
Page | 1  
 

 

 

 

 

 

 

Gait Phase Detection of Stair Ambulation using 

Inertial Measurement of Lower Limb  

 

 

Michael Stanley 

B.Eng. (Hons), Monash University, Australia 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at  

Department of mechanical and Aerospace Engineering 

Monash University  

in 2021 



Page | 2  
 

New page 

 

Copyright notice 

 

Notice 1 

 

© Michael Stanley 2020.  

 

The second notice certifies the appropriate use of any third-party material in the thesis. 

Students choosing to deposit their thesis into the restricted access section of the repository 

are not required to complete Notice 2.  

 

Notice 2 

 

© Michael Stanley 2020. 

 

I certify that I have made all reasonable efforts to secure copyright permissions for third-

party content included in this thesis and have not knowingly added copyright content to my 

work without the owner's permission. 



Page | 3  
 

New page  

 

Abstract 

 

Existing wearable assistive devices were primarily designed for assisting motion that is 

physically challenging for the user. The lower-limb devices have been mainly designed for 

the most common activity of walking. Comparing to level walking gait, a smaller group of 

studies have considered the detection and control scheme for progressing stair gaits, which 

is also vital for a user to maintain an independent lifestyle. 

 

Gait phases are described in gait analysis, and gait phases detection techniques are derived 

from the standard gait analysis, which primarily captures the user's kinematics and kinetics. 

IMUs are the most viable technology to incorporate into wearable devices to capture the 

user’s gait kinematics. It is widely used in literature due to its commercial viability, physical 

robustness, and user-friendliness in deployment. An ambulatory sensory system is 

developed from a commercial knee brace integrated with IMUs and using footswitches as 

ground truth. The angle measurement of the IMUs is verified to be statistically consistent 

with an encoder-based system in tracking the same motion.  

 

The thesis presents a real-time adaptive parametric rule-based gait phase detection 

approach for stair ambulation using kinematics measurement in the core study. The study 

addresses the lack of functional gait phase detection technique suitable for real-time 

application for stair gaits. A successful detection method would lead to future research that 

could develop an effective control scheme for assistive devices to provide timely assistance 

to the user during stair gaits. The method is validated by an experiment with 20 participants 

wearing the modified ambulatory system. The performance is analysed using F1-score for 

reliably detecting the gait phases, using statistics of the timing error for its timeliness in 

detecting each gait phase, and the usefulness of the method by evaluating the likelihood of 

an unacceptable time error. The experiment tests the detection in its intended operational 

environment over a staircase with multiple progressive steps. The results support the 

reliability and usefulness of the implemented approach. It results a high overall F1-score of 

0.9925 with an average error below 50 ms.  
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The experiment provides valuable data on stair gaits in an out-of-lab environment, which 

open up other post-hoc studies. This thesis includes a comparison study with detection 

based on common machine learning techniques using existing data.  

 

The rule-based algorithm achieved a high overall F1-score of 0.9925 across the 7 selected 

phases of both stair ascent and stair descent. The worst F1-score of 0.9670 is occurred at 

the Controlled Lowering phase during stair descent, whereas the best is F1-score of 1.0 is 

achieved by the Foot Placement phase during stair ascent. The detection has a mean timing 

error [standard deviation] of 43.25[30.21], 20.12[15.23], -30.17[23.43], and -43.66[16.41] ms 

for ascent IC, descent IC, ascent EC, and descent EC respectively, where negative errors 

are representing delayed detection. 

 

For the 36 neural network models trained, 3 different optional filtering is applied to the output 

to stabilize the output classification. Also, there are 118 and 119 supervised classifiers 

trained for stair ascent and descent respectively. None of trained networks or classifiers 

outperform the ruled-based algorithm in all aspect of detection performance for all phases. 

Outperforming machine learning models are present for a specific phase in either the F1-

score or in timing error or the consistency of the timing error. The study found it is possible 

to deploy the trained models to complement the performance of other models or the rule-

based approach presented for the detection of a specific phase. The performance trends 

related to the type of training parameters are recorded in the thesis, and the results could 

provide a guide for other researcher and developers to follow in choosing the appropriate 

model for their application, making the appropriate trade-off in performance, and choose the 

models to complement each aspect of performance.  
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CHAPTER 1 : INTRODUCTION 

 

Exoskeletons and wearable robots have found many applications in different industries, 

including human augmentation [1, 2], bodyweight support [3, 4], remobilising of limbs [5]. 

They are multidisciplinary outcomes of combing many technologies. Recent advancements 

are enabled by the minimisation of the sensors, the actuators and the computational 

processing units. It also allows a complex system with multi-axial control to be portable and 

responsive. 

 

Agostino et al. [6] had outlined a list of area of possible technological advancement to have 

a safe and dependable physical human-robot interaction (pHRI) between the exoskeleton 

and the user. Many of the progress made since that are aligned with their vision. Some 

devices [1, 7-9] are incorporating serial elastic actuators (SEA) for back-drivability, force 

controllability using the elastic component and better mimic the natural human joints. The 

actuation of joints is often driven by the robots [10, 11] but initiated by the user. The user 

often has to select the modes and trigger the action using an interface [12]. Some system 

uses admittance control to trigger predefined action [13, 14]. Other controls strategies are 

discussed in details in [15] and [16].  

 

One major application of exoskeletons is weight carrying, such as Honda weight support, 

HAL [17] and BLEEX [18]. They designed to transmit the additional load through the external 

structure bypassing the human user. They allow the user to lift more weight for a longer 

duration than usual. The control scheme varies between the devices. Honda weight support 

controls the force output to offset a portion of your body weight. HAL allows the user to 

control the direction of motion through sensing surface bioelectrical signals. BLEEX motions 

are driven by the robot while relying on the user for balancing. Most active exoskeletons do 

not consider the user's intention as they do not react to the user input kinematics direction. 

The development of HAL5 [19], which has included assistance for patients with a disability 

such as paraplegia, incorporates the sensing of body kinematics and posture control. 

Nevertheless, the motion is still driven by the robot instead of the human.  

 

Medical application is another major active research area of exoskeletons and wearable 

assistive devices. The medical robots market is projected to reach USD 12.7 billion by 2025 

from an estimated USD 5.9 billion in 2020 at a compound annual growth rate (CAGR) of 

16.5% [20]. Exoskeleton in medical applications could serve different purposes, including 
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addressing symptoms of diseases such as osteoarthritis [21] and muscle weakness, 

rehabilitation training [10, 22], clinical measurement instrument [23]. An active exoskeleton 

is not commonly used here since these applications focus on studying or improving the 

existing human locomotion. Replacing the human's gait with that of the robot would 

counteract many existing treatments to gait disorder. It is essential for these devices to 

cooperate safely with humans so that the robot does not apply additional stress to the user, 

nor does it under-provide for the required motion. Hence, the system has to react 

appropriately based on the current movement. 

 

Among existing commercial systems, C-Brace® [24], ReWalk™[25] and HAL® [26] have 

been developed as a medical application for lower-limb impairment. Aside from remobilising 

paralysed patients, these devices have limited application. They are not suited to users with 

a less extreme disability, where the motion is preferred to be driven by the user. The device 

provides assistance as needed to either support the user or to correct the gait. That is an 

application with room for development and significant impact. For example, osteoarthritis 

(OA) alone would be a multi-billion-dollar industry worldwide. Australia alone expects 3 

million people affected by the disease with knee osteoarthritis being the most common form 

[27] by 2032 from a report dated back in 2013 [28]. With limited mechanical intervention that 

slows down the disease's progression, such as cane and walker, a robotics device that could 

assist patients effectively would be a game-changer and a high impact outcome. It also 

potentially releases valuable availability of surgery room for other diseases by postponing 

total knee replacement surgery and millions of savings in the economy by avoiding the 

second surgery completely. Another example of wearable lower limb devices in medical 

environments includes usage as a measurement system [29], and as gait training devices 

[30-32]. Lower limb assistive devices would be the focus of the current study since it has a 

clear application to be addressed.   

 

The biggest hurdle for patients to accept wearable mechanical interventions is the lack of 

control and uncomfortableness of existing devices, as found by a survey [33]. It is expected 

that a system that could recognise the user's motion and then apply timely assistance to 

reinforce it can alleviate the misalignment in motion between the machine and the user. An 

ideal assistive device would recognise the user's intention and allow the user to move toward 

the intended direction with support against external forces.  
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From the control prescriptive, the ability to detect gait phases is crucial to the control 

processes to reinforce the user's movement [34] and enable the correct classification of gait 

phases within an acceptable range of error [35]. A mistake of ±50 ms is deemed acceptable 

for many biomechanics applications [36, 37]. There is a need to develop assistive devices 

that could accurately detect the user's gait and react accordingly. This study is intended to 

address this need by investigating the detection and classification of gait phases that 

facilitate this human-machine interaction.  

 

In the field of biomechanics, the gait of each activity is generalised and classified into 

different phases depending on the function of the limb during each phase of the gait. A 

system that could accurately detect the transition between the phases would provide the 

required assistance to the user based on each respective phase. The gait phases are 

defined specifically for each activity, such as level walking, stair ambulation, sit-stand 

transition. Hence, gait phase detection (GPD) is typically tailored to each type of activity.  

 

There are many well-documented approaches to gait phase detection in literature; refer to 

chapter 2.2. The majority of them are offline post-analysis and gait parameterisation, and 

the algorithms' real-time performance remains largely unverified. Since their aim is to 

enhance the gait analysis process, the accuracy and reliability of the detection is their 

primary objective. These solutions are often impractical to be implemented on wearable 

devices under real-time control with extensive use of high precision sensors such as force 

plate, EMG, and vision-based motion capturing systems. This study is aimed to transfer the 

knowledge on gait biomechanics to detect critical phases on a wearable device, to bridge 

the gap between biomechanics and robotics engineering.  

 

Walking is the most common form of activities of daily life (ADL). It has been studied 

extensively in biomechanics, and most lower-limb assistive devices are designed to assist 

this activity. Some existing studies have provided a working approach in real-time gait phase 

detection on wearable devices. In comparison, fewer studies have examined stair 

ambulation, yet the capacity to undertake this skill is essential in maintaining independent 

function. The lack of detailed study of stair ambulation GPD is limited by the availability and 

capacity of an instrumental staircase. Therefore, there is a lack of proven working examples 

of a real-time gait-phase-detection for stair in an out-of-lab environment.  
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Furthermore, the stair ambulation is joint closely tied to the patellofemoral joint. This join is 

also a medical treatment gap against knee OA [38, 39]. Patients with patellofemoral OA 

typically experience pain during stair ambulation [40, 41]. Surgery of total knee replacement 

is targeting the tibiofemoral joint, not the patellofemoral joint [40]. It is clinically 

recommended to avoid the activity altogether while conducting knee joint exercise therapy 

[42]. Total knee replacement with patellar resurfacing is the only predictable positive 

outcome; however, it is an aggressive approach and not recommended for single 

compartment disease [43]. An effective alternative treatment is yet to be discovered and 

much needed.  

 

Key Contributions: 

 

This work contributes toward three major areas: 1) the technological advancement of GPD 

on wearable assistive devices, 2) the expansion of the biomechanical data of stair 

ambulation on a real staircase, and 3) the deployment of real-time GPD in its potential 

applications. 

 

1. Technology advancement of GPD on wearable assistive devices 

 

An outcome of this work is the validation of a real-time GPD on an actual wearable device. 

It contributes to the technological advancement of wearable devices by providing a 

functionally verified example. It would also attempt to develop a performance evaluation that 

would provide quantitative results as a benchmark for future researchers and developers. It 

is crucial to have an accurate and reliable detection algorithm to enable appropriate 

assistance for gait progression without significant discomfort to the user. A proven system 

that could capture the kinematics of the user reliably could lead to the development of a 

wearable measurement instrument at the same level of accuracy as an optical motion 

capturing system, the current golden standard in a gait analysis laboratory.  

 

2. Deployment in real-time on a wearable structure 

This study would capture a valuable set of real-time data of stair gait on an out-of-lab 

staircases. Verifying the consistency of the motion capturing would prove useful for IMU to 

be used as a reliable method of measuring gait kinematics on a wearable structure. Data 

collected from the experiment would build a database with thousands of steps, which could 

be used by others in the community to develop their approach. Biomechanists could use the 
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information regarding the implementation to reproduce a wearable measurement system 

and verify it with standard laboratory setup. A verified wearable measurement system would 

allow out-of-lab experiment to be reliable as the laboratory setup, thus it provide a reliable 

option for biomechanism study in different terrain and conditions to be conducted with a 

wearable device instead of the setting up a complex system of sensor around in the 

environment or reproducing the complex environment inside a laboratory.  

 

3. Deployment of real-time GPD in its potential application 

 

The study is intended to test the developed detection algorithm in its potential application, 

where the wearable device helps the user to complete stair ambulation over a staircase with 

multiple progress steps. The experimental results would directly reflect the actual 

performance of the algorithm in its application since the testing environment is consistent 

with the intended application. The study would provide the technical details of the 

implementation process, which is not commonly recorded in the literature [12].  

 

An implementation of a real-time stair GPD could be significant in medical treatment for 

patellofemoral OA. Patellofemoral pain generally occurs when walking up and down the 

stairs for patellofemoral OA patients. Therefore, a stair GPD could pave a way to develop 

an assistance scheme that alleviates the patients' pain. Note that clinical treatment with 

actual patients is outside the scope of developing an approach for real-time stair GPD 

algorithms.  

 

Thesis Organisation: 

 

Chapter 2 begins with investigating the existing and developing technology of GPD. It places 

a heavier focus on the sensor technology and the detection algorithms. It then examines the 

established biomechanics knowledge that acts as the foundation of how the gait phases are 

defined and partitioned in stair ambulation, the activity of interest in this study. This 

knowledge will enable the researcher to identify the ground truth and provide clear objectives 

that the GPD algorithms should achieve. Then, the chapter will investigate the existing 

measurement system and gait analysis methods used by biomechanists as the basis to 

develop the measurement system and the performance parameters to evaluate the GPD. 

Finally, it summarises the key research gaps and the problems this study is going to 

investigate.  



Page | 17  
 

 

Chapter 3 describes the system developed and used for the search project. It will provide 

the design, implementation and evaluation of the system. It provides detailed instructions 

for reproducing the system with expected benchmark performance.  

 

Chapter 4 is the study of a rule-based algorithm developed during this research project. The 

detection rules are defined based on the description provided by studies on the normative 

stair gait. Then the system is tested on participants in a staircase with multiple flights of step, 

a realistic environmental that reflect the intended application 

 

Chapter 5 utilises existing data to train models through machine learning to identify critical 

gait phases. Models include all available types in the "Classification learner" app and the 

NARX and NIO network in the "Neural Net Times Serie" app in Matlab2020a/b. The results 

of the machine learning approach will be compared with the developed rule-based approach 

in chapter 4. Future improvement is suggested from the limitation observed in the analysis.  

 

Chapter 6 concludes the significant findings from the research project and summarise future 

research opportunities enabled by the findings of this research project.    
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CHAPTER 2 : LITERATURE REVIEW 

 

Overview: 

 

This chapter aims to provide the technical and theoretical information required to select, 

develop and evaluate the sensing system, the detection algorithm, and the analysis 

techniques. Section 2.1 presents the sensor technologies and detection techniques studies 

and used in literature. It is aimed to find out the most suitable technologies for wearable 

devices and the current gaps among the existing GPD approach. Section 2.2 describes the 

biomechanics of stair ambulation and the definition of each phase. The information would 

ensure that we are defining and detecting the phases consistent with the biomechanists. 

Section 2.3 describes the existing equipment and methods used in gait analysis. The 

information would be the basis of how our measurement devices, which described in chapter 

3, is designed to capture and process the data consistent with the standard gait analysis. 

Section 2.4 summarises the research gaps and states the problem this study is going to 

investigate.     

 

2.1. Gait Phase Detection 

 

The first section explores the current state-of-the-art development in GPD algorithms. The 

first subsection reviews the existing sensor technologies used for existing GPD. The second 

subsection reviews the techniques used by the detection algorithm.  

 

2.1.1. Technologies for Detection 

 

Gaits phases are the partitioning and classification from gait analysis. The technologies used 

to capture the input required for the classification of phases are the same as gait analysis. 

Gait analysis facilities typically capture the kinematics of the body, the force acting on the 

bodies, and occasionally the bioelectrical signal from the EMG sensors.  

 

Gait phase detection can be performed accurately with gait analysis systems which combine 

video motion cameras [36, 37, 44] and force platform [45, 46]. This is the golden standard 

for determining the gait phase. The force platform provides the ground reaction force data 

in 3 axes with a high frequency of reading, and it can identify the moment of initial contact 
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(IC) and foot off (FO) accurately. Modern motion capturing operates at and above 100 Hz, 

with displacement error of each marker under 1 mm within the configured space of the 

camera [47]. These two systems of equipment have been prominent in many biomechanics 

studies due to their proven and repeatable measurement [48]. However, these systems are 

not portable and cannot be used in conjunction with wearable devices.  

 

Muscle electromyographic (EMG) activity has been used to detect the various phases during 

a gait cycle [49-51]. This technique could directly reflect how the body is behaving during 

motion. There are limitations to this approach as well. Firstly, EMG probes are sensitive to 

external force, and it is yet to be proven on a wearable assistive device. Secondly, the setup 

of EMG probes required specialist knowledge and calibration on each subject, which is 

difficult to deploy readily and quickly.  

 

Footswitches and force-sensing resistors  [52-54] offer an alternative design to detect IC 

and FO. These sensors can be attached under the feet to measure the presence of force. 

This type of sensor is used to provide the ground truth of IC and FO for many studies. 

Wearable force sensors may not yet replace force platforms because the attachment of 

these sensors under the foot or inside footwear could affect the analogue output signal, thus 

undermining the reliability and accuracy of the force signal. Therefore, simple footswitches 

are preferred for IC and FO detection if force information is not critical.  Footswitches are 

also chosen to provide the ground truth of IC and FO events in this study. There are two 

major limitations to this type of sensor. Firstly, they are prone to mechanical failure and have 

poor durability [55] due to physical wear and tear. Secondly, the sensor is limited in 

performance in detecting sub-phases of the stance phase and swing phase.  These sub-

phases are described by a combination of body kinematics and muscle activities in literature. 

Kinetics data alone does not identify these phases accurately.  

 

Over the past few decades, inertial measurement units (IMUs) are picking up interest in the 

field of gait phase detection [56]. IMUs are measurement modules that can track its motion 

in spatial coordinates. This technology is developed from the combination of gyroscope and 

accelerometer. Chapter 3 would explain the working principle and operation of an IMU in 

greater detail. IMUs offer the most viable technology to be incorporated with a wearable 

assistive device because they are portable, durable and relatively inexpensive [34, 54, 55]. 

This system provides the kinematics information needed to describe the gait phases that 

would otherwise be difficult to be determined by footswitch/force sensors alone.  
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The increasing interest in inertial measurement reflects the advancement of sensor 

technology. MEMS technology allows inertial measurement devices such as gyroscopes 

and accelerometers to be miniature devices, which are traditionally much bigger in size. 

Advanced data fusion techniques were developed, so the disadvantage of each type of 

sensor can be compensated by the other. It is the quality increase in the manufacturing and 

digital processing that allows IMU to be a viable kinematics measurement and is widely used 

on devices such as UAVs. Recently, the OpenSense project led by Scott Delp is aimed to 

use IMU data to interpret human locomotion instead of the traditional markers data from 

optical tracking. However. IMU measurement is yet to be proven in the laboratory in its ability 

to extract body kinematics on the same level as the current standard of using 3D motion 

capturing systems. This study would also use IMU as the primary measurement as it is much 

more durable and suitable for wearable devices than all other options. The study would also 

be one of the first examples of using IMUs to interpret body and joint kinematics related to 

the definition of the gait phase according to established biomechanics theory.  

 

2.1.2. Existing IMU-based GPD Algorithms 

 

Traditionally, a human assessor is required to conduct the detection and classification of 

gait phases in gait analysis. The labelling could be done semi-automatically by some 

commercial biomechanics software such as Anybody™ or NEXUS with assessor approval 

or manually by observing the data and finding the moment it matches the description 

literature.  

 

A variety of signal processing techniques for gait phase detection have been used and 

tested. They could be classified as rule-based approaches, machine learning, and hybrid 

approaches. For rule-based approach, different method of thresholds is applied. They 

includes fixed-value thresholds to the measurements [54-63], adaptive thresholds on the 

measurements [64-66]. Thresholds could also be applied to transformed data such as 

translated symbol [67], frequency or wavelet analysis [37, 68, 69] [70-73]. These rule-based 

techniques are common because they are computationally efficient and easy to implement 

on simple electronics.  

 

Machine learning approaches are increasingly popular in the past decade. It includes but 

not limited to the deployment of machine learning classifier [74-78], Hidden Markov model 
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[79-84], fuzzy logic [58, 85-87], and neural networks techniques [88-94]. This approach is 

generally deployed when some of the sub-phase is difficult or ambiguous to define using 

rules. Implementation of machine learning techniques is commonly offline. Online 

applications required the exportation of trained models on compatible electronics.  

 

Although many algorithms have been identified in the literature, only several of these 

methods have translated into real-time implementation [55, 58, 65, 83, 90, 95]. Online 

implementation of other algorithms has the potential to introduce hundreds of milliseconds 

of delays due to the large sampling size in their data processing [96], complexity [97, 98] or 

the requirement of training a model [99]. A recent review conducted concurrently with the 

study has pointed out the limited online application of GPD algorithms [100].  

 

Another gap for GPD is that stair ambulation is not being investigated as extensively as level 

walking, most studies are investigating level walking either with different sensors, the signal 

process methods, and the demographics of test subjects. Among the existing stair GPD 

found in literature, a smaller number of them have attempt to implement real-time detection. 

Real-time implementation may also have hundreds of millisecond of timing delay [101]. 

 

This study aims to deliver a validated detection algorithm for stair ambulation in real-time 

within a biomechanical significant timing error. It will be implemented on a physical wearable 

device and tested on human subjects during stair ambulation.  

 

Prior studies on the topics of gait phase detection have different approach in evaluating the 

performance. Some previously listed studies reported the successfulness of detection 

(recall, precision and F1-score), and some other has reported the timeliness (timing error 

between detection and ground truth) of each detection. Some other studies have other 

performance indexes unrelated to the gait phases, because they are using the existence of 

these phases for another purpose. For example, the detection order of the gait 

events/phases to determine the type of gait activity [76, 97, 102], or using self-defined 

phases to determine gait parameters [57, 68, 79].  

 

Table 2.1 summarises the timing errors and the recall associated with studies using inertial 

measurements on wearable devices. Studies which did not report of the timing error are not 

included in the table. IMU sensor type is defined to be using both the accelerometer and the 

gyroscope in their detection algorithms.  
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Table 2.11: Summary of GPD performance in the literature using inertial measurement 

Researches Sensor type Year Gait Event Timing Error Recall Activities 

Hanlon & 
Anderson  

Insole sensor & 
Accelerometer  

2009 IC 
FO 

2.4 [2.1] 
9.5 [9] 

NA Level Walking 

Gonza'lez et 
al.  

Accelerometer  2010 IC 
FO 
IC^ 
FO^ 

13 [35] 
9 [54] 
117 [39] 
34 [72] 

NA Level Walking 

Aung et al.  Accelerometer  2013 IC 
FO 

15.7 [28.6] 
5.1 [12.1] 

86% Level and Ramp 

Sant'Anna & 
Wickstrom  

Accelerometer  2010 IC 
FO 

50 [40] 
30 [40] 

NA Level Walking 

Flood et al.  Accelerometer  2019 IC 
FO 

<18  
<39  

NA Level, inclined, 
treadmill walking 

Catalfmao et 
al.  

Gyroscope 2010 IC 
FO 
IC 
FO 
IC 
FO 

8 [9] 
-50 [14] 
21 [15] 
-43 [10] 
9 [20] 
-73 [12] 

overall 
98% 

Level Walking 
 
Ramp Ascent 
 
Ramp Descent 

Formento et 
al.  

Gyroscope 2014 IC 
FO 
IC 
FO 

-11 [18] 
35 [20] 
18 [46] 
132 [44] 

93% Stair ascent  
 
Stair descent 

Pappas et al.  Gyroscope 2001 IC 
FF 
HR 
FO 

70   
70  
40  
35  

96% 
(stair) 
99% 
(level) 

Stair Ascent 
Stair Descent 
Level Walking 

Bejarano et 
al.  

IMU 2015 IC^ 
 
FO^ 

12 [18] 
<31 [43]> 
5 [32]  
<7 [55.5]> 

0.998 
0.944 

Level Walking 

Maqbool et 
al.  

IMU 2017 IC^ 
 
FO^ 
 
IC^ 
 
FO^ 
 
IC^ 
 
FO^ 

17 [17.9]  
<-5.7 [16]> 
-7.6 [35.2]  
<-12.8 [6.7]> 
14 [21]  
<-10 [14.7]> 
-5 [32] 
 <-11.6 [7.6]> 
10.5 [17]  
<-11.8 
[16.1]> 
-25 [36]  
<-22.8 [10]> 

100% Level Walking 
 
 
Ramp Ascent 
 
 
Ramp Descent 

Khan & 
Biddiss  

IMU 2017 IC 250 [200] 96% Stair Ascent & 
Descent 

                                                 
1 Timing errors are represented as the mean [standard deviation]. Negative values indicate the event is earlier than the 
reference. Timing errors within <> are results from pathological gaits;  ̂indicated real-time detection of the gait event. 
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Kotiadis et al.  IMU 2010 IC 
FO 
IC 
FO 
IC 
 
HR 
 
FO 

NA 
NA 
NA 
NA 
-10 to -100 
[20 to 40] 
50 to 130 [20 
to 50] 
NA 

77 to 
100% 
 
15 to 
36% 

Stair Ascent 
 
Stair Descent 
 
Flat walking  

 

This study will use both the successfulness and timeliness of the detection to evaluate the 

performance. The successfulness of correct classification of each gait phase in terms of 

recall, precision and F1-score. The timing performance is evaluated with the mean and 

standard deviation of the timing error between the algorithm detection to the ground truth. 

The algorithm's usefulness will be verified with the likelihood for a detection exceeding the 

tolerance of its intended application. To the best of the author’s ability, there doesn’t have a 

benchmark of how responsive the detection needed to be. Thus, this study will target a 

timing error within 50 ms as it is an acceptable range for biomechanical application  [36, 37].  

 

2.2. Biomechanics of Stair Ambulation 

 

This section provides background knowledge of stair ambulation's biomechanics and how 

each gait phase is partitioned and defined in the literature. This section would summarise 

the key findings from established biomechanics observations. 

 

Table 2.2: Gait partitioning of stair ambulation 

Activities Phases 

Stair Ascent 
Stance Swing 

weight 
acceptance 

pull-up forward 
continuance 

foot clearance foot placement 

Stair Descent 

Stance Swing 

weight 
acceptance 

forward 
continuance 

controlled 
lowering 

leg pull-through foot placement 

 

The stance-swing phase partitioning is common across all lower limb gait. Level walking has 

five, seven and eight-phase partitioning [103]. Meanwhile, stair ambulation could be 

partitioned into five phases for ascending and descending gait [104]. The five phases are 

weight acceptance (WA), pull-up (PU), and forward continuance (FCN) in the stance phase; 

foot clearance (FC) and foot placement (FP) in the swing phase for stair ascent. Similarly, 
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weight acceptance (WA), forward continuance (FCN), and controlled lowering in stance 

phase; leg pull-through (LP) and foot placement (FP) in swing phase for stair descent. Table 

2.2 shows the two-phase and five-phase partitioning for both directions of stair ambulation.  

 

Weight acceptance in stair ascent begins with contact with the ground by the swinging leg. 

During this phase, the body is shifting its weight from the contralateral leg to the ipsilateral 

leg. The positioning of the weight transfer is achieved by plantarflexion of the ankle. The 

pull-up phase occurs when the contralateral leg is taking off. The pull-up phase contributes 

to the most significant progression upward with the knee joint being the major contributor, 

which is achieved by extending the entire leg.  There is no clear transition between the pull-

up and forward continuance phase. During the forward continuance phase, the body's 

movement is progressing forward; however, the progression forward is not separated from 

the progression upward. The beginning of this phase is often approximated with the mid-

swing of the contralateral leg. If a boundary is to be defined, it would be the end of the 

extension of the ipsilateral leg, and the muscle is either in an isometric or eccentric state just 

prior to foot-off. Foot clearance is initiated by ipsilateral foot off. During this phase, the leg 

has to lift and place the foot over the next landing step. The motion is controlled by a series 

of flexion of the hip, knee and ankle joints. Foot placement begins with the extension of the 

knee joint during mid-swing. It is when the body has positioned for the landing of the swing 

leg. The contact of the ipsilateral leg marks the end foot placement.  

 

Weight acceptance in stair descent is defined similarly with foot contact of the ipsilateral leg. 

During this phase, the knee and ankle muscles absorb the kinetic energy from dropping from 

the previous step. The moment of the knee and ankle joint is in the opposite direction as 

their movement. It is regarded as negative power in biomechanics. The phase is then 

transited into 'forward continuance' when the contralateral foot-off occurs. During this phase, 

the body is shifting forward. The body would also rise slightly as the contralateral foot takes 

off. Controlled lowering begins when the body is dropping downward. During this phase, the 

knee joint is flexing with quadriceps extensors active.  The next phase begins with the hip 

pulls the leg off the step when foot-off occurs. The hip and the knee would continue to flex 

during early swing. Since the elevated position of the foot on the previous step, the knee 

joint would only flex slightly while the hip swings the leg forward to the next step during this 

phase. Foot placement begins with the extension of all three joints during mid-swing. The 

extension is to place the foot onto the next step. During this phase, the leg will prepare for 

shock absorption and weight acceptance of the next step.  
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Figure 2.1: The average hip flexion angle during one gait cycle of stair ascent (black) and descent (blue) across 8 
subjects. Vertical lines are the transition between the gait phases. Phase codes are defined in the text. Diagram is 
redraw from data provided in [104] 
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Figure 2.2: The average knee flexion angle of one gait cycle of stair ascent (black) and descent (blue) across 8 subjects. 
Vertical lines are the transition between the gait phases. Phase codes are defined in the text. Diagram is redraw from 
data provided in [104] 

 

Figure 2.3: The average ankle dorsiflexion angle of one gait cycle of stair ascent (black) and descent (blue) across 8 
subjects. Vertical lines are the transition between the gait phases. Phase codes are defined in the text. Diagram is 
redraw from data provided in [104] 

 

Later studies have added and refined details on the kinematics and muscle activities of the 

gait [105-108]. Despite the added knowledge, the definition of these five phases remains 

consistent and widely used. They also expand the observation to gaits in different activities 

condition [109-113], and other groups of people [114-116].  

 

2.3. Gait Analysis 

 

2.3.1. Measurement Systems 
 

In biomechanics studies, the primary goal is to reveal as much information about the body 

as possible from the measurement. Therefore, the kinematics and the kinetics of the bodies 

is essential. These two sources of information are the core of all modern gait analysis.  

 

Kinematics data are typically captured using a vision-based system. Traditionally, human 

movements are described qualitatively, first by Borelli in 1680. Stereophotogrammetry 

techniques are the first to quantify the human movement (Braune and Fischer 1895). The 
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3D reconstruction of the instantaneous position of the bodies in a laboratory is the basis of 

all 3D motion capturing developed after that. There are several other techniques introduced 

to measure the body movement such as stereosonics systems [117], exoskeletal linkage 

with electrogoniometer [118] and accelerographs methods using multiple accelerometers 

attached to the body [119]. The state-of-the-art technology commonly used in modern gait 

analysis facilities is 3D motion capturing system using optical markers tracked by multiple 

cameras. This technology is developed from the original stereophotogrammetry approach 

with the standardised procedure and added features to improve the system's performance.  

 

The only force that is measurable directly is the ground reaction forces. Force sensors are 

placed underneath the floor, which the subject would be walking on it. The internal forces of 

the body and jointed must be computed through the external forces and the kinematics 

information using a biomechanical model, which the procedure of analysis is explained in 

section 2.3.2.  

 

For studies that would like to have a better estimation of the internal forces, additional 

sensors such as EMG are used to provide the muscle activation level for the musculoskeletal 

model. Although the number of possible sensing is limited compared to the actual number 

of acting muscles in the body, it does provide some boundary and information for the 

musculoskeletal model and represent a more accurate image of what truly happened. Other 

types of equipment such as MRI or X-ray scan provide biological information of the subject 

that could be used to refine the model as close to the real-life counterpart as possible.  

 

All information gathered from the aforementioned sensors can then imported into 

biomechanics analysis software for in-depth study.  

 

2.3.2. Analysis Methods 

 

A musculoskeletal model is the centrepiece of modern biomechanical analysis. The 

kinematics of the markers attached to bodies are used collectively to interpret each joint's 

movement and the body part kinematics in 3D space. The setup of the markers on the body 

and the consequence operation to define each joint and joint kinematics are investigated 

and standardised over the decades [120-123]. The outcomes of these studies are later 

adapted into commercial systems such as VICON, which has established and verified 
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procedure for analysis [124]. The validation of the standardised gait analysis allows 

reproducibility of study if the model is defined consistently.   

 

A pivotal moment in the study is the standardisation of the joint definition published by the 

International Society of Biomechanics [125, 126]. It allows a general musculoskeletal model 

to be constructed so that the results of gait analysis are much more repeatable and 

consistent across the field. From that onward, studies focus on optimising models and 

experimental protocol that allow more accurate interpretation of the joint toward the ISB's 

definition and producing more consistent kinematics capturing on the models [127-138]. The 

technology of 3D motion capturing itself are also being refined [139-142].  

 

Regardless of the experimental protocol and the model being used, the procedure of the 

biomechanical analysis remains the same. Firstly, static data is capture form the subject so 

that the model can be scaled to the subject in three dimensions. It is done to make sure the 

kinematics of the movement reflect those of the subjects. The weight of the subject is also 

recorded so that the contribution in joint load from the gravity can be separated from those 

by the muscle when analysing the dynamics of the model.  

 

When analysing the body kinematics using the musculoskeletal model, the software would 

cluster groups of markers and then define a rigid body with each cluster. Each rigid body's 

overall movement in 3D space is calculated using the least square fit method of all respective 

markers within each group. The joint movement is then calculated so that the body defined 

by each cluster of the experiment data is the least squared fit of those on the model. The 

resultant kinematics of all joints on the body is one of the main outcomes from the 

experimental data. The motion data is then used in other analysis processes such as body 

dynamics, joint loads, and muscle activation/forces. It is important to know that the result of 

each stage (kinematics, dynamics, joint kinetics, and muscular information) is computed by 

solving a least-squares optimisation problem.  

