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Abstract

The present work is devoted to investigating portfolio optimization from different per-
spectives. We consider continuous-time investment on a finite time horizon. In the first
part, we address the problem of robust utility maximization, where we take into account the
uncertainty in the drift and covariance matrix of the securities. Our model’s novelty is that,
instead of restricting the uncertain parameters in a fixed range, we design a convex penalty
function to avoid unrealistic values. We connect this robust optimization problem with a
two-player zero-sum stochastic differential game, and analyze it using stochastic optimal
control techniques. In the second part, we provide a new objective function for portfolio
optimization. Instead of considering the first and second moments of the return, our objec-
tive function includes the whole target distribution of the terminal wealth. We study this
problem with the tools of optimal mass transport. In the numerical examples, we can suc-
cessfully reach the attainable targets by controlling the portfolio allocation at each instant.
We also consider consumption and cash input during the investment process in order to
reach distributions that are either unattainable or sub-optimal. Our work also dedicates to
proposing various numerical algorithms. In particular, we used a finite difference method,
Generative Adversarial Networks, and Monte Carlo simulations to solve the robust portfolio
allocation problem. They all provide accurate estimations in various numerical examples.
We then designed two deep neural network-based algorithms to solve optimal transport
problems. The first deep learning algorithm is based on a relaxation/penalization of the
terminal constraint; in the second algorithm, we express the dual formulation of the optimal
transport problem as a saddle point problem and solve it with adversarial networks. The
second method is mesh-free; therefore, it is applicable to solve high-dimensional problems.
The performance of this method is tested on several examples up to dimension 10.
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Chapter 1

Introduction

In this thesis, we investigate the problem of portfolio optimization from different perspec-
tives. First we consider the problem of utility maximization under model uncertainty.
Secondly, instead of maximizing a given utility function, we try to design an investment
strategy that reaches a given final wealth distribution. All along this work, we will propose
some efficient numerical algorithms to estimate the solutions, and the last part of the thesis
is dedicated in particular to the use of neural networks.

This thesis is comprised of four chapters. In Chapter 1, we first provide the notation and
related results to be used in the subsequent chapters (section 1.1 and section 1.2). Then we
state the background of the research topic (section 1.3) and my contributions (section 1.4).
Chapter 2 is based on our paper ‘Robust utility maximization under model uncertainty via
a penalization approach’. This work details utility maximization under uncertain drift and
covariance matrix of the securities. Chapter 3 is based on our paper ‘Portfolio optimization
with a prescribed terminal wealth distribution’. This work details the problem of portfolio
allocation with a prescribed terminal wealth density. Chapter 4 is based on our paper ‘Deep
Semi-Martingale Optimal Transport’. This work proposes two deep neural network-based
algorithms to solve multi-dimensional optimal transport problems.

1.1 Notations

Rn — n-dimensional real Euclidean space.

Rn×m — the set of all (n×m) real matrices.

R+ — non-negative real numbers.

Sd — the set of d× d symmetric positive semidefinite matrices.

tr(A) — the trace of the square matrix A.

xᵀ — the transpose of the vector (or matrix) x.

〈·, ·〉 — the inner product

:= — defined to be (see below).

E := [0, 1]× Rd.

D — a Polish space equipped with its Borel σ-algebra.

C(D;Rd) — the space of continuous functions on D with values in Rd.
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1.2. ELEMENTS OF THE GENERAL THEORY

Cb(D;Rd) — the space of bounded continuous functions.

C∗b (D;Rd) — the topological dual of Cb. When D is compact, C∗b (D;Rd) = M(D;Rd).

But when D is non-compact, C∗b (D;Rd) is larger than M(D;Rd).

C0(D;Rd) — the space of continuous functions, vanishing at infinity.

C1,2
b (E) — the set of all functions φ : E→ R such that φ ∈ Cb(E) and (∂tφ, ∂xφ, ∂xxφ) ∈

C0(E;R,Rd,Sd).

P(D) — the space of Borel probability measures on D with a finite second moment.

M(D;R) — the space of finite signed measures on D with values in R.

M+(D;R) — non-negative measures, the subset of M(D;R)

Lp(0, T ;Rn) — the set of Lebesgue measurable functions ϕ : [0, T ] → Rn such that∫ T
0
|ϕ(t)|pdt ≤ ∞ (p ∈ [1,∞]).

(Ω,F,P) — probability space.

{Ft}t≥0 — filtration

(Ω,F, {Ft}t≥0,P) — filtered probability space.

B(U) — Borelian σ-field generated by the open subsets of the topological space U .

X t,x — the process X starting from x at time t.

E[X] — the expectation of the random variable X.

E[X | G] — conditional expectation of X given G.

X ∼ N(µ, σ2) —the random variable X is normally distributed with mean µ and vari-

ance σ2.

∂xv or vx — the first derivative of v with respect to x.

∂xxv or vxx — the second derivative of v with respect to x.

1.2 Elements of the general theory

Stochastic calculus serves as a fundamental tool throughout this thesis. In this chapter, we
presents some concepts and results on stochastic calculus frequently used in the subsequent
chapters. All the results are quoted from classical textbooks, such as Klebaner (2005),
Karatzas and Shreve (1998) and Krylov (2008). As these are standard theorems from the
literature, we only provide the sources of the proofs. We refer interested readers to the
above books for a comprehensive treatment on these topics.

1.2.1 Stochastic processes

We consider continuous-time stochastic processes on a finite time interval in the thesis. We
denote T = [0, T ], 0 < T < ∞. We fix a filtered probability space (Ω,F,F = (Ft)t∈T,P)

2



1.2. ELEMENTS OF THE GENERAL THEORY

satisfying the usual conditions and a n-dimensional Brownian Motion W = (W 1, ...,W n)
with respect to F.

Definition 1.2.1. (Adapted process). A process (Xt)t∈T is adapted (with respect to F) if
for all t ∈ T, Xt is Ft-measurable.

Definition 1.2.2. (Progressively measurable). A process (Xt)t∈T is progressively measur-
able (with respect to F) if for any t ∈ T, the mapping (s, ω) → Xs(ω) is measurable on
[0, t]× Ω equipped with the product σ-field B([0, t])⊗ Ft.

1.2.2 Stochastic differential equations (SDE)

We only introduce the concept of strong solutions of SDE. We are given functions µ(t, x, ω) =
(µi(t, x, ω))1≤i≤d, σ(t, x, ω) = (σij(t, x, ω))1≤i≤d,1≤j≤n defined on T×Rd ×Ω, and valued re-
spectively in Rd and Rd×n. We assume that for all ω, the functions µ(·, ·, ω) and σ(·, ·, ω)
are Borelian on T × Rd and for all x ∈ Rd, the processes µ(·, x, ·) and σ(·, x, ·), written
µ(·, x) and σ(·, x) for simplification, are progressively measurable. We then consider the
SDE valued in Rd:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (1.1)

Theorem 1.2.1. (Existence and Uniqueness).
Existence and uniqueness of a strong solution to the SDE (1.1) is ensured if the Lipschitz

and linear growth conditions are satisfied: there exists a constant K and a real-valued
process κ such that for all t ∈ T, ω ∈ Ω, x, y ∈ Rd

(1)
|µ(t, x, ω)− µ(t, y, ω)|+ |σ(t, x, ω)− σ(t, y, ω)| < K|x− y|, (1.2)

(2)
|µ(t, x, ω)|+ |σ(t, x, ω)| ≤ κt(ω) +K|x|, (1.3)

(3)

E
[∫ t

0

|κu|2du
]
<∞,∀t ∈ T. (1.4)

Proof. See Pham (2009) or Klebaner (2005).

Theorem 1.2.2. Let (1.2), (1.3) and (1.4) hold. Then for any ξ Ft-measurable random
variable valued in Rd, such that E[|ξ|p] < ∞, for some p ≥ 1, SDE (1.1) admits a unique
strong solution starting from ξ at time t ∈ T, i.e., Xt = ξ. For all T > t, there exists a
constant CT such that

E
[

sup
t≤s≤T

|Xs|p
]
≤ CT (1 + E[|ξ|p]), (1.5)

and a constant KT such that

E [|Xt −Xs|p] ≤ KT (1 + E[|ξ|p])|t− s|p/2, ∀s, t ∈ [0, T ]. (1.6)

Moreover, if ξ̂ is another Ft-measurable random variable valued in Rd and X̂t is the
corresponding strong solution of (1.1) starting from ξ̂ at time t, then for any T > 0, there
exists a KT > 0 such that

E
[

sup
t≤s≤T

|Xs − X̂s|p
]
≤ KTE

[
|ξ − ξ̂|p

]
. (1.7)

3



1.2. ELEMENTS OF THE GENERAL THEORY

Proof. This is a standard result and one can find proof in the book of Krylov (2008) or
Ikeda and Watanabe (2014).

Theorem 1.2.3. Assume the conditions (1.2), (1.3) and (1.4) hold.
There exists a constant C (depending on K in (1.2)) such that for all t ≤ θ in T and

x ∈ Rd

E
[

sup
t≤s≤θ

|X t,x
s |2

]
≤ C|x|2 + CeC(θ−t)E

[∫ θ

t

|x|2 + |κu|2du
]

(1.8)

E
[

sup
t≤s≤θ

|X t,x
s − x|2

]
≤ CeC(θ−t)E

[∫ θ

t

|x|2 + |κu|2du
]
. (1.9)

There exists a finite positive constant β0 such that for all 0 ≤ t ≤ s in T and x, y ∈ Rd

E
[

sup
t≤u≤s

|X t,x
u −X t,y

u |2
]
≤ e2β0(s−t)|x− y|2. (1.10)

Proof. A proof of these estimates can be found in Krylov (2008).

Notice that the inequality (1.9) implies that

lim
h↓0

E

[
sup

s∈[t,t+h]

|X t,x
s − x|2

]
= 0. (1.11)

1.2.3 Optimal Transport

Theorem 1.2.4. (Kantorovich duality). Let X and Y be Polish spaces, let µ ∈ P(X) and
ν ∈ P(Y ), and let c : X × Y → R+ ∪ {∞}be a lower semi-continuous cost function.

Whenever π ∈ P(X × Y ) and (ϕ, ψ) ∈ L1(dµ)× L1(dν), define

I(π) =

∫
X×Y

c(x, y)dπ(x, y), J(ϕ, ψ) =

∫
X

ϕdµ+

∫
Y

ψdν. (1.12)

Define Π(µ, ν) to be the set of all Borel probability measures π on X × Y such that for all
measurable subsets A ⊂ X and B ⊂ Y ,

π(A× Y ) = µ(A), π(X ×B) = ν(B), (1.13)

and define Φc to be the set of all measurable functions (ϕ, ψ) ∈ L1(dµ)× L1(dν) satisfying

ϕ(x) + ψ(y) ≤ c(x, y) (1.14)

for dµ-almost all x ∈ X, dν-almost all y ∈ Y .
Then

inf
Π(µ,ν)

I(π) = sup
Φc

J(ϕ, ψ). (1.15)

Moreover, the infimum in the left-hand of (1.15) is attained. Furthermore, it does not
change the value of the supremum in the right-hand side of (1.15) if one restricts the
definition of Φc to those functions (ϕ, ψ) which are bounded and continuous.

Proof. A proof of this theorem can be found in Villani (2003).

4



1.2. ELEMENTS OF THE GENERAL THEORY

1.2.4 Well known inequalities

We will make use of the following inequalities in analysis often.

(1) Cauchy–Schwarz inequality. For all vectors u and v of an inner product space it is
true that

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉. (1.16)

(2) Hölder’s inequality. Let (S,Σ, µ) be a measure space and let p, q ∈ (1,∞) with
1/p+ 1/q = 1. Then, for all measurable real- or complex-valued functions f and g on
S,

||fg||1 ≤ ||f ||p||g||q. (1.17)

(3) Markov’s inequality. If X is a non-negative random variable and a > 0, then the
probability that X is at least a is at most the expectation of X divided by a:

P (X ≥ a) ≤ E[X]

a
. (1.18)

(4) Jensen’s inequality. If X is a random variable, f : R → R is a convex function,
f(E[X]) and E|f(X)| are finite, then

f(E[X]) ≤ E[f(X)]. (1.19)

5



1.3. BACKGROUND

1.3 Background

Over the past decades, there has been a vast amount of research on portfolio allocation.
Perhaps one of the most iconic results is the portfolio selection theory by Markowitz (1952,
1959), which is also referred to as ‘modern portfolio theory (MPT)’.

Markowitz transformed two proverbs — nothing ventured, nothing gained, and do not
put all your eggs into one basket — into rigorous theorems for portfolio optimization. Ac-
cording to Markowitz, with a given risk level, a wise investor should maximize the expected
return (or minimize the risk for a given expected return). With this breakthrough achieve-
ment, Markowitz won the Nobel Prize in Economic Sciences. MPT can be expressed with
the formulation 

max E [R1α1 +R2α2 + ...+Rnαn]

s.t. var (R1α1 +R2α2 + ...+Rnαn) ≤ β,

α1 + α2 + ...+ αn = 1,

αi ≥ 0, i = 1, 2, ..., n,

(1.20)

where αi represent the fraction of wealth invested in security i, Ri denotes the return for
the i-th security, and β is the risk level that the investor can tolerate.

Markowitz’s theory only provides a starting point, as it still has some limitations. It
is a static model, where the decision is only made once at the beginning of the time hori-
zon. In the real world, the financial market is dynamic and constantly changing. Hence,
continuous-time portfolio selection models have emerged, see, for example, Merton (1969,
1971), Karatzas et al. (1987) and Bajeux-Besnainou and Portait (1998).

In a landmark paper, Merton (1969) introduces a continuous-time model to maximize
the expected utility within a fixed time horizon, and he found an explicit solution for
the problem of optimal portfolio selection and consumption, for a constant relative risk
aversion (CRRA) utility function Xγ

γ
, γ ∈ (0, 1) (a.k.a. power utility or isoelastic utility).

He found that the optimal fraction of the wealth to be invested in the risky asset is given
by π∗ = µ−r

σ2(1−γ)
1, which is independent of both time and the current wealth.

Merton’s problem has led to various extensions, some of which are illustrated in the
textbook by Rogers (2013). In the first stream, researchers vary the time horizon. For
example, the agent lives for a random time τ which follows some distribution independent
of the evolution of the assets. Or the agent may choose to stop at some stopping time τ of his
choice and receive an immediate reward U(Xτ ). In the second stream, researchers put some
practical constraints on the wealth. For example, Elie and Touzi (2008) treated drawdown
constraint on the wealth, i.e. Xt ≥ c sup

s≤t
Xs, ∀t, where c is a fixed constant between (0, 1).

Another kind of constraint deals with the expected losses below a threshold, i.e. expected
shortfall constraint. Agents maximize their expected utility subject to E

[
(X −XT )+

]
≤ η,

where X and η are constants. In practice, the investors are not allowed to trade at every
instant of time and all trades incur transaction costs. The optimization problem without
any transaction costs or trading constraints will lead to an unrealistic portfolio selection
strategy. Hence, some research take transaction costs into account while maximizing the
objective function, for example, Oksendal and Sulem (2002), Liu and Loewenstein (2002),
Dai and Zhong (2008). In the third stream, researchers consider stochastic parameters. For
example, the interest rate is no longer a constant but following a Vasicek process instead,
or the drift can follow an Ornstein–Uhlenbeck process (Rogers, 2013). In the research

1Here, µ is the expected rate of asset returns, σ2 is the variance of the asset returns, r is the risk-free
interest rate and 1− γ is the relative risk aversion constant.

6



1.3. BACKGROUND

regarding non-constant volatility, people usually consider a stochastic volatility model (see,
for example, Matoussi et al. (2015)).

It is obvious that the distributions of security returns are unknown. In the implemen-
tation of portfolio optimization, investors usually estimate the mean, variance and interest
rate using historical data. However, the optimal portfolios can be sensitive to errors in
estimating the parameters, or even more generally assuming that the past is a reliable pre-
diction of the future. To reduce the effect of estimation errors (aka misspecification), robust
techniques are applied to construct more stable portfolios.

There has been a substantial amount of literature on robust portfolio optimization over
the last decade and the area is still developing. A comprehensive introduction can be found
in the book by Fabozzi et al. (2007). Gabrel et al. (2014) provided an overview of ad-
vances in robust optimization, including, but not limited to applications in finance, where
they stated that “robustifying” model calibration is one of the most important area of re-
search that should be looked after following the 2007 financial crisis. We list below a few
pieces of influential research in this direction. For instance, Elliott and Siu (2009) supposed
that an agent wants to maximize the minimized utility function, over a family of probabil-
ity measures. This problem was then formulated as a Markovian regime-switching model,
where the market parameters are modulated by a continuous-time finite-state Markov chain.
Fouque et al. (2016) studied an asset allocation problem with stochastic volatility and un-
certain correlation, and derived closed-form solutions for a class of utility functions. Ismail
and Pham (2019) studied a robust Markowitz portfolio selection problem under covariance
uncertainty. The value function is obtained by optimizing the worst-case mean-variance
functional, over the admissible investing strategies α. They then solved this problem by
the McKean–Vlasov dynamic programming approach and characterized the solution with
a Bellman–Isaacs partial differential equation (PDE). They also characterized the robust
efficient frontier in two examples: uncertain volatilities and uncertain correlation. Last but
not least, we also mention the work by Talay and Zheng (2002), which studied the robust
optimization problem in the context of derivatives hedging.

In parallel to the above, there is also a rich body of literature discussing the robustness
issue in economics, for example, the book by Hansen and Sargent (2008). In their papers
(e.g., Hansen and Sargent 2007, Hansen et al. 2005 and Hansen and Sargent 2011), the
decision maker starts with a single approximation model. He surrounds the approximation
model with a set of alternative models whose relative entropies are restricted or penalized.
The goal is to make a decision which can perform well for all the models of this set. Based
on the framework by Hansen and Sargent, Glasserman and Xu (2013) studied robust risk
measurement under model misspecification.

The systems studied in this thesis are dynamic, and their evolution is described by Itô’s
stochastic differential equations. Since the system is dynamic, the decision makers must
make decisions based on the updated information, and the optimal decision will also evolve
continuously over time. Such optimization problems are called stochastic optimal control
problems. For basic notations, definitions and properties of stochastic processes, we refer
to the books by Karatzas et al. (1998) and Karatzas and Shreve (2012).

Stochastic optimal control problems commonly appear in the fields of physics, biology,
economics, etc. They also arise in various financial applications, where the investment strat-
egy is the “control variable”. In the following chapters, we will apply stochastic control
techniques to solve dynamic portfolio optimization problems. We refer interested readers
to ElKouri (1981), Yong and Zhou (1999), Pham (2009) and Nisio (2015) for a overview
of stochastic control analysis. When solving a stochastic optimal control problem, Pon-
tryagin’s maximum principle and Bellman’s dynamic programming are two commonly used
tools. In this study we will only focus on Bellman’s dynamic programming. This approach

7



1.3. BACKGROUND

is based on obtained a so-called value function, which is solution to a second order PDE.
This PDE is called a Hamilton–Jacobi–Bellman (HJB) equation. Another PDE we will
often use in the following chapters is called a Fokker–Planck equation, aka the Kolmogorov
forward equation. It describes the time evolution of the probability density function of the
velocity of a particle under the influence of drag forces and random forces, as in Brownian
motion. The Fokker-Planck equation is used with problems where the initial distribution
is known. With the known drift and diffusion coefficients, we can compute the distribution
at a latter time.

Optimization is a thriving discipline, where the idea of convexity is at the central place.
Among the computational optimization techniques, we will frequently apply duality-based
algorithms. Convex conjugate is a commonly used tool when we want to find the dual
problem of a convex minimization problem. Good references about convex analysis already
exist, such as the classic Rockafellar (1970), Rockafellar and Wets (2009), and Boyd and
Vandenberghe (2004).

8



1.4. MY CONTRIBUTIONS

1.4 My contributions

1.4.1

The first part of the thesis (Chapter 2) deals with the problem of utility maximization
under uncertain parameters. It led to the completion of the research article Guo et al.
(2019a). Our portfolio optimization problem was first inspired by the Merton problem
(Merton, 1969). In the original Merton problem, the evolution of the risky asset, although
stochastic by essence, is governed by the Black-Scholes model (Black and Scholes, 1973) with
observable parameters µ, r and σ. This assumption clearly does not match the reality that
investors are facing. Therefore, in this work, we take into account the uncertainty of the drift
and diffusion coefficients in the model, leading to a robust portfolio opimization problem.
The concept of robust portfolio optimization was first introduced in the operations research
literature by El Ghaoui and Lebret (1997) and Ben-Tal and Nemirovski (1998). Instead
of assuming a model with a known drift, interest rate or volatility, the problem of robust
optimal allocation assumes that they will evolve dynamically in the most unfavourable way
within a given range. The resulting allocation process tends to be more stable and less
vulnerable to changes and misspecifications in model parameters.

The first novelty of this work is that we do not assume a given range of parameters in
the evolution of the underlying process. The first novelty of this work is that we do not
define specific lower and upper bounds for parameters in the evolution of the underlying
process. In other papers considering uncertain volatility (or drift), the authors assume the
admissible volatility σ ∈ [σmin, σmax], where σmin and σmax are model bounds defining the
uncertainty of the amplitude of future prices fluctuations. Instead, we allow the parameters
to move freely and use a penalty function F = F (r, µ, σ, . . .) to penalize unrealistic values of
the parameters. In our problem, we consider a set A for the portfolio allocation strategies
and a set B for the drift and diffusion coefficients, the value function is defined by

v(t, x) = sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]}
, (1.21)

where θ := (Σ(·), µ(·)), α ∈ A is the portfolio allocation process, and the strategy Γ maps
B→ A, λ0 is the intensity of the penalty function.

We can interpret this robust utility maximization problem as a two-player zero-sum
stochastic differential game (SDG). We first show the existence of a value function for the
differential game in Proposition 2.3.2. In the classical papers studying two-player zero-
sum SDGs, Fleming and Souganidis (1989) and Nisio (2015) made the assumptions that
the utility function U is bounded and Lipschitz continuous. The present work extends
these results to more general assumptions by considering an unbounded domain and an
unbounded utility function U . We prove that the value function (1.21) satisfies the Dynamic
Programming Principle in Theorem 2.3.1. We then prove that our value function is the
unique viscosity solution (see, for example, Crandall and Lions (1983) for the introduction
of viscosity solution) of an HJBI equation in Theorem 2.3.2 and Theorem 2.3.3.

We then consider a particular utility function U(x) = ln(x). With this specifically
chosen utility function, we can write the terminal wealth XT explicitly and get the analytical
solution of the optimal controls, as in the following

0 = σ̂4
s − σ0σ̂

3
s −

(µ− r)2

2λ0

. (1.22)

To simulate a more realistic scenario, we add some noise to the reference covariance matrix
and simulate portfolios with robust and non-robust strategies, respectively. Figure 2.4(a)

9
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tells us how far should our reference covariance deviate from reality for the robust portfolio
to outperform the non-robust portfolio. With Figure 2.4(b), we can choose the best λ0 in
(1.21) for robust portfolio allocation based on our confidence in the reference covariance.
Furthermore, we test our robust approach by constructing two empirical portfolios using
real market data. Figure 2.6 depicts how the robust and non-robust expected utilities
change w.r.t. λ0. For a given amount of noise, the robust portfolio may underperform
for small values of λ0, however the robust expected utility will increase gradually as λ0

increases. Finally, as λ0 diverges to infinity, the robust expected utility will converge to the
non-robust one.

In the numerical part, we first compute the value function with a PDE method. Starting
from the terminal condition v(T, x), we work backward to compute v(t, x) via an implicit
finite difference method. Since the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation is
non-linear, in order to use the implicit finite difference method, we introduce a novel it-
eration scheme based on the Legendre transform of the nonlinearity. The algorithm for
this method is summarized in Algorithm 1. Figure 2.9 compares the PDE estimated v(t, x)
with the analytical solution for a logarithmic utility function. Figure 2.10(a) shows the
simulated value v(t, x) for the power utility function.

Another novelty of this work is that we connect Generative Adversarial Networks
(GANs) with zero-sum differential games, and we devise a deep learning-based algorithm
to solve this problem. In general, GANs can be interpreted as minimax games between the
generator and the discriminator, whereas our problem is a minimax game between the agent
who controls the portfolio allocation and the market who controls the model parameters.
To our knowledge, it is the first time GANs are used to solve a robust optimization prob-
lem in the field of quantitative finance. GANs are an exciting recent innovation in machine
learning. Cao et al. (2020) reviewed the minimax structures underlying GANs, and they
established theoretical connections between GANs and Mean-Field Games. However, there
are few applications of GANs in quantitative finance so far, except Wiese et al. (2020) and
Cuchiero et al. (2020). Inspired by GANs’ ability to generate images, they approximated a
realistic asset price simulator using adversarial training techniques.

Our GANs are composed of two neural networks; one generates α (α-generator), the
other generates σ (σ-generator). They compete against each other during training. As
training advances, the game may end up at a Nash Equilibrium. A demonstration of the
simplified network architecture is illustrated in Figure 2.11. We summarized this training
process in Algorithm 2. We first apply it to the utility function U(XT ) = ln(XT ). Figure
2.12(a) compares the learned value functions with the true values for a range of λ0. The
value functions estimated with GANs show good accuracy compared to the true ones. Then

we also consider the utility function U(XT ) = 3X
1
4
T , and compare the GANs estimated

values with the PDE estimations in Figure 2.13(a).
Finally, we implement a Regression Monte Carlo scheme (Longstaff and Schwartz, 2001)

to solve the same robust portfolio allocation problems. The obstacle in the implementation
is that we are not able to simulate the paths forward, since the dynamics of the state
variable depends on the uncertain controls. Following Kharroubi et al. (2014), one way to
tackle this problem is an initial randomization of the controls. To be specific, we choose
an arbitrary initial distribution for the controls and simulate the state variable with these
dummy controls. Then, inspired by the Dynamic Programming Principle, we can start from
the known terminal condition and compute the value functions backward in time recursively.
In this process, we use a least-squares regression to approximate the conditional expectation.
The complete process is shown in Algorithm 3. For a logarithmic utility function, Figure
2.16 compares the Monte Carlo simulation values, finite difference results and analytical
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values. It shows that both the PDE and Monte Carlo approach the true value in this
example. Figure 2.18 shows Monte Carlo and finite difference approximations for a power
utility function.

1.4.2

In the second part of this thesis (Chapter 3), we consider a portfolio allocation problem,
where the goal is to reach a prescribed wealth distribution at the terminal time. In this
problem, the prices of the risky assets are modelled by a semimartingale, with prescribed
drift (µt) and diffusion (Σt) coefficients. By controlling the portfolio allocation between a
risky and a risk-free asset, the investor wants the distribution of the terminal wealth to
match, or be close to, a given target distribution. This work led to the article Guo et al.
(2020a), currently under review for publication.

The novelty of this work is to provide a new perspective on portfolio optimization
and connect it with optimal transport. The classical objective function in a portfolio
optimization problem is to maximize the expected return given variance level. However,
the first and second moments of the return of a portfolio is only a simplified two parameters
description of the wealth. In our problem setting, the whole distribution of the portfolio
wealth would provide investors complete information. The challenge of finding a continuous
semimartingale with prescribed distributions at given times can be addressed using the
optimal transport (OT) theory.

We denote by ρt := P ◦ X−1
t ∈ P(R) the distribution of Xt. In this problem, we know

the initial distribution of the portfolio wealth ρ0 ∈ P(R), and we are given a prescribed
terminal distribution ρ1 ∈ P(R). With ρ0 and a suitable portfolio allocation process α, the
realized terminal distribution of the portfolio wealth is ρ1 := P ◦X−1

1 . We also introduce a
functional C(ρ1, ρ1) to penalize the deviation of ρ1 from ρ1. To make sure the feasible set
is convex, in Notation 3.2.1, we define the maps B̃(t, x) := αᵀ

tµtx, Ã(t, x) := αᵀ
tΣtαtx

2, and
we let B(t, x) := B̃ρ, A(t, x) := Ãρ. Then the dynamics of the portfolio wealth is given by

dXt = B̃(t,Xt)dt+ Ã
1
2 (t,Xt)dWt, (1.23)

X0 = x0. (1.24)

In Proposition 3.2.1, we state the necessary and sufficient condition for the existence
of αt ∈ Rd. Then based on Proposition 3.2.1, we constrain A,B in a feasible set as Π :=

{(ρ,B,A) : A ≥ (B+)2

‖νt‖2ρ
} (B+ := max(0, B), νt := Σ

− 1
2

t µt). In this problem, we use a convex

cost function F : E×R×R→ R+ ∪ {+∞} to penalize measures out of the set Π, and we
want to solve the infimum of the functional

V (ρ0, ρ1) = inf
ρ,B,A

∫
E

F

(
B

ρ
,
A

ρ

)
dρ+ C(ρ1, ρ1) (1.25)

over all (ρ,B,A) ∈ Π satisfying the Fokker–Planck equation and the initial distribution

∂tρ(t, x) + ∂xB(t, x)− 1

2
∂xxA(t, x) = 0 ∀(t, x) ∈ E, (1.26)

ρ(0, x) = ρ0(x) ∀x ∈ R. (1.27)

While solving this problem, we first compute the convex conjugate of the cost functional,
given in (3.18). Then, in Theorem 3.3.1, we introduce the dual problem. This proof is an
application of the Fenchel–Rockafellar duality theorem, e.g., Brezis (2010, Theorem 1.12).

