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ABSTRACT 

The current study examined the cardiovascular effects of animal venoms. This included eight snake 

species (i.e. Daboia russelii, Daboia siamensis, Bitis arietans, Crotalus vegrandis, Bitis gabonica, 

Echis ocellatus, Pseudonaja textilis and Oxyuranus temporalis) that are of medical importance and 

one bat species (Desmodus rotundus). In previous animal studies, including many from our laboratory, 

the characteristics of hypotension/cardiovascular collapse due to snake envenoming were unclearly 

defined. In this study, we show that B. gabonica, C. vegrandis and B. arietans venoms (all at 200 

µg/kg, i.v.) cause mild transient hypotension in anaesthetised rats, while D. russellii (100 µg/kg, i.v.) 

and D. siamensis (100 µg/kg, i.v.) venoms caused a slow, prolonged decrease in blood pressure. In 

contrast, P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms cause a rapid drop in blood 

pressure without recovery, which we have classified as ‘collapse’. Interestingly, priming with small 

doses of venom, prior to a dose which caused ‘collapse’ when administered alone, prevented collapse 

but not the prolonged hypotension while the use of artificial respiration prevented prolonged 

hypotension but not collapse. These two key findings enabled us to distinguish the two different 

patterns of effects as rapid cardiovascular collapse; defined as a sudden drop (i.e. with 2 min) in 

blood pressure that is usually unrecoverable and prolonged hypotension; characterised as a persistent 

slow decrease in blood pressure with recovery. Prevention of collapse via ‘priming’ doses of venom 

suggests that depletable endogenous mediators may play a role in this phenomenon. 

Further in vitro studies revealed that D. russelii venom is a potent vasodilator of small blood vessels, 

providing a possible mechanism for the prolonged hypotension observed in vivo. D. russelli venom 

(1 ng/mL - 1 µg/mL) caused concentration-dependent relaxation of rat small mesenteric arteries pre- 

contracted with U46619 and mounted in a myograph. The potency of the venom was not changed in 

the presence of the nitric oxide synthase inhibitor, L-NAME (100µM), or removal of the endothelium, 

indicating that the vasorelaxation occurred via an endothelium-independent mechanism. Blocking 

voltage-dependent Kv or calcium activated KCa, but not ATP- sensitive K+ channels, markedly 

attenuated the vasodilatory effects of the venom indicating that the venom was acting via both KCa 

and KV channels. Similarly blocking transient receptor potential cation channel subfamily V member 

4 (TRVP4) also markedly decreased venom-induced vasodilation. However, blocking histamine 

receptors did not affect vasodilatation. Further investigation is required to identify the toxin(s) 

responsible for this effect. 

D. rotundus venom is known to contain strong anticoagulant and proteolytic components, which

interfere with the blood coagulation cascade. In this study, we identified and examined a compound 
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from the venom similar in size and amino acid sequence to human calcitonin gene-related peptide 

(CGRP). The in vitro effects of this compound (termed vCGRP) were examined in a myograph, 

vCGRP displayed vasodilatory properties, similar to rat CGRP (rCGRP) in both potency and efficacy. 

However, a key difference between rCGRP and vCGRP is that vCGRP acts selectively on CGRP1 

receptors present on the smooth muscle while rCGRP activates receptors both on the endothelium 

and smooth muscle. Interestingly, human CGRP also selectively acts endothelium-independently. 

The similarity in mechanism between human CGRP and vCGRP suggests that vCGRP could be used 

as a potential candidate for future therapeutic studies. 

 
Overall, these studies highlight that animal venoms contain many compounds that can affect the 

cardiovascular system via different mechanisms. Exploring these mechanisms is invaluable for future 

therapeutic interventions as well as gaining a better understanding the effects of envenoming and 

potential treatment strategies. 
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1.1 The role of venom 

CHAPTER 1- INTRODUCTION 

Venom is a complex mixture of proteins and peptides that are produced by highly specialised glands 

found in certain animal species (Casewell et al., 2013, Low et al., 2013). Venom is delivered via a 

wound and is generally used for three purposes – (i) as a defensive mechanism again predators, (ii) 

as an aid to capture and digest prey and/or (iii) as a tool to deter/challenge competitors (Fry et al., 

2009). There are large numbers of terrestrial and marine animals that are classified as venomous, 

including different species of snakes, spiders, scorpions, sea snails, sea anemones, jellyfish, fish, 

cephalopods, centipedes, bats, insects, lizards, platypus and shrews (Fry et al., 2009). Similarly, the 

mode of venom delivery is quite diverse and includes the use of fangs or modified teeth, spines, 

sprays, harpoons, spurs, barbs, stingers and beaks (Fry et al., 2006, Fry et al., 2009). 

Venoms consist of a highly complex cocktail of toxins, enzymes, proteins, salts, and organic 

molecules such as polyamines, amino acids and neurotransmitters (Casewell et al., 2013, Fox and 

Serrano, 2008, Fry, 2005, Fry et al., 2009, Inceoglu et al., 2003, Olivera and Teichert, 2007). Venoms 

have a wide range of biological activities which target all major physiological pathways and organs 

accessible by the bloodstream (Fry et al., 2009). 

The primary focus of this thesis is on snake venoms. Ninety to ninety-five percent of snake venom 

consists of proteins and peptides (Mackessy, 2009). These components often possess enzymatic 

activity and ligand binding abilities that, in combination and/or separately, result in clinical 

envenoming in other organisms, including humans (Calvete et al., 2009, Casewell et al., 2013). 

1.2 Introduction to snake families 

Snakes originate from the class Reptilia, order Squamata, and are found in most countries across a 

wide variety of geographical and environmental habitats (Warrell, 1989). There are two types of 

snakes, venomous and non-venomous. Venomous snakes fall under the superfamily Colubroidea 

(advanced snakes) or Caenophidea, and can be categorised into four subfamilies: i.e. Viperidae, 

Elapidae, Colubridae and Atractaspididae (O'Shea, 2008). 
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Figure 1.1: 3D mCT images showing the morphological differences in snake fang phenotypes. 

(a) Grooved phenotype typical of a Colubridae (Dispholidus typus) located at the posterior end 

of the maxilla; (b) non-fused phenotype of an Elapidae (Naja nivea) with the fangs found in an 

anterior fixed position in the maxilla; (c) closed, fused phenotype of a Viperidae (Causus 

rhombeatus) with fangs that are mobile in the anterior position in the maxilla. The red arrows 

indicate the position of the fang. The stress distributions of each fang phenotype are shown on 

the right with the gradient representing the maximum Von Mises stress (in GPa). A force was 

applied at the tip of the fang (shown in green) while the base of the fang (shown in red) is 

considered immobile (Broeckhoven and du Plessis, 2017). 

 

1.2.1 Colubridae 

The Colubrid family are the most dominant and diverse snake family, being found all over the world 

(except Antarctica), and consist of over 2,500 species (Gutiérrez et al., 2017). Colubrids are generally 

considered “harmless” to humans (O'Shea, 2008). This is due to their small fangs that are present at 

the end of the upper jaw (Figure 1.1a), making it difficult to effectively envenom humans or even 

their prey (O'Shea, 2008). There have been a few documented cases of human envenoming, however 

the clinical symptoms are much less severe than those following viperidae or elapidae envenoming 
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(Weinstein et al., 2013). Colubrids are characterized as venomous due to the presence of the 

Duvernoy’s gland in some colubrid species which is homologous to a venom gland (Broeckhoven 

and du Plessis, 2017, O'Shea, 2008, Westeen et al., 2020). In Australia, only one venomous species 

of colubrid has been described, i.e. the brown tree snake (Boiga irregularis) (Pla et al., 2018) which 

is aggressive in nature but not fatal given an inability to deliver a sufficient amount of venom to 

envenomed humans (Mackessy, 2009). In comparison to research on elapidae and viperidae venoms, 

colubridae venom research is relatively sparse. However, studies do suggest the potential of this snake 

family to contain novel proteins and peptides that could be used in drug therapies (Mohamed Abd El- 

Aziz et al., 2019). 

1.2.2 Elapidae 

Elapidae is recognised as the most venomous and medically important family of snakes in the world, 

consisting of over 60 genera and 300 species (Fry et al., 2003, Keogh, 1998). Geographically, elapids 

are found in remote sub-tropical regions of Australia, Asia, Africa and the Americas, as well as in 

both terrestrial and aquatic regions (Ludington and Sanders, 2021, Martinez et al., 2021, Shine, 1995, 

Swindells and Schaer, 2018). Some of the common terrestrial genera in this family include tiger 

snakes (Notechis spp.), brown snakes (Pseudonaja spp.), taipans (Oxyuranus spp.), black snakes 

(Pseudechis spp.), land kraits (Bungarus spp.) and cobras (Naja spp.). Aquatic species include the 

yellow-bellied sea snake (Hydrophis platurus.), sea kraits (Laticauda spp.) and a semi-aquatic species 

of coral snake (Micrurus surinamensis). 

Whilst all sea snakes produce live young, some terrestrial elapids produce live young while some lay 

eggs (Shine, 1977). Elapids are characterised by small, fixed fangs that are found angled at the front 

of the mouth and known as proteroglyphous (Figure 1.1b) (Cogger, 2014). Interestingly, some elapids 

(e.g. Naja spp.) have evolved their venom mechanism to spit or spray their venom though their fangs 

when attacking/defending (Kazandjian et al., 2021, Wüster et al., 2007). 

1.2.3 Viperidae 

Adders, Old World vipers and Pit-vipers are all included in the broader umbrella term ‘Vipers’. There 

are 230 species of vipers, subdivided in 28 genera (Alencar et al., 2016, Mallow et al., 2003). Vipers 

are found all over the world including on non-polar land masses, except Australia and Antarctica 

(McDiarmid et al., 1999), and are the only family found on the furthest north (European Adder Vipera 

berus, 69°N) and furthest south (Patagonian Lancehead Bothrops ammodytoides, 47°S) regions of the 

equator. In Africa, the Puff Adder (Bitis arietans) is considered to be the deadliest snake as it is 
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responsible for the most human deaths due to envenoming (Rainer et al., 2010).  Pit vipers are the 

largest group of venomous snakes in the USA and cause over 99% of snake bites annually (Ruha et 

al., 2017). In Asia, the Russell’s viper is the most widely distributed species of the viperade family, and 

causes a high rate of mortality due to snake bite  (Warrell, 1989). 

 
Vipers are one of the largest vertebrate predators found in some terrestrial ecosystems. They are 

usually characterised as sedentary and big boned. However, arboreal (tree dwelling) vipers are slender 

(Wüster et al., 2008). As for elapids, vipers are characterised by their front-fangs, although vipers 

have larger fangs (figure 1.1c) that project in a hinge motion (Zahradnicek et al., 2008). Most vipers 

subdue, swallow and rapidly digest their prey, even at low temperatures (Cundall, 2002, Pough and 

Groves, 1983). 

 

1.3 Snake bite 

Globally, clinical manifestations caused by snake bite are an important health issue (Chippaux, 2008, 

Warrell, 2010). According to recorded reports of snake bites, it is estimated that 1.8-2.7 million 

envenomings, and 81,000– 138,000 deaths, occur annually around the world (Figure 1.2) (Gutiérrez 

et al., 2017). However, the extent of envenoming is likely to be substantially understated due to the 

inadequate reporting of snake envenoming, especially in many tropical and/or developing countries. 

The lack of reliable data has led to poor accessibility to treatment, and management, of snakebite. 

South Asia, South-East Asia, Sub-Saharan Africa and Latin America are reported to have the highest 

rate of envenoming and mortality, especially in rural farming communities (Kasturiratne et al., 2008). 

Snake bites occur so frequently in these areas that it has become an occupational and environmental 

health hazard (Williams et al., 2010) and considered a ‘disease’ in many under-developed, poverty- 

stricken countries (Harrison et al., 2009). In addition, many victims of snake bite in these communities 

use traditional treatments and remedies based on those used by their forefathers and are less likely to 

seek medical assistance (Fox et al., 2006). These factors contribute to the under representation of 

hospital statistics on the severity of snake bite as a globally important health burden. Thus, the World 

Health Organisation has recognised snake bite as a Neglected Tropical Disease and is establishing 

support and research for better treatment for victims (Chippaux, 2017, Williams et al., 2019a). 
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Figure 1.2: Global map showing the annual snake bite envenomings and mortalities (Gutiérrez 

et al., 2017). 

1.4 Snake venom 

The primary role of snake venom is to capture/paralyse/digest prey, as well as act as a defence 

mechanism against predators (Casewell et al., 2013). Snake venom is produced by venom glands 

located in the head of the snake. Different species have developed effective and sophisticated delivery 

systems to inject venom from the glands into the prey (Jackson, 2003). While the evolution of venom 

apparatus is believed to have originated 200 million years ago from a single ancestor, the front-fanged 

venom systems present in elapids, viperids and atractaspidids evolved separately at different time 

points (Fry et al., 2006, Jackson, 2003). This was mainly due to variations in diet (Daltry et al., 1996), 

resulting in different venom components being present not only in different species but also within 

the same species. Factors such as geographical distribution, sex and ontogeny also played a role in 

venom diversification (Andrade and Abe, 1999, Suzuki et al., 2010). Venom proteins vary structurally 

and functionally, and can be classified in numerous ways. High molecular weight proteins have a 

range of enzymatic activity and bind to an array of substrates in target sites that play a role in major 

physiological systems (Casewell et al., 2013). This includes the coagulation cascade, neuromuscular 

junction, skeletal and cardiac muscles, vascular endothelium, red cell membrane and extracellular 

space (Chippaux, 2006). Another enzymatic group of snake venom components, called 
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metalloproteins, rely on metal ions such as calcium or zinc for their activity. Many venom 

components such as phospholipases are toxic due to their enzymatic activity (Kini, 2003). 

Phospholipase A2 (PLA2) toxins are found in all snake venoms and display an array of properties such 

as neurotoxicity, myotoxicity, cardiotoxicity, anti-coagulation, haemolytic, hypotensive and local 

tissue necrotic activity (Gutiérrez and Lomonte, 2013b, Kini, 2003). Metalloproteinases and 

thrombin-like serine proteinases found in snake venom cause coagulopathy, fibrinolysis and 

haemorrhage, and are present in high concentrations in crotaline venoms (Chippaux, 2006, Markland, 

1998). 

Snake venoms also contain high amounts of low molecular weight polypeptide toxins. These toxins 

have no enzymatic properties but show high affinity to a wide range of receptors, ion channels and 

plasma proteins (McCleary and Kini, 2013, Fry et al., 2009). Once bound, these toxins cause an array 

of toxic effects that, in combination, lead to the prey becoming immobilized (McCleary and Kini, 

2013). Examples of these toxin families include three finger toxins, bradykinin-potentiating peptides, 

proteinase inhibitors, vascular endothelial growth factors and C-type lectins. Toxins within each 

family share similar primary, secondary and tertiary structures, yet possess vastly different 

pharmacological properties (Casewell et al., 2013, McCleary and Kini, 2013, Vonk et al., 2011). 

1.4.1 Phospholipases 

Venom from all snake families contain phospholipase enzymes (Kudo and Murakami, 2002). The 

four main classes of phospholipases (PL) are A1, A2, C and D. These classes, which are further 

subdivided, are identified by the site at which they hydrolyse ester bonds of 3-sn-phosphoglycerides 

(Fry, 1999). Toxic PLA2s found in snake venom catalyse the Ca2+-dependant hydrolysis of acyl-ester 

at the sn-2 position of glycerophospholipids. There are two main groups of PLA2. 

1) PLA2s present in Viperidae venom. This is similar to non-pancreatic inflammatory secretory

PLA2s (Lambeau and Lazdunski, 1999) and,

2) PLA2s found in Elapidae venom. These PLAs are similar to PLA2s secreted by the pancreas.

PLA2s are further subdivided into five groups according to their effects on the body; i.e. myotoxic, 

neurotoxic, haemotoxic, non-toxic but enzymatically active and non-enzymatically active (Fry, 

1999). 

1.4.2 Myotoxins 

Myotoxins cause direct cytotoxicity to skeletal muscles. Types of myotoxins include: 

1) Low molecular mass myotoxins that act on sodium channels (Mebs and Ownby, 1990);
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2) Membrane-active cardiotoxins (Duchen et al., 1974);

3) Toxic phospholipase A2 (PLA2s) (Gutiérrez and Ownby, 2003). These toxins cause the most

damage to muscle.

Myotoxin-a and crotamine are low molecular mass myotoxins isolated from Crotalus viridis viridis 

and Crotalus durissus venoms. These toxins bind specifically to sodium channels and cause structural 

damage to skeletal muscles as well as myonecrosis (Cameron and Tu, 1978, Williams et al., 2019b). 

Cardiotoxins present in cobra venoms destroy plasma membrane of skeletal muscle cells via 

depolarization and degradation (Shiau et al., 1976). They are also known to cause cardiac arrhythmia 

(Virmani, 2002). 

PLA2 myotoxins, which are the largest group of myotoxins, act directly on muscle and cause muscles 

to degenerate, resulting in initial muscle pain and weakness (Currie, 2000, Montecucco et al., 2008). 

In the final stages of myotoxicity, clinical manifestations result in either local necrosis, as seen in 

viper species envenoming, or systemic myotoxicity, present in elapid species envenoming (Gutiérrez 

and Ownby, 2003). 

There are two forms of myotoxic PLA2s, i.e. Lys-49 and Asp-49. Lys-49 PLA2s have no catalytic 

activity due to a lysine substitution for aspartate at position 49 of the amino acid sequence (Gutiérrez 

and Lomonte, 1995, Lomonte et al., 2009, Rufini et al., 1992). Asp49 PLA2s cause hydrolysis of cell 

membranes due to high levels of enzymatic activity (Mora-Obando et al., 2014). Myoglobinuria is a 

likely result of myotoxicity which is clinically important as it is often linked to renal failure (Ponraj 

and Gopalakrishnakone, 1997). 

1.4.3 Neurotoxins 

Neurotoxins can be divided into two major classes; i.e. pre-synaptic and post-synaptic. Pre-synaptic 

toxins act on the pre-synaptic terminal of the neuromuscular junction and are often referred to as β- 

neurotoxins. β-Neurotoxins are prevalent in the venoms of Viperidae, Elapidae and Crotalidae 

(Barber et al., 2013b, Chang, 1985). Similar to myotoxins, pre-synaptic neurotoxins exhibit PLA2 

activity (Kini, 1997, Madhushani et al., 2020). Pre-synaptic neurotoxins interfere with neuromuscular 

transmission in a tri-phasic manner which starts with a weak inhibition of acetylcholine (ACh) 

release, followed by a prolonged phase of facilitated release and, finally, a progressive reduction of 

neurotransmission (Rigoni et al., 2004, Su and Chang, 1984b). Rigoni et al. (2004) have postulated 

that the toxins cause bulging of the pre-synaptic terminal which then leads to disruptions in 

distribution of actin and neurofilaments in neurons. They also suggested that membrane defects may 
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occur due to phospholipids being hydrolysed which leads to excess Ca2+ flowing into the presynaptic 

terminal and causing ACh release (Rigoni et al., 2004, Tonello and Rigoni, 2017). It has also been 

suggested that pre-synaptic toxins may lead to structural damage and depletion of synaptic vesicles 

(Prasarnpun et al., 2004). 

Post-synaptic neurotoxins (also known as α-neurotoxins) are low molecular weight peptides that 

block postsynaptic nicotinic acetylcholine receptors (nAChR). α-Neurotoxins are present primarily 

in elapid venoms although some viper venoms also contain these toxins. α-Neurotoxins are similar in 

activity to d-tubocurarine, which also binds to nAChR, and thus are often referred to as 

“curaremimetics” (Lee, 1970) or “three-finger toxins” (Nirthanan and Gwee, 2004). There are two 

types of post-synaptic neurotoxins; i.e. short-chain and long-chain. Short-chain neurotoxins consist of 

60- 62 amino acids and contain four conserved disulphide bonds (Endo and Tamiya, 1991, Barber et

al., 2013b). Toxin-α and erabutoxin-b are short-chain neurotoxins that have been used extensively to 

study the neuromuscular junction (Tsetlin and Hucho, 2004). Receptor/toxin studies have 

demonstrated that amino acids at positions 7, 8, 10, 27, 29, 31, 33, 38 and 47 of the toxin play a key 

role in the binding of the neurotoxin to nAChR (Antil et al., 1999, Mordvintsev et al., 2005, Trémeau 

et al., 1995). Long-chain neurotoxins consist of 66-75 amino acids and contain five disulphide bonds, 

with the extra disulphide bond being situated on the second loop of the toxin (Endo and Tamiya, 

1991). Amino acids at positions 23, 25, 27, 29, 33, 35, 36, 49 and 65 are important in the binding of 

the toxins to the nAChR (Nirthanan and Gwee, 2004). However, short-chain neurotoxins bind 6-7 

times faster with the receptor and dissociate 5-9 times faster than long-chain neurotoxins (Nirthanan 

& Gwee, 2004). 

1.4.4 Coagulating Agents 

Many snake venoms contain toxins that affect the coagulation cascade. This includes pro-coagulants, 

anti-coagulants, platelet active compounds, thrombotic effects and fibrinogen clotting toxins 

(Maduwage and Isbister, 2014, Isbister, 2009). Coagulopathy is defined by abnormalities present in 

the coagulation cascade, and is caused by all venomous snake families to some extent (Maduwage 

and Isbister, 2014). This leads to the inability of blood to clot properly in snake bite victims, which 

can lead to serious haemorrhaging (Isbister, 2010). Most viperid and Australasian elapid venoms 

contain potent pro-coagulant toxins that activate the clotting cascade by binding to different target 

sites (Isbister, 2010, Maduwage and Isbister, 2014). There are different types of pro-coagulant toxins. 