 

Due to the underactuated nature of the musculoskeletal model, the results should be 

checked after each stage that they are following the best practices, and no apparent mistake 

is found. For example, in OpenSim, an open-sourced biomechanical simulation software 

that is actively updated by biomechanics researchers, each process is validated by 

corresponding studies in publications [143-148]. It also has documentation for the operation, 

verification and validation of models and simulation results [149].  
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The gait phases aforementioned in section 2.2 are described by the joint movement, the 

joint loads, and the muscle activation. The definition of gait phases in this study would be as 

close to the biomechanics definition as possible. Therefore, we will try to interpret the 

information with the technology available and used in GPD mentioned in section 2.1.  

 

The study will develop a wearable system that can capture the lower limb's kinematics used 

to interpret the joint angle from the requirement above. The body orientation would be 

determined by the Cardan angles of each IMU [120, 125]. Thus, the joint angle could be 

calculated from the angles between two bodies consistent with biomechanics analysis.  

 

Among available wearable technology, footswitches provide a reliable method to establish 

the ground truth for stance and swing phases, namely the occurrence of initial contact and 

foot off. A pair of insole footswitches would be used as the ground truth. These two types of 

sensors would allow the system to capture the two core pieces of information for gait 

analysis.  

 

The next chapter will provide a comprehensive description of the development and 

performance of the wearable measurement system that would allow the study to observe 

and determine the occurrence of gait phases in an out-of-lab environment.  

 

2.4 Research Problems and Aims 

 

To the best knowledge of the author, there are little readily-available proven real-time GPD 

methods of stair ambulation verified in a real-world environment. The goal of the study is to 

develop and verify a real-time GPD on a wearable lower-limb device.  

 

The overall challenge could be broken into the following parts: 

1. development and evaluation of body sensing measurement on a wearable knee 

brace that captures critical information 

2. transferring the biomechanics knowledge of stairs ambulation into detection rules 

3. detailed implementation of a detection algorithm on a minimalistic wearable device 

4. development and verification of the real-time gait phase detection algorithm of stair 

ambulation  
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CHAPTER 3 : SYSTEM DESCRIPTION 

 

Overview 

 

This chapter is focused on the developed wearable ambulatory system. It provides insights 

into the technical considerations and key knowledge for developing such systems. The 

system is designed to be integrated into a knee brace. It gathers crucial and relevant body 

measurements used in developing and testing GPD algorithms in this research project.  

 

There are two major aspects in the development of a wearable ambulatory system for gait 

motion study. The IMUs gather repeatable and accurate inertial measurement of their 

attached bodies. Then, the system integration allows the validation of the algorithm against 

the ground truth from a pair of the insole sensor, a common reference system used in 

literature.  

 

This chapter begins with the description of the overall system design and how it fulfils its 

requirement as a platform for validating GPD algorithms in its relevant application, then the 

operation of the system and how it can be used. Then, a later section is dedicated to 

explaining the function and operation of the IMU sensor. This section begins with the theory 

and working principle of a 6-axis IMU sensor, it is followed by the implementation of the 

modules in this research project and a performance evaluation of the sensor in terms of 

repeatability and accuracy against two other methods widely used as the ground truth in 

literature as mentioned in Chapter 2.3.1. 

 

3.1 Wearable Ambulatory System  

 

3.1.1 System Design 

 

A knee brace was modified to incorporate IMUs (MPU6050) on the shank and thigh segment 

to measure these segments' sagittal-plane motion and provide the data as input to the 

microcontroller (PSOC5). The IMUs were mounted on the brace with the local Z axes aligned 

with the proximal-distal axis of the thigh and the shank segment of the brace. The local X-

axes were aligned with the medial-lateral axis.  
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Two insole footswitches (B&L Engineering, USA) were integrated to identify the reference 

gait events IC and FO. These footswitches were selected because of their usage in similar 

research [35] and their acceptance in gait analysis facilities [41].  The switches have their 

Digital to Analog Converter (DAC) with an R-2R ladder to convert the four contact switches' 

binary signal to an encoded 4-bits variable as an output with 16 different voltage level, each 

representing a combination of on-contact.   

 

 

Figure 3.1: Measurement system: (a) the knee brace with IMU attached to the centre of each green circle, red: Y axes, 
blue: Z axes; (b) insole footswitches, green square indicates the location of each contact area. 

 

Both the IMUs and insole footswitches are then integrated to channel their output to the 

same microcontroller for data acquisitions. All data is processed in the microcontroller then 

transfer to the PC via a USB cable which guarantee connection stability and speed.  

 

The system is powered by a battery in the waist bag worn by the user where it stored all 

electronics components. 
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3.2 IMU Background  

 

The IMU chosen for this work is InvenSense MPU6050. They are commercially available 

with low cost, low power and relatively high performance, which are desirable qualities for a 

wearable device.  

 

MPU6050 houses an onboard Digital Motion Processor (DMP™) that computes motion 

fusion algorithms from the 3-axis gyroscope and 3-axis accelerometer data via the I2C bus 

at 400 kHz. It also allows an auxiliary magnetometer to be integrated via the I2C bus. Since 

the final device will accommodate a motor-driven actuation, the electro-magnetic pulse 

generated from the motor may cause additional noise to the magnetometer, and shielding 

will add undesirable weight to the design; therefore, a decision is made not to incorporate a 

magnetometer in the design.  

 

IMPU6050 allows users to configure the full-scale range of the sensors, the setting of the 

digital low-pass filter for the sensors, and the output sample rate of the DMP. The full-scale 

range can be programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps) and 

±2g, ±4g, ±8g, or ±16g for the gyroscope and accelerometer respectively. This work 

configured the full-scale range to be ±2000 dps and ±8g, to avoid signal clipping during fast 

movement of the limb. The gyroscope has a raw output rate of 8 kHz, whereas the 

accelerometer is 1 kHz. Any sampling rate above 1 kHz will cause the repeated output from 

the accelerometer. Table 3.1 below shows the available configuration of the DLPF and the 

sensor output rate, and delays.  

 

Table 3.1: Options for configuration of data rate and digital low pass filter of MPU6050 

DLPF_CFG 

Accelerometer (Fs = 1kHz) Gyroscope 

Bandwidth 

(Hz) 
Delay (ms) 

Bandwidth 

(Hz) 
Delay (ms) Fs (kHz) 

0 260 0 256 0.98 8 

1 184 2.0 188 1.9 1 

2 94 3.0 98 2.8 1 

3 44 4.9 42 4.8 1 

4 21 8.5 20 8.3 1 

5 10 13.8 10 13.4 1 

6 5 19.0 5 18.6 1 
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7 RESERVED RESERVED 8 

 

DLPF_CFG is a system flag to configure the DLPF. This work configured the DLPF with a 

bandwidth of 188 Hz and 184 Hz for the gyroscope and the accelerometer respectively, 

which also synchronise the sensors to have an output rate of 1 kHz to the DMP. The 

bandwidth allows a peak to be constructed with a peak width greater than 10 ms. It is within 

the range of operation of other similar gait analysis equipment, force plate (typically 300 Hz), 

and optical tracking (typically 100 Hz) [150].  

 

DMP includes a sensor fusion algorithm to compute the quaternion of the local IMU frame. 

MPU6050 indicates the yaw with its Z-axis and roll with its X-axis. The mathematical 

formulation of the quaternion and the conversion to YPR angles, which is more useful for 

biomechanics interpretation, will be explained in the next section.  

 

 

Figure 3.2: Top view of the IMU: X-axis (Roll) points to the right of the page, Y-axis (Pitch) points to the top of the page, 
Z-axis (Yaw) points out of the page.  

 

3.2.1 Parameterisation of Orientation 
 

There are a few common ways to represent the orientation of the IMU frame: rotational 

matrix, Euler angles, and quaternion. This section provides the mathematic of each 

representation and the conversion between them.  

 

1) Rotation matrix 

Rotation matrix, 𝐑, is a 3-by-3 orthogonal matrix representing the rotational translation of a 

body from one frame to another frame. It has the property that 𝐑T = 𝐑−1  and det 𝐑 = 1.  
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𝒙0 = 𝐑1
0𝒙1 (3.1) 

 

The formulation of a rotational matrix is the sequence of rotation it takes from its initial frame 

of reference. The combination of multiple rotational is the matrix product of all rotations.  

 

 

𝐑𝐧
𝟎 = 𝐑𝟏

𝟎𝐑𝟐
𝟏 …𝐑𝒏

𝒏−𝟏 (3.2) 

 

The advantage of rotational matric is that it uniquely describes the orientation of the body, 

which means the nine values in the matrix give a unique orientation of the body in 3D space. 

This method is not intuitive, since it does not provide any order of the rotation on the axes 

unless a specific order of Euler angles is defined, and the inverse kinematics is computed 

from that definition.  

 

2) Euler angles 

Any rotation can be defined by a sequence of rotation around three axes known as Euler 

angles. The full list of convention can be found in Appendix A. This parameterisation is 

intuitive, and it translates well into the convention used by biomechanics to define the joint 

angle, and body kinematics [151, 152].  

 

In this study, we would favour the use of Yaw-Pitch-Roll notation to interpret the limb 

orientation. It is one of the common notations used with the IMU technology for application 

such as UAV. This convention describes the following order of intrinsic rotation: first rotates 

the body around its z-axis, then its y-axis, and finally the around its x-axis. 

 

𝐑(𝜓, 𝜃, 𝜙) = 𝐑𝐳(𝜓)𝐑𝐲(𝜃)𝐑𝐱(𝜙) 

= [
cos (𝜓) −sin (𝜓) 0
sin (𝜓) cos (𝜓) 0

0 0 1

] [
cos (𝜃) 0 sin (𝜃)

0 1 0
−sin (𝜃) 0 cos (𝜃)

] [

1 0 0
0 cos (𝜙) −sin (𝜙)
0 sin (𝜙) cos (𝜙)

] 

= [

cos (𝜓)cos (𝜃) cos(𝜓) sin(𝜃) sin(𝜙) − sin (𝜓)cos (𝜙) cos(𝜓) sin(𝜃) cos(𝜙) + sin(𝜓) sin(𝜙)

cos (𝜃)sin (𝜓) sin(𝜓) sin(𝜃) sin(𝜙) + cos(𝜓) cos(𝜙) sin(𝜓) sin(𝜃) cos(𝜙) − cos(𝜓) sin(𝜙)

−sin (𝜃) cos (𝜃)sin (𝜙) cos (𝜃)cos (𝜙)
] 

 
(3.3) 

 

However, Euler angles do not uniquely describe the orientation of the body. Firstly, the angle 

would wrap from each full rotation, so tracking an ongoing spin around an axis would require 
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external conditions to record and carry over the accumulated angle of rotation. The other 

problem is gimbal lock; this is when an axis has a rotation of 90 degrees, and the matrix 

cannot solve for a unique rotation. Let say 𝜃 =
𝜋

2
. 

 

 

𝐑(𝜓,
𝜋

2
, 𝜙) = [

0 cos(𝜓) sin(𝜙) − sin(𝜓) cos(𝜙) cos(𝜓) cos(𝜙) + sin(𝜓) sin(𝜙)

0 sin(𝜓) sin(𝜙) + cos(𝜓) cos(𝜙) sin(𝜓) cos(𝜙) − cos(𝜓) sin(𝜙)
−1 0 0

]  

= [
0 sin(𝜙 − 𝜓) cos(𝜙 − 𝜓)

0 cos(𝜙 − 𝜓) − sin(𝜙 − 𝜓)
−1 0 0

] (3.4) 

 

Hence, any rotation around either z-axis or x-axis, there are alternative solutions. As a result, 

the YPR angles must be calculated from a more robust form such as rotational matrix or 

quaternion. 

 

3) Quaternion 

This is the preferred method of storing orientation data in this study. This is the most 

common processed output of any commercial IMU with the internal processor for motion 

tracking. It does not suffer from gimbal lock and is advantageous over the Euler angles. It 

also has an advantage over rotational matrix for electronics communication, since it only 

consists of four number instead of the nine required for transition.  

 

Quaternion is a number system that consists of a scalar (the real number: 𝑞0) and a vector 

part (the imaginary part: 𝐪𝐈) as described by Hamilton.   

 

𝑞 = 𝑎 + 𝑏𝐢 + 𝑐𝐣 + 𝑑𝐤 = 𝑞0 + 𝐪𝐈, (3.5) 

 

with the imaginary part following the rule of   

 

𝐢𝟐 = 𝐣𝟐 = 𝐤𝟐 = 𝐢𝐣𝐤 = −1. (3.6) 

 

In the application of spatial rotation, quaternion rotation operation is defined as:  

 

 𝐯′ = 𝑞𝐯𝑞−1, (3.7) 
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where  𝐯 is an arbitrary vector (𝑣𝑥𝐢 + 𝑣𝑦𝐣 + 𝑣𝑧𝐤), and 𝐯′ is the vector after the rotation. Since 

quaternion is a 4D vector, the 𝐯 is treated with the real part equal to zero (0 + 𝑣𝑥𝐢 + 𝑣𝑦𝐣 +

𝑣𝑧𝐤) to match the dimension of a quaternion (one real number with three imaginary number). 

 

The inverse of a quaternion is defined: 

 

𝑞−1 = 𝑎 − (𝑏𝐢 + 𝑐𝐣 + 𝑑𝐤), (3.8) 

 

The rotation operation can be interpreted as an encoded form of the axis-angle 

representation, where a vector, 𝐯, rotates 𝜃  radian around a unit vector 𝐮 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧). 

Then, each coefficient of the unit quaternion is defined as, 

 

𝑎 = cos (
𝜃

2
) , 𝑏 = sin(

𝜃

2
)𝑢𝑥, 𝑐 = sin (

𝜃

2
)𝑢𝑦 , 𝑑 = sin (

𝜃

2
)𝑢𝑧, (3.9) 

and 

𝑞 = cos (
𝜃

2
) + 𝐮 sin(

𝜃

2
), (3.10) 

 

This definition fulfils the rotation formula of rotating 𝐯  around 𝐮  by 𝜃  radian using the 

quaternion rotation operation, 

 

𝐯′ = 𝐯 cos(𝜃) + (𝐮 × 𝐯)sin(𝜃) + 𝐮(𝐮 ∙ 𝐯)(1 − cos(𝜃)), (3.11) 

 

3.2.2 Conversion of Parameterisation  
 

The parameterisation of a rotation matrix, Euler angle and quaternion can be converting to 

each other. The easier way to present the relationship is to convert every parameterisation 

into the matrix format and related the elements on the matrix between each other. 

 

1) Rotation matrix and Euler angles 

The conversion between rotational matrix and Euler angle straightforward. Since we can 

represent the rotational of each primary axis as a 3-by-3 matrix and the multiplication of 

each rotational will be equivalent to the rotational matrix representation. 

 

𝐑(𝜓, 𝜃, 𝜙) = 𝐑𝐫𝐨𝐭 (3.12) 
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For the YPR angle, we can construct the rotation matrix by multiply 𝐑𝐳(𝜓)𝐑𝐲(𝜃)𝐑𝐱(𝜙), 

 

[

cos(𝜓) cos(𝜃) cos(𝜓) sin(𝜃) sin(𝜙) − sin(𝜓) cos(𝜙) cos(𝜓) sin(𝜃) cos(𝜙) + sin(𝜓) sin(𝜙)

cos(𝜃) sin(𝜓) sin(𝜓) sin(𝜃) sin(𝜙) + cos(𝜓) cos(𝜙) sin(𝜓) sin(𝜃) cos(𝜙) − cos(𝜓) sin(𝜙)

− sin(𝜃) cos(𝜃) sin(𝜙) cos(𝜃) cos(𝜙)
]  

= [
r11 r21 𝑟31
r12 r22 𝑟32
𝑟13 𝑟23 r33

] (3.13) 

 

And the YPR angles(𝜓, 𝜃, 𝜙) can be calculated from the rotation matrix: 

 

𝜓 = tan−1 (
r12

𝑟11
) (3.14) 

𝜃 = tan−1 (
−r31

√𝑟322 + 𝑟332
) (3.15) 

𝜙 = tan−1 (
𝑟23

𝑟33
) (3.16) 

 

The respective element will be different if a different Euler angle convention is used instead 

of the YPR angles convention used in this study.  

 

2) Rotation matrix and Quaternions 

Similar to how multiplication of complex number can be represented as a multiplication of 

an equivalent matrix, quaternion multiplication could be present by a 4x4 matrix.  

 

Let 𝑝 and 𝑞 are two quaternions, where 𝑝 = 𝑝0 + 𝑝1𝐢 + 𝑝2𝐣 + 𝑝3𝐤, and 𝑞 = 𝑞0 + 𝑞1𝐢 + 𝑞2𝐣 +

𝑞3𝐤 

 

𝑝𝑞 = [

𝑝
0
𝑞

0
− 𝑝

1
𝑞

1
− 𝑝

2
𝑞

2
− 𝑝

3
𝑞

3

𝑝
0
𝑞

1
+ 𝑝

1
𝑞

0
+ 𝑝

2
𝑞

3
− 𝑝

3
𝑞

2

𝑝
0
𝑞

2
− 𝑝

1
𝑞

3
+ 𝑝

2
𝑞

0
+ 𝑝

3
𝑞

1

𝑝
0
𝑞

3
+ 𝑝

1
𝑞

2
− 𝑝

2
𝑞

1
+ 𝑝

3
𝑞

0

]  

= [
𝑝0𝑞0 − 𝐩𝐈 ∙ 𝐪𝐈

𝑝0𝐪𝐈 + 𝑞0𝐩𝐈 + 𝐩𝐈 × 𝐪𝐈
] (3.17) 

 

Expand the expression of quaternion rotation, and then group each real and imaginary component 

we could arrange the matrix form as 𝐑𝐪. Both 𝐯 and 𝐯′ would have their real component as zero. 

Full derivation could be found in Appendix B. The solution to the imaginary component (the 

vector) is also provided in [153-155]. 
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𝐯′ = 𝑞𝐯𝑞−1  

[
0

𝐯′] = [𝐑𝐪]𝟒𝐱𝟒
 [0
𝐯
]  

= 

[
 
 
 
 
𝑞

0
2 + 𝑞

1
2 + 𝑞

2
2 + 𝑞

3
2 0 0 0

0 𝑞
0
2 + 𝑞

1
2 − 𝑞

2
2 − 𝑞

3
2 2(𝑞

1
𝑞

2
− 𝑞

0
𝑞

3
) 2(𝑞

1
𝑞

3
+ 𝑞

0
𝑞

2
)

0 2(𝑞
1
𝑞

2
+ 𝑞

0
𝑞

3
) 𝑞

0
2 − 𝑞

1
2 + 𝑞

2
2 − 𝑞

3
2 2(𝑞

2
𝑞

3
− 𝑞

0
𝑞

1
)

0 2(𝑞
1
𝑞

3
− 𝑞

0
𝑞

2
) 2(𝑞

2
𝑞

3
+ 𝑞

0
𝑞

1
) 𝑞

0
2 − 𝑞

1
2 − 𝑞

2
2 + 𝑞

3
2]
 
 
 
 

[

0

𝑣𝑥

𝑣𝑦

𝑣𝑧

] (3.18) 

 

Note that the multiplication of 𝑞𝐯  would make the real component equal to zero and 

subsequently with 𝑞𝐯𝑞−1 , and the dimension of the 𝐯  would not change as a result. 

Therefore, the expression could be written as a 3-by-3 matrix. This resultant matrix is the 

rotation matrix in term of quaternion components.  

 

𝐯′ = [𝐑𝐪]𝟑𝐱𝟑
 𝐯  

= [

𝑞
0
2 + 𝑞

1
2 − 𝑞

2
2 − 𝑞

3
2 2(𝑞

1
𝑞

2
− 𝑞

0
𝑞

3
) 2(𝑞

1
𝑞

3
+ 𝑞

0
𝑞

2
)

2(𝑞
1
𝑞

2
+ 𝑞

0
𝑞

3
) 𝑞

0
2 − 𝑞

1
2 + 𝑞

2
2 − 𝑞

3
2 2(𝑞

2
𝑞

3
− 𝑞

0
𝑞

1
)

2(𝑞
1
𝑞

3
− 𝑞

0
𝑞

2
) 2(𝑞

2
𝑞

3
+ 𝑞

0
𝑞

1
) 𝑞

0
2 − 𝑞

1
2 − 𝑞

2
2 + 𝑞

3
2

] [

𝑣𝑥

𝑣𝑦

𝑣𝑧

] (3.19) 

 

The revert operation could be done by finding the corresponding element on the rotation matrix to 

produce 𝑞0, 𝑞1, 𝑞2, 𝑞3. 

 

𝑞0 =
√1 + 𝑟11 + 𝑟22 + 𝑟33

2
 (3.20) 

𝑞1 =
𝑟32 − 𝑟23

4𝑞0
 (3.21) 

𝑞2 =
𝑟13 − 𝑟31

4𝑞0
 (3.22) 

𝑞3 =
𝑟21 − 𝑟12

4𝑞0
 (3.23) 

 

3) Euler angles and Quaternions 

Given that we got the matrix form of both Euler angle and quaternion, we can simply equal 

the two matrices to get the conversion between YPR angle (𝜓, 𝜃, 𝜙) and quaternion. 

From quaternion to YPR angles: 
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𝜓 = (
2(𝑞

1
𝑞

2
+ 𝑞

0
𝑞

3
)

𝑞
0
2 + 𝑞

1
2 − 𝑞

2
2 − 𝑞

3
2 ), (3.24) 

𝜃 =

(

 
−2(𝑞

1
𝑞

3
− 𝑞

0
𝑞

2
)

√2(𝑞
2
𝑞

3
+ 𝑞

0
𝑞

1
)
2
+ (𝑞

0
2 − 𝑞

1
2 − 𝑞

2
2 + 𝑞

3
2)

2

)

  , (3.25) 

𝜙 = (
2(𝑞

2
𝑞

3
+ 𝑞

0
𝑞

1
)

𝑞
0
2 − 𝑞

1
2 − 𝑞

2
2 + 𝑞

3
2 ) , (3.26) 

 

and, from YPR angles to quaternions: 

 

𝑞0 = cos (
𝜙

2
) cos (

𝜃

2
) cos (

𝜓

2
) + sin (

𝜙

2
) sin (

𝜃

2
) sin (

𝜓

2
) (3.27) 

𝑞1 = sin (
𝜙

2
) cos (

𝜃

2
)cos (

𝜓

2
) − cos (

𝜙

2
) sin (

𝜃

2
) sin (

𝜓

2
) (3.28) 

𝑞2 = cos (
𝜙

2
) sin (

𝜃

2
) cos (

𝜓

2
) + sin (

𝜙

2
) cos (

𝜃

2
) sin (

𝜓

2
) (3.29) 

𝑞3 = cos (
𝜙

2
) cos (

𝜃

2
) sin (

𝜓

2
) − sin (

𝜙

2
) sin (

𝜃

2
) cos (

𝜓

2
) (3.30) 

 

3.2.3. Formulation of the orientation of IMU 
 

This section provides the working principle of IMUs and how the orientation is interpreted 

from the onboard accelerometer and gyroscope. Here explains the working principle of the 

IMU and how the orientation information is calculated from the sensor's raw data, which are 

the linear acceleration and the angular velocity.  
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Figure 3.3: A 3D representation of an IMU rotation, Green arrow is the gravity reaction force measured by the IMU, and 
oranges are the gravity reaction force projection in the IMU transformed frame which are the acceleration measured by the 
IMU in each axis. XYZ is the world frame, xyz is the IMU original frame, x’y’z’ is the IMU transformed frame.  

Consider an IMU in 3D space, figure 3.3, it is initially aligned with the world frame. Then it is 

at a stationary position after some rotation in each axis. The XYZ axes are in the world xyz 

is the IMU original frame, and x’y’z’ is the IMU transformed frame. In a stationary position, 

the only force acting on the IMU is due to Earth’s gravity. IMU measure the reaction to the 

external force acting on it with its MEMS, hence it would have a reading of 1g pointing 

upward. Let this reaction force be G. Ax′, Ay′, and Az′ are the acceleration measured by the 

IMU in its x', y', and z' axis respectively.   

 

The G vector projects itself on to the three axes of the accelerometer in reality. Initially the 

IMU’s frame is align with the ground frame, and the G vector measured on the IMU is 1g 

upward. The transformation of the G vector to the measured acceleration of the IMU’s frame 

is the revert operation of the transformation of the IMU from the initial frame to the 

transformed frame. The YPR rotation of the IMU is described by (3.13) in the world frame. 

Thus, the transformation of the G vector in the IMU’s frame is the reverse, 𝐑𝐱(𝜙)𝐑𝐲(𝜃)𝐑𝐳(𝜓) 

[156]. 𝜓 is the angle between the Z-axis of the IMU to the z-axis of the world frame, similarly 

for 𝜃 and 𝜙 for the Y-axis and X-axis respectively.  

 

𝐀 = [

Ax′

Ay′

Az′

] = 𝐑𝐱(𝜙)𝐑𝐲(𝜃)𝐑𝐳(𝜓) [
0
0
1
]  

X 

Y 

Z 

y’ 

z’ 

x’ 

x 
y 

z 

G 

Ax′ 

Ay′ 
Az′ 
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   = [
−sin(𝜃)

cos(𝜃) sin(𝜙)

cos(𝜃) cos(𝜙)
] (3.31) 

 

Note that the negative of the angle is not essential when we reverted the operation, as we 

are going to solve for both solution within the range of (−𝜋, 𝜋]. 3.32 and 3.35 are the general 

equations to solve for both solutions. 3.33, 3.34 and 3.36, 3.37 are the equations of finding 

each solution for 𝜙1, 𝜙2, 𝜃1, and 𝜃2 respectively. The subscript of 1 and 2 indicate the two 

solutions from the general equation. 𝑛 is an integer multiple of 𝜋 that allow the equation to 

obtain all solution within (−𝜋, 𝜋]. 

 

𝑟𝑜𝑙𝑙 ∶ 𝜙 = tan−1 (
𝐴𝑦′

𝐴𝑧′
) + 𝜋𝑛, for 𝜙 ∈ (−𝜋, 𝜋] (3.32) 

𝜙1 = tan−1 (
𝐴𝑦′

𝐴𝑧′
) (3.33) 

𝜙2 = {
𝜙1 + 𝜋 , if 𝜙1 ≤ 0 
𝜙1 − 𝜋, if 𝜙1 > 0

 

 

(3.34) 

𝑝𝑖𝑡𝑐ℎ ∶ 𝜃 = tan−1 (
−𝐴𝑥′

√𝐴𝑦′
2+𝐴𝑧′

2
) + 𝜋𝑛, for 𝜃 ∈ (−𝜋, 𝜋] 

(3.35) 

𝜃1 = tan−1 (
−𝐴𝑥′

√𝐴𝑦′
2+𝐴𝑧′

2
)  (3.36) 

𝜃2 =  {
𝜃1 + 𝜋 , if 𝜃1 ≤ 0 
𝜃1 − 𝜋, if 𝜃1 > 0

 (3.37) 

 

The second solution represents the other viable solution where both axes are flipped. A 

logical operation is required to determined which solution is the correct one by choosing the 

solution that is physically closer to its previous position.  

 

The equation shows that the IMU could only determine the tilt angles in any stationary 

position when it is only affected by the gravity only. This is because the gravity only does 

not provide enough information to solve the yaw angle. The IMU could be resting at any yaw 

displacement, and the acceleration measured by the IMU is the same.  

 

Generally, an accelerometer is accurate for a long-term measurement; it has no integration 

drift, and the gravity on Earth is mostly constant. Thus, it can accurately determine the IMU 

tilting in pitch and roll angle given there is no acceleration either than gravity. This method 
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is useful when correcting the roll and pitch angle when the IMU come to a rest, and thus 

removed the accumulated error from the gyroscope during motion. 

 

Limitation of the accelerometer with known gravity is that it could have any yaw angle 

solution and it works when the IMU is stationary. It is also vital that a low pass filter is 

implemented on the accelerometer signals because any vibration can cause the calculation 

to be unreliable.  

 

Pose estimation [157] has been accomplished using accelerometers alone. They typically 

include a known model for their application so that the gravity acceleration can be separate 

from the acceleration from the user's motion.  

 

When the IMU is in motion, it is often more reliable to integrate the rotational velocity from 

the gyroscope to get the tilt angles. Consider the case of one axis gyroscope below: 

 

𝜃(𝑡 + ∆𝑡) ≈ 𝜃(𝑡) + 𝜔′∆𝑡 + 𝜀 
(3.38) 

 

𝜃(𝑡) is the angle at time 𝑡 , ∆𝑡 is the time interval between the current and next time instance. 

𝜔′ is the current gyroscope angular velocity reading. 𝜀 is the error model of the gyroscope. 

 

Gyroscope typically has a model of: 

 

𝜔′ = 𝜔 + 𝑏 + 𝜂 
(3.39) 

 

𝜔 is the true angular velocity, 𝑏 is the bias, 𝜂 is the Gaussian noise with zero-mean. Bias is 

a constant offset in reading due to temperature. Therefore, it is a best practice to remove 

the bias. The bias removal is done by observing the long-term output and applying a 

constant offset to the gyroscope reading. 

 

IMU tilt angle is typically calculated as a complementary between the solution from 

gyroscope and accelerometer signals. The simplest form can be described as a ratio 

between the two types of signal, for example, the roll angle: 

 

𝜃(𝑡) = 𝛼(𝜃(𝑡 − ∆𝑡) + 𝜔′∆𝑡) + (1 − 𝛼) (
𝐴𝑦′

𝐴𝑧′
)  (3.40) 
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When stationary, the solution of the gyroscope is close to zero, so the output will be from 

the solution for the accelerometer, which has no drift and no bias, assuming the sensor is 

calibrated and filtered to minimise the noise. When in motion, the gyroscope solution will 

change the tilt angle quickly, where the accelerometer won't be useful due to the additional 

acceleration.  

 

To compute the orientation information accurately in real-time, many sensors deploy a data 

fusion algorithm between the gyroscope and accelerometer, so the output has minimised 

error in the output angle. The next section describes one of the common approaches, 

Kalman Filter, to illustrate how gyroscope and accelerometer complement each other in their 

angle outputs.  

 

 

3.2.4 Data fusion 
 

Kalman filter is a popular data fusion technique used in IMU's angle calculation. The general 

principle of the Kalman filter is to establish and continuously update a covariance matrix of 

some unknown variables so that the error between the measurement and the prediction 

based on the system is minimised. The Kalman filter has been well established for decades 

[158]. The full state space derivation can be found in Thack and Lacey [159]. The 

mathematics operation of the Kalman filter in different applications is also mentioned in Kim 

and Bang [160]. This section only provides an overview of the Kalman filter's operation to 

avoid redundancy and provide a context to its application in IMU.  

 

The operation of a Kalman filter consists of two stages: prediction and update. The next 

states and state error covariance matrices are predicted based on the system model, a state 

transition matrix. Once the new measurement is made, different measures and predictions 

are made, called residual, and the Kalman gain is computed. Then, the state estimate and 

the state error covariance are updated with the computed Kalman gain. These updated state 

and state error covariance will be used in the next prediction. The equations of each 

operation found in the literature [159] are provided below. Note that the Kalman gain is 

multiplied with the residual to produce a correction to the state estimate so that it can be 

viewed as a conversion from the measurement to the state variables.  

 

Table 3.2: Mathematics equations of Kalman filter in each operation 
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Operation Equations 

Initial estimate 𝑥𝑘−1, 𝑃𝑘−1  

Prediction 𝑥𝑘
− = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘   

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄  
Kalman Gain 𝐾𝑘 = 𝑃𝑘

−𝐻𝑇(𝑅 + 𝐻𝑃𝑘
−𝐻𝑇)−1  

Update  𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘

−)  
𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻) 𝑃𝑘

−  
 

𝑥𝑘 is the state vector at time k, 𝑃𝑘 is the error covariance matric at time k; 𝑧𝑘 is the actual 

measurement. 𝐴 is the state transitional matrix between time k and time k+1, 𝐵 is the input 

transitional matrix, 𝑢𝑘 is the input to the system, 𝐾𝑘  is the Kalman gain, 𝐻 is the transitional 

matrix between measurement and state. 𝑄 and 𝑅 are the covariances of the two noise models for 

𝑥  (the process) and  𝑧 (the measurement), respectively. Kalman filter is a tool to better 

estimate the output under the influence of known error. It could be combined with other 

techniques to enhance the data.  

 

Figure 3.4: Flow chart diagram of a Kalman Filter operation 

 

In more recent studies [161, 162], researchers are developing data fusion techniques to 

estimate poses (three rotations and three translation) of the IMU. These often include 

additional vision sensor [163] and a known model of the system [164]. A model allows the 

prediction of reading between the accelerometer and gyroscope. It can provide a more 

accurate update on the dynamics. Modelling may not be available in a situation where the 

sensor placement is unknown. For the knee brace used in this study, the distance between 

the thigh IMU to the hip joint, and the shank IMU to the foot are unobservable. This distance 

 

Kalman Gain 

Project into k+1 Update Estimate 

Update 
Covariance  

Initial Estimate 

Measurements 

Updated State Estimates Projected Estimates 
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would be different for different user. Once again, this study focuses on algorithms to detect 

gait phases using current measurement technology; the development of more accurate pose 

estimation of the body is beyond this study's scope. The next section describes the 

implementation and performance of the IMU in this study. 

 

3.3 IMU Performance 

 

3.3.1 Implementation of the IMU 
 

The implementation of the IMU in this study takes advantage of existing sensor technology 

and techniques. InvenSense's DMP™ has a proprietary data fusion algorithm for their IMUs, 

which would compute a quaternion output from its embedded accelerometer and gyroscope. 

We deploy the manufacturer's recommended practice to prepare and configure the sensor 

for the DMP™ calculation.  

 

Due to the manufacturing uncertainty and the temperature factor, it is crucial to calibrate the 

sensor. The output should be as close to 1g in the z-axis as possible when stationary on a 

flat surface.  

 

A program is made to calibration the IMU in a stationary position on a flat surface at 

laboratory room temperature. The program will take raw data from the IMU continuously 

until the offset applied on the sensor's reading gives a stable output within a user-specific 

accuracy. The offset is then applied to the sensor's onboard processor directly by editing 

the offset values in its register. This static calibration is aimed to reduce the bias and any 

mechanics defect the sensor has and make the sensor output exactly 1g in the z-axis. The 

pseudo-code of the program is below: 

 

 

 

Read sensor  for the first time 
 

While  
 Calculate moving average of sample in buffer  
 Apply mean as offset to the sensor 
 Check if the difference between the reading and the mean is below noise 
tolerance 

  If so, start counter of valid offset 
 If the number of cycle with valid offset is bigger than 10, exit calibration 

End 
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The offset required for the thigh IMU is shown below. This offset will remove the constant 

error from the sensor in each axis, three linear accelerations and three rotational velocities. 