11
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In Corollary 3.3.1, we further simplify the form of the dual problem, given in

V (ρ0, ρ1) = sup
φ1

{
−C∗(−φ1)−

∫
R
φ0dρ0

}
. (1.28)

Instead of looking for the supremum over all functions φ = (φt)t∈[0,1], we only need to find
the optimal φ1, which is φ evaluated at the terminal time. Then the function φ(t, x) is a
viscosity solution of the Hamilton–Jacobi–Bellman equation−φt − sup

Ã≥ (B̃+)2

‖νt‖2

[
φxB̃ + 1

2
φxxÃ− F (B̃, Ã)

]
= 0, in [0, 1)× R,

φ(1, x) = φ1(x), on [1]× R.
(1.29)

Because the minimal objective function (1.25) is a trade-off between the cost function
and the penalty functional, the optimal φ1 in the dual problem (3.29) will not in general
ensure that ρ1 reaches ρ1, unless the penalty functional is infinity for ρ1 6= ρ1. When ρ1 is
attainable, it can be realized by choosing the penalty functional as an indicator function

C(ρ1, ρ1) =

{
0 if ρ1 = ρ1,

+∞ if ρ1 6= ρ1.
(1.30)

Using the indicator penalty functional (1.30) is equivalent to adding the terminal constraint
ρ1 = ρ1, ∀x ∈ R. This coincides with the ‘usual’ optimal transport problem. When
C(ρ1, ρ1) is defined as (1.30), we provide the dual problem in Corollary 3.3.2.

We then solve the dual problem using numerical methods. In particular, we use a gra-
dient descent-based method to find the optimal φ1. A crucial ingredient in the gradient
descent method is to characterize optimality condition. By providing a gradient, the com-
putation is faster and more accurate. We show that the optimal terminal function φ1 should
satisfy the optimality condition (3.45). When C(ρ1, ρ1) is defined as (1.30), the correspond-
ing optimality condition can be expressed as −ρ1 + ρ1 = 0, ∀x ∈ R. We know φ(t, x) is
the solution of the HJB equation (1.29). For a given terminal function φ1, we can calculate
φ0 by solving the HJB equation backward with a finite difference method. In Algorithm
4, we state the gradient descent-based algorithm to look for the optimal φ1 in (3.29). It
includes solving the HJB equation and the Fokker–Planck equation with a finite difference
method combined with a fixed-point iteration.

In the numerical results, we give examples for general target distributions with various
penalty functionals. In the first example, we use L2 norm as the penalty functional and
ρ1 = N(6, 1). As shown in Figure 3.1, ρ1 moves closer to the target ρ1 as we increase the
intensity of the penalty. Compared to other research (e.g., Chen et al. 2018, Chen et al.
2019b) where the prescribed distributions are restricted to Gaussian, our method applies to
a large choice of ρ1, including heavy-tailed and asymmetric distributions. In Figure 3.3, we
illustrate that we can attain the target when ρ1 is a mixture of two Normal distributions.
Then we use the Kullback–Leibler (K–L) divergence as the penalty functional, and the
results are presented in Figure 3.4.

Next, we relax the problem by allowing the investor to inject or withdraw cash during
the investment process. As stated in Proposition 3.2.1, we always have (B̃+)2 ≤ ‖νt‖2 Ã
for a self-financing portfolio. When the prescribed terminal distribution is not ambitious
enough, it is possible that the optimal drift B̃(t, x) and diffusion Ã(t, x) lie in the interior of
the feasible set, i.e., B̃(t, x)2 < ‖νt‖2 Ã(t, x). In this case, instead of using this unsaturated
drift B̃(t, x) to reach the prescribed terminal distribution, we can choose to use the drift

B̃(t, x) = ‖νt‖
√
Ã to attain a more ambitious distribution. We define the concept of
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cash saving at time t as ct := ‖νt‖
√
Ã(t, x) − B̃(t, x). We show that we can reach a

better terminal distribution, in the sense that the terminal wealth has a higher expected
value, when we take cash saving into account. As shown in Figure 3.5(a), with a relatively
conservative target, although ρ1 has attained the target, the distribution for the wealth with
cash saving attains a higher value than the target distribution.

Finally, by allowing the investor to inject cash during the process, we can remove the
constraint (B̃+)2 ≤ ‖νt‖2 Ã and we allow B̃ ∈ R instead. In the cost function, we use the
term K(B̃2−‖νt‖2 Ã) to penalize the amount of cash input. By varying K, we can control
the strength of penalty and hence control the cash input flow. To see the effect of cash
input, we demonstrate two examples with unattainable targets in Figure 3.7. It shows that
we can steer the empirical terminal density ρ1 to ρ1 by inputting cash wisely.

1.4.3

The third and last part of the thesis (Chapter 4) focuses on the numerical solution of optimal
transport problems. This time, we consider a general setting, where the state variable is a
multi-dimensional semimartingale.

In the field of finance, optimal transport has been applied for robust hedging (Dolin-
sky and Soner 2014, Henry-Labordère 2017) and volatility calibration (Guo et al. 2019b).
Although we have gained tremendous theoretical insight, the numerical solution of the prob-
lem remains challenging. When the dimension is less or equal to three, many state-of-art
approaches are able to compute the global solution effectively; see, for example, the review
by Zhang et al. (2020). However, when the distributions live in spaces of dimension four or
more, these traditional methods face the curse of dimensionality. Our contribution in this
work is to propose two deep neural network-based algorithms for solving optimal transport
problems. Both methods are mesh-free and therefore mitigate the curse of dimensionality.
These methods can be widely applied to solving optimal transport as well as stochastic
optimal control problems.

In this part, we consider a stochastic process (Xt)t∈[0,1] valued in Rd, which solves the
SDE

dXt = B(t,Xt)dt+ A(t,Xt)dWt, (1.31)

X0 = x0, (1.32)

where B : E → Rd and A : E → Rd×d is defined such that AAᵀ = A. As in the previous
work, the process Xt has two predefined marginal distributions, ρ0 at time t = 0 and ρ1 at
time t = 1.

The first algorithm is based on a relaxation/penalization of the terminal constraint,
and then the primal problem is solved using deep neural networks. In particular, we let
F (Bt,At) denote the cost function, and we use the functional C(ρ1, ρ1) to penalize the
deviation of ρ1 from ρ1. We are interested in solving the infimum of the functional

V (ρ0, ρ1) = inf
ρ,B,A

{∫
E

F (Bt,At)dρ(t, x) + C(ρ1, ρ1)

}
, (1.33)

over all (ρ,B,A) ∈ P(Rd)× Rd × Sd+ satisfying the initial distribution

ρ(0, x) = ρ0(x) ∀x ∈ Rd, (1.34)

and the Fokker–Planck equation

∂tρ(t, x) +∇x · (B(t, x)ρ(t, x))− 1

2

∑
i,j

∂ij(Ai,j(t, x)ρ(t, x)) = 0 ∀(t, x) ∈ E. (1.35)
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In this method, we discretize the period [0, 1] into N constant time steps and construct a
neural network θn for each time step. Then we use neural networks to look for the optimal
(Bt)t∈[0,1] and (At)t∈[0,1], namely (Bn, An) ≈ θn(Xn). With Bn, An and Xn, we can compute
the state variable at the next time step from the dynamics

Xn+1 = Xn +Bn∆t+ An∆Wn, ∀n ∈ [0, N − 1].

We denote by M the number of Monte Carlo paths. At the final time step N , we can use
the terminal wealth samples Xm

N ,∀m ∈ [1,M ] to estimate ρ1 as ρ̃1 using kernel density
estimation (KDE) (Hastie et al., 2009). Because KDE is not an unbiased estimator of the
true density, we also estimate ρ̃1 from ρ1 with the same KDE. Using gradient descent-based
algorithms, the training will search for the optimal neurons θ̂n,n∈[0,N−1] which minimize the
loss function:

θ̂n,n∈[0,N−1] = arg inf
θ

{
1

M

M∑
m=1

{N−1∑
n=0

F (θn(Xm
n ))∆t

}
+ C(ρ̃1, ρ̃1)

}
.

The algorithm is summarized in Algorithm 5. We illustrate the numerical result for a
2-dimensional example, where ρ1 is a bivariate normal distribution. The contours of the
empirical and target distributions are presented in Figure 4.2.

In the second method, we consider the indicator penalty function

C(ρ1, ρ1) =

{
0 if ρ1 = ρ1,

+∞ if ρ1 6= ρ1,
(1.36)

and one recovers the “usual” semi-martingale optimal transport problem. In this case, we
provide the dual formulation in Theorem 4.4.1 and then express the dual problem as as a
saddle point problem:

V (ρ0, ρ1) = sup
φ1

inf
B∈Rd,A∈Sd+

{∫
Rd
φ1dρ1 − E

[
φ1(X1)−

∫ 1

0

F (B,A)dt|X0 = x0

]}
. (1.37)

This dual saddle point formulation of the optimal transport problem is reminiscent of
GANs: recall that GANs can be interpreted as minimax games between the generator and
the discriminator, whereas our problem is a minimax game between φ1 and (A, B). Inspired
by this connection, we use adversarial networks, as described in Chapter 2, to estimate the
value (1.37). The algorithm is stated in Algorithm 7.

This second method is free from the curse of dimensionality. Hence it is a promising
quantitative techniques for solving high-dimensional optimal transport problems. We test
the performance and accuracy of Algorithm 7 on 5-d and 10-d examples. The empirical
marginal distributions of the trained sample sets are shown in Figure 4.8 and Figure 4.13,
respectively. The mean and covariance matrix of the empirical distributions are also pro-
vided. As high dimensional distributions are difficult to visualize, in addition to the graph-
ical check, we also introduce a loss metric to measure the quality of the solution. Firstly,
we will apply a number of random affine transformations on the dataset. Then, we propose
a loss metric adapted from the Wasserstein distance. For each affine transformation, we
compute the loss metric between the empirical and theoretical distribution. Figure 4.11
and 4.16 show the histogram of the loss metrics for the 5-d case and 10-d case, respectively.

We illustrate the method with an application in finance, where we implement Algo-
rithm 5 to the problem of optimal portfolio selection with a prescribed terminal density
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studied in Chapter 3. The goal is, given an initial wealth distribution ρ0, to find an in-
vestment strategy that attains a prescribed terminal wealth distribution ρ1. The objective
function in this application is

inf
α,ρ

{∫
E

F (αt)dρ(t, x) + C(ρ1, ρ1)

}
, (1.38)

where F (αt) is a convex cost function in the portfolio allocation αt. We can apply Algo-
rithm 5 to solve for the value (1.38). In the numerical results, we present several examples
with various penalty functionals, including L2 norm (Figure 4.18), Kullback–Leibler diver-
gence (Figure 4.20) and 2-Wasserstein distance (Figure 4.21). Note that our method is not
restricted to Gaussian target distributions; for example, we use a mixture of two normal
distributions as the target ρ1 = 0.5N(4, 1) + 0.5N(7, 1) in Figure 4.20 and the result is
satisfactory.
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Chapter 2

Robust utility maximization under
model uncertainty via a penalization
approach

This chapter addresses the problem of utility maximization under uncertain parameters. In
contrast with the classical approach, where the parameters of the model evolve freely within
a given range, we constrain them via a penalty function. In addition, this work dedicates
in proposing various numerical algorithms to solve for the value function, including finite
difference method, Generative Adversarial Networks and Monte Carlo simulation. These
methods contribute to the quantitative techniques for solving robust portfolio optimization
problems. We show that this robust optimization process can be interpreted as a two-
player zero-sum stochastic differential game. We prove that the value function satisfies the
Dynamic Programming Principle and that it is the unique viscosity solution of an associated
Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation. By testing this robust algorithm on real
market data, we show that robust portfolios generally have higher expected utilities and
are more stable under strong market downturns.

2.1 Introduction

In the problems of continuous-time utility maximization, besides the choice of utility func-
tion, a key element in the formulation is the a priori knowledge assumed for the evolution
of the underlying assets (e.g., the expected returns and the quadratic covariation of the
diffusion process). In the original Merton problem (Merton, 1969), the evolution of the
risky asset, although stochastic by essence, is governed by the Black-Scholes model (Black
and Scholes, 1973) with fixed parameters µ, r and σ. This is a very simplistic model for
the underlying asset price. Stochastic models (for the volatility and interest rates) that
describe the price evolution more realistically have later emerged. Several papers have ad-
dressed the problem in this context: Matoussi et al. (2015) examined the case of stochastic
volatility, while Noh and Kim (2011) addressed the case of stochastic interest rates. The
expected return (or drift) µ plays an essential role in the optimal allocation; even when it
is considered stochastic, it is still assumed to be an observable input of the problem. This
assumption clearly does not match the reality that investors are facing. Several works by
Lakner (1995) and then Bel Hadj Ayed et al. (2017) addressed the utility maximization
problem with an uncertain drift, although it was assumed to follow some form of prescribed
dynamics or prior distribution.

Two decades ago, the concept of robust portfolio optimization had emerged. It was
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first introduced in the operations research literature by El Ghaoui and Lebret (1997) and
Ben-Tal and Nemirovski (1998). Instead of assuming a model with a known drift, interest
rate or volatility, the problem of robust optimal allocation assumes that they will evolve
dynamically in the most unfavourable way within a given range. The resulting allocation
process tends to be more stable and less vulnerable to changes and misspecifications in
model parameters.

A robust investment process can be interpreted as a two-player game. On one hand, the
market can be thought of as an adversarial player controlling the volatility (or the drift) in
order to minimize the gains of an investor; on the other hand, the investor, who controls
the allocation of the portfolio, is trying to maximize her gains under the worst possible
behaviour of the market. The two controllers have conflicting interests, with the gain of
one player being a loss for the other. Hence we call this competition between the investor
and the market a two-player zero-sum stochastic differential game (SDG).

Differential games were first introduced by Isaacs (1965). When it comes to a continuous-
time context, where a continuum of moves for each player is envisioned, a profound difficulty
arises to make the formulation precise because the control choices can be changed instan-
taneously and the value of the game may not exist. To overcome the difficulties, Fleming
(1961) & Fleming (1964) naturally started with discretizing time and approximating a dy-
namic game by a sequence of ‘one-shot’ games. Afterward, Friedman (1971) defined upper
and lower δ-strategy and made use of “noise”. In a similar approach, Elliott and Kalton
(1972) introduced a pseudo-strategy for each player and proved that if the ‘Isaacs condi-
tion’ is satisfied, then the game has a value. Thanks to the pioneering work in viscosity
solution by Crandall and Lions (1983) and Lions (1983), a direct proof of the existence of
the value of stochastic differential games became possible. The book by Fleming and Soner
(2006) serves as a concise introduction to the theory of viscosity solutions and determin-
istic zero-sum differential games. The first complete theory for two-player zero-sum SDG
was developed by Fleming and Souganidis (1989), where they proved the existence of value
functions of the games. Buckdahn and Li (2008) generalized the results of Fleming and
Souganidis (1989) by considering the gain functional as a solution of a Backward Stochastic
Differential Equation (BSDE). With the help of BSDE methods, they proved the Dynamic
Programming Principle (DPP) for the value functions in a more straightforward approach.
Some more recent works on zero-sum SDG include Hernández-Hernández and Ŝırbu (2018),
Baltas et al. (2019) and Cosso and Pham (2019).

The main novelty of this work is threefold. Firstly, we do not assume a given range of
parameters in the evolution of the underlying process. In other papers considering uncertain
volatility (or drift), the authors assume the admissible σ ∈ [σmin, σmax], where σmin and σmax

are model bounds in accordance with the uncertainty about future fluctuations. Instead,
we allow the parameters to move freely and use a penalty function F = F (r, µ, σ, . . .)
to penalize unrealistic values of the parameters. Mathematically speaking, the penalty
function gives some coercivity to the problem so that an optimal solution can be found.
This approach has been used for robust derivatives pricing in Tan et al. (2013) and Guo
et al. (2017). Note that one can asymptotically recover the aforementioned approaches that
involve a fixed parameter range, by taking the penalty function F to be 0 over a given set
and +∞ outside.

Secondly, compared to other papers studying robust portfolio optimization, we consider
errors in parameter estimation, and analyse the problem from game theory and optimal
control theory perspectives. Our formulation allows straightforward calculation of the value
function and we focus on approximating the value function with numerical methods. We
devise two innovative algorithms, which are Generative Adversarial Networks (GANs) and
control randomization. These methods enrich the quantitative techniques for solving robust
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portfolio optimization problems. In particular, it is, to our knowledge, the first time GANs
are used to solve a robust optimization problem in the field of quantitative finance. It is
also the first application of the control randomization method (see Kharroubi et al. 2014)
in the context of a robust portfolio optimization problem.

GANs are an exciting recent innovation in machine learning. The fundamental principle
of GANs is to use two different neural networks as two opponents with conflicting goals, and
its solution is a Nash equilibrium. Hence, GANs training is closely related to game theory.
Cao et al. (2020) reviewed the minimax structures underlying GANs, and they established
theoretical connections between GANs and Mean-Field Games. However, there are few
applications of GANs in quantitative finance so far. The only relevant work is by Wiese
et al. (2020). Being inspired by GANs’ ability to generate images, they approximated a
realistic asset price simulator using adversarial training techniques.

Last but not least, in the classical papers studying two-player zero-sum SDGs, Fleming
and Souganidis (1989) and Nisio (2015) made the assumptions that the utility function U is
bounded and Lipschitz continuous. The present work extends these results to more general
assumptions by considering an unbounded domain and an unbounded utility function U .
Moreover, we prove that the lower- and upper-value of the SDG (2.2)-(2.3) in fact coincide.

The rest of this chapter is organized as follows. In section 2.2, we formulate a portfolio
optimization problem in a robust setting and introduce the uncertain drift and uncertain
volatility processes. In section 2.3, we define the value functions for static games and two-
player zero-sum SDGs. In section 2.3.1 we show that the differential game has a saddle
point and as a consequence, the lower- and upper-values of the SDG coincide. We prove
that the value function satisfies the DPP in section 2.3.2 and that our value function is the
unique viscosity solution of an HJBI equation in section 2.3.3. In section 2.4, we derive a
closed-form solution for the logarithmic utility. In section 2.5.1, we add some noise to the
covariance matrix and simulate portfolios with robust and non-robust strategies, respec-
tively. Then, in section 2.5.2, we test our robust mechanism by constructing two empirical
portfolios using market data. In section 2.6.1, we provide numerical results for general util-
ity functions using PDE techniques via finite difference methods. Finally, in section 2.6.2
and section 2.6.3, we present the algorithms and results of solving a robust portfolio opti-
mization problem with GANs and Monte Carlo simulations via control randomization.

2.2 Problem formulation

We consider a portfolio with d risky assets and one risk-free asset compounding at a constant
interest rate r ∈ R. The price process of the risky assets is denoted by Su ∈ Rd (0 ≤ u ≤ T ),
and the ith element of Su follows the dynamics

dSiu
Siu

= µiudu+
d∑
j=1

σiju dW
j
u , 1 ≤ i ≤ d, (2.1)

with the drift µu takes values in Rd, the invertible matrix σu takes values in Rd×d and the
covariance matrix Σu := σuσ

ᵀ
u takes value in Sd.

We will follow the framework set in Fleming and Souganidis (1989) and Talay and Zheng
(2002). We first introduce the canonical sample spaces for the underlying Brownian motion
in (2.1). For each t ∈ [0, T ], we set

Ωt := (ω ∈ C([t, T ];Rd) : ωt = 0).
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2.2. PROBLEM FORMULATION

We denote by F = Ft,s (s ∈ [t, T ]), the complete filtration generated by the canonical
process from time t to time s. Equipped with the Wiener measure Pt on Ft,T , the filtered
probability space (Ωt,Ft,T ,Pt,F) is the canonical sample space.

The processes µ(·), σ(·) are progressively measurable with respect to the Pt-augmented
filtration of the d-dimensional Brownian motion Wu.

Let Xu ∈ R be the value of the portfolio at time u. A portfolio allocation strategy αu
takes value in Rd represents the proportion of total wealth the agent invests in the d risky
assets at time u, and 1−

∑d
i=1 α

i
u is the proportion invested in the risk-free asset.

Assuming the strategy is self-financed, the wealth process evolves as follows

dXu

Xu

=
d∑
i=1

αiu
dSiu
Siu

+

(
1−

d∑
i=1

αiu

)
rdu.

We define r := r× 1 with 1 ∈ Rd being a d-dimensional ones vector. The wealth evolution
can be rewritten as

dXu = Xu(α
ᵀ
u(µu − r) + r)du+Xuα

ᵀ
uσudWu. (2.2)

Now, we introduce the concept of admissible controls.

Definition 2.2.1. An admissible control process θ := (σ(·), µ(·)) for the market on [t, T ]
is an Ft,s progressively measurable process taking values in a compact convex set B ⊂
Rd×d × Rd. The set of all admissible θ on [t, T ] is denoted by B(t).

Definition 2.2.2. An admissible control process α for the investor on [t, T ] is an Ft,s
progressively measurable process taking values in a compact convex set A ⊂ Rd. The set
of all admissible α is denoted by A(t).

Note that although the sets for the value of the controls are compact, in practice, A
and B are arbitrarily large. Next, let us define the payoff function as the expectation of a
terminal utility function U plus a penalty function F :

J(t, x, α, θ) = Et,x
[
U(Xα,θ

T ) + λ0

∫ T

t

F (θs)ds

]
, (2.3)

where Et,x(·) denotes the expectation given the initial time and wealth (t, x) ∈ [0, T ] × R
(we assume the initial wealth x is finite), and λ0 ∈ R is a positive constant. Throughout the
paper, we will often include α and θ in the superscript of X to indicate the dependency of
the wealth process on the allocation, drift and volatility processes. Our objective is to find
the optimal portfolio allocation process α that maximizes the worst-case payoff function
given by the drift process µ and the covariance process Σ. Throughout the paper, F will
be a convex function in θs.

2.2.1 Robust value functions

We are now ready to define the value functions. In our problem, the covariance and drift
are unknown. We want to find the optimal portfolio allocation process that maximizes the
worst-case situation given by the covariance and drift. Then, given an initial condition
(t, x) ∈ [0, T ]× R, this value is given by

u(t, x) = sup
α∈A

inf
θ∈B

{
Et,x

[
U(Xα,θ

T ) + λ0

∫ T

t

F (θs)ds

]}
. (2.4)
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Here, A,B depend on both t and x. We say α̂ and θ̂ are optimal controls if u(t, x) =
J(t, x, α̂, θ̂) = infθ∈B J(t, x, α̂, θ).

This problem is known as a static game, and the function u(t, x) is called the lower
value of the static game. If we reverse the moving order of the two players, we obtain the
upper value of the static game, which is

u(t, x) = inf
θ∈B

sup
α∈A

{
Et,x

[
U(Xα,θ

T ) + λ0

∫ T

t

F (θs)ds

]}
. (2.5)

Note that Xα,θ
s , ∀s ∈ [t, T ] denotes a process controlled by processes α, θ. When Xα,θ

s

starts from an initial condition (t, x), we write the expectation of f(Xα,θ
s ) as Et,x [f(Xα,θ

s )].

2.2.2 Assumptions

In this section, we make the following assumptions which will be used in the theoretical
proofs.

Assumption 2.2.1. The utility function U : R→ R is a continuous, increasing and concave
function such that ∣∣∣U(x)− U(x)

∣∣∣ ≤ Q(|x| , |x|) |x− x| , (2.6)

where Q(|x| , |x|) is a positive polynomial function.

Assumption 2.2.2. The set B has non-empty interior. The penalty function F : B → R
is a continuous convex function, and F attains its minimum in the interior of B.

2.3 Value functions of two-player zero-sum stochastic

differential games

In order to complete the description of the game, we need to clarify what information is
available to the controllers at each time s. For multi-stage discrete time games this can be
formulated inductively. However, this is problematic in continuous time, because control
choices can be changed instantaneously (Fleming and Soner, 2006, Chapter 11). To address
this issue, Fleming and Souganidis (1989) adopted the idea of a progressive strategy in a
two-player zero-sum SDG, which is defined as follows:

Definition 2.3.1. An admissible strategy Γ (resp. ∆) for the investor (resp. market) on
[t, T ] is a mapping Γ : B→ A (resp. ∆ : A→ B ) such that, for any s ∈ [t, T ] and θ, θ̃ ∈ B

(resp. α, α̃ ∈ A), θ(u) = θ̃(u) (resp. α(u) = α̃(u)) for all u ∈ [t, s] implies Γ(θ)(u) = Γ(θ̃)(u)
(resp. ∆(α)(u) = ∆(α̃)(u)) for all u ∈ [t, s]. The set of all admissible strategies for the
investor (resp. market) on [t, T ] is denoted by N (resp. M).

In the two-player zero-sum SDG, one player is allowed to strategically adapt his control
according to the control of his opponent in a non-anticipative fashion. This is in contrast
to the static game, in which the player must choose his control without any knowledge
of the opponent’s choice. Then, we may define another set of value functions using these
admissible strategies: the upper value function of the two-player zero-sum SDG is defined
by

v(t, x) = sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]}
, (2.7)
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and the corresponding lower value function is

v(t, x) = inf
∆∈M

sup
α∈A

{
Et,x
[
λ0

∫ T

t

F (∆s)ds+ U(Xα,∆
T )

]}
. (2.8)

The terms “lower” and “upper” are not obvious at first glance, one might first guess
the opposite because inf sup ≥ sup inf. We will justify v ≤ v in Corollary 2.3.2 using the
comparison principle.

2.3.1 Existence of a value for the differential games

In this section, we prove that the four value functions defined in the previous sections all
coincide, i.e., u(t, x) = v(t, x) = v(t, x) = u(t, x). This is established via the following
propositions.

Proposition 2.3.1. The four value functions defined in section 2.2 and section 2.3 satisfy
the following inequalities:

u(t, x) ≤ v(t, x) ≤ v(t, x) ≤ u(t, x). (2.9)

Proof. The inequality v(t, x) ≤ u(t, x) holds because M contains constant mappings, i.e.,
∆(α) = θ for any α ∈ A and fixed θ ∈ B. Similarly, u(t, x) ≤ v(t, x) holds because N

contains a copy of A. Then for all α ∈ A and ε > 0, there exists some ∆ such that

inf
∆∈M

sup
α∈A

J (t, x, α,∆(α)) + ε ≥ sup
α∈A

J
(
t, x, α,∆(α)

)
≥ J

(
t, x, α,∆(α)

)
≥ inf

θ∈B
J(t, x, α, θ).

So u(t, x) ≤ v(t, x). A similar argument gives us v(t, x) ≤ u(t, x). Hence we have

u ≤ v ≤ u, u ≤ v ≤ u.

In order to complete the proof, it suffices to show that v(t, x) ≤ v(t, x). This is proven in
Corollary 2.3.2.

Proposition 2.3.2. Let U be a continuous, increasing and concave utility function on R,
suppose that Assumption 2.2.2 holds, then u(t, x) = v(t, x) = v(t, x) = u(t, x).

Proof. See Appendix A.1.

Using Proposition 2.3.2, we can conclude that there exists a value for the two-player
zero-sum SDG, i.e., v = v. We focus on the analysis of v(t, x) in the following sections.

2.3.2 Dynamic programming principle

If the drift and volatility functions of dynamics (2.2) and the utility function U were
bounded and U was Lipschitz continuous, we could apply the results of Fleming and
Souganidis (1989) directly. However, in our model, the drift and volatility functions are
unbounded and U is only locally Lipschitz continuous. So we must extend the classical re-
sults and use localization techniques to prove that the value function v(t, x) defined in (2.7)
satisfies the Dynamic Programming Principle (DPP). The DPP is widely used in numerical
methods, such as the least squares Monte Carlo method.

Before presenting the main result, we require the following important property of the
value function.
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Proposition 2.3.3. Suppose that Assumption 2.2.1 holds true. Then the value function
v(t, x) (2.7) is locally Lipchitz continuous w.r.t x. There exists a positive polynomial
function Φ such that∣∣∣v(t, x)− v(t, x)

∣∣∣ ≤ Φ(|x| , |x|) |x− x| , ∀(t, x) ∈ [0, T ]× R. (2.10)

Proof. See Appendix A.2.

We are now in the position to present a main result in this paper.

Theorem 2.3.1 (Dynamic Programming Principle). Suppose that Assumption 2.2.1 and
2.2.2 hold true. Define the value function v(t, x) by (2.7) for (t, x) ∈ [0, T ] × R. Let t + h
be a stopping time, then, for t ≤ t+ h ≤ T , we have

v(t, x) = sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ t+h

t

F (θs)ds+ v(t+ h,XΓ,θ

t+h)
]}
. (2.11)

Proof. See Appendix A.3.

As a consequence of the DPP, the value function v(t, x) satisfies the following property.

Corollary 2.3.1. Suppose that Assumption 2.2.1, 2.2.2 hold true. Then the value function
v(t, x) defined in (2.7) is Hölder continuous in t on [0, T ], with exponent 1

2
.

Proof. See Appendix A.4.

2.3.3 Viscosity solution of the HJBI equation

In this section, we prove that the value function is the unique viscosity solution of a
Hamilton–Jacobi–Bellman–Isaacs equation. First, we prove the existence of the viscosity
solution, and then we state the uniqueness of this viscosity solution.

Existence of a viscosity solution of the HJBI Equation

Now we state another main result in this paper; the proof is a modification of Talay and
Zheng (2002).

