hamming weight codewords of PAC codes in [48] showed that

they have a significantly smaller number of min-weight codewords in comparison with polar

codes. Table 6.1 compares min-weight codewords of polar codes and PAC codes. In this work,

the method discussed in [48] was employed with L = 219 to obtain Admin
.

As can be seen, Admin
= A16 = 94488 for the polar code (128,64,16) constructed with RM

rate profile, whereas A16 ≈ 3120 is much smaller for the PAC code (128,64,16) with the same

87

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

Table 6.1: The number of min-weight codewords, Admin
, with RM-polar rate profile

(128,32,16) (128,64,16) (128,96,8)

Polar Codes 56 94488 74288
PAC Codes 56 3120 13904

(64,16,16) (64,32,8) (64,48,4)

Polar Codes 364 664 432
PAC Codes 236 472 320

rate profile. In this section, we discuss the reason behind this significant reduction.

It was shown in [71] by example that a properly designed upper-triangular matrix G in

general may remove some of the bit-patterns with minimum Hamming weight from the codebook

as a result of GPn matrix multiplication in v
(
GPn

)
. However, in this work, we show how

convolutional precoding, i.e., vG matrix multiplication in
(
vG
)
Pn, can avoid generating some

of the minimum weight codewords available in the codebook of polar codes generated by vPn.

First, let us look at the process that min-weight codewords are generated. The codewords

of any linear block code are formed by combining or adding the rows of its generator matrix.

This summation of the rows is realized by matrix multiplication of the message vector, and

the generator matrix and the coordinates of 1’s in the message vector determine which row(s)

should be combined. The simplest codeword is formed by the individual rows of the generator

matrix, and it occurs when the Hamming weight of the message vector is one. Hence, the rows

of Pn in A with min-weight are individually considered as min-weight codewords. The other

min-weight codewords are generated by the combination of two or more rows in A. Here, we

just show it for the case of individual row codewords, as the other cases follow the same concept.

We define the cosets resulting from combining a min-weight row at coordinate i with possibly

other rows with indices larger than i as

C(0i−1
0 , 1) = gi ⊕

⊕
k∈I

gk (6.2)

where I ⊂ {j|j > i}. The following lemma defines a lower bound for the weight of codewords

in the coset C(0i−1
0 , 1). The notation w(.) is used for the Hamming weight of vectors.

Lemma 6.1 The weight of any codeword in the coset C(0i−1
0 , 1) is w

(
C(0i−1

0 , 1)
)
≥ w(gi).

Proof: This can be shown by mathematical induction (see [71, Corollary 1]).

Now, given a polar code with length N , the index set A and Admin
, we show by construction

88

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

that if we apply the precoding on the same length and rate profile, in a mapping of min-weight

polar codewords to the corresponding PAC codewords, some of the min-weight codewords may

find a larger weight as a result of precoding. This mapping is shown in Fig. 6.2 where only a

portion of min-weight codewords on the left hand side (i.e. polar codebook) are mapped to the

collection of min-weight codewords in PAC codes on the right hand side, shown by arrow (i).

Let us consider all the min-weight rows in Pn as a subset of all the min-weight codewords of

polar codes. If we attempt to produce such min-weight codewords in PAC coding, we shall see

that as a result of convolutional precoding vG, 1) some of these codewords are kept unchanged,

2) some are replaced with a different min-weight codewords, and 3) some are replaced with

codewords with larger weights.

Note that in polar coding, v = u as there is no precoding operation. Now, consider a row

gi of Pn with w(gi) = wmin as a minimum weight codeword of the polar code. In order to

generate such a codeword, we need a vector u such that ui = 1 and uj = 0 for j 6= i, then

uPn = gi. However, such a vector u may not be obtained by precoding vG = u.

Recall uj =
∑m

k=0 ckvj−k from Section 2.6. In order to get uj = 0 for any j > i and

j ∈ A, it is possible to choose either vj = 0 (for the case
∑m

k=1 ckvj−k = 0) or vj = 1 (when∑m
k=1 cjvj−k = 1). However, for any j ∈ Ac, by convention vj = 0 in the rate profile. Hence,

uj = 1 when
∑m

k=1 ckvj−k = 1. This inevitably combines gi with gj for any j ∈ Ac, j > i where

uj = 1. As Lemma 6.1 showed, the resulting weight will be

w(gi ⊕
⊕

j∈J⊆Ac

gj) ≥ wmin (6.3)

where J = {j|j ∈ Ac, j > i, and uj = 1}.

Now, we look at the three aforementioned resulting cases:

1. gi ⊕
⊕

j∈J⊆Ac gj = gi: This case occurs where there is no j ∈ Ac for j > i (i.e., J = ∅)

or depending on the choice of polynomial c, we may get uj = 0 for any j ∈ Ac, j > i. See

arrow (i) in Fig. 6.2.

2. gi⊕
⊕

j∈J⊆Ac gj = x where x 6= gi but w(x) = wmin: This case occurs where w(
⊕

j∈J⊆Ac gj) =

89

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

2w(gi ∧
⊕

j∈J⊆Ac gj) as according to the principle of inclusion exclusion, we have

w(gi ⊕
⊕

j∈J⊆Ac

gj) = w(gi)+

w(
⊕

j∈J⊆Ac

gj)− 2w(gi ∧
⊕

j∈J⊆Ac

gj)
(6.4)

The operator wedge product ∧ is equivalent to bit-wise ANDing. See arrow (i) in Fig. 6.2.

3. gi⊕
⊕

j∈J⊆Ac gj = x where x 6= gi and w(x) > wmin: This case occurs where w(
⊕

j∈J⊆Ac gj) >

2w(gi ∧
⊕

j∈J⊆Ac gj). See arrow (ii) in Fig. 6.2.

The second case is where the min-weight codewords in PAC codes differ from the ones in polar

codes, however they are still min-weight codewords. The third case is where PAC codes lose

some of the min-weight codewords that exist in polar codes. Note that the resulting larger

weight codewords change the weight distribution of PAC codes.

In similar way, we can show that this event occurs for the minimum weight codewords

resulting from the combination of more than one row of Pn with indices in set A.

Example 6.1 For the polar code and PAC code of (64,48,4) with RM-polar rate profile, we

have A4 = 432 and 320 for polar codes and PAC codes, respectively. The set M = {i|i ∈

A, and w(gi) = wmin} = {20, 24, 34, 36, 40, 48} and the set N = {j|j ∈ Ac, and for any i ∈

M, j > i} = {32, 33}. Assuming c = [1, 0, 1, 1, 0, 1, 1], then instead of g20, we will have g20⊕g32

yet with weight wmin = 4 (case 2) in the codebook of PAC codes. Note that the elements of

vector u are zeros except at coordinates 20 and 32, however, the vector v will have many non-

zero elements in order to get the aforementioned vector u after precoding. Also, instead of g24,

we will have g24 ⊕ g33 with weight 6 which is greater than wmin (case 3 shown by arrow (ii) in

Fig. 6.2). The other rows with min-weight including g34, g36, g40, and g48 will exist unchanged

in the codebook of PAC codes as there is no row j ∈ Ac for j > 34 (case 1).

Note that by applying the precoding, there is no way to generate min-weight codewords other

than based on the coset C(0i−1
0 , 1) where w(gi) = wmin as the following corollary concludes.

Corollary 6.1 If i ∈ A and w(gi) > wmin, inclusion of row(s) k ∈ Ac for k > i in the coset

C(0i−1
0 , 1) does not produce a coset with weight wmin or less.

90

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

Proof: It follows directly from Lemma 6.1 the weight of the coset C(0i−1
0 , 1) cannot be

smaller than the weight of gi.

Now, consider the codewords with weight larger than wmin resulting from the coset C(0i−1
0 , 1)

where w(gi) = wmin. The inclusion of gj for j > i and j ∈ Ac in the coset as a result of precoding

may reduce the weight of some of the corresponding codewords in the polar codes. This case is

shown by arrow (iii) in Fig. 6.2.

Example 6.2 For the polar code and PAC code of (32,16,8) with RM rate profile, the set

M = {i|i ∈ A, and w(gi) = wmin} = {13, 14, 21, 22, 25, 26, 28} and the set N = {j|j ∈

Ac, and for any i ∈ M, j > i} = {16, 17, 18, 20, 24}. Considering the codeword resulting from

the combination g13 ⊕ g22 which gives the weight w(g13 ⊕ g22) = 12, by inclusion of g18

(j = 18 ∈ Ac), the weight will be w(g13 ⊕ g22 ⊕ g18) = 8.

�
��
!5

�
��
�
�	

�
�
�
�
5
�
��
�

�
��
!5

�
��
�
�	

�
�
�
�
5
�
��
�

"
6
	����5���� "

6
	����5����

�����	����� �7�	�����

*�,

*��,

*���,

*#,

* ,2*",

Fig. 6.2: Mapping of min-weight codewords in the codebook of polar codes to PAC codes’. The
cases (1), (2), and (3) discussed in Section III are shown in the figure.

One can observe that statistically the case of getting the weight wmin or any specific weight

as a result of inclusion of the rows in Ac is less frequent relative to the case of getting a weight

larger than wmin. The numerical results of enumeration of min-weight codewords support this

observation. As Table 6.1 shows the reduction in the min-weight codewords of polar codes

except in an special case which is the subject of the following corollary.

Corollary 6.2 Suppose M = {i|i ∈ A, and w(gi) = wmin}. If for any i ∈ M, there is no

j ∈ Ac such that j > i, then Admin
(vGPn) = Admin

(vPn).

Proof: In this case, there is no inclusion of rows with index j ∈ Ac in the coset C(0i−1
0 , 1)

where w(gi). Hence, as it was discussed earlier, it is possible to find a vector v to generate all

the possible combinations of rows identical to polar codes.

91

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

Suppose for every codeword x where w(x) = wmin, there exists a vector u such that uPn = x.

Now, since there is no j ∈ Ac for j > i, then vj ∈ {0, 1}. Hence, due to this flexibility of vj

value, there always exists a vector v such that vG = u. Therefore, since the vector u resulted

from precoding equals u of polar coding, the min-weight codewords of polar codes and PAC

codes will be the same. Recall that if there exists a j ∈ Ac for j > i, then vj = 0 and due to

the inflexibility, u in vG = u will be limited to a subset of u in polar coding.

Example 6.3 For the polar code and PAC code of (128,32,16) with RM-polar rate profile, we

have A16 = 56. Knowing M = {114, 116, 120}, for any i ∈ M, there is no j ∈ Ac such that

j > i as the largest j in Ac is 113 which is smaller than 114.

In summary, the inevitable inclusion of row(s) gj for any j ∈ Ac and j > i to the row

combinations which are supposed to give min-weight codewords in polar codes may result in

codewords with larger weights (arrow (ii) in Fig. 6.2). Note that this inclusion depends on c and

d and here we just discussed the possibility of the inclusion in general, regardless of the choice

of c which is discussed in the next section. Note that the selection of information bits in PAC

codes, set A, comparing with distance-based constructions such as [72] in which the focus is on

maximizing dmin, or mixed distance and reliability-based constructions in [29, 73] where both

reliability of the bit-channels and dmin are considered, is similar to polar codes. In this work,

we used RM-polar rate-profile for short codes where the minimum distance was maximized and

DE/GA for medium-length codes where the bit channels reliability is the main criteria in the

code construction. As the numerical results for the performance showed in [48], this selection is

valid for polar codes as well, i.e., short polar codes perform better with RM-polar rate-profile

than reliability-based constructions. Nevertheless, the precoding does not change the minimum

distance of the code as the coset defined in (6.2) does not apply on the bits in Ac simply because

ui in the coset cannot be zero.

6.2.1 PAC List Decoding

PAC codes as (irregular) tree codes can be decoded using the tree search algorithms discussed

in Section 2.6. In this section, we consider the list decoding for PAC codes which trades a fixed

time complexity for a large memory requirement (to store a list of paths) and is easier to

implement. Then, in the next section and the rest of this chapter, we focus on Fano decoding

which has a variable time complexity, but is much more memory-efficient. Note that the list

92

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

decoding in the context of convolutional codes is called M-algorithm. In the context of PAC

codes, some results using list decoding were first presented by Huawei in ITW 2019 [74]. Later,

we implemented list decoding for PAC codes in [75] independently of [49].

Algorithm 5 (see page 101) illustrates the list decoding approach. In the beginning, there is

a single path in the list. When the index of the current bit is in the set Bc, the decoder knows

its value, usually vi = 0 and therefore it is encoded into ui based on the current memory state

currState and the generator polynomial c in line 7. Note that the subroutine conv1bTrans is

identical with the one in Algorithm 4 (see page 87). Then, using the decision LLR λi0 obtained

in line 5, the corresponding path metric is calculated using subroutine calcPM . Eventually, the

decoded value ui is fed back into SC process in line 9 to calculate partial sums. On the other

hand, if the index of the current bit is in the set B (see lines 19-26), there are two options for the

value of vi, 0 and 1, to be considered in line 24. For each option of 0 and 1, the aforementioned

process for i ∈ Bc including convolutional encoding, and calculating path metric is performed

and then the two encoded values ui = 0 and 1 are fed back into SC process. The subroutines

updateLLRs, updatePartialSums, and prunePaths in Algorithm 7 (see page 122) are identical

to the ones used in Sc decoding and SCL decoding of polar codes. Note that the vectors λ and

β are the LLRs and partial sums, respectively.

One can notice that the process of list decoding for PAC codes is similar to that for polar

codes except for the additional convolutional re-encoding at each decoding step for which the

next memory state is stored for each path. For medium and long block-lengths, we can also

append CRC-bits or parity check (PC) bits to the information bits to help in detecting the

correct path. To reduce the computational complexity and the performance of list decoding,

the methods proposed in the literature such as in [37, 38] can be applied to PAC list decoding

as well.

List decoding, with its non-backtracking tree search approach, requires very large list sizes

(typically L = 256 or more) to reach the dispersion bound [76], as it will be shown in Section

6.3.3. More memory-efficient backtracking search algorithms such as the Fano algorithm can

approach the dispersion bound at the cost of a higher average time complexity at low SNR

regimes.

93

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

6.3 Numerical Results

In this Section, the error correction performance and the complexity of different tree search

algorithms with different setups, using the previously discussed tree search complexity-reduction

ideas and adaptive metric, are analyzed.

6.3.1 Rate Profiling

To obtain the numerical results in this Section, we use different rate-profiles such as Reed-

Muller (RM), density evolution with Gaussian approximation [9], and the polarization weight

(PW) [65] with minimum row-weights eliminated. Fig. 6.3 illustrates the aforementioned rate-

profiles. Here, we briefly revise the RM-profile and the modified PW-profile.

The bit-channels for information bits are selected according to the row-weights (wi = w(gi)

where gi is the i-th row) of GN . When the candidate bit-channels with the smallest row-weight

is more than need, the more reliable ones are selected. In this case, the rate-profile is called

RM-polar [29]. In this work, the reliability measure is the mean LLR obtained from density

evolution with Gaussian approximation (DEGA).

In this method, the bit-channels for information bits are selected among the ones with

the largest polarization weight (Wi), Wi =
∑n−1

j=0 bj · 2
j· 1

4 , where i = bn−1...b0 is the binary

representation of i [65]. In order to improve the distance property, we propose to freeze the

selected bit-channels with minimum row-weight and replace them with the bit-channels with

lower Wi, but larger wi.