  

 

 

In the example above, the calibration has significantly reduced the error caused by the bias 

and the defect, from 7, 11, 14 bits in raw gyroscope data to 1, 1, 1 bit.  

 

However, integration drift still occurs when the IMU is in motion due to the accumulated error 

in digital integration. Please refer to section 3.2.3. 

 

It is known that DMP™ use an advanced data fusion technique to compute the IMU's 

quaternion output to provide a consistent reading. The technique has the ability to update 

and correct in real-time. It is evident from the response of the IMU's quaternion when 

converted to YPR angles. The figure 3.5 below shows the computed yaw angle of the shank 

IMU captured after startup. The signal requires a short amount of time after startup for the 

output signal to settle.  

 

For a 6-axes IMU, the Yaw angle would be unreferenced and should be drifting without 

correction. However, DMP seems to have an internal steady-state correction for that as well. 

This yaw correction could be achieved by modelling the drift over a long time and applying 

a gradient offset to the reading. The information on the algorithm is proprietary, and it is 

unclear how exactly DMP calculate its output. Nevertheless, we can still evaluate the 

performance of an IMU and determine whether this is a suitable sensor.   

//Thigh IMU   
//Sensor readings with offsets:  5 8 4090 1 1 1 

//Your offsets: -2207 -6489 1618 -6 -10 -13  
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Figure 3.5: Yaw angle of the calibrated Shank IMU including the first 5 minutes after startup 

 

We could consider the sensor output in two operational conditions to evaluate the 

performance of the IMU in identifying its orientation angles. These conditions are to evaluate 

the performance in the reliability of the sensor reading during static and dynamic 

environments.  

 

The next section will describe the experiment conducted to verify the IMU implementation's 

performance to ensure its output is reliable. 

 

3.3.2 Performance Tests 

 

The IMU measurement is collected after they are integrated with the brace, so the results 

from this experiment would also verify the performance of the sensor on the knee brace. 

IMU sensors are calibrated and configured in accordance with the procedures described in 

section 3.2.3 implementation. 

 

Figure 3.6 shows the experiment setup of the performance test. Actuation unit and 

quadrature encoder are temporarily installed to verify the IMU performance.  
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Figure 3.6: Experiment setup of the IMU performance tests. Orange: the location of the actuation which drive the shank 
segment up and down (the red arrows). Purple: the location of the encoder to measure the angle difference between the 
brace’s segment. 

 

1) Static test: 

 

In this section, we are interested in the IMU measurement noise; therefore, a reference 

system that indicates the true angle is not required. The study of evaluating the IMU's true 

angle is explored in the continuous motion test. We can observe the error between the IMU 

indicated angles to the true angle from an encoder.  

 

The static test was conducted to evaluate the IMU performance in maintaining a stable 

reading. The brace is secured in a vertical position on a pole. Since we are interested in the 

IMU measurement noise, a reference system that indicates, the true angle is not required. 

The study of evaluating the IMU's true angle is explored in the dynamics test. We can 

observe the error between the IMU indicated angles to the true angle from an encoder. The 

study assumes both IMUs are identical in performance and the thigh sensor is intentionally 

uncalibrated to see the data performance before and after the calibration. 

 

Ten trials of 5-minute data are sampled for the statics test. I obtained the steady-state output 

of the IMU's YPR angles separately. The system reset is done electronically from a distance 

to minimise the chance of physical contact with the system during and between the trials. 

The reset is done to make sure the data fusion begins anew, and the output angles are freed 

from any historical effect of the previous sampling.  

Swing up 

and down 
Temporary 

actuation 

Quadrature 

encoder 
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Matlab is used to perform all statistical analysis. The data was used for noise analysis to 

determine the standard error of the sensor's measurement. The noise is the fluctuation in 

the data, and it is calculated as the difference between two consequent data points. The 

standard deviation of the measurement is the root mean square of the noise, and it can 

describe the noise level. The mean standard deviation across all trials is the expected noise 

of the IMU measurement. The standard deviation of the standard deviation across all trials 

can describe the level of fluctuation of the noise. The repeatability of the measurement is 

analysing with the difference in the mean angles across the trials. Figure 3.8 show the 

standard variation of the static reading of the calibrated IMU over the ten trials. Table 3.3 

summarises the statistic of the IMU's YPR angles and their error.  

 

Table 3.3: Summary of the statistical measure of the static trials 

 intertrial mean intertrial SD mean(intratrial SD) SD (intratrial SD) 

Yaw 0.044104 8.93271E-05 0.000209 1.96779E-05 

Pitch -0.05999 5.66125E-05 0.000192 2.23053E-05 

Roll -0.09649 4.13737E-05 0.000177 3.08353E-05 

 

The performance of the IMU is very accurate and consistent during static conditions. Since 

the reading of the angle is in degrees. The variation of the output on average is at most 

0.0002 degrees in the yaw angle.  
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Figure 3.7: Static noise of Yaw-Pitch-Roll angles of the calibrated (top) and the controlled (bottom) IMU 
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Figure 3.8: Standard deviation of the static trials of the calibrated IMU. 

 

2) Continuous motion test: 

 

The continuous motion test was conducted to evaluate the IMU performance in following the 

true motion of the attached body. The brace is secured on a bench via the thigh piece. The 

shank piece is unrestricted, and the knee joint is free to rotate. A quadrature encoder is 

installed to read the rotation of the knee joint. The actuation is a rotary motor which pulls the 

shank piece to extend the knee joint, and the gravity will flex the knee joint when the motor 

reduces its torque output. The purpose of the test is to observe the motion error of the IMU 

from the encoder angle during continuous motion.  

 

The test is conducted with the following procedure. Firstly, the brace and actuation module 

are secured on a test bench. Then, a program is run to extend the brace joint for 0.5s, and 

then switch off the actuation for another 0.5s. The 1s cycle is repeated for the next 5 minutes. 

These 5 minutes of continuous motion will form one trial of the test. Each trial is repeated 

ten times at different time interval over a period of 5 hours.  
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In this test, we will not power cycle the device. Since there is no control over the kinematics 

of the brace, and we cannot guarantee the IMU would start from the same position, the quick 

calibration programmed upon startup might introduce more error to the reading.  

 

Since both systems observe the same motion over the duration, the peaks and troughs from 

the two datasets should match each other. And, we are more interested in the consistency 

between the two system instead of obtaining an accuracy trajectory of the motion. Matching 

these points would be equivalent to synchronous the two datasets with time. Results 

analysis will only use these matching points.  

 

Two-sample Kolmogorow-Smirnow tests (KS test) check if the data between two samples 

are from the same continuous distribution at the 5% significance level, see code below: 

 

 

 

The result of the test rejects the null hypothesis that the two datasets belong to the same distribution. 

 

It is possible that there is an offset in their angle measurement. Since we are interested in whether 

the IMU could track the same motion as the encoder, we can use the KS test after removing the 

mean of each type of turning points from both datasets. KS test cannot reject that the dataset belongs 

to the same distribution after offsetting the mean values from each type of turning points between 

IMU and the encoder, see code below: 

 

 

 

>>[ks2hp,ks2pp] = kstest2(enc_peak,IMU_peak) 

>>[ks2ht,ks2pt] = kstest2(enc_trough,IMU_trough) 

ks2hp =  logical   1 

ks2pp =   2.8937e-34 

ks2ht =  logical   1 

ks2pt =   3.2575e-40 

 

>>[ks2hp,ks2pp] = kstest2(enc_peak-enc_peak_mean,IMU_peak-IMU_peak_mean) 

>>[ks2ht,ks2pt] = kstest2(enc_trough-enc_trough_mean,IMU_trough-

IMU_trough_mean) 

ks2hp =  logical   0 

ks2pp =    0.9870 

ks2ht =  logical   0 

ks2pt =    0.9445 
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The above two tests indicate that the two samples have a different mean, but the distribution around 

their means are very similar to a p-value at 0.9445 and 0.987 for troughs and peaks respectively. It 

is expected that they shared the same variance but different mean.  

 

Two-sample T-test and F-test are performed to check if each type of turning points shares the same 

mean or the same variance, respectively.  

 

 

 

T-tests reveal the two systems have a different mean, and the F-tests reveal the two systems are 

from a normal distribution with the same variance.  

 

The same analysis is performed on all 5-minute samples over the 5 hours duration. Table 3.4 

summaries their statistics and the tests.  

 

Table 3.4: Intertrial statistical results 

 IMU Encoder ∆ mean 

Peak 88.5036 [2.8457] 82.3059 [2.6183] 6.1977 

Troughs 31.3592 [1.5891] 25.7046 [1.6396] 5.65458 

Average   5.9261 

 

The continuous test result indicates a mean difference between the two systems of about 6 

degrees, with peak having a greater difference of about 6.2 degrees, whereas the troughs 

are about 5.65 degrees. Figure 3.9 and 3.10 shows the mean and standard deviation 

between the system on each event has an apparent separation.   

 

>>[thp,tpp] = ttest2(enc_peak,IMU_peak) 

>>[tht,tpt] = ttest2(enc_trough,IMU_trough) 

>>[vhp,vpp] = vartest2(enc_peak,IMU_peak) 

>>[vht,vpt] = vartest2(enc_trough,IMU_trough) 

thp =     1 

tpp =   3.9742e-48 

tht =     1 

tpt =   3.8369e-74 

vhp =     0 

vpp =    0.4023 

vht =     0 

vpt =    0.9157 
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Table 3.5: Results of continuous test between the IMU and the reference encoder system. 

 Start IMU Encoder ∆ mean KS-test T-test F-test 

1 0:00 87.6127 

[2.0378] 

81.8185 

[1.8659] 

5.7942 1 2.8937e-

34 

1 3.9742e-

48 

0 0.4023 

  30.0556 

[1.1332] 

24.8778 

[1.1458] 

5.1778 1 3.2575e-

40 

1 3.8369e-

74 

0 0.9024 

2 0:22 89.3719 

[2.3499] 

83.1061 

[2.0655] 

6.2658 1 1.4849e-

33 

1 6.2572e-

51 

0 0.1944 

  31.0122 

[1.2968] 

24.9067 

[1.2965] 

6.1055 1 1.6021e-

45 

1 1.0551e-

84 

0 0.9977 

3 0:47 88.7948 

[2.9571] 

82.6383 

[2.6856] 

6.1565 1 4.0233e-

26 

1 4.1825e-

37 

0 0.3300 

  30.9848 

[1.6843] 

25.4604 

[1.6907] 

5.5244 1 1.0129e-

38 

1 1.6719e-

60 

0 0.9697 

4 1:52 90.9475 

[2.9971] 

84.5185 

[2.7940] 

6.4290 1 5.5918e-

34 

1 3.0109e-

50 

0 0.4108 

  30.7323 

[1.6048] 

24.9469 

[1.6778] 

5.7854 1 6.7989e-

58 

1 2.4848e-

86 

0 0.6036 

5 2:13 90.5600 

[2.7463] 

84.1730 

[2.5441] 

6.3870 1 2.7792e-

30 

1 2.6079e-

42 

0 0.4391 

  31.2198 

[1.7507] 

25.4337 

[1.8150] 

5.7861 1 4.2275e-

39 

1 2.3063e-

59 

0 0.7167 

6 2:34 90.7070 

[2.4071] 

84.2202 

[2.2685] 

6.4868 1 3.9888e-

37 

1 2.2750e-

54 

0 0.5312 

  31.2152 

[1.4543] 

25.3623 

[1.4859] 

5.8529 1 1.3065e-

48 

1 3.2706e-

80 

0 0.8203 

7 2:59 89.1888 

[3.3251] 

82.8488 

[3.1424] 

6.3400 1 1.2851e-

23 

1 2.1824e-

35 

0 0.5472 

  31.7222 

[1.8297] 

26.0210 

[1.9584] 

5.7012 1 4.0212e-

41 

1 9.0343e-

61 

0 0.4692 

8 3:39 88.4079 

[2.3069] 

82.1304 

[2.1773] 

6.2775 1 2.0190e-

44 

1 4.7957e-

62 

0 0.5158 

  31.6263 

[1.4652] 

25.9625 

[1.4789] 

5.6638 1 3.2357e-

52 

1 2.3423e-

88 

0 0.9161 
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9 4:30 82.9337 

[3.1062] 

77.1273 

[2.8244] 

5.8064 1 3.3958e-

24 

1 4.7622e-

37 

0 0.2988 

  32.8854 

[1.5756] 

27.5263 

[1.6052] 

5.3591 1 1.8705e-

47 

1 5.9166e-

73 

0 0.8385 

10 5:00 86.5115 

[4.2234] 

80.4777 

[3.8157] 

6.0338 1 7.3784e-

07 

1 2.8342e-

08 

0 0.5571 

  32.1377 

[2.0963] 

26.5481 

[2.2414] 

5.5896 1 9.3867e-

13 

1 6.3783e-

16 

0 0.7029 

1 reject the hypothesis, whereas 0 cannot reject the hypothesis, ∆ mean is the difference between the IMU’s and encoder’s 
mean measurement.  

 

The T-test confirms the reading of the two systems does not have the same mean. However, 

the F-test cannot reject that the two systems have the same variance.  

 

The major reason the analysis matches the order of peak and trough between the two 

systems is to ensure each system captures the same moment during the trial. One limitation 

of the actuation of the brace is that it is an open-loop time-based control. It does not control 

the movement kinematically; therefore, the maximum extension and flexion of the brace 

could be indeed different every cycle due to the uncontrollable friction in the physical system. 

 

 

Figure 3.9: The mean and one standard deviation of the maxima of the IMU and encoder measurement across the ten 
five-minute intervals over the five hours 
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Figure 3.10: The mean and one standard deviation of the minima of the IMU and encoder measurement across the ten 
five-minute intervals over the five hours 

 

3) Normality test 

 

Normalities are typically tested with normality tests such as Kolmogorov-Smirnov (KS), 

Anderson-Darling (AD), and Jarque-Bera (JB) test. The basic assumption of these normality 

tests is that the distribution has enough data to be continuous. The theory of the normality 

test is based on the expected distribution of values for given sample size or the curvature of 

the distribution at different regions. 

 

Even if the KS-test reject the noise data belong to a normal distribution in Table 3.4, we 

could not conclude that there is still a bias in the sensor measurement. This is due to the 

assumption of normality test that the dataset is continuous, and the measurement error in 

this study is highly discretised.  

 

The fluctuation of the IMU data is about +/- one to two-bit in value, which make the 

distribution highly discretised and highly truncated. The method that uses the curvature of 

the distribution to check normality failed because the discrete values could not reconstruct 

the bell curve. The methods that evaluate the expected number of samples within each 

section of the distribution failed for a large dataset because of the absence of data samples 

with a value above the 2 sigmas range. 
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The limitation of the normality test is explored with normally distributed random numbers 

generated in Matlab. An array of normally distributed random numbers are generated using 

Matlab function, randn(), with 10,000 samples. Two arrays are derived from the control 

array: the first array is its discretisation at each sigma range. The second array has a 

truncated range excluding any value above two sigmas. These conditions are then tested 

against three of the most common normality tests available in Matlab, KS test, AD test, and 

JB test.  

 

Table 3.2.4 shows the p-value of each condition against the normality test listed in the first 

column. The top row shows the graphical representation of the generated data. Only JB-test 

can identify the data set is normally distributed after discretisation. All tests failed to identify 

the sample is normally distributed if the tails are truncated.  

 

 

Table 3.6: Normality test of randomly distributed random values of 10,000 samples with 

discretised and truncated condition. 

Sample 

   

 control Low-resolution Truncated Low-res 

KS-Test 0.5171 0 0 

AD-Test 0.4264 5.0000e-04 5.0000e-04 

JB-Test 0.2563 0.2804 1.0000e-03 

 

Normality of the current data succeeds when it is broken down into smaller groups around 

500 samples because it cannot accurately represent the data in its entirety.  

 

Therefore, there is a research gap in testing the normality of highly discrete digital data. 

Without the ability to determine if a data set is normally distributed, one cannot be sure 

that there isn’t any skewness in its error.  
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3.3.3 Performance Outcome 
 

This section has provided a clear evidence for the suitability of using IMU to capture the 

lower limb movement and interpret the data consistently with gait analysis practices. Three 

tests are conducted to verify the IMU performance in measuring its orientation data. The 

quaternion output is transformed into Euler’s angle which could be interpreted in the same 

way as ISB’s recommendation for limb movement.  These tests have proven IMU to be able 

to capture limb movement reliably with a proper implementation.   

 

After calibration, the IMU can provide a reliable static reading with reading close to zero and 

cannot be statistically reject from belonging to a normal distribution with a mean of zero.   

 

The IMU reading is also useful in capturing the relative change in motion during constant 

movement. A reference system using an encoder on the joint is being compared with the 

different in roll angle between the thigh and shank IMU. The difference between the IMU roll 

angles and the joint encoder is no larger than six degrees on average. It is statistically proven 

that the IMU and encoder measurement belong to the same distribution with a different 

mean. The ability to capture consistent movement of the limb would allow a consistent 

feature identification from the captured data to detect gait phases, and hence suitable to the 

study.  

 

The normality test failed to verify if the fluctuation of the IMU reading is pure white noise. 

The limitation of existing mathematics is that the dataset must be continuous. The highly 

discretise fluctuation of the digital signal will make any dataset to be rejected from belonging 

to a normal distribution with a large sample size. 
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CHAPTER 4 : ADAPTIVE REAL-TIME DETECTION ALGORITHM 

 

Overview 

 

This chapter introduces a novel adaptive real-time gait phase detection rule-based algorithm 

based on establishing the normative gait of the user by recording and updating the mean 

and standard deviation parameters of attached limb kinematics. The algorithms are tested 

on its intended application using a staircase with 18 steps across 21 healthy participants 

between 20s and 30s years old. The results show the algorithm performs consistently 

accurate despite the diversity of height, weight, average cadence among the participants. 

For consistency sake, the mathematical symbol, 𝜓 would represent the angle measurement 

in this chapter. 

 

4.1 Algorithm Development 

 

The development of the algorithms consists of two major part. The first is the event selection, 

which selects a feature associated with the possible gait phases during stair ambulation 

following the biomechanics description in Chapter 2.2. The second part is the complete 

architecture and rules definition that guarantee the detection of the selected event in a robust 

and timely manner. The data used when designing the algorithms are gathered before the 

experiment and those subject are not invited in the real-time experiment in section 4.2. 

 

4.1.1 Event Selection 

 
Our definition of gait phases in stair ambulation was derived from published biomechanical 

[104, 108, 110]. Our algorithm uses the outputs from the IMUs on the knee brace described 

in Chapter 3. It is limited to capture the thigh and shank segment's kinematics only, 

restricting our definition of the gait phase occurrence to kinematic descriptions only.  
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Figure 4.1: Figure shows the angle 𝜓 captured by IMU in the thigh and shank section of the brace. The red arrows indicate 

the Y axes, the blue arrows indicate the Z axes.  

The actual phase occurrence is identified by an assessor from a dataset of five trials of a 

participant in both stair ascent and descent. Three phases of stair ascent and four phases 

of stair descent could be distinctly defined by kinematic events from Chapter 2.2 and the 

sample dataset found them closely matching the identified phases by the assessor. It is 

assumed that these kinematics events represent the gait phase occurrence as defined in 

Table 4.1. The selected phases were weight acceptance (WA), foot clearance (FC), foot 

placement (FP) for stair ascent, and WA, controlled lowering (CL), leg pull through (LP) and 

FP for stair descent. The psi symbol, 𝜓, is used to present the angle variable throughout this 

chapter of the thesis. The subscript of t, s, and 𝛥 represent the object in which the angle is 

referring to. They are the thigh, shank and their difference respectively, see Figure 4.1. 

 
Table 4.1: Kinematic events for the detection of gait phases 

Phase Stair Ascent Stair Descent 

WA Min �̇�𝛥 Min 𝜓𝛥 

CL - Local Max 𝜓𝛥 or Inflection point of 𝜓𝛥 

FC Min 𝜓𝑡 - 

LP - Max �̇�𝛥 

FP Max 𝜓𝛥 Max 𝜓𝛥 

WA = Weight Acceptance, FC = Foot Clearance, CL = Controlled Lowering, LP = Leg Pull through, FP = Foot 
Placement, Min = minimum, Max = Maximum. 

 

4.1.2 Algorithm Design 

 

𝜓𝑡 

𝜓𝑠 

𝜓𝑠 = 𝜓𝑡 − 𝜓𝑠 
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The algorithms consisted of three stages that adjust the value and timing of each event for 

each user. The stages were calibration, real-time detection, and continuous step-wise 

update. The algorithm operates with a sample size of three, refer to (4.1) for the definition. 

Three is the minimum size required to detect extrema and inflection points, see algorithm 

formulation in the next subsection.  𝜓𝑖(𝑛)  is the measurement of  𝑖 variable, {𝑡, 𝑠, 𝛥}, at 𝑛 

program cycle. Then, 𝑡(𝑛), is the time stamp at n program cycle. Time derivative was 

performed after the sample was updated with the newest data. Figure 4.2. provides an 

overview of the algorithm between the stages. 

 

𝑠𝑎𝑚𝑝𝑙𝑒 = {(𝑡(𝑛 − 2), 𝜓𝑖(𝑛 − 2)), (𝑡(𝑛 − 1), 𝜓𝑖(𝑛 − 1)), (𝑡(𝑛), 𝜓𝑖(𝑛))},

𝑓𝑜𝑟  𝑛 > 2; 𝑖 ∈ {𝑡, 𝑠, 𝛥}  
(4.1) 

 

In the calibration stage, the algorithm initiated gait parameters including the range of motion 

(ROM), 𝜑𝑟𝑜𝑚,𝑖, the values and timing for the maximums, 𝜑𝑚𝑎𝑥,𝑖 and 𝑡𝑚𝑎𝑥,𝑖, and minimums, 

𝜑𝑚𝑖𝑛,𝑖 and 𝑡𝑚𝑖𝑛 ,𝑖, of 𝜓𝑡, 𝜓𝑠, and 𝜓𝛥 and their derivatives of the first complete step. 𝜑𝑗,𝑖 and 𝑡𝑗,𝑖 

are respectively the value and timing of 𝑗 feature of 𝑖 variable. ROM was defined by the 

difference between the maximum and minimum measurement angles during the first 

complete step.  

 

 
Figure 4.2: Top-level flowchart diagram of the algorithms: from the sampling and derivatives of input data to the 
calibration stage, and real-time detection and step-wise update. The input data are the current timestamp, 𝑡(𝑛), and 

measurement, 𝜓𝑖(𝑛), where 𝑛 is the program cycle, and 𝑖 is type of variable 
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 initialised? 

Calibration Real-time Detection and 
Step-Wise Update 

No Yes 

𝜓𝑖(𝑛), 𝑡(𝑛) 
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Figure 4.3: The calibration stage: Maximum and minimum of the 𝜓𝑡, 𝜓𝑠, and 𝜓𝛥 and their derivatives are continuously 
monitored until one complete step is detected after all other turning points are found in other variables. 

 

Since the algorithm had no previous knowledge of any gait parameter, the first complete 

step was determined by a sequence of events. The algorithm checked for the first 

occurrence of a 𝜓𝛥 maximum; this marked the beginning of the calibration cycle. Then, it 

populated the critical values of all other events. All maximum and minimum values must be 

found after the occurrence of a 𝜓𝛥 maximum, for the second 𝜃𝛥 maximum to mark the end 

of the first step and initialise the first gait cycle time, 𝑇 (5), and the ROM of all variables. 𝑇(𝑁) 

is the gait cycle time of the N gait cycle. If the next 𝜓𝛥 maximum was found before other 

events. It indicated the previous 𝜓𝛥  maximum is not the true maximum and resets the 

calibration cycle. Figure 4.3. shows the flowchart diagram of the calibration stage.  
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Figure 4.4: A real-time detection example: the algorithm uses previously established parameters to search for the first 
instance of event occurrence within the threshold window.  

 

𝑇(𝑁 − 1) = 𝑡𝑚𝑎𝑥,𝜓𝛥
(𝑁) − 𝑡𝑚𝑎𝑥,𝜓𝛥

(𝑁 − 1), 𝑓𝑜𝑟 𝑁 > 1 
(4.2) 

 

During the real-time detection stage, the algorithm calculated the thresholds for each 

targeted event based on the parameters established in the calibration and searches for the 

specific event within its threshold window. The threshold for the kinematics value of the 

event was set at ±10% of the maximum ROM of each respective variable. The threshold for 

the timing of the event was ±10% of the most recent gait cycle time from the previous 

instance. Figure 4.4. shows an example of FP detection for stair descent. The threshold 

window (the blue rectangular box) is the region of interest of the next FP phase occurrence 

based on existing parameters. The green line represents the current mean of maximum 𝜓𝛥, 

hence the threshold angular boundary of the threshold window is for the next peak detection 

is ±10% of the maximum ROM around that mean values. The ROM is shown with the black 

double arrow line. The red double arrow line represents the projection of the most recent 

gait cycle time, 𝑇(𝑛). Then, the timing boundary of the threshold window for the next peak 

detection is ±10% of that gait cycle time from the current peak detection instance. The first 

event detected within this window will be the beginning of the next FP phase. This procedure 

of thresholding and estimation of next detection is done for each kinematics features of each 

 

𝑇(𝑛) 

𝜓ത𝛥,𝑚𝑎𝑥 

 ROM 
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variable. 

 

In the event of a missed detection, the algorithms took an offset from the next detected 

phase to estimate the occurrence of the missed phase in accordance with the gait 

partitioning found in the literature [104]. For example, a missed FP had occurred in stair 

ascent because the next possible IC was detected before the maximum of 𝜓𝛥, and the timing 

was outside the 10% tolerance. The missed FP was then assumed to have occurred at 18% 

of the gait cycle time before the newly detected IC point. The gait cycle time would not be 

updated, because the assumed occurrence is not a detection of the maximum of 𝜓𝛥. 

 

For stair descent, the CL phase occurred near an event that is not established in the 

calibration stage, and therefore it is treated as a missed detection during the calibration 

stage. The procedure for a missed event described in the previous paragraph is applied 

during the real-time detection stage. 

 

A step-wise update operated in parallel with real-time detection. This update aims to 

establish the normative gait parameters for the user. Upon each successful detection, the 

algorithm updated the respective parameters by taking the mean in both the measurement 

values and their timings using (4.3), where 𝑃𝑗 is the parameter of the 𝑗 event, and 𝑃 is either 

the angle measurement or the timing; 𝑛𝑗 is the number of occurrences of 𝑗 event. The ROM 

of the new cycle will be compared to the existing ROM, and updated if the new ROM had 

increased. This is to account for the transient step from standing, which has a smaller peak 

value than a progressive step, during the calibration stage. The gait cycle time was updated 

to the time difference between two successful consecutive 𝜓𝛥  maximum detection (FP 

phase). Figure 4.4. shows the flowchart diagram of the real-time detection and step-wise 

update stage.  

 

𝑃�̅� =
(𝑛𝑗𝑃ത𝑗+𝑃𝑗)

𝑛𝑗+1
, Then 𝑛𝑗 = 𝑛𝑗 + 1 (4.3) 

 

Long-term memory storage was available to store the parameters calculated in previous 

trials. The algorithm could use previously saved parameters instead of re-calibrating the first 

step of the next trial. This feature would allow the algorithm to respond to the first step of the 

stair gait if needed.  Since we would like to verify the function of the calibration stage, we 
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decide not to use this feature for this study. 

 

 
Figure 4.5: The real-time detection and update stage: the sampling data are checked with both the event feature and the 
threshold windows. A missed event is flagged if no event is detected within the entirety of the threshold. A successful 
detection in both will update all parameters and thresholds accordingly. Gait cycle time update when next 𝜓𝛥 maximum is 
detected. 

 

4.1.3 Algorithm Formulation and Implementation 
 

The previous subsection has layout the kinematics event and the general workflow of the 

algorithms. The specific condition for detecting a phase can be generalised as a condition 

of the turning points and the inflection points within an adaptive window. The conditions can 

be formulised and modularised, and then applied to each targeted kinematics event. 

 

It is possible to determine turning point and inflection point by examining the first and second 

derivatives of the dataset. Hence, three data sample is the minimum number to determine 
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the nature of these critical points. The mathematical definition of maximum is where the 

derivative function changes from positive to negative. Minimum is where the derivative 

function changes from negative to positive. Rising inflection point is where the second 

derivation function changes positive to negative. Falling inflection point is where the second 

derivation function changes negative to positive.  

 

Since our data is digitalised, and we cannot guarantee the turning points to be stationary, 

we will have to observe the rate of changes on both side of the data samples. The direction 

of the rate of change is observable by comparing the consecutive data sample. Without the 

exact calculation of the derivative increases the algorithmic efficiency of the logical 

operation. There may also be the possibility to have a saturated turning point due to the 

digitalised data. We considered a saturated turning points by allow an equal value between 

the current sample and the previous one. This saturation condition does not apply to 

inflection points, so a saturated inflection would be recognised as a local saturated 

extremum followed by a flat line. Given the variable we are observing for inflection points is 

the first derivative of the angle data, the detection of this point is inherited one sample slower 

than the turning points. The definition of each type of critical points are summarised in Table 

4.2 below.  

 

Table 4.2: Conditions of critical points 

Type  Condition 

Maximum 𝜓𝑖(𝑛 − 2) < 𝜓𝑖(𝑛 − 1) & 𝜓𝑖(𝑛 − 1) ≥ 𝜓
𝑖
(𝑛) 

Minimum 𝜓𝑖(𝑛 − 2) > 𝜓𝑖(𝑛 − 1) & 𝜓𝑖(𝑛 − 1) ≤ 𝜓
𝑖
(𝑛) 

Rising inflection 𝜓𝑖
̇ (𝑛 − 2) > 𝜓𝑖

̇ (𝑛 − 1) & 𝜓𝑖
̇ (𝑛 − 1) < 𝜓𝑖

̇ (𝑛) 

Falling inflection 𝜓𝑖
̇ (𝑛 − 2) < 𝜓𝑖

̇ (𝑛 − 1) & 𝜓𝑖
̇ (𝑛 − 1) > 𝜓𝑖

̇ (𝑛) 

 
A flag is available for the detection of each type of critical points. The algorithm is constantly 

checking and updating these flags during operation. The flag of these critical points is the B 

signal output of the landmark condition in Figure 4.5 for their respective gait phase in Table 

4.1.  

 
The output of the threshold window is parametric condition of the current sample against the 

stored historical value of those tempo-spatial parameters. The historical vale for the 

parameters is created from the calibration stage. The logical condition of finding the 

maximum and minimum landmarks within the calibration step is defined in Table 4.3. 𝑃𝑗,𝑚𝑎𝑥 

is the most recent occurrence of a maximum of 𝑃𝑗  parameter, where as 𝑃𝑗,𝑀𝐴𝑋  is the 
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historical value of the maximum of 𝑃𝑗 parameter during the gait cycle. The calibration stage 

records the maximum and minimum of each variable in one gait cycle. It is an important 

process that make the algorithm adaptive to each user. It set up all the parameters required 

to the following detection in the real-time detection stage.  

 
Table 4.3: Conditions of updating turning points in calibration 

Type  Condition 

Maximum update 𝑃𝑗,𝑚𝑎𝑥 ≥ 𝑃𝑗,𝑀𝐴𝑋 

Minimum update 𝑃𝑗,𝑚𝑖𝑛 ≤ 𝑃𝑗,𝑀𝐼𝑁 

 

The implementation of recording the maximum and minimum of each variable is done by 

building a class structure that has a list of property including the turning points value, the 

mean of those turning points, the most recent timing of the turning points. The class structure 

can be passed to the gait phase with the appropriate kinematics events. This way we can 

use the same process for different landmarks for different phases. This data management 

would allow a smaller memory as information are recycled and shared, while protecting the 

relevant data of each gait phase from other gait phases that use the same critical point such 

as FP for stair ascent and descent. Both FP for ascent and descent are using the same 

variable for detection, so they would have different record of the timing and value for the 

detection.    

 

 
 
The modularised implementation of each detection condition and for the specific landmark 

for a gait phase, allow real-time operation of the detection algorithm on a microcontroller 

with limited computational power and memory.  

 

Class critical_point { 

Public: 

long int occur_time; 

float recent_value; 

float mean_value; 

int occurance_count; 

void update(void){ 

 mean_value = (mean_value* occurance_count + recent_value)/ 

(occurance_count+1); 

occurance_count = occurance_count+1; 

} 

}; 
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4.2 Experiment 

 

 

Figure 4.6: A participant walking down a staircase in an out-of-lab environment wearing the measurement brace 

A convenient sample of 21 healthy participants was recruited (18 males) from the university 

community. Participant profiles are summarised in Table 4.4. Participants were excluded if 

they had previously been diagnosed with any neurological or orthopaedic condition, had a 

history of lower limb joint surgery, were currently experiencing lower limb pain, or had 

recently suffered a lower limb injury. A minimum sample size of 20 (significance level of 

p=0.05 and power=0.8) was required to establish a control group according to previous 

biomechanical gait studies reported in the literature [165, 166]. 

 

Demographic data were collected, including age, height, weight and leg length. Leg length 

was taken as the average value across three separate measurements using a tape measure 

from the anterior superior iliac spine (ASIS) to the medial malleolus [167]. No participant 

was found to have a leg length discrepancy. 

 

Table 4.4: Participants Profiles 

Subject  21 

Age 26.14 (3.53) [22,34] 

Height (cm) 171.93 (8.61) [152.5,189.5] 

Weight (kg) 64.99 (10.31) [50.5,90.5] 

Left Leg Length (cm) 90.09 (5.81) [78,98.5] 
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Right Leg Length (cm) 90.05 (5.83) [78,98.5] 

Average Cadence of Stair 
ascent (steps/s) 

0.85 (0.09) [0.67,0.99] 

Average Cadence of Stair 
descent (steps/s) 

0.91 (0.11) [0.68,1.13] 

Lefts Leg Length/rise* 5.30 (0.34) [4.59,5.79] 

Right Leg Length/rise* 5.30 (0.34) [4.59,5.79] 

Numbers in the cells are represented as the mean (standard deviation) [range] of the variables. *Length over rise is a 
dimensionless ratio between the participant leg length and the rise of each step of the staircase. 