Thrombin-like enzymes cleave fibrinogen and cause mild coagulopathy. Other toxins cause severe 

coagulopathy by activating clotting factors that are present higher up in the clotting cascade and this 

is evident in Russell’s viper venom (Maduwage and Isbister, 2014). This leads to clotting factors 
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being used up (i.e. ‘consumed’) at a higher rate than normal, which can result in small blood clots 

forming and then extensive bleeding from bite site and body orifices (Jacob, 2006). In some cases, 

no bleeding has been reported externally however severe gastro-intestinal and intra-cranial bleeding 

has been reported (Jacob, 2006). Currently research is directed at the effectiveness of anti-venom 

therapy and fresh frozen plasma (Holla et al., 2018, Isbister et al., 2013, Rathnayaka et al., 2020). 

1.5 Clinical effects of snake envenoming 

Not every bite from a venomous snake results in envenoming. In order for successful envenoming to 

occur, the venom needs to be delivered in sufficient amounts into the body of the prey/victim. The 

degree of envenoming is dependent on an array of factors including volume and concentration of 

venom injected, venom composition, and body mass and health of prey/victim (Chippaux, 2006, 

Mackessy, 2009). In the case of humans, the time and type of medical intervention (such as first aid, 

and anti-venom) plays a crucial role in the clinical manifestations and outcome of envenoming. Thus, 

this can lead to humans displaying different degrees of clinical outcomes, ranging from non- 

envenoming to severe envenoming, the latter leading to death soon after being bitten. Clinical effects 

of envenoming can be categorized into “local effects” and “systemic effects” (Figure 1.3). Depending 

on the combination of toxins present in the venom and degree of envenoming, snake bite in humans 

can result in all or some of the following clinical symptoms: local tissue necrosis, neurotoxicity, 

coagulopathy, haemorrhage, kidney damage, myotoxicity and cardiovascular damage (Chippaux, 

2006). 
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Figure 1.3: Local and systemic effects of snake toxins on different body systems (Gutiérrez et 

al., 2017). 

1.5.1 Local effects of envenoming 

The ‘local’ effects of envenoming refer to direct tissue damage caused by the venom at, or around, 

the bite site (Figure 1.3). This is quite a common outcome for viper and cobra bite victims, and can 

range from inflammation and minor tissue damage to severe damage requiring surgical intervention 

such as amputation of limbs. However, local envenoming usually results in the following 

characteristics during the acute stage: fang marks, pain, bleeding and bruising, haemorrhagic 

blistering, local tissue necrosis, regional lymphadenopathy and gangrene (Chippaux, 2006, Kularatne 

et al., 2009). Following some pit viper bites, local envenoming leads to increased pressure in the 

affected area requiring decompression via surgery. Failure to respond in a timely manner could result 

in amputation (Bucaretchi et al., 2010). The timely clinical management of the effects of local 

envenoming is still a challenge due to factors such as the time it takes for patients to reach hospital 

and the type of snake bite (Rojnuckarin et al., 2006, Sellahewa et al., 1995). Hence many victims of 

snake bite end up with varying degrees of disability due to local envenoming (Gutiérrez et al., 2006). 
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1.5.2 Systemic envenoming 

Systemic envenoming refers to venom being distributed via the lymphatic system and blood vessels 

throughout the body (Warrell, 2010). This can lead to multiple organ damage, organ failure and death 

(Figure 1.3). 

Neurotoxicity 

Neurotoxicity is a common sign of envenoming by many snake species, including Elapidae such as 

cobras, kraits, mambas, taipans, coral snakes, death adders, tiger snakes and sea snakes, as well as 

some Viperidae such as pit vipers (Chippaux, 2006, Mackessy, 2009, Ranawaka et al., 2013). 

Neurotoxicity is due to snake venom toxins (see 1.4.3) affecting the nervous system, in particular, 

inhibiting transmission at the skeletal neuromuscular junction, leading to flaccid paralysis. This 

paralysis can present as mild weakness of eyelids to total paralysis of the body, which can lead to 

respiratory arrest and death. Paralysis begins from the eyes, descends to the lower extremities and is 

dependent on the type of snake and amount of venom delivered (Faiz et al., 2010, Isbister et al., 2012). 

Kidney damage 

Acute kidney damage can occur following snake envenoming due to toxins present in some 

viperid and elapid venoms (Sitprija and Sitprija, 2012). The pathogenesis of renal damage 

includes decreased renal blood flow that can occur due to haemodynamic alterations caused by 

systemic bleeding and vascular leakage. SVMPs can cause proteolytic degradation of the 

glomerular base membrane while PLA2 toxins cause haemolysis, cytotoxicity in renal tubular 

cells and thrombotic microangiopathy (Pinho et al., 2005, Sitprija and Sitprija, 2012). 

Rhabdomyolysis can also occur due to envenoming by sea snakes, some viperid species and some 

Australian terrestrial elapids (Gutiérrez et al., 2017, Warrell, 2010). This involves the action of 

myotoxic PLA2s binding to receptors on muscle fibres. Myotoxins disrupt and damage the integrity 

of the plasma membrane of muscle cells which leads to an influx of calcium and cellular degeneration 

(Gutiérrez and Ownby, 2003). This leads to large amounts of creatine kinase and myoglobin being 

released. Deposition of myoglobin within the renal tubules can also contribute to acute kidney disease 

(Sitprija and Sitprija, 2012). 

Cardiovascular and haemostatic disturbances 

Cardiovascular effects of snake envenoming include haemorrhage, coagulopathy, decreased platelet 

numbers, cardiovascular shock and collapse (Frangieh et al., 2021). While numerous studies have 

been conducted on neurotoxicity and other systemic effects of snake envenoming, there is a lack of 

understanding and clarity of the mechanisms and toxins involved in the cardiovascular effects. Thus, 
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the focus of this thesis is an investigation of the cardiovascular effects of snake venom – in particular 

hypotensive components. The following sections include an overview of the hypotensive components 

of snake venom as well as an overview of the eight snakes that have been chosen for investigation. 

1.6 Hypotensive components of snake venom 

As mentioned earlier, snake venom contains an array of different proteins and peptides that work 

together to cause rapid immobilization of prey. Hypotensive agents are present in many snake venoms 

and support neurotoxins in paralysing prey by causing circulatory shock. These agents may also aid 

in the diffusion of other snake venom components (Joseph et al., 2004, Mackessy, 2009). There are 

five main classes of hypotensive components present in snake venoms: i.e. kininogens, natriuretic 

peptide-like components, phospholipases, serine-proteases, endogenous vascular endothelial growth 

factors and other hypotensive agents (Péterfi et al., 2019). 

Kininogens (such as bradykinin potentiating peptides) are the largest class of hypotensive peptides. 

These peptides (which were first extracted from Bothrops jararaca venom) inhibit angiotensin- 

converting enzyme (ACE) and cause an increase in the hypotensive effects of bradykinin (Ferreira, 

1965). ACE promotes the degradation of bradykinin which is a vasodilator (Camargo et al., 2012), so 

inhibiting ACE leads to increased vasodilation. Furthermore, bradykinin potentiating peptides induce 

gamma-aminobutyric acid (GABA) and glutamate release within the central nervous system that 

results in hypotension (Guerreiro et al., 2009, Munawar et al., 2018). 

Natriuretic peptides (NPs) are vasoactive hormones that act via two major mechanisms: 

vasodilation and renal blood flow regulation. This includes the inhibition of the renin-angiotensin- 

aldosterone system, diuresis, natriuresis, vascular permeability regulation and increase of venous 

capacity (Koh and Kini, 2012, Suzuki et al., 2001, Wong et al., 2017). NPs have been isolated from 

numerous snake venoms including Dendroaspis angusticeps (Lisy et al., 1999), Crotalus durissus 

cascavella (Evangelista et al., 2008), Pseufonaja textilis (St Pierre et al., 2006), Bungarus flaviceps 

(Siang et al., 2010, Sridharan and Kini, 2015), Bungarus multicinctus (Jiang et al., 2011) and Lachesis 

muta (Soares et al., 2005). These peptides decrease heart rate, induce relaxation of blood vessels and 

decrease arterial pressure (Evangelista et al., 2008, Péterfi et al., 2019). 

There are 4 major types of PLA2s (see 1.4.1) – cytosolic PLA2s, Ca2+ independent PLA2s, secreted 

PLA2s and platelet-activating factor acetylhydrolases (Burke and Dennis, 2009). Snake venom PLA2s 

belong to the secreted PLA2 family which cause neurotoxicity, cardiotoxicity, inhibition of blood 

coagulation and interference of platelet function (Chaisakul et al., 2014, Mackessy, 2009). These 
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proteins are able to decrease blood pressure via the production of arachidonic acid and interaction 

with platelets and leukocytes (Leiguez et al., 2018, Mackessy, 2009). PLA2s are present in colubrid, 

elapid and viperide venoms, and are one of the major toxic components that are responsible for an 

array of pharmacological effects (Xiao et al., 2017). 

Snake venom serine-proteases (SVSP) are trypsin-like enzymes that cause an imbalance in the 

haemostatic system by disrupting the coagulation cascade, the fibrinolytic and kallikrein-kinin 

systems and imitating the effects of thrombin (Serrano and Maroun, 2005). Some SVSPs activate 

plasminogen or coagulation factor XIII while others lower blood pressure by releasing bradykinin 

from kininogen (Hung and Chiou, 2001). SVSPs extracted from Trimeresurus muscrosquamatus 

venom reduce blood pressure by degrading angiotension I and angiotension II (Hung and Chiou, 

2001). 

Vascular endothelial growth factors (VEGFs) regulate the formation and permeability of blood 

vessels via their interaction with kinase-linked receptors in order to maintain homeostasis (Péterfi et 

al., 2019). They activate endothelium-dependent vasorelaxation via the release of nitric oxide and 

prostaglandins (Yang et al., 2002). VEGF components present in snake venom act similar to that of 

human VEGF in order to regulate vascular permeability, angiogenesis and reduce blood pressure 

(Kaji et al., 2006, Liu et al., 2001). 

Other hypotensive components present in snake venom include heparin binding factors which 

promote anticoagulation, hypotension and vasorelaxation (Hirsh et al., 2001, Paredes-Gamero et al., 

2010), three-finger toxins which have an array of biological functions and can cause hypotension by 

binding to L-type calcium channels (LTCC) and interacting with adrenergic and muscuranic receptors 

(Ferraz et al., 2019, Kini and Doley, 2010), and 5’ nucleotidases which interact with factor IX of the 

blood coagulation cascade and inhibit platelet aggregation (Dhananjaya et al., 2009). 

1.7 Focus of this study 

While there are many hypotensive agents present in snake venoms, the mechanisms and contribution 

to major clinical effects such as cardiovascular collapse are still unclear. Thus, the main aim of this 

study was to identify and characterize the cardiovascular effects of eight different snake venoms. The 

following snakes were chosen as they have been reported to cause cardiovascular effects such as 

collapse and/or hypotension in envenomed patients – Daboia russelii (Sri Lankan Russell’s viper), 

Daboia siamensis (Javanese Russell’s viper), Pseudonaja textilis (Brown snake), Bitis arientans (Puff 

adder) and Echis ocellatus (Carpet viper). Crotalus vegrandis (Uracoan rattle snake) was chosen as 
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this species is known to cause severe haemorrhage in envenomed animals however clinical data is 

very limited. Bitis gabonica (Gaboon viper) was chosen as envenoming in humans is quite rare and 

thus clinical cardiovascular effects are not fully known. Oxyuranus temporalis (Western desert 

taipan) was chosen as it is a new species of taipan found in Western Australia. There have been no 

human envenoming and thus the cardiovascular effects of this venom are unknown. Below is an 

overview of these eight snakes. 

1.7.1 Gaboon viper (Bitis gabonica) 

(a) 

 
 

(b) 

 

Figure 1.4: (a) B. gabonica (Photograph by David Williams) and (b) geographical distribution. 

Red shading refers to areas of highest rate of mortality and morbidity while orange shading 

refers to areas where the snake is found but clinical data is lacking. Source: WHO 2010 

Database (https://apps.who.int/bloodproducts/snakeantivenoms/database - viewed on 

03/06/2021). 

https://apps.who.int/bloodproducts/snakeantivenoms/database
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Bitis gabonica, or more commonly known as the Gaboon viper, is a member of the Bitis genus which 

consists of twelve species (Marsh and Whaler, 1984). B. gabonica is the largest viper species and is 

found predominantly across equatorial Africa (Figure 1.4b) (Marsh and Whaler, 1984, Marsh et al., 

2007). It lives in rainforests and woodlands that are mainly at low altitudes but have also been seen 

in higher altitudes of 1,500-2,100 m (Spawls, 2002). It is also sometimes found in open country. There 

have been reports of Gaboon vipers being spotted commonly in coffee plantations in East Africa 

(Cansdale, 1948), cacao plantations in West Africa (Ionides and Pitman, 1965) and cashew 

plantations in Tanzania, making them a threat to agricultural farmers (Mallow et al., 2003). They are 

also commonly found beside running or still water (Marsh and Whaler, 1984). 

B. gabonica is the heaviest (average 5.25 Kg) of all venomous snakes in Africa and can grow to 2 m

in length (Marsh and Whaler, 1984). It contains the longest fangs (4 cm), produces the highest 

quantity of venom (> 2 g in dry weight) of all venomous snakes, and it can eject up to 10 ml of venom 

during one strike (Marsh et al., 2007). Its body is covered in rectangle and triangle patterns of dark 

brown, light brown and black (Figure 1.4a). This pattern provides excellent camouflage among the 

forest floors, which is quite advantageous when capturing prey such as rodents and ground dwelling 

birds, as this snake is usually very docile and sluggish in behaviour (Marsh and Whaler, 1984). B. 

gabonica catch prey via camouflage and ambush instead of actively hunting prey. Like most other 

viperad species, B. gabonica hold onto their prey with their large fangs until the prey dies instead of 

releasing it and waiting for it to die. When threatened, these snakes are known to hiss but are reluctant 

to attack unless hurt (Marsh and Whaler, 1984). 

Bites from B. gabonica are quite rare in the wild, with the majority of reported bites having occurred 

during handling of captive species (Marsh et al., 1997). Envenoming usually leads to unstable 

circulation, excessive bleeding, tissue damage and necrosis (Marsh et al., 1997). SAIMR (South 

African Institute for Medical Research) polyvalent antivenom is available for patients. 

The venom has been reported to contain arginine esterases (Viljoen et al., 1979), PLA2 components 

(Botes and Viljoen, 1974), thrombin-like enzymes (Pirkle et al., 1986), anti–platelet (Huang et al., 

1992) and metalloproteinase (Marsh et al., 1997) activities. 
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1.7.2 Puff adder (Bitis arietans) 

(a) 

(b) 

Figure 1.5: (a) B. arietans (Photograph courtesy of Venom Supplies, Tanunda, South Australia) 

and (b) geographical distribution. Red shading refers to areas of highest rate of mortality and 

morbidity while orange shading refers to areas where the snake is found but clinical data is 

lacking. Source: WHO 2010 Database 

(https://apps.who.int/bloodproducts/snakeantivenoms/database – viewed on 03/06/2021). 

Bitis arietans, or Puff adder, is a member of the viper family found throughout the Middle East of 

sub-Sahara, Africa and parts of the Arabian Peninsula (Figure 1.5) (Barlow et al., 2013, Fernandez et 

al., 2014). In Africa B. arietans is the most common and widespread venomous snake species 

https://apps.who.int/bloodproducts/snakeantivenoms/database
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(Serrano et al., 2005) and even though the number of bites due to this species is unknown, it is 

estimated that a large portion of the 43,000 deaths attributed to snake bite in Africa each year are due 

to B. arietans envenoming (Kasturiratne et al., 2008). Therefore, B. arietans are a serious public 

health concern in Africa. B. arietans are usually found in all habitats except rainforests, true deserts 

and tropical alpine areas (McDiarmid et al., 1999). They are usually sluggish in behaviour and rely 

on camouflage for both protection and hunting. 

B. arietans venom is considered one of the most toxic and highly potent of any viper venom (Segura

et al., 2010). Envenoming results in both local and systemic effects in the body (Laing et al., 2003, 

Kasturiratne et al., 2008, Warrell et al., 1975). These include swelling, blistering, arterial thrombosis, 

necrosis, cardiovascular effects (hypotension and bradycardia), spontaneous bleeding and 

thrombocytopenia (Warrell et al., 1975). The venom contains hemorrhagins that prevent platelet 

function and interfere with plasmatic coagulation (Rainer et al., 2010, Dennis et al., 1990). Toxins in 

the venom also cause increased vascular permeability which can lead to hypovolemic shock and death 

(Schaeffer et al., 1985). Cardiac arrhythmias observed in patients suggests that cardiotoxins could 

also be present in the venom (Maita et al., 2003, Omori-Satoh et al., 1995, Schaeffer et al., 1985). 

Polyvalent anti-venom produced in South Africa (Segura et al., 2010) is available for bitten victims. 

However, lack of accessibility to hospitals and envenomed patients often choosing traditional 

medicines leads to poor life quality and disabilities due to necrosis (Lavonas et al., 2002). 

1.7.3 Carpet viper (Echis ocellatus) 

(a)
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(b) 

Figure 1.6: (a) E. ocellatus (Photograph by David Williams) and (b) geographical distribution. 

Red shading refers to areas of highest rate of mortality and morbidity while orange shading refers 

to areas where the snake is found but clinical data is lacking. Source: WHO 2010 Database 

(https://apps.who.int/bloodproducts/snakeantivenoms/database - viewed on 03/06/2021). 

There are 12 different species and 20 different subspecies of Echis found around the world (Cherlin, 

1990). Echis spp. are part of the Viperidae family. These species have been further divided into four 

main classes: E. carinatus, E. coloratus, E. ocellatus and E. pyramidum (Pook et al., 2009). E. 

ocellatus, more commonly known as carpet vipers, are found in Nigeria (Figure 1.6b) (Habib, 2015) 

and are one of the most medically important species of venomous snakes in the savannahs of western 

sub-Saharan Africa (Calvete et al., 2016). E. ocellatus is responsible for more deaths than any other 

genus of snakes due to snakebite and causes thousands of deaths and permanent disability annually 

(Stock et al., 2007, Chippaux, 2002, Organization, 2010). It has been reported that 497 per 100,000 

population are bitten by snakes in Nigeria annually, with E. ocellatus envenoming causing at least 

66% of mortality in certain areas (Habib, 2015, Wagstaff et al., 2009). 

The average size of E. ocellatus is 30-50 cm and the body is covered in distinctive spots termed “eye 

spots” that are present from head to tail (Figure 1.6a) (St and Branch, 1995). E. ocellatus is quite 

aggressive in nature. The snake forms its body into a “S” shape and rubs itself to make sound with its 

scales, alerting predators and prey of its presence. E. ocellatus hunt during the early hours of night 

and usually feed on small vertebrates such as mammals, birds, lizards and amphibians (Pook et al., 

2009). 

https://apps.who.int/bloodproducts/snakeantivenoms/database
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E. ocellatus envenoming causes an array of clinical symptoms such as localised edema, haemorrhage

and necrosis at the wound, systemic haemorrhage, intravascular coagulation and fibrinolysis (Warrell 

et al., 1977). The venom contains a prothrombin-activating procoagulant, hemorrhagin and cytolytic 

fractions that cause haemorrhage, shock, necrosis and incoaguable blood (Habib, 2015). It has been 

reported that cardiotoxicity and renal failure may also occur following envenoming (Habib, 2015). 

1.7.4 Uracoan rattle snake (Crotalus vegrandis) 

(a) 

(b) 

Figure 1.7: (a) C. vegrandis (Photograph courtesy of Venom Supplies, Tanunda, South 

Australia) and (b) geographical distribution. Shaded area represents estimated range and 

circles represent typical localities (McCranie, 1984). Source: The Reptile Database 

(https://reptile-database.reptarium.cz/species?genus=Crotalus&species=vegrandis- viewed on 

03/06/2021) 

https://reptile-database.reptarium.cz/species?genus=Crotalus&species=vegrandis-
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Crotalus vegrandis, or more commonly known as the Uracoan rattlesnake, is a member of the viperid 

family found in Venezuela (Figure 1.7b), mainly in the states of Anzoategui and Monagas (Klauber, 

1941, Pifano and Rodriguez-Acosta, 1996). While some researchers consider it to be a subspecies of 

Crotalus durissus (Shelton, 1981), others believe it is a distinct species (Harris Jr and Simmons, 1978, 

Hoge, 1965). 

The length of an adult specimen is usually between 76-107 cm and its body colour can range from 

grey to reddish-brown and in some cases olive green (Figure 1.7a) (McCranie, 1984, Strimple, 1987). 

The dorsal scales are usually tipped white, giving an overall speckled appearance. It is also 

morphologically characterised by the presence of a sharp vertebral ridge, similar to that of C. durissus 

(Strimple, 1987). C. vegrandis feeds on rodents, small mammals and lizards (Chiszar and Radcliffe, 

1976, Chiszar et al., 1977). Usually the primary defence mechanism of rattlesnakes is to hide and 

rattle their tail to scare away predators, however when challenged they will bite and envenom. 

Humans are usually envenomed if they accidently step on the snake or come too close to their habitat 

(Chiszar et al., 1993). 

There have been a few studies on C. vegrandis venom; however, due to the snakes being found in a 

small restricted area in the savannahs of Venezuela, little is known about the clinical effects of 

envenoming (Viala et al., 2015). Between 1980 – 2000, there were 20 deaths recorded due to snake 

bite in the Monagas state (De Sousa et al., 2005). It is unknown how many are due to C. vegrandis 

bites; however, at the Manuel Nuñez Tovar Hospital in 2004 it was recorded that 68% of snake bite 

incidents were due to C. vegrandis (Caraballo et al., 2004). 

C. vegrandis venom causes severe haemorrhage and local tissue damage, neurotoxicity and

respiratory difficulties in envenomed animals (Rodriguez‐Acosta et al., 1998, Scannone et al., 1978). 

