
 
 

 
 
 

 
 
 
 
 

Binary Neutron Star Remnants:  
the most extreme matter in the Universe 

 
 

PAUL EASTER 
Bachelor of Science Advanced - Research (Honours) 

 
 
 
 
 

A thesis submitted for the degree of Doctor of Philosophy at 
Monash University in 2021 

School of Physics and Astronomy 
 
 
 
 

Advisors: 
Assoc. Prof. Paul Lasky 

Dr. Andrew Casey 



This thesis must be used only under the normal conditions of “fair dealing”
under the Copyright Act. It should not be copied or closely paraphrased in
whole or in part without the written consent of the author. Proper written
acknowledgement should be made for any assistance obtained from this thesis.
I certify that I have made all reasonable efforts to secure copyright permissions
for third-party content included in this thesis and have not knowingly added
copyright content to my work without the owner’s permission.

c© Paul Easter

i



Publications
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Abstract

Surviving remnants from binary neutron star mergers, remnants that have not
yet collapsed to a black hole, are some of the most extreme forms of matter
known in the Universe. The densities of surviving merger remnants are ∼
1014−1015 g cm−3 which is up to several times nuclear density. The temperature
of the post-merger remnant can reach values from tens to hundreds of MeV.
This combination of extreme temperatures and densities result in a state of
matter that is observable only in proto-neutron stars and post-merger remnants.
Although binary neutron star post-merger remnants have yet to be directly
observed, they are a target for gravitational-wave detection in the near future.

A surviving post-merger remnant could potentially be detected by apply-
ing a matched filter between an incoming gravitational-wave signal and the
gravitational-wave strain generated from numerical-relativity simulations. How-
ever, these simulations are performed in full general relativity and are extremely
expensive. This prohibits their direct use in the detection and parameter es-
timation of post-merger remnant properties. Other methods are required to
generate post-merger gravitational waveforms that are computationally afford-
able.

Here we develop two methods that can generate gravitational waveforms of
post-merger remnants. In the first method, we train a hierarchical model to find
a relationship between the progenitor neutron star properties and gravitational-
wave spectra produced by numerical-relativity simulations. After training, we
generate gravitational-wave spectra in a fraction of a second and measure cross-
validated fitting-factors with a mean of 0.95 where 1.0 is a perfect fit.

For the second method, we introduce an analytical model that can success-
fully capture the richness of post-merger gravitational waveforms generated by
numerical-relativity simulations. We measure median fitting factors between
the gravitational-wave strain produced by numerical-relativity simulations and
our inferred waveforms as > 0.9. With this method, we can detect surviv-
ing post-merger remnants with signal-to-noise ratios of > 7. We find that, at
signal-to-noise ratios of 15, the dominant post-merger oscillation frequency can
be constrained to ±1.4

1.2%, and the tidal coupling constant can be constrained to
±9

12%.
We then measure when the post-merger remnant will collapse into a black

hole. We show that we need a gravitational-wave detector network of Einstein
Telescope with Cosmic explorer to measure a collapse time of ∼ 10 ms for a
GW170817-like event at ∼ 40 Mpc. These three methods introduce additional
tools that allow for the detection and parameter estimation of post-merger rem-
nants when gravitational-wave instruments achieve sufficient sensitivity.
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Chapter 1

Introduction

1.1 Gravitational waves
In 2017, the LIGO and Virgo collaborations observed the first direct gravita-
tional waves from a binary neutron star merger, GW170817 [6]. This began the
era of multi-messenger gravitational-wave observations with coincident detec-
tions in many parts of the electromagnetic spectrum [7–14].

Gravitational waves are a phenomenon predicted by general relativity which
was formulated more than 100 years ago by Albert Einstein with the famous
formula

Gµν = Rµν −
1
2Rgµν = 8πG

c4 Tµν , (1.1)

where Gµν is the space-time curvature tensor and Tµν is the stress energy tensor.
The local metric tensor is gµν , Rµν is the Ricci tensor and R is the Ricci scalar.
The gravitational constant is G and the speed of light in vacuum is c, though for
remainder of this work we will use geometric units of G = c = 1 unless otherwise
stated. Equation 1.1 demonstrates how the curvature of the space-time, Gµν ,
alters the dynamics of matter, Tµν , and vice-versa.

Movement of matter in space can generate gravitational waves. For sim-
ulation purposes, the movement of matter can be modelled by the Einstein
field equations Eq.(1.1) and perturbations of black holes [e.g., 15–18]. This
methodology allows the calculation of multipole functions of odd (Q×lm) and even
(Q+

lm) parity, with angular indices of (l,m). These multipoles can be evaluated
by numerical-relativity simulations which allow the extraction of gravitational
waves. The plus, h+, and cross, h×, polarisations of the gravitational waves are
related to the multipoles as follows [15–19]:1

h+ − ih× = 1
r
√

2
∑
l,m

−2Y
lm
(
Q+
lm − i

∫ t

−∞
Q×lm(t′)dt′

)
. (1.2)

Here, r is the distance to the gravitational-wave source and −2Y
lm are the

spin-weighted spherical harmonics with spin s = −2 and angular indices of
(l,m). For most sources, gravitational waves are predominantly emitted in the
l = m = 2 mode. In this case Eq.(1.2) evaluates to

h+ + ih× = 1
2r

√
5

2πe
2iφ cos4

(
θ

2

)(
Q+

22 − i
∫ t

−∞
Q×22(t′)dt′

)
, (1.3)

where θ is the polar angle and φ is the azimuthal angle usually defined relative
to orbital angular momentum vector.

1Please note that Q+
lm and Q×

lm have different units, see Ref. [18] for more information.

2



The energy loss due to gravitational waves can be calculated from Eq.(1.2)
as [18]

dE

dt
= 1

32π
∑
l,m

∣∣∣∣∣dQ
+
lm

dt

∣∣∣∣∣
2

+
∣∣∣Q×lm∣∣∣2

 . (1.4)

For binary systems, this results in an incremental reduction in the orbital sep-
aration which was famously measured in the Hulse-Taylor binary neutron star,
B1913+16 [20–22].

If the separation between binary compact objects is small enough, then this
loss of energy can lead to a merger. This was the case for the first direct
detection of a binary black hole merger, GW150914, and first neutron star
merger, GW170817 [6, 23]. The decrease in the orbital separation and increase
in gravitational-wave amplitude, results in a characteristic ‘chirp’ signal for the
inspiral of binary compact objects.

Assuming a circular orbit of two point masses of mass M1 and M2, the
Newtonian quadrupole formula can be used to calculate the evolution of the
orbital separation, a, due to gravitational wave emission: [e.g., 24]

da

dt
= −64

5
µM2

a3 , (1.5)

where M ≡ M1 + M2 is the total mass, and µ ≡ M1M2/M is the reduced
mass. The time evolution of gravitational-wave strain frequency can then be
calculated as

df

dt
= 96

5 π
8/3M5/3f 11/3, (1.6)

where M ≡ µ3/5M2/5 is the chirp mass of the binary system. Using
Eqs.(1.5-1.6), an expression for the frequency and the gravitational-wave strain
magnitude can be calculated [e.g., 24]:

f ∝M−5/8(tc − t)−3/8, (1.7)

|h(t)| ∝ M
5/4

D
(tc − t)−1/4, (1.8)

where t is the time, tc is the time until coalescence, and D is the luminosity
distance to the source. The combination of Eq.(1.7) and Eq.(1.8) result in the
chirp waveform detected in the inspiral of compact object mergers.

The first direct gravitational-wave detection from the inspiral of a binary
neutron star merger, GW170817, was observed by a detector network consist-
ing of the LIGO detectors at Hanford, Washington and Livingston, Louisiana
in the USA, and the Virgo detector in Cascina, Italy [6, 25, 26]. All three de-
tectors consist of ‘L’ shaped laser interferometers with free-falling test-masses.
The gravitational-wave strain is found by measuring the optical path difference
between the perpendicular beam tubes.

Another binary neutron star (possibly neutron star - black hole) merger,
GW190425, was detected in 2019 [27–29]. However, the luminosity distance of
GW190425, 159+69

−72 Mpc, and the broad sky localisation of the source, 8284 deg2,
precluded any coincident electromagnetic observations [27]. In comparison, the
sky localisation of GW170817 was 28 deg2 at a distance of ∼ 40 Mpc. Therefore,

3



to date, GW170817 is the only gravitational-wave signal that was observed with
coincident electromagnetic radiation and will be discussed further in Section 1.3.

Although the LIGO and Virgo collaborations were able to detect part of
the inspiral for GW170817, the sensitivity of the existing network was not suf-
ficient to detect the gravitational-wave strain from either the late inspiral or
the post-merger remnant. This is because the gravitational-wave strain emit-
ted from these phases are at high frequencies, where the existing networks lack
sensitivity. Figure 1.1 shows the amplitude spectral sensitivity at design sensi-
tivity for LIGO Hanford in blue and Virgo in dashed orange. Funding has been
secured to upgrade the LIGO network to A+ sensitivity, which will result in an
improvement of ∼ 2− 3 [30, 31] and is shown with the green dotted curve.

10 100 1000 5000
Frequency [Hz]

10 25

10 24

10 23

St
ra

in
 [H

z
1/

2 ]

V1
H1
A+
NEMO
ET
CE

Figure 1.1: Amplitude spectral sensitivity curves in Hz−1/2 for Virgo (orange, dashed)
and Hanford (blue) at advanced design sensitivity, A+ (green, dotted), NEMO (red,
dashed), Einstein Telescope (purple, dash-dotted) and Cosmic Explorer (black). The
NEMO detector is ∼ 5 times more sensitive than A+ at ∼ 2 kHz frequency.

A high-frequency detector has been proposed that will focus specifically on
gravitational waves from the late inspiral and the post-merger remnant [31].
This detector will be known as the Neutron star Extreme Matter Observatory
(NEMO) and will serve two major goals. The first, as mentioned above, is
gravitational-wave measurements of post-merger remnants and late time merg-
ers. The second goal is to develop technology that will allow the third-generation
observatories, Cosmic Explorer and Einstein Telescope, to be built [32, 33].
Figure 1.1 also shows the amplitude spectral density for NEMO (red, dashed),
Einstein Telescope (Purple, dash-dot), and Cosmic Explorer (black). NEMO
is ∼ 5 times more sensitive than A+ at a frequency of ∼ 2 kHz, resulting in a
∼ 10− 15 times improvement when compared to Advanced LIGO.

1.2 Neutron stars
Neutron stars are compact stellar remnants that are formed following super-
novae of stars with masses of & 8 M� [e.g., 34]. They can also be formed from
the dynamics of binary star systems [e.g., 35–37]. Neutron stars are created
when the gravitational collapse of the inner stellar core overcomes the electron

4



degeneracy pressure. The proto-neutron star matter is then supported against
further collapse by neutron (or quark) degeneracy pressure.

Proto-neutron stars cool below the Fermi energy at nuclear density, EF ∼
50 MeV, in the timescale of seconds [e.g., 38–41]. Such relatively low temper-
atures allow regions of superconductivity and superfluidity to form within the
neutron star interior. Neutron stars are extremely dense objects with a central
density ∼ 5-10 times nuclear density with magnetic fields of ∼ 108-1015 G [e.g.,
34, 42, 43]. They consist of the most dense bulk matter in the Universe.

General-relativistic corrections to Newtonian physics are necessary to de-
termine the relationship between the neutron star mass and radius. For non-
rotating stars, this relationship calculated by [44, 45]

dm

dr
= 4πρr2, (1.9)

dp

dr
= − p+ ρ

r(r − 2m)
(
4πpr3 +m

)
, (1.10)

where r is the radial distance, m is the mass enclosed up to r, p is the pressure at
r, and ρ is the density at r. Equations 1.9-1.10, in combination with the equation
of state, allow the the mass and radius of neutron stars to be calculated, as well
as the maximum non-rotating neutron star mass, MTOV, for the given equation
of state.

Figure 1.2: Mass-radius diagram for several different equations of state (Figure
from Ref. [46]). The horizontal axis shows the radius in km and the vertical axis
shows the neutron star mass in M�. The two most massive known neutron stars,
J0348+0432 [47] and J0740+6620 [48], are shown as horizontal shaded regions.

Figure 1.2 shows the mass-radius relationship for different prospective neu-
tron star equations of state [46]. The MTOV for a given equation of state is
indicated by the mass value corresponding to the upper-most end of the mass-
radius curve. Any additional mass accumulated beyond MTOV introduces a
radial instability that leads to the collapse of the neutron star into a black
hole. The heaviest neutron star discovered to date is J0740+6620 with mass of
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2.14+0.10
−0.09 M� (Fig. 1.2, pale yellow region) [48]. Any equation of state that does

not enter this region can be eliminated as non-physical.
An equation of state can further classified by its dimensionless compact-

ness, C ≡ GM/Rc2, where M and R are the neutron star mass and radius,
respectively. Large values of C, corresponding to soft equations of state, are
shown with curves towards the left of Fig. 1.2, whereas stiffer equations of state,
with smaller C, are located towards the right of Fig. 1.2. The black region in
Fig. 1.2, where C > 0.5, is excluded to neutron stars as the Schwarzschild radius
is larger than the prospective neutron star radius.2 The grey region is excluded
by causality, where the speed of sound in the neutron star exceeds c. Given these
constraints, the radius of neutron stars are & 10 km with MTOV & 2.2 M�.

1.3 Neutron star mergers
Binary neutron star mergers emit vast amounts of energy in gravitational waves.
The estimated radiated energy for the GW170817 merger was & 5×1052 ergs [6],
equivalent to ∼ 1% of the total rest mass of the two neutron stars. For a
source at a distance of D from the observer, the amplitude of gravitational
waves are ∝ 1/D, whereas the amplitude of electromagnetic waves are ∝ 1/D2.
Additionally, electromagnetic waves can be attenuated by intervening media
between the source and the detector whereas gravitational waves are transparent
to the intervening media. Hence gravitational waves are detectable over much
larger distances in comparison to electromagnetic radiation with the same source
luminosity.

Gravitational-wave strain emitted from the inspiral of binary neutron star
mergers, approximated by Eqs.(1.6-1.8), can be recast in the frequency domain
using the stationary phase approximation [24]

h22(f) ≡ A
D
M5/6f−7/6 exp(iΨ(f)), (1.11)

Ψ(f) = 2πftc − φc −
π

4 + 3
4 (8πMf)−5/3 , (1.12)

where h22(f) is the Fourier transform of the (l,m) = (2, 2) gravitational-wave
strain, and Ψ(f) is the corresponding phase. Here, f is the frequency (Eq.(1.6)),
φc and tc are the phase and time of coalescence, and A is a factor that depends
on the orientation of the system.3 Equations (1.11)-(1.12) are valid until close
to the merger time. The orbital separation, a, at the merger time can be
approximated by the innermost stable circular orbit, where a ∼ 6M . Therefore
Eqns.(1.11)-(1.12) are valid for a & 6M [24]. Solving Eqs.(1.5-1.6) for a ∼ 6M
gives fmax ≈ c3(63/2πGM)−1 Hz.

The validity for these equations can be extended to times closer to the
merger by adding relativistic corrections calculated by post-Newtonian expan-
sion and effective-one-body dynamics [24, 49–54]. These corrections introduce

2The Schwarzschild radius, Rs = 2GM/c2, for a non-rotating black hole corresponds
to C = 0.5 which corresponds to a gradient on the Mass-radius diagram of c2/2G ≈
0.339M�/km.

3The orientation factor, A, depends on angles intrinsic and extrinsic to the binary system.
Intrinsic angles include the angles defining the relative orientation of the neutron star spins to
the orbital plane. Extrinsic angles include the angles defining the relative orientation between
the orbital plane and each of the detectors.
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dependence on the masses, spins, and tidal deformabilities of the individual
neutron stars. This allows the measurement of these system properties in addi-
tion to the chirp mass, given a gravitational-wave inspiral detection. However,
the accuracy of the individual neutron star properties is significantly less than
the accuracy of the chirp mass because the relativistic corrections required to
measure these properties are fairly weak. This can be seen by looking at the
parameters measured from GW170817.

The best measured quantities of GW170817 are the chirp mass, M =
1.186±0.001 M�, and the total mass, M = 2.73+0.04

−0.01 M� [55]. The measurements
that rely more on relativistic corrections are less constrained: the component
masses are M1 = 1.48± 0.12 M� and M2 = 1.26± 0.10 M�, at 90% credible in-
tervals [55].4 The mass-weighted quadrupolar tidal deformability was measured
as Λ̃ = 300+420

−230 at 90% credible interval [55].
A coincident short gamma-ray burst was detected 1.7 s after the inferred

merger time for the GW170817 gravitational-wave event [6, 7]. A subsequent
search found an optical candidate, SSS17a/AT2017gfo, near galaxy NGC 4993
at a distance of ' 40 Mpc, within 11 hours of the merger [8]. Other searches
made detections from radio to X-rays [e.g., 9–13]. The first detectable X-rays
were found with the Chandra X-ray Observatory nine days after the merger,
which was consistent with an off-axis short gamma-ray burst [9].

The two favoured scenarios for the launch of GRB 170817A involve a central
engine of a black hole with an accretion torus [e.g., 56–58], or a central engine of
a highly magnetised post-merger neutron star [e.g., 59]. Early lanthanide-poor
kilonova observations from AT2017gfo suggest that the short gamma-ray burst
was launched following the collapse of the post-merger remnant at ∼ 0.1 − 1 s
after the merger [56]. Modelling the mass of the kilnova ejecta suggests that
the post-merger remnant collapsed at ∼ 1 s [57]. Jet structure together with
afterglow observations were used to conclude that the post-merger remnant
collapsed at ∼ 1 − 1.7 s [58]. However, a stable neutron star remnant was
found to be consistent with modelling of the AT2017gfo kilonova if the kilonova
was powered mostly by radioactivity early on with additional energy from the
neutron star remnant after ∼ 3 days [59].

Using gravitational waves to measure if and when the post-merger remnant
of GW170817 collapsed to a black hole would greatly aid the modelling of GRB
170817A/AT2017gfo. Unfortunately, existing gravitational-wave detectors are
not sensitive enough in the kHz range (see Fig. 1.1 and Sec. 1.6) and the collapse
time is one of the most difficult parameters to predict with numerical-relativity
simulations.

1.4 Numerical relativity simulations
Numerical-relativity simulations are required for determining the dynamics of
the late inspiral of the binary neutron star and the post-merger remnant. To
perform a numerical-relativity simulation, the equation of state must be defined,
a set of initial conditions must be evaluated in general relativity, and then
Einstein’s field equations must be evolved. Each of these three requirements

4These posteriors assume low-spin priors that are expected from Galactic neutron star
binaries. Posteriors were also taken assuming more agnostic spin priors, see Ref. [55] for
further details.
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make these simulations difficult. The equation of state for cold neutron stars is
still unknown, and the equation of state for hot post-merger remnants is even
more uncertain, after all, this is the hottest and densest bulk matter in the
Universe.