 

The measurement brace was attached to the right leg of each participant. The insole 

footswitches were attached to the sole of each foot using double-sided tape. The participants 

then donned their shoes. The response from the insole footswitches was then tested. Fitting 

of the sensors/shoes was adjusted if the signal was delayed or deemed too noisy. The waist 

pack carrying the onboard microcontroller was then fitted to the participant. The data 

collected by the microcontroller from the IMUs, algorithm outputs, and insole footswitches 

signals were transmitted through a USB cable to a PC. Each trial was recorded on video for 

post hoc observation if required. No quantitative result was calculated from the video data. 

 

The participants performed the stair trials on an 18-step staircase, with each step rise 17 cm 

and run 27 cm. The staircase had a handrail on each side. The participants were advised to 

use the handrail if they felt they were at risk of falling. Participants were instructed to perform 

a step-over-step gait at their preferred speed. This study focuses on normal stair climbing 

gait; hence the transient steps, stumbling, or other non-stair climbing steps were removed 

from the data analysis. 

 

Each participant was given five to ten minutes to walk with the brace before practising stair 

ascent and/or descent. Once the participant was familiar with the device and the procedures 

of the experiment, testing commenced. Participants were given the opportunity to rest at any 

time during the experimental protocol.  

 

Prior to the first trial, the participants were asked to stand still in an upright position before 

powering up the measurement system. The trial commenced with a push-button on the 

command of the researcher. Ascent and descent trials are conducted separately.  

 

4.3 Data Analysis 
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The detection of the phases from the algorithm was operated in real-time, whereas the 

ground truth from the insole footswitches was determined in post hoc analysis. An 11-order 

moving median filter was applied to the insole signals. False-positive contacts of the 

footswitches during the swing phase and false-negative contacts during the stance phase 

were manually corrected. We considered IC is the activation of any switch inside the insole, 

whereas EC is the deactivation of all switches. 

 

The performance of the IMU-based GPD algorithm was evaluated with recall, precision, F1-

score, and the timing error against the reference insole footswitches signals. Recall or the 

true positive rate (TPR) defined the true positive detection among all true positive and false 

negative detection signals for a specific gait phase. Precision or the positive prediction value 

(PPV) defined the true positive detection among all positive detection for a specific gait 

phase. F1-score was the harmonic mean of TPR and PPV. The timing error was calculated 

by subtracting the time instant of ICs or ECs recorded by the insole switches from the time 

instant that the algorithm detected this event. We analysed the timing error in both exact 

and absolute value. Therefore, a negative value indicated an early detection, whereas a 

positive value represented a delay. We also analysed the variation (the standard deviation) 

of the timing error to show how consistent the detection timing was for each subject. 

 

4.4 Results 

 

All 21 participants completed the testing. A total of 524 trials (251 ascent and 273 descent) 

were collected, with 3419 steps (1665 ascent) included. Each step was defined between two 

IC instances of the insole footswitches; therefore, 3943 IC instances were included in the 

data analysis. 
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Figure 4.7: The detection performance of the algorithm for each selected phase. TPR = true positive rate (recall), TNR = 
True negative rate, PPV = Positive prediction value, NPV = negative prediction value 

 

Figure 4.7 provides the successfulness of the detection of each phase. This was calculated 

based on the number of detections by the algorithm of each phase, the number of true 

positive detections by the algorithm, and the number of actual occurrences of each phase. 

The CL of stair descent had the lowest F1-score and the lowest TPR. However, CL had a 

PPV of 1, meaning all the errors were false-negative predictions. The lowest PPV (0.9939) 

occurred in FC of stair ascent. The best performing detections occurred in the FP and WA 

phases for both stair ascent and descent, with ascent FP reaching an F1-score of 1 on 1665 

occasions. 



Page | 72  
 

 
Figure 4.8: The average timing performance of the algorithm for each reference event (IC or FO) in stair ascent across all 
subjects. Error bar of each bar represents the standard deviation.  

 

For stair ascent, the inter-subject means of the participants’ mean errors for IC and EC were 

-30.7 and -43.66 ms, respectively. The inter-subject means of the participants’ standard 

deviations for IC and EC were 33.86 and 18.22 ms, respectively. Most detections occurred 

early for EC with only one participant showing a more evenly distributed detection around 

the actual occurrence. Figure 4.8 provides the pooled mean timing error in stair ascent and 

the standard deviation across all subjects.  

 
Figure 4.9: The average timing performance of the algorithm for each reference event (IC or EC) in stair descent across 
all subjects. Error bar of each bar represents the standard deviation. 
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For stair descent, the inter-subject means of the participants’ mean errors for IC and EC 

were -23.43 and -16.41 ms, respectively. The inter-subject means of the participants’ 

standard deviations for IC and EC were 19.85 and 14.86 ms, respectively. The detection 

occurred mostly after the actual event. Only five participants had a significant portion of early 

detection for IC. Figure 4.9 provides the pooled mean timing error in stair descent and the 

standard deviation across all subject. Table 4.5 summarises the inter-subject mean and 

standard deviation of the participant means and standard deviations of error. 

 

Table 4.5: Detection Timing Errors and Variations 

Variable 
Inter-subject mean timing error in ms Inter-subject mean timing variation in ms 

Ascent Descent Ascent Descent 

IC -30.70 [43.25] 23.43 [30.32] 33.86 [10.35] 19.85 [8.88] 

EC -43.66 [20.12] 16.41 [15.23] 18.22 [7.70] 14.86 [5.47] 

Abs(IC) 47.75 [29.31] 36.60 [15.56] 27.97 [9.55] 16.66 [6.83] 

Abs(EC) 45.00 [18.65] 21.87 [11.29] 17.04 [5.88] 11.39 [3.03] 

Numbers in the cells are represented as the mean [standard deviation] of the variables 

 

4.5 Discussion 

 
The study aimed to develop and verify the algorithm ability to correctly detect targeted gait 

phases within the requirement of ±50 ms from the actual occurrence. Our results have a 

mean timing error below 50 ms and the standard deviation below 20 ms except for IC of stair 

ascent. Assuming our timing error belongs to a normal distribution with the mean and sigma 

of the inter-subject mean and mean standard deviation listed in Table 4.4, the likelihood of 

a detection outside the 50 ms range from the actual event are 29.29%, 9.05%, 36.39%, and 

1.19% for ascent IC, descent IC, ascent EC, and descent EC, respectively. As early 

detection can be artificially delayed, the mean could be offset to shift the distribution around 

zero. In this scenario, the likelihoods for a detection outside the acceptable range are 

13.98%, 0.61% for ascent IC and EC. The adaptive approach taken in this study has allowed 

the algorithm to operate with consistent accuracy despite the variation in gait speed among 

the participants, from 0.69 to 0.99 steps/s for stair ascent, and from 0.68 to 1.13 steps/s for 

stair descent.  

 

It is expected to have an overall delayed detection, since all sensor are measurement taken 

after the occurrence of the event. The filtering and data fusion of the IMU have limited the 
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output of the measurement to 100Hz, which there is at least 10 ms of measurement delay. 

This inherited delay is further combined with the motion of the measurement brace is driven 

by the leg it is attached to. The soft tissue of the leg and the compliance of the brace will act 

as a spring in series and damping and delayed any change of motion physically. Future 

device could consider a convenient method of attaching the sensor on the user’s limb to 

better reflection the true motion of the user.  

 

Most detection errors in our algorithm occurred from false negative, where the events were 

outside their threshold windows. This may be related to a possible change in the speed of 

movement or range of motion. The consistent early detection of stair ascent IC may indicate 

that our selected event may not be closely associated with the actual IC event. Formento et 

al. [96] found a close relationship between the �̇� in the local IMU sagittal plane to the IC 

instance. 

 

Previous GPD studies have reported a larger variation in the detection of EC instances [28, 

29]. The results of this study, however, have a larger variation in the detection of ICs, 

especially for stair ascent. This inconsistency may also suggest that the occurrence of 

minimum �̇�𝛥varies widely across participants. The inconsistency may also suggest that 

there may be different modes of contact for stair ascent gait. From the observations of the 

data, the actual IC could occur between the minimum of �̇�𝛥 and the minimum of �̇�𝑠 , as 

shown in Figure 4.10 and 4.11. Further gait analysis in alternative gaits of stair ambulation 

is required to understand the underlying reason for the difference observed, which is beyond 

the scope of the present study.  
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Figure 4.10: An example of IC instance of subject 3, where the IC instance is close to the minimum of 𝜓�̇�. 

 
 
 

 
Figure 4.11: An example of IC instance of subject 6, where the IC stance is close to the minimum of 𝜓𝑠

̇ . 

 

An overall F1-score of 0.9925 across all phases in both stair ascent and descent indicates 

that the thresholding has a high probability of locating the range where the next event can 

occur. It illustrates knowledge of gait biomechanics is crucial in designing a detection 

algorithm for gait phases. The definition of gait phases in the literature heavily uses 

× 104 

× 104 
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biomechanical variables such as thigh, knee and shank movement. In this study, we 

interpret the IMU rotations on the segment of the knee brace to estimate these biomechanics 

variables. Future research could focus on analysing accurate body movement from attached 

IMUs similar to the OpenSense project in OpenSim4.1 leading by Prof Scott Delp but for 

real-time application. 

 

The chosen test environment is a flight of staircase with multiple progressive steps, where 

a user of an assistive device may need support the most. The evaluation of the detection 

performance in this environment has direct relevance to its actual application. Despite the 

close relevance the results have on its application, the test was performed outside a lab 

environment. Therefore, the typical gold standard of using a force plate and 3D motion 

capturing is impractical. Insole footswitches were used as a substitute for force plate as the 

ground truth for IC and EC [55, 68, 99], but a substitute for a 3D motion capture system was 

not available. Hence, the timing errors from the ground truth for our algorithm only includes 

IC and FO instances; the exact timing error of the transition to CL and FP phases are 

unknown. An established measurement system that accurately captures body movement 

outside a laboratory environment would allow a more comprehensive study to be conducted 

in a realistic environment. Validation of using IMUs as the alternate kinematics measurement 

for analysis purpose remains a research gap in the field.  

 

We avoid using dimensionless results such as error in percentage cycle as suggested by 

McGinley et al. [48]. Measuring the error per gait cycle will heavily favour participants who 

have a slow gait.  Furthermore, the detection algorithm looks for kinematic events in the 

data, and the detection timing error should be independent of how fast or how slow the gait 

cycle is. A requirement of the responsiveness of assistive devices that are expressed in 

percentage gait cycle would have limited usefulness apart from detecting the range of gait 

speed for which a specific device is suitable.    

 

This study extends previous GPD work by exploring the use of biomechanics variables such 

as the thigh, knee and shank angle in the sagittal plane, and attempt to bridge the knowledge 

between the two fields. Many previous gait phases/event detection studies examined 

variables that are directly related to the raw data of the IMUs. The method of using the direct 

variables from the sensor reduces the number of mathematical computations for any 

intermediate variables. However, the choice of not using joint and limb movement limits the 

ability to translate existing knowledge in biomechanics into the rules of detection, as many 
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records of gait patterns are described in terms of joint variables. The selected event for each 

phase can easily change to a different feature of another variable. Further finetuning of the 

algorithm may include feature engineering for a more consistent variable for the rules.  

 

The feature-based detection approach of this work can be applied to detect other events in 

the gait cycle or other activities. Hence, it can be readily integrated with other existing rules 

found in literature or applied to a different joint with different events or for different activities. 

Future development may extend the application of the current detection approach to another 

joint such as the ankle and hip or other activities such as level walking and ramp walking. 

 

It is important to point out that the developed algorithm is for stair climbing gaits only. This 

algorithm could be incorporated into an activity detection such as Lau et al. [76] and Archer 

et al. [102] so that the program can determine which gait activity the user is engaging and 

then select the appropriate gait phase detection model for assistive control. It is reported 

that most commercial devices require the user/therapist to select the activity [12]. The 

automatic detection and classification of gait activities in real-time on wearable devices 

remain a research gap.  

 

4.6 Conclusion 

 

This work developed algorithms to detect stair gait phases in real-time using IMUs. The 

algorithms deploy a 3-stage process to establish the normative gait and adapt to different 

users during the activity without prior knowledge of the user. The algorithm was implemented 

and tested on participants in real-time, showing promising results based on the overall F1 

score of 0.9925 of using IMU data to detect some of the stair gait phases.  

 

We showed that translating the existing biomechanics knowledge for gait phase detection 

is crucial as part of the design process. This approach resulted in a highly repeatable 

detection of gait phases using kinematics events measured from IMUs. The mean standard 

deviation for detecting IC and EC is under 20 ms except for stair ascent IC across 

participants with a wide range of cadence, from slowest of 0.67 to faster 1.13 steps/s. The 

large variation in stair ascent may be due to the different strategies of foot contact by the 

participants. 
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The results of this study showed that our algorithms are feasible and can be used in a 

wearable assistive device. The algorithms were implemented and tested on a knee device 

in a realistic environment; a staircase in a building with multiple progressive steps. The 

developed algorithms and the sensory system are readily implementable onto most 

commercially available knee braces. 

 

Several research and technical gaps have been identified and discussed that require further 

investigation beyond the scope of the current study. These include the consideration of 

alternative stair ambulation, a measurement system that accurately captures body 

movement in an outdoor environment, the implementation of the current detection approach 

for other joints, and the integration with gait activity detection or the integration with falling 

or tripping detection.    
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CHAPTER 5 : MACHINE LEARNING APPROACHES 

 

Overview 

 

This chapter introduces a comparison of the different machine learning techniques. This 

section of the study explores the performance of multiple common machine-learning 

techniques found readily on MATLAB 2020a/b. It would enable developers to make a better-

informed decision when choosing the technique that is best suited to them. Supervised 

learning classifier and two suitable architecture of recurrent neural network are selected in 

this study. Since gait phase detection is the detection of state transition in the output, we 

also investigate the effect of having a labelled output on the state transition instead of the 

actual state of stance and swing phase. Some trained models have displayed a high level 

of correct detection and small timing error for different activities and either stance or swing.  

 

5.1 Data Preparation 

 

The data gathered from the rule-based detection study is reused in this comparison study 

to evaluate each technique's performance against the rule-based approach. We decided to 

divide the dataset in half for the training and testing data. We prepared the data of each trial, 

so they are trimmed to begin and end on initial contacts. This would allow the training to 

learn from completed labelled steps only and avoid incomplete cycles.  

 

Then, we categorise the data into each subject in each activity, a total of 42 sets (one for 

each subject in each activity). A randomly selected subject-based dataset was included in 

the training data for each specific activity until half of all steps for each activity are included. 

We used the same set of training data and testing data for both the neural network and 

supervised learning models to compare their performance on the same data.   

 

There are three types of output we are going to train for: 1) the state output of the 

footswitches that indicate the stance (1) and swing (0) phase, this is the control test, 2) the 

transition output of the initial contact (1) and foot off (-1), other instances are steady-state(0), 

3) 5-sample-wide transition output of the initial contact (1) and foot off (-1), other instances 

are steady-state (0). Figure 5.1 gives an example of the output signal of each output type in 

one gait cycle. The purpose of training for transition output is because this is the output we 
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ultimately seek when evaluating the timing difference of initial contact and end contact of 

each step. Pinpointing the output to the exact moment of transition, we expected to reduce 

the timing error of a positive prediction when the trained model tries to reproduce the output 

signal with the testing data. 

 

 

Figure 5.1: One gait cycle of the different output types with thigh roll, shank roll, and knee flexion angle. 

 

Two machine learning approaches were chosen for it is suitable for the dataset. All ground 

truth of IC and FO were labelled; we would use supervised learning to train classifiers to 

predict the outputs. The dataset is a time-series data; therefore, we would also explore time-

series neural networks.   

 

5.2 Data Analysis 

 

In this section of the study, we would evaluate each machine-learning technique's 

performance in gait phase detection consistent with chapter 4. The timing error is defined 

as the ground truth’s timing subtract the prediction timing. A negative value indicated early 

detection. True positive is the nearest positive detection within 200 ms around the ground 
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truth; all other positive position is considered as false positives. Negative detection within 

200 ms around the actual ground truth occurrence is considered a false negative. True 

negative is not considered, since the amount of true negative for the transition output types 

outnumbered the true positive for each phase. 

 

The F1-score of each output would be computed to determine how reliable the trained 

models are in detecting the correct phases. Time performance is evaluated with three 

aspects. First is the timeliness of predicting the occurrence of each gait phase by examining 

the mean absolute timing error from the ground truth. The second is the consistency of 

predicting the gait phases using the standard deviation of the timing error. The third is the 

usefulness of the model for application requiring a timing error within 50 ms. The usefulness 

is determined by the probability of detection outside the 50 ms tolerance, given the models' 

mean and standard deviation across the testing data.  

 

5.3 Time Series Neural Network 

 

5.3.1 Training Scheme 

 

There are two types of time series neural network structure selected for the comparison 

study. They are nonlinear Autoregressive with external input (NARX) and nonlinear input-

output (NIO) network.  

 

NARX network predicts the output y(t), given d past values of y(t) and another series x(t). 

The defining equation for the model is: 

 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑑), 𝑥(𝑡 − 1),… , 𝑥(𝑡 − 𝑑)) 
(5.1) 

 

Figure 5.2: The network structure of a 20 delay and 10 neurons NARX network. This diagram is a generation with 
view(net) command on Matlab using Simulink diagram block.  
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NIO network predicts the output y(t), given d past values of x(t). The defining equation for 

the model is: 

 

𝑦(𝑡) = 𝑓(𝑥(𝑡 − 1),… , 𝑥(𝑡 − 𝑑)) 
(5.2) 

 

Figure 5.3: The network structure of a 2-delay and 10 neurons NIO network. This diagram is a generation with view(net) 
command on Matlab using the Simulink diagram block.  

 

Each network is defined by the number of neurons, the number of delays, and the type of 

output. We train all networks with 10 neurons with 2 or 20 delays. The training algorithm is 

Levenberg-Marquardt; it has faster training time but uses more memory during training. All 

training is carried on a PC; thus, memory is not a limiting issue. The default setting is 6-fold 

cross-validation, with data distribution as follows: 70% training, 15% verify, 15% test. 

 

The NN aims to reproduce the outcome from learning the training data. It does not restrict 

its prediction to be the discrete value of the training output. It is evident in the figure, and 

from literature [168]. An extra layer of filtering is required to rectify the raw output signal to 

a discrete signal that could be used in analysing the detection performance.  

 

There are three different approaches to filtering the predicted signal from each trained NN. 

The first type is a latch with thresholding using hysteresis. The on/off state output has a 

value of 1 when on, and zero when off. The threshold is set halfway with a hysteresis of ±0.2 

on each side, a high level of 0.7 and a low level of 0.3. For example, the signal above 0.7 

will stay on until it falls below 0.3, and it will stay low until it went above 0.7 again. Similarly, 

for transition output, the threshold is halfway at zero, with a hysteresis of ±0.1. These are 

hysteresis values chosen after some trial and error on the training set output with an 

increment of 0.1 around the mid-point. The trial and error stop when the next increment does 

not improve the average F1-score between the two different network and the two different 

delays.  
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The second type uses the two standard deviations to be the threshold for transition output 

only. High level is above +2 standard deviations, and the low level is below -2 standard 

deviations of the training data; otherwise, it is zero. Ideally, it should be offset by the mean 

of the training data, which is 0.07. Given the trained data begin and end with ICs, and a 

random sample of 70% is taken from the original data. Therefore, the small offset in positive 

could be the fact that there are more ICs than FOs in training. From the actual data, the 

duration of the IC transition and FO transition is the same. Hence, we will assume the 

expected value should be zero.  

 

The third type uses the same thresholding as the first type, but there is an 11-sample moving 

mean applied to the output signal before the thresholding. It is aimed to attenuate the output 

so that the output is minimised. Moving mean is applied only to the 5-sample wide transition 

output, because it is found that the attenuation is too strong for single-sample-transition 

output in the training data.   

 

There is a total of 36 networks trained for both stair ascent and descent. Hereafter each 

trained network will be referred to by a code name of 4 numbers separated by a dash 

between them. Table 5.1 summarises the code name for each trained network in left to right 

order. The output types are on/off state (1), single sample transition output (2), 5-sample 

wide transition output (3). Filter types are threshold hysteresis (1), 2-sigma threshold (2), 

and with an 11-sample moving mean (3). The value of hysteresis is indicated by the number 

after the decimal place of the filter type number. For example, the filter number of 1.2 

represents thresholding with a hysteresis of ±0.2, and 3.1 represents an 11-sample moving 

mean applied with thresholding with a hysteresis of ±0.1.  

 

Table 5.1: A summary of all configuration of trained NN models 

Code Output type Delay  Network type Filter type 

1 state 2 NIO 
Threshold with 

hysteresis 

2 transition 20 NARX 2-sigma 

3 
5-sample wide 

transition 
  

11-sample Moving 
Mean 

Filter type code +0.0 with a hysteresis of ±0.0, +0.1 with ±0.1, +0.2 with ±0.2, and so on. 
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5.3.2 Results 

 

The model with the best F1-score are 1-2-1-1.3 for stair ascent IC (0.9905), 1-2-1-1.3 for 

stair ascent FO (0.9918), 3-2-1-3.1 for stair descent IC (0.9983), and 3-1-2-3.1 for stair 

descent FO (1). One model outperformed the ruled-based algorithms for stair ascent IC, 14 

models for stair ascent FO, none for stair descent IC and eight models for stair descent FO 

outperform the rule-based algorithm in chapter 4. These models were indicated by < symbol 

in the table below.  

 

The best timing error was compared and selected between the models with at least 0.9 F1-

score. Among those, the timeliest (least absolute timing error) were: 1-1-1-1.1 for stair 

ascent IC with 30.0892 ms, 3-2-1-1.3 for stair ascent FO with 15.6488 ms, 3-1-1-1.4 for stair 

descent IC with 22.5235 ms, and 3-2-1-2 for stair descent FO with 16.125 ms. The most 

consistent (least standard deviation) were: 3-2-1-3.1 for stair ascent IC with 24.0778 ms, 3-

2-1-3.1 for stair ascent FO with 22.3147 ms, 3-1-1-1.4 for stair descent IC with 29.8107 ms, 

and 3-2-1-2 for stair descent FO with 19.3547 ms. The most robust (least likely to have a 

detection outside 50 ms) were: 1-1-1-1.1 for stair ascent IC with 0.1966, 3-2-1-1.3 for stair 

ascent FO with 0.0324, 3-1-1-1.4 for stair descent IC with 0.0935, and 3-2-1-2 for stair 

descent FO with 0.014325. 

 

Among the models that had a F1-score above 0.9, 12 models outperformed the method in 

chapter 4 in usefulness, 19 in timeliness and 21 in consistency for stair ascent IC, 29 in 

usefulness, 29 in timeliness, and none in consistency for stair ascent FO, none in 

usefulness, 23 in timeliness, and 1 in consistency in stair descent IC, and, none in 

usefulness, 19 in timeliness, and none in consistency in stair descent FO.  The symbol of 

%, ^, and & were indicating the models that outperformed the rule-based method in 

timeliness, consistency, and usefulness respectively on the tables below.  

 



Page | 85  
 

Table 5.2: Time series NN performance for initial contact of stair ascent 

Output Delay Model Filter TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) pr(|Te|>50 )  

1 1 1 1.3 786 14 7 0.9912 0.9825 0.9868 15.1272 41.1899 35.3562 25.9630 0.2555 %^& 

  2 1.3 23 6 770 0.0290 0.7931 0.0560 -130.4348 29.6155 130.4348 29.6155 0.9967 ^ 

 2 1 1.3 786 8 7 0.9912 0.9899 0.9905 22.8880 41.7537 38.3842 28.1544 0.2985 <%^ 

  2 1.3 722 146 71 0.9105 0.8318 0.8694 -128.7950 39.7993 129.1274 38.7057 0.9761 ^ 

 1 1 1.2 785 22 8 0.9899 0.9727 0.9813 6.2803 39.2685 31.6306 24.0777 0.2087 %^& 

  2 1.2 571 209 222 0.7201 0.7321 0.7260 -133.0298 38.5040 133.0298 38.5040 0.9845 ^ 

 2 1 1.2 786 11 7 0.9912 0.9862 0.9887 13.9695 40.4877 34.4020 25.4881 0.2438 %^& 

  2 1.2 716 189 77 0.9029 0.7912 0.8433 -129.2318 39.5972 129.5670 38.4847 0.9773 ^ 

 1 1 1.1 785 36 8 0.9899 0.9562 0.9727 -0.1783 38.7228 30.0892 24.3511 0.1966 %^& 

  2 1.1 537 436 256 0.6772 0.5519 0.6082 -143.4451 37.1545 143.4451 37.1545 0.9940 ^ 

 2 1 1.1 785 16 8 0.9899 0.9800 0.9849 6.3822 38.8240 31.0701 24.1144 0.2038 %^& 

  2 1.1 713 255 80 0.8991 0.7366 0.8098 -129.0042 39.5656 129.3408 38.4494 0.9771 ^ 

2 1 1 1.0 790 4430 3 0.9962 0.1513 0.2628 -37.5570 61.0614 61.3038 37.1200 0.4951  

  2 1.0 786 6845 7 0.9912 0.1030 0.1866 -11.2723 54.4869 45.4962 31.9924 0.3690 % 

 2 1 1.0 793 5615 0 1.0000 0.1238 0.2202 -24.8802 60.3861 54.9937 35.1875 0.4462  

  2 1.0 765 7101 28 0.9647 0.0973 0.1767 -42.6405 79.6809 78.9804 43.8585 0.5857  

 1 1 1.1 603 8 190 0.7604 0.9869 0.8590 -29.6186 40.6020 38.9718 31.7162 0.3328 %^ 

  2 1.1 753 13 40 0.9496 0.9830 0.9660 -24.5418 37.5207 33.1474 30.1777 0.2722 %^& 

 2 1 1.1 777 12 16 0.9798 0.9848 0.9823 -34.0798 41.7060 43.0116 32.4028 0.3732 %^ 

  2 1.1 782 75 11 0.9861 0.9125 0.9479 -32.0077 39.6455 39.5013 32.1748 0.3443 %^ 

 1 1 1.2 3 0 790 0.0038 1.0000 0.0075 10.0000 0.0000 10.0000 0.0000 0.0000 %^& 

  2 1.2 41 0 752 0.0517 1.0000 0.0983 15.8537 34.4946 26.5854 26.8896 0.1892 %^& 

 2 1 1.2 40 0 753 0.0504 1.0000 0.0960 -10.2500 38.9929 33.2500 22.2327 0.2152 %^& 

  2 1.2 780 25 13 0.9836 0.9689 0.9762 -14.6795 39.7460 32.7821 26.8228 0.2389 %^& 

 1 1 2 737 145 56 0.9294 0.8356 0.8800 -28.4532 39.6355 36.8114 32.0115 0.3172 %^ 

  2 2 707 180 86 0.8916 0.7971 0.8417 -11.3296 35.4803 25.8133 26.8351 0.1798 %^& 

 2 1 2 782 278 11 0.9861 0.7377 0.8440 -25.3581 39.6826 35.1023 31.3818 0.2961 %^ 

  2 2 595 388 198 0.7503 0.6053 0.6700 29.9160 33.9760 36.2689 27.0775 0.2866 %^& 

3 1 1 1.1 705 139 88 0.8890 0.8353 0.8613 -31.8582 39.4217 38.7234 32.6929 0.3416 %^ 
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  2 1.1 756 44 37 0.9533 0.9450 0.9492 -29.9074 39.5252 38.0820 31.7131 0.3272 %^ 

 2 1 1.1 763 120 30 0.9622 0.8641 0.9105 -41.7431 41.1702 47.6409 34.1633 0.4335 %^ 

  2 1.1 784 16 9 0.9887 0.9800 0.9843 -28.9796 39.1477 38.2143 30.1867 0.3175 %^ 

 1 1 1.2 771 31 22 0.9723 0.9613 0.9668 -22.9831 38.4123 33.4371 29.7477 0.2696 %^& 

  2 1.2 331 9 462 0.4174 0.9735 0.5843 -10.1208 38.9248 31.2689 25.2423 0.2140 %^& 

 2 1 1.2 775 33 18 0.9773 0.9592 0.9681 -29.0839 37.4692 37.2387 29.3665 0.3057 %^ 

  2 1.2 766 10 27 0.9660 0.9871 0.9764 -12.2454 41.1364 33.7076 26.5456 0.2445 %^& 

 1 1 1.3 774 14 19 0.9760 0.9822 0.9791 -16.7054 38.0457 31.4083 27.1874 0.2305 %^& 

  2 1.3 49 0 744 0.0618 1.0000 0.1164 24.8980 35.8889 34.6939 26.3076 0.2606 %^& 

 2 1 1.3 778 16 15 0.9811 0.9798 0.9805 -20.8612 37.3223 32.8149 27.3952 0.2463 %^& 

  2 1.3 730 9 63 0.9206 0.9878 0.9530 4.2055 40.8851 32.0959 25.6465 0.2238 %^& 

 1 1 2 695 110 98 0.8764 0.8634 0.8698 -5.3237 37.0626 27.7410 25.1266 0.1818 %^& 

  2 2 281 64 512 0.3544 0.8145 0.4938 -6.1566 36.9676 28.3630 24.4399 0.1822 %^& 

 2 1 2 774 171 19 0.9760 0.8190 0.8907 -1.4987 34.9914 26.3307 23.0748 0.1534 %^& 

  2 2 578 252 215 0.7289 0.6964 0.7123 39.0311 39.0231 44.1869 33.0607 0.4006 %^ 

 1 1 3.1 774 24 19 0.9760 0.9699 0.9730 -54.1473 37.2327 55.4134 35.3181 0.5469 ^ 

  2 3.1 0 0 793   0.0000     1.0000  

 2 1 3.1 776 18 17 0.9786 0.9773 0.9779 -60.6443 36.7499 61.8557 34.6695 0.6153 ^ 

  2 3.1 609 488 184 0.7680 0.5552 0.6444 -128.9163 38.6168 128.9491 38.5068 0.9795 ^ 

 1 1 3.0 465 1859 328 0.5864 0.2001 0.2984 -89.8280 76.2056 107.5914 47.8842 0.7326  

  2 3.0 0 0 793   0.0000     1.0000  

 2 1 3.0 640 1629 153 0.8071 0.2821 0.4180 -90.4063 74.7735 109.2188 42.7756 0.7357  

  2 3.0 611 791 182 0.7705 0.4358 0.5567 -137.0704 37.7884 137.0704 37.7884 0.9894 ^ 
mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, |Te|. 
Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models that outperform the rule-based approach in chapter 4 are indicated with the 
symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms
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Table 5.3: Time series NN performance for end contact of stair ascent  

Output Delay Model Filter TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) pr(|Te|>50 )  

1 1 1 1.3 788 13 6 0.9924 0.9838 0.9881 21.1675 26.4773 24.8223 23.0814 0.1417 <%& 

  2 1.3 12 17 782 0.0151 0.4138 0.0292 15.0000 19.3061 18.3333 15.8592 0.0353 %^& 

 2 1 1.3 788 7 6 0.9924 0.9912 0.9918 22.8553 26.0942 26.0787 22.8687 0.1517 <%& 

  2 1.3 757 111 37 0.9534 0.8721 0.9110 33.8045 33.1551 36.4465 30.2227 0.3183 %& 

 1 1 1.2 789 19 5 0.9937 0.9765 0.9850 15.8809 26.5607 21.3054 22.4387 0.1060 <%& 

  2 1.2 704 76 90 0.8866 0.9026 0.8945 39.3466 33.2177 40.7955 31.4187 0.3778 % 

 2 1 1.2 788 10 6 0.9924 0.9875 0.9899 17.1954 24.8477 21.4848 21.2435 0.0968 <%& 

  2 1.2 770 135 24 0.9698 0.8508 0.9064 26.7273 32.4739 29.9740 29.4995 0.2459 %& 

 1 1 1.1 788 34 6 0.9924 0.9586 0.9752 10.5584 24.7106 18.3756 19.5996 0.0624 %& 

  2 1.1 765 208 29 0.9635 0.7862 0.8659 29.8693 30.6685 32.3791 28.0022 0.2604 %& 

 2 1 1.1 788 14 6 0.9924 0.9825 0.9875 11.8274 24.5718 18.6294 19.9083 0.0661 <%& 

  2 1.1 777 191 17 0.9786 0.8027 0.8820 21.9048 30.1795 25.3024 27.3897 0.1845 %& 

2 1 1 1.0 775 4445 19 0.9761 0.1485 0.2577 -52.5806 67.6692 79.0839 32.9405 0.5800 < 

  2 1.0 794 6837 0 1.0000 0.1040 0.1885 -33.0730 57.1198 60.1763 27.0578 0.4564 < 

 2 1 1.0 745 5662 49 0.9383 0.1163 0.2069 -17.1946 91.6004 78.5906 50.0191 0.5917 < 

  2 1.0 744 7121 50 0.9370 0.0946 0.1718 -74.8387 74.8420 92.5000 51.3997 0.6777 < 

 1 1 1.1 607 5 187 0.7645 0.9918 0.8634 -15.0082 25.5105 22.0264 19.7596 0.0905 <%& 

  2 1.1 755 12 39 0.9509 0.9844 0.9673 -17.2185 24.9764 23.4967 19.1798 0.0982 <%& 

 2 1 1.1 779 11 15 0.9811 0.9861 0.9836 -8.2798 23.6212 17.6765 17.7129 0.0455 %& 

  2 1.1 714 144 80 0.8992 0.8322 0.8644 -15.4622 25.6991 23.5854 18.5150 0.0949 %& 

 1 1 1.2 4 0 790 0.0050 1.0000 0.0100 -22.5000 55.6028 42.5000 36.8556 0.4066 % 

  2 1.2 42 0 752 0.0529 1.0000 0.1005 -4.2857 37.1643 19.0476 32.0677 0.1814 %& 

 2 1 1.2 40 1 754 0.0504 0.9756 0.0958 4.2500 17.0801 13.2500 11.4102 0.0044 %^& 

  2 1.2 763 43 31 0.9610 0.9467 0.9538 0.1573 27.3353 19.0301 19.6118 0.0674 %& 

 1 1 2 789 28 5 0.9937 0.9657 0.9795 -17.1863 26.3603 23.7262 20.6630 0.1120 %& 

  2 2 789 92 5 0.9937 0.8956 0.9421 -13.4221 25.7714 21.6096 19.4158 0.0848 %& 

 2 1 2 787 31 7 0.9912 0.9621 0.9764 -8.4371 23.5408 17.6112 17.7453 0.0453 %& 

  2 2 766 82 28 0.9647 0.9033 0.9330 21.6449 26.6453 24.7520 23.7829 0.1472 %& 

3 1 1 1.1 767 77 27 0.9660 0.9088 0.9365 -21.7992 27.8357 26.8318 23.0167 0.1605 %& 
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  2 1.1 779 22 15 0.9811 0.9725 0.9768 -13.9795 25.6450 21.9384 19.2725 0.0864 %& 