The venom contains the neurotoxin crotoxin that acts pre-synaptically on muscular junctions blocking 

the signal transduction (Degn et al., 1991, Kaiser and Aird, 1987, Slotta and Primosigh, 1951, Viala 

et al., 2015). It also contains snake venom metalloproteases, such as Uracoine-1, that induce 

haemorrhage (Aguilar et al., 2001). Myotoxicity has also been reported, indicating the presence of 

crotamine-like toxins (Bober et al., 1988, Pulido-Mendez et al., 1999). 
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1.7.5 Sri Lankan Russell’s viper (Daboia russelii) and Javanese Russell’s viper (Daboia 

siamensis) 

(a) 

(b) 

Figure 1.8: (a) D. russelii (Photograph by Mark O’Shea) and (b) geographical distribution. Red 

shading refers to areas of highest rate of mortality and morbidity while orange shading refers 

to areas where the snake is found but clinical data is lacking. Source: WHO 2010 

Database (https://apps.who.int/bloodproducts/snakeantivenoms/database - viewed on 

03/06/2021).

https://apps.who.int/bloodproducts/snakeantivenoms/database
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(a) 

(b) 

Figure 1.9: (a) D. siamensis (Photograph by Mark O’Shea) and (b) geographical distribution. 

Red shading refers to areas of highest rate of mortality and morbidity while orange shading 

refers to areas where the snake is found but clinical data is lacking. Source: WHO 2010 

Database (https://apps.who.int/bloodproducts/snakeantivenoms/database - viewed on 

03/06/2021). 

Historically, viper species were divided into five subspecies based on minor differences in appearance 

of colour and markings. These five subspecies are distributed in ten south-Asian countries including 

India (Vipera russelii russelli), Sri Lanka (Vipera russelii pulchella), Indonesia (Vipera russelii 

limitis), Taiwan (Vipera russelii formosensis), Thailand, Burma, Bangladesh and Pakistan (Vipera 

https://apps.who.int/bloodproducts/snakeantivenoms/database
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russelii siamensis) (Warrell, 1989). However, in 2009, a new taxonomy was proposed where the five 

subspecies were classified into two species. Daboia russelii now refers to the west of Bengal 

including Sri Lanka and India (Figure 1.8b), whereas Daboia siamenses refers to the east of Bengal 

including Burma, Indonesia and Thailand (Figure 1.9b) (Warrell, 2009). 

 
Even though these two species look very similar (Figures 1.8a and 1.9a), they vary greatly in 

geographical distribution and venom composition. Russell’s vipers are very versatile in habitation 

and live in all areas such as mountains, grassy terrain, rocky hills, salt scrubs, rodent burrows, wood 

land edges and paddy fields (Mallow et al., 2003). They are quite sluggish and reclusive by nature 

and are recognisable by the patterns on their skin (Warrell, 1989). When these snakes feel threatened, 

they coil up into a striking position and hiss loudly to warn off predators. Anatomically, Russell’s 

vipers are very muscular which help with the rapid movement via lunging motions. Russell’s vipers 

usually eat small vertebrates such as mice and rats, frogs, birds and lizards (Mallow et al., 2003). 

Adults can grow as long as 2 m long with an average fang length of 16 mm (Warrell, 1989). Dry 

weight from yielding venom can range between 21-268 mg in adults (Warrell, 1989). In one bite, 

Russell’s vipers can inject about 45% of its total venom present in their glands (63±7 mg) (Pe and 

Cho, 1986). 

 
Both D. russelii and D. siamensis are medically important species of snakes found in South East Asia 

and are responsible for the highest rate of mortality and morbidity in the region due to snake 

envenoming (Kasturiratne et al., 2008, WHO, 2016). Both species cause local painful swelling, 

venom-induced consumption coagulopathy, hypopituitarism and acute kidney injury. While D. 

russelii venom causes neuromuscular dysfunction and neurotoxicity (Silva et al., 2017). Toxins 

present in Russell’s viper venom include PLA2s (Venkatesh and Gowda, 2013), myotoxins (D. 

russelii only) (Silva et al., 2016a), neurotoxins (D. russelii only) (Silva et al., 2016b), snake venom 

serine protease, snake venom melloproteinase, three finger toxins (Gomes et al., 2007), C-type lectins, 

low molecular cytotoxins (Junqueira-de-Azevedo et al., 2006) and low molecular mass peptides 

(Mukherjee and Mackessy, 2013, Venkatesh and Gowda, 2013). 
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1.7.6 Brown snake (Pseudonaja textilis) 

(a) 

(b) 

Figure 1.10: (a) P. textilis (Photograph by Stephen Maloney, Australian Museum) and (b) 

geographical distribution. Red shading refers to areas of highest rate of mortality and 

morbidity while orange shading refers to areas where the snake is found but clinical data is 

lacking. Source: WHO 2010 Database 

(https://apps.who.int/bloodproducts/snakeantivenoms/database - viewed on 03/06/2021). 

Pseudonaja textilis, or more commonly known as the Common or Eastern brown snake, causes the 

highest rate of death due to snake bite in Australia (Chaisakul et al., 2013, Sutherland, 1981). It is a 

member of the elapid family and is found mainly in Eastern Australia (Figure 1.10b). This includes 

https://apps.who.int/bloodproducts/snakeantivenoms/database


40 | P a g e  

Queensland, New South Wales, Victoria and south-eastern South Australia (Flight et al., 2006, Skejić 

and Hodgson, 2013). P. textilis occupies a range of habitats such as dry eucalyptus forests, woodlands, 

inner grass lands, coastal areas, and are also commonly found in open habitats, farmlands and on the 

outskirts of urban areas (Watharow, 2011). P. textilis are ground dwelling snakes that move around 

during the day and can be found taking shelter under logs, burrows and large rocks (Whitaker and 

Shine, 2003). When disturbed, they are likely to become aggressive and attack (Whitaker et al., 2000). 

The diet consists mainly of rodents such as mice and rats but P. textilis also feed on small vertebrates, 

frogs and other small reptiles (Shine, 1989). 

An adult can grow to 2 m in length and is usually slender and of average build (Figure 1.10a) 

(Sutherland, 1983). The upper part of the body varies from pale to dark brown (Skinner, 2009). 

Compared to other Australian venomous snakes, the fangs of P. textilis are quite small and average 

2.8 mm in length (Fairley, 1929, Skejić and Hodgson, 2013). P. textilis are fast moving snakes and 

can outpace a human adult running at full speed (Fleay, 1943). 

Envenoming by P. textilis leads to headache, sweating, nausea and vomiting, acute kidney injury, 

venom-induced consumption coagulopathy, haemorrhage, and sudden cardiovascular collapse. Since 

2000, there have been 23 deaths recorded following P. textilis envenoming (Allen et al., 2012, Welton 

et al., 2017). Many human bites are on the thigh area, as P. textilis rises up vertically off the ground 

before striking. This enables the snake to strike more accurately and deliver venom into its victim 

(Whitaker et al., 2000). P. textilis venom is considered the second most venomous of all terrestrial 

snakes based on murine LD50 values (Skejić and Hodgson, 2013), and is made up of a cocktail of 

highly toxic components – some of which have been isolated and characterised. The venom is highly 

potent as average venom yield is 5 mg, which is much less than other venomous snakes (Mirtschin et 

al., 2006). 

Pseutarin C is a prothrombin activator isolated from P. textilis venom that consumes clotting factors 

such as fibrinogen, factor V and factor VIII, leading to haemorrhage and intracranial haemorrhage 

(Chaisakul et al., 2015, Masci et al., 1998) and may play a role in sudden collapse (Chaisakul et al., 

2013). Neurotoxins have also been isolated from the venom. Interestingly, the neurotoxins from this 

venom do not cause paralysis or muscle weakness in humans (i.e. ‘brown snake paradox’), despite 

being highly toxic. This may be due to low concentration of the toxins in the venom (Barber et al., 

2012, Barber et al., 2013a). Other toxins isolated include textilinins which are Kunitz-type serine 

protease inhibitors (Masci et al., 2000), and snake venom PLA2 (Armugam et al., 2004). 
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1.7.7 Western desert taipan (Oxyuranus temporalis) 

(a) 

(b) 

Figure 1.11: (a) O. temporalis (Photograph by Bruce Budrey) and (b) geographical distribution. 

Orange shading refers to areas where the snake is found but clinical data is lacking. Source: 

WHO 2010 Database (https://apps.who.int/bloodproducts/snakeantivenoms/database - viewed 

on 03/06/2021). 

There are three species of taipans found in Australia and Papua New Guinea, the coastal taipan (O. 

scutellatus), the inland taipan (O. microlepidotus) and the western desert taipan (O. temporalis). O. 

temporalis was only discovered in 2007 in the Great Victoria Desert, 1500 km inland of Perth (Figure 

1.11) (Doughty et al., 2007). Only two specimens were captured and kept in the Adelaide Zoo, thus 

https://apps.who.int/bloodproducts/snakeantivenoms/database
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there is limited information about the appearance, distribution, diet and genetic variation of this 

species (Barber et al., 2014). Only a few studies have investigated this venom, and due to no recorded 

bites, there is no clinical data available. 

Similar to venoms from O. scutellatus and O. microlepidotus, O. temporalis venom contains a 

substantial amount of post-synaptic neurotoxins, in particular α-neurotoxins (three-finger toxin 

family) (Barber et al., 2014). In 2014, a short chain post-synaptic neurotoxin (named elapitoxin-Ot1a) 

was isolated and pharmacologically characterised (Barber et al., 2014). Interestingly, O. temporalis 

venom appears deficient in PLA2 neurotoxins, whereas PLA2 toxins, i.e. taipoxin and paradoxin, are 

abundant in O. scutellatus and O. microlepidotus venoms (Madhushani et al., 2020, Su and Chang, 

1984a, Weinstein et al., 2017). 

It has been suggested that there is a relationship between toxins present in snake venom and type of 

prey it feeds on (Davies and Arbuckle, 2019, Lyons et al., 2020). However, despite a mammal-based 

diet, unlike other related taipan species that feed on mammals and contain high amounts of 

prothrombinase in their venom, O. temporalis venom also lacks both prothrombinases and 

procoagulant toxins (“unpublished data” (Skejic et al., 2018)). This suggests that O. temporalis relies 

mainly on post-synaptic neurotoxins to immobilise its prey (“unpublished data” (Skejic et al., 2018)). 

It also suggests that venom composition is not only dependent on prey type but also other factors 

(Daltry et al., 1996, Davies and Arbuckle, 2019, Healy et al., 2019, Zancolli et al., 2019). 
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1.8 Common vampire bat (Desmodus rotundus) 

During my candidature, I had the opportunity to study venom from another animal – i.e. the 

common vampire bat. Below is an overview of the species. 

(a) 

(b) 

Figure 1.12: (a) D. rotundus (photograph by Michael Mulheisen) and (b) geographical 

distribution (Lee et al., 2012) (b). Source: Animal diversity web 

(https://animaldiversity.org/accounts/Desmodus_rotundus/ - viewed on 04/06/2021). 

There are three species of vampire bats; hairly-legged vampire bat (Diphylla ecaudata), which feeds 

only on avian blood (Tuttle, 2018), the white-winged vampire bat (Diaemus youngi), which preys on 

https://animaldiversity.org/accounts/Desmodus_rotundus/
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mammalian and avian blood (Koopman et al., 1988), and the common vampire bat (Desmodus 

rotundus) (Figure 1.12a), which feeds primarily on mammals such as livestock (Delpietro et al., 

1992). Cases of humans being bitten are very rare, and death due to bat bite occurs due to rabies 

transmitted from the saliva and not the venom per se (Johnson et al., 2014, Schneider et al., 2009). 

These bats are found primarily in caves, tree hollows and abandoned mines in Central and South 

America (Figure 1.12b) (Bergner et al., 2020, Casewell et al., 2013, Lee et al., 2012). In contrast to 

snakes that use venom to kill their prey, the purpose of bat venom is to enable continuous feeding of 

blood from live animals. All three species have highly specialised saliva that contains venom which 

aids this hematophagous lifestyle (Low et al., 2013, Ray et al., 2018). While feeding, they lick the 

wound of live animals, releasing venom from the tongue which disrupts blood coagulation and allows 

a continuous flow of blood (Basanova et al., 2002, Greenhall, 1988, Hawkey, 2018). 

D. rotundus venom contains toxins with strong anti-coagulant components which interfere with fibrin

formation and proteolytic properties that break up blood clots (Hawkey, 2018, Rode-Margono and 

Nekaris, 2015). The venom also disrupts the coagulation cascade by inhibiting factor IXa and Xa, 

activation of plasminogen and inhibition of platelets (Low et al., 2013). A toxin, called draculin has 

been isolated and characterised. Draculin is a glycoprotein that inhibits IXa and Xa, preventing the 

conversion of prothrombin to thrombin which in turn inhibits the conversion of fibrinogen to fibrin 

(Apitz-Castro et al., 1995, Basanova et al., 2002, Fernandez et al., 1998, Fernandez et al., 1999). 

Plasminogen activators such as Desmokinase (Cartwright, 1974, Hawkey, 2018) and DSPA 

(Desmodus rotundus salivary plasminogen activator) (Schleuning et al., 1992, Tellgren-Roth et al., 

2009) have also been isolated and studied in great detail from vampire bat venom. These activators 

dissolve fibrin clots, allowing a continuous blood flow from the wound site (Hawkey, 1966, Hawkey, 

2018). 

Recently, a new peptide was identified and synthetised from the common vampire bat that is similar 

in size and amino acid sequence to human calcitonin gene-related peptide (CGRP) (Low et al., 2013). 

In this thesis, the effect of this new peptide (named vCGRP) on blood vessels was investigated and 

characterized. 
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1.9 AIMS 

The present study is aimed at exploring the cardiovascular effects of animal venoms – in particular 

eight different snakes and vampire bat. The toxins and mechanisms involved in cardiovascular 

dysfunction following envenoming are poorly understood, despite an array of clinical manifestations 

present. In this study, the pharmacological mechanisms and pathways involved were investigated. 

This involved both in vivo and in vitro experimentations. 

Specific Aims 

• Identifying medically relevant snake species that cause cardiovascular collapse/hypotension

and investigating the mechanisms involved

• Investigating and characterizing the hypotensive effects of D. russelii venom

• Characterizing the vasodilatory effects of D. rotundus vCGRP
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Addendum to page 19 

1.2.4 Atractaspididae 

The Atractaspididae genus consists of fifteen to eighteen species  (Golay et al., 1993, Spawls and Branch, 

1995), mainly found is Sub-Saharan Africa as well as Israel, Palestine and Arabian Peninsula (Spawls and 

Branch, 1995). They are more generally known as burrowing asp, burrowing vipers, stiletto snakes and 

mole vipers (Tilbury and Verster, 2016).  They are small, black and thin in appearance and quite secretive 

in nature, though bites to humans have been recorded (Tilbury and Verster, 2016). Unlike other venomous 

snakes that envenom with two fangs at a time, burrowing asp are known to envenom their prey with a 

backward stab using a single fang (Corkill et al., 1959, Golani and Kochva, 1988, Visser, 1975). This 

unusual behavior is correlated with unusual cephalic anatomical features and despite having a diverse and 

unique morphology, there is little research on this species (Deufel and Cundall, 2003, Shine et al., 2006).  

The venom of burrowing asp contains both low molecular weight toxins and high molecular weight toxins 

such as hemorrhagins that cause severe hemorrhaging in envenomed patients (Ovadia, 1987). 

Envenomation also leads to local pain, local blistering and necrosis, muscle pain, nausea, abdominal pain, 

vomiting and diarrhea. Respiratory distress, hypertension, and neurological symptoms have also been 

reported (Gunders et al., 1960, Tilbury and Verster, 2016). Death due to envenoming is usually rapid and 

due to neurotoxic effects (Weiser et al., 1984). Interestingly the venom of burrowing asp is very viscous 

and contain 50-100 different molecular compounds (Tilbury and Verster, 2016). This includes three-finger 

toxins, c-type lectins, serine proteases, PLA2s, metalloproteases, and other toxins (Terrat et al., 2013). The 

venom also contains a class of toxins called sarafotoxins that is unique to the genus and causes 

cardiovascular disruptions (Ducancel, 2002, Marshall and Johns, 1999).  
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CHAPTER 2- An in vivo examination of the differences between rapid 
cardiovascular collapse and prolonged hypotension induced by snake 

venom 

The focus of this Chapter was to investigate the cardiovascular effects of the eight snakes listed in 

section 1.5 of the Introduction. Following on from previous studies in our laboratory, in vivo studies 

were conducted using anaesthetised rats. Blood pressure was monitored to determine whether the 

venoms had an effect on blood pressure and, if so, to identify common features/characteristics of 

these responses. It was observed that there were two distinct cardiovascular effects produced by 

subgroups of venoms – i.e. “rapid cardiovascular collapse” and “prolonged hypotension”. In vitro 

experiments using isolated mesenteric arteries mounted in a myograph and biochemical assays were 

also conducted to investigate whether common mechanisms of action / venom components were 

present between different species of snakes. 

The study was published as a research article in the journal, Scientific Reports 

KAKUMANU, R., KEMP-HARPER, B. K., SILVA, A., KURUPPU, S., ISBISTER, G. K. & 

HODGSON, W. C. 2019. An in vivo examination of the differences between rapid 

cardiovascular collapse and prolonged hypotension induced by snake venom. Scientific 

reports, 9, 1-9. 
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open An in vivo examination of the 
differences between rapid 
cardiovascular collapse and 
prolonged hypotension induced by 
snake venom 
Rahini Kakumanu1, Barbara K. Kemp-Harper1, Anjana Silva 1,2, Sanjaya Kuruppu3, 
Geoffrey K. isbister 1,4 & Wayne C. Hodgson1*

We investigated the cardiovascular effects of venoms from seven medically important species of snakes: 
Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s viper (Daboia russelii), 
Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus 
vegrandis), Carpet viper (Echis ocellatus) and Puff adder (Bitis arietans), and identified two distinct 
patterns of effects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, 
i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in 
anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) 
and D. siamensis (100 µg/kg, i.v.) venoms caused ‘prolonged hypotension’, characterised by a persistent 
decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused 
prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by 
E. ocellatus venom (50 µg/kg, i.v.), but had no significant effect on subsequent addition of D. russelii
venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse 
by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B. arietans (all at 200 µg/kg,
i.v.) induced mild transient hypotension. Artificial respiration prevented D. russelii venom induced 
prolonged hypotension but not rapid cardiovascular collapse from E. ocellatus venom. D. russelii venom

(0.001–1 μg/ml) caused concentration-dependent relaxation (EC50 = 82.2 ± 15.3 ng/ml, Rmax = 91 ± 1%)
in pre-contracted mesenteric arteries. In contrast, E. ocellatus venom (1 µg/ml) only produced a

maximum relaxant effect of 27 ± 14%, suggesting that rapid cardiovascular collapse is unlikely to be
due to peripheral vasodilation. The prevention of rapid cardiovascular collapse, by ‘priming’ doses of
venom, supports a role for depletable endogenous mediators in this phenomenon. 

Snake venoms act as a defence against predators, aid in the capture and paralysis of prey, and assist in the digestion 
of prey1. They contain a multitude of toxins with a wide range of activities that target vital physiological processes. 
Many of the toxins responsible for the clinical manifestations of envenoming in humans have been extensively 
studied and pharmacologically/biochemically characterised. These venom components include neurotoxins2–4, 
myotoxins5–7, and components with pro-coagulant, anticoagulant, haemolytic and local tissue necrotic activ- 
ity8–10. However, the nature and activity of the toxins affecting the cardiovascular system are less well understood. 

There are a number of cardiovascular effects associated with snake envenoming, including hypotension, 
myocardial infarction, cardiac arrest, hypertension, brady- or tachy-cardia and atrial fibrillation10–13. Identifying 
the mechanism(s) responsible for venom-induced cardiovascular collapse has garnered more interest in recent 
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University, Clayton, Victoria, 3168, Australia. 2Faculty of Medicine and Allied Sciences, Rajarata University of Sri 
Lanka, Saliyapura, 50008, Sri Lanka. 3Department of Biochemistry & Molecular Biology, Faculty of Medicine, Nursing 
and Health Sciences, Monash University, Clayton, Victoria, 3168, Australia. 4Clinical Toxicology Research Group, 
University of Newcastle, Callaghan, NSW, 2308, Australia. *email: wayne.hodgson@monash.edu 
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years. We have previously defined ‘cardiovascular collapse’ as a sudden drop in recordable blood pressure14 fol-
lowing the administration of venom, to a laboratory animal or after human envenoming. The most common 
snakes responsible for this phenomenon are the brown snakes (Pseudonaja spp.)15 and, less commonly, taipans 
(Oxyuranus spp.)14 and tiger snakes (Notechis spp.)16. In some cases, patients spontaneously recover after collapse 
or respond well to basic and advanced life support17,18. In some cases of envenoming, particularly by brown 
snakes (Pseudonaja spp.), the collapse can be fatal16,17. Indeed, in Australia, cardiovascular collapse is the leading 
cause of death due to snake envenoming19.

A number of hypotheses have been proposed to explain the cause of the cardiovascular collapse associated 
with snake envenoming. Previous studies have postulated that cardiovascular collapse may be due to prothrombin 
activators or pro-coagulant toxins present in snake venoms20,21. We have recently demonstrated that in vivo cardi-
ovascular collapse can be caused by death adder (Acanthophis rugosus) venom, despite a lack of pro-coagulants in 
this venom. This suggests that pro-coagulant toxins are not required to induce collapse15. Furthermore, adminis-
tering small ‘priming’ doses of A. rugosus venom, prior to P. textilis venom, prevented subsequent cardiovascular 
collapse. This indicated that the release of depletable endogenous mediators most likely contribute to cardiovas-
cular collapse. We also showed that the protective effect of priming doses of venom is transient (i.e. lasting up to 
approximately 1 hour), indicating replenishment of mediators15. This suggests that clotting factors are not directly 
involved in cardiovascular collapse, given the longer time period required for their resynthesis. Commercial 
polyvalent antivenom demonstrated a protective effect on cardiovascular collapse in vivo, supporting a role for 
antigenic venom components in cardiovascular collapse15.

To further investigate this phenomenon, in the present study we examined the cardiovascular activity of seven 
medically important snake venoms: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s 
viper (Daboia russelii), Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake 
(Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puff adder (Bitis arietans). We identified the species which 
caused cardiovascular collapse in vivo to further investigate the possible mechanisms for this phenomenon.