Theorem 2.3.2. Suppose that Assumption 2.2.1 and 2.2.2 hold true. Then the value
function v(t, x) defined in (2.7) is a viscosity solution of the HJBI equation

{
∂v
∂t

(t, x) +H(t, x, ∂v
∂x

(t, x), ∂
2v
∂x2 (t, x)) = 0 in [0, T )× R

v(T, x) = U(x) on [T ]× R,
(2.12)

where

H(t, x, p,M) = inf
Θ∈B

sup
a∈A

{
λ0F (Θ) + (aᵀ(µ− r) + r)xp+

1

2
tr
(
aᵀΣax2M

)}
, (2.13)

for (t, x, p,M) ∈ [0, T ]× R× R× R.

Proof. See Appendix A.5.
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Comparison principle for the HJBI Equation

In this subsection, we present the comparison principle for equation (2.12), which implies
the uniqueness of the viscosity solution of the HJBI equation. We can adapt the proof from
Pham (2009, Theorem 4.4.4) for an HJB equation and straightforwardly extend it to HJBI
equations with two controls.

Theorem 2.3.3. Comparison Principle.
Let Assumption 2.2.1, 2.2.2 hold true. Define the HJBI equation as

−∂v
∂t

(t, x)+λv(t, x)− inf
Θ∈B

sup
a∈A

{
λ0F (Θ) + (aᵀ(µ− r) + r)x

∂v

∂x
(t, x) +

1

2
tr

(
aᵀΣax2 ∂

2v

∂x2
(t, x)

)}
= 0,

for (t, x) ∈ [0, T )× R, λ ∈ R. (2.14)

Let U (resp. V ) be a upper semi-continuous viscosity subsolution (resp. lower semi-
continuous supersolution) with polynomial growth condition to equation (2.14). If U(T, ·) ≤
V (T, ·) on R, then U ≤ V on [0, T ]× R.

Proof. See Appendix A.6.

As a consequence of the comparison principle, the function v(t, x) (2.7) is in fact the
unique viscosity solution of the HJBI equation (2.12).

Corollary 2.3.2. Let Assumption 2.2.1, 2.2.2 hold true. Define the lower and upper value
functions of the two-player zero-sum SDG by (2.8) and (2.7). Then

v(t, x) ≤ v(t, x) for (t, x) ∈ [0, T ]× R.

Proof. From Theorem 2.3.2, v(t, x) is a viscosity solution of the HJBI equation (2.12). Let
φ ∈ C∞([0, T )×R) be a test function such that (t0, x0) ∈ [0, T )×R is a local minimum of
v − φ. Using the viscosity supersolution property of v(t, x), we have

−∂φ
∂t

(t0, x0)−H(t0, x0,
∂φ

∂x
(t0, x0),

∂2φ

∂x2
(t0, x0)) ≥ 0,

where H(t, x, p,M) is defined by (2.13). Define

H̃(t, x, p,M) = sup
a∈A

inf
Θ∈B

{
λ0F (Θ) + (aᵀ(µ− r) + r)xp+

1

2
tr
(
aᵀΣax2M

)}
. (2.15)

It is obvious that H ≥ H̃, so

−∂φ
∂t

(t0, x0)− H̃(t0, x0,
∂φ

∂x
(t0, x0),

∂2φ

∂x2
(t0, x0)) ≥ 0 in [0, T )× R.

Thus v(t, x) is a supersolution of the HJBI equation

∂v

∂t
(t, x) + H̃(t, x,

∂v

∂x
(t, x),

∂2v

∂x2
(t, x)) = 0, (t, x) ∈ [0, T )× R.

Using the results of Fleming and Souganidis (1989) and a similar argument, we can
prove the lower value function v(t, x) (2.8) is the unique viscosity solution of the HJBI
equation {

∂v
∂t

(t, x) + H̃(t, x, ∂v
∂x

(t, x), ∂
2v
∂x2 (t, x)) = 0 in [0, T )× R

v(T, x) = U(x) on [T ]× R.
(2.16)

Finally, by the comparison principle, we have v(t, x) ≤ v(t, x), as required.
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2.4 Logarithmic utility case

In this section, we consider a particular utility function U(x) = ln(x). With this specifically
chosen utility function, we can write XT explicitly and optimal controls can be solved easily.
The value function reads:

v(t, x) = sup
α∈A

inf
(µ(·),Σ(·))∈B

{
Et,x
[
ln(x) +

∫ T

t

(αᵀ
sµs + r − αᵀ

sr−
1

2
αᵀ
sΣsαs)ds

+

∫ T

t

αsσsdWs +

∫ T

t

λ0F (µs, σs)ds
]}

= ln(x) + sup
α∈A

inf
(µ(·),Σ(·))∈B

{
Et,x
[∫ T

t

(αᵀ
sµs + r − αᵀ

sr−
1

2
αᵀ
sΣsαs)ds

+

∫ T

t

λ0F (µs, σs)ds
]}

.

(2.17)

We can solve for the optimal variables with the optimality conditions:

µs − r− Σsαs = 0, (2.18)

αs + λ0
∂F (µs, σs)

∂µs
= 0, (2.19)

−1

2
αsα

ᵀ
s + λ0

∂F (µs, σs)

∂σs
= 0. (2.20)

But we emphasize that logarithmic function is just one of the utility functions we consider
in the chapter. When using other more general utility functions, the problem can not be
solved as simple as this.

As a one-dimensional toy example, we let µ to be a known constant and F (µs, σs) =
λ0(σs − σ0)2. Then we obtain the following optimality conditions:

α̂s =
µ− r
σ̂2
s

, (2.21)

−1

2
α̂2
s + λ0(1− σ0

σ̂s
) = 0, (2.22)

which leads to a quartic equation

0 = σ̂4
s − σ0σ̂

3
s −

(µ− r)2

2λ0

. (2.23)

The optimal σ̂s and α̂s can be solved from equation (2.23) explicitly. Equation (2.23) always
has a real positive root and we provide the solution in the Appendix A.7. By substituting
the optimal controls into (2.17), we obtain the analytical solution of the value function.

From equations (2.21)–(2.22), we observe that the optimal volatility and investment
strategy are both constants, being independent of the wealth Xs and the time s. The clas-
sical optimal portfolio strategy given by Merton is also a constant, where α∗ = µ−r

σ2(1−γ)
1 for

CRRA utility functions. However, in our problem, it is not possible to find an analytical
solution for a power utility function. We will use numerical methods to estimate the values

11− γ is the relative risk aversion constant.
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in the next subsection. It is worth mentioning that the reference volatility σ0 is not neces-
sarily a constant, it can be a local volatility depending on time and stock price. However,
for multiple assets, it would increase the dimension of the problem.

We use λ0 to govern the degree to robustness, and we illustrate how the value of σ̂2
s varies

with λ0 in Figure 2.1. As shown in the figure, by increasing λ0, the optimal σ̂2
s approaches

to σ2
0. Figure 2.2 compares a robust value function supα infσ E [U(XT )] with Merton’s non-

Figure 2.1: Optimal variance w.r.t. λ0

robust value function supα E [U(XT )]. We use the optimal controls α̂, σ̂ calculated from
(2.23) for the robust value, and an estimated constant volatility σ0 for Merton’s value. It
is not surprising to see that the robust value is always lower than Merton’s value, since we
sacrifice some performance for extra robustness. Figure 2.2(a) shows that as the estimated
σ0 increases, the robust value approaches to the non-robust value, because σ̂t → σ0 as
σ0 → +∞. For a similar reason, in Figure 2.2(b), as the penalization gets stronger, the
robust value asymptotically approaches Merton’s value. When λ0 → 0, the worst volatility
σ̂t → +∞, which means it is very risky to invest in stocks and it is wiser to save money in
the saving account. As α̂t → 0, U(XT ) → U(xerT ). We set x = 1, r = 0.015, T = 1, then
this value goes to 0.015 as shown at the lower left end of Figure 2.2(b).

Hereafter, we assume the drift µ(·) is a known constant for simplicity, and the uncer-
tainty about the market only comes from the covariance process. With some modifications
in the implementation, all the algorithms proposed in the subsequent sections can be applied
to the case where both µ(·) and Σ(·) are uncertain.

(a) (b)

Figure 2.2: Compare robust value with Merton’s value, U = log(x), F = (σt − σ0)2
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2.5 Comparison of robust and non-robust portfolios

2.5.1 Monte Carlo simulation

In this section, we implement our robust strategy using Monte Carlo simulations, and
compare the performance of robust and non-robust portfolios.

As we know, in the real world volatility estimates are noisy and biased, though likely
to oscillate around a reference value in the long run. In the first experiment, we have a
reference covariance matrix Σ0, which is estimated according to historical data. We assume
that the real-world covariance is the reference covariance Σ0 plus some noise. We construct
robust and non-robust portfolios consisting of two risky assets and one risk-free asset. For

the robust portfolio, we use λ0F (Σs) = λ0

∥∥Σs − Σ0

∥∥2

2
(
∥∥·∥∥

2
denotes the usual Frobenius

norm) as the penalty function, then the analytical robust investment strategy (α̂1
s, α̂

2
s) can

be calculated in a similar method to the one in section 2.4. For the non-robust one, we use
Σ0 as the covariance, then calculate the non-robust strategy (α1

s, α
2
s) accordingly. Assuming

the real covariance matrix during the investment process is Σreal = Σ0 +ε×noise, where the
noise follows a standard normal distribution N(0, 1)2 and ε is the magnitude of the noise,
we use Monte Carlo simulations to estimate the expected utility function

E
[
ln(XT )

]
= Et,x

[
ln(x) +

∫ T

t

αᵀ
s(µ− r) + r − 1

2
αᵀ
sΣrealαsds

]
. (2.24)

We substitute αs = (α̂1
s, α̂

2
s) in (2.24) for the robust portfolio, and αs = (α1

s, α
2
s) for the

non-robust one.
The results with various λ0 are shown in Figure 2.3(a) to 2.3(c), where we used 2× 105

paths in the simulation and the initial wealth X0 = 1. We can observe that the robust
portfolio may underperform when there is little noise. But, as the noise size ε increases,
the robust strategy will outperform the non-robust strategy eventually. Comparing Figures
2.3(a), 2.3(b) and 2.3(c), we can find that when the penalty is relatively weak (λ0 = 0.01),
it takes a bigger noise size for the robust strategy to outperform. When the penalty is stiff
(λ0 = 70), the robust strategy will outperform with a very small noise size. The robust
expected utility is almost a constant for all sizes of noise in Figure 2.3(a), meaning that our
model is very robust to changes in market circumstances. Among the three values of λ0

illustrated, Figure 2.3(c) is probably the most attractive to investors. When the reference
Σ0 is perfect, the robust portfolio only loses to the non-robust one by a little, but when Σ0

is wrong, the robust portfolio outperforms the non-robust one by a large amount. It means
the price we pay for the robustness is tolerable, but the potential reward is substantial.

Define the crossing point ε as the value of ε for which the robust expected utility
matches the non-robust expected utility. Figure 2.4(a) depicts how the crossing point ε
varies with respect to λ0. It tells us how much should our reference covariance be wrong for
the robust portfolio to outperform the non-robust portfolio. The behaviour of the robust
portfolio varies with λ0. For a certain ε, by looping over a range of λ0, we can find the one
giving us the maximal robust expected utility. This relation is plotted in Figure 2.4(b).
With this plot, if we know how confident we are with the reference Σ0 (i.e., the value of ε),
we can choose the best λ0 for robust portfolio allocation.

2This noise is added to each component of Σ0, i.e., adding noise to the standard deviation of asset 1
(σ1), asset 2 (σ2), and their correlation ρ12.
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(a) Expected utility with λ0 = 0.01 (b) Expected utility with λ0 = 1

(c) Expected utility with λ0 = 70

Figure 2.3

(a) (b)

Figure 2.4
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2.5.2 Empirical market data

In the second experiment, we implement the robust and non-robust strategies with empirical
market data. We have 1007 portfolios, and we construct each portfolio according to robust
and non-robust allocations, respectively. Each portfolio consists of 2 risky assets and 1 risk-
free asset, with a maturity of T = 1 year. The portfolios’ starting dates range from 02/04/15
to 03/04/19 (for example, the 1st portfolio starts on 02/04/15 and lasts for one year, the
1007th portfolio starts on 03/04/19 and lasts for one year as well). We choose the S&P500
(∧GSPC) and SPDR Gold Shares (GLD)3 as our risky assets and use a constant interest
rate r = 0.015. For a specific portfolio, we set Σ0 to be the sample covariance estimator of
the 5 years of daily relative returns before the starting date. The estimated annual expected
returns µ1, µ2 are the exponentially weighted moving average of the daily relative returns
with a 5-year lookback window and 2.75-year half-life. With a decay parameter β = 0.999,

for the nth portfolio, µi,i=1,2 = 252× 1
1−β1260

∑1260
t=0 (1− β)βt

Sin−t−Sin−t−1

Sin−t−1
.

In this experiment, we use a logarithmic utility function and a penalty function λ0F (Σs) =

λ0

∥∥Σs − Σ0

∥∥2

2
. At the beginning of the investment process for each portfolio, we estimate

parameters µ1, µ2,Σ0 and then compute the robust and non-robust portfolio allocations
accordingly. Starting from an initial wealth X0 = 1, the wealth of the non-robust portfolio
evolves as

Xn+1 = Xn exp
{
α1
n

S1
n+1 − S1

n

S1
n

+ α2
n

S2
n+1 − S2

n

S2
n

+ (1− α1
n − α2

n)r∆t

− 1

2

[
α1
n

(
S1
n+1 − S1

n

S1
n

− µ1∆t

)
+ α2

n

(
S2
n+1 − S2

n

S2
n

− µ2∆t

)]2}
, n ∈ [0, 251], (2.25)

where (α1
n, α

2
n) are the non-robust allocations on day n. For the wealth of the robust

portfolio, just replace (α1
n, α

2
n) with the robust allocations (α̂1

n, α̂
2
n) in (2.25). Finally, by

averaging the ln(XT ) of all the portfolios, we get the expected utility function.
Figures 2.5(a)–2.5(d) present the terminal wealth XT of the 1007 robust and non-robust

portfolios. For a small λ0, the robust portfolios are very stable. No matter how the
market changes, the robust terminal wealth stays around 1. As λ0 increases, the robust
portfolios start to show fluctuations. Eventually, their behaviour converges to that of the
non-robust portfolios as λ0 approaches to infinity, which corresponds to the non robust
case. This behaviour is consistent with our expectations. The penalty function is not
playing its role when λ0 is close to zero. Hence the robust allocations are optimal for the
most chaotic market situations, and the investment strategies are very conservative. As λ0

becomes larger, the penalty function comes into play and prevents extreme volatilities. As
a consequence, the robust strategies are less conservative, and portfolios will show more
fluctuations under regime changes.

We show the robust and non-robust expected utilities in Figure 2.6. It depicts how

E[ln(Xα1,α2

T )] and E[ln(X α̂1,α̂2

T )] change w.r.t. λ0. We can compare this plot with figures
2.3(a), 2.3(b), 2.3(c) and 2.4(b) in section 2.5.1. For a given amount of noise, the robust
portfolio may underperform for small λ0, but the value will increase gradually and reach a
highest point. Finally, the robust expected utility will converge to the non-robust one.

To illustrate the time evolution of the portfolio wealth, we show the stock prices and
wealth of two portfolios, starting on 2017-01-03 (Figure 2.7) and 2018-01-26 (Figure 2.8),
respectively. For the portfolio in Figure 2.7, the optimal non-robust allocations are α1 =
5.778, α2 = −2.174, and the robust allocations with λ0 = 200 are α̂1 = 3.083, α̂2 = −1.452.

3Stock price data are available on https://au.finance.yahoo.com.
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2.5. COMPARISON OF ROBUST AND NON-ROBUST PORTFOLIOS

(a) Terminal wealth with λ0 = 0.01 (b) Terminal wealth with λ0 = 10

(c) Terminal wealth with λ0 = 100 (d) Terminal wealth with λ0 = 1000

Figure 2.5
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Figure 2.6: Empirical expected utility w.r.t. λ0

The allocations are both constant, independent of time. The S&P500 keeps rising in Figure
2.7(a), while there are some fluctuations in the Gold price. Over the same period, the
absolute performance of the non-robust portfolio is better all the way (Figure 2.7(b)). For
the portfolio in Figure 2.8, we have α1 = 9.418, α2 = 0.301, and α̂1 = 3.940, α̂2 = −0.054.
Since the proportions invested in Gold are small for both robust and non-robust portfolios,
the trend of wealth is dominated by the price of S&P500. There are two big drops happening
in Feb. 2018 and Dec. 2018, respectively. These are also reflected in the portfolio wealth
in Figure 2.8(b). However, compared with the non-robust strategy, the robust strategy
is more conservative. Hence, the robust portfolio loses less during the market shocks and
outperforms the non-robust one.

(a) (b)

Figure 2.7: The portfolio starting on 2017-01-03

(a) (b)

Figure 2.8: The portfolio starting on 2018-01-26
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From the above empirical experiments and the Monte Carlo simulations from sec-
tion 2.5.1 , we can see that, by adding this robust mechanism with a properly chosen
λ0, the portfolio value can overcome a wrong covariance matrix estimate and is less vul-
nerable to sudden market shocks. Furthermore, this parameter λ0 protect us against the
objection that the max-min expected utility theory is too cautious because, by acting as
if the agent believed in the worst-case model, he puts too much weight on “very unlikely”
scenarios (Hansen and Sargent, 2008).

2.6 Numerical results

In this section, we provide a few numerical algorithms to approximate the value functions.
In particular, we implemented an implicit finite difference method, a Generative Adversarial
Network method, and a control randomization method.

2.6.1 Implicit finite difference method

In this section, we are computing the value function via an implicit finite difference method.
We use the penalty function λ0F (σ2

t ) = λ0(σ2
t )

2 for simplicity. Then the HJBI equation is

vt +H(t, x, vx, vxx) = 0, (2.26)

where the Hamiltonian is defined by

H(t, x, vx, vxx) = inf
σ2

sup
a

{
a(µ− r)xvx + rxvx +

1

2
a2σ2x2vxx + λ0(σ2)2

}
. (2.27)

Solving for the optimal controls in (2.27) using the first order condition, we obtain â =

− (µ−r)xvx
σ2x2vxx

and σ̂2 =
(
− (µ−r)2v2

x

4λ0vxx

)1/3

. Substituting â and σ̂2 into the PDE (2.26), we obtain

vt + Cv
4
3
x (−vxx)−

2
3 + rxvx = 0,

where C = (3× 2−
4
3 )λ

1
3
0 (µ− r) 4

3 . Note we have shown in section 2.3.1 that vxx < 0.
Since the PDE (2.26) is non-linear, in order to use the implicit finite difference method,

we first linearize the function H with respect to the second order term via the Legendre
transform. This method was also used by Jonsson and Sircar (2002a,b) to solve nonlinear
HJB equations. We combine the linearization step with a fixed-point iteration scheme.

Define H∗ as the Legendre transform of H with respect to the second order term; it is
given by

H∗(a) = −C2a
2
5v

4
5
x − rxvx,

where C2 = 5
3
(2

3
)−

2
5C

3
5 . Hence, we can represent H(vxx) as the supremum of a linear

function in vxx,

H(vxx) = sup
a

{
a · vxx −H∗(a)

}
. (2.28)

It is difficult to check the condition for stability in our PDE as the optimal a is unknown.
Fortunately, implicit finite difference methods have a weaker requirement for stability than
explicit finite difference methods.

31



2.6. NUMERICAL RESULTS

Algorithm 1 Implicit Finite Difference Scheme

for step n = N : 1 do

(1) Solve BKn−1 + Gn−1 = F n using â0(i) = g(vni+1, v
n
i , v

n
i−1), and get the value vector

Kn−1
0

(2) Solve BKn−1 + Gn−1 = F n using â1(i) = g(vn−1
i+1 , v

n−1
i , vn−1

i−1 ), where the values vn−1

are from Kn−1
0 . Then get the value vector Kn−1

1 .

(3) Repeat step 2 until
∥∥âj − âj−1

∥∥
2
≤ tolerance

(4) Let Kn−1 = Kn−1
j

end

We set the time grid as 0, 1, ..., n, n+ 1, ..., N , and the spatial grid as 1, 2, ...i, i+ 1, ...M .
With the maturity T = 1, we use a constant time step ∆t = T

N
and a constant spatial

step ∆x. We apply a forward approximation for vt, a central approximation for vx, and a
standard approximation for vxx. Working backward in the implicit scheme, at each time step
n, the optimal â in (2.28) is the solution of the first order condition vnxx+C2(vnx)

4
5

2
5
â−

3
5 = 0,

or equivalently,

â =
2

3
C(vnx)

4
3 (−vnxx)−

5
3 =: f(â). (2.29)

Although we do not have the true values for vn as the values of vn depend on â, we can
use a fixed-point iteration scheme to find the solution of equation (2.29). First we make an
initial guess â0 using the known values vn+1, which will be represented by g(vni+1, v

n
i , v

n
i−1),

then iteratively generate a sequence âk,k=1,2,... with âk = f(âk−1) until âk converges.
Finally we can substitute the discrete approximations of the derivatives into the HJBI

equation (2.26), and we obtain the implicit form:(
â(i)∆t

∆x2
− r (i∆x+ x0) ∆t

2∆x

)
vni−1+

(
−1− 2â(i)∆t

∆x2

)
vni +

(
â(i)∆t

∆x2
+
r (i∆x+ x0) ∆t

2∆x

)
vni+1

= −vn+1
i − C2â(i)

2
5

(vn+1
i+1 − vn+1

i−1

2∆x

) 4
5
∆t. (2.30)

Let B be the coefficient matrix, Kn the value vector at time n, Gn is a vector with
the make-up items, and F n+1 the right hand side of (2.30). Then equation (2.30) can be
written in a matrix notation:

BKn +Gn = F n+1, n = N − 1, ..., 1, 0.

The algorithm for this method is summarized in Algorithm 1.

Logarithmic utility function

In the 1-asset example, we use the logarithmic utility function and the penalty function
λ0F (σ2

t ) = λ0(σ2
t )

2. We let N = 50,M = 100. The terminal condition is given by the
utility function,

v(tN , xi) = U(xi) ∀i ∈ [1,M ].
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(a) U(XT ) = ln(XT ), St ∈ R1 (b) U(XT ) = ln(XT ), St ∈ R2

Figure 2.9

The boundary conditions v(tn, x1) and v(tn, xM) for n ∈ [0, N − 1] are given explicitly by
the equation

v(tn, x) = ln(x) + sup
α

inf
σ2

{N−1∑
s=n

(
αs(µ− r) + r − 1

2
α2
sσ

2
s + λ0(σ2

s)
2

)
∆t
}
.

Similarly, we can also implement the above method on a 2-asset example where St ∈ R2

and λ0F (Σt) = λ0 ‖Σt‖2
2. The HJBI equation becomes

vt + inf
σ1,σ2,ρ

sup
α1,α2

{
(α1(µ1 − r) + α2(µ2 − r) + r)xvx +

1

2
(α2

1σ
2
1 + 2α1α2σ1σ2ρ+ α2

2σ
2
2)x2vxx

+ λ0(σ4
1 + 2σ2

1σ
2
2ρ

2 + σ4
2)
}

= 0. (2.31)

We can solve for the optimal controls α̂1, α̂2, σ̂1, σ̂2, ρ̂ in (2.31) using the first order
condition. In this example, we always have the optimal σ̂1, σ̂2 > 0 and ρ̂ ∈ [−1, 1]. Then,
by applying Algorithm 1, we can get the value function of a portfolio with 2 risky assets.

Figure 2.9(a) shows the PDE estimated v(t, x) for the 1-asset example with parameters
r = 0.015, µ = 0.035, λ0 = 10; Figure 2.9(b) shows result for the 2-asset case with param-
eters r = 0.015, µ1 = 0.035, µ2 = 0.045, λ0 = 10. Comparing with the analytical solution,
we can see that the two curves completely overlap for both 1-asset and 2-asset cases, which
validates the accuracy of the PDE approach.

Power utility function

In the second example, we use a power utility function. This time, we only have the terminal
condition and the boundary condition for x1 = 0, but not the boundary condition for a large
xM . For functions xγ where γ ∈ (0, 1), the limit of the first order derivative approaches 0
as x goes to infinity. Therefore we can use a zero Neumann boundary condition when xM
is large. Then we have the following terminal and boundary conditions:

v(tN , xi) = U(xi)∀i ∈ [1,M ], v(tn, x1) = 0 ∀x1 = 0, n ∈ [0, N − 1],
∂v

∂x
(tn, xM) = 0 ∀n ∈ [0, N − 1].

Figure 2.10(a) shows the simulated value v(t, x) for a range of x, with U(XT ) = 4
3
X

1
4
T and

parameters µ = 0.035, r = 0.015, λ0 = 10. We only display the estimated curve computed
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(a) estimated value function (b) estimated â in each iteration

Figure 2.10: Finite Difference Method for U(XT ) = 4
3
X

1
4
T

by our PDE method, as there is no analytical solution available for comparison in this
example. Figure 2.10(b) shows the first four iterations of the estimated â from an initial
guess. There is almost no difference between the four curves, indicating that the fixed point
iteration scheme has converged within the first four iterations.

This subsection has shown that the PDE method converges to the true value efficiently.
Nevertheless, there are a few shortcomings to this approach:

• The PDE approach requires tedious algebraic manipulation before implementation. In
particular, even when using the same utility function, the preliminary computations
have to be redone if we switch to a different penalty function.

• In general, PDE approaches suffer from the curse of dimensionality. As the dimension
of the problem becomes higher, the computational complexity increases exponentially
and the approach becomes infeasible. Although the PDE approach suffices for our
current problem as the wealth process is only one-dimensional, it may not be feasible
for other problems arising from multidimensional stochastic differential games.

For these two reasons, in the next subsection we develop numerical schemes based on GANs
and Monte Carlo simulations, which can be potentially useful for high-dimensional problems
or in the case of complex penalty functions.

2.6.2 Generative Adversarial Networks

In this section, we devise a GAN-based algorithm to solve the two-player zero-sum differ-
ential game.

Generative Adversarial Networks were introduced in Goodfellow et al. (2014). A GAN
is a combination of two competing (deep) neural networks: a generator and a discriminator.
The generator network tries to generate data that looks similar to the training data, and
the discriminator network tries to tell the real data from the fake data. The idea behind
GANs is very similar to the robust optimization problem studied in our paper: GANs can
be interpreted as minimax games between the generator and the discriminator, whereas our
problem is a minimax game between the agent who controls the portfolio allocation and
the market who controls the covariance matrix. Inspired by this connection, we propose
the following GAN-based algorithm.

Our GANs are composed of two neural networks; one generates α (α-generator), the
other generates σ (σ-generator). The two networks have conflicting goals, the α-generator
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tries to maximize the expected utility, while the σ-generator wants to minimize the expected
utility. They compete against each other during the training. Because we have two networks
with different objectives, it cannot be trained as a regular neural network. Each training
iteration is divided into two phases: In the first phase, we train the α-generator, with the loss

function L1 = −E
[
U(XT ) + λ0

∫ T
t
F (σ2

s)ds
]
. Then the back-propagation only optimizes

the weights of the α-generator. In the second phase, given the output α from the α-

generator, we train the σ-generator with a loss function L2 = E
[
U(XT ) + λ0

∫ T
t
F (σ2

s)ds
]
.

During this phase, the weights of the α-generator are frozen and the back-propagation
only updates the weights of the σ-generator. In a zero-sum game, the α-generator and
σ-generator constantly try to outsmart each other. As training advances, the game may
end up at a Nash Equilibrium.

A demonstration of the simplified network architecture is illustrated in Figure 2.11. The
blue part on the left of Figure 2.11 is the α-generator. For each time step n, we construct
a network (An), with the input Xn and parameter σn, the network generates output αn.
With the dynamics of wealth (2.32), we can continue this process until we get the terminal
wealth XN . Once we get the output {αn}n∈[1,N ], we can use them as parameters for the σ-
generator (the green part in the figure). In the σ-generator, similarly, we have one network
(Sn) for each time step n. With the input Xn and parameter αn, we can generate σn. At the
end of this phrase, the sequence {σn}n∈[1,N ] will be fed into the α-generator as parameters
as well. We have summarized this training process for 1-asset examples in Algorithm 2.

In the implementation, we choose the parameters T = 1, r = 0.015, µ = 0.035. The
training data has a sample size M = 200, 000. We discretize the investment process into
N = 65 time steps. The deep neural network for each time step contains 4 hidden layers,
using Leaky ReLU as the activation function. For the σ generator, to ensure the positivity
of the output, we use Leaky Sigmoid as the activation function of the output layer. It is

defined as LeakySigmoidβ(z) = 1
1+e−x

1(x ≤ β) +
[

e−β

(1+e−β)2 × (x− β) + 1
1+e−β

]
1(x > β). Its

shape is similar to Sigmoid, but its range is [0,+∞]. We train the first 100 epochs with a
learning rate 5× 10−4, and then we train another 50 epochs with a decreased learning rate
1× 10−4.