 2 1 1.1 627 256 167 0.7897 0.7101 0.7478 -17.3525 26.4758 23.6045 21.0831 0.1142 %& 

  2 1.1 778 23 16 0.9798 0.9713 0.9755 -16.6324 24.3731 22.4422 19.1506 0.0886 %& 

 1 1 1.2 787 15 7 0.9912 0.9813 0.9862 -14.2440 25.7366 21.8933 19.6366 0.0886 <%& 

  2 1.2 336 5 458 0.4232 0.9853 0.5921 -4.6726 20.2495 15.7440 13.5398 0.0161 %& 

 2 1 1.2 723 85 71 0.9106 0.8948 0.9026 -6.8880 23.9777 17.5657 17.7047 0.0449 %& 

  2 1.2 766 10 27 0.9660 0.9871 0.9764 -12.2454 41.1364 33.7076 26.5456 0.2445 %& 

 1 1 1.3 781 8 13 0.9836 0.9899 0.9867 -9.1037 25.7496 19.9616 18.6293 0.0670 <%& 

  2 1.3 49 1 745 0.0617 0.9800 0.1161 8.3673 23.3940 17.3469 17.6512 0.0439 %& 

 2 1 1.3 763 32 31 0.9610 0.9597 0.9604 -0.6553 23.3560 15.6488 17.3415 0.0324 %& 

  2 1.3 734 6 60 0.9244 0.9919 0.9570 10.8038 23.9550 17.1798 19.8790 0.0565 %& 

 1 1 2 785 79 9 0.9887 0.9086 0.9469 -1.4013 25.6064 18.7261 17.5082 0.0512 %& 

  2 2 783 87 11 0.9861 0.9000 0.9411 -0.3959 24.8416 17.5862 17.5383 0.0442 %& 

 2 1 2 785 25 9 0.9887 0.9691 0.9788 7.5796 23.5769 16.2930 18.6438 0.0433 %& 

  2 2 764 94 30 0.9622 0.8904 0.9249 20.5890 25.7886 23.4686 23.1952 0.1301 %& 

 1 1 3.1 786 12 8 0.9899 0.9850 0.9874 -46.6285 24.6289 48.0025 21.8263 0.4456 < 

  2 3.1 0 0 794 0.0000  0.0000     1.0000  

 2 1 3.1 778 16 16 0.9798 0.9798 0.9798 -40.6170 22.3147 42.4936 18.4873 0.3371 %& 

  2 3.1 459 638 335 0.5781 0.4184 0.4855 27.4728 44.9956 33.1373 40.9943 0.3509 %& 

 1 1 3.0 725 1599 69 0.9131 0.3120 0.4650 -76.2207 42.2575 80.9655 32.2311 0.7339  

  2 3.0 0 0 794 0.0000  0.0000     1.0000  

 2 1 3.0 660 1609 134 0.8312 0.2909 0.4310 -67.5909 69.5604 87.5000 41.7881 0.6453  

  2 3.0 672 730 122 0.8463 0.4793 0.6120 15.5208 33.3571 25.4315 26.5748 0.1754 %& 
mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, |Te|. 
Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models which outperform the rule-based approach in chapter 4 are indicated with the 
symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms
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Table 5.4: Time series NN performance for initial contact of stair descent  

Output Delay Model Filter TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) pr(|Te|>50 )  

1 1 1 1.4 879 5 0 1 0.9943 0.9972 37.3265 30.6501 41.0125 25.5018 0.3418  

  2 1.4 708 170 171 0.8055 0.8064 0.8059 -132.119 40.8645 132.1186 40.8645 0.9778  

 2 1 1.4 879 6 0 1 0.9932 0.9966 35.4152 30.5609 39.8749 24.4504 0.3192  

  2 1.4 838 9 41 0.9534 0.9894 0.971 17.9594 62.9541 54.2601 36.585 0.4456  

 1 1 1.3 879 10 0 1 0.9888 0.9943 29.124 32.2544 35.9954 24.3387 0.2658 % 

  2 1.3 674 205 205 0.7668 0.7668 0.7668 -135.623 38.023 135.6231 38.023 0.9878  

 2 1 1.3 879 12 0 1 0.9865 0.9932 25.5176 31.212 33.2765 22.7486 0.2242 % 

  2 1.3 855 38 24 0.9727 0.9574 0.965 -32.2573 76.5881 66.3158 50.0456 0.5498  

 1 1 0.2 879 25 0 1 0.9723 0.986 21.3993 33.3645 31.7975 23.6518 0.2118 % 

  2 0.2 656 223 223 0.7463 0.7463 0.7463 -159.638 67.9488 161.8553 62.4776 0.9477  

 2 1 0.2 879 23 0 1 0.9745 0.9871 18.7713 31.7929 30.1479 21.2984 0.1783 % 

  2 0.2 842 113 37 0.9579 0.8817 0.9182 -56.8409 70.5221 72.0428 54.8795 0.6035  

 1 1 1.1 879 52 0 1 0.9441 0.9713 14.3117 33.531 28.3732 22.8786 0.1711 % 

  2 1.1 640 241 239 0.7281 0.7264 0.7273 -141.797 35.3749 141.7969 35.3749 0.9953  

 2 1 1.1 879 37 0 1 0.9596 0.9794 12.6507 33.1615 28.1911 21.5468 0.1595 % 

  2 1.1 825 393 54 0.9386 0.6773 0.7868 -55.8424 64.9163 66.0485 54.4848 0.5874  

 1 1 1 879 149 0 1 0.8551 0.9219 8.1229 34.014 26.7577 22.4993 0.1529 % 

  2 1 627 275 252 0.7133 0.6951 0.7041 -144.849 34.5269 144.8485 34.5269 0.997  

 2 1 1 879 102 0 1 0.896 0.9452 7.8043 34.315 27.4175 22.0436 0.1555 % 

  2 1 815 930 64 0.9272 0.467 0.6212 -39.9877 56.6998 49.4847 48.6221 0.4862  

2 1 1 1 879 6741 0 1 0.1154 0.2068 -6.6439 67.6804 58.5666 34.5091 0.4622  

  2 1 879 7933 0 1 0.0998 0.1814 -6.1661 54.8635 45.7338 30.8885 0.3651  

 2 1 1 879 8394 0 1 0.0948 0.1732 -17.1331 59.2491 51.9681 33.1747 0.4181  

  2 1 871 4685 8 0.9909 0.1568 0.2707 -50.31 65.3568 68.5419 45.8489 0.5643  

 1 1 1.1 830 1 49 0.9443 0.9988 0.9708 -11.6506 36.6188 27.8193 26.4952 0.1936 % 

  2 1.1 864 43 15 0.9829 0.9526 0.9675 -14.0625 38.5851 29.3171 28.7454 0.2243 % 

 2 1 1.1 730 3 149 0.8305 0.9959 0.9057 -14.6438 47.2706 38.5342 31.0213 0.313  

  2 1.1 879 231 0 1 0.7919 0.8839 -13.8794 44.2949 35.6542 29.7024 0.282 % 

 1 1 1.2 181 0 698 0.2059 1 0.3415 6.1878 31.6113 25.7459 19.2677 0.1206 % 
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  2 1.2 686 2 193 0.7804 0.9971 0.8756 5.5831 30.5979 23.6297 20.2056 0.1079 % 

 2 1 1.2 217 0 662 0.2469 1 0.396 13.8249 41.9284 33.4562 28.7315 0.2581 % 

  2 1.2 870 172 9 0.9898 0.8349 0.9058 1.6897 41.8064 32.3103 26.5607 0.2321 % 

 1 1 2 828 331 51 0.942 0.7144 0.8126 -7.4396 34.1023 25.0242 24.319 0.1521 % 

  2 2 707 294 172 0.8043 0.7063 0.7521 6.3932 29.8794 22.3479 20.8224 0.1018 %^ 

 2 1 2 712 47 167 0.81 0.9381 0.8694 -12.2753 46.0098 37.0225 29.9199 0.2941  

  2 2 531 441 348 0.6041 0.5463 0.5737 56.4595 36.5272 58.1921 33.693 0.572  

3 1 1 1.1 788 388 91 0.8965 0.6701 0.7669 -48.2868 77.3808 69.3528 59.2152 0.5932  

  2 1.1 871 9 8 0.9909 0.9898 0.9903 -20.1148 41.9111 33.2721 32.4546 0.2851 % 

 2 1 1.1 824 436 55 0.9374 0.654 0.7705 -23.6893 61.3793 47.9612 45.0135 0.449  

  2 1.1 879 203 0 1 0.8124 0.8965 -13.0262 37.6707 29.6587 26.6141 0.2103 % 

 1 1 1.2 874 24 5 0.9943 0.9733 0.9837 -22.6659 44.4347 35.4119 35.1189 0.3202 % 

  2 1.2 821 1 58 0.934 0.9988 0.9653 -2.7162 31.7237 23.3252 21.6576 0.1163 % 

 2 1 1.2 851 112 28 0.9681 0.8837 0.924 -16.7568 45.9264 35.2056 33.9037 0.3076 % 

  2 1.2 879 78 0 1 0.9185 0.9575 -1.1718 34.5273 26.1547 22.5535 0.1478 % 

 1 1 1.3 876 0 3 0.9966 1 0.9983 -8.9155 35.7047 26.3813 25.6444 0.1744 % 

  2 1.3 690 0 189 0.785 1 0.8795 7.7971 26.3903 21.942 16.5885 0.0691 %^& 

 2 1 1.3 876 32 3 0.9966 0.9648 0.9804 -8.0137 40.5807 30.6393 27.7714 0.2268 % 

  2 1.3 868 34 11 0.9875 0.9623 0.9747 8.6406 32.5147 26.1751 21.1192 0.1373 % 

 1 1 1.4 852 0 27 0.9693 1 0.9844 -0.1995 29.8107 22.5235 19.5145 0.0935 %^ 

  2 1.4 376 0 503 0.4278 1 0.5992 13.1649 22.5881 21.9947 14.1047 0.0541 %^& 

 2 1 1.4 875 7 4 0.9954 0.9921 0.9938 -1.6914 37.9735 28.8686 24.7084 0.1884 % 

  2 1.4 847 16 32 0.9636 0.9815 0.9724 17.7568 32.3642 29.2326 22.5292 0.1777 % 

 1 1 2 834 278 45 0.9488 0.75 0.8378 5.6835 25.8321 20.1439 17.1282 0.0587 %^& 

  2 2 801 216 78 0.9113 0.7876 0.8449 2.3471 28.2398 21.3983 18.5619 0.0777 %^& 

 2 1 2 868 155 11 0.9875 0.8485 0.9127 4.4816 34.7286 26.947 22.3429 0.1533 % 

  2 2 727 470 152 0.8271 0.6074 0.7004 33.6039 31.2891 36.9326 27.2742 0.3039  

 1 1 3.1 876 2 3 0.9966 0.9977 0.9972 -52.1119 35.7834 52.4543 35.2789 0.5257  

  2 3.1 341 539 538 0.3879 0.3875 0.3877 -166.598 24.1475 166.5982 24.1475 1 ^ 

 2 1 3.1 878 2 1 0.9989 0.9977 0.9983 -48.8952 40.9108 50.6492 38.7156 0.497  

  2 3.1 0 0 879 0 0 0     1  
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 1 1 3 804 2107 75 0.9147 0.2762 0.4243 -78.6816 93.4319 112.1642 48.2861 0.7048  
 

 2 3 262 625 617 0.2981 0.2954 0.2967 -171.641 40.8058 175.1527 21.0404 0.9986  
 2 1 3 805 1794 74 0.9158 0.3097 0.4629 -64.646 80.649 89.7143 51.2825 0.6496  

  2 3 84 797 795 0.0956 0.0953 0.0955 -187.024 13.4236 187.0238 13.4236 1 ^ 
mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, |Te|. 
Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models which outperform the rule-based approach in chapter 4 are indicated with the 
symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms 
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Table 5.5: Time series NN performance for end contact of stair descent  

Output Delay Model Filter TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) pr(|Te|>50 )  

1 1 1 1.4 880 5 0 1 0.9944 0.9972 27.7159 20.9150 29.7159 17.9567 0.1434 < 

  2 1.4 878 0 2 0.9977 1.0000 0.9989 58.6788 23.3673 58.8155 23.0207 0.6448 < 

 2 1 1.4 880 6 0 1 0.9932 0.9966 32.3864 22.1790 33.2273 20.8967 0.2137 < 

  2 1.4 844 4 36 0.9590 0.9953 0.9769 75.3318 29.5359 75.3555 29.4753 0.8045  

 1 1 1.3 880 10 0 1 0.9888 0.9944 18.3182 20.6579 22.9318 15.3694 0.0630  

  2 1.3 879 0 1 0.9989 1.0000 0.9994 52.5939 24.1645 52.8669 23.5605 0.5428 < 

 2 1 1.3 880 12 0 1 0.9865 0.9932 26.4773 22.1249 28.0227 20.1293 0.1441  

  2 1.3 879 15 1 0.9989 0.9832 0.9910 53.7656 25.8838 53.9249 25.5500 0.5579  

 1 1 0.2 880 25 0 1 0.9724 0.9860 10.9659 21.0714 19.1477 14.0477 0.0339 % 

  2 0.2 879 0 1 0.9989 1.0000 0.9994 46.1547 24.6341 46.6098 23.7608 0.4380 < 

 2 1 0.2 880 23 0 1.0000 0.9745 0.9871 20.8182 21.2095 23.5909 18.0712 0.0848  

  2 0.2 880 76 0 1.0000 0.9205 0.9586 42.3977 22.7626 42.7386 22.1151 0.3692  

 1 1 1.1 880 52 0 1.0000 0.9442 0.9713 4.8295 21.3688 17.1023 13.6805 0.0224 % 

  2 1.1 880 1 0 1.0000 0.9989 0.9994 39.6477 24.9503 40.3295 23.8311 0.3393 < 

 2 1 1.1 880 37 0 1.0000 0.9597 0.9794 16.1364 20.6400 20.7273 16.0181 0.0511 % 

  2 1.1 880 338 0 1.0000 0.7225 0.8389 33.4545 21.0070 34.0455 20.0340 0.2155  

 1 1 1 880 149 0 1.0000 0.8552 0.9219 -0.9659 21.8611 16.6477 14.1908 0.0223 % 

  2 1 880 22 0 1.0000 0.9756 0.9877 31.6023 24.4866 33.0341 22.5153 0.2267  

 2 1 1 880 102 0 1.0000 0.8961 0.9452 12.2614 20.8521 18.6705 15.3734 0.0366 % 

  2 1 880 865 0 1.0000 0.5043 0.6705 24.7159 19.4676 25.9659 17.7641 0.0971  

2 1 1 1 879 6741 1 0.9989 0.1154 0.2068 -50.9898 50.0232 60.8419 37.4071 0.5296  

  2 1 830 7982 50 0.9432 0.0942 0.1713 -28.0843 87.4726 78.8313 47.1090 0.5871  

 2 1 1 873 8400 7 0.9920 0.0941 0.1720 13.7801 94.9440 88.3505 37.2788 0.6023  

  2 1 844 4712 36 0.9591 0.1519 0.2623 -53.7322 59.4772 65.8886 45.6251 0.5656  

 1 1 1.1 793 39 87 0.9011 0.9531 0.9264 -17.3140 23.1371 22.5347 18.0839 0.0807  

  2 1.1 829 79 51 0.9420 0.9130 0.9273 -11.9180 23.6738 20.8203 16.3905 0.0583 % 

 2 1 1.1 707 27 173 0.8034 0.9632 0.8761 -8.6139 23.1708 16.9873 17.9503 0.0427 % 

  2 1.1 880 231 0 1.0000 0.7921 0.8840 -15.1932 24.4755 22.7159 17.7073 0.0814  

 1 1 1.2 182 0 698 0.2068 1.0000 0.3427 -7.4725 19.9221 16.8132 12.9921 0.0184 % 
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  2 1.2 682 7 198 0.7750 0.9898 0.8693 -2.3314 21.4590 16.8475 13.4788 0.0205 % 

 2 1 1.2 217 1 663 0.2466 0.9954 0.3953 6.6359 15.1908 13.2719 9.9016 0.0023 %^& 

  2 1.2 871 172 9 0.9898 0.8351 0.9059 -1.0563 22.8797 18.1860 13.9100 0.0290 % 

 1 1 2 880 81 0 1.0000 0.9157 0.9560 -16.8750 22.7042 22.1705 17.5636 0.0739  

  2 2 876 33 4 0.9955 0.9637 0.9793 -2.9110 21.7959 17.0890 13.8266 0.0230 % 

 2 1 2 880 145 0 1.0000 0.8585 0.9239 -5.3068 20.6250 16.2386 13.7692 0.0188 % 

  2 2 766 144 114 0.8705 0.8418 0.8559 57.4021 25.9192 57.7154 25.2129 0.6124  

3 1 1 1.1 637 540 243 0.7239 0.5412 0.6193 -34.0345 46.1698 45.4003 35.0342 0.3991  

  2 1.1 776 105 104 0.8818 0.8808 0.8813 -18.4149 21.5631 21.9716 17.9204 0.0722  

 2 1 1.1 721 540 159 0.8193 0.5718 0.6735 -40.3329 37.4781 42.1914 35.3698 0.4062  

  2 1.1 846 237 34 0.9614 0.7812 0.8619 -24.2908 26.7295 28.3570 22.3638 0.1708  

 1 1 1.2 780 119 100 0.8864 0.8676 0.8769 -27.6026 25.4060 29.7821 22.8087 0.1901  

  2 1.2 805 18 75 0.9148 0.9781 0.9454 4.6460 22.0815 17.5652 14.1522 0.0267 % 

 2 1 1.2 793 171 87 0.9011 0.8226 0.8601 -10.5549 29.9991 19.9874 24.7283 0.1160 % 

  2 1.2 869 89 11 0.9875 0.9071 0.9456 -5.6732 24.2522 18.9528 16.1483 0.0446 % 

 1 1 1.3 809 68 71 0.9193 0.9225 0.9209 -11.4215 24.8626 21.0630 17.4517 0.0671 % 

  2 1.3 690 1 190 0.7841 0.9986 0.8784 15.6667 24.4458 22.6812 18.1167 0.0837  

 2 1 1.3 827 82 53 0.9398 0.9098 0.9245 -2.5030 23.9683 16.6022 17.4581 0.0380 % 

  2 1.3 865 38 15 0.9830 0.9579 0.9703 6.7399 22.2519 19.0173 13.3622 0.0313 % 

 1 1 1.4 810 43 70 0.9205 0.9496 0.9348 2.5432 23.2565 18.7160 14.0221 0.0326 % 

  2 1.4 377 0 503 0.4284 1.0000 0.5998 19.7613 21.4921 23.5279 17.2750 0.0803  

 2 1 1.4 839 44 41 0.9534 0.9502 0.9518 2.6579 22.6779 16.2217 16.0594 0.0285 % 

  2 1.4 841 23 39 0.9557 0.9734 0.9644 17.8240 21.2502 23.1034 15.3375 0.0657  

 1 1 2 876 107 4 0.9955 0.8911 0.9404 7.4543 21.7840 18.2534 14.0215 0.0296 % 

  2 2 878 24 2 0.9977 0.9734 0.9854 7.9727 22.9667 18.6560 15.5776 0.0394 % 

 2 1 2 880 40 0 1.0000 0.9565 0.9778 6.6932 19.3547 16.1250 12.6152 0.0143 % 

  2 2 783 80 97 0.8898 0.9073 0.8985 51.0345 30.9331 51.8774 29.4958 0.5139  

 1 1 3.1 855 24 25 0.9716 0.9727 0.9721 -54.7836 24.6173 54.8304 24.5128 0.4085  

  2 3.1 880 0 0 1.0000 1.0000 1.0000 -36.9432 23.8090 37.8523 22.3337 0.2918 < 

 2 1 3.1 844 37 36 0.9591 0.9580 0.9585 -46.9076 22.4435 47.0972 22.0424 0.3412  

  2 3.1 0 0 880 0.0000 0.0000 0.0000 0.0000    1.0000  
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 1 1 3 669 2242 211 0.7602 0.2298 0.3529 -62.7952 103.3545 113.2287 42.3244 0.7691  
 

 2 3 880 7 0 1.0000 0.9921 0.9960 -53.0000 25.0978 53.1591 24.7586 0.3986 < 
 2 1 3 623 1977 257 0.7080 0.2396 0.3580 -87.4318 108.3143 131.7978 44.6095 0.7858  

  2 3 53 828 827 0.0602 0.0602 0.0602 183.5849 26.6093 183.5849 26.6093 0.7875  
mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, |Te|. 
Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models which outperform the rule-based approach in chapter 4 are indicated with the 
symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms
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5.3.3 Discussion  

 

Results align with the hypothesis of this chapter; some neural networks do offer better timing 

performance in phases where rule-based methods are difficult to define, especially for stair 

ascent, where more networks outperform the rule-based approach than stair descent. It is 

possible to implement these networks to supplement the performance of the rule-based.  

 

It also aligns with our expectation that transition output tends to have better timing 

consistency than on/off state output. Table 5.6 summarises the average value of each 

aspect of timing performance from the models with the same output type with at least 0.9 in 

F1-score. Except for stair ascent IC, trained models using transition output have better 

timing performance in all three aspects than state output. It is expected that stair ascent IC 

to have worse performance because it is also the most inconsistent events from the 

observation made in Chapter 4. The enlarged error for transition output could be 

overshadowed by the physical inconsistency of the event occurrence.  

 

Table 5.6: Average timing performance of the model with F1-score above 0.9 

 
  Output type 

Activity Event average() 1 2 3 

St
ai

r 
A

sc
en

t Initial contact 

mn(|Te|) 33.4887 37.1106 40.1735 

sd(Te) 40.0411 39.6545 38.8270 

pr(|Te|>50 ) 0.2345 0.3072 0.3419 

Foot off 

mn(|Te|) 24.6396 21.1289 24.2493 

sd(Te) 27.3614 25.4644 25.9015 

pr(|Te|>50 ) 0.1486 0.0858 0.1281 

St
ai

r 
D

es
ce

n
t Initial contact 

mn(|Te|) 39.6510 31.9952 31.9457 

sd(Te) 41.1477 41.0702 37.0639 

pr(|Te|>50 ) 0.2907 0.2407 0.2394 

Foot off 

mn(|Te|) 35.1922 19.5065 26.4810 

sd(Te) 22.9258 22.4693 22.9783 

pr(|Te|>50 ) 0.2632 0.0473 0.1239 
mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. 
Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. 

 

Trained networks typically have similar performance between IC and FO. The networks are 

trained with both IC and FO outputs, whereas the rule-based method in Chapter 4 is having 

a specific requirement for each particular phase. It indicates that neural networks have better 

generalisation for detection gait phases, whereas rule-based approach depends on the 

quality of the definition for each phase.  
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State output networks tend to give better F1-score, whereas transition output gives better 

timing performance. This observation aligns with the hypothesis that using the transition as 

output instead of the original on/off state output will predict those transitions closer to the 

actual truth. However, the trade-off of this timing accuracy reduces its ability to correctly 

detect the transition output as reflected by the reduction in F1-score. This trade-off could be 

interpreted that the networks are trained with a narrower range for each output state; hence 

any prediction made for those outputs would have a smaller deviation from the truth. The 

reduction of this output size also transfers to the increased likelihood of a missed prediction. 

The trade-off between correct detection and timing performance using a modified output 

signal would be an option for developers depending on their application requirements. 

 

The effects of the delay have little relationship with the performance. In general, NARX has 

a better F1-score with 2 delays than 20 delays. However, the opposite is true for those 2-

delay networks that already have very poor scores. The effect of having more delay is more 

consistent among NIO networks, where higher delay produces better F1-score. The 

instability of the NARX could be due to the feedback of the predicted output. The feedback 

may reinforce either an error or a correction. 

 

The filtering type is a layer of design to be considered. It is difficult to decide which filtering 

is best suited for the type of network or the output type. In this study, trial and error are used 

to find a more suitable thresholding value, with an even hysteresis spread from the mid-point 

of the training output range. This process can be improved by using an optimisation process 

to find the optimal thresholding level for each discrete output level.  However, this is not 

within the study's scope, where we aimed to find a readily available network type that can 

improve or complement the rule-based algorithm in Chapter 4. Nevertheless, the filtering of 

the predicted outcome should be integrated as a part of the network training in a future 

study.   

 

Moving mean filters worsen the detection in both F1-score and timing error. Despite the 

smoothening of the signal, the attenuation of the signal makes the thresholding more difficult 

to distinguish a positive from a negative detection. Moving mean transformation always 

shrink the period of non-zero output; this negatively affected the timing performance.  
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Neural networks are an active research field. There could be other useful techniques, 

especially those in the field of computer vision. It may be a research direction to establish a 

systematically procedure to transform time-series data into a pseudo-image for more 

advanced networks to predict the gait phases. Some researchers have attempted such 

processing in other fields [169, 170].  

 

One of the purposes of using a neural network is to have one single model that can 

determine both IC and FO occurrence. In this study, the network has one output, and we 

use a different output value to represent the different labels. In theory, we could have more 

output value representing the gait progression [168]. If more gait phases are included, the 

output has to be signal sides (all positive output, or negative output), and the order of 

occurrence has to be in increasing or decreasing order so that it would form a ‘saw-tooth’ 

shape. When this approach is used, the output type that specifically labels each phase's 

transition cannot be used because the region between each transition will share the same 

output value. The resultant waveform will be spikes or pillars with different heights along a 

datum line. This waveform will cause an ambiguity issue when the output is increasing to a 

taller spike. Before the spike reaches its full height, it would reach a lower value that is 

recognised as another phase transition. In this situation, the analysis and classification of 

each gait phase have to be done after the prediction spike returns to the datum line. This 

will cause additional delay to an already time-critical application. As indicated by the results 

in this study, using transition only output does improve the timing performance of the 

detection. However, a knowledge gap is present of how best to utilise this type of output 

signal.  

 

This study has made it clear about some of the downfalls when training neural networks for 

gait data. It also offers suggestions on how different existing and emerging techniques could 

be incorporated for future follow-up studies.   

 

5.4 Supervised Learning 

 

5.4.1 Training scheme 

 

Training a model in MATLAB consisted of two parts: 1) the validated model that is trained 

with the validation scheme in our study it would be 6-fold cross-validation; 2) the full model 

that is trained with all data. MATLAB has different minimisation functions for different 



Page | 98  
 

classifier types, and each model would be trained until the optimiser cannot significantly 

improve the result.   

 

We compare the performance of all available classifier in MATLAB with the same training 

data as the NN section to compare the performance of the two machine learning methods 

in this study. There are also three different output types. The classifier will be subject to the 

same evaluation procedure as the NN and the adaptive statistical ruled-based method in 

Chapter 4.   

Table 5.7: A summary of all configuration of trained models 

Code Output type Cost type Model type 

1 state equal cost Fine tree 
2 transition transition 5, steady 1 Medium tree 
3 5-sample wide transition  Coarse tree 
4   Linear Discriminant 
5   Quadratic Discriminant 
6   Logistic Regression 
7   Gaussian Naïve Bayes 
8   Kernal Naïve Bayes 
9   Linear SVM 
10   Quadratic SVM 
11   Cubic SVM 
12   Fine SVM 
13   Medium SVM 
14   Coarse SVM 
15   Fine KNN 
16   Medium KNN 
17   Coarse KNN 
18   Cosine KNN 
19   Cubic KNN 
20   Weighted KNN 
21   Boosted Trees 
22   Bagged Trees 
23   Subspace Discriminant 
24   Subspace KNN 
25   RUSBoosted Trees 

 

The default cost matrix is an evenly distributed cost for all output state. A modified cost 

matrix is applied to two transition output types. In the modified cost matrix, the cost of 

misclassifying the rising and falling edge output is five times higher than the steady-state. It 

aims to maximise the true positive classification of the transitional edges. Some cubic SVM 

models are difficult to train and didn’t yield a good accuracy in the training; therefore, we will 

also discard some combination with Cubic SVM. Some model types are not suitable for 

some output type. For example, Logistic Regression only trains output with binary value; 

therefore, it cannot use with the transition output type. A total of 118 classifiers are trained 

for stair ascent, and 119 classifiers for stair descent.  
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All classifier hereafter is referred by their code name for simplicity in writing. The code name 

is formatted with three numbers separated by the dash symbol, each number representing 

the output, misclassification, and model type of the classifier. For example, a codename of 

3-2-2 classifier is referring to medium decision tree model for 5-sample wide transition output 

with transition output cost five times of the steady-state. Table 5.7 lists the code of each 

output, cost, and model type trained in this study.  

 

5.4.2 Results  

 

Trained models that failed to respond to any input at all are excluded from the table. They 

are considered a failure because they did not change its output signal throughout the test 

data. These models are trained to maximise the prediction of true negative detection, which 

are the steady-state output in the transition output type.  

 

The classifiers with the best F1-score were 1-1-23 for stair ascent IC (0.9631), 3-2-21 for 

Stair ascent FO (0.9887), and 1-1-14 for stair descent IC (0.9943). Multiple classifiers had 

achieved a perfect F1-score of 1 for stair descent FO. They were: 2-1-25, 2-2-7, 2-2-8, 3-1-

7, 3-1-8, 3-2-3, 3-2-7, and 3-2-8. This aligned with the expectation. The same trend had 

been observed between the timing consistency of FO and IC, and between stair descent 

and stair ascent during the rule-based study. None of the trained models outperformed the 

ruled-based algorithms for initial contact, four models for stair ascent FO and 13 models for 

stair descent FO outperformed the rule-based method in Chapter 4. These models were 

indicated by < symbol in the table below.  

 

A few classifiers had only one true detection; therefore, the standard deviation will be 0. The 

best timing error was compared and selected between the classifiers with at least 0.9 F1-

score. The timeliest (least absolute timing error) were: 1-1-23 for stair ascent IC with 7.561 

ms, 1-1-10 for stair ascent FO with 16.5311 ms, 1-1-10 for stair descent IC with 25.6378 ms, 

and 1-1-10 for stair descent FO with 16.5 ms. The most consistent (least standard deviation) 

were: 1-1-23 for stair ascent IC with 12.127 ms, 1-1-10 for stair ascent FO with 23.7925 ms, 

1-1-12 for stair descent IC with 34.6533 ms, and 1-1-10 for stair descent FO with 22.0436 

ms. The most useful (least likely to have a detection outside 50 ms) were: 1-1-23 for stair 

ascent IC with 0.0002, 1-1-10 for stair ascent FO with 0.0357, 1-1-12 for stair descent IC 

with 0.1499, and 1-1-10 for stair descent FO with 0.0233. 
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When compared with the rule-based method in Chapter 4, there was a significant 

improvement.  Among the classifiers that have an F1-score above 0.9, 12 classifiers 

outperformed in usefulness, 17 in timeliness and 19 in consistency for stair ascent IC, 44 in 

usefulness, 44 in timeliness but none in consistency for stair ascent FO. However, none of 

the classifiers was more timely or useful for stair descent.  Only 18 classifiers had better 

consistency in stair descent IC, and 13 classifiers in stair descent FO.  The symbol of %, ^, 

and & were indicating those classifiers that outperformed the rule-based method. 

 

5.3.3 Discussion  

 

Matlab k-fold cross-validation partition the data into k folds. For each fold, a model is trained 

with out-of-fold observations, the other k-1 folds. The performance of the trained model is 

access using the in-fold data. This training and testing are repeated until all folds are 

validated once. Then, the average test error is calculated over all validation. This is a time-

consuming process because the model would be trained k times. This process is deployed 

to protect the model from overfitting since the model produces consistent performance 

across all folds, including both trained and untrained data. If the testing of any one-fold is 

unsatisfactory, MATLAB start the entire process again from different partitioning. The 

available classifier does not take the order of data into account, so they are time-

independent training.   

 

Suppose the model has a similar accuracy between the test data and the train data. In that 

case, we can be confident that the cross-validation has to prevent overfitting, and a good 

generalisation has been achieved. Appendix C compared the accuracy of each trained 

model in both training and testing data.  