The initial conditions for binary neutron star mergers in general relativity are
complex and a number of methods have been developed for this task. Codes that
have been used for this include LORENE [60] and COCAL [61]. The LORENE code
used multi-domain spectral-methods to solve for the initial conditions of neutron
star binaries assuming a conformally-flat approximation [60]. This was achieved
by constructing quasiequilibrium configurations, which are approximations of
the inspiral dynamics using exactly circular orbits. The COCAL code has also
been used to generate quasiequilibrium initial conditions for binary neutron
stars mergers. Here, the field equations are expressed in elliptic form and are
solved by multipole expansion of Green’s integral formula [61, 62]. Once the
initial conditions have been approximated then the space-time can be evolved.

Space-time evolution methods include the following formulations: Arnowitt-
Deser-Misner (ADM) [63]5, Baumgarte-Shapiro-Shibata-Nakamura-Oohara-
Kojima (BSSNOK) [64–67] and Z4c [68–72]. The ADM formalism is a Hamil-
tonian method that splits the Einstein’s field equations into separate time and
space components. This is achieved by applying a gauge that consists of a shift
vector and lapse function [63]. Unfortunately, as ADM numerical simulations
are weakly hyperbolic in some guages, errors were found to accumulate over the
simulation time [73–75]. To counter this, a number of different formulations
were devised to improve this.

To aid computation convergence, the BSSNOK method extended the ADM
formalism by introducing a conformal factor to the three-metric and selecting a
dissipative hyperbolic driver for the shift vector [64–67, 76–78]. The Z4c formal-
ism modified the BSSNOK method by adding a four-vector of constraints, Zµ,
to the Einstein field equations [68–72]. This resulted in a propagating Hamilto-
nian constraint which helps to reduce constraint-violation growth by damping
all constraint violations except for constant modes [70]. The introduction of Zµ,
given an approapriate gauge, enforces hyperbolic solutions of the Einstein field
equations by placing additional constraints on the system, thereby improving
convergence [71, 72, 79].

General-relativisitic hydrodynamic methods include codes such as
Whisky [80], WhiskyTHC [80–83], and BAM [84–89]. WhiskyMHD is a magneto-
hydrodynamic extension to Whisky [90–92], allowing for the introduction of
magnetic fields. In this work we use gravitational-wave signals extracted from
general-relativisitic hydrodynamic simulations from Refs. [93–100]. Refs. [93,
96] use the BAM evolution code with the Z4c formulation, Refs. [95, 97–99] use
the WhiskyTHC evolution code with the Z4c formulation, and Ref. [94] uses the
Whisky evolution code with the BSSNOK formulation.

The aforementioned tools allow the simulation of the late-time merger and
post-merger remnant. However, there are a number of caveats that need to
be considered. Firstly, the simulations are expensive, for example, 32 binary
neutron star simulations took ∼ 3× 106 CPU hrs to complete [101]. Because of
this, the direct use of numerical-relativity simulations in detection and param-
eter estimation, where we need large quantities of waveforms, is unfeasible.

5The original book reference for ADM formalism is out of print and the authors have
listed the cited paper as an ‘intentially unretouched’ alternative.
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Secondly, numerical-relativity simulations unavoidably include numerical
viscosity. Early simulations show that numerical viscosity could alter the prop-
erties of both the neutron star core and the surface [102–105]. Numerical viscos-
ity was found to introduce phase errors in the late-stage merger and improve-
ments in numerical methods were subsequently introduced to minimise these
errors [81]. The effects of numerical viscosity on the post-merger remnant is
less clear, though it was found that numerical viscosity could alter both the
neutrino luminosity [106] and the presence of one-armed spiral instability [95].

Thirdly, because of the complexity of the full general-relativity simulations,
it is difficult to include all the necessary physics into simulations. Most sim-
ulations are performed with general-relativistic hydrodynamics, some also in-
corporate neutrino effects [e.g., 107–111], viscous effects [e.g., 97, 112–114], and
magnetic fields [e.g., 91, 92, 115–121].

Finally, simulations of the remnant are dependent on the spatial resolution.
Generally, increasing the spatial resolution leads to more accurate simulations
at the cost of simulation time. Ref. [100] state that their post-merger simu-
lations from the CoRe database are accurate enough to infer the energy and
frequency content of the post-merger remnant. Additionally, a recent exami-
nation of waveform systematics found that existing waveform models, includ-
ing numerical-relativity simulations, were not accurate enough to inform the
equation of state at very loud SNRs (& 100) expected from third-generation
detectors [122]. These are important points: the uncertainty in the phase evo-
lution and collapse time of the post-merger remnant, which is discussed further
in Sec. 1.6, has had a significant impact on the design of the models developed
in this thesis.

1.5 Post-merger remnants
Neutron star mergers can result in four outcomes, depending on the total
mass of the post-merger remnant and the maximum non-rotating neutron star
mass, MTOV. The four different merger remnants in descending mass order are:
black holes, hypermassive neutron stars, supramassive neutron stars, and sta-
ble neutron stars. With a total mass of & 1.5 MTOV, a black hole is promptly
formed [123]. A hypermassive neutron star is formed when the mass is between
approximately 1.2 MTOV and 1.5MTOV [123, 124]. A supramassive neutron star
is formed if the mass is between 1.0 MTOV and 1.2MTOV, and a stable neutron
star is formed when the total mass is ≤ 1.0 MTOV. A remnant that has not
collapsed into a black hole is referred to as a surviving remnant.

Newly-formed post-merger remnants are differentially rotating unless they
promptly collapse to a black hole within ∼ 2 ms. The differential rotation is
quenched by gravitational-wave emission, magnetic braking, viscous forces, and
neutrino cooling. If the remnant is a hypermassive neutron star then it will
collapse into a black hole when the differential rotation is reduced below a
critical value [123] and thermal support is lost [e.g., 125, 126].

If the differentially-rotating remnant is a supramassive, or stable neutron
star, then the remnant will evolve into a rigidly-rotating neutron star. A supra-
massive neutron star is supported against collapse by rigid rotation and will not
collapse until the angular momentum drops below a critical value [124]. If the
remnant has a mass corresponding to a stable neutron star, then it will remain
stable for all levels of rigid rotation.
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Given a post-merger remnant mass, the deciding factor that discriminates
between supramassive neutron stars and hypermassive neutron stars is MTOV.
References [127–129] found upper limits on MTOV of . 2.2 M� using numerical-
relativity simulations with multi-messenger observations of GW170817 [127,
128], and finite temperature modelling of matter [129]. Upper limits of . 2.3 M�
for MTOV were found using angular momentum and energy considerations [130],
and X-ray afterglow modelling [131], respectively.

Using MTOV ≈ 2.3 M� as a fiducial value, which is also consistent with the
mass range of J0740+6620 [48], sets the threshold between supramassive and
hypermassive neutron stars at ≈ 2.8 M�. This is very close to the total mass of
the progenitor neutron stars for GW170817, 2.73+0.04

−0.01 M� [55], which suggests
that, on gravitational-wave data alone, the remnant of GW170817 could have
been either a hypermassive neutron star or a supramassive neutron star.

Most binary neutron star simulations have been performed with equal-mass,
or near equal-mass, progenitors. Immediately after the merger, for a surviving
remnant, the two inner cores of the progenitor neutron stars collide and bounce,
while the surrounding material is differentially rotating [101]. Shock heating
increases the temperature of the remnant up to ∼ 100 MeV [41], exceeding the
neutrino trapping temperature of 5-10 MeV [132]. The remnant continues to
differentially rotate as the cores merge in ∼ 2 − 5 ms. During the differential-
rotation stage, the remnant is strongly emitting gravitational waves through
f-mode oscillations (see Sec. 1.6).

One picture for the evolution of differentially-rotating remnants can be
drawn from Ref. [126], where they show the influence of thermal pressure on
equilibrium models for a 2.9 M� remnant with temperatures ranging up to
40 MeV. The authors find a maximum core density where the remnant col-
lapses which depends on the amount of differential rotation and is independent
of temperature. They also show that the remnant reaches the critical density
by losing gravitational mass while approximately conserving the baryonic mass.
The gravitational mass is lost by: secular evolution with constant differential
rotation, reduction in the amount of differential rotation, and loss of thermal
support. This additional thermal support extends the lifetime of the surviving
post-merger remnant [e.g., 125].

Reference [40] estimated important timescales for the evolution of the post-
merger remnant. The cooling timescale, estimated by assuming that neutrinos
are trapped inside the post-merger remnant and escape by diffusion, is given by

tcool ≈ 770
(

M

2.7 M�

)(
R

10 km

)−1 ( Eν
10 MeV

)2
ms, (1.13)

where Eν is the typical neutrino energy. We estimate a cooling time of ∼ 7 s
by using a typical neutrino energy of ∼ 30 MeV, found in numerical-relativity
simulations that implement neutrino trapping [133], though this is reasonably
uncertain due to the scaling with E2

ν .
The timescale that sets the loss of angular momentum due to gravitational

waves is given by [40]

tGW ≈ 150
(

M

2.7 M�

)−1 (
R

10 km

)−2 ( f2

3.3 kHz

)−4 (
e

0.2

)−2
ms, (1.14)

where f2 is the dominant post-merger oscillation frequency (see Sec. 1.6) and
e ≡ (a − b)/R is the ellipticity of the hypermassive neutron star. Here, a and
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b are the semi-major and semi-minor axes of the neutron star, respectively,
such that R = (a + b)/2. The reference value, f2 = 3.3 kHz, was inferred
from our model in Chapter 3 for numerical-relativity simulation of SLy equa-
tion of state with equal-mass 1.35 M� neutron stars [95]. We make rough esti-
mate for the ellipticity, e ≈ 0.2, from the time evolution of the density profile
for numerical-relativity simulation of LS220 equation of state with equal-mass
1.35 M� neutron stars [97]. Numerical-relativity simulations have shown that
the gravitational-wave timescale can range from O(20) ms shortly after merger
to & 0.5 s for longer lived simulations [99, 134].

Most postmerger numerical-relativity simulations last for only tens of mil-
liseconds, though some longer simulations have been performed between 50-
100 ms in length [135–138]. Although Eq.(1.14) shows an estimated emission
time for gravitational waves of ∼ 150 ms, the uncertainty in the equation of
state could place f2 as low as ∼ 2.2 kHz and some simulations show that the
ellipticity reduces over time [101, 139]. Given these possibilities, a four-fold de-
crease in e together with a reduction in f2 to 2.2 kHz would result in tGW ∼ 12 s.
Although the numerical-relativity simulations do not cover enough time period
after the merger, they are vital for extracting the gravitational-wave strain in
the early post-merger stage where the amplitude of the strain is at its loudest.

1.6 Gravitational-wave strain and spectra
Figure 1.3 shows a typical gravitational-wave strain from a numerical-relativity
simulation. The left panel shows the inspiral and post-merger components of
the gravitational-wave strain for the plus polarisation, and the right panel shows
a zoom of the post-merger component only. The numerical-relativity simulation
uses the SLy equation of state with equal-mass 1.35 M� neutron stars [95, 100].
The gravitational-wave strain has a post-merger signal to noise ratio of 50 for
a three detector network of LIGO Hanford, Livingston, and Virgo at advanced
design sensitivity. The merger time is defined where h+(t)2 + h×(t)2 reaches
its first maximum. The inspiral gravitational wave (t < 0) shows a chirping
sinusoid, increasing with frequency and amplitude until the neutron stars merge.
The post-merger gravitational-wave strain (t > 0) has a much higher frequency
than the inspiral component and has more structure in the frequency domain
(see below). As mentioned in Sec. 1.5, the gravitational-wave strain in the
first ∼ 2 − 5 ms, is more erratic due to interactions of the two inner cores.
The interactions of the inner cores settle down after this time resulting in a
somewhat monotonic f-mode oscillation in the gravitational-wave strain.
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Figure 1.3: Plus polarisation of the gravitational-wave strain for inspiral and post-
merger (left), and post-merger only (right). Generated from a numerical-relativity
simulation using the SLy equation of state with equal-mass 1.35 M� neutron stars [95,
100] for a post-merger signal-to-noise ratio of 50.
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Figure 1.4: Frequency domain representation of the post-merger gravitational-wave
strain shown on the right panel of Fig. 1.3. Four main spectral peaks are visible
in the gravitational-wave spectrum with the dominant peak, fpeak, has the largest
amplitude at ∼ 3300 Hz. The sensitivity curves for Advanced LIGO and Advanced
Virgo are shown as dashed black, and dotted black, respectively.

The frequency response corresponding to the post-merger gravitational-wave
strain in the right panel of Fig. 1.3 is shown in Fig. 1.4. The amplitude is
|h̃(f)|

√
f , where h̃(f) is the Fourier transform of the gravitational-wave strain.

The post-merger gravitational-wave spectrum is dominated by primary post-
merger frequency, fpeak, the main f-mode oscillation of the remnant, which is
∼ 3.3 kHz for this simulation [e.g., 140–142].

Two additional oscillation modes were found in simulations that were caused
by the interaction between the main f-mode oscillation (m = 2) and the m = 0
radial pressure mode [142]. This results in a modulated signal that should be
present in the frequency response at frequencies fpeak±fm=0, designated as f2−0
and f2+0, respectively. The f2−0 peak was found to be particularly strong in
spectra for high-mass mergers as long as prompt collapse does not occur [143].
Another oscillation mode, labelled fspiral, where f2−0 < fspiral < fpeak [143], was
found in the spectra for low-mass mergers. This mode was generated by two
antipodal bulges at the outer edge of the merger remnant that rotated at a slower
frequency than fpeak. The antipodal bulges were, in turn, caused by strong tidal
deformation in the early post-merger stage. For higher-mass mergers that do
not experience prompt collapse, the peaks associated with f2−0 dominate over
peaks associated with fspiral in the spectra [143]. In the mass region between
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these extremes, both fspiral and f2−0 can be present in the spectra of these
post-merger remnants.

In a different interpretation of the post-merger spectra, the three main peaks
were designated as (f1, f2, f3) in ascending frequency with f2 = fpeak [94, 101,
144]. A quasi-universal relationship was found between f1 and a number of pro-
genitor system properties, including the compactness C and the dimensionless
quadrupolar tidal deformability Λ [101]. The spectral peak, f1, was found to
coincide with fspiral in spectrograms for stiff equations of state but was differ-
ent otherwise [94]. The power content associated with f2−0 was found to be
extremely small in the spectrograms even though f2−0 can easily be measured
in simulations. References [145, 146] support the interpretation of Ref. [143],
citing that a larger simulation set shows that f1 is actually a combination of
fspiral or f2−0 whereas a smaller simulation set, as in Refs. [94, 101, 144], is not
large enough to highlight this.

Two models of the time-domain gravitational-wave strain were used for
the basis for our model in Chapter 3. The first model used a third-order
exponentially-damped sinusoid and successfully matched a simulation using
DD2 equation of state with equal-mass 1.35 M� neutron stars [147]. The sec-
ond model implemented a quadratic frequency-drift term over time for fpeak and
used this model to measure the neutron star radius [148]. Spectrograms from
Refs. [94, 149, 150] and to a lesser extent from Ref. [151], show some frequency
drifts over time in some of the frequency peaks, particularly in fpeak which
lends support to the implementation of a frequency-drift term in a post-merger
gravitational-wave strain model. One possible cause of frequency drift would
involve the contraction or expansion of the post-merger remnant, which would
increase and decrease the frequency, respectively.

With this in mind, we create a hybrid model of Refs. [147] and [148]
which we use in Chapters 3 and 4. We implement a linear frequency-drift
term, as opposed to the quadratic frequency-drift term used in Ref. [148].
Similarly to Ref. [147], we use an identical third-order system, to which we
add the linear frequency-drift term. The model, outlined in full in Chap-
ter 3, is Hwj exp(−t/Tj) cos (2πfjt [1 + αjt] + ψj). The success of this model
is indicated by fitting factors between posterior waveforms and the numerical-
relativity simulation of & 0.92 with most values ∼ 0.95.

A number of challenges are presented by the gravitational-wave strain gen-
erated with numerical-relativity simulations. Phase errors between successive
resolutions accumulate over time and it is not unusual to see phase differences
of ∼ 1 rad by the time of the merger for the finest resolutions [e.g., 82]. Refer-
ence [101] examined the role of the spatial resolution on the instantaneous phase
of the gravitational-wave strain and found a phase difference of 0.9 rad between
the the finest resolution tests (See also Ref. [152] for a discussion on post-merger
waveform robustness). This results in a loss of ∼ 40% of the signal-to-noise
compared to a perfectly matched signal when using a matched-filter detection.

Another challenge presented by the gravitational-wave strain generated with
numerical-relativity simulations is the collapse time of the remnant. As an
example, consider the following simulations from the CoRe gravitational-wave
database using the SLy equation of state [95, 100]. These simulations are des-
ignated as THC:0036:R0x for x ∈ [1− 4] with grid sizes of 148 m, 222 m, 295 m,
and 369 m, respectively [95]. The finest resolution of 148 m has a collapse time of
∼ 15 ms, the remaining three simulations have collapse times of ∼ 17,∼ 24, and
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∼ 60 ms, respectively. Therefore, as the resolution becomes finer to reduce the
phase error in the post-merger simulations, the amount of numerical-viscosity
correspondingly increases, resulting in an earlier collapse of the post-merger
remnant.

It may be the case that numerical-relativity simulations will not be fully cal-
ibrated to the true dynamics of post-merger remnants until we directly measure
their gravitational waves. This is another motivation for simple models that
are able to match the gravitational-wave strain from numerical-relativity sim-
ulations while remaining flexible to variations beyond the simulation outputs.
In particular, models that can measure the collapse time of the remnant are
important as numerical-relativity simulations are unable to predict this feature
well.

Quasi-universal relationships have been found relating the properties of the
post-merger remnant and the progenitor neutron stars. Perturbations in gen-
eral relativity were used to find relationships between the frequency of neutron
star f-modes and both the neutron star density and compactness [153]. The
relationship between the f-mode frequency and the neutron star density was
later refined using conformally-flat solutions of the Einstein field equations,
and additional relationships were found between the neutron star radius and
the f-mode frequency [154, 155]. Simulations of perturbed slowly-rotating neu-
tron stars highlighted relationships between the neutron star moment of inertia,
the spin-induced quadrupole moment, and the dimensionless tidal deformabil-
ity [53, 156].

Relationships were then found between the progenitor neutron star (l = 2)
dimensionless quadrupolar tidal deformability, Λ, and a number of spectral
features. The maximum gravitational wave frequency at the time of merger,
fmax, was closely related to Λ1/5 for equal-mass neutron stars [157]. A linear
correlation was subsequently found between Λ1/5 and the dominant post-merger
f-mode frequency, fpeak. We use this linear relationship in the model discussed
in Chapter 2 to re-centre the gravitational-wave spectra after alignment.