Figure 2.11: A demonstration of the adversarial networks

We now assess the quality of Algorithm 2. Firstly, we use a utility function U(XT ) =
ln(XT ) and a cost function λ0F (σ2

t ) = λ0(σt − σ0)2. Assuming the portfolio has an initial
wealth x0 = 5, the analytical solution facilitates numerical comparison. Figure 2.12(a)
compares the learned value functions with the true values for a range of λ0. It shows good
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Algorithm 2 Training Generative Adversarial Networks

Given the initial condition Xm
0 = x0,∀m ∈ [1,M ], and the initial starting point of σ =

{σn}N−1,M
n,m=1 :

for epoch = 1 : number of epochs do

Phase 1: train the α-generator
for time step n = 1 : N − 1 do

With the network An, inputs {Xn}Mm=1, parameters {σn}Mm=1, outputs αn,m =
An(Xn,m, σn,m);
Xn+1,m = Xn,m exp

{(
αn,m(µ− r) + r − 1

2
α2
n,mσ

2
n,m

)
∆t+ αn,mσn,m∆Wn,m

}
;

end

Loss function L1 = − 1
M

∑M
m=1

{
U(XN,m) + λ0

∑N−1
n=1 F (σ2

n,m)∆t

}
;

Train the neurons with an Adam optimizer and update An, n ∈ [1, N − 1].

Phase 2: train the σ-generator
for time step n = 1 : N − 1 do

With the network Sn, inputs {Xn}Mm=1, parameters {αn}Mm=1, outputs σn.m =
Sn(Xn,m, αn,m);
Xn+1,m = Xn,m exp

{(
αn,m(µ− r) + r − 1

2
α2
n,mσ

2
n,m

)
∆t+ αn,mσn,m∆Wn,m

}
;

end

Loss function L2 = 1
M

∑M
m=1

{
U(XN,m) + λ0

∑N−1
n=1 F (σ2

n,m)∆t

}
;

Train the neurons with an Adam optimizer and update Sn, n ∈ [1, N − 1].
end

accuracy of the learned functions versus the true ones. The errors are of magnitude 10−5.
The loss function L2 during the training is presented in Figure 2.12(b). Unlike the trend
in training regular deep neural networks, the loss function is not monotonically decreasing.
As we can see, the minimizer was dominating the competition at the beginning, the loss
function decreasing rapidly. Then the maximizer caught up, the loss function increased for
a while and finally converged to the true value.

In the second example, we use a utility function U(XT ) = 3X
1
4
T and a cost function

F (σ2
t ) = (σ2

t )
2. We set λ0 = 10 in this case and estimate the value functions for a range

of x0. Since we do not have access to the true values for power utility, we compare the
GANs estimated values with the PDE estimations in Figure 2.13(a). The loss function L1

for x0 = 6 during the training is presented in Figure 2.13(b).
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(a) value functions estimated with GANs,
U(XT ) = ln(XT )

(b) the minimizer’s loss function, λ0 = 10

Figure 2.12

(a) value functions estimated with

GANs, U(XT ) = 3X
1
4

T

(b) the maximizer’s loss function, x0 = 6

Figure 2.13

Despite the promising results, a limitation of GANs, shared with deep neural networks
in general, is the sensitivity of training to the chosen parameters. On difficult problems,
fine-tuning the hyper-parameters of the GAN to facilitate training might require a lot of
effort. One standard strategy for stabilizing training is to carefully design the model, either
by adopting a proper architecture (Radford et al., 2015) or by selecting an easy-to-optimize
objective function (Salimans et al., 2016). In spite of this caveat, GANs can be considered
a viable contender to the more classical Monte Carlo methods of section 2.6.3 for robust
portfolio allocation involving multiple risky assets, and deserve further investigation.

2.6.3 Monte Carlo method

In this section, we implement a Regression Monte Carlo scheme to solve the same robust
portfolio allocation problems. Carriere (1996) introduced the Regression Monte Carlo ap-
proach to solve optimal stopping problems for any Markovian process in discrete time.
In particular, he used non-parametric regression techniques. Later, Tsitsiklis and Van Roy
(2001) and Longstaff and Schwartz (2001) used a similar scheme with ordinary least squares
(a.k.a. Least Squares Monte Carlo) to value American options, respectively by value iter-
ation and by performance iteration (see for example Denault and Simonato 2017). Since
then, Regression Monte Carlo has become a popular tool in option pricing and more gen-
erally for solving discrete-time stochastic control problems in finite horizon.
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First of all, we discretize the time interval [0, T ] into N time steps with a constant step
size ∆t = T

N
. Using the Euler scheme on the logarithm of the state variable, one obtains

the following dynamics for the discrete-time wealth Xn:

X0 = x

Xn+1 = Xn exp

([
(αᵀ

n(µ− r) + r − 1

2
αᵀ
nΣnαn

]
∆t+ αᵀ

n(Σn)
1
2 ∆Wn

)
, n ∈ [0, N − 1]

(2.32)

and the discretized form of our value is

v(0, X0) = sup
α∈A

inf
Σ∈B

{
E
[
λ0

N−1∑
n=0

F (Σn)∆t+ U(XN)
∣∣X0 = x

]}
. (2.33)

As we have proved in section 2.3.2, this value function satisfies the DPP:

v(N,XN) = U(XN)

v(n,Xn) = sup
α∈A

inf
Σ∈B

{
λ0F (Σn)∆t+ E

[
v(n+ 1, Xn+1)

∣∣Fn]} , n ∈ [0, N − 1] . (2.34)

Control randomization

Inspired by the Dynamic Programming Principle, we can start from the known terminal
condition and compute the value functions backward in time recursively. Equation (2.34)
involves a conditional expectation, which cannot be computed explicitly. Instead, one can
for example use a least squares regression to approximate E

[
v(n + 1, Xn+1)

∣∣Fn] with a
polynomial basis function. The obstacle in the implementation is that we are not able to
simulate the paths Xn forward, since the dynamics of the state variable depends on the
uncertain controls. Following Kharroubi et al. (2014), one way to tackle this problem is an
initial randomization of the controls, i.e., we choose an arbitrary initial distribution for the
controls and simulate the Xn with these dummy αn and Σn , before including these dummy
controls in the regressors of the least-squares regressions.

Proofs of the convergence and error bounds for standard Regression Monte Carlo are
available in Clément et al. (2002) and Beutner et al. (2013) for example. In the case of
controlled dynamics, Kharroubi et al. (2015) analyzed the time-discretization error, and
Kharroubi et al. (2014) investigated the projection error generated by approximating the
conditional expectation by basis functions for the control randomization scheme. Recently,
alternative randomization schemes have been proposed in the literature, such as Ludkovski
and Maheshwari (2019), Balata and Palczewski (2018), Bachouch et al. (2018a) or Shen
and Weng (2019), which are more amenable to comprehensive convergence proofs, see
Balata and Palczewski (2017) and Huré et al. (2018). Nevertheless, the classical control
randomization scheme retains some advantages, such as the ease with which it can handle
switching costs, as shown in Zhang et al. (2019b).

For the choice of basis function φ, we can use a polynomial function in Xn, αn,Σn, and
let φ =

∑K
k=0 βkφk. Once we complete the regression, we can approximate the conditional

expected value function E
[
v(n + 1, Xn+1)

∣∣Fn] in (2.34) by φ(β̂;Xn, αn,Σn). For the mth
simulation path, we can find the optimal controls by:

Σ̂m
n = arg min

Σmn

{
λ0F (Σm

n )∆t+ φ(β̂;Xm
n , α

m
n ,Σ

m
n )
}
,

α̂mn = arg max
αmn

{
λ0F (Σ̂m

n )∆t+ φ(β̂;Xm
n , α

m
n , Σ̂

m
n (αmn ))

}
.
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The complete process is shown in Algorithm 3.

Algorithm 3 Control Randomization

Backward Regression:

(1) Choose an initial distribution and generate initial random controls accordingly.

(2) Generate M paths of state variable Xn. The mth path starts from the initial condition
Xm

0 = x, evolves following the dynamics with {αmn ,Σm
n }N−1

n=0 and assign v(N,Xm
N ) =

U(Xm
N ).

(3) For n = N − 1 : 0 do

(1) Regress
{
v(n + 1, Xm

n+1)
}M
m=1

on
{
Xm
n , α

m
n ,Σ

m
n

}M
m=1

, and get the regression co-

efficients
{
β̂kn+1

}
k

(2) Find the optimal controls α̂mn , Σ̂
m
n by arg maxα minΣ

{
λ0F (Σm

n )∆t +∑K
k=0 β̂

k
n+1φk(X

m
n,α

m
n ,Σ

m
n )
}

(3) The value function at time step n is v(n,Xm
n ) = λ0F (Σ̂m

n )∆t +∑K
k=0 β̂

k
n+1φk(X

m
n, α̂

m
n , Σ̂

m
n )

(4) The value function v(0, x) = 1
M

∑M
m=1 v(0, Xm

0 )

Forward Resimulation:

(1) Set the initial condition X̃m
0 = x

(2) For n = 0 : N − 1

(1) Find the optimal controls α̃mn , sΣ̃
m
n by arg maxαn minΣn

{
λ0F (Σn)∆t +∑K

k=0 β̂
k
n+1φk(X̃

m
n,αn,Σn)

}
, using the regression coefficients obtained in the back-

ward part and the new state variable X̃m
n .

(2) The state variable at time step n + 1 is X̃m
n+1 = X̃m

n exp

{[
(α̃mn )ᵀ(µ − r) + r −

1

2
(α̃mn )ᵀΣ̃m

n α̃
m
n

]
∆t+ (α̃mn )ᵀ(Σ̃m

n )
1
2 ∆Wn

}
(3) The forward simulated value function vf (0, x) = 1

M

∑M
m=1

[
λ0

∑N−1
n=0 F (Σ̃m

n )∆t +

U(X̃m
N )
]

Logarithmic utility function

We first consider an example with 1 risky asset. When the utility function is logarithmic
and the penalty function is λ0F (σ2

t ) = λ0(σ2
t )

2, we choose the following basis function

K∑
k=0

βkn+1φk(Xn,αn, σn) = β0 + β1 ln(Xn) + β2αn + β3αnσn + β4σ
2
nα

2
n.
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To find the optimal controls, we differentiate λ0F (σ2
n)∆t+

∑K
k=0 β

k
n+1φk(Xn,αn, σn) with re-

spect to αn and σ2
n, then we can get the optimal controls by solving the following polynomial

equation

4λ0dtσ̂
6
n +

β2β3

2β4

σ̂n +
β2

2

2β4

= 0.

With β4 < 0, there exists a real positive root. We can see the optimal controls are constants
for each step, being independent of the state variable Xn, this is the same as our observation
in the analytical solution.

We used M = 5 × 106 paths, T = 1 and step size ∆t = 1
50

in the simulation, with
the parameters x0 = 5, r = 0.015, λ0 = 10. Figure 2.14 shows the backward regression
values, forward resimulation values and true values as we change the parameter µ. Figure
2.15 show how these values change as λ0, the strength of the penalty function. Figure 2.16
compares the forward resimulation values, finite difference results and true values as we
change the parameter µ. It shows that both the PDE and Monte Carlo approach the true
value in this example.

Figure 2.14: U(XT ) = ln(XT ), St ∈ R1 Figure 2.15: U(XT ) = ln(XT ), St ∈ R1, with
x0 = 5, r = 0.015, µ = 0.03

Figure 2.16: U(XT ) = ln(XT ), St ∈ R1

For the example with 2 risky assets, we use the logarithmic utility function and the
penalty function F (Σt) = λ0 ‖Σt‖2

2. We choose the following basis function in this case:

K∑
k=0

βkn+1φk(Xn, α
1
n, α

2
n, σ

1
n, σ

2
n, ρn) = β0+β1 ln(Xn)+β2α

1
n+β3α

2
n+β4(α1

n)2(σ1
n)2+β5(α2

n)2(σ2
n)2

+ β6α
1
nα

2
nσ

1
nσ

2
nρn + β7(σ1

n)4 + β8(σ2
n)4 + β9(σ1

n)2(σ2
n)2ρ2

n,
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2.6. NUMERICAL RESULTS

Figure 2.17: U(XT ) = ln(XT ), St ∈ R2,
x0 = 5, r = 0.015, µ1 = 0.035, µ2 = 0.045

Figure 2.18: U(XT ) = 4
3
X

1
4
T

where σ1
n, σ

2
n are the volatilities of the two assets and ρn is the correlation between the

assets. We can differentiate λ0 ‖Σt‖2
2 ∆t +

∑K
k=0 β

k
n+1φk(Xn, α

1
n, α

2
n, σ

1
n, σ

2
n, ρn) to get the

optimal controls. In practice, we always have σ̂1
n, σ̂

2
n > 0, but we need to truncate ρ̂n to

[−1, 1]. The optimal controls are also constants for each step as in the 1-asset case.
In the implementation, we use M = 4 × 106 paths, T = 1 and step size ∆t = 1

50
.

The result is provided in Figure 2.17. This plot compares the backward regression values,
forward resimulation values and the analytical values, and it shows how the values change
w.r.t. the penalty strength λ0. From our observation, the average of the forward and
backward results yields an even better estimate.

We can observe from Figure 2.14 and 2.17 that, as claimed in Kharroubi et al. (2014),
the value function estimated at the end of the backward loop serves as an upper bound
for the true value, while the one obtained from the forward resimulation serves as a lower
bound and has a smaller error than the upper bound.

Power utility function

Here we show a 1-asset example with power utility. When the utility function is U(XT ) =
4
3
X

1
4
T and the penalty function λ0F (σ2

t ) = λ0(σ2
t )

2, we choose the basis function

φ = β0 + β1X
1
4
n + β2X

1
4
n αn + β3X

1
4
n αnσn + β4X

1
4
n α

2
nσ

2
n. (2.35)

To find the optimal controls, we differentiate λ0F (σ2
n)∆t +

∑K
k=0 β

k
n+1φk(Xn,αn, σn) and

then get the polynomial equation (2.36) for each path. We can see the optimal controls α̂n
and σ̂n depend on Xn in this case.

β2
2X

1
4
n + β2β3X

1
4
n σn + 8β4λ0dtσ

6
n = 0 (2.36)

Figure 2.18 shows Monte Carlo and finite difference approximations for a range of drifts
µ, with x0 = 5, , r = 0.015, λ0 = 10, M = 5 × 106, N = 65. We can see that the PDE
estimates lie within the Monte Carlo bounds and that the forward simulation values almost
overlap the PDE estimations. Although we do not have the analytical solution for this power
utility case, these plots suggest that we are able to estimate the true values accurately with
both Control Randomization and Finite Difference methods.

In both the logarithmic and power utility cases, the forward resimulation always per-
forms better than the backward loop estimates. That is because the forward resimulation
only suffers from one source of error, the optimal control estimation, while the backward
regression suffers more directly from regression error (see Kharroubi et al. 2014). So the
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2.7. CONCLUSION

forward simulation result is a better estimator of the true value and is the one we use for
comparison with the analytical and PDE approaches.

From the results above, we can see that for these robust portfolio allocation problems
with one single risky asset, both PDE and Monte Carlo methods provide accurate estimates,
with the PDE estimates being slightly better overall. Both methods can be considered for
solving robust portfolio allocation problems in practice. Some difficulties with the Monte
Carlo approach are the choice of the basis and the number of Monte Carlo paths needed
for a stable convergence. Still, the Monte Carlo would be the method of choice for more
realistic portfolio allocation with multiple risky assets (see Zhang et al. 2019b), as the PDE
approach could quickly become computationally intractable in this situation.

2.7 Conclusion

In this chapter, we interpreted a robust portfolio optimization problem as a two-player
zero-sum stochastic differential game. We compared the performance of the robust and
non-robust portfolios using both Monte Carlo simulation and empirical market data. Under
market shocks, our robust mechanism can prevent huge losses. By choose the λ0 properly,
the robust portfolios have a higher expected utility than the non-robust one. In addition
to the finite difference method, we provide GANs and control randomization algorithms
to estimate the value functions. These two methods can enrich quantitative techniques
for solving robust portfolio optimization problems. Both of them have demonstrated high
accuracy in the numerical results.
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Chapter 3

Portfolio optimization with a
prescribed terminal wealth
distribution

This chapter studies a portfolio allocation problem, where the goal is to reach a prescribed
wealth distribution at final time. We study this problem with the tools of optimal mass
transport. We provide a dual formulation which we solve by a gradient descent algorithm.
This involves solving an associated Hamilton–Jacobi–Bellman and Fokker–Planck equation
by a finite difference method. Numerical examples for various prescribed terminal distribu-
tions are given, showing that we can successfully reach attainable targets. We next consider
adding consumption during the investment process, to take into account distributions that
are either not attainable, or sub-optimal.

3.1 Introduction

The classical objective function in a portfolio optimization problem is to maximize the ex-
pected return given variance level. However, the first and second moments of the return
of a portfolio is only a simplified description of the wealth. Researchers then introduced
objective functions that include more moments, such as skewness, to provide a more ac-
curate statistic description of the distribution of the return (see, for example, Kraus and
Litzenberger 1976 and Lee 1977).

The whole distribution of the portfolio wealth would provide investors a complete infor-
mation. Instead of optimizing the first moments of the distribution, this work introduces an
objective function which includes a target distribution of the terminal wealth. We address
the problem of controlling the portfolio allocation process to reach the prescribed terminal
distribution. Of course, as we will see not all distributions are attainable.

On the one hand, this problem can be categorized as a stochastic control problem. The
state variable (the wealth) is driven by a process (the investment strategy) whose value is
decided at any time t ∈ [0, T ], and we define such a process as a control. In our investment
process, the portfolio allocation process is a control. We aim to design the time path of the
portfolio allocation process such that it steers the portfolio wealth from an initial state to
a prescribed terminal distribution.

One the other hand, designing a continuous semimartingale having prescribed distribu-
tions at given times can be addressed with the optimal mass transport (OMT) theory. The
optimal transport problem is an old problem first addressed in the work of Monge (1781),
and was later revisited by Kantorovich (1942) leading to the so-called Monge–Kantorovich
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3.1. INTRODUCTION

formulation. Suppose a worker wants to move a pile of sand and the goal is to erect with all
that sand a target pile with a prescribed shape. Naturally, the worker wishes to minimize
the total effort. In the sense of physical, the work can be described as the product of force
and displacement. Mathematically, the optimal transport problem can be formulated as
follows. Let X, Y be two separable metric spaces such that probability measure on X (or
Y ) is a Radon measure. For measure µ on X and ν on Y , let Φ be the set of all maps
φ : X → Y such that φ#(µ) = ν and φ−1

# (ν) = µ. The notation # represents the push-
forward of µ by φ. Let c : X×Y → [0,∞] be a Borel-measurable cost function, the optimal
map is defined as

φ∗ := arginfφ∈Φ

∫
X

c(x, φ(x))dµ(x). (3.1)

In the Monge formulation, the cost function is chosen to be c(x, y) = ||x − y||2 and (3.1)
becomes

φ∗ := arginfφ∈Φ

∫
X

||x− φ(x)||2dµ(x), (3.2)

and φ∗ is called the optimal transport map. From Brenier’s Theorem (Brenier, 1991), we
know that if at least one of µ and ν has a density with respect to the Lebesgue measure,
then the optimal transport map exists and is unique. However, when the conditions in
Brenier’s Theorem are not satisfies, the optimal transport map may not exist. To overcome
this issue, Kantorovich (1942) introduced “couplings” π, which are joint distributions of µ
and ν and the two marginal distributions of π are µ and ν, respectively. It is defined as

M(µ, ν) = {π ∈ P(X × Y ) s.t. π(A,X) = µ(A), π(Y,B) = ν(B)}. (3.3)

Instead of looking for the optimal transport map, Kantorovich formulated the optimal
transport problem as finding the optimal transport plan:

π∗ := arginfπ∈M(µ,ν)

∫
X×Y
||x− y||2dπ(x, y). (3.4)

Compared to the Monge formulation, the Kantorovitch formulation does not require the
solution to be a one-to-one map and is more realistic in practice. Thus, the optimal so-
lution of resource allocation problems is usually an optimal transport plan instead of an
optimal transport map. However, when an optimal transport map exists, it is proved to be
equivalent to the optimal transport plan.

A comprehensive review of the extensions and applications of the Monge–Kantorovich
problem can be found in the book by Rachev and Rüschendorf (1998) and the books of
Villani (2003, 2008). Benamou and Brenier (2000) reinterpreted the optimal transport
problem in a fluid mechanics framework, where one is not looking only for an optimal
transport map, but instead for the whole trajectory of the mass distribution over time. This
contribution opened the way to the problem of continuous optimal transport. Stochastic
extensions of the discrete and time continuous OMT problem have then flourished, see e.g.
Mikami and Thieullen (2006), Tan et al. (2013), Mikami (2015), Henry-Labordère et al.
(2016).

Beyond its mathematical interest, the optimal mass transport problem has applications
in many fields, such as economy, meteorology, astrophysics (Brenier et al. 2003, Loeper
2006), image processing (Ferradans et al. 2014). In the field of finance, optimal transport
has been applied in robust hedging (Dolinsky and Soner 2014, Henry-Labordère 2017) and
volatility calibration (Guo et al. 2019b). Optimal transport is also closely connected to the
Schrödinger problem, see Léonard (2013) for a comprehensive survey.
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The novelty of this work is to provide a new perspective on portfolio optimization
inspired by OMT. An investor must decide how to allocate her portfolio between a risky
and a risk-free asset. The price of the risky asset is modelled by a semimartingale, with
prescribed drift and diffusion coefficients. By controlling the portfolio allocation, she wants
the distribution of the terminal wealth to match, or be close to, a given target distribution.
Depending on the risky asset diffusion coefficients, not all target distributions are attainable
(think for example of too high an expected return versus variance), or optimal (one could
reach a “better” distribution than the target). We consider two different approaches: either
relaxing the terminal constraint by penalization, or adding a consumption process, whereby
the investor can either inject or withdraw cash from the portfolio in order to reach the target.

In other related papers, Zhang et al. (2019c) proposed an investment strategy which
maximizes the expected portfolio value bounded within a targeted range. Chalabi and
Wuertz (2012) sought the allocation that produces a portfolio that is the closest to a
reference model while remaining as compatible as possible to the empirical data. They
used a φ-divergence measure from information theory as the tool and they did not consider
any cost function in the formulation. Chen et al. (2019b) formulated a class of stochastic
two-person zero-sum differential games, where a specification on a target terminal state
distribution is imposed on the players. However, their paper only applies to linear quadratic
games with Gaussian target distributions. Instead, our problem has a general class of
dynamics and cost functions. Chen et al. (2018) worked on guiding particles to a specific
distribution. But the prescribed terminal distribution in their problem is restricted to
Gaussian. By contrast, our method applies to a general choice of target distributions.

The rest of this chapter is organized as follows. In section 3.2, we formulate the problem.
Then we introduce the dual formulation in section 3.3. In section 3.4, we provide a gradient
descent algorithm to solve the dual problem, and the numerical results are presented in sec-
tion 3.5. We give examples for general target distributions with various penalty functionals
in section 3.5.1. We consider the addition of cash saving/cash input in section 3.5.2 and
section 3.5.3.

3.2 Problem Formulation

Without loss of generality, we set the time horizon T to be 1. Let Ω := (ω ∈ C([0, 1];Rd)).
The process W is a d-dimensional standard Brownian motion on the filtered probability
space (Ω,F,F,P). In this problem, the risk-free interest r is set to 0 for simplicity. The
drift µ takes values in Rd, the invertible matrix σ takes values in Rd×d and the covariance
matrix Σ := σσᵀ takes value in Sd. We assume these are known processes.

The portfolio allocation process α = (αt)t∈[0,1] is progressively measurable with respect
to F, taking values in a compact convex set K ⊂ Rd. The set of all admissible α is compact
and convex, denoted by K.

We denote by Xt ∈ R the portfolio wealth at time t. Starting from an initial wealth x0,
the wealth of the self-financing portfolio evolves as follows,

dXt = Xtα
ᵀ
tµ(t,Xt)dt+Xtα

ᵀ
tσ(t,Xt)dWt, (3.5)

X0 = x0. (3.6)
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3.2.1 Portfolio optimization with a prescribed terminal distribu-
tion

We denote by ρt := P ◦X−1
t ∈ P(R) the distribution of Xt. In this problem, we are given

the initial distribution of the state variable ρ0 (ρ0 can be a Dirac measure), a prescribed
terminal distribution ρ1 ∈ P(R) and a convex cost function f(αt) : K → R.

With ρ0 and a process α, the realized terminal distribution of the portfolio wealth is
ρ1 := P ◦X−1

1 (ρ1 is not necessarily the same as ρ1). We want ρ1 to be close to our target
ρ1, hence we introduce a functional C(ρ1, ρ1) to penalize the deviation of ρ1 from ρ1. At
the same time, we want to minimize the expectation of the transportation cost from ρ0 to
ρ1. Combining the expected transportation cost and the penalty functional, our objective
function is

inf
α,ρ

{
EP
[∫ T

0

f(αt)dt

]
+ C(ρ1, ρ1)

}
, (3.7)

where the feasible (α, ρ) in (3.7) should satisfy the initial distribution

ρ(0, x) = ρ0(x) ∀x ∈ R. (3.8)

Following closely Guo et al. (2019b)[Lemma3.1], we state the result below.

Lemma 3.2.1. For t ∈ [0, 1], the optimal strategy αt reduces to a Markovian process
α(t,Xt).

Remark. This is actually a consequence of the following facts:

a. the cost function only depends on αt and the constraint only depends on X1 via ρ1

(and not on any path dependent variable);

b. Jensen’s inequality and the convexity of f .

The feasible (α, ρ) in (3.7) should satisfy the Fokker–Planck equation

∂tρ(t, x) + ∂x(α(t, x)ᵀµ(t, x)xρ(t, x))− 1

2
∂xx(α(t, x)ᵀΣ(t, x)α(t, x)x2ρ(t, x)) = 0 ∀(t, x) ∈ E.

(3.9)

However, the feasible set for (α, ρ) defined by equality (3.9) is not convex, which means
we may not be able to find the optimal solution. To address this issue, we introduce the
following definition.

Notation 3.2.1. We define maps B̃, Ã : E→ R as B̃(t, x) := α(t, x)ᵀµ(t, x)x and Ã(t, x) :=
α(t, x)ᵀΣ(t, x)α(t, x)x2. Then define B(t, x) := B̃ρ, B ∈ M(E;R) and A(t, x) := Ãρ,
A ∈M+(E;R). Densities B and A are absolutely continuous with respect to ρ.

Note that ρ,B,A are densities. As a shorthand, we will write dρ = ρdtdx, dA =
Adtdx, dB = Bdtdx in the subsequent sections. We show that B and A are connected
in the following way:

Proposition 3.2.1. When d > 1 (resp. d = 1), the necessary and sufficient condi-
tion for the existence of an α(t, x) ∈ Rd such that A = α(t, x)ᵀΣ(t, x)α(t, x)x2ρ, B =

α(t, x)ᵀµ(t, x)xρ is A ≥ B2

‖ν(t,x)‖2ρ (resp. A = B2

‖ν(t,x)‖2ρ), where ν(t, x) := Σ(t, x)−
1
2µ(t, x).

Proof. See appendix B.1.
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Using notations ρ,B, B̃ and A, Ã, the Fokker–Planck equation (3.9) becomes linear and
the SDE of the portfolio wealth reads

dXt = B̃(t,Xt)dt+ Ã
1
2 (t,Xt)dWt, (3.10)

X0 = x0. (3.11)

To attain a certain prescribed terminal distribution, as we see in Proposition 3.2.1, it is
possible that the optimal drift B̃(t, x) is not saturated, i.e., B̃(t, x)2 < ‖ν(t, x)‖2 Ã(t, x).
It means that the drift function in SDE (3.10) can be greater and eventually we should
be able to reach a better terminal wealth with a higher expectation. Then, instead of
using this unsaturated drift B̃(t, x) to reach the prescribed terminal distribution, we can

use the drift B̃(t, x) = ‖ν(t, x)‖
√
Ã(t, x) to attain a more ambitious distribution, and

the extra part in the drift can be interpreted as cash saving. In this case, even when we
have multiple assets (d > 1) in the portfolio, optimal portfolios should lie on the curve

B̃(t, x) = ‖ν(t, x)‖
√
Ã(t, x), as in the d = 1 case. Any portfolio lying below the curve

represents a less than ideal investment because for the same level of risk (variance), we
could achieve a greater return. This is consistent with the efficient frontier in modern
portfolio theory (Markowitz 1952).

Now we define the concept of cash saving at time t as c(t, x) := ‖ν(t, x)‖
√
Ã(t, x) −

B̃(t, x). When the prescribed terminal distribution is not ambitious enough, to ensure we
have as much cash saving as we can, we define the feasible set as Π(t, x) := {(B̃, Ã) : Ã ≥

(B̃+)2

‖ν(t,x)‖2} (B̃+(t, x) := max(0, B̃(t, x))) and we can see the set Π(t, x) is convex.

In the following parts, we focus on a particular subset of f , which can be represented
by f(α(t, x)ᵀΣ(t, x)α(t, x)x2). To penalize functions out of the set Π(t, x), we define a cost
function F : E× R× R→ R+ ∪ {+∞} such that

F (p, q) = f (q) + δ(p, q), (3.12)

where f : E× R→ R+ is a convex function and δ(p, q) is a delta function defined as

δ(p, q) =

{
0 if (p, q) ∈ Π(t, x),

+∞ otherwise.
(3.13)

For simplicity, we write F (p, q) := F (t, x, p, q) if there is no ambiguity.
Now we are ready to introduce formally the problem:

Problem 3.2.1. Starting from an initial distribution ρ0, with a prescribed terminal distri-
bution ρ1 and a cost function (3.12), we want to solve the infimum of the functional

V (ρ0, ρ1) = inf
ρ,B,A

∫
E

F

(
B

ρ
,
A

ρ

)
dρ+ C(ρ1, ρ1) (3.14)

over all (ρ,B,A) ∈M(E;R× R× R) satisfying the constraints

∂tρ(t, x) + ∂xB(t, x)− 1

2
∂xxA(t, x) = 0 ∀(t, x) ∈ E, (3.15)

ρ(0, x) = ρ0(x) ∀x ∈ R. (3.16)
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3.2.2 Assumptions

Assumption 3.2.1. The penalty functional C(·, ρ1) : P(R) → R+ is convex and lower
semi-continuous with respect to the weak−∗ convergence of ρ. We have C(ρ1, ρ1) = 0 if
and only if ρ1(x) = ρ1(x) almost everywhere.