 

In our training, cubic SVM and quadratic SVM took the longest time to train. This is due to 

the lack of generalisation of one-fold training to another; therefore, the 6-fold cross-validation 

is not fulfilled. Despite the long training time, cubic SVM models generally reported a low 

accuracy. 
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Table 5.8: Supervised learning classifier performance for initial contact of stair ascent 

Output Cost Model TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) Pr(|Te|>50))  

2 1 1 9 0 784 0.0113 1.0000 0.0224 -1.1111 48.3333 34.4444 31.6667 0.3010 % 

  4 76 0 717 0.0958 1.0000 0.1749 73.8158 24.0537 73.8158 24.0537 0.8389 ^ 

  5 554 41 239 0.6986 0.9311 0.7983 45.5596 39.5105 52.0578 30.4236 0.4630 ^ 

  7 708 104 85 0.8928 0.8719 0.8822 -57.2740 41.2540 58.3475 39.7191 0.5746 ^ 

  8 706 61 87 0.8903 0.9205 0.9051 -57.2238 41.7449 58.4419 40.0193 0.5738 ^ 

  15 477 168 316 0.6015 0.7395 0.6634 -3.0818 45.7838 34.1929 30.5625 0.2759 % 

  18 1 0 792 0.0013 1.0000 0.0025 -90.0000 0.0000 90.0000 0.0000 - ^ 

  19 3 0 790 0.0038 1.0000 0.0075 6.6667 23.0940 20.0000 0.0000 0.0374 %^ 

  20 29 0 764 0.0366 1.0000 0.0706 -5.8621 39.9569 30.0000 26.4575 0.2157 %^ 

  22 5 0 788 0.0063 1.0000 0.0125 0.0000 17.3205 12.0000 10.9545 0.0039 %^ 

  24 61 4 732 0.0769 0.9385 0.1422 1.4754 43.0440 31.3115 29.2959 0.2457 %^ 

  25 783 125 10 0.9874 0.8623 0.9206 -54.4189 39.8865 56.9221 36.2197 0.5485 ^ 

2 2 1 71 3 722 0.0895 0.9595 0.1638 -7.0423 53.5962 45.3521 28.9251 0.3550 % 

  2 4 0 789 0.0050 1.0000 0.0100 -52.5000 18.9297 52.5000 18.9297 0.5525 ^ 

  4 312 27 481 0.3934 0.9204 0.5512 40.5449 44.7504 52.2115 30.2813 0.4379  

  5 731 323 62 0.9218 0.6935 0.7916 -6.1149 41.5482 31.0397 28.2651 0.2338 %^ 

  7 765 372 28 0.9647 0.6728 0.7927 -61.4771 48.8001 67.8824 39.3928 0.6041  

  8 757 249 36 0.9546 0.7525 0.8416 -65.6011 46.3603 68.7186 41.5929 0.6381  

  10 4 5 789 0.0050 0.4444 0.0100 -102.5000 53.1507 102.5000 53.1507 0.8404  

  12 149 8 644 0.1879 0.9490 0.3137 -16.5772 38.7956 32.4161 26.9045 0.2376 %^ 

  15 477 168 316 0.6015 0.7395 0.6634 -3.0818 45.7838 34.1929 30.5625 0.2759 % 

  16 683 436 110 0.8613 0.6104 0.7144 -8.3309 42.6728 31.1127 30.3488 0.2502 %^ 

  17 169 11 624 0.2131 0.9389 0.3474 -9.4083 41.6148 31.7751 28.3754 0.2414 %^ 

  18 674 539 119 0.8499 0.5556 0.6720 -12.5964 41.4047 30.9347 30.2469 0.2485 %^ 

  19 684 445 109 0.8625 0.6058 0.7118 -7.6608 40.6077 29.6491 28.7646 0.2264 %^ 

  20 666 404 127 0.8398 0.6224 0.7150 -7.4625 41.9776 30.6456 29.6197 0.2410 %^ 

  22 77 5 716 0.0971 0.9390 0.1760 5.5844 43.9645 31.8182 30.6391 0.2592 % 

  24 5 0 788 0.0063 1.0000 0.0125 -2.0000 44.3847 34.0000 23.0217 0.2604 % 

  25 784 119 9 0.9887 0.8682 0.9245 -54.9872 40.4287 57.5893 36.6221 0.5538 ^ 
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1 1 1 785 295 8 0.9899 0.7269 0.8382 21.6927 20.1560 21.6927 20.1560 0.0803 %^ 

  2 785 272 8 0.9899 0.7427 0.8486 17.9880 19.6315 17.9880 19.6315 0.0517 %^ 

  3 784 67 9 0.9887 0.9213 0.9538 41.3622 38.0748 41.3622 38.0748 0.4185 %^ 

  4 785 166 8 0.9899 0.8254 0.9002 12.5877 15.1022 12.5877 15.1022 0.0066 %^% 

  5 785 149 8 0.9899 0.8405 0.9091 18.1322 20.1497 18.1322 20.1497 0.0572 %^% 

  6 785 106 8 0.9899 0.8810 0.9323 18.1461 18.7929 18.1461 18.7929 0.0452 %^% 

  7 785 266 8 0.9899 0.7469 0.8514 24.6246 24.2028 24.6246 24.2028 0.1482 %^ 

  8 784 131 9 0.9887 0.8568 0.9180 32.2402 26.3491 32.2402 26.3491 0.2511 %^& 

  9 785 96 8 0.9899 0.8910 0.9379 18.0220 18.4955 18.0220 18.4955 0.0420 %^& 

  10 785 80 8 0.9899 0.9075 0.9469 20.4439 19.8703 20.4439 19.8703 0.0686 %^& 

  11 730 1606 63 0.9206 0.3125 0.4666 41.1268 33.1288 41.1268 33.1288 0.3974 %^ 

  12 785 88 8 0.9899 0.8992 0.9424 22.4419 19.7853 22.4419 19.7853 0.0820 %^& 

  13 785 72 8 0.9899 0.9160 0.9515 20.7604 19.4051 20.7604 19.4051 0.0661 %^& 

  14 785 78 8 0.9899 0.9096 0.9481 18.4973 18.5999 18.4973 18.5999 0.0453 %^& 

  15 785 896 8 0.9899 0.4670 0.6346 20.3812 20.2698 20.3812 20.2698 0.0722 %^ 

  16 785 283 8 0.9899 0.7350 0.8436 23.1749 21.5740 23.1749 21.5740 0.1072 %^ 

  17 784 140 9 0.9887 0.8485 0.9132 22.6512 20.4710 22.6512 20.4710 0.0910 %^& 

  18 784 380 9 0.9887 0.6735 0.8012 22.5063 20.6505 22.5063 20.6505 0.0918 %^ 

  19 785 284 8 0.9899 0.7343 0.8432 23.3987 21.6512 23.3987 21.6512 0.1100 %^ 

  20 785 329 8 0.9899 0.7047 0.8233 21.8834 21.0946 21.8834 21.0946 0.0916 %^ 

  21 785 160 8 0.9899 0.8307 0.9033 21.5903 19.3098 21.5903 19.3098 0.0707 %^& 

  22 785 340 8 0.9899 0.6978 0.8186 21.6520 20.4724 21.6520 20.4724 0.0833 %^ 

  23 782 49 11 0.9861 0.9410 0.9631 7.5610 12.1270 7.5610 12.1270 0.0002 %^& 

  24 785 545 8 0.9899 0.5902 0.7395 19.3590 19.0480 19.3590 19.0480 0.0540 %^ 

  25 785 223 8 0.9899 0.7788 0.8717 22.5897 21.7301 22.5897 21.7301 0.1040 %^ 

3 1 1 708 146 85 0.8928 0.8290 0.8597 -7.6554 41.5422 31.4407 28.1874 0.2366 %^ 

  2 128 1 665 0.1614 0.9922 0.2777 -28.1250 35.1319 37.9688 24.0524 0.2798 %^ 

  4 661 113 132 0.8335 0.8540 0.8437 28.5628 44.4109 44.3570 28.6158 0.3531 % 

  5 753 285 40 0.9496 0.7254 0.8225 -0.6773 38.7908 28.6454 26.1445 0.1975 %^ 

  7 768 485 25 0.9685 0.6129 0.7507 -41.6146 51.8145 55.6250 36.3401 0.4742 % 

  8 763 401 30 0.9622 0.6555 0.7798 -41.7693 49.2105 51.4155 39.0079 0.4647 % 
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  12 601 60 192 0.7579 0.9092 0.8267 -5.2246 40.8410 31.7804 26.1469 0.2246 %^ 

  15 765 1049 28 0.9647 0.4217 0.5869 2.3791 36.9106 26.0131 26.2773 0.1764 %^ 

  16 672 279 121 0.8474 0.7066 0.7706 1.5179 43.4443 32.0833 29.3060 0.2501 % 

  17 577 94 216 0.7276 0.8599 0.7883 -1.2652 41.2137 31.4905 26.5858 0.2253 %^ 

  18 684 352 109 0.8625 0.6602 0.7479 0.1754 43.8482 33.0117 28.8327 0.2542 % 

  19 676 274 117 0.8525 0.7116 0.7757 1.3462 42.0700 31.4349 27.9658 0.2349 %^ 

  20 727 418 66 0.9168 0.6349 0.7503 0.2889 40.0007 29.6424 26.8376 0.2113 %^ 

  21 17 0 776 0.0214 1.0000 0.0420 7.6471 46.9746 40.5882 22.7680 0.2935 % 

  22 684 354 109 0.8625 0.6590 0.7471 4.8246 40.8919 31.3158 26.7086 0.2246 %^ 

  23 119 3 674 0.1501 0.9754 0.2601 51.0084 35.6155 55.2101 28.6075 0.5136 ^ 

  24 694 600 99 0.8752 0.5363 0.6651 4.6974 41.0168 30.1441 28.1868 0.2259 %^ 

  25 783 106 10 0.9874 0.8808 0.9310 -61.3410 39.9887 62.4904 38.1651 0.6143 ^ 

3 2 1 785 426 8 0.9899 0.6482 0.7834 -18.6242 43.2115 34.6752 31.7906 0.2900 %^ 

  2 784 158 9 0.9887 0.8323 0.9037 -34.6556 45.5940 43.3036 37.4668 0.3999 % 

  3 778 165 15 0.9811 0.8250 0.8963 -49.2159 41.5718 52.4807 37.3600 0.5010 ^ 

  4 772 220 21 0.9735 0.7782 0.8650 -21.9301 44.5211 37.1632 32.8753 0.3173 % 

  5 779 235 14 0.9823 0.7682 0.8622 -41.4249 42.1181 48.2542 34.0691 0.4343 ^ 

  7 773 154 20 0.9748 0.8339 0.8988 -61.8629 47.6999 68.9521 36.6974 0.6077  

  8 774 240 19 0.9760 0.7633 0.8567 -51.6279 48.6553 59.5349 38.5647 0.5317  

  9 759 117 34 0.9571 0.8664 0.9095 -30.2372 41.4028 39.3808 32.8145 0.3429 %^ 

  10 779 363 14 0.9823 0.6821 0.8052 -30.6418 37.9466 38.5494 29.8682 0.3218 %^ 

  12 777 479 16 0.9798 0.6186 0.7584 -10.9395 36.7531 28.6229 25.5008 0.1926 %^ 

  13 786 307 7 0.9912 0.7191 0.8335 -25.0763 38.7289 34.0585 31.1142 0.2862 %^ 

  14 769 119 24 0.9697 0.8660 0.9149 -32.2367 37.3007 37.9064 31.5141 0.3307 %^ 

  15 765 1048 28 0.9647 0.4220 0.5871 2.3791 36.9106 26.0131 26.2773 0.1764 %^ 

  16 786 932 7 0.9912 0.4575 0.6260 -9.3384 35.9663 26.4631 26.0711 0.1786 %^ 

  17 785 564 8 0.9899 0.5819 0.7330 -14.9682 40.2800 30.6879 30.0643 0.2456 %^ 

  18 789 1387 4 0.9950 0.3626 0.5315 -12.3701 37.2750 28.1622 27.3591 0.2035 %^ 

  19 786 957 7 0.9912 0.4509 0.6199 -8.7277 35.6152 26.4631 25.3678 0.1728 %^ 

  20 786 960 7 0.9912 0.4502 0.6191 -8.1679 35.4689 25.8270 25.6312 0.1696 %^ 

  21 782 173 11 0.9861 0.8188 0.8947 -36.2660 41.9788 41.6368 36.6508 0.3917 %^ 
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  22 748 575 45 0.9433 0.5654 0.7070 -0.8957 36.8160 27.4733 24.5038 0.1746 %^ 

  23 634 73 159 0.7995 0.8967 0.8453 -46.7666 42.6913 50.2681 38.4998 0.4815 ^ 

  24 536 267 257 0.6759 0.6675 0.6717 7.6119 47.2643 35.2985 32.3056 0.2963 % 

  25 783 102 10 0.9874 0.8847 0.9333 -60.7918 61.9413 39.9025 38.0914 0.6060 % 

mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, |Te|. 
Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models which outperform the rule-based approach in chapter 4 are indicated with the 
symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms
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Table 5.9: Supervised learning classifier performance for end contact of stair ascent 

Output Cost Model TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) pr(|Te|>50 )  

2 1 1 15 0 779 0.0189 1.0000 0.0371 0.6667 30.8143 22.0000 20.7709 0.1048 % 

  4 46 0 748 0.0579 1.0000 0.1095 28.2609 12.3476 28.2609 12.3476 0.0392 %^ 

  5 730 49 64 0.9194 0.9371 0.9282 -6.4521 26.5354 19.3562 19.2520 0.0671 %& 

  7 759 22 35 0.9559 0.9718 0.9638 -26.2582 27.0047 31.0540 21.3080 0.1920 %& 

  8 768 69 26 0.9673 0.9176 0.9418 -28.3333 27.0416 33.1771 20.8067 0.2134 %& 

  15 500 149 294 0.6297 0.7704 0.6930 3.6400 34.0333 23.4400 24.9200 0.1441 % 

  16 79 2 715 0.0995 0.9753 0.1806 -2.6582 28.6763 21.3924 19.1307 0.0825 % 

  18 57 1 737 0.0718 0.9828 0.1338 2.6316 27.6797 19.8246 19.3179 0.0721 % 

  19 78 1 716 0.0982 0.9873 0.1787 -2.9487 28.6542 21.1538 19.4055 0.0826 % 

  20 85 2 709 0.1071 0.9770 0.1930 4.8235 39.0242 25.2941 29.9837 0.2035 % 

  22 69 1 725 0.0869 0.9857 0.1597 -4.4928 26.5428 20.7246 17.0051 0.0633 % 

  24 179 10 615 0.2254 0.9471 0.3642 7.2626 32.9929 22.2346 25.3854 0.1389 % 

  25 784 62 10 0.9874 0.9267 0.9561 -35.5357 26.3432 38.5969 21.6041 0.2921 %& 

2 2 1 725 47 69 0.9131 0.9391 0.9259 -3.6138 24.5549 18.2069 16.8545 0.0439 %& 

  4 381 8 413 0.4798 0.9794 0.6441 16.4042 26.7234 21.6010 22.7181 0.1108 % 

  5 773 85 21 0.9736 0.9009 0.9358 -21.4360 27.3366 27.6973 20.9583 0.1525 %& 

  7 775 35 19 0.9761 0.9568 0.9663 -34.8645 27.1697 38.0903 22.4176 0.2896 %& 

  8 777 53 17 0.9786 0.9361 0.9569 -34.5946 27.7344 38.6873 21.6539 0.2904 %& 

  10 766 42 28 0.9647 0.9480 0.9563 122.3107 34.2198 124.1123 26.9530 0.9827  

  12 441 15 353 0.5554 0.9671 0.7056 -8.1406 28.7100 20.6122 21.5604 0.0938 % 

  15 500 149 294 0.6297 0.7704 0.6930 3.6400 34.0333 23.4400 24.9200 0.1441 % 

  16 719 354 75 0.9055 0.6701 0.7702 -0.7371 30.6410 20.8762 22.4275 0.1028 % 

  17 478 35 316 0.6020 0.9318 0.7314 -1.9665 30.6584 21.4644 21.9574 0.1036 % 

  18 751 494 43 0.9458 0.6032 0.7366 -1.1718 25.5126 16.9640 19.0815 0.0503 % 

  19 713 335 81 0.8980 0.6803 0.7742 -0.0842 31.6227 21.4306 23.2397 0.1138 % 

  20 705 326 89 0.8879 0.6838 0.7726 -0.7943 30.6500 20.7092 22.5959 0.1029 % 

  22 233 16 561 0.2935 0.9357 0.4468 3.6481 29.4343 21.4163 20.4721 0.0918 % 

  23 6 0 788 0.0076 1.0000 0.0150 41.6667 19.4079 41.6667 19.4079 0.3338 %^ 

  24 47 1 747 0.0592 0.9792 0.1116 14.8936 33.1579 27.6596 23.3325 0.1700 % 



Page | 106  
 

  25 784 59 10 0.9874 0.9300 0.9578 -35.8291 26.4517 38.9413 21.6031 0.2967 %& 

1 1 1 788 292 6 0.9924 0.7296 0.8410 -0.8249 25.7336 18.7183 17.6657 0.0521 % 

  2 788 269 6 0.9924 0.7455 0.8514 2.8426 25.3673 18.2234 17.8627 0.0501 % 

  3 787 65 7 0.9912 0.9237 0.9563 0.1779 25.7403 18.3990 17.9901 0.0521 %& 

  4 783 169 11 0.9861 0.8225 0.8969 -4.5211 25.4272 18.4419 18.0685 0.0528 % 

  5 787 148 7 0.9912 0.8417 0.9104 -4.6760 27.1081 19.2122 19.6765 0.0691 %& 

  6 782 110 12 0.9849 0.8767 0.9276 -0.9079 25.8295 17.5320 18.9796 0.0530 %& 

  7 787 265 7 0.9912 0.7481 0.8527 1.2579 25.2230 17.9288 17.7745 0.0477 % 

  8 786 130 8 0.9899 0.8581 0.9193 11.8193 28.5108 21.2341 22.3892 0.1053 %& 

  9 783 99 11 0.9861 0.8878 0.9344 -2.2095 26.8194 18.0204 19.9754 0.0632 %& 

  10 787 79 7 0.9912 0.9088 0.9482 -0.6734 23.7925 16.5311 17.1147 0.0357 %& 

  11 533 1803 261 0.6713 0.2282 0.3406 49.7186 38.3165 54.9343 30.3526 0.5017  

  12 785 87 9 0.9887 0.9002 0.9424 4.9299 26.3421 19.1720 18.7138 0.0621 %& 

  13 787 71 7 0.9912 0.9172 0.9528 3.7103 24.7575 17.5349 17.8564 0.0458 %& 

  14 787 77 7 0.9912 0.9109 0.9493 -0.7624 24.7774 17.2554 17.7870 0.0437 %& 

  15 791 891 3 0.9962 0.4703 0.6389 3.1226 31.2561 20.9987 23.3496 0.1114 % 

  16 788 281 6 0.9924 0.7371 0.8459 3.4898 28.7985 20.3173 20.6938 0.0848 % 

  17 787 138 7 0.9912 0.8508 0.9156 4.9047 26.2128 19.0343 18.6663 0.0608 %& 

  18 787 378 7 0.9912 0.6755 0.8035 0.1271 26.2932 19.0597 18.1001 0.0572 % 

  19 788 282 6 0.9924 0.7364 0.8455 3.6421 28.8854 20.6218 20.5390 0.0859 % 

  20 789 325 5 0.9937 0.7083 0.8270 5.5260 30.5139 21.4195 22.4120 0.1069 % 

  21 788 158 6 0.9924 0.8330 0.9057 4.0355 26.6410 19.0355 19.0588 0.0635 %& 

  22 787 339 7 0.9912 0.6989 0.8198 3.3926 27.1889 19.5299 19.2058 0.0680 % 

  23 782 49 12 0.9849 0.9410 0.9625 4.6803 26.0225 17.9028 19.4469 0.0586 %& 

  24 787 544 7 0.9912 0.5913 0.7407 3.8755 25.0719 17.6239 18.2385 0.0487 % 

  25 788 220 6 0.9924 0.7817 0.8746 1.0152 25.5060 18.1726 17.9144 0.0501 % 

3 1 1 773 118 21 0.9736 0.8676 0.9175 12.9495 25.1955 20.4528 19.5924 0.0769 %& 

  4 711 106 83 0.8955 0.8703 0.8827 10.3797 26.6008 20.9845 19.3526 0.0798 % 

  5 779 139 15 0.9811 0.8486 0.9100 -12.4904 25.7826 21.0655 19.4069 0.0805 %& 

  7 779 12 15 0.9811 0.9848 0.9830 -20.4236 26.5826 26.7137 20.2423 0.1370 %& 

  8 784 8 10 0.9874 0.9899 0.9887 -21.6837 28.3424 28.7755 21.0947 0.1646 <%& 
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  9 566 13 228 0.7128 0.9775 0.8245 9.7703 29.0215 20.8657 22.3993 0.1026 % 

  10 759 36 35 0.9559 0.9547 0.9553 -1.3439 25.8683 18.9460 17.6508 0.0536 %& 

  12 747 116 47 0.9408 0.8656 0.9016 6.2517 28.6400 20.6827 20.7614 0.0881 %& 

  13 752 23 42 0.9471 0.9703 0.9586 0.8511 26.4514 19.3351 18.0570 0.0589 %& 

  14 394 5 400 0.4962 0.9875 0.6605 14.5939 27.0888 21.0914 22.3909 0.1042 % 

  15 782 702 12 0.9849 0.5270 0.6866 6.5985 28.5894 19.8465 21.5999 0.0884 % 

  16 776 276 18 0.9773 0.7376 0.8407 7.3840 29.8597 21.4562 22.0280 0.1041 % 

  17 749 78 45 0.9433 0.9057 0.9241 11.3351 29.3482 22.3097 22.1717 0.1122 %& 

  18 775 301 19 0.9761 0.7203 0.8289 2.2581 27.9153 19.7032 19.8909 0.0742 % 

  19 774 286 20 0.9748 0.7302 0.8350 7.8553 29.4854 21.5504 21.5907 0.1013 % 

  20 764 294 30 0.9622 0.7221 0.8251 9.0969 29.0631 21.4529 21.6031 0.1007 % 

  21 684 13 110 0.8615 0.9813 0.9175 11.6959 25.9922 20.3216 19.9754 0.0791 %& 

  22 769 332 25 0.9685 0.6985 0.8116 5.7737 27.1321 19.6099 19.6082 0.0715 % 

  23 512 6 282 0.6448 0.9884 0.7805 20.3516 27.9969 25.2734 23.6396 0.1508 % 

  24 767 644 27 0.9660 0.5436 0.6957 9.5437 26.0483 19.6089 19.6139 0.0713 % 

  25 786 23 8 0.9899 0.9716 0.9807 -24.7201 25.8212 28.8931 21.0410 0.1657 %& 

3 2 1 787 274 7 0.9912 0.7418 0.8485 -12.7192 26.0109 21.3088 19.5936 0.0838 % 

  2 785 10 9 0.9887 0.9874 0.9880 -12.9427 24.9618 20.5350 19.1987 0.0747 <%& 

  3 784 19 10 0.9874 0.9763 0.9818 -24.8724 28.3381 29.8980 22.9662 0.1917 %& 

  4 785 278 9 0.9887 0.7385 0.8454 -7.1847 27.5736 20.9427 19.3089 0.0793 % 

  5 781 137 13 0.9836 0.8508 0.9124 -23.9052 26.4572 29.0781 20.6291 0.1646 %& 

  7 779 12 15 0.9811 0.9848 0.9830 -29.2811 25.6784 32.8241 20.9537 0.2109 %& 

  8 785 18 9 0.9887 0.9776 0.9831 -29.2357 27.6536 34.2038 21.1930 0.2284 %& 

  9 781 94 13 0.9836 0.8926 0.9359 -12.2151 28.9488 23.1498 21.2329 0.1117 %& 

  10 100 290 694 0.1259 0.2564 0.1689 11.2000 49.3448 35.6000 35.7974 0.3233 % 

  12 776 114 18 0.9773 0.8719 0.9216 -9.0464 27.4953 21.1082 19.7940 0.0841 %& 

  13 786 38 8 0.9899 0.9539 0.9716 -13.4860 26.7722 22.0102 20.3418 0.0952 %& 

  14 786 15 8 0.9899 0.9813 0.9856 -16.5013 26.8204 23.5242 20.9257 0.1124 <%& 

  15 782 702 12 0.9849 0.5270 0.6866 6.5985 28.5894 19.8465 21.5999 0.0884 % 

  16 788 227 6 0.9924 0.7764 0.8712 -7.7411 27.8629 20.6091 20.2747 0.0838 % 

  17 787 45 7 0.9912 0.9459 0.9680 -10.0381 26.2862 20.3558 19.4158 0.0754 %& 



Page | 108  
 

  18 789 270 5 0.9937 0.7450 0.8516 -11.9392 26.2247 21.0139 19.7056 0.0824 % 

  19 786 227 8 0.9899 0.7759 0.8700 -7.5318 27.1399 20.2290 19.5868 0.0758 % 

  20 787 268 7 0.9912 0.7460 0.8513 -6.1245 28.0240 20.2287 20.3268 0.0813 % 

  21 786 10 8 0.9899 0.9874 0.9887 -14.2239 24.9324 21.1196 19.4319 0.0807 <%& 

  22 777 379 17 0.9786 0.6721 0.7969 1.1197 25.7847 18.4170 18.0689 0.0527 % 

  23 757 67 37 0.9534 0.9187 0.9357 2.9855 28.1637 20.6341 19.3852 0.0775 %& 

  24 748 620 46 0.9421 0.5468 0.6920 11.5107 26.6815 19.4519 21.5800 0.0851 % 

  25 786 22 8 0.9899 0.9728 0.9813 -28.7913 25.7561 32.3028 21.1796 0.2062 %& 

mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, |Te|. 
Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models which outperform the rule-based approach in chapter 4 are indicated with the 
symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms
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Table 5.10: Supervised learning classifier performance for initial contact of stair descent  

Output Cost Model TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) pr(|Te|>50 )  

2 1 1 34 0 845 0.0387 1.0000 0.0745 -14.4118 51.7682 40.8824 34.2334 0.3526  

  5 192 29 687 0.2184 0.8688 0.3491 -15.8333 36.7863 29.4792 27.0493 0.2133 % 

  7 777 51 102 0.8840 0.9384 0.9104 -23.4749 49.7030 42.0592 35.3682 0.3665  

  8 851 31 28 0.9681 0.9649 0.9665 -28.8954 50.3419 44.5711 37.1661 0.3961  

  15 477 163 402 0.5427 0.7453 0.6280 -8.3438 43.1869 32.0335 30.1093 0.2557 % 

  16 1 0 878 0.0011 1.0000 0.0023 -10.0000 0.0000 10.0000 0.0000 - %^ 

  18 5 0 874 0.0057 1.0000 0.0113 6.0000 32.8634 22.0000 22.8035 0.1345 % 

  19 1 0 878 0.0011 1.0000 0.0023 -10.0000 0.0000 10.0000 0.0000 - %^ 

  20 48 2 831 0.0546 0.9600 0.1033 -21.4583 47.8913 37.7083 36.2168 0.3434  

  22 11 0 868 0.0125 1.0000 0.0247 -16.3636 39.3123 32.7273 25.7258 0.2418 % 

  24 116 8 763 0.1320 0.9355 0.2313 -13.4483 45.1491 34.1379 32.3317 0.2891 % 

  25 876 215 3 0.9966 0.8029 0.8893 -36.6438 53.3638 50.4795 40.5082 0.4534  

2 2 1 157 9 722 0.1786 0.9458 0.3005 -13.8854 52.4972 37.7070 38.9752 0.3576  

  4 36 4 843 0.0410 0.9000 0.0783 59.7222 75.1184 86.3889 40.4371 0.6235  

  5 766 167 113 0.8714 0.8210 0.8455 -27.9373 40.9741 36.5535 33.5035 0.3237 % 

  7 861 177 18 0.9795 0.8295 0.8983 -28.3972 52.1490 46.0046 37.5230 0.4057  

  8 875 61 4 0.9954 0.9348 0.9642 -33.9086 51.6261 47.2114 39.8107 0.4297  

  10 616 290 263 0.7008 0.6799 0.6902 35.9253 78.1459 66.6396 54.3273 0.5643  

  11 5 1 874 0.0057 0.8333 0.0113 20.0000 14.1421 20.0000 14.1421 0.0169 %^ 

  12 280 17 599 0.3185 0.9428 0.4762 -16.6786 41.9255 32.2500 31.5139 0.2692 % 

  15 477 163 402 0.5427 0.7453 0.6280 -8.3438 43.1869 32.0335 30.1093 0.2557 % 

  16 677 383 202 0.7702 0.6387 0.6983 -9.2319 39.2835 26.7208 30.2240 0.2155 % 

  17 241 35 638 0.2742 0.8732 0.4173 -14.3154 34.3943 27.3444 25.2570 0.1805 % 

  18 679 501 200 0.7725 0.5754 0.6595 -6.1267 38.7396 28.0412 27.4021 0.2024 % 

  19 669 365 210 0.7611 0.6470 0.6994 -9.5366 39.5589 26.9357 30.4855 0.2193 % 

  20 656 384 223 0.7463 0.6308 0.6837 -7.2104 39.0458 26.4787 29.5711 0.2080 % 

  22 97 10 782 0.1104 0.9065 0.1968 -14.6392 38.3260 30.1031 27.7449 0.2239 % 

  24 17 0 862 0.0193 1.0000 0.0379 -8.2353 46.2649 29.4118 35.9636 0.2874 % 

  25 877 246 2 0.9977 0.7809 0.8761 -33.0901 52.5092 47.7765 39.6008 0.4305  
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1 1 1 879 559 0 1.0000 0.6113 0.7587 1.7975 37.8307 28.6234 24.7823 0.1868 % 

  2 879 53 0 1.0000 0.9431 0.9707 16.0637 39.2263 34.4937 24.6143 0.2396 % 

  3 879 56 0 1.0000 0.9401 0.9691 14.6530 41.2348 35.0853 26.1320 0.2541 % 

  4 877 66 2 0.9977 0.9300 0.9627 -23.1129 52.9194 44.5040 36.7751 0.3892  

  5 879 444 0 1.0000 0.6644 0.7984 19.6246 48.2894 43.1513 29.2108 0.3393  

  6 879 30 0 1.0000 0.9670 0.9832 -2.7190 49.5883 37.9863 31.9655 0.3140  

  7 879 60 0 1.0000 0.9361 0.9670 9.4994 42.4288 34.3003 26.6963 0.2503 % 

  8 879 85 0 1.0000 0.9118 0.9539 15.2787 41.7704 36.3026 25.6728 0.2620 % 

  9 879 13 0 1.0000 0.9854 0.9927 -7.3606 48.9162 37.5768 32.1468 0.3122  

  10 878 38 1 0.9989 0.9585 0.9783 -0.6492 34.9087 25.6378 23.6853 0.1521 % 

  12 879 123 0 1.0000 0.8772 0.9346 2.1729 34.6533 26.4050 22.5291 0.1499 % 

  13 879 32 0 1.0000 0.9649 0.9821 6.8373 37.0527 29.5449 23.3625 0.1845 % 

  14 879 10 0 1.0000 0.9888 0.9943 10.1251 39.6839 32.4460 24.9702 0.2224 % 

  15 879 1402 0 1.0000 0.3854 0.5563 4.3231 32.3064 23.3902 22.6868 0.1250 % 

  16 879 456 0 1.0000 0.6584 0.7940 10.0000 35.0528 28.5666 22.6238 0.1704 % 

  17 879 160 0 1.0000 0.8460 0.9166 11.4448 37.4145 31.4448 23.2610 0.2017 % 

  18 879 558 0 1.0000 0.6117 0.7591 10.3413 32.5264 26.8828 21.0125 0.1432 % 

  19 879 462 0 1.0000 0.6555 0.7919 9.6815 35.1390 28.4300 22.7904 0.1703 % 

  20 879 544 0 1.0000 0.6177 0.7637 7.0193 35.4405 27.4289 23.4979 0.1664 % 

  21 879 48 0 1.0000 0.9482 0.9734 10.5688 38.5606 32.3663 23.4515 0.2114 % 

  22 879 479 0 1.0000 0.6473 0.7859 5.0398 33.1624 25.8589 21.3477 0.1361 % 

  23 877 15 2 0.9977 0.9832 0.9904 -29.7605 51.1628 45.1767 38.2239 0.4057  

  24 879 1001 0 1.0000 0.4676 0.6372 8.6462 32.8261 26.0523 21.7461 0.1409 % 

>  25 879 33 0 1.0000 0.9638 0.9816 16.3481 39.0254 34.4141 24.5940 0.2388 % 

3 1 1 754 114 125 0.8578 0.8687 0.8632 17.8515 34.6049 31.8833 22.3317 0.2014 % 

  4 117 20 762 0.1331 0.8540 0.2303 57.0940 53.8046 68.0342 38.9128 0.5757  

  5 812 94 67 0.9238 0.8962 0.9098 -7.5739 39.8320 30.6773 26.4908 0.2176 % 

  7 862 184 17 0.9807 0.8241 0.8956 -11.8794 48.0243 37.8422 31.8421 0.3124  

  8 873 73 6 0.9932 0.9228 0.9567 -22.9668 49.3840 41.4777 35.2773 0.3618  

  10 704 56 175 0.8009 0.9263 0.8591 6.8182 27.5059 21.9602 17.8939 0.0776 %^ 

  11 861 124 18 0.9795 0.8741 0.9238 -30.2787 46.1108 40.1742 37.7919 0.3753  
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  12 805 107 74 0.9158 0.8827 0.8989 6.3851 34.7876 27.0807 22.7314 0.1575 % 

  13 577 26 302 0.6564 0.9569 0.7787 13.4142 25.2754 23.6742 16.0517 0.0799 %^ 

  15 862 895 17 0.9807 0.4906 0.6540 5.8701 30.9076 22.3898 22.0883 0.1120 % 

  16 806 299 73 0.9170 0.7294 0.8125 10.8313 35.2197 28.7717 23.0011 0.1751 % 

  17 719 114 160 0.8180 0.8631 0.8400 17.3018 34.0442 31.0153 22.2595 0.1924 % 

  18 771 342 108 0.8771 0.6927 0.7741 12.5681 33.0783 28.1842 21.3766 0.1582 % 

  19 819 296 60 0.9317 0.7345 0.8215 10.7448 36.0529 29.3529 23.5108 0.1841 % 

  20 841 387 38 0.9568 0.6849 0.7983 8.3353 35.5446 27.7170 23.7451 0.1709 % 

  22 825 257 54 0.9386 0.7625 0.8414 7.5152 35.8192 28.0970 23.4343 0.1720 % 

  24 659 268 220 0.7497 0.7109 0.7298 16.4795 35.1556 31.3505 22.8813 0.1995 % 

  25 875 238 4 0.9954 0.7862 0.8785 -22.6629 48.5098 40.7200 34.7473 0.3536  

3 2 1 861 185 18 0.9795 0.8231 0.8945 -16.0627 44.4390 35.3659 31.3200 0.2911 % 

  2 842 206 37 0.9579 0.8034 0.8739 -10.6295 43.7967 34.4537 29.0311 0.2675 % 

  3 806 60 73 0.9170 0.9307 0.9238 -16.2655 44.0590 35.6948 30.5022 0.2882 % 

  4 733 448 146 0.8339 0.6207 0.7117 -8.9768 52.1129 39.5362 35.0885 0.3445  

  5 872 112 7 0.9920 0.8862 0.9361 -31.0436 43.6449 40.2408 35.3342 0.3637  

  7 876 319 3 0.9966 0.7331 0.8447 -18.5845 49.3344 40.4566 33.7794 0.3444  

  8 875 180 4 0.9954 0.8294 0.9049 -25.9429 51.0137 43.8857 36.7157 0.3869  

  9 859 492 20 0.9772 0.6358 0.7704 -26.3562 49.8984 44.4005 34.8083 0.3808  

  10 877 87 2 0.9977 0.9098 0.9517 -20.2166 39.3651 31.7788 30.7855 0.2619 % 

  12 877 183 2 0.9977 0.8274 0.9046 -15.2452 42.3520 31.7788 31.8642 0.2676 % 

  13 877 47 2 0.9977 0.9491 0.9728 -19.6123 40.2627 32.1779 31.1379 0.2671 % 

  14 866 97 13 0.9852 0.8993 0.9403 -20.2887 41.7788 34.7691 30.7780 0.2847 % 

  15 862 895 17 0.9807 0.4906 0.6540 5.8701 30.9076 22.3898 22.0883 0.1120 % 

  16 878 596 1 0.9989 0.5957 0.7463 -7.6310 38.3121 28.0410 27.1830 0.2006 % 

  17 879 283 0 1.0000 0.7565 0.8613 -13.7201 45.1792 34.9943 31.6799 0.2902 % 

  18 879 1028 0 1.0000 0.4609 0.6310 -10.1138 39.0226 29.4084 27.5560 0.2151 % 

  19 878 589 1 0.9989 0.5985 0.7485 -8.8610 39.3948 28.5877 28.5021 0.2158 % 

  20 879 651 0 1.0000 0.5745 0.7298 -6.5757 37.6894 27.1900 26.9006 0.1913 % 

  21 863 120 16 0.9818 0.8779 0.9270 -12.9085 43.6714 33.7196 30.5890 0.2727 % 

  22 863 363 16 0.9818 0.7039 0.8200 2.6883 35.5299 26.4890 23.8144 0.1605 % 
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  23 519 131 360 0.5904 0.7985 0.6789 -9.4412 56.8093 44.4316 36.5872 0.3853  