���

������	�
���
�����

���������

������	�
�������	
��

����
��/

RM-Polar

������	�
����
�	�
�	�����	
��

����
���	�	��

PW

��� ��!�	" !

#��������#��������

$���	�%���	�

Fig. 6.3: Rate-profile Schemes

In the simulations, we employ different generator polynomials (0o36, 0o133, 0o177, and

94

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

0o1563 in octal format) with constraint lengths 5,7,7, and 10, respectively. The numerical

results show that the difference among them in terms of FER is negligible in the low SNR

regime and small in high SNRs.

Finally, for the purpose of comparison in the figures, we use the dispersion bound [76] a.k.a.

Polyanskiy-Poor-Verdu (PPV) bound or finite-length bound which is a Gaussian approximation

on the block error probability of finite-length block codes. Additionally, we employ lower bound

on ML performance as well. This bound is obtained under list decoding with L = 256 by

assuming that ML decoder would fail when v̂ 6= v but
∑N−1

i=0 ||x̂i−yi|| <
∑N−1

i=0 ||xi−yi|| where

x̂ = v̂GPn.

6.3.2 Distance Spectrum

As discussed in Section 6.1, by convolutional pre-coding, we are no longer transmitting fixed

known values, e.g., 0 frozen bits, over low-reliability (bad) synthetic channels, but random

values generated by a linear combination of information bits. To analyze the impact of this

difference on polar codes, we use the multilevel SCLD-based search method in [77] to enumerate

the codewords with the minimum Hamming distance, dmin. We use the size of L = 217 and in

each iteration we introduce a one-bit error in the positions corresponding to the minimum row

weight in Pn, when the all-zero codeword is transmitted and no noise is added. Re-encoding

the candidate messages, remaining in the list at the end of decoding, shows that the number

of codewords with the minimum Hamming weight dmin = 16 is A16 = 94488 for the polar code

P(128, 64) constructed with RM-profile, whereas A16 = 3120 for the PAC code PAC(128, 64)

with the same rate profile. Furthermore, the second minimum distance for the polar code is 24

with A24 = 4465024 while for the PAC code we observe A18 = 2696, A20 = 95828, A22 = 352311

and A24 = 3065194. Note that the minimum Hamming distance for PAC(128, 64) with PW [65]

rate profile is dmin = 8 with A8 = 256 and A12 = 960, hence the FER performance of PW-profile

is inferior to RM-profile. Hence, PW-profile for PAC(128,64) is not considered.

From the truncated union bound of the block error probability under ML decoding, PML
e ≈

Admin
Q(
√

2dminREb/N0) [78], we can conclude that given the same dmin and decoder, the

code with smaller Admin
should perform better. In [71], the authors show that a properly

designed upper-triangular pre-transformation matrix for polar codes can reduce Admin
of the

concatenated code. Note that the convolutional pre-transform in PAC codes has an upper-

triangular Toeplitz matrix.

95

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

6.3.3 Performance of List Decoding

The list decoding of PAC codes over binary-input additive white Gaussian noise (BIAWGN)

channels with BPSK modulation is simulated. The constraint length and the coefficients of

the generator polynomial for the convolutional code are 7 (m = 6) and 0o133, respectively.

For PAC(128,64), the rate-profile is formed by the Reed-Muller (RM) construction [29] with

dSNR=3.5. In the list decoding, different list sizes are employed and the performance is com-

pared with the performance of the P(128,64) polar code and finite-length bound [76] as shown

in Fig. 6.4. The performance of the RM-profile and the modified PW-profile are identical as the

resulted rate-profiles are identical. A serial concatenation of CRC with relatively short codes

such as PAC(128,64) does not improve the error correction performance due to a significant

rate loss and negative impact on the distance properties (e.g. in the case of PAC(128,64), the

minimum Hamming distance drops to dmin = 8). However, an 8-bit CRC with a generator

polynomial with coefficients 0xA6 improves the performance of PAC(512,256) in the high SNR

regime significantly as shown in Fig. 6.4. The notation CxA-SCL used in Fig. 6.4 is defined

as CRC-aided SCL decoding with x-bit CRC and L in SCL(L) is the list size. The rate-profile

for this code is formed by density evolution with Gaussian approximation (DEGA) [79] with

dSNR=2. One can observe that as the block-length increases, the performance of PAC codes

under list decoding cannot compete with that of polar codes under CRC-aided list decoding

and we need to add CRC bits as the outer code to detect the correct path in the list decoding.

6.4 Limits of Convolutional Precoding

We observed in Section 6.2 that precoding in PAC codes can reduce Admin
. It is difficult to

systematically design a generator polynomial c that provides the minimum Admin
. Nonetheless,

we can design the precoding stage to mitigate the potential weakness or shortcoming of convo-

lutional precoding. To do so, we look at the precoding as a protection means for information

bits similar to the convolutional codes.

Let us first study the distribution of the elements of set A in the rate-profile. Although the

rate-profiles can be constructed with different methods [80], here we consider the RM-Polar

rate-profile [29] which performs better on short codes. In this rate-profile, the weight of the

rows in Pn, denoted by w(gj) for row j, plays an important role. As the code rate increases,

dmin = 2w(j), where w(j) is the weight of binary expansion of j, increases. That leaves gaps

96

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-4

10
-3

10
-2

10
-1

PAC(512,256), DEGA rate-profile

Polar, SCL(8)

PAC, SCL(8)

Polar, C8A-SCL(8)

PAC, C8A-SCL(8)

Dispersion Bound

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-4

10
-3

10
-2

10
-1

F
E

R

PAC(128,64), RM rate-profile

Polar, C8A-SCL(32)

PAC, SCL(32)

Polar, SCL(256)

PAC, C8A-SCL(256)

PAC, SCL(256)

Dispersion Bound

Fig. 6.4: Performance of PAC codes under list decoding

between the bits in the set A and excludes the rows with weights lower than dmin. Fig. 6.5

illustrates the gaps with white cells. When it comes to the convolution operation, these gaps

makes the error protection of a subset of A weaker than the rest of the bits. Let us observe this

weakness by an example. Consider bit i = 38 in PAC(64,32). Since vi = 0 for any i ∈ [32, 37],

if the constraint length m is m ≤ 6, then u38 =
∑m

j=0 gjvi−j = v38. As you may notice, no

convolution is happening here. In fact, the effective generator polynomial for i = 38 and 39 is

c = [0, ..., 0]. As a result, the bit i = 38 which turns out to be transmitted over a relatively

low-reliability sub-channel is left unprotected. Fig. 6.6 illustrates the case where ui = vi as the

shift-register is empty. Note that we do not face this issue in the convolutional codes as there

is no prefixed zero values in the input sequence to the encoder.

PAC(64,16)

PAC(64,32)

PAC(64,48)

63 320

Fig. 6.5: RM-polar rate-profiles for block-length N = 64 and code rates R = 1/4, 1/2, 3/4.
Green cells are in set A.

97

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

This weakness may be mitigated by a longer constraint length and a proper generator poly-

nomial c or by a different convolution scheme. The longer constraint length requires a longer

memory size m for each path in the list decoding. A recommended long-memory polynomial is

c = [c(i)|0, . . . , 0|c(ii)] (6.5)

where c(i) and c(ii) are the coefficients of two generator polynomials.

A smarter scheme that provides a longer memory without a large memory requirement, in

particular under list decoding with large list size, is the scheme shown in Fig. 6.7. In this

scheme, we add another shift register in parallel with the main shift-register, where we store a

subset of input v stream, preferably the bits transmitted through low-reliability sub-channels.

Note that the number of low-reliability bits in each segment is limited. Since the secondary

shift-register has lower number of inputs, a subset of v, the bits remains in the shift-register

for a longer time-steps. This equivalent to having a longer memory.

�� ��� ��� ��� ��� ���

� � � ���

��
�����
����
������ �"�!

��"���������"�

��"���"�

��

��"� ��"� ��"�

�
�

Fig. 6.6: An example of convolution in the presence of a zero sub-sequence in v.

The proposed schemes result in a fewer number of min-weight codewords comparing with

conventional PAC codes. Table 6.2 lists Admin
of some examples.

Lets us discuss the advantage of these example polynomials. Since vi = 0 for any i ∈ [16, 22]

and this is the longest sub-sequence of zeros in the rate-profile, the constraint length m + 1

should be m ≥ 8. The polynomial c = [1, 0, 1, 1, 0, 1, 1, 0, 1, 1] is an example that mitigates the

unequal error protection resulting in a smaller Admin
. A short polynomial such as c = [1, 0, 1, 1]

results in a larger Admin
for the same reason. Intuitively, one can observe that this increase is

due to less inclusion of rows of Pn corresponding to vi = 0 in the row combinations as discussed

earlier. We can also use a longer polynomial for c(i) to improve it from UEP point of view.

Lastly, the two polynomials c(a) = [1, 0, 1, 1, 0, 1, 1] and c(b) = [0, 0, 1, 0, 1] where c(b) is used for

98

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

�� ��� ��� ��� ��� ���

� � � ���

�

��
�����
����
������� �"�!

��"�����������"�

��"���"�

��

��"� ��"� ��"�

�� ��� ���

���

�

�%�"�

��

�����
�%�"�

��"�

Fig. 6.7: A different scheme to mitigate the effect of unequal error protection with two generator
polynomial c(a) = [1, 0, 1, 1, 0, 1, 1] and c(b) = [0, 0, 0, 1].

a min-weight subset of indices in A.

Fig. 6.8 illustrates the FER performance of some of the polynomials listed in Table 6.2 for

PAC(128,64) with RM-polar rate-profile [29] and PAC(256,128) with density evolution/Gaussian

approximation (DEGA 4dB) [80]. The number of codewords with weights dmin and dmin+2,

i.e., A16 and A18, for polar code P(256,128) are 60720 and 0, respectively, while these numbers

for PAC(256,128) with c = [1, 0, 1, 1, 0, 1, 1] are 13424 and 1824, and for PAC(256,128) with

c(a) = [1, 0, 1, 1, 0, 1, 1] = c(b) are 12328 and 80, respectively. Note that Admin+2 contributes to

the second term of PML
e (see [70]) which was approximated by (6.1), therefore a significant

reduction in Admin+2 can improve the performance as well. As can be seen, the improvement

using the new scheme(s) is nearly 0.1 dB at high SNRs which seems improving as the SNR

increases. By concatenation of both polar and PAC codes of (256,128) with CRC, it is expected

that the FER curves are shifted toward left, as it was shown in [48], however it is not the subject

of this work.

6.5 Summary

This chapter investigated and analyzed the reason behind the reduction of min-weight code-

words in PAC codes. We noticed the importance of rows of G with indices in set Ac in the

weight distribution of the code. We also showed the limits of PAC codes and where the precod-

ing stage is not effective depending on the code and set A. Additionally, we investigated the

99

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-3

10-2

10-1

(128,64)

(256,128)

Fig. 6.8: Performance of polar codes and PAC codes with different precoding polynomials under
list decoding with L=32. In the legends, g is equivalent to c.

implementation of list decoding for PAC codes. Under list decoding, there is a significant per-

formance gap between CRC-polar codes and PAC codes. However, this gap between polar and

PAC codes reduces when employing another concatenation layer, such as CRC bits or parity

check (PC) bits. Finally, we recognized the weakness of convolutional precoding and proposed

approaches to mitigate it.

100

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

Algorithm 5: List Decoding of PAC codes

input : channel LLRs λ0,N−1
n , B, L, c

output: recovered message bits d̂
1 L ← {1} // a single path in the list

2 [λ, β]← [λ0,N−1
n +{0}, {0}]

3 for i← 0 to N − 1 do
4 if i /∈ B then
5 for l← 1 to |L| do
6 λi0[l]← updateLLRs(l, i, λ[l], β[l])
7 v̂i[l]← 0
8 [ûi[l], cState[l]]← conv1bTrans(vi, cState[l], c)

9 PM
(i)
l ← calcPM(PM

(i−1)
l , λi0[l], ûi[l])

10 β[l]← updatePartialSums(ûi[l], β[l])

11 else
12 for l← 1 to |L| do
13 L ← duplicatePath(L, l, i, c)

14 if |L| > L then
15 L ← prunePaths(L) // like SCLD

16 d̂← extractData(v̂N1 [0])

17 return d̂;
18 subroutine duplicatePath(L, l, i, c):
19 L ← L ∪ {l′} // path l′ is a copy of path l

20 λi0[l]← updateLLRs(l, i, λ[l], β[l])
21 (v̂i[l], v̂i[l

′]) ← (0, 1)
22 [ûi[l], cState[l]] ← conv1bTrans(v̂i[l], cState[l], c)
23 [ûi[l

′], cState[l′]]← conv1bTrans(v̂i[l
′], cState[l], c)

24 PM
(i)
l ← calcPM(PM

(i−1)
l , λi0[l], ûi[l])

25 PM
(i)
l′ ← calcPM(PM

(i−1)
l , λi0[l], ûi[l

′])
26 β[l]← updatePartialSums(ûi[l], β[l])
27 β[l′]← updatePartialSums(ûi[l

′], β[l])
28 return L;

29 subroutine calcPM(PM , λ0, û):
30 if û = 1

2(1− sgn(λ0)) then
31 PM = PM
32 else
33 PM = PM + |λ0|
34 return PM ;

101

Chapter 6: Convolutional Pre-coding and List decoding of PAC Codes

Table 6.2: The number of min-weight codewords, Admin
, with RM rate profile for PAC code

(128,64,16) under various precoding schemes. The polynomial c = [1] is equivalent to no
precoding, hence the output of encoder is a polar code.

Polynomial ≈ A16

c = [1] 94488

c = [1, 0, 1, 1] 7520

c = [1, 0, 1, 1, 0, 1, 1] 3120

c = [1, 0, 1, 1, 0, 1, 1, 0, 1, 1] 2812

c = [1, 0, 1, 1, 0, 1, 1, 0
×20· · · · · ·, 1, 1, 0, 1, 1] 2556

c(a) = [1, 0, 1, 1, 0, 1, 1] & c(b) = [0, 0, 1, 1, 0, 1, 1] 2574

102

Chapter 7

Sequential Decoding of PAC Codes

“It is better to solve one problem five different ways, than to solve five problems one
way.”

— George Pólya

Fano decoding is an efficient algorithm in terms of memory requirements and computation re-

sources, and it has shown a good error correction performance. Nevertheless, Fano decoding

has high average time complexity. The motivation of this work is to reduce the time and the

computational complexity at the cost of a minor degradation in the practical range of frame

error rate (FER), i.e., 10−2 to 10−4. In this chapter, sequential decoding (including Fano decod-

ing and stack decoding) is first adapted to decode PAC codes. Then, to reduce the complexity

of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii)

tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii)

tree search strategies consistent with the pattern of error occurrence in polar codes. These

contribute to the reduction of the average decoding time complexity from 50% to 80%, trad-

ing with 0.05 to 0.3 dB degradation in error correction performance within FER=10−3 range,

respectively, relative to not applying the corresponding search strategies. Additionally, as an

essential ingredient in memory-efficient Fano decoding of PAC/polar codes, an efficient compu-

tation method for the intermediate LLRs and partial sums is provided. This method is effective

in backtracking and avoids storing the intermediate information or restarting the decoding pro-

cess. Eventually, the sequential decoding algorithms are compared with list decoding (discussed

in Chapter 6) in terms of performance, complexity, and resource requirements.