Assumption 3.2.2.

(i) The cost function F (p, q) is non-negative, lower semi-continuous and strictly convex
in (p, q).

(ii) The cost function F (p, q) is coercive in the sense that there exist constants m > 1
and C > 0 such that

|p|m + |q|m ≤ C (1 + F (p, q)) ∀(p, q) ∈ Π.

3.3 Duality

In this section, we introduce the dual problem to Problem 3.2.1, this allows us to give
optimality condition for the primal problem. First of all, we find out the convex conjugate
of the cost functional, which will be used in the later proof.

3.3.1 Convex Conjugate

Define a function G : R× R× R→ R ∪ {+∞} as

G(u, b, a) = sup
(ρ,B̃,Ã)∈R×R×R

{
uρ+ bB̃ρ+ aÃρ− F (B̃, Ã)ρ

}
= sup

ρ∈R

{
ρ
[
u+ sup

Ã≥ (B̃+)2

‖ν(t,x)‖2

(
bB̃ + aÃ− F (B̃, Ã)

)]}
= sup

ρ∈R

{
ρ
[
u+ F ∗(b, a)

]}
,

where F ∗ is the convex conjugate of F . Since ρ(t, x) is non-negative, it is obvious that

G(u, b, a) =

{
0 if u+ F ∗(b, a) ≤ 0 ∀(t, x) ∈ E,

+∞ otherwise.

If we restrict the domain of its convex conjugate to M(E;R× R× R), then

G∗(ρ,B,A) = sup
(u,b,a)∈R×R×R

{uρ+ bB + aA : u+ F ∗(b, a) ≤ 0} . (3.17)

Because the function to be optimized is linear and ρ(t, x) ≥ 0, we can see the optimal
u∗ = −F ∗(b, a) in (3.17). With F being convex and lower-semicontinuous, we have

G∗(ρ,B,A) = sup
(b,a)∈R×R

{
−F ∗(b, a) + bB̃ + aÃ

}
ρ

= F

(
B

ρ
,
A

ρ

)
ρ.
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We interchange the supremum and integral following Guo et al. (2019b, Lemma A.1), and
get∫

E

F

(
B

ρ
,
A

ρ

)
dρ = sup

(u,b,a)∈Cb(E;R×R×R×R)

{∫
E

udρ+ bdB + adA : u+ F ∗(b, a) ≤ 0
}
. (3.18)

Note that (u, b, a) are real numbers only in Section 3.3.1, and they are functions after the
interchange, this will apply to the following sections.

3.3.2 Dual Problem

Now we can state our main result. A key element in the dual problem is the Hamilton–
Jacobi–Bellman (HJB) equation:

∂tφ+ sup
Ã≥ (B̃+)2

‖ν(t,x)‖2

{
∂xφB̃ +

1

2
∂xxφÃ− F (B̃, Ã)

}
= 0. (3.19)

If φ(t, x) ∈ C1,2
b (E) is a solution of the HJB equation (3.19), then Itô’s formula yields,∫
R
φ1dρ1 − φ0dρ0 =

∫
E

(
∂tφ+ ∂xφB̃ +

1

2
∂xxφÃ

)
dρ

=

∫
E

(
−F ∗(∂xφ,

1

2
∂xxφ) + ∂xφB̃ +

1

2
∂xxφÃ

)
dρ

≤
∫
E

F (B̃, Ã)dρ.

Adding the penalty functional to both sides yields∫
R
φ1dρ1 −

∫
R
φ0dρ0 + C(ρ1, ρ1) ≤

∫
E

F (B̃, Ã)dρ+ C(ρ1, ρ1). (3.20)

Taking the infimum of the left hand side of (3.20) over ρ1 and taking the infimum of the
right hand side of (3.20) over (ρ,B,A), we get

−C∗(−φ1)−
∫
R
φ0dρ0 ≤ inf

(ρ,B,A)∈M(E;R×R×R)

∫
E

F

(
B

ρ
,
A

ρ

)
dρ+ C(ρ1, ρ1)

≤ V (ρ0, ρ1),

where C∗ is the convex conjugate of C.
The following result shows that optimizing the left hand side yields an equality.

Theorem 3.3.1 (Duality). When C(·, ρ1) is continuous, there holds

V (ρ0, ρ1) = sup
φ

{
−C∗(−φ1)−

∫
R
φ0dρ0

}
, (3.21)

where the supremum is taken over all φ(t, x) ∈ C1,2
b (E) satisfying

∂tφ(t, x) + sup
Ã≥ (B̃+)2

‖ν(t,x)‖2

{
∂xφB̃ +

1

2
∂xxφÃ− F (B̃, Ã)

}
≤ 0, ∀(t, x) ∈ E. (3.22)
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Proof. This proof is an application of the Fenchel–Rockafellar duality theorem, e.g., Brezis
(2010, Theorem 1.12). The constraint (3.15) can be formulated in the following weak form:∫

R
φ1dρ1 − φ0dρ0 −

∫
E

∂tφdρ+ ∂xφdB +
1

2
∂xxφdA = 0, ∀φ ∈ C1,2

b (E). (3.23)

Because of equation (3.18), we can reformulate the primal problem (3.14) as a saddle point
problem:

V (ρ0, ρ1) = inf
ρ,B,A

sup
u+F ∗(b,a)≤0

∫
E

udρ+ bdB + adA+ C(ρ1, ρ1). (3.24)

Adding the Lagrangian penalty (3.23) to the functional (3.24), then Problem 3.2.1 can be
written as

V (ρ0, ρ1) = inf
ρ,B,A

sup
u+F ∗(b,a)≤0,φ

∫
E

udρ+ bdB + adA+ C(ρ1, ρ1)

+

∫
R
φ1dρ1 − φ0dρ0 −

∫
E

∂tφdρ+ ∂xφdB +
1

2
∂xxφdA. (3.25)

The strategy of the proof is to first construct a function α whose convex conjugate α∗ is equal
to the objective function of Problem 3.2.1, and construct another function β whose convex
conjugate β∗ is equal to the rest part inside the infimum of (3.25) so that V = infρ,B,A(α∗+
β∗)(ρ,A,B). Then, the duality is established by applying the FenchelRockafellar theorem.

We write C∗(r) : Cb(R;R)→ R∪{+∞} for the convex conjugate of functional C(ρ1, ρ1):

C∗(r) = sup
ρ1≥0

{∫
R
rdρ1 − C(ρ1, ρ1)

}
.

Here we define the functional α : Cb(E;R× R× R× R)→ R ∪ {+∞} by

α(u, b, a, r) =

{
C∗(r) if u+ F ∗(b, a) ≤ 0,

+∞ otherwise .
(3.26)

Its convex conjugate α∗ : C∗b (E;R× R× R× R)→ R ∪ {+∞} is defined as

α∗(ρ,B,A, ρ1) = sup
(u,b,a,r)∈Cb(E;R×R×R×R)

(∫
E

udρ+ bdB + adA+
[∫

R
rdρ1 − C∗(r)

]
;u+ F ∗(b, a) ≤ 0

)
.

(3.27)

If we restrict the domain to M(E;R × R × R × R), with (3.18) and Assumption 3.2.1, we
have

α∗(ρ,B,A, ρ1) =

{∫
E
F (B

ρ
, A
ρ

)dρ+ C(ρ1, ρ1) if ρ ∈M+ and B = B̃ρ, A = Ãρ,

+∞ otherwise.

Indeed, if ρ is not positive in (3.27), we would let b = a = 0 and u = −λ1O for some O
such that ρ(O) < 0 and let λ→ +∞. If B or A are not absolutely continuous with respect
to ρ, we can find some O such that ρ(O) = 0 but B(O) 6= 0 or A(O) 6= 0. Then we let
u = −F ∗(b, a) and b = a = λ1O, and α∗(ρ,B,A) ≥ λB(O) + λA(O) → +∞ by letting
λ→ ±∞ depending on the sign of B(O) and A(O).
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Next, we say that the set (u, b, a, r) ∈ Cb(E;R×R×R×R) is represented by φ ∈ C1,2
b (E)

if

u = −∂tφ, b = −∂xφ, a = −1

2
∂xxφ, r = φ1.

Then define β : Cb(E;R× R× R× R)→ R ∪ {+∞} as follows,

β(u, b, a, r) =

{∫
R φ0dρ0 if (u, b, a, r) is represented by φ ∈ C1,2

b (E),

+∞ otherwise.
(3.28)

Notice that β is well-defined, indeed, it does not depend on the choice of φ. If both
φ, ψ represent u, b, a, r, then φ1 = ψ1∀x ∈ R, ∂tφ(t, x) = ∂tψ(t, x), ∂xφ(t, x) = ∂xψ(t, x),
∂xxφ(t, x) = ∂xxψ(t, x) ∀(t, x) ∈ E. It follows that φ0(x) = ψ0(x) ∀x ∈ R. The set of
represented functions (u, b, a, r) is a linear subspace. Hence β is convex and its convex
conjugate β∗ : C∗b (E;R× R× R× R)→ R ∪ {+∞} is

β∗(ρ,B,A, ρ1) = sup
u,b,a,r

∫
E

udρ+ bdB + adA+

∫
R
rdρ1 − φ0dρ0,

over all (u, b, a, r) ∈ Cb(E;R× R× R× R) represented by φ ∈ C1,2
b (E).

Or equivalently,

β∗(ρ,B,A, ρ1) = sup
φ

∫
E

−∂tφdρ− ∂xφdB −
1

2
∂xxφdA+

∫
R
φ1dρ1 − φ0dρ0.

We find that β∗(ρ,B,A, ρ1) = 0 if (ρ,B,A, ρ1) satisfies (3.23), and β∗(ρ,B,A, ρ1) = +∞
otherwise.

Now we can express our objective functional V (ρ0, ρ1) as

V (ρ0, ρ1) = inf
(ρ,B,A)∈M(E;R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)}

= inf
(ρ,B,A,ρ1)∈M(E;R×R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)}

= inf
(ρ,B,A,ρ1)∈C∗b (E;R×R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)} .

The second equality is because β∗(ρ,B,A, ρ1) = +∞ if ρ1 does not equal to ρ(t, x) at time
t = 1. We prove the third equality in appendix B.2.

We can let φ(t, x) = t, then u = −1, b = 0, a = 0, r = 1. We can see α(−1, 0, 0, 1) = 1
and it is continuous in (u, b, a, r) at this point, and β(−1, 0, 0, 1) = 0 being finite at this
point. Finally, the conditions of Fenchel duality theorem in Brezis (2010, Theorem 1.12)
are fulfilled, and it implies

V (ρ0, ρ1) = inf
(ρ,B,A,ρ1)∈C∗b (E;R×R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)}

= sup
(u,b,a,r)∈Cb(E;R×R×R×R)

{−α(−u,−b,−a,−r)− β(u, b, a, r)} ,

over the set (u, b, a, r) being represented by φ ∈ C1,2
b (E), and satisfying−u+F ∗(−b,−a) ≤ 0.

Therefore we express V (ρ0, ρ1) in terms of φ:

V (ρ0, ρ1) = sup
(u,b,a,r)∈Cb(E;R×R×R)

{
−C∗(−r)−

∫
R
φ0dρ0

}
= sup

φ∈C1,2
b (E)

{
−C∗(−φ1)−

∫
R
φ0dρ0

}
,

under the constraint ∂tφ+F ∗(∂xφ,
1
2
∂xxφ) ≤ 0. As a consequence of Fenchel duality theorem,

the infimum in the primal problem is attained if finite. This completes the proof.
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Actually, using the same proof as in Guo et al. (2019b), we can write the dual formulation
in the following way:

Corollary 3.3.1. When C(·, ρ1) is continuous, there holds

V (ρ0, ρ1) = sup
φ1

{
−C∗(−φ1)−

∫
R
φ0dρ0

}
, (3.29)

where the supremum is running over all functions φ1 ∈ C2
b (R), and φ0 is a viscosity solution

of the Hamilton–Jacobi–Bellman equation−φt − sup
Ã≥ (B̃+)2

‖ν(t,x)‖2

[
φxB̃ + 1

2
φxxÃ− F (B̃, Ã)

]
= 0, in [0, 1)× R,

φ(1, x) = φ1(x), on [1]× R.
(3.30)

Because the minimal objective function (3.14) is a trade-off between the cost function
and the penalty functional, the optimal φ1 in the dual problem (3.29) will not in general
ensure that ρ1 reaches ρ1, unless the penalty functional goes to infinity for ρ1 6= ρ1. When ρ1

is attainable, it can be realized by choosing the penalty functional as an indicator function

C(ρ1, ρ1) =

{
0 if ρ1 = ρ1,

+∞ if ρ1 6= ρ1.
(3.31)

Using the penalty functional (3.31) is equivalent to adding the terminal constraint ρ1 =
ρ1, ∀x ∈ R. This also recovers our problem to the classical optimal transport problem.

Corollary 3.3.2. When C(ρ1, ρ1) is defined as (3.31), there holds

V (ρ0, ρ1) = sup
φ1

{∫
R
φ1dρ1 − φ0dρ0

}
, (3.32)

where the supremum is running over all φ1 ∈ C2
b (R) and φ0 is a viscosity solution of the

Hamilton–Jacobi–Bellman equation (3.30).

Proof. This proof is very similar to the one of Theorem 3.3.1, hence the repetitive steps are
omitted here. Being different from the proof of Theorem 3.3.1, in this case, we define the
functional α : Cb(E;R× R× R× R)→ R ∪ {+∞} by

α(u, b, a, r) =

{∫
R rdρ1 if u+ F ∗(b, a) ≤ 0,

+∞ otherwise.

Then its convex conjugate of α∗ : C∗b (E;R× R× R× R)→ R ∪ {+∞} is

α∗(ρ,B,A, ρ1) = sup
u+F ∗(b,a)≤0,r

∫
E

udρ+ bdB + adA+

∫
R
rdρ1 − rdρ1.

We restrict the domain to M(E;R× R× R× R), we have

α∗(ρ,B,A, ρ1) =

∫
E

F

(
B

ρ
,
A

ρ

)
dρ+ sup

r

{∫
R
r(dρ1 − dρ1)

}
=

∫
E

F

(
B

ρ
,
A

ρ

)
dρ+ C(ρ1, ρ1).
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Note that supr
∫
R r(dρ1−dρ1) is equal to 0 if ρ1 = ρ1∀x ∈ R and is equal to +∞ otherwise,

which is equivalent to C(ρ1, ρ1) in (3.31). Define β : Cb(E;R×R×R×R)→ R∪{+∞} by
(3.28), let φ(t, x) = t, the conditions of Fenchel duality theorem in Brezis (2010, Theorem
1.12) are fulfilled. Therefore, we get

V (ρ0, ρ1) = sup
(u,b,a,r)∈Cb(E;R×R×R×R)

{−α(−u,−b,−a,−r)− β(u, b, a, r)}

= sup
(u,b,a,r)∈Cb(E;R×R×R×R)

{∫
R
rdρ1 −

∫
R
φ0dρ0

}
,

over the set (u, b, a, r) being represented by φ ∈ C1,2
b (E), and satisfying−u+F ∗(−b,−a) ≤ 0.

For the same reasons as in Corollary 3.3.1, we can express V (ρ0, ρ1) in terms of φ:

V (ρ0, ρ1) = sup
φ1

{∫
R
φ1dρ1 −

∫
R
φ0dρ0

}
,

where φ0(x) is a viscosity solution of the Hamilton–Jacobi–Bellman equation (3.30).

3.4 Numerical Methods for the Dual Problem

There has been a vast amount of numerical algorithms for the optimal mass transport
problem. Gradient descent based methods are widely used to solve the reformulated dual
problem of the Monge–Kantorovich problem, for example, by Chartrand et al. (2009) and
Tan et al. (2013). Cuturi (2013) looked at transport problems from a maximum entropy
perspective and computed the optimal transport distance through Sinkhorn’s matrix scaling
algorithm. This algorithm is also used for the entropic regularization of optimal transport
by Benamou et al. (2019).

In this work, we also use a gradient descent based method to solve the dual problem
in section 3.3. We know φ(t, x) is the solution of the HJB equation (3.30). For a given
terminal function φ1, we can calculate φ0 by solving the HJB equation backward.

3.4.1 Finite Difference Scheme

First of all, to get φ(0, x), we solve the following PDE

∂tφ+ sup
Ã≥ (B̃+)2

‖ν(t,x)‖2

{
∂xφB̃ +

1

2
∂xxφÃ− F (Ã, B̃)

}
= 0, (3.33)

with a given terminal boundary condition φ1(x) backwardly, using an implicit finite differ-
ence scheme. We let

(Ã∗, B̃∗) = argmax
Ã≥ (B̃+)2

‖ν(t,x)‖2

{
∂xφB̃ +

1

2
∂xxφÃ− F (Ã, B̃)

}
∈ R× R, (3.34)

where (Ã∗, B̃∗) are solved with a constrained optimization package in Matlab, using the
“interior-point” algorithm, see MathWorks (2020) for the details.

In the numerical setting, we use N time steps and M space grid points. We use a
constant time step ∆t and a constant spatial step ∆x. We discretize the PDE (3.33)
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using a forward approximation for ∂tφ, a central approximation for ∂xφ, and a standard
approximation for ∂xxφ, the discretized form of PDE (3.33) at time step n is:

φn+1
i − φni

∆t
+ B̃∗

φni+1 − φni−1

2∆x
+

1

2
Ã∗
φni+1 + φni−1 − 2φni

(∆x)2
− F (Ã∗, B̃∗) = 0.

With some manipulation, we get the( ∆tÃ∗
n

i

2(∆x)2
− ∆tB̃∗

n

i

2∆x

)
φni−1 +

(
−1− ∆tÃ∗

n

i

(∆x)2

)
φni +

( ∆tÃ∗
n

i

2(∆x)2
+

∆tB̃∗
n

i

2∆x

)
φni+1 = −φn+1

i + ∆tF (Ã∗
n

i , B̃
∗n
i ),

(3.35)

where the optimal controls Ã∗
n

and B̃∗
n

depend on φn. It is difficult to check the stability
condition in our PDE because the optimal Ã∗

n
, B̃∗

n
are unknown, but fortunately implicit

finite difference methods have a weaker requirement than explicit finite difference methods.
At the n-th time step of the implicit finite difference method, although we do not have
the true values for φn, we can make an initial guess of (Ã∗

n
, B̃∗

n
)0 using the known values

φn+1, then use a fixed-point iteration scheme to generate a sequence (Ã∗
n
, B̃∗

n
)k,k=1,2,... with

(Ã∗
n
, B̃∗

n
)k being a function of (Ã∗

n

k−1, B̃
∗n
k−1), until (Ã∗

n
, B̃∗

n
)k converges. The stopping

criteria is when ||φnk − φnk−1||2 ≤ 10−7. This method is also implemented in Guo et al.
(2019a).

With the optimal drift B̃∗ and diffusion Ã∗ known, we can now propagate forward with
the Fokker–Planck equation (3.15) to find the empirical terminal density ρ1. With an initial
wealth x0, the initial distribution ρ0 is a Dirac Delta distribution δ(x− x0). We have

∂tρ+ ∂x(B̃
∗ρ)− 1

2
∂xx(Ã

∗ρ) = 0, (3.36)

ρ(0, x) = δ(x− x0). (3.37)

Since we used implicit finite difference to solve the HJB equation (3.33) backward, we
use an explicit scheme for the forward Fokker–Planck equation (3.15). Then the discretized
form at time step n is

ρn+1
i − ρni

∆t
+
B̃∗

n

i+1ρ
n
i+1 − B̃∗

n

i−1ρ
n
i−1

2∆x
− 1

2

Ã∗
n

i+1ρ
n
i+1 + Ã∗

n

i−1ρ
n
i−1 − 2Ã∗

n

i ρ
n
i

∆x2
= 0. (3.38)

3.4.2 Optimization algorithm

Now, we are using a gradient descent method to seek for the optimal φ1. A key role in
the gradient descent method is the optimality condition. By providing a gradient, the
computation is faster and more accurate. For convenience, we define another function

Ṽ (φ1) := C∗(−φ1) +

∫
R
φ0ρ0dx, (3.39)

and V (ρ0, ρ1) = − infφ1 Ṽ (φ1). Then we need to find an optimal φ1 to minimize Ṽ (φ1).
The change of Ṽ (φ1) caused by the change of φ1 is

δṼ (φ1) = δC∗(−φ1) +

∫
R
ρ0
∂φ0

∂φ1

δφ1dx, (3.40)

= δC∗(−φ1) +

∫
R
ρ0δφ0dx. (3.41)
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We know that φ(t, x) in (3.39) satisfies the HJB equation F ∗
(
∂xφ,

1
2
∂xxφ

)
= −∂tφ. If we

add an arbitrarily small variation δφ to φ and denote ∂xφ as p and 1
2
∂xxφ as q for short,

then we get ∂pF
∗(p, q)∂xδφ+ 1

2
∂qF

∗(p, q)∂xxδφ = −∂tδφ, which is equivalent to

∂tδφ+ ∂xδφB̃∗ +
1

2
∂xxδφÃ

∗ = 0, (3.42)

where Ã∗, B̃∗ are the optimal controls, as defined in (3.34). Multiplying PDE (3.42) by
density function ρ(t, x) and with integration by parts, we have∫

R
ρ1δφ1 − ρ0δφ0dx−

∫
R

∫ 1

0

δφ∂tρ+ δφ∂x(ρB̃
∗)− 1

2
δφ∂xx(ρÃ

∗)dxdt = 0.

Since the equation ∂tρ+ ∂x(ρB̃
∗)− 1

2
∂xx(ρÃ

∗) = 0 holds for admissible (ρ, Ã∗, B̃∗), we get∫
R
ρ0δφ0dx =

∫
R
ρ1δφ1dx. (3.43)

Substituting (3.43) into (3.41), we can see an optimal terminal function φ1 should satisfy
the optimality condition

∇φ1Ṽ := lim
δφ1→0

δṼ (φ1)

δφ1

(3.44)

= lim
δφ1→0

δC∗(−φ1)

δφ1

+ ρ1 = 0, ∀x ∈ R. (3.45)

Remark 3.4.1. When C(ρ1, ρ1) is defined as (3.31), the corresponding optimality condition
is

∇φ1Ṽ = −ρ1 + ρ1 = 0, ∀x ∈ R. (3.46)

Now we are ready to solve the dual problem numerically. In Algorithm 4, we state the
gradient descent based algorithm to look for the optimal φ1 in (3.29). It includes solving the
HJB equation and the Fokker–Planck equation with a finite difference method combined
with a fixed-point iteration, as described in section 3.4.1. A similar numerical scheme can
be found in Guo et al. (2019b) for calibrating volatilities by optimal transport.

3.5 Numerical Results

In this section, we will apply Algorithm 4 and demonstrate various numerical examples.
Later, we will also consider the situations with cash saving and cash input during the
investment process.

3.5.1 Penalty functional with an intensity parameter

Before we demonstrate the numerical results, we need to choose an appropriate penalty
functional C(ρ1, ρ1). There are a range of methods to measure distribution discrepancy. A
comprehensive survey on the distance or similarity measures between probability density
functions (PDFs) is provided by Cha (2007). Note that our choice of penalty functional
is not restricted to metrics, as long as C(ρ1, ρ1) satisfies Assumption 3.2.1 and describes
similarity of the two PDFs.

The most intuitive choice is the L2 norm of the difference. This quadratic function is
convex and easy to implement. In the first example, we use the squared Euclidean distance
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Algorithm 4 A gradient descent based optimization scheme

Initial guess φ1
N := 0

while 1 ≤ k ≤ max iteration and
∥∥∇φN Ṽ (φkN)

∥∥
∞ > tolerance do

Let φN = φkN ;
for time step n = N − 1 : 0: do

Let φn = φn+1, solve the PDE (3.35) with (Ã∗
n
, B̃∗

n
)0 obtained from (3.34).

Get the value vector φ0
n;

while 1 ≤ j ≤ max iteration and
∥∥φjn − φj−1

n

∥∥
2
> tolerance do

Let φn = φj−1
n , solve the PDE (3.35) with (Ã∗

n
, B̃∗

n
)j obtained from (3.34).

Get the value vector φjn;
j = j + 1;

end

Let φn = φjn, store the optimal controls (Ã∗
n
, B̃∗

n
) = (Ã∗

n
, B̃∗

n
)j;

end
Compute the empirical distribution ρk1 from ρ0 with Fokker–Planck equation;

Compute the gradient vector ∇φN Ṽ (φkN) =
(
δC∗(−φkN )

δφkN
+ ρk1

)
∆x;

Update φk+1
N with Quasi-Newton Method using the gradient information ∇φN Ṽ (φkN);

k = k + 1;
end
The optimal φN = φkN .

as the penalty functional and F (Ã, B̃) = (Ã− 0.2)2 + (B̃ − 0.2)2 as the cost function. We
define the penalty functional as

C(ρ1, ρ1) =
λ

2

∫
R
(ρ1 − ρ1)2dx,

where the parameter λ can be regarded as the intensity of the penalty for the inconsistency.
Then the dual problem (3.29) can be expressed explicitly as

V (ρ0, ρ1) = sup
φ1

{∫
R
− 1

2λ
φ2

1 + φ1ρ1 − ρ0φ0dx

}
. (3.47)

In this and the following numerical examples, we set the initial wealth x0 = 5, µ =
0.1, σ = 0.1. Figures 3.1(a) and 3.1(b) compare the empirical distribution of the terminal
wealth (ρ1) and the prescribed terminal distribution (ρ1) for different intensities λ, where
ρ1 = N(6, 1)1. We can see that ρ1 gets closer to ρ1 as we increase the intensity of the penalty.
In Figure 3.1(c) and 3.1(d), we use the penalty functional (3.31), which is equivalent to
letting λ = +∞. As shown in Figure 3.1(c), this penalty functional makes ρ1 attain the
target ρ1, and the plot 3.1(d) illustrates the optimal function φ1 and the corresponding φ0

we got from Algorithm 4.

1We denote N(µ, σ) a Normal distribution with mean µ and standard deviation σ.
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(a) λ = 1 (b) λ = 20

(c) infinite penalty (d) optimal φ1 and φ0

Figure 3.1: Attainable example: ρ1 = N(6, 1)

In Figure 3.2, we plot how the Euclidean distance
(∫

R(ρ1 − ρ1)2dx
) 1

2 changes with re-
spect to λ . As we increase the intensity parameter λ, the Euclidean distance between ρ1

and ρ1 decreases. As λ goes to infinity, the distance asymptotically goes to zero.

Figure 3.2: Distance metric vs. λ

Compared to other research where the prescribed distributions are restricted to Gaus-
sian, our method applies to a wide choice of ρ1, such as heavy-tailed and asymmetric dis-
tributions. In Figure 3.3, we illustrate that we can attain the target when ρ1 is a mixture
of two Normal distributions, in particular

ρ1(x) = 0.5N(4, 1) + 0.5N(7, 1).
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Figure 3.3: mixture of Normal distributions

The Kullback–Leibler (K–L) divergence introduced in Kullback and Leibler (1951), is
also known as relative entropy or information deviation. It measures the divergence of the
distribution ρ1 from the target ρ1, the more similar the two distributions are, the smaller the
relative entropy will be. This measurement is widely used in Machine Learning to compare
two densities because it has the following advantages: 1) this function is non-negative; 2)
for a fixed distribution ρ1, C(ρ1, ρ1) is convex in ρ1; 3) C(ρ1, ρ1) = 0 if and only if ρ1 = ρ1

everywhere. There are also caveats to the implementation of this penalty function. We
may face 0 log 0 or division by zero cases in practice; to address this, we can replace zero
with an infinitesimal positive value.

In this case, the penalty functional is defined as

C(ρ1, ρ1) =

∫
R
λρ1(x) ln

(
ρ1(x)

ρ1(x)

)
dx, (3.48)

and the dual problem (3.29) can be expressed explicitly as

V (ρ0, ρ1) = sup
φ1

{
−
∫
R
λ exp

(
−φ1

λ
− 1

)
ρ1 − φ0ρ0dx

}
.

In Figure 3.4, we compare the empirical terminal density ρ1 and the target ρ1 when C(ρ1, ρ1)
is defined by (3.48) and F (Ã, B̃) = (Ã− 0.2)2 + (B̃ − 0.2)2. The initial wealth x0 = 5 and
we set λ = 0.1 in Figure 3.4(a) and λ = 10 in Figure 3.4(b).

(a) ρ1 = N(5.4, 0.6), λ = 0.1 (b) ρ1 = N(5.4, 0.6), λ = 10

Figure 3.4: K–L divergence as the penalty functional
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3.5.2 Distribution of the wealth with cash saving

In this section, we consider the cash saving during the investment process. From previous
parts, we have the constraint (B̃+)2 ≤ ‖ν(t, x)‖2 Ã. However, when the prescribed target
ρ1 is not ambitious enough, we will find the optimal drift B̃∗ is not saturated, i.e., (B̃∗+)2 <
‖ν(t, x)‖2 Ã∗ in (3.34). Our goal in this section is to show that we can reach a better
terminal distribution, in the sense that the terminal wealth has a higher expected value,
when we take cash saving into account.