1.7 Post-merger gravitational-wave models
In this section we briefly introduce the three main papers in Chapters 2-4 of this
thesis. A common theme in all three papers is that we need methods for gen-
erating fast binary neutron star post-merger waveforms for use in the detection
or parameter estimation of post-merger remnants. In Chapter 2 we use a model
that is trained on both the gravitational-wave spectra and the neutron star
system parameters to generate post-merger spectra. In Chapter 3 we develop
a simple analytic model to generate time-domain gravitational-wave strain and
test the model with Bayesian inference on numerical-relativity simulations. In
Chapter 4 we develop a model to measure the collapse time of post-merger rem-
nants and find the distance at which we can detect the post-merger collapse for
different gravitational-wave detector networks.

In Chapter 2, we develop a way to generate gravitational-wave spectra in a
fraction of a second. We use a hierarchical model that is trained on 35 numerical-
relativity spectra from equal-mass neutron star post-merger simulations. The
progenitor neutron star system is defined by the mass of the individual neutron
stars, M , and the equation of state is defined by the compactness of the neutron
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stars, C, and the tidal coupling constant, κT2 . These three parameters, together
with the gravitational-wave spectra, are sufficient to train our model.

The model performance is tested with leave-one-out cross-validation and
we measure noise-weighted fitting-factors of 0.95 ± 0.05 between the inferred
spectra and the spectra under-test. This can be compared to 0.93± 0.05 which
is the noise-weighted fitting-factor between the spectra of two identical neutron
star systems using different numerical-relativity codes. We also show that we
can use the trained model to perform parameter estimation for κT2 with the
noise-weighted fitting-factor as a proxy likelihood.

In Chapter 3, we use a third-order exponentially-damped sinusoid with a
linear frequency-drift to model the post-merger time-domain gravitational-wave
strain. We perform parameter estimation with this model to generate posterior
waveforms for nine post-merger numerical-relativity simulations. The noise-
weighted fitting-factors between the numerical-relativity simulations and the
posterior waveforms are ∼ 0.95. The dominant post-merger oscillation fre-
quency, fpeak, can be constrained to ±1.4

1.2% for a post-merger signal-to-noise
ratio of 15 and ±0.3

0.2% for post-merger signal-to-noise ratios of 50. We can con-
strain κT2 at a post-merger signal-to-noise ratio of 15 to ±9

12%, and ±5% at
post-merger signal-to-noise ratios of 50, using the hierarchical model.

In Chapter 4, we extend the model from Chapter 3 to allow the collapse
of the gravitational-wave strain. We use post-merger gravitational-wave strain
from numerical-relativity simulations of equal-mass 1.35 M� neutron stars with
LS220 and SLy equations of state. We then perform parameter estimation on
the collapse time with four different gravitational-wave interferometer configu-
rations.

We find that we need a network of Einstein Telescope with Cosmic Explorer
to detect a post-merger that collapses ∼ 10 ms after the merger. Two A+
detectors at design sensitivity can measure a post-merger remnant that collapses
∼ 10 ms after the merger to a distance of . 10 Mpc. If the proposed Neutron
star Extreme Matter Observatory is operational, then this distance increases to
∼ 18-26 Mpc thereby increasing the effective volume and hence detection rate
by a factor of ∼ 30.
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Chapter 2

Computing Fast and Reliable
Gravitational Waveforms of Binary
Neutron Star Merger Remnants
Paul J. Easter
Paul D. Lasky
Andrew R. Casey
Luciano Rezzolla
Kentaro Takami

Abstract
Gravitational waves have been detected from the inspiral of a binary neutron-
star, GW170817, which allowed constraints to be placed on the neutron star
equation of state. The equation of state can be further constrained if gravi-
tational waves from a post-merger remnant are detected. Post-merger wave-
forms are currently generated by numerical-relativity simulations, which are
computationally expensive. Here we introduce a hierarchical model trained on
numerical-relativity simulations, which can generate reliable post-merger spec-
tra in a fraction of a second. Our spectra have mean fitting factors of 0.95, which
compares to a fitting factor of 0.93 between different numerical-relativity codes
that simulate the same physical system. This method is the first step towards
generating large template banks of spectra for use in post-merger detection and
parameter estimation.

2.1 Introduction
Gravitational waves have been observed from the inspiral of binary neutron star
merger GW170817 [6]. This allowed limits to be placed on the neutron star tidal
deformability (see e.g., [6, 55, 99, 158–160]). However, due to lack of detector
sensitivity at high frequencies, the merger and post-merger signals were not
detected [55, 161, 162]. Post-merger gravitational-waves from a binary neutron
star merger could be detected with a signal-to-noise ratio of 5 at a distance of
∼25-40 Mpc with Advanced LIGO at design sensitivity [144]. The physics of
the post-merger remnant is of particular interest as it probes the neutron star
equation of state at significantly higher temperatures than the progenitor stars.

The detection and characterisation of a post-merger remnant is aided by a
large bank of gravitational-wave strain waveforms. Generating such waveforms
is currently computationally expensive, and there are only of order 100 in exis-
tence. In this work we make a step towards generating a large template bank
of post-merger spectra by training a hierarchical model on a set of numerical-
relativity spectra.
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There has been significant research applied to the relationship between
post-merger numerical-relativity simulations, the corresponding spectrum of the
gravitational-wave strain, and the neutron star equation of state (e.g., [94, 96–
98, 100, 101, 142, 144, 148, 154, 157, 163–167]). There are many degrees of
freedom for each simulation, which include the neutron star system parame-
ters, equation of state, and simulation parameters (e.g., spacetime evolution
formalism [168], resolution), as well as parameters related to magnetic fields
and neutrinos. We choose to use a set of numerical-relativity simulations that
are homogeneous, eliminating unwanted variations between simulations with
different parameters. To achieve this, we use a subset of 35 waveforms from
Ref. [94] consisting of identical simulation parameters with variations in the
neutron star mass and equation of state only. To obtain consistent spectra, we
select waveforms that have a fixed time-step and almost identical length.

Ref. [165] showed that dimensional reduction of post-merger waveforms is
possible by performing principal component analysis after aligning the max-
imum of each gravitational-wave strain spectra in the frequency domain (see
also [148]). We use a similar method of frequency shifting in our model. We
introduce a hierarchical model that trains on existing numerical-relativity post-
merger simulations, and can produce new, accurate spectra in a fraction of a sec-
ond. This is the first step towards making large template banks of post-merger
spectra suitable for detection and parameter estimation which could compliment
existing unmodelled searches for post-merger remnants [55, 169, 170].

Simulation of the post-merger phase of binary neutron star mergers is sig-
nificantly more complicated than the inspiral phase due to the complex physics
including shock heating and nonlinear mode coupling. Additional effects, such
as neutrino cooling and magnetic fields, are not expected to yield substantial
modifications to the locations of the spectral peaks (see e.g. [91, 106, 172]),
while the role of viscous effects is still a matter of debate [173]. The accuracy
of the resulting simulations can be limited by the trade off between computa-
tional constraints and higher resolutions [168]. This is particularly true for the
phase evolution of the post-merger simulations which do not necessarily con-
verge [100]. However, the power-spectral content is convergent for sufficiently
high resolutions (e.g., [100, 101]). Our model is representative up to the validity
of the numerical-relativity simulations that it is based upon. With this in mind,
we wish to encourage further research into numerical-relativity simulations of
post-merger remnants to increase the available number of waveforms and to
enable further cross-checking between codes.

2.2 Methodology
We use 35 numerical-relativity simulations of binary neutron star mergers
from Ref.[94], to which we refer to for details on the equations of state employed.
Each simulation consists of non-spinning, equal-mass progenitor neutron stars,
with five different equations of state across the simulations. We train our model
on the amplitude of the characteristic strain spectra, hc(f) = |h̃(f)|

√
f .

Here, h̃(f) is the Fourier transform of the plus polarisation of the post-merger
gravitational-wave strain, h+(t > 0). The plus and cross polarisations of the
simulated gravitational-wave strain have almost identical spectral amplitude
and have a phase offset of almost exactly π/2. We gain no extra information
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Figure 2.1: Reconstructed gravitational-wave spectra generated with leave-one-out
cross-validation (solid red) and original numerical-relativity spectra [94] (dashed
black), scaled to a distance of 50 Mpc. Each column represents a different equation
of state and each row represents a different neutron star mass, increasing towards
the bottom. The one-sigma uncertainty in the spectra is shaded in light red for
each prediction. The Advanced LIGO noise amplitude spectral density (dotted black
curve) [171] is shown on all subplots. A numerical-relativity spectrum generated
from [100] is shown (dashed dot blue curve) in the last row (equal mass 1.35 M�) for
SLy [95] (fourth column) equation of state.
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by including the cross polarisation. The merger time, t = 0, is defined as the
time where h2

+(t) + h2
×(t) reaches the first maximum.

We use a hierarchical model to represent the amplitude spectra. Given a
neutron star of mass M and radius R, we assume the compactness of a neutron
star, C ≡ M/R, in the jth simulation has a power-law dependence with the
mass, M , over all equations of state

Cj = αjM
βj

j . (2.1)

The validity of this model will be determined by how well we can match
the numerical-relativity waveforms. The hyperparameters {a,b}, and the
quadrupolar tidal coupling constant, κτ2, determine the values of {α, β} as fol-
lows:

αj ∼ N (a0 + a1κ
τ
2,j, σ

2
α), (2.2)

βj ∼ N (b0 + b1κ
τ
2,j, σ

2
β), (2.3)

where N (µ, σ2) is a Gaussian distribution of mean µ and variance σ2. The
quadrupolar tidal coupling constant, κτ2, is used due to its importance in the
inspiral dynamics [94, 101, 144, 157, 164, 174] and its correlation with the
location of the main frequency peak of the post-merger spectrum [101, 144,
154, 164].

All spectra in the training set, which excludes the spectrum under test when
leave-one-out cross-validation is performed, are used to determine the hyperpa-
rameters {a,b} by a least squares fit. The amplitudes for each spectrum are
frequency shifted so that the peak frequencies are aligned in a similar way to
Refs. [148, 165]. We then fit the aligned spectral amplitudes with a linear model

(hc)i,j = ΘiXj + noise, (2.4)

where the noise is modelled as intrinsic variance, s2
i for the ith frequency bin,

Θi is a vector of unknown coefficients, and Xj is a design matrix of

Xj = [1, Ĉ(Mj, κ
τ
2,j), M̂j, κ̂τ2,j]. (2.5)

The hats indicate the whitened transformations of the neutron star parameters
such that x̂ ∼ N (0, 1) = (x − µx)/σx where µx and σ2

x are the mean and
variance of x respectively. The compactness parameter can be generated from
Eqs.(2.1-2.3) after determining the values for a0, a1, b0, and b1. Spectra can then
be trivially generated given any mass, quadrupolar tidal coupling constant and
frequency shift. The frequency shift can be determined from the value of the
quadrupolar tidal coupling constant [101, 164].

We perform leave-one-out cross-validation to test the performance of the
model. We do this by excluding the spectrum under test and its associated
parameters from the training set. In doing so, the spectra generated during
leave-one-out cross-validation represent an extrapolation by the model and the
fitting factors are therefore conservative.
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Figure 2.3: Spectra generated by the model when trained on all the numerical-
relativity spectra (red). The uncertainties in the spectra are shown in light red.
The Advanced LIGO noise amplitude spectral density (dotted black) is shown on all
subplots.
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Figure 2.2: Histogram of fitting factors determined by comparing numerical-relativity
spectra with spectra generated by our model using leave-one-out cross-validation.

We perform spectral comparisons using the following noise-weighted fitting
factor, or overlap [175]

FF (h1, h2) ≡ 〈h1|h2〉√
〈h1|h1〉 〈h2|h2〉

. (2.6)

Here, the inner product is defined by

〈h1|h2〉 ≡ 4
∫
df
|h̃1(f)| |h̃2(f)|

Sh(f) , (2.7)

where Sh is the noise power spectral density. Throughout this article we use
the ZERO_DET_high_P file from [171] to determine the amplitude of Sh. The
resultant fitting factor is similar to the standard fitting factor except that it
operates on the Fourier amplitude only. A fitting factor of one represents a
perfect match. The fitting factor represents the loss incurred to the optimal
signal-to-noise ratio due to mismatch in the model spectra, where the optimal
signal-to-noise ratio is given by ρopt =

√
〈h|h〉.

While it is known that smooth relationships exist between various system
properties (e.g., mass, tidal parameters, etc.) and post-merger waveform spec-
tral features [94, 101, 143, 144, 154, 164], no such relationships exist for the
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phase information (see also [176]). Empirically, while we find good training fits
using our model on the spectral content of the waveforms (see below), we are
not able to train confidently on the full time series including both phase and
amplitude as the phase evolves too quickly between adjacent simulations. We
discuss this in more detail below.

2.3 Results
Following the training step, we use Eq.(2.4) to generate spectra. Figure 2.1
shows how well our generated spectra match the original numerical-relativity
spectra. The original spectra are shown as dashed black curves, the cross-
validation spectra are shown as red curves, and the one-sigma model uncertainty
is shown in shaded light red. All spectra are scaled to a distance of 50 Mpc.
The Advanced LIGO noise amplitude spectral density is shown as the dotted
black curves [171]. We fit the large-scale structure of the numerical-relativity
peaks well with some deviations in the small-scale structure.

Figure 2.2 shows a histogram of the noise-weighted fitting factor, Eq.(2.6),
between our cross-validated model prediction and the corresponding numerical-
relativity spectra for all tested waveforms. The resulting histogram has a mean
of 0.95 with a standard deviation of 0.03.

To place the above results in context, we calculate the nearest neighbour
fitting factor of the numerical-relativity spectra. We measure the fitting factor
for the spectrum under test against all other spectra, and report the largest
fitting factor. We obtain nearest neighbour fitting factors for the numerical-
relativity spectra of 0.93 with a standard deviation of 0.05. The fitting factors
generated by our model compare favourably with this result. Additionally, our
model is capable of generating spectra given the required input parameters,
whereas a nearest neighbour interpolation would not be capable of this.

As a additional baseline value for comparison, we compare fitting factors
between the numerical-relativity spectra used in this paper [94], and those pro-
duced with other codes [100]. Notwithstanding the fact that post-merger wave-
forms can differ with resolution even when using the same code, we assume that
the waveforms have similar truncation errors and compare one set of spectra
using equations of state SLy [95, THC:0036:R03] for equal-mass binaries with
M = 1.35M�.

The spectrum for the comparison waveform is plotted (blue dashed dot
curve) in the last row and fourth column of Fig. 2.1, corresponding to the
SLy equation of state. This spectrum can be compared to the black dashed
waveform from [94] in the same panel. While amplitude offsets do not change
the fitting factor, differences in the frequency and the shape of the peaks do.
The fitting factor between these two waveforms is 0.93. This can be attributed
to the difference in the relative shapes of the two main peaks between the
simulations in [94] and [95].

This comparison indicates that our fitting factors are comparable to the
fitting factors between different numerical-relativity codes. We note that nu-
merical simulations are indeed accurate enough for understanding the main
structures (e.g., positions of dominant peaks) and their relationship with bulk
properties of the remnant. However, our method is limited by the accuracy of
the numerical-relativity simulations, which are in turn limited by computational
capabilities; we discuss the implications of this below.
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To evaluate how the generated spectra vary, we train on all numerical-
relativity spectra and generate a grid of model spectra. We generate spectra at
five equally spaced mass and quadrupolar tidal coupling constant values. The
mass ranges from M = 1.25M� to 1.35M�, and the quadrupolar tidal cou-
pling constant varies from κτ2 = 50 to 350. The generated spectra are shown in
Fig. 2.3 as the red curves, the one-sigma model uncertainty as light red shading,
and the Advanced LIGO noise curve as dotted black. Each of these spectra take
a fraction of a second to evaluate. We show these spectra to indicate what we
can hope to achieve by implementing these models in full parameter estimation.

In Fig. 2.4 we compare the fitting factor between a spectrum generated with
M = 1.3M�, κτ2 = 100 against spectra generated at other parameter values.
We choose κτ2 = 100 (for an equal-mass system this corresponds to Λ = 530) to
be consistent with tidal deformability values, Λ, determined in [6, 55, 99, 158–
160], under the simplified assumption that κτ2 ≈ 3

16Λ (noting that the equality
holds for equal-mass progenitors). The location of the reference spectrum is
shown with the black cross. This provides the first indication of whether this
model could recover the mass and quadrupolar tidal coupling constant when
trained on sufficient numerical-relativity simulations. The peak of the contour
plot around the reference waveform shows that this model is selective, and may
be used for parameter estimation and/or detection in the future. However, this
is a task for future work and will require full Bayesian analysis with a noise
implementation.
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Figure 2.4: Fitting factor between spectra generated using our hierarchical model
with 1.30M� and κτ2 =100 (black cross), against a grid of mass and quadrupolar
tidal coupling constant values.

It is possible that a phase transition may occur in the remnant during the
post-merger phase due to an increase in density (e.g. [159, 177]). This could
be detected by comparing the inferred values of the quadrupolar tidal coupling
constant from the inspiral and post-merger phases. Simulations that compare
hydrodynamic models with and without quark deconfinement show that the
presence of quark deconfinement causes no change in the inspiral gravitational-
wave signal due to the low densities involved. This is contrasted to the post-
merger phase where the densities are greater, leading to a higher proportion
of deconfined quarks when modelled, which in turn leads to a change in the
post-merger gravitational-wave strain [178]. Phase transitions due to quark
deconfinement could be detected by training our model on simulations that dis-
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allow quark deconfinement. If a post-merger signal was detected that contained
the signature of quark-deconfinement then this would result in an inconsistency
between the tidal coupling constant inferred from the post-merger gravitational-
wave spectra and the inspiral phase. We note that other mechanisms, either
physical or arising from errors in the modelling, could also cause such frequency
shifts. We leave the exploration of this as future work.

2.4 Discussion
In this paper, we use a hierarchical model to generate binary neutron star
post-merger spectra by training on spectra generated with numerical-relativity
simulations. Our trained model allows us to generate spectra in ∼10−4 sec-
onds, which significantly reduces the computational effort required to populate
a template bank of spectra. We obtain noise-weighted, amplitude-only fitting-
factors across all tested spectra, with a mean of 0.95 and a standard deviation of
0.03. This compares favourably to a post-merger fitting factor of 0.93 between
different numerical-relativity codes.

Training on the phase of the post-merger spectra will allow fitting factor
comparisons with both the amplitude and phase information, as well as the
generation of time-based waveforms. In addition, it will provide insight on the
number of numerical-relativity simulations required to achieve a complete and
accurate database. While obtaining information on the phase evolution is in
principle possible, see, e.g., [148], this also requires a systematic investigation
that goes well beyond the scope of this work. Without the phase information,
a matched filter search is less sensitive, but it is still possible to design such a
search using only the signal amplitudes.