7.1 Convolutional Codes and Fano Decoding

Convolutional codes (CCs) are a class of linear codes described by a tuple (n0, k,m), where k

is the number of information bits shifted into the encoder at each time slot (usually k = 1), n0 is

the number of corresponding outputted coded bits, and m is the number of previous input bits

stored in a shift-register (a.k.a. memory size) [78]. Unlike the 1-to-1 convolutional transform

in PAC codes where n0 = k = 1 as illustrated in Section 6.1, the code rate of convolutional

codes is given by k/n0. The value m + 1, named constraint length, determines the number of

103

Chapter 7: Sequential Decoding of PAC Codes

previous input bits plus the current bit that influence each coded bit. A larger constraint length

generally provides greater resilience to bit errors.

The relation between the input bits di−m,i and one of the n0 output bits xi, at time-step

i, is obtained as a binary convolution xi =
∑m

j=0 gjdi−j , where gi ∈ {0, 1}. By representing

bit sequences as polynomials in the delay variable D representing a time-step in the encoder,

an output sequence x(D) is obtained as g(D)d(D), where g(D) =
∑m

j=0 gjD
j is the generator

polynomial. Different generator polynomials are used for n0 outputs, only one polynomial is

employed in the pre-transformation of PAC codes.

Convolutional codes are decoded using the trellis-based Viterbi algorithm and the tree search

sequential decoding algorithms. The Viterbi algorithm is a maximum likelihood decoding

method that examines the entire state space of the encoder at each step. We have studied

Viterbi decoding of PAC codes in [61].

On the other hand, the complexity of the sequential decoding is essentially independent

of the memory of the encoder, since only one encoder state is examined at each step. The

fundamental idea behind sequential decoding is to explore only the most promising path(s).

If a path to a node looks “bad” we can discard all the paths through this node without a

significant loss in the error correction performance compared to that of a maximum likelihood

decoder [78].

In this work, we focus on Fano decoding which is a memory-efficient type of Sequential

decoding algorithm. The Fano algorithm is a depth-first tree search, in which the decoder

moves from a node either back to its parent node or to one of its children. The Fano decoder

can visit a node only if its Fano path metric µF is larger than or equal to a certain value called

threshold T . Threshold takes only discrete values 0,±∆,±2∆,

Comparing the above described Fano decoding to the SC and SC list decoding described in

Chapter 2, it is instructive to note two important differences: The SC decoding makes decisions

to choose the node to visit at each step based on the branch metric. Thus, only one path

is explored and the rest are discarded. However, SC list decoding explores multiple paths,

but in contrast to Fano decoding, all of them have the same length. Thus, no backtracking

is performed neither in SC nor in SC list decoding. Hence, only the path metric used to

measure the likelihood of the paths in the sequential decoding must consider the difference in

the lengths of partial paths by adding a bias, while in the SC and SC list decoding, the bias

term is not required. A simpler sequential decoding algorithm is the stack decoding [78] where

104

Chapter 7: Sequential Decoding of PAC Codes

the algorithm keeps a stack of size/depth D of partial paths sorted with respect to the path

metric. The algorithm extends the path with the best metric at the top of the stack. The

stack decoding is a memory intensive algorithm with a variable time complexity that instead

of backtracking as in the Fano decoding, it selects to extend the best partial path in the stack

at each time step.

The metric used in the sequential decoding of convolutional codes is a probabilistic path

metric. We consider the set X = {a(1),a(2), ...,a(M)} of M partial sequences, representing

partially explored paths with different lengths, to be compared. Let nmax = max{n1, n2, ..., nM}

denote the length of the longest sequence, and r̃ the partial received sequence of length nmax

symbols where each encoded symbol takes n bits corresponding to k information/uncoded bits,

R = k/n. Hence, the sequences r̃ and a(`) are

r̃ = (r0r1 . . . rnmax−1) = (r0 . . . rn−1 . . . rnnmax−1)

a(`) = (a
(`)
0 a

(`)
1 . . .a

(`)
n`−1) = (a

(`)
0 . . . a

(`)
n−1 . . . a

(`)
nn`−1)

Among the sequences in X , we choose the partial sequence a(`) that maximizes the a-posterior

probability P (a(`)|r̃). According to Bayes’ rule

P (a(`)|r̃) =
P (a(`))P (r̃|a(`))

P (r̃)
(7.1)

Assuming the channels are memoryless, since the length of the sequence a(`) is n` ≤ nmax, and

there is no associated symbols in this sequence for rn`
, ..., rnmax−1, then we have

P (r̃|a(`)) =

n`−1∏
j=0

P (rj |a(`)
j)

nmax−1∏
j=n`

P (rj) (7.2)

Also, we can rewrite the denominator of (7.1) as

P (r̃) =

n`−1∏
j=0

P (rj)

nmax−1∏
j=n`

P (rj) (7.3)

Now, by substituting (7.2) and (7.3) in (7.1) and cancelling the common term
∏nmax−1
j=n`

P (rj),

we have

P (a`|r̃) = P (a`)

nn`−1∏
i=0

P (ri|a(`)
i)

P (ri)
(7.4)

105

Chapter 7: Sequential Decoding of PAC Codes

Suppose each encoded bit occurs with equal probability, then each sequence a(`) occurs with

probability P (a(`)) = (2−k)n` = (2−nR)n` = (2−R)nn` . Thus, by taking the base-2 logarithm of

(7.5), we have

logP (a(`)|r̃) =

nn`−1∑
i=0

(
logP (ri|a(`)

i)︸ ︷︷ ︸
ML-metric

− logP (ri)−R︸ ︷︷ ︸
path-length bias

)
. (7.5)

In order to adapt (7.5) for sequential (stack or Fano) decoding of polar/PAC codes, the path

metric of list decoding can be used as the ML-metric term. Note that n in (7.5) is 1 for PAC

codes as the convolutional transform is 1-to-1 resulting in R = 1. The simplest path-length

bias in (7.5) could be a fixed bias parameter as suggested in [81]. A different bias function

based on the cumulative density function (CDF) of the evolving LLRs was proposed in [79].

Further, [82] suggested to replace the path-length bias term with log(1− pe,i), where pe,i is the

error probability of i-th bit-channel.

Alternatively, in the computer science literature, the path metric of algorithm A, a graph

traversal and path search algorithm, is written in the general form of [83]

f(a(`)) = g(a(`)) + h(a(`)) (7.6)

where the first term measures the actual cost of the i-th partial path as follows,

g(a(`)) =

n`−1∑
j=0

logP (rj |a(`)
j) (7.7)

and the second term is a heuristic estimate for the remaining cost of completing the path to its

leaf with the best metric by following the corresponding (yet unknown) extension of a(`). The

choice of the heuristic function h(a(`)), determines the tradeoff between the complexity and the

risk of accidentally abandoning a path that leads to the desired optimal solution.

We propose a heuristic to estimate h(a(`)) for Fano decoding of polar codes and PAC codes

in Section 7.2.2.

7.2 Fano Decoding of PAC Codes

In this section, we first briefly explain the fundamentals of the Fano algorithm detailed in

Algorithm 7 followed by the details of the proposed algorithm for updating the intermediate

106

Chapter 7: Sequential Decoding of PAC Codes

information required in the SC decoding process in the backtracking (Section 7.2.1) and our

novel path metric (Section 7.2.2). Then, we present several improvements to the Fano algorithm

in order to reduce the time complexity in the following Section 7.3.

In the Fano algorithm, the decoder starts with the origin node (i = 0) and examines a

sequence of adjacent nodes. At any step corresponding to the non-frozen bits in vector v,

it either moves forward to one of the successor nodes or moves backward to the non-frozen

predecessor of the current node. The branch metric mi is correspondingly added to the current

path metric µi−1 during forward movement (in lines 9 & 16-17 of Algorithm 7) or restored from

memory during the backward movement. The algorithm stops when it reaches a terminal node

(i = N). The search through the code tree is guided by a threshold T on the path metric

(with initial value of T = 0). If the metric becomes less than the threshold as the algorithm

follows the current path (line 42 of Algorithm 7), the search is backed up and another path

is followed (Algorithm 9 is called in line 58 of Algorithm 7). If no paths can be found with a

metric above the threshold, the threshold value is lowered (in line 26 of Algorithm 7) and the

process is continued. A node in the tree may be visited more than once in the forward direction

but a lower threshold each time. The algorithm eventually reaches a terminal node and stops.

For more details on the Fano algorithm, see [78].

Note that (i) the Fano algorithm proposed here stores the path metric of good branch (the

one with larger metric) and bad branch (the one with smaller metric) as well as memory states

along the current path, (ii) the subroutines updateLLRs and updatePartialSums in Algorithm

7 and the rest of the chapter are identical to the ones used in SC decoding of polar codes,

(iii) Algorithm 9 is called in line 44 to find a bit index that satisfies the threshold in order to

move back, and (iv) toDiverge indicates that the branch with smaller metric should be chosen

at information bit j and this choice is flagged in the j-element of vector δ. The rest of the

Algorithm 7 and other algorithms are explained and referred to in the rest of the chapter.

7.2.1 Partial Rewind of SC Algorithm

The Fano algorithm performs forward and backward traversals in the decoding tree: while

in the forward traversal, the calculation of the required intermediate LLRs and partial sums is

straightforward and linear, a more sophisticated approach is required for the backward traversal

or partial rewind of SC algorithm. Suppose that we want to move back from the icurr-th

bit to the istart-th bit: First, we need to re-calculate λistart0 and a number of intermediate

107

Chapter 7: Sequential Decoding of PAC Codes

LLRs. Since these LLRs are updated in-place when computing the metrics in natural order,

they may no longer be available. As explained in [66], efficient decoders store at most N − 1

intermediate/decision LLRs for decoding bits 0 to N − 1, of which N/2n−s are associated to

stage s (0 ≤ s ≤ n − 1) of the LLR calculation algorithm. The number of intermediate LLRs

to be updated varies between one, when moving from a bit with odd index icurr to icurr − 1,

and in extreme cases N − 1, when moving from icurr ≥ N/2 to istart < N/2.

In general, up to log2N stages should be activated to calculate the decision LLR at bit

istart, λ
istart
0 . The first stage to be activated (from right to left in Fig. 2.2) is determined by

find first set (ffs) operation, here, set means 1, on the binary representation of bit index x, i.e.,

bin(x) = xn−1...x1x0. The modified version of ffs [66] is defined below. Note that we assume

the decoding is performed in natural order.

ffs∗(xn−1...x1x0) =

min(j) : xj = 1 x > 0,

n− 1 x = 0
(7.8)

When icurr, the index of the current bit, is odd, ffs∗(bin(icurr)) = 0, and istart = icurr − 1,

we can calculate the decision LLR, λistart0 , directly according to the f -node operation without

any need to update the intermediate LLRs. As a consequence, when moving back to bit index

istart < icurr−1, we need to consider the ffs∗ of icurr−1 and/or istart−1 if icurr and istart both

or either one is odd. This is controlled in lines 1-4 of Algorithm 6. Note that the stages to be

updated are not necessarily s = ffs∗(bin(istart)), ..., 1, 0, but the deepest stage to be updated,

smax, is

smax = {max(s) : s = ffs∗(bin(im)), istart ≤ im ≤ icurr} (7.9)

The relation (7.9) finds the deepest stage in the factor graph (from left to right in Fig. 2.2)

at which the LLRs have been updated/overwritten while decoding bit istart to icurr. If smax ≥

ffs∗(bin(istart)), we need to move back further to the bit i−1 at which smax = ffs∗(bin(i−1)).

The subroutine findsMaxPos in Algorithm 6 performs the operation of finding i−1.

Example: Suppose the block-length is N = 4 and we are decoding bit icurr = 3. The

intermediate LLRs vector is [λ3
1, λ2

1], excluding the decision LLR, λ3
0 (see Fig. 2.2). Now, if

we need to go one step back to bit istart = 2, since icurr = 3 is odd, we do not need to update

the intermediate LLR vector, i.e., λ2
0 can be directly calculated. However, for moving back to

istart = 1, since istart is odd, we need to find smax = 1 and calculate [λ1
1, λ0

1]. Only after this

108

Chapter 7: Sequential Decoding of PAC Codes

update of the intermediate LLRs it is possible to calculate the decision LLR λ1
0 and rewind the

SC algorithm.

Note that the partial sums vector, β, is also updated in lines 12 and 19 during the afore-

mentioned process.

Algorithm 6 shows an efficient approach for updating the intermediate LLRs.

Algorithm 6: Partial Rewinding: updateLLRsPSs - Updating intermediate LLRs &
partial sums

input : istart, icurr, û, λ, β
output: updated λ, updated β

1 if icurr%2 6= 0 then
2 icurr ← icurr − 1
3 if istart%2 6= 0 then
4 istart ← istart − 1
5 sstart = ffs∗(istart) // c.f (7.8)

6 smax ← sMax(istart, icurr) // c.f (7.9)

7 if sstart ≤ smax then
8 i−1 =find sMaxPos(sstart,smax, istart)
9 β ← updatePSBack(i−1, smax, û)

10 for i← i−1 to istart do
11 λ← updateLLRs(i, λ, β)
12 β ← updatePartialSums(i, ûi, , β) // Identical w/ SCD

13 else
14 λ← updateLLRs(istart, λ, β)

15 return [λ, β];
16 subroutine updatePSBack(i−1, smax, û):
17 k ← 2smax

18 for i← i−1 + 1− k to i−1 do
19 β ← updatePartialSums(i, ûi, β)

20 return β;

21 subroutine find sMaxPos(sstart, smax, i−1):
22 s′ ← sstart
23 while s′ < smax do
24 i−1 ← i−1 − 2
25 if i−1 > 0 then
26 s′ ← ffs∗(i−1) // c.f (7.8)

27 else
28 s′ ← n

29 return i−1;

109

Chapter 7: Sequential Decoding of PAC Codes

7.2.2 Heuristic Path Metric

The Fano path metric for each examined node plays an important role in the backtracking

since it provides an indication for how likely it is that the partial path to the current node

is correct. Efficient backtracking relies on this metric to a) select a point to branch off the

currently best (possibly erroneous) path to explore promising alternative solutions and to b)

abandon unlikely paths based on comparing their path metrics with the threshold T .

To provide such a metric, we follow the generic approach outlined in (6): the first term

corresponds to the metric in list decoding while the second term is used to account for the

different candidate path lengths in the Fano decoding. For every partial sequence a(`), we

define the following metric:

µ` = M(a(`),y) =

n`−1∑
j=0

logP (û
(`)
j |û

(`)
0,j−1,y)

+
N−1∑
j=n`

logEy

[
P (uj |u0,j−1,y)

] (7.10)

The second term is an expected metric for the continuation of the partial path with length

N − ni. Based on our observation of the actual metric obtained during decoding with or

without backtracking, a good estimation of the second term, in case there is no error in the

received signals, is Ey

[
P (uj |u0,j−1,y)

]
≈ 1 − pe,j , where pe is the error probability of the

bit-channels which can be obtained from the methods used for the construction/rate-profile of

polar codes.