Keep using the concept cash saving defined in section 3.2.1, we denote (Ct)t∈[0,1] the
accumulated cash saving up to time t. Then the evolution of Ct is

dCt =
(
‖ν(t, x)‖

√
Ã∗ − B̃∗

)
dt,

C0 = 0.

If we add up the cash saving Ct and the portfolio wealth Xt, we can get a new process
wealth with cash saving. Define Xc

t := Xt + Ct, it is obvious to see that Xc
t follows the

dynamics

dXc
t = ‖ν(t, x)‖

√
Ã∗dt+ Ã∗

1
2 dWt,

Xc
0 = x0.

Denote by p(t, x) ∈ P(R) the distribution of Xc
t at time t, then p(t, x) satisfies the following

Fokker–Planck equation

∂tp+ ∂x

(
‖ν(t, x)‖

√
Ã∗p

)
− 1

2
∂xx

(
Ã∗p

)
= 0,

p0(x) = δ(x− x0).

Therefore, after solving for the optimal Ã∗, B̃∗ according to (3.34) over time, we can find
the densities of Xt as well as Xc

t . We keep using the squared Euclidean distance as the
penalty functional and F (Ã, B̃) = (Ã − 0.2)2 + (B̃ − 0.2)2 as the cost function. Figure
3.5 compares the densities for X1 (terminal wealth), Xc

1 (terminal wealth with cash saving)
and the prescribed target density. In Figure 3.5(a), with a rather conservative target
ρ1 = N(5.1, 0.4), although ρ1 has attained the target, the distribution for the wealth with
cash saving gathers at a higher value. When we set a higher target ρ1 = N(6, 1), as in
Figure 3.5(b), we see there is no cash saved in the process since the paths for ρ1 and p1

overlapped.

3.5.3 Distribution of the wealth with cash input

As stated in Proposition 3.2.1, we always have (B̃+)2 ≤ ‖ν(t, x)‖2 Ã for a self-financing
portfolio. However, in this section, we remove the constraint (B̃+)2 ≤ ‖ν(t, x)‖2 Ã, and we

allow B̃ ∈ R instead. Then the part
(
B̃ − ‖ν(t, x)‖

√
Ã
)+

can be interpreted as the extra

cash we invest during the process. In this case, theoretically, we can attain any prescribed
target distribution as we want (see Tan et al. 2013, Remark 2.3). For the ρ1 which is
unattainable by the self-financing portfolio, we can now attain it with the help of cash
input. However, to limit the use of cash, we design a cost function as follows,

F (Ã, B̃) =


K(B̃2 − ‖ν(t, x)‖2 Ã) + wÃ2, ∀B̃ > ‖ν(t, x)‖

√
Ã,

wÃ2, ∀0 ≤ B̃ ≤ ‖ν(t, x)‖
√
Ã,

lB̃2 + wÃ2, ∀B̃ < 0,

(3.49)
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(a) ρ1 = N(5.1, 0.4) (b) ρ1 = N(6, 1)

Figure 3.5: Compare terminal distributions with or without cash saving

where K,w, l are positive constants. In the cost function (3.49), we use the term K(B̃2 −
‖ν(t, x)‖2 Ã) to penalize the part

(
B̃ − ‖ν(t, x)‖

√
Ã
)+

. By varying K, we can control the

strength of penalty and hence control the cash input flow. When K is small, we are allowed
to put in cash without being penalized excessively. When K is large, we have to pay a high
price for the cash input; consequently, the usage is limited. The terms wÃ2 and lB̃2 add
coercivity to the function to ensure the existence of the solution, we set w, l to be small
positive real values.

With the optimal drift B̃∗ ∈ R and diffusion Ã∗ ∈ R+, the dynamics of the wealth Xt is

dXt = B̃∗dt+
√
Ã∗dWt,

X0 = x0.

If there is no cash input, the maximum drift is ‖ν(t, x)‖
√
Ã. Denote (It)t∈[0,1] the accumu-

lated cash input up to time t, and It follows the dynamics

dIt =
(
B̃∗ − ‖ν(t, x)‖

√
Ã∗
)+

dt,

I0 = 0.

Define XI
t := Xt − It as the path without the cash input. Then the dynamics of XI

t is

dXI
t = min

(
B̃∗, ‖ν(t, x)‖

√
Ã∗
)
dt+

√
Ã∗dWt,

XI
0 = x0.

Let the density of XI
t be q(t, x) ∈ P(R), then q(t, x) follows the following Fokker-Planck

equation

∂tq + ∂x

[
min

(
B̃∗, ‖ν(t, x)‖

√
Ã∗
)
q
]
− 1

2
∂xx

(
Ã∗q

)
= 0,

q0(x) = δ(x− x0).

Finally, we can see the effect of cash input by comparing ρ1(x) and q1(x).

Attainable target

In the first example, we aim at the terminal distribution ρ1 = N(6, 1), which is attainable by
the self-financing portfolio. We use the squared Euclidean distance as the penalty functional
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and equation (3.49) as the cost function. Figure 3.6 demonstrates the time evolution of
q(t, x) (assets) and ρ(t, x) (assets and cash input), and it compares q1(x), ρ1(x) and ρ1(x)
for various K values. At the beginning, we set the coefficient K = 0.5 in Figure 3.6(a).
There is a clear difference between the paths for assets and assets and cash, which means
we have input a significant amount of cash over time. As we increase the value of K in
Figure 3.6(b), the difference between q(t, x) and ρ(t, x) becomes less obvious. When K = 6,
the paths with or without cash input coincide in Figure 3.6(c) because the high cost has
prevented the cash input in this context. Since the target N(6, 1) is attainable, we can still
reach it even without cash input, as shown in the second plot of 3.6(c).

Unattainable target

To see the effect of cash input, here we demonstrate an example with an unattainable target.
For instance, we may target at a terminal distribution with no left tail but a heavy right tail,
in other words, there is very little risk for the wealth to fall below some level. Therefore,
we set ρ1 = Weibull (6, 2) in Figure 3.7(a), where P (x < 4) is almost zero. In this example,
the coefficient K in (3.49) is not a constant anymore. Instead, we let K(t) : [0, 1] → R+

be a function of time so that we can control the cash input flow over time. We define
K(t) = 5 for t ∈ [0, 0.8] and K(t) = 0.1 for t ∈ [0.8, 1]. In the time-evolution plot (the
left one of Figure 3.7(a)), we can see that the paths for assets and assets and cash start to
differentiate from t = 0.8. Similarly, we can see the same effect in Figure 3.7(b), where we
set ρ1 = N(6.5, 1) and we define K(t) = 5 for t ∈ [0, 0.95] and K(t) = 0.1 for t ∈ [0.95, 1].
In these two examples, the targets Weibull (6, 2) and N(6.5, 1) are unattainable under the
constraint (B̃+)2 ≤ ‖ν(t, x)‖2 Ã. However, we can make the empirical terminal density ρ1

reach ρ1 by inputting cash wisely.

3.6 Conclusion

The ability to specify the whole distribution of final wealth of interest as portfolio opti-
mization target gives a greater flexibility over classical objective functions such as expected
utility or moment-based objectives such as the mean-variance framework and its exten-
sions. In this chapter, we construct a portfolio and the dynamics of the portfolio wealth
is a semimartingale. Starting from an initial wealth, by controlling the portfolio alloca-
tion process, we are able to steer the portfolio wealth to a prescribed distribution at the
terminal time. This problem is closely related to optimal mass transport (OMT). In the
problem formulation, in addition to the conventional cost function in OMT, we also design
a penalty functional to measure the divergence of the empirical terminal density from the
prescribed one. We take into consideration the possible cash saving during the investment
process, and show that we can actually reach a better terminal density when there adding
cash saving. When the target density is attainable, our problem can recover the classical
OMT problem by choosing an indicator function as the penalty function. When the target
terminal density is unattainable by the self-financing portfolio, we devise a strategy to reach
it by allowing cash input during the investment process. We proved a duality result for
the primal problem and solved it with a gradient descent based algorithm. Our numerical
results verify the accuracy and validity of this algorithm.
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(a) K = 0.5

(b) K = 4

(c) K = 6

Figure 3.6: Fixed K for an attainable target: ρ1 = N(6, 1)
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(a) K = 5 ∀t ∈ [0, 0.8],K = 0.1 ∀t ∈ [0.8, 1] for Weibull (6, 2)

(b) K = 5 ∀t ∈ [0, 0.95],K = 0.1 ∀t ∈ [0.95, 1] for N(6.5, 1)

Figure 3.7: K(t) for unattainable targets
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Chapter 4

Deep Semi-Martingale Optimal
Transport

We propose two deep neural network-based methods for solving semi-martingale optimal
transport problems. The first method is based on a relaxation/penalization of the terminal
constraint, and is solved using deep neural networks. The second method is based on the
dual formulation of the problem, which we express as a saddle point problem, and is solved
using adversarial networks. Both methods are mesh-free and therefore mitigate the curse of
dimensionality. We test the performance and accuracy of our methods on several examples
up to dimension 10. We also apply the first algorithm to a portfolio optimization problem
where the goal is, given an initial wealth distribution, to find an investment strategy leading
to a prescribed terminal wealth distribution.

4.1 Introduction

The optimal transport problem goes back to the work of Monge (1781) and aims at trans-
porting a distribution µ to another distribution ν under minimum transport cost. It was
later revisited by Kantorovich (1942), leading to the so-called Monge–Kantorovich formula-
tion. In recent years, a fast-developing phase was spurred by a wide range of extensions and
applications of the Monge–Kantorovich problem; interested readers can refer to the books
by Rachev and Rüschendorf (1998), Villani (2003) and Villani (2008) for a comprehensive
review. Although we have gained tremendous theoretical insight, the numerical solution
of the problem remains challenging. When the dimension is less or equal to three, many
state-of-art approaches are able to compute the global solution effectively; see, for example,
Chow et al. (2019), Haber and Horesh (2015), Li et al. (2018), and the review by Zhang
et al. (2020). Readers can refer to the books by Santambrogio (2015) and Peyré and Cuturi
(2019), and the references therein for an overview of these approaches. However, many
traditional methods rely on Euclidean coordinates and require spatial discretization. When
the distributions live in spaces of dimension four or more, these traditional methods suffer
from the curse of dimensionality. Under this situation, solving optimal transport problems
using deep neural networks looks very attractive since it can avoid space discretization.

Here is a general definition of Machine Learning:

Machine Learning is the field of study that gives computers the ability to learn
without being explicitly programmed.

— Arthur Samuel, 1959

Or a more technical definition is as follows.
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A computer program is said to learn from experience E with respect to some
task T and some performance measure P , if its performance on T , as measured
by P improves with experience E.

— Tom Mitchell, 1997

The first application of Machine Learning was the spam filter back in the 1990s. Based
on different criteria, Machine Learning can be classified into broad categories: supervised,
unsupervised learning, semisupervised learning, and reinforcement learning; online versus
batch learning; instance-based versus model-based learning. We call the examples the
system uses to learn a training set, each training example in the training set is called a
training instance. In a classification task, we usually use accuracy to measure the training
performance, which is the ratio of correctly classified cases.

Machine Learning has many advantages compared to traditional programming. When
a problem is complicated, traditional programming can be long and complex. If the en-
vironment of the problem changes, the programmer has to adjust the code accordingly;
hence it is hard to maintain. Some problems are even too complex for the programmers to
code, e.g., speech recognition. In contrast, Machine Learning techniques can automatically
detect the pattern. It can update itself with the latest available information. In this case,
the program will be easier to write and maintain. By digging into large amounts of data,
Machine Learning can help humans discover previously unknown patterns.

Inspired by the biological neurons in human’s brain, a new Machine Learning model
emerged – artificial neural networks (ANNs). ANNs are at the core of Deep Learning.
They were first introduced by McCulloch and Pitts (1943). There was a revival of interest
in ANNs since the 1990s due to the tremendous increase in computing power and a huge
quantity of available data. A Perceptron is the simplest ANN architecture; when stacking
multiple Perceptions, the ANN is called a Multilayer Perception. A Multilayer Perceptron
consists of one input layer, one or more hidden layers, and an output layer. A Deep Neural
Network (DNN) is an ANN with two or more hidden layers. Thanks to the groundbreak-
ing backpropagation algorithm introduced by Rumelhart et al. (1985), we can train DNNs
successfully and efficiently. Mathematically, this algorithm is just Gradient Descent. But
it uses an efficient technique to compute the gradient automatically, this is also referred
to as autodiff. DNNs are preferred to shallow networks in general. As shown in Liang
and Srikant (2016), for a given degree of approximation error, a shallow network will need
exponentially more neurons than a deep network.

Usually the calibration of an ANN is done by minimizing a loss function. When the
loss function is an expectation, Stochastic Gradient Descent (SGD) is a natural adaptation
of Gradient Descent to stochastic optimization problems. The DNN-SGD paradigm is well
suited for solving scientific computing problems such as stochastic control problems (e.g.,
Han and E 2016, Huré et al. 2018, Bachouch et al. 2018b) or partial differential equations
(PDEs) in very high dimension (e.g., Weinan et al. 2017, Sirignano and Spiliopoulos 2018
and Huré et al. 2019), thanks to its ability to overcome the curse of dimensionality. A
comprehensive review of the numerical and theoretical advances in solving PDE and BSDE
with deep learning algorithms can be found in Han and Jentzen (2020).

Recent years witnessed the emergence of research on solving optimal transport prob-
lems with neural networks. Ruthotto et al. (2020) used a residual network (ResNet) to
approximately solve high-dimensional mean-field games by combining Lagrangian and Eu-
lerian viewpoints. In the numerical experiment, they solved a dynamical optimal transport
as a potential mean-field game. Henry-Labordère (2019) introduced Lagrange multipliers
associated with the two marginal constraints and proposed a Lagrangian algorithm to solve
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martingale optimal transport using neural networks. However, their algorithm will be appli-
cable only to cost functions satisfying a martingale twist condition. Eckstein and Kupper
(2019) studied optimal transport problem with an inequality constraint; their algorithm
penalizes the optimization problem in its dual representation.

The main application of this work is in finance. The use of optimal transport in finance
has been very popular in the recent years, and our work is particularly relevant for the
problem of model calibration via optimal transport as in Guo et al. (2019c); Guo and
Loeper (2018); Guo et al. (2019b, 2020b).

In this chapter, we study optimal transport by semi-martingales as introduced in Tan
et al. (2013) and we use deep learning to estimate the optimal drift and diffusion coefficients,
by two different methods:

• In the first one, we relax the terminal constraint by adding a penalty term to the loss
function and solve it with a deep neural network. 1

• In the second one, we introduce the dual formulation of the problem and express it
as a saddle point problem. In this case, we utilize adversarial networks to solve it.

These methods can be widely applied to solving optimal transport as well as stochastic
optimal control problems. The two methods do not need spatial discretization and hence
can be potentially used for high-dimensional problems. We illustrate our method with an
application in finance, where we implement the first algorithm to the problem of optimal
portfolio selection with a prescribed terminal density studied in Guo et al. (2020a).

This chapter is organized as follows. In section 4.2, we formulate the optimal transport
problem and introduce the primal problem, adding a penalization to the expected cost
function. To solve this problem, we propose a deep neural network-based algorithm and
present the corresponding numerical results in section 4.3. In section 4.4, we provide the
dual representation of the primal problem and express it as a saddle point problem. Then
we devise an algorithm using adversarial networks. We illustrate the numerical results in
sections 4.4.1 and 4.4.2, including a 10-dimensional example. Finally, in section 4.5, we
implement the above-mentioned (mentioned in section 4.3) deep learning algorithm in a
financial application, solving the problem of steering the portfolio wealth to a prescribed
terminal density.

4.2 Problem formulation

In this chapter, on the probability space (Ω,F,P), we consider a stochastic process (Xt)t∈[0,1]

valued in Rd, that solves the SDE

dXt = B(t,Xt)dt+ A(t,Xt)dWt, (4.1)

X0 = x0, (4.2)

where B : E→ Rd and A : E→ Rd×d is defined such that AAᵀ = A.
We denote by ρt := P ◦ X−1

t ∈ P(Rd) the distribution of Xt. In this problem, we are
given the initial distribution of the state variable ρ0, where ρ0 can be a Dirac measure.
and a prescribed terminal distribution ρ1 ∈ P(Rd). We define a convex cost function
F : Rd × Sd → R+ ∪ {+∞} where F (B,A) = +∞ if A /∈ Sd+.

1This relaxation can be useful in the case where, depending on the constraints we put on the stochastic
evolution, not all distributions are attainable, think for example of the case where we impose the process
to be a martingale
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For shorthand, we write At(x) for A(t, x) and Bt(x) for B(t, x). Given ρ0 and suitable
processes (At)t∈[0,1], (Bt)t∈[0,1], the distribution of X1 is ρ1 := P ◦ X−1

1 . We introduce the
penalty function C(ρ1, ρ1), whose role will be to penalize the deviation of ρ1 from the target
ρ1.

Now we are interested in the following minimization problem:

Problem 4.2.1. With a given initial distribution ρ0 and a prescribed terminal distribution
ρ1, we want to solve the infimum of the functional

V (ρ0, ρ1) = inf
ρ,B,A

{∫
E

F (Bt,At)dρ(t, x) + C(ρ1, ρ1)

}
, (4.3)

over all (ρ,B,A) ∈ P(Rd)× Rd × Sd satisfying the initial distribution

ρ(0, x) = ρ0(x) ∀x ∈ Rd, (4.4)

and the Fokker–Planck equation

∂tρ(t, x) +∇x · (B(t, x)ρ(t, x))− 1

2

∑
i,j

∂ij(Ai,j(t, x)ρ(t, x)) = 0 ∀(t, x) ∈ E. (4.5)

Because the objective function (4.3) is a trade-off between the convex cost function
F : Rd × Sd → R and the penalty C, the optimal ρ,A, B, if it exists, will not in general
ensure that ρ1 = ρ1, unless the penalty function is

C(ρ1, ρ1) =

{
0 if ρ1 = ρ1,

+∞ if ρ1 6= ρ1,
(4.6)

and one recovers the “usual” semi-martingale optimal transport problem.
We make the following assumptions which will hold throughout the paper.

Assumption 4.2.1. The penalty function C(·, ρ1) : P(Rd) → R+ is convex, lower semi-
continuous with respect to the weak-∗ convergence of ρ1, and C(ρ1, ρ1) = 0 if and only if
ρ1 = ρ1.

Assumption 4.2.2. The cost function F (p, q) is non-negative, lower semi-continuous and
strictly convex in (p, q).

With Assumptions 4.2.1 and 4.2.2, we can get the following existence and uniqueness
result for the minimizer of Problem 4.2.1 using similar convex minimization techniques as
in Loeper (2006, Proposition 2). We refer the interested readers to Loeper (2006) for the
detailed proof.

Theorem 4.2.1. Let us define

I(ρ,B,A) =

∫
E

F (Bt,At)dρ(t, x) + C(ρ1, ρ1).

Under Assumptions 4.2.1 and 4.2.2, if I(ρ,B,A) is finite, then there exists a unique mini-
mizer (ρ,B,A) ∈ P(Rd)× Rd × Sd for Problem 4.2.1 satisfying constraints (4.4) and (4.5).
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4.3 Deep neural network-based algorithm

In this section, we devise an algorithm to solve Problem 4.2.1 by using deep learning.
Note that given processes (Bt)t∈[0,1], (At)t∈[0,1] and ρ0, the density process (ρt)t∈(0,1] is fully
determined (up to suitable regularity assumptions on B and A). Hence, our goal is to
use neural networks to search for the optimal (Bt)t∈[0,1] and (At)t∈[0,1] which minimize the
objective function.

We discretize the period [0, 1] into N constant time steps and construct a neural network
θn for each time step n ∈ [0, N − 1], let Xn denote the state variable at time step n. We
use multilayer feedforward neural networks in our application. At each time step, we wish
to approximate the drift and diffusion coefficient with a neural network, i.e., (Bn, An) ≈
θn(Xn), where Bn ∈ Rd, An ∈ Rd×d. Feedforward neural networks approximate complicated
nonlinear functions by a composition of simpler functions, namely

(Bn, An) ≈ θn(Xn) = gJn ◦ gJ−1
n ◦ · · · ◦ g1

n(Xn).

For each layer, gjn is
gjn(Xn) = σj

(
XnW

j
n + bjn

)
, (4.7)

where Wn,bn are the weight matrices and bias vectors, respectively. Here, σj(·) is a
component-wise nonlinear activation function, such as sigmoid, ReLU, tanh, etc. In our
paper, we use Leaky ReLU for all the hidden layers. For the output layer, σj(·) is the
identity function.

We denote by M the number of Monte Carlo paths. For a particular path m ∈ [1,M ],
with Bm

n , A
m
n and Xm

n , we can compute the state variable in the next time step from the
dynamics

Xm
n+1 = Xm

n +Bm
n ∆t+ Amn ∆Wm

n , ∀m ∈ [1,M ], n ∈ [0, N − 1].

At the final time step N , we can get M samples of terminal wealth XN from the
Monte Carlo paths. With these samples, we can estimate the empirical terminal distribu-
tion ρ1 using kernel density estimation (KDE). In particular, we use the Gaussian kernel

KH(x) = (2π)−d/2|H|− 1
2 e−

1
2
xᵀH−1x with an appropriate bandwidth matrix H ∈ Sd. Then

the terminal density is estimated as ρ̃1(x) := 1
M

∑M
m=1KH(x − Xm

N ). Because the kernel
density estimation is not an unbiased estimator of the true density, an error is generated
from estimating ρ1 with ρ̃1. To address this issue, we also estimate ρ1 with the same KDE
and use the estimated ρ̃1 as the target density in the training. To be precise, we first
generate a sample x̃ = (x̃1, x̃2, ..., x̃M ′) of size M ′ from the target density ρ1(x). Then we

estimate ρ1(x) with ρ̃1(x) := 1
M ′

∑M ′

i=1KH(x− x̃i).
Finally, the objective function in (4.3) can be naturally used as the loss function in the

training,

L(θn,n∈[0,N−1]) = E
[N−1∑
n=0

F (θn(Xn))∆t
]

+ C(ρ̃1, ρ̃1).

Then the training will search for the optimal neurons θ̂n,n∈[0,N−1] where

θ̂n,n∈[0,N−1] = arg inf
θ

{
1

M

M∑
m=1

{N−1∑
n=0

F (θn(Xm
n ))∆t

}
+ C(ρ̃1, ρ̃1)

}
.

We depict the above process in a flowchart (Figure 4.1), and the complete Deep Neural
Network algorithm for Problem 4.2.1 is stated in Algorithm 5.
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Figure 4.1: Structure of the DNN for one path

Algorithm 5 Deep Neural Network for Problem 4.2.1

Starting from the initial condition Xm
0 = x0 ∀m ∈ [1,M ].

for epoch = 1 : 100 do
for n = 0 : N − 1 do

With neurons θn, input Xm
n , output (Bm

n , A
m
n ) = θn(Xm

n );
Xm
n+1 = Xm

n +Bm
n ∆t+ Amn ∆Wm

n ;
end
Estimate the terminal distribution of XN with KDE as ρ̃1;
Estimate ρ̃1 from ρ1 with the same KDE;

Define Loss function L = 1
M

∑M
m=1

{∑N−1
n=0 F (Bm

n , A
m
n (Amn )ᵀ)∆t

}
+ C(ρ̃1, ρ̃1);

Train the neurons and update θn,n∈[0,N−1];

end

Get the optimal θ̂n,n∈[0,N−1].

4.3.1 Numerical Results

In this section, we validate Algorithm 5 with an example where

F (B,A) = ‖B‖2 , (4.8)

C(ρ1, ρ1) =
λ

2

∫
R
(ρ1 − ρ1)2dx. (4.9)

The parameter λ in equation (4.9) is the intensity of the penalization. To push ρ1 as close
as possible to the target ρ1, we want λ be to large and we will let λ = 5000 in this case.

We start from an initial state x0 =

[
5.0

5.0

]
, and the target distribution set to be a bivariate

normal ρ1 = N

([
5.5

6.0

]
,

[
0.25 0.10

0.10 0.25

])
.

In the training, we construct a 5-layer network with 100, 80, 60, 60 and 40 neurons
respectively. The output of the network is of size 2 × 3, out of which the 2 × 1 column
represents the drift Bn and the 2× 2 matrix represents the diffusion coefficient An. We use
a batch size of 2000 and the Adam optimizer with a learning rate 1× 10−4. We trained the
network for 100 epochs in total.
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From the training, we get an empirical terminal density ρ1 with mean

[
5.509

5.994

]
and

covariance matrix

[
0.253 0.098

0.098 0.246

]
. We can see that the mean and covariance of the empirical

terminal density are very close to the target ones.
The contours of the empirical distribution and the target distribution are presented in

Figure 4.2. In the later section, we will introduce a metric to measure the performance of
the trained dataset.

(a) Density of X1 from Algorithm 5 (b) Target Density of X1

Figure 4.2: Contours with a bivariate normal target distribution

4.3.2 Merged network

The architecture described in Algorithm 5 consists of training N different feedforward
neural networks (one per time step). This architecture generates a possibly high number
of weights and biases to be estimated. Another possibility is to use one single feedforward
neural network for all time steps. At each time step, besides the state variable Xn, we also
feed the time n into the network. We refer to this alternative architecture as a feedforward
merged network. The training process for this merged network is illustrated in Figure 4.3,
and the algorithm is summarized in Algorithm 6. The advantage of this architecture is
that, instead of training a list of networks θn,n∈[0,N−1], we only need to train one network θ
in this algorithm, which significantly reduces the number of neurons and the complexity of
the training.

The numerical experiments give us a similar result to the one from Algorithm 5; hence
we are not presenting them repeatedly. When using the merged structure, as we observed
from the experiment, each iteration costs 3.2 seconds, and it takes 190 epochs (each epoch
contains 100 iterations) to reach the final value. When using Algorithm 5, each iteration
takes 7.5 seconds and it needs 100 epochs to converge to the final value.
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Algorithm 6 Deep Neural Network for Problem 4.2.1 with a merged network

Starting from the initial condition Xm
0 = x0 ∀m ∈ [1,M ].

for epoch = 1 : 100 do
for n = 0 : N − 1 do

With neurons θ, input Xm
n and n, output Bm

n , A
m
n = θ(Xm

n , n);
Xm
n+1 = Xm

n +Bm
n ∆t+ Amn ∆Wm

n ;
end
Estimate the terminal distribution of XN with KDE as ρ̃1;
Estimate ρ̃1 from ρ1 with the same KDE;

Loss function L = 1
M

∑M
m=1

{∑N−1
n=0 F (Bm

n , A
m
n (Amn )ᵀ)∆t

}
+ C(ρ̃1, ρ̃1);

Train the neurons with the Adam optimizer and update θ;
end

Get the optimal θ̂.

Figure 4.3: Structure of the merged network

4.4 Adversarial network algorithm for the dual prob-

lem

In this section, we first introduce the dual formulation of Problem 4.2.1 and express it as a
saddle point problem. Then we propose an Adversarial Network-based algorithm to solve
it, where we demonstrate high-dimensional numerical examples. This algorithm is inspired
by Generative Adversarial Networks (GANs), which were first introduced in Goodfellow
et al. (2014). GANs have enjoyed great empirical success in image generating and pro-
cessing. The principle behind GANs is to interpret the process of generative modeling as
a competing game between two (deep) neural networks: a generator and a discriminator.
The generator network attempts to generate data that looks similar to the training data,
and the discriminator network tries to identify whether the input sample is faked or true.
GANs recently have attracted interests in the finance field, including simulating financial
time-series data (e.g., Wiese et al. 2020, Zhang et al. 2019a) and for asset pricing models
(Chen et al. 2019a).

To recover the optimal transport problem, we can use an indicator function (equation
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(4.6)) as the penalty functional. Now we present the duality result for Problem 4.2.1. The
following theorem is stated in Tan et al. (2013).

Theorem 4.4.1. When C(ρ1, ρ1) is defined as in equation (4.6), there holds

V (ρ0, ρ1) = sup
φ1

{∫
Rd
φ1dρ1 − φ0dρ0

}
, (4.10)

where the supremum is running over all φ1 ∈ C2
b (Rd) and φ0 is a viscosity solution of the

Hamilton–Jacobi–Bellman equation{
−∂tφ− supB∈Rd,A∈Sd

[
B · ∇xφ+ 1

2
tr(A∇2

xφ)− F (B,A)
]

= 0, in [0, 1)× Rd,

φ(1, x) = φ1(x), on [1]× Rd.
(4.11)

The function φ(0, x) can be expressed as

φ(0, x) = sup
B∈Rd,A∈Sd

E
[
φ1(X1)−

∫ 1

0

F (B,A)dt
∣∣∣X0 = x0

]
. (4.12)

Starting from an initial state x0 ∈ Rd, the initial density ρ0(x) = δ(x − x0), hence∫
Rd φ0dρ0 = φ0(x0). Then we can substitute the expression (4.12) into the dual form (4.10),

and the dual formulation can be written as a saddle point problem:

V (ρ0, ρ1) = sup
φ1

inf
B∈Rd,A∈Sd

{∫
Rd
φ1dρ1 − E

[
φ1(X1)−

∫ 1

0

F (B,A)dt
∣∣∣X0 = x0

]}
. (4.13)

This dual saddle point formulation of the optimal transport problem is reminiscent
of GANs: GANs can be interpreted as minimax games between the generator and the
discriminator, whereas our problem is a minimax game between φ1 and (A, B).