Results
In vivo experiments. For these experiments 200 µg/kg (i.v.) was chosen as a standard dose for all venoms, 
unless a lower dose caused a similar response (i.e. D. siamensis 100 µg/kg, i.v.; E. ocellatus 50 µg/kg, i.v.; P. textilis 
5 µg/kg, i.v.).

The mean blood pressure and heart rate of rats prior to administration of venoms were 97 ± 16 mmHg and 
255 ± 63 b.p.m., respectively.

B. gabonica (200 µg/kg, i.v.), B. arietans (200 µg/kg, i.v.), C. vegrandis (200 µg/kg, i.v.) and D. siamensis (100 µg/
kg, i.v.) venoms caused relatively minor hypotensive responses (i.e. between 11 to 35% decrease) in anaesthetised 
rats (Table 1). D. russelii (100 µg/kg, i.v) caused prolonged hypotension (45 ± 8% decrease) (Table 1). P. textilis 
(5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid cardiovascular collapse within 2 min of venom 
administration (Fig. 1a; Table 1).

To investigate the effects of artificial respiratory support, a higher dose of D. russelii venom (1 mg/kg, i.v.) was 
used, which caused a 100% decrease in blood pressure. This hypotensive effect (i.e. 100%) of D. russelii venom 
(1 mg/kg, i.v.) was significantly attenuated by artificial respiratory support, reducing the hypotensive effect to 
42% (Fig. 2a). In contrast, the rapid cardiovascular collapse induced by E. ocellatus venom (50 µg/kg, i.v.) was not 
attenuated by artificial respiratory support (Figs. 1b and 2b).

To explore the effect of priming doses on both types of hypotensive responses, low dose P. textilis venom (2 µg/
kg, i.v.) was administered 10 min prior to venom administration. A priming dose of P. textilis venom (i.e. 2 µg/kg, 
i.v.) had no significant effect on the subsequent addition of D. russelii venom (1 mg/kg, i.v.; Fig. 2a). In contrast,
a priming dose of P. textilis venom (2 µg/kg, i.v.) prevented rapid cardiovascular collapse induced by E. ocellatus
venom (50 µg/kg, i.v.; Fig. 2b), as did two sequential priming doses, but not one, of E. ocellatus venom (1 µg/kg,
i.v.; Figs. 1c and 2b).

To further investigate the above effects of the venoms, a representative venom that caused collapse (i.e. P. tex-
tilis) and a representative venom that caused hypotension (i.e. D. russelii) were injected intramuscularly. Venom
doses were increased to better mimic a bite scenario. P. textilis venom (20 mg/kg, i.m.; Table 2) caused collapse
within 10 min of administration to the left bicep femoris muscle. D. russelii venom (50 mg/kg or 100 mg/kg, i.m.; 
Table 2) caused hypotension, but not collapse, within 30 min of administration.

Species  
(scientific name)

Species  
(common name)

Dose  
(µg/kg, i.v.)

Maximum decrease 
in MAP* (%)

Classified as ‘rapid 
cardiovascular collapse’

PLA2 activity 
(nmol/min/ml)

Procoagulant activity 
(Log EC50) (ng/ml)

D. russelii Sri Lankan Russell’s 
viper 100 45 ± 8 No 1,334 ± 105 3.64 ± 0.12

D. siamensis Javanese Russell’s viper 100 35 ± 7 No 10,237 ± 1084 3.09 ± 0.05

B. arietans Puff adder 200 17 ± 2 No 378 ± 46 N/A

C. vegrandis Uracoan rattlesnake 200 11 ± 1 No 1,077 ± 38 4.75 ± 0.04

B. gabonica Gaboon viper 200 23 ± 3 No 3,498 ± 354 N/A

E. ocellatus Carpet viper 50 100 Yes 111 ± 8 3.26 ± 0.06

P. textilis Brown snake 5–10 100 Yes 473 ± 3 1.29 ± 0.05

Table 1. Summary of the effects and activity of snake venoms (n = 3–6). *Within 10 min of injection. MAP, 
mean arterial pressure; PLA2, phospholipase A2.
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PLA2 assay. All venoms had PLA2 activity. D. siamensis venom had the highest PLA2 activity, followed by  
B. gabonica, D. russelii and C. vegrandis venoms. P. textilis, B. arietans and E. ocellatus venoms had low PLA2
activity (Table 1).

Pro-coagulant assay. P. textilis venom had the most potent pro-coagulant activity (i.e. logEC50 = 1.29 ± 0.05 ng/
ml; Fig.  3; Table  1), followed by D. russelii, D. siamensis and E. ocellatus venoms. C. vegrandis venom 
(logEC50 = 4.75 ± 0.04 ng/ml) had less pro-coagulant activity, and B. arietans and B. gabonica venoms had no detecta-
ble pro-coagulant activity (Fig. 3; Table 1).

In vitro myography experiments. D. russelii venom (1–1000 ng/ml) was a potent vasorelaxant 
(EC50 = 82.2 ± 15.3 ng/ml, Rmax = 91 ± 1%; Fig. 4a) in small mesenteric arteries. D. siamensis venom was a less 
potent vasodilator than D. russelii venom with an EC50 value of ~700 ng/ml and a relaxation response at 1000 ng/
ml of 66 ± 15%. P. textilis venom caused < 50% relaxation (38.6 ± 9%) whilst, E. ocellatus, B. arientans, B. gabonica 
and C. vegrandis venoms induced < 30% relaxation (Fig. 4).

Discussion
We have demonstrated two distinct patterns of cardiovascular effects caused by the intravenous administration 
of different snake venoms. The first group of venoms cause a rapid decrease in blood pressure, often without 
recovery. We refer to this as ‘rapid cardiovascular collapse’ and it is the same phenomenon that we have previously 
described with Australian elapid venom15. A defining feature of this hypotensive response is that it is attenuated 
by sub-toxic ‘priming’ doses of venom of the same, or different snake species15. Snake venoms reported to induce 
this effect include P. textilis and E. ocellatus in this study, and previously, O. scutellatus (Coastal taipan)14. The 
second group of venoms, which include D. russelii and D. siamensis, caused a slower and prolonged decrease in 
blood pressure, with recovery occurring in most cases. In contrast to the first group, the drop in blood pressure is 
not prevented by prior administration of priming doses. We refer to this effect as ‘prolonged hypotension’.
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Figure 1. Traces showing rapid cardiovascular collapse induced by E. ocellatus venom (50 µg/kg, i.v.) in 
anaesthetised rats in the (a) absence and (b) presence of artificial respiration. (c) Trace showing the response to 
E. ocellatus venom (50 µg/kg, i.v.) after two sequential priming doses of E. ocellatus venom (1 µg/kg, i.v). Venom 
additions indicated by arrows.
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We have previously postulated that the attenuation of the hypotensive effect with prior administration of 
smaller sub-toxic doses of venom is due to the pre-release, and depletion, of mediators which induce collapse15. 
This phenomenon was observed in the current study in which smaller priming doses of E. ocellatus venom or P. 
textilis venom prevented cardiovascular collapse caused by a larger dose of E. ocellatus venom. This suggests that 
these venoms are inducing their cardiovascular effects via a common mechanism.

For a high dose of D. russelii venom (i.e. 1 mg/kg), a response similar to rapid cardiovascular collapse occurred. 
However, when the rat was placed on a ventilator prior to administration of venom, this so called ‘collapse’ was 
prevented. In contrast, when rats administered E. ocellatus venom were placed on the ventilator, rapid cardiovas-
cular collapse still occurred. The reasons for the protective effects of supportive respiration are unclear. We have 
previously shown that the neurotoxins present in D. russelii venom are relatively weak22. However, given that a 
rat has approximately 64 ml of circulating blood per kg body weight, an intravenous dose of 1 mg/kg of venom 
leads to a blood concentration of approximately 16 µg/ml. This very high venom concentration may be sufficient 
to cause paralysis of the diaphragm given that a 30 ng/ml concentration of the same venom caused complete 
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Figure 2. (a) The effects of D. russelii (1 mg/kg, i.v.) venom on the mean arterial blood pressure (MAP) of 
anesthetised rats in the presence (n = 5) or absence (n = 4) of artificial respiration, and in the presence of prior 
‘priming’ with P. textilis venom (2 µg/kg, i.v., n = 6). (b) The effects of E. ocellatus (50 µg/kg, i.v.) venom on MAP 
of anesthetised rats in the presence (n = 5) or absence (n = 4) of artificial respiration, and in the presence of 
prior ‘priming’ with either P. textilis venom (2 µg/kg, i.v., n = 5), or one or two sequential doses of E. ocellatus 
venom (1 µg/kg, i.v., n = 3–4) venom. *P < 0.05 significantly different from response to same venom alone.

Species
(scientific name)

Species 
(common name)

Dose (mg/
kg, i.m.)

Maximum decrease 
in MAP (%)

Classified as ‘rapid 
cardiovascular collapse’

D. russelii Sri Lankan 
Russell’s viper

50
100

27 ± 13
52 ± 9 No

P. textilis Brown snake 20 100 Yes

Table 2. Summary of the effects of venom (n = 4) on mean arterial blood pressure following i.m. 
administration.
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neuromuscular blockade in the chick biventer nerve-muscle preparation22. Therefore, it could be argued that arti-
ficial respiration is preventing or overcoming the paralytic effects of the neurotoxins on the rat diaphragm. The 
different effects of supportive respiration on the cardiovascular effects of the venoms also supports the fact that 
collapse due to E. ocellatus venom occurs via a different mechanism. These studies were conducted in vivo using 
ketamine/xylazine as anesthesia, which may have affected the blood pressure, although ketamine is more likely to 
cause a slight increase in blood pressure.
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Figure 3. The pro-coagulant effects of venoms on the clotting time of fresh frozen plasma (n = 5–6).
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Figure 4. Cumulative concentration-response curves to venom (1 ng/ml − 1 µg/ml, n = 4–6) in rat small 
mesenteric arteries. Values are expressed as % reversal of pre-contraction and given as mean ± SEM, where 
n = number of animals. *P < 0.05, concentration-response curve significantly different as compared to D. russelii.
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To ensure that these cardiovascular effects seen in the in vivo model occurs in an actual snake bite, the effects 
of P. textilis venom and D. russelii venom were also tested via intramuscular administration. At 20 mg/kg (i.m.), 
P. textilis venom caused collapse within 10 min of administration. This delay in response is likely to be due to the 
time it takes for the venom to be absorbed. In contrast, when D. russelii venom was administered via intramus-
cular injection prolonged hypotension occurred, similar to that observed when venom was administrated intra-
venously. Even at 100 mg/kg concentration, collapse did not occur, further highlighting that both collapse and
hypotension are not dose-dependent responses but represent two distinct cardiovascular effects.

There are many factors that could lead to venom-induced hypotension11, as distinct from cardiovascular col-
lapse. Some snake venoms have highly evolved toxins such as calciseptine, FS2 toxins, C10S2C2 and S4C8 which 
block L-type Ca2+ currents23,24. Increasing capillary permeability protein (ICPP), isolated from Blunt-nosed 
viper (V. lebtina) venom is similar in potency and structure to vascular endothelial growth factor (VEGF) and is 
responsible for increasing vascular permeability25. Natriuretic peptides found in Green Mamba (D. angusticeps) 
venom26 and bradykinin potentiating peptides found in Bothrops spp. are also potent vaso-relaxants10,27,28. In the 
current study, D. russelii venom caused concentration-dependent relaxation of rat small mesenteric arteries sug-
gesting peripheral vasodilation contributes to the prolonged hypotension observed in vivo. D. siamensis venom 
was also an efficacious dilator of rat small mesnteric arteries, though less potent than D. russelii venom. In con-
trast, the venoms which had a modest hypotensive effect in vivo (B. arientans, C. vegrandis and B. gabonica) were 
poor vasorelaxants of isolated mesenteric arteries. Although vasorelaxant responses can exhibit heterogeneity 
throughout the vasculature, the mesenteric vascular bed was chosen for this study given it makes a significant 
contribution to overall total peripheral resistance, receiving 25% of total cardiac output. As such, characterising 
vasorelaxation responses in these small mesenteric arteries (approx. 300microns in diameter), is of physiological 
relevance to blood pressure control. Gaboon viper (B. gabonica) venom has been shown to induce vasodila-
tion resulting in a drop in peripheral resistance, leading to reduction in stroke volume due to cardiotoxins29. In 
another study using isolated heart preparations, Rhinoceros viper (B. nasicornis) venom produced an increase in 
left ventricular pressure, pacemaker activity and heart rate, indicating that the venom contains toxins that disrupt 
[Ca2+] and ion conductance30.

PLA2 toxins are ubiquitous components of snake venoms and display an array of activities including neuro-
toxicity, myotoxicity, cardiotoxicity, anti-coagulation, haemolytic, hypotensive and local tissue necrotic activity31. 
Interestingly, P. textilis and E. ocellatus venom, which induced rapid cardiovascular collapse, had the lowest PLA2 
activity, whereas Daboia spp. had the highest amount of PLA2 activity. Therefore, there does not seem to be a link 
between PLA2 activity  and cardiovascular collapse, although these toxins may contribute, directly or indirectly, 
to prolonged hypotension via vasodilation.

Daboia spp. and Pseudonaja spp. contain pro-coagulants factors in their venom32. While both P. textilis and E. 
ocellatus venoms caused rapid cardiovascular collapse in vivo, P. textilis venom was most potent in causing coag-
ulation while E. ocellatus venom possessed comparatively less pro-coagulant activity. D. russelii and D. siamensis 
venom also caused coagulation. D. russelii and D. siamensis venoms are known to contain Factor X33,34 while 
both E. ocellatus35 and P. textilis venom contain prothrombin activators21,36,37. Therefore, pro-coagulant activity is 
unlikely to be directly related to the cardiovascular collapse induced by the venoms.

In conclusion, we have shown that the in vivo cardiovascular effects of venom include, at least, two distinct 
phenomena i.e. rapid cardiovascular collapse and prolonged hypotension and that both effects involve differ-
ent mechanisms. Rapid cardiovascular collapse has a sudden onset and appears to be mediated by depletable 
endogenous mediators. In contrast, prolonged hypotension has a slower onset and appears to be due mainly to 
vasodilation.

Methods
Materials. Drugs and materials used were ketamine (Ceva Animal Health, Australia), xylaxine (Troy 
Laboratories Pty, Ltd, Australia), heparin (Hospira, Germany), bovine serum albumin (Sigma, USA), and fresh 
frozen plasma (Australian Red Cross). D. siamensis, P. textilis, B. arietans, B. gabonica and C. vegrandis venoms 
were obtained from Venom Supplies (Australia). D. russelii venom was a gift from Professor A. Gnanadasan 
(University of Colombo). E. ocellatus venom was a gift  from the Liverpool School of Tropical Medicine. For pro-
coagulant assays, venom (1 mg/mL) was prepared in 0.5% bovine serum albumin/tris-buffered saline and stored 
at −20 °C. Dilutions were prepared in 0.5% BSA/TBS immediately before use.

Animal experiments were approved by the Monash University Ethics Committee (MARP/2014/097 and 
MARP/2017/147). All experiments were performed in accordance with relevant guidelines and regulations.

Anaesthetised rats. Male Sprague-Dawley rats (280–350 g) were anaesthetised with a mixture of ketamine 
(100 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.). Ketamine/xylazine cocktail was used as it provides sedation and 
muscle relaxation as well as deep analgesia and anesthesia without compromising blood pressure. A midline inci-
sion was made and a cannula inserted into the trachea for mechanical ventilation (~1 ml/100 g of body weight at 
55 strokes/min) if required. Cannulae were inserted into the left jugular vein for administration of venom and the 
right carotid artery to record arterial blood pressure. The arterial cannula was connected to a pressure transducer. 
Blood pressure was then allowed to stabilise for approximately 10–15 min. Body temperature was maintained at 
37 °C using an overhead lamp and heated dissection table. Venom was administered via the jugular vein followed 
by flushing with saline or via a bolus administration into the left bicep femoralis muscle. Responses to venom 
were measured as percentage change in mean arterial pressure (MAP).

Myograph experiments. Male Sprague-Dawley rats (200–250 g) were euthanized by CO2 inhalation (95% 
CO2, 5% O2) followed by cervical dislocation. Small mesenteric arteries (third-order branch of the superior 
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mesenteric artery) were isolated, cut into 2 mm lengths, and mounted in isometric myograph baths. Vessels were 
maintained in physiological salt solution, composed of (in mM): 119 NaCl, 4.7 KCl, 1.17 MgSO4, 25 NaHCO3, 
1.8 KH2PO4, 2.5 CaCl2, 11 glucose, and 0.026 EDTA, at 37 °C and supplied with carbogen (95% O2; 5% CO2). 
The mesenteric arteries were allowed to equilibrate for 30 min under zero force and then a 5 mN resting ten-
sion was applied. Changes in isometric tension were recorded using Myography Interface Model 610 M version 
2.2 (ADInstruments, Pty Ltd, USA) and a chart recorder (Yokogawa, Japan). Following a 15 min equilibration 
period at 5 mN, the mesenteric arteries were contracted maximally (Fmax) using a K+ depolarizing solution 
[K+-containing physiological salt solution (KPSS); composed of (in mM) 123 KCl, 1.17 MgSO4, 1.18 KH2PO4, 
2.5 CaCl2, 25 NaHCO3, and 11 glucose]. The integrity of the endothelium was confirmed by relaxation to acetyl-
choline (ACh, 10 µM) in tissues pre-contracted with the thromboxane A2 mimetic, U46619 (1 µM), then washed 
with physiological salt solution and the tension allowed to return to baseline. Relaxation of >80% to ACh was 
used to indicate vessels with an intact endothelium. There were no significant differences in response to ACh 
between the groups studied. If endothelial damage was evident (ACh relaxation <80%) then the vessel was not 
used for experimentation. Cumulative concentration-response curves to venom (1 ng/ml-1µg/ml) were con-
structed in vessels pre-contracted with titrated concentrations of U46619 (~50% Fmax). Sodium nitroprusside 
(SNP, 10 µM) was added at the end of each concentration-response curve to ensure maximum relaxation. Only 
one concentration-response curve to venom was obtained in each vessel segment38,39.

Pro-coagulation assay. Aliquots (10 ml) of fresh frozen plasma were thawed at 37 °C, then spun at 
2500 rpm for 10 min. Venom solutions (100 µL) were placed in the wells of a 96 well microtitre plate at room tem-
perature or at 37 °C in a BioTek ELx808 plate reader. Plasma (100 µL) and calcium (0.2 M/ml) were then added 
simultaneously to each well using a multichannel pipette. After a 5 s shake step for mixing, the optical density at 
340 nm was monitored every 30 s over 20 min40.

PLA2 assay. PLA2 activity of the venoms was determined using a secretory PLA2 colourmetric assay kit 
(Cayman Chemical; MI, USA) according to manufacturer’s instructions. This assay used 1, 2-dithio-analogue 
of diheptanoyl phosphatidylcholine, which serves as a substrate for PLA2 enzymes. Free thiols gener-
ated following the hydrolysis of the thioester bond at the sn-2 position by PLA2 are detected using DTNB (5, 
5′-dithio-bis-[2-nitrobenzoic acid]). Colour changes were monitored at 405 nm in a fusion α microplate reader 
(PerkinElmer; MA, USA), sampling every minute for a 5 min period. PLA2 activity was expressed as micromoles 
of phosphatidylcholine hydrolysed per minute per milligram of enzyme2.

Statistical analysis. For the anaesthetized rat experiments, pulse pressure was defined as the difference 
between systolic and diastolic blood pressures. Mean arterial pressure (MAP) was calculated as diastolic blood 
pressure plus one-third of pulse pressure. These data were tested using a D’Agostino-Pearson normality test and 
found to be normally distributed. Therefore, differences in MAP between treatment groups were analysed using 
a one-way ANOVA with Dunnett’s multiple comparison test. Sample sizes are based on the number of animals 
required to provide >85% power to detect an effect size of 35% with a confidence level (α) of 5% for the in vivo 
endpoint measure of blood pressure (standard deviation (SD) <15%). This ensured that experimental design was 
sufficiently powered.

For the myography experiments, blood vessel relaxation was expressed as a percentage reversal of the U46619 
pre-contraction. Individual relaxation curves to D. russelii venom were fitted to a sigmoidal logistic equation and 
EC50 values (concentration of agonist resulting in a 50% relaxation) calculated41. Where EC50 values could not be 
obtained, concentration-response curves to venoms were compared by means of a two-way repeated measures 
ANOVA (n = number of artery segments from separate animals). Data represent the mean ± SEM (error bars on 
graph). Statistical significance was defined as P < 0.05. All data analysis was performed using GraphPad Prism 
version 5.02 (GraphPad Software, San Diego, CA, USA).

For the coagulation assay, responses were plotted as 30 s/[clotting time(s)] against the logarithm of the 
venom concentration. This provided a normalised measure of the clotting effect and produced normalised 
concentration-clotting curves, which were fitted with a standard sigmoidal curve (Hill slope = 1) to calculate the 
effective concentration 50 (EC50). The EC50 is the concentration of venom that resulted in a pro-coagulant effect 
halfway between no clotting effect and maximal clotting effect42.
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Appendix: Activity of Western desert taipan (O. temporalis) venom 

Introduction 

In addition to the snake venoms included in the preceding manuscript, I was fortunate enough to gain 

access to a limited quantity of Western desert taipan (Oxyuranus temporalis) venom. This species 

was only discovered in 2007 in Western Australia, and only a handful of specimens have been 

captured (Barber et al., 2016, Brennan et al., 2012, Doughty et al., 2007, Shea, 2007). A detailed 

introduction to this species, and previous work on the venom, has been included in Chapter 1. There 

have been no reported bites in humans from O. temporalis, and thus no clinical data is available 

(Barber et al., 2016). I was interested in investigating whether the venom would cause any 

cardiovascular effects in the anaesthetised rat model. Thus, the same experiments that were conducted 

on the other snake venoms were also conducted using O. temporalis venom. However, given this 

species is not clinically important due to the apparent small number of specimens in the wild, the data 

was not included in the published manuscript. 