Let us define the expected metric B = Ey[µN−1] for the full-length path and the expected

metric of the remaining partial path as

B =
N−1∑
j=0

log(1− pe,j) (7.11)

Bc
i =

N−1∑
j=i+1

log(1− pe,j) = B −
i∑

j=0

log(1− pe,j) (7.12)

where log(1 − pe,j) is the estimated branch metric. Now, we can rewrite (7.10) as a recursion

as follows:

110

Chapter 7: Sequential Decoding of PAC Codes

µj = µj−1 +mj − log(1− pe,j) (7.13)

where mj = log(P (ûj |û0,j−1,y)) is the actual branch metric and µ−1 = B. Note that since

the initial metric is µ−1 = B, at each decoding step, the actual branch metric mj is added

and instead the estimated metric of the corresponding branch is deducted to maintain the

relation in (7.10). Hence, although (7.13) looks similar to the metric in [82], the initial value

and the foundation of the metric are quite different (in [82], µ−1 = 0). Furthermore, one can

optimize the FER performance by tuning the bias term, log(1− pe,i). In particular, if the SNR

dependent method in [79] is used to obtain pe,i, one can improve FER performance, by changing

the design-SNR.

7.3 Low-complexity Fano Decoding

In this section, we introduce an adaptive path metric depending on the noise level and

different search strategies to limit the search space.

7.3.1 Adaptive Path Metric

A bit channel i with low reliability contributes to the metric update depending on the noise

level, i.e., µi can be significantly smaller than µi−1 (due to change in the magnitude and/or sign

of the decision LLR) in the presence of large channel noise. This impact on the path metric

can accumulate over time leading to a significant deviation from the expected metric in (7.11).

Recall that due to channel dependency, a change in the channel LLR of one channel can affect

the other low-reliability bit channels as well. Consequently, the metric of most of the examined

branches denoted by µ′ in Fig. 7.1 are most likely greater than the threshold, i.e., µ′i > T for

i < icurr, where icurr is defined in Section 7.2. This causes a large delay due to the exploration

of many sub-paths during backtracking. Hence, the metric estimate for the path continuation

represented by the second term in (7.10), is not in a fair way comparable with the actual metric

of the current path as discussed in the previous section.

To compensate for such deviation, we suggest adapting the estimate (7.12) for the con-

tinuation of partial paths relative to the impact of the channel noise on the actual metric.

This adaptation can be realized by a scaling factor α for the logarithm of the probability in

111

Chapter 7: Sequential Decoding of PAC Codes

Fig. 7.1: Decoding tree: µjs are the path metrics of the current best path (solid thick line)
from the root to a node at level j and the µ′js are the path metrics of the branches (solid thin

line) diverging from the current best path.

(7.12) which in effect adapts the expected probability to the noise level. The effect of this

scaling is as follows: α logEy

[
P (uj |u0,j−1,y)

]
= log

(
Ey

[
P (uj |u0,j−1,y)

])α
. Since α ≥ 1 and

P (uj |u0,j−1,y) < 1, then
(
Ey

[
P (uj |u0,j−1,y)

])α
becomes smaller, accounting for a larger noise

variance.

The value of α is determined after visiting the nodes of the current path to some level of

decoding tree. This level should cover a sufficient number of low-reliability bit-channels to

reflect the noise effect on the metric in a fair way. Until this level/bit index denoted by ibu

in lines 43 and 46 of Algorithm 8, we do not perform backtracking although the metric drops

below the threshold, T (as seen in lines 43-44 where the threshold is updated). Then, the

scaling factor is obtained by

α =

∑nk
j=0 logP (û

(`)
j |û

(`)
0,j−1,y)∑nk

j=0 logEy

[
P (uj |u0,j−1,y)

] (7.14)

This adaptation can be performed when α > 1, i.e., when the actual metric is larger than

the expected metric. In practice, a quantized version of this factor is more convenient to use in

fixed-point arithmetic. Hence, αq = d α∆q
e∆q, where ∆q is an integer. For instance, in decoding

PAC(128, 64), we first follow the current best path to bit ibu = 38. By taking ∆q = 2 and the

effect of the ceiling operator, an effective value is obtained which further reduces the complexity

with almost no degradation in performance. In low and medium code rates, one can choose

to calculate α after the initial sequence of low-reliability bits, where the associated values in

vector v are 0 (equivalent to the frozen bit-channels in polar codes).

After obtaining α, we need to update not only the metric of the current path, but also the

metric of the examined branches, µ′j in Fig. 7.1, along the current path.

112

Chapter 7: Sequential Decoding of PAC Codes

To update the computed metrics we simply add the difference between the updated bias

αBc
j and the initial bias Bc

j to µj and µ′j .

µ′j = µ′j + (α− 1)Bc
j (7.15)

Thus, the metrics are computed by considering α in the next decoding steps as

µj = µj−1 +mj − α · log(1− pe,j) (7.16)

Lines 10 and 16-17 of Algorithm 7 include α which is initialized at the beginning of the decoding,

line 3 (α = 1). The calculation of α and the metric updating process are shown in Algorithm

8, lines 46-53.

For hardware implementation, we are interested in simple arithmetic operations. Here, we

suggest using an LLR-based metric instead of the metric based on the probability. To this end,

we need to define mj based on λj0.

mj(λ
j
0, ûj) = log(P (ûj |û0,j−1,y)) = log

(
e(1−ûj)λj0

eλ
j
0 + 1

)
= log

(
1 + e−(1−2ûj)λj0

)−1
(7.17)

where the last equality holds only for ûj = 0 and 1. Now, if û = 1
2(1 − sgn(λj0)), the term

e−(1−2û)λj0 = e−|λ
j
0| is small and hence log(1 + e−|λ

j
0|) ≈ 0. Otherwise, we can approximate

log(1 + e|λ
j
0|) ≈ |λj0|. The term log(1− pe,j) and B =

∑N−1
j=0 log(1− pe,j) can be pre-computed

offline and can be used in the metric computation.

Note that all the terms in (7.16) are negative and so are the metric values. To save one bit

per metric in the storage, we can discard the bit representing the always negative sign from the

values. In this case we need to modify the comparisons in the algorithms accordingly.

7.3.2 Constrained Tree Search

The tree search algorithm may explore the paths on the tree that are unlikely to be correct.

Unfortunately, the threshold T can only be used to prune a subset of these paths since a too

tight threshold would also be likely to prune the correct path. Prior knowledge about error

occurrence can be exploited in order to constrain the tree traversal. In the following, we propose

113

Chapter 7: Sequential Decoding of PAC Codes

Fig. 7.2: Bottom-up backtracking

Fig. 7.3: Top-down backtracking

several effective constraints resulting in a significant reduction in time complexity at a small

performance degradation:

Constraint on Number of Diversions from Best Path

By using a genie that corrects the error occurrence due to channel noise, we can observe that

less than 1% of the frame errors are due to more than b = 5 bit-errors caused by the channel

noise. Fig. 7.4 shows the relative frequency of error occurrence for different numbers of bit-

errors. With this knowledge, we can avoid exploring the paths that diverge from the SC path

at more than 5 bit-positions. If we can afford a degradation of error correction performance,

we can reduce the maximum number of diversions while exploring the alternative paths. This

would limit the number of visited nodes. For the example shown in Fig. 7.4, this number can

be set to b = 3 or 4 bit-positions in order to reduce the number of visited node and consequently

the time complexity. We will show a result after applying this constraint in Section 3.2.2. In

algorithm 9, lines 21-22 implement the constraint for the maximum diversions.

114

Chapter 7: Sequential Decoding of PAC Codes

1 2 3 4 5 6 7 8

Number of Errors

0

10

20

30

40

50

60

70

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

%
)

Fig. 7.4: Distribution (in %) of the number of error occurrence, extracted from 4000 decoding
failures of PAC(128,64) with RM-profile at Eb/N0 = 2.5 dB

Exploring a Subset of bad branches

The reliability of the bit-channels is known from methods such as density evolution [79].

Hence, during backtracking, we do not need to extend the partial path to the bad branches

connecting to the nodes representing high-reliability bit-channels even if they satisfy the thresh-

old condition. Thus, we only explore the sub-paths that originate from bad branches of the

low-reliability bit-channels. This might introduce a small error rate degradation (due to not

exploring all the bad branches), but it reduces the time complexity significantly. To this end,

we collect the indices of the low-reliability bit-channels in the critical set CS [32,84] and in the

backtracking procedure, we only compare the threshold with the metrics of bad branches that

are listed in the critical set. Lines 6 and 20 in Algorithm 9 enforce this constraint in top-down

and bottom-up schemes (discussed in the next section), respectively.

Additionally, the constraint can be set to stop decoding and declaring decoding failure when

the number of steps or clock iterations exceeds some limit or the path metric drops below a

certain value. This could avoid cases with excessive run-time due to visiting a huge number of

nodes. Also, we can stop decoding when the path metric drops below a certain value, since in

this case, the decoder either fails correcting the error(s) or it may lead to a long decoding delay

due to visiting a huge number of nodes in order to find the correct path.

115

Chapter 7: Sequential Decoding of PAC Codes

7.3.3 Direction of Backtracking Traversal

Considering the properties of PAC codes which are mainly inherited from polar codes, we

can devise different strategies that help to reduce the total number of nodes to visit during

backtracking. When a decision error occurs during forward tree traversal, this error is propa-

gated to the subsequent bits due to the sequential nature of decoding. In the conventional Fano

decoding, backtracking starts from the latest decoded bit in a depth-first bottom-up direction,

step by step as shown in Fig. 7.2. For example, in a code with 3 bits, in the first backtracking

iteration shown by 1 in Fig. 7.2, the 3rd bit diverges from the SC path, i.e., u0 − u1 − ū2. In

the 2nd backtracking iteration, the 2nd bit diverges only, i.e., u0 − ū1 − u2. Then the 2nd and

3rd bits diverge together, i.e., u0 − ū1 − ū2. This process continues towards the top of the tree

until (in the worst case) all the combinations of 1-bit, 2-bit, and 3-bit diversions are explored,

assuming the threshold condition is satisfied by all the branches. However, as our observations

show, the probability that the first error due to channel noise has occurred at one of the first

decoded bits is higher. Further, there is no point in correcting the error that occurred due

to error propagation. Thus, backtracking in a top-down fashion as shown in Fig. 7.3 is more

consistent with the location of the first error and the subsequent propagated errors.

The top-down backtracking can only be performed on the bad branches that originate from

the SC path as a reference path. The rest of the backtracking iterations follows the bottom-up

fashion. Note that a good branch is determined as a local branch with a higher likelihood

among two branches emerging from a parent node. Thus, a good branch could form a non-SC

path any where on the decoding tree. However, the SC path is distinguished by following the

good branches at all the decoding steps from the root to the leaf of the tree. This SC path is

shown by the bold line in Fig. 7.2 and Fig. 7.3.

Choosing a bad branch in the backtracking is called a diversion and its corresponding metric

is denoted by a prime symbol, i.e., µ′, in Fig. 7.2 and Fig. 7.3. This diversion is equivalent to

flipping a bit/bits [25] from the SC path in the SC decoding. In Algorithm 9, lines 5-12 and

14-25 implement the top-down and the bottom-up traversals, respectively.

7.3.4 Threshold Update Strategy

When the channel noise has a high impact on the decision LLRs of low-reliability bits,

as discussed in Section 7.2.2, the best path metric µ drops significantly over a burst of low-

116

Chapter 7: Sequential Decoding of PAC Codes

reliability bit-channels such that µ� T . On the other hand, at every iteration of backtracking

(i.e., exploring all the potential sub-paths branching off from the current path), the threshold

is reduced by ∆. Thus, several backtracking iterations are required to satisfy µ > T −m∆ for

m > 1 (m is the number of backtracking iterations). If we skip the m − 1 iterations and just

we perform one iteration and then update the threshold at once using T = b µ∆c∆ to satisfy

the condition µ > T , we can proceed with the decoding of the current best path and avoid

extra delay. There is a possibility that the correct path is not the most likely path and the

decoder could find another path in one of the backtracking iterations that we are going to

skip. However, our observation shows that the degradation due to skipping m− 1 backtracking

iterations is about 0.05 dB at the high SNR regime. The lines 24-26 in Algorithm 7 shows the

implementation of this strategy.

Current

Fig. 7.5: Updating the Metric of Explored Branches

7.3.5 Updating Expected Metrics of Explored Paths

During backtracking, the sub-paths originated from the current best path through bad

branches are partially explored. The exploration of the same paths (possibly with longer length)

might be repeated later as we proceed with the decoding. Our aim is to benefit from the time

spent to explore the sub-paths. By updating the path metric, µ′j , at the bad branch originated

from the current best path, as shown in Fig. 7.5, with the actual result of the exploration

rather than the expected path metric, we may avoid re-exploring these paths in the next cy-

cle(s) of backtracking. Since many sub-paths might originate from the same branch, we update

µ′j with the largest metric obtained among sub-paths. This process is performed in lines 55-57

of Algorithm 8. Here, we use µ′′ instead for temporarily storing the actual path metric of first

117

Chapter 7: Sequential Decoding of PAC Codes

sub-path explored and then comparing it with the actual metric of any new sub-path explored

later. Then µ′ is updated in line 33 of Algorithm 7. Note that by employing the adaptive

heuristic metric, the effect of this updating becomes insignificant.

7.4 Numerical Results

The Fano decoding algorithm provides a performance near the dispersion bound, but as

a variable-complexity decoding scheme, its average time complexity is extremely high. The

Fano decoding of PAC(128,64) with RM-profile over BIAWGN channel is simulated. Similar

to list decoding, the constraint length and the coefficients of the generator polynomial for

convolutional codes are 7 (m = 6) and 0o133, respectively. The non-optimized design-SNR for

obtaining the pre-computed bias term is 4 dB. By applying the ideas introduced in Section

7.2, such as adaptive metric (AD), top-down (TD) search strategy and imposing constraint on

the number of diversions (Div) from SC path, it is observed in Fig. 7.6 (left) and Fig. 7.7

(left) that while the average time complexity drops significantly by 50% to 80%, depending on

the techniques employed, the degradation in error correction performance is not high. Since

the curves in Fig. 7.7 are almost straight in semi-logarithm scale, the complexity gains are

preserved at high SNR regimes as well. Fig. 7.7 (right) shows the computational complexity of

Fano, stack, and list decoding under different parameters and techniques. The computational

complexity is measured by the total number of operations per codeword (comparisons and

additions) performed through the factor graph in Fig. 2.2. As can be seen, the computational

complexity of list decoding is significantly higher than Fano and stack decoding to achieve the

same performance. Fig. 7.7 (left) shows the time complexity in terms of time steps, where each

time step is defined as the time required for processing the node(s) in one stage of the factor

graph shown in Fig. 2.2. Although the time complexity of the list decoding is significantly

lower than Fano and stack decoding (left), we note that one time step in list decoding is longer

than a time step in Fano decoding, due to the required sorting process.