Inspired by this connection, we can use Adversarial Networks to estimate the value
(4.13). GANs are also applied in Guo et al. (2019a) to solve a robust portfolio alloca-
tion problem. Our Adversarial Network consists of two neural networks; one generates φ1

(referred to as φ1-generator, denoted by Φ), the other generates A and B (referred to as
AB-generator, denoted by θ). The two networks are trained iteratively: In the first phase,
we train the AB-generator with a loss function

L1 = −E
[
φ1(X1)−

∫ 1

0

F (B,A)dt
∣∣X0 = x0

]
.

In the second phase, given the output X1 from the AB-generator, we train the φ1-generator
with a loss function

L2 = −
∫
Rd
φ1dρ1 + E

[
φ1(X1)−

∫ 1

0

F (B,A)dt
∣∣X0 = x0

]
.

When the dimension d ≥ 3, the bottleneck in this algorithm is to compute
∫
Rd φ1dρ1

efficiently. To address this issue, we can use Monte Carlo integration. In particular, we
sample I points xi ∈ Rd (i ∈ [1, I]) from the target distribution ρ1. Then we can estimate∫
Rd φ1dρ1 with 1

I

∑I

i=1 φ1(xi). In this case, this Adversarial Network-based scheme is mesh-
free. It can now avoid the curse of dimensionality and has the potential to be applied to
high-dimensional problems.
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Algorithm 7 Adversarial Network algorithm with a merged network for the dual problem

Sample I points xi ∈ Rd (i ∈ [1, I]) from the target distribution ρ1.
Starting from the initial condition Xm

0 = x0 ∀m ∈ [1,M ]:
for epoch = 1 : number of epochs do

Phase 1: train the AB-generator
for time step n = 1 : N − 1 do

With the network θ, input {Xm
n }Mm=1 and time step n, outputs (Bm

n , A
m
n ) = θ(Xm

n , n);
Xm
n+1 = Xm

n +Bm
n ∆t+ Amn ∆Wn;

end

Loss function L1 = − 1
M

∑M
m=1

[
Φ(Xm

N )−
∑N−1

n=0 F (Bm
n , A

m
n (Amn )ᵀ)∆t

]
;

Train the neurons with the Adam optimizer and update θ.

Phase 2: train the φ1-generator
With the network Φ, input {Xm

N }Mm=1, output φ1(Xm
N ) = Φ(Xm

N );
With the same network Φ, inputs xi,∀i ∈ [1, I], outputs Φ(xi);

Loss function L2 = −1
I

∑I

i=1 Φ(xi) + 1
M

∑M
m=1

[
Φ(Xm

N )−
∑N−1

n=0 F (Bm
n , A

m
n (Amn )ᵀ)∆t

]
;

Train the neurons with the Adam optimizer and update Φ.
end

We use a merged network for the AB-generator in this algorithm. A demonstration of
the training process is illustrated in Figure 4.4. The detailed algorithm is summarized in
Algorithm 7.

Figure 4.4: Adversarial Network algorithm with a merged network for the dual problem

4.4.1 Numerical Results

First, we start with a simple one-dimensional example to assess the quality of Algorithm
7. We choose a target distribution ρ1 = N(6, 1), a cost function F (B,A) = (A− 0.1)2 and
solve for V (ρ0, ρ1) = supφ1

{∫
R φ1dρ1 − φ0dρ0

}
.

In Figure 4.5(a), we plot the target distribution and the distribution of X1 learnt by the
Adversarial Networks; in Figure 4.5(b), we show the corresponding loss function during the
training. We can see that our algorithm works well in terms of attaining the target density.
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(a) Density of X1 learnt by Adversarial
Networks

(b) Loss function

Figure 4.5: Dimension d = 1, ρ1 = N(6, 1)

Next, we demonstrate a two-dimensional example. We let Xn ∈ R2, and we generate
the drift Bn ∈ R2 and the diffusion coefficient An ∈ R2×2 with the deep neural network.

We again start from an initial state x0 =

[
5.0

5.0

]
, and let the cost function F (B,A) = ‖B‖2

and the target distribution set to be a bivariate normal ρ1 = N

([
5.5

6.0

]
,

[
0.25 0.10

0.10 0.25

])
.

We construct two networks for (A,B) and φ1, respectively. The AB-generator has 4
layers with 40, 30, 20 and 10 neurons respectively and the φ1-generator has 4 layers with
80, 60, 40 and 40 neurons respectively. We use a mini-batch SGD algorithm with a batch
size of 1000 and Adam optimizer with learning rate 1× 10−4.

The empirical terminal density ρ1 after the training has mean

[
5.497

6.007

]
and covariance

matrix

[
0.253 0.099

0.099 0.251

]
, which are very close to the target mean and covariance. The con-

tours of the empirical and target distributions are shown in Figure 4.6. This result is similar
to the one we got from Algorithm 5.

(a) Contour of ρ1 from Adversarial Network (b) Contour of ρ1

Figure 4.6: Dimension d = 2, bivariate normal target distribution

4.4.2 Higher dimensional examples

In this section, we apply the Adversarial Network-based algorithm to high-dimensional
examples. When the dimension d ≥ 3, Algorithm 5 will be less effective. This is due to how
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the kernel density estimation error increases with the dimension (see for example Wand
and Jones 1994, Chapter 4). By contrast, the Adversarial Network-based algorithm for the
dual problem does not rely on kernel density estimation, and is therefore less affected by
an increase in dimension.

In the following, we use a cost function F (B,A) = ‖B‖2 + ‖A‖2 and solve the dual
problem (4.13) with d = 5 and d = 10, respectively.

In the 5−d example, we set x0 =


5.0

5.0

5.0

5.0

5.0

, and let ρ1 be a multivariate normal distribution,

where ρ1 = N




5.5

6.0

5.8

6.0

6.2

 ,


0.25 0.10 0.10 0.10 0.10

0.10 0.25 0.10 0.10 0.10

0.10 0.10 0.25 0.10 0.10

0.10 0.10 0.10 0.25 0.10

0.10 0.10 0.10 0.10 0.25



 2.

Because the dimension is higher and the cost function is more complicated in this case,
we need a bigger and deeper network. The AB-generator now has 5 layers with neurons
[400, 300, 200, 200, 150], the φ1-generator keeps the same as before. Using 20,000 out-of-
sample points of X1 from the trained model, the empirical terminal density ρ1 from Algo-

rithm 7 has mean


5.4929

5.9749

5.7855

5.9825

6.1944

 and covariance matrix


0.2515 0.1041 0.1038 0.1037 0.1011

0.1041 0.2372 0.0926 0.0937 0.0885

0.1038 0.0926 0.2541 0.1103 0.0979

0.1037 0.0937 0.1103 0.2686 0.0906

0.1011 0.0885 0.0979 0.0906 0.2475

.

We use graphical tools to help us assess if the data plausibly come from the prescribed
multivariate normal distribution. First, we compare the marginal distributions of ρ1 with
the ones of ρ1 in Figure 4.7. We can see that the empirical marginal distributions are
consistent with the theoretical ones for all of the 5 marginals. Furthermore, we make a Q-Q
plot for each margin, where we plot the quantiles of the empirical marginal distribution
against the quantiles of the theoretical normal distribution. As we can see in Figure 4.8,
for every margin, the points are close to a straight line. There are a few outliers at the two
ends of the Q-Q plots, which is to be expected as Monte Carlo methods converge slowly
for extreme values. Overall, the above two figures, in addition to the mean and covariance
matrix, can verify the assumption that our dataset follows the target distribution ρ1 closely.

2For short, we write this prescribed distribution as ρ1 = N(µ,Σ).
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(a) margin 1 (b) margin 2

(c) margin 3 (d) margin 4

(e) margin 5

Figure 4.7: Marginal distributions of the 5-d sample
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(a) margin 1 (b) margin 2

(c) margin 3 (d) margin 4

(e) margin 5

Figure 4.8: Normal Q-Q plot for margins of the 5-d sample

Next, we project the dataset X1 on a random direction b ∈ R5. For a multivariate
Gaussian distribution, the distribution after an affine transformation is univariate Gaussian.
Let Xaffine = X1b. After the transformation, Xaffine should follow a normal distribution with
mean µaffine = µᵀb and variance σ2

affine = bᵀΣb. In the following figures, we illustrate the
results of five random affine transformations. We compare the distributions of Xaffine with
the theoretical distributions (i.e., N(µaffine, σ

2
affine)) in Figure 4.9, and present their Q-Q

plots in Figure 4.10. From these two figures, we can see that the dataset after the affine
transformation follows the theoretical distribution closely.
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(a) (b)

(c) (d)

(e)

Figure 4.9: Densities after affine transformations
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(a) (b)

(c) (d)

(e)

Figure 4.10: Normal Q-Q plots after affine transformations

We now introduce a loss metric to measure the quality of the dataset X1. We will
apply 40,000 random affine transformations on the 5-dimensional dataset we got from
the Adversarial Network. For each affine transformation, we use the Wasserstein dis-
tance to measure the difference between the empirical distribution and the theoretical
distribution after the transformation. The Wasserstein distance Wp(P,Q) arises from
the idea of optimal transport: intuitively, it measures how far you have to move the
mass of P to turn it into Q. In particular, let x1, ..., xn be an ordered dataset from
the empirical distribution P , and y1, ..., yn be an ordered dataset of the same size from
the distribution Q, then the distance takes a very simple function of the order statis-

tics: W2(P,Q) = (
∑n

i=1 ||xi − yi||2)
1
2 . Inspired by this, we use a variation form of the

2-Wasserstein distance as the loss metric: for the k-th affine transformation, define the
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average Wasserstein distance between the empirical distribution and the theoretical distri-
bution as W (empirical, theoretical) := 1

n

∑n
i=1

1
σ2
k
||xi − yi||2,∀k ∈ [1, K], where σk is the

standard deviation of the k−th theoretical distribution. In this case, we have n = 20,000
and K = 40,000. To be specific, for the k-th transformation, we get the 20,000 ordered
sample points of X1 and 20,000 quantiles from the theoretical distribution, then we com-
pute the average Wasserstein distance between the empirical and theoretical distribution.
In Figure 4.11, we show the histogram of the 40,000 average Wasserstein distances after
affine transformations.

As a comparison, after each affine transformation, we also generate 20,000 random points
from the theoretical distribution. Then we compute the average Wasserstein distances using
the 20,000 quantiles from the theoretical distribution and the ordered samples generated
from the theoretical distribution. We also present this histogram in Figure 4.12. We can
use this ‘correct answer’ to evaluate the performance in Figure 4.11.

Figure 4.11: Wasserstein distances for the affine transformations of the 5 dimensional sam-
ples

Figure 4.12: Wasserstein distances for the samples generated from theoretical distributions

Finally, we can go further to a 10-dimensional example, where we set
x0 =

[
5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0

]ᵀ
and the prescribed termi-
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nal distribution

ρ1 = N





5.5

6.0

5.8

6.0

6.2

5.5

6.0

5.8

6.0

6.2


,



0.25 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

0.10 0.25 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

0.10 0.10 0.25 0.10 0.10 0.10 0.10 0.10 0.10 0.10

0.10 0.10 0.10 0.25 0.10 0.10 0.10 0.10 0.10 0.10

0.10 0.10 0.10 0.10 0.25 0.10 0.10 0.10 0.10 0.10

0.10 0.10 0.10 0.10 0.10 0.25 0.10 0.10 0.10 0.10

0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.10 0.10 0.10

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.10 0.10

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.10

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25




.

Using the same network constructed in the 5-d example, the empirical terminal density
ρ1 learnt from the Adversarial Network has mean[

5.4711, 5.9905, 5.8023, 5.9680, 6.2131, 5.4297, 5.9932, 5.7773, 5.9596, 6.1853
]ᵀ

and covariance matrix

0.2522 0.1155 0.1891 0.1305 0.1288 0.1180 0.1016 0.1148 0.1114 0.1217

0.1155 0.2494 0.1346 0.1275 0.0747 0.1170 0.1265 0.0837 0.1217 0.1042

0.1891 0.1346 0.2763 0.1140 0.0939 0.1525 0.1211 0.1417 0.1298 0.0857

0.1305 0.1275 0.1140 0.2622 0.1271 0.1163 0.0892 0.1094 0.1113 0.1067

0.1288 0.0747 0.0939 0.1271 0.1858 0.1325 0.0901 0.0840 0.1120 0.0589

0.1180 0.1170 0.1525 0.1163 0.1325 0.2696 0.1435 0.1121 0.1251 0.1178

0.1016 0.1265 0.1211 0.0892 0.0901 0.1435 0.2578 0.1111 0.0751 0.0843

0.1148 0.0837 0.1417 0.1094 0.0840 0.1121 0.1111 0.2548 0.1076 0.1185

0.1114 0.1217 0.1298 0.1113 0.1120 0.1251 0.0751 0.1076 0.2455 0.0895

0.1217 0.1042 0.0857 0.1067 0.0589 0.1178 0.0843 0.1185 0.0895 0.2368


.

We use a similar way to check the multivariate normality of the empirical distribution.
In Figure 4.13, we plot the marginal distributions of the sample and the target marginal
distributions. For most of the margins, the empirical distributions are consistent with the
target ones. For margin 5, we can see the empirical one has a narrower shape (smaller
variance), and the empirical margin 6 is shifted to the left (smaller mean). These imperfec-
tions can also be seen in the mean and covariance matrix of ρ1. Then we present the Q-Q
plots of the 10 marginal distributions in Figure 4.14. With the exception of some outliers
at the two ends, the scatterplots are approximately straight. The Q-Q plots verify that the
margins are all normally distributed.
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(a) margin 1 (b) margin 2

(c) margin 3 (d) margin 4

(e) margin 5 (f) margin 6

(g) margin 7 (h) margin 8

(i) margin 9 (j) margin 10

Figure 4.13: Marginal distributions for the 10-d sample82
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(a) margin 1 (b) margin 2

(c) margin 3 (d) margin 4

(e) margin 5 (f) margin 6

(g) margin 7 (h) margin 8

(i) margin 9 (j) margin 10

Figure 4.14: Normal Q-Q plots for margins of the 10-d sample
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Next, we project the dataset X1 ∈ R10 on a random direction b ∈ R10. We present their
Q-Q plots of 5 random affine transformations in Figure 4.15.

(a) (b)

(c) (d)

(e)

Figure 4.15: Normal Q-Q plots after affine transformations for the 10-dimensional sample

Then, we apply 1,000,000 affine transformations on the 10-dimensional dataset we got
from the Adversarial Network. Again, we use the previously defined average Wasserstein
distance as a metric to quantify the difference between empirical distribution and the the-
oretical distribution after the affine transformation. In Figure 4.16 we plot the histogram
of the 1,000,000 average Wasserstein distances for the transformed 10-d samples, and in
Figure 4.17 we illustrate the average Wasserstein distances for the samples generated from
theoretical distributions.
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Figure 4.16: Wasserstein distances for the affine transformations of the 10-dimensional
samples

Figure 4.17: Wasserstein distances for the samples generated from theoretical distributions

We want to emphasize that, compared to other research where the prescribed distri-
butions are restricted to Gaussian, our methods apply to a general choice of target dis-
tributions ρ1, such as heavy-tailed and asymmetric distributions. We choose multivariate
normal target distributions only because the result is easier to be verified. In the following
sections, we will demonstrate examples where ρ1 is not Gaussian.

4.5 Application to portfolio allocation

Now we are applying the deep learning algorithm (Algorithm 5) to the portfolio allocation
problem introduced in Chapter 3, where the goal is to reach a prescribed wealth distribution
ρ1 at the final time from an initial wealth x0. Readers can refer to section 3.2.1 for the
detailed description of this problem. We study this problem with the tools of optimal mass
transport.

Let α be the portfolio allocation process valued in K. With a convex cost function
F (αt) : K → R and a penalty functional C(ρ1, ρ1), our objective function in this application
is

inf
α,ρ

{∫
E

F (αt)dρ(t, x) + C(ρ1, ρ1)

}
, (4.14)

where the feasible (α, ρ) in (4.14) should satisfy the initial distribution

ρ(0, x) = ρ0(x) ∀x ∈ R, (4.15)
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and the Fokker–Planck equation

∂tρ(t, x) + ∂x(α(t, x)ᵀµ(t, x)xρ(t, x))− 1

2
∂xx(α(t, x)ᵀΣ(t, x)α(t, x)x2ρ(t, x)) = 0 ∀(t, x) ∈ E.

(4.16)

If we write the driftB(t, x) as α(t, x)ᵀµ(t, x)x and the diffusion A(t, x) as α(t, x)ᵀΣ(t, x)α(t, x)x2.
It is easy to check that A and B are constrained in such a way that A ≥ B2

‖ν(t,x)‖2 , where

ν(t, x) := Σ(t, x)−
1
2µ(t, x). Note that, due to the inequality constraint on the drift and dif-

fusion, not all target distributions are attainable in this application. Therefore, we mainly
utilize Algorithm 5 to solve this problem, it can be applied to all types of terminal distri-
butions, attainable or unattainable.

4.5.1 Numerical Results

Now we implement Algorithm 5 to solve Problem 4.2.1 with various penalty functionals.
In the experiment, we use M = 512000 Monte Carlo paths, and N = 64 time steps. We
discretize the time horizon into constant steps with a step size ∆t = 1/N and the spatial
domain into I = 100 constant grids. At each time step, the neural network θn consists of 3
layers, with neurons [60, 40, 20]. We feed the neural network with sequential mini-batches
of size 1024 and trained it for 100 epochs.

Squared Euclidean Distance

In this example, we assume there is one risky asset in the portfolio, i.e., αt ∈ R. We use the
squared Euclidean distance as the penalty functional and a cost function F (αt) = (αt−0.5)2.
The objective function is

V (ρ0, ρ1) = inf
α

{
E
[∫ 1

0

(α(t, x)− 0.5)2dt
]

+ λ

∫
R

1

2
(ρ1(x)− ρ1(x))2 dx

}
,

where we choose λ = 3000, x0 = 5 and ρ1 = N(6, 1).
The discretized loss function is

L =
1

M

M∑
m=1

[
N∑
n=1

(αn,m − 0.5)2 ∆t

]
+ λ

I∑
i=1

1

2

(
ρ̃N(xi)− ρ̃N(xi)

)2
∆x.

We compare the KDE-estimated empirical terminal density ρ̃1 with the KDE-estimated
target density ρ̃1 in Figure 4.18(a); then we also compare ρ̃1 with the true target density
ρ1 in Figure 4.18(b). We can see that the portfolio allocation learned with the deep neural
network can successfully steer the density to the prescribed one. We show the change of loss
function through the training process in Figure 4.18(c). In training, we use a mini-batch
gradient descent algorithm, which is a mix of batch gradient descent and stochastic gradient
descent. In each step, it uses one mini-batch to compute the gradient and update the loss
function. Therefore, as we can see in Figure 4.18(c), the loss function is not monotonic,
but the overall trend is decreasing.

We can see the empirical density ρ̃1 converges to the target ρ̃1 after the training. The
current result is a trade-off between the cost function in αt and the penalty functional in
the terminal densities. In theory, we should set λ = +∞ in the penalty functional to make
ρ1 = ρ1. Empirically, it is sufficient to set λ to be a large number for a similar effect.

The distance between ρ̃1 and ρ̃1 comes from the imperfect training of the neural net-
works. There are two sources of error when we compare ρ̃1 with the true target density
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ρ1. One is the imperfectly trained model, and the other is the KDE estimation. To reduce
the first kind of error, we can try different hyper-parameters in the neural network, e.g.,
different mini-batch sizes, different structures of the network, etc. On the other hand, we
can reduce the second kind of error by choosing more appropriate kernels and bandwidth
h for the KDE method.

(a) compare ρ̃1 with ρ̃1 (b) compare ρ̃1 with ρ1

(c) Loss function during the training

Figure 4.18: Squared Euclidean: ρ = N(6, 1), λ = 3000, αt ∈ R

An advantage of this deep learning method is that it does not require much extra effort
for multi-asset problems. We can easily obtain result for a 4-risky-asset case (or more) with
good accuracy within computing time approximately the same as for the 1-risky-asset case.
The result for such multi-asset example is shown in Figure 4.19.

(a) compare ρ̃1 with ρ̃1 (b) compare ρ̃1 with ρ1

Figure 4.19: Squared Euclidean: ρ = N(6, 1), λ = 3000, αt ∈ R4
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(a) compare ρ̃1 with ρ̃1 (b) compare ρ̃1 with ρ1

(c) Loss function during the training

Figure 4.20: K-L divergence: ρ1 = 0.5N(4, 1) + 0.5N(7, 1), λ = 2000

Kullback-Leibler divergence

In this second example, we use the Kullback–Leibler divergence to measure the differ-
ence between the two distributions. The Kullback–Leibler (K–L) divergence (Kullback and
Leibler 1951) is also known as relative entropy or information deviation. In Machine Learn-
ing and neuroscience, the K–L divergence plays a leading role and is a widely used tool in
pattern recognition (Mesaros et al. 2007), multimedia classification (Moreno et al. 2004),
text classification (Dhillon et al. 2003) and so on. In the implementation, we may face
0 log 0 or division by zero cases in practice; to address this, we can replace zero with an
infinitesimal positive value. In this case, the value function is defined as

V (ρ0, ρ1) = inf
α

{
E
[∫ 1

0

(α(t, x)− 0.5)2dt
]

+ λ

∫
R
ρ1(x) log

(
ρ1(x)

ρ1(x)

)
dx

}
,

and the discretized form of the loss function is

L =
1

M

M∑
m=1

[
N∑
n=1

(αn,m − 0.5)2 ∆t

]
+ λ

I∑
i=1

ρ̃N(xi) log

(
ρ̃N(xi)

ρ̃N(xi)

)
∆x.

To show that our method is not restricted to Gaussian target distributions, we use
a mixture of two normal distributions as the target ρ1 = 0.5N(4, 1) + 0.5N(7, 1) in this
example. We provide the comparisons between ρ̃1 and ρ̃1, ρ̃1 and ρ1 in figures 4.20(a) and
4.20(b), respectively. The loss function is shown afterwards, in Figure 4.20(c).

We want to emphasize that our method is not restricted to constant parameters. The
risky assets can have time-varying returns and covariances. We are not illustrating the
results here because the output plots look very similar to the presented cases.

88



4.5. APPLICATION TO PORTFOLIO ALLOCATION

2-Wasserstein Distance

Here, we use 2-Wasserstein distance as the penalty functional. Wasserstein distance is
closely related to the optimal transport problem. When we think of the optimal transport
problem as an optimization problem, then the Wasserstein distance is simply the optimal
objective value of this optimization problem, with some power transformation. We refer
interested readers to Del Barrio et al. (2019), Panaretos and Zemel (2019) and Weed et al.
(2019) for more properties of the Wasserstein distance. The Wasserstein distance is widely
used in Machine Learning to formulate a metric for comparing clusters (Coen et al., 2010),
and has been applied to image retrieval (Rubner et al., 2000), contour matching (Grau-
man and Darrell, 2004), and many other problems. The Wasserstein distance has some
advantages compared to distances such as L2, χ2 or Hellinger. First of all, it can capture
the underlying geometry of the space, which may be ignored by the Euclidean distance.
Secondly, when we take average of different objects – such as distributions and images – we
can get back to a similar object with the Wasserstein distance. Thirdly, some of the above
distances are sensitive to small wiggles in the distribution, but the Wasserstein distance is
insensitive to small wiggles.

The 2-Wasserstein distance between two distributions ρ1 and ρ1 is defined by

W2(ρ1, ρ1) =

(
inf

γ∈Γ(ρ1,ρ1)

∫
R×R
|x− y|2 dγ(x, y)

) 1
2

.

For continuous one-dimensional probability distributions ρ1 and ρ1 on R, the distance has a
closed form in terms of the corresponding cumulative distribution functions F (x) and F (x)
(see Rüschendorf 1985 for the detailed proof):

W2(ρ1, ρ1) =

(∫ 1

0

∣∣∣F−1(u)− F−1
(u)
∣∣∣2 du) 1

2

.

Empirically, we can use the order statistics:

W2(ρ1, ρ1) =

(
n∑
i=1

|Xi − Yi|2
) 1

2

,

where the dataset X1, X2, ...Xn is increasingly ordered with an empirical distribution ρ1,
similarly the dataset Y1, Y2, ...Yn is increasingly ordered with an empirical distribution ρ1.

Using the same cost function and network structure as before, the numerical results for
the densities and loss function are illustrated in Figure 4.21.
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(a) compare ρ̃1 with ρ̃1 (b) compare ρ̃1 with ρ1

(c) Loss function during the training

Figure 4.21: 2-Wasserstein distance: ρ1 = N(6, 1), λ = 4000

4.6 Discussion and conclusion

In this chapter, we first devise a deep learning method to solve the optimal transport
problem via a penalization method. In particular, we relax the classical optimal transport
problem and introduce a functional to penalize the deviation between the empirical terminal
density and the prescribed one. In section 4.5, we apply this deep learning method to the
portfolio allocation problem raised in Guo et al. (2020a), where the goal is to reach a
prescribed wealth distribution at the final time. We then provide numerical results for
various choices of penalty functionals and target densities.

Then we investigate the dual representation and find it can be written as a saddle point
problem. In this way, the optimal transport problem can be interpreted as a minimax game
between the drift/diffusion and the potential function. We then solve this differential game
with adversarial networks. Because this algorithm is free of spatial discretization, it can be
applied to high dimensional optimal transport problems, where we illustrate an example
up to dimension 10. These examples validate the accuracy and flexibility of the proposed
deep optimal transport method.

In this work, the optimal transport problem starts from a point. This can be easily ex-
tended to more general situations. In future research, we will investigate more applications
of deep learning in high-dimensional optimal transport problems, and we aim to propose
more efficient neural network-based algorithms.
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Bachouch, A., Huré, C., Langrené, N., and Pham, H. (2018a). Deep neural networks algo-
rithms for stochastic control problems on finite horizon: numerical applications. arXiv
preprint arXiv:1812.05916.
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Appendix A

Appendix for Chapter 2

A.1

Proof of Proposition 2.3.2.
First of all, define w(t, x) := supα∈A Et,x

[
U(Xα,θ

T )
]
, (t, x) ∈ [0, T ]× R. All the assump-

tions on α, U,Xt hold for w(t, x), except that we assume θ for time u ∈ [t, T ] is a fixed
known process in B. An argument used in Pham (2009, p.52) proved that, when the util-
ity function U(·) is continuous, increasing and concave on R, w(t, ·) is also increasing and
concave in x, ∀t ∈ [0, T ].

For any fixed process θ ∈ B, we define a function q(t, x) by

q(t, x) = sup
α∈A

Et,x
[
U(Xα,θ

T ) + λ0

∫ T

t

F (θs)ds

]
,

= w(t, x) + E
[
λ0

∫ T

t

F (θs)ds
]
.

Then q(t, x) is also concave in x for t ∈ [0, T ]. We define

L(t, x, a,Θ) := λ0F (Θ) + (aᵀ(µ− r) + r)x
∂q

∂x
(t, x) +

1

2
tr

(
aᵀΣax2 ∂

2q

∂x2
(t, x)

)
.

In addition to Assumption 2.2.2, we know L is convex in Θ and concave in a. By Zeidler
(2013, Theorem 49.A), there exists a saddle point (a∗,Θ∗) ∈ A×B, such that

inf
Θ∈B

L(t, x, a∗,Θ) = L(t, x, a∗,Θ∗) = sup
a∈A

L(t, x, a,Θ∗). (A.1)

We know from Pham (2009, Theorem 4.3.1) that q(t, x) is a viscosity solution of the HJB
equation

∂q

∂t
(t, x) + sup

a∈A
L(t, x, a,Θ) = 0, q(T, x) = U(x).

Then with the fixed process θ∗, whose value is denoted as Θ∗ at each instant, the value

q∗(t, x) := sup
α∈A

Et,x
[
U(Xα,θ∗

T ) + λ0

∫ T

t

F (θ∗s)ds

]
is a viscosity solution of the PDE

∂q

∂t
(t, x) + sup

a∈A
L(t, x, a,Θ∗) = 0,
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which is equivalent to
∂q

∂t
(t, x) + inf

Θ∈B
L(t, x, a∗,Θ) = 0 (A.2)

due to the saddle point property (A.1). Using arguments similar to the ones in Pham (2009,

Chapter 4), the function infθ∈B Et,x
[
U(Xα∗,θ

T ) + λ0

∫ T
t
F (θs)ds

]
is the unique viscosity so-

lution of the HJB equation (A.2). Therefore we have

sup
α∈A

Et,x
[
U(Xα,θ∗

T ) + λ0

∫ T

t

F (θ∗s)ds

]
= inf

θ∈B
Et,x

[
U(Xα∗,θ

T ) + λ0

∫ T

t

F (θs)ds

]
.

With J(t, x, α, θ) = Et,x
[
U(Xα,θ

T ) + λ0

∫ T
t
F (θs)ds

]
, then the inequality

inf
θ∈B

sup
α∈A

J(t, x, α, θ) ≤ sup
α∈A

J(t, x, α, θ∗) = inf
θ∈B

J(t, x, α∗, θ) ≤ sup
α∈A

inf
θ∈B

J(t, x, α, θ) (A.3)

implies

inf
θ∈B

sup
α∈A

Et,x
[
U(Xα,θ

T ) + λ0

∫ T

t

F (θs)ds

]
= sup

α∈A
inf
θ∈B

Et,x
[
U(Xα,θ

T ) + λ0

∫ T

t

F (θs)ds

]
.