  24 832 620 47 0.9465 0.5730 0.7139 11.5264 31.7322 25.9736 21.5526 0.1389 % 

  25 876 247 3 0.9966 0.7801 0.8751 -22.2489 48.4181 40.4452 34.6728 0.3511  

mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, 
|Te|. Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models which outperform the rule-based approach in chapter 4 are indicated with 
the symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms
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Table 5.11: Supervised learning classifier performance for end contact of stair descent 

Output Cost Model TP FP FN TPR PPV F1-score mn(Te) Sd(Te) mn(|Te|) Sd(|Te|) pr(|Te|>50 )  

2 1 1 50 0 830 0.0568 1.0000 0.1075 12.2000 27.9424 24.6000 17.7523 0.1011  

  4 1 1 879 0.0011 0.5000 0.0023 0.0000 0.0000 0.0000 0.0000 - ^ 

  5 828 112 52 0.9409 0.8809 0.9099 -37.5362 23.3312 38.5990 21.5251 0.2967  

  7 872 2 8 0.9909 0.9977 0.9943 -54.8165 23.9635 55.0000 23.5388 0.5797  

  8 876 0 4 0.9955 1.0000 0.9977 -58.9269 25.3071 59.1324 24.8226 0.6379 < 

  11 608 46 272 0.6909 0.9297 0.7927 13.9803 45.7766 36.0855 31.4159 0.2968  

  15 620 250 260 0.7045 0.7126 0.7086 -1.1774 30.6484 23.7258 19.4136 0.1031  

  16 91 2 789 0.1034 0.9785 0.1871 10.8791 23.2211 19.6703 16.3606 0.0504 % 

  18 75 1 805 0.0852 0.9868 0.1569 18.2667 24.1825 24.6667 17.5016 0.0971  

  19 81 2 799 0.0920 0.9759 0.1682 10.4938 24.2333 19.6296 17.5673 0.0578 % 

  20 104 4 776 0.1182 0.9630 0.2105 7.4038 29.1629 23.7500 18.3381 0.0966  

  22 91 4 789 0.1034 0.9579 0.1867 7.3626 28.7454 21.6484 20.1805 0.0920 % 

  24 289 35 591 0.3284 0.8920 0.4801 -0.3114 34.2920 26.5398 21.6618 0.1448  

  25 880 0 0 1.0000 1.0000 1.0000 -70.2159 26.1147 70.2386 26.0535 0.7806 < 

2 2 1 413 58 467 0.4693 0.8769 0.6114 5.0847 26.2513 20.8232 16.7448 0.0615 % 

  2 228 1 652 0.2591 0.9956 0.4112 12.6754 26.7035 23.3772 18.0430 0.0906  

  4 449 44 431 0.5102 0.9108 0.6540 -27.5724 18.5558 28.4187 17.2286 0.1134  

  5 876 42 4 0.9955 0.9542 0.9744 -54.8858 26.5134 55.8447 24.4266 0.5731  

  7 880 0 0 1.0000 1.0000 1.0000 -62.7386 23.4484 62.8068 23.2650 0.7065 < 

  8 880 0 0 1.0000 1.0000 1.0000 -66.6136 24.5623 66.6818 24.3764 0.7506 < 

  10 646 1677 234 0.7341 0.2781 0.4034 40.8824 25.2122 42.3684 22.6218 0.3590  

  11 797 1539 83 0.9057 0.3412 0.4956 49.7742 25.0968 50.6274 23.3255 0.4964  

  12 540 24 340 0.6136 0.9574 0.7479 2.8889 24.3007 19.4815 14.7870 0.0410 % 

  13 19 0 861 0.0216 1.0000 0.0423 20.5263 8.4811 20.5263 8.4811 0.0003 % 

  15 620 250 260 0.7045 0.7126 0.7086 -1.1774 30.6484 23.7258 19.4136 0.1031 ^ 

  16 815 546 65 0.9261 0.5988 0.7274 -3.3620 23.4282 17.6687 15.7363 0.0346 % 

  17 591 17 289 0.6716 0.9720 0.7944 1.6920 23.6825 18.4772 14.8911 0.0352 % 

  18 814 505 66 0.9250 0.6171 0.7403 1.5111 23.0738 16.9902 15.6737 0.0306 % 

  19 820 552 60 0.9318 0.5977 0.7282 -2.5610 22.9886 17.3902 15.2398 0.0306 % 
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  20 805 558 75 0.9148 0.5906 0.7178 -2.6460 23.4272 17.8509 15.3881 0.0339 % 

  21 210 1 670 0.2386 0.9953 0.3850 12.8095 23.9060 21.2857 16.7665 0.0642 % 

  22 250 22 630 0.2841 0.9191 0.4340 2.6800 32.6417 25.0000 21.0993 0.1268  

  23 66 0 814 0.0750 1.0000 0.1395 -8.4848 16.0041 14.8485 10.2646 0.0049 % 

  24 87 4 793 0.0989 0.9560 0.1792 4.3678 27.5217 22.5287 16.2265 0.0728  

  25 880 1 0 1.0000 0.9989 0.9994 -67.9773 25.9868 68.0227 25.8674 0.7555 < 

1 1 1 880 558 0 1.0000 0.6120 0.7593 3.0568 22.5526 17.4205 14.6341 0.0280 % 

  2 880 52 0 1.0000 0.9442 0.9713 5.4091 26.4694 21.7955 15.9480 0.0642 % 

  3 880 55 0 1.0000 0.9412 0.9697 -5.8977 25.5695 20.3750 16.5230 0.0567 % 

  4 880 64 0 1.0000 0.9322 0.9649 49.8636 37.8997 56.5455 26.9179 0.5028  

  5 880 443 0 1.0000 0.6652 0.7989 13.8068 22.2394 20.5568 16.1980 0.0539 % 

  6 880 29 0 1.0000 0.9681 0.9838 30.8409 35.3590 40.2955 24.0194 0.3051  

  7 880 59 0 1.0000 0.9372 0.9676 -36.9432 24.3663 38.4205 21.9604 0.2962  

  8 880 84 0 1.0000 0.9129 0.9544 -42.6477 28.5670 43.7841 26.7908 0.3990  

  9 880 12 0 1.0000 0.9865 0.9932 36.0000 30.1555 40.5682 23.6469 0.3234  

  10 880 36 0 1.0000 0.9607 0.9800 -0.2955 22.0436 16.5000 14.6098 0.0233 % 

  12 880 122 0 1.0000 0.8782 0.9352 3.3409 24.7577 19.2500 15.9102 0.0453 % 

  13 880 31 0 1.0000 0.9660 0.9827 1.5795 22.7592 17.6250 14.4736 0.0284 % 

  14 880 9 0 1.0000 0.9899 0.9949 6.0568 24.3649 19.7614 15.4732 0.0464 % 

  15 880 1401 0 1.0000 0.3858 0.5568 0.7955 21.6720 16.5227 14.0355 0.0211 % 

  16 880 455 0 1.0000 0.6592 0.7946 1.1364 26.3274 20.2727 16.8218 0.0578 % 

  17 880 159 0 1.0000 0.8470 0.9171 2.5341 25.5196 20.0114 16.0240 0.0512 % 

  18 880 557 0 1.0000 0.6124 0.7596 6.9318 21.1317 17.5000 13.7133 0.0243 % 

  19 880 461 0 1.0000 0.6562 0.7924 1.1023 26.0705 20.0568 16.6779 0.0553 % 

  20 880 543 0 1.0000 0.6184 0.7642 4.1477 25.1539 20.0341 15.7519 0.0498 % 

  21 880 47 0 1.0000 0.9493 0.9740 3.7955 25.4990 20.5227 15.5871 0.0524 % 

  22 880 478 0 1.0000 0.6480 0.7864 0.6364 26.1840 19.9545 16.9520 0.0563 % 

  23 880 13 0 1.0000 0.9854 0.9927 53.5795 31.2941 56.6705 25.2619 0.5460  

  24 880 1000 0 1.0000 0.4681 0.6377 -0.1364 24.9227 18.9773 16.1435 0.0448 % 

  25 880 32 0 1.0000 0.9649 0.9821 0.3636 25.5293 19.6818 16.2500 0.0502 % 

3 1 1 867 202 13 0.9852 0.8110 0.8897 2.6874 25.4302 20.1038 15.7891 0.0505 % 
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  2 827 110 53 0.9398 0.8826 0.9103 -8.1378 29.6046 24.0750 19.0376 0.1035  

  4 492 16 388 0.5591 0.9685 0.7089 -17.4797 25.9513 26.1382 17.1766 0.1097  

  5 877 28 3 0.9966 0.9691 0.9826 -48.6203 23.5209 49.3729 21.8952 0.4766  

  7 880 0 0 1.0000 1.0000 1.0000 -56.4318 24.2333 56.5909 23.8590 0.6047 < 

  8 880 0 0 1.0000 1.0000 1.0000 -60.3864 25.8478 60.5455 25.4725 0.6561 < 

  9 237 1 643 0.2693 0.9958 0.4240 15.1899 23.3177 23.8819 14.2360 0.0703  

  10 735 35 145 0.8352 0.9545 0.8909 6.1088 38.8820 26.7619 28.8445 0.2040  

  11 866 703 14 0.9841 0.5519 0.7072 -68.9838 54.9735 82.2171 31.9201 0.6503  

  12 835 42 45 0.9489 0.9521 0.9505 4.3832 24.8968 19.6407 15.9018 0.0479 % 

  13 850 1 30 0.9659 0.9988 0.9821 -1.0118 25.0025 19.3882 15.8051 0.0457 % 

  14 555 0 325 0.6307 1.0000 0.7735 3.1892 24.0883 19.1532 14.9308 0.0396 % 

  15 874 916 6 0.9932 0.4883 0.6547 2.0366 21.1517 16.3616 13.5477 0.0186 % 

  16 858 209 22 0.9750 0.8041 0.8814 8.5897 24.1831 20.2914 15.6995 0.0511 % 

  17 860 16 20 0.9773 0.9817 0.9795 4.0698 24.5508 19.4884 15.4624 0.0445 % 

  18 850 225 30 0.9659 0.7907 0.8696 13.2941 21.3606 19.6941 15.6493 0.0444 % 

  19 855 210 25 0.9716 0.8028 0.8792 8.5848 23.8503 20.0000 15.5613 0.0483 % 

  20 865 312 15 0.9830 0.7349 0.8410 6.1387 23.8073 19.3179 15.1954 0.0419 % 

  21 829 17 51 0.9420 0.9799 0.9606 -0.3378 26.4051 20.9650 16.0400 0.0583 % 

  22 861 341 19 0.9784 0.7163 0.8271 2.8223 24.7838 19.3612 15.7136 0.0450 % 

  23 88 0 792 0.1000 1.0000 0.1818 2.5000 16.3475 12.5000 10.7479 0.0025 % 

  24 863 559 17 0.9807 0.6069 0.7498 5.4577 23.1607 18.4357 15.0324 0.0356 % 

  25 880 11 0 1.0000 0.9877 0.9938 -58.5909 26.9042 59.0909 25.7862 0.6253  

3 2 1 878 256 2 0.9977 0.7743 0.8719 -28.8838 31.7542 34.2369 25.8854 0.2595  

  2 875 96 5 0.9943 0.9011 0.9454 -32.7314 31.4372 36.3657 27.1457 0.2956  

  3 880 0 0 1.0000 1.0000 1.0000 -23.3977 25.5172 28.3750 19.8279 0.1506 < 

  4 861 42 19 0.9784 0.9535 0.9658 -56.5854 25.3799 57.5842 23.0211 0.6024  

  5 880 15 0 1.0000 0.9832 0.9915 -60.4659 24.4323 60.9205 23.2745 0.6658  

  7 880 0 0 1.0000 1.0000 1.0000 -64.4432 23.8484 64.4659 23.7868 0.7276 < 

  8 880 0 0 1.0000 1.0000 1.0000 -67.6705 25.7609 67.7159 25.6410 0.7536 < 

  9 866 0 14 0.9841 1.0000 0.9920 -48.7991 28.9538 49.8614 27.0812 0.4838  

  10 856 77 24 0.9727 0.9175 0.9443 -30.6192 39.0976 34.6612 35.5591 0.3297  
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  12 872 99 8 0.9909 0.8980 0.9422 -22.5115 28.7872 28.2225 23.2084 0.1757  

  13 879 6 1 0.9989 0.9932 0.9960 -28.8623 28.3619 32.1388 24.5826 0.2308 < 

  14 878 0 2 0.9977 1.0000 0.9989 -42.1298 29.8861 43.3599 28.0696 0.3972 < 

  15 874 916 6 0.9932 0.4883 0.6547 2.0366 21.1517 16.3616 13.5477 0.0186 % 

  16 880 510 0 1.0000 0.6331 0.7753 -21.0455 28.4455 26.5227 23.4159 0.1606  

  17 880 107 0 1.0000 0.8916 0.9427 -29.3523 26.9650 32.4886 23.0854 0.2235  

  18 878 540 2 0.9977 0.6192 0.7641 -13.0979 27.0641 21.8907 20.6027 0.0962  

  19 880 533 0 1.0000 0.6228 0.7676 -21.1023 28.0587 26.3523 23.1921 0.1572  

  20 880 534 0 1.0000 0.6223 0.7672 -17.3523 27.9958 24.1477 22.3927 0.1298  

  21 879 46 1 0.9989 0.9503 0.9740 -36.2457 30.6314 38.8396 27.2635 0.3291  

  22 868 366 12 0.9864 0.7034 0.8212 -3.9631 27.2111 20.5300 18.2813 0.0690 % 

  23 874 3 6 0.9932 0.9966 0.9949 -50.5378 23.7891 51.3616 21.9517 0.5090  

  24 869 693 11 0.9875 0.5563 0.7117 2.3936 23.5066 17.9287 15.3782 0.0343 % 

  25 880 7 0 1.0000 0.9921 0.9960 -57.9886 27.2339 58.6250 25.8339 0.6154 < 

mn(Te) and sd(Te) represents the mean of timing error and the standard deviation of the timing error, respectively. Similarly, the next two columns are for the absolute timing error, 
|Te|. Pr(|Te|>50) is the likelihood for detection to have a fundamental timing error greater than 50 ms. Models which outperform the rule-based approach in chapter 4 are indicated with 
the symbol < for F1-score, % for the mean of absolute timing error,  ̂for the standard deviation of timing error, and & for the likelihood to have a |T2|> 50 ms



Page | 117  
 

 

The only improvement a transition output give is the reduction in the standard deviation of 

the error. The same trend is observed in previous neural network models. Since the output 

data is much narrower than the original on/off data; therefore, the classification of a positive 

detection would be expected to have a smaller variation. However, this is a trade-off 

between the mean absolute timing error and F1-score. We could generalise the observation 

into that “when the output is more pinpointed, the trained models are more precise in its 

prediction, but more uncertain to when the actual truth occurs.”  

 

The 5-samples wide transition output signal is a middle ground between the on/off state 

output and the transition output of its rising and falling edges. It reduces the chance that the 

model had failed in its training. It also improves the accuracy of a timely detection on the 

transition; however, the widening from one data sample to five data samples has made the 

prediction more varying thus increase the standard deviation of the timing error.  

 

Using transition outputs do not produce more timely prediction, although the output is being 

pinpointed. It is largely due to a large amount of non-transitional output in the training data. 

Since the non-transitional output heavily outnumbers the transition output, the model 

recognises itself has a good match with most of the actual ground truth even when it is 

unresponsive to any input and hold the default output of zero.  

 

The number of unresponsive trained models is reduced when we changed the cost of 

misclassifying the transitional output five times higher than the non-transitional output. 

However, this has an undesirable outcome of increasing the false positive rate. The increase 

in the transition output cost, both single sample and five-sample may not improve the F1-

score. It increases both the true positive rate and the false positive rate. It is the 

consequence of allowing more error to be made from the steady-state output into either of 

the transition output.  

 

The fundamental challenge here is that most technique developed for machine learning is 

aimed to reproduce the output signal from learning the historical data. However, in a time-

critical application such as gait phase detection, the ideal output is one that could pinpoint 

the occurrence of the transition between states, not one that matches the number of the 

output sample the most. Our application does not aim to reproduce the entire output signal; 

it only interested in predicting timely correct transitions. 
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This fundamental challenge is evident by examining the accuracy of the training and the 

testing results, see tables in Appendix C. Accuracy shows the percentage of the predicted 

signal matches the actual signal in the training dataset. Both activities share a high level of 

accuracy for the trained models, given most of the predicted output is true positives for 

steady-state, namely, the number of samples with an output equal to zero. A cost function 

that minimised all misclassified outputs would focus more on getting these steady-state 

correct than the targeted transition.  

 

Simply increasing the misclassification cost for the transition output will increase false 

positive detections using the same trained model, which is also not ideal, as evident in our 

results. The general machine learning scheme does not align with the objective of our 

application. A more advanced training scheme should be investigated and developed in the 

future for time-critical application.  

 

Although none of the trained models outperforms the rule-based algorithm in all aspect: F1-

score, timeliness, consistency and usefulness, some models offer a viable alternative to the 

rule-based approach. The system could deploy any of these models to complement the 

performance of the rule-based approach. It is possible to have an electronics device with 

enough memory to hold multiple trained models and target the phases with the best ones. 

The system would then take the best prediction among the models to enhance its 

performance.   

 

The selection of the model would depend on the hardware and functional requirement. If 

hardware requires a fast response, the prediction rate would be a limiting factor. Then, some 

classifier would not be unsuitable, see the training time in Appendix C. For applications with 

a higher tolerance in timing error, a model with better F1-score could be selected. For 

applications that require 95% of all detection to be within 50 ms, models with more than 5% 

likelihood of sitting outside an absolute timing error of 50 ms would be unsuitable. Readers 

could use the results from this study as a reference to select the most suitable classifiers 

among the ones tested here for their application. The training time and prediction rate is 

subjected to hardware performance. The results would only serve as a comparison guide 

between the classifiers under the same hardware condition.  
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Scatter plots of the dataset with transition output supports one of the findings in Chapter 4. 

It is useful to interpret the IMU measurement into variables such as the body kinematics and 

the presumed joint angle (the difference in the attached body's tilt angle) for gait phase 

detection because these variables could describe the phases more accurately. These 

variables would also benefit the training of classifier to produce a better output.  

 

It is apparent that the clusters for initial contact and foot off are separate from Fig 5.4 and 

Fig 5.5. For stair ascent, the transition outputs are in two distinct clusters on the axes of 

thigh kinematics (the tilt angle in the sagittal plane). Similarly, the output clusters are distinct 

in the axes of shank kinematics (the tilt angle in the sagittal plane) for stair descent. The 

kinematics of the presumed knee joint is the most robust variable.  The transition output 

clusters are separated on the axes of knee kinematics for both stair ascent and descent. 

This observation reconfirms that using biomechanical description is a more reliable method 

to find the pattern in the data for gait phase detection. It is recommended that future research 

should include biomechanics variables in defining rules and machine learning training.  

 

Figure 5.4 and Figure 5.5 show the scatter plots of the 5-sample wide transition output data. 

It demonstrates there is a clear separation between the clusters of the two transition outputs, 

IC and FO. Inclusion of variable that could define a clear separation would hugely benefit 

the trained model by reducing the misclassifying of one cluster to another. Single sample 

transition output is a subset of the 5-sample wide output. Therefore, the scatter plots of 

single sample output are omitted. Meanwhile, there would be an overlapping region between 

the clusters using on/off state output on any pair of input axes.  
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Figure 5.4: Scatter plot of the original data for the two 5-sample wide transition outputs (initial contact and foot off) during 
stair ascent with axes presenting the angle and velocity of each attached body (top: thigh, middle: shank), and the 
presumed joint (bottom) 
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Figure 5.5: Scatter plot of the original data for the two 5-sample wide transition outputs (initial contact and foot off) during 
stair descent with axes presenting the angle and velocity of each attached body (top: thigh, middle: shank), and the 
presumed joint (bottom) 
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5.5 Conclusion  

 
Both machine learning techniques explored in this study show a greater generalisation than 

the rule-based method presented in Chapter 4. The analysis shows that several trained 

models outperform the rule-based approach either in F1-score or timing performance. 

 

Most of the improvements over the rule-based approach are made for stair ascent gaits. 

None of the machine learning approaches yields a lesser likelihood to detect the gait phases 

transition within 50 ms for stair descent. Hence, the rule-based approach is still better suited 

for biomechanical applications. It is possible to use the trained models to complement the 

rule-based method's performance in stair ascent by running them concurrently.  

 

Implementation of the trained models needs to consider the hardware limitation since many 

of them required either a large onboard memory or high computational power or both. It is 

not recommended to use budget microcontroller similar to those used in this study, as 

described in Chapter 3. Researchers and developers are advised to choose a model that is 

suitable for their application. 

 

Several research gaps have been identified for the tested machine learning technique for 

the application of GPD. Future research directions could be investigated to address the 

limitations of the current technique as evidence from the results of this study. Future work 

will be listed in Chapter 6. 

 

This chapter shows that it is possible to have a trade-off between timing performance and 

F1-score by transforming the on/off state output to a transition output. The results compare 

the performance of trained models available in Matlab 2020a/b and present them in a tabular 

format as a guide. It is up to the developers to choose which approach is better for their 

application.   
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CHAPTER 6 : CONCLUSION AND FUTURE WORKS 

 

The last chapter of this study summarises all the findings throughout the previous chapters 

and the newly discovered gaps resulting from those findings. It also lay a pathway for future 

research opportunities that would address the gaps identified. 

 

Firstly, we developed an integrated system with both the IMU and footswitches acquisition. 

The system can operate at the highest output data rate of the IMU at 100 Hz. The sensors' 

implementation provides the IMUs’ tilt angle measurement with an offset no larger than 6 

degrees compared to an encoder reference system. One major future research opportunity 

is to incorporate an auto-labelling program, so the data acquisition is ready for the assessor 

to evaluate or for machine learning training. Another opportunity is to verify the accuracy of 

the IMU motion tracking system against the golden standard of optical 3D motion capturing 

system such as VICON. A verified system would open many opportunities for researchers 

to study gait over various terrain and realistic environment.  

 

A knowledge gap is found when evaluating sensor performance. Current technique used in 

normality test, a statistic test to verify if the data is normally distributing, does not recognise 

a normal distribution that is highly discretised with the tails truncated for the large data 

sample. These kinds of digital signals are found in systems where the sensor is accurate, 

and the fluctuation is within a few increments of the resolution. Without a proper technique 

to verify whether the data fluctuation is normal or not, it is inconclusive to tell if the IMU 

sensor's bias is compensated or just attenuated after the calibration. A new statistic 

normality test should be developed for evaluating consistent digital data. 

 

The developed rule-based detection has been implemented and verified on a physical 

device. The performance achieves a high overall F1-score of 0.9925 with a mean error 

[standard deviation] of 43.25[30.21], 20.12[15.23], -30.17[23.43], and -43.66[16.41] ms for 

ascent IC, descent IC, ascent EC, and descent EC respectively. Their 95% CI are: [-

16.17,102.67], [-76.62,15.22], [-9.73,49.97], and [-75.82, -11.50] respectively before 

offsetting the early detection. Ascent IC and ascent EC could be offset to have a 95% CI of 

[-59.43,59.43], and [-29.85, 29.85] respectively. The mean is below 50ms on average which 

is the target tolerance for biomechanical application, over 3419 steady-state steps across 

21 healthy participants for both stair ascent (1665 steps: 1916 initial contact and 1665 end 

contact) and descent ascent (1754 steps: 2027 initial contact and 1754 end contact) gait. It 
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shows that incorporating the biomechanics definition of the gait phases in defining rules for 

detection is a practical and reliable method in developing a detection algorithm. This study 

conducted the experiment in the exact operational environment of a knee assistive device, 

which assists a user in performing multiple progressive steps on a staircase. The 

performance presented should be reflective to the practical performance in detecting the 

stance and swing phase of the user when it is deployed. Therefore, the study proves the 

readiness of implementing the technology on similar knee devices.  

 

This study shows a rule-based approach with an accurate definition based on relevant 

knowledge could reliably detecting gait phases. The results support existing biomechanics 

reports that stair gait has a much higher inter-subject and intra-subject variation among 

people within the same demography compared to level walking. It is indicated by the large 

standard deviation of the timing error, particularly in stair ascent. The standard deviation of 

the reported detection would mean that 18.63% of all detection would sit outside the 50 ms 

tolerance. This intrinsic variation remains the biggest hurdle for developing a robust 

detection for stair ambulation. From our data, the initial contact of stair ascent could occur 

between two kinematic events which are the minimum of knee flexion velocity and the 

minimum of shank tilt velocity. This implies that there are different strategies for stair 

ambulation. Several future research opportunities had been identified. A higher level of 

classification could detect and facilitate a tailored rule-based algorithm for each gait 

variation. This may lead to biomechanics studies that observe, classify and explain the 

different stair ambulation strategies. The study could also extend to other gait activities.  

 

The study found that using body kinematics such as the YPR angles of the attached 

segments, and the difference in their tilt angles (the presumed joint angle between the 

attached segment) are useful parameters for deriving both detection rules and for machine 

learning training. It allows translating the biomechanics observation into mathematical rules. 

This study would encourage using these biomechanically significant variables to be the 

basis of defining detection rules and training machine learning models. Interpreting the data 

into the limb's physical orientation would allow biomechanists to study the gait outside the 

laboratory environment. This could also strengthen the collaboration between the field of 

biomechanics and engineering, where the results could be examined by both areas.   

 

Both machine learning techniques explored in this study could improve the rule-based 

approach with concurrent deployment. Multiple trained models are identified to have a better 
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performance in either F1-score or timing error. The generalisation of the machine learning 

approaches is better than the rule-based one. However, none of the trained models can 

outperform the rule-based approach’s timing performance during stair descent gait. 

Modification to the training scheme and the model's architecture may be required to better 

suit the application of detecting gait phases.  

 

The study offers a comparison between each of the common machine learning techniques 

such as supervised learning classifiers, NIO and NARX network available in MATLAB 2020 

a/b. The results could serve as a guide that compares the training and testing performance 

of the above techniques. It is advised that developers of GPD select the most suitable ones 

within their hardware limitations.  

 

Time-series neural network could experiment with multiple outputs to enhance the ability to 

generate a discrete output signal with less ambiguity between each output values.  The input 

data could be transformed into a format so that technique from other active fields of machine 

learning could be deployed, such as image process techniques and transformer network. 

Transfer learning could be a focus in future research to train a network for a different activity 

quickly. 

 

A future investigation could produce a more accurate representation of the output signal 

rather than transform the predicted signal with a filter. One method would be minimising the 

integration of the absolute difference between the expected output and the training output. 

The first derivative of the difference could be incorporated as part of the cost function during 

training to make the transition between the output level more apparent, and reduce the effort 

spent finding the optimal filtering for the predicted signal.  

 

Another method that may be suitable is a Transformer network [171]  and other natural 

language processing (NLP) algorithms. Time-series data could be treated as an array of 

data, similar to NLP, to interpret the information from this sequential input. Similar to how 

existing programs could interpret the emotional tone from text using machine learning [172], 

we could train the IMU measurement to interpret the phases. Another advantage that the 

transformer network could offer is the possible transferability in its learning. Transformer 

networks use an “attention mechanism” [173], which encode both the input and output and 

then tune the correlation between them in the encrypted format. The resultant trained 

network may be suitable for transfer learning between different gaits or gait strategies, for 
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example, healthy and pathological gaits. This could solve the issue of transferability for a 

trained network in detecting phases on different target demographics.  

 

Furthermore, an alternative output preparation method that would retain the option to trade-

off F1-score with timing performance using transition output while potentially allowing more 

than three output values. The network structure would be changed to allow multiple output 

signals of ones and zeros, each output representing the positive and negatives of a specific 

event. This architecture is drawn from the method being used for object identification on 

images. In a typical image-based object identification network, the network is trained to 

identify and locate the targeted object on the image. Sometimes the network can be trained 

to identify multiple objects. In that case, the network is trained to have an array of output 

with each element on the array representing the score of identifying each specific object. A 

score of 1 indicates that the network is certain of the identification. The final labelling of each 

region of the picture will be the element with the highest value and above a certain threshold.  

 

In the application of gait phase detection, a similar network would have multiple time-series 

outputs. Each output would identify the occurrence of a specific event. Multiple outputs 

would allow the prediction of each event to be made independent without the possible 

ambiguity from other events while maintaining the improved timing trade-off of using a 

transition only output type. The trade-off of multiple output training would require a much 

larger working memory and a much longer training time. The construction and testing of this 

new network for GPD should be one of the future studies.  

 

Supervised learning classifiers could be enhanced by modifying the training scheme and the 

cost function to consider the timing performance. Unsupervised or reinforcement learning 

could be deployed to find hidden clusters and the ability to learn from new data input.  

 

One method that could improve the training is to give a score for the time difference between 

the rising and falling edge of the labelled data and those of the prediction; therefore, the 

resultant classifier may be optimised for time-critical application such as gait phase 

detection. The cost function should be modified to include the timing score. The optimisation 

could then search for a trained model that can minimise the timing difference in the transition 

between the prediction and the ground truth. This training option is not readily available in 

current machine learning toolbox in many software platforms. Future studies should focus 
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on developing a new architecture to better train machine learning classifiers for timing 

performance in their classification.  

 

Another method that could improve the prediction of the transition is combining the training 

with unsupervised or reinforcement learning techniques. The model would have the ability 

to learn new clusters and minimise the cost function by evaluating its’ previous output to the 

ground truth.  

 

At last, the study had fulfilled its primary goal and deliver a GPD algorithm for detecting gait 

phases during stair ambulation. The outcome is implemented on a physical wearable knee 

brace and is proven in its intended operational environment. The observation made from the 

analysis also opens the door to further scientific investigation and biomechanics and 

machine learning outcomes. 
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APPENDIX  

A: Eulers Angles Conventions 

 

Table A.1: Eulers Angles Conventions  

Proper Euler angles Talt-Bryan (Cardon) angles 

𝑋1𝑍2𝑋3 = [

𝑐2 −𝑐3𝑠2 𝑠2𝑠3

𝑐1𝑠2 𝑐1𝑐2𝑐3 − 𝑠1𝑠3 −𝑐3𝑠1 − 𝑐1𝑐2𝑠3

𝑠1𝑠2 𝑐1𝑠3 + 𝑐2𝑐3𝑠1 𝑐1𝑐3 − 𝑐2𝑠1𝑠3

] 𝑋1𝑍2𝑌3 = [

𝑐2𝑐3 −𝑠2 𝑐2𝑠3

𝑠1𝑠3 + 𝑐1𝑐3𝑠2 𝑐1𝑐2 𝑐1𝑠2𝑠3 − 𝑐3𝑠1

𝑐3𝑠1𝑠2 − 𝑐1𝑠3 𝑐2𝑠1 𝑐1𝑐3 + 𝑠1𝑠2𝑠3

] 

𝑋1𝑌2𝑋3 = [

𝑐2 𝑠2𝑠3 𝑐3𝑠2

𝑠1𝑠2 𝑐1𝑐3 − 𝑐2𝑠1𝑠3 −𝑐1𝑠3 − 𝑐2𝑐3𝑠1

−𝑐1𝑠2 𝑐3𝑠1 + 𝑐1𝑐2𝑠3 𝑐1𝑐2𝑐3 − 𝑠1𝑠3

] 𝑋1𝑌2𝑍3 = [

𝑐2𝑐3 −𝑐2𝑠3 𝑠2

𝑐3𝑠1𝑠2 + 𝑐1𝑠3 𝑐1𝑐3 − 𝑠1𝑠2𝑠3 −𝑐2𝑠1

𝑠1𝑠3 − 𝑐1𝑐3𝑠2 𝑐1𝑠2𝑠3 + 𝑐3𝑠1 𝑐1𝑐2

] 

𝑌1𝑋2𝑌3 = [

𝑐1𝑐3 − 𝑐2𝑠1𝑠3 𝑠1𝑠2 𝑐1𝑠3 + 𝑐2𝑐3𝑠1

𝑠2𝑠3 𝑐2 −𝑐3𝑠2

−𝑐3𝑠1 − 𝑐1𝑐2𝑠3 𝑐1𝑠2 𝑐1𝑐2𝑐3 − 𝑠1𝑠3

] 𝑌1𝑋2𝑍3 = [

𝑐1𝑐3 + 𝑠1𝑠2𝑠3 𝑐3𝑠1𝑠2 − 𝑐1𝑠3 𝑐2𝑠1

𝑐2𝑠3 𝑐2𝑐3 −𝑠2

𝑐1𝑠2𝑠3 − 𝑐3𝑠1 𝑠1𝑠3 + 𝑐1𝑐3𝑠2 𝑐1𝑐2

] 

𝑌1𝑍2𝑌3 = [

𝑐1𝑐2𝑐3 − 𝑠1𝑠3 −𝑐1𝑠2 𝑐3𝑠1 + 𝑐1𝑐2𝑠3

𝑐3𝑠2 𝑐2 𝑠2𝑠3

−𝑐1𝑠3 − 𝑐2𝑐3𝑠1 𝑠1𝑠2 𝑐1𝑐3 − 𝑐2𝑠1𝑠3

] 𝑌1𝑍2𝑋3 = [

𝑐1𝑐2 𝑠1𝑠3 − 𝑐1𝑐3𝑠2 𝑐1𝑠2𝑠3 + 𝑐3𝑠1

𝑠2 𝑐2𝑐3 −𝑐2𝑠3

−𝑐2𝑠1 𝑐3𝑠1𝑠2 + 𝑐1𝑠3 𝑐1𝑐3 − 𝑠1𝑠2𝑠3

] 

𝑍1𝑌2𝑍3 = [

𝑐1𝑐2𝑐3 − 𝑠1𝑠3 −𝑐3𝑠1 − 𝑐1𝑐2𝑠3 𝑐1𝑠2

𝑐1𝑠3 + 𝑐2𝑐3𝑠1 𝑐1𝑐3 − 𝑐2𝑠1𝑠3 𝑠1𝑠2

−𝑐3𝑠2 𝑠2𝑠3 𝑐2

] 𝑍1𝑌2𝑋3 = [

𝑐1𝑐2 𝑐1𝑠2𝑠3 − 𝑐3𝑠1 𝑠1𝑠3 + 𝑐1𝑐3𝑠2

𝑐2𝑠1 𝑐1𝑐3 + 𝑠1𝑠2𝑠3 𝑐3𝑠1𝑠2 − 𝑐1𝑠3

−𝑠2 𝑐2𝑠3 𝑐2𝑐3

] 

𝑍1𝑋2𝑍3 = [

𝑐1𝑐3 − 𝑐2𝑠1𝑠3 −𝑐1𝑠3 − 𝑐2𝑐3𝑠1 𝑠1𝑠2

𝑐3𝑠1 + 𝑐1𝑐2𝑠3 𝑐1𝑐2𝑐3 − 𝑠1𝑠3 −𝑐1𝑠2

𝑠2𝑠3 𝑐3𝑠2 𝑐2

] 𝑍1𝑋2𝑌3 = [

𝑐1𝑐3 − 𝑠1𝑠2𝑠3 −𝑐2𝑠1 𝑐3𝑠1𝑠2 + 𝑐1𝑠3

𝑐1𝑠2𝑠3 + 𝑐3𝑠1 𝑐1𝑐2 𝑠1𝑠3 − 𝑐1𝑐3𝑠2

−𝑐2𝑠3 𝑠2 𝑐2𝑐3

] 

𝑐 and 𝑠 represent cosine and sine respectively; 𝑋, 𝑌, 𝑍 represent the rotational matrix about the x, y, z axis of the original 
coordinate system (extrinsic rotation). 1, 2, 3 represent the order of the rotation angles.  