Note that stack decoding has a lower time and computational complexity than Fano decoding

because it does not need to trace back on the tree and explore other paths to find a promising

one if there is any. The partial paths (sorted with respect to the metric) and their associated

intermediate information are already available in the stack. Hence, stack decoding can save a

significant amount of computations and time at the cost of a huge memory requirement. To

compute the number of time steps (or clock cycles), we consider an architecture that is similar

118

Chapter 7: Sequential Decoding of PAC Codes

to that in [66]. In this type of design, 2N −2 time steps are required to decode a codeword [66].

However, in Fano decoding, due to possible backtracking, the number of required time steps is

typically significantly larger than 2N − 2. Here, we take the average time steps over a large

number of decoding iteration into account. For comparison, we also implemented Fano decoding

for polar codes with RM-profile. Although, the average computational complexities of polar

codes and PAC codes under Fano decoding are close, due to poor weight distribution of polar

codes, PAC codes outperform polar codes.

1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

PAC(128,64), Fano Decoding, =1

Fano

Fano, CS

Fano, CS, AD

Fano, CS, AD, TD

Fano, CS, AD, TD, Div 4

Fano (Polar), CS...Div 4

Dispersion Bound

1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

PAC(128,64), Comparison

SC, PW rate-profile

SCL L=256

Stack, D=256

Fano, =1

Viterbi, m=8 [32]

Dispersion Bound

Fig. 7.6: Performance of PAC codes with RM rate-profile under Fano decoding with constrained
search (CS), adaptive metric (AD), top-down tree traversal (TD), and a limited number of
diversions (Div.) in comparison with other decoding schemes SC, SCL, stack, and Viterbi.
Also showing performance of polar codes under Fano decoding ”Fano (Polar)”.

Another important observation in Fig. 7.6 (left) is that the performance gain of PAC codes

over polar codes under Fano decoding is quite significant while the time and computational

complexity of these two families of codes are close. However, this performance gain under list

decoding as shown in Fig. 6.4 is smaller. Additionally, one can observe from the comparison

of the performance of PAC(128,64) under list, stack, and Fano decoding in Fig. 7.6 (right)

that Fano decoding provides a similar performance as list decoding but outperforms the stack

decoding, while it requires significantly less hardware resources than list decoding and stack

decoding. As shown in Table 7.4, the memory required for paths, intermediate LLRs and partial

119

Chapter 7: Sequential Decoding of PAC Codes

������
�
 �����������
�

������

������

����� ����

�������

� ���

� ����
���

� � ������

��������

���!�������
�
 ����!�������
�

�����
"����������

Fig. 7.7: Time and computational Complexity.

sums,which account for the majority of memory space, for list and stack decoding is L and D

times that of Fano decoding. Note that in order to obtain a FER performance similar to Fano

decoding, we need a very large list size L or stack depth D in the order of 128 or 256. This

highlights the huge gap between Fano decoder and the other decoders in terms of hardware

resources

The parameters P , and Qi for i = 1, 2, 3 denote the number of processing elements (PE) [66]

and the number of quantization bits, respectively.

Finally, Viterbi algorithm (VA) [61] with similar hardware resources as list decoding (except

the 2L-value sorter, replaced by a 2-value comparator) provides a close performance to Fano

and list decoders.

7.5 Summary

In this chapter, we investigated the implementation of sequential decoding for PAC codes.

Fano decoding has a high average time complexity but a low computational complexity relative

to list decoding. For mitigating the time complexity, we propose several techniques and strate-

gies, including an adaptive path metric and a heuristic to estimate a metric for the continuation

of the partial paths, search constraints, and a combination of top-down and bottom-up search

strategies. These strategies reduce the computational complexity as well. Also, to overcome the

difficulty of obtaining the intermediate LLRs and partial sums during backtracking, we propose

an algorithm to compute these intermediate information (LLRs and partial sums) efficiently

without using extra memory to store them or any need to restart the decoding process. The

120

Chapter 7: Sequential Decoding of PAC Codes

numerical results show that by using these techniques, the average time complexity drops by

50% to 80% at the cost of relatively small performance degradation. The adaptive heuristic

metric and the search strategies proposed in this chapter can be used in polar coding. Although

the time complexity of the Fano Decoding is variable and high, the software Fano decoder is

significantly faster than the software list decoder with a large list size without using parallelism.

Due to the need for backtracking in the Fano decoding, the frequency of backtracking through

the decoding tree increases prohibitively as the code length increases. Hence, we conclude that

the Fano decoding can be used for short codes with medium to low code rates.

Overall, it appears that any proper pre-transformation such as convolutional transform [47],

moving parity check bits [18], dynamic frozen bits [85], use of CRC bits for error detection [13],

and a combination of them can improve the distance spectrum and results in an error correction

performance gain. However, each pre-transformation may provide a different gain depending

on the rate profile, block length, and code rate.

121

Chapter 7: Sequential Decoding of PAC Codes

Algorithm 7: Fano Decoding of PAC Codes

input : Channel LLRs λ0,N−1n , , N , K, A, pe, c, ∆, ibu
output: Information bits d̂

1 cState[1,...,|c| − 1] ← {0} // Current state

2 currState[0:K-1][1:|c|−1] ← {0}
3 [i, j, T , λ, δ, β, b−1, αq, CS] ← [0, 0, 0, {0}, {0}, {0}, B, 1,generateCS(A)] // CS in [32]

4 [onMainPath, isBackTracking, toDiverge, biasUpdated] ← [True, False, False, False]
5 while i < N do
6 λi0 ← updateLLRs(i, λ, β) // like SCD

7 if i /∈ A then
8 [ûi, cState] ← conv1bTrans(0, cState, c) // Alg. 4

9 µi ← µi−1+ m(λi0, ûi)−αq · log(1− pe,j)
10 β ← updatePartialSums(i, ûi, β) // like SCD

11 i← i+ 1

12 else
13 [û(0), cState(0)]←conv1bTrans(0, cState, c)

14 [û(1), cState(1)]←conv1bTrans(1, cState, c)

15 µ(0) ← µi−1+ m(λi0, û(0))−αq · log(1− pe,j)
16 µ(1) ← µi−1+ m(λi0, û(1))−αq · log(1− pe,j)
17 [µmax,v̂max]← [µ(0),0] if µ(0) > µ(1), else [µ(1),1]

18 [µmin,v̂min]← [µ(0),0] if µ(0) < µ(1), else [µ(1),1]
19 if onMAINpath=True and isBackTracking = True then
20 if µmin > T and CS[j] = 1 and j < jend then
21 [onMAINpath, δsj , jstem] ← [False, 1, j]

22 [λs, βs]← [λ, β]

23 else if j = jend then
24 isBackTracking = False
25 T = bµend

∆ c∆ // Updating threshold

26 if µmax > T then
27 if toDiverge = False then
28 [v̂i, ûi] ← [v̂max, û(v̂max)]
29 if onMAINpath= True and δsj = 1 then
30 [µi, µ

′
i] ← [µmax, µmin]

31 else
32 [µi, µ

′
i] ← [µmax, µ′′i]

33 δj ← 0

34 else
35 [v̂i, ûi] ← [v̂min, û(v̂min)]
36 [µi, µ

′
i] ← [µmin, µmax]

37 [δj , toDiverge] ← [1, False]

38 [currState[j],cState]←[cState,cState(v̂i)]
39 β ← updatePartialSums(i, ûi, β)
40 [i, j] ← [i+ 1, j + 1]

41 else
42 if biasUpdated = False and i < ibu then
43 T = bµmax

∆ c∆ // Updating threshold

44 else
45 <Go to Algorithm 8>

68 return (d̂← extract(v̂, A)) // Dropping 0s

122

Chapter 7: Sequential Decoding of PAC Codes

Algorithm 8: Fano Decoding (2): Lines 46-67 in Algorithm 7

46 if biasUpdated = False and i = ibu then
47 if µmax < B then
48 αq = dµmax

B·∆q
e∆q

49 biasUpdated = True
50 for k ← 0 to j do
51 µ′A[k] = µ′A[k] + (αq − 1) ·Bc

A[k]

52 µA[0]−1 = µA[0]−1 + (αq − 1) ·Bc
A[0]−1

53 µA[j]−1 = µA[j]−1 + (αq − 1) ·Bc
A[j]−1

54 currState[j] ← cState
55 if onMAINpath = False then
56 if µ′′A[jstem] < µmax then

57 µ′′A[jstem] ← µmax

58 else
59 [jend, µend] ← [j, µmax]
60 [frmMAINpath, isBackTracking] ← [True, True]

61 [T, j′, toDiverge] ← moveBack(µ′0,i, j, T , δ0,j , û, CS, frmMAINpath)

// µ′0,i = µ′0, µ
′
1, ..., µ

′
i

62 if toDiverge = False and (j′ = jstem or j′ = j) then
63 onMAINpath = True
64 else
65 onMAINpath = False

66 [i, j, frmMAINpath] ← [A[j′], j′, False]
67 cState ← currState[j]

123

Chapter 7: Sequential Decoding of PAC Codes

Algorithm 9: Fano Decoding (3): moveBack - Checking the examined nodes to move
backward

input : the channel output µ′, j, T , δ0,j , û, CS, frmMAINpath
output: T , j′, toDiverge,

1 isMovingBack ← False
2 while True do
3 j′ ← j
4 if frmMAINpath = True then

// Top-down move

5 for k ← 0 to j′ − 1 do
6 if µ′A[k] > T and CS[k] = 1 then

7 [j′, jstem, isMovingBack]← [k, k, True]
8 [λs, βs]← [λ, β]
9 break

10 if j′ = j then
11 toDiverge ← False
12 return [T, j, toDiverge]

13 else
// Bottom-up move

14 for k ← j′ − 1 to 0 do
15 if jstem = k then
16 j′ ← k
17 [λ, β]← [λs, βs]
18 toDiverge ← False
19 return [T, j′, toDiverge]

20 if µ′A[k] > T and CS[k] = 1 then

21 if sum(δ0,k) ≥ maxDiversions then
22 continue
23 if δk = 1 then
24 [j′, isMovingBack] ← [k, True]
25 break

26 if isMovingBack = True then
27 [icur, istart]← [A[j],A[j′]]
28 [λ, β]← updateLLRsPSs(istart, icur, û, λ, β) // Alg. 6

29 if δj′ = 0 then
30 toDiverge ← True
31 return [T , j′, toDiverge]

32 else if j′ = 0 then
33 toDiverge ← False
34 return [T , j′, toDiverge]

124

Chapter 7: Sequential Decoding of PAC Codes

Table 7.1: Comparison of hardware resources for Fano, stack, and list decoders

Fano Stack List

Memory Requirement [bits]

Path memory, u N DN LN

Intermediate LLRs, λ (N−1)Q1 D(N−1)Q1 L(N−1)Q1

Partial Sums, β N−1 D(N−1) L(N−1)

Path Metric, M 2(N−K)Q2 DQ2 LQ2

Current State K ·m D ·m L ·m
Critical Set flag, CS N 0 0

Diversion flag, δ N 0 0

Error probability, pe NQ3 NQ3 0

Computing Resources

Processing Elements P P LP

Comparison A comparator D-sorter 2L-sorter

125

Chapter 8

List Viterbi Decoding of PAC Codes

“It is better to do the right problem the wrong way than the wrong problem the right
way.”

— Richard Hamming

The list Viterbi algorithm (LVA) sorts the candidate paths locally at each trellis node.

Motivated by this fact, we adapt the trellis, path metric, and the local sorter of LVA to PAC

codes. Then we show how the error correction performance moves from the poor performance

of the Viterbi algorithm (VA) to the superior performance of list decoding by changing the

constraint length, list size, and the sorting strategy (local sorting and global sorting) in the

LVA. Also, we analyze the complexity of the local sorting of the paths in LVA relative to the

global sorting in the list decoding, and we show that LVA has a significantly lower sorting

complexity than list decoding.

8.1 Trellis and Path Metric in (List) Viterbi Algorithm

The Viterbi algorithm [56] is the most popular decoding procedure for convolutional codes

(CCs), which is based on their trellis diagram graphical representation [57]. A trellis is a graph

where the nodes represent the encoder state. The branch sequences on the trellis are generated

by a finite state machine with inputs v and states S = {s1, ..., s2m} and the code is called the

trellis code. The Viterbi algorithm traverses the trellis from left to right, finding the maximum

likelihood transmitted sequence estimate, when reaching the last stage t = N − 1.

PAC codes can be encoded and decoded on the trellis by employing the Viterbi algorithm

(VA) [56, 57] and the list-type VA [58]. The trellis used for PAC codes is an irregular trellis

which is shown in Fig. 8.1 and Fig. 8.2. As shown, when there is a sub-sequence of at least

m zeros in the input v, the current states of all the paths on the trellis transit toward all-zero

state.

In convolutional coding, there are three methods to obtain the finite code sequences: (1)

code truncation where the encoder stops after a finite block-length, N , and the code sequence

is truncated. This method leads to a substantial degradation of error protection, because the

126

Chapter 8: List Viterbi Decoding of PAC Codes

last encoded information bits influence a small number of code bits. (2) code termination where

we add some tail bits to the code sequence in order to ensure a predefined end state (usually,

the all-zero state) of the encoder, which leads to low error probabilities for the last bits, (3)

tail-biting where we choose a starting state that ensures the starting and ending states are the

same (this state value does not necessarily have to be the all-zero state). This scheme avoids

the rate loss incurred by zero-tail termination at the expense of a more complex decoder. For

encoding PAC codes, we use the code truncation, thus we do not add any tail bits. This will

not degrade the error protection of last bits because the last encoded bits are transmitted over

the high-reliability sub-channels in the polar transform.

Fig. 8.1: The truncated trellis for PAC codes. Since vt = 0 for t ∈ Ac, the path does not split.
The dashed-line arrows represent the input 0 and the solid-line arrows represent the input 1 to
the convolutional transform.

Fig. 8.2: The irregularity of the trellis where vt = 0 for t ∈ Ac or t = [i+ 1, ..., j] for j > i. The
paths from t = i+ 1 to t = j are not pruned.

The fundamental idea behind the Viterbi decoding is as follows. A coded sequence u, the

output of the convolutional transform in Fig. 6.1, corresponds to a path through the trellis.

127

Chapter 8: List Viterbi Decoding of PAC Codes

Due to the noise in the channel, the received vector y after demapping may not correspond

exactly to a path on the trellis. The decoder finds a path through the trellis which has the

highest probability to be the transmitted sequence u over the polarized vector channel. The

probability to be maximized is

P (û|y) =
N−1∏
t=0

P (ût|ût−1
0 , yN−1

0) (8.1)

In practice, it is convenient to deal with the logarithm of (8.1) to use an additive metric.

Consider now a partial sequence ût−1
0 = [û0, û1, . . . , ût−1] at the output of the convolutional

transform. This sequence determines a path, or a sequence of states, through the trellis for the

code.

Let Mt−1(s′) = −
∑t−1

i=0 logP (ûi|ûi−1
0 , yN−1

0) denote the path metric for the sequence ût−1
0

terminating in state s′. We seek to minimize the path metric for the entire codewords (t = N−1)

to maximize the probability in (8.1).