From Proposition 2.3.1, we have u(t, x) ≤ v(t, x) ≤ v(t, x) ≤ u(t, x). Combining this
with u(t, x) = u(t, x), we obtained the required equalities

u(t, x) = v(t, x) = v(t, x) = u(t, x).

A.2

Proof of Proposition 2.3.3.
Let Xθ,Γ

T and X
θ,Γ

T be the solutions of the SDE (2.2) with initial states (t, x) and (t, x)
respectively, they are both controlled by an arbitrary pair of admissible control and strategy
processes (θ,Γ). From Assumption 2.2.1, we have∣∣∣U(Xθ,Γ

T )− U(X
θ,Γ

T )
∣∣∣ ≤ Q(|Xθ,Γ

T | ,
∣∣∣Xθ,Γ

T

∣∣∣) ∣∣∣Xθ,Γ

T −X
θ,Γ

T

∣∣∣ .
We have ∣∣∣Et,x [U(Xθ,Γ

T )]− Et,x
[
U(X

θ,Γ

T )
]∣∣∣ ≤ E

∣∣∣U(Xθ,Γ

T )− U(X
θ,Γ

T )
∣∣∣. (A.4)

By the Cauchy-Schwarz inequality,(
E
∣∣∣U(Xθ,Γ

T )− U(X
θ,Γ

T )
∣∣∣)2

≤ E
[
Q(
∣∣Xθ,Γ

T

∣∣, ∣∣Xθ,Γ

T

∣∣)2

]
E
[∣∣∣Xθ,Γ

T −X
θ,Γ

T

∣∣∣2]. (A.5)

It is straightforward to check that there exist constants C, m1,m2 and β0 such that

E
[
Q(
∣∣Xθ,Γ

T

∣∣, ∣∣Xθ,Γ

T

∣∣)2

]
E
[∣∣∣Xθ,Γ

T −X
θ,Γ

T

∣∣∣2] ≤ CE
[∣∣Xθ,Γ

T

∣∣2m1 +
∣∣Xθ,Γ

T

∣∣2m2

]
e2β0(T−t) |x− x|2 .

(A.6)
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By the classical inequality Et,x
[
maxt≤s≤T

∣∣Xθ,Γ
s

∣∣2m] ≤ CT (1 + x2m) (e.g., Pham (2009, The-

orem 1.3.15)), for arbitrary control and strategy processes Γ, θ, we have∣∣∣Et,x [U(Xθ,Γ

T )]− Et,x
[
U(X

θ,Γ

T )
]∣∣∣ ≤ Φ(|x| , |x|) |x− x| , (A.7)

where CT ,m are constants, and Φ is a polynomial function.

Next, for all bounded functions Et,x
[
λ0

∫ T
t
F (θs)ds+U(XΓ,θ

T )
]

and Et,x
[
λ0

∫ T
t
F (θs)ds+

U(X
Γ,θ

T )
]

(by assuming the initial wealth x is finite, they are locally bounded because of

Theorem 1.2.2),∣∣∣∣inf
θ
Et,x
[
λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]
− inf

θ
Et,x
[
λ0

∫ T

t

F (θs)ds+ U(X
Γ,θ

T )
]∣∣∣∣

≤ sup
θ

∣∣∣∣Et,x[λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]
− Et,x

[
λ0

∫ T

t

F (θs)ds+ U(X
Γ,θ

T )
]∣∣∣∣, (A.8)∣∣∣∣sup

Γ
Et,x
[
λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]
− sup

Γ
Et,x
[
λ0

∫ T

t

F (θs)ds+ U(X
Γ,θ

T )
]∣∣∣∣

≤ sup
Γ

∣∣∣∣Et,x[λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]
− Et,x

[
λ0

∫ T

t

F (θs)ds+ U(X
Γ,θ

T )
]∣∣∣∣. (A.9)

Under Assumption 2.2.1, v(t, x) is bounded. Then we can write the difference between the
two value functions as:∣∣∣v(t, x)− v(t, x)

∣∣∣ (A.10)

≤ sup
Γ

sup
θ

∣∣∣∣Et,x[λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]
− Et,x

[
λ0

∫ T

t

F (θs)ds+ U(X
Γ,θ

T )
]∣∣∣∣. (A.11)

In addition to the inequality (A.7), the value function v(t, x) is locally Lipschitz contin-
uous in x.

A.3

Proof of Theorem 2.3.1.
We use localization techniques here. Let Bk = {x ∈ R, x2 < k2}, let φk(x) ∈ C∞b (R)

be a function such that φk(x) = 1 on Bk, and φk(x) = 0 outside Bk+1, and the Lipschitz
constant of φk is less than 2. Then we can define a new process

dXk
s = φk(X

k
s )Xk

s

[
(αᵀ

sµs + r − αᵀ
sr)ds+ αᵀ

sσsdWs

]
, (A.12)

starting from an initial condition (t, x) ∈ [0, T ] × R. Let Uk(x) = φk+2(x)U(x), then we
can define the truncated value function by

vk(t, x) = sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ T

t

F (θs)ds+ Uk(Xk,Γ,θ
T )

]}
. (A.13)

In the above setting, the drift and volatility functions in the SDE (A.12) are bounded, and
the utility function in (A.13) is bounded and Lipschitz continuous. Since all assumptions
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of Fleming and Souganidis (1989) are satisfied, the localized value function vk defined in
(A.13) satisfies the dynamic programming principle: for t ≤ t+ h ≤ T ,

vk(t, x) = sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ t+h

t

F (θs)ds+ vk(t+ h,Xk,Γ,θ
t+h )

]}
. (A.14)

In this proof, Xk,Γ,θ
t+h and XΓ,θ

t+h are the solutions of SDE (A.12) and SDE (2.2) respectively,
both starting from (t, x), controlled by processes Γ, θ for the time u ∈ [t, t+ h].

As k → ∞, vk(t, x) defined in (A.13) approaches v(t, x) defined in (2.7), then our
problem reduces to proving that the right hand side of (A.14) converges to the right hand
side of (2.11).

Note that if Xk
s is in Bk+1, then Xk

u is in Bk+1 ∀u ∈ [s, T ] almost surely. Define τk to
be the first exit time of Xk

t from Bk. Thus, for (t, x) ∈ [0, T ]× R, we have∣∣∣∣sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ t+h

t

F (θs)ds+ vk(t+ h,Xk,Γ,θ
t+h )

]}
(A.15)

− sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ t+h

t

F (θs)ds+ v(t+ h,XΓ,θ

t+h)
]}∣∣∣∣

≤ sup
Γ∈N

sup
θ∈B

Et,x
∣∣∣∣vk(t+ h,Xk,Γ,θ

t+h )− v(t+ h,XΓ,θ

t+h)

∣∣∣∣
≤ sup

Γ∈N
sup
θ∈B

Et,x
∣∣∣∣(vk(t+ h,Xk,Γ,θ

t+h )− v(t+ h,XΓ,θ

t+h)
)
1(τk > T )

∣∣∣∣ (A.16)

+ sup
Γ∈N

sup
θ∈B

Et,x
∣∣∣∣(vk(t+ h,Xk,Γ,θ

t+h )− v(t+ h,XΓ,θ

t+h)
)
1(τk ≤ T )

∣∣∣∣. (A.17)

If τk > T , the term (A.16) is zero. For the term (A.17), for any arbitrary pair (Γ, θ), we
have (

Et,x
∣∣∣∣vk(t+ h,Xk,Γ,θ

t+h )− v(t+ h,XΓ,θ

t+h)1(τk ≤ T )

∣∣∣∣)2

≤ Et,x
[∣∣∣∣vk(t+ h,Xk,Γ,θ

t+h )− v(t+ h,XΓ,θ

t+h)

∣∣∣∣2
]
× P(τk ≤ T ). (A.18)

Finally our task is to show that the upper bound (A.18) converges to zero as k goes to
infinity.

Let Xk,Γ,θ
T be the solution of SDE (A.12) starting from (t + h,Xk,Γ,θ

t+h ), and XΓ,θ

T be

the solution of (2.2) starting from (t + h,XΓ,θ

t+h), they are controlled by Γ, θ for the time
u ∈ [t+ h, T ].

Using arguments in equations (A.8) and (A.9),∣∣∣vk(t+ h,Xk,Γ,θ
t+h )− v(t+ h,XΓ,θ

t+h)
∣∣∣

≤ sup
Γ∈N

sup
θ∈B

∣∣∣Et+h,Xk,Γ,θ
t+h

[
λ0

∫ T

t

F (θs)ds+ Uk(Xk,Γ,θ
T )

]
− Et+h,X

Γ,θ
t+h

[
λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]∣∣∣.
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For any arbitrary controls (Γ, θ) for the time u ∈ [t+ h, T ], it is easy to see that

Et,x
(∣∣∣Et+h,Xk,Γ,θ

t+h

[
Uk(Xk,Γ,θ

T )
]
− Et+h,X

Γ,θ
t+h

[
U(XΓ,θ

T )
]∣∣∣)

≤ Et,x
(
Et+h,X

k,Γ,θ
t+h

∣∣∣Uk(Xk,Γ,θ
T )

∣∣∣+ Et+h,X
Γ,θ
t+h

∣∣∣U(XΓ,θ

T )
∣∣∣)

≤ Et,x
(
Et+h,X

k,Γ,θ
t+h

[
C
∣∣∣Xk,Γ,θ

T

∣∣∣2m1
]

+ Et+h,X
Γ,θ
t+h

[
C
∣∣∣XΓ,θ

T

∣∣∣2m2
])

≤ Et,x
(
KT

(
1 +

∣∣∣Xk,Γ,θ
t+h

∣∣∣2m1)
+KT

(
1 +

∣∣∣XΓ,θ

t+h

∣∣∣2m2))
≤ CT

(
1 + |x|2m

)
,

where C,KT , CT ,m1,m2,m are constants. Then there exists a polynomial Φ such that

Et,x
[∣∣∣vk(t+ h,Xk,Γ,θ

t+h )− v(t+ h,XΓ,θ

t+h)
∣∣∣2] ≤ Φ(|x|), (A.19)

and the Markov inequality yields

P(τk ≤ T ) ≤
Et,x
[
supt≤s≤T

∣∣XΓ,θ
s

∣∣2]
k2

≤ CT (1 + x2)

k2
, (A.20)

where CT is a constant independent of k. Therefore we have

Et,x
∣∣∣∣(vk(t+ h,Xk,Γ,θ

t+h )− v(t+ h,XΓ,θ

t+h))1(τk ≤ T )

∣∣∣∣ ≤ K(
∣∣x∣∣)
k

,

where K(
∣∣x∣∣) is a polynomial function in terms of x.

As k →∞, the term (A.17) goes to zero as well, therefore

v(t, x) = sup
Γ∈N

inf
θ∈B

{
Et,x
[
λ0

∫ t+h

t

F (θs)ds+ v(t+ h,XΓ,θ

t+h)
]}
,

as the left and right hand sides of (A.14) converge to the left and right hand sides of
equation (2.11) respectively.

A.4

Proof of Corollary 2.3.1.
Let XΓ,θ

s be the solution of the SDE (2.2) starting from x at time t, controlled by Γ, θ for
time u ∈ [t, s]. By the Dynamic Programming Principle and inequality (A.7), for t < s < T,∣∣v(t, x)− v(s, x)

∣∣ =
∣∣∣sup
Γ∈N

inf
θ∈B

{
Et,x

[
λ0

∫ s

t

F (θu)du+ v(s,XΓ,θ

s )

]}
− v(s, x)

∣∣∣.
With any arbitrary control and strategy processes (Σ̂, Γ̂) for time u ∈ [t, s], we have∣∣∣Et,x [λ0

∫ s

t

F (θ̂u)du+ v(s,X Γ̂,θ̂

s )

]
− v(s, x)

∣∣∣ (A.21)

=
∣∣∣Et,x [λ0

∫ s

t

F (θ̂u)du

]
+ Et,x

[
v(s,X Γ̂,θ̂

s )− v(s, x)
]∣∣∣ (A.22)

≤
∣∣∣Et,x [λ0

∫ s

t

F (θ̂u)du

]∣∣∣+ Et,x
[
sup

Γ
sup
θ

(
Es,X

Γ̂,θ̂
s [U(XΓ,θ

T )]− Es,x[U(XΓ,θ

T ]
)]

. (A.23)
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Referring to (A.7), there exist a polynomial function Φ and constants C,CT ,m1,m2 for an
arbitrary pair of (Γ, θ) for time u ∈ [s, T ] such that

Et,x
[
Es,X

Γ̂,θ̂
s [U(XΓ,θ

T )]− Es,x[U(XΓ,θ

T )]
]

≤ Et,x
[
Φ(
∣∣X Γ̂,θ̂

s

∣∣ , ∣∣x∣∣) ∣∣X Γ̂,θ̂

s − x
∣∣]

≤ Et,x
[
Φ(
∣∣X Γ̂,θ̂

s

∣∣ , ∣∣x∣∣)2
]1/2 Et,x [∣∣X Γ̂,θ̂

s − x
∣∣2]1/2

≤
(
Cx2m1 + CT

(
1 + x2m2

))1/2

Et,x
[∣∣X Γ̂,θ̂

s − x
∣∣2]1/2

.

We know
Et,x
[∣∣X Γ̂,θ̂

s − x
∣∣2] ≤ CT (1 + x2)(s− t).

Let η = max
{∣∣F (θu)

∣∣ : θu ∈ B
}

, therefore∣∣v(t, x)− v(s, x)
∣∣ ≤ λ0η(s− t) + Φ(|x|)(s− t)1/2.

Hence v(t, x) is Hölder continuous in t ∈ [0, T ].

A.5

Proof of Theorem 2.3.2.
We again make use of the localized processes Xk

t , U
k and vk from the proof of Theo-

rem 2.3.1 in section 2.3.2. The HJBI equation associated with SDE (A.12) is{
∂v
∂t

(t, x) +Hk(t, x, ∂v
∂x

(t, x), ∂
2v
∂x2 (t, x)) = 0 in [0, T )× R,

v(T, x) = Uk(x) on [T ]× R,
(A.24)

where

Hk(t, x, p,M) = inf
Θ∈B

sup
a∈A

{
λ0F (Θ) + φk(x)(aᵀµ+ r − aᵀr)xp+

1

2
tr
(
φ2
k(x)aᵀΣax2M

)}
.

(A.25)
All the assumptions in Fleming and Souganidis (1989) are satisfied, so vk(t, x) (A.13) is a
viscosity solution of the HJBI equation (A.24).

Now we introduce another value function

ṽk(t, x) =

{
vk(t, x) ∀(t, x) ∈ [0, T ]×Bk+1

U(x) + infθ∈B Et,x[λ0

∫ T
t
F (θs)ds] ∀(t, x) ∈ [0, T ]× (R\Bk+1)

.

In the first case where x ∈ Bk+1, we have
(
Xk
T

)2
< (k + 2)2 almost surely. Therefore

ṽk(t, x) = sup
Γ∈N

inf
θ∈B

Et,x[λ0

∫ T

t

F (θs)ds+ U(Xk,Γ,θ
T )], ∀(t, x) ∈ [0, T ]×Bk+1.

Then ṽk(t, x),∀(t, x) ∈ [0, T ]×Bk+1 is a viscosity solution of{
∂v
∂t

(t, x) +Hk(t, x, ∂v
∂x

(t, x), ∂
2v
∂x2 (t, x)) = 0 in [0, T )× R,

v(T, x) = U(x) on [T ]× R.
(A.26)
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Since the drift and diffusion of Xk
t are zero outside of Bk+1, then Xk,Γ,θ

T = x for x ∈ (R\Bk+1)
and

ṽk(t, x) = sup
Γ∈N

inf
θ∈B

Et,x[λ0

∫ T

t

F (θs)ds+ U(Xk,Γ,θ
T )], ∀(t, x) ∈ [0, T ]× (R\Bk+1) .

It is easy to check that ṽk(t, x),∀(t, x) ∈ [0, T ] × (R\Bk+1) is also a viscosity solution of
HJBI equation (A.26) with φk(x) = 0. Combining the two cases, we have

ṽk(t, x) = sup
Γ∈N

inf
θ∈B

Et,x[λ0

∫ T

t

F (θs)ds+ U(Xk,Γ,θ
T )], on [0, T ]× R,

and ṽk(t, x) is a viscosity solution of (A.26).
Since Hk → H as k →∞, if we can prove ṽk → v as k →∞, then it shows that v is a

viscosity solution of equation (2.12). We will prove the convergence in the following way:
first of all, we have∣∣∣v − ṽk∣∣∣ ≤ sup

Γ∈N
sup
θ∈B

∣∣∣∣Et,x[λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T )
]
− Et,x

[
λ0

∫ T

t

F (θs)ds+ U(Xk,Γ,θ
T )

]∣∣∣∣.
For any arbitrary pair of control and strategy processes (Γ, θ), we have

Et,x
[((

λ0

∫ T

t

F (θs)ds+U(XΓ,θ

T )
)
−
(
λ0

∫ T

t

F (θs)ds+U(Xk,Γ,θ
T )

))
1(τk ≥ T )

]
= 0. (A.27)

Using Assumption 2.2.1, we can write∣∣∣∣Et,x[λ0

∫ T

t

F (θs)ds+ U(XΓ,θ

T ])]− Et,x[λ0

∫ T

t

F (θs)ds+ U(Xk,Γ,θ
T )]

∣∣∣∣
=

∣∣∣∣Et,x[(U(XΓ,θ

T )− U(Xk,Γ,θ
T )

)
1(τk < T )

]∣∣∣∣
≤ Et,x

[
Q(
∣∣XΓ,θ

T

∣∣, ∣∣Xk,Γ,θ
T

∣∣)(∣∣XΓ,θ

T

∣∣− ∣∣Xk,Γ,θ
T

∣∣)1(τk < T )
]
. (A.28)

Applying the Cauchy-Schwarz inequality on the upper bound (A.28), with similar argu-
ments in (A.20), we obtain(

Et,x
[
Q(|XΓ,θ

T | ,
∣∣Xk,Γ,θ

T

∣∣)(∣∣XΓ,θ

T

∣∣− ∣∣Xk,Γ,θ
T

∣∣)I(τk < T )
])

2

≤ CT
(
1 + x2m

)
× CT (1 + x2)

k2
. (A.29)

Hence

Et,x
[
Q(|XΓ,θ

T | ,
∣∣Xk,Γ,θ

T

∣∣)(∣∣XΓ,θ

T

∣∣− ∣∣Xk,Γ,θ
T

∣∣)1(τk < T )
]
≤ Φ(|x|)

k
, (A.30)

where Φ(|x|) is a polynomial function independent of k. Since (Γ, θ) are arbitrary, combining
(A.27), (A.28) and (A.30), we deduce that∣∣∣v − ṽk∣∣∣ ≤ Φ(|x|)

k
.

So ṽk converges to v as k → ∞. Thus v is a viscosity solution of the HJBI equation
(2.12).
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A.6

Proof of Theorem 2.3.3.
For the case λ 6= 0, we can use the dedoubling variable technique and Ishii’s lemma

to prove that U(t, x) ≤ V (t, x) on [0, T ] × R. This proof is a natural adaptation of Pham
(2009), interested readers can refer to it. Here we illustrate the specific case λ = 0 in the
PDE (2.14).

We multiply the penalty function in equation (2.14) by eλt, then we have

− ∂v

∂t
(t, x) + λv(t, x)− inf

Θ∈B
sup
a∈A

{
eλtλ0F (Θ) + (aᵀ(µ− r) + r)x

∂v

∂x
(t, x)+

1

2
tr

(
aᵀΣax2 ∂

2v

∂x2
(t, x)

)}
= 0, (t, x) ∈ [0, T )× R, λ ∈ R\{0}. (A.31)

We assume w.l.o.g. that λ > 0. We have U(t, x) and V (t, x) as the subsolution and
supersolution of (A.31) and U(T, x) ≤ V (T, x). Choose an arbitrary test function eλtφ ∈
C∞([0, T ) × R) and (t0, x0) ∈ [0, T ) × R be the maximum point of U − eλtφ, let (U −
eλtφ)(t0, x0) = 0. By the viscosity subsolution property of U(t, x), we have

− λeλtφ(t0, x0)− eλt∂φ
∂t

(t0, x0) + λeλtφ(t0, x0)

− inf
Θ∈B

sup
a∈A

{
eλtλ0F (Θ) + eλt(aᵀ(µ− r) + r)x

∂φ

∂x
(t0, x0) + eλt

1

2
tr

(
aᵀΣax2∂

2φ

∂x2
(t0, x0)

)}

=eλt
[
−∂φ
∂t

(t0, x0)− inf
Θ∈B

sup
a∈A

{
λ0F (Θ) + (aᵀ(µ− r) + r)x

∂φ

∂x
(t0, x0) +

1

2
tr

(
aᵀΣax2∂

2φ

∂x2
(t0, x0)

)}]
≤0. (A.32)

Let Ũ(t, x) = e−λtU(t, x) and Ṽ (t, x) = e−λtV (t, x). Note that (t0, x0) is also the maximum
point of Ũ − φ. The inequality (A.32) implies that

−∂φ
∂t

(t0, x0)− inf
Θ∈B

sup
a∈A

{
λ0F (Θ) + (aᵀ(µ− r) + r)x

∂φ

∂x
(t0, x0) +

1

2
tr

(
aᵀΣax2∂

2φ

∂x2
(t0, x0)

)}
≤ 0.

Hence Ũ(t, x) is a subsolution of

−∂v
∂t

(t, x)− inf
Θ∈B

sup
a∈A

{
λ0F (Θ) + (aᵀ(µ− r) + r)x

∂v

∂x
(t, x) +

1

2
tr

(
aᵀΣax2 ∂

2v

∂x2
(t, x)

)}
= 0,

(t, x) ∈ [0, T )× R. (A.33)

A similar calculation applies to Ṽ (t, x) and Ṽ (t, x) is a supersolution of (A.33). From the
proof for the case λ 6= 0, we know U(t, x) ≤ V (t, x) on (t, x) ∈ [0, T ] × R. Therefore we
conclude that Ũ(t, x) ≤ Ṽ (t, x) on [0, T ]× R. This completes the proof.

A.7

Explicit solution of equation (2.23):
For completeness, we express the real positive root of equation (2.23) explicitly. Let

c =
(µ− r)2

2λ0

, the discriminant of the equation ∆ = −256c3 − 27σ4
0c

2 is less than zero,
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meaning there are two distinct real roots. It is easy to check that there is one positive and
one negative root, and the real positive one is

σ̂ =
σ0

4
+

1

2

σ2
0

4
+

3

√√
3
√

27σ4
0c

2 + 256c3 − 9σ2
0c

3
√

232/3
−

4 3

√
2
3
c

3

√√
3
√

27σ4
0c

2 + 256c3 − 9σ2
0c


1
2

+
1

2

[
σ2

0

2
−

3

√√
3
√

27σ4
0c

2 + 256c3 − 9σ2
0c

3
√

232/3
+

4 3

√
2
3
c

3

√√
3
√

27σ4
0c

2 + 256c3 − 9σ2
0c

+
σ3

0

4

√
σ2

0

4
+

3
√√

3
√

27σ4
0c

2+256c3−9σ2
0c

3√232/3
− 4 3

√
2
3
c

3
√√

3
√

27σ4
0c

2+256c3−9σ2
0c

] 1
2

.
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Appendix B

Appendix for Chapter 3

B.1

Proof of proposition 3.2.1.
Firstly, we prove the necessity. We can use eigen-decomposition and write the covariance

matrix Σ(t, x) = QΛQ
ᵀ

= QΛ
1
2 Λ

1
2Qᵀ, where Q ∈ Rd×d and the ith column of Q is the

eigenvector qi of Σ(t, x), and Λ ∈ Rd×d is the diagonal matrix whose diagonal elements are
the corresponding eigenvalues, Λii = λi.

For any given α(t, x) ∈ Rd, A = α(t, x)ᵀQΛ
1
2 Λ

1
2Qᵀα(t, x)x2ρ. We define β := α(t, x)ᵀQΛ

1
2 ,

then A = ββᵀx2ρ = ‖β‖2 x2ρ, where ‖·‖ denotes the L2 norm. Similarly,

B = α(t, x)ᵀQΛ
1
2 (QΛ

1
2 )−1µ(t, x)xρ = β(QΛ

1
2 )−1µ(t, x)xρ. Therefore we have the rela-

tionship between A and B as

B2 =
(
β(QΛ

1
2 )−1µ(t, x)

)2

x2ρ2 ≤ ‖β‖2
∥∥∥(QΛ

1
2 )−1µ(t, x)

∥∥∥2

x2ρ2 = Aρ
∥∥∥(QΛ

1
2 )−1µ(t, x)

∥∥∥2

,∥∥∥(QΛ
1
2 )−1µ(t, x)

∥∥∥2

A ≥ B2

ρ
.

Define ν(t, x) := (QΛ
1
2 )−1µ(t, x) = Σ(t, x)−

1
2µ(t, x), we can write the above inequality as

A ≥ B2

‖ν(t,x)‖2ρ .

For given (ρ,B,A) satisfying A ≥ B2

‖ν(t,x)‖2ρ , we want to show that there exists α(t, x) ∈
Rd(d > 1), such that A = α(t, x)ᵀΣ(t, x)α(t, x)x2ρ, B = α(t, x)ᵀµ(t, x)xρ. First of all,
since A

ρ
≥ 0, there exists a vector β ∈ R1×d whose norm satisfies ‖β‖2 = A

x2ρ
. Then

B2

‖ν(t,x)‖2ρ ≤ A will be equivalent to B2 ≤ ‖β‖2 ‖ν(t, x)‖2 x2ρ2. With Cauchy–Schwarz

inequality, (βν(t, x))2x2ρ2 ≤ ‖β‖2 ‖ν(t, x)‖2 x2ρ2 holds. Therefore there exists a vector
β ∈ R1×d(d > 1) such that B = βν(t, x)xρ and ‖β‖2 = A

x2ρ
. With this β, there exists an

α(t, x) = QΛ−
1
2βᵀ.

The case for dimension d = 1 is trivial, hence omitted here.

B.2

Proposition B.2.1. We denote K0 the set of (u, b, a, r) ∈ Cb(E,R× R× R× R) that can
be represented by φ ∈ C1,2

b (E). Then we have

inf
(ρ,B,A,ρ1)∈C∗b (E;R×R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)}

= inf
(ρ,B,A,ρ1)∈M(E;R×R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)} . (B.1)
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Proof. Following closely the argument in Villani (2003, Section 1.3), we define C0(E) the
space of continuous functions on E, going to 0 at infinity. For (ρ,B,A, ρ1) ∈ C∗b (E;R×R×
R×R), we decompose (ρ,B,A, ρ1) = (ρ̂, B̂, Â, ρ̂1) + (δρ, δB, δA, δρ1), where (ρ̂, B̂, Â, ρ̂1) ∈
M(E;R× R× R× R). For any (u, b, a, r) ∈ C0(E;R× R× R× R), we have

〈(u, b, a, r), (δρ, δB, δA, δρ1)〉 = 0.

Because M(E;R) is a subset of C∗b (E;R), we naturally have

inf
(ρ,B,A,ρ1)∈C∗b (E;R×R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)}

≤ inf
(ρ,B,A,ρ1)∈M(E;R×R×R×R)

{α∗(ρ,B,A, ρ1) + β∗(ρ,B,A, ρ1)} . (B.2)

Notice that the right hand side of the inequality (B.2) can be written as

inf
(ρ̂,B̂,Â,ρ̂1)∈M

{
α∗(ρ̂, B̂, Â, ρ̂1) + β∗(ρ̂, B̂, Â, ρ̂1)

}
.

Now we look at the opposite direction of inequality (B.2). For α∗, we have

α∗(ρ,B,A, ρ1)

= sup
(u,b,a,r)∈Cb(E;R×R×R×R)

{∫
E

udρ+ bdB + adA+
[∫

R
rdρ1 − C∗(r)

]
: u+ F ∗(b, a) ≤ 0

}
≥ sup

(u,b,a,r)∈C0(E;R×R×R×R)

{∫
E

udρ+ bdB + adA+
[∫

R
rdρ1 − C∗(r)

]
: u+ F ∗(b, a) ≤ 0

}
= sup

(u,b,a,r)∈C0(E;R×R×R×R)

{∫
E

udρ̂+ bdB̂ + adÂ+
[∫

R
rdρ̂1 − C∗(r)

]
: u+ F ∗(b, a) ≤ 0

}
= α∗(ρ̂, B̂, Â, ρ̂1).

We know β∗(ρ̂, B̂, Â, ρ̂1) = 0 if (ρ̂, B̂, Â, ρ̂1) satisfies (3.23), and β∗(ρ̂, B̂, Â, ρ̂1) = +∞
otherwise. When β∗ is finite,∫

E

udρ̂+ bdB̂ + adÂ+

∫
R
rdρ̂1 − φ0dρ0 = 0 ∀(u, b, a, r) ∈ K0.

Then we have

β∗(ρ̂, B̂, Â, ρ̂1) = sup
(u,b,a,r)∈C0∩K0

∫
E

udρ̂+ bdB̂ + adÂ+

∫
R
rdρ̂1 − φ0dρ0

= sup
(u,b,a,r)∈C0∩K0

∫
E

udρ+ bdB + adA+

∫
R
rdρ1 − φ0dρ0

≤ sup
(u,b,a,r)∈K0

∫
E

udρ+ bdB + adA+

∫
R
rdρ1 − φ0dρ0

= β∗(ρ,B,A, ρ1).

This completes the proof.
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