 

Table A.2: Extrinsic and intrinsic rotation equalivent for Talt Bryan angles 

Extrinisic rotations Intrinsic rotations 

𝑋1𝑍2𝑌3 𝑌1𝑍2
′𝑋3

′′ 

𝑋1𝑌2𝑍3 𝑍1𝑌2
′𝑋3

′′ 

𝑌1𝑋2𝑍3 𝑍1𝑋2
′𝑌3

′′ 

𝑌1𝑍2𝑋3 𝑋1𝑍2
′𝑌3

′′ 

𝑍1𝑌2𝑋3 𝑋1𝑌2
′𝑍3

′′ 

𝑍1𝑋2𝑌3 𝑌1𝑋2
′𝑍3

′′ 

Extrinsic rotations occur about the axes of the original coordinate system where it is motionless (fixed). Intrinsic rotations 
occur about the axes of the rotating corrdinate system which changes after each elemental rotation, these transformed 

axes are indicated by ′. 𝑋, 𝑌, 𝑍 represent the rotational matrix about the x, y, z axis. 1, 2, 3 represent the order of the 
rotations 
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B: Quaternion Rotation: Matrix Formulation 

 
We know when two quaternions multiply 

𝑝𝑞 = [1 𝐢 𝐣 𝐤] [

𝑝
0
𝑞

0
− 𝑝

1
𝑞

1
− 𝑝

2
𝑞

2
− 𝑝

3
𝑞

3

𝑝
0
𝑞

1
+ 𝑝

1
𝑞

0
+ 𝑝

2
𝑞

3
− 𝑝

3
𝑞

2

𝑝
0
𝑞

2
− 𝑝

1
𝑞

3
+ 𝑝

2
𝑞

0
+ 𝑝

3
𝑞

1

𝑝
0
𝑞

3
+ 𝑝

1
𝑞

2
− 𝑝

2
𝑞

1
+ 𝑝

3
𝑞

0

] 

and 

𝑞 = 𝑞0 + 𝑞1𝐢 + 𝑞2𝐣 + 𝑞3𝐤 

𝐯 = 𝑣𝑥𝐢 + 𝑣𝑦𝐣 + 𝑣𝑧𝐤 

𝑞−1 = 𝑞0 − (𝑞1𝐢 + 𝑞2𝐣 + 𝑞3𝐤) 

Solve, 

𝐯′ = 𝑞𝐯𝑞−1 

Let 𝑞′ =  𝐯𝑞−1 

𝑞′ = 

[
 
 
 
𝑞0

′

𝑞1
′

𝑞2
′

𝑞3
′ ]
 
 
 

 

Solve 𝑞′ = 𝐯𝑞−1 

𝑞′ = 𝐯𝑞−1 = [1 𝐢 𝐣 𝐤]

[
 
 
 
 
0 + 𝑣𝑥𝑞1 + 𝑣𝑦𝑞2 + 𝑣𝑧𝑞3

0 + 𝑣𝑥𝑞0 − 𝑣𝑦𝑞3 + 𝑣𝑧𝑞2

0 + 𝑣𝑥𝑞3 + 𝑣𝑦𝑞0 − 𝑣𝑧𝑞1

0 − 𝑣𝑥𝑞2 + 𝑣𝑦𝑞1 + 𝑣𝑧𝑞0]
 
 
 
 

 

Then, 

𝑞𝐯𝑞−1 = 𝑞𝑞′ 

Solve 𝑞𝑞′, 

𝑞𝑞′ = [1 𝐢 𝐣 𝐤]

[
 
 
 
 
𝑞

0
𝑞

0
′ − 𝑞

1
𝑞

1
′ − 𝑞

2
𝑞

2
′ − 𝑞

3
𝑞

3
′

𝑞
0
𝑞

1
′ + 𝑞

1
𝑞

0
′ + 𝑞

2
𝑞

3
′ − 𝑞

3
𝑞

2
′

𝑞
0
𝑞

2
′ − 𝑞

1
𝑞

3
′ + 𝑞

2
𝑞

0
′ + 𝑞

3
𝑞

1
′

𝑞
0
𝑞

3
′ + 𝑞

1
𝑞

2
′ − 𝑞

2
𝑞

1
′ + 𝑞

3
𝑞

0
′ ]
 
 
 
 

 

Expand the real part, 

𝑞0𝑞0
′ = 𝑞0𝑣𝑥𝑞1 + 𝑞0𝑣𝑦𝑞2 + 𝑞0𝑣𝑧𝑞3 

𝑞1𝑞1
′ = 𝑞1𝑣𝑥𝑞0 − 𝑞1𝑣𝑦𝑞3 + 𝑞1𝑣𝑧𝑞2 

𝑞2𝑞2
′ = 𝑞2𝑣𝑥𝑞3 + 𝑞2𝑣𝑦𝑞0 − 𝑞2𝑣𝑧𝑞1 

𝑞3𝑞3
′ = −𝑞3𝑣𝑥𝑞2 + 𝑞3𝑣𝑦𝑞1 + 𝑞3𝑣𝑧𝑞0 

Then, 

𝑞0𝑞0
′ − 𝑞1𝑞1

′ − 𝑞2𝑞2
′ − 𝑞3𝑞3

′  
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= 𝑞0𝑣𝑥𝑞1 − 𝑞1𝑣𝑥𝑞0 + 𝑞0𝑣𝑦𝑞2 − 𝑞2𝑣𝑦𝑞0 + 𝑞0𝑣𝑧𝑞3 − 𝑞3𝑣𝑧𝑞0 + 𝑞1𝑣𝑦𝑞3 − 𝑞3𝑣𝑦𝑞1 + (−𝑞1𝑣𝑧𝑞2)

+ 𝑞2𝑣𝑧𝑞1 + (−𝑞2𝑣𝑥𝑞3) + 𝑞3𝑣𝑥𝑞2 

= 0 

Expand the 𝐢 part, 

𝑞0𝑞1
′ = 𝑞0𝑣𝑥𝑞0 − 𝑞0𝑣𝑦𝑞3 + 𝑞0𝑣𝑧𝑞2 

𝑞1𝑞0
′ = 𝑞1𝑣𝑥𝑞1 + 𝑞1𝑣𝑦𝑞2 + 𝑞1𝑣𝑧𝑞3 

𝑞2𝑞3
′ = −𝑞2𝑣𝑥𝑞2 + 𝑞2𝑣𝑦𝑞1 + 𝑞2𝑣𝑧𝑞0 

𝑞3𝑞2
′ = 𝑞3𝑣𝑥𝑞3 + 𝑞3𝑣𝑦𝑞0 − 𝑞3𝑣𝑧𝑞1 

Then, 

𝑞0𝑞1
′ + 𝑞1𝑞0

′ + 𝑞2𝑞3
′ − 𝑞3𝑞2

′  

= (𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2)𝑣𝑥 + 2(𝑞1𝑞2 − 𝑞0𝑞3)𝑣𝑦 + 2(𝑞1𝑞3 + 𝑞0𝑞2)𝑣𝑧 

Expand the 𝐣 part, 

𝑞0𝑞2
′ = 𝑞0𝑣𝑥𝑞3 + 𝑞0𝑣𝑦𝑞0 − 𝑞0𝑣𝑧𝑞1 

𝑞1𝑞3
′ = −𝑞1𝑣𝑥𝑞2 + 𝑞1𝑣𝑦𝑞1 + 𝑞1𝑣𝑧𝑞0 

𝑞2𝑞0
′ = 𝑞2𝑣𝑥𝑞1 + 𝑞2𝑣𝑦𝑞2 + 𝑞2𝑣𝑧𝑞3 

𝑞3𝑞1
′ = 𝑞3𝑣𝑥𝑞0 − 𝑞3𝑣𝑦𝑞3 + 𝑞3𝑣𝑧𝑞2 

Then, 

𝑞0𝑞2
′ − 𝑞1𝑞3

′ + 𝑞2𝑞0
′ + 𝑞3𝑞1

′  

= 2(𝑞1𝑞2 + 𝑞0𝑞3)𝑣𝑥 + (𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2)𝑣𝑦 + 2(𝑞2𝑞3 − 𝑞0𝑞1)𝑣𝑧 

Expand the 𝐤 part, 

𝑞0𝑞3
′ = −𝑞0𝑣𝑥𝑞2 + 𝑞0𝑣𝑦𝑞1 + 𝑞0𝑣𝑧𝑞0 

𝑞1𝑞2
′ = 𝑞1𝑣𝑥𝑞3 + 𝑞1𝑣𝑦𝑞0 − 𝑞1𝑣𝑧𝑞1 

𝑞2𝑞1
′ = 𝑞2𝑣𝑥𝑞0 − 𝑞2𝑣𝑦𝑞3 + 𝑞2𝑣𝑧𝑞2 

𝑞3𝑞0
′ = 𝑞3𝑣𝑥𝑞1 + 𝑞3𝑣𝑦𝑞2 + 𝑞3𝑣𝑧𝑞3 

Then, 

𝑞0𝑞3
′ + 𝑞1𝑞2

′ − 𝑞2𝑞1
′ + 𝑞3𝑞0

′  

= 2(𝑞1𝑞3 − 𝑞0𝑞2)𝑣𝑥 + 2(𝑞2𝑞3 + 𝑞0𝑞1)𝑣𝑦 + (𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2)𝑣𝑧 

Let the matrix form be:  

𝐯′ = [𝐑𝐪]𝟑𝐱𝟑
 𝐯 

Thus, 

[𝐑𝐪]𝟑𝐱𝟑
= [

𝑞
0
2 + 𝑞

1
2 − 𝑞

2
2 − 𝑞

3
2 2(𝑞

1
𝑞

2
− 𝑞

0
𝑞

3
) 2(𝑞

1
𝑞

3
+ 𝑞

0
𝑞

2
)

2(𝑞
1
𝑞

2
+ 𝑞

0
𝑞

3
) 𝑞

0
2 − 𝑞

1
2 + 𝑞

2
2 − 𝑞

3
2 2(𝑞

2
𝑞

3
− 𝑞

0
𝑞

1
)

2(𝑞
1
𝑞

3
− 𝑞

0
𝑞

2
) 2(𝑞

2
𝑞

3
+ 𝑞

0
𝑞

1
) 𝑞

0
2 − 𝑞

1
2 − 𝑞

2
2 + 𝑞

3
2

]
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C: Accuracy of Supervised Learning Models 

 

Table C.1: Accuracy of the trained model on the training set and testing set for stair ascent 

 Type  Training set Testing set 

   Misclassifi
cation 

cost 

Prediction 
speed 

Training time 
Overall IC /stance FO /swing Steady-state Overall 

Output Cost  Model Accuracy Accuracy Accuracy Accuracy Accuracy 

2 1 1 1822 830000 10.364 98.3 0.0025 0.0025 0.9998 0.9824 

  2 1745 1000000 8.8611 98.4 0.0000 0.0000 1.0000 0.9826 

  3 1741 1100000 8.566 98.4 0.0000 0.0000 1.0000 0.9826 

  4 2181 850000 6.4929 98 0.0000 0.0025 0.9979 0.9805 

  5 5768 1600000 7.7663 94.7 0.0631 0.6398 0.9487 0.9383 

  7 11929 1500000 9.6765 89 0.5271 0.8098 0.8830 0.8792 

  8 12109 200 2333.4 88.8 0.4678 0.7909 0.8911 0.8866 

  9 1741 450000 105.96 98.4 0.0000 0.0000 1.0000 0.9826 

  10 1741 29000 9826.6 98.4     

  11 23496 20000 14475 78.3     

  12 1741 11000 1551.6 98.4 0.0000 0.0000 1.0000 0.9826 

  13 1741 17000 1727 98.4 0.0000 0.0000 1.0000 0.9826 

  14 1741 20000 1835.4 98.4 0.0000 0.0000 1.0000 0.9826 

  15 2868 77000 1843.8 97.4 0.0769 0.1222 0.9848 0.9694 

  16 1806 32000 1858.2 98.3 0.0000 0.0164 0.9992 0.9819 

  17 1741 9300 1904.6 98.4 0.0000 0.0000 1.0000 0.9826 

  18 1780 710 2553.5 98.4 0.0000 0.0101 0.9994 0.9821 

  19 1800 6100 2402.8 98.3 0.0000 0.0176 0.9992 0.9819 

  20 1848 34000 2417.6 98.3 0.0050 0.0151 0.9988 0.9816 

  21 1741 110000 2515 98.4 0.0000 0.0000 1.0000 0.9826 

  22 1798 60000 2621.6 98.3 0.0013 0.0126 0.9993 0.9820 

  23 1765 51000 2588.2 98.4 0.0000 0.0000 1.0000 0.9826 

  24 2066 5800 2697.5 98.1 0.0088 0.0428 0.9975 0.9806 
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  25 24370 110000 2645.8 77.5 0.9042 0.9207 0.7703 0.7728 

2 2 1 8648 1600000 7.6984 96.7 0.6108 0.7569 0.8562 0.8412 

  2 8784 1600000 5.6181 97.6 0.5364 0.8370 0.9202 0.8998 

  3 8705 1700000 4.9257 98.4 0.0000 0.0000 1.0000 0.9129 

  4 10538 110000 6.8198 96.3 0.0000 0.0000 1.0000 0.9129 

  5 15269 710000 8.2751 87.9 0.0000 0.0111 0.9556 0.8728 

  7 20954 780000 9.1267 81.8 0.4905 0.6927 0.8735 0.8489 

  8 18658 190 2442.5 84.1 0.0409 0.2531 0.9885 0.9153 

  9 8705 440000 335.9 98.4 0.1644 0.2282 0.9737 0.9060 

  10 11454 19000 11964 95.7 0.0694 0.0874 0.9892 0.9099 

  12 8060 6900 956.52 97.3 0.0035 0.2000 0.9906 0.9133 

  13 8705 7000 1905.1 98.4 0.0000 0.0000 1.0000 0.9129 

  14 8705 7200 2291.2 98.4 0.0000 0.0000 1.0000 0.9129 

  15 8680 83000 2299.6 97.4 0.0257 0.1224 0.9918 0.9119 

  16 8658 34000 2314.9 95.7 0.0000 0.0000 1.0000 0.9129 

  17 8063 9700 2359.2 97.4 0.0235 0.1184 0.9927 0.9124 

  18 9443 690 3019 95.5 0.1508 0.2645 0.9741 0.9074 

  19 8681 6000 2512.5 95.7 0.1682 0.2239 0.9740 0.9062 

  20 8703 34000 2527.7 96 0.1463 0.2030 0.9767 0.9069 

  21 8708 110000 2625.1 98.4 0.0000 0.0000 1.0000 0.9129 

  22 8492 65000 2734.1 98.1 0.0111 0.0360 0.9978 0.9130 

  23 8833 60000 2761.4 98.3 0.0000 0.0018 0.9998 0.9128 

  24 8631 7800 2852.1 98.3 0.0005 0.0060 0.9997 0.9129 

  25 24240 92000 2877.5 77.8 0.8711 0.8602 0.8162 0.8205 

1 1 1 3918 710000 13.023 96.4 0.9580 0.9232   0.9427 

  2 4310 670000 11.164 96 0.9648 0.9146  0.9428 

  3 6430 860000 10.758 94.1 0.9533 0.8984  0.9292 

  4 5596 550000 8.4744 94.8 0.9700 0.9015  0.9399 

  5 5185 1300000 9.265 95.2 0.9610 0.9345  0.9493 

  6  750000 23.33 95.8 0.9666 0.9246  0.9481 

  7 6570 1300000 12.27 93.9 0.9601 0.9133  0.9395 
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  8 6324 170 2810.8 94.2 0.9561 0.9251  0.9425 

  9 4516 19000 5624.3 95.8 0.9651 0.9281  0.9489 

  10 4096 12000 19982 96.2 0.9647 0.9304  0.9496 

  11 35096 11000 21273 67.7 0.7176 0.4382  0.5949 

  12 3015 9500 3624.7 97.2 0.9616 0.9337  0.9493 

  13 3518 8100 3992.8 96.8 0.9655 0.9345  0.9519 

  14 4297 7000 4421.1 96 0.9664 0.9317  0.9511 

  15 3767 50000 4432.7 96.5 0.9503 0.9230  0.9383 

  16 3072 21000 4454.8 97.2 0.9565 0.9333  0.9463 

  17 3358 6900 4517.6 96.9 0.9629 0.9295  0.9482 

  18 3766 1100 4400 96.5 0.9576 0.9235  0.9426 

  19 3080 3800 5668 97.2 0.9565 0.9325  0.9459 

  20 3064 17000 5650.4 97.2 0.9589 0.9266  0.9447 

  21 3845 67000 5797.7 96.5 0.9651 0.9223  0.9463 

  22 3108 33000 5904.6 97.1 0.9581 0.9329  0.9470 

  23 6824 37000 5843.4 93.7 0.9839 0.8544  0.9270 

  24 3889 4100 6003.8 96.4 0.9635 0.9259  0.9470 

  25 4119 81000 6065.5 96.2 0.9587 0.9250  0.9439 

3 1 1 7837 770000 11.186 92.8 0.2598 0.3388 0.9213 0.9105 

  2 8665 860000 10.184 92 0.0164 0.0000 0.9983 0.9811 

  3 8705 920000 8.9182 92 0.0000 0.0000 1.0000 0.9826 

  4 9351 740000 6.5412 91.4 0.1400 0.3577 0.9295 0.9177 

  5 11192 1100000 8.5101 89.7 0.4842 0.8073 0.8516 0.8480 

  7 18465 1200000 11.22 83 0.8008 0.8463 0.7749 0.7758 

  8 16189 160 2856 85.1 0.6709 0.8778 0.8043 0.8037 

  9 8165 610000 7700.4 92.5 0.0000 0.2733 0.9730 0.9584 

  10 7033 11000 19263 93.5 0.0000 0.5542 0.9576 0.9457 

  12 5716 4000 836.52 94.7 0.2018 0.4181 0.9363 0.9254 

  13 7023 4200 1560.9 93.5 0.0000 0.5126 0.9554 0.9432 

  14 8437 3300 2143.8 92.2 0.0000 0.1461 0.9833 0.9675 

  15 6796 42000 2157.3 93.7 0.3001 0.4219 0.9168 0.9071 
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  16 5862 17000 2186.1 94.6 0.1904 0.4055 0.9304 0.9194 

  17 6256 6300 2257.4 94.2 0.1652 0.3275 0.9386 0.9265 

  18 6729 580 3080.4 93.8 0.1526 0.5088 0.9318 0.9213 

  19 5895 4700 2945.8 94.6 0.1917 0.3992 0.9301 0.9190 

  20 5749 24000 2966.6 94.7 0.2421 0.3778 0.9282 0.9174 

  21 7765 76000 3102.1 92.8 0.0000 0.2657 0.9798 0.9650 

  22 5766 35000 3270.7 94.7 0.1803 0.4370 0.9345 0.9237 

  23 9189 38000 3145.9 91.5 0.0101 0.1285 0.9701 0.9545 

  24 6745 3300 3319.2 93.8 0.1652 0.3438 0.9409 0.9289 

  25 20976 78000 3314.8 80.7 0.9369 0.9194 0.7285 0.7320 

3 2 1 15972 1000000 11.142 88.7 0.5831 0.8408 0.8742 0.8601 

  2 19568 1200000 9.6188 85.8 0.8308 0.8917 0.8107 0.8151 

  3 24095 1200000 15.744 80.4 0.8875 0.9196 0.7752 0.7864 

  4 21503 580000 12.756 87.5 0.7032 0.8534 0.8635 0.8561 

  5 19938 420000 16.028 83.8 0.8963 0.9335 0.8101 0.8192 

  7 29767 600000 18.539 75.2 0.9032 0.9408 0.7174 0.7352 

  8 24012 180 2580.6 80 0.8224 0.9380 0.7802 0.7889 

  9 18840 480000 12611 88.6 0.7433 0.8725 0.8838 0.8772 

  10 20351 12000 20615 89.6 0.7980 0.0662 0.9030 0.8620 

  12 11337 3900 4064 92.3 0.6230 0.8320 0.9035 0.8882 

  13 13756 3300 5028.2 90.1 0.7395 0.8897 0.8843 0.8783 

  14 17452 2300 6235.4 88.4 0.7927 0.9121 0.8825 0.8799 

  15 20716 53000 6245.7 93.7 0.3231 0.5264 0.9441 0.8989 

  16 12177 21000 6267.4 91.4 0.6368 0.8156 0.8861 0.8722 

  17 13626 6900 6328 90.1 0.6610 0.8668 0.8813 0.8711 

  18 14640 540 7196.6 90.2 0.6820 0.8592 0.8736 0.8646 

  19 12148 4800 7283.9 91.4 0.6348 0.8191 0.8857 0.8719 

  20 12091 22000 7305.1 92.1 0.6045 0.7937 0.8929 0.8761 

  21 17739 78000 7431.4 86.2 0.8116 0.9023 0.8375 0.8392 

  22 16064 33000 7634.8 94.2 0.3253 0.6431 0.9446 0.9045 

  23 28411 46000 7670.2 87.8 0.5546 0.7438 0.8885 0.8677 
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  24 29837 5700 7790.4 93.3 0.1032 0.3834 0.9773 0.9134 

  25 21535 79000 7830 80.8 0.9145 0.9453 0.7765 0.7898 

IC: initial contact; FO: foot off. Output type 1 is stance and swing output; output type 2 and 3 are transition outputs with IC, FO and steady state.  
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Table C.2: Accuracy of the trained model on the training set and testing set for stair descent 

 Type  Training set Testing set 

   Misclassifi
cation 

cost 

Prediction 
speed 

Training time 
Overall IC /stance FO /swing Steady-state Overall 

Output Cost  Model Accuracy Accuracy Accuracy Accuracy Accuracy 

2 1 1 1823 840000 1789.9 98.2 0.0023 0.0057 0.9991 0.9800 

  2 1761 810000 1788.9 98.3 0.0000 0.0000 1.0000 0.9808 

  3 1745 880000 1788.5 98.3 0.0000 0.0000 1.0000 0.9808 

  4 1995 560000 1785.2 98.1 0.0000 0.0011 1.0000 0.9808 

  5 5860 1200000 1784.1 94.3 0.0978 0.7693 0.9435 0.9337 

  7 16780 930000 1759.6 83.8 0.5324 0.9636 0.8385 0.8368 

  8 16227 150 4196.2 84.3 0.5472 0.9636 0.8347 0.8332 

  9 1745 310000 1896.2 98.3 0.0000 0.0000 1.0000 0.9808 

  10 1745 7500 15992 98.3 0.0000 0.0000 1.0000 0.9808 

  11 21594 5900 25750 79.2 0.0000 0.3182 0.9487 0.9335 

  12 1745 5400 3543 98.3 0.0000 0.0000 1.0000 0.9808 

  13 1745 7300 3816.9 98.3 0.0000 0.0000 1.0000 0.9808 

  14 1745 9500 3993.7 98.3 0.0000 0.0000 1.0000 0.9808 

  15 2927 64000 4012.9 97.2 0.0887 0.1125 0.9822 0.9653 

  16 1818 24000 4031.5 98.2 0.0000 0.0182 0.9991 0.9801 

  17 1745 7400 4088.4 98.3 0.0000 0.0000 1.0000 0.9808 

  18 1772 780 4645.9 98.3 0.0023 0.0114 0.9991 0.9801 

  19 1794 4200 4301.8 98.3 0.0000 0.0193 0.9992 0.9802 

  20 1834 22000 4323.6 98.2 0.0057 0.0159 0.9984 0.9794 

  21 1745 68000 4451.3 98.3 0.0000 0.0000 1.0000 0.9808 

  22 1766 43000 4592.7 98.3 0.0011 0.0193 0.9989 0.9800 

  23 1792 36000 4630.5 98.3 0.0000 0.0000 1.0000 0.9808 

  24 2042 4500 4757.6 98 0.0148 0.0477 0.9953 0.9768 

  25 25608 87000 4680.3 75.3 0.8123 0.9920 0.7624 0.7651 

2 2 1 8735 860000 13.079 96.6 0.0478 0.1616 0.9931 0.9079 

  2 8625 930000 11.909 98 0.0000 0.0907 0.9979 0.9066 

  3 8725 940000 11.184 98.3 0.0000 0.0000 1.0000 0.9041 
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  4 9344 680000 8.4801 97.2 0.0014 0.1468 0.9855 0.8981 

  5 14306 1200000 11.322 87.9 0.4391 0.7180 0.9018 0.8708 

  7 22495 1000000 814.26 79 0.6710 0.9509 0.8474 0.8439 

  8 21417 140 3160.1 80 0.6705 0.9332 0.8518 0.8470 

  9 8725 150000 813.58 98.3 0.0000 0.0000 1.0000 0.9041 

  10 9247 5700 14834 97.8 0.1970 0.2373 0.4873 0.4614 

  11 29279 5400 25334 77.55 0.0018 0.2655 0.5064 0.4706 

  12 8020 3500 1580.8 97.2 0.0710 0.1914 0.9888 0.9066 

  13 8720 3000 2904 98.3 0.0000 0.0059 1.0000 0.9044 

  14 8725 3000 3560.5 98.3 0.0000 0.0000 1.0000 0.9041 

  15 8811 47000 3177.2 97.2 0.0669 0.1061 0.9878 0.9013 

  16 8995 21000 3200.4 95.4 0.1759 0.2848 0.9720 0.9009 

  17 8187 6700 3263.7 97.2 0.0592 0.1841 0.9898 0.9066 

  18 9603 800 3837.5 95.3 0.1556 0.2784 0.9743 0.9017 

  19 8946 4300 3688 95.4 0.1727 0.2866 0.9721 0.9009 

  20 8961 23000 3710.3 95.8 0.1613 0.2530 0.9741 0.9005 

  21 8662 90000 3851.6 98.2 0.0000 0.0834 0.9985 0.9067 

  22 8473 46000 3982.6 98 0.0116 0.0327 0.9975 0.9039 

  23 8952 51000 3881.3 97.9 0.0000 0.0277 0.9992 0.9047 

  24 8535 6400 3985.7 98.3 0.0020 0.0116 0.9994 0.9042 

  25 25728 110000 4007.3 75.3 0.8287 0.9252 0.8188 0.8244 

1 1 1 4037 800000 17.106 96.1 0.9556 0.9308   0.9456 

  2 4587 490000 12.882 85.6 0.9454 0.9437  0.9447 

  3 5906 950000 12.359 94.3 0.9367 0.9576  0.9451 

  4 10805 380000 9.9692 89.6 0.9769 0.7874  0.9010 

  5 6906 1400000 9.3242 93.3 0.9307 0.9304  0.9306 

  6  950000 818.54 92 0.9634 0.8654  0.9241 

  7 6803 1000000 18.352 93.4 0.9032 0.9683  0.9293 

  8 6710 140 3048.3 93.5 0.8870 0.9729  0.9214 

  9 8186 3500 8176.3 92.1 0.9718 0.8545  0.9248 

  10 3895 7600 12412 96.2 0.9659 0.9476  0.9585 

  12 2997 3100 3897.6 97.1 0.9619 0.9412  0.9536 
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  13 3710 2600 4496.5 96.4 0.9571 0.9496  0.9541 

  14 4614 2000 5218.9 95.5 0.9546 0.9421  0.9496 

  15 3889 56000 5241.9 96.2 0.9458 0.9232  0.9367 

  16 3334 23000 5261.3 96.8 0.9460 0.9415  0.9442 

  17 3692 7100 5323.1 96.4 0.9484 0.9450  0.9470 

  18 4378 680 5959.4 95.8 0.9505 0.9406  0.9465 

  19 3330 4200 6059.9 96.8 0.9462 0.9416  0.9444 

  20 3210 24000 6080.2 96.9 0.9510 0.9325  0.9436 

  21 4057 77000 6200.3 96.1 0.9512 0.9442  0.9484 

  22 3099 35000 6370.4 97 0.9519 0.9408  0.9474 

  23 11331 46000 6402.9 89.1 0.9850 0.7769  0.9016 

  24 3788 3400 6609.1 96.3 0.9417 0.9375  0.9400 

  25 4473 81000 6685.3 95.7 0.9432 0.9532  0.9472 

3 1 1 7089 640000 16.562 93.2 0.1832 0.4795 0.9259 0.9145 

  2 7615 910000 15.155 92.7 0.0000 0.5614 0.9449 0.9322 

  3 8738 990000 13.897 91.6 0.0000 0.0000 1.0000 0.9808 

  4 9094 380000 11.734 91.2 0.0114 0.4057 0.9742 0.9595 

  5 10379 720000 13.995 90 0.4881 0.9648 0.8517 0.8493 

  7 18194 1100000 16.397 82.4 0.6143 0.9920 0.7835 0.7839 

  8 17368 120 3686.6 83.2 0.6439 0.9875 0.7914 0.7919 

  9 8529 280000 6333.3 91.8 0.0000 0.0761 0.9923 0.9740 

  10 7119 5600 22296 93.1 0.2503 0.2568 0.9294 0.9164 

  11 44342 4600 28435 57.2 0.7258 0.7852 0.7940 0.7933 

  12 5404 1600 5061.2 94.8 0.2514 0.4034 0.9305 0.9190 

  13 6626 1800 5908.3 93.6 0.1422 0.4932 0.9348 0.9230 

  14 8165 1700 6838.6 92.1 0.0000 0.2716 0.9731 0.9571 

  15 6544 59000 6358.9 93.7 0.3060 0.4102 0.9152 0.9045 

  16 5668 24000 6376.9 94.5 0.1980 0.3636 0.9374 0.9248 

  17 6160 8000 6430.8 94.1 0.1729 0.4273 0.9397 0.9274 

  18 6797 770 7011.4 93.4 0.1945 0.2909 0.9482 0.9347 

  19 5681 4400 6937.2 94.5 0.1991 0.3693 0.9374 0.9249 

  20 5563 29000 6955.2 94.6 0.2491 0.4011 0.9272 0.9157 
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  21 7445 96000 7077.3 92.8 0.0000 0.4932 0.9534 0.9398 

  22 5438 42000 7173.7 94.8 0.2400 0.4420 0.9257 0.9145 

  23 9053 48000 7104.7 91.3 0.0000 0.0500 0.9968 0.9781 

  24 6916 6300 7208.8 93.3 0.1104 0.3955 0.9477 0.9344 

  25 20156 97000 7211.3 80.5 0.7270 0.9852 0.7584 0.7602 

3 2 1 15879 880000 16.693 88.8 0.7167 0.8882 0.8833 0.8756 

  2 18685 840000 15.766 87.5 0.7024 0.8841 0.8735 0.8658 

  3 21842 790000 14.898 83.5 0.7142 0.9259 0.8561 0.8526 

  4 29177 520000 12.898 85.1 0.5181 0.9145 0.8526 0.8396 

  5 18067 520000 15.114 85.3 0.8476 0.9298 0.8465 0.8505 

  7 24116 740000 17.518 78.5 0.7968 0.9864 0.7910 0.8007 

  8 22393 130 4124.3 79.9 0.8168 0.9800 0.8097 0.8182 

  9 20020 87000 9245.6 85.8 0.7531 0.9391 0.8352 0.8363 

  10 31414 4700 22819 79.4 0.8164 0.7795 0.8966 0.8871 

  12 10568 1700 5658.6 92.3 0.7076 0.8445 0.9078 0.8952 

  13 13270 1200 7046.6 90.3 0.7782 0.9007 0.8950 0.8896 

  14 17003 980 8726 87.2 0.7656 0.9559 0.8697 0.8688 

  15 19944 62000 8768.1 93.7 0.3879 0.5132 0.9482 0.9004 

  16 11866 21000 8785.1 91.4 0.6621 0.8495 0.8946 0.8813 

  17 12938 6800 8855.5 90.4 0.6646 0.9032 0.8936 0.8831 

  18 15714 720 9487.7 89.2 0.6735 0.8036 0.8920 0.8772 

  19 11884 4400 9381.7 91.3 0.6651 0.8459 0.8945 0.8811 

  20 11602 22000 9405.6 92.2 0.6382 0.8239 0.9018 0.8854 

  21 16635 96000 9560.4 88.3 0.7058 0.9145 0.8835 0.8765 

  22 14335 40000 9705 94.5 0.4562 0.6502 0.9441 0.9066 

  23 29777 46000 9588.6 83.7 0.3504 0.9766 0.8518 0.8338 

  24 22587 4100 9728 93.8 0.2817 0.5486 0.9591 0.9069 

  25 21192 97000 9743.9 80.4 0.8246 0.9745 0.8152 0.8233 

IC: initial contact; FO: foot off. Output type 1 is stance and swing output; output type 2 and 3 are transition outputs with IC, FO and steady state.
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