Results based on our trained model suggest that the model is selective and
could potentially be used in parameter estimation of detected events. If poste-
riors for the mass and tidal coupling constant are able to be determined, then
it is a simple step to calculate the posteriors for the compactness, Eq.(2.1), and
the radius of the neutron star. This will be confirmed in future work using a
Bayesian framework. Parameter estimation of the post-merger spectra could set
bounds on the post-merger quadrupolar tidal coupling constant, allowing com-
parison with the inspiral value. This could determine whether a phase change
in the equation of state is present [177, 178].

To be valuable in search and parameter-estimation studies, our model must
be extended to include individual values of mass, spins, compactness and
quadrupolar tidal deformabilities for each progenitor. This paper trained on
waveforms with progenitor κτ2 values ranging from 50 to 350, and equal-mass
progenitors from 1.2 to 1.35 M�. The merger of two progenitors with the same
parameters (C,M, κτ2), but different equations of state could produce different
output spectra, for example if one equation of state had a lower maximum,
non-rotating neutron star mass. This could be a problem for the existing model
and an additional input parameter may be needed to remove the degeneracy
in the output spectra. This is not necessary for the numerical-relativity sim-
ulations that are used in the paper, as there is enough variation in the three
parameters to define the output spectra. The model may be also expanded to
include simulations with black hole progenitors. In this case the dominant post-
merger frequency, corresponding to black hole ring-down, would likely be too
high for detection with advanced LIGO. These changes can be introduced given
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enough numerical-relativity simulations to cover the required ranges of param-
eter values. The placement of numerical-relativity simulations to enable this
is a subject of future work. Our method may eventually provide an additional
tool to aid in the detection of short-term post-merger neutron star remnants,
supplementing the existing tools [169, 170].
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Abstract
Detection and parameter estimation of binary neutron star merger remnants
can shed light on the physics of hot matter at supranuclear densities. Here
we develop a fast, simple model that can generate gravitational waveforms,
and show it can be used for both detection and parameter estimation of post-
merger remnants. The model consists of three exponentially-damped sinusoids
with a linear frequency-drift term. We test the model against nine equal-mass
numerical-relativity simulations selected for emission of gravitational waves
for & 25 ms. The median fitting factors between the model waveforms and
numerical-relativity simulations exceed 0.90. We detect remnants at a post-
merger signal-to-noise ratio of ≥ 7 using a Bayes-factor detection statistic with
a threshold of 3000. We can constrain the primary post-merger frequency to
±1.4

1.2% at post-merger signal-to-noise ratios of 15 with an increase in precision to
±0.3

0.2% for post-merger signal-to-noise ratios of 50. The tidal coupling constant
can be constrained to ±9

12% at post-merger signal-to-noise ratios of 15, and
±5% at post-merger signal-to-noise ratios of 50 using a hierarchical inference
model.

3.1 Introduction
Gravitational waves have been directly detected from the inspiral of binary
neutron star mergers [6, 27]. The post-merger remnant may promptly collapse
into a black hole, or form a hot, differentially-rotating neutron star [102, 179],
which emits gravitational waves [e.g., 180–183]. Numerical-relativity simula-
tions of post-merger remnants show relationships between the gravitational-
wave spectra and a number of progenitor properties through quasi-universal
relationships [e.g., 93, 94, 101, 143, 144, 154, 155, 163, 164, 177]. Of particu-
lar interest is the relationship between the progenitor tidal coupling constant
and the primary post-merger oscillation frequency for baryonic equations of
state [94, 101, 152, 164], which can be used to place constraints on the tidal
coupling constant.
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Figure 3.1: Waveform reconstruction of numerical-relativity post-merger signal in-
jections. Top panels: time (left) and frequency (right) domain reconstructions of
a numerical-relativity simulation using the SLy equation of state with equal-mass,
1.35 M�, neutron stars (waveform SLy-M1.350-Λ390). The post-merger waveform
(black curve) is injected at a post-merger signal-to-noise ratio of 50. The recon-
structed waveforms are shown in blue. Bottom panels: same as the top panels ex-
cept the injected waveform is using the LS220 equation of state with equal mass,
1.35 M�, neutron stars (waveform LS220-M1.350-Λ684). The reconstructed wave-
forms are shown in orange. Noise sensitivity curves are shown for Advanced LIGO
(dashed black) and Advanced Virgo (dotted black) for plots on the right.

Gravitational-wave spectra generated from numerical-relativity simulations
show consistent features related to the dynamics of the surviving rem-
nant. A dominant peak, designated as fpeak [184], is produced by the fun-
damental oscillations of the bar-mode deformed post-merger remnant [e.g.,
91, 135, 154, 185, 186]. The frequencies of four possible peaks can be labelled
as (f2−0, fspiral, fpeak, f2+0) in ascending order [143]. The peaks at frequencies
f2−0, f2+0 may result from coupling between a quasi-radial oscillation mode and
fpeak [142]. The peak at frequency fspiral may result from the slower rotation-rate
of tidally-deformed matter at the outer edges of the post-merger remnant [143].
See Refs. [101, 144] for an alternative proposed explanation of the frequency
peaks.

In this paper, we develop a Bayesian detection and parameter-inference
pipeline. Normally these pipelines require a large bank of waveforms.
Numerical-relativity simulations cannot be used to generate these waveforms as
each simulation requires ∼ O(105) CPU hours to complete [101]. We develop
a fast, simple model of gravitational waves for post-merger remnants that phe-
nomenologically incorporates the main frequencies previously mentioned. Our
model produces waveforms in a time-frame that is suitable for use in detection
and parameter estimation of binary neutron star post-merger remnants.

We match nine equal-mass numerical-relativity waveforms with
gravitational-wave emission for & 25 ms with fitting factors of 0.92-0.97.
This model addresses the two restrictions that prevent matched filtering of
post-merger gravitational-wave strain: computational time and poor fitting
factors. Our model is derived from a hybrid of the two models outlined in
Refs. [147] and [148]. Our model is agnostic to the locations of the frequency
peaks and uses Bayesian statistics to determine the actual peak frequencies.
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Furthermore, the addition of a frequency drift term allows for secular changes
in the frequency peak locations. With post-merger signal-to-noise ratios of
≥ 15, the model can localise the primary post-merger frequency to ±1.4

1.2% at
95% confidence, reducing to ±0.3

0.2% at post-merger signal-to-noise ratio of 50.
Using the hierarchical model developed in Ref. [2] we can then constrain the
tidal parameters and compactness of the progenitor neutron stars. The tidal
coupling constant is constrained to ±9

12% at post-merger signal-to-noise ratios
of 15 for a 95% confidence interval. At post-merger signal-to-noise ratios of 50
this tightens to ±5%.

In Section 3.2 we outline the model and associated methods used in this
paper. In Section 3.3 we validate the model fits in the time and frequency
domains and quantify the goodness of the fits. In Section 3.4 we use a Bayes
factor detection statistic to determine at what post-merger signal-to-noise ratios
a detection occurs and test how the model performs due to uncertainty in the
inspiral coalescence time. In Section 3.5 we calculate posteriors of the dominant
post-merger frequency and introduce the hierarchical model from Ref. [2] to find
the equation of state parameters for the progenitors. We find constraints on
both the tidal coupling constant and the compactness of the progenitors.

3.2 Methodology
We adopt a model for the post-merger gravitational-wave signal consisting of
three exponentially damped sinusoids [147] with additional linear frequency drift
terms [148]. The plus, h+(θ, t), polarisation of the gravitational-wave strain is
extracted from the right circular polarisation, h(θ, t), as follows:

h(θ, t) = h+(θ, t)− ih×(θ, t) (3.1)

=
2∑
j=0

hj,+(θ, t)− ihj,×(θ, t), (3.2)

hj,+(θ, t) = Hwj exp
[
− t

Tj

]
cos (2πfjt [1 + αjt] + ψj) . (3.3)

Here, θ = {H,wj, Tj, fj, αj, ψj : j ∈ [0, 2]} are the model parameters where H
is the amplitude scaling factor and wj is the relative scaling factor for each
mode, j ∈ [0, 2], such that ∑j wj = 1. The initial frequency of each mode is
given by fj, Tj are the damping times, ψj are the initial phases, and αj are
the frequency drift terms. The time, t, is defined such that t = 0 corresponds
to the coalescence time when the maximum of h2

+(θ, t) + h2
×(θ, t) occurs [e.g.,

2, 94, 101, 157]. The cross polarisation of the jth mode is generated by a π/2
phase shift on hj,+(θ, t). Setting αj = 0 allows detection of signals corresponding
to the cross-polarisation model in Ref. [147]. These equations are a subset of
the plus polarisation model in Ref. [148] with the quadratic drift term set to
zero and no explicit modulation of spectral peaks.

We use nine post-merger numerical-relativity simulations from Ref. [100] (see
Appendix 3.A for details), selecting only simulations with equal-mass progeni-
tors where a nascent neutron star survives for at least ∼ 25 ms. For equal-mass
systems, the tidal parameter of the neutron stars is related to the dimensionless
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compactness, C = GM/(Rc2), and the second Love number, k2, as follows:

Λ̃ = 2
3k2C

−5, (3.4)

κT
2 = 1

8k2C
−5, (3.5)

where Λ̃ is the quadrupolar tidal deformability and κT
2 is the total quadrupolar

tidal coupling constant. Here, M is the neutron star mass, R is the neutron
star radius, G is the gravitational constant, and c is the speed of light. The
tidal properties of the progenitors can be estimated from the dominant post-
merger frequency using relations found from numerical-relativity simulations
with baryonic equations of state [101, 177] (although see Refs. [159, 177, 178]
for the consequences of a phase transition to strange matter). We discuss this
more in Section 3.5.

We inject numerical-relativity waveforms at various post-merger signal-to-
noise ratios into a three-detector network (LIGO Hanford, Livingston, and
Virgo) at design sensitivity for each interferometer [171, 187]. We inject the
post-merger signal at a fixed time and fixed sky position, assuming that we
know the coalescence time from the inspiral stage. In Section 3.4 we test this
assumption by determining the uncertainty in the coalescence time for vari-
ous signal-to-noise ratios. We use the Bilby package [1] with the Dynesty
sampler [188] to sample posteriors, p(θ|d), of the model parameters using the
likelihood, L(d|θ), as follows:

p(θ|d) = L(d|θ)π(θ)
Z

, (3.6)

Z =
∫
θ
dθL(d|θ)π(θ), (3.7)

L(d|θ) ∝ exp
[
−
〈
d(t)− h(θ, t), d(t)− h(θ, t)

〉]
. (3.8)

Here, d(t) = s(t) + n(t) is the numerical-relativity waveform, s(t), injected into
noise, n(t). We simulate ten different Gaussian noise realisations with Bilby,
to examine the response of the model to variations in detector noise. We limit
this to ten noise realisations to keep the computation time manageable. The
priors on the model parameters are π(θ). The noise-weighted inner product in
Eq.(3.8) is defined by:

〈h1, h2〉 ≡ 4 Re
∫
df
h̃1(f)h̃∗2(f)
Sh(f) , (3.9)

where Sh is the detector’s noise power spectral density. We use a sampling
frequency of 16384 Hz to eliminate aliasing of the upper sidebands. We use
constrained priors to sort the maximum amplitude for h̃j,+(θ, f), such that
|h̃j,+(θ, f)|max > |h̃j+1,+(θ, f)|max. This ensures that the mode zero (j = 0)
exponentially damped sinusoid corresponds to the dominant post-merger fre-
quency. Full details on the priors are given in Appendix 3.B. The optimal
post-merger signal-to-noise ratio, ρopt, is calculated from the quadrature sum
of the optimal post-merger signal-to-noise ratio for each of the three detectors,
ρopt,i as follows:

ρ2
opt =

∑
i∈HLV

ρ2
opt,i , (3.10)
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for t ≥ 0. The matched filter signal-to-noise ratio for a single detector is given
by:

ρmf = 〈d, h(θ)〉
〈h(θ), h(θ)〉

1
2

. (3.11)

3.3 Model Validation
Figure 3.1 shows the posterior waveforms in the time and frequency domain for
the plus polarisation of two numerical-relativity post-merger simulations. The
two gravitational-wave simulations, SLy-M1.350-Λ390 (THC:0036:R03, top)
and LS220-M1.350-Λ684 (THC:0019:R05, bottom) are injected at a post-merger
signal-to-noise ratio of 50. These waveforms are chosen for compatibility with
the inferred properties of Λ from GW170817 [6, 55, 99, 158–160]. SLy-M1.350-
Λ390 is a simulation of equal progenitor mass 1.35M� neutron stars with tidal
deformability, Λ̃ = 390.1 (κT

2 = 73.14) and SLy equation of state. Similarly,
LS220-M1.350-Λ684 has masses of 1.35M�, Λ̃ = 683.8 (κT

2 = 128.2) and LS220
equation of state.

We generate posterior waveforms by randomly drawing samples from the
posterior distribution p(θ|d). The posterior waveforms are shown as blue (top,
SLy-M1.350-Λ390) and orange (bottom, LS220-M1.350-Λ684) curves in Fig. 3.1.
The solid black curves show the injected numerical-relativity waveforms. As
can be seen in the time-response plots (Fig. 3.1, left), the posterior samples
are tightly clustered around the numerical-relativity simulations, particularly
for the first ∼ 15 ms. The phase of waveform SLy-M1.350-Λ390 is lost after
∼ 15 ms (Fig. 3.1, upper left) though the majority of the spectral content is
contained in the first 5 ms (see Fig. 3.4). We note that accumulated phase errors
in numerical-relativity simulations increase over time.

The frequency-response plots are shown on the right side of Fig. 3.1, along
with the amplitude spectral density of Advanced LIGO (dashed black curve)
and Advanced Virgo (dotted black curve) at design sensitivity. The primary
frequency peaks are well recovered for both reference waveforms. Two low
frequency peaks of SLy-M1.350-Λ390 are resolved in preference to the upper
frequency peak, whereas only one low frequency peak is resolved for LS220-
M1.350-Λ684. The other two modes are located at the main frequency peak of
LS220-M1.350-Λ684.

To measure the extent of the waveform mismatch, we calculate the noise-
weighted fitting factor between the injected numerical-relativity waveform, d(t),
and the posterior waveform, h(θ, t), [175]:

F(d(t), h(θ, t)) ≡ 〈d(t)|h(θ, t)〉√
〈d(t)|d(t)〉 〈h(θ, t)|h(θ, t)〉

. (3.12)

The fitting factor, calculated with noise from one detector at Advanced LIGO
design sensitivity [171], quantifies the loss in signal-to-noise due to signal mis-
match in relation to an optimal signal-to-noise ratio, Eq.(3.10).

The median fitting factors are 0.92 and 0.95, for SLy-M1.350-Λ390 and
LS220-M1.350-Λ684, respectively. As the detection rate scales as F3 [175],
the reduction in detection rate due to the above mismatch is 22% and 14%
respectively for these two waveforms.
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Figure 3.2: Fitting-factor distributions, F(d(t), h(θ, t)), for each post-merger
numerical-relativity waveform. The signal-to-noise ratio for the post-merger
gravitational-wave strain for each waveform is 50. The upper and lower horizon-
tal bars represent 99.7% confidence intervals. The central horizontal bar shows the
median value. The thick vertical line shows the 95% confidence intervals. The me-
dian fitting factors range between 0.92 to 0.97 which corresponds to a reduction in
detection rate from 22% down to 9% due to mismatch with the numerical-relativity
injections.

The fitting factors for all nine numerical-relativity simulations are shown in
Fig. 3.2, with each simulation represented by a different colour. Ten different
Gaussian noise realisations are used for each numerical-relativity simulation.
The 99.7% confidence intervals for the fitting factors are shown by the upper
and lower horizontal bars. The median value is shown by the central horizontal
bar, and 95% confidence intervals are indicated by thick vertical bars. Finally,
the distribution of the fitting factors are shown by the width of the shaded
areas. The lowest fitting factors, for simulation, SLy-M1.350-Λ390, have an
average match of 0.92. Other numerical-relativity injections have fitting factors
of 0.95− 0.97. The injection with the softest equation of state under-performs
the other injections. This is due to complex dynamics of the nascent neutron
star in the first ∼ 2 ms.

3.4 Sensitivity
We calculate the Bayes factor between the signal hypothesis and a noise hy-
pothesis to evaluate the sensitivity of our model. We do this by injecting the
post-merger signal SLy-M1.350-Λ390 into ten different noise realisations at var-
ious signal-to-noise ratios. The results are shown in Fig. 3.3. The distribution
of the natural logarithm of the Bayes factor, ln(BF), is shown for each post-
merger signal-to-noise ratio along with the 99.7% confidence intervals (upper
and lower horizontal bars) and the median value (middle horizontal bar). We
define that strong evidence for a signal hypothesis over a noise hypothesis cor-
responds to a Bayes factor exceeding 3000 (ln(BF) > 8.0) [e.g., 189]. In this
case a signal hypothesis is 3000 times more likely than a noise hypothesis. This
occurs with post-merger signal-to-noise ratios of & 10 for all tested noise real-
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isations. There are some noise realisations where the Bayes factor threshold is
exceeded for post-merger signal-to-noise ratios of ≈ 7-9.
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Figure 3.3: Natural logarithm of the Bayes factor comparing a signal hypothesis
against a noise hypothesis plotted against the post-merger signal-to-noise ratio. The
numerical-relativity waveform, SLy-M1.350-Λ390, is injected into ten different noise
realisations at the specified signal-to-noise ratio. The upper and lower horizontal bars
show the 99.7% confidence intervals of the log Bayes factor and the central horizontal
bar shows the median value. A post-merger signal-to-noise value of & 10 is required
to ensure strong evidence for a signal hypothesis (ln(BF) > 8) across all ten noise
realisations. However, there are some noise realisations where ln(BF) > 8 occurs for
post-merger signal-to-noise ratios as low as 7.