Now let the sequence ût0 be obtained by appending ût to ût−1
0 and suppose ût is such that

the state at time t+ 1 is s. The path metric for this longer sequence is

Mt(s) = −
t∑
i=0

logP (ûi|ûi−1
0 , yN−1

0) (8.2)

= Mt−1(s′) + µt(s
′, s) (8.3)

where µt(s
′, s) = − logP (ût|ût−1

0 , yN−1
0) denotes the branch metric for the trellis transition from

state s′ at time t to state s at time t+ 1.

The path metric of a path to state s at time t is obtained by adding the path metric to the

state s′ at time t− 1 to the branch metric for an input that moves the encoder from state s′ to

state s. If there is no such input, i.e., s′ and s are not connected on the trellis, then the branch

metric is considered ∞.

To simplify the arithmetic operation, we can define µt based on λt0(s′, s) or simply λt0.

µt(s
′, s) = − logP (ût|ût−1

0 , yN−1
0)

= − log

(
e(1−ût)λt0

eλ
t
0 + 1

)
= log

(
1 + e−(1−2ût)λt0

) (8.4)

128

Chapter 8: List Viterbi Decoding of PAC Codes

where the last equality holds only for ût = ût(s
′, s) = 0 and 1. Now, for the value of ût that

equals h(λt0),

h(λt0) =

0 λt0 > 0,

1 otherwise
(8.5)

the term e−(1−2ût)λt0 = e−|λ
t
0| is small and hence log(1 + e−|λ

t
0|) ≈ 0. Otherwise, we can

approximate log(1 + e|λ
t
0|) ≈ |λt0|. Thus

µt(s
′, s) = µt(λ

t
0, ût)≈

0 if ût = h(λt0)

|λt0| otherwise
(8.6)

It turns out that this branch metric is equivalent to the one suggested for the list decoding

of polar codes in [14,86] and PAC codes in [48].

When paths merge at state s, we need to select one of them in order to extend it at the next

time step. Suppose Mt−1(s′0) and Mt−1(s′1) are the path metrics of the paths ending at states

s′0, s
′
1 ∈ {0, 1, ..., 2m − 1} at time t. Suppose further that both of these states are connected to

state s at time t+ 1, as illustrated in Fig. 8.3.

Fig. 8.3: Merging two paths at state s

According to the Bellman’s principle of optimality [87], to obtain the ML path through the

trellis, the path to any state at each time step must be locally an ML path. This is the governing

principle of the Viterbi algorithm. Thus, when the two or more paths merge, the path with

the smallest path metric is retained (the survivor path or in short the survivor) and the other

path is eliminated from further consideration. This defines the add-compare-select step of the

129

Chapter 8: List Viterbi Decoding of PAC Codes

Viterbi algorithm

Mt(s) = min{Mt−1(s′0) + µt(s
′
0, s),

Mt−1(s′1) + µt(s
′
1, s)}

(8.7)

Note that the initial path metrics are M0(0) = 0 and M0(s′) =∞ for s′ = 1, 2, ..., 2m − 1.

In [58], the conventional Viterbi algorithm was generalized to list-type VA where instead of

one path, the L paths with smallest metric are selected and extended at time t. Hence, (8.7) is

generalized as

Mt(s, k) =
(k)

min
1≤l≤L
s′

{Mt−1(s′, l) + µt(s
′, s)} (8.8)

where
(k)

min denotes the k-th smallest value (1 ≤ k ≤ L).

From (8.8), one can observe some similarity between list decoding of PAC codes and list

Viterbi algorithm. The main difference is that in the LVA, the paths are sorted locally at each

state, while in list decoding all the paths are sorted globally and then half of them are discarded.

Algorithm 10 illustrates the list Viterbi algorithm. In the beginning, there is a single path

in the list. When the index of the current bit is in the set Ac, the decoder knows its value,

usually vt = 0, and therefore it is encoded into ut based on the current memory state S and

the generator polynomial c in line 8. Then, using the decision LLR λt0 obtained in line 6, the

corresponding path metric is calculated using subroutine calcM . Note that in the algorithm

10, instead of Mt(s, k) in 8.8, we use Mt(k). Although the metric is calculated in lines 9 and

26-27 regardless of the current state of each corresponding path, when we sort the paths in

line 16, we consider their current states. Eventually, the decoded value ut is fed back into SC

process in line 10 to calculate the partial sums. On the other hand, if the index of the current

bit is in the set A (see lines 12-17), there are two options for the value of vt, i.e., 0 and 1, to

be considered in line 23. For each option of 0 and 1, the aforementioned process for t ∈ Ac

including convolutional encoding, and calculating the path metric is performed and then the

two encoded values ut = 0 and 1 are fed back into SC process to update the partial sums βπ.

The vector λ[π] as the input argument of the subroutine updateLLRs constitutes the N − 1

intermediate LLR values of path π. The subroutine updateLLRs updates all the intermediate

LLRs and gives λt0[π]. Similarly, the vector βπ constitutes the N − 1 intermediate partial sums

of path π which is needed to compute the intermediate LLRs. The partial sums are updated

after decoding each bit by the subroutine updatePartialSums. The subroutines updateLLRs,

130

Chapter 8: List Viterbi Decoding of PAC Codes

updatePartialSums, and prunePaths in Algorithm 10 are identical to the ones used in SCL

decoding of polar codes.

Note that the local path sorting is only performed for the decoding the bits with indices in

A when the number of paths at each node exceeds L or the total number of paths exceeds 2m ·L

(as shown in lines 14-17 of Algorithm 10). Reaching to 2L paths takes log2 L steps (i.e., after

decoding the first log2 L bits with indices in A). Despite the irregularity of the trellis as shown

in Fig. 8.2, since the the 2m · L paths are just extended over the bits with indices in Ac (that

is, no path splitting or expansion is performed), the total number of sorting remains similar to

LD, which is (K − log2 L).

8.2 Generalization of List Viterbi Algorithm

Successive Cancellation List Viterbi algorithm (SC-LVA or in short LVA) for decoding of

PAC codes can be considered a generalized decoder for PAC codes in a sense that it can be

converted to SC decoding, SC list decoding and Viterbi decoding by changing the parameters

of the algorithm.

In terms of sorting strategy for the path metrics at each time step, there are two strategies

to consider:

• global sorting of all the paths regardless of their current states. In this case, LVA will

not have a fixed number of survivors for each state (or at each node on the trellis) and

the decoding reduces to LD of PAC codes. In this case, the performance improves by

increasing the list size, LG. A special case of list decoding is SC decoding when LG = 1.

Here, LG denotes the global list size in LD. Hence, L refers to the local list size throughout

this chapter.

• local sorting of the paths with the same current state (the paths connected to the same

node on the trellis). This is the conventional LVA for PAC codes described in section

8.1. In this case, by increasing either the list size L or the number of states |S|, while

keeping the other parameter constant, the performance improves. However, if we keep

the product of L · |S| constant, an increase in L improves the performance as far as |S|

is not too small. Note that in this case, if |S| becomes too small such as |S| = 2, the

convolution has a limited span and results in a degradation in FER performance as we

will see in Section 8.4. Needless to mention that if we increase L · |S|, the performance

131

Chapter 8: List Viterbi Decoding of PAC Codes

Algorithm 10: List Viterbi Decoding of PAC codes

input : A, L, c, λ0,N−1
n

output: the recovered message bits d̂
1 Π← {1} // a single path in the list

2 m← |c| − 1 // memory size

3 for t← 0 to N − 1 do
4 if t /∈ A then
5 for π ← 1 to |Π| do
6 λt0[π]← updateLLRs(π, t, λ[π], βπ) // updateLLRs: Identical with SCD’s

7 v̂t[π]← 0
8 [ût[π], S[π]]← conv1bEnc(0, S[π], c)

9 Mt(π)←Mt−1(π)+µt(λ
t
0[π], ût[π]) // cf. 8.6

10 βπ ← updatePartialSums(ût[π], βπ) // Identical w/ SCD’s

11 else
12 for π ← 1 to |Π| do
13 duplicatePath(π, t, c)

14 if |Π| > 2m.L then
15 for s← 1 to 2m do
16 Sort {Mt(π)}, π ∈ Π : connected to s
17 Retain L paths (π’s) with smallest Mt

18 v̂N−1
0 [1 : |Π|]← sort(v̂N−1

0 [1 : |Π|]) // in ascending order

19 d̂← extractData(v̂N−1
0 [0], A) // inverse of rate-profiling

20 return d̂;
21 subroutine duplicatePath(π, t, c):
22 Π← Π ∪ {π′} // path π′ is a copy of path π

23 λt0[π]← updateLLRs(π, t, λ[π], βπ) // like SCD

24 (v̂t[π], v̂t[π
′]) ← (0, 1)

25 [ût[π], S[π]] ← conv1bEnc(v̂t[π], S[π], c)
26 [ût[π

′], S[π′]]← conv1bEnc(v̂t[π
′], S[π], c)

27 Mt(π)←Mt−1(π) + µt(λ
t
0[π], ût[π]) // cf. 8.6

28 Mt(π
′)←Mt−1(π) + µt(λ

t
0[π], ût[π

′]) // cf. 8.6

29 βπ ← updatePartialSums(ût[π], βπ) // like SCD

30 βπ′ ← updatePartialSums(ût[π
′], βπ)

31 subroutine conv1bEnc(v, currState, c):
32 u← v · g0

33 for j ← 1 to |c| do
34 if gj = 1 then
35 u← u ⊕ currState[j − 1]

36 nextState ← [vi] + currState[1,...,|c| − 2]
37 return (u, nextState);

132

Chapter 8: List Viterbi Decoding of PAC Codes

improves. Note that the PAC code changes by changing |S|, since we are using a different

c. Since it was observed that the FER performance of PAC codes is not significantly

affected by the change of c, we can vary this parameter and the local list size and observe

the tradeoffs of the different decoders.

Additionally, when we choose only one path at each state (L = 1), LVA is converted to a

standard Viterbi algorithm (VA) for PAC codes, which was described in Section 8.1. In this

case, as the number of states, |S|, on the trellis increases, the performance improves. Also note

that PAC coding with c = [1] or m = 0 is equivalent to polar coding simply because there is

no pre-transformation or pre-coding in this case.

8.3 Sorting Complexity

As discussed in the previous section, the error correction performance of the decoding

changes with the sorting strategy as well as the list size and the number of states. Now,

let us analyse the sorting complexity in list decoding and list Viterbi decoding. Suppose the

total number of survivor paths is the same in LD and LVA, i.e., LG = L ·2m. As we will observe

in the next section, in the condition of the same number of survivors, LD slightly outperforms

LVA due to the global sorting strategy. However, in case of parallelism which is popular in the

hardware design, the local sorting in LVA can improve the latency significantly.

Let us consider a bitonic sorter [88] with 1+logL super-stages that can sort 2L path metrics

shown in Fig. 8.4. At each super-stage with index ψ ∈ {1, ..., 1+logL}, there are ψ stages (i.e.,

the number of stages at each super-stage equals the index (ψ) of the corresponding super-stage,

see the top and the bottom of Fig. 8.4), each including L pairs of a component (shown by

vertical connections in Fig. 8.4) consists of a comparator and 2-to-2 multiplexer, which work in

parallel. This sorter was used for list decoding of polar codes in [89] and later improved in [90].

The length of the critical path of the sorter is determined by the total number of stages which

is computed based on the sum of the arithmetic progression as follows:

ΨLD =

1+log2 LG∑
ψ=1

ψ =
1

2
(1 + log2 LG)(2 + log2 LG) (8.9)

From (8.9), one can see the impact of the list size, LG, on the latency of the sorter and

consequently the whole decoder. The pruned bitonic sorter suggested in [90] removes one stage

133

Chapter 8: List Viterbi Decoding of PAC Codes

Fig. 8.4: The reduced bitonic sorting network for LVA with L = 4. The order of L smallest
path metrics is not needed.

out of ΨLD stages, which is not significant in the case of large LG. An efficient solution for a

significant reduction in the number of stages is to employ LVA where the sorting is performed

locally at each state. Therefore, the parameter LG in (8.9) is divided by the number of states.

It turns out the order of the sorted metrics in LVA is not needed unlike in the pruned bitonic

sorter where the pruning is performed based on our prior knowledge about the order and the

relations between adjacent metric before and after the tree extension. Hence, we can remove

the last log2 LG stages in the last super-stage. As a result, the total number of stages is:

ΨLV A =
1

2

(
1 + log2

LG
2m

)(
2 + log2

LG
2m

)
− log2 LG (8.10)

Thus, employing LVA results in a significant reduction in the total number of sorting stages

for decoding a codeword, i.e., KΨLD. For instance, for list decoding of PAC(256,128) with m =

6 and LG = 128 which has 128 survivors at each decoding stage, the number of sorting stages is

ΨLD = 36. In the improved sorters proposed in [91,92], ΨLD reduced to 28 and 27, respectively.

However, in decoding of the same code under list VA with m = 4 and L = 128/24 = 8 which

has 32 survivors at each decoding stage, ΨLV A = (10− 3) = 7, which is 74% smaller than [92].

Note that this reduction comes at the cost of a slight degradation in the FER performance.

In software implementation, the sequential sorting algorithms such as Heapsort and Mergesort

134

Chapter 8: List Viterbi Decoding of PAC Codes

cannot perform better than O(L′ log(L′)) in terms of time complexity (where L′ = 2LG). By

employing LVA, the time complexity reduces to O(2m(L′/2m log(L′/2m))) = O(L′ log(L′/2m)).

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-3

10-2

10-1

100
F

E
R

PAC(128,64), LVA, Survivors=32 paths

|S|=32,L=1,g=[1,1,1,0,1,1], VA

|S|=16,L=2,g=[1,1,1,1,1]

|S|=8,L=4,g=[1,0,1,1]

|S|=4,L=8,g=[1,1,1]

|S|=2,L=16,g=[1,1]

L
G

=32,g=[1,0,1,1,0,1,1], LD

Fig. 8.5: FER Comparison under LVA with various parameters while the total number of paths
is 32.

8.4 Numerical Results

In this Section, the error correction performance of list Viterbi algorithm for PAC(128,64)

on the trellis with different setups is illustrated and analyzed. The RM rate-profile [48] is

used in the results shown in this section. The codewords are modulated based on BPSK and

transmitted over the AWGN channel. Fig. 8.5 compares the FER performance under LVA

with various list sizes L, while the total number of survivor paths at each time step t remains

constant (32 survivors). As can be seen, the performance improves as L increases. In order

to understand the reason behind this improvement, suppose we have 2L paths at a state s,

which are sorted in the ascending order (with indices 1 ≤ k ≤ 2L). Since the path pruning

operation is performed locally at each state, when the metric of the correct path Mt(s, kc) has

an index kc > L in the sorted list (due to noise on a low reliability bit-channel), this event

results in the elimination of the correct path. As L increases, the probability of elimination

135

Chapter 8: List Viterbi Decoding of PAC Codes

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-3

10
-2

10
-1

F
E

R

LVA, |S|=16,8, L=2,4, Survivors=32

|S|=16,L=2,g=[1,1]

|S|=8,L=4,g=[1,1,1]

|S|=8,L=4,g=[1,0,1]

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10
-3

10
-2

10
-1

LVA, |S|=4, L=8, Survivors=32

|S|=4,L=8,g=[1,1,1,1]

|S|=4,L=8,g=[1,1,0,1]

|S|=4,L=8,g=[1,0,1,1]

|S|=4,L=8,g=[1,0,0,1]

Fig. 8.6: FER Comparison of PAC(128,64) under LVA when convolutional generator polynomial
(c) changes.

of the correct path at a state s, Pr(Mt(s, kc) > Mt(s, L)), decreases. Hence, decoding with a

larger L performs better.