Methods 

Venom 

O. temporalis venom was obtained from Adelaide Zoo, South Australia.

Anaesthetised rats 

As per described in the preceding manuscript (Kakumanu et al., 2019). 

PLA2 assay 

As per described in the preceding manuscript (Kakumanu et al., 2019). 

Pro-coagulant activity 

As per described in the preceding manuscript (Kakumanu et al., 2019). 

Myograph experiments 

As per described in the preceding manuscript (Kakumanu et al, 2019). 

Statistical analysis 

As per described in the preceding manuscript (Kakumanu et al., 2019). 
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Results 

In vivo experiments 

O. temporalis venom (100 µg/kg, i.v.) caused a relatively small decrease in blood pressure (i.e. 24%)

in anaesthetised rats (Table 1) within 10 min of administration (n=4). A PowerLab trace (Figure 2.1) 

has been provided to illustrate the effects of the venom on blood pressure. 

5 10 15 20 25 

Time (min) 

Figure 2.1: Trace showing the effect of O. temporalis venom (100 µg/kg, i.v.) in an anaesthetised 

rat. Venom addition indicated by arrow. 

PLA2 activity 

O. temporalis venom displayed low PLA2 activity (273 ± 22 nmol/min/ml) compared to the other

snake venoms (Table 1 from (Kakumanu et al., 2019). 

Pro-coagulant activity 

O. temporalis venom displayed low pro-coagulant activity (LogEC50 = 4.65 ± 0.06; Figure 2.1)

compared to the other snake venoms (Table 1, Figure 3 from (Kakumanu et al., 2019). 
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Table 2.1: Summary of the activity of O. temporalis venom (n=3-5). 
Species 

(scientific 

name) 

Species 

(common name) 

Dose 

(µg/kg, i.v.) 

Maximum 

decrease in 

MAP* (%) 

Classified as 

‘rapid 

cardiovascular 

collapse’ 

O. temporalis Western desert 
taipan 

100 24 ± 3.4 No 

* Within 10 min of injection. MAP, mean arterial pressure; PLA2, phospholipase A2.
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Figure 2.2: The pro-coagulant effects of O. temporalis venom on the clotting time of fresh frozen 

plasma (n = 5). 
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In vitro myograph experiments 

O. temporalis induced less than 20% relaxation in small mesenteric arteries (Figure 2.3).
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Figure 2.3: Cumulative concentration-response curve to venom (1 ng/ml – 1 µg/ml, n = 5) in rat 

small mesenteric arteries. Values are expressed as % reversal of pre-contraction and given as 

mean ± SEM, where n = number of animals. 

Discussion 

There are three species of taipans found in Australia and Papua New Guinea, i.e. the coastal taipan 

(O. scutellatus), the inland taipan (O. microlepidotus) and, the recently discovered, Western desert 

taipan (O. temporalis). O. scutellatus and O. microlepidotus venoms are highly potent and, based on 

murine LD50 values, are regarded as some of the most toxic venoms in the world. Envenoming in 

humans results in neurotoxicity, venom-induced consumption coagulopathy, renal failure, thrombotic 

microangiopathy, haemolytic anaemia and mild rhabdomyolysis (Chaisakul et al., 2014, Johnston et 

al., 2017). Similar to O. scutellatus and O. microlepidotus venoms, O. temporalis venom contains a 

substantial quantity of post-synaptic neurotoxins, with α-elapitoxin-Ot1a appearing to be the primary 

short-chain neurotoxin (Barber et al., 2014). The cardiovascular activity of O. temporalis venom is 

unknown. 

In contrast to the venoms that caused cardiovascular collapse in the anesthetised rat model – i.e. E. 

ocellatus and P. textilis, O. temporalis venom caused a slower hypotensive response. Interestingly, 

R
 e

 l
a

 x
 a

 t
io

 n
 

(%
  

r 
e

v
e

r
 s

a
l 

p
 r

e
- 
c

o
 n

 t
r 

a
c

ti
o

 n
 )
 



82 | P a g e  

our laboratory has previously shown that both O. scutellatus (Chaisakul et al., 2012) and O. 

microlepidotus (Bell et al., 1998) venoms cause rapid cardiovascular collapse in anesthetised rats. 

“Priming” with sub-lethal doses of venom prevented collapse from O. scutellatus venom (Chaisakul 

et al., 2012). A PLA2 component, subsequently isolated from O. scutellatus venom, was shown to 

contribute to the cardiovascular activity observed in vivo (Chaisakul et al., 2014). This fraction (i.e. 

OSC3) was isolated using size-exclusion HPLC and further separated into two toxins (OSC3a and 

OSC3b). Individually, these toxins caused a moderate hypotensive response in vivo, but not collapse. 

OSC3 was also shown to relax mesenteric arteries. OSC3 makes up 14.2% of the whole venom and 

thus it was suggested that cardiovascular collapse could be due to this toxin acting in a synergistic 

manner with the other venom components. Interestingly, when OSC3a and OSC3b were administered 

a second time in the same animal, there was no hypotension, indicating that the effect of the toxins 

could be mediated by depletable endogenous mediators or susceptible to tachyphylaxis (Chaisakul et 

al., 2014). 

Previously, PLA2 components isolated from snake venom have been shown to release histamine from 

human colon, tonsils, mast cells and lung cells (Wei et al., 2006, Wei et al., 2010). Similarly, pre- 

administration of mepyramine (H1 receptor antagonist) and heparin (which can prevent histamine, 

bradykinin and prostaglandin release; (Carr, 1979, Inase et al., 1993) markedly attenuated the 

hypotensive effects of OSC3a and OSC3b indicating that these toxins may be releasing endogenous 

mediators such as histamine or bradykinin (Chaisakul et al., 2014). OSC3a and OSC3b were also 

shown to contain high PLA2 activity (Chaisakul et al., 2014). In contrast, in the current study, O. 

temporalis venom displayed very little PLA2 activity (Table 2.1), indicating that the weaker 

hypotension observed in vivo may be a result of lower levels of PLA2 components in the venom 

compared to O. scutellatus venom. 

Studies using O. microlepidotus have suggested that the venom contains a component that promotes 

synthesis of arachidonic acid metabolites, and thus causes collapse via the eicosanoid pathway, and 

a component that causes vasorelaxation (Bell et al., 1998). In contrast, in the current study, O. 

temporalis venom produced virtually no vasorelaxation (Figure 2.3) at the concentrations tested 

indicating that the venom may not contain toxins that affect vascular smooth muscle or induce release 

of vasodilator mediators from endothelial cells. Interesting, O. temporalis venom contained the lowest 

pro-coagulant activity in comparison to the other venoms (i.e. compared to the venoms described in 

the preceding manuscript; Kakumanu et al., 2019), which is similar to previous studies (Barber et al., 

2014, Zdenek et al., 2019). While O. temporalis venom has been shown to contain potent post- 

synaptic neurotoxins (Barber et al., 2016), no cardiovascular toxins have been previously 
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investigated. Since the venom did not cause cardiovascular collapse, further research was not 

conducted. Isolation and characterisation of the pro-coagulant toxin/s will be conducted in the future. 
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CHAPTER 3- D. russelii venom mediates vasodilatation of resistance 
like arteries via activation of Kv and KCa channels 

In Chapter 2, the in vivo and in vitro cardiovascular effects of various snake venoms were 

investigated. In particular, we observed that P. textilis and E. ocellatus venoms caused rapid 

cardiovascular collapse in an anesthetised rat model while, in contrast, D. russelii venom caused a 

prolonged hypotensive response. Further in vitro studies showed that D. russelii venom was a potent 

vasodilator of small blood vessels, indicating that the prolonged hypotension observed in vivo could 

be due to vasorelaxation of blood vessels. Therefore, this Chapter focuses on further exploration of 

the vasodilatory effects of D. russelii venom. Myograph experiments were conducted using rat small 

mesenteric arteries. By testing different pathways involved in smooth muscle vasorelaxation, it was 

determined that the venom acts via potassium channels, in particular Kv and KCa channels. 

The study was published as a research article in the journal, Toxins 

KAKUMANU, R., KURUPPU, S., RASH, L. D., ISBISTER, G. K., HODGSON, W. C. & KEMP- 

HARPER, B. K. 2019b. D. russelii venom mediates vasodilatation of resistance 

like arteries via activation of Kv and KCa channels. Toxins, 11, 197-207. 
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Abstract: Russell’s viper (Daboia russelii) venom causes a range of clinical effects in humans. 
Hypotension is an uncommon   but   severe   complication   of   Russell’s   viper   envenoming. 
The mechanism(s) responsible for this effect are unclear. In this study, we examined the 
cardiovascular effects of Sri Lankan D. russelii venom in anaesthetised rats and in isolated 
mesenteric arteries. D. russelii venom (100 µg/kg, i.v.) caused a 45 ± 8% decrease in blood 
pressure within 10 min of administration in anaesthetised (100 µg/kg ketamine/xylazine 10:1 
ratio, i.p.)    rats.    Venom (1 ng/mL–1 µg/mL) caused concentration-dependent relaxation 
(EC50 = 145.4 ± 63.6 ng/mL, Rmax = 92 ± 2%) in U46619 pre-contracted rat small mesenteric arteries 
mounted in a myograph. Vasorelaxant potency of venom was unchanged in the presence of the nitric 
oxide synthase inhibitor, L-NAME (100 µM), or removal of the endothelium. In the presence of high K+ 

(30 mM), the vasorelaxant response to venom was abolished. Similarly, blocking voltage-dependent 
(Kv: 4-aminopryidine; 1000 µM) and Ca2+-activated (KCa: tetraethylammonium (TEA; 1000 µM); 
SKCa: apamin (0.1 µM); IKCa: TRAM-34 (1 µM); BKCa; iberiotoxin (0.1 µM)) K+ channels 
markedly attenuated venom-induced relaxation. Responses were unchanged in the presence 
of the ATP-sensitive K+ channel blocker glibenclamide (10 µM), or H1 receptor antagonist, 
mepyramine (0.1 µM). Venom-induced vasorelaxtion was also markedly decreased in the presence 
of the transient receptor potential cation channel subfamily V member 4 (TRPV4) antagonist, RN-
1734 (10 µM). In conclusion, D. russelii-venom-induced hypotension in rodents may be due to 
activation of Kv and KCa channels, leading to vasorelaxation predominantly via an endothelium-
independent mechanism. Further investigation is required to identify the toxin(s) responsible for 
this effect. 

Keywords: D. russelii venom; hypotension; potassium channels; vasodilatation 

1. Introduction

Snake bite is a globally important health issue [1,2]. Snake venom has three purposes: a defensive 
mechanism against predators, an aid to capture prey, and/or a tool to deter/challenge competitors [3]. 
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Venom is a complex cocktail of toxins and enzymes that have a wide range of biological activities 
targeting major physiological pathways and organs [4]. Ninety to ninety-five percent of snake venom 
consists of proteins and peptides, many of which are toxic to humans [5]. These components often 
possess enzymatic activity and ligand binding abilities that, in combination and/or separately, result in 
the clinical envenoming symptoms in humans and other organisms [3,6]. While most components 
of snake venom, such as neurotoxins [7–9], myotoxins [10–12], pro-coagulants, and anticoagulant, 
haemolytic and local tissue necrotic factors [13–15] have been studied in detail, toxins targeting the 
cardiovascular system are less well understood. 

We have previously demonstrated two distinct cardiovascular activities due to snake envenoming: 
“cardiovascular collapse” (defined as an irreversible rapid drop in blood pressure) [16,17] versus 
“prolonged hypotension” (defined as a gradual decline in blood pressure that is reversible) [18]. 
A number of hypotheses have been postulated in regards to the mechanism(s) of “cardiovascular 
collapse.” This includes the potential involvement of prothrombin activators or pro-coagulant toxins 
present in snake venoms [19,20]. However, we have previously demonstrated, using an in vivo animal 
model, that death adder (A. rugosus) venom causes collapse even though it contains no pro-coagulant 
toxins [16]. The release of depletable endogenous mediators has also been postulated to induce 
“cardiovascular collapse” [16]. 

Hypotension is defined as a blood pressure that is below the expected normal range for an 
individual in a given environment. Factors that can affect blood pressure include age, weight, 
medications, dehydration, or underlying medical conditions. Physiologically, hypotension can 
occur due to reduced systemic vascular resistance, reduced cardiac output, hypovolemia, 
vascular obstruction, or blood volume redistribution [21]. Known snake toxins that can affect 
blood pressure include natriuretic peptides, bradykinin-potentiating peptides, incretin mimetics, 
and sarafotoxins [22]. 

In this study, we examined in more detail the hypotensive effects of snake venom and 
pharmacologically characterized the vasodilatory effects of Sri Lankan Russell’s viper (D. russelii) 
venom. D. russelii is regarded as one of the most medically important venomous snakes, 
as it causes the highest rate of mortality and morbidity due to snake bite in Asia [23,24]. 
It is mainly found in South Asia and is responsible for 73% of snake envenoming cases in 
the Anuradhapura District, Sri Lanka [25,26]. Clinical manifestations of envenoming include 
neuromuscular paralysis, coagulopathy, acute kidney failure, and hypotension [27]. Since the venom 
consists mainly of neurotoxins and myotoxins (~80%), these toxins have been well characterized 
pharmacologically [11,24,28], but the cardiovascular effects of this venom are less clear. 

2. Results and Discussion

D. russelii is one of the most medically important species of snakes found in South East Asia,
and is responsible for the highest rate of mortality and morbidity in this region due to snake 
envenoming [28–31]. The clinical syndromes include coagulopathy, mild neurotoxicity, acute kidney 
injury, bleeding, and hypotension [11,29,32]. While the neurotoxicity [24,28], acute kidney injury, 
and coagulopathy [33–35] have been studied in great depth, little is known about the cardiovascular 
effects. In the current study, we investigated the prolonged hypotensive effect of D. russelii venom 
both in vivo and in vitro in rodents. 

2.1. In Vivo Studies 

D. russelii venom (100 µg/kg, i.v., n = 4) caused prolonged (30 min) hypotension (45 ± 8% decrease
in mean arterial pressure) within 10 min of administration (Figure 1). In addition, the heart rate of rats 
decreased ~20% i.e. from 289 ± 85 b.p.m. (n = 4), just prior to venom administration, to 242 ± 71 b.p.m. 
(n = 4) at the time of maximum decrease in blood pressure. 
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Figure 1. Original recording showing the hypotensive response to D. russelii venom (100 g/kg, i.v.) 
in an anaesthetized rat. Venom (RVV; Russell’s viper venom) was added as indicated by the line on 
the trace. 

2.2. Vasorelaxant Responses to D. russelii Venom 

We next identified D. russelii venom as a potent dilator (EC50 = 145.4 ± 63.6 ng/mL, 
Rmax = 92 ± 2%; Figure 2) of isolated rat small mesenteric arteries.   Interestingly, vasorelaxation 
was unchanged following endothelial denudation (EC50 = 137.6 ± 51.6 ng/mL, Rmax = 87 ± 7%) or 
inhibition of nitric oxide synthase by L-NAME (100 µM, EC50 = 130.7 ± 72.5 ng/mL, Rmax = 91 ± 5%), 
indicating that the venom is likely directly targeting the vascular smooth muscle to cause 
relaxation. Thus, we next sought to characterize the mechanism(s) via which the venom mediates 
endothelium-independent vasorelaxation. 
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Figure 2. Cumulative concentration-response curves to D. russelii venom in rat small mesenteric 
arteries in the absence or presence of L-NAME (100 µM), 30 mM K+, mepyramine (0.1 µM), or following 
endothelial denudation (−E). Values are expressed as % reversal of U46619 pre-contraction and given 
as mean ± SEM, where n = number of animals. # p < 0.05, response at 1000 ng/mL versus control (+E) 
(one-way ANOVA, Bonferonni’s post-hoc test). 

In the presence of the histamine H1 receptor antagonist, mepyramine (0.1 µM), there was 
no change in vasorelaxation (EC50 = 159.4 ± 82.3, Rmax = 76 ± 10%) compared to venom alone, 
indicating that histamine does not appear to play a role in D. russelii-venom-induced vasorelaxation. 
In contrast, raising the extracellular concentration of K+ to 30 mM abolished the vasorelaxation effects 
of venom (Rmax = 5 3%, p < 0.05, Table 1), suggesting that the venom also modulates relaxation of 
small resistance-like arteries in part via activation of K+ channels. 
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Table 1. Effect of treatments on D. russelii- or GSK1016790A-induced vasorelaxation in rat small 
mesenteric arteries. 

Treatment D. russelii Venom

EC50 (ng/mL) Rmax (%) n 
Control (+E) 145.4 ± 63.6 92 ± 2 8 

Control (−E) 137.6 ± 51.6 87 ± 7 5 

L-NAME 130.7 ± 72.5 91 ± 5 5 

Mepyramine 159.4 ± 82.3 76 ± 10 4 

K+ ND 5 ± 3 # 5 

Control 276.5 ± 69.3 88 ± 2 15 

TEA ND 50 ± 14 # 7 

Apamin ND 11 ± 5 # 8 

Iberiotoxin ND 29 ± 6 # 8 

TRAM-34 ND 29 ± 15 6 

Control 328.7 ± 110.5 89 ± 2 9 

Glibenclamide 237.7 ± 62.1 84 ± 4 4 

4-Aminopyridine ND 7 ± 6 # 5 

Control 273.6 ± 57.6 86 ± 4 6 

RN-1734 ND 50 ± 7 * 6 

GSK1016790A 

Control (+E) 2.8 ± 0.7 µM 84 ± 5 6 

Control (−E) 1.3 ± 0.6 µM 77 ± 10 4 

RN-1734 3.5 ± 0.9 µM 79 ± 3 5 
Values as % reversal of the level of pre-contraction; +E = endothelium intact; E = endothelium denuded; 
ND = Not determined; # p < 0.05, 1-way ANOVA as compared to control * p < 0.05, student’s unpaired t-test. 

2.3. Contribution of Potassium Channels to D. russelii-Mediated Vasorelaxation 

It is well known that potassium channels play an integral role in maintaining the membrane 
potential and therefore, contractile tone in smooth muscle cells [36]. The distribution and nature 
of potassium channels vary depending upon the size of the vessel, as well as the type of vascular 
bed [37,38]. There are at least four different subtypes of potassium channels present in mesenteric 
arterial smooth muscle cells. These include inward rectifier (KIR), voltage-gated (KV), ATP sensitive 
(KATP), and Ca2+-activated (KCa) potassium channels [36,39]. When K+ channels are activated, it leads 
to vascular smooth muscle cell hyperpolarization and relaxation, thereby leading to a decrease in 
blood pressure and increased blood flow [36]. 

Whilst there are many different venoms that are known to contain potassium channel inhibiting 
peptides, the current study has identified an apparent ability of D. russelii venom to activate 
potassium channels. 

Vasorelaxation to D. russelii venom in rat small mesenteric arteries was unchanged in the 
presence of the ATP-sensitive K+ channel inhibitor, glibenclamide (10 µM; EC50 = 237.7 ± 62.1, 
Rmax = 84 ± 4%, Figure 3a). However, the voltage-gated K+ channel inhibitor 4-aminopyridine, 
(1000 µM) abolished venom-induced relaxation, reducing the response at 1000 ng/mL to 7 ± 6% 
(p < 0.01; Table 1). The non-selective KCa channel blocker TEA, (1000 µM, Rmax = 50 ± 14%), 
markedly attenuated venom-induced vasorelaxation. Similarly, blocking large (BKCa; iberiotoxin, 
0.1 µM, Rmax = 29 ± 6%), intermediate (IKCa; TRAM-34 1 µM, Rmax = 29 ± 15%), and small (SKCa; 
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apamin, 0.1 µM, Rmax = 11 ± 5%, Figure 3b, Table 1) Ca2+-activated K+ channels significantly inhibited 
venom-induced vasorelaxation. 
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Figure 3. Cumulative concentration–response curves to D. russelii venom in rat small mesenteric arteries 
in the absence or presence of (a) 4-aminopyridine (1000 µM) or glibenclamide (10 µM), (b) TEA (1000 
µM), apamin (0.1 µM), iberiotoxin (0.1 µM) or TRAM-34 (1 µM), or (c) RN-1734 (10 µM). (d) Cumulative 
concentration–response curves to GSK1016790A in the absence (control +E) or presence of RN-1734 
(10 µM) or in endothelium-denuded vessels (control −E). Values are expressed as % reversal of pre-
contraction and given as mean ± SEM, where n = number of animals. # p < 0.05, response at 1000 
ng/mL versus control (one-way ANOVA, Bonferonni’s post-hoc test), + p < 0.05, response at 1000 
ng/mL versus control (student’s unpaired t-test), * p < 0.05 vs control concentration-response curve 
(two-way repeated measures ANOVA). 

These findings suggest the involvement of both KCa and Kv channels in D. russelii-venom-induced 
vasorelaxation. Given both KCa and Kv channels are sensitive to Ca2+, our observations raise the 
interesting possibility that the venom may modulate intracellular Ca2+ levels, thereby indirectly 
modulating K+ channel function. Indeed, our observation that the vasorelaxant effect of the 
venom was attenuated in the presence of the TRPV4 antagonist, RN-1734 (10 µM), further supports 
this concept. Specifically, in the presence of RN-1734, the potency of the venom was decreased 
approximately five-fold, and the response to 1000 ng/mL significantly reduced from 86 ± 4 to 
50 ± 7% (Figure 3c). The TRPV4 agonist, GSK1016790A, also caused concentration-dependent 
relaxation (EC50 = 2.8 ± 0.7 µM, Rmax = 84 ± 5%) in rat small mesenteric arteries, a response which 
was unchanged following endothelial denudation (EC50 = 1.3 ± 0.6 µM, Rmax = 77 ± 10%). In the 
presence of RN-1734 (10 µM), there was an apparent two-fold decrease in the potency of GSK1016790A, 
yet this change failed to reach statistical significance (EC50 = 3.5 ± 0.9 µM, Figure 3d, Table 1). 
The greater inhibitory effect of RN-1734 against D. russelii-venom-induced vasorelaxation, as compared 
to GSK1016790A, may reflect a lower efficacy of the venom as a TRPV4 activator or an ability of RN-1734 
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3. Conclusions

D. russelii venom is known to cause an array of clinical manifestations in envenomed
patients. These include coagulopathy, mild neurotoxicity, acute kidney injury, and sometimes severe 
hypotension. In this study, we have demonstrated that the hypotensive response may be indicative 
of a vasodilatory action of the venom at the level of the resistance vasculature. We have shown that 
D. russelii venom is a potent dilator of resistance-like arteries, mediating its response via activation
of Kv and KCa channels, which may be modulated, in part, via signaling downstream of TRPV4.
Future studies, including electrophysiological experiments and separation of venom components
using HPLC, as well as investigating the potential contribution of other potassium channels such as
KIR channels and Na+/K+-ATPase, will aid in identifying the toxin(s) responsible for relaxation and
provide further insight into the underlying mechanisms.