An important consideration for our signal model is the uncertainty in the
coalescence time as measured from the gravitational-wave inspiral signal. This
determines how close we can get to the true coalescence time for the binary
neutron star merger. In Fig. 3.4 we investigate the model performance to un-
certainties in the coalescence time. We show how the fitting factor and matched-
filter signal-to-noise ratio change when starting the adopted model at various
times after the coalescence time. We multiply the numerical-relativity injec-
tion, d(t), by the Heaviside step function, H(t− tdelay), and evaluate the model,
h(θ, t − tdelay), for t ≥ tdelay. The matched filter signal-to-noise ratio is calcu-
lated using Eq.(3.11) with a single detector at Advanced LIGO sensitivity. We
use numerical-relativity injection, SLy-M1.350-Λ390, selected due to compati-
bility with the tidal parameters inferred from GW170817. A delay time of zero
includes the entire post-merger waveform, whereas a delay time of 2 ms excludes
the first 2 ms of the injection after the coalescence time. The fitting factor is
lower (∼ 0.91) for small delay times and increases to ∼ 0.96 at 2 ms. The fitting
factor is lower in the first 2 ms due to complex dynamics of the nascent neutron
star. In Fig. 3.4, the matched-filter signal-to-noise ratio is almost monotonically
decreasing as expected. Even though the fitting factors are lower at zero delay
time, the matched-filter signal-to-noise ratio is at maximum. Therefore, from a
sensitivity perspective, a minimum delay time is preferred.
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Figure 3.4: Variation of fitting factor (hatched blue) and matched filter signal-to-noise
ratio (solid blue) for differing values of the delay time after the time of coalescence.
The shaded regions show 95% confidence intervals. The optimal signal-to-noise ratio
is also shown (solid black). Although the fitting factor is lower when the entire post-
merger signal is used, the matched filter signal-to-noise ratio is largest. The fitting
factor is lower for smaller delay-times due to the complex dynamics of the nascent
neutron-star.

To estimate the uncertainties of the time of coalescence of the inspiral sig-
nal as a function of the signal-to-noise ratio of the inspiral signal, we use a
Fisher matrix approximation. We assume that the signal parameters ϑ follow
a Gaussian distribution:

p (∆ϑ) ∝ exp
[
−1

2Γij∆ϑi∆ϑj
]
. (3.13)

Here, ∆ϑi = ϑi − ϑ̂i, ϑ̂i are the best fit inspiral parameters and Γij =
(∂h/∂ϑi|∂h/∂ϑj) is the expected Fisher information matrix. The estimated
errors of the parameters, ϑi, are obtained by taking the diagonal elements of
the Fisher information matrix. The relevant parameters within our approxima-
tion are ϑ = (M, q, φc, Λ̃, tc, H), whereM is the chirp mass, q is the mass ratio,
φc is the phase of coalescence. The average-weighted tidal deformabilty is Λ̃, tc
is the time of coalescence and H is the amplitude of the inspiral waveform. We
calculate the errors on ϑi assuming an equal-mass 1.4M� non-rotating progen-
itor system. The expected uncertainties for the coalescence time are shown in
Fig. 3.5. The left axis shows the inspiral signal-to-noise ratio for an optimally
oriented source into a two detector LIGO network at design sensitivity. We
use Fig. 8 from Ref. [190] to determine the luminosity distance, DL, from the
inspiral signal-to-noise ratio. We calculate the product of DL0 ≈ 475 Mpc (at
z ≈ 0.1) with the corresponding inspiral signal-to-noise ratio, ρinspiral,0 ≈ 7. We
inject the numerical-relativity post-merger waveform, SLy-M1.350-Λ390, at lu-
minosity distance, DL = DL0 (ρinspiral,0/ρinspiral), and evaluate the post-merger
signal-to-noise ratio using the Advanced LIGO and Virgo detector network at
design sensitivity. The right axis in Fig. 3.5 shows the corresponding post-
merger signal-to-noise ratio.
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Figure 3.5: Uncertainty in coalescence time plotted with signal-to-noise ratios. The
coalescence time uncertainty has been determined by a Fisher matrix approximation.
The left axis is the signal-to-noise ratio for a two detector network of Advanced
LIGO at design sensitivity for a binary neutron star inspiral. The right axis is the
post-merger signal-to-noise ratio for a three detector network of Advanced LIGO
and Advanced Virgo at design sensitivity using numerical-relativity simulation SLy-
M1.350-Λ390. Post-merger signal to noise ratios above 6.0 have coalescence time
uncertainties of less than 0.1 ms.

For post-merger signal-to-noise ratios larger than 6, the uncertainty in the
coalescence time is less than 0.1 ms. This shows that, for post-merger signal-to-
noise ratios of interest in this work, the coalescence time is similarly constrained.
The uncertainty in coalescence time can be related to Fig. 3.4 to show that the
resultant matched filter signal-to-noise ratio is not significantly reduced due to
the uncertainty in the coalescence time.

3.5 Parameter estimation
Estimation of the primary post-merger frequency is another important indica-
tor of the model performance. We estimate this by calculating posteriors of
the peak frequency, fpeak, of the dominant mode. Fig. 3.6 shows posteriors
of fpeak as a function of post-merger signal-to-noise ratio. These have been
calculated for an injection of SLy-M1.350-Λ390 at post-merger signal-to-noise
ratios of ≥ 9. The noise realisation was kept the same for all injections. Blue
shading indicates regions of 95% confidence intervals and the median values are
shown as blue dots. The frequency corresponding to the maximum value of the
characteristic strain spectrum of the numerical-relativity signal, |s̃+(f)|

√
f , is

shown as a black horizontal line. This can be thought of as an approximation
of the true injected value of fpeak. The fpeak frequency is constrained within
95% confidence intervals to 3310±46

38 Hz at a post-merger signal-to-noise ratio
of 15 which corresponds to ±1.4

1.2%. At a post-merger signal-to-noise ratio of 50,
the precision increases to 3296±11

8 Hz (±0.3
0.2%). The posteriors for f0, α0, f1 and

α1, determined for all numerical-relativity injections at a post-merger signal-to-
noise ratio of 50, are shown in Figs. 3.C.1-3.C.9 in Appendix 3.C.
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Figure 3.6: Primary post-merger frequency comparison between our model (blue) and
BayesWave (brown). The posteriors are plotted against the post-merger signal-to-
noise ratio for injection SLy-M1.350-Λ390. The 95% confidence intervals are shaded.
The median points are shown as blue dots and brown crosses, for our model and
BayesWave, respectively. The frequency corresponding to the peak of the spectral
response of the injection is also shown (solid black line).

We also analyse injections of SLy-M1.350-Λ390 using BayesWave [191,
192]. BayesWave uses a variable number of Morlet-Gabor wavelets to model
the signal, where both the number and the properties of the wavelets are
marginalised over. This is an established method for post-merger studies [27,
55]. References [170, 193] have performed simulations using BayesWave to in-
fer the post-merger properties of binary neutron star mergers. We compute the
posteriors of the spectral frequency peak, fpeak, using BayesWave following
Ref. [170]. Here, fpeak, the frequency of the highest peak in the Fourier power
spectrum of the signal, is determined for each sample from the BayesWave
posterior. For samples that do not have a peak, fpeak is computed using ran-
dom draws from its prior [170]. Figure 3.6 shows the 95% confidence intervals of
fpeak for each post-merger signal-to-noise ratio in brown. The median values are
shown as brown crosses. The BayesWave frequency posteriors are consistent
with Refs. [170, 193].

The posteriors for fpeak are similarly constrained for both BayesWave and
our model for post-merger signal-to-noise ratios of & 20. BayesWave is more
constrained for post-merger signal-to-noise ratios of ∼ 9 − 15. Both methods
are able to recover the injected dominant post-merger frequency. BayesWave
can generate very high fitting factors; the fitting factors for SLy-M1.350-Λ390
at a post-merger signal-to-noise ratio of 50 are ≈ 0.99. The dimensionality of
BayesWave is ∼ 90 (∼ 18 wavelets) at this post-merger signal-to-noise ratio.
The dimensionality of our adopted model is 15 with fitting factors of ≈ 0.92
for SLy-M1.350-Λ390. Furthermore, BayesWave can generalise to any signal
(e.g. glitches). In contrast, our model has been developed to suit a post-merger
gravitational-wave signal. The parameters in our model are interpretable: for
example, in Fig. 3.C.1, the α0 value for SLy-M1.350-Λ390 is −1.60±0.50

0.26 which
shows that the frequency of the dominant gravitational-wave mode is decreasing.

The hierarchical model from Ref. [2] allows a bidirectional relationship be-
tween equal-mass progenitor neutron star properties (C,M, κt

2) and numerical-
relativity post-merger simulations. This is achieved by a two step process.
Firstly, the progenitor properties are used to solve C̄(M,κt

2) = C using a
power-law relationship. Secondly, the model parameters, Θ, are determined
by solving hc = ΘX(C̄(M,κt

2),M, κt
2), where hc is the numerical-relativity

amplitude spectra for the characteristic strain (hc(f) = |h̃(f)|
√
f). Here,
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X(C̄(M,κt
2),M, κt

2) is a design matrix derived from the progenitor properties
M and κt

2.
We use the posteriors from Section 3.3 to calculate the amplitude of the

characteristic spectrum |h̃+(θ, f)|
√
f and use the trained model, Θ, to deter-

mine the hierarchical model posteriors on κt
2 and C. The cross-polarisation

waveforms are discarded because the hierarchical model only uses the magni-
tude of the spectra, and |h̃+(θ, f)| = |h̃×(θ, f)|. The hierarchical model, Θ,
was previously trained on 35 numerical-relativity simulations from Ref. [94],
a distinct set of numerical-relativity simulations to those used in this paper.
Therefore, this is an out-of-sample model validation.
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Figure 3.7: Tidal coupling constant posteriors versus post-merger signal-to-noise ra-
tio for numerical-relativity waveform SLy-M1.350-Λ390. The tidal coupling constant
is inferred from the hierarchical model [2] using the magnitude of the posterior wave-
forms, |h+(θ, t)|. The 68% (dark blue) and 95% (light blue) confidence intervals are
shown along with the median values (blue dots). The true value for κt

2 is shown as
the solid horizontal line. The corresponding tidal deformability values are shown on
the secondary vertical axis.

Figure 3.7 shows the inferred posteriors for κt
2 with 68% and 95% confidence

intervals in dark blue and light blue respectively. The true injected value of κt
2,

is shown by the horizontal solid black line and the median values as blue dots.
The vertical axis shows both the quadrupolar tidal coupling constant (left axis)
and the quadrupolar tidal deformability (right axis). The values inferred for
the tidal parameters of the progenitor neutron stars are lower than the true
value of the numerical-relativity injection, though the 95% confidence interval
excludes the true value only at a post-merger signal-to-noise ratio of 50. The
tidal coupling constant at a post-merger signal-to-noise ratio of 15 is constrained
at 95% confidence intervals to 68.5+5.9

−7.9, which tightens to 68.5+3.4
−3.6 for a post-

merger signal-to-noise ratios of 50.
There are a number of factors that will impact on the performance of the hi-

erarchical model. Firstly, the numerical-relativity spectra from Ref. [94], which
were used in Ref. [2] to train the model, are a distinct set of simulations to
those in use in this paper [100]. Specifically, waveform SLy-M1.350-Λ390 is
available in both sets of numerical-relativity simulations (Refs. [100] and [94]),
and, although the primary post-merger peak occurs at the same frequency, the
spectral response for the other frequencies are different (fitting factor = 0.90).
Secondly, the simulation outputs can be dependent on the spatial and tem-
poral resolution, which can lead to waveform changes related to parameters
like collapse time, primary oscillation frequency and decay time constants. To
ensure the performance of the hierarchical model, the simulations used in the
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training set and test set should be consistent and not contradictory. Thirdly,
the hierarchical model is an approximate model, and was trained on 35 com-
patible waveforms; (for details, see Ref. [2]). Given the small training set, the
hierarchical model results are consistent. The complexity of the model could
be increased as additional consistent numerical-relativity simulations become
available.
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Figure 3.8: Compactness posteriors versus post-merger signal-to-noise ratio for
numerical-relativity waveform SLy-M1.350-Λ390. The 68% (dark blue) and 95% (light
blue) confidence regions are shown. The compactness is inferred from the hierarchical
model [2]. The compactness inferred directly from the numerical-relativity waveform
(dashed black line) and the compactness of the progenitor neutron stars (solid black
line) are also shown. See the text for an explanation of the offset in these two values.

Hierarchical model posteriors for the compactness, C, are shown in Fig. 3.8.
The 68% and 95% confidence intervals are shaded dark blue and light blue re-
spectively, and the median values are shown with blue dots. The true value
corresponding to the injected numerical-relativity simulation is shown as a hor-
izontal solid black line. The value inferred from the numerical-relativity simu-
lation using the hierarchical model is shown as a horizontal black dashed line.
The hierarchical posteriors for C are clustered around the value inferred di-
rectly from the hierarchical model for the numerical-relativity simulation. This
is expected and due to the mismatch between the numerical-relativity injection
and the set of numerical-relativity simulations used to train the hierarchical
model. The compactness has been constrained to 0.162+0.007

−0.004 at post-merger
signal-to-noise ratios of 15 tightening to 0.164+0.002

−0.003 at signal-to-noise ratios of
50 to 95% confidence intervals. The posteriors for the compactness, C, only
narrow moderately as the post-merger signal-to-noise ratio is increased.

3.6 Discussion
We use an analytical model to characterise gravitational-wave strain from nine
numerical-relativity simulations selected such that the post-merger oscillations
persist for ∼ 25 ms. The median noise-weighted fitting factors for the posterior
waveforms range between 0.92 - 0.97 for injections with post-merger signal-to-
noise ratios of 50. This corresponds to a loss in detection rate of 22 - 12% when
compared to a signal without mismatch. We measure the Bayes factor in favour
of signal detection with numerical-relativity simulation SLy-M1.350-Λ390 and
find that successful detections occur with post-merger signal-to-noise ratios of
≥ 10 with possible detections as low as post-merger signal-to-noise ratios of 7,
depending on the specific noise realisation. This indicates that this model could
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be used for parameter estimation and detection if a post-merger signal louder
than signal-to-noise ratio of 10 was coincident with an inspiral detection. We
find that this corresponds to a distance of ∼ 10 Mpc for an optimally oriented
system using a three-detector network (LIGO Hanford, Livingston, and Virgo)
at design sensitivity.

We determine that starting the model at the time of coalescence results in the
maximum matched filter signal-to-noise ratio even though the fitting factors are
lower in the vicinity of the merger due to the dynamics of the nascent neutron
star. We find that the uncertainty in the time of coalescence for the inspiral
of the progenitor neutron stars is less that 0.1 ms for a post-merger signal-to-
noise ratio of ≥ 6 and show that this corresponds to a maximum matched-filter
signal-to-noise ratio.

The gravitational-wave strain of the inspiral can constrain the equation of
state for the cold neutron star at the high inspiral signal-to-noise ratios (& 200)
required for post-merger detection of the remnant (see Fig. 3.5). This can place
additional constraints on the priors for the dominant post-merger frequency.
However, a phase transition in the hot post-merger remnant [159, 177, 178],
and uncertainty in the numerical-relativity calculations due to computational
trade-offs, may result in a post-merger gravitational-wave signal that is quanti-
tatively different than the numerical-relativity simulations. With this in mind,
we assume a more general, agnostic set of priors (see Appendix 3.B).

Using numerical-relativity waveform SLy-M1.350-Λ390, selected for its com-
patibility with Λ values determined from GW170817 [e.g., 6, 55, 99, 158–160],
we constrain the primary post-merger frequency to a range of 3310 Hz±1.4

1.2%
for 95% confidence intervals at post-merger signal-to-noise ratios of 15. The
precision increases to 3296 Hz±0.3

0.2% for post-merger signal-to-noise ratios of 50.
We show that our model and BayesWave similarly constrain the dominant

post-merger frequency, fpeak, for post-merger signal-to-noise ratios of & 20.
For post-merger signal-to-noise ratio of ∼ 9 − 15 BayesWave is better able
to constrain fpeak. We generate fitting factors of ≈ 0.99 using BayesWave
for SLy-M1.350-Λ390 at a post-merger signal-to-noise ratio of 50. The corre-
sponding fitting factors from our model are ≈ 0.92. The dimensionality of the
BayesWave posterior reconstruction is significantly larger than our analytic;
∼ 90 dimensions for BayesWave cf. 15 for ours. Moreover, our adopted
model is interpretable and can supply additional information about the indi-
vidual modes (e.g. frequency drifts and exponential damping time constants).

We use the hierarchical model from Ref. [2], which has been trained on
numerical-relativity waveforms from Ref. [94], to determine posteriors for κt

2
and C. We obtain 95% confidence intervals on κt

2 (and Λ̃) of ±9
12% at a post-

merger signal-to-noise ratio of 15 with increasing precision to ± 5% at a post-
merger signal-to-noise ratio of 50. The 95% confidence intervals on C range
from ±4.3

2.7% at post-merger signal-to-noise ratios of 15 to ±1.5
1.8% at post-merger

signal-to-noise ratios of 50. However, the injected value for C is outside the
95% confidence interval.

It should be noted that the inferred posteriors for C are centred around the
compactness value inferred directly from the numerical-relativity simulation.
This indicates that the offset in the inferred compactness values is caused by
the difference in the SLy numerical-relativity simulations between Ref. [94] and
Refs. [95, 96]. Contradictory training waveforms will increase uncertainties in
the hierarchical model. The 35 numerical-relativity simulations used to train the
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hierarchical model were homogeneous, changing only the equation of state and
the progenitor masses between simulations, keeping other simulation parameters
the same. It should also be emphasised that, because the numerical-relativity
simulations are drawn from independent sources, the posteriors of κt

2(Λ̃) and
C are true out-of-sample estimates. We expect the estimates of C and κt

2 to
become more consistent with the injected value as the training set is increased
in size and covers more system and progenitor properties.

In addition to the aforementioned analytical models [147, 148], other work
have generated analytical post-merger gravitational-wave models. In Ref. [163],
a model was generated for the time-based amplitude and phase of the com-
plex gravitational-wave strain using a smooth piece-wise function for the am-
plitude. The time-based phase was fit by the combination of a polynomial and
exponentially-damped sinusoid using an iterative CMA-ES (covariance matrix
adaption evolution search) fitting algorithm. The maximum fitting factors were
calculated in the time domain without noise weighting and are not directly
comparable to the noise-weighted fitting factors calculated with Eq.(3.9). The
maximum fitting factors were ∼0.92 - 0.98 for 95% of the 54 waveforms.

A frequency-domain model was introduced in Ref. [176] from analysing the
major spectral peaks of the whitened power spectrum. The power of the domi-
nant post-merger frequency peak was estimated by a trapezoidal structure and
the model parameters were determined with a least-squares algorithm. No fit-
ting factors were calculated in this reference, as the goal was estimating source
red-shifts. This model was extended in Ref. [101] to add a Gaussian component
to the fundamental post-merger frequency using a nonlinear least-squares fit.
The goal of the fits in Ref. [101] were qualitative, rather than quantitative and
no fitting factors were stated.