Note that increase in the number of states |S| or the memory size m improves the convolution

by potentially combining a larger number of previous bits with the current bit. When m is

large, the sensitivity of the FER performance to the choice of generator polynomial decreases.

Although increase in either L or |S| or both improves the FER performance of LVA, the available

resources are limited. Hence, we prioritize increase in |S| over m because the impact of change

in L is more significant.

Furthermore, as the memory size m (or the number of states |S|) become smaller when L

increases, the performance becomes more sensitive to the generator polynomial of the convolu-

tional transform. Fig. 8.6 compares the performance under various generator polynomials. The

generator polynomial in the form of [1,0,. . . ,0,1] usually does not provide a good convolution

by combining one of the previous bits in the shift register with the current bit. Unfortunately,

there is no systematic method to find a good generator polynomial c and a computer search is

required, as in the search of optimal convolutional codes. Fig. 8.7 illustrates the BER perfor-

mance equivalent to some of the codes shown in Fig. 8.5. As can be seen, the gap between BER

136

Chapter 8: List Viterbi Decoding of PAC Codes

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-4

10-3

10-2

10-1

B
E

R

PAC(128,64), Survivors=32

CRC-Polar,L
G

=32, LD

PAC,|S|=8,L=4,g=[1,0,1,1], LVA

PAC,|S|=32,L=1,g=[1,1,1,0,1,1], VA

PAC,L
G

=32,g=[1,0,1,1,0,1,1], LD

Fig. 8.7: BER Comparison of PAC codes and CRC-polar codes under LVA, VA and LD, the
total number of paths is 32.

performance of PAC codes under LVA and LD is less in comparison with FER performance.

To compare the FER performance of PAC codes under LD with LVA while both use the

same convolutional generator polynomial, we fix c = [1, 1, 1]. Fig. 8.8 shows the results. As

can be seen, the performance of LVA with 32 surviving paths (|S| × L = 32) is quite close to

LD with the same number of surviving paths (LG). The gap is slightly less than the one in Fig.

8.5 and 8.9 where we use a larger |S| for LD.

The FER performance of a tail-biting convolutional code CC(128,64) under the wrap-around

Viterbi algorithm (WAVA) [93] is provided in Fig. 8.9 for comparison. Fig. 8.9 shows that

as the total number of survivors increases, the gap between the performance of LD, VA and

LVA decreases. This makes LVA a better candidate when employing a very large list size,

given complexity advantage shown in Section 8.3. Conversely, when list size is small, the

performance of LVA with total paths of |S| × L is in between the performance of LD with list

size LG and LG/2 and overlaps with the performance of polar codes concatenated with 8-bit

CRC (0xA6) as it is shown in Fig. 8.9 for LVA with |S| × L = 32 and LD with LG = 16.

Nevertheless, in this case by using the bitonic sorting network in LVA, the number of sorting

stages is ΨLV A = (1 + log2(32/4))(2 + log2(32/4))/2 − log2 32 = 5 which is still significantly

137

Chapter 8: List Viterbi Decoding of PAC Codes

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-3

10-2

10-1

100

F
E

R

PAC(128,64), LD vs LVA, g=[1,1,1]

PAC, L
G

=1, LD

PAC, L
G

=2, LD

PAC, L
G

=4, LD

PAC, L
G

=8, LD

PAC, L
G

=16, LD

PAC, L
G

=32, LD

PAC, |S|=4, L=8, LVA

Fig. 8.8: FER Comparison of PAC codes under LD for LG = 1, ..., 16, 32 with PAC codes under
LVA with 32 surviving paths (|S| × L = 32) while c = [1, 1, 1] is fixed for all.

smaller than LD with the half of survivors, i.e., ΨLD = 14, 10 and 8 using the sorters proposed

in [90,92] and [91]. This comparison clearly illustrates the advantage of local sorting over global

sorting.

8.5 Summary

In this chapter, we investigated the implementation of the list Viterbi decoding for PAC

codes. We showed that LVA could be considered a general decoding scheme, which can transition

from list decoding to Viterbi algorithm decoding by changing the number of states and the local

list size. The results showed that as the local list size increases, the performance improves. This

implies that in the local sorting of the paths, the probability of discarding the correct path is

higher than the global sorting in list decoding. On the other hand, local sorting has the

advantage of significantly lower complexity than global sorting. Therefore, depending on the

application, we can trade sorting complexity for performance, especially when the list size is

large.

138

Chapter 8: List Viterbi Decoding of PAC Codes

1 1.5 2 2.5 3

E
b
/N

0
 [dB]

10-5

10-4

10-3

10-2

10-1

100

F
E

R

PAC(128,64), Survivors=256,32,16

PAC, L
G

=256, LD

PAC, |S|=32,L=8, LVA

PAC, |S|=256,L=1, VA

CC, |S|=256,L=1, VAWA

PAC, L
G

=32, LD

PAC, |S|=4,L=8, LVA

CRC-Polar, L
G

=32, LD

PAC, L
G

=16, LD

Approx. Dispersion Bound

32 paths

16 paths

16 paths

Fig. 8.9: FER Comparison under LVA with various parameters while the total number of paths
are 256, 32, and 16. The coefficients of the generator polynomial used with |S| = 256 is
c = [1, 1, 0, 1, 1, 0, 0, 1, 1] and for PAC codes unde LD is c = [1, 0, 1, 1, 0, 1, 1]. For the rest, c is
the same as the ones in Fig. 8.5.

139

Chapter 9

Conclusion and Future Work

“There are not more than five musical notes, yet the combinations of these five give
rise to more melodies than can ever be heard.”

— Sun Tzu, The Art of War

Polar codes and their variants as high-performance codes with explicit construction are

gradually making their way to the applications with high-reliability requirements, such as the

control channel of the 5th generation (5G) of mobile communications. Nevertheless, the pop-

ular decoder of these codes suffers from high computational complexity and medium latency

comparing with the competitors. In this thesis, we proposed various schemes to improve the

performance of CRC-polar codes and PAC codes or reduce the time/computational complex-

ity of the underlying decoders. Although the primary focus was on the SC list decoding for

CRC-polar codes, we investigated sequential decoding (including Fano and stack decoding) and

list Viterbi decoding for PAC codes. We studied how to balance the resources and the perfor-

mance in the code segments under list decoding. We adjusted the list size locally for different

segments to reduce decoding complexity while preserving the performance. We modified the

code to adjust the possibility of eliminating the correct path while using a fixed list size to

improve the overall FER performance. In another work, we introduced a general scheme for

recovery of the correct path in the list decoding through additional decoding attempts when

the decoding fails. This scheme was called the shifted-pruning scheme as it shifts the pruning

window to avoid eliminating the correct path. As a side result, we propose an efficient partial

rewinding of the SC algorithm for re-decoding the same codeword. This scheme allows us to

resume decoding from the closest position to the shifting position. Regarding PAC codes, we

studied how convolutional precoding removes a significant number of min weight codewords

and improves the weight distribution of polar codes. Also, the weak side of PAC codes where

the precoding cannot improve the weight distribution was highlighted. The Fano decoding of

PAC codes performed as well as list decoding of polar codes with quite a large list size while

not requiring a massive amount of resources, although it suffers from variable latency. We

suggested several techniques for tree search in Fano decoding aiming to reduce the complexity

of memory-efficient Fano decoder. Adaptation of list Viterbi decoder to PAC codes revealed

that this decoder can provide a FER performance close to list decoder with significantly lower

140

Chapter 9: Conclusion and Future Work

complexity for path sorting.

9.1 Suggestions for Future Work

A few suggestions related to the works discussed in this thesis are provided as follows:

Enhanced Shifted-pruning

In Chapter 4 and [32,33], we mentioned that the range of shift, κ, of pruning window in this

scheme can be flexible. The parameter κ can vary throughout the decoding. The mixture of

variable κ and variable L, as we used in stepped list decoding, can provide a fast and reliable

decoding process based on some metric.

Goal-oriented Code Modification

We discussed the shortcoming of the code construction methods, which rely mainly on the

reliability of bit-channels. Every decoding process has its requirements. The code can be

modified for each decoder as we suggested an approach in Chapter 3. We believe that we can

design codes to follow a specific goal. Examples are as follows:

• Nested shifted-pruning: Performing multiple shifting is computationally quite expensive

because finding the right combination among so many combinations requires a massive

search even by using effective metrics and considering the impact of shifting on the metrics

of the proceeding bit positions like what was suggested in dynamic SC-flip decoding

in [26]. However, if we limit the combinations to one specific segment, searching for the

right combination becomes easy. We suggest designing a code in which one segment is

relatively more prone to error than others. Then, the multiple shifting can be performed

only within that specific segment.

• Stepped list decoding: We showed in Chapter 3 that by step-wise reducing the list size L

in the segments in the descending order such as [L,L,L/2, L/4], we can save a significant

amount of memory space and computational complexity. However, as we showed there,

due to the imbalance of the bit error rate in the segments, this scheme may result in FER

degradation for some codes. We can design a code such that the probability of error in

the segments is adjusted [L,L,L/2, L/4] for the stepped list decoding.

141

Chapter 9: Conclusion and Future Work

Segment-oriented Code-design and Decoding

In [37] and [38], we showed that we could devise a more efficient decoding process or design a

better code for a specific decoder by taking advantage of the correct path recovery phenomenon,

given enough number of frozen bits in each segment. Furthermore, we detected the most

probable segment where the correct path is pruned in Chapter 4. This approach could be

further enhanced by employing analytical metrics based on the sub-channel reliability and the

weight of the corresponding rows in GN .

List Viterbi Decoding

In Chapter 8 and [61], we showed that the time complexity of local sorting in the list

Viterbi decoding is significantly lower than list decoding. As mentioned, this can improve the

throughput of the decoder. We believe that due to this advantage of list Viterbi decoding, it is

worth working further on this decoder, such as

• improving the pruning scheme at the nodes of the trellis locally to improve the perfor-

mance,

• designing more efficient local sorter to further reduce the complexity, and

• implementing fast and efficient parallel hardware for list Viterbi decoding.

142

Bibliography

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7,
pp. 3051–3073, Jul. 2009.

[2] 3GPP, “Final report of 3gpp tsg ran wg1 #87 v1.0.0,” http://www.3gpp.org/ftp/tsg
ran/WG1 RL1/TSGR1 87/Report/Final Minutes report RAN1%2387 v100.zip, Nov. 2016.

[3] E. Arikan et al., “Performance of short polar codes under ML decoding,” in Proc. ICT-
Mobile Summit, Santander, Spain, June 2009, pp. 1–6.

[4] J. Massey, “Capacity, cutoff rate, and coding for a direct-detection optical channel,” IEEE
Transactions on Communications, vol. 29, no. 11, pp. 1615–1621, 1981.

[5] M. S. Pinsker, “Channel coding rate in the finite blocklength regime,” Problemy Peredachi
Informatsii, vol. 1, no. 1, pp. 84–86, 1965.

[6] H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting codes,”
IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 371–377, 1977.

[7] R. Mori and T. Tanaka, “Performance of polar codes with the construction using density
evolution,” IEEE Commun. Lett., vol. 13, no. 7, pp. 519–521, Jul. 2009.

[8] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Info. Theory, vol. 59,
no. 10, pp. 6562–6582, Oct. 2013.

[9] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans. Commun., vol. 60,
no. 11, pp. 3221–3227, Nov. 2012.

[10] C. Schürch, “A partial order for the synthesized channels of a polar code,” in IEEE Int.
Symp. Inform. Theory, Barcelona, Spain, Jul. 2016, p. 220–224.

[11] M. Mondelli, S. H. Hassani, and R. Urbanke, “Construction of polar codes with sublin-
ear complexity,” in IEEE Int. Symp. Inform. Theory, Aachen, Germany, Jun. 2017, p.
1853–1857.

[12] M. Qin, A. B. J. Guo, A. G. i Fabregas, and P. Siegel, “Polar code constructions based on
llr evolution,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1221 – 1224, Jan. 2017.

[13] I. Tal and A. Vardy, “List decoding of polar codes,” in IEEE Int. Symp. on Information
Theory, St. Petersburg, Russia, Jul. 2011, p. 1–5.

[14] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hardware architec-
ture for list successive cancellation decoding of polar codes,” IEEE Trans. Circuits Syst.
II, vol. 61, no. 8, pp. 609–613, Aug. 2014.

[15] M. Rowshan, E. Viterbo, R. Micheloni, and A. Marelli, “Logarithmic non-uniform quanti-
zation for list decoding of polar codes,” in 2021 IEEE 11th Annual Computing and Com-
munication Workshop and Conference (CCWC), 2021, pp. 1161–1166.

[16] K. Chen, B. Li, H. Shen, J. Jin, , and D. Tse, “Reduce the complexity of list decoding of
polar codes by tree-pruning,” IEEE Commun. Lett., vol. 20, no. 2, pp. 204–207, Feb. 2016.

143

BIBLIOGRAPHY

[17] J. Chen, Y. Fan, C. Xia, C. Tsui, J. Jin, K. Chen, and B. Li, “Low-complexity list
successive-cancellation decoding of polar codes using list pruning,” in IEE Global Commu-
nications Conference, Washington DC, USA, Dec. 2016, pp. 1–6.

[18] Z. Zhang, K. Qin, L. Zhang, H. Zhang, and G. T. Chen, “Progressive bit-flipping decoding
of polar codes over layered critical sets,” in IEEE Global Communications Conf., Singapore,
Dec. 2017, pp. 1–6.

[19] M. C. Coşkun and H. D. Pfister, “Bounds on the list size of successive cancellation list
decoding,” in 2020 International Conference on Signal Processing and Communications
(SPCOM), 2020, pp. 1–5.

[20] M. C. Coşkun and H. D. Pfister, “An information-theoretic perspective on successive can-
cellation list decoding and polar code design,” arXiv preprint arXiv:2103.16680, 2021.

[21] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive cancellation decoder
for polar codes,” IEEE Commun. Letter, vol. 15, no. 12, pp. 1378–1380, Dec. 2011.

[22] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list decoders for polar
codes,” IEEE J Sel Areas Commun, vol. 32, no. 5, pp. 946–957, May 2014.

[23] J. Guo, Z. Shi, Z. Liu, Z. Zhang, and Q. Liu, “Multi-CRC polar codes and their applica-
tions,” Commun. Lett., vol. 20, no. 2, pp. 212–215, Feb. 2016.

[24] S. A. Hashemi, C. Condo, F. Ercan, and W. J. Gross, “Memory-efficient polar decoders,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 4, pp.
604–615, Dec. 2017.

[25] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved suc-
cessive cancellation decoder for polar codes,” in Asilomar Conf. on Signals, Systems and
Computers, Pacific Grove, CA, USA, Nov. 2014, pp. 2116–2120.

[26] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-SCFlip decoding of polar codes,”
IEEE Trans. on Communications, vol. 66, no. 6, pp. 2333–2345, June 2018.