4. Materials and Methods

4.1. In Vivo Blood Pressure Experiments 

Animal experiments were approved by the Monash University Ethics Committee 
(MARP/2014/097). Sprague-Dawley male rats (weight 280–350g) were anaesthetized with a mixture 
of ketamine (100 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.). A midline incision was made and 
cannulae inserted into the trachea for mechanical ventilation, if required. Cannulae were also inserted 
into the left jugular vein for administration of venom and the right carotid artery to record arterial 
blood pressure. The arterial cannula was connected to a pressure transducer (PowerLab/400 system, 
ADInstruments Inc, Sydney, NSW, Australia). Blood pressure was then allowed to stabilize for 
approximately 10–15 min. Body temperature was maintained at 37 ◦C using an overhead lamp and 
heated rat table. Venom (100 µg/kg) was administrated via the jugular vein followed by flushing with 
saline. Responses to the venom were measured as percentage change in mean arterial pressure (MAP). 

4.2. Isolation of Rat Small Mesenteric Arteries 

Male Sprague-Dawley rats (200–250g) were euthanized via CO2 inhalation (95% CO2, 5% O2), 
followed by exsanguination. Small mesenteric arteries (second-order branch of the superior mesenteric 
artery) were isolated, cut into 2 mm lengths, and mounted on 40 µm wires in small vessel 
myographs [44]. Vessels were maintained in physiological salt solution (composed of (in mM) 
119 NaCl, 4.7 KCl, 1.17 MgSO4, 25 NaHCO3, 1.8 KH2PO4, 2.5 CaCl2, 11 glucose and 0.026 EDTA) at 
37 ◦C, and were bubbled with carbogen (95% O2, 5% CO2). In a subset of arteries, the endothelium 
was gently denuded via insertion of a 40 µm wire inside the lumen and rubbing the vessel walls. 
The mesenteric arteries were allowed to equilibrate for 30 min under zero force and then a 5 mN resting 
tension was applied. Changes in isometric tension were recorded using Myograph Interface Model 
610 M v2.2 (DMT, Aarhus, Denmark) and PowerLab/835 (ADInstruments Inc). Data were recorded 
with the data acquisition program Chart (v5, ADInstruments). Following a 30 min equilibration 
period at 5 mN, the mesenteric arteries were contracted maximally (Fmax) using a K+ depolarizing 
solution (K+-containing physiological salt solution (KPSS); composed of (in mM) 123 KCl, 1.17 MgSO4, 
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to target TRPV4-independent signaling pathways potentially activated by the venom, identification of 
which are beyond the scope of the current study. 

Whilst TRPV4 receptors are abundantly expressed on the endothelium [40], they are also 
present on the vascular smooth muscle [40,41]. Here, activation of TRPV4 leads to Ca2+ influx, 
the generation of Ca2+ sparks from the sarcoplasmic reticulum, and the subsequent activation of BKCa 
and vasorelaxation [42,43]. As such, D. russelii venom may cause vasorelaxation of resistance arteries 
in part via activation of vascular smooth muscle TRPV4 and opening of KCa. Future patch-clamp 
studies are required to support this hypothesis, and the potential for the venom to directly activate 
KCa and Kv channels remains. 
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1.18 KH2PO4, 2.5 CaCl2, 25 NaHCO3 and 11 glucose). The integrity of the endothelium was 
confirmed by relaxation to acetylcholine (ACh, 10 µM) in tissues pre-contracted with the thromboxane 
A2 mimetic, U46619 (1 µM). Vessels with a relaxation response to ACh < 20% were considered 
endothelium-denuded, while vessels with a relaxation response to ACh > 80% were considered 
endothelium-intact. Arteries were washed with physiological salt solution and the tension was 
allowed to return to baseline. 

4.3. Vasorelaxation Experiments 

Cumulative concentration–response curves to venom (1 ng/mL–1 µg/mL) were constructed 
in vessels pre-contracted submaximally to ~50% Fmax with titrated concentrations of U46619 (0.01–
0.2 µM). Responses to venom were obtained in endothelium-intact mesenteric arteries pre-
incubated for 30 min with either 30 mM K+ [45], mepyramine (0.1 µM), L-NAME (100 µM) [44], 
TEA (1000 µM) [46], iberiotoxin (0.1 µM), apamin (0.1 µM), TRAM-34 (1 µM), 4-aminopyridine 
(1000 µM) [44], glibenclamide (10 µM) [47,48] or RN-1734 (10 µM). Cumulative concentration-response 
curves were also constructed to venom alone (1 ng/mL–1 µg/mL) or GSK1016790A in the presence and 
absence of RN-1734 (10 µM). In a subset of endothelium-denuded arteries, the vasorelaxation of venom 
and GSK1016790A were also examined. Sodium nitroprusside (SNP; 10 µM) [49] was added at the end 
of each concentration response curve to ensure maximum relaxation. Only one concentration–response 
curve to venom was obtained in each vessel segment due to tachyphylaxis [49,50]. 

4.4. Data Analysis and Statistical Procedures 

4.4.1. In Vivo 

For the anaesthetized rat experiments, pulse pressure was defined as the difference between 
systolic and diastolic blood pressures. Mean arterial pressure (MAP) was calculated as diastolic 
blood pressure plus one-third of pulse pressure. Heart rate (HR) was determined from the blood 
pressure trace. 

4.4.2. In Vitro 

Blood vessel relaxation was expressed as a percentage reversal of the U46619 pre-contraction 
(i.e., cumulative relaxation responses to venom or GSK1016790A were measured as a change in 
tension from the stable U46619 contraction, and expressed as a percentage of this contractile response). 
Individual relaxation curves were fitted to a sigmoidal logistic equation and EC50 values (concentration 
of agonist resulting in a 50% relaxation) were calculated. Statistical comparisons between the 
experimental groups’ mean EC50 and maximum relaxation (Rmax) values were made using either 
a student’s unpaired t-test or a one-way ANOVA with Bonferroni’s post hoc comparison. Where EC50 
values could not be obtained, concentration–response curves were compared by means of a two-way 
ANOVA (repeated measures). n = Number of artery segments from separate animals. Data represent 
the mean ± SEM (error bars on graph). Statistical significance was defined as p < 0.05. All data analysis 
was performed using GraphPad Prism v5.02 (GraphPad Software, San Diego, CA, USA) [44]. 

4.5. Reagents 

Reagents and their sources were: U46619 (Cayman Chemical company, Ann Arbor, MI, 
USA), glibenclamide, TEA, 4-aminopyridine, TRAM-34, mepyramine, L-NAME, SNP, isoprenaline, 
ACh, RN-1734 and GSK1016790A (Sigma-Aldrich, St Louis, MO, USA), and iberiotoxin (In vitro 
Technologies, Melbourne, VIC, Australia). Stock solutions of U46619 (1 mM) were made up in absolute 
ethanol. All subsequent dilutions of stock solutions were in distilled water. All other drugs were 
dissolved in distilled water, and all dilutions were prepared fresh daily. 
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Appendix: Activity of Sri Lankan Russell’s viper (D. russelii) venom 

Introduction 

In the previous Chapter, the cardiovascular effects of eight different snake venoms were investigated. 

In particular, Sri Lankan Russell’s viper (D. russelii) venom was found to be a potent vasodilator in 

rat small mesenteric arteries and to cause prolonged hypotension in an anaesthetised rat model. D. 

russelii is one of the most venomous snakes in Asia and causes the highest rate of mortality and 

morbidity due to snake bite in South Asia (De Silva and Ranasinghe, 1983, Silva et al., 2017). In the 

Anuradhapura district, Sri Lanka, it is responsible for more than 70% of snake envenomings (Alirol 

et al., 2010, Phillips et al., 1988). D. russelii venom causes a wide range of clinical effects including 

cardiovascular disruptions (Warrell, 1989). A detailed introduction to this species, and previous 

studies on the venom, have been included in Chapter 1 and the preceding two published manuscripts. 

This additional Chapter focussed on characterising the mechanism by which D. russelii venom caused 

vasodilation in vitro. Further studies were conducted to isolate and characterise the toxin(s) 

responsible for both the vasodilation and hypotension observed in vivo. The data was not included in 

the published manuscript as the specific toxin(s) responsible were not identified. 

Methods 

Venom 

D. russelii venom was a gift from Professor A. Gnanadasan (University of Colombo).

Size-exclusion HPLC 

Venom (3 mg) was applied to a Superdex G-75 column (13 µm; 10 x 300mm2) equilibrated with 

ammonium acetate buffer (0.1M; pH 6.8). The sample was eluted at a flow rate of 0.5 ml/min and the 

output was monitored at 280nm. The fractions were collected and pooled, frozen at -80°C and then 

freeze-dried to remove the solvent (Chaisakul et al., 2012). When required for in vivo/in vitro 

screening, freeze-dried components were reconstituted with Milli-Q water and protein content was 

determined using a BCA protein assay kit. 

BCA Assay 

Venom (25 μl) diluted 5-fold in Milli-Q water was aliquoted in triplicate onto a 96-well micro-titre 

plate. BSA solutions diluted from 1 to 0.025 mg/ml were used as reference standards and Milli-Q 

water used as the blank. Absorbance was measured at 562 nm utilizing the fusion α-plate reader 

(PerkinElmer., Massachusetts, USA). 
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In vivo blood pressure experiments 

As per described in the preceding manuscript (Kakumanu et al., 2019). 

Isolation of rat small mesenteric arteries 

As per described in the preceding manuscript (Kakumanu et al., 2019). 

Vasorelaxation experiments 

As per described in the preceding manuscript (Kakumanu et al., 2019). 

Results 

In vivo experiments 

D. russelii venom was separated into eight fractions (labelled A-H) using size-exclusion HPLC

(Figure 3.1). 

Figure 3.1: HPLC size-exclusion profile of D. russelii venom. Alphabetical letters indicate the 

different fractions separated according to size. 
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The protein content of each fraction was determined using a BCA Assay (Table 3.1). 

Table 3.1: Quantity of protein in each fraction of D. russelii venom obtained via BCA assay. 

Fraction Protein Quantity (µg/mL) 

A 0 

B 1396 

C 550 

D 4709 

E 6861 

F 0 

G 0 

H 0 

Each fraction was administrated intravenously into anaesthetised rats and blood pressure was 

monitored. In preliminary experiments, none of the individual fractions (50-100 µg/kg, i.v.) when 

administered alone caused hypotension (Table 3.2). 

Table 3.2: Summary of the effects of each fraction of D. russelii venom on blood pressure of 

anaesthetised rats. N = 2-3. 

Fraction Dose (µg/kg, i.v.) Effect on blood pressure 

A 50 No change 

B 100 No change 

C 100 No change 

D 100 No change 

E 100 No change 

F 50 No change 

G 100 No change 

H 50 No change 
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(a) 

Time 

(b) 

Time 

Figure 3.2: Trace showing the effects of D. russelii (a) fraction C (100 µg/kg, i.v.) and (b) fraction 

E (100 µg/kg, i.v.) on anaesthetised rats. Addition of fraction indicated by arrow. 

Different combinations of the fractions (100 µg/kg, i.v.) also did not markedly affect blood pressure 

with only small decreases in blood pressure observed (Table 3.3). 
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(a) 

(b) 
Time 

Time 

Figure 3.3: Trace showing the effects of D. russelii combined fractions (a) B and C (100 µg/kg, 

i.v.) and (b) A, B, C and D (100 µg/kg, i.v.) on anaesthetised rats. Venom addition indicated by

arrow. 

Table 3.3: Summary of the effects of different combinations of D. russelii venom fractions on 

blood pressure of anaesthetised rats. N = 2-3 

Fraction 

combination 

Dose (µg/kg, i.v.) Effect on blood pressure 

BC 100 No change 

ABCD 100 Small decrease 

EFGH 100 Small decrease 

ABCDFGH 100 Small decrease 

ADEFGH 100 Small decrease 
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As a positive control, whole venom (100 µg/kg, i.v.) was shown to cause prolonged hypotension. 

When the eight fractions were recombined following separation, the recombined fractions caused 

prolonged hypotension, similar to the crude venom. The HPLC buffer and saline did not affect blood 

pressure. 

Time 

Figure 3.4: Trace showing the effects of D. russelii venom (100 µg/kg, i.v.) on anaesthetised rats. 

Venom addition indicated by arrow. 

Table 3.4: Summary of effects of crude venom, recombined fractions or different reagents on 

blood pressure of anaesthetised rats. N ≥ 3. 

Treatment Dose (µg/kg, i.v.) Effect on blood pressure 

Crude venom 50 
100 

No change 
Prolonged hypotension 

Recombined fractions 100 Prolonged hypotension 

0.1M Ammonium Acetate buffer 100 µL No change 

Freeze-dried saline 100 µL No change 

Individual fractions B, C, D and E were also tested in rat mesenteric arteries mounted on a myograph. 

Of these, fractions C, D and E were potent vasodilators. Fractions A, F, G and H were not tested due 

to low/no protein content. 
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Figure 3.5: % smooth muscle relaxation of rat mesenteric arteries pre-contracted with U46619 

in the presence of D. russelii fractions (1000 ng/mL). Each fraction was tested on 1 preparation, 

n = 2. 

Discussion 

D. russelii is a highly venomous snake found predominantly in South-East Asia. Envenoming by D.

russelii causes a range of clinical manifestations in patients (Kasturiratne et al., 2005, Kasturiratne et 

al., 2008, Kularatne et al., 2014, Silva et al., 2016b). These include mild neurotoxicity, acute kidney 

injury, bleeding, coagulopathy and hypotension (Kularatne et al., 2014, Phillips et al., 1988, Silva et 

al., 2016a). The venom mainly consists of neurotoxins and myotoxins, and thus the cardiovascular 

effects are much less understood (Silva et al., 2016a, Silva et al., 2016b, Silva et al., 2017). In the 

previous manuscript, the hypotensive and vasodilatory effects of the venom were investigated in more 

detail and it was determined that potassium channels are involved (Kakumanu et al., 2019). The 

venom was then separated, using SE-HPLC, into eight fractions (A-H) of which only four fractions 

B, C, D and E contained a substantial amount of protein (>500 µg/mL). 

All the fractions were tested in the anaesthetised rat model, alone and in different combinations (Table 

3.3). The whole venom caused prolonged hypotension however none of the fractions alone affected 

blood pressure (Table 3.2). Since fraction E was clearly the major peak based on the size-exclusion 

HPLC profile, combinations of fractions with and without this fraction were tested, and still there was 

no prolonged hypotension. Previously, our lab has isolated and characterised fraction E from this 
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venom. It consists of two toxins – a potent pre-synaptic neurotoxin named U1-viperitoxin-Dr1a (Silva 

et al., 2017) and a weak myotoxin named U1-viperitoxin-Dr1b (Silva et al., 2016a). Interestingly, 

hypotension occurred when all the fractions were recombined and administrated in the rat, indicating 

that the toxins in D. russelii appear to act in a synergistic manner to cause hypotension, and that 

separating the toxins via HPLC and freeze-drying techniques does not seem to affect the 

pharmacological action of the toxins. 

In the rat mesenteric arteries, D. russelii venom was found to be a potent vasodilator. Fractions C, D 

and E, but not fraction B, caused relaxation, similar to the whole venom (Figure 3.5). This was quite 

unexpected as the opposite was seen in vivo whereby none of the fractions caused a significant 

decrease in blood pressure. Snake venom is made up of a complex cocktail of toxins and the method 

by which D. russelii venom was separated was quite a crude method and thus it highly possible that 

each fraction could have had more than one type of toxin present. Although the mechanism via which 

the toxins caused vasorelaxation remains to be determined, based upon the findings with the whole 

venom it is likely that they may possess the ability to activate one of more of Kv, KCa or TPRV4 

channels. Fractions A, F, G and H were not tested as there was not enough protein present in the 

samples. Further studies involving Reverse-Phase HPLC and other methods of purifying the toxins 

are required in order to determine the toxin(s) involved in vasorelaxation. 
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CHAPTER 4- Vampire venom: Vasodilatory mechanisms of vampire 
bat (Desmodus rotundus) blood feeding 

As previously mentioned in the Introduction (section 1.8), as part of my candidature I had the 

opportunity to work with a toxin derived from Desmodus rotundus (Vampire bat) venom. While the 

purpose of snake venom is predominately to aid the capture and killing of prey, vampire bat saliva 

contains venom that does not kill its prey. Rather it allows continuous feeding of blood (main food 

supply) from livestock. The venom contains anticoagulating components, such as draculin and DSPA 

(Desmodus rotundus salivary plasminogen activator), that prevent and break up blood clots. While 

there have been extensive studies conducted on these components, little is known about the other 

components of this venom. In this Chapter, the pharmacological effects of another component of D. 

rotundus venom (named vCGRP) was investigated. In vitro experiments were conducted using 

myography and rat small mesenteric arteries (as per previous Chapters). Concentration-dependent 

relaxation curves were constructed to vCGRP in the presence and absence of the endothelium and 

different receptor blockers. vCGRP is a potent vasodilator with similar amino acid sequence to human 

CGRP and causes relaxation of resistance-like arteries. In this Chapter, it was demonstrated that 

vCGRP activates CGRP1 receptors on vascular smooth muscle, and its effects are independent of the 

endothelium. Interestingly, similar to D. russelii venom, vCGRP also acts in part via the activation 

of potassium channels, in particular Kv channels. 

This study was published as a research article in the journal, Toxins 

KAKUMANU, R., HODGSON, W. C., RAVI, R., ALAGON, A., HARRIS, R. J., BRUST, A., 

ALEWOOD, P. F., KEMP-HARPER, B. K. & FRY, B. G. 2019. Vampire venom: 

Vasodilatory mechanisms of vampire bat (Desmodus rotundus) blood feeding. Toxins, 11, 26. 
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Abstract: Animals that specialise in blood feeding have particular challenges in obtaining their meal, 
whereby they impair blood hemostasis by promoting anticoagulation and vasodilation in order to 
facilitate feeding. These convergent selection pressures have been studied in a number of lineages, 
ranging from fleas to leeches. However, the vampire bat (Desmodus rotundus) is unstudied in regards 
to potential vasodilatory mechanisms of their feeding secretions (which are a type of venom). This is 
despite the intense investigations of their anticoagulant properties which have demonstrated that 
D. rotundus venom contains strong anticoagulant and proteolytic activities which delay the formation 
of blood clots and interfere with the blood coagulation cascade. In this study, we identified and 
tested a compound from D. rotundus venom that is similar in size and amino acid sequence to human 
calcitonin gene-related peptide (CGRP) which has potent vasodilatory properties. We found that 
the vampire bat-derived form of CGRP (i.e., vCGRP) selectively caused endothelium-independent 
relaxation of pre-contracted rat small mesenteric arteries. The vasorelaxant efficacy and potency of 
vCGRP were similar to that of CGRP, in activating CGRP receptors and Kv channels to relax arteriole 
smooth muscle, which would facilitate blood meal feeding by promoting continual blood flow. Our 
results provide, for the first time, a detailed investigation into the identification and function of 
a vasodilatory peptide found in D. rotundus venom, which provides a basis in understanding the 
convergent pathways and selectivity of hematophagous venoms. These unique peptides also show 
excellent drug design and development potential, thus highlighting the social and economic value of 
venomous animals.

Keywords: vasodilatation; potassium channels; Desmodus rotundus; vampire bat; venom; calcitonin 
gene-related peptide 

Key Contribution: In this study, we identified a compound from D. rotundus venom (vCGRP) 
that induces vasodilation of resistance vessels such as mesenteric arteries partly via voltage-gated 
potassium channels and endothelium independent mechanisms. The human form of CGRP is a 
potent vasodilator that acts partially via endothelium dependent and independent mechanisms. 
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Hence, the selectivity of vCGRP could be used for therapeutic interventions in diseases such as 
hypertension and diabetes. 

1. Introduction

Common vampire bats (Desmodus rotundus) are found in Central and South America, and feed 
exclusively on mammalian blood [1,2]. They preferentially feed on livestock animals such as cattle [3] 
and produce venom components that disrupt the blood coagulation cascade, enabling a constant blood 
flow for feeding [4–7]. However, there are reports of rare incidents of human interactions which have 
led vampire bats to become more medically relevant to humans [8,9]. Outbreaks of rabies in human 
populations due to the vampire bats being vectors of the disease [10], have led to anti-vampire bat 
campaigns and culling of bat populations [11,12]. 

Previous studies have demonstrated that D. rotundus venom contains two important anticoagulant 
toxins: Draculin [6,7,13]; and DSPA (Desmodus rotundas salivary plasminogen activator) [14,15]. 
Draculin is a glycoprotein that irreversibly binds to factors IXa and X, and inhibits the conversion 
of prothrombin to thrombin [6,7,13]. This prevents fibrinogen being converted into fibrin and thus 
inhibits coagulation of blood during feeding [5]. DSPA components also aid in ensuring continuous 
blood flow by breaking up the fibrin mesh of any blood clots that are formed [16]. While there are 
relatively extensive studies on Draculin and DSPA, little is known about the other components of 
D. rotundus venom, with vasodilation a predicted but untested activity [15,16].