The model used in Ref. [147] consists of three exponentially damped si-
nusoids centred at frequencies (f2−0, fspiral, fpeak) which are described in Sec-
tion 3.1. In contrast, the model introduced in Ref. [148], consists of two ex-
ponentially damped sinusoids, the first centred on f1 which is modulated by
frequency f1e, and the second is centred on the dominant post-merger fre-
quency, f2, with a linear and quadratic frequency drift terms. This model
produced fits of ∼ 80-94%. In Ref.[194], a frequency-domain model was de-
veloped for a single damped-sinusoid. This model was based on three or six
parameters and used Bayesian inference to estimate the parameters for 120
numerical-relativity simulations. They obtained fitting factors of ∼ 0.60 - 0.98.
Reference [152] parameterised the instantaneous amplitude and phase of the
time-based gravitational-wave strain using 172 numerical-relativity simulations.
Their model uses a rational-polynomial fit based on the progenitor properties
(M1, M2, κt

2) derived in Refs. [111, 164, 195]. They achieved fitting factors of
∼0.30 - 0.85 in zero noise.

The fitting factors obtained in our paper compare favourably to those listed
above; our maximum fitting factors are above 0.93 for all waveforms [cf. 163] and
our minimum fitting factors are above 0.90 across all waveforms [cf. 152, 194].
The fitting factor is more sensitive to deviations in the time-based phase or
Fourier phase response, than it is to amplitude deviations. The fits in Ref. [152]
could possibly be improved by adding in more flexibility in the phase response.
Our model bypasses the phase matching difficulty by directly fitting the phase
with parameters, (fj, αj, ψj), from the injected signals from all three interfer-
ometers. Although Ref. [194] does directly fit the phase, the first-order model
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is too restricted to obtain higher fitting factors and better results may be ob-
tained by increasing the order of the model. The number of numerical-relativity
simulations used in Refs. [152, 163, 194] was significantly larger than the nine
simulations we use here, including additional mass ratios, spin configurations
and eccentricity values. We leave it for future work to expand the number of
numerical-relativity simulations to test this model.

Although numerical-relativity simulations currently provide the best esti-
mate of the post-merger gravitational-wave strain, future post-merger signals
may not be consistent with these state-of-the-art simulations. With this in
mind, our model matches the numerical-relativity simulations well, but it is
more flexible than these simulations. This is important because this method
is a middle ground between simulations of known waveforms, and more gen-
eral (e.g. unmodelled excess power and BayesWave) methods. Nevertheless,
numerical-relativity simulations are the primary method of investigating the dy-
namical physics of the post-merger region and research into these simulations
is vital.
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3.A Numerical relativity simulations
We use nine simulations from the CoRe gravitational wave database [100] for
binary neutron star mergers. The simulations are listed by their equation of
state, the progenitor mass, and the quadrupolar tidal deformability. We limit
our simulations to those with equal-mass prognitors for compatibility with the
heirarchical model in Ref. [2]. We choose simulations with the highest resolu-
tion such that the remnant was transmitting gravitational waves for ∼ 25 ms.
In some cases increasing the resolution resulted in a reduced lifetime of the
remnant. Table 3.A.1 shows the simulation designator for this paper, the name
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of the waveform in the CoRe database, and the citation for the associated sim-
ulation in the metadata (if available).

Table 3.A.1: Numerical relativity simulations
Designator Simulation name Citations [100]

SLy-M1.350-Λ390 THC:0036:R03 [95]
LS220-M1.350-Λ684 THC:0019:R05 [97]
MS1b-M1.500-Λ864 BAM:0088:R01 -

BHBlp-M1.300-Λ1046 THC:0002:R01 [98, 99]
DD2-M1.250-Λ1295 THC:0011:R01 [98, 99]
MS1b-M1.375-Λ1389 BAM:0070:R01 [96]
MS1b-M1.350-Λ1532 BAM:0065:R03 [93]
DD2-M1.200-Λ1612 THC:0010:R01 [98, 99]
2H-M1.350-Λ2326 BAM:0002:R02 [93]

3.B Priors
The priors are listed in Eqs.(3.14-3.21) with U(a, b) representing a uniform prior
distribution from a to b. The mode number j is limited to {0, 1, 2} and the mode
number i is restricted to {0, 1}. The priors in Eqs. 3.20-3.21 are constrained
priors. These restrictions are enforced in addition to the standard priors. The
prior in Eq.(3.20) ensures that the maximum spectral amplitude of each mode
is decreasing. This results in f0 converging to the loudest peak.

log10 H ∼ U(−24,−19) (3.14)
fj ∼ U(1000, 5000) (3.15)

log10 Tj ∼ U(−4.0, 0.3) (3.16)
ψj ∼ U(−π, π) (3.17)
αj ∼ U(−6.4, 6.4) (3.18)
wi ∼ U(0.0, 1.0) (3.19)

log10

(
max |h̃j(f)|f

max |h̃j+1(f)|f

)
∼ U(0.0, 10.0) (3.20)

w0 + w1 ∼ U(0.0, 1.0) (3.21)

w2 is calculated as:
w2 = 1− w0 − w1, (3.22)

ensuring that ∑j wj = 1 and w2 ∈ [0, 1] as required.

3.C Posteriors for all numerical-relativity in-
jections

Selected posteriors for all numerical-relativity simulations are shown in
Fig. 3.C.1-3.C.9. The waveforms are injected at a post-merger signal-to-
noise ratio of 50. The posteriors shown are: f0, α0, f1 and α1. The posteri-
ors are coloured as per Fig. 3.2 and Table 3.A.1. The frequency drift term,
α0, for the dominant post-merger frequency is negative for some simulations.
Most numerical-relativity simulations spectrograms show that the dominant
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frequency is constant or increases slightly over time, however, many simula-
tions do show decreasing evolution of the dominant post-merger oscillation fre-
quency [e.g., 98, 109, 198].
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Figure 3.C.1: Selected posteriors for numerical-relativity post-merger injection using
the equation of state SLy with equal mass, 1.35 M�, neutron stars (waveform SLy-
M1.350-Λ390). The numerical-relativity simulation was injected at a post-merger
signal-to-noise ratio of 50.
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Figure 3.C.2: As per Fig. 3.C.1 using the equation of state LS220 with equal mass,
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Figure 3.C.3: As per Fig. 3.C.1 using the equation of state MS1b with equal mass,
1.50 M�, neutron stars (waveform MS1b-M1.500-Λ864).
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Figure 3.C.6: As per Fig. 3.C.1 using the equation of state MS1b with equal mass,
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Figure 3.C.7: As per Fig. 3.C.1 using the equation of state MS1b with equal mass,
1.35 M�, neutron stars (waveform MS1b-M1.350-Λ1532).
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Figure 3.C.9: As per Fig. 3.C.1 using the equation of state 2H with equal mass,
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Chapter 4

Can we measure the collapse time of a
post-merger remnant for a future
GW170817-like event?
Paul J. Easter
Paul D. Lasky
Andrew R. Casey

Abstract
Measuring the collapse time of a binary neutron star merger remnant can in-
form the physics of extreme matter and improve modelling of short gamma-ray
bursts and associated kilonova. The lifetime of the post-merger remnant di-
rectly impacts the mechanisms available for the jet launch of short gamma-ray
bursts. We develop and test a method to measure the collapse time of post-
merger remnants. We show that for a GW170817-like event at ∼ 40 Mpc, a
network of Einstein Telescope with Cosmic Explorer is required to detect col-
lapse times of ∼ 10 ms. For a two-detector network at A+ design sensitivity,
post-merger remnants with collapse times of ∼ 10 ms must be . 10 Mpc to be
measureable. This increases to ∼18-26 Mpc if we include the proposed Neutron
star Extreme Matter Observatory (NEMO), increasing the effective volume by
a factor of ∼30.

4.1 Introduction
Measuring the lifetimes of binary neutron star post-merger remnants can help
probe extreme matter at high temperature and densities and narrow down
the physics of short gamma-ray bursts [e.g., 199, 200]. These remnants may
promptly collapse into a black hole or form a hot, differentially-rotating neutron
star. If the total mass of a remnant is between 1.2 and 1.5 times the maximum
non-rotating neutron star mass (the Tolman-Oppenheimer-Volkov mass), then
the remnant is known as a hypermassive neutron star [44, 45, 123, 124, 179],
which is expected to collapse to form a black hole in a timescale from millisec-
onds to seconds [40]. For smaller masses, the differentially-rotating remnant
will evolve into rigidly-rotating neutron star after the differential rotation is
quenched. The rigidly-rotating remnant will either collapse to a black hole, or
form a stable neutron star, depending on the remnant mass. See Ref. [201] for
a recent review on the evolution of neutron star merger remnants.

Determining the collapse times of hypermassive remnants can help narrow
down the nature of the central engine for short gamma-ray-bursts. Multi-
messenger observations of binary neutron star merger GW170817 suggest that
the remnant may have either collapsed to a black hole [e.g., 56–58], or formed a
long-lived remnant [e.g., 59]. Measuring the collapse time of a remnant may help
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Figure 4.1: Time domain posterior waveforms for SLy equation of state with equal-
mass 1.35M� progenitor (left panels) and measured collapse times (right panels) for
injections with collapse times tcol = 5 ms (top), tcol = 10 ms (centre), and tcol =
15 ms (bottom) injected into 2A+ detector network. Left panels show the numerical-
relativity injections that have been forced to collapse (black curves) with the posterior
waveforms (shaded blue curves). The right panels show the collapse-time posterior
distributions for each numerical-relativity injection. The solid vertical lines on all
panels shows tcol for the injected waveform. The dashed vertical lines shows tcol + tw
where the injected signal drops to zero due to the induced collapse. Here we show
three loud injections from our injection study where tcol are clearly recovered. The
injected distances are 5.93 Mpc, 3.04 Mpc, and 1.00 Mpc, for 5 ms, 10 ms, and 15 ms
respectively. The full posteriors for the tcol = 10 ms collapse time injection are shown
in the appendix (Fig 4.B.1).

determine the characteristic timescales associated with short gamma-ray-bursts,
aiding the selection of the central engine (for a review see [199]). Furthermore,
measuring the collapse time of the post-merger remnant may help constrain
the quenching mechanism and physics of the differential rotation, which may
reveal indicators towards the relative contribution of radiative (gravitational
waves and neutrino) and dissipative (viscous, resistive and magnetic braking)
processes within the remnant.

The direct detection of gravitational waves from future neutron star
merger remnants presents a great opportunity to constrain the collapse time.
Numerical-relativity simulations of merger remnants show gravitational waves
predominantly emitted from the fundamental f-mode oscillation of the rem-
nant [141, 142]. Gravitational waves emitted from this mode occur at ∼
1.8-4 kHz [101, 164]. No post-merger remnant was detected for GW170817 by
the LIGO and Virgo collaboration due to lack of sensitivity of the detectors at
these frequencies. However, increased sensitivity of gravitational-wave instru-
ments and targeted high-frequency detectors may enable future detections of
post-merger remnants [e.g., 31, 190].
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In this paper, we assess how well future networks of gravitational-wave de-
tectors can measure the collapse time of a post-merger remnant. We extend a
waveform model developed in Ref. [3] which was derived from Refs. [147, 148], to
allow the measurement of the collapse time of the post-merger remnant. Using
Bayesian inference, we inject numerical-relativity gravitational waveforms that
are forced to collapse into different interferometer configurations to measure the
maximum distance at which we can recover the collapse time.

This paper is laid out as follows. In Section 4.2 we outline the extended
waveform model along with the method of gravitational-wave injections. The
results are outlined in Section 4.3 and their implications in Section 4.4.

4.2 Methodology
We use numerical-relativity waveforms with two different equations of state that
we inject into Gaussian noise realisations determined by the gravitational-wave
interferometer configuration. We modify the numerical-relativity waveforms to
collapse at a given collapse time. We then use an analytic model to perform
detection and parameter estimation to determine distributions of the model
parameters. This model, based on two models in Refs. [147, 148], is outlined
in Ref. [3]. See also Refs. [152, 194] for alternative models of the post-merger
gravitational-wave strain.

The gravitational waves from the post-merger remnant are modelled as a
third-order, exponentially-damped sinusoid with a linear frequency-drift term.
The plus polarisation of the gravitational-wave strain, h+(θ, t), is given by:

h+(θ, t) =
∑
j

hj,+(θ, t),

hj,+(θ, t) = Hwj exp
[
− t

Tj

]
cos (2πfjt [1 + αjt] + ψj) ,

θ = {H,wj, Tj, fj, αj, ψj : j ∈ [0, 2]}, (4.1)

where θ are the model parameters and ∑
j wj = 1. Here, H is an overall

amplitude scaling factor, wj is the relative amplitude of the jth mode, Tj is the
corresponding exponential damping time constant, and fj is the corresponding
frequency. The linear frequency-drift term is αj and the initial phase is ψj.
The time, t, is defined, such that max

[
h2

+(θ, t) + h2
×(θ, t)

]
occurs when t = 0.

The cross polarisation for Eq.(4.1) is found by applying a π/2 phase shift to ψj.
More details on this model can be found in Ref. [3].

We extend this model by introducing a collapse in the gravitational-wave
strain using the falling edge of a Tukey window. The falling edge starts at the
collapse time, tcol, and by the time t = tcol + tw the gravitational-wave strain
drops to zero (see Fig. 4.1). Here tw is the time taken for the gravitational-
wave signal to completely decay. We have chosen tw = 2 ms from examin-
ing numerical-relativity simulations with collapsing remnants (e.g., simulation
labels: BAM:0109:R01, BAM:0110:R01, BAM:0111:R02 [100], BAM:0044:R02,
BAM:0045:R01 [150], BAM:0124:R01 [96]). This model captures the reduction
in amplitude of the post-merger gravitational-wave signal as the remnant col-
lapses. The full gravitational-wave strain including the collapse of the remnant,

47



hϕ,c(θ̃, t), is given by:

hϕ,c(θ̃, t) = hϕ(θ, t)T (t, tcol, tw) , (4.2)
T (t, tcol, tw) =

1 if t 6 tcol
1
2

(
cos

(
π(t−tcol)

tw

)
+ 1

)
if tcol < t 6 tcol + tw .

0 if t > tcol + tw

(4.3)

Here, ϕ ∈ {+,×} are the plus and cross gravitational-wave polarisations, and
θ̃ = θ ∪ {tcol, tw}.

To generate the collapsing gravitational-wave signal injection, sϕ,c(t), we ap-
ply the Tukey collapse window to the numerical-relativity simulation, hNR,ϕ(t),
as follows:

sϕ,c(t) = hNR,ϕ(t)T (t, tcol, tw) . (4.4)

To ensure that sϕ,c(t) has the required collapse time, hNR,ϕ(t) must emit post-
merger gravitational waves for t > tcol + tw. In this paper we use two numerical-
relativity simulations of binary neutron star mergers with equal-mass 1.35 M�
progenitors that emit gravitational waves for ∼ 25 ms and sample collapse times
of 5, 10, and 15 ms. The two simulations use the SLy equation of state [202]
(simulation label THC:0036:R03 from Refs. [95, 100]) and LS220 equation of
state [203] (simulation label THC:0019:R05 from Refs. [97, 100]). The dimen-
sionless tidal-deformabilities of the progenitor neutron stars for the two simula-
tions are 390 and 684 respectively, which are consistent with tidal deformabilities
inferred from GW170817 [55]. The SLy equation of state is the softer of the
two equations of state, with a lower tidal deformability, more compact remnant
structure, and higher dominant oscillation frequency.

We use four different detector networks in this injection study. Firstly, a
two detector network at A+ design sensitivity (2A+) located at existing LIGO
sites: Hanford, Washington; and Livingston, Louisiana [204, 205]. Secondly, we
add the proposed Neutron star Extreme Matter Observatory (NEMO), located
at Gingin, Western Australia to the first network [31]. Thirdly, we use the
Einstein Telescope (ET) [33, 206–208]. And finally, the Einstein Telescope with
an additional interferometer, located at Hanford, Washington, with a Cosmic
Explorer (CE) power spectral density [32, 209, 210]. We use fixed random
seeds for Gaussian noise generation for each interferometer and inject numerical-
relativity simulations at a sky position corresponding to a mean sky signal-to-
noise ratio.

We use Bilby, a Bayesian inference package [1], to obtain posteriors,
p(θ̃ | sϕ,c(t)) from a numerical relativity injection with enforced collapse starting
at t = tcol with width tw = 2 ms. Posteriors are calculated using waveforms de-
tailed in Eqs.(4.1-4.3). See Ref. [3] for further details of the gravitational-wave
likelihood, and Appendix 4.A for additional information on the priors.
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Figure 4.2: Maximum distances for which the collapse time can be measured for
different interferometer networks and equations of state. The vertical axis shows
different equations of state and interferometer configurations, and the maximum de-
tection distance is shown on the horizontal axis. The numerical-relativity simulations
are injected with equations of state SLy (upward pointing triangle) and LS220 (down-
ward pointing triangle). The interferometer configurations are 2A+ (blue), 2A+ with
the proposed Neutron star Extreme Matter Observatory (orange), Einstein Telescope
(green), and Einstein Telescope with Cosmic Explorer (red). The top panel shows
collapse times of 5 ms, the centre panel 10 ms and the lower panel 15 ms collapse
times. The luminosity distance for GW170817 (gravitational-wave only) is shown in
shaded grey for comparison [14].

To deem the collapse time as successfully recovered, we demand the following
to hold:

tcol,−1σ − 2 ms 6 tcol 6 tcol,+1σ + 2 ms, (4.5)
tcol,+1σ − tcol,−1σ 6 5 ms, (4.6)

where tcol is the injected value. Here tcol,+1σ and tcol,−1σ are the upper and lower
68 percentile credible intervals on the posterior, p(tcol). Finally, the Bayes
Factor for the ratio of evidence for signal against evidence for noise must be
� 1. The minimum successful Bayes Factor in favour of a signal over noise in
this paper is ∼ 500. These requirements ensure that successfully recovered tcol
are within a few milliseconds of the injected values. Although this method is
somewhat arbitrary, it successfully identifies injections where the collapse time
is recovered. Furthermore, as the results are pessimistic, with detections not
expected until Cosmic Explorer and Einstein Telescope are online, changing this
selection criterior will not substantially change these results.

We perform numerical-relativity injections with the full waveform, Eq.(4.4),
at a grid of distances and apply the above rules to determine whether we suc-
cessfully recover tcol.
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4.3 Results
We inject post-merger numerical-relativity waveforms modified to collapse at
t = tcol and sample posteriors for θ̃. We then calculate posterior waveforms,
hϕ,c(θ̃, t), from Eqs.(4.2-4.3). Fig. 4.1 shows example posterior waveforms for
the plus polarisation (left panels) and collapse-time posterior distributions (right
panels) for numerical-relativity injections using an SLy equation of state with
equal-mass 1.35 M� progenitor neutron stars. The three panels have tcol = 5 ms
(upper panels), tcol = 10 ms (centre panels), and tcol = 15 ms (lower panels).
The left panels show the numerical-relativity injection (plus polarisation) in
black and the posterior waveforms in blue. The vertical black lines show the
beginning, t = tcol (solid), and the end, t = tcol + tw (dashed), of the collapse for
the injected signal. We perform injections into the 2A+ detector network at a
grid of distances and from these injections we select three distances where we
can clearly recover the collapse time (see Sec. 4.2). The injection distances are
5.93 Mpc for 5 ms, 3.04 Mpc for 10 ms, and 1.00 Mpc for 15 ms. The right panels
show posteriors, p(tcol), in shaded blue, along with the true injected value, tcol,
as solid vertical black lines. The model successfully recovers both the collapse
time and the complex nature of the numerical-relativity injection, for all three
injections. For reference, the full posteriors for tcol = 10 ms are shown in the
appendix (Fig. 4.B.1).