[27] F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, “Practical dynamic SC-flip polar de-
coders: Algorithm and implementation,” IEEE Transactions on Signal Processing, vol. 68,
pp. 5441–5456, 2020.

[28] C. Condo, F. Ercan, and W. J. Gross, “Improved successive cancellation flip decoding
of polar codes based on error distribution,” in 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), 2018, pp. 19–24.

[29] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder for polar
codes with cyclic redundancy check,” IEEE Communications Letters, vol. 16, no. 12, pp.
2044–2047, Dec. 2012.

[30] M. Rowshan, E. Viterbo, R. Micheloni, and A. Marelli, “Repetition-assisted decoding of
polar codes,” IET Electronics Letters, vol. 55, no. 5, pp. 270–272, 2019.

144

BIBLIOGRAPHY

[31] Y. Yongrun, P. Zhiwen, L. Nan, and Y. Xiaohu, “Successive cancellation list bit-flip decoder
for polar codes,” in 10th International Conference on Wireless Communications and Signal
Processing (WCSP), 2018, pp. 1–6.

[32] M. Rowshan and E. Viterbo, “Improved list decoding of polar codes by shifted-pruning,”
in 2019 IEEE Information Theory Workshop (ITW), 2019, pp. 1–5.

[33] M. Rowshan and E. Viterbo, “Shifted pruning for path recovery in list decoding of polar
codes,” in 2021 IEEE 11th Annual Computing and Communication Workshop and Con-
ference (CCWC), 2021, pp. 1179–1184.

[34] Y. Lv, H. Yin, and Y. Wang, “An adaptive ordered shifted-pruning list decoder for polar
codes,” IEEE Access, vol. 8, pp. 225 181–225 190, 2020.

[35] F. Cheng, A. Liu, Y. Zhang, and J. Ren, “Bit-flip algorithm for successive cancellation list
decoder of polar codes,” IEEE Access, vol. 7, pp. 58 346–58 352, 2019.

[36] Y.-H. Pan, C.-H. Wang, and Y.-L. Ueng, “Generalized SCL-flip decoding of polar codes,”
in IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6.

[37] M. Rowshan and E. Viterbo, “Stepped list decoding for polar codes,” in 2018 IEEE 10th
International Symposium on Turbo Codes Iterative Information Processing (ISTC), 2018,
pp. 1–5.

[38] M. Rowshan and E. Viterbo, “How to modify polar codes for list decoding,” in 2019 IEEE
International Symposium on Information Theory (ISIT), 2019, pp. 1772–1776.

[39] E. Arikan, “A performance comparison of polar codes and reed-muller codes,” IEEE Com-
mun. Lett., vol. 12, no. 6, pp. 447–449, Jun. 2008.

[40] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief propagation list decoding
of polar codes,” IEEE Communications Letters, vol. E22, no. 8, pp. 1536–1539, Aug 2018.

[41] N. Goela, S. Korada, and M. Gastpar, “On LP decoding of polar codes,” in Proc. Inf.
Theory Workshop, Cairo, Eqypt, Aug. 2010, pp. 1–5.

[42] V. Taranalli and P. Siegel, “Adaptive linear programming decoding of polar codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jun. 2014, pp. 2982–2986.

[43] S. Kahraman and M. E. Celebi, “Code based efficient maximum likelihood decoding of
short polar codes,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, USA, Jul.
2012, pp. 1967–1971.

[44] S. A. Hashemi, C. Condo, and W. J. Gross, “List sphere decoding of polar codes,” in Proc.
Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, Jul. 2015,
pp. 1346–1350.

[45] K. Niu and K. Chen, “Stack decoding of polar codes,” IET Electronics Letters, vol. 48,
no. 12, pp. 695–697, Jun. 2012.

[46] D. Wu, Y. Li, X. Guo, and Y. Sun, “Ordered statistic decoding for short polar codes,”
IEEE Communications Letters, vol. 20, no. 6, pp. 1064–1067, Jun. 2016.

145

BIBLIOGRAPHY

[47] E. Arikan, “Systematic polar coding,” IEEE Commun. Lett., vol. 15, no. 8, pp. 860–62,
Aug. 2011.

[48] M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolutional (PAC) codes:
Sequential decoding vs list decoding,” IEEE Trans. on Vehicular Technology, vol. 70, no. 2,
pp. 1434–1447, Feb. 2021.

[49] H. Yao, A. Fazeli, and A. Vardy, “List decoding of arıkan’s PAC codes,” in 2020 IEEE Intl
Symp. on Inf. Theory (ISIT), Los Angeles, USA, Jun. 2020, pp. 443–448.

[50] B. Li, H. Shen, and D. Tse, “A RM-polar codes,” arXiv preprint arXiv:1407.5483, 2014.

[51] M. Rowshan and E. Viterbo, “On convolutional precoding in PAC codes,” arXiv preprint
arXiv:2103.12483, 2021.

[52] M. Rowshan, A. Burg, and E. Viterbo, “Complexity-efficient fano decoding of polarization-
adjusted convolutional (PAC) codes,” in 2020 Intl Symp. on Inf. Theory and Its Applica-
tions (ISITA), Hawai’i, USA, Oct. 2020, pp. 200–204.

[53] M. Moradi, A. Mozammel, K. Qin, and E. Arikan, “Performance and complexity of se-
quential decoding of PAC codes,” arXiv preprint arXiv:2012.04990, 2020.

[54] E. Arıkan, “Systematic encoding and shortening of PAC codes,” Entropy, vol. 22, no. 11,
p. 1301, 2020.

[55] T. Tonnellier and W. J. Gross, “On systematic polarization-adjusted convolutional (PAC)
codes,” IEEE Communications Letters, 2021.

[56] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260–269, April
1967.

[57] G. Forney, “The Viterbi algorithm,” Proc. of the IEEE, vol. 61, no. 3, pp. 268–278, March
1973.

[58] T. Hashimoto, “A list-type reduced-constraint generalization of the Viterbi algorithm,”
IEEE Transactions on Information Theory, vol. 33, no. 6, pp. 866–876, 1987.

[59] E. Arıkan, H. Kim, G. Markarian, U. Ozgur, and E. Poyraz, “Performance of short polar
codes under ML decoding,” in Proc. ICT-Mobile Summit Conf., Santander, Spain, 2009,
pp. 1–6.

[60] M. Mohammad, J.-H. Jong, C. Ravishankar, and C. Barnett, “A comparison between the
M-algorithm and the list Viterbi algorithm,” in IEEE Military Communications Conf.,
San Diego, CA, 2008, pp. 1–5.

[61] M. Rowshan and E. Viterbo, “List Viterbi decoding of PAC codes,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 3, pp. 2428–2435, 2021.

[62] F. Abbasi and E. Viterbo, “Large kernel polar codes with efficient window decoding,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14 031–14 036, 2020.

146

BIBLIOGRAPHY

[63] F. Abbasi, H. Mahdavifar, and E. Viterbo, “Hybrid non-binary repeated polar codes for
low-snr regime,” in 2021 IEEE International Symposium on Information Theory (ISIT),
2021, pp. 1742–1747.

[64] F. Abbasi, H. Mahdavifar, and E. Viterbo, “Polar coded repetition for low-capacity chan-
nels,” in 2020 IEEE Information Theory Workshop (ITW), 2021, pp. 1–5.

[65] G. He et al., “β-expansion: A theoretical framework for fast and recursive construction of
polar codes,” in IEEE Global Communications Conf., Singapore, Dec 2017, pp. 1–6.

[66] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-
cancellation decoder for polar codes,” IEEE Trans. Signal Process., vol. 61, no. 2, pp.
289–299, Jan. 2013.

[67] M. Rowshan and E. Viterbo, “Efficient partial rewind of polar codes’ successive
cancellation-based decoders for re-decoding attempts,” arXiv preprint arXiv:2109.10466,
2021.

[68] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial sums generation architecture
for successive cancellation decoding of polar codes,” in SiPS 2013 Proceedings, 2013, pp.
407–412.

[69] Y. Fan and C.-y. Tsui, “An efficient partial-sum network architecture for semi-parallel
polar codes decoder implementation,” IEEE Transactions on Signal Processing, vol. 62,
no. 12, pp. 3165–3179, 2014.

[70] S. Lin and D. J. Costello, Error Control Coding. Upper Saddle River: Pearson Prentice
Hall, 2004, pp. 395–400.

[71] B. Li, H. Zhang, and J. Gu, “On pre-transformed polar codes,” arXiv preprint
arXiv:1912.06359, 2019.

[72] V. Bioglio, F. Gabry, I. Land, and J. Belfiore, “Minimum-distance based construction of
multi-kernel polar codes,” in GLOBECOM - IEEE Global Communications Conference,
2017, pp. 1–6.

[73] V. Bioglio, F. Gabry, I. Land, and J. Belfiore, “Flexible design of multi-kernel polar codes
by reliability and distance properties,” in IEEE Intl Symp. on Turbo Codes & Iterative Inf.
Processing (ISTC), 2018, pp. 1–5.

[74] W. Tong, “Polar code design aspects and future challenges,” in invited talk in special
session Polar Codes at 2019 IEEE Inf. Theory Workshop, Visby, Sweden, 2019.

[75] M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolutional (PAC) codes:
Sequential decoding vs list decoding,” arXiv preprint arXiv:2002.06805, 2020.

[76] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength
regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359, 2010.

[77] Q. Zhang, A. Liu, X. Pan, and K. Pan, “CRC code design for list decoding of polar codes,”
IEEE Communications Letters, vol. 21, no. 6, pp. 1229–1232, Jun. 2017.

147

BIBLIOGRAPHY

[78] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. New
Jersey, USA: John Wiley & Sons, 2005, pp. 451–534.

[79] P. Trifonov, “A score function for sequential decoding of polar codes,” in 2018 IEEE
International Symposium on Information Theory (ISIT), Vail, CO, USA, Jun. 2018, pp.
1470–1474.

[80] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of polar code constructions
for the AWGN channel,” arXiv preprint arXiv:1501.02473, 2015.

[81] R. G. Gallager, Information Theory and Reliable Communication. New Jersey, USA: John
Wiley & Sons, 1968, pp. 263–286.

[82] M. Jeong and S. Hong, “SC-fano decoding of polar codes,” IEEE Access, vol. 7, pp. 81 682–
81 690, 2019.

[83] M. Sikora and D. J. Costello, “Supercode heuristics for tree search decoding,” in 2008
IEEE Inf. Theory Workshop, Porto, Portugal, 2008, pp. 411–415.

[84] J. Cui, Z. Zhang, X. Zhang, H. Li, and Q. Zeng, “Low-complexity improved progressive
bit-flipping decoding for polar codes,” in IEEE 4th International Conference on Computer
and Communications (ICCC), Chengdu, China, 2018, pp. 39–44.

[85] P. Trifonov and P. Semenov, “Generalized concatenated codes based on polar codes,” in
Int. Symp. Wireless Communication Systems, Aachen, Germany, Nov. 2011, pp. 442–446.

[86] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar decoder architectures
using 2-bit decoding,” IEEE Trans. on Circuits and Systems—I: Regular Papers, vol. 61,
no. 4, pp. 1241–1254, Apr. 2014.

[87] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming. Princeton, NJ: Prince-
ton University Press, 1962, pp. 263–286.

[88] K. E. Batcher, “Sorting networks and their applications,” in Proc. AFIPS Spring Joint
Comput. Conf., vol. 32, 1968, pp. 307–314.

[89] J. Lin and Z. Yan, “Efficient list decoder architecture for polar codes,” in Proc. IEEE Int.
Symp. on Circuits and Systems (ISCAS), June 2014, p. 1022–1025.

[90] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “On metric sorting for successive
cancellation list decoding of polar codes,” in 2015 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), Lisbon, 2015, pp. 1993–1996.

[91] H. Li, “Enhanced metric sorting for successive cancellation list decoding of polar codes,”
IEEE Communications Letters, vol. 22, no. 4, pp. 664–667, April 2018.

[92] X. Wang, T. Wang, J. Li, L. Shan, H. Cao, and Z. Li, “Improved metric sorting for suc-
cessive cancellation list decoding of polar codes,” IEEE Communications Letters, vol. 23,
no. 7, pp. 1123–1126, July 2019.

[93] E. Liang, H. Yang, D. Divsalar, and R. D. Wesel, “List-decoded tail-biting convolutional
codes with distance-spectrum optimal CRCs for 5G,” in 2019 IEEE Global Communica-
tions Conference (GLOBECOM), 2019, pp. 1–6.

148

	Abstract
	Table of Contents
	Publications During Enrolment
	List of Figures
	List of Tables
	List of Algorithms
	Notations
	Introduction
	Key Contributions
	Thesis Organisation

	Polar Codes: A Review
	Notations and Preliminaries
	Channel Polarization
	Code Construction (Channel Selection)
	Encoding
	Decoding
	SC Decoding
	SC List (SCL) Decoding

	Polarization-adjusted Convolutional Codes

	Adjusted List Decoding
	Path Metric Range, PMR
	Stepped List Decoding
	Computational Complexity and Memory Requirement
	Computational Complexity
	Memory Requirement for Candidate Paths
	Memory Requirement for LLRs and Partial Sums

	Numerical Results
	An Alternative Algorithm

	Error Occurrence in List Decoding
	Error Occurrence in SC and SCL Decoding
	Path Metric Range as a Tool
	Position Recovery of Correct Path
	Elimination of Correct Path
	Penalty in segment(s) with small PMR
	Incorrect paths versus correct path
	Combination of event A and B

	Goal-oriented Code Modification
	How to reduce probability of elimination?
	Code Modification
	Bit-Swapping Algorithm

	Numerical Results
	Summary

	Shifted-pruning Scheme for Path Recovery
	Elimination of the Correct Path
	Numerical Analysis
	An Effective Metric

	Shifted-pruning Scheme for Path Recovery
	Toward Nested Shifted-pruning Scheme
	Segmented Shifted-pruning
	Double-shifting: Ordered-pairs

	Numerical results
	Summary

	Efficient Partial Rewind of SC Algorithm
	Efficient Updating of Intermediate Information
	Intermediate LLRs
	Partial Sums

	Properties of SC Process
	Efficient Partial Rewinding
	Numerical Results
	Summary

	Convolutional Pre-coding and List decoding of PAC Codes
	Polarization-adjusted Convolutional Codes
	Minimum-weight Codewords in PAC Codes
	PAC List Decoding

	Numerical Results
	Rate Profiling
	Distance Spectrum
	Performance of List Decoding

	Limits of Convolutional Precoding
	Summary

	Sequential Decoding of PAC Codes
	Convolutional Codes and Fano Decoding
	Fano Decoding of PAC Codes
	Partial Rewind of SC Algorithm
	Heuristic Path Metric

	Low-complexity Fano Decoding
	Adaptive Path Metric
	Constrained Tree Search
	Direction of Backtracking Traversal
	Threshold Update Strategy
	Updating Expected Metrics of Explored Paths

	Numerical Results
	Summary

	List Viterbi Decoding of PAC Codes
	Trellis and Path Metric in (List) Viterbi Algorithm
	Generalization of List Viterbi Algorithm
	Sorting Complexity
	Numerical Results
	Summary

	Conclusion and Future Work
	Suggestions for Future Work

	Bibliography