Other hematophagous animals induce anticoagulant and vasodilatory effects through the delivery
of bioactive compounds, thus ensuring efficient blood flow for feeding. For example, mosquitos 
possess tachykinin-like peptides (sialokinins) [17,18], whilst bedbugs possess nitrosyl-hemoproteins 
(nitrophorins) [19,20]. In addition, sand flies contain a potent vasodilator (maxadilan) that acts via 
the PAC1 receptor [21,22], and horse fly disintegrins inhibit platelet aggregation like those from 
snake venoms [23]. Interestingly, tick prostaglandins constrict blood vessels [24]. The maintenance of 
blood flow during feeding is a major rate limiting step and challenge for blood feeders to overcome. 
Therefore, the longer they take to feed, the higher the chances the host or prey will notice, making them 
more vulnerable [25]. Thus, due to the similarities in feeding mechanisms between hematophagous 
animals, it has been postulated that vasodilators may play a key role in the venom of D. rotundus, 
targeting skin capillaries, to complement coagulation inhibition [15,16]. 

However, such actions have remained speculative until the current study which demonstrated 
selective and potent action for resistance-like arteries. Previously we showed that the transcriptome 
and proteinaceous products of the D. rotundus hematophagous secretion glands are rich in calcitonin 
gene related peptide variants [26], which are similar in size and amino acid sequences to CGRP but 
with modifications in key residues (Figure 1). CGRP is a potent vasodilator that acts via activation of 
CGRP1 receptors on either endothelial or smooth muscle cells [27–30]. The significance of this peptide 
type in relation to the obtaining of blood-meals, and the impact of residues, was tested in order to 
ascertain the role in securing blood-meals by D. rotundus. In this study, we have demonstrated that 
vCGRP also causes vasodilation of resistance-like arteries via similar pathways to CGRP but with 
greater selectivity. 

Figure 1. Alignments of vCGRP (Vampire bat), rCGRP (Rat), and hCGRP (human) with cysteines 
shaded in black and vampire bat specific modified residues in green. 
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2. Results

2.1. Vasorelaxant Responses to D. rotundus vCGRP and rCGRP 

In rat small mesenteric arteries, D. rotundus vCGRP was a potent vasorelaxant (pEC50 = 9.47 ± 0.32 
−logM, Rmax = 94.6 ± 2.4%) with a potency and efficacy similar to that of rat calcitonin gene-related
peptide (rCGRP; pEC50 = 9.16 ± 0.17 -logM Rmax = 93.8 ± 2.6; Figure 2A). In the presence of the rat
CGRP1 receptor antagonist CGRP8-37, the potency of D. rotundus vCGRP (Figure 2B) and rCGRP
(Figure 1C) was decreased by 6-fold (p < 0.05) and 5-fold (p < 0.05) respectively, with no change in
Rmax (Figure 2B).

Figure 2. D. rotundus vCGRP causes vasodilation similar to rCGRP via CGRP1 receptors. Cumulative 
concentration-response curves to (A) D. rotundus vCGRP (n = 23) and rat CGRP (n = 23) alone and 
(B) D. rotundus vCGRP (n = 10) and (C) rat CGRP (n = 7) in the absence and presence of CGRP8-37
(100 nM, n = 7–10) in rat small mesenteric arteries. Values are expressed as % reversal of pre-contraction
and given as mean ± SEM, where n = number of animals. * p < 0.05 pEC50 versus control, student’s
unpaired t-test.

2.2. Contribution of NO-SGC and Adenylate Cyclase to D. rotundus vCGRP and rCGRP Mediated Relaxation 

Vasorelaxation to D. rotundus vCGRP was unchanged following endothelial denudation or 
treatment with L-NAME (100 µM) (Figure 3A). In contrast, potency to rCGRP was decreased 5-fold in 
the presence of L-NAME (100 µM) from 9.16 ± 0.17 to 8.62 ± 0.09 (pEC50 = 0.01) with no difference 
in maximum relaxation (Figure 3D). The presence of the soluble guanylyl cyclase inhibitor ODQ 
(10 µM) or the adenylyl cyclase inhibitor SQ22536 (10 µM) (Figure 3B,C,E,F) had no significant effect 
on D. rotundus vCGRP or rCGRP relaxation curves. 

2.3. Contribution of Potassium Channels to D. rotundus vCGRP and rCGRP Mediated Relaxation 

Raising the extracellular concentration of K+ to 30 mM markedly attenuated the relaxant response 
to D. rotundus vCGRP (Figure 4A). Blocking voltage-dependent K+ channels with 4-aminopyridine 
(1 mM) markedly attenuated D. rotundus vCGRP-induced relaxation, reducing the potency by 
approximately 30-fold (p < 0.05) and reducing the response at 10 nM to 53.7 ± 17.3% (p < 0.01). 
However, vasorelaxation to D. rotundus vCGRP was unchanged in the presence of the ATP-sensitive 
K+ channel inhibitor, glibenclamide (10 µM), or the Ca2+ activated K+ channel inhibitor, TEA (1 mM). 
Similarly, vasorelaxation to rCGRP was attenuated in the presence of 30 mM K+ or 4-aminopyridine 
(1 mM) yet unchanged in the presence of TEA (1 mM) or glibenclamide (10 µM) (Figure 4B). 

109 | P a g e  



Toxins 2019, 11, 26 

Figure 3. The soluble guanylyl cyclase or adenylyl cyclase pathways do not play a role in vasorelaxation 
induced by D. rotundus vCGRP or rCGRP. Cumulative concentration-response curves to D. rotundus 
vCGRP (A–C) or rat CGRP (D–F) in rat small mesenteric arteries in the absence (D. rotundus vCGRP, 
n = 6–12; rat CGRP, n = 5−9) or presence of either L-NAME (100 µM, n = 9–10), ODQ (10 µM, n = 5–7), 
SQ22536 (10 µM, n = 6) or following endothelial denudation (n = 7). Values are expressed as % reversal 
of pre-contraction and given as mean ± SEM, where n = number of animals. * p < 0.05 pEC50 versus 
control, student’s unpaired t-test. 
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Figure 4.    Voltage-gated potassium channels significantly attenuate the vasodilatory effects of 
D. rotundus vCGRP and rCGRP. Cumulative concentration-response curves to (A) D. rotundus vCGRP
(n = 17) or (B) rat CGRP (n = 12) in rat small mesenteric arteries from rats in the absence or presence of
either 30 mM K+ (n = 7–9), TEA (1 mM, n = 6−8), glibenclamide (10 µM, n = 6) or 4-aminopyridine
(1 mM, n = 6–8). Values are expressed as % reversal of pre-contraction and given as mean ± SEM, where
n = number of animals. * p < 0.05, concentration-response curve significantly different as compared to
control (2-Way ANOVA). # p < 0.05, response at 30 nM or 10 nM significantly different as compared to
control (1-Way ANOVA, Bonferroni’s post hoc).

3. Discussion

D. rotundus venom is well known to contain anticoagulating properties in order to facilitate blood
feeding [26]. Indeed, a glycoprotein, Draculin, which inhibits activated coagulation factors IX (IXa) and 
X (Xa) has been isolated from D. rotundus venom [5]. In the current study, we isolated and characterised 
a peptide (vCGRP) from the venom, which is similar in size and amino acid sequence to CGRP found 
in humans and rats. CGRP is a potent vasodilator that acts via activation of CGRP1 receptors on either 
endothelial or smooth muscle cells [27,31]. Therefore, the aim of this study was to determine whether 
vCGRP also causes vasodilation via similar pathways. 

We identified vCGRP as a dilator of rat small mesenteric arteries with a potency and efficacy 
similar to rCGRP. Importantly, like rCGRP, the vasorelaxation was attenuated by the CGRP1 receptor 
antagonist, CGRP8-37, indicative of an ability of the peptide to target this receptor to mediate its 
response though direct activation of CGRP1 receptors can be further supported by radioactive ligand 
binding assays in the future. Next we examined the role of endothelial cells in vasorelaxation via 
vCGRP. Given the vasorelaxation to vCGRP was unchanged following endothelial denudation or 
inhibition of nitric oxide synthase (by L-NAME), it is likely that vCGRP targets CGRP1 on vascular 
smooth muscle cells (VSMC) to cause endothelium-independent relaxation. In contrast, relaxation to 
rCGRP appeared to be, in part, dependent on endothelial-derived nitric oxide (NO) as the potency 
was attenuated following NOS inhibition. These findings highlight a potential point of difference with 
regard to CGRP derived from distinct species. Thus whilst an endothelium-dependent component 
of vasorelaxation to rCGRP has been observed in mesenteric [32] and retinal [33] arteries, we have 
demonstrated that vCGRP, like human CGRP [34], mediates relaxation via endothelium-independent 
mechanisms. This similarity in mechanism of action between human CGRP and vCGRP supports the 
notion of vCGRP becoming a potential candidate for therapeutic drug discovery. 

Previous studies have also demonstrated that activation of CGRP receptors can lead to the 
activation of the guanylyl cyclase pathway (endothelium-dependent) or adenylyl cyclase pathway 
(endothelium-independent) [33–38]. However, the presence of ODQ (guanylyl cyclase inhibitor) 
or SQ22536 (adenylyl cyclase inhibitor), had no significant effect on rCGRP or D. rotundus vCGRP 
relaxation curves. Differences between CGRP endothelium-independent and -dependent mechanisms 
are related to the region, size of the vessel tested and species of CGRP. For instance, human 
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or rat CGRP tested in pig coronary leads to increased cAMP and causes vasorelaxation via 
endothelium-independent pathways [34]. However, human CGRP tested in human vessels are 
endothelium-dependent [28]. 

Therefore, we next sought to characterise the mechanism(s) via which vCGRP mediates 
endothelium-independent relaxation. Our finding that raising the extracellular K+ concentration 
to 30 mM markedly attenuated the relaxation to vCGRP suggests that the peptide modulates relaxation 
of rat small mesenteric arteries in part via activation of K+ channels. Indeed, we identified an ability of 
vCGRP to activate voltage-dependent K+ channels as relaxation responses were decreased by 4-AP. 
This was in agreement to findings with respect to rCGRP. Neither KATP nor KCa channels appeared 
to be involved in relaxation to vCGRP or rCGRP as glibenclamide and TEA were without effect. 
Indeed, there is evidence that activation of CGRP receptors could lead to direct opening of K+ channels, 
in particular Kv channels [33]. There are conflicting reports on the involvement of KATP and KCa 
channels in vasorelaxation, which could be related to the type of vessel studied. For instance, studies 
using bovine retinal arteries and rabbit mesenteric arteries report that activation of KATP channels, but 
not KCa channels, leads to vasorelaxation [37,39,40]. However, studies in smooth muscle cells from 
rat mesenteric arteries have shown CGRP directly activates BKCa channels [41]. These data further 
highlight that CGRP causes vasorelaxation through a variety of mechanisms which is dependent upon 
the species and vessel involved. 

Considering the medical relevance to humans of D. rotundus and other vampire bat species as 
disease vectors for rabies [1], it is surprising that more in depth studies have not been conducted 
on the intricate mechanisms employed in their feeding behaviour, despite studies on other blood 
feeding animals such as fleas and leeches [13,26,42]. Such secretions fit within the definition of 
venom as ‘A secretion produced in specialized cells in one animal, delivered to a target animal 
through the infliction of a wound and that disrupts endophysiological or biochemical processes in 
the receiving animal to facilitate feeding, defense or competition by/of the producing animal’ [42]. 
As peptides used by venoms/hematophagous-secretions are modified versions of those routinely 
expressed in other tissues [43] future work including the other two species of vampire bat and non-
hematophagous bats would be enlightening in regards to the timing of the recruitment for use 
in blood-feeding and the molecular diversification events. This study has opened the way for 
further research to investigate the pathways and intricate mechanisms of hematophagous venoms, 
in particular vampire bats. Therefore, we have made clear the ability of vCGRP to selectively mediate 
endothelium-independent vasorelaxation in part via activation of Kv channels. 

This selectivity of vCGRP to target only vascular smooth cells (similar to that of human CGRP) 
highlights the interesting possibility that vCGRP may confer benefit in the context of cardiovascular 
diseases such as hypertension, heart failure and kidney diseases [44]. Further functional studies are 
required for vCGRP to become a therapeutic intervention with potential pharmacological applications. 
This research also paves the way for further evolutionary studies into hematophagous venoms. 

4. Materials and Methods

Synthesis of vCGRP was accomplished using protocols previously described by us for other 
peptides [45]. 

4.1. Isolation of Rat Small Mesenteric Arteries 

Male Sprague-Dawley rats (200–250 g) were euthanized via CO2 inhalation (95% CO2, 5% 
O2) followed by exsanguination. Small mesenteric arteries (second-order branch of the superior 
mesenteric artery) were isolated, cut into 2 mm lengths, and mounted on 40 µm wires in small vessel 
myographs [46]. Vessels were maintained in physiological salt solution [composed of (in mM) 119 NaCl, 
4.7 KCl, 1.17 MgSO4, 25 NaHCO3, 1.8 KH2PO4, 2.5 CaCl2, 11 glucose, and 0.026 EDTA] at 37 ◦C and 
were bubbled with carbogen (95% O2, 5% CO2). In a subset of arteries, the endothelium was gently 
denuded via insertion of a 40 µm wire inside the lumen and rubbing the vessel walls. The mesenteric 
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arteries were allowed to equilibrate for 30 min under zero force and then a 5 mN resting tension was 
applied. Changes in isometric tension were recorded using Myograph Interface Model 610 M version 
2.2 (DMT, Aarhus, Denmark) and PowerLab/835 (ADInstruments Inc, Bella Vista, NSW, Australia). 
Data was recorded with the data acquisition program Chart (V5, ADInstruments). Following a 30 min 
equilibration period at 5 mN, the mesenteric arteries were contracted maximally (Fmax) using a K+ 

depolarizing solution [K+−containing physiological salt solution (KPSS); composed of (in mM) 123 KCl, 
1.17 MgSO4, 1.18 KH2PO4, 2.5 CaCl2, 25 NaHCO3, and 11 glucose]. The integrity of the endothelium 
was confirmed by relaxation to acetylcholine (ACh, 10 µM) [46] in tissues pre-contracted with the 
thromboxane A2 mimetic, U46619 (1 µM) [46]. Arteries were washed with physiological salt solution 
and the tension allowed to return to baseline. 

4.2. Vasorelaxation Experiments 

Cumulative concentration-response curves to D. rotundus vCGRP (10−12–3 × 10−8 M) or rCGRP 
(3 × 10−12–10−8 M) [32,34,37] were constructed in vessels pre-contracted submaximally (~50% Fmax) 
with titrated concentration of U46619 (0.01 µM–0.2 µM). Responses to D. rotundus vCGRP and rCGRP 
were obtained in endothelium-intact mesenteric arteries in the absence or presence of either ODQ 
(10 µM) [47], SQ22536 (10 µM) [48], L-NAME (0.1 µM) [46], CGRP8-37 (0.1 µM) [49,50], 30 mM K+ [33], 
TEA (1000 µM), 4-aminopyridine (1000 µM) [46] or glibenclamide (10 µM) [32,51]. All treatments were 
added for 30 min prior to precontraction with U46619. In a subset of endothelium-denuded arteries, 
vasorelaxation to D. rotundus vCGRP was also examined. Sodium nitroprusside (SNP; 10 µM) [47] 
was added at the end of each concentration-response curve to ensure maximum relaxation. Only 
one concentration-response curve to D. rotundus vCGRP or rCGRP was obtained in each vessel 
segment [47,52]. 

4.3. Data Analysis and Statistical Procedures 

Relaxation responses were expressed as a percentage reversal of the U46619 pre-contraction. 
Individual relaxation curves were fitted to a sigmoidal logistic equation and pEC50 values 
(concentration of agonist resulting in a 50% relaxation) calculated and expressed as –Log mol.L−1. 
Statistical comparisons between the experimental groups’ mean pEC50 and maximum relaxation 
(Rmax) values were made using a Student’s unpaired t-test or one-way ANOVA with Bonferroni’s 
post hoc comparison. Where pEC50 values could not be obtained, concentration-response curves were 
compared by means of a two-way ANOVA. n = number of artery segments from separate animals. 
Data represent the mean ± SEM (error bars on graph). Statistical significance was defined as * p < 0.05. 
All data analysis was performed using GraphPad Prism version 5.02 (GraphPad Software, San Diego, 
CA, USA, 2009) [46]. 

4.4. Reagents 

Reagents and their sources were U46619 (Cayman Chemical company, Ann Arbor, Michigan, 
USA), SQ22356 (Tocris bioscience, Bristol, UK), ODQ, Glibenclamide, TEA, 4-aminopyridine, L-NAME, 
SNP, ACh, CGRP8-37 (Sigma-Aldrich, St Louis, MO, USA), and CGRP (rat) Peptide Institute, Osaka, 
Japan. Stock solutions of ODQ (10 mmol/L) and U46619 (1 mM) were dissolved in absolute ethanol. 
All subsequent dilutions of stock solutions were in distilled water. All other drugs were made up in 
distilled water and all dilutions were prepared fresh daily. 
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5.1 Overview 

CHAPTER 5- GENERAL DISCUSSION 

As previously discussed (Chapter 1), snake venoms have evolved to immobilise and incapacitate prey 

for feeding, and as a defence mechanism against predators (Casewell et al., 2013). As such, venoms 

are complex mixtures of toxins with a wide range of activities targeting vital physiological processes 

(Fry et al., 2009). Key toxin groups including neurotoxins (Barber et al., 2013a, Chaisakul et al., 

2010, Kuruppu et al., 2008), myotoxins (Gutiérrez and Lomonte, 1995, Silva et al., 2016a, 

Wickramaratna et al., 2003) and toxins with pro-coagulant, anticoagulant, haemolytic and local tissue 

necrotic activity (Gutiérrez and Lomonte, 2013a, Isbister et al., 2008, Joseph et al., 2004) which have 

been isolated, pharmacologically/biochemically characterised, and reasonably well studied. However, 

the nature and activity of the toxins affecting the cardiovascular system are less clearly understood. 

Thus, the focus of this thesis was to explore and demonstrate the profound cardiovascular effects of 

snake venom. The work described in this thesis has provided key insights into the cardiovascular 

effects of some medically important snake venoms. In particular: 

• P. textilis (Australian brown snake) and E. ocellatus (Carpet viper) venoms cause “rapid

cardiovascular collapse” while D. russelii (Sri Lankan Russell’s viper) and D. siamensis

(Javanese Russell’s viper) venoms cause “prolonged hypotension” in vivo in anaesthetised

rats. We have identified key differences between these two outcomes – i.e. collapse is not

prevented by commencing artificial respiration prior to venom administration, while

hypotension is prevented by artificial respiration. Also, priming with low doses of venom

prior to a larger dose of venom prevents collapse. However, priming does not prevent

hypotension.

• D. russelii (Russell’s viper) venom causes concentration-dependent vasorelaxation in rat

small mesenteric arteries. The effect of the venom is endothelium independent and appears to

be mediated by vascular smooth muscle Kv and KCa, but not KATP, channels. The venom may

also be targeting TRPV4 channels.

• D. rotundus (Vampire bat) venom is also a potent vasodilator of rat small mesenteric arteries.

However, the mechanism responsible for this activity is markedly different in comparison to

D. russelii venom. A component (i.e. D.r vCGRP), which is similar in molecular weight and

amino acid sequence to rat CGRP, was isolated from D. rotundus venom. D.r vCGRP targets 

both CGRP1 receptors and Kv channels directly on the smooth muscle to cause vasorelaxation. 

D. r vCGRP also has similar efficacy and potency to rat CGRP. Further functional and ligand
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binding assays on this compound could lead to therapeutic potential for patients with 

endothelial dysfunction. 

5.2 Blood pressure control: mechanisms 

Targeting important physiological processes is a key feature of the toxins which constitute the 

complex mixture of components found in venoms. Given the cardiovascular system is vital for the 

survival of prey animals, inducing a rapid fall in blood pressure via one or more ‘pathways’ is 

advantageous to prey capture. This can lead to circulatory shock and rapid prey immobilisation, and 

may also aid in the diffusion of other snake venom components (Péterfi et al., 2019). As such, it is 

important to understand the mechanisms by which blood pressure is controlled in order to understand 

the effects of toxins on these processes. 

Maintaining normal blood pressure is vital for all organs to function properly and is controlled by 

both short-term and long-term mechanisms. In general, Blood pressure = Cardiac Output (CO) x Total 

Peripheral Resistance (TPR), with CO = Heart Rate (HR) x Stroke Volume (SV). Based on these 

parameters, it is clear that in order to decrease blood pressure, toxins can affect blood vessels (i.e. 

TPR), and induce vasodilatation, or target the heart directly to decrease force/rate of contractions (i.e. 

CO). It is possible that venoms/toxins can act on either the heart or blood vessels or both.  In addition, 

pro- and anti-coagulant toxins can also indirectly affect blood pressure. Thus, toxins that target the 

cardiovascular system can act via a number of different pathways to decrease blood pressure and 

assist in the immobilisation of prey. 

The short term regulation of blood pressure is mainly controlled by the autonomic nervous system 

(ANS) (Stevens et al., 2016). Increases in blood pressure are detected by baroreceptors located in the 

aortic arch and carotid sinus. These baroreceptors send signals to the ANS which results in a decrease 

in heart rate, which leads to decreased cardiac output via efferent parasympathetic fibres. As seen in 

Figure 5.1, decreases in blood pressure are detected by the baroreceptors which then trigger a 

sympathetic response which causes an increase in heart rate and cardiac output, leading to increased 

blood pressure (Guyton et al., 1981). While this mechanism is very effective in stabilising blood 

pressure in the short-term, baroreceptors do not effectively maintain blood pressure in the long-term 

(Cowley Jr, 1992). 