In Fig. 4.2, we show the maximum distance for which we can recover the col-
lapse time for the post-merger remnant. The numerical-relativity injections are
performed for SLy (upward triangles) and LS220 (downward triangles) equa-
tions of state. We inject into the following interferometers described in Sec. 4.2:
1) 2A+ (blue), 2) 2A+ and the proposed NEMO (orange), 3) Einstein Telescope
(green), and 4) Einstein Telescope with Cosmic Explorer (red). We calculate
the signal-to-noise ratio at a fixed distance over the entire sky for each detector
network. We then choose a sky position with a signal-to-noise ratio close to the
mean all-sky signal-to-noise ratio, and perform all injections at this sky posi-
tion for this detector network. The lower error bars show the largest distance
where the collapse times are recovered, the upper error bars show the smallest
distance where the collapse time recoveries fail, and the marker is placed in the
midpoint between these distances. If a post-merger collapse event occurs at a
sky location near the antenna pattern maximum then the maximum distance
where we can measure tcol will increase by a factor of ∼0.6.

Detecting the collapse time of a GW170817-like event at a luminosity dis-
tance of 40+8

−14 Mpc [14] (Fig. 4.2, shaded region, gravitational wave only) would
require the combination of ET with CE for tcol ∼10 ms, or ET with tcol ∼5 ms.
The detection distance for 2A+ with tcol ∼ 10 ms is ∼ 6-8 Mpc. This reduces
to ∼ 1.5-2.0 Mpc for tcol ∼ 15 ms. Adding the NEMO high frequency detector
increases the detection distance to ∼17-31 Mpc for tcol ∼10 ms. The detection
distances for tcol ∼ 15 ms with 2A+ and NEMO interferometers are ∼ 3 Mpc
and ∼8 Mpc, for SLy and LS220 injections, respectively.

For most collapse times and interferometer configurations, the ratio of
the detection distance for LS220 to SLy injections is around ∼ 1.2 ≈
f0(SLy)/f0(LS220) (f0 is the dominant post-merger oscillation frequency) which
is consistent with SLy being softer and more compact than the LS220 equation
of state. For tcol∼ 15 ms injections into either 2A+ with NEMO, ET, or ET with
CE, interferometer networks, the ratio of the LS220 to SLy detection distance
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increases to ∼ 3. Specifically, for tcol∼ 15 ms injections, detection distances of
∼8, 16, 23 Mpc are found for LS220 equation of state with interferometers 2A+
with NEMO, ET, and, ET with CE, respectively. The corresponding detection
distances for SLy injections are ∼3, 5, 7 Mpc.

For injections where we can recover the collapse time, the dominant post-
merger frequency is well constrained at f0 . 2%, f0 . 1%, and f0 . 0.2% for
injections of tcol = 5 ms, tcol = 10 ms and tcol = 15 ms, respectively. Finally,
we find no significant correlations between tcol and other model parameters.
We also attempt to measure the maximum detection distance where we can
recover tcol = 20 ms and find that limitations in the third-order exponentially-
damped sinusoidal model, Eq.(4.1), prevent recovery of such collapse times.
For tcol > 15 ms signals, the analytical model cannot successfully track the
time-domain phase of the gravitational-wave strain. This limitation could be
overcome by increasing the complexity of the frequency evolution in Eq.(4.1),
possibly introducing a quadratic frequency evolution term [148]. Additionally,
unmodelled searches such as BayesWave could be modified to measure the
collapse time of the remnant [170, 191–193].

4.4 Discussion
We inject post-merger gravitational-wave signals that have been modified to
collapse at varying distances into four different interferometer configurations:
2A+, 2A+ with NEMO, ET and ET with CE. We perform injections with
collapse times of 5, 10, and 15 ms, and recover collapse-time posteriors. The
injected gravitational-wave strain is recovered with a third-order exponentially
damped sinusoid with a linear frequency-drift term [3] that has been modified
to collapse at t = tcol.

To measure the collapse time of a post-merger remnant in a GW170817-like
event (gravitational-wave only, luminosity distance of 40+8

−14 Mpc [14]), we find
that we need interferometer configurations of either ET, or ET with CE, for
tcol ∼10 ms with the exclusion of ET with SLy equation of state.

We show that, for each detector network, the maximum detection distance
where we can measure 5 ms collapse times is similar to the maximum detection
distance for 10 ms collapse times, with maximum detection distances of: ∼
6-8 Mpc for 2A+, ∼18-26 Mpc for 2A+ with NEMO, ∼23-37 Mpc for ET, and
∼33-53 Mpc for ET with CE.

We find that the stiffer equation of state, LS220, has more energy in the
post-merger gravitational wave at larger times after the merger. This leads
to larger maximum detection distances for LS220 equations of state relative
to SLy injections for tcol ∼ 15 ms. The maximum detection distance for each
detector network for tcol ∼ 15 ms are ∼ 1.5, 2.7, 5.4, 7.4 Mpc for SLy injections,
and ∼ 2.0, 8.0, 16, 23 Mpc for LS220 injections, for 2A+, 2A+ with NEMO,
ET, and ET with CE, detectors respectively. The above distances assume an
injection at a sky position corresponding to an average signal-to-noise ratio over
the entire sky. The detection distance would increase by a factor of ∼0.6 near
an optimal sky position.

We find that there are three predominant regions for detecting the collapse
time. The first region, with small collapse times, is mainly limited by the Bayes
Factor for the ratio of post-merger signal to noise. For large collapse times,
waveform systematics limit detections, specifically the inability of the model to
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track the phase of the gravitational-wave strain. Between these two regions the
signal-to-noise ratio is the limiting factor.

Ignoring waveform systematics, Ref. [211] found that they could achieve
a signal-to-noise ratio of 0.5-8.6 for a collapse time of 10 ms for a post-merger
gravitational-wave signal at 50 Mpc. The model used was a single-order damped
sinusoid injected into a high-frequency detector. The authors used a TM1
equation of state with two equal-mass 1.35 M� progenitors with a dominant
post-merger frequency of ≈ 2.8 kHz which very similar to f0 for the LS220
equation of state in this paper. We find in this paper that we require a post-
merger signal-to-noise ratio of & 17 to successfully recover tcol ∼10 ms for LS220
equation of state when waveform systematics are considered.

With an estimated binary neutron star merger rate of
320+490

−240 Gpc−3yr−1 [29], it is unlikely that the collapse time of a post-
merger remnant will be detected before either Cosmic Explorer or Einstein
Telescope are operating at design sensitivity. When Cosmic Explorer and
Einstein Telescope are both operating we may detect post-merger collapse
times of ∼ 10 ms. If only Einstein Telescope is fully operating then we may
potentially measure post-merger collapse times of ∼ 10 ms except for soft
equations of state like SLy. In the mean time we will need to rely on indirect
estimates of the post-merger collapse time that depend on multi-messenger
observations [e.g., 56–59]. However, if a GW170817-like event occurred near
an optimal sky position there would be a 60% increase in the detection
distance. In this case tcol ∼ 10 ms may be detectable for ET, and ET with
CE, for both equations of state. Additionally, 2A+ with NEMO would also be
detectable for tcol ∼ 10 ms in this situation. It may also be possible to detune
the proposed NEMO high frequency detector to increase sensitivity in the
post-merger frequency band. This could potentially increase the sensitivity of
the NEMO detector by a factor of ∼ 1.6 which would be enough to allow the
NEMO detector with 2A+ to detect a GW170817-like post-merger collapse for
tcol ∼10 ms.

Finally, these results are dependent on the decay characteristics of the
numerical-relativity simulations used in this paper. If the amplitude of future
post-merger gravitational-waves have significantly longer decay timescales than
the numerical-relativity simulations used here, then it is conceivable that larger
collapse times could be measured. However, in this case waveform systematics
become more important and models will either need to successfully track the
waveform phase, or rely on incoherent methods that are independent of the
phase of the gravitational-wave strain, or use unmodelled coherent detection
methods [e.g., 161, 162].
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4.A Priors
The priors are listed in Eqs.(4.7-4.17) with U(a, b) representing a uniform prior
distribution from a to b. The mode number j is limited to {0, 1, 2}. The priors
in Eqs. 4.15-4.17 are constraining priors. These restrictions are enforced in
addition to the standard priors. The priors in Eqs. 4.15-4.16 sort the maximum
spectral amplitude of each mode which improves computational stability and
mode identification. See Ref. [3] for more details on mode sorting. We find that
correlations between tcol , tw, and T0 (the exponential decay time-constant for
mode zero) make it very difficult to recover all three parameters simultaneously,
even with analytic injections into zero noise. Fixing tw = 2 ms allows recovery of
all other parameters in both analytical injections with zero noise, and numerical-
relativity injections with Gaussian noise.

log10 H ∼ U(−24,−17) (4.7)
fj ∼ U(1000, 5000) [Hz] (4.8)
tcol ∼ U(0, 100) [ms] (4.9)
tw = 2 [ms] (4.10)
Tj ∼ U(0, 100) [ms] (4.11)
ψj ∼ U(−π, π) (4.12)
αj ∼ U(−6.4, 6.4) [Hz] (4.13)

w0, w1 ∼ U(0, 1) (4.14)
fj > fj+1 (4.15)

max |h̃j(f)|f > max |h̃j+1(f)|f (4.16)
w0 + w1 < 1 (4.17)

w2 = 1− w0 − w1 (4.18)
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4.B Example posteriors
Figure 4.B.1 shows the posteriors for a post-merger numerical-relativity injec-
tion with tcol = 10 ms and SLy equation of state with equal-mass 1.35 M�
neutron stars. The injections are performed at a distance of 3.04 Mpc into a
detector network of 2A+. These posteriors correspond to the tcol = 10 ms time-
domain signal and p(tcol) in Fig. 4.1. Orange lines on the bottom panels show
the injected tcol. The recovered collapse time is tcol = 10.1+0.3

−0.4 ms. The primary
post-merger oscillation frequency is f0 = 3317± 11 Hz with an exponential de-
cay time-constant of T0 = 6.2+0.7

−0.6 ms. The linear frequency-drift term for the
fundamental frequency is α0 = −0.79± 0.31 Hz. The frequencies corresponding
to the sub-dominant modes are f1 = 2880+65

−56 Hz and f2 = 2488+32
−35 Hz.
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Figure 4.B.1: Full posteriors corresponding to the tcol = 10 ms injection shown in
Fig. 4.1. The numerical-relativity simulation is injected into a 2A+ detector network
at a distance of 3.04 Mpc with an SLy equation of state and equal-mass 1.35 M�
neutron stars. Credible intervals of 68% are shown as dashed blue lines in the one-
dimensional posteriors. The injected collapse time is shown by the orange lines in the
lower-most panels.
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Chapter 5

Conclusion

The direct observation of gravitational waves from the binary neutron star
inspiral of GW170817 and coincident detections from GRB 170817A and
AT2017gfo launched the nascent field of multi-messenger gravitational-wave
astronomy. Gravitational waves from the late inspiral and post-merger rem-
nant of GW170817 were not detected because the gravitational-wave detectors
lacked sensitivity in high frequencies. High frequency gravitational-wave detec-
tors have been proposed which may allow gravitational-wave observations of the
binary neutron star post-merger remnant and late inspiral in the near-future.

Observations of gravitational waves from the late inspiral will inform the
equation of state for cold neutron stars, whereas gravitational wave detections
from surviving post-merger remnants will inform the extremely dense, hot equa-
tion of state. It should be noted that, to date, equation of state investigations
have been performed using the cold equation of state (e.g. see [152, 212] for
radius constraints at MTOV). Surviving post-merger remnants are binary neu-
tron star remnants that have not yet collapsed to a black hole. We need models
of the post-merger gravitational-wave strain to enable observations of gravita-
tional waves from post-merger remnants. Numerical-relativity simulations are
the best basis for these post-merger models.

We should not expect that future observable post-merger gravitational waves
will precisely match numerical-relativity simulations, as the simulations are ex-
tremely complex. Compromises must be made in spatial-resolution, incorpo-
rated physics, and convergence testing, for simulations to complete in practical
time-frames. The absolute accuracy of the phase evolution and the collapse
time of the post-merger remnant are uncertain due to these compromises.

With these computational limitations in mind, we need simple models that
can be used for gravitational-wave detection and parameter estimation. The
main purpose of this thesis was to focus on this task. We achieve this goal
by developing a hierarchical model that can infer the progenitor neutron star
system parameters and generate gravitational-wave spectra. We develop a sim-
ple analytical frequency-drift model which successfully matches the numerical-
relativity gravitational-wave strain. We modify the frequency-drift model to
allow for collapsing remnants so that we can measure when the post-merger
remnant collapses to a black hole.

In Chapter 2, we train our hierarchical model on 35 numerical-relativity sim-
ulations and measure leave-one-out cross-validated fitting-factors with a mean
of 0.95. We show that we can generate gravitational-wave spectra in a fraction
of a second, given only the neutron star mass, M , and the tidal coupling con-
stant, κT2 . We perform parameter estimation on κT2 by using the fitting factor as
a proxy for the likelihood. The hierarchical model is particularly suited to mod-
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elling numerical-relativity simulations as it is insensitive to phase uncertainties
that can occur between simulations with adjacent spatial resolutions.

In Chapter 3, we implement a third-order exponentially-damped sinusoid
with a frequency-drift term to successfully capture the complex gravitational-
wave strain from simulations of post-merger remnants. We find that we can
achieve noise-weighted fitting-factors of & 0.92, with most fitting factors of
∼ 0.95 − 0.97. We use a detection threshold with a Bayes factor of ∼ 3000
and find that a post-merger signal-to-noise ratio of & 7 is needed to detect the
post-merger remnant. We also find that the sensitivity to the uncertainty in
the coalescence time is negligible for any detectable post-merger remnant. We
calculate the dominant post-merger oscillation frequency, fpeak, from the model
and constrain this at 95% credible intervals to ∼ 1.5% for a post-merger signal-
to-noise ratio of 15, and ∼ 0.3% for a post-merger signal-to-noise ratio of 50.
We then use the hierarchical model trained in Chapter 2 to infer the equation
of state parameters κT2 and C. At 95% confidence intervals, we constrain κT2
to ∼ 12% for a post-merger signal-to-noise ratio of 15, and ∼ 5% for a post-
merger signal-to-noise ratio of 50. Similarly, we constrain C to ∼ 5% for a
signal-to-noise ratio of 15, and ∼ 2% for a post-merger signal-to-noise ratio of
50.

In Chapter 4, we add a collapse-time function to our frequency-drift model
and measure at what distance the collapse time can be measured. We find that
we need a combination of Einstein Telescope and Cosmic Explorer interferome-
ters to detect a collapse time of 10 ms at a GW170817-like distance of ∼ 40 Mpc.
For a network of 2 A+ detectors, a distance of ∼ 10Mpc is required to detect
a 10 ms collapse time. If the high-frequency NEMO detector is added to the 2
A+ network then this detection distance is increased to ∼ 25 Mpc.

These three models address the requirements for future post-merger
gravitational-wave detections. The post-merger models consistently achieve
& 0.90 fitting factors, making them suitable for matched-filter detection of
gravitational-wave signals. However, a number of enhancements can be antici-
pated for future work.

An obvious model enhancement would allow for unequal-mass binaries. In
this case, the number of available numerical-relativity simulations are signifi-
cantly reduced. This does not exclude training a modified hierarchical model on
the unequal-mass simulations, though careful attention should be paid to the
error propagation to count for the reduced number of simulations in this part
of the training set. The frequency-drift model, with or without the collapse
time extension, has yet to be tested with unequal-mass mergers. This could be
tested and the model updated if required.

Measurements of larger collapse times are limited by waveform systematics
in the late post-merger gravitational-wave strain. The same waveform system-
atics are also present in the model used in Chapter 3 for post-merger signals of
length & 15 ms. A couple of assumptions can be reassessed for future work on
the frequency-drift model to help reduce these systematics. The first is that the
linear frequency-drift term may be too restrictive for longer signals and other
analytic or semi-analytic methods could be considered. Secondly, the assump-
tion of exponential damping could be reassessed, considering, for example, a
power-law decay in the amplitude instead.

The lifetimes of post-merger remnants are highly uncertain with
gravitational-wave timescales ranging from 0.15 − 12 s for a range of elliptic-
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ities and equations of state (Eq.(1.14)). If the above waveform systematics are
successfully addressed then detection and parameter estimation studies could
be performed with much longer collapse times. A successful injection study for
collapse times up to ∼ 2 s may allow the measurement of collapse times for fu-
ture GW170817-like events. This would have significantly aided model selection
for the gamma-ray physics associated with GRB 170817A.

For example, measuring any collapse of the post-merger remnant would rule
out proposals that rely on surviving neutron star remnants [e.g., 59]. Measuring
a collapse time of . 0.5 s would reduce support for scenarios in Refs. [57, 58]
where collapse times of at least ∼ 1 s are required so that jets are launched after
black hole formation.

A small collapse time of . 0.05 s will rule out models that rely on the
temporary survival of the post-merger remnant to account for the colour of
kilonova emission [56]. This highlights a few examples of how the collapse
times may influence the physics of short gamma-ray bursts.

The models developed in this thesis could be used to develop detec-
tion pipelines for post-merger remnants. Pipelines already exist that are
capable of searching for post-merger remnants: cWB, BayesWave, Viterbi,
STAMP, ATrHough, and FreqHough [161, 162, 169, 170, 191–193, 213–217]. A
number of these tools searched for a long-lived post-merger remnant from
the GW170817 merger, with searches lasting . 500 s (STAMP, cWB) [161]
and searches ranging from ∼ 2 − 24 hours (Viterbi, STAMP, ATrHough, and
FreqHough) [162]. Searches were also performed over . 1 s (cWB) [161] and
BayesWave has characterised the post-merger remnant from binary neutron star
mergers [3, 165, 170, 193].

Pipelines developed from the analytical models in Chapters 3-4 could be
designed to work with signals produced from numerical-relativity simulations
with lengths of . 100 ms, or long signals of . 2 s. Pipelines that searched for
the long-lived post-merger remnant should be used for signals longer than this.
We propose two pipelines from this work: a short pipeline with a length of
. 100 ms and a long pipeline with length . 2 s.

Pipelines that are of direct interest for comparison with the analytical model
are BayesWave and cWB. We find in Chapter 3 that BayesWave is more sensitive
when measuring the dominant post-merger frequency, fpeak. BayesWave and the
analytical model constrained fpeak to post-merger signal-to-noise ratios of & 9,
and & 15, respectively. The cWB pipeline is expected to be the least sensitive as
it detects unmodelled coherent excess power, assuming waveform systematics
have been addressed in the analytical model.

The proposed pipeline would use Bayesian inference for detection and
parameter estimation which will find posteriors directly related to the
gravitational-wave strain of the post-merger remnant. This is an advantage
over both BayesWave and cWB. The Bayes factor would serve as a robust de-
tection statistic in this situation due to the loud inspiral signal and the tight
constraint expected on the coalescence time. It may be necessary to perform
computational optimisation to allow the long pipeline to execute in reasonable
time frames, though it may be possible to use parallel Bilby [218] to speed up
this pipeline.

The hierarchical model can only be used on the short pipeline because it is
trained on numerical-relativity simulations. It is likely that the model will need
to be extended to account for both spins and unequal-mass neutron stars, this
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will need to be assessed. The hierarchical model can be trained on as many
numerical-relativity simulations as possible with careful consideration taken in
selecting the spatial resolution. The hierarchical model would then be available
to infer equation of state parameters from the posterior waveforms generated
from the analytical pipeline.

Although we are not expecting binary neutron star post-merger detections
in the immediate future, they may be possible if proposed high-frequency
gravitational-wave detectors like NEMO are constructed, or failing that, when
Einstein telescope and Cosmic Explorer detectors are operational. With this in
mind, we must ensure that we have the tools available to fully utilise any future
binary neutron star post-merger detections so that we can probe the extreme
physics of these remnants.
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neutron star coalescence,” Physical Review D, vol. 86, p. 044030, Aug. 2012.

[106] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, and K. Taniguchi, “Dynamical mass
ejection from the merger of asymmetric binary neutron stars: Radiation-hydrodynamics
study in general relativity,” Phys. Rev. D, vol. 93, p. 124046, June 2016.

[107] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata, “Gravitational Waves and Neu-
trino Emission from the Merger of Binary Neutron Stars,” Physical Review Letters,
vol. 107, p. 051102, July 2011.

[108] A. Perego, S. Rosswog, R. M. Cabezon, O. Korobkin, R. Kappeli, A. Arcones, and
M. Liebendorfer, “Neutrino-driven winds from neutron star merger remnants,” Monthly
Notices of the Royal Astronomical Society, vol. 443, pp. 3134–3156, Aug. 2014.

[109] F. Foucart, R. Haas, M. D. Duez, E. O’Connor, C. D. Ott, L. Roberts, L. E. Kidder,
J. Lippuner, H. P. Pfeiffer, and M. A. Scheel, “Low mass binary neutron star mergers:
Gravitational waves and neutrino emission,” Physical Review D, vol. 93, no. 4, pp. 1–23,
2016.

65



[110] D. Radice, F. Galeazzi, J. Lippuner, L. F. Roberts, C. D. Ott, and L. Rezzolla, “Dy-
namical mass ejection from binary neutron star mergers,” Monthly Notices of the Royal
Astronomical Society, vol. 460, pp. 3255–3271, Aug. 2016.

[111] F. Zappa, S. Bernuzzi, D. Radice, A. Perego, and T. Dietrich, “Gravitational-wave
luminosity of binary neutron stars mergers,” Physical Review Letters, vol. 120, no. 11,
p. 111101, 2018.

[112] S. L. Shapiro, “Differential Rotation in Neutron Stars: Magnetic Braking and Viscous
Damping,” The Astrophysical Journal, vol. 544, pp. 397–408, Nov. 2000.

[113] M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens, “General relativistic hy-
drodynamics with viscosity: Contraction, catastrophic collapse, and disk formation in
hypermassive neutron stars,” Physical Review D, vol. 69, p. 104030, May 2004.

[114] M. Shibata, K. Kiuchi, and Y.-i. Sekiguchi, “General relativistic viscous hydrodynamics
of differentially rotating neutron stars,” Physical Review D, vol. 95, p. 083005, Apr.
2017.

[115] M. D. Duez, Y. T. Liu, S. L. Shapiro, M. Shibata, and B. C. Stephens, “Collapse
of Magnetized Hypermassive Neutron Stars in General Relativity,” Physical Review
Letters, vol. 96, p. 031101, Jan. 2006.

[116] M. D. Duez, Y. T. Liu, S. L. Shapiro, M. Shibata, and B. C. Stephens, “Evolution of
magnetized, differentially rotating neutron stars: Simulations in full general relativity,”
Physical Review D, vol. 73, pp. 1–25, May 2006.

[117] D. M. Siegel, R. Ciolfi, A. I. Harte, and L. Rezzolla, “Magnetorotational instability in
relativistic hypermassive neutron stars,” Physical Review D, vol. 87, p. 121302, June
2013.

[118] D. M. Siegel, R. Ciolfi, and L. Rezzolla, “Magnetically driven winds from differentially
rotating neutron stars and X-ray afterglows of short gamma-ray bursts,” The Astro-
physical Journal, vol. 785, p. L6, Mar. 2014.

[119] K. Kiuchi, K. Kyutoku, and M. Shibata, “Three-dimensional evolution of differentially
rotating magnetized neutron stars,” Physical Review D, vol. 86, p. 064008, Sept. 2012.

[120] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and T. Wada, “High resolution
numerical relativity simulations for the merger of binary magnetized neutron stars,”
Physical Review D, vol. 90, p. 041502, Aug. 2014.

[121] B. Giacomazzo, J. Zrake, P. C. Duffell, A. I. MacFadyen, and R. Perna, “Producing
Magnetar Magnetic Fields in the Merger of Binary Neutron Stars,” The Astrophysical
Journal, vol. 809, p. 39, Aug. 2015.

[122] R. Gamba, M. Breschi, S. Bernuzzi, M. Agathos, and A. Nagar, “Waveform systematics
in the gravitational-wave inference of tidal parameters and equation of state from binary
neutron-star signals,” Physical Review D, vol. 103, p. 124015, June 2021.

[123] L. R. Weih, E. R. Most, and L. Rezzolla, “On the stability and maximum mass of
differentially rotating relativistic stars,” Monthly Notices of the Royal Astronomical
Society: Letters, vol. 473, no. 1, pp. L126–L130, 2018.

[124] C. Breu and L. Rezzolla, “Maximum mass, moment of inertia and compactness of
relativistic stars,” Monthly Notices of the Royal Astronomical Society, vol. 459, pp. 646–
656, June 2016.

[125] A. Bauswein, H.-T. Janka, and R. Oechslin, “Testing approximations of thermal effects
in neutron star merger simulations,” Physical Review D, vol. 82, p. 084043, Oct. 2010.

[126] J. D. Kaplan, C. D. Ott, E. P. O’Connor, K. Kiuchi, L. Roberts, and M. Duez, “The
Influence of Thermal Pressure on Equilibrium Models of Hypermassive Neutron Star
Merger Remnants,” Astrophysical Journal, vol. 790, June 2013.

66



[127] B. Margalit and B. D. Metzger, “Constraining the Maximum Mass of Neutron Stars
from Multi-messenger Observations of GW170817,” The Astrophysical Journal, vol. 850,
p. L19, Nov. 2017.

[128] L. Rezzolla, E. R. Most, and L. R. Weih, “Using Gravitational-wave Observations and
Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars,” The
Astrophysical Journal, vol. 852, p. L25, Jan. 2018.

[129] S. Khadkikar, A. R. Raduta, M. Oertel, and A. Sedrakian, “Maximum mass of com-
pact stars from gravitational wave events with finite-temperature equations of state,”
Physical Review C, vol. 103, p. 055811, May 2021.

[130] M. Shibata, E. Zhou, K. Kiuchi, and S. Fujibayashi, “Constraint on the maximum mass
of neutron stars using GW170817 event,” Physical Review D, vol. 100, p. 023015, July
2019.

[131] N. Sarin, P. D. Lasky, and G. Ashton, “Gravitational waves or deconfined quarks:
What causes the premature collapse of neutron stars born in short gamma-ray bursts?,”
Physical Review D, vol. 101, p. 063021, Mar. 2020.

[132] M. G. Alford and S. P. Harris, “Beta equilibrium in neutron-star mergers,” Physical
Review C, vol. 98, p. 065806, Dec. 2018.

[133] K. Sumiyoshi, S. Fujibayashi, Y. Sekiguchi, and M. Shibata, “Properties of Neutrino
Transfer in a Deformed Remnant of a Neutron Star Merger,” The Astrophysical Journal,
vol. 907, p. 92, Feb. 2021.

[134] S. Bernuzzi, D. Radice, C. D. Ott, L. F. Roberts, P. Mösta, and F. Galeazzi, “How loud
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and L. Rezzolla, “Signatures of quark-hadron phase transitions in general-relativistic
neutron-star mergers,” Physical Review Letters, vol. 122, p. 061101, Feb. 2019.

[179] T. W. Baumgarte, S. L. Shapiro, and M. Shibata, “On the maximum mass of differen-
tially rotating neutron stars,” The Astrophysical Journal, vol. 528, pp. L29–L32, Jan.
2000.

[180] T. Nakamura, “Relativistic cosmology. Proceedings.,” in Relativistic cosmology
(M. Sasaki, ed.), p. 155, Universal Academy Press, 1994.

[181] K. C. B. New and J. E. Tohline, “The relative stability against merger of close, compact
binaries,” The Astrophysical Journal, vol. 490, pp. 311–327, Nov. 1997.

[182] F. A. Rasio and S. L. Shapiro, “Coalescing binary neutron stars,” Classical and Quan-
tum Gravity, vol. 16, pp. R1–R29, June 1999.

[183] M. Shibata, K. Taniguchi, and K. Uryu, “Merger of binary neutron stars with realistic
equations of state in full general relativity,” Physical Review D - Particles, Fields,
Gravitation and Cosmology, vol. 71, no. 8, pp. 1–26, 2005.

[184] R. Oechslin and H.-T. Janka, “Gravitational waves from relativistic neutron-star merg-
ers with microphysical equations of state,” Physical Review Letters, vol. 99, p. 121102,
Sept. 2007.

[185] M. Shibata, K. Taniguchi, and K. Uryu, “Merger of binary neutron stars of unequal
mass in full general relativity,” Physical Review D, vol. 68, no. 8, p. 084020, 2003.

[186] K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, and K. Kiuchi, “Binary neutron
star mergers: Dependence on the nuclear equation of state,” Physical Review D, vol. 83,
p. 124008, June 2011.

[187] LIGO Scientific Collaboration, “Prospects for observing and localizing gravitational-
wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” 2016.
https://dcc.ligo.org/LIGO-P1200087-v42/public, fig1 adv sensitivity.txt.

[188] J. S. Speagle, “dynesty: a dynamic nested sampling package for estimating Bayesian
posteriors and evidences,” arXiv e-prints, Apr. 2019.

[189] H. Jeffreys, Theory of probability. Oxford, England: Oxford, third ed., 1961.

[190] D. Martynov, H. Miao, H. Yang, F. H. Vivanco, E. Thrane, R. Smith, P. Lasky, W. E.
East, R. Adhikari, A. Bauswein, et al., “Exploring the sensitivity of gravitational wave
detectors to neutron star physics,” Physical Review D, vol. 99, p. 102004, May 2019.

[191] N. J. Cornish and T. B. Littenberg, “Bayeswave: Bayesian inference for gravita-
tional wave bursts and instrument glitches,” Classical and Quantum Gravity, vol. 32,
p. 135012, July 2015.

[192] T. B. Littenberg and N. J. Cornish, “Bayesian inference for spectral estimation of
gravitational wave detector noise,” Physical Review D, vol. 91, p. 084034, Apr. 2015.

[193] A. Torres-Rivas, K. Chatziioannou, A. Bauswein, and J. A. Clark, “Observing the post-
merger signal of GW170817-like events with improved gravitational-wave detectors,”
Physical Review D, vol. 99, p. 044014, Feb. 2019.

[194] K. W. Tsang, T. Dietrich, and C. Van Den Broeck, “Modeling the postmerger gravi-
tational wave signal and extracting binary properties from future binary neutron star
detections,” Physical Review D, vol. 100, p. 044047, Aug. 2019.

70



[195] T. Dietrich, S. Khan, R. Dudi, S. J. Kapadia, P. Kumar, A. Nagar, F. Ohme, F. Pannar-
ale, A. Samajdar, S. Bernuzzi, et al., “Matter imprints in waveform models for neutron
star binaries: Tidal and self-spin effects,” Physical Review D, vol. 99, no. 2, p. 24029,
2019.

[196] R. Pordes et al., “The Open Science Grid,” J. Phys. Conf. Ser., vol. 78, p. 012057,
2007.

[197] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wurthwrin,
“The pilot way to Grid resources using glideinWMS,” WRI World Congress, vol. 2,
pp. 428–432, 2009.

[198] T. Dietrich and K. Clough, “Cooling binary neutron star remnants via nucleon-nucleon-
axion bremsstrahlung,” Physical Review D, vol. 100, no. 8, p. 83005, 2019.

[199] B. Zhang, “The delay time of gravitational wave — gamma-ray burst associations,”
Frontiers of Physics, vol. 14, p. 64402, Dec. 2019.

[200] R. Ciolfi, “The key role of magnetic fields in binary neutron star mergers,” General
Relativity and Gravitation, vol. 52, p. 59, June 2020.

[201] N. Sarin and P. D. Lasky, “The evolution of binary neutron star post-merger remnants:
a review,” General Relativity and Gravitation, vol. 53, p. 59, June 2021.

[202] F. Douchin and P. Haensel, “A unified equation of state of dense matter and neutron
star structure,” Astronomy & Astrophysics, vol. 380, pp. 151–167, Nov. 2001.

[203] J. M. Lattimer and F. Douglas Swesty, “A generalized equation of state for hot, dense
matter,” Nuclear Physics, Section A, vol. 535, no. 2, pp. 331–376, 1991.

[204] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams,
V. B. Adya, C. Affeldt, M. Agathos, et al., “Prospects for observing and localizing
gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,”
Living Reviews in Relativity, vol. 23, p. 3, Dec. 2020.

[205] LIGO Scientific Collaboration, “Unofficial sensitivity curves (ASD) for aLIGO,
Kagra, Virgo, Voyager, Cosmic Explorer, and Einstein Telescope,” 2020.
https://dcc.ligo.org/LIGO-T1500293.

[206] S. Hild, S. Chelkowski, and A. Freise, “Pushing towards the ET sensitivity using ’con-
ventional’ technology,” arXiv, Oct. 2008.

[207] S. Hild, M. Abernathy, F. Acernese, P. Amaro-Seoane, N. Andersson, K. Arun,
F. Barone, B. Barr, M. Barsuglia, M. Beker, et al., “Sensitivity studies for third-
generation gravitational wave observatories,” Classical and Quantum Gravity, vol. 28,
p. 094013, May 2011.

[208] LIGO Scientific Collaboration, “Unofficial sensitivity curves (ASD) for aLIGO, Ka-
gra, Virgo, Voyager, Cosmic Explorer, and Einstein Telescope,” 2020. http://www.et-
gw.eu/index.php/etsensitivities.

[209] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, K. Ackley, C. Adams,
P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, et al., “Exploring the sensitivity of
next generation gravitational wave detectors,” Classical and Quantum Gravity, vol. 34,
p. 44001, Feb. 2017.

[210] R. X. Adhikari, S. Ballmer, B. Barish, L. Barsotti, G. Billingsley, D. A. Brown, Y. Chen,
D. Coyne, R. Eisenstein, M. Evans, et al., “Cosmic Explorer: The U.S. Contribution to
Gravitational-Wave Astronomy beyond LIGO,” Bulletin of the American Astronomical
Society, vol. 51, no. 7, 2019. https://baas.aas.org/pub/2020n7i035.

[211] T. Zhang, J. Smetana, Y. Chen, J. Bentley, D. Martynov, H. Miao, W. E. East, and
H. Yang, “Toward observing neutron star collapse with gravitational wave detectors,”
Physical Review D, vol. 103, p. 044063, Feb. 2021.

71



[212] A. Bauswein, N. Stergioulas, and H.-T. Janka, “Revealing the high-density equation of
state through binary neutron star mergers,” Physical Review D, vol. 90, p. 023002, July
2014.

[213] E. Thrane, S. Kandhasamy, C. D. Ott, W. G. Anderson, N. L. Christensen, M. W.
Coughlin, S. Dorsher, S. Giampanis, V. Mandic, A. Mytidis, T. Prestegard, P. Raffai,
and B. Whiting, “Long gravitational-wave transients and associated detection strategies
for a network of terrestrial interferometers,” Physical Review D, vol. 83, p. 083004, Apr.
2011.

[214] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Opti-
mum Decoding Algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2,
pp. 260–269, 1967.

[215] S. Suvorova, L. Sun, A. Melatos, W. Moran, and R. J. Evans, “Hidden Markov model
tracking of continuous gravitational waves from a neutron star with wandering spin,”
Physical Review D, vol. 93, p. 123009, June 2016.

[216] A. Miller, P. Astone, S. D’Antonio, S. Frasca, G. Intini, I. La Rosa, P. Leaci, S. Mas-
trogiovanni, F. Muciaccia, C. Palomba, O. J. Piccinni, A. Singhal, and B. F. Whiting,
“Method to search for long duration gravitational wave transients from isolated neutron
stars using the generalized frequency-Hough transform,” Physical Review D, vol. 98,
p. 102004, Nov. 2018.

[217] M. Oliver, D. Keitel, and A. M. Sintes, “Adaptive transient Hough method for long-
duration gravitational wave transients,” Physical Review D, vol. 99, p. 104067, May
2019.

[218] R. J. E. Smith, G. Ashton, A. Vajpeyi, and C. Talbot, “Massively parallel Bayesian
inference for transient gravitational-wave astronomy,” Monthly Notices of the Royal
Astronomical Society, vol. 498, pp. 4492–4502, Sept. 2020.

72


	Publications
	Declaration of Authorship
	Acknowledgements
	Contents
	Abstract
	Introduction
	Gravitational waves
	Neutron stars
	Neutron star mergers
	Numerical relativity simulations
	Post-merger remnants
	Gravitational-wave strain and spectra
	Post-merger gravitational-wave models

	Computing Fast and Reliable Gravitational Waveforms of Binary Neutron Star Merger Remnants
	Introduction
	Methodology
	Results
	Discussion

	Detection and parameter estimation of binary neutron star merger remnants
	Introduction
	Methodology
	Model Validation
	Sensitivity
	Parameter estimation
	Discussion
	Numerical relativity simulations
	Priors
	Posteriors for all numerical-relativity injections

	Can we measure the collapse time of a post-merger remnant for a future GW170817-like event?
	Introduction
	Methodology
	Results
	Discussion
	Acknowledgments
	Priors
	Example posteriors

	Conclusion
	Bibliography