Long-term regulation of blood pressure involves several complex physiological mechanisms 

including the renin-angiotension-aldosterone system (RAAS) and anti-diuretic hormone (ADH) 

regulation (Cowley Jr, 1992, Guyenet, 2006). Renin, a peptide hormone found in the juxtaglomerular 
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apparatus in the kidney, is released in response to three different factors – (i) sympathetic stimulation, 

(ii) reduction of sodium-chloride delivery into the distal convoluted tubule of the kidney or (iii)

decreased blood flow to the kidney. This leads to the conversion of angiotensinogen to angiotensin I, 

which then is converted to angiotensin II via angiotensin-converting enzyme (ACE). Angiotensin II 

is a potent vasoconstrictor that directly acts on the kidney to increase sodium reabsorption while also 

promoting the release of aldosterone. Aldosterone promotes both salt and water retention in the 

kidney and also increases the electrochemical gradient of sodium ions. Increased sodium and water 

concentration in the kidney leads to osmosis which results in decreased water excretion and thus 

increased blood volume which results in increased blood pressure (Guyton et al., 1981, Patel et al., 

2017). 

ADH is released from the hypothalamus in response to either an increase in plasma osmolarity or 

thirst signals. ADH stimulates sodium reabsorption from the thick ascending limb of the loop of Henle 

in the kidneys which increases water reabsorption which leads to increased plasma volume and 

decreased osmolality. It also increases the permeability of the collecting duct to water via aquaporin 

channels that get inserted into the apical membrane (Guyton et al., 1981, Stevens et al., 2016). 

There are also other factors that can affect long-term blood pressure regulation such as natriuretic 

peptides (Cowley Jr, 1992). Atrial natriuretic peptides (ANP) are released in response to 

cardiomyocytes elongating, which occurs in response to high blood pressure. ANP is synthetised and 

stored in cardiac myocytes and act to promote sodium excretion by dilating the afferent arteriole of 

the glomerulus which increases blood flow and inhibits sodium reabsorption in the nephron. When 

blood pressure is low, ANP secretion is decreased accordingly which is evident of a feedback 

mechanism. To increase glomerular filter rate (GFR) and reduce sodium reabsorption, prostaglandins 

are also present. They act as local vasodilators as well as prevent excess vasoconstriction triggered 

by both the sympathetic nervous system and RAAS (Chen et al., 2020, Cowley Jr, 1992). 
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Figure 5.1: Diagram indicating the main mechanisms responsible for the control of blood 

pressure (Marieb and Hoehn, 2016). 
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5.3 Blood pressure control: potential sites of action of venoms/toxins 

There are a number of cardiovascular effects associated with snake envenoming in humans, including 

hypotension, myocardial infarction, cardiac arrest, hypertension, brady- or tachy-cardia and atrial 

fibrillation (Ahuja, 1983, Koh and Kini, 2012, Moore, 1988). As previously discussed in Chapter 1, 

snake venom/toxins that cause hypotensive effects can be categorised into six different classes ( 

Kininogens, Natriuretic peptides, Phospholipases A2, Serine-Proteases, Vascular endothelial growth 

factor like peptides and other hypotensive components) (Latinović et al., 2020). Toxins that target 

blood vessels can act via different pathways including the nitric oxide (NO) pathway. For example 

Crotalus oreganus abyssus (Da Silva et al., 2011, Da Silva et al., 2012) and Crotalus durissus 

cascavella (Evangelista et al., 2008) venoms contain toxins that increase NO production which leads 

to vasodilatation while Bothrops jararaca venom contains toxins that inhibit ACE, increase NO 

production and lower cardiac output by inducing bradycardia and activating bradykinin receptors 

(Morais et al., 2011, Morais et al., 2013, Xavier et al., 2017). Snake species such as Vipera ammodytes 

ammodytes (Latinović et al., 2020), Bothrops moojeni (Silveira et al., 2013), D. russelii (O'Leary and 

Isbister, 2010), and Oxyuranus scutellatus (Chaisakul et al., 2014) contain PLA2 components that 

decrease blood pressure by targeting the cyclooxygenase pathway, phospholipase pathway and 

inducing the release of endogenous mediators (e.g. PGI2). 

Viper spp. also contain toxins such as serine-proteases that disrupt the blood coagulation pathways 

by activating plasminogen, activating factor V and/or disrupting the conversion of fibrinogen to fibrin 

(Isbister, 2009, Serrano and Maroun, 2005, Xiong and Huang, 2018). Serine-proteases present in 

Lachesis muta (Felicori et al., 2003), Bitis arietans (Megale et al., 2018), Bitis gabonica rhinoceros 

(Vaiyapuri et al., 2010) target the kallikerin pathway to decrease blood pressure. Toxins such as 

sarafatoxins and cardiotoxins are potent vasoconstrictors that directly cause cardiotoxicity (Takasaki 

et al., 1988). 
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Figure 5.2: Overview of mechanisms of hypotensive effects of snake venom components. BPP 

(bradykinin-potentiating peptides), KLSP (kallikrein-like snake protein), VEGF (vascular 

endothelial growth factor), SVNP (snake venom natriuretic peptide), PLA2 (phospholipase A2), 

3FTX (3-finger toxins) Source: (Péterfi et al., 2019) 

There are many factors that can lead to venom-induced hypertension (Hodgson and Isbister, 2009). 

For example, sarafotoxons from burrowing vipers (Atractaspis spp.), which are small peptides similar 

to endothelins that cause vasoconstriction by binding to endothelin receptors (Kochva et al., 1982, 

Takasaki et al., 1988). Increasing capillary permeability protein (ICPP), isolated from blunt-nosed 

viper (V. lebtina) venom has similar structure and potency to vascular endothelial growth factor 

(VEGF) and causes an increase in vascular permeability (Gasmi et al., 2000). Some snake venoms 

have highly evolved toxins such as calciseptine, FS2 toxins, C10S2C2 and S4C8 which block L-type 

Ca2+ current, which leads to vasorelaxation (de Weille et al., 1991, Watanabe et al., 1995). Other 

toxins such as natriuretic peptides found in green mamba (D. angusticeps) venom (Schweitz et al., 

1992) and bradykinin potentiating peptides (BPP’s) found in Bothrops spp. are also potent 

vasorelaxants (Cintra et al., 1990, Ferreira and e Silva, 1965, Ferreira and Habermehl, 1997, Joseph 

et al., 2004) and lead to hypotension. BPP’s inhibit both the breakdown of the endogenous vasodilator 

bradykinin and synthesis of the vasoconstrictor angiotensin II, resulting in a reduction of systemic 

blood pressure (Hodgson and Isbister, 2009). These peptides present in snake venom highlight the 
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complexity of snake venom and demonstrate that many different toxins can play a role in disrupting 

the cardiovascular system (Figure 5.2). 

5.4 ‘Collapse’ versus ‘hypotension’ 

In this thesis, eight medically important species of snakes from a range of countries were investigated. 

The six exotic vipers (i.e. B. gabonica, D. russelii, D. siamensis, C. vegrandis, E. ocellatus and B. 

arietans) were chosen based on their high rate of mortality and/or morbidity following envenoming 

in humans. Their venoms have also been shown, either in animal studies or clinical reports, to affect 

the cardiovascular system (Chaiyabutr and Sitprija, 1999, Marsh et al., 1997, Tilmisany et al., 1986)). 

The two other snake species, which are both elapids, are from Australia: i.e. P. textilis, as it is the 

leading cause of death due to snake bite in Australia (via cardiovascular collapse), and O. temporalis 

which is a relatively recently described species found in Western Australia. There have been no 

reported cases of O. temporalis envenoming and very little is known about the venom. 

In the current in vivo study, three distinct phenomena were observed. E. ocellatus and P. textilis 

venoms caused “cardiovascular collapse” whereas D. russelii and D. siamensis venoms caused 

“prolonged hypotension”. B. gabonica, C. vegrandis, B arietans and O. temporalis venoms did not 

significantly affect the blood pressure of anaesthetised rats at the doses tested (Table 5.1). For all the 

snake venoms tested, we started with a standard dose that was higher than expected in envenomed 

patients. Healy et al (2019) reported that the average snake venom yield of 102 snakes spanning six 

families was between 0.15mg (in egg eating sea snake) to 571 mg in forest cobra (Healy et al., 2019). 

Patients envenomed with taipan venom had an average of 10 ng/ml detected in their blood 

(Kulawickrama et al., 2010), while patients envenomed by red-bellied black snakes were found to 

have a slightly higher average concentration of 19 ng/ml (Churchman et al., 2010). In patients 

envenomed by D. russelli, which injects a higher amount of venom than most snakes, the median 

concentration of venom found was 201 ng/ml (Isbister et al., 2015). Thus, the concentrations we used 

in the study (200 µg/ kg), which is approximately 3 µg/ml venom blood concentration in a 300 g rat, 

were much higher than what will be injected into a human during snake bite. This was to determine 

whether the venom caused rapid collapse, hypotension or no effect. This enabled us to separate the 

venoms that affected blood pressure and those that didn’t. For the venoms that did affect blood 

pressure (i.e. P, textilis, E. ocellatus, D. russelii and D. siamensis), we then tested the lowest amount 

of venom required to observe a significant change in blood pressure. These dosages were lower than 

that expected in envenomed victims. This was due to either the amount of venom available for 

experimental use or the potency of the venom. 
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Previously, “cardiovascular collapse” and “hypotension” have often been used interchangeably to 

describe a marked decrease in blood pressure following envenoming. However, we have shown that 

these two phenomena have a number of key differences indicating that they are likely to be due to 

different mechanisms. In Chapter 2, we have defined rapid cardiovascular collapse as a “rapid 

decrease in blood pressure, often without recovery”, while prolonged hypotension is defined as a 

“slower and prolonged decrease in blood pressure, with recovery occurring in most cases” 

(Kakumanu et al, 2019). A defining feature of ‘rapid cardiovascular collapse” is that it is attenuated 

by small ‘priming’ doses of venom of the same, or different, snake species (Chaisakul et al., 2013), 

which demonstrates a common mechanism across species. This also indicates the preservation of 

certain toxins or group of toxins during evolution (Fry et al., 2009). Interestingly, this collapse 

response in not prevented by artificial respiration (in vivo model), indicating that paralysis or 

respiratory arrest due to neurotoxins/myotoxins are unlikely to involved in collapse. This also 

supports previous postulations that depletable mediators may induce collapse, which is attenuated 

with prior administration of smaller sub-toxic doses of venom that causes pre-release and depletion 

of these mediators (Chaisakul et al., 2012, Chaisakul et al., 2013, Chaisakul et al., 2015), as artificial 

respiration could not prevent collapse. 

Table 5.1: Summary of snake venoms studied in vivo indicating hypotension/cardiovascular 

collapse in the presence and absence of either priming or artificial respiration. 

Snake species Cardiovascular 

collapse 

Hypotension 

(prolonged) 

Prevented 

by priming 

Prevented by 

artificial 

respiration 
D. russelii - ✓ - ✓ 

E. ocellatus ✓ - ✓ - 

B. gabonica NA NA NA NA 

C. vegrandis NA NA NA NA 

B. arietans NA NA NA NA 

D. siamensis - ✓ NA NA 

O. temporalis NA NA NA NA 

P. textilis ✓ - ✓ - 

In contrast, “prolonged hypotension” does not appear to be due to the release of depletable mediators. 

In order to mimic “cardiovascular collapse” a high dose of D. russelii venom was administrated to 

the in vivo model. Interestingly, when the rat was placed on an artificial respirator prior to venom 

administration, this so-called “collapse” was prevented (Kakumanu et al, 2019). D. russelii and D. 

siamensis venom both contain weak neurotoxins (Silva et al., 2017) that in humans do not cause life 

threatening paralysis. However, given that rats are much smaller than humans and have approximately 
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64 ml of circulating blood per kg body weight, an intravenous dose of 1mg/kg of venom will result 

in a very high blood concentration of 16ug/ml. This amount may be sufficient to induce respiratory 

paralysis as previous studies have shown that the same venom causes complete neuromuscular 

blockage in the chick biventer nerve-muscle preparation (Silva et al., 2017). Thus, artificial 

respiration is able to prevent or overcome the paralytic effects of the neurotoxins on the rat diaphragm. 

However, when the components of D. russelii venom were separated using SEC-HPLC and 

administrated in vivo in anaesthetised rats, the neurotoxic component alone did not cause a 

hypotensive effect (Chapter 3, Table 3.1), which indicates that the components all act in a synergistic 

manner to cause hypotension. 

In Chapter 3, it was also demonstrated that D. russelii venom also caused concentration-dependent 

relaxation of rat small mesenteric arteries, suggesting that peripheral vasodilation contributes to the 

“prolonged hypotension” observed in vivo. In the presence of a non-selective KCa channel blocker 

(i.e. TEA) and voltage-gated K+ channel inhibitor (i.e. 4-aminopyridine), the effects of the venom 

were markedly attenuated. Similarly, blocking large (BKCa; iberiotoxin), intermediate (IKCa; TRAM- 

34) and small (SKCa; apamin) Ca2+-activated K+ channels significantly inhibited venom-mediated

vasorelaxation. These findings suggest the involvement of both KCa and Kv channels in D. russelii 

venom-induced vasorelaxation (Figure 5.3). The vasorelaxant effect of the venom was also attenuated 

in the presence of the TRPV4 antagonist, RN1734 further supporting this concept. Whilst TRPV4 

receptors are abundantly expressed on the endothelium (Baylie and Brayden, 2011), they are also 

present on the vascular smooth muscle (Baylie and Brayden, 2011, Inoue et al., 2006). Here activation 

of TRPV4 leads to Ca2+ influx, the generation of Ca2+ sparks from the sarcoplasmic reticulum and 

the subsequent activation of BKCa and vasorelaxation (Earley et al., 2005, Earley et al., 2009). As 

such, D. russelii venom may cause vasorelaxation of resistance arteries, in part, via activation of 

vascular smooth muscle TRPV4 and opening of KCa. Interestingly, denuding the endothelium did not 

affect the venom induced relaxation, indicating that the venom is selectively targeting K+ channels on 

the vascular smooth muscle cells. 
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Figure 5.3: Diagram of mechanism of action of D. russelii venom on vascular smooth muscle 

cells to cause vasorelaxation. K (potassium channel), EDHF (endothelium derived 

hyperpolarizing factor), NO (nitric oxide) NOS (nitric oxide synthase), EC (endothelial cell), 

VSMC (vascular smooth muscle cell), KATP (ATP sensitive potassium channel), KV (voltage- 

gated potassium channel), KCa (calcium activated potassium channel) sGC (soluble guanylate 

cyclase), cGMP (cyclic guanosine monophosphate), TRPV4 (Transient receptor potential cation 

channel subfamily V member 4). 

For my final research study, we were fortunate to gain access to a synthetic peptide (venom (v)CGRP) 

based on a component found in vampire bat venom. vCGRP is similar in size and amino acid sequence 

to human CGRP. In contrast to snake venoms, the purpose of bat venom is not to kill prey, as it feeds 

off the blood of livestock animals (Delpietro et al., 1992). Instead, the venom has evolved to disrupt 

the coagulation pathway and enable constant flow of blood while the predator is undetected. D. 

rotundus venom is known to contain anticoagulating properties to aid in blood feeding. It contains a 

glycoprotein, Draculin, which inhibits activated coagulation factors IX (IXa) and X (Xa) (Fernandez 

et al., 1998). Using in vitro techniques, we showed that vCGRP is a dilator of rat mesenteric arteries, 
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with similar potency and efficacy to rat CGRP. Importantly, like rat CGRP, vCGRP also targets 

CGRP1 receptors to cause vasodilation as its effects were attenuated by the CGRP1 antagonist, 

CGRP8-37. However, surprisingly, while rat CGRP targets both endothelium and vascular smooth 

muscle cells, vCGRP only targets vascular smooth muscle cells as evidenced by maintained 

vasorelaxation following endothelial denudation or inhibition of nitric oxide synthase. Previous 

studies have suggested that activation of CGRP1 receptors can lead to activation of the soluable 

guanylyl cyclase pathway or adenylyl cyclase pathway (Boussery et al., 2005, Brain and Grant, 2004, 

Gray and Marshall, 1992, McNeish et al., 2012, Shoji et al., 1987, Zygmunt et al., 1995). Yet in our 

study, there was no significant change in the relaxation curves to rCGRP or vCGRP in the presence 

of ODQ (soluable guanylyl cyclase inhibitor) or SQ22536 (adenylyl cyclase inhibitor). This could be 

due to differences in the region, size of vessel tested and species of CGRP tested. For instance, human 

or rat CGRP tested in isolated pig coronary arteries leads to increased cAMP and causes 

vasorelaxation via endothelium-independent pathways (Shoji et al., 1987) while vasorelaxation to 

human CGRP, in human vessels, is endothelium-dependent (Thom et al., 1987). 

Interestingly, in the presence of the Kv channel blocker aminopyridine (Figure 5.4), the effects of 

vCGRP and rat CGRP were markedly attenuated. Blocking KCa or KATP channels however, did not 

have an effect on venom-induced vasorelaxation. Previous studies have demonstrated that activation 

of CGRP1 can lead to direct opening of K+ channels, especially Kv channels (Boussery et al., 2005), 

however there have been conflicting reports on the involvement of KATP and KCa channels, and this 

can be attributed to the type of vessels studied and species of CGRP (as mentioned in chapter 4). This 

selectivity of vCGRP to target only vascular smooth cells (similar to that of human CGRP in non- 

human arteries) highlights the interesting possibility that vCGRP may confer benefit in the context of 

cardiovascular diseases such as hypertension, heart failure and kidney diseases (Aubdool et al., 2017). 
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Figure 5.4: Diagram of mechanism of action of vCGRP and rCGRP on vascular smooth muscle 

cells to cause vasorelaxation. EC (endothelial cell), VSMC (vascular smooth muscle cell), Kv 

(voltage-gated potassium channel), KCa (calcium activated potassium channel), NO (nitric oxide), 

eNOS (endothelial nitric oxide synthase), CGRP1 (calcitonin gene-related peptide receptor). 

While D. russelii venom acted via potassium channels to cause vasorelaxation, D. rotundus venom 

acted via CGRP receptors. This difference in mechanism demonstrates that complexity of animal 

venoms. For instance, the same pathology (i.e. hypotension) from two different venoms can be due 

to different toxins and different mechanisms. There have been no studies that show snake venom 

acting via CGRP receptors to cause vasodilatation. However, studies have shown that CGRP receptors 

may play a small role in Phoneutria nigriventer (Wandering spider) venom-induced plasma 

extravasation in rat skin (Costa et al., 2000) as well as pain modulation (Lauria et al., 2020). 

Activation of CGRP receptors by P. nigriventer venom can lead to hyperalgesia and release of other 
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pro-inflammatory cytokines (Lauria et al., 2020, Zanchet et al., 2004). 

5.5 Limitations, future directions and clinical implications 

There are limitations in the work described in this study. A major limitation was venom sample 

variabilities. Previous studies have shown that the same species of snake can have different venom 

composition depending on where it was found. For example, intra-specific venom variation was 

shown in O. scutellatus venom found from 13 different snakes spanning 2,000 km distance from four 

localities on the north-east coast of Australia (Tasoulis et al., 2020). Studies in India have also shown 

that D. russelii venom composition varied from South India and North India (Jayanthi and Gowda, 

1988). More specifically, D. russelii venom samples from North and West India contained high acidic 

phospholipase activity that was not present in South Indian D. russelii venom samples. P. textilis 

venom from different parts of Australia was also shown to contain different amounts of procoagulants 

and presynaptic toxins (Skejić and Hodgson, 2013). Thus venom samples from the same species could 

display different experimental results due to geographical variations in venom collection. 

Furthermore, in order to identify and characterise the toxins responsible for disrupting the 

cardiovascular system, the toxins need to be isolated. This is a lengthy process as it first requires 

crude separation methods of the toxins using SEC-HPLC. Next, the fractions need to be freeze-dried, 

tested for protein amount using biochemical assays such as BCA assay and then tested in vivo on rat 

models to determine which fractions affect blood pressure. Once those fractions are identified, further 

isolation and purification methods using RP-HPLC and mass spectrometry are required before testing 

in vivo once more. Once the toxin is completely isolated, then it also will require further 

pharmacological studies to determine mechanism of action. The information gained from isolating 

the toxin(s) however, will provide invaluable information that can be used both for treatment and 

further studies of lead compounds for therapeutic advancements. 

In Chapter 3, we characterized the effects of D. russelii venom on resistance-like arteries. While the 

venom targets K+ channels, TRPV4 channels also seems to play a role in vasorelaxation induced by 

the venom. Therefore, further electrophysiology experiments will be beneficial in determining 

whether TRPV4 is also involved in vasorelaxation. 

Similarly, in Chapter 4 we identified a component of D. rotundus venom that caused vasorelaxtion in 

part via CGRP1 receptors and K+ channels. CGRP1 knock out rat experiments as well as ligand 

binding assays may be useful in understanding how the toxin interacts with CGRP1 receptors, and 

  why it selectively targets CGRP1 on the smooth muscle and not endothelial cells. This selectivity 
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could also be used as a therapeutical intervention for patients with endothelial dysfunction (ie. 

diabetes). 

Another limitation of these studies is the use of rat models to determine effects of snake envenoming in 

humans. For instance, it was speculated that cardiovascular collapse in humans is similar to that of 

rodents. However, rodents are prey to snakes and thus, evolution-wise, the type and amount of toxins 

in snake venoms may be more tailored to immobilise and kill rodents but not humans. Numerous 

studies have indicated that geographical location and diet play a role in venom composition. While 

there are similarities between human and rat physiology, a better model could be the use of in vitro 

human cells such as cardiomyocytes and smooth muscle cells. 

In regards to clinical implications, there have been cases reported where hypotension or collapse has 

occurred rapidly in humans after envenoming but the person has recovered before reaching the 

hospital. Thus, understanding the mechanism behind both these manifestations will help in providing 

better therapy for the patient. Similarly, hypertension due to snake envenoming is quite rare, thus 

understanding the physiological/pharmacological mechanism will help with better treatment 

strategies. 

In conclusion, this thesis has primarily focussed on studying the effects and, mechanisms involved, 

in venoms that affect the cardiovascular system. Future work should focus on the isolation and 

characterisation of the different toxins present in these snake venoms. This will enable further 

exploration into the pharmacological characterisation and mechanisms involved in cardiovascular 

modulation by these toxins as well their potential as lead compounds for therapeutic interventions. 

Importantly, it will also help to produce more efficient treatment strategies for envenomed patients. 
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